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Modèle de Hartree-Fock-Bogoliubov : une perspective théorique et numérique.

Résumé : Cette thèse est consacrée à l’étude mathématique et numérique du
modèle de Hartree-Fock-Bogoliubov (HFB) pour les systèmes quantiques attractifs,
qui est abondamment utilisé en physique nucléaire. Après avoir présenté le modèle
et ses principales caractéristiques, nous expliquons comment le discrétiser et nous
montrons des résultats de convergence. Nous examinons tout particulièrement
l’algorithme de point fixe (parfois appelé Roothaan) et montrons qu’il converge ou
alors oscille entre deux états dont aucun n’est solution du problème. Ceci généralise
au cadre HFB des résultats de Cancès et Le Bris pour le modèle plus simple de
Hartree-Fock dans le cas répulsif. Suivant ces mêmes auteurs, nous proposons
un algorithme basé sur la contrainte relâchée et pour lequel la convergence est
garantie. Dans la dernière partie de la thèse, nous illustrons le comportement
de ces algorithmes par des simulations numériques pour plusieurs modèles. Dans
un premier temps nous considérons un système purement gravitationnel où les
particules interagissent avec le potentiel de Newton. Nos simulations montrent
que la matrice d’appariement est toujours non nulle, un fait qui n’a pas encore
pu être démontré rigoureusement. Nous étudions ensuite un modèle très simplifié
pour la description de protons et neutrons dans le noyau atomique.

Mots clés : Hartree-Fock-Bogoliubov, appariement, analyse numérique, physique
quantique.

Hartree-Fock-Bogoliubov Theory: a Theoretical and Numerical Perspective.

Abstract: This work is devoted to the theoretical and numerical study of
Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which
is one of the main methods in nuclear physics. We first present the model and
its main properties, and then explain how to discretize it. We prove some conver-
gence results, in particular for the simple fixed point algorithm (sometimes called
Roothaan). We show that it converges, or oscillates between two states, none of
them being a solution. This generalizes to the HFB case previous results of Cancès
and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following
these authors, we also propose a relaxed constraint algorithm for which conver-
gence is guaranteed. In the last part of the thesis, we illustrate the behavior of
these algorithms by some numerical experiments. We first consider a system where
the particles only interact through the Newton potential. Our numerical results
show that the pairing matrix never vanishes, a fact that has not yet been proved
rigorously. We then study a very simplified model for protons and neutrons in a
nucleus.

Keywords: Hartree-Fock-Bogoliubov, pairing, numerical analysis, quantum phy-
-sics.
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Introduction

Cette thèse présente divers résultats théoriques et numériques concernant le
modèle de Hartree-Fock-Bogoliubov qui permet la description de systèmes fermion-
iques attractifs. Il s’agit d’un modèle non linéaire dans lequel l’état du système
est décrit par deux inconnues, qui sont des opérateurs compacts sur L2(R3,C2) :

• γ, la matrice densité à un corps

• α, la matrice d’appariement qui est nulle pour les systèmes répulsifs.

Un problème important est de savoir si la matrice d’appariement est non nulle
pour les systèmes attractifs, pour l’état fondamental, lorsque le nombre moyen
de particules est fixé. La non-nullité de cette matrice est supposée décrire des
phénomènes physiques comme l’apparition des paires de Cooper, que l’on retrouve
en physique de la matière condensée et en physique nucléaire, et qui est reliée à la
supraconductivité et à la superfluidité. Dans le cas où la matrice d’appariement
serait nulle, on retrouve le modèle de Hartree-Fock utilisé dans de nombreuses
applications mais qui ne permet pas la description de ces phénomènes.

Nous décrivons ci-après les résultats obtenus dans les divers chapitres de la
thèse.

Chapitre 1 : le modèle Hartree-Fock-Bogoliubov

Dans le premier chapitre, nous décrivons le modèle à N -corps non relativiste avec
spin. La matière est composée de plusieurs types de particules, qui sont toutes
des fermions qui interagissent entre eux à travers différentes forces. Ce sont les
bosons qui servent de particules médiatrices décrivant les échanges d’énergie entre
les fermions de la matière. Les fermions sont de spin demi-entier, le spin étant
une propriété quantique intrinsèque associée à chaque particule. Les seuls connus
jusqu’à présent sont de spin 1/2.

Un système quantique composé de N particules fermioniques dans l’espace R3

est décrit par une fonction d’onde Ψ à N -corps telle que

Ψ(x1, σ1, ..., xN , σN ) ∈
N∧

1

L2
(
R

3 × {±1/2};C
)
:= HN .

Les quantités σk, ∀k = 1, ..., N représentent le spin de chacune des particules, celui-
ci ne pouvant prendre que deux valeurs : −1/2 et 1/2. Par le principe de Pauli,

11



12 Introduction

il ne peut y avoir que 2 fermions de spins différents dans un même état, ce qui
se traduit ici mathématiquement par le caractère anti-symétrique de la fonction
Ψ. On considère donc N fermions interagissant à travers un potentiel W et sans
potentiel exterieur. Il est décrit par le hamiltonien :

H(N) =

N∑

i=1

(−∆)xi
+

∑

1≤k<ℓ≤N

W (xk − xℓ),

où (−∆)xi
, ∀i = 1, ..., N est l’énergie cinétique de chaque particule et où on suppose

W suffisamment régulière et s’annulant à l’infini pour que H(N) soit bien défini.
Notre problème va être la détermination de l’état fondamental, c’est-à-dire de

l’état de plus basse énergie du système. Dans le cas du modèle à N -corps ci-dessus,
l’énergie est bornée inférieurement, mais ne possède pas de minimiseur. Ceci est
dû à l’invariance par translation du hamiltonien H(N) du système. Nous allons
considérer une approximation non linéaire du modèle à N -corps, pour laquelle il
peut y avoir des minimiseurs à cause des effets non linéaires. Cette approximation
consiste à restreindre le calcul de l’énergie aux fonctions qui s’écrivent sous la
forme d’un déterminant de Slater, autrement dit d’un produit antisymétrique de
fonctions d’onde à une particule :

Ψ(x1, σ1, ..., xN , σN) =ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕN(x1, σ1, ..., xN , σN)

:=
1√
N !

det
(
ϕi(xj , σj)

)
, (0.0.1)

où ϕi sont les orbitales de chacune des particules, qui vérifient par hypothèse la
contrainte de normalisation

〈ϕi, ϕj〉L2(R3×{±1/2};C) = δij .

Nous obtenons le modèle de Hartree-Fock (HF) qui permet le calcul de l’état
fondamental approché de le hamiltonien à N -corps. L’énergie du système s’écrit
alors

〈Ψ, H(N)Ψ〉 =EHF(ϕ1, ..., ϕN)

=

N∑

i=1

∫

R3

|∇ϕi|2 +
1

2

∫∫

R3×R3

ρΨ(x)ρΨ(y)W (x− y)dxdy

− 1

2

∫∫

R3×R3

|γΨ(x, y)|2W (x− y)dxdy. (0.0.2)

Ici γΨ est la matrice densité à 1-corps du système définie par

γΨ =
N∑

i=1

|ϕi〉〈ϕi|, (0.0.3)
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qui vérifie les contraintes 0 6 γΨ 6 1 et Tr(γΨ) = N et dont le noyau intégral est
donc

γΨ(x, y)σ,σ′ =

N∑

i=1

ϕi(x, σ)ϕi(y, σ′).

D’un autre côté,

ρΨ(x) =N
∑

σ1,...,σN=±1/2

∫

R3

dx2 · · ·
∫

R3

dxN |Ψ(x, σ1, x2, σ2, ..., xN , σN)|2

=
∑

σ=±1/2

γΨ(x, x)σσ

=

N∑

i=1

∑

σ=±1/2

|ϕi(x, σ)|2

est la densité de charge associée. Grâce à la nonlinéarité du modèle HF, cette
énergie peut admettre un minimiseur, même si le système est invariant par trans-
lation.

Le modèle HF décrit un système fermé de N particules. Dans la suite de notre
étude, nous introduisons une brisure de symétrie. Le nombre de particules du
système N est alors remplacé par un opérateur N et seul le nombre moyen de
particules est fixé. Plus précisément, il est essentiel d’introduire un nouvel espace,
appelé espace de Fock

F =

∞⊕

N=0

HN ,

qui est la somme directe des espaces de Hilbert à N particules avec N ≥ 0, et dans
lequel nous recherchons l’état qui minimise l’énergie du système. L’opérateur de
nombre est alors défini par

N =
⊕

N≥0

N

et ses valeurs propres sont 0, 1, 2... De façon similaire, le hamiltonien à N -corps
est remplacé par sa seconde quantification

H := 0⊕
⊕

n≥1

H(n)

sur l’espace de Fock F .
Nous n’allons pas minimiser le hamiltonien H sur tout l’espace de Fock, mais

plutôt sur une classe naturelle d’états qui généralisent les états HF de la for-
mule (0.0.1) et qui sont appelés états quasi-libres ou Hartree-Fock-Bogoliubov. Ces
états de F peuvent être définis comme l’ensemble de tous les états de Gibbs as-
sociés à tous les hamiltoniens qui sont quadratiques en les opérateurs de création
et d’annihilation. La définition précise est un peu longue à donner dans cette
introduction et nous renvoyons pour cela au Chapitre 1. On pourra simplement
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retenir que, pour les déterminer, on utilise le formalisme des matrices densités.
Les états sont entièrement caractérisés par deux matrices densité γ et α qu’on
regroupe généralement dans une grande matrice Γ :

Γ =

(
γ α
α∗ 1− γ

)
. (0.0.4)

Ici γ est la même matrice densité à 1-corps que précédement, et α est la matrice
d’appariement. Ces deux matrices sont définies à l’aide des opérateurs de création
et d’annihilation par les relations

〈g, γf〉 = 〈a∗(f)a(g)〉 〈g, αf〉 = 〈a(f)a(g)〉.

Lorsque α 6= 0, l’état correspondant dans l’espace de Fock F n’est pas un état pro-
pre de l’opérateur N et la symétrie du nombre de particules est brisée. L’opérateur
Γ doit vérifier les contraintes

0 ≤ Γ ≤ 1 et αT = −α.

Le modèle de Hartree-Fock-Bogoliubov est utilisé pour l’étude de systèmes
attractifs à petit ou grand nombre de particules. Il consiste à restreindre le hamil-
tonien quantifié H sur l’espace de Fock aux états quasi-libres. L’énergie HFB en
fonction des opérateurs γ et α, et décrivant un système fermionique non-relativiste
soumis à l’interaction W s’écrit alors

EHFB(γ, α)

= Tr(−∆)γ +
1

2

∫

R3

∫

R3

W (x− y)
(
ργ(x)ργ(y)− |γ(x, y)|2 + |α(x, y)|2

)
dx dy.

Cette énergie a une forme très similaire à l’énergie HF vue en (0.0.2), avec laquelle
elle coïncide quand α ≡ 0 et γ est un projecteur de rang fini. On remarque
l’apparition d’un quatrième terme qui représente l’appariement du système.

Après avoir montré que cette énergie était bien définie et bornée inférieurement,
dans le chapitre 1 nous définissons deux problèmes de minimisation, I(N) sur
l’ensemble des états mixtes (0 ≤ Γ ≤ 1) et J(N) sur l’ensemble des états purs
(Γ = Γ2). Le principe variationnel de Lieb dit que si W > 0 est repulsif, l’état
fondamental sera toujours un état pur HF sans appariement α = 0. Ce résultat est
très important et a été exploité par É. Cancès et C. Le Bris pour développer des
stratégies numériques que nous verrons dans le chapitre 3. Dans le cas purement
attractif W < 0, un résultat dû à Bach, Fröhlich et Jonsson nous dit que pour
des fermions de spin 1/2 et une attraction fortement attractive, l’état HFB est à
nouveau pur et les matrices densité et d’appariement sont sous une forme spéciale
(cf 1.4.30) et I(N) = J(N). Ce résultat suggère qu’il est possible d’adapter les
méthodes numériques utilisées en chimie quantique au cas des systèmes attractifs,
ce qui est l’objectif principal de cette thèse.
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Par la suite nous énonçons un résultat de E. Lenzmann et M. Lewin qui fournit
l’existence de minimiseurs pour le problème I(N) (en fait, leur résultat est valable
dans le cas relativiste mais la preuve s’adapte sans problème au cas non relativiste).
Ces minimiseurs Γ sont solutions d’une équation non linéaire sous la forme

Γ = 1(−∞,0)

(
FΓ − µN

)
+ δ (0.0.5)

où 0 ≤ δ ≤ 1{0}(FΓ − µN ) prend la même forme que Γ,

N :=

(
1 0
0 −1

)
,

et FΓ est la matrice de Fock (ou matrice de champ moyen) définie par

FΓ =

(
hγ π

π∗ −hγ

)
. (0.0.6)

Ici
hγ = −∆+ ργ ∗W −W (x− y)γ(x, y)

et
π(x, y) = α(x, y)W (x− y).

Dans le cas où α = 0 on retombe sur l’équation des minimiseurs HF

γ = 1(−∞,µ)(hγ) + δ

ou, exprimé en fonction des orbitales ϕi,

hγϕi = λi ϕi, i = 1, ..., N

quand δ ≡ 0. Dans le problème HFB, la matrice de champ moyen FΓ est non
bornée inférieurement, contrairement à hγ (son spectre est en fait symétrique par
rapport à 0). De plus, N ne commute pas avec FΓ, sauf quand α ≡ 0, et donc les
équations HFB ne peuvent être écrites aussi facilement que pour HF. Le fait que γ
ne soit plus un projecteur de rang N , comme pour le problème HF (α ≡ 0), mais
soit un opérateur de rang infini quand l’appariement α 6= 0 change radicalement
le comportement du problème.

Dans cette thèse, nous nous intéressons particulièrement au problème de savoir
si l’appariement est non nul pour les minimiseurs HFB, dans le cas oùW est suffisa-
ment attractif. Nous répondrons à cette question par des simulations numériques.

Chapitre 2 : le modèle Hartree-Fock-Bogoliubov discrétisé

Dans le chapitre 2, nous expliquons comment discrétiser le problème de minimi-
sation HFB afin de le résoudre numériquement. La méthode est d’utiliser une
approximation de Galerkin. On introduit donc un espace discret et on montre que
la solution du problème sur cet espace converge vers la solution du problème en
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dimension infinie (Théorème 2.1.1 ci-dessous). On peut donc s’attarder sur l’étude
du problème en dimension finie.

On choisit une base (χi)
Nb
i=1 et, après avoir écrit les noyaux de γ et α dans cette

base, on trouve pour l’énergie HFB

E(G,A) = Tr(hG) +
1

2
Tr(GJ(G))− 1

2
Tr(GK(G)) +

1

2
Tr(A∗X(A)),

où G et A sont les matrices densité et d’appariement discrétisées, vérifiant G∗ = G
et AT = −A. Par ailleurs, J , K et X sont des opérateurs linéaires sur l’espace des
matrices Nb ×Nb. La contrainte s’écrit

0 ≤ ΥSΥ ≤ Υ

où Υ est défini par

Υ :=

(
G A

A∗ Σ
−1
SΣ−1 −G

)
,

et S, S et Σ sont des matrices de recouvrement définies en (2.2.7) et (2.2.8) qui
dépendent des fonctions de bases choisies.

Le problème HFB présente certaines symétries que l’on choisit d’inclure dans
les contraintes pour réduire le coût de calcul. La première est la symétrie de
spin car le laplacien et la fonction d’interaction W n’agissent en aucun cas sur la
variable de spin. La deuxième est due au fait que le laplacien et l’opérateur W sont
réels. On l’appelle symétrie de la conjugaison complexe. Si on choisit d’imposer
ces symétries, alors le problème est de trouver (après élimination du spin) G et A,
deux matrices réelles symétriques, telles que

(
0 0
0 0

)
≤ Υ :=

(
G A
A 1−G

)
≤
(
1 0
0 1

)

et l’énergie s’écrit

E(G,A) = 2Tr(hG) + 2Tr(GJ(G))− Tr(GK(G)) + Tr(AX(A)).

Le nombre de particule est réduit par 2, c’est-à-dire Tr(SG) = N/2.
La dernière symétrie est celle du groupe des rotations généré par l’opérateur

moment angulaire L = x× (−i∇). Si W est une fonction radiale, alors les états du
système sont invariants par rotation, et s’écrivent en fonction du moment angulaire
total ℓ tel que 0 ≤ ℓ ≤ ℓmax et du moment angulaire azimutal m tel que −ℓ ≤ m ≤
ℓ, ainsi que des harmoniques sphériques Y m

ℓ . L’énergie discrétisée et la contrainte
s’écrivent aussi en fonction du moment angulaire total ℓ, et nous obtenons ℓmax +
1 équations non linéaires couplées, partageant le même multiplicateur d’Euler-
Lagrange µ.
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Chapitre 3 : algorithmes et analyse de leur convergence

Dans le chapitre 3, nous étudions la convergence des algorithmes de Roothaan et
ODA, utilisés pour résoudre le problème de minimisation de l’énergie de Hartree-
Fock-Bogoliubov. Ils ont largement été étudiés par É. Cancès et C. Le Bris pour
la résolution des équations de Hartree-Fock en chimie quantique, mais pas pour
les systèmes attractifs comme dans cette thèse.

L’algorithme de Roothaan est un simple algorithme de point fixe sur l’équation
non linéaire (0.0.5), qui n’assure a priori pas la décroissance de l’énergie. Nous
donnons tout d’abord une définition du caractère bien posé de cet algorithme,
et démontrons ensuite un théorème concernant ses problèmes de convergence et
dont la preuve repose sur de récents travaux d’A. Levitt. En effet il se peut que
l’algorithme oscille entre deux états dont aucun des deux n’est solution du problème
de minimisation HFB. Pour comprendre ce phénomène, nous introduisons une
fonctionnelle d’énergie à deux variables

Ẽ(Υ,Υ′) := Tr(hG) + Tr(hG′) + 2Tr(GJ(G′))− Tr(GK(G′)) + Tr(AK(A′)),

en suivant É. Cancès et C. Le Bris. Il se trouve qu’appliquer l’algorithme de point
fixe est équivalent à minimiser la fonctionnelle Ẽ alternativement par rapport à ses
deux variables. Nous avons alors démontré le théorème suivant :

Théorème (Convergence de l’algorithme de Roothaan). Soit Υ0 un état
initial HFB tel que la suite (Υn) générée par l’algorithme de Roothaan est uni-
formement bien posée, c’est-à-dire

∀n,
∣∣FΥn − µn+1N

∣∣ ≥ η > 0,

où FΥ̃n
est la version discrétisée de l’opérateur de champ moyen (0.0.6). Alors

• la suite Ẽ(Υ2n,Υ2n+1) décroit vers une valeur critique Ẽ ;

• la suite (Υ2n,Υ2n+1) converge vers un point critique (Υ,Υ′) de Ẽ;

• si Υ = Υ′, alors cet état est une solution des équations HFB, mais si Υ 6= Υ′,
alors aucun de ces deux états n’est solution.

Par la suite, pour contourner les difficultés de convergence de l’algorithme
de Roothaan, nous introduisons le Optimal Damping Algorithm (ODA), qui a
été proposé en premier par É. Cancès et C. Le Bris pour les modèles de chimie
quantique. Il consiste à relâcher la contrainte (Υn)

2 = Υn en 0 ≤ (Υn)
2 ≤ Υn.

Cela signifie qu’on ne cherche plus à minimiser l’énergie sur l’ensemble des états
purs, mais sur les états mixtes du système. L’algorithme ODA engendre donc deux
suites Υn pour les états purs et Υ̃n pour les états mixtes. Le théorème qui suit
prouve sa convergence :

Théorème (Convergence d’ODA). Soit Υ0 = Υ̃0 un état initial HFB tel que
l’algorithme ODA soit uniformément bien posé, c’est-à-dire

∀n,
∣∣FΥ̃n

− µn+1N
∣∣ ≥ η > 0,
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où FΥ̃n
est la version discrétisée de l’opérateur de champ moyen (0.0.6). Alors

• la suite E(Υ̃n) décroît vers une valeur critique de E ;

• la suite Υn converge numériquement vers un point critique Υ de E , au sens où
Υn+1−Υn → 0, Υn+1− Υ̃n → 0. Par ailleurs tous les points d’accumulation
Υ de la suite (Υn) vérifient l’équation HFB Υ = 1(−∞,0)(FΥ − µN).

Chapitres 4–5 : simulations numériques

Dans les chapitres 4 et 5, nous appliquons les deux algorithmes étudiés précédem-
ment à deux systèmes différents pour résoudre numériquement le problème HFB.

Le premier, étudié au chapitre 4, est un modèle gravitationnel qui peut être
utilisé pour décrire les étoiles à neutrons ou les naines blanches quand N >> 1
(mais dans nos simulations, N n’est pas très grand). Nous considérons donc un
système de N particules non relativistes de spin 1/2 interagissant à travers le
potentiel Newtonien

W (x) = − g

|x| , g > 0,

qui est très attractif à courte distance et qui décroit suffisamment lentement pour
que deux particules très éloignées s’attirent toujours.

Le second est un modèle inspiré de ceux utilisés en physique nucléaire. Il mod-
élise l’interaction entre nucléons qui est répulsive à courte distance et attractive à
moyenne distance. Le potentiel qui décrit cette interaction est

W (x) =
κ

|x| − a1 e
−b1|x|2 + a2 e

−b2|x|2, avec a2, a1 > 0, b1 < b2.

La constante κ vaut 1 pour les protons et 0 pour les neutrons.
Pour simuler ces deux systèmes physiques, nous utilisons le logiciel libre Scilab.

Tout d’abord nous comparons les valeurs de l’énergie obtenues pour les modèles HF
et HFB. Les résultats obtenus montrent qu’il y a tout le temps de l’appariement
(il est malgré tout nécessaire de bien choisir l’espace de discrétisation).

Aussi nous comparons le comportement des algorithmes de Roothaan et ODA.
Dans certains cas, nous observons que l’algorithme de Roothaan converge très
lentement par rapport à ODA, ou alors présente des oscillations entre deux états,
dont aucun des deux n’est solution du problème. L’algorithme de Roothaan est
connu et beaucoup utilisé par les physiciens. Pour contrer les problèmes qu’il
présente, ils utilisent un paramètre de mélange t fixe et non optimisé comme dans
ODA. Nous espérons donc que nos travaux permettront d’améliorer les algorithmes
existants.

L’observation numérique de l’existence de l’appariement dans tous les cas pose
évidemment une question théorique très intéressante. Nous espérons que les résul-
tats de cette thèse stimuleront l’obtention de nouveaux théorèmes dans ce sens.
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Chapter 1

Hartree-Fock-Bogoliubov model for

attractive systems

In this chapter we quickly present the Hartree-Fock-Bogoliubov (HFB) model and
we review some known mathematical results.

1.1 Linear N-body Schrödinger model

In this section, we introduce the many-body problem for N nonrelativistic particles
interacting with a (local) potential W . We start by recalling the basics of quantum
mechanics.

1.1.1 Many-body wavefunctions

The state of one quantum particle in R3

The quantum state of one particule in the 3 dimensional space and with q internal
degrees of freedom is described by a wavefunction

ψ ∈ L2(R3 × {1, ..., q};C),

such that
q∑

σ=1

∫

R3

|ψ(x, σ)|2dx = 1.

The internal variable σ depends on the studied particle and it is a feature of it. For
electrons, we have q = 2 and σ describes the spin which is an intrinsic quantum
property. The value |ψ(x, σ)|2 is the density of probability to find the particle at
x in R

3 with a spin σ ∈ {1, ..., q}. Similarly |ψ̂(p, σ)|2 represents the density of
probability to find the particle with a momentum p and a spin σ ∈ {1, ..., q}. Here
and everywhere the Fourier transform is defined by

ψ̂(p, σ) = (2π)−3/2

∫

R3

ψ(x, σ)e−ip.xdx.

21
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It is an isometry in L2(R3,Cq):

q∑

σ=1

∫

R3

|ψ(x, σ)|2dx =

q∑

σ=1

∫

R3

|ψ̂(p, σ)|2dp = 1.

The space L2(R3 × {1, ..., q};C) is equipped with the following norm

‖ψ‖2L2(R3×{1,...,q};C) =

q∑

σ=1

∫

R3

|ψ(x, σ)|2dx. (1.1.1)

Note that we can equivalently see ψ(x, σ) as a vector with q coordinates. In other
words L2(R3 × {1, ..., q},C) is isometric to L2(R3,Cq). Using the convention that

|ψ(x)|2 :=
q∑

σ=1

|ψ(x, σ)|2

is the usual norm in Cq, we then get

∫

R3

|ψ(x)|2 dx =

q∑

σ=1

∫

R3

|ψ(x, σ)|2dx.

Example 1.1.1 (Hydrogen atom). The hydrogen atom is the simplest atomic
system and it is a good starting point for presenting the formalism of quantum
mechanics. It is composed of a nucleus and just one electron. The nucleus is
assumed to be fixed, classical and pointlike (Born-Oppenheimer approximation).
This approximation can be justified by the fact that the nucleus has a mass which
is much larger than that of the electron. The electron is submitted to the Coulomb
potential

V (|x|) = − e2

4πǫ0|x|
of the nucleus. Here e is the charge of the electron, me is its mass and ǫ0 the
permittivity of the vacuum. The classical energy of the electron located in x ∈ R3

and with a momentum p ∈ R3 is

|p|2
2m

− e2

4πǫ0|x|
.

In a convenient choice of units we can take 2m = e2/(4πǫ0) = 1. The quantum
energy of the electron is then

∫

R3

|p|2|ψ̂(p)|2 dp−
∫

R3

|ψ(x)|2
|x| dx =

〈
ψ,

(
−∆− 1

|x|

)
ψ

〉

The Hamiltonian

H1 = −∆− 1

|x|
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appearing in the energy does not act on the spin variable. To apply H1 on a
wavefunction ψ ∈ L2(R3;C2), we just have to apply H1 to each component of the
wavefunction ψ. This means H1 can be written with respect to the spin variable as
a diagonal matrix. (

−∆− 1
|x| 0

0 −∆− 1
|x|

)
.

So when we take care of the spin, the spectrum of the hydrogen atom is the same
as that of the hydrogen atom without spin, but each eigenvalue has its multiplicity
multiplied by two. This means that in every state of the spectrum without spin, we
can put one electron with the spin ↑, and one with the spin ↓.

The spectrum of H1 on L2(R3;C) can be computed explicitly. The first eigen-
value is

λ1 = −1

with corresponding eigenfunction

ψ1(x) =
1

23/2
√
π
e−|x|/2.

The next eigenvalues are given by the formula

λn = − 1

n2
, n ≥ 1.

