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Abstract

For the last several years, car manufacturers have had to face an always-increasing list of
stakes and challenges. In the strongly competitive worldwide market of today, a car man-
ufacturer has to offer to its customers relevant, innovative, reliable, environment friendly
and safe services of the highest quality. All this must be done at very competitive costs
while complying with more and more stringent regulations and tighter deadlines. This
work addresses these challenges and aims at improving the design process for automotive
safety critical mechatronics systems. In addition, the introduction of systems engineering
at Renault and the emergence of international standard ISO 26262 (published in November

2011) that addresses functional safety in the automotive are central considerations.

At Renault, systems engineering introduction leans towards model-based systems engi-
neering where different models with respective viewpoints about one system are developed
during the design phase. The first implementations of the design process were mainly
document-centric and depended largely on testing and simulation. Although these first
attempts yielded quite satisfactory results, the creation of the different objects of the pro-
cess was somewhat troublesome and relatively time-consuming. The reason for this is that
the objects were modeled by means of transformations of ad-hoc data and information
contained in the different documents that were transmitted from one process step to the
other. The main difficulty in implementing the process consisted in the lack of semantic

consistency among the different modeled objects.

Functional safety studies are carried out following a second process in parallel to the
precedent design process. These two processes are interfaced to develop safe systems.
These two processes manipulate some concepts that are similar, however with a different

conceptualization. These different conceptualizations are translated in loss of knowledge



at the processes interfaces which imped communication between the two domains as they

can be incompatible and can potentially result in undetectable inconsistencies.

This need for a better formalization is further stressed by the fact that car manufac-
turers rely heavily on third parties that also have their own conceptualizations. Better
formalization of processes and of the process objects would certainly contribute to avoid

confusion and misinterpretations in the development of systems.

All this led us to the conclusion that the use of formal and informal models can commit
to a common semantic model, ¢.e., a system and safety ontology, that enables to ensure
the consistency of the whole design process and compliance with ISO 26262. The improved
design process is called ontology centric design process. The concepts in this work have been
applied on a regenerative hybrid braking system integrated into a full electrical vehicle. It
demonstrated that the realized ontology enables to record the information produced during
design and that using ontologies effectively enables to detect semantic inconsistencies which

improves design information quality, promotes reuse and ensures ISO 26262 compliance.






Résumé

Les constructeurs automobiles doivent faire face a une liste toujours croissante d’enjeux
et défis. Dans le marché mondial fortement concurrentiel actuel, un constructeur doit offrir
a ses clients des services de la plus haute qualité. Ces derniers doivent étre pertinents, no-
vateurs, fiables, respectueux de 'environnement et sirs. Tout ceci doit se faire & des cotits
trés compétitifs tout en respectant des réglementations de plus en plus strictes et des délais
de plus en plus courts. Les travaux présentés dans ce mémoire de thése répondent & ces at-
tentes et visent & améliorer le processus de conception des systémes mécatroniques critiques
automobile. En particulier, nous avons cherché & évaluer la contribution des techniques
formelles, en continuité ou en rupture, sur le processus de développement des systémes
meécatroniques, qui doit étre conforme & 'ISO 26262, d’un constructeur automobile tel que

Renault. Nous cherchons notamment a répondre aux questions de recherche suivantes :

Q1 Comment les connaissances du domaine (automobile) peuvent étre formalisées ?

Q2 Comment les connaissances d’experts sur le processus de développement peuvent étre

formalisées ?

Q3 Comment le respect de la norme ISO 26262 peut étre vérifié 7

Chapitre 1. L’objectif du premier chapitre est de présenter les domaines contextuels
ainsi que les bases théoriques sur lesquelles se fonde notre travail. Dans un premier temps,
nous présentons le processus de développement produit, par la discipline qui s’est dévelop-
pée autour de ’élément central appelé systéme : 'ingénierie des systémes. Cette discipline
s’attache & définir des processus (activités), supportés par des méthodes (techniques), elles

mémes supportées par des outils. La représentation usuelle du processus de développe-
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ment systéme est le cycle en V. Cette représentation définit trois phases générales. La
branche descendante du V correspond 4 la conception, la base adresse la réalisation et la
branche ascendante représente l'intégration du systéme. Dans nos travaux nous ne consid-
érons que la conception. Cette phase peut étre résumée a l'ingénierie des exigences (ou des
exigences sont définies et décrivent le systéme en devenir) et & la conception des architec-
tures (fonctionnelle et physique) systémes. Une autre spécialité s’est également développée
pour prendre en compte les systémes dits critiques (& enjeux de sécurité, économiques et
environnementaux) : la stireté de fonctionnement. Quand les conséquences d'un mauvais
fonctionnement sont catastrophiques pour l'utilisateur, on parle de sécurité-innocuité et
de sécurité fonctionnelle. Les activités de la sécurité fonctionnelle se représentent dans un
deuxiéme cycle en V exécuté en paralléle du processus de développement usuel afin de dé-
montrer ’absence de risques inacceptables. Pour finir, les principales méthodes utilisées en
ingénierie des systémes sont présentées avec un bref focus sur MOF, le standard de ’'OMG,
qui permet de représenter et manipuler des métas-modeéles. En se basant sur MOF, il est
possible d’unifier toutes les étapes du développement mais il reste cependant un probléme

d’intégration (semantique des outils).

Le chapitre poursuit sur les ontologies et met 'accent sur les ontologies formelles qui
nous intéressent. Ces derniéres permettent de formaliser un domaine en définissant les
éléments suivants ainsi que des propriétés sur ces éléments : individus, classes, propriétés
et attributs. Ces définitions sont 'objet d’axiomes qui définissent des assertions sur un
domaine particulier qui peuvent également contenir la théorie dérivée des formules axioma-
tiques génératives. De plus, les ontologies contiennent également des axiomes qui rendent
les hypothéses d’'un domaine explicites pour les humains et les systémes informatiques.
Cette structure mathématique permet le raisonnement mathématique spécifique en fonc-
tion de la logique et de la fonction d’interprétation utilisées. La fonction d’interprétation
associe les valeurs habituelles vrai ou faux aux assertions du domaine quand I'’hypothése
du monde fermé est prise, i.e., ce qui n’est pas connu pour étre vrai est faux. Une autre
hypothése peut cependant étre prise rajoutant un individu au domaine d’interprétation
: hypothése du monde ouvert, 4.e., ce qui n’est pas connu pour étre vrai est inconnu.

Ces bagses mathématiques font que les ontologies formelles ont une propriété de cohérence
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mathématique, i.e., présence ou non de contradiction. Au final, les ontologies formelles
sont 'artefact idéal pour conceptualiser une compréhension commune de disciplines mul-
tiples afin de définir le terrain d’entente sur lequel différents acteurs peuvent s’entendre et
répondre au probléme d’intégration ou de cohérence sémantique identifié plus loin. Nous
finissons sur les ontologies en présentant les technologies du web sémantique que nous avons
choisi d’utiliser dans nos travaux. OWL, le langage ontologique du web, permet de définir
des classes (concepts), des propriétés (propriétés et attributs) et des instances (individus).
SWRL, le langage de régles du web sémantique, ajoute la capacité de définir des régles pour
des ontologies en OWL. Et SQWRL, le langage de requétes du web sémantique, permet

d’extraire des informations des ontologies en OWL.

Le chapitre 1 conclut en présentant les travaux connexes, notamment les travaux sur
I'inté i é i d’outils) d les idé 1 lus loi
intégration sémantique (d’outils) dont nous reprenons les idées pour les amener plus loin

vers la cohérence sémantique du processus de conception systémie.

Chapitre 2. Ce chapitre présente les contributions apportées. Nous commencons par
les ontologies de domaine sur 'ingénierie des systémes puis sur la sécurité fonctionnelle.
Bien que nous ayons choisi d’utiliser les technologies du web sémantique, les ontologies sont
présentées en utilisant la logique du premier ordre afin de faciliter la lecture (en particulier,

le lecteur peut prendre '’hypothése plus courante du monde fermé).

En ingénierie des systémes nous avons pris en compte les activités les plus générales
d’analyse du besoin, d’ingénierie des exigences et de conception d’architectures. Le vocab-
ulaire utilisé lors de ces activités a été formalisé (défini, structuré et contraint) en OWL en
s’inspirant des définitions de 'INCOSE (I'organisation de référence dédiée a ’avancement
de lingénierie des systémes, de PAFIS (la branche frangaise de 'INCOSE) et du vocabu-
laire utilisé & Renault. La formalisation est relativement simple pour 'analyse des besoins.
Le point & retenir est que les besoins doivent étres pris en compte par des exigences ce
qui est formalisé avec une propriété reliant les besoins aux exigences. Pour 'ingénierie des
exigences, nous avons fait les choix importants qui suivent. Les exigences considérées corre-
spondent a la conception. Elles sont structurées en graphe acyclique orienté (une hiérarchie

permettant & un élément d’avoir plusieurs parents). Les exigences sur le processus ne sont
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par exemple pas prises en compte. Les exigences sont naturellement typées fonctionnelle et
non fonctionnelle. Les exigences sont précisément définies avec les fonctionnelles donnant
lieux & des fonctions, les non fonctionnelles au niveau systéme sont allouées au systéme et les
non fonctionnelles au niveau d’abstraction inférieur sont allouées aux fonctions ou aux com-
posants. Pour la conception des architectures nous décrivons l'organisation des fonctions
et des composants. Les fonctions sont également structurées en graphe acyclique orienté
et les composants sont organisés en hiérarchie sans qu'un composant puisse avoir plusieurs
parents. L’architecture fonctionnelle décrit 'organisation des fonctions a travers les flux
consommés et produits. Puis les fonctions sont allouées aux composants qui sont également
organisés a travers les flux consommeés et produits par les fonctions qu’ils réalisent décrivant
I’architecture physique du systéme. La prise en compte des exigences fonctionnelles est
donc précisément définie avec leur matérialisation en fonction dans ’architecture fonction-
nelle puis la prise en compte de ces fonctions par des composants (nous avons également
donné une sémantique précise a la déclinaison des exigences fonctionnelles en fonctions et
a lallocation des fonctions aux composants). Concernant les exigences non fonctionnelles,
nous avons donné des éléments de réponse pour leur formalisation (en vue de leurs prises
en compte). Les types d’exigences non fonctionnelles sont nombreux et pour chaque type il
faut définir les éléments permettant de les concrétiser dans 1’architecture fonctionnelle et /
ou physique. Par exemple, une exigence non fonctionnelle de poids allouée au systéme est
décomposée en exigences non fonctionnelles de poids allouées aux différents composants
du systéme. FElles peuvent étre concrétisées par un attribut entier des composants et du
systéme avec une sémantique & choisir ce qui par exemple permettrait, une fois cet attribut
renseigné pour les composants, de calculer le poids du systéme automatiquement et ainsi

de vérifier que toutes les exigences de poids soient bien satisfaites.

En sécurité fonctionnelle, nous avons considéré le processus actuel de Renault et les
parties de la norme ISO 26262 au niveau systéme. De maniére générale, la sécurité fonction-
nelle est prise en compte & travers un processus de gestion du risque contenant les activités
d’analyse du risque et d’évaluation du risque qui sont considérées dans ces travaux. Nous
avons donc formalisé tout le vocabulaire utilisé en s’inspirant des standards ISO/IEC guide

51, IEC 61508 et ISO 26262 ainsi que du vocabulaire Renault. Nous avons choisi de démar-
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rer ’analyse du risque en partant des exigences fonctionnelles. Les notions d’exigences, de
fonctions et de composants présentes en ingénierie des systémes sont également présentes
en sécurité fonctionnelle et reformalisées (quoique partiellement, I'idée étant de réutiliser
les définitions faites dans l'ontologie d’ingénierie des systémes). En analyse du risque, les
exigences fonctionnelles sont analysées de maniére plus systématique a travers 'utilisation
d’un modéle de défaillances & appliquer pour chaque exigence afin de déterminer des événe-
ments redoutés. A Renault, ces derniers sont soit des événements redoutés systéme ou des
événements redoutés clients. Les événements redoutés clients sont particuliérement intéres-
sants car la sécurité-innocuité est une propriété observable au niveau client ou véhicule,
or la notion de systéme correspond culturellement & un sous-systéme du véhicule & Re-
nault. Ils permettent donc de traiter la sécurité fonctionnelle au niveau d’abstraction
nécessaire. L’analyse du risque se poursuit en analysant ces événements redoutés afin de
quantifier qualitativement leur probabilité d’occurrence (E), leur controlabilité (C) et la
séverité de leur conséquence (S). L’évaluation du risque se fait automatiquement en suiv-
ant la norme ISO 26262 qui fait correspondre un ASIL (un niveau d’intégrité) pour chaque
triplet (E,C,S). Ces activités doivent ensuite donner lieu & un concept de sécurité (ensem-
ble d’exigences de sécurité). Pour ce faire, UASIL le plus contraignant évalué pour un
événement redouté est assigné a cet événement et un objectif de sécurité (type d’exigence)
est systématiquement défini comme la négation de chaque événement redouté client avec
son ASIL. L’ASIL est également défini comme un attribut du systéme, des exigences, des
fonctions et des composants. Pour finir, la, décomposition des ASIL définie dans la norme
ISO 26262 est également formalisée dans I'ontologie ce qui permet de réduire ’ASIL des
exigences. Le reste de la norme est soumise a interprétation en fonction des spécificités de
Pentreprise ce qui est fait dans la formalisation globale du domaine d’étude (I'ingénierie

des systémes et la sécurité fonctionnelle).

La formalisation globale du domaine se fait en intégrant les deux ontologies ingénierie
des systémes et sécurité fonctionnelle. En particulier nous avons vu que des concepts sim-
ilaires pouvaient étre conceptualisés différemment dans chaque ontologie. L’intégration
doit donc permettre de s’assurer que ces deux conceptualisations ne sont pas incompati-

bles. Pour se faire, les deux ontologies sont importées dans une seule ontologie systéme et
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sécurité et nous définissons les concepts des deux ontologies par rapport aux autres (par
exemple, les classes équivalentes sont définis comme telles, ou certaines classes sont des
sous classes de classes appartenant & 'autre ontologie, etc.). En particulier, nous avons
clarifié les notions d’objectif de sécurité comme des exigences de parties prenantes, les
exigences fonctionnelles de sécurité comme des exigences fonctionnelles systéme et les exi-
gences techniques de sécurité comme des exigences non fonctionnelles sur les éléments du
systéme. La vérification automatique de la cohérence de 'ontologie globale nous permet
de vérifier que les deux précédentes ontologies ne contenaient pas de concepts incompati-
bles. Ces précisions formelles nous ont permis de définir comment 1’ASIL de ’évaluation
du risque pouvait étre propagé sur tous les éléments de la conception en se basant sur la

tracgabilité descendante présentée dans la figure suivante.

Stakeholder requirement | D

p2:SafetyGoal e

”””””” T TES T TEE, TROE S s
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pl:FunctionalHighLevelSystemRequirement pinshort Req pl:FunctionalLowLevelSystemRequirement pl:FunctionalExternalRequirement L
7777777777777777777777777777777777777777 B LT ——— L
. Function v

plihasPart_Func / Ri:ckchicesiRen Fune plideduces_Req_Func e

= e
i
e S |
p1:HighLevelSystemFunction [—2X2sPartRne 1.1 owLevelSystemFunction p1:ExternalElementFunction
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ ~ ] Component
pi:hasPart_Comp pi:isAllocatedTo_Func_Comp
_— piisAllocatedTo_Func_Comp
A 4

p1:SystemComponent pl:Interface pl:ExternalElement

Figure 1: Traceability for functional safety

Cette propagation se fait semi-automatiquement, des objectifs de sécurité (et des événe-
ments redoutés) vers les exigences puis vers les fonctions et finit sur les composants en ren-
seignant I'attribut ASIL. La particularité de cette propagation est qu’elle prend en compte
la décomposition des ASIL faite sur les exigences fonctionnelles ce qui permet d’avoir des
ASIL différents de ’ASIL du systéme sur les fonctions et des composants ayant des fonc-
tions d’ASIL également différents. De ce fait il est possible trés tot dans la conception
d’obtenir des contraintes en terme d’ASIL qui vont guider la réalisation des architectures

précédant les ASIL plus concrets obtenus ultérieurement et également de détecter les dif-
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férences entre ces ASIL et ceux obtenus par propagation come défini dans l'ontologie. Les
synergies possibles entre plusieurs domaines peuvent donc étre concrétisées par I’intégration
de domaines comme le révéle cette application de propagation d’ASIL et justifie en partie

Ieffort & fournir pour plus de formalisation.

Les implémentations précédentes du processus de conception systéme ont révélé des
difficultés concernant la production des différents objets du processus basée sur des trans-
formations implicites des informations contenues dans les documents transmis a chaque
étape qui se raméne & un manque de cohérence sémantique entre ces objets. Notre réponse
a I’amélioration du processus de conception tente donc de résoudre ce probléme et se con-
crétise & travers les ontologies précédentes. Nous proposons une nouvelle approche de
conception basée sur une ontologie. Cette solution place 'ontologie systéme et sécurité
au centre du processus de conception. L’ontologie est considérée comme LE modeéle de
référence global du systéme auquel tous les documents et modeéles de conception doivent
étre conformes afin d’assurer la cohérence de ’ensemble du processus de conception. Pour se
faire, nous nous replacons dans le cadre de MOF afin de définir des correspondances (map-
pings) entre 'ontologie et chaque méta-modeéle des documents (méta-modeéle implicite) et
modéles du processus de conception. Ces correspondances permettent d’enrichir "ontologie
au niveau instance, de réutiliser les connaissances (instances) contenues dans 1’ontologie
dans les modeéles (et documents), de vérifier la cohérence (syntaxique ET sémantique) d'un
modéle (ou document) en vérifiant que l'ontologie est cohérente une fois que les informa-
tions du modeéle ont été enregistrées dans 'ontologie, de vérifier que deux modéles (ou
documents) sont cohérents en vérifiant que 'ontologie est cohérente aprés que les informa-
tions des modéles ont été enregistrées dans I'ontologie et par extension de vérifier que tous
les modéles sont cohérents et donc que I’ensemble du processus est cohérent. Un point
important concerne la nature hétérogéne des modeles du processus de conception due a la
collaboration de divers acteurs ayant des conceptualisations différentes, notamment quand
des acteurs externes & Renault sont impliqués. Des transformations (ou interprétations)
sont faites implicitement ce qui peut mener & des incohérences. Nous identifions ces trans-
formations comme des transformations dans MOF afin de montrer que les correspondances

définies entre deux méta-modéles permettent de vérifier automatiquement la cohérence de
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la transformation & travers la cohérence de 'ontologie.

Le chapitre poursuit sur la présentation du processus de conception basé sur une ontolo-
gie. Nous prévoyons que notre approche améliore le processus actuel de plusieurs fagons.
Premiérement, I'écriture des exigences et ’établissement de leur tracabilité se fait avec
Iinterprétation sémantique définie dans I'ontologie ce qui devrait réduire la distance entre
le monde informel du discours et le monde plus formel des modéles. Deuxiémement, rendre
les connaissances implicites explicites permet de commencer les activités au plus tot, tout
en laissant aux ingénieurs la capacité de faire des choix justifiés, et facilite I'identification
des possibilités d’automatisation en exploitant les principes de la conception & base de
modéles. De maniére plus générale, aller vers plus de formalisation (au niveau sémantique)
et le partage d’une conceptualisation formalisée facilite la réutilisation. Troisiémement,
se conformer a ’ontologie permet de travailler au niveau interdisciplinaire, la justification
étant que le systéme est bien le point commun de différentes professions. Par exemple
I’analyse de la cohérence multi-modéles permet de vérifier que c¢’est bien le méme systéme
qui est en train d’étre développé. Derniérement, les concepts formalisés de 'ISO 26262
participent & la démonstration de la conformité au standard. Dans ce processus de con-
ception, nous représentons les roles d’ingénieur systéme (pour l'ingénierie des systémes) et
d’ingénieur sécurité fonctionnelle. Les particularités de 'approche sont d’une part une plus
grande collaboration entre les ingénieurs systéme et sécurité fonctionnelle et d’autre part
I'ajout d’un ingénieur ontologique garant de la cohérence de la conception. L’ingénieur
sécurité fonctionnelle exprime des exigences (objectifs de sécurité) considérées comme des
exigences de parties prenantes vers 'ingénieur systéme. L’ingénieur sécurité fonctionnelle
est également responsable de la déclinaison de ces objectifs de sécurité en exigences de
sécurité fonctionnelles puis techniques. Les objectifs de sécurité sont pris en compte de
la méme maniére que les autres exigences de parties prenantes par le processus de con-
ception (dont la responsabilité incombe & V'ingénieur systéme), cependant, afin d’assurer
leur prise en compte efficace et éviter les itérations, il convient que l'ingénieur sécurité
fonctionnelle fasse part de son expertise & 'ingénieur systéme de maniére plus active de
facon collaborative plutdt qu’en paralléle. L’ingénieur ontologique s’interface quant & lui a

toutes les étapes du processus pour récupérer les informations produites et les rentrer dans

17



Pontologie. Ceci permet de vérifier la cohérence de ces informations (méme par rapport
aux informations des autres domaines), d’effectuer d’autres analyses possibles seulement
due a lintégration de plusieurs domaines (par exemple la propagation des ASIL) et ainsi

de vérifier s’il est normal qu'une incohérence ait été détectée.

Chapitre 3. L’objectif du chapitre 3 est de valider 'approche proposée en 'appliquant
sur un cas d’étude. Dans 'automobile, le freinage et la direction ont été les derniéres
fonctionnalités véhicule a rester purement mécaniques en raison de fortes réglementations
visant & réduire les accidents de la route, et ce malgré 'avénement de la mécatronique
qui répond aux attentes d’innovations en intégrant des métiers qui étaient historiquement
traités séparément. Nous avons sélectionné un systéme de freinage régénératif hybride
intégré dans un véhicule complétement électrique. Ce systéme est bien entendu un systéme
mécatronique critique, systémes visés par nos travaux. Le chapitre revient premiérement
sur Uhistorique des projets de freinage électrique & Renault. Posant les bases du freinage
électrique, ces projets ont en particulier révélé que le développement de systémes critiques
nécessite le positionnement du constructeur automobile en développeur de systéme (au sens
véhicule) plutét qu’en intégrateur de solutions commerciales (sous-systémes du véhicule).
Puis est présenté le systéme de freinage régénératif hybride dont les principales spécificités
sont un freinage régénératif exploitant le moteur électrique afin de régénérer de I’énergie
électrique durant les phases de décélération et le choix architectural d’équiper les roues
avants de freins électromécaniques et les roues arriéres de freins & tambour. La solution
est élégante. D’une part, la réglementation est clairement respectée avec trois types de
freinage qui sont aussi précisément représentés que dans un systéme de freinage classique
(le freinage d’urgence et le freinage résiduel sont pris en compte par les freins a tambour,
et le freinage de service est assuré par les freins électriques, les freins a tambours et le
freinage électrique). D’autre part, le freinage fourni par les freins a tambour simplifie
Panalyse du systéme (il n’est par exemple plus nécessaire de simuler la résistance de la

pédale de freinage, résistance fournie par le circuit hydraulique des freins a tambour).

Le chapitre 3 poursuit sur I’application de notre approche. Toutes les étapes de concep-

tion sont présentées et nous observons les résultats qui suivent. Premiérement, l'intégration
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de 'ingénierie des systémes et de la sécurité fonctionnelle (dans 'ontologie) donne une déf-
inition précise unique de notions similaires préalablement incompatibles. Les informations
contenues dans l'ontologie ne sont pas sujettes & des interprétations implicites, donnent
une description du systéme conforme & 'ontologie, sont de meilleures qualités et de ce
fait sont potentiellement plus & méme & étre réutilisées. Deuxiémement, tous les concepts
au niveau systéme de la norme ISO 26262 (concernant la conception) ont été définis et
intégrés avec les concepts de Renault. Cette intégration fournit les bases du processus de
conception basé sur une ontologie, ce dernier étant un processus applicable a Renault (qui
tient en compte des spécificités de I'entreprise) conforme a I'ISO 26262. Pour finir, le pro-
cessus de conception basé sur une ontologie répond aux problémes de cohérence résultant
principalement de la perte d’information aux interfaces des processus (de branches paral-
leles de développement), cette cohérence pouvant maintenant étre vérifiée par un ingénieur

ontologique.

Nous tirons les conclusions suivantes du chapitre 3. Le processus de conception basé
sur une ontologie et cette ontologie centrale au processus sont adaptés aux spécificités de
Renault et de la norme ISO 26262. Les informations (disponibles) produites par le projet
freinage régénératif hybride ont été enregistrées sans difficulté quand elles étaient précises,
les difficultés révélant un manque d’information ou des différences de conceptualisation.
L’application du processus de conception démontre concrétement son alignement quand
exécuté et est un exemple de capitalisation de projet encore plus favorable & la réutili-
sation que des documents et modéles (intégrés seulement implicitement). Au final, cette
application permet de valider notre approche. Cette derniére améliore le processus de
développement de Renault en apportant la rigueur nécessaire au développement de sys-
témes critiques et définit tous les principes permettant d’améliorer la qualité et la cohérence

des modeles & travers une ontologie.

Nos travaux ont investigué les questions de recherches énoncées plus haut et ont apporté
les réponses suivantes. Les ontologies permettent de formaliser une conceptualisation d’un
domaine de la facon la plus précise et répondent naturellement aux questions Q1 et Q2
traitant de la formalisation de connaissance. La vérification de la propriété de cohérence

définie dans les langages formels est une analyse automatique centrale a ces travaux. Ayant
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formalisé la norme ISO 26262 dans une ontologie formelle, la question Q3 (vérifier le respect
de la norme ISO 26262) trouve une réponse automatique en vérifiant la cohérence de
Pontologie. Au final, les techniques formelles (basées sur des langages formels) permettent
d’améliorer le processus de conception des systémes mécatroniques critiques. Cette thése a
permit d’enrichir la réflexion a Renault comme le montre les travaux futurs envisagés (tels
que la formalisation des exigences non fonctionnelles, I'intégrations d’autres domaines ou
encore le développement d’outils permettant la synchronisation du processus de conception)
ainsi que les nombreux travaux connexes (apport d’une sémantique formelle aux futurs
profils SysML et UML Renault développés dans le cadre du projet ingénierie des systémes
et ingénierie logicielle & base de modeéles) qui peuvent tous étre intégrés en utilisant les

bases théoriques établies par nos travaux.
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(zeneral Introduction

Industrial context

For the last several years, car manufacturers have had to face an always-increasing
list of stakes and challenges. In the strongly competitive worldwide market of today, a
car manufacturer has to offer to its customers relevant, innovative, reliable, environment-
friendly and safe services of the highest quality. All this must be done at very competitive
costs while complying with more and more stringent regulations and tighter deadlines

[Chalé Gongora et al. 2009].

We have witnessed a change in attitudes vis-a-vis the automobile product. The auto-
motive industry is intended for mass production to the contrary of other transportation
industries. The customers are numerous and different by nature and they have hetero-
geneous needs. Customer needs drive the development process and serve ultimately to
validate the final product. Over the years, customers needs have evolved and new needs
are continuously identified. As for now, a vehicle is not anymore only limited to its func-
tional role of transportation but has to propose non-functional services as well (e.g., driving
pleasure). In order to succeed (i.e., to bring in revenue), the final product has to either
have unanimous adoption or be highly customizable thus answering the heterogeneous
customers needs. Unanimous adoption is impossible to obtain considering contradicting
requirements (e.g., the color of a vehicle) and customization is therefore adopted with
optional services resulting in the corresponding product alternatives explosion. A status
quo can be phrased: car manufacturer survival lies on adaptability. The product has to
correspond to the ever changing customers needs. As such, car manufacturers strive for

innovations [Bishop 2008|] that are optionally integrable and that will answer customers

29



GENERAL INTRODUCTION

needs or, going further, that will answer the innovation demanding market, creating new
needs that competitors will also have to address. These goals can be envisioned in the

Renault brand signature unveiled during the 2009 Frankfurt auto show: Drive the change.

The advent of mechatronics has dramatically changed the automotive landscape. Com-
pared to traditional mechanical systems, mechatronics systems tightly integrate multiple
engineering fields i.e., mainly but not limited to, mechanical, electronic and computer sci-
ence. Mechatronics makes possible new solutions and opens possibilities for new, as yet
unknown products |[Tudorache 2006], tackling innovation issues. In the automotive in-
dustry, the mechatronics paradigm adoption comes from the quick electronic revolution in
miniaturization and cost reduction. These enabled rapid growth of electronic allotment in
a vehicle, that adds up on average to more than 40% of the vehicle total price in 2010.
Electronics tour de force is termed as the increase of possible services which come without
increasing material cost, thus answering customers search of high-tech features at relatively
low cost. Software illustrates the best this state of affairs as one only has to develop another
piece of software to offer a new functionality. This addresses the benefit / cost ratio issue
of new developments as new solutions are created from new definitions of heterogeneous,
i.e., cross-domain, components interactions. 90% of automotive innovations come from
electronics out of which 80% is actually implemented in software, thus demonstrating the
key role of mechatronics in the current automobile product. For instance, the Anti Block-
ing System (ABS) unblocks a wheel blocked during braking preserving the driver with
steering capability. Electronic Stability Program (ESP) interprets and computes driver
intended trajectory that is compared to vehicle trajectory; in case of deviation the ESP
takes action on the wheels rotation speed in order to follow computed trajectory. With
power steering one can steer the wheels effortlessly while at full stop. More recent and
one example that illustrates completely the benefits of mechatronics systems, the Renault
Active Drive System (ADS) exploits the previous mechatronics systems (i.e., ABS, ESP
and power steering) sensors and introduce only one Electronic Controller Unit (ECU), ac-
tuators on the rear wheels and control laws. This system allocates the steering function to
the four wheels improving greatly steering capability and vehicle flat turns at high speed

by the compensation of the centrifugal force for exceptional driving pleasure; that would
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not have been possible otherwise. Extensive use of mechatronics and software solutions
is therefore the current trend in automotive industry and often the only solution to meet
the concurrent challenges of competitive costs, time to market and overall quality. This
trend, however, increases system complexity and consequently increases the risks due to
systematic (software process) and random (hardware) failures. These risks are of even

more serious consequences when we deal with safety-critical systems.

The emergence of the international standard IS ISO 26262 automotive standard (pub-
lished in November 2011) which deals with the functional safety of embedded Electric/Elec-
tronic systems (E/E systems) within road vehicles, brings along new requirements and con-
straints with which the systems as well as the processes allowing their development have
to comply. Although ISO 26262 is concerned with E/E systems, it provides a framework
within which safety-related systems based on other technologies can be considered. This
standard is undoubtedly acting as a catalyst for the research of new processes, methods
and tools to cope with these new requirements as it will establish a state of the art of the
requisites to guarantee functional safety. Even though ISO 26262 is not (yet) mandatory,
in case of an incident or accident, a product manufacturer is responsible before the law
to prove that its product is not the origin of the accident. This let us foretell automotive

dependability culture evolution towards this standard.

The growing complexity of automotive mechatronics systems comes mainly from the
integration of more and more elements that are heterogeneous in nature (e.g., software,
mechanical, electric, electronic) but have to work altogether in order to perform function-
alities that would not be possible without the close cooperation of different fields that
were historically treated separately. This is perfectly illustrated with the severance from
conventional automobiles to electric vehicles where electric components skyrocket while
mechanical and hydraulic systems may still be present. The consequence of the growing
complexity of automotive systems is that facing the always-increasing list of stakes and
challenges has become very complicated, thus, time-consuming and expensive given the

time scales of typical vehicle systems development cycles.
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Motivation

From this context we draw the conclusion that new development processes supported

by adequate methods and tools and new methods for analyzing systems are necessary.

One of the current challenges at Renault consists in preparing its engineering divisions
so that they are capable of developing mechatronic safety-critical systems according to ISO
26262 standard. This standard defines a system life cycle and the activities that must be
performed in the different phases of this life cycle along with the support processes that
are necessary for these activities. It also defines a specific method for automotive hazard
analysis that identifies hazards and classifies them using ASIL, that stands for Automotive
Safety Integrity Levels. The result of this analysis is the definition of the ASIL of the
hazards of the system called Safety Goals. Safety goals are allocated from the system
level to its components according to the rules defined by the standard. This leads to the
definition of specific safety requirements on the system, on its components and on the
associated development processes, depending on the ASIL quotation. The satisfaction of

these requirements allows asserting the absence of unacceptable residual risks.

Therefore, the standard raises some problems concerning the demonstration of func-
tional safety and, more generally, concerning the development processes which are currently
under-formalized. Indeed, one of the strengths of ISO 26262 is that each requirement in
the standard is associated to an ASIL. So, the compliance of the system, of its compo-
nents (whatever their nature), and of their development processes to the standard can be
obtained and verified in a systematic way. This suggests that better formalization can be

beneficial to ensure consistency with respect to the standard.

Research Question

In this chapter, we presented the automotive industrial context and identified the pecu-
liar features of automobile systems. The conclusion is the necessity to adapt and improve
their development process. We identified two areas for improvement: one, better con-
trol over the complexity of automobile mechatronics systems and, two, improvement, in

terms of power and sophistication, of the methods of analysis for automobile mechatronics
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systems.

The areas of research revolves around the following fundamental question:

How can formal techniques contribute, in the continuity or in severance, to
the development process of safety-critical mechatronics systems, that have to be
compliant to 1SO 26262, for a customer-oriented automobile manufacturer such

as Renault ?

In this work, we focus on formalization techniques as the whole development process
will benefit greatly by using these techniques. By formalization techniques we are to
understand the formalization of knowledge, i.e., domain knowledge and expert knowledge,
and the more sophisticated manipulation of this structured information. These two aspects

are the subject of more targeted questions:

Q1 How can domain knowledge (i.e., automobile domain knowledge) be formalized 7
Q2 How can expert knowledge about the development process be formalized ?

Q3 How can conformance to standard ISO 26262 be verified ?

Organization of the Thesis

In this work, we chose to focus on the design part of the development process where
the system fundamental elements are manipulated. In addition, the automotive industry is
confronted to the recently published international standard ISO 26262 on functional safety
which adds other activities to the design process. In the end, this work contributes to the
improvement of the design process for automotive safety critical mechatronics systems in

three ways:

1. By integrating formalization techniques for desired enrichments that are difficult or

even impossible with currently used techniques

2. By integrating safety concepts in the current systems engineering metamodel
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3. By making a highly formalized attempt in the conformance to ISO 26262 standard

Our proposal is a design process approach similar to Model Driven Engineering. The
novelty is the addition of a central ontology that formalizes a shared conceptualization
of systems engineering and functional safety. Using ontologies enables to tackle semantic
problems intrinsic to usual approaches. The ontology is used as the reference model for the
whole design process. It enables to guarantee the design process consistency not only at the
syntactic level but also at the semantic level for any environment. It is a general theoretical

approach that is applicable in any company and that has been tested at Renault.

As such, the thesis is articulated in the following manner: Chapter 1 presents the state
of the art. It goes through systems engineering and functional safety domains; Renault
design process and attempts for improvement; the main approaches used to formalize
the conceptualization in systems engineering; and ontologies as the most precise way to
formalize a conceptualization. Chapter 2 regroups our contributions: the formalization of
a conceptualization for systems engineering and functional safety, the central place of this
formalization in the design process of safety critical mechatronics systems, and a proposal
for a more precise design process named Ontology Centric Design Approach for Safety
Critical Automotive Mechatronics Systems. Chapter 3 introduces the case study of a
Regenerative Combi-Brake (RCB) system on which the design process is applied. Finally,
we give a conclusion to the thesis with a recapitulation on the contents and the future

works that are both undergoing and envisioned in reflection to this work.
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1.1. INTRODUCTION

1.1 Introduction

This chapter presents the state of the art relative to our final objective: the improve-
ment of the design process of safety critical mechatronics systems at Renault. It is organized
in four sections. Section 1.2 presents the product development process. We present the
general domain of systems engineering that addresses the development of any system and
the dependability domain which specializes on safety critical systems. The main develop-
ment approaches are brought into the perspective with the conclusion that they are based
on particular conceptualizations. Section 1.3 presents the ontology paradigm. The funda-
mentals are explained and then we focus on the semantic web that is a growing field of
activity. Finally, section 1.4 concludes the state of the art on our relatively new approach to
implement semantic web technologies in the design process of safety critical mechatronics

systems at Renault.

1.2 The Product Development Process

Over the years, the automobile product has turned more complex. The general intro-
duction of this work presents the current context of the automobile product and shows
that complexification is not only a trend but will amplify [Green et al. 2001]. To face this

growing complexity adequate processes, methods and tools need to be defined.

It is the domain of the science of systems engineering to develop a framework for orga-
nizing and conducting complex programs. Systems engineering is the solution for Renault
to position itself as a system developer. Systems engineering puts great emphasis on risk
management. The International Council On Systems Engineering (INCOSE) identifies
two main branches of risk management: the Project Risk Management (PRM) and the
Environmental Risk Management (ERM) [INC 2011]. When dealing with safety critical

systems we are interested in the ERM branch that incorporates safety.

Section 1.2.1 presents the general systems engineering point of view that addresses the
development of any system. The development phase of the product development process
is the main point of focus. Section 1.2.2 presents the dependability domain. It is part of

systems engineering and it corresponds to additional processes, methods and tools that
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specifically deals with systems that are safety critical. Section 1.2.3 briefly present the

main development approaches.

1.2.1 Systems Engineering for Mechatronics Systems

"ISO/IEC 15288 establishes a common framework for describing the life cycle of sys-
tems created by humans" [ISO 2002a]. This international standard on systems engineering
defines six different phases that every system goes through. It starts with the conceptual-
ization of a need for the system and progresses through development, realization, utilization

and retirement of the system.

As we said, we only focus on the development phase of the life cycle. We begin by
presenting the different elements of systems engineering that we manipulate. The following
definitions come from ISO/IEC 15288 [ISO 2002a], the INCOSE [INC 2011] and its french

chapter the "Association Frangaise d’Ingénierie Systéme” (AFIS) .
1.2.1.1 Elements of Systems Engineering
The central element of systems engineering is the system.

System: An integrated set of elements that accomplish a defined objective. These
elements include products (hardware, software, firmware), processes, people,

information, techniques, facilities, services, and other support elements.

More precisely, this integrated set of elements are in interaction and are organized to
accomplish a defined objective that would be impossible without one of these elements. A
system is easily understood in the light of the idiom "the whole is greater than the sum of
its parts”. In practice, systems are products or services. The discipline developed around

the central element, i.e., the system, is systems engineering.

Systems engineering: An interdisciplinary approach and means to enable the

realization of successful systems.

To the approach, we add the collaborative characteristic that is very important (see section

1.3). The discipline can deal with many kinds of systems and in particular with the
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1.2. THE PRODUCT DEVELOPMENT PROCESS

automobile mechatronics systems. To do so, three elements are identified. They are the

object of figure 1.1.

Suppoarted b Supported b

Figure 1.1: Elements of systems engineering

First, the processes.

Process: A set of interactive activities that are coordinated to progressively

transform entry elements into output elements.

A process defines the activities that need to be performed, input elements prerequisite
to the realization of activities and output elements that are produced by activities. An
activity is a structuring element of a process. It is time and resource consuming thus the
necessary coordination to achieve good performance and contribute to the overall success

of the process. A process is supported by different methods.

Method: A set of techniques that are coordinated to progressively realize an

activity.

An activity can be realized by different methods. A method is by itself a set of different
techniques that need to be used to contribute to the overall success of an activity. A

method is supported by different tools.

Tool: Anything used as a mean to help in the implementation of a method.

In the context of complex systems, the usual example would be the computer tool; however
it really can be anything. Let’s have a look at the following example to understand how
all of it articulates. As a process, we use the risk management process. One activity is the
preliminary risk analysis. This activity takes as an entry a specification (set of require-
ments) and outputs identified hazards and their associated criticality. As this activity is
programmed in the development process earliest phases, one technique that can be used is

brainstorming. Brainstorming can be supported by different tools such as a blackboard,
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post-it, computer spreadsheets, etc. In order to perform systems engineering, processes,

methods and tools need to be defined.

The V Life Cycle. The usual representation of the system development process is the
V-model. This model is the graphical representation of the development life cycle and is
largely used in the automotive domain. Figure 1.2 presents a simplified V-model for the

development process.

Walidation
< Product
&2

Yerification

Werification

Werification

Realization

Figure 1.2: V-model for the development process

The development process is iterative by nature. It goes from system level through
subsystems levels to components level (i.e., understanding of the system is constructed
with more and more details from the most general to the finest grained precision). In figure
1.2, only the development process at system level is presented. The V-model process is a
top-down approach that implements fallback. It requires precedent steps to be carried out
before going to the next step. The V-model reveals three main phases in the development
life cycle. The phases are represented by arrow banners in the figure. The V-model starting
point is the Needs (of all the stakeholders). From the needs, the first phase that corresponds
to the descending branch of the V is carried out to design and analyze the system. The
next phase at the base of the V is the realization phase. The last phase corresponds to

the ascending branch of the V. It is the integration phase and relate to verification and
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validation aspects. When carried out, it results a product that is also the ending point of
the V-model. The arrows that go from the system integration phase towards the system
design phase correspond to one important aspect of verification and validation: if something
is not right in the ascending branch then something at the same level in the descending

branch is not right therefore a fallback to the descending branch is undergone.

To reduce these errors and the cost of these errors, the science of requirements engi-
neering can enforce necessary completion of a step before advancing to the next step and

identify an error at an earlier time than the integration phase.

Requirements Engineering. The most important element of the science of require-

ments engineering is the requirement.

Requirement: Characteristics that identify the accomplishment levels needed to
achieve specific objectives for a given set of conditions. Contractually binding

technical requirements are stated in approved specifications.

Actually it is the most important element in the development process. In figure 1.2, the
process starting point are the needs of the system’s stakeholders. Those needs are often not
clearly defined, they can be constrained by factors outside the control of the stakeholders,
or they may be influenced by other goals which themselves change in the course of time.
Requirements engineering is the process that initially transforms stakeholders needs into a
form that is suitable (mostly, better structured natural language) for both the development
and the communication between developers and stakeholders: the requirements. The pro-
cess continues throughout the V-model in a top-down manner, the requirements becoming

more and more accurate and corresponding to specific system descriptions.
Fig 1.3 describes requirements engineering on different levels.

Good practice in requirements engineering calls for the distinction between the problem
domain and the solution domain. In the problem domain, the stakeholders needs are
elaborated. In the solution domain, it is the system that will be the solution to the problem
that is elaborated. Figure 1.3 illustrates the development process and is read top-down.

Once a sound set of stakeholders requirements has been agreed upon it is time to think of

40



1.2. THE PRODUCT DEVELOPMENT PROCESS
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Figure 1.3: Different abstraction levels in requirements engineering Hull et al. [2004]

the solution. The system requirements defines system characteristics and are at a level that
wants to be general in the sense that a general solution is described that still leaves place
for creativity in order to consider different solutions (as a way to avoid jumping into the
development of a solution that will get nowhere, whereas putting some effort into comparing
different solutions could have revealed some flaws). From the system requirements, a
design architecture (i.e., one solution) is constructed as a set of interacting subsystems
that exhibit properties that have to match the system requirements. This architecture
defines the functional requirements of the subsystems. The same process is carried out
as many time as necessary on the subsystems requirements to obtain subsystems design
architectures until the component level is attained where an implementation can be realized.

Requirements drive the project activity and are essential for project planning, verification
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(checking that the system implements the specification), risk management (risks raised
against requirements can be tracked, their impact assessed and the effects of mitigation
and fallback understood) and change management. As a basis of every project, it is not
surprising that project failure mainly comes from the requirements that can be incomplete,
poorly expressed, poorly organized or changing too rapidly [Hull et al. 2004; Stevens et al.
1998].

In systems engineering, the support process traceability is essential as it enables to

formalize an understanding of how objectives are met.

Traceability: The ability to trace (identify and measure) all the stages that led

to a particular point in a process that consists of a chain of interrelated events.

Establishing traceability on the requirements enables to formalize a certain understand-
ing on how a system all fit together. This contributes for instance to assess the impact
of change. For example, when changing one component of a system one can retrieve all
the requirements that concern the component by tracing back and look at the impacted
elements by tracing down from the requirements. In the development process, traceabil-
ity helps in understanding the system; in the distance, it is one way to capitalize some
knowledge about the system for evolution, maintenance or reuse. We develop on this last
property as it is essential. The only realistic development approach, for both economical
reason and given the complex nature of mechatronics systems, is one based on already ex-
isting implementations by reusing elements (e.g., components, architectures, off-the-shelf
components, etc.) of existing systems. Incremental modifications can then be performed
to reach the final solution for the new system. Reuse should therefore be favored in the
whole development process (i.e., processes, methods and tools should favor and facilitate

reuse).

Architectures Design. The other main elements that do not appear on the previous
figures correspond to subprocesses of the design phase. In the design phase, requirements
are made more and more precise. Specific artifacts that correspond to some requirements

at different levels of abstraction are produced. These artifacts are in the solution domain
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of figure 1.3. Two abstraction levels are considered. First, at functional level, the system’s
functional (or logical) architecture is designed. It is a solution of the system which is
independent from implementation choices. This solution describes system’s functions and

how these functions interact with one another.

Function: A task, action, or activity that must be accomplished to achieve a

desired outcome.

Second, at component level, the system’s physical architecture is designed to be one par-
ticular solution for the functional architecture. It describes how functional architecture’s
functions can be implemented into physical components and component’s interfaces that

enable components interaction.

Component: A modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment. A component defines
its behavior in terms of provided and required interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required

interfaces (encompassing both their static as well as dynamic semantics).

The general notion of flow is introduced as the mean to represent functions and components

Interconnection.

Flow: Non-broken circulation of information, energy or material.

We do not give more detail on architectures design however it can be noted that these
architectures are mainly defined using block diagram notation that uses blocks to represent
functions or components and arrows to represent flows. Naturally, traceability is established

between requirements and their corresponding architectural elements.

1.2.1.2 Model-Based Development

Mechatronics is an engineering science, in which the functionality of a technical system
is realized by a tight interaction of mechanical, electronic and computer science engineering

fields.
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Mechatronics: The synergetic integration of mechanical engineering with elec-
tronics and intelligent computer control in the design and manufacturing of

industrial products and processes [Bishop 2008].

The automotive industry develops mechatronics systems. These are particular types of
systems that emphasize even more the advantages of system parts collaboration and affirm
that fields collaboration is essential. Developing mechatronics systems is complex and can
be mastered using a model-based approach in the development process [Struss and Price

2004].

Model: Any representation of a function or process, be it mathematical, physi-

cal, or descriptive.

In model-based development, the development effort is centered on a formalized system
specification (i.e., a model). Based on requirements engineering, the formalized specifi-
cation is the set of system requirements. This specification is subject to many modeling
activities that produce different models which represent different system views. In the con-
text of automotive mechatronics systems it is particularly fitting as systems are complex
and heterogeneous by nature. Systems engineering decomposes the system into smaller el-
ements that are better understood. Model-based development encourages compositionality
while providing specialized views that abstract unimportant details, therefore improving

readability, focus or productivity on particular points.
1.2.1.3 Conclusion

We do not need to cover more material on fundamentals about systems engineering. The
reader only have to retain that systems engineering defines system’s descriptions in terms
of requirements, functions, flows and components. If interested, the reader is redirected to
the following literature. INC [2011] and Stevens et al. [1998] handle systems engineering.
Hull et al. [2004] and Stevens et al. [1998] cover requirements engineering in a brilliant
way. Wieringa [2004] discusses and makes clear problem and solution domain. Maiden

et al. [2008] covers stakeholders requirements definition. Brinkkemper et al. [2008] tries to
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improve requirements management. Bishop [2008] presents model-based development for

mechatronics systems.

While systems engineering can bring best practices to the development process of a
mechatronics system, it remains that the automobile product can involve some dangerous
and fatal injuries where survival is compromised. As such it is classified as a safety crit-
ical system. Previously, we stressed out the importance of innovation for the automotive
industry. This innovation comes mostly from the contribution of electronics, however this
innovation brings along new risks. Systems engineering puts great emphasis on risk man-
agement. We are interested in safety aspects of risk management and this is the domain

of the dependability field.

1.2.2 Dependability

Dependability: The ability of a system to deliver service that can justifiably be

trusted.

Dependability: The ability of a system to avoid service failure that are more

frequent and more severe than is acceptable.

Those two definitions [Avizienis et al. 2004] define dependability first by stressing the
need for justification of trust in a service then by giving a criterion for deciding if a service
is dependable. Dependability is defined by a set of properties, the main ones are the

followings:

Reliability: Continuity of correct service.

Maintainability: Ability to undergo modifications and repairs.

Availability: Readiness for correct service.

