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Variable selection in model-based clustering for high-dimensional data

Sélection de variables pour la classification non supervisée en grande dimension R ÉSUM É

Il existe des situations de modélisation statistique pour lesquelles le problème classique de classification non supervisée (c'est-à-dire sans information a priori sur la nature ou le nombre de classes à constituer) se double d'un problème d'identification des variables réellement pertinentes pour déterminer la classification. Cette problématique est d'autant plus essentielle que les données dites de grande dimension, comportant bien plus de variables que d'observations, se multiplient ces dernières années : données d'expression de gènes, classification de courbes... Nous proposons une procédure de sélection de variables pour la classification non supervisée adaptée aux problèmes de grande dimension. Nous envisageons une approche par modèles de mélange gaussien, ce qui nous permet de reformuler le problème de sélection des variables et du choix du nombre de classes en un problème global de sélection de modèle. Inspirés par [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], nous exploitons les propriétés de sélection de variables de la régularisation 1 et de l'estimateur Lasso pour construire efficacement à partir des données une collection de modèles qui reste de taille raisonnable même en grande dimension. Nous nous démarquons de Pan et Shen (2007) par une estimation des paramètres du mélange par l'estimateur du maximum de vraisemblance plutôt que par le Lasso, et par une sélection de modèle par un critère pénalisé non asymptotique basé sur l'heuristique de pente introduite par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. D'un point de vue théorique, nous établissons un théorème de sélection de modèle pour l'estimation d'une densité par maximum de vraisemblance pour une collection aléatoire de modèles. Nous l'appliquons dans notre contexte pour trouver une forme de pénalité minimale pour notre critère pénalisé. D'un point de vue pratique, des simulations sont effectuées pour valider notre procédure, en particulier dans le cadre de la classification non supervisée de courbes.

L'idée de base de notre procédure, qui mêle sélection de variables par la régularisation 1 mais estimation par la régularisation 0 , nous est inspirée par une étude théorique menée dans une première partie : nous établissons des inégalités oracle 1 pour le Lasso dans les cadres de régression gaussienne et de mélange de régressions gaussiennes, qui se démarquent des inégalités oracle 0 traditionellement établies par leur absence totale d'hypothèse.
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R ÉSUM É

Dans cette thèse, nous proposons une procédure de sélection de variables pour la classification non supervisée en grande dimension, dans un cadre de modèles de mélange gaussien. La régularisation 1 et l'estimateur associé Lasso sont au coeur de nos travaux. Dans ce chapitre introductif, nous présentons notre cadre de travail, puis nous effectuons quelques rappels utiles sur le Lasso, avant de résumer nos contributions.

1.1 Sélection de variables pour la classification non supervisée en grande dimension 1.1.1 Modèles de mélange gaussien pour la classification non supervisée

En présence de n observations Y 1 , . . . , Y n décrites par p variables (Y i ∈ R p ) et présentant des caractéristiques différentes, le but de la classification non supervisée est de partitionner ces observations en plusieurs classes de fac ¸on à regrouper entre elles les observations de caractéristiques semblables.

Pour déterminer une partition des observations, il est d'usage d'optimiser un critère pour créer des classes de telle sorte que chaque classe soit la plus homogène possible et la plus distincte possible des autres classes. En pratique, il est impossible d'explorer toutes les partitions possibles. Les méthodes se limitent à l'exécution d'un algorithme itératif convergeant vers une "bonne" partition qui correspond en général à un optimum local. Même si le besoin de classer des objets est très ancien, seule la généralisation des outils informatiques en a permis l'automatisation dans les années 1970. [START_REF] Celeux | Classification Automatique des Données[END_REF] décrivent en détail ces algorithmes. Deux principaux types de méthodes de classification non supervisée existent : les méthodes combinatoires où le critère optimisé est une distance (Kmeans, classification hiérarchique), et les méthodes de modèles de mélange qui supposent que les données forment un échantillon suivant une densité de mélange (c'est-à-dire une somme pondérée de densités représentant chacune une classe), le critère optimisé étant alors un critère de maximum de vraisemblance pour ajuster le modèle aux données. Pour ces dernières méthodes, le problème de classification est reformulé en un problème d'estimation de densité. L'objectif principal de cette thèse est de proposer une procédure de sélection des variables pertinentes pour l'obtention d'une classification des données. Comme les méthodes de modèles de mélange offrent un cadre statistique rigoureux pour déterminer le nombre de classes et les variables pertinentes pour la classification, elles s'avèrent particulièrement adaptées à notre problématique. Nous nous placerons donc dans un cadre de modèles de mélange. Nous considérerons le cas important des modèles de mélange gaussien. Nous nous restreindrons à l'étude de matrice de covariance sphérique commune à toutes les classes. Dans ce cas, les classes ne se distinguent que par la position de leur centre, qui est donnée par les vecteurs des moyennes. La densité s de l'échantillon Y = (Y 1 , . . . , Y n ) est alors estimée par une densité de mélange de la forme

s θ : R p → R, y → s θ (y) = K k=1 π k Φ(y | µ k , σ 2 I) (1.1)
où Φ(• | µ k , σ 2 I) désigne la densité gaussienne p-dimensionnelle définie pour tout y ∈ R p par

Φ(y | µ k , σ 2 I) = 1 (2πσ 2 ) p/2 exp - 1 2σ 2 (y -µ k ) T (y -µ k ) = p j=1 1 √ 2πσ 2 exp - 1 2σ 2 (y j -µ kj ) 2 .
Le vecteur des paramètres est θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) 

∈ Θ K := Π K × (R p ) K × R + où Π K = {(π 1 , . . . , π K ) ∈ [0, 1] K ; K k=1 π k = 1}

Sélection des variables pertinentes pour la classification

On pourrait penser que plus on augmente le nombre de variables décrivant chaque observation d'un échantillon, plus on dispose d'informations concernant ces observations et plus on en facilite et on en améliore la classification. Cependant, la qualité de la classification ne dépend pas du nombre d'informations à disposition mais de la pertinence de ces informations. Parmi les variables à disposition, il s'avère souvent que seules certaines d'entre elles contiennent la structure d'intérêt des observations. Ces variables pertinentes suffisent à distinguer les différences de caractéristiques entre les observations et à les regrouper en classes. Au contraire, certaines variables peuvent ne pas avoir de lien avec la structure des observations, auquel cas la prise en compte de ces variables pour déterminer la classification risque de fausser et de détériorer la classification. Ces variables sont nuisibles pour la classification. D'autres variables, sans être nuisibles, peuvent être inutiles pour déterminer la classification si elles sont redondantes par rapport à des variables pertinentes. Supprimer ces variables inutiles permet alors d'obtenir un modèle plus simple et plus interprétable, ce qui est un point essentiel pour les practiciens qui souhaitent comprendre le phénomène étudié au travers de la classification obtenue.

Par exemple, dans le domaine de la biologie, les chercheurs souhaitent identifier les fonctions des gènes en mesurant leur variation de niveau d'expression dans un ensemble d'expériences sur puces à ADN. Ils supposent que des gènes ayant des profils d'expression similaires ont des liens fonctionnels. Ainsi, l'objectif est de déterminer des classes de gènes co-exprimés [START_REF] Eisen | Cluster analysis and display of genomewide expression patterns[END_REF]. Cependant, parmi toutes les expériences effectuées, une partie seulement d'entre elles se révèlent liées aux phénomènes biologiques étudiés. Il est alors préférable de ne considérer que ces expériences pour mettre en lumière ces phénomènes.

L'identification des variables pertinentes pour la classification est donc primordiale et l'enjeu du statisticien est de proposer des procédures de sélection de variables permettant la sélection de toutes les variables pertinentes et l'élimination de toutes les autres. La difficulté principale est de construire une méthode de sélection de variables sans savoir à quelle classe appartiennent les observations. Deux types de procédures de sélection de variables existent : les méthodes "filter" et "wrapper". Pour les premières, la sélection de variables est effectuée en amont du processus de classification [START_REF] Dash | Feature selection for clustering -a filter solution[END_REF][START_REF] Jouve | A filter feature selection method for clustering[END_REF]. Pour les secondes, la sélection de variables est insérée au sein du processus de classification. Les méthodes wrapper présentent l'avantage de ne pas dissocier les problèmes de sélection de variables et de classification, ce qui permet de mieux appréhender et interpréter le rôle des variables. C'est cette seconde approche que nous envisagerons dans cette thèse. Pour les méthodes de classification basées sur des modèles de mélange gaussien, les méthodes wrapper ont principalement été introduites sous un angle bayésien. On peut par exemple citer [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF] qui introduisent le concept de "feature saliency" pour évaluer l'importance des variables sous l'hypothèse d'indépendance entre les variables non pertinentes et pertinentes. [START_REF] Raftery | Variable Selection for Model-Based Clustering[END_REF] puis [START_REF] Maugis | Variable selection for clustering with Gaussian mixture models[END_REF] étendent cette procédure en s'affranchissant de l'hypothèse d'indépendance. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] privilégient quant à eux une approche fréquentiste de sélection de variables par pénalisation 1 de la vraisemblance des modèles. C'est cette dernière idée que nous reprendrons.

Le défi de la grande dimension

La sélection de variables a pris toute son importance avec l'apparition et la multiplication des données de très grande dimension ces dernières années.

Données de grande dimension

Grâce aux progrès technologiques, l'acquisition de données devient de plus en plus facile techniquement et des bases de données gigantesques sont collectées quasi-quotidiennement. Par conséquent, le nombre de variables présentes dans les problèmes statistiques actuels peut maintenant atteindre des dizaines voire des centaines de milliers. Dans le même temps, pour de nombreuses applications, le nombre d'observations se trouve réduit et peut n'être que de quelques dizaines. Dans cette thèse, nous dirons que les données considérées sont de grande dimension, et nous écrirons p n, quand le nombre p de variables est très grand devant le nombre n d'observations.

Pour certains champs d'application tels la biologie, la climatologie, l'économétrie, la chimie quantitative, les observations peuvent même être de dimension infinie. C'est le cas lorsque les données recueillies sont de nature continue (courbes, images). En présence de telles données fonctionnelles, un objectif essentiel de la classification non supervisée de ces données est de permettre l'obtention d'une bonne estimation d'un profil type pour chaque classe. Par exemple, la demande en électricité varie selon les saisons ou les jours de la semaine, ce qui se traduit par une allure différente des courbes de consommation électrique. Ainsi, ces courbes peuvent être partitionnées en plusieurs classes suivant leur allure. Une bonne identification des classes et une bonne classification des courbes permet de fournir une bonne représentation de la courbe de la consommation électrique classe par classe. L'enjeu est d'améliorer les estimations et les prévisions de consommation électrique en tenant compte de la période de l'année ou de la semaine [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF].

Hypothèse de parcimonie

Face à ces données de grande dimension, une hypothèse souvent faite est l'hypothèse dite de parcimonie. Elle consiste à supposer que parmi les très nombreuses variables à notre disposition, peu d'entre elles (disons au maximum de l'ordre de n) sont en fait utiles pour expliquer les observations et donc pertinentes pour la classification. Cela revient à supposer que la très grande majorité des variables sont inutiles (si elles n'apportent que de l'information redondante) voire même néfastes (si elles n'ont rien à voir avec la classification) pour déterminer la classification. Cette hypothèse semble raisonnable car elle traduit le fait que la dimension impressionnante des données que nous recevons n'est qu'une illusion créée par les progrès informatiques et qu'elle ne reflète pas la réelle complexité du problème que l'on peut penser être bien inférieure.

Par exemple, en théorie du signal, de nombreux signaux a priori décrits dans un espace de dimension infinie peuvent en fait être bien approximés dans un espace de petite dimension. Une application majeure de cette propriété de parcimonie est la compression des signaux [START_REF] Mallat | A theory for multiresolution signal decomposition : The wavelet representation[END_REF].

Vers de nouvelles procédures de sélection de variables

Pour des données décrites par p variables, sélectionner un ensemble de variables pertinentes pour la classification revient à sélectionner un sous-ensemble de {1, . . . , p}. Or, il y a 2 p tels sous-ensembles. Une recherche exhaustive du meilleur sous-ensemble de variables n'est donc pas envisageable au vu des performances informatiques actuelles. Maugis et Michel (2011a) ont été confrontés à ce problème et n'ont pas pu mettre en pratique au delà de p ≈ 10 la théorie de sélection de variables complète (ou au delà de p ≈ 30 pour la sélection de variables ordonnée) qu'ils ont développée dans le cadre de la classification non supervisée par modèles de mélange gaussien.

En grande dimension, il est nécessaire d'introduire des procédures de sélection de variables alternatives à la sélection de variables complète qui soient algorithmiquement faisables. Comme la sélection de variables en grande dimension est un enjeu récent dans le cadre de la classification non supervisée, peu de méthodes existent à ce jour.

Les méthodes combinatoires basées sur des distances se bornent souvent à faire de la réduction dimensionnelle sans réellement sélectionner des variables. Par exemple, dans la cas de la classification de données fonctionnelles, des projections sur des bases de splines, de Fourier ou d'ondelettes permettent de passer d'un problème de dimension infinie à un problème de dimension finie [START_REF] Abraham | Unsupervised curve clustering using B-splines[END_REF][START_REF] Auder | Projection-based curve clustering[END_REF]Misiti et al., 2007a). Par contre, [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF] introduisent une réelle étape de sélection de variables en mesurant la contribution des coefficients d'ondelettes par rapport à l'énergie totale de la courbe.

Les méthodes basées sur des modèles de mélange gaussien fournissent un cadre statistique bien adapté à la reformulation du problème de sélection de variables en un problème de sélection de modèles. En particulier, dans le cas monoclasse (K = 1), le mélange de densités gaussiennes (1.1) n'est autre qu'une densité gaussienne et le modèle correspondant peut être assimilé à un modèle de régression linéaire gaussienne avec design déterministe. Ainsi, des méthodes de sélection de variables en classification non supervisée par modèles de mélange gaussien peuvent être construites en adaptant au cas multiclasses (K ≥ 2) des méthodes de sélection de variables testées en régression gaussienne. Par exemple, [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF], [START_REF] Raftery | Variable Selection for Model-Based Clustering[END_REF] puis [START_REF] Maugis | Variable selection for clustering with Gaussian mixture models[END_REF] considèrent des méthodes analogues à la méthode stepwise utilisée pour la sélection de variables en régression, en comparant à chaque étape deux modèles emboîtés pour déterminer quelle variable doit être exclue ou inclue dans le modèle. En parallèle, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] se sont inspirés du succès du Lasso en régression pour développer une méthode de sélection de variables par régularisation 1 de la vraisemblance observée.

Dans cette thèse, nous construisons une procédure de classification non supervisée en grande dimension reprenant l'usage de la pénalisation 1 pour sélectionner les variables pertinentes. Notre procédure se démarque de celle proposée par [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] par deux points essentiels : l'estimation des paramètres du mélange et le critère de sélection de modèles. L'amélioration apportée à l'estimation des paramètres du mélange nous permet notamment de traiter efficacement des problèmes de reconstitution de courbes dans le contexte de classification de données fonctionnelles, alors que la méthode de Pan et Shen (2007) se révèle inadaptée à ce genre de problèmes. De même que [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] se sont inspirés des propriétés de sélection de variables du Lasso constatées en régression pour établir leur procédure, c'est au vu des problèmes d'estimation du Lasso en régression que nous avons jugé nécessaire de modifier l'étape d'estimation de Pan et Shen (2007). Aussi, avant de présenter les travaux de cette thèse, nous introduisons le Lasso et nous rappelons quelques résultats de prédiction, d'estimation et de sélection de variables de cet estimateur dans le cadre de la régression. A notre connaissance, aucun résultat théorique sur le Lasso n'a été établi dans notre cadre de classification non supervisée. Cependant, par extrapolation, les résultats établis dans le cadre de la régression permettent de se faire une idée des performances possibles du Lasso dans notre contexte et de comprendre les choix que nous avons fait pour construire notre procédure.

Présentation du Lasso 1.2.1 Cadre historique

Le Lasso fut introduit en parallèle par [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] en régression linéaire et par [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] (sous le nom de "Basis Pursuit DeNoising") pour la décomposition d'un signal dans un dictionnaire d'ondelettes. Nous nous restreignons ici à un "design" déterministe et à un bruit gaussien.

La régression linéaire gaussienne

On dispose de n observations (x 1 , Y 1 ), . . . , (x n , Y n ) de R p × R indépendantes identiquement distribuées (i.i.d.) et on suppose que pour tout i ∈ {1, . . . , n},

Y i = p j=1 β * j x ij + ε i . (1.3)
Les variables aléatoires de bruit ε i sont i.i.d. de loi N (0, σ 2 ) et les éléments x ij sont déterministes. Pour tout j ∈ {1, . . . , p}, l'influence de la variable X j := (x 1j , . . . , x nj ) sur les réponses Y i est représentée par la valeur du coefficient de régression β * j . Les coefficients de régression sont inconnus et à estimer.

Décomposition dans un dictionnaire

Soit X un ensemble mesurable. On dispose de n observations (x 1 , Y 1 ), . . . , (x n , Y n ) de X × R i.i.d. et on suppose que pour tout i ∈ {1, . . . , n},

Y i = s(x i ) + ε i .
Les mesures Y i sont des observations de s(x i ) bruitées par des variables aléatoires ε i i.i.d. N (0, σ 2 ) et les éléments x i sont déterministes. La fonction s : X → R est la fonction de régression inconnue à estimer. On considère un dictionnaire D = {φ 1 , . . . , φ p }, c'est-à-dire un ensemble de p fonctions φ j : X → R, qui constituent p variables. On suppose que s peut se décomposer dans ce dictionnaire sous la forme s = p j=1 β * j φ j . Alors pour tout i ∈ {1, . . . , n},

Y i = p j=1
β * j φ j (x i ) + ε i .

(1.4)

Estimer s revient à estimer les p coefficients de décomposition β * 1 , . . . , β * p .

Ecriture commune

Les deux modèles (1.3) et (1.4) peuvent s'écrire sous la forme matricielle suivante :

Y = Xβ * + ε (1.5) où Y = (Y 1 , . . . , Y n ), β * = (β * 1 , . . . , β * p ), ε = (ε 1 , . . . , ε n ), X = (x ij ) 1≤i≤n,1≤j≤p pour (1.
3) ou X = (φ j (x i )) 1≤i≤n,1≤j≤p pour (1.4). On se place dans le cadre de la grande dimension p n et sous l'hypothèse de parcimonie, c'est-à-dire qu'on suppose qu'il existe une solution β * possédant de nombreux coefficients β * j nuls. Dans le cadre de la régression linéaire, cela revient à supposer qu'un grand nombre de variables X j sont inutiles pour expliquer la réponse Y . Pour la décomposition dans un dictionnaire, cela revient à supposer l'existence d'une décomposition parcimonieuse de la fonction s dans le dictionnaire D. Le nombre de variables intervenant réellement dans la description du modèle est β * 0 := card j ∈ {1, . . . , p}; β * j = 0 .

(1.6)

On cherche à estimer β * .

1.2.2 La pénalisation 1 comme substitut à la pénalisation 0

Notion de pénalisation

Soit (e j ) 1≤j≤p la base canonique de R p et M l'ensemble des parties de {1, . . . , p}. Pour tout m ∈ M, on note S m l'espace vectoriel engendré par la famille de vecteurs {e j , j ∈ m}. La perte théorique d'un vecteur β ∈ R p est Xβ * -Xβ 2 tandis que son risque empirique est Y -Xβ 2 , où v = ( n i=1 v 2 i /n) 1/2 désigne la norme 2 renormalisée de R n . On considère les minimiseurs de la perte théorique et du risque empirique dans S m : (1.8)

La pénalité pen(m) représente un prix à payer fonction de la complexité du modèle. Le critère (1.8) vise un équilibre entre apprentissage des données, mesuré par Y -X β * . m 2 , et complexité du modèle, mesurée par pen(m).

La pénalisation 0

Historiquement [START_REF] Mallows | Some comments on C p[END_REF], les premières pénalités m → pen(m) considérées dans le problème de pénalisation (1.8) étaient proportionnelles au cardinal du modèle S m : pen(m) = λ|m|, λ > 0.

Alors, par définition (1.8) de m,

∀ m ∈ M, Y -X β * . m 2 + λ| m| ≤ Y -X β * . m 2 + λ|m|.
Puis, par définition (1.7) de β * . m , cela implique que

∀ m ∈ M, ∀ β ∈ S m , Y -X β * . m 2 + λ| m| ≤ Y -Xβ 2 + λ|m|.
Comme tout β dans S m a m coordonnées non nulles, et que ∪ m∈M S m = R p , l'inégalité précédente s'écrit aussi

∀ β ∈ R p , Y -X β * . m 2 + λ β * . m 0 ≤ Y -Xβ 2 + λ β 0 ,
où β 0 = card {j ∈ {1, . . . , p} : β j = 0} est le nombre de coordonnées non nulles de β. Ainsi, on estime β * par β * . m = arg min β∈R p Y -Xβ 2 + λ β 0 .

(1.9)

En pénalisant le nombre de composantes non nulles des vecteurs β, ce critère de pénalisation 0 permet de trouver un estimateur β * := β * . m parcimonieux et conduit à une sélection de variables : seules les variables indexées par j tel que β * j = 0 sont considérées comme intervenant réellement dans le problème. Cependant, le problème de minimisation (1.9) est algorithmiquement incalculable dès que p est de l'ordre de quelques dizaines.

Substitut à la pénalisation 0

Pour résoudre ce problème numérique, une idée est de chercher une autre pénalisation, similaire à la pénalisation 0 , mais conduisant à un problème de minimisation dont on pourrait calculer la solution même pour de grandes valeurs de p. En remarquant que β 0 = card {j ∈ {1, . . . , p} :

β j = 0} = p j=1 1 {β j =0} = lim q→0 p j=1 |β j | q = lim q→0 β q q ,
on peut envisager de remplacer la pénalisation 0 par une pénalisation q avec q > 0 proche de 0 et dont la solution arg min β∈R p Y -Xβ 2 + λ β q q , λ > 0, (1.10) serait plus facilement calculable que la solution (1.9). Pour q < 1, • q n'est pas une norme alors que pour q ≥ 1, • q est une norme et vérifie la propriété de convexité. Ainsi, pour q ≥ 1, le problème (1.10) est un problème de minimisation convexe et peut se résoudre efficacement. Comme q = 1 est la valeur la plus proche de 0 vérifiant cette propriété, [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] a proposé de tester la pénalisation 1 comme substitut numérique à la pénalisation 0 et a introduit l'estimateur Lasso β * (λ) défini par β * (λ) = arg min

β∈R p Y -Xβ 2 + λ β 1 (1.11)
où λ > 0 est un paramètre de régularisation à calibrer.

Le calcul des solutions Lasso 1.2.3.1 Cas orthogonal

Dans le cas où X est une matrice orthogonale (X T X/n = I), l'estimateur Lasso (1.11) peut être explicitement calculé par sous-différentiation : pour tout j ∈ {1, . . . , p},

β * j (λ) = sign β * j β * j -λ/2 + =     
β * j -λ/2 si β * j > λ/2; β * j + λ/2 si β * j < -λ/2; 0 sinon (1.12) où β * := arg min β∈R p Y -Xβ 2 = X T Y est l'estimateur des moindres carrés, c'est-à-dire l'estimateur obtenu sans pénalisation.

D'après (1.12), la pénalité 1 provoque un seuillage doux des estimations des coefficients de régression obtenues par la méthode des moindres carrés. En particulier, les coefficients β * j tels que | β * j | ≤ λ/2 sont estimés par zéro par le Lasso et les variables correspondantes sont éliminées du modèle. Le Lasso effectue donc une sélection de variables de manière automatique. Cette sélection varie en fonction du niveau de pénalisation que l'on impose et que l'on règle avec le choix du paramètre de régularisation λ. Pour λ = 0, le risque empirique n'est pas pénalisé, l'estimateur Lasso correspond à l'estimateur des moindres carrés et toutes les variables sont sélectionnées. Plus λ augmente, plus le nombre de variables sélectionnées diminue, et pour λ assez grand, aucune variable n'est sélectionnée. Cette évolution peut être précisée. D'après (1.12), le chemin de régularisation λ ∈ [0, +∞[ → β * (λ) est continu et linéaire par morceaux (chacune des coordonnées est une fonction réelle continue et linéaire par morceaux). Ainsi, le calcul de l'ensemble des estimateurs Lasso ne nécessite que le calcul d'un nombre fini d'entre eux. Formellement, soient {j 1 , . . . , j p } tels que | β * j l | ≤ | β. * j l+1 |. Notons λ l := 2| β * j l | et posons λ 0 = 0. Alors, pour tout l ∈ {1, . . . , p -1}, pour tout λ ∈ [λ l , λ l+1 [, β * (λ) sélectionne les variables indexées par j ∈ {j l+1 , . . . , j p }. Pour λ ∈ [0, λ 1 [, β * (λ) sélectionne toutes les variables, et pour λ ∈ [λ p , +∞[, β * (λ) ne sélectionne aucune variable. Ainsi, en faisant varier λ ∈ [0, +∞[, la procédure Lasso ne visite qu'une collection restreinte de paquets de variables. La collection de paramètres de régularisation {λ l } 0≤l≤p suffit à elle seule à parcourir cette collection de paquets de variables. Il suffit donc de résoudre p + 1 problèmes de minimisation pour obtenir l'ensemble des solutions Lasso.

Cas général

Dans le cas général où X n'est pas une matrice orthogonale, la solution (1.11) ne peut plus être calculée explicitement. Cependant, [START_REF] Efron | Least angle regression[END_REF] et [START_REF] Zou | On the "degrees of freedom" of the Lasso[END_REF] ont démontré que les propriétés intéressantes du Lasso, à savoir la parcimonie des solutions et la linéarité par morceaux du chemin de régularisation λ → β * (λ), restent vérifiées. De plus, les valeurs du paramètre de régularisation λ telles que la linéarité change peuvent être trouvées en considérant les conditions d'optimalité du premier ordre de (1.11) [START_REF] Efron | Least angle regression[END_REF]. Ainsi, comme dans le cas orthogonal, il suffit de calculer les solutions Lasso en ces valeurs particulières de λ pour en déduire toutes les solutions Lasso. Bien-sûr, ces valeurs particulières dépendent des données. En pratique, l'ensemble des solutions Lasso peuvent être calculées par un algorithme d'homotopie très efficace en considérant une version modifiée de l'algorithme LARS introduit par [START_REF] Efron | Least angle regression[END_REF]. Il est alors d'usage de sélectionner l'une de ces solutions Lasso par un critère de sélection de modèle.

A ce stade, notons qu'une alternative serait de n'utiliser les avantages algorithmiques de la pénalisation 1 dans le seul but de conserver l'ensemble des paquets de variables parcouru le long du chemin de régularisation. Ensuite, on pourrait revenir à une estimation de β * par l'estimateur des moindres carrés (et non par l'estimateur Lasso) sur chacun de ces paquets de variables, puis à la sélection de l'un de ces estimateurs des moindres carrés par un critère de pénalisation en norme 0 . Cette idée est mentionnée dans [START_REF] Efron | Least angle regression[END_REF] et a été explorée par [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF]. Pour construire notre procédure de sélection de variables pour la classification non supervisée en grande dimension, c'est cette approche alternative -adaptée à notre contexte -que nous adopterons. Cela constituera l'un des points centraux de nos travaux.

Parallèlement aux nombreuses utilisations pratiques de cet algorithme, des résultats théoriques ont été établis pour évaluer les performances de prédiction, d'estimation et de sélection de variables du Lasso. Dans le cadre de la grande dimension, des résultats de prédiction ont été établis entre autres par [START_REF] Greenshtein | Persistence in high-dimensional linear predictor selection and the virtue of overparametrization[END_REF], Bunea et al. (2007a), [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], [START_REF] Van De Geer | High dimensional generalized linear models and the Lasso[END_REF], [START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF], alors que des études centrées sur la sélection ont été menées par [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF], [START_REF] Zhao | On model selection consistency of Lasso[END_REF], [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF], [START_REF] Bibliographie Candes | The Dantzig selector : Statistical estimation when p is much larger than n[END_REF], [START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery using-constrained quadratic programming (Lasso). Information Theory[END_REF], [START_REF] Meinshausen | Lasso-type recovery of sparse representations for highdimensional data[END_REF]... Il est impossible de citer tous ces résultats. Nous n'avons sélectionné que quelques uns d'entre eux : les plus éclairants au regard du travail qui va suivre dans cette thèse.

Résultat de prédiction But

La pénalisation 1 étant utilisée comme substitut convexe à la pénalisation 0 , on peut mesurer les performances de prédiction du Lasso par rapport à l'oracle 0 en établissant des inégalités oracle. Ces inégalités sont à comparer à l'inégalité oracle 0 que l'on obtiendrait en considérant l'estimateur β * régularisé en norme 0 pour une pénalité 0 correctement choisie (voir [START_REF] Massart | Concentration inequalities and model selection[END_REF], pour la détermination d'une telle pénalité) :

Xβ * -X β * 2 ≤ (1 + δ) inf β∈R p Xβ * -Xβ 2 + C(δ) σ 2 ln p n β 0 .
(1.13)

Hypothèse

Pour v ∈ R p et J ⊂ {1, . . . , p}, on note v J ∈ R p le vecteur de mêmes coordonnées que v sur J et de coordonnées nulles sur J c . On introduit la matrice de Gram Ψ n = X T X/n. Interprétation et discussion

• de la condition de valeur propre restreinte Expliquons d'abord l'origine du nom "valeur propre restreinte". La plus petite valeur propre de la matrice de Gram ψ n s'écrit 

min v∈R p \{0} v T Ψ n v 1/2 v = min v∈R p \{0} Xv √ n v . ( 1 
min v∈R p \{0} Xv √ n v = 0.
(1.17) Ainsi, plus les ensembles "restreints" considérés dans (1.14) se rapprochent des ensembles complets de (1.17) (plus c et d sont grands), plus κ(d, c) définie par (1.14) s'approche de 0.

• du Résultat 1.2.1 D'après (1.15), s'il existe β parcimonieux ( β 0 est petit) tel que Xβ * -Xβ est petit et si κ 2 (d, 3+ 4/δ) n'est pas trop petit, alors le membre de droite de l'inégalité (1.15) est petit et la solution Lasso β * (λ) présente un petit risque de prédiction si λ est choisi assez grand. Cependant,l'inégalité (1.15) n'est pas strictement de la forme (1.13) car son terme d'erreur faisant intervenir κ 2 (d, 3 + 4/δ) qui dépend des données, il ne se réduit pas à une quantité déterministe C(δ). En particulier, si κ 2 (d, 3 + 4/δ) est très petit, le membre de droite de (1.15) explose et l'inégalité (1.15) ne garantit pas un faible risque de prédiction. Pour s'assurer κ 2 (d, 3 + 4/δ) assez grand, il faut prendre d petit et δ grand, mais alors l'infimum dans (1.15) est pris sur un ensemble très petit et la constante 1 + δ s'éloigne de la valeur idéale 1, donc l'inégalité oracle (1.15) perd en significativité. La pénalisation 1 ne permet pas de se substituer pleinement à la pénalisation 0 .

Résultats d'estimation et de sélection de variables

La pénalisation 1 étant utilisée comme procédure de sélection de variables, il convient de s'assurer de la pertinence des variables sélectionnées par le Lasso en les comparant aux variables utiles du vrai modèle. De plus, comme la régularisation 1 fait tendre tous les coefficients vers zéro, on peut se demander à quel point la sous-estimation des coefficients détériore leur estimation.

Résultats d'estimation

But

Dans un cadre non asymptotique, les résultats d'estimation sont souvent exprimés en majorant β *β * (λ) 1 ou β * -β * (λ) 2 ou plus rarement β * -β * (λ) q . Nous nous restreignons ici à un exemple obtenu en norme 1 .

Hypothèse

Comme pour les résultats de prédiction, les résultats d'estimation nécessitent des hypothèses plus ou moins restrictives sur la matrice de Gram qui supposent une faible corrélation entre les variables. L'une des hypothèses la moins forte est la condition de valeur propre restreinte (1.14).

Résultat

Résultat 1.2.2. [Théorème 6.2 de [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]] Supposons RE( β * 0 , 3) définie par (1.14) vérifiée. Alors, pour tout paramètre de régularisation λ = Aσ ln(p)/n avec A > 2 √ 2, l'estimateur Lasso β * (λ) satisfait l'inégalité suivante avec probabilité plus grande que 1 -p 1-A 2 /8 :

β * -β * (λ) 1 ≤ 16Aσ κ( β * 0 , 3) β * 0 ln p n .
(1.18) 

But

On cherche à évaluer la pertinence des variables sélectionnées par le Lasso. On distingue deux types d'étude :

• la consistance en sélection compare l'ensemble des variables sélectionnées par l'estimateur Lasso β * (λ) représenté par J λ = {j ∈ {1, . . . , p} : β * j (λ) = 0} à l'ensemble des variables pertinentes du vrai modèle représenté par J = {j ∈ {1, . . . , p} : β * j = 0} ;

• la consistance en signe compare le signe des estimations Lasso β * j (λ) au signe des vrais paramètres β * j .

Les résultats peuvent être établis d'un point de vue asymptotique ou non asymptotique. D'un point de vue non asymptotique, la procédure Lasso est dite

• consistante en sélection si P (∃ λ n > 0 : J λn = J ) = 1 -η n où (η n ) n≥0
est une suite de réels positifs tendant vers 0 ;

• consistante en signe si P ∃ λ n > 0 : sign( β * (λ n )) = sign (β * ) = 1 -η n où (η n ) n≥0 est
une suite de réels positifs tendant vers 0, où sign(x) = (sign(x 1 ), . . . , sign(x p )) pour x = (x 1 , . . . , x p ) ∈ R p et où sign(x) est le signe de x pour x ∈ R avec la convention sign(0) = 0.

L'intérêt de la consistance en signe par rapport à la consistance en sélection est de comparer le signe de la corrélation entre chaque variable et la réponse Y pour l'estimation Lasso et le vrai paramètre. La consistance en signe implique la consistance en sélection.

Hypothèse

On note X J la restriction de X aux colonnes d'indice j ∈ J et X J c la restriction de X aux colonnes d'indice j ∈ J c . On considère les matrices de Gram restreintes

Ψ n (J c , J ) = X J c T X J /n et Ψ n (J , J ) = X J T X J /n.
On dit que la Condition d'Irreprésentabilité, notée CI, est vérifiée s'il existe C > 0 tel que

Ψ n (J c , J )Ψ -1 n (J , J ) sign(β * J ) ∞ ≤ 1 -C où • ∞ désigne la norme ∞ de R J c .

Résultats

Les premiers résultats non asymptotiques avec p ≥ n établis dans le cadre de la régression linéaire sont dûs à [START_REF] Zhao | On model selection consistency of Lasso[END_REF]. Ils ont démontré que CI est suffisante pour assurer la consistance en signe de la procédure Lasso :

Résultat 1.2.3. [Théorème 4 de Zhao et Yu (2007)] Supposons que pour tout n ∈ N , min j∈J β * j ≥ n -δ/2 avec 0 < δ < 1 et que p est exponentiel en n. Alors, si CI est vérifiée, la procédure Lasso est consistante en signe (et donc en sélection).

A notre connaissance, la nécessité de CI n'a pas été prouvée dans le cas p ≥ n. Par contre, dans le cas p ≤ n, si p et β * sont indépendants de n, [START_REF] Zhao | On model selection consistency of Lasso[END_REF] ont démontré que CI est suffisante et presque nécessaire pour que la procédure Lasso soit asymptotiquement consistante en signe au sens où [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF] a démontré qu'une condition similaire à CI est nécessaire pour que la procédure Lasso soit asymptotiquement consistante en sélection au sens où lim n→∞ P (∃ λ n > 0 : J λn = J ) = 1.

lim n→∞ P ∃ λ n > 0 : sign( β * (λ n )) = sign (β * ) = 1. De plus,

Interprétation et discussion

• de la Condition d'Irreprésentabilité

En pratique, J correspond aux variables pertinentes. CI est une contrainte reliant les variables non pertinentes aux variables pertinentes. Quand les signes des vrais β * j sont inconnus, CI revient à exiger

max j∈J c Ψ n (j, J )Ψ -1 n (J , J ) 1 ≤ 1 -C.
Cela signifie que, dans le vrai modèle, la corrélation entre chaque variable non pertinente et l'ensemble des variables pertinentes ne peut pas atteindre la valeur 1, d'où le nom "irreprésentabilité". Le Lasso sélectionne les bonnes variables si et (presque) seulement si les variables non pertinentes du vrai modèle ne peuvent pas être représentées par les variables pertinentes du modèle.

induire de la parcimonie, le Lasso fait tendre les coefficients β * j vers 0 jusqu'à annuler les plus faibles. Le problème est que cette diminution des coefficients est trop forte si bien que, lorsqu'il existe de fortes corrélations entre variables pertinentes et non pertinentes (quand CI n'est plus vérifiée), le Lasso a tendance à piocher parmi les variables non pertinentes fortement corrélées aux variables pertinentes pour ajouter l'estimation de leurs coefficients à celle des coefficients des variables pertinentes et ainsi compenser la sous-estimation des coefficients. Par conséquent, le Lasso a tendance à sélectionner trop de variables.

Vers d'autres pistes

Afin de corriger ce défaut du Lasso à sélectionner trop de variables, des versions modifiées du Lasso ont été introduites. On peut par exemple citer le Lasso adaptatif de [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF] qui a recours à des poids adaptatifs dans la pénalité 1 , le Lasso seuillé de van de Geer et al. ( 2011) qui ne conserve que les estimations Lasso supérieures à un certain seuil, ou bien le Bolasso de [START_REF] Bach | Bolasso : model consistent Lasso estimation through the bootstrap[END_REF] qui est une version bootstrap du Lasso basée sur une réplication bootstrap de l'échantillon et sur la sélection par le Bolasso des seules variables sélectionnées par le Lasso à tous les rééchantillonnages. Le Bolasso est consistant en sélection sans les hypothèses traditionnelles.

Un autre point de vue, envisagé par [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF], est de ne pas se servir de la pénalisation 1 pour sélectionner un estimateur Lasso de β * , mais seulement pour obtenir de manière efficace un ensemble de paquets de variables en parcourant le chemin de régularisation. Ensuite, [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF] estime β * par l'estimateur des moindres carrés sur chaque paquet de variables atteint le long du chemin de régularisation, et sélectionne l'un de ces estimateurs des moindres carrés par un critère de pénalisation 0 . C'est cette dernière voie que nous adapterons à notre contexte et que nous exploiterons dans cette thèse.

Vue d'ensemble de nos résultats

Nos travaux sont centrés sur la sélection de variables pour la classification non supervisée en grande dimension. La régularisation 1 et l'estimateur Lasso sont au coeur de cette thèse. Ce manuscrit comporte deux parties indépendantes :

1. Dans la Partie I, nous nous concentrons sur l'aspect régularisation 1 du Lasso en établissant des inégalités oracle 1 satisfaites par cet estimateur. Deux cadres sont considérés : un cadre gaussien linéaire puis un cadre gaussien non linéaire. Cette partie est purement théorique.

2. Dans la Partie II, nous exploitons les propriétés de sélection de variables du Lasso pour établir une procédure de classification non supervisée intégrant la sélection simultanée des variables pertinentes pour faire cette classification. Nous nous plac ¸ons dans un cadre de mélange fini de densités gaussiennes multivariées en grande dimension. Cette partie mêle théorie et simulations.

Ces deux parties sont suivies d'un chapitre annexe dans lequel nous présentons deux procédures que nous avons envisagées au cours de nos recherches et qui peuvent constituer des alternatives à la procédure que nous allons présenter en Partie II. Nous comparons ces trois procédures sur des données simulées afin de motiver notre choix pour la procédure finalement retenue.

Des chapitres de ce manuscrit ont fait l'objet de publication ou de soumission d'articles :

• Les inégalites oracle 1 du Chapitre 2 sont publiées : P. [START_REF] Massart | The Lasso as an 1 -ball model selection procedure[END_REF], The Lasso as an 1 -ball model selection procedure. Electronic Journal of Statistics, Vol.5, 669-687.

• Les vitesses de convergence du Chapitre 2 sont publiées : P. Massart et C. Meynet (2012), Somes rates of convergence for the selected Lasso estimator. Lecture Notes in Computer Science Vol.7568/2012, 17-33. Partie I. Some 1 -oracle inequalities for the Lasso in Gaussian regression models Bien que défini comme un estimateur régularisé en norme 1 , le Lasso doit principalement son succès à ses propriétés de parcimonie qui, additionnées à son caractère convexe, font de lui un substitut efficace à la régularisation en "norme" 0 . Ainsi, les principaux résultats de prédiction sur cet estimateur sont des inégalités oracle le comparant à un pseudo-oracle 0 , telle l'inégalité (1.15). Ces résultats nécessitent des contraintes du type de (1.14) imposées sur la matrice de Gram, qui sont en pratique difficilement vérifiées en grande dimension. Dans cette partie, nous nous focalisons sur le Lasso non pas comme procédure de sélection de variables, mais comme algorithme de régularisation 1 . Dans cette optique, nous établissons des inégalités oracle 1 satisfaites par cet estimateur afin de comparer son risque de prédiction à l'oracle 1 . Cela permet de fournir des résultats de prédiction complémentaires aux résultats de prédiction traditionnellement établis pour le Lasso dans le cadre de parcimonie. Nos résultats 1 s'affranchissent des contraintes sur la matrice de Gram nécessaires à l'établissement des résultats 0 . De plus, ils restent valables en dehors du contexte de parcimonie.

Chapitre 2 Homogeneous Gaussian regression models

Cadre

Nous nous plac ¸ons dans un cadre de modèles de régression gaussienne. La fonction de régression est décomposée dans un dictionnaire fini (régression linéaire gaussienne par exemple) ou infini dénombrable (ondelettes) ou infini indénombrable (réseau de neurones). En particulier, dans le cas d'un dictionnaire fini, le modèle statistique considéré est celui présenté en (1.4).

Résultats

Deux types de résultats sont établis : d'abord des inégalités oracle 1 , desquelles sont ensuite déduites des vitesses de convergence. Les inégalités oracle sont obtenues en appliquant une version simplifiée d'un théorème général de sélection de modèle [START_REF] Massart | Concentration inequalities and model selection[END_REF] il existe une constante C > 0 telle que, pour tout A > 0, l'estimateur Lasso β * (λ) défini par (1.11) satisfait l'inégalité oracle suivante avec probabilité plus grande que 1 -3.4e -A :

Xβ * -X β * (λ) 2 + λ β * (λ) 1 ≤ C inf β∈R p Xβ * -Xβ 2 + λ β 1 + λ(1 + A) √ n . (1.20)
En intégrant par rapport à A, nous obtenons l'inégalité oracle en espérance suivante :

E Xβ * -X β * (λ) 2 + λ β * (λ) 1 ≤ C inf β∈R p Xβ * -Xβ 2 + λ β 1 + λ √ n .
(1.21) L'inégalité oracle 1 (1.20) est à mettre en parallèle de l'inégalité oracle 0 (1.15). Contrairement à (1.15), notre inégalité ne nécessite aucune hypothèse, ni sur la matrice de Gram, ni sur la parcimonie de β * . Dans le cas orthogonal, cette inégalité oracle permet de retrouver les vitesses de convergence optimales établies sur les espaces de Besov par [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] pour les estimateurs par seuillage doux auxquels est équivalent le Lasso.

Nous considérons ensuite le cas de dictionnaires dénombrables ordonnés D = {φ 1 , . . . , φ p , . . .} (ondelettes par exemple). Pour de tels dictionnaires, une calibration théorique du paramètre de régularisation λ comme proposée en (1.19) n'est plus possible car on ne dispose plus de taille finie p du dictionnaire. Nous proposons une procédure permettant la calibration de λ par choix d'un meilleur niveau de troncature du dictionnaire au sens suivant. Nous considérons la suite d'estimateurs Lasso associés à la suite de dictionnaires tronqués D p = {φ 1 , . . . , φ p }. Nous pénalisons chacun de ces estimateurs suivant la taille du dictionnaire. Nous choisissons alors le niveau de troncature p réalisant le meilleur compromis entre qualité de l'approximation, régularisation 1 et parcimonie (taille du dictionnaire). L'estimateur ainsi obtenu correspond à l'estimateur Lasso sur le dictionnaire tronqué {φ 1 , . . . , φ p}. Nous appelons cet estimateur "estimateur Lasso sélectionné". Dans le cas orthogonal où les estimateurs Lasso correspondent aux estimateurs par seuillage doux, notre procédure permet de régler le problème crucial du choix du seuil.

Nous établissons une inégalité oracle pour cet estimateur Lasso sélectionné. Nous en déduisons des vitesses de convergence sur des espaces de Besov dans le cas orthogonal, puis sur des espaces d'interpolation dans le cas non orthogonal. Dans le cas orthogonal, nous établissons des vitesses minimax prouvant que les vitesses de convergence de l'estimateur Lasso sélectionné sont optimales. En outre, cet estimateur est adaptatif aux espaces de Besov, contrairement aux estimateurs Lasso classiques.

Le cas des dictionnaires infinis utilisés pour les réseaux de neurones est finalement considéré. Une inégalité oracle 1 et des vitesses de convergence sont établies pour le Lasso.

Discussion

Contrairement aux inégalités oracle 0 usuelles considérées pour évaluer les performances du Lasso en sélection de variables, nos inégalités oracle 1 ne nécessitent aucune hypothèse. Cependant, cela n'a rien de surprenant : le Lasso est défini comme un estimateur régularisé en norme 1 , on peut donc s'attendre à l'obtention d'une inégalité oracle 1 sans autre hypothèse qu'une bonne calibration de pénalisation, qui est traduite par la minoration (1.19) du paramètre de régularisation.

Des inégalités oracle du type de (1.20) et (1.21) ont déjà été établies [START_REF] Huang | Risk of penalized least squares, greedy selection and 1 -penalization for flexible function libraries[END_REF][START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF][START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF]. L'originalité de nos résultats réside dans l'approche envisagée pour les démontrer : l'idée est de voir la procédure Lasso comme une procédure de sélection de modèle où les modèles sont des boules 1 , ce qui nous permet d'exploiter la théorie sur la sélection de modèle [START_REF] Massart | Concentration inequalities and model selection[END_REF]. La linéarité de la décomposition de la fonction de régression dans le dictionnaire et le fait de considérer des erreurs gaussiennes nous permettent d'appliquer une inégalité maximale gaussienne et d'obtenir une minoration (1.19) du paramètre de régularisation optimale en n. Si des arguments entropiques étaient développés, on aboutirait à un résultat sous-optimal avec un terme en ln(n) en trop (cf. Chapitre 3). Pour éviter le recours aux arguments entropiques et obtenir des résultats optimaux, nous avons établi une version simplifiée (suffisante dans notre cadre) d'un théorème de sélection de modèle de Massart (2007). Nos inégalités oracle se déduisent par application directe de ce théorème simplifié (Théorème 2.A.1, annexe du Chapitre 2).

Chapitre 3 Finite mixture Gaussian regression models

Cadre

Le cadre du Chapitre 2 englobe le cas de la régression linéaire gaussienne où l'on considère n observations

(X i , Y i ) ∈ R p × R telles que Y i = p j=1 β * j X ij + ε i . Pour un tel modèle, Y i | X i = x i suit une loi gaussienne N ( p j=1 β * j x ij , σ 2
). Au Chapitre 3, nous étendons ce cadre de régression "homogène" au cadre de régression "hétérogène" en envisageant le cas où les valeurs des coefficients de régression peuvent dépendre des observations. Cette modélisation hétérogène semble plus réaliste que la modélisation homogène surtout dans le cas de la grande dimension où les variables sont très nombreuses et où certaines d'entre elles peuvent ne pas avoir la même influence sur toutes les observations. Prendre en compte une telle situation permet alors de réduire le risque de prédiction. Cette hétérogénéité peut être modélisée par un mélange fini de K régressions gaussiennes : 

Y i | X i = x i ∼ s = s θ * = K k=1 π * k N   p j=1 β * kj x ij , σ * 2 k   . Le paramètre θ * = (π * k , β * k , σ * k ) 1≤k≤K
ŝ(λ) = arg min s θ - 1 n n i=1 ln (s θ (Y i |x i )) + λ|s θ | 1 , λ > 0, (1.22) où |s θ | 1 = p j=1 K k=1 |β kj | pour s θ = K k=1 π k N ( p j=1 β kj x ij , σ 2 k ).

Résultat

Nous établissons une inégalité oracle 1 pour comparer le risque de prédiction de l'estimateur Lasso ŝ(λ) défini par (1.22) à l'oracle 1 . Dans une approche de maximisation de la vraisemblance, nous introduisons la divergence de Kullback-Leibler, notée KL, et nous considérons la fonction de perte moyenne définie pour une densité t par

KL n (s, t) = 1 n n i=1 KL(s(•|x i ), t(•|x i )) = 1 n n i=1 R ln s(y|x i ) t(y|x i ) s(y|x i ) dy.
Pour des raisons techniques, nous nous restreignons à un ensemble de densités s θ dans un ensemble S à paramètres θ bornés par des constantes. Nous démontrons le résultat suivant.

Théorème 3.3.1 Si λ ≥ κ C K (ln n) 2 ln(2p + 1) n (1.23)
où κ > 1 est une constante absolue et C > 0 est une quantité dépendant des bornes imposées sur les paramètres et des régresseurs x ij , alors ŝ(λ) satisfait l'inégalité oracle en espérance suivante :

E [KL n (s, ŝ(λ))] ≤ (1 + κ -1 ) inf s θ ∈S {KL n (s, s θ ) + λ|s θ | 1 } + λ + C K 3/2 ln n √ n , (1.24)
où C est une quantité dépendant des bornes imposées sur les paramètres.

Dans l'énoncé du Théorème 3.3.1 au Chapitre 3, les quantités C et C sont explicitées de manière précise bien que l'optimalité de ces quantités ne soit pas garantie.

Discussion

Avant nous, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] se sont intéressés à ce cadre de régression hétérogène et à l'estimation de la densité de mélange par le Lasso. Ils ont introduit le Lasso dans le but de sélectionner les variables intervenant réellement dans un tel mélange de régressions, c'est-à-dire les variables indexées par j ∈ {1, . . . , p} tel que β * kj est non nul pour au moins une composante k ∈ {1, . . . , K} du mélange. Dans cette optique de sélection de variables, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] ont établi une inégalité oracle 0 afin de comparer les risques de prédiction du Lasso à un pseudo-oracle 0 . Comme dans le cas de la régression linéaire homogène, leur résultat nécessite de fortes contraintes de non colinéarité entre les variables, traduites par une hypothèse semblable à (1.14) mais sommée sur les K composantes du mélange. De plus, afin de relier la divergence de Kullback-Leibler à la norme 2 des paramètres, ils ont introduit des hypothèses de marge faisant intervenir des quantités inconnues dont dépendent leur inégalité. Ils ont eux aussi considéré des paramètres bornés.

Pour K = 1, KL n (s, t) = E Xβ * -Xβ 2 /2,
donc l'inégalité (1.21) établie au Chapitre 2 est un cas particulier de l'inégalité (1.24) pour K = 1. Cependant, nous avons établi l'inégalité (1.21) sans hypothèse de bornitude sur les paramètres et la borne inférieure du paramètre de régularisation (1.19) ne comporte pas le terme en (ln n) 2 de la borne inférieure (1.23). Ce terme supplémentaire provient de calculs d'entropie métrique dans la démonstration.

Partie II. Variable selection for clustering based on Gaussian mixture models for high-dimensional data

Dans la partie II, nous nous plac ¸ons dans le cadre de la classification non supervisée en grande dimension sous l'hypothèse de parcimonie, tel qu'introduit en Section 1.1.1. Nous envisageons une approche par modèles de mélange gaussien. Nous exploitons la parcimonie induite par la pénalisation 1 pour construire une procédure efficace de classification incluant la sélection des variables pertinentes pour déterminer cette classification. Cependant, notre procédure n'a pas recours à la pénalisation 1 de manière traditionnelle. En fait, nous n'utilisons la pénalisation 1 que pour construire de manière efficace une collection de modèles de mélange aléatoire restreinte obtenue en faisant varier le paramètre de régularisation. Une fois cette collection de modèles obtenue, nous estimons les paramètres de chaque modèle par maximum de vraisemblance, puis nous sélectionnons un modèle grâce à un critère pénalisé 0 non asymptotique construit à partir des données suivant l'heuristique de pente de Birgé et Massart (2006). Nous nous démarquons ainsi de l'usage traditionnel de la pénalisation 1 qui consiste non seulement à construire des paquets de variables mais aussi à estimer les paramètres du mélange par sélection de l'une des solutions Lassos. Notre volonté d'éviter l'estimation par le Lasso est motivée par les performances médiocres d'estimation et de sélection de variables du Lasso constatées dans le cadre de la régression et rappelées en Section 1.2.5.

Dans la suite, nous conservons les notations introduites en Section 1.1.1.

Chapitre 4 Our Lasso-MLE procedure for variable selection in clustering

Résultats

Le point central du Chapitre 4 est la description de notre procédure de classification non supervisée en grande dimension avec sélection simultanée des variables pertinentes pour établir cette classification. Avant de décrire cette procédure, nous en motivons les étapes en analysant les points forts et les points faibles de la procédure de Pan et Shen (2007) dont nous reprenons l'idée de la pénalisation 1 pour une détection automatique des variables pertinentes pour la classification.

• Points faibles de la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] Etant données des observations Y = (Y 1 , . . . , Y n ), [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] Afin d'obtenir un estimateur θ = (π k , µ kj , σ) 1≤k≤K parcimonieux en les coefficients des moyennes, ils appliquent une pénalisation 1 des coefficients des moyennes au risque empirique sur Y . Pour un nombre K de classes et un paramètre de régularisation λ fixés, l'estimateur Lasso associé est défini par Cette procédure nous inspire plusieurs remarques :

θ (K,λ) = arg min θ∈Θ K - 1 n n i=1 ln s θ (Y i ) + λ|θ| 1 (1.
1. Sélection des variables pertinentes ? L'idée de la sélection automatique de variables par pénalisation 1 nous semble judicieuse et prometteuse. Cependant, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] ne justifient pas vraiment pourquoi les variables sélectionnées par minimisation de (1.25) sont effectivement les variables pertinentes pour la classification.

Estimation de la densité de Y ?

A notre connaissance, aucun résultat théorique de prédiction ou d'estimation sur le Lasso n'a été établi dans le cadre de l'estimation de densité par mélange gaussien. Cependant, les résultats théoriques établis en régression que nous avons rappelés en Sections 1.2.4 et 1.2.5 ne permettent de garantir de bonnes performances de prédiction et d'estimation du Lasso que sous des hypothèses difficilement vérifiées en grande dimension. Les problèmes d'estimation du Lasso ont été largement confirmés en pratique (par exemple, [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF], pour la régression ou Bertin et al., 2011, pour l'estimation de densité par décomposition dans un dictionnaire). Ils sont liés à la sous-estimation des coefficients provoquée par la régularisation 1 et il est légitime de penser que la solution Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] souffre également de ce problème.

De plus, comme [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] recentrent préalablement les données, ils obtiennent une estimation s de la densité s de l'échantillon recentré et non de la densité s des données de départ. Pour obtenir une estimation de s à partir de s, il convient d'ajouter la moyenne empirique de chacune des p variables à l'estimation des coefficients de moyenne de s. Cela nécessite p estimations correspondant aux p moyennes empiriques. En grande dimension où p n, cela risque de conduire à une estimation de la densité s présentant un fort risque de prédiction. En outre, en ajoutant les moyennes empiriques à chaque coefficient de moyenne, on perd la parcimonie de la solution. A cause du centrage empirique, la méthode de Pan et Shen (2007) risque de ne pas être adaptée aux problèmes de classification en grande dimension pour lesquels un objectif d'estimation se greffe à l'objectif de classification.

C'est par exemple le cas pour la classification de données fonctionnelles lorsqu'une reconstruction parcimonieuse de courbes est souhaitée.

3. Qualité de la classification ?

D'après le point 2 ci-dessus, on peut douter de la qualité de l'estimation de la densité s par la solution Lasso s de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. Or, la classification est obtenue par MAP à partir de l'estimation s. On peut donc s'interroger sur la répercussion des problèmes d'estimation de la densité s sur la qualité de la classification.

Sélection de modèle ?

On peut douter de la pertinence d'un critère asymptotique comme BIC dans le cadre de la grande dimension où le nombre d'observations est réduit par rapport au nombre de variables.

• Notre procédure Lasso-MLE Nous proposons une procédure reprenant le point fort de la procédure de Pan et Shen (2007) à savoir la sélection de variables par la régularisation 1 -mais corrigeant un à un les quatre points faibles mentionnés ci-dessus :

1. Sélection des variables pertinentes.

Grâce au cadre statistique rigoureux fourni par les modèles de mélange, on peut donner une définition mathématique d'une variable pertinente pour la classification. Une variable indexée par j ∈ {1, . . . , p} telle que les coefficients de moyenne µ kj sont identiques pour toutes les composantes k ∈ {1, . . . , K} du mélange ne sert à rien pour discriminer les classes. Une telle variable est non pertinente pour la classification. Au contraire, une variable qui possède au moins deux composantes de moyenne différentes est susceptible d'avoir une influence sur la classification et sera dite pertinente pour la classification. Au Chapitre 4, nous justifions que le problème de minimisation (1.25) proposé par [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] permet effectivement de détecter de telles variables. Nous utilisons alors la méthode de Pan et Shen (2007) pour construire des paquets de variables potentiellement pertinentes en faisant varier le nombre de classes K et le paramètre de régularisation λ du Lasso.

Estimation de la densité de Y .

Pour pouvoir traiter la classification de données fonctionnelles où il est essentiel de bien estimer chaque densité gaussienne composante du mélange afin de reconstruire un profil type par classe, nous apportons deux modifications à la procédure de Pan et Shen (2007) (b) Une fois notre collection de modèles obtenue, nous proposons une estimation des paramètres dans chaque modèle par l'estimateur du maximum de vraisemblance et non par l'estimateur Lasso. Cela revient à effectuer un seuillage dur plutôt qu'un seuillage doux des coefficients, ce qui améliore l'estimation des coefficients de moyenne non nuls. Nous améliorons ainsi l'estimation de la densité.

3. Qualité de la classification.

Notre choix de méthode pour la classification -à savoir une modélisation par modèles de mélange gaussien sphérique homoscédastique et une classification déduite par MAP à partir de l'estimation de la densité s du mélange -reformule le problème de classification en un problème d'estimation de la densité s. Grâce aux précautions décrites ci-dessus, notre procédure garantit une bonne estimation de la densité s de l'échantillon Y . Nous pouvons donc espérer qu'il en découle une bonne classification des observations Y i , du moins si notre modélisation reflète effectivement la réelle structure des données (ce qui est par exemple le cas pour des données simulées sous les bonnes hypothèses, comme pour nos simulations au Chapitre 5).

Sélection de modèle.

Au lieu d'utiliser un critère asymptotique de type BIC, nous optons pour un critère de sélection de modèle non asymptotique par pénalisation 0 , basé sur la théorie développée par [START_REF] Birgé | From model selection to adaptive estimation[END_REF] et [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. La recherche de la pénalité à considérer pour définir ce critère est menée au Chapitre 6.