The states of N quantum particles in R3

Let us consider a system composed of N identical and indistinguishable particles.
The state of the system is now represented by a normalized wavefunction

Ψ(x1, σ1, ..., xN , σN) ∈ L2((R3 × {1, ..., q})N ;C)
where |Ψ(x1, σ1, ..., xN , σN)|2 is the density of probability that particle number
1 be in x1 ∈ R3 with ‘spin’ σ1 ∈ {1, ..., q}, particle number 2 be in x2 ∈ R3

with ‘spin’ σ2 ∈ {1, ..., q}, etc ... Since we have assumed that the particles are
indistinguishable, the probability to find particle number 1 in x1 with ‘spin’ σ1
and particle number 2 in x2 with ‘spin’ σ2, is the same as the one to find particle
number 1 in x2 with ‘spin’ σ2 and particle number 2 in x1 with ‘spin’ σ1. This is
equivalent to say that the function

(x1, σ1, ..., xN , σN ) 7→ |Ψ(x1, σ1, ..., xN , σN)|2

must be symmetric with respect to exchanges of its variables (xi, σi) ∈ R3 ×
{1, ..., q}. Then there are two possibilities:

• Either (x1, σ1, ..., xN , σN) 7→ Ψ(x1, σ1, ..., xN , σN ) is symmetric, which means

Ψ(xτ(1), στ(1), ..., xτ(N), στ(N))=Ψ(x1, σ1, ..., xN , σN)

for all permutations τ ∈ SN . In this case Ψ describes particles called bosons.
We will denote by L2

s((R
3 × {1, ..., q})N ,C) the subspace of such symmetric

functions.
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• Or (x1, σ1, ..., xN , σN) 7→ Ψ(x1, σ1, ..xN , σN) is antisymmetric, which means

Ψ(xτ(1), στ(1), ..., xτ(N), στ(N)) = ǫ(τ)Ψ(x1, σ1, ..xN , σN)

for all permutations τ ∈ SN , where ǫ(τ) ∈ ±1 is the signature of the permu-
tation τ . In this case Ψ describes particles called fermions. We will denote
by L2

a((R
3 × {1, ..., q})N ,C) the subspace of the antisymmetric functions.

In this thesis, we will only consider fermions which means that we have to work
with antisymmetric wavefunctions.

Remark 1.1.1. Exchanging two space variables xi without exchanging the corre-
sponding σi has no meaning.

Example 1.1.2 (Atoms and molecules). One famous example is that of the elec-
trons in a molecule, with the nuclei treated as classical fixed pointlike particles.
The Hamiltonian for the N electrons is the operator [31]

HN =
N∑

j=1

(−∆)xj
+ V (xj) +

∑

1≤k<ℓ≤N

1

|xk − xℓ|

where V is the external potential induced by the nuclei:

V (x) = −
M∑

m=1

zm
|x− Rm|

.

The ambient Hilbert space is the fermionic space L2
a((R

3×{↑, ↓})N ,C) and the en-
ergy is 〈Ψ, HNΨ〉. In this thesis we will be mainly interested in attractive systems
which are not submitted to any external potential V .

1.1.2 Basis of the N-body spaces, tensor products

Tensor product of Hilbert spaces

We fix as space for one quantum particle

H := L2(R3,Cq) = L2(R3 × {1, ..., q},C).

We define the tensor product of two functions ϕ1, ϕ2 ∈ H by

(ϕ1 ⊗ ϕ2)(x1, σ1; x2, σ2) = ϕ1(x1, σ1)ϕ2(x2, σ2),

which is a function of L2(R3 × {1, ..., q} × R3 × {1, ..., q},C) by Fubini’s theorem.
We know that

L2((R3, {1, ..., q})× (R3, {1, ..., q})) = L2(R3, {1, ..., q},C)⊗ L2(R3, {1, ..., q},C)
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which means that L2((R3, {1, ..., q})× (R3, {1, ..., q})) is the closure of the vector
space spaned by all the finite linear combinations of tensor product of the form
ϕ1⊗ϕ2. More precisely, if (ϕi)i≥1 is an orthonormal basis of H, then (ϕi⊗ϕj)i,j≥1

is an orthonormal basis of H⊗ H.
This is true for more than two Hilbert spaces: For all N we have

HN :=

N⊗

1

H = L2((R3 × {1, ..., q})N ,C),

the N -fold tensor product.
Now we look at the symmetric subspaces of HN .

Fermionic case

We consider N functions ϕ1, ..., ϕN in HN and define their antisymmetric tensor
product by

(ϕ1 ∧ ... ∧ ϕN)(x1, σ1; ...; xN , σN) =
1√
N !

∑

π∈SN

ǫ(π)ϕπ(1)(x1, σ1)...ϕπ(N)(xN , σN ).

This is an antisymmetric function with respect to exchange of the variables (xi, σi).
Hence we have

ϕ1 ∧ ... ∧ ϕN ∈ L2
a((R

3)N ,Cq).

This tensor product can be written as a determinant

(ϕ1 ∧ ... ∧ ϕN)(x1, ..., xN ) =
1√
N !

det(ϕi(xj , σj))

=
1√
N !

det




ϕ1(x1, σ1) ... ϕN(x1, σ1)
ϕ1(x2, σ2) ... ϕN(x2, σ2)

. ... .

. ... .

. ... .
ϕ1(xN , σN) ... ϕN (xN , σN )




which is called a Slater determinant in the Physics and Chemistry literature.
Similarly to the usual tensor product ⊗, it can be shown that (ϕj1∧ϕj2∧...∧ϕjN )

is an orthonormal basis of L2
a((R

3×{1, ..., q})N ,C), when (ϕj)j≥1 is an orthonormal
basis of H. We interpret this by saying that

L2
a((R

3 × {1, ..., q})N ,C) =
N∧

1

L2(R3 × {1, ..., q},C).

As we have seen, a system of N fermions is described by a normalized function
Ψ ∈ L2

a((R
3 × {1, ..., q})N ,C). It can therefore be written

Ψ =
∑

i1<..<iN

ci1..iN ϕi1 ∧ · · · ∧ ϕiN
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with ∑

i1<...<iN

|ci1,...,iN |2 = 1

when (ϕi)i≥1 is any orthonormal basis of L2(R3,Cq).
Even if we will not need it later, we mention the similar properties of the

bosonic space.

Bosonic case

We define the symmetric tensor product of N functions ϕi ∈ L2(R3×{1, ..., q},C)
by

(ϕ1 ∨ ... ∨ ϕN)(x1, σ1; ...; xN , σN ) =
1

N !

∑

π∈SN

ϕπ(1)(x1, σ1)...ϕπ(N)(xN , σN ),

which is a symmetric function with respect to exchange between (xi, σi). The
normalization with N ! is chosen to ensure that when ϕj = ϕ for j = 1, ..., N ,
this special state is normalized (this corresponds to a perfectly condensed system
where all the particles are in the same state ϕ). Similarly it can be shown that
(ϕ1 ∨ ϕ2 ∨ ... ∨ ϕN) is a basis of L2

s((R
3 × {1, ..., q})N ,C), which we interpret by

saying that

L2
s((R

3 × {1, ..., q})N ,C) =
N∨

1

L2(R3 × {1, ..., q},C).

Note that the basis is not orthonormal, but only orthogonal, however.

1.1.3 The N-body Hamiltonian

We now consider a system of N nonrelativistic fermions in R3, interacting with
a potential W . We assume that our particles are not submitted to any external
potential. Hence the system is invariant under translations. To describe this N -
body system, we use the Schrödinger operator H(N) defined for N > 2 by

H(N) =

N∑

i=1

(−∆)xi
+

∑

1≤k<ℓ≤N

W (xk − xℓ) (1.1.2)

The Hamiltonian H(N) acts on the fermionic subspace
∧N

1 L
2(R3×{1, ..., q};C) of

L2((R3 × {1, ..., q})N ;C). The particles have q internal degrees of freedom (q = 2
for spin-1/2 particles like electrons).

Most of what follows is valid in an abstract setting. However, for the sake
of simplicity, in most of the thesis we will restrict ourselves to the special case
mentioned before.

The first term in the definition (1.1.2) of H(N) is a one-body-operator (it in-
volves only one xi at a time) which is just the sum of the nonrelativistic kinetic
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energies of each particle in the system. Here −∆xi
denotes the Laplacian relatively

to the xi ∈ R3 variable. The second term involving W in (1.1.2) is a two-body
term (it involves two particles xk and xℓ at a time) which describes the interaction
between the fermions. It depends on the relative spatial positions of the parti-
cles. In principle W (xk − xℓ) could also be a function of the two internal variables
σk, σℓ ∈ {1, ..., q} of the particles k and ℓ. Again for simplicity, we will assume that
W only depends on the space variable xk − xℓ. Finally, we make the assumption
that W is smooth and decays fast enough at infinity to ensure that H is bounded
from below. To make this more explicit, we assume everywhere that

W =W1 +W2 ∈ Lp(R3) + Lq(R3) for some 2 ≤ p ≤ q <∞. (1.1.3)

Sometimes we will make more precise assumptions on W .
The lowest (ground state) energy of the system is

inf{〈Ψ, H(N)Ψ〉,Ψ ∈ HN , ‖Ψ‖HN
= 1} = inf Spec

(
H(N)

)
.

Even if W is attractive (that is, negative somewhere), the previous minimization
problem never has any minimizer Ψ. This is due to the translation-invariance of
the Hamiltonian H(N) and this is best understood by removing the center of mass.
This means we make the change of variables [42]

x′0 =
1

N

N∑

j=1

xj , x′1 = x2 − x1, ..., x
′
N−1 = xN − x1.

A computation shows that the original Hamiltonian H(N) can be rewritten as

H(N) =
|p′0|2
2N

+




N−1∑

j=1

|p′j |2
2

+
1

2

∣∣∣∣∣

N−1∑

j=1

p′j

∣∣∣∣∣

2

+
N−1∑

j=1

W (x′j) +
∑

1≤k<ℓ≤N−1

W (x′k − x′ℓ)




:=
|p′0|2
2N

+H ′(N − 1).

Here, as usual p′j = −i∇x′
j
. The bottom of the spectrum ofH(N) is also the bottom

of the spectrum of H ′(N − 1) and, because of the kinetic energy |p′0|2/(2N) of the
center of mass, there cannot be a ground state for H(N).

To account for the original statistics of our particles, the latter Hamiltonian
H ′(N − 1) is restricted to (N − 1)–body functions Φ that are symmetric (bosons)
or antisymmetric (fermions), and additionally satisfy the following relation

Φ(−x′1, x′2 − x′1, · · · , x′N−1 − x′1) = τ Φ(x′1, x
′
2, · · · , x′N−1)

with τ = 1 for bosons and τ = −1 for fermions.
If we forget the center of mass variable x′0, then the Hamiltonian H ′(N−1) can

itself have a ground state. Now the remaining (N − 1) particles feel an effective
external potential W as well as an interaction potential (also given by the function
W ). If W ≥ 0, then we have not gained anything, however, and the Hamiltonian
H ′(N −1) also has no bound state. The potential W must be sufficiently negative
somewhere to ensure that the bottom of the spectrum ofH ′(N−1) is an eigenvalue.
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1.2 Hartree-Fock approximation

We have seen that the Hamiltonian H(N) never has any bound state, but that
it may have some, after we have removed the center of mass. We now consider a
nonlinear approximation of the many-body problem which can have bound states
even without removing the center of mass. This is then a purely non linear effect.

The Hartree-Fock model is a non linear theory used to approximate the ground
state energy of the N -body system. It consists in restricting the N -body energy
〈H(N)Ψ,Ψ〉 to the class of the functions Ψ which can be written as a Slater
determinant (antisymmetrized product) defined as:

Ψ = ϕ1 ∧ ϕ2 ∧ ... ∧ ϕN , 〈ϕi, ϕj〉L2(R3;Cq) = δij ,

where ϕ1, ..., ϕN are called orbitals. More precisely the wavefunction which de-
scribes the system can be written as

Ψ(x1, σ1, ...xN , σN) =
1√
N !

det(ϕi(xj , σj)).

The constraint that the (ϕ)i must be orthonormal can be written in terms of the
Gram matrix as

GramΦ = IN

where

(GramΦ)ij = (〈ϕi, ϕj〉)ij =
∫

R3

ϕ∗
iϕj.

Here IN the identity matrix of CN .
For any wavefunction Ψ ∈ ∧N

1 L
2(R3;Cq), it is convenient to define the one-

body density matrix γΨ associated with Ψ. This is a self-adjoint trace-class oper-
ator acting on L2(R3;Cq), such that

1. 0 6 γΨ 6 1;

2. Tr(γΨ) = N , the number of particules in the system;

3. its kernel is defined by

γΨ(x, σ, y, σ
′) = N

q∑

σ2=1

· · ·
q∑

σN=1

∫

R3

· · ·
∫

R3

Ψ(x, σ, x2, σ2..., xN , σN )×

×Ψ(y, σ′, x2, σ2, ..., xN , σN)dx2 · · · dxN .

The associated density of charge is defined by

ρΨ(x) =

q∑

σ=1

γΨ(x, σ, x, σ)

= N

q∑

σ1=1

· · ·
q∑

σN=1

∫

R3

· · ·
∫

R3

|Ψ(x, σ1, x2, σ2, ..., xNσN)|2dx2 · · · dxN .
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For a Hartree-Fock state, one finds that γΨ is precisely the orthogonal projector
on the N -dimensional space spanned by (ϕ1, ..., ϕN):

γΨ =

N∑

i=1

|ϕi〉〈ϕi|. (1.2.4)

This operator can be written as

γΨ(x, σ, y, σ
′) =

N∑

i=1

ϕi(x, σ)ϕi(y, σ′). (1.2.5)

When we interpret L2(R3 × {1, ..., q},C) ≃ L2(R3,Cq), this means that we can
think about the kernel of γΨ as a q × q matrix. Equivalently

γΨ(x, y) =

N∑

i=1

ϕi(x)ϕi(y)
∗ (1.2.6)

where v∗ = vT is the row vector which contains the complex components of the
column vector v. We then get for the density of charge

ρΨ(x) = TrCq γΨ(x, x) =

N∑

i=1

|ϕi(x)|2

The ground state Hartree-Fock energy for the N -body system is

IHF (N) = inf
{
〈Ψ, HV (N)Ψ〉,Ψ ∈ SN , ‖Ψ‖L2(R3) = 1

}
(1.2.7)

where SN is the submanifold of HN composed of all the functions which can be
written as a Slater determinant, and which have a finite kinetic energy:

SN =

{
Ψ =

1√
N !

det (ϕi(xj, σj)), Φ ∈ H1(R3,Cq)N , GramΦ = IN

}
.

It is possible to compute the energy of any HF state of this set and one finds

EHF (ϕ1, ..., ϕN) = 〈Ψ, HNΨ〉

=

N∑

i=1

∫

R3

|∇ϕi|2 +
1

2

∫∫

R3×R3

ρΨ(x)ρΨ(y)W (x− y)dxdy

− 1

2

∫∫

R3×R3

|γΨ(x, y)|2W (x− y)dxdy. (1.2.8)

Here we recall that W is the interaction between the particles. In the HF en-
ergy (1.2.8), the first term is nothing but the total kinetic energy. The second one
is called the direct term and it is the classical electrostatic energy of the charge
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distribution ρΨ. The third term is purely quantum and it is called the exchange
term.

When minimizers for (1.2.7) exist, they satisfy the Euler-Lagrange equations
{

FΦϕi = λiϕi

〈ϕi, ϕj〉 = δij

where FΦ is the Fock operator

FΦ = −∆+

(
N∑

j=1

|ϕj|2 ⋆ W (x)

)
−

N∑

j=1

(
(·ϕj) ⋆ W

)
ϕj

and the λi are the Lagrange multipliers associated with the orthonormaly con-
straints. Let us remark that minimizers (when they exist) are never unique. By
translation invariance, we always have a whole manifold of minimizers obtained
by translating the system in space.

The fundamental works concerning the existence of HF minimizers are due
to Lieb and Simon [32] and to Lions [37] who also constructed excited states.
Both papers deal with atoms and molecules. In [15], Friesecke was the first to
consider the Hartree-Fock model as a many-body quantum system, again for atom
and molecules. The first results for the translation-invariant Hartree-Fock theory
mentioned in this Section, are due to Gogny and Lions [18] for models in nuclear
physics, to Lenzmann and Lewin in [26] for a pseudo-relativistic gravitational
model, and to Lewin in [28] in a more general (non-relativistic) situation. The
following is taken from [28]:

Theorem 1.2.1 (Translation-invariant Hartree-Fock theory). Assume that

W ∈ Lp(R3) + Lq(R3)

for some 2 ≤ p ≤ q < ∞ and that N ≥ 2. Then the following assertions are
equivalent

1. All the minimizing sequences (Ψn) for the HF minimization problem (1.2.7)
are precompact in

∧N
1 H

1(R3,Cq);

2. The binding inequalities

IHF(N) < IHF(N − k) + IHF(k), for all k = 1, ..., N − 1. (1.2.9)

are satisfied.

Furthermore, if W is Newtonian at infinity, that is

W (x) ≤ − a

|x| for a > 0 and |x| ≥ R, (1.2.10)

then the previous two equivalent conditions are verified for all N ≥ 2.
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It is very important that the binding inequalities in (1.2.9) are quantized (they
involve the integer k). This is not true anymore in the Hartree-Fock-Bogoliubov
model which we present in the next section, see (1.4.31) below.

As we have seen in Section 1.1.3, by translation invariance the Hamiltonian
H(N) has no ground state (that is, the bottom of its spectrum cannot be an
eigenvalue). But it may have one once the center of mass is removed, if W is
sufficiently negative. In Hartree-Fock theory, because of the nonlinearity there can
be a ground state, even if the system is translation-invariant. Of course, translation
invariance is not lost and there are then infinitely many ground states, obtained
by translating the system arbitrarily.

1.3 Second Quantization

In order to present a more precise nonlinear approximation of the original N -body
problem, we go back to the N -body operator

H(N) =

N∑

i=1

(−∆)i +
∑

1≤i<j≤N

Wij

defined on the Hilbert space HN =
N∧
1

H. The number of particles N is fixed, which

is called the canonical picture. For attractive systems, it is more useful not to fix
the particule number at the outset. So we allow for one symmetry breaking namely
that of particle number. We replace the fixed number N by an operator N whose
eigenvalues are 0, 1, 2, ... Only the average number of particle makes sense for a
quantum state. The convenient way of formulating this is to use the formalism of
second quantization, which we summarize in this section.

1.3.1 Fock spaces

We recall that the one-particle Hilbert space is

H = L2(R3 × {1, ..., q},C),
(but we can take any abstract separable Hilbert space instead). We define like in
the previous section the N -fermionic space to be the antisymmetric tensor product

HN = H ∧ ... ∧ H︸ ︷︷ ︸
Ntimes

∀N = 1, 2, ...

with the identification H1 = H and H0 = C. The vector 1 ∈ C = H0 is often
denoted as 1 = |0〉 and it is called the vacuum. It is useful to consider all particle
numbers at the same time. To do this we introduce the Fock space

F =

∞⊕

N=0

HN = H0 ⊕ H1 ⊕ H2... (1.3.11)
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When all particles numbers are considered at the same time, we call this situation
the grand canonical picture. In this thesis, we do not study bosonic systems but
for completeness we give the definition of the bosonic Fock space

FB =
∞⊕

N=0

N∨

1

H.

1.3.2 Creation and annihilation operators

Let us introduce operators in the Fock space, which are important tools in studying
many body problems. For any vector f in the one-particle Hilbert space H, we
introduce the creation operator a†(f) : F → F defined on the fermionic Fock space
F by the following action

a†(f)(f1 ∧ ... ∧ fN) = f ∧ f1 ∧ ... ∧ fN .

The annihilation operator a(f) : F → F is by definition the adjoint of the creation
operator

a(f) =
(
a†(f)

)∗
.

In particular we obtain

a(f1)(f1 ∧ ... ∧ fN) = f2 ∧ ... ∧ fN ,

a(fN+1)(f1 ∧ ... ∧ fN ) = 0,

where the functions f1, ..., fN+1 are assumed to be orthonormal. On the vacuum,
they act as follows a(f)Ω = 0 and a†(f)Ω = f . The physical interpretation of
these operators is that a†(f) creates a fermion in the single particle state f , since
it raises the number of particles from N to N + 1. The creation and annihilation
operators satisfy the Canonical Anticommutation Relations (CAR)

1. {a(f), a(g)} = a(f)a(g) + a(g)a(f) = 0,

2. {a(f), a†(g)} = a(f)a†(g) + a†(g)a(f) = 〈f, g〉HI.

1.3.3 Observables

In this section we explain how one and two-body operators in Fock space can be
written using creation and annihilation operators.

1-body operators

Consider a self-adjoint operator A acting on the one-body space H. We denote by

A =
⊕

N≥0

N∑

i=1

(A)xi
,
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the operator on the Fock space F which, in each N -body space HN , acts as a sum
of operators acting on each variable separately. By convention this operator is 0
on H0.

The operator A can be expressed with the creation and annihilation operators.
Let {fi}i≥1 be an orthonormal basis of H, such that fi ∈ D(A) for all i. A
computation shows that

A =
∑

i,j≥1

Aija
†(fi)a(fj), with Aij = 〈fi, Afj〉H.

This can be proved by looking at the action of this operator on the orthonormal
basis (fi1 ∧ · · · ∧ fiN )i1<···<iN of HN .

Example 1.3.1 (The number operator). The number operator is defined by

N =
⊕

N≥0

N

on the Fock space F . It is just equal to N (times the identity) on any HN . In
particular, the average number of particles of a state Ψ ∈ F is given by the formula

〈Ψ,NΨ〉 =
∑

n≥1

n‖ψn‖2. (1.3.12)

In the second quantization formalism, the particle number operator can be written
as

N =
∑

i≥1

a†(fi)a(fi).

It corresponds to taking A = 1.

2-body operators

Consider a self-adjoint operator W acting on the two-body space H2. We denote
by

W =
⊕

N≥0

∑

1≤k<ℓ≤N

Wxk,xℓ
,

the operator on the Fock space F which, in each N -body space HN , acts as a sum
of operators acting on two variables at a time. By convention this is 0 on H0 and
H1.

The operator can also be written in terms of creation and annihilation operators
as follows:

W =
∑

1≤i<j
1≤k<ℓ

Wijkℓ a
†(fi) a

†(fj) a(fℓ) a(fk)

where
Wijkℓ = 〈fi ∧ fj,Wfk ∧ fℓ〉H2

.
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Hamiltonian

Similarly, our N -body Hamiltonian H(N) can also be lifted to Fock space as
follows:

H =
⊕

N≥0

H(N)

which is just the diagonal operator



H(0) 0 ... ...
0 H(1) 0 ...
... 0 H(2) 0
...

... 0
. . .

...
...

...
. . .

...
...

...
. . .




.

It can be written in second quantization form as

H =
∑

i,j≥1

Tij a
†(fi)a(fj) +

∑

1≤i<j
1≤k<ℓ

Wijkℓ a
†(fi) a

†(fj) a(fℓ) a(fk) (1.3.13)

with

Tij =

∫

R3

∇fi∇fj

and

Wijkℓ =

q∑

σ=1

q∑

σ′=1

∫

R3

∫

R3

(
fi ∧ fj

)
(x, σ, y, σ′)W (x− y)

(
fk ∧ fℓ

)
(x, σ, y, σ′) dx dy.

1.3.4 Quasi-free states

A quasi-free state is a special state in Fock space for which it is possible to compute
the expectation value of any observable, only in terms of the (generalized) one-
particle density matrix.

In order to define the one-particle density matrix properly, let us consider an
abstract state ω acting on F , that is, a linear form acting on the space of bounded
operators B(F) such that ω(1) = 1 and ω(A∗A) > 0 for every A in B(F). We
define the two one-particle matrices γ : H → H and α : H → H by:

〈f, γg〉 = ω(a†(g)a(f)), 〈f, αg〉 = ω(a(g)a(f)). (1.3.14)

The operator γ is usually called the one-body density matrix and α is called the
pairing density matrix of ω. They satisfy the constraints

(
0 0
0 0

)
≤ Γ =

(
γ α
α∗ 1− γ

)
≤
(
1 0
0 1

)
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where Γ is an operator acting on H ⊕ H. Also we have αT = −α where αT = α∗.
Note that

0 ≤ γ = γ∗ ≤ 1.

Also, writing that Γ2 ≤ Γ, we find that

αα∗ ≤ γ − γ2.

The kernel α(x, σ; x′, σ′) of the operator α can be interpreted as a two-body
fermionic wavefunction of Cooper pairs.

Now to any such pair (γ, α), there is a unique state (called quasi-free) in Fock
space which is such that the expectation value of any polynomial in the creation
and annihilation operators can be computed only in terms of γ and α by Wick
formula [3]

ω(e1, e2, .., e2N−1) = 0 (1.3.15)

and
ω(e1, e2, .., e2N ) =

∑

π

(−)πω(eπ(1)eπ(2))...ω(eπ(2N−1)eπ(2N)) (1.3.16)

where
∑

π is the sum over permutations π that satisfy π(1) < π(3) < ... < π(2N−
1) and π(2j − 1) < π(2j) for all 1 ≤ j ≤ N , and the operators e1, e2, ..., e2N are
each either a a† or a a. The following is taken from [3]:

Theorem 1.3.1 (Quasi-free states). Let 0 ≤ Γ ≤ 1 be an operator on H ⊕ H of
the form

Γ =

(
γ α
α∗ 1− γ

)
,

with γ∗ = γ and αT = −α, and assume furthermore that Tr(γ) < ∞. Then there
exists a unique quasi-free state ω with finite particle number such that Γ is the
generalized one-body density matrix of ω.

This state ω is a pure state ω(A) = 〈Ψ, AΨ〉 if and only if the 1-pdm Γ with
Tr(γ) <∞ is a projection on H⊕ H, i.e. Γ2 = Γ.

When they have a finite average number of particles, quasi-free states are some-
times called Hartree-Fock-Bogoliubov states in the literature, which is a convention
that we will also use. When α ≡ 0 and γ2 = γ is a projection, then the unique
state of Theorem 1.3.1 is nothing else but the usual Hartree-Fock state

Ψ = ϕ1 ∧ · · · ∧ ϕN

with (ϕ1, ..., ϕN) an orthonormal basis of the range of γ. Therefore the manifold
of HFB states contains the usual HF states.

1.4 Hartree-Fock-Bogoliubov theory

Hartree-Fock-Bogoliubov theory consists in restricting the many-body Hamilto-
nian H on the Fock space F to the special class of quasi-free (HFB) states. This
set contains the Slater determinants but it is larger. So HFB theory is a general-
ization of HF theory presented in Section 1.2.
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1.4.1 Hartree-Fock-Bogoliubov states and their energy

We have seen that translation-invariance can be broken in a nonlinear approxima-
tion of the linear Schrödinger model, such as Hartree-Fock. When the interaction
potential W is attractive (W ≤ 0), or at least partially attractive (W ≤ 0 on a set
of measure non zero), it is often convenient to allow for another symmetry break-
ing, namely that of particle number. This means that the fixed particle number
N is replaced by the number operator N in Fock space, whose eigenvalues are
0, 1, 2, .... Only the average particle number is well defined for a quantum state.
Allowing to have ψn 6= 0 for n 6= N is useful to describe some physical proper-
ties of attractive systems. In most practical cases it is expected that the variance∑

n≥0(n − N)2 ||ψn||2Hn will be quite small, i.e. that Ψ will live in a neighborhood
of HN .

The Hartree-Fock-Bogoliubov (HFB) model generalizes the well-known Hartree-
Fock (HF) method and it allows for breaking of particle number in a very simple
fashion. The method consists in restricting the many-body Hamiltonian H on F
to the special class of states called quasi-free states (or Hartree-Fock-Bogoliubov
states), which we have introduced in the previous section.

