SPIN LIQUIDS IN QUANTUM ANTIFERROMAGNETIC MODELS ON TWO DIMENSIONAL FRUSTRATED LATTICES

YASIR IQBAL

(Advisor: Didier Poilblanc)
Laboratoire de Physique Théorique, Toulouse
Université Toulouse III - Paul Sabatier
24th September 2012

OUTLINE

* Spin Liquids: The colo ful world beyond Landau's theories.
** "Hot" playgrounds: The "infamous" kagome spin-1/2 Heisenberg antiferromagnet and its experimental realizations.
\% Maths for spin liquids: Slave particle constructions.
* Numerical methods: Monte Carlo methods.
* Competing phases: Spin liquids vs Crystals.
* The winner: The "algebraic" U(1) Dirac spin liquid.
* Conclusions and perspectives.

WHAT ARE SPIN LIQUIDS \& WHERE TO FIND THEM?

Phases of matter which even at $T=0$ do not spontaneously

 break any symmetries.
** "Different" spin liquids cannot be distinguished only on the basis of physical symmetries such as lattice space group and time-reversal, and they lack order parameters in the conventional sense of Landau.
** They possess deeper internal "patterns" which are related to symmetries of complex ground state wave functions, which enables one to distinguish them.
Expected to exist in systems with strong quantum fluctuations

* Systems with low dimensionality $(d=2)$, non-bipartite lattices with low coordination number, low spin value ($S=1 / 2$), frustrating antiferromagnetic interactions of Heisenberg type.

Melted ground state: $\left\langle\hat{\mathbf{S}}_{i}\right\rangle=0$

$S=1 / 2$ HEISENBERG ANTIFERROMAGNET

on the kagome lattice

$$
\hat{\mathcal{H}}=J_{1} \sum_{\langle i j\rangle} \hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{S}}_{j}+J_{2} \sum_{\langle\langle i j\rangle\rangle} \hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{S}}_{j}
$$

A quantum paramagnetic ground state has been shown to exist from several numerical studies using exact diagonalization, series expansion, etc.

淃 The ground state manifold is highly quasi-degenerate with a myriad of competing ground states lying within a very narrow band of energy. Quantum critical point?


```
indringre? 09
```

* Different approximate numerical methods have vouched for different ground states, and the claims from one method have not been backed by another.

COMPETING

EXPERIMENTS

The $S=1 / 2$ QHAF is well

 replicated in "Herbertsmithite". $\mathrm{Zn} / \mathrm{MgCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$No sign of magnetic freezing has been observed down to 20 mK . (i.e. four orders of magnitude smaller than J)

* Raman spectroscopic data, points towards a gapless (algebraic) spin liquid behaviour.
* The SL phase survives DM interactions: $\sim 0.01 J \& 0.04-0.08 J$ in- \& out-of plane resp.
* There is $\sim 5 \%$ in-plane disorder $\mathrm{Zn}^{2+} \rightarrow \mathrm{Cu}^{2+}$ and about $\sim 15-20 \%$ the other way.

MATHS FOR SPIN LIQUIDS

$$
\hat{\mathcal{H}}_{\mathrm{MF}}=\sum_{i j} J_{i j}\left(\hat{\mathbf{S}}_{i} \cdot\left\langle\hat{\mathbf{S}}_{j}\right\rangle+\left\langle\hat{\mathbf{S}}_{i}\right\rangle \cdot \hat{\mathbf{S}}_{j}-\left\langle\hat{\mathbf{S}}_{i}\right\rangle \cdot\left\langle\hat{\mathbf{S}}_{j}\right\rangle\right)=0 \text { ? !!! }
$$

$$
\hat{\mathbf{S}}_{i}=\frac{1}{2} \mathrm{c}_{i, \alpha}^{\dagger} \hat{\sigma}^{\alpha \beta} \mathrm{c}_{i, \beta} \begin{gathered}
\text { Spinons } \mathrm{c}_{i, \alpha}: S=1 / 2 \text { charge neutral quasi-particles. } \\
\text { Mathematical trick }+ \text { fractionalization }+ \\
\text { SU(2) high energy gauge structure. }
\end{gathered}
$$

Hubbard-Stratonovich transformation + Mean field approx.

$$
\hat{\mathcal{H}}_{\mathrm{MF}}=\sum_{i, j, \alpha}\left(\chi_{i j}+\mu \delta_{i j}\right) c_{i, \alpha}^{\dagger} c_{j, \alpha}+\sum_{i, j}\left\{\left(\Delta_{i j}+\zeta \delta_{i j}\right) c_{i, \uparrow}^{\dagger} c_{j, \downarrow}^{\dagger}+h . c .\right\}
$$

$$
\left|\Psi_{\mathrm{VMC}}\left(\chi_{i j}, \Delta_{i j}, \mu, \zeta\right)\right\rangle=\mathcal{P}_{\mathbf{G}}\left|\Psi_{\mathrm{MF}}\left(\chi_{i j}, \Delta_{i j}, \mu, \zeta\right)\right\rangle
$$

$$
\mathcal{P}_{\mathbf{G}}=\prod_{i}\left(1-n_{i, \uparrow} n_{i, \downarrow}\right) \quad \begin{gathered}
\text { Enforcing one-fermion per site constraint, and hence } \\
\text { including correlations into the system. }
\end{gathered}
$$

NUMERICAL METHODS

The energy, its variance and the correlation functions in a state can be obtained using Monte Carlo methods.

* To find the optimal state $\left|\Psi\left(\chi_{i j}, \Delta_{i j}, \mu, \zeta\right)\right\rangle$: The variational parameters are optimized using stochastic reconfiguration optimization. \square
* The resulting state is studied using variational and fixed-node Monte Carlo.

