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Antoine

se renverse la tête.

Qui donc es-tu ?

Hilarion

Mon royaume est de la dimension de l’univers; et mon désir n’a pas de bornes.
Je vais toujours, affranchissant l’esprit et pesant les mondes, sans haine, sans peur, sans

pitié, sans amour et sans Dieu. On m’appelle la Science.

Antoine

se rejette en arrière :

Tu dois être plutôt... le Diable !

Hilarion

fixant sur lui ses prunelles :

Veux-tu le voir ?

Gustave Flaubert, La tentation de Saint-Antoine
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travail complexe et difficile. Par ailleurs, celui-ci n’aurait pu s’éffectuer sans l’aide de mes
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Introduction

The Standard Model of particle physics provides a very powerful and efficient description of
the constituents of matter and their interactions − with its last element, the Higgs boson,
likely to have been observed at CERN very recently. However, this does not mean that
our understanding of the Standard Model is complete, nor that accurate predictions for all
possible processes are available within this framework. Indeed, one of the three interactions,
namely the strong interaction, has the particularity of becoming strongly coupled at low
energies (below 1 GeV). The perturbative approach to QCD consisting in an expansion in
powers of the strong coupling constant αS is then no more relevant. One has to rely on
alternative methods in order to probe hadronic phenomena at low energy. On one side, it is
possible to build an Effective Field Theory (EFT) of QCD based on the main phenomenon
occuring at low energies, i.e. the spontaneous breakdown of chiral symmetry (a flavour sym-
metry which is exact at the level of QCD lagrangian in the limit where the light quarks (u,
d and s) are massless). In this effective theory, the fundamental degrees of freedom of QCD,
quarks and gluons, are then replaced by effective degrees of freedom which can be identified
to the eight pseudo-scalar light mesons of the QCD spectrum: π+,0,−, K+,−, K̄0,K0 and η.
The theory is an expansion of the hadronic observables in powers of the meson momentum
and the quark masses: this is Chiral Perturbation Theory (χPT). On the other side, it is
possible to rely on the numerical calculations of (some) low-energy hadronic observables. The
4-dimensional Minkowskian space-time is discretized into a 4-dimensional pseudo-euclidean
discrete lattice, along with the quark and gluons fields. This leads to a path-integral “on
the lattice”, which can be evaluated through Monte-Carlo techniques: this is Lattice QCD
(LQCD).

Those two methods, Effective Field Theory and Lattice QCD, are complementary: Chiral
Perturbation Theory contain a certain amount of unknown parameters, called low-energy
constants, which must be evaluated numerically using experimental and/or lattice data.
Lattice QCD, even if a very powerful tool, is not always able to perform simulations at the
physical values of the masses of the light quarks. Chiral Perturbation Theory is therefore
used to extrapolate the “raw” lattice data to the physical point. But this is far from being a
straightforward business: several lattice collaborations [96, 99, 100, 101, 102, 103] performing
simulations with 2+1 dynamical quarks found difficulties in fitting their data when using
Chiral Perturbation Theory built with three flavours of light quarks (u,d and s).

One may wonder whether this might be due only to intrinsic problems of the Lattice QCD
approach, or if this might come from three-flavours χPT. Recent phenomenological analysis of
experimental data (analysis of ππ and Kπ scattering [51, 52, 53, 54, 55, 56, 62, 63], fits to next-
to-next-to-leading order χPT formulae [40], sum-rule estimate of low-energy constants [70,
71, 72]) suggest that there are indeed problems with the convergence chiral expansions built
around the limit of three massless flavours. On the other hand, other experimental studies
concerning the pion sector (ππ scattering from Kℓ4 and K → 3π decays [53, 55, 56], lattice
simulations for the pion mass and decay constant [96, 100, 101, 102, 103]) indicate that
such problems do not occur within χPT built around the limit of two massless flavours, and
dealing only with pions as degrees of freedom.
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This set of results hints at a possible problem of convergence in the three-flavour chiral
expansions themselves, in which the leading order (LO) would be in a numerical competi-
tion with the next-to-leading order (NLO), i.e. instead of the usual assumption that the
leading order terms saturate almost the chiral expansions, there could be leading and next-
to-leading order contributions with the same numerical weight (this problem being absent
in the two-flavour theory). Such a scenario was advocated already some time ago [79]. The
presence of massive s̄s pairs in the vacuum could have a significant of suppressing the chiral
order parameters arising at LO in the three-flavours expansion, i.e. the quark condensate
and the pseudoscalar decay constant in the limit mu,d,s → 0. This effect, related to the
(observed) significant violation of the Zweig rule in the scalar sector, would affect the con-
vergence of three-flavour chiral expansions leading to the problem encountered in both lattice
and phenomenological analyses. On the other side, this scenario would still allow for a large
condensate in the two-flavour chiral limit (mu,d → 0, ms physical), leading to a good conver-
gence of the expansions in mu and md provided by two-flavour χPT. In order to cope with
the numerical competition of leading and next-to-leading order in the three-flavour chiral
expansions, a modified version of χPT, going under the name of Resummed Chiral Pertur-
bation Theory (ReχPT), was designed. It was applied to the phenomenological analyses of
ππ and πK scatterings [79, 81, 83, 84].

The main goal of this present thesis is therefore to extend this analysis to results from
Lattie QCD simulations, with two different outcomes. First, we want to extract the pattern of
chiral symmetry breaking in the limit of three massless flavours from lattice data, and check if
the quark condensate and/or the pseudoscalar decay constant are indeed suppressed. Lattice
data is complementary to experimental results in this respect, since the former probe the
quark mass-dependence of pseudoscalar observables, which is out of reach for experiments.

Secondly, we want to determine how the extrapolation of lattice results to the physical
quark masses is affected by alternative chiral expansions allowing for a suppression of LO
contributions. This could constitute an additional and still poorly known systematics to the
current lattice results, leading to significant changes in some of the tests of the Standard
Model at low energy in the hadronic sector.

With these two questions in mind, we focus on observables that are accessible to lattice
simulations and described by χPT, namely observables involving pseudoscalar mesons (decay
constants, masses, electromagnetic and Kℓ3 form factors) as well as topological quantities
(topological susceptibility and fourth cumulant of the gluonic winding number).

The structure of this thesis is the following: in Chapter 1, we first make a presentation of
QCD, its relevant symmetries (specifically chiral symmetry), and give an account regarding
some aspects of its vacuum structure. In Chapter 2, we provide a short introduction to the
concepts of Lattice QCD and Effective Field Theories, and make a detailed and thorough
presentation of Chiral Perturbation Theory. Then in Chapter 3 we introduce Resummed χPT
and explain why it could provide the proper treatment when chiral expansions are subjected
to the convergence problems introduced above. In Chapter 4, we discuss the various fits we
have performed over lattice data to (resummed) chiral expansions, for observables related
to pseudoscalar mesons. Finally, in Chapter 5, we investigate the potentiality of topological
quantities to constrain the pattern of chiral symmetry breaking, and in Chapter 6, we discuss
other sets of fits that include lattice data concerning the topological susceptibility.



Chapter 1

QCD, Symmetries, and the
Vacuum

1.1 Introduction

The Standard Model (SM) of Particle Physics is a theoretical description of the constituents
of matter and their interactions at the most fundamental level. It dwells its theoretical
foundations on Quantum Field Theory and Group Theory. Its powerfulness and elegance
draw from a systematic use of symmetry principles, on one side to classify particles, on the
other, to build the different interactions that occur between them. It is a result of a deeply
interwoven work between experiment and theory, whose history spanned through nearly a half
of the twentieth century, beginning in the 1930s with the birth of QuantumElectroDynamics
(QED), and culminating in the early 1980s with the experimental discovery of the W and
Z bosons, and the top quark in the mid 1990s. It accounts, up to a very good precision, for
all the experimental observations that have been made until now. Finally it was announced
in the 4th of July 2012 by the CERN commitee that a new signal around 126 GeV could be
compatible with a Higgs-boson like particle. The new data provided by the ATLAS and CMS
experiments at the Large Hadron Collider seems to point, at last, towards a long-awaited
answer concerning the foundations of the Standard Model.

If a large part of the research about the Standard Model focuses on understanding the the
electro-weak sector and the Higgs mechanism, another (substantial) part is devoted to the
study of the strong interaction. This interaction shows a number of particular features, that
put it somehow apart from the two other known interactions, the electromagnetic and the
weak ones (besides the fact that no unification has (yet) been found between the electroweak
and the strong sector). In the late sixties, the studies on the hadronic spectrum suggested
that hadrons had an internal structure - that they were made of elementary fermionic parti-
cles: the quarks. In 1964, Murray Gell-Mann and George Zweig came with the quark model,
postulating the existence of the three light quarks: the up u, the down d and the strange
s. They were therefore able to explain the hadronic multiplets in terms of products of rep-
resentations of doublets and triplets of quark flavour (SU(2) and SU(3) flavour symmetry).
The quarks were subsequently discovered experimentally at SLAC in 1968. But the u d
and s quarks were not the only ones to exist - the charm, the bottom and top quarks were
latter discovered: in 1974, the charm was introduced to account for the existence of the J/ψ
particle, the bottom and the top were postulated in the 1970s to explain CP violation in
kaon decays - experimental evidence followed for the bottom in 1977 and in 1995 for the top,
both at the Fermilab facility. But in the mid-sixties, shortly after the birth of Gell-Mann and
Zweig’s quark model, a mystery remained: how to account for the existence of the three-time
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strange Ω baryon (sss) and the three-time up ∆++ baryon (uuu), which obviously seemed
to violate the Fermi principle ? The answer to this puzzle was the introduction of another
quantum number: the colour. The quarks were now bearers of a new degree of freedom and
this lifted up the apparent degeneracy amongst the quarks in the Ω and the ∆++ baryons.

This gave rise to the SU(3) colour gauge symmetry, which was one of the fundamental
dynamical symmetries of particle physics, along with the (SU(2)L×U(1)Y ) symmetry of the
electroweak sector. In this framework, quarks interact through the mean of 8 gauge bosons,
the gluons. This dynamics is described by Quantum ChromoDynamics (QCD), a Quantum
Field Theory whose main parameter, beside the fields’s masses, is the coupling constant αS ,
which parametrize the strength of the quark-gluon and gluon-gluon interactions.

QCD possesses two peculiar properties: confinement and asymptotic freedom. The
asymptotic freedom states that as energy increases, quark interactions becomes weaker and
weaker. It means that at low energy, the usual perturbative expansion in terms of pow-
ers of the strong coupling constant, αs, becomes irrelevant. There are however two main
alternatives to this lack of viable analytical methods at the low-energy level:

First, one can construct an Effective Field Theory (EFT) of QCD in the low-energy limit,
where quarks and gluons are replaced by effective degrees of freedom which are identified
to the eight pseudo-scalar light mesons π, K and η. It is then possible to perform an
expansion of the hadronic observables in powers of the meson momentum and the quark
masses (therefore recovering some kind of perturbative method). This theory was coined
Chiral Perturbation Theory, since it is built upon the spontaneous breaking of QCD chiral
symmetry.

The second alternative relies on numerical calculations of hadronic observables. This tech-
nique consists in discretizing the 4-dimensional Minkowskian space-time into a 4-dimensional
pseudo-euclidean discrete lattice. The quarks and gluons fields are themselves discretized,
leading to a path-integral “on the lattice”, which is then possible to evaluate with the help
of the appropriate algorithms (Monte-Carlo techniques), and powerful computers. This is
the domain of Lattice QCD (LQCD). The two methods, Effective Field Theory and Lattice
QCD, are complementary − as it will be explained in details in Chapter 2.

This introductory chapter aims to provide a general account of Quantum Chromodynam-
ics, its associated symmetries (sections 1.2 and 1.3), and its vacuum structure (section 1.4.5),
before moving in the next chapter to a general presentation of Effective Field Theories and
Lattice QCD.

1.2 QCD and Chiral Symmetry

1.2.1 The QCD lagrangian and asymptotic freedom

Quantum Chromodynamics is based upon a local colour symmetry group, SUC(3). This
group is generated by the Gell-Mann matrices T a, with a = 1...8. They have the following
commutation relations:

[

T a, T b
]

= ifabcT c, where fabc are the structure constants defining
the SU(3) Lie algebra (for a full-fledged treatment of the SU(3) group, see for example
[10]). The quarks, carrying a colour charge, transform under its fundamental representation
whereas the gluons (carrying both a colour and an anti-colour charge) transform, as gauge
bosons, in the adjoint representation. Using gauge symmetry, one can divide the QCD
lagrangian into three main sectors:

LQCD = Lquarks + Lgluons + Ltopological (1.1)
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Each of those “sub-lagrangians” is expressed in terms of the quarks fields (q for the light
quarks u, d, s, and Q for the heavy quarks c, b, t) and the gluon fields Aµ:

Lquarks =
∑

Q

Q̄(iγµD
µ −MQ)Q+

∑

q

q̄(iγµD
µ −mq)q (1.2)

Lgluons = −1

4
Gµνa Gaµν , Ltopological = − g2

32π2
θ0G̃

µν
a Gaµν (1.3)

γµD
µ = γµ(∂

µ − igAµaT a) is the covariant derivative acting on the quark fields Q and q,
Gaµν = ∂µA

a
ν−∂νAaµ+gfabcAbµA

c
ν the gluon strength tensor, and its dual G̃µν,a = 1

2ǫ
µνρσGaρσ.

Lquarks gathers the quarks-gluon dynamics through the covariant derivative, and the quark
mass terms mq q̄q and MQQ̄Q. This separation is meant to reflect the hierarchy between the
quark masses, and in particular that three of them (u,d,s) are light compared to the typical
hadronic scale Λχ = 1 GeV. Lgluons is the pure gluonic dynamics, telling how gluons would
propagate and interact in an hypothetic quark-free world.

Finally, Ltopological, as its name suggests, corresponds to a topological term that does
not enter equations of motion of quarks and gluons (it is not a dynamical term), but that
is tied to the vacuum structure of the theory through its parameter, the vacuum angle θ0.
It introduces a violation of CP [7], which is usually neglected due to its smallness. Indeed,
measurements performed on the neutron dipole electric moment lead to a very tiny bound
on θ0, of the order 1 of 10−10. More shall be said about the topological term in sec. 1.4.5.

As was mentioned in the introduction, QCD possesses two very specific properties: con-
finement and asymptotic freedom. The confinement property states that the quarks are
bound into hadrons, i.e. they can not be isolated nor individually observed. This is indeed
the case since no experiment was able to observe free quarks (and also free gluons). Still, we
get experimental evidence of those particules through the observations of jets. The asymp-
totic freedom, on the other side, is one of the most well-experimentally tested predictions
of QCD dynamics: as the energy increase, interactions between quarks become weaker and
weaker. This can be directly observed from the running of the coupling constant αS cf.
figure 1.1. This main prediction of QCD theory was discovered in 1970 by Politzer, Gross
and Wilczek, which led to a Nobel prize in 2004.

The calculation of the running of αs (an the subsequent theoretical observation of asymp-
totic freedom) can be performed using the usual Quantum Field Theory perturbative tech-
nics [6, 8, 9]. Confinement, however, as we stated before, can not be predicted from the
theory. This “un-predictability” is due to the impossibility to get a satisfying description
of QCD at low energies in terms of quarks and gluons (under the scale Λ ∼ 1 GeV). In-
deed the perturbative techniques rely on the expansion of QCD correlators describing the
different hadronic observables in terms of an expansion in powers of αS . It supposes that
αS remains reasonably small for this expansion to be valid. But in the low-energy regime,
where αS increases because of the asymptotic freedom property, a power expansion in terms
of the coupling constant is no more relevant. Uses of effective field theoretic methods and
numerical computations can prove viable alternatives to probe QCD at low energies.

1.2.2 Chiral symmetry

Apart from the SU(3) colour gauge symmetry, the QCD lagrangian for the light quarks in the
chiral limit: mu,d,s → 0 is also invariant under the global symmetry group SU(3)L⊗SU(3)R

1Nothing in the Standard Model explains why this violation is so small. One remedy to this puzzle is the
famous axion particle, introduced through the Peccei-Quinn mechanism [16, 17].
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Figure 1.1: The running of the strong coupling constant αS from the Particle Data
Group [68].

which acts in flavour space on the right and left chiralities of the quark fields through the
projection:

qR,L = PR,Lq, PR,L =
1± γ5

2
(1.4)

In the limit of a zero mass term, chirality is identified with helicity (projection of a
particle’s spin over its momentum) 2. The “left” and “right” chiralities corresponds to the
±1/2 values of the helicity. Besides, chirality is always Lorentz invariant, whereas it happens
only in the massless case for the helicity.

The massless quark lagrangian can therefore be split into the right and left chiralities:

Lm,light quarks =
∑

q

q̄R(iγµD
µ)qR + q̄L(iγµD

µ)qL (1.5)

We regroup the light quarks into a flavour triplet:

ψR,L =





uR,L
dR,L
sR,L



 (1.6)

Then, the QCD lagrangian is invariant under independent rotations of the chiralities in
the space of light flavours:

ψR,L → gR,LψR,L, gR,L ∈ SU(3)R,L (1.7)

If we add the vector phase invariance U(1)V (related to baryon number conservation),
which is the same for the three light quarks (the triplet ψ transforms like ψ → eiαψ), we get
the whole chiral group G that gathers the global symmetries of QCD:

2It is the mass term that breaks chiral symmetry, since the Dirac inner product mixes the right and left
components of the quark bi-spinor : mq̄q = m(q̄RqL + q̄LqR).
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G = SU(3)L ⊗ SU(3)R ⊗ U(1)V (1.8)

Up to that point, one should wonder why the rotations of the axial phase, U(1)A (ψ →
eiαγ

5

ψ), have been omitted in G. The fact is, even if U(1)A is a symmetry of the classical
theory, it is broken at the quantum level since the associated Noether current J5,µ = ψ̄γµγ5ψ
is no longer conserved [7]: ∂µJ

5,µ = 3g2/(16π2)G̃µνa Gaµν . This leads to the so-called axial
anomaly (see sec. 1.4.5 for further details).

In this thesis, we shall be focusing mainly on the SU(3) sector of the chiral group. Thus,
unless stated otherwise, G is from now on identified as SU(3)L ⊗ SU(3)R.

1.2.3 Currents and charges

We can associate to the group G the following Noether currents, both conserved at the
classical and quantum levels in the chiral limit:

JaL,µ = ψ̄Lγµλ
aψL, JaR,µ = ψ̄Rγµλ

aψR (1.9)

with the Gell-Mann matrices λa (a = 1...8) being the generators of SU(3) in flavour
space. Ja,µL and Ja,µR are themselves related to the axial and vector currents:

V a
µ = JaL,µ + JaR,µ = ψ̄γµλ

aψ, Aaµ = JaR,µ − JaL,µ = ψ̄γ5γµλ
aψ (1.10)

Out of the chiral limit, the vector and axial currents are only partially conserved:

∂µV a
µ = iψ̄[M,λa]ψ, ∂µAaµ = iψ̄{M,λa}γ5ψ (1.11)

where M is the light quark mass matrix.

These two divergences can be written in terms of the scalar and pseudo-scalar densities
Sa and P a:

Sa = ψ̄λaψ, P a = iψ̄γ5λaψ (1.12)

∂µV
a,µ = fabcMbSc, ∂µA

a,µ = dabcMbPc (1.13)

with Ma = 〈Mλa〉, where 〈...〉 is the trace in flavour space. fabc and dabc are the anti-
symmetric and symmetric structure constants of SU(3)’s Lie algebra [10]:

[λa, λb] = ifabcλc {λa, λb} =
1

3
δab + dabcλc (1.14)

Finally, we define the Noether charges QaV and QaA relating to the vector and axial
currents:

QaV =

∫

J0,a
V (x)d3x QaA =

∫

J0,a
A (x)d3x (1.15)

They verify the following commutation relations:



18 QCD, Symmetries, and the Vacuum

[QaV , Q
b
V ] = ifabcQcV (1.16)

[QaV , Q
a
A] = ifabcQcA (1.17)

[QaA, Q
a
A] = ifabcQcV (1.18)

We point out that the vector charges QaV define a sub-algebra of G, in fact the algebra
of the diagonal subgroup SU(3)V . This approach is the starting point of the analysis of
low-energy QCD in terms of current algebra [12], which can be extended to an effective field
theory described in details in Chapter 2.

1.3 Spontaneous breaking of chiral symmetry

1.3.1 Spontaneous symmetry breakdown and the QCD spectrum

As we presented in sec. 1.1, one of the most striking properties of QCD is the property of
confinement. It is a direct consequence of the non-abelian colour symmetry, and it leads to
the existence of bound states q̄q and qqq of quarks: the hadrons. Hadrons can be gathered
into multiplets almost degenerate in mass. For the two light flavours of quarks u and d,
one can mention the isospin multiplets like (n,p), (π−, π0, π+), (∆−,∆0,∆+,∆++)... This
symmetry is experimentally well-tested up to an accuracy of 5 % for the mass difference.
When we also take into account the strange quark s, those multiplets can themselves be
organized in octets like (π,K,η) or decuplets (∆,Σ,Ξ,Ω). Here the mass differences are more
significant - around 10% to 30%. An approximate SU(3)V flavour symmetry can account
for this particular spectrum, since some of its irreducible representations correspond to the
observed octets and decuplets. But no degeneracy have been observed between multiplets
of opposite parity. Since chiral symmetry is broken at the level of the low energy hadronic
spectrum, one can suspect that it undergoes a spontaneous symmetry breakdown (SSB):

SU(3)L ⊗ SU(3)R
SSB−→ SU(3)V (1.19)

What is left from the original group G is the unbroken vector sub-group H = SU(3)V
(gR = gL). From the point of view of the Noether charges, it means that there exists an
operator Ô such as:

〈Ω|[QaV , Ô]|Ω〉 = 0, 〈Ω|[QbA, Ô]|Ω〉 6= 0, a, b = 1...8 (1.20)

where QaV are the charges belonging to the unbroken vector generators, and QbA the
charges of the broken axial generators. This means that the theory’s vacuum is no more
invariant under the transformation of a broken charge: QA|Ω〉 6= |Ω〉 of the axial sub-group
SU(3)A. According to Goldstone theorem, the spontaneous breaking of a global, continuous
symmetry give rise, for each broken generator, to a massless bosonic spin-0 particle, the so-
called Goldstone bosons [36, 37]. This realization of symmetry, called the Nambu-Goldstone
realization, which is non-linear, is different from the more “standard” linear one, i.e. the
Wigner-Weyl realization (table 1.1). Let’s take a matrix u(φ) gathering the Goldstone fields
φ. Under G it transforms as:

u(φ)
G→ gRu(φ)h(g, φ)−1 = h(g, φ)−1u(φ)g−1

L (1.21)

where the compensator field h(g, φ) ∈ SU(3)V is an element of the un-broken sub-
group [38]. In the case g ∈ H (gR = gL), h(g) is a simple unitary representation matrix,
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independent of the Goldstone fields φ: this is the linear Wigner-Weyl realization. However,
in the case of the chiral transformation gR 6= gL, we have h = h(g, φ), i.e. the compensator
field depends on the Goldstone fields φ: this is the non-linear Nambu-Goldstone realization.

Wigner-Weyl realization Nambu-Goldstone realization

linear non-linear

G is the symmetry group. G is spontaneously broken to subgroup H.

The vacuum state is unique. The vacuum state is degenerate.

The excitations are massive. The spontaneous breakdown of G give rise
to massless excitations, the Goldstone bosons.

The states are gathered in multiplets of G. The states are gathered in multiplets of H.

Table 1.1: Comparison between Wigner-Weyl and Nambu-Goldstone realizations.

In addition, the octet of light pseudoscalar mesons (pions, kaons and eta) stands out
because of its masses lower than the hadronic scale. The lightest multiplet in the QCD
spectrum is an octet of pseudo-scalar mesons (JP = 0−1), with fairly non-degenerate masses
but light compared to Λχ. If those mesons were to possess a vanishing mass, they could be
identified with Goldstone bosons emerging from the spontaneous breakdown of a continuous
global symmetry − namely G. Then, SU(3)V mentioned above would act as a residual
symmetry group responsible for the degeneracy of the hadronic multiplets.

Hadrons Flavour structure Masses (MeV)

Pions π+/π− (ud̄, dū), π0 (uū− dd̄)/
√

2 ∼ 137

Kaons K+/K− (us̄, sū), K0/K̄0 (ds̄, sd̄) ∼ 495

Eta η (c1(uū+ dd̄) + c2ss̄) ∼ 547

Table 1.2: Octet of light pseudo-scalar mesons with quark content and masses (from
PDG [68]). c1 and c2 are coefficients of the linear combinations of quarks for the η me-
son coming from the η/η

′
mixing. We have c1 = 1/

√
3, c2 = −c1 in the simple model

described in ref. [42].

1.3.2 The Goldstone theorem

The Goldstone theorem makes the link between the spontaneous breaking of a global contin-
uous symmetry with the appearance in the theory of massless spin-0 fields, i.e. the Goldstone
bosons. In what follows, we outline a proof of the theorem [6, 8].

As a preliminary example, we take the usual SO(N) scalar model with a quartic φ4

interaction:

We define Φ = (φ1, ..., φN ) a vector of dimension N , where Φ is a Lorentz-invariant scalar
field. We write g an element belonging to SO(N). The lagrangian of the theory is:

LΦ =
1

2
∂µφi∂

µφi − m2

2
φiφ

i − λ(φiφ
i)2 (1.22)

with the parameter λ > 0. The associated potential is given by V [φi] = m2

2 φiφ
i+λ(φiφi)

2

(cf. figure 1.2).
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Figure 1.2: A representation of the quartic potential V [φi] in the SO(2) case, for m2 < 0.

It is invariant under the transformation V [φi] → V [gφi]. One defines the minimum of
V [φi] for a field configuration Φ0 by:

∂V

∂φi
|Φ=Φ0

= 0 (1.23)

In terms of the components φi:

[

m2

2
+ 2λ(φkφ

k)

]

φi = 0 (1.24)

For m2 > 0, the solution of (1.24) is trivially φi=1...N
0 = 0. However, if m2 < 0 we have

the solution:

|Φ0| =
√

|m2|
4λ

(1.25)

Φ0 is not invariant under the whole group SO(N). However, there is a subgroup H ≡
SO(N − 1) of G, so that Φ0 is invariant. Since the condition on the minimum of V is only
given by the norm of Φ0, we are free to choose its direction: we set Φ0 = (0, ..., 0, φN0 ≡ v),
so that it points along the N-th direction.