Safety: Absence of catastrophic consequences on the user(s) and the environ-

ment.
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The interested reader can consult [Avizienis et al. 2004] for the definitions relative to
dependability domain. We are interested in safety aspects in the development process the

objective being the proof of a safe system.
1.2.2.1 V-model and Safety Activities

As can be seen in figure 1.4, dependability studies are carried out in a second V cycle

that is executed in parallel to the development process.

b -
System Systerr dependability
deperdahility studies L validation

SystemU BYstem-VM

Suhyalem - Subsysterydependahility
dependablllty studies alidatiop”

Subsyste‘m deswgn Subsyslem’valldatlon —/
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design

Figure 1.4: Safety in the V-model

This layout results from usual organization that commits dependability studies to a
team that is independent of the design team. The safety team has to demonstrate that the
system is dependable. Most often, the time lapse between design studies and dependability
studies is very, not to say too much, important. For instance, if a problem appears in the
dependability studies that are systematically based on design activities, the development
team needs to go back on the impaired activities. We advocate that important improvement
of the development process lies in a better coordination or combination of both design and
dependability teams. This is shown in figure 1.4 as we placed the dependability V-model
in parallel to the development process but somewhat earlier by placing it higher. In fact,
dependability studies should be performed earlier than the design phase of the development

process [Boulanger 2006].

Now that we understand the place of dependability studies in the development process,

we define some fundamental elements of the safety field.

46



1.2. THE PRODUCT DEVELOPMENT PROCESS

1.2.2.2 ISO/IEC Guide 51

The international standard ISO/IEC Guide 51 [ISO 1999] covers safety aspects for
their inclusion in standards. We will present the notions of undesired consequences and
come back on their causes. Then we will present risk management as a way to improve

safety.

Fundamentals. From the notion of harm, it is possible to define rigk, safety and all

associated concepts such as hazards and hazardous events.

The ultimate unwanted outcome when using a vehicle is harm. This concept is shared
in many domains (e.g., nuclear, transportation, and medical technology), and is applicable

to every application domain of automobile. Harm is defined as:

Harm: Physical tnjury or damage to the health of people, or damage to property

or the environment.

Three attributes of harm are usually defined: nature of the harm, its severity and its
probability of occurrence. In the case of an automobile in physical interaction with humans,
the first potential harm generally considered is damage to the health of people due to vehicle
crashes, but many other potential harms exist (electrocution, stressful conditions for users,

etc.).

Severity is used to denote the degree of harm and is usually expressed as a qualitative
level. Many severity indexes can be used (coming from other domains). These indexes
express severity levels in terms of impact forces, kinetic energy, acceleration, speed, etc.
table 1.1 is used in automotive applications and gives a generic severity scale [AAAM

1998].

A more controversial concept is the notion of probability of occurrence or likelihood of
harm. Indeed, this metric was historically used for hardware systems where it is possible to
evaluate failure rates (and then, the probability of occurrence of the failure and its outcome)
based on test-bed results. Due to the growth of software, this quantitative evaluation is

not yet possible for today’s systems. It is also noted that some standards (e.g. in the
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AIS | Severity | Type of injury

0 None None

1 Minor Superficial injury

2 Moderate | Recoverable

3 Serious Possibly recoverable

4 Severe Not fully recoverable without care
5) Critical Not fully recoverable with care

6 Fatal Not survivable

Table 1.1: The Abbreviated Injury Scale (AIS)

domain of medical devices) state that "...a good qualitative description is preferable to a
quantitative inaccuracy” [ISO 2000]. Nevertheless, levels can sometimes be associated to
different quantitative evaluation in order to give indications to designers. This choice is
strongly related to the considered application, and no generic values exist. An example of

levels is given in table 1.2. The levels graduate from high risk, intermediate risk, low risk

and negligible risk.

Likelihood | Indicative probability (per year)
Frequent >1

Probable 1—10""1

Occasional 1071 — 1072

Rare 1072 —-10"°

Impossible >107°

Table 1.2: Indicative probability values for likelihood estimation

Risk of harm is defined as:

Risk: Combination of the probability of occurrence of harm and the severity of

that harm.

This definition is sometime extended with other metrics such as likelihood of exposure of
the user to the system, but most studies define a risk level for each pair of qualitative

levels (likelihood, severity). Table 1.3 is an example of possible risk values with a classic

graduation.

The main objective of such a definition of risk levels is to identify risks deemed to be

tolerable:
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Severity

Likelihood 6 5 4 3 2 1 0
Fatal | Critical | Severe | Serious | Moderate | Minor | None

Frequent H H H H H I N

Probable H H H H I L N

Occasional H H H I L N N

Rare H H I L N N N

Improbable I I L N N N N

Impossible L L N N N N N

H: High, I: Intermediate, L: Low, N: Negligible

Table 1.3: Example of risk level table

Tolerable risk: Risk which is accepted in a given context based on the current

values of society.

Based on table 1.3, the tolerable risk is defined (which is usually N, but in some cases L is

also tolerable).

Safety, previously defined as an absolute property [Leveson 1995], is now also expressed

in a relative and probabilistic way:

Safety: Freedom from unacceptable risk.

Safety is achieved by reducing risks to a tolerable level. Tolerable risk is determined by
the search for an optimal balance between the ideal of absolute safety and factors such
as benefit of the system to the user, suitability of the system for the purpose, and cost.
These criteria and others have to be considered in the context of the values of the society
concerned. It follows that there is a need to continually review the tolerable level as
technological developments can lead to technically and economically feasible solutions to

allow for safer vehicles.

Taking into account the notions of harm, risk and safety, we can now analyze the causes
of harm which are the hazards. Historically, in many standards and studies, hazard was
defined in terms of energy transfer. Today the notion is used to express any potential cause

of harm.
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Hazard: Potential source of harm.

A hazard can be a failure, a human error, a variable lighting condition (which is an adverse
situation for a driver), etc. Often a hazard can indicate the origin or nature of harm when
it gives information about the source (e.g., electric shock hazard, crushing hazard, driver
focus hazard, etc.). In many cases, an accident is the combination of the presence of a
hazard and a situation where humans are exposed to this hazard. This concept is defined

by the term hazardous situation:

Hazardous situation: Clhircumstance in which people, property or the environ-

ment are exposed to one or more hazards.

The term situation integrates the notion of scenario, i.e., the description of environment
conditions, system state, and actions performed during the scenario. A hazardous situation

does not necessarily lead to an accident. Hence the concepts of harmful event and incident:

Harmful event: Occurrence in which a hazardous situation results in harm.

Incident: Event that does not lead to harm, but which has the potential to create

harm in other circumstances.

From those two definitions the notion of event appears. From a system point of view that
is broader than the safety one, the notion of feared event that includes but does not limit

to harm is introduced:
Feared Event: Event that must not occur or that must occur with low probability.

In order for these events to not occur, or to hardly occur, one has to understand how they
can occur. Dependability of a complex system can be undermined by three types of events:
failures, errors and faults [Avizienis et al. 2004]. Elements of a system are subject to

failures that can bring to a hazardous situation.

Failure: ... event that occurs when the delivered service deviates from correct

service.
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A failure is an incorrect behavior of the system. The system does a transition from cor-
rect service to incorrect service. A representation of system states will therefore include

incorrect states. A failure is an observable external event caused by an error.

Error: ... the part of the total state of the system that may lead to its subsequent

service failure.
The cause of an error is called a fault.
Fault: The adjudged or hypothesized cause of an error.

A fault is characterized as either dormant or active. In dormant state, a fault can possibly
be never activated. For instance, there can be a fault in a function of a program that is
never used. Comes the day when this faulty function is used. The fault generates an error.
First the error is not apparent to the user of the service. When it becomes apparent the
error is deemed as a failure. An example can be the Automatic Cruise Control (ACC)
service that controls the vehicle to be at defined speed. The driver uses the ACC on the
highway and arrives to his exit. He decelerates by braking that should deactivate the ACC
but a fault has been missed out. The dormant fault activates and becomes an error as
the ACC that should be deactivated is not. The driver wants to decelerate, but the ACC
mitigates braking effectiveness. This error has become a failure. Figure 1.5 presents the

fundamental chain that links the threats of dependability together |Avizienis et al. 2004].

Activation Propagation Causation
*+ Error > >

» Fault Failure Fault -=-=-=---» .

Figure 1.5: The fundamental chain of dependability and security threats

The role of the risk management process when considering safety aspects is to justify
the system dependability. It is based on the elements presented before and therefore study

the failures, their causes (i.e., the hazards) and their consequences (i.e., the risks).

Risk management. Risk management is the overall process analyzing hazards and their

possible outcomes, and deciding which risk reduction strategies are selected.
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Risk management: The process whereby organizations methodically address the
risks attaching to their activities with the goal of achieving sustained benefit

within each activity and across the portfolio of all activities [ISO 2002b].

Risk management is a process to direct and control an organization with regard to risk. It
generally includes risk assessment, risk treatment, risk acceptance and risk communication
[ISO 2002b]. Figure 1.6 presents the part of the risk management process that considers
safety [ISO 1999].
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Figure 1.6: Iterative process of risk assessment and risk reduction

Risk analysis is a part of the overall process presented in figure 1.6, and is included in
risk assessment. It is defined as the systematic use of information to identify hazards and
to estimate the associated risk. The considered information may stem from historical data,

theoretical analysis, informed opinions, and the concerns of all stakeholders (designers,
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end users, regulatory authority, etc.). During risk analysis, various methods can be used to
handle functional and technological issues, for example: HAZOP-like techniques (HAZard
OPerability), Failure Modes, Effects, and Criticality Analysis (FMECA), and Fault Tree
Analysis (FTA). These are the three main techniques, and have been widely used in many
domains. They are also recommended in many standards on dependability. During the risk
reduction step, actions are taken to reduce the probability and/or the negative consequences
associated to a risk. The means to attain dependability can be grouped in four major

categories:

"Fault prevention" means to prevent the occurrence or introduction of faults.
e "Fault tolerance" means to avoid service failures in the presence of faults.
e "Fault removal” means to reduce the number and severity of faults.

e "Fault forecasting” means to estimate the present number, the future incidence, and

the likely consequences of faults.

The establishment of dependability therefore requires the selection of suitable means
that can justify this dependability. Once all identified risks on the project are controlled,

the system can be stated dependable.

1.2.2.3 Standards and Norms

Renault is confronted to three different types of standards. First, the regulations.
Regulations are constraints that have to be respected for a vehicle to be commercialized
in a country. It is essential for a constructor to consider this type of standard. The
next two types of standards are characterized by the external / internal criterion. A
constructor is interested in external standards as they establish a state of the art on a
specific subject. Keeping an eye out for new, more efficient technologies, processes, methods
or tools that will benefit the industry is not only essential but common sense. An external
standard can be normative but we class it under regulation type. Non normative standards
are categorized under external standards. Finally, an internal standard affects all the

actors inside the industry and even the partners, be they associates, suppliers or others.
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Those internal standards implement regulations and external standards while at the same
time making abstraction of inconsequential elements. Often, they are used for quality
department that evaluates application of good practice. Those evaluations are part of the
verification activities. We do not distinguish between standards and norms; the two terms

are used indifferently throughout this report.

Even though consideration of an external standard is by no mean mandatory, when
dealing with safety critical systems, if a catastrophic consequence (on a user of the system
or the environment) that comes from any system element happens, this catastrophic event
justifies by itself the need to take into account any standard that deals with the domain
considered. The consequence is so enormous that if it can be avoided then it has to. In
this section we present only the external standards that are in relation to the automotive

industry.

IEC 61508. IEC 61508 is an international generic standard for the functional safety of
programmable electrical, electronic and programmable electronic (E/E/PE) safety-related
systems [IEC 2000]. System safety is achieved by reducing risks to a tolerable level.
Tolerable risk is determined by the search for an optimal balance between the ideal of
absolute safety and of factors such as: benefit of the system to the user, suitability of
the system for the purpose, and cost. These criteria and others have to be considered
in the context of the values of the society concerned. It follows that there is a need to
continually review the tolerable level as technological developments can lead to technically

and economically feasible solutions to allow for safer systems.

The standard defines a safety function as a function to be implemented by any techno-
logical means which is a risk reduction strategy. The standard IEC 61508 was originally
developed for machine systems, where safety of equipment under control (like a machine
with a sharp blade) is guaranteed by independent safety systems such as fences or inter-
locking devices. Such independent systems are called safety-related systems in the IEC
61508 standard. In the case of a vehicle it is also possible to apply these concepts because
the vehicle itself can be considered as the equipment under control. In that case, safety

related systems can be assigned Safety Integrity Levels (SIL) using the standard. Safety
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integrity is defined as the probability of a safety-related system satisfactorily performing

the required safety functions under all the stated conditions within a stated period of time.

In the case of a vehicle, some safety functions are fully integrated in the mechatronics
system itself, and even deep within the vehicle control software. Even system functions
such as decelerate the vehicle can be considered as a safety function. In fact, in the sense
of the standard, every function can be considered as a safety function. By induction, this
result in the whole system being considered as a safety-related system, therefore we lose the
distinction between safety-related systems and the system. It is then hard in the case of
a vehicle system to define independent safety-related systems in the sense of the standard,

and it is thus difficult to assign safety integrity levels following the standards definitions.

The notion of SIL can however be interpreted as a level of confidence a user can have in
a safety function. The higher the level of safety integrity of the safety-related systems, the
lower the probability that the safety-related systems fail to carry out the required safety
functions. The safety integrity requirements specification is then the specification contain-
ing the safety integrity requirements of the safety functions that have to be performed by
the safety-related systems. Determination of this level depends on the application domain,
and no prescriptive method is proposed in the 61508 standard. One example is given in
figure 1.7, that is extracted from IEC 61508, Annex E, page 55 [IEC 2000], where only

three severity levels and three levels of probability of occurrence are used .

This matrix illustrates the fact that for an event with a given severity and likelihood,
the SIL of each risk reduction facility decreases when the number of facilities increases.
For instance, for an event with serious severity and high likelihood, and in case of one
safety-related system, the required SIL is SIL3. But if a second safety-related system is
implemented, then they both are assigned a SIL2.

Following the SIL assignment, dependability means should be engaged in order to guar-
antee the required integrity of the safety-related system or safety function. For instance,
you may consider using formal specification to do the specification of a SIL3 function. In
the 61508 standard, many dependability means (particularly for software requirements) are

listed and noted HR (high recommended), R (Recommended), or NR (not recommended)
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Figure 1.7: Hazardous event severity matrix: example (illustrates general principles only)

depending on the safety integrity level.

Its generic scope has helped TEC 61508 become a reference in all the main industrial
sectors and has made it the object of numerous adaptations that take into account the
specificities of these different sectors [McDermid 2001]. Those adaptations are based
nevertheless on the same principles of the parent standard; they all assign safety integrity
levels to the system that are used to specify how dependability should be demonstrated.
IEC 61508 is the basis of IEC 61511 for industrial processes, IEC 61513 for the nuclear
power sector, IEC 62061 for machines, EN 50126, 50128 and 50129 for the railroad sector
and, finally, ISO 26262 for the automotive sector.

ISO 26262. 1SO 26262 is the adaptation of IEC 61508 to comply with needs specific
to the application sector of E/E systems within road vehicles. This adaptation applies to
all activities during the safety life cycle of safety-related systems comprised of electrical,

electronic and software elements that provide safety related functions [ISO 2011].

ISO 26262 has been published as an international standard in November 2011. It
remains largely in compliance with IEC 61508 in its substance but diverges in its structure.
One important evolution consists of the fact that the system main functionalities can be

considered a priori as safety related functions; all system functionalities are analyzed in
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order to determine whether they are safety related, i.e., the functionalities are analyzed to
determine if they have the potential to contribute to the violation of a safety goal which is

a top level safety requirement.

Not surprisingly, we find in ISO 26262 the definition of safety integrity levels, which
determine the activities to be performed according to each integrity level in order to justify
an acceptable safety level of the system design. However, ISO 26262 ASIL (that stands for
Automotive Safety Integrity Level) is now assigned to safety goals. The safety justification
consists in the demonstration that the safety goals are satisfied. There are numerous
adaptations in ISO 26262, concerning primarily the system life cycle, that deal with the

specificities of the automotive domain.

ISO 26262 defines four ASILs: A, B, C and D. QM stands for Quality Management and
denotes no safety requirement according to ISO 26262. These levels are determined by com-
bining the following criteria: severity, probability of exposure and controllability. Severity is
a qualitative measurement of the consequences of a car accident. Classes of severity S0, S1,
S2 and S3 correspond respectively to "no injury", "light and moderate injuries", "severe
injuries (survival likelihood)" and "dangerous and fatal injuries (survival compromised)".
Probability of exposure is a qualitative measurement of the possibility of the user being in
a situation where the occurrence of the accident is conceivable. Classes of probability of
exposure E1, E2; E3 and E4 are separated from one another by one order of magnitude and
correspond respectively to "very low probability"”, "low probability", "average probability"
and "big probability". Finally, controllability is a qualitative measurement of the capabil-
ity of the user to avoid a dangerous situation. This criterion is specific to the automotive
domain where the user (the driver) can exercise a certain control on a permissive system
(the vehicle does not inhibit unforeseen behaviors). Classes of controllability C0, C1, C2
and C3 correspond to "generally controllable", "simply controllable", "normally control-
lable" and "difficult to control or uncontrollable". These three criteria allow determining
in a systematic way the ASIL of a system or of one of its features as shown in table 1.4
below. CO and EOQ class are not represented in this table as they always corresponds to QM

regardless of the other two criteria values combined with them.
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. Controllability
Severity | Exposure ol T0o 13
El QM | QM | QM
o1 E2 QM | QM | QM
E3 QM | QM | A
Ed QM |A | B
El QM | QM | QM
- E2 QM | QM | A
E3 QM |A | B
E4 A B C
El QM | QM | A
a3 E2 QM |A | B
E3 A B C
E4 B C D

Table 1.4: Automotive Safety Integrity Levels

Two other topics of the automotive domain are considered in ISO 26262: the human
factor and the relationship between car manufacturers and their suppliers. As previously
mentioned, the user can have unexpected or unwanted behaviors (e.g., crossing downtown
at 100Mph). This type of risks are specific to the automotive domain and relatively non-
existent in the nuclear power, aerospace or railways sectors where systems and procedures
authorize only foreseen behaviors in precise contexts. However, the question of how to
handle these risks still remains little approached. Concerning the relationship between
car manufacturers and suppliers, [SO 26262 defines all the activities to be performed by
both parties, but it does not define who should execute this or that activity. The share of
responsibilities between the car manufacturer and its suppliers is thus left open; ISO 26262

imposes only to define this share of responsibilities at the beginning of the project.

One important element to note, which is a big strength of [SO 26262 compared to its
predecessor, is that every normative part of the standard depends on the safety integrity
levels. Hence, the compliance with the standard will be obtained and verified in a system-
atic way, contrary to IEC 61508 which could lead to different interpretations upon which
parts of the standard to use for a given safety integrity level. In other words, ASIL leads to
the specification of a necessary set of safety requirements, which, if satisfied, allow asserting

the absence of unacceptable risks.
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1.2.2.4 Conclusion

Functional safety has been presented as part of the product development process to
address critical systems. The interested reader can refer to Avizienis et al. [2004] that
is the reference on dependability. ISO [1999] and ISO [2002b] are guidelines to include
risk management and safety aspects in standards. Among other, they define a vocabulary
for safety. INC [2011] presents the risk management process in the systems engineering
development process. Leveson [1995] presents system safety, i.e., safety for systems en-
gineering. Herrmann [1999], McDermid [2001] discuss standards on safety prior to ISO
26262. International standards IEC [2000] and ISO [2011] on functional safety for E/E/PE
systems which concern the automobile industry. The emergence of ISO 26262 international
standard in the automotive industry can be perceived either as a source of concern and
apprehension, or as an opportunity to improve current systems engineering processes and
working methods. Fither way, this standard is undoubtedly acting as a catalyst for the
research of new processes, methods and tools to cope with these new requirements. The
new processes, methods and tools that address functional safety mainly innovate on safety
studies that correspond to risk analysis step in the overall risk management process. In
this thesis, we are literally only interested in the design activity. Therefore, the different
analyses that bring information that results in informed design decisions are not supported
and not presented. Similarly, design approaches that address functional safety are not
relevant and the next section presents a state of the art on the different design approaches
which mostly are inconsiderate of functional safety but nonetheless adapted for the design

of any system.

1.2.3 Main Design Approaches

As a general definition, a design approach (or method or methodology) refers to a cod-
ified conceptualization which helps to systematically create a set of interrelated artifacts
that ultimately lead to the sought after system. We will return in section 1.3 on the notion
of conceptualization (for interrelated artifacts) which is the fundamental issue that con-
cerns all existing approaches that we address in this work. For now this section identifies

and briefly describes the main design approaches for systems engineering (that includes
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functional safety design). Section 1.2.3.1 presents the main development process of mecha-
tronics systems in the automotive industry. Section 1.2.3.2 briefly presents approaches
based on the standards de facto UML and its adaptation to systems engineering, SysML.
Finally, section 1.2.3.3 gives the conclusion on the design approaches and the automotive

industry context.

1.2.3.1 Simulation Based Development Process

The V-model (see figure 1.2) is currently the standard de facto used in the automotive
industry for the development of mechatronics systems. It has been adapted to detect
design issues before the system integration phase and to automate some activities tackling
issues such as short development time constraints and cost of error (detected too late). In
this approach, models are introduced to answer the requirements beginning at architecture
design phase. At this point, the remaining of the development process is model based. The
architecture models are executable (the most widely used simulation tool for mechatronics
systems that include software is Matlab/Simulink). Design verification is based on testing
and is first done on architecture models before the realization phase of the V in a simulated
environment (Model In the Loop or MIL). Some tests are generated automatically from
models and the same tests are reused for different abstraction levels of the integration
phase. Software code, executed on particular hardware platforms, can also be generated
automatically. It is verified in a simulated environment (Software In the Loop or SIL)
so that implementation on hardware and integration are initiated on solid basis. Finally,
the simulated hardware is replaced with its physical realization and tested in simulation

(Hardware In the Loop or HIL).

In this approach requirements management and traceability are done with additional
tool support. These activities can be somewhat imprecise. These issues are considered
in our approach and resolved at the semantic level (i.e., we give meaning to tracing a

requirement to a design element).
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1.2.3.2 UML/SysML Based Approach

UML (Unified Modeling Language) [UML 2007], often wrongly considered as an ap-
proach, is a graphical notation considered as a semi-formal language which is the basis of
many approaches. As UML is mostly better suited with software engineering, the general
purpose language SysML (Systems Modeling Language) [Sys 2007] has been standardized
to address systems engineering. It is specified as a profile (i.e., a dialect) of UML and
defines in particular requirements as a conceptual class of the language. SysML based ap-
proaches are of the same kinds as UML based ones. We identify three kinds of approaches.
As the two standards position themselves as general purpose language, they should be
viewed as the common frame of development best practices. Therefore they should be
adapted depending on the domain. The first kind of approaches ignores this adaptation.
SysML is left aside for these kind of approaches as it is by nature an adaptation to systems
engineering. For instance, it is adapted for requirements engineering which is specifically
addressed by our approach. Second kind of approaches uses extensibility mechanisms to
better suit the specificities of a domain but leaves syntax and semantic informal. The last
kind of approaches rise at a higher abstraction level to define their own language with its

semantic that remains however informal.

Unified Process. Unified Process or UP [Booch et al. 2005] approaches (e.g., Rational
Unified Process or RUP) are often used in very large software projects. Characteristics of
UP are iterative, incremental, architecture centric, use case driven and risk focused (any
risk type including risk of harm). Concerning design, UP addresses three activities with
respective models. The definition of the needs activity corresponds to the elaboration of
requirements. Functional requirements are modeled with UML wuse case diagrams. Non
functional requirements are not considered. Then, analysis of needs activity produces spec-
ifications assumed to provide a correct understanding of the needs. Here, the needs refer
to use cases which are specified using UML sequence and interaction overview diagrams.
Finally, design activity gives a thorough understanding on components (read architectural
elements) interaction and their internal behavior with UML class, activity and state ma-

chine diagrams for instance.
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As mentioned, even though UP approaches should be viewed as the common frame of
development best practices and should be adapted depending on the domain, it is often
viewed as a universal process and used as is. Here UP is presented as an example for
approaches that are imprecise in the sense that important conceptual elements are not
considered as such (for example, to the notion of need, one has to understand requirements
or use cases). With UML, the requirements are not considered as a conceptual class and

therefore requirements traceability is not supported.

OOSEM. OOSEM (Object-Oriented Systems Engineering Method) [Lykins et al. 2000]
is promoted by the systems engineering community and is a reference for systems devel-
opment. OOSEM is a modeling method based on UML. It implements UML extensibility
mechanisms that differentiate with the previous kind of UML based approaches. UML
extensibility mechanisms are used so that the modeling language can be made more pre-
cise, however, with no additional syntax nor semantic. OOSEM uses stereotyping (i.e.,
an extensibility mechanism) of UML modeling elements to represent systems engineering
concepts such as the system or logical components for instance. It has four core design
activities: analyze needs, define system requirements, define logical architecture and syn-
thetize candidate allocated architectures. Analyze needs results in use cases, scenario
descriptions, static system model with external interacting systems. UML use case, se-
quence and class diagrams are used. The systems requirements are represented with a
UML class diagram that represents the system as a black box with its inputs, outputs
and external collaborators. Another class diagram is used to represent the hierarchy of
logical components as an aggregation hierarchy of stereotyped classes. Finally, any means
of UML can be used to represent the allocation or realization components to the logical
ones. Even though OOSEM promotes requirements traceability, this is not supported by
the formalism it uses, therefore it is supported externally by means of a Requirements and

Verification Traceability database (RVT).

Here, we presented OOSEM as it was practiced before the introduction of SysML to
illustrate extensibility mechanisms that enable to consider the logical components as a con-

ceptual class for instance. SysML does so by default, however, the point is that by means
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of extensibility mechanisms, other concepts can be made more precise in UML/SysML. For
instance, mechatronics systems basic components are sensors, calculators and actuators,
and it can be advantageous to define specific classes for these types of components. Exten-
sibility mechanisms enable to adapt to the specificities of a particular domain however they
are not sufficient to define a language with its syntax and semantic. The syntax and seman-
tic are defined in a general manner for UML /SysML elements (of the notation). Defining a
specific UML stereotyped class for sensors, one can want to use UML aggregation between
sensors class only. The relation only makes sense in this case but as it is defined in a
general manner, it is still possible to aggregate other classes into a sensor. The ability to
define new languages with syntax and semantic is presented in the next paragraph. As a
final word on OOSEM, it is actually a general approach which principles can be applied to

any development process.

Model Driven Architecture. Model Driven Development (MDD) approaches intro-
duces a higher level of abstraction by defining meta-models as first class entities. The idea
behind MDD is to create different models of a system at different levels of abstraction and
using transformations to produce the system implementation. A model-driven approach
requires languages for the specification of models, the definition of transformations, and
the description of meta-models. Concerning UML/SysML, the Object Management Group
(OMG) proposes Model Driven Architecture (MDA) which uses UML for object oriented
modeling, XML Metadata Interchange (XMI) for tools interoperability with documents and
models represented in eXtensible Markup Language (XML), Meta-Object Facility (MOF)
to define new modeling languages, Object Constraint Language (OCL) to establish rules
about any MOF meta-model and Query, Views and Transformations (QVT) for transfor-
mation between models defined with a MOF meta-model [Anneke et al. 2003]. MDA
suggests building Computational Independent Models (CIM), Platform Independent Mod-
els (PIM), and Platform Specific Models (PSM) corresponding respectively to a business,
a design, and an implementation viewpoint. The applicability of MDA to systems engi-
neering is currently investigated [INC 2009]. CIMs correspond to need analysis with UML

use case, sequence and activity diagrams representing system goals and stakeholders re-
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quirements. These models are (partially) transformed into system PIMs that address the
derivation of stakeholders requirements into system requirements and the system architec-

ture. Subsystems PIMs can also be developed. Finally, PSMs address specific capabilities.

Compared with the previous UML based approaches, the ability to define new languages
and the constraints of such languages enables to completely support any design approach
inside the MDA framework i.e., documents and models need to have a representation in

XML.

EDONA Method. EDONA ("Environnements de Développement Ouverts aux Normes
de ’Automobile") [EDO] is an open platform that supports the development process of
embedded software in the automotive industry including ISO 26262 safety critical soft-
ware. Having identified abstraction capability issues to represent systems in which software
is embedded, EDONA proposes a method articulated around, a requirement traceability
management tool to ensure their consideration, EAST-ADL2 language for systems model-
ing [ATT 2008] and AUTOSAR [AUT] for software modeling. The method has first been
defined by the MeMVaTEx ("Méthode de Modélisation pour la Validation et la Tragabil-
ité des Exigences") project [MEM]. MeMVaTEx approach [Albinet et al. 2007] includes
SysML requirement diagram. The requirements represented with stereotyped classes are
defined in the earliest phases of the design process and traced all along the development
using concepts of refinement, composition, verification and satisfaction defined in SysML
meta-model. The system’s architectures are defined using EAST-ADL profile (of UML /
SysML) so that EAST-ADL requirements can effectively trace to any EAST-ADL element.
The same approach is used in EDONA [Albinet et al. 2010] with EAST-ADL2 replac-
ing its former version for architectures description. In practice, other languages can be
used by development teams (e.g., internal and OEM-suppliers teams) both for requirement
management (and traceability) and architecture description. The approach addresses this
issue with the definition of requirement traceability and analysis along the whole develop-
ment life cycle. A requirement traceability management tool such as MKS INTEGRITY or
TELELOGIC DOORS is used to extract and analyze the relations between requirements

expressed in most industrial tools. It enables to manage requirement at the appropriate
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granularity throughout the whole development life cycle.

This approach comes close to the approach presented in this thesis however it deals
primarily with tools (or languages) interoperability and we address the more general (se-

mantic) integration issue.
1.2.3.3 Conclusion

Some very general design approaches used and defined for the automotive industry have
been presented. It is inconsequential to go further on the subject as we actually address an
issue at a fundamental level that concerns any approach. Nonetheless, the interested reader
can refer to Webers et al. [2008] who define a support process for requirements engineering
in the automotive industry. Requirements engineering was treated with particular attention
in our approach as the basis for design. Bishop [2008] and Gao et al. [2007] respectively
present and discuss model-based development with specific automotive industry need for
simulation in perspective. Finally, in [Chalé Gongora et al. 2009, 2010] we presented a
model-based approach used at Renault that considers safety aspects relative to ISO 26262.
In particular, we identified the need for a common data model between systems engineering

and functional safety as a basis for automotive safety critical systems design.

The general methods presented in this section, except for EDONA / MeMVaTex, treat
the requirements as a non conceptual element. It is implied that additional tool support
are used for requirements management and traceability. In fact, it reveals that the product
development process in the automotive industry is heterogeneous in the sense that differ-
ent tools (with different languages) are used. While UML / SysML with OCL have the
potential and ambition to place themselves as the general purpose language that represents
a unique formalism for systems engineering, we have seen that in the automotive industry
other formalisms such as Matlab/Simulink ones (e.g., block diagrams) are actually used
and need to be connected. This poses a problem of interoperability between tools. In
particular, requirements management and traceability activity illustrates this problem of
interoperability but the issue is even more general: given we have interoperability, do we

inter-operate in an integroted way 7
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1.2.4 Conclusion

In this section the product development process has been presented with the focus on
the design process that includes functional safety. Some development methods have been
presented and we concluded on the needs for a common data model for systems engineering

and functional safety and the problem of (tool’s semantic) integration.

The next section presents the ontology paradigm as the underlying discipline to for-

malize a conceptualization.

1.3 Formalization of a Conceptualization

Formalization of knowledge addresses the problematic of harnessing and reusing knowl-
edge, a key point for all domains. In the engineering domain, decision making is funda-
mental as engineers are confronted with multiple choices and only one solution will be
subject to complete development. In order to choose the best solution, the engineers need
the relevant necessary knowledge required to perform informed decision making. Currently,
content created in the development process is ultimately archived and forgotten, knowledge
is lost whereas archived. There is evident need to make use of this archived knowledge con-
sidering probable occurrence of confrontation with an already solved problem. To confront
this issue, the formalization activity consists in better structuring knowledge, enabling
computer treatment for more performing information retrieval that has to bring relevant
information to the surface. This can be implemented in an elegant fashion using the on-

tology paradigm.

1.3.1 The Ontology Paradigm

In computer science, the term ontology is used to denote a paradigm (i.e., a coherent
model to represent knowledge about a world). The following definition of ontology is given

in [Gruber 1993]. It is a well accepted definition that will be used throughout this thesis.

Ontology: An ontology is a formal, explicit specification of a shared conceptu-

alization.
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The definition is explained as follows: formal means that the ontology is machine readable;
explicit means that concepts and how they are constrained is explicitly defined; shared
indicates that the ontology captures consensual knowledge; conceptualization refers to an
abstract, simplified model of concepts in the world. Ontologies are used in many domains
(e.g., systems engineering, artificial intelligence, efc.) as a representation of knowledge
about a world. More precisely, an ontology captures, structures and defines a set of concepts
of a domain along with the relationships between those concepts. Finally, an ontology is a
formal description, i.e., a description that has the correct form, shape or structure which

entails clearness and preciseness.

Formalization (structuring) of domain knowledge enables to reason on a certain level
about properties of a domain. What we retain is that an ontology can be used to define a

domain and reason on some level about properties of that domain.
1.3.1.1 Basic Elements of Ontologies

Even though ontologies are used in many different domains and implement different

languages, most implement at least the following basic elements:

Individual: An object (physical or logical) of a world, it is an instance of a

class.

Class: A concept of the world.

Attribute: A property that individuals or classes can have.

Relation: A link that can exist between two classes or two objects.

An individual is the most basic object of a world. An object can be either physical
or logical. A class is a concept of the world that encompasses objects. Somehow classes
describe a division of the world where objects can be categorized or typed. Attributes
describe properties, characteristics, parameters that objects can have. These properties are
intrinsic, and relations that describe the links between two classes or two objects enable

an object to share properties with others.
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1.3.1.2 What is an Ontology

An ontology situates at the level of representable knowledge. This is the universe
of discourse for the human knowledge. In a specific domain, knowledge that should be
represented appears in the domain of discourse. That is why the ontology’s concepts
should be close to objects in the discourse of the domain of interest. This is also true for
individuals and relationships. Good practice identifies classes and individuals as nouns and

relationships as verbs in sentences that describe the domain.

A knowledge base can be defined as an ontology that is populated with individuals. A
distinction between an ontology and a knowledge base is subtle as the borderline separating
the two is not clearly drawn. In this thesis we propose to not distinguish between the two
and we define them as an attempt to formalize the universe of discourse. We will use
the term ontology as knowledge base refers by analogy to database. Knowledge bases and
databases do share some similarities (e.g., information retrieval) and they are important
but it is the other aspects shared by ontologies and knowledge bases that need to be
highlighted (e.g., deductive reasoning).

The semantic aspect of ontologies is quite specific, often forgotten and is of the greatest
importance. An ontology is a semantic network that contains a set of concepts that describe
a domain. Those concepts are linked together by usual taxonomy relations and additional
semantic relations. An ontology compared to a database uses a more explicit representation

for relationships. Ontologies therefore support knowledge sharing and reuse.

Formal Ontologies. In this work we are interested in a particular type of ontologies:
formal ontologies. The term formal that is used refers to the mathematical meaning. A

formal ontology is defined by azioms in a formal language. We use the following definition:

Axiom: A postulate for which the truth value is unquestioned and taken for

granted.

Formal language: A language which symbols and formulas stand in precisely

syntactic and semantic relations to one another.
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The definition of an axiom differs from the one relative to formal logic where only axiomatic
statements are considered. The axioms we use define assertions about a domain which can
also include the theory derived from traditional axiomatic (generative) statements. This
mathematical structure enables to perform mathematical reasoning. Two important prop-
erties of the deductive system in use are soundness and completeness. Soundness ensures
that any sentence derived from the set of axioms is correct, i.e., all provable sentences are
true. Completeness vis-a-vis soundness is the converse of the latter and states that all true
sentences are provable. Assertions are used to formulate knowledge. For instance, one can
assert that an Electro-Mechanical Brake (EMB) is a braking actuator. Assertions’ truth
values are also taken for granted. Reasoning on axioms and assertions, a deductive system
can infer or prove truth values for the domain sentences. For instance, if we assert, that an
EMB delivers a maximum of maz braking force, that a braking system is composed of four
EMB, and that the braking force delivered by the braking system is equal to the sum of
the braking forces that can be delivered by its brakes, then the braking system delivering

a maximum braking force of 4 x max can be either inferred or proven to be true.

Open-World Versus Closed-World Assumption. Two assumptions can be taken
when reasoning in a formal logic: Closed- World Assumption (CWA) and Open- World As-
sumption (OWA):

Closed-world assumption: What is not known to be true is false.
Open-world assumption: What is not known to be true is unknown.

These two assumptions are different by nature and enable a different understanding of
a domain. We give credit to both assumptions as their usefulness are demonstrated for
different intentions that do not necessarily overlap and therefore can be combined while
mutually reinforcing each other uses. However, whatever the assumption taken, it should
be made explicit as it dramatically changes the understanding of an ontology. We can only
stress this remark as we actually observed that it was not necessarily the case. Finally, we
advocate using the open-world assumption when describing a domain as it revealed really

pleasant in use.
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Let us give an example of the usefulness of the mathematical background of formal
ontologies. For instance, checking the consistency of an ontology is a desirable capability
when defining and using an ontology. It ensures that the ontology structure is correct
thanks to the mathematical foundation. A person responsible to develop an ontology can
be confronted to an element in the universe of discourse which is not yet represented in the
ontology. When this person will try to describe the element in the ontology, consistency
checking will ensure that the new element description is not in conflict with the rest of the
ontology. Consistent ontologies are particularly fitting for engineers who need to completely

master their system. One inconsistency and failure is not far.

When confronted to mechatronics systems that are heterogeneous in nature, a formal
ontology has a central role to play. As actors in the development of mechatronics systems
are interdisciplinary, agreement has to be made in order for all those actors to effectively
contribute in the same direction. Even though interdisciplinary, those actors do share
some common grounds. Indeed, they develop the same system. They can be working
on different aspects, however it is evident that these aspects overlap. An ontology is the
perfect artifact to conceptualize a shared understanding of all those disciplines in order to

define the common grounds on which different actors can agree about.

1.3.2 Evolution of the World Wide Web towards the Semantic Web

In this thesis, we chose to use the semantic web for domain description. The Semantic
Web project is a shared research plan that aims "to provide explicit semantic meaning
to data and knowledge on the World Wide Web" [Berners-Lee et al. 2001|. The idea is
that by providing semantic to Web information will enable useful and automated informa-
tion processing. In our case, we simply wanted to use an ontology language with Open
World Assumption (OWA) that reflects the progressive completeness nature of system’s
development. Ontology Web Language (OWL) provided by the semantic web is the ac-
tual standard de facto for both knowledge representation and (OWA). Figure 1.8 presents

different layers that compose the semantic web.

In general, the semantic web adds information on resources identified with an Unique

Resource Identifier (URI). At metadata level, Resource Description Framework (RDF) is
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Figure 1.8: Semantic Web Layers

used to add metadata information about Web resources (including things that cannot be
directly retrieved). At ontological level, RDF Schema, or RDFS, and OWL add meaning
to Web resources and are used to define ontologies (note that RDFS is mainly intended
to define taxonomies or vocabularies of a domain). The Semantic Web Rule Language
(SWRL) adds rule capability to ontologies in OWL. Querying ontologies is done in parallel
using a query language. Finally, at reasoning level, proof (or reasoning) is performed for
meaning interpretation meaning at ontological level. Other layers are not relevant to our
work but envisioned future web applications will be able to integrate data and knowledge

automatically at the semantic level.
1.3.2.1 OWL

Web Ontology Language (OWL) [Patel-Schneider et al. 2004; Motik et al. 2009] was

developed as an ontology language for constructing ontologies that provide high-level de-
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scriptions of Web content. As any ontology language, OWL enables to define individuals,
classes, attributes and relations. Classes are organized into hierarchies and are related to
one another with properties (i.e., relations). OWL provides mechanisms for reasoning at
both class and individual levels and a powerful constraint language that enables to give
a precise interpretation for the concepts in an ontology. Compared to XML, RDF and
RDFS, OWL is more expressive and has greater machine interpretability [Stuckenschmidt
and Harmelen 2005]. OWL adds more vocabulary for describing classes, instances and
properties. Among others, relations between classes (e.g., disjointness), properties cardi-
nality (e.g., exactly one), instances equality, richer typing of properties, properties charac-
teristics (e.g., transitivity), and enumerated classes. In the end OWL is used to explicitly
represent the meaning of terms in vocabularies and the relationships between those terms.
For example, with RDFS we can define classes like Actuator and Command with a prop-
erty sendsCommand that has Command as its domain and Actuator as its range. With
OWL, we can additionally define that Actuator and Command are disjoint classes, that
recetvesCommand is the inverse property of sendsCommand, and that Actuator is defined
precisely as the individuals of Actuator that have at least one value with the property

receivesCommand.

In terms of reasoning capabilities, our interest mainly lies in the verification of con-
sistency under the OWA assumption. One characteristic of the World Wide Web is that
information is incomplete. Assuming we defined an individual of Actuator, "EMB" for
instance (EMB stands for Electro-Mechanical Brake), checking consistency will not result
in CWA contradiction: the EMB is an actuator and it should receive a command which
is not the case. But rather, OWA answer will be EMB is an actuator, it should receive
a command which is unknown (not defined) at the moment. Understanding information
with OWA seemed more precise and was retained as a characteristic of an ontology lan-
guage to use. Reasoning with OWL is therefore oriented towards deducing knew knowledge
from the definitions of the ontology. However, OWL provides limited deductive reasoning

capabilities and relatively recent work has concentrated on adding rules to it.
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1.3.2.2 SWRL

The Semantic Web Rule Language (SWRL) [Horrocks et al. 2004] complements OWL
for the definition of an ontology. Similarly with many rule languages, SWRL rules are
written as couples (antecedent,consequent). The antecedent is referred to as the rule body
and the consequent is referred to as the head. The head and body consist of a conjunction
of one or more atoms. SWRL rules reason about OWL individuals, primarily in terms of
OWL classes and properties. It provides deductive reasoning capabilities that can infer
new knowledge from an OWL ontology. For example, with OWL we define the property
interpretsCommand and three individuals "Brake request”, "Acceleration Request” and
"EMB" (all distinct). The first two individuals belong to Command and the last one
belongs to Actuator. Also "EMB" can only interpret "Brake request" and we set receives-
Command between the EMB and the two commands. With SWRL we can capture that
an actuator tries to interpret a command when it receives one. The rule in SWRL would
be: Actuator(?z) AreceivesCommand(?x,7y) — interprets _Command(?z, 7y). The rule
body is the conjunction on the left of the arrow and the head is the conjunction on the
right. Executing the rule will try to match any individuals in the body (thus the ?) and
set the property interpretsCommand for matching individuals. This interesting property
already demonstrates two important aspects of rules. In terms of reasoning capabilities,
SWRL does enable to deduce additional knowledge from an OWL ontology. However,
unlike axioms, the truth value of the head should be questioned. As we defined that the
EMB receives all the commands, the rule wants to conclude that it also interprets these
commands. But we defined that the only command the EMB can interpret is the brake
request. Therefore, inconsistent knowledge can be deduced from rules which should be
treated with precaution. SWRL also provides numerous built-ins (that are user-defined
methods) that can be extended. Implemented built-ins enable more expressiveness and
address XML data-types. For instance, integer comparison operators are defined and enable
to retrieve all the actuators with a weight greater than 5 kg as a general example. In the

end, OWL and SWRL can be used in combination in the semantic web to define an ontology.
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1.3.2.3 SQWRL

The Semantic Query Web Rule Language (SQWRL) [O’Connor and Das 2009] is a
relatively powerful query language for OWL ontologies. It enables to extract information
while understanding OWL’s semantic. [t provides operators in a query language fashion
(e.g., select, order by, count, etc.) for information retrieval. A query is defined similarly
to SWRL rules. The body and the head corresponds respectively to retrieval specifica-
tion query and to query execution. SWRL built-ins can also be used in the body for
complex retrieval specifications. The body operates similarly to SWRL pattern match-
ing and the head operates on OWL individuals that matched. For instance, the previ-
ous rule body can correspond to a retrieval specification of the commands received by
an actuator. One can be interested in the number of commands received by each actu-
ator which is expressed as follow: Actuator(?x) A receivesCommand(?z,?y) — squrl:
select(?x) N squrl:count(?y). Naturally, squrl:select returns the list of actuators and
sqwrl:count returns the cardinal of commands received by each actuator. The interest-
ing part is that SQWRL queries understand OWL and SWRL semantic. It results that
the body will match not only asserted individuals in an ontology but also entailed ones.
SQWRL also supports some form of closure for more expressiveness. In particular, queries
with negation cannot be expressed with the previous structure. For instance, the use-
fulness of an actuator that does not receive any command can be questioned. SQWRL
adds set operators to address closure. As a note, the use of these operators contradicts
OWL’s OWA therefore they cannot be used in SWRL rules. These operators are used
in a second and third part of the body separated with °. Set construction operators
are used in the body’s second part and set operation operators are used in the third
part. As an example, the following query returns the list of actuators that do not re-

° squrl:

ceive any command: Actuator(?x) A receivesCommand(?x,?y) N\ Actuator(?z)
makeSet(?sl,7x) A squrl:makeSet(?s2,7z) © squrl:dif ference(?s3,7s2,7s1) A squrl:
element(?e,7s3) — squrl:select(?e). In the query, we match all the actuators that receive
a command to 7z and all the actuators to 7z. These individuals are grouped in respective

sets 7sl and 7s2 with construction operator squrlmakeSet. Then set 7s3 is the resulting

set difference of 7s2 — 7s1 with squwrl:dif ference. We return all the elements of 7s3 that
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correspond to the actuators that do not receive any command. In the end, SQWRL is a
powerful query language that understands the semantic of OWL and SWRL and we only

criticize the inability to define sub-queries (i.e., reusing the result of a query in another

query).
1.3.3 Conclusion

In this section, we presented the ontology paradigm as a way to formalize a concep-
tualization. We specifically presented formal ontologies that use a language with syntax
and semantic formally defined. Finally, we presented the semantic web technologies with
OWL, SWRL and SQWRL that we chose to use in this work. The interested reader is
redirected to Gruber [2009] and Huth and Ryan [2004] who present some elements of logic
and the domain of ontologies with many details. ISO [2007] presents Common Logic which
is a framework for languages based on First Order Logic. Guarino [1998] and Motik et al.
[2006] discuss formal ontologies, logic programming and description logics. Yu et al. [2006]
discusses ontology checking. Finally, most of the resources on the semantic web can be

accessed via the W3C semantic web activity website (http://www.w3.0org/2001/sw/).

1.4 Chapter Conclusion

In this state of the art, we presented the product development process and ontologies
as completely different domains. In section 1.2.3, we presented some general approaches
for the development process. We concluded on the need for a common data model for
systems engineering and functional safety and the unsolved problem of (tool’s semantic)
integration. As a conclusion, let us give the main characteristics of our approach with

related works.

Our approach corresponds to a design process based on a common semantic data model
for systems engineering and functional safety. The idea is quite simple and comes from the
fact that actors involved in a system’s development are working on the same underlying
system. Tudorache [2006] and Sebastian et al. [2008] cover collaborative approaches which

corroborate the automotive industry context and the idea of a same underlying system.
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In our approach, the reference data model is realized with a formal ontology. Compared
to other approaches, the data model’s semantic is formally defined. Burr et al. [2005],
Suwanmanee et al. [2005] and Driouche et al. [2007] discuss data integration in the design
process. Data integration enables the exchange of information between applications and
thus interoperability. It is shown that the real interoperability problem is to address
semantic interoperability between heterogeneous tool’s conceptualizations. For example,
when two different tools communicate, their communication is based on the assumption
that they wnderstand one another, ¢.e., similar concepts have the same meaning in each
tool. The use of a formal ontology (and its formal semantics) simply transforms this
assumption into a property. Previous integration solutions mostly address only syntactic
integration which is actually still the case. For instance, in the case of Model Driven
Engineering, Harmelen and Fensel [1995]; Evans et al. [1998]; Brucker et al. [2006]; Micskei
and Waeselynck [2010] demonstrate that UML /SysML, even with OCL, have no formal
semantics. It results that using MDE technologies such as the popular Eclipse platform with
EMOF (Eclipse Meta Object Facility), can make the tools inter-operate. But these tools

are not integrated at the semantic level. This may lead to error prone misunderstandings.

Ontologies and the semantic web technologies have been actively used to deal with the
semantic interoperability problem [Sure et al. 2002; Bussler 2003; Stuckenschmidt and
Harmelen 2005; Suwanmanee et al. 2005; Driouche et al. 2007|. In our approach, we
build upon these ideas and go further by exploiting the semantic web during the design

process, in order to ensure its consistency.

In this thesis, we do not propose a fundamentally new approach. As explained, related
works have already identified the problem of semantic integration. We pursue the idea that,
by analogy to Model Driven Engineering, it is possible to solve semantic integration in the
design process by doing "Ontology Driven Engineering". It is relatively new and to our
knowledge has only been partially presented by Gasevic et al. [2009]. We use the semantic
web technologies to propose a design approach based on a common underlying ontology
that enables to verify information consistency all along the design process. The next
chapter presents our contributions: the production of a systems engineering and functional

safety ontology that formalizes and integrates the domains presented in sections 1.2.1 and
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1.2.2; the ontology centric design approach which is compliant to ISO 26262 standard and

enables to guarantee information consistency at the semantic level.
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2.1. INTRODUCTION

2.1 Introduction

Problems of the Current Design Process

The model-based design approaches outlined in section 1.2.3 call for different design
objects that have to be described as clearly as possible (e.g., requirements, system archi-
tectures, safety goals, system use-cases, Feared Customer and System Events, fault trees,
etc.). The first implementations of the process at Renault were mainly document-centric
and depended largely on testing and simulation [Chalé Gongora et al. 2009]. Although
these first attempts gave quite satisfactory results in building safe system architectures,
the creation of the different objects of the process was somewhat troublesome and rela-
tively time-consuming. The reason for this is that the objects were modeled by means of
transformations of ad-hoc data and information contained in the different documents that

were transmitted from one process step to the other.

