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Chapter 1

Introduction

1.1 Basics concepts of Anderson localization

1.1.1 Boltzmann theory and Ioffe-Regel criterion

Structural, chemical and other imperfections are unavoidable in crystalline solids. Sufficiently

reducing their concentration may uncover many intrinsic properties of ideal “pure” materials.

Nevertheless, impurities play a substantial role in understanding the transport properties of

electronic materials. The conventional theory of electronic conductivity, which is referred to

as Boltzmann quasiclassical theory[1], was built on the picture that an electron is multiply

elastically scattered by impurities and diffusing through the solid. A cardinal concept in the

description of the diffusion of an electron is the mean free path l or the mean free time τ ,

which are the average distance or time between scatterings by impurities. They are related by

l = ~kF τ/me, where kF is the Fermi wavevector of the electrons, and me is the effective mass

of an electron in a band. The theory results in the Drude formula for the DC conductivity of

electrons if the linear size of the system is much larger than the mean free path:

σ0 =
ne2τ

me

, (1.1)
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where e is the elementary charge, n is the average density of electrons. The Drude conductivity

σ0 is temperature-independent and proportional to the mean free time τ . The stronger the

scattering by impurities, the shorter the mean free time, and the smaller the conductivity.

Yet at finite temperatures T one has to additionally consider the inelastic scattering processes

of electrons due to, for example, electron-phonon coupling. Similarly as in the case of impurity

(elastic) scattering, the contribution of inelastic scattering to the conductivity is proportional

to the corresponding inelastic scattering time, which depends on two temperature regimes:

(i) At high temperatures, that is, the temperature is much higher than the Debye temperature

of phonons, the inelastic scattering time is set by ~/kBT , which leads to 1/σ(T )− 1/σ0 ∝ T .

(ii) At low temperatures, however, we have 1/σ(T )− 1/σ0 ∝ (T/T0)p, where p and T0 depend

on the nature of inelastic scattering. For example, if electrons are scattered by phonons, p = 5

and T0 is the Debye temperature of the phonons. For electron-electron interaction, p = 2 and

T0 is the Fermi energy of electrons.

Here we note that the Boltzmann theory gives dσ(T )/dT < 0, since the inelastic scattering

time is shorter if the temperature is higher. The Boltzmann theory has been quite successful

in describing the impurity and temperature dependence of the conductivity in ordinary and

relatively pure conductors.

Yet the Boltzmann theory is correct only if the elastic mean free path is much larger than the

Fermi wave length,

kF l� 1. (1.2)

In this case quantum interference is not important. Eq. (1.2) is called the Ioffe-Regel

criterion[2, 3]. One can naturally expect that kF l ∼ 1 will bring us into a totally different

regime, where the quantum interference becomes substantial. Combined with Eq. (1.1), in

three dimensions kF l ∼ 1 leads to a conductivity[4]:

σ0,min ∼ 5× 10−5kF/Ω. (1.3)
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The Ioffe-Regel criterion (1.2) implies that in three dimensions only for metals with conduc-

tivities much lager than σ0,min their transport properties are well captured by the Boltzmann

theory.

1.1.2 Evidence for the breakdown of weak scattering theory

The effect of quantum interference on electron conductivity in disordered metals was first

taken into account by the diagrammatic perturbation theory[5, 6], which is a systematic series

expansion in the small parameter 1/kF l. Qualitatively, the effect can be interpreted via the

return probability in a semiclassical way. The amplitude of a quantum particle to start at a

point 0 and return to it is a sum over Feynman paths[7]:

A0→0 =
∑
i

Aie
iSi/~, (1.4)

where Si is the action of the i-th path starting from 0 and returning to it, and Ai are appro-

priate coefficients. Therefore, the probability of return to the point 0 is

P0 = |A0→0|2 =
∑
i

|Ai|2 +
∑
i 6=j

AjA
∗
i e
i(Sj−Si)/~. (1.5)

On the right hand side of Eq. (1.5) the first term is the classical return probability, and the

second term represents the effect of quantum interference. Upon averaging over realizations

of impurities the second term has strong cancellations. But there exists a large number of

paths whose contributions do not vanish when the time-reversal symmetry is present (in the

absence of the magnetic field), which are the pairs of time-reversed paths. Since the two paths

of each pair have the same phase, they lead to an enhanced return probability compared to

the classical one. In this case the probability for transmission is reduced, which leads to a

reduced conductivity. The enhancement of the return probability is a precursor to a strongly

localized regime where the quantum interference dominates the propagation of particles.

It has long been realized that large enough concentrations of impurities can give rise to a

number of phenomena essentially distinct from what are observed in clean or weakly disor-

dered conductors. In particular, for three-dimensional metals with Drude conductivity σ0
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smaller than the value of the order of the one given in Eq. (1.3)[4, 8], the temperature depen-

dence of the conductivity σ(T ) becomes much weaker or eventually changes direction, that

is, dσ(T )/dT ≥ 0. This behavior contradicts the Boltzmann weak scattering theory, which

predicts that dσ(T )/dT < 0, and provides an experimental evidence for the existence of the

regime where the Ioffe-Regel condition (1.2) is broken. More interestingly, in some thin wires

and films, which are effectively one- and two-dimensional systems in the absence of spin-orbit

coupling, respectively, it is found that σ(T )→ 0 as T → 0 and dσ(T )/dT > 0 at low enough

temperatures[9]–[12]. The above properties provide the experimental evidence for the exis-

tence of a strongly localized regime, where the strength of disorder is sufficiently strong, or

the dimensionality is low.

1.1.3 Anderson localization and the scaling theory

A better starting point for understanding the transport properties in strongly disordered

or low-dimensional systems is the concept of Anderson localized states, where a quantum

particle is coherently trapped by impurities and does not participate in transport any longer.

The existence of such states was predicted and explained in terms of quantum interference

by P. W. Anderson in his groundbreaking paper[13]. This phenomenon is referred to as the

Anderson localization[6, 14, 15]. The theory is based on the fact that for a given energy E and

strength of disorder, the quantum state of the particle ψE(r) is either localized or extended,

whose envelope is typically characterized by

|ψE(r)|2 ∝


1
ξDE
e
− |r−r0|

ξE , |r− r0| � ξE, localized,

1
V , extended,

(1.6)

where D is the dimensionality of the system, r0 is the localization center, ξE is the localization

radius at the energy E, and V is the volume of the system. The energies in the one-particle

spectrum separating the localized and delocalized states are called mobility edges[16], whose

locations depend on the type and the strength of disorder. The existence of mobility edges

implies transitions between insulating and metallic phases in disordered non-interacting elec-

tronic systems, driven by the density and disorder.
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For simplicity we assume that there is only one mobility edge Em in a disordered electronic

system: For E < Em all states are localized. For E > Em all states are extended. When the

Fermi energy EF of the electrons lies below the mobility edge, that is, EF < Em, the system

is an insulator since no extended state is available in the vicinity of the Fermi level. At finite

temperatures, the electrons may gain thermal energies (typically from phonons) to undergo a

number of processes[17].

(i) Activation to the mobility edge, which yields σ(T ) ∝ e−(Em−EF )/kBT .

(ii) Activation to a neighboring localized state. This gives σ(T ) ∝ e−∆ξ/kBT , where ∆ξ is the

mean level spacing in a localization volume ξD.

(iii) Variable range hopping, which is due to the activation to a state localized a distance

Rm ∼ ξ(∆ξ/T )1/(D+1) away. Rm is obtained by maximizing the probability of hopping between

two localized states of spatial separation R and energy mismatch ∆ξ(ξ/R)D. This yields the

Mott’s Law σ(T ) ∝ e−C(T0/T )1/(D+1)
, where C ∼ O(1) is a dimensionless constant, and T0 ∼ ∆ξ.

The variable range hopping dominates the electron conduction as long as Rm & ξ, that is the

temperature is low enough so that T . T0. We note that, for EF < Em, σ(T )→ 0 as T → 0,

and dσ(T )/dT > 0. Hence, the Anderson localization theory provides a simple explanation

for the observation of the low temperature dependence of conductivity in strongly disordered

or low-dimensional dirty conductors[4]–[12].

If we increase the density of electrons or decrease the strength of disorder, the Fermi energy

EF and the mobility edge Em approach each other. At some critical value the Fermi energy

may cross the mobility edge, that is, EF > Em, whereby the system becomes a metal. In this

case the conductivity can be well captured by the weak scattering theory.

This type of metal-insulator transition is known as Anderson transition[18], which is distin-

guished from the other mechanisms of metal-insulator transitions, such as the band gaps[19],

electron-electron interactions (Mott transition)[20]–[22], and the excitonic mechanism[23],

where the disorder can be absent.

In more than half a century of development, the impact of localization has spread through-

out all of physics, from condensed matter to wave propagation and imaging[24]. For ex-
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ample, electromagnetic waves (light) propagating in a random media can undergo Anderson

localization[25], due to the interference of multiply scattered waves.

Anderson’s original argument for the occurrence of complete localization in the presence of

sufficiently strong disorder was based on analyzing the convergency of a locator expansion[13]:

If t is the magnitude of the hopping matrix element for a particle from each site to its neighbors,

and W is the width of the distribution of onsite random energies, starting form a local quantity

on some initial site of energy E, a perturbation theory can be developed as a formal series

in t/W . For t/W . 1, there are two competing contributions in the locator expansion: (i)

On a D-dimensional hypercubic lattice, the number of sites at a distance of R � 1 (in unit

of the lattice constant) is approximately RD. Therefore, the typical energy mismatch of a

distant site decreases with distance like R−D. This leads to small denominators (resonances)

in the perturbation series. (ii) Yet the magnitude of the effective hopping to these distant sites

decreases exponentially with distance. This results in small numerators. Anderson studied

such a locator expansion for the self energy of the particle and argued that, for sufficiently small

t/W , the small denominators are compensated for by the small numerators with probability

one. Therefore, distant resonances happen with a vanishingly small probability, the series

is convergent, and the particle is localized. Otherwise, if t/W is large enough, the distant

resonances happen with a finite probability, the series gets divergent, and the particle is

delocalized. A mathematical proof of the existence of strongly localized states, at large W , or

near the band edge, was given by Fröhlich et al.[26].

Much progress in understanding localization was due to the development of an one-parameter

scaling theory by the “Gang of Four”[27], which was based on the earlier work by Thouless on

the quantum conduction in thin wires[28]. The theory describes the flow of the dimensionless

conductance g(L) under rescaling:

d ln g(L)/d lnL = β(g), (1.7)

where L is the linear size of the system, and β(g) is independent of L but depends on the

model one studies. This paved the way for the resummation of zero-frequency singularities
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in quantum correction for the conductivity near two dimensions[5, 29] and a systematic field-

theoretical renormalization group analysis[30]–[32].

The one-parameter scaling theory predicts that, when the time-reversal and spin-rotation

symmetries are preserved (in the absence of the magnetic field and spin-orbit coupling), in

dimensions D ≤ 2 all one-particle states are localized, and therefore no mobility edge exists,

even if disorder is very weak. In dimensions D > 2 mobility edges do exist if the strength

of disorder is weak enough, which implies the possibility for Anderson transitions. This one-

parameter scaling theory has been confirmed numerically by Mackinnon and Kramer[33, 34]

using the technique of finite size scaling. In the presence of spin-rotation coupling, the one-

parameter scaling theory scaling theory predicts the existence of Anderson transitions in two

dimensions [35]-[39].

In more general cases, more than one scaling parameters have to be included in the scaling

theory. For example, in the theory of the integer quantum Hall effect, not only the longitudinal

conductance g [see Eq. (1.7)] but also the Hall conductance, called gH , appears as a scaling

parameter[40]. The scaling theory is crucial for the understanding of the integer quantum Hall

effect, mesoscopic fluctuations in small conductors, disorder-driven metal-insulator transitions

and some aspects of quantum chaos [24, 41].

The scaling theory does not consider interactions between particles. The observation of a

metal-insulator transition on a silicon surface, which is a strongly interacting and weakly dis-

ordered two dimensional system in the absence of spin-orbit coupling, was reported in Ref. [42]

for the first time, and the transition has been further confirmed in different materials (See

Ref. [43] and the references therein). Moreover, the disordered superconductor-insulator tran-

sition in two dimensions has recently attracted a lot of attention, due to a series of surprising

and puzzling transport experiments, especially on the insulating side of the transition [44]–

[48]. Despite many theoretical efforts have been put in these directions (see, for example,

Refs. [49]–[62] and the references therein), there is still lack of clear descriptions and inter-

pretations for the natures of these transitions. Full solutions of the above problems require a

localization theory which includes the effect of interactions.

11



1.2 Few-particle systems–Channel competition

One of the possible starting point to incorporate the influence of correlations among particles

is to study the localization properties of few interacting particles in a random potential. The

main question is: If all one-particle sates are localized, does the presence of interaction help

to delocalize a few-particle system? This seemingly academic question can be addressed by

current techniques with ultracold atoms[63], and is of fundamental importance for solving the

more complicated case of many-body systems.

The simplest case of two interacting particles has attracted a lot of studies. The problem

was first addressed by Dorokhov[64] in an one-dimensional continuous model with a harmonic

attraction between two electrons. It was shown that the disorder-induced coupling between

the internal quantization states, which provide the effective transverse channels, might lead

to the enhancement of the two-particle localization length, which is a measure for coherent

propagation of two bounded particles. The two-particle problem in a one-dimensional chain

was later considered by Shepelyansky[65] highlighting the effect of repulsive and short range

interaction. It was concluded that, in the weak disorder limit, the two-particle localization

length ξ2 could be much lager than the one-particle localization length ξ1.

The basic idea leading to the enhancement effect of the interaction on two-particle localization

length is as follows. A short range interaction provides hopping strength in the noninteract-

ing Fock basis. If two particles are launched within a distance of ξ1 from each other, they

may propagate coherently over larger distances. Otherwise, if two particles are launched at

a distance much larger than ξ1 form each other, there is no such enhancement effect due to

exponential smallness of the overlap of their wave functions. The delocalization effect of inter-

action is only related with the former configurations (the fast channel), and the propagating

entity is a “pair” of “radius” ∼ ξ1. The latter (the slow channel) are irrelevant to interac-

tion effect. More importantly, the fast and slow channels are nearly decoupled (the coupling

is proportional to the overlap of the tails of one-particle eigenstates, which is exponentially

small). Hence, there is no competition between them.

However, the channel competition is significant in a system with more than two particles.

As discussed in Sec. 2.3, there are many parallel but coupled channels with parametrically
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different transport characteristics (e.g. all particles moving together, or moving in subgroups

of fewer particles), which means in the absence of coupling some of them are more delocalized

(the fast channel) and the others are more localized (the slow channel). Therefore, a full

solution of the few-particle problem requires analyzing the coupling effect of the fast and slow

channels.

The principal question in this thesis is raised: If we have coupled fast and slow propagating

channels, which one will dominate the localization? If the fast channel dominates, the de-

localization effect of interaction is significant, and the Anderson transition is mostly due to

the delocalization of the fast channel if approaching the critical point. Otherwise, if the slow

channel dominates, the delocalization effect of interaction is much weaker, and the system very

possibly stays in strongly localized phase. This type of question arises not only in few-particle

systems, but is an important element in the analysis of many-body systems[53], for example,

quantum dots[54][66][68]-[70], and quantum wires[55], where few or many excitations have

various channels of propagation.

As discussed in Sec. 1.3, the question can be represented by Anderson models for a single

hybrid particle, for example, a polariton.

1.3 Anderson localization of polaritons

The problem of competition between a fast channel and a slow channel is raised naturally

in studying the localization of linearly mixed hybrid particles, such as polaritons. Polaritons

are the result of coherent mixing of the electromagnetic field in a medium (photons in a

microcavity for example) and excitations of matter (exciton). In the absence of disorder,

photons have a much larger group velocity than excitons, and thus one subsystem is fast

and the other is slow. As a special example, quasi-one-dimensional resonators were recently

fabricated by confining electromagnetic fields inside a semiconductor rod[72] or to a sequence

of quantum wells[73]. In such resonators the dispersion of transverse-quantized photons is

quadratic in the small momentum, with an effective mass as small as 10−4 of the effective

mass of the Wannier-Mott exciton which is of the order of the mass of a free electron.
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Disorder is unavoidable in such systems due to the imperfections of the resonator boundary

and impurities. In many cases one can consider only one mode of transverse quantization

for both the photon and the exciton. Thus a model of two dispersive modes (particles) with

parametrically different transport properties arise. Due to the large dipole moment of the

exciton these particles are mixed, resulting in avoided mode crossing. On top of that, disorder

acts on both of them, whereby its effect on the two channels can be rather different [74, 75].

Therefore, the main question in the thesis can be reshaped in terms of a polariton: What

happens to the localization properties when the photon (the fast channel) is coupled to the

exciton (the slow channel)? Will the photon dominate the localization of the polariton, or

the exciton? Answer to this question will help us to qualitatively understand the channel

competition in few- or many-body systems.

1.4 Summary of the results

As discussed in Chap. 3, a polariton propagating in a random potential is described by the

Anderson model on two coupled but nonequivalent lattices. We will see that the dimensionality

is of particularly importance for understanding the effect of coupling between fast and slow

channels. In the present thesis, I study two models which can be solved exactly.

(i) Two-leg Anderson model in one dimension. The localization lengths are obtained analyti-

cally in the weak disorder limit. This solution represents a major technical advance, because

for the first time a model, which leads to an extended DMPK equation with non-separable

angular and radial variables, is exactly solved.

(ii) Anderson model on two-layer Bethe lattices. This model reflects the properties of infinite-

dimensional systems. On these lattices we can write down the recursion relation for the local

Green’s function, which can be solved efficiently. We study the effect of weak interlattice

couping on the Anderson transition at the band center (E = 0) of two lattices with equal

hopping but different disorder. In contrast to the one-dimensional case, we consider interme-

diate or strong disorder, since in high dimensions (D > 2) weak disorder hardly has any effect

on localization. More precisely, we want to answer the question: If in the absence of interchain

coupling the less disordered lattice (delocalized) is very close to the Anderson transition, and
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the more disordered lattice is localized (by definition), will the interlattice coupling push the

system to a localized phase or a delocalized phase?

Without going into details the brief results are the following:

(i) In one dimension the physics depends qualitatively on whether the system is close to

the resonance energy ER, which is defined as the energy where the dispersions of the two

corresponding decoupled disorder-free chains intersect. Near the resonance, the slow chain

dominates. The localization length the ladder is at most by a factor of ≈ 3 larger than

the one of slow particles. Away from the resonance the wavefunctions stay either mostly on

the slow leg, being strongly localized. Or they have their main weight on the fast leg, and

hybridize here and there with the slow leg (see Fig. 4.2 and Fig. 4.11). It is this second type

of wavefunctions which helps excitations on the slow leg to delocalize due to the presence of

the faster leg, even though this happens with small probability far from the resonance. More

interesting phenomena are also found such as band edge singularities which strongly affect the

large localization length.

(ii) On the Bethe lattices, the physics depends qualitatively on the disorder on the more

disordered lattice. If this disorder is not too strong, interlattice coupling may push the system

to the delocalized phase. If this disorder is strong enough, the coupling will push the system

to the localized phase.

The thesis is organized as follows. In Chap. 2 the problem of few-interacting particle is

reviewed. I present a hierarchical structure which is argued to be the fastest channel for

the propagation of few particles. Thereby, the problem of coupling between fast and slow

channels is formulated. In Chap. 3 the concept of cavity polaritons is introduced and the effect

on disorder on photons and excitons is analyzed microscopically. The question of Anderson

localization of polarizations is proposed. In Chap. 4 the Anderson localization problem on

a two-leg ladder is solved by the Fokker-Planck equation approach. The solution is exact in

weak disorder limit at a fixed interchain coupling. We show that the canonical Dorokhov-

Mello-Pereyra-Kumar (DMPK) equation is insufficient for this problem. Indeed, the angular

variables describing the eigenvectors of the transmission matrix enter into an extended DMPK

equation in a non-trivial way, being entangled with the two transmission eigenvalues. This

extended DMPK equation is solved analytically and the two Lyapunov exponents are obtained
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as functions of the parameters of the disordered ladder. The application of the theoretical

results to hybrid particles are discussed in the conclusion. In Chap. 5 the Anderson model

on a two-layer Bethe lattice is solved. The recursive relation of the local Green’s function is

derived and solved numerically by the population dynamics. The phase diagram of the model

is presented. In Chap. 6, we discuss the role of dimensionality and possible implications for

interacting few-particle problems.
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Chapter 2

Localization of few interacting

particles

In the presence of interaction it is convenient to formulate a N -body problem in a certain Fock

space. Usually the Fock basis contains all the eigenstates of the N -body system in the absence

of interaction, which are the permanents (for bosons) or Slater determinants (for fermions)

constructed out of the N exact one-particle states. The Hamiltonian in this Fock space takes

the form:

H0 +H1 =
∑
α

εαc
†
αcα +

∑
αβγδ

Qαβ
γδ c
†
γc
†
δcβcα. (2.1)

Here c†α (cα) is the creation (annihilation) operator of a particle on the one-particle eigenstate

|α〉 with eigenenergy εα. These operators obey the commutation relations for bosons and the

anti-commutation relations for fermions. Qαβ
γδ are the two-body interaction matrix elements

given by

Qαβ
γδ =

∫∫
dxdx′Q(x− x′)ψ∗γ(x′)ψ∗δ (x)ψβ(x)ψα(x′), (2.2)

where ψα(x) is the amplitude of a particle in the state |α〉 at the coordinate x, and Q(x− x′)

is the strength of interaction between two particles at the coordinates x and x′. For the sake

of interest we assume that the interaction is local in the real space:

Q(x− x′) = UVδ(x− x′), (2.3)
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where U is the potential energy per pair of particles, and V is the volume of the system.

The one-particle eigenenergies εα and the interaction matrix elements Qαβ
γδ are in general

random variables. Their distributions are determined by the statistics of energy levels and

eigenfunctions of the one-particle Hamiltonian[76, 77]. Especially, the statistics of the matrix

elements Qαβ
γδ are highly non-trivial. For example, if the underlying one-particle dynamics is

diffusive, as in a disordered metal, ballistically chaotic, as in a billard, or integrable, as in a

periodic potential, one obtains different estimates for the magnitude[54, 66].

The presence of the interaction yields two effects: (i) The diagonal matrix elements of Qαβ
γδ

shift the N-body levels, which can yield a rearrangement of the spectrum. This situation has

been intensively discussed by Kamimura[78] in the case of Anderson insulators with very small

localization lengths. (ii) The off-diagonal elements of Qαβ
γδ give rise to hopping among certain

Fock states, and thus may induce delocalization in the Fock space. In our study below we

mainly focus on the limit where the second effect dominates the first. Here we should note that

in general the delocalization in the Fock space is not equivalent to the delocalization in the

real space. The delocalization in the Fock space characterizes both metals and insulators. The

delocalization in real space due to interaction may occur only in insulators, where without

interaction all states are localized. This difference has been stressed by an analysis of the

sensitivity of the energy levels with respect to a change of boundary conditions in a one

dimensional system with two interacting particles[79].

In this section we discuss the localization properties for few interacting particles. Shepelyansky

used an analogy between the eigenvalue problem of two particles and that of banded random

matrices, and made an assumption on the scaling properties of the interaction matrix elements

Qαβ
γδ . Finally, it was concluded that, in the weak disorder limit ξ1 → ∞, the two-particle

localization length ξ2 scales with ξ1 as ξ2/ξ1 ∝ ξ1U
2, where U is the strength of the interaction.

This result was further supported by Imry in Ref. [80], where the Thouless block scaling

argument[28] replaced the banded random matrix analogy. The main idea is to consider a

pair of electrons as the entity in the scaling picture. This scaling theory explained the initial

approximate results[65] and was further confirmed by an analysis based on the nonlinear

supersymmetric σ model[81].
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Since the study of two interacting particles is only the first step towards the treatment of

realistic many-body systems, it provides motivation to increase the number of particles. We

will see that a modest strategy of going from two to three and large numbers of particles can

be accomplished by generalizing the scaling theory to more than two particles.

Differently from the study of the low-energy excitations, or in other words, quasi-particles,

in many-body systems[51]–[54], we are looking for certain Fock states of a number of bare

particles in the bulk of the total energy spectrum, which presumably have the maximun

localization length. In general these states lie around the center of the total energy band since

the level density is the highest there.

However, we have to point out that our analysis on the few-particle problem is by no means

rigorous, since the scaling picture for two or more particles is only qulitatively correct. Im-

proved analyses[82, 83] and direct numerical simulations[84, 85, 94] showed that ξ2/ξ1 ∝

ξ1|U |/(1 + |U |) in weak disorder limit. In particular, this implies that the enhancement effect

occurs for weaker interaction than the previous prediction. Moreover, via different estimations

of the interaction matrix elements Qαβ
γδ , several controversial results were obtained. For ex-

ample, Römer, Schreiber, and Vojta[86] demonstrated that the enhancement effect should be

absent completely. Krimer, Khomeriki, and Flach[87] predicted a much weaker enhancement

ξ2/ξ1 ∝ (ln ξ1)2U2. Despite a number of studies, the two-particle problem remains a complete

open question. Nevertheless, we argue that the heicrachical structure obtained by the scaling

analysis provides the fastest channel for the delocalization of few particles.

This chapter is organized as follows. In Sec. 2.1 we recall the Thouless block picture[28], which

is the basic tool for our analysis on large numbers of particles. In Sec. 2.2 the problem of two

interacting particle is discussed. In Sec. 2.3 we generalized the scaling analysis to large numbers

of particles and construct the states which very possibly have the largest localization length in

the total energy spectrum. At the end we give rise to the problem of coupling effects between

many parallel channels with parametrically different localization characteristics, which is one

of the motivations to study the exactly solvable models in Chaps. 4 and 5.
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2.1 Thouless block picture

Originally, the block picture is developed for non-interacting particles. In order to measure

whether a particle at a certain energy is extended or localized the length scale L, we divide

the macroscopic system to blocks of linear size L. On one block the averaged one-particle

level spacing at the relevant energy is ∆L. Any two levels on adjacent blocks are coupled by a

matrix element VL. Intuitively, if the levels on one block are dense or the inter-block coupling

is strong, that is, VL � ∆L, a level on one block will couple a large number of levels on the

neighbours. Thereby, the particle can propagate easily to the adjacent blocks. It is crucial to

introduce the Thouless energy Ec, and the related Thouless number:

g(L) =
Ec
∆L

, (2.4)

to characterize this process of a particle hopping among the blocks. The Thouless number is

defined by

Ec =
1

2π

~
τL
, (2.5)

where τL is the diffusion time of the particle crossing one block. Correspondingly, ~/τL is the

broadening of the energy level due to the inter-block coupling VL. In this way the Thouless

number g(L) is identified with the dimensionless conductance of the block. Furthermore, the

diffusion time can be estimated by the Fermi golden rule if the levels in a block are dense

enough:
~
τL

= 2π
V 2
L

∆L

. (2.6)

By Eqs. (2.4)-(2.6), we obtain the Thouless number:

g(L) =

(
VL
∆L

)2

. (2.7)

Obviously, each block is metallic if VL � ∆L since the conductance g(L) � 1. More impor-

tantly, the one-particle localization length ξ can be estimated by g(ξ) ' 1.

