
HAL Id: tel-00752388
https://theses.hal.science/tel-00752388

Submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physically-based and Real-time Simulation of Brittle
Fracture for Interactive Applications

Loeïz Glondu

To cite this version:
Loeïz Glondu. Physically-based and Real-time Simulation of Brittle Fracture for Interactive Applica-
tions. Modeling and Simulation. École normale supérieure de Cachan - ENS Cachan, 2012. English.
�NNT : �. �tel-00752388�

https://theses.hal.science/tel-00752388
https://hal.archives-ouvertes.fr

Physically-based and Real-time

Simulation of Brittle Fracture for

Interactive Applications

THESE ENS Cachan

pour obtenir le grade de

DOCTEUR DE L’ENS CACHAN

Spécialité: informatique

présentée par

Loeïz GLONDU
ECOLE DOCTORALE : MATISSE

LABORATOIRE: IRISA

Luc Bougé

François Faure

Matthias Harders

Miguel A. Otaduy

Bogdan Bucur

Georges Dumont

Maud Marchal

Thèse soutenue le 6 Novembre 2012 devant le jury compsé de :

Professeur à l’ENS Cachan – Président

Professeur à l’Université Joseph Fourier, Grenoble– Rapporteur

Senior Researcher at ETH Zürich, Switzerland– Rapporteur

Associate Professor at URJC Madrid, Spain– Examinateur

Destruction Team Lead at Havok, Dublin, Ireland– Examinateur

Professeur à L’ENS Cachan – Directeur de thèse

Maître de conference à l’INSA de Rennes– Encadrante

Acknowledgments

Writing the acknowledgments section makes me realize that my Ph.D. is finished. I
cannot believe that I started three years ago. At this time, I did not expect to live so
many professional and personal experiences. Now, I can say that this Ph.D. was a wonderful
experience, and I am filled of good souvenirs. The main reason for all these good moments is
the people I was surrounded by. I am happy to be able to thank those people in the following
paragraphs.

First of all, I am deeply grateful to my two supervisors Maud Marchal and Georges
Dumont. They have proven to be understanding, patient and helpful at a level I did not
expect. We shared a lot of good moments, in France but also in the United States, in Germany
or even in The Netherlands. They also generously shared their professional experiences and
expertise that made all this possible. Maud, Georges, your advices were always precious to
me, and I would like to sincerely thank you for these three successful years.

I would also like to thank all the distinguished researchers that kindly accepted to be part
of my Ph.D. committee: Pr. François Faure, Dr. Matthias Harders, Dr. Miguel A. Otaduy,
and M. Bogdan Bucur. Thanks to all of them for reviewing my manuscript, providing helpful
comments, and for their valuable presence during my defence.

During my Ph.D., I had the great opportunity to work at the University of Rey Juan
Carlos in Madrid, where I have been warmly welcomed by Miguel A. Otaduy. My stay in
Spain was filled of great moments. It has been a great pleasure to meet Sara with who I
worked with, and to meet Loïc again. Miguel, Sara, Loïc, thank you for making my stay in
Madrid an awesome souvenir.

This section would be incomplete without giving a special word to all my colleagues.
Special thanks to Gabriel Cirio with who I spent a lot of great moments, here and abroad.
Gabriel, you are one of the most generous and nice person I know, don’t change! Special
thanks to Vincent Alleaume, Florian Nouviale and Quentin Avril too, with who I spent most
of my lunch times, and a great amount of good moments. But of course I would like to thank
also all my other colleagues for their help and their support. If time went so fast during these
three last years, it is also thanks to you. To avoid any jealousy (and because I’m too afraid
to forget someone), I won’t give any name here, but consider that you are concerned if you
read this piece of text. I will miss your joy, your jokes, playing badminton with you, and
your cakes :)

A special thank too to all the people exterior to the lab, and from who we drove fruitful
and joyful collaborations.

Last but not least, I wish I could thank enough all my family, my main source of joy. You
always encouraged me, never doubt that I could success, and you were always here when I
needed to. I hope you understand that I would not have been able to do all this without you.

3

Contents

List of figures 8

List of tables 11

1 Introduction 13

2 Background 19
2.1 Introduction . 19
2.2 Notations . 20
2.3 Fundamentals of physical simulation . 21

2.3.1 Model of a physical body . 22
2.3.2 Stepping a discrete simulation forward in time 22

2.3.2.1 The differential system to be solved 22
2.3.2.2 Numerical integration . 23

2.3.3 Example: 3-D simulation of a rigid body 25
2.4 Physical simulation of deformation . 27

2.4.1 Background on continuum mechanics 27
2.4.1.1 Measure of the deformation: the strain 28
2.4.1.2 Stress tensor and strain-stress relationship 29
2.4.1.3 Dynamics of a deformable body 29

2.4.2 Models of deformable body for numerical simulations 30
2.4.2.1 The Finite Element Method (FEM) 30
2.4.2.2 Meshless models . 35
2.4.2.3 Mass-spring models . 38

2.4.3 Reduced deformable models . 38
2.4.3.1 Introduction . 38
2.4.3.2 Modal analysis . 39

2.4.4 Summary table . 40
2.5 Physical simulation of brittle fracture . 41

2.5.1 Geometrical approaches and cutting algorithms 41
2.5.2 Mass-spring systems for fracture . 42
2.5.3 Cohesive zone models . 42
2.5.4 Continuous approaches for fracture . 43

2.5.4.1 Finite differences for fracture 43
2.5.4.2 Finite Element Method for fracture 43
2.5.4.3 XFEM: Extended Finite Element Method 46

2.5.5 Particle system for fracture . 46
2.5.6 Summary table . 47

2.6 Interactive simulation . 48
2.6.1 Detecting collisions between the bodies 48

5

CONTENTS

2.6.1.1 Representation of the bodies for collision detection 48
2.6.1.2 Algorithms and accelerating structures for polygonal models . . 50
2.6.1.3 Collision detection desired queries 51
2.6.1.4 Collision detection and haptic rendering for fracture simulation . 51

2.6.2 Handling contacts and constraints between the bodies 52
2.6.2.1 Acceleration level methods . 52
2.6.2.2 Velocity level methods . 54
2.6.2.3 Position level methods . 55

2.6.3 Handling physically-based interactions with haptic feedback 56
2.6.3.1 Introduction . 56
2.6.3.2 Haptic devices and control . 56
2.6.3.3 Haptic rendering constraints 58
2.6.3.4 Multirate simulation and intermediate models 60

2.6.4 Summary: interactive simulation and brittle fracture 62
2.7 Chapter conclusion . 62

3 New models for the real-time simulation of brittle fracture 65
3.1 Modeling the fracture state of a brittle body . 65

3.1.1 A new model based on volumetric meshes 66
3.1.1.1 Modeling damage state with elements 66
3.1.1.2 Modeling fracture surfaces with edges 66
3.1.1.3 Modeling fragments with nodes 67

3.1.2 Efficient generation of the surface meshes from the fracture state 68
3.2 Propagating cracks, or updating the fracture state model 69

3.2.1 Fracture surface model . 70
3.2.2 Propagating the crack through the mesh 70
3.2.3 Energy stop condition . 72

3.3 Modeling impact-based fractures . 73
3.3.1 Overview of the process . 73
3.3.2 Estimation of the contact duration . 74
3.3.3 Simulation Time Step . 75
3.3.4 Contact Force Model . 75
3.3.5 Fracture criterion . 76
3.3.6 Results . 76

3.3.6.1 Computation time performances 76
3.3.6.2 Tests and Scenarios . 77

3.3.7 Discussion and conclusion . 79
3.4 Modeling cracking due to aging . 80

3.4.1 Aging process overview . 81
3.4.2 Results and conclusion on the age-based fracture simulation 83

3.5 Managing the deformation of the fragments: a database approach 83
3.5.1 Precomputed Shape Database . 84

3.5.1.1 Creating the Database . 84
3.5.1.2 Searching into the Database 87

3.5.2 Mesh Descriptors . 87
3.5.2.1 Moment-based Descriptor . 87
3.5.2.2 Voxel-based Descriptor . 88
3.5.2.3 Improved Voxel-based Descriptor 88

3.5.3 Adaptation to Physical Simulation . 89

6

CONTENTS

3.5.4 Results . 90
3.5.5 Discussion and conclusion . 92

3.6 Chapter conclusion . 93

4 New methods for interactive brittle fracture simulation 95
4.1 Introduction . 95
4.2 Efficient collision handling for brittle fracture . 96

4.2.1 Overview of the collision detection algorithm 96
4.2.2 Fragment Distance Field . 97

4.2.2.1 Mesh-Based Interior Distance 97
4.2.2.2 Distance Updates upon Fracture 98
4.2.2.3 Inside-Outside Query: insideTest(p, D(f)) 99
4.2.2.4 Penetration Depth Query: penetration(p, D(f)) 99
4.2.2.5 Sphere Intersection Query: sphereTest(p, r,D(f)) 100

4.2.3 Fracturable Adaptive Sphere Tree . 100
4.2.3.1 Ordering and Construction of the Sphere Tree 101
4.2.3.2 Tree Updates upon Fracture 102
4.2.3.3 Self-Adapting Collision Detection 102

4.2.4 Experiments and Results . 103
4.2.5 Discussion and conclusion . 106

4.3 Haptic interaction with fracturing bodies . 107
4.3.1 Benchmarking the rigid body engines for haptic 108

4.3.1.1 Selected rigid body engines . 108
4.3.1.2 Performance Criteria . 109
4.3.1.3 Tests Cases . 109
4.3.1.4 Test Parameters . 110
4.3.1.5 Results . 111
4.3.1.6 Summary of the Evaluation . 113

4.3.2 Coupling rigid body engines and haptic rendering 114
4.3.2.1 Scaling Factors between Virtual and Real World 115
4.3.2.2 Synchronization with Physical Time 116
4.3.2.3 Results . 117
4.3.2.4 Discussion and conclusion . 118

4.3.3 Dealing with a growing number of bodies and haptics 118
4.3.3.1 The Graph-based Haptic Sub-world Coupling Scheme 119
4.3.3.2 Results and Evaluation . 122
4.3.3.3 Discussion and conclusion . 123

4.4 Chapter conclusion . 123

5 Evaluation and validation 125
5.1 Perception of the fracture pattern and fracture statistics 126

5.1.1 Statistical features of a fractured body 126
5.1.2 User-study on the perception of the fracture pattern 126
5.1.3 Optimizing the parameters of the simulation from images 129

5.1.3.1 Parameters to be optimized 129
5.1.3.2 Optimization process . 131
5.1.3.3 Results of the optimizations 132

5.1.4 Discussion and conclusion . 134
5.2 Haptic virtual fracture: first experiments and results 134

7

5.2.1 Overview . 135
5.2.2 User study . 135
5.2.3 Results . 136
5.2.4 Discussion and conclusion . 137

5.3 Preliminary validation of the impact-based fracture model based on real data . . 138
5.3.1 Experiment types and setups . 138

5.3.1.1 Identification of the material elastic properties 139
5.3.1.2 Identification of the Rankine threshold 139
5.3.1.3 Impact breaking test - 4 punctual contacts 141
5.3.1.4 Impact breaking test - fitted 142
5.3.1.5 Impact breaking test - varying ball height 144
5.3.1.6 Test on glass slabs . 144

5.3.2 Discussion and conclusion . 146
5.4 Chapter conclusion . 147

6 Conclusion 149
6.1 Modeling of the fracture phenomena . 149
6.2 Interaction and brittle fracture . 150
6.3 Evaluation of the models . 151
6.4 Discussion and perspectives . 152
6.5 Long term perspectives . 153

List of Figures

1.1 Examples of real and virtual brittle fracture . 13
1.2 The Schenectady tanker having its hull cracked almost in half while in harbor . . 15
1.3 Fracture images from movies and video games 15
1.4 Real ceramic tiles fractured by dropping a steel ball at their centers 16
1.5 Overview of the three main axes studied in this manuscript 17
1.6 Examples of naturally observable fractures due to aging processes 18

2.1 Displacement function . 28
2.2 Illustration 1-D of the strain . 28
2.3 Example of FEM discretization . 30
2.4 Nodal force computation in the FVM . 32
2.5 Principle of the corotational formulation . 34
2.6 Deformable beams attached to a vertical wall and deforming under gravity 34
2.7 Shape matching technique overview . 37
2.8 Example of reduced deformable model on a small system 39
2.9 Artist-designed fracture patterns applied on surface meshes [Desbenoit 05] 42
2.10 A glass slab being broken by a metallic ball [O’Brien 99] 44
2.11 Surface cracks pattern generated physically on the dragon [Iben 06] 44
2.12 An example of FEM-based fracture with plenty of small shards [Bao 07] 45
2.13 Dissociation of visual rendering and physical model for fracture 45

8

LIST OF FIGURES

2.14 Simulation of a ductile fracture using meshless deformation model [Pauly 05] . . 47
2.15 Example of Constructive Solid Geometry . 49
2.16 Examples of two acceleration structures commonly used in collision detection . . 50
2.17 Overview of penalty methods for contact resolution 53
2.18 Example of haptic devices for force feedback haptic rendering 57
2.19 Example of an admittance controlled device coupled with a physical simulation . 57
2.20 Illustration of the virtual coupling principle . 58
2.21 A multirate architecture for haptic rendering . 61

3.1 Example of 2-D volumetric mesh . 66
3.2 Crack state stored in elements . 67
3.3 Fracture surface sampling on mesh edges . 67
3.4 Node fragment identifiers . 68
3.5 Meshing of the fracture surface . 69
3.6 Meshing of a fully damaged element . 69
3.7 Meshing of the surface . 69
3.8 Generation of the visual mesh from the fracture state 70
3.9 Surface mesh vs. physical mesh . 70
3.10 Crack path and noise . 71
3.11 Propagation of one crack in a coarse mesh . 71
3.12 Three glass slabs broken with different fracture toughness 73
3.13 Overview of our impact-base fracture algorithm for one body 73
3.14 Contact duration on a rod falling in different configurations 74
3.15 Advantages of our contact duration estimation method 75
3.16 Our contact force model applied on a stiff slab 76
3.17 Effect of damping on the fracture simulation . 78
3.18 Examples of brittle fracture simulations with our approach 79
3.19 Propagation of the fracture into a thick filled body 79
3.20 Effect of a loading force on the simulation . 82
3.21 Illustration of the two stress relaxation methods used 83
3.22 Bathroom scene being broken using our method 83
3.23 Road model showing fracture propagation, simulating the course of time 84
3.24 Overview of the similarity search process . 85
3.25 The six main shapes used to generate our database 85
3.26 Normalization of a surface mesh . 86
3.27 Voxel-based descriptors used in our system . 89
3.28 Link between the surface mesh and physical data 90
3.29 Comparison of similarity search methods . 91
3.30 Fragments associated to physical meshes in a fracture scenario 92
3.31 Computation times for descriptor build and similarity search 92
3.32 Snapshots of a simulation of brittle fracture with and without our method 93

4.1 Illustration of the front propagation algorithm for interior distance field computation 98
4.2 Comparison between recomputed and updated distance field 100
4.3 Construction of the hierarchy . 101
4.4 Illustration of the contact selection mechanism 102
4.5 Scenario used for comparisons and analysis . 103
4.6 Sphere used for the analysis of sampling resolution on update and query costs . . 105
4.7 Comparison of query times and statistics for the ‘piggy bank’ scene 105

9

LIST OF FIGURES

4.8 Bunnies dropped in three batches and fractured 105
4.9 Real-time demo of crashing bricks . 106
4.10 Interactive smashing of plates . 106
4.11 Interactive manipulation of fracturable bodies 106
4.12 Plots for the ‘drop bunnies’ scene and the ‘bricks’ scene. 107
4.13 Snapshots of three of the four test cases . 110
4.14 Plot of the total energy over time of the pile of cube test 112
4.15 Complexity of the scene versus computation time 113
4.16 Fourth test case . 113
4.17 Average and maximum processing time for the three first test cases 114
4.18 Admittance control of a haptic device . 115
4.19 Scaling interface between the physical simulation and the haptic rendering 117
4.20 Synchronization with physical time using active wait 117
4.21 Haptic-sub world main algorithm . 119
4.22 Graph-based haptic sub-world . 120
4.23 Handling of the effort exchanges at the boundaries of the haptic sub-world 121
4.24 Analysis of the accuracy on velocities . 122

5.1 The interface for the user study . 127
5.2 Reference and simulated images generated for the user study 128
5.3 Statistical informations extracted from images 130
5.4 Overview of the optimization process . 131
5.5 Application of our example-based fracturing method on different scenes 132
5.6 Fracture patterns applied on different objects 133
5.7 Interactive fracture of tiles with similar patterns 134
5.8 Setup of the haptic experiment . 135
5.9 Example of ceramic tile and glass slab used in our experiments 138
5.10 Set up of the ring on ring test . 140
5.11 Example of ceramic tile and glass slab used in our experiments 140
5.12 Pictures of the broken tiles (1mm.min−1) . 141
5.13 Pictures of the broken tiles (10mm.min−1) . 141
5.14 Pictures of the broken tiles (100mm.min−1) . 142
5.15 Test bench designed for the 4 punctual contacts breaking test 142
5.16 Pictures of the tiles broken on the 4 punctual contacts test 143
5.17 Pictures of the tiles broken on the fitted test . 143
5.18 Experiment on glass slabs - 4 punctual contacts 144
5.19 Experiment on glass slabs - 3 punctual contacts 144
5.20 Experiment on glass slabs - ring support . 145
5.21 Experiment on glass slabs - moss support . 145
5.22 Experiment on glass slabs - planar glass support 146
5.23 Results of the simulation of the ceramic tiles . 146
5.24 Scaling of the duration of the contact . 147

10

List of Tables

2.1 Comparison of deformable body simulation methods w.r.t. to efficiency of com-
putation and realism . 41

2.2 Comparison of the different fracture methods w.r.t. to efficiency and realism . . 47

3.1 Parameters and timings for each scenario . 78

4.1 Complexity of the objects used in the experiments 104
4.2 Simulation statistics for the different scenarios 104
4.3 Break-up of timings for the different scenarios 104
4.4 The different configurations of parameters used for each test case 111
4.5 Summary of the stability and accuracy appreciations of the rigid engines tested . 114

5.1 Percentage of instances that the statistic type for the row was chosen over the
type for the column . 129

5.2 Range of valid values for the optimized parameters 130
5.3 Summary tables of the choices of the participants 137
5.4 Percentage of good answers and standard deviation for each condition 137
5.5 Statistics extracted from the 30 trials of the 4 punctual contacts case 142

11

1Introduction

Fracture is a natural phenomenon that can be observed in everyday life on window glass,
grounds or buildings. Although easy to observe and omnipresent in our world, the fracture
phenomena only began to be studied by physicists in the 20th century. Nowadays, many
fracture phenomena are well understood and have been mathematically modeled. Over the
years, numerical simulations of fracture have also been proposed, with first applications in
architecture and fabrication. More recently, in the computer graphics field, the animation of
fracture became a key tool to enrich special effects such as explosions or shattering bodies,
mostly for the movie and the video game industries. Despite all the advances made in
the field, it is still challenging to simulate brittle fracture in real-time due to its intrinsic
complexity. Thus, numerous simplifications and approximations are made in the existing
approaches. If it was possible to perform a brittle fracture simulation based on physics, with
verified results, at interactive rates, a whole new range of applications could come into being,
such as more realistic interactive special effects, or virtual prototyping of fragile objects.
This is the challenge that is taken up by this manuscript, entitled “Physically-based and
Real-time Simulation of Brittle Fracture for Interactive Applications: Models, Interaction
and Evaluation”, where new models designed for interactive simulations of brittle fracture
are presented, in conjunction with appropriate algorithms that ensure the interactivity of the
simulation, as well as evaluations of the proposed models.

We start this introduction by defining the term “brittle fracture” (the core topic of interest
of this manuscript). We follow by providing a brief history of fracture mechanics, and how it
progressively began to be addressed in the computer graphics field. The challenges and the
issues of simulating physically-based brittle fracture in real-time are then presented. Finally,
we end the introduction with a presentation of the contributions brought by our works, and
the organization of the manuscript.

a. b.
Figure 1.1 – Examples of real and virtual brittle fracture. a. Real plates dropped from a
height and breaking (images taken from [Zheng 10]). b. Simulation of a plate dropped from a
height and breaking, using the fracture simulation method presented in this manuscript.

13

CHAPTER 1. INTRODUCTION

Brittle fracture: definition

The term "fracture" actually embeds several meanings in the literature, which are:

� Breaking (or shattering). Generally brief and violent separation of a body into two or
more pieces due to an impact, or a strong and brief loading. Examples: a bone fracture,
a plate dropped from a height as shown in Figure 1.1.

� Crumbling. Multiple and quasi-simultaneous separation of a body into many small
parts, usually generated by rubbing an object on an other one. It can be considered
a special case of breaking. Examples: a chunk of dry soil squeezed, a crumbly body
rubbed on a rough surface, a chalk writing on a blackboard.

� Cracking. Formation of cracks inside or at the surface of a body, without necessarily
separating them. Examples: surface cracks on a baked pottery, cracks on a dried
ground.

� Tearing. Progressive separation of the matter due to tensile stress. This type of frac-
ture is not studied in this manuscript. Examples: cloth tearing, progressive separation
of a chewing gum.

The adjective brittle refers to stiff materials that undergo generally small and only elastic
deformations before they fracture. By extension, the term “brittle fracture” refers to fractures
that happen on brittle materials. Typical brittle materials are glass, ceramics, most concretes,
or stone. One characteristic of brittle fracture is that the cracks propagations are very brief
(cracks propagate at about 5100 meters per second in common glass), and cannot be observed
by a human eye. This fast propagation is due to the stiffness and the elastic properties of
brittle materials.

The other type of fracture is called ductile fracture. This kind of fracture, not addressed
in this manuscript, involves elastic and plastic deformations. Therefore, it is usually modeled
through different approaches. In this kind of materials, cracks propagate in different ways,
and much more slowly than in its brittle counterpart.

Both brittle and ductile fracture have been widely studied in the past, but their differ-
ent properties led to the use of different models and methods to simulate them. In this
manuscript, we present contributions on the real-time simulation of brittle fracture. Our
result can be used to simulate breaking, cracking or crumbling objects, as defined above.
Before getting to a summary of our contributions, we present a brief history of the study of
the fracture phenomena.

History: from fracture mechanics to computer graphics

The first experiments on brittle fracture date back to 1913, with the work of Charles E.
Inglis on a cracked glass slab. The following years, in the context of the First World War,
both brittle and ductile fracture phenomena received increasing attention, motivated by the
observations of fractures on military vehicles such as tanks. Alan A. Griffith et al. were the
first in the 1920’s to relate the amount of loading necessary to propagate a crack in brittle
materials with the elastic properties of the material [Griffith 21]. They launched a new field
of research called fracture mechanics. Although the original model developed by Griffith was
correct for brittle materials such as glass, it neglected the plastic deformation occurring at
the tip of the cracks, preventing the model to be used for ductile materials such as steel (see
Figure 1.2). His model was then extended in the 1950’s by a group working under George R.

14

Irwin [Irwin 57] at the U.S. Naval Research Laboratory during the Second World War. The
extended model of Irwin and colleagues is now used in several engineering fields to predict
failures or to determine the sizes of beams and other structures in constructions.

Figure 1.2 – The Schenectady tanker having its hull cracked almost in half while in harbor
(1944).

In the computer graphics community, the first simulations of fracture were launched in the
1980’s by Terzopoulos et al. [Terzopoulos 88], demonstrating to the community the potential
use of physically-based simulation of deformation and fracture for animation. From this point,
a variety of work has been presented to simulate surface cracks and other specific fracture
cases. A notable work on fracture in computer graphics was presented in 1999 by O’Brien
et al. [O’Brien 99], where the authors showed how conventional deformation methods are
used to produce realistic fracture patterns.

Nowadays, fracture simulation methods are numerous, and are widely used to create spe-
cial effects in movies and in video games (Figure 1.3). Large scale offline simulations of
entire buildings being destroyed and earthquakes have been demonstrated in recent movies
such as Transformers 2 [Criswell 11], or 2012 [movie2012 09]. Impressive real-time simula-
tions of brittle fracture have also been demonstrated in recent games such as Battlefield 3
[Battlefield 12].

a. b.

c. d.
Figure 1.3 – Fracture images from movies and video games. a. A building being destroyed by
an explosion in Transformers 2 [Criswell 11]. b. Earthquake simulation in 2012 [movie2012 09].
c. Shattering dishes in Ratatouille [Ratatouille 07]. d. A building being destroyed in Battlefield
3 [Battlefield 12].

Although a variety of methods are available today for the simulation of brittle fracture,
the real-time approaches can still benefit from great improvements in term of efficiency and
physical plausibility, as presented in the next paragraphs.

15

CHAPTER 1. INTRODUCTION

Real-time simulation of brittle fracture: challenges and issues

The first challenge is the modeling of fracture. Figure 1.4 shows examples of ceramic tiles that
have been broken by dropping a metallic ball at their centers. To reproduce this phenomenon,
the fracture simulation algorithm must support several features. First, the deformation of
the material due to impacts should be simulated, since it is the deformation of the material
that will cause the cracks to propagate. Brittle materials such as glass or ceramics are stiff
(common glass has a Young’s modulus of 90GPa), and small time steps (in the order of
the microsecond) must be used to simulate a detailed deformation. However, the smaller the
time step, the bigger the computational cost, which makes small time steps rarely compatible
with real-time simulations. Therefore, there is no real-time method that proposes computing
the dynamics of the deformations generated by impacts. Second, in order to reproduce the
star crack pattern observed on the tile, the simulation model must handle non-constrained
propagation of the cracks. Note that in Figure 1.4 all the cracks propagate from the location
of the impact. However, existing real-time approaches do not allow free crack propagations,
and cannot reproduce these patterns.

Figure 1.4 – Real ceramic tiles fractured by dropping a steel ball at their centers.

The second challenge concerns the efficiency of the simulations for interactive applica-
tions. Aiming at real-time performances allows the simulation to be used in any interactive
application. Interactive applications are numerous and their uses go beyond video games.
For instance, Virtual Reality aims at immersing a human operator into a virtual world, and
all the studies and experiments performed in a Virtual Reality context use real-time methods
to simulate the virtual world in which the human operator behaves. However, interactive ap-
plications provide multi-sensory feedbacks that require high frequency update of the state of
the virtual world to be understandable by a human operator (up to 1Khz for modalities such
as haptic rendering [Colgate 95]). This real-time constraint is the main reason why more
and more efficient simulation methods are constantly developed, to allow more and more
physically-based interactive simulations. Also, the dynamic fracture of the bodies present
unique challenges for the handling of the collision detection between dynamically generated
fragments. Indeed, in fracture simulations, new bodies with unpredictable shapes are created
at run-time, which reduces the chances for efficient collision pruning.

Finally, the third challenge is about the physical plausibility of the simulations. Although
the visual perception of the fracture realism is enough for animation in movies or games, the
physical plausibility is a feature required for other applications such as virtual prototyping.
However, it is hard to define a criterion of validity of the physical correctness of a fracture
simulation. For example, the two tiles of Figure 1.4 have been broken with the same condi-
tions but show different crack paths. New ways to evaluate the correctness of the fracture
simulation should thus be defined. Finally, different aspects of the fracture simulation can
be validated independently. For example, in an interactive breaking test simulation, one is
interested in knowing whether or not the tested object will fracture, but not in how it will
fracture. In a simulation of aging buildings, one will be more interested on how the material
will break, and the resulting patterns.

16

Organization of the manuscript, and contributions

Figure 1.5 – Overview of the three main axes studied in this manuscript.

The manuscript is organized around three main axes illustrated in Figure 1.5:

� Themodeling of the fracture phenomena: the study of numerical models needed to
simulate breaking bodies. Two causes of fracture are studied: impact-based fractures
(see Figure 1.1), that are caused by impact between colliding bodies, and age-based
fractures (see Figure 1.6), that are caused by the modification of the materials properties
over time. We propose a new model of the fracture state of the bodies, which is used
to define an efficient method based on modal analysis for the simulation of impact-
based brittle fracture. We also propose an efficient method that uses the same fracture
state model for the simulation of age-based fracture. We focus on models that allow
physically-based simulations to be compatible with interactive application. Therefore,
our approach is designed for people interested either in the physical plausibility of the
result to do e.g. virtual prototyping, or in the computational efficiency, or both of
them.

� The interactive simulation for fracture: methods that allow simulating a virtual
world composed of interacting breakable bodies. The interaction can be between the
bodies of the virtual world, or an interaction with an external human user. The main
problems addressed are the collision detection between the breaking bodies, and meth-
ods for interactions with haptic feedback. We propose a new collision detection al-
gorithm design for real-time brittle fracture. We also demonstrate the first proof of
concept of haptic interaction with fracturable objects, by providing new methods that
take into account the specificities of both fracture simulation and haptic rendering.

� The evaluation of the fracture models: aiming at physically plausible simulations,
means of validation and evaluation of the proposed models are studied. We present
new ways to evaluate fracture simulations, and provide new fracture data from lab

17

CHAPTER 1. INTRODUCTION

experiments to the community. This enabled us to evaluate our method w.r.t. ground
truth data, and calibrate it, to provide physically plausible and real-time fracture.

Each axis of study will be treated in a specific chapter of this manuscript.
The first chapter of this manuscript is a state of the art review of the literature on the

brittle fracture simulation and its related topics. Since the simulation of fracture is linked
to the simulation of the deformation, we present the general methods of physically-based
simulation of deformation. After this background, we present the related work on brittle
fracture simulation itself, focusing on the publications in the computer graphics field. We
end the first chapter with a review of the different related collision detection mechanisms and
methods used in real-time simulations, and on haptic interaction techniques.

The second chapter is focused on the models and methods to simulate impact-based and
age-based fracturing. We start by presenting a new model of the fracture state of a
body. We then show how we leverage this model to define efficient crack propagation
and efficient surface sampling methods. We follow by presenting a new approach based
on modal analysis to compute efficiently the deformations of impacted bodies, and decide
where the cracks should propagate, and in which direction. We end this chapter with our
contributions on the efficient modeling of age-based fracture.

Figure 1.6 – Examples of naturally observable fractures due to aging processes.

The third chapter deals with interactions with fracturable objects in virtual worlds. We
begin the chapter with the proposition of a new approach for an efficient collision detection
method for fracturing bodies. Based on a reconfigurable sphere tree and mesh-based
distance field, we show how we obtain real-time simulation of brittle fracture due to our
models. The second topic presented in this chapter is our contributions on haptic rendering
for fracturing bodies. We start with a comparison of common rigid body simulators
w.r.t haptic rendering, based on ill-conditioned scenarios and stress tests. Later, we introduce
new coupling schemes to allow the haptic interaction in virtual worlds composed of a
growing number of bodies.

The fourth chapter presents experiments and the development of a new metric for the
validation of our simulation methods. We start with the presentation of a subjective in-
terpretation of the patterns obtained through a user study. We propose analyzing
statistically the geometry of the generated fragment to define a new metric to compare
obtained fracture patterns. Finally, we present results and comparison of our simulation
results with experiments on real ceramic tiles.

18

2Background

Contents
3.1 Modeling the fracture state of a brittle body 65

3.1.1 A new model based on volumetric meshes 66
3.1.2 Efficient generation of the surface meshes from the fracture state 68

3.2 Propagating cracks, or updating the fracture state model 69
3.2.1 Fracture surface model . 70
3.2.2 Propagating the crack through the mesh . 70
3.2.3 Energy stop condition . 72

3.3 Modeling impact-based fractures . 73
3.3.1 Overview of the process . 73
3.3.2 Estimation of the contact duration . 74
3.3.3 Simulation Time Step . 75
3.3.4 Contact Force Model . 75
3.3.5 Fracture criterion . 76
3.3.6 Results . 76
3.3.7 Discussion and conclusion . 79

3.4 Modeling cracking due to aging . 80
3.4.1 Aging process overview . 81
3.4.2 Results and conclusion on the age-based fracture simulation 83

3.5 Managing the deformation of the fragments: a database approach 83
3.5.1 Precomputed Shape Database . 84
3.5.2 Mesh Descriptors . 87
3.5.3 Adaptation to Physical Simulation . 89
3.5.4 Results . 90
3.5.5 Discussion and conclusion . 92

3.6 Chapter conclusion . 93

2.1 Introduction
In this chapter, we review the previous work on fracture modeling, collision detection meth-
ods, and haptic interaction. Before presenting the previous work on fracture modeling, we
provide the required background on general physical simulation, and on the simulation of
deformation.

19

CHAPTER 2. BACKGROUND

At the end of each section, we provide a summary of the previous work organized in a table.
The tables rate the previous methods w.r.t. the main objectives of the manuscript: a real-
time, physically-based fracture simulation for interactive application. Along the comparisons,
we will use the following two criteria:

� Efficiency. Computational cost of the method. A method is twice more efficient
than another method producing the same result if it computes this result in twice less
computation time.

� Physical conformity. Differences or errors produced by a method w.r.t. the result
obtained in the real world. When the physical conformity is valid for a certain range
of application (e.g., certain type of materials), it will be explicitly specified in the text.

2.2 Notations
Along this report, we will use the following notation conventions to facilitate the reading of
mathematical expressions.

Mathematical representations

1. A scalar value will be represented in italic font. Example:

a = 0 (2.1)

2. A vector value will be represented in bold font. By default, we use column vectors
that are represented between square brackets. Examples:

v =
[
a b c

]T
or v =

 a
b
c

 (2.2)

A vector or a matrix can be transposed using the superscript vT as shown on equation
(2.2), left. Vectors can be appended with semi-colon using the following notation:

a =
[
a1 a2

]T
and b =

[
b1 b2

]T
(2.3)

p =
[

a ; b
]

=
[
a1 a2 b1 b2

]T
(2.4)

3. A matrix is represented using upper case characters. As for the vector, we use square
bracket to define matrices. Examples:

M =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 or M =
[

a b c
]

(2.5)

In (2.5), right, note that we use three column vectors a, b and c to build the matrix
M . The identity matrix of size n will be noted In.

20

2.3. FUNDAMENTALS OF PHYSICAL SIMULATION

4. A mathematical set will be denoted using calligraphic upper case characters. Example:

H = {x1;x2;x3} (2.6)

When possible, we use a subscript xi ∈ H where i is an integer value to denote the
elements of the same set H. Horizontal bars |H| = n denote the cardinality (the
numbers of elements) of the set H.

If xi represents an element indexed by i into an ordered set H, then v = [xi] represents
the column vector built using all the elements of H. Similarly, if the element xij is indexed
with two values i and j, then M = [xij] is the matrix built from the elements, i being the
row index and j being the column index into the matrix.

Differentiation

If q(t,p) is a differentiable function of time and space, we use the dot notation:

q̇ = ∂q
dt

(2.7)

to denote the time derivative of the function, and we use the subscript notation:

q,x = ∂q
dx

(2.8)

to denote a spatial derivative. The identifier after the coma represents the dimension which
is used for the derivative.

Miscellaneous

Since we are in a 3-dimensional space context, vectors are elements of R3 and matrices
elements of R3×3 if no precision is given within the text.

We use the square bracket notation around a single vector to denote the "cross matrix"
value of a vector v = [vx vy vz]T defined as:

[v] =

 0 −vz vy
vz 0 −vx
−vy vx 0

 (2.9)

2.3 Fundamentals of physical simulation

Physical simulations aim at reproducing natural physical phenomena using numerical models.
In the computer graphics field, physical simulations can be interpreted as numerical models of
mechanics theory. As such, models used in numerical simulations have a lot in common with
models defined in classical mechanics. However, the terminology used in physical simulation
(and especially in computer graphics) can differ from the terminology used in classical me-
chanics. We define in this section the fundamental terminology and models used in physical
simulation.

21

CHAPTER 2. BACKGROUND

2.3.1 Model of a physical body

A physical body is a mechanical system defined by a state vector q, representing its degrees
of freedom. The state of the body is unique at a given time, and thus can be expressed as a
function of time: q(t). For simplicity of reading, we simplify q(t) by writing it q when there
is no ambiguity. The first time derivative of the state q̇ represents the velocity of the body,
while the second time derivative q̈ represents its acceleration.

In classical mechanics, the typical scenario consists in the study of the behavior of an
isolated mechanical system. However, in computer graphics, virtual worlds are composed of
several physical bodies that can interact with each other through contacts events, or other
external events. If each body numbered i is defined by its corresponding state vector qi, the
global state q of the world can be defined as the concatenation of all the state vectors of all
the bodies:

q = [q1; q2; · · · ; qn] (2.10)

where n is the number of physical bodies composing the virtual world. More information
on the models of virtual worlds is given in section 2.6.

2.3.2 Stepping a discrete simulation forward in time

Simulating a physical body corresponds to compute its state q(t) over time. In the real world,
the body takes an infinite number of identifiable states given any interval of time, i.e., the
state function q(t) is continuous. In contrast, in numerical simulations, the state of a body is
only computed at discrete times. That is, the output of a numerical simulation is a sequence
of states {q(t0); q(t1); · · · ; q(tn)}, where ti is the time for which the ith sample of the state
q has been computed.

To simplify the writing in the following, we will denote by qi the state q(ti) at time ti.

2.3.2.1 The differential system to be solved

In our context, the evolution of the state of a body is ruled by Newton’s second law of motion:

M(q, q̇) q̈ = f(q, q̇) (2.11)

where M(q, q̇) is the mass matrix of the system, and f(q, q̇) is the sum of forces applied
on each of the degree of freedom represented in the state vector. This law of motion (2.11)
relates the acceleration q̈ of the state to the forces applied on it. The mass M plays the role
of a ratio between the acceleration and the forces applied. The lower the mass, the higher
the acceleration for the same force applied.

In practice, the force vector f(q, q̇) can be complex and unpredictable (if an external
unpredictable actor is allowed adding forces to the system). Therefore, analytical solutions
for equation 2.11 are only available for simple textbook cases. When no analytical solution
is available, a numerical integration is performed to approximate the exact solution.

22

2.3. FUNDAMENTALS OF PHYSICAL SIMULATION

2.3.2.2 Numerical integration

The goal of numerical integration is to compute the integral of a function f(t) with the
following approximation: ∫ t

0
f(t)dt ≈

∑
0<i<n

f(ti)∆t (2.12)

The integration step ∆t is a crucial parameter in the integration. The smaller it is, the
better the accuracy of the integral, but the higher the computational cost. The choice of the
integration step in a numerical simulation is not straight forward, and has great consequences
on the outcome of the simulation.

In the case of physical simulation, we deal with a second-order differential equation, and
a double integration is needed. The usual workaround consists in writing (2.11) down to a
set of two coupled differential equations:

q̇ = v (2.13)
v̇ = M−1f(q,v) (2.14)

where v is an intermediate variable representing the velocity of a body. Applying a
numerical integration on this coupled system involves summing the acceleration M−1f(q,v)
to obtain new velocities, and summing the velocities will yield to the new state. In computer
graphics, various versions of integration have been studied, and we detail here three common
ones: the Euler explicit integration, the Runge-Kutta steps, and the Euler implicit integration
method. More information on integration methods used in Computer Graphics can be found
in [Witkin 01b, Müller 08b].

Explicit Euler integration

Euler’s explicit integration method is a simple way to integrate from state i at time ti to
state i+ 1 at time ti+1:

qi+1 = qi + ∆tvi (2.15)
vi+1 = vi + ∆tM−1f(qi,vi) (2.16)

The new state qi+1 of the body is computed using its previous state qi and the current
velocity vi, while the new velocity is computed using the current force applied on the system
and the mass of the body.

Due to the errors brought by this method along the integrations, the size of the time
step ∆t must be chosen carefully in order to avoid the system to become unstable. A slight
modification of the explicit Euler integration method consists in using the new velocity vi+1

instead of the current one vi:

qi+1 = qi + ∆tvi+1 (2.17)
vi+1 = vi + ∆tM−1f(qi,vi) (2.18)

In this case, an order is imposed on the resolution of the system. The new velocity
must be computed before the new state. Although small, this modification can lead to great
improvements on the stability of the simulation.

23

CHAPTER 2. BACKGROUND

Runge-Kutta steps

In explicit Euler integration, the acceleration is evaluated once, at time ti, and its value is
integrated twice, leading to a possible great error if the acceleration function varies a lot
between time ti and time ti+1. The Runge-Kutta method enables to reduce the integration
error by evaluating several times the force function (giving several accelerations values) at
intermediates points. We describe here the Runge-Kutta stepping of order 2 (also called
the mid-point method), but the order can be chosen arbitrarily, and the higher the order of
the Runge-Kutta step, the higher the precision of the integration (but also the higher the
computational costs).

Let qe be the state at time ti+1 computed using Euler’s explicit integration (we thus have
qe = qi + ∆tvi). The Runge-Kutta methods propose to take into account the variation of
the acceleration function (coming from the variation of the force function) by evaluating it
at intermediate points. At order 2, a middle state qmid is computed as:

qmid = qi + qe
2 (2.19)

vmid = vi + ve
2 (2.20)

The state qmid is then used to compute the force for the integration:

qi+1 = qi + ∆tvi (2.21)
vi+1 = vi + ∆tM−1f(qmid,vmid) (2.22)

The implicit Euler method

Simple Euler integration and Runge-Kutta steps are explicit methods because they are ex-
pressed on known quantities at time ti to extrapolate the final value at time ti+1. The main
weakness of explicit methods is the inability to cope with stiff equations with reasonable
integration step size ∆t. Implicit methods propose tackling this problem by evaluating the
derivative (the force function) at time ti+1, namely using the state qi+1 and the velocity vi+1.
For a good introduction and understanding of the issues of explicit and implicit Euler inte-
gration, we refer the reader to [Baraff 01, Baraff 98]. The most common implicit integration
is the implicit Euler integration method, which proposes solving for the following system:

qi+1 = qi + ∆tvi+1 (2.23)
vi+1 = vi + ∆tM−1f(qi+1,vi+1) (2.24)

In (2.24) the new velocity is computed from the acceleration at time ti+1 which is unknown
since the state or velocity at ti+1 is not known. While in (2.23), the new velocity must be
known in order to compute the new state at time ti+1. This system expresses the fact that
we want to find a point qi+1 that is such that if we would run the simulation backward (and
using explicit integration), we would go back to point qi+1 after a time ∆t (namely, from
(2.23), we can write qi = qi+1 −∆tvi+1).

Unless f(q,v) happens to be a linear function of q and v, equation (2.24) cannot be
solved directly. Introducing two new variables ∆q = qi+1 − qi and ∆v = vi+1 − vi, it is

24

2.3. FUNDAMENTALS OF PHYSICAL SIMULATION

possible to replace f(qi+1,vi+1) by its first order approximation, using the first order Taylor
expansion of the function:

f(qi+1,vi+1) = f(qi + ∆q,vi + ∆v) = f(qi,vi) + ∆q ∂f
∂q + ∆v ∂f

∂v (2.25)

Rewriting (2.24) with the first order approximation of the force yield:

∆v = ∆tM−1
(

f(qi,vi) + ∆q ∂f
∂q + ∆v ∂f

∂v

)
(2.26)

Replacing ∆q by ∆q = h(vi + hv̇i+1) and rearranging gives:(
I −M−1∆t ∂f

∂v −M
−1∆t2 ∂f

∂q

)
∆v = ∆tM−1

(
f(qi,vi) + ∆t ∂f

∂qvi
)

(2.27)

Using (2.27) one can solve for ∆v using an appropriated linear solver such as conjugate
gradient method [Shewchuk 94] or Gauss iterative method. Once ∆v is known, vt+1 and
qt+1 can be immediately computed using (2.24) and (2.23) respectively.

Stepping forward the simulation using implicit integration techniques is computationally
more expensive, but allows performing a numerical simulation with much higher time steps
without loosing stability. The extra cost coming from the solving of the linear system at each
time step is often compensated by the gain obtained by taking bigger integration steps ∆t.
The improvement brought by implicit integration method can be explained through the fact
that it is exploiting deeper order derivatives of the state function (through the derivative of
the force function), allowing it to anticipate the future variations and use bigger integration
steps.