Discussion

La procédure ci-dessus n'est pas la première à laquelle nous avons songé. Le premier défaut de la procédure de Pan et Shen (2007) que nous avons jugé indispensable de corriger est l'estimation des paramètres par le Lasso. Nous pensons que l'idée de n'utiliser le Lasso que pour construire un nombre restreint de paquets de variables en un temps qui reste raisonnable même en grande dimension, puis de réaliser l'estimation par l'estimateur du maximum de vraisemblance3 sur les modèles engendrés par ces paquets et de sélectionner l'un d'entre eux par un critère de pénalisation 0 , est à retenir, que ce soit dans notre contexte ou dans n'importe quel autre contexte. Ainsi, notre idée initiale était la suivante : centrer empiriquement les observations, utiliser la pénalisation 1 sur les observations recentrées pour créer des paquets de variables potentiellement pertinentes, en déduire une collection de modèles, estimer les paramètres sur les observations recentrées par l'estimateur du maximum de vraisemblance dans chaque modèle, choisir un modèle par un critère non asymptotique et partitionner les observations recentrées par MAP.

Par rapport à la procédure de Pan et Shen (2007), cette procédure est en particulier censée améliorer l'estimation de la densité des observations recentrées et donc la classification des observations recentrées. Cette procédure est acceptable si le seul objectif envisagé est la classification. De plus, elle est réalisable sans hypothèse de parcimonie, contrairement à notre procédure qui suppose que de nombreuses variables sont non seulement non pertinentes mais aussi inactives. Cependant, elle ne permet pas de traiter le cas où l'estimation de la densité des observations d'origine (non recentrées) fait partie du problème, comme c'est le cas pour la reconstruction de courbes multiclasses. En effet, à cause du centrage empirique, pour passer de l'estimation de la densité des observations recentrées à l'estimation des observations d'origine, il faut ajouter les p moyennes empiriques, ce qui conduit à une estimation dangereuse et non parcimonieuse.

Une autre version de notre procédure Lasso-MLE est envisageable. Supposons qu'il existe de nombreuses variables inactives. Dans la procédure que nous avons décrite ci-dessus, la construction de modèles s'opère en deux temps : nous créons des paquets de variables non pertinentes puis nous constituons des paquets de variables inactives parmi chaque paquet de variables non pertinentes. Une autre possibilité consiste à inverser l'ordre de recherche des variables en créant d'abord des paquets de variables actives puis en constituant des paquets de variables pertinentes parmi chaque paquet de variables actives. Cette alternative éjecte d'abord les variables absentes du modèle (les variables inactives) puis recherche les variables pertinentes pour la classification parmi les variables présentes dans le modèle. Elle peut paraître plus intuitive que notre procédure qui consiste à détecter les variables non pertinentes pour la classification puis à extraire les variables inactives parmi ces variables non pertinentes. Cette alternative a notamment l'avantage de rester bien définie dans la cas limite monoclasse K = 1 : il suffit de supprimer sa deuxième étape et de ne conserver que sa première étape pour obtenir une procédure de sélection de variables dans un cadre de modèles linéaires gaussiens. Au contraire, notre procédure n'a de sens que pour K ≥ 2 car notre première étape est focalisée sur la classification. Cependant, la mise en pratique de cette méthode alternative pose des problèmes numériques en grande dimension.

Au Chapitre A, les deux procédures alternatives mentionnées ci-dessus sont présentées et comparées à notre procédure Lasso-MLE sur des données simulées. Une analyse des performances de chacune des trois méthodes permet de comprendre notre choix pour la procédure finalement retenue.

Chapitre 5 Simulations

Au Chapitre 5, nous testons notre procédure Lasso-MLE sur des jeux de données simulées.

Résultats

D'abord, nous comparons notre procédure à deux procédures de sélection de variables en classification non supervisée par modèles de mélange gaussien qui partagent des points communs avec notre procédure. La première est la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] dont nous avons repris le recours à la pénalisation 1 pour construire efficacement une collection aléatoire de modèles incluse dans la collection de tous les modèles possibles. La seconde est la procédure de sélection de variables complète ou ordonnée de Maugis et Michel (2011a), dont notre procédure reprend l'estimation des paramètres du mélange par maximum de vraisemblance4 et l'utilisation de la méthode de la pente introduite par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] pour déterminer un critère pénalisé non asymptotique de sélection de modèle. Nos simulations nous permettent d'aboutir aux conclusions suivantes :

• L'inconvénient majeur de la procédure de Maugis et Michel (2011a) est combinatoire : à cause de la trop grande richesse de la collection de modèles en sélection de variables complète ou même ordonnée, leur procédure n'est réalisable qu'en très faible dimension. Grâce à l'écrémage de la collection de modèles complète réalisé par le Lasso, notre procédure Lasso-MLE peut être envisagée comme une solution attractive à l'extension et à l'adaptation de leur procédure de basse dimension à la grande dimension. A noter que le Lasso génère une collection de modèles suffisamment riche et pertinente pour contenir le(s) modèle(s) d'intérêt et ne pas altérer la qualité du modèle choisi par rapport au modèle choisi dans la collection plus riche de modèles considérée par Maugis et Michel (2011a), à critère de sélection de modèle identique.

• Comme attendu, le principal défaut de la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] concerne l'estimation de la densité et le choix du modèle retenu. Ces deux problèmes ont pour cause commune la sous-estimation des moyennes des variables pertinentes par les estimateurs Lasso. En effet, d'une part, cette sous-estimation entraîne une estimation médiocre de la densité. D'autre part, pour compenser cette sous-estimation, la procédure de Pan et Shen (2007) sélectionne des modèles contenant de nombreuses variables non pertinentes pour la classification. Au contraire, comme nous prenons soin d'estimer les paramètres par l'estimateur du maximum de vraisemblance dans chaque modèle, l'estimation de la densité est bonne et notre procédure sélectionne des modèles sans (ou avec très peu de) variables non pertinentes.

Ensuite, nous testons notre procédure sur des problèmes de classification non supervisée de courbes. Nous considérons K types de courbes f 1 , . . . , f K . En pratique, les courbes f k sont décrites de manière discrète par leurs valeurs prises sur une grille très fine comportant p points :

f k = (f k (t 1 ), . . . , f k (t p )).
Nous bruitons ces courbes par un bruit blanc gaussien et nous génèrons n observations y i avec n p.

Nous obtenons ainsi un échantillon y = (y 1 , . • Grâce au Lasso qui est capable de parcourir un panel de modèles dans la collection complète de modèles, et d'annuler des coefficients µ kj jusqu'à j = p même pour de très grandes valeurs de p, nous ne sommes pas obligés de choisir un niveau de troncature pour la décomposition des fonctions f k , comme c'est généralement le cas pour les méthodes de projection sur une base (Misiti et al., 2007a ;[START_REF] Auder | Projection-based curve clustering[END_REF]. Notre procédure visite tous les niveaux et se charge d'annuler des coefficients µ kj aux meilleurs endroits (k, j) ∈ {1, . . . , K} × {1, . . . , p}.

• La décomposition en ondelettes d'une fonction est généralement parcimonieuse. Ainsi, il existe de nombreux j ∈ {1, . . . , p} tels que µ kj = 0 pour tout k ∈ {1, . . . , K}, c'est-à-dire tels que la variable φ j est inactive. La détection des variables inactives permet de réduire la dimension des modèles et d'estimer les paramètres sur le jeu de données non empiriquement recentré.

Cette précaution mêlée à l'estimation par maximum de vraisemblance (plutôt que par le Lasso) nous garantissent une bonne qualité d'estimation des vecteurs des moyennes µ 1 , . . . , µ K . En effectuant une transformation d'ondelettes inverse, nous obtenons alors une bonne estimation des fonctions f 1 , . . . , f K .

Discussion

En régression, l'algorithme LARS, calculant le chemin de régularisation entier du Lasso, se trouve implémenté dans la plupart des logiciels utilisés en statistique. Dans notre contexte de mélange gaussien en classification non supervisée, un tel algorithme n'existe pas. Nous avons repris l'idée de Pan et Shen (2007) de calculer la solution Lasso par un algorithme de type EM. Nous avons implémenté cet algorithme en MATLAB. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] considèrent une grille régulière sur laquelle ils font varier le paramètre de régularisation du Lasso pour calculer un ensemble de solutions Lasso. Nous avons constaté qu'un réglage déterministe du pas n'est pas évident. Nous avons cherché à améliorer ce point en proposant une grille construite à partir des données (cf. Section 4.B.1). D'autre part, en grande dimension, des précautions sont à prendre pour éviter la divergence de certaines quantités, telles les probabilités conditionnelles d'appartenance ou la log-vraisemblance. De plus, des problèmes d'estimation sont fréquents dans les modèles de très grande dimension. Pour contourner ce problème, une solution (qui est celle envisagée par [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] est d'effectuer un centrage empirique des données. Mais cette solution empêche de traiter le problème de reconstruction parcimonieuse de courbes, qui nous semble pourtant un enjeu important. C'est pour éviter le recours au centrage empirique dans la phase d'estimation que nous avons introduit la notion parcimonieuse de variable active.

En ce qui concerne notre critère de sélection de modèle, nous devons définir une forme de pénalité pour appliquer la méthode de la pente déduite de l'heuristique de pente de Birgé et Massart (2006). Depuis les travaux fondateurs de Birgé et Massart (2006), on distingue principalement deux formes de pénalité : l'une -proportionnelle à la dimension des modèles -est valide lorsqu'on travaille avec des collections de modèles {S m } m∈M ne contenant pas ou contenant très peu de modèles de même dimension D m (sélection de variables ordonnée en régression par exemple), l'autre -impliquant un terme logarithmique -est à considérer dans le cas de collections de modèles contenant de nombreux modèles de même dimension (sélection de variables complète en régression par exemple). Dans notre contexte, ces deux pénalités s'écrivent respectivement Chapitre 6 A non-asymptotic data-based penalized criterion

pen(m) = κ D m n et pen ln (m) = κ 1 D m n 1 + κ 2 ln p D m où κ,
Comme nous abordons le problème de classification non supervisée par l'intermédiaire de modèles de mélange gaussien, le choix du nombre de classes ainsi que la sélection des variables pertinentes pour la classification sont reformulés en un problème global de sélection de modèle. Nous avons opté pour un critère de sélection de modèle non asymptotique dans la lignée de la théorie de sélection de modèle développée par [START_REF] Birgé | From model selection to adaptive estimation[END_REF] et [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. L'enjeu du Chapitre 6 est de fournir des pistes de réflexion pour déterminer une pénalité minimale à considérer pour définir un critère pénalisé sélectionnant un modèle proche de l'oracle. L'étude de la forme de la pénalité est rendue délicate du fait du caractère aléatoire de notre collection de modèles (construite à partir des données par un algorithme Lasso). Deux points de vue sont considérés. D'un point de vue théorique, nous établissons une forme de pénalité minimale suffisante. D'un point de vue pratique, nous vérifions que cette forme de pénalité s'avère nécessaire en grande dimension. Les résultats de ce chapitre ne permettent pas de trancher définitivement sur la forme de pénalité optimale : ils sont plutôt à voir comme des éléments de réponse à la recherche de la pénalité minimale pour notre problème.

Résultats théoriques

Dans notre procédure Lasso-MLE introduite au Chapitre 4, nous estimons la densité du jeu de données par l'estimateur du maximum de vraisemblance dans chaque modèle préalablement généré par le Lasso. Nous devons donc considérer un critère de sélection de modèle dans le cadre d'estimation de densité par maximum de vraisemblance. [START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF] ont établi un théorème général de sélection de modèle dans un tel cadre. Cependant, leur théorème est formulé pour une collection déterministe de modèles tandis que notre collection de modèles générée par le Lasso est aléatoire. Nous ne pouvons donc pas appliquer directement leur théorème. Nous adaptons leur preuve au cas d'une collection aléatoire de modèles pour obtenir un théorème général de sélection de modèle dans le cadre d'estimation de densité par une collection aléatoire d'estimateurs du maximum de vraisemblance. Ensuite, nous appliquons ce théorème général à notre collection particulière de modèles de mélange gaussien sphérique homoscédastique. Pour des raisons techniques, nous nous restreignons à des modèles à paramètres bornés. Nous obtenons un théorème dont nous donnons ici un énoncé simplifié. Théorème 6.2.2 Soit s une densité inconnue à estimer. Soient {S m } m∈ M une collection aléatoire de modèles de mélange gaussien à paramètres bornés. Soit τ > 0 tel que s m ≥ e -τ s pour tout m ∈ M et pour tout s m ∈ S m tels que KL(s, s m ) ≤ 2 inf s θ ∈Sm KL(s, s θ ). Notons ŝm = arg min s θ ∈Sm γ n (s θ ) l'estimateur du maximum de vraisemblance dans le modèle S m et D m la dimension de S m . Alors, il existe deux quantités κ 1 > 0 et κ 2 > 0 dépendant des bornes imposées sur les paramètres des modèles et une constante absolue C > 1 telles que si pour tout m ∈ M et pour tout

D m ≤ p ∧ n, pen (m) ≥ κ 1 D m n 1 + κ 2 (1 ∨ τ ) ln p D m , (1.26)
alors l'estimateur ŝ m défini par m = arg min m∈ M {γ n (ŝ m ) + pen(m)} satisfait l'inégalité oracle suivante :

E d 2 H (s, ŝ m) ≤ C E inf m∈ M inf s θ ∈Sm KL(s, s θ ) + pen(m) + 1 ∨ τ n ,
où d H désigne la distance de Hellinger et KL la divergence de Kullback-Leibler.

Au Chapitre 6, l'énoncé du Théorème 6.2.2 est précisé : la forme des modèles est détaillée et les quantités κ 1 et κ 2 sont explicitées en fonction des données du problème. Pour établir le Théorème 6.2.2, il est nécessaire de contrôler l'entropie à crochets de nos modèles de mélange gaussien sphérique homoscédastique. Pour cela, nous adaptons à cette forme spécifique les arguments développés par [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF].

Discussion

Le Théorème 6.2.2 fournit une forme de pénalité minimale (1.26) garantissant que l'estimateur du maximum de vraisemblance pénalisé est proche de l'oracle 0 . En appliquant une telle pénalité lors de notre procédure Lasso-MLE, nous sommes garantis d'obtenir un estimateur présentant un faible risque de prédiction, sans autre hypothèse que des hypothèses de bornitude des paramètres du mélange. Dans un contexte de maximisation de la vraisemblance, de telles hypothèses sont courantes [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF][START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF][START_REF] Städler | 1 -penalization for mixture regression models[END_REF]. Au contraire, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] n'ont établi aucune inégalité oracle 0 pour leur estimateur Lasso. Or, au vu des résultats connus en régression que nous avons rappelés en Section 1.2.4, on peut légitimement penser que le Lasso ne peut satisfaire une telle inégalité oracle que sous des hypothèses restrictives difficilement vérifiées en grande dimension.

Deux bémols concernant le Théorème 6.2.2 sont à souligner :

• La pénalité minimale (1.26) ne dépend pas du caractère aléatoire M de la collection de modèles générée par le Lasso. En fait, notre méthode de démonstration repose fortement sur l'inclusion de notre collection de modèles aléatoire dans une collection déterministe plus grande. Or, n'ayant aucune connaissance a priori sur les collections de modèles générées par le Lasso, nous sommes contraints de prendre la collection de modèles complète comme collection déterministe.

Pour cette raison, la pénalité (1.26) n'est autre que la pénalité obtenue pour le problème de sélection de variables complète [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF]. D'après la théorie développée par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] 

pen ln (m) = κ 1 D m n 1 + κ 2 ln p D m ou pen(m) = κ D m n .
(1.27)

• Même si la forme de la pénalité minimale (1.26) s'avère optimale, le Théorème 6.2.2 ne fournit pas un critère pratique de sélection de modèle car il dépend de quantités inconnues κ 1 , κ 2 et τ .

Résultats pratiques

Afin de pallier les deux écueils ci-dessus, nous appliquons une méthode dérivée de la méthode heuristique dite de la "pente" introduite par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. La méthode de la pente est un moyen pratique pour calibrer la pénalité idéale quand la forme de celle-ci est connue à une constante multiplicative près. Elle est basée sur un mélange de théorie et d'heuristiques. Bien qu'elle n'ait été prouvée rigoureusement que dans des cadres restreints [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF][START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF], elle a fait ses preuves d'un point de vue pratique dans de nombreux contextes [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF][START_REF] Verzelen | Data-driven neighborhood selection of a Gaussian field[END_REF][START_REF] Denis | Choix du nombre de noeuds en régression spline par l'heuristique des pentes. 41èmes Journées de Statistique SFDS[END_REF][START_REF] Caillerie | Model selection for simplicial approximation[END_REF][START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF]Maugis et Michel, 2011a). L'idée clé de cette heuristique est de supposer que la pénalité optimale est environ le double d'une pénalité minimale qui peut être déduite graphiquement des données.

Dans cette thèse, nous apportons deux contributions à la méthode de la pente :

• Les utilisateurs de la méthode de la pente ont tendance à calibrer la pénalité minimale à partir des données puis à choisir comme pénalité optimale deux fois la pénalité minimale sans vérifier la validité de l'heuristique qui justifie ce procédé, même s'ils se trouvent dans un cadre de travail pour lequel cette heuristique n'a pas été prouvée théoriquement. Ici, nous proposons une méthode graphique facilement applicable dans n'importe quel contexte et permettant de vérifier d'un point de vue pratique la validité de l'heuristique de pente en simulant un "modèle nul". Cette méthode consiste à simuler la cible d'intérêt (dans notre cas, la densité inconnue du jeu de données) dans le plus petit modèle (au sens de l'inclusion) de la collection de modèles de fac ¸on à annuler le biais des estimateurs et à ne visualiser que la contribution de la complexité des modèles dans la forme de la pénalité. Cela permet de simplifier l'écriture de l'heuristique de pente, qui se réduit alors à des quantités calculables d'après les données. On peut alors graphiquement vérifier cette heuristique. Après la présentation de cette méthode dans un contexte général, nous l'appliquons pour vérifier la validité de l'heuristique de pente dans notre contexte.

• Pour appliquer la méthode de la pente traditionnelle introduite par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], on doit connaître la forme de la pénalité idéale à une constante multiplicative près. C'est le cas pour la pénalité pen définie par (1.27) car seule la constante multiplicative κ est à calibrer. Par contre, ce n'est pas le cas pour la pénalité pen ln définie par (1.27) car deux constantes κ 1 et κ 2 sont à calibrer. Nous étendons la méthode de la pente introduite par [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] au cas de la calibration de deux constantes. Nous fournissons une méthode de double régression robuste et une visualisation graphique semblable à celle implémentée par [START_REF] Baudry | Slope heuristics : overview and implementation[END_REF] pour le cas de la calibration d'une constante.

Outre ces deux contributions, nous appliquons la méthode de la pente traditionnelle ainsi que la méthode de la pente que nous avons développée pour tester respectivement les formes de pénalité pen et pen ln définies par (1.27). Ces études pratiques permettent d'aboutir aux deux conclusions suivantes :

• La forme de la pénalité idéale évolue en fonction de la dimension du problème : pour des problèmes de petite dimension (p n), une pénalité de la forme pen est observée, alors que pour des problèmes de grande dimension (p n), une pénalité de la forme pen ln est observée.

Ainsi, comme attendu par les résultats théoriques de Birgé et Massart (2006), la richesse de la collection de modèles semble influer sur la forme de la pénalité.

• Il existe un lien étroit entre la richesse de la collection de modèles générée par le Lasso et la calibration par la méthode de la pente de la pénalité pen définie par (1.27). Ainsi, la méthode de la pente permet d'obtenir une pénalité qui s'adapte à la richesse de la collection de modèles aléatoire générée par le Lasso. Cet avantage incite à l'utilisation d'une pénalité calibrée à partir des données plutôt que d'une pénalité déterministe comme c'est le cas pour BIC.

Discussion

Notre étude pratique de la forme de la pénalité ne fournit qu'une conclusion partielle. Nous constatons une évolution de la forme de la pénalité en fonction de la dimension du problème, mais nous ne fournissons pas de règle générale pour déterminer laquelle des deux pénalités pen ou pen ln est à considérer. Nous pensons qu'il n'est pas souhaitable (possible ?) de chercher à établir une telle règle. Tout l'intérêt de la méthode de la pente est de fournir une pénalité adaptative au jeu de données étudié. Dans notre cadre de travail où la collection des modèles varie suivant le jeu de données, fixer de manière déterministe une forme de pénalité reviendrait à trahir l'esprit de la méthode de la pente. De la même manière qu'il est judicieux de calibrer la (les) constante(s) au lieu de fixer des constantes déterministes tels que pour les critères AIC ou BIC, nous pensons préférable de tester les deux formes de pénalité et de laisser parler les graphiques pour le choix de la forme optimale.

Conclusion et perspectives Conclusion

A notre connaissance, l'idée d'exploiter la régularisation 1 pour la sélection de variables dans le cadre de la classification non supervisée en grande dimension n'a été envisagée avant nous que par [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] puis par [START_REF] Xie | Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables[END_REF] et [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF]. Ainsi, le Lasso n'a été que peu exploité dans ce contexte. Cette méthode prometteuse mérite d'être approfondie et travaillée afin de l'optimiser. C'est ce que nous avons cherché à faire en modifiant la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] pour obtenir notre procédure Lasso-MLE.

Pour évaluer les qualités et les défauts de la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], nous avons étudié les résultats théoriques et pratiques obtenus pour le Lasso dans le cadre plus largement étudié de la régression linéaire. L'avantage algorithmique du Lasso par rapport à d'autres méthodes de sélection de variables est indéniable. Par contre, le fossé entre les fortes hypothèses nécessaires pour obtenir les résultats théoriques 0 et l'absence totale d'hypothèse pour obtenir nos résultats théoriques 1 présentés en Partie I souligne que l'on ne peut pas espérer de l'estimateur régularisé en norme 1 qu'il rivalise avec l'oracle 0 . La solution intermédiaire que nous envisageons dans cette thèse -à savoir la sélection de variables par l'estimateur régularisé en norme 1 puis l'estimation par l'estimateur régularisé en "norme" 0 -nous semble une voie à retenir, que ce soit dans notre contexte ou dans tout autre contexte. Parallèlement à nos travaux, cette idée a d'ailleurs émergé chez d'autres auteurs : par exemple, [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF] dans le cadre de la régression ou [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] dans le cadre de l'estimation de densité décomposée dans un dictionnaire.

Nous préconisons un critère de sélection de modèle non asymptotique et construit à partir des données, par la méthode traditionnelle de la pente pour la calibration d'une constante, ou par la méthode dérivée que nous introduisons pour la calibration de deux constantes. Outre la calibration de la pénalité optimale, la forme même de cette pénalité peut être décidée à partir des données. Cela permet d'obtenir un critère de sélection optimal dépendant du jeu de données, ce que l'on ne peut pas attendre d'un critère déterministe et asymptotique tel AIC ou BIC. Cet avantage est d'autant plus appréciable que nous travaillons avec des collections de modèles aléatoires d'une part et en grande dimension d'autre part.

Perspectives D'un point de vue algorithmique, la grande dimension pose des problèmes numériques qui engendrent des problèmes d'estimation. Afin d'appréhender et de résoudre ces problèmes, nous avons préféré nous concentrer sur l'analyse de quelques jeux de données simulés plutôt que de traiter des jeux réels. Cependant, ce point est maintenant à envisager.

Des travaux supplémentaires seraient souhaitables afin de trancher entre les deux formes de pénalité de manière plus précise que dans cette thèse. On pourrait par exemple chercher à établir des minorations et/ou des majorations assez fines du nombre de modèles de même dimension dans nos collections de modèles aléatoires pour les insérer dans des collections déterministes approchantes. Cela faciliterait l'étude de la forme de la pénalité optimale.

La définition que nous avons donnée d'une variable pertinente pour la classification est liée à l'homogénéité des variances sur chaque classe. Dans le cas plus complexe où les matrices de covariance sont de la forme Σ k = diag(σ 2 k1 , . . . , σ 2 kp ), une variable est non pertinente si non seulement µ kj = µ k j mais aussi σ kj = σ k j pour tout (k, k ) ∈ {1, . . . , K} 2 . On peut alors montrer qu'une pénalité de la forme p j=1 K k=1 (|µ kj | + | ln(σ 2 kj )|) est supposée détecter de telles variables. [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF] ont étendu la procédure Lasso de [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] pour de tels modèles. De même, notre procédure Lasso-MLE doit pouvoir s'étendre à de telles situations. Au problème d'estimation des moyennes viendra se greffer le problème d'estimation des variances. On peut penser à adapter la notion de variable active en tenant compte non seulement des moyennes mais aussi des variances. Cela permettrait de traiter efficacement le problème de reconstruction de courbes bruitées de manière hétéroscédastique.

ABSTRACT

These last years, while many efforts have been made to prove that the Lasso behaves like a variable selection procedure at the price of strong assumptions on the geometric structure of these variables, much less attention has been paid to the analysis of the performance of the Lasso as a regularization algorithm. Our first purpose here is to provide a result in this direction in the framework of Gaussian models with nonrandom regressors, by proving that the Lasso mimics the deterministic Lasso provided that the regularization parameter is properly chosen. This result requires no assumption at all, neither on the structure of the variables nor on the regression function. Our second purpose is to propose a new estimator particularly adapted to deal with infinite countable dictionaries. This estimator is constructed as an 0 -penalized estimator among a sequence of Lasso estimators associated to a dyadic sequence of growing truncated dictionaries. The selection procedure automatically chooses the best level of truncation of the dictionary to make the best tradeoff between approximation, 1regularization and sparsity. We provide an oracle inequality satisfied by this selected Lasso estimator. All the oracle inequalities presented in this chapter are obtained via the application of a single general theorem for model selection among a collection of non-linear models.

The key idea that enables us to apply this general theorem is to see 1 -regularization as a model selection procedure among 1 -balls. Finally, rates of convergence achieved by the Lasso and the selected Lasso estimators on a wide class of functions are derived from these oracle inequalities, showing that these estimators perform at least as well as greedy algorithms.

NOTA:

The results presented in this chapter have been obtained in collaboration with Pascal Massart.

A shorten version of this chapter has been published: P. [START_REF] Massart | The Lasso as an 1 -ball model selection procedure[END_REF], The Lasso as an 1 -ball model selection procedure. Electronic Journal of Statistics, Vol.5, 669-687.

Introduction

We consider the problem of estimating a regression function s belonging to a Hilbert space H in a fairly general Gaussian framework which includes the fixed design regression or the white noise frameworks. Given a dictionary D = {φ j } j of functions in H, we aim at constructing an estimator ŝ = α.φ := j αj φ j of s which enjoys both good statistical properties and computational performance even for large or infinite dictionaries.

For high-dimensional dictionaries, direct minimization of the empirical risk can lead to overfitting and we need to add a complexity penalty to avoid it. One could use an 0 -penalty, i.e. penalize the number of non-zero coefficients αj of ŝ so as to produce interpretable sparse models but there is no efficient algorithm to solve this non-convex minimization problem when the size of the dictionary becomes too large. On the contrary, 1 -penalization leads to convex optimization and is thus computationally feasible even for high-dimensional data. Moreover, due to its geometric properties, 1 -penalty tends to produce some coefficients that are exactly zero and hence often behaves like an 0 -penalty. These are the main motivations for introducing 1 -penalization rather than other penalizations.

In the linear regression framework, the idea of 1 -penalization was first introduced by [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] who considered the so-called Lasso estimator (Least Absolute Shrinkage and Selection Operator). Then, lots of studies on this estimator have been carried out, not only in the linear regression framework but also in the non-parametric regression setup with quadratic or more general loss functions [START_REF] Efron | Least angle regression[END_REF][START_REF] Zou | On the "degrees of freedom" of the Lasso[END_REF][START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF][START_REF] Bunea | Aggregation and sparsity via 1 penalized least squares[END_REF][START_REF] Zhang | The sparsity and bias of the Lasso selection in high-dimensional linear regression[END_REF][START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF][START_REF] Van De Geer | High dimensional generalized linear models and the Lasso[END_REF]. For the fixed design Gaussian regression setting, if one observes n i.i.d. random couples (x 1 , Y 1 ), . . . , (x n , Y n ) such that

Y i = s(x i ) + σξ i , i = 1, . . . , n, (2.1) 
and consider a dictionary D p = {φ 1 , . . . , φ p } of size p, the Lasso estimator is defined as the following 1 -penalized least squares estimator ŝp := ŝ(λ p ) = arg min

t∈L 1 (Dp) Y -t 2 + λ p t L 1 (Dp) , (2.2)
where Y -t 2 := n i=1 (Y i -t(x i )) 2 /n is the empirical risk of t, L 1 (D p ) is the linear span of D p equipped with the 1 -norm t L 1 (Dp) := inf{ α 1 = p j=1 |α j |; t = α.φ = p j=1 α j φ j } and λ p > 0 is a regularization parameter.

Since 1 -penalization is used as a convex relaxation of 0 -penalization, many efforts have been made to prove that the Lasso behaves like a variable selection procedure by establishing sparsity oracle inequalities showing that the 1 -solution mimics the 0 -oracle [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF][START_REF] Van De Geer | High dimensional generalized linear models and the Lasso[END_REF]. Nonetheless, all these results require strong restrictive assumptions on the geometric structure of the variables. One typical example of such assumptions was presented in Section 1.2.4. We refer to [START_REF] Bühlmann | On the conditions used to prove oracle results for the Lasso[END_REF] for a detailed overview of all these restrictive assumptions.

In this chapter, we explore another approach by analyzing the performance of the Lasso as a regularization algorithm rather than a variable selection procedure. This is done by providing an regression setting, this result says that if D p = {φ 1 , . . . , φ p } with max j=1,...,p φ j ≤ 1, then there exists an absolute constant C > 0 such that for all λ p ≥ 4σ n -1/2 ( √ ln p + 1), the Lasso estimator defined by (2.2) satisfies

E s -ŝp 2 + λ p ŝp L 1 (Dp) ≤ C inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + σλ p √ n . (2.3)
This simply means that, provided that the regularization parameter λ p is properly chosen, the Lasso estimator works almost as well as the deterministic Lasso. Unlike the sparsity oracle inequalities, this result requires no assumption neither on the target function s nor on the structure of the variables φ j of the dictionary D p , except simple normalization that we can always assume by considering φ j / φ j instead of φ j .

We derive the 1 -oracle inequality (2.3) from a model selection theorem for non-linear models, by interpreting 1 -regularization as an 1 -ball model selection procedure (see Section 2.A). Thanks to this approach, we can envisage to go one step further than the analysis of the Lasso for finite dictionaries and deal with infinite dictionaries.

In a second part of this chapter, we thus focus on infinite countable dictionaries. The idea is to order the dictionary D = {φ j } j∈N = {φ 1 , φ 2 , . . .} according to the a priori knowledge we can have of the variables φ j , and to consider the dyadic sequence of truncated dictionaries

D 1 ⊂ • • • ⊂ D p ⊂ • • • ⊂ D with D p = {φ 1 , .
. . , φ p } for p ∈ {2 J , J ∈ N}. Given this sequence (D p ) p , we introduce the associated sequence of Lasso estimators (ŝ p ) p defined by (2.2), and choose ŝp as an 0 -penalized estimator among this sequence by penalizing the size of the truncated dictionaries D p . This selected Lasso estimator ŝp is thus based on an algorithm choosing automatically the level of truncation of the dictionary D making the best tradeoff between approximation, 1 -regularization and sparsity. Of course, although introduced for infinite dictionaries, this estimator remains well-defined for finite dictionaries and it may be profitable to use it rather than the classical Lasso for such dictionaries. From a theoretical point of view, we establish an oracle inequality satisfied by this selected Lasso estimator and we provide rates of convergence of this estimator for a wide range of function classes described by interpolation spaces B q,r . In the orthonormal case, we check that these rates of convergence are optimal by establishing a lower bound of the minimax risk. Our results prove that the selected Lasso estimator ŝp performs as well as the greedy algorithms described by [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF].

In this chapter, we also provide a few theoretical results on the performance of the Lasso for particular infinite uncountable dictionaries such as those used for neural networks. Although the Lasso solutions can not be computed in practice for such dictionaries, our purpose is just to point out that the Lasso theoretically performs as well as the greedy algorithms in [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF], by establishing rates of convergence based on an 1 -oracle inequality similar to (2.3) satisfied by the Lasso for such dictionaries.

The chapter is organized as follows. The notations and the framework are introduced in Section 2.2. In Section 2.3, we establish three 1 -oracle inequalities: one for the Lasso with finite dictionaries, one for the selected Lasso estimator with infinite countable dictionaries, and one for the Lasso with particular infinite uncountable dictionaries such as those used for neural networks. In Section 2.4, we derive from these oracle inequalities rates of convergence for the selected Lasso estimator and for the Lasso for a variety of function classes. In Appendix 2.A, we explain f the key idea that enables us to derive our three oracle inequalities from a single model selection theorem. Then, we state and prove this model selection theorem, which is a particular case of a general model selection theorem established by [START_REF] Massart | Concentration inequalities and model selection[END_REF]. The proofs of the three oracle inequalities and of the rates of convergence are respectively postponed until Appendix 2.B and Appendix 2.C.

Models and notations

General framework and statistical problem

Let H be a separable Hilbert space equipped with a scalar product ., . and its associated norm . . The statistical problem we consider is to estimate an unknown target function s in H when observing a process (Y (t)) t∈H defined by

Y (t) = s, t + εW (t), t ∈ H, (2.4)
where ε > 0 is a fixed parameter and (W (t)) t∈H is an isonormal process, that is to say a centered Gaussian process with covariance given by E[W (u)W (t)] = u, t for all u, t ∈ H.

This framework is convenient to cover both finite-dimensional models and the infinite-dimensional white noise model as described in the following examples.

Example 2.2.1. [Fixed design Gaussian regression model] Let X be a measurable space. One

observes n i.i.d. random couples (x 1 , Y 1 ), . . . , (x n , Y n ) of X × R such that Y i = s(x i ) + σξ i , i = 1, . . . , n, (2.5) 
where the covariates x 1 , . . . , x n are deterministic elements of X , the errors ξ i are i.i.d. N (0, 1), σ > 0 and s : X → R is the unknown regression function to be estimated. 

The Lasso: an 1 -penalized least squares estimator

To solve the general statistical problem (2.4), we introduce a dictionary D, i.e. a given finite or infinite set of functions φ j ∈ H that arise as candidate basis functions for estimating the target function s, and consider estimators ŝ = α.φ := j, φ j ∈D αj φ j in the linear span of D. All the matter is to choose a "good" linear combination in the following meaning. It makes sense to aim at constructing an estimator as the best approximating point of s by minimizing s -t or, equivalently, -2 s, t + t 2 . However s is unknown, so one may instead minimize the empirical least squares criterion γ(t) := -2Y (t) + t 2 .

(2.7)

But, for high-dimensional data, direct minimization of the empirical least squares criterion can lead to overfitting. To avoid it, one can rather consider a penalized risk minimization problem and estimate s by ŝ ∈ arg min

t {γ(t) + pen(t)} , (2.8) 
where pen(t) is a positive penalty to be chosen. Here, we focus on 1 -penalization defined by pen(t) = λ t L 1 (D) where

t L 1 (D) := inf    α 1 = j, φ j ∈D |α j | such that t = α.φ   
and λ > 0 is the regularization parameter to be tuned. We estimate s by the associated estimator -the Lasso -defined by ŝ(λ) = arg min

t∈L 1 (D) γ(t) + λ t L 1 (D) ,
where L 1 (D) denotes the set of functions t in the linear span of D with finite 1 -norm t L 1 (D) .

2.3 Some 1 -oracle inequalities for the Lasso While many efforts have been made to prove that the Lasso behaves like a variable selection procedure at the price of strong (though unavoidable) assumptions on the geometric structure of the dictionary [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Bühlmann | On the conditions used to prove oracle results for the Lasso[END_REF], much less attention has been paid to the analysis of the performance of the Lasso as a regularization algorithm. The analysis we propose below goes in this direction.

2.3.1

The Lasso for finite dictionaries 2.3.1.1 Definition of the Lasso estimator

Consider the generalized linear Gaussian model and the statistical problem (2.4). Assume that D p = {φ 1 , . . . , φ p } is a finite dictionary of size p. Then, any function t in the linear span of D p has finite

1 -norm t L 1 (Dp) := inf    α 1 = p j=1 |α j | ; α ∈ R p such that t = α.φ    (2.9)
and thus belongs to L 1 (D p ). We estimate s by the Lasso estimator ŝp defined by ŝp := ŝ(λ p ) = arg min 

γ(t) = -2Y (t) + t 2 = -2 y, t + t 2 = y -t 2 -y 2 .
So, we deduce from (2.10) that the Lasso satisfies ŝp = arg min

t∈L 1 (Dp) y -t 2 + λ p t L 1 (Dp) .
(2.11) For all t ∈ L 1 (D p ), set A t := {α = (α 1 , . . . , α p ) ∈ R p : t = α.φ = p j=1 α j φ j }. We get from (2.9) that inf t∈L 1 (Dp)

y -t 2 + λ p t L 1 (Dp) = inf t∈L 1 (Dp) y -t 2 + λ p inf α∈At α 1 = inf t∈L 1 (Dp) inf α∈At y -t 2 + λ p α 1 = inf t∈L 1 (Dp) inf α∈At y -α.φ 2 + λ p α 1 = inf α∈R p y -α.φ 2 + λ p α 1 .
Therefore, we get from (2.11) that ŝp = αp .φ where αp = arg min α∈R p { y -α.φ 2 + λ p α 1 }. This does correspond to the Lasso definition found in the literature for the fixed design Gaussian regression setting with finite dictionaries of size p [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF].

An 1 -oracle inequality

Here, we provide an 1 -oracle inequality satisfied by the Lasso for finite dictionaries. It highlights the fact that, provided that the regularization parameter λ p is properly chosen, the Lasso, which is the solution of the 1 -penalized empirical risk minimization problem, behaves nearly as well as the deterministic Lasso, that is to say the solution of the 1 -penalized true risk minimization problem.

Theorem 2.3.2. Assume that max j=1,...,p φ j ≤ 1 and that λ p ≥ 4ε ln p + 1 .

(2.12)

Let ŝp be the Lasso estimator defined by (2.10).

Then, there exists an absolute positive constant C such that, for all z > 0, with probability larger than 1 -3.4 e -z ,

s -ŝp 2 + λ p ŝp L 1 (Dp) ≤ C inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + λ p ε(1 + z) .
(2.13)

Integrating (2.13) with respect to z leads to the following 1 -oracle inequality in expectation,

E s -ŝp 2 + λ p ŝp L 1 (Dp) ≤ C inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + λ p ε . (2.14)
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These last years, the Lasso has essentially been developed as an approach to sparse recovery based on convex optimization and thus the main focus on this estimator has been on the establishment of information about the performance of the Lasso as an 1 -regularization algorithm. Note that the 1oracle inequalities of Theorem 2.3.2 are valid for regularization parameters of the same order (2.12) as the regularization parameters allowing 0 -oracle inequalities [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF]. Contrary to the 0 -results that require some restrictive assumptions on the dictionary and that are interesting only if the target function can be well approximated by a sparse function in the linear span of the dictionary (see Section 1.2.4), the 1 -oracle inequalities (2.13) and (2.14) are established with no assumption neither on the target function nor on the structure of the variables φ j of the dictionary D p , except simple normalization that we can always assume by considering φ j / φ j instead of φ j . Thus, we are guaranteed that the Lasso always achieves high performance as regards 1 -regularization.

Let us mention that 1 -oracle inequalities similar to (2.13) or (2.14) have been provided by a few authors such as [START_REF] Huang | Risk of penalized least squares, greedy selection and 1 -penalization for flexible function libraries[END_REF], [START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF], [START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF]. Yet, all these results present dissimilarities with Theorem 2.3.2. Let us have a look at these differences. [START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF] propose an oracle inequality for the Lasso similar to (2.13) which is valid under the same assumption as for Theorem 2.3.2, i.e. simple normalization of the variables φ j . Yet, their bound in probability can not be integrated to get an bound in expectation as the one we propose at (2.14). Indeed, the constant measuring the level of confidence of their risk bound appears inside the infimum term as a multiplicative factor of the 1 -norm whereas the constant z measuring the level of confidence of our risk bound (2.13) appears as an additive constant outside the infimum term so that the bound in probability (2.13) can easily be integrated with respect to z, which leads to the bound in expectation (2.14). Besides, the lower bound of the regularization parameter λ p proposed by [START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF] depends on the level of confidence z, so their choice of the Lasso estimator ŝp = ŝ(λ p ) also depends on this level of confidence. On the contrary, our lower bound (2.12) does not depend on z, so the result (2.13) is satisfied with high probability by an estimator ŝp = ŝ(λ p ) independent of the level of confidence of this probability. [START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF] also obtain an 1 -oracle inequality for the Lasso in linear regression, but they consider random design (X, Y ) ∈ R p × R rather than fixed design. Therefore, their analysis requires a uniform concentration phenomenon that forces them to make strong assumptions, namely that both X and Y are bounded almost surely by a constant independent of n. Moreover, they get a lower bound on the regularization parameter with an extra ln(n) factor compared to (2.12). [START_REF] Huang | Risk of penalized least squares, greedy selection and 1 -penalization for flexible function libraries[END_REF] also consider random design. Rather than assuming that Y is bounded as it is done by [START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF], they suppose that the errors satisfy some Bernstein's moment condition. Nevertheless, they assume that the target function is bounded by a constant, and their risk bound is not satisfied by the Lasso itself but only by a truncated Lasso estimator.

Let us point a weakness of our result: the 1 -oracle inequalities (2.13) and (2.14) are proved with undetermined constant C whereas the 1 -oracle inequalities in both [START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF] and [START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF] are sharp, i.e. with C = 1.

In Section 2.A, we describe the key observation that has enabled us to establish Theorem 2.3.2. In a nutshell, the basic idea is to view the Lasso as the solution of a penalized least squares model selection procedure over a countable model collection consisting of 1 -balls. Inequalities (2.13) and (2.14) are then deduced from a model selection theorem (Theorem 2.A.1, Section 2.A). Thanks to this approach, we can go one step further than the analysis of the Lasso for finite dictionaries: as we shall see now, we can also deal with infinite dictionaries.

A selected Lasso estimator for infinite countable dictionaries

In many applications such as microarray data analysis or signal reconstruction, we are now faced with situations where the number of variables of the dictionary is always increasing and can even be infinite. So, it is desirable to find competitive estimators for such infinite dimensional problems. Yet, except in rare situations where the variables have a specific structure (see Remark 2.3.3 on neural networks), it is difficult to extend the results established for the Lasso for finite dictionaries to infinite dictionaries. Indeed, for infinite dictionaries, there is no longer finite size p. As a consequence, one can no longer calibrate the regularization parameter as it is done in (2.12). Here, we propose a procedure to calibrate the regularization parameter by providing an optimal size p in a sense described below.

To deal with an infinite countable dictionary D, one may order the variables of the dictionary, write the dictionary D = {φ j } j∈N = {φ 1 , φ 2 , . . .} according to this order, then truncate D at a given level p to get a finite subdictionary {φ 1 , . . . , φ p } and finally estimate s by the Lasso estimator ŝp over this subdictionary. This procedure implies two difficulties. First, one has to put an order on the variables of the dictionary. Second, all the matter is to decide at which level one should truncate the dictionary to make the best tradeoff between approximation and complexity. Here, our purpose is to resolve this last dilemma by proposing a selected Lasso estimator based on an algorithm choosing automatically the best level of truncation of the dictionary once the variables have been ordered. Of course, the algorithm, and thus the estimation of s, depend on the preliminary order put on the variables. Ordering the variables can be more or less difficult according to the problem under consideration. For some applications, such as decomposition in wavelet dictionaries, the variables may be naturally ordered.

For orthonormal dictionaries, the Lasso estimators are soft-thresholding estimators with a fixed threshold. Then, the selected Lasso estimator is a soft-thresholding estimator with an adaptive threshold automatically chosen by the algorithm constructing this estimator. So, our procedure provides a new contribution to the crucial choice of the threshold when working with soft-thresholding estimators.

Definition of the selected Lasso estimator

We still consider the generalized linear Gaussian model and the statistical problem (2.4) introduced in Section 2.2. To solve this problem, we use a dictionary D = {φ j } j and seek for an estimator ŝ = α.φ = j, φ j ∈D αj φ j solution of the penalized risk minimization problem,

ŝ ∈ arg min t∈L 1 (D) {γ(t) + pen(t)} , (2.15)
where pen(t) is a suitable positive penalty. Here, we assume that the dictionary is infinite countable and that it is ordered:

D = {φ j } j∈N = {φ 1 , φ 2 , . . .}.
Given this order, we consider the sequence of truncated dictionaries (D p ) p∈N where

D p = {φ 1 , . . . , φ p } (2.16)
is the subdictionary of D truncated at level p, and the associated sequence of Lasso estimators defined in Section 2.3.1.1, ŝp = arg min

t∈L 1 (Dp) γ(t) + λ p t L 1 (Dp) , (2.17) 
where (λ p ) p∈N is a sequence of regularization parameters specified below. Now, we choose a final estimator as an 0 -penalized estimator among a subsequence of the Lasso estimators (ŝ p ) p∈N . Specifically, denote by Λ the set of dyadic integers,

Λ = 2 J ; J ∈ N , (2.18) 
and define

p = arg min p∈Λ γ(ŝ p ) + λ p ŝp L 1 (Dp) + pen(p) (2.19) = arg min p∈Λ arg min t∈L 1 (Dp) γ(t) + λ p t L 1 (Dp) + pen(p) , (2.20)
where pen(p) is a penalty to be chosen to penalize the size p of the truncated dictionary D p for all p ∈ Λ. Then, we choose ŝp as final estimator. From (2.20) and the fact that

L 1 (D) = ∪ p∈Λ L 1 (D p ),
we see that this selected Lasso estimator ŝp is a penalized least squares estimator solution of (2.15) where, for any p ∈ Λ and t ∈ L 1 (D p ), pen(t) = λ p t L 1 (Dp) + pen(p) is a combination of both 1regularization and complexity penalization. We also see from (2.19) that the algorithm automatically chooses the rank p so that ŝp makes the best tradeoff between approximation, 1 -regularization and sparsity.

Remark 1. From a theoretical point of view, one could define ŝp as an 0 -penalized estimator among the whole sequence of Lasso estimators (ŝ p ) p∈N (or more generally among any subsequence of (ŝ p ) p∈N ) instead of (ŝ p ) p∈Λ . Nonetheless, to compute ŝp efficiently, it is interesting to limit the number of computations of the sequence of Lasso estimators ŝp , especially if we choose a complexity penalty pen(p) that does not grow too fast with p. In the sequel, we shall consider a penalty pen(p) proportional to ln(p) (see Theorem 2.3.3). So, a dyadic truncation D p = {φ 1 , . . . , φ p } = {φ 1 , . . . , φ 2 J } of the dictionary D enables to get a complexity penalty pen(p) ∝ ln p = J ln 2 growing linearly at each step J of the algorithm, thus leading to a more efficient algorithm.

Although our primary motivation for introducing the selected Lasso estimator is to adapt the Lasso to infinite dictionaries, note that the selected Lasso estimator remains well-defined for finite dictionaries. For a dictionary of size p 0 , one can estimate s by the selected Lasso estimator ŝp rather than by the Lasso estimator ŝp 0 . The definition of ŝp guarantees that ŝp makes a better tradeoff between approximation, 1 -regularization and sparsity than ŝp 0 . Besides, ŝp is sparser than ŝp 0 since p ≤ p 0 . In particular, ŝp and ŝp 0 coincide when p = p 0 .

An oracle inequality for the selected Lasso estimator

By applying the same model selection theorem (Theorem 2.A.1) as for Theorem 2.3.2, we can provide a risk bound satisfied by the estimator ŝp with properly chosen penalties λ p and pen(p) for all p ∈ Λ. The sequence of 1 -regularization parameters (λ p ) p∈Λ is simply chosen from the lower bound (2.12), while a convenient choice for the 0 -penalty is pen(p) ∝ ln p.

Theorem 2.3.3. Assume that sup j∈N φ j ≤ 1. Set for all p ∈ Λ,

λ p = c 1 ε ln p + 1 , pen(p) = c 2 ε 2 ln p, (2.21)
where c 1 ≥ 4 and c 2 > c 1 / √ ln 2. Let ŝp be the selected Lasso estimator defined by (2.20).

Then, there exists an absolute constant C > 0 such that

E s -ŝp 2 + λ p ŝp L 1 (D p) + pen(p) ≤ C inf p∈Λ inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + pen(p) + ε 2 . (2.22)
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The Lasso for particular infinite uncountable dictionaries

As explained at the beginning of Section 2.3.2, it is generally difficult to establish theoretical results on the performance of the Lasso for infinite dictionaries. Yet, it can be easier to prove such results for some particular infinite dictionaries whose structure is nice enough. For example, it is the case for neural networks in the fixed design Gaussian regression setting. A neural network is a real-valued function defined on R d belonging to the linear span of the dictionary

D = {φ a,b ; a ∈ R d , b ∈ R} where φ a,b : R d → R, x → 1 { a,x +b>0} . (2.23) Given a training sequence (x 1 , Y 1 ), . . . , (x n , Y n ) such that Y i = s(x i ) + σξ i ,
the Lasso estimator over the set of neural network estimators is

ŝ := ŝ(λ) = arg min t∈L 1 (D) Y -t 2 + λ t L 1 (D) , (2.24)
where λ > 0 is a regularization parameter, Y -

t 2 = n i=1 (Y i -t(x i )) 2 /n is the empirical risk of t and L 1 (D) is the linear span of D equipped with the 1 -norm t L 1 (D) = inf    α 1 = a∈R d ,b∈R |α a,b | ; t = α.φ = a∈R d ,b∈R α a,b φ a,b    .
Although the dictionary D is infinite uncountable, we are able to establish an 1 -oracle inequality satisfied by the Lasso, which is similar to the 1 -oracle inequality provided in Theorem 2.3.2 for finite dictionaries. This is possible thanks to the particular structure of the dictionary D which is only composed of functions derived from the Heaviside function. This property enables us to achieve theoretical results without truncating the whole dictionary into finite subdictionaries, contrary to Section 2.3.2 where arbitrary infinite countable dictionaries were considered. The following 1oracle inequality is again a direct application of the model selection Theorem 2.A.1 (Section 2.A).

Theorem 2.3.4. Assume that λ ≥ κσ d/n (2.25)
for some absolute constant κ > 0 large enough. Let ŝ be the Lasso estimator defined by (2.24).

Then, there exists an absolute constant C > 0 such that

E s -ŝ 2 + λ ŝ L 1 (D) ≤ C inf t∈L 1 (D) s -t 2 + λ t L 1 (D) + λ σ √ n .
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Some rates of convergence for the Lasso

We now establish rates of convergence for the selected Lasso estimator and the Lasso estimator. They are derived from the oracle inequalities of Theorem 2.3.3 and Theorem 2.3.4.

Rates of convergence for the selected Lasso estimator

Here, we provide rates of convergence for the selected Lasso estimator. First, we restrict to orthonormal dictionaries for a target function s in the intersection between a weak L q space and a Besov space (see definitions below). Moreover, we establish lower bounds of the minimax risk to check that the rates of convergence achieved by this estimator are optimal. Then, we extend our upper bounds to the non-orthonormal case.

We keep the same framework and notations as in Section 2.3.2. In particular, we still consider a Hilbert space H and an infinite countable dictionary D = {φ j } j∈N which is a basis of H.

Orthonormal case

Here, we assume that D is an orthonormal basis of H.

Definition of the spaces

Assume that s belongs to wL q (R) for some 1 < q < 2 and R > 0, that is to say s = ∞ j=1 α j φ j with coefficients α j in the weak q -balls of radius R:

sup η>0   η q ∞ j=1 1 {|α j |>η}   ≤ R q .
(2.26) So as to control the size of the high-level components of s in the orthonormal basis D, also assume that s belongs to the Besov space B r 2,∞ (R) with radius R:

sup J∈N   J 2r ∞ j=J α 2 j   ≤ R 2 . (2.27)
Upper bound of the quadratic risk Proposition 2.4.1. Assume that the dictionary D is an orthonormal basis of the Hilbert space H. Let 1 < q < 2, r > 0, R > 0 such that Rε -1 ≥ e, and assume that s ∈ wL q (R) ∩ B r 2,∞ (R). Consider the selected Lasso estimator ŝp defined by (2.20) with parameters λ p and pen(p) given by (2.21). Then, there exists C q,r > 0 depending only on q and r such that the quadratic risk of ŝp satisfies

E s -ŝp 2 ≤ C q,r R q ε ln (Rε -1 ) 2-q
.

(2.28)
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Remark 2. The assumption Rε -1 ≥ e of Proposition 2.4.1 is not restrictive since it only means that we consider non-degenerate situations where the signal to noise ratio is large enough, which is the only interesting case to use the selected Lasso estimator. Indeed, if Rε -1 is too small, then the estimator equal to zero will always be better than any other non-zero estimators, in particular the selected Lasso estimator.

In the orthonormal case, the selected Lasso estimator is a soft-thresholding estimator with an adaptive threshold. So, the bound (2.28) is to be compared with the rates of convergence achieved by the soft-thresholding estimators with a fixed threshold (i.e. the classical Lasso estimators) when the target function belongs to wL q (R) ∩ B r 2,∞ (R). From Rivoirard (2006, Theorem 1), the rates achieved by the soft-thresholding estimators with a fixed threshold determined by the level of truncation of the dictionary chosen by the statistician strongly depend on the parameter of smoothness r and are valid only for values of r large enough compared to the level of truncation. On the contrary, Proposition 2.4.1 shows that the rates achieved by the selected Lasso estimator are valid whatever the value of r > 0 and that this smoothness parameter has little effect on the rates since it only appears through the multiplicative factor C q,r . Proposition 2.4.1 thus highlights the major advantage of the selected Lasso estimator over the classical Lasso estimators which is its adaptability to the unknown parameters of smoothness q and r of the target function. This adaptability comes from the fact that the selected Lasso estimator is constructed from an algorithm choosing an adaptive level of truncation of the dictionary.

Lower bound of the minimax risk

We now establish a lower bound of the minimax risk over the balls wL q (R) ∩ B r 2,∞ (R) to prove that the rates of convergence (2.28) are optimal. We even establish a stronger result by providing the lower bound of the minimax risk over the smaller balls

L q (R) ∩ B r 2,∞ (R) ⊂ wL q (R) ∩ B r 2,∞ (R)
, where we denote by L q (R) the set of functions whose coefficients in the orthonormal basis D = {φ j } j∈N are in the q -ball of radius R, that is to say functions

∞ j=1 α j φ j such that ∞ j=1 |α j | q ≤ R q .
Proposition 2.4.2. Assume that the dictionary D is an orthonormal basis of H. Let 1 < q < 2, 0 < r < 1/q -1/2 and R > 0 such that Rε -1 ≥ max(e 2 , ς 2 ) where

ς := 1 r -q 1 + 1 2r > 0.
(2.29)

Then, there exists an absolute constant κ > 0 such that the minimax risk over

L q (R) ∩ B r 2,∞ (R) satisfies inf s sup s∈Lq(R)∩B r 2,∞ (R) E s -s 2 ≥ κ ς 1-q 2 R q ε ln (Rε -1 ) 2-q , (2.30)
where the infimum is taken over all possible estimators s.
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Remark 3. The constraint r < 1/q -1/2 of Proposition 2.4.2 is necessary to work on the intersection between an L q -ball and a Besov ball. Indeed, assume that r > 1/q -1/2. For all R > 0, put R = (1 -2 rς ) 1/q R where ς is defined by (2.29). Then, it is easy to check that B r 2,∞ (R ) ⊂ L q (R).

Thus, B r 2,∞ (R ) = L q (R) ∩ B r 2,∞ (R ). Moreover, R < R, so B r 2,∞ (R ) ⊂ B r 2,∞ (R) and L q (R) ∩ B r 2,∞ (R ) ⊂ L q (R) ∩ B r 2,∞ (R). Consequently, B r 2,∞ (R ) ⊂ L q (R) ∩ B r 2,∞ (R) ⊂ B r 2,∞ (R): the intersection L q (R) ∩ B r 2,∞ (R)
is no longer a real intersection between an L q -ball and a Besov ball but rather a Besov ball itself.

The upper bound (2.28) and the lower bound (2.30) match up to a constant. This proves that the selected Lasso estimator is simultaneously approximately minimax over wL q (R) ∩ B r 2,∞ (R) for suitable signal to noise ratio Rε -1 in the orthonormal case.

General case

Here, we no longer assume that D is orthonormal. We say a few words on the rates of convergence of the selected Lasso estimator in the non-orthonormal case. We extend the upper bound (2.28) of the quadratic risk of this estimator when assuming that the target function belongs to some real interpolation spaces that are extensions of the spaces wL q ∩ B r 2,∞ considered in the orthonormal case.

Definition of the interpolation spaces

We introduce a whole range of interpolation spaces B q,r that are intermediate spaces between subsets of L 1 (D) and the Hilbert space H.

Definition 2.4.3. [Spaces L 1,r and B q,r ] Let R > 0, r > 0, 1 < q < 2 and ν = 1/q -1/2.

We say that u ∈ H belongs to L 1,r if there exists C > 0 such that for all p ∈ N , there exists

u p ∈ L 1 (D p ) such that u p L 1 (Dp) ≤ C and u -u p ≤ Cp -r .
(2.31)

The smallest C such that this holds defines a norm u L 1,r on the space L 1,r .

We say that u belongs to B q,r (R) if, for all δ > 0, inf

t∈L 1,r u -t + δ t L 1,r ≤ R δ 2ν . (2.32)
We say that u ∈ B q,r if there exists R > 0 such that u ∈ B q,r (R). In this case, the smallest R such that u ∈ B q,r (R) defines a norm on the space B q,r and is denoted by u Bq,r .

Remark 4. The abstract interpolation spaces B q,r are in fact natural extensions of the spaces wL q ∩ B r 2,∞ for non-orthonormal dictionaries. Indeed, if D is an orthonormal basis of H, then, for all 1 < q < 2 and r > 0, there exists C q,r > 0 depending only on q and r such that, for all R > 0,

wL q (R) ∩ B r 2,∞ (R) ⊂ B q,r (C q,r R).
(2.33)
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Upper bound of the quadratic risk Proposition 2.4.4. Assume that sup j∈N φ j ≤ 1. Let 1 < q < 2, r > 0, R > 0 such that Rε -1 ≥ e and assume that s ∈ B q,r (R). Consider the selected Lasso estimator ŝp defined by (2.20)

with parameters λ p and pen(p) given by (2.21).

Then, there exists C q,r > 0 depending only on q and r such that the quadratic risk of ŝp satisfies

E s -ŝp 2 ≤ C q,r R q ε ln (Rε -1 ) 2-q
.

(2.34)
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Proposition 2.4.4 is to be compared with Proposition 2.4.1 established in the orthonormal case. Taking into account the inclusion (2.33) and noting that the upper bounds of the quadratric risk (2.28) and (2.34) are exactly of the same order and valid under the same assumption on the signal to noise ratio, we can conclude that Proposition 2.4.4 extends the result established in Proposition 2.4.1. Yet, we shall provide an independent proof of Proposition 2.4.1 in Appendix 2.C.1.1 to see how things work in the simpler orthonormal case. Proposition 2.4.4 highlights the high performance of the selected Lasso estimator compared with other existing estimators in the theory of approximation and learning. In particular, (2.34) proves that the selected Lasso estimator performs as well as the greedy algorithms for which [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF] have provided similar rates of convergence. Besides, since the construction of the selected Lasso estimator is based on an adaptive truncation of the dictionary, this estimator has the great advantage of being adaptive to the unknown parameters of smoothness q and r of the target function, whereas the greedy algorithms achieve their rates of convergence only for restricted values of the parameter r depending on the level of truncation of the dictionary (Barron et al., 2008, Corollary 3.7).

Rates of convergence of the Lasso for neural networks

Here, we provide rates of convergence of the Lasso for the infinite dictionaries used for neural networks when the target function s belongs to some interpolation space between L 1 (D) and R n . We keep the notations used in Section 2.3.3.