Although the above scaling analysis was performed for a single particle, we should note that it

applies in more general cases. The Thouless number g is a good measure of the entanglement
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between two generic quantum systems, namely, A and B. If a state of A with energy E

effectively couples the states of B within the energy intervals [E − Ec/2, E + Ec/2], whose

width is the Thouless energy Ec, then the Thouless number gives the number of states of B

entangled with the state of A. Moreover, if the states carry some charges for transport the

Thouless number is identified with the dimensionless conductance.

2.2 Localization of two interacting particles

2.2.1 Two interacting particles in one dimension

Two interacting particles in a one-dimensional chain described by the Hamiltonian (2.1) is

the first step towards large numbers of particles. According to the scaling theory[27] all the

one-particle states are localized in presence of weak disorder. As shown in Eq. (1.6) a one-

particle state with localization length ξ1 takes the form of ψα(x) ∼ cα/
√
ξ1 exp (−|x− xα|/ξ1)

if |x−xα| � ξ1, and ψα(x) ∼ cα× constant if |x−xα| . ξ1, where xα is the localization center

and cα is a random phase factor. Switching on the interaction H1 we open scattering channels

among two-particle Fock states. In the analysis below we assume ~ = 1 and the length unit

is the lattice constant.

In the spirit of Thouless block picture we divide the chain into blocks of size ξ1. Statistically,

on each block there are ξ1 number of one-particle states. Thereby, the two-particle Fock space

has two propagating channels: (i) The two particles are in different blocks. It is easy to realize

that these states are the approximate eigenstates of the total Hamiltonian, since the overlap

of two one-particle wave functions is exponentially small, and eventually the interaction are

exponentially weak. This part of the Fock space has the same localization properties as these

of a single particle. (ii) The two particles are in the same block. The pair-wise interaction

may activate the two particles hopping simultaneously form one block to another in neighbor.

The hopping strength is given by the typical value of the matrix elements Qαβ
γδ in Eq. (2.2).

This part of the Fock space is relevant to the delocalization effect of interaction. We note that

the two subspaces are almost decoupled, since the interaction matrix elements between them

are exponentially small. Therefore, we can analyze only the interaction-activated subspace.
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In the weak disorder limit ξ1 →∞ and for a weak interaction U � B, on each block the mean

level spacing of the Fock states can be estimated as

∆̃2 ∼
B

ξ2
1

, (2.8)

where B is the one-particle band width. Here we made two crucial simplifications: (i) The

magnitude of disorder and the strength of interaction are much smaller than the one-particle

band width. (ii) The two-particle levels on each block are uniformly distributed in the two-

particle energy band. We have to note that the second simplification is rough. As found in

Refs. [82, 83], in a tight binding chain the two-particle density of states are non-uniform and

essentially exhibits Van Hove singularities, which is similar as that of a single particle in two

dimensions. This modification will improve the original estimation[65, 80], as mentioned later.

In order to estimate the typical value of Qαβ
γδ in Eq. (2.2) we have to know the statistics

of the one-particle wave functions. For simplicity we use the very rough approximation of

uncorrelated one-particle wave functions with amplitude of the order 1/
√
ξ1 on each site on a

block and with a random sign. This approximation gives

〈ψα(x)ψβ(x′)〉 = δαβδ(x− x′)/ξ1. (2.9)

As a consequence,

〈(Qαβ
γδ )2〉 ∼ U2/ξ3

1 . (2.10)

This estimation corresponds to a one-particle Hamiltonian belonging to the Gaussian orthog-

onal ensemble (GOE) in the standard random matrix theory[76, 77].

As pointed out in Ref. [66, 54], this evaluation of the matrix elements only reproduces the

zero-mode contribution of a diffusion process. More importantly, a one-dimensional particle

actually moves almost ballistically in its localization volume[82, 83], which is far from diffusive.

Considering this fact will also help to improve the original results[65, 80]. For simplity, we

use the estimation (2.10).
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Based on the two-particle level spacing in Eq. (2.8) and the matrix element in Eq. (2.10) we

obtain the two-particle Thouless number on one block:

g2(ξ1) ∼
〈(Qαβ

γδ )2〉
∆̃2

2

∼ (
U

B
)2ξ1. (2.11)

If g2(ξ1) � 1, which means the interaction is not too weak or the one-particle localization

length is large enough, the two-particle states can be much more extended rather than a

one-particle localization volume. In order to determine the two-particle localization length we

assume that the Ohm’s law is valid if g � 1. In one dimension it gives g(L1)/g(L2) ' L1/L2

if g(L1) and g(L2) � 1. Therefore, the two particle localization length ξ2 can be estimated

by g(ξ2) ∼ 1:

ξ2 ∼ g2(ξ1)ξ1. (2.12)

In the new length scale ξ2 the two-particle mean level spacing can be estimated as

∆2 ∼
∆̃2

g2(ξ1)
, (2.13)

which will be used when we analyze the problem of four particles in Sec. 2.3.

As we have pointed out, the estimations of the enhancement factor g2(ξ1) and the two-particle

localization length ξ2 are only qualitatively correct. More accurate calculations of the two-

particle level spacing and the interaction matrix elements based on the Hubbard model with

onsite disorder[83] suggest:

ξ2

ξ1

' c(U)ξ1, c(U) = A
|U |

1 + |U |
, (2.14)

if ξ2 � ξ1. Here the interaction strength U is measured in unit of the one-particle hopping

strength, and A ∼ O(1) is a numerical constant.

The form of the enhancement factor in Eq. (2.14) was supported by the numerical results in

Refs. [84, 85]. Here we have three important observations: (i) c(U) dose not depend on the

strength of disorder if disorder is weak enough. This confirms ξ2 ∝ ξ2
1 when ξ1 is large. (ii)

At U � 1, c(U) gets saturated c(U) ∼ A. This saturation is easy to understand: When U

is larger than the one-particle band width, the Fock space splits into two Hubbard bands,
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and the one-particle eigenstates are not preferential basis any more. This splitting makes the

interaction less efficient for the delocaliztion effect. (iii) When U � 1, c(U) ∝ U , instead

of U2 in Eq. (2.11) obtained by the Fermi golden rule. This linear-U dependence of the

enhancement factor is more subtle. It is due to the van Hove singularity at E = 0 in the

two-particle density of states, which behaves as ρ(E) ∼ − ln |E|, if the amplitude of disorder

is much smaller than the one-particle band width[82, 83]. Recently, it was suggested that the

enhancement of the two-particle localization length could be much weaker than all analysis

above, that is, ξ2/ξ1 ∼ U2(ln ξ1)2[87]. Despite a number of studied in the last decade, the

problem of two interacting particles still remains an open issue.

Our numerical simulation[88] on the Hubbard model supports the result in Eq. (2.14) and

the numerical constant A ∼ 0.22 is obtained by fitting the data. The method is based on a

quantum mechanical time evolution calculation for the wavepackets, which is performed by

expending the time evolution operator by Chebyshev polynomials[89]. The method is so far

the most efficient method to simulate the long time evolution of a quantum system.

2.2.2 Two interacting particles in higher dimensions

Naively followed from the block scaling argument, in two dimensions the delocalization en-

hancement might be exponentially large in the weak disorder limit. Differently from the

situation in the one-dimensional case, the number of sites in an one-particle localization vol-

ume is proportional to ξ2
1 . Repeating the scaling analysis in one dimension, we estimate the

mean level spacing of two particles on a block and the typical value of interaction matrix

elements as

∆̃2 ∼ B/(ξ2
1)2, 〈(Qαβ

γδ )2〉 ∼ U2/(ξ2
1)3, (2.15)

which lead to the two-particle Thouless number on a block

g2(ξ1) ∼ (
U

B
)2ξ2

1 . (2.16)

According to the scaling theory in two dimensions[6], in weak disorder limit, we have

ecg(L1)/ecg(L2) ' L2/L1, where c ∼ O(1) is a numerical constant. Thereby, the enhancement
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of two-particle localization length is estimated as

ξ2/ξ1 ∼ ecg2(ξ1) ∼ ec(
U
B

)2ξ21 . (2.17)

Although arbitrarily large for weak disorder, the enhancement is still finite.

However, the numerical analysis of Ref. [90] suggested even that two bosons may delocalize in

two dimension, where the critical disorder is Wc ≈ 9.3 and the critical exponent is ν ≈ 2.4 for

U = 1, even though the mechanism behind this supposed delocalization phenomenon remained

unclear. Moreover, delocalization of two spinless fermions, with either short range and long

range interactions, was also observed numerically in Ref. [91]. These numerical observations

of the delocalization transition of two particles in two dimensions ring the alarm to the naive

scaling analysis leading to Eq. (2.17). Yet much more work is needed to confirm whether these

transitions do exist. Here note that the author of the present thesis studied two hard core

bosons in two dimensions[92]. By constructing a Jordan-Wigner transformation it is argued

that the two hard core bosons could very possibly undergo a delocalization transion.

In three dimensions very few works have been done, even though Imry has argued that if

there is a mobility edge in the one-particle spectrum the mobility edge for two particles can

be much lower by switching on the interaction. The author of the present paper propose that

this prediction can be verified numerically even in two dimensions if the spin-orbit coupling

effect is included in the one-particle Hamiltonian[35]-[39], which may give rise to mobility

edges in the one-particle spectrum. This two-dimensional problem requires less numerical

work than the three-dimensional problems.

At the end of this section, we emphesize that the “fast” channel, where two particles are in

the same one-particle localization volume, is almost decoupled to the “slow” channel, where

the two particles are in different localization volumes. However, in Sec. 2.3 we will see that in

the system of large number of particles the fast and slow channels are coupled.
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2.3 Localization of N interacting particles in one dimen-

sion

How does the interaction-induced delocalization depend on the number of particles is still an

open question. There are only a few works in this direction because of both the complication

for analytical studies and the limited ability of numerical simulations. Shepelyansky and

Shushkov studied three spinless fermions with nearest neighbor interactions by generalizing

the scaling analysis on two particles[93]. They suggested that the three-particle localization

length might be further strongly enhanced compared to the enhancement of the two-particle

localization length in Eq. (2.11). Generalizing the result for three particles they conjectured

that the enhancement of the N -particle localization length may increase exponentially with

the number of particles, that is,

ξN ∼
(
U2

B2
ξ1

)N−1

, (2.18)

if all particles remain in the same one-particle localization volume during their propagation.

Later on Halfpap[94] performed intensive numerical simulations for three and four spinless

fermions. It was suggested that the delocalization effect might be even stronger than the

prediction in Ref. [93] [see Eq. (2.18)]. Moreover, an hierarchical structure was proposed,

which leads to an upper bound for the N -particle localization length:

ξN . ξ2N−1

1 . (2.19)

It was concluded that the localization length might increase super-exponentially with the

particle number and become arbitrarily large for weak disorder, even though it should not

diverge for finite ξ1 and N .

In the following part we present a 2n-particle hierarchical structure based on a generalized

scaling analysis for two particles, which leads to a much weaker enhancement effect than that

proposed in Ref [94], even though the localization length increases super-exponentially with

the particle number.
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What we learned from the two-particle delocalization is that the Fock space can be reorganized

to two channels by the one-particle localization length ξ1. Briefly, if the distance between the

localization centers of the two particles is larger than ξ1, the interaction is effectively switched

off, and the single-particle localization properties dominate. If the distance is smaller than ξ1,

however, the interaction is switched on, and the correlation effect enables the two particles to

propagate much further than either of the particles. A new localization length, that is, the

two-particle localization length ξ2, emerges.

Can we generalize this reduction procedure to few particles? As the next step, we study

four particles1.We divide the system to blocks of size ξ1 and distribute the four particles

over the blocks. There are five combination for distributing the four particles, as shown in

Fig. 2.1(a)-(e).

(a) Four particles are spread in four different blocks. They do not interact and show one-

particle localization properties. (b) Only two of them are in one block and the other two are

in other two blocks. As discussed before, the two particles in one block will form a pair, and

extend over a domain of size ξ2. If one of the other two particles locates in this domain, as

shown in (f), it interacts with the pair. By the same consideration for two particles, they may

form a cluster and propagate coherently over a larger distance, namely, ξ2,1. Continuously, if

the last particle interacts with this cluster, a more complicated structure may form, as shown

in (i), with localization length ξ2,1,1. (c) Two pairs are formed, which means two particles

are in one block and the others are in another block. If the two pairs are within the distance

ξ2, they may form a 22-cluster (see the definition below) and propagating coherently over

a distance ξ2,2. The configurations in (d), (e), and (h), and the corresponding localization

lengths can be characterized by similar considerations.

Now the question is: Which configuration in Fig. 2.1 has the largest localization length? First,

we make clear two points: (i) ξ1 < ξ2 < ξ3 < ξ4. This relation is supported by Eq. (2.18),

1The reason for not considering thee particles in the next step has two folds: On the one hand, physically,
we are not eventually interested in the localization length for a small number of particles. We are going to find
what is the most efficient delocalization mechanism towards large numbers of particles. On the other hand,
technically, we will see that N = 2n particles can be analyzed recuctively in a hierarchical way. At the end,
the general case for large N can be retrieved by the interpolation n = log2N .
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Figure 2.1: Schematic diagrams for the possible configurations of four particles in one dimen-
sion. The one-dimensional chain is divided into blocks of size ξ1. (a) Four particles are in
four different blocks. (b) Only two of the particles are in one block. The other two are spread
in other two blocks. (c) Two pairs are formed, where two particles are in one block and the
others are in another block. (d) Three of the particles are in one block, and the other one is
in another block. (e) All four particles are in one block. (f)-(i) are sequent configurations of
(a)-(e), as discussed in the thesis. We are mainly interested in (g), whereby two pairs may
coherently propagate further to a localization length ξ2,2. We suggest that ξ2,2 should be the
largest localization length that four particles could have.
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which means each particle effectively creates (U/B)2/ξ1 number of propagating channels for

the rest of the particles. Once (U/B)2/ξ1 > 1, the localization length should be enhanced by

increasing the number of particles. (ii) ξ2,1 < ξ3. This relation was suggested in Ref. [94]. We

consider the three particles which form clusters in Fig. 2.1 (d) and (f). In (d) the delocalization

of the pair is induced by the third particle which is as delocalized as the pair, while in (f) the

third particle is more localized. The delocalization effect should be stronger in (d). By the

same consideration we argue that ξ3,1 < ξ4 and ξ2,1,1 < ξ2,2. Hence, we only need to compare

ξ4 with ξ2,2. The value of ξ4 can be obtained by Eq. (2.18). In the following part, we estimate

the value of ξ2,2.

We consider the configuration in Fig. 2.1(g). In a volume of size ξ2, the pair level spacing ∆2

is given by Eq. (2.13). Thereby, the four-particle (two-pair) level spacing can be estimated as

∆̃4 ∼
∆2

2

B
∼ B

(ξ1ξ2)2
. (2.20)

Here we assume that the pair band width is of the order of the one-particle band with B, and

the four-particle levels on each block are uniform.

Calculating the typical value of the interaction matrix elements among the four-particle levels

is subtle. As shown in Fig. 2.2(a), we have to calculate

U4 = 〈P3, P4|Hint|P1, P2〉 =
∑
α,β,γ,δ

Qαβ
γδ 〈0|bP4bP3a

†
αa
†
βaγaδb

†
P1
b†P2
|0〉, (2.21)

where |0〉 is the vacuum state, P1,2,3,4 denote pair states in a volume of size ξ2, and

b†P1,2,3,4
=
∑
ρ1,ρ2

〈ρ1, ρ2|P1,2,3,4〉a†ρ1a
†
ρ2

(2.22)

are the corresponding creation operators. Substituting Eq. (2.22) in Eq. (2.21) we obtain

U4 =
∑
ρ1,ρ2

∑
ρ3,ρ4

∑
ρ′1,ρ

′
2

∑
ρ′3,ρ

′
4

〈P3|ρ1, ρ2〉〈P4|ρ3, ρ4〉〈ρ′1, ρ′2|P1〉〈ρ′3, ρ′4|P2〉

× (all the possible scattering amplitudes in Fig. 2.2(a) ) .

(2.23)

29



P1

P2

P3

P4

P2

P3

P4

P1

2
,

1
,

4
,

3
,

2

1

4

3

2
,

1
,

4
,

3
,

2

1

4

3

(a)
E

EP1

EP2

Ec
2

EP3

EP4

1
2


1
,

2
,

1

3
4


3
,

4
,

(b)

Figure 2.2: The schematic diagrams used for calculating the four particle interaction matrix
elements in Eq. (2.23). (a) The leading order interaction between two pairs is only the inter-
action between two particles belonging to different pairs. (b) In the one-particle localization

volume the number of incoming two-pair states is g2
2(ξ1) = (E

(2)
c /∆̃2)2. Each incoming pair

state can couple to (E
(2)
c /∆1)2 number of outgoing states.

In order to evaluate 〈U2
4 〉 by Eq. (2.23), following the consideration for the statistics of one-

particle wave functions [see Eq. 2.9], we naively assume that the wave functions of pairs are

uncorrelated, that is,

〈〈P1|ρ1, ρ2〉〈ρ3, ρ4|P2〉〉 = Constant× δP1P2δρ1ρ3δρ2ρ4 , (2.24)

where the constant is equal to the typical magnitude of a pair state |P 〉 projected on a two-

particle Fock state |ρ1, ρ2〉. After this simplification we only need to estimate two quantities
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(i) The typical magnitude of a pair state projected on a two-particle Fock state. A |P 〉

state typically extends over ∼ ξ2/ξ1 ∼ g2(ξ1) number of blocks of size ξ1. In each block, the

|P 〉 state can involve the Fock states within an energy interval whose width is the Thouless

energy E
(2)
c , and therefore, only g2(ξ1) number of two-particle Fock states are coupled to |P 〉.

Consequently, in a pair state |P 〉 the magnitude of a two-particle Fock state is typically

|〈ρ1, ρ2|P 〉|2 ∼
1

g2(ξ1)× g2(ξ1)
. (2.25)

(ii) The typical number of terms contributing to the summation in Eq. (2.23). It is given

by the number of distinguishable scattering events among two-particle Fock states which

are components of the incoming pair states |P1, P2〉 and the outgoing pair states |P3, P4〉.

Moreover, because the interaction is short range, two pairs interact with each other only if

they are in the same block. In a volume of size ξ2 there are g2(ξ1) number of such blocks. In

each block, as shown in Fig. 2.2(b), the number of the available incoming states, (|ρ′1, ρ′2〉 and

|ρ′3, ρ′4〉), is g2
2(ξ1), which are components of |P1, P2〉. For a given incoming state, the outgoing

states can only differ in energy by ∆1, since the interaction keeps two of the four particles

unchanged, as shown in Fig. 2.2(a). Hence, there are (E
(2)
c /∆1)2 number of outgoing states

which are components of the |P3, P4〉 state. Consequently, the total number of scattering

events can be estimated as

M2 ∼ g2 × g2
2 ×

(
E

(2)
c

∆1

)2

. (2.26)

By Eqs. (2.11) and (2.23)-(2.26) we obtain

〈U2
4 〉 ∼ 〈U2

2 〉 × (g−2
2 )4 ×M2 ∼ 〈U2

2 〉g−3
2

(
∆̃2

∆1

)2

. (2.27)

By Eqs. (2.20) and (2.27) we obtain the four-particle Thouless energy in a volume of size ξ2:

E(4)
c ∼ 〈U2

4 〉/∆̃4, (2.28)
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and the corresponding Thouless number:

g4(ξ2) ∼ 〈U
2
4 〉

∆̃2
4

∼ ξ2
2 , (2.29)

Finally, we obtain the localization length for the four-particle configuration in Fig. 2.1(g):

ξ2,2 ∼ g4ξ2 ∼ ξ3
2 ∼

(
U

B

)6

ξ6
1 . (2.30)

The four-particle energy level spacing in the volume of size ξ2,2 is

∆4 ∼
∆̃4

g4

. (2.31)

By Eq. (2.18) the localization length for the configuration in Fig. 2.1(e) is

ξ4 ∼ (U/B)6ξ4
1 . (2.32)

We can realize

ξ2,2/ξ4 ∼ ξ2
1 � 1. (2.33)

According to our analysis, the configuration shown in Fig. 2.1(g) should be the most efficient

channel for the delocalization of four particles.

In order to generalize the above analysis to large number of particles, we adopt the 2n-cluster

terminology, where N = 2n gives the number of particles. Thereby, a 20 cluster is a single

particle, a 21 cluster is a pair, a 22 cluster is a four-particle state in Fig. 2.1(g), and so on.

Repeating the above construction for the four-particle states, namely, two 22 clusters form a

23 cluster and so on, we could analyze the 2n cluster iteratively.

In this 2n-cluster terminology, it is convenient to rewrite the notations of the relevant quantities

in terms of the hierarchical index n. For a 2n cluster, the localization length is denoted by

ξn. In a volume of size ξn−1, for a 2n cluster, the mean level spacing is ∆̃n, the Thouless

energy and the corresponding Thouless number are E
(n)
c and gn. The second moment of the

interaction strength of two 2n−1 clusters is denoted by 〈U2
n〉. The number of scattering events,

which are effectively induced by the the scattering among 2n−2-cluster components, is Mn−1.
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Figure 2.3: The schematic diagrams used for calculating the 2n cluster interaction matrix
elements in Eq. (2.35). (a) The leading order interaction between two 2n−1 clusters is only
the interaction between two 2n−2 clusters belonging to different 2n−1 clusters. (b) In the
2n−2 cluster localization volume the number of incoming 2n-cluster states is g2

n−1(ξn−2) =

(E
(n−1)
c /∆̃n−1)2. Each incoming 2n−1-cluster state can couple to (E

(n−1)
c /∆n−2)2 number of

outgoing 2n−1-cluster states.

In a volume of size ξn, a 2n cluster state is denoted by |P (n)〉, and the mean level spacing is

∆n. Our goal is to obtain gn, which characterizes the delocalization of a 2n cluster.

A 2n cluster is a pair of 2n−1 clusters, each of which is localized in a volume of size ξn−1.

Repeating the same procedure as applied in the case of 21 and 22 clusters, we divide the

system into blocks of size ξn−1. In each block, the mean level spacing of a 2n−1 cluster is
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∆n−1. Therefore, the mean level spacing of non-interacting2 two 2n−1-cluster states is

∆̃n ∼
∆2
n−1

B
, (2.34)

where we again assume that on a block the 2n-cluster levels are uniformly distributed. The ef-

fective interaction matrix elements among the 2n−1-cluster states can be estimated analogously

to the four-particle case. As shown in Fig 2.3, we should calculate

Un = 〈P (n−1)
3 , P

(n−1)
4 |Hint|P (n−1)

1 , P
(n−1)
2 〉

=
∑

P
(n−2)
1 ,P

(n−2)
2

∑
P

(n−2)
3 ,P

(n−2)
4

∑
P̃

(n−2)
1 ,P̃

(n−2)
2

∑
P̃

(n−2)
3 ,P̃

(n−2)
4

〈P (n−1)
3 |P (n−2)

1 , P
(n−2)
2 〉〈P (n−1)

4 |P (n−2)
3 , P

(n−2)
4 〉〈P̃ (n−2)

1 , P̃
(n−2)
2 |P (n−1)

1 〉〈P̃ (n−2)
3 , P̃

(n−2)
4 |P (n−1)

2 〉

× (all the possible scattering amplitudes in Fig. 2.3(a) ) , n ≥ 2.

(2.35)

In order to evaluate 〈U2
n〉 in Eq. (2.35), as what we did before, we simply assume that wave

functions of a 2n−1 cluster are uncorrelated, that is,

〈
〈P (n−1)

1 |P (n−2)
1 , P

(n−2)
2 〉〈P (n−2)

3 , P
(n−2)
4 |P (n−1)

2 〉
〉

= Constant× δ
P

(n−1)
1 P

(n−1)
2

δ
P

(n−2)
1 P

(n−2)
3

δ
P

(n−2)
2 P

(n−2)
4

,
(2.36)

where the constant is the typical magnitude of a 2n−1-cluster projected on a 2n−2-cluster state.

After this simplification, we can apply a very similar analysis as that for four particles, where

a particle is replaced by a 2n−2 cluster, and a pair by a 2n−1 cluster. We obtain:

(i) The typical magnitude of a 2n−1-cluster state projected on a 2n−2-cluster state is

|〈P (n−1)|P (n−2)
1 , P

(n−2)
2 〉|2 ∼ 1

gn−1 × gn−1

. (2.37)

2Here the word “non-interacting” means two clusters do not interact with each other. Nevertheless, either
of the clusters is an entity constituted by interacting particles.
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(ii) The number of terms in the summation in Eq. (2.27) is

Mn−1 = gn−1 × g2
n−1 ×

(
E

(n−1)
c

∆n−2

)2

. (2.38)

By Eqs. (2.35)-(2.38) we obtain

〈U2
n〉 ∼ 〈U2

n−1〉 × (g−2
n−1)4 ×Mn−1 ∼ 〈U2

n−1〉g−3
n−1

(
∆̃n−1

∆n−2

)2

. (2.39)

Furthermore, by Eq. (2.34) and (2.39) we obtain the Thouless energy of a 2n-cluster in a

volume of size ξn−1:

E(n)
c ∼

〈U2
n〉

∆̃n

, (2.40)

and the corresponding Thouless number

gn ∼
〈U2

n〉
∆̃2
n

. (2.41)

Finally, the 2n-cluster localization length is

ξn = gnξn−1 (2.42)

In a volume of size ξn the 2n-cluster level spacing is

∆n ∼
∆̃n

gn
. (2.43)

Now we have obtained all the recursive relations, namely, Eqs. (2.34), (2.39), and (2.41)-

(2.43). After a short calculation, we obtain decoupled recursive relations for ∆n, ∆̃n, 〈U2
n〉,

gn, and ξn:  ∆n ∼ 1
B

∆4
n−1

∆2
n−2

, n ≥ 2,

∆0 ∼ B
ξ0
, ∆1 ∼ B

ξ0ξ1
,

(2.44)
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∆̃n+1 ∼ 1

B
∆̃4
n

∆̃2
n−1

, n ≥ 2,

∆̃1 ∼ B
ξ20
, ∆̃2 ∼ B

(ξ0ξ1)2
,

(2.45)

 〈U2
n+1〉 ∼ 1

B2

〈U2
n〉4

〈U2
n−1〉2

, n ≥ 2,

〈U2
1 〉 ∼ U2

ξ30
, 〈U2

2 〉 ∼ U2

ξ20ξ
3
1
,

(2.46)

 gn+1 ∼ g4n
g2n−1

, n ≥ 2

g1 ∼
(
U
B

)2
ξ0, g2 ∼ ξ2

1 ,

(2.47)

 ξn+1 ∼
ξ5nξ

2
n−2

ξ6n−1
, n ≥ 2,

ξ1 ∼
(
U
B

)2
ξ2

0 , ξ2 ∼ ξ3
1 .