For the present work, we will only need the formula of the total energy, in
terms of γ and α:

ω(H)

=
∑

n≥0

〈ψn, H(n)ψn〉Hn

= Tr(−∆)γ +
1

2

∫

R3

∫

R3

W (x− y)
(
ργ(x)ργ(y)− |γ(x, y)|2 + |α(x, y)|2

)
dx dy

:= E(γ, α) (1.4.17)

where ργ(x) = TrCq(γ(x, x)) is the density of particles in the system. This expres-
sion is valid whether ω is a pure state or not. The terms in the double integral
are respectively called the direct, exchange and pairing terms. Taking α ≡ 0 one
recovers the usual Hartree-Fock energy which has been introduced in Section 1.2.
The value of the HFB energy can be recovered by using the second-quantization
formula (1.3.13) of H as well as the definition of the density matrices γ and α.

Our main goal here is to study the minimization of the nonlinear functional
E(γ, α), when γ and α are submitted to the above constraints, and its numerical
implementation. We will show below that, under our assumption (1.1.3) on W ,
the energy E is well defined in an appropriate function space.

Note that, for a pure state, the variance of the particle number for a HFB state
Ψ in Fock space can be expressed only in terms of α by

〈
Ψ,
(
N − 〈Ψ,NΨ〉F

)2
Ψ
〉
F
=
∑

n≥0

(n−N)2 ||ψn||2Hn = 2 TrH(αα
∗),

see Lemma 2.7 in [3]. The spreading of the HFB state over the different spaces Hn

is therefore determined by the Hilbert-Schmidt norm of the pairing matrix α. We
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recover the fact that a mixed HFB state has a given particle number if and only
if its pairing matrix α vanishes.

1.4.2 Rigorous definition of the HFB energy

Recall our assumption that Tr(γ) = N <∞. Since γ ≥ 0, this means that γ must
be a trace-class operator. Because αα∗ ≤ γ, we see that α must be a Hilbert-
Schmidt operator. In the following we denote by Sp the Schatten spaces with
1 ≤ p <∞ consisting of the bounded operators A such that

‖A‖Sp = Tr(|A|p)1/p <∞.

The space S∞ denotes the space of compact operators on L2(R3,Cq), with the
operator norm ‖ · ‖. So we have γ ∈ S1 and α ∈ S2.

The trace-class operator γ ∈ S1 has a kernel γ(x, y) which can be viewed as
a q × q hermitian matrix for all x, y ∈ R3, where we recall that q is an internal
degree of freedom like spin. The density ργ is the unique nonnegative function in
L1(R3) such that

Tr(γV ) =

∫

R3

ργ(x)V (x)dx

for any bounded function V . The pairing density matrix α is Hilbert-Schmidt and
it also has a kernel which is a q×q matrix. Because of the constraint that αT = −α,
it must be antisymmetric: α(x, y)T = −α(y, x), where T is the transposition of
matrices. Recall that we also have the condition

(
0 0
0 0

)
≤ Γ :=

(
γ α
α∗ 1− γ

)
≤
(
1 0
0 1

)
(1.4.18)

The set of one-particle density matrices (γ, α) of mixed HFB states is therefore a
convex set, whose extremal points correspond to pure state, Γ2 = Γ. The natural
question arises whether a minimizer, when it exists, is automatically a pure state.
The answer to this question is positive in many situations, as we will see below.

Before turning to the comparison between the minimization among pure and
mixed states, we first introduce the variational sets on which the energy is well
defined. The sets of all pure and mixed HFB states with finite kinetic energy are
respectively given by

P = {(γ, α) ∈ S1(H)×S2(H) : α
T = −α,Γ = Γ∗ = Γ2,Tr(−∆)γ <∞} (1.4.19)

and the closed and convex subset

K = {(γ, α) ∈ S1(H)×S2(H) : α
T = −α, 0 ≤ Γ = Γ∗ ≤ 1,Tr(−∆)γ <∞},

(1.4.20)
The expression Tr(−∆)γ is to be understood in the sense of quadratic forms, that
is

Tr(−∆)γ =

3∑

k=1

Tr(pkγpk) ∈ [0,+∞], with pk = −i∂xk
.
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In practice, we want to fix the average number of particles. To do that, we add
the assumption TrHγ = N and introduce the corresponding sets

PN = {(γ, α) ∈ P : TrHγ = N} (1.4.21)

and
KN = {(γ, α) ∈ K : TrHγ = N}, (1.4.22)

of pure and mixed HFB with average particle number N .
The following lemma says that the energy is a well-defined functional on the

largest of the above sets K, and that it is bounded from below on K(N) for any
N ≥ 0.

Lemma 1.4.1 (The HFB energy is bounded-below on K(N)). When W = W1 +
W2 ∈ Lp(R3) + Lq(R3) with 2 ≤ p ≤ q < ∞, then E(γ, α) is well defined for any
(γ, α) ∈ K. It also satisfies a bound of the form

∀(γ, α) ∈ K, E(γ, α) ≥ 1

2
Tr(−∆)γ − C(N) (1.4.23)

for some constant C(N) depending only on N = Tr(γ).

Proof. The assumption that W =W1+W2 ∈ Lp(R3)+Lq(R3) with 2 ≤ p ≤ q <∞
implies that W is relatively form-bounded with respect to the Laplacian, with
relative bound as small as we want [9]. This means |W | ≤ ǫ(−∆)+Cǫ in the sense
of quadratic forms, for all ǫ > 0 and for some constant Cǫ. This can now be used
to verify that the energy is well defined under the assumption that Tr(−∆)γ <∞.
First, we have for the direct term

∫

R3

∫

R3

|W (x− y)| ργ(x)ργ(y) dx dy ≤ ǫN

∫

R3

|∇√
ργ|2 + CǫN

2

≤ ǫN Tr(−∆)γ + CǫN
2,

where in the last line we have used the Hoffmann-Ostenhof inequality [23],

∫

R3

|∇√
ργ |2 ≤ Tr(−∆)γ. (1.4.24)

The exchange term is bounded similarly by applying the inequality |W | ≤ ǫ(−∆)+
Cǫ in x with y fixed:

∫

R3

∫

R3

|W (x− y)| |γ(x, y)|2 dx dy

≤ ǫ

∫

R3

∫

R3

|∇xγ(x, y)|2 dx dy + Cǫ

∫

R3

∫

R3

|γ(x, y)|2 dx dy

= ǫTr(−∆)γ2 + CǫTr γ
2 ≤ ǫTr(−∆)γ + CǫN,
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since γ2 ≤ γ. Similarly we have, since αα∗ ≤ γ − γ2 ≤ γ,

∫

R3

∫

R3

|W (x− y)| |α(x, y)|2 dx dy ≤ Tr
(
ǫ(−∆) + Cǫ

)
αα∗ ≤ ǫTr(−∆)γ + CǫN.

All this shows that all the terms in the energy are well defined when (γ, α) ∈ K(N).
Also, we have

E(γ, α) ≥
(
1− ǫ− ǫN/2

)
Tr(−∆)γ − CǫN − CǫN

2/2. (1.4.25)

Taking ǫ = 1/(2 +N) finishes the proof.

Lemma 1.4.1 allows us to define the minimization problems for pure and mixed
states as follows:

I(N) := inf
(γ,α)∈K(N)

E(γ, α), (1.4.26)

J(N) := inf
(γ,α)∈P(N)

E(γ, α). (1.4.27)

Of course we have J(N) ≥ I(N) since P(N) ⊂ K(N). In many cases, we have that
I(N) = J(N) and that any minimizer, when it exists, is automatically a pure HFB
state. We give two results in the literature going in this direction. The first deals
with purely repulsive interactions and it is Lieb’s famous variational principle [29]
(see also Thm. 2.11 in [3]).

Theorem 1.4.1 (Lieb’s HF Variational Principle [29]). Assume that

W ≥ 0

and let N be an integer. Then for any (γ, α) ∈ K(N), there exists (γ′, 0) ∈ P(N)
such that

E(γ, α) ≥ E(γ′, 0).

In particular, we have I(N) = J(N).
If W > 0 a.e., then any minimizer for I(N), when it exists, is necessarily of

the form (γ′, 0) with (γ′)2 = γ′.

We see that for repulsive interactions, W > 0, there is never pairing (α ≡ 0)
and the ground state is always a pure HF state, that is, a Slater determinant.
The fact that, in HF theory, one can minimize over mixed states and get the same
ground state energy is very important from a numerical point of view. This was
used by Cancès and Le Bris [6, 7] to derive well-behaved numerical strategies, to
which we will come back later in Section 3.2.

The second result with the contraint imposed is the famous theorem of Bach,
Fröhlich and Jonsson, for purely attractive interactions:
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Theorem 1.4.2 (HFB Constrained Variational Principle). Assume that the num-
ber of spin states is q = 2 (spin-1/2 fermions), and that W can be decomposed in
the form

W (x− y) = −
∫

Ω

dµ(ω)fω(x) fω(y) (1.4.28)

on a given measure space (Ω, µ), with (fω)ω∈Ω a family of bounded real-valued
functions on R3. Then for any (γ, α) ∈ KN (with N a given integer), we have

E(γ, α) ≥ E(γ′, α′), (1.4.29)

with

γ′ = g ⊗
(
1 0
0 1

)
, α′ =

√
g(1− g)⊗

(
0 1
−1 0

)
(1.4.30)

(the second matrices act on the spin variables), and

g = gT = g =
γ↑↑ + γ↓↓ + γ↑↑ + γ↓↓

4
.

This HFB state is pure: (γ′, α′) ∈ P(N). In particular, we have I(N) = J(N).
Furthermore, if W < 0 a.e., then any ground state is necessarily of the previous
form.

Remark 1.4.1. Note that N does not have to be an even integer in this result.
Since TrL2(R3)(g) = N/2, the operator g must have one eigenvalue different from 1
when N is odd, and it follows that α 6= 0 in this special case.

In Theorem 1.4.2, we have decomposed the operator γ acting on L2(R3 ×{↑, ↓
},C) according to the spin variables as follows:

γ =

(
γ↑↑ γ↓↑
γ↑↓ γ↓↓

)
.

Theorem 1.4.2 says that when W satisfies (1.4.28), one can minimize over states
which are pure, real, and have a simple spin symmetry. The antisymmetry of α is
only contained in the spin variables, hence the Cooper pairs are automatically in
a singlet state. Of course, one can express the total energy only in terms of the
real operator g, as follows

E(γ′, α′) = 2 TrL2(R3)(−∆)g

+

∫

R3

∫

R3

W (x− y)
(
2ρg(x)ρg(y)− |g(x, y)|2 + |

√
g(1− g)(x, y)|2

)
.

In practice it will be more convenient to keep a pairing term a(x, y) not a pri-
ori related to g and to optimize over both g and a, that is, to consider mixed
states. When W satisfies the assumptions of the theorem, any ground state will
automatically lead to a = ±

√
g(1− g).
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Let us conclude our comments on Theorem 1.4.2, by noticing that several
simple attractive potentials W can be written in the form (1.4.28). For instance
the Fefferman-de la Llave formula [12]

1

|x− y| =
1

π

∫ ∞

0

dr

r5

∫

R3

dz 1B(z,r)(x)1B(z,r)(y)

shows that a simple Newtonian interaction W (x−y) = −|x−y|−1 is covered (here1B(z,r) is the characteristic function of the ball centered at z, of radius r). Hainzl
and Seiringer showed in [21] that any smooth enough radial function W can be
written in the form

W (x− y) =

∫ ∞

0

dr g̃(r)

∫

R3

dz 1B(z,r)(x)1B(z,r)(y)

for some explicit function g̃, whose sign can easily be studied.

Remark 1.4.2. The total HFB energies I(N) is an upper bound to the full grand
canonical Schrödinger energy in Fock space

JSch(N) := inf{ω(H), ω(N ) = N} = inf∑
n≥0

αn=1
∑

n≥0
nαn=N

∑

n≥0

αn inf Spec(H(n)).

Without appropriate stability assumptions on W , the latter can be equal to −∞.
In general, it is much lower than the canonical energy inf Spec(H(N)).

1.4.3 Existence results and properties of minimizers

The HFB minimization problem for mixed states is

I(N) = inf{E(γ, α) : (γ, α) ∈ KN}.

The following deals with the existence of minimizers and it is the equivalent of
Theorem 1.2.1.

Theorem 1.4.3 (Existence of minimizers and compactness of minimizing se-
quences). We assume as before that W = W1 + W2 ∈ Lp(R3) + Lq(R3) with
2 ≤ p ≤ q <∞. Let λ > 0. Then the following assertions are equivalent:

1. All the minimizing sequences (γn, αn) ⊂ K(λ) for I(λ) are precompact up to
translations, that is there exists a sequence (xk) ⊂ R3 and (γ, α) ∈ K(λ) such
that, for a subsequence,

lim
k→∞

‖(1−∆)1/2(τxk
γnk

τ−xk
− γ)(1−∆)1/2‖S1

= lim
k→∞

‖(1−∆)1/2(τxk
αnk

τ−xk
− α)‖S2

= 0.

In particular (γ, α) is a minimizer for I(λ).
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2. The binding inequalities

I(λ) < I(λ− µ) + I(µ) for all 0 < µ < λ (1.4.31)

are satisfied.

Furthermore, if W is Newtonian at infinity, that is

W (x) ≤ − a

|x| for a > 0 and |x| ≥ R, (1.4.32)

then the previous two equivalent conditions are verified.

The proof of Theorem 1.4.3 follows along the lines of the paper [26] of Lenzmann
and Lewin, in which the Laplacian −∆ was replaced by the more complicated
operator

√
1−∆− 1. It will not be detailed here.

The assumption that the interaction is Newtonian at infinity is a big simplifi-
cation, as it means that two subsystems receding from each other always attract
at large distances. One can expect that minimizers exist even if the potential is
not attractive at infinity, as soon as it has a sufficiently large negative component.
A typical effective potential W (x) used in nuclear physics is nonnegative for small
and large |x|, and has a negative well at intermediate distances [39]. At infinity
it typically decays like +κ|x|−1 for two protons, and exponentially fast when one
of the two particles is a neutron. Even in HF theory, we are not aware of any
existence result dealing with such potentials, however.

Note the difference between the unquantized binding condition (1.4.31) in HFB
theory and the quantized condition (1.2.9) in HF theory.

The form of the nonlinear equation solved by minimizers is well-known in the
physics literature, and it was re-explained in [3]. The following result summarizes
some known properties.

Theorem 1.4.4 (HFB equation and properties of minimizers [3, 26]). A HFB
minimizer on K(N) solves the nonlinear equation

Γ = 1(−∞,0)

(
FΓ − µN

)
+ δ (1.4.33)

where 0 ≤ δ ≤ 1{0}(FΓ − µN ) has the same form as Γ, and where

N :=

(
1 0
0 −1

)
, FΓ =

(
hγ π

π∗ −hγ

)
(1.4.34)

with hγ = −∆+ ργ ∗W −W (x− y)γ(x, y) and π(x, y) = α(x, y)W (x− y).
If W (x− y) = −κ|x− y|−1 (Newtonian interaction) and N is an integer, then

all the minimizers are of the special form (1.4.30). In this case, we have either
α ≡ 0 and γ is a projector of rank N , or α 6= 0 and γ has an infinite rank.
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The nonlinear equation (1.4.33) is in principle similar to the usual equation
obtained in HF theory,

γ = 1(−∞,µ)(hγ) + δ (1.4.35)

Indeed, (1.4.33) reduces to (1.4.35) when α ≡ 0. Let us however emphasize that
the mean-field operator FΓ has a spectrum which is symmetric with respect to 0.
Hence FΓ is usually not even semi-bounded, on the contrary to hγ which is always
bounded from below. Furthermore, the operator N does not commute with FΓ

(except when α ≡ 0) and the equation cannot be written in a simple form as in
HF theory. This will cause several difficulties to which we will come back at length
later.

The fact that γ has an infinite rank when there is pairing, α 6= 0, is a dramatic
change of behavior compared to the simple HF case. However, no information on
the decay of the eigenvalues of γ seems to be known.

An important open question is to show that minimizers actually exhibit non-
vanishing pairing α 6= 0, at least for a sufficiently strong attractive potential W .
On heuristic grounds, one expects such a phenomenon of “Cooper pair formation”
to be energetically favorable due to the attractive interaction among particles.
However, it seems to be a formidable task to find mathematical proof for this
claim. The existence of pairing is known in some particular situations (when N is
odd and W is Newtonian, see Remark 1.4.1, for the Hubbard model [3], or in BCS
theory [13, 14, 19, 22]), but for the model presented here, we are not aware of any
result of this sort. One of the purposes of this thesis is to investigate this question
numerically.
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Chapter 2

Discretization

In this chapter we explain how to discretize the HFB energy in order to handle it
on a computer. First in Section 2.1 we show that, under suitable conditions on the
discretization space Vh, the minimum energy and any sequence of ground states
converge to the solution of the problem in the infinite dimensional case. Then, in
Section 2.2 we give the form of the discretized HFB energy and equations. Finally,
in Section 2.3 we will discuss the treatment of symmetries in the system.

2.1 Convergence analysis

In this section we show that the HFB ground state energy in a finite basis converges
to the true HFB ground state energy when the size of the basis grows. We consider
a sequence of finite-dimensional spaces Vh ⊂ H1(R3,Cq) for h → 0. We assume
that any function f ∈ H1(R3,Cq) can be approximated by function in Vh:

∀f ∈ H1(R3,Cq), ∃fh ∈ Vh such that ||f − fh||H1 −→
h→0

0. (2.1.1)

We typically think of a sequence Vh given by the Finite Elements Method [1]. Let
πh denote the orthogonal projection on Vh in L2(R3,Cq)1. We define the set of
density matrices living on Vh (with average particle number N) as follows:

Kh(N) =
{
(γ, α) ∈ K(N) : πhγπh = γ, πhαπh = α

}
, (2.1.2)

where K(N) is defined in Chapter 1 by (1.4.22). All the states in Kh(N) have a
finite rank and can be expanded in a basis of Vh. The corresponding minimization
problem is now

Ih(N) = inf
(γ,α)∈Kh(N)

E(γ, α). (2.1.3)

Since Kh(N) ⊂ K(N) by definition, it is obvious that Ih(N) ≥ I(N). The following
result is a simple consequence of Theorem 1.4.3.

1Note that πhf → f when h → 0 for any fixed f ∈ L2. This follows from the density of H1 is

L2: we fix ǫ > 0 and take g ∈ H1 such that ‖f − g‖L2 ≤ ǫ. Then ‖(1− πh)g‖L2 ≤ ‖g − gh‖L2 ≤
‖g − gh‖H1 → 0 and the statement follows.

45
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Theorem 2.1.1 (Convergence of the approximate HFB problem). When W =
W1 +W2 ∈ Lp(R3) + Lq(R3) with 2 ≤ p ≤ q < ∞ and under Assumption (2.1.1)
on the sequence (Vh), we have

lim
h→0

Ih(N) = I(N). (2.1.4)

If the binding inequality (1.4.31) is satisfied, then any sequence of minimizers
(γh, αh) ∈ Kh(N) for Ih(N) converges, up to a subsequence and up to a translation,
to a minimizer (γ, α) ∈ K(N) of I(N), in the sense that

lim
hk→0

∣∣∣∣(1−∆)1/2(τxk
γhk

τ−xk
− γ)(1−∆)1/2

∣∣∣∣
S1

= lim
hk→0

∣∣∣∣(1−∆)1/2(τxk
αhk

τ−xk
− α)

∣∣∣∣
S2

= 0. (2.1.5)

Proof. We only have to show that Ih(N) → I(N) as h → 0. Then, any sequence
of exact minimizers (γh, αh) for Ih(N) is also a minimizing sequence for I(N).
Applying Theorem 1.4.3 concludes the proof. We need the following lemma, whose
proof is given below.

Lemma 2.1.1. The finite-rank operators are dense in K(N).

Let (γ, α) ∈ K(N) be any such finite rank operator. Let (fi)Ki=1 be an orthonor-
mal basis of the range of γ. By Löwdin’s theorem (Lemma 13 in [28]), we know
that the two-body wavefunction α can be expanded in the same basis (f1, ..., fK).
Now, for every i = 1, .., K, we apply (2.1.1) and take a sequence fh

i ∈ Vh be such
that fh

i → fi in H1(R3). The system (fh
i )

k
i=1 is not necessarily orthonormal but

we have
〈
fh
i , f

h
j

〉
→ 〈fi, fj〉 = δij . Applying the Gram-Schmidt procedure, we can

therefore replace the (fh
i )

K
i=1 by an orthonormal set (ghi )

K
i=1 ⊂ Vh having the same

properties. An equivalent procedure is to take ghi =
∑K

j=1(S
−1/2
h )jif

h
j where Sh

is the Gram matrix (
〈
fh
i , f

h
j

〉
)i,j. Let now Uh be any unitary operator on L2(R3)

which is such that Uhfi = ghi for all i = 1, ..., K. We then take γh := UhγU
∗
h and

αh := UhαU
T
h . In words, we just replace fi by ghi in the decomposition of γ and α.

To see that (γh, αh) ∈ K(N), we just notice that
(
γh αh

α∗
h 1− γh

)
=

(
Uh 0
0 Uh

)(
γ α
α∗ 1− γ

)(
U∗
h 0

0 Uh
∗

)
.

Note also that Tr(γh) = Tr(γ) = N since Uh is unitary. Now γh and αh belong to
Kh(N) by definition, hence we have that E(γh, αh) ≥ Ih(N). On the other hand,
by the convergence of fh

i (hence of ghi ) towards fi in H1(R3), we easily see that

lim
h→0

E(γh, αh) = E(γ, α),

by continuity of E . Therefore we have proved that

lim sup
h→0

Ih(N) ≤ E(γ, α).
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This is valid for all finite-rank (γ, α) ∈ K(N), hence we deduce that

lim sup
h→0

Ih(N) ≤ inf
(γ,α)∈K(N)

E(γ, α) = I(N).

On the other hand the inequality Ih(N) ≥ I(N) is always satisfied, hence we have
proved the claimed convergence Ih(N) → I(N).

Proof of Lemma 2.1.1. Let (ψi)i be a Hilbert basis of L2(R3) such that ψi ∈ H1 for
all i. We define the projector over them first basis functions as Pm =

∑m
i=1 |ψi〉〈ψi|.

Considere the two operators γm and αm defined by γm = Pm γ Pm and αm =
Pm αPm. The matrice Γm verifies the constraint (1.4.18):

0 ≤
(
Pm 0
0 Pm

)(
γ α
α∗ 1− γ

)(
Pm 0
0 Pm

)
≤ 1.

Of course γm and αm are finite-rank operators since Pm has rank m. The trace
is not bigger than m. Also we have γm → γ when m → ∞ in the sense that
‖(1−∆)1/4(γ−γm)(1−∆)1/4‖S1

→ 0 and (1−∆)1/2(α−αm)S2
→ 0. In particular,

γm → γ in S1 hence Tr(γm) → Tr(γ) . Now we define

γ̃m = γm + (Tr(γ)− Tr(γm)) |ψm+1〉〈ψm+1|.

So the finite-rank operator γ̃m verify the constraint Trγ̃m = Trγ and the result is
proved.

2.2 Discretization of the HFB model

In this section we compute the HFB energy E(γ, α) of a discretized state (γ, α) ∈
Kh(N) and we write the corresponding self-consistent equation. We fix once and
for all the approximation space Vh, and we consider a basis set (χi)

Nb
i=1 of Vh, which

is not necessarily orthonormal. We will assume that Vh is stable under complex
conjugation, which means that f ∈ Vh ⇒ f ∈ Vh (this amounts to replacing Vh by
Span(Vh, Vh)).

Since πhγπh = γ and πhαπh = α, we can write the kernels of γ and α as follows

γ(x, y)σ,σ′ =

Nb∑

i,j=1

Gij χi(x)σχj(y)σ′, α(x, y)σ,σ′ =

Nb∑

i,j=1

Aij χi(x)σχj(y)σ′.

(2.2.6)
In the same way, the density can be expressed as

ργ(x) =

q∑

σ=1

γ(x, σ; x, σ) =

q∑

σ=1

Nb∑

i,j=1

Gijχi(x)σχj(x)σ =

Nb∑

i,j=1

Gijχj(x)
∗χi(x),

where χj(x)
∗χi(x) =

∑q
σ=1 χi(x)σχj(x)σ.
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The matrices G and A (defined by the previous relation) satisfy the constraints
G∗ = G and AT = −A. Note that since A is antisymmetric, we can also write

α(x, y)σ,σ′ =
∑

1≤i<j≤Nb

Aij

(
χi(x)σχj(y)σ′ − χj(x)σχi(y)σ′

)

=
√
2

∑

1≤i<j≤Nb

Aij χi ∧ χj(x, σ, y, σ
′),

where
(χi ∧ χj)(x, σ; y, σ

′) :=
(
χi(x)σχj(y)σ′ − χi(y)σ′χj(x)σ

)
/
√
2

is a two-body Slater determinant. Let us also remark that (2.2.6) can be written
in the operator form

γ =

Nb∑

i,j=1

Gij |χi〉〈χj|, α =

Nb∑

i,j=1

Aij |χi〉〈χj|.

Let us define the so-called overlap matrices S and Σ by

Sij := 〈χi, χj〉H =

q∑

σ=1

∫

R3

χi(x)σχj(x)σ dx (2.2.7)

and

Σij := 〈χi, χj〉H =

q∑

σ=1

∫

R3

χi(x)σχj(x)σ dx. (2.2.8)

Lemma 2.2.1. The constraint
(
0 0
0 0

)
≤ Γ :=

(
γ α
α∗ 1− γ

)
≤
(
1 0
0 1

)
(2.2.9)

is equivalently written for the matrices G and A in the form
(
0 0
0 0

)
≤
(
SGS SAΣ
ΣA∗S S − ΣGΣ

)
≤
(
S 0
0 S

)
, (2.2.10)

or
(
0 0
0 0

)
≤
(
S 0
0 Σ

) (
G A

A∗ Σ
−1
SΣ−1 −G

) (
S 0
0 Σ

)
≤
(
S 0
0 S

)
, (2.2.11)

or
0 ≤ ΥSΥ ≤ Υ (2.2.12)

where Υ and S are defined by

Υ :=

(
G A

A∗ Σ
−1
SΣ−1 −G

)
and S :=

(
S 0
0 ΣS−1Σ

)
. (2.2.13)
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Note that another way to write the constraint (2.2.12) is 0 ≤ S1/2ΥS1/2 ≤ 1.

Proof. Let f and g be two functions in Vh, which are decomposed in the basis (χi)
as follows:

f(x) =

Nb∑

i=1

xiχi(x), g(x) =

Nb∑

i=1

yiχi(x).

The constraint (2.2.9) can be written as

0 ≤
〈(

f
g

)
,Γ

(
f
g

)〉
≤ ‖f‖2 + ‖g‖2. (2.2.14)

That implies

0 ≤ 〈f, γf〉+ 〈f, αg〉+ 〈g, α∗f〉+ ‖g‖2 − 〈g, γg〉 ≤ ‖f‖2 + ‖g‖2. (2.2.15)

We compute every term of (2.2.15) and obtain

〈f, γf〉 =
∑

ij

xixj〈χi, γχj〉 〈f, αg〉 =
∑

ij

xiyj〈χi, αχj〉

=
∑

ijkℓ

xixjGkℓ〈χi, χk〉〈χℓ, χj〉 =
∑

ijkℓ

xiyjAkℓ〈χi, χk〉〈χℓ, χj〉

= x∗(SGS)x, =x∗(SAΣ)y,

〈g, α∗f〉 =
∑

ij

yixj〈χi, α
∗χj〉, 〈g, γg〉 =

∑

ij

yiyj〈χi, γχj〉

=
∑

ijkℓ

yixjAkℓ〈χi, χk〉〈χℓ, χj〉 =
∑

ijkℓ

yiyjGkℓ〈χi, χk〉〈χℓ, χj〉

= y∗(ΣA∗S)x, = y∗(ΣGΣ)y.

