

From image coding and representation to robotic vision

Marie Babel

Lagadic group INRIA Rennes Bretagne-Atlantique & IRISA http://www.irisa.fr/lagadic

Habilitation thesis - 2012-06-29

Outline

- Professional background
- Research activities
- Goding and services for image and video transmission
- Representation frameworks
- Besearch project: towards robotic vision

Outline

Professional background

- Research activities
- Goding and services for image and video transmission
- Representation frameworks
- B Research project: towards robotic vision

Professional background

- 2002: Electronic and Applied Computer Science Engineer
- 2002-2005: PhD on image processing
 - INSA de Rennes, IETR Lab
 - Lossless and lossy image compression through the Locally Adaptive Resolution (LAR) method
 - Supervisors: Joseph Ronsin Olivier Déforges
- 2005-2006: ATER INSA de Rennes
- 2006: Assistant professor INSA de Rennes
 - Teaching: Department of Electronic and Applied Computer Science
 - Research: IETR Lab, Image group
- 2011: IRISA / INRIA Lab, Lagadic Team

Administrative and teaching activities

- Administrative activities
 - 1999-2000: Conseil d'Administration INSA Rennes
 - 2010-2011: Conseil de Composante IETR Rennes
 - 2010-2012: Conseil Scientifique INSA Rennes
 - 2012: Comité de Centre INRIA Rennes
- Teaching activities
 - INSA Rennes
 - Electronic and Applied Computer Science department Master level
 - Master of Science: i-MARS
 - Computer Science department Master level
 - Signal and image processing
 - Electronics

Outline

Professional background

Research activities

- Goding and services for image and video transmission
- Representation frameworks
- B Research project: towards robotic vision

Research activities: overview

• Progressive evolution of research topics

Coding	Services	Scene analysis and representation	Robotic vision
		1	-

- Key words
 - Compression and coding
 - Quality of Service / Quality of Experience
 - Pseudo-semantic temporal analysis
- Towards robotic vision: related research topics
 - Region/object representation
 - 3D tracking
 - Object motion and trajectory analysis

• International activity context: standards

	Coding	Services	Scene analysis and representation
Video	MPEG-4 H264	SVC RVC	3DTV
Image	JPEG-2K	JPWL JPSEC	

• International activity context: standards

	Coding	Services	Scene analysis and representation
Video	MPEG-4 H264	SVC RVC	3DTV
lmage	JPEG-2K	JPWL JPSEC	
	JPEG-AIC	JPEG-AIC	JPEG-AIC

Research activities: overview

• Co-supervision of 10 PhD students

Research activities: overview

• Collaborative projects

- CAIMAN TSAR: scientific leader of IETR
- APASH: project coordinator

Outline

Professional background

Research activities

Oding and services for image and video transmission

- Coding research context
- Interleaved S+P framework
- Generic predictive coding tools
- Generic service-oriented tools

Representation frameworks

Research project: towards robotic vision

Coding research context

- IETR Laboratory
 - Locally Adaptive Resolution (LAR) coding scheme
 - Low complex codec designed for embedded systems
- ANR TSAR (Transmission Sécurisée d'images d'Art haute Résolution)
- Joint ANR CAIMAN (Codeur Avancé d'IMAges et Nouveaux services) and JPEG Advanced Image Coding
 - New coding framework associated to advanced services
 - Generic Quality of Service
 - Generic Quality of Experience

Coding research context

- IETR Laboratory
 - Locally Adaptive Resolution (LAR) coding scheme
 - Low complex codec designed for embedded systems
- ANR TSAR (Transmission Sécurisée d'images d'Art haute Résolution)
- Joint ANR CAIMAN (Codeur Avancé d'IMAges et Nouveaux services) and JPEG Advanced Image Coding
 - New coding framework associated to advanced services
 - Generic Quality of Service
 - Generic Quality of Experience

\rightarrow LAR: response to JPEG-AIC call for proposal

LAR framework

- Joint representation and coding issues
 - Two-layer codec
 - Quadtree based framework

- Contributions
 - Pyramidal solution for lossless compression
 - Data integrity
 - Robustness

• Controlled complexity: 3 profiles

- Baseline profile

• Controlled complexity: 3 profiles

- Pyramidal profile [Babel05][Pasteau11]: Interleaved S+P

• Controlled complexity: 3 profiles

- Extended profile [Flecher07][Motsch08][Strauss11]