(2.48)

In order to obtain gn and ξn we only need to solve Eq. (2.47). After defining a new variable

an = ln gn, (2.49)

Eq. (2.47) leads to

an+1 = 4an − 2an−1, n ≥ 2,

a1 = ln g1, a2 = ln g2,
(2.50)

which is a second order linear recursion relation with constant coefficients.3 The general

solution can be written as

an = Cλn+ +Dλn−, (2.51)

where

λ± = 2±
√

2, (2.52)

3With a little abuse of symbols, we replace all the “∼” by “=”. It should be remembered that all the
calculations in this notes are essentially estimations.
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are the characteristic roots of Eq. (2.51), and C and D are constants determined by the initial

values of a1 and a2:

C =
a2 − a1λ−
λ+(λ+ − λ−)

D =
a1λ+ − a2

λ−(λ+ − λ−)
. (2.53)

We can verify that for g1 > g0, a2 > a1 and C,D > 0. The asymptotic expression of gn for

large n can be obtained:

gn
n→∞→ exp (Cλn+). (2.54)

Here we notice that 0 < λ− < 1 and λ+ > 1 in Eq. (2.52). Substituting N = 2n in Eq. (2.54),

we can estimate the enhancement factor for any number of particles:

g
N→∞→ exp (CNν) ν = log2 λ+ ' 1.77 (2.55)

Substituting Eq. (2.54) in Eq. (2.48) we obtain the 2n-cluster localization length:

ξn
n→∞→ ξ0 exp (

Cλ+

λ+ − 1
λn+). (2.56)

Eq. (2.55) implies that in one dimension the enhancement of localization length increases

super-exponentially with the number of particles. However, compared to the estimation in

Ref. [94] [see Eq. (2.19)], the enhancement effect is much weaker, since the number of the

available propagating channels for N particles might be overestimated in Ref. [94].

Here we note that the super-exponentially large enhancement is triggered off by the condition

g1 > 1 in Eq. (2.11), which means the delocalization effect of two particles has to be switched

on. What happens if g1 < 1? Since two particles are not enough to come over the threshold

for the delocalization process, we should consider more particles. Suppose that strength of

disorder is fixed and the M -particle Thouless number in a one-particle localization volume

is gM(U) only depending on the interaction strength U . There might be a descending series

of strengths of the interaction {Ui}Mmax

i=2 with respect to the particle numbers i, so that, if

Ui+1 < U < Ui, gi+1(U) > 1 > gi(U). The upper bond of the particle number Mmax depends

on the statistics the particles and the size of the one-particle localization volume. This implies

that if U > UMmax we could always find a number of particles M < Mmax so that gM(U) > 1.
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In this case the 2n-cluster hierarchical structure should be generalized to some Mn-cluster

structure. Still much work is needed to clarify this problem.

2.4 Competing channels

Very possibly, our analysis of the 2n-cluster hierarchical structure is too qualitative. Apart

from the handwaving estimations on the mean level spacing and the interaction matrix ele-

ments, there is a crucial simplification: We neglect the coupling between different propagating

channels. For example, for four particles, as shown in Fig. 2.1, we concluded: The configura-

tion in Fig. 2.1(g) should have the largest localization length if neglecting the coupling to the

other configurations. This configuration forms the “fast” channel for the propagation of four

particles. The localization lengths of the other configurations in Fig. 2.1 is much shorter [cf.

Eq. (2.33)], which form the “slow” channel.

However, the coupling between the fast and slow channels are not negligible (e.g. the configu-

ration in Fig. 2.1(g) coupling to (h) via (e)). In order to understand correctly the delocalization

of few particles, we have to analyze the competition between the fast and slow channels. Ef-

fectively, if the fast channel is hardly affected by the slow channel, the fast channel wins, and

the delocalization effect of interaction will be indeed significant. Otherwise, if the fast channel

is strong mixed with slow channel, the deloclaization effect of interaction is much weaker, and

the system very possibly remains in the strongly localized phase. The probelm is also of fun-

damental importance for studying a many-body system, where few or many excitations have

various channels of propagation. To clarity the problem of channel competition in interacting

particle systems is one of the motivations for analyzing the models in Chaps. 4 and 5.
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Chapter 3

Anderson localization of a hybrid

particle–Exciton-polariton

In materials the electromagnetic field may strongly couple to excitations which carries electric

or magnetic dipole moments. To account for this coupling, it is very useful, especially in

the linear regime, to introduce new bosonic quasiparticles, the polaritons, which combine

the properties of the photons (quanta of the electromagnetic field) and the dipole-carrying

excitations. One of the most discussed types of polaritons is the exiton-polariton in direct-

gap semiconductors, where photons are strongly coupled to excitons. The importance of

exciton-polaritons in the optical properties of semiconductors has been recognized in the late

1950s and early 1960s, with the pioneering works of several authors[96]-[99]. More recently

a new directions have been explored for exciton-polaritons[100] using the low-dimensional

quantum structures (quantum wells, wires and dots), such as quantum wells embedded in

optical microcavities[101], where strong coupling of excitons and photons can be achieved.

In these systems the dispersion of transverse-quantized photons is quadratic in the small

momentum, with an effective mass as small as 104 of that of the Wannier-Mott exciton, which

is of the order of the mass of a free electron. In the absence of disorder photons have a much

larger group velocity than excitons, and thus one subsystem is fast while the other one is slow.

Yet disorder is unavoidable in such systems due to the imperfections of the resonator bound-

ary and impurities. In many cases one can consider only one mode of transverse quantization
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for both the photon and the exciton. Thus a model of two dispersive modes (particles) with

parametrically different transport properties arise. Due to the large dipole moment of the

exciton these particles are mixed, resulting in avoided mode crossing. On top of that, disorder

acts on both of them, whereby its effect on the two channels can be rather different [74, 75].

It is easy to see that this system maps one-to-one onto a single particle model of two coupled

lattices in the presence of disorder[75]. Ref. [74] solved the coupled Dyson equations for the

Green’s functions of exciton and cavity phonon in one dimension numerically, focusing on

the so-called “motional narrowing” in the reflectivity spectra of normal incidence [102]. How-

ever, the issue of localization of cavity polaritons was not raised. The latter was addressed

in Ref. [103] and also in Ref. [100]. Ref. [103] analyzed the scattering of electromagnetic

waves in a one-dimensional disordered quantum-well structure supporting excitons. The ran-

dom susceptibility of excitons in each quantum well was shown to induce disorder for the light

propagation, and the Dyson equation for the Green’s function of the electromagnetic wave was

then solved by the self-consistent theory of localization. The author reached the conclusion

that the localization length of light with frequencies within the polariton spectrum is substan-

tially decreased due to enhanced backscattering of light near the excitonic resonance. This

is in qualitative agreement with our exact and more general study of the coupled disordered

two-chain problem in Chap. 4. The latter also finds natural applications in nanostructures and

electronic propagation in heterogeneous biological polymers, such as DNA molecules [104].

The main question we are asking is: What happens to the localization properties when a

photon is coupled to an exciton? Will the photon dominate the localization of the polariton

or the exciton? Here we are only discussing the specific situation of a single polariton in the

absence of inelastic scattering. More interesting situations may arise when interacting and

non-equilibrium polaritons are approaching Bose-condensation[72]-[109]. The extremely steep

dispersion of the confined photon modes results in a typical cavity-polariton mass as small

as a photon. Therefore, the polaritons may udergo Bose-Einstein condensation at cryogenic

temperatures ∼ 10K [106], which is 107 times of the typical condensation temperatures of cold

atoms ∼ 10−6K [110].

This chapter is organized as follows. In Sec. 3.1 a short introduction to cavity polaritons in the

absence of disorder is presented. In Sec. 3.2 the effects of disorder on polaritons are studied.
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The polariton model accounting for quantum-well roughness, which is the main source of

disorder on excitons, and fluctuations of the microcavity thickness, which is the main source

of disorder on photons, is introduced.

3.1 A short introduction to microcavity polaritons

Before focusing on the disorder effects on polaritons, we give a very short introduction to

microcavity polaritons in the absence of disorder. This introduction is only meant to give a

brief physical picture of cavity polaritons. A more complete introduction can be found in the

text books[111] and the review article[112].

As shown in Fig. 3.1(a), microcavity polaritons are the normal modes resulting from the strong

coupling between quantum well excitons and cavity photons. In semiconductor microcavities

two Bragg mirrors 1 are employed to confine the light. Between the Bragg mirrors the cavity

light forms a standing wave pattern, which can be described by an approximately quadratic

dispersion, Eph(k) = E0
ph + k2/2mph, where the effective mass of photons mph characterizes

the curvature of the dispersion at k = 0, as shown in Fig. 3.1(b). Excitons are the hydrogen

bound states of a conduction band electron and a valence band hole. The relative motion of

an electron and a hole in exciton states is usually frozen, and the center of mass motion is

characterized by the disperson Eex(k) = E0
ex + k2/2mex with exciton mass mex ' 2me, where

me is the mass of a free electron. The excitons are much heavier than the cavity photons,

typically mph ∼ 10−4mex. For this reason the exciton dispersion can be neglected, as shown

in Fig. 3.1(b). In microcavities one or multiple quantum wells are in between the mirrors

so that excitons are at the antinodes of the confined light waves, which gives rise to strong

coupling between the two constituents. In addition the cavity mirrors can be built with a

wedge, so as to change the detuning between the relative energy between the photon and the

exciton δe = E0
ex−E0

ph. The polariton modes can be found by solving the coupled Schrödinger

1A Bragg mirror is a set of alternating layers of dielectrics with different refractive indices. The thickness
of one layer is quarter of the light wave length.
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Figure 3.1: Experimental setup of a semiconductor microcavity and engery dispersions of
photon, exciton and polaiton modes. (a) A microcavity is a Fabry-Perot resonator with
quantum wells (QW) embedded in between the two Bragg mirriors. Photons confined in the
resonator can strongly couple to excitons confined in the quantum wells. This gives rise to the
formation of cavity polaritons, which are linearly mixed exciton-photon states obeying bosonic
statistics. (b) Energy dispersions of photon, exciton and polariton modes as functions of the
in-plan wavevector. The effective masse of photons (upper dashed curve) are much smaller
than that of excitons (lower dashed curve). Hence, the typical group velocity of photons is
much larger than that of excitons. The coupling between exciton and photon modes with
parabolic dispersions gives rise to lower and upper polariton branches (solid curves) with
dispersions featuring an anticrossing typical in the strong coupling regime.
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equations for the exciton and photon wave functions, ψph,ex = ψph,ex(r):

H0

ψph
ψex

 = E

ψph
ψex

 , H0 =

− ∇2

2mC
+ E0

ph ΩR/2

ΩR/2 E0
ex

 , (3.1)

where ΩR is the Rabi splitting measuring the strength of photon-exciton (light-dipole) cou-

pling. In general ΩR is k-dependent and propositional to the dipole moment of the exciton.

By the Fourier transform:

ψph,ex(r) =
∑
k

eik·rψph,ex(k), (3.2)

we obtain the lower (−) and upper (+) polaritons with dispersions:

E±(k) =
1

2

[
E0
ex + Eph(k)

]
± 1

2

√
[E0

ex + Eph(k)]2 + Ω2
R, (3.3)

as shown in Fig. 3.1(b), and eigenstates in the momentum space:

ψ+(k)

ψ−(k)

 =

 cos θk sin θk

− sin θk cos θk

ψph(k)

ψex(k)

 , (3.4)

with

cos 2θk =
Eph(k)− E0

ex√
(Eph(k)− E0

ex)
2 + Ω2

R

, θ ∈ [0, π/2]. (3.5)

Here we note two pionts: (i) The group velocity of photons (fast) are much larger than excitons

(slow). (ii) At the resonance point, where the dispersion curves of photons and excitons

intersect, i.e. Eph(k) = E0
ex, polaritons are exactly half-light and half-matter quasiparticles

due to θk = π/2. Far away from the resonance point, however, polaritons are either photon-like

or exciton-like.

3.2 Disorder effects on excitons and polaritons

The influence of disorder on cavity polaritons has been investigated for long time. A complete

review of this topic can be found in Ref. [75] and the references therein. Here we present a
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summary of the basic elements of the theory to see how does disorder enter into Eq. (3.1), and

emphasize aspects that are most relevant to the Anderson localization of cavity polaritons.

Disorder on excitons is mainly due to the spatial fluctuation of confinement potentials. In

most of quantum wells of average quality bonding energy of the exciton is significantly larger

than the strength of the fluctuation of confinement potentials. This suggests that disorder

does not influence the eletron-hole relative motion in an exciton state. In practice it is also

assumed that the perturbation introduced by disorder is not sufficient to produce a transition

from the 1s hydrogenic state to high energy states of the relative electron-hole motion. Hence,

the exciton stays always in the 1s state and only its center of mass motion is affected by

disorder. This “rigid” exciton approximation leads to:

(i) The disorder enters into the effective Schrödinger equation for the center of mass wave-

function as a local random potential Vex(r), which is Gaussian-distributed and characterized

by the correlation function

〈Vex(r)Vex(r
′)〉 = fex(|r− r′|), (3.6)

where r are center of mass coordinates of excitons. fex(r) is finite at r = 0 and decay to zero

over a correlation length ζex. The details of f(r) is determined by the confinement potential

fluctuation and the amplitude of the 1s electron-hole hydrogenic wavefunction.

(ii) The disorder does not have influence on the photon-electron coupling. This implies that

even in the presence of disorder ΩR in Eq. (3.1) still capture the photon-exciton coupling

sufficiently.

Disorder on photons is largely due to the fluctuation of the cavity-slab thickness, which pro-

duces an effective random potential affecting the in-plan motion of the photon. Considering

this thickness varies smoothly over lengths comparable with the light wavelength, we can as-

sume that the light field inside the cavity is locally equal to that of an ideal cavity. Within

this approximation the disorder on photons can still be modeled by a Gaussian-distributed

local random potential Vph(r). It can be characterized in an analogous way to Eq. (3.6):

〈Vph(r)Vph(r
′)〉 = fph(|r− r′|). (3.7)
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Therefore, the polariton model including the effect of disorder on both excitons and photons

is described by the coupled Schrödinger equations similar as Eq. (3.1) but with Hamiltonian

replaced by

H = H0 +Hdis, Hdis =

Vph(r) 0

0 Vex(r)

 , (3.8)

where Vph,ex(r) are random potentials applied on excitons and photons characterized by

Eqs. (3.6) and (3.7). We note that a polariton propagating in a random potential is de-

scribed by the Anderson model on two coupled but nonequivalent lattices, in the descret

version of the Hamiltonian (3.8).
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Chapter 4

Anderson localization on a two-leg

ladder

The simplest example of a disordered propagation problem with competing channels, as dis-

cussed in Chaps. 2 and 3, is the Anderson model on two coupled lattices. This is a nontrivial

problem, in particular when transport properties of the two lattices are significantly different.

Especially for disordered polaritons, the system maps one-to-one onto this model. In this

chapter we study the corresponding problem in one dimension, that is, the Anderson model

on a two-leg ladder.

Most of the rigorous results on Anderson localization have been obtained in the field of one-

dimensional and quasi-one-dimensional systems with uncorrelated disorder. Most of the efforts

in this direction were made to obtain the statistics of localized wave functions in strictly

one-dimensional continuous systems [114, 115] or tight-binding chains (see the recent work

Ref. [116] and references therein). Alternatively, the limit of thick multichannel N � 1 wires

has been studied by the nonlinear supersymmetric σ model[32].

A transfer matrix approach which allows one to consider any number of channels N was

suggested by Gertsenshtein and Vasil’ev in the field of random waveguides[117]. This approach

has been applied to the problem of Anderson localization by Dorokhov[118] and later on by

Mello, Pereyra, and Kumar (DMPK).[119] It is similar in spirit to the derivation of the

Fokker-Planck equation (the diffusion equation) from the Langevin equation of motion for a
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Brownian particle. However, in the present case an elementary step of dynamics in time is

replaced by the scattering off an “elementary slice” of the N -channel wire. As a result, a kind

of Fokker-Planck equation arises which describes diffusion in the space of parameters of the

scattering matrix M, in which the role of time is played by the co-ordinate along the quasi-

one-dimensional system. Usually the scattering matrix M is decomposed in a multiplicative

way by the Bargmann’s parametrization[119] which separates the “angle variables” of the

U(N)-rotation matrices and the N eigenvalues Tρ=1,...,N of the transmission matrix. If the

probability distribution of the scattering matrix is assumed invariant under rotation of the

local basis (isotropy assumption), the canonical DMPK equation[118]-[120] may be obtained,

which has the form of a Fokker-Planck equation in the space of N transmission eigenvalues.

This equation was solved in Ref. [121] for an arbitrary number N of transmission channels.

The isotropy condition is not automatically fulfilled. It is believed that the isotropy condition

is valid for a large number N � 1 of well coupled chains where the “elementary slice” is

a macroscopic object and the “local maximum entropy ansatz” applies[119]. It is valid at

weak disorder in a strictly one-dimensional chain in the continuum limit a → 0 or for a one-

dimensional chain with finite lattice constant a outside the center-of-band anomaly. In this

case the distribution of the only angular variable describing a U(1) rotation, the scattering

phase, is indeed flat[116].

However, the case of few (N & 1) coupled chains is much more complicated. As was pointed

out originally by Dorokhov[118], and later on by Tartakovski[122]. in this case the angular

and radial variables, are entangled in the Fokker-Planck equation. These are the variables

determining the eigenvectors and eigenvalues of the transmission matrix, respectively. We

refer to this generic Fokker-Planck equation as the extended DMPK equation in order to

distinguish it from the canonical DMPK equation which contains only the radial part of the

Laplace-Beltrami operator. The minimal model where such an entanglement is unavoidable,

is the two-leg model of N = 2 coupled disordered chains.

Motivated by the questions raised in the Chaps. 2 and 3 we are asking : What happens to

the localization properties when a fast chain is coupled to a slow one? Will the fast chain

dominate the localization length of the ladder? In other words, will the smallest Lyapunov

exponent of the two-leg system (the inverse localization length) be similar to the one of the
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isolated fast chain, or rather to the one of the isolated slow chain? By intuition one expects

the fastest and least disordered chain, this is, the fast chain, to dominate the delocalization.

However, our analytical solution of the hybrid two-leg chain shows that in the one-dimensional

case, this intuition is not always correct. Instead we find that, when the channels are strongly

mixing with each other, it is the largest rate of back scattering, that is, the more disordered

chain, which dominates the physics. This may be seen as one of the many manifestations of

the fact that in one dimension the localization length is essentially set by the mean free path.

Our solution of the two-chain problem furnishes a useful benchmark for approximate solutions

in more complex and interacting situations. Nevertheless, we caution that the phenomenology

may be quite different in higher dimensions, for example, the situation on the Bethe lattices

(infinite dimensions) in Chap. 5. We discuss this further in the conclusion.

The answer to the above questions will be obtained analytically from the exact solution of the

two-leg (two-chain) Anderson localization model. This solution represents a major technical

advance, because for the first time a model, which leads to an extended DMPK equation with

non-separable angular and radial variables, is exactly solved. Without going into details our

results are the following:

(i) The answer depends qualitatively on whether the system is close to the resonance energy

ER, which is defined as the energy where the dispersion curves of the two corresponding

decoupled disorder-free chains intersect (see Fig. 4.2).

(ii) Near the resonance the presence of the fast leg does not help to substantially delocalize

the slow component (see Fig. 4.9). The localization length of a hybrid particle is at most by

a factor of ≈ 3 larger than the one of the slow particle [see Eqs. (4.94) and (4.95a)], being

parametrically smaller than that of the fast particle. Thus the slow particle dominates the

localization properties of the hybrid particle near the resonance energy ER.

(iii) A particular case where the resonance happens at all energies is the case of two coupled

identical chains subject to different disorder (see Fig. 4.8). In this case the dominance of

the more disordered chain extends to all energies, thus pushing the localization length of the

ladder sharply down compared to that of the less disordered isolated chain.
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(iv) Away from the resonance the wave functions stay either mostly on the slow leg, being

strongly localized. Or they have their main weight on the fast leg and hybridize here and

there with the slow leg [see Fig. 4.2 and Fig. 4.11]. It is this second type of wave functions

which helps excitations on the slow leg to delocalize due to the presence of the faster leg, even

though this happens with small probability far from the resonance.

(v) A very peculiar behavior occurs near the band edges of the slow particle, where the system

switches from two to one propagating channels. Just below the band edge the localization

length of the hybrid particle decreases dramatically, being driven down by the localization

length of the slow chain that vanishes at the band edge (neglecting the Lifshitz tails). Above

the band edge the localization length of a hybrid particle sharply recovers, approaching the

value typical for the one-chain problem. Thus, near the band edge the localization length

of the two-leg system has a sharp minimum, which is well reproduced by direct numerical

simulations (see Fig. 4.10).

The chapter is organized as follows. In Sec. 4.1 the problem is formulated and the main

definitions are given. In Sec. 4.2 the two-channel regimes is analyzed by the Fokker-Planck

equation approach. The extended DMPK equation is derived and the exact solution for the

localization lengths is given and the main limiting cases are discussed. In Sec. 4.3 a problem

of one propagating channel and one evanescent channel is considered. In Sec. 4.4 numerical

results concerning the wave functions in each leg are presented. In Sec. 4.5 another interesting

situation where the hopping strength on the slow leg vanishes is studied. The application of

the theory to hybrid particles such as polaritons are discussed in the Conclusion. This chapter

is based on the published work in Ref. [113].

4.1 Two-leg Anderson model

The Anderson model on a two-leg ladder, as shown in Fig. 4.1 is determined by the tight-

binding Hamiltonian

H =
∑
ν=1,2

∑
x

(
εxνc

†
xνcxν − tν

(
c†xνcx+1ν + h.c.

))
− t
∑
x

(
c†x1cx2 + h.c.

)
+ δe

∑
x

c†x2cx2, (4.1)
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Figure 4.1: Digram for the two-leg Anderson model described by the Hamiltonian (4.1).

where x ∈ Z is the co-ordinate along the ladder, and ν ∈ {1, 2} is the index labeling the two

legs. In this model the on-site energies εxν are independently distributed Gaussian random

variables with zero mean, and tν is the hopping strength between nearest-neighbor sites on the

ν-th leg. In general, the two legs will be subject to different random potentials, characterized

by the two variances:

σ2
ν = ε2xν . (4.2)

We also consider different hopping strengths, for which we assume

t1 ≥ t2. (4.3)

The transverse hopping strength between the legs is t. Finally, it is natural to consider a

homogeneous potential δe (i.e., a detuning) on leg 2.

The Hamiltonian (4.1) is a generic model describing two coupled, uniformly disordered chains.

Moreover, the model can also be adopted as an effective model to describe noninteracting

excitations with two linearly mixing channels of propagation in the presence of disorder. An

important example is polaritons: the two channels correspond to the photon mode and the

exciton mode, respectively.

The model (4.1) has been studied analytically previously in the literature, focusing on the

special case t1 = t2 and σ2
1 = σ2

2. The continuous limit was solved long ago by Dorokhov[118].

The tight-binding model was considered later on by Kasner and Weller[123]. Their results

will be reference points for our more general study in the present work.
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The Schrödinger equation of the Hamiltonian (4.1) at a given energy E has the form

Ψ(x− 1) + Ψ(x+ 1) = (h(E) + εx)Ψ(x), (4.4)

where Ψ(x) is a single-particle wave function with two components, representing the ampli-

tudes on the leg 1 and 2,

h(E) =

−E
t1

− t
t1

− t
t2
−E−δe

t2

 , (4.5)

and

εx = diag

(
εx1

t1
,
εx2

t2

)
. (4.6)

The terms h(E) and εx can be considered as the disorder-free and disordered part of the local

Hamiltonian at the coordinate x. Notice that the disordered part (4.6) is expressed as an

effective disorder on the two legs, that is, it is measured in units of the hopping strengths. In

the analytical part of the present work, following the Fokker-Planck approach, we solve the

problem exactly in the case of small disorder, ||εx|| � 1.

4.1.1 Disorder free part

The disorder-free ladder can easily be solved by diagonalizing h(E) in Eq. (4.5). Thereby, the

Schrödinger equation transforms into

Ψ̃(x− 1) + Ψ̃(x+ 1) = (h̃ + ε̃x)Ψ̃(x), (4.7)

where

h̃ = diag(λ1, λ2), (4.8)

and the “rotated” disorder potential is given by:

ε̃x =

εx+ + εx− cos γ εx− sin γ

εx− sin γ εx+ − εx− cos γ

 . (4.9)
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Both depend implicitly on E via λτ (E) and γ(E). In Eqs. (4.8) and (4.9) the following

definitions are used.

(i) In the disorder-free part (4.8),

λτ (E) = −1

2

(
E

t1
+
E − δe
t2

)
− (−1)τ

√
1

4

(
E

t1
− E − δe

t2

)2

+
t2

t1t2
, (4.10)

where τ ∈ {1, 2} is the channel or band index. As we see in Eq. (4.15), τ = 1 labels the

conduction band, and τ = 2 the valence band of the pure ladder.1

(ii) In the disordered part (4.9),

εx± =
1

2

(
εx1

t1
± εx2

t2

)
(4.11)

are the symmetric and anti-symmetric combination of the disorder on the two legs. The

“mixing angle” γ = γ(E) is defined through

tan γ(E) =

√
2t
√
t21 + t22

(t1 − t2)(E − ER)
, (4.12)

with a resonance pole at

ER = δe
t1

t1 − t2
. (4.13)

The value of γ is chosen as: γ ∈ [0, π/2] if E ≥ ER; γ ∈ [π/2, π] if E ≤ ER.

The pure system can be solved easily. In the absence of disorder the eigenfunctions Ψ̃(x) at

energy E are composed of plane waves with momenta kτ satisfying

2 cos kτ = λτ . (4.14)

±kτ are degenerate solutions of Eq. (4.14), which is due to the space-inversion symmetry

along the longitudinal direction of the pure ladder. Equations (4.10) and (4.14) determine the

1Note that we are using the semiconductor terminology of valence and conduction band rather loosely to
denote the lower and the upper energy band. They will typically not be separated by a gap, but overlap in
some energy range, see Fig. 4.2. The latter ”two-channel regime” is at the focus of our attention in this paper.
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Figure 4.2: Two situations of clean energy dispersions. The dashed and solid curves correspond
to decoupled and coupled chains. The decoupled dispersion curves intersect at the resonance
energy ER. (a) No gap: E−1 ≤ E+

2 . There are two propagating channels at a given energy for
E−1 ≤ E ≤ E+

2 . (b) Gapped: E−1 > E+
2 . Apart from a forbidden band, only one propagating

channel exists.

energy dispersions of the conduction band and the valance band,

Eτ (k) = − (t1 + t2) cos k +
δe

2
− (−1)τ

√[
(t1 − t2) cos k +

δe

2

]2

+ t2. (4.15)

Generally, if t1 6= t2, the two decoupled bands [i.e., t = 0 in Eq. (4.15)] cross at the energy ER

(cf. Fig. 4.2), if |δe| ≤ 2(t1− t2). When the energy E is close to the resonance energy ER, the

two legs mix with almost equal weights, even if we turn on a very small inter-chain coupling

t. In the particular case of equal chain hoppings t1 = t2 and no detuning δe = 0, there is a

resonance at all energies since the two decoupled bands coincide.