So we obtain the inequality

0 ≤ x∗(SGS)x+ x∗(SAΣ)y + y∗(ΣA∗S)x+ y∗Sy − y∗(Σ GΣ)y ≤ x∗Sx+ y∗Sy.

The latter can be written in an equivalent way as follows:

0 ≤
(
x
y

)∗(
SGS SAΣ
ΣA∗S S − ΣGΣ

)(
x
y

)
≤
(
x
y

)∗(
S 0
0 S

)(
x
y

)
.

This concludes the proof of the lemma.

For the sake of simplicity, we will assume in the following that the basis (χi) is
real, χi = χi ∀i = 1, .., Nb. Since Vh = Vh, this is always possible. We then have

S = S = Σ = Σ

and

Υ :=

(
G A
A∗ S−1 −G

)
, S :=

(
S 0
0 S

)
. (2.2.16)

We now compute the HFB energy.
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Lemma 2.2.2. We have

E(γ, α) = Tr(hG) +
1

2
Tr(GJ(G))− 1

2
Tr(GK(G)) +

1

2
Tr(A∗X(A)). (2.2.17)

where

hij = 〈χi, (−∆)χj〉 =
q∑

σ=1

∫

R3

∇χi(x)σ · ∇χj(x)σ dx,

J(G)ij =

Nb∑

k,ℓ=1

(ij|ℓk)Gkℓ, K(G)ij =

Nb∑

k,ℓ=1

(ik|ℓj)Gkℓ, X(A)ij =

Nb∑

k,ℓ=1

(ik|jℓ)Akℓ,

(2.2.18)
and

(ij|kℓ) :=
∫

R3

∫

R3

W (x− y)χi(x)
∗ χj(x) χk(y)

∗ χℓ(y) dx dy. (2.2.19)

We use here the notation a∗b =
∑q

σ=1 aσ bσ. Similarly, we have

Tr(γ) = Tr(SG). (2.2.20)

We recall that S is given by

Sij = 〈χi, χj〉h.

Remark 2.2.1. The trace here is the usual one for Nb×Nb matrices. As we think
that there is no possible confusion with E(γ, α), we will also denote by E(G,A) this
discretized energy functional.

Remark 2.2.2. Recall we use that χi = χi is real. We define the discretized
number operator as

N =

(
S 0
0 −S

)
. (2.2.21)

The constraint Tr(γ) = N can be written equivalently as

Tr(NΥ) = 2N −Nb.

Remark 2.2.3. The formulas are the same when the basis (χi) is not real.

Proof. The discretized kinetic energy is

Tr(Tγ) =

Nb∑

i,j=1

GijTr(T |χi〉〈χj|) =
Nb∑

i,j=1

Gij 〈χj , Tχi〉 = Tr(Gh),

where hji := 〈χj, Tχi〉 =
∫

R3

∇χj · ∇χi.
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The direct term is expressed as

∫

R3

∫

R3

W (x− y)ργ(x)ργ(y)dxdy

=

∫

R3

∫

R3

W (x− y)

Nb∑

i,j=1

q∑

σ=1

Gijχj(x)σχi(x)σ

Nb∑

k,ℓ=1

q∑

σ′=1

Gkℓχℓ(y)σ′χk(y)σ′ dx dy

=

Nb∑

i,j,k,ℓ=1

GijGkℓ

∫

R3

∫

R3

W (x− y)χj(x)
∗χi(x)χℓ(y)

∗χk(y)dxdy

=

Nb∑

i,j,k,ℓ=1

Gij Gkℓ (ji|ℓk),

where (ji|kℓ) =
∫
R3

∫
R3 W (x− y)χj(x)

∗χi(x)χk(y)
∗χℓ(y)dxdy.

Recall that χi is a spinor that is a function of L2(R3,Cq). Note that

|γ(x, y)|2 = TrCqγ(x, y)∗γ(x, y)

=

q∑

σ,σ′=1

γ(x, y)σ′,σγ(x, y)σ′,σ

=

q∑

σ,σ′=1

|γ(x, y)σ,σ′|2

=

q∑

σ,σ′=1

Nb∑

i,j,k,ℓ=1

Gij χi(x)σ′χj(y)σGkℓχk(x)σ′χℓ(y)σ

=
∑

ijkℓ

GijGkℓχi(x)
∗χk(x)χℓ(y)

∗χj(y).

So for the exchange term we obtain

∫

R3

∫

R3

W (x− y)|γ(x, y)|2dxdy

=
∑

ijkℓ

GijGkℓ

∫

R3

∫

R3

W (x− y)χi(x)
∗χk(x)χℓ(y)

∗χj(y)dxdy

=
∑

ijkℓ

Gij Gkℓ (ik|ℓj).



52 Chapter 2. Discretization

The same computation for the pairing term gives

|α(x, y)|2 =
q∑

σ,σ′=1

|α(x, y)σ,σ′ |2

=

q∑

σ,σ′=1

Nb∑

i,j,k,ℓ=1

Aij χi(x)σ χj(y)σ′Akℓχk(x)σχℓ(y)σ′

=

Nb∑

i,j,k,ℓ=1

Aij Akℓ χi(x)
∗ χk(x)χj(y)

∗ χℓ(y).

In conclusion we obtain
∫

R3

∫

R3

W (x− y)|α(x, y)|2dxdy

=
∑

ijkℓ

AijAkℓ

∫

R3

∫

R3

W (x− y)χi(x)
∗ χk(x)χj(y)

∗ χℓ(y)dxdy

=
∑

ijkℓ

AijAkℓ(ik|jℓ).

This ends the proof of Lemma 2.2.2.

We deduce from the previous result that the variational problem Ih(N) can be
written in finite dimension in a real basis χi = χi as

Ih(N) = min
{
E(G,A) : 0 ≤ ΥSΥ ≤ Υ, Tr(NΥ) = 2N −Nb

}
, (2.2.22)

where we recall that Υ and S have been defined in (2.2.13) and that E(G,A) is
given by the formula (2.2.17). Here the infimum is always attained because the
problem is finite dimensional. More precisely, the energy is clearly continuous with
respect to (G,A), and the minimization set is bounded and closed, hence compact.

In this form, the discretized problem is very similar to the usual discretized
Hartree-Fock problem [5, 25], in dimension 2Nb instead of Nb. There is a big
difference, however. In HF theory the constraint involves the matrix S instead of
N. This difference will cause several difficulties. To understand the problem, let us
introduce a new variable Υ′ = S1/2ΥS1/2 (which is the same as orthonormalizing
the basis (χi)). Then the constraint 0 ≤ ΥSΥ ≤ Υ is transformed into 0 ≤ Υ′ ≤ 1.
However, the constraint on the number of particles becomes Tr(S−1/2NS−1/2Υ′) =
2N − Nb. In usual Hartree-Fock theory, the matrix S−1/2NS−1/2 is replaced by
the identity. The fact that this matrix then commutes with the Fock Hamiltonian
(defined below) simplifies dramatically the self-consistent equations. Here we get

S−1/2NS−1/2 =

(
1 0
0 −1

)

which commutes with the Fock Hamiltonian if and only if A ≡ 0.
The self-consistent equation is obtained like in [3]. The result is as follows.
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Lemma 2.2.3 (Discretized HFB equation). Assume that the basis is real, χi = χi.
Let Υ be a minimizer for the discretized variational problem Ih(N). Then there
exists µ ∈ R such that Υ solves the linear problem

min
{
Tr(FΥ − µN)Υ̃ : 0 ≤ Υ̃SΥ̃ ≤ Υ̃

}
, (2.2.23)

where

FΥ :=

(
hG X(A)

X(A)∗ −hG

)
, hG := h+ J(G)−K(G). (2.2.24)

The solution Υ can be written in the form

Υ = S−1/2

(
χ(−∞,0)

(
S−1/2(FΥ − µN)S−1/2

)
+ δ

)
S−1/2 (2.2.25)

where 0 ≤ δ ≤ 1 lives only in the kernel of S−1/2(FΥ − µN)S−1/2.

The solution Υ of the self-consistent equation (2.2.25) may be equivalently
written by considering the generalized eigenvalue problem

(
FΥ − µN

)
fi = ǫi S fi, 〈fi,Sfj〉 = δij . (2.2.26)

Then we have simply (assuming ǫi 6= 0 for all i = 1, ..., 2Nb)

Υ =
∑

ǫi<0

fi f
∗
i .

Again, this is similar to the Hartree-Fock solution [5,25] except that µ is unknown
and N does not always commute with FΥ.

Remark 2.2.4. Let us recall that the Hartree-Fock discretized problem [8] is

inf{EHF (G), 0 ≤ GSG ≤ G, TrSG = N}
where the Hartree-Fock energy is

EHF (G) = E(G, 0) = Tr(hG) +
1

2
Tr(J(G)G)− 1

2
Tr(X(G)G).

Here S, h J , X and G are exactly as before. The solution can be written in the
form

G = C C∗ =

N∑

i=1

Ci C
∗
i ,

where C = (C1, .., CN) and





hG C = S C Λ
C∗ S C = IN

G = C C∗

with Λ, the matrix of Lagrange multipliers can be diagonalized and the com-
posants of Λ are the lowest N eigenvalues of the Fock operator hG:

hG Ci = λi S Ci.

Remark that although the basis functions χi are real, the density matrix Υ is
not necessarily real. In the next section, we will restrict ourselves to real-valued
density matrices and impose some spin symmetry.
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2.3 Using symmetries

The HFB energy E(Γ) has some natural symmetry invariances which we describe
in detail in this section. Recall that since E is a nonlinear functional, it cannot
be guaranteed that the HFB minimizers will all have the same symmetries as the
HFB energy. The set of all minimizers will be invariant under the action of the
symmetry group, but each minimizer alone does not have to be invariant.

We have already allowed for the breaking of particle-number symmetry and we
hope to find an HFB ground state. It will then automatically break the transla-
tional invariance of the system. There are three other symmetries (spin, complex
conjugation and rotations) in the system, which are of interest to us. We have
the choice of imposing these symmetries by adding appropriate constraints, or
not. Because this reduces the computational cost, it will be convenient to impose
them.

2.3.1 Time-reversal symmetry

Let us now assume that q = 2, which means that our fermions are spin-1/2 parti-
cles. Since the Laplacian and the interaction function W do not act on the spin
variable, the HFB energy has some spin symmetry, which can be written for q = 2
as

∀k = 1, 2, 3, E(ΣkΓΣ
∗
k) = E(Γ)

where

Σk :=

(
iσk 0
0 iσk

)
,

with σ1, σ2, σ3 being the usual Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.3.27)

Note that Σk has the form of a Bogoliubov transformation, hence ΣkΓΣ
∗
k is also

an HFB state. The number operator is also invariant which means that

ΣkNΣ∗
k = N

for all k = 1, 2, 3. Thus, the contraint Tr(γ) = N is conserved and we have
ΣkΓΣ

∗
k ∈ K(N) when Γ ∈ K(N).

Another important symmetry is that of complex conjugation which means this
time that

E(Γ) = E(Γ)

and which is based on the fact that the Laplacian and W are real operators. Again
we have Tr(γ) = Tr(γ) hence K(N) is invariant under complex conjugation.
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As was explained in [20] (see Remark 5 page 1032), the density matrices (γ, α)
can be written in the special form

γ′ = g ⊗
(
1 0
0 1

)
, α′ = a⊗

(
0 1
−1 0

)
, with g = gT = g and a = aT = a

(2.3.28)
(the 2× 2 matrix refers to the spin variables), if and only if

{
ΣkΓΣ

∗
k = Γ, for k = 1, 2, and

Γ = Γ.
(2.3.29)

In other words, Γ is invariant under the action of the group generated by Σ1, Σ2

and complex conjugation. This invariance is sometimes called the time-reversal
symmetry. As remarked in [20], imposing ΣkΓΣ

∗
k = Γ for all k = 1, 2, 3 (instead of

just k = 1, 2) implies α ≡ 0 which is not interesting for us.
When W can be written in the form

W (x− y) = −
∫

Ω

dµ(ω)fω(x) fω(y), (2.3.30)

the Theorem 1.4.2 of Bach, Fröhlich and Jonsson [2], tells us that there is no
breaking of the time-reversal symmetry for minimizers. That is, we can always
minimize over such special states. For other interactions W this is not necessarily
true but it is often convenient to impose this symmetry anyhow.

Because it holds

FΣkΓΣ
∗
k
= ΣkFΓΣ

∗
k, FΓ = FΓ,

it can then be verified that minimizers under the additional symmetry constraint,
satisfy the same self-consistent equation as when no constraint is imposed.

When we discretize the problem by imposing time-reversal symmetry, we use
two real symmetric matrices G and A, related through the constraint that

(
0 0
0 0

)
≤ Υ :=

(
G A
A 1−G

)
≤
(
1 0
0 1

)
(2.3.31)

The energy becomes

E(G,A) = 2Tr(hG) + 2Tr(GJ(G))− Tr(GK(G)) + Tr(AX(A)) (2.3.32)

and the associated particle number constraint is Tr(SG) = N/2. In practice we
always assume that N is even for simplicity. The basis (χi) is now composed of
(real-valued) functions in H1(R3,R), instead of functions in H1(R3,C2) as before,
and the formulas for S, h, J , K and X are the same as before.
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2.3.2 Rotational symmetry

The group SO(3) of rotations in R3 also acts on HFB states and it leaves the
energy invariant when the interaction W is a radial function. In this section we
always assume that the spin variable has already been removed according to the
previous section and we denote by g and a the corresponding (real symmetric)
density matrices. If the spin were still present, rotations would act on it as well.

To any rotation R ∈ SO(3) we can associate a unitary operator on L2(R3),
denoted also by R and defined by (Rφ)(x) = φ

(
R−1x

)
. Now we say that an HFB

state Γ with density matrices (γ, α) is invariant under rotations when it satisfies

R ΓR
∗ = Γ, where R =

(
R 0
0 R

)
∀R ∈ SO(3).

Note that R is a Bogoliubov rotation since R = R. The density matrices of an
invariant state satisfy

g(Rx,Ry) = g(x, y), a(Rx,Ry) = a(x, y)

for all x, y ∈ R3 and any rotation R ∈ SO(3).
As the angular momentum L = x× (−i∇) generates the group of rotations, a

(smooth enough) HFB state is invariant under rotations if and only if

L Γ = ΓL , where L =

(
L 0
0 L

)
. (2.3.33)

Let us now give the special form of rotation-invariant states. We recall that
the spherical harmonics (Y m

ℓ )ℓ≥0,−ℓ≤m≤ℓ is a Hilbert basis of L2(S2), where S2 is
the sphere of radius 1 in dimension 3. We have for all (ℓ,m), such that ℓ ≥ 0,
−ℓ ≤ m ≤ ℓ and for all (ℓ′, m′), with ℓ′ ≥ 0, −ℓ′ ≤ m′ ≤ ℓ′,

(Y m
ℓ , Y m′

ℓ′ )L2(S2) =

∫ π

0

∫ 2π

0

Y m
ℓ (θ, φ)∗Y m′

ℓ′ (θ, φ) sin(θ)dθdφ = δℓℓ′δmm′ . (2.3.34)

Now we choose a basis of L2(R3) of the form

Ψiℓm = χi(r)Y
m
ℓ (θ, φ) with i ≥ 1, m = −ℓ, .., ℓ and ℓ ≥ 0.

Every basis functions can be decomposed as a radial function and a spherical
harmonics. Here (χi) is a Hilbert basis of L2([0,∞), r2 dr). The operators g and
a can be written in this basis,

g(x, y) =
∑

i,j≥1

∑

ℓ,ℓ′≥0

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

gℓℓ
′mm′

ij |Ψiℓm〉〈Ψjℓ′m′ |,

a(x, y) =
∑

i,j≥1

∑

ℓ,ℓ′≥0

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

aℓℓ
′mm′

ij |Ψiℓm〉〈Ψjℓ′m′|.
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By (2.3.33), we know that

L2g = gL2, Lzg = gLz and L±g = gL∓, (2.3.35)

where L is the angular momentum vector such that L = (Lx, Ly, Lz), L2 = L2
x +

L2
y + L2

z and L± = Lx ± iLy.
The spherical harmonics Y m

ℓ are the eigenfunctions of the operators build upon
L and they satisfy the following relations:

L2Y m
ℓ = ℓ(ℓ+1)Y m

ℓ , LzY
m
ℓ = mY m

ℓ and L±Y
m
ℓ =

√
(ℓ∓m)(ℓ±m+ 1)Y m±1

ℓ .
(2.3.36)

Lemma 2.3.1. We have

gℓℓ
′mm′

ij = gℓij ∀i, j ≥ 1, ℓ, ℓ′ ≥ 0, m = −ℓ, .., ℓ and m′ = −ℓ′, .., ℓ′.
Proof. Writing that L2 g = g L2, we obtain

∑

i,j≥1

∑

ℓ,ℓ′≥0

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

ℓ(ℓ+ 1)gℓℓ
′mm′

ij |Ψiℓm〉〈Ψjℓ′m′|

=
∑

i,j≥1

∑

ℓ,ℓ′≥0

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

ℓ′(ℓ′ + 1)gℓℓ
′mm′

ij |Ψiℓm〉〈Ψjℓ′m′ |.

By uniqueness of the decomposition, we deduce that

ℓ(ℓ+ 1)gℓℓ
′mm′

ij = ℓ′(ℓ′ + 1)gℓℓ
′mm′

ij ∀i, j, ℓ, ℓ′, m,m′.

So gℓℓ
′mm′

ij = 0, when ℓ 6= ℓ′, and therefore g depends only of ℓ.
On the other hand, using that Lz g = g Lz with the azimutal angular momen-

tum Lz, we obtain:

∑

i,j≥1

∑

ℓ≥0

ℓ∑

m,m′=−ℓ

mgℓmm′

ij |Ψiℓm〉〈Ψjℓm′| =
∑

i,j≥1

∑

ℓ≥0

ℓ∑

m,m′=−ℓ

m′gℓmm′

ij |Ψiℓm〉〈Ψjℓm′|,

hence
mgℓmm′

ij = m′ gℓmm′

ij ∀i, j, ℓ,m,m′.

As before, we find that gℓmm′

ij = 0, when m 6= m′. So g depends only of m.
Finally we apply the property L+ g = g L− of the ladder operator L+ and L−,

and we find the following equation

∑

i,j≥1

∑

ℓ≥0

ℓ∑

m=−ℓ

√
(ℓ−m)(ℓ+m+ 1)gℓm+1

ij |Ψiℓm+1〉〈Ψjℓm|

=
∑

i,j≥1

∑

ℓ≥0

ℓ∑

m=−ℓ

√
(ℓ+m)(ℓ−m+ 1)gℓm−1

ij |Ψiℓm〉〈Ψjℓm−1|,

=
∑

i,j≥1

∑

ℓ≥0

ℓ−1∑

m=−ℓ−1

√
(ℓ−m)(ℓ +m+ 1)gℓm−1

ij |Ψiℓm+1〉〈Ψjℓm|.
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Therefore
√
(ℓ−m)(ℓ+m+ 1)gℓmij =

√
(ℓ+m)(ℓ−m+ 1)gℓmij (2.3.37)

because gL+ = L−g. We see that gℓmij = 0 when m 6= −m. This means that g is
independent of m, and the statement is proved for g. The same computation can
be done for a.

By Lemma (2.3.1), we conclude that the density matrices g and a can then be
written in the special form

g(x, y) =
∑

i,j≥1

∑

ℓ≥0

ℓ∑

m=−ℓ

gℓij χi(r)χj(r
′) Y m

ℓ (θ, φ) Y m
ℓ (θ′, φ′), (2.3.38)

a(x, y) =
∑

i,j≥1

∑

ℓ≥0

ℓ∑

m=−ℓ

aℓij χi(r)χj(r
′) Y m

ℓ (θ, φ) Y m
ℓ (θ′, φ′). (2.3.39)

We now use that

ℓ∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′) =
2ℓ+ 1

4π
Pℓ(ω · ω′),

where Pℓ is the Legendre polynomial of degree ℓ, which is such that Pℓ(1) = 1. We
get

g(x, y) =
1

4π

∑

ℓ≥0

gℓ(|x|, |y|) (2ℓ+ 1)Pℓ

(
ωx · ωy

)
, (2.3.40)

a(x, y) =
1

4π

∑

ℓ≥0

aℓ(|x|, |y|) (2ℓ+ 1)Pℓ

(
ωx · ωy

)
, (2.3.41)

where gℓ(|x|, |y|) = gℓij χi(|x|)χj(|y|) and aℓ(|x|, |y|) = aℓij χi(|x|)χj(|y|). The con-
straint on g and a are transfered in each angular momentum sector (labelled by
ℓ ≥ 0), leading to (

0 0
0 0

)
≤
(
gℓ aℓ

aℓ 1− gℓ

)
≤
(
1 0
0 1

)

on L2([0,∞), r2 dr) ⊕ L2([0,∞), r2 dr). However, there is no such constraint be-
tween different ℓ’s. The total average particle number is given by

Tr(g) =
∑

ℓ≥0

(2ℓ+ 1)Tr(gℓ) = N/2.

This is the only constraint which mixes the different angular momentum density
matrices.



2.3. Using symmetries 59

2.3.3 Discretization of the radial HFB problem

Now we can discretize the radial HFB problem. We choose a finite-dimensional
subspace Vrad in L2([0,∞), r2dr) with basis (χ1, ..., χNb

), which we use to expand
the density matrices gℓ and aℓ. This is the same as truncating the sums in the
previous calculations. Then we fix a maximal angular momentum ℓmax and we
truncate the series in (2.3.40) and (2.3.41). This is the same as taking as dis-
cretization space

V =
{
f(|x|) Y m

ℓ (ωx) : f ∈ Vrad, 0 ≤ ℓ ≤ ℓmax, −ℓ ≤ m ≤ ℓ
}
⊂ L2(R3,R)

where Y m
ℓ is the spherical harmonics of total angular momentum ℓ and azimuthal

angular momentum m. We then assume that g and a are radial and live in this
space. The matrices Gℓ and Aℓ of gℓ and aℓ in the basis (χi) are defined similarly
as before by

gℓ(r, r′) =

Nb∑

i,j=1

Gℓ
ij χi(r)χj(r

′), aℓ(r, r′) =

Nb∑

i,j=1

Aℓ
ij χi(r)χj(r

′). (2.3.42)

The constraints on the matrices Gℓ and Aℓ are

0 ≤ ΥℓSΥℓ ≤ Υℓ, with Υℓ :=

(
Gℓ Aℓ

Aℓ S−1 −Gℓ

)
and S =

(
S 0
0 S

)

(2.3.43)
with

Sij =

∫ ∞

0

χi(r)χj(r) r
2 dr

and
ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(SGℓ) = N/2. (2.3.44)

Lemma 2.3.2 (Rotation-invariant discretized HFB energy). The total HFB energy
is

E(G0, ..., Gℓmax, A0, ..., Aℓmax) = 2
ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(hℓGℓ)

+
ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)
(
2Tr(Gℓ J(Gℓ′))− Tr(GℓKℓℓ′(Gℓ′)) + Tr(AℓKℓℓ′(Aℓ′))

)
,

(2.3.45)

where

hℓij =

∫ ∞

0

χ′
i(r)χ

′
j(r)r

2dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r)dr,
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J(Gℓ′)ij :=

Nb∑

m,n=0

(ij|nm)0,0G
ℓ′

mn, Kℓℓ′(Gℓ′)ij :=

Nb∑

m,n=0

(im|jn)ℓ,ℓ′ Gℓ′

mn,

(ij|mn)ℓ,ℓ′ :=
∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χm(s)χn(s)wℓ,ℓ′(r, s)

and

wℓ,ℓ′(r, s) :=
1

2

∫ 1

−1

W
(√

r2 + s2 − 2rst
)
Pℓ(t)Pℓ′(t) dt.

Any minimizer (G0, ..., Gℓmax, A0, ..., Aℓmax) of E under the constraints (2.3.43)
and (2.3.44) is of the form

Υℓ =
∑

ǫℓi<0

f ℓ
i

(
f ℓ
i

)T
, 0 ≤ ℓ ≤ ℓmax,

where the f ℓ
i solve the generalized eigenvalue problem

(
Fℓ − µN

)
f ℓ
i = ǫℓi S f

ℓ
i , 〈fi,Sfj〉 = δij (2.3.46)

with

Fℓ :=

(
hℓ 0
0 −hℓ

)
+

ℓmax∑

ℓ′=0

(
2J
(
Gℓ′
)
−Kℓℓ′

(
Gℓ′
)

Kℓℓ′
(
Aℓ′
)

Kℓℓ′
(
Aℓ′
)

−2J
(
Gℓ′
)
+Kℓℓ′

(
Gℓ′
)
)
.

The Euler-Lagrange multipler µ appearing in (2.3.46) is common to all the dif-
ferent angular momentum sectors and it is chosen to ensure the validity of the
constraint (2.3.44).

Proof. The kinetic energy can be computed as follows

Tr(hg) = Tr
(
(−∆)

ℓmax∑

ℓ=0

gℓ

)
=

ℓmax∑

ℓ=0

Tr(−∆gℓ)

=

Nb∑

ij=1

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

gℓijTr(−∆|Ψiℓm〉〈Ψjℓm|)

=

Nb∑

ij=1

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

gℓijTr(−∆|χiY
m
ℓ 〉〈χiY

m
ℓ |)

=

Nb∑

ij=1

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

gℓijTr((−
1

r2
∂r(r

2∂r) +
L2

r2
)|χiY

m
ℓ 〉〈χiY

m
ℓ |)

=

Nb∑

ij=1

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

gℓij

(∫ ∞

0

− 1

r2

(
∂

∂r

(
r2
∂χi

∂r

))
χjr

2dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r)dr

)

=

Nb∑

ij=1

ℓmax∑

ℓ=0

(2ℓ+ 1)gℓij

(∫ ∞

0

χ′
i(r)χ

′
j(r)r

2dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r)dr

)
.
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We recall that the spherical harmonics are normalized on the sphere S2 as follows

∫ π,2π

0,0

|Y m
ℓ (θ, ϕ)|2 sin θdθdϕ = 1.

Furthermore, we have used that the spherical harmonics Y m
ℓ are the eigenfunctions

of |L|2, see (2.3.36). If we introduce the kinetic energy matrix

hℓij =

∫ ∞

0

χ′
i(r)χ

′
j(r)r

2dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r)dr,

then we can express the kinetic energy as

Tr(−∆)γ =
ℓmax∑

ℓ=0

(2ℓ+ 1)
Nb∑

ij=1

hℓijg
ℓ
ij =

ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(hℓGℓ).