• Controlled complexity: 3 profiles

- Extended profile [Flecher07][Motsch08][Strauss11]

• Principles [BDR05]

- Two Interleaved S-Transforms within 2x2 blocks

- Principles [BDR05]
 - Two Interleaved S-Transforms within 2x2 blocks
 - Extension to multiresolution

- Principles [BDR05]
 - Two Interleaved S-Transforms within 2x2 blocks
 - Extension to multiresolution
 - Pyramidal decomposition with predictive schemes

- Properties
 - Scalable
 - Efficient lossless compression
 - medical images [BPSPBBD11]: rate decrease of 20% on mammograms
 - Intrinsic robustness to localized reconstruction errors
 - Efficient hardware implementations Embedded systems
 - FPGA implementation [DB08]
 - Co-simulation and rapid prototyping [FRRBD07]
 - RVC framework [JWRDBA11]

- Properties
 - Scalable
 - Efficient lossless compression
 - medical images [BPSPBBD11]: rate decrease of 20% on mammograms
 - Intrinsic robustness to localized reconstruction errors
 - Efficient hardware implementations Embedded systems
 - FPGA implementation [DB08]
 - Co-simulation and rapid prototyping [FRRBD07]
 - RVC framework [JWRDBA11]

\rightarrow Properties required for JPEG-AIC

JPEG-AIC standardization

- Responses to Call for Technologies
 - Natural and medical image coding tools
- Interleaved S+P
 - 4 core experiments
 - 10 contributions (2008-2011)
- Results
 - Objective and subjective quality in between JPEG and JPEG-XR
 - Complexity similar to JPEG2K
 - Academic solution: non-optimal implementation
 - Standardization process stopped in 2011

JPEG-AIC standardization

- Responses to Call for Technologies
 - Natural and medical image coding tools
- Interleaved S+P
 - 4 core experiments
 - 10 contributions (2008-2011)
- Results
 - Objective and subjective quality in between JPEG and JPEG-XR
 - Complexity similar to JPEG2K
 - Academic solution: non-optimal implementation
 - Standardization process stopped in 2011

\rightarrow Efficient generic coding solutions

- Objectives: QoS
 - Defining generic Rate/Distorsion models for predictive coders
 - Designing low complex solutions

- Objectives: QoS
 - Defining generic Rate/Distorsion models for predictive coders
 - Designing low complex solutions
- Functional objectives [Pasteau11]
 - Extraction of prediction error statistical models

- Objectives: QoS
 - Defining generic Rate/Distorsion models for predictive coders
 - Designing low complex solutions
- Functional objectives [Pasteau11]
 - Extraction of prediction error statistical models
 - Design of adaptive multi-component decorrelation

- Objectives: QoS
 - Defining generic Rate/Distorsion models for predictive coders
 - Designing low complex solutions
- Functional objectives [Pasteau11]
 - Extraction of prediction error statistical models
 - Design of adaptive multi-component decorrelation
 - Low complex entropy coder

Prediction error statistical modeling

- Hypothesis: Laplacian distribution
- Principle: modeling of quantization effects
- Results: Entropy and distortion modeling
 - Scalability: intra/inter level models

Prediction error statistical modeling

- Hypothesis: Laplacian distribution
- Principle: modeling of quantization effects
- Results: Entropy and distortion modeling
 - Scalability: intra/inter level models
- Adaptive decorrelation during prediction process
 - Lossless color image compression: better than JPEG2K
 - Lossy coding: bitrate decrease / Objective quality increase

Prediction error statistical modeling

- Hypothesis: Laplacian distribution
- Principle: modeling of quantization effects
- Results: Entropy and distortion modeling
 - Scalability: intra/inter level models
- Adaptive decorrelation during prediction process
 - Lossless color image compression: better than JPEG2K
 - Lossy coding: bitrate decrease / Objective quality increase
- Symbol-oriented QM coder
 - Based on Q15 standard: bit-plane arithmetic codec
 - Limited rate loss 3%
 - 50% computational time saving

- To sum up...
 - Predictive codec oriented solutions (JPEG-LS, CALIC, H264...)
 - Low complex
 - Coding efficiency enhancement
- Potential use cases
 - Rate / Distorsion optimization mechanism