2.3.3 Example: 3-D simulation of a rigid body

Rigid bodies are one of the simplest model for physical simulation. Their simplicity combined
with their ability to reproduce fairly well the dynamics of stiff bodies made them very popular
in the computer graphics community. Rigid bodies are also a good introductory example for
physical simulation. We present here the classical model of rigid bodies, and its dynamic
laws of motion.

Model of rigid body

A rigid body is a body that cannot deform (a body of infinite stiffness). With the assumption
of perfect rigidity, the state q ∈ R6 of a rigid body can be expressed using six scalars: 3 scalars
for its translation, and 3 scalars for its rotation. If we express the rigid body as an infinite
set of particles with position xv, and density ρv, a particular point x called center of mass
can be defined for this body as:

x = 1
m

∫
V
ρvxvdv (2.28)

Where V is the volume of the bodies and m =
∫
V ρvdv is the total mass of the body.

The center of mass of a rigid body is a special point from which can be expressed the
position, rotation and velocities of the body and greatly simplify the further computations.
For instance, when a rigid body is freely spinning, the axis of rotation of this spinning motion
will pass through its center of mass. In the following, we will use four variables to define the
dynamic motion of the rigid body

25

CHAPTER 2. BACKGROUND

� The position x ∈ R3 of the body’s center of mass (translation vector from the origin).

� The linear velocity v = ẋ of the body.

� The orientation of the body R ∈ R3×3, stored as an orientation matrix.

� The angular velocity ω ∈ R3.

Here, we use the matrix representation of the rotation, which is a common representation
of orientation in computer graphics. However, numerous ways to represent a 3-D orientation
have been studied, each one having it advantages and drawbacks.

Mass, forces and integration

To simulate the motion of the rigid body, we can use the concepts presented in the previous
section. Namely, the acceleration q̈ of the body follows the Newton’s rule M q̈ = f . However,
we have still not defined the mass properties M of the body, the coefficient between the
force applied on a body and its acceleration. For a rigid body, the mass information can be
divided in two parts when studied at the center of mass of the body: a translational part,
and a rotational part. For the translational part, the total mass m of the body can be used
to link the acceleration and a force applied at the center of mass of the body:

mẍ = f trans (2.29)

where f trans ∈ R3 in a force applied at the center of mass x of the body. Applying
integration techniques presented in the previous section, we can write the equation for the
simulation of the translational motion:

xi+1 = xi + ∆tvi (2.30)
vi+1 = vi + ∆tm−1f trans (2.31)

The computation of the rotational motion of the body is a bit less straight forward. The
resistance of the body to an angular force f rot (called a torque) depends on the direction of
f rot. Therefore, the mass equivalent tom for rotational motion cannot be described by a single
scalar value. Instead, a tensor J called inertia matrix is used to represent the distribution of
the mass around the center of mass. This tensor is computed as:

J =
∑
i

−mi[ri][ri] (2.32)

where ri = xi−x denotes the displacement from the center of mass to a particle position
xi. For convenience, we compute Jinit the inertia matrix for an rotation R = I3. Then, it can
be shown that for any rotation matrix R, the current inertia matrix can be retrieved from
Jinit as:

J = RJinitR
T (2.33)

The dynamics of the rotational part of the body can now be written as:

Ri+1 = [∆tωi]Ri (2.34)
ωi+1 = ωi + ∆tJ−1f rot (2.35)

26

2.4. PHYSICAL SIMULATION OF DEFORMATION

Note how the rotation matrix is updated in equation (2.34). A simple sum is no longer
possible to update the rotation, and a specific update is needed for each manner of represent-
ing the rotation. In the case of rotation matrices, the angular velocity ω turns each of the
axis of the rotation matrix to get a new matrix Rω = [ω× rx ω× ry ω× rz]. Factorizing, we
get Ṙ = [ω]R.

2.4 Physical simulation of deformation

Although rigid bodies are very useful to efficiently simulate the general motion of stiff bodies,
they are unable to simulate the deformation of the bodies due to loading forces. Since the
fracture phenomenon is intimately related to the deformation phenomenon, we present in
this section the main models used in computer graphics to simulate deformation. In the next
section, we will explain more formally the link between the deformation and the fracture.

2.4.1 Background on continuum mechanics

Continuum mechanics state as main hypothesis that the physical quantities within the matter
of a solid is a continuous function of position and time. At a given time, the spatial occupation
X ⊂ R3 of a body is a connected subspace of R3 (in 3 dimensions). Physical quantities can be
associated to each material point x ∈ X of the body. In the Lagrangian approach, each point
is tracked over time, and each physical quantity inside the continuum body can be expressed as
a function of position and time. For example, if one is interested in modeling the propagation
of the temperature inside a material using the continuum assumption, a temperature function
τ(x, t) can be defined to track the temperature of each material point over time. Thanks to
this model, using a equations of dynamics for the temperature propagation involving spatial
∇τ derivatives and temporal derivative τ̈ could be possible using a common mathematical
framework.

In order to measure the deformation, we define a function φ(x, t) ∈ R that tracks the
position of the material point x into a constant world frame coordinate at time t. At time
t = 0, we consider that the body is at its rest state and does not store any internal potential
energy. For ease of writing, we denote x0 the position φ(x, 0) of the material point x at time
0:

x0 := φ(x, 0) (2.36)

From the position of each point, it is possible to define a displacement field U ⊂ R3×R3,
as:

u(x, t) = φ(x, t)− x0 (2.37)

The displacement of a point x represents the difference of position between its current
position φ(x, t) at time t and its initial position x0. Working with the displacement function
u instead of the position function φ yield to some simplification in the writing of the following.
Figure 2.1 illustrates the position and displacement functions on a body being deformed.

The position and displacement functions provide a basis to measure the deformation of
the body, and applying theory of elasticity and plasticity on it.

27

CHAPTER 2. BACKGROUND

Figure 2.1 – A body in its initially undeformed state (in blue) at time t = 0, and its current
deformed state (in red) at time t > 0. The world coordinates of the material point x (repre-
sented by the black dot) are defined by the function φ, while the function u(x, t) = φ(x, t)−x0

gives the displacement of the point x from its initial position to its current one.

2.4.1.1 Measure of the deformation: the strain

In mechanics, the term that denotes the deformation of a body is the strain. Given a direction,
the strain is a measure of a relative elongation of the material. It can be thought as a
percentage of elongation of the material in a given direction. For example, a beam of initial
length l0 being uniformly stretched to a length l along the x axis coordinate will have a strain
of ∆l/l0 (∆l = l − l0) along this axis (see Figure 2.2).

Figure 2.2 – Illustration 1-D of the strain. The beam with a rest length of l and a section
area of a is stretched by a force f in the x axis direction. The variation of length is ∆l. Under
a uniform deformation, the stress of any point of the beam along the x axis is ∆l/l0.

However the strain of the points along another axis will be different (e.g. it is zero along
the y axis). Therefore, a single scalar is not enough to characterize the strain information of
a point. In three dimensions, the strain state ε(x, t) of a point at time t can be related to its
displacement gradient ∇u(x, t) using a tensor of order 2:

εG(x, t) = 1
2

(
∇u(x, t) + [∇u(x, t)]T + [∇u(x, t)]T ∇u(x, t)

)
(2.38)

εC(x, t) = 1
2

(
∇u(x, t) + [∇u(x, t)]T

)
(2.39)

εG is the so-called Green-Lagrange non-linear tensor, and εC is its linearized version.
Denoting the components of u(x, t) = [u v w]T , the displacement gradient ∇u(x, t) is written
as:

∇u(x, t) =

 u,x u,y u,z
v,x v,y v,z
w,x w,y w,z

 (2.40)

28

2.4. PHYSICAL SIMULATION OF DEFORMATION

2.4.1.2 Stress tensor and strain-stress relationship

The stress state σ(x, t) of a point gives an indirect information on internal forces acting on
it. Taking the previous example of the beam, the force f per area a acting on points of the
beam is linked to the strain (the relative elongation ∆l/l0) of the beam. Depending on the
properties of the material of the beam, the function that links ε and σ can be various. If the
material of the beam is Hookean, the stress/strain relationship is linear:

f

a
= e

∆l
l0

(2.41)

Where f is the force acting on area a (the section of the beam) along the x axis (see
figure 2.2). The scalar e linking the strain to the stress is called the Young’s modulus and
represents the stiffness of the material. More generally, for Hookean material, the stress is
linked to the strain via a linear relation E:

σ(x, t) = E εC(x, t) (2.42)

The relation between the stress and the strain is dependent on the material property,
and is not necessarily linear. An example of non-linear model is the Saint Venant-Kirchhoff
model where the stress, called second Piola-Kirchhoff stress, is defined using the non-linear
Green strain εG as:

S = λTrace(εG)I3 + 2µεG (2.43)

where λ and µ are the so-called Lamé constants, two properties defining the deformation
behavior of the material. For more information on non-linear deformation, we refer the reader
to [Bonet 97].

For a material point x, the stress is a 3 by 3 symmetric matrix tensor:

σ(x, t) =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 (2.44)

From this stress tensor, one can compute a force acting on an area a in a direction n as:

f

a
= σ(x, t) · n (2.45)

By extension, from the stress tensor of a point x, it is possible to compute a body force
f stress(x, t) acting on this point as:

f stress(x, t) = ∇·σ(x, t) =

 σxx,x + σxy,y + σxz,z
σxy,x + σyy,y + σyz,z
σxz,x + σyz,y + σzz,z

 (2.46)

2.4.1.3 Dynamics of a deformable body

The strain field ε can be computed from the displacement field U with equation (2.38) or
equation (2.39). Once we have ε, the stress field O is computed with a chosen constitutive
law. With the stress field, a force field is computed thanks to (2.46). At this point, the
fundamental law of dynamic f = mẍ for each point x can be used. However, the mass m of

29

CHAPTER 2. BACKGROUND

an infinitesimal material point is not defined. Instead, the density ρ(x, t) of the material at
point x is used:

ρ(x, t)ẍ = f stress(x, t) (2.47)

Although it is mathematically possible to model the deformation as (2.47), this equation
has no general analytical solution. Indeed, depending on the initial boundary conditions
imposed by the geometries of the bodies, the mathematical problem to solve has no ana-
lytical solution. In this case, numerical models based on a discretization of the body allow
obtaining an arbitrary close approximate solution. A number of numerical models have been
derived from continuum mechanics, based on spatial discretization of the studied bodies, and
approximating the behavior of perfect continuum bodies, as presented in the following.

2.4.2 Models of deformable body for numerical simulations
In the computer graphics community, models for deformation has been introduced a bit
more than twenty years ago by Terzopoulos and colleagues [Terzopoulos 87], [Terzopoulos 88]
proposing methods to simulate elastic and plastic deformation, and fracture. We review here
the most common models used in the literature, and complementary information on defor-
mation modeling and simulation can be found into the surveys [Gibson 97] or [Nealen 06].

2.4.2.1 The Finite Element Method (FEM)

The key idea of the Finite Element Method (FEM) is to discretize the volume of the body
into a set of nodes xi, and into a set of n elements ei(1 ≤ i ≤ n), which form a partition of the
volume of the body (see Figure 2.3). Inside the elements, a mapping is used to interpolate
the needed quantities such as strain and stress.

Figure 2.3 – A 2-dimension deformable body (a) and its decomposition (b) into arbitrary
chosen elements ei. Each node xi can be shared by several elements.

As an example, let us choose a point x ∈ R3 which is inside an element e, itself having
four nodes of position x1, x2, x3 and x4 (e.g. a 3-dimensional tetrahedron) in the undeformed
state. We can express the vector x as a linear combination of the nodes coordinates using
four barycentric coordinates:

x = x1b1 + x2b2 + x3b3 + x4b4 =
[

x1 x2 x3 x4
]

b = Ab (2.48)

In the deformed state at time t, the same nodes have different coordinates, which are
φ(x1, t), φ(x2, t), φ(x3, t) and φ(x4, t). In order to lighten notation, we will omit the time
parameter using e.g. φ(x1) instead of φ(x1, t). The position of x in the deformed coordinates

30

2.4. PHYSICAL SIMULATION OF DEFORMATION

is computed by interpolation using the same barycentric coordinates as in the undeformed
state:

φ(x) = φ(x1)b1 + φ(x2)b2 + φ(x3)b3 + b4φ(x4) =
[
φ(x1) φ(x2) φ(x3) φ(x4)

]
b = Bb
(2.49)

From those two identities, we have b = A−1x and b = B−1φ(x), yielding B−1φ(x) =
A−1x, or:

φ(x) = BA−1x = Px (2.50)

Note that A−1 is constant over time since it is built from the undeformed position of the
nodes. Since P ∈ R3×3 is a linear mapping for position, the gradient of the displacement field
is

∇u(x) = P − I (2.51)

for any point x within the element. In other words, the gradient of the displacement field
is constant within an element, yielding to a constant strain field and stress field per element.
For convenience, we will denote by σe the stress tensor of an element e.

From the stress and strain, the potential elastic energy η of each point can be computed
as:

η(x, t) = 1
2Tr(σ(x, t)ε(x, t)) (2.52)

From the partial derivative of the potential elastic energy integrated over the volume ve
of the element, we can compute the internal force f i acting on the node i of this element with
respect to the node current position φ(xi) as:

f i = ve
2 A−1GσeA

−1T GT φ(xi) (2.53)

where the matrix A is defined in (2.48) as the matrix built using the undeformed coordinates
of the nodes of the element, and G is defined as:

G =


1 0 0
0 1 0
0 0 1
0 0 0

 (2.54)

An alternative approach to compute nodal forces called Finite Volume Method (FVM)
[Teran 03] consists in using equation (2.45) to compute a force per face from the stress tensor
σe of the element e. For example, a triangle face with vertices (x1,x2,x3) will generate a
force f face for the surface of:

f face = σenface · aface = σe [(x2 − x1)× (x3 − x1)] (2.55)

where nface is the vector normal to the face, and aface is the area of the face. The force
computed for each face is then distributed on all the nodes composing the face, as shown on
figure 2.4.

31

CHAPTER 2. BACKGROUND

Figure 2.4 – Nodal force computation in the finite volume method. A force is determined
for the face (x1,x2,x3) thanks to stress value of the tetrahedron element, and the area and
orientation of the face. The force f computed is distributed equally on the nodes xi of the face.
The final force for a node is the sum of all forces from faces it is adjacent with.

The stiffness matrix

If implicit integration methods presented in section 2.3.2.2 wants to be used with the finite
element method, the jacobian of the nodal forces with respect to the position must be com-
puted. This jacobian is stored in a matrix K called stiffness matrix, presented along this
section.

Using either equation (2.53) or equation (2.55), it is possible to deduce the force acting
on node i of an element e directly from the deformed positions of the nodes of the same
element e. Therefore, let us write f(x0

i ,xj) as the force acting on node i at its initial position,
knowing the position x of the node j. Now let us define K0

ij as the gradient of f(x0
i ,xj) with

respect to the position xj of the node j:

K0
ij = ∂f(x0

i ,xj)
∂xj

(2.56)

We can now write the linear approximation of the values of the forces for a new position
of node φ(xj) = x0

j + u(xj) as:

f(x0
i ,φ(xj)) = f(x0

i ,x0
j + u(xj)) (2.57)

= f(x0
i ,x0

j) +K0
iju(xj) +O(|u(xj)|2) (2.58)

= K0
iju(xj) +O(|u(xj)|2) (2.59)

Note that f(x0
i ,x0

j) = 0 in (2.58) since no force is generated from the undeformed state
of the element. Equation (2.59) highlights that the first order approximation can be written
in terms of the displacement field. In the case of a 3-dimensional tetrahedron, let us define
ue = [u(x1) u(x2) u(x3) u(x4)]T ∈ R12 as the concatenation of all the displacement vectors
of the four nodes of the tetrahedron. Since the force acting on node i is the sum of all forces
contribution of the elements of the nodes, we can obtain a first order approximation of the
force f0

i acting on node i using this gradient as:

f0
i =

∑
1≤j≤4

f(x0
i ,φ(xj)) =

∑
1≤j≤4

K0
iju(xj) = K0

i ue (2.60)

where K0
i = [K0

i1K
0
i2K

0
i3K

0
i4] ∈ R3×12 is the matrix built from the four gradients affecting

32

2.4. PHYSICAL SIMULATION OF DEFORMATION

the node i. Now, if we define f0
e = [f1 f2 f3 f4]T ∈ R12 as the concatenation of the four force

vectors of each node of the tetrahedron, we can write:

f0
e = K0

eue (2.61)

where K0
e = [K0

1 K
0
2 K

0
3 K

0
4] ∈ R12×12 is built from the four K0

i matrices. The matrix K0
e

is called the stiffness matrix of the element e.
Similarly, considering all the elements of a discretized deformable body, it is possible to

assemble a global stiffness matrix K0 from all the K0
e matrices of each element (since a node

can belong to several elements, the assembling of the matrices K0
e has overlapping parts that

are summed up to obtained K0). Defining a global force vector f0 as the concatenation of all
the forces f0

e and a global displacement vector u as the concatenation of all the displacement
vectors ue, we can write:

f0 = K0u (2.62)

The matrix K0 is evaluated from the undeformed state at time t0. In order to do the
simulation, the matrix must be recomputed at each step, from the state at time ti. Since
the stiffness is computed from the current state of the body, it can be also expressed from
its displacement. We write K(u) the stiffness matrix computed for the state stored in the
displacement vector u. Therefore, equation (2.62) can be written in a general form as:

f(u) = K(u) u (2.63)

The evaluation of K(u) for some configuration u can lead to numerical problem if some
elements are ill-conditioned. Methods that compute robust nodal forces based on the defor-
mation gradient have been proposed [Irving 04, Nesme 05], allowing recovering from inverted
or ill-conditioned elements .

Computing the stiffness matrix can be computationally costly. If one is interested in
modeling only small deformations, then the stiffness matrix can be precomputed only once at
the rest state, and used unchanged for small deformed states. This technique is called linear
FEM. Using linear FEM for big deformation lead to serious artifacts, as presented in Figure
2.6). A trade-off between linear FEM and classical FEM exists through the introduction of
corotational formulation, as presented in the following.

Corotational formulations

It is possible to avoid artifacts of Figure 2.6 produced by linear FEM, by separating the
rigid transformation from the non-rigid deformation when computing the forces acting at
each node. This method consists in finding the rotational part of an element, and applying
the force computed on the unrotated state. The principle of extracting the rotation part is
called corotational formulation. In [Müller 02], a rotation information is retrieved at each
node, and the authors mention that ghost forces appear due to the method used to retrieve
the rotation matrices Ri for each node. The corotational method has then been extended
to element-based (see e.g. [Etzmuβ 03, Parker 09]), in order to avoid artifacts of node-based
formulations.

To understand how corotational formulation works, let us remind the element based com-
putation of forces f e form the displacement field ue:

f e = Keue (2.64)

33

CHAPTER 2. BACKGROUND

It is possible to find a 3 × 3 rotation matrix Ri which represents the rotational part of
a deformed node i. Figure 2.5 shows a 2D example where a deformed triangle is unrotated.
The nodal forces are computed using unrotated node positions R−1

i φ(xi) of each node. Most
of the time, we choose to have the same rotation matrix for each node of the same element e.
This enables to write an element-based rotation using a 12× 12 matrix Re, which is formed
putting 16 (4 in the width, and 4 in the height) copies of the 3× 3 rotation matrix Ri. The
nodal force computation now becomes:

f e = ReKeR
−1
e ue (2.65)

Namely, the displacement field is first unrotated. Local forces are then computed using
the element stiffness matrix Ke, and the forces are transformed back into the rotated state
of the deformed element.

Figure 2.5 – Principle of the corotational formulation. A rotation matrix Ri is retrieved for
each node (or for each element) in order to cancel the rigid rotation of the deformed body
(in blue) into an unrotated state (in red). The nodal forces are computed from the unrotated
state (canceling the artifacts of linear FEM) and are then transformed back into the rotated
deformed state.

There are several ways to determine the rotation matrix Re. It can be found from the
transformation matrix P of the element defined in equation (2.50) using e.g. Gram-Schmidt
method or polar decomposition [Müller 04a]. Corotational formulations enable fast and sta-
ble simulations of large deformations, without the artifacts of linear FEM presented in the
previous section (see also Figure 2.6).

Figure 2.6 – Deformable beams attached to a vertical wall and deforming under gravity.
Simulation using non-linear (green), corotational (blue) and linear (red) FEM. Using a longer
bar, the non-linear FEM produces ill-conditioned elements for large deformations, the linear
FEM shows a large drift, while the corotational FEM remains stable and produces a visually
realistic deformation. Images taken from [Müller 02].

34

2.4. PHYSICAL SIMULATION OF DEFORMATION

Introducing plastic deformation

So far, we related the force applied to a node directly from its displacement, i.e. from its
deviation from its original position, as depicted on equation (2.62) or (2.63). This model
corresponds to elastic deformation only (the higher the deformation, the higher the elastic
force magnitudes). In order to take into account plastic deformation, it is possible to set a
limit on the deformation of a node, and to set the current deformed state (or an interpo-
lation between original and deformed states) as the new undeformed state. However, this
approach has several immediate drawbacks. First, the new undeformed state can have some
ill-conditioned elements, and second, since we have a new undeformed reference position, we
must recompute the stiffness matrix K each time a plastic deformation occurs.

Müller and Gross [Müller 04a] propose an alternative way to avoid these problems. The
reference initial undeformed state remains the same during all the simulation. From the
difference between the reference state and the current state, a strain value εtotal is computed
using equation (2.39). The total strain is actually the sum of the current plastic strain noted
εplastic and elastic strain noted εelastic. We now use the superscript "total" because we will
differentiate elastic and plastic strain:

εtotal = εplastic + εelastic (2.66)

Starting with an initial value of 0 for the plastic strain, the authors propose updating the
strain values using the following rules:

1. Compute εtotal using (2.39)

2. εelastic ← εtotal − εplastic

3. if ||εelastic||2 > cyield then εplastic+ = δt× ccreep × εelastic

4. if ||εplastic||2 > cmax then εplastic× = cmax/||εplastic||2

Three parameters which are cyield, ccreep and cmax give control to respectively the yield
point of the material, the velocity of the plastic absorption, and the maximum plastic defor-
mation. In other words, if the elastic deformation is above cyield, then the plastic strain stores
at each time step some elastic deformation, with a limit cmax on the plastic deformation.

Keeping at all time a plastic strain and an elastic strain allows computing separately
plastic and elastic forces that act on the reference body frame. This enables to work always
on the same reference state without having to recompute the stiffness matrix.

2.4.2.2 Meshless models

In meshless models, a body is spatially discretized into a set X of points but, contrary to the
finite element methods, there is no connectivity information on the points. In that context,
the continuous quantities of the continuum at an arbitrary point x are retrieved using shape
functions ϕi(x) that enable to interpolate the quantity value at point x from the known
values at nodes xi. Taking the example of the displacement, it is possible to retrieve the
displacement u(x) of a point in function of the displacement of the discrete nodes as:

u(x) =
∑
i∈X

ϕi(x)ui(x) (2.67)

In mesh free methods, the volume of the body is sparsely sampled, and each node can a
priori act on each point of the continuum. Therefore, the shape function of node i is formed

35

CHAPTER 2. BACKGROUND

through kernel functions w(r, h), which is maximal when r (a distance value) is zero, and
zero when r > h. More information and how ϕi(x) is formed in meshless methods can be
found in [Pauly 05]. An example of kernel function given in [Müller 04b] is:

w(r, h) =
{

315
64πh9 (h2 − r2)3 if r < h

0 otherwise

}
(2.68)

For convenience, we denote by wij = w(|xj−xi|, hi) the value of the kernel function using
the distance between particles i and j. The value wij gives an indication on the power of
interaction between node i and j (note that if |xj − xi| > hi, then wij = 0, meaning that
node i and j do not interact).

In [Müller 04b], Müller et. al. proposed a meshless method to simulate elastic and
plastic deformation based on continuum mechanics. They propose using an estimation of the
displacement gradient based on a least square minimization. Decomposing the displacement
vector using u(xi) = [ui vi wi]T , we can write a component wise minimization process. The
principle is to minimize an error function weighted by the kernel function wij and given by:

e =
∑
j∈X

(ũj − ui)2wij (2.69)

where ũj is a first order accurate predicted displacement based on the displacement gra-
dient ∇ui:

ũj = ui +∇ui(xj − xi) (2.70)
The optimal solution for ∇ui appears to have the following form:

∇ui = A−1
i

(∑
j ∈ X (uj − ui)(xj − xi)wij

)
(2.71)

where Ai is the moment matrix around node i (that can be precomputed). The gradients
for the two other components of u(xi) (vi and wi) can be computed similarly, and the threes
gradients are assembled to obtain the Jacobian ∇u of the displacement field. From ∇u, a
strain and stress tensor can be computed. The forces applied at each node are deduced from
the strain energy.

More recently, sparse meshless models have been proposed by Faure et al. [Faure 11] to
accurately simulate deformation of heterogeneous bodies in real time, with a few control
nodes. Their method relies on a volumetric map of the material properties and a number of
frames to interpolate non-linearly the physical quantities inside the material, and perform an
efficient and controllable simulation.

Shape matching

An alternative and non-physically motivated approach for simulating deformation has been
proposed in [Müller 05]. The authors present a method that he calls shape matching to
simulate the deformation of a body represented by a particle system. The main principle
of shape matching is to make the undeformed state of the particle system to "fit" with the
deformed particle system, in order to defined so-called goal positions from which forces are
deduced on each particle to make the system retrieve its initial shape (see Figure 2.7).

A possible way to find the goal positions gi is to minimize the sum of the squared distance
of the goal position to the deformed position (least square minimization) as:∑

i∈X
mi (gi − φ(xi))2 (2.72)

36

2.4. PHYSICAL SIMULATION OF DEFORMATION

Figure 2.7 – Shape matching technique overview. (a): The undeformed state of the system
of particles, defining the initial shape of a deformable body. (b): The system of particles has
been deformed, and a rigid transformation is found that transform the xi into the gi. The
points gi represent the best "fit" of the undeformed state into the deformed state. (c): From
the positions gi, called the goal position, forces are applied on the deformed particles, so that
the initial shape is retrieved.

under rigid transformation constraints on the gi. In (2.72), X is the set of particles, and
the minimization is weighted using the mass mi of each particle i. We express each goal
position gi in terms of the undeformed position xi of the particle i, the center of mass x of
the particle system, a translation t and a rotation R.

gi = R(xi − x) + t (2.73)

First, the particle position xi is rotated around the center of mass of the undeformed state,
and then translated with t. Substituting (2.73) into (2.72) gives the following expression to
minimize: ∑

i∈X
mi [(R(xi − x) + t)− φ(xi)]2 (2.74)

The unknowns are the translation vector t and the rotation matrix R. The optimal
translation t is the center of mass of the deformed position:

t =
∑
i∈X miφ(xi)

m
(2.75)

where m = ∑
i∈X mi is the total mass of the body. The rotation matrix is not so straight

forward to determine. The method proposed by Müller is to relax the problem, finding an
optimal linear transformation matrix A that transforms the positions xi − x to fit with the
positions φ(xi) − t. From the optimal transformation A, the needed rotational part R can
be extracted (e.g. with a polar decomposition). Once we know t and R, the goal positions
gi are computed using (2.73)

At each simulation step a force f i, which is proportional to φ(xi)− gi, is applied on each
particle. To allow arbitrary linear deformations (rather than pure rotation and translation),
the result can be extended using the following formulation for goal positions:

gi = (βA+ (1− β)R) (xi − x) + t (2.76)

Where β is a control parameter that tells how fast the body will retrieve its initial shape.
Similarly, it is possible to allow quadratic deformation by replacing the linear transformation
matrix A with a more general 3×9 quadratic deformation matrix Ã, that has to be optimized
with respect to (2.72).

37

CHAPTER 2. BACKGROUND

Since the shape matching technique works directly on position of the particles, it is
unconditionally stable. Moreover, the optimal solution for A or Ã are computationally cheap
to compute, which makes the shape matching suitable for real time simulation.

2.4.2.3 Mass-spring models

Mass spring models are a simple way to simulate deformations of volumetric or thin bodies.
The main idea is to spatially discretize the matter into a finite set P of n particles i ∈ P (1 ≤
i ≤ n). Each particle i has a mass mi and a position xi ∈ R3. The particles are connected
with springs s ∈ S (1 ≤ s ≤ m) (S being the set of m springs constituting the network).
Each spring s has a stiffness ks, a damping factor ds, a rest length l0s, and two more scalars
representing the index of the two particles that are linked with this spring.

The particles are submitted to the classical dynamic equilibrium ẍi = mif i where f i ∈ R3

is the total force acting on particle i. We can decompose f i into f i = f exti + f spri where
f exti are the external forces such as gravity or collision forces, and f spri are internal forces
of the body coming from spring network, both acting on particle i. If J ⊂ R is the set of
particle indexes which are neighbor of particle i (i.e. which has at least one spring linking
with particle i), we can write:

f spri =
∑
j∈J

[(
ks(|xj − xi| − l0s)

|xj − xi|
(xj − xi)

)
−
(
ds(ẋj − ẋi) · |xj − xi|

(xj − xi)

)]
(2.77)

Into the sum of (2.77), the first left term in parenthesis represents proportional force
acting along the direction of the spring and proportional to the difference of length between
the current length and rest length of the spring. The right term is the damping factor which
is proportional to the velocity of the variation of the spring length. Finally, the scalar s is
the index of the spring linking particle i to particle j.

Mass spring networks were the first models used to simulate deformation, and are widely
used due to their simplicity and their cheap computation requirements [Gibson 97]. In com-
puter graphics, mass spring network have been used for rope, cloth [Baraff 98], skin, and
volumetric bodies deformation and fracture [Hirota 98]. Its main drawback comes from the
fact that the behavior of the simulated body is dependent of the springs disposition, stiffness
and damping factor. Also, maintaining volumetric constraints such as volume conservation
cannot directly be handled by mass spring systems. Those drawbacks make spring network
model very hard to use when one has to tune the network and the numerous coefficients until
having the desired behavior.

2.4.3 Reduced deformable models

2.4.3.1 Introduction

Reduced deformable models purpose is to express the initial state q ∈ Rn of a body using a
reduced number of degrees of freedom (DOF) state z ∈ Rm (m < n) and a set of modes of
deformation stored in a matrix W ∈ Rn×m, with the following relation:

q = Wz (2.78)

Each column of the n × m matrix W is a vector of n scalars representing a mode of
deformation. Namely, it will represent the state taken by the body if the corresponding value

38

2.4. PHYSICAL SIMULATION OF DEFORMATION

Figure 2.8 – Example of reduced deformable model on a small system. To be read left to right,
top to bottom. A system with 4 DOFs is reduced in 2 DOFs with two modes of deformation
(mode 1 in red, and mode 2 in green).

in the reduced state z is non-zero. The reduction of a small 4-DOFs system is illustrated on
Figure 2.8. Complementary information on reduced models can be found in [Barbič 07a].

The immediate advantage in model reduction is the simplification of a system with a
potentially large number of DOF to a system with a lower number of DOFs, leading to
potentially great computational savings during the simulations. On the other hand, the range
of deformation allowed using a reduced state is lower than the initial range of deformation
allowed with the full dimension of the state q.

The choice of the reduction basisW (i.e. the set of modes of deformation) depends on the
targeted application and the amount of approximation tolerated. In the following, we present
a commonly used reduction basis defined from the study of the dynamics of deformable bodies,
namely the modal basis computed using modal analysis.

2.4.3.2 Modal analysis

The differential equation expressing the dynamics of a deformable body can be written in a
linear version as:

Ku +Du̇ +M ü = f (2.79)

where K, D and M are the stiffness, damping and inertia matrices of the system. The
vectors u and f represent the displacement field and sum of external forces applied on the
system. The main purpose of modal analysis is to diagonalize equation (2.79) to get a set of
isolated differential equations, and get an analytical solution for this linearized system. To
do so, the damping matrix D assumed to be expressed as a linear combination of the mass
and the stiffness matrices (Rayleigh damping): D = αK + βM . Diagonalizing the system
can then be done by solving for the eigenvectors Wi and eigenvalues λi of the generalized
eigen-problem Kx +λMx = 0. The matrix W that embeds all the eigenvectors diagonalizes
both K and M :

W TKW = Λ W TMW = ID (2.80)

where Λ = diag(λ1, . . . , λn) gathers all eigenvalues in one vector. Equation (2.79) can

39

CHAPTER 2. BACKGROUND

now be transformed into :

Λ(z + αż) + (βż + z̈) = g (2.81)

where z = W−1u is the vector of modal coordinates and g = W T f is the force vector
transformed in the modal basis. Equation (2.81) represents a set of independent equations
(one for each row i) for which we have an analytical solution of the form:

zi(t) = c1ie
tω+

i + c2ie
tω−

i (2.82)

where c1i and c2i are complex constants, and the ωi are the angular frequencies of mode i
(t is a scalar representing time). The response of a force g (expressed in modal coordinates)
applied on the system for a duration ∆t, is modeled through the constants c1i and c2i of each
mode i with:

c1i = 2∆t gi
ω+
i − ω

−
i

c2i = 2∆t gi
ω−i − ω

+
i

(2.83)

In computer graphics, the use of modal analysis has been first introduced by [Pentland 89]
to provide fast computation of the dynamics of deformations for animation. Later, O’Brien
et. al. leveraged modal analysis to propose efficient sound synthesis from rigid body sim-
ulations [O’Brien 02b]. Their work has been extended in [Hauser 03] to simulate reduced
deformation with a user interaction. To do so, they present a way to include constraints
in the simulation based on modal analysis. More recently, reduced models have been used
to achieve better performances in haptics [Barbič 07b, Wan 11], and interactive applications
[James 02, Huang 10]. Another limitation of modal analysis occurs when only a subset of
the deformation modes is retained. Usually, the lower frequency modes that generate the
more visible deformations are kept, and the higher frequency ones are ignored. Therefore,
higher frequency phenomena such as local deformations are not well represented with modal
analysis. To cope with this observation, Barbič et al. [Barbič 11] proposed a decomposition
of the initial body into several domains. For each domain, a modal analysis is performed, and
the domains interact through rigid links. This lead to a viable solution to maintain model
reduction while being able to simulate local deformations.

2.4.4 Summary table
We present in table 2.1 a summary of the main methods available to simulate deformation.
Each method is compared through criteria of efficiency and realism. The methods are com-
pared w.r.t. five criteria. The efficiency and physical conformity are defined at the beginning
of this chapter. In most brittle materials, the deformations that lead to the fracture are
small. Therefore, the physical conformity criterion is considered on small deformation, while
the “large deformation” criterion that defines how well the method keeps its physical confor-
mity as the deformation increases. Finally, the “easy to tune” criterion defines the ease of
tuning the parameters of the simulation to obtain the desired results. It is often linked to
the nature of the parameters used. If the parameters are based on physical quantities, it is
usually easier to tune them and to understand their influences on the simulation outcome.

On the efficiency criterion, modal analysis is at the first place. Indeed, as a result of
modal analysis, analytical solution of the deformation over time is known, and no integration
method is necessary. Also, a reduced number of modes can be considered as well as parallel
computation for modal analysis, leading to very fast deformable simulations [James 02]. This

40

2.5. PHYSICAL SIMULATION OF BRITTLE FRACTURE

Method name Efficiency1 Physical
conformity

Large de-
formations

Easy to
tune

Topological
changes

non-linear FEM ����� ����� ����� ����� �����
linear FEM ����� ����� ����� ����� �����
linear FEM

+ corotational ����� ����� ����� ����� �����

mesh free
[Müller 04b] ����� ����� ����� ����� �����

shape matching ����� ����� ����� ����� �����
mass-spring ����� ����� ����� ����� �����

modal analysis ����� ����� ����� ����� �����
modal analysis
+2nd derivative ����� ����� ����� ����� �����

Table 2.1 – Comparison of deformable body simulation methods w.r.t. to efficiency of com-
putation and realism. Each cell contains a mark that ranges from 0 (blank squares) to 5 (filled
squares).

efficiency is the prize of being able to model accurately only small global deformations. Adding
second order deformation mode [Barbič 07a] allows modeling large global deformations, but
no large local deformations. Mass-spring systems are also efficient due to their simplicity.
However, modeling accurately the observed deformation is a tedious task, and involves playing
with numerous parameters. On the physical conformity criterion, the general FEM has the
biggest score, enabling to express a very wide range of non-linear deformation, taking into
account any constitutive law and changes of the material property over time. Meshless
system can be a good trade-off for modeling large deformation and topological changes, since
re-sampling can be efficiently performed to enrich information on the area of large strain.
Finally, regarding the topological changes, structures that necessitate precomputations such
as modal analysis are not efficient, since the precomputation has to be performed again at
each topological change.

2.5 Physical simulation of brittle fracture
When a body deforms too much, it breaks. Although a bit oversimplified, this statement
expresses well the intimate link between the simulation of fracture and the simulation of
deformation. For this reason, each model used for the simulation of deformation has been
extended to model fracture as well. Unfortunately, extending the deformation models to
handle fracture is not always straightforward, and usually adds a non-negligible computation
cost to the simulation, compromising their use for interactive applications. We review in
this section the different methods proposed in the literature to simulate fracture. At the
end of the section, we provide a summary table that compares each method w.r.t. the main
objectives of the manuscript: a real-time, physically-based fracture simulation for interactive
applications.

2.5.1 Geometrical approaches and cutting algorithms

Some authors treated fracture patterns taking a purely geometrical approach. The main
principle of geometrical approaches is to design an algorithm that produces visually plausible

41

CHAPTER 2. BACKGROUND

fracture patterns. In [Desbenoit 05], the authors presented an editor that enables to inter-
actively map a fracture pattern on surface meshes. The main concern of their paper is the
algorithm that enables to apply the fracture pattern on arbitrary meshes (see Figure 2.9).

Neff et al. [Neff 99] defined a recursive pattern generator to define 2D shards exploding.
The underlying visual representations of fractured and deformed bodies are rarely used for
physical simulation, and applying crack patterns to a visual mesh is also a field of research
(see e.g. [Viet 06]).

Figure 2.9 – Artist-designed fracture patterns applied on an egg (left) and on a vase (right)
[Desbenoit 05].

In general, when the crack surface is not represented by the mesh elements boundaries,
remeshing or cutting algorithms are required to update the rendered mesh according to the
crack surfaces. Algorithms that manage robust cuts of tetrahedra [Bielser 03, Sifakis 07] or
first order cut of cubes [Pietroni 09, Dick 11] have been proposed. Most of these algorithms
can be defined by a state machine that track the state of the edges of the elements (whether
they are cut) to decide which surface triangles to produce. These algorithms are generally
fast enough to be compatible with interactive simulations.

2.5.2 Mass-spring systems for fracture

The extension of mass spring systems (see section 2.4.2.3) for fracture is mainly performed by
removing a spring linking two particles if its length, or its length variation exceeds a thresh-
old representing the material resistance to fracture. Norton et. al. [Norton 91] proposed
modeling the deformation of objects using mass spring network. A fracture is initiated into
the network when two particles are separated by more than a maximum distance which is a
parameter of the fracturing. In order to avoid strings of springs hanging, blocks of springs
are removed at once during fracture.

Later Hirota et. al. [Hirota 98] proposed building a mass-spring network composed of
two layers: a surface layer and a sublayer that enable them to measure shearing stress. The
rest length of the spring of the surface layer is shrinked over time, allowing cracks to open
and propagate. The authors demonstrate that different fracture patterns can be obtained by
changing the topology of the network.

These two methods are based on the length deformation of the springs to decide where
the springs should be cut, but no accurate information is obtained on the precise location
of the beginning of the crack, or on the separation plane. Also, the crack pattern obtained
depends on the underlying network topology, which can give control on the patterns, but
become costly when one wants to generate high resolution crack lines.

2.5.3 Cohesive zone models

The main idea of the cohesive zone model is to partition the body into a set of volumetric
pieces that are originally stuck together [Elices 02]. Then, when a loading force is applied
on the body, the cohesive forces that hold the elements together are computed, and if the

42

2.5. PHYSICAL SIMULATION OF BRITTLE FRACTURE

cohesive force between two adjacent elements exceeds a threshold, the two elements are
separated. Smith et al. [Smith 01] were the first to propose the cohesive zone model in the
computer graphics literature. At each time step, they solve a linear system under constraints
computing the cohesive forces magnitudes for each couple of linked tetrahedral elements.
When the cohesive force is above a threshold, the link between the common face of the two
tetrahedra centers is broken, and the neighboring faces resistance to fracture are weakened in
order to give a higher chance for neighboring faces to propagate the cracks. The authors shown
results obtained with this method by shattering brittle objects such as a glass table, glazed
ceramic bowl and wine glasses. The main drawback of their approach is that the fracture lines
are dependent of the tetrahedron mesh, and this can produce unrealistic fracture patterns.

The cohesive zone model is widely used in special effect for movies, because it provides
believable results and is controllable by the artists [Zafar 11] (the shape of the elements as
well as the weaknesses between elements can be designed manually).

2.5.4 Continuous approaches for fracture
Continuous mechanics provide a natural way to define fracture criteria, since it can provide
a stress value for any point of a body.

2.5.4.1 Finite differences for fracture

Terzopoulos and Fleisher [Terzopoulos 88] brought the first attempt to model fracture in
computer graphics. In their deformation simulations, the energy forces are approximated
using finite differences. To model tearing, the authors proposed removing the link between
two adjacent nodes whenever the distance between these two nodes exceeded a threshold.
The results were demonstrated on a sheet of paper being torn.

2.5.4.2 Finite Element Method for fracture

Using the Finite Element Method (see section 2.4.2.1) has the advantage of being able to use
fracture mechanics in a straightforward way to model fracture. To decide whether a crack
should initiate or not, the stress value σe of each element e is exploited. Most often, the
maximum principal stress magnitude (given by the maximum eignevalues λ and its associated
unit-length eigenvector n of the stress tensor matrix σe) is compared to a threshold τ that
represents the material resistance to fracture. If we have λ > τ , a fracture occurs in the
element e. Mainly based on n that represents the normal vector of the fracture plane,
different strategies are adopted to decide how the body mesh and material properties are
updated.

O’Brien et. al. [O’Brien 99] brought a new standard in graphical modeling and simulation
of brittle fracture in 1999. Based on the FEM discretization (see section 2.4.2.1) of continuum
mechanics, they use the principal stress values of the stress tensor to define what they call
a separation tensor. To build the separation tensor, the stress tensor is first separated into
tensile stress tensor (built from the eigenvectors of the stress tensors that have positive
eigenvalues) and a compressive stress tensor (built from the eigenvectors of the stress tensors
that have negative eigenvalues). Finally, the separation tensor is built from a balanced tensile
and compressive forces (which are deduced from the tensile and compressive stress tensors).

The positive eigenvalues of the separation tensor are then compared to a threshold to
decide whether a fracture should occur or not. The separation plane of the fracture is given
by the normal plane to the corresponding eigenvector. The authors remesh the tetrahedron
locally around the crack tip, enabling to build unconstrained crack paths as shown on Figure

43

CHAPTER 2. BACKGROUND

Figure 2.10 – A glass slab being broken by a metallic ball [O’Brien 99].

2.10. In order to avoid badly conditioned elements due to remeshing, the crack path is aligned
to the elements boundaries when close to them. To reproduce the behavior of stiff materials
without instability, small time steps and reduced stiffness were taken during the simulation.
The time steps used are however incompatible with real-time simulation

In 2002, their work was extended to ductile fracture [O’Brien 02a]. To do so, the authors
introduce a plastic strain that keeps track of the plastic deformations of the material. This
tensor is updated at each step, in a similar way as the plastic deformation presented in section
2.4.2.1.

Figure 2.11 – Surface cracks pattern generated physically on the dragon [Iben 06].