As for the direct term, we compute

D(ρg,ρg)

=

∫∫

R3×R3

ρg(x)ρg(y)W (x− y)dxdy

=

∫∫

R3×R3

ℓmax∑

ℓ,ℓ′=0

gℓ(x, x) gℓ
′

(y, y)W (x− y)dxdy

=

Nb∑

i,j,m,n=1

ℓmax∑

ℓ,ℓ′=0

2ℓ+ 1

4π

2ℓ′ + 1

4π
gℓijg

ℓ′

mn×

×
∫∫

R3×R3

χi(|x|)χj(|x|)Pℓ(ωω)χm(|y|)χn(|y|)Pℓ′(ω
′ω′)W (|x− y|)dxdy.

and we know that Pℓ(ωω) = Pℓ(1) = 1. Similarly, Pℓ′(ω
′ω′) = 1. So we obtain

D(ρg, ρg) =

Nb∑

ijmn=1

ℓmax∑

ℓ,ℓ′=0

2ℓ+ 1

4π

2ℓ′ + 1

4π
gℓijg

ℓ′

mn×

×
∫∫

R3×R3

χi(|x|)χj(|x|)χm(|y|)χn(|y|)W (|x− y|)dxdy

=

ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)

Nb∑

ijmn=1

Gℓ
ijG

ℓ′

mn(ij, nm)00,

where

(ij, nm)00 :=
1

(4π)2

∫∫

R3×R3

χi(|x|)χj(|x|)χm(|y|)χn(|y|)W (|x− y|)dxdy.
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Changing variables

|x− y|2 = |x|2 + |y|2 − 2x · y
= r2 + r′2 − 2rr′ωω′,

we find for the double integral

(ij, nm)00

=
1

(4π)2

∫ ∞

0

r2dr

∫ ∞

0

s2ds

∫

S2

dω

∫

S2

dω′W (
√
r2 + s2 − 2rsωω′)χi(r)χj(r)χm(s)χn(s).

We let t = ω · ω′ and we finally obtain

(ij, nm)00 =
1

2

∫ ∞

0

r2dr

∫ ∞

0

s2dsχi(r)χj(r)χm(s)χn(s)

∫ 1

−1

W (
√
r2 + s2 − 2rst)dt,

where we have introduced

w00(r, s) =
1

2

∫ 1

−1

W (
√
r2 + s2 − 2rst)dt.

We have used that
∫∫

S2×S2

dωdω′f(ω · ω′) =
(4π)2

2

∫ 1

−1

f(t)

for any integrable function f .
For the exchange term, we have

∫∫
|g(x, y)|2W (x− y)dxdy

=

∫∫

R3×R3

ℓmax∑

ℓ=0

gℓ(x, y)

ℓ′max∑

ℓ′=0

gℓ
′

(x, y)W (x− y)dxdy

=

Nb∑

i,j,m,n=1

ℓmax∑

ℓ,ℓ′=0

2ℓ+ 1

4π

2ℓ′ + 1

4π
gℓijg

ℓ′

mn×

×
∫∫

R3×R3

χi(|x|)χj(|y|)Pℓ(ωω
′)χm(|x|)χn(|y|)Pℓ′(ωω

′)W (|x− y|)dxdy

=
ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)

Nb∑

i,j,m,n=1

Gℓ
ijG

ℓ′

mn(im, jn)ℓℓ′,

where we have introduced

(im, jn)ℓℓ′

=
1

(4π)2

∫∫

R3×R3

χi(|x|)χj(|y|)χm(|x|)χn(|y|)W (|x− y|)Pℓ(ωω
′)Pℓ′(ωω

′)dxdy.
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Changing variables again, we find for the double integral

(im, jn)ℓℓ′

=
1

(4π)2

∫ ∞

0

r2dr

∫ ∞

0

s2ds

∫

S2

dω

∫

S2

dω′×

×W (
√
r2 + s2 − 2rsωω′)Pℓ(ωω

′)Pℓ′(ωω
′)χi(r)χj(s)χm(r)χn(s)

=
1

2

∫ ∞

0

r2dr

∫ ∞

0

s2ds χi(r)χj(s)χm(r)χn(s)wℓℓ′(r, s)

where we note

wℓℓ′(r, s) =
1

2

∫ 1

−1

W (
√
r2 + s2 − 2rst)Pℓ(t)Pℓ′(t)dt.

The computation is the same for the pairing term.
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Chapter 3

Algorithmic strategies and

convergence analysis

In this section we study the convergence of two algorithms which can be used in
practice to solve the HFB minimization problem (1.4.27). In order to simplify our
presentation, we restrict ourselves to the finite-dimensional case, that is, to the
discretized problem (2.2.22). We also assume that the discretization basis (χj) is
orthonormal, such that

S = I2Nb
,

the (2Nb) × (2Nb) identity matrix. Finally, we only consider states which are
invariant under time-reversal symmetry like in Section 2.3.1. This means that the
HFB state is described by real and symmetric matrices G and A such that

(
0 0
0 0

)
≤ Υ :=

(
G A
A 1−G

)
≤
(
1 0
0 1

)
(3.0.1)

The energy is given by (2.3.32),

E(Υ) = 2Tr(hG) + 2Tr(GJ(G))− Tr(GK(G)) + Tr(AK(A)). (3.0.2)

The extension to more general situations is straightforward.
The energy E is continuous (it is indeed real-analytic) with respect to Υ. Also

the set K of density matrices Υ of the form (3.0.1) is compact in finite dimension.
Hence minimizers always exist and, as we have seen, they solve the nonlinear
equation

Υ = 1(−∞,0)

(
FΥ − µN

)
+ δ, (3.0.3)

where µ is a Lagrange multiplier chosen to ensure the constraint that Tr(G) = N/2.
Of course we must have N/2 ≤ Nb, the dimension of the (no-spin) discretization
space Vh, otherwise the minimization set is always empty.

65
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3.1 Roothaan Algorithm

The most natural technique used in practice to solve the equation (3.0.3) is a
simple fixed point method [10, 38]. This is usually reffered to as the Roothaan
algorithm in the chemistry literature. The iteration scheme is the following

Υn+1 = 1(−∞,0)

(
FΥn − µn+1N

)
+ δn+1 (3.1.4)

where Tr(NΥn+1) =
N

2
−Nb. At each step, one has to determine µn+1 such as to

satisfy the constraint Tr(Gn+1) = N/2. If the operator FΥn − µn+1N has a trivial
kernel, then δn+1 ≡ 0. This is the usual situation encountered in practice. In the
iteration (3.1.4), the state is assumed to be pure at each step (Υn is an orthogonal
projection). Recall that by Theorem 1.4.2 we know that minimizers of E under
a particle number constraint are always pure, under suitable assumptions on the
interaction potential W . The algorithm is stopped when the commutator

∣∣∣∣[Υn,FΥn − µn+1N
]∣∣∣∣

and/or when the variation of the HFB state

||Υn+1 −Υn||

are smaller than a prescribed ε. Here the norm is a classical Frobenius norm.
Our purpose in this section is to study the behavior of the Roothaan algo-

rithm (3.1.4). In the Hartree-Fock case, it was shown in a fundamental work of
Cancès and Le Bris [6, 7], that the algorithm converges or oscillates between two
points, none of them being a solution to the equation (3.0.3). This result was
recently improved by Levitt in [27]. We will explain that the results of Cancès-Le
Bris and Levitt can be generalized to the HFB model. Actually, in a discretiza-
tion space of dimension Nb, HFB is equivalent to a Hartree-Fock-like minimization
problem in dimension 2Nb, with additional constraints; see the remark 3.3.3. The
adaptation of the previously cited works in the HF case reduces to handling these
contraints.

In order to avoid the convergence problems of the Roothaan algorithm, Cancès
and Le Bris have proposed the Optimal Damping Algorithm (ODA). We will study
the equivalent of this algorithm in HFB theory in Section 3.2.

To start with, we show that the Roothaan algorithm is well defined, in the
sense that for any HFB state Υn, there exists (Υn+1, µn+1, δn+1) solving (3.1.4).
To this end, we follow [6, 7] and introduce the auxillary functional

Ẽ(Υ,Υ′) := Tr(hG) + Tr(hG′) + 2Tr(GJ(G′))− Tr(GK(G′)) + Tr(AK(A′))
(3.1.5)

as well as the variational problem

IΥ(λ) := min
Υ′

{
Ẽ(Υ,Υ′) : Tr(G′) =

N

2

}
(3.1.6)
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which consists in minimizing over Υ′ with Υ fixed. The matrix Υ′ must be an
admissible HFB state which, in our context, means that
(
0 0
0 0

)
≤ Υ′ :=

(
G′ A′

A′ 1−G′

)
≤
(
1 0
0 1

)
, (G′)T = G′ = G′, (A′)T = A′ = A′.

(3.1.7)
Recall that we have chosen an orthonormal basis and that the spin has been
eliminated. It is clear that (3.1.6) admits at least one solution Υ′, as soon as
0 ≤ N/2 ≤ Nb, where we recall that Nb is the dimension of the discretization
space Vh. The following says that these solutions are exactly those solving the
equation of the Roothaan method.

Lemma 3.1.1 (The Roothaan algorithm is well defined). The function N/2 ∈
[0, Nb] 7→ IΥ(N/2) is convex, hence left and right differentiable. For any N/2 ∈
[0, Nb], the minimizers Υ′ of IΥ(N/2) are exactly the states of the form

Υ′ = 1(−∞,0)

(
FΥ − µ′N

)
+ δ′ (3.1.8)

where µ′ ∈ [∂−IΥ(N/2), ∂+IΥ(N/2)] and 0 ≤ δ′ ≤ 1{0}(FΥ − µ′N). If 0 /∈ σ(FΥ −
µ′N), then δ′ ≡ 0 and Υ′ is unique, for any such µ′ ∈ [∂−IΥ(N/2), ∂+IΥ(N/2)].

Proof. To see that IΥ(N/2) is convex, let 0 ≤ N1/2 < N2/2 ≤ Nb and let Υ′
i be a

minimizer for IΥ(Ni/2) with i = 1, 2. Then tΥ′
1 + (1 − t)Υ′

2 is a test state for the
problem IΥ(tN1/2 + (1− t)N2/2). Therefore it holds

IΥ(tN1/2 + (1− t)N2/2) ≤ Ẽ(Υ, tΥ′
1 + (1− t)Υ′

2) = tẼ(Υ,Υ′
1) + (1− t)Ẽ(Υ,Υ′

2)

= tIΥ(N1/2) + (1− t)IΥ(N2/2).

Then, by convexity we get that IΥ(N ′/2) ≥ IΥ(N/2) + µ(N ′/2 − N/2) for any
N ′/2 ∈ [0, Nb] and any µ ∈ [∂−IΥ(N/2), ∂+IΥ(N/2)]. Thus

IΥ(N/2)− µN/2 = min{IΥ(N ′/2)− µN ′/2 : 0 ≤ N/2 ≤ Nb}
= min

Υ′

{
Ẽ(Υ,Υ′)− µTr(G′)

}

= Tr(hG) +
1

2
min
Υ′

Tr(FΥ − µN)Υ′.

In the previous two mins, Υ′ is varied over all possible HFB states, without any
particle number constraint. It is well known that the minimizers of the problem
on the right side are exactly the solutions of the equation (3.1.8).

Lemma 3.1.1 tells us that for any given Υn, there always exists at least one so-
lution (Υn+1, µn+1, δn+1) of the equation (3.1.4). It is obtained by solving the mini-
mization problem IΥn(N/2), and one has to take µn+1 ∈ [∂−IΥn(N/2), ∂+IΥn(N/2)].
We can always take by convention

µn+1 :=
∂−IΥn(N/2) + ∂+IΥn(N/2)

2
.
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However, Υn+1 is not uniquely defined yet because of the possibility of having
δn+1 6= 0. As we have seen it is unique when

0 /∈ σ
(
FΥn − µn+1N

)
. (3.1.9)

In this section we always assume that it is possible to find (Υn+1, µn+1, δn+1) ex-
actly. Later in Section 3.3 we explain how to do this numerically. We will also see
that the condition (3.1.9) is “very often” satisfied. This vague statement is made
precise in Lemma 3.3.2 below.

In practice, we will only know (Υn+1, µn+1, δn+1) approximately. But here we
assume for simplicity that we know them exactly. Following Cancès and Le Bris,
we now introduce the concept of uniform well-posedness.

Definition 3.1.1 (Uniform well-posedness). We say that for a given initial HFB
state Υ0, the sequence (Υn) generated by the Roothaan algorithm is uniformly well
posed when there exists η > 0 such that

|FΥn − µn+1N| ≥ η (3.1.10)

for all n ≥ 0, where µn+1 =
(
∂−IΥn(N/2) + ∂+IΥn(N/2)

)
/2.

Note that the condition |FΥn − µn+1N| ≥ η is equivalent to (−η, η)∩ σ(FΥn −
µn+1N) = ∅. Later in Section 3.3 we will make several comments concerning
Assumption (3.1.10).

We have seen that the sequence generated by the Roothaan algorithm can be
obtained by solving the minimization problem

IΥn = min
Υ′

Ẽ(Υn,Υ
′).

Since Ẽ(Υ,Υ′) = Ẽ(Υ′,Υ), we conclude that the Roothaan algorithm is the same
as minimizing Ẽ with respect to its first and second variables one after another,
inductively. This fact allows to prove the following result, which is the HFB
equivalent of Theorem 7 in [7] and Theorem 5.1 in [27] in the HF case.

Theorem 3.1.1 (Convergence of the Roothaan algorithm). Assume that 0 <
N/2 < Nb. Let Υ0 be an initial HFB state such that the sequence (Υn) generated
by the Roothaan algorithm is uniformly well posed. Then

• The sequence Ẽ(Υ2n,Υ2n+1) decreases towards a critical value of Ẽ ;

• The sequence (Υ2n,Υ2n+1) converges towards a critical point (Υ,Υ′) of Ẽ ;

• If Υ = Υ′, then this state is a solution of the original HFB equation (3.0.3),
but if Υ 6= Υ′, then none of these two states is a solution to (3.0.3).

Theorem 3.1.1 says that (provided it is uniformly well posed) the sequence Υn

will either converge to a solution of the self-consistent Equation (3.0.3), or oscillate
between two points Υ and Υ′, none of them being a solution to the desired equation.
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Proof. We split the proof into several steps.

Step 1: µn is uniformly bounded. It will be very useful to know that the
sequence µn is uniformly bounded. The following says that, as soon as we fix
Tr(G) = N/2 with 0 < N/2 < Nb, the chemical potential µ cannot be too negative
and too positive.

Lemma 3.1.2 (Bounds on the multiplier µ). Let Υ′ be any fixed HFB state and

Υµ := 1(−∞,0)

(
FΥ′ − µN

)
=

(
Gµ Aµ

Aµ 1−Gµ

)

the corresponding HFB ground state at chemical potential µ. There exists a con-
stant C which is independent of Υ′ and µ, such that

∀µ ≤ −C, TrGµ ≤ C

|µ| (3.1.11)

and

∀µ ≥ C, TrGµ ≥ Nb −
C

µ
. (3.1.12)

The lemma says that the average number of particles in 1(−∞,0)

(
FΥ − µN

)

tends to Nb when µ → ∞ whereas it tends to 0 when µ → −∞, this uniformly
with respect to the state Υ′ used to build the mean-field operator FΥ′.

Proof. We first remark that there exists a constant C such that

||FΥ′|| ≤ C (3.1.13)

for any HFB state Υ′. This follows from the fact that FΥ′ is continuous with
respect to Υ′ and that the latter lives in a compact set since we always have
0 ≤ Υ ≤ 1. The chosen norm for ||FΥ′|| does not matter since we are in finite
dimension. Now, for µ large enough we can use regular perturbation theory (see
the proof of Lemma 3.3.1) and obtain that

∣∣∣∣1(−∞,0)

(
FΥ′ − µN

)
− 1(−∞,0)

(
− µN

)∣∣∣∣

=

∣∣∣∣
∣∣∣∣1(−∞,0)

(
FΥ′

|µ| − µ

|µ| N
)
− 1(−∞,0)

(
− µ

|µ| N
)∣∣∣∣
∣∣∣∣ ≤

C

|µ| .

Note that 1(−∞,0)

(
− µ

|µ| N
)

=





(
1 0

0 0

)
for µ > 0,

(
0 0

0 1

)
for µ < 0.

Taking the trace against N gives the result.
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From Lemma 3.1.2 we deduce that our sequence (µn) is bounded. Indeed, since
we have by construction Tr(Gn+1) = N/2 with 0 < N/2 < Nb, we must have

−max

(
C ,

2C

N

)
≤ µn+1 ≤ max

(
C ,

C

Nb −N/2

)
(3.1.14)

otherwise Tr(Gn+1) would be too small or too large.

Step 2: convergence of Ẽ(Υn,Υn+1). We now follow [4, 6, 7]. At each step,
we know from Lemma 3.1.1 that Υn+1 is a solution of the minimization problem
minΥ′ Ẽ(Υn,Υ

′). In particular, we deduce that

Ẽ(Υn,Υn+1) ≤ Ẽ(Υn,Υn−1) = Ẽ(Υn−1,Υn). (3.1.15)

Thus the sequence of real numbers Ẽ(Υn,Υn+1) is non-increasing. It is also
bounded from below, hence it converges to a limit ℓ. We now use the uniform
well-posedness to prove an inequality which is more precise than (3.1.15). We
remark that

Ẽ(Υn,Υn−1)− Ẽ(Υn,Υn+1) =
1

2
TrFΥn

(
Υn−1 −Υn+1

)

=
1

2
Tr
(
FΥn − µn+1N

)(
Υn−1 −Υn+1

)

≥ 1

2
Tr
∣∣FΥn − µn+1N

∣∣(Υn−1 −Υn+1

)2

≥ η

2
Tr
(
Υn−1 −Υn+1

)2
=
η

2
||Υn−1 −Υn+1||2 .

(3.1.16)

In the above calculation we have used that TrNΥn+1 = TrNΥn−1 = N −Nb. We
have also used that Υn+1 is the negative spectral projector of FΥn − µn+1N, such
that we can write

(
FΥn − µn+1N

)
=
∣∣FΥn − µn+1N

∣∣(Υ⊥
n+1 −Υn+1

)
.

Finally, we have used that 0 ≤ γ ≤ 1 is equivalent to γ2 ≤ γ. We can write this as

γ2 = (γ − P + P )2,

= (γ − P )2 + P 2 + (γ − P )P + P (γ − P ),

= (γ − P )2 − P + γP + Pγ,

≤ γ,

and we obtain

(γ − P )2 ≤ γ + P − γP − Pγ,

≤ P⊥γP⊥+ P⊥γP+ PγP⊥+ PγP− P⊥γP− PγP− PγP⊥− PγP+P,

≤ P⊥γP⊥ − PγP + P,

≤ P⊥ (γ − P )P⊥ − P (γ − P )P,
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for any orthogonal projector P , thus

Υ⊥
n+1

(
Υn−1 −Υn+1

)
Υ⊥

n+1 −Υn+1

(
Υn−1 −Υn+1

)
Υn+1 ≥

(
Υn−1 −Υn+1

)2
.

Since Ẽ(Υn,Υn+1) converges to a limit ℓ, we deduce that
∑

n≥1

||Υn+1 −Υn−1||2 <∞.

In particular, ||Υn+1 −Υn−1|| → 0 which is called numerical convergence in [6, 7].

Step 3: convergence of Υ2n and Υ2n+1. In order to upgrade the numerical
convergence to true convergence, we use a recent method of Levitt [27]. Namely
we show that

(
Ẽ(Υn,Υn−1)− ℓ

)θ
−
(
Ẽ(Υn,Υn+1)− ℓ

)θ
≥ η′

2
||Υn−1 −Υn+1|| (3.1.17)

for a well chosen 0 < θ < 1/2 and θ′ > 0. Summing over n and using the
convergence of Ẽ(Υn,Υn−1), hence of (Ẽ(Υn,Υn−1)−ℓ)θ, then gives the convergence
of Υ2n and Υ2n+1.

For the proof of (3.1.17), we argue as follow. Consider a (real, no-spin) pure
HFB state Υ. It is possible to parametrize the manifold of pure HFB states around
Υ by using Bogoliubov transformations as follows:

H 7→ eHΥe−H

where H is assumed to be of the form
(
h p
−p −h

)
, hT = −h = −h, pT = p = p.

These constraints ensure that iH is a self-adjoint Hamiltonian such that eH =
e−i(iH) is a Bogoliubov rotation. They also ensure that eHΥe−H stays real. That
H 7→ eHΥe−H is a local map of the manifold of pure HFB states around Υ follows
from the arguments in [3] as well as simple considerations in linear algebra.

Let us now consider the energy Ẽ in a neighborhood of any fixed (Υ,Υ′). The
map

f : (H,H ′) 7→ Ẽ
(
eHΥe−H , eH

′

Υ′e−H′)− µ′

2
TrNeHΥe−H − µ

2
TrNeH

′

Υ′e−H′

is real analytic in a neighborhood of (0, 0) for any fixed µ, µ′ ∈ R and any fixed
pure HFB states (Υ,Υ′). The Łojasiewicz inequality (Theorem 2.1 in [27]) then
tells us that there exist 0 < θ ≤ 1/2 and a constant κ > 0 such that ||H||+||H ′|| ≤ κ
implies

|f(H,H ′)− f(0)|1−θ ≤ κ−1
(
|∇Hf(H,H

′)|+ |∇H′f(H,H ′)|
)
.
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A simple computation shows that

∇Hf(H,H
′) =

1

2

[
FΥ′−µ′N , eHΥe−H

]
, ∇H′f(H,H ′) =

1

2

[
FΥ−µN , eH

′

Υ′e−H′]
.

If we rephrase all this in our setting, this means that for any fixed pure HFB states
(Υ1,Υ

′
1) and any µ, µ′ ∈ R, there is a κ > 0 such that for any (Υ2,Υ

′
2) another

pure HFB state which is at most at a distance κ from (Υ1,Υ
′
1), we have

∣∣∣Ẽ
(
Υ1,Υ

′
1

)
− Ẽ

(
Υ2,Υ

′
2

)
+ µ′ TrN(G2 −G1) + µTrN(G′

2 −G′
1)
∣∣∣
1−θ

≤ κ−1
( ∣∣∣∣[FΥ′

2
− µ′N , Υ2

]∣∣∣∣+
∣∣∣∣[FΥ2

− µN , Υ′
2

]∣∣∣∣
)
. (3.1.18)

The constants κ and θ depend on µ, µ′ and of the reference point (Υ1,Υ
′
1). But

they stay positive as soon as µ, µ′ and (Υ1,Υ
′
1) stay in a compact set. By a simple

compactness argument, we therefore deduce that there exists a neighborhood of
the compact set

{
(Υ,Υ′) : Ẽ(Υ,Υ′) = ℓ, Tr(G) = Tr(G′) = N/2

}

such that for any (Υ,Υ′) in this neighborhood and µ, µ′ in a compact set in R, we
have

∣∣∣Ẽ
(
Υ,Υ′)− ℓ + µ′(N/2− TrNG

)
+ µ
(
N/2 − TrNG′)∣∣∣

1−θ

≤ κ−1
( ∣∣∣∣[FΥ′ − µ′N , Υ

]∣∣∣∣+
∣∣∣∣[FΥ − µN , Υ′]∣∣∣∣

)
(3.1.19)

for some 0 < θ ≤ 1/2 and some κ > 0. We recall that ℓ is by definition the limit
of Ẽ

(
Υn,Υn+1

)
.

Recall our inequality (3.1.14) which says that µn is uniformly bounded. Also,
we know that Ẽ(Υn,Υn+1) converges to ℓ so, for n large enough, (Υn,Υn+1) must
be in the neighborhood of the level set ℓ. Choosing µ = µn+1 and µ′ = µn and
using that Gn and Gn+1 have the correct trace, we get the estimate

(
Ẽ
(
Υn,Υn−1

)
− ℓ
)1−θ

≤ κ−1
(∣∣∣∣[FΥn − µn+1N , Υn−1

]∣∣∣∣ +
∣∣∣∣[FΥn−1

− µnN , ,Υn

]∣∣∣∣)

= κ−1
∣∣∣∣[FΥn − µn+1N , Υn−1 −Υn+1

]∣∣∣∣
≤ C ||Υn−1 −Υn+1||

for n large enough. Here we have used that Υn commutes with FΥn−1
− µnN and

that Υn+1 commutes with FΥn −µn+1N by construction, and that ||FΥn|| and µn+1

are both uniformly bounded. In order to conclude, we use the concavity of x 7→ xθ



3.2. Optimal Damping Algorithm 73

and (3.1.16) like in [27] to obtain

(
Ẽ
(
Υn,Υn−1

)
− ℓ
)θ

−
(
Ẽ
(
Υn,Υn+1

)
− ℓ
)θ

≥ θ
(
Ẽ
(
Υn,Υn−1

)
− ℓ
)1−θ

(
Ẽ
(
Υn,Υn−1

)
− Ẽ

(
Υn,Υn+1

))

≥ η θ

2
(
Ẽ
(
Υn,Υn−1

)
− ℓ
)1−θ

||Υn+1 −Υn−1||2

≥ ηθ/(2C) ||Υn+1 −Υn−1||

by (3.1.16). This concludes the proof of the inequality (3.1.17), hence the proof of
the convergence of (Υ2n,Υ2n+1), towards some pure HFB states (Υ,Υ′).

Step 4: the limit (Υ,Υ′) of (Υ2n,Υ2n+1) is a critical point of Ẽ. Since we
have Υ2n → Υ and Υ2n+1 → Υ′, we deduce that FΥ2n → FΥ and FΥ2n+1

→ FΥ′ ,
by continuity of the map Υ 7→ FΥ. Extracting a subsequence, we can assume that
µ2nk

→ µ′ and µ2nk+1 → µ. We have

Υ2nk
= 1(−∞,0)(FΥ2nk−1

− µ2nk
N), Υ2nk+1 = 1(−∞,0)(FΥ2nk

− µ2nk+1N)

and, by uniform well-posedness,
∣∣FΥ2nk−1

− µ2nk
N
∣∣ ≥ η,

∣∣FΥ2nk
− µ2nk+1N

∣∣ ≥ η.

Passing to the limit k → ∞ we get

Υ = 1(−∞,0)(FΥ′ − µ′N) and Υ′ = 1(−∞,0)(FΥ − µN).

This exactly means that (Υ,Υ′) is a critical point of Ẽ on Ph(N/2) × Ph(N/2).
Note that we have also

∣∣FΥ′ − µ′N
∣∣ ≥ η and

∣∣FΥ − µN
∣∣ ≥ η.

The remaining statements are verified exactly like in the HF case. This con-
cludes the proof of Theorem 3.1.1.

3.2 Optimal Damping Algorithm

In the previous section we have studied the convergence properties of the Roothaan
algorithm, which consists in solving the self-consistent equation by a fixed point
method. We have seen that the algorithm can either converge or oscillate between
two states, none of them being a solution to the problem.

Examples of such oscillations in quantum chemistry have been exhibited by
Cancès and Le Bris [6, 7]. In this case the potential W is repulsive and there
is no pairing. In order to cure this problem of oscillations, Cancès and Le Bris
proposed in [7] a relaxed algorithm called the Optimal Damping Algorithm (ODA).
This method makes use of the important fact that one can minimize over mixed
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states and get the same ground state as when minimizing over pure states only
(Theorem 1.4.1).