Systematically improve the wave functions
Apply a few Lanczos steps: $\left|\Psi_{p-\mathrm{LS}}\right\rangle=\left(1+\sum_{k=1}^{p} \alpha_{k} \hat{\mathcal{H}}^{k}\right)\left|\Psi_{\mathrm{VMC}}\right\rangle$

For sufficiently accurate states: $E \approx E_{\text {exact }}+$ constant $\times \sigma^{2}$
Exact ground state energy \& correlations are obtained using zero-variance extrapolation:

U(1) DIRAC SPIN LIQUID

$$
\hat{\mathcal{H}}_{\mathrm{MF}}=\chi \sum_{\langle i j\rangle \pm 1} s_{i j} \mathrm{c}_{j, \alpha}^{\dagger} \mathrm{c}_{i, \alpha}+\text { h.c. }
$$

$$
e^{\imath \phi}=\prod_{\text {plaquette }} s_{i j}
$$

$\left\langle S_{i} S_{j}\right\rangle \propto \frac{1}{r^{4}} \quad$ (Algebraic spin liquid)
Gives the lowest variational energy till date, for a fermionic wave function, e.g. on a 48-site cluster $E / J=-0.4293510(4)$ per site, from VMC
 $E / J=-0.4387$ per site, ED

22 SPIN LIQUIDS

DMRG calculations claim for a fully gapped, fully symmetric, Z2 topological spin liquid GS, with $E / J=-0.4386(5)$

Depenbrock 12, White 11

Using PSG classification we get " 20 " fermionic $Z 2$ spin liquids.

Only " 5 " of them are gapped.

Only " 1 " of them is continuously connected to the $\mathrm{U}(1)$ Dirac spin liquid, the $\mathbb{Z}_{2}[0, \pi] \beta \mathrm{SL}$.

Rest "4" are continuously connected to the Uniform RVB spin liquid.

z2 SPIN LIQUIDS

Energy vs Gauge breaking parameters

PARTIAL CONCLUSION - I

* The $\mathrm{U}(1)$ Dirac and uniform RVB spin liquids are stable both locally and globally w.r.t. potential instabilities towards gapped and even gapless Z 2 spin liquids.

蔡 This stability remains preserved even in the presence of NNN exchange coupling of both antiferromagnetic and ferromagnetic type in the Hamiltonian.
A Schwinger boson perspective:
A gapped bosonic Z 2 spin liquid is stabilized upon addition of small NNN ($\sim 0.08 \mathrm{~J} 1$) antiferromagnetic coupling.

VBC ORDERING

There is a stiff competition between many VBCs to occur as the ground state
** What about Valence bond crystal perturbations to the $\mathrm{U}(1)$ gapless spin liquids?

漛 Can they destabilize them by opening a gap?
** If so, how many VBCs are there?, and what are they?

12 \& 36 SITE VBC'S

(c) VBC-3

SYMMETRY CLASSIFICATION

OPTIMIZATION RESULTS

(a) C-VBC

(c) VBC-3

SR iterations
(b) D-VBC

(d) H-VBC0

OPTIMIZATION RESULTS

* The $\mathrm{U}(1)$ Dirac spin liquid is stable towards all possible 6,12 , and 36 site unit cell VBCs.
* The Uniform RVB SL dimerizes into a 36 site VBC which is stabilized for small FM J2.

THE NATURE OF THE EXACT GROUND STATE

Using U(1) Dirac SL as the starting wave function

$E / J \simeq-0.4378$ (our work)
$E / J \simeq-0.4383$ from DMRG (Depenbrock et al., 2012)
$E / J=-0.4387$ from ED (Lauchli, 2012) only seen in Boston?!

FINITE SIZE SCALING

$E_{\infty}^{2 D} / J=-0.4365(2)$
$E_{\infty}^{2 D} / J=-0.4386(5)$ from DMRG (Depenbrock et al., 2012)
The two estimates are the same within 3 error-bars.

STRUCTURE FACTORS

$$
\mathrm{S}(\mathbf{q})=\frac{1}{\mathrm{~N}} \sum_{i j} \sum_{\mathbf{R}} e^{-\imath \mathbf{q} \cdot \mathbf{R}} \mathrm{S}_{i j}(\mathbf{R})
$$

Results are obtained on the 192-site (8x8x3) cluster

DMRG (Depenbrock et al., 2012)

VMC+Lanczos (Iqbal et al., 2012)

PARTIAL CONCLUSION - II

* Within the Schwinger fermion approach, the ground state is an algebraic $\mathrm{U}(1)$ Dirac spin liquid.
* Its energy is within 0.4% of DMRG estimates.
* Our energies, on all clusters, are the lowest estimates ever for a $\mathrm{U}(1)$ Dirac spin liquid, and in fact the lowest for any projected fermionic wave functions, till date.
* Our energies are obtained with a state that has all the symmetries of the lattice, while DMRG states are nonuniform (due to boundary effects) and one has to perform subtraction techniques.

PERSPECTIVES

Possible sources of discrepancy with DMRG results:

* The DMRG may have some issues with the finite-size extrapolation of the ground state energies, OR with the extrapolation of ground state energies with respect to the number of states/block going to infinity.
* It is probable that the true ground state contains a significant number of local two-vison quantum fluctuations, which are clearly missing in our wave functions, and are difficult to incorporate in a few LS's.
* A chiral Z2 topological spin liquid might also be stabilized.

Thank You for
your attention

The kagome lattice is lovely, dark, and deep And there are miles to go before we sleep.