The top (+) and bottom (−) edges of the τ band are

E±τ = ±(t1 + t2) +
δe

2
− (−1)τ

√(
t2 − t1 ±

δe

2

)2

+ t2. (4.16)

According to Eq. (4.15), there are two cases of energy dispersions, which may arise depending

on the choice of the following parameters.
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(i) In the case of E−1 ≤ E+
2 [see Fig. 4.2(a)], there is no gap between the two bands. This is the

case if the detuning δe and the interchain coupling t are both not too large. More precisely,

one needs |δe| < 2(t1 + t2) and t ≤ tc, where

tc =

√
t1t2

[
4 (t1 + t2)2 − δe2

]
t1 + t2

. (4.17)

In the energy interval E−1 ≤ E ≤ E+
2 , we have two propagating channels; otherwise, at most

one propagating channel exists.

(ii) In the opposite case, E−1 > E+
2 [see Fig. 4.2(b)], there is a gap between the two bands.

We therefore have at most one propagating channel at any energy.

Moreover, if kτ is the wavevector of a propagating channel, we call kτ ∈ (−π, π], and kτ ≥ 0

and kτ < 0 the right- and left-moving branches, respectively. From Eq. (4.14) we also define

a rapidity for each propagating channel as

vτ ≡
∣∣∣∣∂λτ∂kτ

∣∣∣∣ =
√

4− λ2
τ . (4.18)

4.1.2 Disordered part

The impurity matrix (4.9) contains two ingredients which determine the localization properties

of the model. One is εx± [see Eq. (4.11)], which are the equally weighted (either symmetric or

anti-symmetric) combinations of effective disorder on the two legs. The other is the mixing

angle γ [see Eq. (4.12)], which describes the effective coupling between the two legs. We refer

to γ as the bare mixing angle because it is renormalized by disorder. The renormalized mixing

angle γ̃ [see Eq. (4.102)] will be discussed in Sec. 4.2.8. Being functions of these two quantities,

the diagonal elements of ε̃x are local random potentials applied on the two channels τ = 1, 2,

and the off-diagonal elements describe the random hopping between them.

We analyze the model qualitatively in terms of effective disorder and bare mixing angle before

carrying out the detailed calculation. As discussed above, either one or two propagating

channels are permitted at a given energy. This leads to two distinct mechanisms of localization

in the bulk of the energy band:
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(i) Two-channel regime. In this case, the physics is dominated by the mixing angle γ. If

γ ∼ 0 or π, the mixing of the two channels is weak: The magnitudes of off-diagonal elements

of matrix (4.9) are much smaller than the magnitudes of the diagonal elements. This means

that the two legs are weakly entangled, and the transverse hopping t can be treated as a

perturbation. A perturbative study of wavefunctions in this regime is presented in Sec. 4.4.2.

However, if γ ∼ π/2, the magnitudes of the off-diagonal elements are of the same order as

the diagonal elements. This implies that the two legs are strongly entangled. The localization

properties are controlled by the leg with strong disorder, because in Eq. (4.11) it always

dominates over the weaker disorder on the other leg.

(ii) One-channel regime. The single-channel case has been solved by Berezinskii[114] and

Mel’nikov[115] in the case of a single chain. The results they obtained can be applied in

our problem by substituting the variance of disorder and rapidity of the propagating channel

with the corresponding quantities. However, we have to emphasize here that even if only

one channel exists, coupling effects are still present, since both the effective disorder and the

rapidity in the remaining channel depend on the transport properties of both legs. In the one-

channel regime the second channel is still present, but supports only evanescent modes. We

show in Sec. 4.3 that the effect of the evanescent channel on the propagating one is subleading

when disorder is weak.

4.2 Two-channel regime

In the two-channel regime, as shown in Fig. 4.2, the Anderson localization problem can be

solved by the Fokker-Planck equation approach. The Fokker-Planck approach and its re-

lated notations, such as the transfer matrix, the S-matrix, etc., are introduced in detail in

Refs. [119] and [120]. We only outline the methodology here. The Fokker-Planck approach

to one- or quasi-one-dimensional systems with static disorder at zero temperature is based

on studying the statistical distribution of random transfer matrices for a system of finite

length. An ensemble of such transfer matrices is constructed by imposing appropriate sym-

metry constraints. In the present model there are two underlying symmetries: time-reversal

invariance and current conservation, which dramatically reduce the number of free parameters
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of transfer matrices. After a proper parametrization, the probability distribution function of

these parameters completely describes the ensemble of transfer matrices, and therefore totally

determines the statistical distributions of many macroscopic quantities of the system, such

as the conductance, etc. In order to obtain the probability distribution function of the free

parameters, a stochastic evolution-like procedure is introduced by computing the variation

of the probability distribution function of these parameters in a “bulk” system as an extra

impurity “slice” is patched on one of its terminals, under the assumption that the patched

slice is statistically independent of the bulk. Thereby, we construct a Markovian process for

the probability distribution function. This is described by a kind of Fokker-Planck equation in

the parameter space of the transfer matrix with the length of the system as the time variable.

Essentially, this procedure is analogous to deriving the diffusion equation from the Langevin

equation for a Brownian particle. In practice, taking the length to infinity, we can analyti-

cally extract asymptotic properties of the model, such as localization lengths, etc., from the

fixed-point solution of the Fokker-Planck equation.

4.2.1 Transfer matrix approach

As discussed above, the only microscopic quantity needed in order to write the Fokker-Planck

equation of our model Hamiltonian (4.1) is the transfer matrix of an “elementary slice” at any

co-ordinate x. The Schrödinger equation (4.7) can be represented in the following “transfer-

matrix” form:

Φ̃(x+ 1) = m̃xΦ̃(x), (4.19)

where the four-component wave function Φ̃(x) and the 4× 4 transfer matrix m̃x is explicitly

shown in the 2× 2 “site-ancestor site” form:

Φ̃(x) ≡

 Ψ̃(x)

Ψ̃(x− 1)

 , m̃x ≡

h̃ + ε̃x −1

1 0

 , (4.20)

with Ψ̃(x) and h̃, ε̃x being the two-component vector and 2 × 2 matrices in the space of

channels as defined in Eq. (7).
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The transfer matrix m̃x is manifestly real (which reflects the time-reversal symmetry) and

symplectic (which reflects the current conservation):

m̃T
xJm̃x = J, (4.21)

where J is the standard skew-symmetric matrix:

J =

 0 1

−1 0

 . (4.22)

Note, however, that the transfer matrix m̃x is not a convenient representation to construct a

Fokker-Planck equation. The reason is simple: Because it is not diagonal without impurities,

the perturbative treatment of impurities is hard to perform. The proper transfer matrix mx is

a certain rotation, which does not mix the two channels of the matrix m̃x but transforms to a

more convenient basis within each two-dimensional channel subspace (see Appendix A). The

latter corresponds to the basis of solutions to the disorder-free Schrödinger equation ψτ (x)

(τ = 1, 2 labeling the channels), which conserves the current along the ladder:

jx = −i [ψ∗τ (x)ψτ (x+ 1)− h.c.] = constant = ±1. (4.23)

For propagating modes with real wave vectors kτ these are the right- and left-moving states

ψ±τ (x) = e±ikτ x/
√

2 sin kτ , (4.24)

which obey the conditions

ψ±τ (x) = (ψ±τ (−x))∗. (4.25)

For the evanescent modes with imaginary k = iκ the corresponding current-conserving states

obeying Eq. (4.25) can be defined, too:

ψ±τ (x) =
exp[∓iπ/4− κτx] + exp[±iπ/4 + κτx]√

4 sinhκτ
(4.26)
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In this new basis of current-conserving states, the transfer matrix takes the form (see Ap-

pendix A):

mx = 1 + δmx, δmx =

−iα∗xε̃xαx −iα∗xε̃xα∗x
iαxε̃xαx iαxε̃xα

∗
x

 , (4.27)

where the matrix αx is diagonal in channel space,

αx = diag
(
ψ+

1 (x), ψ+
2 (x)

)
ch
. (4.28)

Note that it is expressed in terms of the two components of the current conserving states

Eqs. (4.24, 4.26) corresponding to the first and the second channels.

In Eq. (4.27), the unit matrix 1 is the pure part of mx, which keeps the two incident plane

waves invariant, and δmx describes the impurities, which break the momentum conservation

and induce intra- and interchannel scattering. The physical meaning of mx can be understood

from the scattering processes described below. If there is only one right-moving plane wave

in the 1 channel on the left-hand side (l.h.s.) of the slice, which is represented by a four-

dimensional column vector with the first component one and the others zero, we can detect

four components on the right-hand side (r.h.s.) of the slice, including the evanescent modes.

In the case of two propagating channels these four components are right- and left-moving

plane waves in the 1 and 2 channels, whose magnitudes and phase shifts form the first row of

mx. The other rows can be understood in the same manner. In short, the 11-, 12-, 21- and

22- blocks of δmx represent , respectively, the right-moving forward-scattering, right-moving

backward-scattering, left-moving backward-scattering, and left-moving forward-scattering on

the slice. In each block, the diagonal elements represent intra-channel scattering and the

off-diagonal elements represent interchannel scattering.

It is important that mx, Eq. (4.27), fulfills the same constraints regardless of the propagating

or evanescent character of the modes [see Appendix A]:

m∗x = Σ1mxΣ1, m†xΣ3mx = Σ3, (4.29)

where Σ1 and Σ3 are the four-dimensional generalization of the first and third Pauli matrix

with zero and unit entries replaced by 2 × 2 zero and unit matrices in the channels space.
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The first condition follows from m̃∗x = m̃x, while the second condition is a consequence of the

symplecticity Eq. (4.21). Thus these conditions are a direct consequence of the fact that m̃x

belongs to the symplectic group Sp(4,R). As is obvious from the choice of the basis (4.23)-

(4.26), their physical meaning is the time-reversal symmetry and the current conservation.

The representation Eq. (4.27) of the transfer matrix of an “elementary slice” renders both the

physical interpretation and the symmetry constraints very transparent, and it will be seen to

be a convenient starting point to construct the Fokker-Planck equation. On the other hand,

since m̃x [see Eq. (4.20)] is real and has a relatively simple form, it is more suitable for

numerical calculations.

4.2.2 Fokker-Planck equation for the distribution function of pa-

rameters

4.2.3 Parametrization of transfer matrices

Once the “building block” (4.27) is worked out, we can construct the Fokker-Planck equation

by the blueprint of the Fokker-Planck approach[115, 118, 119, 120]. The transfer matrix of a

disordered sample with length L is

M(L) =
L∏
x=1

mx = mL ·mL−1 · · ·m1, (4.30)

which is a 4 × 4 complex random matrix. It is easy to verify that M(L) also satisfies the

time reversal invariance and current conservation conditions (4.29). It has been proved in

Ref. [120] that all the 4 × 4 matrices satisfying Eq. (4.29) form a group which is identified

with the symplectic group Sp(4,R). By the Bargmann’s parametrization of Sp(4,R)[119], one

can represent M(L) as

M =

u 0

0 u∗

√F+1
2

√
F−1

2√
F−1

2

√
F+1

2

ũ 0

0 ũ∗

 , (4.31)
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where u and ũ are elements of the unitary group U(2), and statistically independent from

each other, and

F = diag(F1, F2), (4.32)

with F% ∈ [1,∞) and % ∈ {1, 2}. Because U(2) [124] has four real parameters, the group

Sp(4,R) has ten real parameters. Furthermore, it is convenient to parametrize a U(2) matrix

by three Euler angles and a total phase angle, that is,

u(φ, ϕ, θ, ψ) = e−i
φ
2 e−i

ϕ
2
σ̂3e−i

θ
2
σ̂2e−i

ψ
2
σ̂3 , (4.33)

in which σ̂2 and σ̂3 are the second and third Pauli matrix, and the four angles take their values

in the range φ, ϕ ∈ [0, 2π), θ ∈ [0, π), and ψ ∈ [0, 4π). In matrix form in the channels space,

u can be written as

u = e−i
φ
2

cos θ
2
e−

i
2

(ϕ+ψ) − sin θ
2
e−

i
2

(ϕ−ψ)

sin θ
2
e
i
2

(ϕ−ψ) cos θ
2
e
i
2

(ϕ+ψ)


ch

, (4.34)

which is convenient for the perturbative calculation below. The U(2) matrix ũ can be

parametrized independently in the same form as Eq. (4.34).

The probability distribution function of these ten real parameters determines completely the

transfer matrix ensemble of the ladder described by the Hamiltonian (4.1). The goal of the

Fokker-Planck approach is to obtain the Fokker-Planck equation satisfied by this probability

distribution function, in which the role of time is played by the length L.

From Eq. (4.31) we obtain the transmission matrix

t := (M †
++)−1 = u

(
F + 1

2

)−1/2

ũ, (4.35)

by a simple relation between the transfer matrix and its corresponding S matrix2[119, 120].

Due to the unitarity of ũ, the transmission co-efficients of the two channels are the two

2The transmission matrix t we calculate here describes transmission from left to right of the sample. Its
transpose describes the reverse transmission, as assured by time reversal symmetry. Its element tττ ′ denotes
the out-going amplitude on the r.h.s of the sample in the τ -channel when there is a unit current incident from
the l.h.s in the τ ′-channel.
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eigenvalues of the Hermitian matrix

T = tt† = u

(
F + 1

2

)−1

u†, (4.36)

which are

T% =
2

F% + 1
, (4.37)

where % ∈ {1, 2} is the index of the two-dimensional eigenspace of the matrix T. Now the

physical meaning of the parametrization (4.31) becomes clear. The F%’s are related to the

two transmission co-efficients by the simple form Eq. (4.37). The matrix u diagonalizing the

matrix T contains the two eigenvectors of T, describing the polarization of the plane wave

eigenmodes incident from the l.h.s. of the sample. For instance, if θ = 0 (u is a diagonal

matrix of redundant phases), the two channels do not mix, and the incident waves are fully

polarized in the basis of channels. On the other hand, if θ = π, the two channels are equally

mixed, and the incident waves are unpolarized. In analogy to spherical co-ordinates, we refer

to the F%’s as the radial variables, while the angles in u or ũ are called angular variables.

In principle, using the “building block” (4.27) and the parametrization (4.31), we can solve the

full problem by writing down a Fokker-Planck equation for the joint probability distribution

function of all the ten parameters of M. However, since we are merely interested in the

transmission coefficients which are determined by the probability distribution function of T,

instead of manipulating M, we study

R = MM†

=

u 0

0 u∗

 F
√

F2 − 1
√

F2 − 1 F

u† 0

0 uT

 .

(4.38)

R is a Hermitian matrix and contains only six parameters:

~λ(R) = (F1, F2, θ, ψ, φ, ϕ). (4.39)
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The probability distribution function of ~λ, denoted by PL(~λ), determines the transmission

properties of the sample with length L. PL(~λ) is defined by

PL(~λ) = δ
(
~λ− ~λ(R(L))

)
, (4.40)

where the overline denotes the average over realizations of the random potentials in the sample.

It is convenient to introduce the characteristic function of PL(~λ):

P̃L(~p) =

∫
d~λei~p·

~λPL(~λ) = ei~p·~λ(R(L)). (4.41)

Our main goal in this paper is to calculate the two localization lengths, defined as the inverse

Lyapunov exponents of the transfer matrix (4.31):

ξ−1
1(2) ≡ − lim

L→∞

1

2

d

dL
〈lnTmax(min)〉L, (4.42)

in which the subscripts “max” and “min” denote the larger and smaller of the two real values

T1,2, and the averaging 〈·〉L is earned out with the probability distribution PL(~λ). Therefore,

by definition

ξ1 > ξ2. (4.43)

4.2.4 Physical interpretation of ξ1 and ξ2

It is worthwhile to visualize how two parametrically different localization lengths (ξ1 � ξ2)

manifest themselves in transport properties. For instance, let us discuss the dimensionless

conductance g = T1 + T2, a typical behavior of which is shown as a function of the sample

length L in Fig. 4.3. If L� ξ2, T% ≈ 1 and g ≈ 2 corresponds to a nearly perfect transmission.

As L increases, T% and g decay exponentially. T2 decays much faster than T1 since ξ1 � ξ2. As

long as L < ξ1 the system still conducts well since g is still appreciable. For L ∼ ξ1 it crosses

over to an insulating regime. On the other hand, ξ2 marks the crossover length scale below

which g(L) (black curve) decreases as fast as T2 (blue dashed curve) until the conductance

saturates to a plateau g ≈ 1. For L > ξ2, g decays with the slow rate ξ−1
1 , like T1 (red dotted
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Figure 4.3: Schematic diagram for typical values of dimensionless conductance g as a function
of the length L in the case ξ1 � ξ2. A crossover happens at L ∼ ξ2. In the region L < ξ2, g
decays as fast as Tmin (see the insert). Once L > ξ2, g decays as slowly as Tmax. The system
is well conducting if L < ξ1 and crosses to an insulating regime for L > ξ1.

curve). Therefore, the two parametrically different localization lengths can be identified by

two distinct decay rates of g at small and large length scales.

The statistics of transmission eigenvalues and localization lengths of disordered multi-channel

micro-waveguides have been visualized in experiments[125]. However, only more or less

isotropically disordered cases (identical hopping and disorder strength in each channel) were

realized, while a situation where ξ1 � ξ2 is hard to achieve in such systems (see Ref. [125]

and references therein). In contrast such anisotropic situations are rather natural in exciton

polariton systems.

We see in Sec. 4.4.1 that the two localization lengths ξ1 and ξ2 also characterize the spatial

variations of the eigenfunctions Ψ(x) on the two legs.
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4.2.5 Fokker-Planck equation for the distribution function of ~λ(R)

Having a disordered sample of length L, whose transfer matrix is M(L) and adding one more

slice, we obtain the transfer matrix of the sample with length L+ 1:

M(L+ 1) = mL+1M(L). (4.44)

Simultaneously, according to Eqs. (4.38) and (4.27), R(L) is updated to

R(L+ 1) = mL+1R(L)m†L+1 = R(L) + δR, (4.45a)

δR = (Rδm†L+1 + h.c.) + δmL+1Rδm
†
L+1. (4.45b)

Accordingly, ~λ(R(L)) is incremented by

~λ(R(L+ 1)) = ~λ(R(L)) + δ~λ. (4.46)

According to Eqs. (4.41) and (4.46), we obtain the characteristic function of PL+1(~λ):

P̃L+1(~p) = ei~p·~λ(R(L+1)) = ei~p·~λ(R(L))ei~p·δ~λ. (4.47)

We can expand ei~p·δ
~λ on the r.h.s. of Eq. (4.47) into a Taylor series ei~p·δ

~λ =
∑∞

n (i~p · δ~λ)n.

Using Eqs. (4.45) and (4.46) standard perturbation theory yields an expansion of δ~λ in powers

of the disorder potential as δ~λ =
∑

n≥1 δ
~λ(n), where δ~λ(n) is of n-th order in ε̃. With this,

the r.h.s. of Eq. (4.47) can be expanded in powers of the disorder potential. In principle,

we can proceed with this expansion to arbitrarily high orders. Thereafter, the average over

disorder on the slice L+1 can be performed. Equations (4.45)-(4.47) fully define our problem.

However, it is impossible to solve it analytically without further simplification.

Progress can be made by considering the weak disorder limit. In the two-channel regime, the

weak disorder limit implies that both of the mean free paths are much larger than the lattice

constant. As a first estimation, applying the Born approximation to an “elementary slice”,

the inverse mean free paths of the two propagating channels can be expressed as certain linear
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combinations of the variances of the effective disorders on the two chains, defined as

χ2
ν =

σ2
ν

t2ν
. (4.48)

for chain ν. In the weak disorder limit where the smaller of the two localization lengths is

much larger than the lattice constant,

l� 1, (4.49)

only the terms proportional to χ2
ν on the r.h.s of Eq. (4.47) have to be taken into account.

Hence, we calculate δ~λ perturbatively up to the second order [see Appendix B]. If L� 1, as

we always assume, P̃L+1 − P̃L ' ∂LP̃L. Under these conditions, Eq. (4.47) leads to

∂LP̃L = i~p · δ~λ(2)ei~p·~λ(R(L)) − 1

2

(
~p · δ~λ(1)

)2

ei~p·~λ(R(L)). (4.50)

Note that because the random potentials in different slices are uncorrelated, the δ~λ(n) terms

can be averaged independently of ei~p·
~λ(R(L)). By the inverse of the Fourier transform defined

in Eq. (4.41) we obtain the Fokker-Planck equation for PL(~λ):

∂LP = −
6∑
i=1

∂λi

[
δλ

(2)
i P − 1

2

6∑
j=1

∂λj

(
δλ

(1)
i δλ

(1)
j P

)]
. (4.51)

In Eq. (4.51) the averages are taken over the realizations of random potentials in the slice at

L+ 1.

The Fokker-Planck equation (4.51) can be rewritten in the form of a continuity equation:

∂LP = −
6∑
i=1

∂λiJi, (4.52)

where the generalized current density Ji takes the form:

Ji = vi(~λ)P −
6∑
j=1

Dij(~λ)∂λjP, (4.53)

with

vi(~λ) = δλ
(2)
i + ∂λjDij(~λ), (4.54a)
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Dij(~λ) =
1

2
δλ

(1)
i δλ

(1)
j . (4.54b)

vi(~λ) and Dij(~λ) are a generalized stream velocity and a generalized diffusion tensor, respec-

tively.

4.2.6 Coarse graining

Let us analyze the r.h.s. of Eq. (4.51) qualitatively. From Eqs. (B.10) and (B.12) in the

Appendix, it is clear that the coefficients δλ
(1)
i δλ

(1)
j and δλ

(2)
i are sums of terms carrying phase

factors 1, e±i(k1−k2)L, ... and so on. These phase factors come from the disorder average of

products of two elements of the matrices (4.27). Their phases correspond to the possible

wave vector transfers of two scatterings from a slice, similarly as found in the Berezinskii

technique [114]. They are thus linear combinations of two or four values of ±k1,2:

Kosc = {±∆k, ±2∆k, (4.55)

±2k1(2), ±(k1 + k2), ±
[
3k1(2) − k2(1)

]
,

±4k1(2), ±2(k1 + k2), ±
[
3k1(2) + k2(1)

]}
,

where

∆k = k1 − k2. (4.56)

Terms with phase “0” do not oscillate. The largest spatial period of the oscillating terms is

Losc = max
δk∈Kosc

δk−1 (4.57)

Under the condition that

Losc � l, (4.58)

a coarse grained probability distribution function can be defined as the average of PL(~λ) over

Losc. From now on, we use the same symbol PL(~λ) to denote its coarse grained counterpart,

which satisfies Eq. (4.51), but neglecting the oscillating terms.
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Additionally, at special energies it may happen that an oscillation period becomes commen-

surate with the lattice spacing , δk = π/n. An important example of this commensurability

is the situation where δe = 0, 2(k1 + k2) = 2π at E = 0. In this case the terms with the phase

factor e±2i(k1+k2)L do not average and give anomalous contributions to the non-oscillating

coefficients. This effect leads to the so-called center-of-band anomaly in the eigenfunction

statistics of the one-chain Anderson model (see Ref. [116] and references therein). While they

are not included in our analytical study, the commensurability-induced anomalies can be seen

clearly in the numerical results for localization lengths (cf. Figs. 4.7, 4.8, 4.11 and 4.12).

The coarse graining procedure leads to a significant simplification: The coefficients on the

r.h.s. of Eq. (4.51) do not depend on L, φ, and ϕ any longer, which renders the solution of

Eq. (4.51) much easier. Its nonoscillating coefficients are evaluated in Appendix B. We do not

reproduce them explicitly here, since we further transform the Fokker Planck equation below.

However, it is worthwhile pointing out a formal property of its coefficients. From Eqs. (B.8),

(B.10), and (B.12), it is easy to see that the ingredients for evaluating δλ
(1)
i δλ

(1)
j and δλ

(2)
i

are the disorder-averaged correlators between any two elements of matrices (4.27). During

the calculation, three Born cross sections appear naturally, being covariances of the effective

disorder variables,

V1 =
1

4v2
1

(
χ2

1 cos4 γ

2
+ χ2

2 sin4 γ

2

)
, (4.59a)

V2 =
1

4v2
2

(
χ2

1 sin4 γ

2
+ χ2

2 cos4 γ

2

)
, (4.59b)

V3 =
1

4v1v2

(
χ2

1 + χ2
2

)
sin2 γ

2
cos2 γ

2
, (4.59c)

in which V1(2) corresponds to intra channel scattering processes k1(2) ↔ −k1(2), and V3 corre-

sponds to interchannel scattering processes k1(2) ↔ ±k2(1). Note that the effective disorder

variances (4.48) enter into the three Born cross sections, instead of the bare variances (4.2).

We will see that the above three Born cross sections completely define the localization lengths

and most phenomena can be understood based on them.

We note that the coarse graining, through Eq. (4.58), imposes a crucial restriction on the

applicability of the simplified Fokker-Planck equation. According to Eqs. (4.10) and (4.14),
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if t is small enough, at E = ER,

|∆k| ∝ t. (4.60)

In this case, Eqs. (4.58) and (4.60) require that

t� δE, (4.61)

where

δE ∝ l−1 (4.62)

is the characteristic disorder energy scale (essentially the level spacing in the localization

volume). In other words, Eq. (4.61) imposes a “strong coupling” between the two legs, as

compared with the disorder scale. However, from the point of view of the strength of disorder,

Eq. (4.61) is a more restrictive condition than ξ2 � 1 on the smallness of disorder. However,

it is automatically fulfilled in the limit σν → 0 at fixed values of coupling constants t and tν .

Equation (4.61) restricts the region of applicability of the simplified equation (4.67) which we

will derive below. Indeed, we see that by simply taking the limit t → 0 in the solution of

that equation one does not recover the trivial result for the uncoupled chains. This is because

the equation is derived under the condition that t is limited from below by Eq. (4.61). The

“weak coupling” regime is studied numerically in Sec. 4.2.8 and the crossover to the limit of

uncoupled chains is observed at a scale of t ∼ l−1, as expected.