The same oscillations can a priori happen in HFB with an attractive potential
W . They are frequently seen with the Roothaan algorithm, at least during the
first iterations (examples will be given in Section 4). Even when the sequence
(Υn) eventually converges towards a single state Υ, these oscillations slow down
the convergence considerably. This phenomenon is well known in nuclear physics.
Dechargé and Gogny already advocate in [10] the use of a damping parameter
between two successive iterations, in order to “slow down the convergence on the
density matrix. In this way the average field varies slowly and we can insure the
convergence on the pairing tensor step by step” (see [10] page 1574). Even in the
modern computations, this damping parameter is fixed all along the algorithm.

We suggest to transpose the method of Cancès and Le Bris to the HFB setting
by using an optimal damping parameter, chosen such as to minimize the energy.
This means resorting to mixed states even if the final ground state is always a
pure HFB state. This is theoretically justified when the assumptions of the Bach-
Fröhlich-Jonsson Theorem 1.4.2 are fulfilled.

The ODA involves two density matrices Υn and Υ̃n. The HFB state Υn is
always pure but Υ̃n can (and will usually) be a mixed HFB state. The starting
point Υ0 = Υ̃0 being chosen, the sequence is then constructed by induction as
follows:

1. One finds (Υn+1, µn+1) solving

Υn+1 = 1(−∞,0)

(
FΥ̃n

− µn+1N
)

and Tr(Gn+1) = N/2.

This is always possible, by Lemma 3.1.1 and we can take as before

µn+1 :=
∂−IΥ̃n

(N/2) + ∂+IΥ̃n
(N/2)

2
,

in case 0 is in the spectrum of FΥn − µn+1N.

2. One lets
Υ̃n+1 = tn+1Υ̃n + (1− tn+1)Υn+1

where the damping parameter tn+1 ∈ [0, 1] is chosen such as to minimize the
(quadratic) function

t 7→ E
(
tΥ̃n + (1− t)Υn+1

)
.

3. The algorithm is stopped when ||[Υn,FΥn − µn+1N]|| and/or ||Υn+1 −Υn|| are
smaller than a prescribed ε.

The general strategy of the ODA is displayed in Figure 3.1. By construction
we see that E(Υ̃n) is a non-increasing sequence. This guarantees the convergence
of the ODA. The result is the following
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Υ0 = Υ̃0

Υ1 = 1(−∞,0)(FΥ̃0
− µ1N)Υ̃1

mixed HFB states

pure HFB states

Υ2 = 1(−∞,0)(FΥ̃1
− µ2N)

Figure 3.1: Schematic representation of the Optimal Damping Algorithm of Cancès
& Le Bris in the HFB case. In reality, pure HFB states are only the extremal points
of the set of states.

Theorem 3.2.1 (Convergence of the ODA). Assume that 0 < N/2 < Nb. Let
Υ0 = Υ̃0 be an initial HFB state such that the sequence (Υn) generated by the
ODA is uniformly well posed, that is

∀n,
∣∣FΥ̃n

− µn+1N
∣∣ ≥ η > 0. (3.2.20)

Then

• The sequence E(Υ̃n) decreases towards a critical value of E ;

• The sequence Υn numerically converges towards a critical point Υ of E , in
the sense that Υn+1 −Υn → 0, Υn+1 − Υ̃n → 0 and that all the limit points
Υ of subsequences of (Υn) solve Υ = 1(−∞,0)(FΥ − µN).

Proof. The proof is exactly the same as in the Hartree-Fock case [4,8] and we only
sketch it. First we have by definition E(Υ̃n+1) ≤ E(Υ̃n), so E(Υ̃n) must converge
to a limit ℓ. Now we have

E(Υ̃n+1) = E
(
(1− tn+1)Υ̃n + tn+1Υn+1

)
= E(Υ̃n)− tn+1an+1 + t2n+1bn+1

where
tn+1 = argmint∈[0,1]

(
− tan+1 + t2bn+1

)

and with

an+1 := TrFΥ̃n

(
Υ̃n −Υn+1

)
= Tr |FΥ̃n

− µN|
(
Υ̃n −Υn+1

)2 ≥ η
∣∣∣
∣∣∣Υ̃n −Υn+1

∣∣∣
∣∣∣
2

with FΥ = h + L(Υ− P),

bn+1 = Tr((Υ̃n+1 −Υn)L(Υ̃n+1 −Υn)).
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In finite dimension we have |bn+1| ≤ C
∣∣∣
∣∣∣Υ̃n+1 −Υn

∣∣∣
∣∣∣
2

≤ (C/η)an+1. This can be

used to prove that

−tn+1an+1 + t2n+1bn+1 ≤ −ǫ an+1 ≤ −ǫ η
∣∣∣
∣∣∣Υ̃n −Υn+1

∣∣∣
∣∣∣
2

for some ǫ > 0 independent of n. This now proves that

∑

n

∣∣∣
∣∣∣Υ̃n −Υn+1

∣∣∣
∣∣∣
2

<∞,

hence that Υ̃n −Υn+1 → 0. In order to conclude the proof, we notice that

Υn+1 −Υn = Υn+1 − Υ̃n + (1− tn)
(
Υ̃n−1 −Υn

)

which finally implies

∑

n

||Υn −Υn+1||2 <∞ and
∑

n

∣∣∣
∣∣∣Υ̃n − Υ̃n+1

∣∣∣
∣∣∣
2

<∞.

Since Υn+1 = 1(−∞,0)(FΥ̃n
− µn+1N) by definition, the proof that any limit Υ of a

subsequence of (Υn) satisfies the self-consistent equation is elementary.

3.3 Handling constraints

Both the Roothaan algorithm and the ODA are based on Lemma 3.1.1 which says
that for any given FΥ, there exist µ′, δ′ and Υ′ such that

{
Υ′ = 1(−∞,0)

(
FΥ − µ′N

)
+ δ′,

TrNΥ′ = N −Nb.
(3.3.21)

The purpose of this section is to explain how to solve this problem numerically.
To simplify our notation, we consider in this section a generic matrix

F =

(
h p
p −h

)
, with p = p = pT and h = h = hT (3.3.22)

and we study the problem consisting in finding Υ, µ and δ such that
{
Υ = 1(−∞,0)

(
F− µN

)
+ δ,

TrNΥ = N −Nb.
(3.3.23)

Assume first that p ≡ 0 (Hartree-Fock case). Then we have

F =

(
h 0
0 −h

)
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which commutes with N. The solution of (3.3.23) is then given by the Aufbau
principle,

Υ =

(
G 0
0 1−G

)
, G = 1(−∞,µ)(h) + δ

where µ is the (N/2)th eigenvalue of h, counted with multiplicity and δ lives in
the corresponding eigenspace. Equivalently,

G =

K∑

i=1

viv
T
i +

K ′∑

i=K+1

ni viv
T
i

where the vi’s solve the eigenvalue equation

h vi = ǫi vi,

where ǫi are the eigenvalues of h sorted in ascending order, and vi the orthonormal
eigenfunctions. K = Tr1(−∞,ǫN/2)(h) is the dimension of the direct sum of all
the eigenspaces corresponding to the eigenvalues < ǫN/2 and K ′ = Tr1(−∞,ǫN/2](h)
is the dimension of the direct sum of all the eigenspaces corresponding to the
eigenvalues ≤ ǫN/2. The ni’s are chosen such that

0 ≤ ni ≤ 1, K +

K ′∑

i=K+1

ni =
N

2
.

Therefore, finding Υ, µ and δ in the Hartree-Fock case only requires to diagonalize
h once.

In the Hartree-Fock-Bogoliubov case (p 6= 0), the situation is more complicated
since N does not commute with F. Let us consider the real function

νF : µ 7→ νF(µ) =
TrN1(−∞,0)

(
F − µN

)
+Nb

2
. (3.3.24)

We are interested in solving the equation

νF(µ) = N/2.

In the Hartree-Fock case, νF is a non-decreasing piecewise constant function. There
is a solution µ to νF(µ′) = N/2 when N/2 belong to the range of νF. Otherwise,
one has to partially fill a shell using the matrix δ.

In the Hartree-Fock-Bogoliubov case, νF is also non-decreasing and in general it
is much smoother when p 6= 0. The following lemma summarizes some important
properties of νF in both the HF and HFB cases.

Lemma 3.3.1 (Elementary properties of νF). Let F be as in (3.3.22). Then the
function νF defined in (3.3.24) is increasing with respect to µ. It can only have
finitely many jumps. It satisfies for some constant C depending only on Nb
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• νF(µ) ≤ C/µ for µ ≤ −C;

• νF(µ) ≥ Nb − C/µ for µ ≥ C.

If 0 /∈ σ
(
F − µN

)
, then

dνF
dµ

(µ) = 2
∑

ǫi<0
ǫj>0

|〈vj ,Nvi〉|2
ǫj − ǫi

≥ 0 (3.3.25)

where (F − µN)vi = ǫi vi.

Proof. The behavior of νF for |µ| ≫ 1 was already studied in Lemma 3.1.2.
The matrix F − µN is a linear function of µ ∈ R, hence by [24], we know

that its eigenvalues form a set of real analytic functions. They cannot be constant
because the matrix N does not vanish. The eigenvalues of F− µN all behave like
±µ for large µ, by perturbation theory. We conclude that 0 can be an eigenvalue
of F − µN for a finite number of µ’s, say µ1 < · · · < µK . On the other hand, the
map µ 7→ 1(−∞,0)

(
F − µN

)
is real-analytic outside of the µk’s (see [24]). So νF is

itself real-analytic outside of this set and it can have at most a finite number of
jumps.

Once we know that the derivative of νF is given by (3.3.25), the fact that
dνF/dµ ≥ 0 proves that νF is increasing with respect to µ, in between the µk’s.
That the jumps are all positive can be easily seen by an approximation argu-
ment using Lemma 3.3.2 below. We skip the details. This concludes the proof of
Lemma 3.3.1.

The formula (3.3.25) of dνF
dµ

can be obtained by usual perturbation theory, as we
now explain in detail. In order to simplify the notation, we introduce A = F−µN
for some µ. We want to expand νF(µ+ δµ) for some δµ << 1. Recall that

νF(µ+ δµ) =
Nb + Tr

(1(−∞,0)(F − (µ+ δµ)N)N
)

2

=
Nb

2
+

1

2
Tr(N1(−∞,0)(A− δµN)).

If we diagonalize A in the form

A =

d∑

i=1

ǫi|vi〉〈vi|

then 1(−∞,0)(A) =
∑

ǫi<0

ǫi|vi〉〈vi|.

Our assumption that µ /∈ {µk} means that 0 /∈ σ(A). So ǫi 6= 0 ∀i. Let us
consider a simple closed curve C in C, which intersects the real axis and encloses
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all the negative eigenvalues of A (andonly the negative ones). We remark that the
residuum formula gives

1

2iπ

∮

C

dz

z − ǫ
=

{
1 if ǫ ∈ σ(A) ∩ R−

0 if ǫ /∈ σ(A) ∩ R−

From this we deduce that1(−∞,0)(A) =
1

2iπ

∮

C
dz(z −A)−1.

Because
1

z − A
=

d∑

i=1

1

z − ǫi
|vi〉〈vi|,

hence

1

2iπ

∮

C

dz

z −A
=

d∑

i=1

(
1

2iπ

∮

C

dz

z − ǫi

)
|vi〉〈vi|,

=
∑

ǫi<0

|vi〉〈vi|.

We now considere that B = −δµN. For B small enough (that is, for δµ small),
we have similarly 1(−∞,0)(A+B) =

1

2iπ

∮

C
dz(z − A−B)−1,

and this1(−∞,0)(A+B)− 1(−∞,0)(A) =
1

2iπ

∮

C

(
1

z − (A+B)
− 1

z −A

)
dz.

Now we use that

1

z − A− B
− 1

z −A
=

1

z − A
B

1

z − A
+

1

z −A
B

1

z − A
B

1

z − A− B︸ ︷︷ ︸
O(‖B‖2)

.

So, 1(−∞,0)(A +B)− 1(−∞,0)(A) =
1

2iπ

∮

C

(
1

z − A
B

1

z −A
+O(‖B‖2)

)
dz.

To compute the first-order term, we use the decomposition:

1 = Π+ +Π− with Π+(A) =
∑

ai>0

|vi〉〈vi| and Π−(A) =
∑

ai<0

|vi〉〈vi|
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and the spectral decomposition of A, and we find

1

z − A
=
∑

ǫi>0

1

z − ǫi
|vi〉〈vi|+

∑

ǫi<0

1

z − ǫi
|vi〉〈vi|,

B
1

z − A
=
∑

ǫi>0

1

z − ǫi
|Bvi〉〈vi|+

∑

ǫi<0

1

z − ǫi
|Bvi〉〈vi|,

so

1

z −A
B

1

z − A

=
∑

ǫi>0
ǫj>0

1

(z − ǫi)(z − ǫj)
〈vj |Bvi〉|vj〉〈vi|+

∑

ǫi<0
ǫj>0

1

(z − ǫi)(z − ǫj)
〈vj|Bvi〉|vj〉〈vi|,

+
∑

ǫi>0
ǫj<0

1

(z − ǫi)(z − ǫj)
〈vj |Bvi〉|vj〉〈vi|+

∑

ǫi<0
ǫj<0

1

(z − ǫi)(z − ǫj)
〈vj |Bvi〉|vj〉〈vi|.

Because
1

(z − ǫi)(z − ǫj)
=

1

ǫi − ǫj

(
1

z − ǫi
− 1

z − ǫj

)
,

the residuum formula gives

1

2iπ

∮

C

dz

(z − ǫi)(z − ǫj)
=





0 if ǫi ∈ σ(A) ∩ R− and ǫj ∈ σ(A) ∩ R−

0 if ǫi /∈ σ(A) ∩ R− and ǫj /∈ σ(A) ∩ R−

1

ǫi − ǫj
if ǫi ∈ σ ∩ R−(A) and ǫj /∈ σ(A) ∩ R−

1

ǫj − ǫi
if ǫi /∈ σ(A) ∩ R− and ǫj ∈ σ(A) ∩ R−

and we find

1

2iπ

∮

C

(
1

z −A
B

1

z − A

)
dz

=
1

2iπ

∮

C



∑

ǫi<0
ǫj>0

1

(z − ǫi)(z − ǫj)
〈vj|Bvi〉|vj〉〈vi|+

∑

ǫi>0
ǫj<0

1

(z − ǫi)(z − ǫj)
〈vj |Bvi〉|vj〉〈vi|


dz

=
1

2iπ

∮

C



∑

ǫi<0
ǫj>0

1

ǫi − ǫj

(
1

z − ǫi
− 1

z − ǫj

)
〈vj |Bvi〉|vj〉〈vi|

+
∑

ǫi>0
ǫj<0

1

ǫi − ǫj

(
1

z − ǫi
− 1

z − ǫj

)
〈vj|Bvi〉|vj〉〈vi|


dz.
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We obtain1(−∞,0)(A+B)− 1(−∞,0)(A)

=
∑

ǫi<0
ǫj>0

1

ǫi − ǫj
〈vj|Bvi〉|vj〉〈vi|+

∑

ǫi>0
ǫj<0

−1

ǫi − ǫj
〈vj |Bvi〉|vj〉〈vi|+O(‖B‖2),

=
∑

ǫi<0
ǫj>0

1

ǫi − ǫj

(
〈vj|Bvi〉|vj〉〈vi|+ 〈vj|Bvi〉|vi〉〈vj|

)
+O(‖B‖2).

Let us recall that B = −δµN. So the final answer is

Tr
(
N(1(−∞,0)(A− δµN)− 1(−∞,0)(A))

)
= 2δµ

∑

ǫi<0
ǫj>0

|〈vj|Nvi〉|2
ǫj − ǫi

+O(‖B‖2).

Therefore
dνF
dµ

(µ) = 2
∑

ǫi<0
ǫj>0

|〈vj,Nvi〉|2
ǫj − ǫi

. (3.3.26)

Remark 3.3.1. In the case of rotation invariant states, let us recall that the
constraint takes the form:

ℓmax∑

ℓ=0

TrS Gℓ =
N

2
. (3.3.27)

In this section S = I. Then we have to change our definition of ν which becomes:

νF(µ) =

ℓmax∑

ℓ=0

ν
F

ℓ(µ)(2ℓ+ 1)

=
ℓmax∑

ℓ=0

(2ℓ+ 1)
Nb + Tr

(1(−∞,0)(F
ℓ − µN)N

)

2
.

Of course we find using Lemma 3.3.1 that

ν ′
F
(µ) =

ℓmax∑

ℓ=0

(2ℓ+ 1)ν ′
F

ℓ(µ)

=

ℓmax∑

ℓ=0

(2ℓ+ 1) 2
∑

ǫℓi<0

ǫℓj>0

∣∣〈vℓj ,Nvℓi
〉∣∣2

ǫℓj − ǫℓi
,

where (Fℓ − µN)vℓi = ǫℓiv
ℓ
i , ∀ℓ = 0, ..ℓmax.
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The shape of the function νF is very different in the HF and HFB cases. For a
Hartree-Fock state, the function νF is piecewise constant and it has jumps at the
eigenvalues ǫ1 < · · · < ǫNb

of hG. The size of the jumps is equal to the multiplicity
of the associated eigenvalue. An HFB state will most always have a very smooth
νF. Of course, the smaller p in the Hamiltonian FΥ, the more νF looks like a step
function.

In Figure 3.2 below, we show the function νF for different values of the pairing
term. More precisely, we have randomly chosen two symmetric real matrices h
and p of size Nb = 5, and we display the function νF when the pairing is replaced
by tp for t = 0 (Hartree-Fock case), t = 0.1 and t = 1. Figure 3.3 is a plot of the
eigenvalues of F − µN for t = 0.1, as functions of µ. Note that there are some
crossings of eigenvalues above and below the real line (recall that the spectrum is
symmetric with respect to 0). But, around 0 the crossings are avoided and there
is a gap.

If we repeat the numerical experiment with several random matrices h and p,
we never see any jump for νF. The purpose of the next result is to clarify this
observation.

Lemma 3.3.2 (Generic behavior of νF). The Fock matrix F− µN is invertible if
and only if h± ip− µ are invertible. More precisely,

min σ
(
|F− µN|

)
= min

(∣∣∣∣(h+ ip− µ)−1
∣∣∣∣−1

,
∣∣∣∣(h− ip− µ)−1

∣∣∣∣−1
)
. (3.3.28)

The set of real symmetric matrices h and p such that

σ
(
F− µN

)
∩ {0} = ∅ for all µ ∈ R

is open and dense in {(h, p) : h = hT = h, p = pT = p}. For h and p in this set,
νF is real-analytic on R.

It is obvious that there are matrices h and p for which F−µN has 0 as eigenvalue
for some µ ∈ R. The simplest examples are HF Hamiltonians for which p ≡ 0 and
F−µN is not invertible each time µ equals an eigenvalue of h. If p does not vanish
but commutes with h, then we have |h+ ip−µ|2 = |h− ip−µ|2 = (h−µ)2+p2 and
we see that 0 is never in the spectrum of F − µN when the kernel of p does not
contain the eigenvectors of h. However there are counterexamples with p invertible
not commuting with h. For instance, F + N is not invertible for

h =

(
−1 0
0 2

)
, p =

(
0 2
2 0

)
.

We now turn to the proof of Lemma 3.3.2.

Proof. The operator F− µN is unitarily equivalent to
(

1√
2

i√
2

i√
2

1√
2

)
(
F− µN

)
(

1√
2

− i√
2

− i√
2

1√
2

)
= −i

(
0 h + ip− µ

−(h− ip− µ) 0

)
.
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From this we deduce that F−µN is invertible if and only if h+ip−µ and h−ip−µ
are invertible. Then we have

(
F − µN

)−1
= i

(
1√
2

− i√
2

− i√
2

1√
2

)(
0 −(h− ip− µ)−1

(h + ip− µ)−1 0

)( 1√
2

i√
2

i√
2

1√
2

)

and ∣∣∣
∣∣∣
(
F − µN

)−1
∣∣∣
∣∣∣ = max

( ∣∣∣∣(h+ ip− µ)−1
∣∣∣∣ ,

∣∣∣∣(h− ip− µ)−1
∣∣∣∣
)
.

The statement now follows from the fact that, on a dense open set, the spectra of
h± ip do not intersect the real axis.

Lemma 3.3.2 is interesting when we apply the Roothaan or the ODA, because
it means that, as soon as p 6= 0, most often we will have no choice for µn+1 and
we will take δn+1 = 0. Saying differently, it is really reasonable to assume that the
sequence generated by the Roothaan and the ODA are uniformly well posed (of
course when the final state is believed to have a non vanishing pairing), as we did
in Theorem 3.1.1 and 3.2.1.

Even if it is in general smooth, the function νF can still vary quickly and
this will be the case when the pairing term p is small. The appropriate method
to find the solution of νF(µ) = N/2 then depends on the properties of νF. If
the Hamiltonian F has a large enough pairing matrix p, then νF is smooth and
we can use a Newton-like method to solve the equation νF(µ) = N/2. A trial
chemical potential µ0 being given, we compute the derivative ∂νF/∂µ(µ0) using
Formula (3.3.25) and then let

µ1 := µ0 +
(
N/2− νF(µ

0)
)(∂νF

∂µ
(µ0)

)−1

.

The method can be iterated until convergence of µn towards the desired µ. The
convergence is very fast, as soon as νF is smooth.

If the Hamiltonian F has a small pairing matrix p, the function νF will be
smooth but close to a step function. Its derivative varies very quickly and the
previous Newton method is not appropriate. In this case we can use a simple
bisection method. The bounds on νF(µ) for large |µ| can be used to find a good
starting interval [µl, µr] such that νF(µl) < N/2 and νF(µr) > N/2.

We have to find a new µn+1 at each step of the Roothaan or ODA. It is of
course not efficient to find µn+1 with a very high precision all along the algorithm.
Dechargé and Gogny advice in Section II.E of [10] to apply the Newton scheme
only once at each step. This means that

µn+1 = µn +
(
N/2− νn(µn)

)(∂νn
∂µ

(µn)

)−1

where νn is the function ν corresponding to F = FΥn. This is then the same as
doing perturbation theory at first order. We use a slightly different strategy which
we explain in the next chapter.
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Remark 3.3.2. For rotation-invariant states, the multiplier µ is updated using
the formula

µ′ =
µ+N/2−∑ℓmax

ℓ=0 (2ℓ+ 1)ν
F

ℓ(µ)
∑ℓmax

ℓ=0 (2ℓ+ 1)∂ν
F

ℓ/∂µ(µ)
. (3.3.29)

See Remark 3.3.1.

Remark 3.3.3. Link with Hartree-Fock theory in dimension 2Nb. In order
to emphasize the abstract structure of the HFB model, we write the energy as
follows

E(Υ) = Tr
(
h(Υ−P)

)
+

1

2
Tr(Υ− P)L(Υ−P) (3.3.30)

where

h =

(
h 0
0 −h

)
, P =

(
0 0
0 1

)

and where L is a linear operator defined on the space of (2Nb)× (2Nb) symmetric
real matrices, by

L
(
M1 M2

M2 M3

)
=

(
2J(M1)−K(M1) K(M2)

K(M2) 2J(M3)−K(M3)

)
.

The only important property of L for the following is the symmetry

UL(M)U−1 = L(UMU−1), where U :=

(
0 1
−1 0

)
. (3.3.31)

All the results of this chapter apply exactly the same when h, L, P, U, N are
abstract operators satisfying (3.3.31),

UhU−1 = −h

and we can assume that h is any matrix satisfying this property. The constraint
that Υ takes the form (3.0.1) can be written in terms of the matrices P and U as

U
(
Υ− P

)
U−1 = −

(
Υ− P

)
⇐⇒ UΥU−1 = I2Nb

−Υ. (3.3.32)

Finally, the particle number constraint Tr(G) = N/2 can also be written as

Tr
(
N(Υ− P)

)
= N. (3.3.33)

As a conclusion, the HFB discretized minimization problem can be rewritten as

Ih(N) = min
{
Tr
(
h(Υ− P)

)
+

1

2
Tr(Υ−P)L(Υ−P) : 0 ≤ Υ ≤ 1,

UΥU−1 = I2Nb
−Υ, Tr

(
NΥ

)
= N −Nb

}
. (3.3.34)

As we have already mentioned, this problem takes the same form as the Hartree-
Fock minimization problem [8], with two main differences:
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• we have the symmetry constraint UΥU−1 = I2Nb
−Υ on the density matrix

Υ;

• we have a constraint on Tr(NΥ) instead of Tr(Υ).

We can consider the abstract minimization problem of the form (3.3.34). We
assume that P is a given projection of rank Nb, and that U is an isometry such
that UPU−1 = 1−P. We also assume that

UhU−1 = −h, UNU−1 = −N and UL(·)U−1 = L(U · U−1). (3.3.35)

The solution of this minimization problem is

Υ = 1(−∞,0)

(
FΥ − µN

)
+ δ,

with Tr(NΥ) =
N

2
−Nb.
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Figure 3.2: The function νF(µ) which gives the average number of particles in the
state 1(−∞,0)(F − µN), in terms of the chemical potential µ. The pairing term in
F is equal to tp with t = 0 (Hartree-Fock case, red curve), t = 0.1 (blue curve)
and t = 1 (green curve).

Figure 3.3: The eigenvalues of F− µN in terms of µ for t = 0.1.
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Chapter 4

Non relativistic gravitational

systems

4.1 Model

Here we consider a system of N spin-1/2 neutral non-relativistic particles, only
interacting through the Newtonian interaction

W (x) = − g

|x| , g > 0. (4.1.1)

This potential is strongly attractive at short distances. Since 1/|x| does not decay
too fast at infinity, it is also quite attractive at large distances. The kinetic energy
does not scale the same as the potential energy. By a simple scaling argument, we
can therefore always assume that

g ≡ 1.

This model can be used to describe neutron stars and white dwarfs when N ≫
1. It has been particularly studied from a theoretical point of view in the pseudo-
relativistic case where the kinetic energy is given by T =

√
c4m2 − c2∆ − mc2,

see [26, 35, 36]. In our simulations we restrict ourselves to the non-relativistic
case of the Laplacian T = −∆/(2m) (in units such that m = 1/2). It would be
interesting to take N large but this is of course much too difficult from a numerical
point of view.

As mentioned in the previous chapters, we always impose the spin and time-
reversal symmetries, which is perfectly justified for the ground state since the
interaction (4.1.1) satisfies the assumption of the Bach-Fröhlich-Jonsson Theo-
rem 1.4.2. We also impose spherical symmetry which, on the contrary, is not
known to hold for the true ground state.

