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Introduction

Image Understanding

Loved the colour of the sky and water
against the dark tree reflections.

A long way to go to the top. . . Just
above my house, close to Grenoble,
in front of Belledonne mountains1.

Bridge the semantic gap: the relation between low-level image
features and semantic interpretation [2]
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1. Images from the Stony Brook University Captioned Photo data set
2. Smeulders et al., Content-based image retrieval at the end of the early years, PAMI 2000



Introduction

Image Classification

Giant Panda
fish; group; bush; claws.

Hippopotamus
fish; solitary; jungle; walks.

3

1. Images from Animals with Attributes data set
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Introduction

Image Retrieval

Query Top Ranked Retrieved Images

Paris
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1. Query-by-text using Google Image Search
2. Query-by-example using the BigImbaz Visual Copy Detection Search



Introduction

Relation between Classification and Retrieval
Retrieval as classification

• Rank images according to confidence score from classifier

Classification as retrieval
• Obtain similar images and propagate labels

5



Introduction

Goals

1. Scaling to large data sets

2. Adapting to novel classes

3. Leverage user interaction

4. Modeling label dependencies

5. Exploiting multi-modal data
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Introduction

Goal 1 - Scaling to large data sets

Flickr hosts over 6 billion photos

Large volumes of images

Large number of potential labels

Efficient methods for representation, learning and testing
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Introduction

Goal 2 - Adapting to novel classes

300 million photos are uploaded per day to Facebook

Relevance of categories, classes or labels changes over time
• new images, products and creations
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Introduction

Goal 3 - Leverage user interaction

Rock true
Sea true

Beach ???

Incorporate the user set labels into predictions of other labels

Find the middle ground between
• automatic image labeling
• manual image labeling
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Introduction

Goal 4 - Modeling label dependencies

A tree structure defined over image labels

Labels have an intrinsic structure or dependence

To benefit from user input, structure is required
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Introduction

Goal 5 - Exploiting multi-modal data

President Barack Obama greets peo-
ple on the tarmac after arriving at
John F. Kennedy International Air-
port, Monday, July 30, 2012, in New
York.
Photo by Jason DeCrow (AP)

The Netherlands, US, Australia and
Canada compete in the Men’s Pair
Heat 2 on Day 1 of the London 2012
Olympic Games at Eton Dorney on
July 28, 2012 in Windsor, England.
Photo by Streeter Lecka

News photos from Yahoo! News

Data is often multi-modal
• Image is accompanied by title, place and textual description

Exploit complementaries of visual and textual information to
improve image retrieval and annotation
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Introduction — Image Representations

Bag of Visual Words

Image courtesy of Li Fei-Fei.

Successfully used for retrieval [1] and classification [2]

Bag-of-Visual Words pipeline:

1. Consider an image as a unordered set of patches
2. Represent each patch with a descriptor, e.g. SIFT or LCS
3. Assign each patch to “visual-word” from “visual-dictionary”
4. Count the frequency of each visual-word

Visual-dictionary: k-means clustering on large set of patches
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1. Sivic and Zisserman, Video Google: A text retrieval approach to object matching, ICCV’03
2. Csurka et al., Visual categorization with bags of keypoints, ECCV’04



Introduction — Image Representations

Fisher Vector

Fisher vectors [1] for Mixture of Gaussians [2-3]
• Visual-dictionary: MoG in feature space p(x|θ)
• Take the gradient for each patch 1

T∇θ ln p(xt ;θ)

Encodes more information per visual word:
• frequency, mean and variance

Power and `2 normalization:
• Improved Fisher Kernel for Large-Scale Image Classification

Perronnin, Sánchez & Mensink, ECCV’10
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1. Jaakkola and Haussler, Exploiting generative models in discriminative classifiers, NIPS’99
2. Perronnin and Dance, Fisher kernels for image categorization. CVPR’07
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Large Scale Classification and Adapting to Novel Classes

Motivation
Real-life data sets are evolving over time:

• new images or items are added every second
• new labels, tags and products are incorporated over time
• for example, Flickr, Twitter, Facebook, Amazon. . .