The main difficulty in implementing the process consisted thus in the lack of semantic
consistency among the different modeled objects. This need for a better formalization is
further stressed by the fact that car manufacturers rely heavily on third parties to develop
vehicle systems. A better formalization of processes and process objects would certainly
contribute to avoid confusion and misinterpretations in the development of systems. All
this led us to the conclusion that the use of formal and informal (but consistent) models can
commit to a common semantic model; i.e., a system and safety ontology, which purpose

is to better understand all the aspects of safety-critical system design.

Content of the Chapter

This chapter presents the contributions. Based on identified issues of the current design
process at Renault, we propose an approach that addresses those problems that can be
generalized and applied by any company. In particular for Renault, the domains of systems
engineering and of functional safety are the main point of focus. As such, the chapter is
structured in order to cover two significant contributions of the thesis. The first is the
realization of a domain ontology for Renault systems and safety engineers. The second is

the improvement of the design process with the domain ontology as a basis.
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Section 2.2 presents the formalization of the conceptualization of systems engineering
and functional safety domains. Section 2.3 is the integration of the systems engineering
and functional safety ontology into a domain ontology that supports the design process for
systems and safety engineers. The domain ontology defines the sharing of a conceptualiza-
tion that promotes synergies. Section 2.4 presents our approach: Ontology Based Design

Process. Finally, section 2.5 gives some conclusions.

2.2 Domains Formalization

Formalization of knowledge addresses the problematic of harnessing and reusing knowl-
edge, a key point for all domains. In the engineering domain, decision making is funda-
mental as engineers are confronted with multiple choices and only one solution will be
subject to complete development. In order to choose the best solution, the engineers need
the relevant necessary knowledge required to perform informed decision making. Currently,
content created in the development process is ultimately archived and forgotten, knowledge
is lost whereas archived. There is evident need to make use of this produced and archived
knowledge considering the probable occurrence of confrontation with an already solved
problem. There is two important points to verify in order to address this issue. First, some
quality of knowledge needs to be assessed. For that aspect we want to verify the consis-
tency of knowledge. Second, for easy reuse of knowledge, conceptualization of knowledge
needs to be shared as reusing something that is not understood can be detrimental. The
formalization activity consists in better structuring knowledge, enabling computer treat-
ment for more performing information retrieval that has to bring relevant information to

the surface. This can be implemented in an elegant fashion using the ontology paradigm.

This work focuses on two specific engineering fields of Renault Research and Advanced
Engineering. The first domain is systems engineering. With systems being more and more
complex at Renault, the need for system engineers and system thinking is becoming press-
ing matter. Systems engineering is a relatively new domain at Renault and deployment is
in progress. Similarly, the second domain, functional safety, is subject to change required

for conformity with ISO 26262 international standard. Sections 2.2.1 and 2.2.2 respec-
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tively present the formalization of systems engineering and functional safety domains with

ontologies that tackles previous issues in knowledge quality.

Even though the formalization (via ontologies) has been done using OWL and SWRL
(see section 1.3), in this chapter, the formalization is presented using First Order Logic
(FOL). The reader is assumed to be familiar with FOL. Using it enables to reason under
usual closed world assumption, to express negative facts and to use logical disjunction ()
which makes reading more natural. All these languages are formal in the sense that their

syntaxes and semantics are defined formally which enables verifications such as consistency.

The formalization of systems engineering and functional safety is done following the par-
tial axiomatization given in appendix A. Informally, the axiomatization defines instance,
class and property. Instances are expressed with constant symbols. Variables are used only
to refer to sets of instances. For example, the instance constant can be substituted to the
variable x. A class formalizes a concept as a setf of instances. A class is expressed with a
unary predicate whose term is a concatenation of words with their first letter capitalized
(e.g., the class Requirement). Requirement(x) denotes the set of instances that can be
substituted to x that are in the set Requirement. A property formalizes a role from one
instance to another. A property is expressed by a binary predicate whose term is a concate-
nation of terms. The first word is a verb in lowercase conjugated at the third singular person
and the following words have their first letter capitalized. That corresponds to the relation
name . It is followed by an underscore and another term and can be followed by another
underscore and term, e.g., hasPart _DomCoDom and hasConstituant _Dom__CoDom.
In the case of only one underscore, the term after the underscore refers to the domain and
the co-domain of an internal relation expressing a class attribute. Otherwise, the term after
the first underscore refers to the relation domain relation and the term after the second
underscore refers to the relation co-domain expressing a role from a domain instance to
a co-domain one. For example, hasPart _DomCoDom(z,y) denotes the set of couples of
instances that are a substitution of x and y with x,y € DomCodom. It expresses a whole
to part relation, so the user should understand the substitution of x being the whole and
the substitution of y being the part. The terms class and concept, property and relation,

instance and individual, and, range and co-domain, are used indifferently pairwise. All the
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variables present in the axioms are assumed to be universally quantified if no quantifier is

used.
2.2.1 Systems Engineering Ontology

The systems engineering ontology supports the general design process at the system
level from the needs to the design of the system architectures. The choice upon methods
and tools is still arbitrary and relative to each project but based on previous history, avail-
able manpower and expertise. Figure 2.1 presents a high level view of the system design

process with the main activities of specification and design.

Define stakeholders

requirements System
\ <<output>> | Technical

Requirements

Define Technical Document

Requirements

SPECIFICATION

DESIGN

e
Design Functional
Architecture

<<Output>> SyStem
Design

Document
Design Physical
Architecture

Figure 2.1: System design process at Renault

Indifferently of model-based approach or document-centric approach, two documents are
required in the system design process (see figure 2.1): the System Technical Requirements
(STR) document and the System Design Document (SDD). For now, these documents
are the interfaces between the different fields involved in a project. The activities rep-
resented in the figure manipulate the general concepts of Need, Requirement, Function
and Component. In the following sections, we detail the content of these documents in
order to make those concepts precise. Sections 2.2.1.1, 2.2.1.2, 2.2.1.3 and 2.2.1.4 present
the formalization of those concepts independently of each other. Section 2.2.1.5 makes
those concepts precise by presenting how traceability is established. Finally, section 2.2.1.6

presents some thoughts on the non functional aspects of a system.
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2.2.1.1 On Needs

The design process first activity is the definition of the stakeholders requirements. The
STR document contains sections on system’s finality, missions, goals and strong concepts
expressed in natural language. This information is used to guide the brainstorming for the
finding and elaboration of the stakeholders requirements. They are a suitable form (usually
better structured natural language) of stakeholders needs, for both the development and
communication between developers and stakeholders. Another important section that en-
ables to construct a better set of stakeholders requirements is the description of the system
context. The system is taken as a black box and its environment is described so as to
define its functional and physical boundaries. This enables to take into account external
considerations in order to develop requirements that are relevant for the system (and for
the elements outside the system perimeter). These external considerations are presented

in sections 2.2.1.3 and 2.2.1.4.

The conceptualization is straight-forward. It is illustrated in figure 2.2.

System
hasGoal_Syst_Goal* (hasStakeholder Syst_Sta'™\hasMigsion Syst Mis™ \hagStrongConcept_Syst StCon™
Stakeholder Miggion
Goal expresses Sta Need* StrongConcept

derives_Goal_StakReq* | Need derives_StrConc_StalReq*

lerives Need StaReq?

Y

StakeholderR equirement

Figure 2.2: Formalization of the needs

We have the following disjoint classes: System, Stakeholder, Mission, Goal, StrongConcept,
and Stakeholder Requirement (represented by rectangles in figure 2.2). Need is not dis-

joint with the other classes. Each class in the ontology is given a natural language definition
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coming from either INCOSE!, AFIS? or Renault terminologies. Only controversial and un-

usual definitions are reported in this work.

A system is related to its stakeholder(s), mission(s), goal(s) and strong concept(s). This
is formalized with respective has relations. Those relations are represented with labeled
directed arrows in figure 2.2. Arrows origin and destination express domain and co-domain
predicates. Also the relations are constrained for each class with respective range and a
minimum cardinality of 1. In figure 2.2, the quantifications are represented with a star
next to the label of the relation that corresponds to 1..x in look across notation (i.e., each
class instance that implements the relation, is related (across the relation) to 1 or more
instances in the relation range). The range and the minimum cardinality can be expressed
with a single axiom using the existential quantifier, denoted 3. The following axioms for
the class System are given as general examples for other classes as axioms that respect

appendix A axiomatization are implicitly defined and essentially not reported.

Jy System(z) A Stakeholder(y) A hasStakeholder _Syst_Sta(x,y) (2.1)

dy System(z) A Mission(y) A hasMission_ Syst_ Mis(x,y) (2.2)

Jy System(z) A Goal(y) A hasGoal _Syst_Goal(x,y) (2.3)

Jy System(zx) A StrongConcept(y) A hasStrongConcept _Syst _StrCon(z,y) (2.4)

A stakeholder expresses some needs which is made explicit with relation expresses -
Sta_Need. Similarly to the restrictions on the previous relations, a stakeholder expresses

at least one need.

Finally, four respective derives relations are defined from Mission, Goal, Need and
StrongConcept to Stakeholder Requirement with the quantification restriction of at least
one stakeholder requirement (i.e., minimum cardinality of 1). Missions, goals and strong
concepts define respectively special assignments given to the system (the main function-

alities of the system), properties that the system should exhibit in the end (for example,

Tnternational Council on Systems Engineering
% Association Francaise d’Ingénierie Systéme
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a usual goal of a new braking system is for its price to be at most the same as an earlier
braking system) and unavoidable concepts that constrain the solutions for the system in an
unavoidable manner (such as using or not using specific technologies. For instance using
electro-mechanical brake actuators on the front wheels of the vehicle is a strong concept
for the braking system used in the case study). Each of the classes, Need, Mission, Goal
and StrongConcept, account for the domain of need. They have to be taken into account
by the system development which is done by making them more accurate as stakeholders

requirements using respective derives properties.

Even though those classes can be better structured with other relations, we did not go
further on the formalization of the needs (yet some precisions are given in section 3.3.2)
as our interest was on the integration of functional safety to systems engineering which we

start at the abstraction level of requirements.
2.2.1.2 On Requirements

Stakeholders needs are the entry point into the somewhat more formal world of require-
ments. The requirement concept is first defined as a general concept with coverage greater
than what is contained in the STR document. Then, based on this general definition, the

concept is made precise.

The Concept of Requirement As a general definition, a requirement is a statement
that expresses a need and/or a constraint. As stated in section 1.2.1.1, requirements are
still an active subject of research. They delimit the frontier between the informal and the
more formal worlds in the development process. The difficulty is relative to the high degree
of ambiguity of the informal world. No attempt is given to formalize the statement that
constitutes the requirement. The presented conceptualization makes precise a typology of
requirements and their relations with other concepts. From the universe of discourse, we

only retain that a requirement can:

e be decomposed into other requirements;

e derive other types of requirements;
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e relate to other requirements to detail a peculiar aspect of the former requirement;
e relate to functions or flows that implement the requirement;

e be allocated to a system, a function, a component or a flow.

Figure 2.3 illustrates the requirement concept formalization at the most general level of

abstraction. As it can be seen in the figure, the concepts Requirement, Function, Flow

Requirement Fderives RegdhasPart ReqMisCharacterizedBy_RegDcharactenizes_Req’
— ——— i =

—_————
isAllo caledTo

deduces Req Flow?! sAllocatedTo_Req Comp*

Component

expresses Sta Need?!

derives_Need_StaReq

StakeholderRequirement

Figure 2.3: Formalization of the requirement concept

and Component are defined along with the previous concepts of System, Stakeholder,
Need and Stalkeholder Requirement. The rest of the formalization defines the relations
of requirements with other concepts through properties hasPart Req for the decomposi-
tion of a requirement in a whole to part manner, derives Req to relate different kinds of
requirements, characterizes Req and isCharacterizedBy _Req for the precision of a re-
quirement by another and the converse, deduces Req Func and deduces Req Flow to
relate a requirement to a function or a flow identifiable in the requirement statement, and
four respective isAllocatedT o properties for the allocation of a requirement to a system,
a function, a component or a flow. There is no cardinality constraints on the properties
(the stars in figure 2.3 next to the relations names correspond to 0..x, i.e., a class instance
at the origin of an arrow is related to 0 or more class instances at the arrow destination).
This is done intentionally for staying at the highest degree of abstraction by expressing the
possible relations that a requirement is involved with. Making the requirement concept

precise is actually removing this "possible" aspect of requirements descriptions.
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Requirements Typology. Making the requirement concept precise is first done by iden-
tifying the different kinds of requirements that may be encountered in development pro-

cesses.

Informal description of the requirement concept. As seen in fig 1.3, there is
a distinction between the domains of the problem and of the solution for a system under
development. The requirements that correspond to the domain of the problem are the
stakeholders requirements. Once a set of stakeholders requirements has been agreed upon it
is time to think of the solution. The next activity in the design process (see figure 2.1) is the
definition of the technical requirements. The technical requirements are requirements that
define the system characteristics. The usual partition into functional and non functional
requirements is used and we make no attempt in the formalization of the non functional
ones. In addition to technical requirements that describe the system, another type of
technical requirements is relative to system elements characteristics. They are part of the
technical requirements specified in the STR document but can have another substantial
role (i.e., subsystems requirements) later in the development process when going to the
abstraction level of the subsystems. Finally, another type of requirements concerns system
external elements. They are not part of the STR document. They are however necessary
for the system to work correctly. At Renault, systems usually correspond to subsystems
of the whole vehicle. As external requirements specify external elements, they are actually

stakeholders requirements for the systems that are constituted of these elements.

Requirements abstraction types. The following distinctions apply:
e problem and solution domains of the system.

e system requirements and external requirements.

e system requirements and requirements of the elements of the system.
e functional and non functional requirements.

Figure 2.4 presents a first decomposition of the Requirement class that considers the

precedent important distinctions.
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Requirement

StakeholderRequirement SystemFlementNonFunctionalR equirement SystemPequirement ExternalRequirement

Figure 2.4: Requirements typology

In the figure, the black arrows with the relation name isa (that stands for "is a") corres-
pond to the subsumption relation for classes. The four classes in the figure are subclasses
of Requirement and are disjoints. They formalize different abstraction levels of require-
ments that correspond to the design process timeline. The Stakeholder Requirement class
formalizes the expression of the stakeholders needs into requirements that belong in the do-
main of the problem. At the next level of abstraction the classes SystemRequirement and
FExternal Requirement formalize respectively system requirements and requirements of the
external elements of the system that also belong to the domain of the problem. Then, the
final level of abstraction concerns the requirements of the system elements. Those require-
ments describe only non functional characteristics of a system element (either functions or
components) and are grouped in the class SystemElementNonFunctional Requirement

that accounts for a solution for the system.

Functional and non functional requirements. The different types of require-
ments that correspond to the design process timeline are further subsumed as illustrated
in figures 2.5, 2.6, 2.7 and 2.8. The classes of each layer in the presented hierarchy are

disjoints with each other.

StakeholderRequirement ExternalR equirement

HighLevelStakeholderR ecuirement FunctionalExternalR equirement NonFunctionalExternalR equirement

[ LowLevelStakeholderRequirement |

Figure 2.5:  StakeholderRequirement Figure 2.6: ExternalRequirement sub-
subclasses classes

Another important distinction for the requirement concept concerns the functional and
non functional aspects of a requirement. The notions of "functional" and "non functional”

requirement will be made formal in section 2.2.1.5 but informally, a functional require-
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SystemPequirement

HighLevelSystemRequirement LowLevelSystemR equirement

NonFuncti owL

FunctionalHighLevelSystemR ecuirement NonFunctionalHighL evelSystemR equirement FunctionalLowLt y i ‘

Figure 2.7: SystemRequirement subclasses

SystemElementNonFunctionalR ecuirement

isa isa

NonFunctionalLowLevelSystemElementR equir... ‘ NonFunctionalHighLevelSystemElementR equi...

Figure 2.8: SystemElementNonFunctionalRequirement subclasses

ment describes some functionality to be implemented by a system and a non functional

requirement describes a property to be satisfied by a system.

Stakeholders requirements can account for functional and non functional characteristics
so they do not partition into functional and non functional subclasses. The class is however
further defined with two subclasses: HighLevel Stakeholder Requirement and Low Level-
Stakeholder Requirement (cf. figure 2.5). The terms "high level" and "low level" denote
respectively requirements that are decomposed into other requirements and requirements

that are not decomposed. This is explained in the next paragraph.

Similarly to the stakeholders requirements, using the high level /low level distinction,
SystemRequirement is subsumed into HighLevel SystemRequirement and Low Level-
SystemRequirement (cf. figure 2.7). The rest of the figure illustrates the further subsump-
tions of HighLevel SystemRequirement and Low LevelSystem Requirement classes, i.e.,
Functional High Level System Requirement, NonFunctional HighLevel System Require-
ment, Functional LowLevel System Requirement and NonFunctional LowLevel System-

Requirement.

Mlustrated in figure 2.6, the class External Requirement is decomposed into the classes

Functional External Requirement and NonFunctional External Requirement.

Finally, in figure 2.8, the non functional requirements of the system elements are or-

ganized into high level and low level requirements: NonFunctional HighLevel System-
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ElementRequirement and NonFunctional Low Level System Element Requirement.

We do not go further on the different kinds of requirements. There is indeed a con-
sequent number of different non functional requirements. Formalizing a relevant subset
of the different types of non functional requirements that relates to critical mechatronic
systems for the automotive domain has been quickly set aside. It has nonetheless been
examined. Although it has not been formalized, it is set up partially in a formal manner

in the ontology with explicit intentions that are presented in section 2.2.1.6.

Requirements Decomposition. The requirements are usually structured in a hierar-
chical manner, i.e., a requirement can be decomposed into sub-requirements. As a sub-
requirement has no conceptual addition to the Requirement class, it is not defined as a
class. The Requirement class is simply structured in relation to itself by defining the
hasPart Req property with the Requirement as domain and range. This property is
intended to express the invers relational quality of parthood as to follow the top-down
development. Using hasPart Req(x,y) states that "z is a super-requirement of y" and
"y is a sub-requirement of x". There is no cardinality constraints on the hasPart Req
property (stars in figure 2.3 next to relations names correspond to 0..x) therefore the rela-
tion of decomposition of a requirement describes both the possible sub-requirements and
super-requirements of a requirement. In other words, a requirement can be in relation with
0, 1 or more sub-requirements and 0, 1 or more super-requirements. This is illustrated in
figure 2.9 with squares representing requirements instances and the arrows representing

the hasPart property.

More than one
super-requirement

=
venl, puis

No super-recuirement One super-requirement

[
I

[

[

i

[

|

O

More than one

N b- i t O b- i t ;
o sub-require men ne sub-reguire me subicvequitemend

Figure 2.9: Possible constructions for the hasPart property

Complying with the axiomatization given in appendix A, the hasPart property is inherited
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to the subclasses of Requirement. The subclasses of Requirement are presented in the
previous paragraph. If not said otherwise, the range of hasPart is constrained for each
subclass to that subclass. In other words, stakeholders requirements are decomposed into
stakeholders requirements, system requirements are decomposed into system requirements,
and so on (if not said otherwise). In the following we have a look at the decomposition

relation for all the subclasses of Requirement.

Decomposition of the stakeholders requirements. As mentioned earlier, the
stakeholders requirements are decomposed into stakeholders requirements and no cardinal-
ity restriction is defined. I distinguished between two types of stakeholders requirements:

the high level and the low level stakeholders requirements (see figure 2.5).

The justification of this distinction is the same for all "high level" and "low level" classes
and related to decomposition. This justification is given in the paragraph that follows the
explanations of the decompositions. Here only the meaning of those terms is defined. As
a general definition, "high level" and "low level" refer to objects that can be decomposed
into objects of the same type. A high level object is always decomposed and a low level
object is never decomposed. The correct analogy is a directed acyclic graph (those include
trees) in graph theory. The leafs in the graph correspond to low level objects and the other
nodes in the graph correspond to high level objects (see figure 2.10. The rectangles in the

figure are objects and the arrows are a decomposition relation).

Figure 2.10: Analogy of directed acyclic graph to high level and low level objects

Coming back to the stakeholders requirements decomposition, the range of hasPart -
Req property for HighLevelStakeholder Requirement is refined to Stakeholder Requi-
rement (i.e., HighLevel Stakeholder Requirement U Low Level Stakeholder Requirement)
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and given a minimum cardinality of 1 (2.5). The class LowLevelStakeholder Require-
ment is not decomposed (2.6) which is equivalent to assign a maximum cardinality of 0 to
hasPart _Req for the class.

Jy HighLevelStakeholder Requirement(x) =

Stakeholder Requirement(y) A hasPart _Req(x,y) (2:5)

By LowLevelStakeholder Requirement(z) A hasPart_Req(z,y) (2.6)

Decomposition of system requirements. They define some system characteristics
of the system under development. Informally, systems requirements are allocated to the
system under development. Systems requirements are organized into high level and low
level system requirements, we have axioms (2.7) and (2.8). Then, for these two classes, we
have the distinction between functional and non functional requirements. The system re-
quirements that are functional are decomposed only into system requirements that are func-
tional. Similarly, the system requirements that are non functional are decomposed only into
system requirements that are non functional. The formalization is done as follows. The co-
domain of hasPart Req for Functional HighLevel System Requirement is constrained to
Functional High Level System Requirement U Functional Low Level System Requirement.
Likewise, the co-domain of hasPart _Req for NonFunctional High Level System Requirement
is constrained to NonFunctional HighLevel System Requirement U NonFunctional Low-
LevelSystemRequirement. As a reminder, the cardinality restrictions are inherited as
defined in appendix A (this corresponds to axioms (2.9), (2.10), (2.11) and (2.12)). There-
fore, Functional HighLevel System Requirement and NonFunctional HighLevel System-
Requirement are in relation with at least one element in the image of hasPart Req. The
property is disabled for Functional LowLevel System Requirement and NonFunctional-
LowLevel System Requirement.

Jy HighLevelSystemRequirement(z) = 2.7)
SystemRequirement(y) A\ hasPart_Req(z,y) '
3y LowLevelSystemRequirement(x) A hasPart_Req(x,y) (2.8)

Jy Functional HighLevel System Requirement(x) =
hasPart _Req(z,y) A [Functional HighLevel System Requirement(y) V. (2.9)
Functional Low Level System Requirement(y)]
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By Functional LowLevel System Requirement(z) A hasPart _Req(z,vy) (2.10)

Jy NonFunctional HighLevel System Requirement(zx) =
hasPart _Req(z,y) A [NonFunctional HighLevel System Requirement(y) V. (2.11)
NonFunctional Low Level System Requirement(y)]

3y NonFunctional LowLevel System Requirement(z) A hasPart_Req(x,y) (2.12)

Decomposition of the external requirements. Those requirements define some
characteristics of the elements outside the system perimeter. They are not part of the STR
document that accounts only to the system under development. They are however neces-
sary for the system to work correctly and also to understand the requirements globally. As
the external requirements specify external elements they are actually stakeholders require-
ments for these elements. Their consideration is the object of other developments. For this
reason, the external requirements are not the object of decomposition as the project is not
responsible for their development. It is formalized by giving a minimum and maximum
cardinality of 0 to hasPart_Req for External Requirement (2.13). The two subclasses of
External Requirement (functional and non functional) presented in figure 2.6 inherit the

previous axiom.

3y ExternalRequirement(z) A hasPart _Req(z,y) (2.13)

Decomposition of the non functional requirements of the system elements.
Those requirements refer to the system elements, i.e., functions, components and flows (see
figure 2.3). Non functional requirements describe an aspect of the system that is not a
function. The present conceptualization only considers the design process at system level.
Non functional requirements of the system elements are either high level or low level (cf.
figure 2.8). The range of hasPart _Req property for NonFunctional HighLevel System-
ElementRequirement is customized to NonFunctional SystemElement Requirement and
the minimum cardinality of the relation is constrained to 1 for NonFunctional High Level-

SystemElementRequirement (2.14). The relation is disabled for NonFunctional Low-
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Level System Element Requirement (2.15).

Jy NonFunctional HighLevel System Element Requirement(z) =
hasPart _Req(zx,y) A

[NonFunctional HighLevel System Element Requirement(y) V (2.14)
NonFunctional Low Level System Element Requirement(y)]
3y NonFunctional LowLevel System Element Requirement(x) A (2.15)

hasPart_Req(x,y)

Requirements Internal Traceability. The traceability established in this paragraph
structures the different kinds of requirements with each other. This structure enables to
follow the trail left by a requirement. This trail corresponds to a sequence of relations
that is called a trace. By requirements internal traceability we refer to the capability to
establish such traces from any requirement of a level of abstraction to another so we focus
on the relations that only involve requirements only. Section 2.2.1.5 discusses traceability

between requirements and other elements .

Stakeholders requirements traceability. The abstraction change from the stake-
holders level to the system and external level is done through the derives Regq relation.
This relation denotes some abstraction change in the requirement concept. More for-
mally, the range of the relation derives Req for Stakeholder Requirement is restricted to
SystemRequirement U External Requirement. In section 2.2.1.2 we presented the typol-
ogy for requirements and the distinction that is made between functional and non functional
requirements. In the universe of discourse, the stakeholders requirements account for the
most abstract, as yet imprecise, type of requirement. The distinction between functional
and non functional is made at the next level of abstraction by using the derivation relation.
Even though we restricted the image of derives Req to SystemRequirement U External-
Requirement, recall that the system and external requirements are further decomposed
into functional and non functional classes enabling to define precise requirements with
functional or non functional aspect in addition with the information on the relevance to

the system or to external components.

As we have seen in the former paragraph, the stakeholders requirements are struc-

tured in a hierarchy and can be the object of decomposition or not. To ensure that the
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stakeholders requirements are effectively taken into account, all the low level stakeholders
requirements need to be derived in at least one instance of System RequirementUFExternal-
Requirement (this is equivalent to assigning a minimum cardinality of 1 to derives Req
for LowLevelStakeholder Requirement). It is possible by following the structure of the
stakeholders requirements to establish a trace from any high level stakeholder requirement
to a low level stakeholder one (the structure is a directed acyclic graph and it is not possible
to construct a high level object that is not decomposed, see figure 2.10 for an example).
By extension, as we just axiomatized that all the low level stakeholders requirements are
related to system or external requirements, all stakeholders requirements are either directly

(the low level ones) or indirectly (the high level ones) related to those kinds of requirements.

It is interesting to observe that this formalization is only possible by constructing high
level and low level classes. Indeed, if the classes high level and low level were not defined,
the expression "all the low level stakeholders requirements are the object of at least one
relation derives" would be formalized with axiom (2.16).

Jy Stakeholder Requirement(xz) A Stakeholder Requirement(z) A
[SystemRequirement(y) V External Requirement(y)] A (2.16)
—hasPart _Req(x,z) A derives_Req(x,y)

This part of the axiom, Jy Stakeholder Requirement(z) A [SystemRequirement(y) V
External Requirement(y)] Aderives_Req(z,y), is equivalent to assigning a minimum car-
dinality of 1 to derives Req for all the stakeholders requirements, contradicting with the
intended restriction for only the stakeholders requirements that are not decomposed. In
other words, the theory only allows to restrain the cardinality of a relation for a whole

class and not for only some elements of a class.

Finally, a high level stakeholder requirement can participate to the derives Req re-
lation with some system and/or external requirements. The semantic is that all the sub-
requirements (of the stakeholder requirement) implement the relation with the same images
(of the stakeholder requirement). More formally, the stakeholder requirement transitive clo-
sure through hasPart Req derives the images of the stakeholder requirement (2.17). This
is a desired capability to relate a set of stakeholders requirement.

HighLevelStakeholder Requirement(xz) A hasPart _Req(x,y) A

derives _Req(x,z) = derives_Req(y, z) (2.17)
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Functional system requirements traceability. Functional system requirements
(i.e., Functional High Level System Requirement and Functional Low Level System Requi-
rement) are detailed through the decomposition relation (with requirements whose state-
ments are more precise and more atomic) and by other requirements that account for non
functional characteristics that supplement the functional statement of the functional re-
quirement. For instance, the requirement "The broking system shall decelerate the vehicle”
is functional. The requirement "The braking system shall decelerate the vehicle and shall
allow a deceleration > 5.8m.s — 2" amounts for an additional non functional characteristic
to the decelerate function. It is non functional.

A functional system requirement can also be related to some external requirements. A rela-
tion with functional or non functional external requirements exhibit some stakes (functional
or non functional) for the proper functioning of the system that are emergent properties
at a greater level of abstraction than the system under development. For example, if the
system commands another system, the system is responsible for sending commands to the
other system that is responsible for receiving and handling the commands. If the other
system does not receive or handle the command, the functionality (at the level of abstrac-
tion that comprises both the system and the external system) is lost. Similarly, if the other

system handles the command too slowly, the functioning property is also lost.

The abstraction change from functional system requirements to non functional sys-
tem requirements is formalized with the property isCharacterizedBy Req. The co-
domain of isCharacterizedBy Req is restricted to NonFunctional HighLevel System-
RequirementUN onFunctional Low Level System Requirement for Functional High Level-
SystemRequirement and Functional Low Level System Requirement. A minimum cardi-
nality of 1 is given to 1sCharacterizedBy Req for Functional LowLevel System Requi-
rement. By construction, all the functional system requirements are related directly or
indirectly (through the decomposition relation) to at least one non functional system re-
quirement, ensuring that non functional aspects of a functional requirement are taken into

account in the design. Axiom (2.18) is the capability to characterize a set of functional
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system requirements.

Functional HighLevel System Requirement(x) A hasPart _Req(z,y) A

isCharacterizedBy _Req(x, z) = isCharacterizedBy _Req(y, z) (2.18)

Relation derives Req is used once again between functional system requirements and
functional external requirements. The range of the relation is constrained to Functional-

HighLevelSystem Requirement U Functional Low Level System Requirement.

Finally, the relation derivesNonFuncExtReq FuncSystReq NonFuncExtReq is added
with Functional HighLevel System RequirementUFunctional Low Level System Requirement
as domain and NonFunctional External Requirement as co-domain. It enables to express
some non functional stakes on the external elements of the system from the functional

system requirements if needed. Therefore the relation cardinality is not constrained.

Functional external requirements traceability. First, remember that the exter-
nal requirements can be related directly with the stakeholders requirements (and now they
can be related to functional system requirements). Therefore, it exists some functional ex-
ternal requirements that are not the object of the derives Req relation for the functional
system requirements. It is important however to ensure that all the functional external re-
quirements are related to some functional system requirement (this will be explained in sec-
tion 2.3.2). This is realized by defining the relation isDerivedFrom FuncExtReq Func-
SystReq with Functional External Requirement as domain and Functional HighLevel-
System RequirementUFunctional Low Level System Requirement as co-domain. Functional-
External Requirement implements the relation and the image of ¢sDerivedFrom _FuncExtReq -
FuncSystReq is defined for the class to Functional HighLevel System Requirement U
Functional Low Level System Requirement and given a minimum cardinality of 1. As the
external requirements are not decomposed those axioms are sufficient to ensure that all the

functional external requirements are related to at least one functional system requirement.

Non functional system requirements traceability. The derives Req property
is used one last time to relate non functional system requirements to non functional require-
ments of the system elements. The relation range is customized to NonFunctional High-

Level System Element RequirementUN onFunctional Low Level System Element Requirement
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for NonFunctional HighLevel System Requirement and NonFunctional Low Level System-
Requirement. The relation is given a minimum cardinality of 1 for NonFunctional Low-
Level SystemRequirement to ensure that all the non functional system requirements are
related directly or indirectly (through hasPart Req) to at least one non functional re-
quirement of a system element. It is once again given the possibility to relate a set of
non functional system requirements to a non functional requirement of a system element

through derives Req as defined by axiom (2.19).

NonFunctional HighLevel System Requirement(x) A hasPart _Req(x,y) A

isCharacterizedBy _Req(x,z) = isCharacterizedBy _Req(y, z) (2.19)

2.2.1.3 On Functional Architecture

In the previous STR document, the system has been considered as a black box to iden-
tify the necessary interactions with the environment. The level of detail vary from lists of
external functions and elements to system context diagrams. As mentioned, this definition
of the system context accounts for the system interactions with its environment. The en-
vironment has been described but not detailed. In this section, we detail the definition of
the system functional architecture, see figure 2.1. We are interested only in the functional
aspect of the environment and in the whitening of the functional aspect of the previous

black box system that has to interact with the environment.

As an introduction, the SDD contains a duplicate of the description of the system
missions and context. Then the system architecture is presented. The functional architec-
ture describes the functions or transformations that the system must perform. The flows
(i.e., information, energy or material flows) that are relevant to the functions are specified
as well. The system internal behavior is also described and corresponds to the logical

execution of the system functions.

We used the most common representation for functional architectures as a basis for
the formalization. The functional architecture description is usually done with a kind
of block diagram. The notation makes use of two basic elements, blocks and arrows.
Blocks represent respective functions and arrows represent respective flows. An Arrow

origin designates the function that produces the flow. Similarly, an arrow destination
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designates the function that consumes the flow. Different levels of detail are supported
with a decomposition of the blocks into sub-blocks. The formalization presented below

enables to support this conceptualization.

The Concepts of Function and Flow. The universe of discourse of the functional
architecture is more complex at Renault and specific to mechatonics systems. Nonetheless,
we decided to stay sufficiently general with a small vocabulary as the opposite was going
beyond our purpose (in section 2.2.1.5). The important concepts that we detail afterwards

are Function and Flow. They are presented in figure 2.11.

’- S
18

W <ProducedBy_Flow_Func
" Requirement

Figure 2.11: Formalization of the functional architecture

Jeduces_Req Func'

The class Requirement is also present in figure 2.11 to relate with the previous section
and to emphasize that those concepts are tightly related to others (see section 2.2.1.5).
Informally, as can be seen in figure 2.1, a prerequisite to the definition of the functional
architecture is the specification activity. The specification (i.e., a set of requirements) is
actually the basis to the definition of the functions and the flows. This relation is ma-
terialized with properties deduces Req Func, deduces Req Flow, isDeducedFrom -
Func_Req, isDeducedFrom_Flow Req,isAllocatedTo Req Funcand isAllocatedTo -
Req Flow that memorize the function origin or the flows in the specification. Those
properties are not further detailed in this section, refer to section 2.2.1.5 on traceabil-
ity for the complete description of the relations between the requirements and the func-
tional architecture. A function can be decomposed into sub-functions through the relation
hasPart Func. A function can produce and/or consume some flows. This is defined
with respective relations produces Func_Flow and consumes_Func_Flow. We add
the definition that a function has to produce or consume at least one flow (2.20). Other-

wise, this function does nothing which is incorrect. The relations isProducedBy Flow -
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Func and isConsumedBy _F Low__Func are also defined to record which functions are
producers or consumers of a particular flow. Only isProducedBy Flow Func is con-
strained quantitatively (the stars in the figure have no particular meaning) with an exact
cardinality of 1. This is equivalent to defining a minimum and maximum cardinality of 1
to isProducedBy Flow Func for Flow and means that a flow is produced by only one

function.

dy produces Func_Flow(x,y) V consumes_Func_ Flow(z,y) (2.20)

Details of Function and Flow Concepts. As with the requirements, the functional
architecture accounts for both the system under consideration and its external environment.
Also, based on the observations of the domain, we considered that it was not important to
distinguish between different concepts of functions or flows resulting in the arguably low

number of concepts illustrated in figure 2.12.

Function

Flow
i i

ExternalElemenfFunction SystemFunction ExternalFlow

| InternalFlow

isa isa

LowLevelSystemFunction

‘ HighLevelSystemFunction

Figure 2.12: Formalization of the functional architecture

At the top of the hierarchies, we find the main classes Function and Flow. They are
subsumed along their external/internal connotation with the system (see section 2.2.1.4
for the distinction between external and internal flows). Eazternal Element Frunction and
SystemFunction are defined as subclasses of Function respectively for the functions of
the external system elements and for the system functions. Similarly, External Flow and
Internal Flow are defined as disjoint subclasses of Flow. Finally, the system functions can
be the object of decomposition and are organized in high level and low level functions, i.e.,

HighLevelSystemFunction and Low Level SystemFunction.
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First, the system functions. They correspond to functions realized by system con-
stituents. The relations consumes Func_Flow and produces Func_Flow are not cus-
tomized for the class nor its subclasses. Indeed, a system function can produce and consume
either internal or external flows. In the case of external flows, they correspond to the in-
teraction between the system and its environment. As seen with the requirements, the
functions can be decomposed into sub-functions. We restrict the range of hasPart Func
to System Function for System Function. This class is subsumed into HighLevel-
SystemFunction and LowLevelSystemFunction that respectively denotes system func-
tions that are decomposed and the opposite, see axioms (2.21) and (2.22). By using
those relations, the system functional architecture can be described at different levels
of granularity. The finest grained description of the functional architecture corresponds
to low level system functions. Coarser grained descriptions of the functional architec-
ture use the high level system function concept abstracting the insignificant details. As
such, a flow produced by a sub-function is apparent at the level of the super-function
if it is consumed by a function that is not part of the super-function. Respectively, a
flow consumed by a sub-function is apparent at the level of the super-function if it is
produced by a function that is not part of the super-function. With the system func-
tions hierarchy viewed as a directed acyclic graph, let reach(v, R) be the reachable set
of vertices (or nodes) starting from v and using R, we have axioms (2.23) and (2.24).
With this structure, the finest grained description of the functional architecture corre-
sponds to low level system functions and to functions of external elements. In order to
memorize precisely which function is the producer and / or the consumer of a particu-
lar flow, we restrict isProducedBy Flow Func and isConsumedBy FLow Func to
LowLevel System Function U External Element Function enabling to stay consistent with
the cardinality restriction of exactly 1 for isProducedBy Flow Func (otherwise, as we
describe the functional architecture at different levels of abstraction, it would be possible
for a flow to be produced by two different functions at different levels of abstraction).

Jy HighLevel SystemFunction(x) =
hasPart_Func(x,y) A [HighLevel SystemFunction(y) V (2.21)
LowLevel SystemFunction(y)]

32  LowLevelSystemFunction(z) A hasPart _Req(z,vy) (2.22)
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SystemFunction(w) A hasPart_Func(x,w) A produces_ Func_ Flow(w, z) A
consumes_Func_Flow(y, z) A (y ¢ reach(z, hasPart _Func)) = (2.23)
produces(x, z)

SystemFunction(w) A hasPart_ Func(x,w) A
consumes__Func_Flow(w, z) A produces _Func_ Flow(y, z) A (2.24)
(y ¢ reach(x, hasPart_Func)) = consumes(z, z)

Second, the external functions. For the same reasons that the external require-
ments are not decomposed (the project is responsible only for the system it develops), the
external functions are not decomposed. hasPart Func is disabled for External Element-
Function by defining a cardinality of 0 to the relation for the class. As external functions
are outside the system perimeter, they produce and consume only external flows, which
is made formal with the corresponding restrictions of the range of produces Func_Flow

and consumes_Func_Flow to External Flow for the class External Element Function.

Finally, the only customization for the flows is the definition of the range of is Produced-
By Flow_Func to SystemFunction for the internal flows (i.e., the internal flows are

produced by only one system function).
2.2.1.4 On Physical Architecture

The physical architecture is the final abstraction level of the design. The system phys-
ical architecture is usually portrayed in the form of block diagram models similarly to the
functional architecture and is part of the SDD. The physical architecture is the materi-
alization of a solution that explains by what means the system functional architecture is
realized. The solution also satisfies completely the technical requirements (in particular the
non functional system requirements which were not yet taken into account by the design

like cost, weight, dimensions, forbidden or authorized use of material, etc.).

The Concept of Component. Similarly to the functional architecture, we opted for
a small vocabulary that applies in any scenario for the components description. This is
represented in figure 2.13.

The classes Requirement and Function are also present in figure 2.13 as once again

the concept of component is precise only through its relations with other concepts. The
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Finction Requirement

igAllocatedTo_Func_Comp™* \realizes_Comp_Func?

Component [ JhasPart Comp®

isAllocatedTo_Req Comp™

Figure 2.13: Formalization of the component concept

Component class is defined as general as possible and accounts for any type of component.
The two isAllocatedTo properties describe part of the relation between the requirements,
the functional architecture and the physical architecture. Ultimately, the only properties
presented for the Component concept express the possible decomposition of a component
into others and the set of functions that a component realizes, i.e., hasPart Comp and
realizes _Comp Func respectively. The axioms on the range of these two relations for
Component are represented in the figure by the class at the destination of the arrows that
correspond to the relations. In this section we are only interested in the component concept
(and its decomposition), the relations with the other concepts are presented in the next

section.

Components Typology and Decomposition The physical architecture is presented
in terms of components and how they are interconnected. In the universe of discourse, we
first have the same distinction between internal and external components, respectively for
system constituents and for external elements that contribute to the system. Then, the
interconnections of those components make use of specific types of components that need
to be distinguished. Finally, the rest of the typology concerns the mechatronics systems
at Renault with the commonly encountered types of components. The different types of
components present in the ontology are illustrated by a hierarchy in figure 2.14.

At the top of the hierarchy we have the general concept of Component. In the previ-
ous paragraph we mentioned that a component can be decomposed into subcomponents
through the relation hasPart Comp with Component as domain, co-domain and range

(see figure 2.13).

The distinctions between internal, external components and their interconnections are

respectively represented in the next level of the hierarchy in figure 2.14 with System-
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Component

Interface SystemComponent ExternalElement
isa isa isa }:«'n isa
Externallnterface Internallnterface EEComponent OtherComponent
[
isa iza s isa isa
SWComponent Sensgor Clontroller HWComponent Actiator

%ﬂ \a

ApplicativeSW BagicSW

Figure 2.14: Components typology

Component, ExternalElement and Inter face. SystemComponent and External Ele-
ment are the main types of components and the classes are disjoints with one another.
The axiom on range for the different subclasses of Component is inherited to the sub-
classes following the axiomatization in appendix A. We assume that the range of the
hasPart _Comp property is customized for each subclass to this specific subclass if not

stated otherwise.

System and external components. The different types of system components con-
cerns mechatronics systems at Renault where we distinguish between Electrical /Electronic
components and components from other technologies. They are represented in the ontol-
ogy with the disjoint classes EEComponent, Internallnter face and OtherComponent,
subclasses of SystemComponent. The E/E components disjoint subclasses are Sensor,
Actuator and Controller. They account only for the terminology used for mechatronics
systems and we did not distinguish their differences in a formal way. The two other disjoint
subclasses of SystemComponent are HW Component and SW Component that distinguish
the hardware and software components. From the point of view of the development pro-
cess, these two classes represent the system components that will be accounted for after

the design phase as subsystems of the system. The components chosen to be further devel-
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oped in a respective sub-development process are asserted as elements of HW Component
and/or SWComponent which is why the subclasses of SystemComponent are not all
disjoint with each other. The range of hasPart Comp is not customized for Sensor,
Actuator, Controller and HW Component (i.e., the relation range is EEComponent for
those classes) as a sensor and an actuator can have a controller as a part, a sensor can be a
part of a controller and a hardware component can be composed of a software component.
Finally, SWComponent is further subsumed into BasicSW and ApplicativeSW. The lat-
ter corresponds to traditional application software, in opposition with basic software that
refers to a non functional abstract layer relative to the operating system, device driver,

memory management, etc.

Interface components. An interface is a special type of component that defines the
physical juncture between two or more components (internal or external). Inter face is a
subclass of Component and is partitioned into disjoint subclasses Externallnter face and

Internallnter face. These concepts are presented in figure 2.15.

Component
Tnterface

[
iga
isa \\'mlsports Tnter Flow?

liza iza Externallnterface Flow

@lcs_Ethut_ExtElemSystC01111) -

linls FxtInt ExtElemSystComp NaryRelatio... B

links Extint FxtElem* EA]]\SE)dhltSystComp o

ExternalElement SystemComponent

Q:n%ﬂks Inthnt  SystComp*

Internallnterface

Figure 2.15: Formalization of the interface concept

First, we chose to disable the decomposition of interfaces into sub-interfaces by defining
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the cardinality of hasPart Comp to 0 for the class Inter face.

Second, the external/internal distinction does not refer to the system as usual. The
connotation refers to the physical juncture between components and corresponds to inter-
faces that link system components only (internal interfaces) or components which at least
one is an external element (external interfaces). Therefore, an internal interface is a system
component and an external interface can be a system component or an external element
of the system depending on whether its development is the responsibility of the project or
not. Formally, Internallnter face is asserted as a subclass of SystemComponent disjoint
with Fxternal Element (see figure 2.14).

The interface considered as the physical juncture between components is formalized with
respective links properties in figure 2.15. An internal interface is related to system compo-
nents through link IntInt SystComp with Internallnter face and SystemComponent
as domain and co-domain. The relation is constrained with a minimum cardinality of 2.
The relation range is customized to system components that are not interfaces.

For the external interfaces, we introduce an intermediate class links FEaxtint FExtElem-
SystComp NaryRelation in order to model the 3-ary relation between Ezternallnter-
face, External Element and SystemComponent. As the class models a relation its name
starts with a lowercase letter. The property links FEztint ExtElemSystComp relates
External Inter face with the 3-ary relation as can be seen in figure 2.15. The property is
given an exact cardinality of 1 (this is equivalent to define a minimum and maximum
cardinality of 1) as an external interface that does not links components is incorrect.
Then properties links Extint ExtElem and links ExztInt SystComp enable to as-
sert which components are linked through external interfaces. The domain of those rela-
tions is links  FExtInt FExtElemSystComp NaryRelation. Their range is respectively
constrained to external elements and systems components that are not interfaces (i.e.,
External Element \ Inter face and SystemComponent \ Interface). The two correct
cases accounted are either, the external interface links only one external element, which
implies that it also links a system component, or the external interface links two external
elements. Formally, the relation links FaxtInt FExtElem is only given a minimum cardi-

nality of 1 as the axiomatization in appendix A does not allow to express that the external
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interfaces link at least two components with one being an external element.

Finally, an interface is defined by the flows it transports which is formalized with the
property transports Inter Flow with Inter face and Flow as domain and co-domain.
The relation is given a minimum cardinality of 1 for the class Inter face. It is not further
customized for external interfaces as they can transport any type of flows. For Internal-
Inter face, the property range is constrained to Internal Flow (that forms with External-

Flow a partition of the class Flow).

2.2.1.5 On Traceability

The main concepts of systems engineering have been presented in the previous sec-
tions. The remaining of the SDD document presents the allocation of the functions on the
constituents and the allocation of the flows on the interfaces that transport them based
on the functional and physical architectures. Lastly, a traceability table explains how

requirements, functions and constituents are related.

Allowing the verification that all the requirements are taken into account by the design

is one objective of traceability. Recall the definition of traceability from section 1.2.1.1.

Traceability: The ability to trace (identify and measure) all the stages that led

to a particular point in a process that consists of a chain of interrelated events.

In this work, traceability is implemented by using the different semantic relations that
have been presented and the ones that relate the main concepts of systems engineering
(presented in this section). As mentioned, a trace corresponds to a sequence of relations.
By traceability we refer to the capability to define such traces which is inherently made
possible by defining an ontology. In addition to this implicit capability, the ontology
defines a hierarchical structure for the elements of design (i.e., requirements, functions
and components) and has been designed such that traceability is established from the
requirements, through the functions, to the components along with the informal property
that any non leaf element of a hierarchy is taken into account by the next level of abstraction
if and only if all the leaf elements of the hierarchy are related to the next abstraction level.

The cardinality constraints are used to define the existence of an element in relation to
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another which ensures the consideration all the leaf elements in the next level of abstraction

following the design process timeline.

The difficulty to define the ontology was to prevent misuse and misinterpretation due
to the different possible, and sometimes incompatible, domain conceptualizations. The
previous choices for the conceptualization were made to establish the traceability of the
main elements of systems engineering and remove ambiguity while staying general enough
to support different compatible conceptualizations. In this section, we present the justi-
fications of the choices made in the previous sections for the conceptualization and how

traceability is defined and established in the design process.

Traceability Between Needs and Requirements. In section 2.2.1.1, the concept
of need has been formalized with the classes Need, Mission, Goal and StrongConcept.
Figure 2.16 presents the properties that enables to move from the world of need to the

world of requirements.