In 2001, Müller et. al. [Müller 01] proposed a real time simulation of brittle fracture,
based on a static analysis of the stress tensor around impacts. When an impact occurs
between a fixed body and another one that can break, the part of the body which is far for
the impact zone body is "anchored", and a static equilibrium is computed with the finite
element method to estimate the deformation state around the impact zone. Fractures are
then launched around the colliding point based on the principal stress values retrieved. The
authors demonstrate the capabilities of their techniques by dropping various brittle objects
of few hundreds of tetrahedra that break after impacts, all in real time. In their method, the
fracture crack propagates only along the boundaries of the elements of the tetrahedral mesh,
resulting into constrained crack lines.

Later, Müller and Gross [Müller 04a] applied stress tensor analysis with linear FEM dis-
cretization using corotational formulation to obtain fracture on stable and fast computation
of stiff or large deformations. The accompanying video shows how it is possible to play with
the simulation parameters such as Young’s modulus, Poisson ratio, and fracture threshold,
to simulate various fracturing phenomenon in real time, on both plastic and elastic deforma-
tions. For visual rendering, the triangle mesh and tetrahedron mesh are dissociated, and new
triangle surfaces are created and cut dynamically. Again, the fracture patterns are dependent
on the underlying tetrahedron mesh, which makes difficult the generation of high resolution
crack lines.

In [Müller 04c], the authors propose retrieving data from a surface mesh: the deformation
is computed from a regular grid that discretizes the volume of the meshes. The stress tensors

44

2.5. PHYSICAL SIMULATION OF BRITTLE FRACTURE

Figure 2.12 – An example of FEM-based fracture with plenty of small shards [Bao 07].

of the elements are analyzed to decide whether a fracture should open. After fracture, the
graphical mesh is generated by adding interior triangles following the edges of the regular
grid. This leads to a fast and stable simulation of deformation and fracture. Here the
resolution size of the grid has a direct impact on the appearance of the fracture patterns and
the computation times.

Oda and Chenney [Oda 05] proposed an adaptive and progressive refinement of the tetra-
hedron mesh around the potential impact zones, in order to circumvent the weird shapes that
can take the fracture surfaces when they follow a predefined mesh.

FEM-based techniques have also been used to model surface crack patterns by evolving
a stress field that can be heuristically driven for controllability [Iben 06].

In 2007, Bao et. al. [Bao 07] presented another use of Finite Element Method to simulate
brittle and ductile fracture. They used velocity level stress quasi-static analysis that they
call time averaged stress (i.e. stress integrated over a time step) principal axis to determine
whether a fracture should occur. In order to generate various patterns, randomly seeded
points define energy functions that influence the crack lines. In order to have accurate and
mesh independent fracture patterns, the authors used the virtual node algorithm [Molino 04]
that allows arbitrary fracture path and geometry through elements without generating ill-
conditioned elements, as illustrated in Figure 2.12. They also developed a specific algorithm
based on [Bridson 02] for treating contacts between small shards represented only by their
triangle surface. Their algorithm demonstrated robustness and stability over the various
examples provided but, even if no timing is mentioned, the complexity of their method seems
not suited for real-time applications. A similar method has been used in the context of the
simulation of the sound of breaking objects [Zheng 10]. The authors performed a quasi-static
analysis of the deformation of the bodies during impact to localize the regions of high strain,
and sample Voronoï cells centroids with a probability proportional to the strain. They used
a remeshing technique to represent the cracks surfaces [Bielser 03].

Figure 2.13 – Dissociation of visual rendering and physical model. Each tetrahedron contains
visual elements whose centroids (red points) are inside. When the tetrahedra are separated
during fracture (right), visual surfaces are created according to the visual element [Parker 09].

Parker and O’Brien [Parker 09] presented a combination of former work that lead to a
fast and robust simulator of stiff or soft bodies with fracture. They modeled deformation
using FEM as presented in [Müller 04a] and performed a stress analysis for fracture. They
introduced a nice method called splinters that links graphical representation and tetrahedron
for the FEM. When two tetrahedron separate, the graphical crack surface is defined by the
splinters shape whose centroids are belonging to the separating elements (see figure 2.13).

45

CHAPTER 2. BACKGROUND

Their method is optimized for parallel computation, and brought fast and believable results
in their test cases.

2.5.4.3 XFEM: Extended Finite Element Method

Although well suited to model the deformation, the finite element method has some limita-
tions to model cracking as presented in the previous section. A remeshing must be performed
to model free crack propagation in a FEM framework, which can lead to numerical prob-
lems or inaccuracies. The main idea of the eXtended Finite Element Method (X-FEM)
[Belytschko 99] is to express the material discontinuity directly into the shape functions of
the elements, instead of explicitly model the boundaries of the discontinuities. To do so,
discontinuous enrichment functions that define the stress at the crack tip are combined with
the shape function of the elements. Therefore, the discontinuity due to the crack propaga-
tion can be modeled without remeshing. In order to keep track of the crack formation, each
node belonging to a cracked element is augmented with an enrichment function [Moës 99].
The X-FEM method has been initially defined in 2-D, and Sukumar et al. [Sukumar 00] pro-
posed an extension to 3-D cracks, and demonstrate the accuracy of the technique. Later, the
method has been used in the context of interactive stable simulation [Jeřábková 09], where
the authors demonstrated the efficiency of their method through a virtual surgery example.
Kaufmann et al. [Kaufmann 09] presented a generalization of the enrichment functions into a
regular grid that they named enrichment textures. They show how to represent arbitrary com-
plete and partial cut in an element through these textures. Complementary information on
the X-FEM and its application can be found in the survey of Abdelaziz et al. [Abdelaziz 08].

To our knowledge, no work has been presented on the use of the X-FEM for brittle
fracture. Actually, this method tackles the problem of the representation of the discontinuity
in an FEM framework, and is not specific to a particular type of fracture. Using X-FEM for
real-time brittle fracture simulation could be doable, provided that the deformation of stiff
bodies could be done in real-time. Also, if the discontinuity is modeled from the point of view
of the physical simulation, it is not automatically represented on the mesh that is rendered
on the screen. A few more steps are thus required to update the visual mesh according to
the cracks.

2.5.5 Particle system for fracture

Particle systems without mesh information (see section 2.4.2.2) have also been extended
to model fracture. The main advantage of meshless model for fracture is that when crack
surfaces are created, new sampling point can be naturally added into the system. Pauly et.
al. presented in [Pauly 05] how they modeled fracture phenomena of brittle or ductile object
using a meshless particle system. To find the location of maximum stress within the body,
they sample a random set a point within the body and keep the one on which the principal
stress is the highest. If this maximum stress is above a threshold, a fracture is initiated.
The authors propose a dynamic sampling of the cracks surfaces, an automatic re-sampling
for deformation computation, a way to adapt the weight function between two nodes that
are separated by a crack, and the handling of topological events (see Figure 2.14). Meshless
methods present some issues for real-time methods, since the visual mesh to render has to
be generated from the set of sampling points, and the number of points can grow in an
unpredictable manner.

46

2.5. PHYSICAL SIMULATION OF BRITTLE FRACTURE

Figure 2.14 – Simulation of a ductile fracture using meshless deformation model [Pauly 05].

2.5.6 Summary table

We present in table 2.2 a summary of the state of the art methods available to simulate
fracture. Each method is compared through criteria of efficiency and realism. The methods
are compared w.r.t. five criteria. The efficiency and physical conformity are defined at the
beginning of this chapter.

Brittle fracture Ductile fracture

Method name Efficiency Physical
conformity Efficiency Physical

conformity

Dynamic
fracture
surfaces

mass-spring ����� ����� ����� ����� NO
Cohesive zone

model ����� ����� - - NO

FEM
(remeshing) ����� ����� ����� ����� YES

FEM
corotational ����� ����� ����� ����� NO

static analysis ����� ����� - - NO
static analysis +

Voronoï ����� ����� - - YES

mesh free ����� ����� ����� ����� YES
Table 2.2 – Comparison of the different fracture methods w.r.t. to efficiency and realism.

Conventional methods (FEM, mass-spring and meshless deformation) are not efficient to
simulate brittle fracture because tiny time steps must be used to capture the stiff deformations
of the body, leading to high computational costs. To cope with this problem, a static analysis
of the body can be performed to study its deformation at a desired time, and decide whether
the fracture will occur. However, quasi-static approaches ignore the dynamic effects that
play an important role on impact-based fractures. Some methods rely on element boundaries
of the physical mesh to represent the fracture surface, leading to less realistic constrained
crack paths. Finally, there is no method able to provide real-time and physically-based brittle
fracture simulation with dynamic fracture surfaces.

47

CHAPTER 2. BACKGROUND

2.6 Interactive simulation
Aiming at real time simulation of a particular phenomenon makes it eligible for being used
in interactive applications. However, in most cases, the isolated simulation of a particular
phenomenon has to be complemented with methods that allow interaction with it. Detecting
the collisions with the concerned bodies, and react to these interactions is a needed feature
for most interactive applications. In this section, we first present an overview of the available
collision detection methods, discussing their applicability to brittle fracture. In a second part,
we discuss the haptic interaction, a sensory feedback used during our project for evaluation
and interactive applications.

2.6.1 Detecting collisions between the bodies

Collision detection is a necessary step to treat the different interactions that can occur between
the bodies of a virtual world. In a three dimensional space, a collision occurs between a body
A and body B if the volume of A overlaps with the volume of B. The first role of collision
detection is to check whether bodies are colliding. If so, information such as the position of
the overlapping part, the penetration depth or volume needs to be computed to solve the
collisions. Solving the collision corresponds to apply forces, impulses, or position correctors
that make the colliding bodies to separate, and avoid unrealistic overlapping. The solving
methods are presented in Section 2.6.2.

The method used for checking whether a pair of body is colliding is dependent on the
representation of the volume of the bodies. A wide variety of numerical structure has been
studied in the literature. For complementary information, we refer the reader to general
surveys on collision detection [Lin 98, Teschner 05].

The collision detection process is usually decomposed in 3 steps: a broad-phase, a mid-
phase, and a narrow-phase. The broad-phase and mid-phase purposes are to quickly eliminate
pairs of bodies that are not in collision using bounding volumes and other approximate
structures. More information on broad-phase and mid-phase algorithms and performances is
presented in [Avril 09]. In this manuscript, we focus only on the narrow-phase, responsible
for checking the collision using the exact representation of the bodies.

2.6.1.1 Representation of the bodies for collision detection

Implicit shapes

Implicit shapes model the volume of a body with a mathematical surface of the form {x|f(x) =
0} where f is a function defining the shape of the body. This representation is common in
rigid body engines for shapes such as cubes, spheres, cones, cylinders, and capsules. These
five simple shapes can be efficiently represented with implicit surfaces. Each of these shapes
is parametrized with a few parameters, and algorithms checking the collision between a pair
of two of these shapes are readily available. Handling collision for general implicit surfaces is
more involving [Lin 95], and has no general exact solution.

Constructive Solid Geometry

Constructive Solid Geometry (CSG) purpose is to model a geometry using a set of primitive
shapes, and binary operations such as unions, intersections, and differences [Hoffmann 89],
as shown in Figure 2.15.

48

2.6. INTERACTIVE SIMULATION

Figure 2.15 – Example of a CSG Solid constructed with the difference between an intersection
and two unions of primitives shapes.

Mostly used for rendering purposes, CSG models have also received some attention in the
collision detection field. However, it is not easy to check whether the intersection of two bodies
represented by CSG is empty or not. Although some solutions consisting in approximating
the CSG surfaces for collision detection have been studied, getting the general analytical
solution to the collision test between CSG remains an unsolved problem [Keyser 97].

Distance fields

Distance Fields store in a grid distances to the surface of an object, and possibly the distance
gradient. For rigid bodies, distance fields may be precomputed, hence the computation of
penetration depth of a point inside a rigid body becomes trivial [Guendelman 03]. Adaptive
distance fields [Frisken 00] store distances in an octree to reduce storage requirements. In
some applications it is even sufficient to store information only near the surface of the object
[McNeely 99]. Distance fields have also been used for deformable bodies by fast recomputation
[Sud 06] or by approximating finite-element [Fisher 01] or modal deformations [Barbič 07a].
In various applications of computer animation, distance fields have been approximated using
front propagation algorithms or graph-based distances [Steinemann 06].

Point shell

Point shell is a representation of the surface of the body into a set of discrete points. The
immediate advantage of the point-based representation is that checking if a point is inside a
geometry is often a cheap test. However, the point shell representation cannot be used alone,
i.e. point-shell/point-shell collision checking is not possible. In the field of collision detection,
point shell has been first used to detect efficiently the collisions between a moving body
against a static environment [McNeely 99]. In this work, the environment was represented
with a map of voxels. The algorithm has then been improved [Renz 01, Barbič 07b] to more
stable or time-critical versions. The main drawback of point-shell based method is that some
collisions may be missed since the surface is only represented at discrete locations.

Polygonal models

Another popular representation is the polygonal soup (often a triangle mesh) representing
surface of the body. The triangle mesh has historically been used for rendering of the objects
in a 3-D scene (for rendering purposes, representing only the surface of the mesh is sufficient).
Although working with this structure for collision detection makes sense since it represents

49

CHAPTER 2. BACKGROUND

the exact geometry that is displayed, checking naively whether two triangle meshes are over-
lapping has a complexity of O(n2), n being the number of triangles of the meshes. In order
to reduce this complexity, several additional structures have been proposed, as presented in
the following section.

2.6.1.2 Algorithms and accelerating structures for polygonal models

Algorithms for collision detection between polygonal models

A wide variety of algorithms has been studied for collision detection between polygonal mod-
els. These algorithms could be classified in two categories: the algorithms for convex-convex
collision detection, and the algorithms involving non-convex bodies.

For convex bodies, a well-known algorithm is the separating plane [Baraff 90, Chung 96]
that exploits the temporal coherence and the convexity of the bodies to find a plane that
separate a pair of objects, and decide whether they are colliding. Another popular approach
for convex bodies is the so-called GJK algorithm [Gilbert 88]. This algorithm is based on
the Minkowski difference between a simplex representation of the bodies. The authors show
that checking whether two bodies are colliding is equivalent to check whether the origin is
contained into the simplex obtained by the Minkowski difference between a pair of objects.
Other approaches leveraging Voronoï decomposition of the space [Lin 91] and hierarchical
decomposition of the polyhedron [Dobkin 90] have also been studied.

All the above algorithms leverage the convexity of the bodies to operate. Dealing directly
with non-convex bodies is much more difficult, and a possible workaround is to decompose
concave objects into sets of convex objects, and then apply the above algorithms for convex
objects. Algorithms based on the sampling of the geometries of the objects into a regular grid
(image-based methods) using rendering hardware can generally cope with both convex and
non-convex objects [Teschner 05, Faure 08, Allard 10]. But these algorithms are approximate
and are sensible to the projection planes chosen for the rendering. Another solution to deal
with non-convex bodies is to use additional precomputed structures that allow accelerating
the detection collision queries, as presented in the following paragraph.

Hierarchical structures for polygonal models

A common idea to accelerate the collision detection between polygonal models is to use
hierarchical structures [Samet 95] to organize the primitives of the polygon. In the literature,
hierarchies such as sphere-trees [Palmer 94, Weller 09], kd-trees [Klosowski 98] and octrees
[Bandi 95] have been widely studied for detection collision. The main idea of these structures
is to subdivide the polygonal mesh into regions that are organized into a hierarchy, as shown
on Figure 2.16.

Figure 2.16 – Example of two acceleration structures commonly used in collision detection.
Top: A sphere-tree built on a 2-D geometry. Bottom: An Axis-Aligned boxes tree on a 3-D
geometry.

50

2.6. INTERACTIVE SIMULATION

Hierarchical structures allow efficient overlapping checks between bodies. In order to
check if two hierarchies are colliding, an efficient top-down search can be performed, pruning
at an early stage the regions of the body that are not colliding. First, the two roots of the
two hierarchies are checked, then the node at level one of the first hierarchy against root of
the second hierarchy, etc. As long as a pair of node is colliding, the children of this node are
visited to refine the query, until the leaves are reached. A more detailed explanation of the
recursion steps on hierarchical structure for collision detection can be found [Teschner 05].

2.6.1.3 Collision detection desired queries

Even if the first purpose of collision detection is to check whether two objects are overlapping,
this information is not enough to solve the collision. Indeed, the direction in which the objects
should be pushed away to make the overlap vanish should be known as well. The position of
the overlaps – the contact positions – are also needed to solve the collisions. Depending on
the method used for collision solving, the needed information will vary. In general, a collision
solver will need one or more of the following queries when treating a pair of bodies (A,B):

� Check overlap: Return whether the pair of bodies is colliding, i.e. if the intersection
of their volume is not empty.

� Get contact position: For each overlapping area, return the position in world coor-
dinate of a contact point representing the location where the pair of bodies touched for
the first time (or an approximate position of this location).

� Get penetration depth: For each overlapping area, return the maximum distance
from a point of body A inside the volume of body B to the surface of body B, or from
a point of body B inside the volume of body A to the surface of body A.

� Get penetration volume: As an alternative to the penetration depth, some col-
lision solver work with the penetration volume of each overlapping area rather than
penetration depth.

� Get distance to surface: Return the distance of a point to the surface of a body.
This query is mostly used by detection collision algorithms to accelerate the process by
pruning non-colliding parts of the body.

2.6.1.4 Collision detection and haptic rendering for fracture simulation

Acceleration data structures for collision detection need to be updated or recomputed at
fracture events, because precomputed distances or bounds are no longer valid or tight, and
new surfaces need to be considered. Larsson and Akenine-Möller [Larsson 01] introduced the
concept of selective restructuring of bounding volume hierarchies, according to fitting-quality
metrics. Otaduy et al. [Otaduy 07] applied local restructuring operations to limit updates in
progressive fracture. Recently, Heo et al. [Heo 10] have presented an algorithm that finds
a good compromise between bounding volume restructuring and fast recomputation. All
these approaches suffer two major limitations for simulations of brittle fracture. First, the
quality of bounding volume hierarchies degrades immediately under brittle fracture, and full
recomputations are needed. As a result, large computational spikes decrease the simulation
cost at fracture events. Such spikes can be amortized in offline simulations, but not in hard
real-time applications such as video games.

51

CHAPTER 2. BACKGROUND

Due to the lack of real-time methods suitable for brittle fracture simulation and collision
detection with fracturable bodies, there is to the best of our knowledge no previous work on
haptic interaction with brittle fracture.

2.6.2 Handling contacts and constraints between the bodies
Bodies that are colliding will interact each other. From the collision detection step, we
obtain a set C of contacts that contains information such as position or separating normal as
presented in the previous section.

Solving for the collision can be performed at three different levels:

� The acceleration level – forces. Resolving contacts at the acceleration level consists in
finding forces from the current state that counter the inter-penetrations when integrated
and added as other forces into the simulator. Treating multi-contact systems at acceler-
ation level is often computationally expensive, and some constraint based formulations
do not always have a solution.

� The velocity level – impulses. At the velocity level, we abstract ourselves from the
second order level of the system. The so-called impulses that have units of momen-
tum (and can be thought as a constant force integrated over a period of time) and are
applied directly to update velocity are used. System using only impulses should use a
hybrid time stepping, where the velocity update and the position update are separated.
Velocity level systems have several advantages. First, they are often more simple to
express, computationally less expensive than acceleration equivalent formulations, and
suffer less of solution non-existence [Stewart 00]. Also, when dealing with two rigid bod-
ies inter-penetrating with a non-zero velocity, the only way to avoid inter-penetration
is to introduce a discontinuity on its velocity, via impulses.

� The position level – position correctors. Müller proposed [Müller 07, Müller 08a] the
position-based dynamics method that uses only the position state of the virtual world
to solves the collisions. The inter-penetration resolution is performed by defining con-
straints on the position of the system, and to perform a mass-weighted projection of
the position onto the constraint surface, using a Gauss-Seidel like solver.

We review in this section the main methods that have been used in the literature at each
level of resolution.

2.6.2.1 Acceleration level methods

Penalty-based methods

Penalty-based methods are the simplest and the faster one for contact or collision. The main
idea is to add penalty forces at contact points depending on the penetration depths, or any
other energy function.

More generally, penalty methods are acceleration-level approaches whose main idea is to
create a force from a non-penetration function. A non-penetration function b(q) is a function
defined for each contact point, and is such that its value is zero when the interpenetration
distance at this contact point is also zero.

From this non-penetration function, an energy function e(b) can be defined as:

e(b) = k

2 b(q) · b(q) (2.84)

52

2.6. INTERACTIVE SIMULATION

Figure 2.17 – (a): The state q is defined as a point in a 2-dimension plan. The point must
not penetrate the ground surface represented by the x-axis. (b): The point has penetrated the
ground, a non-penetration function b(q) = y is defined and will try to make the penetration
vanish. (c): From the non-penetration function, a potential energy function is derived, and
then a force along the surface normal. The function b(q) generates spring-like forces to make
the inter-penetration vanish.

where k is a stiffness constant.
From this potential energy, a force is defined as the opposite of its gradient as:

fpenalty = − ∂e
∂q = −k· b(q)∂b(q)

∂q (2.85)

It is also possible to modify the force formulation (2.85) to include a damping term,
which is dependent on the state velocity q̇, and uses a damping constant c, an analog to
the stiffness constant k for damping forces. However, many non-penetration functions can
be imagined. For example using a volume of penetration is often considered when modeling
contact between deformable bodies, while penetration depth is usually used between rigid
bodies. In that case, penalty forces act like springs that try to bring penetrating point back
to the surface of the bodies.

Penalty-based methods are widely used for their simplicity and fast execution times,
especially between deformable bodies [Spillmann 07]. However, they suffer from instability
when the coefficient of stiffness k becomes big. Small time steps must be used to simulate
stiff interactions, and it is impossible to completely avoid inter-penetration since reaction
forces can occur only if the non-penetration function is non-zero. Also, the stiffness and
the damping coefficient have no physical meaning which can make fine tuning of scenarios
tedious.

Constraint-based methods

A different way to treat contact is to attempt to find a set of forces to apply at each contact
point that prevent the bodies from penetrating each other. In static cases, this is equivalent
to impose the acceleration toward the interior of the opposing body (the relative acceleration)
at each contact point to be zero or positive. In multiple contact configurations, a force applied
at any contact point will modify the relative acceleration of all the contact points. Therefore,
a coupled system is formed, and solving for the zero or positive relative acceleration constraint
at each contact is equivalent to solve for a Linear Complementary Problem (LCP) [Baraff 89,
Witkin 90, Witkin 01a]. Solving for this LCP is a non-trivial problem, and adding friction into
the acceleration-level system makes the problem potentially unsolvable [Baraff 91, Baraff 94].
As presented in the following, formulating the same kind of constraints at the velocity level
solves this problem.

53

CHAPTER 2. BACKGROUND

2.6.2.2 Velocity level methods

Impulses

Velocity-level methods work with impulses. An impulse t can be defined as:

t =
∫

∆t
f dt (2.86)

Impulses represent an immediate change on the momentum, and allow introducing discon-
tinuity on velocities. Although using impulses breaks the differential equation defining the
dynamics of the bodies, it is useful in the context of perfectly rigid bodies, where inter-
penetration could not be avoid without introducing immediate changes on the velocities. A
comprehensive reference on the simulation of rigid bodies using impulses can be found in
[Mirtich 96].

When two rigid bodies enter in collision with a certain relative velocity, it is possible
to solve for an impulse that, once applied to the pair of bodies, prevent them from inter-
penetrating each other [Hahn 88]. Impulses have also been successfully applied for articulated
bodies with rigid parts [Moore 88]. More recently, Guendelman et al. [Guendelman 03] and
Erleben et al. [Erleben 07] have proven the use of impulse followed by stabilization steps to
be viable for the simulation of stacking structure, without the resolution of LCP systems at
each time step.

LCP formulations

For simultaneous contact configurations, one can solve for the impulses to be applied at
each contact point so that the relative velocity is positive (at each contact point) once the
impulses have been applied. Similar to the acceleration analog method, solving for the set of
impulses that satisfy this constraint is equivalent to solve an LCP. As opposed to acceleration-
level LCPs, velocity-level LCPs do not suffer from solution non-existence when incorporating
friction. Stewart and Trinkle [Stewart 00] were the first to introduce a LCP system that uses
a linearized version of the Coulomb cone friction, showing that their system always has a
solution.

Other constraint-based systems

Other constraint-based formulations have been proposed in the literature to solve contacting
systems cases. Milenkovic et al. [Milenkovic 01] express the dynamics of contacting rigid
bodies into a convex Quadratic Problem (QP) to be solved under linear constraints.

Kaufman et. al. [Kaufman 05] proposed solving the inter-penetrations by projecting the
global velocity state of the system onto a set a feasible velocities, which is dependent of the
contact points positions and normal vectors. They also propose a way to solve the frictional
problem with a second projection. To do so, they define a set of possible contributions of
tangential forces on the global velocity. Then, they propose getting the frictional global
impulse by projecting of the maximum opposing velocity onto the intersection between the
feasible contribution of frictional impulses and the feasible velocities after contact. The final
impulse after contact resolution is obtained as the sum of the normal and the frictional
impulses. This projection method also works for multi-contact configuration, where the
action of an impulse generates a change on the global state of the system. The authors
also defined additional constraints that modify the set of feasible post velocities, to take
into account momentum conservation and bouncing. They mention that the set still remains

54

2.6. INTERACTIVE SIMULATION

convex for the optimization step (the projection). This double projection method leads to a
fast simulator for rigid bodies as presented in the author’s paper.

Kaufman et.al. extended their work in [Kaufman 08] by presenting a staggered projection
method to solve with accuracy and stability a frictional dynamic problem in a multi-body
system. The main idea of their algorithm is to define a pair of coupled projection (one for
the inter-penetration problem, and one for the frictional problem) from which they extract a
fixed point property that allows their algorithm to converge. The authors define a cone of the
possible contributions of normal forces to the velocity, and a friction set from a linearization
of the friction constraints. From this basis, the paper proposes an algorithm of "staggered"
projections to solve for normal global impulses and frictional global impulse of a coupled
minimization problems. At each iteration of their algorithm, two projections are performed
and the solution obtained from an iteration is used at the next iteration to converge to a
global solution to the simulation of multi body system with friction.

2.6.2.3 Position level methods

The projection level projection for collision solving purposes to directly project positions on
constraint surfaces. Working directly on position has the advantage of giving more control on
the simulation compared to second order actions produced by forces. Position level projection
has been mostly used to constraint particle systems [Müller 07, Müller 08a]. Our particle
system has a set X of particle denoted by their subscript i. Each particle i ∈ X has a
position xi, a velocity vi and a mass mi.

At each simulation step, the velocity of all particles is updated using explicit Euler inte-
gration with a time step of ∆t:

vi = vi + wif i∆t (2.87)

where wi = 1/mi and f i is the external force acting on particle i for the current simulation
step. Position predictors pi are defined as the unconstrained position the particle i would
have if integrated over a period ∆t with its current velocity:

pi = xi + vi∆t (2.88)

The constraints on the particle positions can now be defined. We denote by D the set of
constraints. Each constraint Dc ∈ D is either bilateral or unilateral, and can be written as a
function of the particles positions. A bilateral constraint Dc is valid if its scalar value is zero:

Dc(x1, x2, . . . , x|X |) = 0 (2.89)

Similarly, a unilateral constraint De is valid if its scalar value is above or equal to zero:

De(x1, x2, . . . , x|X |) ≥ 0 (2.90)

The constraints are not necessarily functions of all the particles. For example, a distance
constraint Dd that imposes particle 1 and particle 2 to stay at a distance d could be written
Dd(x1,x2) = (x1 − x2)2 − d2.

After the velocity update and the position predictors (2.87) and (2.88), the particles are
projected according to the constraint to have positions that satisfy bilateral and unilateral
constraints. This modifies the position predictors pi. The velocity and the position of each
particle are computed at the end of the simulation step as:

55

CHAPTER 2. BACKGROUND

vi = pi − xi (2.91)
xi = pi (2.92)

After this update, the simulation step terminates, and the simulators goes back to (2.87)
for another simulation step.

2.6.3 Handling physically-based interactions with haptic feedback

2.6.3.1 Introduction

Haptic interaction is a bidirectional interaction with a virtual world related to the sense of
touch. This includes several components, which are:

� Force feedback. When one wants to move an object, some forces may oppose that
movement. These forces, which are usually felt at the user’s articulations (wrist, elbow,
shoulders, etc.) participate to force feedback. Force feedback rendering is performed
through force feedback haptic devices, presented in section 2.6.3.2.

� Tactile feedback. While force feedback is measured thanks to sensors in human body
articulation and muscles, tactile feedback is the restored feedback from a surface (such
as rough, smoothness, . . .). Such feedbacks are picked up by sensors under the skin, as
the tip of fingers for example.

� Thermal feedback. Another aspect of haptic device can be the thermal exchanges
between materials in the virtual environment. Simulating thermal interactions is far
less common than force feedback.

In this paper, we will restrict ourselves on force feedback, which is the most common
application of haptic rendering.

2.6.3.2 Haptic devices and control

Force feedback haptic devices are articulated robots containing electrical motors to provide a
force feedback and sensors to measure its current state. The human user holds (usually with
his hand) a specific point of the haptic device called the tip of the device. The haptic device
is linked to a virtual body of the virtual world in such a way that the state of the linked body
should be the same as the state of the tip of the device in the real world, and vice-versa.

Haptic devices are characterized by their number of Degrees Of Freedom on which they
can apply forces (output DOFs) and the number of DOFs that is measured by sensors (input
DOFs). Also, each device has a more or less big workspace, i.e. the tip of the device is
free to move within a zone which is constrained by the length and the disposition of the
device members (a good inventory of haptic devices with their characteristics can be found
in [Andriot 07]). Depending on the strength of the device and the power of the motors, the
device also has a working range of possible loadings. From those characteristics, a growing
variety of haptic devices has been designed, going from small devices for precise manipulations
to bigger device that allow having a workspace of a few meters and involving more consequents
effort exchanged. Images of common haptic devices used during the PhD are shown in Figure
2.18.

56

2.6. INTERACTIVE SIMULATION

(a) (b) (c)
Figure 2.18 – Example of haptic devices for force feedback haptic rendering. a: Virtuose
6-in/6-out DOFs arm (Haption, Soulge sur Ouette, France). b: Virtuose Desktop 6-in/6-out
DOFs haptic device (Haption, Soulge sur Ouette, France). c: Phantom Omni 6-in/3-out DOFs
haptic device (Sensable, Woburn, MA 01801, USA).

Haptic device control

On the point of view of the control of the device, two main categories of haptic device are
available:

� Impedance control. Impedance haptic devices have sensors that measure the angle
value of each articulation. The position of the tip of the device can then be retrieved
from the morphology of the robot. Such devices output the position of the tip and take
as input a force that must be applied at the tip of the device. Controlling such device
is often not straight forward because it is more natural for a simulation to integrate
forces and output positions. Using impedance control often involves performing ad hoc
treatments on the coupled virtual object so that the simulation manages it correctly.
However, most of haptic devices have a impedance control, mainly for technical reasons.

� Admittance control. Admittance haptic devices have the opposite behavior of impedance
ones. They contain pressure sensors at the articulations from which forces applied by
the user on the interface can be deduced. Such devices output the forces applied by
the user on the tip of the device, and take as input a position (and an orientation for
6 DOFS haptic devices) that the tip must hold. Admittance devices are rarer because
they are more expensive, technically harder to design and sensor of pressure add fric-
tion and inertia to the mechanism. However, admittance control interfaces naturally
with numerical simulation: at each time step, the position of the linked object is or-
dered to the device, the user forces are retrieved and applied as external forces into the
simulation for the next time step (see Figure 2.19).

Figure 2.19 – Example of an admittance controlled device coupled with a physical simulation.
The physical simulation provides successive states of the proxy which are sent to the haptic
API. While the haptic API returns efforts values that are directly applied on the proxy into
the virtual world.

The virtual coupling method

As highlighted before, even if admittance control of haptic device is more useful to couple
with a numerical simulation, most of haptic devices are in an impedance mode, for cost and

57

CHAPTER 2. BACKGROUND

complexity reasons. It is however possible to make them work as if they would be used in
admittance mode. From the positions given by the device over time, one can estimate forces
applied on it (e.g. by finite differences). Once we have the approximated forces, they can be
applied onto the proxy and retrieve its position after a simulation step. From the difference
of positions between the proxy and the haptic device, forces can be deduced and passed to
the haptic device. This method is called a virtual coupling, or god-object method [Zilles 95],
the god object being the object in the virtual world linked with the haptic device position,
as illustrated in Figure 2.20.

(a) (b)
Figure 2.20 – Virtual coupling principle. The gray object is the god object (the object
position in the virtual world), while the black body is the haptic device state. (a): A damped
spring model is used to minimize the error distance e in a mass point context. (b): When the
proxy is not a point, but a volumetric body, forces and torque must be computed using specific
methods.

Virtual coupling methods allow dissociating the proxy state and the haptic device state,
leading to serious advantages. First, admittance mode is emulated in this context, and haptic
device controllers are sometimes able to emulate admittance mode, managing transparently
the subservience of the impedance controlled device. This let the user the choice between
impedance or emulated admittance control at the high level API programming. A user can
be disoriented when seeing a proxy behind a wall, while he feels through the device that his
hand or his finger is penetrating it. However, if the user applies a consequent effort on the
tip on the device, his capacity to interpret the force feedback decreases.

2.6.3.3 Haptic rendering constraints

Haptic rendering is a quite recent modality of interaction, and still knows great development
in research labs. Actually, haptic rendering is a particularly complex interaction that involves
costly haptic devices. In this section, we discuss the constraints that haptic rendering imposes.

A bidirectional interaction

Haptic devices are material interfaces between our real world and a virtual world. In order to
operate with a numerical simulation, a haptic device has its state sampled over time, which
is also used to interact with the simulation. On the other side, the state of the proxy in the
simulation is sent to the haptic controller which controls the motors of the haptic device to
make the user feel a haptic feedback. We call the synchronization the discrete times at which
the state of the device is sent to the simulation, and vice-versa (for simplicity, we consider
that the synchronization is an instantaneous procedure).

Let us place ourselves in the case of admittance-emulated device. In that case, the syn-
chronization procedure (from the point of view of the haptic rendering software) consists in
fetching the haptic device returned forces (the position and velocity of its tip), and to order
a goal state (a position and a velocity). However, between the discrete synchronizations, the
two worlds evolve in a non-predictable way. Namely, the haptic device controller cannot know

58

2.6. INTERACTIVE SIMULATION

in advance the next position and velocity which will be ordered at the next synchronization
(even if it can try to guess it) due to the interactions of the proxy and the other objects of the
virtual world. In the simulation point of view, the next forces that will be sent by the haptic
devices are also unknown, since the human user which is free to move the tip of the device in
a continuous and unpredictable way. This two-way interaction is a source of complexity of
haptic rendering, and this constraint must be understood in order to design a stable haptic
rendering algorithms. As discussed in the following, additional conditions must be satisfied
in order to produce a realistic haptic feedback.

The frequency constraint

As highlighted in Figure 2.20, in order to manage the unavoidable errors difference between
the current state of the haptic device and the state of the proxy, a virtual coupling is created.
The simplest and most used virtual coupling is the damped spring model, which represents
a proportional derivative control of the device, and of the proxy at the same time (the two
entities are subject to different constraints, making them moving apart between synchroniza-
tions).

Let us consider for the moment that we are using a one degree of freedom output only
haptic device. The current state of the device is represented by the scalars qdevice and q̇device.
The position of the proxy which is a goal position for the tip of the device is qgoal, and we
also have q̇goal giving the velocity of the proxy. In the case of a simple spring-damper virtual
coupling, the force acting on the tip of the device is given by:

f(qdevice, q̇device) = k(qgoal − qdevice)− c(q̇goal − q̇device) (2.93)

where k is the spring stiffness and c is the damping coefficient. In the following, we will
denote by p the period of time in second between two synchronizations of the device (1/p
gives the haptic frequency). If the force f(qdevice, q̇device) is applied constantly during the
period p, then the position qdevice will evolve following the rules of explicit Euler integration
(see section 2.3.2.2). This integration is only conditionally stable, and high values of k impose
small value for p to avoid the simulation to diverge. A way to improve the stability of the
system is to use implicit Euler integration (see section 2.3.2.2) that imposes in this case the
passivity of the system [Colgate 95] (i.e. the system only dissipates energy, and do not create
any). This result can be extended to 6 DOFs input and output haptic devices (since the
forces are still linear in the position and velocities). The forces Jacobian are simply the mass
and inertia matrix of the proxy weighted by the stiffness k and damping c constants.

However, stability is only a necessary condition for a realistic haptic display. Another
important parameter is the frequency 1/p of the haptic order. Actually, increasing the stiffness
constant k of the coupling spring is not enough to increase the perceived stiffness of the force
feedback. This can be simply explained noticing that using a fixed time period p, increasing
k does not improve the stabilization time. Short stabilization times can only be obtained
using high values for k and small values for p using spring damper model. Namely, in
order to display stiff haptic effects such as impacts between two rigid bodies, the simulation
must be performed at high frequencies to provide haptic orders at high frequencies. It is
commonly admitted that for haptic interactions between deformable bodies, a frequency of
300Hz is suitable, while for high frequency phenomena such as impact between rigid bodies,
frequencies as much as 1kHz are needed [Colgate 95].

Maintaining such high frequencies impose limitations on haptic rendering. In computer
graphics community, real-time applications often target a frequency of 30 Hz to output on
the screen. However, 30 Hz is clearly not enough for haptic rendering and the algorithms that

59

CHAPTER 2. BACKGROUND

manage a real time visual display must be arranged in order to allow a haptic display. At the
beginning of haptic rendering, simple virtual worlds containing a few degree of freedom and
a few constraints were considered [Constantinescu 05]. The detection of collision between
the proxy and the other objects is often the bottleneck of the haptic frequency, Gregory et.
al. [Gregory 99] proposed an efficient collision detection algorithm is scenes involving only
one movable object. Penalty and impulse-based method are often considered for collision
response due to their fast execution time [Chang 97, Otaduy 06].

In [Barbič 07a], the authors present an adaptive time critical algorithm for detection col-
lision and response between deformable bodies. Their algorithm is based on a voxel hierarchy
and point sampling of the bodies. The hierarchy is browsed until the limit time has been
reached for collision detection. In [Ruffaldi 08] is also presented a voxel hierarchy and colli-
sion response methods exploited for haptic rendering. However, single-threaded applications
manage sequentially the simulation of the global virtual world, the visual display, the applica-
tion events and the haptic rendering. Using this architecture, the haptic rendering frequency
is prisoner of the time-consuming tasks such as global simulation or visual display. In order
to free the dependency of the haptic rendering constraint, multi-rate architectures are used
as presented in the next section.

2.6.3.4 Multirate simulation and intermediate models

In order to maintain high haptic frequencies, haptic rendering applications are often designed
with parallel architecture containing at least two threads: one thread managing the physical
simulation of the virtual world, the visual display and the application events, and a second
thread which is dedicated to haptic rendering (see e.g. [Meseure 07] for a survey on multirate
architectures). In the following, we call the first thread the simulation thread, and the second
thread the haptic thread. Of course, it is possible to use more threads to increase to application
overall timings, but we concentrate in this section on the dissociation between the haptic
rendering and the other tasks of the application. The frequency requirements are different
in the two threads. The simulation thread should run at least at visual display frequency
(about 30Hz), while the haptic process runs at haptic frequencies, e.g. at 1kHz for displaying
contacts between rigid bodies. Figure 2.21 shows an example of a parallel architecture using
a simulation thread and a haptic thread running at different frequencies. The assumption of
admittance-controlled devices is made in the following.

In order to communicate, the simulation and the haptic threads use a shared buffer which
is updated by the simulation process at its rate. The haptic process uses the buffer data
combined with the forces returned by the haptic device to deduce the next state of the proxy.
The state of the proxy is also known by the simulation thread.

The shared buffer contains an intermediate and local representation of the virtual world
around the proxy. The nature of the intermediate model can be various, and is such that the
haptic thread is able to read it fast enough to provide the desired haptic update rate. In the
following sections, we detail three kind of intermediate models.

Geometrical approach

The geometrical approach purpose is to extract locally around the proxy geometrical infor-
mation of the virtual world. This geometrical information is exploited by the haptic thread
that performs detection collision between the proxy and the local geometry (which is fast
since the geometry extracted is not complex). The geometry extracted can be of different
nature. Adachi et. al. [Adachi 95] proposed extracting a plane from the local geometry of a
three DOFs proxy. Their result is extended in [Mark 96] where sets of plane can be used for

60

2.6. INTERACTIVE SIMULATION

Figure 2.21 – A multirate architecture for haptic rendering. The simulation thread runs at a
lower frequency, and updates at its rate a shared buffer containing an intermediate model. This
intermediate model is used at higher frequencies by the haptic thread, enabling it to generate
consistent haptic orders at haptic rate.

multi-contact and six DOFs haptic interactions. Parametrized surfaces have also been pro-
posed [Balaniuk 99], avoiding the artifacts of smooth surfaces approximations by planes. A
GPU-accelerated algorithm is proposed in [Mendoza 00] to extract all triangles that are near
to the proxy and copied into the shared buffer as an intermediate representation. Otaduy et.
al. [Otaduy 05] proposed a multi rate application sensation preserving algorithm for haptic
rendering between complex meshes. The meshes are locally (at the collision points) simplified
in a sensation preserving manner. Their result is extended in [Otaduy 06], where a collision
response algorithm based on sampled point clustering is proposed.

The main limit of geometrical approach is the interaction between dynamic bodies. Ac-
tually, if only the proxy is able to move into an immobile world, good results are obtained.
However, if bodies are moving in the virtual world, the geometry extracted is not valid during
the haptic cycles, and when the buffer is updated, this creates artifacts that can be felt as
vibrations in force feedback.

Force Jacobian approach

In the force Jacobian approach, the intermediate representation is a force derivative infor-
mation [Picinbono 99]. Concretely, the buffer data is set of Jacobian matrix that represents
the derivative of the force to apply with respect to a displacement of the tip of the device
(this approach is designed for impedance control mode). For example, if we denote by qproxy
the position of the proxy in the virtual world, and by qdevice the position of the device tip
(we consider that the frame coordinate of the two worlds are consistent with each other), the
displacement ∆q of the tip of the device is given by ∆q = qdevice−qproxy. If ∆q = 0, the two
states coincide, and no force is applied. It is possible to define a force function f(q) that links
the position of the tip with a force to apply to correct its position. We have f(qproxy) = 0.
Using Taylor expansion, we can write:

61

CHAPTER 2. BACKGROUND

f(qdevice) = f(qproxy + ∆q) (2.94)
= f(qproxy) +∇f∆q +O(∆q2) (2.95)
≈ ∇f∆q (2.96)

where ∇f is the Jacobian of the force function with respect to the state vector q. Using
this Jacobian, it is extremely fast for the haptic process to deduce forces to apply at the tip
of the device.

Multiresolution simulation

The principle of multiresolution approaches is to run two physical simulations in parallel. The
simulation thread simulates the global virtual world at lower frequencies, while the haptic
thread simulates a part of the world or the same world, but using lower resolution of models.
Moreover, multiresolution methods are well suited for interaction with movable bodies.

Astley et. al. [Astley 97] proposed a multiresolution method for haptic interaction on
deformable models. A lower resolution of the mesh of the deformable body is used around
the interaction point, for the haptic thread. The full global resolution mesh is used in the
simulation thread. The authors explain how the two parts of the mesh simulated at different
rates can be connected. In [Cavusoglu 00], the authors proposed using a linear version of
deformation method around the points of interest at different rate, while the simulation
thread processes on a global mesh using non-linear methods for interaction.

