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Abstract
Harmonic imaging is from now on clinical routine because it increases the resolution of

ultrasound images. It is based on the nonlinear response of tissues. The novel nonlinear
imaging methods, derived from harmonic imaging, currently suffer from a lack of simulation
tools. The measure of the nonlinear parameter using ultrasound brings new perspectives
in term of imaging and diagnosis. However, no method exists at present to measure this
parameter in echo-mode configuration.

This thesis aims to solve the two mentioned limitations by proposing new simulation
tools of the ultrasound nonlinear propagation in tissues as well as a new method to measure
the nonlinear parameter in echo-mode configuration.

Current simulation tools of ultrasound images do not take into account the nonlin-
ear propagation that is why an angular spectrum method has been proposed to compute
the pressure field considering the ultrasound propagation in media with inhomogeneous
nonlinear parameter. This pressure field is then used to generate ultrasound images con-
taining the harmonic component, for homogeneous or not nonlinear media. This spectral
approach has been implemented on a GPU in order to accelerate the computation and
packaged in a free software made available to the scientific community under the name
CREANUIS.

In a second time, a comparative method to measure the nonlinear parameter has been
proposed. This method has been extended in order to take into account media with
inhomogeneous nonlinearity. It is usable in echo-mode configuration by considering a
region of the image as a reference. This method assumes that the acoustic pressure is
related to the echogenicity of the medium. An extraction step of the mean pressure in
echographic images has been realized using alternating sequential filters. Thanks to the
developed simulation tools, different configurations have been used to parameterize and
to evaluate the proposed method. Some acquisitions have been made on phantoms and
animal’s livers. Even if the measure presents a relatively weak resolution, the obtained
images demonstrate a high potential in the nonlinear parameter imaging of tissues.

Résumé
L’imagerie harmonique est une technique désormais utilisée en routine clinique car

elle améliore la résolution des images. Elle est basée sur la réponse non linéaire des
tissus. Les nouvelles méthodes d’imagerie non linéaire, dérivé de l’imagerie harmonique,
souffre à l’heure actuelle d’un manque d’outils de simulation. La mesure par une technique
ultrasonore du paramètre de non linéarité d’un milieu amène de nouvelles perspectives en
termes d’imagerie et de diagnostic. Cependant, il n’existe pas actuellement de méthode
de mesure de ce paramètre en mode écho classique.

Cette thèse a pour objectifs de répondre aux deux limitations mentionnées ci-dessus en
proposant de nouveaux outils de simulation de la propagation non linéaire des ultrasons
dans les tissus ainsi qu’une nouvelle méthode de mesure du paramètre de non linéarité en
mode écho.

Les outils actuels de simulations d’image échographique ne prennent pas en compte la
propagation non linéaire. Il a donc été proposé une méthode de spectre angulaire afin de
calculer le champ de pression prenant en compte la propagation ultrasonore non linéaire
dans des milieux de non linéarité inhomogène. Ce champ de pression est ensuite utilisé
pour générer des images échographiques contenant l’information harmonique, pour des



milieux de non linéarité homogène ou non. Cette méthode spectrale a été portée sur
GPU afin d’accélérer le calcul et intégrée dans un logiciel libre mis à disposition de la
communauté scientifique sous le nom de CREANUIS.

Dans un deuxième temps, une méthode comparative de mesure du paramètre de non
linéarité a été proposée. Cette méthode a été étendue afin de prendre en compte des
milieux dont le paramètre de non linéarité n’est pas homogène. Elle est aussi utilisable
en mode écho en sélectionnant une zone de l’image choisie comme référence. La méthode
implantée fait l’hypothèse que la pression acoustique locale est liée à l’échogénéité du mi-
lieu. Une étape d’extraction de la pression moyenne dans les images échographiques a été
réalisée grâce à des filtres alternés séquentiels. Grâce aux outils de simulation développés,
différentes configurations ont été utilisées pour la mise au point et l’évaluation de la méth-
ode. Des acquisitions ont été réalisées à partir de fantômes et de foies animaux. Même
si la méthode de mesure présente une résolution relativement faible, les images obtenues
démontrent le potentiel de l’imagerie du paramètre de non linéarité des tissus.

Sommario
L’harmonic imaging è una tecnica già utilizzata nella pratica clinica poiché migliora la

risoluzione delle immagini. Si basa sulla risposta non lineare dei tessuti. I nuovi metodi
di imaging non lineare, derivati dall’imaging armonico, ad oggi risentono della mancanza
di opportuni strumenti di simulazione. La misura del parametro di non linearità di un
mezzo, tramite tecniche ad ultrasuoni, apre nuove prospettive in termini di imaging e
di diagnostica. Tuttavia, attualmente non esistono dei metodi per la misura di questo
parametro nella modalità eco classica.

Questo lavoro di tesi si propone come obiettivo di rispondere alle due limitazioni sud-
dette, proponendo sia dei nuovi strumenti di simulazione della propagazione non lineare
degli ultrasuoni nei tessuti che un nuovo metodo per la misura del parametro di non
linearità nella modalità eco classica.

Gli attuali strumenti di simulazione per l’imaging ecografico non tengono conto della
propagazione non lineare. Al fine di calcolare il campo di pressione considerando la
propagazione non lineare degli ultrasuoni in un mezzo con non linearità disomogenea è
stato scelto l’Angular Spectrum Method. Il campo di pressione calcolato viene poi utiliz-
zato per generare delle immagini ecografiche contenenti l’informazione armonica, per mezzi
con non linearità omogenea o disomogenea. Il metodo proposto è stato poi implementato
su GPU così da velocizzare il calcolo ed è stato poi integrato in un software ad accesso
libero, messo a disposizione della comunità scientifica con il nome di CREANUIS.

In un secondo tempo, è stato proposto un metodo comparativo per la misura del
parametro di non linearità. Questo metodo è stato sviluppato così da tenere conto dei
materiali nei quali il parametro di non linearità non è omogeneo. Lo si può anche utilizzare
in modalità eco selezionando una zona dell’immagine presa come riferimento. Il metodo
realizzato fa l’ipotesi che la pressione acustica locale sia legata all’ecogenità del mezzo.
Una tappa consiste nell’estrazione della pressione media nelle immagini ecografiche tramite
degli alternating sequential filters. Grazie agli strumenti di simulazione sviluppati è stato
possibile utilizzare configurazioni per la messa a punto e la valutazione del metodo. Sono
state fatte delle acquisizioni su phantom e su fegati animali. Anche se il metodo di misura
presenta una risoluzione relativamente bassa, le immagini ottenute dimostrano il potenziale
dell’imaging del parametro di non linearità dei tessuti.
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B/A Nonlinear parameter
c Celerity of the ultrasound wave in the tissue (m.s−1)
c0 Equilibrium celerity of the ultrasound wave in the tissue (m.s−1)
f Frequency (Hz)
F 3D Fourier transform in dimension (x, y, t)
Jn Bessel function of n-th order

k = ω/c Waves number (m−1)
p(x, y, z, t) Pressure (Pa) of the ultrasound wave at the point (x, y, z) and the time

t
p0 Equilibrium pressure (Pa) amplitude

R, R12 Reflection coefficient (from medium 1 to medium 2)
s Entropy

T , T12 Transmission coefficient (from medium 1 to medium 2)
�u Particle velocity (m.s−1)

Z = ρc Acoustic impedance of the medium (kg.m−2.s−1)
x Lateral dimension (m)
y Elevation dimension (m)
z Axis distance (m)
zc Shock distance (m−1)

Greek letter

∇ Nabla operator
α0 Attenuation constant of the medium (Np.m−1.MHz−γ)
α1 Attenuation of the fundamental wave (Np.m−1.MHz−γ)
α2 Attenuation of the second harmonic wave (Np.m−1.MHz−γ)

β = B/2A + 1 Nonlinear coefficient
γ Frequency dependent number in attenuation (between 1 and 2 for bio-

logical media)
λ = c/f Wave length of the pressure wave (m)

ρ Density of the tissue (kg.m−3)
ρ0 Equilibrium density of the tissue (kg.m−3)

τ = t − z/c0 Delayed time (in s)
ω = 2πf Angular frequency f (Hz)

ω0 = 2πf0 Fundamental angular frequency f0 (Hz)
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Abbreviations

AM Amplitude modulation
ASF Alternating sequential filter
ASM Angular spectrum method

FWHM Full width at half maximum
FT Fourier transform
IFT Inverse Fourier transform
lpf Low-pass filter
PI Pulse inversion
pdf Probability density function
PSF Point spread function
RF Radio frequency

TGC Time gain compensation
US Ultrasound

UCT Ultrasound computed tomography



Thesis Objectives

Objectives

The objectives of this thesis work are based on the nonlinear propagation of an ul-

trasound wave in biological tissue. Harmonic imaging, with or without injection of con-

trast agents, has become a clinical routine thanks to the increase in the image resolu-

tion [Averkiou et al. (1997), van Wijk and Thijssen (2002)]. The nonlinear parameter is,

similarly to the speed of sound c0 or the density ρ0, one of the parameters characterizing the

medium. It impacts the harmonics increase during the nonlinear ultrasound wave propaga-

tion. Currently, various techniques exist to measure the increase of the second harmonic

response compared to the fundamental one: the amplitude modulation (AM) [Nowicki

et al. (2007)], the pulse inversion (PI) [Simpson and Burns (1997),Simpson et al. (1999)]

or phase optimization [Eckersley et al. (2005)]. Moreover, in order to increase the detec-

tion of the contrast agents, some recent methods have been proposed to reduce either the

native nonlinearity of the medium with a broadband reduction of the second harmonic

component [Pasovic et al. (2010), Pasovic et al. (2011)] or the second harmonic compo-

nent created at the emission by the probe [Novell et al. (2009)]. The development of these

different strategies would be facilitated by the knowledge of the nonlinear parameter of

the tissue. Its measurement from echographic images would be a precious information in

nonlinear imaging. The study of this nonlinear parameter is conducted in this thesis for

various possible future utilization in medical ultrasound imaging:

• For second harmonic reduction [Novell et al. (2009),Pasovic et al. (2010)].

• For parametric imaging: combination of the nonlinear parameter information with

other measurements.

• For tissue characterization: a difference in the nonlinear parameter between healthy

and pathological tissues was largely reported in the literature [Zhang et al. (1996),

Zhang and Gong (1999),Zhang et al. (2001),Gong et al. (2004)].

These multiple utilizations of the nonlinear parameter make it an important character-

istic to evaluate. From one hand, the local estimation of the nonlinear parameter allows to

provide an image of a medium that may be used to detect a lesion and on the other hand,

the different values of the map can be used to define the strategies of second harmonic

reduction in view to improve the image quality.
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Layout of the thesis

In this thesis, I concentrated my efforts on the nonlinear parameter measurement and

especially in echo mode configuration which is the classical imaging clinical mode. How-

ever, the measurement must take into account the possible variation and inhomogeneity

of the nonlinear parameter of the medium and new simulation tools are required. The

manuscript is composed of three distinct parts:

• Chapter 1: General introduction. This chapter is devoted to the presentation of the

ultrasound, the linear/nonlinear propagation and the different image modalities. No

contribution is presented in this chapter.

• Part 1: Presentation of the different simulation tools developed during the thesis.

The chapter 2 makes a review of the different simulation tools in the literature for

the nonlinear wave propagation and the ultrasound images simulation methods. The

advantages and disadvantages of the different techniques are discussed in order to

identify the optimal simulator for our purpose, the possible inhomogeneity of the

nonlinearity. The chapter 3 presents our original propagation simulator which takes

into account the possible inhomogeneity of the nonlinear parameter in the medium.

Its evaluation has been made on simulated and experimental data. The chapter 4

presents an original ultrasound image simulator, CREANUIS, based on the previous

nonlinear propagation simulator. Thanks to this final tool, the complete echographic

image of an inhomogeneous nonlinear medium can now be simulated.

• Part 2: The last part of the thesis is focussed on the nonlinear parameter mea-

surement. The chapter 5 makes a literature review on the nonlinear parameter

measurement methods. From the set of described methods, the chapter 6 considers

the methods having a potential utilization in echo mode configuration. Moreover,

some of them are extended to inhomogeneous nonlinear medium. In this chapter, in

addition to the original extensions, the evaluation of these extensions are conducted

on simulated data thanks to the previously developed simulation tools. Then, the

chapter 7 evaluates one of these extensions on experimental data in order to estimate

the accuracy of the proposed method.

To conclude the thesis, a general discussion and conclusion is conducted and highlights

the different perspectives of this thesis work. In appendix, different information are given

as the different equipments used in the thesis (ultrasound scanner, computer, and graphic

card), the user manual of CREANUIS, and different nonlinear parameter value of various

media.
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Chapter 1

Ultrasound and echography: propagation

and beamforming

This chapter presents the background in ultrasound and echography. In a first time,

some generalities about the ultrasound are given. Then the nonlinear propagation of the

ultrasound is highlighted. Finally, the echographic image beamforming is presented. The

different notations and conventions are set in this part.

1.1 Ultrasound generalities

1.1.1 Ultrasound wave

The ultrasound is a compression-dilatation wave which propagates in a medium. The

difference between ultrasound and the classical audible sound comes from their frequencies

f which are higher in medical ultrasound (1-20 MHz compare to 20 Hz - 20 kHz for the

audible sound). More specifically, the pressure wave is successively composed of phases

with compression and dilatation which propagate in the medium. In this way, the sound

and ultrasound cannot propagate in vacuum. In function of the speed of sound c of

the propagation medium, the distance between two compression or dilatation waves, the

wavelength λ, is defined as:

λ =
c

f
(1.1)

In biological medium, the mean value of the speed of sound is 1540 m.s−1. The corre-

sponding wavelengths for ultrasound is usually comprised between 0.08 mm and 1.54 mm

3



CHAPTER 1. ULTRASOUND AND ECHOGRAPHY: PROPAGATION AND BEAMFORMING

(for frequencies in the range between 1-20 MHz). The wavenumber k, expressed in m−1, is

related to the wavelength and is proportional to the number of oscillations. It is expressed

with the wavelength or with the angular frequency ω of the wave:

k =
2π

λ
=

ω

c
(1.2)

1.1.2 Linear propagation

Mathematical background

The ultrasound wave propagation is based on two major propagation equations in the

linear case. Indeed, if the medium is considered homogeneous with a negligeable viscosity

and heat effect, the pressure wave p (expressed in Pa), the particule velocity �u (expressed

in m.s−1) and the density ρ (expressed in kg.m−3) evolutions are described by the two

linearized Euler’s equations [Hamilton and Blackstock (1988)]:

1 - Conservation of the mass

∂ρ

∂t
+ ρ∇ . �u = 0 (1.3)

2 - Conservation of momentum or motion

ρ
∂�u

∂t
+ ∇p = 0 (1.4)

The notation ∇ correspond to the nabla mathematical operator. These two equations

characterize the linear behavior of the medium. Indeed, equation (1.3) imposes that no

mass is lost or added in the medium during the wave propagation and equation (1.4) related

the perturbation of the medium to an external force, here the pressure wave transmitted

in the medium. In linear acoustic, the temperature of the medium is considered constant

during the wave propagation. With such consideration, the compression is adiabatic and

can be described as [Beyer (1960)]:

p

p0
=

(

ρ

ρ0

)γ

(1.5)

where γ is the ratio of specific heat. The subscript 0 specifies that the variables are taken

at their equilibrium. For a constant entropy s, the speed of the propagation wave can be

further developed:

c2 =
(

∂p

∂ρ

)

s

(1.6)

which can be expressed at the equilibrium:

c2
0 = γ

p0

ρ0
(1.7)

This final expression relates the speed of propagation of an ultrasound wave to the
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1.1. ULTRASOUND GENERALITIES

Medium Density (kg.m−3) Celerity (m.s−1) Acoustic impedance (MRay)
Air 1.2 344 412e-6

Water 1000 1480 1.48
Blood 1060 1530 1.62

Biological tissue 1000 - 1100 1480 - 1540 1.48 - 1.69

Table 1.1: Presentation of different classical media parameters.

Figure 1.1: Illustration of the incident, reflected and transmitted pressure wave between
two different medium.

initial pressure transmitted in the medium and its density.

Transmission and reflection of an ultrasound wave

Each medium can be characterized by its acoustic impedance Z (expressed in kg.m−2.s−1

or Rayleigh):

Z = ρc (1.8)

Some classical values of density, celerity and acoustic impedance of different media

are presented in Table 1.1. The value of the acoustic impedance also depends on the

medium’s temperature. Indeed, the celerity and the density of the medium slightly change

with temperature variation. This evolution is also present on the acoustic impedance.

The acoustic impedance plays a major role when the ultrasound wave go trough dif-

ferent media. Indeed, at the interface between the two media, a part of the ultrasound

wave is reflected in the initial medium whereas the rest of the wave is transmitted in the

next medium. This phenomenon is highlighted in the Fig. 1.1. The amplitude of the two

created waves depends on the incident angle θi and the acoustic impedance of the two

media. It must be noted that the incident and reflection angles have the same value and

the transmitted angle θt is defined by the Snell’s law. The intensity coefficient of reflection
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R and of transmission T are defined as [Ziomek (1995)]:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

R =
(Z2 cos(θi) − Z1 cos(θt))

2

(Z2 cos(θi) + Z1 cos(θt))
2

T = 1 − R =
4Z1Z2 cos(θi) cos(θt)

(Z2 cos(θi) + Z1 cos(θt))
2

(1.9)

In the particular case where the pressure wave arrives perpendicularly to the interface

of the two media (θi = 0◦), the resulting value for the transmitted angle is also equal to 0◦

and the formulation of R and T are simplified:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

R0 =
(Z2 − Z1)2

(Z2 + Z1)2

T0 =
4Z1Z2

(Z2 + Z1)2

(1.10)

Two particular cases can be mentioned:

• Z1 ≫ Z2. In this situation, T0 ∼ 0% and R0 ∼ 100%, meaning that all the pressure

wave is reflected in the initial medium.

• Z1 ∼ Z2. In this situation, T0 ∼ 100% and R0 ∼ 0%, meaning that all the pressure

wave is transmitted in the second medium.

The first case corresponds to a situation where the ultrasound wave propagates from

a medium to the air. In this situation, all the pressure is sent back to the initial medium.

Experimentally, it appends when the ultrasound probe transmits the wave directly in the

air. This situation is really dangerous for the transducer because all the energy comes

back to the elements and could destroyed them by heating. Using some gel, the acoustic

impedance between the probe and the medium is adapted in order to encounter the second

case, where the maximum energy is transmitted in the desired medium.

In biological media, such reflections appear in specific cases, for example, when the

wave goes from soft tissues to bones. However, in most biological media, the impedance

is globally homogenous during the wave propagation and only small limited and small

variation can be observed. These inhomogeneities in the medium are seen as scatterers.

Two cases can then be summarized with a continuous and a discrete model. With the

continuous model, the impedance changes depending on the position and reflection occurs

in the medium as described in the Snell’s law. With the discrete model, only the scatterers

backscatters a signal. Moreover, this backscattering did not follow the previous described

law and the scatterers emit a secondary spherical wave with an amplitude related to the

incident pressure wave.
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1.2. NONLINEAR PROPAGATION

1.2 Nonlinear propagation

The linear propagation of an ultrasound wave in a medium is an approximation of the

reality. Indeed, the ultrasound propagation is highly nonlinear and the conservation of the

momentum (1.4) has to be completed. In the case of the ultrasound nonlinear propagation

through non-viscid and lossless medium, the motion equation (1.4) is completed [Hamilton

and Blackstock (1988)]:

ρ

(

∂�u

∂t
+ (�u . ∇)�u

)

= −∇p (1.11)

In this equation, the convective acceleration term, (�u . ∇)�u, has been introduced in

the linear conservation of motion equation. It explains the nonlinear propagation and also

complexifies the resolution of equation (1.11).

1.2.1 Nonlinear parameter and nonlinear coefficient definition

Mathematical background

In biological tissues, the relation between the pressure and the density is not driven

by equation (1.5) which is only valid for gases. In order to express the evolution of the

pressure wave as a function of the density, the pressure is expanded using the Taylor

series [Beyer (1960)]:

p − p0 =
(

∂p

∂ρ

)

s

(ρ − ρ0) +
1
2!

(

∂2p

∂ρ2

)

s

(ρ − ρ0)2 +
1
3!

(

∂3p

∂ρ3

)

s

(ρ − ρ0)3 + ... (1.12)

by using p
′

= p − p0, ρ
′

= ρ − ρ0 and the three following parameters A, B and C:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A = ρ0

(

∂p

∂ρ

)

s

≡ ρ0c2
0

B = ρ2
0

(

∂2p

∂ρ2

)

s

C = ρ3
0

(

∂3p

∂ρ3

)

s

(1.13)

the equation (1.12) can be written as:

p
′

= A

(

ρ
′

ρ0

)

+
B

2!

(

ρ
′

ρ0

)2

+
C

3!

(

ρ
′

ρ0

)3

+ ... (1.14)

This development of the Taylor series defines the accuracy of the relationship between

the pressure and the density. Indeed, if only the A parameter is kept, the development

is equivalent to the linear propagation theory. However, as soon as the B parameter is

kept, the relationship between the pressure and the density is nonlinear. The nonlinear

parameter is defined as the ratio between the B and A coefficients. Its expression depends
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CHAPTER 1. ULTRASOUND AND ECHOGRAPHY: PROPAGATION AND BEAMFORMING

on the celerity, the density and the pressure:

B

A
=

ρ0

c2
0

(

∂2p

∂ρ2

)

s

(1.15)

The nonlinear parameter has a direct impact on the velocity of the pressure wave:

c = c0

(

1 +
B

2A

u

c0

)
2A
B

+1

(1.16)

Because the ratio between the particle velocity and the celerity u/c0 is small, the

velocity is usually simplified by:

c = c0 +
(

1 +
B

2A

)

u (1.17)

From this equation, the nonlinear coefficient β of the medium is defined:

β = 1 +
B

2A
(1.18)

This nonlinear coefficient is linearly linked to the nonlinear parameter B/A. Finally,

the final formulation for the velocity is expressed as:

c = c0 + βu (1.19)

Visualization of the nonlinear effect

The nonlinear effects are visible on the velocity of the pressure wave expressed in

equation (1.19). Using the expression of the particle velocity, the celerity can be further

developed as:

c = c0 + β
p

ρ0c0
(1.20)

The speed of sound variation Δc can then be expressed as a function of the pressure

variation Δp:

Δc = c − c0 =
β

ρ0c0
Δp (1.21)

However, in the particular case of the ultrasound propagation, the mean pressure value

is null and the variation is the same of the pressure value (Δp = p). The maximum and

minimum celerity, respectively c+ and c−, are then expressed as:

c± = c0 ± β

ρ0c0
p (1.22)

The analysis of equation (1.22) demonstrates that the high pressure part of the wave

(compression part) travels faster than the low pressure wave (dilatation part) (Fig. 1.2.a).

Because of the cumulative behavior of nonlinear effects, the initial sinusoidal signal (monochro-

matic signal) turns into a sawtooth signal during the propagation (Fig. 1.2.b). This phe-
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1.2. NONLINEAR PROPAGATION

nomenon is visible on the Fourier spectrum of the two signals where, initially, just the

fundamental component is present (Fig. 1.2.c). After distortion of the initial pressure,

the apparition of several harmonics is visible and these harmonics translate the nonlinear

behavior of the propagation (Fig. 1.2.d). Higher the nonlinear coefficient, faster the distor-

tion. In theory, the distortion is amplified during the propagation until the pressure wave

becomes sawtooth and the high pressure wave overtakes the low pressure one. In medical

imaging, such cases are not reach because of the attenuation of the medium and the pres-

sure amplitude transmitted in the medium. The propagation distance to reach this shock

wave zc is expressed as a function of the medium characteristic [Angelsen (2000)a,Ma et al.

(2005)].

zc =
ρ0c3

0

ωβp0
(1.23)

In this formulation, it can be seen that the nonlinear process is not only linked to

the nonlinear parameter. Indeed, higher the frequency of the initial amplitude, faster the

nonlinear components in the signal takes place. The classical characteristics of the medium

also impact the shock wave distance and the apparition of the nonlinear components.

However, this discontinuity in the pressure wave did not appeared experimentally. A

dissipation phenomenon causes the shock progressively looses amplitude and avoids this

discontinuity.

1.2.2 Burgers equation

Lossless Burgers equation

For a plane wave in an inviscid (no viscosity) and lossless medium, the propagation of

the pressure wave is defined thanks to the lossless Burgers equation [Beyer (1974)]:

∂p

∂z
=

βp

ρ0c3
0

∂p

∂τ
(1.24)

where z is the propagation direction and τ is the delayed time (τ = t − z/c0). [Fubini

(1935)] proposed a solution of this equation and expressed the pressure wave at z position

as:

p(z, τ) = p0

∞
∑

n=1

2
nσ

Jn(nσ) sin(nω0τ) (1.25)

where n is the harmonic number, ω0 is the central angular frequency of the transmitted

signal, Jn is the Bessel function of nth order and σ is a dimensionless distance expressed

as a function of the medium parameter:

σ =
ω0βp0

ρ0c3
0

z =
z

zc
(1.26)

With such a formulation, valid if σ < 1, the increase of the harmonics is related to

the different probe and medium parameters. In Fig. 1.3, the evolution of the fundamental
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Figure 1.2: Sinusoidal pressure wave transmitted at z = 0 (a) and after z = 500 mm (b). In
the Fourier spectrum, the harmonics, initially absent (c) appear during the propagation
(d). The illustration has been obtained for a 3 MHz wave with an initial pressure of
100 kPa after 500 mm of propagation in water (B/A = 5). The values and the figure are
used for illustration purposes in order to clearly see the sawtooth behavior of the pressure.
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1.2. NONLINEAR PROPAGATION
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Figure 1.3: Evolution of the fundamental and first three harmonics at different depths for
a 2 MHz transmitted wave with an initial pressure p0 of 300 kPa transmitted in water
(B/A = 5). The amplitude is normalized by p0 and then expressed in dB

and the first three harmonics (given in equation 1.25) is displayed at different depths.

As shown on the figure, the fundamental component is decreasing whereas the harmonics

amplitudes are increasing during the propagation.

Complete Burgers equation

The previous formulation of the propagation is an approximation of the reality. In-

deed, without considering the attenuation, the shock wave phenomenon can appear in the

medium if the propagation distance is large enough. This configuration is avoided if the

attenuation of the medium is considered during the propagation. It simulates the fact

that the energy of the propagated wave is dispersed in the medium and transformed in

heat due to dissipation. The previous lossless Burgers equation (1.24) is extended to the

Burgers equation [Beyer (1974)]:

∂p

∂z
=

δ

2c3
0

∂2p

∂τ2
+

βp

ρ0c3
0

∂p

∂τ
(1.27)

where δ combined the different effect of the thermo-viscious dissipation. According to the

medium and the considered approximations, the expression of δ can differ. The previous

solution of Fubini is then no more valid.

