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Abstract

Most computer programs are concurrent programs, which need to perform several tasks at
the same time. Among the many different techniques to implement concurrent programs,
the most common are threads and events. Event-driven programs are more lightweight
and often faster than their threaded counterparts, but also more difficult to understand and
error-prone. Additionally, event-driven programming alone is often not powerful enough; it
is then necessary to write hybrid code, that uses both preemptively-scheduled threads and
cooperatively-scheduled event handlers, which is even more difficult.

This dissertation shows that concurrent programs written in a unified, threaded style can
be translated automatically into efficient, equivalent event-driven programs through a series
of proven source-to-source transformations.

Our first contribution is a complete implementation of Continuation-Passing C (CPC), an
extension of the C programming language for writing concurrent systems. The CPC program-
mer manipulates very lightweight threads, choosing whether they should be cooperatively or
preemptively scheduled at any given point. The CPC program is then processed by the CPC
translator, which produces highly efficient sequentialized event-loop code, and uses native
threads to execute the preemptive parts. This approach retains the best of both worlds: the
relative convenience of programming with threads, and the low memory usage of event-loop
code.

We then prove the correctness of the transformations performed by the CPC translator.
We demonstrate in particular that lambda lifting is correct for functions called in tail position
in an imperative call-by-value language without extruded variables. We also show that CPS
conversion is correct for a subset of C programs, and that every CPC program can be translated
into such a CPS-convertible form.

Finally, we validate the design and implementation of CPC by exhibiting our Hekate
BitTorrent seeder, and showing through a number of benchmarks that CPC is as fast as
the fastest thread librairies available to us. We also justify the choice of lambda lifting by
implementing eCPC, a variant of CPC using environments, and comparing its performance
to CPC.






Résumé

Concurrence

La plupart des programmes informatiques sont des programmes concurrents, qui doivent
effectuer plusieurs tiches simultanément. Par exemple, un serveur réseau doit répondre a de
multiples clients en méme temps; un jeu vidéo doit gérer les entrées du clavier et les clics de
souris tout en simulant I’'univers du jeu et en affichant les éléments de décor; et un jeu en
réseau doit effectuer toutes ces tdches en méme temps.

Il existe de nombreuses techniques différentes pour implémenter des programmes concur-
rents. Une abstraction couramment utilisée est le concept de thread (ou processus léger) :
chaque thread encapsule un calcul précis pour I’effectuer isolément. Ainsi, dans un pro-
gramme a threads, les taches concurrentes sont exécutées par autant de threads indépendants,
qui communiquent par I'intermédiaire d’une mémoire partagée. L’état de chaque thread est
stocké dans une structure de pile, qui n’est en revanche pas partagée.

Une alternative aux threads est la programmation en style a événements. Un programme a
événements interagit avec son environnement en réagissant a un ensemble de stimuli, appelés
événements; par exemple, dans un jeu vidéo, les touches frappées au clavier ou les clics de souris.
A tout moment est associé a chaque événement un morceau de code appelé le gestionnaire de
cet événement; un ordonnanceur global, appelé la boucle a événements, attend répétitivement
qu’un événement se produise et invoque le gestionnaire correspondant. Un calcul donné
n’est pas nécessairement encapsulé dans un unique gestionnaire d’événements : exécuter une
tdche complexe, qui requerrait par exemple a la fois des entrées venant du clavier et de la
souris, exige de coordonner plusieurs gestionnaires en échangeant les événements appropriés.

Contrairement aux threads, les gestionnaires d’événements ne disposent pas d’une pile
propre; les programmes a événements sont ainsi plus légers, et souvent plus rapides, que leurs
homologues a base de threads. Néanmoins, parce qu’elle nécessite de diviser le flot de controle
en de multiples petits gestionnaires d’événements, la programmation a événements est difficile
et sujette a erreur. De plus, elle n’est souvent pas suffisante en tant que telle, en particulier
pour accéder a des interfaces bloquantes ou pour exploiter des processeurs a coeurs multiples.
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Il est alors nécessaires d’écrire du code hybride, qui utilise a la fois des threads ordonnancés
préemptivement et des gestionnaires d’événements ordonnancés coopérativement, ce qui est
encore plus difficile.

Puisque la programmation par événements est plus difficile mais plus efficace que la pro-
grammation avec des threads, il est naturel de vouloir I’automatiser au moins partiellement.
D’une part, de nombreuses architectures et techniques de transformations ad-hoc ont été
proposées pour méler threads et événements, essentiellement pour des langages impératifs tels
que C, Java et Javascript. D’autre part, un certain nombre d’abstractions et de techniques, dé-
veloppées pour implémenter des langages fonctionnels, ont été étudiées en détail et appliquées
a la construction de programmes fonctionnels concurrents : par exemple les monades, le style
par passage a la continuation (CPS, pour continuation-passing style) et la conversion CPS, ou
encore la programmation fonctionnelle réactive ont été utilisés dans des langages comme
Haskell, OCaml et Concurrent ML. Cette these cherche a réconcilier ces deux courants de
recherche, en adaptant des techniques de transformation classiques de la programmation
fonctionnelle afin de construire un traducteur de threads en événements, correct et efficace,
pour un langage impératif.

Dans le chapitre 1, nous détaillons comment écrire des programmes concurrents a 1’aide
de threads, d’événements et de continuations. Nous présentons notamment plusieurs styles
de programmes a événements, ainsi que les transformations que nous utiliserons par la suite :
la conversion en style par passage a la continuation (ou conversion CPS) et le lambda lifting.

Continuation-Passing C

Continuation-Passing C (CPC) est une extension du langage C pour I’écriture de systémes
concurrents. Le programmeur CPC manipule des threads trés légers et peut choisir s’ils
doivent étre ordonnancés préemptivement ou coopérativement en tout point du programme.
Le programme CPC est ensuite traité par le compilateur CPC, qui produit un code a événement
séquentialisé tres efficace et utilise les threads natifs pour exécuter les parties préemptives.
Cette approche oftre le meilleur des deux mondes : le confort relatif de la programmation a
base de threads et la faible occupation mémoire du code a événements.

Dans le chapitre 2, nous commengons par donner un apercu du langage CPC a travers
I’exemple de Hekate, un serveur réseau qui est le programme CPC le plus étendu que nous
ayons réalisé. Nous montrons en particulier I'utilité d’un concept de thread unifié, distinct
des threads natifs proposés par le systéme d’exploitation : la possibilité d’alterner sans effort
entre ordonnancement coopératif et préemptif offre les avantages du code a événements
sans la complexité de gérer manuellement des pools de threads pour effectuer les opérations
bloquantes. Nous donnons une description détaillée du langage CPC. Le cceur du langage
est aussi simple que possible, les structures de données plus complexes et les mécanismes de
synchronisation étant construit sur la base d’une demi-douzaine de primitives élémentaires.
Nous concluons le chapitre en donnant quelques exemples de telles structures de données,
incluses dans la bibliotheques standard CPC.



Technique de compilation prouvée

Le compilateur CPC traduit des programmes CPC en des programmes C équivalents grace a
une série de transformations source-source. Chacune de ces étapes emploie des techniques
couramment utilisées pour la compilation de langages fonctionnels : conversion CPS, lambda
lifting, environnements et traduction de sauts en appels terminaux. Néanmoins, nous les
utilisons dans le contexte du C, un langage notoirement hostile a la formalisation. Le simple
fait qu’il s’agisse d’un langage impératif rend la moitié de ces techniques indéfinies dans le
cas général. De plus, parce que le C permet d’obtenir I’adresse de variables allouées sur la
pile, un soin tout particulier doit étre accordé pour garantir la correction d’une traduction
des threads, qui ont leur propre pile, vers les événements, qui n’en ont pas.

Dans le chapitre 3, nous présentons les transformations effectuées par le compilateur
CPC. Nous justifions en particulier pourquoi I’étape d’encapsulation (boxing) est nécessaire
pour garantir la correction de la traduction quand I’adresse de variables de pile est capturée.
Puisque le lambda lifting et la conversion CPS ne sont pas corrects en général dans un
langage impératif, nous fournissons des preuves de correction pour ces étapes (Chapitres 4
et 5). Dans le chapitre 4, nous prouvons la correction du lambda lifting pour les fonctions
appelées en position terminale dans un langage impératif en appel par valeur, en ’absence de
variables extrudées. Dans le chapitre 5, nous prouvons que la conversion CPS est correcte dans
un langage impératif sans variables extrudées, statiques ou globales, bien qu’elle implique
I’évaluation anticipée (early evaluation) de certains parameétres de fonctions.

Implémentation et évaluation

Une partie essentielle de notre travail est]'implémentation du compilateur CPC. Disposer d’un
compilateur fonctionnel est extrémement utile pour expérimenter, développer des intuitions,
vérifier certaines suppositions et effectuer des tests de performance.

Il est tentant, lorsque I’on travaille sur un langage de bas niveau tel que le C, de se concentrer
sur ’optimisation d’un petit nombre de détails d’implémentation dans ’espoir d’améliorer
les performances. Néanmoins, il est également une maxime bien connue des programmeurs
qui met en garde contre ce penchant' tant il est vrai qu’optimiser sans avoir au préalable
mesuré mene fréquemment a un code plus obscur sans pour autant apporter le moindre gain
de performances. Notre implémentation du compilateur CPC a été guidée par la conviction
que le lambda lifting et la conversion CPS sont assez efficaces pour ne pas nécessiter de trop
nombreuses micro-optimisations. Notre code reste simple et aussi proche des transformations
théoriques que possible, mais parvient malgré tout a des performances comparables aux
bibliotheques de threads les plus efficaces que nous connaissions.

Dans le chapitre 6, nous comparons I’efficacité de programmes CPC a celle d’autres
implémentations de la concurrence, et montrons que CPC est aussi rapide que les plus rapides
d’entre elles tout en permettant offrant un gain en occupation mémoire d’au moins un ordre

'« Premature optimisation is the root of all evil. » [Knu74]
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de grandeur. Nous effectuons plusieurs séries de mesures. Tout d’abord, nous mesurons indi-
viduellement I’efficacité des primitives de concurrence. Nous comparons ensuite le débit de
serveurs web, un exemple de concurrence typique, pour évaluer 'impact des transformations
effectuées par CPC sur les performances d’un programme complet. Enfin, nous mesurons les
performances de Hekate, a la fois sur de matériel embarqué aux ressources limitées et sur un
ordinateur courant équipé de plusieurs coeurs soumis a une charge réaliste.

Quoique efficacité soit un parametre essentiel, il est également important d’évaluer
I'utilisabilité du langage. Notre but étant de développer un langage de programmation agréable
a partir de techniques d’implémentation efficaces et prouvées, nous avons cherché a obtenir
un retour de la part d’utilisateurs pour évaluer I’expressivité et le confort apportés par CPC
pour I’écriture de programmes concurrents. Grace au support complet du langage C par le
compilateur CPC, il est possible d’écrire de larges programmes utilisant des bibliotheques
C existantes. L’écriture d’Hekate, avec deux étudiants de master qui n’avaient jamais utilisé
CPC auparavant, a été I’occasion de découvrir des idiomes de programmation associés a la
légereté et au déterminisme des threads CPC. Nous utilisons Hekate tout au long de cette these
pour fournir des exemples de code CPC, mais aussi comme d’une référence pour évaluer
I'impact des transformations effectuées par le compilateur CPC sur la taille et la structure du
code généré.

Comprendre le code a événements

L’étude de la transformation automatique des threads en événements est une occasion de
comprendre plus en détail la structure et le fonctionnement des programmes a événements.
Comment certains programmeurs parviennent a écrire des programmes si grands et complexes
sans devenir fous restera vraisemblablement un mystére pour toujours, mais cette these tente
d’éclairer un peu la question.

Le code généré par CPC différe de la plupart des programmes a événements écrits a la main
sur deux points : il contient plus de gestionnaires d’événements, et I’utilisation de lambda
lifting implique la copie des variables locales d’un gestionnaire au suivant au lieu d’étre
allouées une fois pour toutes sur le tas. Il est alors intéressant de modifier le compilateur CPC
pour générer du code qui se rapproche plus du code écrit par un étre humain et d’identifier si
les modifications nécessaires correspondent a des transformations de programme connues.
Cela permet également de comparer ces différents styles et donne une idée des opérations
que le programmeur effectue dans sa téte quand il écrit du code a événements.

Le chapitre 7 est le résultat d une collaboration avec Matthieu Boutier [Boull]. Nous y
étudions comment les divers styles a événements présentés dans le chapitre 1 peuvent étre
générés a partir d’une description commune en style a threads, a I’aide des transformations
classiques que sont la défonctionalisation et les environnements. Nous implémentons en parti-
culier I’'une de ces variantes, sous la forme d’eCPC, qui utilise des environnements au lieu du
lambda lifting pour stocker les variables locales. Nous mesurons les performances de CPC et
eCPC et montrons que le lambda lifting est plus efficace mais moins facile a déboguer que les
environnements dans la plupart des cas.
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Contributions

Nous montrons dans cette thése que des programmes concurrents écrits dans un style a
threads sont traduisibles automatiquement, par une suite de transformations source-source
prouvées, en programmes a événements équivalents et efficaces.
Nos contributions principales sont :
« une implémentation complete du langage CPC (Chapitre 2);
« une technique de compilation basée sur des transformations de programmes prouvées
(Chapitre 3), en particulier :

- une preuve de correction du lambda lifting pour les fonctions appelées en position
terminale, dans un langage impératif en appel par valeur sans variables extrudées
(Chapitre 4),

- une preuve de correction de la conversion CPS pour les programmes en forme
CPS-convertible dans un langage impératif sans variables extrudées, statiques et
globales (Chapitre 5);

o des résultats expérimentaux évaluant I’ utilisabilité et I’efficacité de CPC, notamment :

- Hekate, un serveur réseau BitTorrent écrit en CPC (Chapitre 2),

- des mesures expérimentales montrant que CPC est aussi rapide que les biblio-
theques de threads les plus rapides dont nous disposons, tout en permettant la
création d’au moins un ordre de grandeur de threads supplémentaires (Cha-
pitre 6);

« une implémentation alternative, eCPC, utilisant des environnements au lieu du lambda
lifting et permettant d’évaluer le gain apporté par ce dernier (Chapitre 7).
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Introduction

“And what is the use of a book,” thought Alice
“without pictures or conversation?”

Alice’s Adventures in Wonderland
LeEwis CARROLL

We show in this dissertation that imperative concurrent programs written in threaded
style can be translated automatically into efficient, equivalent event-driven programs through
a series of proven source-to-source transformations.

In this introduction, we first present the notion of concurrency, and two of its implemen-
tations: threads and events. We also introduce Continuation-Passing C (CPC), an extension
of the C language for writing concurrent systems, which provides very lightweight threads
and compiles them into event-driven code. We then explain how to use another abstraction,
continuations, and the associated transformation, conversion into continuation-passing style,
to implement such a translation from threads into events. Finally, we show why it is difficult
to perform this translation in an imperative language, and give a brief overview of how the
CPC translator manages to keep it correct and efficient nonetheless. We conclude with an
outline our main contributions.

The wild land of concurrency

Task management

Writing large programs often involves dividing them in a number of conceptually distinct
tasks: each task encapsulates control flow and often a local state, and all tasks access some
shared state and communication channels to coordinate with other tasks. In a sequential
program, there is a single task or, more generally, tasks are fully ordered and each of them
waits for the previous one to complete before executing. Sequential task management makes
it easy to coordinate tasks: there is no risk of conflicting accesses to the shared state, and
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the programmer can rely on the fact that no two tasks are ever executing simultaneously to
reason about the behaviour of the program. However, sequential task management is often
too limited.

Most computer programs are concurrent: they perform several tasks at the same time.
They might repeat a single task a large number of times. For instance, a web server needs to
serve hundreds of clients simultaneously. Or they might use a lot of different tasks, cooperating
to build a larger system. For example, a video game needs to handle the graphics and the
simulation of the game while reacting to keystrokes and mouse moves from the user. Some
complex programs might even need to do both. For instance, a network game server needs to
simulate a virtual word while sending and receiving updates from hundreds of players over
the Internet.

In a concurrent program, the order in which tasks are executed is determined by a sched-
uler. One distinguishes two kinds of scheduling: preemptive task management and cooperative
task management.

Preemptive task management Preemptively scheduled tasks can be suspended and re-
sumed by the scheduler at any time. They can be interleaved on a single processor or executed
simultaneously on several processors or processor cores. This makes them well suited for
highly-parallel workloads and high-performance programs.

One must be very careful when accessing shared state with preemptive tasks: since
any other task might be modifying the same piece of data at the same time, concurrent
accesses to shared resources need to be protected with synchronisation primitives such as
locks, semaphores, or monitors. Should these primitives be forgotten, or misused, race condi-
tions arise: conflicts when accessing shared data that are often hard to debug because they
might depend on a specific, non-deterministic scheduling that is difficult to reproduce. Pre-
emptive scheduling makes programs harder to reason about, because global guarantees about
shared state must be manually enforced by the programmer with appropriate locking and
synchronisation.

Cooperative task management A cooperatively scheduled task only yields to another one
at some explicit points, called cooperation points. Between two cooperation points, the
programmer enjoys the ease of reasoning associated with sequential task management: a
single task accessing shared state at a given time, with no need to add locks or care about
race conditions. It is then only necessary to ensure that invariants about shared state hold
when cooperating, rather than in any possible interleaving as is the case with preemptive
scheduling. Cooperative schedulers can also be deterministic schedulers, providing guarantees
on the order of execution which further helps in synchronising tasks, reproducing bugs and
controlling fairness between tasks.

However, because of the exclusive nature of cooperative tasks, they cannot use the power
of multiple processors or processor cores. Moreover, since tasks cannot be preempted by
the scheduler, a single task performing a long computation or stuck in a blocking operation
would prevent every other tasks from executing: it is impossible to ensure fairness if a task
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does not cooperate. This means that the programmer must make his program yield regularly.
Even in network programs, where each I/O is an opportunity to cooperate, this requirement
of cooperation sometimes happens to be too limiting.

Hybrid programming There are at least three cases where cooperative task management
is not enough. When a program needs to perform blocking system calls, use libraries with
blocking interfaces, or perform long-running computations, preemptive scheduling cannot
be avoided. Many cooperative programs are therefore in fact hybrid programs: they use
cooperative scheduling most of time, and fall-back to using preemptive tasks for potentially
blocking sections of code. This combines the advantages of both approaches, but is often
tedious because concurrent systems rarely provide a straightforward way to switch from
preemptive to cooperative task management: the programmer usually has to craft his own
solution using two different frameworks, one for each kind of scheduling.

Stack management

As we have seen, concurrent programs can often be divided in distinct tasks encapsulating a
control flow and a local state. However, these conceptual tasks do not always map directly to
the abstractions provided to the programmer by concurrency frameworks. In some models,
each task has its own call stack, to store its control flow and local variables; we then speak
of automatic stack management. In other models the call stack is shared among all tasks; we
speak of manual stack management. In the former case, stacks are independent and they
are automatically saved and restored upon context switches by the compiler, the library or
the operating system. In the latter, the programmer is responsible for multiplexing several
conceptual tasks on a single stack, handling the control flow and the local state of each task
by himself. Automatic stack management is of course easier for the programmer, but going
manual sometimes cannot be avoided, for efficiency reasons or because the target system does
not provide concurrency abstractions with automatic stack management.

Threads and event-driven programming are the two most common examples of automatic
and manual stack management, respectively.

Threads Threads are a widely used abstraction for concurrency. Each thread executes a
function, with its own call stack, and all threads share heap-allocated memory. Thanks to
automatic stack management, threads are convenient for the programmer: each concurrent
task that needs to be implemented is written as a distinct function, and executed in a separate
thread. Interaction between threads uses the shared heap, and synchronisation primitives
such as locks and condition variables.

Threads are provided either by the operating system, by a user-space library, or directly
by the programming language. Generally, threads provided by the operating system are
preemptive, and user-space threads cooperative. In both cases, the scheduler has very few
hints about the actual stack usage and behaviour of the program. Therefore, it needs to reserve
a large, fixed chunk of memory for the call stack upon creation of each thread, and saves and

17



INTRODUCTION

restores it fully at each context switch. This conservative approach potentially wastes a lot of
memory, for instance for idle threads with a shallow stack. Moreover, thread creation and
context switching are usually two to three orders of magnitude slower than a function call. In
implementations exhibiting these limitations, creating large numbers of short-lived threads is
not always possible, and in practice the programmer sometimes needs to multiplex several
concurrent tasks on a single thread.

However, threads are not necessarily slower than event-driven code, and careful imple-
mentations can yield large performance gains. One solution is to use user-space, coopera-
tive libraries which tend to be faster and more lightweight than native, preemptive threads
[Beh+03]. A user-space library does not incur the cost of going through supervisor mode,
allowing faster context switches. It can also reduce memory usage by using smaller, or even
dynamically-resized, call stacks [Gu+07].

Another approach is to make concurrency constructs part of the programming language,
using information from the compiler for optimisations. For example, the compiler can
perform static analysis to reduce the amount of memory used, saving only relevant pieces
of information on each context switch. This is most effective in the context of cooperative
threads because the compiler can also determine the point of cooperation in advance and
optimise atomic blocks of code accordingly. It is also possible to add heuristics to choose
between different implementations at compile time.

Events Event-driven programs are built around an event loop which repeatedly gathers
external stimuli, or events, and invokes a small atomic function, an event handler, in reaction
to each of them. Task management is manual in event-driven style: there is no abstraction to
represent a concurrent task with its own control flow and local state, and no automatic transfer
of control flow from one handler to the next. If performing a task requires interacting with
several events, for instance in a server exchanging a number of network messages with a client,
the programmer is responsible for writing each event handler and registering them with the
event loop in the correct order as the execution of the task flows. Similarly, synchronisation is
achieved manually by registering handlers and firing the appropriate events. Large persistent
pieces of data are generally shared between event handlers, while short-lived values used
in a handful of handlers are kept local and copied from one handler to the next; again, this
replicates manually how local variables and heap-allocated data are used in threads.

Events allow concurrency to be implemented in languages that do not provide threads,
and cannot be avoided on systems exposing only an asynchronous, callback-based API;
even when threads are available, they provide a lightweight alternative, well-suited to highly-
concurrent and resource-constrained programs. But events are also an extreme example of the
programmer implementing scheduling and context switching entirely by hand, sequentializing
and optimising manually concurrency in his program, then relying on the compiler to compile
the resulting sequential code efficiently. This is a very tedious task, and it yields programs
that are hard to debug because they lack a call stack: information about control flow and local
state must be extracted from custom, heap-allocated data structures. As we shall see, this is
also not the most efficient approach (Chapter 7).
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Event-driven programs are inherently cooperative, since event handlers are guaranteed to
run atomically and control is passed around explicitly by the programmer. As explained above,
this enables deterministic scheduling and makes reasoning about a particular piece of code
easier. The price to pay for this simpler scheduling is that, just like cooperative threads, event-
driven programs do not benefit from parallel architectures with multiple cores or processors,
and get frozen if a handler performs a blocking operation. In practice, most event-driven
programs are therefore hybrid programs, delegating blocking and long-running computations
to native threads, or distributing events across several event loops running in independent
threads. This hybrid style makes them even harder to debug.

CPC threads

Since event-driven programming is more difficult but more efficient than threaded program-
ming, it is natural to want to at least partially automate it. On the one hand, many architectures
for mixing threads and events, and ad-hoc translation schemes have been proposed, mostly
for wide-spread imperative programming languages such as C, Java or Javascript. On the
other hand, a number of abstractions and techniques, developed to implement functional
languages, have been studied extensively and applied to build concurrent functional programs:
for instance monads, continuation-passing style (CPS) and CPS conversion, or functional
reactive programming, in languages such as Haskell, OCaml or Concurrent ML.

This dissertation seeks to bridge the gap between these two streams of research, adapting
well-known transformation techniques from functional programming to build an efficient and
correct translator from threads to events in an imperative language.

We propose Continuation-Passing C (CPC), an extension of the C language for concurrency
designed and implemented with Juliusz Chroboczek. The CPC language offers a unified
abstraction, called CPC threads, that are neither native threads nor user-space, library-based
threads. Most of the time, CPC threads are scheduled cooperatively but the programmer has
the ability to switch a thread between cooperative and preemptive mode at any time. To the
programmer, CPC threads look like extremely lightweight, user-space threads.

When a CPC thread is created, it is attached to the main CPC scheduler, which is cooper-
ative and deterministic. CPC provides a number of primitives that interact with the scheduler,
to yield to another thread, sleep, wait for I/O or synchronise on condition variables; the pro-
grammer then builds more cooperative functions on top of these primitives. There is a special
primitive, cpc_link, that allows the programmer to detach the current CPC thread from
the cooperative scheduler, and execute it in a native, preemptive thread instead. Conversely,
cpc_link also allows the user to attach a detached thread back to the cooperative scheduler.

These unified threads provide the advantages of hybrid programming, without the hassle of
combining manually distinct concurrency models. This is not a silver bullet: the programmer
must still take care not to block in attached mode, and to use locks properly in detached mode.
However, CPC threads eliminate all the boilerplate needed to switch back and forth between
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both modes, making it straightforward to call blocking functions asynchronously, without
writing callbacks manually.

To compile CPC threads efficiently, we translate CPC programs into event-driven C code,
which is then handed over to a regular C compiler. This approach retains the best of both
worlds: unified threads for the programmer, easier to reason about and with a simple way
to switch scheduling mode, and tiny event handlers at runtime with fast context switches
which allow tens of thousands of threads to be created, even on platforms with constrained
resources.

The power of continuations

The CPC translator translates CPC programs in threaded style into equivalent plain C programs
in event-driven style. It automates the manual work usually performed by the event-loop pro-
grammer: splitting long-running tasks into small atomic event handlers around cooperation
points, creating small data structures to pass local data from one handler to the next, and
linking handlers correctly to implement the control flow of the original program. The resulting
event handlers are scheduled cooperatively by an event loop, or executed by individual native
threads when the programmer detaches a CPC thread to preemptive mode.

In manually written event-driven code, the programmer rolls his own data structures to
register event handlers and save the pieces of local state that need to be passed to the next
handler. Since we want to perform an automatic source-to-source translation, we seek a
systematic way to generate event handlers from a threaded control flow. More precisely, we
need some data structure to capture the state of a thread, that is to say its current point of
execution and local variables, when it reaches a cooperation point.

Continuations are an abstraction that is widely used to represent the control flow, and in
particular to implement concurrency, in functional programming languages. They can be
implemented in a number of ways, including as data structures that fulfill our needs to capture
the state of CPC threads in an event-driven style. Because the C language does not offer
first-class continuations that we could use directly, the CPC translator performs a conversion
into continuation-passing style, a transformation that introduces continuations in a program
written in direct-style.

Continuations and concurrency

Intuitively, the continuation of a fragment of code is an abstraction of the action to perform
after its execution. For example, consider the following computation, where add represents
the arithmetic operator +:

g(add(f(5), x));

The continuation of f(5) is g(add(d, x)) because the return value of f, represented by O
in the continuation, will be added to the value of the variable x and then passed to f.
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A continuation captures the context at some given point in the program: it implicitly
records the current instruction, “0” in the previous example, and the local state, for instance
the local variable x to be added to the return value of f. Continuations are therefore perfectly
suited to implementing concurrency. If the call to f were a cooperation point in a threaded
program for instance, saving its continuation would be enough to resume execution after a
context switch.

Continuations are most often used in functional programming languages. Some of them,
like Scheme [Abe+98] or Scala [Ode+04], provide first-class continuations with control oper-
ators, such as call/cc or shift and reset respectively, that allow a program to capture and
resume its own continuations. Cooperative threads and other concurrency constructs are
then built on top of these operators [HFW86; DH89; RMO09].

In functional languages that do not provide first-class continuations, continuations are
encoded using other features such as first-class functions or monads. These constructs can
then be used to implement concurrency libraries: concurrency monads in Haskell [Cla99],
or lightweight Iwt threads in OCaml [Vou08]. To some extent, these concurrent programs
based on continuations are similar to event-driven programs: the programmer writes many
small atomic functions, which make the continuations explicit, and composes them using
synchronisation functions provided by the library. However, abstractions provided by func-
tional languages make writing such programs usually less tedious than event-driven code:
anonymous lambda-abstractions alleviate the burden of naming every intermediary event
handler, and variables can be shared between inner functions and need not be passed explicitly
from one handler to the next. With some syntactic sugar to write monads concisely, this yields
pleasant and idiomatic code that is in fact more similar to threads than to hard-to-follow,
event-driven code written in an imperative language.