Since the definition of localization lengths (4.42) only involves the F%’s, and since the co-

efficients of Eq. (4.51) do not contain φ and ϕ, we define the marginal probability distribution

function

WL(F1, F2, θ, ψ) =

∫
dφdϕPL(~λ). (4.63)

Further we change variables to the set

~η = (F1, F2, u, ψ), (4.64)

68



where

u = cos θ, u ∈ (−1, 1]. (4.65)

We thus have

WL(~η) =

∫
dφdϕPL(F1, F2, θ(u), ψ, φ, ϕ). (4.66)

Substituting Eq. (4.66) into (4.51), and replacing the differential operators ∂θ → −
√

1− u2∂u

and ∂2
θ → −u∂u + (1− u2)∂2

u, we obtain the Fokker-Planck equation for WL(~η):

∂LW =
4∑
i=1

[∂ηi (cii∂ηiW ) + ∂ηi (ciW )] +
4∑

j>i=1

∂ηi∂ηj (cijW ). (4.67)

The coefficients ci, cij are relatively simple functions of ~η. They can be obtained from the

averages of the matrix elements computed in Appendix B and are given in Appendix C.

However, only a small number of them will turn out to be relevant for the quantities of

interest to us.

One can see that in Eq. (4.67) the radial variables, F%, are entangled with the angular variables

u and ψ. Thus, Eq. (4.67) is more general than the canonical DMPK equation[118]-[120],

where only radial variables appear. To emphasize the difference we refer to Eq. (4.67) as the

extended DMPK equation. The derivation of Eq. (4.67) for the two-leg problem is our main

technical achievement in the present paper. It allows us to obtain the evolution (as a function

of L) of the expectation value of any quantity defined in ~η space.

4.2.7 Calculating the localization lengths

It is well-known that in quasi-one-dimensional settings single particles are always localized at

any energy in arbitrarily weak (uncorrelated) disorder[27]. The localization length quantifies

the localization tendency in real space. In this section we calculate the localization lengths

for the present model.

The analytic expression of lnTmax(min) in Eq. (4.42) can be written as

lnTmax(min) = Θ(∆F ) lnT2(1) + Θ(−∆F ) lnT1(2), (4.68)
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where Θ(z) is the Heaviside step function and

∆F = F1 − F2. (4.69)

Multiplying both sides of Eq. (4.67) by the r.h.s. of Eq. (4.68) and integrating over all the

variables, we obtain from Eq. (4.42)

ξ−1
ρ = lim

L→∞
〈(D1 +D2)− (−1)ρ(D1 −D2)sgn(∆F )〉L , (4.70)

with

Di =
1

2

[
cii

(Fi + 1)2
+

ci
Fi + 1

− ∂Ficii
Fi + 1

]
, i ∈ {1, 2}, (4.71)

in which ρ ∈ {1, 2}, sgn(z) is the sign function, and the coefficients ci, cii [see App. C] are

ci = (−1)i2
F 2
i − 1

∆F
Γ6,

cii = (F 2
i − 1)Γi,

with

Γi(u) = V1 + V2 + 4V3 + (−1)i2 (V2 − V1)u+ (V1 + V2 − 4V3)u2,

Γ6(u) = V1 + V2 − (V1 + V2 − 4V3)u2.

The formula (4.70) for the localization lengths can be further simplified in the limit L � 1.

When L is large, the typical value of Fmin(max) is of the order of eL/ξ1(2) , which is exponentially

large. Therefore,

Fmax � Fmin � 1, (4.72)

as we assume ξ1 > ξ2 [see Eq. (4.43)]. The hierarchy (4.72) largely simplifies the coefficients

of Eq. (4.67), which leads to

lim
L→∞

c1

F1 + 1
= −2Γ6Θ (∆F ) , (4.73a)

lim
L→∞

c2

F2 + 1
= −2Γ6Θ (−∆F ) , (4.73b)
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lim
L→∞

cii
(Fi + 1)2

= Γi, (4.73c)

lim
L→∞

∂Ficii
Fi + 1

= 2Γi. (4.73d)

As a result, Eq. (4.70) reduces to

ξ−1
ρ = V1 + V2 + 2V3 + (−1)ρ

(
1

2
〈Γ6〉+ |V1 − V2|〈u〉

)
, (4.74)

where 〈·〉 ≡ limL→∞ 〈·〉L, V1, V2 and V3 are the Born cross sections defined in Eq. (4.59). The

main simplification is that Γ6 depends only on u, but not on the other parameters of the

scattering matrix. Therefore, the localization lengths are fully determined by the marginal

probability distribution function of u defined by

wL(u) ≡
∫
dF1dF2dψWL(~η). (4.75)

Integrating over F1, F2, and ψ on both sides of Eq. (4.67), we obtain the Fokker-Planck

equation for wL(u):

∂Lw = ∂u(c33∂uw) + ∂u(c3w), (4.76)

where c3 and c33 are derived in Appendix C. It has a fixed-point solution satisfying

∂u(c33∂uw) + ∂u(c3w) = 0. (4.77)

In the large L limit the coefficients are given by

lim
L→∞

c3 = (|V1 − V2| − ∂uΓ6) (1− u2), (4.78a)

lim
L→∞

c33 = (V3 + Γ6)
(
1− u2

)
. (4.78b)

From Eq. (4.78) one can see that in the limit (4.72), c33 and c3 do not depend on F1, F2, and ψ

any longer. Therefore, Eq. (4.77) is reduced to an ordinary differential equation with respect

to u. By considering the general constraints on a probability distribution function, namely
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the non-negativity w(u) ≥ 0 and the normalization condition
∫
duw(u) = 1, the solution to

Eq. (4.77) is unique,

w(u) =



w1(u) =
q1 exp

“
q1
q2

arctan u
q2

”
2 sinh

“
q1
q2

arctan 1
q2

”
(q22+u2)

, ∆V ≤ 0,

w2(u) =
q1

“
q2+u
q2−u

” q1
2q2

2 sinh
“
q1
2q2

ln
q2+1
q2−1

”
(q22−u2)

, ∆V ≥ 0,

(4.79)

where

q1 = 2|V1 − V2|/|∆V |, (4.80)

q2 =
√

(V1 + V2 + 4V3) /|∆V |, (4.81)

and

∆V = V1 + V2 − 4V3. (4.82)

Equations (4.74) and (4.79) are our main analytical results. The localization lengths are

expressed entirely in terms of the three Born cross sections V1, V2, and V3. We recall that we

made the assumptions of weak disorder [Eq. (4.49)] and sufficiently strong coupling [Eq. (4.61)].

In Eq. (4.79), w2(u) is simply the analytical continuation of w1(u). To show this, we start form

∆V > 0 side and drop the absolute value on ∆V . If ∆V crosses zero from above, namely

∆V → −∆V , q1 changes continuously to −q1, and q2 changes to one of the two branches

±i|q2| because of the square root. It can be easily verified that

w1(u;−q1,±i|q2|) = w2(u; q1, |q2|), (4.83)

by the formula arctan z = i/2 ln[(1− iz)/(1 + iz)] for a complex number z.

Given the physical meaning of the parameter u, it is natural to interpret the analytical con-

tinuation as describing the crossover between two regimes of the polarization, as controlled

by the relative strength of the effective disorders. If ∆V > 0 (i.e., V1 + V2 > 4V3) the in-

trachannel scattering is stronger than the interchannel scattering, while ∆V < 0 means the
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Figure 4.4: The resonant and off-resonant regimes on the E − t plane for t1 = 1, t2 = 0.2,
with isotropic disorder σ2

1 = σ2
2 and bias δe = −0.1. The black curve indicates the band edges

E = E−1 and E = E+
2 , beyond which only one channel exists. The blue curve marks the

crossover line ∆V = 0. At small enough t, ∆V = 0 can be linearized to t ' κ|E − ER|, cf.
Eq. (4.84), which is plotted as the red dashed line.

73



opposite. The two regimes can be distinguished quantitatively. According to Eq. (4.59), the

coefficients in the linear combination of the effective disorder parameters, χ2
ν , are determined

by the bare “mixing angle” γ and the rapidities, vτ . Suppose the resonance energy ER is

approached while keeping t < tc [see Eq. (4.17)]. If E is in the vicinity of ER, γ ∼ π/2, and

∆V < 0. Otherwise, if E is far enough from ER, γ → 0 or π, and ∆V > 0. Therefore, there

must be an energy interval around ER, in which the physics is similar to that at resonance,

γ = π/2. Further away from ER the physics is similar to the limiting cases γ = 0 or π. We

call ∆V < 0 and ∆V > 0 the resonant and off-resonant regimes, whose distinct behavior we

analyze below.

Resonant and off-resonant regimes

As shown in Fig. 4.4, for fixed tν and δe, ∆V = 0 (blue curve) divides the E − t plane into

two regions in the two-channel regime (below the black curve). Three important observations

are in order.

(i) At weak coupling t, more precisely, for t � tc, but still within the condition (4.61), the

relation ∆V = 0 for the border of the resonance region implies the linear relation (see the red

dashed lines in Fig. 4.4)

t ' κ(t1, t2)|E − ER|, (4.84)

with

κ(t1, t2) =
t1 − t2√
t21 + t22

. (4.85)

The slope κ(t1, t2) depends on neither σ2
ν nor δe.

(ii) If the coupling t is strong enough, the resonance energy interval shrinks to zero as t→ tc

(the top edge of Fig. 4.4). This “re-entrance” behavior is due to the competition between the

strong coupling, which pulls γ close to π/2, and the band edge effect, which reduces the rapidity

of one of the channels. We can illustrate this behavior by considering two limiting cases. If t

is weak, its effect is of first order on γ, but of second order on the vτ . Therefore, the coupling

wins and the resonance energy interval follows the linear relation (4.84). Alternatively, if the

energy is in the vicinity of the band edges E = E−1 and E+
2 , one of the rapidities tends to zero.

As a consequence, V1 or V2 is much larger than V3, which gives a large positive ∆V . Therefore,
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Figure 4.5: Marginal probability distribution for the angular variable u = cos(θ), w(u), in
different regimes. Here the interchain coupling t = 0.1 and the other parameters are the same
as in Fig. 4.4. (a) Distributions w(u) for three energies across the resonance and off-resonance
regimes, namely, E = ER ≈ −0.13 (i.e., resonance energy), E = 0.2 (off-resonance), and
E = 0.0 (crossover). On resonance the distribution is nearly uniform, while it is strongly
nonuniform off-resonance (b) The expectation value and variance of u as functions of E.

there is always some region around the band edges (black curves in Fig. 4.4), which is out of

resonance. As the crossover line must match the two limits t→ 0 and t→ tc, it is necessarily

re-entrant.

(iii) In the case of a nonzero detuning energy δe the resonant energy interval is slightly

asymmetric around E = ER.

Fixed point distribution w(u = cos θ)

Let us now discuss the distribution Eq. (4.79) in different regimes and some of its consequences.

For this purpose, we plot in Fig. 4.5 some representative w(u) together with the expectation

value and variance of u. We select various values of E across the resonant and off-resonant

regime. Two types of behavior can be observed in the two regimes.

(i) Near the resonance, u = cos θ is distributed relatively uniformly in the interval (−1, 1]. Its

average value is much smaller than 1, but its variance is large of order O(1). However, the
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distribution is definitely not completely uniform. Indeed, the limit of the distribution can be

obtained form Eq. (4.79) in the weak coupling limit as t→ 0 as

w(u) =
3
√

3

π(3 + u2)
, (4.86)

which is manifestly nonuniform. A similar distribution was obtained by Dorokhov [118] in

the case of two equivalent chains. We discuss the difference to Eq. (4.86) later.

(ii) Off resonance, the distribution function w(u) is strongly peaked at u = 1, and its fluctu-

ations are strongly suppressed.

At this point the difference between the canonical DMPK equation[118]-[120], which applies

in the case N � 1, and the extended DMPK equation obtained here for the case N = 2, is

clear. The isotropy assumption, which allows one to derive the canonical DMPK equation,

states that the angular variable distribution w(u) should be uniform, that is, independent of

u, in contrast to Eq. (4.86). In order to justify the canonical DMPK equation, we have to

have a large number of equal chains. A sufficient condition for obtaining the canonical DMPK

equation is that the probability distribution of the transfer matrices of an “elementary slice”

is invariant under U(N) rotation. This situation may be achieved in thick wires[119, 120].

However, in few-channel cases the localization lengths are larger, but still of the same order as

the mean free path. There is no parametric window between them that permits the emergence

of U(N)-invariant ensembles of transfer matrices upon coarse graining.

The qualitative difference in the distribution function w(u) in the two regimes has important

implications on the localization lengths. To calculate the localization lengths from Eq. (4.74),

we need 〈Γ6〉 and 〈u〉. Using Eq. (4.79) we obtain

〈Γ6〉 =



q1q2|∆V |S1(q1,q2)

2 sinh
“
q1
q2

arctan 1
q2

” − 4V3, ∆V ≤ 0,

q1q2|∆V |S̃1(q1,q2)

2 sinh
“
q1
2q2

ln
q2+1
q2−1

” − 4V3, ∆V ≥ 0,

(4.87)

76



and

〈u〉 =



q1S2(q1,q2)

2 sinh
“
q1
q2

arctan 1
q2

” , ∆V ≤ 0,

q1S̃2(q1,q2)

2 sinh
“
q1
2q2

ln
q2+1
q2−1

” , ∆V ≥ 0,

(4.88)

where S1(2) and S̃1(2) are integrals defined by

S1(q1, q2) =

∫ arctan (1/q2)

− arctan (1/q2)

dz sec2 z e
q1
q2
z
,

S2(q1, q2) =

∫ arctan (1/q2)

− arctan (1/q2)

dz tan z e
q1
q2
z
,

S̃1(q1, q2) =

∫ 1/q2

−1/q2

dz

(
1 + z

1− z

) q1
2q2

,

S̃2(q1, q2) =

∫ 1/q2

−1/q2

dz
z

1− z2

(
1 + z

1− z

) q1
2q2

.

(4.89)

Numerical analysis

In order to confirm our analytical results for the localization lengths in Eq. (4.74) we calculated

numerically the Lyapunov exponents of the products of transfer matrices in Eq. (4.30). An

efficient numerical method, known as the reorthogonalization method, has been developed in

the study of dynamical systems[126] and widely spread in the field of Anderson localization[34].

The forthcoming numerical results in Figs. 4.6–4.9, 4.11, and 4.12 are all obtained by this

method.

The usefulness of the reorthogonalization method is not restricted to numerical simulations.

It also provides the basis for the perturbative analysis about the Lyapunov exponents in the

weak disorder limit in Sec. 4.3.1.
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4.2.8 Results for the localization lengths

In order to reveal the effects of the transverse coupling t on the localization lengths, we define

the two ratios

rρ = ξρ/ξ
(0)
ρ , ρ ∈ {1, 2}, (4.90)

where the ξ
(0)
ρ s are the localization lengths of the decoupled legs, for which we may assume

ξ
(0)
1 ≥ ξ

(0)
2 . For simplicity, we refer to leg 1 and leg 2 as the fast leg and slow leg, respectively.

The bare localization lengths ξ
(0)
ρ can easily be obtained from Eq. (4.74) by taking γ = 0,

w(u) = δ(u− 1) and t = 0, which yields

ξ(0)
ρ =

2v2
ρ

χ2
ρ

. (4.91)

Equation (4.91) coincides with the well-known single-chain result[115].

I. E = 0 and δe = 0: Resonance regime

Consider first the case δe = 0, in which the resonance energy vanishes ER = 0. From

Eqs. (4.12) and (4.18) it follows that the mixing angle is γ = π/2 once t 6= 0, and the two

rapidities v1 = v2 = v are equal to each other:

v2 = 4− t2

t1t2
. (4.92)

Consequently, the three Born cross sections have the same value and are equal to

V1 = V2 = V3 = V =
1

16v2

(
χ2

1 + χ2
2

)
. (4.93)

This gives q1 = 0 and q2 =
√

3 according to Eqs. (4.80) and (4.82). Evaluating the inte-

grals (4.89), we obtain the two localization lengths

ξρ = 8Cρv
2/
(
χ2

1 + χ2
2

)
, (4.94)
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where

C1 =
π

3(π −
√

3)
≈ 0.743, (4.95a)

and

C2 =
π

π + 3
√

3
≈ 0.377. (4.95b)

The corresponding decoupled values (t = 0) can easily be obtained from Eq. (4.91),

ξ(0)
ρ =

8

χ2
ρ

. (4.96)

Therefore, the ratios defined by Eq. (4.90) read

rρ = Cρv
2χ2

ρ/
(
χ2

1 + χ2
2

)
. (4.97)

Notice that in the resonant case the Born cross sections (4.59) are dominated by χ2
2, which

gives rise to the dramatic drop of the localization length of the fast leg: The slow leg is

dominating the backscattering rate and thus the localization length.

From Eq. (4.97) we draw several important conclusions below.

A. Statistically identical chains

For two coupled chains, which are statistically identical, one has χ2
1 = χ2

2, and we obtain

ξ1

ξ
(0)
1

≡ r1 = 2C1 ≈ 1.486,

ξ2

ξ
(0)
2

≡ r2 = 2C2 ≈ 0.754. (4.98)

We note that r1 is slightly larger than the value obtained by Dorokhov[118] which is π/(π−1) ≈

1.467. The reason is that we have taken into account the forward-scattering in the “elementary

slice” (4.27), which was neglected in the work by Dorokhov. Moreover, the latter was restricted

to t1 = t2. In Fig. 4.6 we compare our analytical prediction with Dorokhov’s. The effect of

forward scattering, which was included in our work, is clearly visible. It is confirmed by the

numerical simulation at resonance conditions. However, the value r1 ≈ 1.776 obtained by

Kasner and Weller[123] deviates significantly from our result.
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Figure 4.6: Ratio of coupled and uncoupled localization lengths, r1 = ξ1/ξ
(0)
1 , for statistically

identical chains with t1 = t2 = 1 and small disorder W . We consider small couplings t, for
which any energy is at resonance conditions (here E = 0.1. The continuum approximation
becomes exact for W 2 � t � 1, as is illustrated by the convergence of the numerical data
to the analytical prediction (the agreement is already good for cW 2 . t with c ≈ 0.25). For
comparison we also plot Dorokhov’s prediction [118], which neglected forward scattering in
the Fokker-Planck equation. The result of Kasner and Weller[123] (r1 ≈ 1.776) is in clear
contradiction with these numerics.
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B. Parametrically different chains

It is interesting to analyze what happens if the bare localization lengths of the chains are

parametrically different ξ
(0)
2 � ξ

(0)
1 . In the resonant regime, for W 2, |E−ER| � t� t1, t2, we

obtain

ξ1 → 4C1 ξ
(0)
2 ≈ 2.972 ξ

(0)
2 , (4.99a)

ξ2 → 4C2 ξ
(0)
2 ≈ 1.507 ξ

(0)
2 . (4.99b)

Equation (4.99) is one of the central results in this paper: In the resonant regime, the local-

ization length of the fast leg is dramatically dragged down by the slow leg. In contrast, the

localization length of the slow leg is increased by the presence of the fast leg, but remains of

the same order. As a result both localization lengths become of the order of that for the bare

slow leg. This is illustrated for two different cases of coupled fast and slow legs in Figs. 4.7 and

4.8. Figure 4.7 shows the effect in the case of legs with equal disorder but different hopping

strength, the resonance being at E = 0. In Fig. 4.8 the faster leg has the same hopping but

weaker disorder. Here the legs are resonant at every energy below the band edge E+
2 .

We note that there is no regime where both r1 > 1 and r2 > 1, as this would contradict the

equality
∑

ρ rρ/Cρ = v2, which follows from Eq. (4.97). At the band center and t→ 0 one can

achieve that both localization lengths do not decrease upon coupling the chains, r1 = r2 = 1.

This happens when χ2
2/χ

2
1 = 4C1−1, which assures that the localization lengths do not change

at coupling constants t . W 2 according to the discussion in Sec. 4.2.8 I C.

C. Weak coupling limit

Upon simply taking the t = 0 limit,

rρ = 4Cρχ
2
ρ/
(
χ2

1 + χ2
2

)
, (4.100)

one does not recover the decoupled values rρ = 1. This should indeed be expected, as we

have discussed in Sec. 4.2.5. The reason traces back to condition (4.61) to obtain Eq. (4.67),

namely that t be larger than the disorder energy scale δE ∝ W 2. In order to verify the

non-commutativity of t → 0 and W → 0, we computed numerically the localization lengths

by the transfer matrix approach, and obtained the values of rρ down to very small values of
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Figure 4.7: Localization lengths for chains with different hopping strengths (t1 = 1 and
t2 = 0.1), but equal disorder (W = 0.05) as a function of energy at detuning δe = 0 and
intermediate coupling t = 0.1. The solid curves are analytical results. Black curves correspond
to uncoupled chains; red ones correspond to the coupled chains. The squares and circles are
data of the numerical transfer matrix. ξ

(0)
2 and ξ2 are amplified 20 times to increase visibility,

but ξ1 > ξ2 always holds. The lower left insert is a magnification in the two-channel region.
The upper right inset shows the ratios r1,2 of coupled to uncoupled localization lengths. The
larger localization length is very significantly suppressed due to the coupling to a slow chain.
Note the sharp recovery of the larger localization length beyond the band edge E+

2 . The
analytical results coincide quantitatively with the numerical data anywhere except for specific
anomalous energies: In the uncoupled case, E = 0 corresponds to the commensurate wave
vectors 4k1(2) = 2π. In the coupled case, E = 0 and E ≈ 0.03, 0.1 (very weak) and 0.17
correspond to 2(k1 + k2) = 2π, 3k1 + k2 = 2π, 4k1 = 2π, and 3k2 − k1 = 2π.
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Figure 4.8: Localization lengths for the decoupled (t = 0, black) and coupled (t = 0.2, red)
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function of energy (detuning δe = 0). The solid curves are analytical results. The squares and

circles are data from the numerical transfer matrix. The values of ξ1, ξ
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20 times to increase their visibility. Without coupling ξ
(0)
1 /ξ

(0)
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coupling ξ1 is substantially reduced, while ξ2 remains of the same order as its decoupled value.
The inset shows the ratios r1,2 of coupled to uncoupled localization lengths. Since t1 = t2
there is resonance at all energies, and thus dominance of the slow chain is expected. Note
the sharp recovery of the larger localization length beyond the band edge E+

2 . There are
visible anomalies at E = 0 in both the uncoupled and the coupled case, which correspond to
the commensurate condition 4k1(2) = 2π and 2(k1 + k2) = 2π. In the coupled case further
anomalies exist at the energies corresponding to 3k1 + k2 = 2π, 4k1 = 2π, and 3k2 − k1 = 2π.
However, they are every close to E = 0 and too weak to be observed.
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t, (Fig. 4.9). In this simulation, the re-orthogonalization method [34] was used, and length of

the ladder is L = 107 with averaging over 103 realizations of disorder. The hopping integral

in the fast chain t1 = 1 was taken as the energy unit, and for simplicity, the two legs were

taken to be equally disordered. One can see that as the coupling t increases the quantities

r1,2 evolve and at t� W 2 approach the limits given by Eq. (4.100).

The insensitivity of the localization lengths to weak couplings t � δE reflects the fact that

the level spacing in the chains is bigger than the coupling between the chains, and thus

wavefunctions typically do not hybridize much between the two legs.

Moreover, the two families of curves for different disorder strengths seem to collapse into two

universal functions r1,2(t/W 2) (c.f. Fig. 4.9). This scaling shows that at weak disorder W � 1

and under resonance conditions E = ER, the numerical results approach the analytical ones

already at a very small coupling t & W 2.

We can rationalize the scaling by defining a regularized mixing angle γ̃ instead of the bare γ

defined by Eq. (4.12). From Eqs. (4.12) and (4.84), we find that

tan2 γ ∝ t2

[κ(t1, t2)(E − ER)]2
, (4.101)

where κ(t1, t2) is defined in Eq. (4.85). A natural way of regularizing the above result at

resonance conditions is to introduce the disorder-induced “width” δE ∝ W 2 in the form:

tan2 γ̃ ∝ t2

[κ(t1, t2)(E − ER)]2 + δE2
, (4.102)

where δE scales as in Eq. (4.62).

Using this regularized mixing angle, the resonant regime can be described more precisely by

the condition

t� max{κ(t1, t2)|E − ER|, δE}, (4.103)

or, equivalently, γ̃ ∼ π/2. The observed scaling collapse in Fig. 4.9(a) suggests that in the

weak coupling one might capture the behavior of localization lengths by replacing γ by γ̃ in
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Figure 4.9: The ratio r1,2 = ξ1,2/ξ
(0)
1,2 of coupled and decoupled localization lengths, obtained

numerically as a function of the coupling constant t at resonant conditions, E = 0 and δe = 0.
The two legs are equally disordered with a random potential box distributed in [−W/2,W/2].
(a) A slow t2 = 0.2 and a fast t1 = 1 leg: The smaller localization length increases slightly
while the larger localization length decreases drastically, being driven down by the slow leg,
as the coupling constant t increases. The insert shows the dependence of r1,2 on the coupling
constant t at different disorder strengths; all the curves collapse to a universal dependence on
t/W 2. The dashed lines in the insert show the analytic result given by Eq. (4.97), which is
valid under the assumption t� W 2 [Eq. (4.61)]. (b) Almost identical legs t2 = 0.8, t1 = 1. In
this case the localization length of the slow leg marginally decreases while that of the fast leg
marginally increases. (c) Results obtained analytically upon replacing the mixing angle with a
renormalized value, γ → γ̃. The parameters are the same as in (a) but with fewer realizations
of disorder, and δE/W 2 ≈ 0.3 in Eq. (4.102) was optimized by fitting to the numerical data
in (a). The scaling collapse works very well in the weak coupling limit.
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Eq. (4.59). This indeed works, as confirmed by Fig. 4.9(c) where we replot the numerical data

of Fig. 4.9(a) together with the analytical expressions, where γ̃ replaces γ, and the number

δE/W 2 ≈ 0.3 was optimized to yield the best fit.

Note that the resonance condition can be broken either by detuning |E − ER| � t or by in-

creasing the disorder δE � t. Our analytic approach is based on the weak-disorder expansion

and is therefore valid only in the first regime.

D. Anomalies

One can notice that all our numerical curves for ξ1,2 exhibit anomalies which are not predicted

by the analytical curves: Small “peaks” appear at certain energies on both ξ1 and ξ2. These

anomalies of localization lengths are due to the commensurability discussed in Sec. 4.2.6.

This is not captured by the extended DMPK equation (4.67). However, we can identify these

anomalous energies with commensurate combinations of wave vectors in Eq. (4.56) (see the

caption in Figs. 4.7 and 4.8). The anomalies for two chains with identical hopping but different

disorder have been observed numerically in Ref. [127]. In this case there are three anomalous

energies E = 0, t/2 and t, which correspond to commensurate combinations of wave vectors

2(k1 + k2) = 2π, 3k1 + k2 = 2π and 4k1 = 2π.