Definition of the spaces

In Section 2.4.1.1, we introduced the spaces L 1,r and B q,r because they were adapted to the truncation of the dictionary. In Section 2.3.3, we saw that, for the specific case of neural networks, no truncation of the dictionary is necessary to establish results for the Lasso. Therefore, we no longer consider the spaces L 1,r and B q,r here. The spaces L 1,r are replaced by the whole space L 1 (D). The spaces B q,r are replaced by bigger spaces B q that are real interpolation spaces between L 1 (D) and R n , which coincide with wL q when the dictionary is orthonormal:

Definition 2.4.5. [Space B q ] If 1 < q < 2, ν = 1/q -1
/2 and R > 0, we say that a function u belongs to B q (R) if we have the following control of the K D -functional of u for all δ > 0:

K D (u, δ) := inf t∈L 1 (D) u -t + δ t L 1 (D) ≤ R δ 2ν .
(2.35)

Upper bound of the quadratic risk Proposition 2.4.6. Let R ≥ σd 1/4 n -1/2 . Assume that s ∈ B q (R). Consider the Lasso estimator ŝ defined by (2.24) with a regularization parameter λ checking (2.25).

Then, the quadratic risk of ŝ satisfies

E s -ŝ 2 ≤ C q R q d n 1-q 2 , (2.36)
where C q > 0 depends only on q.
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This result shows that the Lasso is adaptive to the unknown parameter of smoothness q of the target function and that it theoretically performs as well as the greedy algorithms introduced by [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF] for neural networks. Our result can be seen as the analog in the Gaussian framework of Barron et al.'s result which is stated under the assumption that the output variable Y is bounded but not necessarily Gaussian.

Appendices 2.A The Lasso as an 1 -ball model selection procedure

Here, we describe the idea that has enabled us to establish the oracle inequalities of Theorem 2.3.2, Theorem 2.3.3 and Theorem 2.3.4 as an application of a single model selection theorem. Then, we state and prove this model selection theorem. We keep the notations introduced in Section 2.2.

The basic idea is to view the Lasso as the solution of an 1 -penalized least squares model selection procedure over a properly defined countable model collection. The key observation that enables to make this connection is the simple fact that L 1 (D) = R>0 {t ∈ L 1 (D); t L 1 (D) ≤ R}, so that for any finite or infinite dictionary D, the Lasso estimator ŝ satisfies

γ(ŝ) + λ ŝ L 1 (D) = inf t∈L 1 (D) γ(t) + λ t L 1 (D) = inf R>0 inf t L 1 (D) ≤R γ(t) + λR .
To get a countable model collection, we discretize the family of

1 -balls {t ∈ L 1 (D); t L 1 (D) ≤ R} by setting for all m ∈ N , S m = t ∈ L 1 (D); t L 1 (D) ≤ mε .
We define m as the smallest integer such that ŝ belongs to S m, i.e.

m = ŝ L 1 (D) ε .
(2.37)

It is now easy to derive from the definitions of m and ŝ, from the fact that L 1 (D) = m∈N S m and from the definition of S m that

γ(ŝ) + λ mε ≤ γ(ŝ) + λ ŝ L 1 (D) + ε = inf t∈L 1 (D) γ(t) + λ t L 1 (D) + λε = inf m∈N inf t∈Sm γ(t) + λ t L 1 (D) + λε ≤ inf m∈N inf t∈Sm γ(t) + λmε + λε, that is to say γ(ŝ) + pen( m) ≤ inf m∈N inf t∈Sm γ(t) + pen(m) + ρ (2.38)
with pen(m) = λmε and ρ = λε. This means that the Lasso ŝ is a ρ-approximate penalized least squares estimator over the model collection of 1 -balls {S m ; m ∈ N }. This property will enable us to derive 1 -oracle inequalities for the Lasso from the theory on model selection via penalization. Specifically, we have established the following model selection theorem, which is adapted to provide oracle inequalities for estimators fulfilling (2.38):

Theorem 2.A.1. Let {S m } m∈M be a countable collection of convex and compact subsets of a Hilbert space H. Define, for any m ∈ M,

∆ m := E sup sm∈Sm W (s m ) , (2.39)
with W defined by (2.4), and consider weights {x m } m∈M such that

Σ := m∈M e -xm < ∞.
Let K > 1 and assume that, for any m ∈ M,

pen(m) ≥ 2Kε ∆ m + εx m + ∆ m εx m .
(2.40)

Given non-negative ρ m , m ∈ M, define a ρ m -approximate penalized least squares estimator as any

ŝ ∈ S m, m ∈ M, such that γ(ŝ) + pen( m) ≤ inf m∈M inf sm∈Sm γ(s m ) + pen(m) + ρ m .
Then, there is a positive constant C(K) such that for all s ∈ H and z > 0, with probability larger than 1 -Σ e -z ,

s -ŝ 2 + pen( m) ≤ C(K) inf m∈M inf sm∈Sm s -s m 2 + pen(m) + ρ m + (1 + z)ε 2 . (2.41)
Integrating this inequality with respect to z leads to the following risk bound

E s -ŝ 2 + pen( m) ≤ C(K) inf m∈M inf sm∈Sm s -s m 2 + pen(m) + ρ m + (1 + Σ)ε 2 .
(2.42) Remark 5. Theorem 2.A.1 is a particular case of Theorem 4.18 in Massart (2007): the function φ m of Theorem 4.18 [START_REF] Massart | Concentration inequalities and model selection[END_REF] bounding the expectation of the supremum of the normalized empirical process is a constant function (which is equal to ∆ m ) in Theorem 2.A.1. This supposes that we do not use the localization refinement used in Theorem 4.18 [START_REF] Massart | Concentration inequalities and model selection[END_REF] to improve the risk minimization method developed by [START_REF] Vapnik | Estimation of dependencies based on empirical data[END_REF]. This non-localized version of Theorem 4.18 [START_REF] Massart | Concentration inequalities and model selection[END_REF] is sufficient to derive the oracle inequalities satisfied by the Lasso and the selected Lasso estimator in our framework. By considering the solution D m = ∆ m /ε of (4.72) in Theorem 4.18 [START_REF] Massart | Concentration inequalities and model selection[END_REF], one recovers the same lower bound of the penalty function in both Theorem 2.A.1 and Theorem 4.18 [START_REF] Massart | Concentration inequalities and model selection[END_REF].

Proof. The proof is based on the concentration inequality for the suprema of Gaussian processes established in [START_REF] Boucheron | Concentration inequalities with applications[END_REF].

Fix m ∈ M. Since S m is assumed to be a convex and compact subset, we can consider s m the projection of s onto S m , that is the unique element of S m such that s -s m = inf sm∈Sm s -s m .

By definition of ŝ, we have

γ(ŝ) + pen( m) ≤ γ(s m ) + pen(m) + ρ m . Since s 2 + γ(s m ) = s -s m 2 -2εW (s m ), this implies that s -ŝ 2 + pen( m) ≤ s -s m 2 + 2ε (W (ŝ) -W (s m )) + pen(m) + ρ m . (2.43)
For all m ∈ M, let y m be a positive number whose value will be specified below and define for every

s m ∈ S m 2w m (s m ) = ( s -s m + s -s m ) 2 + y 2 m .
(2.44)

Finally, set

V m = sup s m ∈S m W (s m ) -W (s m ) w m (s m ) .
Taking these definitions into account, we get from (2.43) that

s -ŝ 2 + pen( m) ≤ s -s m 2 + 2εw m(ŝ)V m + pen(m) + ρ m . (2.45)
The essence of the proof is the control of the random variables V m for all possible values of m . To this end, we may use the concentration inequality for the suprema of Gaussian processes [START_REF] Boucheron | Concentration inequalities with applications[END_REF] which ensures that, given z > 0, for all m ∈ M,

P V m ≥ E [V m ] + 2v m (x m + z) ≤ e -(x m +z) , (2.46) 
where

v m = sup s m ∈S m Var W (s m ) -W (s m ) w m (s m ) = sup s m ∈S m s m -s m 2 w 2 m (s m ) . From (2.44), w m (s m ) ≥ ( s -s m + s -s m ) y m ≥ s m -s m y m , so v m ≤ y -2
m and summing the inequalities (2.46) over m ∈ M, we get that for every z > 0, there is an event Ω z with

P(Ω z ) > 1 -Σe -z such that on Ω z , for all m ∈ M, V m ≤ E [V m ] + y -1 m 2(x m + z).
(2.47)

Let us now bound E [V m ]. We may write E [V m ] ≤ E sup s m ∈S m (W (s m ) -W (s m )) inf s m ∈S m w m (s m ) + E (W (s m ) -W (s m )) + inf s m ∈S m w m (s m ) . (2.48)
But from the definition of s m , we have for all

s m ∈ S m 2w m (s m ) ≥ ( s -s m + s -s m ) 2 + y 2 m ≥ s m -s m 2 + y 2 m ≥ y 2 m ∨ 2y m s m -s m .
Hence, on the one hand, via (2.39) and recalling that W is centered, we get

E sup s m ∈S m (W (s m ) -W (s m )) inf s m ∈S m w m (s m ) ≤ 2 y -2 m ∆ m ,
and on the other hand, using the fact that

(W (s m ) -W (s m )) / s m -s m is a standard normal variable, we get E (W (s m ) -W (s m )) + inf s m ∈S m w m (s m ) ≤ y -1 m E W (s m ) -W (s m ) s m -s m + ≤ y -1 m (2π) -1/2 .
Collecting these inequalities, we get from (2.48) that for all m ∈ M,

E [V m ] ≤ 2∆ m y -2 m + (2π) -1/2 y -1 m .
Hence, setting δ = ((4π

) -1/2 + √ z) 2 , (2.47) implies that on the event Ω z , for all m ∈ M, V m ≤ y -1 m 2∆ m y -1 m + 2x m + (2π) -1/2 + √ 2z = y -1 m 2∆ m y -1 m + 2x m + √ 2δ .
(2.49)

Given K ∈ (1,
√ K] to be chosen later, we now define

y 2 m = 2K 2 ε 2 √ x m + √ δ 2 + K -1 ε -1 ∆ m + K -1 ε -1 ∆ m √ x m + √ δ .
With this choice of y m , it is not hard to check that (2.49) warrants that on the event Ω z , εV m ≤ K -1 for all m ∈ M, which in particular implies that εV m ≤ K -1 , and we get from (2.45) and (2.44) that

s -ŝ 2 + pen( m) ≤ s -s m 2 + 2K -1 w m(ŝ) + pen(m) + ρ m = s -s m 2 + K -1 ( s -s m + s -ŝ ) 2 + y 2 m + pen(m) + ρ m .
(2.50)

Moreover, using repeatedly the inequality

(a + b) 2 ≤ (1 + β)a 2 + (1 + β -1 )b 2
for various values of β > 0, we derive that, on the one hand,

( s -s m + s -ŝ ) 2 ≤ √ K s -ŝ 2 + s -s m 2 √ K -1 ,
and, on the other hand,

K -1 y 2 m ≤ 2K 2 ε 2 ε -1 ∆ m + x m + ε -1 ∆ mx m + B(K ) 1 2π + 2z
where

B(K ) = (K -1) -1 + (4K (K 2 -1)) -1 . Hence, setting A(K ) = 1 + K -1/2 ( √ K -1) -1 , we deduce from (2.50) that on the event Ω z , s -ŝ 2 + pen( m) ≤ A(K ) s -s m 2 + K -1/2 s -ŝ 2 + 2K 2 ε ∆ m + εx m + ε∆ mx m + pen(m) + ρ m + 2ε 2 K 2 B(K ) 1 2π + 2z .
Because of Condition (2.40) on the penalty function, this implies that

1 -K -1/2 s -ŝ 2 + 1 -K 2 K -1 pen( m) ≤ A(K ) s -s m 2 + pen(m) + ρ m + 2ε 2 K 2 B(K ) 1 2π + 2z . Now choosing K = K 2/5
, we get that

1 -K -1/5 s -ŝ 2 + pen( m) ≤ A(K 2/5 ) s -s m 2 + pen(m) + ρ m + 2ε 2 K 4/5 B(K 2/5 ) 1 2π + 2z .
So, there exists a positive constant C(K) depending only on K such that for all z > 0, on the event Ω z ,

s -ŝ 2 + pen( m) ≤ C(K) inf m∈M s -s m 2 + pen(m) + ρ m + ε 2 (1 + z) ,
which proves (2.41). Integrating this inequality with respect to z leads to the risk bound (2.42).

2.B Proof of the 1 -oracle inequalities

Theorem 2.3.2, Theorem 2.3.3 and Theorem 2.3.4 are direct applications of Theorem 2.A.1. Indeed, using the key observation that the Lasso estimator is an approximate penalized least squares estimator over a collection of 1 -balls with a convenient penalty (see Section 2.A), it only remains to determine a lower bound of this penalty to guarantee Condition (2.40) and then to apply the conclusion of Theorem 2.A.1.

2.B.1 Proof of Theorem 2.3.2

Fix p ∈ N . Let M = N and consider the collection of 1 -balls for m ∈ M,

S m = s m ∈ L 1 (D p ); s m L 1 (Dp) ≤ mε .
From (2.38), the Lasso estimator ŝp is a ρ-approximate penalized least squares estimator over the collection {S m ; m ∈ N } for pen(m) = λ p mε and ρ = λ p ε. So, it only remains to determine a lower bound of λ p such that pen(m) satisfies Condition (2.40).

Let s m ∈ S m and consider α = (α 1 , . . . , α p ) ∈ R p such that s m = α.φ = p j=1 α j φ j and s m L 1 (Dp) = α 1 . The linearity of W and the definition of S m imply that

W (s m ) = p j=1 α j W (φ j ) ≤ p j=1 |α j | |W (φ j )| ≤ mε max j=1,...,p |W (φ j )| . 1 (2.51) Recalling that W is isonormal (see (2.4)), we have Var [W (φ j )] = φ j 2 ≤ 1 for all j ∈ {1, . . . , p}.
So, the variables W (φ j ) and (-W (φ j )), j ∈ {1, . . . , p}, are 2p centered normal variables with variance less than 1 and thus (Massart, 2007, Lemma 2.3),

E max j=1,...,p |W (φ j )| = E max j=1,...,p W (φ j ) ∨ max j=1,...,p (-W (φ j )) ≤ 2 ln(2p) .
Therefore, we deduce from (2.51) that

∆ m := E sup sm∈Sm W (s m ) ≤ mε 2 ln(2p) ≤ √ 2mε ln p + √ ln 2 . (2.52)
Now, choose weights of the form x m = δm where δ > 0 is specified below. Then, m≥1 e -xm = 1/ e δ -1 := Σ δ < +∞.

Define K = 4 √ 2/5 > 1 and δ = (1 - √ ln 2)/K. By using the inequality 2 √ ab ≤ a/2 + 2b, we
deduce from (2.52) and the definition of

x m that 2Kε ∆ m + εx m + ∆ m εx m ≤ Kε 5 2 ∆ m + 4x m ε ≤ 4mε 2 ln p + √ ln 2 + Kδ ≤ 4mε 2 ln p + 1 ≤ λ p mε as soon as λ p ≥ 4ε ln p + 1 . (2.53)
For such values of λ p , Condition (2.40) on the penalty function is satisfied and we may apply Theorem 2.A.1 with pen(m) = λ p mε and ρ = λ p ε. Taking into account the definition of m at (2.37) and noting that ε 2 ≤ λ p ε/4 for λ p satisfying (2.53), we get from (2.41) that there exists C > 0 such that for all z > 0, with probability larger than

1 -Σ δ e -z ≥ 1 -3.4 e -z , s -ŝp 2 + λ p ŝp L 1 (Dp) ≤ C inf m∈N inf sm L 1 (Dp) ≤mε s -s m 2 + λ p mε + λ p ε + (1 + z)ε 2 ≤ C inf m∈N inf sm L 1 (Dp) ≤mε s -s m 2 + λ p mε + λ p ε(1 + z) .
(2.54)

Finally, to get the desired bound (2.13), for all

t ∈ L 1 (D p ), consider m t = t L 1 (Dp) /ε ∈ N so that t L 1 (Dp) ≤ m t ε. Then, inf m∈N inf sm L 1 (Dp) ≤mε s -s m 2 + λ p mε ≤ s -t 2 + λ p m t ε ≤ s -t 2 + λ p t L 1 (Dp) + λ p ε, (2.55)
and combining (2.54) with (2.55) leads to

s -ŝp 2 + λ p ŝp L 1 (Dp) ≤ 2C inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + λ p ε(1 + z) .
Similarly, we get the risk bound (2.14) from (2.42).

2.B.2 Proof of Theorem 2.3.3

Let M = N × Λ and consider the set of 1 -balls for all (m, p) ∈ M,

S m,p = s m ∈ L 1 (D p ); s m L 1 (Dp) ≤ mε .
Define m as the smallest integer such that ŝp belongs to S m,p , i.e.

m = ŝp L 1 (D p) ε .
(2.56)

Let c = 1 -c 1 /(c 2 √ ln 2).
From (2.56) and (2.21), using that for all p ∈ Λ,

√ ln p ≤ (ln p)/ √ ln 2,
the definitions of m, λ p, pen(p), c and ŝp and the fact that L 1 (D p ) = m∈N S m,p , we get that

γ(ŝ p) + λ p mε + c pen(p) ≤ γ(ŝ p) + λ p ŝp L 1 (D p) + λ pε + c pen(p) ≤ γ(ŝ p) + λ p ŝp L 1 (D p) + c 1 ε 2 ln p + 1 + cc 2 ε 2 ln p ≤ γ(ŝ p) + λ p ŝp L 1 (D p) + c 1 c 2 √ ln 2 + c c 2 ε 2 ln p + c 1 ε 2 ≤ γ(ŝ p) + λ p ŝp L 1 (D p) + pen(p) + c 1 ε 2 ≤ inf p∈Λ inf sm∈L 1 (Dp) γ(s m ) + λ p s m L 1 (Dp) + pen(p) + c 1 ε 2 ≤ inf p∈Λ inf m∈N inf sm∈Sm,p γ(s m ) + λ p mε + pen(p) + c 1 ε 2 ≤ inf (m,p)∈M inf sm∈Sm,p γ(s m ) + λ p mε + pen(p) + c 1 ε 2 , that is to say γ(ŝ p) + pen( m, p) ≤ inf (m,p)∈M inf sm∈Sm,p γ(s m ) + pen(m, p) + ρ p ,
with pen(m, p) := λ p mε + c pen(p) and ρ p := (1 -c) pen(p) + c 1 ε 2 (thanks to the assumption c 2 > c 1 / √ ln 2, we have c ∈ ]0, 1[, so pen(m, p) > 0 and ρ p > 0). This means that ŝp is a ρ papproximate penalized least squares estimator over the model collection {S m,p ; (m, p) ∈ M}. By applying Theorem 2.A.1, this property will enable us to derive a risk bound satisfied by ŝp provided that pen(m, p) is large enough.

Let us now choose weights of the form x m,p = δm + β ln p where δ > 0 and β > 0 are numerical constants specified later. Then,

Σ δ,β := (m,p)∈M e -xm,p = m∈N e -δm   p∈Λ e -β ln p   = m∈N e -δm J∈N e -β ln 2 J = 1 (e δ -1) (1 -2 -β ) < +∞.
Moreover, for all (m, p) ∈ M, we can prove similarly as (2.52) that

∆ m,p := E sup sm∈Sm,p W (s m ) ≤ √ 2mε ln p + √ ln 2 . Now, define K = c 1 [ √ 2(2 + (c 1 -2) -1 )] -1 (K > 1 thanks to the assumption c 1 ≥ 4), δ = (1 - √ ln 2)/K > 0 and β = (c 2 c)/(c 1 K) > 0.
By taking into account these definitions and using the inequality 2

√ ab ≤ ηa + η -1 b with η = (c 1 -2) -1 , a = ∆ m,p and b = εx m,p , we get that 2Kε ∆ m,p + εx m,p + ∆ m,p εx m,p ≤ Kε 2 + (c 1 -2) -1 ∆ m,p + c 1 x m,p ε ≤ c 1 ε 2 m ln p + m √ ln 2 + Kδm + Kβ ln p ≤ c 1 ε 2 m ln p + 1 + c 2 c c 1 ln p ≤ λ p mε + c pen(p) = pen(m, p).
Thus, Condition (2.40) is satisfied and we can apply Theorem 2.A.1 with pen(m, p) = λ p mε + c pen(p) and ρ p = (1 -c) pen(p) + c 1 ε 2 , which leads to:

E s -ŝp 2 + λ p mε + c pen(p) ≤ C inf (m,p)∈M inf sm∈Sm,p s -s m 2 + λ p mε + pen(p) + (c 1 + 1 + Σ δ,β ) ε 2 ≤ C inf (m,p)∈M inf sm∈Sm,p s -s m 2 + λ p mε + pen(p) + ε 2 , (2.57)
where C > 0 denotes some absolute constant. The infimum of this risk bound can easily be extended to inf p∈Λ inf t∈L 1 (Dp) . Indeed, let p 0 ∈ Λ and t ∈ L 1 (D p 0 ), and consider

m t = t L 1( Dp 0 ) /ε ∈ N so that t ∈ S mt,p 0 . Then, inf (m,p)∈M inf sm∈Sm,p s -s m 2 + λ p mε + pen(p) ≤ s -t 2 + λ p 0 m t ε + pen(p 0 ) ≤ s -t 2 + λ p 0 t L 1( Dp 0 ) + ε + pen(p 0 ) ≤ s -t 2 + λ p 0 t L 1( Dp 0 ) + c 1 c 2 √ ln 2 + 1 pen(p 0 ) + c 1 ε 2 . (2.58)
We deduce from (2.57) and (2.58) that there exists C > 0 such that

E s -ŝp 2 + λ p mε + c pen(p) ≤ C inf p∈Λ inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + pen(p) + ε 2 . (2.59)
But from the fact that c ∈ ]0, 1[ and from (2.56), we have Let us recall that, for δ > 0, the δ-packing number N (δ, G, N (.)) of a set G with respect to a norm N (.) is the maximal m ∈ N such that there exist g 1 , . . . , g m ∈ G with N (g i -g j ) ≥ δ for all

E s -ŝp 2 + λ p ŝp L 1 (D p) + pen(p) ≤ 1 c E s -ŝp 2 + λ p mε + c pen(p) . ( 2 
1 ≤ i < j ≤ m. The δ-entropy number is defined by H(δ, G, N (.)) = ln (N (δ, G, N (.))) . Lemma 2.B.1. Let δ > 0 and let D = {φ a,b ; a ∈ R d , b
∈ R} be a dictionary of neurons where φ a,b is defined by (2.23). Then,

1 0 H(δ, D, . ) dδ ≤ C √ d + 1,
where C > 0 is an absolute constant (C ≥ 22 is convenient).

Proof. The result just comes from the fact that D is a subset of the boolean n-cube with Vapnik-

Chervonenkis dimension d + 1. Indeed, for all a ∈ R d and b ∈ R, denote by A a,b the affine half- space of R d defined by A a,b = {x ∈ R d : a, x + b > 0} and consider the associated VC class A = {A a,b ; a ∈ R d , b ∈ R} which is of dimension d + 1. Also introduce A(x n 1 ) := 1 {x 1 ∈A} , . . . , 1 {xn∈A} ; A ∈ A ⊂ {0, 1} n equipped with the 1 -norm . 1,n defined by ζ 1,n = n i=1 |ζ i |/n for all ζ = (ζ 1 , . . . , ζ n ) ∈ A(x n 1 ). Then, for all φ a,b ∈ D, (2.23) implies that φ a,b = 1 A a,b and φ a,b = ζ a,b 1,n where ζ a,b = (1 {x 1 ∈A a,b } , . . . , 1 {xn∈A a,b } ) ∈ A(x n 1 )
. Thus, we get that

H (δ, D, . ) ≤ H √ δ, A(x n 1 ), . 1,n .
Moreover, we easily get from the upper bound of the entropy for a VC class of dimension d + 1 provided by [START_REF] Haussler | Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension[END_REF] that

1 0 H √ δ, A(x n 1 ), . 1,n dδ ≤ C √ d + 1,
where C > 0 is an absolute constant (C ≥ 22 is convenient), hence the result.

Proof of Theorem 2.3.4

Define ε = σ/ √ n. Consider the collection of 1 -balls for m ∈ N , S m = s m ∈ L 1 (D); s m L 1 (D) ≤ mε .
From Section 2.A, the Lasso ŝ is a ρ-approximate penalized least squares estimator over the collection 

{S m ; m ∈ N }
W (s m ) = a,b α a,b W (φ a,b ) ≤ sup a,b |W (φ a,b )| a,b |α a,b | ≤ (mε + τ ) sup a,b |W (φ a,b )|.
Then, by Dudley's Criterion (Massart, 2007, Theorem 3.18), we have

∆ m := E sup sm∈Sm W (s m ) ≤ (mε + τ ) E sup a,b |W (φ a,b )| ≤ 12(mε + τ ) S 0 H (δ, D, . ) dδ, where S 2 = sup a,b E[W 2 (φ a,b )] = sup a,b φ a,b 2 = sup a,b ( n i=1 φ 2 a,b (x i )/n) ≤ 1 from (2.23
). So, S ≤ 1 and we get from Lemma 2.B.1 that there exists c > 0 (c ≥ 264 is convenient) such that

∆ m ≤ 12(mε + τ ) 1 0 H (δ, D, . ) dδ ≤ c(mε + τ ) √ d + 1. (2.61)
Now if we choose weights x m = cm, then m≥1 e -xm := Σ c < +∞, and using the inequality

2 √ ab ≤ a + b we get from (2.61) that for all K > 1, 2Kε ∆ m + εx m + ∆ m εx m ≤ 3Kε (∆ m + εx m ) ≤ 3Kε c(mε + τ ) √ d + 1 + cmε ≤ 3cKε(mε + τ ) √ d + 1 + 1 ≤ 3c( √ 2 + 1)Kε(mε + τ ) √ d.
Since this inequality is true for all τ > 0, we get when τ tends to 0 that there exists κ > 0 (κ = 3c( We know from Theorem 2.3.3 that the quadratic risk of the selected Lasso estimator ŝp is bounded by

√ 2 + 1)K) such that 2Kε ∆ m + εx m + ∆ m εx m ≤ κmε 2 √ d ≤ λmε
E s -ŝp 2 ≤ C inf p∈Λ inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) + pen(p) + ε 2 , (2.62)
where C is an absolute positive constant. Let us bound inf t∈L 1 (Dp) s -t 2 + λ p t L 1 (Dp) for all p ∈ Λ thanks to the following lemma.

Lemma 2.C.1. Assume that the dictionary D is an orthonormal basis of the Hilbert space H and that there exist 1 < q < 2, r > 0 and R > 0 such that s ∈ wL q (R) ∩ B r 2,∞ (R). For all p ∈ N and λ > 0, define s p,λ := arg min

t∈L 1 (Dp) s -t 2 + λ t L 1 (Dp) .
Then, there exist C q > 0 depending only on q and C r > 0 depending only on r such that for all p ∈ N and λ > 0,

s p,λ L 1 (Dp) ≤ C q R q λ 1-q and s -s p,λ 2 ≤ C r R 2 p -2r + C q R q λ 2-q .
The proof of Lemma 2.C.1 uses the two following easy calculations.

Lemma 2.C.2. For all a = (a 1 , . . . , a p ) ∈ R p and δ > 0,

p j=1 a 2 j 1 {|a j |≤δ} ≤ 2 p j=1 δ 0 t 1 {|a j |>t} dt.
Proof.

2 p j=1 δ 0 t 1 {|a j |>t} dt = 2 p j=1 δ 0 t 1 {|a j |>t} dt 1 {|a j |>δ} + δ 0 t 1 {|a j |>t} dt 1 {|a j |≤δ} = 2 p j=1 δ 0 t dt 1 {|a j |>δ} + |a j | 0 t dt 1 {|a j |≤δ} = p j=1 δ 2 1 {|a j |>δ} + a 2 j 1 {|a j |≤δ} ≥ p j=1 a 2 j 1 {|a j |≤δ} .
Lemma 2.C.3. For all a = (a 1 , . . . , a p ) ∈ R p and δ > 0,

p j=1 |a j |1 {|a j |>δ} = δ p j=1 1 {|a j |>δ} + p j=1 +∞ δ 1 {|a j |>t} dt.
Proof.

p j=1 +∞ δ 1 {|a j |>t} dt = p j=1 |a j | δ dt 1 {|a j |>δ} = p j=1 (|a j | -δ) 1 {|a j |>δ} .
Proof of Lemma 2.C.1.

Let us denote by {α * j } j∈N the coefficients of the target function s in the basis D = {φ j } j∈N , so that s = α * .φ = j∈N α * j φ j . For all p ∈ N , set A p := {α = (α j ) j∈N ; α j ∈ R, α j = 0 for j ≥ p + 1} . Let λ > 0. Since s p,λ ∈ L 1 (D p ), there exists α p,λ ∈ A p such that s p,λ = α p,λ .φ. Moreover, from (2.9) and the orthonormality of the basis D,

α p,λ = arg min α∈Ap α * .φ -α.φ 2 + λ α 1 = arg min α∈Ap α * -α 2 + λ α 1 .
(2.63)

By calculating the subdifferential of the function α ∈ R p → α * -α 2 + λ α 1 , we get that the solution of the convex minimization problem (2.63) is α p,λ = (α p,λ 1 , . . . , α p,λ p , 0, . . . , 0, . . . ) where for all j ∈ {1, . . . , p},

α p,λ j =      α * j -λ/2 if α * j > λ/2, α * j + λ/2 if α * j < -λ/2, 0 otherwise.
Then, we have

s -s p,λ 2 = α * -α p,λ 2 = ∞ j=1 α * j -α p,λ j 2 = ∞ j=p+1 α * j 2 + p j=1 α * j 2 1 {|α * j |≤λ/2} + p j=1 λ 2 4 1 {|α * j |>λ/2} ≤ ∞ j=p+1 α * j 2 (i) + p j=1 α * j 2 1 {|α * j |≤λ/2} (ii) + λ 2 p j=1 |α * j |1 {|α * j |>λ/2} (iii) , (2.64) while s p,λ L 1 (Dp) = ∞ j=1 |α p,λ j | = p j=1 |α * j | - λ 2 1 {|α * j |>λ/2} ≤ p j=1 |α * j |1 {|α * j |>λ/2} = (iii) . (2.65) Now, s is assumed to belong to B r 2,∞ (R), so (2.27) implies that (i) is bounded by ∞ j=p+1 α * j 2 ≤ R 2 (p + 1) -2r ≤ 2 -2r R 2 p -2r .
(2.66)

Let us now bound (ii) and (iii) thanks to the assumption s ∈ wL q (R). By applying Lemma 2.C.2 and Lemma 2.C.3 with a j = α * j for all j ∈ {1, . . . , p} and δ = λ/2, and by using the fact that

p j=1 1 {|α * j |>t} ≤ ∞ j=1 1 {|α * j |>t} ≤ R q t -q for all t > 0 if s ∈ wL q (R), we get that (ii) is bounded by p j=1 α * j 2 1 {|α * j |≤λ/2} ≤ 2 q-1 2 -q R q λ 2-q , (2.67) while (iii) is bounded by p j=1 |α * j |1 {|α * j |>λ/2} ≤ q 2 q-1 q -1 R q λ 1-q .
(2.68)

Gathering (2.65) and (2.68) on the one hand and (2.64), (2.66), (2.67) and (2.68) on the other hand, we get that there exists C q > 0 depending only on q and C r > 0 depending only on r such that

s p,λ L 1 (Dp) ≤ C q R q λ 1-q and s -s p,λ 2 ≤ C r R 2 p -2r + C q R q λ 2-q . 2 Proof of Proposition 2.4.1
We deduce from Theorem 2.3.3 and Lemma 2.C.1 that there exists some constant C q,r > 0 depending only on q and r such that the quadratic risk of ŝp is bounded by

E s -ŝp 2 ≤ C q,r inf p∈Λ R 2 p -2r + R q ε ln p + 1 2-q + ε 2 ln p + ε 2 ≤ C q,r inf p∈Λ\{1} R 2 p -2r + R q (ε ln p) 2-q + ε 2 ln p , (2.69) 
where we use the fact that, for all p ≥ 2,

√ ln p + 1 ≤ (1 + 1/ √ ln 2) √ ln p and ε 2 ≤ ε 2 (ln p)/ ln 2.
Now, we choose p such that the terms inside the infimum are of the same order. Denote by x the smallest integer greater than x. Define J q,r = (2 -q)(2r) -1 log 2 (Rε -1 ) and p q,r = 2 Jq,r . Since we have assumed Rε -1 ≥ e, then p q,r ∈ Λ \ {1} and we deduce from (2.69) that E s -ŝp 2 ≤ C q,r R 2 p -2r q,r + R q (ε ln p q,r ) 2-q + ε 2 ln p q,r .

(2.70)

Now, let us give an upper bound of each term of the right-hand side of (2.70). From the fact that 2 ≤ e ≤ Rε -1 and by definition of p q,r , on the one hand we have p q,r ≥ (Rε -1 ) (2-q)/(2r) , while on the other hand we have

ln p q,r ≤ ln 2 + 2 -q 2r ln Rε -1 ≤ 1 + 2 -q 2r ln Rε -1 := A q,r ln Rε -1
where A q,r > 0 depends only on q and r. Thus, we get that

R 2 p -2r q,r ≤ R 2 Rε -1 q-2 = R q ε 2-q (2.71) while R q ε ln p q,r 2-q ≤ A q,r 1-q 2 R q ε ln (Rε -1 ) 2-q
(2.72) and ε 2 ln p q,r ≤ A q,r ε 2 ln Rε -1 .

(2.73)

Now, these three bounds are upper bounded by C q,r R q (ε ln(Rε -1 )) 2-q where C q,r > 0 depends only on q and r. Indeed, Rε -1 ≥ e and 2 -q > 0, so (2.71) is bounded by R q (ε ln(Rε -1 )) 2-q . Moreover, the right-hand side of (2.73) can be written A q,r g((Rε -1 ) 2 ) q/2 R q (ε ln(Rε -1 )) 2-q with g : ]0, +∞[ → R, x → ln(x)/(2x). Using the fact that g(x 2 ) ≤ 1/(2x) for all x > 0 and that Rε -1 ≥ e, we get that (2.73) is bounded by A q,r (2e) -q/2 R q (ε ln(Rε -1 )) 2-q .

Then, we deduce from (2.70) that there exists C q,r > 0 depending only on q and r such that

E s -ŝp 2 ≤ C q,r R q ε ln (Rε -1 ) 2-q . 2 2.C.1.2 Proof of the lower bound : Proposition 2.4.2. Define M = ε ς ln (Rε -1 ), J = 2 -q 2r log 2 RM -1 , K = q log 2 RM -1 .
Set p = 2 J and d = 2 K . Let us first check that M is well-defined and that d ≤ p under the assumptions of Proposition 2.4.2. Under the assumption r < 1/q -1/2, we have u > 0, and since Rε -1 ≥ e 2 ≥ e, M is well-defined. Moreover, since r < 1/q -1/2, we have (2 -q)/(2r) > q, so it only remains to check that RM -1 ≥ e to prove that d ≤ p. We shall in fact prove the following stronger result:

Claim 2.C.1. If Rε -1 ≥ max(e 2 , ς 2 ), then Rε -1 / ln(Rε -1 ) ≥ ς.
This result implies that, under the assumption Rε -1 ≥ max(e 2 , ς 2 ),

RM -1 = Rε -1 ς ln (Rε -1 ) = √ Rε -1 Rε -1 ς ln (Rε -1 ) ≥ e × 1 ≥ e.
Let us prove Claim 2.C.1. Introduce the function g : ]0, +∞[ → R, x → x/ ln(x). It is easy to check that g(x 2 ) ≥ x for all x > 0 and that g is non-decreasing on [e, +∞[. Now, assume that Rε -1 ≥ max(e 2 , ς 2 ). Using the properties of g, we deduce that, if ς ≥ e then Rε -1 ≥ ς 2 ≥ e 2 ≥ e and Rε -1 /(ln(Rε -1 )) = g(Rε -1 ) ≥ g(ς 2 ) ≥ ς, while if ς < e then Rε -1 ≥ e 2 ≥ e and Rε -1 /(ln(Rε -1 )) = g(Rε -1 ) ≥ g(e 2 ) ≥ e > ς, hence Claim 2.C.1. Now, consider the hypercube A(p, d, M ) defined by

   ∞ j=1 α j φ j ; (α 1 , . . . , α p ) ∈ [0, M ] p , α j = 0 for j ≥ p + 1, p j=1 1 {α j =0} = d    =    M ∞ j=1 β j φ j ; (β 1 , . . . , β p ) ∈ [0, 1] p , β j = 0 for j ≥ p + 1, p j=1 1 {β j =0} = d    .
The essence of the proof is just to check that

A(p, d, M ) ⊂ L q (R) ∩ B r 2,∞ (R).
This shall enable us to bound from below the minimax risk over L q (R) ∩ B r 2,∞ (R) by the lower bound of the minimax risk over A(p, d, M ) provided by [START_REF] Birgé | Gaussian model selection[END_REF].

Let u ∈ A(p, d, M ). Write u = ∞ j=1 α j φ j = M ∞ j=1 β j φ j . ∞ j=1 |α j | q = M q p j=1 β q j 1 {β j =0} ≤ M q p j=1 1 {β j =0} ≤ M q d ≤ M q RM -1 q ≤ R q . Thus, u ∈ L q (R). Let J 0 ∈ N . If J 0 > p, then J 2r 0 ∞ j=J 0 α 2 j ≤ J 2r 0 ∞ j=p+1 α 2 j = 0 ≤ R 2 . If J 0 ≤ p, then J 2r 0 ∞ j=J 0 α 2 j = J 2r 0 M 2 p j=J 0 β 2 j 1 {β j =0} ≤ J 2r 0 M 2 p j=J 0 1 {β j =0} ≤ p 2r M 2 d ≤ R 2 . Thus, u ∈ B r 2,∞ (R). Therefore, A(p, d, M ) ⊂ L q (R) ∩ B r 2,∞ (R) and inf s sup s∈Lq(R)∩B r 2,∞ (R) E s -s 2 ≥ inf s sup s∈A(p,d,M ) E s -s 2 .
(2.74) Now, from Birgé and Massart (2001, Theorem 5), the minimax risk over

A (p, d, M ) satisfies inf s sup s∈A(p,d,M ) E s -s 2 ≥ κd min M 2 , ε 2 1 + ln p d ≥ κ RM -1 q 2 min M 2 , ε 2 1 + ln p d (2.75)
where κ > 0 denotes some absolute constant.

Moreover, we have

ε 2 1 + ln p d ≥ ε 2   1 + ln   RM -1 2-q 2r 2 (RM -1 ) q     ≥ ε 2 ln RM -1 ς = ε 2 ln Rε -1 ς εM -1 ς = M 2 + ε 2 ln εM -1 ς = M 2 - ς 2 ε 2 ln ς ln Rε -1 .
(2.76)

But the assumption Rε -1 ≥ max(e 2 , ς 2 ) implies that (2.76) is greater than M 2 /2. Indeed, first note that

M 2 - ς 2 ε 2 ln ς ln Rε -1 ≥ M 2 /2 ⇔ Rε -1 ln(Rε -1 ) ≥ ς, (2.77)
and then apply Claim 2.C.1. Thus, we deduce from (2.74), (2.75), (2.76) and (2.77) that there exists some κ > 0 such that [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF]. Then, an additional step is needed to adapt the truncation of the dictionary according to the unknown parameters of smoothness q and r of the target function. This second step is similar to the proof of Proposition 2.4.1 in the orthonormal case. We refer the interested reader to Massart and Meynet (2010, proof The rates of convergence (2.36) can easily be deduced from Theorem 2.3.4 by first checking that the 1 -penalized risk of the deterministic Lasso inf t∈L 1 (D) s -t 2 + λ t L 1 (D) is linked to the K D -functional of s by the following relation:

inf s sup s∈Lq(R)∩B r 2,∞ (R) E s -s 2 ≥ κR q M 2-q = κς 1-q 2 R q ε ln(Rε -1 ) 2-q . 2 2.C.
inf t∈L 1 (D) s -t 2 + λ t L 1 (D) ≤ inf δ>0 K 2 D (s, δ) + λ 2 4δ 2 , (2.78)
and then by bounding this last quantity thanks to (2.35) when s belongs to B q (R), which leads to an upper bound of the right-hand side of (2.78) of order R q λ 2-q + λσ/ √ n. We finally get (2.36) by taking into account the assumption on R. 2

2.D Interpolation spaces

Proof of Remark 4.

Assume that the dictionary D is an orthonormal basis of the Hilbert space H and that there exist

1 < q < 2, r > 0 and R > 0 such that s ∈ wL q (R) ∩ B r 2,∞ (R).
For all p ∈ N and λ > 0, define

s p,λ := arg min t∈L 1 (Dp) s -t 2 + λ t L 1 (Dp) .
The proof is divided in two main parts. First, we choose λ such that s p,λ ∈ L 1,r . Secondly, we choose p such that s -s p,λ + δ s p,λ L 1,r ≤ C q,r R δ 2ν for all δ > 0, some C q,r > 0 and ν = 1/q -1/2, which means that s ∈ B q,r (C q,r R).

Let us first choose λ such that s p,λ ∈ L 1,r . From Lemma 2.C.1, we have

s -s p,λ ≤ C r R 2 p -2r + C q R q λ 2-q ≤ C r Rp -r + C q R q/2 λ 1-q/2 . Now choose λ such that √ C r Rp -r = C q R q/2 λ 1-q/2
, that is to say From Lemma 2.C.1, there exists C q > 0 depending only on q such that s p ,λ p L 1 (D p ) ≤ C q R q λ 1-q p . So, we get from (2.79) that

λ p := R C q C -1 r p r -2 2-q . ( 2 
s p ,λ p L 1 (D p ) ≤ C q R C q C -1 r p r 2(q-1) 2-q ≤ C q R C q C -1 r p r 2(q-1) 2-q = C 1 2-q q C - (q-1) 2-q r Rp 2(q-1)r 2-q ,
and we deduce from (2.81) that

C p ≤ max 4 C r R, C 1 2-q q C - (q-1) 2-q r Rp 2(q-1)r 2-q ≤ C q,r Rp 2(q-1)r 2-q
where C q,r > 0 depends only on q and r. Thus, we have

s p,λp L 1,r ≤ C q,r Rp 2(q-1)r 2-q .
(2.82)

Then, we deduce from (2.80) and (2.82) that for all p ∈ N and δ > 0, inf

t∈L 1,r s -t + δ t L 1,r ≤ s -s p,λp + δ s p,λp L 1,r ≤ 2 C r Rp -r + δC q,r Rp 2(q-1)r 2-q .
(2.83) Now, we choose p such that p -r and δ p 2(q-1)r 2-q are of the same order. More precisely, set p = 2 J where J = (2 -q)(qr) -1 log 2 (δ -1 ) . With this value of p, we get that there exists C q,r > 0 depending only on q and r such that (2.83) is upper bounded by C q,r R δ (2-q)/q = C q,r R δ 2ν . This means that s ∈ B q,r (C q,r R), hence (2.33).

Chapter 3

Finite mixture Gaussian regression models 

ABSTRACT

We consider a finite mixture of Gaussian regressions for high-dimensional heterogeneous data where the number of covariates may be much larger than the sample size. We estimate the unknown conditional mixture density by an 1 -penalized maximum likelihood estimator. We provide an 1 -oracle inequality satisfied by this Lasso estimator with the Kullback-Leibler loss. In particular, we give a condition on the regularization parameter of the Lasso to obtain such an oracle inequality. Our aim is twofold: to extend the 1 -oracle inequality established in Chapter 2 in the homogeneous Gaussian linear regression case, and to present a complementary result to [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] by studying the Lasso for its 1 -regularization properties rather than for its variable selection properties. We deduce our oracle inequality from a finite mixture Gaussian regression model selection theorem for 1 -penalized maximum likelihood conditional density estimation that we establish by following Vapnik's structural risk minimization method [START_REF] Vapnik | Estimation of dependencies based on empirical data[END_REF] and theory on model selection for maximum likelihood estimators [START_REF] Massart | Concentration inequalities and model selection[END_REF].

NOTA: This chapter is submitted to ESAIM Probability and Statistics.

Introduction

In applied statistics, a tremendous number of applications deal with relating a random response variable Y ∈ R to a set of explanatory variables or covariates X ∈ R p through a regression-type model. As a consequence, linear regression is one of the most studied fields in statistics. Due to computer progress and development of state of the art technologies such as DNA microarrays, we are faced with high-dimensional data where the number of variables can be much larger than the sample size. To solve this problem, the sparsity scenario -which consists in assuming that the coefficients of the high-dimensional vector of covariates are mostly 0 -has been widely studied. These last years, a great deal of attention has been focused on the 1 -penalized least squares estimator of parameters, called the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. This interest has been motivated by the geometric properties of the 1norm: 1 -penalization tends to produce sparse solutions and can be thus used as a convex surrogate for the non-convex 0 -penalization. Thus, the Lasso has essentially been developed for sparse recovery based on convex optimization. In this sparsity approach, many results, such as 0 -oracle inequalities, have been proved to study the performance of this estimator as a variable selection procedure [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Van De Geer | High dimensional generalized linear models and the Lasso[END_REF][START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF]. Nonetheless, all these results need strong restrictive eigenvalue assumptions on the Gram matrix that can be far from being fulfilled in practice (see [START_REF] Bühlmann | On the conditions used to prove oracle results for the Lasso[END_REF], for an overview of these assumptions). In parallel, a few results on the performance of the Lasso for its 1 -regularization properties have been established [START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF][START_REF] Huang | Risk of penalized least squares, greedy selection and 1 -penalization for flexible function libraries[END_REF][START_REF] Massart | The Lasso as an 1 -ball model selection procedure[END_REF][START_REF] Rigollet | Exponential Screening and optimal rates of sparse estimation[END_REF]. In particular, in Chapter 2, we provided an 1 -oracle inequality for the Lasso in the framework of fixed design Gaussian regression (see Theorem 2.3.2). Contrary to the 0 -results that require strong assumptions on the regressors, our 1 -result is valid with no assumption at all.

In linear regression, the homogeneity assumption that the regression coefficients are the same for different observations (X 1 , Y 1 ), . . . , (X n , Y n ) is often inadequate and restrictive. It seems all the more true for the case of high-dimensional data where the number p of covariates can be much larger than the number n of observations: at least a fraction of covariates may exhibit a different influence on the response among various observations (i.e. subpopulations) and parameters may change for different subgroups of observations. Thus, addressing the issue of heterogeneity in high-dimensional data is important in many practical applications. For instance, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] prove that substantial prediction improvements are possible by incorporating a heterogeneity structure to the model. Such heterogeneity can be modeled by a finite mixture of regressions: if s(•|X) is the density of Y conditionally to the covariate X, we can look for an estimator of s as a finite mixture of regressions. Here, we restrict to the important case of Gaussian models. Thus, we consider models defined by a mixture of K Gaussian densities,

s θ (Y i | X i = x i ) = K k=1 π k √ 2πσ k exp - Y i -β T k x i 2 2σ 2 k with parameters θ = (π k , β kj , σ k ) 1≤k≤K,1≤j≤p .
During the last years, both theoretical studies and experiments have been carried out on finite mixture regression models [START_REF] Young | On the non-negative garotte estimator[END_REF][START_REF] Grün | Applications of finite mixtures of regression models[END_REF][START_REF] Städler | 1 -penalization for mixture regression models[END_REF][START_REF] Beninel | Parametric link models for knowledge transfer in statistical learning[END_REF]. For instance, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] consider an 1 -penalization approach by introducing a Lasso estimator to estimate the density s:

ŝ(λ) = arg min s θ - 1 n n i=1 ln (s θ (Y i |x i )) + λ|s θ | 1 , (3.1) 
where

|s θ | 1 = p j=1 K k=1 |β kj |
is the 1 -norm of the mean parameters only. In a sparsity viewpoint, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] provide an 0 -oracle inequality satisfied by this Lasso estimator. Their oracle inequality is based on the same restricted eigenvalue conditions used in the homogeneous linear regression case recalled in Section 1.2.4. Moreover, the log-likelihood function used for maximum likelihood estimation requires additional mathematical arguments in comparison to the quadratic loss used in the homogeneous linear regression case. In particular, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] have to introduce some margin assumptions to link the Kullback-Leibler loss function to the 2 -norm of the parameters and get optimal rates of convergence of order |s θ | 0 /n.

In this chapter, we propose another approach that does not take into account sparsity. We rather study the performance of the Lasso estimator in the framework of finite mixture Gaussian regression models for its 1 -regularization properties, thus extending the results presented in Chapter 2 for homogeneous Gaussian linear regression models. As in Chapter 2, we restrict to the fixed design case, that is to say to non-random regressors. We provide an 1 -oracle inequality satisfied by the Lasso with no assumption, neither on the regressors, nor on the margin. This can be achieved thanks to the fact that we are only looking for rates of convergence of order |s θ | 1 / √ n rather than |s θ | 0 /n. We give a lower bound of the regularization parameter λ of the Lasso in (3.1) to guarantee such an oracle inequality:

λ ≥ CK (ln n) 2 ln(2p + 1) n (3.2)
where C is a positive quantity depending on the mixture parameters and on the regressors, whose value is specified at (3.7).

Our result is non-asymptotic: the number n of observations is fixed while the number p of covariates can grow with respect to n and can be much larger than n. The number K of clusters in the mixture is fixed. We pay a great attention to obtain a lower bound (3.2) of λ with optimal dependence on p, that is to say ln(2p + 1) just as for homogeneous Gaussian linear regression in Chapter 2.

Our oracle inequality is deduced from a finite mixture Gaussian regression model selection theorem for 1 -penalized maximum likelihood conditional density estimation that we establish by following both Vapnik's structural risk minimization method [START_REF] Vapnik | Estimation of dependencies based on empirical data[END_REF] and the theory around model selection [START_REF] Cohen | Conditional density estimation by penalized likelihood model selection and applications[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF]. Just as in Chapter 2, the key idea that enables us to deduce our 1 -oracle inequality from such a model selection theorem is to view the Lasso as the solution of a penalized maximum likelihood model selection procedure over a countable collection of 1 -ball models.

The chapter is organized as follows. The notations and the framework are introduced in Section 3.2. In Section 3.3, we state the main result of this chapter, which is an 1 -oracle inequality satisfied by the Lasso in finite mixture Gaussian regression models. Section 3.A is devoted to the proof of this oracle inequality. In particular, we state and prove the general finite mixture Gaussian regression model selection theorem from which this result is derived. Finally, some lemmas are proved in Section 3.B.

Notations and framework

The models

Our statistical framework is a finite mixture of Gaussian regressions for high-dimensional data where the number of covariates can be much larger than the sample size. We observe n independent couples ((x i , Y i )) 1≤i≤n of variables. We are interested in estimating the law of the random variable Y i ∈ R conditionally to the fixed one x i ∈ R p . We assume that, conditionally to the x i s, the Y i s are independent identically distributed with density s(•|x i ) which is a finite mixture of K Gaussian densities:

Y i | x i independent Y i | x i = x ∼ s(y|x)dy s(y|x) = s θ * (y|x) = K k=1 π * k √ 2πσ * k exp   - y -β * k T x 2 2σ * k 2    , θ * = (π * 1 , . . . , π * K , β * 1 , . . . , β * K , σ * 1 , . . . , σ * K ) ∈ Π K × (R p ) K × R K + , Π K = (π 1 , . . . , π K ) ; π k > 0 for k ∈ {1, . . . , K} and K k=1 π k = 1 .
We want to estimate the conditional density function s from the observations. To this aim, we consider a collection of finite mixture Gaussian regression models as follows:

s θ (y|x) = K k=1 π k √ 2πσ k exp - y -β T k x 2 2σ 2 k , θ = (π 1 , . . . , π K , β 1 , . . . , β K , σ 1 , . . . , σ K ) ∈ Π K × (R p ) K × R K + .
For all k ∈ {1, . . . , K}, β k is the vector of regression coefficients and σ k is the standard deviation in mixture component k. The π k s are the mixture proportions.

For all x ∈ R p , we define the parameter θ(x) of the conditional density s θ (.|x) by

θ(x) = π 1 , . . . , π K , β T 1 x, . . . , β T K x, σ 1 , . . . , σ K ∈ R 3K .
For all k ∈ {1, . . . , K}, β T k x is the mean coefficient of the mixture component k for the conditional density s θ (.|x).

Since we work conditionally to the covariates (x i ) 1≤i≤n , our results are expressed with quantities depending on them. In particular, we set

x max,n := 1 n n i=1 max j=1,...,p x 2 ij . (3.3)

Boundedness assumption on the mixture parameters

For technical reasons, we restrict our study to bounded parameter vectors θ = (π k , β k , σ k ) 1≤k≤K .

We assume that there exist deterministic positive quantities a π , a β , A β , a σ and A σ such that the parameter vectors belong to the bounded space

Θ = θ = (π 1 , . . . , π K , β 1 , . . . , β K , σ 1 , . . . , σ K ) ; ∀ k ∈ {1, . . . , K} : a π ≤ π k , a β ≤ inf x∈R p β T k x ≤ sup x∈R p β T k x ≤ A β , a σ ≤ σ k ≤ A σ . (3.4)
We denote by S the set of conditional densities s θ in this model:

S = s θ ; θ ∈ Π K × (R p ) K × R K + ∩ Θ .
Besides, we assume that the true density s = s θ * belongs to S, that is to say that the true parameter θ * belongs to the bounded space Θ.

The Lasso estimator

In a maximum likelihood approach, the loss function taken into consideration is the Kullback-Leibler information, which is defined for a density t by

KL(s, t) = R ln s(y) t(y) s(y) dy
if sdy is absolutely continuous with respect to tdy and +∞ otherwise. Since we work with conditional densities, we define the following adapted Kullback-Leibler information KL n that takes into account the structure of conditional densities: for fixed covariates x 1 , . . . , x n , we consider the average loss function

KL n (s, t) = 1 n n i=1 KL(s(•|x i ), t(•|x i )) = 1 n n i=1 R ln s(y|x i ) t(y|x i ) s(y|x i ) dy. (3.5)
The maximum likelihood approach suggests to estimate s by the conditional density s θ that maximizes the likelihood conditionally to (x i ) 1≤i≤n , or equivalently that minimizes the empirical contrast which is -n i=1 ln(s θ (Y i |x i ))/n. Choosing such an estimator s θ boils down to choosing a parameter θ = (π k , β kj , σ k ) 1≤k≤K,1≤j≤p minimizing the empirical contrast. It requires the estimation of pK + 2K coefficients. But we are mostly interested in high-dimensional data with p n, and thus pK + 2K

n. For such high-dimensional problems, we have to regularize the maximum likelihood estimator in order to obtain reasonably accurate estimates. Since there are only K proportion coefficients π k and K standard deviation coefficients σ k with K n, no regularization on these parameters is necessary. On the opposite, there are Kp mean parameters β kj with Kp n, so these parameters must be regularized. Here, we consider 1 -regularization and its associated so-called Lasso estimator which is the 1 -norm penalized maximum likelihood estimator defined by ŝ(λ) := arg min

s θ ∈S - 1 n n i=1 ln (s θ (Y i |x i )) + λ|s θ | 1 , (3.6) 
where λ > 0 is a regularization parameter and

|s θ | 1 := p j=1 K k=1 |β kj | for θ = (π k , β k , σ k ) 1≤k≤K .

An 1 -oracle inequality for the Lasso

Here, we state the main result of this chapter. Theorem 3.3.1 provides an 1 -oracle inequality for the Lasso in finite mixture Gaussian regression models.

Theorem 3.3.1. Denote a ∧ b = min{a, b}. Assume that λ ≥ κ a σ ∧ a π   1 + A 2 β + A 2 σ ln(n) a 2 σ   √ K √ n 1 + x max,n ln(n) K ln(2p + 1) (3.7)
for some absolute constant κ ≥ 360. Then, there exists an absolute positive constant κ such that the Lasso estimator ŝ(λ) defined by (3.6) satisfies the following 1 -oracle inequality:

E [KL n (s, ŝ(λ))] ≤ (1 + κ -1 ) inf s θ ∈S {KL n (s, s θ ) + λ|s θ | 1 } + λ + κ √ K √ n   K 1 + (A β + A σ ) 2 a σ ∧ a π   1 + A 2 β + A 2 σ ln(n) a 2 σ   + ln A σ a σ + A 2 β a 2 σ   .
(3.8)

Proof. Page 112. We have not looked for optimizing the constants in Theorem 3.3.1. Thus, we do not explicit the value of κ and the lower bound on κ is sufficient but not optimal.

Let us make a few comments on this result.

Theorem 3.3.1 provides information about the performance of the Lasso as an 1 -regularization algorithm. It highlights the fact that, provided that the regularization parameter λ is properly chosen, the Lasso estimator, which is the solution of the 1 -penalized empirical risk minimization problem, behaves as well as the deterministic Lasso, that is to say the solution of the 1 -penalized true risk minimization problem, up to an error term of order (ln n) 2 / √ n. This 1 -result is complementary to the 0 -oracle inequality established by [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] whose is rather stated in a sparsity approach looking at the Lasso as a variable selection procedure.

Let us stress that we present here an 1 -oracle inequality with no assumption, neither on the regressors, nor on the margin. This represents a great advantage compared to the 0 -oracle inequality in [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] which requires some restricted eigenvalue conditions. Besides, Städler et al.'s result needs some margin assumptions. Although one may prove that these margin assumptions are actually fulfilled for some undetermined quantities thanks to theoretical arguments such as continuity or differentiability of the functions into consideration, it seems difficult to calculate explicit values of these quantities. Thus, one has no idea of the concrete values of these quantities. Yet, the 0oracle inequality established by [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] strongly depends on these unknown quantities. Therefore, their result is hardly interpretable. On the contrary, the only assumption used to establish Theorem 3.3.1 is the boundedness of the mixture parameters, which is anyway also assumed by [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] and which is quite usual when working with maximum likelihood estimation [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF][START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF], at least to tackle the problem of the unboundedness of the likelihood at the boundary of the parameter space [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF][START_REF] Mclachlan | Finite Mixture Models[END_REF] and to prevent it from divergence. In fact, [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] must make their eigenvalue assumption so as to bound the 2 -norm of the parameter vector on its support and they add assumptions on the margin in order to link the loss function to the 2 -norm of the parameters and get optimal rates of convergence |s θ | 0 /n in a sparsity viewpoint. On the opposite, since we focus on an 1 -regularization approach, we are just looking for rates of convergence of order |s θ | 1 / √ n and we can avoid such restrictive vague assumptions.

Both our 1 -oracle inequality and the 0 -oracle inequality in [START_REF] Städler | 1 -penalization for mixture regression models[END_REF] are valid for regularization parameters of the same order as regards the sample size n and the number p of covariates, that is (ln n) 2 ln(2p + 1)/n. This means that if one considers a Lasso estimator with such a regularization parameter, then, although one can not be sure that the Lasso indeed performs well as regards variable selection (because one has no idea of the unknown constants present in [START_REF] Städler | 1 -penalization for mixture regression models[END_REF], one is at least guaranteed that the Lasso will act as a good 1 -regularizator.