1.2.3 KZK equation

The previous proposed propagation equation did not take into account the finite size

of the transducer transmitting the ultrasound wave into the medium. For finite trans-

mitter sizes, the diffraction of the transducer has to be taken into consideration into the

propagation equation. The Burgers equation (1.27) becomes the KZK equation, described
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Figure 1.4: Geometrical description of the linear array parameters and of the landmark
(x, y, z).

by [Kuznetsov (1970),Zabolotskaya and Khokhlov (1969)]:

∂p

∂z
= Δ⊥p +

δ

2c3
0

∂2p

∂τ2
+

βp

ρ0c3
0

∂p

∂τ
(1.28)

where Δ⊥p represents the diffraction’s effect of the transmitter. This diffractive term

defines the pattern of focalization due to the probe’s geometry. Interactions between the

different elementary sources focus the energy in the medium for the fundamental and also

the harmonics. Generally, two types of transmitter are used. Circular elements of radius

r are often used in research applications because of their easiest known modelling, their

experimental simplicity and cost. They can also be focalized or not. The second type

of transmitters are the medical probes used on commercial scanner. These probes are

defined by a set of geometric dimensions that is of major importance for the diffraction. A

probe is usually composed of Nele identical elements (elementary transducer) which have a

dimension Width and Height in the lateral and elevation direction. The spacing between

two consecutive elements is the Kerf. Another dimension, the Pitch correspond to the

distance between the center of two consecutive elements (Pitch = Width + Kerf). For a

linear array, these geometric parameters are highlighted in Fig. 1.4.

In the KZK equation, the formulation of the diffraction’s effect depends on the probe

shape: a circular piston source leads to equation (1.29) and a linear array, as shown in

Fig. 1.4, to equation (1.30):

Δ⊥p =
∫ τ

−∞

(

∂2p

∂r2
+

1
r

∂p

∂r

)

dτ
′

(1.29)
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1.3. ECHOGRAPHIC IMAGE BEAMFORMING

Δ⊥p =
∫ τ

−∞

(

∂2p

∂x2
+

∂2p

∂y2

)

dτ
′

(1.30)

where τ
′

is the integration variable related to the retarded time τ , (x, y) are the lateral

and elevation dimension in the probe plane (perpendicular to the propagation axis).

1.3 Echographic image beamforming

1.3.1 Principle of the image formation

In echographic image, the echoes are based on the previously described discrete model.

From the initial transmitted ultrasound wave, the different scatterers of the medium

backscatter echoes to the ultrasound probe. By using the ultrasound probe in recep-

tion mode, meaning that the probe records the pressure that hits its surface and converts

it in an electrical signal, an image is created. Indeed, all the scatterers emit a wave that

arrives at different time to the probe surface according to their position. The sum of these

different echoes gives to the resulting image its noisy aspect, called the speckle.

The ultrasound image is obtained by repeating the same operations. First, a sub-part

of the ultrasound probe is selected and only this part of the transducer transmits the

ultrasound wave in the medium. From the global pressure wave backscattered by the

medium, each selected active transducer of the probe recorded the echo and creates, for

each of them, a signal called radio frequency (RF) signal. By juxtaposing these signals

together, the elementary or pre-beamformed RF image is obtained. However, in function of

the beamforming strategy used in reception (apodization, focalization), the elementary RF

image is combined into one signal: the post-beamformed RF line. Then, by changing the

sub-part of the used probe, different post-beamformed RF lines are created and correspond

to different part of the medium. Using all these lines together, the final post-beamformed

RF image is obtained. Conveniently, the term post-beamformed is often suppressed when

it deals with RF image. To summarize, from the initial pressure wave transmitted by the

sub-probe, the medium backscattered waves which are recorded by the active element and

converted into a single RF line. When the different parts of the probe are used, the final

RF image is computed.

However, the RF image, even if it contains a lot of information, is difficult to visual-

ize because it presents a lot of oscillations at the transmitted frequency (Fig. 1.5.a). To

visualize the image, it is necessary to demodulate the signal around a lower frequency

that contains less information compared to the RF signal. This demodulation is con-

ducted thanks to a low pass filter. The absolute value of an Hilbert transform can also

be used. The resulting image, called the B-mode image, proposes an interpretable image

(Fig. 1.5.b). To reduce the dynamic of the image and to highlight the different regions, a

log-compression is used. In the resulting image, expressed in dB, all the structures are fi-

nally visible and the user has the possibility to chose the dynamic in the display (Fig. 1.5.c).

In this way, the user can chose the number of dB wanted in the image. In the tissue, the
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Figure 1.5: Illustration of the different ultrasound image: (a) the RF image, (b) the B-
mode image and (c) the log-compressed B-mode image. The final log-compressed B-mode
image show clearly the different structures in the medium. A dynamic of 50 dB has been
used in the log-compressed image.

ultrasound are attenuated. To compensate this effect, a time gain compensation (TGC)

function is used. The TGC increases the dynamic in function of the depth to compensate

the loss due to the attenuation, for example a TGC of 1 dB.cm−1 increases the dynamic

by 1 dB each centimeter. All these denominations (RF, B-mode, log-compressed B-mode

image) are used in the manuscript to describe the different ultrasound images.

1.3.2 Resolution in echographic images

The resolution in echographic image characterizes the possibility to distinguish two

close scatterers. From one hand, the axial resolution and on the other hand, the lateral

and elevation resolutions do not depend on the same parameters. The two last resolutions

are usually considered as equal. In the three dimensions, the resolution differs because it

strongly depends on the beam shape described by different parameters:

• The transmitted frequency

• The number of cycles in the transmitted signal

• The aperture/geometry of the probe

• The depth of interest

• The beamforming strategies, in transmission and reception

The two first parameters define the length of the transmitted pulse in the medium. The

shorter the pulse, the better the axial resolution. Increasing the frequency and decreasing

the number of cycles is a way to improve the axial resolution. However, for a higher

14 François Varray



1.3. ECHOGRAPHIC IMAGE BEAMFORMING

Lateral axis [mm]

A
x
ia

l 
a
x
is

 [
m

m
]

PSF on RF image

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(a)

Lateral axis [mm]
A

x
ia

l 
a
x
is

 [
m

m
]

PSF on RF image

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(b)

Lateral axis [mm]

A
x
ia

l 
a
x
is

 [
m

m
]

PSF on RF image

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(c)

Lateral axis [mm]

A
x
ia

l 
a
x
is

 [
m

m
]

PSF on B−mode image

0.1 mm

0.3 mm

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(d)

Lateral axis [mm]

A
x
ia

l 
a
x
is

 [
m

m
]

PSF on B−mode image

0.2 mm

0.4 mm

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(e)

Lateral axis [mm]

A
x
ia

l 
a
x
is

 [
m

m
]

PSF on B−mode image

0.4 mm

0.4 mm

−0.5 0 0.5

23

23.1

23.2

23.3

23.4

23.5

23.6

23.7

(f)

Figure 1.6: PSF on RF and B-mode image for an initial signal composed of 1- (a, d), 3-
(b, e), and 5-cycles (c, f) of a 5 MHz sine. The resulting axial and lateral resolutions are
measured at half maximum and are highlighted on the B-mode image.

frequency, the propagation depth of the ultrasound wave is decreased. A trade off has

to be found between the desired axial resolution and the investigated depth to reach.

The other parameters rather impact the shape of the beam and the lateral and elevation

resolution.

The resolution can be defined thanks to the point spread function (PSF). The PSF

corresponds to the response of a theoretical unique scatterer in the medium. It depends

on the parameters listed above. Different PSF, obtained in simulation, can be seen in

the Fig. 1.6. In this figure, only the number of cycles of the excitation signal has been

changed for the three images. The PSF is displayed as a RF image (Fig. 1.6.a-c) or as

a B-mode image (Fig. 1.6.d-f). The resolution for the axial and lateral dimensions can

be defined thanks to full width at half maximum (FWHM) amplitude of the PSF in the

B-mode image [Angelsen (2000)b, van Wijk and Thijssen (2002)]. These resolutions are

highlighted in the corresponding figure.

François Varray 15



CHAPTER 1. ULTRASOUND AND ECHOGRAPHY: PROPAGATION AND BEAMFORMING

1.3.3 Broadband, fundamental and second harmonic images

In medical imaging, the RF image contains the backscattered frequencies of the pressure

field. Because of the nonlinear propagation, the RF image contains fundamental but also

harmonic components in its spectrum. Different images can then be extracted from the

same initial RF image:

• Broadband image: the entire spectrum is used

• Fundamental image: the spectrum is filtered around the fundamental component

• Second harmonic image (named harmonic imaging): the spectrum is filtered

around the second harmonic component

In medical imaging, the fundamental and the broadband images are quite similar be-

cause of the low level of the second harmonic component and the broadband image is

usually displayed on commercial scanner. However, the harmonic image is increasingly

used because of its higher resolution [van Wijk and Thijssen (2002)] and the used of con-

trast agents [Bleeker et al. (1990), Zhang et al. (2000), Eckersley et al. (2005), Bouakaz

and de Jong (2007)]. Indeed, contrast agents have a strong nonlinear coefficient [Wu and

Tong (1998)] and they backscatter a lot of harmonics. This behavior makes the harmonic

imaging perfectly adapted to contrast agents. They are usually injected into the blood

circulation and allow to highlight the perfused tissues. Another clinical information comes

from the possibility to image the progressive washing-out of the contrast agent perfused in

some organs with fresh blood. Such considerations have also developed research actions of

drug or gene delivery using the contrast agents as a carrier [Scheller et al. (2003),Ferrara

et al. (2007),Escoffre et al. (2010)].

1.4 Conclusions

This introductive chapter sets the different notations and the vocabulary used in med-

ical ultrasound. The linear and nonlinear propagation models have been presented as well

as the image beamforming [Wells (2006)]. In medical imaging, the scanner usually pro-

vides the B-mode image but not the RF data. However, to be able to do research works

on harmonic techniques, this image is crucial in order to access to the different frequency

components. On some research scanners, this image is available and several methods are

currently developed in order to propose new imaging modalities and original results.

The nonlinear parameter is an important characteristic of the medium. Indeed, various

authors have shown that it changes for different materials. Moreover, the B/A parameter

of contrast agents is higher than the tissue one [Wu and Tong (1998)]. Its evaluation

can be very interesting in terms of tissue characterization or parametric imaging. In this

way, it will be very promising to be able to simulate media with inhomogeneous nonlinear

parameter and to evaluate it. These issues are developed in the next two parts of the

thesis.
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Chapter 2

Review of simulation tools in medical

ultrasound

This chapter is a review of the different resources that are described in the literature

for ultrasound simulation. Two groups of simulation tools have so far been presented:

those devoted to the simulation of the linear or nonlinear ultrasound wave propagation

and those implemented for the simulation of ultrasound images.

2.1 Review on pressure field simulator with nonlinear prop-

agations

During the last fifty years, the nonlinear propagation of ultrasound in media has been

studied and the first significant results have been presented by [Freedman (1960)], who

worked on the acoustic field produced by a rectangular piston, followed by [Ingenito and

Williams (1971)] who focalized their work on the second harmonic generated by such

sources. Other authors, as [Lucas and Muir (1983)], derived the previous formulation to

the case of focusing sources. In the next sections, different propagation simulators based

on the nonlinear equations are presented. The solutions used are summarized in three

groups:

• Finite difference approaches

• Spectral approaches

• Coupled approaches
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2.1.1 Finite difference approaches

To solve the KZK equation presented in equation (1.28), [Lee and Hamilton (1995)]

and [Hamilton and Blackstock (1997)] proposed a time domain algorithm as solution. The

proposed algorithm takes into account the diffraction of the probe and the nonlinearity of

the medium. However, the solution is only valid for circular piston sources. This work has

been extended in the same laboratory to take into account the absorption effect [Cleveland

et al. (1996)]. The resulting software is called the Texas code and can be freely downloaded

on the Internet. Several years later, [Yang and Cleveland (2005)] proposed an extension of

the previous software. The major improvement comes from the change of the coordinate

system (spherical coordinate to Cartesian system). The finite difference scheme has been

updated and new probes can be simulated. The experimental results are in good agreement

with the simulated one. A similar approach has been developed by [Kaya et al. (2006)] to

simulate the propagation from a square or a rectangular array.

Another simulator can be used to simulated the nonlinear propagation of an ultra-

sound pressure wave. Voormolen proposed an algorithm to solve the KZK equation for

rectangular array with arbitrary excitation [Voormolen (2007)]. The experimental results

are in good accordance with the simulated one. The advantage of this method comes from

the possibility to easily simulate clinical array with the desired beamforming strategy in

transmission. The impact of the different dimensions of the array (pitch, height and kerf)

is taken into account during the solution. In his work, the different effects are solved only

with a finite difference scheme. However, in order to decrease the computation time, the

steps in the propagation direction are not equal because in the near field, more accuracy

is required. Similar schemes have been done to take into account the possible inhomo-

geneity of the speed of sound, density, and the different reflection effects [Pinton et al.

(2009),Pinton et al. (2011)].

In all the finite difference schemes, the propagation starts with the transmission and

then, the pressure evolution is computed step by step in the propagation direction. Doing

this, a high order of nonlinear interaction is considered and the evolution of the entire

frequency spectrum is simulated.

To summarize, the time domain solution algorithms present the advantage to propose

a very accurate solution with a high order of nonlinear interaction. However, the compu-

tation time is very long because of the accuracy requirement between the different steps

to ensure the convergence of the solution.

2.1.2 Spectral approaches

The spectral approaches can be divided into two groups:

• Use of the Fourier series decomposition of the pressure field to solve the KZK equa-

tion

• Solve the propagation equation in the Fourier domain using an angular spectral
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method (ASM)

Fourier series decomposition

The use of the Fourier series to solve the KZK equation has been initially proposed

by [Aanonsen et al. (1984)]. One direct application of this proposition has been imple-

mented in the Bergen code [Berntsen (1990)] which simulates the ultrasound propagation

from a piston or a 2D source. The accuracy of the simulation has been tested and improved

by [Kamakura et al. (1992)], [Sahin and Baker (1994)] and [Baker et al. (1995)].

A similar formulation has been used by [Ding (2000)]. He simplified the algorithm

to compute only the second order field (second harmonic, sum- and difference-frequency

components) by linearizing the solution with a set of complex of Gaussian beams. With this

formulation, a mathematical solution can be computed under this approximation. This

algorithm has been extended to arbitrary sources [Ding (2004)] and limited diffraction

beams [Ding and Huang (2007)].

Angular spectrum method

The angular spectrum method (ASM) solves the propagation equation in the Fourier

domain in order to reduce the derivative order on the initial equation. Alais et al. used

the Fourier transform (FT) to solve different propagation equations [Alais and Hennion

(1976),Alais and Hennion (1979)] and [Szabo (1978)] proposed to use it in order to compute

the profile of any source. Then, Christopher and Parker have reused this theoretical back-

ground in order to compute the linear and nonlinear propagation in a medium [Christopher

and Parker (1991)a, Christopher and Parker (1991)b] and the mathematical justification

of the conservation of energy and the absorption has been published by [Wójcik (1998)].

After the initial formulation of Szabo, [Schafer et al. (1987)] have studied the impact

of the propagation through two different media. Then, a similar work has been conducted

by [Landsberger and Hamilton (2001)] to study the second harmonic generation of a wave

propagating through a solid inserted in a surrounding fluid.

Some years after the work of Christopher, Vecchio et al. have compared the predicted

pressure obtained in simulation with the experimental pressure received at different depths

[Vecchio and Lewin (1994), Vecchio et al. (1994)]. A circular source has been used and

the correspondence between the different planes showed an error inferior to 1.5 dB. Today,

some explicit formulations have been proposed for the second harmonic [Dursun et al.

(2005),Yan and Hamilton (2006)] but also for the higher ones [Pasovic et al. (2009)]. With

such formulations, the fundamental and the harmonic components can be simulated. No

higher-order interaction (such as sum- and difference-frequencies) can be investigated. To

obtain a correct accuracy in the near field, [Zeng and McGough (2008)] have estimated

the dimensions of the required matrix and the necessary zero-padding.

The ASM is faster than the previous proposed simulators (time-domain, Fourier series)

thanks to the reduction in the nonlinear order resolution. Indeed, only the fundamental
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and corresponding harmonic are computed and no nonlinear interaction (as sum- and

difference-wave) are computed. Moreover, it allows to compute the second harmonic field

in a particular point and not in all the space which also strongly reduces the computation

time. An open source software based on the ASM, has been proposed by Anderson [An-

derson (2000)]. A 2D rectangular array is designed as transmitter to investigate a volume

and the resulting simulation time has been decreased using the ASM. A feasibility study to

use ASM coupled with FieldII [Jensen (1996)] has been done by Du et al. [Du and Jensen

(2008),Du et al. (2010)] but with the high sampling of the probe computed with FieldII,

the computation time is too high to be envisaged.

2.1.3 Coupled approaches

In the literature, a set of methods did not use just the finite difference approach or the

ASM. [Lee and Hamilton (1995)] have shown that the different effects (absorption, diffrac-

tion and nonlinearity) can be solved separately. [Christopher and Parker (1991)a] proposed

to solve the diffraction and the absorption of the wave using the ASM and, then, to use

a classic finite difference method for the nonlinear effects. The same strategy has been

used by various authors [Zemp et al. (2003), Wójcik et al. (2006), Wójcik et al. (2008)].

The difference in these methods comes from the different sampling or sub-sampling used

to solve the diffraction and absorption effects from one hand and the nonlinear propaga-

tion resolution on the other hand. With such considerations, higher-order of nonlinear

interaction can now be simulated using some advantages of the ASM approaches.

The team of the Norwegian University of Science and Technology proposed another

simulation tool, called Absersim, to simulated the nonlinear ultrasound propagation [Fri-

jlink et al. (2008)]. The program is based on this splitting theory. The diffraction is

solved with the ASM and the attenuation has been chosen frequency dependent [Varslot

and Taraldsen (2005), Varslot and Måsøy (2006)]. The nonlinear effects are considered

only in the propagation direction to reduce the complexity, but the introduced error is

negligible. The resulting pressure maps obtained are in good agreement with FieldII for

the fundamental component [Frijlink et al. (2008)]. One drawback of this simulation tool

comes from the definition of the kerf of the probe which is not integrated in the Abersim

simulator.

A recent novel method, proposed by Verweij et al. called Iterative Nonlinear Contrast

Source (INCS), defines the nonlinear effect as a contrast source. This contrast source is

solved with an iterative scheme [Verweij and Huijssen (2009),Huijssen and Verweij (2010)].

The contrast source is computed in the Fourier domain in order to reduce the number of

derivative terms. Recent works allow to linearize the INCS method and the results are in

good agreement with other simulators [Demi et al. (2010)b]. Proposition to simulate the

inhomogeneity in the absorption and the nonlinear coefficient in the propagation direction

have also been made [Demi et al. (2010)a].
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Simulator name Method used Source shape Dimension
Bergen code [Berntsen

(1990)]
Fourier series

Piston or 2D
sources

1D/2D

KZK Texas [Lee and
Hamilton (1995)]

Time domain Piston 1D

Voormolen [Voormolen
(2007)]

Time domain
Phased array

transducer
3D

Absersim [Frijlink et al.
(2008)]

ASM / Time
domain

Phased array
transducer

3D

INCS [Huijssen and
Verweij (2010)]

ASM / Time
domain

Phased array
transducer

3D

Table 2.1: Main characteristics of nonlinear propagation simulators described in the liter-
ature.

2.1.4 Conclusion

The different theoretical and implemented simulation tools have been presented and

are summarized in Table 2.1. The principal specifications of each simulator are presented.

The time domain solutions propose a higher order in nonlinear interaction but need a

long computation time to converge to the solution. The ASM allows to quickly compute

the second harmonic component at a specific point in the medium with the use of the

Fourier transform. With recent coupled method, the advantage of each method are kept

to decrease the computation time. The diffraction is quickly computed in the Fourier

domain and a classical finite difference method is used to keep a higher order nonlinear

interaction.

The Abersim and the Voormolen simulators are illustrated in Figure 2.1. The field is

produced by the linear array LA533 described in Appendix A.2. A five-cycle sine at 5 MHz

with a Gaussian window and focalized at 70 mm has been used. No apodization has been

used on the different transmitted elements. From the 3D spatial field, the one-way field is

extracted from the plane y = 0.

In order to quickly simulate the second harmonic field, the ASM background appears

to be the more attractive. However, no theoretical background has been developed for

inhomogeneous nonlinear medium. Only the Voormolen or the INCS simulators allow to

consider a spatial variation of the nonlinear parameter in the propagation direction. Clas-

sic medical media have inhomogeneous nonlinear parameter and not only axial variation.

No simulation tool exists to quickly simulate the second harmonic field of any 3D inhomo-

geneous nonlinear medium. We propose a new simulator that answers these issues in the

chapter 3.

2.2 Review on medical RF ultrasound image simulation

The simulation of medical RF ultrasound images has been largely developed during

the past years and two types of method exist:
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Figure 2.1: One-way field computed with (a-b) Abersim [Frijlink et al. (2008)] and (c-d)
Voormolen simulator [Voormolen (2007)]. (a, c) show the fundamental component and (b,
d) show the second harmonic one. A five-cycle sine at 5 MHz with a Gaussian window
and focalized at 70 mm has been used. No apodization has been used on the 64 active
elements of the probe.
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• Methods based on an acoustic model of the ultrasound field propagation

• Methods based on a linear convolution model

2.2.1 Acoustic model

Models

The acoustic model directly takes into account the different parameters that impact

the image construction. The probe and space dimensions (1D, 2D or 3D), such as the

beamforming strategies in transmission and reception impact the image formation. The

acoustic model is close to the physical phenomena and provides realistic images but need

a long time of computation. The most famous tools in the ultrasound community in RF

image simulation is FieldII [Jensen and Svendsen (1992), Jensen (1996)] which is based

on the approaches developed by [Tupholme (1969)] and [Stepanishen (1971)a,Stepanishen

(1971)b]. With this tool, the complete probe and space parameters as well as the beam-

forming strategies (in transmission and reception) can be controlled. Consequently, very

complex and realistic simulations can be conducted. Other tools exist in the literature to

simulate images. DREAM (Discrete Representation Array Modeling), also based on the

Stepanishen approach, has been proposed by [Piwakowski and Sbai (1999)]. Using the

discrete representation of the Rayleigh integral, [Holm (2001)] designed Ultrasim which

computes the acoustic field with different approximations in the near and far fields. The

advantage of this software is the possibility to simulate data either for medical or sonar

applications. For non destructive testing applications, [Calmon et al. (2006)] designed the

CIVA software.

FieldII

FieldII software is very realistic and is very accurate. Indeed, the PSF calculated

with FieldII depends on the depth and on the different acoustic parameters of the probe,

medium and beamforming strategies. For each scatterer of the medium, the backscattered

signal is recorded by the active elements of the probe and the elementary RF lines are

constructed. With the beamforming sets in reception, the elementary lines are combined

using appropriate delays to create one RF line of the resulting image. Then the simulation

is repeated for the different RF lines in the image. The major drawback of FieldII is the

large computation time, but it has been shown that the creation of the different RF lines

can be parallelized to reduce the total computation time [Jensen and Nikolov (2000)].

2.2.2 Linear convolution model

The linear convolution model, initiated by [Bamber and Dickinson (1980)], consists to

convolve the PSF of the system and the scatterers of the medium. Contrary to the acoustic

method, the PSF used in the convolution is constant for a given medium. Meunier and

Bertrand [Meunier and Bertrand (1995)a, Meunier and Bertrand (1995)b] used this type
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of simulations to quickly simulate RF images. With the convolution model, different

authors have worked on the relation between the axial resolution and the signal to noise

ratio [Srinivasan et al. (2003)].

The main interest of such a simulation technique comes from its fast algorithm based

on a 2D or 3D convolution for each image. Large amount of data can then be easily and

quickly simulated.

The convolution model is also used for different algorithm validations. [Yu et al. (2006)]

have estimated the variation in the speckle intensity in function of the movement of tis-

sues and the resulting effect on the movement estimation algorithm. In the movement

estimation field, [Jiang and Hall (2007)] have estimated the performance of their approach

with simulated images using the linear convolution model. [Gilliam and Acton (2007)] have

proposed a myocardial model to estimate the performance of their image segmentation. In

elastography, the out-of-plane movement impact has been estimated by [Lee et al. (2007)]

with a 3D scatterers map which is moved in the simulations. The scatterers movement has

also been simulated by Marion et al. to estimate the blood flow speed in 2D+t images into

the CREASIMUS simulator [Marion and Vray (2009),Marion et al. (2009)]. [Franceschini

et al. (2007)] have used this model in tissue characterization application to estimate the

accuracy of their structure size estimation approach.

2.2.3 Comparison between FieldII and CREASIMUS

Two different images obtained with CREASIMUS [Marion and Vray (2009), Marion

et al. (2009)] and FieldII [Jensen (1996)] are displayed in Figure 2.2. The probe used in

the simulation is the LA533 (Appendix A.2). The transmitted pulse is a four-cycle sine

at 3.5 MHz with an Hanning windows and focalized at 60 mm. A Hanning apodization

has been used in transmission and reception on the different active elements in the FieldII

beamforming strategy. The PSF has been first calculated thanks to the FieldII image and

then, used in the CREASIMUS in the linear model. The cyst phantom is composed of

100 000 scatterers (3.6 scatterers/mm3) and defined as in [Jensen and Munk (1997)]. The

scatterers are randomly set in the medium but three different area can be highlighted:

five punctual scatterers on the left, five hyper-echoic cysts in the middle (with increasing

diameters versus depth) and five hypo-echoic cysts on the right (with decreasing diameters

versus depth). On the resulting images, the PSF variability is visible. The resolution in

the CREASIMUS image (Figure 2.2.b) is constant during the propagation although the

resolution in the FieldII (Figure 2.2.a) image is better in the focal region compared to

the near field. The punctual scatterers present in the left part are also more visible.

However, the computation time to obtain the FieldII image is bigger than CREASIMUS.

Indeed, approximately 2 hours are required for the FieldII image whereas the CREASIMUS

simulation takes less than 1 second. Approaches based on the linear convolution model are

often used to simulate big amount of data although acoustic model are used to simulate

very realistic images.
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Figure 2.2: B mode image of the cyst phantom obtained with FieldII (a) and CREASIMUS
(b). The resolution in CREASIMUS is constant during the propagation thanks to the linear
convolution model, while the one of FieldII is better in the focal region. A four-cycle sine
at 3.5 MHz with an Hanning window and focalized at 60 mm has been used. An Hanning
apodization has been used in transmission and reception on the 64 active elements of the
probe.
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2.3 Discussion and conclusion

In this chapter we have introduced the different tools that exist in the literature to

simulate the nonlinear propagation and the RF ultrasound image creation. In nonlin-

ear propagation, the time-domain and Fourier solution composed, with their mixed ap-

proaches, the two major strategies in nonlinear propagation simulation. However, no

very fast tool, allowing heavy simulation, exists in the literature. Some approaches have

proposed a nonlinear parameter variation along the propagation axis but none of them

proposed a completely free nonlinear parameter distribution in the medium. Concerning

the ultrasound image simulation, FieldII software, despite its long computation time, is

the most popular and used tool in ultrasound community. However, it did not propose the

nonlinear image simulation which appear to be necessary to test every harmonic imaging

techniques. We propose in the two next chapters to answer this issue and proposed some

new algorithms which allow to simulate nonlinear propagation in tissue.
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Chapter 3

Computation of fundamental and second

harmonic field in media with

inhomogeneous nonlinear coefficient

This chapter is devoted to the presentation of a new nonlinear propagation simulator

which takes into account the possible variation of the nonlinear parameter in the medium.