Solution at E 6= 0: Off-resonance regime

Without loss of generality the off-resonant regime can be considered at δe = 0 (for which the

resonance is at ER = 0). A non-zero detuning δe merely drives ER away from zero and induces

an asymmetry of the rρ as a function of E − ER. However, the mechanism of the crossover

from resonance to off-resonance is qualitatively the same as in the case δe = 0.

Our analytical results for r1,2 are presented in Fig. 4.10 as functions of the dimensionless

detuning E/t from resonance.

(i) Small detuning, |E| � t/κ(t1, t2) � 1: The resonance conditions are still fulfilled and

the localization lengths are close to their corresponding values at E = 0. The leading order

expansion around γ = π/2 predicts that the ratios of localization lengths, r1,2 only depend on

E/t, but not on t/t1,

|rρ − rρ(E = 0)| ∝
(
E

t

)2

, (4.104)
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Figure 4.10: Analytical results for r1,2 = ξ1,2/ξ
(0)
1,2 as functions of E and E/t obtained from

the extended DMPK equation in the weak disorder case δE � t for detuning δe = 0. The
resonance energy corresponds to ER = 0. (a) t2 = 0.2, t1 = 1. (b) t2 = 0.8, t1 = 1. Close to
resonance the rρ only depend on the ratio E/t.
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as confirmed numerically in Fig. 4.10.

(ii) Very large detuning, |E| � t/κ(t1, t2)� 1, r1(2) approaches 1 from below (above) like

|rρ − 1| ∝ t2. (4.105)

When t is small this result is obtained from the leading order expansion of rρ around γ = 0

or π.

(iii) For chains with equal hopping, t1 = t2, resonance occurs at any energy and rρ = 2Cρ is

independent of E/t.

Band-edge behavior

Another interesting question to ask is what happens to the localization lengths around the

band-edge E−1 or E+
2 ? [see Fig. 4.2(a)] Especially, what is the behavior of the localization

length of the fast leg once we turn on the coupling t? The results from the numerical transfer

matrix simulation and of the solution (4.74) of the extended DMPK equation [Eq. (4.67)] are

compared in Fig. 4.11.

Two remarkable features can be observed in Fig. 4.11.

(i) Near the band edge E = E+
2 where the system switches from one to two propagating

channels, the larger localization length ξ1 (red curves) behaves in a singular way, as obtained

from Eq. (4.74). As the energy tends to the band-edge E+
2 from below, ξ1 decreases to zero and

shows a jump to a finite value for E > E+
2 , where only one propagating channel exists. The

numerical simulation (black circles) reproduces the same behavior, while the sharp recovering

at E = E+
2 is smeared by the finite disorder. This behavior is another drastic example of

the dominant effect of the slow channel. It can be understood from the behavior of the

Born cross sections Eq. (4.59). As we approach the band-edge from below, the rapidities of

the two channels satisfy v1 � v2. As a consequence, the cross sections obey the hierarchy

V2 � V3 � V1. Therefore, from Eqs. (4.79) and (4.74), one can see that ξ1 is dominated by

the largest cross section V2 and shows qualitatively the same behavior as ξ2. We emphasize

that the mechanism of this suppression is different from that in the resonant regime. In the
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Figure 4.11: Localization lengths as a function of energy near the edge of one of the bands.
Here W = 0.2, t1 = 1, t2 = 0.5, t = 0.2 and δe = 0. The red curve is the result of the
extended DMPK equation, while the black circles are data obtained by the numerical transfer
matrix method. The quantitative agreement is significant except for four anomalous energies,
for example, E = 0 and E ≈ 0.1, 0.2 and 0.9. The correponding commesurate combinations
of wave vectors are 2(k1 + k2) = 2π, 3k1 + k2 = 2π, 4k1 = 2π, and 3k2 − k1 = 2π. Near
the termination of the lower band at E < E+

2 the larger localization length is dramatically
decreased, driven down by the slow terminating channel. At E > E+

2 the localization length
sharply recovers. In numerical simulation the sharpness is smeared by the finite disorder.

latter the suppression is due to γ ∼ π/2, which mixes the two effective variances χ2
ν equally,

while near the band-edge the suppression is due to the vanishing rapidity, which appears in

the denominators of the cross sections.

(ii) Anomlies are clearly seen in the numerical data for ξ1 at energies E = 0 and E ≈ 0.1, 0.2

and 0.9. The corresponding commensurate combinations of wave vectors are 2(k1 + k2) = 2π,

3k1 + k2 = 2π, 4k1 = 2π, and 3k2 − k1 = 2π.
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4.3 One-channel regime

So far we have discussed the localization lengths in the two-channel regime, where the extended

DMPK equation (4.67) applies. In the one-channel regime (see Fig. 4.2) the second channel

does not vanish but supports evanescent modes. In the presence of disorder a particle in

propagating modes can be scattered elastically into these evanescent modes by local impurities.

Thus, the evanescent channel is coupled to the propagating channel by random potentials and

may influence the transport properties of the system. However, the effect of evanescent modes

in the transport properties of 1D disordered systems is scarcely studied.

Bagwell[128] studied in detail the transmission and reflection coefficients in a multi-channel

wire with a single δ-function impurity. The evanescent modes renormalize the matrix ele-

ments of the impurity potential in the propagating channels. The transmission and reflection

coefficients of the propagating channels can be strongly enhanced or suppressed, nevertheless,

depending on the strength of the impurity.

The model in Ref. [128] was non-disordered but quite relevant to disordered systems. It is

reasonable to argue that in 1D disordered systems the effective disorder in the propagating

channels is renormalized by evanescent modes, while the renormalization effect depends upon

the strength of disorder.

In the present two-leg Anderson model we specifically analyze the renormalization effect of

the evanescent channel in the weak disorder limit, which stands on an equal footing with the

analysis in the two-channel case. Actually, the special case t1 = t2 and σ2
1 = σ2

2 has been

studied analytically early on in Ref. [129]. It was claimed that in the weak disorder limit

the effective disorder in the propagating channel is significantly suppressed by the evanescent

mode. As a consequence, the localization length defined through the transmission coefficient

of the propagating channel is enhanced by a factor ∼ 2 compared to the value obtained if

the evanescent mode is absent. However, this conclusion was unreliable because the average

of the logarithm of transmission eigenvalue was not computed correctly. In contrast, we will

prove that the evanescent channel is decoupled from the propagating channel to the lowest

order in the effective disorder χ2
ν defined in Eq. (4.48). The coupling between the two channels

becomes relevant only at order χ4
ν .
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4.3.1 Transfer matrix of an elementary slice

Without loss of generality, we assume that the channel τ = 1 is propagating and τ = 2 is

evanescent (the upper branch in Fig. 4.2). A similar analysis applies to the opposite choice

(the lower branch in Fig. 4.2). Note first of all that a direct application of the Fokker-Planck

equation approach to the transfer matrix given in Eqs. (4.27) and (4.30) would be incorrect.

The reason is the following: The weak disorder expansion of the parameters ~λ, which leads to

Eq. (4.51), is ill-defined in the one-channel regime. Note that the amplitude of the evanescent

basis ψ2(x) [see Eq. (4.26)] grows exponentially ∼ eκ2|x|. Likewise, the elements of δmx [see

Eq. (4.27)] with evanescent channel indices also grow exponentially with factors e2κ2|x| or

e4κ2|x|. Therefore, ‖δmx/ε‖ is unbounded in the domain of the coordinate x, and the formal

expansion of the parameters ~λ in disorder strength is divergent with respect to the length L.3

In order to perform a weak disorder analysis, the basis of the evanescent channel should be

chosen as

ψ±2 (x) = e∓κ2x/
√

2 sinhκ2, κ2 > 0, (4.106)

which replaces the current-conserving basis Eq. (4.26), and the basis of the propagating chan-

nel is the same as Eq. (4.24) even though with τ = 1. In this newly defined basis, the transfer

matrix of elementary slice takes the form (see Appendix D)

mx = m + δmx, (4.107)

with

m = diag
(
1, 1, e−κ2 , eκ2

)
, δmx =

δm1
1 δm1

2

δm2
1 δm2

2

 , (4.108)

whose blocks are

δm1
1 = i

ε11

2 sin k1

 −1 −e−i2k1x

ei2k1x 1

 , (4.109a)

3Repeating the perturbative calculation in App. B, we can obtain three cross-sections similar to Eq. (4.59),
in which V2 and V3 acquire exponential growing factors e4κν |x| and e2κν |x|. Thus the obstacle of divergence
can be rephrased in this way: The intensities of intra-evanescent-channel and inter-channel scattering (either
forward or backward) are amplified exponentially with respect to the coordinate of the elementary slice, which
invalidates the weak disorder expansion of ~λ.
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δm1
2 = i

ε12

2
√

sin k1 sinhκ2

−e−κ2e−ik1x −eκ2e−ik1x

e−κ2eik1x eκ2eik1x

 , (4.109b)

δm2
1 =

ε21

2
√

sin k1 sinhκ2

−eik1x −e−ik1x
eik1x e−ik1x

 , (4.109c)

δm2
2 =

ε22

2 sinhκ2

−e−κ2 −eκ2

e−κ2 eκ2

 , (4.109d)

where m and δmx are the disorder-free and disordered part of the elementary slice mx,

respectively. The transfer matrix of a bulk with length L is still defined by the products in

Eq. (4.30). Two important points should be emphasized.

(i) Compared with Eq. (4.27) in the two-channel case, the second and third rows and columns

of Eq. (4.107) have been simultaneously permuted. The diagonal blocks δm1
1 and δm2

2 represent

the scattering in the propagating and evanescent channels, respectively, and the off-diagonal

blocks δm
1(2)
2(1) represent the scattering between the two channels. In each block, the first

and second diagonal elements describe the scattering inside right (+) and left (−) branches

respectively, and the off-diagonal elements describe the scattering between the two branches.

For instance, δm2−
1+ labels the 21 element of δm2

1 and stands for a scattering event from the

left evanescent channel to the right propagating channel.

(ii) The disordered part δmx does not contain exponentially growing and/or decaying terms,

and hence ‖δmx/ε‖ is uniformly bounded for any x. Instead, the disorder-free part m, which

is still diagonal but not unity any more, contains the growing and decaying factor of the

evanescent mode per lattice spacing. The exponentially growing and decaying characteristics

of evanescent modes are represented in the products of the disorder-free part
∏L

x=1 m.

4.3.2 Weak disorder analysis of Lyapunov exponents

In order to calculate the transmission coefficient of the propagating channel, through which

the localization length is defined (see Sec. 4.3.3), we have to know the Lyapunov exponents

of M(L) in Eq. (4.30). We are going to determine the Lyapunov exponents by the method

introduced in Ref. [126].
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The Lyapunov exponents of the present model can be computed via the following recursive

relations for the four vectors Vi=1,··· ,4:

V1,x+1 = mxV1,x, (4.110a)

Vi,x+1 = mxVi,x −
i−1∑
j=1

Vj,x+1 · (mxVi,x)

Vj,x+1 · Vj,x+1

Vj,x+1, 2 ≤ i ≤ 4. (4.110b)

Note that the vectors are orthogonalized by Gram-Schmidt procedure after every multiplica-

tion by the transfer matrices (4.107). The Lyapunov exponents are extracted form the growing

rate of the amplitudes of the respective vectors:

γi = lim
L→∞

1

2L

〈
ln
|Vi,L|2

|Vi,1|2

〉
, 1 ≤ i ≤ 4, (4.111)

in which 〈·〉 is the average over realizations of disorder along the strip. Moreover, {γi} are in

descending order:

γ1 ≥ γ2 ≥ γ3 ≥ γ4. (4.112)

The initial vectors Vi,1 of the recursive relations (4.110) can be randomly chosen but must be

linearly independent. In the absence of specific symmetry constraints the Lyapunov exponents

are non-degenerate in the presence of the disordered part of mx. Additionally, because of the

symplecticity of m̃x represented in Eq. (4.21) the Lyapunov exponents are related by

γ3 = −γ2, γ4 = −γ1, (4.113)

which is proved in App. D. Therefore, only the first two recursions in Eq. (4.110) are needed.

In the absence of disorder the four Lyapunov exponents take the values:

γ1|ε=0 = κ2, γ2|ε=0 = γ3|ε=0 = 0, γ4|ε=0 = −κ2, (4.114)

in which the two Lyapunov exponents corresponding to the propagating channel are degener-

ate. Therefore, we make an ansatz on the first two vectors, which separates their “moduli”
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and “directions,”

V1,x = v1,x


s1(x)

s2(x)

s3(x)

1

 , V2,x = v2,x


p(x)

q(x)

t3(x)

t4(x)

 , (4.115)

in which

s1,2,3(x), t3,4(x) ∼ O(ε), (4.116)

|s1,2,3(x)/ε| and |t3,4(x)/ε| are bounded for all x, and

|p(x)|2 + |q(x)|2 = 1. (4.117)

Eventually, the Lyapunov exponents are determined by the growth rate of {vi,x}, which is

easy to be realized from Eqs. (4.111) and (4.115). The initial vectors of Eq. (4.115) are chosen

as the eigenvectors of the disorder-free part of the transfer matrix m (see Eq. (4.108)):

V1,1 =


0

0

0

1

 , V2,1 =


p(1)

q(1)

0

0

 , (4.118)

with some p(1) and q(1) satisfying |p(1)|2 + |q(1)|2 = 1.

Note that the ansatz (4.115) is reasonable in the sense of a perturbative analysis. Consider

the final vectors after L iterations of Eq. (4.110) with the initial condition Eq. (4.118). In the

absence of disorder, it is easy to obtain V1,L = eκ2LV1,1 and V2,L = V2,1. On top of it weak

enough disorder will induce perturbative effects: The direction of V1,L will deviate from V1,1

perturbatively in the strength of disorder. This is characterized by the smallness of s1,2,3(L).

In other words, the exponential growth of |V1,L| is dominated by m. Simultaneously, the

degeneracy of the second and third exponents are lifted perturbatively. As a consequence,

γ2 > 0 and v2,L become exponentially large because of the constraint in Eq. (4.113). p(L) and

q(L) are, in general, very different from their initial values p(1) and q(1), while t3,4(L) will be

shown to remain small quantities of order ε.
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The orthogonality between Vi,x in Eq. (4.115) gives

t4(x) + s∗1(x)p(x) + s∗2(x)q(x) + s∗3(x)t3(x) = 0, (4.119)

in which the first three terms ∼ O(ε) and the last term ∼ O(ε2). Up to the first order in

disorder strength, the recursion (4.110a) gives

v1,x+1 = v1,x

[
eκ2 + δm2−

2− +O(ε2)
]
, (4.120a)

v1,x+1s1(x+ 1) = v1,x

[
s1(x) + δm1+

2− +O(ε2)
]
, (4.120b)

v1,x+1s2(x+ 1) = v1,x

[
s2(x) + δm1−

2− +O(ε2)
]
, (4.120c)

v1,x+1s3(x+ 1) = v1,x

[
e−κ2s3(x) + δm2−

2+ +O(ε2)
]
. (4.120d)

The recursion (4.110b) gives

v2,x+1

p(x+ 1)

q(x+ 1)

 = v2,x

(1 + δm1
1)

p(x)

q(x)

+O(ε2)

 , (4.121a)

v2,x+1t3(x+ 1) = v2,x

[
e−κ2t3(x) + δm2+

1+p(x) + δm2+
1−q(x) +O(ε2)

]
, (4.121b)

v2,x+1t4(x+ 1) = −v2,x

[
s∗1(x+ 1)p(x) + s∗2(x+ 1)q(x) +O(ε2)

]
. (4.121c)

It can be verified that the higher-order terms ∼ O(ε2) do not involve exponentially grow-

ing factors, which is guaranteed by the Gram-Schmidt re-orthogonalization procedure in the

recursive relations (4.110).

We draw two important observations from Eqs. (4.120) and (4.121):

(i) The ansatz (4.115) is consistent with the perturbative expansion of the recursions (4.110).

Here the consistency means that |s1,2,3(x)/ε| and |t3,4(x)/ε| are uniformly bounded after any

number of iterations, and the first two Lyapunov exponents can be extracted from vj,x.

(ii) Up to linear order in disorder strength, the recursion (4.120a), which determines the first

Lyapunov exponent γ1, is decoupled from the recursion relation (4.121a), which determines

the second Lyapunov exponent γ2. However, the coupling terms are present in higher-order
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terms. This implies that to the leading order effect in disorder the evanescent and propagating

channels evolve independently, the entanglement between the two channels being a higher-

order effect.

From Eq. (4.120a) one can easily calculate the first Lyapunov exponent to linear order in the

effective variances χ2
ν ,

γ1 = lim
L→∞

1

L

〈
ln

L∏
x=1

∣∣eκ2 + δm2−
2−(x)

∣∣〉

= κ2 +

〈
ln

∣∣∣∣1 +
ε22

2 sinhκ2

∣∣∣∣〉
' κ2 −

1

8 sinh2 κ2

(
χ2

1 sin4 γ

2
+ χ2

2 cos4 γ

2

)
+O(χ4

ν),

(4.122)

in which γ is the mixing angle defined in Eq. (4.12). The minus sign of the leading order cor-

rections implies that the first Lyapunov exponent is reduced in the presence of weak disorder.

Equation (4.121a) is exactly the same as in a single chain Anderson model, for which the

Lyapunov exponents are already known.[115] The second Lyapunov exponent takes the value

γ2 ' 2V1 +O(χ4
ν), (4.123)

where V1 is the Born cross-section given in Eq. (4.59).

Equations (4.122) and (4.123) are our main results for the one-channel case, yielding the

localization length and the renormalized decay rate of evanescent waves.

4.3.3 Localization length and evanescent decay rate

The two Lyapunov exponents calculated above can be identified in transport experiments. In

general a two-probe experiment has the geometry of the form “lead–sample–lead,” in which the

two leads are semi-infinite. The current amplitudes (not the wave amplitudes) are measured

in leads. In the propagating channels both right (+) or left (−) modes exist in both of the

leads. However, the situation is rather different in the evanescent channels: There are only

growing modes (−) in the left lead, and only decaying modes (+) in the right lead. These
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modes do not carry current at all.[128, 130] Hence the current transmission and reflection

coefficients are only defined in propagating channels regardless of the wave amplitudes in

evanescent channels. In terms of the transfer matrix M(L), this restriction on the evanescent

channel implies that 
a+

1 (L)

a−1 (L)

a+
2 (L)

0

 =

M1
1 M1

2

M2
1 M2

2



a+

1 (1)

a−1 (1)

0

a−2 (1)

 . (4.124)

From the scattering configuration (4.124) one can derive an effective transfer matrix for the

propagating channel. The evanescent amplitude a−2 (1) can be expressed in terms of the prop-

agating amplitudes as

a−2 (1) = − 1

M2−
2−

[
M2−

1+a
+
1 (1) +M2−

1−a
−
1 (1)

]
. (4.125)

Substituting Eq. (4.125) into Eq. (4.124) we obtain

a+
1 (L)

a−1 (L)

 = X(L)

a+
1 (1)

a−1 (1)

 , (4.126)

in which the elements of X(L) take the form

X+
+ = M1+

1+ + ∆M1+
1+ , ∆M1+

1+ = −
M1+

2−M
2−
1+

M2−
2−

, (4.127a)

X+
− = M1+

1− + ∆M1+
1− , ∆M1+

1− = −
M1+

2−M
2−
1−

M2−
2−

, (4.127b)

X−+ = X+∗
− , X−− = X+∗

+ . (4.127c)

X(L) is the effective transfer matrix for the propagating channel. Note that its elements are

modified from the values in the absence of the evanescent channel. One can easily verify that

X(L) satisfies time-reversal invariance and current conservation conditions as (4.29) in the

single chain case:[119, 120]

X∗ = σ1Xσ1, X†σ3X = σ3. (4.128)
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However, X(L) does not evolve multiplicatively with the length L any more. The transmission

coefficient is determined through X(L) in the usual way[120, 119]

T (L) = |X+
+ |−2, (4.129)

where X+
+ is defined in Eq. (4.127a).

Equations (4.127) and (4.129) determine exactly the transmission coefficient of the propagating

channel. A full solution requires extensive calculations. However, if the disorder strength is

weak, as analyzed in Sec. 4.3.2, the coupling between the two channels is small, so that the

contribution of the evanecent channel, ∆M1+
1+ is negligible. Indeed, from Eqs. (4.110) and

(4.115), using initial vectors V1,1 =
(

0 0 0 1
)T

and V2,1 =
(

1 0 0 0
)T

, respectively, we

can extract the various matrix elements of M(L), in particular

∆M1+
1+ (L)

M1+
1+ (L)

=
s1(L)t4(L)

p(L)
∼ O(ε2). (4.130)

This proves that the contribution of the evanescent channel is subleading at weak disorder.

To leading order the transmission coefficient is simply given by the propagating channel as

T (L) ' |M1+
1+ |−2 ' |v2,L p(L)|−2. (4.131)

From this the localization length is obtained,

1/ξ = − lim
L→∞

1

2L
〈lnT (L)〉 ' 2V1 +O(χ4

ν). (4.132)

Equation (4.132) implies that to leading order in χ2
ν the localization length in the propagating

channel equals the inverse of the second Lyapunov exponent obtained in Eq. (4.123).

Similarly to Eq. (4.90), we can introduce the localization length enhancement factor

r = ξ/ξ
(0)
1 , (4.133)

in which ξ
(0)
1 is the localization length of the leg 1 (with the larger hopping) in the absence of

inter-chain coupling.
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Figure 4.12: Localization length as a function of energy in the one-channel case. Here t1 = 1,
t2 = 0.1, δe = 0 and the amplitude of disorder is W = 0.1. The solid curves are analytical
results. Black curves correspond to uncoupled chains. The red one corresponds to the upper
polariton (conduction) band (propagating channel) for strong coupling t = 1, which is obtained
by omitting the lower polariton (valence) band (evanescent channel). The squares and circles
are data of the numerical transfer matrix. The quantitative agreement is significant except
for the anomalous energy E ' 1.0, which corresponds to the commensurate combination of
wave vectors 4k1 = 2π. The coincidence between analytics and numerics confirms that the
evanescent channel is decoupled to the propagating channel in weak disorder limit.

On the other hand, the inverse of the first Lyapunov exponent in Eq. (4.122) should be

associated with the evanescent decay rate which is slightly modified by disorder.

The analytical results (4.132) and/or (4.133) are compared with numerics in Figs. 4.7, 4.11,

and 4.12. Figures 4.7 and 4.11 correspond to the weak coupling case t < tc [see Fig. 4.2(a)]

and Fig. 4.12 corresponds to the strong coupling case t > tc [see Fig. 4.2(b)]. The remarkable

agreement confirms the weak disorder analysis developed in this section.

We specifically analyze the typical behavior of the enhancement factor r1(E) close to the

band-edge E+
2 in the case of t < tc, where the system switch from one to two propagating

channels. From Eqs. (4.12) and (4.18) it is not hard to obtain: at the band edge E+
2 , when
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coupling is weak r1(E+
2 ) deviates from 1 like

1− r1(E+
2 ) ∝

(
t

E+
2

)2

. (4.134)

If E is away from E+
2 , r1(E) increases linearly, i.e.,

r1(E)− r1(E+
2 ) ∝ t2(E − E+

2 ), (4.135)

with a fixed but weak coupling t. A typical curve for r1(E) is shown in the upper right inset

in Fig. 4.7.

4.4 Shape and polarization of the wave functions

In certain applications, such as exciton-polaritons, the two linearly coupled types of excitations

(represented by the two chains) are very different in nature. This makes it, in principle, pos-

sible to probe the original excitations separately from each other. For a two-leg atomic chain

one can imagine probing the amplitude of wave function on each of the spatially separated

legs. For polaritons the analog would be a separate probing of cavity photons or excitons,

for example, by studying the 3D light emitted due to diffraction of cavity photons at surface

roughnesses or by studying the exciton annihilation radiation or the electric current of exciton

decomposition provoked locally. Therefore it is of practical interest to be able to manipulate

the strength of localization of one of the original excitations by coupling them to the other.

4.4.1 Numerical analysis

With this goal in mind we have carried out a numerical study of the amplitude of wave

functions on either of the chains in each of the distinct parameter regimes discussed above.

We numerically diagonalized the Hamiltonian (4.1) [see Fig. 4.13], choosing t1 = 1, t2 = 0.2,

W = 0.4, t = 0.04. The length of the ladder was taken to be L = 103 and periodic boundary

conditions were used. With the above parameters the localization lengths of the decoupled

legs were of the order of ξ
(0)
1 ∼ 103 and ξ

(0)
2 ∼ 10, for energies close to the band-center. In
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Fig. 4.13 the black curves depict the amplitudes of eigenfunctions on the fast leg 1, while the

red curves show the corresponding amplitudes on the slow leg 2.

Our main findings are as follows.

(i) E+
2 < E < E+

1 . The energy is far from resonance, and only one channel exists. As

shown in Fig. 4.13(a), most of the weight is on the fast leg. The amplitude on the slow leg is

small but the spatial extension of the component ψ2 is the same as that of ψ1 on the fast leg,

which is almost unaffected by the chain coupling. Thus, the coupling can create a nonzero

amplitude on the chain 2, in the energy region where the decoupled chain 2 cannot support

any excitations. The spacial extension is controlled by the localization properties of the leg 1.

(ii) t/κ(t1, t2) < E < E+
2 . The energy is in the two-channel, off-resonant regime. The

wave-function components ψ1 and ψ2 are characterized by both localization lengths ξ1 and ξ2.

However, the relative weights of the parts of the wavefunction with the smaller and the larger

localization lengths fluctuate very strongly from eigenstate to eigenstate. This is shown in

Figs. 4.13(b) and 4.13(c), with two adjacent energy levels, which were properly selected. In

Fig. 4.13(b), ψ2 consists almost entirely of a component with the smaller localization length,

while the fast leg clearly shows contributions of both components. In Fig. 4.13(c), both ψ1

and ψ2 consist almost entirely of a component with the larger localization length. In brief,

the former can be thought of as a state on leg 2, which weakly admixes some more delocalized

states on leg 1, while the latter wave function is essentially a state of leg 1 which admixes

several more strongly localized states on leg 2.