We can now shift the components φi of Φ from its vacuum value v: Φ = (π1, ..., π
N−1, σ+

v). The lagrangian (1.22) is thus written in terms of the π fields πi=1...N−1 and the σ field:

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 + (−m2)σ2, k = 1...N − 1 (1.26)

−m
√
λσ3 −m

√
λ(πk)2σ − λ

4
(πkπ

k)σ4 − λ

2
(πk)2σ2 − λ

4
(πkπ

k)2σ2

We observe that only the field σ along the broken axis N acquire a mass −m2 > 0,
while the N − 1 fields πk form a multiplet of SO(N − 1), the un-broken subgroup H. The
latter are thus the N−1 Goldstone bosons of the spontaneous symmetry breaking of SO(N)
to SO(N − 1). SO(N) has N(N − 1)/2 symmetries (which correspond to the number of
generators of its Lie algebra). For SO(N − 1), there are (N − 1)(N − 2)/2 symmetries. The
difference is N − 1, which correspond to the number of broken symmetries. The Goldstone
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theorem then states that for each of these broken symmetries, a massless particle must
appear. It is the same phenomenon that happens for the spontaneous breakdown of the
chiral symmetry of QCD, even if in this case the non-perturbative nature of the theory
at low energy forbids to get the precise details of the mechanism. It is also possible to
parametrize Φ using a “polar” representation: Φ = eitaπ

a
(0, ... 0, σ + v), where the ta are

the generators of SO(N − 1). In this case, the massless πa fields get derivative interactions
only:

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 + (−m2)(v + σ)2 − λ(v + σ)4 (1.27)

We observe therefore that the Goldstone modes πa do not interact in the limit of zero
momentum, a fact that was not obvious from the representation (1.26), but which correspond
to a general feature of Goldstone bosons.

In a more general way, for a field configuration Φ0 that minimizes V , we expand the
potential around its minimum value V [Φ0]:

V [Φ] = V [Φ0] +
1

2
(φ− φ0)

i(φ− φ0)
j
( ∂2V

∂φi∂φj

)

Φ=Φ0

+O(Φ3) (1.28)

The eigenvalues of the matrix ∂2V/(∂φi∂φj)Φ0
give the masses of the fields. Because Φ0

is a minimum, those eigenvalues, and thus the field masses are positive or zero. We apply
a transformation Φ → Φ + iαδΦ to V , α being a small parameter. Because V is invariant
under such a transformation, we have:

V [Φ] = V [Φ + iαδΦ] (1.29)

Or equivalently:

δφi
∂V

∂φi
= 0 (1.30)

Differentiating (1.30) by φj, and setting Φ = Φ0, we have:

(

∂(δφi)

∂φj

)

Φ=Φ0

(

∂V

∂φi

)

Φ=Φ0

+ δφi0

(

∂2V

∂φi∂φj

)

Φ=Φ0

= 0 (1.31)

The first term cancels because we are set at the minimum of V . Therefore, the second
term is zero. We have then an eigenvector δφi0 with 0 eigenvalue for each index i belonging
to the broken part of G. Therefore the matrix ∂2V/∂φi∂φj is a null-eigenvalue matrix, for i
corresponding to a broken generator of the group. This means that there are as many Gold-
stone bosons with vanishing mass as there are broken generators. The argument, presented
here at the classical level, can be generalized to include quantum corrections through the
formalism of the effective action [6, 9].

So in the case of SU(3)L ⊗ SU(3)R going to SU(3)V , we expect eight massless fields
to appear in the spectrum after a spontaneous symmetry breakdown. Those fields can in
fact describe the eight pseudo-scalar light mesons, under the addition fo a small mass term.
Those eight pseudoscalar Goldstone bosons |φa(p)〉 are organized in an octet according to
the residual symmetry group H:

QaV |φb(p)〉 = ifabcQaV |φc(p)〉 (1.32)

They are coupled to the vacuum |Ω〉 through the axial current Aaµ(x):
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〈Ω|Aaµ(x)|φb(p)〉 = iδabF (3)pµe
ip.x (1.33)

This coupling is described by the single decay constant F (3), where the 3 indicates that
it is here defined in the chiral limit mu,d,s → 0.

Now we have seen that chiral symmetry is spontaneously broken, but we would like to
describe in more detail this (non-perturbative) feature of the QCD vacuum.

1.4 The QCD vacuum

1.4.1 Order parameters: overview

The notion of spontaneous symmetry breaking is a very standard issue in physics. The
traditional example consists in a ferromagnetic system undergoing a (second-order) phase
transition to a paramagnetic phase when heating the system above a critical temperature
TC (the Curie temperature).

Figure 1.3: Ferromagnetic spin system (left) versus Anti-ferromagnetic (right)

The ferromagnet can be modeled by a lattice of spins (figure 1.3), whose interactions
lead to a global alignment, which in turn gives rise to a spontaneous magnetization M (it
is defined as the sum of all the spins in the system). This holds as long as the temper-
ature T stays below TC : the spins are in an ordered phase, which is not invariant under
a rotation of SO(3), because a particular direction of alignment has been privileged. But
when T > TC , the thermal energy become sufficient to overcome the interactions amongst
spins, thus spoiling their alignment and therefore making the spontaneous magnetizationM
vanish. The spins are disordered, and the rotational symmetry is recovered (since our disor-
dered system of spins looks the same in every direction). We observe that the spontaneous
magnetizationM vanishes in the paramagnetic, high temperature phase, while it is different
from zero in the ferromagnetic, low-temperature phase: M is an order parameter of the
ferro-paramagnetic phase transition. Moreover, an hamiltonian for this system would be of
the form: H = −J∑<i,j> σi.σj, where σ is a spin, J a constant and < ... > denotes the
nearest neighboring spins. This hamiltonian is of course invariant under G ≡ SO(3), while in
the ferromagnetic phase the fundamental state of the system breaks the symmetry into the
subgroup H ≡ SO(2): under TC , it is therefore spontaneously broken. We have the following
implication that for a non-zero order parameter O like the spontaneous magnetization, the
system undergoes a spontaneous symmetry breaking:

O 6= 0⇒ SSB (1.34)
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In principle, the number of order parameters is infinite. One must point out that the
converse of relation (1.34) is not true. The system can be spontaneously broken whilst some
of its order parameters are still zero. This is for example the case in anti-ferromagnetic
systems: in the (anti)-ferromagnetic phase, the lattice made of anti-parallel spins yields a
vanishing magnetization M. A relevant order parameter would be the difference of the
magnetization of the two sub-lattices: D =M+ −M− (in figure 1.3M+ correspond to the
dashed lattice, while M− stands for the dotted lattice). This illustrates the fact that the
study of order parameters is of particular importance since it provides information about
the mechanism of symmetry breaking.

1.4.2 Order parameters of the chiral spontaneous symmetry breaking

We can point out two order parameters that play an essential role in the investigation of
chiral symmetry breaking: the decay constant of the pion F , and the quark condensate 〈q̄q〉.

The pion decay constant F is very specific since it attests without ambiguity the breaking
of chiral symmetry [73]; i.e. the relation (1.34) is modified into:

F 6= 0⇔ Chiral SSB (1.35)

To understand why, let’s have a look at a more general order parameter of chiral SSB,
the two-point Green function of the axial and vector currents:

Πab
µν(q) = i

∫

d4xeiq.x 〈Ω|T
{

V a
µ (x)V b

ν (0) −Aaµ(x)Abν(0)
}

|Ω〉 (1.36)

In the Nf = 3 flavour case, assuming that the chiral symmetry is broken, we consider
Π in the chiral limit. The Green function (1.36) has poles which correspond to one-particle
states:

Πab
µν(q) = qµqνδ

ab

[

− F (3)2

q2
−
∑

V

F 2
V

M2
V − q2

+
∑

A

F 2
A

M2
A − q2

]

+ ... (1.37)

where F (3) is the decay constant of the pion in the chiral limit for the three flavour
case. The first term corresponds to the Goldstone boson stemming from the breakdown of
chiral symmetry, the second and third terms correspond respectively to massive vector V and
axial A resonances, and the ellipsis denotes non-holomorphic structures that arise at higher
energies. F (3), FV and FA can be seen as the couplings of the one-particle states to the
vector and axial currents (or equivalently their decay constants). For vanishing momentum
qµ = 0, only the Goldstone bosons contribute to eq. (1.37):

Πab
µν(0) = −1

4
gµνδ

abF 2(3) (1.38)

Πab
µν(0) only contains contributions from Goldstone bosons. If chiral symmetry is broken

then Πab
µν(0) 6= 0 which implies F (3)2 6= 0. The double implication (1.35) follows. In that

sense, F can be considered as the “main” order parameter of chiral symmetry breaking.

A second order parameter of importance to the chiral symmetry breaking is the quark
condensate 〈q̄q〉 in the chiral limit. Its importance is actually made clearer once one moves
away from the chiral limit. The quark condensate appears in the expansions of the pseu-
doscalar mesons masses (neglecting isospin breaking mu 6= md):
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F 2
πM

2
π = 2mΣ(3) +O(m2

q) (1.39)

F 2
KM

2
K = (m+ms)Σ(3) +O(m2

q) (1.40)

F 2
ηM

2
η =

2

3
(m+ 2ms)Σ(3) +O(m2

q) (1.41)

where Σ(3) is the quark condensate in the chiral limit (Nf = 3): Σ(3) ≡ −〈ūu〉mu,d,s→0.

Those equations relate the order parameter Σ(3) to the masses of the pseudo-scalar mesons
which stem from the breakdown of chiral symmetry. Since the quark masses are treated here
as a perturbation, the quark condensate induces a linear response to this same perturbation,
in a way similar to the spontaneous magnetization of a ferromagnet in an exterior magnetic
field. To avoid negative pseudoscalar masses for very small quark masses (condition of
vacuum stability), the quark condensate must itself be negative or zero.

At that point, we make a first stop at the expansions (1.39)-(1.41). One can ask the
question about how the higher orders hidden in the O(m2

q) are to be compared to the
leading order (i.e. the size of the quark condensate). The usual assumption is that these
higher-order corrections are rather small for physical quark masses. This would mean that
the ratio:

X(3) =
2mΣ(3)

F 2
πM

2
π

(1.42)

which measures the relative size of the quark condensate with respect to the physical value
is close to 1, so the expansions (1.39)-(1.41) are to be treated like any usual Taylor expansion
where the higher orders are expected to become smaller and smaller. In this manner the
quark condensate would play an essential role in the description of chiral symmetry breaking,
compared to all the other order parameters (excepting, of course, F ). We shall see from
Chapter 3 that this is not necessarily the case.

1.4.3 The chiral limits Nf = 2 and Nf = 3

Up to now we have considered only the chiral limit where the u, d and s quark masses vanish.
Because of the mass hierarchy mu ∼ md ≪ ms ≪ ΛQCD, we can consider two chiral limits
of interest (fig. 1.4):

• Nf = 3 chiral limit (breaking of SU(3)R ⊗ SU(3)L into SU(3)V ): mu,d,s → 0, giving
rise to an octet of Goldstone bosons that is identified with the light pseudoscalar octet
(π, K, η).

• Nf = 2 chiral limit (breaking of SU(2)R ⊗ SU(2)L into SU(2)V ): mu,d → 0 whereas
ms is kept at his physical value, giving rise to a triplet of Goldstone bosons identified
with the pion triplet.

In the case of the Nf = 2 limit, the masses of the u and d quarks go indeed to zero, but
the mass of the strange quarkms remains at its physical value. Therefore, the breaking of the
chiral symmetry in the two-flavour case involves the order parameters of SU(2)R ⊗ SU(2)L,
in which an implicit dependence on ms is contained. Now we define in both chiral limits our
two main order parameters of chiral symmetry breaking, the pseudoscalar decay constant
and the quark condensate:

F (2)2 = lim
mu,md→0

F 2
π , F (3)2 = lim

mu,md,ms→0
F 2
π , lim

ms→0
F 2(2) = F (3)2 (1.43)
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Figure 1.4: Sketch presenting our two chiral limits of interest mu,d → 0, ms physical and
mu,d,s → 0.

Σ(2) = lim
mu,md→0

−〈Ω|ūu|Ω〉, Σ(3) = lim
mu,md,ms→0

−〈Ω|ūu|Ω〉, lim
ms→0

Σ(2) = Σ(3) (1.44)

The two rightmost limits are of particular importance since they relate F and Σ in the
two chiral limits. Indeed, the values of Σ(Nf ) and F (Nf ) can in principle be different in the
Nf = 2 and Nf = 3 limits. Σ(2) being a function of ms, we have:

∂Σ(2)

∂ms
= lim

m→0
i

∫

d4x〈T{ūu(x)s̄s(0)}〉c ≡ ΠZ(ms) (1.45)

c stands for the connected Green function. Since Σ(2)→ Σ(3) for ms → 0, we have the
following expression for Σ(2):

Σ(2) = Σ(3) +

∫ ms

0
dµΠZ(ms) (1.46)

= Σ(3) +ms lim
mu,md→0

i

∫

d4x〈Ω|ūu(x)s̄s(0)|Ω〉+O(m2
s)

We can interpret this expression the following way: Σ(2) receives two different contribu-
tions − the first comes from the “genuine” Nf = 3 condensate Σ(3) = −〈ūu〉mu,d,s→0, the
second from the “induced” condensate corresponding to the effect of the strange sea-pairs
through the correlator 〈Ω|ūu(x)s̄s(0)|Ω〉 (cf. figure 1.5).

1.4.4 Order parameters and the spectrum of the euclidean Dirac operator

Analysing the issues concerning the spectrum of the Euclidean Dirac operator 6 D can be
interesting to better understand the behavior of the quark condensates Σ(3) and Σ(2), as
described in the preceding section. We perform a Wick rotation to work with an Euclidean
metric, in a finite volume V . For any given gluonic configuration, the Dirac operator is
hermitian and can be diagonalized [113]:

6D[G]ψn = λn[G]ψn, λn ∈ R (1.47)

with {ψn} a complete basis of orthonormal states:
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Figure 1.5: OPE-like diagrammatic representation of expression (1.46). The left term corre-
sponds to the “genuine” condensate Σ(3) while the right term corresponds to the “induced”
part - second term of eq. (1.46). The broken lines correspond to non-perturbative contri-
butions from the vacuum, while the cross stands for an insertion of the strange quark mass
ms

∫

d4ψ†
m(x)ψn(x) = δmn,

∑

m

ψ†
m(x)ψm(y) = δ(x− y) (1.48)

Furthermore, we have the symmetry property that for any eigenvector and eigenvalue
{ψn, λn}, we have the eigenvector γ5ψn with eigenvalue −λn. We write ν the number of
exact zero-modes of 6D (related to topological considerations, see next section 1.4.5). This
is due to the simple fact that γ5 and 6D anti-commute. Vafa and Witten [20] derived the
existence of a uniform bound on the eigenvalues:

|λn[G]| < C
n1/d

V 1/4
≡ ωn, ωn independent of the configuration G (1.49)

for a gluonic configuration G, with d = 4 the space-time dimension, C a constant in-
dependent of G and the space-time volume V . We observe that as the volume grows, the
eigenvalues λn accumulate around zero.

S(x, y|G) is the light-quark propagator for a gauge configuration G:

S(x, y|G) =
∑

n

ψ†
n(x)ψn(y)

M − iλn[G]
, M = Diag(m1, ...,mNf

) (1.50)

We can use this basis to describe any correlator integrating over fermionic fields, leading
to the gluonic average < ... >:

< O >=

∫

[dG]Oe−S[G]∆[G]
∫

[dG]e−S[G]∆[G]
(1.51)

The fermion determinant ∆[G] reads:

∆[G] =
∏

i

∆(mi|G), ∆(m|G) = m|ν| ∏

n>0

m2 + λ2
n[G]

m2 + ω2
n

(1.52)

where ωn introduces a normalization independent of the gauge configuration. We take the
Nf chiral limit: m1, ...,mNf

→ 0, keeping the remainingNh quarks massive: mNf+1, ...,mNh
6=

0. In this limit the quark condensate 〈ūu〉 ≡ −Σ(Nf ) is given by:

Σ(Nf ) = lim
1

V
<

∫

d4xTr{S(x, x|G)} > = lim
1

V
<

+∞
∑

n=−∞

m

m2 + λ2
n

> (1.53)
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where “lim” stands for the large volume limit V →∞, followed by the Nf chiral limit3.
Some calculations bring us to:

Σ(Nf ) = lim
1

V
<
∑

n

m

m2 + λ2
n

> (1.54)

= lim
m→0

∫ +∞

−∞
dǫ

m

m2 + ǫ2
lim
V→∞

1

V
< δ(ǫ− λn) >

= 2 lim
m→0

∫ ∞

0
du

1

u2 + 1

1

V
< ρ(mu) >

with ρ(ǫ) the eigenvalue density ρ(ǫ) =
∑

n δ(ǫ − λn). The same applies for the decay
constant F [73]:

F 2(Nf ) = lim
1

V
<
∑

k,n

m

m2 + λ2
k

m

m2 + λ2
n

Jkn >, Jkn =
1

4

∑

µ

|
∫

d4xψ†
n(x)γµψn(x)|2

(1.55)
We can observe that those two quantities depend on the small Dirac eigenvalues - the

infrared end of the Dirac spectrum - or, to put it differently, that they are tied to the
accumulation of eigenstates around 0 as the volume V →∞ (eq. 1.49).

We now assume that the lightest of the massive quarks (the strange quark s in the Nf = 2
case), has a non-zero mass much smaller than the other ones and the scale Λχ, so in the chiral
limit it would be of interest. We therefore isolate it from the other massive contributions
and we get the following average over gluonic configurations:

< O >= Z−1

∫

[DG]O∆Nf (m|G)∆(ms|G)

Nf +Nh
∏

i>Nf +1

∆(mi|G)e−S[G] (1.56)

By choosing a cut-off Λ and defining an integer K such that ωK = Λ (all of which are
independent from the gluonic configuration), we can separate the fermion determinant into
its infrared and ultraviolet contributions:

∆(m|G) = m|ν|∆IR(m|G)∆UV (m|G) (1.57)

Then the infrared contribution has the following expression:

∆IR(m|G) =

K
∏

n=1

m2 + λ2
n[G]

m2 + ω2
n

< 1 (1.58)

the bound ∆IR(m|G) < 1 coming from the relation (1.49). In the expression (1.56), the
determinants ∆(mi|G) containing the contributions of the massive quarks are dependent on
the masses mi unaffected by the chiral limit. Therefore their contributions are insensitive
to small eigenvalues λ ≪ mi. Since Σ is dominated by small eigenvalues, the infrared
contribution ∆IR should dominate in the gluonic average eq. (1.56). ∆IR is an increasing
function of the masses:

m < ms ⇒ ∆IR(m|G) < ∆IR(ms|G) (1.59)

so that taking the limits m→ 0 and ms → 0 (for the Nf = 3 chiral limit) would lead to
a decrease of the chiral order parameters Σ and F :

3The order into which those two limits are taken is of particular importance, since spontaneous symmetry
breaking does not happen in a finite volume [9].
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Σ(3) < Σ(2), F 2(3) < F 2(2) (1.60)

Of course, the strength of the effect shall depend on the sensitivity of those parameters
on the smallest Dirac eigenvalues. This affects essentially quantities sensitive to the infrared
end of the Dirac spectrum (like the chiral order parameters), but not many others (quantities
related to the dynamics of vector mesons, excited states, heavy-light systems, the baryon
masses...).

Figure 1.6: Possible dependence of the quark condensate Σ on the mass of strange quark
ms. Σ(3) is the three-flavour condensate, Σ(2) stands for its value in the two-flavour chiral
limit.

As seen in the previous section, this difference between the values of Σ(3) and Σ(2) could
be related to the fact that their difference, 〈(ūu)(s̄s)〉, is connected to the violation of the
Zweig rule in the scalar sector (JPC = 0++), effect which disappears in the large Nc limit.
There are two possible scenarios: if Σ(3) ∼ Σ(2), then 〈(ūu)(s̄s)〉 is small and the Zweig rule
is verified. However, if the Nf = 3 condensate is suppressed Σ(3) < Σ(2) (figure 1.6) and
〈(ūu)(s̄s)〉 violates the Zweig rule, therefore enhancing the effects of the strange sea-pairs.
A similar situation also happens for the decay constant F , having F 2(3) < F 2(2). The value
of the correlator 〈(ūu)(s̄s)〉 was studied in details in [70, 71, 72] using dispersive methods,
highlighting the importance of the f0(980) resonance for the estimate of this correlator since
it strongly couple to ūu and s̄s densities − concluding to an important dependence of the
quark condensate and the decay constant on the number of quark flavours Nf . That fact
was latter corroborated by some lattice collaborations (PACS-CS, MILC) [96, 102, 103] (see
sec. 2.7.3). Again, the precise study of this phenomenon could provide valuable information
about the chiral structure of the QCD vacuum, and the pattern of chiral symmetry breaking.
This comparison will be a significant part of the work presented in this thesis.

1.4.5 The vacuum angle

• Winding number and the QCD vacuum:

We recall that the QCD lagrangian (1.1) contains the topological term:

Ltopological = − g2

32π2
θ0G̃

µν
a Gaµν (1.61)
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Again, this term is peculiar in the sense that it does not appear in the equations of
motion, but nevertheless, it affects QCD physics through the axial anomaly from the UA(1)
transformation.

To a given configuration of the gauge fields, it is possible to associate a topological charge
called the winding number [7, 113]:

ν =

∫

d4x ω(x) (1.62)

where ω(x) is the winding number density:

ω(x) =
g2

32π2
G̃µνa (x)Gaµν(x) (1.63)

ν is a topological invariant, and can be used to classify the different gluonic configura-
tions according to their topological sector, itemized by their winding number. Preeminent
examples of configurations with non-zero winding number are the famous instanton config-
urations [9].

It is possible to relate the winding number ν to the right and left zero-eigenstates of
the Dirac operator (i.e. with eigenvalues λ = 0): for a suitable basis consisting of n+

right-handed eigenstates and n− left-handed eigenstates, then we have the following relation
ν = n+ − n−. This is the famous Atiyah-Singer index theorem [19]. It also shows that ν is
an integer when the fermions of the theory are in the fundamental representation [113].

The vacuum of QCD is characterized by configurations of gluon fields that are grouped
according to their winding number ν. The different vacuum states |Ων〉 are separated by
potential barriers connected through tunneling effects (for example, instantons provide a
description for the “jumps” between those barriers, i.e. from one topological sector to the
other). For a gauge transformation with winding number 1 the states |Ων〉 and |Ων+1〉 are
related by a gauge transformation U1|Ων〉 = |Ων+1〉. So a gauge invariant vacuum state is a
superposition of all the topological classes:

|θ0〉 =
∑

ν

e−iνθ0 |Ων〉 (1.64)

which is gauge-invariant up to a phase:

U1|θ0〉 = eiθ0 |θ0〉 (1.65)

We stress that different values of θ0 are associated with different vacua, i.e. 〈θ′
0|θ0〉 = δθ′

0
θ0

.

In the case of a vacuum-to-vacuum transition amplitude 〈θ0|O|θ0〉, we have the presence of
a phase:

〈θ0|O|θ0〉 =
∑

ν,ν
′
ei(ν−ν

′
)θ0〈ν|O|ν ′〉 (1.66)

that can be taken into account in the generating functional by:

〈θ0|O|θ0〉 =
∫

[DG][Dψ̄][Dψ]Oe−i
R

LQCD+ g2

32π2 θ0G̃
µν
a Ga

µν (1.67)

=
∑

ν,ν′
ei(ν−ν

′
)θ0〈ν|O|ν ′〉

The phase ei(ν−ν
′
)θ0 is equivalent to the presence of the topological term (1.61) in the

path-integral.
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• Relationship between θ0 and the axial anomaly:

As was introduced in sec. 1.2.2, the massless QCD lagrangian is invariant under the axial
phase transformation:

ψ → eiαγ
5

ψ, ψR → eiαψR, ψL → e−iαψL (1.68)

where eiαγ
5

is any element of UA(1). As for any other symmetry at the classical level,
one would therefore expect that the Noether current J5,µ = ψ̄γµγ5ψ is classically conserved:

∂µJ
5,µ = 0 (Classical) (1.69)

But the above relation (1.69) is incorrect at the quantum level. As a first approach, this
can be shown explicitly by evaluating anomalous correlators such as 〈Ω|T{J5

µ(x)J
a
ν (y)Jbσ(z)} |Ω〉 [7]

at one loop, showing an ambiguity in their value. It turns out that it is not possible to define
all the correlators while preserving the corresponding chiral Ward identities − the involved
symmetry being called anomalous. In our case it is the axial anomaly that is “sacrified” in
order to cope with this problem.

A more general approach taken by [18] shows that the reason for the existence of the
axial anomaly was in fact intrinsic to the structure of QCD at the quantum level: simply
stated, the measure of the theory’s generating functional is not invariant under the transfor-
mation (1.68):

[Dψ̄Dψ]→ [Dψ̄][Dψ] exp

[

i

∫

d4x α Nf
g2

16π2
G̃µνa Gaµν

]

(1.70)

for a given number Nf of quark flavours. This can be explained by the fact that the
divergence of J5,µ is non-zero:

∂µJ
5,µ = Nf

g2

16π2
G̃µνa Gaµν (Quantum) (1.71)

into which we can recognize the topological term (1.61). We invite the reader to refer to
[7] and [18] for the details of the (somehow) technical calculation leading to (1.70). When
the quarks are massive, the full divergence is given by:

∂µJ
5,µ = 2i

∑

q

mqq̄γ
5q +Nf

g2

16π2
G̃µνa Gaµν (1.72)

where the mass part comes from the lagrangian itself (which is not UA(1) invariant
for non-zero masses) and the topological part comes from the anomalous behaviour of the
generating functional under the UA(1) symmetry.