Our result is non-asymptotic: the number n of observations is fixed while the number p of covariates can grow with respect to n and can be much larger than n. A great attention has been paid to obtain a lower bound (3.7) of λ with optimal dependence on p, which is the only parameter not to be fixed. We recover the same dependence ln(2p + 1) as for the homogeneous linear regression in Chapter 2. Contrary to [START_REF] Städler | 1 -penalization for mixture regression models[END_REF], we give an explicit dependence not only on n and p, but also on the number K of clusters in the mixture as well as on the regressors and all the quantities bounding the mixture parameters of the model. Nonetheless, we are aware of the fact that these dependences may not be optimal. In particular, we get a linear dependence on K in (3.7), while we might think that the true minimal dependence is only √ K (see Remark 6 for more details).

For K = 1, KL n (s, t) = E Xβ * -Xβ2 /2, so Inequality (3.8) enables to recover Inequality (2.14) for linear homogeneous regression. Nonetheless, we have established Inequality (2.14) with no boundedness assumption on the parameters. Moreover, there is an extra-(ln n) 2 factor in the lower bound (3.7) of the regularization parameter λ in the heterogeneous regression case compared to the lower bound (2.12) in the homogeneous regression case. In fact, in Chapter 2, we managed to obtain an optimal bound of order ln(p)/n of the regularization parameter thanks to linearity arguments adapted to the quadratic loss function. In contrast, in this chapter, we have not managed to extend these arguments to deal with the non-linear Kullback-Leibler information and we have rather envisaged entropy arguments based on Dudley's entropy bound [START_REF] Dudley | The sizes of compact subsets of Hilbert space and continuity of Gaussian processes[END_REF], which results in this extra-(ln n) 2 factor1 . Appendices 3.A Proof of Theorem 3.3.1

3.A.1 Statement of the main results

To prove Theorem 3.3.1, we first establish an 1 -ball mixture regression model selection theorem for density estimation in the Gaussian framework, which is stated below as Theorem 3.A.1. Then, by looking at the Lasso as the solution of a penalized maximum likelihood model selection procedure over a countable collection of 1 -ball models, Theorem 3.3.1 is an immediate consequence of Theorem 3.A.1. Theorem 3.A.1. Assume we observe ((x i , Y i )) 1≤i≤n with unknown conditional Gaussian mixture density s. For all m ∈ N , consider the 1 -ball

S m = {s θ ∈ S; |s θ | 1 ≤ m} (3.9)
and let ŝm be a η m -empirical risk minimizer in S m for some η m ≥ 0:

- 1 n n i=1 ln(ŝ m (Y i |x i )) ≤ inf sm∈Sm - 1 n n i=1 ln(s m (Y i |x i )) + η m . (3.10)
Assume that for all m ∈ N , the penalty function satisfies pen(m) = λm with

λ ≥ κ a σ ∧ a π   1 + A 2 β + A 2 σ ln(n) a 2 σ   √ K √ n 1 + x max,n ln(n) K ln(2p + 1) (3.11)
for some absolute constant κ ≥ 360. Then, any penalized likelihood estimate ŝ m with m such that

- 1 n n i=1 ln(ŝ m(Y i |x i )) + pen( m) ≤ inf m∈N - 1 n n i=1 ln(ŝ m (Y i |x i )) + pen(m) + η (3.12)
for some η ≥ 0 satisfies

E [KL n (s, ŝ m)] ≤ (1 + κ -1 ) inf m∈N inf sm∈Sm KL n (s, s m ) + pen(m) + η m + κ √ K √ n   K 1 + (A β + A σ ) 2 a σ ∧ a π   1 + A 2 β + A 2 σ ln(n) a 2 σ   + ln A σ a σ + A 2 β a 2 σ   + η, (3.13) 
where κ is an absolute positive constant.

Proof. Page 111.

Theorem 3.A.1 can be deduced from the two following propositions.

Proposition 3.A.1. Assume we observe ((x i , Y i )) 1≤i≤n with unknown conditional density s. Let M n > 0 and consider the event

T := max i=1,...,n |Y i | ≤ M n .
For all m ∈ N , consider the 1 -ball

S m = {s θ ∈ S; |s θ | 1 ≤ m} , (3.14) 
and let ŝm be a η m -empirical risk minimizer in S m for some η m ≥ 0:

- 1 n n i=1 ln(ŝ m (Y i |x i )) ≤ inf sm∈Sm - 1 n n i=1 ln(s m (Y i |x i )) + η m .
Assume that for all m ∈ N , the penalty function satisfies pen(m) = λm with

λ ≥ κ a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ √ K √ n 1 + x max,n ln(n) K ln(2p + 1) (3.15)
for some absolute constant κ ≥ 36. Then, any penalized likelihood estimate ŝ m with m such that

- 1 n n i=1 ln(ŝ m(Y i |x i )) + pen( m) ≤ inf m∈N - 1 n n i=1 ln(ŝ m (Y i |x i )) + pen(m) + η (3.16)
for some η ≥ 0 satisfies

E [KL n (s, ŝ m)1 T ] ≤ (1 + κ -1 ) inf m∈N inf sm∈Sm KL n (s, s m ) + pen(m) + η m + κ K 3/2 √ n 1 + (A β + A σ ) 2 (a σ ∧ a π ) 1 + (M n + A β ) 2 a 2 σ + η, (3.17)
where κ is an absolute positive constant.

Proof. Page 105.

Proposition 3.A.2. Assume we observe ((x i , Y i )) 1≤i≤n with unknown conditional Gaussian mixture density s. Let M n > 0 and consider the event

T C := max i=1,...,n |Y i | > M n .
For all m ∈ N , consider m defined by (3.16).

Then,

E [KL n (s, ŝ m)1 T C ] ≤ √ 2K ln A σ a σ + 2A 2 β a 2 σ e - Mn ( Mn-2A β ) 4A 2 σ √ n .
Proof. Page 108.

3.A.2 Proof of the main results

The main result is Proposition 3.A.1. Its proof is based on Vapnik's structural risk minimization method [START_REF] Vapnik | Estimation of dependencies based on empirical data[END_REF][START_REF] Vapnik | Statistical learning theory[END_REF]. To obtain an upper bound of the empirical process in expectation, we use concentration inequalities combined with symmetrization arguments, in the spirit of the proof of Massart's general model selection theorem for maximum likelihood estimators (Massart, 2007, Theorem 7.11). Nonetheless, Massart's arguments are lightened because we are just looking for low rates of convergence.

3.A.2.1 Proof of Proposition 3.A.1

For any measurable function f : R → R, consider its empirical norm

f n := 1 n n i=1 f 2 (Y i |x i ) , (3.18) its conditional expectation E X [f ] = R f (y|x)s(y|x)
dy, as well as its empirical process

P n (f ) := 1 n n i=1 f (Y i |x i ) , (3.19) 
and the recentred process 

ν n (f ) := P n (f ) -E X [P n (f )] = 1 n n i=1 f (Y i |x i ) - R f (y|x i )s(y|x i ) dy . (3.20) Let δ KL > 0, η > 0. Fix m ∈ N . Let η m > 0.
P n fm + pen(m ) ≤ P n fm + pen(m) + η ≤ P n f m + pen(m) + η + η m ,
which implies by (3.20) that

E X P n fm + pen(m ) ≤ E X P n f m + pen(m) + ν n f m -ν n fm + η + η m .
By taking into account (3.5), (3.19) and (3.22), we get

KL n (s, ŝm ) + pen(m ) ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + ν n f m -ν n fm + η + η m + δ KL . (3.26)
Thus, all the matter is to control -ν n ( fm ) = ν n (-fm ). To cope with the randomness of fm , we control the deviation of sup f m ∈F m ν n (-f m ) thanks to the following lemma.

Lemma 3.A.3. Let M n > 0. Consider the event

T := max i=1,...,n |Y i | ≤ M n . Put B n = 1 a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ (3.27) and ∆ m := m x max,n ln n K ln(2p + 1) + 6 (1 + K(A β + A σ )) . (3.28)
Then, on the event T , for all m ∈ N , for all u > 0, with P X -probability greater than 1e -u , sup

f m ∈F m |ν n (-f m )| ≤ 4B n √ n 9 √ K ∆ m + √ 2(1 + K(A β + A σ )) √ u . (3.29)
Proof. Page 112.

We derive from (3.26) and (3.29) that on the event T , for all m ∈ N , for all m ∈ M(m), for all u > 0, with P X -probability larger than 1e -u ,

KL n (s, ŝm ) + pen(m ) ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + ν n f m + η + η m + δ KL + 4B n √ n 9 √ K ∆ m + √ 2(1 + K(A β + A σ )) √ u ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + ν n f m + η + η m + δ KL + 4B n √ n 9 √ K ∆ m + 1 2 √ K (1 + K (A β + A σ )) 2 + √ Ku , (3.30)
where we get the last inequality by using 2ab

≤ αa 2 + α -1 b 2 for α = 1/ √ K.
It remains to sum up the tail bounds (3.30) over all the possible values of m ∈ N and m ∈ M(m).

To get an inequality valid on a great probability set, we need to choose adequately the value of the parameter u depending on m ∈ N and m ∈ M(m). Let z > 0. By applying (3.30) to u = z+m+m for all m ∈ N and m ∈ M(m), we get that, and on the event T , with P X -probability larger than

1- (m,m )∈N ×M(m) e -(z+m+m ) ≥ 1- (m,m )∈N ×N e -(z+m+m ) = 1-e -z m∈N e -m 2 ≥ 1-e -z , KL n (s, ŝm ) + pen(m ) ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + ν n f m + η + η m + δ KL + 4B n √ n 9 √ K ∆ m + 1 2 √ K (1 + K (A β + A σ )) 2 + √ K(z + m + m ) .
holds simultaneously for all m ∈ N and m ∈ M(m). It can also be written

KL n (s, ŝm ) -ν n f m -δ KL ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + 4B n √ n √ Km + η m + 4B n √ n √ K 9∆ m + m -pen(m ) + 4B n √ n 1 2 √ K (1 + K (A β + A σ )) 2 + √ Kz + η.
By taking into account the definition (3.28) of ∆ m , it gives

KL n (s, ŝm ) -ν n f m -δ KL ≤ inf sm∈Sm KL n (s, s m ) + pen(m) + 4B n √ n √ Km + η m + 4B n √ n √ K 9 x max,n ln n K ln(2p + 1) + 1 m -pen(m ) + 4B n √ n 1 2 √ K (1 + K (A β + A σ )) 2 + 54 √ K (1 + K(A β + A σ )) + √ Kz + η. (3.31)
Now, let κ ≥ 1 and assume that, for all m ∈ N , pen( m) satisfies pen( m) = λ m with

λ ≥ 4κ B n √ n √ K 9 x max,n ln n K ln(2p + 1) + 1 .
Then, (3.31) implies

KL n (s, ŝm ) -ν n f m -δ KL ≤ inf sm∈Sm KL n (s, s m ) + (1 + κ -1 ) pen(m) + η m + 4B n √ n 1 2 √ K (1 + K (A β + A σ )) 2 + 54 √ K (1 + K(A β + A σ )) + √ Kz + η.
Then, by using the inequality 2ab ≤ αa 2 + α -1 b 2 for α = √ K, we get

KL n (s, ŝm ) -ν n f m -δ KL ≤ inf sm∈Sm KL n (s, s m ) + (1 + κ -1 ) pen(m) + η m + 4B n √ n 27K 3/2 + 55 2 √ K (1 + K (A β + A σ )) 2 + √ Kz + η. (3.32)
Now consider m defined by (3.16). From (3.16) and (3.23), m belongs to M(m) for all m ∈ N . So, from (3.32), on the event T , for all z > 0, with P X -probability greater than 1e -z ,

KL n (s, ŝ m) -ν n f m -δ KL ≤ inf m∈N inf sm∈Sm KL n (s, s m ) + (1 + κ -1 ) pen(m) + η m + 4B n √ n 27K 3/2 + 55 2 √ K (1 + K (A β + A σ )) 2 + √ Kz + η. (3.33)
We end the proof by integrating (3.33) with respect to z. Since E ν n f m = 0, we get when δ KL tends to zero:

E [KL n (s, ŝ m) 1 T ] ≤ inf m∈N inf sm∈Sm KL n (s, s m ) + (1 + κ -1 ) pen(m) + η m + 4B n √ n 27K 3/2 + 55 2 √ K (1 + K (A β + A σ )) 2 + √ K + η ≤ inf m∈N inf sm∈Sm KL n (s, s m ) + (1 + κ -1 ) pen(m) + η m + 112B n √ n K 3/2 1 + (A β + A σ ) 2 + η.
By taking into account the value (3.27) of B n , we obtain (3.17). 2

3.A.2.2 Proof of Proposition 3.A.2
By Cauchy-Schwarz Inequality,

E [KL n (s, ŝ m)1 T C ] ≤ E [KL 2 n (s, ŝ m)] P (T C ) . (3.34)
Let us bound the two terms of the right-hand side of (3.34).

For the first term, let us bound KL(s(.|x), s θ (.|x)) for all s θ ∈ S and x ∈ R p . Let s θ ∈ S and x ∈ R p . Denote θ = (π k , β k , σ k ) 1≤k≤K . Recall that the true density s is assumed to be itself a finite mixture of Gaussian regressions with s = s θ * . Let y ∈ R. Since the parameters θ and θ * belong to the bounded space Θ defined by (3.4) and since K k=1 π k = K k=1 π * k = 1, on the one hand, we have

s(y|x) = K k=1 π * k √ 2πσ * exp   - y -β * k T x 2 2σ * k 2    ≤ 1 √ 2πa σ ,
and, on the other hand, we have

s θ (y|x)) = K k=1 π k √ 2πσ k exp - y -β T k x 2 2σ 2 k ≥ K k=1 π k √ 2πσ k exp - y 2 + β T k x 2 σ 2 k ≥ 1 √ 2πA σ exp - y 2 + A 2 β a 2 σ . Thus, ln s(y|x) s θ (y|x) ≤ ln A σ a σ exp y 2 + A 2 β a 2 σ = ln A σ a σ + y 2 + A 2 β a 2 σ and KL(s(.|x), s θ (.|x)) = R ln s(y|x) s θ (y|x) s(y|x) dy ≤ ln A σ a σ + A 2 β a 2 σ + 1 a 2 σ R y 2 s(y|x) dy . But R y 2 s(y|x) dy = E Y 2 |X = x ≤ [E(Y |X = x)] 2 ≤ K k=1 π * k β * k T x 2 ≤ A 2 β .
So,

KL(s(.|x), s θ (.|x)) ≤ ln A σ a σ + 2A 2 β a 2 σ .
Then, for all s θ ∈ S, .35) Let us now provide an upper bound of P(T C ).

KL n (s, s θ ) = 1 n n i=1 KL (s(.|x i ), s θ (.|x i )) ≤ ln A σ a σ + 2A 2 β a 2 σ and E [KL 2 n (s, ŝ m)] ≤ ln A σ a σ + 2A 2 β a 2 σ . ( 3 
P T C = E (1 T C ) = E [E X (1 T C )] = E P X T C (3.36)
with

P X T C = P X n i=1 {|Y i | > M n } ≤ n i=1 P X (|Y i | > M n ). (3.37) For all i ∈ {1, . . . , n}, Y i | X i = x i ∼ K k=1 π * k N (β * k T x i , σ * k 2
). So, from (3.37), we just need to provide an upper bound of

P (|Y x | > M n ) with Y x ∼ K k=1 π * k N (β * k T x, σ * k 2 ) for x ∈ R p .
First using Chernoff's Inequality for a centered Gaussian variable [START_REF] Massart | Concentration inequalities and model selection[END_REF], and then using the fact that θ * belongs to the bounded space Θ defined by (3.4) and that K k=1 π * k = 1, we get .38) We derive from (3.36), (3.37) and (3.38) that

P (|Y x | > M n ) = R 1 {|y|>Mn} K k=1 π * k 1 √ 2πσ * k e -1 2 y-β * k T x σ * k 2 dy = K k=1 π * k R 1 {|y|>Mn} 1 √ 2πσ * k e -1 2 y-β * k T x σ * k 2 dy = K k=1 π * k P (|Y x,k | > M n ) with Y x,k ∼ N β * k T x, σ * k 2 = K k=1 π * k P U > M n -β * k T x σ * k + P U > M n + β * k T x σ * k with U ∼ N (0, 1) ≤ K k=1 π * k   e -1 2 Mn-β * k T x σ * k 2 + e -1 2 Mn+β * k T x σ * k 2   ≤ 2 K k=1 π * k e -1 2 Mn-| β * k T x | σ * k 2 ≤ 2 K k=1 π * k e - M 2 n + ( β * k T x ) 2 -2Mn | β * k T x | 2σ * k 2 ≤ 2Ke - M 2 n +a 2 β -2MnA β 2A 2 σ ≤ 2Ke - Mn ( Mn-2A β ) 2A 2 σ . ( 3 
P(T C ) ≤ 2Ke - Mn ( Mn-2A β ) 2A 2 σ n. (3.39)
Finally, we get from (3.34), (3.35) and (3.39) that Let M n > 0 and κ ≥ 36. Assume that, for all m ∈ N , the penalty function satisfies pen(m) = λm with

E [KL n (s, ŝ m)1 T C ] ≤ √ 2K ln A σ a σ + 2A 2 β a 2 σ e - Mn ( Mn-2A β ) 4A 2 σ √ n . ( 3 
λ ≥ κ a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ √ K √ n 1 + x max,n ln(n) K ln(2p + 1) . (3.41)
We derive from Proposition 3.A.1 and Proposition 3.A.2 that there exists an absolute positive constant κ such that any penalized likelihood estimate ŝ m defined by (3.12) satisfies

E [KL n (s, ŝ m)] = E [KL n (s, ŝ m)1 T ] + E [KL n (s, ŝ m)1 T C ] ≤ (1 + κ -1 ) inf m∈N inf sm∈Sm KL n (s, s m ) + pen(m) + η m + κ K 3/2 √ n 1 + (A β + A σ ) 2 a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ + η + √ 2K ln A σ a σ + 2A 2 β a 2 σ e - Mn ( Mn-2A β ) 4A 2 σ √ n . (3.42)
To get Inequality (3.13), it only remains to optimize Inequality (3.42) with respect to M n . Since the two terms depending on M n in (3.42) have opposite monotony with respect to M n , we are looking for a value of M n such that these two terms are of the same order with respect to n. Consider

M n = A β + A 2 β + 4A 2 σ ln n the positive solution of the equation X(X -2A β ) -4A 2 σ ln n = 0. Then, on the one hand, e - Mn ( Mn-2A β ) 4A 2 σ √ n = e -ln n √ n = 1 √ n .
On the other hand, by using the inequality (a + b) 2 ≤ 2(a 2 + b 2 ), we have

1 √ n 1 + (M n + A β ) 2 a 2 σ ≤ 1 √ n   1 + 2 5A 2 β + 4A 2 σ ln n a 2 σ   , hence (3.13).
The upper bound (3.11) of the tuning parameter λ is obtained from the upper bound (3.41) and the fact that 

(M n + A β ) 2 ≤ 2(5A 2 β + 4A 2 σ ln n) for M n = A β + A 2 β + 4A 2 σ ln n. 2 3 
- 1 n n i=1 ln (ŝ(λ)(Y i |x i )) + λ m ≤ - 1 n n i=1 ln (ŝ(λ)(Y i |x i )) + λ|ŝ(λ)| 1 + λ = inf s θ ∈S - 1 n n i=1 ln (s θ (Y i |x i )) + λ|s θ | 1 + λ = inf m∈N inf s θ ∈S,|s θ | 1 ≤m - 1 n n i=1 ln (s θ (Y i |x i )) + λ|s θ | 1 + λ ≤ inf m∈N inf sm∈Sm - 1 n n i=1 ln (s m (Y i |x i )) + λm + λ,
sup fm∈Fm |ν n (-f m )| = sup fm∈Fm 1 n n i=1 (f m (Y i |x i ) -E X [f m (Y i |x i )]) . (3.43)
To control the deviation of such a quantity, we shall combine concentration with symmetrization arguments. We shall first use the following concentration inequality.

Lemma 3.B.1. [START_REF] Boucheron | Concentration inequalities with applications[END_REF] Let Z 1 , . . . , Z n be independent random variables with values in some space Z and let F be a class of real-valued functions on Z. Assume that there exists a non-random constant R n such that sup f ∈F f n ≤ R n . Then, for all u > 0,

P sup f ∈F 1 n n i=1 f (Z i ) -E (f (Z i )) > E sup f ∈F 1 n n i=1 f (Z i ) -E (f (Z i )) + 2 √ 2R n u n ≤ e -u .
(3.44)

Then, E sup f ∈F

1 n n i=1 f (Z i ) -E (f (Z i )
) can be bounded thanks to the following symmetrization argument.

Lemma 3.B.2. (van der Vaart and Wellner, 1996, Lemma 2.3.6) Let Z 1 , . . . , Z n be independent random variables with values in some space Z and let F be a class of real-valued functions on Z. Let (ε 1 , . . . , ε n ) be a Rademacher sequence independent of (Z 1 , . . . , Z n ). Then,

E sup f ∈F 1 n n i=1 f (Z i ) -E (f (Z i )) ≤ 2E sup f ∈F 1 n n i=1 ε i f (Z i ) .
(3.45)

From (3.45), the problem boils down to providing an upper bound of E sup f ∈F

1 n n i=1 ε i f (Z i ) .
To this aim, we shall apply the following lemma, which is adapted from (Massart, 2007, Lemma 6.1). Lemma 3.B.3. (Massart, 2007, Lemma 6.1) Let Z 1 , . . . , Z n be independent random variables with values in some space Z and let F be a class of real-valued functions on Z. Let (ε 1 , . . . , ε n ) be a Rademacher sequence independent of (Z 1 , . . . , Z n ). Define a non-random constant R n such that

sup f ∈F f n ≤ R n . (3.46)
Then, for all J ∈ N , 

E sup f ∈F 1 n n i=1 ε i f (Z i ) ≤ R n   6 √ n J j=1 2 -j ln [1 + N (2 -j R n , F, . n )] + 2 -J   , ( 3 
F = F m , (Z 1 , . . . , Z n ) = (Y 1 |x 1 , . . . , Y n |x n ) and f (Z i ) = f m (Y i |x i ) so as to control sup fm∈Fm |ν n (-f m )| .
On the one hand, we see from (3.46) that we need an upper bound of sup fm∈Fm f m n . On the other hand, we see from (3.47) that we need to bound the entropy of the set of functions F m equipped with the metric induced by the norm . n . Such bounds are provided by the two following lemmas.

Finite mixture Gaussian regression models

Let M n > 0. Consider the event

T := max i=1,...,n |Y i | ≤ M n and put B n = 1 a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ .
Lemma 3.B.4. On the event T , for all m ∈ N , 

sup fm∈Fm f m n ≤ R n := 2B n (1 + K(A β + A σ )) . ( 3 
N (δ, F m , . n ) ≤ (2p + 1) 4B 2 n K 2 m 2 x 2 max,n δ 2 1 + 8B n KA σ δ K 1 + 8B n δ K .
Proof. Page 117.

By using the upper bounds provided by Lemma 3.B.4 and Lemma 3.B.5, we can apply Lemma 3.B.3 to get an upper bound of E X sup fm∈Fm

1 n n i=1 ε i f m (Y i |x i ) . It gives the following result. Lemma 3.B.6. Let m ∈ N . Consider (ε 1 , . . . , ε n ) a Rademacher sequence independent of (Y 1 , . . . , Y n ).
Then, on the event T ,

E X sup fm∈Fm 1 n n i=1 ε i f m (Y i |x i ) ≤ 18 √ K B n √ n ∆ m , (3.49) 
where (3.43) that for all m ∈ N , for all u > 0, with P X -probability greater than 1e -u ,

∆ m := m x max,n ln n K ln(2p + 1) + 6 (1 + K(A β + A σ )) .
F = F m , (Z 1 , . . . , Z n ) = (Y 1 |x 1 , . . . , Y n |x n ) and f (Z i ) = f m (Y i |x i ), we get from
sup fm∈Fm |ν n (-f m )| = sup fm∈Fm 1 n n i=1 (f m (Y i |x i ) -E X [f m (Y i |x i )]) ≤ E X sup fm∈Fm 1 n n i=1 (f m (Y i |x i ) -E X [f m (Y i |x i )]) + 2 √ 2R n u n ≤ 2E X sup fm∈Fm 1 n n i=1 ε i f m (Y i |x i ) + 2 √ 2R n u n ≤ 4B n √ n 9 √ K∆ m + √ 2(1 + K(A β + A σ )) √ u
where 

sup x∈R p sup θ∈Θ ∂ ln (s θ (•|x)) ∂θ ∞ ≤ G(•)
with

G : R → R, y → 1 a σ ∧ a π 1 + (|y| + A β ) 2 a 2 σ . (3.50) Proof. Let s θ ∈ S with θ = (π k , β k , σ k ) 1≤k≤K . For all x ∈ R p and y ∈ R, ln (s θ (y|x)) = ln K k=1 π k √ 2πσ k exp - y -β T k x 2 2σ 2 k = ln K k=1 f k (x, y)
where we put

f k (x, y) = π k √ 2πσ k exp - y -β T k x 2 2σ 2 k ≥ 0.
For all l ∈ {1, . . . , K}, by using the fact that f l (x, y)/( K k=1 f k (x, y)) ≤ 1 and the fact that θ belongs to the bounded space Θ defined by (3.4), we have

∂ ln (s θ (y|x)) ∂(β T l x) = f l (x, y) K k=1 f k (x, y) y -β l T x σ 2 l ≤ |y| + A β a 2 σ , ∂ ln (s θ (y|x)) ∂σ l = f l (x, y) K k=1 f k (x, y) - 1 σ l + y -β l T x 2 σ 3 l ≤ 1 a σ 1 + (|y| + A β ) 2 a 2 σ , ∂ ln (s θ (y|x)) ∂π l = f l (x, y) π l K k=1 f k (x, y) ≤ 1 a π .
By using that 1 + η 2 ≥ η for η ∈ R, we deduce from the three above bounds that, for all y ∈ R, 

sup x∈R p sup θ∈Θ ∂ ln (s θ (y|x)) ∂θ ≤ max ( |y| + A β a 2 σ , 1 a σ 1 + (|y| + A β ) 2 a 2 σ , 1 a π ≤ max 1 a σ 1 + (|y| + A β ) 2 a 2 σ , 1 a π ≤ 1 a π ∧ a σ 1 + (|y| + A β ) 2 a 2 σ . 3 
|f m (Y i |x i )| 1 T = |ln (s m (Y i |x i )) -ln (s(Y i |x i ))| 1 T ≤ sup x∈R p sup ϕ∈Θ ∂ ln (s ϕ (Y i |x)) ∂ϕ θ(x i ) -θ * (x i ) 1 1 T ≤ 1 a σ ∧ a π 1 + (|Y i | + A β ) 2 a 2 σ θ(x i ) -θ * (x i ) 1 1 T ≤ 1 a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ :=Bn θ(x i ) -θ * (x i ) 1 ≤ B n K k=1 β T k x i -β * k T x i + |σ k -σ * k | + |π k -π * k | .
Now, θ and θ * belong to the bounded space Θ defined by (3.4) and

K k=1 π k = K k=1 π * k = 1, so |f m (Y i |x i )| 1 T ≤ B n (2KA β + 2KA σ + 2) ≤ 2B n (1 + K(A β + A σ )) ,
and thus 

f m n 1 T ≤ 2B n (1 + K(A β + A σ )) .
f m (Y i |x i ) -f m (Y i |x i ) 1 T = ln (s m (Y i |x i )) -ln s m (Y i |x i ) 1 T ≤ sup x∈R p sup ϕ∈Θ ∂ ln (s ϕ (Y i |x)) ∂ϕ θ(x i ) -θ (x i ) 1 1 T ≤ 1 a σ ∧ a π 1 + (|Y i | + A β ) 2 a 2 σ θ(x i ) -θ (x i ) 1 1 T ≤ 1 a σ ∧ a π 1 + (M n + A β ) 2 a 2 σ :=Bn θ(x i ) -θ (x i ) 1 ≤ B n K k=1 β T k x i -β T k x i + σ -σ 1 + π -π 1 .
Then, using (a + b) 2 ≤ 2(a 2 + b 2 ) and applying Cauchy-Schwarz Inequality leads to

f m (Y i |x i ) -f m (Y i |x i ) 2 1 T ≤ 2B 2 n   K k=1 β T k x i -β T k x i 2 + σ -σ 1 + π -π 1 2   (3.51) ≤ 2B 2 n K K k=1 β T k x i -β T k x i 2 + σ -σ 1 + π -π 1 2 (3.52) ≤ 2B 2 n   K K k=1   p j=1 β kj x ij - p j=1 β kj x ij   2 + σ -σ 1 + π -π 1 2   and f m -f m 2 n 1 T ≤ 2B 2 n K K k=1 1 n n i=1   p j=1 β kj x ij - p j=1 β kj x ij   2 (a) +2B 2 n σ -σ 1 + π -π 1 2 . So, for all δ > 0, if (a) ≤ δ 2 /(4B 2 n ), σ -σ 1 ≤ δ/(4B n ) and π -π 1 ≤ δ/(4B n ), then f m -f m 2 n ≤ δ 2 .
To bound (a), we write 

(a) = Km 2 K k=1 1 n n i=1   p j=1 β kj m x ij - p j=1 β kj m x ij   2 . ( 3 
(2p + 1) 4B 2 n K 2 m 2 x 2 max,n /δ 2
vectors of R p such that for all k ∈ {1, . . . , K}, for all β k , there exists β k ∈ B such that

1 n n i=1   p j=1 β kj m x ij - β kj m x ij   2 ≤ δ 2 4B 2 n K 2 m 2 , which implies that (a) ≤ δ 2 /(4B 2 n ). Now, define B K 1 (R) = {v ∈ R K ; v 1 ≤ R}.
Since θ belongs to the bounded space Θ defined by (3.4),

σ 1 = K k=1 |σ k | ≤ KA σ and π 1 = K k=1 π k = 1, so σ ∈ B K 1 (KA σ ) and π ∈ B K 1 (1).
Therefore, we get that, on the event T ,

N (δ, F m , . n ) ≤ card(B) N δ 4B n , B K 1 (KA σ ), . 1 N δ 4B n , B K 1 (1), . 1 ≤ (2p + 1) 4B 2 n K 2 m 2 x 2 max,n δ 2 1 + 8B n KA σ δ K 1 + 8B n δ K (3.55)
where we get the last inequality by using the fact that N (δ, B K 1 (R), . 1 ) ≤ (1 + 2R/δ) K (see for instance [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF]. (3.51). This would require to consider the single parameter K k=1 β T k x in place of the K parameters (β T 1 x, . . . , β T K x) in the parameter θ(x). But it seems difficult to differentiate ln(s θ (•|x)) with respect to K k=1 β T k x. Yet, if one managed to do that, this would avoid to use Cauchy-Schwarz Inequality and the K-factor in (3.52) would be eliminated. In this case, the term

(β kj -β kj )x ij /m instead of p j=1 (β kj -β kj )x ij /m in (3.53). This could be possible if K k=1 |β T k x i -β T k x i | was replaced by | K k=1 β T k x i -β T k x i | in the right- hand side of
(2p + 1) 4B 2 n K 2 m 2 x 2 max,n /δ 2 in (3.55) would be improved by (2p + 1) 4B 2 n Km 2 x 2 max,n /δ 2
. Then, taking the square root of the entropy number in (3.47), the term m x max,n ln n K ln(2p + 1) in (3.28) would be replaced by m x max,n ln n ln(2p + 1), and the lower bound of the regularization parameter λ in (3.15) would be proportional to

√ K instead of K. Lemma 3.B.8. Let δ > 0 and (x ij ) 1≤i≤n,1≤j≤p ∈ R np .
There exists a family B of (2p + 1) x 2 max,n /δ 2 vectors of R p such that for all η ∈ R p checking η 1 ≤ 1, there exists η ∈ B such that

1 n n i=1   p j=1 η j -η j x ij   2 ≤ δ 2 .
(3.56)

Proof. Consider the set of functions

F = {f 0 , f + 1 , . . . , f + p , f - 1 , . . . , f - p } defined by      f 0 ≡ 0, f + j : R p → R, x = (x 1 , . . . , x p ) → x j , j = 1, . . . , p, f - j : R p → R, x = (x 1 , . . . , x p ) → -x j , j = 1, . . . , p.
Denote by C F the convex hull of F. Let δ > 0. By applying Lemma 2.6.11 of van der [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF] to F, which is of cardinality 2p + 1, we deduce that there exists a packing family G ⊂ C F of cardinality (2p + 1) (diamF /δ) 2 for (C F , . n ) where diamF is the diameter of F for . n .

Here, diamF = x max,n defined by (3.3). Now, let η ∈ R p such that η 1 ≤ 1 and introduce the function

f η : R p → R, x = (x 1 , . . . , x p ) → p j=1 η j x j . (3.57) For all x ∈ R p , f η (x) =   j:η j >0 |η j |f + j (x) + j:η j <0 |η j |f - j (x) +   1 - j:η j =0 |η j |   f 0 (x)   , with j:η j >0 |η j | + j:η j <0 |η j | + (1 -j:η j =0 |η j |) = 1, (1 -j:η j =0 |η j |) ≥ 0 and |η j | ≥ 0 for all j ∈ {1, . . . , p}. So, f η belongs to C F and there exists f η in G such that f η -f η n ≤ δ, that is to say 1 n n i=1 f η (x i ) -f η (x i ) 2 ≤ δ 2 . (3.58) Since f η belongs to C F , there exist coefficients α 0 , α + 1 , . . . , α + p , α - 1 , . . . , α - p such that f η = α 0 f 0 + p j=1 α + j f + j + α - j f - j , and for all x ∈ R p , f η (x) = α 0 f 0 (x) + p j=1 α + j f + j (x) + α - j f - j (x) = p j=1 (α + j -α - j )x j = p j=1 η j x j (3.59)
if we put η j := α + j -α - j for all j ∈ {1, . . . , p}. This way, for each function f η , we define η ∈ R p associated to f η . This leads to the construction of a family B of (2p + 1) x 2 max,n /δ 2 vectors of R p . Inequality (3.56) is obtained from (3.58), (3.57) and (3.59).

3.B.2.3 Proof of Lemma 3.B.6

Let m ∈ N . From Lemma 3.B.4, on the event T , sup fm∈Fm f m n is bounded by

R n := 2B n (1 + K(A β + A σ )) .
(3.60)

Besides, we deduce from Lemma 3.B.5 that on the event T , for all J ∈ N ,

J j=1 2 -j ln [1 + N (2 -j R n , F m , . n )] ≤ J j=1 2 -j ln [2N (2 -j R n , F m , . n )] ≤ J j=1 2 -j √ ln 2 + 2 j+1 B n Km x max,n R n ln(2p + 1) + K ln 1 + 2 j+3 B n KA σ R n 1 + 2 j+3 B n R n . (3.61) But, from (3.60), R n ≥ 2B n max(KA σ , 1). And 1 ≤ 2 j+2 for all j ∈ N . So, (3.61) implies J j=1 2 -j ln [1 + N (2 -j R n , F m , . n )] ≤ J j=1 2 -j √ ln 2 + 2 j+1 B n Km x max,n R n ln(2p + 1) + K ln [(2 j+3 ) × (2 j+3 )] ≤ J j=1 2 -j √ ln 2 + 2 j+1 B n Km x max,n R n ln(2p + 1) + √ K 2(j + 3) ln 2 ≤ 2B n Km x max,n R n ln(2p + 1)J + √ K √ 2 ln 2 J j=1 2 -j j + √ ln 2(1 + √ 6K).
By using that 2 -j √ j ≤ ( √ e/2) j for all j ∈ N , we get

J j=1 2 -j ln [1 + N (2 -j R n , F m , . n )] ≤ 2B n Km x max,n R n ln(2p + 1)J + √ ln 2 1 + √ K √ 6 + √ 2e 2 - √ e ≤ 2B n Km x max,n R n ln(2p + 1)J + √ K ln 2 1 + √ 6 + √ 2e 2 - √ e . ( 3 

.62)

Then, we derive from (3.47) and (3.62) that for all J ∈ N ,

E X sup fm∈Fm 1 n n i=1 ε i f m (Y i |x i ) ≤ R n 6 √ n 2B n Km x max,n R n ln(2p + 1)J + √ K ln 2 1 + √ 6 + √ 2e 2 - √ e + 2 -J . (3.63) 
Now, let us choose J = ln n/ ln 2 so that the two terms depending on J in (3.63) are of the same order. For this value of J, 2 -J ≤ 1/n, and we deduce from (3.63) and (3.60) that

E X sup fm∈Fm 1 n n i=1 ε i f m (Y i |x i ) ≤ 12B n Km x max,n √ n ln(2p + 1) ln n ln 2 + 2B n (1 + K(A β + A σ )) 6 √ ln 2 1 + √ 6 + √ 2e 2 - √ e √ K √ n + 1 n ≤ 18B n Km x max,n √ n ln(2p + 1) ln n + 2 √ K √ n B n (1 + K(A β + A σ )) 6 √ ln 2 1 + √ 6 + √ 2e 2 - √ e + 1 ≤ 18 √ K B n √ n m x max,n K ln(2p + 1) ln n + 6 (1 + K(A β + A σ )) .

ABSTRACT

This chapter focuses on variable selection for clustering based on finite Gaussian mixture models with common spherical covariance matrix. We propose a global model selection procedure to simultaneously choose a number of clusters and a set of relevant variables for the clustering. It is especially suited to deal with high dimension, low sample size settings. Following [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], we consider an 1 -penalized likelihood approach to perform automatic variable selection and construct sets of potentially relevant variables. This results in an efficient construction of a data-driven model collection with reasonable cardinality even for high-dimensional datasets.

Our procedure differs from Pan and Shen's approach as regards the estimation of the mixture parameters in each model. First, we advocate for an estimation by the maximum likelihood estimator rather than by the 1 -penalized maximum likelihood estimator (the Lasso) to avoid estimation problems due to 1 -penalization shrinkage. Secondly, we do not perform empirical centering of the data during the estimation step because we prove that empirical centering can highly deteriorate estimation in highdimensional contexts.

Finally, a model is selected by considering a non-asymptotic data-driven model selection criterion based on the slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], and a data clustering is derived from the MAP principle.

Introduction

The In principle, the more information one has about each individual, the better a clustering method is expected to perform. However, the structure of interest may often be contained into a subset of the available variables and many attributes Y ij of Y i may be useless or even harmful to detect a reasonable clustering structure. Thus, it is important to select the relevant variables from the cluster analysis viewpoint. In addition, removing the irrelevant variables enables to get simpler modeling and may largely enhance interpretability. This interest in variable selection for clustering is motivated by the increasing use of high-dimensional datasets generated by recent advances in high-throughput biotechnologies. For instance, biologists try to extract groups of co-expressed genes according to transcriptome datasets in order to characterize more precisely their biological functions [START_REF] Sharan | Cluster analysis and its applications to gene expression data[END_REF][START_REF] Jiang | Cluster analysis for gene expression data : A survey[END_REF]. But among all the transcriptome experiments considered, only a few of them are actually sufficient to reveal important biological phenomena. Selecting those experiments is expected to improve the clustering and the understanding of the underlying biological phenomena.

In different fields of applications, the observations are not vectors described by a great amount of variables but rather continuous functions, such as curves, spectra, time series or more generally signals. [START_REF] Ramsay | Functional data analysis[END_REF] gives the name "functional data analysis" to the analysis of such data. Functional data often arise from measurements on fine time grids, and if the sampling grid is sufficiently dense, the resulting data may be viewed as a sample of curves. These curves may vary in shape, amplitude and/or in phase. Examples involving functional data are studies on electricity consumption forecasting [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF], oil production estimation [START_REF] Michel | Modélisation de la production d'hydrocarbures dans un bassin pétrolier[END_REF], nuclear reactor life span [START_REF] Auder | Projection-based curve clustering[END_REF]... For such applications, the main interest is to make accurate forecasts of a functional time series when the most recent curve is observed. Given a sample of curves, an important task is to search for homogeneous subgroups of curves using clustering, in order to determine accurate representative curve patterns for each cluster. For instance, as regards the French electricity consumption forecasting, daily profiles of the electricity power demand depend on factors such as seasons, holidays, working-days or weekends. These factors lead to different curve profiles. Performing a partition of these curves enables to construct an estimation of each profile by taking into account only the curves belonging to the corresponding cluster. This clustering process results in curve estimation improvement and thus in forecasting improvement, which helps EDF to predict more efficiently the French electricity power consumption at any given time of the year [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF]. For such infinite dimensional data, curves are usually projected onto a functional basis such as a B-splines, Fourier or wavelet bases [START_REF] Ramsay | Functional data analysis[END_REF]. By this process, each infinite dimensional curve is transformed into a high-dimensional vector constituted of the basis coefficients of the curve. So, curve clustering is recast into finite high-dimensional data clustering.

To perform variable selection, one traditional method is to conduct exhaustive best subset selection. For instance, in a finite Gaussian mixture model context, this method is tested by Maugis and Michel (2011a). However, Maugis and Michel (2011a) must restrict to very low-dimensional datasets (p ≈ 10 for complete variable selection and p ≈ 30 for ordered variable selection) since complete variable selection, or even ordered variable selection, is unfeasible for moderate and high-dimensional data. For instance, with p = 1000, more than 10 300 possible models are to be considered, which is prohibitive given the current standard computing power. In practice, two types of variable selection approaches are envisaged. On the one hand, the "filter" approaches select the variables before the clustering analysis [START_REF] Dash | Feature selection for clustering -a filter solution[END_REF][START_REF] Jouve | A filter feature selection method for clustering[END_REF]Misiti et al., 2007a;[START_REF] Auder | Projection-based curve clustering[END_REF]. Their main weakness is the independence between the selection step and the clustering step. In contrast, the "wrapper" approaches combine variable selection and clustering. For distancebased clustering, one can cite [START_REF] Fowlkes | Variable selection in clustering[END_REF] for a forward selection approach with complete linkage hierarchical clustering, [START_REF] Devaney | Efficient feature selection in conceptual clustering[END_REF] who propose a stepwise algorithm where the quality of the feature subsets is measured with the COBWEB algorithm, or the method of [START_REF] Brusco | A variable selection heuristic for k-means clustering[END_REF] based on the adjusted Rand index for K-means clustering. As regards model-based clustering, most wrapper methods have been developed with a Bayesian approach. For instance, [START_REF] Raftery | Variable Selection for Model-Based Clustering[END_REF] and then [START_REF] Maugis | Variable selection for clustering with Gaussian mixture models[END_REF] propose an approach similar to stepwise variable selection in regression which consists in sequentially comparing two nested models to determine whether an attribute must be included in or excluded from the current model based on a greedy search using Bayes factor. Rather than considering a Bayesian approach, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] look at variable selection in model-based clustering from a frequentist point of view. In light of the success of variable selection via 1 -penalization and the Lasso estimator in regression, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] conjecture that 1 -penalization may also be viable to variable selection for clustering. Therefore, they propose an 1 -penalized model-based clustering approach.

From our point of view, taking advantage of the sparsity property of 1 -penalization to efficiently construct sets of potentially relevant variables for clustering for high-dimensional data is an idea which is worth exploring. In particular, the simulations presented by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], and then extended by [START_REF] Xie | Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables[END_REF] and [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF], are promising. Nonetheless, by analyzing Pan and Shen's procedure, we have pointed three drawbacks and we shall propose one remedy for each of this drawback:

• First, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] use the Lasso not only to construct sets of relevant variables, but also to estimate the mixture parameters. Yet, 1 -penalization induces shrinkage of the coefficients and thus biased estimators with high estimation risk. But for some problems such as curve clustering, it is crucial to get good estimations. To cope with this problem, we rather propose to use 1 -penalization only to construct a collection of sets of relevant variables by varying the regularization parameter. Then, we rather advocate for an estimation by the Maximum Likelihood Estimator (MLE) in each model preselected by the Lasso algorithm. These unbiased estimators are expected to lead to much better estimation.

• Second, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] perform empirical centering of the data before estimating the mixture parameters. Thus, they get an estimation of the mean parameters of the empirically centered dataset. To derive an estimation of the mean parameters of the original (non-empirically centered) dataset, one must add the empirical mean to each mean coefficient to compensate for empirical centering. This process requires the estimation of the empirical mean for each variable. For high-dimensional data where the number of variables largely exceeds the number of observations, this may cause estimation problems. We rather advocate for estimation on the original data by performing preliminary dimensional reduction thanks to an additional 1 -penalization.

• Third, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] choose a modified BIC criterion to select their final Lasso estimator.

We do not think that this asymptotic criterion is suited to high-dimensional data where the number of observations is small compared with the number of variables. We rather suggest to use a data-driven penalized criterion based on the non-asymptotic slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. Since our estimators are MLEs (not Lasso estimators), we use an 0 -penalization.

These three modifications brought to Pan and Shen's procedure lead to a new variable selection procedure in model-based clustering especially suited to high-dimensional settings. We call it the Lasso-MLE procedure: "Lasso" to indicate that we construct a model collection by the Lasso algorithm, and "MLE" to indicate that the parameters are estimated by the MLE in each model and that a final MLE estimator is selected by an 0 -penalization.

The chapter is organized as follows. In Section 4.2, we introduce our framework, which is clustering based on isotropic spherical finite Gaussian mixture models, and we specify the meaning of a relevant variable for the clustering in this context. In Section 4.3, we present two variable selection procedures for model-based clustering. The first one, proposed by Maugis and Michel (2011b,a), deals with complete or ordered variable selection and is thus only feasible for very low-dimensional settings, while the second one is Pan and Shen's Lasso procedure introduced to cope with high-dimensional settings. Both procedures assume prior empirical centering of the data. Thus, in Section 4.4, we carry out some discussion on empirical centering, which is common practice in statistics but which may be to avoid in high-dimensional contexts when focusing on density estimation. We detail our variable selection procedure for model-based clustering in Section 4.5. This Lasso-MLE procedure is a mixture of both Maugis and Michel's procedure and Pan and Shen's procedure, with the difference that we avoid empirical centering for the parameter estimation step. Our procedure is particularly suited to functional data clustering. In Section 4.6, we present it in this specific context. The description of the EM algorithms, the initialization and stopping rules, and the construction of our grid of regularization parameters for the Lasso are postponed until Appendices.

Variable selection for clustering 4.2.1 Model-based clustering

Consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with unknown density s. Assume that the data come from several subpopulations, each of them having its own (biological, physical, sociological...) characteristics, and that the overall population is a mixture of these subpopulations. We aim at finding the number K of subpopulations and we want to determine from which subpopulation each data Y i arises. In other words, we want to get a partition of the n data into some finite number K of clusters. We can see this problem as a missing data problem: the complete data are ((Y 1 , Z 1 ), . . . , (Y n , Z n )) where the latent variables are Z = (Z 1 , . . . , Z n ) with

Z i = (Z i1 , . . . , Z iK ) such that Z ik = 1 if Y i arises from subpopulation k, 0 otherwise.
Model-based clustering consists in modeling each subpopulation by one component whose parameters are linked to its characteristics. The distribution of the whole population is then the mixture of those components, weighted by the proportion of individuals in each subpopulation. In this thesis, we restrict to Gaussian mixture models. In this case, each mixture component is modeled by a Gaussian density. The principle of model-based clustering is that identifying the correct mixing proportions and the parameters of each Gaussian density may enable to determine the latent variables Z and thus to derive from which cluster arises each data Y i . Let us formalize this method.

Let K ∈ N . The distribution of a random vector of R p is a finite Gaussian mixture with K components if its density function with respect to Lebesgue measure is a convex combination of K Gaussian densities on R p :

y ∈ R p → s θ (y) = K k=1 π k Φ(y | µ k , Σ k ).
The π k s are the mixing proportions and Φ(• | µ k , Σ k ) is the p-dimensional Gaussian density with mean µ k and covariance matrix Σ k :

∀ y ∈ R p , Φ(y | µ k , Σ k ) = 1 (2π) p/2 |Σ k | 1/2 exp - 1 2 (y -µ k ) T Σ -1 k (y -µ k ) .
The overall parameter vector is denoted θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , Σ 1 , . . . , Σ K ). It belongs to the set Π K × (R p ) K × (S p + ) K where S p + is the set of symmetric positive definite matrices on R p and Π K = (π 1 , . . . , π K ); π k > 0 for all k ∈ {1, . . . , K} and K k=1 π k = 1 .

If the dataset Y = (Y 1 , . . . , Y n ) comes from a probability distribution with density s which is a finite Gaussian mixture density on R p , there exists θ

∈ Π K × (R p ) K × (S p + ) K such that s = s θ = K k=1 π k Φ(• | µ k , Σ k ).
From the model-based clustering viewpoint, the parameter θ can be used to determine a data clustering. Specifically, for all i ∈ {1, . . . , n}, for all k ∈ {1, . . . , K}, consider

τ ik (θ) = π k Φ (Y i | µ k , Σ k ) K l=1 π l Φ (Y i | µ l , Σ l ) (4.1)
the posterior probability of Y i coming from component k. Then, the data are partitioned by applying the following rule, called the Maximum A Posteriori (MAP) principle:

Z ik (θ) = 1 if τ ik (θ) > τ il (θ) ∀ l = k, 0 otherwise. (4.2)

Finite Gaussian mixture models

In practice, the density s of the data is unknown and is to be estimated by a finite Gaussian mixture density ŝ = s θ for some θ ∈ Π K × (R p ) K × (S p + ) K . If θ = (π 1 , . . . , πK , μ1 , . . . , μK , Σ 1 , . . . , Σ K ), then one can estimate the posterior probability τik := τ ik ( θ) of observation Y i arising from component k, and obtain a data clustering by applying the MAP principle: Z ik := Z ik ( θ). To determine an estimator s θ, one can first construct a collection of estimators of s as finite Gaussian mixture densities and then choose an estimator among this collection. This can be formalized by introducing the notion of finite Gaussian mixture models.

A finite Gaussian mixture model is defined as a subset of finite Gaussian mixture densities,

S K = s θ = K k=1 π k Φ(• | µ k , Σ k ); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , Σ 1 , . . . , Σ K ) ∈ Θ K where Θ K ⊂ Π K × (R p ) K × (S p
+ ) K depends on the constraints imposed on the parameter vectors θ. These constraints may be introduced either for technical reasons or to model geometrical assumptions on the clusters. For instance, one can impose the volumes, shapes and/or orientations to be equal for all components. One can also restrict to spherical or diagonal components. These geometric constraints induce constraints on the form of the covariance matrices. One can also add constraints on the proportions of the mixture. This way, [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF] and then [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] define and study 28 different finite Gaussian mixture models which are more or less parsimonious.

In this thesis, we focus only on mean parameters, not variance parameters. Thus, we consider models where all clusters share the same form and the same volume. Besides, we assume that the clusters are spherical. This is equivalent to restricting to isotropic covariance matrices proportional to the identity matrix: there exists σ 2 > 0 such that Σ 1 = • • • = Σ K = σ 2 I. Then, the clusters distinguish themselves only by the position of their center, which is characterized by the mean parameters. We allow free mixing parameters. This leads to finite Gaussian mixture models of the form

S K = s θ = K k=1 π k Φ(• | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × (R p ) K × R + (4.3) with y = (y 1 , . . . , y p ) ∈ R p → Φ(y | µ k , σ 2 I) = 1 (2π) p/2 σ p exp   - 1 2σ 2 p j=1 (y j -µ kj ) 2   .

Relevant variables for the clustering with isotropic spherical clusters

Currently, statistics deals with problems where data are explained by many variables. In principle, the more information one has about each individual, the better a clustering method is expected to perform. Nevertheless, some variables can be useless or even harmful to obtain a good data clustering. Thus, it is important to take into account the variable role in the clustering process. In this variable selection viewpoint, one is interested in identifying the set of irrelevant variables for the clustering, that is to say the set of variables that are not necessary to realize the clustering. A major point is to characterize such variables.

Let J be the collection of the non-empty subsets of {1, . . . , p}. For all J r ∈ J , denote by J c r := {1, . . . , p} \ J r the complementary set of J r . For all y = (y 1 , . . . , y p ) ∈ R p , denote the restriction of y on J r by y [Jr] = (y j ) j∈Jr .

Consider Y = (Y 1 , . . . , Y n ) a sample of n observations described by p variables (Y i ∈ R p ) with unknown density s. Assume that these observations come from K subpopulations (clusters), each of these subpopulations being distributed with a Gaussian density so that the density s = K k=1 π k Φ • | µ k , σ 2 I is a finite Gaussian mixture density. Moreover, suppose that there exists J r ⊂ J such that for all j ∈ J c r , the mean coefficients µ kj are the same for all k ∈ {1, . . . , K}: for j ∈ J c r , there exists µ .j ∈ R such that

µ 1j = • • • = µ Kj = µ .j . (4.4) 
Put µ := (µ .j ) j∈J c r . Then, we get from (4.4) that for all k ∈ {1, . . . , K}, µ k[J c r ] = µ and for all i ∈ {1, . . . , n},

K k=1 π k Φ Y i | µ k , σ 2 I = Φ Y i[J c r ] | µ, σ 2 I K k=1 π k Φ Y i[J r ] | µ k [Jr] , σ 2 I . (4.5)
In (4.5), since µ does not depend on the clusters, the variables indexed by j ∈ J c r provide no information to determine from which cluster the observation Y i arises. This is highlighted by the calculation of the posterior probability of Y i arising from component k:

τ ik = π k Φ Y i | µ k , σ 2 I K l=1 π l Φ (Y i | µ l , σ 2 I) (4.6) = π k Φ Y i[J c r ] | µ, σ 2 I Φ Y i[J r ] | µ k [Jr] , σ 2 I Φ Y i[J c r ] | µ, σ 2 I K l=1 π l Φ Y i[J r ] | µ l [Jr] , σ 2 I (4.7) = π k Φ Y i[J r ] | µ k [Jr] , σ 2 I K l=1 π l Φ Y i[J r ] | µ l [Jr] , σ 2 I . (4.8)
Since the term depending on J c r in the mixture density function cancels out from the numerator and the denominator of τ ik in (4.7), the calculation of τ ik is unchanged if we consider the set J r (such as in (4.8)) rather than the whole set {1, . . . , p} (such as in (4.6)). Then, the data clustering obtained by the MAP principle described at (4.2) is also unchanged. Thus, the variables indexed by j ∈ J c r are useless for the clustering while the variables indexed by j ∈ J r are sufficient to perform the clustering. We shall say that the variables indexed by j ∈ J c r are irrelevant for the clustering.

In practice, the number K ∈ N of clusters and the index set J r ∈ J representing the relevant variables are to be determined. By varying K in a finite subset K = {K min , . . . , K max } and by varying J r in a subset J ⊂ J , one gets a model collection {S (K,Jr) } (K,Jr)∈K×J with

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |J c r | × R |Jr| K × R +    . (4.9)
Each model S (K,Jr) involves a data clustering with K clusters and J r as representative set of relevant variables for the clustering. Typically, a variable selection procedure for clustering proceeds in four steps:

1. construction of a model collection {S (K,Jr) } (K,Jr)∈K×J ;

2. for each (K, J r ) ∈ K × J , determination of an estimator ŝ(K,Jr) of s in S (K,Jr) ;

3. selection of a model S ( K, Ĵr) using a model selection criterion;

4. determination of a data clustering by the MAP principle using the estimated mixture parameters of ŝ( K, Ĵr) .

In Section 4.5.4, we shall propose a variable selection procedure both identifying the set of relevant variables for the clustering and providing a data clustering. Before introducing it, we present two competitor variable selection procedures (Maugis and Michel, 2011a;[START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]) from which we have drawn our inspiration to construct our new procedure as a mixture of these two procedures.

Presentation of two competitor variable selection procedures

For each procedure, we detail the four steps mentioned above. The model collection is obtained by considering a range of number of clusters K = {K min , . . . , K max } and a collection of index sets J representing sets of relevant variables. The collection K does not depend on the procedure whereas the collection J depends on the procedure. In this thesis, we only consider isotropic spherical finite Gaussian mixture models defined by (4.3). Thus, we present each procedure in this context although Maugis and Michel (2011a) and [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] studied less parsimonious models.

In the sequel, we consider a dataset Y = (Y 1 , . . . , Y n ) from probability distribution with density s. We assume that the data come from different subpopulations. In a clustering purpose, s is to be estimated by a finite Gaussian mixture density.

Maugis and Michel's procedure for low-dimensional data

Maugis and Michel (2011a) propose a clustering procedure selecting the relevant variables in a lowdimensional context with p n. The novelty of their method is more about their model selection criterion than about their model collection. Indeed, their model collection involves all the subsets of {1, . . . , p} as index set of potentially relevant variables. In this case, Nonetheless, even ordered variable selection becomes unfeasible as soon as p ≈ 30. Thus, Maugis and Michel's procedure is only valid for very low-dimensional data. One aim of this thesis is to extend their procedure to high-dimensional data by introducing a collection with fewer index sets in order to reduce the number of models and the number of estimators to calculate.

J = {{j 1 , . . . , j d }; 1 ≤ d ≤ p, j l ∈ {1, . . . ,
Step 0. Empirical centering Maugis and Michel (2011a) center the dataset Y = (Y 1 , . . . , Y n ) by subtracting n l=1 Y lj /n to Y ij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This leads to a new dataset Y = (Y 1 , . . . , Y n )1 . The density s of Y i is to be estimated to get a clustering of the dataset Y .

Step 1. Model collection Since the data are empirically centered, Maugis and Michel (2011a) consider that the irrelevant variables for the clustering of Y have a homogeneous behavior around a null mean2 . Put M r = K × J . Then, Maugis and Michel's model collection is {S (K,Jr) } (K,Jr)∈Mr with

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | 0, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × R |Jr| K × R +    . (4.12)
Each model S (K,Jr) is the set of finite Gaussian mixture densities with K components and J r as index set representing the relevant variables.

Step 2. Calculation of an estimator of s in each model For each (K, J r ) ∈ M r , Maugis and Michel (2011a) compute the maximum likelihood estimator of s in the model S (K,Jr) :

s (K,Jr) = arg min s θ ∈S (K,Jr ) γ n s θ , γ n s θ = - 1 n n i=1 ln s θ (Y i ) .
For all y ∈ R p ,

s (K,Jr) (y) = Φ y [J c r ] | 0, σ2 I K k=1 πk Φ y [Jr] | µ k , σ2 I .
The estimated mixture parameters θ (K,Jr) = (π 1 , . . . , πK , µ 1 , . . . , µ K , σ) are computed by the EM algorithm for model-based clustering [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] described in Section 4.A.3. In practice, Maugis and Michel (2011a) use MIXMOD software [START_REF] Biernacki | Model-based cluster and discriminant analysis with the MIXMOD software[END_REF] to run the EM algorithm.

Step

Model selection

The model selection criterion used by Maugis and Michel (2011a) is the data-driven penalized criterion derived from the slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] and recalled in Section 6.3.1. First, models are grouped according to their dimension D in order to obtain a model collection {S D } D∈D . The dimension of a model S (K,Jr) is the total number of free parameters estimated in the model: K -1 mixing proportions, K|J r | mean parameters and 1 variance parameter, which gives a total dimension equal to K(1 + |J r |). For each dimension D ∈ D, let s D be the estimator maximizing the likelihood among the estimators associated to a model of dimension D. There exists (K D , J D ) such that s D = s (K D ,J D ) . Then, the function D/n → -γ n ( s D ) is plotted. One has to check that this function has a linear behavior for large dimensions, otherwise the slope heuristics can not be applied. If a linear behavior is indeed observed, the slope ĉ of the linear part is evaluated thanks to the graphical interface CAPUSHE [START_REF] Baudry | Slope heuristics : overview and implementation[END_REF]. The calibrated penalty function is pen(D) = 2ĉD/n. Finally, the minimizer D of the penalized criterion

D = arg min D∈D γ n ( s D ) + 2ĉ D n (4.13)
is determined and the model S ( K, Ĵr) := S (K D ,J D ) is selected.