Implementing continuations

There are several ways to implement continuations. One approach is to think of continuations
as functions, and implement them using closures. The continuation g(add(O, x)) from
Fig. 1 is similar to the function Ar.g(add(r, x)) which waits for the return value of f,
sums it with x and passes the result to g. Note that the value of x is captured in the closure:
local variables are preserved automatically through environments. As explained above, this
approach is mainly used in functional languages that do not provide first-class continuations.
This technique does not work in the case of CPC because the C language does not feature
first-class functions.

Continuations can also be implemented with stacks: capturing a continuation is done by
copying the call stack, and resuming it by discarding the current stack and using the saved one
instead. This approach is very similar to the way threads are saved and restored in concurrent
programming, and it has indeed been shown that threads can implement continuations
[KBD98]. It is obviously not usable in the case of CPC since our goal is to compile threads
into lightweight event handlers to minimise the amount of memory used per thread.
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Finally, continuations can be implemented as a stack of function calls to be performed.
Contrary to the native call stack, this stack does not represent the current state of the program,
but the rest of the computation as an implicit composition of functions. Consider again Fig. 1:

g(add(f(5), x));

The continuation of f(5) is add(x) - g. It is a stack of two function calls: first pass the result
of f(5) to add(O, x), then pass the result to g(T). This is the approach used in CPC. It
is similar to event-driven code: we store a list of callbacks to invoke later, along with the
values of useful variables, and the return value of each callback is passed to the next. It is
straightforward to implement in C, using function pointers for callbacks and structures to
store function parameters, and retains only the data relevant to resume the computation.

Conversion into Continuation-Passing Style

Since the C language does not offer first-class continuations, the CPC translator needs to
transform CPC programs to introduce continuations. Conversion into Continuation-Passing
Style [SW74; Plo75], or CPS conversion for short, is a program transformation technique that
makes the flow of control of a program explicit and provides continuations for it.

CPS conversion consists in replacing every function f in a program with a function f*
taking an extra argument, its continuation. Where f would return with value v, f* invokes its
continuation with the argument v. Remember the computation that we considered in Fig. 1:

g(add(f(5), x));

After CPS conversion, the function f becomes f* which receives its continuation as an
additional parameter, Ar.g(add(r, x)).

f*(5, Ar.g(add(r, x)));

A CPS-converted function therefore never returns, but makes a call to its continuation. Since
all of these calls are in tail position, a converted program does not use the native call stack: the
information that would normally be in the call stack (the dynamic chain) is encoded within
the continuation.

In the context of concurrent programming, having a handle on the continuation makes it
easy to implement cooperative threads. Consider for instance the case where f has to yield
to some other thread before returning its value. One simply needs to store the continuation
Ar.g(add(r, x)), which has been received as a parameter, and invoke it later, after having
run other threads, to resume the computations.

Figure 2 is an example of partial CPS conversion: only the function f is CPS-converted, g
and add are left in direct (non-CPS) style. It is also possible to perform a full CPS conversion,
translating every function.

f*(5, Ar. add*(x, r, As. g"(s, k)));

Note that in the case of a full CPS conversion, the last called function, g*, expects a continua-
tion too: we need to introduce a variable k to represent the top-level continuation, the context
in which this fragment of code is executed.
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We can finally rewrite Fig. 3 without lambda-terms, using the more compact implementa-
tion of continuations that we introduced in the previous section.

f7(5, add"(x)-g"k);

This last example is fairly close to the CPS conversion actually performed by the CPC translator.
The main difference is that CPC performs a partial translation: because a call to a CPS-
converted function (or CPS call, see Section 2.2.1) is slower than a native call, we only translate
these functions, called CPS functions, that are annotated as cooperative by the programmer
with the cps keyword. Hence, in our example, the function add would probably be kept in
direct-style, while f and g would be annotated with cps.

The hazards of imperative languages

CPS conversion, CPS-convertible form and splitting

The CPC translator is structured as a series of source-to-source passes, transforming CPC
programs into plain C event-driven code. Although it might be possible to directly define
a CPS conversion for the whole of the C language, we found it too difficult in practice. In
particular, in the presence of loops and goto statements, the continuations are not as obvious
as in the example shown above. In Fig. 1, the control flow merely consists in nested function
calls, which makes it easy to express the continuation of g in terms of “functions to be called
later”. Therefore, the CPC translator performs several preliminary passes to bring the code into
CPS-convertible form, a form suitable for CPS conversion, before the actual CPS-conversion
step.

CPS-convertible form is similar to the example shown previously: each call to a function
that must be CPS-converted is guaranteed to be followed by a tail call to another CPS-converted
function.

f(); return g(ay,...,an);

If the top-level continuation is k, the continuation of f is g(ay,...,a,) - k and the CPS
conversion is straightforward.

To translate a CPC program into CPS-convertible form, the CPS translator replaces
the direct-style chunk of code following each CPS call by a call to a CPS function which
encapsulates this chunk. We call this pass splitting because it splits each original CPS function
into many, mutually recursive CPS functions in CPS-convertible form. These functions are
similar to event handlers: they are small atomic chunks of code that end with a cooperative
action, the continuation (callback) of which is explicit.

These functions encapsulating chunks of code, introduced during the splitting pass, are
inner functions, defined within the original, split CPS function. They do not have their own
local variables, sharing them instead with the enclosing function: this yields free variables,
defined in the enclosing function but unbound in the inner ones. For example, in the following
code, the local variable i, defined in f, is a free variable in the inner functions f; and f;.
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cps void f(int i) {
cps int 1 () {
i++;
cpc_sleep(1);
20

cps int f,() {
if(i > 10) return;
f10;
3
f1.0;
}

However, inner functions and free variables are not allowed in the C language; they only exist
as intermediary steps in the transformations performed by the CPC translator. Another pass is
needed after splitting, to eliminate these free variables and retrieve plain C in CPS-convertible
form.

Lambda lifting and environments

There are two common solutions used in functional languages to eliminate free variables:
lambda lifting and environments (or boxing). Lambda lifting binds free variables in inner
functions by adding them as parameters of these functions; the body of functions is not
modified, except for adding free variables as parameters at every call of an inner function. As
a result, each inner function gets its own local copy of free variables, and passes it the next
function. For example, here is Fig. 5 after lambda lifting, with the lifted variable i added as a
parameter to f7 and f5.
cps int fi(int i) {

i++;

cpc_sleep(1);

f2(i);

cps int f,(int i) {
if(i > 10) return;

fi(i);

3

cps void f(int i) {
fi(i);

}

A copy of the variable i is made on every call to f; and f>.

On the other hand, with environments, free variables are boxed in a chunk of heap-allocated
memory and shared between inner functions; the body of the functions is modified so that
every access to a shared variable goes through the indirection of the environment. Consider
once again Fig. 5, using an environment e containing a boxed version of i.
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typedef struct env { int i; } env;
cps int fi(env xe) {

(e->1)++;

cpc_sleep(1);

fa(e);

cps int f,(env xe) {
if(e->i > 10) { free e; return; }
fi(e);

cps void f(int i) {
env xe = malloc(sizeof(env));
e->1i = 1i;
fi(e);
3
The environment e is allocated and initialised in f, freed before returning in f;, and every
access to i is replaced by e->i.

The CPC translator uses lambda lifting. We have chosen this technique because a com-
pilation strategy based on environments would most certainly have resulted in a significant
overhead. We mentioned earlier that boxing is commonly used to compile functional pro-
grams; but the overhead of allocating and freeing memory for environments, as well doing
indirect memory accesses, is reasonable in a language such as Scheme because most variables
are never mutated, and can therefore be kept unboxed. On the other hand in C, where mutated
variables are the rule and const variables the exception, almost every variable would have to
be boxed, hindering compiler optimisations by the use of heap-allocated variables instead
of local variables. We have confirmed this intuition indeed, with benchmarks showing that,
even with a careful implementation of boxing, lambda lifting is faster than environments in

most cases (Chapter 7).

Duplicating mutable and extruded variables

Mutable variables There is a correctness issue when using lambda lifting in an imperative
language with mutable variables. Because lambda lifting copies variables, it can lead to
incorrect results if the original variable is used after the copy has been modified. For example,
the following program cannot be lambda-lifted correctly.
cps void f(int rc) {
cps void set() { rc = 0; return; }
cps void done() {
printf("rc_o=_%d\n", rc);
return;

}

set(); done(); return;

}

This function sets the variable rc to 0, regardless of its initial value, then prints it and returns.
The variable rc is free in the functions set and done. We lambda-lift it, and rename it in each
function for more clarity.
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cps void f(int rcy) {
set(rcy;); done(rcy); return;
}
cps void set(int rcy) {
rc; = 0;
return;

}

cps void done(int rci3) {
printf("rc.=_%d\n", rc3);
return;

}

The lambda-lifted version modifies the copied variable r;, but then copies again rc; into
rs and prints this copy. Therefore, it actually prints the initial value of rc;, which might be
different from 0.

In order to ensure the correctness of lambda lifting, one needs either to replicate the
modifications to every copy of the variable, or to enforce that a variable is never modified
after it has been copied by lambda lifting. The former idea is hardly usable in practice because
it requires to track every lifted variable: this would probably involve indirections, and would
be at least as costly as using environments.

As we shall see in Chapter 4, we use the latter solution: even in the presence of mutated
variables, the CPC compilation technique ensures the correctness of lambda lifting by en-
forcing the fact that unboxed lifted variables are never modified after having been copied by
lambda lifting. As we explained before, keeping a straightforward lambda-lifting pass without
boxing is essential for the efficiency of CPC programs.

Extruded variables The situation gets even worse in the presence of extruded variables,
variables whose address has been retained in a pointer through the “address of” operator &.
These variables can be modified from any function that has access to the pointer, and cannot
be copied since that would make their address stored in the pointer invalid.

This is an issue for lambda lifting, which copies variables, but also for CPS conversion.
Consider the following example, where the function f can modify the extruded variable x via
the pointer p.

cps int set(int *p) {
*p =1
return 2;

cps int f() {
int x =0, r;
r = set(&x); return add(r, x);

}

The function f sets x to 1, then adds it to 2, returning 3. If k is the current continuation, the
continuation of the call to set (&x) is add(x) - k, which yields the following code after CPS
conversion.
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cps void set*(int #*p, cont k) {

*p o= 1;
k(2);
3
cps void f*(cont k) {
int x = 0;
set” (&x, add*(x)-k);
3

The variable x, whose original value is 0, is copied in the continuation add (x) -k when creating
it. The variable x is later modified by set, but the copy in the continuation is not updated
and the code returns 2 (= 0 + 2) instead of 3.

Encapsulating extruded variables in environments solves the problem: instead of variables,
a pointer to the environment is copied in the continuation. Then, the function set modifies the
boxed variable, and the function add accesses the updated version, through the environment.
Boxing also solves the problem of pointers to extruded variables becoming invalid when the
variable is copied: since variables are boxed only once, their addresses do not change and can
be used reliably by the programmer.

The magic of CPC

To preserve its correctness in the hostile context of the C language, surrounded by traps of
mutable and extruded variables, the CPC translator could cowardly use systematic boxing to
shield all local variables in environments. In practice, however, such a conservative approach
would not be acceptable: C programs rely heavily on mutating local stack variables, and
allocating all of them on the heap would add a significant overhead. We follow a bolder, less
obvious approach.

The CPC translator keeps most variables unboxed, but uses lambda lifting and CPS
conversion nonetheless. In fact, only extruded variables are boxed, which amounts in practice
to less than 5 % of lifted variables in Hekate, our largest CPC program. Since copying variables
changes their address, which in turn breaks pointers to them, we cannot avoid boxing extruded
variables anyway. With this lower bound on the amount of boxing, the CPC translator manages
to use lambda lifting and CPS conversion with as little boxing as possible, performing correct
transformations with a limited overhead.

This result is made possible by the fact that the CPC translator does not operate on
arbitrary programs. We have shown that

in an imperative call-by-value language
without extruded, static, and global variables,
CPS conversion and lambda lifting are correct
for programs in CPS-convertible form
obtained by splitting.

More precisely, we will show the following two results:
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« Lambda lifting is correct when lifted functions are called in tail position (Theorem 4.1.9).
Intuitively, when lifted functions are called in tail position, they never return. Hence,
modifying copies of variables is not a problem since the original, out-of-date variables
are not reachable anymore. As it turns out, lifted functions in CPC are the inner
functions introduced by the splitting pass, which are always called in tail position.

« CPS conversion is correct for programs in CPS-convertible form (Theorem 5.4.1). Intu-
itively, storing copies of variables in continuations is an issue when another function
later in the call chain modifies the original variable. But only local variables are copied
into continuations, and a function cannot modify the local variables of other functions—
except for extruded variables, which are boxed to avoid this problem.

Contributions

The main contributions of this dissertation are:
« a complete implementation of the CPC language (Chapter 2);
« a compilation scheme based on proven program transformations (Chapter 3), in partic-
ular:

- a proof of correctness of lambda lifting for functions called in tail position in an
imperative call-by-value language without extruded variables (Chapter 4),

- a proof of correctness of the CPS conversion for programs in CPS-convertible
form in an imperative language without extruded, static and global variables
(Chapter 5);

« experimental results evaluating the usability and efficiency of CPC, including:

- Hekate, a BitTorrent network server written with CPC (Chapter 2),

- benchmarks showing that CPC is as fast as the fastest thread libraries available to
us while allowing an order of magnitude more threads (Chapter 6);

« an alternative implementation, eCPC, using environments instead of lambda lifting
in order to compare the overhead of indirect memory accesses and larger allocations,
versus repeated copies of local variables (Chapter 7).
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CHAPTER 1

Background

We have seen in the introduction (page 15) that threads and events are two common techniques
to implement concurrent programs. We review them in more details in Section 1.1. We study
in particular how to implement a simple program in both styles, what it implies in terms of
code readability and memory footprint, and when each style might be more suitable.

As it turns out, events are actually a generic term to describe a wide range of manual
techniques for concurrency. In Section 1.2, we compare several event-driven styles from
real-world programs, and analyse how the programmer encodes the flow of control and the
data flow manually in each of them.

Because threads are more convenient to write concurrent programs but sometimes not
available or efficient enough, an idea to keep the best of both worlds is to translate threads
into events automatically. In Section 1.3, we review existing techniques to perform this
transformation, and previous work on bridging the gap between threads and events.

1.1 Threaded and event-driven styles

111 Threads
An example of threaded style

Consider the following OCaml program that counts one sheep per second.

let rec count n animal = Figure 1.1: Sequential
print_int n; print_endline animal; count
sleep 1.;

count (n+1) animal

(x start counting sheep %)
count 1 "_sheep”

The function count is an infinite counter that displays the number of animals reached so far,
sleeps for one second,' then calls itself recursively to count the next animal. This is a purely

"Hence this program sleeps to count sheep, instead of counting sheep to fall asleep.
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sequential function which no longer works if we want to count several animals concurrently:
since it never returns, it is impossible to start another counter after calling count 0 " sheep”.

To introduce concurrency in this program, one straightforward solution is to use threads.
In OCaml, we only need to prefix the call to count with Thread. create. For instance, the
following code counts fish and sheep in two separate threads of execution, starting the second
thread half a second after the first one.

(x start counting fish and sheep concurrently x*)
Thread.create count 1 "_fish”

sleep 0.5
Thread.create count 1

[l

' _sheep”

The output looks as follows:

1 fish
1 sheep
2 fish
2 sheep

where one line is issued every half second.

In threaded programs, each task is executed by a separate thread with its own control flow
and local variables, independent of other threads. A scheduler is responsible for executing
each thread in turn, saving the state of the current thread and switching to the next one at
points called context switches. In Fig. 1.2, the scheduler executes the thread counting fish, then
after some time it saves the current point of execution and the value of the local variables n
and animal, switches to the thread counting sheep, restores its local variables, and continues
its execution where it left on the previous context switch. Provided the scheduler performs
these context switches fairly and often enough, the output looks like a witness of two tasks
executing simultaneously.

Implementing threads

Threads in a given program share every resource—memory space, file descriptors, etc.—except
their call stack and the CPU registers. Each thread has its own call stack that contains the
activation records of the functions that it is currently executing; each activation record holds
the information related to a single function execution and they are stacked one above the
other as functions call each other [Aho+88, p. 398]. The call stack captures most of the state
of a thread’s computation: the activation record of a function call stores, for instance, the local
variables and function parameters for this call. Some of the state of the computation is also
contained in the CPU registers. Most importantly, the stack pointer and program counter
capture respectively the current thread and its current instruction. They need to be saved too
so that the thread can be resumed in the exact same state later on.

When the scheduler switches from one thread to another, it saves the registers and schedul-
ing information in a data structure called a process control block* (PCB) [Dei90, p. 57]; the

*The terminology is not uniform across operating systems. In Linux, PCB is called process descriptor [BCO0,
Chapter 3] and is stored in a structure called task_struct.
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call stack need not be saved in most cases since it is already located in memory. The scheduler
then decides which thread to run next, grabs its PCB, and copies its content back into the
registers. Since the registers contain in particular a pointer to its call stack, it is then ready to
resume its execution until the next context switch.

Threads are implemented and scheduled either by the operating system (OS), or by a
user-space library. For user-space threads in interpreted languages or languages using a virtual
machine, performing a context switch is sometimes as simple and efficient as swapping two
pointers. Native threads, scheduled by the OS, are usually more heavyweight because each
context switch is associated with a switch to supervisor mode.

When threads are not suitable

There are a number of reasons why a programmer might not want, or be able, to use threads
to write a concurrent program: memory overhead, efficiency, lack of language or platform
support.

The most common reason for avoiding threads is because one cannot afford the memory
overhead that they entail. Since each thread reserves space for its own stack, it uses a fixed
amount of memory. Because of this historical implementation choice, threads are not the
ideal abstraction in the case of systems with many idle threads, which do not perform any
useful work but keep wasting memory. In embedded systems with limited resources, this
quickly becomes an unacceptable overhead as the number of threads increases. This is also an
issue for highly concurrent programs that wish to use many threads: for instance, a web server
that accepts ten thousands clients and uses three threads per client would need around 4 GB
of memory, for stack space alone, using the NPTL Posix threads library on Linux. Previous
authors have proposed implementations techniques to reduce this memory overhead, such as
InterLISP’s spaghetti stacks [BW73], GCC's split stacks [Tay11], or linked-stack [Beh+03] and
shared-stack threads [Gu+07]. However, in most real-world cases, programmers use events
instead of threads.

Threads are also sometimes avoided for efficiency reasons, because they might interact
badly with CPU caches. Because threads share a common memory space, two threads writing
in distinct but close variables will hit the same cache line, an issue known as false sharing:
there is no real conflict between the writes performed by the two threads, but when the
variables happen to be in the same cache line, the CPU considers them as a single block. On
computers with multiples processors or processor cores, this generates cache coherency traffic
between the processors, and this traffic has a significant impact on performance. To avoid false
sharing, the programmer might use processes instead of threads, sharing and synchronising
explicitly the necessary memory chunks; dthreads is an implementation of threads upon
processes that automates this idea [LCB11]. Another alternative is to use a distributed event-
driven architecture such as AMPED [PDZ99] or SEDA [WCBO1]: the program is split into
several processes, each of them executes an independent event loop, and communication and
synchronisation are performed by the means of events exchanged through queues between
the various processes.
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Beyond space and time efficiency, there are other, more fundamental, reasons why a
programmer might not be able to use threads. Some programming languages do not provide
threads as a concurrency primitive. This is the case for instance of Javascript[Ecm09]: it would
be impossible to write the “counting sheep” example (Fig. 1.2) in Javascript because there is no
such thing as a Thread. create function for this language. (In fact, even the sequential exam-
ple shown in Fig. 1.1 could not be written because there is no sleep function in Javascript.) To
help ensure the reactivity of programs, the designers of the language have decided to exclude
synchronous functions, which might block, and to provide only asynchronous alternatives, to
be used in event-driven style. We shall see in the next section how to use such functions to
write an event-driven equivalent of Fig. 1.2.

Asynchronous interfaces can also be imposed by the underlying OS, for example as a way
to perform non-blocking Input/Output operations (I/O). Sometimes, the OS does not provide
threads at all, and the sole API for I/O is asynchronous. This is common in particular in
embedded systems, where the limited resources preclude the use of threads. For example, some
adapters for RAID hard drives developed by IBM around the year 2000 used an architecture
called Independent Packet Network (IPN). Each IPN node ran a small firmware, the IPN
kernel, whose system calls were all asynchronous, from allocating and freeing memory to
reading and writing network packets. This forced the device drivers developed above the
IPN kernel to be implemented in purely event-driven style [Key10]. It also happens that
asynchronous I/O is an optional complement to threads, designed to use multiple processors
and improve performance; using them then yields a hybrid style mixing threads and events.
This is the case on Windows, where I/O Completion Ports (IOCP [RN11, Chapter 10]) are
the recommended way to perform efficient I/O, in combination with threads.

1.1.2 Events

A common alternative to threads for writing concurrent programs is the use of events. In
threaded style, each task is contained in a single execution unit, a thread, that is suspended
and resumed by a scheduler. In event-driven programming, each task is split in several small
functions, called event handlers or callbacks, that are scheduled by an event loop. The execution
of these event handlers is triggered by certain events, like the expiration of a timeout, the
availability of data for I/O, or a client connecting to a network server. The event loop repeatedly
collects new events, compares them to a set of registered event listeners and dispatches them
to the relevant event handlers. The event handlers then execute atomically: the event loop
starts new event handlers but, contrary to preemptive thread schedulers, it can never suspend
or interrupt them. Each event handler is responsible for registering its own event listeners
with the event loop to carry on its task.

An example of event-driven style

Consider the example of counting fish and sheep, re-written in event-driven style (Fig. 1.3).
The first change with respect to the threaded version is the call to a function startEventLoop
to launch the program (1): contrary to threads which are part of the OCaml language and have
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let startEventLoop : unit -> unit = fun () -> (x ... *)
let runAfter : float -> (unit -> unit) -> unit = fun t f -> (* ... %)

let rec count n animal =
print_int n; print_endline animal;

runAfter 1. (fun () -> count (n+1) animal) (x 2 %)
runAfter 0. (fun () -> count 1 "_fish") (* 3 %)
runAfter 0.5 (fun () -> count 1 "_sheep”) (*x 4 %)
startEventLoop () (x 1 %)

an implicit scheduler embedded in the OCaml runtime, there is no event loop to schedule
event handlers provided by the language. It needs to be written by the programmer (a sample
implementation is detailed in Fig. 1.4) and invoked explicitly. Note that this is not always the
case and depends in fact on the concurrency model offered by the language: Javascript, for
instance, provides no thread but offers a runAfter function and has an implicit event loop
associated with every program.

The second change, more fundamentally tied to the event-driven model, is the intro-
duction of a function runAfter. The purpose of runAfter is to register an event handler
function f with the event loop to handle a timeout event: calling runAfter t f schedules
the execution of the function f after t seconds. Hence, instead of sleeping for one second
then calling itself recursively as it did in threaded style, the function count registers a callback
with the main event loop to execute its next step one second later (2). Similarly, the tasks
counting fish and sheep are scheduled to start with a half-second interval (3 and 4).

Implementing an event loop

Figure 1.4 shows a naive implementation of the functions runAfter and startEventLoop
used in Fig. 1.3.

We need to keep track of the current time (1) and of the list of timeouts (2). The latter is
represented as a list of pairs: the first value is the expiration time of the timeout, in seconds
since the Epoch, and the second one is the handler to invoke when the timeout triggers. The
function runAfter computes the expiration time (3) and adds the pair to the list of timeouts
(4). The function startEventLoop finds the next timeout (5), sleeps for the time remaining
until it expires (6), then looks for expired timeouts (7), removes them from the list (8) and
executes them (9). It loops until the list of timeouts is empty (10).

Note that this implementation is not efficient for a high number of timeouts because it
does not even keep the list of timeouts sorted, hence needing to traverse it every time it looks
for the minimal timeout tmin. More eflicient data structures, like double-ended queues or
heaps, are used to implement timeout queues in realistic event-driven programs. It is not
complete either: a full-fledged event loop would offer functions to listen to more kinds of
events, to stop and to restart event listeners, and it would sometimes use a local rather than
global variable state to enable several event loops to run independently.
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type loop_state = {

mutable current_time float (x 1 %)
mutable timeouts (float * (unit -> unit)) list; (x 2 %)
3
let state = { timeouts = []; current_time = Unix.gettimeofday () }
let runAfter float -> (unit -> unit) -> unit = fun t f ->
let t’ = state.current_time +. t in (x 3 %)
state.timeouts <- (t’,f) state.timeouts (x 4 %)
let rec startEventLoop unit -> unit = fun () ->
match state.timeouts with
[ [ -> 0
| 1 ->
let tmin = (x 5 %)
List.fold_left (fun m (t,_) -> min m t) 0. 1 in
let timeout = max (tmin -. Unix.gettimeofday()) 0. in
ignore(Unix.select [] [] [] timeout); (* 6 *)
let current = Unix.gettimeofday () in
let (now, later) = List.partition
(fun (t,_) -> t <= current) state.timeouts in (x 7 %)
state.current_time <- current;
state.timeouts <- later; (x 8 %)
List.iter (fun (_, f) -> f()) now; (x 9 %)
startEventLoop () (x 10 %)

Memory footprint We mentioned that threads must sometimes be avoided because of the
space wasted by their fixed-size stacks (page 31). To support this point, we compare the
memory footprint of the thread and events implementations. We start an increasing number
of tasks counting animals and measure the maximum resident size of the process, on a system
with a x86-64 processor and 4 GB of RAM. Figure 1.5 shows the advantage of events over
threads when tens of thousands of tasks are required, or for memory constrained devices.
Each call to runAfter allocates around 330 bytes to store the closure fun () -> count
(n+1) animal and the list of timeouts; in comparison, each thread allocates a stack of 8 MB.
However, most of these allocations is virtual memory and, in practice, each thread uses 34 kB
of physical memory. As a result, starting 10 ooo timeouts uses 3 MB of physical memory,
whereas creating the same number of threads uses 100 times as much memory—and eats up
82 GB of virtual memory. Scheduling 100 0oo timeouts uses only 36 MB of memory; creating
that many threads is not even possible on our test system because it exceeds system limits.

The downsides of events

One major downside of event-driven style is that it makes the control flow much harder to
follow. Because event handlers are executed atomically, they must never block: if an event
handler calls a blocking function—for instance, if it sleeps during one second—it will also
block the whole program. Instead, event handlers that need to wait for an operation to
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complete must use an asynchronous equivalent, with a callback function invoked when the
event signaling the completion of the operation triggers. For that reason, in an event-driven
program, the control flow of each task is split into many atomic handlers that are linked
together by callbacks around each blocking point.

This property is not obvious in Fig. 1.3 because it consists of a single tail recursive function
count. There is therefore no need to split it: count registers itself as a handler for the timeout
event. Consider the following function, with a linear control flow but several calls to the
blocking function sleep:

let manySleeps () =

sleep 1.;

print_endline "Hello.";
sleep 2.;

print_endline "world..._";
sleep 3.;

print_endline "and._goodbye!"
In event-driven style, it becomes:

let manySleeps () =
runAfter (1., fun () ->
print_endline "Hello.";
runAfter (2., fun () ->
print_endline "world...._
runAfter (3., fun () ->
print_endline "and_goodbye!")))

n o,
’

And in a language without first-class functions, like C, we would need to name every interme-
diate callback:

let manySleeps () =
let rec manySleepsl () =
print_endline "Hello.";
runAfter (2., manySleeps2)
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and manySleeps2 () =
print_endline "world...._";
runAfter (3., manySleeps3)
and manySleeps3 () =
print_endline "and_goodbye!"”
in runAfter (1., manySleepsl)

Even in this simple, sequential case the control flow is harder to understand in the event-driven
versions than in the threaded one. As we shall see in the next section, for larger and more
complex functions featuring nested loops, conditional jumps and several blocking points, the
event-driven equivalent is even more obscure.