2.6.4 Summary: interactive simulation and brittle fracture
In this section, we first reviewed the previous work in collision detection, a necessary step
in the simulation of interactive virtual worlds. We saw that although various methods are
available for collision detection, no method is directly applicable to brittle fracture. Indeed,
collision detection methods between arbitrary geometries rely on data structures that are
precomputed before the simulation. In the context of brittle fracture, a lot of new geometries
are created at run-time, and during the same simulation frame. Therefore, precomputation or
even fast computation of the proposed data structures cannot be done within a computation
time compatible with interactive applications. The second topic reviewed in this section
is the haptic feedback, a common interaction technique in virtual prototyping applications.
Existing haptic frameworks [Ruspini 00, Luciano 05, Pocheville 04] for haptic rendering have
their own collision detection system, and cannot be used directly for the haptic interaction
with brittle fracture. Also, the high update haptic frequencies required by an haptic display
highlights the need for more efficient models for brittle fracture, as well as adapted collision
detection mechanisms.

2.7 Chapter conclusion
In this chapter, we first presented the background of the related work on physical simulation.
We show that various methods are available that allow either fast or accurate deformations,
or both fast and accurate, but modeling only small deformations. Then, we presented the
methods of simulation of the fracture. Most of the proposed methods are extensions to the de-
formation models that localize the regions of higher stress to start and propagate fractures.
We presented a summary table highlighting the pros and cons of each fracture simulation

62

2.7. CHAPTER CONCLUSION

method, with a focus on the computation time performances, a necessary feature for inter-
active applications. We showed that existing real-time approaches could be improved on two
particular points. First, allowing unconstrained crack propagation, and second, simulating
the dynamics effects of the impacts for fracture.

In a second part, we presented a brief review of the collision detection methods, and we
noticed that the use of existing method for brittle fracture would not be straight forward,
because of the new bodies with unpredictable geometries that are created at run-time, which
preclude any precomputation. Finally, we presented the previous work on haptic rendering,
highlighting the constraints brought by this bidirectional interaction, and its high frequency
update required, making it a challenging modality of interaction.

63

3New models for the real-time
simulation of brittle fracture

Contents
4.1 Introduction . 95
4.2 Efficient collision handling for brittle fracture 96

4.2.1 Overview of the collision detection algorithm 96
4.2.2 Fragment Distance Field . 97
4.2.3 Fracturable Adaptive Sphere Tree . 100
4.2.4 Experiments and Results . 103
4.2.5 Discussion and conclusion . 106

4.3 Haptic interaction with fracturing bodies . 107
4.3.1 Benchmarking the rigid body engines for haptic 108
4.3.2 Coupling rigid body engines and haptic rendering 114
4.3.3 Dealing with a growing number of bodies and haptics 118

4.4 Chapter conclusion . 123

Simulating brittle fracture in real-time on a physical basis has several challenges that have
still not been addressed. First, existing real-time methods do not allow crack propagation
in unconstrained directions, because of the computational and memory cost required by the
current remeshing approaches. Also, the dynamic effects of impacts are not simulated in
real-time, because stiff materials need small time steps to compute the propagation of the
deformations from the impacted areas.

In this chapter, we first define a fracture state model that is designed to store the fracture
information of the body. The design of this independent model allowed us to define an efficient
propagation algorithm, with non-constrained crack direction, as well as an efficient meshing
method for rendering. We then propose a simulation method based on modal analysis for the
simulation of impact-based brittle fracture, allowing us to simulate the deformation of the
brittle bodies in real-time. We also show how age-based cracking can be efficiently simulated
using our model. We end this chapter with a demonstration of the use of a database of
precomputed physical data for a possible handling of the newly created fragments.

3.1 Modeling the fracture state of a brittle body
In this section, we present a formal description of the fracture state of a body, suited for
brittle fracture simulation. Later, we show how this model is leveraged for different real-time
fracture simulations.

65

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

3.1.1 A new model based on volumetric meshes

As a deformable body has a rest state and a deformed state, a fracturable body will have an
initial unfractured state, and a fracture state when at least one crack begins to propagate
on it. The fracture state F of a body is a tuple containing information on where and how
the body is fractured. Since fracture can occur inside the volume of the body, we rely on a
volumetric mesh to store the fracture state information. The volumetric mesh is defined as:

M = {E ,N ,L} (3.1)

where E is the set of elements that discretized the volume of the body, N is the set of
nodes composing the mesh, and L the set of edges. In the following, we assume the elements
to be tetrahedra, although our method could be generalized to other types of volumetric
elements. From an element e ∈ E , the four nodes composing this element can be accessed
through the mapping nodes : E 7−→ N 4, while the 6 edges composing this element can be
accessed through the mapping edges : E 7−→ L6.

Figure 3.1 – Example of 2-D volumetric mesh. The set of elements E is represented by the
gray contours, the set of nodes N is represented by the black dot, and the edges set L by the
grey lines.

The key idea of our fracture state model is to use each of the structure composing the
volumetric mesh to store a damaged state, the fracture surfaces, and a fragment list as
presented in the following.

3.1.1.1 Modeling damage state with elements

By the term damage, we refer as elementary fracture, i.e. the fracture inside a single element
of the volumetric mesh that holds the fracture state. In order to track the damage state of
the body, we store in each element of its volumetric mesh a state that can take two distinct
values: not damaged, or damaged. The damage state can be stored in a set Efrac ⊂ E which is
a subset of the element set E representing the set of damaged elements. Figure 3.2 illustrates
the damage state set Efrac of a rectangular 2-D body.

Modeling the damage state of the body using the elements has several advantages: if a
volumetric mesh is already used for the simulation of the deformation, it requires a few extra
memory, and it is easy to update. Also, embedding the damage state into the volumetric
mesh allows an efficient collision handling between cracks as presented in the following.

3.1.1.2 Modeling fracture surfaces with edges

Even if damage state is useful information for internal operations in the fracture process,
it is not sufficient to produce a surface mesh for the rendering, or to identify the separated
fragments. Therefore, the fracture surfaces are sampled on the edges of the volumetric mesh.
To do so, each edge is associated with two structures: a cut state, and a cut position. The

66

3.1. MODELING THE FRACTURE STATE OF A BRITTLE BODY

Figure 3.2 – Damage state stored in elements. A damage state that is associated to each
element, taking two possible values: damage (white elements) or not damage (green elements).
Left: A body is damaged by two cracks represented by the dotted lines. Right: The set of
damaged elements corresponding the cracks is represented in green.

cut state stores whether an edge has been cut by a fracture surface, while the cut position is
a scalar between 0 and 1 that stores the position of the cut on the edge. Figure 3.3 illustrates
the sampling of the crack surface on the edges of the volumetric mesh.

Figure 3.3 – Fracture surface position sampling on the edges of the volumetric mesh. To
each edge of the mesh is associated a cut state (cut or not cut), and a scalar between 0 and
1 representing the cut position of the crack on this edge. Left: A body is damaged by two
cracks represented by the dotted lines. Right: The cut positions of the cracks are sampled on
the edges of the mesh, represented by the black dots.

The list of cut edges is stored in a set Lfrac, and the cut position is stored in the association
Pf : Lfrac 7−→ [0 : 1].

3.1.1.3 Modeling fragments with nodes

If a crack separates a body (or a fragment) in two, two new fragments with independent
rigid motions might be created. In order to define the fragments, each node is associated
with a unique fragment identifier. The fragment identifier of each node is computed by flood
filling once the set Lfrac of cut edges is determined. At the end of the process, an association
Nc : N 7−→ N linking each node to a fragment identifier is obtained.

After a new crack has propagated inside a fragment, the set Lfrac of cut edges is updated.
To update the fragment identifiers, a new fragment identifier fnew is chosen, and applied to
an arbitrary node of the cut fragment. Then, this fnew is propagated recursively on the
neighbors of this node with a condition. If the edge formed by two neighbors is cut, the
propagation of the fragment identifier cannot occur. Figure 3.4 illustrates the computation
of the fragment identifiers on a fractured body, while algorithm 1 present the flood filling
algorithm used.

67

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Algorithm 1 Flood filling algorithm for fragment identifiers
1: n← unassigned node
2: Q =← {n}
3: fnew =← new fragment identifier
4: while Q 6= ∅ do
5: Nc ← Nc ∪ (n, fnew)
6: for each ne ∈ neighbors(n) do
7: if ne /∈ Q then
8: e← edge(ne, n)
9: if e /∈ Lfrac then

10: Q ← Q∪ ne
11: end if
12: end if
13: end for
14: Q = Q− n
15: end while

Figure 3.4 – Node fragment identifiers. Each node is associated to the fragment it belongs
to. The connected set of nodes that have the same identifier form a fragment. Left: A body is
damaged by two cracks represented by the dotted lines. Right: Resulting fragment identifiers
on nodes (fragment identifiers are symbolized with colors)

3.1.2 Efficient generation of the surface meshes from the fracture state

The fracture state of the body efficiently stores the different information of fracture that
separated the body into fragments. Although it cannot be used as is to be displayed using
a traditional procedural rendering, a triangular surface mesh can be efficiently generated for
visual rendering purposes. To generate the triangles corresponding to the fracture surfaces,
we visit all the damaged elements in Efrac. For each damaged element, we store in a list
L the fragment identifier of each of its node. For tetrahedral elements, three different cases
might arise. Either 1, 2 or 3 nodes of the element have a fragment identifier equal to the same
fragment identifier r. For each configuration, we generate the appropriate surface triangles
as shown in Figure 3.5. Repeating the process for each region r ∈ L allows generating all
the faces of the fracture surface. Note that if the edges of the same tetrahedron are cut, the
resulting meshing will produce an empty space at the center of the tetrahedron as shown in
Figure 3.6. In this case, a new diamond-shaped fragment not connected to any node may be
created to maintain the volume consistency.

To generate the triangles corresponding to the original surface, all the surface elements
are visited. If the surface element is not damaged, each face of this element that is pointing
to the outside generates one surface triangle. If the element is damaged, each of its face
is treated independently. Two cases might arise for one damaged face and one fragment

68

3.2. PROPAGATING CRACKS, OR UPDATING THE FRACTURE STATE MODEL

Figure 3.5 – Fracture surface meshing cases. The green nodes are nodes with fragment
identifier r, while white nodes have a different fragment identifier. Black dots represent the
cut position of the fracture surfaces on the edges, while red surfaces represent the geometry
generated for rendering. Left: Only one node has a fragment identifier equal to r, a single
triangle is generated. Middle: Two nodes have a fragment identifier equal to r, two triangles
are generated. Right: Three nodes have a fragment identifier equal to r, a single triangle is
generated.

Figure 3.6 – Meshing of a fully damaged element.

identifier r: either 1 or 2 nodes of this face have the fragment identifier equal to r. For each
configuration, we generate the appropriated triangles as shown in Figure 3.7

Figure 3.7 – Meshing of the damaged surface. The green nodes are nodes with fragment
identifier r, while white nodes have a different fragment identifier. Black dots represent the
cut position of the fracture surfaces on the edges, while red surfaces represent the geometry
generated for rendering. Left: Only one node has a fragment identifier equal to r, a single
triangle is generated. Right: Three nodes have a fragment identifier equal to r, two triangles
are generated.

The global meshing process is summed up in Figure 3.8. The resolution of the final mesh
to render is directly dependent on the resolution of the original volumetric mesh. However,
sampling the surface on the edge allows obtaining a first order accurate representation of the
fracture surfaces as presented in Figure 3.9.

3.2 Propagating cracks, or updating the fracture state model

Given the fracture state model defined in section 3.1, simulating the propagation of a crack
corresponds to consistently update the set Efrac of damaged element, Lfrac of cut edges, as
well as the cut positions on the edges.

69

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Figure 3.8 – Generation of the visual mesh from the fracture state. From the state of each
element, the corresponding surfaces are generated.

Figure 3.9 – Surface mesh and physical mesh. The colored sections represent a fracture that
cut the body straight through the physical mesh. Although the visual mesh represents with
fidelity the fracture surfaces computed, the underlying physical mesh (in wire frame) is not
updated.

We first propose a flexible model of the fracture surfaces. Then, we present a crack
propagation algorithm leveraging the fracture surface model as well as the fracture state
model defined.

3.2.1 Fracture surface model

We propose defining the fracture surface using a general implicit surface S:

S = {p|s(p) = 0} (3.2)

where p ∈ R3. This definition allows a general and flexible way to model the fracture
surfaces using mathematical expressions. In this manuscript, we used the following expression
for s(p) in (3.2):

s(p) = bump
(
R−1(p− p0)

)
(3.3)

where R ∈ R3×3 is an orientation matrix that defines a global orientation of the fracture
surface, p0 defines an offset, and bump(a, b) is defined as follow with a 2-D simplex noise
function [Perlin 02]:

py − noise(px, pz) (3.4)

An example of a surface texture obtained with a noisy fracture surface p0 is shown in
Figure 3.10.

3.2.2 Propagating the crack through the mesh

Initial direction

The initial direction chosen by the crack to separate the material is the direction that max-
imizes the elastic energy dissipation [Cotterell 65]. The directions of principal stress satisfy

70

3.2. PROPAGATING CRACKS, OR UPDATING THE FRACTURE STATE MODEL

Figure 3.10 – Crack path and noise. Complex micro branching observed during crack prop-
agation (top) can be reproduced with fidelity using a noise function (bottom). Similar results
by full simulation would require expensive computation.

Figure 3.11 – Propagation of one crack in a coarse mesh. Top line: Representation of the
current set E of elements cut by a fracture surface S. Initially (top left), the set of element
in composed of the element e0 on which the fractured has been initiated. During the propa-
gation, the neighbors of the set E that cross the surface S are added to E in a breadth-first
search manner. Bottom line: representation of the actual fracture surface computed as the
intersection between S and the volumes of E . The surface is meshed with the edges of the mesh
elements (see section 3.1.2).

this condition. Therefore, we choose to open the fracture in the direction d of the maximum
principal stress of the element e0 on which the fracture starts. The exact location of the
beginning of the fracture is the center c0 of the element e0. Therefore, the parameters of the
fracture surface equation (3.3) are:

p0 = c0 (3.5)
R = (d⊥1 d d⊥2) (3.6)

where d⊥1 and d⊥2 are two arbitrary orthogonal vectors that are also orthogonal to d.

Fracture Propagation

The key idea of our crack propagation algorithm is to use the implicit surface to visit the phys-
ical mesh elements. Starting from the initial element e0, we visit the neighbors neighbors(e0)
that are crossed by the implicit surface. An element is considered as crossed by the fracture
surface if one of its node position pi is on the negative side of the fracture surface (s(pi) < 0)
and one of its node position pj is on the positive side of the fracture surface, or on the frac-
ture surface (s(pj) >= 0). We visit in a breadth-first fashion the neighbors of the crossed
elements to form a set E of elements crossed by the fracture surface (see Figure 3.11).

Collisions between the cracks

A newly visited element cannot be added into the set E of cut elements if it is already marked
as fractured. This simple rule allows handling the collisions between the arbitrarily complex
implicit surfaces in an approximate manner using the physical mesh.

71

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Algorithm summary

Algorithm 2 sums up our fracture propagation algorithm.

Algorithm 2 Propagation of one fracture surface
1: S = surface defined by equation (3.3)
2: Efrac = {e0}
3: Enext = ∅
4: Etmp = {e0}
5: Ef = 0
6: Es = 0
7: while Etmp 6= ∅ do
8: for all e ∈ Etmp do
9: Ef = Ef +Ae.Gc

10: Es = Es +Ae.γ.ηe
11: update Lfrac
12: for all n ∈ neighbors(e) do
13: if n crossed by surf(S) and Ef < Es and n /∈ Efrac then
14: Efrac = Efrac ∪ {n}
15: Enext = Enext ∪ {n}
16: end if
17: end for
18: end for
19: Etmp = Enext
20: Enext = ∅
21: end while

3.2.3 Energy stop condition

We adopt a macroscopic understanding of the brittle fracture propagation, and propose an
energy-based criterion to stop the crack propagation. We express the fracture energy Ef (i.e.
the amount of energy that has been used to propagate the crack) with a piecewise linear
approximation:

Ef =
∑
e∈E

Ae.Gc (3.7)

where Ae is the area of the fracture surface that crosses element e. Gc is the fracture
toughness of the material, which expresses its resistance to fracture propagation. Similarly,
we define Es as the strain energy available from the non-fractured state of the body using:

Es =
∑
e∈E

Ae.γ.ηe (3.8)

where ηe is the strain energy density of element e, and γ is a constant factor that links
Ef and Es. The crack can propagate only if the available amount of energy permits it.
When a new element ei is visited, it can be added to the set E of fractured elements only
if Ef + Aei .Gc < Es + Aei .γ.ηei , i.e. if the new sum of fracture energy needed is under the
sum of energy available. Figure 3.12 shows the influence of the fracture toughness Gc on the
propagation of the fracture.

72

3.3. MODELING IMPACT-BASED FRACTURES

Figure 3.12 – Three glass slabs broken with different fracture toughness Gc (the fracture paths
have been highlighted during the rendering). The left slab has a toughness Gc of 150 J.m−2,
the middle slab has a toughness of 90 J.m−2, while the right slab has a toughness of 60 J.m−2.

3.3 Modeling impact-based fractures
Impact-based fracture occurs when two stiff bodies enter in contact with a sufficient relative
velocity to make at least one of them break. We use a third party rigid body simulator
to simulate the contact between stiff bodies. Whenever a contact occurs between a pair of
bodies, the deformations of the bodies is computed, and they eventually break. Compared to
previous real-time approaches, we are able to simulate the dynamic effects of impacts such
as inertia or damping thanks to the modal analysis approach.

3.3.1 Overview of the process
An overview of our brittle fracture simulation algorithm is presented in Figure 3.13.

Figure 3.13 – Overview of our impact-base fracture algorithm for one body. At each contact
event, the fracture algorithm is processed.

Once a contact is processed between a pair of body, their deformations due to this impact
is computed. Since we need to simulate small deformation of stiff bodies, we propose using a
modal analysis to simulate efficiently the deformations. Therefore, prior to the simulation, a
modal analysis is performed on each body that can fracture (see section 2.4.3.2 for more details
on modal analysis). Because the contact duration influences the fracture simulation (see

73

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Figure 3.14), we present a way to estimate it in section 3.3.2. We also choose an appropriate
time step to capture the main deformations of the body due to the impact, as explained in
section 3.3.3. Section 3.3.4 details the contact force model that we defined to simulate contact
forces between stiff bodies. Finally, section 3.3.5 summarizes the whole process.

3.3.2 Estimation of the contact duration
Our contact duration estimation is based on the Hertz’s model formulation of sphere-sphere
contacts [Johnson 87]:

td = c.

(
m2

E2r
.

1
vrel

)1/5

(3.9)

This formulation relates the contact duration td and the mass m, Young’s modulus E,
radius r of the spheres, as well as their velocity of approach vrel at the time of impact (c being
a constant scalar). The stiffer the body, the shorter the contact duration, while the heavier
the body, the longer the contact duration. This property is useful in the context of brittle
fracture, since the stiffness and mass of the bodies should modify the fracture simulation
outcomes. However, the formulation in equation (3.9) is written for sphere-sphere impacts,
and does not take into account the geometry of the body, nor the position of the impact
on the body. Therefore, we propose an extension of this model based on modal analysis.
We substitute the ratio m2/E2r of equation (3.9) by the mass/elasticity ratio of the mode
of deformation which is the most excited by the impact. We choose the most excited mode
because this the one that will involve the greatest displacements during the impact, as shown
in Figure 3.14. Equation (3.9) becomes:

td = c.

((2π
Im(ωmax)

)2
.

1
vrel

)1/5

(3.10)

where Im(ωmax) (Im(x) is the imaginary part of the complex number x) is the natural
frequency of the mode max, the most excited mode.

Figure 3.14 – Contact duration on a rod falling in different configurations. Depending on its
initial position of the rod, the most excited mode is different, and so is the estimated contact
duration.

The frequencies Im(ωi) of each mode depend only on the stiffness (i.e. the material
elastic properties), the mass, and the geometry of the body, keeping the same properties as
the first formulation of contact duration. Note that if the mode i is critically damped, this
approximation loses its sense. In practice, we select the most excited mode among those
that are not critically damped. Also, since contacts involve at least two bodies, we compute
contact duration estimation for each of the bodies involved in the contact, and retain the

74

3.3. MODELING IMPACT-BASED FRACTURES

largest duration. Finally, if the body is colliding at several locations at the same time, we
choose the contact that has the smallest duration. The advantages of our contact duration
on the simulation are highlighted in Figure 3.15.

Figure 3.15 – Advantages of our contact duration estimation method. A piggy bank is
hit by balls of different stiffness. Top: no contact force model is applied. We use a quasi-
static approach to model a single deformation state of the piggy bank from the rigid body
impulse. The fracture is not influenced by the ball stiffness. Bottom: the contact duration
approximation of our contact force model leads to higher local stresses when the ball has a
higher stiffness. With a softer ball, the contact will last longer and the energy of the ball will
be damped without generating any fracture. In that case, the fracture is influenced by the ball
stiffness as expected.

3.3.3 Simulation Time Step

To determine an appropriate time step for the simulation of the deformations during the
contact, we use the Nyquist-Shannon sampling theorem. However, instead of taking the
highest frequency of all retained modes, we take the highest frequency Im(ωhigh) of the non-
critically-damped mode among the modes that have been excited by the contact impulse.
Thus, the time step ∆t used in our simulation is:

∆t = 4π
Im(ωhigh) (3.11)

3.3.4 Contact Force Model

Following the Hertz model of impacts, we use a sinusoidal function f(t) to model contact
forces:

f(t) = a. sin(u.t) (3.12)

where a is the amplitude, u a frequency, and f(t) is the magnitude of the contact force.
The frequency u is computed with the contact duration (3.10) as u = π/td.

75

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Force amplitude

The rigid body simulator computes contact impulses that prevent bodies from inter-penetrating.
A contact impulse φ can be interpreted as the integral of a lasting contact force over time
[Hahn 88]. In our case, we interpret it as the integral of the contact force of equation (3.12)
over the duration of contact td:

φ =
∫ td

0
f(t).dt =

∫ td

0
a. sin(u.t) = a.

1− cos(u.td)
u

(3.13)

The amplitude a of the contact force is deduced from this integral as a = (φ.u)/(1 −
cos(u.td)).

Figure 3.16 shows an example of the deformations of a slab due to a contact force.

Figure 3.16 – Our contact force model applied on a stiff slab (color intensity is proportional to
the maximum principal tensile stress). In order to model contact forces, a sinusoidal force f(t)
is applied at discrete times using a time step ∆t for a duration of contact td. The parameters
∆t, td and the amplitude a are determined thanks to modal analysis and rigid body simulation.

3.3.5 Fracture criterion

At each single or multiple contact event from the rigid body simulator, we analytically com-
pute the damped deformation wave that occurs due to the contact force, using modal analysis.
From the displacement vector computed for a body, we compute the Green-Lagrange strain
εe tensor for each element e, and deduce the stress σe of the elements using a Hookean model
of elasticity: σe = Cεe (C ∈ R6×6 being the linear constitutive law). If the maximum princi-
pal stress of an element exceeds a threshold Rc, a fracture is initiated (Rankine hypothesis
[Gross 06]). To model the inhomogeneity of the material, we randomly sample "weakness"
points into the bodies from a density of imperfection. Fractures are initiated at the location
of the weak point which is the closest to the element that has the highest principal stress.
The whole process of fracture initiation is summed up in Algorithm 3.

3.3.6 Results

3.3.6.1 Computation time performances

Configuration Our fracture simulation method has been implemented in C++ on a laptop
with 4 GB of RAM, and an Intel®Core™2 Extreme (2.3 GHz, we only use one thread).
Our GPU implementation has been tested on an NVidia Quadro FX 3700M. We tested

76

3.3. MODELING IMPACT-BASED FRACTURES

Algorithm 3 Fracture initiation test for one body B
1: M← modal_analysis(B) {§ 2.4.3.2 }
2: b← contact position
3: φ← contact impulse magnitude
4: t← 0
5: td ← contact_duration(b,M,B) {§ 3.3.2 }
6: ∆t← time_step(b,M,B) {§ 3.3.3 }
7: for t < td do
8: t← t+ ∆t
9: f(t)← contact force at t {§ 3.3.4 }

10: modal_deformation(f(t),M,B) {§ 3.3.4 }
11: if ∃ element e with maximum principal tensile stress > Rc then
12: propagate fracture at e {§ 3.2 }
13: end if
14: end for

our method with Havok Physics [Havok] and NVidia PhysX [PhysX] for the rigid body
simulation [Glondu 10].

GPU Implementation

Thanks to modal analysis, the fracture initiation step can be fully parallelized [Che 06]. We
implemented a parallel version of this step, using GPU hardware to accelerate the computa-
tions. All modes of deformations are transferred once onto the GPU global memory, avoiding
expensive GPU/CPU memory transfers. In a first sub-step, a list of deformation states (the
successive deformations during time of contact) is generated using one thread per degree of
freedom of the initial mesh. The deformation states are stored on the GPU global memory,
and never transferred to CPU memory. Then, these states are used in a second sub-step
to compute a list of the maximum principal stresses of each element using one thread per
element. The lists of principal stresses are finally transferred back to CPU memory, and
exploited to apply fracture criterion and initiate fractures. Our parallel implementation of
the fracture initiation step gives up to 14 times speed up on our configuration.

Computation Time Results

Table 3.1 summarizes test cases parameters and results. The fracture test initiation scales
with the mesh complexity thanks to the introduction of the density of weak points. Two
meshes of different resolution but with the same volume and the same density of weak points
will have similar computation time (see last line of Table 3.1). The bottleneck of our method
is the fracture initiation phase (about 75% of the computation time), where the deformations
are computed to initiate fracture. The complexity of our fracture propagation algorithm is
linear in the number of elements of the physical mesh that are crossed by the fracture surface.
The complexity of the fragment generation algorithm is linear in the number of nodes of the
mesh to be separated. The linear complexity of our global system enables us to fracture
bodies composed of more than 175K elements in about 50 milliseconds.

3.3.6.2 Tests and Scenarios

We demonstrated the main features of our approach through various scenarios.

77

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Complexity Physical parameters
Body Figure nodes tets α β E(Pa) Gc(J/m2) Rc
glass 3.18 7912 24410 1.10−9 5 200.109 150 4.109

piggy bank 3.18 5992 20777 1.10−8 3 200.109 500 5.108

piggy bank 3.15 5992 20777 1.10−8 3 200.109 500 5.108

slab low - 644 1740 1.10−10 5 100.109 100 109

slab moderate - 2761 8190 1.10−10 5 100.109 100 109

slab high 3.12 12017 39901 1.10−10 5 100.109 60− 150 109

slab v. high - 50476 175095 1.10−10 10 100.109 100 109

bunny 3.19 5089 18767 2.10−9 5 1.109 100 5.108

Timings (ms)
Body Figure initiation propagation meshing total
glass 3.18 34 / 3.5 5.1 1.3 9.9

piggy bank 3.18 66 / 8.3 6.6 6 20.9
piggy bank 3.15 150 / 15 12.3 6.4 33.7
slab low - 12 / 1.7 0.8 0.6 3.1

slab moderate - 17 / 3.9 2.4 0.37 6.67
slab high 3.12 25 / 7 6 17 30

slab v. high - 26 / 7 25 21 53
bunny 3.19 42 / 3.2 6 7 16.2

Table 3.1 – Parameters and timings for each scenario. The values after the slash in the
initiation timings column are the timings obtained with GPU accelerations. Total times are
computed considering GPU timings. The values α and β are the Rayleigh damping coefficients,
and the number of retained modes is one hundred.

Figure 3.17 – Effect of damping on the fracture simulation. Our contact force model with
modal analysis enables to model the inertia and damping of the plate. The left plate has the
lowest damping value α = 0, letting high frequency modes to propagate and generate many
small fragments. The right plate has the highest damping value α = 10−6, generating less
fragments.

Compared to previous real-time approaches, we simulate damping and contact properties
through our contact force model and modal analysis. These phenomena have consequences
on brittle fracture, as illustrated in Figure 3.15 (the stiffness of the projectile changes the
contact properties) and in Figure 3.17 (different damping values lead to different fracture
paths).

As shown in Figure 3.12, the fractures can propagate in any direction, and the fracture
patterns are not guided by the elements boundaries of any mesh. Moreover, our method can
model physically-based partial internal fractures as shown in Figures 3.18 and 3.12. Finally,

78

3.3. MODELING IMPACT-BASED FRACTURES

Figure 3.18 – Examples of brittle fracture simulations with our approach: Left a water
glass breaks (with partial fractures) at the second bounce, Right a piggy bank smashed by a
hammer, Bottom three plates dropped with different material properties.

our algorithms are valid for convex, concave, thin or thick bodies. Figure 3.19 shows the
propagation of the fracture into a filled bunny broken at interactive rate.

Figure 3.19 – Propagation of the fracture into a thick filled body. Front, back and side view
of a filled chocolate Stanford bunny thrown on a wall.

3.3.7 Discussion and conclusion

Limitations and perspectives for modal analysis

An hypothesis of our work is that we keep the initial modal analysis to simulate the defor-
mation of the body, even if one or more fractures have started to open. We believe that this
hypothesis is reasonable for several reasons. First, if one is interested only on a fracture test
(i.e. checking whether the material will break), this hypothesis has no importance. Also, the
deformations propagate during cracking, but it is not clear how. The solution we propose is
a trade-off between the realism and the computation cost of the simulation.

79

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Another issue of our model is that modal analysis is not well suited to simulate local
deformations on big structures that have many branching parts. A solution would be to
use domain decomposition [Barbič 11] to separate the initial body into smaller domains, and
keep the advantages of speed and parallelization. Moreover, modal analysis can be extended
in several ways (using e.g. modal derivatives [Barbič 07a] or [Huang 10]) to handle larger
deformations. We plan to include this work in our framework to extend our method to ductile
fracture, or fracture of softer bodies.

Recursive fracture for the fragments

An interesting property of our method is that the fracture propagation and the fragment
generation algorithms can recursively be applied on fragments. However, the fracture initi-
ation step cannot be performed since the modal deformation basis cannot be pre-computed
for the fragments. One possibility to extend this method is to use modal proxies (or modal
impostures) as suggested in [Pentland 89] and exploited in [Zheng 10] for sound generation.
The main principle is to find a shape (proxy) in a database (for which modal analysis has
already been performed) that fits well with a fragment, scale it and its modes, and link the
nodes of the fragment to the elements of the proxy. Results combining this approach and
our fracturing method can be found in section 3.5. Another possibility is to use the same
deformation modes to generate the deformation on the fragments. When an impulse (com-
puted with the mass of the fragment) is detected on a fragment, the modal DOFs are set as
if the whole body was impacted, but only the elements composing the fragment are checked
for fracture. This solution has no physical justification, but is acceptable if the visual effect
only is desired. Finally, another solution would be to do a classical FEM simulation on the
fragments. We already have the stiffness matrices for each element, and a quasi-static equi-
librium can be computed as in [Müller 01] to initiate the fractures, while the propagation
and fragment generation step can be applied recursively.

Treating resting contacts

In our approach, we are also able to treat resting contacts cases with a quasi-static approach
solved with modal analysis. Indeed, after the modal analysis treatment, we compute a basis
that diagonalizes the stiffness matrix. Therefore, computing the reduced deformation that
solves the quasi-static equilibrium is computationally cheap. This provides an efficient and
plausible test for resting contact cases.

A framework for brittle fracture simulation

We developed a complementary framework for fracture brittle simulation, in order to evaluate
and compare brittle fracture simulation methods. It embeds features for quick set-up of
various scenarios. It also provides tools for real-time visualizations of the influences of the
different material parameters on the deformations of the bodies and their potential fractures.

3.4 Modeling cracking due to aging

Impacts are not the only cause of the fracture of brittle materials. In natural environments
and in cities, cracked stones or buildings are observed. These cracking phenomena are due
to the modification of the material properties over time, and to external loading forces. In
this section, we show how the age-based fracture phenomenon can be reproduced using our

80

3.4. MODELING CRACKING DUE TO AGING

fracture state model, and an appropriated aging algorithm. We also show how to optimize
the set of parameters of the simulation w.r.t. a desired pattern definition.

3.4.1 Aging process overview
To simulate crack opening due to age, we use a stress map that evolves over time as proposed
in [Iben 06]. The map is initialized at the beginning of the simulation: the internal stress
σe of each element e is initialized with σ0

e . At each time step, the stress is updated with
a specified stress increase rate dσe that represents the variation of the stress over time. If
the maximum principal tensile stress of an element e exceeds its resistance threshold Rce , a
fracture is opened at the center of the element e, in a direction orthogonal to the direction
of this maximum principal stress. The stress increase rate dσe will be optimized since we do
not have any a priori knowledge of the value of this parameter in the exemplar images. The
resistance threshold Rce is different in each element, due to the presence of material flaws.
The randomness of the parameter is taken into account in the optimization process by the
use of an a priori normal distribution with a mean value Rcm and a variance Rcvar .

The crack initiation algorithm is summarized below:

Algorithm 4 Stress evolution and crack opening.
1: t = 0
2: while t < age do
3: for all e ∈ E do
4: σe ← σe + dσe · ∆t
5: s← max_principal_stress(σe)
6: d← dir_principal_stress(σe)
7: if s > Rce then
8: propagate_crack_at(e,d)
9: end if

10: end for
11: t = t +∆t
12: end while

External forces

To take into account external loading forces f , we compute the static equilibrium of the
simulated body w.r.t. f :

Ku = f , (3.14)
where the unknown u is the displacement of the degrees of freedom of the body due to the
force vector f . From this equilibrium, we compute the initial stress value σ0

e for each element
using a Hookean law of elasticity. To improve the efficiency of the computation of the static
equilibrium, we perform a modal analysis on the body in a precomputation step. This gives
us a new coordinate system Λ that diagonalizes the stiffness matrix K and in which equation
(3.14) can be solved directly. The effect of a loading force on the simulation is illustrated in
Figure 3.20.

Stress relaxation

When a crack propagates, it alleviates the stress around the crack path. Indeed, the opening
of the crack involves a displacement at the surface that relaxes the surrounding strain and

81

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Figure 3.20 – Effect of a loading force on the simulation. A constant loading force is applied
from the middle of the tile, leading to higher stress around the middle. Left: stress field
computed from the loading force with quasi-static analysis (the intensity of the red value is
proportional to the maximum principal stress). Right: A higher concentration of fragments is
observed around the middle of the tile.

stress. We extend this method by adding a stress relaxation step in the simulation. Compared
to previous work, rather than computing this relaxation by a direct simulation or using e.g.,
virtual displacements [Iben 06], we propose a new method that uses an approximate but more
efficient simulation of the stress relaxation.

We use a relaxation tensor σrelax(d) in a direction d, computed as σrelax(d) = ddT /|d|.
The relaxation has |d| as its only non-zero eigenvalue. Subtracting this tensor from a stress
tensor σe alleviates it in the direction of d.

The direction d of the relaxation for an element e is chosen to be the direction orthogonal
to both the closest surface normal and the crack propagation direction. Points closer to the
crack path will be relaxed more. For efficiency of the simulation, we choose to model this
phenomenon using the following polynomial kernel φ(d), inspired by [Müller 04a]:

φ(d) = max(0, 1
r6
relax

(r2
relax − d2)3). (3.15)

The kernel is equal to one if the distance d is zero, and zero if d is greater than rrelax.
Therefore, the value σerelaxed

of the stress of element e after relaxation is computed as:

σerelaxed
= σe − vrelax.φ(d).σrelax(d) , (3.16)

where d is the distance of the center of element e to the fracture surface, and vrelax is a
new parameter denoting the stress relaxation rate around the crack. The introduction of the
parameters vrelax and rrelax allow finer control of the shapes of the generated fragments, and
thus will be determined in the optimization process.

Because we do not want to transform the tensile stress into compressive stress, we check
the stress value s = dTσerelaxed

d in the direction d. If s < 0, the relaxation produced
compressive stress in the direction d. In this case, we clamp the value to 0 by adding the
value −s ∗ σerelaxed

to the stress tensor of the element.
In some patterns, privileged directions are not observed. In that case, we apply a relax-

ation of the stress in all the directions, and Eq. (3.16) becomes:

σerelaxed
= σe − vrelax.φ(d).Id , (3.17)

82

3.5. MANAGING THE DEFORMATION OF THE FRAGMENTS: A DATABASE APPROACH

where Id is the identity stress tensor that alleviates the stress in all the directions. The
effect of the relaxation method on the aspect of the fracture patterns is illustrated in Fig. 3.21.

Figure 3.21 – Illustration of the two relaxation methods used. Left: the fracture has a
preferred orientation. The stress relaxation of equation (3.16) is used. Right: the pattern does
not have a preferred orientation. The stress relaxation of equation (3.17) is used.

3.4.2 Results and conclusion on the age-based fracture simulation
Figure 3.23 shows an example of the state of a road experiencing a loading force at four
different ages. This example takes approximately 250ms to compute on a common laptop.
It illustrates well our stress relaxation method that generates privileged cracking direction.
Figure 3.22 show a bathroom scene were objects have been fractured using our aging algo-
rithm.

Figure 3.22 – Bathroom scene with several broken objects.

Evaluation of the subjective perception of the obtained fracture patterns are presented in
Chapter 5

3.5 Managing the deformation of the fragments: a database ap-
proach

In the context of interactive applications, the physical data cannot always be precomputed
at run-time, especially when new objects are dynamically added to the scene as in fracture
scenarios. A solution to this problem is to store precomputed data into a database, and use
them on objects for which no physical information is provided. In [Zheng 10], the authors use

83

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Figure 3.23 – From left to right and top to bottom: Road model showing fracture propagation,
simulating the course of time.

a database containing “sound proxies” in order to accelerate the sound synthesis of shattering
bodies. They proposed a method to find ellipsoids that match with their fragments. In order
to extend this principle to have databases containing any variety of shape, it is possible
to leverage the widely studied field of similarity search in databases of 3-D objects. We
propose to use a database approach to provide a way to compute the deformation of fragments
generated our fracturing algorithm.

Similarity search in database of 3-D objects retrieval purpose is to find objects of a
database that are similar to an input query object (see [Bustos 05] for a survey on the topic).
It is often performed by extracting features from the geometry of the query object and
comparing these features to the entry of the database. The features extracted from the mesh
of the body are called feature vector or descriptor of the object. The descriptors extracted
from the object geometry can be built from their surface mesh, volumetric mesh, or from
2-D images of the object [Heczko 02]. In the literature, various kind of features are extracted
from the objects, such as boxes [Paquet 00], spherical harmonics [Vranic 01b], Reeb graphs
[Hilaga 01], moments of inertia [Bustos 05] or statistical information extracted from voxel
representations [Vranic 01a] or surface distribution [Osada 02].

The descriptors can be classified on their efficiency (how long it takes to build it, and
how long it takes to find the best match based on the similarity) and on their accuracy
(how the defined similarity is relevant w.r.t. the targeted application). There is currently
no method capable of capturing the local geometry features of the objects and performing a
similarity search at interactive rates. In our context, efficiency is a crucial criterion, as we
target interactive applications. We adapted voxel-based representations and moment-based
methods to our needs to provide descriptors that propose a good trade-off between efficiency
and accuracy.

3.5.1 Precomputed Shape Database

This section presents how the database is built offline in a first part, and how the online
similarity search is performed is this database in a second part.

3.5.1.1 Creating the Database

We propose a process of creation of the database in five steps: (1) the generation of the
surface mesh, (2) the computation of their volumetric meshes, (3) a normalization step, (4)
the computation of the descriptors, and (5) the addition of physical data. These steps are
detailed along this section.

84

3.5. MANAGING THE DEFORMATION OF THE FRAGMENTS: A DATABASE APPROACH

Figure 3.24 – Overview of the similarity search process. Features are extracted from the
normalized input surface mesh to obtain the mesh descriptor. This descriptor is compared to
the descriptor of each database entry to find the best match. Each database entry contains
physical data such as a collision shape for collision detection module, the lowest vibrations
modes of the body or a volumetric mesh.

Choice and Generation of Surface Meshes

The choice of the type of shapes that are stored in the database mainly depends on the
targeted application. We arbitrarily selected the six main generic shapes that are shown in
Figure 3.25.

From each main shape, we generate a set of surface meshes by scaling the initial shape
along two or three axis depending on their symmetrical properties. In our example, about
4, 500 surface meshes have been created from the six main shapes. Each surface mesh follows
the four following treatments to add an entry in the database.

Figure 3.25 – The six main shapes used to generate our database. Each main shape generates
hundreds of derived shapes by changing their size parameters.

Computation of the Volumetric Mesh

In order to compute the volume, mass and inertia matrices of the surface mesh, we first
compute the volumetric mesh from the surface mesh. In that purpose, we apply a conforming
Delaunay tetrahedralization using TetGen software [TetGen] to the surface mesh (TetGen is
also able to rearrange the surface points to reinforce the quality of the mesh, or to apply a
tetrahedron shape constraints). Once the tetrahedral mesh is built, we compute its center of
mass, volume, and principal rotation axis (from an eigen-decomposition of its inertia matrix).

Normalization of the Shape

We normalize the surface mesh so that the extracted descriptors are translation, rotation and
scaling-invariant (see Figure 3.26). We transform the input surface mesh to obtain a volume
of 1m3, so that its center of mass coincides with the origin of the coordinate system, and so
that its principal rotation axis is aligned with the axis of the coordinate system. We chose to

85

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

align the x-axis with the principal rotation axis that has the lowest inertia, and to align the
y-axis with the second principal rotation axis (the direction of the third axis is arbitrarily
determined on whether a left-handed or right-handed coordinate system is used).

Figure 3.26 – Normalization of a surface mesh. After normalization, the center of mass
coincides with the origin, the principal rotation axes coincide with the axes of the coordinate
system, and the volume of the mesh is equal to 1. The affine transformation applied for the
normalization is stored in a matrix T ∈ R4×4.

Creation of the Descriptor

Once the surface mesh is normalized, we extract a descriptor d ∈ Rn. The size n and value
of the descriptor depends on the type of descriptor used. The extraction of the descriptor
is explained in section 3.5.2. When the descriptor is created, a new entry labeled with d is
created into the database.

Adding Physical Data

To each entry of the database labeled by the value of a mesh descriptor d, we associate as
many physical data as needed by the simulation algorithms. For example, each entry can
contain one or more of the follow data (see also Figure 3.13):

� A normalized tetrahedral volumetric mesh, that represents the shape of the object.

� The n first modes of deformation (computed by performing a modal analysis with ei-
ther LAPACK [LAPACK] or ARPACK [ARPACK] software on the volumetric mesh).
These deformation modes of a body enable to efficiently compute its small deformations
due to input impulses [O’Brien 02b].

� Precomputed radiation data for sound generation [Gumerov 04, James 06]. These mod-
els can be used in association with the deformation modes to efficiently generate the
sound of the objects.

� A collision shape structure: a compound shape built e.g. with spheres, cube and
cylinders for rigid body simulators.

86

3.5. MANAGING THE DEFORMATION OF THE FRAGMENTS: A DATABASE APPROACH

3.5.1.2 Searching into the Database

When a new object represented by its surface mesh is added to the scene, a similarity search
is performed in the database to retrieve the needed physical data for simulation. In other
words, given a query input mesh, we want to find in real-time the entry into the database
which is the most similar to the input mesh. To perform the similarity search, the input
mesh is first normalized as explained in section 3.5.1.1 to ensure translation, rotation and
scale invariance. A descriptor din is then extracted from the normalized mesh. Finally, we
select the entry ei associated with its descriptor di into the database for which the similarity
value v(din,di) is the lowest (see Figure 3.24):

ei = argmin
i

(v(din,di)) (3.18)

In practice, the evaluation of v(din,di) depends of the descriptor type and dimensionality.
Moreover, it is often not necessary to check all the entries of the database to find the best
match. Depending on the descriptor used, the database can be organized to optimize the
similarity search, which are interesting properties w.r.t. real-time needs. These aspects are
discussed in the following section.