Step 4. Data clustering

The variables declared as relevant for the clustering are indexed by Ĵr . The density s is estimated by s ( K, Ĵr) . A clustering of the dataset Y is derived from θ( K, Ĵr) by applying the MAP principle.

Pan and Shen's Lasso procedure for high-dimensional data

Complete or ordered variable selection considered by Maugis and Michel (2011a) is untractable unless p is very small. Alternative variable selection procedures are to be considered for high-dimensional data. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] propose a penalized model-based clustering approach. In light of the success of variable selection via 1 -penalization in regression, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] conjecture that 1 -penalization may also be viable to variable selection for clustering. They try an appropriate 1penalty function to adaptively shrink the mean parameters towards the average cluster means, resulting in automatic variable selection 3 . The selection of the relevant variables and the estimation of the parameters are performed during the same process. Contrary to Maugis and Michel (2011a), the novelty of Pan and Shen's procedure is more about their model collection construction than about their model selection criterion. Unlike Maugis and Michel (2011a), [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] do not consider a deterministic model collection. They rather construct a random model collection derived from a collection of sets of potentially relevant variables determined by 1 -penalization.

by the Lasso solution defined for all y ∈ R p by

s (K,J (K,λ) ) (y) = Φ y [J c (K,λ) ] | 0, σ2 I K k=1 πk Φ y [J (K,λ) ] | µ k , σ2 I . (4.16)
By keeping K fixed and by varying λ ∈ G K , one gets a collection J K = ∪ λ∈G K J (K,λ) of index sets representing a collection of potentially relevant variables.

• By varying K ∈ K, one gets a collection of index sets

M r = {(K, J r ); K ∈ K, J r ∈ J K }.
This leads to a model collection {S (K,Jr) } (K,Jr)∈Mr with

S (K,Jr) =    y → s θ (y) = Φ(y [J c r ] | 0, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × R |Jr| K × R +    . (4.17)
Each model S (K,Jr) is the set of finite Gaussian mixture densities with K components and J r as index set representing the relevant variables. In each model S (K,Jr) , the density s is estimated by the Lasso s (K,Jr) defined by (4.16).

Step 3. Model selection [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] consider BIC as model selection criterion. First, models are grouped according to their dimension D in order to obtain a model collection {S D } D∈D . Following a conjecture of [START_REF] Efron | Least angle regression[END_REF] and a result of [START_REF] Zou | On the "degrees of freedom" of the Lasso[END_REF], [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] calculate a model dimension by taking into account the sparsity of the model: the mean parameters set to zero by the EM algorithm are not considered in the dimension calculation. For a model S (K,Jr) , there are K -1 free mixing parameters, 1 variance parameter and K|J r | non-zero mean parameters, which gives a dimension equal to K(1 + |J r |). For each dimension D ∈ D, denote by s D the Lasso estimator maximizing the likelihood among the Lasso estimators associated to a model of dimension D. There exists (K D , J D ) such that s D = s (K D ,J D ) . Then, the minimizer D of the BIC criterion

D = arg min D∈D γ n ( s D ) + ln n 2 D n (4.18)
is determined and the model S ( K, Ĵr) := S (K D ,J D ) is selected.

Step 4. Data clustering

The variables declared as relevant for the clustering are indexed by Ĵr . The density s is estimated by the Lasso s ( K, Ĵr) . A clustering of the dataset Y is derived from the estimated Lasso parameter vector θ ( K, Ĵr) by applying the MAP principle.

Some discussion on empirical centering

Before running their procedure, both Maugis and Michel (2011a) and [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] empirically center the dataset Y = (Y 1 , . . . , Y n ). This operation is common practice in statistics. It enables to get a dataset Y = (Y 1 , . . . , Y n ) with small or moderate value Y ij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This prevents from numerical divergence that may occur during the algorithm process if there are too many large observations Y ij . These numerical problems are all the more likely to appear when considering high-dimensional datasets.

In this section, we explain the interest of empirical centering to construct a collection of sets of relevant variables. Then, we carry out some discussion on empirical centering for the estimation step.

In the sequel, we consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with unknown density s. To make the discussion simpler, we suppose that s is itself a finite Gaussian mixture density: for all y ∈ R p , s(y)

= K k=1 π k Φ y | µ k , σ 2 I with θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × (R p ) K × R + .
But the arguments developed remain valid when s is rather to be estimated by such a finite Gaussian mixture density.

Empirical centering to construct sets of relevant variables by 1 -penalization

From our point of view, Pan and Shen's approach of variable selection via 1 -penalization is fruitful and we shall keep this idea in our own procedure (see Section 4.5). In particular, we shall borrow their EM algorithm for 1 -penalized model-based clustering (see Section 4.A.2) in order to get a collection of sets of potentially relevant variables by computing the Lasso solution for various regularization parameters. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] empirically center the dataset before running their EM algorithm, but they do not justify this preliminary step. Here, we are willing to prove the interest (and "necessity") of performing such a preliminary operation. More precisely, we shall come back to the definition of a relevant variable and see which suitable 1 -penalty could be apply in order to detect such variables without performing empirical centering of the data. This way, we shall show that empirical centering enables to get round a too complex minimization problem.

1 -penalization to detect the irrelevant variables

From (4.4), a variable is irrelevant if it is indexed by j ∈ {1, . . . , p} such that there exists µ .j such that µ kj = µ .j for all k ∈ {1, . . . , K}. This common value µ .j can easily be computed. Since

K k=1 π k = 1, we have K k=1 π k µ kj = µ .j K k=1 π k = µ .j .
So, a variable is irrelevant if it is indexed by j such that for all k ∈ {1, . . . , K},

µ kj = K l=1 π l µ lj . (4.19)
On the contrary, a variable is relevant if it is indexed by j such that there exists k ∈ {1, . . . , K} such that µ kj = K l=1 π l µ lj .

Then, the degree of relevance of a variable can be measured by the number of k ∈ {1, . . . , K} such that µ kj = K l=1 π l µ lj . The more k ∈ {1, . . . , K} such that µ kj = K l=1 π l µ lj , the more relevant the variable indexed by j. In other words, the larger K k=1 |µ kj -K l=1 π l µ lj |, the more relevant the variable indexed by j. In this viewpoint, one way to get rid of the irrelevant variables is to apply a penalty penalizing the distance between K k=1 |µ kj -K l=1 π l µ lj | and zero, for each j ∈ {1, . . . , p}. A suitable penalty is a soft-thresholding 1 -penalty proportional to

pen(θ) = p j=1 K k=1 µ kj - K l=1 π l µ lj .
(4.20)

For regularization parameter λ > 0, the corresponding estimator is the Lasso estimator defined by

θ(λ) = arg min θ {γ n (s θ ) + λ pen(θ)} . (4.21)
To solve the minimization problem (4.21), one may use an EM algorithm adapted to 1 -penalized model-based clustering. Similarly to the EM algorithm described in Section 4.A.2, the updating of the mean vectors µ k at step M of iteration r of the algorithm is given by the minimizer µ k (r+1) of

µ k → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i | µ k (r) , σ 2 (r) I + λ p j=1 K k=1 µ (r) kj - K l=1 π (r) l µ (r) lj .
By differentiation, one finds that the solution is reached for mean parameters defined for all k ∈ {1, . . . , K} and for all j ∈ {1, . . . , p} by

µ (r+1) kj = µ 0 kj (r+1) - nλ σ 2 (r+1) n i=1 τ (r) ik sign µ (r+1) kj - K l=1 π (r+1) l µ (r+1) lj (4.22) with µ 0 kj (r+1) := n i=1 τ (r) ik Y ij n i=1 τ (r) ik .
The updating µ (r+1) kj of µ kj depends on the updating of all the other mean coefficients µ lj , l = k.

Thus, one can not get an explicit formula for µ 

Y ij = Y ij - K l=1 π l µ lj . (4.23) Then, Y = ( Y 1 , . . . , Y n ) is a n-sample of p-dimensional random vectors whose probability distri- bution is K k=1 π k Φ • | μk , σ 2 I with μkj = µ kj -K l=1 π l µ lj for all k ∈ {1, . . . ,
= (Y 1 , . . . , Y n ) enables to get a new dataset Y = ( Y 1 , . . . , Y n ) for which a variable is irrelevant if
it is indexed by j ∈ {1, . . . , p} such that the mean coefficients μkj equal zero for all k ∈ {1, . . . , K}, that is to say if K k=1 |μ kj | = 0. On the contrary, a variable is relevant if it is indexed by j such that The minimization problem (4.25) can be solved thanks to an EM algorithm (see Section 4.A.2). The updating of the mean vectors μk at step M of iteration r of the algorithm is given by the minimizer μk

(r+1) of μk → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i | μk (r) , σ 2 (r) I + λ p j=1 K k=1 μ(r) kj .
By differentiation, one finds that the solution is reached for mean parameters defined for all k ∈ {1, . . . , K} and for all j ∈ {1, . . . , p} by μ(r+1) and a + = max{a, 0}.

The updating (4.26) of the mean parameters is now explicit and the Lasso solution θ(λ) can be easily computed by the EM algorithm. Denote by μkj (λ) the mean parameters of θ(λ). Then, the relevant variables detected by 1 -penalization with regularization parameter λ are the variables indexed by j such that there exists k ∈ {1, . . . , K} such that μkj (λ) = 0.

The advantage of performing theoretical centering of the dataset Y is to replace the implicit updating formula (4.22) by the explicit updating formula (4.26). Nonetheless, in practice, the theoretical means K l=1 π l µ lj are unknown, so we can not perform the theoretical transformation (4.23). Then, a solution may be to replace K l=1 π l µ lj by an approximating empirical quantity. Such a quantity can be derived from the following result.

Claim 4.4.2. Let (Y 1 , . . . , Y p ) be a p-dimensional random vector whose probability distribution is

K k=1 π k Φ • | µ k , σ 2 I .
Then, for all j ∈ {1, . . . , p}, the expectation of the random variable Y j is

E(Y j ) = K k=1 π k µ kj . (4.27) 
Proof. Page 176.

Since

Y i ∼ K k=1 π k Φ • | µ k , σ 2 I
for all i ∈ {1, . . . , n}, we deduce from (4.27) and the Law of large numbers that, for all j ∈ {1, . . . , p},

1 n n i=1 Y ij -→ n→∞ K k=1 π k µ kj .
(4.28) Thus, we propose to replace theoretical centering of the data, which consists in subtracting the theoretical mean K k=1 π k µ kj to each Y ij , by empirical centering, which consists in subtracting the empirical mean n l=1 Y lj /n to each Y ij . From (4.28), we hope that performing empirical centering rather than theoretical centering won't affect too much the above reasoning and that it will lead to sets of relevant variables very close to the sets of relevant variables that would have been obtained by applying theoretical centering. Yet, from (4.28), this process is expected to lead to better results as the number n of observations is very large, which is not the case in practice when focusing on high-dimensional problems.

Remark 7. Let us point out that, for simulated data, one has access to the theoretical mean K k=1 π k µ kj for all j ∈ {1, . . . , p}. In this specific case, one can thus apply theoretical (besides empirical) cente-ring of the data. Then, by comparing the results for both methods, one can valid (or not) the method of empirical centering (see Section 5.3.3.1 for such a comparison).

To conclude, we think that empirical centering is essential to practically compute the Lasso solutions to get a collection of sets of potentially relevant variables for the clustering. In our own procedure, we shall thus perform empirical centering to construct such a collection (see Section 4.5.4).

About empirical centering during the estimation step

To provide a partition of the dataset Y = (Y 1 , . . . , Y n ) into a finite number of clusters via modelbased clustering, one first estimates the unknown density s of the data Y 1 , . . . , Y n by a finite Gaussian mixture density. Then, the estimated mixture parameters enable to partition the data by the MAP principle. This way, model-based clustering recasts the clustering problem into a density estimation problem. Moreover, for some clustering problems, density estimation is not just an intermediate step to get a data clustering, and estimating the density can be as important as the clustering. For instance, one can think of curve clustering when one curve profile per cluster has to be estimated to get accurate forecasts of a given functional time series. Therefore, estimation is a crucial point in model-based clustering. Yet, during this thesis, we have been faced with estimation problems due to empirical centering. To solve these problems, we have thought about the consequences of performing empirical centering during the estimation step. Some repercussions are obvious while other ones are not so clear. Let us sum up our conclusions.

Consequence of empirical centering on the data structure

The first point to note is that one losses the independence of the n data Y 1 , . . . , Y n when performing empirical centering. The n empirically centered data Y 1 , . . . , Y n are no longer independent and one can no longer consider a common density s. Yet, this is what Maugis and Michel (2011a) and [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] implicitly do when they model the dataset Y with a common finite Gaussian mixture density s θ and write the likelihood as n i=1 s θ (Y i ) in their EM algorithm. One should be aware of this modeling uncorrectness.

Secondly, for i ∈ {1, . . . , n}, it is not obvious5 that Y i remains drawn from a probability distribution with a finite Gaussian mixture density when Y i is drawn from a probability distribution with a finite Gaussian mixture density. If not the case, then modeling the dataset Y by finite Gaussian mixture models -as it is done by Maugis and Michel (2011a) and [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] -is another uncorrectness.

Consequence of empirical centering on the density estimation

Since they empirically center the data, Maugis and Michel (2011a) and [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] estimate "the" density s of the empirically centered dataset Y rather than the density s of Y . But the target is s, not s. Then, an estimate of s has to be derived from the estimate of s. Let us have a look at this estimate.

Performing empirical centering is subtracting µ j := n l=1 Y lj /n to Y ij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. In the sequel, we set µ = (µ 1 , . . . , µ p ).

(4.29)

If one performs empirical centering, such as Maugis and Michel (2011a) or [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], then one considers a model collection {S (K,Jr) } (K,Jr)∈Mr for the dataset Y with

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | 0, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × R |Jr| K × R +    .
Then, for each (K, J r ) ∈ M r , one computes an estimator s (K,Jr) of s: for all y ∈ R p ,

s (K,Jr) (y) = Φ y [J c r ] | 0, σ2 I K k=1 πk Φ y [Jr] | µ k , σ2 I . (4.30)
Since performing empirical centering is subtracting µ j to each Y ij , a natural estimator of s derived from the estimation s (K,Jr) of s is ŝ(K,Jr) defined for all y ∈ R p by

ŝ(K,Jr) (y) = Φ y [J c r ] | μ, σ2 I K k=1 πk Φ y [Jr] | μk , σ2 I (4.31) with μ = µ [J c r ] and μk = µ k + µ [Jr]
where µ is defined by (4.29). The overall estimated mixture parameter vector is (π 1 , . . . , πK , μ, μ1 , . . . , μK , σ). So, there are

D = (K -1)+|J c r |+K|J r |+1 = K(1 + |J r |) + |J c r | free parameters to estimate. Since K ≥ 1, D ≥ |J c r | + |J r | = p.
In particular, D ≥ n as soon as p ≥ n, which is the case for high-dimensional data. Because of this large number of parameters to estimate, one may be afraid that ŝ(K,Jr) badly estimates s.

Then, since this analysis is true for all (K, J r ), whatever the model selected by Maugis and Michel's procedure or by Pan and Shen's procedure (or more generally by one's procedure based on empirical centering), the density s is expected to be badly estimated. This shall be practically confirmed in our simulations in Section 5.3.

Remark 8. Remember that Maugis and Michel (2011a) only consider very low-dimensional data with p n since their procedure is not suited for high-dimensional data. In particular, in their context, for all K and for all J r , D = K(1 Maugis and Michel (2011a) are not faced with degenerate models and they do not encounter estimation problems. On the contrary, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] introduce their Lasso procedure in a high-dimensional context. Yet, in their article, they do not focus on density estimation but only on clustering. In Section 4.4.2.3, we shall see that, from a theoretical point of view, it is not easy to evaluate the consequence of empirical centering on the clustering. Our simulations in Section A.2 seem to indicate that one can achieve good clustering by working on empirically centered data.

+ |J r |) + |J c r | ≤ K max (1 + p) + p ≤ n. Thus,
To conclude, let us stress on the following point. By performing empirical centering, for each set J r of relevant variables, one replaces the |J c r | a priori non-null constant mean parameters through the clusters by null mean parameters through the clusters ( μ in (4.31) is replaced by 0 in (4.30)). Thus, performing empirical centering avoids the estimation of |J c r | parameters. But this dimensional reduction is just artificial. In fact, subtracting µ j to each Y ij is equivalent to estimating µ j for each j ∈ {1, . . . , p} and this hidden estimation process of p parameters can highly deteriorate the estimations for high-dimensional data. In Section 4.5.2, we shall propose an alternative to empirical centering to perform real dimensional reduction for the estimation of the parameters.

Consequence of empirical centering on the clustering

Model-based clustering recasts the clustering problem into a density estimation problem. In Section 4.4.2.2, we saw that empirical centering deteriorates the density estimation. Therefore, we can question about the consequence of empirical centering on the data clustering.

If one performs empirical centering, such as Maugis and Michel (2011a) or [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], then one considers a model collection {S (K,Jr) } (K,Jr)∈Mr for the dataset Y with

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | 0, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × R |Jr| K × R +    .
Then, for each (K, J r ) ∈ M r , one computes an estimator of the density s in S (K,Jr) and one can derive a clustering C (K,Jr) of the dataset Y by the MAP principle. Yet, the primary goal is to get a clustering of the non-empirically centered dataset Y . Here, we ask ourselves two questions:

1. To which clustering C (K,Jr) of the dataset Y does the clustering C (K,Jr) of the dataset Y correspond?

2. What about the quality of the clustering C (K,Jr) ?

To answer the first question, for each (K, J r ) ∈ M r , we find a model S (K,Jr) and an estimator of the density s in S (K,Jr) leading to a clustering C (K,Jr) of the data Y 1 , . . . , Y n equivalent to the clustering C (K,Jr) of the dataY 1 , . . . , Y n : that is to say Y i is assigned to cluster k if and only if Y i is assigned to cluster k. This is formalized by the following proposition. 

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | 0, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Π K × R |Jr| K × R +    . Let (K, J r ) ∈ M r .
Consider the maximum likelihood estimator of s in S (K,Jr) :

s (K,Jr) = arg min s θ ∈S (K,Jr ) - 1 n n i=1 ln s θ (Y i ) .
Denote by θ (K,Jr) the parameter vector of s (K,Jr) . Compute 

S (K,Jr) = y → s θ (y) = Φ(y [J c r ] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |J c r | × (R |Jr| ) K × R +
and the maximum likelihood estimator of s in S (K,Jr) :

ŝ(K,Jr) = arg min s θ ∈S (K,Jr ) - 1 n n i=1 ln (s θ (Y i )) . ( 4 

.33)

Denote by θ(K,Jr) the parameter vector of ŝ(K,Jr) .

By computing θ(K,Jr) by an EM algorithm A with appropriate initialization, we get that θ(K,Jr) = (π 1 , . . . , πK , μ, μ1 , . . . , μK , σ)

with μ = µ [J c r ] and μk = µ k + µ [Jr]
where µ is defined by (4.29) and π1 , . . . , πK , µ 1 , . . . , µ K , σ are defined by (4.32).

In particular, for all i ∈ {1, . . . , n}, for all k ∈ {1, . . . , K}, the estimated posterior probability of observation Y i arising from component k obtained by the EM algorithm A coincides with the estimated posterior probability of observation Y i arising from component k obtained by the EM algorithm A:

τik = πk Φ Y i[J r ] | μk , σ2 I K l=1 πl Φ Y i[J r ] | μl , σ2 I = πk Φ Y i[J r ] | µ k , σ2 I K l=1 πl Φ Y i[J r ] | µ l , σ2 I . (4.34)
Then, by the MAP principle, Y i is assigned to cluster k by the EM algorithm A if and only if Y i is assigned to cluster k by the EM algorithm A.

Proof. Page 177.

Answering the second question is more delicate. From (4.34), for each (K, J r ) ∈ M r , the quality of the clustering C (K,Jr) of the dataset Y is equivalent to the quality of the clustering C (K,Jr) of the dataset Y . From (4.34),

τik = πk Φ Y i[J r ] | μk , σ2 I K l=1 πl Φ Y i[J r ] | μl , σ2 I (4.35) = Φ Y i[J c r ] | μ, σ2 I πk Φ Y i[J r ] | μk , σ2 I Φ Y i[J c r ] | μ, σ2 I K l=1 πl Φ Y i[J r ] | μl , σ2 I (4.36) = Φ Y i[J c r ] | μ, σ2 I πk Φ Y i[J r ] | μk , σ2 I ŝ(K,Jr) (4.37)
where ŝ(K,Jr) is defined by (4.33). On the one hand, we saw in Section 4.4.2.2 that ŝ(K,Jr) is expected to be badly calculated, at least for high-dimensional data because it involves the estimation of too many parameters. So, the denominator of (4.37) is expected to be badly calculated. Moreover, for the same reasons, the numerator of (4.37) may also be badly estimated. So, at first sight, it seems difficult to trust in the estimation τik . On the other hand, we saw in Section 4.4.2.2 that the estimation problems occur for the mean parameters in J c r . But the density restricted on J c r cancels out from the numerator and the denominator of (4.36) and we may think that the ratio (4.35) is well estimated because it involves fewer parameter estimations. Furthermore, by the MAP principle, the clustering is determined by considering max 1≤k≤K τik for all i ∈ {1, . . . , n}. So, even if τik is actually badly estimated for some i ∈ {1, . . . , n} and k ∈ {1, . . . , k}, max 1≤k≤K τik may be reached for the good component k, in which case the clustering is not affected by these individual bad estimations.

To conclude, although data clustering is closely linked to density estimation via model-based clustering, and although we are guaranteed that empirical centering deteriorates density estimation (see Section 4.4.2.2), we may think that empirical centering actually not deteriorates data clustering. This is practically confirmed in our simulations (see Section A.2).

Our variable selection procedure: the Lasso-MLE procedure

In this section, we propose a new variable selection procedure for clustering suited for high-dimensional data. Similarly to Maugis and Michel's procedure and Pan and Shen's procedure, our procedure can be divided in four steps. First, a model collection is constructed; second, an estimate of the density is calculated in each model; third, a model is selected thanks to a model selection criterion; finally, a data clustering is provided by applying the MAP principle from the estimations in the selected model.

For the first step, the construction of a model collection is derived from the construction of a collection of sets of potentially relevant variables. Since we focus on high-dimensional data where complete variable selection is unfeasible, we must restrict our collection to a subcollection among the whole collection of possible sets {{j 1 , . . . , j d }; 1 ≤ d ≤ p, j l ∈ {1, . . . , p}, j l = j l }. All the matter is to find a way to choose such a subcollection. Of course, it is preferable to choose a data-dependent subcollection rather than a deterministic subcollection. Besides, an automatic variable selection procedure is desirable. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] suggest to take advantage of the soft-thresholding property of 1 -regularization to construct a data-driven collection of sets of relevant variables by varying the regularization parameter. We find this idea fruitful and we use it to start our own procedure. Nonetheless, we think that Pan and Shen's procedure can be improved as regards the density estimation step and the model selection step. To improve estimation, we propose two modifications. First, we estimate the parameters by hard-thresholding estimators rather than by the soft-thresholding Lasso estimators in order to avoid shrinkage. Second, to get round empirical centering during the estimation step, we perform a preliminary reductional dimension step thanks to an additional 1 -penalization. As regards model selection, we do not think that the asymptotic BIC criterion considered by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] is suited to high-dimensional data. We rather suggest a non-asymptotic data-driven criterion based on the slope heuristics developed by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF].

In this section, we first motivate each of the three modifications brought to Pan and Shen's procedure. Then, we detail the four steps of our procedure, called Lasso-MLE procedure.

Estimation of the parameters by MLEs rather than by Lasso estimators

Model-based clustering recasts the clustering problem into an estimation problem. In this viewpoint, one can expect that the better the estimation of the density, the better the clustering. Thus, the major point is density estimation. Let us explain the main weakness of Pan and Shen's procedure as regards estimation.

Let S be the set of all densities with respect to Lebesgue measure on R p . Consider a dataset (Y 1 , . . . , Y n ) from a probability distribution with unknown density s ∈ S. In a maximum likelihood approach, the loss function considered is the Kullback-Leibler information defined for all t ∈ S by If M is well-chosen, one expects that ŝm oracle (M ) is not too far from the ideal estimator ŝm oracle and that it remains a satisfactory estimator of s. A major point is the choice of a good subset M . On the one hand, M must not be too large in order to make feasible best subset selection over the subcollection {ŝ m } m∈M . On the other hand, M must be large enough for KL(s, ŝm oracle (M ) ) to be as small as possible. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] propose their Lasso procedure as a method to perform variable selection during the estimation process of s. They look for an estimation of s by a finite Gaussian mixture density

KL(s, t) = R p ln s(
s θ = K k=1 π k Φ(• | µ k , σ 2 I).
Estimating s is equivalent to estimating the parameter vector θ. For all K ∈ K, let G K be a grid of regularization parameters and let λ ∈ G K . Consider θ(K,λ) the Lasso estimator of θ calculated by Pan and Shen's Lasso procedure. An index set J (K,λ) ⊂ {1, . . . , p} is derived from the estimate θ(K,λ) (see Section 4.3.2). By varying λ ∈ G K and K ∈ K, one gets a subcollection of index sets

M Lasso = K, J (K,λ) ; K ∈ K, λ ∈ G K
included in the whole collection M. Given this subset M = M Lasso ⊂ M, according to (4.42), a natural procedure would be to consider the family of maximum likelihood estimators {ŝ m } m∈M Lasso and to aim at choosing as final estimator among this family the estimator as close as possible to the oracle defined by m oracle (M Lasso ) = arg min m∈M Lasso

KL(s, ŝm ). (4.43)

Nonetheless, this is not the choice adopted by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. Indeed, let m ∈ M Lasso . By definition of M Lasso , there exist K ∈ K and λ > 0 such that m = (K, J (K,λ) ). [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] estimate θ by the Lasso estimator θ(K,λ) and they estimate the density s by the Lasso estimator ŝL m := s θ(K,λ) . Then, they consider the family of Lasso estimators ŝL m m∈M Lasso and aim at choosing as final estimator among this family the Lasso estimator as close as possible to the Lasso oracle defined by m L oracle (M Lasso ) = arg min 4.44), we see that both the maximum likelihood oracle m oracle (M Lasso ) and the Lasso oracle m L oracle (M Lasso ) are solutions of minimization problems over the same subset M Lasso of the whole set M considered for the ideal oracle m oracle . Yet, m oracle (M Lasso ) is calculated by considering maximum likelihood estimators ŝm , just as the ideal oracle m oracle , whereas m L oracle (M Lasso ) is calculated by considering Lasso estimators ŝL m , that is to say 1 -penalized maximum likelihood estimators, which are different from maximum likelihood estimators (see Remark 9). Therefore, the set m oracle (M Lasso ) is expected to be closer to the ideal set m oracle than the set m L oracle (M Lasso ). In fact, we suspect that m L oracle (M Lasso ) is much larger than m oracle . Indeed, in the regression framework, it has been noticed (Zhang and Huang, 2008a;[START_REF] Zhao | On model selection consistency of Lasso[END_REF][START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF] that, when some irrelevant variables are enough correlated with relevant variables, then the Lasso tends to pick up these irrelevant variables to compensate for the under-estimation of the mean parameters of the relevant variables caused by 1 -penalization shrinkage. Consequently, the Lasso minimizer of (4.46) is typically achieved for a set of variables containing some or even many irrelevant variables. On the opposite, if one considers the hard-thresholding estimators {ŝ m } m∈M Lasso rather than the soft-thresholding Lasso estimators {ŝ L m } m∈M Lasso , then parameters are not under-estimated and one can expect that the minimizer of (4.45) is achieved for a sparser set of variables with much fewer irrelevant variables. Now, since the oracles are benchmark for estimators, it is in one's interest to choose the procedure leading to the best oracle. This is why we recommend to estimate s by the maximum likelihood estimators rather than by the Lasso estimators.

Since the procedure we advocate first considers the models generated by the Lasso estimators, and then calculate the Maximum Likelihood Estimators (MLE) in these models, we call it Lasso-MLE procedure. To our knowledge, although it is quite natural, the Lasso-MLE estimators have never been studied in model-based clustering. Yet, this idea has emerged in other frameworks. For instance, in regression, [START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF] introduces and studies such a procedure called projected Lasso. In particular, he compares it to the classical Lasso procedure and concludes to better performance results for the projected Lasso than for the classical Lasso. Such an estimator is also mentioned as LARS-OLS hybrid in Efron et al. (2004, p. 421). In the density estimation framework, [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] consider such an idea to estimate densities decomposed in some dictionary.

An alternative to empirical centering for the estimation step: selection of the active variables

Estimating the density by maximum likelihood estimators rather than by Lasso estimators is not the only dissimilarity between our estimation step and Pan and Shen's estimation step. In Section 4.4.2.3, we pointed that performing empirical centering is likely to deteriorate the density estimation for highdimensional data. Thus, contrary to [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], we do not empirically center the data during the estimation step. Nonetheless, when no empirical centering is done, we shall see that selecting the relevant variables for the clustering is not sufficient to get sparse models. Therefore, an additional dimensional reduction step is needed before the estimation step. This step involves the selection of "active" variables. Here, we introduce the notion of active variables and we detail our dimensional reduction process.

Definition of an active variable

Consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with density s. In a clustering purpose, s is to be estimated by a finite Gaussian mixture density

K k=1 π k Φ(• | µ k , σ 2 I).
A variable is said to be inactive in the modeling if it is indexed by j ∈ {1, . . . , p} such that for all k ∈ {1, . . . , K}, µ kj = 0. On the contrary, a variable is active if it is indexed by j such that there exists k ∈ {1, . . . , K} such that µ kj = 0. In other words, an inactive variable is absent from the model while an active variable is present in the model. Note that an inactive variable is a particular case of an irrelevant variable: an inactive variable is an irrelevant variable with common mean parameters through the clusters equal to zero.

To sum up, our procedure shall involve three different types of variables:

• the relevant variables, that we shall index by J r , are present in the modeling and provide information for the clustering;

• the active irrelevant variables, that we shall index by J a , are present in the modeling but provide no information for the clustering;

• the inactive variables, that we shall index by J c a , are absent from the modeling.

Elimination of the inactive variables

Consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with density s. Assume we have constructed a collection of index sets M r resulting in a model collection {S (K,Jr) } (K,Jr)∈Mr where dimensional reduction on the mean parameters µ j for j ∈ J c r , we shall use an 1 -penalty proportional to µ 1 . This soft-thresholding penalty shall shrink the smallest mean parameters |µ j |, resulting in automatic elimination of the inactive variables. For a given regularization parameter λ > 0, the Lasso estimator of β is β(Jr,λ) = arg min

β∈R |J c r | ×R + {γ n (s β ) + λ|β| 1 } (4.48) with γ n (s β ) = - 1 n n i=1 ln s β Y i[J c r ]
and

|β| 1 := µ 1 = j∈J c r |µ j |.
To compute this Lasso estimator, we use an algorithm described in Section 4.A.4. This algorithm is inspired from the EM algorithm for model-based clustering introduced by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]. It is yet simpler because no mixture is involved in the minimization problem (4.48). Denote β(Jr,λ) = ( μ, σ). The set J c r of irrelevant variables is split in two sets J a = {j ∈ J c r ; μj = 0} and J c a = {j ∈ J c r ; μj = 0} such that J c r = J a J c a . The set J a represents the active variables among the irrelevant variables selected by the Lasso for regularization parameter λ. Coming back to the estimation of the density s of the whole dataset Y , we get a new model S (K,Jr,Ja) defined by

S (K,Jr,Ja) =        y ∈ R p → s θ (y); s θ (y) = Φ(y [J c a ] | 0, σ 2 I) Φ(y [Ja] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |Ja| × R |Jr| K × R +        . The dimension of S (K,Jr,Ja) is (K -1) + |J a | + K|J r | + 1 = K(1 + |J r |) + |J a | ≤
n as soon as J r and J a are small enough.

Then, by varying λ > 0 for a fixed set (K, J r ) and by varying (K, J r ) ∈ M r , we get a new model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) for some finite collection of index sets M (r,a) . Contrary to the model collection {S (K,Jr) } (K,Jr)∈Mr that only contains degenerate models, the collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) contains models with small or moderate dimensions (besides some degenerate models). In a further step, a good model selection criterion is expected to select one of the small-dimensional models among the model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) .

Remark 10. To perform significant reductional dimension thanks to the elimination of the inactive variables, our procedure assumes that there exist many inactive variables. Some datasets may not fulfill this assumption, in which case our procedure is not adapted. To deal with such situations, in Chapter A, we propose an alternative to our procedure that does not require the notion of active variable. Let us mention that the notion of active variable is well-defined for the important case of curve clustering when signals have a sparse representation in some appropriate basis such as a wavelet basis. We refer to Section 4.6 for more details on this fundamental application.

A non-asymptotic model selection criterion

The third modification we bring to Pan and Shen's procedure deals with model selection. [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] consider a modified BIC criterion taking into account the model sparsity to calculate the model dimension. Although BIC is widely used, there are few theoretical properties proved on this criterion. For instance, BIC consistency is usually stated under restrictive regularity assumptions and assuming that the true density belongs to the considered Gaussian mixture family (see for instance [START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF]. In particular, for high-dimensional data where the number of observations is small or moderate, one can question such an asymptotic criterion.

During the last years, a non-asymptotic approach for model selection via penalization has emerged, mainly with works of [START_REF] Birgé | From model selection to adaptive estimation[END_REF] and [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. With this viewpoint, the number and the dimension of the models may depend on the number n of observations. Given a model collection {S D } D∈D , the penalty function derived from a non-asymptotic approach is typically of the form

pen(D) = (C 1 + C 2 L D ) D n (4.49)
where C 1 and C 2 are constants independent on n. The role of the weight coefficients L D is to quantify the richness of the model collection by taking into account the possible large number of models with identical dimension D in the model collection. This can be justified by the theoretical arguments developed by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] in a Gaussian regression setting. On the one hand, when the number of models having the same dimension is moderate (such as for ordered variable selection), the weight coefficients can be taken as a small positive constant L D = L, in which case the penalty in (4.49) is proportional to the dimension. On the other hand, when the number of models having the same dimension D grows much faster with D (such as for complete variable selection), then a penalty shape proportional to D/n selects too complex models with high probability and stronger weight coefficients with a logarithm term depending on the data dimension are necessary to select smaller models. This phenomenon has been practically checked by [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] for the study of multiple change points detection. It has also been observed in a density framework by [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] who compared the penalty shape for regular histogram selection and complete irregular histogram selection. In practice, theory about model selection via penalization often fails in providing explicit multiplicative constants C 1 and C 2 in (4.49), and thus no practical model selection criterion can be derived. To cope with this drawback, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] proposed a practical method to define efficient penalty functions from the data. This method is the so-called "slope heuristics". It is recalled in Section 6.3.1.

In our procedure, we consider a non-asymptotic point of view and we use the slope heuristics to define a model selection criterion. Since our model collection is random, it is difficult to have an idea of the richness of our model collection and to determine whether weights with a logarithm term are necessary to get a proper penalty. For this reason, in the sequel, we consider both a penalty shape proportional to the dimension and a penalty shape with an additional logarithm term. We refer to Chapter 6 for a theoretical study and practical experiments carried out to try to determine the ideal penalty shape and to justify the two penalty shapes considered below.

Description of our Lasso-MLE procedure

Here, we detail the four steps of our procedure. They are to be compared with the four steps of Maugis and Michel's procedure and Pan and Shen's procedure respectively described in Section 4.3.1 and Section 4.3.2. A comparison between the three procedures is summarized in Table 4.1.

Step 1. Model collection I. Fix K ∈ K. Consider

Detection of the relevant variables

S K = s θ = K k=1 π k Φ • | µ k , σ 2 I ; θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Θ K with Θ K = Π K × (R p ) K × R + .
As explained in Section 4.4.1, since the dataset Y is centered, irrelevant variables are expected to be detected by penalizing the empirical contrast

γ n s θ = - 1 n n i=1 ln s θ (Y i )
by an 1 -penalty on the mean parameters proportional to

|θ| 1 = p j=1 K k=1 |µ kj |.
Introduce G K a grid of regularization parameters6 .

(b) Fix λ ∈ G K . Consider the Lasso estimator defined by

θ (K,λ) = arg min θ∈Θ K γ n (s θ ) + λ|θ| 1 . (4.50)
We compute θ (K,λ) = (π k , µ kj , σ) 1≤k≤K,1≤j≤p by Pan and Shen's EM algorithm described in Section 4.A.2. The index set J (K,λ) = {j ∈ {1, . . . , p} : ∃ k such that µ kj = 0} represents the set of relevant variables selected by the Lasso θ (K,λ) .

(c) By varying λ ∈ G K , we get a collection J K = ∪ λ∈G K J (K,λ) of index sets representing a collection of sets of relevant variables. As regards the estimation of s, this collection J K leads to a model collection {S (K,Jr) } Jr∈J K with 

S (K,Jr) =    y ∈ R p → s θ (y) = Φ(y [J c r ] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |J c r | × R |Jr| K × R +    . ( 4 
β = Φ(• | µ, σ 2 I) with β = (µ, σ) ∈ R |J c r | × R + .
As explained in Section 4.5.2, we want to detect the inactive variables in order to perform dimensional reduction on the mean parameters µ j for j ∈ J c r . Such variables are expected to be detected by penalizing the empirical contrast

γ n (s β ) = - 1 n n i=1 ln s β Y i[J c r ]
by an 1 -penalty on the mean parameters proportional to

|β| 1 := µ 1 = j∈J c r |µ j |.
Introduce G (K,Jr) a grid of regularization parameters.

(b) Fix λ ∈ G (K,Jr) . Consider the Lasso estimator of β defined by β(Jr,λ) = arg min

β∈R |J c r | ×R + {γ n (s β ) + λ|β| 1 } . (4.52)
We compute β(Jr,λ) = ( μ, σ) by the second algorithm described in Section 4.A.4. The set J (Jr,λ) = {j ∈ J c r ; μj = 0} represents the active variables among the irrelevant variables indexed by J c r , selected by the Lasso β(Jr,λ) .

(c) By varying λ ∈ G (K,Jr) , we get a collection J (K,Jr) = ∪ λ∈G (K,Jr ) J (Jr,λ) from which we derive a model collection {S (K,Jr,Ja) } Ja∈J (K,Jr ) with

S (K,Jr,Ja) =        y ∈ R p → s θ (y); s θ (y) = Φ(y [J c a ] | 0, σ 2 I) Φ(y [Ja] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |Ja| × R |Jr| K × R +        .
Each model S (K,Jr,Ja) is the set of finite Gaussian mixture densities with K components, J r as index set representing the relevant variables and J a as index set representing the active irrelevant variables.

2. By varying J r ∈ J K , we get a model collection {S (K,Jr,Ja) } (Jr,Ja)∈J K ×J (K,Jr ) . II. By varying K ∈ K, we get a model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈K×J K ×J (K,Jr ) . We put

M (r,a) = {(K, J r , J a ); K ∈ K, J r ∈ J K , J a ∈ J (K,Jr) }.
Step 2. Calculation of an estimator of s in each model For each (K, J r , J a ) ∈ M (r,a) , we compute the maximum likelihood estimator in the model S (K,Jr,Ja) : ŝ(K,Jr,Ja) = arg min

s θ ∈S (K,Jr ,Ja) γ n (s θ ) , γ n (s θ ) = - 1 n n i=1 ln (s θ (Y i )) . For all y ∈ R p , ŝ(K,Jr,Ja) (y) = Φ y [J c a ] | 0, σ2 I Φ y [Ja] | μ, σ2 I K k=1 πk Φ y [Jr] | μk , σ2 I .
The estimated mixture parameters θ(K,Jr,Ja) = (π 1 , . . . , πK , μ, μ1 , . . . , μK , σ) are computed by the third EM algorithm described in Section 4.A.4.

Step 3. Model selection

We select a model thanks to the data-driven penalized criterion derived from the slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] and recalled in Section 6. Then, we plot the function D/n → -γ n (ŝ D ). Two situations can occur 7 . We can either observe a linear behavior,

-γ n (ŝ D ) ≈ κ D n , κ > 0,
in which case the slope κ is estimated by the method implemented by [START_REF] Baudry | Slope heuristics : overview and implementation[END_REF] and the calibrated penalty function is pen(D) = 2 κ D/n. The minimizer D of the penalized criterion D → γ n (ŝ D ) + pen(D) is determined. Or we can observe a logarithmic behavior,

-γ n (ŝ D ) ≈ κ 1 D n 1 + κ 2 ln D max D , κ 1 > 0, κ 2 > 0,
in which case κ 1 and κ 2 are estimated by the method described in Section 6. Step 4. Data clustering

The variables declared as relevant for the clustering are indexed by Ĵr . The density s is estimated by ŝ( K, Ĵr, Ĵa) . A clustering of the dataset Y is derived from θ( K, Ĵr, Ĵa) by applying the MAP principle.

A major application: functional data clustering

In different fields of applications, observations are functions observed either discretely or continuously. Given a sample of curves, an important task is to search for homogeneous subgroups of curves using clustering. In a functional context, besides identifying the individuals who are involved in the same or similar processes, clustering is useful to determine one representative curve per cluster from the noisy observations. This implies a denoising and smoothing signal process so as to remove the noise and capture only the important patterns in the data. Here, we explain how our Lasso-MLE procedure can be applied in this context. Simulations shall be presented in Section 5.4.

7 We refer to Chapter 6 for justification of the two following penalty shapes pen and pen ln . 4.53) where ξ i = (ξ i1 , . . . , ξ ip ) ∼ N (0, σ 2 I) is a white noise. We denote y = (y 1 , . . . , y n ) this functional dataset.

i = f k + ξ i ∈ R p with y ij = f k (t j ) + ξ ij , j = 1, . . . , p ( 
Recently, several functional clustering methods have been developed. Usually, the observations y 1 , . . . , y n are preliminary projected onto a suitable basis B = {φ 1 , . . . , φ p } of the functional space, such as a spline, Fourier or wavelet basis. This leads to a new dataset Y = (Y 1 , . . . , Y n ) where each data Y i is the coefficient decomposition of the observation y i into the basis B. Then, the clustering process is performed on this coefficient dataset Y . For instance, as regards distance-based methods, [START_REF] Abraham | Unsupervised curve clustering using B-splines[END_REF] and [START_REF] Garcia-Escudero | A proposal for robust curve clustering[END_REF] project the curves onto a B-spline basis, and get clusters with a functional K-means algorithm applied to the coefficients [START_REF] Tarpey | Clustering functional data[END_REF]. [START_REF] Auder | Projection-based curve clustering[END_REF] extend this method to several Hilbert projection bases and look for the best basis by minimizing some criterion. [START_REF] Chiou | Functional clustering and identifying substructures of longitudinal data[END_REF] propose a method which generalizes the K-means algorithm by considering covariance structures via functional principal component analysis. Another option adopted by [START_REF] Rossi | Clustering functional data with the SOM algorithm[END_REF] is to use a Self-Organizing Map algorithm on the coefficients obtained by projecting the functions onto a B-spline basis. As regards model-based methods, one can cite [START_REF] James | Clustering for sparsely sampled functional data[END_REF] who use a spline decomposition specially adapted for sparsely sample functional data, or [START_REF] Ma | A data-driven clustering method for time course gene expression data[END_REF] who use a spline smoothing. [START_REF] Ray | Functional clustering by Bayesian wavelet methods[END_REF] develop a method for optimization of both the basis and the coefficients via a MCMC algorithm.

Variable selection

Once the functional data have been projected onto a given basis, the coefficient data is considered to perform the clustering. Each data is described by p variables which are the functions φ j of the basis B.

Variable selection for functional data clustering is a recent topic and, to our knowledge, few methods have been developed in this context.

On the one hand, distance-based methods do not offer a rigorous statistical framework to assess variable relevance. Therefore, most procedures perform dimensional reduction rather than real variable selection. In this case, the point is to determine a level of truncation p 0 ≤ p to decompose the function into a truncated basis of size p 0 . Then, all the variables φ j with j ≤ p 0 are kept whereas all the variables φ j with j > p 0 are eliminated. Yet, a few procedures have been proposed to perform real variable selection during the clustering process. For instance, [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF] present two methods based on wavelet-based similarity measures: the smooth curves are reduced to a finite number of representative variables by considering the contribution of each wavelet coefficient to the global energy of the curve.

On the other hand, as regards model-based methods, one can cite [START_REF] Michel | Modélisation de la production d'hydrocarbures dans un bassin pétrolier[END_REF] who considers ordered variable selection included in the clustering process by performing preliminary projection onto Fourier and wavelet bases. Nonetheless, from a practical point of view, his procedure is only computationally feasible for very low-dimensional data, so it can only deal with curves described by very few points (p = 64). Besides, his procedure suffers from the same drawback as dimensional reduction since only ordered variable selection is considered: all the variables φ j with j ≤ p 0 for some p 0 ≤ p are kept whereas all variables φ j with j > p 0 are eliminated.

Our procedure for functional data clustering using wavelets

Here, we explain how our Lasso-MLE procedure can be applied for functional data clustering based on preliminary data projection onto some basis. For the sake of simplicity, we restrict to the important case of wavelet bases, but the following description remains valid for any other basis, such as Fourier or spline bases. We do not detail wavelet theory and we refer to [START_REF] Mallat | A wavelet tour of signal processing[END_REF] or [START_REF] Misiti | Wavelets and their Applications[END_REF] for a complete overview on wavelets.

Preliminary step: creation of a coefficient dataset from the functional dataset

Let l ≥ 0 and h ∈ {0, . . . , 2 l -1}. For some real function ψ, denote by ψ lh the function defined from ψ by dyadic dilation and translation such that ψ lh (t) = 2 l/2 ψ(2 l t -h). Let ϕ be a scaling function and ψ be a wavelet function such that B = {ϕ,

ψ lh } l≥0, 0≤h≤2 l -1 is an orthonormal basis of L 2 ([0, 1]).
Consider the dataset y = (y 1 , . . . , y n ) defined by (4.53) and assume that p = 2 L , L ∈ N . This functional dataset is to be transformed into a wavelet coefficient dataset Y = (Y 1 , . . . , Y n ) by decomposing each functional data y i into the basis B in the following way.

Let i ∈ {1, . . . , n}. Assume that y i comes from cluster k. Then, y i can be written

y i = f k + ξ i .
Introduce the wavelet expansion of f k in the basis B: for all t ∈ [0, 1],

f k (t) = c 0 (f k )ϕ(t) + ∞ l=0 2 l -1 h=0 d lh (f k )ψ lh (t) (4.54) where c 0 (f k ) = b a f k (t)ϕ(t)dt and d lh (f k ) = b a f k (t)ψ lh (t)dt. The collection {c 0 (f k ), d lh (f k )} l,h is the Discrete Wavelet Transform (DWT) of f k in the basis B. Now, since f k is only observed through the p discrete values f k = (f k (t 1 ), . . . , f k (t p
)), we rewrite (4.54) using the truncation imposed by the p = 2 L points. For all j ∈ {1, . . . , p},

f k (t j ) = c 0 (f k )ϕ(t j ) + L-1 l=0 2 l -1 h=0 d lh (f k )ψ lh (t j ).
(4.55)

Similarly, we have

ξ ij = c 0 (ξ i )ϕ(t j ) + L-1 l=0 2 l -1 h=0 d lh (ξ i )ψ lh (t j ). (4.56) 
From (4.53), (4.55) and ( 4.56), we get that

y i = W Y i (4.57)
where Y i = (c 0 , d 0 , . . . , d L-1 ) with c 0 = c 0 (f k )+c 0 (ξ i ) and d l = (d l,0 (f k )+d l,0 (ξ i ), . . . , d l,2 l -1 (f k ) +d l,2 l -1 (ξ i )) for l ∈ {0, . . . , L -1}, and W is a p × p matrix defined by

W = V (0) W (0) . . . W (L-1) (4.58) 
where V (0) = (ϕ(t 1 ), . . . , ϕ(t p )) ∈ R p and W (l) = (ψ lh (t j )) 1≤j≤p,0≤h≤2 l -1 is a p × 2 l matrix for all l ∈ {0, . . . , L -1}. Depending on the wavelet basis, the matrix W can be either orthogonal or nearly orthogonal. For simplicity, assume that W is orthogonal (otherwise see for instance Donoho et al., 1997, Section 4.6). Then, W T W = I and we deduce from (4.57) that Y i = W T y i . In practice, the DWT is not implemented by matrix multiplication but by a sequence of special finitelength filtering steps that results in an efficient O(n) transform [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. This leads to a nsample Y = (Y 1 , . . . , Y n ) of wavelet coefficient decomposition vectors.

For all i ∈ {1, . . . , n}, if the discretized curve y i = f k + ξ i belongs to cluster k, then its wavelet coefficient decomposition vector can be written

Y i = µ k + ε i (4.59)
where µ k = (µ k1 , . . . , µ kp ) and ε i = (ε i1 , . . . , ε ip ) are respectively the wavelet coefficient decom-position vectors of f k and ξ i . Since W is orthogonal, the noises ξ i and ε i have the same statistical properties. So, ε i ∼ N (0, σ 2 I) is a white noise.

4.6.2.2 Running of our procedure

From (4.59), the wavelet coefficient dataset Y = (Y 1 , . . . , Y n ) is constituted of n observations
whose probability distribution is modeled by an isotropic spherical finite Gaussian mixture density

s = K k=1 π k Φ(• | µ k , σ 2 I). Each observation Y i = (Y i1 , . . . , Y ip
) is a wavelet coefficient decomposition of length p = 2 L . The mean vectors µ 1 , . . . , µ K are the wavelet coefficient decomposition of the unknown discretized functions f 1 , . . . , f K . The p variables are the functions ϕ and ψ lh , l ∈ {0, . . . , L -1}, h ∈ {0, . . . , 2 l -1}, of the wavelet basis B. By running our Lasso-MLE procedure described in Section 4.5.4 on the dataset Y , we get a partition of the data Y 1 , . . . , Y n and an estimation μ1 , . . . , μK of the mean vectors.

Our Lasso-MLE procedure is naturally suited to functional data clustering:

• For such a problem, the notion of active variable introduced in our procedure (see Section 4.5.2.1) is natural. The function ϕ or a function ψ lh is inactive in the model if it appears in none of the wavelet coefficient decomposition of the functions f 1 , . . . , f K .

• The Lasso may annihilate mean coefficients µ kj at each level j ∈ {1, . . . , p}. Consequently, contrary to the methods mentioned in Section 4.6.1.2, there is no level p 0 such that µ kj = 0 for all k ∈ {1, . . . , K} and j > p 0 and such that µ kj = 0 for at least one k ∈ {1, . . . , p} for all j ≤ p 0 . So, we are expected to detect relevant variables φ j for the clustering whatever the index level j ∈ {1, . . . , p}. This can be an advantage to distinguish between very similar curves that only differ locally (see Section 5.4.2.2 for one simulation).

• Unlike [START_REF] Michel | Modélisation de la production d'hydrocarbures dans un bassin pétrolier[END_REF], our procedure remains efficient for high-dimensional data.

Additional step: curve reconstruction for each cluster

Consider the p × K matrix μ whose k th column is μk . Put f = W μ where W is defined by (4.58). Then, f is a p × K matrix whose k th column is fk = ( fk (t 1 ), . . . , fk (t p )). Plotting (t 1 , . . . , t p ) → ( fk (t 1 ), . . . , fk (t p )) provides a curve estimation of the function f k for each k ∈ {1, . . . , K}. estimate of the parameters θ (r) at each iteration r. More precisely, consider for r ∈ N,

Q θ; θ (r) := E - 1 n n i=1 ln (s θ (Y i , Z i )) | Y , θ (r) (4.61) = - 1 n n i=1 E ln (s θ (Y i , Z i )) | Y , θ (r) = - 1 n n i=1 K k=1 τ (r) ik ln π (r) k Φ Y i | µ k (r) , σ 2 (r) I (4.62)
where

τ (r) ik := P Z ik = 1 | Y , θ (r) = π (r) k Φ Y i | µ k (r) , σ 2 (r) I K l=1 π (r) l Φ Y i | µ l (r) , σ 2 (r) I (4.63)
denotes the posterior probability of Y i coming from component k.

INITIALIZATION: π 0 1 , . . . , π 0 K , µ 1 (0) , . . . , µ K (0) , σ (0) 
AT ITERATION r ≥ 0,

• E step (Expectation step): For all i and k, updating of τ

ik defined by (4.63).

• M step (Maximization step): Determination of the parameter vector θ (r+1) minimizing Q(θ; θ (r) ).

From (4.62), it is equivalent to determining the mixing proportions maximizing

(π 1 , . . . , π K ) → n i=1 K k=1 τ (r) ik ln π (r) k
under the condition K k=1 π k = 1, and the vector minimizing

(µ 1 , . . . , µ K , σ) → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i | µ k (r) , σ 2 (r) I .
By differentiating, one gets

π (r+1) k = n i=1 τ (r) ik n , µ kj (r+1) = n i=1 τ (r) ik Y ij n i=1 τ (r) ik , (4.64) σ 2 (r+1) = 1 np n i=1 K k=1 p j=1 τ (r) ik Y ij -µ (r+1) kj 2 .

END OF ITERATION r

These iterations are repeated until convergence. Now, from (4.60) and (4.61), r) ; θ (r) ). Besides, by Jensen's Inequality, H(θ; θ (r) ) ≤ H(θ (r) ; θ (r) ) for all θ, so in particular for θ = θ (r+1) . Therefore, we deduce from (4.65) that the empirical contrast γ n (s θ (r) ) is decreased at each iteration r. Moreover, it can be shown that the algorithm converges to a local (yet not necessarily global) minimum of the empirical contrast under some regularity properties [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]. In practice, the convergence of the EM algorithm strongly depends on the initialization parameters θ (0) . To increase the probability of reaching the global minimum, many runs of the algorithm can be done from different initialization parameters. By assuming that the global minimum is reached at convergence of the algorithm, we get the minimizer of the empirical contrast θ and we derive the maximum likelihood estimator ŝ = s θ of the density s in the model S. Here, we present the main steps of this algorithm. We keep the notations used in Section 4.3.2.

γ n (s θ (r) ) = E γ n (s θ ) | Y , θ (r) = Q θ; θ (r) + H θ; θ (r) (4.65) with H(θ; θ (r) ) := E[n -1 n i=1 ln(s θ (Z i |Y i ) | Y , θ (r) )]. By definition of θ (r+1) , Q(θ (r+1) ; θ (r) ) ≤ Q(θ; θ (r) ) for all θ, so in particular Q(θ (r+1) ; θ (r) ) ≤ Q(θ (
Pan and Shen's EM algorithm is very close to the EM algorithm for standard model-based clustering recalled in Section 4.A.1. The only difference is that Q(θ; θ (r) ) defined by (4.61) is replaced by its 1 -penalized version

Q θ; θ (r) := E - 1 n n i=1 ln s θ (Y i , Z i ) + λ|θ| 1 | Y , θ (r) = - 1 n n i=1 E ln s θ (Y i , Z i ) | Y , θ (r) + λ θ (r) 1 = - 1 n n i=1 K k=1 τ (r) ik ln π (r) k Φ Y i | µ k (r) , σ 2 (r) I + λ p j=1 K k=1 µ (r) kj (4.66)
where

τ (r) ik := P Z ik = 1 | Y , θ (r) = π (r) k Φ Y i | µ k (r) , σ 2 (r) I K l=1 π (r) l Φ Y i | µ l (r) , σ 2 (r) I (4.67)
denotes the posterior probability of Y i coming from component k.

INITIALIZATION: π 0 1 , . . . , π 0 K , µ 1 (0) , . . . , µ K (0) , σ (0) 
AT ITERATION r ≥ 0,

• E step: For all i ∈ {1, . . . , n} and k ∈ {1, . . . , K}, updating of τ (r) ik defined by (4.67).

• M step: Determination of the parameter vector θ (r+1) minimizing Q(θ; θ (r) ). From (4.66), it is equivalent to determining the mixing proportions maximizing

(π 1 , . . . , π K ) → n i=1 K k=1 τ (r) ik ln π (r) k
under the condition K k=1 π k = 1, and the vector minimizing

(µ 1 , . . . , µ K , σ) → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i | µ k (r) , σ 2 (r) I + λ p j=1 K k=1 |µ kj |.
By differentiating, one gets for all k ∈ {1, . . . , K}, for all j ∈ {1, . . . ,

µ (r+1) kj = sign µ 0 kj (r+1) µ 0 kj (r+1) - nλ σ 2 (r+1) n i=1 τ (r) ik + (4.69) with µ 0 kj (r+1) := n i=1 τ (r) ik Y ij n i=1 τ (r) ik and a + = max{a, 0}, p}, π (r+1) k = n i=1 τ (r) ik n , (4.68) 
and

σ 2 (r+1) = 1 np n i=1 K k=1 p j=1 τ (r) ik Y ij -µ (r+1) kj 2 . (4.71) END OF ITERATION r
These iterations are repeated until convergence.

Remark 11.

1. Similarly as in Section 4.A.1, it can be shown that the 1 -penalized empirical contrast is decreased at each iteration of the algorithm and that the algorithm converges to a local minimum of the 1 -penalized empirical contrast under some regularity properties [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF]. Provided that the EM algorithm indeed converges to the global minimum solution of (4.15), one obtains the Lasso estimator at convergence of the algorithm. with σ (r) and σ (r+1) with µ (r+1) kj .

3. By taking λ = 0 (i.e. no penalization) in ( 4.69), one recovers the same updating of the mean parameters as in (4.64) for the EM algorithm computing the maximum likelihood estimator.

4.A.3 The EM algorithm for Maugis and Michel's procedure

Here, we detail the EM algorithm used at step 2 in Maugis and Michel's procedure described in Section 4.3.1. We keep the notations introduced in Section 4.3.1. Let (K, J r ) ∈ K × J . Consider the minimizer s (K,Jr) of the empirical contrast on the dataset Y in the model S (K,Jr) . For all y ∈ R p ,

s (K,Jr) (y) = Φ y [J c r ] | 0, σ2 I K k=1 πk Φ y [Jr] | µ k , σ2 I . (4.72)
The estimated mixture parameters (π 1 , . . . , πK , µ 1 , . . . , µ K , σ) are computed by an EM algorithm similar to the EM algorithm described in Section 4.A.1 and applied to the empirically centered dataset Y . The specific decomposition of s (K,Jr) in (4.72) must be taken into account during the M step of the algorithm.

INITIALIZATION: π 0 1 , . . . , π 0 K , µ 1 (0) , . . . , µ K (0) , σ (0) 
AT ITERATION r ≥ 0,

• E step: For all i ∈ {1, . . . , n} and k ∈ {1, . . . , K}, updating of

τ (r) ik = π (r) k Φ Y i[J r ] | µ k (r) , σ 2 (r) I K l=1 π (r) l Φ Y i[J r ] | µ l (r) , σ 2 (r) I . (4.73) 
• M step: Determination of the mixing proportions maximizing

(π 1 , . . . , π K ) → n i=1 K k=1 τ (r) ik ln π (r) k
under the condition K k=1 π k = 1, and of the vector minimizing r) , σ 2 (r) I .

(µ 1 , . . . , µ K , σ) → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i[J c r ] | 0, σ 2 (r) I Φ Y i[J r ] | µ k (
By differentiating, one gets for all k ∈ {1, . . . , K}, for all j ∈ J r ,

π (r+1) k = n i=1 τ (r) ik n , (4.74) 
µ (r+1) kj = n i=1 τ (r) ik Y ij n i=1 τ (r) ik (4.75)
and

σ 2 (r+1) = 1 np n i=1 K k=1 τ (r) ik   j∈Jr Y ij -µ (r+1) kj 2 + j∈J c r Y 2 ij   . (4.76) END OF ITERATION r
These iterations are repeated until convergence.