Need to index, retrieve, search and categorize these classes

Related publications
• Metric learning for large scale image classification:

Generalizing to new classes at near-zero cost,
Mensink, Verbeek, Perronnin & Csurka, ECCV 2012

• Large scale metric learning for distance-based image classification,
Mensink, Verbeek, Perronnin & Csurka, submitted
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Large Scale Classification and Adapting to Novel Classes

Related Work
Recent focus on large-scale image classification

• ImageNet data set [1,2]
I currently over 14 million images
I multi-class with 20 thousand classes

Good performance is usually obtained by using:
• High dim. features: Super Vector [3] & Fisher Vector [4]

• Linear 1-vs-Rest SVM classifiers

• Stochastic Gradient Descent training

17

1. Deng et al., ImageNet: A large-scale hierarchical image database, CVPR’09
2. Deng et al., What does classifying 10,000 image categories tell us?, ECCV’10
3. Lin et al., Large-scale image classification: Fast feature extraction, CVPR’11
4. Perronnin et al., Good practice in large-scale image classification, CVPR’12



Large Scale Classification and Adapting to Novel Classes

Adapting to new images and classes

Limitations of 1-vs-Rest SVM for open-ended data sets:
• Continued training when new images become available
• For a new class training starts from scratch

Our approach:

Distance based classifiers:
• k-Nearest Neighbors
• Nearest Class Mean Classification

Trivial addition of new images or new classes

Critically depends on the distance function
• Introduce new metric learning approach for NCM

18



Large Scale Classification and Adapting to Novel Classes

Nearest Class Mean Classifier

19



Large Scale Classification and Adapting to Novel Classes

Nearest Class Mean Classifier

Represent each class by its mean

µc =
1

Nc

∑
i :yi =c

xi

Assign an image i to the class with the closest class mean

c∗ = argmin
c

d(x,µc )

3 Very fast at test time: linear model

3 Easy to integrate new images

3 Easy to integrate new classes

7 Class only represented with mean,
less expressive then k-NN
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Large Scale Classification and Adapting to Novel Classes

NCM – Probabilistic Interpretation

Define multinomial probability distribution over classes

We use the soft-min formulation

p(c |x) =
exp−d(x,µc )∑C

c ′=1 exp−d(x,µc ′)

Corresponds to class posterior in generative model
• p(x|c) = N (x;µc ,Σ), with shared covariance matrix

21



Large Scale Classification and Adapting to Novel Classes

NCM – Metric Learning

Replace the Euclidian distance d(x,µc)

Use Mahalanobis distance, parametrized by W

dW (x,µc) = (x− µc)>W>W (x− µc )

Learn low-rank projection matrix W : m × D

Discriminative maximum likelihood training:

L(W ) =
N∑

i=1

ln p(ci |xi )

22



Large Scale Classification and Adapting to Novel Classes

Comparison to FDA

Three not linearly separable classes
• Find best projection in 1 dimension
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Large Scale Classification and Adapting to Novel Classes

Comparison to FDA

Classical Fisher Discriminant
• maximizes variance between all class means

23



Large Scale Classification and Adapting to Novel Classes

Comparison to FDA

Our proposed metric learning approach
• maximizes variance between nearby class means
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Large Scale Classification and Adapting to Novel Classes

Illustration of Learned Distances
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Large Scale Classification and Adapting to Novel Classes

Relation to other linear classifiers

fc(x) = bc + w>c x

Linear SVM
• Learn {bc ,wc} per class

WSABIE [1]
• wc = vc W W ∈ Rm×D

• Learn {vc} per class and shared W

Nearest Class Mean
• bc = ||Wµc ||22, wc = −2

(
µ>c W>W

)
• Learn shared W

25

1. Weston et al., Scaling up to large vocabulary image annotation, IJCAI’11



Large Scale Classification and Adapting to Novel Classes

Experimental Evaluation
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Large Scale Classification and Adapting to Novel Classes

Experimental Evaluation

Data sets:
• ILSVRC’10: 1.2M training images, 1,000 classes
• ImageNet-10K: 4.5M training images, 10K classes

Image features:
• 4K and 64K dimensional Fisher Vectors
• PQ Compression on 64K features [1]

I Reduces memory usage from 320GB to 10GB

Training:
• Stochastic Gradient Descent
• Learning rate and early stopping set by validation set