3.5.2 Mesh Descriptors

We detail in this section the different descriptors used for the search request in the object
database. In our context, an object descriptor d ∈ Rn is a scalar vector of dimension n
that is built from its surface mesh. The dimension as well as the content of the descriptor
depends on the features extracted from the initial mesh. The real-time requirements impose
several constraints on the choice of the descriptor. First, the descriptor must be efficiently
built. Moreover, the dimension n of the descriptor should not be excessive, in order to avoid
long search time w.r.t. the real-time update frequency. Finally, we preferred descriptors that
enable to build partial ordered sets, to have more efficient search algorithms. With regards
to these constraints, we retained three descriptors: a moment-based descriptor, a voxel-based
descriptor and an improved voxel-based descriptor. Each descriptor is discussed along this
section.

3.5.2.1 Moment-based Descriptor

Moment-based descriptor relies on the mass distribution of the material around axis. We
compute the moment of inertia of the object around specific axes (we chose the three orthog-
onal axes aligned with the system of coordinates). The moment of inertia I around an axis
u is computed by integrating the mass of the object around the axis u and over the volume
V of the object:

I =
∫
V
dist(p,u)2 · ρ(p) dV (p) (3.19)

where p is a position into the volume, ρ(p) is the material density at p and dist(p,u) is
the distance between position p and axis u. In our context, objects are defined with discrete
geometry, and the moment of inertia is computed considering discrete positions pi and masses
mi:

I =
∑
i<n

dist(pi,u)2mi (3.20)

87

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

where n is the number of considered point-masses. In the case of surface meshes, we
spread the mass of the object into its mesh nodes for the moment of inertia computation. If
a tetrahedral volumetric mesh is available, it is possible to compute the moment of inertia
using centers of tetrahedral elements as pi and we use the volume of the element and its
density to compute the associated mi in equation (3.20).

We retain in the descriptor d the three moments of inertia computed around x-axis, y-axis
and z-axis, sorting the values ascendantly. The descriptors are the sorted in the database,
enabling dichotomous efficient search.

Similarity Computation

The similarity v between two moment descriptors d1 and d2 is computed using the square of
the Euclidean distance between the two descriptor vectors:

v = ‖d2 − d1‖2 (3.21)

3.5.2.2 Voxel-based Descriptor

Our version of voxel-based descriptors relies on a uniform grid that stores the spatial distri-
bution of the surface of the object. We center a cubic uniform grid at the object center of
mass, and size the grid so that its side is equal to the largest side of the bounding box of the
input object. Each cell of the grid is marked with 0 if it contains no node of the object mesh,
and 1 otherwise (see Figure 3.27(b)). The number of cells in the grid is a parameter of the
descriptor that has consequences on the search results. The voxel-based descriptor d is built
by writing the 3-D grid in a linear way.

Similarity Computation

The similarity v between two voxel-based descriptors is a value representing the number of
cells that have a different value:

v = 1
nfilled

∑
i∈dim(d)

dif(d1i, d2i) (3.22)

where nfilled is the total number of non-empty cells in both d1 and d2, and dif(a, b) is 0
if a and b are equals, 1 otherwise. The normalization of the distance using 1/nfilled ensures
that 0 ≤ v ≤ 1, and that the objects that contain a large number of non-empty cells do not
reduce artificially the distance between the descriptors.

3.5.2.3 Improved Voxel-based Descriptor

We propose a modified version of the voxel-based descriptor that avoids most non-identical
meshes to have the same descriptor. The improved voxel-based descriptor contains the infor-
mation of the voxel-based descriptor, but we add to each cell three scalars that represent the
location of the center of mass of all the nodes that belong to this cell. This position gives an
information on the distribution of the points inside the cell (see Figure 3.27(c)).

Similarity Computation

The similarity v between two improved voxel-based descriptors is computed using the Eu-
clidean distance between the centers of mass of the cells. This distance is normalized using

88

3.5. MANAGING THE DEFORMATION OF THE FRAGMENTS: A DATABASE APPROACH

the length ldiag of the diagonal of the cubic cell. If one cell of a descriptor is empty while the
same cell of the other descriptor is not, the distance is set to 1:

v = 1
nfilled + neq

·

∑
i∈dim(d)

(
dif(d1i, d2i) + (1− dif(d1i, d2i))×

‖c1i − c2i‖
ldiag

) (3.23)

where neq is the number of common cells between d1 and d2 that are both equal to 1, ci
is the position of the computed center of mass of cell i.

Figure 3.27 – Voxel-based descriptors used in our system. (a): normalized surface mesh and
its bounding grid. The center of mass of the mesh coincides with the center of the grid. (b):
Simple voxel-based descriptor that stores the cells of the grid containing at least one node of
the surface mesh. (c): Improved voxel-based descriptor that stores additionally the position
of the center of mass of the nodes belonging to the cell.

3.5.3 Adaptation to Physical Simulation
Scaling the Physical Data

The physical data contained in the database are all normalized. In order to use them for
physical simulation, there are two possibilities: (1) make a copy of the physical data and
transform it so that it fits with the query object, or (2) transform the input data of the
physical simulation so that it fits with the normalized object. The solution (1) consumes
more memory, but it can be applied for most physical data (such as a stiffness matrix or
deformation modes). Solution (2) can be more efficient, but can be applied only if the
physical data properties scale linearly with a scale of the geometry of the object.

For example, the deformation modes, stiffness matrix and the collision data can be trans-
formed using the inverse transformation T−1 of the normalization (see Figure 3.26). The
geometric scale of the body is used to update the physical values (see [Zheng 10] for a deriva-
tion of how to scale stiffness matrix and mode of deformation). The volumetric mesh can be
used to find a correspondence between a position p ∈ R3 and the closest vertex of the mesh
to this position (for collision and force application purposes). In this case, the mesh is neither
scaled nor copied, but the input position p is transformed into the normalized coordinates
using p′ = Tp. Then, the new position p′ is used to find the closest vertex of the mesh.

Linking the Physical Data with the Virtual Objects

When simulating the deformation of the objects, we need to propagate the deformation
stored into the physical data to the initial surface mesh. To do so, we express each Degree Of

89

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Freedom (DOF) fi of the initial surface mesh from a weighted sum of the degree of freedom
of the physical mesh:

fi = b.q (3.24)

where b is a vector of weights (we impose ∑i∈dim(q) bi = 1), and q is the physical state
of the body. In practice, we choose to find for each node of the surface mesh the element of
the volumetric mesh that contains it. Then, we link the node of the surface mesh and the
node of the element using barycentric coordinates (see Figure 3.28).

Figure 3.28 – Link between the surface mesh and physical data. The red mesh represents the
initial object surface mesh. The black mesh is the best match from the database, transformed
to fit with the surface mesh. Right: the surface mesh DOFs are linked to the physical mesh
DOFs using the nodes of the element that contains the node of the surface mesh (represented
with gray dotted lines). The red arrow is the displacement of the surface mesh node computed
from the displacement of the physical mesh.

Database Search Optimization

Depending on the descriptor used, several optimizations can be applied to accelerate the
database requests. For voxel-based descriptors, we set up an optimization based on the
number of empty cells. We gather the descriptors that have the same number of empty
cells. When a request is performed, the number of empty cells of the input descriptor is
used to access directly the list of descriptors that have the same number of empty cells. This
optimization enables to save computation time for each request. However, comparing the
query object with the objects that have exactly the same number of empty cells in their
descriptor is too restrictive, as we can miss the best entry in terms of equation (3.18). In
practice, we take all the descriptors in the descriptors that have a number of empty cells ne
in the range [ne − r, ne + r], where r is a manually set parameter (setting r to 6 in our test
scenarios led to get always the best entry).

Summary of the Method

The overview of our method is presented in algorithm 5. This algorithm describes how the
physical data is retrieved from the input surface mesh S using the database noted D.

3.5.4 Results

Configuration

Our simulation method has been implemented in C++ on a laptop with 4 GB of RAM, and an
Intel®Core™2 Extreme. The size of the grid for both voxel-based and improved voxel-based
descriptors has been experimentally set to 10× 10× 10.

90

3.5. MANAGING THE DEFORMATION OF THE FRAGMENTS: A DATABASE APPROACH

Algorithm 5 Find the best physical data from a surface mesh
Require: S: input surface mesh
Require: D: shape database

1: T = normalize_transform(S)
2: S ′ = transform(S, T)
3: d = descriptor_from(S ′)
4: ei = best_entry(d, D) // eqn (3.18)
5: C = collision_volume(ei)
6: M = mode_deformation(ei)
7: C = transform(C, T−1)
8: M = transform(M, T−1)
9: scaleM

10: linkM and C to S

Scenarios and Computation Time Performances

Figure 3.30 show a scenario where a plate is broken, and each fragment is assigned with a
physical data. We show an example of scenario where a rigid bodies simulation is augmented
to incorporate physically-based deformations computed with modal analysis in Figure 3.32.
The improved voxel descriptor gives the best results thanks to the mass distribution infor-
mation within each cell of their grid. On the opposite side, the moment-based descriptor
gives less relevant results, due to a less efficient separation of the information of the mass
distribution, and a lower dimensionality.

Figure 3.29 – Comparison of similarity search methods. The moment-based method gives
more naive results, while the improved voxel-based method finds visually similar objects for
the ball, the plate and the beam.

The timings for the scenario of Figure 3.31 shows that our solution is satisfying for inter-
active application. Indeed, the optimized version of the improved voxel based descriptor need
a total of 4ms of processing time per fragment in average (the similarity search complexity
is independent of the complexity of the input mesh).

91

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

Figure 3.30 – Fragments associated to physical meshes in a fracture scenario. Left: surface
meshes representing the fragments. Right: physical meshes associated to the same fragments.

Figure 3.31 – Computation times for descriptor build and similarity search measured from
scenario of Figure 3.30. The solid lines are relative to the left axis, while the dotted lines are
relative to the right axis.

3.5.5 Discussion and conclusion

Physical Realism

The main limitation of our approach concerns the physical correctness that is achieved by us-
ing an approximated geometry. Indeed, the precomputed database contains a limited number
of shapes, and complex concave objects have a small chance to be associated with acceptable
data. It would be however possible to enrich the database with the objects during a specific
scenario in an offline mode. This would result in a specific scenario-based database, and limit
the physical error. Future work will concern a measurement of the physical correctness of ap-
plying approximated geometry on specific scenarios. Also, it would be necessary to establish
a metric to measure the performances of the similarity search algorithm.

92

3.6. CHAPTER CONCLUSION

Figure 3.32 – Snapshots of a simulation of brittle fracture with modal analysis performed
without our method (top), and with our method (bottom). Note the recursive fracture of the
fragments generated from the first impact on the bottom animation that are not computed in
the top animation.

Physical Data and Scaling

As highlighted in section 3.5.3, the physical data of the database should be scaled to fit with
the size of the non-normalized query object. Even if most of physical data can be scaled
with an homogeneous scale of the geometry of the body, our method cannot be applied with
precomputed data that cannot scale with the geometry of the body.

Database Management

Currently, the database is entirely loaded into the RAM in order to provide a quick access to
the data. However, increasing the number of objects in the database and/or the quantity of
physical data would consume too much memory to be stored in the RAM. A solution could be
to store only the objects descriptor in the RAM, and access the physical data from a massive
storage device only when it is needed.

We have presented a method for real-time physically-based simulation of objects for which
no physical data have been defined. Our method relies on a carefully generated database that
stores all needed physical data, for a wide set of shapes. Each entry of the database contains a
set of physical data for physical simulation. We also presented and compared three similarity
search, and demonstrated their efficiency through scenarios of interactive physical simulation.
We finally introduced an approach to scale and link the physical data stored in the database
to the virtual objects. Our results show that the precomputed shape database proposes an
interesting alternative solution for physical simulation in interactive applications.

3.6 Chapter conclusion

In this chapter, we presented models that allowed us to tackle the main limitations of ex-
isting real-time approaches. To allow free crack propagation, we designed an independent

93

CHAPTER 3. NEW MODELS FOR THE REAL-TIME SIMULATION OF BRITTLE FRACTURE

fracture state model that stores the fracture state of bodies into formally defined mathemat-
ical structures. A crack propagation algorithm based on an implicit surface definition of the
fracture surfaces has been proposed. The algorithm has a linear complexity in the number
of cut tetrahedra, and features energy stop criterion that allows partial fracturing to occur.
We also presented a meshing algorithm that generates efficiently the surface meshes of the
fragments from the fracture state model.

In a second part, we proposed simulating the deformations of the bodies due to impacts
using a modal analysis precomputed on the bodies. This modal analysis allowed us to ap-
proximate the duration of the contact as well as to choose an adaptive time step for the
simulation. This leads to a real-time simulation of impact-based fracturing that takes into
account the dynamic effects of the simulation. Results show that our method is capable of
simulating inertia and damping effects that influence the fracture simulation, which was not
previously possible to simulate in real-time.

We then proposed an adaptation of existing aging algorithm to simulate interactive age-
based fracturing using our fracture state model. We introduced an approximate stress relax-
ation technique that allows simulating stress relaxation around cracks fast enough to provide
interactive simulations.

One limitation of the modal analysis approach is the handling of fragments, for which no
precomputation is possible, and the modal analysis cannot be applied of them. We addressed
this problem proposing to store in a database precomputed physical data for a wide vari-
ety of shapes, and to associate the appropriate physical data at run-time for the generated
fragments. Results showed that this approach generates approximate deformations that are
mechanically not correct, but visually plausible.

Our model for brittle fracture has demonstrated fast and realistic results. To use this
model in an interactive world composed of several fracturable bodies, new methods that
handle the interactions between the bodies are needed, as presented in the next chapter.

94

4New methods for interactive brittle
fracture simulation

Contents
5.1 Perception of the fracture pattern and fracture statistics 126

5.1.1 Statistical features of a fractured body . 126
5.1.2 User-study on the perception of the fracture pattern 126
5.1.3 Optimizing the parameters of the simulation from images 129
5.1.4 Discussion and conclusion . 134

5.2 Haptic virtual fracture: first experiments and results 134
5.2.1 Overview . 135
5.2.2 User study . 135
5.2.3 Results . 136
5.2.4 Discussion and conclusion . 137

5.3 Preliminary validation of the impact-based fracture model based on real data138
5.3.1 Experiment types and setups . 138
5.3.2 Discussion and conclusion . 146

5.4 Chapter conclusion . 147

4.1 Introduction
While the previous chapter described new models for the simulation of brittle fracture, this
chapter focuses on how a virtual world can be assembled with bodies described by our model
of fracture. To this goal, several issues may be considered. First, the interaction between
the bodies of the virtual world. Namely, to prevent bodies from overlapping each other, a
collision detection step followed by a collision solving step must be performed in order to
check whether bodies are overlapping, and if so, apply forces or impulses to solve for these
overlaps. Second, the interactions between the human operator and the virtual world. We
focus on the haptic interaction with a virtual world composed of fracturable bodies that has
not been possible so far, and that presents new opportunities for interactive applications.

Collision detection and haptic interaction have been widely studied in the past. However,
in the context of fracture simulation, unique challenges must be faced. In this chapter, we
first present a new approach for an efficient collision detection adapted to brittle fracture.
This work has been done in collaboration with the University of Rey Juan Carlos, in the
team led by Miguel A. Otaduy. In a second part, we demonstrate the applicability of our
method to the interactive simulation of fracture with a stable haptic interaction.

95

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

4.2 Efficient collision handling for brittle fracture
Collision detection (presented in section 2.6.1) and collision or contact solving (presented in
section 2.6.2) have been widely studied in the literature, and a lot of efficient methods can be
used out of the box in many scenarios. However, the case of fracturing bodies presents unique
challenges. Indeed, new fragments with not necessarily convex shapes are created within one
simulation step, preventing any precomputation, common in the collision detection field.
Also, at the fracture instant, the fragments of the same body are all close to each other and
share close and parallel surfaces that reduce the chances for a good pruning.

We present novel algorithms and data structures for collision detection in real-time brittle
fracture simulations. We build on a combination of well-known efficient data structures,
namely distance fields and sphere trees, making our algorithm easy to integrate on existing
simulation engines. We propose novel methods to construct these data structures, such that
they can be efficiently updated upon fracture events and integrated in a simple yet effective
self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both
collision detection and collision response.

4.2.1 Overview of the collision detection algorithm
We execute collision detection tests between pairs of objects A and B, which may be either
original unfractured objects or fragments resulting from fracture events. Without loss of
generality, let us refer to them as fragments. We augment each fragment A with two data
structures for collision detection: a distance field D(A) and a sphere tree S(A). Section 4.2.2
and Section 4.2.3 describe the contents, construction and update of our novel fragment dis-
tance field and fracturable adaptive sphere tree data structures.

When broad-phase collision culling returns the pair (A,B) as potentially colliding, we
query both S(A) against D(B) and S(B) against D(A). The result of a query (S(A), D(B))
is a set of contact constraints C, each defined by a tuple (c, d,n). c ∈ A is a contact point, d
is the closest distance from c to the surface of B, and n is the contact normal. If c is inside
B, d is negative and represents the penetration depth. After collision detection, we feed the
complete set of contact constraints to a constraint-based contact solver with a velocity-level
LCP (with friction), plus constraint drift correction. In our examples, we have used the
off-the-shelf contact solver built in Havok Physics.

In our algorithm, a query (S(A), D(B)) builds on three elementary queries involving nodes
of the sphere tree S(A). Each node is represented by its center point p ∈ A and a radius r.
Then, the three elementary queries are:

� insideTest(p, D(B)): it determines whether p is inside or outside B.

� penetration(p, D(B)): when p is inside, it computes the penetration depth from p to
the surface of B, as well as a penetration direction n.

� sphereTest(p, r,D(B)): when p is outside, it performs a conservative test for intersec-
tion between B and the sphere of radius r centered at p.

These three elementary queries will be described in detail in Section 4.2.2. In all our de-
scriptions, we assume that the point p has been transformed to the local reference system of
fragment B.

Our collision detection algorithm, outlined in Algorithm 6, traverses a sphere tree S(A) in
a breadth-first manner, and prunes branches that are completely outside the other fragment

96

4.2. EFFICIENT COLLISION HANDLING FOR BRITTLE FRACTURE

Algorithm 6 Query sphere tree S against distance field D
1: INPUT: S, D
2: OUTPUT: Set of contacts C
3: Q = {root(S)}
4: while Q 6= ∅ do
5: node← pop_front(Q)
6: inside← insideTest(node.p, D)
7: if inside then
8: (d,n)← penetration(node.p, D)
9: C = C ∪ (node.p, d,n)

10: if sufficientContacts(C) then
11: STOP
12: end if
13: else
14: intersects← sphereTest(node.p, r,D)
15: end if
16: if inside OR intersects then
17: Q = Q∪ children(node)
18: end if
19: end while

B. Pruning is efficiently executed by comparing the radius of a sphere and the distance from
its center to the surface of B. The algorithm can be easily modified to allow for a contact
tolerance ε. A contact constraint is added to C if the distance is shorter than ε, and the
query descends to the children if the distance is shorter than r − ε.

We augment the basic collision detection algorithm with self-adapting contact selection.
As described in Section 4.2.3, we construct the sphere tree in a way that allows adaptive
contact selection by simple breadth-first tree traversal, defining a contact constraint when-
ever we encounter a sphere whose center is inside fragment B, until a sufficient number of
constraints is reached.

4.2.2 Fragment Distance Field
Given a volumetric meshing of an object A, computed as a preprocess, we propose a fragment
distance field data structure that is efficiently stored and updated even upon multiple fractures
of the object. This data structure stores an approximate interior distance field of all fragments
created by the fractures, using a precomputed volumetric mesh, without any remeshing.
Moreover, we exploit the connectivity of the mesh to compute approximate distances in a
very fast manner using a front propagation approach.

In this section, we first describe the distance field data structure and its run-time update,
and then we describe how it is used to answer the three elementary queries outlined in the
previous section.

4.2.2.1 Mesh-Based Interior Distance

Our distance field data structure is motivated by features of fracture simulation algorithms.
First, the fragments resulting from a brittle fracture define an exact partition of the original
object. Therefore, each point of the original object needs to store only one interior distance
value even after multiple fractures. And second, popular approaches for fracture simulation

97

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

3 4

2
3

1 1
22

0
0

Figure 4.1 – Illustration of the front propagation algorithm for interior distance field compu-
tation.

use a volumetric mesh to compute an elastic deformation field and guide the propagation of
crack surfaces [O’Brien 99, Müller 01]. In our fracture state model, the resolution of newly
created fragments is limited, forcing them to include one node of the original mesh. We exploit
this feature and store one interior distance value at each node of the original volumetric mesh.

In our implementation, we leverage the tetrahedral mesh used for fracture to store the
fragment distance field. Specifically, each node of the mesh stores:

� f : an identifier of the fragment that contains the node.

� d: a value that approximates the shortest distance to the surface of fragment f .

� n: a unit vector that approximates the direction from the node to the closest surface
of f .

As a preprocess, we initialize the nodal information using an exact interior distance field.
In addition to nodal information, tetrahedra that are intersected by crack surfaces store

exact local representations of those crack surfaces. Each tetrahedral edge may be cut at most
once, therefore, the storage requirements are limited to six plane equations.

4.2.2.2 Distance Updates upon Fracture

After each fracture event, we locally update the fragment distance field where needed, follow-
ing a front propagation approach. The run-time computation of the exact distance field is
computationally prohibitive, but we propose a fast approximation that fulfills desired prop-
erties. It is important to remark that the interior distance of a fragment is used in the
computation of penetration depth and contact normal in the collision detection lgorithm 6.
The amount of penetration depth is used by the drift correction algorithm during collision
response, and the contact normal is used for the definition of non-penetration contact con-
straints. Distances need not be accurate, but they must grow monotonically in the interior
of an object, locally approximate Euclidean distance, and converge to the true distance as
we get close to the surface of the object. Normal directions, on the other hand, must point
outward of the object, and should vary smoothly to avoid competing contact constraints for
nearby points. It turns out that the algorithm for consistent penetration depth computa-
tion of Heidelberger et al. [Heidelberger 04] fulfills exactly these properties, hence we have
adapted this algorithm for interior distance field approximation.

Next, we summarize the application of Heidelberger’s algorithm to our problem. When
an object A suffers a fracture, we first visit all tetrahedra intersected by the newly created
crack surfaces, and initialize distance field information at their nodes. This implies assigning
a fragment identifier f , and computing a distance d and a direction n, based on the exact

98

4.2. EFFICIENT COLLISION HANDLING FOR BRITTLE FRACTURE

surface information stored at the tetrahedra. For each fragment, we initialize a front with the
visited nodes. Then, we iterate front propagation steps on the graph defined by tetrahedral
edges, until no distances are reduced. Figure 4.1 illustrates the front propagation inside a
fragment.

If the front propagation reaches a node at position p in step i+ 1, we compute a distance
to the surface as an average propagation of distances from its neighbors reached in step i
(denoted as Ni(p)), in the following manner:

d =
∑
j∈Ni(p)wj

(
d(pj) + n(pj)T (pj − p)

)
∑
j∈Ni(p)wj

. (4.1)

Following Heidelberger et al., we use as neighbor weights wj = 1/‖pj − p‖2. If the distance
d is shorter than the current value stored at p, we update the distance and add p to the
front at step i + 1. We also update the direction at p as the weighted average direction of
neighbors reached in step i:

n =
∑
j∈Ni(p)wj n(pj)∑

j∈Ni(p)wj
, (4.2)

followed by a normalization step.
Figure 4.2 shows an accurate interior distance field for an object A, the accurate dis-

tance fields of its fragments after a fracture, and our approximate distance fields. The image
illustrates the monotonic growth of distances inside the fragments. Our distance field ap-
proximation does not require high-quality tetrahedral meshes in practice. In our examples,
we used TetGen for mesh generation, with a maximum radius-edge ratio between 1 and 2,
and enforcing interior edges to be shorter than twice the length of the longest surface edge.

Even though we have used tetrahedral meshes, our data structure could be extended to
other settings, such as hexahedral meshes or even meshless methods. The mesh is used in
two ways: (i) Its edges define a graph for the propagation of distances; (ii) Distances can
be interpolated inside mesh elements. On hexahedral meshes, the graph may be constructed
using the edges of the mesh or adding other connections, and interpolation can also be defined
inside mesh elements. On meshless methods, a graph may be constructed using neighbor-
ing particle information which is easily updated upon fracture events [Steinemann 06], and
interpolation can be defined based on neighboring nodes [Müller 04a].

4.2.2.3 Inside-Outside Query: insideTest(p, D(f))

As a preprocess, we build a k-d tree with the tetrahedra of the mesh. To decide whether
a point p is inside a fragment f , we first use the k-d tree to retrieve the tetrahedron that
encloses p. If all nodes of the tetrahedron are in the same fragment, then the query is trivially
answered. If only some nodes are in fragment f , then we use the exact local representation
of the crack surfaces to answer the inside-outside query.

4.2.2.4 Penetration Depth Query: penetration(p, D(f))

If the tetrahedron containing a point p is intersected by crack surfaces, we use the exact
local surface information to compute the penetration depth and direction to the surface of
fragment f . If the tetrahedron is completely inside the fragment, then we use the fragment
distance field. In particular, we use as neighbors Ni(p) the four nodes of the tetrahedron,
and we apply equation 4.1 to compute the distance to the surface of f , and 4.2 to compute
the penetration direction.

99

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.2 – Comparison between recomputed and updated distance field. From left to right:
interior distance field of a 2D object, distance fields of its four fragments after fracture, and
our approximate distance fields computed using a fast propagation method.

Close to original surfaces of the object, where fracture does not modify distances, it is
possible to obtain more accurate penetration information in a simple manner. As a preprocess,
we compute a distance field on a dense regular grid. This regular-grid distance field is used
for the initialization of the fragment distance field at nodal positions, but we also query it
at run-time. We simply use the minimum of the distances returned by the (precomputed)
regular-grid distance field and the (dynamically updated) fragment distance field.

4.2.2.5 Sphere Intersection Query: sphereTest(p, r,D(f))

The fragment distance field stores only interior distance information for the fragments. When
the query point p is outside fragment f , the fragment distance field provides the distance d
to the surface of some other fragment. This distance d is a lower estimate of the distance to
f , and can be used for culling in lgorithm 6 if it is larger than the radius r of the sphere.
To handle far fragments, we use the largest between d and the distance to a bounding box
of fragment f .

The procedure described above performs well in most cases, but fails for large non-convex
fragments surrounded by small fragments, returning largely underestimated distances that
produce little culling. We provide a less conservative solution for such situations. As a
preprocess, we construct a multi-level grid on every object, and register pointers from the
tetrahedra to their occupied cells. Every grid cell stores a bit mask indicating whether it
contains each and every fracture fragment. Upon a fracture event, we traverse the tetrahedra
of new fragments, mark the bit masks of their occupied cells, and then we perform a bottom-
up update of the multi-level grid by simple logical AND operations. To test a sphere for
intersection, we query the grid level with cell size immediately larger than 2 r. The sphere
can be culled if none of the eight cells joining at the grid point closest to p contains fragment f .

4.2.3 Fracturable Adaptive Sphere Tree

Our novel sphere tree data structure is motivated by two requirements. First, to reduce
the cost of both collision detection and response, in particular at collision-intensive fracture
events, we seek a sphere tree data structure suitable for adaptive collision detection. We
construct a sphere tree by optimizing at each level the coverage of the fragment, in a way
similar to the point-shell hierarchy of Barbič and James [Barbič 08]. In this way, we achieve
good contact sampling through simple breadth-first traversal of the sphere tree. Second, the
data structure should allow very fast updates upon fracture events. We construct the sphere
tree by covering both the surface and the interior of an original object. Prior to fracture,

100

4.2. EFFICIENT COLLISION HANDLING FOR BRITTLE FRACTURE

14

5
1

1 21

2

4

6

7

1

1 2

2

3 4

3
1 5 3 6 2 4 7

Figure 4.3 – Construction of the hierarchy. A 2D polygon with surface vertices and interior
nodes (left) and its sphere tree (right). The points are numbered according to maximum
distance ordering, and colored according to the level in which they are added to the tree.

interior parts are easily culled and produce almost no overhead. After they get exposed by
fracture, on the other hand, they are quickly accessed during tree traversal.

Next, we describe the ordering of points and the construction of our fracturable adaptive
sphere tree, the procedure for updating the sphere tree upon fracture, and the execution of
self-adapting collision detection.

4.2.3.1 Ordering and Construction of the Sphere Tree

We build a sphere tree on a set of points P = {pi} representing an object A. As discussed in
Section 4.2.2.1, we assume that the fracture algorithm relies on a volumetric mesh associated
with the object. To anticipate fracture events, the set of points consists of the union of the
surface vertices and the nodes of the volumetric mesh. The full role of interior nodes during
tree updates will be explained in Section 4.2.3.2.

For good adaptive collision detection during tree traversal, we seek a good sampling of the
set P on every level of the tree. This can be achieved by selecting most distant points, which
would produce a good coverage of the object. Barbič and James [Barbič 08] seed random
points for each level of the tree, and achieve good coverage thanks to a relaxation algorithm.
Although their approach might be adapted to our setting, we seek two additional features:
our set of points includes interior points in addition to surface points, and the sampling retains
the original surface vertices and interior nodes, to later accommodate fracture updates. In
addition, we assume meshes sampled in a semi-regular way.

We achieve good coverage of the object at each level through maximum distance ordering
of the points P . We initialize an ordered list L2 with the two furthest points. Then, given the
ordered list with m points, Lm, we append the point that is furthest from its closest point in
Lm, i.e., Lm+1 = (Lm,p∗), with p∗ = arg maxpi /∈Pm

minpj∈Pm ‖pi − pj‖.
Given the full ordered list, level l of a sphere tree, with 2l nodes, is trivially constructed

by selecting the first 2l points in the list. Then, level l+ 1 is constructed using those same 2l
nodes and the following 2l nodes in the list. We set as parent of a node in level l+1 its closest
node in level l, just like Barbič and James [Barbič 08]. This heuristic groups nodes based on
proximity and increases the chances for pruning during run-time queries. Figure 4.3 shows a
2D example with the maximum distance ordering and the tree construction. The sphere tree
construction is a preprocess, and we have followed an unoptimized O(n2) implementation
based on pair-wise distance computation, but accelerations are possible.

Each node of the tree must store the sphere center (i.e., the point position p) and radius.
For a node with center at p, we precompute the radius as the distance to its furthest de-
scendant. Each point may be present at multiple levels in the tree (but with different radii).

101

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.4 – Illustration of the contact selection mechanism. Rolling plate on a transparent
ground, with contacts output by (left) our self-adapting collision detection (up to 6), and (right)
full collision detection (up to 128). See the accompanying video.

We define a contact constraint only the first time the point is queried in lgorithm 6, and
we cache its inside-outside status for subsequent queries down the tree. Choosing the point
p as the center of the sphere does not yield optimally tight spheres. We tried approaches
that produce tighter spheres with better culling, but the overall query times were worse as
we could not exploit caching.

4.2.3.2 Tree Updates upon Fracture

We restructure the sphere trees through simple local modifications of parent-child relation-
ships. Given a node belonging to a fragment fi, if its parent belongs to a different fragment
fj , we make the node a child of its closest ancestor in fi. If it has no ancestor in fi, the node
becomes a root for fi. A direct implication of this decision is that sphere trees may become
forests of several trees after fracture events.

When an edge of the volumetric mesh is cut by a crack surface, two new points need to
be added to two different fragments. Recall that we assume fracture algorithms adopting
the virtual node approach [Molino 04], and then each edge is cut at most once. Given a new
point pi, we make it a child of its neighboring original point pj . Note that pi is a surface
point, and we follow an insertion approach that tries to place pi high in the hierarchy.

The insertion of new points also requires the modification of sphere radii, as they may no
longer be conservative. When pi is added, we check if the radius of its parent pj is shorter
than ‖pi − pj‖, and we update it accordingly. We also propagate updates up in the tree if
needed.

Compared to full tree recomputation, our fast tree update offers a much more efficient
solution at fracture events, and a good compromise for subsequent simulation frames. In
simulations where fracture events are distributed over time, our approach could be extended
with full tree recomputation as a parallel task, followed by data structure swapping.

4.2.3.3 Self-Adapting Collision Detection

The fragment distance field and the fracturable sphere tree enable fast queries and fast data
structure updates upon fracture. However, in situations with many penetrating points or
with parallel surfaces in close proximity, the cost of collision detection is inevitably high,
and collision response is affected by the large number of contacts. We have designed a self-
adapting collision detection algorithm that produces a reduced set of contact constraints, and
at the same time guarantees the absence of penetration (at the final stable configuration).
Our algorithm relies on a velocity-level constraint-based contact solver plus drift correction,
the gold standard solution in rigid body engines in video games.

During breadth-first traversal of the sphere tree, we may output contact constraints high
in the hierarchy as outlined in lgorithm 6. Thanks to the good sampling provided by the

102

4.2. EFFICIENT COLLISION HANDLING FOR BRITTLE FRACTURE

Figure 4.5 – Piggy bank used for comparisons and analysis.

maximal distance ordering, a few of the first encountered contacts are probably sufficient
for the velocity-level constraint-based solver, while further contacts become redundant. We
initialize a collision query between two fragments fi and fj by setting a maximum number
of contacts m (8 in our experiments), and if this number is reached we simply interrupt
the query. Drift correction quickly resolves the contacts that have been detected, but if
this number is m, then other contacts may have been missed. In that case, we increment
m ← m + 1, and continue the sphere tree traversal with a negative tolerance −ε (in our
experiments ε = 0.2% of the object radius), i.e., we search for contacts that penetrate further
than ε. Effectively, with this approach collision detection self-adapts until the number of
contacts guarantees non-penetration up to a tolerance ε on a stable configuration. Figure 4.4
compares the number of contacts for a 5, 392-triangle plate rolling on a transparent ground
with our approach vs. full collision detection. Self-adapting collision detection requires at
most 6 contacts, while full collision detection outputs up to 128 contacts. In self-adapting
collision detection, adaptivity could also be guided by error metrics of collision response,
but existing approaches do not address the complex interactions of constraint-based collision
response.

We found that, to be effective at fracture events, self-adapting collision detection requires
a small positive detection tolerance ε, i.e., we output contacts closer than a small distance
ε. The reason is that the tree traversal stops only when m contacts are output, and parallel
surfaces just about to touch would allow little culling but produce no contacts.

4.2.4 Experiments and Results

We evaluated our approach on 5 scenarios: (i) a piggy bank dropped on the ground (Fig-
ure 4.5), (ii) 27 bunnies dropped at different times (Figure 4.8), (iii) 32 bricks crashed against
the ground (Figure 4.9), (iv) an interactive scenario where the user drops balls on 4 plates
placed on a shelf (Figure 4.10), and (v) another interactive scenario where the user manipu-
lates and fractures 5 bunnies (Figure 4.11). The sizes of the surface and volumetric meshes
of the different objects are summarized in Table 4.1. Our collision detection algorithm has
been integrated with the rigid body engine of Havok. The ‘freezing’ utility of Havok Physics
was deactivated in all experiments, for better analysis. All experiments were executed on a
3.4GHz Intel i7-2600 processor with 8GB of RAM, using only one core.

Tables 4.2 and 4.3 report various simulation statistics and timings for the 5 benchmarks.
The ‘piggy bank’, ‘bricks’, ‘plates’, and ‘interactive bunnies’ benchmarks are all real-time,
including dynamics simulation, fracture simulation, collision detection, and collision response.
The ‘drop bunnies’ scenario, on the other hand, was executed with a subframe time step (5ms)
to illustrate robust contact handling with small fragments and high impact velocities.

Figure 4.12 shows plots of timings and simulation statistics for the ‘drop bunnies’ and
‘bricks’ scenarios. In both examples, the cost of collision detection grows steadily as more

103

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Object # Triangles # Tetrahedra # Points
Piggy bank 9,722 20,807 5,870

Bunny 7,940 18,767 5,089
Brick 468 594 224
Plate 5,392 8,617 2,711
Shelf 4652 10,200 2,989

Table 4.1 – Number of triangles, tetrahedra, and points (including surface vertices and interior
points) for the different objects used in the experiments.

Scenario # Triangles # Fracture # Output points # Colliding points
Original/Fractured Fragments Average (Max) Average (Max)

Piggy bank 9,734 / 17,622 14 93 (463) 290 (4,173)
Drop bunnies 137,403 / 435,068 166 1,235 (3,245) 4,993 (18,592)

Bricks 15,036 / 40,750 156 671 (1,379) 1,334 (2,700)
Plates 26,268 / 45,762 44 309 (524) X

Interactive bunnies 39,724 / 51,752 22 326 (470) X
Table 4.2 – Simulation statistics for the different scenarios: number of triangles of the scene
before and after fracture; total number of fragments; number of contacts selected by collision
detection for collision response; and total number of colliding points (not measured in the
interactive scenarios).

Scenario Time Total time Collision detection Physics Update Fracture
step Average (Max) Average (Max) Average (Max) Max Max

Piggy bank 15 1.94 (15.2) 1.74 (9.46) 0.14 (0.59) 1.2 12.5
Drop bunnies 5 24.5 (81.5) 23 (70) 1.3 (3.66) 4.4 22

Bricks 30 11.7 (29.5) 10.7 (27.3) 1 (2.46) 1.05 2
Plates 30 7.83 (17.4) 6.78 (12.2) 0.36 (0.7) 0.7 8

Interactive 15 2 (10.6) 1.64 (4) 0.26 (0.41) 1 9
bunnies
Table 4.3 – Break-up of timings for the different scenarios, all given in milliseconds, and
showing average and maximum cost per time step: time step size (with frames rendered every
30ms); total cost per time step; time for collision detection queries; time for physics computa-
tions, numerical integration, and collision response; time for data structure updates; and time
for fracture computations. The last two times are measured only at fracture events.

objects are dropped. However, we can draw the important observation that collision detection
does not suffer noticeable spikes at fracture events, despite the large number of colliding
points, thanks to our self-adapting contact selection. Both scenarios show computational
peaks at fracture events due to the cost of fracture computation. The cost of data structure
updates was always smaller than the cost of fracture computation, and is not showed for
clarity (but it is summarized in Table 4.3).

We have also analyzed the influence of resolution (both for the surface mesh and the
interior sampling of the volumetric mesh) on data structure updates and collision detection
queries (for the sphere in Figure 4.6). The timings for a reference sphere (2.5K triangles and
4K interior points) are: 1.54ms for updates upon fracture, and 1.16ms on average (3.27ms
max) for queries. Changing the surface resolution (to 10K triangles), while keeping the
interior sampling fixed, timings are: 1.8ms for the update, and 1.37ms on average (4.17ms
max) for queries. Changing the interior sampling (to 435 points), while keeping the surface

104

4.2. EFFICIENT COLLISION HANDLING FOR BRITTLE FRACTURE

fixed, timings are: 0.46ms for the update, and 0.68ms on average (2.26ms max) for queries.

Figure 4.6 – Sphere used for the analysis of sampling resolution on update and query costs.
The top left images show two different samplings of the surface, and the bottom left images
show two different samplings of the interior.

Finally, we have also analyzed the overhead introduced in collision detection queries by
our data structures, which trade fast updates upon fracture for not fully optimal culling.
Figure 4.7 plots several comparisons for the ‘piggy bank’ scenario in Figure 4.5. Our approach
updates the distance field (D) and the sphere tree (S) when the piggy bank crashes. We have
compared collision detection query times and the number of visited points in the sphere trees,
with other combinations where we recompute the exact distance field and/or we recompute
the sphere tree for the new surface (with no interior points).

0

1

2

3

4

5

6

7

8

9

Collision detection time (ms)

0

2000

4000

6000

8000

10000

12000

Number of visited points

Figure 4.7 – Comparison of query times and statistics for the ‘piggy bank’ scene. We compare
our fast update of the distance field D and sphere tree S data structures to other combinations
that fully recompute an exact distance field and/or a sphere tree of the new surfaces. We
achieve similar culling efficiency with much faster updates at fracture events.

Figure 4.8 – Bunnies are dropped in three batches and fractured into 166 fragments and 435K
triangles. The complete simulation runs at 24.5ms per time step on average, with a maximum
of 81.5ms.

105

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.9 – Real-time demo of crashing bricks, totaling 156 fragments and 40K triangles.
The complete simulation runs at 11.7ms per time step on average, with a maximum of 29.5ms.

Figure 4.10 – Interactive smashing of plates. The user drops balls in real-time to smash the
plates, and at the end of the simulation the scene consists of more than 45K triangles. The
complete simulation runs at 8ms per time step on average, with a maximum of 17ms.

Figure 4.11 – The user manipulates bunnies interactively with the mouse, producing fractures
and collisions. The complete simulation runs at 2ms per time step on average, with a maximum
of 10ms.

4.2.5 Discussion and conclusion

We have proposed an efficient solution for collision detection in brittle fracture simulations.
Our solution is composed of algorithms that address the two main challenges in such simu-
lations: the update of acceleration data structures upon topology changes, and the efficient
computation of contacts between newly created crack surfaces.

Our algorithms demonstrate high performance in challenging scenarios, including real-
time user manipulation of fracturing objects, and scenes with hundreds of fragments and tens
of thousands of triangles simulated at video game rates. Some limitations remain however,
including the possibility to miss collisions with small features and robustness problems under
large penetrations. Solving these limitations requires non-trivial extensions to incorporate
continuous collision detection.

We envisage other interesting extensions as well. One is the design of parallel versions
of our algorithms, to exploit the computing power of graphics processors. Another one is
the application of our solutions to penalty-based collision response. The adaptive contact
selection was designed for constraint-based response algorithms and may not be trivially
adapted, but other components, such as the fragment distance field, may be easily integrated.

106

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

500

1000

1500

2000

2500

3000

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

Figure 4.12 – Plots for the ‘drop bunnies’ scene (first and third plots) and the ‘bricks’ scene
(second and fourth plots). The two left plots show collision detection statistics: number of
points output by adaptive collision detection (green), number of actual colliding points (red),
and pairs of bodies output by broad-phase collision detection (blue). The two right plots show
timings per time step: total (blue), collision detection (red), fracture computation (green), and
physics computations (black). Times to update collision detection data structures were always
shorter than fracture computation, and are not included for clarity.

Yet another interesting extension is handling ductile and/or progressive fracture and elastic
deformations. Since our approach already updates data structures at fracture events, it should
also be possible to update those data structures as objects deform and fractures progress.
Distance fields and sphere trees could also serve for self-collision detection algorithms.

The results of our experiments open promising perspectives for the use of our solutions
in real-time applications such as video games and haptic interaction.

4.3 Haptic interaction with fracturing bodies

The haptic interaction, or interaction with the sense of touch (presented in section 2.6.3) is
a rich way of interacting with the virtual world. As opposed to unidirectional interactions
such as interaction with the keyboard or the mouse, haptic rendering allows feeling what
is happening in the virtual scene thanks to our kinesthetic sensors. Haptic rendering not
only is useful as an output device, but can be helpful to check perceptually the behavior of
a simulation. When something not visually perceptible is going wrong in the simulation, a
haptic output often reveals the artifacts.

In this section, we show how we made possible the coupling between the fracture sim-
ulation and the haptic rendering. First, we present the feasibility of the coupling between
third party rigid body engines and haptic rendering. Second, we present how to maintain the
stability of the interaction even when the number of body is growing.

107

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

4.3.1 Benchmarking the rigid body engines for haptic

We present in this section an evaluation of dynamic engines, based on relevant criteria chosen
with respect to haptic rendering of contact between rigid bodies. The objective of this
evaluation is to determine whether popular real-time dynamic engines are well-suited for
haptic rendering of rigid bodies, and to highlight their limits. The list of dynamic engines
evaluated below is not exhaustive, but we tried to choose the dynamic engines that seemed
the most promising to us. Moreover, we defined an environment for our experiments that is
modular enough to be able to integrate any physical simulation library.