One advantage of the Newtonian interaction (4.1.1) is that the matrices h, S,
and the operators J and Kℓℓ′ can be explicitly computed in the basis of “hat”

89
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functions. We have shown in Lemma 2.3.2 that the energy can be written

E(G0, ..., Gℓmax, A0, ..., Aℓmax) = 2

ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(hℓGℓ)

+
ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)
(
2Tr(Gℓ J(Gℓ′))− Tr(GℓKℓℓ′(Gℓ′)) + Tr(AℓKℓℓ′(Aℓ′))

)
,

(4.1.2)

where

hℓij =

∫ ∞

0

χ′
i(r)χ

′
j(r)r

2dr + ℓ(ℓ+ 1)

∫ ∞

0

χi(r)χj(r)dr,

J(Gℓ′)ij :=

Nb∑

m,n=0

(ij|nm)0,0G
ℓ′

mn, Kℓℓ′(Gℓ′)ij :=

Nb∑

m,n=0

(im|jn)ℓ,ℓ′ Gℓ′

mn,

(ij|mn)ℓ,ℓ′ :=
∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χm(s)χn(s)wℓ,ℓ′(r, s)

and

wℓ,ℓ′(r, s) :=
1

2

∫ 1

−1

W
(√

r2 + s2 − 2rst
)
Pℓ(t)Pℓ′(t) dt

= −1

2

∫ 1

−1

Pℓ(t)Pℓ′(t)√
r2 + s2 − 2rst

dt.

Using the well-known formula

1√
r2 + s2 − 2rst

=

∞∑

n=0

min(r, s)n

max(r, s)n+1
Pn(t)

we deduce that

(ij|mn)ℓ,ℓ′

= −1

2

∞∑

n=0

(∫ 1

−1

PnPℓPℓ′

)∫ ∞

0

r2 dr

∫ ∞

0

s2 ds
min(r, s)n

max(r, s)n+1
χi(r)χj(r)χm(s)χn(s).

(4.1.3)

The integral over the Legendre polynomials is related to the usual Clebsch-Gordan
coefficients as follows

1

2

∫ 1

−1

Pn(t)Pℓ(t)Pℓ′(t) dt =

(
ℓ ℓ′ n
0 0 0

)2

and only a finite number of terms are non zero in the sum over n in (4.1.3).
The previous argument shows that the HFB energy can be written as follows
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Corollary 4.1.1 (Gravitational HFB energy for all ℓmax). The gravitational HFB
energy functionnal associated with the density and pairing matrices (Gℓ, Aℓ)0≤ℓ≤ℓmax

is

E(G0, ..., Gℓ, A0, ..., Aℓ)

= 2
ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(hℓGℓ)−
ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)

(
2Tr(GℓJ (Gℓ′))

−
∞∑

m=0

(
ℓ ℓ′ m
0 0 0

)2

Tr(GℓKm(Gℓ′)) +

∞∑

m=0

(
ℓ ℓ′ m
0 0 0

)2

Tr(AℓKm(Aℓ′))

)
,

where
(
J (Gℓ′)

)
ij
:=

Nb∑

k,l=1

Gℓ′

kl

(
ij, kl

)
0
, (4.1.4)

(
Km(Gℓ′)

)
ij
:=

Nb∑

k,l=1

Gℓ′

kl

(
ik, jl

)
m
, (4.1.5)

and

(
ij, kl

)
m
:=

∫ ∞

0

∫ ∞

0

χi(r)χj(r)χk(s)χl(s)
min(r, s)m

max(r, s)m+1
r2s2drds. (4.1.6)

For the sake of clarity we have defined new operators J and K which coincide
with J and K up to a minus sign. We thereby explicit the sign of the interaction.

In our computations we have taken ℓmax = 1. So we give the complete expres-
sion of the energy in this special case:

E(G0, G1, A0, A1) = 2Tr(h0G0) + 6Tr(h1G1)

− 2
(
Tr(G0J (G0)) + 6Tr(G0J (G1)) + 9Tr(G1J (G1))

)

+

(
Tr(G0K0(G0)) + 2Tr(G0K1(G1)) +

6

5
Tr(G1K2(G1)) + 3Tr(G1K0(G1))

)

−
(
Tr(A0K0(A0)) + 2Tr(A0K1(A1)) +

6

5
Tr(A1K2(A1)) + 3Tr(A1K0(A1))

)
.

This expression is a consequence of the formulas
(
1 0 1
0 0 0

)2

=

(
1 1 0
0 0 0

)2

=
1

2

∫ 1

−1

P1(t)
2 dt =

1

2

∫ 1

−1

t2 dt =
1

3
,

(
1 1 2
0 0 0

)2

=
1

2

∫ 1

−1

P1(t)
2 P2(t) dt =

1

2

∫ 1

−1

t2
3t2 − 1

2
dt =

2

15
.

Any minimizer (G0, G1, A0, A1) of E under the constraints

0 ≤ ΥℓSΥℓ ≤ Υℓ, with Υℓ :=

(
Gℓ Aℓ

Aℓ S−1 −Gℓ

)
and S =

(
S 0
0 S

)
(4.1.7)
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for all ℓ = 0, 1, and

2Tr(SG0) + 6Tr(SG1) = N (4.1.8)

can be written as {
Υ0 =

∑
ǫ0i<0 f

0
i

(
f 0
i

)T

Υ1 =
∑

ǫ1i<0 f
1
i

(
f 1
i

)T

where the f 0,1
i solve the generalized eigenvalue problem

{ (
F0 − µN

)
f 0
i = ǫ0i S f 0

i ,
〈
f 0
i ,Sf

0
j

〉
= δij,(

F1 − 3µN
)
f 1
i = ǫ1i S f 1

i ,
〈
f 1
i ,Sf

1
j

〉
= δij .

(4.1.9)

Here F0 and F1 are the Fock matrices associated with G0 and G1:

F0 =

(
H0

G Π0
A

Π0
A −H0

G

)
and F1 =

(
H1

G Π1
A

Π1
A −H1

G

)

where
H0

G = 2h0 − 2(2J(G0) + 6J(G1)) + 2(K0(G0) +K1(G1)),

H1
G = 6h1 − 2(6J(G0) + 18J(G1)) + 2

(
K1(G0) +

18

15
K2(G1) + 3K0(G1)

)
,

Π0
A = −2(K0(A0) +K1(A1)),

and

Π1
A = −2

(
K1(A1) +

18

15
K2(A1) + 3K0(A1)

)
.

4.2 Method

To simulate our physical system, we have used the open source software Scilab [40].
We choose a simple basis set (χ1, ..., χNb

) of L2([0,∞), r2dr), made of “hat
functions” associated with a chosen grid

0 = r0 < r1 < · · · < rNb
< rNb+1 := rmax.

We impose Dirichlet boundary conditions at rmax. We have tested different types of
grids and there was no important difference between them. The results presented
here are all with regular grids. As we will explain later, for a given basis size Nb,
the results usually depend a lot on the value of the radius rmax of the ball in which
the system is placed.

In order to speed up the computation, we have calculated all the integrals
(ijkl)m using Maple and we have used the explicit formulas in Scilab. These
integrals are computed once and for all in the beginning of the algorithm and they
are kept in memory.

Our main goal is to investigate the existence of pairing. We therefore always
start by doing a precise Hartree-Fock calculation, for which we use the Optimal
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Damping Algorithm described in Section 3.2. We take as initial state a simple
uniform state

Ginit =
N

2Tr(S)
IdNb

(4.2.10)

and we run HF until convergence. We have observed a global stability of the results
with respect to initial states, hence the previous simple choice is appropriate (but
more clever choices might decrease the total number of iterations). Then, we use
the converged HF state Gopt as initial datum for the HFB algorithm. Of course we
have to perturb it a little bit since any HF solution is also an HFB solution. We
proceed as follows. Assuming that the overlap matrix S = IdNb

and that ℓmax = 0
for simplicity, the optimal HF state Gopt can be written in the form

Gopt =

N/2∑

k=1

vkv
T
k ,

where vk are the N/2 first eigenvectors of the mean-field matrix h,

hvk = ǫk vk.

We then choose a number nv of valence orbitals and a mixing parameter θ, and
we perturb Gopt as follows

G′
init =

N/2−nv∑

k=1

vkv
T
k + θ

N/2∑

k=N/2−nv+1

vkv
T
k + (1− θ)

N/2+nv∑

k=N/2+1

vkv
T
k ,

A′
init =

√
θ(1− θ)

N/2+nv∑

k=N/2−nv+1

vkv
T
k .

In most cases, we have observed that nv = 1 and θ = 0.95 works perfectly well,
that is, the algorithm escapes from the HF solution Gopt and converges towards
an optimal HFB state. But other values of nv and θ seem to work fine also.

When the maximum angular momentum ℓmax is larger than 0, we often first run
the algorithm with ℓmax = 0 for a few iterations before switching to the actual value
of ℓmax. We stop the algorithm when the commutators [Fℓ

n,Υ
ℓ
n] are smaller than a

prescribed error. We know from (2.3.46) and (4.1.9) that these commutators must
all vanish for an exact solution of the discretized HFB minimization problem. In
terms of the matrix S, the right quantity to look at is

ℓmax∑

ℓ=0

∣∣∣
∣∣∣S− 1

2

(
Fℓ

nΥ
ℓ
nS − SΥℓ

nF
ℓ
n

)
S− 1

2

∣∣∣
∣∣∣

where ||·|| is the usual operator norm for (2Nb)× (2Nb) matrices. There is a similar
formula in the HF case [5].
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As we have explained, in the HFB case, ensuring the constraint

2

ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(SGℓ) = N

is not as easy as in the HF case. In the beginning of the algorithm, our state Υ is
rather close to an HF state by construction. Therefore, the function νF(µ) defined
in Section 3.3 is close to a step function. We choose an error ε and look for the next
states Υℓ

n+1 having a total number of particles
∑ℓmax

ℓ=0 (2ℓ + 1)Tr(SGℓ
n+1) close to

N/2, within the error ε, using a simple bisection method. We use the bisection for
a fixed number of global iterations. Then, when the pairing term is large enough,
we switch to a Newton method in order to find the state Υn+1. We have observed
that even if in the beginning several Newton iterations can be employed at each
step, usually only one Newton iteration is necessary after a while. To guarantee a
good value of the average number of particles in the end, we decrease the error ε
on |∑ℓmax

ℓ=0 (2ℓ+ 1)Tr(SGℓ
n+1)−N/2| along the algorithm.

4.3 Numerical results

In this section we present our numerical results for the purely gravitational system.

4.3.1 Roothaan vs ODA

In the HF case, we have observed that the Roothaan algorithm very often oscillates
between two states, none of them being the solution of the problem (as described
in Theorem 3.1.1 and in [7]). The Roothaan algorithm seems more well behaved
in the HFB case. With the model presented in this section, we never got real
oscillations for HFB. Sometimes the convergence is improved by using the ODA,
but in most cases the Roothaan algorithm always converges towards the same state
as the ODA in the end.

We start by comparing Roothaan and ODA in the HF case. There, oscillations
seem to be related to the size of the gap between the largest filled eigenvalue and
the smallest unfilled one. Indeed, oscillations in HF seem to only occur when there
is pairing in HFB, an effect which is also well-known to be related to the size of
the gap (see, e.g., Theorem 5 in [2]). When there is no pairing, the HF Roothaan
algorithm always behaves like the ODA. However, the situation is complex and
there is no exact rule. Sometimes the Roothaan algorithm does not oscillate even
when the gap is rather small and there is pairing.

In Figure 4.1 we display the value of the energy obtained along the algorithm
for the Roothaan and the ODA, for the following choice of parameters: N = 6,
Nb = 200, ℓmax = 0 and rmax = 30. The ODA converges in about 17 iterations,
whereas the Roothaan algorithm oscillates. We also show the value of the norms
||Gn −Gn−1|| and ||Gn −Gn−2|| along the Roothaan algorithm. The oscillation
between two points is clearly demonstrated.
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Figure 4.1: Left: HF energy along the iterations for the Roothaan Algorithm (blue)
and the ODA (red). Right: Values of ||Gn −Gn−1|| (red) and ||Gn −Gn−2|| (blue)
along the Roothaan algorithm, showing the oscillations between two states. Here
N = 6, Nb = 200, ℓmax = 0 and rmax = 30.

When we decrease the parameter rmax but keep Nb = 200 constant, the gap is
seen to increase slightly and the Roothaan algorithm behaves better. In Table 4.1,
we give the numerical value of the last filled eigenvalue and the corresponding gap.
The Roothaan algorithm slowly converges for rmax = 25 and it coincides with the
ODA when rmax = 20. The gap for rmax = 20 is 2.5 times the one for rmax = 30.
We will discuss the occurence of pairing in terms of the parameter rmax in the next
section.

rmax ǫN/2 ǫN/2+1 − ǫN/2 behavior of HF Roothaan
20 -0.532430 0.159430 fast convergence
25 -0.536706 0.081016 slow convergence
30 -0.529200 0.061928 oscillations

-0.548554 0.067422

Table 4.1: Value of the last filled eigenvalue ǫN/2 and the corresponding gap
ǫN/2+1 − ǫN/2 in HF, for N = 6, Nb = 200 and ℓmax = 0. For rmax = 30 the
Roothaan algorithm oscillates and we display the last filled eigenvalue and the gap
for the two states.

Lastly, in Figure 4.2 we compare the norm of the commutator [Gn, hGn] for the
Roothaan algorithm and the ODA for ℓmax = 1. This is an example of convergence
which is improved by using the ODA, even if the Roothaan algorithm does not
oscillate.

As we have mentioned the Roothaan algorithm is usually much more well
behaved in the HFB case. However, sometimes the convergence can be improved
dramatically by using the ODA. In Figure 4.3 we display the energy along the
iterations of the algorithm in both the Roothaan and ODA cases, for Nb = 500,
N = 16, ℓmax = 1 and rmax = 10. In this case the Roothaan algorithm is very
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badly behaved. It passes very close to the HF ground state and it takes it a very
long time to escape from it. On the other hand, the ODA does not suffer from
this problem and it converges much more rapidly.

Figure 4.2: Value of ||[Gn, hGn ]|| along the Roothaan (blue) and the ODA (red),
for N = 6, Nb = 200, ℓmax = 1 and rmax = 30.

Figure 4.3: HFB energy along the iterations of the Roothaan (blue) and the ODA
(red) for Nb = 500, N = 16, ℓmax = 1 and rmax = 10. The optimal HF energy is
also displayed (green).
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4.3.2 Numerical evidence of pairing

Pairing in a finite discretization basis might depend on the properties of the basis.
As we have explained, the occurence of pairing is related to the size of the gap in
HF theory and this gap varies with the radius rmax in which the system is confined.
If rmax is decreased the system is more condensed and the HF gap increases.

In Figure 4.4 we display the HF and HFB ground state energies computed for
N = 16 in a basis set of size Nb = 200, in terms of rmax. The HF and HFB curves
are distinct for rmax large enough and they merge at rmax = 6 approximately. This
observation is confirmed by the value of the norm of A plotted on the right of the
same figure. The minima of the HF and HFB ground state energies are attained
at about rmax ≃ 10 in the HF case and rmax ≃ 10.5 in the HFB case, which is
sufficiently far from the merging point. The minima of these curves correspond to
the best possible approximation for a given basis size Nb (here Nb = 200) and a
given type of grid (here regular). The difference between the corresponding HF
and HFB energies is significant. The HF ground state energy at rmax = 10 is
−19.232176 (in our units in which m = 1/2 and e = 1), whereas the HFB ground
state energy at rmax = 10.5 is −19.240176. The norm of the pairing matrix A
is rather large at this point: ||A|| =

√
Tr(SA0SA0) + 3Tr(SA1SA1) ≃ 0.462129.

This goes in favour of the conclusion that pairing really occurs for N = 16 in this
model. This intuition is confirmed by a more precise calculations with Nb = 500
which we discuss below.

The observation of pairing requires to have an appropriate rmax but it does
not require to have a very large basis set. Even for Nb = 30 and rmax = 10.5, we
already find that the HFB energy is approximately −19.078416 whereas the HF
energy is about −19.072954. The corresponding norm of the pairing matrix A is
||A|| ≃ 0.424124.

Pairing is a subtle effect which decreases the energy by a small amount (much
less than one percent here). Catching this effect requires to be very careful when
choosing the radius rmax. Taking rmax too small might lead to the conclusion that
there is no pairing. In our simulations we have always observed the occurence of
pairing, but provided we choose rmax appropriately. The values of rmax at which
the HF and HFB energies attain their minimum were always found on the right
of the merging point of the two curves. In Table 4.3 below we give our results
for Nb = 200 and N = 6, 10, 16 and 20. The HFB ground state energy is always
smaller than the HF energy.

In the paper [26], Lenzmann and Lewin have rigorously studied the gravita-
tional model of this section. They showed the existence of a ground state in both
the HF and HFB cases. But, so far, no proof that pairing occurs has been provided.
The numerical results of this section tend to show that there is actually always
pairing, at least for N not too large. Of course, a more systematic numerical study
with different basis sets and explicit convergence rates must be realized in order
to definitely conclude that pairing occurs in our model. As the energy shift due to
the pairing is always rather small, this would however be a very challenging task.
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Figure 4.4: Value of the ground state HF and HFB energies (top) and of the
norm of the pairing matrix A (bottom), as functions of the radius rmax in which
the system is confined, for N = 16, Nb = 200 and ℓmax = 1. The corresponding
numerical values are given in Table 4.2 below.



4.3. Numerical results 99

rmax HF energy HFB energy ||A||
per spin per spin

4.6 -8.151868 -8.151868

4.8 -8.463037 -8.463037

5 -8.711979 -8.711979

5.2 -8.910797 -8.910797

5.4 -9.069147 -9.069147

5.6 -9.194796 -9.194796

5.8 -9.294013 -9.294013

6 -9.371902 -9.371902

6.2 -9.432627 -9.432628

6,25 -9.445539 -9.445539

6,30 -9.457641 -9.457641

6,35 -9.468979 -9.468979

6.4 -9.479593 -9.479593 0.001004

6,45 -9.489525 -9.489525 0.007149

6,50 -9.498811 -9.498811 0.040250

6,55 -9.50749 -9.507494 0.091990

6.6 -9.515596 -9.515626 0.135331

6,65 -9.523161 -9.523233 0.168454

6,70 -9.530218 -9.530348 0.195186

6,75 -9.536795 -9.536997 0.217773

6.8 -9.542921 -9.543206 0.237430

6.9 -9.553930 -9.554411 0.270379

7 -9.563440 -9.564143 0.297453

7.02 -9.565179 -9.565930 0.302304

7.03 -9.566029 -9.566803 0.304666

7.04 -9.566867 -9.567665 0.306988

7.05 -9.567691 -9.568513 0.309274

7.06 -9.568504 -9.569350 0.311518

7.07 -9.569304 -9.570175 0.313726

7.08 -9.570093 -9.570988 0.315899

7.09 -9.570869 -9.571789 0.318039

7.1 -9.571634 -9.572578 0.320144

7.11 -9.572387 -9.573356 0.322217

7.12 -9.573129 -9.574123 0.324255

7.13 -9.573860 -9.574878 0.326262

7.14 -9.574579 -9.575623 0.328237

7.15 -9.575288 -9.576357 0.330182

7.16 -9.575986 -9.577080 0.332098

7.17 -9.576673 -9.577792 0.333984

7.18 -9.577350 -9.578494 0.335842

7.19 -9.578016 -9.579185 0.337673

7.2 -9.578672 -9.579867 0.339475

7.21 -9.579318 -9.580538 0.341252

rmax HF energy HFB energy ||A||
per spin per spin

7.22 -9.579954 -9.581199 0.343001

7.23 -9.580580 -9.581850 0.344726

7.24 -9.581196 -9.582492 0.346424

7.25 -9.581803 -9.583124 0.348100

7.26 -9.582400 -9.583746 0.349750

7.27 -9.582989 -9.584360 0.351373

7.28 -9.583568 -9.584965 0.352974

7.29 -9.584137 -9.585559 0.354556

7.3 -9.584698 -9.586145 0.356113

7.31 -9.585251 -9.586722 0.357647

7.32 -9.585794 -9.587291 0.359159

7.33 -9.586329 -9.587852 0.360649

7.34 -9.586855 -9.588403 0.362121

7.35 -9.587374 -9.588946 0.363568

7.36 -9.587884 -9.589481 0.364997

7.37 -9.588385 -9.590007 0.366408

7.38 -9.588880 -9.590526 0.367795

7.39 -9.589365 -9.591036 0.369167

7.4 -9.589843 -9.591538 0.370518

7.5 -9.594221 -9.596158 0.383042

7.6 -9.597934 -9.600101 0.393956

7.75 -9.602454 -9.604939 0.407772

7.8 -9.603719 -9.606304 0.411785

7.9 -9.605942 -9.608711 0.419029

8 -9.607802 -9.610740 0.425341

8.1 -9.609353 -9.612444 0.430832

8.25 -9.611202 -9.614493 0.437740

8.4 -9.612592 -9.616050 0.443299

8.5 -9.613316 -9.616869 0.446377

8.6 -9.613908 -9.617544 0.449023

8.75 -9.614597 -9.618336 0.452298

9 -9.615347 -9.619215 0.456284

9.5 -9.615982 -9.619991 0.460618

10 -9.616088 -9.620155 0.462363

10.5 -9.616003 -9.620089 0.462991

11 -9.615847 -9.619938 0.463166

11.5 -9.615662 -9.619752 0.463168

12 -9.615462 -9.619549 0.463105

12.5 -9.615252 -9.619335 0.463016

13 -9.615032 -9.619111 0.462916

13.5 -9.614804 -9.618879 0.462810

14 -9.614567 -9.618637 0.462698

Table 4.2: Numerical values used to get the curves in Figure 4.4, with N = 16,
Nb = 200 and ℓmax = 1. The displayed energy is the energy per spin which has to
be multiplied by 2 to get the total energy. Each calculation took several hours on
a regular PC.
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4.3.3 Properties of the HFB ground state

In Table 4.3 below we give our results for Nb = 200 and N = 6, 10, 16 and 20, for
the optimal values of rmax. With ℓmax = 1 we have observed that the shells are
filled alternatively. In HF theory, the cases N = 10 and N = 16 correspond to
closed shells, whereas for N = 6 and N = 20 the last shell is only partially filled.
This is a simple explanation for the fact that the pairing matrix is much bigger in
these cases.

N rmax HF gap HF energy HFB energy ||A||
6 15 0 -1.7327688 -1.9934252 1.0242134
10 11 1.023642 -6.7911634 -6.8148576 0.5871951
16 10 1.404396 -19.232177 -19.2403096 0.4623593
20 9 0 -30.010574 -30.174576 0.8235512

Table 4.3: Results for Nb = 200 and ℓmax = 1.

In Table 4.4 we display the occupation numbers for the optimal HFB ground
state in the closed shell case N = 16 and in the open shell case N = 20. Because of
the spin, these are the eigenvalues of G0 multiplied by 2 and that of G1 multiplied
by 6. Even in the closed shell case N = 16, a rather important pairing effect is
observed between the last filled orbital (the second ℓ = 1 eigenvalue) and the first
unfilled one (the third ℓ = 0 eigenvalue). This results in a decrease of the last
occupation number of the HF one-particle density matrix by approximately 0.228.

N = 16
ℓ = 0 ℓ = 1

1.9999318 5.9997504
1.9980654 5.7710970
0.2281366 0.0026448
0.0002694 0.0002720
0.0000120 0.0000084
0.0000014 0.0000012
0.0000002 3.316D-07
6.896D-08 1.005D-07

...
...

N = 20
ℓ = 0 ℓ = 1

1.9999832 5.9999490
1.9997458 5.9983572
1.9875134 2.0084946
0.0045222 0.0012960
0.0000690 0.0000552
0.0000058 0.0000066
0.0000010 0.0000002
0.0000002 3.072D-07

...
...

Table 4.4: Occupation numbers of the HFB minimizer, for Nb = 200 and ℓmax = 1.

In Figure 4.5 the two (radial) ground state densities of particles in the HF
and HFB cases are shown for N = 16. We observe that the HFB ground state is
slightly more concentrated at the origin.
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Figure 4.5: The two densities in the HF (blue) and HFB (red) cases, for N = 16,
Nb = 200, rmax = 10 and ℓmax = 1. The HFB ground state is slightly more
concentrated at the origin.

4.3.4 Quality of the approximation in terms of Nb

In Table 4.5 we display the HF and HFB ground state energies forN = 16, ℓmax = 1
for the the optimal value of rmax, in terms of the number of discretization points Nb

of the regular grid. The convergence is not very fast, but we see that the difference
between the HF and the HFB energy, as well as the norm of the pairing matrix are
of the same order for small Nb as they are for larger Nb’s. From this observation
we can conclude that it is probably not necessary to take Nb very large in order
to decide whether pairing occurs or not.

Nb rmax HF energy HFB energy difference ||A||
30 9 -19.112314 -19.117948 0.005634 0.425604
50 9 -19.189066 -19.196012 0.006946 0.445728
100 9 -19.222300 -19.229872 0.007572 0.454173
150 10 -19.229494 -19.237574 0.008080 0.461725
200 10 -19.232176 -19.240308 0.008132 0.462363
250 10 -19.233420 -19.241576 0.008156 0.462659
300 10 -19.234094 -19.242264 0.008170 0.462821
400 11 -19.234826 -19.243068 0.008242 0.463905
500 11 -19.235206 -19.243456 0.008250 0.463985

Table 4.5: Value of the HF and HFB energies for N = 16 and ℓmax = 1 and the
(approximate) optimal rmax.
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4.3.5 Dependance on the initial state

We want to prove numerically that the convergence of the ODA algorithm does
not depend on the initial state. In all the previous numerical computations, the
initial generalized one-body matrix Γ was a multiple of the identity. To show
that the convergence does not depend on the initial state, we chose randomly 100
initial matrices Γ and ran the algorithm for each of them. In figure 4.6, each curve
represents the relative error between the energy of the state along the iterations
of the ODA, and the reference energy (obtained with the identity matrix as initial
state). The relative error is plotted in logarithmic scale. Both in the HF and HFB
cases, we can see that the energy decreases during the algorithm in the same way
whatever the initial random state. We also cheked that the final state was always
the same. The relative error which we found for the final state was of the order of
10−7 for all the simulations, which was our chosen convergence precision.

Figure 4.6: Relative error between the energy of a random initial state and the
identity state, for N = 16, Nb = 100, rmax = 9 and ℓmax = 1 (Top: HF, bottom:
HFB).
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4.4 Comparison with Thomas-Fermi

In this section we compute the Thomas-Fermi energy which is an exact lower bound
to our HF energy, by the Lieb-Thirring inequality [33]. We use this to verify that
our computations are of the correct order.

Let us recall that the Hartree-Fock energy with attractive potential W (x) =
−1/|x| and with the spin removed is

EHF (γ) = 2

(
Tr(−∆γ)−

∫∫
ργ(x)ργ(y)

|x− y| dxdy +
1

2

∫∫ |γ(x, y)|2
|x− y| dxdy

)

≥ 2

(
Tr(−∆γ)−

∫∫
ργ(x)ργ(y)

|x− y| dxdy

)

The Lieb-Thirring inequality [33, 34] says that

Tr(−∆γ) ≥ cLT

∫
ρ5/3γ

where the best constant known so far [11] is

cLT = 0, 672× d

d+ 2

(
d(2π)d

|Sd−1|

)2/d

= 0, 672× 3

5
(6π2)2/3

with d the space dimension (d = 3 for us) and |Sd−1| the surface of the corre-
sponding unit sphere. It is conjectured that the true constant is the semi-classical
one:

csc =
3

5
(6π2)2/3.

We get the exact lower bound in terms of the Thomas-Fermi energy

EHF (γ) ≥ inf
γ

Tr(γ)=N/2

{
2cLT

∫
ρ5/3γ − 2D(ργ, ργ)

}

= inf
ρ≥0

∫
R3

ρ=N/2

{
2cLT

∫
ρ5/3 − 2D(ρ, ρ)

}

where we have used the famous representability theorem [31] which says that the
set of all the densities ργ is simply {ρ ≥ 0 :

∫
R3 ρ = N/2}.