27

1. Jégou et al., Product quantization for nearest neighbor search, PAMI’11



Large Scale Classification and Adapting to Novel Classes

ILSVRC’10 - Top 5 Accuracy

k-NN & NCM improve with metric learning

NCM outperforms more flexible k-NN

Distance based classifiers competitive with SVMs

Eucl Mahanalobis
Dimensionality 4K 256 512 1024

k-NN, LMNN [1] - dynamic 44.1 61.0 60.9 59.6

NCM, learned metric 32.0 62.6 63.0 63.0

Baseline: 1-vs-Rest SVM 61.8

28

1. Weinberger & Saul, Distance Metric Learning for LMNN Classification, JMLR’09

2. Weston et al., Scaling up to large vocabulary image annotation, IJCAI’11



Large Scale Classification and Adapting to Novel Classes

ILSVRC’10 - Top 5 Accuracy

k-NN & NCM improve with metric learning

NCM outperforms more flexible k-NN

Distance based classifiers competitive with SVMs

Eucl Mahanalobis
Dimensionality 4K 256 512 1024

k-NN, LMNN [1] - dynamic 44.1 61.0 60.9 59.6

NCM, learned metric 32.0 62.6 63.0 63.0
WSABIE [2] 60.6 61.3 61.5

Baseline: 1-vs-Rest SVM 61.8
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1. Weinberger & Saul, Distance Metric Learning for LMNN Classification, JMLR’09
2. Weston et al., Scaling up to large vocabulary image annotation, IJCAI’11



Large Scale Classification and Adapting to Novel Classes

Generalization to Novel Classes

29



Large Scale Classification and Adapting to Novel Classes

Generalization to Novel Classes
Nearest Class Mean Classifier

• Compute means of ImageNet-10K classes: ± 1 CPU hour
• Re-use metric learned on ILSVRC’10

1-vs-Rest SVM baseline
• Train 10K SVM classifiers: ± 280 CPU days

NCM is faster by a factor of 8500!

Feat. dim. 64K 21K 128K 128K

Method NCM SVM SVM [1] SVM [2] SVM [3]

Top-1 13.9 21.9 6.4 16.7 18.1

29

1. Deng et al., What does classifying 10,000 image categories tell us?, ECCV’10
2. Sánchez and Perronnin, High-dimensional signature compression, CVPR’11
3. Perronnin et al., Good practice in large-scale image classification, CVPR’12



Large Scale Classification and Adapting to Novel Classes

Transfer Learning - Zero-Shot Prior

Use ImageNet class hiearchy to estimate mean of new class [1]

Internal nodes — Training nodes — New class

30

1. Rohrbach et al., Knowledge transfer and zero-shot learning in large-scale, CVPR’11



Large Scale Classification and Adapting to Novel Classes
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1. Rohrbach et al., Knowledge transfer and zero-shot learning in large-scale, CVPR’11



Large Scale Classification and Adapting to Novel Classes

Transfer Learning - Zero-Shot Prior

Use ImageNet class hiearchy to estimate mean of new class [1]

Internal nodes — Training nodes — New class
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1. Rohrbach et al., Knowledge transfer and zero-shot learning in large-scale, CVPR’11



Large Scale Classification and Adapting to Novel Classes

Transfer Learning - Results ILSVRC’10

Step 1 Metric learning on 800 classes

Step 2 Estimate means for remaining 200 for evaluation:
• Data mean per class
• Zero-Shot prior + data mean per class
• Baseline — trained on all 1000 classes

1 10 100 1000
0

20

40

60

80

Number of samples per class
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o
p
-5

a
c
c
u
ra

c
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Large Scale Classification and Adapting to Novel Classes

Conclusion
Nearest Class Mean Classification

• We proposed metric learning by maximum-likelihood
• Outperforms more flexible k-NN, on par with SVM

Advantages of NCM over 1-vs-Rest SVMs
• Allows adding new images and classes at near zero cost
• Shows competitive results on unseen classes
• Can benefit from class priors for small sample sizes

More details in thesis
• Extension using multiple class centroids
• Different learning objectives to speed up training
• Analysis on convergence of low-rank formulation
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Leverage User Interaction using Label Dependencies

Motivation

Multi-label image classification

Interactive annotation to trade-off between
• Fully automatic annotation – cheap but low accuracy
• Fully manual annotation – expensive and high accuracy

Need a structure to benefit from labels set by the user

Related publications
• Learning structured prediction models for interactive image labeling,

Mensink, Verbeek & Csurka, CVPR 2011
• Tree-structured CRF models for interactive image labeling,