4.3.1.1 Selected rigid body engines

We selected the following popular rigid dynamic engines for the evaluation:

� Havok physics (http://www.havok.com). Havok was created in 1998 in Dublin (Ire-
land), and is the world leader provider for rigid body dynamics solution. It also imple-
ments sophisticated collision detection algorithms, ragdoll animation, vehicles dynamics
and character animation toolkit.

� NVidia PhysX (http://www.nvidia.com/, section PhysX in technology menu). PhysX
(former NovodeX) has been created in 2002 by the semi-conductor company Ageia that
was the first to propose on the market a hardware acceleration solution called PPU
(Physic Process Unit) for physical simulation. NVidia PhysX implements collision de-
tection algorithms, rigid, soft body and fluids simulation. PhysX has recently been
acquired by NVidia (in February, 2008) to become NVidia PhysX (the hardware accel-
eration capabilities have been deported on the GPU).

� Bullet physics (http://bulletphysics.org/). Bullet physics is an open source
physic engine founded in 2003 by Erwin Coumans, a former Havok employee and is sup-
ported by Sony Entertainment division. Like its competitors, Bullet physics provides
collision detection and rigid body simulation. It also implements soft body simulation.

� Open Tissue (http://www.opentissue.org/). OpenTissue is born from a research
project initiated by Kenny Erleben [Erleben 07]. He presents in his papers inviting
algorithms for rigid body simulation. OpenTissue integrates collision detection system
and simulation of rigid and deformable bodies.

All these dynamic engines use Gauss-Seidel like iterative solvers to manage non-penetration
and user-defined constraints, that are expressed at the velocity level, i.e. the solver will try to
find impulses that prevent or correct the constraints violations. (OpenTissue performs a final
shock-propagation stabilization step as presented by its author). They are all implemented
at least on Windows, Linux, MacOSX, and, except for OpenTissue, Playstation 3, Xbox 360
and Nintendo Wii.

Our evaluation is focused on a comparison between the results obtained with the different
libraries. We do not present technical comparisons of the methods used by the dynamic
engines. Moreover, since neither Havok physics nor NVidia PhysX is open source, it remains
difficult to have information on the underlying algorithms used for collision detection and
constraints resolution.

108

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

4.3.1.2 Performance Criteria

We designed our experiments in order to measure the quality of haptic rendering through the
three following performance criteria:

� Computation time. A stable and realistic haptic rendering needs high refreshment
updates (see e.g. [Colgate 95]). It is commonly admitted that a haptic display that
renders contacts and impacts between rigid bodies should be performed at about 1kHz,
i.e. the computation time spent to compute the state of the world from time ti to
time ti+1 must be performed in less than one physical millisecond. In order to measure
this criterion, we start a timer before the call to the simulation method of the dynamic
engine (this call includes collision detection and constraints solving) and stop it after
the end of the call.

� Stability. The stability of the simulation indirectly measures how laws of physics such
as energy conservation are respected. Passivity of a virtual world [Colgate 95] (i.e.
the fact that the world only dissipates energy) is a sufficient condition for ensuring its
stability. Therefore, we made measurements of the variations of the total world energy
to conclude on its stability.

� Accuracy The accuracy indicates how well the physical phenomena (such as dry or
sliding friction, bouncing, . . .) are reproduced in the virtual world. To give a mark for
spatial accuracy, we performed spatial measurements of penetrations distances (using
Euclidean distance between bodies’ centers as metric). We also visually appreciated
the results based on reference simulations of the real world.

For each test case presented in the next section, we measure the average and maximum
computation times, the sum of the total energy of all the bodies of the world, and we give a
mark on the visually appreciated end state. If B is the set of bodies’ indexes of the world, mi,
vi, ωi and Ji are respectively the mass, linear velocity, angular velocity and inertia matrix
(related to the center of mass) of body i, the energy e of the world is computed as:

e =
∑
i∈B

1
2
(
mi v

2
i + ωTi Jiωi

)
(4.3)

4.3.1.3 Tests Cases

We used four discriminant test cases for the measurements of our performance criteria (the
words in italic facing the name of the tests indicate which main criterion is measured through
the test):

1. Pile of 50 cubes – stability. The classical pile of cube test (Figure 4.13a) is a challeng-
ing structure because of its contact disposition: naive iterative solvers have a very slow
convergence rate in order to propagate the non-penetration constraints [Milenkovic 01].
Also, this test measures the efficiency of the error correction due to interpenetration
occurring.

2. Seven-stages card house – friction accuracy. The card house (composed of 89 cards,
Figure 4.13b) is a structure that fully depends on an accurate simulation of friction
phenomena [Kaufman 08]. If the friction is too much approximated or enforces pene-
trations, the card house is destabilized and collapses.

109

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.13 – Snapshots of three of the four test cases. a: A pile of 50 cubes. b: A 89-cards,
7 stages card house. c: 8000 cubes in a basin.

3. 8000 cubes in a basin – computation time. In order to check the scalability of the
libraries, the third test consists in dropping 8000 cubes in a basin (Figure 4.13c). A
lot of objects are put in a high contact configuration (8 contacts per body in average),
measuring the evolution of the timings of the solvers when the numbers of bodies and
contact increase.

4. Heavy block on a light block – efficiency of solvers. This test puts Gauss-Seidel like
solvers into slow convergence rate. If not enough iterations are used, or the correction
methods are inappropriate, the upper heavy block penetrates the light one, and the
system becomes unstable.

4.3.1.4 Test Parameters

Since our tests are related to rigid body simulation, we retained two physical parameters:

� • The coefficient of friction. According to the Coulomb model of friction, the
coefficient of friction µ tells that the maximum tangential force that can be applied
to oppose tangential motion at a contact point between two rigid bodies, is µ × f ,
f being the magnitude of the normal force acting at the contact point to prevent
interpenetration. As an example, the coefficient of friction between two dry pieces of
steel is approximately 0.15. Although friction is a very common phenomenon, it is far
from simple to include accurately into rigid body dynamics [Baraff 91]. Thus, we vary
the coefficient of friction from 0 (no friction) to 1 (high friction) for each test case in
order to see its influence on the obtained results, and how well the dynamic engines
handle it.

� • The coefficient of restitution. The coefficient of restitution indicates what per-
centage of energy is conserved and dissipated during an impact between two rigid bodies
(0 means a total inelastic impact, while 1 means a perfect elastic and bouncy impact).
In contact resolution between rigid bodies, resting contacts are often separated from
collision events and are treated using different algorithms. To decide whenever a resting
contact or a collision occurs, the relative velocity between colliding bodies at contact
point is often considered. Since the restitution coefficient has an influence on how rela-
tive velocities are modified, we chose to study the influence of the restitution coefficient
on the simulation results.

110

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

All our tests have also been performed by varying the time step. Depending on the
integration scheme used, the time step has namely a great influence on the stability of the
constraints solver. The different combinations of parameters are summed up on Table 4.4.

Friction coefficient Restitution coefficient Time step (s)
0.5 0.4 1/60
0.5 0.0 1/60
0.5 0.4 1/100
1.0 0.4 1/60
0.0 0.4 1/60

Table 4.4 – The different configurations of parameters used for each test case.

Configuration of the dynamic engines

Each dynamic engine has its own parameters that may have impacts on the results. For
example, it is possible to set the number of iterations used for constraint solving. Since the
default configuration of the dynamic engines is set to optimize a trade-off between compu-
tation time and accuracy performances, we chose to let the default values. However, other
aspects such as aggressive freezing strategies can alter the results. Another aspect is the
collision detection system that can be turn into continuous or discrete mode, having great
impacts on computation time and results. To make the comparison possible, we disabled
freezing and continuous collision detection for all the results presented in this paper.

4.3.1.5 Results

This section summarizes the results obtained for each of our performance criteria, for the four
test cases previously defined. We believe that the collision detection system of OpenTissue
slows down the simulation times drastically, and noticed that the stability of the simulation
is lower than the other libraries. Therefore, we do not present the results obtained with
OpenTissue since they are not comparable to the results obtained with the other dynamic
engines.

Computation times comprise both the collision detection, constraint solving and inte-
gration time. We performed all our tests on an Intel Pentium D (3.40 GHz) with 2.0 GB
RAM on Windows XP. Except the third test for which we measured the results after 10
seconds of simulation (an arbitrary chosen representative value), we stop the simulation and
the measurements whenever the simulation has reached a stable state.

Pile of cubes

Havok physics brought the best results for the simulation of the pile of cubes. We obtained
the best average computation times, and the best stability. It is possible to make the pile
to stand up for time step going up to 1/60s. Figure 4.14a shows the dissipation of the total
energy that led to a stable state for the pile of cube using Havok physics and a time step of
1/100s.

With NVidia PhysX, we notice a visible penetration between cubes at the beginning of
the simulation, followed by a counter reaction that destabilizes the pile which breaks before
5 seconds of simulation if a time step over 1/100s is used. Using tiny time steps (less than
1/800s), it is possible to make the pile to hold, but it never reaches a stable state, and small
oscillations can be observed.

111

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.14 – Plot of the total energy over time of the pile of cube test. a: Pile of cube test
with Havok physics. b: Card house test with Havok physics (red solid line) and NVidia PhysX
(blue dashed line). Time step is 1/100s.

Bullet physics brought not as good computation time results as its competitors, and had
similar results than NVidia PhysX on the stability plan (we did not manage to make the pile
hold more than 4 seconds of simulation for time steps over 1/100s).

Using a null coefficient of friction, none of the engine enables to make the pile hold.
However, in this case, we obtained the best results with Havok physics that maintains the
pile for more than 4 seconds of simulation against 1.5 seconds for NVidia PhysX, and less
than 1 second for Bullet physics.

Card house

Havok physics enables to simulate the card house in a visually realistic manner, and with
the best computation times. With a time step of 1/100s, and a friction coefficient of 1,
even the top most stage of the card house remains in place. NVidia PhysX shows the same
phenomenon as for the pile of cubes: after a penetration between the cards, a counter reaction
occurs (see Figure 4.14b at time 0.5s) and the card house is destabilized. However, although
the card house is maintained for a long time, it never reaches a stable state before the card
house is almost completely broken (after more than 50 seconds of simulation). Bullet physics
shows a weakness on this test case: its default solver cannot handle properly dry friction.
Indeed, whatever the coefficient of friction used, the cards slide and the whole house is broken
at the beginning of the simulation.

8000 cubes in a basin

On this test case, we mainly measured the average and maximum computation times. For
this simulation, we saw that Havok physics and NVidia PhysX brought very similar results.
We noted however a slightly greater maximum computation time for Havok physics when the
coefficient of friction is zero. Bullet physics is on the third place, with the highest computation
times.

Figure 4.15 shows the computation time evolution with respect to the number of bodies,
and the number of contacts in the virtual world. On this chart, we separated the call to the
collision detection module and the constraints solving, enabling to show the time spent for
collision detection (solid line) and the time used for constraint solving (dashed line).

Heavy block on a light block

None of the dynamic engines has been able to simulate visually plausible results for this test
whenever the mass ratio between the two bodies is above 500 (see Figure 4.16, white body is

112

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

Figure 4.15 – Complexity of the scene versus computation time. a: number of bodies and
computation time. b: number of contacts and computation time.

Figure 4.16 – Fourth test case. A heavy cube (white) is dropped on a light one (dark red)
with a scale factor of 1000 on the masses. a: results with Havok physics. b: results with
NVidia PhysX. c: results with Bullet physics. Time step = 1/800s, friction coefficient = 0.5,
restitution coefficient = 0.4.

heavy while the dark one is light). Actually, using a time step of 1/1000s and masses equal
to 1 and 500, it is possible to reach a stable state with Havok physics where the heavy cube
is resting on the light one, after several unnatural bounces. We did not achieve to have the
same state using NVidia PhysX or Bullet physics with this mass factor. NVidia PhysX has
a different behavior, allowing the heavy cube to penetrate the light one (see Figure 4.16b,
middle). This makes the light cube in red becoming unstable, being randomly shook until
it is ejected away from the heavy cube that does not move. With Havok or Bullet physics,
the interpenetration is corrected in such a manner that the heavy cube (and the light one for
Havok) bounces abnormally over the light one, until both cubes are separated by tangential
forces. Using a bigger time step (1/60s), the heavy cube penetrates the light one, and the
latter is pushed away horizontally.

4.3.1.6 Summary of the Evaluation

We performed four discriminant tests, each of them was designed to measure one of the
performance criterion. Figure 4.17 sums up the average timings (over all the configurations
of parameters of Table 4.4) for each of the three first test cases (we do not show timings for
the fourth test, since the scene composed of two bodies is not relevant for computation time
comparisons).

We noticed that Havok physics has a small advance on computation time performance
on NVidia PhysX, while Bullet seems to be less optimized. In average, we measured that it
takes about 0.012 ms to solve for one cube in a contact configuration of 8 contacts per cube

113

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Figure 4.17 – Average and maximum processing time for the three first test cases.

for Havok physics or NVidia PhysX, with our hardware configuration.
Table 4.5 sums up the accuracy conclusion. We noticed that Havok leads to the more

stable and accurate simulation, allowing simulating the pile of cubes and the card house
successfully. NVidia PhysX shows some weaknesses on those challenging structures, allowing
an initial interpenetration that destabilizes the simulation further. Bullet physics does not
seem to handle properly dry friction, making structure such as the card house impossible to
be correctly simulated.

Pile of cubes Card house Heavy/light block
Havok physics ++ ++ 0
NVidia PhysX + + 0
Bullet physics + 0 0

Table 4.5 – Summary of the stability and accuracy appreciations. Legend ++: good accuracy,
stable simulation. +: visually realistic results, stability reduced. 0: simulation not successful.

4.3.2 Coupling rigid body engines and haptic rendering

In this section, we focus on how it is possible to couple the two main components of our haptic
application, i.e how to couple the dynamic engine with the haptic rendering API, in order
to obtain a modular and generic system. For that purpose, we introduce a scaling interface
between the two components that in order to tune the haptic display without altering the
overall stability of the system.

We define our coupling with the assumption of admittance controlled haptic device. In-
deed, this control mode is well-suited for a simple coupling between a dynamic engine and a
haptic rendering API, because the dynamic engines provide successive positions of the proxy
(the body in the virtual world which is coupled for haptic interaction) over time, that can be
used to pilot the haptic device. The forces returned by the haptic device can be applied on
the proxy and integrated into the dynamic engine. Also, admittance control can be emulated
from an impedance-controlled device using a virtual coupling, as presented in section 2.6.3.2.
Figure 4.18 shows the flow of data between the simulation and the haptic control when using
admittance mode.

It is however too restrictive to plug directly the simulation results to the haptic API as
shown on Figure 4.18. Indeed, values returned by the dynamic engine may have a numerical
representation different from the one used by the haptic API, the frame coordinates can be
different, and the order of magnitude of the values used are likely to be incompatible. More-
over, haptic display must be tunable: changing the range of efforts allowed and calibrating

114

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

Figure 4.18 – Admittance control of a haptic device. Haptic rendering refers to the haptic
API, the haptic controller and the haptic device.

the interaction so that most of the user’s movements stay in the haptic device working space
are two manipulations that should offer haptic applications. These observations motivated
us to define a scaling interface between the two modules as presented in the next section.

4.3.2.1 Scaling Factors between Virtual and Real World

Each haptic device has its own mechanical constraints and working space. The haptic device
used during our experiments (a 6 DOF Virtuose™6D35-45, from Haption, Soulge sur Ouette,
France) supports less than 40 Newtons of effort, and has a workspace which is approximately
a 30cm side cube, while a PHANTOM Omni haptic device from Sensable (Woburn, MA
01801, USA) has a 16 × 12 × 7cm working space, supporting around 3.3 Newtons of effort.
Of course, the two devices are not designed for the same applications, but their differences
highlight the fact that the physical simulations values cannot be directly used for haptic
rendering. Moreover, we want to be able to manipulate objects of a mass of several tons in
huge environments as well as interacting with microscopic objects.

It is possible to amplify the movements of the user, and to give him more force so that the
interactions fit into the working space of the haptic device and its range of allowed efforts.
However, altering the coupling has consequences in both the simulation and the control of
the admittance haptic device and the physical simulation. In this section, we propose an
interface between the physical simulation and the haptic rendering that considers the two
modules as black boxes, and that enables to freely give values for scaling factors, without
altering the stability of the system to obtain a generic coupling.

In the following, the subscript xsimu denotes a value x coming from the physical simulation
module, while the subscript xhapt denotes a value x coming from the haptic rendering module.

The scaling factor

We define the scaling factor zfact as the factor linking the virtual world unit of length (denoted
vl) to the real world unit of length, the meter. For example, a factor of 10 means that 1 virtual
unit of length (i.e. the value 1 in the numerical representation of the length in the dynamic
engine) is equivalent to 10 meters in the real world. This factor is useful for example to

115

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

choose a value for the gravity of the virtual world that has the same representation than
on the earth (i.e. around 98vl.s−2 for an earth equivalent gravity if zfact = 10). Also, this
factor can be helpful when creating the virtual world, and computing the mass of the objects
from their density in kg.m−3 to the virtual world density in kg.v−3

l . The scaling factor has
only an influence on the physical simulation (and the conception of the world) and thus does
not belong to the scaling interface between the physical simulation and the haptic rendering.
However, it is really helpful to cleanly separate the scaling interface, and to avoid mixing
independent and linked variables into the coupling.

Since the physical quantities used for haptic rendering are related to space, mass and time
dimensions, we define additional length and mass factors as presented in the following.

The length factor

We define a length factor sfact that modifies the unit of length of the virtual world vl so that
the simulated scene fits into the desired working space. To ensure the good separation of the
systems of units of the physical simulation and the haptic rendering, we use this factor to
modify the linear position xsimu in meter, the linear velocity vsimu in m.s−1 and the linear
forces fsimu in kg.m.s−2 linearly, while the torque τsimu in kg.m2.s−2 and the inertia matrix
Isimu using the square of the factor:

xhapt = xsimu
sfact

; vhapt = vsimu
sfact

(4.4)

Concerning the orientation values qsimu and angular velocity ωsimu, it would be possible
to similarly define a rotation factor, that could amplify or decrease the angular motion. We
however kept the original values for orientation and angular velocities (the angular quantities
have no unit, and do not scale with length or mass):

qhapt = qsimu ; ωhapt = ωsimu (4.5)

The mass factors

We finally define the force factor ffact and torque factor τfact that increase or decrease mass
values. The force factor modifies linearly the force returned by the haptic device fhapt and
the mass msimu. The torque factor modifies linearly the torque τsimu and the inertia matrix
Isimu:

fsimu = fhapt × ffact × sfact ; mhapt = msimu

ffact
(4.6)

τsimu = τhapt × τfact × s2
fact ; Isimu = Ihapt

τfact × s2
fact

(4.7)

Figure 4.19 sums up the scaling interface between the physical simulation module and the
admittance haptic rendering module.

4.3.2.2 Synchronization with Physical Time

Although length and mass factors can be easily interpreted, time factor is more confusing.
We want the virtual unit of time to coincide with the real second. Therefore, we perform an
active wait at the end of each simulation step using the system clock, enabling to synchronize
the simulation time with physical time (see Figure 4.20). To be feasible, this solution implies
that the computation time needed to move the world n seconds forward is smaller than n

116

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

Figure 4.19 – Scaling interface between the physical simulation and the admittance haptic
rendering. Bold values depict global state vector or global effort vector.

physical seconds. Otherwise, the simulation takes some latency. To avoid this latency, the
number of bodies in the virtual world can be limited. Indeed, if we master the time needed
to simulate one body in the worst case (see the conclusion of the evaluation section), then we
can estimate the maximum number of bodies that it is possible to simulate within a given
time step in order to avoid the simulation to take some latency.

Figure 4.20 – Synchronization with physical time using active wait.

4.3.2.3 Results

We implemented the presented coupling using an admittance capable haptic device (a 6
DOF Virtuose™6D35-45, from Haption). In order to avoid the visual display to slow down
the haptic frequency, we performed virtual world image synthesis into a separated thread
that performs read-only operation on the virtual world (and is not synchronized with the
simulation thread).

We experienced stable haptic interactions using Havok physics, NVidia PhysX and Bullet
physics. The more pleasant and accurate interactions have been obtained with Havok physics,
where we could feel dry and sliding frictions performing up to 1kHz haptic rendering for the
pile of cube, and nearly 800Hz haptic rendering for the card house test.

117

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

Comparable interactions have been obtained with NVidia PhysX. In simple cases, fine
interactions with dry and sliding frictions can be performed. However, interactions involving
stacking structure such as the pile of cube and the card house, where visual oscillations
appear, do not spare the haptic display that suffers from the same artifact.

Finally, we also performed satisfying interactions using Bullet physics. The main dif-
ference between the two previous haptic displays is the friction phenomena. Indeed, the
tangential motion is felt viscous, and no clear dry friction is haptically reproduced.

4.3.2.4 Discussion and conclusion

The scaling interface enables us to easily tune the haptic display using few factors, but can
also manage changes in frame coordinate or numerical representation interface. We presented
simple linear or quadratic scaling functions for physical quantities, based on unit analysis.
These functions have the advantage of isolating two systems of units, and thus conserve the
original stability. The definition of other scaling functions must be carefully done in order to
avoid loss of stability leading to unstable situations in haptic rendering.

For the purpose of our evaluation, we defined a multithreaded test environment and a
physic abstraction layer in order to have a full control on the parameters and the measure-
ments. However, the abstraction layer and test environment are steps that can be skipped for
general haptic rendering. Using a multithreaded environment is common in haptic rendering,
to avoid loss of time for external tasks such as visual rendering. Although we do not detail
this aspect in this paper, it does not invalidate the scaling interface, which is proper to haptic
rendering.

The list below sums up the steps that quickly and simply lead to a stable and modular
haptic application:

1. Choose a dynamic engine, or an abstract layer that includes several dynamic engines
such as PAL (http://www.adrianboeing.com/pal/) which embeds about ten dynamic
engines in a unified interface.

2. Choose a haptic device that is well-suited for the application and that can be controlled
in admittance mode (an abstraction layer for haptic device control would be even more
elegant).

3. Define the scaling interface presented in the second part of the paper (and optionally
the synchronization time procedure), and plug it to the dynamic engine and the haptic
API as shown on Figure 4.19.

4.3.3 Dealing with a growing number of bodies and haptics

In order to haptically render stiff contacts between rigid bodies, a high refreshment frequency
must be maintained in order to ensure a stable and accurate interaction [Colgate 95]. There-
fore, it is often considered to create two processes in haptic rendering applications: one for
the physical simulation, and another one for the haptic rendering. The simulation process
extracts at its rate a so-called intermediate representation [Adachi 95] from the virtual world.
This intermediate representation is a simplified and local model of the world that is exploited
by the haptic process to generate orders at frequencies allowing good haptic rendering quality.

There are different models used for intermediate representation in the literature. Some
authors proposed using the Jacobian of forces with respect to a displacement of the tip of the
haptic device [Cavusoglu 00]. Another approach consists in extracting a simplified geometry

118

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

from the virtual world, around the interaction area. The nature of the geometry can be a
single plane [Adachi 95], a set of planes [Mark 96], parametrized surfaces [Balaniuk 99], set
of nearest triangles [Mendoza 00], or other data for collision detection [Davanne 02]. Finally,
multiresolution approaches have been proposed for deformable bodies, where parts of the
mesh that are close to the tip of the device are extracted, and simulated at different rates
using different levels of details [Astley 97]. A linearized version of deformation simulation can
also be used in the haptic process [Cavusoglu 00]. More recent work has been proposed in
[Otaduy 05] to deal with haptic display of bodies having complex geometries. The geometry
is dynamically simplified in a sensation preserving way around contact points.

Most of the methods have been developed in order to allow haptic interactions with de-
formable bodies. However, contacts between rigid bodies are simulated using different models,
and need higher haptic frequency. Therefore, the methods proposed for deformable bodies
cannot be applied to rigid bodies. In this section, we present a multiresolution approach
for haptic rendering between rigid bodies. The main idea of our new coupling scheme is to
dynamically extract a subset of the global world and to build a second physical world as an
intermediate model. We call this second physical world the haptic sub-world. As presented
in Section 4.3.3.1, the haptic sub-world is built from a limited number of carefully selected
bodies, and can therefore be simulated at a higher frequency into the haptic process, as de-
picted on Fig. 4.21. The results presented show that our coupling scheme enables to increase
the complexity of the global world without any perceptible alteration of the haptic display.

Figure 4.21 – Haptic-sub world main algorithm. The simulation process simulates the global
world once with a time step of dt, while the haptic process simulates for example 3 times
its haptic sub-world using a time step of 1/3 × dt (we call the ratio between the time steps
the simulation ratio value, noted rsim). At the end of the haptic cycle, the two worlds are
synchronized, exchanging bodies positions and efforts information.

4.3.3.1 The Graph-based Haptic Sub-world Coupling Scheme

We define the haptic sub-world as a subset of the bodies of the world that is simulated at a
frequency allowing a good haptic rendering. We noticed that during the interactions, only
the bodies that are directly or indirectly in contact with the proxy (the body linked to the
haptic device) can influence it. Therefore, we define the haptic sub-world based on the graph
of contacts between the bodies. Let us define β, the set of bodies of the global world and
p ∈ β represents the proxy. If we suppose that we have a function called contact : β×β → R
that provides the number of contacts occurring between a pair of bodies, then we can define

119

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

the graph G = (β,V), where an edge v = (b1, b2) from the edges set V ⊂ β × β exists only if
there is a direct contact between b1 and b2, i.e.:

∀ b1, b2 ∈ β, contact(b1, b2) ≥ 1⇒ (b1, b2) ∈ V (4.8)

From the graph G, we define H = (βh,Vh), βh ⊂ β,Vh ⊂ V as the connected subgraph of
G that contains p (the proxy). Fig. 4.22 shows an example of how the graph H is obtained.

Figure 4.22 – Graph-based haptic sub-world. The graph G (middle, containing all nodes)
defines the contact configuration of the bodies of the global world. The colored connected com-
ponents of the graph containing the proxy (in red) form the graph H (containing only colored
nodes) of the bodies that compose the haptic sub-world. The card house (right) illustrates the
haptic sub-world composed of colored cards extracted from the proxy (red card).

In practice, we only need the graph H (the connectivity information of the other bodies in
G is useless for our purpose). Therefore, we designed an algorithm that progressively builds
the graph H over the simulations, starting from the proxy and the bodies that are directly
in contact with it.

From this definition, a body can belong to the haptic sub-world only if it has a (direct
or not) contact with the proxy. However, a haptic cycle is needed before a body is added
to the sub-world. Therefore, we anticipate all potential contacts by bringing bodies close
to the proxy even if there is no contact with it (Paragraph 4.3.3.1). Also, we must limit
the complexity of the haptic sub-world to preserve the haptic frequency (see Fig. 4.22, card
house). However, if the graph is limited, it may remain contacts between the two worlds, and
we must manage the exchange of energies to avoid loss of physical plausibility (Paragraph
4.3.3.1).

Building the Haptic Sub-world

A body close to the proxy is a body that can be reached by the proxy in less than two haptic
cycles. Indeed, the linear velocity of the proxy has a limit vmax defined by the mechanical
constraints of the haptic device. For a given fixed haptic frequency rendering f , and a chosen
simulation ratio value rsim, the maximum displacement pmax of the proxy during two haptic
cycles is pmax = rsim

f × vmax. Assuming that the size of the proxy bounding cube side is
csize, then we define a boundary cube with a side size of csize + 2 × pmax centered around
the proxy that represents the limit of close bodies. All the bodies intersecting the boundary
box are added into the sub-world to avoid the loss of physical information. We use broadcast
collision detection to detect all bodies bounding boxes which are intersecting the boundary
cube. During simulation of the global world, events are triggered, warning that a new body
has entered the boundary box, or a body that was inside left it. We keep all the events
in a list. At synchronization time, we check the leaving/entering list of bodies to update
the haptic sub world, and we use the position of the proxy to re-center the boundary cube.

120

4.3. HAPTIC INTERACTION WITH FRACTURING BODIES

Moving the boundary cube may generate new events that are added to the list and are taken
into account at the next synchronization.

Building the Graph and the Interface

As previously mentioned, using a haptic sub-world with a small number of bodies enables
to perform a parallel simulation at high rates for the haptic rendering concerns. However,
it is possible that the haptic graph H has too many nodes (we may have H = G, the global
graph), and in that case, the sub-world loses its sense. To ensure a fixed haptic frequency, we
limit the propagation of the graph to a maximum number of bodies. We define an interface
that manages the energy exchanges between the global world and the haptic sub-world when
the graph is limited. Three different exchanges are controlled.

First, the efforts coming from the global world. We define border bodies as bodies of
the haptic sub-world having a contact with a body of the global world (e.g. the yellow
cards on Fig. 4.22). During the simulation of the global world, we store non-penetration
impulses applied at these contacts and apply them on border bodies at each simulation step
of the haptic cycle. On a pile of cube at rest, this constraint enables to have the same static
behavior for the bodies of the haptic sub-world and their equivalent bodies in the global
world, as shown in Figure 4.23.

Second, the friction on border bodies. To include friction at border, we create a "friction
point" constraint at each border contact where an impulse is applied. This constraint imposes
the body point to stay along the contact normal line. If a big enough tangential effort is
applied, the constraint is freed. The threshold is determined using Coulomb friction model.
Namely, knowing the normal impulse magnitude i applied at border contact and the coefficient
of friction µ at that point, the intensity threshold used for the perpendicular effort is µ× i.
Sliding friction is not applied, but approximated by the fact that the friction point constraint
is updated at each synchronization.

Figure 4.23 – Handling of the effort exchanges at the boundaries of the haptic sub-world. By
applying appropriate retrieved impulses at border contacts, we can have helpful information on
the surrounding global world a, or conserve compression information of the world, that allows
simulating the same friction or resistance behavior as in the simulation world b. The green
bodies (at which border contacts are present) are border bodies.

Third, the efforts coming from the haptic sub-world. In order to propagate the normal
actions coming from the haptic sub-world to the global world, we simply impose the positions
of the bodies of the haptic sub-world to their equivalent body in the global world. For
tangential efforts, we store at each friction constraint the sum of impulses applied to maintain
the constraint, and apply them on each body of the global world that has a contact with
border bodies.

121

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

4.3.3.2 Results and Evaluation

Our tests and experiments have been performed on PC running on Windows XP, equipped
with 2 processors Intel Pentium D (3.4 GHz) and 2 Go RAM. The haptic device used is a
6 DOFs Virtuose 6D35-45 (Haption company, France). The graphic card for display is an
NVidia Quadro FX 3450. We used Havok physics software (http://www.havok.com) for
collision detection and rigid body simulation (the solver complexity is O(n), n being the
number of constraints). We used a third process to manage visual rendering in order to
increase computation time performances.

Same Haptic Frequency for more Complex Scenes

The simulation process has rsim haptic periods of time to simulate its world and prepare the
synchronization (see Fig. 4.21). Namely, the number of bodies allowed into the global world
is approximately equal to the number of bodies allowed into the haptic sub-world multiplied
by rsim. For example, on our configuration, using a value of 10 for rsim enabled us to perform
satisfying haptic rendering in virtual worlds containing more than 500 cubes at a frequency
of 1kHz. Without our method, this frequency can be maintained only for scene containing
less than 50 cubes.

Accuracy Measurements

We performed accuracy measurements based on the velocity of the bodies on scenes containing
up to 250 bodies, and about 2000 contacts. We measured that the sub-world method generates
a loss of energy of 6% in the worst case (compared to the simulation without sub-world), using
a simulation ratio value of 8. This loss of energy is due to the approximations and filters
applied during the haptic cycle in order to avoid energy gain, that could lead to instability.
Even if these approximations increase with rsim, we experienced that the haptic feedback
remains the same for the user, even with high rsim values (> 10). Figure 4.24 shows an
analysis on the velocities of our coupling method.

Figure 4.24 – Analysis of the accuracy on velocities. Measurement of velocity accuracy on a
complex structure (about 2000 contacts) and a pile of 50 cubes being pushed at the bottom,
after 1 second of simulation. The color intensity is linearly dependent to the body velocity.
The left picture is the result without our coupling scheme, and the right picture with it.

122

4.4. CHAPTER CONCLUSION

Comparison with Other Coupling Methods

We implemented and compared the haptic feedback obtained with our method to other
coupling schemes between the physical simulation and haptic rendering: the direct coupling,
the interpolation of position and a static sub-world coupling. With a direct coupling, a stable
and accurate haptic rendering is obtained, but the complexity of the virtual world is limited.
With the interpolation method, the efforts returned by the haptic device are stored during
the haptic cycle, and are then applied all at a time during synchronization. This behavior
produces artifacts and decreases the stability of the haptic feedback, even for small values of
rsim (lower than 4). Using a static sub-world, we no longer simulate the haptic sub-world: it
is frozen and all objects are fixed. The position of the proxy is imposed into the simulation
process at each synchronization. This produces a stable simulation, but the late integration of
the action of the proxy produces annoying vibrations artifacts. Using our sub-world method,
we can increase the complexity of the virtual world while avoiding the artifacts produced
using the interpolation or the static sub-world methods.

4.3.3.3 Discussion and conclusion

We have presented a new coupling scheme based on a haptic sub-world principle with the
use of a graph to manage the contacts between rigid bodies. The scheme allows coupling
the physical simulation of rigid bodies and haptic rendering, and enables to increase the
complexity of the virtual world without having perceptible loss in haptic rendering quality.

We also presented an interface that manages the exchanges of energy between the sub-
world and the global world when contacts remain between the two worlds. With our coupling
scheme, we have been able to perform 1kHz and satisfying haptic rendering in scenes con-
taining more than 700 cubes with many contacts.

Future work will be focused on the use of our method as a tool for haptic rendering
applications. We also project to validate it on user-based scenarized scenes. Also, we think
it is possible to use our coupling scheme to perform several haptic displays together from the
same global world without loss of computation time performance.

4.4 Chapter conclusion

This chapter treated two aspects present in interactive simulations: the collision detection,
and the interaction with haptic rendering. In the context of brittle fracture, these aspects
present unique challenges. For the collision detection, new bodies with arbitrary shapes and
created at run-time must be handled, and existing solutions based on precomputed data
cannot be applied. We presented a new collision detection algorithm based on a mesh-
based distance field and a reconfigurable sphere tree that are both updated efficiently at
fracture events. We also introduced a contact selection mechanism that allows avoiding the
computational peaks due to the challenging configuration of the fragments at the first frames
after the fracture events.

The results of our collision detection system coupled with our impact-based fracturing
method presented in the previous chapter have shown to be fast enough to pretend to be
used in interactive applications such as haptic rendering, opening doors for new applications.
We proposed coupling our fracture simulation system to a haptic device. To this purpose,
we first analyzed the possibilities of coupling of common rigid body engines to create haptic
displays. Our results showed that a stable haptic feedback can be obtained from these engines,
through a benchmark. We also presented scaling mechanisms that allow the tuning of the

123

CHAPTER 4. NEW METHODS FOR INTERACTIVE BRITTLE FRACTURE SIMULATION

mass and length factors between the virtual world and the real world without loss of stability.
Finally, we proposed a new haptic coupling based on the extraction of a sub-world simulated
at higher frequencies, that allows maintaining the needed simulation frequencies for haptic
rendering even when new bodies are added to the scene, as it is the case in brittle fracture
scenarios.

We demonstrated the usability of our fracture simulation method for interactive applica-
tions that requires high computation performances such as haptic rendering. Our method is
stable and can be integrated to any third party rigid body engine to enrich it seamlessly with
brittle fracture simulation.

124

5Evaluation and validation

Contents
6.1 Modeling of the fracture phenomena . 149

6.2 Interaction and brittle fracture . 150

6.3 Evaluation of the models . 151

6.4 Discussion and perspectives . 152

6.5 Long term perspectives . 153

The evaluation and validation of the fracture simulation methods are rarely addressed.
Indeed, validating brittle fracture with experiments present unique challenges. First, it is
difficult to say whether a fracture pattern is valid or not, since the patterns are not repro-
ducible in real life. What makes the fracture correct or not is not well defined in the literature.
Second, as presented in section 3.3, in the case of impacting bodies, the dynamic aspects of
the simulation play a key role in the fracture outcome. Although static cases are widely
studied in fracture mechanics, the dynamic cases are poorly addressed because it is difficult
in practice to measure the deformations and the formation of cracks in stiff materials.

We decomposed the validation of the fracture into two sub-validations. First, the valida-
tion of the crack propagation, or how the cracks propagate. Second,the validation the fracture
opening (or fracture initiation), or checking whether and where the cracks start. These two
independent validations are justified by the different needs of the brittle fracture application.
For example, on a virtual prototyping application, knowing whether an object would break is
the main feature required, and knowing how it breaks may be secondary. On the other hand,
on application where the visuals are more important such as a game, the perceived realism
of fracture pattern obtained will be more important than the correctness of the simulation.

In this chapter, we first propose validating the crack propagation aspects based on sta-
tistical information extracted from the fracture geometries. We define a metric based on
this statistical information to define the visual similarity between two fracture patterns. To
validate this statistical approach, we present a perceptive experiment based on a user study.
This work has been done in collaboration with the university of Yale (Holly Rushmeier), the
university of Girona (Carles Bosch), and the INRIA Sophia-Antipolis (George Drettakis). We
then propose a subjective validation of the haptic perception of the fracture, and check if the
haptic feedback is consistent with the simulation parameters. Finally, we present the prelim-
inary results on the validation of the impact-based fracture methods, based on experiments
of real objects fracturing.

125

CHAPTER 5. EVALUATION AND VALIDATION

5.1 Perception of the fracture pattern and fracture statistics

5.1.1 Statistical features of a fractured body
The statistical properties of fracture patterns have been analyzed in fields such as mechanics
[Griffith 21], paleontology [Chowdhury 09] and other fields [Cloos 55, McDanels 06]. Their
main goal is to use statistics to help to understand the reconstruction of fractured objects,
based on shapes and adjacency information. In computer graphics, [Shin 10] recently an-
alyzed fracture patterns observed in wall paintings, to improve fresco fragments matching
[Funkhouser 11].

Our hypothesis is that fracture patterns that appear similar can be identified by comparing
statistical information on the geometry of the patterns produced. To confirm this hypothesis,
and to determine which statistics are most important, we performed a user study where
human subjects were asked to choose between patterns matching different types of statistics,
as presented in the following.

5.1.2 User-study on the perception of the fracture pattern
We gathered a list of potential statistics from previous work [Shin 10] and eliminated redun-
dant measures. We finally considered three types of statistics:

� Fragment statistics (S1): number of fragments and distribution of the area of the
fragments.

� Crack statistics (S2): number of cracks and distribution of crack the lengths.

� Junction statistics (S3): the density of junctions.

We performed a 2-alternative forced choice experiment. The interface of the user study
can be seen in Figure 5.1. At the top is an image of a reference pattern manually extracted
from a photograph. Each lower image is generated to match the top image for a subset of the
statistics (e.g., S1 or S2+S3). A table of the images generated for the user study is presented
in Figure 5.2. We used brute force optimization to determine parameters of the simulation.
The users then had to compare the lower two images and choose the one that looked most
visually similar to the real example. We used a “line-drawing” rendering style to avoid the
use of other cues such as texture.

Experimental Apparatus

The user was instructed to select their preferred fracture pattern in terms of similarity to the
real image by clicking on the preferred image. The participants had 7s to give their answer.
Timeouts or errors were very rare (less than 1% of the total number of answers) and were
ignored in the analysis. The participants had the option to take breaks by pressing a “Pause"
button.

Population and Collected Data

20 participants (14 males and 6 females) aged from 23 to 50 (mean=31.82, standard devia-
tion=7.67) performed the experiment. For each pair of conditions, we recorded the choices
of the participants and their time to answer.

126

5.1. PERCEPTION OF THE FRACTURE PATTERN AND FRACTURE STATISTICS

Figure 5.1 – The interface for the user study. Above we show the reference fracture pattern
taken from an input photograph. Below, two patterns for which different statistics have been
matched (Left: optimization matched the three statistics, Right: the optimization matched the
crack length distribution). The user is asked to select the most visually similar pattern to the
reference.

Experimental Conditions

We used a within-subjects design to evaluate seven different pattern conditions. The seven
conditions corresponded to an image simulated by optimizing one of the three types of statis-
tics or a combination of these statistics. The conditions were : (i) S1, (ii) S2, (iii) S3, (iv)
S1 + S2, (v) S2 + S3, (vi) S1 + S3, (vii) S1 + S2 + S3. We had 5 reference images which
are given in supplementary material. All the possible pairs of the different conditions were
tested twice in both orders (i.e., left or right image). For each group of possible combinations,
the order between the different pairs was randomized as well as the reference image. The
experiment lasted approximately 20 minutes.

Results

We analyzed the answers of the participants for the different pattern conditions to determine
which conditions gave the highest percentages of answers in terms of similarity between
the fracture patterns of the real image and the simulation. Each individual performed 212
comparisons. Under the null hypothesis of equal preference between two conditions, the
number of times an individual preferred the first condition follows a binomial distribution
with parameters 10 and 1/2. After standardization, such a variable can be approximated by
a standard normal random variable. Thus, for each pair of conditions, we tested the presence
of a preferred condition using an exact binomial test. The p-values were adjusted with a
Bonferroni correction. The percentages of time a condition is chosen are given in Table 5.1.

The analysis showed that S1 was significantly chosen more than all the other conditions,
except the combination S1 + S3 (p = 0.1). S2 and S3 were significantly chosen less than
all the other conditions (lines 2 and 3 of Table 5.1). No significant effect was found between
condition S1 + S2 and S2 + S3 (p = 0.15), as well as between condition S2 + S3 and
S1 + S2 + S3 (p = 0.55). We can conclude that S2 was always less significantly chosen than

127

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.2 – Reference and simulated images generated for the user study.

all the other conditions, except for the conditions where S2 is included. Condition S3 gives
the same results as S1 when combined with it.

These results indicate that matching fracture pattern statistics have a significant impact
on the visual similarity of the resulting patterns. If pattern statistics were irrelevant, there
would have been no significant effect when different pattern statistics were matched. Further,
we conclude that fracture area (S1) and junction statistics (S3) appear to have a dominant
effect compared to crack length and number (S2) in perceiving visual similarity of fracture

128

5.1. PERCEPTION OF THE FRACTURE PATTERN AND FRACTURE STATISTICS

patterns.
The user study thus provides a strong indication of the validity of using statistics as a

metric for evaluating visual similarity of fracture patterns. It also determines the relative
importance of each statistic.

S1 S2 S3 S1 + S2 S2 + S3 S1 + S3 S1 + S2 + S3
S1 91 79.5 76 72.5 50 79
S2 9 27 24.5 32 22 24.5
S3 20.5 73 42 38.5 27.5 40.5

S1 + S2 24 75.5 58 44.5 39.5 41
S2 + S3 27.5 68 61.5 55.5 29 47.5
S1 + S3 50 78 72.5 60.5 71 75.5

S1 + S2 + S3 21 75.5 59.5 59 52.5 24.5
Table 5.1 – Percentage of instances that the statistic type for the row was chosen over the
type for the column. For example, in the first line, patterns with statistic type S1 were selected
in 91 percent of the instances where they were compared to patterns with statistic type S2
matched. The light gray values indicate that there was no significant effect found between the
two conditions.

5.1.3 Optimizing the parameters of the simulation from images

We used the statistical measures to define a similarity metric between fracture patterns.
This metric provides a distance between two input patterns, and can be used as a function to
minimize into a minimization process. Namely, a set of statistics of a desired fracture pattern
is be extracted from e.g. an image, and the optimization find a set of parameters for which
that produces fracture statistics that are close to the input statistic pattern as illustrated in
Figure 5.4.

Starting with a photograph of the desired pattern, the location of the cracks is first
specified by the user through a standard graphics editor. The obtained pattern is then
processed into edges, junctions and fragments, and the set of statistical properties is then
deduced. The extraction of these statistics is illustrated in Figure 5.3, where the extraction
process and the resulting statistics are presented for four different input images.