4.A.4

The EM algorithms for our Lasso-MLE procedure

Here, we detail the three algorithms used in our Lasso-MLE procedure described in Section 4.5.4. We focus only on the description of the iteration r of the algorithm. The initialization and the stopping rules are specified in Section 4.B.2. We keep the notations introduced in Section 4.5.4.

First algorithm: construction of a set of relevant variables

The EM algorithm we use to construct a set of relevant variables is the EM algorithm for 1 -penalized model-based clustering introduced by Pan and Shen (2007) and described in Section 4.A.2. One minor difference is about the updating of the variance parameter at each iteration of the algorithm (see Remark 11).

Second algorithm: construction of a set of active variables among the irrelevant variables

Fix a number of clusters K and an index set J r representing a set of relevant variables. Introduce G (K,Jr) a grid of regularization parameters and let λ ∈ G (K,Jr) . Consider the Lasso estimator (4.52). We compute β(Jr,λ) by using an algorithm similar to the EM algorithm introduced by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] and recalled in Section 4.A.1. Yet, no mixture is involved in the minimization problem (4.52), so the following algorithm is simpler: there is no E step and no mixture parameters to update at the M step.

β(Jr,λ) = ( μ, σ) ∈ R |J c r | × R + defined by
INITIALIZATION : µ (0) , σ (0) AT ITERATION r ≥ 0, M step: Determination of the vector minimizing r) , σ 2 (r) I .

(µ, σ) → - 1 n n i=1 ln Φ Y i[J c r ] | µ (
By differentiating, we get for all j ∈ J c r ,

µ (r+1) j = sign µ 0 j (r+1) µ 0 j (r+1) -λ σ 2 (r+1) + (4.77) with µ 0 j (r+1) := 1 n n i=1
Y ij and a + = max{a, 0}

and

σ 2 (r+1) = 1 np n i=1 p j=1 Y ij -µ (r+1) j 2 . (4.78) END OF ITERATION r
These iterations are repeated until convergence.

Remark 12.

1. The two updatings µ (r+1) j and σ (r+1) in (4.77) and ( 4.78) depend on each other. In practice, we update µ (r+1) j with σ (r) while we update σ (r+1) with µ

.

2. By taking λ = 0 (i.e. no penalization) in ( 4.77), one finds the maximum likelihood estimator which is the empirical mean.

Third algorithm: estimation of the density in each model

For each (K, J r , J a ) ∈ M (r,a) , we estimate the density s by the minimizer ŝ(K,Jr,Ja) of the empirical contrast on the dataset Y in the model S (K,Jr,Ja) . For all y ∈ R p ,

ŝ(K,Jr,Ja) (y) = Φ y [J c a ] | 0, σ2 I Φ y [Ja] | μ, σ2 I K k=1 πk Φ y [Jr] | μk , σ2 I . (4.79) 
The estimated mixture parameters (π 1 , . . . , πK , μ, μ1 , . . . , μK , σ) are computed by an EM algorithm similar to the EM algorithm described in Section 4.A.1. The specific decomposition of ŝ(K,Jr,Ja) in (4.79) must be taken into account during the M step of the algorithm.

INITIALIZATION : π 0 1 , . . . , π 0 K , µ (0) , µ 1 (0) , . . . , µ K (0) , σ (0) 
AT ITERATION r ≥ 0,

• E step: For all i ∈ {1, . . . , n} and k ∈ {1, . . . , K}, updating of r) , σ 2 (r) I .

τ (r) ik = π (r) k Φ Y i[J r ] | µ k (r) , σ 2 (r) I K l=1 π (r) l Φ Y i[J r ] | µ l (
• M step: Determination of the mixing proportions maximizing

(π 1 , . . . , π K ) → n i=1 K k=1 τ (r) ik ln π (r) k
under the condition K k=1 π k = 1, and of the vector minimizing

(µ, µ 1 , . . . , µ K , σ) → - 1 n n i=1 K k=1 τ (r) ik ln Φ Y i[J c a ] | 0, σ 2 (r) I Φ Y i[J a] | µ (r) , σ 2 (r) I Φ Y i[J r ] | µ k (r) , σ 2 (r) I .
By differentiating, we get for all k ∈ {1, . . . , K}, π

(r+1) k = n i=1 τ (r) ik n , µ (r+1) kj 
= n i=1 τ (r) ik Y ij n i=1 τ (r) ik if j ∈ J r ; µ (r+1) j = 1 n n i=1 Y ij if j ∈ J a , and 
σ 2 (r+1) = 1 np n i=1 K k=1 τ (r) ik   j∈Jr Y ij -µ (r+1) kj 2 + j∈Ja Y ij -µ (r+1) j 2 j∈J c a Y 2 ij   .

END OF ITERATION r

These iterations are repeated until convergence.

4.B Some details about our algorithms

4.B.1 Construction of a grid of regularization parameters

To construct a collection of sets of relevant variables, we apply 1 -regularization to the empirical contrast for various regularization parameters (see Section 4.5.4). In practice, for a given number K of clusters, we introduce G K a grid of regularization parameters and compute the Lasso solution θ (K,λ) defined by (4.50) by the EM algorithm described in Section 4.A.2 for each regularization parameter λ of the grid G K . A crucial point is the construction of an appropriate grid G K . [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] consider a regular deterministic grid. On the opposite, we favor a data-driven non-regular grid. Here, we explain the construction of our grid of regularization parameters.

Fix a number K of clusters. We compute the Lasso θ (K,λ) for various values of λ in order to construct a model collection. On the one hand, this model collection must be small enough to enable the estimation of the parameters in each model and the selection of one of these models within a reasonable time-consuming algorithm. On the other hand, this model collection must be rich enough to contain a range of models with different sparsities and enable the selection of a satisfactory model. Therefore, one has to construct a grid of regularization parameters providing an intermediate number of models with various sparsities. So, it is essential to understand the link between the value of the regularization parameter λ and the sparsity of the model generated by the Lasso with regularization parameter λ. From our simulations, we can conclude that increasing the value of λ generally results in an increasing number of mean parameters set to zero, that is to say a sparser model (see Figure 4.1). Moreover, there exist breakpoint regularization parameters 0 := λ 0 , λ 1 , . . . , λ L depending on the data such that, for all l ∈ {0, . . . , L -1}, the sparsity of the model generated by the Lasso with λ ∈ [λ l , λ l+1 [ is the same as the sparsity of the model generated by the Lasso with λ l (only the estimation of the parameters are modified), and the sparsity of the model generated by the Lasso with λ ≥ λ L is maximal: all the estimates of the mean parameters equal zero. From these observations, we deduce that an optimal grid of regularization parameters should contain only breakpoint regularization parameters since all other regularization parameters increase the size of the grid, and thus the computational time, without providing a richer model collection. To construct a grid of regularization parameters, an idea (adopted by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] is to begin at λ = 0, choose a maximum value of λ, let say λ max , and consider a regular subdivision of the interval I = [0, λ max ]. We tried to construct such a grid, but it is sometimes difficult to choose λ max . The ideal choice would be λ max = λ L , but it depends on the dataset and we have no concrete idea of its value. In order to guess λ L , [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] preliminary conduct a few Lasso algorithms by increasing the value of λ until obtaining a model whose mean parameters all equal zero. But this method can reveal quite time-consuming. Besides arises the problem of the choice of the step of the subdivision of the interval I. On the one hand, if one takes a too large step, one can miss many breakpoints and get a poor model collection. On the other hand, if one takes a too small step, one may increase the computational time without enriching one's model collection.

To construct a grid of regularization parameters, we consider another approach. The key idea of our method is to construct a data-driven grid of regularization parameters by using the updating formulas of the mixture parameters in the EM algorithm computing the Lasso solutions. Specifically, first, we run the EM algorithm described in Section 4.A.1 to calculate the estimate of the parameter vector θ(0) = (π k (0), µ kj (0), σ(0)) k,j for λ = 0. Then, for all λ > 0, we consider the formulas updating the values of the prior probability parameters and the mean parameters in the EM algorithm described in Section 4.A.2: at iteration r, for all k ∈ {1, . . . , K}, for all j ∈ {1, . . . , p}, π

(r+1) k = n i=1 τ (r) ik n , (4.80) 
µ (r+1) kj = sign µ 0 kj (r+1) µ 0 kj (r+1) - nλ σ 2 (r+1) n i=1 τ (r) ik + . (4.81) From (4.80) and (4.81), µ (r+1) kj 
= 0 ⇐⇒ λ ≥ n i=1 τ (r) ik nσ 2 (r+1) µ 0 kj (r+1) = π k (r+1) σ 2 (r+1) µ 0 kj (r+1) .
Now, by assuming that for all λ > 0, for all k ∈ {1, . . . , K}, for all j ∈ {1, . . . , p}, the values π r+1) and µ 0 kj (r+1) are not too far from the estimates πk (0), µ kj (0) and σ(0) respectively, and by replacing µ (r+1) kj by its value at convergence µ kj (λ), we make the following heuristics:

(r+1) k , σ ( 
µ kj (λ) = 0 ⇐⇒ λ ≥ λ kj := πk (0) σ2 (0) µ kj (0) . (4.82) 
From ( 4.82), we can expect that G K = {λ 11 , . . . , λ 1p , . . . , λ K1 , . . . , λ Kp } is a good candidate list for the breakpoint regularization parameters. To ensure to reach λ L , we add an extra point to the above grid, called λ extra , whose value is taken to twice the maximum value of the λ kj s (the factor 2 is quite arbitrary). We also add the value λ = 0 as a starting value for the grid. In practice, this method is time-efficient since it only requires to run one EM algorithm for λ = 0 and then apply Formula (4.82). Contrary to Pan and Shen's grid construction, neither preliminary runs of EM algorithms for a few values of λ > 0 nor determination of the step of the grid are needed.

4.B.2 Initialization and stopping rules

Here, we explain how we handle the initialization, the stopping-rule and the chaining of the first two EM algorithms used for our Lasso-MLE procedure (see Section 4.A.4).

of the component from which Y i arises, that is to say Z = k if Y i arises from the component k.

Consider the (p + 1)-dimensional random vector (Y i , Z). Denote by f (Y ij ,Z) the density of (Y ij , Z) and by f Y ij |Z the density of Y ij conditionally to Z. Then, the marginal density function of Y ij is defined for all y ∈ R by

s θ j (y) = K k=1 f (Y ij ,Z) (y, k) = K k=1 P(Z = k)f Y ij |Z (y|Z = k) = K k=1 π k Φ y | µ kj , σ 2 ,
and

E(Y ij ) = R ys θ j (y) dy = R y K k=1 π k Φ y | µ kj , σ 2 dy = K k=1 π k R y Φ y | µ kj , σ 2 dy = K k=1 π k E(X) with X ∼ Φ • | µ kj , σ 2 = K k=1 π k µ kj .

4.C.2 Proof of Proposition 4.4.1

Let (K, J r ) ∈ M r . Consider ŝ(K,Jr) the maximum likelihood estimator in the model S (K,Jr) . Let θ(K,Jr) be such that ŝ(K,Jr) = s θ(K,Jr) . We compute the estimated mixture parameters θ(K,Jr) by the following EM algorithm A.

INITIALIZATION Let θ (0) = (π (0) 1 , . . . , π (0) 
K , µ (0) 1 , . . . , µ (0) 
K , σ (0) ) be the initialization of θ (K,Jr) defined by (4.32) by the EM algorithm A. Put θ (0) = (π

(0) 1 , . . . , π (0) K , µ (0) , µ 1 (0) , . . . , µ K (0) , σ (0) ) with µ (0) = µ [J c r ] and µ k (0) = µ k (0) + µ [Jr] .
AT ITERATION r ≥ 0,

• E step: For all i ∈ {1, . . . , n} and k ∈ {1, . . . , K}, we update

τ (r) ik = π (r) k Φ Y i[J r ] | µ k (r) , σ 2 (r) I K l=1 π (r) l Φ Y i[J r ] | µ l (r) , σ 2 (r) I . (4.83)
The chapter is organized as follows. In Section 5.2, we introduce a few notations and definitions used to analyze the further results. In Section 5.3, we compare the variable selection and the clustering performance of our procedure with Pan and Shen's procedure and Maugis and Michel's procedure on two simulated datasets. In Section 5.4, we apply our procedure to functional data clustering involving curve reconstruction with wavelets.

Definitions

Consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with (known) density s. Let {S D } D∈D be a model collection. For all D ∈ D, denote by ŝD an estimator of s in the model S D .

The oracle model

The oracle1 model is S D oracle with D oracle = arg min D∈D KL (s, ŝD ) . For simulated datasets, the density s is known and we have access to the oracle model. Indeed, for all D ∈ D, (5.

KL (s, ŝD ) = x∈R p ln s (x) ŝD (x) s(x) dx 
2)

The integral in (5.2) can be approximated by a Monte Carlo procedure. A large dataset X = (X 1 , . . . , X N ) is simulated with density s and N n. Then, from the Law of large numbers,

x∈R p ln (ŝ D (x)) s(x) dx ≈ 1 N N i=1 ln (ŝ D (X i ))
and

D oracle ≈ arg min D∈D - 1 N N i=1 ln (ŝ D (X i )) . (5.3) 
Then, we can compare the model selected by some criterion with this benchmark to judge the quality of this criterion.

Model selection criteria

A model selection procedure is a method choosing some data-dependent D ∈ D nearly as good as the ideal choice D oracle . Then, the resulting estimator of s is ŝ D. The idea of model selection via penalization is to introduce a penalty function pen : D → R + and to select D as the minimizer of the penalized criterion over D, D = arg min D∈D {γ n (ŝ D ) + pen(D)} .

(5.4)

In the density estimation framework, model selection via penalization was first introduced in the early seventies by [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] who proposed the Akaike Information Criterion (AIC) defined from the penalty

pen AIC (D) = D n .
Its heuristics relies on an asymptotic approximation of the log-likelihood based on Wilks Theorem. This criterion asymptotically aims at minimizing the Kullback-Leibler divergence to the true distribution, but it is not adapted to identify the true model [START_REF] Yang | Can the strengths of AIC and BIC be shared ? A conflict between model identification and regression estimation[END_REF]. Then, [START_REF] Schwarz | Estimating the dimension of a model[END_REF] suggested the Bayesian Information Criterion (BIC) defined from the penalty

pen BIC (D) = ln n 2 D n .
This criterion is derived from Bayesian considerations. It relies on an asymptotic approximation of the integrated likelihood which is based on Laplace approximation [START_REF] Lebarbier | Une introduction au critère BIC : fondements théoriques et interprétation[END_REF]. [START_REF] Schwarz | Estimating the dimension of a model[END_REF] obtained this criterion in the particular case of exponential families, and under assumptions related to the introduced Bayesian framework. Contrary to AIC, BIC is expected to be a good identification criterion. In their Lasso procedure, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] consider BIC as model selection criterion to select an estimator among their collection of Lasso estimators.

Both AIC and BIC heavily rely on asymptotic approximations. In particular, their heuristics are justified only when the dimensions and the number of models are bounded with respect to the number of observations n and n tends to infinity, which is not the case in our high-dimensional setting. Moreover, they are both deterministic criteria in the sense that the penalty associated to these criteria is the same whatever the dataset. We shall compare these two widely-used criteria to our non-asymptotic data-driven model selection criterion.

As regards our criterion, we shall consider two penalties: one proportional to the dimension and another one involving a logarithm term:

pen(D) = 2 ĉ D n , pen ln (D) = 2 ĉ1 D n + ĉ2 D n ln D max D . (5.5) 
The constants ĉ, ĉ1 and ĉ2 are estimated from the data by the data-driven slope estimation method recalled in Section 6.3.1: ĉ is computed by performing a simple regression on the couples of points {(D/n, -γ n (ŝ D )} D≤n∧p , while ĉ1 and ĉ2 are computed by performing a double regression on the triplets of points {(D/n, (D/n) ln(D max /D), -γ n (ŝ D )} D≤n∧p .

We shall call the penalized estimator solution of (5.4) with pen AIC , pen BIC , pen and pen ln respectively the AIC estimator, the BIC estimator, the slope estimator and the ln-slope estimator.

Selection of the relevant variables for the clustering

When considering a simulated dataset from a mixture population described by p variables, we know which variables are actually relevant for the clustering. Then, we can compare them with the set of relevant variables selected by one's procedure to judge the selection variable quality of this procedure. We shall say that a variable selected by one's procedure is a true relevant variable if it is actually a relevant variable, while we shall say that a variable selected by one's procedure is a false relevant variable if it is actually not a relevant variable. In our procedure, besides looking for the relevant variables, we also aim at eliminating every inactive variable so as to reduce the number of mean coefficients to estimate. We shall say that our procedure selects a false active variable if it declares a variable active whereas this variable is actually inactive.

For a simulated dataset Y = (Y 1 , . . . , Y n ) coming from a mixture of populations, we know from which cluster arises each observation Y i . Then, we can compare the true data partition with the partition obtained by one's procedure to judge the clustering quality of this procedure. In our simulations, we shall use the Adjusted Rand Index (ARI) which is the corrected-for-chance version of the Rand index introduced by [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF] to measure the similarity between two data clusterings. The ARI is a number between 0 and 1. The closer to 1 the ARI, the more similar the two clusterings.

Validation of the Lasso-MLE procedure on simulated data

In this section, we compare our Lasso-MLE procedure with Pan and Shen's procedure and Maugis and Michel's procedure on two simulated datasets. For Pan and Shen's Lasso procedure, we consider the modified BIC criterion defined by (4.18). For Maugis and Michel's procedure, we consider the data-driven penalized criterion derived from the slope heuristics with a penalty proportional to the dimension, which is defined by (4.13). For our procedure, we test both a penalty proportional to the dimension and a penalty with an additional logarithm term, as defined by (5.5). The corresponding estimators are respectively the slope estimator and ln-slope estimator. They are compared with BIC and AIC. For each procedure, we also provide the results for the oracle defined by (5.3).

First simulated dataset

This first simulated dataset is in the spirit of the example in Maugis and Michel (2011a). The dataset consists of n = 200 observations described by p ∈ {30, 200, 1000} variables. The data are simulated according to a mixture of four Gaussian distributions 4 k=1 π k Φ(• | µ k , I) with µ 1 = (3, 2, 1, 0.7, 0.3, 0.2, 0.1, 0.07, 0.05, 0.025, 0 p-10 ),

µ 2 = 0 p , µ 3 = -µ 1 , µ 4 = (3, -2, 1, -0.7, 0.3, -0.2, 0.
1, -0.07, -0.05, -0.025, 0 p-10 ).

The vector 0 l denotes the null vector of length l. The mixing proportions are (π 1 , π 2 , π 3 , π 4 ) = (0.3, 0.2, 0.2, 0.3). The relevant variables for the clustering are the first ten variables. Thus, the true density belongs to the model with K * = 4 components and J * r = {1, . . . , 10}. Note that the four subpopulations of the mixtures are progressively gathered together into a unique Gaussian distribution, as shown at Figure 5.1. Therefore, the discriminant power of the relevant variables decreases with respect to the variable index. Also note that the active and the relevant variables coincide. For each value of p ∈ {30, 200, 1000}, we perform 20 simulations of the dataset. For each simulation, we consider models with K ∈ {2, . . . , 6} clusters.

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 -4 -2 0 2 4 6 VAR1 VAR2 VAR11 VAR10 VAR9 VAR8 VAR7 VAR6 VAR5 VAR4 VAR3 Figure 5
.1: Boxplots of the first eleven variables (VAR1,...,VAR11) on the four mixture components (G1,G2,G3,G4).

Low-dimensional dataset: p n

Here, we take p = 30. We compare our Lasso-MLE procedure with Pan and Shen's Lasso procedure and Maugis and Michel's MLE procedure. For Maugis and Michel's procedure, ordered variable selection is considered because of the unfeasibility of performing complete variable selection for p = 30. The results are summarized in Table 5.1. The comparison between the slope graph obtained by Maugis and Michel's procedure and our procedure for one simulation is provided at Figure 5.3. Figure 5.2 gives an example of the collection of sets of relevant variables generated by the Lassos by varying the regularization parameter for the true number of clusters K * = 4. This data-driven collection is to be compared with the ordered variable collection {{1, . . . , d}; 1 ≤ d ≤ p} considered by Maugis and Michel (2011a). Let us comment these results.

Comparison between different criteria for our procedure

First, let us comment on the data-driven slope estimation method. For this low-dimensional setting, the double regression to estimate the coefficients ĉ1 and ĉ2 in (5.5) often fails to lead to stable coefficients, in which case the penalty pen ln in (5.5) and the ln-slope estimator can not be defined. On the contrary, the simple regression to compute ĉ in (5.5) leads to a stable coefficient. This suggests that no logarithm term is to be considered in the penalty shape. Thus, we present only the results obtained for the slope estimator. Let us compare them with AIC and BIC.

From Table 5.1, AIC selects too many components and many false relevant variables. The model selected by BIC is not the true model, which proves that BIC is not consistent in our context. This can be due to several reasons: we are not in an asymptotic context, the true model does not necessarily belong to our random model collection (see Figure 5.2) and the component densities are not bounded, whereas these assumptions are usually made to establish consistency results for BIC (see for instance [START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF]. The data-driven slope estimation method selects a model closer to the oracle model than the model selected by BIC. Moreover, the data clustering is slightly better for the slope estimator. These results highlight the advantage of a data-driven penalty over a fixed penalty.

Comparison between our procedure and Pan and Shen's procedure From Table 5.1, the Lasso oracle model sometimes overestimates the number of mixture components. It contains most (yet not all) true relevant variables but also many false relevant variables. This tendency to select much too many variables is not surprising because it has already been widely noted in the regression framework [START_REF] Zhao | On model selection consistency of Lasso[END_REF][START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF][START_REF] Young | On the non-negative garotte estimator[END_REF][START_REF] Bach | Bolasso : model consistent Lasso estimation through the bootstrap[END_REF][START_REF] Connault | Calibration d'algorithmes de type Lasso et analyse statistique de données métallurgiques en aéronautique[END_REF]. Our simulations show that this drawback is still observed in the finite mixture Gaussian density estimation framework. As a result, the Lasso oracle model is far from the true model. On the contrary, the Lasso-MLE oracle model is close to the true model. This favors the Lasso-MLE procedure. Remember that the relevant variables are indexed by j ∈ {1, . . . , 10} and that the smaller j ∈ {1, . . . , 10}, the higher the relevance of the variable indexed by j.

Comparison between our procedure and Maugis and Michel's procedure

The results obtained for both procedures are very similar. In particular, at Figure 5.3, we check that, for both procedures, the function D/n → -γ n (ŝ D ) has a linear behavior. Moreover, the values of the estimated slopes are very similar for both procedures. But two differences can be noted. First, from Table 5.1, the models selected by Maugis and Michel's procedure never contain false relevant variables, contrary to our procedure. This can be explained by the following reason. As highlighted by Figure 5.1, the relevant variables indexed by j ∈ {7, . . . , 10} are actually not really relevant for the clustering, and they may be confused with irrelevant variables. Then, our procedure may select irrelevant variables indexed by j ≥ 11 (possibly j 11) instead of these relevant variables. This phenomenon is much less likely to happen for Maugis and Michel's procedure. Indeed, Maugis and Michel (2011a) Secondly, comparison of the Kullback-Leibler divergences in Table 5.1 shows that our procedure achieves better prediction performance than Maugis and Michel's procedure. This may be due to the fact that Maugis and Michel (2011a) estimate the parameters on the empirically centered dataset (see discussion in Section 4.4.2.2). 5.3: For one simulation,comparison between the slope graphs obtained by Maugis and Michel's procedure (at the top) and by our Lasso-MLE procedure (at the bottom). On both graphs, for large dimensions, we observe a linear part whose estimated slope is specified on the graphs. which is not the case for Maugis and Michel's procedure which fails to recover the true relevant variables if they are not correctly ordered or if they are mixed up with irrelevant variables.

Note that the true model does not necessarily belong to our data-driven model collection (see Figure 5.2), while it belongs to the deterministic model collection considered by Maugis and Michel (2011a). From Table 5.1, for both procedures, the oracle model does not coincide with the true model. Here, we take p = 200 and p = 1000. We compare our Lasso-MLE procedure to Pan and Shen's Lasso procedure. Maugis and Michel's procedure is unfeasible and thus ruled out for such highdimensional datasets. The results are summarized in Table 5.1. Figure 5.5 and Figure 5.6 compare the clustering results between the Lasso procedure and the Lasso-MLE procedure. A comparison between the fixed penalty considered by BIC and the data-driven penalty derived from the slope heuristics is made at Figure 5.4. Let us focus on the results evolution when increasing p.

Slope heuristics

For p = 30, the double regression fails. For p = 200, both the simple regression and the double regression can be performed for all simulations and they lead to equivalent estimators. For p = 1000, the simple regression fails 4 times over the 20 simulations, and on the remaining 16 simulations, the ln-slope estimator is closer to the oracle than the slope estimator. So, the ideal penalty shape seems to change when p increases: a logarithm term is to be added for large dimensions.

Variable selection

For the Lasso procedure, Table 5.1 shows that the poor variable selection performance observed for p = 30 for the oracle and BIC is confirmed and even gets worse when p grows: the models selected contain more and more false relevant variables while they contain fewer and fewer true relevant variables.

For the Lasso-MLE procedure, Table 5.1 shows that the models selected by AIC and, to a lesser extend by BIC, contain more (true relevant and false relevant) variables when p grows. On the opposite, the oracle model and the models selected by the slope estimator and the ln-slope estimator remain stable. Figure 5.4 points out the advantage of using a data-driven penalty rather than a fixed penalty: for a penalty proportional to the dimension pen(D) = 2ĉD/n, the value of the estimated slope ĉ globally increases with respect to p, so the associated penalty pen gets stronger as p increases, whereas the fixed BIC penalty pen BIC (D) = 0.5 ln(n)(D/n) remains the same whatever p and tends to under-penalize as p grows. 

Clustering performance

From Table 5.1, the data clustering globally lightly deteriorates as p grows. The biggest deterioration is for BIC for Pan and Shen's procedure. Figure 5.5 can explain this bad clustering performance: for the Lasso procedure, the models achieving the best clustering have moderate or high dimension (D/n > 0.35), while BIC selects a less complex model. On the opposite, for the Lasso-MLE procedure, Figure 5.6 shows that small models (D/n < 0.5) achieve good clustering. In particular, the slope estimator and the ln-slope estimator, which select such small models, lead to a satisfactory data clustering. 

Second simulated dataset

This second simulated dataset is taken from the example in [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. The dataset consists of n = 200 observations described by p = 1000 variables. The data are simulated according to a mixture of two Gaussian distributions s = 2 k=1 π k Φ(• | µ k , I) where µ 1 = 0 p and µ 2 = (1.5, . . . , 1.5, 0 950 ). The vector 0 l denotes the null vector of length l. The mixing proportions are (π 1 , π 2 ) = (0.85, 0.15). The relevant variables are the first fifty variables. Thus, the true density s belongs to the model with K * = 2 components and J * r = {1, . . . , 50}. Note that the active variables and the relevant variables coincide. We perform 20 simulations of the dataset. For each simulation, we consider models with K ∈ {1, 2, 3} clusters.

We compare our Lasso-MLE procedure with Pan and Shen's Lasso procedure. Maugis and Michel's procedure is unfeasible and thus ruled out for this second high-dimensional dataset. The results are summarized in Table 5 

Variable selection and clustering

Table 5.2 shows that the Lasso oracle model, and to a lesser extend the model selected by BIC, contain many false relevant variables and may overestimate the number of mixture components. This confirms that Pan and Shen's Lasso procedure is not suited to recover the true model and the true relevant variables. Moreover, BIC data clustering is disappointing.

In contrast, the Lasso-MLE oracle model always coincides with the true model and leads to a very good data clustering. As expected for this high-dimensional dataset, the ln-slope estimator is slightly closer to the Lasso-MLE oracle than the slope estimator. The penalty with a logarithm term is stronger than the penalty with no logarithm term (see Figure 5.7), so the ln-slope estimator leads to sparser models than the slope estimator. Note that the ln-slope estimator does not always select all the 50 relevant variables, yet it leads to an excellent data clustering. Both the ln-slope estimator and the slope estimator achieve better performance than BIC and AIC. 

Density estimation

Table 5.2 shows that the risk of the Lasso oracle is much higher than the risk of the Lasso-MLE oracle. This proves that the density estimation obtained by the Lasso procedure is not reliable. This may be explained by three main reasons: a poor variable selection performance, a poor parameter estimation due to 1 -regularization shrinkage and an excessive number of empirical means to be estimated due to empirical centering. In our Lasso-MLE procedure, the datasets are preliminary empirically centered to run the Lasso algorithm used to construct a collection of sets of relevant variables (see step 1 in Section 4.5.4). In Section 4.4.1, we justified this empirical centering as a practical surrogate for the unfeasible theoretical centering we would like to do to detect the relevant variables by 1 -penalization. Yet, for simulated datasets, the true density is known and theoretical centering of the data is feasible. Thus, we can compare the collection of sets of relevant variables obtained by performing either empirical centering or theoretical centering of the data. Figure 5.8 provides such a comparison for one simulation of the dataset studied in Section 5.3.1. To make easier the comparison, the low-dimensional case p = 30 is considered. For a fixed number of clusters, the Lasso algorithm generates a collection of sets of relevant variables by varying the Lasso regularization parameter λ in a data-driven grid (see Section 4.B.1). Figure 5.8 represents the model collection obtained for the true number K = 4 of clusters when either empirical centering or theoretical centering is preliminary performed. On the one hand, the two model collections share some similarities: for both model collections, the number of relevant variables in the models decreases as λ increases, the models are not necessarily nested and the true model is not in the model collection. On the other hand, the two model collections present dissimilarities: the sets of relevant variables are different, they are not obtained for the same regularization parameter values, and the variables do not enter in the same order as λ decreases. Thus, we can conclude that empirical centering and theoretical centering do not lead to the same model collection. Now, since the final model selected belongs to the model collection, we can wonder whether these dissimilarities affect the choice of the model selected by the Lasso-MLE procedure. To answer this question, we performed theoretical centering for a few simulations for the datasets studied in Section 5.3.1 and Section 5.3.2. We compared the models selected with those in Table 5.1 and Table 5.2: the models selected by the slope estimator and the ln-slope estimator, as well as the oracle model, were globally unchanged. This suggests that the model collection generated from empirical cente-ring is close enough to the model collection generated from theoretical centering not to alter the final model selection, which is quite reassuring. 

Slope estimator versus ln-slope estimator

In Section 5.3.1 and Section 5.3.2, we noted that the ln-slope estimator is to be preferred to the slope estimator as the dimension of the dataset increases since it becomes closer to the oracle whereas the slope estimator tends to under-penalize as p increases. This comparison was possible because we worked with simulated data and we had access to the oracle. Yet, for real data, this is not possible. So, we can wonder how to choose between the two estimators in such a concrete case. We do not think it is possible or even desirable to fix a deterministic rule to decide which of the two estimators is the best one according to the number p of variables. It may depend on the number n of observations, on the number of true relevant variables, on the value of the mean coefficients, or on some other particularities of the data at hand. Yet, we can give some general indications to choose among the two estimators. .9: Different typical slope graphs for the slope estimator (on the left) and the ln-slope estimator (on the right). At the top, the ln-slope estimator is to be chosen. In the middle, the slope estimator is to be chosen. At the bottom, both estimators can be equally chosen.

Given a dataset, we advocate to try to compute both estimators. Then, several situations can occur.

If one of the two regressions fails (no stable estimation of the slope coefficient(s) can be obtained), this suggests that the associated estimator is not the good one. For instance, in Section 5.3.1, performing a double regression failed for p = 30, which suggested that the ln-slope estimator was not the good one, whereas performing a simple regression failed 4 times over the 20 simulations for p = 1000, which indicated that the slope estimator was to rule out for those simulations. Figure 5.9 illustrates a situation where the simple regression fails (top left of Figure 5.9) while the double regression works well (top right of Figure 5.9).

If both regressions are feasible, then we advise the user to look at the slope graphs. It is often sufficient to guess which estimator is to be preferred. For instance, at Figure 5.7, the graph obtained for the simple regression is not so linear, while the graph obtained by subtracting a logarithm term calculated by the double regression leads to a beautiful linear graph. This suggests that the ln-slope estimator is to be favored. On the contrary, Figure 5.9 presents a situation where the red slope calculated from the double regression goes under the black graph on the extreme left part of the plot (middle right of Figure 5.9). When such a graph is observed, the associated ln-slope estimator is often too sparse. In this case, the slope estimator is to be preferred (middle left of Figure 5.9). Finally, if both graphs look like each other (Figure 5.9, at the bottom), then the slope estimator and the ln-slope estimator are expected to lead to similar results.

Functional data clustering using wavelets

A major application of our Lasso-MLE procedure may be functional data clustering using wavelets. Here, we present some simulated data in this context to evaluate our procedure performance as regards both clustering and sparse curve reconstruction. We consider two approaches.

First, we work with datasets such that each data is assumed to be the wavelet coefficient decomposition of a noised function in some given wavelet basis. We apply our Lasso-MLE procedure to obtain both a clustering of the coefficient decompositions as well as an estimation of the coefficient decompositions for each cluster. Then, the coefficient clustering provides a clustering of the underlying functions associated to the coefficient decompositions. Moreover, by using the estimation of the coefficient decompositions for each cluster and by performing an inverse wavelet transform, we derive a sparse curve estimation for each cluster. The inverse wavelet transform is done using the function waverec available in the Wavelet Toolbox of MATLAB.

Secondly, we work with datasets such that each data is the noisy observation of a function. In this case, we introduce a wavelet basis and decompose each data into this basis. This preliminary step is done using the function mdwtdec available in the Wavelet Toolbox of MATLAB. This operation results in a new dataset such that each data is a noisy wavelet coefficient decomposition, such as in the first case. Then, we can apply our Lasso-MLE procedure on this dataset and end as in the first case.

Examples of curve reconstruction from wavelet coefficient clustering

We consider two simulated datasets in the spirit of the two datasets studied in Section 5.3. We assume that each data is the wavelet coefficient decomposition of a noised function in some wavelet basis. We aim at identifying the different clusters and at recovering the different denoised functions by providing a curve estimation for each cluster.

First simulated dataset

This first dataset is similar to the dataset studied by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], with the difference that we add some active irrelevant variables in order to get less flat curve shapes. The dataset consists of n = 200 data described by p = 1086 variables. The data are simulated according to a mixture of two Gaussian distributions 2 k=1 π k Φ(• | µ k , I) with mixing proportions (π 1 , π 2 ) = (0.85, 0.15) and mean vectors µ 1 = (0 25 , 1.5 25 , 0 p-50 ) and µ 2 = (1.5 50 , 0 p-50 ), where a l denotes the vector of length l whose coordinates equal a. Thus, the first 25 variables are relevant for the clustering while the variables 26 to 50 are active irrelevant.

We assume that each data is the wavelet coefficient decomposition of the noisy observation of a function f in the symmlet-4 basis at level 10. The scaling and the wavelet functions defining this basis are represented at Figure 5.10. By performing an inverse wavelet transform of the wavelet coefficient dataset in this basis, we get a functional dataset which is simulated according to a mixture of two Gaussian distributions 2 k=1 π k Φ(• | f k , I) with mixing proportions (π 1 , π 2 ) = (0.85, 0.15) and means f 1 ∈ R 1024 and f 2 ∈ R 1024 . The means f 1 and f 2 are the discretization of two functions f 1 and f 2 on a grid containing 1024 points. Since µ 1 and µ 2 are known, we have access to the discretized functions f 1 and f 2 by performing an inverse wavelet transform of µ 1 and µ 2 in the symmlet-4 basis at level 10. The functions f 1 and f 2 obtained by this process are displayed at Figure 5.11. f 1 (x) (cluster 1) f 2 (x) (cluster 2)

Figure 5.11: Plot of the functions f 1 for cluster 1 and f 2 for cluster 2.

The aim is to identify the two clusters and to get a good estimation of f 1 and f 2 . This can be achieved by providing a clustering of the wavelet coefficient dataset, by estimating the mean vectors µ 1 and µ 2 , and by performing an inverse wavelet transform of μ1 and μ2 to get an estimation of f 1 and f 2 .

For one simulation of this dataset, we compare the clustering and the curve estimation obtained by our Lasso-MLE procedure and by Pan and Shen's Lasso procedure. We consider models with K ∈ {1, 2, 3} clusters. Both procedures choose a mixture with two components. Figure 5.12 and Figure 5.13 show the reconstruction of the functions f 1 and f 2 obtained by Pan and Shen's Lasso estimator (at the bottom), our Lasso-MLE procedure with the slope estimator (in the middle) and the ln-slope estimator (at the top).

The ln-slope estimator performs the best curve estimations. The estimations obtained by the slope estimator are quite good but we note a few extra peaks due to non-null estimations μ1j and μ2j of a few truly null mean coefficients µ 1j and µ 2j . This is due to the fact that the penalty proportional to the dimension lightly under-penalizes. Figure 5.15 shows the slope graphs obtained for both estimators.

As regards Pan and Shen's Lasso estimation, it is very noisy. This is not surprising. Indeed, Pan and Shen's procedure runs on the empirically centered dataset, so one must add the p = 1086 empirical means to Pan and Shen's Lasso estimations to get an estimation of the mean coefficients µ kj of the original (non-empirically centered) dataset. Consequently, the resulting estimation is not sparse. Pan and Shen's procedure is not adapted to curve reconstruction and this would be the case for any procedure running on empirically centered datasets. Figure 5.14 highlights another problem encountered by Pan and Shen's procedure, which is not due to empirical centering but rather to the shrinkage induced by 1 -regularization. This shrinkage worsens the curve estimations. 

Second simulated dataset

This second dataset is similar to the dataset studied in Section 5.3.1, with the difference that we add some active irrelevant variables in order to get less flat curve shapes. The dataset consists of n = 200 data described by p = 1086 variables. Denote by a l the vector of length l whose coordinates equal a and put µ = (3, 2, 1, 0.7, 0.3, 0.2, 0.1, 0.07, 0.05, 0.025). The data are simulated according to a mixture of four Gaussian distributions 4 k=1 π k Φ(• | µ k , I) with mixing proportions (π 1 , π 2 , π 3 , π 4 ) = (0.3, 0.2, 0.2, 0.3) and mean vectors constructed from positive, negative or alternate coefficients of µ: 3, -2, 1, -0.7, 0.3, -0.2, 0.1, -0.07, -0.05, -0.025, µ, 0 p-20 ).

µ 1 = (µ, µ, 0 p-20 ), µ 2 = (0 10 , µ, 0 p-20 ), µ 3 = (-µ, µ, 0 p-20 ), µ 4 = (
We assume that each data is the wavelet coefficient decomposition of the noisy observation of a function f in the symmlet-4 basis at level 10. By performing an inverse wavelet transform of the wavelet coefficient dataset in this basis, we get a functional dataset which is simulated according to a mixture of four Gaussian distributions 4 k=1 π k Φ(• | f k , I) with mixing proportions (π 1 , π 2 , π 3 , π 4 ) = (0.3, 0.2, 0.2, 0.3) and means f 1 , f 2 , f 3 and f 4 ∈ R 1024 that are the discretization of four functions f 1 , f 2 , f 3 and f 4 on a grid containing 1024 points. Since µ 1 , µ 2 , µ 3 and µ 4 are known, we have access to the discretized functions f 1 , f 2 , f 3 and f 4 by performing an inverse wavelet transform of µ 1 , µ 2 , µ 3 and µ 4 in the symmlet-4 basis at level 10. The functions f 1 , f 2 , f 3 and f 4 obtained by this process are displayed at the top of Figure 5.16.

The aim is to identify the four clusters and to get a good estimation of f 1 , f 2 , f 3 and f 4 . This can be achieved by providing a clustering of the wavelet coefficient dataset, by estimating the mean vectors µ 1 , µ 2 , µ 3 and µ 4 and by performing an inverse wavelet transform of μ1 , μ2 , μ3 and μ4 to get an estimation of f 1 , f 2 , f 3 and f 4 .

We consider models with K ∈ {2, . . . , 6} clusters. Figure 5.16 presents the estimations obtained by the ln-slope estimator of our Lasso-MLE procedure for one simulation of the dataset. The four clusters are detected and the curves are well estimated. Let us point out that the slope estimator fails to be computed, which suggests that a logarithm term in the penalty is necessary. Figure 5.17 shows the slope graph obtained for the ln-slope estimator. 

Examples of functional data clustering

Now, we present two simulated datasets where the data are no longer wavelet coefficient decompositions of noised functions but rather discretized noised functions measured on a fine time grid. In this case, we do not apply our Lasso-MLE procedure directly on the dataset. We preliminary perform a discrete wavelet transform of each functional data in a common wavelet basis. This leads to a new dataset where the data are the wavelet coefficient decompositions of the noised functions of the original dataset.

First simulated dataset

This first dataset is a clustering problem proposed by Misiti et al. (2007a). The data y = (y 1 , . . . , y n ) are simulated according to a mixture of five Gaussian distributions 5 k=1 π k Φ(• | f k , I) with equal mixing proportions π k = 1/5 and mean functions f k defined on [0, 1] by Each observation y i in cluster k ∈ {1, . . . , 5} can be written

f 1 (t) = sin(4πt) -(sign(t -0.3) + sign(0.72 -t)) /4, f 2 (t) = sin(4πt), f 3 (t) = sin(2πt), f 4 (t) = 4 t1 {t≤1/4} + (1/2 -t) 1 {1/4<t≤3/4} + (t -1)1 {t>3/4} , f 5 (t) = 2 t1 {t≤1/2} + (1 -t) 1 {t>1/2} .
y ij = f k (t j ) + ξ ij , j = 1, . . . , p,
where t j = (j -1)/p and ξ ij are i.i.d. ∼ N (0, 1). We run our Lasso-MLE procedure on the dataset Y . The slope estimator fails to be computed while the ln-slope estimator can be computed. Our procedure selects a model with four clusters, mixing up cluster 3 and cluster 4 whose mean vectors µ 3 and µ 4 are very similar (see Figure 5.20). Despite the similarities between the mean vectors µ 1 and µ 2 , our procedure distinguishes between cluster 1 and cluster 2. By performing an inverse wavelet transform of the estimated mean vectors μ1 , μ2 , μ5 and mixed up mean vector μ3/4 , we derive a curve estimation respectively for function f 1 , f 2 , f 5 and mixed up functions f 3 and f 4 . These estimations are represented at Figure 5.21. They are globally accurate, although the second breaking point of f 1 is not detected and the peak of f 5 is not well marked. Note that the first breaking point of f 1 is detected and that the mixed up functions f 3 and f 4 are both quite well approximated by the their common estimation. Only around the first 40 to 100 variables seem to be active and relevant for the clustering. On the right, same plots restricted to j ≤ 60 to make easier the comparison between the relevant part of the graphs.

0 1 -1 0 1 x f 1 (x) 0 1 -1 0 1 x f 2 (x) 0 1 -1 0 1 x f 3 (x) 0 1 -1 0 1 x f 4 (x) 0 1 -1 0 1 x f 5 (x) 0 
0 1 -1 0 1 x f 2 (x) 0 1 -1 0 1 x f 1 (x) 0 1 -1 0 1 x f 5 (x) 0 1 -1 0 1 x f 3 (x) and f 4 (x)
Figure 5.21: Curve estimation of f 1 , f 2 , mixed up f 3 and f 4 , and f 5 by the ln-slope estimator. The true functions are colored while the estimations are black.

Second simulated dataset

Finally, we propose a dataset chosen to evaluate our procedure capability to distinguish between two functions that differ only locally. The data are simulated according to a mixture of two Gaussian distributions

2 k=1 π k Φ(• | f k , I) with equal mixing proportions π k = 1/2 and mean functions f k defined on R by f 1 (t) = 0.23 t exp (-t/2) , f 2 (t) = 1 2.5 √ 2π exp - 1 2 t -2 2.5 2 + 0.1 1 √ 2π exp - 1 2 (t -8) 2 .
Figure 5.22 represents these functions. The function f 1 is proportional to the χ 2 (4) probability distribution while f 2 is a mixture of two real Gaussian distributions. Their shapes are globally similar but f 2 presents a slight distortion around t = 7. The dataset consists of n = 200 observations described by p = 2 10 = 1024 variables. Each observation y i in cluster k ∈ {1, 2} can be written

y ij = f k (t j ) + ξ ij , j = 1, . . . , p,
where t j = 20(j -1)/p and ξ ij are i.i.d. ∼ N (0, 1). We run our Lasso-MLE procedure on the dataset Y . The slope estimator fails to be computed while the ln-slope estimator can be computed. Figure 5.24 shows the slope graph obtained for the lnslope estimator. Our procedure detects the two clusters. By performing an inverse wavelet transform of the estimated mean vectors μ1 and μ2 , we derive a curve estimation for the functions f 1 and f 2 respectively. These estimations are represented at Figure 5 

ABSTRACT

In our Lasso-MLE procedure for variable selection in clustering, our modeling recasts the variable selection and the clustering into a global model selection problem. In Section 4.5.4, we constructed a random model collection and proposed a non-asymptotic data-driven model selection criterion defined from two possible penalty shapes. In this chapter, we focus on studying and justifying these penalty shapes. On the one hand, we establish a general model selection theorem for maximum likelihood estimators in a random model collection, and we apply it to the model collection constructed in our procedure to deduce a theoretical convenient penalty. This penalty involves a logarithm term to take into account the possible great richness of our model collection. Yet, we might doubt the optimality of this penalty shape for low-dimensional datasets. Besides, this penalty depends on unknown quantities, so it can not be used to get a practical model selection criterion. On the other hand, we apply a practical method to determine a convenient penalty from the data. This method is based on the "slope heuristics" introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. This heuristics has been proved only in restricted frameworks. Here, we propose a practical method to check the validity of the slope heuristics in a "null" context. This method can be applied in any framework. We apply it to assess the validity of the slope heuristics in our framework. We also carry out simulations under the "null" model to see whether our theoretical penalty is sharp: a logarithm term is indeed practically detected for high-dimensional datasets, but a penalty proportional to the dimension seems sufficient to define a proper penalty for low-dimensional datasets.

Introduction

Assume we observe a sample which is a mixture of several subpopulations, each observation being described by a large number of variables. In the last chapter, we proposed a procedure to provide a data clustering taking into account the variable role in the clustering process. This procedure is based on a modeling that recasts variable selection and clustering problems into a model selection problem in a density estimation framework. Specifically, we construct a collection of finite Gaussian mixture models with various numbers of clusters and sets of relevant and active irrelevant variables. Then, we estimate the density of the sample by the maximum likelihood estimator in each model. This leads to a collection of estimators for the density. A final estimator has to be selected among this collection, which is equivalent to selecting a model among the model collection. A global model selection criterion choosing simultaneously the best number of clusters, the best set of relevant variables and the best set of active irrelevant variables according to the observations is required. This chapter focuses on the model selection criterion used in our procedure. We use a penalized criterion to select a model from a non-asymptotic point of view. In the density estimation framework, the principle of selecting a model by penalizing the empirical contrast emerged during the seventies. [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] proposed the Akaike's Information Criterion (AIC) and [START_REF] Schwarz | Estimating the dimension of a model[END_REF] suggested the Bayesian Information Criterion (BIC). Both of these criteria are based on asymptotic heuristics that are valid only when the number of observations is large enough. In contrast, a non-asymptotic approach for model selection via penalization has emerged during the last ten years, mainly with works of [START_REF] Birgé | From model selection to adaptive estimation[END_REF] and [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. The aim of this approach is to define penalized data-driven criteria which lead to oracle inequalities. The penalty function depends on the number of parameters in each model, but also on the complexity of the whole model collection. In our context of density estimation, [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and [START_REF] Massart | Concentration inequalities and model selection[END_REF] proposed a general model selection theorem for maximum likelihood estimation. But we can not apply it directly because it is stated for a deterministic model collection whereas our data-driven model collection is random. By extending the proof of Theorem 7.11 in [START_REF] Massart | Concentration inequalities and model selection[END_REF] to cope with the randomness of our model collection, we establish a general model selection theorem for maximum likelihood estimators in a random model collection (see Theorem 6.2.1). Then, by applying this general theorem to the finite Gaussian mixture random model collection constructed in our procedure, we derive a convenient theoretical penalty as well as an associated non-asymptotic penalized criterion and an oracle inequality fulfilled by our Lasso-MLE estimator (see Theorem 6.2.2).

Unfortunately, our theorem does not provide a practical model selection criterion because it provides a penalty shape depending on unknown constants. This drawback is usual when deriving penalties from a general model selection theorem. To deal with such situations, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] proposed their so-called "slope heuristics" which leads to a data-driven method to calibrate penalties. This heuristics has been proved in some restricted frameworks. [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] proved it for Gaussian regression with homoscedastic fixed design. Then, [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF] extended those results to heteroscedastic regression with random design, without assuming that the data are Gaussian. They had to restrict to histograms, but they suppose that this is only due to technical reasons and that the heuristics remains at least valid for the general least squares regression framework. The conjecture that the slope heuristics may be valid in a wider range of frameworks is supported by many encouraging practical studies. Indeed, the slope heuristics has been successfully applied in various model selection situations: for multiple change points detection [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF], for estimation of oil reserves [START_REF] Michel | Modélisation de la production d'hydrocarbures dans un bassin pétrolier[END_REF], in Gaussian Markov random fields [START_REF] Verzelen | Data-driven neighborhood selection of a Gaussian field[END_REF], for the estimation of the number of interior knots in a B-spline regression model [START_REF] Denis | Choix du nombre de noeuds en régression spline par l'heuristique des pentes. 41èmes Journées de Statistique SFDS[END_REF], for the choice of a simplicial complex in the computational geometry field [START_REF] Caillerie | Model selection for simplicial approximation[END_REF], for the determination of the number of mixture components [START_REF] Baudry | Sélection de modèle pour la classification non supervisée[END_REF] or for variable selection (Maugis and Michel, 2011a) in a finite Gaussian mixture setting... Since the slope heuristics is widely used in frameworks where it is not theoretically proved, we propose a general method to assess the validity of the slope heuristics from a practical point of view. This general method can be used in any framework. It consists in simulating a "null model" (in a sense to be specified) and plotting some graph to check whether the slope heuristics seems valid in this specific null context. Although not ensuring that the slope heuristics remains valid when dealing with non-null models, this method can at least detect situations where the slope heuristics might not be used. The idea is to simulate the target in a model included in each model of the collection so that the target estimators are unbiased. In this specific context, the calculations involved in the slope heuristics become simpler and they only depend on quantities that can be computed from the data.

Besides using the null model principle to check the validity of the slope heuristics in our framework, we use it to guess a convenient penalty shape from the data. In fact, our general model selection theorem for a random model collection (Theorem 6.2.1) heavily relies on the fact that this random model collection is included in a larger deterministic model collection. When applying it to the finite Gaussian mixture random model collection constructed by our Lasso-MLE procedure, we take the model collection for complete variable selection as deterministic collection. Therefore, we obtain a penalty shape with a logarithm term to take into account the high richness of this latter model collection. Yet, our model collection is actually much poorer than the model collection for complete variable selection. So, we can wonder whether the logarithm term is actually necessary to define proper penalties. By performing simulations under the null model, we show that the penalty shape derived from our Theorem 6.2.2 is sharp for high-dimensional data whereas it is too pessimistic for low-dimensional data.

The chapter is organized as follows. In Section 6.2, first, we present our general model selection theorem for maximum likelihood estimators in a random model collection. Then, we apply it to the model collection constructed in our procedure to deduce a theoretical convenient penalty shape and derive a non-asymptotic penalized criterion. In Section 6.3, first, we recall the slope heuristics proposed by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. Then, we introduce the "null model principle" for assessing the validity of this heuristics in any framework and we apply it to our framework. Finally, we carry out simulations under the null model to check whether our theoretical penalty shape is sharp. All the proofs are postponed until the Appendices. 

An oracle inequality for the

on R + such that Ψ m is non-decreasing, ξ → Ψ m (ξ)/ξ is non- increasing on ]0, +∞[, and for ξ ∈ R + and u ∈ S m , denoting S m (u, ξ) = {t ∈ S m ; d H (t, u) ≤ ξ}, ξ 0 H [.] (ε, S m (u, ξ), d H ) dε ≤ Ψ m (ξ).
(6.1) Theorem 6.2.1. Let s ∈ S be an unknown density to be estimated from a n-sample (Y 1 , . . . , Y n ).

Consider {S m } m∈M some at most countable deterministic model collection fulfilling Property (P).

Let {x m } m∈M be some family of non-negative numbers such that Let τ > 0 such that s m ≥ e -τ s (6.3) for all m ∈ M and s m ∈ S m such that KL(s, s m ) ≤ 2 inf t∈Sm KL (s, t).

Introduce {S m } m∈ M some random subcollection of {S m } m∈M . Let ρ ≥ 0 and consider the collection of ρ-MLEs {ŝ m } m∈ M :

γ n (ŝ m ) ≤ inf t∈Sm γ n (t) + ρ.
Let pen : M → R + . Suppose that there exists an absolute constant κ > 0 such that, for all m ∈ M,

pen (m) ≥ κ ξ 2 m + (1 ∨ τ ) x m n . (6.4)
Let ρ ≥ 0. Then, any penalized likelihood estimator ŝ m with m ∈ M such that

γ n (ŝ m) + pen ( m) ≤ inf m∈ M {γ n (ŝ m ) + pen (m)} + ρ (6.5) satisfies E d 2 H (s, ŝ m) ≤ C E inf m∈ M inf t∈Sm KL(s, t) + pen(m) + (1 ∨ τ ) Σ 2 n + ρ + ρ (6.6)
for some absolute positive constant C.

Proof. Page 239.

Remark 14.

1. Inequality (6.6) is not exactly an oracle inequality since the Hellinger risk is upper bounded by the Kullback bias KL(s, s m ). Nevertheless, this last term is of the same order as d 2 H (s, s m ) if ln( s/t ∞ ) is uniformly bounded on ∪ m∈M S m (Massart, 2007, Lemma 7.23). In our context, this condition can be achieved if all densities are assumed to be bounded and defined on a compact support, the Gaussian mixtures being truncated on this compact support. In the sequel, we shall consider such an assumption for technical reasons. So, KL(s, s m ) and d 2 H (s, s m ) will be equivalent.

2. Condition (6.3) is useful to control the second moment of log-likelihood ratios in order to apply Bernstein's Inequality to bound the empirical process of ln(s/s m ) (see Lemma 6.A.1). Note that the larger the value of the parameter τ , the larger the minimal penalty (6.4) and the less accurate Inequality (6.6). The minimizers of the Kullback-Leibler divergence s m are densities, so they are positive and there always exists some τ > 0 fulfilling Condition (6.3): at worst, τ = +∞ is convenient. It seems difficult to have an idea of the minimal convenient value of τ since it depends on the unknown true density s. Nonetheless, we may think that Condition (6.3) is satisfied for reasonable values of τ because the minimizers of the Kullback-Leibler divergence are expected to be close to the true density s.

Application to our Lasso-MLE estimator

Here, we establish an oracle inequality for the estimator of our Lasso-MLE procedure described in Section 4.5.4. We are particularly interested in finding the shape of the minimal penalty leading to an oracle inequality.

Let J be the collection of all non-empty subsets of {1, . . . , p}. Let M = {(K, J r , J a ); K ∈ N , J r ∈ J , J a ⊂ J r }. For all (K, J r , J a ) ∈ M, consider the model

S (K,Jr,Ja) =        y ∈ R p → s θ (y); s θ (y) = Φ(y [J c a ] | 0, σ 2 I) Φ(y [Ja] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |Ja| × R |Jr| K × R +        .
Since the Lasso-MLE procedure is based on a random model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈ M (where M is a random collection of index sets selected by the Lasso) included in the whole collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M , we shall apply Theorem 6.2.1 to provide an oracle inequality for our Lasso-MLE estimator. To apply Theorem 6.2.1, we need an upper bound of the entropy number of the models S (K,Jr,Ja) . To construct brackets over S (K,Jr,Ja) , we shall assume that the parameter vectors are bounded. Thus, we shall restrict to bounded models included in S (K,Jr,Ja) :

S B (K,Jr,Ja) = s θ ∈ S (K,Jr,Ja) ; θ ∈ Π K × [-A µ , A µ ] |Ja| × [-A µ , A µ ] |Jr| K × [a σ , A σ ]
(6.7) where A µ , a σ and A σ are absolute positive constants. Theorem 6.2.2. Let M be a random subcollection of index sets (selected by the Lasso) included in the whole collection M. Consider the collection of bounded models {S B (K,Jr,Ja) } (K,Jr,Ja) M defined by (6.7) and the maximum likelihood estimators ŝ(K,Jr,Ja) = arg min

s θ ∈S B (K,Jr ,Ja) γ n (s θ ). Denote by D (K,Jr,Ja) = K(1 + |J r |) + |J a | the dimension of the model S B (K,Jr,Ja) . Define B(A µ , A σ , a σ , p) := 1 + ln A σ a σ 1 + A µ a σ + ln p.
Let τ > 0 such that s (K,Jr,Ja) ≥ e -τ s for all (K, J r , J a ) ∈ M and s (K,Jr,Ja) ∈ S B (K,Jr,Ja) such that KL(s, s (K,Jr,Ja) ) ≤ 2 inf s θ ∈S B (K,Jr ,Ja) KL(s, s θ ).

Let pen : M → R + . Suppose that there exists an absolute constant κ > 0 such that, for all

(K, J r , J a ) ∈ M, pen (K, J r , J a ) ≥ κ D (K,Jr,Ja) n B 2 (A µ , A σ , a σ , p) + ln 1 1 ∧ B 2 (A µ , A σ , a σ , p) D (K,Jr ,Ja) n +(1 ∨ τ ) ln p D (K,Jr,Ja) ∧ p . (6.8)
Then, the estimator ŝ( K, Ĵr, Ĵa) with ( K, Ĵr , Ĵa ) = arg min

(K,Jr,Ja)∈ M γ n (ŝ (K,Jr,Ja) ) + pen(K, J r , J a ) satisfies E d 2 H s, ŝ( K, Ĵr, Ĵa) ≤ C E inf (K,Jr,Ja)∈ M inf s θ ∈S B (K,Jr ,Ja)
KL(s, s θ ) + pen(K, J r , J a ) + 1 ∨ τ n (6.9)

for some absolute positive constant C.
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Let us make a few comments on this result.

Contrary to classical asymptotic criteria for which p is fixed and n tends to infinity, our result is non-asymptotic and allows to study cases for which p increases with n. Since the ratio ln(p)/n appears in the right hand-side of Inequality (6.9) through the term pen(K, J r , J a ), our result remains meaningful for a number of variables p not exceeding e n , which allows to consider many situations with p n.

Theorem 6.2.2 is to be compared with Theorem 7.3.2 presented in Maugis and Michel (2011b) where complete variable selection is considered. Both the penalty shape (6.8) and the associated oracle inequality (6.9) are similar to the penalty shape and the oracle inequality established by [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF]. This is not surprising when analyzing the proof of Theorem 6.2.2, which follows the proof of Theorem 7.3.2 of [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF], except that we take into consideration the specific form of the models S (K,Jr,Ja) that differs from the form of Maugis and Michel's models. Let us point out a major difference between Theorem 6.2.2 and Maugis and Michel's Theorem 7.3.2. Maugis and Michel's procedure consists in an exhaustive research of the best model and it is untractable as soon as the number of variables becomes too large. In practice, [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF] are limited to studying at most around ten variables unless they restrict to ordered variables. Consequently, the penalized maximum likelihood estimator satisfying their oracle inequality can not be calculated in practice. Their result has only a theoretical -yet not practical -interest. On the contrary, our Lasso-MLE procedure runs on a small random subcollection of models preselected by the Lassos and it remains feasible even for large p, possibly p n. Thus, the estimator ŝ( K, Ĵr, Ĵa) considered in Theorem 6.2.2 is calculable in practice and Theorem 6.2.2 ensures that this estimator achieves good performance compared with the oracle as long as p < e n .