- To sum up...
 - Predictive codec oriented solutions (JPEG-LS, CALIC, H264...)
 - Low complex
 - Coding efficiency enhancement
- Potential use cases
 - Rate / Distorsion optimization mechanism
 - QoS / QoE

Generic service-oriented tools

- Sensitive data exchanges
 - Medical images: privacy, hidden metadata, streaming
 - Art images (TSAR project): copyright, end-user quality
- Contributions

Data protection	QoS / QoE
Steganography and cryptography [Motsch08]	One-pass rate control (SVC framework)
	[Pitrey09]
Unequal Error Protection	Low complex interpolation method [Strauss11]
[BPDNGC08][HOBDBL09]	

Generic service-oriented tools

- Sensitive data exchanges
 - Medical images: privacy, hidden metadata, streaming
 - Art images (TSAR project): copyright, end-user quality
- Contributions

Data protection	QoS / QoE
Steganography and cryptography [Motsch08]	One-pass rate control (SVC framework)
	[Pitrey09]
Unequal Error Protection	
[BPDNGC08][HOBDBL09]	Low complex interpolation method [Strauss11]

Dyadic Fast Interpolation (DFI)

- Motivations
 - Low complex interpolation method
 - High visual quality
- Principles
 - Five-step framework
 - Based on geometric duality principle
 - Only addition and shift operations

Dyadic Fast Interpolation

• Subjective assessments: SAMVIQ (VQEG) protocol

- Comparable quality with Photozoom and pseudo-LAD methods
- Complexity similar to linear methods
- Parallel implementation

Coding and services tools: conclusion

- Innovative coding frameworks
 - Scalable oriented tools
 - Generic tools for compression purposes
 - QoS / QoE services
 - Embedded systems concerns
- QoE next issues
 - Content-based solutions

Coding and services tools: conclusion

- Innovative coding frameworks
 - Scalable oriented tools
 - Generic tools for compression purposes
 - QoS / QoE services
 - Embedded systems concerns
- QoE next issues
 - Content-based solutions
 - Advanced image and video representations

Outline

Professional background

Research activities

Goding and services for image and video transmission

Representation frameworks

- Quadtree-based segmentation
- Motion tube representation
- Adaptive image synthesis

Research project: towards robotic vision

Representation-oriented frameworks

- From pixel to region representation
 - Object-level representation
 - High level semantic data required
 - Shape, a priori behavior...
 - Intermediate representation: pseudo-semantic representation
 - Coherence in terms of texture, motion, color...
 - No side information
- Potential target applications
 - Coding
 - Texture / patch tracking
- Focus on representation aspects only

Representation-oriented frameworks

- Quadtree-based segmentation process
 - Quadtree structure: able to represent image content [Strauss11]
 - Region Adjacency Graph (RAG) based segmentation
 - Extension to scalability [Sekkal12]
 - Extension to video processing [Flecher08]

Representation-oriented frameworks

• Quadtree-based segmentation process

- Quadtree structure: able to represent image content [Strauss11]
- Region Adjacency Graph (RAG) based segmentation
- Extension to scalability [Sekkal12]
- Extension to video processing [Flecher08]
- Alternative representations for video coding standards
 - Rely on local cue and texture analysis
 - Block-based solutions
 - Motion tubes (Orange Labs [Urvoy11])
 - Analysis/synthesis framework (Technicolor [Racape11])

- Spatial segmentation
 - Hierarchical split / merge framework
 - Color-based segmentation: joint analysis and coding [DBBR07]

- Spatial segmentation
 - Hierarchical split / merge framework
 - Color-based segmentation: joint analysis and coding [DBBR07]
- Multiresolution region representation [SSPBD12]
 - Top-down process across resolution
 - RAG projection mechanism following quadtree structure

• Properties

- Low complexity: reduced number of blocks
- Consistency via inherited labels
- Robustness onto color gradated areas

• Properties

- Low complexity: reduced number of blocks
- Consistency via inherited labels
- Robustness onto color gradated areas

• Properties

- Low complexity: reduced number of blocks
- Consistency via inherited labels
- Robustness onto color gradated areas

- Spatio-temporal segmentation [FBD07]
 - Motion and spatial compliant hierarchy
 - Temporally stable representation
 - Two-step merging process

- Spatio-temporal segmentation [FBD07]
 - Motion and spatial compliant hierarchy
 - Temporally stable representation
 - Two-step merging process