Another weak point of events is the difficulty of debugging. Debugging event-driven code
is painful because of the lack of a call stack. Since event handlers return to the event loop
whenever they are done, the call stack is reduced to the event loop calling the latest event
handler. There is no hint as to which previous event handler registered the current one, which
one in turn registered the previous one, and so on. The values of local variables in these
past handlers are lost as well, although they could sometimes be very valuable to track a bug
of which the effects are visible only after a few turns of the event loop. This phenomenon,
sometimes known as “stack ripping” [Ady+02], differs from threaded style where one can
inspect the dynamic stack to determine the nested function calls that led to the current point
of execution as well as the value of local variables in every intermediary function—except for
optimised tail calls, which produce a flat stack similar to event-driven style.3

1.2 Control flow and data flow in event-driven code

Since event-driven programs do not use the native call stack to store return addresses and local
variables, they must encode the control flow and data flow in data structures, the bookkeeping
of which is the programmer’s responsibility. This yields a diversity of styles among event-driven
programs, depending on the programmer’s taste, creativity, and his perception of efficiency.
In this section, we analyse how control flow and data flow are encoded in several examples of
real-world event-driven programs, and compare them to equivalent threaded-style programs.

1.2.1 Control flow
Two main techniques are used to represent the control flow in event-driven programming:

callbacks and state machines.

Callbacks Most of the time, control flow is implemented with callbacks. Instead of perform-
ing a blocking function call, the programmer calls a non-blocking equivalent that cooperates

*Some implementations manage to preserve debugging information in spite of tail call optimisation. For
instance, MIT/GNU Scheme’s interpreter keeps a copy of stack frames in a ring-buffer, used only when a backtrace
is needed. [Masl1, Section 5.2 (The Command-Line Debugger)]
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cps int

cpc_accept(int fd)

{
cpc_io_wait(fd, CPC_IO_IN);
return accept(fd, NULL, NULL);

}
cps int
accept_loop(int fd)
{
int client_fd;
while (1) {
client_fd = cpc_accept(fd);
cpc_spawn httpTimeout(client_fd, clientTimeout);
cpc_spawn httpClientHandler(client_fd);
3
}

with the event loop, providing a function pointer to be called back once the non-blocking call
is done. This callback function is actually the continuation of the blocking operation.

Developing large programs raises the issue of composing event handlers. Whereas
threaded code has return addresses stored on the stack and a standard calling sequence
to coordinate the caller and the callee [JR81], event-driven code needs to define its own strat-
egy to layer callbacks, storing the callback to the next layer in some data structure associated
with the event handler. The “continuation stack” of callbacks is often split in various places of
the code, each callback encoding its chunk of the stack in an ad-hoc manner.

Consider for instance the accept loop of an HTTP server that accepts clients and starts
two tasks for each of them: a client handler, and a timeout to disconnect idle clients. With
cooperative threads, this would be implemented as a mere infinite loop with a cooperation
point. Figure 1.9 shows such an accept loop written with CPC. The programmer would call
cpc_spawn accept_loop(fd) to create a new thread that runs the accept loop; the function
accept_loop then waits for incoming connections with the primitive cpc_io_wait, and
creates two new threads for each client (httpTimeout and httpClientHandler), which kill
each other upon completion.

Figure 1.10 shows the (simplified) code of the accepting loop in Polipo, a caching web-
proxy written by Chroboczek [Chr08]. This code is equivalent to the threaded version in
Fig. 1.9, and uses several levels of callbacks.

In Polipo, the accept loop is started by a call to:

schedule_accept (fd, httpAccept, NULL);

This function stores the pointer to the (second-level) callback httpAccept in the handler
field of the request data structure (1), and registers a (first-level) callback to do_scheduled_
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Figure 1.10: Accept loop FdEventHandlerPtr
callbacks in Polipo schedule_accept(int fd,
int (xhandler)(int, FdEventHandlerPtr, AcceptRequestPtr),
void =*data)

FdEventHandlerPtr event;
AcceptRequestRec request;
int done;

request.fd = fd;
request.handler = handler; /% 1 %/
request.data = data;
event = registerFdEvent (fd, POLLOUT|POLLIN, /* 2 %/
do_scheduled_accept,
sizeof (request), &request);
return event;

int

do_scheduled_accept(int status, FdEventHandlerPtr event)

{
AcceptRequestPtr request = (AcceptRequestPtr)&event->data;
int rc, done;

rc = accept(request->fd, NULL, NULL); /* 3 %/
done = request->handler(rc, event, request); /* 4 %/
return done;

int
httpAccept(int fd, FdEventHandlerPtr event, AcceptRequestPtr request)
{

HTTPConnectionPtr connection;

TimeEventHandlerPtr timeout;

connection = httpMakeConnection();
timeout = scheduleTimeEvent(clientTimeout, /* 5 %/
httpTimeoutHandler,
sizeof (connection), &connection);
connection->fd = fd;
connection->timeout = timeout;
connection->flags = CONN_READER;
do_stream_buf (IO_READ | IO_NOTNOW, connection->fd, 0, /* 6 %/
&connection->reqbuf, CHUNK_SIZE,
httpClientHandler, connection);
return 0;

3

For readability reasons, the code has been greatly simplified (in particular, error handling has
been omitted completely).
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accept, through registerFdEvent. Each time the file descriptor fd becomes ready (not
shown), the event loop calls the (first-level) callback do_scheduled_accept, which performs
the actual accept system call (3) and finally invokes the (second-level) callback httpAccept
stored in request->handler (4).

This callback schedules two new event handlers, httpTimeout and httpClientHandler.
The former is a timeout handler, registered by scheduleTimeEvent (5); the latter reacts I/O
events to read requests from the client, and is registered by do_stream_buf (6). Note that
those helper functions that register callbacks with the event loop use other intermediary
callbacks themselves, just like schedule_accept uses do_schedule_accept.

In the original Polipo code, things are even more complex since schedule_accept is
called from httpAcceptAgain, yet another callback that is registered by httpAccept itself
in some error cases. The control flow becomes very hard to follow, in particular when errors
are triggered: each callback must be prepared to cope with error codes, or to follow-up the
unexpected value to the next layer. In some parts of the code, this style looks a lot like an
error monad manually interleaved with a continuation monad. Without a strict discipline
and well-defined conventions about composition, the flexibility of callbacks easily traps the
programmer in a control-flow and storage-allocation maze.

State machines When the multiplication of callbacks becomes unbearable, the event-loop
programmer might refactor his code to use a state machine. Instead of splitting a computation
into as many callbacks as it has atomic steps, the programmer registers a single callback that
will be called over and over until the computation is done. This callback implements a state
machine: it stores the current state of the computation into an ad-hoc data structure, just like
threaded code would store the program counter, and uses it upon resuming to jump to the
appropriate location.

Figure 1.1 shows how the initial handshake of a BitTorrent connection is handled in
Transmission*, a popular and efficient BitTorrent client written in (mostly) event-driven style.
Until the handshake is over, all data arriving from a peer is handed over by the event loop to
the canRead callback. This function implements a state machine, whose state is stored in the
state field of a handshake data structure. This field is initialised to AWAITING_HANDSHAKE
when the connection is established (not shown) and updated by the functions responsible for
each step of the handshake.

The first part of the handshake is dispatched by canRead to the readHandshake function
(1). It receives the buffer inbuf containing the bytes received so far; if not enough data has
yet been received to carry on the handshake, it returns READ_LATER to canRead (2), which
forwards it to the event loop to be called back when more data is available (3). Otherwise, it
checks the BitTorrent header (4), parses the first part of the handshake, registers a callback to
send a reply handshake (not shown), and finally updates the state (5) and returns READ_NOW
to indicate that the rest of the handshake should be processed immediately (6).

Note what happens when the BitTorrent header is wrong (4): the function tr_hand-
shakeDone is called with false as its second parameter, indicating that some error occurred.

*http://www.transmissionbt.com/.
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Figure 1.11: Handshake static ReadState
state machinein canRead(struct evbuffer x inbuf, tr_handshake * handshake) {

Transmission ReadState ret = READ_NOW;

while(ret == READ_NOW) {
switch(handshake->state) {
case AWAITING_HANDSHAKE : /*x 1 %/
ret = readHandshake (handshake, inbuf);
break;
case AWAITING_PEER_ID: /*x 1 %/
ret = readPeerlId (handshake, inbuf);
break;
/* ... cases dealing with encryption omitted =*/
}
}
return ret; /* 3 %/

}

static int
readHandshake (tr_handshake *x handshake, struct evbuffer x inbuf) {
uint8_t pstr[20], reserved[HANDSHAKE_FLAGS_LENT],
hash[SHA_DIGEST_LENGTH];

if (evbuffer_get_length(inbuf) < INCOMING_HANDSHAKE_LEN)

return READ_LATER; /* 2 %/
tr_peerIoReadBytes(handshake->io, inbuf, pstr, 20);
if (memcmp(pstr, "\023BitTorrent_protocol”, 20)) /* 4 x/

return tr_handshakeDone (handshake, false);
tr_peerIoReadBytes (handshake->io, inbuf, reserved, sizeof(reserved));
tr_peerIoReadBytes(handshake->io, inbuf, hash, sizeof(hash));

/* ... parsing of handshake and sending reply omitted =/
handshake->state = AWAITING_PEER_ID; /* 5 %/
return READ_NOW; /* 6 %/

3

static int
readPeerId(tr_handshake * handshake, struct evbuffer *x inbuf) {
uint8_t peer_id[PEER_ID_LEN];

if(evbuffer_get_length(inbuf) < PEER_ID_LEN) /* 8 %/
return READ_LATER;

tr_peerIoReadBytes(handshake->io, inbuf, peer_id, PEER_ID_LEN);

/* ... parsing of peer id omitted =x/

return tr_handshakeDone (handshake, true); /* 9 x/

3

For readability reasons, the code has been greatly simplified (in particular, encryption support
has been omitted completely).
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This function (not shown) is responsible for invoking the callback handshake->doneCB and
then deallocating the handshake structure. This is another example of the multiple layers of
callbacks mentioned above.

If the first part of the handshake completes without error, canRead then dispatches the
buffer to readPeerId which completes the handshake (7). Just like readHandshake, it returns
READ_LATER if the second part of the handshake has not arrived yet (8) and finally calls
tr_handshakeDone with true to indicate that the handshake has been successfully completed
(9).

In the original code, ten additional states are used to deal with the various steps of negotiat-
ing encryption keys. The last of these steps finally rolls back the state to AVAITING_HANDSHAKE
and the keys are used by the function tr_peerIoReadBytes to decrypt the rest of the ex-
change transparently. The state machine approach makes the code slightly more readable
than using pure callbacks.

1.2.2 Data flow

Since each callback function performs only a small part of the whole computation, the event-
loop programmer needs to store temporary data required to carry on the computation in
heap-allocated data structures, whereas stack-allocated variables would sometimes seem more
natural in threaded style. The content of these data structures depends heavily on the program
being developed but we can characterise some common patterns.

Event loops generally provide some means to specify a void* pointer when registering an
event handler. When the expected event triggers, the pointer is passed as a parameter to the
callback function, along with information about the event itself. This allows the programmer
to store partial results in a structure of his choice, and recover it through the pointer without
bothering to maintain the association between event handlers and data himself.

Coarse-grained, long lived data structures These data structures are usually large and
coarse-grained. They correspond to some meaningful object in the context of the program,
and are passed from callback to callback through a pointer. For instance, the connection
structure used in Polipo (Figure 1.10) is allocated by ht tpMakeConnection when a connection
starts and passed to the callbacks httpTimeoutHandler and httpClientHandler through
the registering functions scheduleTimeEvent (5) and do_stream_buf (6). It lives as long
as the HTTP connection it describes and contains no less than 22 fields (Fig. 1.12). The
tr_handshake structure passed to canRead in Transmission (Fig. 1.11) is similarly large, with
18 fields (Fig. 1.13).

Some of these fields need to live for the whole connection (eg. fd which stores the file
descriptor of the socket) but others are used only transiently (eg. buf which is filled only
when sending a reply), or even not at all in some cases (eg. the structure HTTPConnectionPtr
is used for both client and server connections, but the pipelined field is never used in the
client case). Even if it wastes memory in some cases, it would be too much of a hassle for
the programmer to track every possible data flow in the program and create ad-hoc data
structures for each of them.
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} HTTPConnectionRec,

int flags;
int fd;
char *buf;
int len;
int offset;

_HTTPConnection {

HTTPRequestPtr request;
HTTPRequestPtr request_last;

int serviced;
int version;
int time;

TimeEventHandlerPtr timeout;

int te;

char *reqgbuf;
int reqglen;
int regbegin;
int reqoffset;
int bodylen;
int reqte;

/* For server connections =*/

int chunk_remaining;
_HTTPServer *server;

struct
int pipelined;
int connecting;

Figure1.13: Data struct tr_handshake {

structure for handshakes
in Transmission
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tr_peerlo *
tr_crypto *
tr_session *
uint8_t
handshake_state_t
tr_encryption_mode
uint16_t

uint16_t

uintl6_t

uint32_t

uint32_t

uint8_t
handshakeDoneCB
void *

struct event

*HTTPConnectionPtr;

haveReadAnythingFromPeer;
havePeerlID;
haveSentBitTorrentHandshake;
io;

crypto;

session;

mySecret [KEY_LENT;

state;

encryptionMode;

pad_c_len;

pad_d_len;

ia_len;

crypto_select;
crypto_provide;

myReq1 [SHA_DIGEST_LENGTH];
doneCB;

doneUserData;
timeout_timer;
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typedef struct _AcceptRequest {
int fd;
int (xhandler)(int, FdEventHandlerPtr, struct _AcceptRequestx*);
void =*data;

} AcceptRequestRec, *AcceptRequestPtr;

Minimal, short-lived data structures In some simple cases, however, the event-loop pro-
grammer is able to allocate very small and short-lived data structures. These minimal data
structures are allocated directly within an event handler and are deallocated when the asso-
ciated callback returns. They might even be allocated on the stack by the programmer and
copied inside the event-loop internals by the helper function registering the event handler.
The overhead is therefore kept as low as possible.

For instance, the function schedule_accept passes a tiny, stack-allocated structure
request, of type AcceptRequestRec (Fig. 1.14), to the helper function registerFdEvent
(Fig. 1.10 (2)). This structure is copied by registerFdEvent in the event-loop data structure
associated with the event, and freed automatically after the callback do_scheduled_accept
has returned; it is as short-lived and (almost) as compact as possible.

As it turns out, creating truly minimal structures is hard: AcceptRequestRec could in
fact be optimised to get rid off the fields data—which is always NULL in practice in Polipo—
and fd—which is also present in the encapsulating event data structure. Finding every such
redundancy in the data flow of a large event-driven program would be a daunting task, hence
the spurious and redundant fields used to lighten the programmer’s burden.

1.3 From threads to events through continuations

We have seen in Section 1.1.1 that the programmer sometimes cannot avoid event-driven style,
although threaded style is more convenient to write concurrent programs. To keep the best
of both worlds, it is then natural to want to translate threads into events automatically. That
way the programmer writes his program using threads, which are easier to reason about, and
delegates to the compiler the task of generating efficient but intricate event-driven code.

The translation of threads into events has been rediscovered many times [Dun+06; KKK07;
FMMO07; Key10]. Unfortunately, these many implementations often lack a formal description
of the transformation steps involved, let alone a proof of correctness. It is our thesis that
these translations are in fact a few classical transformation techniques, studied extensively in
the context of functional languages, and adapted—sometimes unknowingly—to imperative
languages by programmers trying to solve the issue of writing events in a threaded style.

In this section, we first review existing solutions for writing event-driven programs in
a threaded style. We then present the use of continuations to implement concurrency in
functional languages. Finally, we give a brief overview of the techniques that we identified
in existing threads-to-events translators, and used in the CPC translator: CPS conversion,
lambda lifting and splitting.
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1.3.1 Events in a threaded style

There has been a lot of research to provide efficient threads, as well as to make event-driven
programming easier [Beh+03; WCB01; PDZ99; CK05; Dab+02]. We do not intend to resurrect
an old debate on which model is better [Ous96; MY98; BCB03]: we have seen above that each
of them has its advantages and drawbacks, without any decisive argument for either. We focus
instead on results involving a transformation between threads and events, or building bridges
between them. Most of these results consist in generating event-driven code from a threaded
description, automating partially the work of saving flow of control and local state.

We would first like to clarify what we believe is a widespread misconception. It is often
reported that threads and events are computationally equivalent, and this result is attributed
to Lauer and Needham [LN79]. But their paper is not about threads and events: it is about the
equivalence of procedure-oriented and message-oriented systems.> They map processes to
monitors, sending messages to forking, and dispatch loops to locks. While message-oriented
systems bear some similarity to event-driven programs, they also have fundamental differences:
preemptive scheduling, no shared state, no global lock, communication and synchronisation
done exclusively through message-passing. Whether threads and events are equivalent, for
some definition of equivalence, remains an unstudied problem in the literature.

Adya et al. [Ady+02] introduce the notion of stack ripping: it describes the need, when a
formerly atomic function needs to be made cooperative, to split every function (transitively)
leading to it in the call graph into two new functions, to manually encode the call stack into
chained callbacks at the point of cooperation. The authors single out this issue as the “the
primary drawback to manual stack management”. They advocate (but do not implement)
static check that cooperative functions are only called from other cooperative functions. They
present adaptors between event-driven and threaded code to write hybrid programs mixing
both styles.

Duff introduces a technique, known as Duff’s device [Duf83], to express general loop
unrolling directly in C, using the switch statement. Since then, this technique has been
employed multiple times to express state machines and event-driven programs in a threaded
style.’ For instance, it is used by Tatham to implement coroutines in C [Tat00]. Other C
libraries later expanded this idea, such as protothreads [Dun+06] and FairThreads” automata
[Bou06]. These libraries help keep a clearer flow of control but they provide no automatic
handling of local variables: the programmer is expected to save them manually in his own
data structures, just like in event-driven style.

Tame [KKKO07] is a C++ language extension and library which exposes events to the
programmer but does not impose event-driven style: it generates state machines to avoid the

>The first to cite Lauer and Needham in the threads-versus-events debate seem to be Adya et al. [Ady+02].
However they mention explicitly that “[Lauer and Needham’s] comparison is decidedly not between the models
we associate with multithreaded and event-driven programming.” For some reason this sentence seems to have
been overlooked in other papers which spread the misconception.

®This abuse was already envisioned by Duffin 1983: “I have another revolting way to use switches to implement
interrupt driven state machines but it’s too horrid to go into.” [Duf83]
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stack ripping issue and retain a thread-like feeling. The programmer needs to annotate local
variables that must be saved across context switches.

TaskJava [FMMO7] implements the same idea as Tame, in Java, but preserves local vari-
ables automatically, storing them in a state record. Kilim [SMO08] is a message-passing frame-
work for Java providing actor-based, lightweight threads. It is also implemented by a partial
CPS conversion performed on annotated functions, but contrary to TaskJava, it works at the
JVM bytecode level.

AC [Har+11] is a set of language constructs for composable asynchronous I/O in C and
C++. Harris et al. introduce do. . finish and async operators to write asynchronous re-
quests in a synchronous style, and give an operational semantics. The language constructs are
somewhat similar to those of Tame but the implementation is very different, using LLVM
code blocks or macros based on GCC’s nested functions rather than source-to-source trans-
formations.

Haller and Odersky [HO09] advocate unification of thread-based and event-based models
through actors, with the react and receive operators provided by the Scala Actors library;
suspended actors are represented by continuations.

With Javascript becoming increasingly popular for web development in the last few years,
multiple control-flow libraries have been written to automate recurrent asynchronous patterns.
Among dozens of others, some of the most popular ones seem to be Step”, FuturesJS®, and Seq®.
They have in common to use Javascript’s closures and prototype-based objects to dynamically
store the call stack, but the API and implementation details vary a lot. Unfortunately, these
implementations are rarely described in the literature, and the main source of documentation
is blog posts using non-standard terminology scattered around the web. Arrowlets by Khoo
et al. [Kho+09] is a notable exception: it provides arrows and arrow combinators, borrowed
from the Haskell community [Hug00], and the paper describes explicitly the implementation
in terms of continuation-passing style.

1.3.2 Continuations and concurrency

We have seen that continuations offer a natural framework to implement concurrency systems
in functional languages, since they capture “the rest of the computation” much like the state
of an imperative program is captured by the call stack. Thread-like primitives may be built
with either first-class continuations, or encapsulated within a continuation monad.

The former approach is best illustrated by Concurrent ML constructs [Rep93], imple-
mented on top of SML/NT’s first-class continuations, or by the way coroutines and engines
are typically implemented in Scheme using the call/cc operator [CFW85; HFW86; DH89]
(previously known as catch [Wan80]). Danvy et al. [DSZ09, Section 4.4] use continuations
provided by the Rhino Javascript implementation to define Landin’s ] operator, which they
then use to implement coroutines. Stackless Python [Tis00] uses first-class continuations to

“https://github.com/creationix/step/.
8http://coolaj86.info/futures/.
*https://github.com/substack/node-seq/.
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implement generators, which are in turn used to implement concurrency primitives. Scala
also uses first-class continuations, through the shift and reset operators, to implement
concurrency primitives and asynchronous I/O [RMO09].

Explicit translation into continuation-passing style, often encapsulated within a monad,
is used in languages lacking first-class continuations. In Haskell, the original idea of a con-
currency monad is due to Scholz [Sch95], and extended by Claessen [Cla99] to a monad
transformer yielding a concurrent version of existing monads. Li and Zdancewic [LZ07] use a
continuation monad to lazily translate the thread abstraction exposed to the programmer into
events scheduled by an event loop. In OCaml, Vouillon’s Iwt [Vou08] provides a lightweight
alternative to native threads, with the ability to execute blocking tasks in a separate thread pool.
The asynchronous model in F# is implemented with a localized continuation-passing transla-
tion of control-flow and a heap-based allocation of the closures, using three continuations for
success, exceptions and cancellation [SPL11].

1.3.3 Transformation techniques

The three main techniques used in this thesis to compile threads into events—CPS conversion,
lambda lifting and splitting—are fairly standard techniques for compiling functional languages,
or at least languages providing inner functions.

The conversion into continuation-passing style, or CPS conversion, has been discovered
and studied many times in different contexts [Plo75; SW74; Rey93]. It is used for instance
to compile Scheme (Rabbit [Ste78]) and ML (SML/N]J [App92]), both of them exposing
continuations to the programmer.

Lambda lifting, also called closure-conversion, is a standard technique to remove free
variables. It is introduced by Johnsson [Joh85] and made more efficient by Danvy and Schultz
[DS04]. Fischbach and Hannan prove its correctness for a call-by-name language[FHO03]. Al-
though environments are a more common way to handle free variables, some implementations
use lambda lifting; for instance, the Twobit Scheme-to-C compiler [Cli98].

We call splitting the conversion of a complex flow of control into mutually recursive
function calls. Van Wijngaarden is the first to describe such a transformation, in a source-
to-source translation for Algol 6o [Wij66]. The idea is then used by Landin to formalise a
translation between Algol and the lambda calculus [Lan65], and by Steele and Sussman to
express gotos in applicative languages such as LISP or Scheme [S]S76]. Thielecke adapts van
Wijngaarden’s transformation to the C language, albeit in a restrictive way [Thi99].

We are aware of several implementations of splitting, but none of them has been described
precisely in the literature. Weave is an unpublished tool used at IBM around the year 2000
to write firmware and drivers for SSA-SCSI RAID storage adapters [Key10]. It translates
annotated Woven-C code, written in threaded style, into C code hooked into the underly-
ing event-driven kernel. TameJS', by the authors of the C++ Tame library [KKKO07], is a
similar tool for Javascript where event-driven programming is made mandatory by the lack

Yhttp://tamejs.org/.
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of concurrency primitives." FlapJax [Mey+09], a functional reactive programming library
for Javascript, provides a compiler which performs an “implicit lifting”; despite the name,
it seems that this transformation is a restricted form of splitting, but the implementation is
not detailed. MapJAX [Mye+07] also compiles a conservative extension of Javascript to plain
Javascript using splitting and CPS conversion."? Interestingly enough, the authors note that,
in spite of Javascript’s support for nested functions, they need to perform “function denesting”
for performance reasons;" they store free variables in environments (“closure objects”) rather
than using lambda lifting.

In Chapter 7, we propose to generate state machines by combining splitting, mentioned
above, and defunctionalisation, a technique introduced by Reynolds [Rey72]. Another ap-
proach to transform an arbitrary program into an automaton is the Béhm-Jacopini theorem
[BJ66], which states that “every flowchart is equivalent to a while-program with one occur-
rence of while-do, provided additional variables are allowed”. This formulation is due to
Harel, who provides an impressively thorough analysis of the literature about this result, and
shows how this “folk theorem” has in fact been rediscovered many times by independent
researchers [Har80].

"Note that, contrary to Tame]S, the original Tame implementation in C++ does not use splitting but a state
machine with switches.

?“When the compiler encounters one of the blocking method calls, it computes the continuation of the call,
packages that code as a continuation function, and adds that function as an extra argument to the call” [Mye+07]

3“We found that access to variables declared in a nesting hierarchy was considerably slower than access to
variables declared in a top-level function” [Mye+07]
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CHAPTER 2

Programming with CPC

Continuation-Passing C (CPC) is an extension of the C programming language with concur-
rency primitives which is implemented by a series of source-to-source transformations. After
this series of transformations, the CPC translator yields a program in hybrid style, most of it
event-driven, but using the native threads of the underlying operating system wherever this
has been specified by the CPC programmer, for example in order to call blocking APIs or
distribute CPU-bound code over multiple cores or processors.

The CPC language was initially designed by Chroboczek, who implemented a first pro-
totype in Lisp [Chr05]. During his PhD, the author has rewritten the CPC translator from
scratch in OCaml: full support of the C language, support for extruded variables (Section 3.2.2),
increased modularity. The CPC runtime has also been extended with the ability to use native
threads (cpc_link), and rewritten to some extent.

This chapter presents the CPC language. In Section 2.1, we give an introduction to CPC
programming through excerpts from the code of Hekate, a BitTorrent server written with CPC.
It aims at giving a first taste of CPC without diving too deeply into technical details. Then, in
Section 2.2, we give a more systematic presentation of CPC concepts and primitives, along
with their limitations. Finally, in Section 2.3, we present several synchronisation constructs
built upon the CPC primitives and provided by the CPC standard library.

2.1  An introduction to CPC

The most significant program written in CPC is Hekate, a BitTorrent seeder, a massively
concurrent network server designed to efficiently handle tens of thousands of simultaneously
connected peers [KC11b; AC09]. It was developed by two undergraduate students, supervised
by Chroboczek and the author. Because we wanted to evaluate to evaluate the usability of
CPC for casual users, we chose students who had never worked with CPC before, and were
purposefully kept unaware of CPC internals. This ensured that they used a wide range of
CPC features, and some patterns that were not covered in our previous tests; writing Hekate
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turned out to be a powerful means to iron bugs out of CPC. It was also highly motivating to
write a truly useful piece of software with CPC.

In this section, we give an overview of the CPC language through several programming
idioms that we discovered while working on Hekate with our students.

2.1.1  Cooperative CPC threads

The extremely lightweight, cooperative threads of CPC lead to a “threads are everywhere”
feeling that encourages a somewhat unusual programming style.

Lightweight threads Contrary to the common model of using one thread per client, Hekate
spawns at least three threads for every connecting peer: a reader, a writer, and a timeout
thread. Spawning several CPC threads per client is not an issue, especially when only a few of
them are active at any time, because idle CPC threads entail virtually no overhead.

The first thread reads incoming requests and manages the state of the client. The BitTorrent
protocol defines two states for interested peers: “unchoked,” where a peer might perform
requests and receive chunks of data, and ‘choked” which is a waiting state. Hekate maintains
90 % of its peers in choked state, and unchokes them in a round-robin fashion.

The second thread is in charge of actually sending the chunks of data requested by the peer.
It usually sleeps on a condition variable, and is woken up by the first thread when needed.
Because these threads are scheduled cooperatively, the list of pending chunks is manipulated
by the two threads without need for a lock.

Every read on a network interface is guarded by a timeout, and a peer that has not been
involved in any activity for a period of time is disconnected. Earlier versions of Hekate which
did not include this protection would end up clogged by idle peers, which prevented new
peers from connecting.