As expected, the penalty shape (6.8) is proportional to the model dimension D and thus penalizes models with high complexities. It also involves two additional logarithm terms. We do not trust equally in the significance of these two terms.

On the one hand, the first logarithm term into brackets is probably not necessary to define proper penalties. Its presence is certainly only due to the lack of accuracy in the proof of the result. Specifically, in order to apply Theorem 6.2.1, the local bracketing entropy H [.] (ε, S (K,Jr,Ja) (u, ξ), d H ) has to be controlled. Yet, it is difficult to characterize the subset S (K,Jr,Ja) (u, ξ) in function of the parameters of its mixtures, so we have only studied the global entropy bracketing H [.] (ε, S (K,Jr,Ja) , d H ). This global study is sufficient since the local entropy is upper bounded by the global entropy. Yet, it is not optimal and yields extra logarithm terms.

On the other hand, the second logarithm term may actually be necessary to define proper penalties. It quantifies the complexity of the model collection by taking into account the possible large number of models with identical dimension. Its influence depends on the data dimension. The higher this dimension, the larger the number of models having the same dimension and the higher the influence of this logarithm term. For instance, in regression, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] prove that, for complete variable selection, a penalty shape proportional to the dimension selects too complex models with high probability and that a logarithm term is necessary to select smaller models. This has been practically checked in some situations. One can cite [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] for multiple change points detection in a regression framework or [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF] for histogram selection in a density estimation framework. Yet, this logarithm term becomes unnecessary if the number of models with the same dimension is small enough. For instance, for finite Gaussian mixture models in a very low-dimensional setting, Maugis and Michel (2011a) observe that a penalty proportional to the dimension -with no logarithm term -is sufficient to select models close to the oracle. Unlike Maugis and Michel (2011a), we focus on high-dimensional data and the number of models with the same dimension is expected to grow. Nonetheless, we do not perform complete variable selection. Thanks to preselection of sets of relevant and active variables by 1 -penalization, we obtain a random model collection and we can wonder how rich is this model collection. It seems difficult to answer such a question since our model collection depends on the data. We have been faced with this randomness problem to establish Theorem 6.2.2. Since our model collection is data-dependent, we know nothing about it except that it is included in the whole model collection considered for complete variable selection. Therefore, in the proof of Theorem 6.2.2, we do not take advantage of the fact that our random model collection is just a subcollection of the whole deterministic model collection considered for complete variable selection. For this reason, we obtain a penalty shape (6.8) similar to the penalty shape obtained for complete variable selection, involving a logarithm factor. Yet, our model subcollection may actually be much poorer than the whole model collection and it may contain just a few models with the same dimension, in which case the penalty shape (6.8) may be too pessimistic. If our model collection is poor enough, then a penalty proportional to the dimension might be sufficient to select models of proper dimension. In Section 6.3.3, we shall perform simulations to determine practically a suitable penalty shape. Theorem 6.2.2 provides a convenient penalty shape (6.8) to get an efficient penalized estimator, but it does not lead to an explicit model selection criterion since (6.8) depends on two unknown constants κ and τ . Besides, mixture parameters are not bounded in practice. That is why we applied the practical slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] to calibrate the penalty function in our simulations in Chapter 5.

The slope heuristics under the null model principle

Theory about model selection via penalization often fails in providing explicit penalties and thus practical model selection criteria. Last years, to fill in the gap between theory on penalization and practical applications, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] proposed an heuristics based on a mixture of theoretical and heuristic ideas to define proper penalties from the data. This heuristics is called "the slope heuristics". Two data-driven methods have been developed to use this heuristics in practice: the dimension jump method and the data-driven slope estimation method [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]. Both methods enable to calibrate penalties once a penalty shape for the ideal penalty is known up to a multiplicative factor. Most often, the penalty shape is derived from theoretical results such as Theorem 6.2.2. The advantage of the data-driven slope estimation method over the dimension jump method is that, besides calibrating the penalty, it also provides a graphical way to validate the preliminary choice of the penalty shape for the ideal penalty. Since we are not sure that the penalty shape provided by Theorem 6.2.2 is optimal (see the discussion above), we shall use the data-driven slope estimation method rather than the dimension jump method to practically determine an efficient penalty in our context.

The slope heuristics has been proved only in some restricted frameworks [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF][START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]. In particular, it has not been proved in our framework of Gaussian mixture models. Before applying the slope heuristics, we shall propose a data-driven method to decide whether the slope heuristics may be validated or not. This method is not specific to our framework and it can be applied in any framework. We encourage the user to carry out this checking when applying the slope estimation method. We call it the "null model principle".

In this section, first, we recall the slope heuristics introduced by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. Then, we introduce the null model principle to practically assess the validity of the slope heuristics in any framework, and we test it in our specific framework. Finally, we exploit the graphical advantage of the data-driven slope estimation method to check whether the penalty shape (6.8) provided by Theorem 6.2.2 is sharp.

6.3.1

The slope heuristics principle [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] Here, we summarize the main ideas leading to the data-driven penalized model selection criterion proposed by [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF].

Assume we observe some data ξ 1 , . . . , ξ n independent with common probability distribution P that depends on a unknown function s belonging to a set S. We focus on estimating s.

Suppose there exists a contrast function γ : S × R p → R such that s = arg min t∈S P γ(t). Then, each element of S can be evaluated thanks to the loss function defined for all t ∈ S by l(s, t) = P γ(t) -P γ(s) ≥ 0. Since P is unknown, one can consider the empirical contrast defined for all t ∈ S by

γ n (t) = 1 n n i=1 γ(t, ξ i ) such that P γ n (t) = P γ(t).
Let {S m } m∈M be some at most countable model collection with S m ⊂ S. For m ∈ M, consider ŝm a minimizer of the empirical contrast over the model S m : From (6.10) and (6.11), the ideal penalty is defined by pen id (m) = l(s, ŝm ) -γ n (ŝ m ) = P γ(ŝ m ) -P γ(s) -γ n (ŝ m ).

ŝm = arg min t∈Sm γ n (t).
But P γ(s) is independent of m, so another ideal penalty is simply pen id (m) = P γ(ŝ m ) -γ n (ŝ m ).

Just as the oracle m oracle , this ideal penalty is unknown since it depends on the unknown probability distribution P . Yet, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] suggest that a good approximation of this ideal penalty can be derived from the data. Their heuristics is the following.

Consider for all m ∈ M, s m = arg min t∈Sm P γ(t). (6.12) [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] carry out the following decomposition of the ideal penalty:

pen id (m) = P γ(ŝ m ) -γ n (ŝ m ) = P γ(ŝ m ) -P γ(s m ) vm + γ n (s m ) -γ n (ŝ m ) vm + P γ(s m ) -γ n (s m ) δn(m)
. (6.13)

But γ n (s m ) concentrates around its expectation P γ n (s m ) = P γ(s m ), so δ n (m) ≈ 0 and the ideal penalty is thus approximately given by pen id (m) ≈ v m + vm . At this stage, [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] introduce the main hypothesis of their heuristics, which is to assume that v m ≈ vm . The reason for this assumption is that vm is the empirical version of v m since the empirical measure n -1 n i=1 δ ξ i and the probability measure P play a similar role in the expressions of vm and v m . If one permutes these measures in the definitions of vm and v m and in the definitions of ŝm and s m , then vm and v m are permuted. This heuristics leads to pen id (m) ≈ 2v m .

(6.14)

The major point is that vm can be estimated from the data provided that the penalty is known up to a multiplicative constant: assume that there exists some unknown κ id > 0 and some known pen shape : M → R + such that pen id = κ id pen shape . (6.15)

Then, [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF] propose two ways to estimate κ id : the dimension jump method and the data-driven slope estimation method. In this thesis, we shall use the latter. The idea of the data-driven slope estimation method is the following. From the slope heuristics (6.14),

pen id (m) ≈ 2v m = 2 (γ n (s m ) -γ n (ŝ m )) = 2 [(γ n (s m ) -γ n (s)) + γ n (s) -γ n (ŝ m )] . (6.16)
The term γ n (s) does not depend on m. Moreover, for the most complex models, the approximation of the model cannot be appreciably improved, so the empirical bias term γ n (s m ) -γ n (s) stabilizes itself and the behavior of pen id becomes similar to the behavior of -2γ n (ŝ m ). So, from (6.15) and (6.16), one can expect that, for the most complex models, -γ n (ŝ m ) ≈ κ id 2 pen shape (m). (6.17)

But the goal of a penalty function is to penalize the model complexity, so pen shape (m) is assumed to increase with the complexity and thus (6.17) is expected to be checked for large enough pen shape (m).

In other words, -γ n (ŝ m ) is expected to behave linearly with respect to pen shape (m) with a slope around κ id /2 for large enough pen shape (m). Thus, if ĉ is an estimation of the slope of the linear part of pen shape (m) → -γ n (ŝ m ), one can estimate κ id by κid = 2ĉ. Then, from (6.15), one can choose as penalty pen(m) = 2 ĉ pen shape (m) and select m = arg min m∈M γ n (ŝ m ) + 2 ĉ pen shape (m) . (6.18)

The factor 2 in the penalty comes from the slope heuristics v m ≈ vm . So, if this heuristics is not valid, the penalized criterion (6.18) will not be optimal. Yet, the slope heuristics has been proved theoretically only in some restricted frameworks. Below, we propose a general data-driven method to decide whether the slope heuristics may be validated or not in any given framework. We call it the null model principle.

A method to validate the slope heuristics 6.3.2.1 The null model principle

The null model principle is just the rewriting of the slope heuristics described above under the following assumption.

Assumption A 0 : There exists a model S 0 in the model collection {S m } m∈M such that S 0 ⊂ S m for all m ∈ M.

Note that if Assumption A 0 is fulfilled, then there is only one model S 0 fulfilling A 0 . We call S 0 the null model. In the sequel, we assume that A 0 is fulfilled and we consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with density s ∈ S 0 . The major point is that, for all m ∈ M, s ∈ S 0 ⊂ S m , so s m = s where s m is defined by (6.12). This enables a simpler rewriting of the slope heuristics. Following (6.13), the ideal penalty can been decomposed as:

pen id (m) = P γ(ŝ m ) -γ n (ŝ m ) = P γ(ŝ m ) + (γ n (s) -γ n (ŝ m )) -γ n (s).
Since γ n (s) does not depend on m, another ideal penalty is simply pen id (m) = v 0 m + v0 m where v 0 m := P γ(ŝ m ) and v0 m := γ n (s) -γ n (ŝ m ). The main hypothesis of the slope heuristics is to assume that v 0 m ≈ v0 m , so that pen id (m) ≈ 2v 0 m . (6.19)

The validity of this assumption can be checked by the following data-driven method.

1. Simulation of a dataset Y = (Y 1 , . . . , Y n ) from probability distribution with density s ∈ S 0 .

Calculation of v0

m for all m ∈ M. The advantage of simulating a dataset with density s ∈ S 0 is to decompose the ideal penalty into two quantities v 0 m and v0 m that can be calculated from the data. On the contrary, the decomposition (6.13) of the ideal penalty for a non-specific target s involves two quantities v m and vm that can not be calculated from the data since they depend on s m which is unknown. Of course, the null model principle can only validate the slope heuristics for a specific target s ∈ S 0 . For datasets with density s / ∈ S 0 , the null model principle can not be applied. Nonetheless, this method provides a confidence level. On the one hand, if the slope heuristics is not validated for s ∈ S 0 , then the slope heuristics is to be ruled out. On the other hand, if the slope heuristics is validated for s ∈ S 0 , then we can expect that the slope heuristics remains valid for more general targets.

Application of the null model principle in our framework

The slope heuristics has not been proved theoretically in our framework. Thus, we can apply the null model principle to practically assess the validity of this heuristics in our framework. The null model principle relies on the existence of a null model in the model collection. Let us first determine this null model in our case. Let M (r,a) be the collection of index sets obtained at step 1 of our Lasso-MLE procedure (see Section 4.5.4). Consider the model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) with

S (K,Jr,Ja) =        y ∈ R p → s θ (y); s θ (y) = Φ(y [J c a ] | 0, σ 2 I) Φ(y [Ja] | µ, σ 2 I) K k=1 π k Φ(y [Jr] | µ k , σ 2 I); θ = (π 1 , . . . , π K , µ, µ 1 , . . . , µ K , σ) ∈ Π K × R |Ja| × R |Jr| K × R +        .
Let S 0 = {Φ(• | 0, I)} be the model containing only the p-dimensional Gaussian density with null mean and identity covariance matrix. Denote s = Φ(• | 0, I). Then, for all (K, J r , J a ) ∈ M (r,a) , s = s θ ∈ S (K,Jr,Ja) with θ defined by π 1 = 1, π k = 0 for all k ∈ {2, . . . , K}, µ = 0, µ k = 0 for all k ∈ {1, . . . , K} and σ = 1. So, S 0 ⊂ S (K,Jr,Ja) for all (K, J r , J a ) ∈ M (r,a) and S 0 is the null model.

According to Section 6.3.2.1, the data-driven method to check the validity of the slope heuristics is decomposed into four steps.

Step 1. Simulation of a dataset Y = (Y 1 , . . . , Y n ) from density s ∈ S 0 For all (K, J r , J a ) ∈ M (r,a) , consider ŝ(K,Jr,Ja) computed at step 2 of our Lasso-MLE procedure (see Section 4.5.4). Denote by D (K,Jr,Ja) the dimension of model S (K,Jr,Ja) . Let D = {D (K,Jr,Ja) ; (K, J r , J a ) ∈ M (r,a) }. For all D ∈ D, compute ŝD = arg min (K,Jr ,Ja)∈M (r,a) , D (K,Jr ,Ja) =D γ n ŝ(K,Jr,Ja) .

Step 2. Calculation of v0 D for all D ∈ D

v0 D = γ n (s) -γ n (ŝ D ) = - 1 n n i=1 ln (s(Y i )) + 1 n n i=1 ln (ŝ D (Y i )) . (6.20) Step 3. Calculation of v 0 D for all D ∈ D v 0 D = KL (s, ŝD ) = x∈R p ln s(x) ŝD (x) s(x) dx = x∈R p ln (s(x)) s(x) dx - x∈R p ln (ŝ D (x)) s(x) dx . (6.21)
These integrals can be approximated by a Monte Carlo procedure. Simulate X = (X 1 , . . . , X N ) from density s with a large size N n, in order to approximate the integrals in (6.21) by

v 0 D ≈ 1 N N i=1 ln (s(X i )) - 1 N N i=1 ln (ŝ D (X i )) .
Step 4. Plot of the graphs D ∈ D → v0 D and D ∈ D → v 0 D .

We apply these four steps in three situations: we fix the number of observations to n = 200 and we consider three different number of variables, p ∈ {30, 200, 1000}, so as to study respectively the case p n of low dimension, the intermediate case p = n and the case p n of high dimension.

For each value of p ∈ {30, 200, 1000}, we simulate 10 datasets from the p-dimensional Gaussian density s = Φ(• | 0, I) in the null model S 0 . We let vary the number of clusters in K = {1, . . . , 10} to construct our model collection. An example of the graphs obtained for one simulation with p = 1000 is given at Figure 6.1. For each (K, J r , J a ) ∈ M (r,a) , the dimension of model S (K,Jr,Ja) is

D = K(1 + |J r |) + |J a |.
The dimension of the most complex model S (10,{1,...,p},∅) is D max = 10010 n = 200, as it can be seen at Figure 6.1. In fact, for such a value of p, our model collection contains a large number of degenerate models, that is models with dimension D > n. We may have eliminated the degenerate models from our model collection since we aim at choosing a nondegenerate model. However, we focus on high-dimensional problems, so it seems to us interesting to keep all the models in our collection and to look at the behavior of the empirical contrast and the Kullback-Leibler divergence for the most complex models. From Figure 6.1, we see that v0 D ≈ v 0 D for the smallest dimensions D, in particular for all non-degenerate models with D ≤ n. But for larger D, v 0 D v0 D . For all simulations, we actually observe v0 D ≈ v 0 D for all D ≤ n. So, we can conclude that the slope heuristics is validated for s ∈ S 0 if we restrict our model collection to models with dimension D ≤ n. 

Which penalty shape?

Now that we have validated the slope heuristics, we look for a convenient penalty shape for the ideal penalty. Since we have validated the slope heuristics only for models with dimension D ≤ n and since we are interested in selecting such a model, we focus on determining a proper penalty shape defined for models with D ≤ n. In our context of finite Gaussian mixture models, we know from [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF] that a penalty proportional to the dimension pen(D) ∝ D/n is to be considered for ordered variable selection while a penalty with a logarithm term pen ln (D) ∝ (D/n)(1 + κ ln(p/D)) is to be considered for complete variable selection to take into account the richness of model collection. But we have no idea of how rich is our random model collection compared with the model collection for ordered or complete variable selection. In Theorem 6.2.2, we theoretically obtained a penalty shape similar to the penalty shape for complete variable selection, involving a logarithm term. Yet, this is due to the proof of Theorem 6.2.2 (see the discussion in Section 6.2.2). If our model collection is actually much poorer than the model collection for complete variable selection, this penalty shape may be too pessimistic and a penalty proportional to the dimension may be sufficient to select models of proper dimension. To sum up, we hesitate between two penalty shapes: pen(D) ∝ D/n and pen ln (D) ∝ (D/n)(1 + κ ln(p/D)). Here, we exploit the graphical visualization of the slope estimation method to see whether one of these two penalty shapes is more appropriate.

Given a model collection, the number of models having the same dimension is expected to increase as the number of variables p increases. Thus, the presence or the absence of a logarithm term in the penalty shape may depend on p. So, we consider datasets with n = 200 observations and we let vary p ∈ {30, 200, 1000} to study respectively the case p n of low dimension, the intermediate case p = n and the case p n of high dimension. For each value of p, we simulate 10 datasets from the p-dimensional Gaussian density s = Φ(• | 0, I) in the null model S 0 . We let vary the number of clusters in K = {K min , . . . , K max } = {1, . . . , 10} to construct our model collection.

A penalty with a logarithm term?

From Theorem 6.2.2, for D ≤ p ∧ n, a penalty (6.22) guarantees to lead to a good model selection criterion. For such a penalty shape, two unknown constants are to be determined from the data to calibrate the penalty and get a data-driven criterion. This requires to perform double regression. This process is likely to more instable than the simple regression considered for a penalty proportional to the dimension. Thus, it is desirable to look for a fixed (deterministic) value of κ 2 . If such a fixed value is determined, then only κ 1 remains to be estimated from the data. This can be done by applying the slope estimation method recalled in Section 6.3.1.

pen ln (D) = κ 1 D n 1 + κ 2 ln p D , κ 1 > 0, κ 2 > 0,
By comparing the simple penalty shape (6.22) with the more detailed penalty shape (6.8) in Theorem 6.2.2, we see that κ 1 and κ 2 in (6.22) are not expected to be absolute constants. Yet, in order to try to fix κ 2 , it is important to consider a penalty shape for which κ 2 is likely to be an absolute constant. We think that we are more likely to find a universal constant κ 2 if we replace ln(p/D) in (6.22) by the more homogeneous quantity ln(D max /D) where D max denotes the dimension of the largest model, that is D max = K max (1 + p). Thus, we rather consider the following penalty shape for D ≤ p ∧ n:

pen ln (D) = κ 1 D n 1 + κ 2 ln D max D , κ 1 > 0, κ 2 > 0.
(6.23)

For each dataset, estimations of κ 1 and κ 2 in (6.23) can not be obtained by the slope estimation method described in Section 6.3.1 because this method is valid only when the ideal penalty is known up to one multiplicative factor. Yet, this method can be easily extended to deal with the estimation of two unknown constants. Indeed, (6.23) is equivalent to

pen ln (D) = κ 1 D n + κ 2 D n ln D max D , κ 1 > 0, κ 2 > 0.
By applying the slope heuristics recalled in Section 6.3.1, we get similarly as in (6.19) We perform such a process for each of the 10 datasets for each value of p ∈ {30, 200, 1000}.

Our aim is twofold:

1. Given a dataset, check whether we can find estimations κ1 and κ2 (both depending on the dataset) such that the penalty κ1 (D/n) (1 + κ2 ln(D max /D)) defined by (6.23) leads to a good model selection criterion.

2. Try to find a deterministic value κ 2 such that, for all datasets, we can find an estimation κ1 (depending on the dataset) such that the penalty κ1 (D/n) (1 + κ 2 ln(D max /D)) defined by (6.23) leads to a good model selection criterion.

Our simulations lead to the two following conclusions:

1. The double regression fails to be computed for the 10 datasets with p = 30: we do not obtain stable estimations ĉ1 and ĉ2 defined by (6.24). This suggests that no logarithm term is actually required for such low-dimensional datasets. On the contrary, the double regression is successfully computed for the 10 datasets with p = 200 and p = 1000: we obtain stable estimations ĉ1 and ĉ2 . This suggests that a logarithm term is detected for such higher dimensional datasets.

Moreover, by applying the model selection criterion derived from (6. 

A penalty proportional to the dimension?

The double regression fails for p = 30. Moreover, even if it is successful for p = 200 and p = 1000, we can wonder whether a penalty proportional to the dimension can be sufficient to define a proper penalty shape. From (6.19), if the ideal penalty is proportional to the dimension, then we must observe a linear behavior of the plot D/n ∈ [0, 1] → v0 D . A linear behavior is actually observed for all simulations: there exists ĉ (depending on the dataset) such that v0 D ≈ ĉD/n. Nonetheless, by applying the model selection criterion derived from (6.18),

D = arg min D∈D γ n (ŝ D ) + 2 ĉ D n ,
the null model S 0 is not always selected: it is selected for p = 30 and p = 200, but for p = 1000, a non-null model is selected 4 times over the 10 simulations, which suggests that a penalty proportional to the dimension may not be enough penalizing for high-dimensional datasets. An example of a graph D/n ∈ [0, 1] → v0 D is presented at Figure 6.3.

Some combinatorial analysis

From the above study, we can conclude that a penalty proportional to the dimension is to be preferred for low-dimensional datasets such as p = 30, while an additional logarithm term seems necessary to define a proper penalty for high-dimensional datasets such as p = 1000. For intermediate situations such as p = 200, both penalties seem convenient. Thus, we can not say that a penalty is always better than another one. The ideal penalty shape seems to depend on the data dimension. We think it is dangerous (maybe impossible) to try to determine from which ratio p/n a logarithm term becomes necessary, especially when we shall deal with non-null models. It may depend on the dataset, on the number of relevant variables in the true model, on the value of the true mean coefficients...

Although the above study does not enable to decide which penalty is to be considered, it highlights an interesting point, which is precisely the change of the ideal penalty shape and the apparition of a logarithm term as p increases. We know from the theory on model selection [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF] that this logarithm term takes into account the richness of the model collection since it stands for the number of models with the same dimension in the model collection. The richer the model collection, the stronger the penalty needed to define a proper selection criterion. Thus, the change of the penalty shape is expected to be linked to the number of models generated by the Lasso. To check that this is actually the case, for each value of p ∈ {30, 200, 1000}, for each simulation, we compare the number of models generated by the Lasso with the value of the data-driven estimated slope coefficient ĉ in the penalty proportional to the dimension pen(D) = 2ĉD/n. Two interesting facts can be noted:

• The higher p, the higher the average estimated slope coefficient ĉ (Figure 6.4, at the top). D remains quite regular even for the most complex models with D n.

• The higher p, the higher the variability of the estimated slope coefficient ĉ between the different datasets with p variables (Figure 6.4, at the top). Moreover, this variability is closely related to the number of models with dimension D ≤ n generated by the Lasso (Figure 6.4, at the bottom).

We can wonder to which extend this phenomenon is linked to the richness of the model collections.

To answer this question, let us come back to theory. Theorem 6.2.2 provides a penalty shape So, # D is expected to affect the estimation ĉ of the slope coefficient. In particular:

• Since the number # D of models with the same dimension D is expected to increase as p increases, (6.27) could explain why ĉ globally increases as p increases (Figure 6.4, at the top).

• For a fixed value of p, for each simulation, our data-driven model collection changes, so the number # D≤n := D∈D,D≤n # D of models with dimension D ≤ n changes. This could explain the parallel observed between # D≤n (Figure 6.4, at the bottom) and the estimation ĉ (Figure 6.4, at the top).

Remark 15. From (6.27), we could expect that ln(# D ) ∝ D. We plotted D → ln(# D ), but no clear linear behavior was observed. Although Figure 6.4 highlights that the estimation ĉ is linked to combinatorial reasons, this global combinatorial phenomenon seems too complex to be locally analyzed. Taking into account the definitions of φ(y) and y, it leads to

ln x -1 + 1 x ≥ φ(-τ ) τ 2 (ln x) 2 .
We get (6.31) by multiplying the last inequality by x > 0.

Lemma 6.A.1. Let P and Q be two probability measures with P Q. Assume that there exists τ > 0 such that ln ( dP/dQ ∞ ) ≤ τ . Then, For the sake of simplicity, we assume that ρ = ρ = 0. For any measurable function g, denote by ν n the recentred process defined by Our purpose is now to control both ν n (g m ) and -ν n ( fm ).

ln
To bound -ν n ( fm ), we refer to the proof of Theorem 7.11 in [START_REF] Massart | Concentration inequalities and model selection[END_REF]. It is proved that there exists κ > 0 such that for all u > 0, for all m ∈ M(m), for all y > ξ m , the following inequality holds except on a set with probability less than 2e -u :

-ν n ( fm ) (6.39) Let us now focus on controlling ν n (g m ). From (6.33) and (6.34), we have

y 2 + √ s - √ ŝm 2 ≤ κ ξ m + u/n y + u ny 2 .
ν n (g m ) = n i=1 X i -E(X i ), X i := 1 2n ln s(Y i ) s m (Y i ) . (6.40)
To get an upper bound of ν n (g m ), we apply Bernstein's Inequality whose statement is recalled in Lemma 6.A.2 below and whose proof can be found in [START_REF] Massart | Concentration inequalities and model selection[END_REF] for instance. This inequality requires to control the moments of order k for all k ≥ 2 of X i defined by (6.40). Such a control is provided by Lemma 6.A.1 on condition that ln( s/s m ∞ ) ≤ τ . Assume that (6.3) is fulfilled. Then, ln( s/s m ∞ ) ≤ τ and we deduce from Lemma 6.A.1 that R p ln s(y) s m (y) 2 s(y) dy ≤ τ 2 e -τ + τ -1 KL(s, s m ).

On the one hand, τ 2 /(e -τ + τ -1) ∼ τ →∞ τ , so there exists A > 0 such that τ 2 /(e -τ + τ -1) ≤ 2τ for all τ ≥ A. On the other hand, τ → τ 2 /(e -τ + τ -1) is continuous on ]0, A] and τ 2 /(e -τ + τ -1) ∼ τ →0 2, so there exists B > 0 such that τ 2 /(e -τ + τ -1) ≤ B for all τ ∈]0, A]. Thus, for all τ > 0, τ 2 /(e -τ + τ -1) ≤ δ(1 ∨ τ ) with δ = 2 ∨ B, and and that for all integers ≥ 3, Let us gather (6.39) and (6.46). There exists κ > 0 such that, for every positive u, for all m ∈ M(m), for all z > 0 and for all y ≥ ξ m , except on a set with probability less than 3e 2 Lemma 6.A.2. [Bernstein's Inequality] Let X 1 , . . . , X n be independent real-valued random variables.

n i=1 E (X i ) k + ≤ n (2n) k
Assume that there exist some positive numbers v and c such that

n i=1 E X 2 i ≤ v
and for all integers k ≥ 3,

n i=1 E (X i ) k + ≤ k! 2 vc k-2 .
Then, for every positive u,

P n i=1 (X i -E(X i )) ≥ √ 2vu + cu ≤ e -u .
6.A.2 Sketch of the proof of Theorem 6.2.2

We consider the Gaussian mixture models S B (K,Jr,Ja) . We shall prove Theorem 6.2.2 by applying Theorem 6.2.1. To deduce Theorem 6.2.2 from Theorem 6.2.1, we follow the arguments developed by [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF]. The only difference between our proof and Maugis and Michel's proof is the structure of the models into consideration. Thus, we just give a sketch of the proof of Theorem 6.2.2 and we refer to [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF] for more details. To apply Theorem 6.2.1, the first step is to control the bracketing entropy of the Gaussian mixture families S B (K,Jr,Ja) . Note that Theorem 6.2.1 only requires to control the local bracketing entropy H [.] (ε, S B (K,Jr,Ja) (u, ξ), d H ). Nevertheless, it is difficult to characterize the subset S B (K,Jr,Ja) (u, ξ) in function of the parameters of its mixtures. Thus, we rather control the global entropy bracketing Proof. The key idea is that the control of the bracketing entropy of S B (K,Jr,Ja) can be recast into the control of the bracketing entropies of the associated mixture component density families. Specifically, from (6.7), each mean vector µ k of a p-dimensional Gaussian mixture density in S B (K,Jr,Ja) can be decomposed into a |J c a |-dimensional null mean vector, a |J a |-dimensional constant mean vector and a |J r |-dimensional free mean vector:

S B (K,Jr,Ja) =        K k=1 π k Φ • | µ k , σ 2 I ; ∀ k : µ k[J r ] ∈ [-A µ , A µ ] |Jr| , µ k[J a] = µ ∈ [-A µ , A µ ] |Ja| , µ k[J c a ] = 0, ∀ k : π k > 0, K k=1 π k = 1, σ ∈ [a σ , A σ ]       
.

(6.57) Consider the (K -1)-dimensional simplex Π K defined by Π K := (π 1 , . . . , π K ) ∈ (0, 1) K ; .

From (6.58), (1 + δ) (r-2)/4 ≤ (1 + δ) 1/4 A σ /a σ ≤ 2 1/4 A σ /a σ and r -1 ≤ 4(A σ /a σ + 1/2)/δ, so The second step is to determine a function Ψ (K,Jr,Ja) defined by Property (P). From Proposition 6.A.3, for all ξ > 0, But from (6.56) and the fact that D (K,Jr,Ja) = K(1 we get that the function Ψ (K,Jr,Ja) defined on R + by Ψ (K,Jr,Ja) (ξ) = D (K,Jr,Ja) ξ B(A µ , A σ , a σ , p) + ln 1 ξ ∧ 1 Thanks to empirical centering, the mean parameters on J c r are taken to zero, so the dimension of a model S (K,Jr) is K(1 + |J r |) ≤ n for small enough J r . No dimensional reduction step is necessary to perform parameter estimation1 on the empirically centered dataset.

B ε F (K,
+
Steps 2-4.

Steps 2, 3 and 4 of the R-EC procedure are similar to Steps 2, 3 and 4 of Maugis and Michel's procedure described in Section 4.3.1. The only difference is that the model collection {S (K,Jr) } (K,Jr)∈Mr considered for Maugis and Michel's procedure is replaced by the model collection {S (K,Jr) } (K,Jr)∈Mr defined by (A.1).

A.1.2 The A-R procedure

In our R-A procedure, we first construct a collection of sets of relevant variables, and then a collection of sets of active variables. Another approach consists in reversing the order of the two constructions. This leads to the following A-R procedure. I. Fix K ∈ K. R-A 1. 1 -penalization on the mean parameters to detect the irrelevant variables 2. 1 -penalization on the mean parameters to detect the inactive variables ⇒ data-driven collection on sets of relevant variables and active variables ⇒ collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) of models with K clusters, J r as representative set of relevant variables and J a as representative set of active irrelevant variables MLE data-driven slope and ln-slope estimators MAP A-R 1. 1 -penalization on the mean parameters to detect the inactive variables 2. 1 -penalization on the mean parameters to detect the irrelevant variables ⇒ data-driven collection of sets of active variables and relevant variables ⇒ collection {S (K,Ja,Jr) } (K,Ja,Jr)∈M (a,r) of models with K clusters, J a as representative set of active irrelevant variables and J r as representative set of relevant variables MLE data-driven slope and ln-slope estimators MAP R-EC 1 -penalization on the mean parameters to detect the irrelevant variables ⇒ data-driven collection of sets of relevant variables ⇒ ⇒ collection {S (K,Jr) } (K,Jr)∈Mr of models with K clusters and J r as re-presentative set of relevant variables MLE data-driven slope and ln-slope estimators MAP Table A.1: Comparison between the three Lasso-MLE procedures. The operations performed on the original dataset Y are in green, whereas the operations performed on the empirically centered dataset Y are in red.

Detection of the active variables

well as active irrelevant variables. So, they are interesting to compare the performance of the R-A procedure and the A-R procedure which differ in the selection order of these two kinds of variables. In the sequel, we denote by

• "TR" the true relevant variables (variables declared as relevant by the procedure and actually relevant);

• "TA" the true active irrelevant variables (variables declared as active irrelevant by the procedure and actually active irrelevant);

• "FR" the false relevant variables (variables declared as relevant by the procedure and actually irrelevant);

• "FA" the false active irrelevant variables (variables declared as active irrelevant by the procedure and actually inactive).

A.2.1 Comparison between the three procedures

First, we compare the three procedures on the simulated dataset studied in Section 5.4.1.2. For this dataset, there are 10 relevant variables, 10 active irrelevant variables and 1066 inactive variables. The results are summarized in Table A , ν 6 } a clustering with respectively K = 2, K = 3, K = 4, K = 5 and K = 6 components is selected, mean ARI and mean Kullback-Leibler divergence over the 20 simulations, except for the A-R procedure that fails 7 times and except for the slope estimator that fails 5 times for the R-A procedure.

Secondly, we compare the three procedures on the simulated dataset studied in Section 5. 

General comments

Since the R-EC procedure runs on empirically centered datasets for which the active irrelevant variables are mixed up with the inactive variables, this procedure is not adapted to detect the active irrelevant variables, hence the null values for TA and FA in Table A.2 and in Table A.3. Yet,this is not expected to alter the clustering since only the identification of the relevant variables is crucial to partition the data.

The A-R procedure is faced with numerical problems because the first Lasso algorithm runs on the non-empirically centered data. For some simulations, numerical divergence prevents from reaching models with small or moderate dimensions. These simulations are not taken into account to establish the results of Table A .2 and Table A.3. We refer to Section A.2.2 for some discussion on these numerical problems.

Theoretical performance: comparison between the oracle models

For both datasets, the best oracle model as regards variable selection, clustering and prediction is the oracle for the R-A procedure. That is why we have decided to keep this procedure.

For the R-EC procedure, the oracle achieves similar results as the oracle for the R-A procedure as regards selection of the relevant variables and clustering. Yet, the R-EC procedure is performed on the empirically centered data, so the 1086 empirical means have to be added to estimate the density of the non-empirically centered data, which results in poor prediction performance.

For the A-R procedure, the oracle model is often too complex and contains many FA variables because of the numerical problems encountered by this procedure. Thus, its clustering and prediction performances are deteriorated. This procedure is the least satisfactory. detect the relevant variables, so the number of TR variables in each model is expected to increase until 25 as the model dimension increases. For the A-R procedure, the first Lasso algorithm is expected to detect all the active variables (the relevant variables and the active irrelevant variables), so the number of TR variables in each model is expected to increase until 25 and the number of TA variables in each model is expected to increase until 25 as the model dimension increases. Yet, Figure A.2 (at the top) shows that the Lasso does not manage to catch all the 25 relevant until (too) high model dimensions. 

.

  Il rassemble les proportions π k du mélange, les vecteurs µ k des moyennes représentant le centre de chaque classe et la variance σ 2 indiquant que chaque classe a une forme sphérique identique. Supposons s estimée par s θ. Alors les observations sont classées suivant la règle suivante, appelée règle du Maximum A Posteriori (MAP). Pour tout i ∈ {1, . . . , n}, pour tout k ∈ {1, . . . , K}, notons τik = πk Φ Y i | μk , σ2 I K l=1 πl Φ (Y i | μl , σ2 I) (1.2) la probabilité conditionnelle d'appartenance de l'observation Y i à la classe k. Alors, on déclare Y i appartenir à la classe k si τik > τil pour tout l = k.

,

  modèle S m minimisant le risque E[ Xβ * -X β * . m 2 ]. Le problème est que la perte théorique Xβ * -X β * . m n'est pas accessible car elle dépend de β * qui est inconnu. On peut vouloir lui substituer une quantité calculable à partir des données, et le risque empirique Y -X β * . m 2 est le candidat naturel. Par construction des estimateurs β * . m , la fonction m → Y -X β * . m 2 est décroissante pour l'inclusion. Ainsi, minimiser le risque empirique mène à choisir le modèle le plus complexe : S m avec m = {1, . . . , p}. Or, on peut montrer (Massart, 2007) que le risque admet la décomposition biais-variance suivante : E Xβ * -X β * . m 2 = Xβ * -Xβ * . où |m| désigne le cardinal de m et représente la complexité du modèle S m . Le terme de variance augmente quand |m| augmente, alors que d'après (1.7) le terme de biais diminue quand |m| augmente. Ainsi, le minimum du risque est atteint pour un modèle de complexité intermédiaire qui équilibre terme de biais et terme de variance, et non pour le modèle de complexité maximale obtenu par minimisation du risque empirique. La pénalisation est une méthode qui consiste à modifier le risque empirique Y -X β * . m en lui ajoutant un terme complémentaire pen(m) > 0 de fac ¸on à sélectionner un modèle S m de complexité intermédaire en minimisant le risque empirique pénalisé par la pénalité pen(m) : m = arg min m∈M Y -X β * . m 2 + pen(m) .

  Soient d ∈ {1, . . . , p} et c > 0. On dit que la condition de valeur propre restreinte ("Restricted Eigenvalue") RE(d, c) est vérifiée si κ(d, c) := min J⊂{1,...,p}, |J|≤d min v∈R p \{0},v J c 1 ≤c v J 1 Xv √ n v J > 0. (1.14) Résultat Résultat 1.2.1. [Théorème 5.1 de Bickel et al. (2009)] Soient d ∈ {1, . . . , p} et δ > 0. Supposons RE(d, 3 + 4/δ) définie par (1.14) vérifiée. Alors, il existe C(δ) > 0 tel que, pour tout paramètre de régularisation λ = Aσ ln(p)/n avec A > 2 √ 2, l'estimateur Lasso β * (λ) défini par (1.11) satisfait l'inégalité oracle 0 suivante avec probabilité plus grande que 1 -p 1-A 2 /8 : Xβ * -X β * (λ) 2 ≤ (1+δ) inf β∈R p , β 0 ≤d Xβ * -Xβ 2 + C(δ) A 2 σ 2 κ 2 (d, 3 + 4/δ) ln p n β 0 . (1.15)

  centrent empiriquement Y et estiment la densité s 1 de l'échantillon empiriquement recentré Y par une densité de mélange s θ . 1 Les quantités modifiées par le recentrage empirique des données seront marquées d'une barre horizontale. C'est le cas pour l'échantillon Y , la densité s des observations et les vecteurs des moyennes µk pour chaque composante k du mélange. En revanche, les proportions π k et la variance commune σ 2 ne sont pas modifiées par le recentrage empirique. Le vecteur global des paramètres θ = (π k , µk, σ) 1≤k≤K , partiellement modifié, sera lui aussi marqué d'une barre horizontale.

  kj |. En pratique, Pan et Shen (2007) calculent cet estimateur par un algorithme EM. En faisant varier K et λ, ils obtiennent une collection d'estimateurs s θ (K,λ) plus ou moins parcimonieux. Ils retiennent l'un d'entre eux par un critère de type BIC et obtiennent une partition de Y par la règle du MAP (1.2).

  for pen(m) = λmε and ρ = λε. So, it only remains to determine a lower bound of λ such that pen(m) satisfies Condition (2.40) and to apply the conclusion of Theorem 2.A.1. Let s m ∈ S m . For all τ > 0, there exist coefficients α a,b such that s m = a,b α a,b φ a,b and a,b |α a,b | ≤ mε + τ . By linearity of W , we get that

  as soon as λ ≥ κε √ d. For such values of λ, Condition (2.40) on the penalty function is satisfied and me may apply Theorem 2.A.1 with pen(m) = λmε and ρ = λε for all m ∈ N . We end the proof similarly as the proof of Theorem 2.3.2. 2 2.C Proofs of the rates of convergence 2.C.1 Convergence rates of the selected Lasso estimator for orthonormal dictionaries 2.C.1.1 Proof of the upper bound: Proposition 2.4.1
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  There exist two functions ŝm and s m in S m such that P n (-ln ŝm ) ≤ inf sm∈Sm P n (-ln s m ) + η m , (3.21) KL n (s, s m ) ≤ inf sm∈Sm KL n (s, s m ) + δ KL . (3.22) Define M(m) = m ∈ N P n (-ln ŝm ) + pen(m ) ≤ P n (-ln ŝm ) + pen(m) + η . (3.23) Introduce the set F m = f m = -ln s m s ; s m ∈ S m (m ∈ M(m), we get from (3.23), (3.25) and (3.21) that

  .A.2.4 Proof of Theorem 3.3.1 Let λ > 0. Define m as the smallest integer such that ŝ(λ) belongs to S m, i.e. m = |ŝ(λ)| 1 . Then, by using the definition of m, Definition (3.6) of ŝ(λ) and Definition (3.9) of S m , we get

  m (Y i |x i )) + pen(m) + η, with pen(m) = λm, η = λ and ŝm defined by (3.10) with η m = 0. Thus, ŝ(λ) satisfies (3.12) and Theorem 3.3.1 follows from Theorem 3.A.1. 2 3.B Proofs of the lemmas 3.B.1 Proof of Lemma 3.A.3 Let m ∈ N . From (3.20), we have

  .47) where N (δ, F, . n ) stands for the δ-packing number of the set of functions F equipped with the metric induced by the norm . n . From (3.43), we propose to apply a conditional version of Lemma 3.B.1, Lemma 3.B.2 and Lemma 3.B.3 to

5 .

 5 Let δ > 0 and m ∈ N . On the event T , we have the following upper bound of the δ-packing number of the set of functions F m equipped with the metric induced by the norm . n :

Proof.

  Page 120. Now, by using (3.49) and by applying Lemma 3.B.1 and Lemma 3.B.2 to

  we get the last inequality by taking into account Definition (3.48) of R n . Hence Lemma 3.A.3. 2 3.B.2 Proof of Lemmas 3.B.4, 3.B.5 and 3.B.6 Proofs of both Lemma 3.B.4 and Lemma 3.B.5 require an upper bound of the uniform norm of the gradient of ln(s θ ) for s θ ∈ S. Let us thus begin by providing such an upper bound. Lemma 3.B.7. For finite mixture Gaussian regression models as described in Section 3.2.1,

  .B.2.1 Proof of Lemma 3.B.4 Let m ∈ N and f m ∈ F m . From (3.24), there exists s m ∈ S m such that f m = -ln(s m /s). For all x ∈ R p , denote by θ(x) = (π k , β T k x, σ k ) 1≤k≤K the parameters of the density s m (•|x). Recall that there exists θ * such that s = s θ * . First applying Taylor's Inequality and then Lemma 3.B.7 on the event T = {max i=1,...,n |Y i | ≤ M n }, we get for all i ∈ {1, . . . , n},

  Let m ∈ N and f m ∈ F m . From(3.24), there exists s m ∈ S m such that f m = -ln(s m /s). Introduce s m in S m and put f m = -ln(s m /s). For all x ∈ R p , denote by θ(x) = (π k , β T k x, σ k ) 1≤k≤K and θ (x) = (π k , β T k x, σ k ) 1≤k≤Kthe parameters of the densities s m (•|x) and s m (•|x) respectively. First applying Taylor's Inequality and then Lemma 3.B.7 on the event T = {max i=1,...,n |Y i | ≤ M n }, we get for all i ∈ {1, . . . , n},

2 Remark 6 .

 26 Note that S m defined by (3.14) is such that K k=1 p j=1 |β kj | ≤ m. Yet, in (3.54), we only use that max k=1,...,K p j=1 |β kj | ≤ m. To use the whole assumption K k=1 p j=1 |β kj | ≤ m, we should consider K k=1 p j=1

  goal of clustering methods is to discover structures (clusters) among individuals described by several variables. Specifically, given n observations Y = (Y 1 , . . . , Y n ) described by p variables (Y i ∈ R p ), one aims at grouping the data into a few clusters such that the observations in the same cluster are more similar to each other than those from the other clusters. Many clustering methods exist and roughly fall into two categories. The first strategy is distance-based clustering. It includes hierarchical clusterings which build trees and K-means algorithms which classify data by minimizing the within-cluster sum of squares over all possible cluster centers. The second category is modelbased clustering: each cluster is represented by a parametric distribution, the entire dataset is modeled by a mixture of these distributions, and a criterion is used to optimize the fit between the data and the model. An advantage of model-based clustering is to provide a rigorous statistical framework to assess the number of clusters and the role of each variable in the clustering process.

  solution (4.22) is difficult. 4.4.1.2 Centering of the data to compute the Lasso solution The presence of the terms µ (r+1) lj , l = k, in the updating formula of µ (r+1) kj in (4.22) comes from the penalty (4.20). So, to get an easier minimization problem than (4.22), an idea may be to eliminate the terms µ lj in the penalty (4.20) by centering the data. Let us precise this idea. Claim 4.4.1. Let Y = (Y 1 , . . . , Y n ) be a n-sample of p-dimensional random vectors whose probability distribution is K k=1 π k Φ • | µ k , σ 2 I . For all i ∈ {1, . . . , n}, consider the random vector Y i = ( Y i1 , . . . , Y ip ) defined by

K

  k=1 |μ kj | > 0 and it is all the more relevant as K k=1 |μ kj | is large. Then, a suitable penalty shape to get rid of the irrelevant variables becomes | θ| 1 := λ > 0, the corresponding estimator is the Lasso estimator defined by θ(λ) := arg min θ γ n (s θ) + λ| θ| 1 .(4.25) 

Proposition 4 . 4 . 1 .

 441 Consider a dataset Y = (Y 1 , . . . , Y n ) and the dataset Y = (Y 1 , . . . , Y n ) derived from Y by empirical centering. Let {S (K,Jr) } (K,Jr)∈Mr be a model collection for the dataset Y :

θ

  (K,Jr) = (π 1 , . . . , πK , µ 1 , . . . , µ K , σ) (4.32) by the EM algorithm described in Section 4.A.3. Denote by A this EM algorithm. Now, for the dataset Y , introduce the model

  (a) We empirically center the dataset Y = (Y 1 , . . . , Y n ) to get an empirically centered dataset Y = (Y 1 , . . . , Y n ).

  .51) Each model S (K,Jr) is the set of finite Gaussian mixture densities with K components and J r as index set representing the relevant variables. Detection of the active variables among the irrelevant variables 1. Fix J r ∈ J K . (a) We come back to the non-empirically centered dataset Y = (Y 1 , . . . , Y n ). From (4.51), the density s restricted on J c r can be estimated by a |J c r |-dimensional Gaussian density of the form s

  3.1. First, models are grouped according to their dimension D in order to obtain a model collection {S D } D∈D . The dimension of a model S (K,Jr,Ja) is the total number of free parameters estimated in the model: K -1 mixing proportions, |J a | mean parameters on J a , K|J r | mean parameters on J r and 1 variance parameter, which gives a total dimension equal to K(1+ |J r |) + |J a |.For each dimension D ∈ D, let ŝD be the estimator maximizing the likelihood among the estimators associated to a model of dimension D. There exists (K D , J r,D , J a,D ) such that ŝD = ŝ(K D ,J r,D ,J a,D ) . Denote by D max the maximal dimension in D.

  3.3.1 and the calibrated penalty function is pen ln (D) = 2 κ1 (D/n)(1 + κ2 ln(D max /D)). The minimizer D of the penalized criterion D → γ n (ŝ D ) + pen ln (D) is determined. In both cases, the model S ( K, Ĵr, Ĵa) := S (K D ,J r, D ,J a, D ) is selected.

  on the mean parameters to detect the irrelevant variables ⇒ data-driven collection of sets of relevant variables on the mean parameters to detect the irrelevant variables 2.1 -penalization on the mean parameters to detect the inactive variables ⇒ data-driven collection of sets of relevant variables and active variables 1: Comparison between Pan and Shen's Lasso procedure, Maugis and Michel's procedure and our Lasso-MLE procedure. The operations performed on the original dataset Y are in green, whereas the operations performed on the empirically centered dataset Y are in red.

  4.A.2 An EM algorithm for 1 -penalized model-based clustering (Pan and Shen, 2007) Pan and Shen (2007) introduce an EM algorithm to compute their Lasso estimator (see Section 4.3.2).

2.

  The two updatings µ (r+1) kj and σ (r+1) in (4.69) and (4.71) depend on each other. Pan and Shen (2007) update σ (r+1) with µ 0 kj (r+1) defined by (4.70) and µ (r+1) kj with σ (r+1) . In our procedure, we use Pan and Shen's EM algorithm, but we update µ (r+1) kj

  regularization parameter number of non-null variables in the model

Figure 4 . 1 :

 41 Figure 4.1: Examples of regularization paths obtained for simulations in Section 5.3.

  -hand side integral in (5.1) does not depend on D, we get that D oracle = arg min D∈D -x∈R p ln (ŝ D (x)) s(x) dx .

Figure 5 . 2 :

 52 Figure 5.2: For one simulation, p = 30, K = 4, collection of the sets of relevant variables generated by the Lassos by varying the regularization parameter λ. Remember that the relevant variables are indexed by j ∈ {1, . . . , 10} and that the smaller j ∈ {1, . . . , 10}, the higher the relevance of the variable indexed by j.

Figure

  Figure 5.3: For one simulation, comparison between the slope graphs obtained by Maugis and Michel's procedure (at the top) and by our Lasso-MLE procedure (at the bottom). On both graphs, for large dimensions, we observe a linear part whose estimated slope is specified on the graphs.

5. 3

 3 .1.2 Higher dimensional dataset: p = n and p n

Figure 5 . 4 :

 54 Figure 5.4: For 10 simulations, comparison between the value of the multiplicative factor C in the penalty pen(D) = CD/n defining the model selection criterion for BIC and the data-driven slope estimator (DDSE). For BIC, C = 0.5 ln n = 2.65 is constant. For the DDSE, C = 2ĉ is changing at each simulation according to the slope estimation ĉ.

Figure 5 .

 5 Figure 5.5 and Figure 5.6 confirm that variable selection is useful to get a better data clustering: first, introducing the relevant variables into the models improves the clustering, but then, adding the irrelevant variables deteriorates the clustering.

Figure 5 . 5 :

 55 Figure 5.5: For one simulation, p = 200, ARI values for each model in Pan and Shen's model collection. Models with D/n < 0.5 have quite a low ARI. For this simulation, BIC selects a model with D/n = 0.1 and K = 4, so its ARI is only 0.74. The Lasso oracle is achieved for a more complex model with D/n = 0.59 and K = 4, so its ARI is 0.84.

Figure 5 .

 5 Figure 5.6: For one simulation, p = 200, ARI values for each model in our model collection. For this simulation, the slope estimator and the ln-slope estimator select the oracle model with D/n = 0.14. Thus, they reach one of the highest ARI among the model collection.

Figure 5 . 7 :

 57 Figure 5.7: For one simulation, slope graphs obtained for the slope estimator (at the top) and the lnslope estimator (at the bottom). The estimations of the slope coefficients are calculated by restricting to the models with dimension D ≤ n. The associated penalties are pen(D) = 2 × 1.75D/n and pen ln (D) = 2(4.42D/n + 3.07(D/n) ln(D max /D)). The penalty pen ln is stronger and leads to a sparser model.
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 33 Some remarks on our procedure5.3.3.1 Empirical centering versus theoretical centering for the model collection construction

Figure 5 . 8 :

 58 Figure 5.8: For one simulation of the dataset studied in Section 5.3.1, p = 30, collection of the sets of relevant variables generated by the Lassos by varying the regularization parameter λ, when either preliminary theoretical centering (at the top) or empirical centering (at the bottom) of the dataset is performed.

Figure 5

 5 Figure 5.9: Different typical slope graphs for the slope estimator (on the left) and the ln-slope estimator (on the right). At the top, the ln-slope estimator is to be chosen. In the middle, the slope estimator is to be chosen. At the bottom, both estimators can be equally chosen.

Figure 5 .

 5 Figure 5.10: Scaling (father) function ϕ and wavelet (mother) function ψ for the symmlet-4 basis.

Figure 5 .

 5 Figure 5.12: Estimation of f 1 by the ln-slope estimator (at the top), the slope estimator (in the middle) and Pan and Shen's Lasso estimator (at the bottom). The true function is plotted in green while the estimations are black.

Figure 5 .

 5 Figure 5.13: Estimation of f 2 by the ln-slope estimator (at the top), the slope estimator (in the middle) and Pan and Shen's Lasso estimator (at the bottom). The true function is plotted in pink while the estimations are black. At the bottom, note that the estimated curve is below the true curve between x = 50 and x = 150. This is due to the Lasso shrinkage (seeFigure 5.14).

Figure 5 .

 5 Figure 5.14: Estimations of the mean coefficients µ kj for the 25 relevant variables by Pan and Shen's Lasso estimator and our ln-slope estimator. The true mean coefficients all equal 0 for the first cluster and 1.5 for the second cluster. The Lasso under-estimates the mean coefficients of the second cluster.

Figure 5 .

 5 Figure 5.15: Slope graphs for the slope estimator (at the top) and the ln-slope estimator (at the bottom).

Figure 5 .Figure 5 .

 55 Figure 5.16: At the top: true functions f 1 , f 2 , f 3 and f 4 corresponding to cluster 1 (green), cluster 2 (pink), cluster 3 (blue) and cluster 4 (red) respectively. Below, estimation of each function by the ln-slope estimator. The true functions are colored while the estimations are black.

Figure 5 .

 5 Figure 5.18 represents these functions. The function f 1 is the Heavisine function, which is derived from the sinusoidal function f 2 by adding two breaking points. The functions f 2 and f 3 are sinusoidal functions with different phases. The function f 4 is a piecewise linear version of the sinusoidal function f 3 . The function f 5 is quite distinguishable from the other functions; in particular, it takes only positive values. The dataset consists of n = 400 observations described by p = 2 10 = 1024 variables. Each observation y i in cluster k ∈ {1, . . . , 5} can be written

Figure 5 .Figure 5 .

 55 Figure 5.18: Plot of each function f 1 , f 2 , f 3 , f 4 and f 5 . On the right, at the bottom, comparison between the five functions.

Figure 5 .

 5 Figure 5.20: On the left, from top to bottom, plot of j ∈ {1, . . . , p} → µ kj for k = 1, . . . , 5. Only around the first 40 to 100 variables seem to be active and relevant for the clustering. On the right, same plots restricted to j ≤ 60 to make easier the comparison between the relevant part of the graphs.

Figure 5 .

 5 Figure 5.22: Plot of the functions f 1 and f 2 .

Figure 5 .

 5 Figure 5.24: Slope graph obtained for the ln-slope estimator.

  For every m ∈ M, consider Ψ m defined by (P) and ξ m such that Ψ m (ξ m ) = √ nξ 2 m .

  The model selection problem is to choose the best estimator of s among the collection {ŝ m } m∈M . Ideally, one would like to choose the so-called oracle m oracle = arg min m∈M l(s, ŝm ) (6.10) and estimate s by ŝm oracle . But m oracle is unattainable since it depends on s which is unknown. A model selection procedure is a method choosing some data-dependent m ∈ M nearly as good as the ideal unattainable choice m oracle . Then, the resulting estimator of s is ŝ m. The basic idea of model selection via penalization is to introduce a penalty function pen : M → R + and to select m as the minimizer of the penalized criterion over M, m = arg min m∈M crit(m), crit(m) = γ n (ŝ m ) + pen(m).(6.11) 

3 .

 3 Calculation of v 0 m for all m ∈ M by a Monte Carlo procedure. 4. Plot and comparison of the graphs m ∈ M → v0 m and m ∈ M → v 0 m .

D

  Figure 6.1: Check of the validity of the slope heuristics for a dataset simulated with density s ∈ S 0 , p = 1000. At the top, all models are considered. At the bottom, the graph is restricted to the models with dimension D ≤ n. For D ≤ n, v0 D ≈ v 0 D .

  c 1 = κ 1 /2 and c 2 = κ 2 /2. To estimate the coefficients c 1 and c 2 , we have implemented a slope estimation method similar to the method proposed by[START_REF] Baudry | Slope heuristics : overview and implementation[END_REF] for an ideal penalty known up to one multiplicative factor. The only difference between our method and Baudry et al.'s method is that the simple robust regression at step 2 of Baudry et al.'s procedure is replaced by a double robust regression on the triplets of points {(D/n, (D/n) ln(D max /D), v0 D )} D≤n∧p using the robustfit function available in MATLAB. If we denote by ĉ1 and ĉ2 the estimations of c 1 and c 2 obtained by performing such a double regression, then we get from (6linear behavior is expected to be observed when plotting the graph D/n ∈ [0, 1] → v0 D -ĉ2 (D/n) ln (D max /D) .

Figure 6

 6 Figure 6.2: Plot of the graph D/n ∈ [0, 1] → v0 D -ĉ2 (D/n) ln (D max /D) for a dataset simulated with density s ∈ S 0 , p = 1000. A linear behavior is observed.

Figure 6 . 3 :

 63 Figure 6.3: Plot of the graphs D/n ∈ [0, 1] → v0 D (at the top) and D/n → v0 D (at the bottom) for a dataset simulated with density s ∈ S 0 , p = 1000. We observe a linear behavior of D/n ∈ [0, 1] → v0 D . The estimated slope ĉ is computed by considering only the models with D ≤ n. Note that the behavior of v0 D remains quite regular even for the most complex models with D n.

  the proof of Theorem 6.2.2, we see that the logarithm term D ln(p/D) = ln[(p/D) D ] comes from the logarithm ln(# D ) of the number # D of models having the same dimension D in the model collection: D ln(p/D) ∝ ln(# D ). Now, assume that a penalty proportional to the dimension

Figure 6 . 4 :

 64 Figure 6.4: Comparison between the values of the estimated coefficients ĉ and the average richness of model collections per value K of number of clusters, for 10 datasets simulated from probability distribution with density s ∈ S 0 .