Now how does the theta vacuum |θ0〉 behave under chiral transformations ? This issue
is in fact connected to the axial anomaly. Since G̃µνa Gaµν corresponds to a total divergence
(eq. (1.71)), one can define a conserved current:

J̃5,µ = J5,µ −Nf
g2

16π2
Kµ (1.73)

where Kµ is a gauge-dependent current verifying ∂µK
µ = G̃µνa Gaµν [7]. From the “new”

axial current J̃5,µ we define the corresponding Noether charge:

Q̃5 =

∫

d3xJ̃5,0(x) (1.74)
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Under the gauge transformation U1 (1.65), Q̃5 transforms like:

Q̃5 → U1Q̃
5U−1

1 = Q̃5 − 2Nf (1.75)

Providing that we work in the massless case, each of the different theta vacua are therefore
related by a chiral U(1) transformation. We have:

U1e
iαQ̃5 |θ0〉 = U1e

iαQ̃5

U−1
1 U1|θ0〉 (1.76)

= ei(θ0−2αNf )eiαQ̃
5 |θ0〉

By writing eiαQ̃
5 |θ0〉 = |θ′

0〉 we see from eq. (1.65) that:

eiαQ̃
5|θ0〉 = |θ0 − 2αNf 〉 (1.77)

We observe that a U(1) chiral transformation implies a shift in the coefficient of the
topological term (1.61), i.e. the vacuum angle θ0:

θ0 → θ0 − 2αNf (1.78)

It is therefore possible to rotate away the dependence of the lagrangian on the vacuum
angle by an axial phase transformation. This does not hold for massive quarks since the
chiral symmetry is then explicitly broken.

• Introduction to topological quantities

Going further, it is possible to split the QCD generating functional Z[θ0] (see sec. 2.4.1)
into the sum of the contributions from each different topological sector itemized by ν:

Z[θ0] =
∑

ν

eiθ0νZν (1.79)

with Zν =
∫

[DG]eS[G]Det[−i 6D +M], S[G] being the classical gluonic action of a given
topological configuration of winding number ν. The distribution of the winding number is
also characterized by its mean square:

〈ν2〉 =
∑

ν

Zν
Z
ν2 (= V Σm in the Nf = 1 case.) (1.80)

This winding number is related to the non-perturbative structure of the QCD vacuum,
and we are able to describe some of its features in the simplifying case Nf = 1 (which is not
exactly identical to the N ≥ 2 case since the quark condensate does not have any symmetry
in the case Nf = 1). We obtain [113]: 〈ν2〉 = V Σm.

Setting θ0 = 0, in the case of large volumes, V Σm >> 1, for winding numbers ν << 〈ν2〉,
we have a Gaussian distribution:

Zν
Z

=
1

√

2π〈ν2〉
exp

−ν2

2〈ν2〉 (1.81)

Configurations with low ν have the same probablity of occuring, whereas configurations
with ν & 〈ν2〉 become highly suppressed.

For small volumes V Σm ≪ 1, the distribution is all concentrated around ν = 0, i.e.
non-trivial topologies with ν 6= 0 are rare. The mean value of 〈ν2〉 stems from configurations
with ν = ±1, which also dominate the quark condensate. This in fact hinders the capacity of
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lattice simulations to jump from one topological sector ν to the next, the non-trivial sectors
being difficult to reach.

For the theory with more than 1 flavour evaluating Z[θ0] directly is much more difficult
and one has to use an effective theory of QCD to extract information on its mass and volume
dependence (see ref. [113]).

The previous discussion highlights the importance of a quantity called the topological
susceptibility (χt) directly tied to the vacuum structure of QCD. This (un-physical) quantity
is defined by the mean square winding number per unit volume: χt = 〈ν2〉/V . This is
an interesting quantity since it does have a sensitivity on the quark condensate Σ, which
becomes explicit in the low-energy effective theory of QCD. In the one flavour case, it is

simply given by χ
Nf =1
t = 〈ν2〉/V = Σm. We observe that it is independent of the volume

and that it vanishes in the chiral limit m→ 0 (which is always true for an arbitrary number
of flavours when any of the masses tends to zero mf → 0). Using the generating functional:

Z[θ0] = e−W [θ0]V (1.82)

with W [θ0] the (vacuum) energy density, the topological susceptibility is taken as W [θ0]
second derivative in the expansion of W [θ0] as a series in θ0:

W [θ0] = W [0] +
θ2
0

2

d2W [θ]

dθ2
|θ=θ0 +

θ4
0

4!

d4W [θ]

dθ4
|θ=θ0 +O(θ6

0) (1.83)

= W [0] +
θ2
0

2
χt +

θ4
0

4!
c4 +O(θ6

0)

with all the odd-derivatives being 0 (θ0 = 0 is a minimum of W [θ0]). We see that χt
can be understood as the second-order coefficient of the expansion of W [θ0], and from the
definition χt = 〈ν2〉/V , as the second cumulant of the gluonic winding number ν. Similarly
at fourth order, the coefficient c4 = [〈ν4〉 − 3〈ν2〉2]/V corresponds to the fourth cumulant of
ν. Both can be evaluated through the means of lattice simulations, with the possibility to
extract information about the quark condensate.

We can make a link between these two topological quantities and any arbitrary correlation
function G(θ0) = 〈θ0|O1...On|θ0〉, defined in the case of a fixed winding number ν: in the
same manner as eq. (1.79), we have the Fourier coefficient of G(θ0) [118]:

Gν =
1

2πZν

∫

dθZ(θ)G(θ)eiθν (1.84)

If the correlator G is CP-even, it is an even function of θ - conversely if G is CP-odd.
Expanding Gν in a series in θ we therefore obtain:

Gevenν = G(0) +G(2)(0)
1

2χtV

(

1− ν2

χtV
− c4

2χ2
tV

)

+G(4)(0)
1

8χ2
tV

2
+O(V −3) (1.85)

Goddν = G(1)(0)
iν

χtV

(

1− c4
2χ2

tV

)

+G(3)(0)
iν

2χ2
tV

2
+O(V −3)

From the previous equations (1.85), we can obtain an estimate of the size effects due to
a fixed winding number. We see that the leading order correction is of order O(1/V ). Those
finite-volume corrections are supressed when the quark masses are larger than 1/(ΣV ), but
they become significant when the masses are of order m ∼ 1/(ΣV ).

Furthermore, χt is related to the value at zero of the correlation function:
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χ(p2) = −i
∫

d4x eip·x〈0|Tω(x)ω(0)|0〉 (1.86)

which can be obtained from the generating functional of QCD by performing two deriva-
tives with respect to the local source corresponding to the vacuum angle θ(x). As discussed
in ref. [114], this correlation function is too singular in QCD for the integral to exist, so that
eq. (1.86) is an ambiguous notion and has to be renormalized. This problem however does not
affect the value of χ(p2) at zero momentum transfer and per unit volume χ ≡ χ(0)/V ≡ χt,
i.e. the topological susceptibility. Indeed, χ(0) can be related through Ward identities to
correlators requiring no renormalization:

χ(0) = − i
6

∫

dx〈Ω|Tσ0(x)σ0(0)|Ω〉 −
1

9
〈Ω|q̄mq|Ω〉 , σ0 =

√

2

3
q̄iγ5mq (1.87)

The two terms on the right-hand side of this Ward identity (written in the case of
degenerate masses among quarks collected in a flavour multiplet ψ (see ref. [114]) shows the
connection of the topological susceptibility with the determination of the quark condensate
(〈Ω|q̄mq|Ω〉) and the propagation of flavour-singlet Goldstone bosons respectively (σ0). It
is thus of no surprise that this quantity, related to topological properties of QCD, is also
exploited to determine the quark condensate on the lattice [120, 121, 122, 123, 124].

1.5 Summary

After a (very) short introduction to the Standard Model, we have given a presentation of
QCD, focusing mainly on the aspects of chiral symmetry, which arises in the (chiral) limit
of zero quark masses mq → 0, for either two (u and d) or three flavours (u, d and s). We
detailed the notion of spontaneously broken global symmetry and the subsequent Goldstone
theorem. We saw in particular that chiral symmetry breaking generates eight Goldstone
bosons that can be identified with the eight pseudo-scalar mesons π+,0,−, K+,−, K̄0,K0 and
η of QCD low-energy spectrum.

From there, we moved to a description of the QCD vacuum, where we introduced the
important concept of order parameter for a spontaneous symmetry breaking. We have seen
that for chiral symmetry, there exist two main order parameters: the decay constant F and
the quark condensate Σ. We shown that those order parameters could undergo a decrease
when one moved from the theory with two massless flavours to the theory with three massless
flavours: Σ(3) < Σ(2), F (3)2 < F (2)2, this effect comes from the presence of massive s̄s in
the vacuum being related to a violation of the Zweig rule in the scalar sector.

The second part of our description of the QCD vacuum involved topological considera-
tions, stemming from the presence of the topological term −g2/(32π2)θ0G̃

µν
a Gaµν in the QCD

lagrangian. We introduced the winding number ν of gluonic configurations, and gave a clas-
sification of the vacuum states according to this number. We also gave relations between the
UA(1) axial anomaly and the vacuum angle θ0. Finally, we discussed two quantities describ-
ing the distribution of the winding number: the topological susceptibility χt and the fourth
cumulant c4 defined from an expansion of QCD’s energy density in powers of θ0. These
two topological quantities (even if “un-physical”) being interesting objects because of their
dependence on the quark condensate, whose better understanding could help us to probe the
pattern of chiral symmetry breaking.

In the second chapter, we shall introduce the two alternative techniques aimed at studying
QCD at low energies in the non-perturbative regime: Lattice QCD and Effective Field
Theories. Then, we will give a detailed presentation of Chiral Perturbation Theory, the
effective theory of low-energy QCD.
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Chapter 2

Lattice QCD, Effective Field
Theories, and Chiral Perturbation
Theory

2.1 Introduction

At low energies below the chiral symmetry breaking scale Λχ ≈ 1 GeV, quarks and gluons
interact so strongly that the usual perturbative approach of QCD is no longer relevant.
Indeed, the value of the strong coupling constant becomes too high for the perturbative
expansion in powers of αs to be still valid. Thus, the whole machinery of perturbative
diagrammatical techniques with quarks and gluons can no longer be used: getting analytical
results (even approximate) for hadronic processes in terms of quark-gluon interaction is no
longer possible. But, as was introduced in sec. 1.1, two alternatives exist to cope with that
issue:

On one side, we can make use of numerical simulations to extract relevant information
about QCD observables: this is the purpose of Lattice QCD. On the other side, in order to
stick with an analytical approach, it is possible to construct an Effective Field Theory of QCD
in the low-energy limit, based on the fact that the “failure” of low-energy QCD with quarks
and gluons may be a sign that below Λχ, quarks and gluons can not anymore be considered as
the “good” degrees of freedom of the theory. We then have to find another class of degree of
freedom more suited to energy domains under 1 GeV: this role shall be devoted to the octet
of light pseudo-scalar mesons π+,0,−, K+,−, K̄0, K0, and η. The resulting effective theory,
called Chiral Perturbation Theory, or χPT for short, is fully workable within a perturbative
framework.

The first two sections of this chapter shall be devoted to a global overview of Lattice
QCD, followed by an introductory presentation of Effective Field Theories. Then in the
remaining sections we shall give a detailed account of Chiral Perturbation Theory.

2.2 Lattice QCD

One method used to probe the dynamics of QCD at energy scales for which perturbation
theory in αs breaks down is Lattice QCD (LQCD). To put it as concisely as possible, it
consists in performing numerical calculations of observables (i.e. correlators) over discrete
space-time.

From a theoretical point of view, the main issue of this method is how to discretize
the generating functional in order to make numerical calculations possible. Since it is not
possible to perform calculations over a discretized 3 + 1 Minkowskian space-time, one has
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first to perform a Wick rotation into a 4-dimensional Euclidean space with imaginary time
τ ≡ it. We have moved from a Quantum Field Theory in Minkowski space to a Classical
Theory at Equilibrium (CTE), i.e. a statistical field theory in Euclidean space [23]. Writing
e−iS[ψ̄,ψ,G] the QCD action, the generating functional in QFT:

ZQFT =

∫

[Dψ̄][Dψ][DG] e−iS[ψ̄,ψ,G] (2.1)

becomes a partition function in CTE:

ZCTE =

∫

[Dψ̄][Dψ][DG] e−S[ψ̄,ψ,G] (2.2)

For a given correlator we get:

〈O(ψ̄, ψ,G)〉 =

∫

[Dψ̄][Dψ][DG] O(ψ̄, ψ,G) e−S[ψ̄,ψ,G]

∫

[Dψ̄][Dψ][DG]e−S[ψ̄,ψ,G]
(2.3)

which can be thought of as a probabilistic average over the field configurations with a
weight e−S[ψ̄,ψ,G]. Furthermore, it is possible to separate the fermionic contribution from the
bosonic one (as in eq. 1.51):

〈O〉 =

∫

Õ(G)e−S[G]
∏

f Det[i 6D −mf ]
∫

e−S[G]
∏

f Det[i 6D −mf ]
(2.4)

where Det[i 6D−mf ] is the fermion determinant for a given flavour in the case of massive
quarks (equation (2.4) is the lattice counterpart of equation (1.51) defined in sec. 1.4.4).
There is a further separation between the quarks that is made in eq. (2.4): the operator Õ
contains the contribution of the valence quarks, while the determinant Det[i 6D−mf ] gathers
the sea-quark dynamics.

The discrete space-time in which we work is an hypercube of space length L in the
space directions, and of length T in the “time” direction. Each vertex x on the hypercube is
separated by a lattice spacing a. The vertices are linked to their neighbours by a gauge matrix
Uµ(x) ∈ SU(3), which represent the gluonic fields on the lattice. µ is an index corresponding
to a unit vector µ̂ in the direction µ = 1, ..., 4. An action of LQCD is invariant under gauge
transformations which are defined as follows: for an arbitrary set of matrices g(x) located
on the sites of the lattice the gauge fields, as well as the fermion fields, transform as:

Uµ → g(x)Uµg
−1(x+ µ̂), ψ(x)→ g(x)ψ(x) (2.5)

All the physcial observables are of course gauge invariant. The set of all the matrices
Uµ(x) on each vertex is called the gauge configuration of the lattice. They are numerically
evaluated by means of the usual Monte-Carlo method using the weight e−S[G] [25]. The
action which is used is the gluonic Wilson action:

SG[{U}] =
1

3

∫

d4x Tr{1− Pµν(x)} (2.6)

with the matrix product Pµν(x) = Uµ(x)Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂), called

a plaquette. In the limit a → 0 the continuous gluonic action − g2

36

∑

a=1...8

∫

1
4G

µν
a Gaµν is

recovered. The fact of having put the theory on a lattice results in discretization effects, i.e.
the simulated observables come with numerical artefacts of order of the size of the lattice
spacing a.

For the quarks the problem is much more difficult since the numerical evaluation of the
fermionic determinant Det[i 6D −mf ] is a tremendous calculational task. Indeed, it stems
from a huge matrix whose size amounts to the product (number of sites on the lattice) ×
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Figure 2.1: A plaquette representing the matrix product Pµν(x). Each vertex is linked to its
neighbours by a matrix Uµ(x). The red arrows indicate the direction of the rotation around
the plaquette.

(quark colour)×(quark spin). One then uses a modified version of the Monte-Carlo algorithm
called Hybrid Monte-Carlo [26] − a recent technique used to make an evaluation of the
fermionic determinant at a reasonable calculational cost.

The basic (naive) action for the quarks is the following:

1

2a

∫

d4x ψ̄(x)
∑

µ

γµ[Uµ(x)ψ(x + µ̂)− U †
µ(x− µ̂)ψ(x− µ̂)] +

∑

x

mqψ̄(x)ψ(x) (2.7)

As one expects, the usual Dirac action
∫

ψ̄(6D −m)ψ is recovered in the limit a →
0. The problem is that this action gives rise to 16 duplicate quark modes (the so-called
doubler modes) in the continuum limit. To overcome this problem, one can define the
Wilson action [24]:

1

2a

∫

d4x ψ̄(x)
∑

x,µ

[(γµ − 1)Uµ(x)ψ(x+ µ̂)− (γµ + 1)U †
µ(x− µ̂)ψ(x − µ̂)] (2.8)

+
mqa+ 4

a

∑

x

ψ̄(x)ψ(x)

This action (2.8) however breaks chiral symmetry, since it adds another “mass” term 4/a
to lift degeneracy among the doublers. It is possible to define other actions, most of them
derived from the Dirac operator of Wilson’s action, like for example “Wilson clover” [30]
and “Wilson twisted” [31], which have O(a2) artefacts due to finite lattice spacing, much
better than the O(a) artefact of eq. (2.8). Actions with the appropriate chiral properties
needed to study light quark dynamics are also derived from Wilson’s Dirac operator, such
as the “domain wall” [27] and “overlap” [28, 29] actions − the latter having very good chiral
properties but leading to very heavy calculations when the volume increases, so that it is
almost impossible to perform them on large volumes.

Now the generating functional of lattice QCD can be summarized as such:

〈O〉lattice =

∫

{U} Õe−βSG[{U}]∏
f Det[i 6D −mf ]

∫

{U} e
−βSG[{U}]∏

f Det[i 6D −mf ]
(2.9)

with {U} a gauge configuration, and 1/β = g2/6, which can be thought as the equivalent
of the temperature T of a thermal bath. In the early times of lattice QCD, one would
neglect the effect of the fermionic determinant, i.e. one would consider a situation for which
the sea-quark pairs are neglected. From a diagrammatic point of view, this means that
only gluons contribute as internal lines: it is the quenched QCD. In particular, it encouters
severe problems of unitarity, and it is no more used nowadays. Another situation consists
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Figure 2.2: Illustration of the three situations quenched (A), and full (B) in lattice QCD.
The black dots represent the valence quarks and the connecting gray lines their propagation.
The internal curvy lines stand for the gluons while the loop illustrate a sea-quark effect.

in taking into account the dynamics of the sea-quarks, but in setting a mass for the sea-
quarks different from the mass of the valence quarks, this is called the partially-quenched
QCD, with similar problems concerning unitarity. Finally, the last situation correspond
to the full QCD with dynamical quarks verifying msea = mvalence (see figure 2.2). The
calculations with sea-quarks are much heav ier than the quenched calculations: they are
becoming more and more demanding as the light quark masses (and consequently the pion
mass) decrease. Many different simulations have been performed over the years, for instance
2 [33], 2 + 1 [96, 97, 98, 99, 100, 101, 102, 103] and 2 + 1 + 1 dynamical quarks [34] (the
charm quark being introduced in the latter).

It must be stressed that most of the simulations are made for masses that are larger than
the actual physical masses. Currently, the BMW collaboration [32] has reached the physical
pion mass M̃π ∼ Mπ (Õ denotes an observable on the lattice). The lower bound the other
collaborations have reached is at M̃π & 250 GeV [69]. This restriction is due to the fact
that small masses need larger volumes (otherwise the light particles would extend beyond
the box’s boundaries − and one would not be able to tame the finite volume effects), and
larger volumes mean more costly simulations in terms of calculation time. The space-time
volumes used currently revolve around L3 × T = 323 × 64 (or 243 for a coarser lattice, see
for example [122]), with lattice spacing of the order a ∼ 0.1 fm.

We must stress that the whole lattice “procedure” brings up sources of uncertainties,
stemming from all the different steps performed:

• the first source of uncertainties comes from the numerical calculations themselves: the
sampling of gluonic configurations from the Monte-Carlo method leads to statistical
uncertainties.

• It is necessary to know the value of the lattice spacing a, which can not be determined
from lattice simulations themselves, but by comparing the value of an observable on the
lattice (in units of a) and in the physical world (in units of GeV). This determination
suffers from scale uncertainties, since there is an arbitrariness in the choice of this
observable − and also for the reason that the simulations are not performed for physical
quark masses.

• Finite-volume effects can be estimated by introducing terms describing the modification
of the propagation in a box with periodic boundary conditions (see sec. 6.2.2 for an
example).
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• Moreover, since Lattice QCD is a field theory, it can not escape the issue of renor-
malization: observables evaluated on the lattice also need renormalization. Those
observables Õ are dependent on the lattice spacing a as a UV cut-off. The main point
is to link Õ(a) to the quantity in the continuum O(µ2), evaluated using a continuum
renormalization scheme, such as MS (µ2 being the associated renormalization scale).
It is therefore necessary to build a “dictionary”, i.e. to define a renormalization factor
Z such as: Õ(a2)Z(µ2, a2) = OMS(µ2) + O(a2). The Z factor is itself evaluated from
the lattice generally using a non-perturbative scheme, usually the MOM scheme.

• Finally, since most lattice simulations are not able to reach the actual physical values
(for example the pion mass quoted above), one must therefore rely on extrapolations
to reach it. A last source of uncertainties stems from this extrapolation to the phys-
ical masses. For low energy observables like the pion and the kaon masses or their
decay constants, it is necessary to rely on Effective Field Theory to perform these
extrapolations.

2.3 Some generalities about Effective Field Theories

We have seen at the very end of the previous section that, in order to extract relevant
information from lattice data, it was necessary to perform extrapolations since most of
the simulations could not be performed at the actual physical values. We therefore rely on
Effective Field Theories (EFT) to perform them. The concept of EFT is very broad: Physics
by itself is a collection of effective theories, each valid in its particular scale domain. Particle
Physics does not escape this fact; on the contrary, it contains some quintessential examples
of what makes up an effective theory. To mention but only one, the Standard Model by
itself is an effective theory. If this very fundamental notion had to be summarized into one
short sentence, it would be stated as such: An effective theory is a theory representing the
low energy limit of an underlying theory said to be complete (valid at higher energies).

The phenomenological ideas at the root of the effective concept are fairly simple [13]:
specific physical phenomena arise only at a given range of energy (or length) scale E, and
should be represented in the theory by degrees of freedom adapted to that particular scale.
Those which are no more relevant at low energy are integrated out into the parameters of
the effective theory. This means that we do not have to bother anymore about the details
of the physics at higher energies: in some sense, what is left of their proper dynamics is an
overall averaging into single numbers, and the symmetries of the underlying theory which is
verified in the structure of the effective operators. We call the low-energy constants (LECs)
those numbers implicitly containing the physics of higher energy. They can be calculated
either by the means of the underlying theory (if possible) or evaluated from experimental
measurements and/or numerical simulations.

From the more specific point of view of Quantum Field Theory (QFT), given an energy
scale E with E << Λ, for Λ any energy sufficiently high, one will only see the propagation of
particles of mass m ∼ E. The heavier particles, those with masses M >> Λ, are integrated
out. Even if they still manifest themselves through the particular values of the low-energy
constants, they do not play anymore a role as degrees of freedom. An Effective Field Theory
possesses all the properties of a Quantum Field Theory [9], in particular, the resulting S-
matrix for all possible processes is then consistent with causality, analyticity, unitarity, cluster
decomposition, and must also satisfies all of the symmetry principles of the underlying theory.
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The endeavour of building an Effective Field Theory from those fundamental principles is in
fact simple, since a systematic recipe exists:

• State the energy scale E at which the physical phenomena you study occurs.

• Define a scale Λ > E which corresponds to the frontier of high energy.

• Give the particle content of your low energy effective theory.

• Build an effective lagrangian Leff by making an expansion in powers of E/Λ.
This lagrangian must satisfy all the symmetries of the underlying theory.

The lagrangian you choose to use should be the most general one, consistent with all the
symmetries of the underlying theory. Then, you shall end up with a collection of effective
operators describing the dynamics of low energy degrees of freedom:

Leff =
∑

i

Ci × Ôi (2.10)

where the Ôi are the operators and Ci the effective couplings (i.e. the low energy con-
stants). The sum is organized in growing powers of the dimension di of the operators Ôi.
We can distinguish between two types of EFT: decoupling, and non-decoupling. Their main
difference is about how the low energy degrees of freedom are related to the ones of the
underlying theory.

2.3.1 Decoupling EFT

A first case is the situation where the integration of the degree of freedom can be explicit: one
can identify the EFT’s degrees of freedom with the low-momentum modes of the fields of the
underlying theory. The Fermi theory of the weak interactions and the Standard Model are
good examples of such decoupling theories. In that case, it is possible to organize the EFT
in terms of the ultraviolet dimension (identical to the one used for the renormalization power
counting) of the operators. Thus the dimension for the couplings are of the form [Ci] = Λ4−di.
The differents operators are therefore classified according to their dimensionality:

• Relevant (di < 4)

• Marginal (di = 4)

• Irrelevant (di > 4)

This classification corresponds in fact to the behavior under E/Λ. The Ci of the relevant
operators scale as powers of (E/Λ)−1: they become important at low energy. Ci of marginal
operators scale as log(Λ); they influence both the infrared and ultraviolet behavior of the
theory (the Standard Model is an example of a theory built from marginal operators for the
interaction part of the lagrangian). Finally, the Ci of irrelevant operators scale as powers of
E/Λ. That is why they are supressed at low energy. The usual approach in Quantum Field
Theory consists in keeping only the relevant and marginal operators. It guarantees renor-
malizability at all orders of the theory, since the dimensionality of the lagrangian coupling
constants into which infinities are re-absorbed are at least zero. So, only a finite number
of counter-terms is needed to get finite predictions. The usual approach to consider only
renormalisable theories is supported by this view of EFT: irrelevant operators disappear at
low energy, so that only renormalizable terms remain whatever the underlying theory.
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Figure 2.3: The Fermi theory: droping from high to low energies.

One of the most basic examples of such effective decoupling theory is the Fermi Theory
of weak interactions, in which the W bosons are integrated out, letting quarks and leptons
to interact through effective vertices. It corresponds to the low-energy limit of the theory
of weak interactions, based on the V − A interaction, with the typical heavy scale of order
Λ = O(MW ). The effective coupling (i.e. the low energy constant) is the Fermi constant
GF , related to the parameters of the underlying theory by GF /

√
2 = g2/(8M2

W ).

The effective lagrangian reduces to a 4-fermions operator:

Leff =
GF
2
JµJ

µ† (2.11)

with the charged current:

Jµ =
∑

ij

ūiγ
µ(1− γ5)Vijdj +

∑

ν̄ℓγ
µ(1− γ5)ℓ (2.12)

Vij is an element of the CKM matrix and i, j are the family indices.

In the low energy regime E << MW , the W particle can not propagate over large
distances, so the associated field disappears in the effective theory and the information
about its interaction with the other fields (namely the weak coupling g and its mass MW ) is
then contained in GF (illustrated in figure 2.3).