Mensink, Verbeek & Csurka, PAMI 2012
• Learning to rank and quadratic assignment,

Mensink, Verbeek & Caetano, DISCML’12
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Leverage User Interaction using Label Dependencies

Related work
Automatic image annotation

• 1-vs-Rest SVM Classifiers [1]
• Nearest Neighbors approaches [2]
• Image ranking [3,4]

No explicit modeling of label dependencies

Interactive multi-class classification [5]

Our approach:

Model explicitly structure in labels

Interactive labeling scenario

35

1. Everingham et al., The PASCAL Visual Object Classes Challenge 2007-2011
2. Guillaumin et al., TagProp: metric learning in nearest neighbor models, ICCV’09
3. Grangier and Bengio, Kernel-based model to rank images from text queries, PAMI’08
4. Weston et al., Learning to rank with joint word-image embeddings, ECML’10
5. Branson et al., Visual Recognition with Humans in the Loop, ECCV’10



Leverage User Interaction using Label Dependencies

Tree structure over class labels
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Leverage User Interaction using Label Dependencies

Tree structure over class labels
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All labels interact with each other in the structure

Allows for efficient and exact inference
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Leverage User Interaction using Label Dependencies

Tree structured model

Vector of (binary) labels: y = {y1, . . . , yL}
Energy between a specific labeling and the image

E (y, x; w, v) =
L∑

i=1

ψi (yi , x; w) +
∑

(i ,j)∈E

ψij (yi , yj ; v)

Gibbs distribution for a specific configuration y:

p(y|x) =
1

Z (x)
exp−E (y, x; w, v)

Belief Propagation for label prediction, elicitation and
parameter learning
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Leverage User Interaction using Label Dependencies

Learning

Learning {w, v}, using log-likelihood:

L =
N∑

n=1

ln p(yn|xn).

• Energy is linear in parameters → log-likelihood concave
• Maximize log-likelihood with gradient ascent

Obtaining the tree structure
• Finding optimal tree for conditional models is intractable [1]
• Optimal for generative models: the Chow-Liu algorithm [2]

39

1. Bradley and Guestrin, Learning tree conditional random fields, ICML’10
2. Chow and Liu, Approximating probability distributions with trees, IT’68



Leverage User Interaction using Label Dependencies

Extensions

40



Leverage User Interaction using Label Dependencies

Extension 1 — Trees over groups of labels

Outdoor
Day

No visual time

Desert
Lake

Mountains

Water
River
Sea

Landscape
Sky

Clouds

L

S C

D
L M

W
R SND

O

Increase the discriminative power by using nodes with k labels

Every state in a node is modeled explicitly
• Each node has 2k states
• Label marginals read-off from state marginal table

Trade-off: model expressiveness vs computational complexity
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Leverage User Interaction using Label Dependencies

Extension 1 — Trees over groups of labels
State Marginal Landscape Sky Clouds

1 3.4 % 0 0 0
2 0.0 % 0 0 1
3 9.8 % 0 1 0
4 59.9 % 0 1 1
5 0.4 % 1 0 0
6 0.0 % 1 0 1
7 2.6 % 1 1 0
8 23.9 % 1 1 1

Label marginal 26.9% 96.2% 83.8%

Increase the discriminative power by using nodes with k labels

Every state in a node is modeled explicitly
• Each node has 2k states
• Label marginals read-off from state marginal table

Trade-off: model expressiveness vs computational complexity
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Leverage User Interaction using Label Dependencies

Extension 2 — Mixture-of-trees
Learn multiple trees

• different group sizes k
• different structures over a fixed set of nodes

Define a mixture of T trees as

p(y|x) =
T∑

t=1

πt pt(y|x)

Learning a mixture-of-trees
• Each tree is learned independently
• Mixing weights are set uniformly
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Leverage User Interaction using Label Dependencies

Interactive image labeling
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Leverage User Interaction using Label Dependencies

Interactive image labeling
29 labels Before Questions After

Fast Toughskin
Active Swims
Smart Arctic
Meatteeth Toughskin 3 Water
Newworld Paws 7 Fish
Agility Swims 3 Ocean
Tail Mountains 7 Fast
Meat Arctic 3 Active
Strong Strong
Chewteeth Smart

Ask the user at test time to set a few labels
• To improve the prediction performance

Iterative strategy: ask one label at the time
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Leverage User Interaction using Label Dependencies