Need

derives_Mis_FuncSystReq" \derives Mis_FuncSystReq™

| StrongConcept

derives_Goal_StakR.eq™ lerives_Need StaReq™ /derives_StrConc_StakReq”

FunctionalLowLevelSystemR equirement StakeholderRequirement

FunctionalHighLevelSystemR equirement |

Figure 2.16: From the needs to the requirements

The derivation relations to the stakeholders requirements has already been presented
in section 2.2.1.1. As a reminder, we defined minimum cardinality restrictions of 1 for
the relations of each class. For the class Mission, we decided to relate directly to the
functional system requirements with property derives Mis FuncSystReq that ranges
over Functional HighLevel System Requirement U Functional Low Level System Require-
ment and a minimum cardinality of 1. This makes explicit that a system mission should
account only for functional aspect of the system. For Need, Goal and StrongConcept, we
do not reason on the functional or non functional quality of the information recorded by
those concept as they are related to stakeholders requirements. This distinction is done at
the next level of abstraction when a stakeholder requirement is made more precise by the

system or external requirements it is derived into.
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Traceability at the Requirement Level. The structure and the traceability of the
different requirement types have been defined in section 2.2.1.2. In that section we made
precise for each type of requirement if it could be decomposed or not and how they were
related to one another. In this paragraph, we do not return on those definitions but
discuss on the objective of traceability that we want to establish and on the ambiguity due

to requirements that remain informal text in this conceptualization.

Objective of traceability. As previously mentioned, the objective of the traceability
defined with the ontology is to ensure that all requirements are taken into account by the
design. With the ontology, we make sure that the elements of an abstraction level have left
an explicit trail to the most abstract elements of the ontology, i.e., there exist a trace from
the most abstract ontology elements to the other ones. Informally, we distinguish between
the abstraction level of need that enables to enter the world of requirements. Then, all the
requirements need to be related to the functional level of abstraction and to the physical

one.

In section 2.2.1.2, we presented the requirements structure that allows by its general
nature to work with specifications (sets of requirements) that have a tree structure, those
that allow multiple parents or those that have no sub-requirements. Then the relations that
establish traceability between different types of requirements have been defined semanti-
cally to remove ambiguity from requirements structured along the project timeline. The
decomposition relation (hasPart _Req) is intended to express the hierarchical structure of
a specific type of requirements and is assumed to establish part of the whole traceability
in the design process that explains how an element is taken into account via traces. The
relation expresses the inverse relational quality of parthood. It captures a whole to part
paradigm of the class that corresponds to the natural understanding that the whole is
equivalent to the sum of its parts. Informally, in the ontology, we captured the informal
property that a node requirement is taken into account by its sub-requirements, i.e., it
is necessary and sufficient for any requirement to be taken into account that all its sub-
requirements are taken into account. By extension, in this conceptualization, only the leafs

requirements of the decompositions need to be taken into account by the design for all the
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requirements to effectively be considered.

For example, in section 2.2.1.2, we defined the traceability between stakeholders re-
quirements and requirements on the system and on the external elements, as the trace that
ends with a derives Req relation. We partitioned the stakeholders requirements into high
level and low level ones to account for the different possible structures of requirements used
in different projects. If the stakeholders requirements are not decomposed then they all
correspond to low level stakeholders requirements and the traces correspond to the deriva-
tion relations. The other case presents the stakeholders requirements as a hierarchy (an
element can have multiple parents or not) and each one is related, directly through deriva-
tion, or indirectly through decompositions and derivation, to the other level of abstraction
(system or external requirements). In the end, all the low level stakeholders requirements
are the object of at least one derives Req relation in the formalization. This results in
the property that all the stakeholders requirements are related by construction (directly
or indirectly) to the next level of abstraction, i.e., it exists a trace from any stakeholder
requirement to at least one system or external requirement. Informally, all the stakehold-
ers needs are effectively taken into account in the next level of abstraction as system or

external requirements.

Ambiguity in the establishment of traceability. In our formalization, a super-
requirement is equivalent to the sum of its parts. This is not always the case in the universe
of discourse. Consider as an example the following functional high level system require-
ment: "The electric brake system shall compute the driver’s global deceleration will from
the driver’s command interfaces.” 1t is decomposed into four functional low level system
requirements with the hasPart Req relation: "The electric brake system shall compute
the driver’s global deceleration will from the positions of the brake pedal, of the acceleration
pedal and of the parking brake”; "The electric brake system shall interpret the position of
the brake pedal”; "The electric brake system shall interpret the position of the acceleration
pedal” and "The electric brake system shall interpret the position of the parking brake”. It
is clear that by considering those low level requirements, the high level one is also taken

into account. With this general whole to part structure, it results by construction that
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the nodes have effectively been taken into account if the leafs are related to the next level
of abstraction. The incorrect use of the decomposition relation for the requirements cor-
responds to the interpretation that the whole is greater than the sum of its parts. In the
example, this would correspond to removing the low level requirement that accounts on the
computation of the driver’s deceleration will. Only considering the low level requirements
is erroneous as the aspect on computation is contained into the high level requirement. In
this case, for the high level requirement to be taken into account, it is not enough that the

low level requirements are related to the next abstraction level.

Considering the different possible structures of specifications, we have chosen that par-
ticular conceptualization as it is as general as possible and, precise and minimal, in the
sense that only the necessary and sufficient requirements (the leafs) have to be related to
the next abstraction level. To establish a meaningful traceability, the whole to part defini-
tion needs to be kept in mind in order to correctly use the ontology semantic relations: a

super-requirement s equivalent to the sum of its parts.

Traceability Between Requirements and Design. Figure 2.17 presents the general
concepts of systems engineering that are used for traceability, i.e., Requirement, Function,
Flow and Component. The respective hasPart relations enable to define the hierarchical
structures of the information they record. The rest of the relations enable to establish the

traceability between the different types of requirements and the elements of design.

Function fgohasPart ¢
De(luce(lFl‘omFuucI(eq I

Requirement ﬂnrarﬂww sCharacterizedBy Req*

—————
luce(lme Flow Req™ N\isAllocatedTo Req Syst isAllocatedTo Req Comp™

Flow Component [ hasPart_Comp*

realizes_Comp_Func*

Figure 2.17: Traceability relations of the design process

First, the requirement concept records information at the system, functional or physi-
cal level of abstraction that correspond to the different levels of granularity in the systems
engineering design process. This is formalized with the four isAllocatedT o properties that

have Requirement as domain. The co-domains respectively correspond to the system,
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functional and physical level, i.e., System, Function and Flow, Component. Those prop-
erties capture a partition of the requirements at these different levels of detail therefore all
the requirements (except the stakeholders requirements) are allocated either to the system
or some functions or some flows or some components (2.25). Moreover, those properties
(except isAllocatedTo _Req Syst) contribute to the establishment of traceability between
requirements and design (they directly capture how an element of design is an answer to
the consideration of a requirement).

~Stakeholder Requirement(z) A
(isAllocatedTo _Req Syst(x, syst) @ isAllocatedTo Req Func(z, func) ®  (2.25)
isAllocatedT'o _Req Flow(x, flow) @ isAllocatedTo _Req Comp(z, comp))

Second, the properties derives Req and isCharacterized By _Req have been presented
in section 2.2.1.2 and are used to establish the traceability between the different types of
requirements illustrated in figures 2.4, 2.5, 2.6, 2.7 and 2.8. Informally, the different types
of requirements are used respectively to record information corresponding to the system or

to external system elements at system, functional or physical level of detail.

Third, some requirements can be involved by properties deduces Req Func and /
or deduces_Req Flow. They semantically record the abstraction change from the re-
quirement to the system functional architecture. In terms of traceability those properties
capture how the requirements are realized by a solution for the system at functional level,
in other words, how requirements are taken into account by functions and flows. Properties
isDeducedFrom_Func_Req and isDeducedFrom Flow Req express that a function or
a flow come from a requirement and they are used to establish backwards traceability (i.e.,

all the relevant functions and flows can be related to a requirement).

Finally, the abstraction change from the functional to the physical level is formal-
ized with isAllocatedTo Func_Comp. In terms of traceability, the previous relation
deduces Req Func captures how the requirements are realized by a solution for the sys-
tem at the functional level. The property isAllocatedTo Func_Comp captures how the
the solution at the functional level is realized by a solution at the physical level. By tran-
sitivity, those two relations capture how the requirements are taken into account by the
components (as they realize the functions that themselves take into account those require-

ments). The property realizes Comp_Func expresses for a component the functions it
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realizes. This property has a minimum cardinality of 1 for Component, as a component

that does not realize any function is useless.

The design process develops a solution for the system under development. This solution
is described with the ontology main concepts that correspond to design process activities,
see figure 2.1. The specification activity produces textual requirements. In the design
process, these requirements are of utmost importance and need to be of high quality, i.e.,
precise as defined by the ontology. As our objective is to ascertain that all requirements
have effectively been considered by the development process, the traces we want to establish
shall record changes from system level of abstraction, to functional and physical ones. We
have the usual trail from requirement, to function, to component and also traces that
record the consideration of non functional requirements. The first kind of trace actually
starts with the functional requirements and explains how they are taken into account by
the functional architecture, and then how the functions of the functional architecture are
taken into account by system components. The non functional aspect of the system is
more problematic. The consideration of non functional system requirements by the design
is not as straightforward as the functional counterpart because there is not yet a precise
conceptualization of the different types of non functional requirements and how they are
taken into account by the design. Nevertheless, the main idea for the non functional
requirements consideration is that they are expressed at the system level of abstraction

and they should trace to the adequate level of abstraction (functional or physical).

Another kind of traces concerns backwards traceability where we ensure that elements
of design effectively trace back to requirements. This is important to describe as downwards
and backwards traceability do not define a bijection in the ontology. In this paragraph,
we presented traceability at the level of detail presented in figure 2.17. The remaining of
this section presents traceability at the system, functional and physical level by explaining
all the relevant relations in figure 2.17. Note that section 2.2.1.6 gives more detail on non

functional requirements.

Traceability at the System Level. System requirements (see figure 2.7) correspond to

requirements at system level. They express the stakeholders needs. These needs are either
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stakeholders requirements or system missions. They are related to system requirements
through derives Req (section 2.2.1.2) or derives Mis FuncSystReq (previously in this
section). In section 2.2.1.2, we explained that the stakeholders requirements were the most
abstract type of requirements. As such, they can record information at any level of de-
tail (system, functional or physical level) and the allocation relations have been disabled
to consider this imprecision of the concept (isAllocatedTo Req Syst, isAllocatedTo -
Req_Func, isAllocatedTo Req Flow and isAllocatedT'o Req Comp have a cardinal-
ity of 0 for Stakeholder Requirement). The traceability at the system level corresponds
simply to system requirements that define some characteristics of the system under devel-
opment. Figure 2.18 only presents relations that are used to establish a trace from the

system requirements to the system.

Requirement [g>derives RecdhasPart Req™

izAllocatedTo Req Syst!

L

System

Figure 2.18: From the system requirements to the system

In this conceptualization, all system requirements are related to the system under de-
velopment. This is formalized by giving an exact cardinality of 1 (minimum and maximum
cardinality of 1) to the isAllocatedTo Req Syst property for the SystemRequirement
class (2.26). The other relations of allocation (isAllocatedTo Req Func, isAllocated-
To_ Req Flow and isAllocatedTo Req Comp) are disabled for the class (the relations
are constrained with a cardinality of 0 for SystemRequirement). Note that this is con-
sistent with axiom (2.25). An informal rule to show that a requirement is at system level
is that system requirements statements start with: "The  system shall ...". The ca-
pability to allocate a set of system requirements to the system was also requested and

corresponds to axiom (2.27).
Ay SystemRequirement(x) = isAllocatedTo Req Syst(x,y) (2.26)

SystemRequirement(x) A hasPart _Req(z,y) A

isAllocatedTo _Req Syst(z,z) = isAllocatedTo Req Syst(y, z) (2:27)

115



2.2. DOMAINS FORMALIZATION

Traceability at the Functional Level. The system description at the functional level
corresponds ultimately to the system functional architecture presented in section 2.2.1.3.
The functional architecture presents the functions and the flows of the system and the
relevant functions and flows that are external to the system. Figure 2.19 depicts the

relations used to establish traceability at the functional level.

Function hasPart Func?
4
isDeducedFrom_Func Req®™  |deduces Req Func'isAllocatedTo Req Func™
Requirement 1asPart_Req”

igAllocatedTo Eeq Flow" &lecluce.ﬁ- Req Flow" \igDeducedFrom Flow Req*

Flow

Figure 2.19: Traceability relations between requirements and functional architecture

Informally, traceability at the functional level relates the requirements to the func-
tional architecture. The different kinds of requirements corresponding to functional level
are functional system requirements, part of system’s elements non functional requirements,
and external requirements. Backwards traceability relates the functional architecture to
functional requirements. In the following paragraphs we define how traceability is estab-

lished precisely for each concept by using 2.19 relevant relations.

From the functional system requirements to the functional architecture.
Functional system requirements correspond to the classes Functional HighLevel System-
Requirement and Functional Low Level System Requirement. As previously mentioned,
these requirements express system level information. For these requirements to be taken
into account at the functional level, we use the properties deduces Req Func and deduces_ -
Req Flow. The relations used to establish a trace from functional system requirements

to the functional architecture are presented in figure 2.20.

As system requirements account only for the system under consideration, the range

of deduces Req Func is restricted to SystemFunction for SystemRequirement. The
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Requirement }ha.\'Parr Req*

?duc es R eq_FluNeduc ex_Req Flow™

Function Flow

Figure 2.20: Traceability relations for the functional system requirements

range of deduces Req Flow is not further customized as the described flows can be
internal to the system or at the interface of the system and the environment. In this
ontology, for all the functional system requirements to be considered at the functional
level, it is necessary and sufficient only for the low level functional system requirements
to be related to the next level of abstraction through our relations of deduction. More
formally, deduces Req Func and deduces Req Flow are given a minimum cardinality
of 1 for Functional LowLevel System Requirement. By construction, there is a trace from
any functional system requirements to at least one function and one flow. These traces
are composed of possible hasPart Req and end with deduces Req Func or deduces -
Req Flow. It is possible to relate a set of functional requirements with the usual semantics
that the functions and flows are effectively related to the transitive closure of the functional
requirements through hasPart Req (low level requirements of the transitive closure are

linked to functions and flows), see axioms (2.28) and (2.29).

Functional High Level System Requirement(x) A hasPart _Req(x,y) A

deduces Req Func(z,z) = deduces Req Func(y, z) (2.28)

Functional HighLevel System Requirement(x) A hasPart _Req(z,y) A

deduces Req Flow(x,z) = deduces Req Flow(y, z) (2.29)

From non functional requirements on elements of the system to the func-
tional architecture. In section 2.2.1.2, we presented the non functional system require-
ments that correspond to non functional system characteristics. Those requirements are
expressed at system level. The relation derives Req is used to record the abstraction
change from the non functional requirements at the system level to the non functional

requirements at the level of the elements of design (Function, Flow and Component).
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This is formalized by disabling isAllocatedTo Req Syst (a cardinality of 0 is defined) for
the class SystemFElement N onFunctional Requirement. As can be seen in figure 2.8, the
system element non functional requirements are partitioned into high level and low level
ones. hasPart Req expresses a whole to part relation with the implicit interpretation that
the whole is equivalent to the sum of its parts. This results that, for all the non functional
requirements on the elements of the design to be taken into account by the design, it is
necessary and sufficient for only the low level ones to be related to design elements. Figure
2.21 presents the relations used to define a trace from non functional requirements on the

system elements to the functional architecture.

Recuirement Dlmanrr Req!

igsAllocatedTo_Req Func™\isAllocatedTo_Req Flow™

Function Flow

Figure 2.21: Traceability relations for the non functional requirements on the elements of
the system

As it is not possible to distinguish between requirements that are taken into ac-
count by functions or flows or components, we have axiom (2.30) that uses the rela-
tions isAllocatedTo Req Func, isAllocatedTo Req Flow and isAllocatedTo Req -
Comp (with respective range SystemFunction, Flow and SystemComponentU Internal-
Inter face) in order to record how non functional requirements of the system elements are
taken into account by the design (functional and physical). For the functional architecture,
only isAllocatedTo Req Func and isAllocatedTo Req Flow are used as illustrated in
figure 2.21. This imprecision for the allocation of the non functional requirements demon-
strates that the concept is still ambiguous and that there are actually more types to be
defined for the non functional requirements. We do not go further on the subject as section
2.2.1.6 is devoted to non functional requirements. The reader is invited to read this section
for explanations concerning this concept. The capability to allocate a set of non functional

requirements on system elements was also requested and corresponds to axioms (2.31) and
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(2.32) respectively for a function and a flow.

Jfunc Iflow Icomp
NonFunctional Low Level System Element Requirement(z) A
(isAllocatedTo _Req Func(z, func) @ isAllocatedTo _Req Flow(z, flow) @
isAllocatedT'o _Req Comp(x,comp))

(2.30)

NonFunctional High Level System Element Requirement(z) A
hasPart _Req(x,y) AisAllocatedTo Req Func(x,z) = (2.31)
isAllocatedT'o _Req Func(y, z)

NonFunctional HighLevel System Element Requirement(x) A
hasPart Req(z,y) AisAllocatedTo Req Flow(z,z) = (2.32)
isAllocatedTo _Req Flow(y, z)

From external requirements to the functional architecture. In section 2.2.1.2
and 2.2.1.3, we explained that it was not the project responsibility to develop its own
environment. As such, external requirements and external functions are not the object
of decomposition (they correspond to lists or enumerations with no specific structure, in
particular they are not hierarchical). Similarly to the system, we distinguish between
functional and non functional requirements, see figure 2.6. Relations used to define a trace

from some external requirements to the functional architecture are presented in figure 2.22.

Requirement

1.\.%]loc:|re(lT0_Req_F

Flow

deduces_Req Func! leduces_Req Flow"

Function

Figure 2.22: Traceability relations for the external requirements

Functional external requirements are related to the functional level through the prop-
erties deduces _Req Func and deduces _Req Flow. The range of deduces Req Func
is constrained to External ElementFunction for Functional External Requirement and a
cardinality of exactly 1 is defined as this function is outside the scope of the system (it is
not under the responsibility of the project development team). In this way, the develop-

ment team does not overlap in an intrusive way with other system projects. The range
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of deduces Req Flow is constrained to ExternalFlow as flows produced or consumed
by external functions are outside the scope of the system. A minimum cardinality of 1 is
defined to constrain the relation for Functional External Requirement. For the non func-
tional external requirements, it is not possible to distinguish between requirements that
are taken into account by functions or flows or components. isAllocatedTo Req Func
and isAllocatedTo Req Flow are the relations used to relate non functional external
requirements and the functional architecture as shown in figure 2.22. The ambiguity for
the concept is not solved but we define axiom (2.33) that explains the allocation of a non
functional external requirements to either functions or flows or components. The ranges of
isAllocatedTo _Req Func, isAllocatedTo Req Flow and isAllocatedTo Req Comp
are respectively constrained to Fxternal Element Function, External Flow and External-

Element U ExternalInter face.

dfunc Iflow Icomp NonFunctional External Requirement(z) A
isAllocatedT'o _Req_Func(z, func) @ isAllocatedTo _Req Flow(z, flow) &  (2.33)
isAllocatedTo _Req Comp(x,comp))

From the functional architecture to requirements. As previously mentioned,
downwards and backwards traceability do not define a bijection. As such, we cannot use
the same relations to ensure that the functional architecture is effectively related to the

requirements.

For now, with downwards traceability, we ensured that the stakeholders needs were
expressed as requirements on the system and on the system external elements. Then,
the functional part of these requirements can trace to the functional architecture directly.
Using cardinality constraints and requirements structure, we ensured that all the relevant
functional requirements (low level functional system requirements and functional external
requirements) were taken into account by the functional architecture (functions and flows).
The converse is not true as it is still possible to have some functions and / or some flows
defined in the functional architecture that are not related to any functional requirements.
To ensure that this is not possible, we use the relations isDeducedFrom Func_Req and

isDeducedFrom _Flow Req presented in figure 2.23.

As the flows are not the object of decomposition, we define isDeducedFrom_Flow -
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Function Flow

k‘“h':?(mmm_lec_Iy'ﬂD educedFrom Flow_Req*

Requirement

Figure 2.23: Traceability relations for the functions and flows

Req (with Flow and Requirement as domain and co-domain) as the inverse relation of
deduces Req Flow (2.34). The range of isDeducedFrom_Flow Req is constrained to
Functional High Level System RequirementUFunctional Low Level System RequirementU
Functional External Requirement. Also, a minimum cardinality of 1 is given to isDeduced-
From_Flow Req for Flow ensuring that all the flows are related to at least one require-

ment.

For the functions, we define isDeducedFrom Func_Req with Function and Requi-
rement as domain and co-domain. As a reminder, figure 2.11 presents the different types
of functions that mainly correspond to system functions and the ones realized by ele-
ments external to the system. For the functions of the external elements, the range of
1sDeducedEFrom_Func_Req is customized to Functional External Requirement. The
minimum cardinality of the relation is defined to 1 for External ElementFunction ensur-
ing that all functions of the external elements are related to requirements. For the system
functions, the range of isDeducedFrom Func_ Req is constrained to Functional High-
LevelSystem Requirement U Functional Low Level System Requirement. Similarly to the
requirements decomposition, the decomposition of the system functions is done with the re-
lation hasPart Func that captures a whole to part paradigm of the class that corresponds
to the natural understanding that the whole is equivalent to the sum of its parts. With
this understanding, for all the system functions to be related to the requirements, it is suf-
ficient for only the low level system functions to be related to the requirements. Formally,
1sDeducedEFrom__Func_Req is given a minimum cardinality of 1 for the class LowLevel-
SystemFunction. A high level system function deduced from a requirement means that its
transitive closure through hasPart_Func is deduced from this requirement (2.36). And

finally, because the system functions are structured with a hierarchy, we define only an
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implication between deduces Req Func and isDeducedFrom_Func _Req rather than
an equivalence (2.35). Informally, if a requirement is used to deduce a function, then the
function is deduced from this requirement. With deduces Req Func we record the func-
tions directly deduced from a requirement. With ¢sDeducedFrom_Func_Req we record
which requirements any low level system function is related to, directly or not hence the

implication.

deduces_Req Flow(x,y) < isDeducedFrom_Flow _Req(y, ) (2.34)

deduces Req Func(z,y) = isDeducedFrom _Func_Req(y,x) (2.35)

HighLevel SystemFunction(x) A hasPart_ func(z,y) A

isDeducedFrom _Func_Req(x,z) = isDeducedFrom_Func_Req(y, z) (2.36)

Traceability at the Physical Level. The system description at the physical level cor-
responds to the physical architecture. In section 2.2.1.4, we presented only the component
concept as a hierarchy of components. However, the physical architecture is actually the
description of a solution in (terms of components) that explains by what means the system
functional architecture is realized. This description corresponds to the functional archi-
tecture with additional information on which components realize which functions and on
some non functional characteristics of the components. Figure 2.24 presents the different

relations used to establish traceability from the requirements to the physical architecture.

Requirement )lm.-:\'Pﬂrr Req

%chlce&._Req_Flmc“

Function Dlm.\'Parr_Fluw:':

isAllocatedTo_Req Comp?

isAllocatedTo Func C.‘mnp"\enhzes Comp Func?

Component hasPart_Comp?

Figure 2.24: Traceability between requirements and physical architecture.

Similarly to the traceability at the functional level, the traceability at the physical level

relates the requirements to the physical architecture. The physical architecture is the most
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precise and final system abstraction in the design process. As such, the property that
all the requirements have been addressed by the design (in particular the non functional
system requirements that are not yet taken into account) must hold completely. Finally,
backwards traceability relates the physical architecture to the functional requirements. In
the following paragraphs we define how traceability is established precisely for each concept

by using the relevant relations of figure 2.24.

From functional system requirements to the physical architecture. As pre-
viously presented in figure 2.20, the functional system requirements are taken into account
by the functional architecture in terms of functions and flows. Figure 2.25 presents the
conceptualization that explains how the functional system requirements are taken into ac-

count by the physical architecture. Only the relation deduces Req Func that pertains

Requirement DllﬂSPﬂl't Req*

idecuces_Req Func'

Function Dlmst‘tﬁlec:"

lisAllocatedTo Func Comp™

3

Component Dlmstt_Comp"'

Figure 2.25: Traceability relations for the functional system requirements

to the functions of the functional architecture is presented in figure 2.25 as we define the
abstraction change from the functional to the physical level with isAllocatedTo Func_-
Comp to record how a system function is taken into account by the physical architecture.
The information on the flows involved by the requirement is already captured by the func-
tion concept. Functional system requirements and system functions are also structured in
a hierarchy with hasPart Req and hasPart _Func. The high level / low level distinc-
tion enables to identify the leaf elements of those two hierarchies. We already explained
that, by construction, for all the functional system requirements to be taken into account
by the system functions, it is necessary and sufficient, only for low level functional sys-
tem requirements to be the object of deduces Req Func. Now we need to make sure

that all the systems functions are considered in the physical architecture. Because system
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functions are inside the system perimeter, they need to be taken into account by system
components (including interfaces). The range of isAllocatedTo Func_Comp is therefore
restricted to SystemComponent U Inter face for the class SystemFunction. Similarly to
hasPart Req, hasPart Func captures a whole to part paradigm that corresponds to the
whole being equivalent to the sum of its parts. Given this interpretation, for all the system
functions to be taken into account by the physical architecture, it is necessary and suffi-
cient that all low level system functions are related to components. Allocating the same
function on more than one component is incorrect. This actually corresponds to an error
in the universe of discourse as such functions actually correspond to two different functions
that happens to be similar. Formally, an exact cardinality of 1 is given to isAllocated-
To_ Func_Comp for LowLevel SystemFunction. As usual the capability to allocate a
set of functions was desired with the usual semantic that it is effectively the transitive
closure of the high level system function through hasPart Func (in particular the low
level system functions that belong to this transitive closure) that is allocated to the con-
cerned component (axiom 2.37). Finally, the traces that are defined using hasPart _Req,
deduces Req Func, hasPart Func and isAllocatedTo Func_Comp ensures that all
the functional system requirements have actually been taken into account by the physical

architecture.

HighLevel SystemFunction(z) A hasPart _Func(x,y) A

isAllocatedTo _Func_Comp(z,z) = isAllocatedTo Func_Comp(y, z) (2.37)

From non functional requirements on system elements to the physical ar-
chitecture. As a reminder, part of the non functional requirements on the elements of
design corresponds to the system description at functional level (see figure 2.21). As al-
ready mentioned, it is not possible to distinguish between the requirements that are taken
into account by functions or flows or components however the non functional requirement
should be precise enough to be related exclusively to functions or flows or components
(2.30). To record how a non functional requirement is taken into account by the physical
architecture, we use isAllocatedTo _Req Comp (see figure 2.24. Section 2.2.1.6 addresses
the non functional requirements so we do not elaborate on the subject. As usual, the capa-

bility to allocate a set of non functional requirements (at the physical level) to a component
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is provided (2.38).

NonFunctional HighLevel System Element Requirement(x) A
hasPart Req(x,y) AisAllocatedTo Req Comp(z,z) = (2.38)
isAllocatedTo Req Comp(y, z)

From external requirements to the physical architecture. As the develop-
ment of the environment is not the responsibility of the project, decomposition of external
elements is not done in the ontology. Similarly to system requirements, external require-
ments are partitioned between functional and non functional ones (see figure 2.6) and
their traceability is established using the same relations presented before. The functional
external requirements are traced to the physical architecture indirectly through the func-
tional architecture with relations deduces Req Func and isAllocatedTo Func_Comp
(see figure 2.25). Their range is respectively customized to Fxternal ElementFunction
and Fxternal Element U Externallnter face recording how a functional external require-
ment is related to an external function which is taken into account by the physical ar-
chitecture. An external function that is not allocated to an external element is incorrect
so isAllocatedTo Func_Comp is given an exact cardinality of 1. Concerning the non
functional external requirements, they are related to the physical architecture with ¢s-
AllocatedTo _Req Comp which ranges over External Element U Externallnter face. As
previously defined, the non functional external requirements are allocated to either func-

tions or flows or components (2.33).

From the physical architecture to requirements. With downwards traceability,
we ensured that it was possible to follow the trail left by any requirement for its consider-
ation by the functional and / or physical architectures. Conversely, we have to make sure
that all the components of the physical architecture are effectively related to some require-
ments. We use property realizes Comp Func to record for a component the functions
it realizes. This property has a minimum cardinality of 1 for Component as a component
that does not realize any function is incorrect in our conceptualization. A component real-
izes the functions that are allocated to it (2.39) and a component that is decomposed into
subcomponents realizes the functions of its subcomponents (2.40). Finally, we customized

the range of realizes  Comp Func for SystemComponent and External Element respec-

125



2.2. DOMAINS FORMALIZATION

tively to SystemFunction and External Element Function.

Function(z) A isAllocatedTo _Func_Comp(z,y) =

realizes_Comp _Func(y,x) (2.39)

Component(x) A
hasPart _Comp(x,y) A realizes_Comp _Func(y, z) = (2.40)
realizes_Comp_ Func(z, z)

2.2.1.6 On Non Functional Requirements

In section 2.2.1.5 we presented how the requirements were interrelated with the elements
of design. The consideration of functional requirements is straightforward. They result
into identified elements of design (i.e., functions, flows and components, see figure 2.25)
with adequate semantic. Informally, they describe some functional characteristics that
correspond to some functions and flows. These functions and flows are designed into a
functional architecture by describing for each function the flow it consumes and produces.
Then this functional architecture is realized by defining the components that implement
those functions. As we were mainly interested in the functional aspect of the system, we
did not make any attempt to be as explicit with non functional requirements. The main
encountered difficulties concern, on the one hand, the number of different types of non
functional requirements and, on the other hand, the intentional limited expressive power
given by axiomatization in appendix A. We therefore opted to formalize the non functional
requirements in a general manner by recording how they were taken into account by the
elements of design with respective allocation properties on the system, functions, flows
and components (see figure 2.17 and axiom (2.25)). This section explains how the non
functional requirements concept are intended to be manipulated in the ontology and we

give some leads for their further formalization.

Formalization of Non Functional Requirements. In the following, we describe the
formalization of system non functional requirements. Those descriptions are similar for
the non functional requirements that are relevant to the environment. As a first attempt
to capture the different types of non functional requirements, we defined hasT'ype Req

as an attribute of a requirement. The relation ranges over an enumerated set that defines
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the type of the non functional requirement that we call constraint. We listed Temporal
performance, Cost and Weight. For each class of requirement (see figures 2.6, 2.7 and 2.8)
we give a minimum cardinality of 0 or 1 to hasType Req depending on the requirement
being functional or not. As we have seen in section 2.2.1.5, a non functional requirement is
first allocated to the system and then needs to be addressed by the architecture (functional

or physical).

Temporal performance constraint. The notion of temporal performance con-
straint expresses how much time is needed to perform a task. It is associated to the
functional aspect of the system therefore a requirement with information on temporal
performance is related to exactly one functional system requirement through characte-
rizes_ Req (see figure 2.3). Given the axiomatization in appendix A, it is not possible
to customize the relation just for the non functional requirements with temporal perfor-
mance type so we have axiom (2.41). In order for all the systems requirements to be
related to temporal aspects, it is necessary and sufficient for all the low level ones to be
related to a temporal constraint. We define characterizes Req as the inverse property of
isCharacterizedBy _Req (2.42) and constrain the former relation with a cardinality of 1
for the functional low level system requirements. This enables to describe at system level
temporal constraints corresponding to functional requirements. For example, we have the
following non functional requirement that characterizes a similar functional requirement
that does not describe the temporal performance aspect: "The electric brake system shall
compute the driver’s global deceleration will from the driver’s command interfaces in less
than 0.02 seconds.” This temporal performance needs to be taken into account at design
level. The non functional requirement at system level is expressed at the architectural
level by using derives Req: "Computing the driver’s global deceleration request shall be
performed in less than or equal to (.02 seconds.” In this particular case, the non functional
requirement on the system elements corresponds to the functions that are deduced from
the functional requirement. In this example we have only one function with the following
label: "Compute driver’s global deceleration request”. The correspondence is made explicit

by allocating the requirement to the function with isAllocatedT'o Req Func. In the end,
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a non functional requirement on system elements, that is derived from a non functional
system requirement which itself characterizes a functional requirement, is allocated to the
functions deduced from the functional requirement (2.43).

Iy  Requirement(z) A hasType Req(z,” Temporalper formance”) =

characterizes Req(x,y) (2.41)

Requirement(x) A characterizes_Req(z,y) < isCharacterizedBy _Req(y,z) (2.42)

hasType Req(x,” Temporalper formance”) A characterizes _Req(z,y) A

derives _Req(x, z) A deduces _Func(y, f) = isAllocatedTo _Req Func(z, f) (2.43)

In order to formalize the concept of temporal performance in terms of semantic rela-
tions, we chose to define an attribute for System and Function with properties hasFExe-
cutionTime__Syst and hasExecutionTime_Func that ranges over positive integers (all
the execution times of the system and functions shall be expressed with the same unit,
seconds in the example). The intention is similar to the consideration of functional re-
quirements by the system and functions deduced from requirements. The development
of the defined functions implicitly answers the requirements. In this conceptualization,
a temporal performance constraint (a non functional requirement with type attribute as-
serted to temporal performance) is taken into account by the development of the system
functions that respects the execution time attribute. By following the definitions given
in 2.2.1.5, for all the temporal performance constraints at system level to be taken into
account by the design, it is necessary and sufficient for all the low level ones to derive at
least one temporal performance constraint at architectural level. The range customization
of the derivation relations for only temporal performance constraints at system level into
temporal performance constraints at architectural level is not possible with the axiomati-
zation given in appendix A, so we assert axiom (2.44). In the end, for all the temporal
performance requirements at architectural level to be taken into account by the design, it
is necessary and sufficient for all the low level ones to be allocated to at least one function.
Finally, the system and all the functions need to be associated to an execution time so
hasExecutionTime Syst and hasExecutionTime Func are customized with an exact
cardinality of 1.

Requirement(x) A hasType _Req(z,” Temporalper formance”) A

derives_Req(z,y) = hasType_Req(y, Temporalper formance”) 244)
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For now, we did not attach any semantic with the structure of the functions and their
execution times so the concept of temporal performance is still informal in this sense
(it results that the definition of the functions execution time remains entirely manual).
The positive aspect is that the concept is defined in a general manner allowing to use
the desired interpretation, with some caution. For instance, one can implicitly associate
the interpretation that the execution time of a super function is equal to the sum of the
execution times of its direct sub-functions, and that the execution time of the system is
equal to the sum of the execution times of the top level functions. However, in the universe
of discourse, there is many more licit interpretations that are not always compatible, but
are possible given the general nature of the ontology. We have for example functions that
are executed in parallel that can be described as the decomposition of a super-function.

The execution times of the sub-functions do not add up in the super function.

Weight and cost constraints. In the ontology, the notions of weight and cost
correspond to the physical architecture. Weight is intricately related to the notion of mass
that is attached to materials and, intuitively, it is related to the physical components. In
the universe of discourse, it is possible to talk about the cost of a function however we chose
to let the functional architecture as an abstract object that needs to be materialized by
components that have a price. As previously mentioned in section 2.2.1.5, a non functional
requirement is first expressed at the system level. Then it needs to be addressed at the
functional or physical level. This abstraction change is done by using derives Req from
non functional system requirements to non functional requirements on system elements.
Informally, non functional requirements with weight and cost types at system level are
intended to respectively derive only weight and cost constraints on the elements of design
(2.45) and (2.46). These constraints are finally taken into account by the components of
the physical architecture by using isAllocatedTo Req Comp. Four attributes are defined
to formalize the concepts of weight and cost with hasWeight Syst and hasPrice Syst
for the system, and hasWeight Comp and hasPrice_Comp for the components. The
relations co-domain are positive integers (all the weights and costs shall be expressed with

the same unit). Those four attributes enable to formalize the informal constraints expressed
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by non functional requirements with information on weight and cost. Constraints must be
taken into account when developing the components that have to respect weight and cost
attributes. Given the typology of components presented in section 2.14, hasWeight Comp
and hasPrice_Comp are customized with a cardinality of 0 for the external elements and
interfaces. For all the other classes, hasPrice Comp is given an exact cardinality of
1. The interfaces in the ontology are physical interfaces so hasWeight Comp is given an
exact cardinality of 1 for Internallnter face and also for the other technology components.
Then we have the hardware and software components. The former has some weight while
the latter has not so the cardinality of hasWeight Comp is respectively 1 or 0. Property
hasWeight Syst is not further constrained as a system can be constituted of only software
components with no weight and hasPrice_ Syst is customized with a cardinality of 1.

Requirement(xz) A hasType Req(x,” Weight”) A

derives _Req(x,y) = hasType Req(y,” Weight”) (2.45)

Requirement(x) A hasType _Req(x,” Cost”) N

derives Req(x,y) = hasType Req(y,” Cost”) (2.46)

Similarly to the temporal performance constraints, we did not attach any semantic to
the cost concept as costs of two similar software components do not add up into system
cost. For the weight, the intuitive interpretation is given that the weight of a component
is equal to the sum of the weight of its sub-components (2.47) and the system weight
is equal to the sum of the weight of top level components (2.47). The property has-
Constituent _Syst_Comp is used to record the system constituents (it excludes external
elements) and sum is a function that returns the sum of a set of integers. As a note,
in the universe of discourse, the sub-components of a component can correspond to the
whole transitive closure through hasPart Comp. This is equivalent to define the relation
as transitive (i.e., hasPart _Comp(z,y) ANhasPart _Comp(y, z) = hasPart_Comp(z, z))
which would result in counting several times the same quantity. This is one of the reasons

why the decomposition relations are not transitive in the ontology.

let
Z ={z | hasPart_Comp(z,y) N hasWeight Comp(y, z)}
a = sum(Z) (2.47)

in Component(x) A hasPart _Comp(z,y) A
hasWeight Comp(y, z) = hasWeight Comp(z,a)
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let
Z ={z | hasConstituent _Syst_Comp(x,y) A
—hasPart_Comp(nonexist,y) A hasWeight Comp(y, z)}
a = sum(Z) (2.48)
in System(x) A Component(y) A hasConstituent Syst _Comp(z,y) A
—hasPart_Comp(nonexist,y) N\ hasWeight Comp(y, z) =
hasWeight Syst(z,a)

Generalization for the Consideration of Non Functional Requirements. In a
general manner, for a requirement to be taken into account by the design, it needs to
be allocated to the correct elements of the design process (i.e., system, functions, flows
or components). If this is sufficient for the functional requirements, the non functional
requirements address additional characteristics of the elements of design that need to be
formalized. The previous paragraphs served as examples for the consideration of non
functional requirements with three different types of non functional requirements. Those
three types of non functional requirements provide additional information on the elements
of the design process such as system and components prices. This additional information
needs to be formalized in order to be recorded. For the types of non functional requirements
presented, the concept formalization has been done by defining attributes on the elements
of the design process. Ultimately, once the design phase of the development process is
completed, it is possible to realize a product based on the design. The resulting product
needs to exhibit all the characteristics (functional and non functional) defined in the design
phase, hence the importance for the design to be as precise and as explicit as possible.
Moreover, the formalization (from the universe of discourse to a conceptualization) of the
non functional aspects of the system and the architecture provides the necessary basis onto
which system verification and validation can be defined. This provides some elements of
answer concerning characteristics for requirements to be verifiable while reducing the gap

between the informal world of requirements and models.

Finally, the ontology enables to record all the non functional requirements and makes
precise how those tightly related to the elements of design are addressed. Some other
types of non functional requirements can be recorded into the ontology but have not been
formalized as a concept. Consider for example process requirements that are systems re-

quirements. They do not need to be taken into account by the design as they are related
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to other concepts such as processes, activities, manpower and roles, etc. There is two
alternatives to formalize all the different types of requirements. We chose to use a type
attribute to represent some different types of non functional requirements which is more
natural at Renault. However, the axiomatization given in appendix A does not allow com-
plex axioms to be formulated. It therefore requires the assertion of those formulas outside
the framework given by the axiomatization ((2.44) for instance). Another alternative would
be to restrict ourselves to the axiomatization framework which results in the introduction
of a class for each type of non functional requirement. Both approaches are equally valid
because we used FOL to describe the ontology. In practice, it depends on the expressive-
ness and semantic of the implementation language(s) (for instance, axiom (2.41) cannot be

written in OWL and SWRL and needs to be verified manually with SQWRL).

2.2.1.7 Conclusion

In this section, part of systems engineering domain has been formalized with the focus
on the system during the design process and its functional aspect. The general concepts of
Need, Requirement, Function and Component have been presented in detail with their
semantic relations that enable traceability between design process elements. This formal-
ization enables to record quality information produced by the design process as structured
knowledge which facilitates understanding information and therefore its re-usability. At
Renault, systems engineering definition and deployment is currently undergoing. The devel-
opment of a system depends on different engineering fields with conceptualizations relevant
to their domain. In this picture, systems engineering should be viewed as the orchestrator
of the different other engineering fields that contributes to the system development. The
formalization of systems engineering is therefore fundamental as it contains the different
system descriptions which are studied from the point of view of other engineering fields. In
order to illustrate the centrality of systems engineering, we formalized another engineering
field into a different ontology. This is the object of section 2.2.2 that presents functional

safety domain for safety critical systems.
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2.2.2 Functional Safety Ontology

The consideration of functional safety in the automotive domain has recently been
given central attention with the recent arrival of ISO 26262 international standard. As the
main objective of this work is to improve the design process of safety critical systems at
Renault, the conceptualization of functional safety has been formalized to benefit from the
opportunities provided with the intended compliance with ISO 26262. Figure 2.26 presents

the general process for functional safety currently followed at Renault.
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of the system
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Requirements
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Preliminary Hazard Analysis
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<<Input>>
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S
System
Design
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Figure 2.26: Functional safety process at Renault
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The objective of the functional safety process is to demonstrate that the system is safe
(from unacceptable risks). Generally speaking, the different system abstractions during
the design process are analyzed with adequate techniques and results of the activities that
demonstrate freedom from unacceptable risk are recorded in the Demonstration of Mastery
of Safety Risks Record file (DMSRRF) as can be seen in figure 2.26. Safety analyses study
the misuse or dysfunctional aspects of the system. If the results of these safety studies
do not demonstrate that the corresponding system description is safe, risk reduction is
performed which impacts the description(s) of the system. The first activity, Preliminary
Hazard Analysis (PHA), implements risk analysis and risk estimation from the risk man-
agement process (see figure 1.6). It serves to identify system hazards and to estimate their
associated risk. Then risk evaluation gives an integrity attribute to the system. The other

safety activities are not completely supported by the ontology so they are represented in a

133



2.2. DOMAINS FORMALIZATION

general manner in the figure. These safety activities implement the overall process of risk
management at finer grained levels of abstraction. Those activities must bring evidence
that the root causes of potential failures do not impact on the system integrity attribute
demonstrating that the system is safe. Positive results are recorded into the DMSRRF and
negative ones lead to redesign with the risk reduction step. The functional safety ontology
presented in this section has been designed to promote a more systematic execution of this
process with the focus on the fundamental concepts of functional safety domain and the
PHA. Section 2.2.2.1 presents risk analysis with the different system descriptions, their
respective failure models, the identification of hazardous events, the estimation of corre-
sponding risks, and the related fundamental notions of functional safety. Section 2.2.2.2
presents risk evaluation and is devoted to the notion of integrity. Finally, section 2.2.2.3

gives the conclusion to the formalization of functional safety.

2.2.2.1 Risk Analysis

In the overall process of risk management (see figure 1.6), risk analysis starts with the
definition of intended use and reasonably foreseeable misuse of the system. The system
hazards are identified based on this definition. Then the system’s risk is estimated. This
general process can be applied at different levels of detail. The formalization presented
below captures a conceptualization of this general process and enables to support the

functional safety studies performed during system design process.

System’s Descriptions. Functional safety, as its name implies, is interested in the study
of the functional aspects of a system with respect to safety in order to handle functional and
technological issues. These issues are relative to different system’s descriptions which are
the responsibility of systems engineering. As such, the STR and the SDD are prerequisites
to functional safety examination as can be seen in figure 1.6. The ontology therefore
contains similar classes presented in section 2.2.1. Figure 2.27 presents the elements that

correspond to different system descriptions considered by functional safety .

The class Requirement records the system requirements. A safety attribute is defined

for the class with property safety Req that ranges over booleans true and false. It has two
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Figure 2.27: Elements of functional safety

subclasses, Functional Requirement and Sa fetyRequirement. A functional requirement
corresponds to the concept presented in systems engineering. The class is used to record
a functional description of the system in terms of requirements. A safety requirement is
a requirement that is recognized to have an impact on safety and has the safety attribute
defined to true, ¢.e., the range of safety Req is constrained to be true for each instance
of the class. As a functional requirement can have an impact on safety, it is possible for
a requirement to belong to the two classes so they are not disjoint with one another. The
concept of requirement in functional safety is further defined in section 2.2.2.2, for now,
we are interested only in functional requirements that correspond to a functional system
description. As mentioned, under the notion of element, we find concepts similar with
systems engineering ones such as System, Function, Flow and Component. The defini-
tions of those concepts has been presented in section 2.2.1. The following focus on the new
notions introduced by ISO 26262. The class Candidate is used to record existing systems
that can potentially be the solution of the development process. ISO 26262 is applicable
for Electric and Electronic (E/E) systems and corresponds to Renault conceptualization of
the components presented in section 2.2.1.4. Classes HW _Part and SW __Unit are intro-
duced respectively as the lowest level components for hardware and software architectures.

Finally, this formalization enables to partially capture three different system descriptions:
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its functional specification (a set of functional requirements), its functional architecture
and its physical architecture. Based on these descriptions, functional safety seeks to iden-
tify and handle functional and technological issues that impact safety, which is the study

of dysfunctional aspects of the system.

Failures and their Consequences. The system descriptions presented above can be
denoted as functional in the sense that they present the system assuming that it performs
correctly (without errors) and safely. Functional safety is interested in the demonstration
that the system exhibits the safety property, ¢.e., it is free from unacceptable risk, when
it performs normally and also when it does not. The notion of risk therefore needs to be
made precise along with the descriptions of erroneous functioning. Theoretically speaking,
we want to formalize the fundamental chain of fault, error and failure (see figure 1.5) that
explains dependability threats (naturally they include safety threats). This chain is related
to system descriptions in the following way. A fault is dormant in a requirement, function
or component. When activated, the fault becomes an error. The error is propagated and
when it gets to the system boundary, it becomes a failure. We use a failure model to
describe the system dysfunctional aspects in terms of failures. The relation with safety is
then given by the identification of hazardous events and the estimations of their risks to

the system.

Failure model. In order to describe the system dysfunctional aspects, we imple-
mented a failure model that adds up to the system functional descriptions. Figure 2.28

presents the different failure modes considered by our failure model.

FaihweMode

isa s isa

UntunelyFailureMode LostFailurelode DegradedFailureMode

Figure 2.28: Failure model

A failure mode is the manner in which an element (e.g., requirement, function or
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component) fails. As it can be seen in figure 2.28 we consider three different types of
failure modes: degraded, lost and wunitimely. The term mode corresponds to modal logic
and expresses modality on the correct functioning of the system (services). Degraded, lost
and untimely express respectively a reduction in the quality of the provided service (e.g.,
underperforming or overperforming braking service), a service loss and the providing of a
service at inappropriate time (in general untimely corresponds to too early or too late but
the term is also used to refer to service provided timely but in a jerky manner. For instance
when calling for the braking service, it can sometimes manifest itself in quick successions
of braking and no braking actions felt like jolts by the driver). As such, this failure
model is applied to systems descriptions. For reasons of conciseness, only relations with
requirements are presented. Similar classes and relations that describe the dysfunctional
aspect (i.e., the failures) of the system, function, flow and component concepts exist but
add nothing to the discussion. Figure 2.29 illustrates the application of the failure model

when dealing with the system description in terms of functional requirements.

fails NaryRelation

isa isa isa hasFailureMode_FElem_FailMode*

fails_ElemLostFailure_NaryR elation

fails_FuncReqLostFailure_NaryR elation

fails_ElemD egradedFailure_NaryRelation | FunctionalR equirement L fails_ElemUntimelyFaiture_NaryRelation L—‘ FailureMode

fails FuncReq F\mcReqLo‘\‘rFm.lm‘eﬁ.l:\‘ FuncReq FuncReqDegradedFaiture \fails FuncReq FuncReqUntimelyFailure® Jisa

fails_FuncReqUntimelyFailure_NaryRelatio. ..

fails_FuncReqDegradedFailure_NaryRelatio..

Figure 2.29: Application of the failure model on the functional requirements

The class fails NaryRelation and its subclasses represent the failure model appli-
cation on considered elements. In particular, the three leaf classes represent respective
applications of the three different failure modes on functional requirements and correspond
to failures as defined in section 1.2.2.2. The three relations from Functional Requirement
express failure modalities of functional requirements respectively in terms of degradation,
loss or untimely execution of functionality. As the whole set of functional requirements can
actually correspond to different system descriptions, the relations are not yet constrained
in terms of cardinality but the capability to describe the dysfunctional aspect of a func-
tional requirement is set up. The property hasFailureMode FElem FailMode records

which modality is applied to a functional requirement and is customized with a cardinality
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restriction of exactly 1. The range of the relation is constrained for the leaf classes to their
adequate failure mode (see figure 2.28). This automatically records the correct failure mode
of the failure model that is applied as a modality of the functional requirement. Finally,
this formalization enables to systematically consider the dysfunctional aspect of the system
by applying the failure model on its functional requirements. The next paragraphs formal-
ize the remaining of risk assessment (see figure 1.6) with the change from failures (given
by the application of the failure model) to feared system events and their correspondence

with the general notion of risk (i.e., risk of harm).