2.3.2 Non-decoupling EFT

A non-decoupling EFT distinguishes from a decoupling one by the presence of a phase
transition, occuring via the spontaneous breakdown of one of the underlying symmetries.
This breakdown generates a set of Goldstone bosons which constitutes the effective theory’s
degrees of freedom. Because of their “Goldstone nature”, they are derivatively coupled
(see sec. 1.3.2) − furthermore, the symmetries connect processes with a different number of
Goldstone bosons. We thus organise the successive terms in the lagrangian by the number
of derivatives they contain, contrarily to the decoupling theories where this role was fulfilled
by dimensionality of the operators. In turn, the realization of the broken symmetry tightly
constrains the interactions between the effective degrees of freedom. Also, we must stress that
there is no guarantee of renormalizability to all orders, compared to the case of the decoupling
effective field theories. But, because of the constraint imposed by symmetry, we can achieve
a renormalization order-by-order: the loops at a given order in the derivative counting can
be renormalized by the low-energy constants of the theory at this particular order, which
therefore act as the counter-terms. An example of such theory is Chiral Perturbation Theory
(χPT), an effective theory of QCD at low energies E < 1 GeV. The following sections aim
to provide a detailed presentation of this theory.
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2.4 Chiral Perturbation Theory: foundations

2.4.1 Generating functional

Our program is thus to build an effective theory for QCD that incorporates chiral symmetry
and describes its spontaneous breaking, and to which it is possible to apply a perturbative
expansion. Since the effective theory is built upon the symmetries of the underlying one,
we must begin by the most fundamental object containing this piece of information: the
generating functional, which allows one to generate all the Ward identities among correlators
encoding all the symmetries of the theory. In QCD it is expressed by:

Z[vµ, aµ, s, p, θ] =

∫

DGDψ̄Dψ exp

[

i

∫

d4xLQCD[G,ψ, ψ̄, vµ, aµ, s, p, θ]

]

(2.13)

with the QCD lagrangian in the presence of the classical sources vµ, aµ, s, p and θ:

LQCD[G,ψ, ψ̄, vµ, aµ, s, p, θ] = LQCD[0] +
∑

f

ψ̄f [γµ(v
µ + γ5aµ) + s+ iγ5p]ψf (2.14)

− g2

32π2
θG̃µνa G

a
µν

where LQCD[0] is the source-free lagrangian eq. (1.1) in the chiral limit. We can use Z
to compute the Green functions of vector and axial currents, and scalar and pseudoscalar
densities, and take the LSZ reduction formula to extract the amplitudes related to incoming
and outgoing states of pseudoscalar mesons1. The Green functions are obtained by differen-
tiating Z with respect to the sources, and set vµ = aµ = p = 0 and s = M and θ = θ0 (for
an non-vanishing vacuum angle). Recall that M is the light quark mass matrix introduced
in sec. 1.2.3.

It is usual to combine the vector and axial-vector sources into right and left components:

rµ = vµ + aµ, lµ = vµ − aµ (2.15)

so rµ and lµ can be used to identify related QCD correlators involved in electroweak
processes, through the following relations:

rµ = eQAµ + ..., lµ = eQAµ +
e√

2 sin θW
(WµT+ + h.c.) + ... (2.16)

Q =
1

3
Diag(2,−1,−1), T+ =





0 Vud Vus
0 0 0
0 0 0



 (2.17)

2.4.2 Ward Identities

One wants to build a generating functional in terms of the low-energy degrees of freedom, and
respecting the same symmetries as the QCD generating functional. The effective generating
functional describing χPT is identified with that of QCD, up to a certain order in a low-
energy expansion to be defined in the later section 2.5:

1The same ideas can be applied to the interaction of Goldstone bosons with other fields (nucleons, heavy-
light mesons...)
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ZχPT [vµ, aµ, s, p, θ] =

∫

DU exp

[

i

∫

d4xLχPT [U, vµ, aµ, s, p, θ]

]

(2.18)

≡ ZQCD[aµ, vµ, s, p, θ] + ...

where U is a matrix gathering the effective degrees of freedom. The ellipsis ... keeps track
of the fact that the above equality (2.18) between QCD and the corresponding effective theory
holds up to a given order in the low energy expansion. Chiral symmetry will act on the Green
functions derived from ZχPT by constraining their structures through Ward identities. We
can write the generating functional as:

ZχPT [aµ, vµ, s, p, θ] = eiΓχPT [vµ,aµ,s,p,θ] (2.19)

making the effective action ΓχPT appear explicitly [6]. The set of all the Ward identities
can then be derived by requiring the effective action must be invariant under local chiral
transformations of the sources [6, 9] S = [vµ, aµ, s, p, θ]:

S
G local−→ S

′
, G = SU(3)R × SU(3)L (2.20)

Γ[S
′
] = Γ[S], S

′
= T (g(x))S, g(x) ∈ G (2.21)

T (g(x)) belonging to a representation of G for the sources. We have the following local
transformations of vµ, aµ, s and p:

s+ ip→ gL(s+ ip)g†R (2.22)

rµ → gRrµg
†
R + igR∂µ(g

†
R)

lµ → gLlµg
†
L + igL∂µ(g

†
L)

Furthermore, expanding gR(x) and gL(x) around the identity leads to:

gR(x) = 1 + iα(x) + iβ(x) +O(α2, β2, αβ) (2.23)

gL(x) = 1 + iα(x) − iβ(x) +O(α2, β2, αβ)

where α(x) and β(x) are two hermitean zero-trace matrices collecting the rotations of
the vector and axial parts of G respectively. The corresponding infinitesimal transformations
then read:

δvµ(x) = ∂µα(x) + i[α(x), vµ(x)] + i[β(x), aµ(x)] (2.24)

δaµ(x) = ∂µβ(x) + i[α(x), aµ(x)] + i[β(x), vµ(x)]

δs = i[α(x), s(x)] − {β(x), p(x)}
δp = i[α(x), p(x)] + {β(x), s(x)}

At that point, one would wish to include the Green functions for the singlet vector and
axial currents. The group G must therefore be extended to G = U(3)R × U(3)L (meaning
〈α〉 6= 0, 〈β〉 6= 0). This leads to the anomaly described in sec. 1.4.5 for UA(1), with 〈β〉 6= 0.
Fixing the corresponding ambiguities leads some Ward identities to become anomalous, and
some of the symmetry constraints must therefore be changed when going from the classical
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to the quantum level. We then expect the relation (2.21) to be modified. Γ[S] is therefore
written as the sum of two contributions:

Γ[S] = Γ0[S] + ΓWZW [S] (2.25)

with ΓWZW [S] gathering the terms that correspond to the anomalous Ward identities,
and Γ0 the general solution of the invariance equation (2.21):

Γ0[S
′
] = Γ0[S] (2.26)

In particular, the presence of those anomalous identities leads to the local transformation
law for the source θ(x) corresponding to the vacuum angle (see eq. (1.78)), that have to be
added to the list (2.24):

θ(x)→ θ(x)− 2〈β(x)〉 (2.27)

where 〈...〉 is the trace over flavour space. Any lagrangian that verifies the chiral Ward
identities will obey the splitting (2.25). A lagrangian, written in terms of the matrix U and
the sources vµ and aµ taking the chiral anomaly into account was built by Wess, Zumino [21],
and then Witten [22]. Now all that remains is to build explicitly the corresponding lagrangian
to the effective action Γ0[S].

2.4.3 Goldstone bosons

A systematic approach to describe the effective degrees of freedom and their dynamics in
the case of a SSB mechanism was invented by Callan, Coleman, Wess and Zumino [38] in
the late sixties. Recall from eq. 1.7 that quark fields transform linearly under G:

ψR,L
G−→ gR,LψR,L (2.28)

However, in the effective theory, G will act non-linearly on the Goldstone fields φa rep-
resenting the effective degrees of freedom:

φa
G−→ Θa(g, φ) (2.29)

where the non-linear representation Θ is constrained by the composition law [38]:

Θ(g1,Θ(g2, φ)) = Θ(g1g2, φ) (2.30)

We can check this statement the following way: We begin by considering the origin
Θ(g, 0). The set of elements that leave the origin invariant is a subgroupH of G. In particular
we have: Θ(gh, 0) = Θ(g, 0) for g ∈ G and h ∈ H. The function Θ(g, 0) then belongs to
the coset space G/H, obtained by identifying the elements g and g

′
which only differ by an

element h of H: g
′

= gh. Furthermore, this mapping is invertible: if Θ(g1, 0) = Θ(g2, 0),
then g1g

−1
2 ∈ H, so in the coset G/H we have g1 ≡ g2. Then, the Goldstone fields φa can

be viewed as the coordinates of the coset space G/H. Moreover, we choose a representative
element k of each of the equivalence classes {gh, h ∈ H}, so an element g of G can be uniquely
decomposed as g = kh. The composition law (2.30) shows that the image k

′
of k under a

transformation g ∈ G is obtained by decomposing the product gk into k
′
h: this corresponds

to the action of G on G/H. In the SU(3) case we have simply: G = SU(3)L ⊗ SU(3)R and
H = SU(3)V . G consists then in pairs g = (gR, gL), while H contains equal pairs gR = gL.

We can choose k = (U, 1) as a representative of the equivalence classes. The composition
law (2.30) is therefore:

gk = (gR, gL)(U, 1) = (gRU, gL) = (gRUg
†
L, 1)(gL, gL) = k

′
h (2.31)
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Then the Goldstone fields transform as:

U(x)→ gLU(x)g†R (2.32)

We finally define a parametrization for the unitary matrix U(x):

U(x) = e
i
√

2
F0
λaφ(x)a (2.33)

with φa the Goldstone fields, λa the eight broken generators of SU(3)A, and F0 a real
number that is identified with the pion decay constant in the Nf = 3 chiral limit. It is also
convenient to define a matrix Φ(x) = λaφ

a(x). In the case of isospin limit mu = md, the
matrix Φ(x) can then be explicitly written as:

λaφa(x) =









π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K0 − 2η√
6









(2.34)

We will see in the later section 2.5.2 that the different fields π, K and η can be identified to
the actual pseudo-scalar mesons of the same name. Notice at that point that the Goldstone
character of the mesons forbids them to get any mass from the spontaneous symmetry
breaking. The mass term should be treated as a perturbative explicit symmetry-breaking
term to the effective lagrangian of χPT.

2.5 Chiral Perturbation Theory for three flavours

2.5.1 Power counting

In principle, effective lagrangians contain an infinite number of terms: a priori, owing to
the symmetry principles, it is possible to build an infinite tower of invariants (see sec. 2.3).
But how shall they be organized ? For the lagrangian of Chiral Perturbation Theory, one
can propose a counting criterion, based on the fact that at zero momentum transfer and in
the chiral limit, hadronic interactions tend to zero: first, the pseudo-Goldstone character of
the light mesons tells us that because of derivative couplings, soft mesons have interactions
that vanish with their momentum. Secondly, light quark masses are considered sufficiently
small for the mass term to be treated as a perturbation. Thus, the χPT lagrangian Leff
corresponds to an expansion in powers of the momenta p and the quark masses mp:

Leff =
∑

n

L(2n), L(2n) ∼ qkml
p, n = (k + l)/2 (2.35)

This yields in fact a double expansion both in momenta and masses, but p, m are to be
compared according to a single index. Under the hypothesis of a large quark condensate,
we can make the approximation that M2

π has a linear dependence on the quark masses, so
mp must count as two powers of p: p2 ∼ mp. This is the counting rule of Standard Chiral
Perturbation Theory proposed by Gasser and Leutwyler [1, 2]:

U ∼ 1, s, p ∼ q2, vµ, aµ, Dµ ∼ q (2.36)

We mention that in the case of a small quark condensate, one can organize the expansion
around 〈q̄q〉 = 0, mq = 0. One counts differently the scalar/pseudoscalar sources: instead
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of two powers of p, one can set s, p ∼ p and 〈q̄q〉 ∼ p, as it corresponds to an expansion
around 〈q̄q〉 = 0. By performing this counting we obtain the Generalized Chiral Perturbation
Theory, as proposed by Fuchs, Knecht, Moussalam, Sazdjian and Stern in [4, 5]. Such an
expansion takes into account in a well-defined framework all the corrections counted as higher
orders in the Standard framework, but significant in the case of a small condensate. The
very general nature of this framework led to a restricted range of predictions compared to
Standard χPT. In the present thesis, triggered by the considerations from Chapter 1 we
investigate an intermediate case (see chapter 3), for which only the leading and next-to-
leading orders of the standard expansion compete. We will thus use the counting (2.36),
with some further assumptions discussed in the next chapter concerning the convergence the
chiral series.

2.5.2 Effective lagrangian at lowest order

In order to build our effective lagrangian, we have to look for the most general expression
Leff corresponding to the generating functional described in the previous sections 2.4.1
and 2.4.2, eqs. (2.18) and (2.19).

The effective action is again Γ = Γ0 + ΓWZW (eq. (2.25)), Γ being invariant under local
transformations of the sources vµ, aµ, s, p, θ according to the principles of sec. 2.4.2. Since
the anomalous part ΓWZW is known, what is left is to find the solution Γ0. The path-
integral measure DU being itself invariant under the local transformations, what remains is
simply to write down the most general effective lagrangian Leff function of U, vµ, aµ, s, p
and θ invariant under relations (2.22) and (2.27), consistent with Lorentz invariance, chiral
symmetry, and parity. According to the previous section, this lagrangian is organized in
growing powers of momentum (i.e derivatives):

Leff =
∑

n

L(2n)[U, vµ, aµ, s, p, θ] (2.37)

The vector and axial sources vµ and aµ enter the chiral lagrangian through covariant
derivatives:

DµU = ∂µU − iUrµ + ilµU, (DµU)† = (∂µU)† + iU †rµ − ilµU † (2.38)

With their local transformation law:

DµU → gRDµUg
†
L, (DµU)† → gL(DµU)†g†R (2.39)

We define furthermore the associated curvature tensors:

FR,Lµν = ∂µF
R,L
ν − ∂νFR,Lµ − i[FR,Lµ , FR,Lν ], FR,Lµ = rµ, lµ (2.40)

For θ the covariant derivative is:

Dµθ = ∂µθ + 2〈aµ〉 (2.41)

where 〈...〉 is again the trace operator over flavour space. We limit ourselves to a constant
θ for the remainder of this thesis.

The sources s, p and θ do not have independent transformation laws. Under a given
chiral transformation, we can have:

s+ ip = M → s =M, p = 0 (2.42)

θ = θ0 → θ = θ0 + arg(det[M ]) = θ̄
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M is the general quark mass matrix, andM is its diagonalized form with real and positive
eigenvalues mu,d,s. θ̄ is the chirally invariant vacuum angle θ̄ = θ+arg(det[s+ip]). Therefore,
the effective action depends only (apart from vector and axial sources) on the quark masses
and the invariant vacuum angle θ̄. Conversely it is possible to set θ = 0; in that case the
mass matrix is rotated into:

s+ ip =M → s+ ip =Meiθ0/Nf , (Nf = 3) (2.43)

θ = θ0 → θ = 0

We can thus build a lagrangian at θ = 0 with a generic mass term, and infer the cor-
responding lagrangian at θ = Cst by changing the mass term M with eiθ/3M. In the case
where θ is not constant, the construction of this lagrangian has been discussed in greater
details in the large Nc limit, where UA(1) stops being anomalous, and θ being promoted to
the dynamical η

′
field, the ninth Goldstone boson [114, 116].

Of course, if one wishes to study correlators not containing the winding number density
ω(x) (1.63) from the start, it is always possible to set θ = 0.

It is usual to group the scalar and pseudo-scalar sources s and ip into one single entity:

χ = 2B0(s+ ip) (2.44)

where the parameter B0 is a low energy constant that will be discussed later. Taking
into account the source θ corresponds to the change:

χ → eiθ/3χ (2.45)

We are now ready to write the most general expression for the (O(p2)) lagrangian at
lowest order:

L(2) =
F 2

0

4

[

〈DµU
†DµU〉+ 〈eiθ/3χU † + e−iθ/3χ†U〉

]

(2.46)

The factor F 2
0 /4 is a constant used to retrieve the proper normalization of the kinetic

term once U is expressed in terms of the fields φa (eq. (2.34)).

To express the lagrangian in terms of the meson fields, it is necessary to expand the
matrix U(x) in powers of Φ(x):

U = 1+ i

√
2

F0
Φ− 1

F 2
0

Φ2 − i
√

2

3F 3
0

Φ3 +
1

6F 2
0

Φ4 +O(Φ5) (2.47)

Thus, for L(2), taking χ = 2B0M and setting θ = 0:

L(2) =
1

2
〈∂µΦ∂µΦ〉+

1

12F 2
0

〈(Φ∂µΦ + (∂µΦ)Φ).(Φ∂µΦ + (∂µΦ)Φ)〉 (2.48)

+B0

(

− 〈MΦ2〉+ 1

6F 2
0

〈MΦ4〉
)

+O
(Φ6

F 4
0

)

We have a tower of interaction terms which at each order involve an increasing number
of fields. We can observe further that different processes with different numbers of meson
fields are described in the chiral limit by the single constant F0, a prominent feature of the
Goldstone bosons interactions.
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After taking the trace, isolating all the bilinear terms ∂µφa∂
µφb and φaφb leads to a

Klein-Gordon-type lagrangian for the kinematical part:

L(2)
eff,KG =

1

2
(∂π0)2 +

1

2
(∂η)2 + ∂µπ+∂µπ

− + ∂µK̄0∂µK
0 + ∂µK+∂µK

− (2.49)

−B0

(

(mu +md)−
4

3
(ms −m)

sin2 ǫ

cos 2ǫ

)

(π0)2

−B0

(

2

3
(m+ 2ms) +

4

3
(ms −m)

sin2 ǫ

cos 2ǫ

)

η2

−B0(mu +md)π
+π− −B0(mu +ms)K

+K− −B0(md +ms)K̄0K0

+O(φ4
a)

ǫ accounts for the mixing between the η and π0 fields at leading order:

tan 2ǫ =

√
3

2

md −mu

ms −m
, m =

mu +md

2
(2.50)

We have the masses at leading order:

◦
M

2

π0 = B0

(

(mu +md)−
4

3
(ms −m)

sin2 ǫ

cos 2ǫ

)

(2.51)

◦
M

2

η = B0

(

2

3
(m+ 2ms) +

4

3
(ms −m)

sin2 ǫ

cos 2ǫ

)

(2.52)

◦
M

2

π± = B0(mu +md) (2.53)

◦
M

2

K0 = B0(mu +ms) (2.54)

◦
M

2

K± = B0(md +ms) (2.55)

(For the remainder of the manuscript,
◦
M

2

P will denote the masses at leading order).
In the isospin limit mu = md, which we shall be dealing with in most of the thesis, the
expressions for the masses take a much reduced form:

◦
M2
π= 2B0m (2.56)
◦

M2
K= B0(m+ms) (2.57)

◦
M2
η= B0

2

3
(m+ 2ms) (2.58)

From the previous equations we can retrieve the famous Gell-Mann-Okubo formula,
which, at leading order, gives an exact relation between the three masses:

◦
M2
η=

4

3

◦
M2
K −

1

3

◦
M2
π (2.59)

Now we can evaluate in χPT at lowest order the coupling of the pion to the axial current
eq. (1.33) and the quark condensate 〈ūu〉 out of the chiral limit:
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〈Ω|d̄γµ(x)γ5u|π+(p)〉 = iF0pµe
ip.x +O(mq) (2.60)

〈ūu〉 = −F 2
0B0 +O(mq)

Higher orders will come from contributions proportional to the quark mass. Therefore
in the chiral limit, the relation of the two low energy constants F0 and B0 to the two main
order parameters of the SU(3) chiral spontaneous symmetry breaking follows easily (see
sec. 1.4.3):

F0 ≡ F (3), B0F
2
0 ≡ Σ(3) (2.61)

2.5.3 Higher Orders and Renormalization

At next-to-leading order (NLO), we expect the terms to be of order O(p4). Always following
the prescription dictated by symmetry principles, we need a lagrangian compatible with
Lorentz invariance and chiral symmetry: The most general lagrangian at O(p4) is a sum of
12 terms:

L(4)
eff =L1〈DµUD

µU †〉2 + L2〈DνUD
µU †〉〈DµUD

νU †〉 (2.62)

+ L3〈DµUD
µU †DνUD

νU †〉+ L4〈DµUD
µU †〉〈χ†U + U †χ〉

+ L5〈DµUD
µU †(χ†U + U †χ)〉+ L6〈U †χ+ χ†U〉2

+ L7〈U †χ− χ†U〉2 + L8〈U †χU †χ+ χ†Uχ†U〉
− iL9〈DµUDνU

†Fµνr + Fµνl DµUDνU
†〉+ L10〈UFµνl U †Fr,µν〉

+H1〈FrµνFµνr + FlµνF
µν
l 〉+H2〈χ†χ〉

for θ = 0. The Li are the ten next-to-leading order low energy constants, containing
information about short-distance dynamics (see sec. 2.3). Fµνr,l is the field strength of the
external sources, and the Hi are two high energy counter-terms not containing any dynamics
associated with the light mesons. At next-to-next-to-leading order (NNLO) for θ = 0,
the lagrangian L(6) contains ninety low energy constants (written Ci) and four high energy
counter-terms. Up to that point, χPT has been investigated up to NNLO [35]. We must stress
that it is not possible to evaluate the values of all the low-energy constants from experiment,
and one has to rely on analytic estimates like resonance saturation, or numerical estimates
from lattice simulations. We must add to this lagrangian another one, accounting for the
anomalous parts of the Ward identities [21, 22], involving only vector and axial sources.

Now, in order to get observables, one has to compute correlators, which, from the point
of view of Quantum Field Theory, can be done computing Feynman diagrams. In practice,
O(p2) calculations is a rather easy business, since it only involves tree-level graphs: once
we get the vertices, everything is (virtually) done. Pushing the calculation to O(p4) is more
tricky: because of the presence of loops, infinities emerge, and, unless we find a mean to
re-absorb them, the theory will have no meaning at all.

When calculating a process up to a given order O(p2n), where p is any relevant external

momentum, we need to truncate the chiral lagrangian at the desired power L(2n)
eff , and then

generate all the contributing diagrams. Except for the lowest order which is generally tree-
level, those diagrams contain loops. Their amplitudes are of the form:

∫

(d4k)NL
1

(k2)NI

∏

n

(kn)Nn (2.63)
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where NI is the number of internal lines, and k a momentum. A loop contributes with an
integration factor

∫

(d4k), an internal line with 1
k2 , and kn accounts for a vertex of dimension

n. The counting rules giving the total order of a diagram have been introduced by Weinberg
in [39]. The total order NT of the diagram reads:

NT = 2 + 2NL +
∑

n≥2

(n − 2)Nn (2.64)

where Nn is the number of vertices of order n, and NL the number of loops. The proof can
be found in [35]. Chiral symmetry puts a lower bound on NT , explaining why lagrangians
of order 2n start contributing only for computations performed at n− 1 loops or higher, as
shown in table 2.1. At order O(p2), χPT computations involve only tree diagrams from L(2),
at order O(p4), they involve 1-loop diagrams from L(2) and tree diagrams from L(4), and
so on: there is in fact a one-to-one correspondance between the order of a diagram and its
number of loops. This process is summarized in table 2.1 up to O(p6).

O(p2) O(p4) O(p6)

L(2)

L(4)
∅

L(6)
∅ ∅

Table 2.1: Counting rules for diagrams in χPT up to O(p6): example with some of the
graphs for ππ scattering. The black dots represent vertices from L(2), red squares vertices
from L(4), and the blue triangle a vertex from L(6).

In order to keep the symmetries explicit, we regularize the theory using dimensional
regularization, toghether with the minimal substraction scheme to re-absorb divergences.
Since chiral symmetry is preserved by such a choice, the counter-terms needed to renormalize
a computation at n− 1 loops will be of order O(p2n) as well as to observe the symmetries of
the lagrangian. By construction they are all already contained in L(2n), so the divergences
stemming from loops can be re-absorbed thanks to O(p2n) terms of the chiral lagrangian.
For example, a process to order O(p4) would involve a 1-loop graph with vertices from L(2),
and a tree-level graph with counter-terms from L(4) (see table 2.1 for example). The theory
is systematically renormalizable in the sense that for a given order in the chiral counting,
only a finite number of counter-terms are needed to re-absorb the divergences at this order
and are already present in the lagrangian of the theory. It is the symmetry structure of
χPT that strongly constrains (and allows) its renormalizabilty order-by-order. For a next-
to-leading order calculation, the low-energy constants Li play the role of renormalization
counter-terms, which must be redefined according to Ward identities [2] to properly cancel
the divergences (see Appendix D.1). The low-energy constants are then functions of the
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renormalization scale µ, for example Lri = Lri (µ). The scale µ can be interpreted as the
separation scale between the low-energy dynamics given by the effective operators and the
high energy dynamics summed up in the low-energy constants (see sec. 2.3). The generating
functional and all the derived correlators are µ-independent at the concerned order in the
chiral counting.

2.5.4 The generating functional at 1-loop

When evaluating an amplitude for a given process, it is possible to tackle the calculation
by two different ways: first, we can derive the Feynman rules for propagators and vertices
directly from the lagrangian, write out the corresponding diagrams, and apply the rules. This
corresponds to the straightforward “textbook” approach. On more general grounds, a second
strategy consists in the systematic analysis of the generating functional [1, 2]. It consists
in integrating the degrees of freedom of the path-integral Z to obtain a quantity containing
only propagators, loop integrals and sources. To retrieve the relevant terms corresponding
to a given correlator, one has then simply to differentiate Z with respect to the appropriate
sources. For Nf = 3 χPT the formula was derived at one loop in [2]:

Z = Zt + Zu + ZA + ... (2.65)

Zt is the generating functional for diagrams at tree-level (O(p2) and O(p4)) and tadpole
contributions, Zu gathers the 1-loop unitarity corrections for the graphs with two O(p2)
vertices and the non-analytic contributions (cuts) - and ZA is the Weiss-Zumino functional
collecting the anomalous terms. The ellipsis ... stands for the higher orders. The expressions
for Zt read:

Zt =
∑

P

∫

dx
F 2

0

6

(

1|(LO) −
3

16π2

◦
M

2

P

F 2
0

log

◦
M

2

P

µ2 |(NLO)

)

σ∆
PP (2.66)

+
∑

P

∫

dx
3F 2

0

6

(

1|(LO) −
3

6π2

◦
M

2

P

F 2
0

log

◦
M

2

P

µ2 |(NLO)

)

σχPP +

∫

dxL(4),r
|(NLO)

The quantities σ∆ and σχ gather the source terms respectively for vector/axial currents
and scalar/pseudoscalar densities. L(4),r is the O(p4) lagrangian with the renormalized con-

stants Lri andHr
i , and

◦
M

2

P are the pseudoscalar masses at O(p2). The subscripts LO (leading
order) and NLO (next-to-leading order) indicate to which order the terms belong.