Label elicitation

Determine which label should be set by the user
• Objective: select label yi to minimize expected uncertainty of

the remaining labels H(y\i |yi , x)

After label is set, update predictions on other labels
• Information propagated in tree is now combination of

visual information and user-provided information
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Leverage User Interaction using Label Dependencies

Experimental evaluation
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Leverage User Interaction using Label Dependencies

Experimental evaluation

Data sets
• ImageClef VCDT 2010 Challenge (imageClef) [1]
• Scene Understanding (SUN’09) [2]
• Animals with Attributes (AwA) [3]

Performance: mean average precision (MAP)
• retrieval performance per label

47

1. Nowak and Huiskes, New strategies for image annotation, ImageCLEF’10
2. Choi et al.,Hierarchical context on a large database of object categories, CVPR’10
3. Lampert et al., Detect unseen object classes by between-class attribute transfer, CVPR’09



Leverage User Interaction using Label Dependencies

Results - Fully Automatic Labeling

Baseline is state-of-the-art for ImageClef’10 and SUN’09.
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Leverage User Interaction using Label Dependencies

Results - Interactive Labeling

10 labels are asked and set by the user
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Leverage User Interaction using Label Dependencies

Attribute-based image classification
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Leverage User Interaction using Label Dependencies

Attribute-based image classification

Classes are defined by a given set of attributes

Zero-shot: Images of 10 test classes not used for training

Use structured models for attribute prediction

Ask for attribute values to improve class prediction

51



Leverage User Interaction using Label Dependencies

Results Attribute-based image classification
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Any useful question eliminates at least 1 class
• Never more than 9 questions needed
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Leverage User Interaction using Label Dependencies

Conclusions
Structured models for predicting image labels

• Image annotation, and
• Attribute-based classification.

Mixture-of-trees is a powerful yet tractable structured model
• Efficiently transfers knowledge of labels set by the user
• Allows to ask relevant labels to set by user

More details in thesis
• Comparison of joint and stage learning of unary potentials
• Alternatives to obtain tree structures
• Learning to rank with pairwise label interactions
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Exploiting Multi-Modal Data

Motivation

Different modalities as weak form of supervision

Multiple modalities relatively cheap to obtain

Combining text and image retrieval improves performance [1]

Related publications
• Transmedia Relevance Feedback for Image Autoannotation,

Mensink, Verbeek & Csurka, BMVC 2010
• Weighted Transmedia Relevance Feedback for Image Retrieval and

Autoannotation, Mensink, Verbeek & Csurka, Tech Report 2011

55

1. ImageCLEF Photo Retrieval Challenge 2006-2010



Exploiting Multi-Modal Data

Related Work
Late Fusion - Combine mono-modal similarities

3 Well studied problems, and well engineered solutions [1,2]
7 Unable to exploit the correlations between different modalities

Early Fusion - Joint representation of different modalities

3 Exploit the correlations
7 Representation should allow for heterogeneity of the modalities
• variations in semantic meaning (words vs. low level)
• histogram concatenation, or topic models [3]

Intermediate Fusion
• Transmedia relevance feedback

56

1. Manning et al., Introduction to information retrieval, CUP’08
2. Datta et al., Image retrieval: Ideas, influences, and trends of the new age, ACM’08
3. Barnard et al., Matching words and pictures, JMLR’03.



Exploiting Multi-Modal Data

Transmedia Relevance Feedback
Pseudo-Relevance Feedback [1]

• Textual query
• Extract keywords from top k documents retrieved
• New query: query + extracted keywords

Transmedia Relevance Feedback [2,3]
• Visual query
• Rank using visual similarity
• Swap modality
• New query: textual description from

top k documents

57

1. Salton and Buckley, Improving retrieval performance by relevance feedback, ASIS’90
2. Chang and Chen, Using a word-image ontology for image retrieval, CLEF’06
3. Clinchant et al., XRCEs participation to ImageCLEFphoto 2007, CLEF’07



Exploiting Multi-Modal Data

Weighted Relevance Feedback

Equal Weighted [1]
s(q, d) =

∑K
k=1 s1(q, dk ) s2(dk , d)

Linear Weighted
s(q, d ;γ) =

∑K
k=1 γk s1(q, dk ) s2(dk , d)

• Constrain γk to be positive and ordered

Softmax Weighted
s(q, d ; γ) =

∑K
k=1 s̃1(q, dk ; γ) s2(dk , d)

• with s̃1(q, dk ; γ) ∝ exp(γ s1(dk , q))
• Positive and ordered by construction
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1. Ah-Pine et al., Leveraging image, text and cross-media similarities, Springer 2010.