Hazardous events identification. The system dysfunctional aspect obtained by
application of our failure model is the prerequisite to the identification of hazardous events.
Feared events and hazardous events can be used indifferently in this ontology as we do not
consider feared events that have no relation with harm. A hazardous event occurs when the
hazard’s potential to cause harm is realized. Hazardous events are identified considering
previously produced failures that lead to harm. Figure 2.30 presents the conceptualization
that corresponds to the hazardous events.

HazardonsFvent

hasHazard_HazEvent_Haz'

fails NaryRelation Clontext

i

failureImplies_FElem_FSE? hasOperationalContext_HazEvent_OpC hasOperationalContext_Elem_OpCont /isa

Hazard

isa | FearedSystemEvent failureImplies_Flem FCE* OperationalC ontext

isSourceOfHarm Haz Harm! lcauses FSE FCE"

Harm

FearedCustomerEvent

Figure 2.30: Formalization of the hazardous events

A hazardous event is defined as multiple combinations of one hazard in an oper-
ational context. The relations hasHazard HazFEvent Haz and hasOperationalCon-
text HazFEvent OpCont are used to record all the hazards and operational contexts of
one hazardous event so they are constrained with a minimum cardinality of 1. As pre-
sented in section 1.2.2.2, a hazard is defined as the potential source of harm. At Renault, a
hazard traditionally corresponds to a collision so elements of Hazard are enumerated and
we consider rollover in addition with collision with, infrastructure, the same size passenger

car, a smaller passenger car, a bigger passenger car, a truck or bus, a pedestrian, a cyclist,
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a motorcyclist. As a remark, other hazards need to be formalized such as electrocutions
which are naturally present when we consider E/E systems. A hazard is related to the
notion of harm which is represented in figure 2.30 with isSourceOfHarm Haz Harm.
This property is constrained with a minimum cardinality of 1 to record the relation with
harm. As presented in section 1.2.2.2, harm can be formalized with the AIS (see table 1.1).
This table, developed by the automotive industry, is not usually used at Renault so we did
not define Harm as an enumeration to keep the notion general. We did not go further
on the fundamental definitions of functional safety but hazard and harm are of utmost

importance for functional safety activities to be relevant.

Now, let us go back to the failures presented in the previous paragraph. As can be seen
in figure 2.30, the failures captured in the class fails NaryRelation are relevant to one
operational context. We define hasOperationalContext Elem OpCont and a cardinal-
ity restriction of exactly 1 for the class Element. The failure of an element (i.e., system,
functional requirement, function, flow or component) is then considered with a given opera-
tional context (typically, a phase of system life) to identify hazardous events with properties
failureImplies  Elem FSE and failureImplies Elem FCUE. The respective range of
the relations are FearedSystemFvent and FearedCustomer Event. Automotive jargon
commonly uses the term system to designate a subsystem of the whole vehicle. Safety
studies are performed at subsystem level of abstraction, but (working at this abstraction
level) this can erroneously result in the identification of hazardous events that are un-
related to the safety property. This is naturally understood by the engineering field of
functional safety at Renault hence hazardous events are made precise with Feared System
Event (FSE) or Feared Customer Event (FCE) respectively for the subsystem (the system
under consideration) or for the customer or vehicle system point of views. The FCEs are
the most important hazardous events as, in the automotive industry, safety is a property
that is emergent (can be observed) at customer or vehicle level of abstraction. Also, a FCE
is the ultimate consequence of a failure that enables to intuitively understand that this
consequence is harmful, which has been made explicit with the previous definition of the
hazards of a hazardous event (hasHazard_HazFEvent Haz) and the harms of a hazard

(isSourceO fHarm _Haz Harm). In other words, the FCEs are the hazardous events,
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which, when they occur, are perceivable by the customers and may result in harm. Figure
2.31 presents FSEs and FCEs identification based on the application of the failure model

and the propagation of failures.

/ Wehicle system \
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Figure 2.31: Hazardous events at the vehicle system and subsystem points of view

As it can be seen in figure 2.31, the application of a failure mode defines a failure that
is propagated and leads to FCEs, with possible intermediate FSEs. This is formalized with
the previous relations failureImplies FElem FSFE and failurelmplies Elem FCE.
The identification of the hazardous events should result in at least one FCE for a failure so
failureImplies  Elem FCFE is given a minimum cardinality of 1 for the class Element.
Identifying a FSE has some sense only if it can be related to a FCE which is formalized
with relation causes FSE FCEFE and a minimum cardinality restriction of 1. Finally, we
directly relate a failure that identifies a FSE to the FCE(s) of the FSE with axiom (2.49)
enabling to correctly relate all the failures to adequate FCE(s).

failureImplies Elem FSE(x,y) A causes FSE _FCE(y,z) =

failureImplies Elem FSE(z,z) (2.49)

Risk estimation. Once system hazardous events have been identified, it is time to
estimate the magnitude of their consequences. ISO 26262 introduces three criteria for
estimation: controllability, probability of exposure and severity. As presented in section
1.2.2.3, these three criteria are qualitative measurements at the discretion of people assigned
to the activity. Risk estimation is performed by analyzing different scenarios which is done

by filling table 2.1.

A scenario corresponds to a row in table 2.1. It estimates the three criteria from ISO

26262: probability of exposure, severity and controllability, respectively denoted by E, S
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Scenario | FCE | Operational | Consequence | Possibility of | E|S|C
Situation avoidance

Table 2.1: Risk estimation table

and C. These criteria are contextual so we define the context under the term operational
situation that is composed of one of the operational context of the FCE under consider-
ation and an aggravating circumstance. The operational context corresponds to a phase
of system life, e.g., freewheel mode that corresponds to the context for the braking func-
tion where there is no generated energy for propulsion. An aggravating circumstance is a
realistic situation that in combination with an operational context enables to consider a
hazardous event under a different perspective for the estimation to be as precise as possible,
e.g., a slippery road situation has more potential to result in harm when braking. Given
an operational situation (i.e., one operational context and one aggravating circumstance)
the consequence (i.e., the accident) and the possibilities of avoiding this consequence in
this operational situation are documented. Consequences are expressed in terms of harm
(e.g., death, light injury, etc.?). Possibility of avoidance concerns the driver’s opportunities
to perform an action to avoid the impending accident. Reasonable driving skills should
be considered (typically a driver with no particular training is considered). These infor-
mations (operational situation, consequence and possibility of avoidance) are respectively
related to the three criteria E, S and C documented in ISO 26262. We did not formalize
this correspondence as we were lacking domain knowledge however, intuitively, an opera-
tional situation should be equivalent to a probability of exposure, a consequence should
be equivalent to one severity level and a possibility of avoidance should be equivalent to a
controllability level. Such a formalization would solve both discrepancies and errors during
risk estimation by making this activity automatic and removing personal judgment during

estimation. In the end, a row in table 2.1 is defined along the formalization in figure 2.32.

Scenario

hasSeverity_Scenario_Sev" /hasOperationalSituation_Scenario_OpSitua. .. hasControllability_Scenario_Cont™ \isScenarioOf_Scenario_HazEvent"

Controllability

Figure 2.32: Concepts and relations for risk estimation

hasProbabilityOfEsposure_Scenario_ProbOf.

OperationalSitnation HazardousEvent ProbabilityOfExposure

3For a definition of harm, it is possible to reuse the AIS (table 1.1)
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Properties in figure 2.32 are constrained with an exact cardinality of 1 (for their re-
spective domain) correctly representing a row of table 2.1. Unnecessary information about
consequence and possibility of avoidance are not represented but can easily be added to the
ontology in the same manner (for our purpose, only severity and exposure criteria are of
importance). As we defined the operational contexts for the identification of the hazardous
events, we ended up defining the context in terms of operational situation, operational

context and aggravating circumstance as can be seen in figure 2.33.

Clontext

=a

OperationalSituation

isa [sComposedOf OpSit OpContAggClire
y

1sCombmationOf OpSit OpContAgeCire Nary...

hasAgaravatingCircnmstance OpSit AgeCie™ hagOperationalContext OpSit OpCont"

AggravatingCircumstance OperationalC ontext

Figure 2.33: Formalization of the context concept

The class Context is used to represent any type of context. In order to restrain the
interpretations to the Preliminary Hazard Analysis, it is partitioned into Operational-
Situation, OperationalContext and AggravatingCircumstance. The two last classes
are given the previous definitions of a phase during the system life and a circumstance
that gives light to the estimation of the risk. An operational situation is a couple of an
operational context and of an aggravating circumstance so we introduce the intermediate
class isCombinationOf OpContAggCirc_NaryRelation. An operational situation is
related to the latter class with isComposedOf OpSit  OpContAggCirc which is itself
related to an operational context and an aggravating circumstance with hasOperational-
Context _OpSit_OpCont and hasAggravatingCircumstance_OpSit _AggCirc. These
three relations are constrained with an exact cardinality of 1 for their respective domain
correctly representing the relation between an operational situation and the couple it is

composed of. Finally, figures 2.34, 2.35 and 2.36 present the three parameters for risk
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estimation that are defined in ISO 26262 for relevance with the automotive domain. Each

subclass has only one element which is defined with respective enumerations.

Severity Controllability
Probability OfExp osure 4 .

isa /isa  \isa isa

L] [ Jle e ]l=] [=]le]l=]]e

Figure 2.34: Probability of Figure 2.35: Severity sub- Figure 2.36: Controllabili-
exposure subclasses classes ty subclasses

In this section, we presented how the risk (of harm) of a system can be identified in a
more systematic way with the help of a failure model applied on system descriptions and
how this risk is classified by estimating different parameters of each identified hazards. The
next section completes our description of the covered functional safety concepts with the
evaluation of the risk through an integrity attribute specific to the automotive domain and

by explaining how this integrity attribute is taken into account during the design process.

2.2.2.2 Risk Evaluation and Safety Concept

Section 2.2.2.1 has presented the risk analysis part of the PHA (see figure 2.26). It ends
up with probability of exposure, severity and controllability parameters estimated for each
identified hazardous event. The following concludes on risk assessment with risk evaluation
that ultimately returns the system integrity level, i.e., the level of confidence a user can

have in the system.

ASIL Determination. Risk evaluation in the automotive domain is adapted from the
general notion of Safety Integrity Level (SIL) (see section 1.2.2.3). Risk evaluation is called
ASIL determination as the specific adaptation of the general SIL based approach. ASIL
stands for Automotive Safety Integrity Level and, as presented in section 1.2.2.3, the whole
standard ISO 26262 is constructed based on the ASIL of the system. Depending on this
ASIL, a corresponding specification is systematically produced, which, if satisfied, allows

asserting the absence of unacceptable risks. ASIL determination concludes risk assessment
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by completing table 2.1 with an ASIL column filled by following table 1.4 defined in ISO

26262 in chapter 1 reinstated here for reading convenience.

Severity | Exposure glo ntlé)Ql labél ;ty
El QM | QM | QM
o1 E2 QM | QM | QM
E3 QM | QM | A
Ed QM |A | B
El QM | QM | QM
- E2 QM | QM | A
E3 QM |A | B
E4 A B C
El QM | QM | A
a3 E2 QM |A | B
E3 A B C
E4 B C D

Table 1.4: Automotive Safety Integrity Levels

The class ASTL and its subclasses are defined as illustrated in figure 2.37.

Scenario

has ASTL.Value Scenario ASTL*

ASTL
A
iga isa  fisa isa isa
ASTLA ASILD ASILB QL ASTLC

Figure 2.37: ASIL determination

Figure 2.37 presents the concept of ASIL as a scenario attribute. The subclasses of
ASIL define the four different levels defined by the standard. They range from A to D
with D being the most restrictive. An ASIL is evaluated for a scenario with property has-
ASILValue Scenario_ASIL. This evaluation is systematic and based upon estimated
probability of exposure, severity and controllability criteria during risk estimation as de-
fined by table 1.4. Each line in the table establishes a direct correspondence between a

triple of the previous parameters for risk estimation and an ASIL. Each line is defined with
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an axiom similar to (2.50). This axiom is given as an example and it corresponds to the
last line in table 1.4 expressing that an ASIL D is determined for a given scenario with E4

exposure, 53 severity and C3 controllability.

Scenario(x) A hasSeverity _Scenario Sev(x,” Severity3”) A

hasProbabilityO f Exposure _Scenario ProbO f Exp(x,” Exposured”) A

hasControllability _Scenario_Cont(zx,” Controllability3”) =
hasASILV alue Scenario ASIL(x,” ASIL _D”)

(2.50)

This concludes risk assessment with the risk evaluated for each scenario in terms of
ASIL. Let us note that this analysis can be done at other levels of abstraction by applying
the failure model on more precise artifacts such as functions and components. Such analy-
ses are typically done at Renault by using the Failure Mode Effects and Criticality Analysis
technique (FMECA). The PHA is fundamentally different with all the other safety studies.
It is performed with the assumption that the system does not implement any safety mea-
sures (that would mitigate the risk) in order to obtain fundamental results, independent
from the system’s implementation choices, which can be re-used as is. Currently, problems
for reuse stem from a lack of formalization which results in the PHA being subject to
arbitrary assessment and human errors. All the other safety studies are performed dur-
ing the design process in order to verify preceding fundamental results that are always
expressed with ASIL. The realization of these other safety activities is not supported by
the functional safety ontology. Let us note that efficient tools are available on the market.
However, the ontology supports their fundamental result which is the ASIL. The following
precises the notion of ASIL and how it is intricately present in the design process as an

answer to reduce the risk associated to identified hazards.

Realization of a Safety Concept. ISO 26262 specifies in a general manner how ASIL
is taken into account by the design. In the previous paragraph, we ended up with ASIL as
an attribute of the different scenarios for hazardous events. The notion of ASIL associated
to a scenario specifies the target level of reduction of the risk associated to the hazards
to an acceptable level. These hazards are clearly relative to the system. In order to
integrate the safety attribute into the system genes (ensuring that the system does take

into account its hazards and is developed towards acceptable risk), the DMSRRF (see
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figure 2.26) documents the top level safety goals and two safety concepts which relates to
the notion of requirement. Next paragraphs present how the ASIL of the hazardous events

are reflected into the system descriptions and focus on requirements.

ASIL Assignment. In the previous section, we concluded on risk assessment with the
ASIL attribute evaluation for the scenarios of the FCEs. Now we need to assign the correct
ASIL to FCEs. Figure 2.38 presents the concepts and relations used to systematically assign
an ASIL to a FCE.

HazardonsFvent (g

hagScenario_HazEvent_Scenario® \isScenarioOf Scenario_HazEvent!

FearedSystemEvent Scenario hasASILValue_HazEvent_ ASIL*

hasASILValue Scenatio ASIL

FearedCustomerEvent

Figure 2.38: ASIL assignment on the hazardous events

In figure 2.38, we find the previous formalization of a scenario that records to which
hazardous event it corresponds and the evaluated ASIL of the scenario. Property has-
Scenario_HazEvent Scenario is defined as the inverse of isScenarioOf Scenario -
HazEvent (2.51) and is constrained with a minimum cardinality of 1 for the subclass
FearedCustomer Event. With axiom (2.51), the hazardous event is automatically related
to all the scenarios it is involved with. We actually defined the ASIL as an attribute of all
the hazardous events with hasASILValue HazFEvent ASIL which is constrained with
an exact cardinality of 1 for HazardousFEvent. The scenarios are only defined for the FCEs
therefore, for the FSEs to be related to at least one scenario, we relate the scenarios of a
FCE to the FSE that causes the FCE (2.52). Then the highest ASIL of the scenarios of a
hazardous event has to be assigned to the hazardous event (in particular, to the FCE). Let
maxASTL be the function that returns the highest ASIL of a set. We have axiom (2.53)
that assigns automatically the highest ASIL of the scenarios of a hazardous event to this

hazardous event.

hasScenario HazEvent Scenario(z,y) <

isScenarioOf Scenario HazEvent(y, x) (2.51)
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FearedSystemEvent(x) A causes_ FSE _FCE(x,y) A
hasScenarioHazEvent Scenario(y,z) = (2.52)
hasScenario_HazEvent _Scenario(z, )

let
Z ={z| hasASILValue Scenario_ASIL(y,z)}
a =mazrASIL(Z)
in hasScenario_HazFEvent _Scenario(z,y) N
hasASILV alue_Scenario ASIL(y,z) =
hasASILV alue_HazFEvent ASIL(z,a)

(2.53)

These axioms make it possible to relate all system hazardous events to an integrity
level. In other words, we defined the target levels of risk reduction associated to haz-
ards of hazardous events (of the system functional requirements). These target levels need
to be adapted for the different abstraction levels for the system development to be di-
rected towards acceptable risks. Therefore, related target levels need to be defined for
the system and its different descriptions, 4.e., the system and its requirements, functions,
flows and components. The notion of ASIL is dependent on its context represented with
different classes in the ontology. The relations hasASILV alue FElem ASIL and has-
ASILValue Req ASIL are used to define the ASIL of elements (system, functions, flows
and components, see figure 2.27) and requirements. They are constrained with an exact
cardinality of 1 respectively for Element and Requirement. SO 26262 remains overall
very general so that the different actors that manipulate this standard can all relate to
it however with specific customizations. Concerning ASIL assignment, ISO 26262 defines
with little details the structure of the requirements, how they are related to architectural
elements, how the ASIL is assigned to safety goals (a type of requirements) and how the
ASIL is assigned to architectural elements. The product development process defined in
ISO 26262 is actually composed of three complementary V cycles for the system, hardware
and software levels. At system level, the system is ultimately described with a physical
architecture that contains the system components. The components that are subject to de-
velopment are partitioned between hardware and software components that are developed
with the appropriate product development process at hardware and / or software level.
The requirements defined in ISO 26262 are actually dependent of the ASIL. The notion is

used out of context in the standard but intuitively refers to the ASIL of the system and to
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the ASIL of the components at hardware and software level. For the ASIL of the system
(the target level of risk reduction associated to system hazards), it is implied that it should
correspond to the highest ASIL of the system hazardous events. For the components, the
standard requires the definition of functional safety requirements allocated to the compo-
nents. A component is then assigned the highest ASIL of the functional safety requirements
in relation. In order for the system development to be directed towards acceptable risk, the
standard requires the definition of top level safety requirements called safety goals. They
are formulated for each hazardous event (if their ASIL is different than QM). With this
definition, the same safety goal can actually be defined for different hazardous events. The
ASIL attribute of a hazardous event is assigned to its safety goal and in the case of a safety
goal that covers different hazardous events, it is the highest corresponding ASIL that is

assigned to the safety goal. Figure 2.39 presents the formalization of the safety goals.

SafetyGoal

isCombmationOf SafGoal ASILHazEvent”

\
igCombinationOf SafGoal ASILHazEvent Nar...

@ILVH]IIE SafGoal _—'&M}‘ISHHZHI‘(IOUSEVEIH SafGoal HazEvent"

ASIL HazardousEvent

Figure 2.39: ASIL assignment on the hazardous events

The class SafetyGoal is a subclass of SafetyRequirement. It is related to the haz-
ardous events it covers and one ASIL with the intermediate class isCombinationOf -
SafGoal ASILHazFEvent NaryRelation and the properties isCombinationOf Saf-
Goal ASILHazFEvent, hasASILValue SafGoal ASIL and hasHazardousFEvent -
SafGoal HazFEvent, that represent this nary relation. The first two relations are con-
strained with an exact cardinality of 1 (a safety goal has only one ASIL) and the last one
is constrained with a minimum cardinality of 1 (a safety goal covers at least one hazardous
event). Hazardous events that are evaluated with QM (for Quality Management, this class

denotes no requirement according to ISO 26262) are not the object of a safety goal therefore
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the range of hasASILValue SafGoal ASIL is ASILAUASILBUASILCUASILD.
Using these relations, axiom (2.54) assigns the highest ASIL of the hazardous events re-
lated to a safety goal to this safety goal. They correspond to the hazardous events of the
system so we also assign the highest ASIL of the safety goals to the system (2.55).

let
Z ={z| hasASILValue HazEvent ASIL(y,z)}
a =marASIL(Z)
in isCombinationOf SafGoal _ASILHazEvent(w,x) A
hasHazardousEvent _SafGoal _HazEvent(x,y) A
hasASILValue HazFEvent ASIL(y,z) =
hasASILV alue_Req ASIL(z,a) N hasASILValue SafGoal ASIL(y,a)

(2.54)
let
Z ={z| hasASILValue Req ASIL(x,z)}
a =maxASIL(Z) (2.55)

in SafetyGoal(x) A System(y) A
hasASILV alue_Req ASIL(z,z) =
hasASILV alue _Elem ASIL(y,a)

The product development process in ISO 26262 continues with the definition of the
functional safety concept, the technical safety concept, and then the system design specifi-
cation. The functional safety concept is constructed based on the safety goals. It contains
functional safety requirements that are derived from the safety goals. Similarly, the techni-
cal safety concept is constructed based on the functional safety requirements. It contains
technical safety requirements that are derived from the functional safety ones. Finally,
the system design specification is constructed in accordance with the technical safety re-
quirements. It contains system safety requirements that are derived from the technical
safety ones. The functional safety requirements are expressed at the functional level of
abstraction, i.e., they are independent from the implementation. They are allocated to
an architectural element which is developed with the highest ASIL of the functional safety
requirements it is associated to. The technical safety requirements provide the technical
implementation of the associated functional safety requirements. These two types of re-
quirements are fulfilled by the system design. The system safety requirements provide the
system level implementation of the technical safety requirements. They are allocated to

an architectural element which is developed with the highest ASIL of the system safety
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requirements it is associated to. The conceptualization described in ISO 26262 does not
go much further and numerous questions need to be answered. For instance, we have an
ASIL for the safety goals, but what is the ASIL of the three other types of requirements?
If a functional safety requirement is allocated to a function, which is an architectural el-
ement, it shall be developed with the highest ASIL of the functional safety requirements
it is associated to. How is a function developed 7 And so on. At Renault, the DMSRRF
contains the safety goals presented before and one safety concept that is a set of require-
ments. Figure 2.40 presents the different types of requirements supported by this ontology
and their previous relation with the ASIL.

Requirement
ﬁ &ns.—lS]]_'\.’nlueRe(LASIL
SafetyRequirement ASIL
FunctionalSafetyRecuirement SafetyGoal IndependenceR.equirement TechnicalSafetyR.ecuirement

Figure 2.40: Safety requirements

In figure 2.40, we find the safety goals presented before. We promote the use of func-
tional safety requirements and technical safety requirements as respectively relative with
implementation independent and implementation abstraction levels. The system safety
requirements defined in ISO 26262 were not a fundamental concept and are not modeled
in the ontology. Finally, IndependenceRequirement is relative to ASIL decomposition
which is the object of the next paragraph. The ontology only defines the ASIL as an
attribute of the requirements and the elements (in particular, the system, functions and
components). This attribute needs to be defined for each requirement and element. It
gives the capability to assign an ASIL. Finally, we did not go further on the formalization
of ASIL assignment in this ontology. On the one hand, the concepts manipulated are not
precise enough to enable a correct (in all cases) automatic assignment of the ASIL. On the
other hand, we immediately anticipated that there was enormous potential for reuse of the
concepts defined in the systems engineering ontology to make the concepts manipulated

by functional safety engineering field more precise. Therefore, the semantic relations that
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enable to structure the concepts of functional safety and to define the remaining of ASIL

assignment is presented in section 2.3.

ASIL Decomposition. ISO 26262 allows the tailoring (i.e., the reduction) of the
ASIL which is incredibly advantageous and unfortunately necessary because of the cost
(manpower, labor, time, tools, etc.) associated to the development of safety critical sys-
tems. Tailoring of the ASIL is performed with two different techniques named ASIL de-
composition and criticality analysis. The ontology only supports ASIL decomposition as it
corresponds to design creative phase where tailoring is performed a priori while criticality
analysis tailors the ASIL a posteriori. Figure 2.41 comes from ISO 26262. It illustrates the
decomposition of a safety requirement with a defined ASIL into two other safety require-
ments with respective defined ASILs which are not inherited from the initial requirement

(before decomposition).

before
aRarnative aftemadve T
s ASILD decampasiions ASILD decomposiions ASILD decomposition
=
= 2 requirements; requirements requirements
2 E in5.48 in549 in5.4.8
]
£ JasL C(D)| + [ASIL A(D) ASIL B(D)| + |ASILB(D) ASILD(D)| + | QM(D) | after
decomposition
ik hefore
allednaive 141
5 ASILC ceionboarnatl| ASILC decomposition
CF
=2 requirerents requirernents
2 E in548 in5.48
@ | I
T |ASILB(C)| + |ASIL AC) ASILCC)] + | QM(C) after
decomposition
i hefore
aENEve g
= ASILB decompositions | ASILB decomposition
=g
= 2 requirements, requirernents
ZE in5.4.8 in5.48
3
< |ASIL AB)| + [ASIL AB) ASIL EE(B)I + | QM(B) I after
decomposition
hefore
decomposition
5 ASIL A B
a5
- §. requirements
ﬂ E in5.48
= ASIL AR + | OM(A) after
decomposition

Figure 2.41: ASIL decomposition schemes
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A decomposition following figure 2.41 involves a requirement, two sub-requirements
and additional requirements. In particular, a requirement of independence (Independen-
ceRequirement in figure 2.40) is defined for the safety studies to provide the evidence
that the resulting requirements are implemented by sufficiently independent elements. As
can be seen in figure 2.41, the ASIL before decomposition is recorded (in parenthesis)
by the resulting requirements. The relation hasASILObjectiveV alueBe foreDecompo-
sition_ Elem_ASIL is defined with Element U Requirement and ASILA U ASILB U
ASILC U ASILD as domain and co-domain. Along with relations hasASILValue -
Elem ASIL and hasASILValue Req ASIL, it records that the target level of risk
reduction, if attained, is sufficient for the more constraining previous one. The relation is
not useful for the classes System, SafetyGoal and Independence Requirement, therefore
it is constrained with an exact cardinality of 0 for the three classes. Figure 2.42 presents

the relations used to define ASIL decomposition.

FunctionalSafetyR equirement

ASILDecS...* \ASILISD createsindReq ASILDecSche IndReq"

(sDecomposedintoSubRequirement2 ASILDecS...* 2 ASILDecSche ASILM)ASILIsDecomposedinfol ASILDecSche ASIL'

TndependenceR equirement

Figure 2.42: Formalization of ASIL decomposition

As shown in figure 2.42, functional safety requirements are decomposed using the in-
termediate class ASITLDecompositionScheme and six relations. Property ASILDecom-
positionRelation FuncSafReq DecScheme records the functional safety requirement
which is decomposed and the property is constrained with a maximal cardinality of 1 as
not all the functional requirements are the object of ASIL decomposition. Properties is-
DecomposedIntoSubRequirementl ASILDecSch _Req and isDecomposedIntoSubRe-
quirement2 ASILDecSch _Req record the two sub-requirements in relation. Proper-
ties ASILIsDecomposedIntol ASILDecSche ASIL and ASILIsDecomposedInto? -
ASILDecSche ASIL record the ASIL of the respective sub-requirements. createsInd-
Req ASILDecSche IndReq records the requirement of independence involved by the
decomposition. These five relations are respectively defined with an exact cardinality of

1. Then the different decompositions of figure 2.41 are formalized with the respective sub-
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classes of ASILDecompositionScheme presented in figure 2.43 that are disjoints with one

another.

ASILDecompositionScheme

isa

BToBQM AToAQM BToAA CToAB DToDQM CToCQM DToBE DToAC

Figure 2.43: ASIL decomposition scheme subclasses

The range of ASTLIsDecomposedIntol ASILDecSche ASIL and ASILIsDecom-
posedInto2 ASILDecSche ASIL are respectively constrained to the adequate ASIL for
each subclass of ASTLDecompositionScheme as specified in figure 2.41. Axiom (2.56) is
given as an example. It ensures that the decomposition scheme which decomposes an ASIL
A into an ASIL A and a QM one is used by the functional safety requirements that have
an ASIL A. Similar axioms are defined for the other decomposition schemes of figure 2.41.
Naturally, properties hasASTLValue Req ASIL and hasASILObjectiveV alueBefore-
Decomposition Elem ASIL should be correctly configured for each sub requirement
according to figure 2.41, however the configuration actually depends on the structure of

the requirement which is defined in section 2.3.

ASILDecompositionRelation FuncSafReq DecSche(z,y) A

AToAQM (y) = hasASILValue_Req ASIL(z,” ASIL A”) (2.56)

2.2.2.3 Conclusion

In this section, part of the functional safety domain has been formalized with the focus
on the Preliminary Hazard Analysis (PHA) which is the basis of all the safety activities.
The functional safety ontology has been defined in order to be compliant with ISO 26262,
to promote a more systematic realization of the risk estimation activity with a mandatory
failure model, and to automatically perform risk evaluation as defined in ISO 26262. It
is important to note that the information provided by the PHA is actually completely
reusable as is for any similar system. We gave some leads on the further automation of

the PHA throughout the section. Ultimately, the PHA results in the evaluation of the
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ASIL relative to each system hazard. We ended setting the ontology up to support the
assignment of the ASIL on the system, its requirements, its functions and its components.
For reasons of unresolved ambiguities that correspond to licit incompatible interpretations,
the assignment of the ASIL remains manual. One objective of the realization of a domain
ontology is obviously to remove as much as possible these problems of ambiguity. This
removal has been actually purposely deferred to section 2.3 that takes advantage of the two
domain ontologies of systems engineering and functional safety to improve the preciseness

of their concepts which mutually reinforce one another.

2.2.3 Conclusion

Sections 2.2.1 and 2.2.2 present the respective formalizations of the systems engineer-
ing and functional safety domains into ontologies. These formal ontologies define in a
formal way the concepts manipulated by the two engineering fields and how those concepts
are related to one another. The formal syntax and semantics of the language enables to
automatically define consistency as the property that the asserted axioms are non contra-
dictory. Computer treatment enables to verify the ontologies consistency answering either
if the ontology is consistent or not. In case of inconsistency, the contradiction(s) are pre-
sented. The information that aims to be recorded in our ontologies benefits implicitly from
this consistent structure. Abiding with the structure is equivalent for the information to
have correct structure (i.e., the ontology at conceptual and information level is consistent),
ensuring quality. These ontologies are the carrier of structured knowledge. As the semantic
aspect of formal ontologies ensures that the structure of the concepts is understood in a
unique manner, the two ontologies bring together the understanding of the domains at
the conceptual level with the information that needs to be understood at this conceptual
level. In the case that the information is susceptible for reuse, it will be done with correct

understanding. For instance, reusing a component comes with all the functions it realizes.

In the end, these two ontologies correspond to two sides of the development process of
one single system. We concluded on systems engineering as the orchestrator of the other
engineering fields that contribute to the development. Systems engineering contains the

different system descriptions. The other engineering fields study the system based on these
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descriptions. In particular, functional safety is responsible for assigning an ASIL to all the
elements of systems engineering and demonstrating the absence of unacceptable residual
risks. Also, the results provided by functional safety engineers guide the design of the
system. As such, communication between these two engineering fields is of the utmost
importance. Section 2.3 presents the integration of these two domains into a domain
ontology for systems and functional safety engineers that enables precise communication

based on this shared conceptualization.

2.3 Global Domain Formalization

SE deployment and the increased concern to comply with ISO 26262 standard have
acted as a catalyst for developing synergies. Renault engineers from different fields, aca-
demics and other companies staff have been drawn together to work on these subjects.
At the most basic level, the need to share meaning on terms arises as barriers such as
dissimilar vocabularies, representations or languages can imped those synergies. This can
be answered by defining an ontology. It is a formal, explicit specification of a shared con-
ceptualization [Studer et al. 1998] pertaining to a domain. Our ontology is constituted
by a specific vocabulary of terms used in the domain with an explicit specification of their
meaning, i.e., definition of the concepts of the domain and their relationships. It defines
a structure of the domain and constrains the possible interpretations of terms. Informally,
an ontology enables a precise and non ambiguous communication as everybody shares the
same language. This section addresses the integration of the two domain ontologies pre-
sented in section 2.2.1 and 2.2.2 into a domain ontology that supports the design process
for both systems and functional safety engineers. The intent is to involve the functional
safety engineers in the design process as soon and as much as possible. Actually, other
engineering fields also impact system design but we support the value that nothing is more
important than safety. Section 2.3.1 presents the concepts integration concepts and focuses
mainly on the requirements which remained ambiguous. Section 2.3.2 concludes on ASIL
assignment. Finally, section 2.3.3 gives the conclusion on the formalization of systems en-
gineering and functional safety. The interested reader may also consult the ontology at the

following address: http://cedric.cnam.fr/ "taofif_o/.
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2.3.1 Systems Engineering and Functional Safety Domains Integration

The conceptualization of systems engineering and functional safety has been formal-
ized in sections 2.2.1 and 2.2.2. These two domain ontologies enable system engineers and
functional safety engineers to communicate using a defined structured vocabulary of terms.
These engineers are involved in the design process of safety critical mechatronics systems
with processes that correspond to each respective field presented in figures 2.1 and 2.26. In
particular, these two engineering fields manipulate some concepts that are similar, however
with a different focus and conceptualization. These different conceptualizations are trans-
lated in loss of knowledge at the processes interfaces which impeds communication between
the two domains. The systems engineering and functional safety ontology presented in this
section provides the two domains with a common semantic model where concepts ambigu-
ities are resolved enabling correct communication. Section 2.3.1.1 presents the integration
of the systems engineering and functional safety ontologies into a single domain ontology
for systems and functional safety engineers. Section 2.3.1.2 addresses integration at the

information level of detail.

2.3.1.1 Conceptual Integration

OWL is equipped with an importation mechanism that enables to manipulate different
ontologies into the same universe of discourse. The systems engineering and functional
safety ontologies are imported into a single ontology named systems engineering and func-
tional safety ontology. Their importation results in the attribution of different unique
namespaces that precede each identifiers. Here, p1: and p2: correspond respectively to the
namespaces of systems engineering and functional safety. For instance, pl: Requirement
corresponds to the class in the systems engineering ontology while p2:Requirement is used
for the class in the functional safety ontology. In the resulting ontology, it is now possible
to use any term from the previous ontologies inside the same universe of discourse. The
remaining work is the formalization of a conceptualization which is simply to define more
axioms (i.e., classes, properties and constraints). One difficulty when defining an ontol-
ogy lies in the fact that the formalized conceptualization comes from a consensus between

different actors that agree upon, and therefore share, the ontology. When integrating two
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ontologies, the difficulty is at the next level. A consensus involves more people and therefore
is more difficult to attain. Also, the defined conceptualizations can be incompatible which
forces to rework those ontologies to enable their integration. In the end the ontologies of
systems engineering and functional safety that have been presented correspond to the final
domains conceptualization where incompatibilities have been removed. The integration of

these two ontologies addresses the resolution of concepts ambiguities that remain.

The concepts that are at the interface of systems engineering and functional safety
correspond to system descriptions (architectures). The difficult part corresponds to the
requirements which is left to the end. The system, functions, flows and components are
similar / equivalent concepts in the two ontologies. To express this equivalence between
two classes we use set equivalence (symbolized by =). The sets A and B are equivalent
(A = B) means that A C B and A O B. In terms of classes, classes A and B are equivalent
(A = B) means that A is a subclass of B and B is a subclass of A. Then, according to the
axiomatization given in appendix A, the properties and constraints defined for a class are
semantically defined for the equivalent class, and the subclasses of a class that is equivalent
to another class semantically inherit all the properties of the two equivalent classes. For

the concepts of system, function, flow and component we have the following equivalences:

pl : System p2 : System
pl : Function p2 : Function
pl: Flow p2: Flow

pl : Component

pl : Inter face

pl : EEComponent
pl : Actuator

pl : Controller

pl : Sensor

pl : HWComponent
pl : SWComponent
pl : OtherComponent

p2 : Component

p2 : Inter face

p2 : EEComponent

p2 : Actuator

p2 : Controller

p2 : Sensor

p2 : HW Component

p2 : SWComponent

p2 : OtherTechnologyComponent

In order to benefit from the definitions provided by the two ontologies for systems
engineering and functional safety, we anticipated the reuse of relations that should have
their similar counterpart in the other ontology, which is why those counterparts are not
defined. The integration of the preceding concepts pose no particular difficulty as we did

not detect any incompatibility. The properties and constraints are defined correctly for
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all the classes. From the point of view of systems engineering, the concepts are enriched
with failures, ASILs and ASIL objectives information. From the point of view of functional

safety, the concepts are enriched with traceability and decomposition information.

The concept of requirement was relatively more difficult to integrate as its understand-
ing from the functional safety point of view is a bit ambiguous. The systems engineering
ontology defines the requirement concept from a fundamental point of view that is used as
a basis to understand requirements from functional safety. As such, we defined an equiva-
lence only between pl:Requirement and p2:Requirement. Figure 2.40 from section 2.2.2.2,
presents the different types of requirements that we retained for functional safety. Follow-
ing the design process timeline, safety goals are the top level safety requirements. They are
used to derive functional safety requirements which are used themselves to derive technical
safety requirements. From the fundamental point of view of systems engineering, safety
goals actually correspond to low level stakeholders requirements (from functional safety).
This is formalized by defining p2:SafetyGoal as a subclass of pl:Low Level Stakehol-
der Requirement (cf. figure 2.44).

pl:StakeholderR ecuirement

pl:HighL evelStalkeholderR ecuirement pl:LowLevelStalkeholderR equirement

A

EH]

p2:SafetyGoal

Figure 2.44: Integration of the safety goals

Functional safety requirements correspond to functional system requirements that are
used to deduce functions which tackle the dysfunctional behavior of the system. The
fundamental functional system requirements are formalized with the classes pl: Func-
tional High Level System Requirement and pl:Functional Low Level System Requirement.
As can be seen in figure 2.45, in the functional safety ontology, we actually defined the class
p2: FunctionalSa fetyRequirement as a subclass of p2: Functional Requirement which is

itself a subclass of p2: Requirement. The classes pl: Functional High Level System Re-
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quirement and pl: Functional LowLevel System Requirement are defined as subclasses
of p2: Functional Requirement. They are not disjoint with p2: FunctionalSafetyRequi-
rement as a functional safety requirement is either a high level or a low level functional
system requirement (as it can be decomposed or not). The derivation of a safety goal into a
functional safety requirement is possible as stakeholders requirements (that comprise safety
goals) are used to derive system and external requirements (which comprise functional

safety requirements).

p2:Requirement

A
Isa

p2:FunctionalR equirement
A

isa =4 €A

pl:FunctionalHighLevelSystemR equirement p2:FunctionalSafetyRequirement pl:FunctionalLowLevelSystemP equirement

Figure 2.45: Integration of the functional safety requirements

Functional safety requirements are used to derive technical safety requirements which
are formalized by constraining the range of pl:derives Req to p2:TechnicalSafetyRe-
quirement for p2: FunctionalSafetyRequirement. In order to be consistent with the
derivation relation defined for the functional system requirements into non functional re-
quirements, we defined p2:TechnicalSafetyRequirement as a subclass of pl:System-
ElementNonFunctional Requirement as can be seen in figure 2.46. The non functional
requirements on the system elements are either high level or low level ones depending on
their decomposition. This is formalized by the fact that p2:TechnicalSa fety Requirement

is not disjoint with the non functional requirements on the system elements.

pl:SystemElementN onFunctionalR equirement
A

P2 TechnicalSafetyRequirement plNonFunctionalLowLevelSystemElementReq... pl:NonFunctionalHighT evelSystemFlementRe...

Figure 2.46: Integration of the technical safety requirements
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As can be seen in figure 2.44 and 2.46, safety goals and technical safety requirements
are defined as subclasses of respective requirements from the systems engineering ontol-
ogy. As such, they automatically inherit all the relations and constraints that have been
previously defined for their superclasses and are sufficiently precise from the point of view
of systems engineering. Moreover, technical safety requirements are meant to be defined
as either high level or low level non functional requirements which will result for each
technical safety requirement to implement the axioms defined for the precedent high level
or low level requirements. Functional safety requirements need to be asserted as either
functional high level system requirement or low level ones. This assignment needs to be
done manually. It enables functional safety requirements to be automatically defined with
all the axioms of a functional high level or low level system requirement making its struc-
ture precise. The class p2: Independence Requirement needs to be made more precise
by considering the general concept of requirement presented in figure 2.3 from section
2.2.1.2. We disabled pl:hasPart_Req, pl:derives Req, pl:isAllocatedTo Req Syst,
pl:isCharacterizedBy Req, p2:hasASILValue Req ASIL and p2:hasASILObjecti-
veValueBe foreDecomposition Elem ASIL by defining an exact cardinality of O for all
these properties. We left the other properties of systems engineering open for use as inde-
pendence is actually an important concept of functional safety that is not yet completely
formalized. For now, the concept of independence can be associated to ASIL decompo-
sition presented in section 2.2.2.2. It involves a functional requirement decomposed into
two functional sub-requirements which are specified as independent with an independence
requirement. An independence requirement therefore can be used to characterize the in-
volved functional sub-requirements so we constrained the range of pl:characterizes Req
to p2: Functional Requirement. It can also be related to pl:deduces Req Func and
pl:deduces Req Flow to the functions and flows in relation with these requirements.
And finally, the notion of independence has some meaning related to the elements of the
functional and physical architectures of the independent functional requirements. The
related elements can be recorded with plisAllocatedTo Req Func, plisAllocatedTo -
Req Flow and plisAllocatedTo Req Comp.

The same customizations are made for the different types of requirements of systems
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engineering from the point of view of functional safety. The relations that correspond to
the failure model application (see figure 2.29 in section 2.2.2.1) are precise enough and do
not need further customization. As we defined pl:Requirement and p2:Requirement as
equivalent classes, the different types of requirements defined in the systems engineering
ontology (see figure 2.4 in section 2.2.1.2) inherit the relations p2:hasASILV alue _Req -
ASIL and p2:hasASILObjectiveV alueBe foreDecomposition  Elem ASIL. Following
the design process timeline, the latter property is first used on functional requirements
when ASIL decomposition is used. Therefore, it is disabled for the preceding stakeholders
requirements by constraining the property with an exact cardinality of 0 for the class. For
the other types of requirements, the property is not further customized as it will be used
situationally depending on the use of ASIL decomposition or not. Still following the design
process timeline, p2:hasASILV alue_Req ASIL is first defined for the safety goals (and
constrained with an exact cardinality of 1) which are low level stakeholders requirements.
Only the low level stakeholders requirements are the object of p2:hasASILV alue Req -
ASIL so the property is constrained with an exact cardinality of 0 for the high level
stakeholders requirement. We chose to assign an ASIL to all the other requirements that
correspond to the system design and is formalized by customizing p2:hasASILV alue -
Req ASIL with an exact cardinality of 1 for the classes pl:SystemRequirement, pl:Ex-

ternal Requirement and pl:SystemElement N onFunctional Requirement.

2.3.1.2 On Individuals Integration

In section 2.3.1.1, we presented how the similar concepts of systems engineering and
those of functional safety are made more precise by means of customization and by reusing
the definitions of one domain into the other. The other concern is the knowledge intended
to be recorded inside the ontology. The conceptual level of the systems engineering and
functional safety ontology enables the engineers of both domains to share a conceptual-
ization, hence enabling formal communication. At the level of the information contained
inside the ontology, individuals (or instances) of the classes and their structure (i.e., how
they are related to one another using the properties defined at the conceptual level) are

defined. For the ontology to be consistent, it is mandatory that they respect the structure
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defined at the conceptual level. This section discusses the expressiveness at the individuals
level of granularity and the integration of individuals with the focus on the satisfaction of

cardinality constraints.

Integrity Constraints. For readability reasons and for readers non familiar with Open
World Assumption (OWA), we presented the ontology using First Order Logic (FOL) and
Closed World Assumption (CWA). As a reminder, CWA means that what is not known
to be true is consequently false. In the ontology the integrity constraints are expressed
with minimum and maximum cardinality axioms (an exact cardinality is equivalent to
asserting a minimum and a maximum cardinality axiom with the same value). Because
the integrity constraints are defined as axioms in the ontology, verifying the ontology
consistency (including the individuals) automatically verifies that the integrity constraints
are respected. It is clear that checking the ontology consistency will not result in a positive
answer until all the individuals have been asserted and structured using the semantic
relations of the domain ontology. This is not realistic as all possible individuals define
a large set available only at completion. This is one of the reasons why we chose to
implement the ontology using OWL that uses OWA so that ontology consistency can be
checked early. In the following, we explain how the integrity constraints are checked in the
ontology implemented in OWL and SWRL. Under OWA, what is not known to be true
is not asserted to be true and therefore left unknown. When defining an individual that
needs to be in relation with at least one other individual (axiom of the domain ontology
that defines a minimum cardinality of 1), checking the ontology consistency under OWA
will not result in a contradiction of this axiom. OWA acknowledges incompleteness of the
information. It is understood that the individual is related to another, this individual
is simply not yet defined and / or put in relation with the former one. The integrity
constraints are nonetheless used in order to bring missing information to the surface such
as the list of low level functional requirements that are not related to at least one function
for instance. It is possible to implement this using a query language that has a CWA flavor:
we use SQWRL on top of OWL and SWRL. Finally, SQWRL queries are used to check

integrity constraints and if they return no result the integrity constraints are satisfied.
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Unique Name Assumption. Our ontologies have actually been implemented using
OWL and SWRL which do not assume the Unique Name Assumption (UNA). It means
that individuals with different names can refer to the same underlying individual or not:
they can be distinct. Even though it is possible to semantically infer that two individuals
are actually the same, the concepts defined in the ontology do not allow to exploit such
reasoning. UNA is commonly used at Renault by all the engineers so the intuitive way
to use the ontology in order to define individuals is to assert that they are all distinct.
However, even though the systems and functional safety engineers perform their activities
following the top-down design process, it is actually possible for different names to be
used to refer to the same underlying individual. On the one hand, as the activities are
performed as much as possible in parallel to reduce development time, they suffer from
iteration as prerequisite information necessary for their realization can change. For in-
stance, the definition of the system architectures are first based on the requirements from
systems engineering that do not address the dysfunctional behavior of the system. Based
on these requirements, the functional safety engineers study the dysfunctional behavior of
the system and use mental representations or models of the system architectures to produce
safety requirements. These architectures are actually provided by system engineers but if
they are not yet defined, safety engineers can make some assumptions on the architectures
to continue their activities. At one point these architectures will have to match. As the
two engineering fields are working on similar information, they can use different but more
meaningful names for their respective domain that need to be integrated for validation. On
the other hand, the implementation of the design process at Renault still mainly remains
document-centric and suffers from human errors. Communication at the interfaces of sys-
tems engineering and functional safety processes is done by exchanging documents (e.g.,
the System Stakeholder Requirement document is a prerequisite to the Preliminary Hazard
Analysis, see figure 2.26). The information contained inside the documents is transformed
manually into specialized domains models to produce or complete documents which suffers
from human errors as the same underlying information can be named differently. Not using
UNA represents this problem. It allows for the different domains to use the name of their

choice to refer to an object. The information can be validated if the same individuals and
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the distinct ones are asserted. As previously mentioned, using UNA is done by asserting
that all the individuals are distinct. For the information to be validated, one has to check
that no different names are used for the same underlying individual. We chose to allow
engineers to use the name of their choice to refer to the same underlying individual. More-
over, tools that manipulate the information contained inside the ontology can take the
opposite assumption (by asserting all the individuals, that are not asserted nor inferred
to be the same, to be distinct). In particular, this is done when checking the integrity

constraints.

2.3.1.3 Conclusion

In this section, we presented the systems engineering and functional safety ontology.
This domain ontology captures a non ambiguous conceptualization shared by the systems
and functional safety engineers that enables quality communication. From systems engi-
neering, the ontology contains the different system descriptions (in terms of requirements,
functions, flows and components) and how they are related to one another. From func-
tional safety, the same descriptions are manipulated with additional ASIL information that
comes from the supported PHA activity. As of now, the concepts of the ontology are inte-
grated ,i.e., they are precise because they were disambiguated. Section 2.3.2 is an attempt
to involve the safety engineers as soon as possible during the design process. It presents
how safety aspects of the system are defined as soon as possible in a more systematic
manner and how we eased their progressive association with finer and finer grained system

descriptions based upon the ontology.

2.3.2 Ontology Based ASIL Propagation

In section 2.2.2.2 we presented how functional safety is based upon the notion of ASIL
that we represented as an attribute of the system descriptions. ISO 26262 can be viewed
as the state of the art for the practice of functional safety in the automotive domain. It
remains very general in order to reach all the actors in the entire field. The implementation
of the standard is specific to an individual actor according to its characteristics. This

section presents how the general design process of ISO 26262 at system level is understood
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at Renault. In particular, ASIL assignment activity is made precise and we define a semi-
automated analysis called ASIL propagation that assigns the correct ASIL to the concepts
of the system which is possible only due to the semantic commitment with the systems
engineering and functional safety ontology. Section 2.3.2.1 focuses on the introduction of
safety aspects into the functional "genes" of the design and returns on traceability to remind
about the different system descriptions that will inherit these genes. Section 2.3.2.2 defines
the semi-automatic propagation of the ASIL throughout the different system descriptions.

Section 2.3.2.3 gives the conclusion.