In order to simplify the protocol-related code, timeouts are implemented in the buffered
read function, which spawns a new timeout thread on each invocation. This temporary third
thread sleeps for the duration of the timeout, and aborts the I/O if it is still pending (the
implementation is detailed in Section 2.3.2). Because most timeouts do not expire and are
stopped as soon as I/O has completed, this solution relies on the efficiency of spawning and
context-switching short-lived CPC threads (see Chapter 6 for experimental results).

Native and CPS functions CPC threads might execute two kinds of code: native functions
and CPS functions (annotated with the cps keyword). Intuitively, CPS functions are inter-
ruptible and native functions are not: it is possible to interrupt the flow of a block of CPS
code in order to pass control to another piece of code, to wait for an event to happen or to
switch to another scheduler (Section 2.1.3). Note that the cps keyword does not mean that
the function is written in continuation-passing style, but rather that it is to be CPS-converted
by the CPC translator. Native code, on the other hand, is “atomic™: if a sequence of native
code is executed in cooperative mode, it must be completed before anything else is allowed to
run in the same scheduler. As we shall see in Chapter 3, from a more technical point of view,
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cps void Figure 2.1: Accepting
listening(hashtable * table) { connections and
/% %/ spawning threads
while (1) {
cpc_io_wait(socket_fd, CPC_IO_IN);
client_fd = accept(socket_fd, ...);

cpc_spawn client(table, client_fd);
}
}

CPS functions are compiled by performing a transformation into Continuation-Passing Style
(CPS), while native functions execute on the native stack.

There is a global constraint on the call graph of a CPC program: a CPS function may only
be called by a CPS function; equivalently, a native function can only call native functions—but
a CPS function may call a native function. This means that at any point in time, the dynamic
chain consists of a “CPS stack” of cooperating functions, and a “native stack” of regular C
functions called by the most recent CPS function. Since context switches are forbidden in
native functions, only the CPS stack needs to be saved and restored when a thread cooperates.

CPC primitives CPC provides a set of primitive CPS functions, which allow the program-
mer to schedule threads and wait for some events. These primitive functions could not have
been defined in user code: they must have access to the internals of the scheduler to operate.
Since they are CPS functions, they can only be called by another CPS function.

Figure 2.1 shows an example of a CPS function: the function 1istening calls the primitive
cpc_io_wait to wait for the file descriptor socket_fd to be ready, before accepting incoming
connections with the native function accept and spawning a new thread for each of them.
The cpc_spawn keyword can be used, in both native and CPS functions, to create a new thread
executing a CPS function (client in this example).

The CPC language provides five CPS primitive functions to suspend and synchronise
threads on some events. The simplest one is cpc_yield, which yields control to the next
thread to be executed, as determined by the scheduler. The primitives cpc_io_wait and
cpc_sleep suspend the current thread until a given file descriptor has data available or
some time has elapsed, respectively. A thread can wait on some condition variable [Hoa74]
with cpc_wait; threads suspended on a condition variable are woken with the (non-CPS)
functions cpc_signal and cpc_signal_all. To perform early interruptions, cpc_io_wait
and cpc_sleep also accept an optional condition variable which, if signalled, will wake up
the waiting thread.

The fifth CPS primitive, cpc_link, is used to control how threads are scheduled. We give
more details about it in Section 2.1.3.

We have found that these five primitives are enough to build more complex synchronisa-
tion constructs and CPS functions, such as barriers or retriggerable timeouts. Some of these
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generally useful functions, written in CPC and built above the CPC primitives, are distributed
with CPC and form the CPC standard library (Section 2.3).

2.1.2 Comparison with event-driven programming

Code readability Hekate’s code is much more readable than its event-driven equivalents.
Consider for instance the BitTorrent handshake, a message exchange occurring just after a
connection is established. As we have seen in Section 1.2.1, the handshake in Transmission
is a complex piece of code, spanning over a thousand lines in a dedicated file. By contrast,
Hekate’s handshake is a single function of less than fifty lines including error handling.

While some of Transmission’s complexity is explained by its support for encrypted con-
nections, Transmission’s code is intrinsically much more messy due to the use of callbacks
and a state machine to keep track of the progress of the handshake (see Fig. 1.11 on page 40
for the actual code). This results in an obfuscated flow of control, scattered through a dozen
functions (excluding encryption-related functions), typical of event-driven code.

Expressivity Surprisingly enough, CPC threads turn out to naturally express some idioms
that are more commonly associated with event-driven style. Consider for instance the case
of buffer allocation for reading data from the network. When a native thread performs a
blocking read, it needs to allocate the buffer before the read system call; when many threads
are blocked waiting for a read, these buffers add up to a significant amount of storage. In an
event-driven program, it is possible to delay allocating the buffer until after an event indicating
that data is available has been received. This is done for instance by the web proxy Polipo
[Chro08].

The same technique is not only possible, but actually natural in CPC. For instance in
Hekate, we define a data structure cpc_buffer that is allocated by cpc_buffer_get and
filled by cpc_buffer_read. However, the function cpc_buffer_get initialises the field
buf of this structure with a null pointer. The buffer is only allocated after cpc_io_wait has
successfully returned the first time cpc_buffer_read is called (Fig. 2.2). This provides the
reduced storage requirements of an event-driven program while retaining the linear flow of
control of threads.

2.1.3 Detached threads

While cooperative, deterministically scheduled threads are less error-prone and easier to
reason about than preemptive threads, there are circumstances in which native operating
system threads are necessary. In traditional systems, this implies either converting the whole
program to use native threads, or manually managing both kinds of threads.

A CPC thread can switch from cooperative to preemptive mode at any time by using
the cpc_link primitive (inspired by FairThreads’ ft_thread_link [Bou06]). A cooperative
thread is said to be attached to an event loop, while a preemptive one is detached.

The cpc_link primitive takes a single argument, a scheduler, either an event loop (for
cooperative scheduling) or a thread pool (for preemptive scheduling). It returns the thread’s
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typedef struct cpc_buffer {

int size; /* Size of the buffer x/
int start; /* Start of valid data =*/
int end; /* End of valid data =*/
unsigned char =*buf; /* Actual buffer content =*/

} cpc_buffer;

cps int
cpc_buffer_read(int fd, cpc_buffer xb, int len)
{

ssize_t rc;
size_t pos = b->end - b->start;

if ('b->buf) { /* Lazy allocation the first time x/
cpc_io_wait(fd, CPC_IO_IN)
b->buf = malloc(b->size);
goto first_read; /* Skip the first cpc_io_wait x/
} else {
/* Move data to the beginning of
buffer x/

3

while(pos < len) {

cpc_io_wait(fd, CPC_IO_IN);
first_read:

rc = read(fd, b->buf + pos, b->size - pos);
. /* Error handling =/
pos += rc;

3

b->end = pos;

return pos;

previous scheduler, which makes it possible to eventually restore the thread to its original
state. Syntactic sugar is provided to execute a block of code in attached or detached mode
(cpc_attached, cpc_detached).

Hekate is written in mostly non-blocking cooperative style; hence, Hekate’s threads remain
attached most of the time. There are a few situations, however, where the ability to detach a
thread is needed.

Blocking OS interfaces Some operating system interfaces, like the getaddrinfo DNS
resolver interface, may block for a long time (up to several seconds). Although there are
several libraries which implement equivalent functionality in a non-blocking manner, in CPC
we simply enclose the call to the blocking interface in a cpc_detached block (see Fig. 2.3a).

Figure 2.3b shows how cpc_detached is expanded by the CPC translator into two calls to
the primitive cpc_link. Detaching a thread is done by linking it to a preemptive scheduler;
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Figure 2.3: Expansion of
cpc_detached in terms
of cpc_link
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if the user does not specify such a scheduler explicitly, we use cpc_default_threadpool, a
default thread pool created at the beginning of every CPC program. Note that CPC takes care
to attach the thread before returning to the caller function, even though the return statement
is within the cpc_detached block.

cpc_scheduler *s =

cpc_detached { cpc_link(cpc_default_threadpool);
rc = getaddrinfo(name, ...) | rc = getaddrinfo(name, ...)
return rc; cpc_link(s);
} return rc;
(a) (b)

Blocking library interfaces Hekate uses the curl library ' to contact BitTorrent trackers over
HTTP. Curl offers both a simple, blocking interface and a complex, asynchronous one. We
decided to use the one interface that we actually understand, and therefore call the blocking
interface from a detached thread.

Parallelism Detached threads enable code to be run on multiple processors or processor
cores. Hekate does not use this feature, but a CPU-bound program would detach computa-
tionally intensive tasks and let the kernel schedule them on several processing units.

2.1.4 Hybrid programming

Most realistic event-driven programs are actually hybrid programs [PDZ99; WCBO01]: they
consist of a large event loop, and a number of threads (this is the case, by the way, of the
Transmission BitTorrent client mentioned above). Such blending of native threads with event-
driven code is made very easy by CPC, where switching from one style to the other is a simple
matter of using the cpc_link primitive.

This ability is used in Hekate for dealing with disk reads. Reading from disk might block
if the data is not in cache; however, if the data is already in cache, it would be wasteful to pay
the cost of a detached thread. This is a significant concern for a BitTorrent seeder because the
protocol allows chunks to be requested in random order, making kernel readahead heuristics
inefficient.

The actual code is shown in Fig. 2.4: it sends a chunk of data from a memory-mapped disk
file over a network socket. In this code, we first trigger an asynchronous read of the on-disk
data (1), and immediately yield to threads servicing other clients (2) in order to give the kernel
a chance to perform the read. When we are scheduled again, we check whether the read has
completed (3); if it has, we perform a non-blocking write (7); if it has not, we yield one more
time (4) and, if that fails again (5), delegate the work to a native thread which can block (6).

'http://curl.haxx.se/libcurl/.
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prefetch(source, length); /% (1) */
cpc_yield(); /* (2) */
if(!incore(source, length)) { /* (3) */
cpc_yield(); /% (4) */
if(!incore(source, length)) { /* (5) */
cpc_detached { /* (6) */
rc = cpc_write(fd, source, length);
3
goto done;
}
3
rc = cpc_write(fd, source, length); /% (7)) */

done:

The functions prefetch and incore are thin wrappers around the posix_madvise and
mincore system calls.

Note that this code contains a race condition: the prefetched block of data could have been
swapped out before the call to cpc_write, which would stall Hekate until the write completes.
Moreover, this race condition is even more likely to appear as load increases and on devices
with constrained resources. To avoid this race condition and ensure non-blocking disk reads,
one could use asynchronous I/O. However, while the Linux kernel does provide a small set
of asynchronous I/O system calls, we found them scarcely documented, very restricted and
difficult to use: they work only on some file systems and require the use of the flag O_DIRECT,
which imposes alignment restrictions on the length and address of buffers and the file offset of
I/Os, and disables the caching performed by the kernel.> We have therefore not experimented
with them.

Note further that the call to cpc_write in the cpc_detached block (6) could be replaced
by a call to write: we are in a native thread here, so the non-blocking wrapper is not needed.
However, the CPC primitives such as cpc_io_wait are designed to act sensibly in both
attached and detached mode; this translates into more complex functions built upon them,
and cpc_write simply behaves as write when invoked in detached mode. For simplicity, we
choose to use the CPC wrappers throughout our code.

2.2 The CPC language

This section is a complete presentation of the CPC language, concepts and primitives. It also
discusses the limitations, either fundamental to the CPC compilation technique or related to
the current implementation, as well as possible improvements.

*“The thing that has always disturbed me about O_DIRECT is that the whole interface is just stupid, and was
probably designed by a deranged monkey on some serious mind-controlling substances” Linus Torvald [Tor02]
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CPC threads The main abstraction provided by CPC is a CPC thread. From the program-
mer’s view, a CPC thread roughly corresponds to other programming languages’ notion of
thread or lightweight process, except that it has no identity: there is no thread identifier that
can be used to kill or suspend a given CPC thread.

A CPC thread can be in one of two modes: attached to the CPC scheduler, or detached. At
a given time, the set of all attached threads is scheduled cooperatively, and an attached thread
can only be preempted by other attached threads because of explicit programmer action. A
detached thread, on the other hand, is associated with a native operating-system thread, and
is scheduled by the operating system asynchronously with respect to all other threads.

Structure of a CPC program Justlike a plain C program, a CPC program is a set of functions.
Functions in a CPC program are partitioned into “CPS” functions and “native” functions;
a global constraint is that a CPS function can only ever be called by another CPS function,
never by a native function. The precise set of contexts where a CPS function can be called is
the set of CPS contexts, defined in Section 2.2.1.

Intuitively, CPS code is “interruptible”: when in the attached mode, it is possible to
interrupt the flow of a block of CPS code in order to pass control to another piece of code or
to wait for an event to happen. Native code, on the other hand, is “atomic”™: if a sequence of
native code is executed in attached mode, it must be completed before anything else on the
same scheduler is allowed to run.

Technically, native function calls are executed by using the machine’s native stack. CPS
function calls, on the other hand, are executed by using a lightweight stack-like structure
known as a continuation (Section 3.2). This arrangement makes CPC context switches ex-
tremely fast; the trade-off is that a CPS function call is at least an order of magnitude slower
than a native call (Section 6.1.2). Thus, computationally expensive code should be imple-
mented in native code whenever possible.

Execution of a CPC program starts at a native function called main. This function usually
starts by registering a number of threads with the CPC runtime (using cpc_spawn), and then
passes control to the CPC runtime (by calling cpc_main_loop, Section 2.2.2).

Reserved words CPC is a conservative extension of the 1999 edition of the C programming
language; thus, the syntax of CPC is defined as a set of productions to be added to the grammar
defined in the ISO Cgg standard [Int99]. In the rest of this section, we write

c99-rule == cpc-extension

to denote that the rule from Cogg c99-rule is extended with the extension cpc-extension in
CPC.

In addition to the reserved words in Cg99, CPC reserves the words cps, cpc_spawn and
cpc_linked; the former is a function specifier, while the latter two are statements. Their
semantics is detailed in Sections 2.2.1 to 2.2.3.
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Fundamental limitations Not all legal C code is allowable in CPC.The following few lim-
itations are fundamental to the implementation technique of CPC, unlikely to be lifted in
a future version: the use of the longjmp library function, and its variants, is not allowed in
CPC code, and the use of alloca in CPS context yields unpredictable behaviour;® both of
these features modify directly the call stack. Although CPC conceals as much as possible to
the programmer the “stack ripping” phenomenon that occurs when translating threads to
events, it fails to preserve the illusion of an unaltered stack when these functions are involved.

The function longjmp works in pair with the function setjmp: the former saves a stack
context and the latter jumps to it. They are used mainly as an exception mechanism, but
have also been used to implement coroutines and even garbage collection of stack-allocated
variables in the Scheme-to-C compiler Chicken [Bak95; Che70]. One fundamental reason
longjmp cannot be used in CPC is because the function that performed the corresponding
setjmp must not have returned—in other words, longjmp must be called in a child of the
function that called setjmp. As a result, it cannot work in CPC where the call stack of CPS
functions is flattened, transformed into successive calls to many event handlers by the event
loop.

The function alloca allocates memory on top of the call stack; this memory is auto-
matically freed when the current function returns. It cannot work with CPC because, after
translation, the current function will become a short-lived event handler. The allocated
memory will not be preserved until the function returns, only until the next call to a CPS
function—and because the CPC translator introduces many CPS functions during its splitting
pass (see Section 3.4), the programmer may not even rely on the “next call” being among
cooperation points in his own code: it may happen much sooner in some cases, depending
on how the splitting pass is implemented. The function alloca is therefore impossible to use
reliably in CPC.

2.2.1 CPS functions

CPS contexts Any instruction, declaration, or function definition in CPC can be in CPS
context or in native context. CPS context is statically defined as follows:

« the body of a CPS function (see below) is in CPS context,

o the body of a cpc_spawn statement is in CPS context (Section 2.2.2).
Any construct that is not in CPS context is said to be in native context.

CPS functions
function-specifier == cps

Functions can be declared as being CPS-converted by adding cps to the list of functions
specifiers. The effect of such a declaration is to put the body of the function in CPS context,
thus making it possible to use most of the CPC features.

3Some have argued that alloca is neither standard nor good style, and should therefore not be used anyway,
even in plain C programs.
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A call to a CPS function is called a CPS call. CPS function can only called in CPS context;
a CPS call in native context causes a compilation error.

Limitation: in the current implementation, CPS function do not accept a variable number
of parameters (va_args and its variants). Calling a CPS function through a function pointer
is also forbidden, as it yields undefined (but likely damaging) behaviour; lifting this limitation
would require to make cps part of the function type rather than a function specifier, to be
able to identify statically every use of CPS function pointers.

Inner functions
block-item := function-definition

Functions can be defined within other functions, as in Algol-family languages; the inner
function can access the variables bound by the outer one. Only CPS functions can be inner
functions.

Free variables of inner functions are copies of the variables of the enclosing function; thus,
a change to the value of the free variable is not visible in the enclosing function*. The free
variables are initialized with a copy of the current value whenever the inner function is called;
thus, their initial value does not depend on the location of the inner function within the outer
one.

Limitation: in the current implementation, arrays cannot appear as free variables (because
they cannot be passed by value), and variable-length arrays must not be used in CPS context.
A solution might be to wrap arrays appearing as free variables in structures.

Primitive CPS functions CPC provides a set of five primitive CPS functions, allowing the
programmer to schedule threads and wait for some events: cpc_link, cpc_yield, cpc_sleep,
cpc_wait and cpc_io_wait. It is important to understand that these primitive functions
could not be defined outside the CPC runtime: they must have access to the internals of the
scheduler to operate. Since they are CPS functions, they are valid only in CPS context. These
primitives are described in the following sections.

2.2.2 Bootstrapping

void cpc_main_loop(void);

cpc_main_loop Since main is a native function and CPS functions can only be called by
other CPS functions, some means is necessary to pass control to CPS code. The function
cpc_main_loop invokes the CPC scheduler. This cooperative scheduler maintains a list of
threads, executes them in a round-robin fashion and returns when the list is empty and every
detached thread has been attached back (i.e. where there is nothing more to do). Before
calling cpc_main_loop, the programmer populates the thread list with threads created by
cpc_spawn.

statement == cpc_spawn statement

“Except if the variable is declared static.
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cpc_spawn The cpc_spawn statement creates a new attached thread that executes the argu-
ment to cpc_spawn and places it at the end of the queue of runnable threads. If this argument
contains free variables, they are handled like free variables in CPS functions (Section 2.2.1).
Execution then proceeds after the cpc_spawn statement (control is not ceded to the main
CPC loop). This statement is valid in arbitrary context: in the native main function before the
calling cpc_main_loop, or later in any CPS or native function, either in attached or detached
mode (in which case the new thread is started attached to the main loop, while the original
one continues its detached execution).

Limitation: there is a single, implicit event loop to schedule cooperative threads in CPC
and every new thread is created attached to this loop. Making the loop explicit would enable
the creation of several loops; along with the ability to migrate threads from one loop to another,
it would enable a SEDA style (staged event-driven architecture [WCBO1]) that is expected to
make more efficient use of multiple processors. On the other hand, multiple loops involve
complex synchronisation issues and a clumsier API; we preferred to keep CPC simple and
understandable. For long running computations and blocking operations, detached threads
provide an alternative to multiple event loops.

2.2.3 Detaching and reattaching

A CPC thread can be scheduled to be run by a native thread (in a thread pool); intuitively, the
thread “becomes” a native thread. When this happens, we say that the CPC thread has been
detached from the CPC scheduler. The opposite operation is known as attaching a detached
thread back to the CPC scheduler. It is of course possible to migrate a detached thread directly
from one thread pool to another. Multiple thread pools are convenient to execute tasks of
various duration: with a single thread pool, long-lasting tasks could end up clogging the
thread pool and prevent short-lived tasks from executing.

The primitive function cpc_link is used to link the current CPC thread to a sched-
uler; schedulers are either the main CPC loop cpc_default_scheduler or a thread pool
of native threads. Thread pools are created with the function cpc_threadpool_get and de-
stroyed by calling the function cpc_threadpool_release; there is also a default thread pool
cpc_default_threadpool. A CPC thread can determine its current scheduler by calling
cpc_current_scheduler.

typedef cpc_sched;
cpc_sched xcpc_default_scheduler, *cpc_default_threadpool;

cpc_sched *cpc_threadpool_get(int);
int cpc_threadpool_release(cpc_sched x);

cps cpc_sched *cpc_link(cpc_sched *pool);
cpc_sched *cpc_current_scheduler();

cpc_link The cpc_link primitive function attaches the current thread to the given sched-
uler. If the scheduler is a thread pool, the next statements are executed in a dedicated native
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thread, within the thread pool. If the scheduler is the special cpc_default_scheduler, the
current thread is scheduled by the CPC scheduler. This function returns a pointer to the
previous scheduler: this is needed, for instance, to write library functions that need to run
code in detached mode but wish to return in the same mode as they have been called.?

cpc_threadpool_get This function returns a pointer to a new thread pool. It takes one
argument: the maximum number of threads in the pool (threads are created dynamically).
This argument is capped to MAX_THREADS® if it is outside of the interval [1; MAX_THREADS].
This function must not be called in detached mode (it is not thread-safe).

cpc_threadpool_release Conversely, the function cpc_threadpool_release releases
a given thread pool. This function does not block. It returns 0 if the pool has been successfully
released, —1 otherwise (most notably when it is still running detached threads and therefore
cannot be released safely). In that case, the programmer should retry later. This function can
be called in any mode and context, but it will always fail if a detached thread tries to release its
own thread pool. Conversely, it should always succeed when cpc_main_loop has returned,
since it means that all threads have completed their execution.

cpc_default_threadpool This global variable holds a pointer to the default thread pool,
initialised during the call to cpc_main_loop.

cpc_current_scheduler This function returns the current scheduler. Although this is
not implemented as a CPS function for efficiency reasons, it should be treated as such: this
function is valid in CPS context only, and no pointer to it should be taken.

Syntactic sugar

Since calls to cpc_link are often balanced pairs around a few statements, CPC provides
syntactic sugar, the cpc_linked statement, to execute a statement linked to some scheduler
and then link the current thread back to its original scheduler. Some macros are also provided
to link a thread to the main loop or the default thread pool.

cpc_linked
statement == cpc_linked (expression) statement

The body of a cpc_linked statement is run linked to the scheduler given as its argu-
ment: an implicit s = cpc_link(expression) is executed upon entering the body, and a

*GHC Haskell had a similar modularity issue with the block and unblock functions to handle asynchronous
exceptions. Coincidently, this was solved in GHC 7 at about the same time cpc_link was introduced in CPC.
GHC 7 uses a similar solution, deprecating block and unblock in favor of a new mask function that provides a
way to restore the previous state.

SMAX_THREADS is an internal constant of the CPC runtime, currently set to 20.
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cpc_link(s) is executed when the end of the statement is reached, as well as before any
return statement within the body.

Limitation: some constructs are forbidden in the body of a cpc_linked statement because
they disrupt the flow of control: goto, break, continue and labels. This is only a syntactic
limitation: these statements can of course be used in attached and detached mode, but they
cannot be used to jump directly in or out of a cpc_linked block.” Therefore, the programmer
has to take care of such complex cases by himself, introducing calls to cpc_link at the right
points of the code instead of using a cpc_linked block.

cpc_is_detached, cpc_detach, cpc_detached These three macros are used to test if
the current thread is detached, to detach it if this is not already the case, and to detach the
execution of a block of code (similarly to cpc_linked).

cpc_attach, cpc_attached These two macros are used to attach the current thread to
the default loop if not already attached, and to attach the execution of a block of code (similarly
to cpc_linked).

2.2.4 Synchronising with condition variables

Condition variables are synchronisation primitives introduced by Hoare [Hoa74]; a condition
variable is a queue of waiting threads, woken up in a first-in first-out order (FIFO). In CPC,
they are used both alone, to synchronise threads, and combined with other CPC primitives to
provide a means of waking up threads waiting for an event (see the descriptions of cpc_sleep
and cpc_io_wait in the next sections). For efficiency reasons, their use in CPC is restricted
to attached (cooperative) mode; this lifts the need for locks, which are necessarily associated
with condition variables in preemptively scheduled systems to avoid race conditions.

typedef struct cpc_condvar cpc_condvar;

void cpc_condvar_release(cpc_condvarx);
int cpc_condvar_count(cpc_condvarx);

cps int cpc_wait(cpc_condvar =xcond);
void cpc_signal (cpc_condvar *);
void cpc_signal_all(cpc_condvar *);

cpc_wait The function cpc_wait places the current thread on the list of threads waiting
on the condition variable passed as argument to cpc_wait. Control is passed back to the
CPC loop. This function accepts two additional optional arguments, specifying a timeout in
seconds and microseconds (implemented in terms of cpc_sleep, see below). This function
returns CPC_CONDVAR or CPC_TIMEOUT, depending on the event which woke it up. It is only
valid in attached mode.

7In fact, earlier versions of CPC used to allow these constructs, using a smart detection of jumps in and out of
the body of cpc_linked. But this resulted in very weird semantics, more likely to trap the careless programmer
than to be useful in any way, and was removed to simplify the implementation.
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cpc_signal The function cpc_signal causes the first of the threads waiting on the condi-
tion variable passed as argument to be moved to the tail of the queue of runnable threads.
Execution proceeds at the instruction following the call to cpc_signal. This statement is
valid in arbitrary context, but only in attached mode.

cpc_signal_all The function cpc_signal_all causes all of the threads waiting on the
condition variable passed as argument to be moved to the tail of the queue of runnable
threads. This function guarantees that the threads will be run in the order in which they were
suspended. This statement is valid in arbitrary context, but only in attached mode.

Limitation: with these primitives, it is impossible to implement a function cpc_wait_2
that would take two condition variables and return as soon as one of them has been signalled.
This would indeed imply two concurrent calls cpc_wait, the first to return interrupting the
other, but there is no way to interrupt a specific call to cpc_wait without also waking up
every other thread waiting on the same condition variable. In practice, this is rarely an issue
but there are, for instance, some threads in Hekate that are left dangling longer than necessary
when a timeout expires, because of this limitation.

In hindsight, the author believes that it would have been a better choice not to use condition
variables to interrupt CPS primitives. For instance, we could have introduced a separate
concept of thread identifier with the ability to interrupt a thread blocked in a CPC primitive—
similar to the interrupt function in Java [Oral2]—and to use condition variables only for
synchronising threads. With such a feature, cpc_wait would be interruptible like any other
CPC primitive and it would be possible to implement an interruptible wait on an arbitrary
number of variables. However, interruptibility introduces its own set of issues. For instance,
library functions must deal with the possibility of being interrupted, yielding more verbose
and error-prone code. The Alert function of Modula-2+ [Bir+87] solves this dilemma
by offering both interruptible and non-interruptible primitives (Wait and AlertWait for
instance). Another approach is the “cancellation token” used by Windows; “a token can be
passed to an asynchronous IO operation when it is started, and cancelling a token cancels all
asynchronous requests associated with it” [Har+11]. All these solutions decouple the notion
of semaphore or condition variable from the notion of cancellation. In any case, such a
mechanism would add a number of indirections and runtime overhead which should be
carefully balanced with the increased flexibility.

2.2.5 Cooperating and sleeping

cps void cpc_yield();

cps int cpc_sleep(int sec, int usec, cpc_condvar =xcond);
int cpc_gettimeofday(stuct timeval =*xtv);

time_t cpc_time(time_t *t);

cpc_yield The function cpc_yield causes the current thread to be suspended, and placed
at the end of the queue of runnable threads. Control is passed back to the CPC main loop.
This statement has no effect in detached mode.
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cpc_sleep The function cpc_sleep takes three arguments: a time in seconds, a time in
microseconds, and a condition variable. It causes the current thread to be suspended until
either the specified amount of time has passed, or the condition variable is signalled, whichever
happens first. It returns, respectively, CPCC_TIMEOUT or CPC_CONDVAR.

The third argument can be omitted or NULL if no interruption is necessary. The second
argument can be omitted if sub-second accuracy is not needed.

The version of cpc_condvar with timeouts is in fact syntactic sugar using cpc_sleep:
cpc_condvar(c, s, ms) =cpc_sleep(s, ms, c).