The tadpole “bubble” ∆P (0), leading to the chiral logarithms
◦
M

2

P

16π2 log
◦
M

2

P

µ2 after renor-
malization, is regularized as follows:

∆P (0) =

◦
M

2

P

16π2

[

log

◦
M

2

P

µ2
− 2

ǫ
− ln 4π + γ − 1 + lnµ2 +O(ǫ)

]

, ǫ = 4− d (2.67)

where
◦
M

2

P is the leading-order mass of any meson P running in the loop, eqs. (2.56) and
γ is the Euler-Mascheroni constant [6, 8].

The ǫ divergence is re-absorbed by the counter-terms from the L(4) lagrangian, eq. (2.62),
under a suitable redefinition of the low-energy constants Li (see sec. 2.5.3) in the M̄S scheme:

Li = Lri + κΓi, κ =
µ−ǫ

16π2

[ 1

−ǫ −
1

2
(ln 4π − γ + 1)

]

(2.68)
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The coefficients Γi are fixed by the Ward identities [2] and given numerically by:

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0, Γ4 =

1

8
, Γ5 =

3

8
, (2.69)

Γ6 =
11

144
, Γ7 = 0, Γ8 =

5

48
, Γ9 =

1

4
, Γ10 = −1

4
.

Finally, we have for Zu:

Zu =
∑

P,Q

∫

dxdy
[(

(∂µν − gµν�)M r
PQ(x− y)− gµνLPQ(x− y)

)

Γ̂µPQ(x)Γ̂νQP (x) (2.70)

− ∂µKPQ(x− y)Γ̂PQ(x)µσ̄QP (y) +
1

4
Jr(x− y)σ̄PQ(x)σ̄QP (y)

]

where J , K, L, M are renormalized functions defined from the 1-loop scalar integral with
P and Q any mesons propagating in the loop. They encode the non-analytic structure of
the amplitudes. Γµ and σ̄ = σ∆ + σχ collect the source terms and involve the solution Ū of
the equation of motion [1] derived from the leading order χPT lagrangian in the presence of
sources (see Appendices A.1 and A.2). To get a specific correlator, one simply has to differ-
entiate the generating functional Z with respect to the different sources. The dependence
on the renomalization scale µ in the tadpole and unitarity terms cancels the dependence of
the O(p4) counter-terms of L(4),r.

2.6 Chiral Perturbation Theory for two flavours

All of the preceeding discussion for Nf = 3 Chiral Perturbation Theory is also valid for
two flavours Nf = 2. In this case, the theory accounts for very low energies at which only
pions are the relevant degrees of freedom [1]: mu,md ≪ ms, p2

π ≪ M2
K,η. Similarly to

SU(3)L ⊗ SU(3)R, the lagrangian at lowest order takes the form:

L(2)
Nf=2 =

F 2

2
〈DµU

TDµU + 2χTU〉 (2.71)

where T is the transpose. Here the object U gathering the meson fields can be chosen as a
real 4-component orthogonal vector U(x) = (U0(x), U i=1,2,3(x)), with U0 =

√

1−∑i (U
i)2.

It is possible to make this choice for U because one can identify SU(2)L×SU(2)R and O(4)
at the level of their Lie algebras. Its covariant derivatives are defined as:

DµU
0(x) = ∂U0(x) + aiµ(x)Ui(x) (2.72)

DµU
i(x) = ∂U i(x) + ǫijkvjµ(x)U

k − aiµ(x)U0(x)

where vµ and aµ are the usual vector and axial sources, and χ(x) = 2B(s0(x), pi(x)).
The scalar and pseudo-scalar sources s and p have been decomposed over the set of Pauli
matrices τ i plus the identity τ0:

s(x) = s0τ0 + si(x)τ i, p(x) = p0τ0 + pi(x)τ i (2.73)

The two low energy constants F and B play the same roles as in the Nf = 3 theory,
namely they correspond to the pion decay constant F (2) and the quark condensate Σ(2) in
the chiral limit (sec. 1.4.3) with two massless flavours:
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F 2 = lim
mu,d→0,

ms physical

F 2
π ≡ F (2)2 (2.74)

BF 2 = − lim
mu,d→0,

ms physical

〈0 |ūu| 0〉 ≡ Σ(2) (2.75)

At O(p4) the lagrangian is given by (for θ = 0):

L(4)
Nf=2 = l1〈DµUD

µUT 〉2 + l2〈DνUD
µUT 〉〈DµUD

νUT 〉 (2.76)

+ l3〈χTU〉2 + l4〈DµχTDµU〉
+ l5〈UTFµνFµνU〉+ l6〈DµU †FµνD

νU〉
+ l7〈χ̃TU〉2 + h1〈χTχ〉+ h2〈2FµνFµν〉+ h1〈χ̃T χ̃〉

with
∼
χ= 2B(p0, si). The tensor Fµν is defined by the relation:

[Dµ,Dν ]U = FµνU (2.77)

We have thus 7 low energy constants li and 3 high energy counter-terms hi. At next-

to-next-to leading order, the lagrangian L(6)
Nf=2 contains 54 low energy constants and 4 high

energy counter-terms. All of those LECs, defined in the chiral limit Nf = 2, are dependent
on the strange quark mass that has been kept at its physical value. We must stress that the
previous discussion of sec. 2.5 concerning the generating functional of the SU(3) theory also
applies in the SU(2), as well as the chiral counting of loops and the renormalization of the
low-energy constants.

The Nf = 2 and Nf = 3 chiral perturbation theories can be matched in the very low
energy domain of (very) soft pions where they both apply. In particular, at one loop, we
have for the two order parameters F (2) and Σ(2):

F (2)2 = F (3)2
(

1− msB0

16π2F (3)2
log

M̄2
K

µ2
− 16

msB0

F (3)2
Lr4(µ)

)

(2.78)

Σ(2) = Σ(3)
(

1 +
msB0

16π2F (3)2
log

M̄2
K

µ2
+

msB0

96π2F (3)2
log

M̄2
η

µ2
− 32

msB0

F (3)2
Lr6(µ)

)

(2.79)

M̄P being the leading-order mass in the limit mu = md = 0. These two expressions
correspond, in the language of Chiral Perturbation Theory, to the statement of sec. 1.4.3
that the order parameters for Nf = 2 are functions of the order parameters for Nf = 3 plus
a function of the strange quark mass: the NLO part of eq. (2.79), which contains L6, is to
be identified with the term corresponding to the induced condensate of eq. (1.46). The same
holds for L4 in the case of the decay constant, those two low-energy constants being related
to the correlators 〈(ūu)(s̄s)〉 and 〈(s̄s)(V V − AA)〉 respectively. They indicate the role of
s̄s sea-pairs in the chiral expansions. In the same manner, we give the expressions for the
next-to-leading order low energy constants lr3 and lr4:

lr3 = −8Lr4 − 4Lr5 + 16Lr6 + 8Lr8 −
1

576π2
(log

M̄2
η

µ2
+ 1) (2.80)

lr4 = 8Lr4 + 4Lr5 −
1

64π2
(log

M̄2
K

µ2
+ 1) (2.81)
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Those low energy constants encode the u and d quark mass dependence [1] of the decay
constant and the mass of the pion in the SU(2) theory:

Fπ = F (2)
(

1 +
2mB

F (2)2
lr4(µ)− 2mB

16π2F (2)2
log

2mB

µ2
+O(m4)

)

(2.82)

M2
π = 2mB

(

1 +
4mB

F (2)2
lr3(µ) +

2mB

32π2F (2)2
log

2mB

µ2
+O(m4)

)

, (2.83)

in the isospin limit mu = md.

2.7 Review of numerical results for χPT low energy constants

We are now in possession of a framework that takes into account all the symmetry consider-
ations, but that is unable to provide values for its parameters, i.e. the low energy constants
(sec. 2.3). Those need to be determined if the theory is to make any numerical predictions.

Therefore in this section, we aim to provide a short review of the numerical determination
of χPT’s low energy constants Lri and lri . Those constants are to be determined through
experimental measurement and lattice simulations. Each of the LECs is related to some
specific observables, hence their precise determination is strongly dependent on our ability
to gain information about those same observables, and to constrain the rate of convergence
of the chiral series.

2.7.1 Nf = 3

We state here the list of the different SU(3) low energy constants Lri along with their asso-
ciated observables that are simple to obtain from experiments and/or lattice calculations:

• L1, L2, L3 : Kℓ4 form factors

• L4, L5 : π and K decay constants

• L6, L8 : π and K masses

• L7 : η mass and decay constant

• L9 : Pion electromagnetic form factor

• L10 : π → eνγ form factor and τ spectral functions

We can distinguish between two groups of O(p4) LECs: the first one (L1, L2, L3, L9, L10)
involves operators containing only derivatives. The associated correlators are more accessible
experimentally through the energy-dependence of form factors and scattering amplitudes.
Conversely, it is more difficult to evaluate from experiment the LECs of the second group
(L4, L5, L6, L7, L8) since the operators in the lagrangian also involve quark masses (i.e.
scalar and pseudo-scalar densities). They can otherwise be accessed by lattice simulations,
which permits one to probe the quark mass dependence of the correlators. We will focus on
the latter in the following.

In [2], first estimates of the next-to-leading order low-energy constants were provided,
using the available information at that time. A summary is presented in table 2.2. The
work from [40] involves computations up to NNLO and a subsequent fit to experimental
results from masses, decay constants, Kℓ4, ππ and πK scattering observables lengths and
slopes and the slope of the pion scalar form factor. To fix the values of the NNLO low
energy constants Ci, they used models of resonance saturation in the vector and scalar
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channels. They also relaxed the constraint corresponding to fixing Lr4 and Lr6 to zero at a
particular scale. Finally, they probed the dependence of their results on the models they
used to evaluate the Ci counter-terms. They observed that the value they obtained of the
Lri depended on the assumptions made for the Ci, with fits being of the same (good) quality
(see table 2.2). No conclusion gave greater importance to a given model. We observe that
the resulting values for L4 and L6 are positive.

L4 and L6 account for the effect of s̄s sea pairs on the chiral structure of the QCD
vacuum, since they are tied to the Zweig rule because they correspond to products of traces

in the lagrangian L(4)
eff (2.62). This is reflected in expressions (2.78)-(2.79) where we can

observe that they are the low energy constants that indicate the ms-dependence of the low
energy observables in the chiral perturbation theory framework at one loop. It is thus more
difficult to determine them than to determine for instance L5 or L8, which impact differently
on observables related to π and K.

Following the Zweig rule, it is common to set L4 and L6 to zero (at a certain scale), thus
minimizing the impact of a dynamical strange quark on the pattern of chiral spontaneous
symmetry breaking. In ref. [2] it was chosen to set them to zero at the scale of the η mass:
Lr4,6(µ0 = Mη) = 0. But a different choice of µ0 would then modify the value of Lr4,6 at the
ρ mass:

µ0 = Mη → Lr4(Mρ) = −0.27× 10−3, Lr6(Mρ) = −0.17× 10−3 (2.84)

µ0 = Mρ → Lr4(Mρ) = 0, Lr6(Mρ) = 0 (2.85)

µ0 = 1 GeV→ Lr4(Mρ) = 0.21 × 10−3, Lr6(Mρ) = 0.13 × 10−3 (2.86)

In addition to this uncertainty on the scale where these low-energy constants vanish,
a violation of the Zweig rule in the scalar sector could make such estimates completely
inaccurate.

Li Source (in [2]) [2] [40] O(p4) [40] All O(p6)

L1 Kℓ4, D-wave ππ, Zweig rule 0.7 ± 0.3 1.12 0.88 ± 0.09
L2 Kℓ4, D-wave ππ, Zweig rule 1.3 ± 0.7 1.23 0.61 ± 0.20
L3 Kℓ4, D-wave ππ, Zweig rule −4.4± 2.5 -3.98 −3.04 ± 0.43
L4 Zweig rule −0.3± 0.5 1.50 0.75 ± 0.75
L5 FK/Fπ 1.4 ± 0.5 1.21 0.58 ± 0.13
L6 Zweig rule −0.2± 0.3 1.17 0.29 ± 0.85
L7 GMO, L5, L8 −0.4± 0.15 -0.36 −0.11 ± 0.15

L8 M2
K0 −M2

K+ , L5,
ms−m̂
md−mu

0.9 ± 0.3 0.62 0.18 ± 0.18

L9 〈r2〉Vπ 6.9 ± 0.7
L10 π → eνγ −5.5± 0.7

Table 2.2: Estimates of Nf = 3 low-energy constants Li.10
3 at Mρ. [2] is the initial NLO

estimate, while [40] are fits to NLO and NNLO expressions.

Furthermore, large values of L4 and/or L6 have been obtained in several earlier works:
dispersive analysis of scalar form factors [88, 89], dispersive treatment of Kπ scattering [90],
J/ψ decay into a vector meson and two pseudo-scalar [91] (with a value of L6 compatible
with zero), preliminary next-to-next-to-leading order Nf = 3 fits to pseudoscalar masses,
decay constants, Kℓ4 decay and πK scattering data [111].

The values of the Li can also be determined by lattice simulations with 2 + 1 dynamical
light quarks (see sec. 2.2), for observable like masses, decay constants, and Kℓ3 form factors
(see Chapter 4). Once these values are known, they can be re-inserted into the chiral series
to obtain the values of the observables at the physical point. This procedure is sensitive to
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Figure 2.4: Summary of lattice determinations for Lr4,5,6,8(Mρ) from [69].

the exact form of the chiral extrapolations used and the assumptions concerning the physical
point. A recent summary of the different determinations for the low-energy constants Lr4,5,6,8
can be found in [69], and the associated figures are recalled in table 2.4. We observe that
positive values are favoured for Lr4,6, as was the case for ref. [40] discussed above.

2.7.2 Nf = 2

The SU(2) next-to-leading order low-energy constants lri can be determined much the same
way as for the Lri . Again, we can separate them into two groups: the ones involving operators
containing derivatives only, (l1, l2, l5, l6), and the others involving operators with quark
masses (l3, l4, l7). Their values were obtained by combining estimates of SU(3) χPT with
information on pion observables, and by matching the Nf = 2 theory only using the outcome
of NNLO fits [40]. A summary is given in table 2.3.

It is also possible to get information from Lattice QCD, even if the simulated masses are
above the physical ones (see sec. 2.2). A summary for the different determinations of the
values of lr3,4 can be found in [69].

Also, recent results from NA48/2 [62] as well as lattice simulations have indicated that
ππ scattering confirmed the picture of a large two-flavour quark condensate, as summarized
in figure 2.6 the two ππ scattering lengths.
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li Source (in [1]) [1] [40] All

l1 D-wave ππ scattering lengths −2.3± 3.7 −1.9
l2 D-wave ππ scattering lengths 6.0± 1.3 5.3

l3 M2
K0 −M2

K+, 2ms−mu−md

md−mu
2.9± 2.4 4.2

l4 〈r2〉Sπ 4.6± 0.9 4.8
l5 Sum rule for vector and axial mesons 14 -
l6 〈r2〉Vπ 16.5 ± 1.1 -

Table 2.3: Table of Nf = 2 LECs li

Figure 2.5: Summary of lattice determinations for l̄3,4 from [69], where l̄i = 32π2(lri /γi) −
log(M2

π/µ
2), γ3,4 = −1/2, 2, see ref. [1].

Figure 2.6: Plot of the experimental and theoretical results for the S-wave ππ scattering
lengths, from [64].

2.7.3 Some issues concerning the SU(3) theory

Some lattice collaborations performing simulations with 2+1 dynamical quarks found diffi-
culties in fitting their data with some of Nf = 3 chiral expansions [96, 99, 100, 101, 102, 103]:
masses, decay constants and Kℓ3 form factors. Putting aside the different issues concerning
lattice systematics (see sec. 2.2), and assuming that the lattice data does not suffer intrinsic
problems, it may be a sign that the chiral series for Nf = 3 do not meet the expected con-
vergence behaviour. In fact, it happens that the SU(2) and SU(3) theories do not show the
same pattern of chiral symmetry breaking when compared to some specific lattice data: it
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has been observed that the two main order parameters, the quark condensate and the decay
constant, decreased significantly when one moved from the Nf = 2 to the Nf = 3 chiral
limit. We can quote the following results from PACS-CS [96] and MILC [102, 103]:

PACS-CS:
F

F0
= 1.089 ± 0.045,

Σ(2)

Σ(3)
= 1.245 ± 0.010 (2.87)

MILC:
F

F0
= 1.15 ± 0.05

(

+0.10
−0.03

)

,
Σ(2)

Σ(3)
= 1.52 ± 0.17

(

+0.38
−0.15

)

(2.88)

Moreover, the MILC collaboration [103] observed from fits with staggered chiral pertur-
bation theory that M2

π received NNLO corrections of the same size as next-to-leading order
contributions, canceling each other to a large extent, with small NNNLO corrections (the
latter being taken as analytic in quark masses and lattice spacings), whereas Fπ exhibited
no problems of convergence. On the other hand, the RBC/UKQCD collaboration [99] expe-
rienced difficulties in fitting Fπ both in Nf = 2 and Nf = 3 theories. They also noticed that
fits to M2

K and FK using the Nf = 3 chiral expansion led to very significant next-to-leading
order contributions (of order 50%) when data up to the kaon mass scale was included, and
they conclude that higher-order corrections could be very significant (up to 30%).

We also notice that a joint lattice study from the collaborations JLQCD and TWQCD
of the distribution of low-lying Dirac eigenvalues obtained [117]: Σ(2)/Σ(3) = 1.30 ± 0.54
(see sec. 1.4.4).

Furthermore, experimental results on ππ and πK scattering indicate a good convergence
for Nf = 2 chiral expansions for pion observables, but difficulties appear for Nf = 3, even
when next-to-next-to-leading order terms are taken into account [51, 52, 53, 54, 55, 56, 62, 63].
We can interpret these results by the fact that the SU(3) chiral series do not converge
quickly, in the sense that their leading order terms in the chiral counting are no longer
numerically dominant and compete with higher order ones, at least with the next-to-leading
order. Therefore, one ends up with a weak convergence situation where the leading and next-
to-leading order numerically compete, instead of the usually expected situation where the
leading order is dominant. All their observations are in favor of a significant paramagnetic
suppression when one moves from the Nf = 2 to the Nf = 3 chiral limit. A pessimistic
way of considering the problem would be to dismiss chiral perturbation theory when dealing
with issues of “bad” convergence. A less restrictive point of view, adopted in [79], has been
proposed to allow for a numerical competition between leading and next-to-leading order in
Nf = 3 chiral expansions. This will be the topic of the next chapter.

2.8 Summary

In this chapter, we first presented a general overview of Lattice QCD and Effective Field The-
ories, two alternative methods that can be used to probe QCD at low energies. Lattice QCD
consists in discretizing the 3 + 1-dimensional Minkowskian space-time into a 4-dimensional
pseudo-euclidean space and performing numerical computations of hadronic observables us-
ing Monte-Carlo techniques. This process allows in particular to study the dependence of
these various observables on the quark masses. The extraction of physical observables from
these simulations go through several steps (and in particular extrapolation) that are sources
of systematic uncertainties. On the other side, Effective Field Theories consist in analytical
methods where the degrees of freedom describing the physics at high energies are replaced by
effective degrees of freedom that are adapted to the low-energy scales under consideration.

For QCD at low energies, such an effective theory consists in “integrating” out the quarks
and gluons degrees of freedom to “replace” them by fields that are identified to the eight
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pseudo-scalar mesons of the QCD spectrum at low energy, below the scale of chiral symmetry
breaking. This is Chiral Perturbation Theory, which is build from the spontaneous breaking
of chiral symmetry, with degrees of freedom corresponding to the pions, kaons and η. As an
Effective Field Theory, χPT contains a certain number of unknown parameters, that must
be evaluated using data from experiment or lattice simulations. A small review of those
evaluations was made in the last section of the chapter, indicating that the saturation is
settled for Nf = 2 chiral symmetry breaking, but remains unclear for Nf = 3.

In particular, we have mentioned that some lattice collaborations [96, 99, 100, 101, 102,
103] performing simulations with 2+1 dynamical quarks found difficulties in fitting their data
with some of chiral expansions calculated in three-flavours χPT. This could be a hint that
for three flavours, chiral series in fact suffer some problems of convergence, since the leading
order would be numerically competing with the next-to-leading order − this prompted the
creation of a new framework, called Resummed χPT, in order to deal with such a numerical
competition. The next chapter is devoted to introduce ReχPT in details.
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Chapter 3

Resummed Chiral Perturbation
Theory

3.1 Introduction

As we presented in sec. 1.4.4 and sec. 2.7.1, there might be some significant differences
between the patterns of Nf = 3 and Nf = 2 chiral symmetry breaking - in particular, one
would witness the suppression of the LO order parameters Σ(3) and F (3), along with large
values of the low-energy constants L4 and L6. In sec. 2.7.3, we also mentioned that some
Nf = 3 chiral expansions could then be subjected to numerical instabilities: their leading
order in the chiral counting may not be numerically dominant, and may compete (at least)
with the next-to-leading order. The usual assumption that the leading order is substantially
larger than next-to-leading order should then be dropped, and it is the sum LO+NLO that
is to be compared to the higher orders (HO). It would then be important to take into account
the possibility of this numerical competition in the analysis of experiment and lattice data,
before abandoning the idea of building an effective theory around the three-flavour chiral
limit. To cope with this issue, a framework called Resummed Chiral Perturbation Theory
was proposed in [79]. It corresponds to a re-shuffling of the chiral series that starts from
specific assumptions concerning the convergence.

In section 3.2 we will discuss in detail the problem of numerical competition between
leading and next-to-leading order in the chiral series. In section 3.3, we will make an overall
presentation of Resummed Chiral Perturbation Theory. Finally, we shall apply this frame-
work to several low-energy observables: pseudo-scalar meson decay constants and masses
(section 3.4), pion and kaon electromagnetic form factors (section 3.5), and Kℓ3 form factors
(section 3.6). The very last section consists in a discussion of the different treatment that
can be applied to unitarity contributions in this framework.

3.2 The problem of weak convergence

When we drop the usual hypothesis stating that leading order saturates the series, we have to
be very careful on how to handle its expansion. Let us consider any observable A computable
in χPT. It has the most general expression:

A = ALO +ANLO +AδA (3.1)

ALO corresponds to the leading order of the correlator’s expansion, ANLO gathers all
the next-to-leading order terms, and AδA collects all the higher orders starting from next-
to-next-to-leading order. δA is a notation for the relative remainder of the series, expected
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to be small for the chiral series to make sense. We define good global convergence as the
condition that δA is much smaller than one. But this condition does not tell anything about
the relative size of ALO compared to the rest of the series. Without further information, we
consider an unspecific situation for which only higher orders are small, i.e. ALO + ANLO
being much larger than AδA, then we ask the question: what is the convergence for another
observable F = f(A) ?

We can always write the formal expansion:

F = FLO + FNLO + FδF (3.2)

By expanding F (A) with respect to the expansion of A, we get :

FLO = f(ALO), FNLO = ANLOf
′(ALO) (3.3)

δF = 1− f(ALO)

f(A)
− f ′(ALO)

f(A)
[A−ALO −AδA] (3.4)

We define XA = ALO/A, the saturation of the chiral expansion of A by its leading order.
The two limits XA → 0 and XA → 1 are of particular importance, since we expect δF to
behave differentely with respect to those limits:

XA =
ALO
A
→ 1, δF → −f

′(A)

f(A)
AδA (3.5)

XA =
ALO
A
→ 0, δF → 1− f(0)

f(A)
− f ′(0)
f(A)

A+
f ′(0)
f(A)

AδA (3.6)

So we see that according to whether the leading order does saturate or not the expansion,
δF is not necessarily small. In the case of saturation (3.5), the size of δA controls that of
δF . But, if there is no saturation (eq. (3.6)) then its numerical behavior is no more driven
by the behavior of δA, therefore there can be no guarantee that F (A) is converging well. As
practical examples, we take F (A) = 1/A and G(A) =

√
A:

FLO = 1/ALO, FNLO = −ANLO/A2
LO (3.7)

δF =
(1−ALO/A)2

(ALO/A)2
− δA

(ALO/A)2
(3.8)

GLO =
√

ALO, GNLO = ANLO
1

2
√
ALO

(3.9)

δG = 1− 1

2

√

A/ALO −
1

2

√

ALO/A+
1

2

√

A ALOδA (3.10)

We take as a numerical criterion for a good global convergence that the higher orders
are to be at most of order 10%, so even in the case where δA would be 0, ALO/A should be
above 76% for |δF | ≤ 10%, and 41% for |δG| ≤ 10%. Thus, if the chiral expansion of some
correlators is not saturated by its leading order term, we can not assume that any arbitrary
function of these correlators will converge. The right set of observables having a convergent
expansion must therefore be chosen carefully.
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3.3 Resumming chiral series

3.3.1 Procedure

First, we recall how the chiral series are treated in the standard framework of χPT:

• We first compute the bare expansion of the correlators, in powers of momenta and
quark masses. “Bare expansion” means that the series is expressed in terms of the
parameters of the chiral lagrangian, i.e. F0, B0, Li, mu,d,s... No supposition is made
at that point about the convergence properties of the expansion.

• The “bare” leading order parameters F0, B0 and the quark masses are eliminated order
by order in favour of the physical pseudo-Goldstone observables like Mπ,K,η and Fπ,K,η.
This means that their chiral expansions [2] are inverted to re-express F0, B0... in terms
of physical quantities:

2mB0 = M2
π

[

1 +
1

32π2F 2
0

(

−M2
π log

M2
π

µ2
+

1

3
M2
η log

M2
η

µ2

)

(3.11)

− B0

F 2
0

(

16m(2L8 − L5) + 16(2m +ms)(2L6 − L4)
)

+ ...
]

F 2
0 = F 2

π

[

1 +
1

32π2F 2
0

(

2M2
π log

M2
π

µ2
+M2

K log
M2
K

µ2

)

(3.12)

− B0

F 2
0

(

8mL5 + 8(2m+ms)L4

)

+ ...
]

• No remainders are taken into account: at a given order, we assume that the observables
are fully described by their chiral expansions neglecting the contributions from higher
orders. At the end of the computation, an additional uncertainty can be added to
results to take into account these HO remainders.