2.3.2.1 Systems Elements Traceability Establishment.

We presented the traceability during the design process from the requirements to the
system architectures in section 2.2.1.5. Traceability records how the requirements are ma-
terialized into architectural elements of the system. As we address the development of
critical systems, we advocate a top-down approach for the design process as it enables to
consider safety which is an emergent property of the system that is impossible to observe
at a finer grained level of detail. The intent is to introduce the safety aspects into the func-
tional "genes" of the design in order for the system to be developed towards acceptable
risk. In ISO 26262, this is done by defining safety goals as top level safety requirements.
Then, these safety goals are made more precise into other safety requirements materialized
into architectural system elements. At Renault, the objective is to involve safety engineers
as early as possible so we use the functional requirements that are directly related to a
system mission to start the safety activities. Axiom (2.57) expresses that each of these
functional requirements are respectively the object of at least one degraded, lost and un-
timely failures which represent the systematic application of the failure model presented
in section 2.2.2.1. The continuation of the PHA ends up with the ASIL being assigned to

the safety goals.

Jx Iy Iz plderives Mis FuncSystReq(m,r) =
p2:fails _FuncReq FuncReqDegradedFailure(r,x) A
p2:fails FuncReq FuncReqLostFailure(r,y) A
p2:fails _FuncReq FuncReqUntimelyFailure(r, z)

(2.57)

In ISO 26262, the safety goals are used to derive functional safety requirements that
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are themselves used to derive technical safety requirements. Naturally, our intention is to
respect this structure and propagate the ASIL from the safety goals to the functional safety
requirements and then to the technical safety requirements. The structure recorded by the
system and safety ontology enables to record traceability information that explains more
precisely how the safety goals (which are low level stakeholders requirements) are consid-
ered. One feature of our ontology is that the safety engineers have been solicited as early
as possible in the design process. The classifications of the safety goals as stakeholders re-
quirements, the functional safety requirements as functional system requirements, and the
technical safety requirements as non functional requirements on the system elements, high-
light and promote their most important contribution in the system design. For instance,
the safety requirements do not relate with the usual notion of a non functional requirement.
We partitioned the requirements between functional and non functional requirements and
defined that a functional requirement is used to deduce at least one function. It is under
this interpretation that the safety goals are considered. As any other stakeholder require-
ment, they are taken into account by the functional system and external requirements (see
section 2.2.1.2). In other words, the derivation of a safety goal into a functional safety
requirement makes more sense from the point of view of systems engineering. Funda-
mentally, these requirements are functional system requirements which are considered by
functions and components that respectively belong or are external to the system (see sec-
tion 2.2.1.5). The safety engineers perform their safety studies which result in additional
elements of systems engineering to ensure the safety property for the system. Ensuring
their participation in the activities of systems engineering will improve the system design
(without safety aspects) by benefiting from their expert knowledge (for instance, they can

point out when a design is of poor quality because they know it will be hard to secure).

The safety goals actually come from the analysis of the functional system requirements
that are related to a system mission. The design of the safety goals corresponds to the de-
sign of those functional requirements into functions and the components that realize these
functions. The consideration of non functional requirements is naturally still mandatory
for the design but can be treated in parallel. They are inconsequential with respect to func-

tional safety. Functional safety analyses address both the functional system descriptions
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and their physical implementation. Finally, the establishment of traceability should record
how the safety goals are taken into account by the design using the relations presented in

figure 2.47.
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Figure 2.47: Traceability for functional safety

The figure presents the different concepts and relations that are used to establish the
traceability relative with functional safety. Following the design process timeline, traceabil-
ity is established between the different levels of detail of the process. The safety goals are
taken into account by the development of the functional system requirements that were an-
alyzed during the PHA. Informally, each safety goal should be related through a derivation
relation with at least one functional system requirement. We enabled the decomposition
of the functional system requirements into high and low level ones and explained that it
was sufficient to establish traceability with the low level ones for all these requirements
to be considered. The low level functional system requirements are used to deduce the
system functions that have similar hierarchical structure. Downwards traceability is then
established between functions and system components. Similarly, it is sufficient to estab-
lish traceability between the low level system functions and the components by means of
allocation relations. These concepts and relations account for the system under develop-
ment. On the right hand side of figure 2.47, the gray rectangles represent the external
counterpart of the previous concepts gathered on the left hand side. The relation with

the system environment enables to design functional safety as an emergent property that
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can be observed at the adequate level of detail. The functional requirements, functions
and components that are external to the system have the same structure with the only
difference that we disabled their decomposition. The only point of detail concerns the
functional external requirements. They can be related directly with the safety goals (as
stakeholders requirements) but we really want to record the relation with the functional
system requirements to explain that these external elements are indirectly involved in the

functional safety of the system under development.

Finally, in addition to the informal semantics that the structure of the information
needs to capture, we have to verify that traceability has been established in a consistent
manner. The axioms on cardinality used in the ontology reflect the notion of integrity
constraints that need to be fulfilled to conclude on the completeness of the information
recorded inside the ontology. If the ontology (including the individuals) is consistent then
all the integrity constraints are satisfied (and reciprocally). Clearly, this verification is
possible only at the end of the design process when all the information has been given and
all individuals introduced. Each cardinality constraint can and should however be verified
independently following the design process timeline when necessary information is available

by using a query language.

2.3.2.2 ASIL Propagation.

As mentioned in section 2.2.2.2, ISO 26262 is vague concerning ASIL assignment. It
only specifies how the ASIL is assigned to the safety goals and how the ASIL is assigned
to architectural system elements from the ASIL of the functional safety requirements in
relation. We already presented the assignment of the ASIL to the safety goals. For the
architectural elements, the rule is that the maximum ASIL of the functional safety require-
ments in relation with an architectural element is assigned to it. We retain this general
idea that the assignment of the ASIL should be conservative of the mazimum ASIL of the

elements in relation.

Traceability records how functional safety is taken into account by the design process
from the safety goals to the elements of systems engineering. If traceability is correctly

established as presented in the previous section, it becomes possible to semi-automatically

168



2.3. GLOBAL DOMAIN FORMALIZATION

assign an ASIL to the elements of systems engineering by propagating the ASIL from the
safety goals. This is done using traceability relations. We called this a priori analysis ASTL
propagation. The analysis is semi-automatic because ASIL can be reduced a posterior:
using criticality analysis. Making this analysis automatic would result in the ASIL prop-
agated (assigned) a priori to contradict the ASIL obtained with criticality analysis. For
example, suppose that we only have one safety goal with an ASIL D in the ontology. Using
ASIL propagation based on the traceability closure of the information, all the elements of
systems engineering would be assigned the same ASIL D. However, if criticality analysis
concludes that the ASIL of a specific architectural element can be tailored, for instance
to ASIL C, then this element would have two different assigned ASIL, which contradicts
the cardinality constraints of exactly one ASIL for an element. Let us note that the auto-
matic propagation will propose highest ASIL required. The fact that some elements will
be assigned two different ASIL will point out the necessity to check precisely its effective
value. In the following, ASIL propagation is presented with different axioms and, as a
result of the state of affair with ASIL tailoring, some of them must be considered with
particular attention which is stressed when needed. ASIL propagation is performed using
the traceability relations presented in figure 2.47, from the most abstract level of detail to

the most concrete.

The ASIL of the safety goals can be propagated to the functional system requirements
related by pl:derives Req. As different safety goals can be related to the same require-
ment, the maximum ASIL of these safety goals has to be assigned to the functional system
requirement. Let maxASIL be the function that returns the highest ASIL of a set. Axiom
(2.58) can automatically assign the highest ASIL of the safety goals of a functional system
requirement to this functional system requirement. However, the safety goals can also come
from other interacting systems which functional safety can be impeded depending on the
correct functioning of our system. This is problematic and it results that this axiom is

actually not used for the automatic propagation. It is nonetheless saved as it represents
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the intention for the development to follow a top-down approach.

let
Z ={z| p2:hasASILValue _Req ASIL(x,z)}
a =marASIL(Z)
in  p2SafetyGoal(z) N p2:Functional Requirement(y) A
pliderives  Req(x,y) A p2:hasASILV alue Req ASIL(z,z) =
p2:hasASILV alue _Req ASIL(y,a)

(2.58)

The functional system requirements are structured hierarchically using pl:hasPart -
Req. This hierarchical structure corresponds to the definition of the specification for the
system where requirements are made more precise in order to be developed. Ideally, the
safety goals are related to the most abstract functional system requirements (they are at
the top of the hierarchy) as they are the result of the PHA done on the most abstract
functional requirements that correspond to system missions. We want to propagate the
ASIL from these functional requirements to their whole decomposition closure. There are

three points of detail to be discussed.

First, the safety goals are expressed for risks evaluated with an ASIL greater than QM
(that stands for Quality Management). To also record the information relative to ASIL
QM (meaning that this information is not safety related), we use axiom (2.59). Informally,
the functional system requirements that are the object of the PHA are assigned with the
highest ASIL evaluated for their identified FCEs (see sections 2.2.2.1 and 2.2.2.2). Note
that this ASIL propagation from FCEs to the functional system requirements in relation
captures the intention of axiom (2.58) as the safety goals (of the system) are naturally
related to these functional system requirements.

let
Z ={z | p2hasASILValue _Req ASIL(y,z)}
a =maxASIL(Z)
m p2:Functional Requirement(xz) A p2:failureImplies _Elem_FCE(x,y) A
p2:hasASILV alue HazFEvent ASIL(y,z) =
p2:hasASILValue Req ASIL(x,a)

(2.59)

Second, while axiom (2.59) captures indirectly the propagation of the ASIL from the
safety goals to the functional system requirements with the additional information that
some of them can be assigned an ASIL QM, the axiom does not capture the reality com-

pletely as some safety goals can come from interacting systems. These safety goals can
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actually be related to more precise requirements than the functional system requirements
at the top of the hierarchy which has to be considered for the propagation. For instance,
assume that we are developing a brake system. The most abstract requirement that cor-
responds to the system mission of deceleration is "The braking system shall decelerate the
vehicle”. Using the relation of decomposition, this requirement is made more precise and
the deceleration is actually possible by capturing information about the vehicle speed: "The
braking system shall capture the longitudinal speed of the vehicle”. Naturally, deceleration
is safety critical and the requirement should be assigned an ASIL D that is propagated
throughout its decomposition closure. For the purpose of the example, we assign an ASIL
C to the two requirements. The information on the longitudinal speed is also needed by
the steering system. At Renault, a safety goal actually corresponds to the direct negation
of a feared customer event with an ASIL. This enables to address functional safety at the
customer level where the safety property is observable. The dysfunctional studies for the
steering system resulted in the definition of the safety goal "No loss of steering, ASIL D"
and the assignment of this same integrity level to the external functional requirement "The
braking system shall send the longitudinal speed of the vehicle”. For the braking system,
this requirement is a safety goal (and a stakeholder requirement) that relates with a func-
tional system requirement part of the decomposition of the capture of the longitudinal
speed. In this case, propagating the ASIL of the functional requirements will result in the
assignment of two different ASILs to some requirements. Naturally, the most stringent has

to be assigned.

Third, ASIL decomposition can be applied toany high level functional system require-
ment, see section 2.2.2.2. If a requirement is the object of ASIL decomposition, information
on objective ASIL (i.e., the ASIL preceding ASIL decomposition) must also be recorded
and propagated.

For space reasons, further axioms that are used for ASIL propagation are given in
appendix B. ASIL propagation in the hierarchy of functional system requirements addresses
the previous issues and is performed with the axioms gathered in appendix B. Note that
the safety goals of the system are intended to be related to all the top level requirements

in the hierarchy of the functional system requirements. This was not enforced but can be
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easily checked.

Axiom (B.1) expresses that a functional system requirement is assigned the highest
ASIL among the ASILs of its direct super-requirements that are not the object of ASIL
decomposition, its related safety goals, and of the relevant part of ASIL decomposition
the requirement (as a sub-requirement) is the object of. Then, if a requirement is the
object of ASIL decomposition, its sub-requirements that have their ASIL tailored and
their hierarchical closure are assigned an objective ASIL (i.e., the ASIL of the super-

requirement).

Axiom (B.2) states that a functional system sub-requirement is assigned the highest
ASIL as an objective ASIL among the ASIL of the super-requirement that is the object
of ASIL decomposition. This also concerns the sub-requirement and the objective ASIL of

its direct super-requirements.

Following figure 2.47, we now study ASIL propagation from the functional system
requirements to the system functions. The propagation of the ASIL from the safety goal
throughout the hierarchy of functional system requirements is correctly done, i.e., the
highest ASIL has been assigned and all the low level functional system requirements have
an ASIL attribute instantiated. In addition, information about objective ASIL has also
been propagated if it applies. As we explained, in order to take into account all the high
level functional system requirements, it is sufficient that only the low level ones are related
to the functions. This still applies to safety aspects so the propagation is defined from the

low level functional system requirements throughout the hierarchy of system functions.

Axiom (B.3) expresses that a system function that has no ASIL assigned, is assigned
the highest ASIL among the ASILs of both its direct super-functions and its related low

level functional system requirements.
Axiom (B.4) assigns objective ASIL to system function in the same way.

As previously discussed, the system functions (as architectural elements) can be subject
to ASIL tailoring as a result of criticality analysis. If axiom (B.3) is used to effectively
assign the ASIL to the system functions, ASIL tailoring will possibly assign a different

ASIL to some of them and result in a contradiction. Moreover, part of the propagation
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could also be too restrictive as an ASIL that is too high is assigned to the sub-functions of
the function that have seen its ASIL tailored by criticality analysis. In order to ensure that
we do not assign two different ASIL to the same function, the consequences of axiom (B.3)
(i.e., the assignment of the ASIL to the functions) are treated only as entailed conclusions
that must not be added to the ontology until criticality analysis has ended for the functional

architecture.

Let us note that it is possible that not all the system functions are assigned with an
ASIL (even as entailed conclusions) as the structure enables to relate the functional system
requirements to sub-functions. Traceability (more precisely, the cardinality constraints and
the use of axiom (B.3)) ensures that all the low level system functions have an ASIL which
is enough to present ASIL propagation. We nevertheless defined that all the functions
should have an ASIL so the capability to backward-propagate the ASIL from the low level

functions to the top of the hierarchy exists but is not presented.

Similarly, now that all the low level system functions have an ASIL assigned (this is
sufficient for the consideration of all the system functions), it is propagated to the system

components.

Axiom (B.5) expresses that a system component that is not already assigned with an
ASIL is assigned the highest ASIL among the ASILs of its direct super-components and

its related low level system functions.
Axiom (B.6) assigns objective ASIL to system components in the same way.

Criticality analysis can also be used on the components for the tailoring of their ASIL,
the consequences of axiom (B.5) are treated only as entailed conclusions until criticality
analysis has ended for the physical architecture. Similarly, functional system requirements
can be related to sub-functions, low level system functions can be allocated to system
sub-components resulting in the possible existence of a component with no ASIL assigned
to it. It is important that all the components have an assigned ASIL. The components
partitioning into hardware and software reflects the selection of which components will be
subject to further development (at hardware and software level) with specific requirements

of ISO 26262 defined by the ASIL of the component. As with axiom (B.5), all low level
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components are assigned to an ASIL, we can fully (i.e., completely) backward-propagate

the ASIL of the components for all the components to have an ASIL.

Axiom (B.7) (respectively axiom (B.8)) states that a system component that is not
already assigned with an ASIL (respectively objective ASIL) is assigned the highest ASIL
(respectively objective ASIL) among the ASILs (respectively objective ASILs) of its direct
sub-components. The consequences of these axioms can be produced but are also treated as

information that is not added to the ontology as they can be subject to criticality analysis.

Finally, we address the propagation of the ASIL to the elements that are part of the
system environment. As can be seen in figure 2.47, the functional external requirements
are derived from the functional system requirements. This traceability between these two
types of requirements should be inspected with care. It is possible and it makes sense to
derive a functional external requirement from an abstract functional system requirement.
However it is possible, because of ASIL decomposition, that we assign an ASIL that is too
high to an external requirement. Therefore the traceability has to be established with the

functional system requirement that is the less abstract.

Axiom (B.9) propagates the correct ASIL to all the functional external requirement
(the highest ASIL of the functional system requirements in relation with one functional
external requirement is assigned to this requirement).

Axiom (B.10) does the same for the objective ASIL of the functional external require-

ments.

Axiom (B.11) propagates the ASIL from the external requirements to the external

functions
Axiom (B.12) is the similar counterpart of axiom (B.11) for the objective ASIL.

Applying axioms (B.13) and (B.14) will respectively result in propagating the ASIL and
objective ASIL at component level from the external functions to the external components

(external system elements).
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2.3.2.3 Conclusion

This section covers the interpretation of ISO 26262 specifically for Renault. In this
approach, the safety studies start as early as possible. Safety aspects represented by the
ASIL are integrated in the most abstract system elements that will be made precise along
the design process timeline. Based on the system and safety ontology, ASIL assignment
is presented as the semi-automatic propagation of the ASIL from these most abstract
elements to the most concrete ones at system level. If the general idea for ASIL assignment
is relatively shared by all the actors of functional safety, it is still done manually in practice
as a result of document-centric approaches. Here, ASIL propagation is defined precisely

for ASIL assignment to be done correctly.

2.3.3 Conclusion

In this section, we presented the domain ontology for both systems and functional
safety engineers. It is defined by integrating the two ontologies from section 2.2. This
made apparent the ambiguities of the universe of discourse that had to be solved when
these two domains are confronted with one another. The result is a systems engineering
and functional safety ontology. It defines formally the concepts and relations of the two
domains enabling precise communication between the systems and safety engineers. Specif-
ically, the now shared conceptualization solves loss of knowledge at the processes interface.
Moreover, it is an asset for the synergy of all the engineers and encourage for their tighter
collaboration. As an example of these synergies, ASIL propagation has been presented. It
exploits traceability to support the correct top-down propagation of the safety aspects (i.e.,
the ASIL) to the elements of systems engineering. The same conclusions can be formulated
for any domain ontology. The two domains integration, however, increases the scope of
these conclusions. This exceeds the reach of this section, but, finally, consistency is now a

property shared by the two domains.

The systems engineering and functional safety ontology is one of the concrete contri-
bution of this work. As an answer to a need for better formalization, it is the most precise

solution. The ontology is realized with the help of Protégé 3.4.4% which is an editor of

4protege .stanford.edu
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OWL ontologies. This version of Protégé includes in particular a plug-in for SWRL and
an interface with the rule engine Jess® to execute SWRL rules. As of now, the ontology
consists in 140 classes, 103 properties and 391 constraints. The generated documentation is
available at the following address: http://cedric.cnam.fr/“taofif_o/. In section 2.4,
we present the extent of having our domain ontology to improve the design process at

Renault.

2.4 Ontology Centric Design Approach for Safety Critical
Automotive Mechatronics Systems

The development of automotive mechatronic systems requires the participation of dif-
ferent professional fields (e.g., vehicle architecture, mechanics, electronics, software, etc.),
each having its own language, its own jargon. Knowledge and information are often im-
plicit to one specific professional field. They are known to experts or specialists of the
profession, but are not always well capitalized and, therefore, they are unknown to the
other fields or, even worse, lost if those experts or specialists change of position. It is the
role of system engineers to effectively take into account all those system stakeholders (i.e.,
the professional fields concerned with the system) and orchestrate their contributions in
the big picture as to develop a correct system solution. We underline in particular the
heterogeneous nature of the automotive industry where many tools (and languages) can be
used by Renault and its suppliers. For example, used or considered tools include (but are
not limited to) Reqtify for requirements management and traceability, UML / SysML Pa-
pyrus or Enterprise architect for model development, ArKltect for the whole development
process including safety activities, Matlab/Simulink for the analysis of functional behav-
ior, Statemate for the analysis of physical behavior, Aralia for the development of fault
trees, and so on... System engineers must overcome a consistency problem to integrate this

heterogeneous environment.

From a syntactic point of view, the consequences are not too severe. Syntax consistency
problems arise when two different terms are used to denominate one same thing. As a usual

example, we often work with documents and models that have terms in English and French

Pprotege.cim3.net/cgi-bin/wiki.pl?SWRLTab/
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languages. Consequently, we might say that working with two models with different names
just takes more time. As the meaning is not altered, we can somehow understand how it
all comes down together. It is just a matter of realizing "he calls this thing that way” and
living with that. From the semantic point of view, however, the problem takes a completely
different dimension. The problem can be resumed to the utilization of one same term by
two different professional fields to designate respectively two different concepts. This can
lead to situations that are so contradictory that we might end up trying to solve a problem
with no solution. Ultimately, when the actors of different professional fields exchange
some information or knowledge; some are lost either by communication omission or by
misinterpretation of this information [Burr et al. 2005]. The other possible consistency
problem is less fundamental but equally important and consists in inter-domain consistency.
As the development is executed in parallel by different fields, each of them relies only on
the information relevant for their studies. The information manipulated by the different
fields (used or produced information) can intersect and the difficulty is to guarantee that
all the fields are working with consistent information ensuring consistency of the design

process [Papadopoulos et al. 2001].

Section 2.4.1 presents the systems engineering and functional safety ontology as the
reference model placed at the heart of the system design process. The ontology enables
to guarantee the design process consistency. These ideas were the subject of a precedent
communication that can be found in [Chalé Gongora et al. 2011]|. Section 2.4.2 presents
our design approach for safety critical automotive mechatronics systems at Renault which

is more precise than the current general one. Finally, section 2.4.3 gives the conclusion.

2.4.1 Place of the Ontology in the Design Process

Renault is currently transitioning to a Model-Based System Engineering (MBSE) pro-
cess for the development of its vehicle systems. The use of formal and informal (but
consistent) models to create a common semantic model is expected to facilitate systems
engineering activities and to avoid the encountered drawbacks of previous document-centric
implementations of the process, which were lacking semantic consistency among the dif-

ferent modeled objects [Chalé Gongora et al. 2009, 2010]. The objective of MBSE is to
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produce and control a consistent, correct and complete global model of the system, which
contains all information that specify, design or will allow verifying and validating the sys-
tem. The main benefits, as they are emphasized by Estefan [2008| and Friedenthal et al.
[2008], of implementing MBSE include the following:

— improved quality through a more rigorous and costless traceability between require-

ments, design, analysis and testing

— increased productivity through the reuse of models and automated document gener-

ation

— enhanced communication by integrating views of the system from multiple perspec-

tives

The risk of developing inconsistent models that have different conceptualizations of the
same system according to their own viewpoint still remains very present. Incompatibilities
or incomnsistencies between models discovered too late in the development process may
produce huge costs. Consistency is then a crucial issue and needs to be maintained at all
levels in the development process. In a MBSE approach, the consistency problem can be
formulated as the demonstration of the consistency of any models couples. As shown in
figure 2.48, we propose to introduce the systems engineering and safety ontology as the
central element of the system design process. In this figure, we separate into two branches
the activities pertaining to system design and safety presented in sections 2.2.1 and 2.2.2.
The ontology is instantiated for the system under development. This instantiation serves

as the consistency reference model for the project.
2.4.1.1 Use of the Reference Model

The actors of a development project, independently of their respective fields or area of
expertise, will refer to the ontology (a shared conceptualization of the system and safety
engineering domain and of the system under development) to verify and validate the com-
pliance, the completeness and the consistency of the information (i.e., documents and

models) produced by the system design and safety activities.
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Figure 2.48: Central role of the system and safety ontology in the design approach

Figure 2.49 illustrates the possible uses of an ontology in a model-based approach. The
figure presents the example of two Simulink models, but the approach is applicable to other
types of models. In this example we are interested in the signals (i.e., the solid straight
arrows) of Simulink models. The ontology models this concept with the flow class and its
attribute (not represented in the figure) maxValue. We can define semantic consistency
relations with the help of transformations or mappings between the domains of the ontology
and of the language of the Simulink tool, on the one hand, and between the instances of

the ontology and the instances of Simulink elements, on the other hand.

Assuming we have defined that Simulink signals are equivalent to the ontology flows,

it is then possible to:

1. Enrich the ontology: All the signals of a Simulink model will enrich the ontology
instances. In the figure, the signal Torque Frein_ FElectrique of the Simulink model
defines the flow Flow 001 in the ontology. For this flow, we define a unique maximal

value of the braking force mazTorque.

2. Use the knowledge in the ontology: A second Simulink model will be able to use the
flows of the ontology and gather the information previously defined. In the figure,
the flow Flow 001 of the ontology and the signal FElectrical Brake Torque of the
second model are equivalent. In Simulink, this signal should connect to a port that

enables to type the flow. In our example, this value has an upper bound equivalent
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Figure 2.49: Uses of an ontology as a reference model of a MBSE approach

to maxTorque.

3. Verify the consistency of a model with respect to the ontology: If the signal FElec-
tric_brake_Torque (that models a flow representing the braking torque of the elec-
trical engine) does not exceed in simulation the maximum value mazTorque, then
the signal is coherent with the ontology (for the max Value relation). Generalizing to
all the relations defined into the ontology, we can assess the consistency of a model

compared to the ontology.

4. Verify that two models are consistent: If we have defined a mapping between Flow 001
and Torque_ Frein_ Electrique and between Flow 002 and Electrical _ Brake_ Torque,
then a user can notice that those two instances are equivalent since they represent
the same element in the system, even though two designations are used in the models
(one in French and the other in English). Defining an equivalence between those two
instances will however result in an inconsistency. In figure 2.49, two different val-
ues have been defined for mazValue (i.e., mazTorque is different from mazTorque2)

whereas in the ontology we specified that a flow can only have one maxValue. In
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the opposite case (i.e., mazTorque is equal to mazTorque?2) and generalizing, the
two models are consistent and, once again, they describe the same system and we
have some evidences that a solution for the system exists. Generalizing even more,
it becomes possible to verify some form of consistency of the whole system design

through an ontology.

In a general manner, the project actors create information in documents and models.
The ontology will enable them to verify the consistency, the completeness and the confor-
mity of the produced information. Once verified, the new information can be imported
into the ontology [Kergosien et al. 2010|. The ontology can also be viewed as a knowledge
base. Queries can then be developed to bring relevant information to the surface such as
the list of requirements related to one specific function for example. Reference information
can be exploited to produce new views (system views) and generate new information [Sure
et al. 2002]. In our ontology, we generate information about a priori ASIL for instance.
The ontology is therefore the reference (model) that, on the one hand, contains the ref-
erence information that describes the system under development and, on the other hand,
connects the information it contains with the information present in the documents and

models produced during the course of the system development project.

Another key element in MBSE is the transformation of models which allows the defi-
nition and implementation of operations on models. Using model transformation enables
the automated or computer assisted development of a system from its corresponding mod-
els. Similarly to its role to ensure semantic consistency of models, the ontology can ensure

semantic integrity when using model transformation. This is the object of the next section.
2.4.1.2 On Model Transformation

Model transformation is an essential part of the MDA framework (see section 1.2.3.2).
In this framework, models are based on meta-models that comply with the Meta-Object
Facility (MOF) standard of the OMG that uses the layered concepts of instance, model,
meta-model and meta-meta-model. Model transformation is the automatic generation of

a target model (the result of the transformation) from a source model (the input of the
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transformation) by a transformation engine according to a transformation model (a set of

transformation rules), see figure 2.50 below.

Meta-Meta-Model (MMM) j Complies with

Complies with A Complies with
Complies with
Source Meta-Model (MMa) Transformation Meta-Model N Target Meta-Model (MMb)
(TMa)

[y [y A
Complies with

Transformation Model (TM)
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A

exec

it
Source Model (Ma) read Transformation engine write Target Model (Mb)

Figure 2.50: Elements of model transformation

Transformation rules are defined whenever possible for the meta-model level and written
as expressions of transformation languages. In the MDA framework, transformation rules
are entered into a transformation tool, which can then automatically interpret them and
execute the transformation. For that purpose, a formal syntax for writing transformation
rules must be defined [Anneke et al. 2003]. In the case of automatic model transformations,
the mapping between the different concepts has to be developed only once for a pair
of meta-models, not for each model instance [Levendovszky et al. 2002]. Therefore,
the specification of meta-models is a prerequisite for the execution of automatic model

transformation.

In MBSE, a model allows capturing the relevant aspects of a system from a given per-
spective, and at a precise level of abstraction. During the system development, different
model types are realized to represent specific possible system views for any of the de-
sign process activities (specifications analysis, system architectural design, validation and
safety analysis). The models should contain only the aspects needed to support the design
process phase they are used in, hiding unnecessary complexity. Models are supported by
languages that have at least a well defined structure (i.e., syntax) and in some cases a well
defined meaning (i.e., semantics). When the syntax and semantics are well defined (i.e.,

mathematically defined) the language is connoted formal. In MDA, meta-models are used
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to define the syntax and semantics of languages. Most meta-models are semi formal in
the sense that their syntax is formal but their semantics is not. Following those semi for-
mal meta-models, model transformations operate essentially at the syntax level but always
embed implicitly some semantic knowledge [Roser and Bauer 2005] that ensures the inter-
model consistency. We argue that the system and safety ontology can make explicit the
part of the semantic knowledge that is common to the source and target domains involved

in a transformation.

We propose a framework that ensures model transformations consistency (at the se-
mantic level) with the ontology. Figure 2.51 illustrates this framework. We build upon
the framework of model transformation as defined by the OMG so we can see two meta-
models, source and target, with the transformation model in the center. For the purpose
of the example we represented two transformation models in the figure. At the top of
the figure, we place the system and safety ontology that defines those domains with their
concepts and relations. Actually, both meta-models and ontologies can be used to define
concept and relations [Séderstrom et al. 2001] so meta-models and ontologies can be used
independently as the meta-model in MOF for model transformations. The terms map-
ping and transformation are interchangeable and can be used indifferently but the term
mapping is encountered more frequently in ontology literature so we will use this term
when the transformation involves an ontology. In the framework, a model transformation
is still defined independently from the ontology. However, the meta-models involved in the
transformation need to be mapped with the ontology, so we define one mapping from the
ontology to each meta-model (Source Mapping and Target Mapping). In the figure, we
only represented some concepts of the meta-models and the ontology but the idea can and
has to be generalized to relations. Mapping the ontology to the meta-models involved in a
transformation enables to define the concepts of the meta-models that are equivalent with
respect to the ontology. For instance, the concept C of the source meta-model and the
concept ¢ of the target meta-model are equivalent as they are respectively mapped with the
same concept J in the figure. Those equivalent concepts enable to define the consistency

of a transformation with respect to the ontology.

In the figure, Transformation Model 1 is consistent with the ontology as all the transfor-
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Figure 2.51: Model transformation framework

mation rules are consistent with the ontology, ¢.e., all the source concepts that are mapped
with the ontology are transformed into their equivalent target concept and all the target
concepts that are mapped with the ontology have been transformed from their equivalent
source concept. If a source concept is not subject to transformation (e.g., concept A
is not the object of transformation) the consistency property still holds. The framework
does not allow checking the counsistency of concepts outside the ontology so we disregard
the transformations of those concepts as they are neither fundamental for systems engi-
neering nor for safety. Transformation Model 2 illustrates the contrary as source concept
A is transformed into target concept v and those concepts are not mapped to the same
ontology concept (1 is mapped to A and 6 is mapped to 4v. I and 6 are not equivalent).
The transformation is inconsistent with respect to the ontology. If a source concept not
mapped with an ontology concept is transformed into a target concept mapped with an
ontology concept then the transformation is inconsistent (e.g., source concept 6 is trans-
formed into target concept 4ii). Reciprocally, if a source concept mapped with an ontology

concept is transformed into a target concept not mapped with an ontology concept, the
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transformation is inconsistent.

This framework enables to guarantee tools interoperability at the semantic level. The
ontology presented in the previous section explains how system and safety engineering have
to be understood. Within the framework, we can verify that the SE design tools implement
correctly the ontology at the semantic level (i.e., the meta-model implemented by the tool
is consistent with the ontology). Moreover, the framework shows how those tools can
inter-operate seamlessly via model transformations that are consistent with the ontology.
Finally, this framework enables to evaluate if the language used and the transformations
proposed by a tool correctly implement the ontology and, therefore, if this tool can be used

to support the system design process at Renault.

2.4.1.3 Conclusion

In this section, we presented the numerous advantages of an ontology based devel-
opment. In a heterogeneous environment where different domains have to communicate,
ontologies can solve the problem of semantic integration. This is naturally very constraining
as mappings have to be defined between the ontology and each meta-model used in specific
tools. This issue is however inherently related to tool interoperability that is criticized with
"the ambient paradigm of distribution ("tools that hardly work together except hopefully
one day")" [Albinet et al. 2010]. Tools are actually developed, independently (different
tools), and for different manufacturers. Making them work together remains manufacturer
specific. The ontology can help answering if a tool actually corresponds to Renault needs
(it is consistent with the ontology), through mapping definitions, and therefore if it can
be integrated in a development process for Renault. Finally, not only ontologies enable
to ensure seamlessness during the design process, it does so at the semantic level. The
next section presents our recommendations to improve the quality of the complex design
activity. It is a general proposition that could be used at Renault which is used as a specific

example.
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2.4.2 Ontology Centric Design Process

In order to improve Renault design process and facilitate its transition from document-
centric to model-based systems engineering, we chose to introduce an ontology that can
guarantee the whole design process consistency at the semantic level. We expect this on-
tology to improve the design process in a number of ways. First, the activity of writing
requirements and establishing their traceability is done with the semantic interpretation
defined in the ontology and can somewhat bridge the gap between the informal world of
discourse and the more formal worlds of models. Secondly, making usually implicit knowl-
edge explicit further enables the front loading of activities, while engineers remain capable
to make informed decisions, and help to identify areas susceptible to automatic or semi-
automatic procedures used in Model-Based Design. In addition and more generally, going
towards more formalization (at the semantic level) and sharing the formalized conceptu-
alization is an enabler for reuse. Thirdly, committing to the ontology makes it possible
to work at inter-disciplinary level, the foundation coming from the fact that the system
is indeed the common rally point to different professions. For instance, analysis such as
multi-model consistency and coherence gives confidence that it is the same system that
is being built. Finally, incorporated concepts from ISO 26262 help to demonstrate the

compliance with this standard.

With respect to the amount of work that will be required for these improvements to
come to life, it seems particularly fitting and it is our recommendation to introduce a
new actor, an ontology engineer, whose role will consist in ensuring a seamless consistent
development. Considering the chaotic nature of current systems engineering practice (for
instance tools such as Powerpoint, Visio, Matlab/Simulink, Enterpise Architect, Parpyrus
and so on can be used to define the system architecture), the actual challenge for the
transition to model-based systems engineering is to evaluate formalisms adequacy to Re-
nault needs in anticipation of a future domain specific language for Renault. As such, the
general design process remains unchanged and we introduce the ontology engineer role in
parallel to systems and functional safety engineer roles as can be seen in figure 2.52 that

uses Business Process Modeling Notation (BPMN).
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Figure 2.52: Design process’ BPM

Activities are represented with rectangles. System engineers and functional safety en-

gineers activities are represented in the middle and on the right hand side of the figure.

Ontology engineers activities are on the left hand side of the figure. Information exchanges

are represented with dashed arrows. To keep it simple, ontology engineers activities are to

instantiate the ontology with received information, verify its consistency and perform other

possible analyses given the semantic structure of the ontology (such as ASIL propagation).

In case of a detected inconsistency, they should communicate the issue to the other engi-

neers to the impacted activities. In the remaining of this section, we discuss about specific
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aspects of our approach and give our recommendations on some activities that need to be

brought to maturity.

2.4.2.1 Understanding Design Process Knowledge

It is important to advocate a top-down approach for the design process. On the one
hand, it enables to consider emergent properties at system level (where they are observable)
so that they are effectively taken into account at finer grained levels of detail. On the other
hand, it enables to understand the information produced during the design process following
the logic of a top-down approach which facilitates reuse. Reuse is done by selecting some
elements that will be reused and producing missing information using a dual bottom-
up approach. The general idea is that activities are sequenced backwards to produce
information. For instance, reusing a component will require the production of related
functions and requirements. As good design usually requires a complete understanding
of the system, theoretically, information should display a top-down logic advocated in
systems engineering. Already having information that follows a top-down logic is therefore
an enabler for reuse. That being said, the design process and producing knowledge is
not linear in reality. Figure 2.53 presents the design process as a spiral to represent its
iterative nature. Activities are sequenced clockwise and reciprocal arrows represent possible

fallbacks when an issue is detected.

Knowledge is actually constructed for parts of the system with more and more details
being added. For example, system stakeholders are identified with respect to available
knowledge. For instance, adding a stakeholder means that a relation to a need has to be
defined (see figure 2.2). If the need does not exist it has to be defined. Then this need
has to be related to a stakeholder requirement. If the stakeholder requirement does not
exist, it has to be defined. And so on, until knowledge is complete. As knowledge about
the system is produced, new stakeholders can be identified which can be the origin of a
design iteration to consider such new information. The capability to state that everything

is consistent, and the opposite, is therefore essential.

The integrity constraints that we defined can seem to be very strong. For instance, the

different types of requirements defined in the ontology account for system, functional and
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physical level of detail. Some requirements can however appear directly at intermediate
levels, like exported requirements, and it can be confusing to trace back these requirements
to former levels [Albinet et al. 2007|. It results in our approach that, even though such
information was not produced following a top-down logic, the top-down logic should be
constructed nonetheless both for reuse and to comply with the rigor necessary for safety

critical systems development.

2.4.2.2 Need Analysis and Stakeholders Requirements Definition

The first activity is need analysis. Stakeholders that are identified express their needs.
The objective is to remove ambiguities, lacks and inconsistencies likely to be present in
stakeholders needs. The concepts presented in section 2.2.1.1 are documented. As can be
seen in figure 2.52, we use system missions to already define functional requirements so as

to start safety activities as soon as possible.

Define stakeholders requirements transforms the needs into requirements which are more
structured than natural language. We recommend the use of boilerplates as defined by Hull
et al. [2004] for writing requirements. Boilerplates add structure to natural language and

leads to the use of conceptual elements. The following boilerplate is given as an example
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for stakeholders requirements:
The <stakeholder type> (shall or may) be able to <capability >

where stakeholder type is a stakeholder, verbs shall or may represent different priorities
of requirements (high when using shall and low when using may) and capability represents

the functionality to be developed.

One particular type of stakeholders requirements are safety goals. Functional safety
engineers should be solicited by system engineers whenever risk of harm can be foreseen
in advance or even when they are not certain that it is the case. Usual safety critical
systems in the automotive are braking and steering. However the scope begins to enlarge
as new systems or even systems of systems are being developed at Renault such as electric
vehicles and automatic vehicle fleets. As explained in section 2.2.2.2, safety goals result
from the PHA. They are composed of a Feared Customer Event and an ASIL. In terms of
requirements, a safety goal actually corresponds to the direct negation of a feared customer

event with an ASIL so we propose the following boilerplate:

The <stakeholder type> shall not be subject to a <FCE>, ASIL <ASIL
level >

where stakeholder type is a stakeholder, FCF is the feared customer event in question

and ASIL level corresponds to A, B, C or D as defined in ISO 26262.

In general, ontology engineers receive all informations produced (here needs and stake-
holders requirements) and perform instantiate ontology in parallel (see figure 2.52). The
difficulty comes from the heterogeneous and numerous formalisms used that are specific
to each project. For now, Renault general system design process is defined but it is in-
stantiated depending on the project. One project manager can choose to use specific tools
or use suppliers that can come with their respective tools. Other project managers can
make different choices. In order to instantiate the ontology, mappings have to be defined.
For need analysis general purpose modeling languages such as SysML can be used but still
informal formalisms are more commonly used. For instance, techniques such as APTE®

nr

method’s "béte a cornes"’ can be used where some stakeholders are identified and system

Shttp://www.methode-apte.com/
"http://www.methode-apte.com/bete_a_cornes.htm
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goals defined. In both cases, these formalisms can present a delta with the ontology and
some level of interpretation is applied to define a mapping. Implementing a mapping re-
maing arbitrary as complete coverage of the diversity of languages is unlikely. It is actually
the same for any activity. The rule in model-based design is to use a modeling language
but the actual transition will not be made until modeling languages and tools to be used

are clearly defined revealing necessary mappings implementation.

Assuming the ontology engineers have instantiated the ontology, the next activity is
verify consistency. This can be easily performed using a reasoner that understands the
ontology language. But more specific verifications can be made. As an example we defined
ASIL propagation in section 2.3.2 which is a useful analysis concerning functional safety as
we will see further in the discussion. Other relevant verifications are left to the engineer’s

insight.

2.4.2.3 System Level Requirements Definition

In figure 2.52, we represented requirements definition in general focusing on functional
and non functional requirements. Naturally, requirements structure defined in section
2.2.1.2 is applicable. In the remainder, we focus on the consideration of functional safety
in the design process as illustrated in figure 2.47 so non functional requirements definition

is not brought into the discussion.

Preliminary Hazard Analysis. In order for safety aspects to be included into the
functional "genes" of design, preliminary hazard analysis is performed as soon as missions
have been transformed into functional requirements. We have three recommendations for
this activity. First, the application of a failure model as presented in section 2.2.2.1 to
make the analysis more systematic. Second, PHA being completely reusable as is if done
at vehicle level, we cannot stress enough the reuse of PHA’s lines from previous similar
projects. Finally, PHA output being safety goals, they should be written by applying the

specific boilerplate as presented in previous section 2.4.2.2.

Safety goals come with an assigned ASIL determined by following table 1.4 specified in
ISO 26262. ASIL determination is formalized in the ontology (see section 2.2.2.2) there-
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fore, once PHA data are instantiated in the ontology, ontology engineers can verify both
that ASIL determination and safety goal’s ASIL assignment have been done correctly.
In addition, they propagate the ASIL from hazardous events to their original functional

requirements.

Functional Requirements Definition. Integrating systems engineering and functional
safety helped identify an important synergy between the two kinds of engineers. Now that
safety aspects are incorporated into stakeholders requirements, the system can actually be
developed towards acceptable risk following a top-down approach. Even though it should
be system engineers role to define the system functional requirements, they can benefit
greatly from functional safety engineers expertise to develop functional requirements that
intuitively correspond to additional functions that exist only to ensure safety. The goal is to
reduce design iterations by making systems and functional safety engineers work together
in a more collaborative manner rather than strictly in parallel. Systems engineer position
does not yet exist at Renault and systems engineering activities are actually partially per-
formed by different actors depending on the project. For instance, the project manager can
be in charge of writing requirements while the electric and electronic architect (a position at
Renault) is responsible of functional and physical architecture production. Actually, many
design iterations exist for system architecture definition and related requirements. System
architecture are first produced without considering safety, and then secured architectures
are developed to take safety into account. Corresponding requirements are naturally also
defined iteratively. Safety engineers activities are performed in parallel and consist in, Pre-
liminary Hazard Analysis, definition of safety requirements, ASIL assignment and other
safety analyses. Usual communication between system engineers and safety engineers are
represented in figure 2.52 with dashed arrows between the two roles. Using a common on-
tology can indirectly play the role of collaboration as consistency between design documents
and models can be ensured. Two scenarios are conceivable. First, project actors assigned
the role of system engineers and functional safety engineers (they are distinct for safety
critical systems according to ISO 26262) can also play the role of ontology engineers. They

add the information they are responsible for to the ontology, verify its consistency and use
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it as a knowledge base. Second, ontology engineering can be viewed as a new professional
field in the company and dedicated actors are assigned to the role of ontology engineers.
They receive information from systems and safety engineers, instantiate the ontology with
this information, verify its consistency, use it as a database and communicate points of
concerns when inconsistencies are detected. Using an ontology ensures that systems and
safety engineers are working on the same system in a more synchronized way. This can lead
to the front loading of safe architectures definition with their requirements and to design
iterations reduction as systems and safety engineers are working on information verified to

be consistent.

Coming back to functional requirements definition, we recommend the use of the fol-

lowing boilerplate at system level:
The <system> shall <function>

where system is the system in development and function is a system function displaying

the functional nature of the requirement.

As presented in section 2.2.2.2; the main point of involving safety engineers in func-
tional requirements definition is to perform ASIL decomposition on functional require-
ments. Safety engineers have a better understanding when and how a function (a func-
tionality, not necessarily a system function) captured by the functional requirement can be
decomposed into functional requirements (which correspond to a safety mechanism, redun-
dancy for instance). This decomposition (or tailoring) is done a priori, independently of
any architecture, and further safety studies will be performed later in the process to verify
that tolerable risk is achieved (in function of the ASIL). Performing ASIL decomposition is
an asset of ISO 26262 as it follows systems engineering principle to think about the prob-
lem before thinking about the solution. To impose oneself with independence constraints
early in the design process can result in elegant and more performing solutions in terms of

architectures.

For ontology engineers, on reception of functional requirements, they instantiate the
ontology and verify ontology consistency. In particular, they have to make sure that

semantic relations usage (decomposition, derive etc.) upon natural discourse makes sense.
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They can verify the structure of the functional requirements and perform ASIL propagation

from top level functional requirements to low level ones (see section 2.3.2.2).

2.4.2.4 Functional and Physical Architecture Definition

In define functional architecture and define physical architecture activities, functional
requirements are materialized into functions that are allocated to the components responsi-
ble for their execution. As explained in the previous section, we propose more synchroniza-
tion for systems and safety engineers through an ontology. Systems engineer are responsible
for system architectures definition. Functional safety engineers are responsible for these
architectures to be reasonably safe, i.e., they have to prove that both the architectures
development and the architectures respect evaluated risk for the system. Let us note that
risk evaluation was historically performed on system architectures devoid of safety-related
functions and safety mechanisms in order to obtain a correct appraisal of system’s risk.
Even though the habit is still followed by safety practitioners, the approach proposed in
this work front loads risk evaluation on functional requirements that correspond to system
missions. [t seems even more fitting for the analysis pertinence as it is more probable
that safety-related functions and safety mechanisms are not considered. As can be seen
in figure 2.52, system architectures are defined by systems engineer that take into account
safety aspects provided by safety engineers in the form of functional and technical safety

requirements.

The hardships concerning requirements management and traceability, identified by Al-
binet et al. [2010] for instance, is still relevant. Making sure that project actors justify their
work in relation to system requirements gives more confidence that the project does not
deviate. Stemming from project tools heterogeneity, the capability to manage and trace
requirements from a textual document to different modeling objects in different tools is a
necessity. Tools such as Telelogic DOORS® or Geensoft Reqtify” are used for requirements
management. Naturally, for manufacturer specific needs, they have to be customized. The
ontology is a highly formalized attempt to express how traceability should be established

and understood.

Shttp://wuw-01.ibm.com/software/awdtools/doors/productline/
“http://wuw.3ds.com/products/catia/portfolio/geensoft/geensoft-product-1lines/reqtify/
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Safety engineers role is to assign an ASIL on functions and components from the safety
goals. Precautions must be taken if a function or component failure can lead to the violation
of a safety goal. They are defined in ISO 26262 with respect to assigned ASIL. The
ontology formalizes how ASILs are assigned (see sections 2.2.2.2 and 2.3.2) which remained
ambiguous previously. In general, the ontology is an incredible asset for understanding a
domain. If creating an ontology requires for the formalized conceptualization to be shared,
new people (both internal or external to any company) that have to familiarize with the
domain will be able to do so with a more precise artifact than natural language (i.e., oral

communication or documents) or informal models.

Concerning ontology engineers, they perform ASIL propagation from the functional
requirements to the architectures exploiting the structure of instances as defined in section
2.3.2. As can be seen in figure 2.52, they also receive functions ASIL assigned by safety
engineers. While we consider that functional safety engineers at Renault perform ASIL
assignment correctly (i.e., they do share our conceptualization), using suppliers is also a
possibility. In addition, be it engineers from Renault or suppliers, both are likely to make
human errors as ASIL assignment remains a manual activity. So, after performing ASIL
propagation and verifying the ontology consistency, ontology engineers point out to safety
engineers that one or more assignments may be erroneous if an inconsistency is found.
For instance, instantiating a function with an ASIL D as done by the safety engineer,
an inconsistency will be found if a different ASIL is defined for the function by ASIL

propagation.

2.4.2.5 Conclusion

In order to improve the design process of safety critical systems at Renault to answer
ISO 26262 requirements, we first went through appropriating and capturing the domains
of systems and functional safety engineering. This enabled to identify favorable areas for
improvement. In this section we gave recommendations and discussed our take on a de-
sign process adapted to the context at Renault. The process presented in this section
is more systematic, improves requirements writing, reduces design iterations by means of

tight collaboration between systems and safety engineers, promotes and facilitates infor-
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mation reuse and complies with ISO 26262. A new role has also been introduced to answer
the heterogeneous nature of a project. Ontology engineers guarantee the design process
consistency, mostly when some activities are ordered from suppliers. In tight interaction
with systems and safety engineers, they ensure that the enterprise needs are effectively

considered.

2.4.3 Conclusion

The general design process presented in this section addresses different issues that
stem from the transition to model-based systems engineering at Renault and international
standard ISO 26262. Defining a process is equivalent to defining activities, supporting
techniques and supporting tools (see figure 1.1). The challenge identified at Renault,
that is most probably also present in other companies, is to evaluate the adequacy of the
actual state of systems engineering practice to the company needs in anticipation of a
future specific seamless process (with adequate tools). Ontology engineers, responsible to
define ontologies that formalize needs and mappings between the ontology and different
formalisms is our answer to this challenge. Based on ontology consistency, any delta
with the conceptualization is detected by ontology engineers and brought to the surface.
Ultimately, independently from any specific languages and tools, the approach presented

in this section ensures semantic data integration.