We have checked in specific cases that this interpretation is indeed consistent (see Sec. 4.4.2):

In the off-resonant regime the wave functions can be obtained perturbatively in the coupling

t, confirming the picture of one-leg wave functions with small admixtures of wave functions

on the other leg. Off resonance, the perturbation theory is controlled even for appreciable

t, since the matrix elements that couple wave functions of similar energy are very small due

to significant cancellations arising from the mismatched oscillations of the wave functions

(k1 − k2 > ξ
(0)
2 ) on the two legs. Resonance occurs precisely when at a fixed energy k1 − k2

becomes too small, so that the modes on both legs start to mix strongly. A closer analysis of

the perturbation theory in special cases shows that the perturbative expansion is expected to

break down at the resonant crossover determined further above.
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Figure 4.13: Typical wave functions in different regimes. Pay attention to the varying scales
for the amplitudes in the various cases. Parameters are t1 = 1, t2 = 0.2, W = 0.4, t = 0.04,
while E selects the regime. The length of the ladder is L = 103 with periodic boundary
condition. The black(red) curves are the amplitudes on the 1(2) leg. (a) E = 1.5955, at which
only one channel exists. (b), (c) Off-resonant regime: E = 0.3250 and E = 0.3242 are a pair
of adjacent levels of “opposite type.” (d) E ' 0, which is within the resonant regime.

(iii) |E| < t/κ(t1, t2). If the energy is in the resonant regime, the two localization lengths are

of the same order ξ1 ∼ ξ2 ∼ ξ
(0)
2 and the spatial extension of both wave function components

is governed by the localization length ξ
(0)
2 of the decoupled slow chain. This is illustrated in

Fig. 4.13(d).

4.4.2 Perturbative analysis

The properties of eigenstates at different energy regimes can be explained by applying a

perturbative analysis on the coupling t. First, we define the relevant quantities of decoupled

legs as follows. The eigenstate of the ν leg with eigenenergy Eνn is ψνn(x). The corresponding
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localization length is ξ
(0)
ν , where we assume ξ

(0)
1 � ξ

(0)
2 in order to reveal the resonance–off-

resonance crossover. The mean level spacing inside the localization volume is ∆ν . Because in

one dimension a particle is nearly ballistic in its localization volume, which means its wave

vector is nearly conserved and its amplitude is almost uniform, we introduce a simple “box”

approximation on the eigenstates as the following. Inside the localization volume,

ψνn(x) ∼ 1√
ξ

(0)
ν

eikνx, (4.136)

up to a random phase, in which ξ
(0)
ν and kτ are the localization length and the wave vector at

the energy Eνn. Outside the localization volume ψνn(x) = 0.

Now we turn on a weak enough coupling t and calculate the deviation of an energy level E1n

on the 1 leg. Up to second order in t, the deviation is

δE
(2)
1n = t2

∑
m

∣∣∫ dxψ∗1n(x)ψ2m(x)
∣∣2

E1n − E2m

. (4.137)

In order to estimate the value of δE
(2)
1n by the r.h.s. of Eq. (4.137) we have to make clear three

points.

(i) The summation is dominated by the terms with the smallest denominators, whose typical

value is the mean level spacing ∆2.

(ii) The typical value of the integral on the numerator can be estimated by the “box” approx-

imation introduced above, which gives

∫
dxψ∗1nψ2m ∼

∫ ξ
(0)
2

0

dxψ∗1nψ2m ∼
[
(k1 − k2)

√
ξ

(0)
1 ξ

(0)
2

]−1

. (4.138)

(iii) We should consider more carefully how many dominant terms there are in the summation.

We can easily realize that a state ψ1n(x) on the 1 leg can couple to about ξ
(0)
1 /ξ

(0)
2 states ψ2m(x)

on the 2 leg. However, the value of the summation is different from a naive deterministic

evaluation because the random signs of the denominators. If we neglect the correlation of
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these random signs, according to the central limit theorem, the fluctuation of δE
(2)
1n is

∣∣∣δE(2)
1n

∣∣∣ ∼
√√√√ξ

(0)
1

ξ
(0)
2

× t2

ξ
(0)
1 ξ

(0)
2 (k1 − k2)2∆2

. (4.139)

The validity of the perturbation analysis is guaranteed if

∣∣∣δE(2)
1n

∣∣∣ < ∆1, (4.140)

which means there is no level crossing in the localization volume of the 1 leg. To estimate the

relevant quantities in Eq. (4.140), for simplicity we assume t1 � t2 and σ2
1 = σ2

2. If the energy

E = E1n is close to the resonant energy ER, according to Eq. (4.10) and (4.14), we obtain

|k1 − k2| ∼ |E − ER| (t1 − t2)/t1t2. (4.141)

The mean level spacings are

∆ν ∼ tν/ξ
(0)
ν , (4.142)

and the localization lengths satisfy

ξ
(0)
1 /ξ

(0)
2 ∼ t21/t

2
2. (4.143)

Substituting Eqs. (4.141), (4.142) and (4.143) to Eq. (4.140) we obtain the condition

t < |E − ER| (t1 − t2)/t1, (4.144)

which is consistent with the result of Eq. (4.84) with t1 � t2. Therefore, Eq. (4.140) is

essentially equivalent to the criterion for being off resonant (∆V > 0) at weak coupling t.

4.5 Limit of vanishing hopping on the “slow” leg

In the present work we are particularly interested in the case that the localization lengths

of the uncoupled legs are parametrically different ξ
(0)
1 � ξ

(0)
2 . Accordingly, we refer to the
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two legs as the “fast” and the “slow” one, respectively. So far we have analyzed the model

extensively in the weak disorder limit ξ
(0)
ν � 1 where the disorder is weak for both of the two

legs and thus ξ
(0)
ν � 1.

Another interesting situation is the case where the hopping strength on the slow leg vanishes

t2 = 0 or weak enough. This experimentally relevant for polariton systems in which the exciton

hopping is weak as compared to the disorder potential. In this case the dimensionless disorder

parameter which we introduced previously diverges χ2
2 →∞, and formally ξ

(0)
2 = 0 even if the

disorder strength on the 2-leg is arbitrarily small. For this reason the perturbative analysis

in χ2
ν breaks down. Nevertheless, this limit case can be solved exactly, too, but requires a

different treatment which is beyond the weak disorder analysis.

If t2 = 0 the second leg is composed of mutually nonconnected sites, which form a comb

structure together with the first leg. The Schrödinger equation (4.4) takes the form

−t1 0

0 0

 [Ψ(x+ 1) + Ψ(x− 1)] =

E − εx1 t

t E − δe− εx2

Ψ(x), (4.145)

where

Ψ(x) =

ψ1(x)

ψ2(x)

 , (4.146)

describes the amplitudes on the two legs, respectively. We can obtain the effective Schrödinger

equation for ψ1(x) by eliminating ψ2(x) in Eq. (4.145):

−t1 [ψ1(x+ 1) + ψ1(x− 1)] = (E − ε̃x1)ψ1(x− 1), (4.147)

where

ε̃x1 = εx1 +
t2

E − δe− εx2

. (4.148)

Note that ε̃x1 has the meaning of an effective disorder potential on the 1-leg. Furthermore, if

|εx2| � |E − δe| Eq. (4.148) can be expanded as

ε̃x1 '
t2

E − δe
+

[
εx1 +

t2

(E − δe)2
εx2

]
+O(ε2). (4.149)
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The first term on the r.h.s. of Eq. (4.149) is a homogeneous potential shift, and the second

term is an effective disorder potential of mean-zero.

Equations (4.147) and (4.149) present a single-chain problem, which can be solved exactly.

The dispersion relation of the disorder-free part is determined by

−2t1 cos k +
t2

E − δe
= E, (4.150)

which gives the two nonoverlapping bands

Eτ (k) = −t1 cos k +
δe

2
− (−1)τ

√(
t1 cos k +

δe

2

)2

+ t2. (4.151)

Of course, this coincides with Eq. (4.15) for t2 = 0. Using the result for a single-chain Anderson

model[115] we obtain the localization length as

1/ξ =
χ2

1 + χ̃2
2 tan2 γ

8 sin2 k
+O(χ4

1, χ̃
4
2), (4.152)

Here, the disorder on the leg 2 is measured by the dimensionless ratio

χ̃2 =
σ2

2

t21
, (4.153)

γ is the mixing angle defined in Eq. (4.12) with t2 = 0. Comparing the result (4.152) with

Eq. 4.132, which describes the one-channel case in the weak disorder limit (W2 � t2), one

sees that the two limits do not commute. This is similar to the non-commutativity of the

limits of weak disorder and weak inter-chain coupling in the resonant case. As in Eq. (4.62)

the characteristic disorder energy scale is the mean level spacing in the localization volume

when t2 = 0, which can be estimated as

δẼ ∼ t1/ξ ∼ max{σ1, σ2}/t1. (4.154)

A perturbative analysis in t2 is valid only if t2 � δẼ. We expect a crossover to the regime of

strong hopping on the slow leg when t2 ∼ δẼ.
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Figure 4.14: Localization length as a function of energy for three values of t2 for three values
of t2. t1 = t = 1 and W1 = W2 = 0.1 are kept fixed. t2 = 0.2, 0.05, and 0.001 capture the
weak disorder limit, the intermediate regime and the limit of a nearly disconnected slow leg,
respectively. The symbols are bata of numerical transfer matrix. The solid and the dashed
curve are the analytical results in Eqs. (4.132) and (4.152). The agreement with numerics in
the limiting cases is very good. The localization length increases monotonically with t2 for a
fixed energy. An anomaly due to the commensurate wave vector 4k = 2π appears at E ≈ 1.0.

The non-commutativity of the two limits is illustrated in Fig. 4.14 where we compare the two

analytical limits with numerical simulations at fixed disorder W1 = W2 = 0.1 and hoppings

t1 = t = 1. Three values of t2 are selected to cover the crossover from the weak disorder limit

(t2 � W2) to the limit of a slow leg with disconnected sites (t2 → 0). Equations (132) and

(152) are indeed seen to capture the two limits very well. Note that the localization length

increases monotonically with t2 for a fixed energy, as one may expect.

4.6 Possible application to polaritons

The most important potential application of our theory is in the realm of polaritons in quasi-

one-dimensional semiconductor structures [72, 73]. Here the fast chain corresponds to the
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electromagnetic modes (“light”) confined in a one-dimensional structure and therefore having

a parabolic dispersion with a very small mass (large t1) at small wave vectors. The slow

chain corresponds to the Wannier-Mott excitons, an electron-hole pair coupled by Coulomb

attraction. The mass of the exciton is typically 104 times larger than that of “light”. Surface

roughness of the one-dimensional structure and impurities therein produce a disorder potential

acting on both excitons and “light” [74, 75]. Experimentally, one can easily probe the intensity

of the ”light” component by measuring the intensity of three-dimensional photons that emerge

due to diffraction from the surface roughness. The amplitude of the wave function of the

exciton’s center of mass is more difficult to access, but, in principle, still possible, for example,

via stimulated or spontaneous exciton recombination and the related radiation. Another

application is related with one-dimensional structures in cold-atom traps. By this technique

one can construct and study coupled one-dimensional chains in the same way as it was recently

done for a single chain [131, 132].

While all possible regimes can be achieved in a system of cold atoms, the most relevant regime

for one-dimensional cavity polaritons is that described in Fig. 4.2(b), where for each band (the

lower and the upper polariton bands) only one channel exists. This is because the exciton-light

coupling is typically stronger than the narrow bandwidth t2 ∼ 1/mexc of the excitons. The

localization length in the case relevant for the upper exciton-polaritons is shown in Fig. 4.12.

As expected, the localization length tends to zero near the bottom and the top of the band,

due to the vanishing rapidity. Note that in the context of polaritons the upper band edge

does not exist, since the light has an unbounded continuous spectrum. In our model the

top of the band appears merely due to the discreteness of the lattice. In the center of the

band the localization length is of the order of the localization length for the uncoupled ”light”

component. More important is the distribution of amplitudes of ”light” and ”exciton” wave

functions which are similar to Fig. 4.13(a), with ”light” being represented by the wave function

ψ1 on the fast leg and the ”exciton” part being represented by the wave function ψ2 on the

slow leg. One can see that the coupling to light makes the exciton wave function spread over

a distance ξ ∼ ξ
(0)
1 of the order of the localization length of light. This is much larger than

the maximum exciton localization length ξ
(0)
2 in the absence of coupling. The price for the

”fast transit” is that the amplitude of the exciton wave function is small. This means that
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the transfer of a locally created exciton to distances of order ξ
(0)
1 is possible, but occurs with

reduced probability.

In the long search for light localization (see the paper by Lagendijk, van Tiggelen, and Wiersma

in Ref. [24]) the crucial point was to achieve a smaller localization length of light. Our results

show that this can also be achieved by coupling light to excitons near the bottom of the upper

polariton band.

We would like to emphasize that the model considered above does not take into account an

important property of polaritons, namely their finite lifetime due to recombination of excitons,

and the out-coupling of the light from the waveguide. This limits the coherence of polaritons

and inhibits Anderson localization. More precisely, the effects of Anderson localization are

relevant only if the time to diffuse up to the scale of the localization length (which by Thouless’

argument is of the order of the inverse level spacing in the localization volume) is smaller than

the life time of the excitons. Further crucial aspects are interactions among polaritons at finite

density and the related possibility of interaction-induced delocalization and Bose condensation

of polaritons[107]. A complete theory of localization of hybrid particles like polaritons should

take into account all these issues.[109]
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Chapter 5

Anderson localization on two-layer

Bethe lattice

One of the most significant results obtained in the case of two coupled chains in Chap. 4 is

that there are two regimes: (i) The resonance regime, where the slow chain dominates the

localization length of the ladder [see Figs. (4.7), (4.8), and (4.13)]. This slow-chain dominance

is a manifestation of the fact that in one dimension the backscattering rate determines the

localization properties of a coupled system, since the localization length is of the order of the

mean free path. (ii) The off-resonance regime, where the fast chain helps to delocalize the

slow chain, although with low efficiency [See Figs. (4.10) and (4.13)]. In both cases disorder

is the smallest energy scale, which is characterized by Eqs. (4.49) and (4.61). There is also

the special case when the disorder is larger than the intrachain coupling for the slow chain.

The extreme case of t2 = 0 has been discussed in Sec. 4.5. From Eq. (4.148) we obtain: (i)

For |εx2| → ∞, there is no effect of the slow chain on the fast chain. (ii) As long as |t2/εx2| is

comparable with |εx1| the disorder on the fast chain starts to be enhanced by the slow chain,

while the slow is not much affected by the fast.

In high dimensions D > 2, weak disorder does not have significant effect on localization.

Hence, we are restricted to consider intermediate or strong disorder in order to address the

question of the role of interchain coupling. In the meanwhile, since the disorder is compa-
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rable with or stronger than the intra- and interchain coupling, the resonance conditions are

impossible. In the absence of resonance there are only two possible regimes:

(i) The less disordered channel promotes the more disordered one (delocalization), when the

disorder on the more disorder one is not too strong. This can be verified by studying how a

nearly delocalized (fast) channel reacts to the coupling with a more disordered (slow) channel,

and establish that the coupling will pushed the system into a delocalized phase (cf. Regime

A in Fig. 5.4).

(ii) The less disordered channel becomes more localized without substantially delocalizing

the more disordered one, when the disorder on the more disordered one is extremely strong.

This can be verified by studying a critical channel coupled to a strongly localized one and to

observe it becoming localized, without substantial variation of the localization properties of

the strongly localized channel (cf. Regime B in Fig. 5.4).

In this chapter we study two coupled Bethe lattices whose transport characteristics are dif-

ferent, which can be viewed as the limit of infinite dimensions D → ∞ of the problem, and

to contrast the results with the two-chain (one-dimensional) case. The model provides a very

useful indication for high (D > 2) but finite-dimensional cases, since it is still simple enough

to be studied exactly.

Form the point of view of mathematics, the Bethe lattice is an infinitely large Cayley tree,

that is, a graph without loop where each vertex has the same coordination number K + 1.

The main difference between the two is that a Cayley tree contains the boundaries whereas

the Bethe lattice does not. The boundary of a Cayley tree contains a large number of sites,

which is of the order of the number of sites of the entire tree. Hence, the boundary effect on a

Cayley is significant. Alternatively, the Bethe lattice can be considered as the large-size limit

of a random K+ 1-regular graph, that is, a graph where each site connects to other randomly

and uniformly chosen K+1 sites. It is known that any finite portion of such a graph is a tree,

with probability going to one as the size tends to infinity. The advantage of the random-graph

construction is the absence of the boundary effect. It can be viewed as regular trees wrapped

to themselves.
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Statistical models on the Bethe lattice[133, 134] have attracted a lot of studies, because they

admit exact solutions and reflect essential features of the systems in sufficiently high spatial

dimensions. In particular, the Anderson model on the Bethe lattice was first introduced

and solved exactly by Abou-Chacra, Anderson, and Thouless in Refs. [135, 136], where the

existence of the Anderson transition was proved and the location of a mobility edge was found.

It proved that localization is possible in the absence of loops in the lattice. Their method is

based on a study of the self-consistent equation for the onsite self energy, which leads to a

nonlinear integral equation for the probability distribution function of the self energy. The

transition from the localized phase to the delocalized phase is characterized by the instability

of the real solution of the self energy with respect to inserting an infinitesimal imaginary energy

shift. Physically, the latter describes an infinitesimally weak coupling to a dissipative bath,

e.g., photons. The stationary distribution function of the self energy can be found numerically

based on the population dynamics, also called the “pool” method[135]. This original work has

inspired a number of studies in both the physics[137]–[140] and the mathematics[141]–[145]

communities.

For two coupled Bethe lattices, Following Abou-Chacra et al.[135, 136], we derive a recursive

relation for the local Green’s functions, which are in the form of a 2 × 2 matrix, and study

the effect of interlattice couping on the Anderson transition at the band center (E = 0) in

the case of two lattices with identical hopping but different disorder. The existence of the two

regimes proposed above is verified.

This chapter is organized as follows. In Sec. 5.1 we introduce the Anderson model on two

coupled Bethe lattices and derive the recursion relation for the local Green’s functions. In

Sec. 5.2 we briefly present the algorithm of the population dynamics, which is used to study

the statistics of the self energy. In Sec. 5.3 we show the phase diagram and explain it by a

perturbative analysis.
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t1 t2

t

Εi1 Εi2i

j

Figure 5.1: Diagram for the Anderson model on the two-layer Bethe lattice (K = 2) described
by the Hamiltonian (5.1).

5.1 Anderson model and the recursion relation for the

local Green’s functions

Analogous to the two-chain model in Eq. (4.1), the Hamiltonian of the Anderson model on a

two-layer Bethe lattice, as shown in Fig. 5.1, takes the form

H =
∑
ν=1,2

∑
i

εiνc
†
iνciν − tν

∑
〈i,j〉

(
c†iνcjν + h.c.

)− t∑
i

(
c†i1ci2 + h.c.

)
, (5.1)

where i is the coordinate of a site on the Bethe lattice with coordination number K + 1,

ν ∈ {1, 2} is the index labeling the two layers, and 〈i, j〉 denotes two nearest-neighbor sites i

and j. In the model, the on-site energies εiν are independently distributed Gaussian random

variables with zero mean, tν is the longitudinal hopping strength between nearest-neighbor

sites on the νth layer, and t is the transverse hopping strength between the two layers. In

general, the two layers will be subject to different random potentials, characterized by two
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probability distribution functions pν(ε). For convenience we assume they are box distributed:

pν(ε) =

1/Wν , ε ∈ [−Wν/2,Wν/2],

0, otherwise.

(5.2)

The longitudinal hopping strengths tν ’s can also be different.

Our aim is to study the effect of weak interlattice coupling on the Anderson transition of the

system. In the present thesis we only consider the case of t1 = t2, δe = 0, and W1 6= W2.

This parallels with the case of two resonant chains described in Fig. 4.8. However, as shown

in Sec. 5.3, the parameter range under discussing is W1,2 & t, t1,2, which is contrasted with

the weak disorder limit in the two-chain problem [see Eqs. (4.49) and (4.61)], and resonance

between the two lattices is not possible.

The retarded Green’s function at the energy E is defined by

Giµ,jν(E) = 〈i, µ| 1

E + iη − Ĥ
|j, ν〉, |i, ν〉 ≡ c†iν |Vacuum〉, (5.3)

where η is a positive and infinitely small real number, representing an infinitesimally weak

coupling to a dissipative bath, for example, phonons. We introduce 2 × 2 matrices Ĥi, Ĝi,

and T̂ , whose elements are

〈µ|Ĥi|ν〉 = 〈i, µ|Ĥ|i, ν〉, (5.4a)

〈µ|Ĝi|ν〉 = Giµ,iν , (5.4b)

〈µ|T̂ |ν〉 = δµνtµ. (5.4c)

On can prove that Ĝi = Ĝi(E) satisfies the following equation:

Ĝi =
1

E + iη − Ĥi − T̂
∑
j∈∂i

Ĝ
(i)
j T̂

, (5.5a)

where ∂i denotes the set of neighbors of i, and Ĝ
(i)
j contains the Green’s functions at the

coordinate j in the absence of the bonds between i and j. Ĝ
(i)
j = Ĝ

(i)
j (E) satisfies the recursive
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relation

Ĝ
(i)
j =

1

E + iη − Ĥj − T̂
∑
k∈∂j|i

Ĝ
(j)
k T̂

, (5.5b)

where ∂j|i denotes the set of neighbors of j excluding i. Ĝi and Ĝ
(i)
j are complex and sym-

metric matrices. In order to obtain Ĝi’s, we first solve the recursion relation (5.5b), and then

substitute the solution in Eq. (5.5a).

The self energies are defined by the diagonal matrix elements of Ĝ
(i)
j ’s, that is, G

(i)
j,νν (ν = 1, 2)

via

Sjν(E) = E + iη − εjν − 1/G
(i)
j,νν , Γjν(E) ≡ ImSjν(E), (5.6)

where the imaginary part Γjν(E) defines the “decay rate” of the state |j, ν〉 at the energy E.

The characteristics of the stationary distributions of the decay rate Γjν , defined in Eq. (5.6),

with respect to the recursions (5.5a) and (5.5b), determines whether the system is in the

localized phase or in the delocalized phase[13, 135, 136, 53]:

lim
η→0

lim
N→∞

P (Γ1 > 0 or Γ2 > 0) =

0, localized,

> 0, delocalized,

(5.7)

where N is the number of sites of the lattice. Here we note: (i) The thermodynamic limit,

N → ∞, and the limit of vanishing dissipation, η → 0, do not commute, since in a finite

system, whose spectrum is discrete, η → 0 always leads to a zero decay rate. (ii) The values

of the decay rate on the two sublattices Γν=1,2 are statistically dependent in the presence of

coupling. (iii) The average value of Γν , namely 〈Γν〉, can not be used to indicate the Anderson

transition, because in the localized phase an infinitesimal dissipation η leads to appearance of

long tails in the distribution function of Γν . Instead, the typical value of Γν , which is defined

by the geometric average

Γtyp,ν = e〈ln Γν〉, (5.8)
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can determine the transition in such a way that

lim
η→0

lim
N→∞

Γtyp,ν =

0, localized,

> 0, delocalized.

(5.9)

5.2 Anderson transition and population dynamics

A precise way to determine the mobility edge by Eqs. (5.5a) and (5.5b) was proposed in

Ref. [135, 136]. It is based on analyzing the stability of the real solution of Eq. (5.5b) at the

energy E with respect to the insertion of an infinitesimal imaginary energy shift iη. In the

localized phase the real solution is stable, which means the typical value of the decay rate

vanishes Γtyp(E + iη) → 0 as η → 0. In the delocalized phase, however, the solution has

a finite imaginary part with probability one, which means Γtyp(E + iη) 6= 0 as η → 0. The

physical interpretation of this procedure is: For a finite but large tree, if the boundary sites are

coupled to a bath with a dissipation rate η, we test whether the dissipation at the root of the

tree, measured by Γtyp(E), is vanishing or not as the tree size tends to infinity. If E is in the

localized regime, particle transport is absent at large scale and there is no dissipation at the

root. In contrast, in the delocalized regime we do observe a finite dissipation. This procedure

is consistent with the criterion for the Anderson transition in Eq. (5.7). This stability analysis

can be realized by the population dynamics as follows.

The population dynamics, also called the “pool” method, is a numerical recipe to solve the

random recursive relation Eq. (5.5b). A complete description of the algorithm can be find in

Refs. [135], [138]-[140]. The basic idea is to simulate the distribution of a random variable

X by the empirical distribution of a large population of representants {Xα}Nα=1. Here the

random variable X is the symmetric 2 × 2 matrix Ĝ
(i)
j . For simplicity, we denote Ĝ

(i)
j by Ĝ,

and the population by {Ĝα}Nα=1. We choose the initial condition of the population {Ĝα,0}Nα=1

whose matrix elememts are

(Ĝα,0)νν = (E − εαν + iη)−1, ν ∈ {1, 2}, (5.10)
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where εαν are randomly and independently drawn from the probability distribution in

Eq. (5.2), and η is a small positive number, and

(Ĝα,0)12 = (Ĝα,0)21 = 0. (5.11)

Essentially, this initial condition describes N uncoupled sites subject to a random potential

and a small dissipation. The simulation consists of a number of sweeps of the population. After

the nsth (ns ∈ N) sweep, we denote the population as {Ĝβ,ns}Nα=1. For the nsth sweep we

update the matrices Ĝα,ns−1’s one by one from α = 1 to α = N . For updating the βth matrix

Ĝβ,ns−1, we do the follows. (i) ChooseK matrices randomly and uniformly from the population

{Ĝα,ns−1}Nα=1, and call them {Ĝα1,ns−1, · · · , ĜαK ,ns−1}. (ii) Generate 2K random numbers

according to the probability distribution function in Eq. (5.2), and call them {ε1ν , · · · , εKν}

with ν = 1, 2. (iii) Substitute the quantities obtained in (i) and (ii) on the right hand side

of Eq. (5.5b) with η = 0, and thereby, obtain a new matrix Ĝ0 on the left hand side. (iv)

Replace Ĝβ,ns−1 by Ĝ0.

After the nsth sweep we calculate the values of the decay rate in the population {Ĝβ,ns}Nα=1

by Eq. (5.6), and call them {Γ(ns)
α,ν } where ν = 1, 2. Thereby, we calculate the typical values

of the decay rate in the population by

ln Γ
(ns)
typ,ν =

1

N

N∑
α=1

ln Γ(ns)
α,ν , (5.12)

In order to determine the system is localized or delocalized, we calculate the growth rate of

Γ
(ns)
typ,ν under sweeps, that is,

λns = ln Γ
(ns)
typ,ν − ln Γ

(ns−1)
typ,ν . (5.13)

Here we note two important properties of λns .

(i) As long as Γ
(ns)
typ,ν is sufficiently small, satistically, Γ

(ns)
typ,ν grows linearly under sweeps. As

a consequence, λns fluctuates about a steady value, and the magnitude of the fluctuation is

proportional to 1/
√
N according to the central limit theorem.

(ii) In this linear regime, as long as the two lattices are coupled, the statistics of λns is

independent of the lattice index ν.
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These properties can be understood as follows. As shown in Ref. [135], if Γjν ’s are small

enough, the recursion relation (5.5b) leads to a linear homogeneous equation for Γjν . The

growth of the typical value of Γjν under sweeps is dominated only by the largest eigenvalue

of the linearized recursion relation.