5.1.3.1 Parameters to be optimized

The input required for a crack simulation is a set of material properties (E, ν, ρ, Rcm), an
age parameter (i.e. total simulation time), junction density, the parameters that control the
crack initiation and propagation (dσe, rrelax, vrelax, Rcvar , l) and the noise values A and f
for the crack propagations.

The material properties are determined by specifying the material observed in the exem-
plar image. The junction density is computed directly from the exemplar. The age parameter
is specified by the user, and the noise values are adjusted manually.

Range of Values for Optimized Parameters

We give a valid range for the optimization of each parameter (see Table 5.2) to guide the
optimization. To scale with as many materials as possible, the range of possible values is
expressed as a function of some known parameters.

129

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.3 – Statistical informations extracted from images. Fragments, cracks and junctions
statistics are computed from are vectorized version of input pictures.

Parameter Min value Max value Ref parameter
dσe 0% 33% Rcm

rrelax 0% 100%
√
fragment area

vrelax 0% 33% Rcm

Rcvar 0% 100% Rcm

l 0% 3000% body mass
Table 5.2 – Range of valid values for the optimized parameters. Minimum and maximum val-
ues are expressed as a percentage of the reference parameter Ref. Rcm is the average resistance
to fracture of the material.

Normalization of the Statistics

The input statistics sobs coming from the images are initially computed with pixel-unit length,
while the statistics ssim from the simulation have the unit length of the virtual world. In
order the make the two values comparable, we normalize all our statistics: the areas of the
fragment are divided by the total fractured area, the crack lengths by the square root of the
total area.

130

5.1. PERCEPTION OF THE FRACTURE PATTERN AND FRACTURE STATISTICS

Figure 5.4 – Overview of the optimization process. Parameter vector p is optimized itera-
tively. After each simulation, the statistics of the simulation are compared to the statistics of
the reference image. The err function is our metric (Eq. 5.1).

5.1.3.2 Optimization process

Since we have a wide range of possible values for the remaining parameters, we need to have
a more efficient optimization approach than the brute force algorithm. As the distribution of
resistance to fracture as well as the force position are random variables, we follow the same
approach used in [Beaumont 02] to find our parameters, which is based on an Approximate
Bayesian Computation.

We need to find appropriate 5-tuples for the values of the parameters of vector p =
(dσe, rrelax, vrelax, Rcvar , l) which will result in patterns with statistics similar to those mea-
sured from the chosen fracture input image. The high level structure of the process is illus-
trated in Figure 5.4.

The main principle of the algorithm consists in sampling the five parameters of Table 5.2
in their respective valid ranges, following a uniform law. At each trial, the distribution of
the resistance to fracture is sampled following a normal law. The magnitude l of the loading
forces is optimized in our approach since we do not know its value from the reference images.
We use an a priori probability distribution in the optimization process to take into account
the randomness of the force position. We run N simulations, each one with a different set of
parameters p, and each one generating different output statistics ssim. After each simulation
we compare the fracture input image and the simulated one using the following metric:

err(sobs, ssim) = wfrag.EMD(sfragobs, sfragsim)
+ wcrack.EMD(scrackobs, scracksim)
+ wjunc.EMD(sjuncobs, sjuncsim) (5.1)

where ’frag’ stands for fragment area statistics, ’crack’ for crack length statistics, and
’junc’ for junction statistics. Since all the statistics correspond to histograms of values mea-
sured in the image or simulation result, we chose to use the Earth Movers Distance [Rubner 98]

131

CHAPTER 5. EVALUATION AND VALIDATION

(noted EMD in Eq. (5.1)), which is known to give good results [Pele 08]. Finally, the w are
weighting values that allow giving more importance to some statistics w.r.t. the others.

In our examples, we use wfrag = 3, wcrack = 1, wjunc = 1. These weights have been
selected based on the user study, giving more weight to fragment area statistics than to the
other two. For the user study, all weights were set to 1 to generate the synthetic patterns,
since the weightings were not known. At the end of the N simulations, we take the set of
parameters with the lowest error computed using our metric. This set of parameters can
be then used to generate as many similar patterns as desired, by varying the resistance to
fracture and the loading force position.

We found that N = 20, 000 produced a good set of parameters for all our exemplars. A
rectangular tile geometry, proportioned similar to the exemplar and discretized into 24,000
elements, is used for parameter estimation. Although a single force position is considered
during estimation, multiple positions could be easily added to handle more complex patterns.

5.1.3.3 Results of the optimizations

Figure 5.5 – Application of our example-based fracturing method on different scenes. Pho-
tographs of input fracture patterns are shown in the insets. Left to right: (1) a bathroom
tile has been broken, and each fragment can be manipulated separately. (2) Fracture pattern
obtained from a ground tile photograph applied on a basin. (3) Sidewalk and curb from an
urban scene fractured

This section shows results of our age-based with the optimization of the parameters
method applied on different scenarios. Figure. 5.5 shows several fracture simulations us-
ing parameters optimized with our metric. Although the geometries of the simulated objects
are very different, the visual features of the input fracture patterns are correctly reproduced.
This can also be observed in Figure 5.6.

132

5.1. PERCEPTION OF THE FRACTURE PATTERN AND FRACTURE STATISTICS

Figure 5.6 – Fracture patterns applied on different objects.

133

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.7 – Similar fracture patterns can be automatically generated and propagated from
a single input (inset).

Since we are simulating the interior of the objects, a complete closed surface mesh is
generated for each fragment.

Once the parameters have been optimized for a specific pattern, we can easily simulate
the state of a fractured object at different ages.

Figure 5.7 shows an example of an editing session on the urban scene, using our inter-
active fracture modeler. The editor provides ways to add external input forces onto the
object allowing richer and physically-based fracture patterns. We can also easily propagate
a simulated pattern over similar objects, as shown in Figure 5.7 right.

The processing of each input exemplar takes between 2 and 5 minutes depending on the
number of fragments. The optimization then takes 15 to 25 minutes for 20,000 trials using a
body with about 40K tetrahedra. Computing each trial involves running the simulation with
the current parameters, extracting the statistics of the obtained pattern and computing the
difference using our metric based on EMD. Each such trial takes about 60 milliseconds.

The meshes used in our example applications vary from 7K tetrahedra for the ground tiles
shown in Figure 5.7, to 54K tetrahedra for the road model of Figure 3.23. The simulation
time varies from 16 ms to generate 4-5 cracks and 4-6 fragments on the tile mesh, to 264ms
for 271 cracks and 71 fragments on the road mesh. The interactive editor runs between 30
and 100 fps, depending on the complexity of the scene. The latter framerate is obtained in
the urban scene using 100 fracturable bodies along with the rest of the scene. Note however
that most of this time is spent in visualizing the models. All timings were obtained in an
Intel Core 2 Extreme with 2.3 GHz and 4GB of RAM, using a NVidia Quadro FX 3700M.

5.1.4 Discussion and conclusion
We validated through a user study the statistical approach as a way to measure the visual
similarity of fracture patterns. From the statistical measurements, a similarity metric based
on statistics extracted from the observed fractured pattern has been defined. Finally, we
showed how the set of physical parameters can be optimized so that the resulting simulation
mimic the fracture patterns observed on a photography.

Results shows that the same input pattern can be applied on different geometry, while
producing the same key features of the pattern. Finally, the simulation times are fast enough
to allow a user to apply pattern interactively on various scenarios.

5.2 Haptic virtual fracture: first experiments and results
The main purpose of the virtual fracturing study is to get perceptive feedbacks from naïve
users of a fracturing simulation algorithm. In this section, we present a description of the
system being tested, and the setup of the user study.

134

5.2. HAPTIC VIRTUAL FRACTURE: FIRST EXPERIMENTS AND RESULTS

Figure 5.8 – Setup of the experiment. Left: photography of the experimental conditions.
The haptic interface is linked to the ball in the simulation, and the user can break the plates
with force feedback. Right: screenshots of the simulation during a trial at the initial condition
(top) and after one plate has been broken (right).

5.2.1 Overview

The global system being tested is the fracture algorithm presented in section 3.3 coupled
with a six input and output degrees of freedom haptic device using the coupling presented
in section 4.3.2. The efficiency of the fracturing system allows setting up scenes with freely
moving objects at rates of 600Hz including the fracture simulation. The motion of the rigid
bodies is managed by a third party rigid body dynamic engines, leading to a robust and
stable simulation, as well as a natural coupling with any admittance piloted haptic device.

In order to get a subjective validation of this fracturing algorithm, we set up a user study
that has been designed with two main objectives: (1) Check the behavior of the simulation
at a perceptive level by checking if the users are able with their own strategies to actually
find out the weakest objects in a simple scene. (2) Get a general perceptive feedback of the
fracturing simulation and of the haptic display at the time of impact.

5.2.2 User study

The user study setup is shown in Figure 5.8. The user manipulates a virtual ball through
a Haption Virtuose 6D haptic device (www.haption.com, Haption S.A., Soulgé sur Ouette,
France), and breaks two plates of different weaknesses. We performed a 2-alternative forced
choice (2-AFC) experiment. During one trial, the user has to find out which plate (either the
left one, or the right one) is the weakest one.

Experimental apparatus

Using the strategy of their choice, the users were asked to find the weakest plate (i.e. the plate
the less resistant to fracture) among the two plates displayed, using the haptic interaction.
When the user has decided, he had to press a button on the keyboard corresponding to the
chosen weakest plate. There was no limit of time for each trial, and the user could take a
break at any time by pressing the space key.

135

CHAPTER 5. EVALUATION AND VALIDATION

Population and collected data

12 participants (10 males, 2 females) aged from 23 to 40 (mean = 26.8, standard deviation
= 20.1) performed the experiments. At each trial, we recorded the weakness value of the
chosen plate, the weakness value of the other plate, and the time elapsed from the beginning
of the trial to the time of the choice. At the end of each session, the participants fill a
questionnaire asking for the number of different perceived weaknesses (between 0 and 5), the
confidence of their choices (using a likest-scale between 0 and 7), a textual description of the
strategy they adopted, and any additional remarks.

Experimental conditions

We used 3 different values for the weaknesses (w1, the weakest one, w2 and w3, the stronger
one) of the plates among all the trials and all the users (however, the users do not know
how many different plates they are going to experience). The weakness of each plate is a
parameter of the fracture simulation algorithm that represents the amount of deformation the
body can undergo before it begins to fracture. We chose w1, w2 and w3 experimentally with
the help of an experimented and a naive user to set the min and max values. The differences
between w2 and w3 and between w1 and w2 are identical. During each trial, the user has
to compare either the weakness w1 vs. w2, w2 vs. w3, or w1 vs. w3, leading to 6 different
possible trials if we take into account the symmetry of the scenario.

One experimental session is composed of 30 trials (5 instances for each possible case).
The order of the trials for each session is chosen randomly. Each user performs 2 sessions:

� One session without force feedback: the user interacts with the scene using the haptic
device, but with no force output. In that case, the user can use the acceleration and
velocity to break the plate as haptic cues, but no force is generated when he hits the
plates.

� One session with force feedback: in that session, the user has another haptic cue, which
is the perceived force when he hits a body with a ball, and when a plate being hit by
the ball fractures.

5.2.3 Results
We analyzed the answers of the participants for the different haptic conditions in order to
determine which condition gave the highest percentages of answers in terms of weakness value
recognition. Each individual performed 720 comparisons. A summary table of the answers
of the participants is presented in Table 5.3. Over a total of 720 trials, 153 errors (20.1%)
were made: 80 errors (11.1%) in the session with force feedback, and 73 errors (10%) in
the session without force feedback. Under the null hypothesis of equal preference between
two conditions, the number of times an individual preferred the first condition follows a
binomial distribution with parameters 6 and 1/2. After standardization, such a variable can
be approximated by a standard normal random variable. Thus, for the different pairs of
weakness, we tested the presence of a preferred weakness for each condition using an exact
binomial test. The p-values were adjusted with a Bonferroni correction. The percentages of
good answer w.r.t. the conditions (weakness of the plates and with or without force feedback)
are given in Table 5.4. For the condition without force feedback, the analysis showed that
there was a significant effect for the comparison between w1 and w2 (p = 0.006) as well as
between w1 and w3 (p < 0.001) but not for the comparison between w2 and w3 (p = 0.39).
For the condition with force feedback, participants were able to compare the weaknesses w1

136

5.2. HAPTIC VIRTUAL FRACTURE: FIRST EXPERIMENTS AND RESULTS

and w2 (p = 0.007), as well as the difference between w1 and w3 (p < 0.001) and between
w2 and w3 (p = 0.006). We then compared the answers between the two conditions (with
or without force feedback) with a signed rank test. We found no significant result for the
comparison between w1 and w2 (p = 0.15) as well as between w2 and w3 (p = 0.77) . However,
the analysis showed that there was a significant effect for the comparison between w1 and w3
(p < 0.001).

With force feedback Without force feedback
w1 w2 w3

w1 85 106
w2 35 89
w3 14 31

w1 w2 w3
w1 95 111
w2 25 81
w3 9 39

Table 5.3 – Summary tables of the choices of the participants. For a cell of row wi, column
wj , and value v, read the weakness value wi has been v times considered to be lower than the
weakness wj . Therefore, the values on the lower left triangles of the matrices are the number
of errors made by the participants.

With force feedback Without force feed-
back

w1 vs. w2 71.8 (sd = 13.8) 79.2 (sd = 13.1)
w2 vs. w3 74.2 (sd = 15.6) 67.5 (sd = 23.8)
w1 vs. w3 88.3 (sd = 11.4) 32.5 (sd = 7.5)

Table 5.4 – Percentage of good answers and standard deviation (sd) for each condition.

Concerning the subjective questionnaire, we performed a Friedman test on the confidence
mark given by the participant. We found no significant effect on the confidence mark (χ2 =
0.67 and p = 0.11). However, the mean value for the condition with force feedback (M = 4.39,
SD = 0.72) was slightly higher than for the condition without force feedback (M = 5.17,
SD = 1.47).

5.2.4 Discussion and conclusion

We noticed through the experiments and the questionnaires that all the participants con-
verged quickly to the same strategy. They first place the ball above the center of one plate,
and hit it with a small velocity. Then, they increase the height of the ball and the velocity
of impact (giving also stronger forces and acceleration to the ball) until the plate breaks.
They do the same with the other plate, and try to remember the plate that broke with the
less effort. This strategy has been used for both sessions (with force feedback and without
force feedback). On the session with force feedback, the comparison between the two weakest
plates is responsible for most of the errors. This can be explained by the way the fragments
are simulated once the plate is broken. Boundary volumes are used to detect the collisions
between the fragments, and this approximation generates overlapping between the fragments
yielding to exaggerated reactions.

On the other hand, between the two stronger plates, it seems that haptic display helped
the user to remember the strength of the impact (in addition to the information of velocity
and force given by the participants). Indeed, bigger forces are involved and the extra forces
generated by the collision detection approximation have less impact.

137

CHAPTER 5. EVALUATION AND VALIDATION

Regardless of the user study, the haptic feedback coupled with the fracture simulation
allowed us to perceive artifacts that were not perceivable on the visual rendering. For ex-
amples, we discovered bugs into the simulation that produced inconsistent fracture reactions
w.r.t. the input effort thanks to haptic rendering. From this experience, we encourage the
use of haptic as a mean of subjective validation of simulation algorithms.

5.3 Preliminary validation of the impact-based fracture model based
on real data

The main purposes of our experiments were to have a comparison basis with real-life data to
evaluate and calibrate the impact-based fracture model presented in section 3.3. We designed
experiment set ups to collect the data for this goal. In this section, we first present the
experimental set ups and conditions. Then, we present the collection of image data obtained.
Finally, we discuss the results obtained, with preliminary conclusions and comparison with
our model. This work has been done in collaboration with the LARMAUR, University of
Rennes 1, France.

5.3.1 Experiment types and setups
We chose two different objects for our experiments: 15x15x0.6cm ceramic tiles and 15x15x0.2cm
glass slabs as shown in Figure 5.9.

Figure 5.9 – Example of ceramic tile (left) and glass slab (right) used in our experiments.

We set up various types of experiments:
� Identification of the material elastic properties. We measured the exact dimen-
sion, density, Young’s modulus, Poisson ratio of the ceramic tiles.

� Identification of the Rankine threshold. We measured the value of stress before
fracture (Rankine threshold) of the ceramic tiles applying static loadings.

� Impact breaking test - 4 punctual contacts. We made experimental breaking test
by dropping a metallic ball from the same height onto ceramic tiles and glass slabs
resting on 4 contact points.

� Impact breaking test - fitted. We made experimental breaking test by dropping a
metallic ball from the same height onto ceramic tiles fitted in an aluminum support.

� Impact breaking test - varying ball height. Varying the height of the ball to
observe fracture can help to understand the dynamic aspects of the deformation on the
fracture results.

138

5.3. PRELIMINARY VALIDATION OF THE IMPACT-BASED FRACTURE MODEL BASED ON REAL
DATA

� Other exploratory experiments We designed exploratory experiments to help to
understand the behavior of glass slabs.

Each experiment is described below with more details.

5.3.1.1 Identification of the material elastic properties

From accurate measurements of the volume of a ceramic tile and its weight, we found the
ceramic to have a density ρ = 1738kg.m−1.

In order to identify the Young’s modulus and the Poisson coefficient of the ceramic, the
velocity of propagation of a transversal and longitudinal wave is measured with a piezoelectric
transducer. We found a velocity of vlong = 2820m.s−1 for the longitudinal wave, and a velocity
of vtrans = 1849m.s−1 for the transversal wave. From these values, we deduce the Young’s
modulus E and the shear modulus G as:

E = ρ

3v2
long − 4v2

trans

v2
long

v2
trans

− 1

 = 13.35GPa (5.2)

G = ρv2
trans = 5.94GPa (5.3)

From the Young’s modulus and shear modulus, the Poisson ratio can be obtained with:

ν = E

2G − 1 = 0.123 (5.4)

5.3.1.2 Identification of the Rankine threshold

In order to determine the Rankine threshold (the value of maximum tensile stress before
fracture), we performed a ring on ring test as shown in Figure 5.10. The ceramic tile is
squeezed between a pair of concentric rings with different diameters. The ring above the
tile is smaller than the ring below it. In our experiment, the upper ring had a diameter
of 60.5mm, while the lower ring had a diameter of 125.1mm. This test allows obtaining a
uniform stress on the lower part of the tile, and to compute the Rankine threshold Rc of the
material with the following relation:

Rc =
3f
(
2 ln

(
a
b

)
r2(ν + 1)− (a2 − b2)(ν − 1)

)
4e2πr2 (5.5)

where:

� f : force applied at the instant of fracture.

� e: thickness of the tile.

� a: diameter of the upper ring.

� b: diameter of the lower ring.

� r: tile width.

� ν: Poisson coefficient of the tile.

139

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.10 – Set up of the ring on ring test. Left: the upper axis (blue arrow) is translating
down. Right: the ceramic tile is resting on a large ring, while an upper ring with a lower
diameter is loading the tile.

We did the experiment on 30 tiles, with 3 different velocities of approach of the upper ring,
namely 10 tiles at 1mm.min−1, 10 tiles at 10mm.min−1 and 10 tiles at 100mm.min−1. These
three velocities can be considered extremely small compared to the velocity of propagation
of the wave into the material, and should produce configurations of the tile that can be
studied in a static context. For each trial, the test machine outputs the maximum force f
that the upper ring that applied on the tile before it breaks. From these forces, we deduced
the Rankine threshold Rc for each tile using equation (5.5). The plots of the values obtained
for the Rankine threshold are shown in Figure 5.11.

Figure 5.11 – Results of the ring on ring tests.

A surprising fact can be noticed on the trial made at a very low velocity 1mm.min−1.
Indeed, we observed values of Rankine thresholds lower than the ones obtain at 10 and

140

5.3. PRELIMINARY VALIDATION OF THE IMPACT-BASED FRACTURE MODEL BASED ON REAL
DATA

100mm.min−1. The explanation of the observation is not clear. We believe it is a conse-
quence of stress corrosion cracking due to the humidity of the air and the possible start of
uncompleted cracks that allow that corrosion. At higher velocities, the results on the Rank-
ine threshold are consistent (while we think to have experienced stress corrosion cracking
also at 10mm.min−1), with an average of 35MPa. In Figure 5.11, we show photos of the
broken tiles. We observed that the tiles that broke in fewer pieces led to a lower Rankine
threshold. At the velocity of 10mm.min−1, some of the tiles broke apparently the same way
as the slowest speed, and some of them broke in more pieces. Figure 5.12, 5.13 and 5.14 show
the pictures of the broken tiles on the ring on ring test. Irregularities on the results on the
Rankine threshold of the first condition are also observed on the pattern of the fracture.

Figure 5.12 – Pictures of the 10 broken tiles (1mm.min−1) on the ring on ring test.

Figure 5.13 – Pictures of the 10 broken tiles (10mm.min−1) on the ring on ring test.

5.3.1.3 Impact breaking test - 4 punctual contacts

To measure the similarity and the variance that is be observed on the fracture the same
type of object under the same conditions, we designed the 4 punctual contacts test shown in
Figure 5.15. The tile is resting on 4 accurately positioned metallic balls. A 110g metallic is
dropped at the top of a plastic cube, and hits the tile on its support.

We performed 30 trials that are presented on Figure 5.16.
The results show that even if the conditions are the same, the number of fragment obtained

is different on the trials. The fracture statistics on the fragments are provided in Table 5.5.

141

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.14 – Pictures of the 10 broken tiles (100mm.min−1) on the ring on ring test.

Figure 5.15 – Test bench designed for the 4 punctual contacts breaking and the fitted tiles
tests. Left: overview of the bench, a ball is dropped in the tube to fall on a tile set up on its
support. Rigth: zoom on the aluminum support of the tile. For the 4 punctual contacts test
cases, 4 metallic balls were fixed on the top of the aluminum support.

Frag. number Frag. area (mm2) Crack length (mm) junction angle
Mean value 4.7 5746 83 76
Std deviation 0.74 1565 10 19
Table 5.5 – Mean value and standard deviation of the fragment number, area, crack length
and junction angles extracted from the 30 trials of the 4 punctual contacts case (Figure 5.16).

5.3.1.4 Impact breaking test - fitted

In order to check if the variance obtained in the 4 punctual contacts test came from the small
variation of the condition or from the variation of the material, we designed the fitted breaking
test. In this condition, the tile is squeezed into an aluminum support shown in Figure 5.15,
right. The main difference with the punctual contact is that the positioning error of the
contact as well as the bouncing effects that could modify the results vanishes. However, it is
less clear in this situation if our contact model still holds. We present preliminary results of
this test in Figure 5.17.

In all cases, we observe that five cracks are produced, with no variance. More trials are
however needed to be able to conclude on the variance.

142

5.3. PRELIMINARY VALIDATION OF THE IMPACT-BASED FRACTURE MODEL BASED ON REAL
DATA

Figure 5.16 – Pictures of the tiles broken on the 4 punctual contacts test. Even if similarities
are observed between the trials, a non-zero variance is observed on the number of fragments
obtained.

Figure 5.17 – Pictures of the tiles broken on the fitted test. In this condition, the variance
on the number of cracks seems to be lower than the previous condition. On the first picture, 5
cracks propagated, but only 3 of them crossed the tile.

143

CHAPTER 5. EVALUATION AND VALIDATION

5.3.1.5 Impact breaking test - varying ball height

To main objective of the varying ball height test was to check the height at which the tile
break, and to be able to compare it with our simulation method. The experiment consists
in setting the tile on 4 punctual contacts, and dropping the same metallic ball from a small
height, and increase the height until the tile breaks. The value measured is the height of the
ball for which the tile break. We did 10 trials. The height before fracture varied between
48cm and 52cm, with an average of about 50cm for a metallic ball of mass 0.11kg, and a
diameter of 25mm. This means that dropping a ball from this height on this ceramic tile
theoretically generated a maximum stress of about 35MPa at the center of the tile. These
values should be observed in numerical simulations of fracture, and are a basis for comparison
of simulation and real fractures.

5.3.1.6 Test on glass slabs

We present here preliminary test we performed on 150x150x2mm glass slabs. Indeed, the first
results obtained were surprisingly sparse, and we decided to concentrate on the understanding
of the difference of the behavior of the glass w.r.t. the ceramic rather than trying to obtain
statistical information of the glass fractures.

Figure 5.18 – Experiment on glass slabs - 4 punctual contacts. The results obtained are
various and hard to interpret. Some noise may bias the experiments.

The first experiment was identical to the 4 punctual contacts, but using glass slabs instead
of ceramic tiles. As shown in Figure 5.18, the results of this experiment are hard to interpret,
with either multitude of cracks and fragments, or just a few of them that not always propagate
from the center. This observation made us believe that small noise in the experimental
condition introduced bias on the experiments. For example, the four contacts on which is
resting the slab may not be perfectly on the same plane, and the secondary vibrations of the
glass slab plus the bounces of the metallic ball may generate more fragments than initially
planned. This noise would be responsible for the random observed results. The ceramic tiles
were thicker and though less sensible to this noise.

Figure 5.19 – Experiment on glass slabs - 3 punctual contacts. Noise is still observable is this
condition.

We also noticed that some cracks propagate from the exterior of the slab as highlighted
in Figure 5.9, right. This means that weaknesses are present on the borders of the slabs, that
allow cracks to propagate easily from the exterior. In many cases, we observed a mixture
of cracks propagating from the center and cracks propagating from the borders. This is

144

5.3. PRELIMINARY VALIDATION OF THE IMPACT-BASED FRACTURE MODEL BASED ON REAL
DATA

observable on experiments we performed with 3 punctual contacts to ensure the contact
points to be coplanar. The results of this condition are presented in Figure 5.19. In order to
limit the propagation of the crack from the border weaknesses, we tried to put the slab on a
ring as support instead of punctual contacts. However, as highlighted in Figure 5.20, some
noise remains in the conditions, and it is difficult to reproduce the same patterns.

Figure 5.20 – Experiment on glass slabs - ring support. Noise is still observable is this
condition.

To further reduce the noise in the experimental condition, we tried to put the slab on
a stiff moss to drop the ball on it. In this condition, a curious case appears as shown in
Figure 5.21. Either the glass shatter with a clear star pattern propagating from the center,
or propagation from the borders occurs and the pattern obtained is radically different.

Figure 5.21 – Experiment on glass slabs - moss support. Two kind of pattern appears. First
(trial 1 and 5) clear star pattern. Second (other trials) noisy patterns.

Finally, in order to prevent a maximum the crack to propagate from the borders, we did
some trials with the glass slab resting on another glass slab, guaranteeing a clean surface and
a few deformations at the extremity of the slab (the support slab is resting on the ground).
Results obtained in this condition are shown in Figure 5.22. This condition demonstrated
more stable results, with crack propagating only from the center. It is however not clear how
the slab will deform in this case, and how tensile stress will open the fracture.

The results on glass slabs are preliminary, but open perspectives for more detailed exper-
iments on which statistical information could be obtained, as for the ceramic tiles. Figure
5.23 shows the results obtained by the simulation when the 110g metallic ball is dropped from
50cm high. We can see that some features observed in real experiments such as the star-like
pattern starting from the impact point is reproduced correctly in the simulation. However,
some features produced by the simulation are not observed in the real experiments. The close
and almost parallel fractures generated by the simulation are not present in reality.

145

CHAPTER 5. EVALUATION AND VALIDATION

Figure 5.22 – Experiment on glass slabs - planar glass support. In this condition, no crack
propagates from the borders, and the fracture patterns seem reproducible.

5.3.2 Discussion and conclusion
We performed various experiment on the static and dynamic fracture of ceramic tiles and
glass slab. Although still preliminary, these experiments are a good starting point for the
evaluation and the comparison of our fracture simulation approach. We designed in our
fracture simulation framework the virtual version of the 4 punctual contacts experiment.
The dimension, density, elastic properties and fracture properties have been set according to
the measurements.

To simulate the tiles of Figure 5.23 we applied a factor of 1/5 on the contact duration
estimation. Indeed, in the first simulations (without this scaling) the tiles did not break at
50cm, the height at which they break in real experiments. Increasing the height of the ball
to 55cm made the tiles break, but not with the star pattern, due to a large propagation of
the deformation into the tiles, as shown in Figure 5.24, top. With this factor on the contact
duration, we managed to generate more local deformation (Figure 5.24, bottom), and the
cracks propagate from the center.

Figure 5.23 – Results of the simulation of the ceramic tiles. Star patterns that are observed
in real experiments appear on the simulated tiles.

Also, we found that the simulated tiles broke with about the same threshold on the height
of the ball (48cm). Under this threshold, the simulated tiles did not break, and above the
threshold, they did. However, because stress relaxation is not simulated, we found that the
energy dissipated during the fracture that is not dissipated using our model led to generate
more fragments than observed in real life. Indeed, when a crack starts to propagate, the
stress around the crack path should be reduced due the energy of creation of new surfaces,
lowering the probability for another crack to start in almost the same direction. Although we
simulate this phenomenon for the age-based cracking, we do not simulate it for the impact-
based approach because of it computational cost. Simulating the stress relaxation would
become the bottleneck of the simulation and compromise its interactivity.

146

5.4. CHAPTER CONCLUSION

Figure 5.24 – Scaling of the duration of the contact. Bottom view of the deformation state
of the tile during the contact force application. Only the maximum tensile stress is represented
with a red scale (pure red means the Rankine threshold is reached). Top: the duration of the
contact is not scaled, and the deformation generated by the impact propagates without gener-
ating local deformations. Bottom: with a scaling on the contact duration, local deformations
are created, allowing reproducing the star pattern observed in real experiments.

All these experiments are preliminary and deserve more study. However, we observed
important results. First, the fracture pattern seems to be statistically reproducible. Namely,
interpreting the pattern with a statistical point of view allow observing the similarity between
the results. Second, our real-time simulation approach seems suitable for prototyping. After
some calibration on the contact duration, we were able to reproduce the fracture test condition
of the ceramic tiles. Setting all the measured materials parameters in the simulation allowed
us to retrieve the fracture threshold observed in the experiments. Some additions to the
current models such as the simulation of stress relaxation are however necessary to obtain
more correct fracture patterns w.r.t. our pattern similarity metric.

5.4 Chapter conclusion
In this chapter, we tackled the challenge of the evaluation and validation of the brittle fracture
simulation. We divided the validation in two parts: the crack propagation, and fracture
initiation part, which we consider to be different goals of a fracture simulation.

We proposed to define a similarity metric between fracture patterns based on statistical
information extracted from the fracture geometries. We showed through a user study that
this approach is valid for the perception of the similarity between fracture patterns. We also
presented an optimization process that fits a set of physical parameters to make the simu-
lation match an input pattern extracted from an image. Results show that realistic images
are automatically obtained from this process. In a second part, we proposed a subjective
validation of our brittle fracture simulation and haptic rendering coupling methods based on
haptic feedback. We conducted an experiment and showed that subjects are able to perceive
the variation of fracture parameters through the haptic interaction.

In a third part, we presented experiments of real ceramic tiles and real glass slabs that have
been broken in different conditions to validate our impact based algorithm. We showed that
statistical information used for the perception studies could be relevant to compare objects
broken under the same conditions. We also showed through the ceramic tiles experiments
that our simulation is able to reproduce the main features observed on the real broken tiles.
The experiments also allowed us to highlight artifacts in the simulations (such as the crack
energy that is not dissipated) that would be a good start for future studies.

147

6Conclusion

In this thesis, we tackled the topic of real-time and physically-based simulation of brittle
fracture. We divided the project around three complementary axes. First, we addressed the
modeling of the fracture phenomena, proposing more efficient and more physically-based
models and methods for the simulations of brittle fracture in real-time. To allow interactive
simulations with brittle fracture simulations, the collision detection and the haptic feedback
have been addressed as the second axis of study of this manuscript, with new algorithms
that tackle the unique challenges involved by the brittle fracture simulations for interactive
applications. In a third part called evaluation and validation, we studied the limitations
and the physical correctness of the models proposed through perceptive studies and real data
from experiments.

6.1 Modeling of the fracture phenomena
Concerning the modeling of the fracture phenomena, we proposed new models and methods
that allow simulating impact-based and age-based brittle fracture more efficiently and with
an improved physical correctness compared to previous real-time methods.

Modeling the fracture state and crack propagations

We first presented a model that stores the fracture state of a body based on three components:
a damage state stored in the elements of a volumetric mesh, a fracture surface sampling stored
in the edges of the same volumetric mesh, and a fragment identifier stored at each node of
the mesh. The design of this model allowed having an accurate representation of the fracture
state of a body, as well as defining the modifications of the fracture state due to fracture
events. A propagation algorithm that updates the fracture state model based on an implicit
surface definition of the fracture paths has been presented. The complexity of this algorithm
is linear in the number of cut elements. An energy stop criterion based on the strain energy
has also been proposed to stop the crack propagation and generates partial fractures. We
also described an efficient meshing algorithm that converts the fracture state into a set of
surface meshes (one per fragments) ready to be displayed with classical 3D hardware. This
results in an efficient representation of the fracture without constraining the fracture surfaces
to follow predefined boundaries.

An impact-based fracture simulation method based on modal analysis

For the impact-based fracture, we presented a new method based on modal analysis capable
of estimating the contact durations, choosing adaptive time steps, and simulating efficiently
the deformations of impacted bodies, taking into account dynamic effects such as inertia and
damping. The contact durations are estimated using the vibrational properties of the highest
excited deformation modes of the body, while the time step is chosen using the Shannon-
Nyquist sampling theorem applied on the highest frequency modes. Results showed that

149

CHAPTER 6. CONCLUSION

our method has computational requirements compatible with interactive applications, and is
able to reproduce dynamic effects of fracture that were not possible to simulate in real-time
previously.

An efficient age-based cracking algorithm

For the age-based fracture, we presented an extension of previous aging methods to build a
more efficient but still physically-based aging simulation of brittle fracture. Our method is
based on a stress map that evolves over time, and a new stress relaxation algorithm designed
for efficiency. Results demonstrate that our method produces visually realistic patterns that
are applied at interactive rates on large scenes.

A database approach for fragment physics

Finally, we presented an approach based on a database of precomputed physical data as a
way to handle the physics of the fragments. Modal analysis is precomputed for a range of
parametrized shapes, and stored in a database, labeled with mesh descriptors. We studied
three types of mesh descriptor: a moment-based descriptor, a voxel-based descriptor, and
an improved version of the voxel-based descriptor. When new fragments are created at run-
time, their mesh descriptors are computed and a quick search is performed into the database
to find the entry of the database that matches the geometry of the fragments. We showed
that the database approach can be applied in real-time, and produces visually credible visual
feedback.

6.2 Interaction and brittle fracture
We addressed the problem of the collision detection between the fragments by proposing new
methods suited for brittle fracture scenarios. Also, to demonstrate the applicability of our
method for interactive applications, we proposed a haptic feedback of the brittle fracture
simulation, which necessitate high efficiency and stability to perform.

Collision detection for brittle fracture

We presented a new algorithm for collision detection between fragments based on three mech-
anisms: a mesh-based distance field storing at each node of the mesh a distance to the closest
surface, a reconfigurable sphere tree, and a contact selection mechanism that avoids peak
computation time at fracture events. We proposed a way to update the mesh-based distance
field using a front propagation algorithm, and to build the sphere tree considering the vol-
ume of the body instead of its surface, allowing efficient updates at fracture events. Our
results showed that good computation time performances are achieved with this method, and
that scenes composed of non-convex objects and thousands of triangles can be handled in
real-time.

Haptic rendering for brittle fracture

On the haptic interaction side, we first demonstrated through a benchmark and haptic tests
that common rigid body engines can be coupled robustly with a haptic device controlled or
emulated in admittance mode. We also proposed coupling mechanisms that allow modifying
the ratios between the mass and length quantities of the real world w.r.t. the virtual world
while guaranteeing a stable simulation. Then, we proposed a new coupling scheme for haptic

150

6.3. EVALUATION OF THE MODELS

rendering based on the extraction of a sub-world around the area of interaction that is
simulated at a different rate. From the contacts between the rigid bodies, we build a graph
starting from the manipulated object, and linking recursively the bodies that are in contact
to create a sub-world that is simulated at higher frequencies for haptic rendering purposes.
If the sub-world becomes too big to be simulated at haptic rate, the depth of the graph is
limited, and mechanisms that manage the interface between the sub-world and the whole
world are proposed. This coupling scheme allows maintaining the high frequency required
for realistic haptic feedback even if the number of bodies to simulate is increasing, as it is
the case in fracture scenarios.

6.3 Evaluation of the models

In order to evaluate and validate the methods proposed, we presented a new similarity metric
for fracture, perceptive studies, and experiments based on real-life breaking scenarios.

A similarity metric for fracture patterns based on statistics

We first tackled the problem of the formal definition of the similarity of fracture patterns.
We proposed to define a similarity metric based on statistical information extracted from
the fracture geometry, namely the fragments number and areas, the cracks number and
lengths, and the junction properties. We evaluated the importance of each category of statistic
in the human perception of the fracture patterns by performing a user study. We found
that the distribution of the fragment areas is the information that influences the most our
perception of the fracture pattern. Then, we defined a similarity metric and proposed a
method that optimizes the simulation parameters to make the fracture pattern match with
the one of an input exemplar photography. The optimization process tries to minimize
the error between the normalized input statistics extracted from the exemplar image, and
the normalized statistics generated from the fracture simulation with a Bayesian process.
Our results demonstrated that believable and realistic fracture patterns are automatically
reproduced from exemplar images using this approach.

Subjective perception with haptic feedback

We also proposed a perceptive study of the believability of our impact-based simulation
method through the haptic feedback. Users were asked to break plates of different resistance
to fracture through a haptic interaction. We found that the subjects were significantly able
to discern the plate properties correctly. We also found haptic feedback to be a helpful tool
to detect the artifacts in the simulations that were not possible to perceive with the visual
feedback.

Validation based on real-life breaking objects

Finally, we proposed to validate the impact-based model for the simulation of brittle fracture
with real experiments. We designed a benchmark where ceramic tiles and glass slabs were
broken under different conditions. We measured the elastic properties and the resistance to
fracture of ceramic tiles, and performed various breaking tests designed to validate individual
aspects of the simulation. On the ceramic tiles, we observed statistically similar results
between the tiles broken under the same conditions. The experimentations on the glass slabs
were subject to noise introduced by weaknesses on the border of the slabs that made them

151

CHAPTER 6. CONCLUSION

break differently. We explored five different impact conditions to reduce this noise, and found
that a flat support seemed to cancel the noise introduced by the borders, opening perspectives
for further exploration and experiments. Finally, we compared the results obtained in these
experiments with its virtual version simulated our impact-based model. We found that the
star patterns observed in the experiments are also present in the simulation with a factor on
the contact duration estimation. We also found artifacts present in the simulation that were
not present in the real-life tests. First results of the validation are encouraging and helped
us to understand better the strengths and weaknesses of our model, and provided ideas for
future work.

6.4 Discussion and perspectives

All the models and studies presented in this manuscript are complementary, and allowed us to
build a real-time and physically-based simulation of brittle fracture, with free crack propaga-
tion, simulation of the deformations during impacts, and efficient collision detection between
fragments. Of course, the proposed methods have some limitations that draw interesting
topics of research for future work, as discussed in the following.

An adaptive fracture state model

The resolution of the fragments from our fracture state model cannot be higher than the
resolution of the volumetric mesh contained in the fracture state. This can be a desired
feature in applications where the memory consumption has to be bounded and controlled,
but in off-line simulation, this can be a limitation. A possible way to circumvent this problem
would be to allow a dynamic sampling of nodes into the mesh of the fracture state model.
However, geometrical and numerical problems may appear, and the global efficiency of the
method would be compromised.

Other representations of the fracture surfaces

Our propagation algorithm may miss some features expected in some types of materials. For
example, the branching phenomena during crack propagation is not handled and could not be
defined with implicit surfaces. To extend the propagation algorithm, another representation
of the fracture surface should be adopted, and the propagation order should be modified.

Energy released during fracture

Our impact-based approach that relies on modal analysis could also be extended in some
ways. First, it could handle larger deformations using e.g. modal derivatives, or other
extension of the modal analysis linear basis such as the ones presented in section 2.4.3.2.
This would allow simulating the brittle fracture of less stiff materials. Introducing plasticity
into the integration of the modal analysis steps could also allow extending our model to ductile
fracture of stiff materials. Also, we saw that the close parallel fracture surfaces created in
the simulation are not observed in the real experiments. We think this is due to the stress
relaxation phenomenon that is not handled in our impact-based fracture approach. The
stress relaxation method presented in the age-based fracturing section could be applied to
the impact-based method, but at a price of a drastic drop in efficiency.

152

6.5. LONG TERM PERSPECTIVES

Handling the physics of the fragments

Our impact-based fracturing method relies on a precomputation of the vibration mode to
compute efficiently the deformations at run-time. However, once the initial bodies for which
the precomputations had been done break, the deformations can no longer be computed on
the fragments. We saw that using a database of precomputed physical data could be a way
to generate approximate deformations on the fragments. However, the possible number of
fragment topologies is too big to have a representative database. An interesting idea for future
work would be to re-use the initial deformation modes for the fragments whose volume is close
to the volume of the initial bodies (small fragments can generally be well approximated with
ellipsoids). It would be also interesting to find out whether it is possible to relate the changes
in the fundamental vibration frequencies of a body w.r.t. its topology changes.

A continuous collision detection using triangles instead of vertices

Our collision detection method presents several limitations. First, the collision test is per-
formed using point shell, preventing edge/edge collision to be detected. Even if we did not
found that problematic since the density of vertices of the meshes used is high enough to
avoid visible penetrations, this could be a problem for sparser sampled meshes. In this case,
the elementary primitive tested should not be a point, but a surface primitive, such as a
triangle. Our method could be extended by building the hierarchy from the set of triangles of
the mesh instead of set of points. However, two issues should be studied. First, the pruning
level of the hierarchy build with triangles will be less good than using vertices. Second, the
collision queries should be rewritten to check for a triangle against a distance field instead
of a point against a distance field, which would compromise the performances. The second
main limitation of our collision detection algorithm is that we perform a discrete collision
detection, raising problems with thins objects or big time steps. The extension of the method
to continuous collision detection is not straightforward, and would be worth to study.

Future work for the evaluations of brittle fracture methods

The evaluations presented allowed us to assess the validity of several aspects of our simulation
methods. However, the results presented on the real ceramic tiles and the glass slabs are still
preliminary, and more study should be performed in that direction. It seems that the breaking
tests are reproducible considering the statistical information of the geometry of the produced
patterns. More tests should be performed to obtain significant values. Also, it is still not
clear how the deformation energy is dissipated during the crack propagation. Breaking a tile
by dropping a ball at twice more height will neither generate twice more fragments, nor twice
more cracks. These aspects can still not be observed in the simulations. Also, a thin objects
such as the glass slabs (2mm thick), materials weaknesses seem to have a great importance
in the fracture outcome, as well as secondary waves effects. On the glass slab examples, the
variance obtained on the height at which the slab broke is huge, and some aspects of the
fracture patterns obtained are difficult to explain. We believe there is still plenty of room
to understand fully the dynamic aspects of brittle fractures, and to be able to model them
through macroscopic rules compatible with interactive simulations.

6.5 Long term perspectives
The contributions presented in this manuscript represent interesting advances in fracture
simulation, and we hope it paved the way for future research, such as the long term projects

153

CHAPTER 6. CONCLUSION

presented in the following.

Towards fully destructible virtual environments

In virtual environments, the freedom that the operator has to interact and to explore the en-
vironment is crucial for his sensation of immersion. Virtual environments are becoming more
and more dynamic, and the possibilities of interactions have been constantly improving. For
example, in recent video games, virtual worlds are populated with more and more animated
characters, rigid bodies, clothes, vehicles and particles. All are simulated with physically-
based approaches, providing great experiences for the players. However, it is still not possible
to simulate fully destructible environments for several important technical issues.