2.5 Chapter Conclusion

In this chapter, we presented our contributions. The observation that semantic con-
sistency was lacking among modeled objects in implementations of Renault design process
led us to formalize in a very precise way systems engineering domain. While system en-
gineers and ontology engineers professions do not yet exist at Renault, the company has
started its transition towards model-based systems engineering and formalization helped
to clarify ambiguous understandings of the domain. Safety critical systems were central
considerations at the origin of this work with the arrival of standard ISO 26262 on func-
tional safety. It has now been published in November 2011. To consider ISO 26262, we also

decided to formalize functional safety as to define Renault interpretation of the standard.
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Finally, conceptual information manipulated in the design process of safety critical auto-
motive mechatronics systems have been formalized by integrating systems engineering and
functional safety. The formalization was done by means of formal ontologies. The result
is the object of section 2.2 were we present partially two ontologies realized for systems
engineering and functional safety, while section 2.3 presents the integration of these two
domain ontology that is used as an ontology for Renault systems and safety engineers when
they develop a safety critical system. Based on the integrated ontology, section 2.4 returns
on the design process semantic consistency problem and shows that ontologies formal se-
mantics actually addresses and solves the problem of semantic integration. We present an
approach where the systems engineering and functional safety ontology is central to the
design process. The ontology (with the project instances) is considered as the consistency
reference model of a project to ensure semantic consistency. This approach is consistent
and in accordance with systems engineering and ISO 26262. Then, we presented a process
that implements this approach by introducing a new role of ontology engineer. We believe
it has become essential as the development process is a really complex activity, not yet
fully understood, that impacts directly on the competitive advantage of an enterprise, and
that increases in complexity with systems becoming larger and new rules, standards and
regulations emerging continuously. An ontology engineer may guarantee the consistency
of heterogeneous languages / formalisms used during the design process by bringing these

different languages within the ontology formalism.

The approach presented in this chapter aims to enhance the design process while leaving
it unaltered. Although very promising, it is relatively difficult to completely validate the
approach. First, the formalization quality needs to be estimated. The real challenge for the
domains formalization to be relevant is not trivial. The defined conceptualizations have to
be both general and precise enough. On the general aspect, the conceptualizations would
be adequate if they can be used to describe the diversity of developed systems. On the
precise aspect, the conceptualizations should enable to record necessary and sufficient level
of detail. These actually correspond to expert knowledge and the quality of the conceptu-
alizations can only be validated against real projects. Second, while the approach strives

to leave the design process unaltered, we have been confronted to ambiguities and incom-
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patibilities between the different conceptualizations (of systems engineering and functional
safety). These are resolved when the two conceptualizations are integrated. The next
chapter presents a case study where the approach is used on an already existing system.
It demonstrates that the information produced during the design process can effectively
commit to the proposed formalization and the applicability of the approach. Nonetheless,
it remains that the design process used for the case study was executed without compliance
to the ontology resulting mostly in missing information. Therefore, the next chapter does
not validate the approach but contributes to validation by giving some elements of answer
concerning applicability. The validation would require more executions of the approach on

new systems while complying to the (integrated) ontology.
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Chapter 3

Case Study: the Regenerative
Combi-Brake System
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3.1. INTRODUCTION

3.1 Introduction

In this chapter we present the study case that inspired the work presented in this
thesis. This work is an answer to concerns at Renault due to changes required by recent
international standard ISO 26262 on functional safety. In the automotive industry, braking
and steering were the last vehicle functionalities to remain purely mechanical despite the
advent of mechatronics. This comes from strong regulations as these functionalities can
lead to the most serious incident: an accident. Our study case is the Regenerative Combi-
Brake (RCB) project which is a braking system relevant for this context. Section 3.2 first
goes over previous electric braking projects. Then the RCB that takes advantage from
these preceding projects is presented. In section 3.3, the RCB is used to illustrate the
application of our design approach: the ontology centric design process. Finally, section

3.4 concludes the chapter.

3.2 Presentation of the Case Study

3.2.1 Antecedent Projects History

In this section we cover two antecedent braking projects. It presents the main func-
tionalities and components of electric braking, some safety concepts and what has been

learned during these projects.
3.2.1.1 FREL

The first Renault electric braking project started in 2002. The FREL project (F'Reinage
ELectrique that stands for electric braking) consisted in a braking system intended for the
medium car range. [t was the first project to apply standard IEC 61508 on functional

safety (see section 1.2.2.3). The project had the following characteristics:

— Four Electro-Mechanical Brake (EMB) actuators, one for each wheel;

— No backup braking actuators that implement traditional hydraulic or mechanic sys-

tems;
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— No mechanical link between the driver’s commands (i.e., brake pedal or parking brake

interfaces) and the EMB actuators;

— A Pedal Feel Emulator (PFE) that implements force feedback on the brake pedal.

The FREL system is a by-wire braking system. By-wire means that some traditional
mechanical and hydraulic control parts have been replaced with electronic control systems.
Driver’s commands are not linked mechanically or hydraulically with braking actuators. It
has the unwanted result of making the braking pedal soft (i.e., absence of force feedback)
disabling driver’s capability for different level of braking. Thus the existence of the PFE.
As a braking system, FREL has to ensure an optimum vehicle deceleration. FREL is
also responsible for immobilization and release of the vehicle depending on the context
of the vehicle. Those high level functions had to be implemented while preserving and
interacting with other vehicle control functions (e.g., ABS, ASR, ESP, etc. See section
3.2.2.2). The project focused on the high-level control software developed for the EMB
control system following a model-based design approach. Figure 3.1 presents a simplified

system architecture of the project.

Central Driving Dynamics
ECU

T=22. Brake Pedal
Electric Handbrake

data flow
energy flow
hydraulic flow

Redundant Electronic
Pedal Module

Figure 3.1: FREL simplified architecture

We identify the key components required to perform the high level functions decelera-

tion, immobilization and release:
— Four EMBs that are used both for deceleration and immobilization of the vehicle;

— The driver’s command interfaces for the driver to interact with the system;
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— The calculators, i.e., Electronic Control Units (ECU), that are used to interpret

driver’s will / intention and to compute braking commands;

— And the power supply that is the energy source of the ECU and the four EMB.

Particular attention has been given to dependability and safety as new behavior and risks
were introduced. For instance, in figure 3.1, there are two hydraulic networks that cor-
respond respectively to the two couples of wheels in diagonal. Those two diagonals are
independent and a failure on one diagonal is safe as braking on a diagonal has been evalu-

ated to be safe.

The project demonstrated technical feasibility of safe electric braking as shown with

the secured architecture in figure 3.2.

Vehicle CAN

Brake !

Module

14V suppy
LANC)

Possibly for information diodes

Figure 3.2: FREL architecture

We identify:

— Four EMB in their respective wheels modules Right Front, Left Front, Rear Right
and Left Right (RF, LF, RR and LR);

— the brake pedal in the PFE module and the hand brake;
— the ECU in the brake module;
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— the power supply (36V) that has been moved to the front;

— And the diagonal architecture that makes possible to brake independently on the

four wheels.

The hydraulic network has been completely gotten rid off and the link between braking
interfaces and the braking system is by-wire. As a result, the brake pedal is hidden inside
a PFE module and a data flow network (the blue straight and dashed lines) replaces the
hydraulic network with the same diagonal architecture. The whole system power source
is redundant with a backup power supply (Backup 36V) for the four EMB and another
battery (12V) that backs up the brake module.

Safety design choices are implicit as shown in figure 3.2. Important aftermath in subse-
quents projects lies in the choice of a braking command. Different braking functions may
run simultaneously and ask for different braking services. Commands priority has been

defined to always select the most adequate one.

In addition to those architectural choices, FREL has been developed to exhibit the

following properties:

— The system shall ensure a minimum deceleration of the vehicle in case of a failure

that affects the deceleration on four wheels functionality

— The system shall not display undesired braking action (i.e., braking action without

a demand from the driver)

The system shall ensure that a driver’s (braking) request implies a braking action

— The system shall be fail silent (i.e., no error propagation)

The system shall ensure that immobilizing failures are limited to less than 5%

We won’t go into any further details on the FREL project. The project ran until the
end of 2003 and concluded on the extra costs of the technology to be too expensive for

relatively small braking service and safety gains.
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3.2.1.2 X by Wire.

The preceding by-wire project FREL concluded on the extra costs of the technology
(i.e., by-wire technology) not to be affordable. Mainly, costs came from the necessity to
secure the architecture thus the idea to level off the costs by gathering all the by-wire
systems and searching for services at the inter-system level, idea that materialized in the
X by Wire project.

The project " Commandes Découplées", that is French for X by Wire (XbW), the X
stands for the multiple functions, has been initiated in mid-2004. The objective was to
prepare the company to the introduction of electric commands (i.e., by-wire) for braking
and steering functions inside Renault lines/fleet. Those two functions are the last functions
at vehicle level that have kept full mechanic or hydraulic parts as they are intimately related
to safety. Introduction of by-wire technology seemed inevitable at the time therefore the

two objectives of the project were:

— To find customer services that one customer will find acceptable compared to the

cost of the vehicle;

— To construct the development process adapted to such safety critical systems.

Over the course of the development, the project has gone through different phases.
The project has focused on steering and braking functions, first as a whole, and then
separately. The respective systems denominations have been used: Steer and Brake by
Wire (SBbW) which was the first project that intended to apply systems engineering, Steer
by Wire (SbW) and Brake by Wire (BbW). SbW and BbW systems make for all necessary
and sufficient functions of steering and braking. However, their interconnection enables
the introduction of new services (such as regenerative braking, lane keeping, automatic
cruise control, efc.) by means of software blocs and, if necessary, by adding sensors,
thus SBbW system that takes SbW and BbW considerations at a more abstract level.
Implementation of new functionalities result in an increase in system complexity (i.e.,
introduction of hardware components). From the beginning, XbW system disposes of all

hardware components that enable most of the services that will be depicted in section 3.2.2.
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Those services therefore present the opportunity to be dematerialized into software. We
can already assume that current trend in Commercial Off The Shelf (COTS) development
will make a cultural resistance to the development of specific (software) solutions even

though COTS development implies more integration work and dependency on a supplier.

Figure 3.3 depicts the hardware components of the BbW system.
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Figure 3.3: BbW components

As just stated, hardware should be more or less the same for any BbW system. In the
braking system branch of the figure, we recognize the four EMB, Front Left (FL), Front
Right (FR), Rear Left (RL) and Rear Right (RR). The EMB is a mechatronics system. It
is fundamental for a by-wire solution. It is composed of an ECU (that do not appear in
the figure), a Speed Sensor (SS) and a Brake Actuator (BA) mounted on a brake caliper.
Interfaces with the driver are the usual brake pedal and a button for the parking brake
that is represented by the Parking Brake SWitch (PBSW) in the figure. The brake pedal
position is measured with two, Left and Right, Brake Pedal Sensors (LBPS and RBPS).
The Brake Pedal SWitch (BPSW) monitors if the brake pedal is pressed or not and can be
used as a safety control measure to detect failure of the LBPS and/or the RBPS. The XbW
project first objective was to find (new) customer services. Innovation was possible with

the tight interaction of different systems which was established with either CAN or FlexRay
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communication systems. As such, the BbW project perimeter integrated the Accelerator
Pedal Unit (Accel Pedal Unit). This unit is composed of the driver’s accelerator pedal
interface and two sensors, Accelerator Pedal Sensor 1 and 2 (APS1 and APS2).

The inclusion of the accelerator enables to offer new services for advanced braking
strategies. For instance, BbW can detect an emergency reaction of the driver and activate
the emergency braking service. The scenario is the following: the driver goes quickly from
the accelerator to the brake pedal in response to an emergency. First, the system detects
a quick release of the accelerator and engage the brakes by itself. Then second, the driver
wants to brake and starts to push the brake pedal. The system detects a rapid change
from the accelerator to the brake pedal which corresponds to an emergency, it activates
the emergency braking service which applies the maximum braking force until Anti Block
System regulation. Other strategies have been developed that benefit from the system
external environment. In the previous example, we had to introduce new sensors on the
brake pedal. The system can also make use of existing components making the notion of

new virtual service.

The project stopped in January 2008. The reasons that were mentioned pointed out
interests divergence between different departments at the company level. For instance, prof-
itability studies did not show that the company would break even and product marketing
considered that the economical balance with regards to the services would be understood
only by specialists and therefore was not viable. Moreover, the project met internal neg-
ativism from the engine department which considered the project fruitless as it did not
bring radical change in the architecture, the product remaining more or less the same,
whereas the improvement was for the development method to be adapted to safety critical
systems. More generally, downstream directions did not involve themselves sufficiently for

the project to be transfered into Renault vehicles fleet.

Nevertheless, the project was highly proficient. The objectives were met. On new
services or innovations, by March 2008, the project had generated a total of 140 patents
in France that were the source for more innovations (24 other patents referenced patents

from the project). Two prototypes implementing BbW were developed and helped in the
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realization of braking command laws adapted to independent braking on the four wheels.
On the construction of a development process, the project enabled all the Renault actors to
tightly work together in a cohesive manner, thus identifying new roles that were inexistent
(for instance system engineer) and what activities each actor was responsible for. The
project concluded that the development of safety critical systems requires the automobile
constructor to position itself as a system developer rather than an integrator of commercial
solutions (e.g., COTS) that are not completely mastered and that the company is liable
for. Important results on the development of safety critical systems therefore came from
systems engineering and international standard ISO 26262 that are respectively treated in

sections 1.2.1 and 1.2.2.3.

3.2.2 A Regenerative Combi-Brake System

3.2.2.1 Towards an Electric Vehicle

By the end of 2008, the automotive industry has been strongly affected by the crisis
that occurred starting from the financial world. The situation led the direction board of
Renault to take radical decisions in order to better position the company for a world in
mutation. We can mention two decisions that are important for this section. First, the
concentration of the engineering effort over a full electric vehicle (i.e., equipped with an
electric engine). That is the Electric Vehicle (EV) project. Second, the affirmation of a

new identity with the company signature " Drive the change".

The EV project started in 2008. EV is a vehicle project. Under systems engineering
vocabulary, the system (under development) is the whole vehicle. It is a first on many
points. It is the first vehicle with an electric engine developed internally to be included in
Renault line/fleet. It is the first project onto which systems engineering method has been
applied at the vehicle level. It is the first vehicle project onto which standard ISO 26262

(see section 1.2.2.3) has been applied.

EV project comes from the desire of the company to drive the change in bringing
an affordable electric vehicle on the market (i.e., with a selling price equivalent to the
one of a fuel motorized vehicle of the same category). As the project calls for originality

(by developing an electric engine), new risks are also introduced. The automobile world
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is currently doing extensive work on risks management for these risks to be acceptable.
More generally, the development process has to be improved in order to be suitable to the
specificities of automotive safety critical systems. The company signature is a tremendous
asset for the improvement of the development process as it pulls all the actors in the same

direction which was not necessarily the case before as demonstrated in the XbW project.
3.2.2.2 Regenerative Combi-Brake

The EV project has been decomposed into many sub-projects. The high level safety
critical functions of a vehicle lie in steering and braking. We are interested in the braking
subsystem of the vehicle. Multiple braking projects that implement different functionalities
have started in the context of the EV project. We focus on the Regenerative Combi-Brake
project (RCB).

Functionalities. At the vehicle level of abstraction, we have the braking systems usual
functions presented in figure 3.4. Namely, the functions are: to decelerate the vehicle,
to contribute to the stability of the vehicle, to stop the vehicle and to hold the vehicle
stopped. The last function of the figure is particular to RCB. The RCB project intends
to implement a regenerative braking function into the braking system. The general idea
is for the braking system to use the resistance of the electric engine against the kinetic
energy of the vehicle (making the electric engine operate backward) in order to recharge
the battery of the vehicle. In other words, the new function, that is put at system level, is

to retrieve as much energy as possible during vehicle deceleration phases. The intentions

Braking and
Regenerative Braking

Recover the most
energy as possible
while decelerating

Maintain vehicle Contribute to

Decelerate vehicle Stop vehicle immobilized vehicle stability

Figure 3.4: RCB functional schema

behind the addition of a regenerative characteristic into the braking system are, first, an
amelioration of the vehicle autonomy which is one of the principal feature that a customer

looks at in the purchase of an electric vehicle, second, an amelioration of energy retrieval
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possibilities while using the technique, and third, a cost reduction compared to actual

commercial solutions in regenerative braking.

System perimeter. There are two characteristics that are introduced in the RCB project.
As the name of the project implies, a combi-brake system will be developed. The usual
meaning is that the system can be used in two or more different ways. Here, the system
will be used as a traditional braking system using the brake actuators or the system will
pilot the engine in regenerative mode. Combi can also be interpreted as combination which
is the other characteristic of the RCB system as it was decided to use a combination of
regenerative actuators, EMB actuators, and traditional friction actuators with their hy-
draulic network because it is a well controlled technology. Figure 3.5 depicts the RCB

system perimeter and its environment.

RCB systemn perimeter
Surrounding elements Surrounding elements
(external to the vehicle) Friction braking {internal to the vehicle)
-Braking command irterface
-Braking actustors MNetwark
-(ther actuators with respective electronics Whisls Vehicle Wehicle
-Services (ABS, BB, FHSA, sie) : etwvrk
Drverand | | oo o0 eensors - Architecture Martenance
Passengers eguiations Diagnostic data)
Regenerative braking
-Command reguest interface with the engine
-Return instruction (enging) interface Passenger Other Battery
Ambisnt Road cell gystems 240/400v
Environment | [Surroundings Mana‘gem_ent of 1| acceleration
slactric
distribution and command Other vehicle
interface energy Yehicle E/E Technical
Its securing source Architecture | |surroundings
K (Battery 14v1
Data distribution =

Figure 3.5: RCB system perimeter

The following elements are part of the RCB system (see figure 3.5): under Friction
Braking we identify, the driver’s command interfaces (i.e., brake pedal and parking brake),
the braking actuators (e.g., disks, drums, pads, etc.), the other actuators with their respec-
tive electronics (e.g., external signals), the sensors (e.g., speed sensor) and the different
braking services (e.g., ABS, ASR, ESP, etc. See below). Under Regenerative Braking we
have the interfaces between the RCB and the electric engine. The RCB can send command
requests to the electric engine and can receive return instructions from the engine. Ad-
vanced regenerative strategies will depend upon the accelerator pedal therefore an interface

with the system is inside the perimeter. Data Distribution (and acquisition) is connected
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to the vehicle network (e.g., CAN). Finally, Management of Electric Distribution and its
Regulation have to be developed following regulations (e.g., redundant electric network and

backup power supply).

From a functional and safety point of view, the surrounding elements of importance are,
regulations that constrain the system, parameters that influence system configuration (e.g.,
Road Surroundings such as icy or wet), vehicle communication and energy distribution
networks that need to be connected, and all the remaining elements interfaced with the
vehicle (e.g., tools used in after-sale service, dashboard and external signals, etc.).
Services. We have seen that services are of the utmost importance. As a braking system,
the RCB functions are to decelerate the vehicle, to contribute to the stability of the vehicle,
to stop the vehicle and to hold the vehicle stopped. Functionality although necessary is
not sufficient from the customer point of view. Indeed, those high level functions would

be meaningless without their features or properties (e.g., driving pleasure). Table 3.1 lists

most of the services that intervene in the braking function of a Renault vehicle.

Acronym | Meaning Description
The ABS function regulates the braking forces of each actuator in
Anti-lock order to stop the wheel (or wheels) from locking and to restore vehicle
ABS Braking maneuverability. The function monitors constantly the individual
System wheel speeds and determines a reference vehicle speed, from which
wheel locking can be detected.
The ACC function controls the vehicle to be at defined speed. Its ac-
tion is twofold. First, it elaborates commands for the engine; either
. to accelerate the vehicle in order to attain defined speed or to reduce
Adaptative . . . L .
ACC Cruise the engine torque instruction when jche driver is pu.shlng the accel-
Control erator too far. Second, when following another vehicle, the system
automatically uses the braking system to decelerate in order to main-
tain a safe distance with the other vehicle. The system is deactivated
by pressing the brake pedal.
This function elaborates braking and deceleration commands for the
ASR Anti-Slip braking system and the engine control in order to avoid wheel slipping
Regulation during an acceleration. The objective is to optimize torque transfer
to the wheels on roads with particularly degraded grip (slip).
continued on next page

Table 3.1: Braking services
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continued from last page

Acronym | Meaning Description
Active Yaw | The AYC function splits and transfers the engine torque to the wheels
AYC
Control that have the best adherence.
The BB function is in charge of interpreting the drivers will to brake
the vehicle through his actions on the Human Machine Interfaces of
the system (i.e., the brake pedal and the parking brake command).
BB Basic Brake | It elaborates a global deceleration command and includes a braking
distribution function that outputs braking force commands to the
four braking actuators. It is also in charge of the parking brake
mechanism.
The BFD function takes into account many parameters (e.g., speed,
Brake Force | global braking command, weight, etc.) to compute separate braking
BFD Distribu- commands for each wheels. More or less braking pressure is applied
tion to each wheel in order to maximize stopping power while maintaining
steering.
This function modulates the global deceleration coming from the BB
function in order to give a constant response in terms of deceleration
Closed L, . .
CLD Loop jno the driver’s comr'nafnd. Mqre prec1se.1y .1t elaborates a robus.t brak-
. ing command that is insensitive to variations of the mass (weight) of
Deceleration . . .
the vehicle, the braking efficiency of the brake pads, or the slope of
the road.
Emergency | The EBA detects an emergency braking situation through the speed
EBA Braking and the force of the driver’s braking demand, and it boosts the brak-
Assistance ing force to its maximum level.
This function detects the discrepancies between the driver’s will and
Electronic the actual vehicle trajectory, then corrects such discrepancies by act-
ESP Stability ing on the brakes and/or on the engine management system. The
Program idea is to bring the vehicle back to a normal trajectory and to avoid
instabilities due to inadequate actions from the driver.
This function fulfills two main objectives: keeping the vehicle still
after it reaches a full stop, and assisting the driver during a takeoff
Full or a maneuver by keeping the vehicle from sliding in the wrong way or
FHSA Hill-Start by limiting the slope-induced acceleration while ramping. The FHSA
Assistance function can also manage the parking brake mechanism in order to
relieve the electrical motors of the EMB actuators to preserve the
level of charge of the battery.
MSR Motor .Skld The MSR function regulates wheels skidding by acting on the engine.
Regulation

continued on next page

Table 3.1: Braking services
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continued from last page
Acronym | Meaning Description
The SL function upgrades the braking comfort when the vehicle is
Soft about to stop by diminishing the amplitude or the speed of the ve-
SL . hicle pitch. To do this the function modulates the braking command
Landing .. . .
of each actuator optimizing the compromise between the driver’s de-
mand and the increase of the braking distance.

Table 3.1: Braking services

The services in table 3.1 will not all be integrated into the RCB project. They are nonethe-
less presented as all of them can actually be dematerialized into software elements. It will
be possible to integrate each software element, while taking the necessary precautions, with
no additional costs in terms of hardware. The project will integrate the ABS and the ESP
(the latter supervises vehicle trajectory using a combination of ASR, MSR and AYC) as
they are required by the regulation authorities. BB and BFD are solutions to regulatory
requirements (e.g., presence of a service brake, an emergency brake and a residual brake)
and are therefore mandatory. The EBA will also be implemented ulteriorly. As it is a

crash preventing system it will put additional confidence in the vehicle.

The PFE from the FREL project (section 3.2.1.1) will not be integrated into the RCB
project. We mentioned earlier that the design choice to use traditional friction actuators
with their hydraulic network had already been made. Usual pressure force (from the

hydraulic network) can therefore be applied on the brake pedal and a PFE is irrelevant.

Last but not least, the regenerative braking which is the novelty of the system but has

yet to have an acronym for referencing.

Architecture. The previous paragraph is a representative list of the services that are
related to braking. Two deliverables in the Renault development process are the functional
architecture that structures the functionalities of a system and the physical architecture
that structures the physical components of a system. They are the respective objects of

figures 3.6 and 3.7.
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From a functional point of view, a coarse grained abstraction of mechatronics systems
can be represented under a data flow diagram. In figure 3.6, the bozes are the functions that
produce and consume the flows which are represented with the usual arrows. The circles
represent, the sensors and the brake actuators. Compared to the high level functions of
figure 3.4, the functional architecture structures finer grained functions that processes the

flows.
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Figure 3.6: RCB functional architecture specification

We describe the functions following the fundamental chains from the sensors, through

the flows processing, to the actuators.

First, we have the chain from the brake pedal to the brake actuators. The brake pedal
sensor on the bottom right hand side of the figure observes the brake pedal stroke and the
pressure exerted on the brake pedal. Those flows are transformed by the acquire brake
pedal box into a brake pedal position. The main functionality to be designed when a hu-
man is in the loop, is to interpret his intention. The interpret driver brake intention box
consumes the brake pedal stroke and the pressure on the brake pedal to produce a brake
pedal position flow. The latter is interpreted as the driver brake intention and a request

for front (wheels) brake torque is produced. The blend brake function consumes the re-
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generative torque capability, the electric motor speed and the precedent front brake torque
request. The function produces two requests for the friction brake and the regenerative
brake respectively. Those two flows are then arbitrated to produce a front friction torque
request and a regenerative brake torque request respectively. The request on regenerative
torque is consumed by the off-system controller that is responsible for the electric motor
torque, controller that commands the electric motor brake actuator. Meanwhile, the front
friction torque request goes to the base brake controller which is responsible for services
such as the BFD and the ABS. Finally, the controller assign brake requests on the four

wheels brakes.

Second, we have the chain from the accelerator pedal to the brake actuators. The
accelerator pedal sensor is on the left side of the figure. From there we have the same
functions than before: acquire the accelerator pedal that produces the accelerator pedal
position and interpret driver acceleration intention that produces two requests for the
electric motor, one for (positive) motion the other for drag (i.e., negative motion). On
the one side, the request for (positive) motion is off-system and shown only because of
tight interconnection with the ESP that can request another motion torque. The arbitrate
motion torque requests function produces a motion torque request to the controller of
electric torque which commands the electric motor. On the other side, the pedal drag
torque request is consumed with the regenerative torque capability flow by the blend drag
function that produces two torque requests for the friction brake and the regenerative
brake respectively. The rest of the chain is similar to the first one: Those two flows
are arbitrated to produce a front friction torque request and a regenerative brake torque
request respectively. The request on regenerative torque is consumed by the electric motor
controller that commands the electric motor brake actuator. Meanwhile, the front friction
torque request goes to the base brake controller that assigns brake requests on the four

wheels brakes.

It remains two functions on the figure: control advanced brake and process speed data.
The latter digitalizes the vehicle (global) speed and the four wheel speeds. On the control
advanced brake, it can be interesting to introduce the notion of a wvirtual driver as the

function emulates the reactions of a driver. The function consumes many parameters that
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are represented under the sensor cluster. It produces individual advanced brake requests
for the four wheels. Those flows are consumed by the base brake controller that assigns

brake requests on the four wheels brakes.

The parking brake fundamental chain is not represented in the functional architecture
as it is relatively equivalent to the brake pedal one. The rear friction torque request is
not represented either as one important architectural choice has been decided early in the
project: to use traditional drum brakes with their hydraulic network on the rear wheels in

combination to a BbW system with two EMB on the front wheels.

Figure 3.7 displays this choice of architecture. It is a high level physical architecture
but sufficient for a presentation.
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Figure 3.7: Example of the RCB physical architecture

ot

The yellow elements are outside the system scope. The brake actuators are, the electric
motor for regenerative braking, the two EMB on the front wheel-axle unit, and the two
drum brakes on the rear wheel-axle unit. We find most of the sensors that are present
in the functional architecture: four speed sensors (one for each wheel), the accelerator, a
stroke sensor on the brake pedal, and a pressure sensor for the brake pedal. The controllers
complete the usual triplet used to classify the E/E components of mechatronics systems.

In the figure we have three controllers represented by the big squares. The Electric Ve-
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hicle Controller (EVC) serves mainly to control the electric engine and is off-system but
important for interconnection purpose. The MKXXA is responsible for the usual braking
functions of a braking system: to decelerate the vehicle, to contribute to the vehicle sta-
bility, to stop the vehicle and to hold the vehicle stopped. Even more, it is responsible for
providing all the services presented before. As for the supervisor, it is responsible to the

last function of the RCB, to recover the most energy as possible while decelerating.

An E/E system is dependent on a power source (which is outside the scope of the
RCB system). There are two batteries that for technological reason are necessary (e.g.,
cell management requires a redundant cell configuration). The main battery powers the
calculators and the two EMB. It is represented with red lines in the figure. As for the High
Voltage (HV) battery, it is tightly interconnected to the system therefore the part of interest
is the communication network. The communication network is represented with straight
black lines. The only elements that appear not related in any way to the communication
network are the drum brakes on the rear end of the vehicle and the main battery. Except
for those, all the elements are interconnected with CAN links. Finally, the big black lines

represent the hydraulic network that links the rear drum brakes and the brake pedal.

One last thing about typical components of E/E systems, the EMB is a COTS. Inciden-
tally, it is not dimensioned specifically for the RCB project and houses in a controller and
a speed sensor which is not used at the time but will probably be identified as a fundamen-
tal part of the system later in the development. More generally, automobile constructors
heavily relies on parts suppliers. In the RCB project, Continental has been selected to
develop the system. Renault actors were in charge to deliver requirements to Continental’s
actors. Continental is then in charge of the development and the realization of the product.
It was also decided that Continental was in charge of the safety studies. Once the product
will be delivered, Renault will have to verify and validate that the product conforms to the
given requirements and make an integration effort in order to use the product in a vehicle.
The fundamental importance of the requirements is transparent as they have to convey the
constructor intentions for the supplier to realize a good product and they are used for the
product verification, validation and integration. Furthermore, the supplier often delivers a

product for which only black box knowledge is known about, resulting in difficulties to es-
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timate the relevance of the solution. Therefore, requirements need to be verifiable, precise
and complete. This is especially the case when safety is concerned. Consider the case of a
faulty product from a supplier that leads to an accident; it is not the supplier that will be

accountable for the accident but the constructor.

This physical architecture must implement all the functions from the functional archi-
tecture. Thereby it is one among the many possible physical architectures. Obviously,
the physical architecture in figure 3.7 is not a haphazard choice. One can argue that the
combi-brake solution is more complex than a solution that does not mix technologies but

here are some justifications that make a good compromise on complexity, safety and costs.

First, the FREL project mapped the braking service that was provided by the use of any
combination of the four wheels. There is less degrees of freedom in the RCB project as one
can brake using a combination of the three braking subsystems: the front wheel-axle unit,
the rear wheel-axle unit and the regenerative brake. The system is thus easier to analyze
even when it comes to safety. In fact, three types of braking systems are mandatory: a
service brake used in normal driving conditions, an emergency brake (or secondary brake)
for use in case of failure of the service brake, and a residual brake that is operational
even in the case of a power failure. The decomposition is obvious, the service brake is
ensured by all the braking subsystems, the emergency brake is ensured by the traditional
rear wheel-axle unit, and the residual brake is also part of the rear wheel-axle unit which

is usual.

Second, the choice to use drum brakes on the rear wheel-axle unit greatly simplifies the
system analysis as it is a well controlled technology. For instance, it enables to get rid of the
PFE from antecedent projects by taking advantage of the hydraulic network of the drum
brake technology. It suffices to increase the distance between the drums and the brake
pads in such a manner that light braking will not make the drum and the pads contact
resulting in braking on the regenerative brake or/and the front wheel-axle unit only. The
force feedback on the brake pedal is ensured by the retracting springs of the drum pads.
This solution contributes to recover the most energy as possible by promoting regenerative

braking over the other brakings. Moreover, the combi-brake solution answers the regulation

217



3.3. APPLICATION OF THE APPROACH

requirement to have an emergency brake independent with the service brake by treating
the front and rear wheel-axle units separately. This architectural separation facilitates
the demonstration that the two brakes are independent. Even more, drum brakes are not
subject to the permanent energy leakage of the disk brake technology that is due to a light
brush of the pads on the disk for self cleansing. Finally, drum brakes present the advantage
(even though they offer less precise braking than disk brakes) to be auto-amplifying. It
is a desirable property as the drum brakes will be used mostly in hard braking situations

where the maximum braking effort must be reached as fast as possible.

The result is an elegant solution that is highly compartmentalized enabling to analyze

the system by components of smaller size.

3.2.3 Conclusion

As we said in section 3.2.2.2, braking and steering functions are safety critical. The RCB
project that develops a regenerative braking system illustrates the current state of affair
inside Renault. As such, this section should be taken as an example and be generalized
to Renault’s mechatronics systems. This section helped to characterize three points. One,
Renault’s role when developing critical systems as a developer of systems rather than an
integrator of commercial solutions. Two, the particular relation between a constructor and
a supplier. Three, the increasing system’s complexity due to mechatronics considerations
of multiple domains and the resulting introduction of new risks. Defining a development
process for mechatronics systems that takes into account Renault specificities and that
is conform to ISO 26262 was the objective of this work. The next section presents the

application of our approach on the RCB system.

3.3 Application of the Approach

In this section we present the application of the approach from section 2.4.2 on the
RCB project. Actually, the approach based on an ontology was realized after the project.
Therefore documents and models do not always comply with the ontology. Nonetheless,

we had to anticipate for the formalized conceptualization to be general enough to consider
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the RCB, in particular, but also other systems. As a result, we present applicable concepts
of the ontology and examples when information is absent. In addition, the documents
presented in the previous section were produced at Renault and served as specifications for
third parties to evaluate systems engineering tools and to produce a prototype. Information

was therefore produced by different actors and media that were also not always available.

ArKltect tool is evaluated on the RCB project and other ones. It is our main source of
information. ArKItect! is a modeling tool that features a meta-model editor for customiza-
tion. More and more customizations are added to the tool to support systems engineering

and safety activities.

Then we have the ontology editor Protégé 3.4.4. It enables to edit OWL ontologies
that are XML structured documents. Software series 3.4 and 4 are two main development
branches and we ended up using the 3.4 one as it has closer use to engineers modeling
tools. The OWL ontology for systems and safety engineers is instantiated with project

information.

This section presents the ontology engineer role and the different ontology uses. We first
present Protégé in section 3.3.1. Then we follow the design process from need analysis and
stakeholders requirements definition in section 3.3.2 through section 3.3.3 system require-
ments definition, section 3.3.4 functional architecture definition and physical architecture

definition in section 3.3.5. Finally, section 3.3.6 concludes on the experimentation.

3.3.1 Protégé Presentation

The ontology has actually been developed to formalize the conceptualizations behind
available documents, models and ArKItect meta-models. We went through different on-
tology versions that are not always compatible with the one presented in this thesis. The
ontology in this work is the less ambiguous one as we removed or made precise non satisfac-
tory concepts. In particular, need analysis and, requirements management and traceability
are activities that have many shortcomings so we made great efforts towards future im-
provement in these activities. Using an adequate ontology editor can greatly improve

ontology management. An OWL ontology is structured using XML and axioms that need

"http://www.k-inside.com/web/
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not to be ordered in an owl file. Protégé interface enables to manage an ontology with
different tabs for respective views of classes, properties, individuals (instances) and SWRL
rules. Figure 3.8 and 3.9 are two different views about OWL classes tab. As can be seen
in both figures, the subclass explorer on the left hand side displays classes hierarchy. In
the bottom right hand side, we have the option to display a class either with logic view
or properties view in the class editor window. In figure 3.8, the logic view displays the
axioms and constraints of a class. The properties view is actually really useful as property
constraints for a class are displayed for each property as illustrated in figure 3.9. Defining
and browsing through classes seems more natural in this view which is one of may reasons

for our choice between Protégé 3.4 and 4.
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Figure 3.8: Protégé class tab — logic view

The properties tab is the object of figure 3.10. On the left hand side we find the

property browser that displays all the relations between classes. On the right hand side,
additional axioms can be defined in the property editor, namely, relations domain, range
and property (e.g., a relation is defined symmetric if and only if for any x in relation with

y, we have also y in relation with x).

The two tabs with the SWRL tab in figure 3.11 enables to define an OWL ontology
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Figure 3.9: Protégé class tab — properties view
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Figure 3.10: Protégé properties tab

with additional SWRL rules. This tab enables to write SWRL rules and SQWRL queries.
The buttons on the top right hand side labeled S@) and J enable respectively to interpret
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and execute SQWRL queries and SWRL rules. We will return on these functionalities in

the following.
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Figure 3.11: Protégé SWRL tab

Finally, the individuals tab enables to define class instances, as shown in figure 3.12.
The class browser on the left hand side enables to select the active class to which an
individual can be defined in the instance browser in the middle of the figure. Then the
individual editor on the right hand side displays the relations that can be instantiated for
an individual. Let us note that the relations framed in red denote non compliant relation
with defined constraints, here cardinality constraints. This is provided by the tool and
is a helpful indication that information is missing. Yet, as OWL is interpreted under
Open World Assumption (OWA), consistency checking will still conclude on the ontology
consistency as it is understood that these properties should be instantiated which is simply

not the case at the time.

The ontology (in terms of classes and properties) is fixed so we do not need to revisit
OWL classes and properties tabs. The application of the approach is done by defining
class instances and their relations, and by executing SWRL rules and SQWRL queries in

Protégé individuals and SWRL tabs.
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Figure 3.12: Protégé individuals tab

3.3.2 Need Analysis and Stakeholders Requirements Definition

Need analysis and stakeholders requirements definition were not realized entirely during
the project. We had two STR documents available which are actually both incomplete
and ambiguous. For instance, in one document, stakeholders requirements have not been
defined and in the other they are named external requirements. The documents were
realized in succession which displays iterations that reflect, first, a manual production, and

then, a generated document based on an ArKlItect model.

The concepts manipulated in these activities have been represented in figure 2.2. In gen-
eral, ontology engineers will have to match information with the ontology concepts, i.e., to
define mappings between information and the ontology. This can potentially be straightfor-
ward, difficult or impossible. As the ontology was produced from these documents, obvious
mappings can be defined which are then applied manually in this experimentation but can

be automated once the process will be fixed (in terms of languages and tools).

As a starting point, we define a system class instance with RCB name in the individuals

tab. Then we follow the structure of the STR document.
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3.3. APPLICATION OF THE APPROACH

First, System’s missions are presented. To remain simple, we present only two RCB
missions. An OWL individual is identified by a Uniform Resource Identifier (URI) which we
use as identifiers. We have MIS RCB_1: Enable vehicle’s deceleration and MIS RCB_2:

Enable energy regeneration during deceleration phases.

Then we have a list of the system goals understood as measures of effectiveness at Re-
nault. For instance: OBJ RCB_1: The RCB system shall improve the vehicle’s autonomy

through energy regeneration during deceleration phases (around 30%).

We then have a description of the system boundaries where the system is represented
as a black box in interaction with its environment. These architecture (functional and
physical) enable to pose some strong constraints on the system in terms of solution. They
are defined as system’s strong concepts. For instance: CON_RCB_ 1: Electro-Mechanical
Brake actuators (EMB) on the front wheels and Con_ RCB_ 4: Drum brake actuators on

the rear wheels.

Then we have a list of the stakeholders, for instance, system architect, safety and
customer. This list is finally followed by the stakeholders requirements which have to be

accepted as the expression of the system missions, goals and strong concepts.

These information correspond to the system so all these individuals are put in relation
with the system individual using the different has properties with System as domain (see
figure 2.2). Depending on the number of instances, it can be advantageous to automate
these properties instantiation with SWRL rules. For instance, executing the following
SWRL rule associates the system to all the goals: pl:System(?x) A pl:Goal(?y) — pl:
hasGoal _Syst _Goal(?x,?y). The result in Protégé is presented in figure 3.13 where the
RCB individual is displayed.

As one can observe with the system’s goal given in example, it is relatively easy to
confuse the goals, strong concepts and missions as requirements. In fact, there are no
traceability relations between the goals, strong concepts and missions with the stakehold-
ers requirements. This is a problem for the system validation which is the activity that
ensures that the system meets the stakeholders needs. In general, the stakeholders re-

quirements express the stakeholders needs which are understood at Renault in terms of
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Figure 3.13: RCB individual in Protégé

missions, goals and strong concepts and shall therefore be traced to corresponding stake-
holders requirements. As an example, we identified that no stakeholders requirements was
defined for CON_RCB_ 1. The stakeholder need was nonetheless considered by a system
requirement which was questionable as it was not traced to a stakeholder requirement.
We have added these missing traceability relations in the ontology for additional coverage

analysis and the general Need concept for consideration.
Figure 3.14 corresponds to the stakeholders requirements view in ArKltect.

Rectangles with rounded corners represent stakeholders and the other rectangles con-
tained in the previous ones are stakeholders requirements of a specific stakeholder. This
corresponds to the boilerplate structure for stakeholders requirements: The <stakeholder
type> (shall or may) be able to <capability>. For instance: REQ EXR_0001: The cus-
tomer shall be able to decelerate the vehicle. Intuitively, this stakeholder requirement ac-
tually comes from MIS RCB_ 1: Enable vehicle’s deceleration. In protégé, we can define
this provenance by asserting the type (i.e., the class) of MIS RCB _1 to pl:Need (i.e.,
MIS RCB 1 is an instance of pl:Need) which enables to use pli:derives Need StaReq
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Figure 3.14: Stakeholders requirements view in ArKltect

for traceability. As it can be seen in figure 3.15, we added pl:Need in MIS  RCB_ 1 asserted

types which results into two new tabs in the individual editor. These tabs correspond to

the different understandings of MIS RCB 1 as a mission or a need.
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Figure 3.15: Individuals asserted types in Protégé

The stakeholders requirements are defined with a hierarchical structure in ArKltect

that is recorded with high/low level classes and hasPart property. For instance, we have
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REQ EXR_0003: The customer shall be able to decelerate the vehicle using emergency
brake and REQ) EXR_ 0004: The customer shall be able to decelerate the vehicle using a
Jootbrake that are sub-requirements of REQ EXR _0001.

Although we used cardinality constraints to define integrity constraints in the ontology,
it is not possible to verify integrity constraints under OWA. Consistency checking concludes
on the ontology consistency as the incomplete nature of information is assumed with OWL.
To verify these integrity constraints, it is possible to use query languages supported by
Protégé such as SQWRL (with set difference) or SPARQL. For instance, executing pl:
Need(?z) A pl:derives_Need StaReq(?z,?y) A pl:Need(?zfsqurl:makeSet(?sl,?x) A
squrlmakeSet(?7s2, 7z Psqurldif ference(?s3, 752, 7s1) A squrl:element(?e, 7s3) — squrl:
select(?e) returns the list of needs that are not related to a stakeholder requirement. This
query is composed of two parts, the body and the head, that respectively precede and
succeed the middle arrow. Body parts are separated using °. The first part uses pattern
matching which matches all the instances of the class Need to 7z and all the instances of
the class Need that are related to a stakeholder requirement to ?x. The second part enables
to use set construction operators (squwrl:makeSet) so that all the individuals that matched
in the first part of the body are recorded into a set, set 7sl for 7x and set 7s2 for 7z. The
third part enables to use set operation operators. squwrl:dif ference enables to perform set
difference so 7s3 is the set of elements that are in 7s2 less those in 7s1. The query effectively
returns the elements in 7s3 which are the needs not related to a stakeholder requirement.
Defining a query for each type of cardinality constraints is straightforward and has been
automated in open source reasoner Pellet? with Integrity Constraints Validator tool (ICV3)
that produces the adequate SPARQL queries. In addition, we actually expect traceability
management to be done in specific tools such as DOORS, Reqtify or others so we did not

define all the queries for checking integrity constraints in the ontology.

3.3.3 System Requirements Definition

System requirements are produced to consider the stakeholders requirements. In this

section, we only present the functional system requirements but we bring the non functional

*http://clarkparsia.com/pellet
3http://clarkparsia.com/pellet /icv/
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ones in the discussion when it is interesting. For this activity, system and functional safety
engineers roles overlap and the actors have to tightly collaborate in order to produce
the whole system requirements set. In our approach, functional system requirements are

written using a general boilerplate: The <system> shall <function>.
3.3.3.1 Preliminary Hazard Analysis

Following the design process timeline, system requirements are first produced by sys-
tem engineers from the stakeholders requirements. PHA starts with a subset of system
requirements as input. Our approach actually defines this subset as the functional system
requirements that are traced to system missions. This enables to start safety activities
as early as possible in the process as other system requirements need not be defined to
start the PHA. Naturally, such traceability is one particular aspect of our approach. For
instance, for MIS RCB_ 1: Enable vehicle’s deceleration we have the corresponding sys-
tem requirement REQ) RCB_1: The RCB system shall decelerate the vehicle. These early

system requirements are communicated to functional safety engineers as PHA input

PHA begins with hazardous events identification. Each functional system requirement
input is analyzed by applying the different failure modes of the failure model in figure 2.28
and different operational context to identify hazardous events. For instance, REQ RCB 1
is analyzed with failure mode lost and operational context C: driving mode. This led to
the identification of multiple customer level hazardous events or Feared Customer Events
(FCE) such as EIC_FREL_02: absence of brake release and EIC _FREL 09: total ab-
sence of braking (these were already identified in the preceding braking project FREL). All
these informations are recorded in the ontology with appropriate concepts and relations as

illustrated in figure 3.16.

The analysis continues with risk evaluation. Each FCE is evaluated with different sce-
narios that define an operational situation (i.e., an operational context with an aggravating
circumstance), the feared event consequence given the operational situation, and the pos-
sible ways to avoid or limit the consequence given to the system user. The operational
situations, consequences and possibility of avoidance are respectively evaluated in terms of

exposure (E), Severity (S) and controllability (C). Two scenarios are given as example in
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REQ RCE 1

p2fails FuncReq FuncReqLostFailure \isDerivedFrom FuncSystReq Mis

fails FuncReqLostFaihire NaryRelation 1 MIS RCB 1

p2:failurelmplies Elem FCE p2-failorelimplies Elem FCE “\p2:hasOperationalContext Elem OpCont
A &

FIC_FRFL,_02 C

pliderives Mis FuncSystReq

FIC_FRFL_09

Figure 3.16: Hazardous events relative to deceleration — Protégé individuals view

table 3.2.
Scenario | FCE Operational | Consequence | Possibility of | E | S | C
Situation avoidance
02 1 EIC - C, highway Death Warning E1 | S3 | C2
FREL 02 leftmost lights, pull
line back in hard
shoulder
09 1 EIC - C, bend Death None E4 | S3 | C3
FREL 09

Table 3.2: PHA example

E,S and C levels are now defined in ISO 26262 (see table 1.4) and were used in the
example. However, prior to this standardization, other levels were defined by each project.
Recording these informations (if different orders are used) in the ontology can therefore
be subject to interpretation if a bijection is not possible. Another concern of ontology
engineers is to consider inter-project knowledge. PHA information is reusable as is, yet,
PHA (as other process activities) can be outsourced to suppliers and sharing confidential
information becomes a problem which often results in starting again a PHA. Risk evaluation
in the PHA is a manual activity done by an analyst. This evaluation can have different
results when done by different analysts. Nonetheless, inter project consistency is desirable
and can be supported with the ontology. For instance, a similar scenario of another PHA
can be asserted to be the same as a scenario in our example. Any inconsistency such as
different exposure levels will be detected automatically. Such usages of the ontology need
to be considered by ontology engineers who have access to additional information (from

different domains and projects).
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PHA output are safety goals. Safety goals are top level safety requirements that are the
negation of the FCEs with an assigned ASIL at Renault. Table 1.4 defines the correspond-
ing ASIL to triples (E,S,C) for ASIL determination to assign an ASIL to the scenarios.
Then safety engineers perform ASIL assignment on the safety goals which assigns each FCE
with the highest ASIL of its scenarios. All these informations are recorded in the ontology.
Additionally, we defined table 1.4 as SWRL rules in the ontology. This enables to verify
that ASIL determination has been performed complying with 1SO 26262. Executing the
rules will assign an ASIL to the scenarios and detecting an incousistency reveals an error.
For example, let’s assume that the ASIL of EIC FREL 02 was defined to D. Figure 3.17
illustrates ASIL determination via rules execution in Protégé. Resulting inferred axioms
are displayed at the bottom of the figure. The conclusions are that EIC_FREL 02 is not
safety related (it is the responsibility of quality management) whereas EIC_FREL 09 is
ASIL D. Adding these axioms to the ontology results in an inconsistency as illustrated
in figure 3.18 (note that red is not good). Simply put, EIC_FREL 02 is associated to
quality management and ASIL D whereas we defined that a hazardous event is related to

exactly one ASIL.