Limitation: the form with a third argument is only valid in attached mode. Note that
cpc_sleep(0) is not equivalent to cpc_yield() since the former does not place the current
thread to the end of queue of runnable threads immediately: we prefer a consistent imple-
mentation where every sleeping thread goes through the same data structure, no matter how
long it sleeps, than an “optimisation” where magic values are rooted in the semantics.

cpc_gettimeofday, cpc_time Thefunctioncpc_gettimeofday isanon-blockingequiv-
alent of the native function gettimeofday. In detached mode it simply calls it. In attached
mode, it returns the latest time measured by the scheduler. The function cpc_time is equiva-
lent to cpc_gettimeofday but returns only the time in seconds, like the native time function.
These functions are only valid in CPS context, and are useful when speed is more important
than time accuracy.

2.2.6 Waiting for I/O

cps int cpc_io_wait(int fd, int direction, cpc_condvar xcond);
void cpc_signal_fd(int fd, int direction);

cpc_io_wait The function cpc_io_wait takes three arguments: a file descriptor, a di-
rection, and a condition variable. The direction can be one of CPC_IO_IN, meaning input,
CPC_IO_OUT, meaning output, or both (CPC_IO_IN | CPC_IO_OUT).

This function causes the current thread to be suspended until either the given file de-
scriptor is available for I/O in the given direction, or the given condition variable is signalled,
whichever happens first. It returns CPC_IO_IN, CPC_IO_OUT or CPC_CONDVAR, depending on
what happened. It may also return -1 if some error occurred (e.g. in detached mode, when
the call to poll fails).

Limitation: the form with a third argument is only valid in attached mode.

cpc_signal_fd The function cpc_signal_fd wakes up threads waiting on the file descrip-
tor fd for an event direction. Limitation: it must only be called from the CPC main loop
(but not necessarily in CPS context) and will only wake up attached threads.
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2.3 The CPC standard library

The CPC standard library is a collection of some generally useful functions, written in CPC
and built above the CPC primitives, distributed with CPC to ease the development of CPC
programs. In this section, we describe the implementation of two synchronisation con-
structs provided by the CPC library: barriers in Section 2.3.1 and retriggerable timeouts in
Section 2.3.2.

Since these constructs are implemented above condition variables, they inherit their
main limitation: barriers and timeouts cannot be used in detached mode. This reflects the
general philosophy of CPC that threads spend most of their time in attached mode, using
the cooperative scheduler as an implicit lock to sequentialize access to shared resources, and
allowing very fast context switches and synchronisation operations.

2.3.1 Barriers

A barrier is a synchronisation construct that allows a set of threads to be woken up at the
same time. A barrier is conceptually a queue of threads (implemented with the queue of a
condition variable) and a count of threads remaining to wait for.

struct cpc_barrier {
cpc_condvar *condition;
int count;
}
The function cpc_barrier_get returns a new barrier initialised to wait for count threads.
Its implementation, not shown here, is a straightforward sequence of allocations and initiali-
sations.

The function cpc_barrier_await causes the current thread to wait on the barrier given
in argument. This function first decrements the barrier’s count; if the count reaches zero, it
wakes up all of the threads waiting on the barrier and releases it. Otherwise, it suspends the
current thread.

cps void
cpc_barrier_await(cpc_barrier =*xbarrier)
{

assert(barrier->count > 0);

barrier->count--;

if(barrier->count > 0) {
cpc_wait(barrier->condition);
return;

} else {
cpc_signal_all(barrier->condition);
cpc_condvar_release(barrier->condition);
free(barrier);
cpc_yield();
return;
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Note that the function cpc_barrier_await guarantees that the threads are run in the
order in which they were suspended. It relies in particular on the deterministic semantics of
cpc_signal_all and cpc_yield to ensure that the last awaiting thread is also the last to
execute. This also allows the condition variable to be freed, hence the barrier, as soon as the
waiting threads have been signalled: there is no need for a cpc_barrier_release function.

2.3.2 Timeouts

Timeouts are data structures holding two condition variables: expire, which is signalled
after some given amount of time has elapsed (secs seconds and usecs milliseconds), and
cancel which is used to cancel a timeout before it expires. Flags are used to indicate that the
timeout has expired (_TIMEOUT_EXPIRED) or has been cancelled (_TIMEOUT_CANCELLED).

struct cpc_timeout {
cpc_condvar *cancel, xexpire;
int flags, secs, usecs;

3

The function cpc_timeout_get creates, initialises and starts a new timeout; its imple-
mentation is very similar to cpc_barrier_get shown above and is not detailed here.

To use a timeout t, the programmer should first check that it has not already expired
(t->flags & _TIMEOUT_EXPIRED) then use the condition variable t->expire to wait for
the timeout or interrupt some CPC primitive. Checking the flags first (and avoiding calls
to CPC primitives between this check and the use of the condition variable) is essential to
avoid race conditions, because the condition variable is only signalled once when the timeout

expires.

cps cpc_timeout *
cpc_timeout_get(int secs, int usecs)

{
cpc_timeout *timeout;
/* snip allocation and initialisation =%/
cpc_timeout_restart(timeout);
return timeout;

The function cpc_timeout_restart restarts a timeout if it has not already expired. It
creates a new thread (1) that sleeps for the timeout duration (2) before setting the expired
flag (3) and signaling the condition variable expire (4); if the variable cancel is signalled,
cpc_sleep returns CPC_CONDVAR instead of CPC_TIMEOUT (5) and this thread dies without
doing anything.

cps void

cpc_timeout_restart(cpc_timeout *timeout)

{
if(timeout->flags & _TIMEOUT_EXPIRED)
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Figure 2.9: Canceling a
timeout

Figure 2.10: Destroying a
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return;
cpc_spawn { /*
if(cpc_sleep(timeout->secs, timeout->usecs, /*
timeout->cancel) == CPC_TIMEOUT) { /*
assert(!timeout->flags);
timeout->flags |= _TIMEOUT_EXPIRED; /*
cpc_signal_all(timeout->expire); /*
3
}
cpc_signal (timeout->cancel); /*
timeout->flags = 0;
cpc_yield(); /* Enter the sleep. x/ /*

}

Then, the function kills the previous timeout thread (if any) by signaling cancel (6). This does
not cancel the thread that was just created (1) because the semantics of cpc_spawn implies
that it will not be started before the next turn of the main loop. Hence, the call to cpc_sleep
is deferred too (2) and cannot be interrupted by cpc_signal (6). The final call to cpc_yield
(7) ensures that the timeout thread is started and enters in the cpc_sleep before the function
returns, in order to avoid race conditions where a timeout would be cancelled before it started.

The function cpc_timeout_cancel cancels a timeout that is not already cancelled or

expired.
void
cpc_timeout_cancel (cpc_timeout *timeout)
{
if (!timeout->flags) {
timeout->flags |= _TIMEOUT_CANCELLED;

cpc_signal (timeout->cancel);
}
}

Finally, the function cpc_timeout_destroy cancels the timeout and frees the associated
data structures. Note that the deallocation can be safely performed immediately, since the
cancellation of the timeout thread created by cpc_timeout_restart does not need to access

the timeout.

void

cpc_timeout_destroy(cpc_timeout *timeout)

{
cpc_timeout_cancel (timeout);
cpc_condvar_release(timeout->cancel);
cpc_condvar_release(timeout->expire);
free(timeout);
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CHAPTER 3

The CPC compilation technique

The current implementation of CPC is structured into three parts: the CPC to C transla-
tor, implemented in OCaml [Ler+10] on top of the CIL framework [Nec+02], the runtime,
implemented in C, and the standard library, implemented in CPC. The three parts are as
independent as possible, and interact only through a small set of well-defined interfaces. This
makes it easier to experiment with different approaches.

In this chapter, we present how the CPC translator turns a CPC program in threaded
style into an equivalent C program written in continuation-passing style. Therefore, we only
need to focus on the transformations applied to CPS functions, ignoring completely the
notions of CPC thread or CPC primitive which are handled in the runtime part of CPC. We
detail each step of the CPC compilation technique and the difficulties specifically related
to the C language. In later chapters, we prove the correctness of the two most important
translation passes performed by CPC: lambda lifting (Chapter 4) and CPS conversion with
early evaluation (Chapter 5).

3.1 Translation passes

The CPC translator is structured in a series of source-to-source transformations which turn a
threaded-style CPC program into an equivalent event-driven C program. This sequence of
transformations consists of the following passes:
o Lambda lifting: preliminary pass to remove user-defined inner functions;
 Boxing: address-taken local variables need to be encapsulated in heap-allocated storage
to ensure the correctness of the later passes;
o Splitting: the flow of control of each CPS function is split into a set of mutually recursive,
tail-called, inner functions;
o Lambda lifting: free local variables are copied from one inner function produced by
splitting to the next, yielding closed inner functions;
o CPS conversion: at this point, the program is in CPS-convertible form, a form simple
enough to perform a one-pass partial conversion into continuation-passing style; the
resulting continuations are used at runtime by the CPC scheduler.

67



3. THE CPC COMPILATION TECHNIQUE

The converted program is then compiled by a standard C compiler and linked to the CPC
scheduler to produce the final executable.

All of these passes are well-known compilation techniques for functional programming
languages, but lambda lifting and CPS conversion are not correct in general for an imperative
call-by-value language such as C. The problem is that these transformations copy free variables:
if the original variable is modified, the copy becomes out-of-date and the program yields a
different result. This is not an issue for the first lambda-lifting pass, because user-defined
inner functions have a copy semantics for free variables that is compatible with lambda lifting
(Section 2.2.1), but the second lambda lifting, applied to inner functions introduced by the
translator during the splitting pass, and the CPS conversion pass might be incorrect.

Copying is not the only way to handle free variables. When applying lambda lifting to a
call-by-value language with mutable variables, the common solution is to box variables that
are actually mutated, and to store them in environments. However, this solution turns out to
be less efficient:' adding a layer of indirection hinders cache efficiency and disables a number
of compiler optimisations. Therefore, CPC strives to avoid boxing as much as possible.

One key point of the efficiency of CPC is that we do not need to box every mutated variable
for lambda lifting and CPS conversion to be correct. As we show in Chapter 4, even though C
is an imperative language, lambda lifting is correct without boxing for most variables, provided
that the lifted functions are called in tail position. As it turns out, functions issued from the
splitting pass are always called in tail position, and it is therefore correct to perform lambda
lifting in CPC while keeping most variables unboxed.

Only a small number of variables, whose addresses have been retained with the “address
of” operator “&”, needs to be boxed: we call them extruded variables. Our experiments with
Hekate show that 50 % of local variables in CPS functions need to be lifted (ie. duplicated
by the lambda-lifting pass). Of that number, only 10 % are extruded. In other words, in the
largest program written in CPC so far, our translator manages to box only 5% of the local
variables in CPS functions.

Sections 3.2 to 3.6 present each pass, explain how they interact and why they are correct.
Although CPS conversion is the last pass performed by the CPC translator, we present it
first (Section 5.3) because it helps understanding the purpose of the other passes, which aim
at translating the program into CPS-convertible form; the other passes are then presented
chronologically. Also note that the correctness of the lambda-lifting pass depends on a
theorem that is shown in Chapter 4, and that the correctness of CPS conversion is detailed in
Chapter s.

3.2 CPS conversion

Conversion into Continuation-Passing Style [SW74; Plo75], or CPS conversion for short, is a
program transformation technique that makes the flow of control of a program explicit and
provides first-class abstractions for it.

'See Chapter 7 for a presentation of eCPC, a variant of CPC using environments, and an evaluation of its
efficiency.
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Intuitively, the continuation of a fragment of code is an abstraction of the action to perform
after its execution. For example, consider the following computation:

f(g(5) + 4);

The continuation of g(5) is f(O + 4) because the return value of g will be added to 4 and
then passed to f.

CPS conversion consists in replacing every function f in a program with a function f*
taking an extra argument, its continuation. Where f would return with value v, f* invokes
its continuation with the argument v. A CPS-converted function therefore never returns,
but makes a call to its continuation. Since all of these calls are in tail position, a converted
program does not use the native call stack: the information that would normally be in the call
stack (the dynamic chain) is encoded within the continuation.

3.2.1 Important properties

This translation has three well-known interesting properties, on which we rely in the im-
plementation of CPC: CPS conversion need not be global; continuations are abstract data
structures; and continuation transformers are linear.

CPS conversion need not be global The CPS conversion is not an “all or nothing” deal, in
which the complete program must be converted: there is nothing preventing a converted
function from calling a function that has not been converted. On the other hand, a function
that has not been converted cannot call a function that has, as it does not have a handle to its
own continuation [KYO01].

It is therefore possible to perform CPS conversion on just a subset of the functions
constituting a program (in the case of CPC, such functions are annotated with the cps
keyword). This allows CPS code to call code in direct style, for example system calls or
standard library functions. Additionally, at least in the case of CPC, a CPS function call is
much slower than a direct function call (Section 6.1.2); being able to only convert the functions
that need the full flexibility of continuations avoids this overhead as much as possible.

Continuations are abstract data structures The classical definition of CPS conversion
implements continuations as functions. For instance, Plotkin [Plo75, p. 147] defines the call-
by-value CPS conversion process as follows, where « is a function representing the current
continuation.

a=Ak.xa
X = Ak.kx
AxM = Mc.x(Ax. M)
MN = Ac.M(Aa.N(AB.aBx))

where a is a constant, x a variable, and M and N two arbitrary lambda-terms.
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In a first order language such as C only constants and variables can appear on the left hand
side of an application. With this simplifying hypothesis, the call-by-value CPS conversion
becomes (up to S-reduction):

a=Ak.xa
X = AKk.Kkx
AxM = Ax.x(Ax. M)
fN = A.N(AB.fBx)

where f is a constant or a variable.

However, continuations are abstract data structures and functions are only one particular
concrete representation of them. The CPS conversion process actually performs only two op-
erations on continuations: calling a continuation (invoke below), and prepending a function
application to the body of a continuation (push below). In the lambda calculus, push and
invoke are defined as:

invoke(x, x) = kx
push(a,«) = AB.afx

and the above example is rewritten as:

a = Ak.invoke(k, a)
x = Ak.invoke(x, x)
AxM = Ax. invoke(x, \xM)
fN = Ax.N(push(f,«))

This property is not really surprising: as continuations are merely a representation for the
dynamic chain, it is natural that there should be a correspondence between the operations
available on a continuation and a stack. Since C does not have full first-class functions
(closures), CPC uses this property to implement continuations as arrays of function pointers
and parameters.

Note: the attentive reader might remark that our definition of push depends on the simpli-
fying hypothesis made about function calls, and wonder what it would be in the general case
for the lambda calculus. It is relatively straightforward to define using delimited continuations:
defunctionalising continuations in the example above yields two versions of push. See for
instance, Felleisen et al. [Fel+88]: they introduce the operators Send and AddFrame, similar
to invoke and push, that operate on abstract continuations (or contexts) to define a semantics
of control operators.

70



3.2. CPS conversion

Continuation transformers are linear CPS conversion introduces linear (or “one-shot”™)
continuations [DL92; Dan94; BWD96]: when a CPS-converted function receives a continu-
ation, it will use it exactly once,” and never duplicate or discard it. Some control operators,
such as call/cc or shift and reset, do not respect linearity but they do not arise from the CPS
conversion itself, and need to be added explicitly to the source language.

This property is essential for memory management in CPC: as CPC uses the C allocator
(malloc and free) rather than a garbage collector for managing continuations, it allows
continuations to be reliably reclaimed without the need for costly devices such as reference
counting.

3.2.2 CPS-convertible form

CPS conversion is not defined for every C function; instead, we restrict ourselves to a subset
of functions, which we call the CPS-convertible subset. As we shall see in Section 3.4, every C
function can be converted to an equivalent function in CPS-convertible form.

The CPS-convertible form restricts the calls to CPS functions to make it straightforward to
capture their continuation. In CPS-convertible form, a call to a CPS function f is either in tail
position, or followed by a tail call to another CPS function whose parameters are non-shared
variables, that cannot be modified by f. This restriction about shared variables is ensured by
the boxing pass detailed in Section 3.3.

Definition 3.2.1 (Extruded and shared variables). Extruded variables are local variables (or
function parameters) the address of which has been retained using the “address of” operator
“&” (including arrays in particular).

We say shared variables for variables that are either extruded or global variables. O]

Thus, the set of shared variables includes every variable that might be modified by several
functions called in the same dynamic chain.

Definition 3.2.2 (CPS-convertible form in C). A function is in CPS-convertible form if every
call to a CPS function that it contains matches one of the following patterns, where both
f and g are CPS functions, e, ..., e, are any C expressions and x, y;, ..., y,are
non-shared variables:

return f(e;, ..., en); (3.1)

x = f(ey, ..., ey); return g(X, Y1, ..., Yn); (3.2)
fer, ..., en); return g(y;, ..., Yn); (3.3)

f(e1, ..., ey); return; (3.4)

fler, ..., end; g(yr, ..., Yn); return; (3.5)

x = f(er, ..., en); g€(X, y¥1, ..., Yn); return; (3.6)

*This is assuming a full CPS conversion, or terminating functions; with a partial conversion, direct-style
non-terminating functions might block the computation without ever using the continuation.
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Note how each of these cases ends with a return statement, in order to ensure that CPS
functions are only called in tail position (or immediately followed by a CPS tail call). The
definition of CPS-convertible form might seem convoluted at first, but in fact Egs. (3.3) to (3.6)
are only necessary to handle a syntactic peculiarity of the C language about functions returning
void. In the rest of this document, we ignore the cases where f or g return void and focus
on the first two cases.

3.2.3 Early evaluation of non-shared variables

To understand why the definition of CPS-convertible form requires non-shared variables for
the parameters of g, consider what happens when converting a CPS-convertible function. We
use a partial CPS conversion, as explained above, focused on tail positions. In a functional
language, we would define the CPS conversion as follows, where f* is the CPS-converted
form of f and k the current continuation:

return a; — return k(a);
return f(a;, ..., an); — return f*(a;, ..., an, k);
x = f(ar, ..., an); N k? = Ax. g"°(X, Y1, -y Yn, K);
return g(x, Yy, ---, Yn); return f*(a;, ..., an, k’);
Note the use of the lambda-abstraction Ax. g*(x, y;, ..., Y., k) torepresent the con-

tinuation of the call to f* in the last case. In a call-by-value language, this continuation can
be described as: “get the return value of f*, bind it to x, evaluate the variables y, to y,, and call
g with these parameters.”

Representing this continuation in C raises the problem of evaluating the values of y; to
y, after the call to f* has completed: these variables are local to the enclosing CPS-converted
function and, as such, allocated in a stack frame which will be discarded when it returns. To
keep them available until the evaluation of the continuation, we would need to store them in
an environment and garbage-collect them at some point. We want to avoid this approach as
much as possible for performance reasons since it implies an extra layer of indirection and
extra bookkeeping.

We use instead a technique that we call early evaluation of variables. It is based on the
following property: if we can ensure that the variables y; cannot be modified by the function
f, then it is correct to commute their evaluation with the call to f. Because the CPC translator
produces code where these variables are not shared, thanks to the boxing pass (Section 3.3), it
is indeed guaranteed that they cannot be modified by a call to another function in the same
dynamic chain. In CPC, the CPS conversion therefore evaluates these variables when the
continuation is built, before calling f, and stores their values directly in the continuation.

We finally define the CPS conversion pass, using early evaluation and the fact mentioned
above that continuations are abstract data structures mutated by two operators: push, which
adds a function and its parameters to the continuation, and invoke which executes a contin-
uation.
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Definition 3.2.3 (CPS conversion in C). The CPS conversion translates the tail positions of
every CPS-convertible term as follows, where f* is the CPS-converted form of f and k is the
current continuation:

return a; — return invoke(k, a);
push (k, f*, a7, ..., an);
t f ; .
return f(ar,  an); ~ return invoke(k);
h (k, g* ;
X = Far, ..o, an); AN
return g(X7 y'|7 L] yn), p ; ’ T no

return invoke(k);

O

A proof of correctness of this conversion, including a proof that early evaluation is correct
in the absence of shared variables, is detailed in Chapter 5.

3.2.4 Implementation details

From an implementation standpoint, the continuation k is a stack of function pointers and
parameters, and push adds elements to this stack. The function invoke calls the first function
of the stack, with the rest of the stack as its parameters. The form invoke (k, a) also takes care
of passing the value a to the continuation k; it simply pushes a at the top of the continuation
before calling its first function.

The current implementation of push grows continuations by a multiplicative factor when
the array is too small to contain the pushed parameters, and never shrinks them. While
this might in principle waste memory in the case of many long-lived continuations with an
occasional deep call stack, we believe that this case is rare enough not to justify complicating
the implementation.

The function push does not align parameters on word boundaries, which leads to smaller
continuations and easier store and load operations. Although word-aligned reads and writes
are more efficient in general, our tests showed little or no impact in the CPC programs we
experimented with, on x86 and x86-64 architectures: the worst case has been a 10 % slowdown
in a micro-benchmark with deliberately misaligned parameters. We have reconsidered this
trade-oft when porting CPC to MIPS, an architecture with no hardware support for unaligned
accesses, and added a compilation option to align continuation frames. However this option
is disabled by default, at least until we gather more experimental data to evaluate its efficiency.

There is one difference between Definition 3.2.3 and the implementation. In a language
with proper tail calls, each function would simply invoke the continuation directly; but,
because most C compilers do not ensure proper tail calls (even for cases, like invoking a
continuation, where they could be performed safely), doing that leads to unbounded growth
of the native call stack. Therefore, the tail call return invoke(k) cannot be used; we work
around this issue by using a “trampolining” technique [GFW99]. Instead of calling invoke,
each CPS function returns its continuation: return k. The main eventloop iteratively receives
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Figure 3.1: Extruded
variables

Figure 3.2: Boxing
extruded variables
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these continuations and invokes them until a CPC primitive returns NULL, which yields to
the next CPC thread.

In the following sections, we show how the boxing, splitting and lambda-lifting passes
translate any CPC program into CPS-convertible form.

3.3 Boxing

Boxing is a common, straightforward technique to encapsulate mutable variables. It is neces-
sary to ensure the correctness of the CPS conversion and lambda-lifting passes (Sections 3.2
and 3.5). However, boxing induces an expensive indirection to access boxed variables. In
order to keep this cost at an acceptably low level, we box only a subset of all variables—namely
extruded variables, whose address is retained with the “address of” operator “&” (see Defini-
tion 3.2.1 on page 71).

Example Consider the following function.

cps void f(int x) {

int y = 0;

int *xpl1 = &x, *p2 = &y;
/* ... %/

return;

}

The local variables x and y are extruded, because their address is stored in the pointers p1
and p2. The boxing pass allocates them on the heap on entry to the function f and frees them
before f returns. For instance, in the next program every occurrence of x has been replaced
by a pointer indirection *px, and &x by the pointer px.

cps void f(int x) {

int *px = malloc(sizeof(int));
int *py = malloc(sizeof(int));

*pX = X; /* Initialise px */
*xpy = 0;

int *pl1 = px, *p2 = py;

/* ... with x and y replaced accordingly =x/
free(px); free(py);

return;

}

The extruded variables x and y are no longer used (except to initialise px). Instead, px and
py are used; note that these variables, contrary to x and y, are not extruded: they hold the
address of other variables, but their own address is not retained. After the boxing pass, there
are no more extruded variables used in CPS functions.
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Cost analysis The efficiency of CPC relies in great part on avoiding boxing as much as
possible. Performance-wise, we expect boxing only extruded variables to be far less expensive
than boxing every lifted variable (ie. variables that are duplicated by the lambda-lifting pass).
Indeed, in a typical C program, few local variables have their address retained compared to
the total number of variables.

Experimental data confirm this intuition: in Hekate, the CPC translator boxes 13 variables
out of 125 lifted parameters. This result is obtained when compiling Hekate with the current
CPC implementation. They take into account the fact that the CPC translator tries to be smart
about which variables should be boxed or lifted: for instance, if the address of a variable is
retained with the “address of ” operator “&” but never used, this variable is not considered as
extruded. Using a naive implementation, however, does not change the proportion of boxed
variables: earlier versions of CPC lacking optimisations® used to box 29 variables out of 323
lifted parameters. In both cases, CPC boxes about 10 % of the lifted variables, which appears
to be an acceptable overhead.

Interaction with other passes The boxing pass yields a program without the “address
of” operator “&”; extruded variables are allocated on the heap, and only pointers to them
are copied by the lambda-lifting and CPS-conversion passes rather than extruded variables
themselves. One may wonder, however, whether it is correct to perform boxing before every
other transformation. It turns out that boxing does not interfere with the other passes, because
they do not introduce any additional “address of” operators. The program therefore remains
free of extruded variables. Moreover, it is preferable to box early, before introducing inner
functions, since it makes it easier to identify the entry and exit points of the original function,
where variables are allocated and freed.

Extruded variables and tail calls Although we keep the cost of boxing low, with about
10 % of boxed variables, boxing has another, hidden cost: it breaks tail-recursive CPS calls.
Since the boxed variables might, in principle, be used during the recursive calls, one cannot
free them beforehand. Therefore, functions featuring extruded variables do not benefit from
the automatic elimination of tail-recursive calls induced by the CPS conversion. While this
prevents CPC from optimising tail-recursive calls “for free’, it is not a real limitation: the C
language does not ensure the elimination of tail-recursive calls anyway, as the stack frame
should similarly be preserved in case of extruded variables, and C programmers are used not
to rely on it.

3.4 Splitting

To transform a CPC program into CPS-convertible form, the CPC translator needs to ensure
that every call to a CPS function is either in tail position or followed by a tail call to another
CPS function. In the original CPC code, calls to CPS functions might, by chance, respect this

*In particular without the percolating pass described in Section 3.6.
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Figure 3.3: CPS call with
implicit control flow

Figure 3.4: CPS call with
explicit control flow

Figure 3.5: Loop with
implicit control flow
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property but, more often than not, they are followed by some direct-style (non-CPS) code.
The role of the CPC translator is therefore to replace this direct-style chunk of code following
a CPS call by a call to a CPS function which encapsulates this chunk. We call this pass splitting
because it splits each original CPS function into many, mutually recursive, CPS functions in
CPS-convertible form.

To reach CPS-convertible form, the splitting pass must introduce tail calls after every
existing CPS call. This is done in two steps: we first introduce a goto after every existing CPS
call (Section 3.4.1), then we translate these goto statements into tail calls (Section 3.4.2).

The first step consists in introducing a goto after every CPS call. Of course, to keep the
semantics of the program unchanged, this inserted goto must jump to the statement following
the tail call in the control-flow graph: it makes the control flow explicit, and prepares the second
step which translates these goto statements into tail calls. In most cases, the control flow falls
through linearly and inserting goto statements is trivial; as we shall see in Section 3.4.1, more
care is required when the control flow crosses loops and labelled blocks. This step produces
code which resembles CPS-convertible form, except that it uses goto instead of tail calls.

The second step is based on the observation that tail calls are equivalent to jumps. We
convert each labelled block into an inner function, and each goto statement into a tail call to
the associated function, yielding a program in CPS-convertible form.

We detail these two steps in the rest of this section.

3.4.1 Explicit flow of control

When a CPS call is not in tail position, or followed by a tail CPS call, the CPC translator adds
a goto statement after it, to jump explicitly to the next statement in the control-flow graph.
These inserted goto are to be converted into tail CPS calls in the next step.

In most cases, the control flow falls through linearly, and making it explicit is trivial.

cpc_yield(); rc = 0;
We only need to add a goto after the first statement, and a label before the second one.

cpc_yield(); goto 1;
l: rc = 0;

However, loops and conditional jumps require more care.

while (!timeout) {
int rc = cpc_read();
if(rc <= 0) break;
cpc_write();

3

reset_timeout ();

This loop is converted into a labelled conditional block, with goto statements to continue
looping and breaking outside.
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while_label: Figure 3.6: Loop with
if(!timeout) { explicit control flow
int rc = cpc_read(); goto 1;
1:

if(rc <= 0) goto break_label;
cpc_write(); goto while_label;

}
break_label:
reset_timeout ();

More generally, when the flow of control after a CPS call goes outside of a loop (for, while
ordo ...while) or a switch statement, the CPC translator simplifies these constructs into
if and goto statements, adding the necessary labels on the fly.