The first issue is the precomputed data. A lot of precomputations are done on static
data in virtual worlds. Structures such as navigation meshes, triangle meshes for rendering,
collision detection structures as well as data for rendering such as baked textures, light
maps, . . . are all precomputed. In the case of a fully destructible environment, no heavy
precomputation is possible, or it needs to be updated efficiently at each fracture event, which
would imply great modifications of current simulation and rendering engines.

The second issue is the graphic hardware. Historically, graphics cards were designed to
accelerate the rasterization of simple primitives on a 2-D screen, with a few input parameters
to influence the position and aspects of the primitives rendered. However, the input triangle
meshes to be rendered were supposed to be static. Nowadays, graphics cards evolved a lot,
and the rendering pipelines is mainly composed of fully programmable stages such as vertex
shaders, geometry shaders, and pixel shaders. However, the pipeline is still fed with vertices
streams that are often stored on the graphic card memory, and static. The costly CPU/GPU
memory transfers are discouraging for the generation of the triangle meshes on CPU, and a
current optimal solution would be to handle all the physics only on the GPU to avoid these
transfers. Therefore, current graphic hardware are still not designed to handle the generation
of new meshes at run-time.

The third issue is the memory consumption. Allowing an unlimited number of new
bodies to be created at run-time generate memory issues. In a game engine, each component
has a memory and CPU budget that should be mastered. We believe that considering the
material around points could be a solution to limit the memory consumption as presented
in our fracture state model. However, it also bound the size of the smallest fragment that
can be created. An adaptive subdivision with a maximum memory budget could be de-
fined to circumvent this issue, while guaranteeing a boundary on the memory consumption.
Nevertheless, this is a complex issue that has been rarely addressed so far.

Towards a real-time and verified multi-physics engines for virtual prototyping

More and more physics engines are becoming “multi-physics”, namely they handle e.g. rigid
body, soft body, and fluid simulations. Although very helpful for special effects in movies
and games, their use in virtual prototyping applications is moderated because a few infor-
mation on the physical correctness of the simulations that are provided. We think that a
standardization of the physical correctness should be defined for each physical phenomenon,
in order to provide an “accuracy mark” for each engine. The standard tests could be defined
based on real-life examples accepted by the community, and easily accessible. Nowadays,
relevant criteria are not well defined for each phenomenon to simulate. Also, validating in-
dependently each physical phenomenon does not guarantee that their coupling is validated
as well. Conditions on the interfacing of the different phenomena such as solid and liquid
coupling should be defined as well for verified multi-physics engines.

154

6.5. LONG TERM PERSPECTIVES

Real-time constraints generally imply simplifications and approximations on the simula-
tions, but if the errors are quantified on each aspect of the simulation, the usability of each
simulation method for a particular application could be defined formally. For these reasons, a
great research on the validations and the conditions of coupling of multi-physics engines could
be performed to ensure the quality of chosen criteria. We think that statistical approaches
such as the one presented in this thesis for brittle fracture is a promising way to go for these
validations.

155

Author’s publications

The work presented in this manuscript led to the following publications:
International conferences:

� Loeiz Glondu and Sara C. Schvartzman Maud Marchal and Georges Dumont and Miguel
A. Otaduy. Efficient Collision Detection for Brittle Fracture. In Proceedings of the
ACM/Eurographics Symposium on Computer Animation. 2012. Honorable mention
award.

� Loeiz Glondu and Lien Muguercia and Maud Marchal and Georges Dumont and Carles
Bosch and Holly Rushmeier and George Drettakis. Example-Based Fractured Appear-
ance. In Computer Graphics Forum. 2012.

� Loeiz Glondu and Maud Marchal and Georges Dumont. Real-Time Simulation of Brittle
Fracture Using Modal Analysis. IEEE Transactions on Visualization and Computer
Graphics. 2012.

� Loeiz Glondu and Benoit Legouis and Maud Marchal and Georges Dumont. Precom-
puted Shape Database for Real-Time Physically-Based Simulation. In Proceedings of
VRIPHYS. 2011.

� Loeiz Glondu and Maud Marchal and Georges Dumont. A New Coupling Scheme for
Haptic Rendering of Rigid Bodies Interactions based on a Haptic Sub-World using a
Contact Graph. In Proceedings of EuroHaptics. 2010.

� Loeiz Glondu and Maud Marchal and Georges Dumont. Evaluation of Physical Simula-
tion Libraries for Haptic Rendering of Contacts Between Rigid Bodies. In Proceedings
of the ASME World Conference on Innovative Virtual Reality. 2010.

� Loeiz Glondu and Maud Marchal and Georges Dumont. A Sub-world Coupling Scheme
for Haptic Rendering of Physically-based Rigid Bodies Simulation. In Proceedings of
VRIPHYS. 2009.

� Laurent George and Maud Marchal and Loeiz Glondu and Anatole Lécuyer. Combining
Brain-Computer Interfaces and Haptics: Detecting Mental Workload to Adapt Haptic
Assistance. In Proceedings of EuroHaptics. 2012. Best paper award.

National conferences:
� Loeiz Glondu and Maud Marchal and Georges Dumont. Accurate 6-DOFs Haptic Ren-
dering of Frictional Contacts between many Rigid Bodies. In Proceedings of journés de
l’AFRV. 2010.

� Loeiz Glondu and Maud Marchal and Georges Dumont. Simulation physique de fracture
d’objets fragiles en temps réel. In Proceedings of journés de l’AFIG. 2011. Second best
paper award.

157

Bibliography

[Abdelaziz 08] Yazid Abdelaziz & Abdelmadjid Hamouine. A survey of the extended finite
element. Computers and Structures, vol. 86, pages 1141–1151, 2008. 46

[Adachi 95] Yoshitaka Adachi, Takahiro Kumano & Kouichi Ogino. Intermediate Rep-
resentation for Stiff Virtual Objects. In Proceedings of the Virtual Reality
Annual International Symposium, 1995. 60, 118, 119

[Allard 10] Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Chris-
tian Duriez & Paul G. Kry. Volume Contact Constraints at Arbitrary Reso-
lution. In Proceedings of ACM SIGGRAPH, volume 29, August 2010. 50

[Andriot 07] Claude Andriot & Florian Gosselin. Le traité de la réalité virtuelle - tome 2,
chapitre Commande d’une interface à retour d’effort, pages 203–216. Fush F.
Moreau G., 2007. 56

[ARPACK] ARPACK. http://www.caam.rice.edu/software/ARPACK/. 86

[Astley 97] Olivier R. Astley & Vincent Hayward. Real-time Finite-elements Simulation
of General Visco-elastic Materials for Haptic Presentation. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
1997. 62, 119

[Avril 09] Quentin Avril, Valérie Gouranton & Bruno Arnaldi. New Trends in Collision
Detection Performance. In Simon Richir & Akihiko Shirai, editeurs, Proceed-
ings of Laval Virtual VRIC, pages 53–62, 2009. 48

[Balaniuk 99] Remis Balaniuk. Using Fast Local Modelling to Buffer Haptic Data. In Pro-
ceedings of Fourth PHANTOM Users Group Workshop, 1999. 61, 119

[Bandi 95] S. Bandi & D. Thalmann. An adaptive spatial subdivision of the object space
for fast collision detection of animated rigid bodies. In Computer Graphics
Forum, volume 14, pages 259–270, 1995. 50

[Bao 07] Zhaosheng Bao, Jeong-Mo Hong, Joseph Teran & Ronald Fedkiw. Fracturing
Rigid Materials. IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pages 370–378, 2007. 8, 45

[Baraff 89] David Baraff. Analytical Methods for Dynamic Simulation of Non-penetrating
Rigid Bodies. ACM Transactions on Graphics, vol. 23, no. 3, pages 223–232,
1989. 53

[Baraff 90] David Baraff. Curved surfaces and coherence for non-penetrating rigid body
simulation. In Proceedings of ACM SIGGRAPH, pages 19–28, 1990. 50

159

http://www.caam.rice.edu/software/ARPACK/

BIBLIOGRAPHY

[Baraff 91] David Baraff. Coping with Friction for Non-Penetrating Rigid Body Simula-
tion. In Proceedings of ACM SIGGRAPH, pages 31–41, 1991. 53, 110

[Baraff 94] David Baraff. Fast Contact Force Computation for Nonpenetrating rigid Bod-
ies. In Proceedings of ACM SIGGRAPH, pages 23–34. ACM Press New York,
NY, USA, 1994. 53

[Baraff 98] David Baraff & Andrew Witkin. Large Steps in Cloth Simulation. In Pro-
ceedings of ACM SIGGRAPH, pages 43–54, 1998. 24, 38

[Baraff 01] David Baraff. Implicit Methods for Differential Equations. In SIGGRAPH
Course Notes, 2001. 24

[Barbič 08] J. Barbič & D. L. James. Six-DoF Haptic Rendering of Contact between
Geometrically Complex Reduced Deformable Models. IEEE Transactions on
Haptics, vol. 1, no. 1, 2008. 100, 101

[Barbič 07a] Jernej Barbič. Real-time reduced large-deformation models and distributed
contact for computer graphics and haptics. PhD thesis, 2007. 39, 41, 49, 60,
80

[Barbič 07b] Jernej Barbič & Doug L. James. Time-critical Distributed Contact for 6-
DoF Haptic Rendering of Adaptively Sampled Reduced Deformable Models.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, volume 2, pages 171–180, 2007. 40, 49

[Barbič 11] Jernej Barbič & Yili Zhao. Real-time large-deformation substructuring. In
Proceedings of ACM SIGGRAPH, pages 91:1–91:8, 2011. 40, 80

[Battlefield 12] Battlefield. http://www.battlefield.com/fr/battlefield3, 2012. 15

[Beaumont 02] M.A. Beaumont, W. Zhang & D.J. Balding. Approximate Bayesian computa-
tion in population genetics. Genetics, vol. 162, no. 4, pages 2025–2035, 2002.
131

[Belytschko 99] Ted Belytschko & T. Black. Elastic crack growth in finite elements with min-
imal remeshing. International Journal for Numerical Methods in Engineering,
vol. 45, no. 5, pages 601–620, 1999. 46

[Bielser 03] Daniel Bielser, Pascal Glardon, Matthias Teschner & Markus Gross. A State
Machine for Real-Time Cutting of Tetrahedral Meshes. In Proceedings of
Pacific Conference on Computer Graphics and Applications, pages 385–415,
2003. 42, 45

[Bonet 97] J. Bonet & R.D. Wood. Nonlinear continuum mechanics for finite element
analysis. Cambridge Univ Pr, 1997. 29

[Bridson 02] Robert Bridson, Ronald P. Fedkiw & John Anderson. Robust Treatment of
Collisions, Contact, and Friction for Cloth Animation. ACM Transactions
on Graphics, vol. 21, pages 594–603, 2002. 45

[Bustos 05] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck & De-
jan V. Vranić. Feature-based similarity search in 3D object databases. ACM
Computer Survey, vol. 37, pages 345–387, 2005. 84

160

http://www.battlefield.com/fr/battlefield3

BIBLIOGRAPHY

[Cavusoglu 00] Murat Cenk Cavusoglu & Frank Tendick. Multirate Simulation for High
Fidelity Haptic Interaction with Deformable Objects in Virtual Environments.
Proceedings of IEEE International Conference on Robotics and Automation,
vol. 3, pages 2458–2465, 2000. 62, 118, 119

[Chang 97] Beeling Chang & J. Edward Colgate. Real-time Impulse-Based Simulation
of Rigid Body Systems for Haptic Display. In Proceedings of the ASME In-
terational Mechanical Engineering Congress and Exhibition, pages 1–8, 1997.
60

[Che 06] Yinghui Che, Jing Wang & Xiaohui Liang. Real-time Deformation using
Modal Analysis on Graphics Hardware. In Proceedings of GRAPHITE, pages
173–176, 2006. 77

[Chowdhury 09] Ananda S. Chowdhury, Suchendra M. Bhandarkar, Robert W. Robinson &
Jack C. Yu. Virtual multi-fracture craniofacial reconstruction using computer
vision and graph matching. Computerized Medical Imaging and Graphics,
vol. 33, no. 5, pages 333–342, 2009. 126

[Chung 96] Kelvin Chung & Wenping Wang. Quick elimination of non-interference poly-
topes in virtual environments. In Proceedings of the Eurographics workshop
on Virtual environments and scientific visualization, pages 64–73, 1996. 50

[Cloos 55] E Cloos. Experimental analysis of fracture patterns. Geological Soc. Of Amer-
ica Bulletin, vol. 66, no. 3, pages 241–256, 1955. 126

[Colgate 95] J. E. Colgate, M. C. Stanley & J. M. Brown. Issues in the Haptic Display
of Tool Use. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 3, pages 140–144, 1995. 16, 59, 109,
118

[Constantinescu 05] D. Constantinescu, S. Salcudean & E. Croft. Haptic Rendering of Rigid
Contacts using Impulsive and Penalty Forces. IEEE Transactions on Robotics,
vol. 21, no. 3, pages 309–323, 2005. 60

[Cotterell 65] B. Cotterell. On brittle fracture paths. International Journal of Fracture,
vol. 1, no. 2, pages 96–103, 1965. 70

[Criswell 11] Brice Criswell, Jeff Smith & David Deuber. Deformable rigid bodies and
fragment clustering for film. In SIGGRAPH Course Notes, 2011. 15

[Davanne 02] Jérôme Davanne, Philippe Meseure & Christophe Chaillou. Stable Hap-
tic Interaction in a Dynamic Virtual Environment. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol-
ume 3, pages 2881–2886 vol.3, 2002. 119

[Desbenoit 05] Brett Desbenoit, Eric Galin & Samir Akkouche. Modeling Cracks and Frac-
tures. The Visual Computer, vol. 21, no. 8-10, pages 717–726, 2005. 8, 42

[Dick 11] Christian Dick, Joachim Georgii & Ruediger Westermann. A Hexahedral
Multigrid Approach for Simulating Cuts in Deformable Objects. IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, pages 1663–1675,
2011. 42

161

BIBLIOGRAPHY

[Dobkin 90] David P. Dobkin & David G. Kirkpatrick. Determining the Separation of Pre-
processed Polyhedra - A Unified Approach. In Proceedings of the International
Colloquium on Automata, Languages and Programming, pages 400–413, 1990.
50

[Elices 02] M. Elices, G.V. Guinea, J. Gomez & J. Planas. The cohesive zone model: ad-
vantages, limitations and challenges. Engineering Fracture Mechanics, vol. 69,
no. 2, pages 137–163, 2002. 42

[Erleben 07] Kenny Erleben. Velocity-Based Shock propagation for Multibody Dynamics
Animation. ACM Transactions on Graphics, vol. 26, no. 2, pages 1–20, 2007.
54, 108

[Etzmuβ 03] Olaf Etzmuβ, Michael Keckeisen & Wolfgang Straβer. A Fast Finite Element
Solution for Cloth Modelling. In Proceedings of the Pacific Conference on
Computer Graphics and Applications, page 244, Washington, DC, USA, 2003.
IEEE Computer Society. 33

[Faure 08] François Faure, Jérémie Allard, Florent Falipou & Sébastien Barbier. Image-
based Collision Detection and Response between Arbitrary Volumetric Ob-
jects. In ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 155–162, 2008. 50

[Faure 11] François Faure, Benjamin Gilles, Guillaume Bousquet & Dinesh K. Pai. Sparse
Meshless Models of Complex Deformable Solids. ACM Transactions on Graph-
ics, 2011. 36

[Fisher 01] S. Fisher & M. C. Lin. Fast Penetration Depth Estimation for Elastic Bodies
Using Deformed Distance Fields. Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001. 49

[Frisken 00] S. Frisken, R. Perry, A. Rockwood & R. Jones. Adaptively Sampled Distance
Fields: A General Representation of Shapes for Computer Graphics. In Pro-
ceedings of ACM SIGGRAPH, pages 249–254, 2000. 49

[Funkhouser 11] Thomas Funkhouser, Hijung Shin, Corey Toler-Franklin, Antonio García
Castañeda, Benedict Brown, David Dobkin, Szymon Rusinkiewicz & Tim
Weyrich. Learning how to match fresco fragments. Journal on Computing
and Cultural Heritage, vol. 4, pages 7:1–7:13, 2011. 126

[Gibson 97] Sarah F. F. Gibson & Brian Mirtich. A Survey of Deformable Modeling in
Computer Graphics. MERL Technical Report Cambridge, vol. 19, 1997. 30,
38

[Gilbert 88] Elmer G. Gilbert, Daniel W. Johnson & Sathiy S. Keerthi. A fast procedure
for computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, vol. 4, pages 193–203, 1988. 50

[Glondu 10] Loeiz Glondu, Maud Marchal & Georges Dumont. Evaluation of Physical
Simulation Libraries for Haptic Rendering of Contacts Between Rigid Bodies.
In Proceedings of ASME World Conference on Innovative Virtual Reality,
2010. 77

162

BIBLIOGRAPHY

[Gregory 99] Arthur Gregory, Ming C. Lin, Stefan Gottschalk & Russell Taylor. A Frame-
work for Fast and Accurate Collision Detection for Haptic Interaction. In
Proceedings of the IEEE Virtual Reality Conference, 1999. 60

[Griffith 21] Alan A. Griffith. The Phenomena of Rupture and Flow in Solids. Royal
Society of London Philosophical Trans. Series A, vol. 221, pages 163–198,
1921. 14, 126

[Gross 06] D. Gross & T. Seelig. Fracture mechanics: with an introduction to microme-
chanics. Springer Verlag, 2006. 76

[Guendelman 03] Eran Guendelman, Robert Bridson & Ronald Fedkiw. Nonconvex Rigid
Bodies with Stacking. ACM Transactions on Graphics, vol. 22, no. 3, pages
871–878, 2003. 49, 54

[Gumerov 04] Nail Gumerov & Ramani Duraiswami. Fast multipole methods for the
helmholtz equation in three dimensions. Elsevier, 2004. 86

[Hahn 88] James K. Hahn. Realistic Animation of Rigid Bodies. In Proceedings of ACM
SIGGRAPH, pages 299–308. ACM New York, NY, USA, 1988. 54, 76

[Hauser 03] Kris K. Hauser, Chen Shen & James F. O’Brien. Interactive Deformation
Using Modal Analysis with Constraints. In Graphics Interface, pages 247–
256, 2003. 40

[Havok] Havok. www.havok.com. 77

[Heczko 02] Martin Heczko, Daniel A. Keim, Dietmar Saupe & Dejan V. Vranic. A method
for similarity search of 3D objects. Datenbank-spektrum, vol. 2, pages 54–63,
2002. 84

[Heidelberger 04] B. Heidelberger, M. Teschner, R. Keiser, M. Müeller & M. Gross. Consis-
tent Penetration Depth Estimation for Deformable Collision Response. Pro-
ceedings of Vision, Modeling and Visualization, 2004. 98

[Heo 10] J.-P. Heo, J.-K. Seong, D. Kim, M. A. Otaduy, J.-M. Hong, M. Tang & S.-E.
Yoon. FASTCD: Fracturing-Aware Stable Collision Detection. Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2010. 51

[Hilaga 01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura & Tosiyasu L. Kunii.
Topology matching for fully automatic similarity estimation of 3D shapes. In
Proceedings of ACM SIGGRAPH, pages 203–212, 2001. 84

[Hirota 98] Koichi Hirota, Yasuyuki Tanoue & Toyohisa Kaneko. Generation of Crack
Patterns With a Physical Model. The Visual Computer, vol. 14, pages 126–
137, 1998. 38, 42

[Hoffmann 89] Christoph M. Hoffmann. Geometric and solid modeling: an introduction.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989. 48

[Huang 10] Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao & Mathieu Desbrun. Inter-
active Shape Interpolation through Controllable Dynamic Deformation. IEEE
Transactions on Visualization and Computer Graphics, vol. 99, pages 1–8,
2010. 40, 80

163

www.havok.com

BIBLIOGRAPHY

[Iben 06] Hayley N. Iben & James F. O’Brien. Generating Surface Crack Patterns. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 177–185, Sept 2006. 8, 44, 45, 81, 82

[Irving 04] Geoffrey Irving, Joseph Teran & Ronald Fedkiw. Invertible Finite Elements
for Robust Simulation of Large Deformation. In Proceedings of the SIG-
GRAPH/Eurographics symposium on Computer animation, pages 131–140,
Aire-la-Ville, Switzerland, Switzerland, 2004. 33

[Irwin 57] George R. Irwin. Analysis of stresses and strains near the end of a crack
traversing a plate. Journal of Applied Mechanics, pages 361–364, 1957. 15

[James 02] Doug L. James & Dinesh K. Pai. DyRT: dynamic response textures for real
time deformation simulation with graphics hardware. In Proceedings of ACM
SIGGRAPH, pages 582–585, 2002. 40

[James 06] Doug L. James, Jernej Barbič & Dinesh K. Pai. Precomputed acoustic trans-
fer: output-sensitive, accurate sound generation for geometrically complex vi-
bration sources. In Proceedings of ACM SIGGRAPH, pages 987–995, 2006.
86

[Jeřábková 09] Lenka Jeřábková & Torsten Kuhlen. Stable Cutting of Deformable Objects in
Virtual Environments Using XFEM. IEEE Computer Graphics and Applica-
tions, vol. 29, pages 61–71, 2009. 46

[Johnson 87] K.L. Johnson. Contact mechanics. Cambridge Univ Pr, 1987. 74

[Kaufman 05] Danny M. Kaufman, Timoty Edmunds & Dinesh K. Pai. Fast Frictional Dy-
namics for Rigid Bodies. In International Conference on Computer Graphics
and Interactive Techniques, volume 24, pages 946–956, 2005. 54

[Kaufman 08] Danny M. Kaufman, Shinjiro Sueda, Doug L. James & Dinesh K. Pai. Stag-
gered Projections for Frictional Contact in Multibody Systems. ACM Trans-
actions on Graphics, vol. 27, no. 5, pages 164:1–164:11, 2008. 55, 109

[Kaufmann 09] Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun & Markus
Gross. Enrichment textures for detailed cutting of shells. In Proceedings of
ACM SIGGRAPH, pages 501–510, 2009. 46

[Keyser 97] J. Keyser, S. Krishnan & D. Manocha. Efficient and accurate B-rep generation
of low degree sculptured solids using exact arithmetic. In Proceedings of ACM
symposium on Solid modeling and applications, pages 42–55. ACM, 1997. 49

[Klosowski 98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral & K. Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans-
actions on Visualization and Computer Graphics, vol. 4, pages 21–36, 1998.
50

[LAPACK] LAPACK. http://www.netlib.org/lapack/. 86

[Larsson 01] T. Larsson & T. Akenine-Möller. Collision Detection for Continuously De-
forming Bodies. Eurographics, 2001. 51

164

http://www.netlib.org/lapack/

BIBLIOGRAPHY

[Lin 91] Ming C. Lin & John F. Canny. A fast algorithm for incremental distance
calculation. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 1008–1014. IEEE, 1991. 50

[Lin 95] Ming C. Lin & D. Manocha. Fast interference detection between geometric
models. The Visual Computer, vol. 11, no. 10, pages 542–561, 1995. 48

[Lin 98] Ming C. Lin & Stefan Gottschalk. Collision Detection Between Geometric
Models: A Survey. In Proceedings of IMA Conference on Mathematics of
Surfaces, pages 37–56, 1998. 48

[Luciano 05] Cristian Luciano, Pat Banerjee, Lucian Florea & Greg Dawe. Design of the
ImmersiveTouch: a High-Performance Haptic Augmented Virtual Reality
System. In Proceedings of Salvendy G: Human Computer International, 2005.
62

[Mark 96] William R. Mark, Scott C. Randolph, Mark Finch, James M.Van Verth &
Russell M. Taylor II. Adding Force Feedback to Graphics Systems: Issues and
Solutions. In Proceedings of ACM SIGGRAPH, pages 447–452, 1996. 60, 119

[McDanels 06] S. J. McDanels, B. M. Mayeaux, T. E. Collins, G. A. Jerman, R. S. Piascik,
R. W. Russell & S. R. Shah. An Overview of the Space Shuttle Columbia
Accident from Recovery Through Reconstruction. Journal of Failure Analysis
Prevention, vol. 6, no. 1, pages 82–91, 2006. 126

[McNeely 99] William A. McNeely, Kevin D. Puterbaugh & James J. Troy. Six degree-
of-freedom haptic rendering using voxel sampling. In Proceedings of ACM
SIGGRAPH, pages 401–408, 1999. 49

[Mendoza 00] Cesar Mendoza & Christian Laugier. A Solution for the Difference Rate Sam-
pling between Haptic Devices and Deformable Virtual Objects. In International
Symposium on Robotics and Automation, 2000. 61, 119

[Meseure 07] Philippe Meseure & Abderrahamne Kheddar. Le traité de la réalité virtuelle
- tome 3, chapitre Modèles pour le rendu haptique, pages 141–154. Fush F.
Moreau G., 2007. 60

[Milenkovic 01] Victor J. Milenkovic & Harald Schmidl. Optimization-Based Animation. In
Proceedings of ACM SIGGRAPH, pages 37–46, 2001. 54, 109

[Mirtich 96] B.V. Mirtich. Impulse-based dynamic simulation of rigid body systems. PhD
thesis, University of California, 1996. 54

[Moës 99] Nicolas Moës, John Dolbow & Ted Belytschko. A finite element method for
crack growth without remeshing. International journal for numerical methods
in engineering, vol. 46, pages 131–150, 1999. 46

[Molino 04] Neil Molino, Zhaosheng Bao & Ron Fedkiw. A Virtual Node Algorithm for
Changing Mesh Topology during Simulation. In Proceedings of ACM SIG-
GRAPH, page 4, 2004. 45, 102

[Moore 88] Matthew Moore & Jane Wilhelms. Collision Detection and Response for
Computer Animation. Proceedings of ACM SIGGRAPH, vol. 22, no. 4, pages
289–298, 1988. 54

165

BIBLIOGRAPHY

[movie2012 09] movie2012. http://www.sonypictures.com/homevideo/2012/, 2009. 15

[Müller 01] Matthias Müller, Leonard McMillan, Julie Dorsey & Robert Jagnow. Real-
time Simulation of Deformation and Fracture of Stiff Materials. In Proceed-
ings of the Eurographic workshop on Computer animation and simulation,
pages 113–124, 2001. 44, 80, 98

[Müller 02] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow & Bar-
bara Cutler. Stable Real-time Deformations. In Proceedings of the ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 49–54,
2002. 33, 34

[Müller 04a] Matthias Müller & Markus Gross. Interactive Virtual Materials. In Proceed-
ings of Graphics Interface, pages 239–246, 2004. 34, 35, 44, 45, 82, 99

[Müller 04b] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross
& Marc Alexa. Point Based Animation of Elastic, Plastic and Melting Ob-
jects. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 141–151, 2004. 36, 41

[Müller 04c] Matthias Müller, Matthias Teschner & Markus Gross. Physically-Based Sim-
ulation of Objects Represented by Surface Meshes. In Proceedings of the
Computer Graphics International, pages 26–33, Washington, DC, USA, 2004.
IEEE Computer Society. 44

[Müller 05] Matthias Müller, Bruno Heidelberger, Matthias Teschner & Markus Gross.
Meshless Deformations Based on Shape Matching. ACM Transactions on
Graphics, vol. 24, no. 3, pages 471–478, 2005. 36

[Müller 07] Matthias Müller, Bruno Heidelberger, Marcus Hennix & John Ratcliff. Po-
sition Based Dynamics. Journal of Visual Communication and Image Repre-
sentation, vol. 18, no. 2, pages 109–118, 2007. 52, 55

[Müller 08a] Matthias Müller. Hierarchical Position Based Dynamics. In Proceedings of
Virtual Reality Interactions and Physical Simulations, 2008. 52, 55

[Müller 08b] Matthias Müller, Joe Stam, Doug James & Nils Thürey. Real time physics:
class notes. In ACM SIGGRAPH Course notes, page 88, 2008. 23

[Nealen 06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman & Mark
Carlson. Physically Based Deformable Models in Computer Graphics. Com-
puter Graphics Forum, vol. 25, no. 4, pages 1–24, 2006. 30

[Neff 99] Michael Neff & Eugene Fiume. A Visual Model for Blast Waves and Fracture.
In Proceedings of the conference on Graphics interface, pages 193–202, 1999.
42

[Nesme 05] Matthieu Nesme, Yohan Payan & François Faure. Efficient, Physically Plau-
sible Finite Elements. In Proceedings of Eurographics, 2005. 33

[Norton 91] Alan Norton, Greg Turk, Bob Bacon, John Gerth & Paula Sweeney. Anima-
tion of Fracture by Physical Modeling. Visual Computer, vol. 7, no. 4, pages
21–219, 1991. 42

166

http://www.sonypictures.com/homevideo/2012/

BIBLIOGRAPHY

[O’Brien 99] James F. O’Brien & Jessica K. Hodgins. Graphical Modeling and Animation
of Brittle Fracture. In Proceedings of ACM SIGGRAPH, pages 137–146, 1999.
8, 15, 43, 44, 98

[O’Brien 02a] James F. O’Brien, Adam W. Bargteil & Jessica K. Hodgins. Graphical Mod-
eling and Animation of Ductile Fracture. ACM Transactions on Graphics,
vol. 21, no. 3, pages 291–294, 2002. 44

[O’Brien 02b] James F. O’Brien, Chen Shen & Christine M. Gatchalian. Synthesizing Sounds
from Rigid-body Simulations. In Proceedings of the ACM SIGGRAPH/Euro-
graphics symposium on Computer animation, pages 175–181, 2002. 40, 86

[Oda 05] Ohan Oda & Stephen Chenney. Fast Dynamic Fracture of Brittle Objects. In
ACM SIGGRAPH Posters, page 113, New York, NY, USA, 2005. ACM. 45

[Osada 02] Robert Osada, Thomas Funkhouser, Bernard Chazelle & David Dobkin. Shape
distributions. ACM Transaction on Graphics, vol. 21, pages 807–832, 2002.
84

[Otaduy 05] Miguel A. Otaduy & Ming C. Lin. Sensation Preserving Simplification for
Haptic Rendering. In International Conference on Computer Graphics and
Interactive Techniques, pages 72–83, 2005. 61, 119

[Otaduy 06] Miguel A. Otaduy & Ming C. Lin. A Modular Haptic Rendering Algorithm for
Stable and Transparent 6-dof Manipulation. IEEE Transactions on Robotics,
vol. 22, no. 4, pages 751–762, 2006. 60, 61

[Otaduy 07] Miguel A. Otaduy, O. Chassot, D. Steinemann & Markus Gross. Balanced Hi-
erarchies for Collision Detection between Fracturing Objects. In Proceedings
of IEEE Virtual Reality Conference, 2007. 51

[Palmer 94] I. J. Palmer & R. L. Grimsdale. Collision Detection for Animation using
Sphere-Trees. Computer Graphics Forum, vol. 14, no. 2, pages 105–116, 1994.
50

[Paquet 00] E. Paquet, A. Murching, T. Naveen, A. Tabatabai & M. Rioux. Description
of shape information for 2-D and 3-D objects. Signal Processing: Image
Communication, vol. 16, pages 103–122, 2000. 84

[Parker 09] Eric G. Parker & James F. O’Brien. Real-Time Deformation and Fracture in
a Game Environment. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 156–166, 2009. 33, 45

[Pauly 05] Mark Pauly, Richard Keiserand, Bart Adams, Philip Dutré, Markus Gross &
Leonidas J. Guibas. Meshless Animation of Fracturing Solids. ACM Trans.
Graph., vol. 24, no. 3, pages 957–964, 2005. 9, 36, 46, 47

[Pele 08] Ofir Pele & Michael Werman. A Linear Time Histogram Metric for Improved
SIFT Matching. In ECCV, pages 495–508, 2008. 132

[Pentland 89] A. Pentland & J. Williams. Good vibrations: modal dynamics for graphics
and animation. ACM Transactions on Graphics, vol. 23, no. 3, pages 207–
214, 1989. 40, 80

167

BIBLIOGRAPHY

[Perlin 02] K. Perlin. Improving noise. ACM Transactions on Graphics, vol. 21, pages
681–682, July 2002. 70

[PhysX] PhysX. www.nvidia.com/object/physx_new.html. 77

[Picinbono 99] Guillaume Picinbono & Jean-Christophe Lombardo. Extrapolation: a Solution
for Force Feedback ? volume 1, pages 117–125, 1999. 61

[Pietroni 09] Nico Pietroni, Fabio Ganovelli, Paolo Cignoni & Roberto Scopigno. Split-
ting cubes: a fast and robust technique for virtual cutting. Visual Computer,
vol. 25, no. 3, pages 227–239, 2009. 42

[Pocheville 04] Aurélien Pocheville & Abderrahmane Kheddar. I-Touch: a Framework for
Computer Haptics. In Workshop on Touch and Haptics. IEEE/RSJ IROS,
2004. 62

[Ratatouille 07] Ratatouille. http://www.disney.fr/ratatouille/, 2007. 15

[Renz 01] M. Renz, C. Preusche, M. Pötke, H. Kriegel & G. Hirzinger. Stable hap-
tic interaction with virtual environments using an adapted voxmap-pointshell
algorithm. In Proceedings of EuroHaptics. Citeseer, 2001. 49

[Rubner 98] Yossi Rubner, Carlo Tomasi & Leonidas J. Guibas. A metric for distributions
with applications to image databases. In ICCV, pages 59–66, 1998. 131

[Ruffaldi 08] Emanuele Ruffaldi, Dan Morris, Federico Barbagli, Ken Salisbury & Massimo
Bergamasco. Voxel-Based Haptic Rendering Using Implicit Sphere Trees. In
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, pages 319–325, 2008. 60

[Ruspini 00] D. Ruspini & O. Khatib. A Framework for Multi-Contact Multi-Body Dy-
namic Simulation and Haptic Display. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, volume 2, 2000.
62

[Samet 95] Hanan Samet. Spatial data structures. Modern Database Systems, The Object
Model, Interoperability and Beyond, pages 361–385, 1995. 50

[Shewchuk 94] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Rapport technique, CMU-CS-94-125,
1994. 25

[Shin 10] Hijung Shin, Christos Doumas, Thomas Funkhouser, Szymon Rusinkiewicz,
Kenneth Steiglitz, Andreas Vlachopoulos & Tim Weyrich. Analyzing Fracture
Patterns in Theran Wall Paintings. In VAST, 2010. 126

[Sifakis 07] Eftychios Sifakis, Kevin G. Der & Ronald Fedkiw. Arbitrary cutting of de-
formable tetrahedralized objects. In Proceedings of the ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 73–80, 2007. 42

[Smith 01] Jeffrey Smith, Andrew Witkin & David Baraff. Fast and Controllable Simula-
tion of the Shattering of Brittle Objects. Computer Graphics Forum, vol. 20,
pages 81–91, 2001. 43

168

www.nvidia.com/object/physx_new.html
http://www.disney.fr/ratatouille/

BIBLIOGRAPHY

[Spillmann 07] Jonas Spillmann, Markus Becker & Matthias Teschner. Non-iterative Compu-
tation of Contact Forces for Deformable Objects. Journal of WSCG, vol. 15,
no. 1-3, pages 33–40, 2007. 53

[Steinemann 06] Denis Steinemann, Miguel A. Otaduy & Markus Gross. Fast Arbitrary Split-
ting of Deforming Objects. In Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 63–72, 2006. 49, 99

[Stewart 00] D. Stewart & J.C. Trinkle. An Implicit Time-stepping Scheme for Rigid
Body Dynamics with Coulomb Friction. In IEEE International Conference
on Robotics and Automation, volume 1, pages 162–169, 2000. 52, 54

[Sud 06] A. Sud, N. K. Govindaraju, R. Gayle & D. Manocha. Interactive 3D Dis-
tance Field Computation Using Linear Factorization. Proceedings of ACM
Symposium on Interactive 3D Graphics and Games, 2006. 49

[Sukumar 00] N. Sukumar, N. Moës, B. Moran & T. Belytschko. Extended finite element
method for three-dimensional crack modelling. International Journal for Nu-
merical Methods in Engineering, vol. 48, pages 1549–1570, 2000. 46

[Teran 03] J. Teran, S. Blemker, V. Hing & R. Fedkiw. Finite volume methods for the
simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 68–74. Eurographics
Association, 2003. 31

[Terzopoulos 87] Demetri Terzopoulos, John Platt, Alan Barr & Kurt Fleischer. Elastically
Deformable Models. ACM Transactions on Graphics, vol. 21, no. 4, pages
205–214, 1987. 30

[Terzopoulos 88] Demetri Terzopoulos & Kurt Fleischer. Modeling Inelastic Deformation:
Viscolelasticity, Plasticity, Fracture. In Proceedings of ACM SIGGRAPH,
volume 22, pages 287–296, 1988. 15, 30, 43

[Teschner 05] M. Teschner, Kimmerle S., B. Heidelberger, Zachmann G., Raghupathi
L., Futhrmann A., Cani M.-P., Faure F., Faure N., Fagnetat-Thalmann
N.and Strasser W. & Volino P. Collision Detection for Deformable Objects.
In Computer Graphics Forum, volume 24, pages 61–81, 2005. 48, 50, 51

[TetGen] TetGen. http://tetgen.berlios.de/. 85

[Viet 06] Huynh Quang Huy Viet, Takahiro Kamada & Hiromi T.Tanaka. An Al-
gorithm for Cutting 3D Surface Meshes. Proceedings of the International
Conference on Pattern Recognition, vol. 4, pages 762–765, 2006. 42

[Vranic 01a] D. V. Vranic & D. Saupe. 3D Shape Descriptor Based on 3D Fourier Trans-
form. In Proceedings of EURASIP, pages 271–274, 2001. 84

[Vranic 01b] D. V. Vranic, D. Saupe & J. Richter. Tools for 3D-object retrieval: Karhunen-
Loeve Transform and spherical harmonics. In IEEE International Workshop
on Multimedia and Signal Processing, pages 293–298, 2001. 84

[Wan 11] International Journal on Interactive Design and Manufacturing. International
Journal on Interactive Design and Manufacturing, 2011. 40

169

http://tetgen.berlios.de/

BIBLIOGRAPHY

[Weller 09] R. Weller & G. Zachmann. Inner Sphere Trees for Proximity and Penetration
Queries. Robotics: Science and Systems, 2009. 50

[Witkin 90] Andrew Witkin, Michael Gleicher & William Welch. Interactive Dynamics.
ACM Transactions on Graphics, vol. 24, no. 2, pages 11–21, 1990. 53

[Witkin 01a] Andrew Witkin. Constrained Dynamics. In Physically Based Modeling, 2001.
53

[Witkin 01b] Andrew Witkin & David Baraff. Differential Equation Basics. In Physically
Based Modeling, 2001. 23

[Zafar 11] Nafees B. Zafar & Mark Carlson. Destruction and dynamics artist tools for
film. In SIGGRAPH Course Notes, 2011. 43

[Zheng 10] Changxi Zheng & Doug L. James. Rigid-Body Fracture Sound with Precom-
puted Soundbanks. In Proceedings of ACM SIGGRAPH, volume 29, July
2010. 13, 45, 80, 83, 89

[Zilles 95] C. B. Zilles & J. K. Salisbury. A constraint-based god-object method for haptic
display. In Proceedings of the International Conference on Intelligent Robots
and Systems, volume 3, pages 31–46, 1995. 58

170

	List of figures
	List of tables
	Introduction
	Background
	Introduction
	Notations
	Fundamentals of physical simulation
	Model of a physical body
	Stepping a discrete simulation forward in time
	The differential system to be solved
	Numerical integration

	Example: 3-D simulation of a rigid body

	Physical simulation of deformation
	Background on continuum mechanics
	Measure of the deformation: the strain
	Stress tensor and strain-stress relationship
	Dynamics of a deformable body

	Models of deformable body for numerical simulations
	The Finite Element Method (FEM)
	Meshless models
	Mass-spring models

	Reduced deformable models
	Introduction
	Modal analysis

	Summary table

	Physical simulation of brittle fracture
	Geometrical approaches and cutting algorithms
	Mass-spring systems for fracture
	Cohesive zone models
	Continuous approaches for fracture
	Finite differences for fracture
	Finite Element Method for fracture
	XFEM: Extended Finite Element Method

	Particle system for fracture
	Summary table

	Interactive simulation
	Detecting collisions between the bodies
	Representation of the bodies for collision detection
	Algorithms and accelerating structures for polygonal models
	Collision detection desired queries
	Collision detection and haptic rendering for fracture simulation

	Handling contacts and constraints between the bodies
	Acceleration level methods
	Velocity level methods
	Position level methods

	Handling physically-based interactions with haptic feedback
	Introduction
	Haptic devices and control
	Haptic rendering constraints
	Multirate simulation and intermediate models

	Summary: interactive simulation and brittle fracture

	Chapter conclusion

	New models for the real-time simulation of brittle fracture
	Modeling the fracture state of a brittle body
	A new model based on volumetric meshes
	Modeling damage state with elements
	Modeling fracture surfaces with edges
	Modeling fragments with nodes

	Efficient generation of the surface meshes from the fracture state

	Propagating cracks, or updating the fracture state model
	Fracture surface model
	Propagating the crack through the mesh
	Energy stop condition

	Modeling impact-based fractures
	Overview of the process
	Estimation of the contact duration
	Simulation Time Step
	Contact Force Model
	Fracture criterion
	Results
	Computation time performances
	Tests and Scenarios

	Discussion and conclusion

	Modeling cracking due to aging
	Aging process overview
	Results and conclusion on the age-based fracture simulation

	Managing the deformation of the fragments: a database approach
	Precomputed Shape Database
	Creating the Database
	Searching into the Database

	Mesh Descriptors
	Moment-based Descriptor
	Voxel-based Descriptor
	Improved Voxel-based Descriptor

	Adaptation to Physical Simulation
	Results
	Discussion and conclusion

	Chapter conclusion

	New methods for interactive brittle fracture simulation
	Introduction
	Efficient collision handling for brittle fracture
	Overview of the collision detection algorithm
	Fragment Distance Field
	Mesh-Based Interior Distance
	Distance Updates upon Fracture
	Inside-Outside Query: insideTest(p, D(f))
	Penetration Depth Query: penetration(p, D(f))
	Sphere Intersection Query: sphereTest(p, r, D(f))

	Fracturable Adaptive Sphere Tree
	Ordering and Construction of the Sphere Tree
	Tree Updates upon Fracture
	Self-Adapting Collision Detection

	Experiments and Results
	Discussion and conclusion

	Haptic interaction with fracturing bodies
	Benchmarking the rigid body engines for haptic
	Selected rigid body engines
	Performance Criteria
	Tests Cases
	Test Parameters
	Results
	Summary of the Evaluation

	Coupling rigid body engines and haptic rendering
	Scaling Factors between Virtual and Real World
	Synchronization with Physical Time
	Results
	Discussion and conclusion

	Dealing with a growing number of bodies and haptics
	The Graph-based Haptic Sub-world Coupling Scheme
	Results and Evaluation
	Discussion and conclusion

	Chapter conclusion

	Evaluation and validation
	Perception of the fracture pattern and fracture statistics
	Statistical features of a fractured body
	User-study on the perception of the fracture pattern
	Optimizing the parameters of the simulation from images
	Parameters to be optimized
	Optimization process
	Results of the optimizations

	Discussion and conclusion

	Haptic virtual fracture: first experiments and results
	Overview
	User study
	Results
	Discussion and conclusion

	Preliminary validation of the impact-based fracture model based on real data
	Experiment types and setups
	Identification of the material elastic properties
	Identification of the Rankine threshold
	Impact breaking test - 4 punctual contacts
	Impact breaking test - fitted
	Impact breaking test - varying ball height
	Test on glass slabs

	Discussion and conclusion

	Chapter conclusion

	Conclusion
	Modeling of the fracture phenomena
	Interaction and brittle fracture
	Evaluation of the models
	Discussion and perspectives
	Long term perspectives