The average growth rate of Γ
(ns)
typ,ν over Ns � 1 sweeps is defined by

λ(Ns) =
1

Ns

Ns∑
ns=1

λns , (5.14)

and the variance is

δλ(Ns) =

√√√√ 1

Ns

Ns∑
ns=1

(λns − λ)2. (5.15)

which reflects the finite size effect and is proportional to 1/
√
N . In the thermodynamic limit

N →∞, δλ→ 0, and the criterion (5.9) indicates that

λ =

< 0, localized,

> 0, delocalized.

(5.16)

In our simulations of the model (5.1), we took N = 107, η = 10−15 (t1 = t2 = 1), and

Ns = 200. Two points are worthwhile to mention.

(i) We started to collect simples of λns after about 50 sweeps of the population, when λns

started to fluctuate about a steady value. We find that in this way the η-dependence of λ and

δλ is very weak, as long as η is small enough (. 10−10).

(ii) Comparing the results of λ and δλ for N = 107 with those for N = 106, we find that the

finite size effect on λ is very weak, but the variance δλ for N = 106 is about 2.5 times of that

for N = 107, which coincides with the prediction of the central limit theorem.
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5.3 Phase diagram

In this section we study the effect of the interlattice coupling t on the Anderson transition at

the band center E = 0 of the system described by the model (5.1) in the case of two lattices

with identical hopping (t1 = t2) but different disorder (W1 ≤ W2). Our goal is to verify the

two possible regimes proposed at the beginning of this chapter. Here we note that the effect

of weak coupling t . t1,2 is considered, which guarantees that in the absence of disorder the

energy band is not substantially changed by the coupling, and therefore, the mobility edge

first appears at the band center E = 0.1

In Sec. 5.3.1 we present the numerical results of the population dynamics, where two cases

are studied: (i) Two statistically identical lattices, that is, W = W1 = W2. We find that the

critical disorder is enhanced by the interlattice coupling. (ii) Parametrically different lattices

(W1 < W2). We focus on the case that in the absence of coupling the 1 lattice is critical and the

2 lattice is localized. We find: For a fixed coupling t, there exists a critical disorder strength

of the 2 lattice, W2,c, so that for W2 < W2,c the system is delocalized, and for W2 > W2,c the

system is localized. If W2 → ∞, the two lattice are effectively decoupled. In Sec. 5.3.2, we

present a perturbative analysis to explain the numerical results.

5.3.1 Numerical results

I. Statistically identical lattices (W1 = W2)

We first analyze two statistically identical lattices, which is analogous to two identical chains

in one dimension. In Fig. 5.2 we compute λ and δλ at E = 0 as functions of the disorder

strength W = W1 = W2 for uncoupled and coupled (t = 1) lattices, where we take K = 2,

and t1 = t2 = 1. The transition point is determined by the criterion in Eq. (5.16). For

uncoupled lattices we find the critical disorder Wc(t = 0) ≈ 17.3, which is coincident with the

result obtained in Ref. [140]. For coupled lattices with t = 1.0, the critical order strength is

Wc(t = 1.0) ≈ 20.7.

1As in the two-chain problem, if t is strong enough we reach the one-channel regime, where there is a gap
between the two subbands. In this case the energy where we obtain the largest localization length is not at
the band center any longer [See Figs. 4.12 and 4.14]. The similar situation may happen on two Bethe lattices:
If the coupling is too strong, the mobility edge first appears at E 6= 0.
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Figure 5.2: Numerical results for the growth rate of the typical values of the decay rate for the
uncoupled and coupled statistically identical Bethe lattices as functions of disorder strength.
The results were obtained for K = 2, t1 = t2 = 1, E = 0. The error bars indicate the variances
δλ obtained from Eq. (5.15), which reflect the finite size effect. (a) For the uncoupled lattices
we find the critical disorder strength Wc(t = 0) ≈ 17.3, which is very close to the result
obtained in Ref. [140]. (b) For the coupled lattices with t = 1.0, the critical disorder strength
is Wc(t = 1, 0) ≈ 20.7.
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Figure 5.3: Numerical results for the growth rate of the typical values of the decay rate
for the coupled Bethe lattices with identical hopping but different disorder as a function of
the disorder strength on the 2 lattice. The disorder strength on the 1 lattice is fixed at
W1 = Wc(t = 0) ≈ 17.3 and the interlattice coupling is t = 1. The other parameters are the
same as in Fig. 5.2. There is a critical value of W2, W2,c ≈ 47, so that, for W2 < W2,c the
system is delocalized, and for W2 > W2,c the system is localized. When W2 is large enough,
the system is infinitely close to the transition point from the localized phase.

We conclude that the critical disorder is enhanced by coupling the two lattices, that is, Wc(t 6=

0) > Wc(t = 0). This implies that if two decoupled lattices are in the localized phase but close

enough to the critical point, switching on the coupling may drive the system to a delocalized

phase.

II. Parametrically different lattices (W1 6= W2)

Let us now study what happens for two Bethe lattices with identical hopping but different

disorder. More precisely, we couple the 1 lattice, which is critical, to the 2 lattice, which is

localized, and analyze the coupling will push the system to a localized phase or a delocalized

phase. As shown in Fig. 5.3, we fix W1 = Wc(t = 0) ≈ 17.3 and t = 1, and compute λ and δλ

as functions of W2. Two remarkable features are observed.
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Figure 5.4: Schematic phase diagram for the coupled Bethe lattices with identical hopping
but different disorder obtained from the results in Figs. 5.2 and 5.3. The red curve separates
the W1−W2 plane to the localized and delocalized regimes. For a guide to the eye we indicate
the critical disorder for the uncoupled lattices Wc(t = 0) ≈ 17.3 by the bashed lines.

(i) Anderson transition happens at W2 = W2,c ≈ 47. For W2 < W2,c the system is delocalized,

and for W2 > W2,c the system is localized.

(ii) When W2 →∞, the system infinitely tends to the transition point but still in the localized

phase.

According to the results obtained in Figs. 5.2 and 5.3, the schematic phase diagram for two

coupled disordered Bethe lattices with identical hopping is shown in Fig. 5.4. There are three

regimes strongly affected by the interlattice coupling.

(i) Regime A. In the absence of coupling the two lattices are both localized but close enough to

transitions. The coupling pushes the two nearly delocalized lattices to the delocalized phase.
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(ii) Regime B. In the absence of coupling the less disordered lattice is delocalized but very

close to the transition point, and the more disordered lattice is strongly localized. The coupling

pushes the system to the localized phase.

(iii) Regime C. The less disordered lattice is deep in the delocalized phase, and the more

disordered lattice is strongly localized. The coupled system is delocalized.

5.3.2 Perturbative analysis

The regime B in the phase diagram (see Fig. 5.4) can be explained qualitatively by applying

a perturbative analysis in the limit of W2 → ∞. There are two competing effects on the 1

lattice due to coupling to the 2 lattice: The nearest neighbor hopping strength is enhanced,

but the magnitude of the onsite energies is enhanced as well. Up to second order in 1/W2,

the correction for the hopping strength between nearest neighbor sites |i, 1〉 and |j, 1〉 is

δt1,ij = t2t2/(εi2 − εj2)2 ∼ t2t2/W
2
2 , (5.17)

and the correction for the random potential on site |i, 1〉 is

δεi1 = t2/(εi1 − εi2) ∼ t2/W2. (5.18)

It is easy to see that for t1 = t2, W2 � W1 leads to δt1,ij/t1 � δεi1/W1, which means that the

enhancement of the disorder is much stronger than that of the hopping. Therefore, the more

disordered lattice, which is strongly localized, may drive the less disordered lattice, which is

delocalized but very close to the transition point, to the localized phase.
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Chapter 6

Discussion

The work in this thesis is motivated by the problem of localization of interacting particles.

The qualitative investigation of Thouless-type arguments in Chap. 2 lead us to consider the

question of competition between alternative propagation channels, a question which we studied

in great detail in the form of a single particle problem with two parallel, coupled channels.

The theory also naturally applies for the Anderson localization of hybrid particles such as

polaritons. These systems have a common feature: Two or more propagating channels with

parametrically different transport properties are coupled and compete with each other.

The principal question is: What happens to the localization properties when a less localized

lattice is coupled to a more localized one? Will the less localized lattice dominate the local-

ization of the system or the more localized? The qualitative answer to this question depends

on the dimensionality of the system. Correspondingly, we exactly solved the Anderson models

on a two-leg ladder (D = 1) and on a two-layer Bethe lattice (formally D =∞).

In one dimension, weak disorder has a strong localization effect. In the weak disorder limit

we have found that under resonance conditions the localization lengths of two coupled chains

are of the order of the localization length of the more localized, uncoupled leg. We may

interpret this phenomenon as a manifestation of the fact that in one dimension the mean free

path is the relevant length scale that sets the localization length. It is not surprising that

the backscattering rate, and thus the “worst” leg of the chains determines the localization

properties of a coupled system. If away from resonance the two legs are hardly affected
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by each other. However, the close relation (proportionality) between mean free path and

localization length is special for one-dimensional systems.

On coupled Bethe lattices, weak disorder is irrelevant to localization. The localization effect

is significant only if the disorder is intermediate or strong. Therefore, resonance conditions,

which require weak disorder as compared to the hopping, can not be achieved. In general, we

found that the less disordered lattice is not affected much by the more disordered lattice in the

presence of coupling, except in the case where the less disordered (delocalized) lattice is very

close to the transition and the more disordered lattice is strongly localized, in which case the

more disordered lattice can push the less disordered lattice to a localized phase. We believe

that these trends persist in high dimensions (D > 2) where the metal-insulator transition

takes places at strong disorder.

In two dimensions, the localization length becomes parametrically larger than the mean free

path at weak disorder. However, since the proliferation of weak-localization and backscatter-

ing leads to complete localization (in the absence of special symmetries), we expect that a

well propagating channel becomes more strongly localized upon resonant coupling to a more

disordered channel, similarly as in one dimension. It might be interesting to investigate this

numerically.

Investigating the localization properties of few- or many-particle systems is more complicated.

First, we should map an interacting Hamiltonian to the Anderson model in the few- many-

particle Fock space [cf. Eq. 2.1]. Thereby, the interaction provides effective hopping among the

Fock states. This hopping in Fock space can be organized into channels with rather different

propagation characteristics [e.g. Fig. 2.1 for four particles], namely, faster channels and slower

channels. According to our analysis, the slow channel dominates only if it is resonantly coupled

to the fast channel. If the two channels are away from resonance, the fast channel essentially

dominates the localization properties. For the few-particle problems discussed in Chap. 2

we expect that the fast channel, that is, the hierarchical structure we predicted, dominates

the delocalization of the interacting particles, since the resonance between the fast and slow

channels should be an exception rather than a rule. At this stage, this remains a conjecture

which needs to be tested further.
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Appendix A

Transfer matrix of an “elementary

slice” in the current-conserving basis

Eqs. (4.24) and (4.26)

In this appendix we derive Eqs. (4.27) and (4.29). In Eqs. (4.19) and (4.20), m̃x is a symplectic

matrix which by definition satisfies

m̃T
xJm̃x = J, (A.1)

m̃x = m̃∗x, (A.2)

where

J =

 0 1

−1 0

 , (A.3)

and m̃T
x is the matrix obtained from m̃x by transposition.

Define the new matrix mx

mx = U−1
x+1 m̃x Ux, (A.4)

where the rotation matrix is

Ux ≡

 αx α∗x

αx−1 α∗x−1

 , (A.5)

126



with αx defined by Eq. (4.28). The corresponding inverse matrix is given by

U−1
x =

1

∆

 α∗x−1 −α∗x
−αx−1 αx,

 (A.6)

where ∆ is the diagonal matrix

∆ = αxα
∗
x−1 −α∗xαx−1. (A.7)

The crucial point is that by current conservation Eq. (4.23), ∆ is independent of coordinates

and is proportional to the unit matrix in channel space:

∆ = i1. (A.8)

Note also that, by construction, the rotation matrix Ux obeys the disorder-free Schrödinger

equation Eq. (4.19):

Ux+1 = m̃x|ε̃=0 Ux. (A.9)

It follows immediately from Eqs. (A.9) and (A.4) that in the absence of disorder mx = 1. In

the presence of weak disorder the matrix mx acquires a small coordinate-dependent correction

proportional to ε̃x which is given by Eq. (4.27).

Next, by inverting Eq. (A.4) and plugging into Eq. (A.2) one obtains:

Σ
(1)
x+1 mx Σ(1)∗

x = m∗x. (A.10)

Using the definition of αx Eq. (4.28) one can readily show that

Σ(1)
x ≡ (U∗x)

−1Ux = Σ1 (A.11)

is real and independent of x. This immediately reduces the time-reversal symmetry condition

Eq. (A.10) to the form in Eq. (4.29).
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The same procedure applied to the symplecticity relation Eq. (A.1) results in the following

constraint (using m̃T
x = m̃†x):

m†x Σ
(3)
x+1 mx = Σ(3)

x , (A.12)

where

Σ(3)
x ≡ U†x J Ux = −∆ Σ3 = −iΣ3 (A.13)

is independent of coordinate due to current conservation. Thus, we obtain the current con-

servation condition in Eq. (4.29).
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Appendix B

Perturbative calculation of δ~λ up to

second order

Equations (4.38), (4.45), and (4.46) fully determine the variation of the eigen-system of the

Hermitian matrix R. It is given by δ~λ, which characterize the “perturbation” δR. We

can therefore use standard perturbation theory to expand δ~λ into powers of disorder on the

additional slice. In this appendix we calculate δ~λ up to the second order, which is necessary

to derive the Fokker-Planck equation (4.51).

We introduce some quantities which are convenient to present the results. Analogously to αx,

defined by Eq. (4.28), we define

βx = αxu, (B.1)

where u is the unitary matrix in Eq. (4.34). Since αx describes the propagation in the plane-

wave basis on the individual chains, and u is the “polarization” matrix, we can consider βx as

describing clean propagation in the “polarized” plane-wave basis. Furthermore, analogously

to the blocks in Eq. (4.27), we can define two quantities on the “polarized” basis, related with

the forward- and back-scattering of the right-moving particle off the slice:

Λx = iβ†xε̃xβx,

Σx = iβ†xε̃xβ
∗
x,

(B.2)
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which are 2× 2 matrices. It is easy to realize that Λx is anti-Hermitian and Σx is symmetric.

The corresponding left-moving quantities are complex conjugates of them. The perturbative

series of δ~λ are functions of elements of Λx and Σx. For simplicity of further notations, we

define

F̃ =
√

F2 − 1, (B.3)

and

∆F = F1 − F2. (B.4)

In order to facilitate the perturbative calculation, we adopt a parametrization of R + δR as

in Eq. (4.38), but with F→ F + δF, F̃→ F̃ + δF̃ and u→ u + δu, in which

δF̃ =
√

(F + δF)2 − 1−
√

F2 − 1. (B.5)

Substituting this into Eqs. (4.46) and (4.45) we obtain two coupled equations for δF and the

2× 2 matrix S which captures the incremental change of the polarization basis,

S = 1 + u†δu, (B.6)

as

S(F + δF)S† = F + F(1) + F(2), (B.7a)

S(F̃ + δF̃)ST = F̃ + F̃(1) + F̃(2), (B.7b)

We have introduced perturbation terms on the r.h.s. of the two equations as

F(1) = −FΛL + ΛLF + ΣLF̃ + F̃Σ∗L, (B.8a)

F(2) = −ΛLFΛL + ΣLFΣ∗L + ΛLF̃Σ∗L −ΣLF̃ΛL, (B.8b)

F̃(1) = −F̃Λ∗L + ΛLF̃ + ΣLF + FΣL, (B.8c)

F̃(2) = −ΛLF̃Λ∗L + ΣLF̃ΣL + ΛLFΣL −ΣLFΛ∗L, (B.8d)
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where F(1) and F̃(1) are linear in disorder, while F(2) and F̃(2) are quadratic. Additionally,

F(1) and F(2) are Hermitian, but F̃(1) and F̃(2) are symmetric.

We expand δF and δu in disorder strength. From the latter we calculate the corresponding

variations of angular variables. Without going into the details of the calculation, we present

the results up to the second order in disorder.

To first order the corrections

δ~λ(1) = (δF
(1)
1 , δF

(1)
2 , δθ(1), δψ(1), δφ(1), δϕ(1)) (B.9)

are given by

δF (1)
% = F(1)

%,%, % ∈ {1, 2}, (B.10a)

δθ(1) =
2

∆F
Re
(
F

(1)
2,1e

iψ
)
, (B.10b)

δψ(1) =
1

2

(
ImF̃

(1)
2,2

F̃2

−
ImF̃

(1)
1,1

F̃1

)
− δϕ(1) cos θ, (B.10c)

δφ(1) = −1

2

(
ImF̃

(1)
2,2

F̃2

+
ImF̃

(1)
1,1

F̃1

)
, (B.10d)

δϕ(1) =
2

∆F
Im
(
F

(1)
2,1e

iψ
)

csc θ, (B.10e)

where the subscripts denote the matrix elements of the “perturbations” F(1) in Eq. (B.10).

We recall that the “perturbations” in Eq. (B.10) are L dependent.

The second-order corrections,

δ~λ(2) = (δF
(2)
1 , δF

(2)
2 , δθ(2), δψ(2), δφ(2), δϕ(2)), (B.11)

are more complicated. However, we recall that our aim is to calculate the correlators δλ
(1)
i δλ

(1)
j

and δλ
(2)
i in Eq. (4.51). To avoid repeating calculation, we should express the δ~λ(2)’s in terms
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of the first-order corrections Eq. (B.10) as far as possible. We obtain

δF (2)
% = F(2)

%,% − (−1)%
|F(1)

2,1|2

∆F
, % ∈ {1, 2}, (B.12a)

δθ(2) =
2

∆F
Re
(
F

(2)
2,1e

iψ
)

+ a(1)δθ(1) +
1

4
sin 2θ

(
δϕ(1)

)2
, (B.12b)

δψ(2) = a
(2)
− + b

(1)
− δφ

(1) + b
(1)
+ d(1) + c+e

(2) − a(1)
− c

(1)
+ −

1

2
sin θδθ(1)δϕ(1) − cos θδϕ(2), (B.12c)

δφ(2) = −a(2)
+ − b

(1)
+ δφ(1) − b(1)

− d
(1) + c−e

(2), (B.12d)

δϕ(2) =
2

∆F
Im
(
F

(2)
2,1e

iψ
)

csc θ + a(1)δϕ(1) − cot θδθ(1)δϕ(1), (B.12e)

in which

a(1) =
1

∆F

(
δF

(1)
2 − δF (1)

1

)
, (B.13a)

a
(2)
± =

1

2

(
ImF̃

(2)
2,2

F̃2

±
ImF̃

(2)
1,1

F̃1

)
, (B.13b)

b
(1)
± =

1

2

(
F1

F̃ 2
1

δF
(1)
1 ± F2

F̃ 2
2

δF
(1)
2

)
, (B.13c)

c± =
1

2

(
F̃1

F̃2

± F̃2

F̃1

)
, (B.13d)

d(1) = δϕ(1) cos θ + δψ(1), (B.13e)

e(2) =
1

4

[(
δϕ(1)

)2
sin2 θ −

(
δθ(1)

)2
]

sin 2ψ +
1

2
δϕ(1)δθ(1) sin θ cos 2ψ. (B.13f)

In practice, we first calculate all the correlators δλ
(1)
i δλ

(1)
j by Eq. (B.10). At the same time we

obtain the correlators relevant for the products of first-order terms on the r.h.s. of Eq. (B.12).

Finally, after evaluating the disorder average of a
(2)
± in Eq. (B.13b), δλ

(2)
i s can be obtained.
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Appendix C

Coefficients of Eq. (4.67)

The coefficients of Eq. (4.67) are

c1 = −2
F̃ 2

1

∆F
Γ6, (C.1a)

c2 = 2
F̃ 2

2

∆F
Γ6, (C.1b)

c3 =
1

∆F 2

[(
F 2

1 − F 2
2 − 2

)
(Γ5 + Γ4) + 2F1F2 (Γ5 − Γ4)

−
(
F̃ 2

1 + F̃ 2
2

) (
1− u2

)
∂uΓ6

]
− 4

1

∆F 2
F̃1F̃2uΓ6 cos 2ψ, (C.1c)

c4 =
1

∆F

[(
F̃1F̃2 +

F2

F̃2

F̃1 −
F1

F̃1

F̃2

)
Γ3 + 2

F̃1F̃2

∆F

u√
1− u2

(Γ5 − Γ4)

+
F1

F̃1

F̃2∂uΓ4 +
F2

F̃2

F̃1∂uΓ5 − 2
F̃1F̃2

∆F
(Γ6 + 2u∂uΓ6)

]
sin 2ψ, (C.1d)

c11 = F̃ 2
1 Γ1, (C.1e)

c12 = 2F̃1F̃2Γ3 cos 2ψ, (C.1f)

c13 =
2F̃1

∆F

(
F̃1 + F̃2 cos 2ψ

)
Γ4, (C.1g)

c14 = −F̃1

(
F2

F̃2

Γ3 + 2
F̃2

∆F

u√
1− u2

Γ4

)
sin 2ψ, (C.1h)
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c22 = F̃ 2
2 Γ2, (C.1i)

c23 = 2
F̃2

∆F

(
F̃2 + F̃1 cos 2ψ

)
Γ5, (C.1j)

c24 = −F̃2

(
F1

F̃1

Γ3 + 2
F̃1

∆F

u√
1− u2

Γ5

)
sin 2ψ, (C.1k)

c33 =

[
V3 +

1

∆F 2

(
F̃ 2

1 + F̃ 2
2 + 2F̃1F̃2 cos 2ψ

)
Γ6

] (
1− u2

)
, (C.1l)

c34 = − 1

∆F

(
F1F̃2

F̃1

Γ4 +
F̃1F2

F̃2

Γ5 − 4
F̃1F̃2

∆F
uΓ6

)
sin 2ψ, (C.1m)

c44 =
1

2

[
1 +

1

2

(
F1

F̃1

)2
]

Γ1 +
1

2

[
1 +

1

2

(
F2

F̃2

)2
]

Γ2 − Γ6

+
u√

1− u2

[(
2 +

F1

∆F

)
Γ4 +

(
2 +

F2

∆F

)
Γ5

]
+

u2

1− u2

[
Γ3 +

(
1 +

F̃ 2
1 + F̃ 2

2

∆F 2

)
Γ6

]

−

[
1

2

F1F2

F̃1F̃2

Γ3 +
u√

1− u2

1

∆F

(
F1F̃2

F̃1

Γ1 +
F̃1F2

F̃2

Γ2

)
+ 2

u2

1− u2

F̃1F̃2

∆F 2

]
cos 2ψ,

(C.1n)

where the F̃%’s are the two diagonal elements of the matrix (B.3) and ∆F is defined in

Eq. (B.4). The new quantities introduced in Appendix C are defined below. Notice first that

the Γn are functions of u defined by

Γ1(2)(u) = V1 + V2 + 4V3 − (+)2 (V2 − V1)u+ (V1 + V2 − 4V3)u2, (C.2a)

Γ3(u) = (V1 + V2 − 4V3)
(
1− u2

)
, (C.2b)

Γ4(5)(u) = [V1 − V2 + (−) (V1 + V2 − 4V3)u]
(
1− u2

)
, (C.2c)

Γ6(u) = V1 + V2 − (V1 + V2 − 4V3)u2, (C.2d)

where V1, V2 and V3 are the three Born cross sections defined in Eq. (4.59). In order to solve

Eq. (4.77) in the limit L� 1, we need the values of c3 and c33 in the limit Fmax � Fmin � 1,

lim
L→∞

c3 = (|V1 − V2| − ∂uΓ6) (1− u2),
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lim
L→∞

c33 = (V3 + Γ6)
(
1− u2

)
,

which is Eq. (4.78).
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Appendix D

Transfer matrix of an “elementary

slice” in the basis Eqs. (4.24) and

(4.106)

The derivation of Eq. (4.107) goes in parallel with the derivation of Eq. (4.27) in App. A.

However, the rotation Ux is constructed in such a way that

Ux =


ψ+

1 (x) ψ−1 (x) 0 0

0 0 ψ+
2 (1) ψ−2 (1)

ψ+
1 (x− 1) ψ−1 (x− 1) 0 0

0 0 ψ+
2 (0) ψ−2 (0)

 , (D.1)

where ψ±1,2(x) are defined by Eqs. (4.24) and (4.106). Compared with Eq. (A.5) for the two-

channel case, the second and third columns of Eq. (D.1) have been permuted, and the columns

corresponding to the evanescent channel are coordinate-independent. The inverse of Ux is

U−1
x =


−iψ−1 (x− 1) 0 iψ−1 (x) 0

iψ+
1 (x− 1) 0 −iψ+

1 (x) 0

0 −ψ−2 (0) 0 ψ−2 (1)

0 ψ+
2 (0) 0 −ψ+

2 (1)

 . (D.2)
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The transfer matrix of an elementary slice (4.107) is

mx =U−1
x+1m̃xUx = m + δmx, (D.3)

where m and δmx take the form given in Eq. (4.108). Following the same procedure as in

App. A, one can also obtain the symmetry constraints on the matrix mx, which is imposed

by the reality and symplecticity of the matrix m̃x. Without going into details we present the

following results: The reality relation (A.2) gives

m∗x = Λ1mxΛ1, Λ1 =

σ1 0

0 1

 ; (D.4)

The symplecticity relation (A.1) gives

m†xΛ3mx = Λ3, Λ1 =

σ3 0

0 σ2

 . (D.5)

Finally, it is not hard to show that the Lyapunov exponents of the products (4.30) satisfy the

symmetry property stated in Eq. (4.113).
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[63] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Denschlag, A. J. Daley, A.
Kantian, H. P. Bchler and P. Zoller, Nature 441, 853 (2006).

[64] O. N. Dorokhov, Sov. Phys. JETP 71, 360 (1990).

[65] D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).

142



[66] Y. M. Blanter, Phys. Rev. B 54, 12807 (1996).

[67] U. Sivan, F. P. Milliken, K. Milkove, S. Rihston, Y. Lee, J. M. Hong, V. Boegli, D. Kern,
and M. de Franza, Europhys. Lett. 25, 605 (1994).

[68] U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Lett. 28, 115 (1994).

[69] A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. B 56, 13393 (1997).

[70] P. G. Silvestrov, Phys. Rev. Lett. 79, 3994 (1997); Phys. Rev. E 58, 5629 (1998);
Phys. Rev. B 64, 113309 (2001).

[71] D. Weinmann, J. L. Pichard, and Y. Imry, J. Phys. I France 7, 1559 (1997).

[72] A. Trichet, L. Sun, G. Pavlovic, N.A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard,
and L. S. Dang, Phys. Rev. B 83, 041302(R) (2011).

[73] F. Manni, K. G. Lagoudakis, B. Pietka, L. Fontanesi, M. Wouters, V. Savona, R. André,
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