This work has been published in IEEE UFFC [Varray et al. (2011)f] and accepted in a

conference [Varray et al. (2011)d].

3.1 Introduction

As detailed in the previous chapter, when an ultrasound wave propagates, distortion

of the wave induced by the medium appears, and harmonics of the transmitted frequency

are created. The increase in harmonics depends on the medium (density, sound velocity,

and nonlinear parameter B/A), the initial pressure, and the propagation distance. The

ultrasound propagation in nonlinear medium can be either experimentally tested or studied

in simulation. However, specific tools are needed to simulate media with an inhomogeneous

nonlinear parameter, for instance, a vessel or an hyper-vascularized tumor with contrast

agents surrounded by tissue.

In chapter 2, the different nonlinear propagation methods and simulators have been

reviewed. All these techniques did not take into account the possible spatial variation of

the nonlinear coefficient β. When complex media are simulated, such as media containing
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contrast agents, the evolution of the nonlinear parameter is crucial. The objective of the

simulator is to compute fastly the nonlinear propagation and to have the possibility to use

arbitrary nonlinear coefficient map. In this sense, a generalization of the angular spectrum

method (GASM) based on the mathematical background of [Alais and Hennion (1979)]

and [Aanonsen et al. (1984)] has been used. This GASM makes it possible to simulate

propagation using the Westervelt equation with inhomogeneous nonlinear media.

The chapter is organized as follows. The first part reviews the mathematical solutions

for the first and the second-harmonic of the pressure field, using the ASM. Taking into

account the spatial variations of the nonlinear parameter of the medium, the generaliza-

tion is then described. The second part describes the algorithm implementation and the

graphic process unit (GPU) solution proposed to decrease the computation time. Indeed,

the implementation of the GASM is particularly adapted to the high parallelism comput-

ing proposed by the GPU. Then a third section is devoted to the results obtained with

this new tool. First, the pressure fields in media with a homogeneous nonlinear param-

eter are simulated and compared with those obtained with established simulators. Then

GASM simulations of media with an inhomogeneous parameter are presented. Experimen-

tal measurements are also shown, demonstrating GASM’s high level of accuracy. Finally,

the conclusions are presented.

3.2 The mathematical background of GASM

3.2.1 The basis of the ASM

The ASM is based on the computation of the FT of the pressure field p(z, x, y, t) at

a propagation distance z from the source. Indeed, the evolution of the pressure is not

computed in the temporal domain but in the Fourier domain. The principle of ASM is

schematized in Fig. 3.1. A 3D hybrid FT must be used, corresponding to the superposition

of a transverse 2D FT in the spatial lateral-elevation (x, y) plane and the temporal domain.

These Fourier transforms of the function p are defined as:

Fxy[p] =
∫∫

p(x, y)e−i2π(fxx+fyy)dxdy (3.1)

Ft[p] =
∫

p(t)ei2πfttdt (3.2)

with fx and fy the spatial frequencies in the x and y direction and ft the temporal

frequency. Then, the final 3D hybrid FT is obtained with:

F(p) = Ft [Fxy[p]] (3.3)
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3.2. THE MATHEMATICAL BACKGROUND OF GASM

Figure 3.1: Principle of the ASM. The pressure p is not computed in the temporal domain,
but in the Fourier domain thanks to the FT and the IFT.

Using the same notations, the FT and the inverse Fourier transform (IFT) of the pressure

are respectively expressed as:

P (z, fx, fy, ft) =
∫∫∫

p(z, x, y, t)e−i2π(fxx+fyy−ftt)dxdydt (3.4)

p(z, x, y, t) =
∫∫∫

P (z, fx, fy, ft)e
i2π(fxx+fyy−ftt)dfxdfydft (3.5)

From the definitions in (3.4) and (3.5), the following property of the FT is obtained:

F
(

∂np

∂vn

)

= (−2iπfv)nF(p) (3.6)

F
(

∂np

∂tn

)

= (2iπft)
nF(p) (3.7)

with the variable v corresponding to x or y.

3.2.2 Propagation equation

The lossless Westervelt propagation equation expressed the evolution of the pressure

wave p(z, x, y, t) in the medium as [Westervelt (1963),Aanonsen et al. (1984)]:

(

▽2 − 1
c2

0

∂2

∂t2

)

p = − β

ρ0c4
0

∂2p2

∂t2
(3.8)

where ▽ is the Laplacian and is expressed as:

▽2 p =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

p (3.9)
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The pressure p(z, x, y, t) can be defined as the sum of the harmonics pi:

p = p1 + p2 + p3 + ... + pn (3.10)

The ASM can compute the fundamental p1 and second harmonic p2 of the pressure

wave at a given position. However, its use is based on the quasi-linear approximation,

which state that p1 ≫ p2 and that the higher harmonics are negligible. This approxi-

mation reduces the total pressure p to the sum of the fundamental and second-harmonic

wave [Du and Breazeale (1985), Dursun et al. (2005), Yan and Hamilton (2006)]. Using

such hypothesis, p2 can be expresses as:

p = p2
1 + p1p2 + ... (3.11)

Equation (3.8) can then be separated into two equations: the first one corresponds to

the fundamental frequency f0 and the second one to the second harmonic frequency 2f0

so that two classic propagation equations are obtained. Indeed, in equation (3.11), the

term in p2
1 correspond to the second harmonic frequency and the term p1p2 to the third

harmonics. With such considerations, p1 and p2 can be expressed as a function of the

medium parameters:
(

▽2 − 1
c2

0

∂2

∂t2

)

p1 = 0 (3.12)

(

▽2 − 1
c2

0

∂2

∂t2

)

p2 = − β

ρ0c4
0

∂2p2
1

∂t2
(3.13)

The 3D FT of equations (3.12) and (3.13) is computed to obtain the pressure wave P1

and P2 in the Fourier domain.

3.2.3 Solution for the fundamental frequency

For the fundamental, the 3D FT of equation (3.12) coupled to the properties (3.6)

and (3.7), the equation is changed to:

4π2
(

−f2
x − f2

y

)

P1 +
(

2πft

c0

)2

P1 +
d2P1

dz2
= 0 (3.14)

It can be noticed in equation (3.14) that the ratio 2πft/c0 is similar to the standard

wave vector kt = 2πf0/c0. Moreover, 2πfx and 2πfy are directly related to the x- and y-axis

definition and can be assimilated to the wave vector on these axes. Using kt = 2πft/c0,

kx = 2πfx, and ky = 2πfy, equation (3.14) can be rewritten as a classical harmonic

oscillator differential equation:
d2P1

dz2
+ K2P1 = 0 (3.15)
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with K the 3D k-vector that depends on the sampling frequencies in m−1:

K(kx, ky, kt) =
√

k2
t − k2

x − k2
y (3.16)

Only the part where K is real has been kept (i.e., k2
t > k2

x + k2
y) because an imaginary

K corresponds to evanescent waves, which can be ignored without loss of accuracy if the

wave propagates longer than a few wavelengths [Belgroune et al. (2002)]. In our case, this

condition is considered to be respected.

The solution for the fundamental wave at each point (x, y, z) of the medium can be

expressed from equation (3.15) as:

p1(z, x, y, t) = F−1
(

P0(z0, kx, ky, kt)e
−iK(z−z0)

)

(3.17)

with P0 the 3D FT of the source wave p0 at the original position z0. The final expression

of the fundamental wave corresponds to a simple phase shift in the Fourier domain of the

initial waveform. The matrix P0 depends on the probe definition and the transmission

strategy. Specific windows and signals can be used on the transducer because of its dis-

cretization. With an array transducer, specific apodization can also be selected on each

element.

3.2.4 Solution for the second-harmonic frequency

For the second-harmonic wave, the left part of equation (3.13) is solved in a procedure

similar to that of the fundamental. When considering the FT of the right part, if the

nonlinear parameter β is considered homogeneous in each direction, it can be removed

from the integral in the FT and the resulting expression is similar to the one proposed

by Du and Jensen [Du and Jensen (2008)]. Our contribution consists in considering the

possible variations in the three spatial directions of the nonlinear parameter of the medium.

The expression of the FT of the right part of (3.13) is developed as:

F
(

− β

ρ0c4
0

∂2p2
1

∂t2

)

=
−1
ρ0c4

0

F
(

β(x, y, z)
∂2p2

1

∂t2

)

(3.18)

As the nonlinear parameter does not depend on time, the Fourier term of equation (3.18)

can be rewritten as:

F
(

β
∂2p2

1

∂t2

)

= F
(

∂2βp2
1

∂t2

)

= −4π2f2
t F

(

βp2
1

)

(3.19)

According to (3.19), the FT of equation (3.13) becomes:

d2P2

dz2
+ K2P2 =

k2
t

ρ0c2
0

F
(

βp2
1

)

(3.20)
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The solution to equation (3.20) is equivalent to solving, for each (kx, ky, kt), a differential

second-order equation in z with the general form:

d2g(z)
dz2

+ K2g(z) = M(z) (3.21)

After variation of the constant (Appendix B) and considering only the forward prop-

agation, the inverse FT of P2 is computed to obtain the final expression of the pressure

wave p2(z, x, y, t):

p2(z, x, y, t) = F−1
( −i

2K

(
∫ z

z0

M(u, kx, ky, kt)e
iKudu

)

e−iKz
)

(3.22)

with:

M(z, kx, ky, kt) =
k2

t

ρ0c2
0

F
(

β(z, x, y)p1(z, x, y, t)2
)

(3.23)

The formulation proposed in equation (3.22) allows the 3D computation of the second-

harmonic temporal wave propagating in media with an inhomogeneous nonlinear param-

eter in space.

3.2.5 Involvement of the attenuation

The attenuation of acoustic media can be described by various laws [Szabo (1978),

Treeby and Cox (2010)]. In classic biological media, the attenuation is frequency-dependent

and the K vector can be written [Wójcik (1998), Szabo (1978), Christopher and Parker

(1991)b] as:

Ka = K − iα(ft) (3.24)

with α(ft) the frequency-dependent attenuation. It is expressed as:

α(ft) = α0

(

ft

1e6

)γ

(3.25)

with γ a number between 1 and 2 for biological media that translates the frequency-

dependent law and α0 the attenuation constant of the medium in Np.m−1.MHz−γ . To take

into account the attenuation of the medium using the GASM, the previous expressions of

p1 and p2 using the K vector have to be updated by replacing K with Ka. If different

absorption behaviors have to be used, only this part must be updated to take into account

the new law.

3.3 Algorithm implementation

3.3.1 Introduction

Equations (3.17) and (3.22) were implemented on a central processing unit (CPU) and a

graphic processor unit (GPU). The implementation of these two equations are particularly
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suited to the GPU programming because each product and sum in the 3D pressure image

(2D+t) are involved one voxel at a given position in the image. Indeed, in the two proposed

equations (3.17) and (3.22), the x, y, and t parameter did not appear. The computation

in the z direction did not depend on the other parameter, so the calculus can be parallelize

in the x, y, and t direction. This type of calculation is very efficient on a GPU because only

the current position is used in the different input and output images and the high level of

parallelization of the GPU hardware is fully used. The only complex and time consuming

part of the GASM is the FT that is computed several times. This operation is done using

an external library. The ASM implementation is conducted on a CPU and a GPU to

compare their performance. The reference CPU programming was done in C++ and the

GPU programming was done in CUDA (Compute Unified Device Architecture), which is an

extension of the standard C language developed by nVIDIA. This is an API (Application

Programming Interface) that is used to create the parallel programming tasks, called

kernels, which are executed on the GPU. The different kernels and computing strategies

are highlighted hereafter.

3.3.2 Computation of the fundamental

The evolution of the fundamental component is only linked to the initial wave source,

P0, and to the propagation distance z. In equation (3.17), the exponential term corre-

sponds to a complex rotation, and a specific kernel needs to be designed. This kernel will

be used several times in the GASM implementation. The P1 spectrum is obtained after

the computation of the rotation kernel in the Fourier domain, then the IFT is used to

obtain the final solution. It must be noted that the fundamental wave component does

not depend on the z-axis sampling used. Indeed, its evolution can be directly computed

anywhere in the medium.

3.3.3 Computation of the second harmonic

The second harmonic wave component is solved in five steps. First, from the initial

p1 image, the new term βp2
1 is computed. Second, the FT of the resulting image is done.

Third, the spectrum is rotated. Fourth, the spectrum is integrated. Finally, the integrated

Fourier spectrum must be rotated once more. The different rotations are defined with the

same rotation kernel. To compute the integration part, the z sampling used is important.

The descriptions of the different kernels are highlighted hereafter.

3.3.4 Fourier transform

The FT library used in the CPU implementation is the FFTW library, which is con-

sidered the most efficient in the community [Frigo and Johnson (2005)]. Otherwise, for the

GPU implementation, nVIDIA proposed a dedicated library, cuFFT, which is an extension

of the FFTW library. Defining p1 and p2 as 3D real images and P1 and P2 as complex
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images means that the dimension of the complex images can be halved and consequently

the computation time in both the FT and IFT decreased.

3.3.5 Kernel description

The kernels used in the GPU implementation are described below. The different kernels

are particularly suited for the GPU because the mathematical operations used in the ASM

only involve the voxels at a given position in the 3D images. No access to other specific

memory areas is needed to compute the output images, which is very efficient in GPU

programming. The proposed kernel’s names have been chose in order to explain the

realized operations done inside.

Rotation kernel

To compute the fundamental and the second harmonic, a rotation kernel is needed.

According to the Euler formula, the complex exponential is considered in its Cartesian

form, then a classic multiplication is computed to obtain the new complex number. Only

the angle is require in input of the kernel.

Kernel to compute βp2
1

Because of the possible inhomogeneous nonlinear parameter map, its corresponding

3D (x, y, z) map is saved in the texture memory in order to easily access its values. With

this initial setup, the spatial sampling has no more impact on the computation of the

product β(x, y, z)p2
1(x, y, z, t). Indeed, the bilinear interpolation, naturally present in the

texture memory, is used to extract the correct value of the investigated plane. Concerning

multiplication, since p1 is real, its value is simply multiplied by itself to obtain the square

value. This operation is very efficient in GPU programming.

Kernel to compute the integral

The integral computation is the most complex part. In order to compute it, a finite

difference scheme was used. Contrary to the fundamental evolution computation, a z

sampling is needed and is defined by the finite difference scheme:

I(z + dz) =
∫ z+dz

z0

M(u)eiKudu =
∫ z

z0

M(u)eiKudu +
∫ z+dz

z
M(u)eiKudu (3.26)

The final formulation for the integral is obtained with the trapeze formula:

I(z + dz) = I(z) +
M(z)eiKz + M(z + dz)eiK(z+dz)

2
dz (3.27)

To compute the integral at the z + dz position, two previously computed values have

to be saved, i.e., the previous value of the integral I(z) and the image M(z), which take
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p0 → P0 [FT]
For each z point

P0 → P1 [rotation kernel]
P1 → p1(z) [IFT]
Compute βp2

1 [βp2
1 kernel]

βp2
1 → F(βp2

1) [FT]
Rotate F(βp2

1) [rotation kernel]
Compute integral I [integration kernel]
I → P2 [rotation kernel]
P2 → p2(z) [IFT]

Table 3.1: Illustration of the different steps of the ASM. The different FTs, IFTs, and
kernels are represented in square brackets.

into account the value of the fundamental pressure at a distance z. In the kernel, the sums

and multiplications have to be computed for the z +dz position and then are saved for the

calculation of the next position. The different constants are also summed in this kernel.

3.3.6 Final algorithm

The final algorithm is described in Table 3.1. For each z position, the fundamental

and then the second harmonic components are computed.

3.4 Results

3.4.1 Pressure-wave simulation in a medium with a homogeneous non-

linear parameter

The accuracy of the GASM is evaluated in comparison with two simulators used as

the reference for a medium with a homogeneous nonlinear parameter. First, the well-

known linear FieldII simulator [Jensen and Svendsen (1992), Jensen (1996)] is used for

the calculation of the pressure field at the fundamental frequency f . To compare the

second-harmonic component, the finite difference Voormolen simulator [Voormolen (2007)]

was chosen. This simulator, based on the KZK equation [Zabolotskaya and Khokhlov

(1969), Kuznetsov (1970)], can calculate both the fundamental and the second-harmonic

in the entire 3D space. The one-way fields obtained with the GASM are compared with

those obtained with FieldII and with Voormolen’s simulator. From the 4D (3D+t) data

computed by the simulators, the maximal pressure is extracted at each 3D points. In

particular, the one-way field presented hereafter correspond to the pressure values in the

plane y = 0.

The probe parameters used for the simulations are summarized in Appendix A.2. A

five-cycle 5 MHz sinusoidal tone burst weighted with a Gaussian function was transmitted

on each elementary transducer with initial pressure p0 = 100 kPa. The focal point has

been set to 70 mm. All the simulations were conducted in a medium considered as water
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Parameter Value
Density 1000 kg.m−3

Speed of sound 1540 m.s−1

Attenuation 0.025 Np.m−1.MHz−2

γ 2

Table 3.2: Water acoustic characteristics.

with a homogeneous nonlinear parameter value of 3.5. The medium parameters used in

the simulations are summarized in Table 3.2. The resulting one-way fields are presented

in Fig. 3.2 for the fundamental and in Fig. 3.3 for the second harmonic. A first visual

estimation on the shape of the fundamental field calculated with the GASM is similar to

both reference simulators. For the second harmonic, the GASM field is very close to the

field obtained with the Voormolen simulator. In Fig. 3.2.c and Fig. 3.3.b, the one-way

pressure fields appear to contain some noise. This noise exhibits a symmetric pattern

along the z-axis and is a result of the numerical error in the FT due to the discretization

of the space used.

To evaluate the accuracy of the GASM simulation, an error map was computed to

compare the resulting one-way field with those obtained with the two reference simulators.

At each point, a difference pressure was calculated and then normalized by dividing the

values by the pressure at the focal point in the Voormolen simulator. The deviation is

expressed as:

Di =
|pV oormolen

i − pGASM
i |

max(pV oormolen
i )

(3.28)

with i equal to 1 or 2 when the deviation is evaluated for the fundamental or the second-

harmonic one-way field, respectively. The resulting maps are presented in Fig. 3.4. In the

focalization area of the field, defined by the −12 dB isoline around the focal point in the

GASM and delimited by the dashed line, the maximum deviation, the mean deviation, and

the standard deviation are computed for the two nonlinear propagation simulators. For the

pressure at the fundamental frequency (Fig. 3.4.a), the difference obtained is 1.9% ± 1.3%

with a peak of 8.5% inside the delimited surface. For the second harmonic (Fig. 3.4.b),

the difference is 1.9% ± 1.6% with a peak of 8.8%.

3.4.2 Pressure-wave simulation in a medium with an inhomogeneous

nonlinear parameter

The GASM takes into account the variations of the nonlinear parameter by the inte-

grative part of the variable M(z, kx, ky, kt) (equation (3.23)). With Voormolen’s simula-

tor [Voormolen (2007)], it is possible to simulate a variation of the nonlinear parameter

only along the z-axis. To compare the two simulators, we considered the case of a sur-

rounding medium with a nonlinear parameter β1 = 3.5 with an inclusion of a nonlinear

parameter β2 = 7. A linear slope of the nonlinear parameter’s evolution was used at the

interface of the two media to avoid a discontinuity (Fig. 3.5.a). The probe parameters are
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Figure 3.2: One-way fundamental amplitude pressure fields obtained through the FieldII
simulator (a), the Voormolen simulator (b) and the GASM simulator (c).
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Figure 3.3: One-way second-harmonic amplitude pressure fields obtained through the
Voormolen simulator (a) and the GASM (b). The pressure field obtained with the GASM
is very close to the Voormolen pressure field.
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Figure 3.4: Deviation map of the fundamental component D1 (a) and of the second-
harmonic component D2 (b) of the GASM in comparison with the Voormolen simulator.
The dashed line is the −12 dB isoline and outlines the region where the deviation is
considered. The pressure fields are normalized by the pressure obtained in the focal point.
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Figure 3.5: (a) Profiles along the z-axis of the nonlinear parameter set in simulations; it
is constant in medium 1 but not in medium 2. (b) Second-harmonic normalized pressure
profile computed with the Voormolen and GASM simulators along the beam axis.

the same as the previous ones. The peak of the temporal response was computed along the

z-axis of the probe with the two simulators. The resulting pressure profiles are presented

in Fig. 3.5.b. Its evolution is very similar to that calculated with the Voormolen simulator.

The mean deviation obtained for the second harmonic, when a medium with a homoge-

neous nonlinear parameter is considered, is 3.7% ± 1.9% with a peak deviation of 8.1%.

When the inclusion is considered (inhomogeneous β), the mean deviation is 3.4% ± 2.2%

with a peak deviation of 7.8%.

The GASM simulates complex media, with 3D variations of the nonlinear parameter

which cannot be simulated by the previously mentioned simulators. This property of the

GASM is illustrated by two simulations. The first one is based on a phantom including

two media disposed as follows: the upper region (corresponding to the negative x-axis

on Fig. 3.6) has a nonlinear parameter that is ten times higher than in the lower region.
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Figure 3.6: One-way field of the second harmonic when the nonlinear parameter is not
homogeneous in different directions of space. The dashed line separates the two different
regions defined by the nonlinear parameter. Note that these simulations are not possible
with the Voormolen and FieldII simulators.

The resulting second-harmonic field obtained with the GASM is shown in Fig. 3.6.a. The

pressure field is significantly different in the two regions. The amplitude of the second-

harmonic component is larger in the area with higher nonlinear parameter and the peak

is not centered on the probe axis. In the second simulation, the nonlinear parameter

varies simultaneously along the x and z directions. The resulting second-harmonic image

is shown in Fig. 3.6.b. This variation creates two focal points in the second-harmonic field:

one at a position close to the focal point of the fundamental, and another one in the region

where the nonlinearity increases sharply.

3.4.3 Experimental measurements

To test the accuracy of the simulator, experimental acquisition of the fundamental and

of the second-harmonic pressure fields was performed and compared with the simulation

results. The scanner used was the ULA-OP system (see Appendix A.1) developed in the

Microelectronics System Design Lab of the University of Florence [Tortoli et al. (2009)]

coupled with the same probe as previously described (Appendix A.2). We repeated the

experiment for two different transmission modalities. First, a conventional beam was

considered. A five-cycle sine at 6.5 MHz with a Hanning window focused at 20 mm

was transmitted. A Hanning apodization was also used on the active elements. Then

a nonstandard transmission was used, requiring the application of specific apodization

weights wi to each element. A Bessel function apodization with respect to the x-axis was

chosen [Lu (1997)] :

wi = J0(αri) (3.29)

with J0 the zero-order Bessel function, α the spatial compression factor and ri the distance

between the active element and the center of the probe. To have the maximum intensity

transmitted between 10 and 50 mm, an α value of 2100 m−1 was used. A five-cycle sine
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Scanner Osciloscope

Step 

motor
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Probe Hydrophone
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z
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Figure 3.7: Experimental setup.

Mean deviation Standard deviation Peak deviation
Focused beam p1 5.4% 2.7% 14.5%

p2 6.7% 5.3% 24.8%
Unfocused beam p1 6.1% 3.8% 18.2%

p2 5.8% 4.6% 30.7%

Table 3.3: deviation between GASM simulations and experimental measure for a focused
and unfocused beam.

at 8 MHz with a Hanning window was transmitted. Measurements were made in water,

which has a nonlinear parameter of 3.5. A hydrophone (Marconi, Bologna, Italy) recorded

the pressure at different positions in the water tank with an accuracy of 0.8 mm in the

z-direction and 0.2 mm in the x-direction. An illustration of the experimental setup is

presented in Fig. 3.7. The resulting experimental one-way fields are compared with those

simulated by GASM in Fig. 3.8 for the focused beam and in Fig. 3.9 for the unfocused

beam. The simulated fields show good agreement with the measurement for both the

fundamental and second-harmonic components. The deviation maps of the fundamental

and second-harmonic one-way fields were calculated as previously described using the −12

dB isoline around the focal point. The deviation value measurement is summarized in

Table 3.3. The large deviation peak observed in the second-harmonic field is localized

in a very small area that is assumed to be an experimental artifact recorded during the

experiment as a slight misalignment between the probe and the hydrophone. Because

the signal is filtered around the fundamental and second-harmonic components, higher

harmonics did not degrade the quality of the results. Moreover, the third harmonic is

merged in the experimental noise recorded by the hydrophone.
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Figure 3.8: Comparison of experimental focused beam (a, b) and GASM simulated (c, d)
one-way fields for the fundamental (a, c) and second harmonic (b, d). Error map of the
fundamental (e) and the second-harmonic (f) component between the experimental field
and GASM simulation. The dashed line is the −12 dB isoline.
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Figure 3.9: Comparison of experimental unfocused beam (a, b) and GASM simulated (c,
d) one-way fields for the fundamental (a, c) and second harmonic (b, d). Deviation map
of the fundamental (e) and the second-harmonic (f) component between the experimental
field and GASM simulation. The dashed line is the −12 dB isoline.
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Voormolen simulator GASM on CPU GASM on GPU
Number of points in

space (x, y, z, t)
(303, 60, 390, 507) (128, 64, 51, 512) (128, 64, 51, 512)

Computation time
(Computer 1)

13 min 04 s 58 s 18 s

Computation time
(Computer 2)

11 min 11 s 34 s 2.5 s

Table 3.4: Computation time of the Voormolen simulator and the GASM on the two
different machines and GPU.

3.4.4 Computation time

The computation time of nonlinear simulations is one of the most problematic points

in nonlinear imaging [Zemp et al. (2003), Wójcik et al. (2006)]. With the GASM, the

computation time is strongly reduced by running it in the Fourier domain rather than finite

difference approaches. Two different computers have been tested and the characteristic

of their CPU and GPU are presented in Table A.1. More detailed information on the

GPUs are presented in Appendix A.3. The computation times of the two simulators on

both machines are shown in Table 3.4: the GASM is about 13 times faster on the CPU

of machine 1 and 19.7 times faster on the CPU of the machine 2. The GPU computation

allows to speed-up the calculation by a factor 3.5 on the machine equipped with the

Quadro NVS 160M and by a factor 13.6 on the machine equipped with the GTX 285. The

total acceleration factor on the GPU compared to the Voormolen simulator is 45.5 on the

Quadro NVS 160M and of 268 on the GTX 285.

The difference in computation time comes partially from the number of points required

in the two simulators. The finite difference method needs a large spatial sampling to obtain

sufficient accuracy, particularly in the near field, for both the fundamental and the second

harmonic. With the GASM, the fundamental does not depend on the z sampling. For

the second harmonic, even if few points are presented in the discretization, the integration

procedure involved in the calculation provides accurate results. Fewer sampling points are

necessary for the simulation than for the finite differences method to obtain comparable

results.