Although adding trivial goto, and making loops explicit, brings the code in a shape close
to CPS-convertible form, we need to add some more goto statements for the second step to
correctly encapsulate chunks of code into CPS functions. Consider for instance the following
piece of code.

if(rc < 0) { Figure 3.7: CPS call
cpc_yield(); rc = 0; within a conditional
3 block

printf("rc.o=_%d\n", rc);
return rc;

With the rules described above a single goto would be added, after the CPS call to cpc_yield.

if(rc < 0) { Figure 3.8: Labelled
cpc_yield(); goto 1; block with implicit
1: { rc = 0; } control flow

3

printf("rc.o=_%d\n", rc);
return rc;

This is not enough because the block labelled by 1 will be converted to a CPS function in the
second step. But if we encapsulate only the {rc = 0;} part, we will miss the call to printf
when rc < 0. Therefore, to ensure a correct encapsulation in the second step, we also need
to make the flow of control explicit when exiting a labelled block. Thus, Fig. 3.7 is in fact
translated into the following piece of code.

if(rc < 0) { Figure 3.9: Labelled
cpc_yield(); goto 1; block with explicit
1: { rc = 0; goto done; } control flow

}

done:

printf("rc_.=_%d\n", rc);
return rc;

After this step, every CPS call is either in tail position or followed by a goto statement,
and every labelled block exits with either a return or a goto statement.
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3.4.2 Eliminating gotos

It is a well-known fact in the compiler folklore that a tail call is equivalent to a goto. It is
perhaps less known that a goto is equivalent to a tail call [S]S76; Wij66]: the block of any
destination label 1 is encapsulated in an inner function 1(), and each goto 1 is replaced by a
tail call to 1.

Coming back to Fig. 3.4, the label 1 yields a function 1().

f(); return 1Q0);
cps void 1() { rc = 0; }
We see that the first line is now in CPS-convertible form. Note again that we use return to
mark tail calls explicitly in the C code.
Applying the same conversion to loops yields mutually recursive functions. For instance,
the while loop in Fig. 3.6 is converted into while_label(), 1() and break_label().

while_label ();
cps void while_label () {
if(!timeout) {
int rc = cpc_read(); return 1Q);
cps void 1() {
if(rc <= 0) return break_label();
cpc_write(); return while_label();
}
}
}
cps void break_label() {
reset_timeout ();

}

When a label, like while_label above, is reachable not only through a goto, but also directly
through the linear flow of the program, it is necessary to call its associated function at the
point of definition; this is what we do on the first line of this example.

Splitting may introduce free variables; for instance, in Fig. 3.11, rc is free in the function 1.
In this intermediate C-like code, inner functions are considered just like any other C block
when it comes to the scope and lifespan of variables: each variable lives as long as the block or
function which defines it, and it can be read and modified by any instruction within this block,
including inner functions. There is in particular no copy of free variables in inner functions;
variables are shared within their block.

This sharing semantics is different from the copying semantics used when defining inner
CPS functions in the source of CPC program (Section 2.2.1). The reason for this discrepancy is
that sharing is the expected semantics for splitting to be correct; on the other hand, copying is
the actual semantics implemented by the lambda-lifting algorithm used by CPC (Section 3.5).
In Chapter 4, we show that lambda lifting is correct in the case of CPC; but this only means
that the copying and sharing semantics are indistinguishable in the very case of functions
introduced during the splitting pass. Since we cannot enforce the appropriate invariants on
user-defined inner functions, they are compiled with the copying semantics inherited from
lambda lifting.
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In Fig. 3.11, the lifespan of the variable rc is the if block, including the call to the function
1 which reads the free variable allocated in its enclosing function while_label.
Figure 3.9 shows the importance of having explicit flow of control at the end of labelled
blocks. After goto elimination, it is indeed in CPS-convertible form.
if(rc < 0) {
cpc_yield(); return 1();
cps int 1() { rc = 0; return done(); 3}
zps int done() {
printf("rc.=_%d\n", rc);
return rc;

}

return done();

Note the tail call to done at the end of 1 to ensure that the printf is executed when rc < 0,
and again the call on the last line to execute it otherwise.

3.4.3 Implementation details

The actual implementation of the CPC translator implements splitting on an as-needed basis: a
given subtree of the abstract syntax tree (AST) is only transformed if it contains CPC primitives
that cannot be implemented in direct style. Our main concern here is to transform the code
as little as possible, on the assumption that CPUs and the GCC compiler are optimised for
human-written code.

To perform splitting, the CPC translator iterates over the AST, checking whether the CPS
functions are in CPS-convertible form and interleaving the two steps described above to reach
CPS-convertible form incrementally. On each pass, when the translator finds a CPS call it
dispatches on the statement following it:

« in the case of a return, the fragment is already CPS-convertible and the translator

continues;

« in the case of a goto, it is converted into a tail call, with the corresponding label turned
into an inner function (Section 3.4.2), and the translator starts another pass;

« for any other statement, a goto is added to make the flow of control explicit, converting
enclosing loops if necessary (Section 3.4.1). The translator then starts another pass and
will eventually convert the introduced goto into a tail call.

At the end of the splitting pass, the translated program is in CPS-convertible form. How-
ever, it is not quite ready for CPS conversion because we introduced inner functions, which
makes it invalid C. In particular, these functions may contain free variables. The next pass,
lambda lifting, takes care of these free variables to get a valid C program in CPS-convertible
form, suitable for the CPS conversion pass described in Section 3.2.

3.5 Lambda lifting

Lambda lifting [Joh85] is a standard technique to eliminate free variables in functional lan-
guages. It proceeds in two phases [DS04]. In the first pass (“parameter lifting”), free variables
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are replaced by local, bound variables. In the second pass (“block floating”), the resulting
closed functions are floated to top level.
3.5.1 An example of lambda lifting

Coming back to Fig. 3.12 on the preceding page, we add an enclosing function f to define rc
and make the fragment self-contained.

Figure 3.13:
cps int f(int rc) {
CPS-convertible code if(rc < 0) {
with inner functions cpc_yield(); return 1(Q);

cps int 1() { rc = 0; return done(); }
}
cps int done() {

printf("rco=_%d\n", rc);

return rc;

b

return done();

3

The function f contains two inner functions, 1 and done. The local variable rc is used as a
free variable in both of these functions.
Parameter lifting consists in adding the free variable as a parameter of every inner function.

Figure 3.14: Parameter  cps int f(int rc) {

lifting and closed if(rc < 0) {
functions cpc_yield(); return 1l(rc);
cps int 1(int rc) { rc = 0; return done(rc); 3}
3

cps int done(int rc) {
printf("rco=_%d\n", rc);
return rc;

b

return done(rc);

}

Note that rc is now a parameter of 1 and done, and has been added accordingly whenever
these functions where called. There are, now, three copies of rc; alpha conversion makes this
more obvious.

Figure 3.15: Parameter cps int f(int rcl1) {

lifting and alpha if(recl < 0) {
conversion cpc_yield(); return 1(rcl);
cps int 1(int rc2) { rc2 = 0; return done(rc2); }
}

cps int done(int rc3) {
printf("rco=.%d\n", rc3);
return rc3;

}

return done(rcl);

3
8o



3.5. Lambda lifting

Once the parameter lifting step has been performed, there are no free variables any longer
and the block floating step extracts these inner, closed functions at top-level.

cps int f(int rc1) { Figure 3.16: Block
if(rcl < 0) { floating
cpc_yield(); return 1(rcl);
3

return done(rcl);

}

cps int 1(int rc2) {
rc2 = 0;
return done(rc2);

}

cps int done(int rc3) {
printf("rc_=_%d\n", rc3);
return rc3;

3

It is easy to see that applying boxing, splitting and lambda lifting always yields CPS-convertible
programs:
« every call to a CPS function is either a tail call (not affected by the transformations) or
followed by a tail CPS call (introduced in the splitting pass),
« the parameters of this second CPS call are local variables, since they are introduced by
the lambda-lifting pass,
« these parameters are not shared because they are neither global (local variables) nor
extruded (the boxing pass ensures that there are no more extruded variables in the
program).

3.5.2 Lambda lifting in imperative languages

There is one major issue with applying lambda lifting to C extended with inner functions: this
transformation is in general not correct in a call-by-value language with mutable variables.

Consider what would happen if splitting were to yield the following code. Figure 3.17:

cps void f(int rc) {

cps void set() { rc = 0; return; } CPS-convertible code

cps void done() { with non-tail calls
printf("rco=_%d\n", rc);
return;

}

set(); done(); return;

3

This code, which is in CPS-convertible form, prints out rc = 0 whatever the original value
of rc was: the call to set sets rc to 0, because of the sharing semantics, and the call to done
displays it.
Once lambda-lifted, the result changes.
Figure 3.18: Lifted
CPS-convertible code

with non-tail calls
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cps void f(int rcl) {
set(rcl1); done(rcl); return;

}

cps void set(int rc2) {
rc2 = 0;
return;

}

cps void done(int rc3) {
printf("rc_.=_%d\n", rc3);
return;

}

The code now displays the original value of rc passed to f rather than 0. The reason why
lambda lifting is incorrect in that case is because set and done work on two separate copies
of rc, rc2 and rc3, whereas in the original code there was only one instance of rc shared by
all inner functions.

This issue is triggered by the fact that the function set is not called in tail position. This
non-tail call allows us to observe the incorrect value of rc3 after set has modified the copy
rc2 and returned. If set were called in tail position instead, the fact that it operates on a copy
of rc1 would remain unnoticed.

3.5.3 Lambda lifting and tail calls

In fact, although lambda lifting is not correct in general in a call-by-value language with
mutable variables, it becomes correct once restricted to functions called in tail position in a
language without extruded variables. More precisely, in the absence of extruded variables, it
is safe to lift a parameter provided every inner function where this parameter is lifted is only
called in tail position. We show this result in Chapter 4 (Theorem 4.1.9 on page 92).

Inner functions in CPC are the result of goto elimination during the splitting step. As a
result, they are always called in tail position. Moreover, as explained in Section 3.3, the boxing
pass ensures that extruded variables have been eliminated at this point of the transformation.
Hence, lambda lifting is correct in the case of CPC.

3.5.4 Implementation details

To lift as few variables as possible, lambda lifting is implemented incrementally. There are two
ways to implement lambda lifting: either iterate on inner functions, closing them by lifting all
of their free variables, or iterate on variables, lifting each of them in every function where it
is free. The CPC translator uses the former: it looks for free variables to be lifted in a CPS
function and adds them as parameters at call points; this creates new free variables, and the
translator repeats the procedure until it reaches a fixed point.

This implementation might be further optimised with a liveness analysis, which would
in particular avoid lifting uninitialised parameters. The current translator performs a very
limited analysis: only variables which are used (hence alive) in a single function are not lifted
(see Section 3.6 for more details).
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3.5.5 Experimental results

A straightforward technique to use lambda lifting in an imperative language is to box every
mutated variable, in order to duplicate pointers to these variables instead of the variables
themselves. To quantify the amount of boxing avoided by our technique of lambda lifting
tail-called functions, we used a modified version of CPC which blindly boxes every lifted
parameter and measure the amount of boxing that it induced in Hekate, the most substantial
program written with CPC so far.

Hekate contains 260 local variables and function parameters, spread across 28 CPS func-
tions.* Among them, 125 variables are lifted. A naive lambda-lifting pass would therefore
need to box almost 50 % of the variables.

On the other hand, boxing extruded variables only carries a much smaller overhead: in
Hekate, the current CPC translator boxes only 5 % of the variables in CPS functions. In other
words, 90 % of the lifted variables in Hekate are safely left unboxed, keeping the overhead
associated with boxing to a reasonable level.

3.6 Optimisation passes

In addition to the passes described above, the CPC translator performs two simple optimisa-
tion passes. They are not necessary for the correctness of the translation but they reduce the
overhead generated by the other translation passes.

3.6.1 Percolating

Between the splitting and lambda-lifting passes, the CPC translator performs a percolating
pass. Percolating consists in identifying local variables that are used in only one inner function
and binding them to this function. It is a very simplified form of liveness analysis, which does
not make any inter-procedural analysis but helps to reduce the number of lifted variables
during the lambda-lifting pass.

Consider for instance the following function before lambda lifting.

cps void f() {
int tmp;

cps void g() {
cps void h() {

tmp = 2;

3
h();

}

cps void 1() ¢
g0);

“These numbers leave out direct-style functions, which do not need to be converted, and around 200 unused
temporary variables introduced by a single pathological macro-expansion in the curl library.
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)
10);
}

The variable tmp is used only in the inner function h. The percolating pass produces the
following code, which is invariant by lambda lifting.

Figure 3.20: Percolating  cps void f() {
of local variable cps void g() {
cps void h() {
int tmp;

tmp = 2;

3
h(O;
3
cps void 1() ¢

g0);
)

10
b

Without the percolating pass, the variable tmp would be lifted in every inner function during
the lambda-lifting pass.

Figure 3.21: Lambda cps void f(Q) {
lifting without int tmp;

percolating cps void g(int tmp) {
cps void h(int tmp) {

tmp = 2;

}
h(tmp);
3
cps void 1(int tmp) {

g(tmp);
)

1(tmp);
}

This would introduce several useless copies of the (yet uninitialised) variable tmp. Remember
that inner functions arise in particular from the translation of loops during splitting; in these
cases, percolating is even more important since the intermediate functions such as 1 might
be called recursively a very high number of times, each call adding a useless copy of tmp.

However crude it might seem, the percolating pass has a dramatic impact on the number
of lifted variables. For instance in Hekate, it reduces their number by more than 61 %, from

84



3.6. Optimisation passes

323 down to 125. The CPC translator introduces many temporary variables when it simplifies
the flow of control. These variables are typically used only in two consecutive statements,
which are not split apart during the splitting pass.

Although a complete liveness analysis would be preferable, since it could reduce even
further the number of lifted variables, the percolating is therefore a key optimisation pass of
the CPC translator.

3.6.2 Inlining

The inlining optimisation pass is performed between the lambda-lifting and CPS-conversion
passes. It consists in identifying CPS functions that perform only a single call to another CPS
function, with exactly the same parameters, and replacing them by a call to the latter function
wherever they are used. It is deliberately kept very simple because more opportunities for
more complex optimisations, such as permutation of function parameters, do not seem to
happen in practice.
For instance, in the following example, f merely performs a call to g and g a call to h.
cps int f(int x, int y) { return g(x,y); }

cps int g(int a, int b) { return h(a,b); 3}
cps int h(int p, int q) { return (ptq)/2; }

(1, 2) + g@3, 4);
Inlining replaces the calls accordingly.

cps int f(int x, int y) { return h(x,y); }
cps int g(int a, int b) { return h(a,b); }
cps int h(int p, int q) { return (ptq)/2; }

h(1, 2) + h(3, 4);

Note that inlining is iterated until it reaches a fix-point: in this example, f is replaced by g
and then further replaced by h.

In Hekate, 18 trivial CPS functions are inlined out of 113 inner functions. This proportion
(16 %) of trivial functions is due to unoptimised splitting operations: translating loops to goto
statements and then turning them into tail calls creates a number of pathological cases. These
are much easier to optimise in a separate inlining step than trying to refine the set of complex
splitting rules.
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CHAPTER 4

Lambda lifting in an imperative
language

In this chapter, we prove that lambda lifting is correct in an imperative, call-by-value language
for functions that are called in tail position. In order to do this proof, we do not reason directly
on CPC programs, because the semantics of C is too broad and complex for our purposes.
The CPC translator leaves most parts of converted programs intact, transforming only control
structures and function calls. Therefore, we define a simple language with restricted values,
expressions and terms, that captures the features that we are most interested in (Section 4.1).

The big-step reduction rules for this language (Section 4.1.1) use a simplified memory
model without pointers and enforce that local variables are not accessed outside of their scope,
as ensured by our boxing pass. This is necessary because lambda lifting is not correct in
general in the presence of extruded variables.

It turns out that the “naive” reduction rules defined in Section 4.1.1 do not provide in-
variants strong enough to prove this correctness theorem by induction, mostly because we
represent memory with a store that is not invariant with respect to lambda lifting. Therefore,
in Section 4.2, we define an equivalent, “optimised” set of reduction rules which enforces
more regular stores and closures.

The proof of correctness is then carried out in Section 4.4 using these optimised rules.
We first define the invariants needed for the proof and formulate a strengthened version of
the correctness theorem (Theorem 4.4.6, Section 4.4.1). A comprehensive overview of the
proof is then given in Section 4.4.2. The proof is fully detailed in Section 4.4.5, with the help
of a number of lemmas to keep the main proof shorter (Sections 4.4.3 and 4.4.4).

The main limitation of this proof is that Theorems 4.1.9 and 4.4.6 are implications, not
equivalences: we do not prove that lambda lifting preserves non-reducibility. For instance,
this proof does not ensure that infinite loops remain infinite once lambda-lifted.
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4. LAMBDA LIFTING IN AN IMPERATIVE LANGUAGE

4.1 Definitions

In this section, we define the terms (Definition 4.1.1), the reduction rules (Section 4.1.1) and
the lambda-lifting transformation itself (Section 4.1.2) for our small imperative language.
With these preliminary definitions, we are then able to characterise liftable parameters (Defi-
nition 4.1.8) and state the main correctness theorem (Theorem 4.1.9, Section 4.1.3).

Definition 4.1.1 (Values, expression and terms). Values are either boolean and integer con-
stants or 1, a special value for functions returning void.

vi= 1] true | false |n e N

Expressions are either values or variables. We deliberately omit arithmetic and boolean
operators, with the sole concern of avoiding boring cases in the proofs.

e = v | X | e
Terms are assignments, conditionals, sequences, recursive functions definitions and calls.

T:= e|x=T|if Tthen Telse T|T; T
| letrec f(x1,...,x,) =T in T| f(T,...,T)

Our language focuses on the essential details affected by the transformations: recursive
functions, conditionals and memory accesses. Loops, for instance, are ignored because they
can be expressed in terms of recursive calls and conditional jumps—and that is, in fact, how
the splitting pass translates them. Since lambda lifting happens after the splitting pass, our
language needs to include inner functions (although they are not part of the C language), but
it can safely exclude goto statements.

One important simplification of this language compared to C is the lack of pointers.
However, remember that we are lifting only local, stack-allocated variables, and that these
variables cannot be accessed outside of their scope, as ensured by our boxing pass. Since we
get rid of the “address of” operator &, pointers remaining in CPC code after boxing always
point to the heap, never to the stack. Adding a heap and pointers to our language would only
make it larger without changing the proof of correctness.

4.1.1 Naive reduction rules

Environments and stores Handling inner functions requires explicit closures in the re-
duction rules. We need environments, written p, to bind variables to locations, and a store,
written s, to bind locations to values.

Environments and stores are partial functions, equipped with a single operator which
extends and modifies a partial function: -{- — -}.
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Definition 4.1.2 (Modification of a partial function). The modification (or extension) f’
of a partial function f, written f' = f{x — y}, is defined as follows:

f,(t):{y when t = x

f(t) otherwise

dom(f") =dom(f) U {x}

Definition 4.1.3 (Variable and function environments). Variable environments are defined
inductively by
pr=el(x1)-p,
representing the empty domain function and p{x ~ I} (respectively).
Function environments associate function names to closures:

FAfo...} > {[Ax1, .., x0. T, p, Fl}

where the closure [Ax;, ..., x,.T, p, F] captures the function f, the parameters of which are
the variables x; and the body of which is the term T, in the context of a variable environment
p and a function environment F.

Note that although we have a notion of locations, which correspond roughly to memory
addresses in C, there is no way to copy, change or otherwise manipulate a location directly in
the syntax of our language. This is deliberate, since adding this possibility would make lambda
lifting incorrect: it translates the fact, ensured by the boxing pass in the CPC translator, that
there are no extruded variables in the lifted terms.

Reduction rules We use classical big-step reduction rules for our language (Fig. 4.1). The

judgment (T, s) % (v, s’) means that, in the context of a variable environment p, a function

environment F, and a store s, the term T reduces to a value v with a store s’. In the (call) rule,
we need to introduce fresh locations for the parameters of the called function. This means
that we must choose locations that are not already in use, in particular in the environments
p’ and F. To express this choice, we define two ancillary functions, Envs and Locs, to extract
the environments and locations contained in the closures of a given function environment F.

Definition 4.1.4 (Set of environments, set of locations). The set of environments Envs is
the least solution for envs to the following equation:

envs(F) = U {p} Uenvs(F").
[Ax15ecsxXn . M, p, F']elm(F)

The set of locations Locs is defined as:
Locs(F) = J{Im(p) | p € Envs(F)}.
A location [ is said to appear in F if and only if I belongs to Locs(F).
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Figure 4.1.: Naive px= ledom s
reduction rules (VAL) —8 (VAR)
P P
(v, s) = (v, s) (x, s) = (s, s)
(a, s)%(v, s') px=1edom s
(ASSIGN)

(x=a, s) % (1, s'"{1~v})

(a5 5 {0 s) (b ) o (v, )

(SEQ)
(a; b, s) % (v', s")

(a, s) % (true, s') (b, s') % (v, s")

(1F-T.)
(if a then b else c, s) % (v, s”)

(a, s) % (false, s') (c, s') % (v, s")

(1F-F.)
(if a then b else c, s) % (v, s")

(b, s) % (v, s")

F'=F{fw[Ax,....xp.a, p, F]}
(LETREC)
(letrec f(x1,...,x,)=a in b, s) % (v, s")

Ff= [Axl, e Xp.b, pl, }"'] pl=(xi, h) oo (X0 1) I; fresh and distinct

Vi, {ai, si) % (i, sis1) (b, spa{li = vi}) #’ (V, S')

(cALL)
(f(ar,...,an), s1) % (v, s')
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It turns out that our reduction rules do not build circular function environments, so the
previous equation for envs can in fact be read directly as a definition for Envs. We then define
fresh locations.

Definition 4.1.5 (Fresh location). In the (call) rule, a location is fresh when:
o I ¢ dom(sy41),i.e. I is not already used in the store before the body of f is evaluated,
and
o I does not appear in F'{f — F f}, i.e. | will not interfere with locations captured in
the function environment.

Note that the second condition implies in particular that / does not appear in either the
function environment JF or the variable environment p’.

4.1.2 Lambda lifting

As explained in Section 3.5, lambda lifting [Joh85] is a standard technique to eliminate free
variables; it proceeds in two passes [DS04]. In the first pass (“parameter lifting”), free variables
are replaced by local, bound variables. In the second pass (“block floating”), the resulting
closed functions are floated to top level.

Parameter lifting can be performed iteratively. It consists in finding a free variable and
adding it as a parameter of every inner function where it appears free, in order to transform it
into a bound variable. This step is repeated until every variable is bound in every function.
Once all functions are closed, they no longer interact with each other any longer and block
floating can be performed safely: inner functions are syntactically extracted and copied at top
level.

We will focus only on parameter lifting here, since the correctness of block floating is
trivial [DS04]. Note that although the whole transformation is called lambda lifting, we do not
focus on a single function and try to lift all of its free variables. On the contrary, we define the
lifting of a single parameter x in every function where it is free. We will show the correctness
of this elementary step, which implies the correctness of lambda lifting as a whole by iterating
it until every variable is bound.

There are various smart lambda-lifting algorithms in the literature that strive to minimize
the number of lifted variables [DS04; MS07]. Such is not our concern here: to keep the proof
as simple as possible, parameters are lifted in every function where they might potentially be
free.

Definition 4.1.6 (Parameter lifting in a term). Assume that x is defined as a parameter of a
given function g, and that every inner function in g is called h; (for some i € N). Also assume
that function parameters are unique before lambda lifting, to avoid name clashes with lifted
parameters.

Then the lifted form (M), of the term M with respect to x is defined inductively as follows:

M.=1  (n),=n
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(true), = true (false), = false
(»).=y and (y=a), =y=(a), (evenify=x)
(a5 b), =(a), ;5 (b),
(if a then b else ¢), =if (a), then (b), else (¢),
letrec f(x1,...,x4,x) =(a), in (b), iff=h;

letrec f(xy,...,x,) = (a), in (b), otherwise

(letrec f(x1,...,x,) =a in b), :{

f((a1),,...,(an),,x) if f = h;forsome i

(f(ar,...,a4)), = {f((al)* oo (an),) otherwise

4.1.3 Correctness condition

We show that parameter lifting is correct for variables defined in functions whose inner
functions are called exclusively in tail position. We call these variables liftable parameters.
We first define tail positions as usual [Cli98]:

Definition 4.1.7 (Tail position). Tail positions are defined inductively as follows:
1. M and N are in tail position in “if P then M else N”.
2. N isin tail position in “N” and “M ; N” and “letrec f(xi,...,x,) =M in N”.

A parameter x defined in a function g is liftable if every inner function in g is called
exclusively in tail position.

Definition 4.1.8 (Liftable parameter). A parameter x is liftable in M when:
o x is defined as the parameter of a function g,

« inner functions in g, named h;, are called exclusively in tail position in g or in one of
the h;.

Our main theorem states that performing parameter lifting on a liftable parameter pre-
serves the result of the reduction:

Theorem 4.1.9 (Correctness of lambda lifting). If x is a liftable parameter in M, then
3t (M, &) ¢ (v, t) implies 3t', (M), , &) & (v, t').

Note that the resulting store ¢’ changes because lambda lifting introduces new variables,
hence new locations in the store, and changes the values associated with lifted variables;
Section 4.4 is devoted to the proof of this theorem. To maintain invariants during the proof,
we need to use an equivalent, “optimised” set of reduction rules; it is introduced in the next
section.
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4.2 Optimised reduction rules

The naive reduction rules (Section 4.1.1) are not well-suited to prove the correctness of lambda
lifting. Indeed, the proof is by induction and requires a number of invariants on the structure
of stores and environments. Rather than having a dozen lemmas to ensure these invariants
during the proof of correctness, we translate them into constraints in the reduction rules.

To this end, we introduce two optimisations—minimal stores (Section 4.2.1) and compact
closures (Section 4.2.2)—which lead to the definition of an optimised set of reduction rules
(Fig. 4.2, Section 4.2.3). The equivalence between optimised and naive reduction rules is
shown in Section 4.3.

4.2.1 Minimal stores

In the naive reduction rules, the store grows faster when reducing lifted terms, because each
function call adds to the store as many locations as it has function parameters. This yields
stores of different sizes when reducing the original and the lifted term, and that difference
cannot be accounted for locally, at the rule level.

Consider for instance the simplest possible case of lambda lifting:

letrec g(x) = (letrec h() =x in h()) in g(1) (original)
letrec g(x) = (letrec h(y) = y in h(x)) in g(1) (lifted)

At the end of the reduction, the store for the original term is {I, — 1} whereas the store for
the lifted term is {I; ~ 1;1, = 1}. More complex terms would yield even larger stores, with
many out-of-date copies of lifted variables.

To keep the store under control, we need to get rid of useless variables as soon as possible
during the reduction. It is safe to remove a variable x from the store once we are certain that it
will never be used again, i.e. as soon as the term in tail position in the function which defines
x has been evaluated. This mechanism is analogous to the deallocation of a stack frame when
a function returns. We call minimal a store that does not contain such unreachable locations.

To track the variables whose location can be safely reclaimed after the reduction of some
term M, we introduce split environments. Split environments are written pr; p, where pr
is called the tail environment and p the non-tail one; only the variables belonging to the
tail environment may be safely reclaimed. The reduction rules build environments so that a
variable x belongs to pr if and only if the term M is in tail position in the current function f
and x is a parameter of f. In that case, it is safe to discard the locations associated with all
of the parameters of f, including x, after M has been reduced because we are sure that the
evaluation of f is completed (and there are no first-class functions in the language to keep
references to variables beyond their scope of definition).

We also define a cleaning operator, - \ -, to remove a set of variables from the store.

Definition 4.2.1 (Store cleaning). The store s cleaned with respect to the variables in p,
written s \ p, is defined as s \ p = $|gom(s)~1m(p)-
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4.2.2 Compact closures

Another source of complexity with the naive reduction rules is the inclusion of useless variables
in closures. It is safe to remove from the variable environment contained in closures the
variables that are also parameters of the function: when the function is called, and the
environment restored, these variables will be masked by the freshly instantiated parameters.

This is typically what happens to lifted parameters: they are free variables, captured in the
closure when the function is defined, but these captured values will never be used since calling
the function adds fresh parameters with the same names. We introduce compact closures in
the optimised reduction rules to avoid dealing with this hiding mechanism in the proof of
lambda lifting.

A compact closure is a closure that does not capture any variable which would be masked
when the closure is called because of function parameters having the same name.

Definition 4.2.2 (Compact closure and environment). A closure [Axy,...,x,.M, p, F]is
compact if Vi, x; ¢ dom(p) and F is compact. An environment is compact if it contains only
compact closures.