All of the observables different from masses and decay constants are re-expressed as
expansions in powers of M2

P and log (M2
P ). It is at the level of the second step that large

vacuum fluctuations of s̄s pairs, i.e. large values of L4 and L6, would hinder the perturbative
re-expression of leading order quantities like the above examples, 2mB0 and F 2

0 . The Re-
summed framework, devised to circumvent this obstacle, consists of the following alternative
steps in the treatment of chiral expansions:

• Assume a subset of observables, whose correlators possess “good” global convergence,
i.e. the sum LO +NLO numerically dominates the higher orders. We take the QCD
correlators built from scalar/pseudoscalar densities and vector/axial currents which
generate the standard low-energy observables like decay constants, pseudo-Goldstone
boson masses and form factors, as they form a linear space.

• Exactly as in standard χPT, take their chiral expansion in terms of the parameters of
the effective lagrangian.

• Express chiral order parameters in terms of physical masses only to restore the non-
analytical structures of the correlators: poles at the physical masses M2

P , cuts at the
thresholds of channel openings... This is necessary to ensure that unitarity is fully
satisfied and that higher-order contributions are small.



64 Resummed Chiral Perturbation Theory

• Keep track of the higher orders contributions by defining them as the remainders of
the expansion. They are assumed to be small for the global convergence hypothesis
(first step) to hold.

• The resulting expressions are exploited algebraically, without further expansions (in
order to avoid the pitfall explained in section 3.2)

During this procedure the leading-order chiral order parameters F0 and Σ(3) are ex-
pressed in terms of the following parameters:

X(3) =
2mΣ(3)

F 2
πM

2
π

, Z(3) =
F 2

0

F 2
π

(3.13)

X(3) and Z(3) are of particular interest since they assess the saturation of the chiral
series of F 2

πM
2
π and F 2

π , two basic low-energy quantities that are expected to converge well.
We will also use r, the quark mass ratio, which measures the relative size of the quark masses,
and also use the following quantity Y (3):

r =
ms

m
, Y (3) =

X(3)

Z(3)
=

2mB0

M2
π

(3.14)

which assesses the saturation of the chiral expansion of the pion mass by its leading order,

eq. (2.51). For instance, the leading order masses
◦
M2
P in the isospin limit (2.56) are written

in the Resummed framework, in terms of Y (3) and r:

◦
M2
π= M2

πY (3),
◦

M2
K= M2

π

r + 1

2
Y (3),

◦
M2
η= M2

π

1

3
(2r + 1)Y (3) (3.15)

The important point of the Resummed χPT is not to trade leading-order terms for
physical ones (for example 2mB0 is not traded for M2

π), as is usually done in the standard
expansions. We point out that this framework is compatible with the usual treatment of
chiral series in the limit where they are satured by their leading order term, but it allows for
a consistent treatment of the series even if there is a significant competition of leading and
next-to-leading orders contributions for some of the observables.

Under the hypothesis that some quantities describing the dynamics of pseudoscalar
mesons are well measured, and possess good convergence properties, we can invert the re-
lationships between these observables and the O(p4) LEC’s to express the latter in terms
of:

• physical observables like masses, decay constants, form factors...

• the leading order parameters X(3) and Z(3), and the quark mass ratio r, defined in
eq. (3.14).

• the higher-order remainders associated to each observable, assumed to be small (for
global convergence)

The resulting expressions can then be exploited in the chiral expansions of other (good)
observables, in order to express them in terms of the leading order parameters, r, and
remainders. This will be illustrated in the following sections with the examples of decay
constants, masses and form factors. A particular attention will be drawn upon the O(p4)
LEC’s L4 and L6, since they account for the effect of s̄s sea pairs on the chiral structure of
the QCD vacuum, as mentioned in sec. 2.7.3.
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3.3.2 Issue of unitarity

In the set of observables that we will investigate, some, like form factors, display a dependence
on variables involving external momenta. As introduced in sec. 2.5.4, at next-to-leading
order in the chiral expansion the non-analytic dependence on quark masses and momenta
arises through the unitary function J̄PQ, i.e. one-loop scalar bubble with a cut. Following

our prescription of sec. 3.3, we compute the functions J̄ and ¯̄J (see Appendix A.1) with

the physical values of the masses M2
π,K,η rather than their leading-order expansion

◦
M

2

π,K,η

(eq. (2.51)), i.e. in the Resummed framework they appear in the chiral expansion as (for
reasons of clarity we show here the simplified case P = Q):

J̄PP (s) =
s

16π2

∫ ∞

4M2
P

dx
1

x(x− s)

√

1− 4M2
P

x
=

1

16π2

(

σ log
σ − 1

σ + 1
+ 2
)

(3.16)

σ =

√

1− 4M2
P

s
, (s is any Mandelstam variable.)

where the notations make clear that the masses M2
P are taken at their physical values.

Chiral series involving the J̄ functions therefore feature a unitarity cut from the two-particle
channel, starting at t = (MP + MQ)2. The position of the cut at leading order is given

by (
◦
MP +

◦
MQ)2. From general arguments of unitarity, we know that the higher-order

corrections will shift the start of the right-hand cut from (
◦
MP +

◦
MQ)2 to (MP + MQ)2.

However, unitarity does not provide us more information on the structure of the cut (in
particular the coefficients multipliying the J̄) due to the perturbative nature of the chiral
expansion. Naturally, the same replacement is made when the J̄PQ and ¯̄JPQ occur through
the one-loop integrals KPQ, LPQ and M r

PQ introduced in sec. 2.5.4. However, we will not
perform any further replacement neither in the unitary functions nor in the rest of the chiral
expansions: for instance, the coefficients multiplying the J̄ and the chiral logarithms are not

modified, since we have no way of determining if the modification
◦
M2
P→M2

P would improve,
or spoil, the convergence of the series.

This is a slightly different procedure than the previous approach taken in [83], where the
modification was performed everywhere in the J , K, L and M functions and in the chiral
logarithms. It turns out that the difference is usually very small: the unitarity functions
yield only a small contribution below the first threshhold, and there is only a logarithmic
difference of higher order in the case of the chiral logarithm. We will come back to this
discussion at the end of the chapter in sec. 3.7.

3.4 Masses and decay constants

The first observables we investigate in the case of Resummed χPT are the pseudoscalar decay
constants and masses. Pions and Kaons will be used to introduce in details the resummed
procedure outlined in the previous section 3.3. The case of the η, involving the GMO relation
and the specific low energy constant L7, will be discussed in a separate section 3.4.4.

3.4.1 Pions and Kaons

Masses and decay constants for pions and kaons are experimentally well-known quantities.
The masses are experimentally very well measured, and their decay constants Fπ and FK
are accessible at high precision through leptonic decays (respectively πl2 and Kl2 [68]). In
the framework of the Standard Model, it provides [66, 67]:
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|Vus
Vud
| × FK

Fπ
= 0.2758 ± 0.0005 (3.17)

The very accurate determination of Vud from super-allowed 0+ → 0+ nuclear beta decays:

|Vud| = 0.97425 ± 0.0002 (3.18)

can be used to extract value for Fπ (see for example [65]):

Fπ|SM = 92.2 ± 0.3 MeV (3.19)

From the unitarity of the CKM matrix and the smallness of |Vub| so that Vus ≃
√

1− |Vud|2,
we get the following numerical estimate for the ratio FK/Fπ:

FK/Fπ|SM = 1.192 ± 0.006 (3.20)

We derive the expressions for decay constants F 2
P and masses F 2

PM
2
P from the axial/axial

correlators 〈AµAν〉 and the derivative 〈∂µAµ∂νAν〉 up to next-to-leading order. We begin
with the two-point axial correlator, expecting to have the necessary good convergence prop-
erties:

Πab
AA,µν(p

2) = i

∫

d4xeipx〈Ω|T{Aaµ(x)Abν(0)}|Ω〉 (3.21)

= δab

[

pµpνF 2
P

M2
P − p2

+ gµνF
2
P + (pµpν − gµν)ΠT

AA(p2) + pµpνΠL
AA(p2)

]

where a, b are flavour indices corresponding to any meson P and ΠT
AA(p2) and ΠL

AA(p2)
are the transverse and longitudinal parts respectively. The observables corresponding to
decay constants and masses can be obtained from Πab

AA,µν(p
2):

F 2
P δ

ab =
1

4
Πab
AA,µµ(0) (3.22)

F 2
PM

2
P δ

ab = lim
p2→M2

P

(M2
P − p2)Πab

AA,µµ(p
2) (3.23)

Computing the correlator in χPT, and expressing them in terms of X(3), Z(3), r, the
next-to-leading order low-energy constants Lr4,5,6,8 and remainders, we get for the pion and
the kaon:
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F 2
π = F 2

πZ(3) +M2
πY (3)[8(r + 2)Lr4 + 8Lr5] (3.24)

− 1

32π2
M2
πY (3)

[

4 log

◦
M2
π

µ2
+ (r + 1) log

◦
M2
K

µ2

]

+ F 2
πeπ

F 2
K = F 2

πZ(3) +M2
πY (3)[8(r + 2)Lr4 + 4(r + 1)Lr5] (3.25)

− 1

32π2
M2
πY (3)

[3

2
log

◦
M2
π

µ2
+

3

2
(r + 1) log

◦
M2
K

µ2
+

1

2
(2r + 1) log

◦
M2
η

µ2

]

+ F 2
KeK

F 2
πM

2
π = F 2

πM
2
πX(3) +M4

πY (3)2[16(r + 2)Lr6 + 16Lr8] (3.26)

− 1

32π2
M4
πY (3)2

[

3 log

◦
M2
π

µ2
+ (r + 1) log

◦
M2
K

µ2
+

1

9
(2r + 1) log

◦
M2
η

µ2

]

+ F 2
πM

2
πdπ

F 2
KM

2
K =

1

2
(r + 1)

[

F 2
πM

2
πX(3) +M4

πY (3)2[16(r + 2)Lr6 + 8(r + 1)Lr8] (3.27)

− 1

32π2
M4
πY (3)2

(3

2
log

◦
M2
π

µ2
+

3

2
(r + 1) log

◦
M2
K

µ2

5

18
(2r + 1) log

◦
M2
η

µ2

)]

+ F 2
KM

2
KdK

eπ, eK , dπ, dK are the relative highers order remainders. The leading order masses
◦
M

2

P

are given by eq. (3.15).
One can express eqs. (3.24)-(3.27) in terms of scale-independent combinations of next-

to-leading order low-energy constants and chiral logarithms ∆Li = Lri (µ)− L̂i(µ):

F 2
π = F 2

πZ(3) + 8M2
πY (3)[(r + 2)∆L4 + ∆L5] + F 2

πeπ (3.28)

F 2
K = F 2

πZ(3) + 8M2
πY (3)[(r + 2)∆L4 +

1

2
(r + 1)∆L5] + F 2

KeK (3.29)

F 2
πM

2
π = F 2

πM
2
πX(3) + 16M4

πY (3)2[(r + 2)∆L6 + ∆L8] + F 2
πM

2
πdπ (3.30)

F 2
KM

2
K =

1

2
(r + 1)

[

F 2
πM

2
πX(3) + 16M4

πY (3)2
(

(r + 2)∆L6 +
1

2
(r + 1)∆L8

)

]

+ F 2
KM

2
KdK

(3.31)

By inverting the system of equations (3.28)-(3.31), we can re-express the ∆Li in terms
of X(3), Z(3), r, pion and kaon masses, decay constants and remainders:

∆L4 =
1

8Y (3)(r + 2)

F 2
π

M2
π

[1− η(r)− Z(3)− e] (3.32)

∆L5 =
1

8Y (3)

F 2
π

M2
π

[η(r) + e′] (3.33)

∆L6 =
1

16Y (3)2(r + 2)

F 2
π

M2
π

[1− ǫ(r)−X(3) − d] (3.34)

∆L8 =
1

16Y (3)2
F 2
π

M2
π

[ǫ(r) + d′] (3.35)
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with the terms L̂i gathering the chiral logarithms:

32π2L̂4 =
1

8

[

log

◦
M2
K

µ2
− 1

(r − 1)(r + 2)

(

(4r + 1) log

◦
M2
K
◦
M2
π

+ (2r + 1) log

◦
M2
η

◦
M2
K

)]

(3.36)

32π2L̂5 =
1

8

[

log

◦
M2
K

µ2
+ 2 log

◦
M2
η

µ2
− 1

(r − 1)

(

5 log

◦
M2
K
◦
M2
π

+ 3 log

◦
M2
η

◦
M2
K

)]

(3.37)

32π2L̂6 =
1

16

[

log

◦
M2
K

µ2
+

2

9
log

◦
M2
η

µ2
− r

(r − 1)(r + 2)

(

3 log

◦
M2
K
◦
M2
π

+ log

◦
M2
η

◦
M2
K

)]

(3.38)

32π2L̂8 =
1

16

[

log

◦
M2
K

µ2
+

2

3
log

◦
M2
η

µ2
+

1

r − 1

(

3 log

◦
M2
K
◦
M2
π

+ log

◦
M2
η

◦
M2
K

)]

(3.39)

where we have defined the following quantities:

ǫ(r) = 2
r2 − r
r2 − 1

, η(r) =
2

r − 1
(
F 2
K

F 2
π

− 1), r2 = 2
F 2
KM

2
K

F 2
πM

2
π

− 1 ∼ 36 (3.40)

The definition of the various ∆Li combines the renormalized and quark mass-independent

constants L4,5,6,8 and the chiral logarithms 1
32π2 log

◦
M2

P

µ2 , so as to display explicitly the

independence of the renormalization scale µ of (3.24)-(3.27). We stress that the equali-
ties (3.28) to (3.31) are exact: they are simply a re-expression of the bare chiral series of
F 2
π , F

2
K , F

2
πM

2
π , F

2
KM

2
K . The quantities e, e

′
, d, d

′
appearing in (3.32)-(3.35) are linear

combinations of the higher-order remainders eP and dP :

d =
r + 1

r − 1
dπ −

(

ǫ(r) +
2

r − 1

)

dK , d
′
= d− dπ (3.41)

e =
r + 1

r − 1
eπ −

(

η(r) +
2

r − 1

)

eK , e
′
= e− eπ (3.42)

3.4.2 Handling Higher-Order remainders

In the generic chiral expansion of an observable A = ALO + ANLO + AδA, AδA stands
for all the higher order contributions starting with next-to-next-to-leading order (NNLO).
Nonetheless, we can try to make some reasonable assumptions on the size of the higher order
remainders using simple models.

We begin by re-stating that the higher order remainders are expected to be sufficiently
small (δA much smaller than one) to ensure that the series are well-converging for the number
of observables considered. In the most general manner, we suppose that δA is of order O(m2

q)
(q either u/d or s), with the rule that, in principle, next-to-next-to-leading order corrections
dominate the higher orders. As order of magnitude for the different quark masses, we take
O(mu,d) ∼ 10% and O(ms) ∼ 30%. This stems respectively from the overall size of violation
for SU(2) and SU(3) breaking effects. In Nf = 3 χPT, we consider that the dominant
contribution is given by the strange quark mass, so δA is either O(m2

s) or O(msm). Thus,
the size of the higher order remainders should not exceed (30%)2 ≃ 10% for O(m2

s), while
for O(msm) it would not be above 30%× 10% ≃ 3%.



Masses and decay constants 69

Another way of adressing this issue is to use resonance saturation [41], involving an
hadronic scale ΛH only mildly affected by the actual value of the quark masses (mass of the
ρ, K∗...). In order to keep track of the scaling of the remainders containing quark masses,
we use next-to-next-to-leading order estimate which involve the hadronic scale ΛH at fourth
power. It suggests that each order in the chiral series should be suppressed by M2

P /Λ
2
H ,

where P is any light meson, and ΛH is taken as the mass of the lighest resonance state (for
instance, it would correspond to the ρ mass).

The identities 3.41 concerning remainders are algebraically exact, but meaningful as long
as the higher-order remainders defined above are small. We can apply the criterion given in
sec. 3.4.2 to get an estimate:

d, e = O(m2
s) ∼ 10%, d

′
, e

′
= O(mms) ∼ 3% (3.43)

Following the dimensional arguments stemming from resonance saturation as discussed
in sec. 3.4.2, we take the following estimates (eVπ is to be defined in eq. 3.71):

d, e, dK , eK , d+ = O

(

M4
K

Λ4
H

)

, e+ = O

(

F 2
πM

2
K

Λ4
H

)

, eVπ = O

(

6

〈r2〉πV
M2
K

Λ4
H

)

(3.44)

d′, e′, d− = O

(

2M2
πM

2
K

Λ4
H

)

, e− = O

(

2F 2
πM

2
π

Λ4
H

)

(3.45)

whereM2
π and M2

K follow the known dependence of the remainders on m and ms, whereas
F 2
π is inserted when a dimensionful constant with no dependence on mq is required.

Therefore, they are constrained in the following range:

Remainder size

d, e, d+ 0.148
d′, e′, d− 0.024
e+ 0.005
e− 0.001
eVπ 0.318

Table 3.1: Allowed size of the higher-orders remainders, based on a dimensional estimate.
The remainder eVπ stands for the remainder the pion electromagnetic square radius introduced
in sec. 3.5.2.

3.4.3 Resumming vacuum fluctuations

We combine equations (3.32) and (3.34) in order to obtain two relations between the leading
order quantities X(3), Z(3) and Y (3):

X(3) = 1− ǫ(r)− Y (3)2
ρ

4
− d (3.46)

Z(3) = 1− η(r)− Y (3)
λ

4
− e

where we have introduced the two parameters ρ and λ containing the dependence on L4

and L6:



70 Resummed Chiral Perturbation Theory

ρ = 64
M2
π

F 2
π

(r + 2)∆L6, λ = 32
M2
π

F 2
π

(r + 2)∆L4 (3.47)

We proceed in a similar way for the quantities ǫ(r) and η(r), defined in (3.40):

ǫ(r) = 16
M2
π

F 2
π

Y (3)2∆L8 − d
′

(3.48)

η(r) = 8
M2
π

F 2
π

Y (3)∆L5 − e
′

We can now use the relations (3.46) and (3.48) to illustrate how the instabilities manifest
themselves in the perturbative development of X and Z in powers of the meson masses
M2
P , eqs. (3.11) and (3.12). Using the usual “standard” treatment of chiral series, we set

Y (3) = 1 + O(M2
P ) and neglect all the higher orders, so Y (3) can be replaced by 1 in

expressions (3.46) and (3.48). From the previous relations (3.48) we express the ratios
F 2
K/F

2
π and r = ms/m in terms of ∆L5 and ∆L8, always neglecting the higher orders.

Then inverting eqs. (3.40) we obtain the next-to-leading order expressions:

F 2
K

F 2
π

= 1 + 8
M2
K −M2

π

F 2
π

∆L5 + ... (3.49)

r + 1 = 2
M2
K

M2
π

(

1 + 8
M2
K −M2

π

F 2
π

(∆L5 − 2∆L8) + ...
)

We observe that expressions (3.49) do not contain any direct dependence on L4 and L6

that keep track of the Zweig rule violation (sec. 2.7.1) by the vacuum fluctuations of the
s̄s sea quark pairs. However, they do appear in the series for X(3) and Z(3). Inserting r
from (3.49) in eqs. (3.46) we get:

X(3) = 1− 16
M2
π

F 2
π

∆L8 − 16
2M2

K +M2
π

F 2
π

∆L6 + ... (3.50)

Z(3) = 1− 8
M2
π

F 2
π

∆L5 −
2M2

K +M2
π

F 2
π

∆L4 + ...

The perturbative re-expression of 1/(F 2
πM

2
π) and 1/F 2

π in the definition of X(3) and Z(3)
leads therefore to large numerical coefficients for ∆L4 and ∆L6 in eq.(3.50):

X(3) = 1− 37∆L8 − 950∆L6 + ..., Z(3) = 1− 18∆L5 − 475∆L4 + ... (3.51)

In eqs. (3.50), we observe that the main next-to-leading order contribution comes from an
M2
K -enhanced term proportional to the low-energy constants L4 and L6 encoding Zweig rule

violation in the scalar sector. If those low-energy constants are close to critical values defined
as Lri,crit = L̂i, i.e. ∆Li = 0, leading to ∆L4,6 ∼ 0 and Lr4(Mρ) ≃ −0.50 × 10−3, Lr6(Mρ) ≃
−0.25 × 10−3 for r = 25 and Y (3) = 1, we see that their contribution remains small.

However, if the Zweig rule is not verified, i.e. if the contributions from L4 and L6 are
large, the perturbative treatment is hindered by the vacuum fluctuations of the sea-pairs.
The expressions (3.46) should not be linearized: (3.46) must be treated without any kind of
approximation. As explained in [77], the non-linear system (3.46) can be inverted to obtain
an expression for Y (3) = X(3)/Z(3). In fact, since it reduces to a second order polynomial
in Y (3), it yields two solutions:
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Y (3)± =
2(1 − ǫ(r)− d)

1− η(r)− e±
√

(1− η(r)− e)2 + [ρ− λ](1− ǫ(r)− d)
(3.52)

The square root in the denominator of (3.52) accounts for the non-linearity of (3.46). The
factor ρ− λ, or, in terms of the NLO low-energy constants, 2L6 − L4 (from 3.47), regulates
the behaviour of Y (3). Moreover, the first solution Y (3)+ corresponds to 0 < Y (3)+ < 2
and the second one to Y (3)− ≥ 2 (the properties of those solutions are discussed in ref. [77]).
For the remainder of the discussion, we will center on the physical case 0 < Y (3)+ < 2: the
perturbative treatment leading to expressions (3.49) and (3.50) corresponds in fact to the
linearization of (3.52) in the case ρ− λ≪ 1:

Y (3) ≃1− ǫ(r)− d
1− η(r)− e

(

1− ρ− λ
4

1− ǫ(r)− d
(1− η(r)− e)2 +

(ρ− λ)2

16

(1− ǫ(r)− d)2
(1− η(r)− e)4 + ...

)

, (3.53)

(for the solution Y (3)+)

Therefore, we observe that the (non-perturbative) solution (3.52) resums a series of terms
corresponding to the fluctuation parameters ρ and λ. We see that if those fluctuations are
large, i.e. if ρ and λ are of order 1 then the linearization (3.53) can not be justified (the
series does not converge). Expression (3.52) would thus lead to a suppression of Y (3), which
in turn would reduce the contribution of ρ and λ in eqs. (3.46). Indeed this can be seen
in figure 3.1, where the value Y (3) = 1 corresponds to the line ρ = λ, or from eq. (3.47),
2∆L6 = ∆L4.

Figure 3.1: The leading order parameter Y (3) as a function of Lr4 and Lr6 (eq. 3.52), with
r = 25, and the remainders e and d set to 0. The upper frontier marks the region for which
ρ and λ do not give solutions for eq. (3.52). Taken from ref. [84].

In this sense, the approach described in sec. 3.3 allows a resummation of the effects
of s̄s pairs encoded in L4 and L6, assuming that they capture the main effect of vacuum
fluctuations, and that the higher orders are not affected − thus the name of Resummed
Chiral Perturbation Theory.

A similar discussion can be made for X(3), ρ and L6, and Z(3), λ and L4: in both cases,
values of the Zweig rule violating low-energy constants L6 and L4 shifted a bit from their
critical values L̂4,6 towards positive values are sufficient to provide a significant supression of
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the leading order parameters X(3) and Z(3), in way that the LECs could not reach “large”
values without suppressing them strongly, as shown in figure 3.2. We see that in the case
Nf = 3, the LO parameters suffer a significant decrease while for Nf = 2 their values stay
close to 1 − as can be seen by re-expressing the low energy constants L4 and L6 in eqs. (2.78)
and 2.79:

Z(2) =
r

r + 2
(1− η(r)) +

2

r + 2
Z(3)− r

r + 2
Y (3)g1 + ... (3.54)

X(2) =
r

r + 2
(1− ǫ(r)) +

2

r + 2
X(3) − r

r + 2
Y (3)2f1 + ... (3.55)

where g1 and f1 are small combinations of chiral logarithms, and the ellipsis ... denotes
higher order terms [79]. This shows that Z(2) and X(2) are eventually independent of Z(3)
and X(3) (i.e. L4 and L6) but strongly sensitive to the quark mass ratio r.

Figure 3.2: X(Nf ) and Z(Nf ) as functions of Lr6 and Lr4 respectively, evaluated for different
values of Y (3): blue → 0.6, green → 0.8, red → 1. The dashed lines correspond to Nf = 2
and the solid lines to Nf = 3. The value for r is 25 and the remainders have been neglected.
Values of X(2) and Z(2) we computed from eqs. (2.78) and (2.79). Taken from ref. [84].

3.4.4 The η

The mass and decay constant of the η meson involves also the next-to-leading order low-
energy constant L7 and two extra remainders eη and dη:

F 2
η = F 2

πZ(3) (3.56)

+ Y (3)M2
π

(

8(r + 2)Lr4 +
8

3
(2r + 1)Lr5

)

− 1

32π2
M2
πY (3) log

◦
M2
K

µ2
+ F 2

η eη

F 2
ηM

2
η =

2r + 1

3
F 2
πM

2
πX(3) (3.57)

+
16

3
(2r + 1)(r + 2)Y (3)2M4

πL
r
6 +

32

3
(r − 1)2Y (3)2M4

πL7 +
16

3
(2r2 + 1)Y (3)2M4

πL
r
8

− 1

32π2
Y (3)2M4

π

[

1

3
(2r + 1)

(

2(r + 1) log

◦
M2
K

µ2
+

4

9
(2r + 1) log

◦
M2
η

µ2

)

+

(

log

◦
M2
π

µ2
− 1

3
(r + 1) log

◦
M2
K

µ2
− 1

9
(2r + 1) log

◦
M2
η

µ2

)]

+ F 2
ηM

2
ηdη
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Fη itself is not accessible experimentally, but we can compute it using its expression (3.56).
We introduce the Gell-Mann Okubo (GMO) mass difference ∆GMO and the remainder com-
bination dGMO:

∆GMO =
3F 2

ηM
2
η − 4F 2

KM
2
K + F 2

πM
2
π

F 2
πM

2
π

, dGMO =
3F 2

ηM
2
η

F 2
πM

2
π

dη −
4F 2

KM
2
K

F 2
πM

2
π

dK + dπ (3.58)

By using the expressions (3.26)-(3.27) and (3.57), we can write ∆GMO in terms of the
low-energy constants and the remainders. We get:

∆GMO = 16
M2
π

F 2
π

(r − 1)2Y (3)2(2L7 + ∆L8) + dGMO (3.59)

As in the previous section, we use the above identities to re-express L7 in terms of the
parameters (3.13) and decay constants and masses:

L7 =
1

32Y (3)2(r − 1)2
F 2
π

M2
π

[

3F 2
ηM

2
η − 4F 2

KM
2
K + F 2

πM
2
π

F 2
πM

2
π

− dGMO − (r − 1)2(ǫ(r) + d
′
)

]

(3.60)

In a similar manner, we have for F 2
η :

F 2
η

F 2
π

= 1 +
4

3

(F 2
K

F 2
π

− 1
)

+
1

48π2

M2
π

F 2
π

[

(2r + 1) log

◦
M2
η

◦
M2
K

+ log

◦
M2
K
◦
M2
π

]

+ eGMO (3.61)

with eGMO a combination of remainders, similarly to dGMO:

eGMO =
F 2
η

F 2
π

eη +
4

3

F 2
K

F 2
π

eK −
1

3
eπ (3.62)

Multiplying (3.61) by F 2
π , and taking the expansions (3.24) and (3.25), one can easily

check that expression (3.56) is properly recovered. As for π and K, all those expressions
are exact as long as the remainders are taken into account. We estimate their order of
magnitude: eη, dη ∼ O(m2

s) ∼ O(10%) by the criterion discussed in sec. 3.4.2.