3.5 Discussion and conclusion

The GASM is a new method to simulate the nonlinear ultrasound propagation that

takes into account the diffraction of the probe as well as the nonlinearity and the atten-

uation of the media. The first step of the GASM is to compute the FT of the probe

geometry and the FT of the transmitted signal P0 (equation (3.17)). The P0 matrix takes

into consideration all the probe parameters (geometry, frequency, probe shape) with the

spatial and temporal discretization chosen. This initialization defines all fields obtained

with the GASM.
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We have shown that, for a homogeneous nonlinear parameter, the GASM’s performance

is comparable to that of FieldII for the fundamental or to that of the Voormolen finite

difference simulator for the second-harmonic. This is illustrated by the deviation maps

where no significant differences are observed between the GASM and the other simulators.

The major contribution of the GASM is the possibility of simulating complex and arbitrary

media in terms of nonlinearity. Indeed, the GASM can simulate any media with spatial

variations of the nonlinear parameter i.e. related to the spatial reference of the probe along

the axial (z), lateral (x), and elevation (y) dimensions. The Voormolen simulator allows to

simulate the propagation wave along a stack of layers with different β parameters. These

layers remain perpendicular to the propagation direction. As shown in the examples

in Fig. 3.6, the GASM can simulate the pressure field that propagates in media with

arbitrary nonlinear parameter variations and could be adapted to the simulation of human

tissues or of media containing contrast agents having a nonlinear parameter larger than

the value in the tissue [Wu and Tong (1998)]. As shown in Fig. 3.8 and Fig. 3.9, the GASM

simulated fundamental and second-harmonic fields are close to the experimental fields. The

computation time of the GASM is about 13 times faster than standard nonlinear simulators

on a CPU and 45.5 on a GPU. On more powerful computer, the speed-up obtained can

achieve a factor 19.7 for the CPU and 268 on a GPU. Fast nonlinear simulations of a

complete 3D space can be made. Of course, it must be kept in mind that the Voormolen

simulator works for higher-order nonlinear interactions, while the GASM is based on first-

order perturbation.

The GASM presents certain unavoidable limitations. First, the use of the FT adds noise

in the resulting pressure field. This noise slightly degrades the final aspect of the field,

although, as shown by the deviation maps, the accuracy of the GASM in the active part of

the field is satisfactory. In the proposed approach, a compromise has been made between

the accuracy and the speed of computation. An increase of the number of considered points

in the different matrix will decrease the aliasing effect but also increase the computation

time. For high resolution simulations, tools based on finite difference scheme, computing

high order nonlinear effect, have to be preferred. Secondly, no nonlinear interactions

between different frequency components are taken into account in the proposed simulator.

Indeed, if a wave composed of two frequencies is transmitted in the medium, the simulator

processes the wave as two single-frequency waves with no interactions between them. In

a real medium, a nonlinear interaction takes place and creates other pressure waves at

the difference and sum frequencies. Another limitation of the GASM is the quasi-linear

approximation, which limits the simulation in terms of initial amplitude. If the second

harmonic is no more small compared to the fundamental, this assumption is no longer

valid and the nonlinearity phenomena are too large to be simulated with the GASM. This

limit depends on the different probe parameters, on the beamforming in transmission, on

the transmitted signal and on the propagation depth to reach. The last approximation

made in the proposed method consists in considering only transmitted waves and to not

take into account possible reflected waves due to the inhomogeneous nonlinear map. This
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effect has to be quantified in future version of the GASM.

The GASM is currently usable for fundamental and second-harmonic computation.

However, with the same quasi-linear approximation, a higher order of nonlinearity can be

reached. The third or fourth harmonic can be simulated versus an increase in computation

time. An optimal implementation has to be found to relate the nonlinear order, the desired

accuracy, and the computation time.

The development of this work include the possibility of creating nonlinear RF images

combining the GASM field simulation of a 3D nonlinear parameter map with a 3D scat-

terer map and a strategy in reception to reconstruct the RF image. The development is

presented in the next chapter.
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Chapter 4

Nonlinear Ultrasound Image Simulation:

CREANUIS

This chapter is devoted to the presentation of a new RF image simulator which takes

into account the nonlinear propagation. This work has been presented in a conference [Var-

ray et al. (2010)a] and a paper is currently submitted in a journal [Varray et al. (2011)b].

A software has also been produced under a CeCILL-B licence.

4.1 Introduction

The nonlinear propagation of an ultrasound (US) wave in tissue is currently used since

the years 2000 in many clinical applications such as harmonic imaging or tissue harmonic

imaging (THI). THI is characterized by a higher spatial resolution compare to classical

imaging [Averkiou et al. (1997),van Wijk and Thijssen (2002)]. With injection of contrast

agent, several techniques have been designed to increase the image of the bubbles response

such as pulse inversion (PI) [Simpson et al. (1999)], amplitude modulation (AM) [Errabolu

et al. (1988)], second-harmonic reduction (SHR) [Pasovic et al. (2010)] or second-harmonic

inversion (SHI) [Pasovic et al. (2011)]. In all these techniques, the second-harmonic

increase during the propagation is used. However, to test these different nonlinear-imaging

methods, no tool exists to simulate realistic radio frequency (RF) images including the

nonlinear information.

In this chapter, a novel tool is proposed to simulate RF images containing both the

fundamental and the second-harmonic components generated by the ultrasound nonlinear

propagation in a medium. A nonlinear ultrasound image simulator (CREANUIS) has been
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designed to combine the information of a nonlinear ultrasound field and of a scatterers’

distribution. The GASM has been used to quickly compute the 4D (3D+t) evolution of the

fundamental and second-harmonic component of any 2D sources and any inhomogeneous

nonlinear parameter medium. In a first time, CREANUIS computes the nonlinear ultra-

sound fields (at fundamental and second-harmonic frequencies) in function of the given

probe geometry with the GASM and then, elaborates the nonlinear RF echo-signals using

the fundamental and second-harmonic components of the pressure at each scatterers’ po-

sition [Varray et al. (2010)a]. The scatterers’ definition and the image reconstruction are

conducted in a similar way as in the FieldII implementation. As in every simulation tool,

a trade off has to be found between the realization of the simulation and the computation

time. The different hypothesis and choice in the GASM and image reconstruction are

presented in this chapter.

4.2 CREANUIS method

CREANUIS generates ultrasound images. The RF image is created by repeating the

same basic operations for each simulated line. First, the scatterers’ distribution (positions

and amplitudes) and the nonlinear pressure map of the medium have to be defined. Then,

for each RF line, the active part of the probe has to be selected. The 4D pressure is

computed with a GASM simulation. The backscattering echoes are then computed in

function of the beamforming strategy set in reception and the scatterers’ position. A

general overview of CREANUIS is proposed in Fig. 4.1.

4.2.1 Nonlinear Propagation simulation

To simulate the nonlinear propagation, different opportunity were available. The non-

linear propagation simulator must provide the pressure evolution in 4D (3D+t) for the

different scatterers position in the medium. The Voormolen simulator [Voormolen (2007)]

or the GASM can both answer this problematic. Indeed, both can provide the 4D pressure

with the desire beamforming strategy in transmission. The transmitted signal can also

be specific in both. The difference comes from the high order nonlinear interaction in the

Voormolen one and the possibility to simulate inhomogeneous medium with GASM. For

CREANUIS, the choice of the GASM has been made because the computation of GASM

provides quickly the fundamental and second harmonic component for a given 2D source.

The computation time of the nonlinear field is faster with GASM compared to other ex-

isting methods. Voormolen simulator required to run a long simulation each time a simple

modification is made in the source definition.

4.2.2 Scatterers distribution

In CREANUIS, the scatterers are considered as punctual. They are defined by their

3D coordinates and their response amplitudes. The scatterers’ map can be randomly
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Figure 4.1: Illustration of CREANUIS algorithm steps. The GASM field coupled with the
scatterers distribution produce the elementary RF lines. The beamforming strategy sets
in reception is used to create one RF line. The same steps are repeated for each RF line
of the final image.
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chosen, imported from other simulations like, e.g., those based on FieldII [Jensen and

Munk (1997)] or defined by the users. Usually, the response amplitude is distributed

according to a normal distribution with a standard deviation of 1, but any statistic can

be used. When a scatterer is reached by the pressure wave, a secondary spherical wave is

created at the scatterer position. Its amplitude is related to the response amplitude of the

scatterer.

4.2.3 Elementary RF echoes

The elementary RF signals represent the echoes received by each active element of the

transducer after one pulse emission. To simulate these signals, the same operations are

repeated for each scatterer. Given the spatial position of a scatterer, the fundamental

and second-harmonic contribution is extracted from the field computed previously. This

backscattering pressure wave is not directly the one received by the transducer in reception

because this echo did not hit the surface of the transducer in a precise instant. Indeed,

due to the finite dimension of the transducer piezoelectric surface, the receive pressure

depends on the position of the scatterer, the position of the transducer, and the geometry

of the transducer. To take into account this interaction, the spatial impulse response of

the transducer has to be computed.

The different received signals are then added at the appropriate instant of the elemen-

tary RF lines with the correct amplitude depending on the pressure field, the attenuation

and the scatterer backscattering amplitude. The same frequency attenuation model, as

defined in the GASM in equation (3.25), has been used in backscattering path of the

pressure wave.

4.2.4 Final RF line

From the different echoes received by each active element, one RF line of the image

can be obtained. Indeed, the elementary RF echoes are combined according to the desired

beamforming strategy in reception to produce one line of the image. In CREANUIS, a

dynamic focalization has been implemented, but other strategies can be considered and

implemented. The apodization in reception is set by the user.

4.2.5 Nonlinear RF image

The previous operations are repeated for each line of the image. The resulting image

contains the fundamental and second-harmonic information thanks to the 4D pressure field

computed earlier.
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4.3 Software implementation and characteristics

4.3.1 Software description

CREANUIS has been implemented in C++. The memory quantity used in the simu-

lation depends on several parameters. In the GASM simulation, the spatial discretization

defines the dimension of the 3D matrix used in the Fourier domain. Concerning the RF

image reconstruction, the dimension of the resulting image depends on the number of ac-

tive elements, the number of elements of the probe, the sampling frequency, the speed of

sound (constant in the simulation) and the minimal/maximal depth to reach.

For the users, different utilizations are proposed. Indeed, the software allows to spec-

ify the different beamforming strategies in transmission and reception. To save simulation

time, the GASM simulation can be disabled if the field has previously been simulated. For

inhomogeneous nonlinear media, the GASM simulation has to be conducted for each RF

line creation with the corresponding nonlinear medium. This increases the total compu-

tation time but provides original simulated images. A more technical description of the

CREANUIS software is given in Appendix C.

4.3.2 Integration of a scatterer echo on an active transducer

The received signal on the active transducer depends on different factors such as the

position of the scatterer, the dimension and the geometry of the active transducer, the

amplitude of the backscattering signal. The formulation of this signal has been proposed

by [Stepanishen (1971)a, Stepanishen (1971)b] and reused by Jensen in his FieldII soft-

ware [Jensen and Svendsen (1992)]. It corresponds to the convolution between the initial

backscatter signal with the spatial impulse response of the active element. In far-field

approximation, when the backscattered signal hits the surface, four different times: t1, t2,

t3, and t4 with t1 � t2 � t3 � t4 can be considered. This four times correspond to the in-

stants where the signal hits the different angles of the active transducer. This is illustrated

in Fig. 4.2.a. With the far-field approximation, the 3D spherical wave from the scatterer

interacts with the transducer surface along slope thanks to the large distance between the

surface and the dimension of the element. The spatial impulse response h of the element

has a trapezoidal shape which depends on the different time and of an amplitude A as

illustrated in Fig. 4.2.b. The values of the different times and the amplitude are expressed

as:

François Varray 53



CHAPTER 4. NONLINEAR ULTRASOUND IMAGE SIMULATION: CREANUIS

(a) (b)

Figure 4.2: (a) The spatial representation used in the backscatter signal and (b) the
characteristic trapezoid shape of the spatial impulse response h. In (a) the red lines of the
transducer surface represent, for different times, the intersection between the backscatter
signal and the surface. The time t1 correspond to the upper right corner of the transducer
and the time t4 to the left down one.
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(4.1)

where d is the distance between the scatterer and the center of the active transducer,

wx and wy are respectively the half-height and half-width of the active transducer, and

Δt1 and Δt2 are expressed in function of the scatterer position and the active transducer

dimension:
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⎪
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Δt1 = min
(
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,
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)

Δt2 = max
(

wyys

dc0
,
wxxs

dc0

) (4.2)

where (xs, ys, zs) is the scatterer position in the coordinate system associated to the trans-

ducer (cf. Fig. 4.2.a). The final signal is obtained doing the convolution between h and

the initial signal.

With CREANUIS, each scatterer creates, in function of its amplitude and position, a

specific trapezoid. To speed-up the simulation, all the trapezoid contribution to the RF

lines are added in the different RF lines corresponding to each active element. Finally,

the convolution is made between the initial signal and each RF line. Then, the different

beamforming strategies in reception can be applied to obtain the final beamformed RF
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line.

4.3.3 Resolution cell and scatterers’ density

In function of the density of scatterers, the statistics of the RF image and of the

envelope image change. The probability density function (pdf) has been related to the

scatterer’s density and more precisely to the number of scatterers per resolution cell. The

resolution cell of the simulation system is defined using [van Wijk and Thijssen (2002)]:

Vcell = FWHMc0 × 1.02λ
Focus

L
× 1.02λ

Elevation

Height
(4.3)

with FWHM the full width at half maximum amplitude of the transmitted signal (in sec-

ond), λ the wavelength of the signal, L and Height the lateral and vertical dimension of

the probe respectively, Focus the focal position of the transmitted beam and Elevation

the elevation focus of the probe [van Wijk and Thijssen (2002)]. Using this definition of

the resolution cell, when the scatterer density reaches ten units per resolution cell, the

statistical distribution of the envelope follows the expected Rayleigh distribution. More-

over, when a lower scatterer density is chosen, the envelope distribution follows the K

distribution statistical model [Bernard et al. (2006),Bernard et al. (2007)].

4.4 Results

4.4.1 Comparison with FieldII

Fundamental image

A first simulation, conducted with FieldII and CREANUIS, has been made using a

random scatterers’ distribution for a total of 600 000 scatterers (30 scatterers/mm3). A

3-cyle sine at 5.0 MHz with a Hanning window has been transmitted in the medium. A

focalization at 40 mm and a Hanning apodization in transmission and reception was also

set on the 64 active elements. The resulting normalized B-mode images are presented in

Fig. 4.3. Because the RF-image obtains with CREANUIS is composed of the fundamental

and second-harmonic component, a fourth-order Butterworth bandpass filter has been

used to extract the fundamental B-mode image proposed in Fig. 4.3.b. No noticeable

differences between FieldII (Fig. 4.3.a) and fundamental image of CREANUIS (Fig. 4.3.b)

are visible. From these two images, a statistical study has been conducted in order to

quantify their difference. Different parameters have been computed. First, the mean and

the standard deviation in the two images have been computed and the resulting values

are 0.208 ± 0.123 and 0.211 ± 0.115, respectively for the FieldII and CREANUIS image.

Then, the mean deviation (MD) has been evaluated. It is defined as:

MD =
1

nm

n
∑

1

m
∑

1

|IF ieldII
i,j − ICREANUIS

i,j | (4.4)

François Varray 55



CHAPTER 4. NONLINEAR ULTRASOUND IMAGE SIMULATION: CREANUIS

x axis [mm]

z
 a

x
is

 [
m

m
]

Fundamental image [FieldII]

 

 

−20 −10 0 10 20

20

25

30

35

40

45

50

55

60

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

x axis [mm]

z
 a

x
is

 [
m

m
]

Fundamental image [CREANUIS]

 

 

−20 −10 0 10 20

20

25

30

35

40

45

50

55

60

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 4.3: Comparison of fundamental B-mode image obtained with (a) FieldII and (b)
CREANUIS. These two images are very similar.

with IX
i,j the (i, j) pixel intensity in the X image of dimension (n, m). On the proposed

images, a MD of 8.1% is obtained. This value appears to be very satisfying. Indeed, in the

GASM simulations, the error between the fundamental component and FieldII has been

evaluated of 1.9±1.3% with a peak error of 8.5%. This initial error has been propagated in

the CREANUIS simulation and could explain a part of the total MD observed. However,

the resulting images obtained with FieldII and CREANUIS are very close and validate

our approach compared to the classical FieldII.

Speckle distribution

Several studies have defined the relationship between the intensity distribution in the

RF or B-mode images and the nature of the scatterers [Bernard et al. (2006)]. With a

large number of scatterers, the produced B-mode images exhibit a fully-developed speckle

that follows a Rayleigh distribution. In order to estimate the accuracy of the FieldII and

CREANUIS simulation, the theoretical distributions of the previously simulated images

have been computed. For each image, the root mean square error (RMSE) between the

distribution and the image has been computed. The RMSE is defined as:

RMSE =

√

√

√

√

1
N

N
∑

i

(

Ri − IX
i

)2 (4.5)
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Figure 4.4: Comparison of theoretical Rayleigh probability density function obtained with
(a) FieldII and (b) CREANUIS. These two distributions are very similar. The RMSE
obtained with CREANUIS is 2.1%, and is smaller than the one obtained with FieldII,
7.7%.

where Ri is the Rayleigh distribution, IX
i is the distribution of the simulated X image in

N bins. The resulting estimations of the Rayleigh distributions with the proposed images

are highlighted in Fig. 4.4. The RMSE obtained are respectively of 7.7% and 2.1% for the

FieldII and CREANUIS images. The CREANUIS proposed an image which is closer to

the theoretical Rayleigh distribution.

4.4.2 Classical image examples

Beamforming strategies

With CREANUIS, the fundamental but also the second-harmonic image is simulated.

Different classical medium are then simulated to illustrated the interest of CREANUIS. A

3-cyle sine at 3.5 MHz with a Hanning window has been transmitted in the medium. A

focalization at 60 mm and a Hanning apodization in transmission and reception were set.

Punctual scatterers distribution

A first simulation has been made using punctual reflectors having constant ampli-

tude. The resulting images are presented in Fig. 4.5. No noticeable differences between

FieldII (Fig. 4.5.a) and fundamental image of CREANUIS (Fig. 4.5.b) are visible. How-

ever, CREANUIS proposes a new image corresponding to the second harmonic component

(Fig. 4.5.c). As expected, this image presents a resolution which is higher compared to

the fundamental image. Note that the colorbar of Fig. 4.5.c are different because of the

lower pressure field at second harmonic frequency.
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Cyst phantom

The cyst phantom, proposed in [Jensen and Munk (1997)] has been simulated with

FieldII and CREANUIS. The cyst phantom consists in two series of five circular areas

of variable echogenicity and size. Five punctual reflectors of high echogenicity are also

present in the medium. A total of 100 000 scatterers (4.5 scatterers/mm3) have been used

in the simulations in the entire medium. The response amplitude of each scatterer depends

on its spatial position and if it belongs to a high or low echogeneous area. The resulting

images are proposed in Fig. 4.6. As for the previous results, the difference between FieldII

(Fig. 4.6.a) and fundamental image of CREANUIS (Fig. 4.6.b) is visually slight. The

resolution of the obtained image are computed thanks to the cross-correlation as proposed

by Wagner et al. [Wagner et al. (1983)]. In the fundamental image, the resolution in the

axial and lateral direction is [0.32 mm; 1.91 mm] and is reduced to [0.28 mm; 1.55 mm] in

the second harmonic image.

4.4.3 Inhomogeneous nonlinear medium simulation

The use of the GASM to compute the nonlinear propagation field allows to simulate

inhomogeneous nonlinear medium. The only constraint is to provide to CREANUIS the

nonlinear coefficient map of the medium. Then, the GASM simulation is conducted for

the creation of each RF line using the appropriate area of the nonlinear parameter map

in front of the active elements. Then, the previously described reconstruction scheme is

used to create the RF line. Finally, one GASM simulation is required for each RF line to

take into account the correct nonlinear parameter and to obtain an image related to the

inhomogeneity of the nonlinear parameter.

Two examples to illustrate the obtained image are presented. First, a medium com-

posed for one half with a nonlinear coefficient β = 3.5 and another half with β = 7

(Fig. 4.7.a). Secondly a medium of nonlinear coefficient β = 3.5 surrounding an egg-shape

inclusion of a nonlinear parameter β = 35 is simulated (Fig. 4.8.a). For the two CRE-

ANUIS simulations, a random scatterers distribution has been used. The resulting images

are respectively presented in Fig. 4.7 and Fig. 4.8.

In the first medium, the fundamental image on Fig. 4.7.b is completely homogeneous.

Indeed, the nonlinear coefficient variation is not visible because in the GASM model, the

fundamental did not depend of the nonlinearity. However, on the second harmonic im-

age (Fig. 4.7.c), the amplitude in the image is different in the left and right part. This

amplitude is related to the variation of the nonlinear coefficient. In the second simulated

medium, the fundamental evolution (Fig. 4.8.b) is again not related to the nonlinear coef-

ficient. However, the second harmonic evolution (Fig. 4.8.c) is impacted by the nonlinear

coefficient evolution. The inclusion does not appear as an egg-shaped, because the non-

linearity created during the propagation in the inclusion continue to propagate farther

along.
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Figure 4.5: Resulting log-compressed images (in dB) of a phantom including identical
punctual reflectors at different depth. Image (a) is produced with FieldII, image (b) is
the fundamental image produced with CREANUIS and image (c) is the second-harmonic
image produced with CREANUIS.
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Figure 4.6: Resulting log-compressed images (in dB) of the cyst phantom. Image (a) is
produced with FieldII, image (b) is the fundamental image produced with CREANUIS
and image (c) is the second-harmonic image produced with CREANUIS.
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Figure 4.7: CREANUIS resulting B-mode image of an inhomogeneous nonlinear medium.
(a) is the nonlinear map use in GASM, (b) is the fundamental image and (c) is the second
harmonic one.
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Figure 4.8: CREANUIS resulting B-mode image of an inhomogeneous nonlinear medium.
(a) is the nonlinear map use in GASM, (b) is the fundamental image and (c) is the second
harmonic one.
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4.4.4 Pulse inversion simulation

With CREANUIS, it is now possible to simulate different harmonic imaging techniques

such as amplitude modulation, phase optimization... An example is proposed with the PI

technique [Simpson et al. (1999), Ma et al. (2005)]. In the acoustic field simulated with

the GASM, the phase of the transmitted signal can be defined. To get a PI image, a first

simulation is conducted with an initial transmitted phase of 0◦. Then a second simulation

with a 180◦ phase was done for the same scatterers’ position. The PI image is obtained by

adding the two simulated RF images. In this simulation, the same cyst phantom and cor-

responding transmission as in Fig. 3 have been reused. The resulting images are presented

in Fig. 4.9. The PI image (Fig. 4.9.c) and its spectrum (Fig. 4.9.d) are only contained

the second-harmonic frequency. On the Fourier spectrum of the three different images

(Fig. 4.9.d), the two initial images (Fig. 4.9.a and Fig. 4.9.b) have the same fundamental

component which is suppressed in the PI image. The second-harmonic amplitude of the PI

image is increase by a factor 2 with is equivalent to the 6 dB improvement observed in the

second-harmonic component in Fig. 4.9.d. A strong advantage of the PI imaging stays in

the fact that no filtering is required to obtain the second-harmonic image contrary to the

image presented in Fig. 3.c. Moreover, the linear second-harmonic component transmitted

by the probe is naturally cancelled. The drawback is the need to acquire two images.

4.4.5 Computation time

To evaluate the computation time, the different simulations have been conducted on

the same laptop computer (Intel Core2 Duo T9400 at 2.53GHz, 3.48 GB of memory).

The figure given here are valid for the cyst phantoms simulated previously. With FieldII,

60 s are required for each line although only 12 s are needed with CREANUIS. However,

this duration does not include the computation of the field which has to be done before.

The resulting time to compute the nonlinear field is between 1 and 5 minutes on a CPU

and between 5 and 20 s on a GPU. These variations are due to the CPU/GPU used

and the discretization in the 4D (3D+t) space. Because the medium has here a constant

nonlinear parameter, only one GASM simulation is required for the complete CREANUIS

simulation. Finally, to compute the 163 lines of the proposed image, the total time for the

FieldII simulation is around 160 minutes although it is only 33 minutes for CREANUIS.

An improvement of a factor 4.4 has been obtained with CREANUIS. With inhomogeneous

nonlinear medium, the GASM simulation has to be computed for each RF line. The total

simulation time is comprised between 47 and 87 minutes. The resulting speed-up factor is

then comprised between 1.8 and 3.4. A summary of the computation time are proposed

in Table 4.1.
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Figure 4.9: Simulations applied to the PI method. (a) and (b) are the initial B-mode
images obtained respectively with a 0◦phase and a 180◦phase, (c) is the PI image after
summation of the two first image and (d) is the Fourier spectrum of the presented images,
where the 6 dB improvement in the PI image is highlighted.
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Simulator Time Speed-up factor
FieldII 160 minutes

CREANUIS (GASM on CPU,
homogeneous nonlinear medium)

[33; 38] minutes [4.2; 4.8]

CREANUIS (GASM on GPU,
homogeneous nonlinear medium)

[32; 33] minutes [4.8; 5.0]

CREANUIS (GASM on GPU,
inhomogeneous nonlinear medium)

[47; 87] minutes [1.8; 3.4]

Table 4.1: Comparison of the computation time obtained with FieldII and CREANUIS.

4.5 Discussion and conclusion

CREANUIS provides realistic nonlinear ultrasound echo-signals images that can be

helpful for the development of techniques based on the nonlinearity of media. Indeed,

to our knowledge, no tool has so far combined a nonlinear propagation software and a

reconstruction algorithm to create nonlinear RF images. With the proposed solution, the

user can implement its own beamforming strategy in its simulations. This beamforming

facility, which is also provided by some advanced ultrasound equipment [Tortoli et al.

(2009)], offers the possibility to simulate several nonlinear ultrasound techniques. Such

simulations can be useful in the design and the optimization of methods based on the

nonlinear propagation.

Currently, only the fundamental and the second-harmonic components have been pre-

sented and implemented in CREANUIS. However, by changing the nonlinear propagation

simulator, similar developments can be added to take into account higher harmonics in

the RF data and to simulate more realistic data and new nonlinear methods such as the

super harmonic imaging [Bouakaz et al. (2002)]. The use of the GASM in CREANUIS

allows to make fast simulation and to take into account the inhomogeneity of the nonlin-

ear coefficient in the medium. Applications such as amplitude modulation, pulse inversion

or other nonlinear imaging modalities can now be simulated using or not contrast agent,

which has a higher nonlinear coefficient compared to the surrounding medium [Wu and

Tong (1998)].

The current limitations of CREANUIS depend on different hypothesis or approxima-

tion. First, the probe geometry is limited. Currently, only 2D planar sources can be

simulated with GASM, and so, CREANUIS. The GASM mathematical background has

to be improved to simulate the nonlinear propagation of arbitrary array, but the current

version of CREANUIS allows to consider the majority of nonlinear ultrasound methods.