We define a canonical mapping from any environment J to a compact environment F,,
restricting the domains of every closure in F.

Definition 4.2.3 (Canonical compact environment). The canonical compact environment
F. is the unique environment with the same domain as F such that

Vfedom(F),F f=[Axt,....,xp.M, p, F']
implies F, f = [}Lxl,...,xn.M, Pldom(p)~ {x1,..xn}> ]—"*].

.....

4.2.3 Optimised reduction rules

Combining both optimisations yields the optimised reduction rules (Fig. 4.2), used in Sec-
. fes . PTSP .
tion 4.4 for the proof of lambda lifting. The judgment (T, s) % (v, s’) means that, in
the context of a tail variable environment pr, a non-tail variable environment p, a function
environment JF, and a store s, the term T reduces to a value v with a store s’. Consider for

instance the rule (seq).

(a, s) BAlAN (v, s') (b, s') LT, (v', s")

7 7
(sEQ) rip
T5

(a; b, s) == (v', s")

The variable environment is split into the tail environment, pr, and the non-tail one, p. This
means that a ; b is in tail position in a function whose parameters are the variables of pr.
When we reduce the left part of the sequence, a, we track the fact that it is not in tail position
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o . : . . &PTP
in this function by moving pr to the non-tail environment: (a, s) == (v, ). On the

other hand, when we reduce b, we are in the tail of the term and the environment stays split.

In Section 4.2.1, we have introduced split environments in order to ensure minimal stores.
Stores are kept minimal in the rules corresponding to tail positions, ie. the leaves of the
reduction tree: (val), (var) and (assign). In these three rules, variables that appear in the tail
environment are cleaned from the resulting store: s \ pr.

Finally, the (letrec) and (call) rules are modified to introduce compact closures and split
environments, respectively. Compact closures are built in the (letrec) rule by removing the
parameters of f from the captured environment p’. In the (call) rule, environments are split
in a tail part, which contains local variables of the called function, and a non-tail part, which
contains captured variables; only the former are cleaned when the tail instruction of the
function is reduced.

Theorem 4.2.4 (Equivalence between naive and optimised reduction rules). Optimised
and naive reduction rules are equivalent: every reduction in one set of rules yields the same result
in the other. It is necessary, however, to take care of locations left in the store by naive reduction:

(M, &) ==> (v, &) iff 3s,(M, &)+ (v, s)

We prove this theorem in Section 4.3.

4.3 Equivalence of optimised and naive reduction rules

This section is devoted to the proof of equivalence between the optimised naive reduction
rules (Theorem 4.2.4).

To clarify the proof, we introduce intermediate reduction rules (Fig. 4.3), with only
one of the two optimisations: minimal stores, but not compact closures. The judgment

PT;P, . . . . .
(T, s) ==z% (v, s') means that, in the context of a tail variable environment pr, a non-tail

variable environment p, a function environment F, and a store s, the term T reduces to a
value v with a store s’.

The proof then consists in proving that optimised and intermediate rules are equivalent
(Lemmas 4.3.2 and 4.3.3, Section 4.3.1), then that naive and intermediate rules are equivalent
(Lemmas 4.3.8 and 4.3.9, Section 4.3.2).

Lemma 4.3.9 Lemma 4.3.2

Naive rules =———— Intermediate rules
Lemma 4.3.8 Lemma 4.3.3

Optimised rules
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Figure 4.2: Optimised (pr-p) x =1 ¢dom s

reduction rules (VAL) (VAR)
PT;P PT;P
(v, 5) Z25 (v, s~ pr) (x, s) L5 (s 1, s~ pr)

(a, s) % (v, s") (pr-p) x=1edom s’

(ASSIGN) :
(x:=a,s) S5 (L {1 v}~ pr)

(a, s) % (v, s’> (b, s’) HEELY (v’, s”)

(seQ) rip
<a; b’ S) é (V,, SII>

€3

(a, s) RIS (true, s’) (b, s’) NEELY (v, s")

(1F-T.) z :

(if a then b else c, s) % (v, s")
e (a, s) % (false, 5’) (c, s') % (v, s")
IF-F.

(if a then b else c, s) % (v, s")

(b, s) % (v, s")

p,:pT‘p|dom(pT-p)\{x1 ,,,,, Xn} F' :f{fH [Axl""’xn'a’ p,’ ‘7:]}

(LETREC)

(letrec f(xi,...,x,) =a in b, s) % (v, ')

Ff= [Axl, e Xp.b, Py .7-"'] p"=(xi, b)) (s L) I; fresh and distinct

) £ pTp p’sp!
Vii(ai, si) =7 (vio sia) (b seallimvid) Sy (v )

(cALL) o
(f(an,....an), s1) == (v, 5’ pr)
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4.3. Equivalence of optimised and naive reduction rules

Figure 4.3: Intermediate
(vavr) (VAR) r reduction rules

P3P
(b, s) ==5> (v, &)
pl=pr-p F =F{f-[M,....,xn.a, p, F]}

(letrec f(x1,...,x,) =a in b, s) fa2h (v, s")

(LETREC)

Ff= [/lxl, e Xp.b, ply .7-"'] p’=(xt, b)) o (X0 1) I; fresh and distinct

. £5pTp psp!
Vi, {a;, si) ::j_-T:> (i, sis1) (b, spu{li = vi}) =2777573 (V, S')
(cALL)

(f(ar,...ran)s 1) “22% (v, §' < pr)
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4.3.1 Optimised and intermediate reduction rules equivalence
In this section, we show that optimised and intermediate reduction rules are equivalent:

Lemma 4.3.2

Intermediate rules Optimised rules

Lemma 4.3.3
We must therefore show that it is correct to use compact closures in the optimised reduction
rules.

Compact closures carry the implicit idea that some variables can be safely discarded
from environments when we know for sure that they will be masked by freshly instantiated
parameters, since their associated locations will be unreachable in the closure. The following
lemma formalises this intuition.

Lemma 4.3.1 (Masked variables elimination).

(x,1); (1) ;5 (1)

vl’ l,’ <M’ S) :p:T:(‘:);:): /:)> <V, SI> I_ﬂ <M’ S) :p:T:(iC:)::FSx: :):P> (V, S,>
pr(xD)ip . pr(a)s (5 1)p

VI,I', (M, s) — (v, s') iff (M, s) —— (v, s")

Moreover, both derivations have the same height.

Proof. The exact same proof holds for both intermediate and optimised reduction rules.
By induction on the structure of the derivation. The proof relies solely on the fact that

pr- (1) p=pr-(x,1)-(x,1) p.

(seq) pr-(x,1)-p=pr-(x,1)-(x,I") - p. So,

e;pT‘("’l)’(X’l,)& ( J 5’) i s;pT'(X’l)'p> ( , S’)

<b’ S,> :p:T:(f):l):)Ex:’l:/):p> (V’, S”) lﬂ: <b, $,> :,D:T':(f):l):;/:)> (V’, S”)

F F
Hence,
(6,05 (x,1)- {(x,1);5
<a; b’ 5> :P:T:(: :)?Fg::):p? <vl’ S”) lﬂ: (a, b, S> :P:T:(}::): £> <vl’ 5”)

The other cases are similar.

(val)
(x,1); (6,15 (x,17)-
(v, s) =P=T=(=;__:): & (v, sxpr-(x,1)) iff (v, s) =p=T=(§:)3_.£x: :):P> (v, sxpr-(x,1))
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(var) pr-(x,01)-p=pr-(x,1)-(x,1")-pso,with " =pr-(x,1)-py,

J0)s (1) 5 (x,17)-
(};, S> :::?7__:::> <5 l//’ S \PT (x’l)) lff <y’ S) :p:T:(::?%E::):P> (S l”, s \PT (x)l))

(assign) pr-(x,1)-p=pr-(x,1)-(x,1")-p. So,

e;pr(.1)-(x1")p

(a,s) =2EE2 2225 (v, ) O (4 s) :;:}’:'? (v, s')

<y:: a, 5)::.:%;_:::> <1, 5’{1”!—)1}}\/)7’*'(X,l)> lﬂ:

HENIHENDE
(y =a, S) :P:T:(: :)‘:7£ = :):P> (1’ Sl{l” — ’V} AN pT . (X, l))

(if-true) and (if-false) are proved similarly to (seq).
(letrec) pr-(x,1)-p=pr-(x,1)-(x,1")- p = p'. Moreover, by the induction hypotheses,

pT-(x,l);(x,l')'I; (V’ S’) ) s pr(x1);p (V, S/)

Hence,
(letrec f(x1,...,x,) =a in b, s) :&T;(f’:l):;gxz’l:/):g (v, s")
(letrec f(x1,...,xp) =a in b, s) ===== =5 (v, s")
(call) pr-(x,1)-p=pr-(x1)-(x,1") - p. So,

. e;pr(.)-(x.1)p ) e pr(x.1)-p
vl,<ai, si>::::::f::::><vi) Si+1) lff <ai) si)::::ﬁ::: <Vi) Si+1)

(x,0) ;5 (x,17)-
(f(ar,...,an), s1) A2 :);__E::):f; (v, s~ pr-(x, 1)) iff

(F(an...ran), 1) =225255 (v, '\ pr- (1 1)),
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Now we can show the required lemmas and prove the equivalence between the intermedi-
ate and optimised reduction rules.

Lemma 4.3.2 (Intermediate implies optimised).

P_T;

[Jae)

If (M, s) =

> (v, s') then (M, s) % (v, s').

Proof. By induction on the structure of the derivation. The interesting cases are (letrec) and
(call), where compact environments are respectively built and used.

(letrec) By the induction hypotheses,

(b, s) % (v, s")

Since we defined canonical compact environments so as to match exactly the way compact
environments are built in the optimised reduction rules, the constraints of the (letrec) rule
are fulfilled:
Flo=F{f e [Ax,....x0a, p's Ful},
hence:
(letrec f(x Xp)=a in b, s) LLR (v s')
Y n b f* >

(call) By the induction hypotheses,

& PP

Vi, {ai, s;) = (vis sit1)
and
pll;pl
(0, swarlli > viY) Gt (v )

Lemma 4.3.1 allows us to remove masked variables, which leads to

<b> 5n+1{li g Vi}) (}—’{f'_’}—f})* (V’ S )

Besides,
Fo f = [At 508, plaomip o) Fe]
and
(FAf o F e =F Af > Fu f}
Hence

prsp
(f(ai,...,an), s1) % (v, s"~pr).
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(val) (v, s) % (v, s~ pr)

(var) (x, s) % (s, s~pr)

(assign) By the induction hypotheses, (a, s) % (v, s’). Hence,

(x =a, s) % (1, s'{I»v}\pr)

(seq) By the induction hypotheses,

(09 22 (0 6) (n ) 2 ()
Hence,
P3P ron
(a; b, s)?(v,s )
(if-true) and (if-false) are proved similarly to (seq). O

Lemma 4.3.3 (Optimised implies intermediate).

If (M, s) % (v, s} then VG such that G. = F, (M, s) SERN (v, s").

Proof. First note that, since G, = F, F is necessarily compact.
By induction on the structure of the derivation. The interesting cases are (letrec) and
(call), where non-compact environments are respectively built and used.

,,,,,

G =G{fr[Ax1,....,xn.a, pr-p, F|}
which leads, since F is compact (F, = F), to

G.=F{fr [)Lxl,...,xn.a, o .7:]}
=F

By the induction hypotheses,

Hence,

(letrec f(x1,...,x,) =a in b, s) b (v, s')
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(call) LetG suchas . = F. By the induction hypotheses,

€3
Vi, (a,-, S,‘) ==

)
(-)H"I

p
> (i, Sis1)

Moreover, since G. f = F f,

gf = [Axl, e ,xn.b, (xi,li) L— (Xj, lj)p,, g’]

where G’ = F', and the I; are some locations stripped out when compacting G to get F. By
the induction hypotheses,

(b, spa{li=vi}) L

Lemma 4.3.1 leads to

PGl
(b, spaf{li = vi}) CCtelan T (v, s')
Hence,

(f(al,...,an), 51> ::T;E>

(val) VG suchasG,

=F, (v, s) SE (v, s")

(var) VGsuchasG, = F,(x, s) 25

L s'{I»v}\pr)
(seq) LetG suchas G, = F. By the induction hypotheses,
ESPTP TP
<a’ S> :::g::> <V, 5’) <b, 5’) ::g::> (V’, SII>
Hence
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4.3. Equivalence of optimised and naive reduction rules

(if-true) and (if-false) are proved similarly to (seq). ]

4.3.2 Intermediate and naive reduction rules equivalence

In this section, we show that the naive and intermediate reduction rules are equivalent:

Lemma 4.3.9

Naive rules === Intermediate rules
Lemma 4.3.8

We must therefore show that it is correct to use minimal stores in the intermediate reduction
rules. We first define a partial order on stores:

Definition 4.3.4 (Store extension).
scs’ iff s'|gom(s) = 5

Property 4.3.5. Store extension (S) is a partial order over stores. The following operations
preserve this order: - \ p and -{l — v}, for some given p, | and v.

Proof. Immediate when considering the stores as function graphs: t is the inclusion, -\ p a
relative complement, and -{! ~ v} a disjoint union (preceded by - \ (I,v") when [ is already
bound to some v'). O

Before we prove that using minimal stores is equivalent to using full stores, we need an
alpha conversion lemma, which allows us to rename locations in the store, provided the new
location does not already appear in the store or the environments. It is used when choosing a
fresh location for the (call) rule in proofs by induction.

PT3P

Lemma 4.3.6 (Alpha conversion). If (M, s) ===~ (v, s') then, for all 1, for all I" appearing

neither in s nor in F nor in p - pr,

Moreover, both derivations have the same height.

Notation: in F[1'[1], alpha conversion is applied inductively to every closure of every
element of F.

Proof. By induction on the height of the derivation. For the (call) case, we must ensure
that the fresh locations /; do not clash with I’. In case they do, we conclude by applying the
induction hypotheses twice: first to rename the clashing J; into a fresh [, then to rename /
into 1.

103



4. LAMBDA LIFTING IN AN IMPERATIVE LANGUAGE

We start with two preliminary elementary remarks. First, provided I” appears neither in

p or pr,norins,
(s~ p)[I'/1] = (L) ~ (p[1/1)
and
(pr-p)[I'/1] = pr[V'/1]- p[V'/1].

Moreover, if (M, s) S (v, s'), then dom(s") = dom(s) \ pr (straightforward by
induction). This leads to: pr = ¢ = dom(s’) = dom(s).
By induction on the height of the derivation, because the induction hypothesis must be

applied twice in the case of the (call) rule.

(call) Vi, dom(s;) = dom(s;41). Thus, Vi,I” ¢ dom(s;). This leads, by the induction
hypotheses, to

; -p)[1']1
Vi,(a,-, si[l'/l]) = EP:T:Q[:/:L (Vi, Si+1[l'/l]>-7:[ll/l]

Moreover , F' is part of F. As a result, since I’ does not appear in F, it does not appear in
F',norin F'{f — F f}. It does not appear in p’ either (since p’ is part of 7). On the other
hand, there might be some j such that /; = I, so I” might appear in p”. In that case, we apply
the induction hypotheses a first time to rename /; in some lJ'- # I'. One can chose | ]’ such that
it does not appear in s,.1, F'{f = F f} norin p” - p. As a result, l]'- is fresh. Since [; is fresh
too, and does not appear in dom(s”) (because of our preliminary remarks), this leads to a
mere substitution in p”’:

P /)50
<b, Sn+1{li|:ljl-/lj] g Vi}) :‘;-’:{]é’:j::f? (V, SI)

Once this (potentially) disturbing /; has been renamed (we ignore it in the rest of the proof),
we apply the induction hypotheses a second time to rename [ to I”:

/ P[] It
(b, (spar{li > vip)[I'/1]) :;;{:fi»:f:f:}:> (v, s'[I'/1)

Now, (sp1{li =»vi})[I'/1] = sua[l'/1]{1; = v;}. Moreover,

FII = [Axrs .o xub, p'[V/1), FLU]

and
(Ff o F DW= FIS > FI £}
Finally, p”[1'/1] = p". Hence:

prll'/1]:pL1" /1]
(f(ar,...an), i[I'/1]) === T (v, S'[I'/1]~ pr[1/10).
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) (v, s[1/10) LR (o s prl11)
ar) S prlP 1) pL1] %) = (o1 p) %) = v mplies

ooV /1311 /1]
oo sl1/11) #=25555 7 (v s pe[1/10)

(assign) By the induction hypotheses,

Lets” =s'{(pr-p) x = v}. Then,
ST/ Gpr-p) V1] x = v} = s"[1]1]

Hence

/ pr[I'/15p[1'/1] Asl !
(= a, s[1//10) 25250525 (L ST pal11))

(seq) By the induction hypotheses,

, es(prp)[1'/1] Jrar
(a, s1'/M) =555 (v, S'T'/M)

Besides, dom(s’) = dom(s), therefore I" ¢ dom(s”). Then, by the induction hypotheses,

prll'/11:p1'/1]
<b, Sl[l’/l]) ::::]::[l:’/:l]:::> (V/, Sl/[l’/l])

Hence
prll'/1]:p[1'/1]

(s b ) =257y = 0 S"T/)
(if-true) and (if-false) are proved similarly to (seq).

(letrec) Since I’ appears neither in p’ nor in F, it does not appear in F' either. By the
induction hypotheses,

, ALl e
(b, s[I'/1]) :”:T:;,:[?,;:’ﬁ:» (v, s'[1'/1])

Moreover,

FN = FIUS o Mo xa o' (1)1, F}
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Hence
prl[l'/1]:p[1'/1]
> __T ________ < > ,)

(letrec f(x1,...,x,) =ain b, s FiJ1]

O

To prove that using minimal stores is correct, we need to extend them so as to recover the
full stores of naive reduction. The following lemma shows that extending a store before an
(intermediate) reduction extends the resulting store too:

Lemma 4.3.7 (Extending a store in a derivation).

TP

Given the reduction (M, s) ==z~ (v, ') then Vt 25,3t 25", (M, t) AL (v, t').

Moreover, both derivations have the same height.

Proof. By induction on the height of the derivation. The most interesting case is (call), which
requires alpha converting a location (hence the induction on the height rather than the
structure of the derivation).

(var), (val) and (assign) are straightforward by the induction hypotheses and Property 4.3.5;
(seq), (if-true), (if-false) and (letrec) are straightforward by the induction hypotheses.

(call) Let #; 2 s5. By the induction hypotheses,

esprep
dt, 2 sy, (al, t1> ::;_-::> <V1, t2>
esprep
It 2 s,-+1,(a,-, t,’) = F > (sz t1+1)
esprop
Itni1 2 sus1s (an, tn) ::j_-::> <Vna tn+1>

The locations /; might belong to dom(#,.1) and thus not be fresh. By alpha conversion
(Lemma 4.3.6), we chose fresh I (not in Im(p”) and dom(s")) such that

(b, suar{li o vi}) =7755555 (v o)

and the height of the derivation is preserved. By Property 4.3.5, tp1{l! = vi} 2 sy {l] = v;}.
By the induction hypotheses,

W 2, (b, trallf = wi)) 5127 (0 )
and the height of the derivation is preserved. Moreover, t' \ pr 2 s’ \ pr. Hence,

P_T P,

(f(ar,...,an), ) === (v, t' \pT>.
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T

(var) Lett3s. (v, t) == 25 (v, t~pryand 3t =t N pr 2 s\ pr =’ (Property 4.3.5).

PT;

(val) Lett3s. (x, t) = ;g (t1, t~pryand 3t =t~ pr 2 s~ pr = s’ (Property 4.3.5).

Moreover, t | = s | because [ € dom(s) and #|gom(s) = 5.
(assign) Let t 2 s. By the induction hypotheses,

3t 25, (a, t) =225 > (v, t')
and the height of the derivation is preserved. Hence,

PTP
(x=a, 1) <225 (1 {1~ v} N pr)
concludes, since t'{I » v} \ pr 2 t'{l » v} \ pr (Property 4.3.5).

(seq) Lett 2 s. By the induction hypotheses,

(if-true) and (if-false) are proved similarly to (seq).
(letrec) Let t 2 s. By the induction hypotheses,
' 25, (b, s) :::;,—> (v, s’)
and the height of the derivation is preserved. Hence,
It 2§, (letrec f(x1,...,x,) =a in b, s) R (v, t')
O

Now we can show the required lemmas and prove the equivalence between the intermedi-
ate and naive reduction rules.
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Lemma 4.3.8 (Intermediate implies naive).

If (M, s) SEFES (v, s') then 3t' 25',(M, s) Lj_ﬂ (v, t').

Proof. By induction on the height of the derivation, because some stores are modified during
the proof. The interesting cases are (seq) and (call), where Lemma 4.3.7 is used to extend
intermediary stores. Other cases are straightforward by Property 4.3.5 and the induction
hypotheses.

(seq) By the induction hypotheses,

Moreover,

Since t’ 2 s’, Lemma 4.3.7 leads to:
atas’ (b, ') 225 (v, )
and the height of the derivation is preserved. By the induction hypotheses,
3t" 3 t,(b, t') 2= (v, 1)
Hence, since E is transitive (Property 4.3.5),
" 2", (a; b, s) % (v, t").

(call) Similarly to the (seq) case, we apply the induction hypotheses and Lemma 4.3.7:

3ty 2 55, (a1, s1) % (v1, t2) (Induction)

Ati 2 siv (@i 1) 282;%_2’; (Vi, tl{+1> (Lemma 4.3.7)

It 2t 2 siv (ai, i) % (vi, tis1) (Induction)
31 2 Snets (ans tn) :s:;%;,; (Vn’ t;H) (Lemma 4.3.7)

tue1 24 2 Snets (Ans tn) % (Vs tne1) (Induction)
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The locations /; might belong to dom(#,;) and thus not be fresh. By alpha conversion
(Lemma 4.3.6), we choose a set of fresh I that also do not appear in Im(p’) and dom(s’),
such that

(b swnally i)} 5752557 (v o).
By Property 4.3.5, ty1{l] = vi} 2 sy {l! = vi}. Lemma 4.3.7 leads to,

(Iwvi)sp'
b tua{li > vi}) 2755557 O 1)

By the induction hypotheses,

(Lwvi)p'
El=R = S (b tn+1{l — V,}) W’ <V, t,> .
Moreover, t' \ pr 2 s’ \ pr. Hence,

(f(ay,...,an), 51)%(1/, t'\pT>.
(val) (v, 5)%(1/, fYywitht' =s3s\ pr=5".

(var) (x, 5)%’ (s1, S") with t':s;’s\pT =g

(assign) By the induction hypotheses,

Hence,
(x=a, s) (1, '{l > v})

concludes since t'{l — v} 3 §'{l —» v} (Property 4.3.5).

(if-true) and (if-false) are proved similarly to (seq).
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(letrec) By the induction hypotheses,
/ / P !
3t 25, (b, 5)7(1/, s )
Hence,
3t 2", (letrec f(x Xp)=ain b S)L’<V t')
= 5 IpeeerXpy) = 5 A ) .
O
The proof of the converse property—i.e. if a term reduces in the naive reduction rules, it
reduces in the intermediate reduction rules too—is more complex because the naive reduction
rules provide very weak invariants about stores and environments. For that reason, we add
an hypothesis to ensure that every location appearing in the environments p, pr and F also

appears in the store s:
Im(pr - p) U Locs(F) c dom(s).

Moreover, since stores are often larger in the naive reduction rules than in the intermediate
ones, we need to generalise the induction hypothesis.

Lemma 4.3.9 (Naive implies intermediate). Assume Im(p7-p)ULocs(F) c dom(s). Then,

(M, s) Lfﬂ (v, s') implies

V't C s such that Im(pr - p) ULocs(F) c dom(t), (M, t)== 25 (v, s'|d0m(t)\1m(PT)> .

Proof. By induction on the structure of the derivation.

(val) Lettcs. Then

NPT = Sldom(1)~Im(pr) because s|gom(r) = ¢
/ /
=S |d0m(t)\Im(pT) because s’ =s
Hence,

(v, £) L5 (v, £~ pr).

(var) Lettc ssuchthatIm(pr-p)uLocs(F) c dom(t). Note that/ € Im(p7-p) c dom(t)
implies ¢ | = s . Then,

t\pr= S|d0m(t)\lm(pT) because s|gom(r) = ¢

! /
=S |d0m(t)\Im(pT) because s’ = s

Hence,
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(assign)

Let ¢ € s such that Im(p7 - p) U Locs(F) c dom(t). By the induction hypotheses,
since Im(¢) = @,

Note that [ € Im(p7 - p) c dom(¢) implies I € dom(s’|gom(r)). Then

(s"laom(n {1 = v}) N pr = ({1 > v} laom(ry N pr because I € dom(s|gom(r))
= (Sl{l = V})|d0m(t)\lm(pT)

Hence,

[Jas}

(x:=a,s) =25 (1 (laom(n {I = v}) ~ pr).
(seq)

Let t © s such that Im(p7 - p) U Locs(F) ¢ dom(t). By the induction hypotheses,
since Im(¢) = @,

&3

nw

T:f; (V> 5l|dom(t)>

Moreover, s'|gom(¢) E s’ and Im(pr - p) U Locs(F) c dom(s|gom(r)) = dom(t). By the
induction hypotheses, this leads to:

(a, t)

9

[Jas}

>

PT
(b laom()) 2> (Vs 5" ldom(gomey )1 ) -
Hence, with dom(s'|gom(s)) = dom(¢),

l4 14
(V"> 5" ldom()Im(pr) ) -
(if-true) and (if-false) are proved similarly to (seq).

(letrec) Let t c s such that Im(pr - p) U Locs(F) c dom(t).

Locs(F") = Locs(F) uIlm(pr - p) implies Im(pr - p) U Locs(F') c dom(¢).
Then, by the induction hypotheses,

TSP
<b’ t> =SE7 <V’ S/|dom(t)\lm(pT)> .
Hence,

(letrec f(x1,...x0) =a in b, £) =225 (v, Slaom(oimon)) -
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(call) Lettc s such that Im(pr - p) ULocs(F) c dom(t). Note the following equalities:

$1ldom(t) =
$2|dom(t) E S2
Im(pr-p) ULocs(F) c dom(s2|dom(t)) = dom(t)
$3ldom(s2lgom (1)) = $3ldom(#)
By the induction hypotheses, they yield:

5§PT_‘

(an, £) ==55% (v, $2ldom(n))

T
(az, 52|d0m(t)> :s;l_%;l; (Vl’ 53’dom(t)>
Vi,(a,-, 5i|d0m(t)) :SZ;I‘%;T;/; (Vi’ 5i+1|dom(t))

Moreover, sn+1|d0m(t) C 5,4 implies sn+1|d0m(t){l,- = vi} € spa{li » vi} (Property 4.3.5)
and:
Im(p" - p') ULocs(F'{f  F f}) = Im(p") U (Im(p") U Locs(F'))
c {l;} uLocs(F)
c {l;} udom(t)
c dom(sp+1ldom(r){li = vi})

Then, by the induction hypotheses,

(by swatlaom(n {li > vi}) 22372557 (v’ S,|d0m(5n+1|dom(:){liHVi})\Im(P"))
Finally,

S ldom(surlgomeey {rvi})~Im(p) N PT = 8 ldom(t)u{tin {1} N PT = S ldom(r) N PT
= (5"~ pr)ldom(t)\im(py)  (by definition of - \ )

Hence,
TP
=25 (v, ("N p1)ldom()aim(pr) ) -

(f(ay,...,an), t) =

4.4 Correctness of lambda lifting

In this section, we prove the correctness of lambda lifting (Theorem 4.1.9 on page 92) by
induction on the height of the optimised reduction.

Section 4.4.1 defines stronger invariants and rewords the correctness theorem with them.
Section 4.4.2 gives an overview of the proof. Sections 4.4.3 and 4.4.4 prove a few lemmas
needed for the proof. Section 4.4.5 contains the actual proof of correctness.

112



4.4. Correctness of lambda lifting

4.4.1 Strengthened hypotheses

We need strong induction hypotheses to ensure that key invariants about stores and environ-
ments hold at every step. For that purpose, we define aliasing-free environments, in which
locations may not be referenced by more than one variable, and local positions. They yield
a strengthened version of liftable parameters (Definition 4.4.3). We then define lifted envi-
ronments (Definition 4.4.4) to mirror the effect of lambda lifting in lifted terms captured
in closures, and finally reformulate the correctness of lambda lifting in Theorem 4.4.6 with
hypotheses strong enough to be provable directly by induction.