I Froperties r’ Inclivicusls r = SWEL Rules rOntoviz r * Knowledie Tree |
& Metadsta(SESAF owl) OWLClasses

SWRL Rules -kﬁ'ﬁmﬁan

Enahled | Mame | Expression

p2:Group01_... (2Ip2iScenatiof?=) A p2 hasProbabiityOfExposure_Scenario_ProbOrExp(7x, p2 Exposurel) - pZhasASL .
p2:Groupdl_... @p? Scenariof?x) A p2hazControllabilty_Scenario_Cont(7x, p2 Controllabilty() = p2haz43ILYalue_Scen
p2:Group01 _. @pE:Scenario(‘?x) A p2hesSeverity_Scenario_Sew?x, p2 Severityl) A p2hasProbabilty OfExposure_Sce..
p2:Groupdl_... @pZ:Scenarlo(?x) A p2hasSeverity_Scenario_Sew(Tx, p2 Severity1) A pZhasProbabilty OfExposure_Sce.
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p2:Groupdl _... @pZ:Scenarlo(?x) £ p2hasSeverity_Scenario_Sew(Tx, p2 Severity2) & pZhasProbabilty OfExposure_Sce.. |
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P2:Groupdl_... @pQ'S:enarin(‘?x) mp2hesSeverity_Scenario_Sew( 7w, p2 Severity?) A p2:hasProbabilty OfExposure_Sce
p2:Group0l _. @pZ:Scenarlo[?x] np2hasSeverity_Scenario_Sev(?x, p2 Severity2) s pZhasProbabilty OfExposure_Soe.. |
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Figure 3.17: SWRL rules execution in Protégé

For ASIL assignment, we had to deal with OWL Open World Assumption. Assigning
the highest ASIL to a FCE requires negation (or closure) as one would want to assign ASIL
D to a FCE if it is related to any scenario with ASIL D, ASIL C if it is not related to a
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&l Pellet 1.5.2 (direct) X
Computing inconzsistent concepts: Queryving reasoner for inconsiztert concepts and updsting Protege-Cil ..
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Figure 3.18: Inconsistent ontology in Protégé

scenario with ASIL D and related to a scenario with ASIL C, and so on. But it is impossible
to express negation with OWL and SWRL. In this thesis we presented the ontology with
first order logic and such properties as axioms (see axioms (2.25) and (2.53) for examples of
negation and closure). However these properties cannot be written in OWL so it is natural
to use (SQWRL) queries to return these results. However, in Protégé, it is not possible to
add these results to the ontology. Fortunately, it is possible to deviate from SWRL and
use SQWRL queries as rules, which inferred axioms can be added to the ontology. This
must be done consciously and is only semi automatic as rule selection is important. For
example, we actually have two rules to assign an ASIL C to a FCE. The first one has to
be executed when no scenario has an ASIL D. It simply assigns ASIL C to FCEs that are
related to ASIL C scenario(s). The second one accounts for FCEs that are assigned with
ASIL D and are however related to ASIL C scenario(s). This rule only assigns ASIL C to
FCE that are related to ASIL C scenario(s) and that are not related to ASIL D scenarios.
Executing the first rule in this context would result in assigning two different ASIL to the
FCE in relation with an ASIL D. Selecting the appropriate rule to execute remains manual.

Ultimately, ASIL assignment is partly supported by the actual ontology and Protégé. The

231



3.3. APPLICATION OF THE APPROACH

ontology enables to detect errors done during this activity. Complete support of these
axioms as they are defined in this thesis is possible with a dedicated application in parallel

to the OWL ontology which exceeded the scope of this work.

Finally, safety goals are stakeholders requirements from the system engineers view-
point and their consideration is similar with relative system requirements. From the safety
point of view, a safety goal is the negation of a FCE with an ASIL. For example for
EIC_FREL 09 we have the following safety goal: No total absence of braking, ASIL D.
In the ontology, the two viewpoints are merged such that the more precise conceptualiza-
tion from systems engineering predominates. Safety goals are therefore expressed using
the stakeholder requirement boilerplate: The safety engineer shall be able to verify that
there is no total absence of braking, ASIL D. This stakeholder requirement is naturally put
in relation with the functional system requirement that accounts for vehicle deceleration
(REQ_RCB_1: The RCB system shall decelerate the vehicle). Finally, the PHA defines
safety goals from the functional system requirements in relation with a mission. As ex-
plained in section 2.3.2.2 ontology engineers start ASIL propagation to assign the highest
ASIL of the FCEs of a functional system requirements to each requirement. This enables
to also assign ASIL QM (for quality management) as safety goals are defined for ASIL

more stringent than QM.

3.3.3.2 Functional System Requirements Definition

As it can be seen in figure 2.52, system engineers are responsible for this activity.
Nonetheless, safety engineers are also responsible to produce functional system require-
ments that are relative to safety. Safety engineers further develop the safety goals (that
are stakeholders requirements from systems engineering viewpoint) into the so called func-
tional safety requirements as unacceptable risk has been detected. These two activities
are performed in parallel but functional system requirements and functional safety require-
ments concepts overlap therefore we made them precise in the ontology by stating that a
functional safety requirement is a type of functional system requirement (a subclass). Un-
der this interpretation, functional safety requirements are expressed with the boilerplate

for functional system requirements that involves a function. In fact, the term functional
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safety requirements accounts for functional and non functional requirements as illustrated
in figure 2.52 where the functional safety requirements are sent over to system engineers as
input for functional and non functional system requirements definition. We lose this defini-
tion in the ontology so that ontology engineers cannot simply record the functional safety
requirements defined by safety engineers as instances of functional system requirements.
Only functional ones (i.e., related directly or indirectly to a function with appropriate
properties) are recorded as instances of the class functional safety requirement. Others are
recorded in non functional classes. Similarly, functional system requirements developed by
system engineers can actually be safety related (if they are assigned with an ASIL differ-
ent than QM) so these have to be asserted as functional safety requirements by ontology

engineers.

In our conceptualization, functional system requirements derived from system missions
correspond to the top level elements of the functional requirements hierarchy. We con-
cluded the previous section with the ASIL assignment to these elements. In this activity,
system engineers produce more precise functional system requirements as usual. The in-
teresting part concerns functional safety and our application of ASIL decomposition on
functional requirements presented in section 2.2.2.2. Functional safety engineers produce
more and more precise functional system requirements. Additionally, they can emit inde-
pendence requirements on the system functionalities (in the general sense of the term as
system functions do not yet exist) which will be materialized in the system architecture
(functional and physical). This enables to consider safety in the domain of the problem
(specification) to guide the production of conceptually safe architectures (design). This
improves the current outdated view on system design process were system engineers first
define the system architecture, which is then analyzed by safety engineers who emit rec-
ommendations for securing the architectures (if tolerable risk is not achieved), which are
taken into account by system engineers with a definition of a secured architecture of the
system. In the ontology, the recommendations correspond to system requirements (and
independence requirements between functional requirements) and the system architecture

corresponds to the final secured architecture.

These concepts correspond to our interpretation of ISO 26262 for Renault. ASIL decom-
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position is relatively new and we had no real data to work with so the following examples
concerning ASIL decomposition and ASIL propagation were defined to present different
uses of the ontology. The functional system requirements are hierarchically structured
with sub-requirements being more accurate than super-requirements. For instance, we
have super-requirement REQ RCB_ 107 that has REQ RCB_ 179 and REQ_ RCB 180

as sub-requirements:

REGQ) RCB_107: The RCB system shall know the estimated position of the service
brake command HMI from the pressure in the hydraulic network or the mechanical position

of the service brake HMI.
REGQ RCB_179: The RCB system shall know the pressure in the hydraulic network.

REGQ) RCB_180: The RCB system shall know the mechanical position of the service
brake HMI.

These requirements are actually sub-requirements of precedent top level functional
system requirement RE() RCB 1 that is ASIL D. Intuitively, the failure of REQ) RCB -
107 leads contextually to catastrophic consequences and should be assigned with ASIL D
(assuming ASIL decomposition was not previously done for its super-requirements). The
two sub-requirements are actually functionally redundant as it is still possible to estimate
the position of the service brake with only one piece of information. Functional safety
engineers can perform ASIL decomposition on these three requirements with the ASIL D
being decomposed into two independent ASIL B (requirements). Given the ASIL of top
level functional system requirements and information when ASIL decomposition applies,
ontology engineers can execute SWRL rules (fundamentally SQWRL queries) to perform
ASIL propagation in the functional system requirements hierarchical structure. The ASIL
D of REQ RCB_ 1 is propagated to all its sub-requirements and when it reaches REQ -
RCB_ 107, it is decomposed into two ASIL B for REQ RCB_ 179 and REQ) RCB_ 180
(if they are not related with another super-requirement with a higher ASIL in which case

it is the highest that is assigned). Figure 3.19 is a partial view of these informations.

ASIL propagation has been defined to gain more insights from future use of ASIL

decomposition by safety engineers. This is completely new as assigning ASIL to functional
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REQ RCE 107
plhasPart Req pl llnsI'ﬂlml has ASILValue Req ASIL
Y
REQ RCB_180 REQ RCB_179 PLASIL D

p2:hasASILValue Req ASIL/p2:hasASILValue Req ASIL

p2:ASIL B

Figure 3.19: ASIL decomposition example — Protégé individuals visualization

requirements and expressing independence between requirements is not part of functional
safety current practice at Renault (in fact independence requirements are expressed at
the architectural level by defining two functions or two components). However it seems
appropriate considering ISO 26262. For now, ASIL decomposition and ASIL propagation
can be performed in the ontology up to the system architecture. This enables to define
a priori ASIL that serve as specifications. Moreover, as we will see in the following, it

enables to detect inconsistencies between system specification and solution.

3.3.4 Functional Architecture Definition

During this activity functional system requirements are the basis for the design of a
functional architecture that organizes functions and flows. Figure 3.20 corresponds to the
functional architecture view in ArKltect. Parallelograms and arrows respectively repre-
sent system functions and flows. System functions are organized hierarchically into sub-

functions that are encapsulated into super-functions which is not represented in the figure.

Figure 3.21 is a view that lists system functions. Sub-functions appear with an offset

to the right compared to their super-functions.

Finally, figure 3.22 is a view that focuses on one flow to present functions that produce

or consume this flow.

In section 2.2.1.5 we presented the traceability relation between functional require-
ments and functions. Functional requirements are used to deduce one or more functions.

For instance, functional system requirements REGQ) RCB_ 179 and REQ RCB_ 180 are
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Figure 3.20: RCB functional architecture view in ArKltect
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System: RCH [System]

Arkild

Fun_INT 0096
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-- Commander frein AV Fun_INT_0057

Fun_INT_0067

- Commander freinage avant

Fun_INT_0003

Fun_INT_0005

+ Caontréler le freinage Fun INT 0084

Figure 3.21: RCB functions listing in ArKTtect
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Figure 3.22: Flow view in ArKltect

respectively related to functions FUN_ INT 18 and FUN_INT 18.
REQ) RCB_179: The RCB system shall know the pressure in the hydraulic network.

REQ RCB_180: The RCB system shall know the mechanical position of the service
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brake HMI.
FUN _INT 13: sense hydraulic pressure of the master cylinder.

FUN_INT 18: Convert mechanical pressure (of the brake pedal) into hydraulic pres-

sure.

Even though, system functions are mostly deduced from requirements, the functional
architecture definition is still a creative activity in its own right. For instance, the preceding
functions have been encapsulated into the following super function: FUN_INT 11: acquire

driver’s commands.

Naturally, the tight collaboration between safety engineers and system engineers is
required in this activity. Safety engineers have to demonstrate that the risk is tolerable for a
given functional architecture and when it is not the case, they should give recommendations
for changes. To determine if the risk is tolerable or not, they base their analysis on the
ASIL. As defined in ISO 26262, they have to assign to a function the highest ASIL of
the functional safety requirements in relation. We had little access to functional safety
information so this assignment remains obscure. However, the ontology gives a precise
definition that enables to perform this assignment through ASIL propagation. Figure 3.23
presents the result of ASIL propagation to the previous functions. ASIL propagation is
performed from the leaves in the hierarchy of functional system requirements so FUN_-
INT 13 and FUN_INT 18 are assigned the highest ASIL of their respective functional

safety requirements (ASIL B in this example).

REQ RCB 180 REQ RCB 179

plideduces_Req Func plidechices_Req Func

FUN_INT 18 p2hasASILValue Req ASIL p2:hasASILValue Req ASIL | FUN INT 13

p2:hasASTL.Value Elem ASIL p2:hasASILValue FElem ASIL

pL:ASIL B

Figure 3.23: ASIL propagation on the functional architecture example — Protégé individuals
visualization

With ASIL propagation it is possible to verify that functions ASIL assignment has been
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done consistently compared to the ontology. Ontology engineers can record ASIL assigned
to functions, execute ASIL propagation based on the functional system requirements and
functional architecture structure, and detect any inconsistency revealing important matters
to consider. Safety engineers can however perform a posteriori ASIL tailoring with critical-
ity analysis. This safety study enables to reduce the ASIL of an architectural element (i.e.,
a function or a component) that can invalidate ASIL propagation. For example, as a result
of criticality analysis, FUN_INT 13 can be assigned with ASIL A. This analysis is done
later in the process compared to ASIL decomposition and is therefore more relevant (as the
system is better understood). It results that the correct ASIL to be assigned to FUN_ -
INT 13 is really A and not B. Nevertheless, performing ASIL propagation will result in
a contradiction that will lead to question why it is not ASIL B that is assigned ensuring

that necessary information (criticality analysis data) that resulted in ASIL tailoring exist.

Finally, the ontology can also be used to verify inter model consistency and gain more
insights from this level of detail. As it can be seen in figures 3.6 and 3.20 different de-
scriptions and models can be developed concerning similar information. The ontology at
the instance level is actually the global system model. Let us assume that figure 3.6 is
another functional architecture and that we defined adequate mappings to record the two
descriptions into the ontology (for example circles in figure 3.6 represent sensors that can
be interpreted as sensing functions, e.g., sense MC pressure and pedal stroke for the brake
pedal circle). One difficulty for ontology engineers is that they have to identify equivalent
individuals and assert that they are the same in the ontology. This is done only once and
it formalizes the interconnection between different documents and models. It should also
be relatively easy as the common point of all the process actors is that they develop the
same system. If it is not the case, ontology engineers might ask whether or not it is really
the same system that is being developed. In this example, sense MC pressure and pedal

stroke is asserted to be the same as FUN_INT 11.
FUN_INT 11: acquire driver’s commands.

Checking the ontology consistency ontology will guaranty that all models are consistent.
Given our hypothesis, consistency checking will be negative in this example. At the bottom

right hand side of figure 3.6, we find two flows that are produced by sense MC pressure and
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pedal stroke: MC pressure and pedal stroke. In the model in figure 3.20, flow Flo INT 19:
Hydraulic pressure of the brake pedal is produced by FUN _INT 13. Flo INT 19 and
MC pressure are similar and asserted to be the same which result in a contradiction as
a flow can only be produced by one function and FUN_INT 11 and FUN_INT 18 are
different (this is normal because figure 3.6 is used as a specification for the system and is

not a description of the architecture).

3.3.5 Physical Architecture Definition

This is the last activity presented in the design process where system engineers seek to
find a solution (in terms of components) that supports the functional architecture. Figure
3.24 is the physical architecture view in ArKlItect. Rectangles, cylinders and arrows re-
spectively correspond to components, interfaces and connections that are actually flows. It
is important to consider interfaces as distinct components as they are adequate for trans-
portation of specific types of flows. Similarly to requirements and functions, components

are structured hierarchically and sub-components are encapsulated into super-components.

Figure 3.25 lists the RCB components without the interfaces. In this activity, system
functions are allocated to components. Allocation relation enables to trace the functions

to the components that will realize them.

Figure 3.26 presents the internal view of the rear right wheel drum actuator, view that
is composed of the actuator allocated functions. In arKltect, only leaf functions of the
hierarchy are allocated to exactly one component which suits the ontology definition that

leaf functions have to be allocated to one component.

Returning to the example, FUN _INT 183: sense hydraulic pressure of the master cylin-
der, and FUN_INT 18: Convert mechanical pressure (of the brake pedal) into hydraulic
pressure have been allocated to Sub_INT 9 that is a control block that comprises a cal-

culator (ECU for Electronic Control Unit) and a sensor.

Sub_ INT 9: Conti ECU and hydraulic component that contains the master cylinder

pressure Sensor.

Let us note that due to implementation choices their super-function (FUN_INT 11:
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Systen: RCE

Figure 3.24: RCB physical architecture view in ArKltect
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System: RCB [System]

Actuator Orum RL
Actuator DOrum RR
Bloc Conti (calculateur (ESP, ABS ...} et bloc hydrauliqgue comprenant le capteur de
Calculateur RCB Renault
- EMB FL
Actuator caliper FL
Calculator EME FL
Lock actuator FL
Power driver EMB FL
sighal adapter EMB FL
- EMB FR
Actuator caliper FR
Calculator EME FR
Lock actuator FR
Power driver EMB FR
sighal adapter EMB FR
Hand brake button
Master cylinder
Position sensor of the brake pedal
-- Sensors cluster
Longitudinal sensar
Sensor of yaw
Transversal sensor
Speed sensor FL
Speed sensor FR
Speed sensor RL
Speed sensor RR

Figure 3.25: RCB components listing in ArKItect

Subsystem: Actuator Drum RR

Retourner une résistance Hydraulic resistance RR
hydrauligue ARD

Hydraullo pressure for R~ g Actionner frein / Meshanical friction tfort RR -

/ hydrauligue ARD /

Figure 3.26: Component internal view in ArKltect

acquire driver’s commands) has not been allocated to a single component as it is composed
of other acquisition sub-functions that are allocated to other components, the capability

to allocate a super-function exists nevertheless.

Safety engineers collaborate with system engineers in this activity keeping in mind that
the goal is a safe architecture. In parallel, they have to assign an ASIL to each component
similarly to the functions. In ISO 26262, an architectural element is assigned the highest
ASIL of its related functional safety requirements. As explained in the previous section,

these functional safety requirements differ from the sense of functional in the ontology. So
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we interpreted ASIL assignment on components as ASIL propagation from the functions
to the components. In the ontology, a component is assigned with the highest ASIL of the
leaf functions it realizes. For example, Sub_INT 9 realizes FUN_INT 13 (and FUN_-

INT 18) but also realizes the following function:
FUN_INT 86: control base brake (BFD, ABS).

FUN_INT 86 has been assigned with ASIL D so Sub_INT 9 is also assigned ASIL
D through ASIL propagation even though FUN INT 18 is ASIL B. Figure 3.27 is a view

of these informations in the ontology.

FUN INT 13
pl 1#_.-\]lc:ncareclTnFlulc(_Ml 1‘eahzesm hasASILValue Elem ASIL

Sub INT ©
J
plrealizex Comp Func plisAllocatedTo Func Comp

pLASIL B

FUN _INT 86 p2hasASILValue Elem ASIL

p2hasASILValue Elem ASIL

PLASIL D

Figure 3.27: ASIL propagation on the physical architecture example — Protégé individuals
visualization

Similarly to the functional architecture, ASIL propagation is defined in the ontology
and explains how ASIL assignment is done on the components for the physical architecture.
ASIL assignment activity is done by functional safety engineers so ontology engineers role
is to record these informations in the ontology and verify that consistency still holds even
after executing ASIL propagation. For instance, if component Sub INT 9 was assigned
with ASIL C from functional safety, recording this information in the ontology and then
performing ASIL propagation will assign ASIL D to the component and will result in
an inconsistent ontology. ASIL propagation conclusions can still be invalidated due to

criticality analysis but this does not reduce the produced information value.

Finally, ontology engineers can take advantage of the information structure defined in
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the ontology and use it as a knowledge base by defining and executing different queries
to bring important information to the surface (traceability coverage analyses, multi-model

informations such as the complete set of functions allocated to a controller, etc.).

3.3.6 Conclusion

In this section the design approach presented in the previous chapter has been applied
on the RCB project. The ontology centric design process has been developed so as not
to completely change the current design process at Renault but to be based on the latter
by explaining previously imprecise activities and by inserting the new role of ontology en-
gineer. The ontology engineer verifies consistency issues that result mostly from parallel
development branches. In particular, systems engineering and functional safety domains
are two development branches that manipulate similar concepts that needed to be inte-
grated for better synergy. The results presented in this application comes from the shared

conceptualization and are threefold:

First: the integration of systems engineering and functional safety domains gives a
precise and unique interpretation to previously similar notions with incompatible definitions
(e.g., functional system requirements and functional safety requirements) and therefore
the information recorded in the ontology is not subject to implicit interpretations, gives
an ontology compliant (conceptually) description of the system and is potentially more

reusable.

Second: all the important system level (design) concepts of ISO 26262 have been defined
and integrated with Renault own concepts. This integration provides the very precise
foundations for the ontology design process for safety critical systems that is an answer for

Renault to a development process that complies with ISO 26262.

Finally: the ontology based design process answers the consistency challenge caused by
information loss at the processes interfaces (especially when the interface is a third party)

as consistency can now be verified by ontology engineers.
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3.4 Chapter Conclusion

In this chapter we presented the history of electric braking at Renault and the appli-
cation of ontology centric design process for safety critical systems on the RCB project.
The most important conclusion learned from precedent electric braking projects was that
safety critical systems development requires the automobile constructor to position itself as
a system developer rather than an integrator of commercial solutions (e.g., COTS) that are
not completely mastered and that the company is liable for. Systems engineering is cur-
rently undergoing definition and deployment at Renault to address the system dimension
shortcoming. In addition, international standard ISO 26262 is also a big item of concern
and this work is part of multiple initiatives to adapt the development process in order to
be compliant with this standard. Our proposition, the ontology centric design process,
is structured around an ontology that enables to record very precisely all informations
relative to one system design. The design process is requirement driven so the informa-
tion records the top-down nature of the process. Even though it was actually possible
to record most of the study case information, this has been done with relative difficulty
as the project information has been produced without the formalized conceptualization.
Nonetheless, the central ontology (at the conceptual level) was sufficiently general and
precise so that most of the produced information from systems engineering and functional
safety could be recorded precisely in the ontology. This study has been developed only to
demonstrate the process capabilities and is also an example of project capitalization that
is more appropriate for reuse than documents and models (that are hardly integrated). Let
us note that to really be able to evaluate our process requires that it is applied to more
projects. The construction of the ontology at the conceptual level has been fundamental
to this work and has involved several changes that were problematic for the instantiation
of project information. Moreover, not only some information was missing and therefore
could not be added to the ontology, we have also identified and defined concepts that were
not part of the project conceptualization, such as ASIL assignment from the main system
functionalities. At the instance level, we recorded provided information that amounts to
66 requirements, 79 functions, 83 flows and 71 components. Traceability information was

missing and has been only partially defined to verify the implemented concepts. As we
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have defined a different conceptualization for ASIL assignment that uses traceability in-
formation and ASIL decomposition (information not provided) we performed risk analysis
on two functional requirements and only verified that ASIL propagation was working on
small examples. Ultimately, missing information mainly concerns relations between dif-
ferent concepts. Queries can be defined to reveal when information is missing. It would
amount up to hundreds which reveals that tools are essential for industrial size projects

that are generally even more complex.

The process and the ontology have proved satisfactory even though an ontology being
incomplete by nature impacts appreciation of general and precise characteristics. The on-
tology defines the general concepts of design (e.g., requirement, function, flow, component,
ASIL) that enable to record imprecisely the information of any automotive safety critical
system. Naturally, we want this information to be precise which is done with additional
concepts, sub-concepts and constraints. Additional axioms can also be defined to complete
the ontology for more preciseness. For instance, other requirements attributes such as pri-
ority (requirements are considered according to their priority) and flexibility (requirements
are more or less imperative) could be defined. To conclude, the work presented in this
thesis is an improved development process at Renault answering the rigor required when
developing safety critical systems, it defines all the principles that enables to improve de-
sign models quality and consistency through an ontology, and it has enriched the reflexion

with further investigations presented in the next chapter that concludes the thesis.
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Conclusions

The goal of this thesis is to bring a contribution to adapt and improve the development
process for safety critical mechatronics systems at Renault. We observed that the process
could benefit from more formalization as it was defined imprecisely and changes were
required because of international standard ISO 26262 on functional safety. In order to

achieve this goal, we have investigated the following research questions:

Q1 How can domain knowledge (i.e., automobile domain knowledge) be formalized 7
Q2 How can expert knowledge about the development process be formalized ?

Q3 How can conformance to standard ISO 26262 be verified 7

Chapter 1 presents systems engineering and functional safety which are the two domains
formalized and integrated in this work. It then goes through ontologies in general to focus
on formal ontologies with OWL, SWRL and SQWRL languages. Formal ontologies were
proposed to formalize a conceptualization of a domain with a formal semantics. The use
of OWL and SWRL enables to formally define a domain therefore answering question
Q1. Moreover, we chose to formalize process activities inputs and outputs so that expert
knowledge coincides with domain knowledge and therefore the formalization also answers
question Q2. Finally, formal languages consistency checking is an automatic analysis that
enables to verify the consistency of an ontology and answers question Q3 as we formalized

part of ISO 26262.

Chapter 2 presents the contributions. We chose to focus only on the design part of the

system development process. We first identified that the documents and models produced
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during the design process suffer from many semantic inconsistencies. In general, design is
a collaborative process involving different actors that can have different implicit domain

conceptualizations.

Our first contribution is the proposal to use ontologies to formalize an explicit concep-

tualization of a domain at Renault. This idea is presently accepted completely.

The second contribution consists in two ontologies on systems engineering that is rela-
tively new and functional safety that is subject to change due to the publication of standard

ISO 26262.

The third contribution is the integration of these two ontologies into one ontology
for safety critical mechatronics systems design. We identified that these two domains
presented some incompatibilities, in particular on the requirement notion, and solved these
incompatibilities. The integration of these two domains enables to limit loss of knowledge
at the process interfaces which allows to work with more complete information that resulted
in a semi-automatic analysis for ASIL assignment called ASIL propagation because it is

based on the traceability defined in the ontology.

Our fourth contribution that achieves the goal of this thesis is an improved design

process that relies entirely on ontologies: the ontology centric design process.
The fifth contribution is the definition of the new role: ontology engineer.

We first presented the general principles of the approach. The ontology at the con-
ceptual level corresponds to the system data-model. At the instance level, the ontology
corresponds to the system consistency reference model. It is the global system model.
Working at the conceptual level enables to define mappings between documents, models
and the ontology. This enables to enrich the ontology with the information contained in
the documents and models, to propagate the changes from one source to their different
recipients and to check the consistency of the whole process (i.e., the consistency of all
documents and models). Then the approach is presented in details. The design process
at Renault is in a transitional phase oriented towards full model-based systems engineer-
ing. For now, each project decides how process inputs and outputs are produced using

documents or models. In anticipation of a future Renault specific seamless process (with
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adequate tools), ontology centric design process introduces the new role of ontology engi-
neer to support this transition. Ontology engineers mission will be to guarantee the design
process consistency, ensuring that Renault needs are taken into account in accordance with

systems engineering in general and ISO 26262 in particular.

Finally, in chapter 3, we applied the process defined in this work to the Regenerative

Combi-Brake study case. The design process is improved in three ways.

First, it integrates formal ontologies which enables to ensure that consistency (also at
the semantic level) is attained in a project. The ontology at the instance level is the global

system model.

Second, it is better adapted for safety critical systems development as safety concepts
have been integrated with systems engineering in a precise unambiguous way whereas this
integration was previously implicit.

Third, it also complies with ISO 26262 as concepts of the standards are defined in the

ontology and used by the process.

We conclude on other prior results that are part of this thesis. The work described in
this thesis has been extensively presented at Renault. Two presentations have been given
to DELTA ("Direction de I'Electronique et des Technologies Avancées") director. The
work has also been presented during three internal meetings between different departments
and several times for the team. Two six months internships were supervised on model
transformation and formal verification. Three internal reports were produced. This work
has also been made available to the public with presentations in two research laboratories,
meetings between Renault and some partners and with three published papers two of
which are international. Finally, this work continues to be exploited as presented in the

next section.

Future Work

Sharing a conceptualization is invaluable. This actually addresses a peculiarity of the
human condition revealed by this quote from Peter Benary: "Misunderstanding is the most

frequent form of communication between people”. The concepts presented in this thesis
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bring many benefits in real world applications where systems are developed by humans.
Systems engineering discipline is defined by the INCOSE as "an interdisciplinary approach
and means to enable the realization of successful systems”. Similarly, the extent of this work
exceeds disciplinary boundaries and there are still many aspects that can be improved and

need further research.

Related Work

The work presented in this thesis comes from Renault’s decision to deploy systems
engineering and adds to the discussion with an additional ontology dimension. Related

works are performed based partially on our work. Lets us mention some of them.

Even though the ontology manipulates the requirement concept, it does not address
syntactic nor grammatical structure of natural language. Presently, a thesis is in progress
within the project RAMP (Requirement Analysis and Modeling Process). Its objective
is to improve the efficiency and quality of requirements expressed in natural language
throughout the system life cycle. Expected outcomes are mainly but are not restricted
to better requirements authoring, better written requirements and better requirements
management and traceability. Identified requirements parts would be associated with their

manifestation as concepts in the ontology.

Similarly, variability and optimization in the design process are the subject of respective
theses. The first one brings the idea of variability back to the design process as first
class element. Given the time constraints relative to development in the automotive, the
production of variability information (and therefore the evaluation of different solutions
for the same system) remains very specific and most often very late in the design process.
The ontology is an input for conceptual elements upon which variability can be expressed
(e.g., requirements, functions, flows, components, etc.). The second thesis is interested in
multi-objective optimization. The considered approach defines an optimization function
for a system, which depends on multiple parameters derived from needs and constraints on
the system. Following systems engineering these parameters should ultimately correspond
to attributes of concepts (e.g., components cost) or to flows (e.g., the road slope parameter

impacts energy consumption during acceleration phases but the road is not a concept with
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a slope attribute therefore it is recorded as a flow) in the ontology.

Renault is also involved in many collaborative projects where the ontology and the
approach have a role to play. For instance, IMOFIS* has studied possible modeling tools
specifically for safety considerations. Renault language has been implemented in the tools
enabling to produce models in Renault dialect. Modeling tools rely on modeling languages
(meta-models) and the ontology can actually also be considered as a Renault DSL (Domain
Specific Language). The ontology can either be viewed as a modeling tool meta-model
specification (the ontology is therefore implemented as a meta-model) or mapped to a
tool meta-model giving more confidence that Renault needs are taken into account. More
recently, Renault and the CEA® have signed an R&D agreement on the green vehicle theme.
Omne research area concerns MBSSE (Model Based Systems and Software Engineering)
where system and software models are produced using Renault profiles of SysML and
UML and will ultimately give some answers to systems engineering deployment at Renault.
The ontology centric process principles applies to this research area. More generally, our
work serves as the foundation of Renault reference framework for mechatronics system
development. In particular, the ontology is used as the base of the architecture framework
in this reference framework. This work can be seen as the means by which Renault will be

able to share its needs even more both internally and externally.

Finally, the work realized in this thesis is a theoretical work applied at Renault. It

results in a general approach that can be adapted to any environment of any company.

Personal Perspectives

Ontologies cannot be considered as static as there are many occasions that can lead
to changes such as changes in the conceptualized domain which leads to the fact that
the ontology does not reflect the reality anymore. Ontology evolution is naturally a big
concern in the semantic web community as ontologies, central to semantic web systems,

are updated along the functionalities of ontology based systems.

In our context, we envision the addition of new concepts to the ontologies defined in

*IMOFIS (Ingénierie des MOde¢les de Fonctlons Sécuritaires), http://www.imofis.org
SCEA (Commissariat & 'Energie Atomique et aux Energies Alternatives), http://www.cea.fr
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this thesis. Four main areas for evolution are identified.

First, the concept of requirement needs even more precisions. The ontology provides
basic modeling pattern for functional and non functional requirements. Specifically, func-
tional requirements are very precisely decomposed between one another and traced to
functions and components. Other concepts are required for the hard part that concerns
the non functional requirements. The non functional requirements considered in the on-
tology correspond only to requirements that have an interpretation relative to systems
engineering elements (i.e., functions, flows and components). We have given some exam-
ples for weight, cost and execution time but this is relatively imprecise and needs further
investigation. The different types of non functional requirements need to be identified and
defined with their semantic relations and related concepts such as process requirements

that will be related to process concepts (activity, technique, etc.) for example.

Second, enabling to explicitly represent design choices and variability will benefit sys-
tems engineering in general but also functional safety that takes a logic view of the ar-
chitectures when they study causes of feared customer events. For instance, the physical
consideration of a data acquisition requirement can involve different types of sensors with

specific characteristics.

This leads to the third area for improvement: optimization analyses that enable to
compare two different solutions to the same problem. For instance, system customer cost

could be used to differentiate between two solutions.

Fourth, as we only considered ISO 26262 parts that are relative to system level and
design, the entire V cycle remains to be addressed completely. In particular, the V cycle
ascending branch, i.e., the integration phase, that relates to verification and validation

activities.

In this work, we integrated systems engineering and functional safety. The next logical
step is to integrate other domains or professional fields involved in the interdisciplinary re-
alization of mechatronics systems. It is possible to emulate the approach presented in this
thesis by defining new ontologies and integrating them using imports and specific axioms.

In particular, software engineering is relatively close to systems engineering which is very
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favorable for formalization and integration. Moreover ISO 26262 considers software as a
specific part which formalization could build upon this domain ontology. More generally,
the approach to define domain ontologies and then integrate them is our answer to bet-
ter consider safety as a domain integrated to systems engineering and to make different
domains work together by identifying incompatibilities and resolving them. The approach
contributes to the improvement of current practices for assignment, argumentation and
demonstration of system ASIL. We believe this approach can be adapted or implemented
to other normative contexts such as the other standards derived from IEC 61508 bringing

a solution to semantic consistency problems that exist in all industrial domains.

From the theoretical point of view, interesting perspectives would be to study alter-
native ontology languages. Nonmonotonic logics are characterized by a nonmonotonic
consequence relation, meaning that adding a formula to a theory can result in reducing its
set of consequences. This can be used to express integrity constraints for example. Even
though we have seen that it was possible to formalize the universe of discourse with OWL,
SWRL and SQWRL, a theory where the Open World Assumption and the Closed World

Assumption coexist and its applicability to the industry needs further research.

From the practical point of view, first, more results are needed which will require more
applications of the approach. On the one hand, the approach scalability when confronted to
the amount of information contained in industrial systems in production has to be assessed.
And on the other hand, the central ontology quality also needs to be evaluated to guide

ontology evolution.

Second, a quantitative evaluation of the communication between actors that uses our
approach and those that do not would characterizes ontologies as assets that are essential

or that contributes during development.

Given the diversity of tools that can be used during the design process and their rel-
ative volatility as it is being constructed, mappings are not yet tool supported. They are
however required by our approach: tooled mappings would guarantee ontology enrichment
and model consistent synchronization. New concepts will most certainly emerge from these
tools development which will lead to ontology evolution. Moreover, the ontology as the

global system model will most certainly appeal for more features, such as ASIL propaga-
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tion defined in this thesis, therefore new tools that support additional features are also

considered for development.
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Appendix A

First Order Logic Axiomatization

The following is a partial axiomatization of the constructs used when defining an on-

tology with OWL.

Class(cls) - cls is a class.
Instance(inst) - inst is an instance.
isInstanceOf(inst,cls) - inst is an instance of the class cls.

isSubclassOf(subcls,cls) - subcls is a subclass of the class cls.

Classes are sets and instances are objects. Predicates isInstanceO f and isSubClassO f
correspond to membership and inclusion relations in set theory: isInstanceO f(inst,cls)
is noted inst € cls ; isSubclassO f(subcls, cls) is noted subcls C cls. A class is a subclass
of another class if all its instances are also instances of the other class (referred to as a
superclass).

isSubclassO f(subcls, cls) < Class(subcls) N Class(cls) N

(inst € subcls = inst € cls) (A1)

Usual relations union, intersection, complement and disjoint are defined for classes.

Union(clsl,cls2) - the class which instances are instance of ¢ls1 or cls2 denoted cls1Ucls2.
Intersection(cls1,cls2) - the class which instances are instances of ¢lsl and c¢ls2 denoted
clslNcls2.

Complement(cls) - the class which instances are not instances of cls denoted —cls.

disjoint(cls1,cls2) - the classes clsl and cls2 have no common instance.

For now we have the basic objects class (that are sets) and individuals (that are mem-
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bers or elements of classes). Predicates are added to structure the whole. Informally, a

relation links a domain to a co-domain.

Relation(rel) - rel is a relation.
hasDomain(rel,cls) - the domain of relation rel is the class cls.

hasCoDomain(rel,cls) - the co-domain of relation rel is the class cls.

A class is further described with predicates on the relations that it involves.

hasRelation(cls,rel) - the class cls implements the relation rel.

inherits(cls,rel) - the class cls inherits the relation rel of its superclass.
Image(cls,rel) - the class that is the image of class cls through relation rel.
minCardinality(cls,rel,card) - the minimum positive integer card of instances in rela-
tion with one instance of cls through relation rel.

mazxCardinality(cls,rel,card) - the maximum positive integer card of instances in rela-

tion with one instance of ¢ls through relation rel.

Defining a relation for a class is equivalent to adding the class to the domain of the
relation (A.2). The defined relation(s) of a class are inherited to the subclasses of the class

(A.3).

hasRelation(cls,rel) < Class(cls) A Relation(Rel) A hasDomain(rel, cls) (A.2)

isSubclassO f(subcls, cls) A (hasRelation(cls, rel) V

inherits(cls,rel)) = inherits(subcls, rel) (A.3)

The image of a class through a relation is defined at class level with the restriction that
the image is a subclass of the co-domain of the relation (A.4). Also, the image of a class
is inherited to its subclasses. It can be further customized with the restriction that the
image of the subclass is a subset of the image of the superclass (A.5).

The same applies for minimum and maximum cardinalities predicates. They can be
defined at class level for a relation. More formally, those predicates define an interval in
Nt.

Asserting minCardinality(cls, rel, mincard) defines that the cardinal number of image(s),

of any instance of the class c¢ls under rel, is in the interval [mincard ; 4+o0.
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Asserting maxCardinality(cls, rel, mazcard) defines that the cardinal number of image(s),
of any instance of the class cls under rel, is in the interval [0 ; mazcard).

If both minimum and maximum cardinalities are asserted, then the number of image(s) is
in the interval [mincard ; +oo[ N [0 ; mazxcard] with mincard < mazcard.

If nothing is asserted on cardinality, then the number of image(s) is in N* by default.

Defined minimum and maximum cardinality relations for a class are inherited to the
subclasses of the class (A.6) and A.7. They can be further customized at subclass level
with the restriction that the set that corresponds to the defined cardinality interval of the
subclass is included or equal to the set that corresponds to the cardinality interval of the

superclass (A.8) and (A.9).

(hasRelation(clsl,rel) V inherits(clsl, rel)) A
hasCoDomain(rel, cls2) = Image(clsl,rel) C cls2

(hasRelation(cls,rel) V inherits(cls, rel)) A isSubclassO f(subcls, cls) =
Image(subcls, rel) C Image(cls,rel)

V card € Nt (hasRelation(cls,rel) V inherits(cls,rel)) A
isSubclassO f(subcls, cls) A minCardinality(cls, rel, card) = (A.6)
minCardinality(subcls, rel, card)

V card € Nt (hasRelation(cls,rel) V inherits(cls,rel)) A
isSubclassO f(subcls, cls) A maxCardinality(cls,rel,card) =  (A.7)
maxCardinality(subcls, rel, card)

V card, subcard € NT  (hasRelation(cls,rel) V inherits(cls,rel)) A
isSubclassO f(subcls, cls) N minCardinality(cls, rel, card) =
minCardinality(subcls, rel, subcard) A card < subcard

(A.8)

V card, subcard € Nt (hasRelation(cls,rel) V inherits(cls,rel)) A
isSubclassO f(subcls, cls) AN mazxCardinality(cls, rel, card) =
maxCardinality(subcls, rel, subcard) A card < subcard
(A.9)
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Axioms for ASIL propagation

Propagation of the ASIL from the Safety Goals throughout
the Functional System Requirements Hierarchy

let

Z ={z| p2:hasASILValue Req ASIL(x,z)}
a =maxASIL(Z)

mn

p2:Functional Requirement(y) A
[(pl:hasPart _Req(x,y) A
—p2:AS1LDecompositionRelation FuncSafReq DecSche(z,link) A
p2:hasASILValue Req ASIL(x,z))
V
(p2:SafetyGoal(x) A pliderives Req(x,y) A
p2:hasASILValue Req ASIL(x,z))
v (B.1)
(pl:hasPart _Req(z,y) N
p2:ASILDecompositionRelation FuncSafReq DecSche(x,link) A
p2isDecomposedIntoSubRequirementl ASILDecSch_Req(link,y) A
p2:ASILIsDecomposedIntol ASILDecSche_ASIL(link, z))
V
(pl:hasPart _Req(z,y) N
p2:ASTLDecompositionRelation FuncSafReq DecSche(x,link) A
p2isDecomposedIntoSubRequirement2 ASILDecSch_Req(link,y) A
p2:ASILIsDecomposedInto2 ASILDecSche ASIL(link,z))]

= p2:hasASILValue Req ASIL(y,a)
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let

Z ={z | p2:hasASILValue _Req ASIL(z,z)V p2:hasASILObjective-
ValueBeforeDecomposition Elem ASIL(x,z)}
a =mazrASIL(Z)
n p2:Functional Requirement(y) A
[(p2:ASTLDecompositionRelation FuncSafReq DecSche(z,link) A
p2isDecomposedIntoSubRequirementl ASILDecSch _Req(link,y) V

(p2:isDecomposedIntoSubRequirement2 ASILDecSch_ - (B.2)
Req(link,y)) A p2:hasASILV alue_Req ASIL(x,z))
V

(pl:hasPart _Req(x,y) A p2:hasASILObjective-
ValueBeforeDecomposition Elem ASIL(x,z))]

= p2:hasASILObjectiveV alueBe foreDecomposition Elem -
ASIL(y,a)

Propagation of the ASIL from the Low Level Functional Sys-

tem Requirements throughout the System Functions Hierar-
chy

let
7Z ={z| p2:hasASILValue Req ASIL(x,z)V
p2:hasASILV alue Elem_ASIL(z,z)}
a =mazrASIL(Z)
in pl:System Function(y) A =p2:hasASILV alue Elem -
ASIL(y,nonexist) A (B.3)
[(pl:Low Level Functional System Requirement(x) A '
plideduces  Req Func(x,y) A
p2:hasASILValue Req ASIL(x,z))
\%

(pl:hasPart _Func(z,y) A p2:hasASILV alue_Elem ASIL(x,z))]
= p2:hasASILValue Elem ASIL(y,a)
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let
Z ={z | p2:hasASILObjectiveV alueBe foreDecomposition _Elem -
ASIL(z,z)}
a =maxASIL(Z)
in  pliSystemFunction(y) A
[(pl:Low Level Functional System Requirement(x) A
plideduces  Req Func(z,y) A p2:hasASTLObjectiveV alue- (B.4)
Be foreDecomposition_Elem ASIL(z,z))
V
(pl:hasPart _Func(z,y) A p2:hasASILObjectiveV alue-
BeforeDecomposition _Elem ASIL(x,z))]
= p2:hasASILObjectiveV alueBe fore Decomposition Elem -
ASIL(y,a)

Propagation of the ASIL from the Low Level System Functions
throughout the System Components Hierarchy

let
Z ={z | p2:hasASILV alue_FElem_ASIL(z,z)}
a =maxASIL(Z)
n (pl:SystemComponent(y) V pl:nter face(y)) A
—p2:hasASILV alue FElem ASIL(y,nonexist) A
[pl:Low Level System Function(x) A (B.5)
plisAllocatedTo Func_Comp(z,y) A
p2:hasASILV alue_Elem ASIL(x,z)]
V
[pl:hasPart _Comp(x,y) A p2:hasASILV alue Elem ASIL(z,z)]
= p2:hasASILV alue Elem_ASIL(y,a)

let
Z ={z | p2:hasASILObjectiveV alueBe fore Decomposition _Elem -
ASIL(z,2)}
a=maxrASIL(Z)
in (pl:SystemComponent(y) V pl:Inter face(y)) A
[(pl:LowLevel System Function(x) A
plisAllocatedTo Func_Comp(z,y) A (B.6)
p2:hasASILObjectiveV alueBe foreDecomposition_Elem ASIL(x, z))
V
(pL:hasPart _Comp(x,y) A p2:hasASILObjectiveV alue-
Be foreDecomposition_Elem__ASIL(x, z))]
= p2:hasASTLObjectiveV alueBe foreDecomposition  Elem -
ASIL(y,a)
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let
Z ={z | p2:hasASILV alue Elem ASIL(y,z)}
a =mazASIL(Z)
in  pl:SystemComponent(z)) A (B.7)
—p2:hasASILV alue Elem ASIL(y,nonexist) A
pl:hasPart _Comp(x,y) A p2:hasASILV alue Elem ASIL(y, z)
= p2:hasASILValue FElem ASIL(z,a)

let
7Z ={z | p2:hasASILObjectiveV alueBe fore Decomposition _Elem -
ASIL(y,z)}
a =maxASIL(Z)
in  pl:SystemComponent(y) A (B.8)

(pl:hasPart _Comp(x,y) A p2:hasASTLObjectiveV alue-
Be foreDecomposition _Elem _ASIL(y, z))]
= p2:hasASTLObjectiveV alueBe fore Decomposition  Elem -
ASIL(z,a)

Propagation of the ASIL from the Functional System Require-
ments to the Functional External Requirements

let
Z ={z| p2:hasASILValue Req ASIL(x,z)}
a=maxASIL(Z)

in p2:Functional Requirement(x) A pliderives Req(z,y) A (B.9)
p2:hasASILV alue Req ASIL(x,z)
= p2:hasASILValue Req ASIL(y,a)
let
7Z = {z | p2:hasASILObjectiveV alueBe fore Decomposition _Elem -
ASIL(x,z)}
a =marASIL(Z) (B.10)

in p2:Functional Requirement(x) A pliderives Req(z,y) A
p2:hasASTLObjectiveV alueBe foreDecomposition Elem ASIL(x,z)
= p2:hasASILObjectiveV alueBe fore Decomposition Elem -
ASIL(y,a)
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Propagation of the ASIL from the Functional External Re-
quirements to the Functions of the External Elements

let
Z ={z | p2:hasASILValue_Elem ASIL(x,z)}
a =marASIL(Z)
in  pl:Functional External Requirement(x) A (B.11)
plideduces  Req Func(x,y) A
p2:hasASILValue Req ASIL(x,z)
= p2:hasASILValue Elem ASIL(y,a)

let
Z ={z | p2:hasASILObjectiveV alueBe foreDecomposition_Elem -
ASIL(z,2)}
a =marASIL(Z)
in  pl:Functional External Requirement(x) A (B.12)

plideduces  Req Func(x,y) A p2:hasASILObjectiveV alue-
BeforeDecomposition Elem ASIL(x,z)
= p2:hasASTLObjectiveV alueBe foreDecomposition Elem -
ASIL(y,a)

Propagation of the ASIL from the Functions of the External
Elements to External Elements of the System

let
Z ={z| p2:hasASILValue_Elem_ASIL(z,z)}
a =maxASIL(Z)
in  pl:External ElementFunction(z) N (B.13)
plisAllocatedTo Func_Comp(z,y) A
p2:hasASILValue Elem ASIL(z,z)
= p2hasASILValue Elem ASIL(y,a)

let
Z = {z | p2:hasASILObjectiveV alueBe foreDecomposition Elem -
ASIL(z,2)}
a =maxASIL(Z)
in  pl:Ezternal ElementFunction(z) N (B.14)

plisAllocatedTo _Func_Comp(z,y) A p2:hasASILObjectiveV alue-
BeforeDecomposition Elem ASIL(x,z)
= p2:hasASTLObjectiveV alueBeforeDecomposition  Elem -
ASIL(y,a)
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Sharing a Conceptualization

Résumé :

Dans le marché mondial fortement concurrentiel, un constructeur automobile doit offrir & ses clients des
services innovants, respectueux de 'environnement et sirs de fonctionnement. Tout cela doit étre fait a
des cotits trés compétitifs tout en respectant des réglementations et des délais de plus en plus stricts. Ces
travaux répondent & ces défis et visent & améliorer le processus de conception des systémes mécatroniques
critiques automobile. Ils montrent que 'utilisation de modeéles formels et informels peuvent se rapporter
a4 un modéle sémantique commun, %.e., une ontologie systéme et sécurité, qui permet d’assurer la
cohérence du processus de conception tout en respectant la norme ISO 26262. Les concepts de ces
travaux ont été appliquées sur un systéme de freinage régénératif hybride intégré dans un véhicule
électrique. L’application a démontré que I'ontologie réalisée permet d’enregistrer I'information produite
lors de la conception et que l'utilisation d’ontologies permet effectivement de détecter les incohérences
sémantiques ce qui améliore la qualité des informations de conception, favorise la réutilisation et assure
la conformité & 'ISO 26262.

Mots clés :
Ingénierie des sytémes, sécurité fonctionnelle, ISO 26262, ontologie, processus de conception

Abstract :

In the strongly competitive worldwide market of today, a car manufacturer has to offer to its customers
relevant, innovative, reliable, environment friendly and safe services. All this must be done at very
competitive costs while complying with more and more stringent regulations and tighter deadlines. This
work addresses these challenges and aims at improving the design process for automotive safety critical
mechatronics systems. It shows that the use of formal and informal models can commit to a common
semantic model, i.e., a system and safety ontology, that enables to ensure the consistency of the whole
design process and compliance with standard ISO 26262. The concepts in this work have been applied
on a regenerative hybrid braking system integrated into an electrical vehicle. It demonstrated that the
realized ontology enables to record the information produced during design and that using ontologies
effectively enables to detect semantic inconsistencies which improves design information quality, promotes
reuse and ensures ISO 26262 compliance.

Keywords :
Systems engineering, functional safety, ISO 26262, ontology, design process