The second limitation concerns the backscattered signal. Indeed, only the attenuation

has been taken into account and not the nonlinear propagation on the return path. This

approximation was done because only a small amount of the initial pressure amplitude is

propagating back to the probe and this back-propagation has been considered as linear.

Finally, no filtering function has been defined on the transducer. Indeed, in transmission,

the bandwidth is selected thanks to the signal transmitted in the medium. In reception,
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an infinite bandwidth has been used in order to be able to work on the second-harmonic

component in the RF signal. If a more realistic transducer effect is required in reception,

the final RF image has to be filtered with the desired band-pass filter.

The computation time of CREANUIS strongly depends on the number of scatterers

used in the simulation and a large variation of the requested time is observed. Moreover,

if an inhomogeneous nonlinear parameter medium is considered, the nonlinear propaga-

tion simulation has to be computed for each RF line and increase substantially the total

simulation time. For homogeneous nonlinear medium, only one nonlinear field simulation

is needed. In order to save time, the simulated field can be saved to be reuse. Finally, the

computation time has been decreased compare to FieldII simulations of a factor 1.8 to 4.8

depending on the nonlinear parameter homogeneity or not.

The CREANUIS software can be downloaded at the web address: http://www.creatis.

insa-lyon.fr/site/en/CREANUIS
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Chapter 5

State of art in nonlinear parameter

measurement

This chapter makes a review on the different methods that exist in the literature to

measure the nonlinear parameter in a medium through an ultrasound investigation. In the

literature, two major families are described: the thermodynamic methods and the finite

amplitude methods [Sato et al. (1986), Bjørnø (2002)]. The former ones, even if they

are more accurate that the finite amplitude one [Law et al. (1983)], need a specific and

complex experimental setup which made them difficult to use in clinical applications. This

review is an extension of the work presented in two symposia [Varray et al. (2009),Varray

et al. (2010)b] and in a journal paper [Varray et al. (2011)a].

5.1 Thermodynamic methods

5.1.1 Basis equation

As presented in chapter 1, the B/A parameter is defined from the Taylor series ex-

pansion and is related to the celerity variation in function of the pressure for an adiabatic

transformation. [Beyer (1960)] expressed the nonlinear parameter with:

B

A
= 2ρ0c0

(

∂c

∂p

)

ρ0,s

(5.1)

This expression can be further developed with thermodynamic considerations [Coppens
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et al. (1965)]:
B

A
= 2ρ0c0

(

∂c

∂p

)

ρ0,T

+
2c0Tη

ρ0cp

(

∂c

∂T

)

ρ0,p
(5.2)

where η = (1/V )(∂V/∂T )p is the volume coefficient of thermal expansion and cp the

specific heat at constant pressure. Then, the B/A parameter has been described by two

constants:
B

A
=

(

B

A

)′

+
(

B

A

)′′

(5.3)

with
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

B

A

)′

= 2ρ0c0

(

∂c

∂p

)

ρ0,T

(

B

A

)′′

=
2c0Tη

ρ0cp

(

∂c

∂T

)

ρ0,p

(5.4)

In these formulations, the term (B/A)
′

corresponds to the isothermal nonlinear pa-

rameter related to the celerity variation of the pressure at a constant temperature. The

second one, (B/A)
′′

, is the isobar nonlinear parameter related to the celerity variation

in function of the temperature at a constant pressure. In experimental measurements, it

has been shown that the isobar nonlinear parameter is smaller than the isothermal one.

The measure of the nonlinear parameter has been approximated by several authors to the

measure of the isothermal nonlinear parameter [Law et al. (1983)].

5.1.2 Experimental methods

To easily compute the nonlinear parameter, [Zhu et al. (1983)] proposed to consider

two transducers separated by a fixed distance L. The wave travels from one to the other

in a time duration τ . The change in the celerity in function of the pressure variation can

be expressed as:
∂c

∂p
=

−L

τ2

∂τ

∂p
(5.5)

The final formulation for the nonlinear parameter is then approximated to:

B

A
=

−2ρ0c2
0

τ

(

Δτ

Δp

)

S

(5.6)

This formulation has been reused by various authors but the formulation has been

simplified using directly the phase difference [Sehgal et al. (1984), Sehgal et al. (1985),

Sehgal et al. (1986),Errabolu et al. (1988)]:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

B

A
=

−2ρ0c3
0

Lω

ΔΦS

Δp

(

B

A

)′

=
−2ρ0c3

0

Lω

ΔΦT

Δp

(5.7)

where ΔΦS and ΔΦT are respectively the two phase-changes when the medium cannot
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or can exchange its energy with the surrounding medium. Practically, the measure of the

phase ΔΦT is done half an hour after the measure of ΔΦS .

With the thermodynamic background, different media such as liquid, mixing liquid

or biological media have been studied. For immiscible liquid, [Apfel (1983)] linked the

nonlinear parameter to the variation of the volume in function of the pressure. He also

presented another methodology of prediction of the composition of media using different

linear but also nonlinear parameter measurements [Apfel (1986)]. For media composed

predominantly of water, [Yoshizumi et al. (1987)] proposed a formulation of the nonlinear

parameter taking into account the quantity of bounded and free water in the medium. In

recent works, [Plantier et al. (2002)] have measured the nonlinear parameter of various

liquids for different pressures and temperatures. A specific study on the glycerol has been

conducted by [Khelladi et al. (2009)]. Some measures of the nonlinear parameter in

biological materials have been conducted by [Law et al. (1985)]. He also compared the

thermodynamic and finite amplitude methods [Law et al. (1983)].

Some years later, [Everbach and Apfel (1995)] proposed to measure the celerity change

in function of the pressure with an ultrasonic interferometer. Under this consideration,

the initial formulation (5.1) is extended as:

B

A
= 2ρ0c0

Δc

Δp
= 2ρ0c2

0

Δf

f0Δp
(5.8)

In the interferometer, the measure of the slope of Δf/Δp gives access to the nonlinear

parameter. In their works, [Everbach and Apfel (1995)] obtained very reproductive results

with a standard deviation less than 1% of the measure. Five years later, [Davies et al.

(2000)] used the same formulation to compute the nonlinear parameter but replaced the

interferometer by a more simple experimental system: a phase technique with continuous

wave system. It consists to represent the time of flight between the transmitter and the

receiver as a continuous function of the phase and the frequency. With such system, the

same experiment is less user dependant and more repeatable. The obtained results have

a standard deviation inferior to 0.4% of the B/A parameter and present an error inferior

to 5% compared to previous published values.

5.2 Finite amplitude methods

The finite amplitude methods have been largely studied because of their experimen-

tal simplicity and the possibility to simulate the nonlinear ultrasound wave propagation.

Three different approaches can be highlighted for B/A estimation and the corresponding

signals are summarized in Fig 5.1. All these methods are based on the initial transmission

of the pressure wave in the z direction. The first method simply consists in transmit-

ting a wave at a given center frequency (Fig 5.1.a) and measuring, in the received signal,

the decrease of the fundamental and/or the increase of the second harmonic during the

propagation, which is related to the nonlinear property. The second method is character-
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Figure 5.1: Schematic summary of the different approaches to determine the β coefficient of
the propagation medium. These methods are differentiated by the transmitted frequencies:
(a) methods with transmission of a single frequency, based on the measurement of the
fundamental and/or the second harmonic component, (b) methods with composite signal
transmission, based on the measurement of the interaction frequencies, (c) methods using
pumping waves based on the measurement of the modulation Δψ of the initial transmitted
signal.

ized by the emission of several signals at different frequencies (Fig 5.1.b). The received

signal contains the contribution of each frequency but also of their interaction and the

complementary waves created at the sum- and difference-frequencies. This interaction is

related to the nonlinear behavior of the medium. The third approach involves a pumping

wave perpendicular to the transmitted wave (Fig 5.1.c) to measure the nonlinear param-

eter. The interaction between the two waves creates a phase shift that is related to the

nonlinear parameter. All these methods are further studied in this section.

5.2.1 Single frequency transmission

Extra attenuation method

During the nonlinear propagation of a pressure wave, the nonlinear distortion con-

verts a part of the fundamental wave into harmonics. This effect, call extra attenuation

have been presented by [Blackstock (1964)]. Its name means that the fundamental is not

just attenuated by the medium but also by the nonlinear effects. The estimation of this

converted quantity of fundamental is related to the nonlinear parameter of the medium

(Fig 5.2). [Kashkooli et al. (1987)] developed this theory to measure the nonlinear param-

eter of four liquids. In this situation, the evolution of the fundamental pressure used by
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Figure 5.2: Extra attenuation method: the fundamental is attenuated by the medium but
also by the nonlinear propagation and the transfer of energy to the second harmonic wave.

Kashkooli et al. is:
dp1

dz
= −α1p1 − kβ

2p0c2
0

p2
1 (5.9)

where α1 is the attenuation of the fundamental component. The solution of this equation,

proposed by Kashkooli et al. is:

p0

p1(z)
= eα1z +

kβ

2α1ρ0c2
0

(eα1z − 1)p0 (5.10)

To estimate the nonlinear coefficient β, the measure of the fundamental component p1

at a distance z is made for different initial pressure p0. Then, the graph of p0/p1(z) versus

p0 exhibits a slope S, related to the nonlinear coefficient:

S =
kβ

2α1ρ0c2
0

(eα1z − 1) (5.11)

Then, a simple formulation of the nonlinear coefficient for extra attenuation case is ob-

tained:

β = S
2α1ρ0c2

0

k(eα1z − 1)
(5.12)

The estimation of the nonlinear parameter of water with this method has conducted

to an error of 20%. It must be noticed that this method is valid for plane waves, meaning

that the diffraction effect is neglected. The initial energy of the transmitted pressure must

also be large enough to be able to differentiate the extra attenuation from the classical

attenuation of the medium.

For focussed sources, the diffraction of the transducer has to be taken into account and

the received pressure has to be integrated on the surface of the receiver. In the simplified

case of a gaussian source, [Liu and Nikoonahad (1989)] extended the previous extra atten-

uation mathematical background and linked the input voltage Vin on the transducer and

the output one Vout on the receiver with the nonlinear coefficient:

Vout

V max
out

=
Vin

V max
in

cosh(Qβ) sinh(Qβ
Vin

V max
in

) (5.13)

where Q, V max
in , and V max

out are constants that depend on the system, the attenuation and

the distance between the transmitter and the receiver. Experimentally, the method is

difficult to implement. First, the two constants V max
in and V max

out have to be determined in

function of the experimental setup. Then, a known nonlinear medium is used and different
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Figure 5.3: Direct method: the second harmonic increase is related to the nonlinear
coefficient of the medium.

measurements of the (Vin/V max
in , Vout/V max

out ) are made. A least square resolution is made

to fit the experimental points to the model in order to determine the value of Q. Now

the system is ready to be used with an unknown nonlinear medium [Nikoonahad and Liu

(1990)]. [Liu and Nikoonahad (1989)] measured the nonlinear parameter of ethyl alcohol

and the obtained error was around 5%. One advantage of this method is its application

in pulse echo mode. However, as for plane wave, the initial pressure must be large enough

to measure the extra attenuation effect.

Direct method (DM)

The simplest approach for the nonlinear coefficient measurement consists in transmit-

ting a wave p1 at a single frequency and selecting the second harmonic component after the

propagation in the nonlinear medium (Fig 5.3). According to the theoretical background

developed by various authors [Adler and Hiedemann (1962),Dunn et al. (1981),Law et al.

(1981),Law et al. (1985)], and followed by Bjørnø [Bjørnø (1986)], the following expression

of the nonlinear coefficient β, involving both the pressure amplitude of the fundamental at

the source p0 and the pressure amplitude of the second harmonic components p2(z) along

the propagation axis, can be derived:

β =
2ρ0c3

0

ω

p2(z)
zp2

0

(5.14)

Equation (5.14) is valid when a plane wave is propagating in the medium. If a focused

wave is considered, the previous equation can be used for very short distances, to limit the

effect of the diffraction pattern. Moreover, to compensate for attenuation, the following

formulation was proposed [Law et al. (1985)] in which z → 0 indicates the limited range

of validity and the necessity to be close to the transducer:

β =

(

2ρ0c3
0

ω

p2(z)
zp2

0

e−(α1+α2/2)z

)

z→0

(5.15)

with α1 and α2 the attenuation of the fundamental and second harmonic components,

respectively. To take into account the diffraction loss in the medium for a piston source,

[Law et al. (1985)] corrected the second harmonic expression with a diffraction correction

term, F (z) defined by [Ingenito and Williams (1971)] for an ideal piston source. The new
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expression of the nonlinear coefficient is now:

β =

(

2ρ0c3
0

ω

p2(z)
zp2

0

e−(α1+α2/2)z 1
F (z)

)

z→0

(5.16)

The nonlinear coefficient is related to the second harmonic increase and this component

needs to be experimentally measured. [Adler and Hiedemann (1962)] used an optical system

to measure the different acoustic components and to evaluate the nonlinear parameter.

For acoustic measure, a transmitter and an hydrophone are used to quantify the second

harmonic component. The hydrophone recorded p1 and p2 after a propagation distance

z [Dunn et al. (1981), Law et al. (1985), Chavrier et al. (2006), Wallace et al. (2007)].

The error in the β evaluation was approximately 5% [Wallace et al. (2007)]. Experimental

errors can be created when the receptor is too close to the transmitter. Indeed, some

stationary wave can be present and decrease the accuracy of the measure. A second

type of experiment have been conducted using the same transmitter in transmission and

reception and the second harmonic evolution is recorded after a reflection on a metallic

plate. [Gong et al. (2004)] considered that the reflection on the plate was not perfect and

introduced a reflection coefficient R. In this experimental situation, the second harmonic

evolution has been expressed for a constant attenuation in the medium as:

p2(z) =
βω

2ρ0c3
0

p2
0R(1 + R)

∫ z

0
e−2α1u−α2(2z−u)du (5.17)

After calculating the integral of the attenuation, the nonlinear coefficient is then iden-

tified:

β =
2ρ0c3

0

ω

p2(z)
R(1 + R)p2

0

α2 − 2α1

e−(2α1+α2)z − e−2α2z
(5.18)

This second type of measurements shows errors smaller than 5% for the majority of

tissues [Gong et al. (2004),Vander Meulen and Haumesser (2008)]. However, the different

medium parameters as α1, α2, c0, ρ0, R must be known before the experiments.

Insertion-substitution method

The insertion-substitution method, usable in both transmission and transmission-

reception modes, consists in assessing the second harmonic changes as propagating in

two different media. One medium is considered as a reference (subscript 0), while the

second is unknown (subscript i). The reference medium has a length L and a nonlinear

coefficient β0, whereas the unknown medium is inserted in the ultrasound field and is

substituted to the reference medium over a length d. Two consecutive measurements of

the second harmonic pressure amplitude are taken, one without the unknown medium to

determine p20 and the second with the unknown medium to measure p2i (Fig. 5.4).

Gong et al. showed that the nonlinear coefficient βi can be expressed as [Gong et al.
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Figure 5.4: Illustration of the insertion-substitution method. A medium of unknown βi

coefficient is inserted within the reference medium of known β0 coefficient.

(1984)]:
βi

β0
=

(

p2i

p20

1
D′D′′

L

d
− L

d
+ 1

)

(ρc3)i

(ρc3)0

1
D′′

(5.19)

where D′ and D′′ are dimensionless parameters.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D
′

= 2(ρc)0/[(ρc)0 + (ρc)i]

D
′′

= 2(ρc)i/[(ρc)0 + (ρc)i]

(5.20)

When the attenuation is considered, equation (5.19) becomes:

βi

β0
=

[

p2i

p20

L

d

1
I1I2

−
(

L

d
− 1

)

I2

I1
D′D′′

]

(ρc3)i

(ρc3)0

1
D′D′′2

(5.21)

where I1 and I2 correspond to the attenuation terms:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I1 = e−α1d

I2 = e−α2d/2

(5.22)

Some years later, [Gong et al. (1989)] extended the previous formulation by considering

the diffraction of the piston source. A correction of the diffraction F (k, z0, z) for a piston

of radius a is added with:

F (k, z0, z) = 1 − 2
z − z0

∫ z

z0

1 − ξ(z − μ/2)/2k2a2

√

πξ(z − μ/2)
dμ (5.23)

with

ξ(z) = k

√
z2 + 4a2 − z

2
(5.24)

The final expression of the insertion substitution method, which takes into account the

diffraction, the attenuation and the nonlinearity is expressed as:

βi

β0
=

[

p2i

p20

L

d

1
I1I2

−
(

L

d
− 1

)

I2

I1
D′D′′

F (k0, d, L)
F (k0, 0, L)

]

(ρc3)i

(ρc3)0

1
D′D′′2

F (k0, 0, L)
F (ki, 0, d)

(5.25)
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Equation (5.21) and (5.25) have been described by different authors in many exper-

iments in transmission mode [Gong et al. (1989), Zhang et al. (1996), Zhang and Gong

(1999),Dong et al. (1999),Williams et al. (2006),Harris et al. (2007)] to measure the non-

linear coefficient of the medium included in water. With this method, the B/A parameter

has been studied in different biological medium with an error inferior to 10% [Zhang and

Dunn (1987), Zhang et al. (1991)]. With the apparition of the contrast agent and their

highly nonlinear behavior, different authors have tried to measure their nonlinear parame-

ter for different concentration. [Wu and Tong (1998)] worked on Albunex® and Levovist®

and [Zhang et al. (2000)] on the SDA® (sonicated dextrose albumin). The results showed

that the nonlinear parameter of contrast agent is much higher than the biological tissues

with the different concentrations used (B/A > 300).

For focussed sources, these formulations are no more correct. In his work, Saito improve

the mathematical background of the insertion substitution method for focussed gaussian

sources [Saito (1993)]. For plane wave with weak attenuation, a variable R is defined as:

R(z) =
p2i(z)
p20(z)

(

p10(z)
p1i(z)

)α2/2α1+1

=
βiρic

3
i

β0ρ0c3
0

T0i

(T0iTi0)α2/α1−1
(5.26)

where T0i and Ti0 are the transmission coefficients of the sound pressure at the reference-

studied medium and studied-reference medium, respectively. For a focussed source, the

phase parameter ϕ of the source is defined in function of the phase of the fundamental ϕ1

and of the second harmonic ϕ2

ϕ = ϕ2 − 2ϕ1 (5.27)

For such focussed sources, Saito defined a new quantity RF which is derived from R

and the phase parameter of the reference medium ϕi and the unknown one ϕ0:

RF = R
sin ϕi

sin ϕ0
(5.28)

The solution of the right part of equation (5.26) is proposed in the paper by [Saito

(1993)]. The final formulation is still related to the nonlinear coefficient βi of the unknown

medium. The experimental setup design by Saito is composed of a gaussian focussed source

and an hydrophone. The sample has to be placed exactly at the focal point in order to

have accurate results. The presented results exhibit a maximal error of 5% on different

liquids and of 12% on some biological media even if some measurements are comprised

in the standard deviation of the selected reference value. [Labat et al. (2000)] considered

the superposition of a Gaussian beam to solve the KZK equation and to access to another

formulation of the ratio R, still related to the two different second harmonic components.

The error on the estimated nonlinear coefficients is under 6%.
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Figure 5.5: Comparative method: the nonlinear coefficient is extracted by comparison
between two similar transmissions in the two different media.

Comparative method (CM)

The comparative method (CM) is a particular case of the insertion-substitution one

(Fig 5.5). When the inserted medium has the same length as the reference medium, the

equation (5.21) can be simplified as:

βi = β0
p2i

p20

1
I1I2

(ρc3)i

(ρc3)0

1
D′D′′2

(5.29)

As for the DM, the CM can be used in simple transmission experiments but also after

a reflection on a metallic plate. In such a case, [Kourtiche et al. (2001)] updated the

comparative formulation with the two reflection coefficients: the first one, Rr0, between

the water and the reflector and the second one, Rri, between the studied medium and the

reflector:

βi = β0
p2i

p20

Rri

Rr0
FηFdiff Fatt

ρic
3
i

ρ0c3
0

(5.30)

with Fη the sensitivity function of the transducer, Fdiff the correction function of the

diffraction effect and Fatt the attenuation correction. [Saito et al. (2006)] used the same

formulation to create an experimental system that can measure the celerity, the density

and the attenuation of the inserted sample. Then, the comparative method is used to

measure the nonlinear parameter. The presented results exhibit a maximal error of 6%

but is usually less than 3%. [Gong et al. (2004)] developed similar applications. In such

a case, the second harmonic component has the same expression as (5.17). With such

consideration, the ratio of the two second harmonic components between the two media

of constant attenuation has been expressed as:

p2i(z)
p20(z)

=
βi

β0

ρic
3
i

ρ0c3
0

Rri(1 + Rri)
Rr0(1 + Rr0)

∫ z
0 e−2α1iu−α2i(2z−u)du

∫ z
0 e−2α10u−α20(2z−u)du

(5.31)

where α10, α20, α1i, and α2i are respectively the fundamental and second harmonic at-

tenuation of the reference and unknown medium. The nonlinear coefficient can then be

extracted:

βi = β0
p2i(z)
p20(z)

ρ0c3
0

ρic3
i

Rr0(1 + Rr0)
Rri(1 + Rri)

∫ z
0 e−2α10u−α20(2z−u)du

∫ z
0 e−2α1iu−α2i(2z−u)du

(5.32)
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Figure 5.6: Composite transmission: The nonlinear interaction between the two transmit-
ted wave create two new waves at the sum- and difference-frequency. The amplitude of
these waves are related to the nonlinear coefficient.

5.2.2 Composite frequency transmission

When two waves at different frequencies are transmitted in a medium, a nonlinear

interaction between the two waves takes place and creates, in addition to the harmon-

ics of each pulse, components at the sum- and difference-frequencies. This interaction

is related to the B/A parameter and several authors have attempted to determine the

nonlinear parameter through this composite emission. The general theory has been pre-

sented by [Thuras et al. (1935),Westervelt (1963),Fenlon (1972)]. In this section, different

approaches of composite emission to determine the nonlinear coefficient are presented.

Composite signal with two different frequencies

When a high and a low frequency signals are transmitted in the medium, nonlinear

interaction appears in the medium. At the source, the wave transmitted at the low fre-

quency fl with an initial amplitude pl
0 is coupled with the wave at the high frequency fh

with an initial amplitude ph
0 (Fig. 5.6). The total pressure wave is expressed as:

p(t, z = 0) = ph
0 sin(2πfht) + pl

0 sin(2πflt) (5.33)

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pl
0 ≫ ph

0

fh > fl

(5.34)

In the paper of [Thuras et al. (1935)], a simple formulation for the sum (ps) and

difference (pd) amplitude has been proposed for gases:

ps/d(z) =
γ + 1

2
√

2γ
pl

0ph
0

ωh ± ωl

c0
z (5.35)

[Fenlon (1972)] described in the lossless Burgers’ equation the evolution of the maximal

pressure of the wave created at the sum- and difference-frequencies:

ps/d(z) =
2

(σh ± σl)u0
J1((σh ± σl)uh)J1((σh ± σl)ul) (5.36)
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Figure 5.7: Composite transmission with two close frequencies: only the difference wave
at frequency fd is considered with a specific mathematical background developed in this
situation.

with:

σi =
βωiz

c2
0

(5.37)

where the subscript i is equal to h or l, J1 is the first order Bessel function, u0, uh and

ul are the particle velocities at the source for respectively the total, the high and the low

frequency waves. With this formulation, [Zhang et al. (2001)] computed the nonlinear

parameter in the case of a piston transducer without diffraction.

[Pasovic et al. (2007)] proposed to study the evolution of this sum- and difference-

waves when nonlinearity, absorption and diffraction are considered. Simulation and ex-

perimental results point out the relation between the ratio of the sum ps and difference

pd pressure waves and the nonlinear parameter by recording the distorted pressure wave

at the focal point. A relation has been shown between the evolution of the ratio ps/pd

as a function of the initial pressure transmitted in the medium and according to different

nonlinear medium. Even if no theoretical relation is explicitly given, the method shows

interesting results to determine the nonlinear parameter. A similar approach has been

used in metallic materials to detect cracks [Goursolle et al. (2008)].

Composite signal with two close frequencies

When the initial composite signal contains two close frequencies, the difference wave

pd created is at a very low frequency (Fig. 5.7). Nakagawa et al. proposed to derived pd(z)

to access to the nonlinear parameter [Nakagawa et al. (1984),Nakagawa et al. (1986)]:

dpd(z)
dz

=
β(z)ωd

2ρ0c3
0

p1(z)p2(z) − αdpd(z) (5.38)

with αd the attenuation of the difference wave. The nonlinear parameter can easily be

isolated from (5.38):

β(z) =
2ρ0c3

0

ωdp1(z)p2(z)

(

dpd(z)
dz

+ αdpd(z)
)

(5.39)

[Cai et al. (1992)] adapted further the equation (5.38) to compute the B/A param-

eter for weakly, moderately and strongly scattering medium. Their results, obtained in

simulations, are in good agreement with the geometry simulated in their works. In this
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description, the nonlinear parameter can be inhomogeneous along the propagation direc-

tion.

The drawback of this type of methods comes from the length of the signal used. Indeed,

the number of cycles of the two primary waves has to be long enough to allow the creation

of the difference wave. For an emission of sinus signals at frequencies 5 MHz and 6 MHz

with Gaussian envelope, the number of cycles for the primary wave must be at least 20

to obtain 5 modulated cycles at 1 MHz. Consequently, spatial resolution is decreased

compared to the resolution at the high frequency used in the transmitted signal.

Second-order ultrasound field technique

The Second-order UltRasound Field (SURF) technique was initially proposed by [Ueno

et al. (1990)]. It combines two excitation signals in a specific way: a high-frequency (fh)

pulse is localized during either the increasing part or the decreasing part of a low-frequency

(fl) wave (Fig. 5.8). The high-frequency is typically ten times higher than the low fre-

quency, while the amplitude of the high-frequency pulse is around one-quarter that of the

low-frequency pulse. In Fig. 5.8, two different transmitted signals, p′
0 and p′′

0 (Fig. 5.8.a and

Fig. 5.8.d), and the corresponding pressures obtained after 15 cm propagation (Fig. 5.8.b

and Fig. 5.8.e) are presented. When the high-frequency pulse is coincident with the increas-

ing part of the low-frequency pressure (waveform p′
0 in Fig. 5.8.a), its frequency is reduced

during the propagation (Fig. 5.8.c). Inversely, when the high-frequency pulse is coincident

with the decreasing portion of the low-frequency pulse (waveform p′′
0 in Fig. 5.8.d), its

frequency is increased (Fig. 5.8.f).