So far we have been able to write the GMO relation eq. (3.59) directly in terms of low-
energy constant L7, the parameters Y (3) and r and higher order remainders. Neglecting
dGMO and eGMO for the purpose of the discussion, one can give a numerical estimate, with
F 2
η /F

2
π = 1.565 (for Y (3) = 1, r = 25, from eq. (3.61)):

∆GMO = 72.34 − 71.45 + 1 = 1.89 (3.63)

where the three contributions corresponding respectively to η, K and π have been split.
The numerical value for the kaon mass is the mean between the K+,− and K̄0, K0 masses.
It is customary to use the fact that the GMO relation (2.59) is well satisfied to justify that
the leading order condensate term should dominate the chiral expansion of the pseudoscalar
masses. From those grounds, the values of L7 and L8 would need no fine-tuning when one
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tries to recover the above estimate with the right-hand side of (3.59). However, using (3.35)
for r = r0 ∼ 24 (to be defined in terms of MK and Mπ), and neglecting d

′
, we obtain:

16
M2
π

F 2
π

(r − 1)2Y (3)2∆L8 = (r − 1)2(ǫ(r) + d′) = 19.3 (3.64)

This number is one order of magnitude higher than the evaluation (3.63) of ∆GMO which
contains L7 and L8 eq. (3.59). To recover correctly (3.63) one would have to fine-tune1 L7

(using Y (3) = 1 and r = r0): L7 ∼ −0.05 × 10−4. This means that the GMO formula is
satisfied too well compared to the expectation from next-to-leading order χPT and that it
is not a very compelling argument for a saturation of the chiral expansions by the quark
condensate.

3.5 Electromagnetic form factors

3.5.1 Definition and discussion

We can further illustrate the resummed procedure with the example of form factors, and in
particular the pion electromagnetic form factor:

〈π+(p
′
)|jµ|π+(p)〉 = (p+ p

′
)µF πV (t) (3.65)

where jµ is the electromagnetic current for the light quarks2: jµ = 2
3 ūγ

µu− 1
3 d̄γ

µd− 1
3 s̄γ

µs,

where p and p
′
are the momenta of the incoming and outgoing pion, and t is the momentum

transfer t = (p
′ − p)2. This form factor is obtained from the correlator 〈(Aµ

π+)†jνAσπ+〉 (Aµ
π+

being the interpolating fields for the π+), which leads to the product F 2
πF

π
V through the LSZ

reduction formula, where the factor F 2
π stems from the pion’s wave function renormalization.

This observable will permit to get an insight about another low energy constant, tied to
processes involving the coupling to vector and axial sources: L9. We get the expansion (in
accordance with [43]-[45]):

F 2
πF

π
V (t) = F 2

πZ(3) +M2
πY (3)[8(r + 2)Lr4 + 8Lr5]−

1

32π2
M2
πY (3)

[

4 log

◦
M2
π

µ2
+ (r + 1) log

◦
M2
K

µ2

]

(3.66)

+ t
[

2Lr9 −
1

32π2
M2
πY (3)

(1

3
log

◦
M2
π

µ2
+

1

6
log

◦
M2
K

µ2
+

1

6

)]

+
1

6
(t− 4M2

πY (3))J̄ππ(t) +
1

12
(t− 2(r + 1)M2

πY (3))J̄KK(t) +RF 2
πF

π
V (t)

The J̄PP functions encode the non-analytic pieces from the opening of the two-meson
channel (cf. secs. 2.5.4 and 3.3.2). RF 2

πF
π
V (t) is a polynomial function in t collecting the

higher order remainders:

RF 2
πF

π
V (t) = (RF 2

πF
π
V )0 +

t

F 2
π

(RF 2
πF

π
V )1 +O(t2) (3.67)

with the following orders of magnitude (RF 2
πF

π
V )0 = O(m2

q) and (RF 2
πF

π
V )1 = O(mq).

In the case where the series is saturated by its leading order, it is possible to recover the
standard NLO chiral expansion of the electromagnetic form factor as in [43]:

1We take Fπ = 92.2 MeV, Mπ = 139 MeV, FK/Fπ = 1.192.
2Concerning the pion, only the u and d currents contribute.
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F πV (t) = 1 + 2Hππ(t) +HKK(t) +O(p4) (3.68)

with the HPQ(t) function:

HPQ(t) =
1

F 2
0

[ 1

12

(

t− 2ΣPQ +
∆2
PQ

t

)

J̄PQ(t)−
∆2
PQ

3t
¯̄JPQ(t)− t

6
kPQ +

t

228π2

]

+
2t

3F 2
0

(3.69)

using the following notations: ΣPQ = M2
P + M2

Q, ∆PQ = M2
P −M2

Q where P and Q is

any light meson. (See Appendix A.1 for the expressions of kPQ and ¯̄J). This is achieved
by expanding the product F 2

πF
π
V (t) at next-to-leading order using expression (3.24) for F 2

π ,

replacing the leading order masses
◦
M2
P by the physical ones M2

P , and neglecting all the higher
orders terms and remainders.

3.5.2 Pion electromagnetic square radius

The pion electromagnetic square radius 〈r2〉πV is one of the main low-energy observables
associated to the pion electromagnetic form factor F πV . It is defined by the relation:

F 2
π 〈r2〉πV = 6F 2

π

d

dt
F πV (t)|t=0 (3.70)

An expression for 〈r2〉πV follows immediately from eq. (3.66):

〈r2〉πV =
6

F 2
π

[

2∆L9 −
1

32π2

(1

6
+

2

9
Y (3) +

M2
π

18M2
K

(r + 1)Y (3)
)]

+ 〈r2〉πV eπV (3.71)

where we have introduced, as in sec. (3.4.1), the scale-independent combination for the
low-energy constants: ∆L9 = Lr9(µ)− L̂r9(µ), with the following relation for the chiral loga-
rithms:

L̂r9(µ) =
1

32π2

[

1

6
log

◦
M2
π

µ2
+

1

12
log

◦
M2
K

µ2

]

(3.72)

and the relative remainder eπV :

eπV =
6

F 4
π

(RF 2
πF

π
V )1

〈r2〉πV
(3.73)

whose size, estimated through resonance saturation discussed in sec. 3.4.2, is of order
eπV = O((6M2

K)/(〈r2〉πV Λ4
H)).

〈r2〉πV is a well-determined quantity experimentally. Therefore, this is the observable we
will use to re-express L9 as a function of Y (3), r, the physical quantity 〈r2〉πV , π and K
masses, and the remainders:

∆L9 =
F 2
π

12
〈r2〉πV (1− eπV ) +

1

32π2

[ 1

12
+

1

9
Y (3) +

M2
π

36M2
K

(r + 1)Y (3)
]

(3.74)

For all the numerical calculations that will follow, we shall use the following value for
〈r2〉πV [68]:

〈r2〉πV = 0.452 ± 0.011 fm2 (3.75)
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3.5.3 Kaon electromagnetic form factor

Now that we have been able to re-express the various low energy constants L4,5,6,7,8,9 in terms
of the parameters X(3), Z(3), r, the physical quantities and the higher-order remainders, we
can apply the same framework to other observables, like the form factors. In this section,
we therefore proceed with a similar discussion for the kaon electromagnetic form factors:

〈K+,0(p
′
)|jµ|K+,0(p)〉 = (p+ p

′
)µFK

+,0

V (t) (3.76)

We have the expansions of FK
+,0

, following from the correlators 〈(Aµ
K+,0)

†jνAσK+,0〉 (with
F 2
K stemming from the kaon wave-function renormalization):

F 2
KF

K+

V (t) = F 2
π

[

Z(3) +
M2
π

F 2
π

Y (3)(8(r + 2)Lr4 + 4(r + 1)Lr5) (3.77)

− 1

32π2

M2
π

F 2
π

Y (3)

[

3

2
log

◦
M2
π

µ2
+

3

2
(r + 1) log

◦
M2
K

µ2
+

1

2
(2r + 1) log

◦
M2
η

µ2

]

+
t

F 2
π

[

2Lr9 −
1

32π2

(

1

6
log

◦
M2
π

µ2
+

1

3
log

◦
M2
K

µ2
+

1

6

)]

+
1

12F 2
π

[t− 4M2
πY (3)]J̄ππ(t) +

1

6F 2
π

[t− 2(r + 1)M2
πY (3)]J̄KK(t)

+
1

F 2
π

RF 2
KF

K+

V (t)

]

F 2
KF

K0

V (t) = F 2
π

[

− t

192π2F 2
π

log

◦
M2
K
◦
M2
π

− 1

12F 2
π

[t− 4M2
πY (3)]J̄ππ(t) (3.78)

+
1

12F 2
π

[t− 2(r + 1)M2
πY (3)]J̄KK(t) +

1

F 2
π

RF 2
KF

K0

V (t)

]

Exactly as in sec. 3.5.1, RF 2
KF

K0

V (t) and RF 2
KF

K+

V (t) are the polynomial functions of t
collecting the remainders:

RF 2
KF

K+

V (t) = (ℜF 2
KF

K+

V )0 +
t

F 2
K

(RF 2
KF

K+

V )1 +O(t2) (3.79)

RF 2
KF

K0

V (t) =
t

F 2
K

(ℜF 2
KF

K0

V )1 +O(t2) (3.80)

with the following orders of magnitude: (RFKV )1 = O(mq) and (RFKV )0 = O(m2
q).

Standard next-to-leading order expansions are recovered using the same procedure as
before [43, 45]:

FK
+

V (t) = F πV (t) + FK
0

V (t) +O(p4), FK
0

V (t) = −Hππ(t) +HKK(t) +O(p4) (3.81)

3.5.4 Kaon electromagnetic square radius

We finally turn to the K electromagnetic radii - first, for the K+:
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〈r2〉K+

V =
6

F 2
K

[

2∆L9 −
1

32π2

(

1

6
log

◦
M2
K
◦
M2
π

+
1

6
+

1

9
Y (3) +

M2
π

9M2
K

(r + 1)Y (3)

)]

+ 〈r2〉K+

V eK
+

V

(3.82)

with the remainder:

eK
+

V =
6

F 4
K

(RF 2
KF

V
K+)1

〈r2〉K+

V

(3.83)

Re-expressing L9 in terms of the pion radius 〈r2〉πV using eq. (3.74), we obtain the following
relation:

F 2
K〈r2〉K

+

V (1− eK+

V )− F 2
π 〈r2〉πV (1− eπV ) =

1

32π2



− log

◦
M2
K
◦
M2
π

+
2

3
Y (3)− M2

π

3M2
K

(r + 1)Y (3)





(3.84)

The right-hand side of eq. (3.84) is very small for reasonable values of Y (3) and r, so we
get that the electromagnetic radius of the K+ is essentially predicted by the pion’s radius:

〈r2〉K+

V ≃ F 2
π

F 2
K

〈r2〉πV ≃ 0.32 fm2. We have the following experimental value [68]:

〈r2〉K+

V = 0.314 ± 0.035 fm2 (3.85)

For the neutral kaon we have:

F 2
K〈r2〉K

0

V (1− eK0

V ) =
1

32π2



− log

◦
M2
K
◦
M2
π

+
2

3
Y (3)− M2

π

3M2
K

(r + 1)Y (3)



 (3.86)

with the remainder:

eK
0

V =
6

F 2
K

(RF VK0)1

〈r2〉K0

V

(3.87)

The experimental value is [68]:

〈r2〉K+

V = −0.077 ± 0.010 fm2 (3.88)

From eqs. (3.84) and (3.86) one obtains the following relation between the K+ and K0

electromagnetic radii:

〈r2〉πV (1− eπV ) =
F 2
K

F 2
π

(

〈r2〉K+

V (1− eK+

V )− 〈r2〉K0

V (1− eK0

V )
)

(3.89)

This equation is verified for the experimental values (3.75), (3.85), (3.88) and the value
of FK/Fπ in the Standard Model (3.20), with the remainders being on the large side of
their allowed value according to the discussion of sec. 3.4.2. In principle, one could invert
the problem and use the measurements for the radii combined with knowledge about the
higher-order remainders to obtain an accurate estimate of FK/Fπ.
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3.6 Kℓ3 form factors

3.6.1 Definition and discussion

Now we apply our framework to the Kℓ3 form factors. We begin by recalling the two decay
channels giving rise to Kπ form factors:

K0 → π− + ℓ+ + ν (3.90)

K+ → π0 + ℓ+ + ν (3.91)

with the corresponding S-matrix element:

Sif =
GF√

2
Vus

〈

ℓνπ+,0(p′)
∣

∣ l̄γµ(1− γ5)νuγµs
∣

∣K̄0,+(p)
〉

(3.92)

where GF is the Fermi constant and Vus is the relevant CKM matrix element. Since the
leptonic part is independent from the hadronic part, we factorize the S-matrix element in
order to isolate the latter:

F 0,+
µ =

〈

π+,0(p′)
∣

∣uγµs
∣

∣K̄0,+(p)
〉

(3.93)

Exploiting Lorentz covariance, we define the two form factors f+(t) and f−(t):

F 0,+
µ = C[(p′ + p)µf+(t) + (p′ − p)µf−(t)] (3.94)

where t is the momentum transfer t = (p
′ − p)2, and C is a constant which is either 1

or 1/
√

2 for F 0
µ or F+

µ respectively. f+(t) is the vector form factor: it corresponds to the

P-wave projection of F 0,+
µ . We can further define a scalar form factor f0(t), associated to

S-wave projection:

f0(t) = f+(t) +
t

∆Kπ
f−(t) (3.95)

with the squared-mass difference ∆Kπ = M2
K −M2

π .
The f+(t) vector form factor at zero momentum transfer is a quantity of interest, since the

measurement of Kℓ3 decays can be analysed in the framework of the Standard Model to de-
termine the product |Vusf+(0)|, and thus the CKM matrix element |Vus|. A recent fit to |Vud|
from the super-allowed 0+ → 0+ nuclear decays, |Vus|f+(0) from Kℓ3 and |Vus/Vud|FK/Fπ
from πℓ2 and Kℓ2 together with the unitarity of the CKM matrix led to [67, 68]:

f+(0)|SM = 0.959 ± 0.005 (3.96)

and a value of FK/Fπ|SM in full agreement with the value (3.20), with a strong correlation
between these two quantities. Deviation of f+(0) from this value would be an indication of
new physics, so that this quantity plays an important role to test the Standard Model in the
light quark sector (see figure 3.3).

Always following the discussion in sec. (3.3), we expect that FπFKf+ and FπFKf0 are the
quantities to exhibit good convergence properties, away from singularities (opening thresh-
olds at t = (MK+Mπ)

2...). They stem from the axial/vector/axial correlators 〈AµVνAσ〉 (Fπ



Kℓ3 form factors 79

0.94 0.95 0.96 0.97 0.98 0.99 1.00

Nf=2

Nf=2+1

SPQcdR

RBC

JLQCD*
QCDSF*

HPQCD-FNAL*

RBC-UKQCD-07

0.960(5)(7)

0.968(9)(6)

0.967(6)

0.9647(15)stat

0.984(12)

0.962(11)

0.9644(49)

0.974(11)

Clover

Clover

0.976(10)

0.961(8)

Cirigliano et al

Jamin et al

Bijnens & Talavera

Leutwyler & Roos 84

ETMC-09 0.9560(84)

Clover
TWMF

RBC-UKQCD-10 +310.9599(37)-43

f+
Κ0π+

(0)

Nf=0

DWF
- 

L
A

T
T

IC
E

  -

DWF

Stag

-χ
P

T
+

L
E

C
s-

χPT + 1/Nc

χPT + disp.

χPT + LR

Quark M.

Q
.M

.

Figure 3.3: Determination of fK
0π−

+ (0) taken from [67].

and FK account respectively for the pion and the kaon). We therefore express their chiral
series in terms of the parameters (3.13), the relevant low energy constants (L4,5,9) and higher
order remainders. By re-expressing L4 and L5 in terms of FπFK with eqs. (3.32)-(3.33), we
obtain the following expansions:

FπFKf+(t) =
F 2
K + F 2

π

2
+

3

2
[t(M r

Kπ(t) +M r
Kη(t))− LKπ(t)− LKη(t)] (3.97)

2tLr9 + FπFKd+ + te+

FπFKf−(t) =
F 2
K − F 2

π

2
− 3

2
(M2

K −M2
π)(M

r
Kπ(t) +M r

Kη(t)) (3.98)

+
1

4
KKπ(t)

[

5(t−M2
π −M2

K) +
3

2
(r + 3)M2

πY (3)
]

− 1

4
KKη(t)

[

3(t−M2
π −M2

K) +
1

2
(r + 3)M2

πY (3)
]

− 2(M2
K −M2

π)Lr9 + FπFK(d− − d+) + t(e− − e+)

with d± and e± combining the remainders RFπFKf±(t) from the form factors, and the
remainders eπ,K from the decay constants (eqs. (3.24) and (3.25)):

FπFKd+ = (RFπFKf+)0 −
F 2
πeπ + F 2

KeK
2

(3.99)

FπFK(d− − d+) = (RFπFKf−)0 +
F 2
πeπ − F 2

KeK
2

(3.100)

FπFKe+ = (RFπFKf+)1 (3.101)

FπFK(e− − e+) = (RFπFKf−)1 (3.102)

where the pre-factor FKFπ come from the re-expression of L4 and L5 in eqs. (3.24)
and (3.25). Expressions of MPQ(t), LPQ(t) and KPQ(t) are recalled in Appendix A.1. We
have also used the polynomial expansion:

RFπFKf±(t) = (RFπFKf±)(0) + t/(FπFK)(RFπFKf±)(1) +O(t2) (3.103)
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.
By inserting (3.97) and (3.98) in (3.95) we get for the scalar form factor:

FπFKf0(t) =
F 2
K + F 2

π

2
+

t

∆Kπ

F 2
K − F 2

π

2
− 3

2
(LKπ(t) + LKη(t)) (3.104)

+
t

4∆Kπ
KKπ(t)

[

5(t−M2
π −M2

K) +
3

2
(r + 3)M2

πY (3)
]

− t

4∆Kπ
KKη(t)

[

3(t−M2
π −M2

K) +
1

2
(r + 3)M2

πY (3)
]

+ (FπFKd+ + te+)
(

1− t

∆Kπ

)

+ (FπFKd− + te−)
(

1− t

∆Kπ

)

As always, we recover the standard expressions in the case of a saturation by the leading
order [43]:

fKπ+ (t) = 1 +
3

2
HKπ(t) +

3

2
HKπ(t) +O(p4) (3.105)

fKπ0 (t) = 1 +
1

8F 2
0

(

5t− 2ΣKπ − 3
∆2
Kπ

t

)

J̄Kπ(t) +
1

24F 2
0

(

3t− 2ΣKπ −
∆2
Kπ

t

)

J̄Kη(t)

(3.106)

+
t

4∆2
Kπ

1

32π2F 2
0

(

5 log
M2
π

µ2
− 2 log

M2
K

µ2
− 3 log

M2
η

µ2

)

+
4

F 2
0

Lr5t+O(p4)

with the function HPQ(t) defined in eq.(3.69).

3.6.2 The Callan-Treiman points

The Callan-Treiman theorem [46] states that in the soft-pion limit (p
′2 = M2

π = 0), the scalar
form factor at the Callan-Treiman point t = ∆Kπ = M2

K −M2
π sould be equal to FK/Fπ.

This in turn implies that FKFπf0(∆Kπ) − F 2
K is expected to vanish in the Nf = 2 chiral

limit (m → 0). A soft kaon analog of the theorem holds at t = ∆̃Kπ ≡ −∆Kπ, asserting
that FKFπf0(∆̃Kπ) − F 2

π vanishes in the Nf = 3 chiral limit (m,ms → 0). We have the
expressions of FKFπf0(t) at the two Callan-Treiman points:

FKFπf0(∆Kπ) = F 2
K +

3

2
LKπ(∆Kπ)−

3

2
LKη(∆Kπ) (3.107)

+
1

4
KKπ(∆Kπ)

(

− 10M2
π +

3

2
(r + 3)M2

πY (3)
)

− 1

4
KKη(∆Kπ)

(

− 5M2
π +

1

2
(r + 3)M2

πY (3)
)

+ FKFπd− + ∆Kπe−

FKFπf0(−∆Kπ) = F 2
π −

3

2
LKπ(−∆Kπ)−

3

2
LKη(−∆Kπ) (3.108)

+
1

4
KKπ(−∆Kπ)

(

− 10M2
K +

3

2
(r + 3)M2

πY (3)
)

− 1

4
KKη(−∆Kπ)

(

− 6M2
K +

1

2
(r + 3)M2

πY (3)
)

+ FKFπ(2d+ − d−)−∆Kπ(2e+ − e−)

Those expressions fulfill the Callan-Treiman theorem and the soft-kaon analog (with K
and L contributions canceling each other in the two chiral limits). This imposes a tighter
constraint on the size of the higher-order remainders:
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d− = O(mms), e− = O(m) (3.109)

so that d− and e− and supressed compared to d+ and e+. This ensures that the Callan-
Treiman theorem will be numerically well satisfied even in the case of a small quark conden-
sate in the Resummed χPT framework. Finally, we define the discrepancies from the two
Callan-Treiman theorems:

∆CT = f0(∆Kπ)−
FK
Fπ

, ∆̃CT = f0(∆Kπ)−
Fπ
FK

(3.110)

These quantities have been calculated in standard χPT (see eq. (3.108) in the standard
framework) at one-loop order, in the isospin limit [43]:

∆CT = −3.5.10−3, ∆̃CT = 0.03 (3.111)

Further computations have been performed at two loops [47], and including isospin break-
ing effects [48]. It has been shown in refs. [49, 50] that a precise assessment of the scalar form
factor f0 at the Callan-Treiman points could provide a probe to physics beyond the Stan-
dard Model in the strange quark sector, in particular the right-handed coupling of quarks
to W bosons. The pioneering work [49] led to re-analysis of Kℓ3 data by several collabo-
rations [59, 60, 61] which at present show a good/marginal agreement with the Standard
Model.

3.7 Alternative treatments of the unitarity part

As we have indicated before in sec. 3.3.2, we modify the position of the singularities in the
unitarity part of the chiral expansions expressed using the low energy constants of the chiral
lagrangian, in order to satisfy the requirement that the known singularities (poles and cuts)

are located at the physical position. The substitution
◦
M

2

P→ M2
P in the next-to-leading

order expansions is performed in order to diminish the size of higher-order remainders, as we
expect higher and higher-order contributions to contribute to this shift in the location of the
non-analytic contribution. If the operation is non-ambiguous for the poles, the status of the
cuts is less clear. One can indeed design several different ways of performing this change.

In the present thesis, following the work in ref. [92], we have decided to perform the
substitution only at the level of the masses involved in the scalar-bubble function J̄PQ recalled
in Appendix A.1. At one-loop order in the effective theory, this function generates all the
nonanalytic cuts stemming from the propagation of the mesons P and Q above threshold,
with:

Im J̄PQ(s) =
1

16π

√

δPQ(s)

s
θ(s− (MP +MQ)2) (3.112)

with

δPQ(s) = (s− (MP +MQ)2)(s− (MP −MQ)2) (3.113)

Indeed one can check in eqs. (3.97) and (3.98) that the form factors exhibit non-analytic
structures corresponding to polynomial terms multiplied by J̄PQ. These polynomial terms
can be determined from unitarity. For instance, if we consider the pion electromagnetic
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form factor, one can easily derive the following unitarity relation, by inserting all the pos-
sible intermediate states in the matrix element eq. (3.65) defining the electromagnetic form
factor 3:

Im F πV (t) =

√

1− 4M2
π

t
F πV (t)fππ1 (t) +

√
2

8

√

1− 4M2
K

t
(s − 4M2

K)FKV (t)gKK1 (t) (3.114)

= Im

[

J̄ππ(t)× 16πF πV (t)fππ1 (t) + J̄KK(t)× 16π

√
2

8
(t− 4M2

K)FKV (t)gKK1 (t)

]

where fππ1 (s) and gKK1 (s) are the P -wave partial wave amplitudes for ππ → ππ and
ππ → KK̄ defined for instance as in refs. [52] and [90] respectively. In terms of chiral
counting, we need only these amplitudes and the form factors at leading order in order to
determine Im F πV at next-to-leading order.

Indeed, with our prescription, detailed in ref. [92] and recalled in sec. 3.3.2, we have
obtained the following expression:

F 2
πF

π
V ;prescr 1(t) = F 2

πZ(3) +M2
πY (3)[8(r + 2)Lr4 + 8Lr5] (3.115)
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where J̄PP is expressed in terms of the physical mass M2
P , and one can check easily

that the polynomials multiplying J̄ππ(t) and J̄KK(t) correspond to the products of partial-
wave amplitudes and form factors in eq. (3.114), expanded at leading order in terms of the
couplings arising in the chiral Lagrangian:

F πV ;unit prescr 1 = 1 fππ1;unit prescr 1 =
1

3F 2
0

(t− 4
◦
M

2

π) (3.116)

FKV ;unit prescr 1 = 1 [gKK1 × (t− 4M2
K)]unit prescr 1 =

4

3
√

2F 2
0

(t− 4
◦
M

2

K) (3.117)

As said before, we expect the position of the cuts to move from (
◦
MP +

◦
MQ)2 to (MP +

MQ)2 once higher orders are included: we thus performed the shift preventively, in order to
reduce the size of higher-order remainders. However, we have no further information on the
analytic structure of the amplitude (in particular that of the polynomials multiplying J̄PQ
or the logarithms), and we decided in ref. [92] not to perform any further modification.