- Spatio-temporal segmentation [FBD07]
 - Motion and spatial compliant hierarchy
 - Temporally stable representation
 - Two-step merging process

• Temporal consistency of regions

Representation

Motion tube representation

- Persistence of texture information objects and background
- Motion tube definition [Urvoy11]
 - Moving patches of texture
 - Trajectory, deformation and lifespan models

Motion tube representation

- Motion model of a tube: in between blocks and meshes
 - Modified Switched Overlapped Block Motion Compensation (SOBMC)

Original image

Disconnected blocks

Hybrid blocks

Adaptive image synthesis

- Nearly-stationary textures
 - Exact position of texture not required for QoE purposes
 - Synthesized texture: visually relevant
- Spatio-temporal synthesis
 - Spatial context
 - Temporal consistency of textures
- Principles [Racape11]
 - Rigid regions: only motion compensation
 - Deformable textures: temporal guided synthesis
 - Switch pixel/patch based synthesis

Adaptive image synthesis

Process overview

Pseudo-semantic representation: conclusion

- From spatial to temporal segmentation
 - Region consistency
 - Advanced semantically based processes
- Joint video analysis and coding tools
 - Disruptive technologies Block based solutions
 - Patch or region tracking
 - Pseudo-semantic image and video representations

Pseudo-semantic representation: conclusion

- From spatial to temporal segmentation
 - Region consistency
 - Advanced semantically based processes
- Joint video analysis and coding tools
 - Disruptive technologies Block based solutions
 - Patch or region tracking
 - Pseudo-semantic image and video representations
- Natural research topic evolution: robotic vision

Outline

- Professional background
- Research activities
- Observe Coding and services for image and video transmission
- Representation frameworks
- Besearch project: towards robotic vision

Research project: towards robotic vision

- Progressive transition
 - From coding to representation systems
 - From pixel to region
- Robotic vision: related tools
 - Geometrical cue based processing
 - Object detection and texture modeling
 - Object motion and trajectory modeling
 - 3D tracking
 - Semantic scene analysis
- Particularities
 - Image processing Segmentation
 - Embedded system considerations

Towards robotic vision

- Collaborative works
 - Personal assistance living issues: towards higher autonomy
 - Assistance au Pilotage pour l'Autonomie et la Sécurité des personnes Handicapées (APASH)
 - Pôle Images et Réseaux
 - 2012-2014
- Framework steps: motion control
 - Localization: robotic vision robust tracking (Rafik Sekkal)
 - Navigation: data fusion and visual servoing (Zhigang Yao)
- Embedded system considerations
 - Distributed architecture
 - Ensuring system compatibility with existing electric wheelchairs

APASH project

- First step: insuring secured moves inside problematic areas
 - Going through doors, taking the elevator...
 - Avoiding collisions in dynamic indoor environment
- Desired system properties
 - No model for the environment
 - Reliability and safety
 - Man in the loop: tradeoff between autonomy and remote control
- Heterogeneous data
 - Vision sensors
 - Odometry sensors
 - Proximetry sensors

Long-term challenging issues

- Personal assistance living
 - System safety enhancement
 - Low cost and easy-to-use solutions
 - Outdoor navigation: next social and technical challenge

Coding Services and representation vision for embedo robotic syst
--

• Hybrid sensor systems

- New generation of sensors: Ultra Wide Band technologies
- Data fusion for precise localization
- Adapting visual servoing concepts

Research activity assessment

- Supervision of 10 PhD students
- Publications
 - 4 International journals (TCSVT, CMIG, Springer JC, Springer JRTIP), 4 book chapters
 - 10 JPEG contributions, 1 patent
 - 34 International conferences (11 IEEE, 4 SPIE, 8 EUSIPCO)
- Collaborative work
 - ANR TSAR: IRCCyN, LIRMM, LIS, C2RMF (Louvre)
 - ANR CAIMAN: Thalès Communication, X-LIM, ETIS
 - APASH: AdvanSEE, Ergovie
 - Industrial collaborations: Technicolor, Orange Labs, SII, NeoTecVision
 - Academic collaborations: LIFO, HEUDIASYC, ESME, hôpital Broca
- Journal reviewer: IEEE TCSVT, IEEE TBME, Pattern Recognition, Signal Proc. Systems, IEE EL
- Conference reviewer: ICIP