[Fukukita et al. (1996)] further developed the theoretical background to compute the

nonlinear coefficient. As summarised in Fig. 5.9, for a given depth z, the two waves p′(z)

and p′′(z) are first transformed into the frequency domain to produce P ′(f) and P ′′(f),

respectively. Then the spectrum ratio R(z, f) is computed over a bandwidth ±df around

the high frequency fh. This ratio corresponds to the spectral variation of the compression

and the dilation of the high-frequency pulse on the two different low-frequency waves:

R(z, f) =
P

′

[fh − df ; fh + df ]
P ′′ [fh − df ; fh + df ]

(5.40)

From, (5.40) the crossover frequency fx is obtained when:

log[R(z, f)] = 0 (5.41)

The slope of the spectral ratio Sx at fx is also needed to obtain the final value of the

nonlinear coefficient:

Sx(z) =
(

∂ log[R(z, f)]
∂f

)

f=fx

(5.42)

β(z) =
ρ0c3

0B2
0

2ωlp0

Sx(z)
zfx(z)

(5.43)
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Figure 5.8: SURF method: transmitted signals p′
0 (a) and p′′

0 (d) at z = 0 cm and
corresponding signals after a propagation of 15 cm (b, e). The last column (c, f) is a zoom
of the signal portion containing the high- and the low-frequency components (the initial
signal is represented by a dashed line and the final signal a solid line).

Figure 5.9: SURF method: transmission of two consecutive waves with the different
high-frequency pulse localisations. The nonlinear coefficient is computed from the pair
of recorded pulses.
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Figure 5.10: Pump wave method: the probe pulse is modified in function of the pump
wave and the nonlinear coefficient of the medium.

with B2
0 the frequency variance of the spectrum as defined by [Fukukita et al. (1996)].

Moreover, Fukukita et al. pointed out that the influence of diffractive effects of the probe in

this method is limited because the calculation is based on the ratio of Fourier transforms.

The error in the B/A estimation was estimated at less than 5% with a circular piston

probe.

5.2.3 Pump wave method

During the nonlinear propagation, we have seen that interaction between different

frequencies create some new wave components. The pump wave methods are based on

a composite emission but the measure of the nonlinear parameter is made on the phase

information and not on the nonlinear wave components. Indeed, when a low frequency

pump wave (pw) is perpendicularly transmitted in the medium at the same time that the

probe pulse p, a phase modulation is present on the probe pulse and is related to the

nonlinear parameter (Fig. 5.10). This method was introduced by [Ichida et al. (1984)] and

they expressed the nonlinear parameter in function of the phase modulation Δψ along a

short distance Δz:
B

A
= −2ρ0c3

0

ωpw

Δψ

Δz
(5.44)

This formulation is valid for plane wave and circular transducer. [Kim et al. (1990)]

extended this formulation to take into account the possible variation of the nonlinear

parameter along the studied direction. The new formulation of the phase shift is expressed

as:

Δψ

(

1
λw

, y

)

=
ω

2ρ0c3
0

pw

∫ z

0

B

A
(x, y) cos

(

2πx

λw

)

dx (5.45)

with λw the pump wavelength. This formulation can be identified as a part of the Fourier

transform of the B/A parameter with the spatial frequency 1/λw. With different estima-

tion of the phase shift at different position, an inverse Fourier transform allows to extract

the nonlinear parameter map. Some experimental profile and image of the nonlinear pa-

rameter of phantoms are presented in the paper but the accuracy of the measure is not

discussed. A similar approach was presented by [Cain et al. (1986)] which transmitted

the two waves on the same transducer. Because the amplitude of the pump wave is larger

than the pulse one, the measure nonlinear parameter is simplified and the experimental

measures are conducted for different pump wave pressure. The display of the phase shift
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versus the pump wave amplitude allow to extract the nonlinear parameter.

Cain also works on a different experimental situations. Indeed, he transmitted the

pump and the pulse wave in opposite direction in order to have a specific phase modulation

along the propagation axis. To do so, the transducer is placed at a distance L of a plane

reflector. Then, the probe wave is emitted. This initial signal is long enough to make the

incident and reflected paths. The length of the signal is 2L/c0. Then the pump pulse is

emitted and the reflected signal is acquired. During the incident propagation of the pump

wave, this latter interacts with the probe wave. The acquisition is made during 2L/c0.

The total time for the transmission and the reception of the signals is 4L/c0. The phase

modulation corresponds to the difference between the phase of the signal without the pump

wave and the one with the pump waves which takes into account the nonlinear parameter.

The phase shift depends on the received time τ which is in the range of [0; 2L/c0]. The

formulation proposed by Cain is expressed as the convolution between the pump waveform

p(x, t) and the spatial distribution of the nonlinear parameter [Cain (1985),Cain (1986)]:

Δψ(τ) = − ω

2ρ0c3
0

∫ c0τ/2

0
p

(

c0τ

2
− u

)

B

A
(u)du (5.46)

This formulation has been tested with different pump waves: sinusoidal [Cain (1986)]

and chirp [Houshmand et al. (1988),Cain and Houshmand (1989)]. The results obtained

present good agreement with the nonlinear parameter variation, but no discussion has

been conducted on the accuracy of such formulation. This mathematical background is

valid for plane wave when the diffraction of the piston source is not taken into account.

To solve this problem, [Barrière and Royer (2001)] have used a diffraction model based on

plane wave expansions to take into account the diffraction effects. The extension has been

validated on water and ethanol with an estimated error of 2%. The method has also been

used on solid material with an error of 10% [Jacob et al. (2003)]. Another research group

has worked on fused silica and phenolic resin with an accuracy in the range of 3% and 25%

in function of the reference used [Bou Matar et al. (2002),Vila et al. (2004),Vander Meulen

et al. (2004)]

5.3 Experimental approaches

Several authors have experimentally estimated the nonlinear coefficient of a medium

using techniques developed for transmission measurement. This section presents these

experimental approaches developed for B/A imaging in echo mode.

5.3.1 Radio frequency echo measurement

The first group of methods, which is a direct use of the second harmonic increases

during the propagation and presented in [Akiyama (2000)] and [Fujii et al. (2004)], uses a

mathematical formulation inspired by the equation (5.14). The recorded signal is related to
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Figure 5.11: Ultrasound computed tomography: to reconstruct the image, different acqui-
sitions are made by rotating the medium or the transmitter/receiver system.

the distorted pressure of the initial wave and the density and echogenicity of the scatterers

of the medium. The β coefficient is not directly accessible on the signal. To limit the effect

of the scatterers, two distinct transmissions are used to measure the nonlinear coefficient.

The first one, at frequency f , and a second one at 2f , record the changes in the second

harmonic caused by nonlinear properties. The authors assume that the scatterer’s response

to the second harmonic due to the propagation is the same as the response to a wave

transmitted at double frequency. The ratio between the two echoes would suppress the

scatterer’s impact. The authors concluded that the nonlinear coefficient is expressed as:

β(z) =
ρ0c3

0

πf

pΠ
0

p2
0

d

dz

(

p2(z)
pΠ(z)

)

(5.47)

with p2(z) the second harmonic component amplitude of the backscattering echo of the

first transmission at f , pΠ(z) the fundamental amplitude of the backscattering echo of the

second transmission at 2f , p0 and pΠ
0 respectively the initial pressure of the two transmitted

waves.

With the knowledge of the initial pressures transmitted in the medium, the authors

measured the β value of a homogeneous medium from the experimental signal. Although

this approach is relatively easy to implement, it has several limitations. The error between

theoretical and experimental values of the nonlinear coefficient is larger than 20%. The au-

thors consider that the ratio between the two waves amplitude results in a normalization of

the diffraction effect. However, the ratio computed in (5.47) is directly related to the scat-

terer’s characteristics, which must be the same during the two acquisitions. Consequently,

any movements of the medium between the two acquisitions must be avoided.

5.3.2 Ultrasound computed tomography

The first experimental images of the β coefficient were obtained with ultrasound com-

puted tomography (UCT) [Nakagawa et al. (1984)]. Using UCT, the theoretical back-

ground developed in transmission is valid and can be directly applied. By rotating the

transmission-reception setup around the medium, different acquisitions were made and a

reconstruction algorithm provided an image of the nonlinear coefficient (Fig. 5.11).

[Nakagawa et al. (1986)] and [Cai et al. (1992)] created first parametric images of

a phantom with regions characterized by different nonlinear parameters. The UCT can
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Figure 5.12: Wave phase conjugate acquisition system. The transmitter T and PC (phase
conjugate) are used to transmit the initial wave and the reversed it.

use different nonlinear parameter estimation methods in the reconstruction process: the

measurement of the second harmonic increase from a monochromatic wave, the insertion

substitution technique and the measurement of the difference frequency wave increase

when composite emission is used. The resulting images show a good agreement with the

phantoms used, but the resolution is not discussed. [Zhang et al. (2001)] used the DM

and the UCT to estimate the nonlinear parameter of biological media. The error of the

measurements was under 10%. The insertion substitution method has also been largely

used. Indeed, the comparison between the two media allows to decrease the experimental

errors. [Zhang et al. (1996), Zhang and Gong (1999), Zhang and Gong (2006)] used the

UCT to obtain the nonlinear parameter in egg or biological media. The B/A resulting

images show the different region of interest and the global error, measured by the authors

between the theoretical B/A value of media and the resulting image, was 6%. [Gong et al.

(2004)] proposed to use a reflective plate in the UCT. The three methods (second harmonic

increase, insertion-substitution method, increase of the wave at the difference frequency)

have been tested with phantoms. The images have a good quality and the global errors

of the different methods are less than 5%. Similar approaches were presented in [Burov

et al. (1994),Bereza et al. (2008)].

The results obtained with UCT are very accurate and used the simple mathematical

background of the finite amplitude methods. However, the UCT setup is not suitable for

in vivo exams but only in the characterization of different medium sample.

5.3.3 Nonlinear ultrasonic phase-conjugate imaging

The wave phase conjugation is a nonlinear imaging technique based on a phase conju-

gate wave [Brysev et al. (2004)] and is presented in Fig. 5.12. The transducer T transmits

in the medium the initial pressure wave. The transducer PC recorded it and reversed

the received signal. This time reversed signal is sent back in the medium and its second-

harmonic component is extracted at the transducer T. This component creates one point

of the C-scan image. After moving the two transducers, another measurement is conducted

in a different direction of the medium. The time reversal step can be conducted on the

fundamental wave or the second harmonic component received at the PC transducer after
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one propagation in the medium. An adjustment is then necessary in the different frequen-

cies used in order to stay in the bandwidth of the transducers. This method is not directly

able to extract the nonlinear parameter of the medium but provide an image with a con-

trast link to the nonlinear parameter inhomogeneity. The provide C-scan show a contrast

evolution in function of the nonlinear parameter value [Krutyansky et al. (2007), Preo-

brazhensky et al. (2008)]. The mathematical background has also been improved to take

into account moving media [Preobrazhensky et al. (2009)]

5.3.4 Other nonlinear measurements

Fatemi and Greenleaf have studied the nonlinear parameter in echo mode imaging

by working on an effect they called "nonlinear shadowing" [Fatemi and Greenleaf (1996),

Fatemi and Greenleaf (1998)]. The idea of the method is to compensate for the nonlinear

effect during the propagation as it is done with the time gain compensation for attenuation

to emphasize the high nonlinear region in the image. The correction is computed with

a single point response for different amplitude excitations. If the excitation is weak, the

propagation can be considered as linear and the experimental setup is calibrated. The

resulting image are not of good quality in the paper and it is quite difficult to comment

the results of the method.

The nonlinear parameter takes into account the second order propagation in tissue.

However, the propagation is not reduced to the second harmonic component. If higher

components are considered, the third order nonlinear parameter C/A can be considered.

The C/A parameter is also computed from the Taylor development of the pressure. It is

expressed as:
C

A
=

ρ2
0

c2
0

(

∂3p

∂ρ3

)

s

(5.48)

An insertion substitution method has been proposed to measure the C/A parameter in

gases [Xu et al. (2003)] and in biological media [Liu et al. (2007)]. The estimation error

of the C/A parameter was inferior to 5% in biological media.

5.4 Discussion and conclusion

Different techniques to measure the nonlinear parameter have been discussed. The

thermodynamic methods are more accurate than the finite amplitude one [Law et al.

(1983),Kashkooli et al. (1987)] but cannot be easily used for in vivo exams. The various

finite amplitude methods are very interesting. The possible strategies of measuring the

fundamental decrease, the second harmonic increase, the comparison between two trans-

missions, the nonlinear interaction of composite waves or the pump wave transmission are

very promising for B/A imaging. In the Table 5.1, the nonlinear parameter of different

biological media (healthy or not) are presented. A more extended version can be found in

Appendix D.
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Medium Temperature B/A Reference

6.88 [Law et al. (1983)]
Beef liver 25◦C 7.0 [Law et al. (1985)]

25◦C 6.8 [Law et al. (1985)]
25◦C 10.9 [Law et al. (1985)]

Pig fat 25◦C 11.3 [Law et al. (1985)]
25◦C 10.8 [Gong et al. (1989)]

Cat liver 6.7 ± 0.2 [Zhang and Dunn (1987)]
26◦C 7.1 [Gong et al. (1989)]

Porcine liver 27◦C 6.9 [Zhang et al. (2002)]
6.9 [Gong et al. (2004)]

22◦C 9.206
Breast fat 30◦C 9.909 [Sehgal et al. (1984)]

37◦C 9.633
22◦C 5.603

Multiple
myeloma

30◦C 5.796 [Sehgal et al. (1984)]

37◦C 6.178
30◦C 6.54 [Sehgal et al. (1985)]

Human liver Normal 30◦C 7.6 ± 0.8 [Bjørnø (1986)]
Congested 30◦C 7.2 ± 0.7 [Bjørnø (1986)]

Table 5.1: B/A nonlinear parameters of media as reported in the literature.

In the set of presented methods, just a few of them take into account the possible

variation of the nonlinear parameter in tissue. The possibility to discriminate the different

tissues is a major importance in B/A imaging. The extensions to inhomogeneous nonlinear

parameter are presented in the next chapter.
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Chapter 6

Nonlinear parameter measurement

techniques: extensions in echo mode

configuration and simulations

6.1 Introduction

In the previous chapter, the review of the existing techniques that measure the nonlin-

ear parameter of media, has been conducted. They are based on thermodynamic or finite

amplitude approaches. Among all the methods described in the literature, only the one

directly designed for the echo mode and usable in clinical applications or extended to this

situation are considered herein. That is why the thermodynamics methods, although they

are more accurate than the finite amplitude methods, are not effective for our purposes:

they require special equipments and an experimental setups that may not be usable in

clinical applications. Moreover, the finite amplitude methods are also preferred because

of their experimental simplicity and the possibility of simulating the ultrasound pressure

wave propagation with previously presented tools (chapter 2). From the set of finite dif-

ference simulators presented in previous chapter, the methods using pumping waves or

the UCT are not considered here. Indeed, although they present good agreement with

theoretical values, they are not suitable in the context of standard ultrasound medical

exams.

The objective of this chapter is to propose a method to image the variation of the

nonlinear parameter in the medium and usable in ultrasound medical exam. Extensions of
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potential methods of B/A measurement are proposed and evaluated in simulation. This

work has been presented in conferences [Varray et al. (2009), Varray et al. (2010)b] and

published in a journal paper [Varray et al. (2011)a].

6.2 Extensions of the technique for an inhomogeneous non-

linear parameter

6.2.1 Introduction

The finite amplitude methods are mainly based on the increase of the second-harmonic

wave in the medium during the propagation. This evolution of the spectrum has been

presented for a plane wave by [Zhang and Gong (1999)]. The related formulation allows

to take into account an inhomogeneous nonlinear and attenuating behavior of the medium

in the propagation direction:

p2(z) =
ωp2

0

2ρ0c3
0

∫ z

0
β(u)e

∫ u

0
−2α1(v)dv−

∫ z

u
α2(v)dvdu (6.1)

This formulation can also be rearranged:

p2(z) =
ωp2

0

2ρ0c3
0

e−

∫ z

0
α2(v)dv

∫ z

0
β(u)e

∫ u

0
(α2(v)−2α1(v))dvdu (6.2)

6.2.2 Extended direct method (EDM)

The extension of the direct method (EDM) is based on the evolution of the second-

harmonic wave in an inhomogeneous nonlinear medium. Rearranging equation (6.2), the

nonlinear parameter can be expressed as:

∫ z

0
β(u)e

∫ u

0
(α2(v)−2α1(v))dvdu =

2ρ0c3
0

ωp2
0

p2(z)e
∫ z

0
α2(v)dv (6.3)

By taking the derivative of the previous equation, the nonlinear parameter can be

extracted in function of the other medium parameter:

β(z)e
∫ z

0
(α2(v)−2α1(v))dv =

2ρ0c3
0

ωp2
0

e
∫ z

0
α2(v)dv

[

dp2(z)
dz

+ α2(z)p2(z)
]

(6.4)

β(z) =
2ρ0c3

0

ωp2
0

[

dp2(z)
dz

+ α2(z)p2(z)
]

e
∫ z

0
2α1(v)dv (6.5)

The final formulation (6.5) takes into account the possible variation of the nonlin-

ear parameter during the propagation but also of the attenuation in the medium. This

evaluation is based on the derivative of the second-harmonic pressure.
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6.2.3 Extended comparative method (ECM)

A possible extension of the comparative method (ECM) is based on the expression

of the second-harmonic pressure. Using the equation (6.1), the second-harmonic pres-

sure for the reference medium, considered with an homogeneous nonlinear parameter and

attenuation, is expressed as:

p20(z) =
β0ωp2

0

2ρ0c3
0

I0(z) (6.6)

with

I0(z) =
e−2α10z − e−α20z

α20 − 2α10
(6.7)

In these equations, the subscript 0 is also used for the attenuation. Indeed, the reference

medium and the unknown one can have different attenuation values. Then the ratio be-

tween the second-harmonics of the reference medium and the unknown medium can be

computed with arbitrary sound velocity, density, inhomogeneous attenuation and inhomo-

geneous nonlinear coefficient:

p2i(z)
p20(z)

=

(

ρc3
)

0

(ρc3)i

e−

∫ z

0
α2i(v)dv ∫ z

0 βi(u)e
∫ u

0
(α2i(v)−2α1i(v))dvdu

β0I0(z)
(6.8)

After isolating the integrative part of the nonlinear coefficient of medium i, the deriva-

tive is computed to obtain the formulation of the nonlinear coefficient with the comparative

method. The extended formulation is:

∫ z

0
βi(u)e

∫ u

0
(α2i(v)−2α1i(v))dvdu = β0

(

ρc3
)

i

(ρc3)0

p2i(z)
p20(z)

I0(z)e
∫ z

0
α2i(v)dv (6.9)

βi(z)e
∫ z

0
(α2i(v)−2α1i(v))dv = β0

(

ρc3
)

i

(ρc3)0

d

dz

(

p2i(z)
p20(z)

I0(z)e
∫ z

0
α2i(v)dv

)

(6.10)

βi(z) = β0
(ρc3)i

(ρc3)0

[

V (z)
p2i

p20
+ W (z)

d

dz

(

p2i

p20

)]

(6.11)

Two terms, V and W , are introduced because of the different attenuations of the two

distinct media after the derivation process:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

V (z) =
e−2α10z(α2i(z) − 2α10) − e−α20z(α2i(z) − α20)

α20 − 2α10
e
∫ z

0
2α1i(v)dv

W (z) = I0(z)e
∫ z

0
2α1i(v)dv

(6.12)

The final formulation (6.11) of the ECM is valid in media with different densities,

celerities and attenuations. If the attenuations are considered equal in the two media and

homogenous during the propagation (classical experimental approximation), V and W are
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now expressed as (the subscript 0 and i have been removed):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

V (z) = 1

W (z) =
1 − e−(α2−2α1)z

α2 − 2α1

(6.13)

and the nonlinear parameter results in:

βi(z) = β0
(ρc3)i

(ρc3)0

[

p2i

p20
+

1 − e−(α2−2α1)z

α2 − 2α1

d

dz

(

p2i

p20

)

]

(6.14)

6.2.4 Extended SURF method (ESURF)

An extension of the SURF method (ESURF), taking into account the variation of the

nonlinear coefficient, is proposed here. Initially, the formulation for the spectral ratio

from [Fukukita et al. (1996)] was:

Sx(z) =
2ωl

B2
0

× fx(z) × τ (6.15)

with τ the propagation delay time between pump waves with and without distortion. For

an inhomogeneous nonlinear coefficient, this delay τ is expressed as:

τ =
p0

ρ0c3
0

∫ z

0
β(u)du (6.16)

With equation (6.15) and equation (6.16), the formula of the ESURF can be expressed

after derivation by:
∫ z

0
β(u)du =

ρ0c3
0B2

0

2ωlp0
× Sx(z)

fx(z)
(6.17)

β(z) =
ρ0c3

0B2
0

2ωlp0
× d

dz

(

Sx(z)
fx(z)

)

(6.18)

From the equation (6.17), if a constant nonlinear parameter is considered, the inte-

gration in the left term can be conducted and the same formula as in equation (5.43) is

obtained.

6.3 Evaluation of the proposed extensions with fields simu-

lations

6.3.1 Simulation of a simple medium

Chosen simulator

The finite difference simulator of Voormolen has been chosen because of its high-

order nonlinear interaction requested for the SURF and ESURF methods. The pressure
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evolution transmitted by a linear array is recorded at the different depths. The second-

harmonic p2(z) is then calculated and used in the different extensions. This simulator has

also the possibility to consider the diffraction effects of the probe using the Burgers (no

diffraction) or the KZK (with diffraction) equation.

Probe and medium characteristics

First, a simple medium with different layers of different nonlinear parameter has been

used in simulations to evaluate the different proposed extensions. It is 150 mm long and

its physical parameter are described in Table 3.2 (pp. 38). It is composed of three slices of

homogeneous media with a linear variation of the B/A parameter at the interface between

two media. The first and the third slices have a B/A value of 5, the intermediate slice

has a B/A value of 12. The profile of the B/A parameter along the simulated medium is

given by the dashed line in Fig. 6.1. The probe parameters used in simulation correspond

to the LA533 probe (Appendix A.2). A five-cycle sine at 1 MHz with a gaussian windows

and focalized at 70 mm has been used in transmission. No apodization has been used on

the active elements.

Simulations results

The resulting evaluations of the nonlinear parameter for the three extended method

are summarized in Fig. 6.1, without (left panel) and with (right panel) the consideration of

the probe diffraction. For each simulation, the results obtained with the classic solutions

(equations (5.14), (5.29) and (5.43)) and the proposed extensions (equation (6.5), (6.14)

and (6.18)) are compared. For the three extensions proposed, the results are accurate when

the diffraction is neglected. When considering the diffraction, the EDM (Fig. 6.1.b) and

the ESURF (Fig. 6.1.f) methods fail while the ECM works nicely in the two first media.

This method is able to accurately detect the first significant variation of the nonlinear

parameter but not the second one.

Discussion

The different extensions proposed here are valid for plane waves and do not take into

account the diffraction of the probe. A specific theoretical background is needed to under-

stand the diffraction effects in nonlinear propagation. Some authors, such as [Law et al.

(1985)] and [Gong et al. (1989)], have proposed formulations to correct this outcome for

circular transducers. However, with standard linear array probes, the diffraction pattern

is very different because of the numerous elementary transducers of finite size and rect-

angular geometry. For the extensions proposed here, the formulation does not take into

account the diffraction of a linear probe. However, with our objective of implementing this

technique for clinical use, these corrections are not usable for a linear array. [Fujii et al.

(2004)] and [Fukukita et al. (1996)] proposed limiting the diffraction effect of the probe

by doing the ratio between the second-harmonic obtained in two similar experiments. The

François Varray 93



CHAPTER 6. NONLINEAR PARAMETER MEASUREMENT IN ECHO MODE CONFIGURATION

0 50 100 150

4

6

8

10

12

14

z axis [mm]

B
/A

 v
a
lu

e

 

 

Set B/A

DM

EDM

(a)

0 50 100 150

−10

0

10

20

30

40

z axis [mm]
B

/A
 v

a
lu

e

 

 

Set B/A

DM

EDM

(b)

0 50 100 150

4

6

8

10

12

14

z axis [mm]

B
/A

 v
a
lu

e

 

 

Set B/A

CM

ECM

(c)

0 50 100 150

4

6

8

10

12

14

z axis [mm]

B
/A

 v
a
lu

e

 

 

Set B/A

CM

ECM

(d)

0 50 100 150

4

6

8

10

12

14

z axis [mm]

B
/A

 v
a

lu
e

 

 

Set B/A

SURF

ESURF

(e)

0 50 100 150

4

6

8

10

12

14

z axis [mm]

B
/A

 v
a

lu
e

 

 

Set B/A

SURF

ESURF

(f)

Figure 6.1: Resulting B/A parameters for the different methods. Set B/A is the reference
B/A value. The diffraction is neglected in the left column (a, c and e) but not in the
right column (b, d and f). All extended approaches provide accurate results when the
diffraction of the probe is neglected. When the diffraction is considered, the nonlinear
parameter estimation fails, except for the ECM, which gives encouraging results.
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6.3. EVALUATION OF THE PROPOSED EXTENSIONS WITH FIELDS SIMULATIONS

results, obtained with the ECM, consolidate this hypothesis and encourage to use the for-

mulation proposed in equation (6.14) with or without the consideration of the diffraction

effect.

6.3.2 Simulation of a complex medium

The ECM is the method that presents the best results in the previous section. Be-

cause of the facility to implement this technique and the relevance of the first results, we

focussed our work on this method. In order to continue to evaluate its performance, an

inhomogeneous nonlinear medium has to be simulated.

Chosen simulator

To estimate the ECM on a more complex medium in term of nonlinear parameter has

to be used. Indeed, the nonlinear map of the medium can be completely inhomogeneous

and not only composed of layers. In order to test the method, 163 GASM simulations

were made. Each simulations is based on the 64 active elements of the LA533 probe (A.2).

This 64 active elements of the sub-probe are then moved to compute the entire image. For

each simulation, the corresponding nonlinear coefficient map in front of the active elements

has to be used. This is illustrated in Fig. 6.2 with the display, in front of the nonlinear

map, of the sub-probe that transmitted the ultrasound wave. Then, the central line of the

produced second-harmonic field is saved in the second-harmonic field image. When the

different simulations are done, the second-harmonic field image of the studied medium is

obtained.

Probe and medium characteristics

Two different complex nonlinear media have been simulated. The first one consists

of an elliptic inclusion of nonlinear parameter 10 in a surrounding medium of nonlinear

parameter 5. The second input medium is composed of a background with a B/A value of

5 and an egg-shape inclusion with a B/A value of 9. Inside this egg-shape, two regions with

different nonlinear parameter (3 and 7) were disposed. The two images of the nonlinear

parameter have been displayed in Fig. 6.2. A four-cycle sine at 3 MHz with a gaussian

window focalized at 70 mm has been transmitted in the media. No apodization has been

used on the active elements in order to maximize the energy transmitted in the medium.

The physical parameters of the medium are the same as in the previous KZK simulations

(Table 3.2, p. 38).