Exploiting Multi-Modal Data

Learning Retrieval Functions

Combine a set of (visual, textual, and transmedia) distances

f (q, d) =
∑

i

wi si (q, d ;γi )

Learn parameters {w,γ} using comparative classification [1]
• score relevant document higher than negative document

Correcting for inter-query variations

f ′(q, d) = αq f (q, d) + βq

• Difference in distribution scores
• Ranking is independent of {αq, βq}
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1. Joachims, SVMs for multivariate performance measures, ICML’05



Exploiting Multi-Modal Data

Experimental evaluation
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Exploiting Multi-Modal Data

Experimental evaluation – Image retrieval

ImageClef’08 Retrieval Challenge

Destinations in Venezuela +

+ +

Black and white photos of Russia +

+ +

Lighthouse at the sea +

+ +

Cathedral in Ecuador +

+ +

Volcanoes around Quito +

+ +

Sunset over water +

+ +

Comparison to participants
Method MAP P@20

AVEIR 31.8 43.5
UP-GPLSI 33.0 43.1
DCU 35.1 47.6
XRCE 41.1 57.3

Ours - 2 comp 42.7 59.7
Ours - 6 comp 43.1 59.9

• 2-Comp: combination of text and image-to-text distances
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Exploiting Multi-Modal Data

Experimental evaluation – Image annotation

TagProp [1] is a weighted nearest neighbor labeling approach
• Learns a weighting of different visual distances
• Nearest neighbors also based on transmedia distance
• Transmedia parameters learning integrated in TagProp

Performance measured in MAP and iMAP
• MAP measures keyword based retrieval performance
• iMAP measures annotation performance

Annotation results

Dataset Method MAP iMAP

Corel-5K TagProp 36.0 54.2
TagProp + Transmedia 38.1 55.6

IAPR-TC12 TagProp 35.4 47.0
TagProp + Transmedia 35.9 48.0

62

1. Guillaumin et al., TagProp: metric learning in nearest neighbor models, ICCV’09



Exploiting Multi-Modal Data

Conclusions
Transmedia relevance for combining modalities

• Defines true multi-modal distance, e.g. from visual to text
• Parametrized version allow to learn parameters from data

Multi-modal image retrieval
• Query dependent variables to learn better parameters

Image Annotation
• Transmedia distance incorporated into TagProp

More details in thesis:
• Comparison of learning objectives for retrieval
• Comparison of different modalities for annotation
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Conclusion and Discussion

Conclusions

Goals

1. Scaling to large data sets

2. Adapting to novel classes

Contributions

Metric learning approach for Nearest Class Mean classifier
• On par with state-of-the-art linear SVMs
• Generalizes well to unseen classes
• Proven scalability to data sets with millions of images
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Conclusions

Goals

3. Leverage user interaction

4. Modeling label dependencies

Contributions

Mixtures-of-trees to model label dependencies
• Moderate improvement in fully automatic setting
• Efficiently leverages user interaction
• Shown to work in different scenarios: image annotation and

attribute-based classification
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Conclusions

Goals

5. Exploiting multi-modal data

Contributions

Parametrized transmedia relevance feedback
• Effective way to combine multiple modalities
• Learned parameters outperform manually set ones
• Validated on multi-modal image retrieval and image annotation
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Future work
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Future work

Active and interactive learning of annotation models

Learn classifiers and annotate large evolving set of images

Balance the accuracy versus the annotation cost
• For a label: select informative images to learn classifier
• For a image: select informative labels

Research questions

1. Select between active and interactive
2. Model label dependencies in an evolving set of user labels
3. Incentives for high quality user input
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Future work

Structured-prediction in non-parametric models

Combine kNN with structured models
• Propagate pairwise marginals to the test image

Research questions

1. How to define structure over labels
2. How to locally adapt the structure
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Conclusion and Discussion

Future work

Address visual diversity in image classification

Assumption: semantic class is a single coherent visual concept

Richer class representations
• using unsupervised discovery, e.g. Latent-SVM
• using ideas of “visual phrases”
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