Definition 4.4.1 (Aliasing). A set of environments & is aliasing-free when:
Vp,p' €&, ¥x edom(p),Vyedom(p'), px=p' y=>x=y.
By extension, an function environment F is aliasing-free when Envs(F) is aliasing-free.

The notion of aliasing-free environments is not an artifact of our small language, but
translates a fundamental property of the C semantics: distinct function parameters or local
variables are always bound to distinct memorylocations (Section 6.2.2, paragraph 6 in ISO/IEC
9899 [Int99]).

A local position is any position in a term except inner functions. Local positions are used
to distinguish functions defined directly in a term from deeper nested functions, because we
need to enforce Invariant 3 (Definition 4.4.3) on the former only.

Definition 4.4.2 (Local position). Local positions are defined inductively as follows:
1. M isinlocal position in “M” and “x := M” and “M ; M” and “if M then M else M”
and “f(M,...,M)"
2. Nisinlocal position in “letrec f(x;,...,x,) =M in N”.

We extend the notion of liftable parameter (Definition 4.1.8 on page 92) to enforce invari-
ants on stores and environments. It is no longer enough to define liftability in a term M: we
need to define it in a 4-tuple made of a term M, a function environment F, a tail variable
environment pr and a non-tail variable environment p.

Definition 4.4.3 (Extended liftability). The parameter x is liftable in (M, F, pr, p) when:
1. x is defined as the parameter of a function g, either in M or in F,
2. in both M and F, inner functions in g, named h;, are defined and called exclusively:
a) in tail position in g, or
b) in tail position in some h; (with possibly i = j), or
¢) in tail position in M,
for all f defined in local position in M, x € dom(pr - p) < 3i, f = h;,
moreover, if h; is called in tail position in M, then x € dom(pr),
in F, x appears necessarily and exclusively in the environments of the k;’s closures,
F contains only compact closures and Envs(F) U {p, pr} is aliasing-free.
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We also extend the definition of lambda lifting (Definition 4.1.6 on page 91) to environ-
ments, in order to reflect changes in lambda-lifted parameters captured in closures.

Definition 4.4.4 (Lifted form of an environment).

If]:fz[lxl,...,xn.b, p', ]-"] then

(F). f:{[/\xl,...,xnx.(b)*, P ldom(p){x}> (F),] when f = h; for some i

[Ax1, ..., x0. (D), p's (F'),] otherwise

Lifted environments are defined such that a liftable parameter never appears in them.
This property will be useful during the proof of correctness.

Lemma 4.4.5 (Liftable parameters in lifted environments). If x is a liftable parameter in
(M, F,pr,p), then x does not appear in (F),.

Proof. Since x is liftable in (M, F, pr, p), it appears exclusively in the environments of h;.
By definition, it is removed when building (F), . O

These invariants and definitions lead to a correctness theorem with stronger hypotheses.

Theorem 4.4.6 (Strengthened correctness of lambda lifting). If x is a liftable parameter in
(M, F,pr,p), then
PT;P . . P3P
(M, s) == (v, s} implies (M), , s) (?)j (v, s")
Since naive and optimised reductions rules are equivalent (Theorem 4.2.4), the proof of
Theorem 4.1.9 is a direct corollary of this theorem.

Corollary 4.4.7. If x is a liftable parameter in M, then
3t, (M, &) < (v, t) implies 3t', (M), , &) & (v, t') .

4.4.2 Overview of the proof

With the enhanced liftability definition, we have invariants strong enough to perform a proof
by induction of the correctness theorem. This proof is detailed in Section 4.4.5.

The proof is not by structural induction but by induction on the height of the derivation.
This is necessary because, even with the stronger invariants, we cannot apply the induction
hypotheses directly to the premises in the case of the (call) rule: we have to change the
stores and environments, which means rewriting the whole derivation tree, before using the
induction hypotheses.

To deal with this most difficult case, we distinguish between calling one of the lifted
functions (f = h;) and calling another function (either g, where x is defined, or any other
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function outside of g). Only the former requires rewriting; the latter follows directly from the
induction hypotheses.

In the (call) rule with f = h;, issues arise when reducing the body b of the lifted function.
During this reduction, indeed, the store contains a new location !’ bound by the environment
to the lifted variable x, but also contains the location / which contains the original value of
x. Our goal is to show that the reduction of b implies the reduction of (b),, with store and
environments fulfilling the constraints of the (call) rule.

To obtain the reduction of the lifted body (b),, we modify the reduction of b in a series
of steps, using several lemmas:

« thelocation [ of the free variable x is moved to the tail environment (Lemma 4.4.8);

o the resulting reduction meets the induction hypotheses, which we apply to obtain the

reduction of the lifted body (b),;

« however, this reduction does not meet the constraints of the optimised reduction rules
because the location I is not fresh: we rename it to a fresh location I’ to hold the lifted
variable (Lemma 4.4.9);

o finally, since we renamed [ to I’, we need to reintroduce a location [ to hold the original
value of x (Lemmas 4.4.10 and 4.4.11).

The rewriting lemmas used in the (call) case are shown in Section 4.4.3.

For every other case, the proof consists in checking thoroughly that the induction hy-
potheses apply, in particular that x is liftable in the premises. These verifications consist in
checking Invariants 1 and 6 of the extended liftability definition (Definition 4.4.3). To keep
the main proof as compact as possible, the most difficult cases of liftability, related to aliasing,
are proven in some preliminary lemmas (Section 4.4.4).

One last issue arises during the induction when one of the premises does not contain the
lifted variable x. In that case, the invariants do not hold, since they assume the presence of
x. But it turns out that in this very case, the lifting function is the identity (since there is no
variable to lift) and lambda lifting is trivially correct.

4.4.3 Rewriting lemmas

Calling a lifted function has an impact on the resulting store. New locations are introduced
for the lifted parameters, and the original locations can no longer be modified. Because of
these changes, the induction hypotheses do not apply directly in the case of the (call) rule for
a lifted function h;. We use the following four lemmas to obtain, through several rewriting
steps, a reduction of lifted terms meeting the induction hypotheses.

o Lemma 4.4.8 shows that moving a variable from the non-tail environment p to the tail
environment pr does not change the result, but restricts the domain of the store. It is
used to transform the original free variable x (in the non-tail environment) to its lifted
copy (which is a parameter of h;, hence in the tail environment).

o Lemma 4.4.9 handles alpha conversion in stores and is used when choosing a fresh
location.
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o Lemmas 4.4.10 and 4.4.11 finally add into the store and the environment a fresh location,
bound to an arbitrary value. Itis used to reintroduce the location containing the original
value of x, after it has been alpha converted to I'.

; (1)
Lemma 4.4.8 (Switching to tail environment). For all x ¢ dom(pr), (M, s) L;)&

(x,1);
(v, s') implies (M, s) £ (f) a

height.

(v, 5| dom(s')~ i ) Moreover, both derivations have the same

Proof. By induction on the structure of the derivation. For the (val), (var), (assign) and (call)
cases, we use the fact that s \ pr - (x,1) = '|gom(s7)« {1} When s’ = s\ pr.

(x,1)5
(val) (v, s) Lf)& (vi sxpr-(x,1))and s~ pr-(x,1) = 5| gom(sr) g1y Withs” = s\ pr.

(x,0)5
(var) (y, s) % (sl s~pr-(x,1))and s \ pr - (x,1) = §'|gom(s7)~ 13> With I =

pr-(x,1)-pyands’ =s~pr.

(assign) By hypothesis,

(a, s) =228 () )

hence

. )I ;
(y=a, s) Lfﬂ; (1, s{l' v} \pT-(x,l)>

and s'{I" = v} N pr- (x,1) = 5| qom(s)~ 1y With I = pr - (x,1) - p yand s" = s'{I" = v} \ pr.

(seq) By hypothesis,
e;pr(.0)p ( /)

(a, s) =—F—

and, by the induction hypotheses,

{(x,0)5
(b, S,) PT:}—P> <V, S”|d0m(s”)\{l}>

hence

pr-(x.1)sp
(a; b, 5> T:f> (V, 5”|d0m(su)\{l}) .

(if-true) and (if-false) are proved similarly to (seq).
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(letrec) By the induction hypotheses,

pr(x1);p
(b, s) = (v S"lom(s)~(1})

hence
pr(x:0);p
>

(letrec f(x1,...,x,) =a in b, s) = (v, s'|d0m(s/)\{l})

(call) The hypotheses do not change, and the conclusion becomes:

(%05
(flan...an), s1) Z525 (v, ' pr (1)

as expected, since s’ \ pr - (x,1) = 5" |qom(s7) 1} With s ="\ pr O
Lemma 4.4.9 (Alpha conversion). If (M, s) % (v, ") then, for all 1, for all I" appearing

neither in s nor in F nor in p - pr,

, UL
(M, s['/1]) % (v, s'11'/17)

Moreover, both derivations have the same height.

Proof. See Lemma 4.3.6 on page 103. ]
PT3P
Lemma 4.4.10 (Spurious location in store). If (M, s) % (v, s') and k does not appear

in either s, F or pr - p, then, for all value u, (M, s{k — u}) % (v, s'"{k » u}). Moreover,

both derivations have the same height.

Proof. Byinduction on the height of the derivation. The key idea is to add (k, u) to every store
in the derivation tree. A collision might occur in the (call) rule, if there is some j such that
l; = k. In that case, we need to rename ; to some fresh variable [ ]’ # k (by alpha conversion)
before applying the induction hypotheses.
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(call) By the induction hypotheses,
. & P1P,
Vi, (a;, si{k —» u}) :]_.T> (vi> sizi{k > u})

Because k does not appear in F,
k ¢ Locs(F'{f — F f}) c Locs(F)

For the same reason, it does not appear in p’. On the other hand, there might be a j such that
lj = k, so k might appear in p”. In that case, we rename /; in some fresh I} # k, appearing in
neither s,.1, nor ' or p” - p’ (Lemma 4.4.9). After this alpha conversion, k does not appear
in either p” - p’, F'{f — F f}, or sy11{l; = v;}. By the induction hypotheses,

P”;p,
(b, swa{li > vit{k o u}) o= (v, $'{k > u)

Moreover, s'{k — u} \ pr =s" \ pr{k — u} (since k does not appear in p7). Hence

(f(ar,...,an), si{k » u}) % (V, s'"{k > u}~ pT).

(val) (v, s{k~ u}) % (v, s{k > u}~pr)ands{k — u} \ pr =s~ pr{k — u} since

k does not appear in pr.

(var) (x, s{k+— u}) % ((s{k—>u}) 1, s{k—u}~pr), with s{k = u} ~ pr = s~
pr{k = u} since k does not appear in p7, and (s{k — u}) I = s I since k # I (k does not
appear in s).

(assign) By the induction hypotheses, (a, s{k — u}) % (v, s"{k > u}). And k # ]

(since k does not appear in s) then s'{k — u}{l » v} = s'{l » v}{k — u}. Moreover, k does
not appear in pr then s’{l » v}{k —» u} \ pr =s'{l » v} \ pr{k — u}. Hence

(x=a, s{k > u}) S5 (1 5 {1 vh s prik o u})

(seq) By the induction hypotheses,
(a, s{k — u}) % (true, s'{k — u})
(b, s'{k ~ u}) % (v', s"{k > u})

Hence
(as b, s{k—u}) % (v', s"{k — u})
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(if-true) and (if-false) are proved similarly to (seq).

(letrec) The location k does not appear in F’, because it does not appear in either F or
p'cpr-p(F =F{f ~ [Ax1,...,x4.a, p', F|}). Then, by the induction hypotheses,

(b, s{k~ u}) T=5 (v, s/ (k> u})

Hence
(letrec f(x1,...,x,) =a in b, s{k — u}) % (v, s'{k~u}).

O

Lemma 4.4.11 (Spurious variable in environments).

pr(x.1);p . pr-(x.0); (x.1)p
VI,I',(M, s) — (v, 5') iff (M,s)—F—— (v, s")
Moreover, both derivations have the same height.
Proof. See Lemma 4.3.1 on page 98. O

4.4.4 Aliasing lemmas

We need three lemmas to show that environments remain aliasing-free during the proof by
induction in Section 4.4.5. The first lemma states that concatenating two environments in
an aliasing-free set yields an aliasing-free set. The other two prove that the aliasing invariant
(Invariant 6, Definition 4.4.3) holds in the context of the (call) and (letrec) rules, respectively.

Lemma 4.4.12 (Concatenation). IfE U{p, p'} is aliasing-free then E U {p - p'} is aliasing-free.

Proof. By exhaustive check of cases. We want to prove
Vp,preEui{p-p'},Vxedom(p;),Vyedom(ps), prx=pry=x=y.

given that

Vo, preEu{p,p'},Vx edom(p;),Vyedom(py), prx=pry=x=y.

If p; € £ and p; € €, immediate. If p; = p- p’, p1 x = p x or p’ x. This is the same for p,. Then
p1 X = py yisequivalent to p x = p’ y (or some other combination, depending on x, y, p; and
p2) which leads to the expected result. O

Lemma 4.4.13 (Aliasing in (call) rule). Assume that, in a (call) rule,
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o Ff=[Ax1,....x0.b, p', F'],

o Envs(F) is aliasing-free, and

o p""=(x1, ) ...  (xn, 1), with fresh and distinct locations ;.
Then Envs(F'{f —» F f})u{p’, p"} is also aliasing-free.

Proof. Let £ = Envs(F'{f — F f}) u{p’}. We know that £ c Envs(F) so £ is aliasing-free
We want to show that adding fresh and distinct locations from p” preserves this lack of aliasing.
More precisely, we want to show that

Vp,preEU{p"},Vx edom(p;),Vy edom(ps), prx=pry=>x=y

given that

Vp,p2 €&, Vx edom(py), Vy edom(ps), prx=pry=x=y.

We reason by checking of all cases. If p; € £ and p, € £, immediate. If p; = p, = p” then
p"" x = p"" y = x = y holds because the locations of p”’ are distinct. If p; = p” and p; € £
then p; x = p, y = x = y holds because p; x # p, y (by freshness hypothesis). O

Lemma 4.4.14 (Aliasing in (letrec) rule). If Envs(F) U {p, pr} is aliasing free, then, for all
Xis

.....

concatenation of pr and p, to £ preserves the lack of aliasing, as in the proof of Lemma 4.4.12.
If p; € € and p, € £, immediate. If p; € {p”'}, p1 x = p x or p’ x. This is the same for p,. Then
p1 X = py yisequivalent to p x = p” y (or some other combination, depending on x, y, p; and
p2) which leads to the expected result. O

4.4.5 Proof of correctness

We finally recall and show Theorem 4.4.6.

Theorem 4.4.6. If x is a liftable parameter in (M, F, pr, p), then

(M, s) % (v, s') implies (M), , s) % (v, s")

Assume that x is a liftable parameter in (M, F, pr, p). The proof is by induction on the
PT3P,

height of the reduction of (M, s) == (v, s').
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(call)—first case First, we consider the most interesting case where there exists i such
that f = h;. The variable x is a liftable parameter in (h;(ay,...,a,),F,pr,p) hence in
(ai, F,& pr - p) too.
Indeed, the invariants of Definition 4.4.3 hold:
o Invariant 1: x is defined as a parameter of g in F (because h; is an inner function of g
so x cannot be defined in h;(ay, ..., a,)).
o Invariant 2: since a; is not in tail position in h;(ay, .. ., a,), it does not contain any call
to a function hj; calls in F respect the invariant by the induction hypotheses.
o Invariant 3: By the definition of a local position, every f defined in local position in
a; is in local position in h;(ay, .. ., a,), hence the expected property by the induction
hypotheses.
o Invariant 4: immediate since the premise does not hold : since the a; are not in tail
position in h;(ay, ..., a,), they cannot feature calls to 4; (by Invariant 2).
o Invariant 5: immediate by the induction hypotheses.
o Invariant 6: immediate for the compact closures by the induction hypotheses. Lack of
aliasing is guaranteed by Lemma 4.4.12.
By the induction hypotheses, we get

((ai), > si) =k, (viy sis1) -

By the definition of lambda lifting, (h;(ay,...,a,)), = hi((a1), ..., (a,), ,x). But x is not
a liftable parameter in (b, F', p”, p’) since Invariant 4 might be broken: x ¢ dom(p") (x is
not a parameter of h;) but h; might appear in tail position in b.

On the other hand, we have x € dom(p’): since, by hypothesis, x is a liftable parameter
in (hi(ay,...,an),F,pr, p), it appears necessarily in the environments of the closures of the
h;, such as p’. This allows us to split p’ into two parts: p’ = (x,1) - p””’. It is then possible to
move (x, ) to the tail environment, according to Lemma 4.4.8:

T d) "
(bs sna{li > vi}) Pf,({f:]ff} (v, s"ldom(s)1})
If x is not defined in b or F'{f — F f}, then (+), is the identity function and can trivially be
applied to the reduction of b." Otherwise, the rewriting performed above ensures that x is a
liftable parameter in (b, F'{f = F f},p" - (x,1), p"").

Indeed, the invariants of Definition 4.4.3 hold. Assume that x is defined as a parameter of
some function g, in either b or F'{f —» F f}:

o Invariant 1: by hypothesis.

o Invariant 2: since both b and the terms appearing in F'{ f — F f} also appear in F,

immediate by the induction hypotheses.

'In fact, this case never happens because h; is an inner function of g so g appears in F'. It is easier to assume
it could happen than to prove it cannot, though.
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o Invariant 3: Every function defined in local position in b is an inner function in A; so,
by Invariant 2, it is one of the h; and x € dom(p” - (x,1) - p"").

Invariant 4: immediate since x € dom(p" - (x,1) - p"").

o Invariant 5: immediate since F” is included in F.

Invariant 6: immediate for the compact closures by the induction hypotheses. Lack of
aliasing is guaranteed by Lemma 4.4.13.

By the induction hypotheses,

p"(x,l) ;P/”
(©).s swallimvit) Gz (9 laomen )

The [ location is not fresh: it must be rewritten into a fresh location, since x is now a parameter
of h;. Let I’ be alocation appearing in neither (F'{f —» F f}),, nor s,.1{li » v;} or p” - p7'.
Then I’ is a fresh location, which is to act as [ in the reduction of (b),.

We will show that, after the reduction, I is not in the store (just like / before the lambda
lifting). In the meantime, the value associated with I does not change (since I’ is modified
instead of [).

Lemma 4.4.5 implies that x does not appear in the environments of (F),, so it does not
appear in the environments of (F'{f — F f}), c (F), either. As a consequence, lack of
aliasing implies by Definition 4.4.1 that the location [, associated with x, does not appear in

(F'{f~ Ff}), either, so
(Ff e F ), M= (F{f~Ff}),-

Moreover, | does not appear in s'|d0m( s/)~{1}- By alpha conversion (Lemma 4.4.9, since "does
not appear in the store or the environments of the reduction, we rename [ to I”:

Pll(x’l/);PIII
((B), > sua[l'/1]{1i = vi}) “FUarn. (vs 8"ldom(s)~ (1) -

We want now to reintroduce I. Let v, = s,,11 I. Thelocation I does notappearin s, 1[I’/11{l; —
vih, (F'{f»Ff}),,orp"(x,1")- p"". Thus, by Lemma 4.4.10,

Pll(x’l/);PIH
((b)* > 5n+1[l,/l]{li = Vi}{l e Vx}) W (V, 5l|dom(s’)\{l}{l — VX}> .

Since

spn[ /1L = vi{l = v} = sy [U'JI{Tl = v} {li>v;}  because Vi, % I;
= sy {l' = v {li = v} because vy = 5,41 !

=spa{li e vi{l' > v} because Vi, " # I;

and s'|gom(s')~ {1} 1] = Va} = s'{] = vy}, we finish the rewriting by Lemma 4.4.11,

"l (xd)p"
SV ! — P:> ! —
(0)s swnlli o vi{l o vi}) =Gem g = (Sl wd).
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Hence the result:

(F), hi= [Axl,...,xnx, b),, p', (_7—"’)*]
p" = (e h) oo (3w 1) (x, pr ) I" and I; fresh and distinct

; & PTP EPT P,
Vii{(a).o ) S (i sia) {0 sen) S5 (e swa)

/ P (x1)sp’ /
((b)*’ sna{li = vi{l' = Vx}) W (v, s{l~ vx})

(cALL)
pTip ,
((hi(ay,...,a4)),, s1) (?)j (v, s{l vy} \pT>

Since I € dom(pr) (because x is a liftable parameter in (h;(ay,...,a,),F, p1, p)), the extra-
neous location is reclaimed as expected: s’{I = v, } \ pr ="\ pr.

(call)—second case We now consider the case where f is not one of the #;. The variable x
is a liftable parameter in (f(as,...,an), F, pr,p)-

If x is not defined in a; or F, then (+), is the identity function and can trivially be applied

to the reduction of a;. Otherwise, x is a liftable parameter in (a;, F, &, pr - p) too.

Indeed, the invariants of Definition 4.4.3 hold. Assume that x is defined as a parameter of

some function g in either a; or F:

o Invariant 1: by hypothesis.

o Invariant 2: since a; is not in tail position in f(ay,...,a,), it does not contain any
call to a function h;; calls in g and the inner functions ; respect the invariant by the
induction hypotheses.

o Invariant 3: By the definition of a local position, every f defined in local position in
a; is in local position in f(ay, ..., a,), hence the expected property by the induction
hypotheses.

o Invariant 4: immediate since the premise does not hold : the a; are not in tail position
in f(ay,...,ay) so they cannot feature calls to h; (by Invariant 2:).

o Invariant 5: immediate by the induction hypotheses.

¢ Invariant 6: Lemma 4.4.12.

By the induction hypotheses, we get

and, by Definition 4.1.6,

(fan..ran)), = f((a1),, .- (an),)-

If x is not defined in b or F, then (+), is the identity function and can trivially be applied to
the reduction of b. Otherwise, x is a liftable parameter in (b, F'{f — F f},p", p’).

Indeed, the invariants of Definition 4.4.3 hold. Assume that x is defined as a parameter of
some function g, in either b or F:
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Invariant 1: by hypothesis.

Invariant 2: since both b and the terms appearing in 7'{ f — F f} also appear in F,
immediate by the induction hypotheses.

Invariant 3: We have to distinguish the cases where f = g (with x € dom(p”’)) and
f # g (with x ¢ dom(p”) and x ¢ dom(p”)). In both cases, the result is immediate by
the induction hypotheses.

Invariant 4: If f # g, the premise cannot hold (by the induction hypotheses, Invariant 2).
If f = g, x e dom(p”") (by the induction hypotheses, Invariant 2).

Invariant 5: immediate since " is included in F.

Invariant 6: immediate for the compact closures. The lack of aliasing is guaranteed by
Lemma 4.4.13.

By the induction hypotheses,

P"§Pl ,
((0)es swalli o vi}) iz (v 9)

hence:

(cALL)

). = Dot (0. ().)
p=(x, b)) (X0 ) I; fresh and distinct

, &PTp p"sp’ '
Vii((ai).s si) = (i si) ((0)ss swnlli > vid) Ty (v )

(o). s 57 (v s pr)

(letrec) The parameter x is a liftable in (letrec f(x1,...,x,) =a in b, F,pr,p)soxisa
liftable parameter in (b, ', pr, p) too.
Indeed, the invariants of Definition 4.4.3 hold:
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Invariant 1: by the induction hypotheses; note that when f = g, x is then defined in 7’
rather than b.

Invariant 2: by the induction hypotheses; note that when f = h;, the invariant is also
preserved.

Invariants 3 and 4: immediate by the induction hypotheses and the definition of tail
and local positions.

Invariant 5: By the induction hypotheses, Invariant 3 (x is to appear in the new closure
ifand only if f = h;).

Invariant 6: Lemma 4.4.14.

By the induction hypotheses, we get

((b),, s) % (v, s’).
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4.4. Correctness of lambda lifting

If f+hy,
(letrec f(x1,...,x,) =a in b), =letrec f(x1,...,x,) = (a), in (b),
hence, by the definition of (F'),,

PT;P

((0)c> 8) > (v 8')
(LETREC) P pT“D|d°m(PT‘P)\{x1 ..... Xn} (‘7:,)* =(F).{f= [)‘xl""’x”' (a),, P, ]:]}
((letrec f(x1,...,x4) =a in b),, s) % (v, s")

On the other hand, if f = h;,
(letrec f(xi,...,x,) =a in b), =letrec f(x1,...,x,x) = (a), in (b),

hence, by the definition of (F'),

((b),, s) === (v, &)

(f,)*
(LETREC) pi=pr .p|d°m(PT'P)\{X1 ----- Xnx} (‘7:,)* =(F), {hi~ [)Lxl,...,x,,x. (a)., P, ‘7:]}
((letrec hi(xy,...,x,) =a in b)_, s) %;/} (v, s')

(val) (v), =vso

(VAL)

PT;P
(V). ) 77 (vo s 3 pr)

(var) (y), =yso
(pr-p) y=1ledom s

PT;P
(D). 3) S5 (51, s pr)

(VAR)

(assign) The parameter x is liftable in (y = a, F, p7,p) soin (a, F, &, pr - p) too.
Indeed, the invariants of Definition 4.4.3 hold:
o Invariant 1: immediate by the induction hypotheses.
« Invariant 2: immediate by the induction hypotheses.
o Invariant 3: immediate by the induction hypotheses since local positions in a and in
y = a are the same.
Invariant 4: h; cannot be called in tail position in a by Invariant 2 since a is not in tail
position in y = a.
« Invariant 5: immediate by the induction hypotheses.
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¢ Invariant 6: Lemma 4.4.12.
By the induction hypotheses, we get

((a),,s) == (v, ).

(F).
Moreover
(y=a),=y=(a),,
SO :
{(a). 5) % {(r.s')  (pr-p)y=1ledoms
(ASSIGN)

((r=a).rs) G (L (1= v}~ pr)

(seq) The parameter x is liftable in (a ; b, F, pr, p). If x is not defined in a or F, then (-),
is the identity function and can trivially be applied to the reduction of a. Otherwise, x is a
liftable parameter in (a, F, &, pr - p).

Indeed, the invariants of Definition 4.4.3 hold. Assume that x is defined as a parameter of
some function g in either a or F:

« Invariant 1: by hypothesis.

o Invariant 2: immediate by the induction hypotheses.

o Invariant 3: immediate by the induction hypotheses since local positions in a and in

a; b are the same.
o Invariant 4: h; cannot be called in tail position in a by Invariant 2 since a is not in tail
position in a ; b.

« Invariant 5: immediate by the induction hypotheses.

¢ Invariant 6: Lemma 4.4.12.

If x is not defined in b or F, then (+), is the identity function and can trivially be applied to
the reduction of b. Otherwise, x is a liftable parameter in (b, F, pr, p). Indeed, the invariants
of Definition 4.4.3 hold (the proof is the same as for the liftability in a above, except for
Invariant 6 which is immediate by the induction hypotheses).

By the induction hypotheses, we get ((a), , s) % (v, s') and ((b),, s') %
(V’, S">. * *
Moreover,

(a; b)* = (a)x- > (b)x— ’
hence:
E;pTp pT;p
((a),,s) (?)j (v, ") ((b),,s") (?)j (v', s")
(srQ) pT;P
((a50)..s) 7> (v', s")
(if-true) and (if-false) are proved similarly to (seq). O
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CHAPTER 5

CPS conversion in an imperative
language

In this chapter, we prove the correctness of the CPS conversion pass performed by the CPC
translator, using the small imperative language defined in Chapter 4. As explained in Sec-
tion 3.2.2, our CPS conversion is defined only on a subset of C programs that we call CPS-
convertible terms. In Section 5.1, we formalise the notion of CPS-convertible terms in our
small language. Then, in Section 5.2, we show that the early evaluation (Section 3.2.3) of
function parameters in CPS-convertible terms is correct.

In Section 5.3, we define the CPS conversion and its image, CPS terms. Since CPS terms
feature two new operators—push and invoke—to build and execute continuations, we also de-
fine the associated reduction rules. The proof of correctness of CPS conversion (Theorem 5.4.1)
is finally carried out in Section 5.4.

5.1 CPS-convertible form

CPS conversion is not defined for every C function; instead, we r