Simulation results

The simulation results are displayed in Fig. 6.3 for the first case and in Fig. 6.4 for

the second one. In Fig. 6.3.a and Fig. 6.4.a, the two vertical lines delimitate the region

of the medium that is used as the reference in the ECM. In this region, the nonlinear
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Figure 6.2: Illustration of the two different nonlinear parameter maps used in simulation.
1, 2, ..., N illustrate the different sub-probe position in order to compute the corresponding
nonlinear medium used in GASM simulations.

parameter is constant and the corresponding second-harmonic is used as the p20(z) in

the equation (6.5). With this knowledge, the ratio images (p2i/p20) are computed and

presented in Fig. 6.3.b and Fig. 6.4.b. The different structures of the nonlinear parameter

map (Fig. 6.3.c and Fig. 6.4.c) can be observed in the resulting images. The mean value

and the standard deviation of each initial area have been computed and are summarized

in Table 6.1.

Discussion

The resulting B/A images are in good accordance with the theoretical value. However,

as for the initial simulation using the Voormolen simulator, the ECM has difficulties to

follow multiple variations in the nonlinear parameter and its estimation is degraded when

the investigated depth increases. This effect can be similarly related to the shadow cone

effect although, with shadow cone, no more signal is acquired after a high backscattering

region. Here, the signal is still present after the higher part of the nonlinear parameter, but

the method fails to compute its correct value. However, the ECM provided very promising

results for B/A imaging. In simulation, the attenuation, the celerity and the density have

been considered constant. This approximation, although is does not correspond to a

clinical exam, is necessary to estimate the B/A parameter in simulated images.
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Medium Set B/A
Mean value of

estimated B/A

Standard deviation

of estimated B/A

Medium 1 5 5.34 0.76

(Fig. 6.2.a) 10 8.71 0.83

3 3.41 1.16

Medium 2 5 5.59 1.13

(Fig. 6.2.b) 7 6.54 0.29

9 8.63 1.20

Table 6.1: Evaluation of the estimated nonlinear parameter on GASM simulations.

6.4 Evaluation of the ECM on simulated RF images

6.4.1 Proposed method

The obtained estimation from the second-harmonic field images shows a good agree-

ment between the theoretical and the measured nonlinear parameter of the medium. How-

ever, during clinical exams, the acoustic field is not available and must be computed from

the RF images. This possibility is studied in this section.

Chosen simulator

The CREANUIS software, presented in chapter 4, gives the possibility to simulate the

nonlinear RF image of an inhomogeneous nonlinear medium. The two previously described

nonlinear media are used and the corresponding nonlinear RF images are simulated using

CREANUIS. The estimation of the nonlinear parameter is then conducted on resulting

nonlinear RF images.

Probe and medium characteristics

The probe and medium characteristics are the same as in the previous GASM simula-

tions. For the RF image reconstruction, no apodization has been used in reception. The

number of scatterers used in simulation has been chosen in order to have a fully developed

speckle in the fundamental but also in the second-harmonic images. This has been verified

with the distribution of the B-mode images and the corresponding Rayleigh distributions.

Methods

The ECM cannot be directly applied on the B-mode image. The ultrasound image

is composed of the speckle created by the scatterers inside the medium. This noise has

a disastrous effect on the derivative term of the ECM if the method is directly applied.
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Figure 6.3: Resulting images obtained with the ECM method on the simulated media 1
(Fig. 6.2.a). (a) is the second-harmonic field image produced by GASM with the region
between the two vertical lines considered as the reference medium p20, (b) is the ratio
image between p2i and p20 and (c) is the final B/A images obtained with the ECM. The
solid line in (c) outlines the inclusion searched.
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Figure 6.4: Resulting images obtained with the ECM method on the simulated media 2
(Fig. 6.2.b). (a) is the second-harmonic field image produced by GASM with the region
between the two vertical lines considered as the reference medium p20, (b) is the ratio
image between p2i and p20 and (c) is the final B/A images obtained with the ECM. In (a)
the region between the two vertical lines is considered as the reference medium. The solid
line in (c) outlines the different regions.
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However, if from the B-mode image, it is possible to obtain an image similar to the second-

harmonic field image, the ECM could be applied and the resulting estimation could be

very promising in B/A imaging. The hypothesis made here is to consider that, with a

fully developed speckle, the B-mode image is related to its pressure field if the effects of

the scatterers are successfully suppressed. In this way, the scatterers’ density, even if the

medium is inhomogeneous, always produces a fully developed speckle.

Different strategies have been tested to extract, from the RF image, the more similar in-

formation corresponding to the second-harmonic pressure image. Indeed, the beamforming

in reception creates a speckle that is not identical in the fundamental and second-harmonic

field images and which can be seen as high frequency noise. To extract the evolution of

the pressure along the propagation axis, different methods have been tested as:

• Low-pass filtering: low-pass filtering suppresses the speckle, which is a high-

frequency information.

• Frequency compounding: by coupling different second-harmonic images, related

to the same nonlinear medium, the signal-to-noise (SNR) is increased and the speckle

impact is decreased.

• Short mean filtering: this filter decreases the impact of the speckle and smooths

the speckle noise.

• Alternating sequential filter: this filter extracts the background of the image,

related to the pressure field.

The first three approaches have been eliminated because they too much depend of

the simulation parameters and the results are not stable for the different tested images.

The chosen solution is based on an alternating sequential filter (ASF). This ASF has

been introduced by [Sternberg (1986)] and [Serra (1988)]. This type of filters allows to

progressively decrease the noise of an image and to estimate the initial signal [Couprie

and Bertrand (2004)]. From the initial image I, a succession of opening γi and closing

ϕi are conducted [Serra (1982)] with an increasing structuring element of dimension i.

The resulting fundamental If
1b and second-harmonic If

2b filtered images after an ASF of

dimension n can be mathematically defined as:

If
1/2b = γn ◦ ϕn ◦ ... ◦ γ2 ◦ ϕ2 ◦ γ1 ◦ ϕ1(I1/2b) (6.19)

where I1b (I2b) is the fundamental (second-harmonic) image. In fact, the ASF can be seen

as a multiscale approach where each opening and closing work at a resolution i. With

the increase of i, the resolution is progressively decrease but the previous operations are

still taken into account. The ASF are suited to extract background information. For

examples, [Decencière and Jeulin (2001)] used the ASF to suppress the high frequency

noise created on engine cylinder and [Mura et al. (2010)] used it to simplify an image.
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However, depending on the scatterer’s distribution, the filtered image can contain some

high or low intensity area. In the design of CREANUIS, the fundamental image did not

depend on the nonlinear parameter map used in input. The resulting variation in the

filtered fundamental image are related to the scatterer’s distribution. These variations,

also present in the second-harmonic image, are suppressed by doing a normalization of the

second-harmonic image by the fundamental one. The normalization is made pixel by pixel.

To ensure the reduction of entire high frequency information, a low pass filtering (lpf) is

applied on the normalized image before to obtain the final filtered second-harmonic image

If
2 . This image did no more depend of the scatterer’s distribution and can be expressed

as:

If
2 = lpf(

If
2b

If
1b

) (6.20)

This final second-harmonic image is used to compute the ratio image and then the

nonlinear parameter image. In this image, the possible high frequency variations have

been removed in order to be able to compute a reasonable derivative term in the ECM.

The resolution of the method, because of the smoothing operated by the different filters,

has been decreased. The results obtained with such methodology are presented hereafter.

6.4.2 Evaluation of the ECM on homogeneous scattering medium

Medium characteristics

First, the method is estimated on a medium defined with an homogeneous distribution

of scatterers. 600 000 scatterers are randomly defined in space (13 scatterers/mm3) and

amplitude. The resulting B-mode images for the fundamental and second-harmonic of the

two previously presented nonlinear media are displayed in Fig. 6.5.

Results

The proposed method is used on the previously displayed B-mode images. For the

nonlinear medium 1, the resulting images are presented in Fig. 6.6 and in Fig. 6.7 for the

nonlinear medium 2.

The resulting images presented improvements and drawbacks compare to initial RF

images. Indeed, even if the initial B/A image is not accurately obtained, the resulting

images highlight areas that were completely hide in the classical B-mode images for the

fundamental and the second-harmonic image (Fig. 6.5). With homogeneous media, the

ratio between the two filtered images is not very useful because the second-harmonic

directly contains the variation due to the nonlinear parameter but did not change the

estimated B/A parameter. A statistical estimation of the nonlinear values measure on the

different regions is proposed in the Table 6.2.
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Figure 6.5: Resulting fundamental (a, c) and second-harmonic (b, d) B-mode images ob-
tained on two different nonlinear media using CREANUIS and an homogeneous scatterer’s
distribution. The images (a) and (b) are obtained with nonlinear medium 1 (Fig. 6.2.a)
and the images (c) and (d) are obtained with nonlinear medium 2 (Fig. 6.2.b).
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Figure 6.6: Resulting intermediate and final images obtained with the ECM. (a) is the
filtered fundamental image, (b) is the second-harmonic filtered image, (c) is the final
second-harmonic image (where the scatterer’s effects are suppressed) and (d) is the re-
sulting B/A image. In (c) the region between the two vertical lines is considered as the
reference medium. The solid line in (d) outlines the inclusion.
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Figure 6.7: Resulting intermediate and final images obtained with the ECM. (a) is the
filtered fundamental image, (b) is the second-harmonic filtered image, (c) is the final
second-harmonic image (where the scatterer’s effects are suppressed) and (d) is the re-
sulting B/A image. In (c) the region between the two vertical lines is considered as the
reference medium. The solid line in (d) outlines the different regions.
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Medium Set B/A
Mean value of

estimated B/A

Standard deviation

of estimated B/A

Medium 1 5 5.48 1.36

(Fig. 6.2.a) 10 7.96 2.01

3 5.20 1.77

Medium 2 5 5.94 1.84

(Fig. 6.2.b) 7 4.44 1.21

9 7.33 1.74

Table 6.2: Evaluation of the estimated nonlinear parameter with CREANUIS simulation
and homogeneous scattering medium.

6.4.3 Evaluation of the ECM on inhomogeneous scattering medium

Medium characteristics

Now, an inhomogeneous scatterer’s distribution is used. Indeed, in addition to the

randomly distribute 600 000 scatterers, 300 000 reflectors have been added in the negative

x axis to increase the response of this part of the tissue. The amplitude of each scatterer

is still randomly chosen. Now, 900 000 scatterers are used in the CREANUIS simula-

tion. It corresponds to a density of 26 scatterers/mm3 in the negative x-axis and a 13

scatterers/mm3 for the rest of the space. The resulting B-mode images for the fundamental

and second-harmonic image of the two previously presented nonlinear media are displayed

in Fig. 6.8. Now, in the left part of the fundamental and second-harmonic images, the

signal backscattered by the tissue is higher due to the increase of the scatterer’s density.

However, the nonlinear parameter has not change.

Results

Before, the estimation of the nonlinear parameter is conducted on previously presented

images. For the nonlinear medium 1, the resulting images are presented in Fig. 6.9 and in

Fig. 6.10 for the nonlinear medium 2.

Contrary to the homogeneous case, the ratio between the second-harmonic and the

fundamental images is crucial to suppress the scatterer’s effect in the final second-harmonic

image and the resulting B/A images are not very different from the one obtained in the

homogeneous case. The proposed method appears to be effective to estimate the nonlinear

parameter on arbitrary medium with the use of the fundamental and the second-harmonic

images. A statistical estimation of the nonlinear values measure on the different regions

is proposed in the Table 6.3.
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Figure 6.8: Resulting fundamental (a, c) and second-harmonic (b, d) B-mode images
obtained on two different nonlinear media using CREANUIS and an inhomogeneous scat-
terer’s distribution. The images (a) and (b) are obtained with nonlinear medium 1
(Fig. 6.2.a) and the images (c) and (d) are obtained with nonlinear medium 2 (Fig. 6.2.b).
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Figure 6.9: Resulting intermediate and final images obtained with the ECM. (a) is the
filtered fundamental image, (b) is the second-harmonic filtered image, (c) is the final
second-harmonic image (where the scatterer’s effects are suppressed) and (d) is the re-
sulting B/A image. In (c) the region between the two vertical lines is considered as the
reference medium. The solid line in (d) outlines the inclusion.
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Figure 6.10: Resulting intermediate and final images obtained with the ECM. (a) is the
filtered fundamental image, (b) is the second-harmonic filtered image, (c) is the final
second-harmonic image (where the scatterer’s effects are suppressed) and (d) is the re-
sulting B/A image. In (c) the region between the two vertical lines is considered as the
reference medium. The solid line in (d) outlines the different regions.
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Medium Set B/A
Mean value of

estimated B/A

Standard deviation

of estimated B/A

Medium 1 5 4.68 0.99

(Fig. 6.2.a) 10 6.48 1.44

3 5.27 1.49

Medium 2 5 5.74 1.87

(Fig. 6.2.b) 7 3.24 1.01

9 6.69 1.47

Table 6.3: Evaluation of the estimated nonlinear parameter with CREANUIS simulation
and inhomogeneous scattering medium.

6.5 Discussion and conclusion

In conclusion, the different proposed extensions work nicely if the diffraction effect of

the probe is neglected. With clinical imaging probes, this effect is no more negligeable and

only the ECM is able to detect the different nonlinear media. However, the method is not

able to follow multiple changes in the nonlinear parameter. Using the GASM simulator,

the second-harmonic field images of two complex nonlinear media have been simulated.

The ECM is able to detect the different nonlinear regions. However, an effect similar to

the shadow cone in ultrasound images has been observed.

With CREANUIS, it is now possible to simulate the RF images of an inhomogeneous

nonlinear parameter medium. This tool allows to test the ECM on realistic ultrasound

images. To take into account the density and the echogenicity of tissues, a ASF is used

before the calculus of the ratio image. With such a methodology, the B/A estimation did

no more depend on the simulated medium and the obtained map shows similarity with

the initial nonlinear parameter set in simulation. Even if the accuracy of the method is

relatively weak, this new imaging technique allows to highlight some nonlinear behavior

not visible on the initial second-harmonic image.

The drawback of the ASF is classical in morphological operations. With the used of

the ASF, the structuring element is presented in the fundamental and second-harmonic

filtering image. On the initial ratio image, it creates a new high frequency noise due to

the border of the structuring element. However, this effect is suppressed by the low-pass

filter and the obtained ratio images show similarity with the ratio image obtained with

the GASM simulations.

Finally, the ECM proposes new type of images and needs to be tested on experimental

images in order to validate or not its results. This is conducted in the next chapter.
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Chapter 7

Nonlinear parameter imaging in

experimental data

This chapter is devoted to the estimation of the nonlinear parameter in biological

tissues. Indeed, in the previous chapter, the comparative method has been extended and

a complete algorithm has been developed to image the nonlinear parameter. It has been

evaluated in simulations and its estimation on experimental phantoms and on ex-vivo

media are described hereafter. This work has been partly presented in [Varray et al.

(2011)a].

7.1 Introduction

The ECM is able to image the different nonlinear behavior of a given medium. However,

some shadow effects are present in the B/A estimation in the simulated images and this

effect degrades the measure and the resulting images obtained in chapter 6 cannot be

directly compared to the reference images. However, they exhibit some strong similarities

with the reference B/A images. The method appears to be very attractive to produce an

original image which is completely different from the initial second-harmonic image and

carry a completely new information.

The objective of this chapter is to test the B/A imaging thanks to the ECM on exper-

imental images. However, no calibrated phantoms exist to have a reference for the B/A

imaging. The lack of reference makes difficult the estimation of the accuracy and the results

of the ECM. However, in medium including contrast agent, the nonlinear parameter has

a strong value compared to surrounding medium [Wu and Tong (1998)]. The ECM may
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easily detect this region. In this chapter, two types of measurements are conducted. First,

the nonlinear parameter of some tissue-mimicking phantom are done. An elastography

and agar phantoms are used. Second, the nonlinear parameter imaging is conducted on

ex-vivo pork’s liver when a high intensity focalized ultrasound (HIFU) therapy technique

is applied. These different experimental set-ups and measures are described hereafter.

7.2 Phantoms measurements

7.2.1 Materials and methods

Elastography phantom

A commercial phantom (CIRS, Breast Elastography Model 059) has been used. It is

composed of several inclusions in a surrounding medium. The acoustic characteristics of

these two media are the same (density, celerity and attenuation). Only the Young modulus

of each medium is different. The nonlinear coefficient of the two media are not provided

by the manufacturer as the echogeneicity. A schematic view of the phantom is proposed

in Fig 7.1.a.

Agar phantom

A second phantom has been built. A block of agar gel was made with an empty

cylindrical cavity (7 mm of diameter) inside. The initial concentration of agar powder was

5%. Then, Levovist® contrast agent was injected into this cavity. The initial dilution of

the contrast agent was 250 mg/ml. Then, 1 ml of the solution was injected in 250 ml of

water. A schematic view of the phantom is proposed in Fig 7.1.b.

Acquisition

Experimental RF echo-signals have been acquired with the ULA-OP scanner (Ap-

pendix A.1). A total of 192 lines were obtained. The transmitted signal was a 3-cycle sine

at 5 MHz focalized at 30 mm. No apodization have been used in transmission. Then, the

ECM, as described in chapter 6, has been applied on the resulting RF lines.

7.2.2 Results

The resulting images obtained on the experimental RF echo-signals are proposed in

Fig 7.2 for the elastography phantom and in Fig 7.3 for the contrast agent one. Because

the nonlinear parameter of each media is unknown, no quantitative results can be given

and only qualitative results can be developed. However, the contrast agent must have a

high nonlinear parameter compared to the agar phantom [Wu and Tong (1998)]. With the

ECM, the inclusion and the cavity of the two different media are highlighted. It can also

be observed that the near- and far-fields have been improved by removing the focalization

effect thanks to the ratio image. The colorbar proposed in the nonlinear parameter image
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Figure 7.1: Schematic view of the two used phantom: (a) is the elastography one and
(b) is the one with the contrast agent. The region between the two vertical lines (red) is
considered as the reference medium for the ECM and the dashed box (yellow) displays the
region of interest where the nonlinear coefficient is computed.
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(Fig 7.2.c and Fig 7.3.c) was set using the nonlinear parameter of water as reference

(B/A = 5).

7.2.3 Discussion

In both experimental cases, to create the nonlinear parameter image, the acoustic pa-

rameters of the medium (density, speed of sound and attenuation) were considered identical

in the two media (the reference medium and the unknown medium). For the elastography

phantom, this approximation is correct and no error is added in the nonlinear coefficient

image. For the contrast agent image, this assumption is not totally valid. Indeed, the

attenuation of the contrast agent is larger than the attenuation of the agar phantom, but

the propagation distance inside the contrast agent is very short. The interface between

the upper side of the cavity and the agar medium creates known artifacts: bubbles are

trapped near the interface and create strong backscattering. These regions should not be

considered because the nonlinearity usually did not come from the nonlinear propagation

but from the scattering effects. In terms of nonlinearity, the nonlinear parameter of agar

is B/A = 4.96 [Preobrazhensky et al. (2009)] and for Levovist®, [Wu and Tong (1998)]

estimated the nonlinear coefficient at B/A = 132 for a concentration of 1.2 mg/ml. In

our experiment, the concentration of Levovist® was 1 mg/ml. By interpolating these re-

sults, the nonlinear parameter B/A of our contrast agent is in the range [80, 120]. This

estimation is valid when the fundamental frequency is near the resonance frequency of

the contrast agent. However, our transmitted frequency was higher than the resonance

frequency, so the nonlinear coefficient of the contrast agent may be lower. The attenua-

tion of the contrast agent at fundamental and second-harmonic frequency is in the range

2.2 dB/cm to 8 dB/cm. The attenuation in contrast agent is no more linear with the

frequency. This effect provides another underestimation of the nonlinear parameter. Our

final estimation of the contrast agent, even if the numerical value did not correspond to

the reality, give a first idea of the difference between the phantom and the contrast agent.

7.3 Ex-vivo measurements

7.3.1 Materials and methods

A second type of experiments has been conducted on ex-vivo pork’s liver. The local

estimation of nonlinear propagation could be of interest associated to HIFU treatment,

because there is no method to accurately estimate the HIFU lesions.

The estimation of the nonlinear parameter is conducted on different degassed pork’s

liver. The experimental set-up contains the HIFU probe and the imaging probe of an

Ultrasonix Sonix RP scanner. The imaging probe is the L14-5W-60 which is a linear array

with a central frequency at 6.6 MHz. The experimental set-up is displayed in Fig. 7.4.

Because the liver size is limited, the image obtained with the Sonix RP is larger than the
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Figure 7.2: Resulting intermediate and final images obtained with the ECM. (a) is the
fundamental image, (b) is the second-harmonic image, and (c) is the resulting B/A image.
The solid line in (c) outlines the inclusion.
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Figure 7.3: Resulting intermediate and final images obtained with the ECM. (a) is the
fundamental image, (b) is the second-harmonic image, and (c) is the resulting B/A image.
The two lines in (c) delimitate the contrast agent.
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Figure 7.4: Experimental scheme coupling the HIFU probe and the imaging one. The
attenuating medium is placed to avoid the propagation of the HIFU in the water tank.

liver dimension. The region of interest, where liver is present, is chosen before to estimate

the nonlinear parameter.

The HIFU therapy sequence repeats 40 times a HIFU shoot of 1 second. Between

each HIFU shoot, a pause of 100 ms is made. During this interval, the imaging system is

able to make about 3 or 4 images in function of the beamforming. Because of the high

acoustic level transmitted by the HIFU probe, only one or two images acquired during

the pause are readable for processing. Indeed, no synchronization are made between the

Sonix RP and the HIFU probe, and the HIFU sequence can stop and/or begin during

the acquisition of an image. After the HIFU application, the liver is cut in the imaging

plane to compare the acquired images and the lesion obtained. The intensity of the HIFU

sequence is adapted in function of the desired lesion and its dimensions.

7.3.2 Results

The estimation of the nonlinear parameter has been computed at three different times:

• Before the HIFU application: this acquisition is considered as the reference compared

to the next one.

• During the HIFU application: this acquisition is made after 20 shoots of the HIFU

pulse. Practically, it is acquired 22 seconds after the first shoot. This image is used

to observe the evolution of the medium.

• After the HIFU application: this acquisition is made after the 40 shoots of HIFU

application, when the liver is cold down (around 1 minute after the last HIFU shoot).

This image relates the final aspect of the liver.
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From the three acquired images, the nonlinear coefficient is estimated on each of them.

Because no strong variation is clearly visible between them, the difference between the

nonlinear images made during or after the HIFU ablation with the one made before is

exploited. The resulting images obtained are presented in Fig. 7.5. In the HIFU lesion, a

change in the nonlinear parameter can be observed (Fig. 7.1.d). However, the contour of

the treated region is not clear.

7.3.3 Discussion

The ECM imaging brings new information on the acquired images. Indeed, the nonlin-

ear parameter images obtained before and after HIFU ablation show significant differences.

The ECM has a good potential for the characterization of HIFU treatments: initial results

demonstrate the feasibility of this application. This information, combined with other

methods such as elastography, could provide new parametric images that could help to

characterize the HIFU lesion. In addition, ECM imaging can be a useful complement to

conventional sonograms. Further investigation is required to determine the full potential

of the ECM for visualizing and guiding HIFU therapies in vivo as well.

7.4 Discussion and conclusion

After its validation in simulation, the ECM has been tested on experimental images.

First, two phantoms have been used. A commercial phantom has been first evaluated.

Then, an agar phantom containing contrast agents has been used. The evaluation of

the nonlinear parameter highlights the two media in the elastography phantom and the

contrast agents in the second phantom. Even if no quantitative value can currently be

computed with the method, the ECM emphasizes structures that are not visible in the

initial fundamental and second-harmonic images.

A second type of measurement has been conducted. In HIFU therapy, the quantifi-

cation of the lesion is very important to control the treatment given to the patient. The

ECM has been applied at different moment of the treatment and the obtained nonlinear

maps have been compared to the one made before the treatment. An evolution of the

nonlinear parameter has been highlighted in the lesion and the ECM appears to be a new

strategy that can provide new tissue characterization information.

The principal drawback of the ECM comes from its resolution. Indeed, with the

different filters used in the ECM (ASF and low-pass filter), it is difficult to estimate the

resolution of the ECM. The lack of reference phantoms also complicates the evaluation

of the method. Because of the derivative term in the ECM, it was necessary to limit the

possible variation of the ratio image. However, this limitation curbs the possibility to

detect little change in the nonlinear parameter. A compromise has to be found in order

to control the ratio image and the resolution of the method.

118 François Varray



7.4. DISCUSSION AND CONCLUSION

(a) (b)

(c) (d)

Figure 7.5: Evaluation of the nonlinear parameter in porcine liver. (a) is the histological
picture of the liver in the imaging plane, (b) is the B-mode image of the porcine liver,
(c) is the B/A image of the liver after HIFU ablation and (d) is the difference image of
the nonlinear parameter after and before HIFU ablation. The box in (a) is the region
of interest where the nonlinear parameter is computed. The box in (b-d) highlights the
region of the HIFU ablation.
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Conclusions and perspectives

Conclusions

In the different sections of this thesis, significant improvements of existing techniques

have been demonstrated. First, the GASM has been presented. This simulator, based on

an angular method and the quasi-linear approximation is faster than classical finite dif-

ference KZK simulation. The new mathematical background is valid for inhomogeneous

nonlinear parameter media. This consideration, not present in the literature, allows to

simulate completely arbitrary nonlinear media with inclusions such as contrast agent or

tumoral tissues. The estimation of the accuracy of the GASM has been conducted by

comparing the obtained field with the one simulated with FieldII, the Voormolen sim-

ulator and an experimental measurements. The difference between them is weak and

the GASM can be validly used in several applications. The angular spectrum strategy

naturally reduces the computation time by decreasing the number of derivative terms in

the propagation equation. However, the proposed mathematical background is particu-

larly suited to GPU programming and the GASM has been implemented on CPUs and

GPUs. The total computation time has been strongly reduced, especially using the GPU

programming. This simulator opens new opportunities to quickly simulate the nonlinear

propagation in arbitrary nonlinear media.

Second, the CREANUIS software has been presented. This software allows to simulate

the radio-frequency images that contain fundamental as well as second harmonic informa-

tion. To simulate these images, two strategies have to be coupled: the nonlinear ultrasound

field and the backscattering behavior of the medium. The nonlinear ultrasound field is es-

timated using the previously presented GASM simulator. Using GASM, the fundamental

but also the second harmonic component are computed. Then a similar approach as the

one proposed in FieldII [Jensen (1996)] has been used to create the final radio frequency

image. Each scatterer backscatters an echo whose amplitude depends on its position, the

attenuation, the pressure amplitude, etc. Thanks to the GASM background, arbitrary

nonlinear media can be simulated with CREANUIS. The resulting fundamental images

obtained with CREANUIS are close to the ones obtained with FieldII, the reference linear

radio-frequency images simulator. Moreover, this software opens new opportunities in non-

linear imaging simulation such as the amplitude modulation or pulse inversion [Eckersley
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et al. (2005)].