  Y i ) -E[g(Y i )]) .(6.33) For all m ∈ M, consider s m such that KL(s, s m ) ≤ 2 inf t∈Sm KL(s, t). Define the functionsg m = -= m ∈ M, γ n (ŝ m ) + pen m ≤ γ n (ŝ m ) + pen (m) .Let m ∈ M(m). We deduce from the definition of M(m), ŝm and (6concavity of the logarithm, we have fm ≤ ĝm . So, (6Y i ) + pen (m) -pen m .(6.37)By taking (6.33), (6.34) and (6.35) into account, this inequality implies2 KL s, s + ŝm 2 ≤ KL (s, s m ) + pen (m) -pen m + 2 ν n (g m ) -ν n fm . (6.38) 

  dy ≤ δ(1 ∨ τ ) KL(s, s m ). (6.41) From (6.40), (6.41) and the assumption ln( s/s m ∞ ) ≤ τ , we derive that

  k τ k-2 δ(1 ∨ τ ) KL(s, s m )

2 .(

 2 Putting κ(β) := (1+2(β +β 2 )), using the inequality KL(s, (s+ŝ m )/2) ≥ (2 ln 2Massart, 2007, Lemma 7.23) and choosing γ such that 2κ (2γ + γ 2 ) = 2 ln 2 -1 := α, we getα √ s -ŝm 2 ≤ κ(β) KL (s, s m ) + pen (m) -pen m + 2(β + β 2 )z 2 m,m + αy 2 m,m .From (6.50), (6.49) and (6.44), we deduce thatα √ s -ŝm 2 ≤ κ(β) KL(s, s m ) + pen(m) -pen(m ) + (β + β 2 )β -2 δ(1 ∨ τ ) 2 + τ x + x m + x m n + αγ -2 ξ 2 m + x + x m + x m n . Since τ ≤ 1 ∨ τ , if we choose β such that (β + β 2 )(δ/2 + 1) = αγ -2 , we get α √ s -ŝm 2 ≤ κ(β) KL(s, s m ) + pen(m) -pen(m ) + αγ -2 ξ 2 m + αγ -2 β -2 (1 ∨ τ ) + 1 x + x m + x m n . Put κ = αγ -2 (β -2 + 1). Then, since 1 ≤ 1 ∨ τ , α √ s -ŝm 2 ≤ κ(β) KL(s, s m ) + pen(m) -pen(m ) + αγ -2 ξ 2 m + κ (1 ∨ τ ) x + x m + x m n ≤ κ(β) KL(s, s m ) + pen(m) + κ (1 ∨ τ ) x m n + αγ -2 ξ 2 m + κ(1 ∨ τ ) x m n -pen(m ) + κ(1 ∨ τ ) x n ≤ κ(β) KL(s, s m ) + pen(m) + κ (1 ∨ τ ) x m n + κ ξ 2 m + (1 ∨ τ ) x m n -pen(m ) + κ(1 ∨ τ ) x n .Now, assume that Condition (6.4) on the penalty function is fulfilled for this value of κ. Then, for all x > 0, for every m ∈ M and m ∈ M(m), except on a set with probability less than 3e -(x+xm+x m ) , we haveα √ s -ŝm 2 ≤ κ(β) KL(s, s m ) + 2 pen(m) + κ(1 ∨ τ )to sum up the tail bounds (6.53) over all the possible values of m ∈ M and m ∈ M(m) by taking the union of the different sets of probability less than 3e -(x+xm+x m ) . For all x > 0, except on a set with probability less than3 m∈M,m ∈M(m) e -(x+xm+x m ) ≤ 3e -x (m,m )∈M×M e -(xm+x m ) = 3e -x m∈M e -xm 2 = 3Σ 2 e -x ,we have simultaneously for all m ∈ M and m ∈ M(m),α √ s -ŝm 2 ≤ κ(β) KL(s, s m ) + 2 pen(m) + κ(1 ∨ τ ) 54) is in particular satisfied for all m ∈ M and m ∈ M(m) and, since m defined by (6.5) belongs to M(m) for all m ∈ M, we deduce from (6.54) that for all x > 0, except on a set with probability less than 3Σ 2 e -x , KL(s, s m ) + 2 pen(m)} + κ(1 ∨ τ )x n≤ inf m∈ M 2κ(β) inft∈Sm KL(s, t) + 2 pen(m) + κ(1 ∨ τ ) x n . (6.55)By integrating (6.55) over x > 0, we finally get that there exists an absolute constant C > 0 such that

  6.A.2.1 Control of the global entropy bracketing H [.] (ε, S B (K,Jr,Ja) , d H )

  H[.] (ε, S B (K,Jr,Ja) , d H ), which is sufficient since the local bracketing entropy is upper bounded by the global bracketing entropy.Proposition 6.A.3. Put D (K,Jr,Ja) = K(1 + |J r |) + |J a |. For all ε ∈ ]0, 1], N [.] ε, S B (K,Jr,Ja) , d H ≤ C(A µ , A σ , a σ , K, J r , J a , p) 1 ε D (K,Jr ,Ja) with C(A µ , A σ , a σ , K, J r , J a , p) := 4 (2πe) K/2 3 K-1 A σ c = sh(1) + 49/128 and c = 5(1 -2 -1/4 )/8.Hence,H [.] ε, S B (K,Jr,Ja) , d H ≤ ln (C(A µ , A σ , a σ , K, J r , J a , p)) + D (K,Jr,Ja) ln 1 ε .

ξ 0 HH

 0 [.] (ε, S B (K,Jr,Ja) , d H ) dε≤ ξ ln (C(A µ , A σ , a σ , K, J r , J a , p)) + D (K,Jr,Ja)In order to control the last term of the right-hand side of the last inequality, we apply the following technical result taken from Maugis and Michel (2011b): Lemma 6.A.5.[START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF] For all ξ ∈ ]0, 1], [.] (ε, S B (K,Jr,Ja) , d H ) dε ≤ ξ ln (C(A µ , A σ , a σ , K, J r , J a , p)) + D (K,Jr,Ja) (ξ ∧ 1) √ π + ln 1 ξ ∧ 1 ≤ D (K,Jr,Ja) ξ √ π + ln (C(A µ ,A σ , a σ , K, J r , J a , p)) D (K,Jr,Ja)

  (a) Consider the original (non-empirically centered) dataset Y andS K = s θ = K k=1 π k Φ • | µ k , σ 2 I ; θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , σ) ∈ Θ K with Θ K = Π K ×(R p ) K × R + .The inactive variables are expected to be detected by penalizing the empirical contrast γ n (s θ ) = -Introduce G K a grid of regularization parameters. (b) Fix λ ∈ G K . Consider the Lasso estimator defined by θ(K,λ) = arg min θ∈Θ K {γ n (s θ ) + λ|θ| 1 } .

  Figure A.1 (at the top) shows that this is actually what happens.

Figure A. 1 :

 1 Figure A.1: For one simulation of the second dataset in Section A.2.1, model collection obtained for the R-A procedure. At the top: number of TR and TA variables in the model collection generated by the first Lasso algorithm (this algorithm is expected to detect only the 25 relevant variables). At the bottom: number of TR, TA, FR and FA variables in the final model collection obtained after the two successive Lasso algorithms. Only models with dimension between 40 and 140 are shown. The dotted lines indicate the model selected by the ln-slope estimator (on the left) and by the slope estimator (on the right) as well as the oracle model (in the middle). The true model dimension is 77.

Figure A. 2 :

 2 Figure A.2: For one simulation of the second dataset in Section A.2.1, model collection obtained by the A-R procedure. At the top: number of TR and TA variables in the model collection generated by the first Lasso algorithm (this algorithm is expected to detect both the 25 relevant and the 25 active irrelevant variables). At the bottom: number of TR, TA, FR and FA variables in the final model collection obtained after the two successive Lasso algorithms. Only models with dimension between 40 and 140 are shown. The dotted lines indicate the model selected by the ln-slope estimator (on the left) and by the slope estimator (in the middle) as well as the oracle model (on the right). The true model dimension is 77.

  

  

  β * (λ) 1 , si bien qu'une petite valeur de β * -β * (λ) 1 implique une bonne estimation in-

	Interprétation et discussion L'inégalité (1.18) est à voir comme un résultat d'estimation au sens où max 1≤j≤p |β * j -β * j (λ)| ≤ β Présentation générale des résultats 1.2.5.2 Résultats de sélection de variables

*

dividuelle des coefficients β * j par β * j (λ). D'après (1.18), cette estimation sera d'autant meilleure que β * 0 est petit, c'est-à-dire que le vrai modèle est parcimonieux, et que κ( β * 0 , 3) n'est pas trop petit, c'est-à-dire que les variables ne sont pas trop corrélées.

•

  Le Chapitre 3 est publié : C. Meynet (2012), An 1 -oracle inequality for the Lasso in finite mixture gaussian regression models. ESAIM Probability and Statistics, Cambridge University Press, http ://dx.doi.org/10.1051/ps/2012016.

• Les travaux de la partie II sont en cours de soumission : C. Meynet et C.

Maugis-Rabusseau (2012)

, A sparse variable selection procedure in model-based clustering, soumis à Journal of the American Statistical Association.

  où nos modèles sont des boules 1 .Nous considérons d'abord le cas de dictionnaires finis D p = {φ 1 , . . . , φ p }. Nous démontrons le résultat suivant.

	Théorème 2.3.2 Pour tout paramètre de régularisation		
	λ ≥ 4σ	1 + ln p n	,	(1.19)

  englobe les proportions, les vecteurs des moyennes et les variances des K composantes du mélange. Pour K = 1, on retrouve le cadre de la régression linéaire gaussienne homogène.Afin d'éviter le risque de surajustement, surtout en grande dimension, on peut considérer une régularisation 1 de la log-vraisemblance. Les paramètres de proportions et de variances sont chacun au nombre de K

n et n'ont pas besoin d'être régularisés. Au contraire, les coefficients de régression β * kj sont au nombre de Kp n pour p n et c'est sur ces coefficients que va porter la pénalité 1 . L'estimateur Lasso de la densité s associé à cette régularisation 1 est défini par

:

  (a) Nous faisons la remarque essentielle suivante. La notion de variable pertinente pour la classification n'est pas une notion induisant de la parcimonie. En effet, pour chaque variable non pertinente, un coefficient de moyenne est à estimer (le coefficient commun à toutes les classes). Même dans le cas extrême où les p variables seraient non pertinentes, cela laisse p n coefficients de moyenne à estimer. Pour résoudre ce problème de dégénérescence, nous introduisons une hypothèse de parcimonie. Nous supposons que parmi les variables non pertinentes, il existe un très grand nombre de variables -que nous appelons variables inactives -pour lesquelles la valeur commune de la moyenne à travers les classes est nulle 2 . Par exemple, dans le cas de la décomposition de signaux, cette hypothèse revient à supposer l'existence d'une décomposition parcimonieuse dans un dictionnaire donné (par exemple d'ondelettes) pour chaque type de si-

gnal. Pour détecter les variables inactives parmi les variables non pertinentes, nous effectuons une seconde pénalisation 1 , mais cette fois-ci sur l'échantillon réduit aux variables non pertinentes et sans recentrage empirique préalable. A l'issue de cette seconde pénalisation 1 , nous obtenons des paquets de variables potentiellement inactives parmi chaque paquet de variables potentiellement non pertinentes. Cela nous fournit une collection globale de modèles.

  . . , y n ) de courbes bruitées réparties en K classes. Nous n'exécutons pas notre procédure directement sur y. Au préalable, nous décomposons les courbes bruitées y i dans une base d'ondelettes B = {φ 1 , . . . , φ p }, ce qui fournit un nouveau jeu de données Y = (Y 1 , . . . , Y n ) où chaque donnée Y i est la décomposition en coefficients dans la base B de y i . Si la courbe y i est obtenue par bruitage de la fonction f k , alors sa décomposition en coefficients dans la base B s'écrit Y i = µ k + ε i où µ k est la décomposition en coefficients dans la base B de la fonction discrétisée f k et où ε i est de loi N (0, σ 2 I). Les variables sont les fonctions φ j de la base B. Une variable φ j est non pertinente pour la classification si µ kj = µ k j pour tout (k, k ) ∈ {1, . . . , K} 2 . Notre procédure est particulièrement adaptée pour traiter ce problème :

  κ 1 et κ 2 sont des constantes à calibrer. Pour notre procédure, les collections de modèles sont

	construites à partir des données et sont donc aléatoires. Il est alors difficile de déterminer théoriquement
	le nombre de modèles de même dimension dans nos collections, et donc de trancher sur la présence
	d'un terme logarithmique dans la pénalité. Ainsi, lors de nos simulations, les deux pénalités ci-dessus
	sont systématiquement testées. Nous constatons que la forme de la pénalité évolue en fonction du
	nombre p de variables du jeu de données : pour p	n, une pénalité proportionnelle à la dimension
	permet la sélection d'un modèle proche de l'oracle, tandis qu'un terme logarithmique est à ajouter
	pour ne pas sous-pénaliser lorque p	n. Une étude théorique et pratique de la forme de la pénalité
	est conduite au Chapitre 6.	

  , le terme ln(p/D m ) présent dans la pénalité (1.26) est nécessaire pour compenser la grande richesse de la collection de modèles complète. Mais ce terme n'est plus nécessaire pour définir une pénalité optimale sur une collection de modèles moins riche, par exemple pour le cas de la sélection de variables ordonnée. Dans notre cas, les collections de modèles aléatoires générées par le Lasso s'avèrent en pratique bien moins riches que la collection de modèles complète, mais plus riche que la collection de modèles ordonnée. Nous pouvons donc nous interroger sur la nécessité d'un terme en ln(p/D m ) pour définir une pénalité optimale sur la collection de modèles générée par le Lasso. Autrement dit, nous pouvons hésiter entre deux formes de pénalité, avec ou sans terme en ln(p/D m ) :

  Typically, s is a signal and dζ(x) represents the noisy signal received at time x. This framework easily extends to a d-dimensional setting if one considers some multivariate Brownian sheet B on [0, 1] d and takes H = L 2 ([0, 1] d ).

	Example 2.2.2. [The white noise framework] For x ∈ [0, 1], one observes ζ(x) given by the stochas-
	tic differential equation				
	dζ(x) = s(x) dx + ε dB(x) with ζ(0) = 0,	
	where B is a standard Brownian motion, s is a square-integrable function and ε > 0. Define
	W (t) = and Y (t) = 1 0 t(x) dB(x) for every t ∈ L 2 ([0, 1]). Then, W is an isonormal process on H = L 2 ([0, 1]), 1 0 t(x) dζ(x) obeys to (2.4) if H is equipped with its usual scalar product s, t = 1 0 s(x)t(x) dx.
					If one considers H = R n
	equipped with the scalar product u, v = n i=1 u i v i /n, defines y = (Y 1 , . . . , Y n ), ξ = (ξ 1 , . . . , ξ n ) and denotes t = (t(x 1 ), . . . , t(x n )) for every t : X → R, then W (t) := √ n ξ, t defines an isonormal Gaussian process on H and Y (t) := y, t satisfies (2.4) with ε = σ/ √ n. In this case,
	t =	1 n	n i=1	t 2 (x i ) .	(2.6)

  .80) and (2.81) that s p,λp -s p ,λ p ≤ s p,λp -s + s -s p ,λ p ≤ 2 C r R p -r + p -r ≤ C p p -r , and we haves p ,λ p L 1 (D p ) ≤ C p by definition of C p . If p > p, then L 1 (D p ) ⊂ L 1 (D p ) and s p,λp ∈ L 1 (D p ) with s p,λp L 1 (D p ) ≤ s p,λp L 1 (Dp) ≤ C p and s p,λp -s p,λp = 0 ≤ C p p -r . So, s p,λp ∈ L 1,r .Now, it only remains to choose a convenient p ∈ N to prove that s ∈ B q,r (C q,r R) for some C q,r . Let us first give an upper bound of s p,λp L 1,r for all p ∈ N . By definition of s p,λp L 1,r and the above upper bounds, we have s p,λp L 1,r ≤ C p . So, we just have to bound C p . Let p ∈ N , p ≤ p.

		.79)
	Then, we have	
	s -s p,λp ≤ 2 C r Rp -r .	(2.80)
	Let us now check that s p,λp ∈ L 1,r . Define	
	C	

p := max 4 C r R, max p ∈N , p ≤p s p ,λ p L 1 (D p ) .

(2.81)

Let p ∈ N . By definition of s p ,λ p , we have s p ,λ p ∈ L 1 (D p ). If p ≤ p, then we deduce from

(2

  .53) Since s m ∈ S m defined by (3.14), we have

	p j=1	β kj m	≤ 1.	(3.54)

Thus, by applying Lemma 3.B.8 stated below to β k /m = (β kj /m) 1≤j≤p for all k ∈ {1, . . . , K}, we deduce that there exists a family B of

  p} for all l ∈ {1, . . . , d}, j l = j l }.

	(4.10)
	This corresponds to complete variable selection and this results in a model collection of size 2 p ×
	card(K). Calculating an estimator in each model is feasible only when p is sufficiently small, in
	practice p ≤ 10. When p ≥ 10, Maugis and Michel (2011a) must restrict to ordered variable selection
	and rather consider the collection of all nested subsets of {1, . . . , p} in order to get a practicable
	method. In this case,

J = {{1, . . . , d}; 1 ≤ d ≤ p} .

(4.11) 

  K} and for all j ∈ {1, . . . , p}.In particular, µ kj = K l=1 π l µ lj if and only if μkj = 0.

	From (4.19) and Claim 4.4.1, we see that performing the theoretical centering (4.23) of the dataset
	Y

  if sdy is absolutely continuous with respect to tdy and +∞ otherwise. It is easy to show that KL(s, t) > 0 for all t = s and KL(s, s) = 0. In particular, the density s is the unique minimizer of the Kullback-Leibler information on S: must lead to a sensible estimator of s in S m . Thus, for all m ∈ M, one can consider the maximum likelihood estimator over the model S m , } m∈M is unfeasible. In this case, an idea is to consider a subset M ⊂ M so that performing best subset selection over {ŝ m } m∈M becomes practicable. Then, one aims at the ideal choice

	m oracle (M ) = arg min	KL(s, ŝm ).	(4.42)
			t(y) y) m∈M	s(y) dy
	s = arg min	KL(s, t).	(4.38)
			t∈S			
	Moreover, by writing that					
	KL(s, t) =					
	t∈S	E -	1 n	n i=1	ln (t(Y i )) .	(4.39)
	ŝm = arg min t∈Sm	-	1 n	n i=1	ln (t(Y i )) ,	(4.40)
	and aim at choosing the best estimator of s among the collection {ŝ m } m∈M . From (4.38), the ideal
	choice is the oracle ŝm oracle defined by					
	m oracle = arg min	KL(s, ŝm ).	(4.41)
			m∈M		

R p ln (s(y)) s(y) dy -R p ln (t(y)) s(y) dy, we see that s is a minimizer over S of the risk: s = arg min Now, let K = {K min , . . . , K max } be a collection of numbers of clusters and let J be the collection of all non-empty subsets of {1, . . . , p}. Put M = K × J . Introduce a model collection {S m } m∈M with S m ⊂ S for all m ∈ M. An idea is that replacing the risk E[-n i=1 ln(t(Y i ))/n] by the empirical contrast -n i=1 ln (t(Y i )) /n in (4.39) and minimizing on S m rather than on S

In practice, ŝm oracle is unattainable because it depends on the unknown density s. Yet, it is a benchmark to evaluate the quality of one's estimator of s. For high-dimensional data, the number p of variables can be very large and the collection M is so rich that performing exhaustive best subset selection over {ŝ m

  Let us point out that the two families {ŝ m } m∈M Lasso and ŝL

	Indeed, for all m ∈ M Lasso , we get from (4.40) that
		ŝm = arg min s θ ∈Sm	-	1 n	n i=1	ln (s θ (Y i ))	(4.45)
	whereas	ŝL m = arg min s θ ∈Sm	-	1 n	n i=1	ln (s θ (Y i )) + λ |s θ | 1 .	(4.46)
	The minimization problems (4.45) and (4.46) being different, their solutions are different.
	Now, comparing (4.41) with (4.43) and (			
					m∈M Lasso	KL s, ŝL m .	(4.44)
	Remark 9. m m∈M Lasso	are different.

  Consider K functions f 1 , . . . , f K ∈ L 2 ([0, 1]). Let {t 1 , . . . , t p } be a fine time grid with t j ∈ [0, 1]. For all k ∈ {1, . . . , K}, denote by f k = (f k (t 1 ), . . . , f k (t p )) the discretization of the function f k on the grid {t 1 , . . . , t p }. Consider n data y 1 , . . . , y n such that each y i is a white-noised observation of some f k , k ∈ {1, . . . , K}. For all i ∈ {1, . . . , n} and for all k ∈ {1, . . . , K}, if y i belongs to cluster k, then y

	4.6.1 Variable selection for functional data clustering
	4.6.1.1 Functional data clustering

Table 5 .

 5 1: Mean number {TR,FR,FA} of true relevant, false relevant and false active variables, number of times {ν 2 , ν 3 , ν 4 , ν 5 , ν 6 } a clustering with respectively K = 2, K = 3, K = 4, K = 5 and K = 6 components is selected, mean ARI and mean Kullback-Leibler divergence over the 20 simulations (except for the slope estimator, p = 1000 who fails 4 times). The standard deviations are put into brackets.

  only consider ordered variable selection, so selecting a model with a false relevant variable indexed by j 11 means that this model is preferred to all the models included in this model, whereas they are all closer to Maugis and Michel's oracle model which contains only the first six variables. Let us stress that the dataset is favorable to Maugis and Michel's procedure since the variables are ordered by decreasing relevance importance, which is crucial for Maugis and Michel's ordered variable selection procedure to work. On the contrary, our procedure remains efficient whatever the order of the variables 2 .

Table 5 .

 5 .2. An example of a slope graph for the Lasso-MLE procedure is provided at Figure5.7. 2: Mean number {TR,FR,FA} of true relevant, false relevant and false active variables, number of times {ν 1 , ν 2 , ν 3 } a clustering with respectively K = 1, K = 2 and K = 3 components is selected, mean ARI and mean Kullback-Leibler divergence over the 20 simulations. The standard deviations are put into brackets.

	procedure	estimator	{TR,FR,FA}	K	ARI	KL(s, ŝ)
	Lasso	oracle BIC	{50, 215, 0} ({0, 79, 0}) {0, 16, 4} 0.90 (0.03) 2.53 (0.30) {49, 14, 0} ({1, 3, 0}) {0, 18, 2} 0.86 (0.02) 3.59 (0.21)
		oracle	{50, 0, 1}	({0, 0, 0})	{0, 20, 0} 0.95 (0.02) 0.31 (0.05)
		AIC	{50, 15, 68} ({0, 4, 7})	{0, 14, 6} 0.90 (0.04) 1.44 (0.03)
	Lasso-MLE	BIC	{50, 4, 22}	({0, 2, 2})	{0, 20, 0} 0.92 (0.02) 0.74 (0.03)
		slope	{50, 1, 4}	({0, 1, 2})	{0, 20, 0} 0.94 (0.02) 0.38 (0.06)
		ln-slope	{49, 0, 1}	({1, 0, 1})	{0, 20, 0} 0.95 (0.02) 0.35 (0.12)

  .23.Figure 5.23: Curve estimation of f 1 and f 2 by the ln-slope estimator. The true functions are colored while the estimations are black.
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  Lasso-MLE estimator 6.2.1 A model selection theorem for MLEs in random models Before stating our general MLE model selection theorem, let us recall the definition of the Hellinger distance and specify some notations. The norm √ t -√ u between two non-negative integrable functions t and u is denoted d H (t, u). If t and u are two densities with respect to Lebesgue measure on R p , d H (t, u) is the Hellinger distance between t and u. Consider S the set of all densities on R p . An ε-bracketing for a subset S of S with respect to d H is a set of integrable function pairs (l 1 , u 1 ), . . . , (l N , u N ) such that for each t ∈ S, there exists j ∈ {1, . . . , N } such that l j ≤ t ≤ u j and d H (l j , u j ) ≤ ε. The bracketing number N [.] (ε, S, d H ) is the smallest number of ε-brackets necessary to cover S and the bracketing entropy is defined by H [.] (ε, S, d H ) = ln(N [.] (ε, S, d H )). Let {S m } m∈M be some at most countable model collection such that S m ⊂ S for all m ∈ M. We shall say that {S m } m∈M fulfills Property (P) if, for all m ∈ M, H [.] (ε, S m , d H ) is integrable at 0 and if there exists a function Ψ m

  Proof. Since ln (dP/dQ) ≤ τ , we have dP/dQ ≤ e τ and we can apply Claim 6.A.1 to x = dP/dQ:Integrating with respect to Q and taking into account (6.28), (6.29) and (6.30), we get

				dP dQ	2	dP ≤	τ 2 e -τ + τ -1	KL(P, Q).	(6.32)
				f		dP dQ	≤	τ 2 φ(-τ )	h	dP dQ	.
	ln	dP dQ	2	dP ≤	τ 2 e -τ + τ -1		dP dQ	ln	dP dQ	-	dP dQ	+ 1 dQ
				≤	τ 2 e -τ + τ -1		ln	dP dQ	dP -1 + 1
				≤	τ 2 e -τ + τ -1	KL(P, Q).
	6.A.1.2 Proof of Theorem 6.2.1							

  It gives that, for every positive u, except on a set with probability less than e -u , Let z > 0 to be chosen later. Using that z 2 + KL(s, s m ) ≥ 2z KL(s, s m ) and z 2 + KL(s, s m ) ≥ z 2 , we get from (6.45) that except on a set with probability less than e -u , ν n (g m ) z 2 + KL(s, s m ) ≤

	k-2 δ(1 ∨ τ ) KL(s, s m ) 2n	.	(6.43)
	From (6.42) and (6.43), we can apply Bernstein's Inequality with
	v :=	δ(1 ∨ τ ) KL(s, s m ) 2n	, c :=	τ 2n	.	(6.44)
		ν n (g m ) ≤	√	2vu + cu.	(6.45)
		√ z 2 + KL(s, s m ) 2vu + cu	≤	√	√ 2z KL(s, s m ) vu	+	cu z 2 .	(6.46)

  -u , Now, let x > 0. Let x m and x m be defined by (6.2). We apply (6.47) and (6.48) to u = x + x m + x m and we choose adequately y and z by defining for some constants γ and β to be specified later,y m,m := γ -1 ξ 2 m + x + x m + x m n , (6.49) z m,m := β -1 v 2 KL(s, s m ) + c (x + x m + x m ). (6.50)Using that a 2 + b 2 ≥ a 2 , we get that except on a set with probability less than 3e -(x+xm+x m ) ,

			-ν n fm y 2 + √ s -√	ŝm 2 ≤ κ	ξ m y	+	u/n y	+	u ny 2 ,	(6.47)
			ν n (g m ) z 2 + KL(s, s m )	≤	√	√ 2z KL(s, s m ) vu	+	cu z 2 .	(6.48)
			-ν n fm m,m + y 2 √ s -	√	ŝm 2 ≤ κ (2γ + γ 2 ),
			ν n (g m ) m,m + KL(s, s m ) z 2	≤ β + β 2 ,
	that is to say						
			-ν n ( fm ) ≤ κ (2γ + γ 2 ) y 2 m,m +	√	s -ŝm	2	,	(6.51)
			ν (6.52)
	We can now come back to Inequality (6.38). Injecting (6.51) and (6.52) into (6.38) yields
	2 KL s,	s + ŝm 2	≤ KL (s, s m ) + pen (m) -pen m
			+ 2(β + β 2 )(z 2 m,m + KL(s, s m )) + 2κ (2γ + γ 2 ) y 2 m,m +	√ s -ŝm

n (g m ) ≤ (β + β 2 )(z 2 m,m + KL(s, s m )).

  Finally, Proposition 6.A.3 is derived from Lemma 6.A.4 and (6.61). 6.A.2.2 Determination of a function Ψ (K,Jr,Ja)

	Jr,Ja) ≤ 4	2 5/4 A µ √ c a σ	K|Jr|+|Ja|	A σ a σ	+	1 2	δ -(1+K|Jr|+|Ja|)		
	≤ 4	2 5/4 A µ √ c a σ	K|Jr|+|Ja|	A σ a σ	+	1 2	√ ε cp	1+K|Jr|+|Ja|	.	(6.61)

  |J r |) + |J a |, we have ln (C(A µ , A σ , a σ , K, J r , J a , p))

	≤ ln 4 +	K 2	ln(2πe) + (K -1) ln 3 + ln	A σ a σ	+	1 2	+ (K|J r | + |J a |) ln	2 5/4 A µ √ c a σ	+ ln K
	+ D (K,Jr,Ja) ln(3 √	cp)				
	≤ ln 4 +	ln(2πe) 2	+ ln 3 + ln	A σ a σ	+	1 2	+ ln	2 5/4 A µ √ c a σ	+ 1 + ln(3 √	cp) D (K,Jr,Ja)
	≤ ln	72 √	2πe 2 5/4 e √ √ c	c	+ ln		A σ a σ	1 +	A µ a σ	+ ln p D (K,Jr,Ja) .
	Thus,												
						  √	π + ln	72 √	2πe 2 5/4 e √ c	√	c	+ ln	A σ a σ	1 +	A µ a σ	+ ln p + ln	1 ξ ∧ 1	 
	≤ D (K,Jr,Ja) ξ 6 + ln	A σ a σ		1 +	A µ a σ	+ ln p + ln	1 ξ ∧ 1	.
	Consequently, by putting						
						B(A µ , A σ , a σ , p) := 6 + ln	A σ a σ	1 +	A µ a σ	+ ln p,

ξ 0 H [.] (ε, S B (K,Jr,Ja) , d H ) dε ≤ D (K,Jr,Ja) ξ

  .2. Table A.2: Mean number {TR,TA;FR,FA}, number of times {ν 2 , ν 3 , ν 4 , ν 5

	procedure estimator	{TR,TA;FR,FA}	K	ARI KL(s, ŝ)
		oracle	{5.4, 5.0; 1.3, 0.2} {0, 0, 19, 1, 0} 0.87	0.27
	R-A	slope	{5.4, 5.4; 1.3, 9.1} {0, 0, 13, 2, 0} 0.87	0.44
		ln-slope	{4.9, 5.0; 0.7, 0.2} {0, 0, 19, 1, 0} 0.86	0.31
		oracle	{5.1, 5.1; 1.0, 9.8} {0, 1, 10, 2, 0} 0.85	0.34
	A-R	slope	{5.1, 5.1; 0.9, 21.8} {0, 1, 10, 2, 0} 0.85	0.50
		ln-slope	{4.6, 4.2; 0.0, 1.6} {0, 1, 10, 2, 0} 0.84	0.48
	R-EC	oracle slope	{5.4, 0.0; 1.7, 0.0} {0, 0, 19, 1, 0} 0.87 {5.4, 0.0; 1.5, 0.0} {0, 0, 19, 1, 0} 0.87	2.71 2.73

  4.1.1. For this dataset, there are 25 relevant variables, 25 active irrelevant variables and 1036 inactive variables. The results are summarized in Table A.3. Table A.3: Mean number {TR,TA;FR,FA}, number of times {ν 1 , ν 2 , ν 3 } a clustering with respectively K = 1, K = 2 and K = 3 components is selected, mean ARI and mean Kullback-Leibler divergence over the 20 simulations, except for the A-R procedure that fails 8 times.

	procedure estimator	{TR,TA;FR,FA}	K	ARI KL(s, ŝ)
		oracle	{25.0, 25.0; 0.2, 0.1} {0, 18, 2} 0.95	0.25
	R-A	slope	{25.0, 25.0; 0.7, 5.5} {0, 20, 0} 0.96	0.37
		ln-slope	{24.6, 25.0; 0.2, 0.8} {0, 20, 0} 0.96	0.31
		oracle	{24.7, 25.0; 2.2, 36.2} {0, 9, 3} 0.88	0.70
	A-R	slope	{22.1, 25.0; 1.0, 31.0} {0, 9, 3} 0.87	0.78
		ln-slope	{22.0, 25.0; 0.0, 16.7} {0, 10, 2} 0.82	1.16
	R-EC	oracle slope	{25.0, 0.0; 0.2, 0.0} {25.0, 0.0; 1.0, 0.0}	{0, 18, 2} 0.94 {0, 19, 1} 0.95	2.68 2.77

• du Résultat 1.2.3 Le Résultat 1.2.3 suggère que le Lasso doit être utilisé avec précaution comme procédure de sélection de variables car sa consistance n'est valable que sous certaines hypothèses portant sur la matrice de Gram. Les résultats asymptotiques prouvent que si CI n'est pas vérifiée, alors quelque soit le paramètre de régularisation λ, β * (λ) ne sélectionnera pas les bonnes variables. D'ailleurs,[START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF] et[START_REF] Zhao | On model selection consistency of Lasso[END_REF] ont fourni des exemples où CI n'est pas satisfaite et où le Lasso ne sélectionne pas les bonnes variables.On peut se demander pourquoi le Lasso devient inconsistant en sélection quand CI n'est plus vérifiée. En fait, ce problème de sélection de variables est étroitement lié à un problème d'estimation. Pour

Si l'on centre empiriquement les données comme[START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], variables non pertinentes et inactives se confondent car, une fois les données recentrées, la moyenne commune des variables non pertinentes est estimée à zéro. Le centrage empirique induit de la parcimonie, mais elle est artificielle car on la perd en revenant à l'estimation des données de départ. Au contraire, notre hypothèse introduit une réelle parcimonie

Maximum Likelihood Estimator (MLE) en anglais, d'où le nom donnée à notre procédure Lasso-MLE : "Lasso" pour indiquer que nous construisons une collection de modèles grâce à la pénalisation 1, et "MLE" pour indiquer que l'estimation et le critère de sélection de modèle sont envisagés d'un point de vue 0.

A noter cependant que l'estimation des paramètres est réalisée sur le jeu de données brut pour notre procédure, alors qu'elle est effectuée sur le jeu de données empiriquement recentré pour la procédurede Maugis et Michel (2011a).

-oracle inequality satisfied by this estimator (see Theorem

2.3.2). For the fixed design Gaussian

-oracle inequalities so as to study its performance as a variable selection procedure (see recall in Section

1.2.4). In contrast, Theorem 2.3.2 does not take into account sparsity and rather provides

Note that we are turning a problem with a possible infinite set Sm into a problem with a finite set {φ1, . . . , φp}. This crucial point will enable us to apply a maximal inequality for a finite family of Gaussian random variables. This is why the non-localized Theorem

2.A.1 is sufficient for our framework. If we work directly with the infinite sets Sm and use metric entropy arguments to find a function upper bounding the expectation of the supremum of the empirical process (2.39), then we find an extra-ln(n) factor in the minimal penalty function allowing the 1-oracle inequality. This is the problem encountered by[START_REF] Bartlett | 1 -regularized linear regression : persistence and oracle inequalities[END_REF].

While finishing to write this thesis, we have learnt about a very new result found by van de Geer (2012) that enables to free from this extra-(ln n)

factor, by developing chaining arguments based on Talagrand's approach[START_REF] Talagrand | Majorizing measures : the generic chaining[END_REF][START_REF] Talagrand | The generic chaining : upper and lower bounds of stochastic processes[END_REF] and specialized to the geometry of 1 balls. van de Geer's result relies on a multivariate version of the contraction theorem provided that some componentwise Lipschitz condition is satisfied, which is the case for the finite mixture Gaussian regression setting we consider here.

We shall add an horizontal line to quantities modified by empirical centering, that is to say the dataset Y , the density s, the mean vectors µk, the global parameter vector θ, the model collection as well as the estimations ŝ, μk , θ. The proportions π k and the variance

σ 2 are not modified by empirical centering (see proposition 4.4.1). 2 In Section 4.4.1, we justify this modeling.

In Section

4.4.1, we explain why this process is expected to select the relevant variables for the clustering.

In Section 4.4.1, we justify this modeling.

We have tried to prove that the density of Y i indeed remains a finite Gaussian mixture density, but we have not managed to conclude this is true.

See Section 4.B.1 for the explanation of the construction of such a grid.

In the literature, the oracle model is rather defined as the model SD * minimizing the expected risk:D * = arg min D∈D E Y [KL (s, ŝD)] where E Y is the expectation taken with respect to the sample Y . Nonetheless, in our Lasso-MLE procedure, the collection D depends on the sample Y , so D * is not defined, and we define an oracle Doracle for each dataset.

We performed one simulation to check that the order of the variables has no influence on the results for our procedure,

Let us stress that we do not estimate the parameters by the Lasso estimators in each model S (K,Jr ) as it is done at Step 1 of Pan and Shen's procedure. We shall perform estimation at Step

by the MLE in each model S (K,Jr ) .

Remerciements

Part II

Variable selection for clustering based on Gaussian mixture models for high-dimensional data

Step 0. Empirical centering [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] center the dataset Y = (Y 1 , . . . , Y n ) by subtracting n l=1 Y lj /n to Y ij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This leads to a new dataset Y = (Y 1 , . . . , Y n ). The density s of Y i is to be estimated to get a clustering of the dataset Y .

Steps 1 and 2. Construction of a model collection and calculation of an estimator of s in each model

• Fix K ∈ K and consider

Since the dataset Y is centered, irrelevant variables are expected to have a homogeneous behavior around a null mean 4 . Then, to detect such variables, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] penalize the empirical contrast

by an 1 -penalty on the mean parameters,

where λ > 0 is a regularization parameter.

Introduce G K a grid of regularization parameters and let λ ∈ G K .

Consider the Lasso estimator defined by

To compute θ (K,λ) = (π k , µ kj , σ) 1≤k≤K,1≤j≤p , [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] construct an EM algorithm for 1 -penalized model-based clustering (see Section 4.A.2). The index set J (K,λ) = {j ∈ {1, . . . , p} : ∃ k ∈ {1, . . . , K} such that µ kj = 0}

represents the set of relevant variables selected by the Lasso θ (K,λ) . The density s is estimated K is a number of clusters and J r represents a set of relevant variables for the clustering:

In each model S (K,Jr) , if we estimate s by the maximum likelihood estimator ŝ(K,Jr) , then there are K -1 free mixing parameters, |J c r | mean parameters on J c r , K|J r | mean parameters on J r and one variance parameter to estimate, which leads to a total number of D = K(1

So, as soon as p ≥ n (which is the case for high-dimensional problems), the model S (K,Jr) is degenerate in the sense that its dimension is larger than the number of observations. Let us stress that this is true for all models S (K,Jr) , even for models with very few (in fact even zero) relevant variables. This shows that selection of the relevant variables for the clustering does not lead to sparse models, at least for high-dimensional data. Since the model collection {S (K,Jr) } (K,Jr)∈Mr only contains degenerate models, whatever the model selection criterion used in a further step, the final model selected S ( K, Ĵr) shall be degenerate and s is expected to be badly estimated by ŝ( K, Ĵr) .

To cope with this dimensional problem, we must find a strategy to reduce the dimension of the models. Note that the number of mean parameters coming from J c r is |J c r |, while the number of mean parameters coming from J r is K|J r |. But the number of clusters K remains small (K ≤ 20 in most real clustering problems) while we are looking for a small set J r of relevant variables, that is to say a large set J c r . Thus, |J c r | is expected to be much larger than K|J r | and the problem of too high total dimension D is due to the set of the irrelevant variables, that is to say the variables we are not interested in as regards clustering. So, we suggest to apply the dimensional reduction to the set of the irrelevant variables. For each of these variables, there is only one mean parameter to estimate, which is the common mean parameter through the K clusters. Now, this common mean parameter can either have a large value, in which case the variable is active although irrelevant for the clustering, or it may have a small value close to zero, in which case the variable is not much active. But inactive variables are expected to be absent from the modeling. So, they should be eliminated from the model. This can be done by applying 1 -penalization on the mean parameters on J c r . Let us detail this additional process.

Fix (K, J r ) ∈ M r and let s θ ∈ S (K,Jr) . From (4.47), for all i ∈ {1, . . . , n},

From this decomposition of s θ , the density of

In order to perform The EM algorithm for model-based clustering [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] Here, we recall the principle and the main steps of the EM algorithm first introduced by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] to compute maximum likelihood estimators in a finite Gaussian mixture density estimation framework.

Consider a dataset Y = (Y 1 , . . . , Y n ) from a probability distribution with density s. Assume that the data come from several subpopulations and that the density s is to be estimated by the maximum likelihood estimator ŝ in the finite Gaussian mixture model S defined by

The estimator ŝ is the minimizer of the empirical contrast over S: ŝ = s θ with

Resolution of this minimization problem is difficult and it is usually done by recasting the problem into the framework of missing data. The complete data are

If the latent variables Z ik could be observed, then the empirical contrast for the complete data would be

(4.60) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] propose an algorithm -called EM (Expectation-Maximization) algorithmto compute θ by an iterative process based on the minimization of the expectation of the empirical contrast for the complete data conditionally to the observations Y = (Y 1 , . . . , Y n ) and the current Let K be a fixed number of clusters. Let G K = {0 := λ 0 , λ 1 , . . . , λ L-1 , λ L := λ extra } be the grid of regularization parameters constructed above. Assume that it is sorted with λ

We run the EM algorithm for standard model-based clustering described in Section 4.A.1. We initialize the EM algorithm by running a few K-means algorithms and we take the estimation of the K-means algorithm maximizing the likelihood as starting value for the EM algorithm. Each K-means algorithm is initialized by selecting at random K observations from the whole sample as initial cluster centroid positions. We stop the EM algorithm as soon as we consider that the local maximum has been reached, that is to say when there is no longer significative increase in the likelihood between two successive iterations during a certain number of iterations. To prevent from a too time-consuming algorithm in case of low convergence, we also give a maximal number of iterations as an alternative stopping rule.

• l ∈ {1, . . . , L}: λ l > 0.

We run the EM algorithm for penalized model-based clustering described in 4.A.2. We initialize the EM algorithm with the estimation of the parameter vector θ(λ l-1 ) obtained by the EM algorithm for the preceding value λ l-1 in the grid G K . The stopping rules are the same as for l = 0. At convergence of the EM algorithm, we get the parameter vector estimate θ(λ l ) and the associated set of selected variables.

Remark 13. Let us point out that we perform chaining initializations: the EM algorithm with λ l is initialized with the estimation obtained by the EM algorithm for the preceding value λ l-1 . [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] do not adopt this strategy. They rather initialize each EM algorithm with one common K-means initialization. In practice, we noted that the estimations and the models obtained for the different values λ l of the grid change more regularly by performing chaining initializations rather than one common K-means initialization. Besides, the EM algorithm with λ l tends to converge faster when initialized with the estimation obtained by the EM algorithm for the preceding value λ l-1 than when initialized with a K-means algorithm, especially when λ is large.

• M step: We determine the mixing proportions maximizing

under the condition K k=1 π k = 1, and the vector minimizing

By differentiating, we get for all k ∈ {1, . . . , K}, π

and 

and σ 2 (r+1) are the same for both EM algorithms A and A, while the updatings of the mean parameters are linked by the relation µ

+ µ j . These relations remain checked at convergence of the algorithms. Thus, if θ (K,Jr) = (π 1 , . . . , πK , µ 1 , . . . , µ K , σ) are the parameters of the maximum likelihood estimator in the model

ABSTRACT

This chapter is devoted to the application of our Lasso-MLE procedure to simulated data. Both low-dimensional and high-dimensional data are considered in order to study the penalty shape used for our data-driven model selection criterion according to the data dimension. The simulations highlight that our Lasso-MLE procedure is very competitive compared with other variable selection procedures for finite Gaussian mixture model-based clustering. The main advantages of our procedure are a fast automatic variable selection by the Lasso, a good parameter estimation by the MLE and an efficient non-asymptotic data-driven model selection criterion adaptive to the data dimension. Thanks to the combination of these advantages, our procedure is particularly suited to functional data clustering involving curve reconstruction with wavelets.

Introduction

In this chapter, we test our Lasso-MLE procedure introduced in Section 4.5 on simulated data. The aim of these simulations is manifold.

First, we want to evaluate the performance of our non-asymptotic model selection criterion based on the slope heuristics. One major point is to check whether the ideal penalty shape depends on the data dimension and to determine whether a logarithm term becomes necessary to define a proper model selection criterion as the dimension increases. To find the best penalty shape, we compare the model selected by our criterion with the oracle model. Furthermore, we compare our non-asymptotic model selection criterion with the classical asymptotic criteria AIC and BIC.

Second, we want to compare our Lasso-MLE procedure to other model selection procedures for clustering based on finite Gaussian mixture models. We restrict our comparison to two procedures sharing similarities with our own procedure, which are Pan and Shen's Lasso procedure and Maugis and Michel's procedure, both presented in Section 4.3. On the one hand, we use the Lasso to select a limited model collection such as [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. On the other hand, we estimate the parameters by the MLE and we apply a non-asymptotic criterion such as Maugis and Michel (2011a). Comparison with Maugis and Michel (2011a) is possible only for low-dimensional data since their procedure is not feasible for high-dimensional data. On the contrary, comparison with [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] is carried out whatever the data dimension. Both variable selection and clustering performance are compared.

Third, we simulate some functional data to evaluate the performance of our Lasso-MLE procedure in this fundamental application domain. Here, we provide an inequality for the moments of order 2 of log-likelihood ratios. This inequality is based on the following Claim 6.A.1. Claim 6.A.1. Let τ > 0. For all x > 0, consider

Proof. First note that f (1) = h(1) = 0, so (6.31) is satisfied for x = 1 and we just need to prove (6.31) for x = 1. Define

Let us first check that ψ is non-decreasing on R.

Since e y = 1 + y + y 2 /2 + o y→0 (y 2 ), the functions ψ and ϕ are continuous on R and, for y = 0, ψ(y) = (ϕ(y) -ϕ(0))/(y -0) is the difference quotient of ϕ. Thus, we just need to prove that ϕ is a convex function to derive that ψ is non-decreasing. By differentiating twice ϕ, we get that ϕ (y) = 2e y g(y)/y 3 with g(y) = 1 -y + y 2 /2e -y . The function g is non-decreasing because g (y) = -1 + y + e -y ≥ 0. But g(0) = 0. So, g(y) ≤ 0 for all y ≤ 0 and g(y) ≥ 0 for all y ≥ 0. It implies that ϕ (y) ≥ 0 for all y ∈ R and ϕ is convex. Now, let 0 < x ≤ e τ , x = 1. Put y = -ln x. Then, y ≥ -τ and, since ψ is non-decreasing, ψ(y) ≥ ψ(-τ ). Moreover, x = 1, so y = 0 and ψ(y) = φ(y)/y 2 . Thus, φ(y)/y 2 ≥ φ(-τ )/τ 2 . and the family of K-tuples of p-dimensional Gaussian densities

Following the arguments developed by [START_REF] Maugis | Sélection de variables pour la classification non supervisée par mélanges gaussiens. Application à l'étude de données transcriptomes[END_REF] (proof of Proposition 7.A.2), it is easy to show that the study of the bracketing entropy of S B (K,Jr,Ja) can be recast into the study of the bracketing entropy of Π K and F (K,Jr,Ja) : Lemma 6.A.4. For all ε ∈ ]0, 1],

where

.

From Lemma 6.A.4, all the matter is to calculate an upper bound of the bracketing entropy of F (K,Jr,Ja) . Jr,Ja) . We want to find an ε-bracket for f . We shall consider shrunk and dilated Gaussian densities.

Step 1. Construction of a net for the variance Let δ ∈ ]0, 1] to be chosen later. Let x denotes the smallest integer greater than or equal to x. We construct a regular net for the variance

Step 2. Construction of a net for the mean vectors

Let l be the unique integer in {2, . . . , r} such that σ 2 l+1 < σ 2 ≤ σ 2 l . For all k ∈ {1, . . . , K}, let ν k ∈ R p to be specified later. Consider the functions defined on R p by

Put l = (l 1 , . . . , l K ) and u = (u 1 , . . . , u K ). We now determine δ and (ν 1 , . . . , ν K ) so that l and u form an ε-bracket for f . On the one hand, by using the calculation of the Hellinger distance between two multivariate Gaussian densities (Maugis and Michel, 2011b, Corollary 3) and by upper bounding some usual functions, we get that, for all k ∈ {1, . . . , K}, d 2 H (l k , u k ) ≤ cp 2 δ 2 where c = sh(1) + 49/128. Thus, we take δ = ε/( √ cp) so that d H (l k , u k ) ≤ ε. On the other hand, by using the ratio of two multivariate Gaussian densities [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF], Corollary 2), the definition of σ l and σ l+1 , the inequality ln(1 + δ) ≥ δ/2 for all δ ∈ ]0, 1] and the concavity of δ → 1 -(1 + δ) -1/4 , we get that a sufficient condition for

where c = 5(1 -2 -1/4 )/8. Put

, and for all k ∈ {1, . . . , K}, for all j ∈ J r , choose u

Then, ν k (l) fulfills (6.59) and we get a net for the mean vectors.

Step 3. Upper bound of the number of ε-brackets for F (K,Jr,Ja)

From step 1 and step 2, the family

is an ε-bracket covering for F (K,Jr,Ja) . Therefore, an upper bound of the number of ε-brackets necessary to cover F (K,Jr,Ja) is deduced from an upper bound of the cardinal of B ε (F (K,Jr,Ja) ).

satisfies (6.1). Besides, Ψ (K,Jr,Ja) is non-decreasing and ξ → Ψ (K,Jr,Ja) (ξ)/ξ is non-increasing, so Ψ (K,Jr,Ja) is convenient.

6.A.2.3 Lower bound of the penalty function

Finally, according to the lower bound (6.4) of the penalty function, we need to find an upper bound of ξ * satisfying Ψ (K,Jr,Ja) (ξ * ) = √ n ξ 2 * and to calculate the weights x (K,Jr,Ja) to take into account the richness of the family S B (K,Jr,Ja) . This can be done along the proofs of Maugis and Michel (2011b) by replacing the dimension of the models considered by [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF] by the dimension D (K,Jr,Ja) of our models S B (K,Jr,Ja) . This leads to the two following lemmas:

.

(6.62) Lemma 6.A.7. Consider the weight family x (K,Jr,Ja) (K,Jr,Ja)∈M (r,a) defined by

x (K,Jr,Ja) = D (K,Jr,Ja) ln 8ep D (K,Jr,Ja) ∧ p . (6.63)

Then, we have (K,Jr,Ja)∈M (r,a)

e -x (K,Jr ,Ja) ≤ 1.

From (6.4), (6.62) and (6.63), we can apply Theorem 6.2.1 as soon as there exists κ > 0 such that pen (K, J r , J a ) satisfies for all (K, J r , J a ) ∈ M (r,a) :

Applying Theorem 6.2.1 leads to Theorem 6.2.2. 2

Chapter A

Alternatives to our Lasso-MLE procedure 

ABSTRACT

In this chapter, we present two procedures we envisaged during this thesis as possible alternatives to our Lasso-MLE procedure. For reasons we explain below, we decided to keep the Lasso-MLE procedure described in Section 4.5.4. Nonetheless, the two other procedures both present some interesting points. That is why we mention them and discuss on them here. First, we describe these alternative procedures. Then, we compare them to our Lasso-MLE procedure on two simulated datasets.

A.1 Two alternative procedures to our Lasso-MLE procedure

Our Lasso-MLE procedure described in Section 4.5.4 is not the first procedure we thought about.

In fact, the key idea of our procedure is the parameter estimation by the MLE rather than by the Lasso, and we first built a simpler procedure mainly focused on this crucial point. Our initial idea was the following: first use the Lasso on the empirically centered data to construct a collection of sets of relevant variables and derive a model collection, then estimate the parameters on the empirically centered data by the MLE in each model, finally choose a model thanks to a non-asymptotic model selection criterion derived from the slope heuristics and get a data clustering according to the MAP principle. By estimating the parameters by the MLE rather than by the Lasso, this procedure is expected to lead to better estimations than Pan and Shen's procedure and thus to a better clustering by the MAP principle. In the sequel, we call this procedure the R-EC (Relevant-Empirically Centered) procedure.

We think that this procedure can provide good results in a clustering viewpoint. Besides, it does not require the notion of active variables, contrary to our Lasso-MLE procedure. Yet, the estimation of the parameters is performed on the empirically centered data, so it does not allow to deal with problems involving sparse density estimation recovery such as for curve clustering. Indeed, estimation of the density of the non-empirically centered data from the estimation of the density of the empirically centered data requires to estimate each empirical mean, which breaks sparsity. To overcome this problem, we introduced the notion of active variables that induces sparsity and enables to perform estimation of the parameters directly on the non-empirically centered data. This additional process led to our Lasso-MLE procedure.

In our Lasso-MLE procedure, the model collection construction is divided in two steps: first, we detect sets of irrelevant variables, then we detect sets of inactive variables among each set of irrelevant variables so as to reduce dimension and perform reliable estimation. But, another viewpoint can be considered by reversing these two steps, that is to say by first looking for the active variables and then searching for the relevant variables among the active variables. In the sequel, we call this alternative procedure the A-R (Active-Relevant) procedure to indicate the order of the two steps. In contrast, we refer to our Lasso-MLE procedure as the R-A (Relevant-Active) procedure.

From a theoretical viewpoint, these two procedures mainly differ in the way we look at the active variables. By first searching for the relevant variables, our R-A procedure focuses on these variables and thus on clustering, while detecting the inactive variables is above all used to reduce dimension. In particular, our procedure has no more meaning when data come from one single cluster (no mixture). On the opposite, the A-R procedure first aims at looking for the variables actually present in the model, no matter a mixture is to be considered, while identifying the relevant variables for the clustering comes in a second step. The advantage of this procedure is that it remains meaningful in the case of homogeneous data by simply dropping the second step. Thus, it may seem more natural than our R-A procedure.

Below, we detail the steps of the R-EC procedure and the A-R procedure. They are to be compared with the steps of our R-A procedure described in Section 4.5.4. We keep the notations used in Chapter 4. We assume we observe a dataset Y = (Y 1 , . . . , Y n ) from probability distribution with density s to be estimated by a finite Gaussian mixture density in a clustering purpose.

A.1.1 The R-EC procedure

Assume that we observe a dataset for which the notion of active variables introduced in Section 4.5.2.1 is not meaningful. In this case, one can not carry out dimensional reduction by eliminating the inactive variables. Then, performing parameter estimation on the non-empirically centered dataset is not sensible since it would involve much too many parameters to estimate and would conduct to degenerate models (see Section 4.5.2). To avoid such problems, one way is to perform parameter estimation on the empirically centered dataset, so that all the constant means through the clusters become null means and do not have to be estimated. This leads to the following R-EC procedure, which is a mixture of Pan and Shen's procedure and Maugis and Michel's procedure described in Section 4.3.

Steps 0-1.

As it is done at Step 0 of Pan and Shen's procedure, we empirically center the dataset Y to get an empirically centered dataset Y = (Y 1 , . . . , Y n ). The density s of Y i is to be estimated to get a clustering of the dataset Y . We construct the same model collection {S (K,Jr) } (K,Jr)∈Mr as the model collection constructed at

Step 1 of Pan and Shen's procedure (see Section 4.3.2):

Each model S (K,Jr) is the set of finite Gaussian mixture densities with K components and J r as index set representing the relevant variables.

We compute θ(K,λ) = (π k , μkj , σ) 1≤k≤K,1≤j≤p by Pan and Shen's EM algorithm described in Section 4.A.2 2 . The index set J (K,λ) = {j ∈ {1, . . . , p} : ∃ k such that μkj = 0} represents the active variables selected by the Lasso θ(K,λ) .

(c) By varying λ ∈ G K , we get a collection J K = ∪ λ∈G K J (K,λ) of index sets representing a collection of sets of active variables. As regards the estimation of s, this collection J K leads to a model collection {S (K,Ja) } Ja∈J K with 

by an 1 -penalty on the mean parameters proportional to

Introduce G (K,Ja) a grid of regularization parameters.

(b) Fix λ ∈ G (K,Ja) . Consider the Lasso estimator of θ defined by θ (K,Ja,λ) = arg min θ∈Θ (K,Ja) γ n (s θ ) + λ|θ| 1 .

2 We run this algorithm on the dataset Y , not on the dataset Y considered in Section 4.A.2.

We compute θ (K,Ja,λ) = (π k , µ kj , σ) 1≤k≤K,j∈Ja by Pan and Shen's EM algorithm described in Section 4.A.2 and restricted to the dataset Y [Ja] . The index set J (K,Ja,λ) = {j ∈ J a : ∃ k such that µ kj = 0} represents the relevant variables selected by the Lasso θ (K,Ja,λ) .

(c) By varying λ ∈ G (K,Ja) , we get an index set collection J (K,Ja) = ∪ λ∈G (K,Ja) J (K,Ja,λ) representing a collection of sets of relevant variables among the active variables indexed by J a . We derive a model collection {S (K,Ja,Jr) } Jr∈J (K,Ja) with

3) Each model S (K,Ja,Jr) is the set of finite Gaussian mixture densities with K components, J a as index set representing the active variables and J r as index set representing the relevant variables among the active variables.

2. By varying J a ∈ J K , we get a model collection {S (K,Ja,Jr) } (Ja,Jr)∈J K ×J (K,Ja) . II. By varying K ∈ K, we get a model collection {S (K,Ja,Jr) } (K,Ja,Jr)∈K×J K ×J (K,Ja) . We put M (a,r) = {(K, J a , J r ); K ∈ K, J a ∈ J K , J r ∈ J (K,Ja) }.

Steps 2-4.

Steps 2, 3 and 4 of the A-R procedure are similar to Steps 2, 3 and 4 of the R-A procedure described in Section 4.5.4. The only difference is that the model collection {S (K,Jr,Ja) } (K,Jr,Ja)∈M (r,a) considered for the R-A procedure is replaced by the model collection {S (K,Ja,Jr) } (K,Ja,Jr)∈M (a,r) defined by (A.3).

A.1.3 Review of the three procedures

Table A.1 summarizes the similarities and dissimilarities between the R-A procedure, the A-R procedure and the R-EC procedure.

A.2 Performance of the three procedures on simulated data

Here, we compare the R-A procedure, the A-R procedure and the R-EC procedure on the two simulated datasets studied in Section 5.4.1 in order to explain why we have decided to keep the R-A procedure rather than the two other procedures. Both of these datasets involve relevant variables as Practical performance: comparison between the estimators For the R-EC procedure, the ln-slope estimator fails to be computed. In fact, for this procedure, only one Lasso algorithm is run, so few models are constructed and the model collection is not rich enough to justify a logarithm term in the penalty. On the opposite, two Lasso algorithms are interlocked for the R-A and the A-R procedures and many more models are constructed, often justifying a logarithm term in the penalty. For some simulations, the model collection for the R-A procedure is so rich that the slope estimator fails to be computed.

For the R-EC procedure, the slope estimator is close to the oracle model. For the R-A procedure, the ln-slope estimator misses a few relevant variables. Yet, it is closer to the oracle than the slope estimator which selects many FA variables. For the A-R procedure, the slope estimator and the lnslope estimator are not so close to the oracle. They tend to miss some relevant variables and/or to catch many FA variables.

A.2.2 Numerical problems for the A-R procedure

For the A-R procedure, the first Lasso algorithm runs on the non-empirically centered data. Therefore, for high-dimensional datasets, the EM algorithm calculating the Lasso solution is faced with numerical problems, particularly to update the posterior probabilities at the E step. These problems are more likely to occur when the true number of clusters is small and the mixing proportions are very different, as for the second simulated dataset studied in Section A.2.1. The EM algorithm tends to gather the clusters, so it sets to zero all the corresponding mean coefficients together and declares some variables inactive while they may actually be active and even relevant. Thus, the first Lasso algorithm produces sets of active variables not containing all the true relevant variables. Consequently, at the end of the procedure, to compensate for this lack of relevant variables, the A-R oracle model picks up some active irrelevant variables but also many inactive variables (see Figure A.2, at the bottom), which explains the great number of FA variables selected in Table A .2 and Table A.3. On the contrary, the R-A procedure is not faced with this numerical problem because the first Lasso algorithm runs on the empirically centered data. When the second Lasso algorithm runs on the non-empirically centered data, such numerical problems may occur for the largest sets of relevant variables selected by the first Lasso algorithm, but they do not occur for the smallest sets of relevant variables. Then, the R-A oracle chooses a model among the smallest models (see Figure A.1, at the bottom), that is to say a model for which no numerical problem occurs. For both procedures, models with various dimensions are generated by the first Lasso algorithm by varying the regularization parameter. For the R-A procedure, this first Lasso algorithm is expected to

A.2.3 Conclusion

Because of the numerical problems encountered by the A-R procedure and because of the poor density estimation of the R-EC procedure, we have chosen to favor the R-A procedure as final procedure for our Lasso-MLE procedure. Yet, on the one hand, as highlighted in Table A .2 and Table A.3, the R-EC procedure seems to be a good surrogate for the R-A procedure in a clustering purpose if the notion of active variable is not meaningful. Besides, since it requires only one Lasso algorithm, it is a bit faster than the R-A procedure. On the other hand, if one manages to get rid of the numerical problems for the A-R procedure, this procedure may reveal competitive.