We now use the scaling ρ(x) = (N/2)λ3ρ′(λx) with the constraint
∫
ρ′(x)dx =

1. We have
∫
ρ5/3 = (N/2)5/3λ5

∫
(ρ′(λx))5/3dx = (N/2)5/3λ2

∫
(ρ′)5/3

and
∫∫

ρ(x)ρ(y)

|x− y| dxdy = (N/2)2λ6
∫∫

ρ′(λx)ρ(λy)

|x− y| dxdy = (N/2)2λD(ρ′, ρ′).
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The corresponding Thomas-Fermi energy is

inf
ρ′≥0
∫
ρ′=1

{
2cLT (N/2)

5/3λ2
∫

(ρ′)5/3 − 2(N/2)2λD(ρ′, ρ′)

}

and we choose λ such that cLT (N/2)5/3λ2 = (N/2)2λ, that is, λ =
(N/2)1/3

cLT
. We

obtain

EHF (γ) ≥
2(N/2)7/3

cLT
ITF, (4.4.11)

where

ITF := inf
ρ≥0

∫
R3

ρ=1

{∫
ρ5/3 −D(ρ, ρ)

}
. (4.4.12)

4.4.1 Estimate of ITF using the Hardy-Littlewood-Sobolev

inequality

The Hardy-Littlewood inequality tells us that

D(ρ, ρ) ≤ cHLS‖ρ‖2L6/5

where

cHLS = π1/2 Γ(1)

Γ(5/2)

(
Γ(3/2)

Γ(3)

)−2/3

=
45/3π−1/3

3
,

see [30].
We interpolate L6/5 between L1 and L5/3, that is, 5/6 = θ/1 + (1− θ)3/5 with

θ = 7/12, and we get
‖ρ‖L6/5 ≤ ‖ρ‖7/12L1 ‖ρ‖5/12

L5/3 .

We deduce that

D(ρ, ρ) ≤ cHLS‖ρ‖2L6/5 ≤ cHLS

(∫
ρ

)7/6

‖ρ‖5/6
L5/3

≤ cHLS

(∫
ρ

)7/6(∫
ρ5/3

)1/2

,

and therefore
∫
ρ5/3 −D(ρ, ρ) ≥

∫
ρ5/3 − cHLS

(∫
ρ5/3

)1/2

≥ X2 − cHLSX

with X =
(∫

ρ5/3
)1/2

. The minimum is reached at X =
cHLS

2
, so

∫
ρ5/3 −D(ρ, ρ) ≥ −(cHLS)

2

4
.
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Finally,

ITF ≥ −2(N/2)7/3

cLT

(cHLS)
2

4
.

Then
EHF (γ) ≥ −0.085232N7/3.

Remark 4.4.1. With the Lieb-Thirring conjecture we find

EHF (γ) ≥ −0.057277N7/3.

4.4.2 Numerical calculation of ITF

We want to calculate

ITF = inf
ρ≥0
∫
ρ=1

{∫
ρ5/3 −D(ρ, ρ)

}

We know that there is a unique minimizer (up to translations), which is radial and
decreasing [30]. The Euler-Lagrange equation is

5

3
ρ2/3 = 2

(
ρ ⋆

1

|x| − µ

)

+

where µ is the Lagrange multiplier. Denoting

θ = ρ ⋆
1

|x| − µ, Vρ = ρ ⋆
1

|x| ,

we find

ρ2/3 =
6

5
(Vρ − µ)+

or equivalently

ρ =

(
6

5

)3/2

(Vρ − µ)3/2+

We arrive at the Lane-Emden equation, which describes the density of a fluid
subject to its own gravitational potential:

−∆θ = −∆Vρ = 4πρ = 4π

(
6

5

)3/2

θ
3/2
+

Since θ is radial, the equation can be written as

−θ′′ − 2

r
θ
′

= 4π

(
6

5

)3/2

θ3/2

or, equivalently,
rθ

′′

+ 2θ
′

+ rKθ3/2 = 0,
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where

K = 4π

(
6

5

)3/2

.

Because θ is radial, the initial conditions are θ(0) = a, θ′(0) = 0 and we have to
find a such that

∫

R3

ρ =

(
6

5

)3/2 ∫

R3

θ
3/2
+ = 4π

(
6

5

)3/2 ∫ ∞

0

θ(r)
3/2
+ r2 dr = 1.

Using a simple bisection method on Mathematica, we find

a ≃ 1.713285.

In order to find the corresponding Lagrange multiplier µ, we use that

θ(0) = V (0)− µ = 4π

∫ ∞

0

ρ(r) r dr − µ,

since, by Newton’s theorem,

V (0) =

∫

R3

ρ(|y|)
max(0, |y|) dy =

∫

R3

ρ(|y|)
|y| dy.

So

µ = 4π

∫ ∞

0

ρ(r) r dr − θ(0) = 4π

(
6

5

)3/2 ∫ ∞

0

θ(r)
3/2
+ r dr − θ(0).

Numerically we find
µ ≃ 1.27265.

Then we can compute

ITF = 4π

∫ ∞

0

(
ρ(r)5/3 − θ(r)ρ(r)

)
r2 dr − µ ≃ −1.09084

and we deduce that
EHF(γ) ≥ −0.0706699N7/3.

This is not much better than the estimate given by the Hardy-Littlewood-Sobolev
inequality.

Remark 4.4.2. With the Lieb-Thirring conjecture we find

EHF(γ) ≥ −0.0474902N7/3.

For comparison we provide the Thomas-Fermi energy for different values of N
in Table 4.6 and reproduce the values of Table 4.3. The energy is always smaller
than our computed HF and HFB discretized ground state energy, as expected.
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N TF with cLT TF with csc HF energy HFB energy
6 -4.62296 -3.10663 -1.7327688 -1.9934252
10 -15.2254 -10.2314 -6.7911634 -6.8148576
16 -45.5877 -30.6349 -19.232177 -19.2403096
20 -76.7310 -51.5632 -30.010574 -30.174576

Table 4.6: The Thomas-Fermi lower bound for different values of N .
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Chapter 5

A simplified model for protons and

neutrons

In this section we report on our numerical results concerning a simple model in-
spired of nuclear physics. The interaction between protons and neutrons is not a
fundamental law of nature because these are composite particles made of quarks,
which interact through strong and electrostatic forces. A common procedure used
in nuclear physics is to use empirical forces [39] which involve a small number
of parameters which are fitted to experiment or to the known behavior of the
model in some limits. The most common forces used in practice are the so-called
Skyrme [41] and Gogny [10,16,17] forces and they depend nonlinearly on the state
itself. Here we consider an effective force which is fixed and does not depend on the
quantum state. We also take it spin-independent and isospin-independent. Our
goal is to test some simple ideas and not to do a real nuclear physics calculation.

5.1 Model

The nucleon-nucleon potential has been observed to be repulsive at short distances
and attractive at medium distances due to the strong forces. More precisely,
the potential starts to be attractive at about 0.7 fm and it becomes minimal at
about 0.9 fm. It then decays exponentially and becomes minimal at about 2 fm.
At distances of about 1.7 fm, it is stronger than the Coulomb interaction but it
becomes weaker at about 2 fm. See Figure 5.1 for the typical shape of the nuclear
interaction.

A simple choice to describe this potential is to take

W (x) =
κ

|x| − a1 e
−b1|x|2 + a2 e

−b2|x|2, (5.1.1)

with a2, a1 > 0, b1 < b2. The constant κ is 1 for the proton-proton interaction and
0 for the proton-neutron and the neutron-neutron interaction. The other constants
usually also depend on the isospin (the quantum variable which determines whether
a nucleon is a neutron or a proton), but not too much. The nuclear force is nearly

109
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Figure 5.1: Extract from [43] showing the typical nuclear force.

independent of whether the nucleons are neutrons or protons. For simplicity we
work here with particles having a definite isospin. This means that we assume to
have either only protons or only neutrons. In particular we want to ask for which
intensity of the effective force it becomes possible for the protons to overcome
their Coulomb repulsion and form a bound state. In reality a nucleus is made of a
certain number of protons and neutrons and one has to use a different HFB state
for each species.

In our applications we have chosen for simplicity b1 = 1, b2 = 4, a1 = a =
2 a2/3. This means that the effective force takes the form

W (x) =
κ

|x| + a

(
3

2
e−4|x|2 − e−|x|2

)
. (5.1.2)

When κ = 1, this force is purely repulsive for a ≤ 2.87 and it becomes attractive
at intermediate distances for larger a’s. The corresponding force is displayed in
Figure 5.2 for a = 1 and κ = 0.

One can ask several questions concerning the model considered in this chapter:

1. For which value of a does a system of N identical nucleons bind in Hartree-
Fock theory?

2. Is there always pairing when there is binding?

3. Can pairing effects allow for binding with a smaller a than in HF theory?

These questions are mostly of academic nature for the very simplified model con-
sidered in this section. But investigating the same problems with more realistic
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Figure 5.2: The effective force − e−|x|2 + 3 e−4|x|2/2 used in our calculation of
Section 5. The (repulsive) Coulomb potential must be added for protons.

forces is very important from a physical point of view. From a mathematical point
of view, nothing seems to be known for simple models of the same form as in
this section. It is not even known that binding always occurs for a large enough
with the previous interaction. We hope that our calculations will stimulate some
further mathematical studies.

5.2 Some computational details

We always minimize over states having the spin, time-reversal and rotation sym-
metries. The Bach-Fröhlich-Jonsson Theorem 1.4.2 does not apply to the model
of this section, hence we are making a further approximation here.

For such symmetric states we have shown in Section 2.3.2 that the energy can
be expressed in terms of

(ij|kl)ℓ,ℓ′ =
∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χk(s)χl(s)wℓ,ℓ′(r, s)
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where, for the model considered in this section,

wℓ,ℓ′(r, s) =
1

2

∫ 1

−1

W
(√

r2 + s2 − 2rst
)
Pℓ(t)Pℓ′(t) dt

=
1

2

∫ 1

−1

Pℓ(t)Pℓ′(t)

(
κ√

r2 + s2 − 2rst

− a1 e
−b1(r2+s2−2rst) + a2 e

−b2(r2+s2−2rst)

)
dt

=

∫ 1

−1

Pℓ(t)Pℓ′(t)

(
κ

∞∑

m=0

(
ℓ ℓ′ m
0 0 0

)2
min(r, s)m

max(r, s)m+1

− a1
2
e−b1(r2+s2−2rst) +

a2
2
e−b2(r2+s2−2rst)

)
dt

For 0 ≤ ℓ, ℓ′ ≤ ℓmax with ℓmax not too large, the Gaussian integrals can be computed
exactly and it is possible to find the exact expression of wℓ,ℓ′(r, s). A simple but
tedious calculation shows that

w0,0(r, s) =
κ

max(r, s)
− a1

4b1rs
2 sinh(2b1rs) e

−b1(r2+s2)

+
a2

4b2rs
2 sinh(2b2rs) e

−b2(r2+s2),

w0,1(r, s) = +
κmin(r, s)

3max(r, s)2
− a1

4b1rs

(
2 cosh(2b1rs)−

2 sinh(2b1rs)

2b1rs

)
e−b1(r2+s2)

+
a2

4b2rs

(
2 cosh(2b2rs)−

2 sinh(2b2rs)

2b2rs

)
e−b2(r2+s2),

and

w1,1(r, s) =
2κmin(r, s)2

15max(r, s)3

− a1
4b1rs

(
2 sinh(2b1rs)−

2 cosh(2b1rs)

b1rs
+

2 sinh(2b1rs)

2(b1rs)2

)
e−b1(r2+s2)

+
a2

4b2rs

(
2 sinh(2b2rs)−

2 cosh(2b2rs)

b2rs
+

2 sinh(2b2rs)

2(b2rs)2

)
e−b2(r2+s2).

The computation of the integral (ij|mn)ℓ,ℓ′ against hat functions is much more
tedious, however. It is easy to find an exact expression for the Coulomb part, but
not so simple for the Gaussian part. So we have performed a numerical calculation
of these integrals. Since we have of the order of (Nb)

4 integrals, we could not take
Nb too large. The results of the previous chapter indicated that the existence of
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pairing effects does not depend very much on the size of the basis, and it seems
reasonable to expect the same for the model of this chapter.

Using the calculations of Chapter 2, we deduce that the nuclear HFB energy
associated with the density and pairing matrices (Gℓ, Aℓ)0≤ℓ≤ℓmax

is

E(G0, ..., Gℓ, A0, ..., Aℓ)

= 2

ℓmax∑

ℓ=0

(2ℓ+ 1)Tr(hℓGℓ) +

ℓmax∑

ℓ,ℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)

(
2Tr(GℓJ (Gℓ′))

− Tr(GℓKℓℓ′(G
ℓ′)) + Tr(AℓKℓℓ′(A

ℓ′))

)
,

where
(
J (Gℓ′)

)
ij
:=

Nb∑

k,l=1

Gℓ′

kl

(
ij, kl

)
0,0
, (5.2.3)

(
Kℓℓ′(G

ℓ′)
)
ij
:=

Nb∑

k,l=1

Gℓ′

kl

(
ik, jl

)
ℓ,ℓ′
, (5.2.4)

and

(ij|kl)ℓ,ℓ′ =
∫ ∞

0

r2 dr

∫ ∞

0

s2 ds χi(r)χj(r)χk(s)χl(s)wℓ,ℓ′(r, s), (5.2.5)

wℓ,ℓ′(r, s) =
1

2

∫ 1

−1

W
(√

r2 + s2 − 2rst
)
Pℓ(t)Pℓ′(t) dt

=
1

2

∫ 1

−1

Pℓ(t)Pℓ′(t)

(
κ√

r2 + s2 − 2rst

− a1 e
−b1(r2+s2−2rst) + a2 e

−b2(r2+s2−2rst)

)
dt.

In our computations we have taken ℓmax = 1 and the energy is, in this special
case,

E(G0, G1, A0, A1) = 2Tr(h0G0) + 6Tr(h1G1)

+ 2
(
Tr(G0J (G0)) + 6Tr(G0J (G1)) + 9Tr(G1J (G1))

)

−
(
Tr(G0K00(G

0)) + 6Tr(G0K01(G
1)) + 9Tr(G1K11(G

1))
)

+
(
Tr(A0K00(A

0)) + 6Tr(A0K01(A
1)) + 9Tr(A1K11(A

1))
)
.

Any minimizer (G0, G1, A0, A1) of E under the constraints

0 ≤ ΥℓSΥℓ ≤ Υℓ, with Υℓ :=

(
Gℓ Aℓ

Aℓ S−1 −Gℓ

)
and S =

(
S 0
0 S

)
∀ℓ = 0, 1

(5.2.6)
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and
2Tr(SG0) + 6Tr(SG1) = N (5.2.7)

can be written as {
Υ0 =

∑
ǫ0i<0 f

0
i

(
f 0
i

)T

Υ1 =
∑

ǫ1i<0 f
1
i

(
f 1
i

)T

where the f 0
i and f 1

i solve the generalized eigenvalue problem

{ (
F0 − µN

)
f 0
i = ǫ0i S f 0

i ,
〈
f 0
i ,Sf

0
j

〉
= δij,(

F1 − 3µN
)
f 1
i = ǫ1i S f 1

i ,
〈
f 1
i ,Sf

1
j

〉
= δij .

(5.2.8)

Here F0 and F1 are the Fock matrices associated with G0 and G1:

F0 =

(
H0

G Π0
A

Π0
A −H0

G

)
and F1 =

(
H1

G Π1
A

Π1
A −H1

G

)

where
H0

G = 2h0 − 4J (G0) + 12J (G1) + 2K00(G0) + 6K10(G1),

H1
G = 6h1 − 12J (G0) + 36J (G1) + 6K01(G0) + 18K11(G1),

Π0
A = −2K00(A0)− 6K01(G1),

and
Π1

A = −6K01(A0)− 18K11(A1).

5.3 Slow convergence and oscillations of Roothaan

We have observed that the Roothaan algorithm almost always oscillates, even in
the HFB case (see some examples in Figures 5.3, 5.4 and 5.5). This is in stark
contrast with the results of the previous section where the Roothaan algorithm
was almost always converging. Sometimes it very slowly converges in the HF case
(see, e.g., Figure 5.4). However we have always obtained convergence for the HF
Roothaan algorithm when a is small enough, that is, when it is expected that there
is actually no binding. For the case displayed in Figure 5.4 we have a = 20 but
the critical a is about ≃ 25.

We conclude that using the ODA is very important for such attractive po-
tentials. The same might be true with the more involved forces used in nuclear
physics.

The number of iterations which are necessary for the algorithm to converge is
sometimes higher for the model of this section than it was for the purely Newto-
nian attraction (but not always, this seems to be worse for small Nb’s). This is
essentially a problem of choosing a good initial trial state. In order to be able to
bind, the particles have to be arranged in a certain fashion and getting close to
this state is not so easy. In Figure 5.6 we display the energy along the iterations
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Figure 5.3: Energy along the iterations in the HF (left) and HFB (right) cases,
for the Roothaan (blue) and the ODA (red), with N = 4, Nb = 20, ℓmax = 1,
rmax = 3, a = 35 and κ = 1 (proton-proton case).

Figure 5.4: Same calculation with a = 20 and κ = 1 (proton-proton case). The
Roothaan algorithm slowly converges in the HF case and it oscillates in the HFB
case but the two values are very close.

Figure 5.5: Same calculation with a = 20 and κ = 0 (neutron-neutron case). The
Roothaan algorithm oscillates in the HFB case, but the two values are very close.
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for Nb = 10, in both the HF and HFB cases. When we start with the simple initial
state given by

Ginit =
N

2Tr(S)
IdNb

(as described in the previous chapter), it takes almost 30 iterations for the HF
algorithm to getting close to the ground state. The algorithm seems to be trapped
for a while in the neighborhood of an other almost solution, which might be related
to a bound state with less particles. The situation is better in the HFB case since
we use the HF converged state as initial datum. It is expected that a better choice
of an initial state will highly improve the convergence in the HF case. In practice,
we always vary the parameters in the model by small amounts and we use the
converged ground state of the previous calculation. So only the first calculation
might be an issue. Furthermore, we have not encountered this behavior when
Nb = 50 and so we expect it to be specific to smaller Nb’s.

Figure 5.6: Energy along the iterations in the HF (left) and HFB (right) cases,
for the Roothaan (blue) and the ODA (red), with N = 4, Nb = 10, ℓmax = 1,
rmax = 9, a = 35 and κ = 1 (proton-proton case).

Figure 5.7: Same calculation with a = 40.
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5.4 The critical intensity

In finite dimension there is always a minimizer. Saying differently, since the par-
ticles are trapped in a ball, they always bind. Furthermore, here we work with
rotation-invariant states. So, for the true model in infinite dimension, the particles
escaping to infinity cannot form a bound state of the same kind. In this special
case they will spread out and vanish. We conclude that we can detect the loss
of binding by looking at the last filled HF eigenvalue. When it crosses 0, this
corresponds to the last particle becoming a scattering state. So we can choose as
definition for the critical intensity a, the value at which this eigenvalue is 0. In
HFB the definition of the critical a is less clear in finite dimension.

We have made some calculations for Nb = 20 and N = 4 and the critical
intensity is about ac ≃ 25 in the proton-proton case and ac ≃ 17.5 in the neutron-
neutron case. In Figure 5.8 we display the HF and HFB energies as functions of
the parameter a, for N = 4 and κ = 1 (proton-proton case). Figure 5.9 is the
equivalent result for κ = 0 (neutron-neutron case). The corresponding numbers
are given in Tables 5.1 and 5.2.

For these calculations we have chosen rmax = 3 which is the optimal choice for
a in a neighborhood of the critical value. Like in the previous section the results
depend on the radius of the ball in which the system is confined. We see that
there is always pairing, the HFB curve is way below the HF curve, especially in
the neutron-neutron case for which the potential is much more attractive than for
protons, which repel with the Coulomb potential.
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Figure 5.8: Left: Values of the HF (blue) and HFB (red) ground state energies as
functions of a, with N = 4, Nb = 20, ℓmax = 1, rmax = 3 and κ = 1 (proton-proton
case). The vertical line is the value of a for which the last filled eigenvalue vanishes.
Right: Values of the two filled HF eigenvalues for the same a.

Figure 5.9: Same calculations for κ = 0 (neutron-neutron case).
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a EHF λℓ=0 λℓ=1 gap ℓ = 0 gap ℓ = 1 EHFB ||A||
15 1.871103 1.782600 4.057559 4.919820 6.015268 1.393393 0.888044

15.5 1.678453 1.507395 3.818953 4.927410 5.981189 1.157264 0.892955

16 1.474612 1.223210 3.580138 4.947227 5.948734 0.909128 0.897492

16.5 1.259743 0.930901 3.341832 4.980112 5.918921 0.649371 0.901695

17 1.034184 0.631111 3.104219 5.026452 5.892746 0.378487 0.905607

17.5 0.798385 0.324276 2.867074 5.086259 5.871136 0.097020 0.909269

18 0.552865 0.010678 2.629913 5.159269 5.854923 -0.194463 0.912716

18.5 0.298169 -0.309495 2.392112 5.245018 5.844840 -0.495396 0.915975

19 0.034841 -0.636106 2.152998 5.342909 5.841517 -0.805236 0.919070

19.5 -0.236589 -0.969031 1.911912 5.452255 5.845490 -1.123463 0.922018

20 -0.515621 -1.308148 1.668236 5.572315 5.857201 -1.449593 0.924835

20.5 -0.801784 -1.653317 1.421413 5.702318 5.877009 -1.783171 0.927534

21 -1.094643 -2.004388 1.170958 5.841479 5.905186 -2.123779 0.930126

21.5 -1.393791 -2.361193 0.916454 5.989017 5.941928 -2.471027 0.932621

22 -1.698858 -2.723553 0.657555 6.144162 5.987354 -2.824557 0.935028

22.5 -2.009500 -3.091281 0.393979 6.306166 6.041514 -3.184038 0.937355

23 -2.325401 -3.464185 0.125505 6.474305 6.104388 -3.549166 0.939611

23.5 -2.646270 -3.842072 -0.148033 6.647886 6.175895 -3.919658 0.941802

24 -2.971839 -4.224749 -0.426750 6.826250 6.255898 -4.295254 0.943938

24.5 -3.301859 -4.612024 -0.710717 7.008772 6.344210 -4.675713 0.946024

25 -3.636102 -5.003712 -0.999967 7.194860 6.440595 -5.060812 0.948068

25.5 -3.974356 -5.399633 -1.294499 7.383964 6.544785 -5.450345 0.950078

26 -4.316423 -5.799613 -1.594282 7.575563 6.656473 -5.844121 0.952059

26.5 -4.662122 -6.203486 -1.899264 7.769178 6.775331 -6.241962 0.954019

27 -5.011283 -6.611092 -2.209371 7.964360 6.901008 -6.643702 0.955966

27.5 -5.363746 -7.022278 -2.524512 8.160695 7.033138 -7.049192 0.957903

28 -5.719363 -7.436900 -2.844585 8.357805 7.171345 -7.458288 0.959841

28.5 -6.077998 -7.854820 -3.169479 8.555341 7.315245 -7.870850 0.961785

29 -6.439519 -8.275908 -3.499074 8.752985 7.464455 -8.286763 0.963734

29.5 -6.803806 -8.700039 -3.833248 8.950449 7.618589 -8.705909 0.965698

30 -7.170745 -9.127095 -4.171872 9.147476 7.777268 -9.128184 0.967683

30.5 -7.540228 -9.556964 -4.514821 9.343831 7.940117 -9.553484 0.969691

31 -7.912155 -9.989541 -4.861964 9.539310 8.106767 -9.981715 0.971718

31.5 -8.286431 -10.424725 -5.213177 9.733729 8.276864 -10.412788 0.973779

32 -8.662965 -10.862420 -5.568333 9.926929 8.450058 -10.846616 0.975862

32.5 -9.041673 -11.302536 -5.927310 10.118771 8.626016 -11.283135 0.977958

33 -9.422475 -11.744987 -6.289988 10.309139 8.804414 -11.722244 0.980076

Table 5.1: Numerical results corresponding to Figure 5.8 (N = 4, Nb = 50, rmax =
3, ℓmax = 1, κ = 1). The displayed energy and eigenvalues are per spin (they have
to be multiplied by 2).
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a EHF λℓ=0 λℓ=1 gap ℓ = 0 gap ℓ = 1 EHFB ||A||
15 -0.673100 -1.426011 1.183665 5.154380 5.871451 -1.686141 0.932000

15.5 -0.928048 -1.748976 0.940899 5.234162 5.858572 -1.994296 0.933751

16 -1.192004 -2.078660 0.697103 5.326575 5.852222 -2.311473 0.935437

16.5 -1.464437 -2.414895 0.451651 5.430999 5.852996 -2.637147 0.937072

17 -1.744833 -2.757524 0.203929 5.546727 5.861398 -2.970818 0.938662

17.5 -2.032704 -3.106389 -0.046637 5.672999 5.877836 -3.312016 0.940215

18 -2.327587 -3.461323 -0.300566 5.809022 5.902634 -3.660305 0.941733

18.5 -2.629056 -3.822147 -0.558309 5.953996 5.936028 -4.015277 0.943221

19 -2.936711 -4.188674 -0.820251 6.107122 5.978177 -4.376559 0.944679

19.5 -3.250186 -4.560705 -1.086711 6.267618 6.029162 -4.743802 0.946112

20 -3.569139 -4.938040 -1.357944 6.434724 6.088992 -5.116688 0.947522

20.5 -3.893258 -5.320475 -1.634148 6.607708 6.157611 -5.494920 0.948911

21 -4.222254 -5.707807 -1.915468 6.785874 6.234901 -5.878226 0.950284

21.5 -4.555859 -6.099835 -2.202000 6.968556 6.320688 -6.266354 0.951642

22 -4.893826 -6.496364 -2.493797 7.155130 6.414750 -6.659071 0.952992

22.5 -5.235928 -6.897205 -2.790876 7.345008 6.516825 -7.056163 0.954337

23 -5.581952 -7.302173 -3.093222 7.537638 6.626611 -7.457430 0.955683

23.5 -5.931703 -7.711093 -3.400793 7.732509 6.743780 -7.862690 0.957035

24 -6.284997 -8.123798 -3.713525 7.929145 6.867979 -8.271771 0.958400

24.5 -6.641665 -8.540127 -4.031335 8.127107 6.998840 -8.684518 0.959785

25 -7.001548 -8.959928 -4.354125 8.325991 7.135979 -9.100785 0.961200

25.5 -7.364500 -9.383055 -4.681787 8.525426 7.279007 -9.520438 0.962651

26 -7.730382 -9.809372 -5.014204 8.725076 7.427530 -9.943354 0.964148

26.5 -8.099065 -10.238748 -5.351253 8.924634 7.581156 -10.369418 0.965699

27 -8.470427 -10.671060 -5.692808 9.123827 7.739493 -10.798527 0.967314

Table 5.2: Numerical results corresponding to Figure 5.9 (N = 4, Nb = 50, rmax =
3, ℓmax = 1, κ = 0). The displayed energy and eigenvalues are per spin (they have
to be multiplied by 2).
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