Then, the measure of the nonlinear parameter has been conducted. From the initial

set of existing methods of the literature, the ones suitable to the echo mode configuration

have been selected and extended to follow the possible inhomogeneity of the nonlinear

parameter. The proposed extensions have been validated in simulation with the Voormolen

simulator. Three methods can theoretically be used in echo mode configuration to measure

the nonlinear parameter. However, these methods are valid with plane waves and only the

extended comparative method (ECM) follows the variation of the nonlinear parameter and

works with the consideration of the probe’s diffraction. The ECM has then be evaluated

using the nonlinear pressure field obtained with the GASM simulations and the nonlinear

RF image obtained with the CREANUIS software. A modification has been added to

take into account the scattering effect of the medium. Then, the ECM has been tested on

experimental acquisitions. However, the lack of reference in term of nonlinear measurement

and especially in echo mode did not allow to completely validate our proposed ECM. The

first results of the B/A imaging on in-vitro liver tissue are interesting but more experiments

are required.

Perspectives

The work of this thesis opens the following opportunities:

GASM. This simulator is currently valid for only the fundamental and second har-

monic. Recent work proposed an extension and GPU implementation for the third har-

monic [Varray et al. (2011)d]. A more general mathematical background has to be con-

sidered including nonlinear propagation of a higher number of harmonics. The calculation

of a new component increases the total simulation time because its value is related to the

previous computed one.

CREANUIS software. This software is currently valid for linear arrays. However,

medical ultrasound is not only based on this type of probe. Extensions have to be proposed

to take into account phased arrays or 3D arrays, and other ultrasound imaging opportuni-

ties. Currently, only the field propagation with GASM is computed on the graphic card.

The radio frequency image reconstruction consists in repeating the same actions for each

scatterer. This type of algorithm is particularly suitable for GPU implementation and

a whole graphic version of CREANUIS could be implemented to continue decreasing the

total simulation time. The diffusion of the software is also made under a CeCILL-B licence

(Appendix C).

The B/A imaging. The proposed method leads to interesting results in simulations
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and first experimental images are attractive. However, the resolution of such images is

currently relatively poor and B/A cannot be used alone as a tissue characterization tool.

Coupled with other imaging methods, such as elastography, new parametric images can

be obtained and could help radiologists to establish a diagnosis. The proposed method is

not only limited to 2D images and the ECM can be envisaged in 3D images.

Implementation of GPU in ultrasound applications. In GASM, the imple-

mentation on CPU and GPU allows to strongly decrease the computation time and new

strategies of parameter optimization can be envisaged. In a more general way, the GPU

programming is very interesting for intensive calculus at a reasonable price. Recent works

have been published on the interest of the GPU for different ultrasound applications such

as imaging [Chang et al. (2009)], 3D or 4D (3D+t) rendering [Elnokrashy et al. (2009),Kiss

et al. (2010)] or intensive calculus such as block matching [Kiss et al. (2009)]. The use

of GPUs for fast ultrasound simulation is also promising and paves the way for the inves-

tigation of new applications. For example, the so far prohibitively long parameter sweep

that is needed for optimization purposes becomes possible. Pasovic et al. [Pasovic et al.

(2010)] have recently discussed the advantages of limiting the level of second harmonics

created during nonlinear propagation. In this technique, an optimal limitation can be

achieved through a specific probe excitation, provided the amount of second harmonic is

compensated for. A fast calculation of the second harmonic component, as it is possible

with the GPUs, reveals the possibility of adapting the second harmonic reduction during

clinical exams. Indeed, in these cases, the probe or the medium movements limit the re-

sulting reduction. If fast simulations are possible, the optimization of the second harmonic

reduction can be conducted concurrently with the exam in order to adapt the reduction in

real time. From the hardware point of view, GPU programming is not limited to specific

equipment, because each scanner owns its graphic card. All the methods or algorithms

would theoretically be exportable to the different equipments.

cMUT array. The use of the capacitive micromachined ultrasonic transducer (CMUT)

open new perspectives in nonlinear imaging [Mills and Smith (2003),Mills (2004)]. Indeed,

the transmitted bandwidth of such array are upper than 100% and theoretically infinite in

reception. With such technology, higher order harmonics can be received and the measure

of the B/A or C/A parameter can be more accurate [Liu et al. (2007)]. New harmonics

methods, as super harmonic imaging [Bouakaz et al. (2002)], would also be usable for

in-vivo applications.

François Varray 123



CHAPTER 7. NONLINEAR PARAMETER IMAGING IN EXPERIMENTAL DATA

124 François Varray



Appendix

125





Appendix A

Technical specification of different

hardware equipments

A.1 ULA-OP

The Ultrasound advanced Open Platform (ULA-OP) is a research scanner develop by
the group of Piero Tortoli et al. in Firenze [Tortoli et al. (2009)]. This scanner has the
possibility to transmit and to receive an ultrasound wave with a completely personalized
beamforming strategy. The RF or B-mode images can be recorded with the system. The
scanner is directly configured and drive on a laptop and its simplicity is very useful for the
different applications test in this PhD. An image of the system is presented in Fig. A.1.

A.2 Probe LA533

The LA533 probe has been design by Esaote (Genova, Italy). Its principal character-
istics are presented in Table A.2.a and its bandwidth in Fig. A.2.b.

A.3 GPU specification

The technical specification of two GPUs are proposed in the Table A.1.
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Figure A.1: ULA-OP system developed by the MSD laboratory. The dimension of the
system make it easily portable and moveable for different acquisitions.

Parameter Value
Pitch 245 μm
Kerf 30 μm

Height 6 mm
Elevation focus 23 mm

Active elements (maximum) 64
Total of elements (maximum) 192
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Figure A.2: Geometric parameter of the LA533 probe (a) and its bandwidth at -6dB (b).

Machine 1 Machine 2
Name Intel Core2 Duo T9400 Intel Xeon E5220

CPU Speed 2.53 GHz 2.27 GHz
Memory 3.48 GB 5.9 GB
Name Quadro NVS 160M GTX 285

Global memory 256 MB 1024 MB
GPU Number of multi-processors 1 30

Total of cores 8 240
CUDA capability 1.1 1.3

Table A.1: Specification of two different CPUs and GPUs of two computers. Machine 1 is
a laptop computer and Machine 2 is a desktop one.
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Appendix B

Variation of the constant in

second-harmonic evaluation

The equation to solve is a classical oscillator system with a constant. Equation (3.21)
is given by:

d2g(z)
dz2

+ K2g(z) = M(z) (B.1)

To solve equation (B.1), the variation of the constant technique is needed. First, the two
characteristic solutions of (B.1) are:

g1,2(z) = e±iKz (B.2)

To obtain the final solution of (B.1), the constant value of g1 and g2 must be computed.
To do this, the two functions λ1(z) and λ2(z) have to be calculated with:

λ′

1(z)g1(z) + λ′

2(z)g2(z) = 0 (B.3)

The system to be solved is:

⎧

⎨

⎩

λ1(z)g1(z) + λ2(z)g2(z) = g(z)

λ′
1(z)g1(z) + λ′

2(z)g2(z) = 0
(B.4)

By deriving the first equation of (B.4) twice using the expression of g1 and g2, the system
can be further developed:

⎧

⎨

⎩

λ′
1(z)g1(z) + λ′

2(z)g2(z) = 0

λ′
1(z)g′

1(z) + λ′
2(z)g′

2(z) = M(z)
(B.5)
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Substitution of (B.2) in (B.5) leads to:

⎧

⎨

⎩

λ′
1(z) = −λ′

2(z)e−2iKz

λ′
1(z)(iK)eiKz + λ′

2(z)(−iK)e−iKz = M(z)
(B.6)

Then λ′
1(z) and λ′

2(z) can be extracted:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ′

1(z) = − iM(z)
2K

e−iKz

λ′

2(z) =
iM(z)

2K
eiKz

(B.7)

The final solution of equation (B.1) is given by:

g(z) =
(

∫ z

z0

λ′

1(u)du

)

eiKz +
(

∫ z

z0

λ′

2(u)du

)

e−iKz (B.8)
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Appendix C

CREANUIS: software description

Download link: urlhttp://www.creatis.insa-lyon.fr/site/fr/CREANUIS

C.1 Introduction

C.1.1 General overview

CREANUIS is a tool that simulates nonlinear radio frequency (RF) ultrasound im-
ages. It is the combination of two specific tools. The former is a nonlinear ultrasound
propagation simulator, that allows to compute the increase of the fundamental and second-
harmonic wave [Varray et al. (2011)f]. Then, using this field information, a reconstruction
algorithm creates the corresponding nonlinear radio frequency (RF) image [Varray et al.
(2011)b]. The resulting RF image contains the fundamental evolution, but also the second
harmonic one. The design of the nonlinear propagation simulator, which is a generalization
of an angular spectrum method (GASM), allows to consider media with an inhomogeneous
nonlinear coefficient and the simulated field will impact the final RF image simulation. An
effort of the computation time has been done on the computation time of the nonlinear
field with a version of the software working on GPU (graphic processing unit) [Varray
et al. (2011)d].

C.1.2 Software description

CREANUIS has been design in C/C++ in order to quickly simulate the nonlinear
propagation and the RF images. An interface is proposed in Qt1, but can also be disabled.
In the GASM simulation, the Fourier transform are performed using the FFTW library2

[Frigo and Johnson (2005)], or the cuFFT library3, when the GPU programming is used.
Some accompanying files are proposed to load the simulated data with Matlab. The

1http://qt.nokia.com/products/
2http://www.fftw.org/
3http://developer.nvidia.com/cuda-downloads
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structures of the saved data are detailed hereafter and the image can also be loaded with
other programs as soon as an interpreter is designed.

C.2 Installation

C.2.1 Windows

On windows, two files are needed. First, the CREANUIS exe file has to be installed.
Then, the vcredist_x86, if not present on the system, has also to be installed. During the
installation of CREANUIS, the path of the installation has to be change (do not used
Program Files/ directory) because last windows operating system forbids to write
in this directory. The installation pastes in the output folder the different dll required
by CREANUIS, the CREANUIS application, the accompanying Matlab files, and creates
three directories (input/, nlrf_file/, pressure_field/).

C.2.2 Linux (Fedora) distribution

On Fedora distribution, the tar.gz file has just to be extracted. Then, the program can
directly be used. The same directories as in the Windows installation are created.

C.2.3 Created folder

Three directories are created by the install files and are required in the same root
direction. The input folder is used to save some user inputs. All the created nonlinear radio
frequency (nlrf) images are saved in the nlrf_file folder. The field, nonlinear coefficient
map and setting (if saved) are saved in the pressure_field folder.

C.3 Interface description

The CREANUIS interface is divided in three distinct thumbs coupled to some general
settings.

C.3.1 General settings

In the general setting (Fig. C.1) the user can defined the path of the working directory
of CREANUIS (G2). By default, this path is set to the directory where the CREANUIS
exe file is located, with the addition of the directory pressure_field/a_default. This path
can be change using the button G3. In the box G4, the name of the output file can be
chose. If the file exists in the nlrf_file directory, it replaces the previous nlrf file. The G5
button launches the simulation. The box G6 corresponds to the debug level wanted. If 0 is
chose, just some messages are displayed in the terminal. If 1 is selected, the debug messages
corresponding to the RF image reconstruction are displayed. With 2, the messages of the
GASM simulation are also displayed. In the G1 menu, the user can save or load settings
in the action menu. The help menu displayed a link to the CREANUIS web site and the
licence specification. The save/load actions save/load the data in the save_settings.txt
file. This file is created/read in the path directory G2.
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Figure C.1: Illustration of the general settings of the CREANUIS interface.

C.3.2 Probe, space and beamforming strategy

The first part of the interface (Fig. C.2) allows to specify the probe geometry (P), the
medium characteristic (M) and the beamforming configuration (B). All these parameters
are saved in the save_setting.txt file. In the beamforming, the user can save the pre-
beamformed data. If yes, for each RF line, all the elementary receive RF lines on each
active elements are saved. This must be done carefully because of the large size of the
resulting nonlinear RF data.

Currently, only linear arrays are simulated with CREANUIS. In a future version of
CREANUIS, more complex arrays are going to be taken into account. For the attenuation,
a frequency dependent law has been chosen because the second harmonic wave is faster
attenuated than the fundamental one [Szabo (1978)].

C.3.3 Scatterers and GASM configuration

In this second thumbs (Fig. C.3) the scatterers of the medium (S) and the nonlinear
map (NL) are configured.

In the scatterers part (S), the dimensions of the space where the scatterers are placed
are defined with the maximum lateral and elevation distance. In the z direction, the
minimal and maximal depth to reach is selected. These depths are the one used in the
final image creation. The density of reflectors, N, allows to quickly select the number of
scatterer per resolution cell. However, in some case, this number is directly the number of
scatterers in the medium. For example with the diagonal, vertical or PSF configuration,
exactly N scatterers are used in the medium. Moreover, with the grid case, a grid of N
x N is design to simulate the medium. The backscattering amplitude follows a normal
distribution. The scatterers can also be imported from a file.

Concerning the GASM configuration (NL), the discretisation in the x, y, and t axis are
used in the definition of the 3D matrix used in the GASM simulation. The discretization of
the z axis defines the different incremental step in the computation of the second harmonic
field. Then, the obtained field is interpolated using the interpolation dimension on the
z axis. In the right part, some pre-configured situations of nonlinear coefficient map are
proposed. The default map is a constant medium with ?=3.5. Then, by clicking on the
add button, the user modifies the map using a new ? value. The different checkable boxes

François Varray 133



APPENDIX C. CREANUIS: SOFTWARE DESCRIPTION

Figure C.2: Illustration of the probe, medium and beamforming setting in the CREANUIS
interface.

have different actions:

• Compute one way field: if yes, only do the GASM simulation (no impact of scatterers
and image creation). The field is saved with the same output name as the nlrf image,
but in the current path.

• Compute GASM: if yes, the GASM simulations are conducted. Otherwise, the saved
field in the current folder is loaded. This option is very useful to save computation
time when the field has already been simulated.

• Save all the field: if yes, the field compute are saved.

• Use GPU: if yes, the GASM simulations are conducted on the GPU if it is correctly
initialized.

Existing nonlinear coefficient map can be imported by the user. The dimension of
the imported image has no impact because interpolation is used in the field simulations.
However, it has to be considered, during the creation of the map, that the dimension of
the map is set by the probe and space parameter. Indeed, the nonlinear map will have
a dimension in the lateral dimension [-Nelement Pitch ; Nelement Pitch] and in the axial
dimension [0; z_max]. The number of points, that composes this image, has no impact
once loaded in CREANUIS.

C.4 Display interface

This last thumb (Fig. C.4) is the display interface. It allows to see the nonlinear
coefficient, the pressure field or the nonlinear RF (nlrf) file. The different buttons allow to
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Figure C.3: Illustration of the scatterers definition and the GASM configuration.

select some other file, and to quickly visualize the different results. D1 allows to display
the current nonlinear coefficient map, D2 to load an existing pressure field and D3 to load
an exiting nlrf image. For the last two, the fundamental/second-harmonic component is
displayed in the left/right part of the thumb.

C.5 Data structure

C.5.1 Nlrf files

The nlrf file is the output format of the nonlinear RF image that is computed by
CREANUIS. The file is binary file only write with float. A header of 18 float is present.
The header is composed (in this order) of: HEADER: Transmitted frequency, sampling
frequency, speed of sound, initial pressure, density, pitch, kerf, height, number of elements,
number of points on one RF line, third dimension of the RF image (different of 1 if the pre-
beamformed data are saved), number of active elements, transmitted focus (z direction),
elevation focus, minimal depth, maximal depth, number of transmitted cycle, transmitted
phase (in degree).

Then, the other elements correspond to the amplitude of the RF image. The dimension
of the radio frequency image is number of element by the number of point on one RF line
by the third dimension of the RF image (1 is the beamforming has been done).

C.5.2 Nonlinear coefficient files

The nonlinear coefficient file is a binary file that contains first, two entire N and M,
and then NxM float element. To create a nonlinear coefficient file, such configuration has
to be used in order to be understood by CREANUIS.
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Figure C.4: Illustration of the display thumbs and the possibility to visualize the nonlinear
coefficient, the pressure field and the nonlinear image.

C.5.3 Reflectors files

The reflector file is a binary file that contains first, an entire N and then the position
and the amplitude of each scatterer (in float). The rest of the file is successively composed
of the N x position, the N y position, the N z position and the N amplitude value. To
create a reflector file, such configuration has to be used in order to be understood by
CREANUIS.

C.6 Utilization of CREANUIS in command line

CREANUIS can be used in command line in order to suppress the graphic interface
and then, launch the simulation in a cluster for example. To do this, some arguments have
to be added after the CREANUIS launch.

Obligatory arguments

• –path path_name: the user must specify the path where the save_settings.txt file
is backup in order to access to the entire parameters need to configure CREANUIS.
If the setting file is not placed in path_name directory, an error is return by CRE-
ANUIS.

• –scatterers scatterers_file: the user must specify the file where the scatterers position
and amplitude is saved. Using CREANUIS in command line did not yet allow to
used the classical random, diagonal, grid,... distribution. This file can be generated
using the accompanying Matlab file.
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Read Write

read_nonlinear_coefficient_file.m write_nonlinear_coefficient_file.m
read_scatterers_file.m write_scatterers_file.m

read_image_rf.m write_image_rf.m
read_field.m write_apodization.m

Table C.1: List of the accompanying Matlab files.

Optional arguments

• –nonlinearity nonlinear_coefficient_file: if a specific nonlinear coefficient medium is
desired, it has to be generated previously. If the -nonlinearity tag is not present, a
nonlinear coefficient medium of ?=3.5 is used in the GASM simulations.

• –debug debug_number: if the output messages are desired in the terminal, a number
bigger than 0 has to be selected. The number are the same as the graphic use of
CREANUIS. It must not be forgot that the tag do_gasm in the save_setting.txt has
to be equal to 1 to do the GASM simulations.

C.7 Accompanying Matlab files

With CREANUIS, several accompanying files are proposed to be able to use the pro-
duced results in a Matlab interface. The files are divided in two categories and are sum-
marized in Table C.1:

• Files to read information saved by CREANUIS

• Files to write information that can be read by CREANUIS

The action of each file is detailed in the help header of the Matlab file. If specific
apodization, scatterers or nonlinear medium are required, it is recommended to use these
files.

C.8 Licence

The CREANUIS software has been placed under the CeCILL-B licence4. This licence
gives to the user the authorization to use CREANUIS and published work obtained with
this software. The only condition is to cite in each work where CREANUIS has been used
the following publications:

• F. Varray, A. Ramalli, C. Cachard, P. Tortoli, and O. Basset, "Fundamental and
second-harmonic ultrasound field computation of inhomogeneous nonlinear medium
with a generalized angular spectrum method", IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, In Press

• F. Varray, C. Cachard, P. Tortoli, and O. Basset, "Nonlinear Radio Frequency Image
Simulation for Harmonic Imaging - CREANUIS", IEEE International Ultrasonics
Symposium, San Diego, USA, pp. in-press, 2010

4http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
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Appendix D

Standard values of nonlinear parameter

This appendix summarized different values of nonlinear parameter that have been
found in the literature. They are sort in three distinct groups: the liquids, the solids and
the biological media. The method used are highlighted by:

• TM: thermodynamic method

• DM: direct method

• ISM: insertion substitution method

• SURF: second-order ultrasound field technique

• PW: pump wave method

D.1 Liquid media

Medium Temperature B/A Method Reference

Water 30◦C 5.14 TM [Davies et al. (2000)]
BSA (Bovine

Serum
Albumin)

30◦C 6.68 TM [Apfel (1986)]

Whole blood 30◦C 6.3 TM [Apfel (1986)]
Dextrose 30◦C 6.04 TM [Apfel (1986)]

Dextrose T150 30◦C 5.94 TM [Apfel (1986)]
Dextrose

T2000
30◦C 6.2 TM [Apfel (1986)]

Alcohol - 8 -10 TM

[Coppens et al.
(1965),Everbach and

Apfel (1995),Banchet and
Cheeke (2000),Saito et al.

(2006)]
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Glycerol (4%
water)

25◦C 8.58 ± 0.34 TM [Zhu et al. (1983)]

Glycerol 25◦C 9.4 DM [Law et al. (1985)]
25◦C 9.88 ± 0.40 TM [Zhu et al. (1983)]

Etylene
glycerol

26◦C 9.9 ± 0.40 ISM [Gong et al. (1989)]

20◦C 9.9 SURF [Fukukita et al. (1996)]

D.2 Solid media

Medium B/A Method Reference

Fused silica -16.8 PW [Jacob et al. (2003)]
Polystyrene 25.4 PW [Jacob et al. (2003)]

Duraluminum 25.6 PW [Jacob et al. (2003)]
Titanium 12.4 PW [Jacob et al. (2003)]

D.3 Biological media

Medium Temperature B/A Method Reference

22◦C 9.206 TM
Breast fat 30◦C 9.909 TM [Sehgal et al. (1984)]

37◦C 9.633 TM
22◦C 5.603 TM

Multiple
myeloma

30◦C 5.796 TM [Sehgal et al. (1984)]

37◦C 6.178 TM
30◦C 6.54 TM [Sehgal et al. (1985)]

Human liver Normal 30◦C 7.6 ± 0.8 DM [Bjørnø (1986)]
Congested 30◦C 7.2 ± 0.7 DM [Bjørnø (1986)]

Liver - 7.3 ± 0.7 DM [Zhang et al. (2001)]
Fat 26◦C 10.8 ISM [Gong et al. (1989)]

- 10.7 ± 0.9 DM [Zhang et al. (2001)]
- 8.3 ± 0.5 ISM [Zhang and Gong (1999)]

Fatty liver - 10.3 ± 0.9 DM [Zhang et al. (2001)]
- 8.3 ISM [Gong et al. (2004)]

Egg white - 6.2 ± 0.5 DM [Zhang et al. (2001)]
27◦C 5.2 DM [Zhang et al. (2002)]

Egg yolk - 8.3 ± 0.7 DM [Zhang et al. (2001)]
27◦C 8.0 DM [Zhang et al. (2002)]

Healthy liver - 6.8 ± 0.3 ISM [Zhang and Gong (1999)]
Parasitic
hepatitis

- 7.4 ± 0.4 ISM [Zhang and Gong (1999)]
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Fibrinoid
hepatitis

- 7.4 ± 0.4 ISM [Zhang and Gong (1999)]

Necrotic
hepatitis

- 7.6 ± 0.4 ISM [Zhang and Gong (1999)]

Interstitial
hepatocirrho-

sis
- 7.4 ± 0.4 ISM [Zhang and Gong (1999)]

Parasitic hep-
atocirrhosis - 7.8 ± 0.5 ISM [Zhang and Gong (1999)]

Biliary hepa-
tocirrhosis - 8.1 ± 0.5 ISM [Zhang and Gong (1999)]

Hepatonecrosis
- 8.5 ± 0.5 ISM [Zhang and Gong (1999)]

- 10.5 ISM [Gong et al. (2004)]
- 6.9 ± 0.3 ISM [Zhang and Gong (1999)]

Healthy spleen Normal 30◦C 7.8 ± 0.8 DM [Bjørnø (1986)]
Congested 30◦C 7.8 DM [Bjørnø (1986)]

Chronic
splentis

- 7.1 ± 0.3 ISM [Zhang and Gong (1999)]

Healthy
kidney

- 7.1 ± 0.3 ISM [Zhang and Gong (1999)]

Interstitial
nephritis

- 7.2 ± 0.3 ISM [Zhang and Gong (1999)]

Red infarct
nephritis

- 7.7 ± 0.4 ISM [Zhang and Gong (1999)]

Lipoid
nephrosis

- 8.0 ± 0.5 ISM [Zhang and Gong (1999)]

Crescentic
nephritis

- 8.1 ± 0.5 ISM [Zhang and Gong (1999)]

- 6.88 TM [Law et al. (1983)]
Beef liver 25◦C 7.0 TM [Law et al. (1985)]

25◦C 6.8 DM [Law et al. (1985)]
25◦C 10.9 TM [Law et al. (1985)]

Pig fat 25◦C 11.3 DM [Law et al. (1985)]
25◦C 10.8 ISM [Gong et al. (1989)]

Cat liver - 6.7 ± 0.2 DM [Zhang and Dunn (1987)]
26◦C 7.1 ISM [Gong et al. (1989)]

Porcine liver 27◦C 6.9 DM [Zhang et al. (2002)]
- 6.9 ISM [Gong et al. (2004)]
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TITRE EN FRANCAIS
Simulation non linéaire en ultrasons. Application à l’imagerie du paramètre de non linéarité des
tissus en mode écho.
RESUME EN FRANCAIS

L’imagerie ultrasonore harmonique, qui repose sur la non linéarité du milieu de propagation, est
une technique d’imagerie clinique qui améliore la résolution des images. La mesure ultrasonore du
paramètre local de non linéarité d’un milieu est une voie de recherche qui amènerait de nouvelles
perspectives dans le domaine de la caractérisation des tissus. Cependant, l’accès à cette information
se heurte à deux écueils : d’une part il n’existe pas actuellement de méthode de mesure de ce
paramètre à partir du mode écho classique et d’autre part, les outils de simulation prenant en
compte la non-linéarité du milieu sont peu développés.

Une méthode de spectre angulaire a donc été proposée afin de calculer le champ de pression dans
des milieux de non linéarité inhomogène. Ce champ de pression est ensuite utilisé pour engendrer
des images échographiques contenant l’information harmonique. Cette méthode spectrale a été
portée sur GPU afin d’accélérer le calcul et a été intégrée dans un logiciel libre : CREANUIS.

Dans un deuxième temps, une extension d’une méthode comparative (ECM) a été proposée pour
prendre en compte des milieux de non linéarité non homogène, fonctionnant en mode écho. Grâce
aux outils de simulation développés, différentes configurations ont été utilisées pour la mise au point
de l’ECM qui a ensuite été validée à partir d’objets tests et in vitro sur foies d’animaux. Même si la
méthode de mesure présente une résolution relativement faible, les images obtenues démontrent le
potentiel de l’imagerie du paramètre de non linéarité des tissus.
TITRE EN ANGLAIS
Simulation in nonlinear ultrasound. Application to nonlinear parameter imaging in echo mode
configuration.
RESUME EN ANGLAIS

Harmonic imaging, based on the propagated medium nonlinearity, is a clinical imaging technique
which increases the resolution of ultrasound images. The ultrasound measure of the local nonlinear
parameter brings new perspectives in term tissues characterization. However, access to this
information suffers from two strong points: from one hand, there is no current measurement method
of this parameter in echo mode configuration and on the other hand, the simulation tools taking into
account the nonlinearity are not many developed.

An angular spectrum method has been proposed to compute the nonlinear pressure field with
inhomogeneous nonlinear parameter. This pressure field is then used to generate ultrasound images
containing the harmonic component. This spectral approach has been implemented on a GPU in
order to accelerate the computation and package in a free software made available to the scientific
community under the name CREANUIS.

In a second time, a extension of a comparative method (ECM) has been proposed to take into
account media with inhomogeneous nonlinearity, working an echo mode configuration. Thanks the
developed simulation tools, different configurations have been used to parameterize and to evaluate
the ECM which has then be validated on test objects and in vitro animal’s livers. Even if the
measure presents a relatively weak resolution, the obtained images demonstrated a high potential in
the nonlinear parameter imaging of tissues.
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