One could also consider two alternative ways of treating the unitarity parts:

• In ref. [81], physical masses were used not only inside J̄ but also in the functions
Jr,K,L,M r in the unitarity contribution to the one-loop generating functional Zu (see
sec. 2.5.4), as well as in the argument of the logarithms in the tadpole contribution Zt.

3We consider here only terms that contribute at one loop in chiral perturbation theory. This selects only
two-pseudo Goldstone boson intermediate states with the same quantum numbers as the original ππ pair.
There is no contribution to the electromagnetic form factor from the πη and ηη intermediate states as they
are produced only in the S-wave from ππ.
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• In ref. [85], it was claimed that one could improve the convergence of the series by
redefining the (NLO) unitary contributions, replacing their expression in terms of chiral
couplings by another one derived from the application of unitarity relations, together

with the replacement of
◦
M

2

P by M2
P in the logarithms stemming from Jr(0).

We will illustrate these two procedures in the following. Obviously, the differences in-
duced by the choice of one prescription or another would correspond to an equivalent shift in
the higher-order remainders: all of them are equivalent as long as we do not set a bound on
the size of these higher-order remainders. Since it is however what we want to do in the fol-
lowing, it is useful to compare these prescriptions in a specific case, i.e., the electromagnetic
pion form factor.

If we follow the prescription of ref. [81] and use physical masses in Zt as well as in all
the functions occurring in Zu (while keeping the couplings of the chiral Lagrangian for the
prefactors), the argument of the logarithms coming from the reexpression of Jr in term of J̄
is modified, yielding:

F 2
πF

π
V ;prescr 2(t) = F 2

πZ(3) +M2
πY (3)[8(r + 2)Lr4 + 8Lr5] (3.118)
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Comparing with eq. (3.115), we notice that the argument of all the logarithms have been
changed form the leading order masses to the physical ones.

If we follow the prescription of ref. [85], we should replace the unitarity part of eq. (3.115)
by the one reconstructed from eq. (3.114) considered at next-to-leading order, inserting the
leading order expression of the form factors and partial-waves amplitudes derived from the
related good observables:

F πV ;unit prescr 3 =
F 2

0

F 2
π

fππ1;unit prescr 3 =
F 2

0

3F 4
π

(t− 4M2
π) (3.119)

FKV ;unit prescr 3 =
F 2

0

F 2
K

gKK1;unit prescr 3 =
4F 2

0

3
√

2F 2
πF

2
K

(3.120)

where, as before, the extra factors of Fπ and FK come from the expression of form
factors and scattering amplitudes in terms of the correlators of vector/axial currents and
scalar/pseudoscalar densities. Inserting these expressions in eq. (3.114), we obtain the uni-
tarity piece according to the prescription of ref. [85]:

F 2
π F

π
V (t)|unit part;prescr 3 =

F 4
0

F 4
π

1

6
(t− 4M2

π)J̄ππ(t) +
F 4

0

F 4
K

1

12
(t− 4M2

K)J̄ππ(t) (3.121)

Moreover, one has to change the argument of the logarithms coming from Jr(0) from
leading order to physical masses. We obtain thus the expansion of the chiral form factor
following the prescription of ref. [85]:
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F 2
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We see that eq. (3.122), i.e., the prescription of ref. [85], comes close to the usual chiral
expansion presented in eq. (3.66), differing through extra F0/FP factors for the unitarity
contribution, and the mass term involved the tadpole logarithms. Eq. (3.115) from ref. [92]
is the closest to the expression in terms of the couplings arising in the chiral Lagrangian,
whereas eq. (3.115) in ref. [81] corresponds to an intermediate situation.

Having presented the three prescriptions, we can now discuss the impact of changing the
structure of the unitarity part, as well as the argument of the logarithms. If Y (3) tends to
zero, we see that the chiral logarithms coming from JrPQ(0) in the unitarity part will diverge
in eq. (3.118) from ref. [92]. Such divergences are expected in the limit where the whole
Goldstone boson masses vanish, but not when only their leading-order term is set to zero.
This unwelcome feature is not present in the two other prescriptions, where these logarithms
have a physical mass for argument 4. Let us however emphasise that such an effect, present
in the mathematical limit where Y (3) → 0, has little impact as soon as Y (3) is different
from zero. Indeed, in the case of the electromagnetic form factor, the difference between
eqs. (3.115) and (3.118), i.e., refs. [92] and [81], is of order:

t

F 2
π

1

32π2
log

◦
M

2

P

M2
P

(3.123)

For r = 25 and P = π,K, η, such a term would remain smaller than 6% at the first
threshold t = 4M2

π for Y (3) ≥ 0.1. One would thus expect the prescription of ref. [92] to be
acceptable in the subthreshold region as long as Y (3) is not very close to 0.

If Z(3) = F 2
0 /F

2
π is small, the prescription of ref. [85] yields a very significant (quartic)

suppression of all the unitarity contributions as can be seen in eq. (3.122). This suppression
is rather surprising, since the unitary part is expected to be sensitive to the couplings of
the Goldstone bosons (i.e., Fπ and FK) but not particularly to their leading order. This
unexpected result relies on the ad-hoc assumption that good observables should have an
improved convergence once their unitarity parts satisfy perturbative unitarity expressed in
terms of good observables themselves. However, the next-to-leading order unitarity relation
eq. (3.114) involves the product of good observables taken at leading order only, whereas
the definition of good observables is a global statement on the size of higher order terms
compared to leading order and next-to-leading order ones. Therefore, using the leading
order term of good observables in the unitarity contribution does not guarantee that the
most significant contribution of the unitarity part is captured by the treatment of ref. [85],

4The problem does not arise for the logarithms involve in the tadpole contributions Zt, which are of the

form
◦

M
2

P log
◦

M
2

P /µ2. As discussed in refs. [81, 92], the replacement of the argument of the logarithm by the
physical mass for these tapdole diagrams induces a change that is numerically small in the chiral expansions
(at the level of a few percent) over the whole range of Y (3) from 0 to 1. In particular, the difference vanishes
in the two limiting cases Y (3) → 0 (as the whole tadpole contribution vanishes) and Y (3) ≃ 1 (where the
chiral expansion of M2

P is saturated by its leading order).
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nor that this prescription reduces the size of higher-order remainders compared to that of
ref. [81, 92].

This discussion should invite us to discard the prescription of ref. [85] (eq. (3.122)) and
to prefer that of ref. [81] (eq. (3.118)), or that of ref. [92] (eq. (3.115)). In the latter case,
the modification of the argument of the logarithms coming from Jr(0) in Zu should also be
performed in order to prevent the divergences pointed out in ref. [85]. In practice, we will see
that our results, quoted from ref. [92], yield Y (3) not very small, so that the problem outlined
before in the case of a vanishing Y (3) does not affect the outcome of our fits significantly.
For completeness, in sec. 4.3.3, we will also briefly discuss the results obtained once the

argument of the logarithms coming from JrPQ(0) in Zu is changed from
◦
M

2

P to M2
P .

3.8 Summary

In this chapter, we have made a presentation of an alternative framework of Nf = 3 Chiral
Perturbation Theory called Resummed Chiral Perturbation Theory. It consists into a re-
ordering of the chiral series that allows one to take into account the possible numerical
competition between leading and next-to-leading orders that was hinted at in sec. 2.7.3 and
developped in sec. 3.2 and sec. 3.3. It differs from the standard treatment of chiral series in
the following way (see sec. 3.3.1):

• Only some “good” observables possess convergent expansions, when expressed in terms
of the chiral lagrangian parameters (F0, B0, Lis...).

• A series is considered as convergent when the sum of its leading and next-to-leading
order LO +NLO is large compared to all the remaining higher orders.

• The resulting formula must be treated analytically, without neglecting corrections from
the higher orders (treated as an overall remainder) when re-expressing the low energy
constants in terms of observables.

• The order parameters F0 and Σ(3) are expressed in terms of the leading order param-
eters X(3) = 2mΣ(3)/(F 2

πM
2
π) and Z(3) = F 2

0 /F
2
π (equivalently Y (3) = 2mB0/M

2
π).

The quark mass ratio r = ms/m introduced.

• The next-to-leading order low-energy constants Lri are re-expressed in terms of the
physical observables, the parameters X(3), Z(3), Y (3) and r, and (small) higher-order
remainders.

This procedure then provides a re-expression of the chiral series that can be used for the
analysis of experimental and lattice data in the possible case that the leading order would
not saturate the chiral series as it is usually expected in the standard treatement. This
general approach is of course fully compatible with the case of a saturation scenario, since
it only allows the LO/NLO numerical competition, but does not enforce it. We have then
applied it to the decay constants and masses of pseudoscalar mesons (sec. 3.4.1), as well as
to pion and kaon electromagnetic form factors (sec. 3.5) and Kℓ3 form factors (sec. 3.6). We
have also discussed alternative treatment of the unitarity part, and exploited our preferred
choice to deal with these contributions. A fully similar approach can be applied to scattering
amplitudes, see for example [81, 85], and also to other processes like K → 3π and η → 3π [87].

In the following chapters, we will apply it to the Nf = 2+1 data provided by some lattice
collaborations [96, 99, 100, 101] which encountered some problems when fitting the outcome
of their simulations using chiral expansions in the standard case. We will observe that the
Resummed framework indeed provides a good description of the lattice results when the



86 Resummed Chiral Perturbation Theory

leading order is no more numerically dominant in the chiral expansions of some low-energy
QCD observables: the decay constants and masses, the Kℓ3 form factors (Chapter 4) and
the topological quantities (Chapters 5 and 6).



Chapter 4

Analysis of Nf = 2 + 1 lattice data
using Resummed Chiral
Perturbation Theory

4.1 Introduction

As was hinted at in sec. 2.7.3, various analyses of lattice results [96, 99, 100, 101, 102,
103] suggest an overall good agreement between lattice simulations and Chiral Perturbation
Theory concerning chiral series obtained as an expansion in mu and md only (Nf = 2 χPT),
but difficulties with the chiral expansions in powers of mu,md,ms (Nf = 3 χPT). In some
cases, one observes small values of the Nf = 3 quark condensate and pseudoscalar decay
constant failing to saturate the chiral expansions, the convergence of the three-flavour chiral
series exhibiting therefore a numerical competition between the leading and next-to-leading
order. Resummed Chiral Perturbation Theory, discussed in the previous chapter, provides
an alternative framework to the usual treatment of chiral expansions that allows for this
competition.

The work presented in this chapter is the object of the article [92]. We fit data provided by
the collaborations PACS-CS and RBC/UKQCD [96, 99, 100, 101], to the relevant expressions
of light mesons decay constants, masses (sec. 3.4) and Kℓ3 form factors (sec. 3.6) written in
the resummed framework introduced in sec. 3.3. This will enable us to extract information
about the pattern of chiral symmetry breaking, and also to check the consistency of the
picture concerning the numerical competition between leading order and next-to-leading
order.

4.2 Lattice inputs

In principle, our analysis in the Resummed framework would require lattice data performed
with several u, d and s quark masses (whose renormalized values are known) and trans-
ferred momenta (in the case of form factors), but where the continuum and infinite-volume
limit have already been performed (a → 0, V → ∞). The situation is however not so
favorable. Some collaborations (MILC [102, 103]) provide numbers directly in the phys-
ical limit, performing the chiral extrapolation at the same time as the continuum limit.
This prevents one from testing different alternatives concerning chiral extrapolations, even
though the results sometimes contradict the standard treatment of χPT (for instance con-
cerning the size of the quark condensate and the decay constant in the three-flavours chiral
limit). Others (BMW [104, 105], ETMC [106] and TWQCD-JLQCD [107]) do not provide
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the decay constants and the renormalized quark masses mandatory for our study. Two col-
laborations, RBC/UKQCD [99, 100, 101] and PACS-CS [96], have performed their analysis
only at particular lattice spacings and/or particular volumes, without estimating the sys-
tematics associated with the continuum and infinite-volume limits fully. The fact that only
statistical errors are quoted in both cases prevents us from using a fully-fledged statistical
treatment [81], but they can still be used for this exploratory study.

For the specific data sets studied here, we consider the quantities given by these collab-
orations corresponding to light quark masses and small momenta (i.e. we fit over a “subset”
of the whole data) where at least a version of Chiral Perturbation Theory is assumed to be
valid.

RBC/UKQCD Collaboration

The RBC/UKQCD collaboration performed simulations for 2+1 dynamical flavours [99,
100, 101]1 using domain-wall fermions at one lattice spacing: a−1 = 1.729(28) GeV, at two
different volumes 163 × 32 and 243 × 64 (2.743 fm3), with a fifth dimension of length 16.
The simulations were done at each quark mass for the two volumes, except the lightest mass
which was only simulated for the larger volume. A non-perturbative renormalization was
performed to relate the lattice quark masses to those in the RI-MOM scheme. We only use
the points for which valence and sea quark masses are identical (i.e. this corresponds to
the unitary situation presented in Chapter 2.2). For decay constants and masses, there are
four sets corresponding to such a situation (ref. [99]). We consider only the lightest ones to
ensure that the chiral series will converge well.

The quark masses are given in the RI-MOM scheme, but they can be related to the
M̄S scheme through a multiplicative factor Zm, which is mass-independent: m̄(2GeV ) =
Zma

−1(am̃lat). It drops in all the input quantities, since quark masses are involved only
through ratios of the parameters p and q (eq. (4.2)). The values for the decay constants and
masses [99, 108], expressed in units of 10−3 GeV2, are given in table 4.1.

(m̃, m̃s) (p, q) F 2
π (GeV2) F 2

πM
2
π (GeV4) F 2

K (GeV2) F 2
KM

2
K (GeV4)

(0.005, 0.040) (1.15, 0.189) 10.98 ± 0.16 1.196 ± 0.022 14.11 ± 0.19 4.644 ± 0.076
(0.010, 0.040) (1.15, 0.304) 12.85 ± 0.16 2.249 ± 0.036 15.59 ± 0.18 5.730 ± 0.082

Table 4.1: Values for masses and decay constants from refs. [99, 108] for points with identical
valence and sea quark masses. m̃q is the simulated quark mass m̃q = a(m̃lat

q −mres) where
amres = 0.00315(2). The uncertainties here are purely statistical and do not include those
induced by the uncertainty on the value of the lattice spacing a−1.

In the papers [100, 101], the RBC/UKQCD collaboration investigated the Kℓ3 form
factors f0 and f+ (eqs. (3.97) and (3.98) using twisted boundary conditions to obtain a
sample of momentum transfer, with the same two sets of values corresponding to the non-
degenerate masses: (a(m̃lat −mres), a(m̃

lat
s −mres)) = (0.005, 0.040), (0.010, 0.040). The set

with the lighter u and d quark masses yields the values gathered in table 4.2.

t (GeV2) 60.7 59.87 38.1 21.6 0.30

FπFKf0(t) 12.68 ± 0.17 12.73 ± 0.17 12.49 ± 0.17 12.32 ± 0.17 12.15 ± 0.16
FπFKf+(t) × × 12.71 ± 0.176 12.42 ± 0.175 12.15 ± 0.17

The set for the scalar form factor with the heavier masses values is given in table 4.3.

1We only follow the last reference [101].
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t (GeV2) −44.00 −129.3

FπFKf0(t) 11.68 ± 0.21 10.95 ± 0.32
FπFKf+(t) × ×

Table 4.2: Values of the vector and scalar form factors FπFKf+,0(t) for different values of
the momentum transfer t from refs. [100, 101], for the light set of quark masses u and d.

t (GeV2) 35.42 −90.51 −195.3

FπFKf0(t) 14.28 ± 0.17 13.05 ± 0.21 11.64 ± 0.38

Table 4.3: Values of the scalar form factors FπFKf0(t) for different values of the momentum
transfer t from refs. [100, 101], for the heavier set of quark masses u and d

We drop the points for t ≤ −0.2 GeV−2 where χPT is likely to lose its relevance (in
ref. [100], it corresponds to the two points of f0 with the lowest values of the momentum
transfer). The values of the physical quark masses m and ms and the lattice spacing a are
obtained by studying the dependence of the π, K and Ω hadrons on these three parameters
and tuning them to reproduce the physical hadron masses. If m̃s,ref is the value of the
simulated strange quark mass corresponding to the set (0.005, 0.040), the RBC/UKQCD
collaboration obtained m̃s,ref/ms = 1.150. Also, in the present chapter and in the case
of both collaborations, we will assume that the determination of the lattice spacing is not
affected by the issue of convergence of the chiral series described here − we will therefore
use the values obtained by the collaboration. This will be reconsidered in the next chapter.

PACS-CS Collaboration

The PACS-CS collaboration [96] investigated the pseudoscalar masses and decay con-
stants for a large sample of light quark masses for one value of lattice spacing a−1 =
2.176(31) GeV, on a 323 × 64 volume, using a non-perturbatively O(a)-improved Wilson
quark action and performing the renormalization of quark masses perturbatively at one loop
(with tadpole improvement). They obtained the following results, in units of 10−3 GeV2:

(amM̄S
ud , am

M̄S
s ) (p, q) F 2

π F 2
πM

2
π F 2

K F 2
KM

2
K

(0.001, 0.040) (1.410, 0.040) 10.19 ± 1.09 0.247 ± 0.035 14.29 ± 0.48 4.385 ± 0.151
(0.006, 0.041) (1.456, 0.138) 11.51 ± 0.26 1.007 ± 0.031 15.49 ± 0.22 5.459 ± 0.088
(0.010, 0.036) (1.256, 0.271) 12.48 ± 0.21 1.846 ± 0.041 15.37 ± 0.16 5.200 ± 0.067

Table 4.4: Values of decay constants and masses from ref. [96]. amM̄S
q are the bare lattice

quark masses. The uncertainties are of purely statistical origin and do not include the one
coming from the determination of the lattice spacing.

As was the case for the RBC/UKQCD collaboration, the values of the physical quark
masses m and ms, and the lattice spacing a, are obtained by studying the dependence
of the masses of the K, π and Ω hadrons on these three parameters and tuning them to
reproduce the physical hadron masses. If m̃s,ref denotes the value of the strange quark
mass corresponding to the set with the lightest u and d masses, the PACS-CS collaboration
obtained m̃s,ref/ms = 1.19.
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Results from the two collaborations:

For RBC-UKQCD fits to the Nf = 2 and Nf = 3 next-to-leading order chiral series for
pseudoscalar masses and decay constants were performed by the collaboration in ref. [99]. It
turned out that the Nf = 3 chiral expansions led to rather poor fits (large χ2 per d.o.f), in
particular for decay constants, unless they put stringent cuts on the values of quark masses
where such expansions should hold. This led the authors in ref. [99] to perform fits to
Nf = 2 next-to-leading order chiral expansions. In ref. [109], next-to-next-to-leading SU(2)
chiral expansions were shown to have only a limited utility to extrapolate the data: many
more data points would be needed to fix the size of the combinations of O(p6) counterterms
involved. The results obtained in ref. [99] that are relevant for our discussion are summarised
in table 4.5.

r 28.8 ± 0.4 ± 1.6
m̃s,ref/ms 1.150
FK/Fπ 1.205 ± 0.018 ± 0.062

ms(2 GeV)[MeV] 107.3 ± 4.4 ± 9.7± 4.9
m(2 GeV)[MeV] 3.72± 0.16 ± 0.33 ± 0.18
B(2 GeV)[GeV] 2.52± 0.11 ± 0.23 ± 0.12

F [MeV] 81.2 ± 2.9 ± 5.7
ℓ̄3 3.13 ± 0.33 ± 0.24
ℓ̄4 4.43 ± 0.14 ± 0.77

Table 4.5: Results obtained by the RBC/UKQCD collaboration in ref. [99]. No values for the
SU(3) parameters F0 and B0 and the LEC’s Li could be provided because of the convergence
problems the collaboration encountered with Nf = 3 chiral expansions.

In addition, two different values for f+(0) were obtained in refs. [100, 101] from the
same gauge configurations, using either data for the scalar form factor or data for both form
factors, and applying a pole ansatz based on either Nf = 3 or Nf = 2 chiral perturbation
theory for Kℓ3 form factors [110]:

f+(0) = 0.964 ± 0.033 ± 0.0034 ± 0.0014 [100], f+(0) = 0.960(+5
−6) [101] (4.1)

The situation for PACS-CS is similar: fits to the Nf = 2 and Nf = 3 next-to-leading
order chiral series for pseudoscalar masses and decay constants were performed in ref. [96].
It turned out that the Nf = 3 chiral expansions led to rather poor fits, related to very
significant next-to-leading order contributions compared to leading order terms, in particular
for the decay constants, related to large contributions from kaon loops. In other words, the
dependence of these quantities on the strange quark mass seen in these simulations is not
accounted for properly by next-to-leading order SU(3) chiral perturbation theory. This led
the authors in ref. [96] to perform fits to Nf = 2 chiral expansions. The results obtained in
ref. [96] that are relevant for our discussion are summarised in table 4.6.

We will compare these results with the outcome of our fits (sec. 4.3.2), which will illustrate
the impact of the choice of the chiral series.
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r 28.8± 0.4
Y (3) 0.88 ± 0.01
Z(3) 0.76 ± 0.04
FK/Fπ 1.189 ± 0.020

m̃s,ref/ms 1.19
ms(2 GeV)[MeV] 72.72 ± 0.78
m(2 GeV)[MeV] 2.527 ± 0.047
B0(2 GeV)[GeV] 3.869 ± 0.092

F0[MeV] 83.8± 6.4
L4(µ) · 103 −0.06± 0.10
L5(µ) · 103 1.45 ± 0.07
L6(µ) · 103 0.03 ± 0.05
L8(µ) · 103 0.61 ± 0.04
Y (2) 0.96 ± 0.01
Z(2) 0.88 ± 0.01

B(2 GeV)[GeV] 0.96 ± 0.01
F [MeV] 88.2± 3.4

ℓ̄3 3.14 ± 0.23
ℓ̄4 4.04 ± 0.19

Σ/Σ0 1.205 ± 0.014
B/B0 1.073 ± 0.055
F/F0 1.065 ± 0.058

Table 4.6: Results obtained by the PACS-CS collaboration with one-loop perturbative renor-
malisation and extrapolation to the physical limit [96]. The values for the quantities in the
Nf = 2 chiral limit correspond to Nf = 2 fits to the so-called Range I with finite-size effects
included. The renormalization scale µ is set at Mρ. We have evaluated from their results
the values the parameters Y and Z.

4.3 Fits to lattice data

4.3.1 Observables and Parameters

For the observables under consideration, we turn to the decay constants, masses and Kℓ3

form factors described in secs. 3.4 and 3.6: We will consider these observables for Nf = 3
simulated dynamical flavours in the isospin limit: m̃, m̃ and m̃s. X̃ denotes the values for
the lattice quantities (whereas the tildeless notation X is the corresponding value for the
physical ones). In addition to the ratio r = ms/m of the physical quark masses, the leading
order chiral parameters X(3) and Z(3) (eq. (3.13)), and the higher-order parameters, we
introduce the following ratios for the masses on the lattice:

p =
m̃s

ms
, q =

m̃

m̃s
(4.2)

The relevant lattice observables X̃ are now functions of p and q as well as X(3), Z(3),
r and the miscellaneous remainders, which will have to be estimated to take into account
the fact that the simulated quark masses are different from the physical ones as explained
in sec. 4.3.1.

Following the same approach as in sec. 3.4.1, we get the following expansions for the
decay constants on the lattice:
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◦
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P is the leading-order contribution to the simulated pseudoscalar masses:
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ẽP are the relative remainders of order O(m̃2
q) (with m̃q denoting either m̃s or m̃). Sim-

ilarly, the chiral expansions for the masses on the lattice reads:
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d̃P are the relative remainders of order O(m̃2
q). The low-energy constants Lri , being

quark mass independent, are identical for the chiral expansions of X and X̃ . Following the
discussion of Chapter 3, they can be re-expressed in terms of the parameters X(3), Z(3), r,
the physical decay constant and mass F 2

π , M2
π , F 2

K , M2
K , and the higher-order remainders at

the physical point as in equations (3.24)-(3.27).

We proceed in a similar fashion for the vector and scalar form factors:
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Following the prescription discussed in sec. 3.3.2, the functions L̃PQ(t), K̃PQ(t), M̃PQ(t)
are evaluated with the leading-order pseudoscalar masses at the simulated quark masses
using eq. (4.5), apart from the J̄PQ function which is evaluated at the simulated pion and
kaon masses using eqs. (4.3)-(4.4) and (4.6)-(4.7). In the formulae (4.8) and (4.9), the decay
constants on the right-hand side arise from the reexpression of L4 and L5, and should be
understood as a short-hand notation of the full expressions in eqs. (4.3)-(4.4). For the vector
form factor, we can trade L9 for the pion electromagnetic square radius using eq. (3.74).

We will then use the following inputs for the evaluation of the various observables:

• F̃ 2
π , F̃

2
K , F̃

2
πM̃

2
π , F̃

2
KM̃

2
K (eqs. (4.3)-(4.4) and eqs. (4.6)-(4.7) respectively) for dif-

ferent values of the quark masses m̃ and m̃s, for the collaborations PACS-CS and
RBC/UKQCD

• F̃πF̃K f̃+, F̃πF̃K f̃0 (eqs. (4.8)-(4.9)) for different values of the quark mass m̃ (and
identical m̃s) and for several transfer momenta t for RBC/UKQCD.

There are several parameters entering the fits:

• The leading-order parameters of Resummed χPT, X(3) and Z(3), and the quark mass
ratio r (eqs. (3.13) and (3.14)).

• The value of pref , which is defined as pref = m̃s,ref/ms, for a data set of reference. It
provides the equivalence between the lattice and the physical quark masses.

• The ratio of the pion and kaon decay constants, FK/Fπ, left in our fit as a free param-
eter.

• The higher-order remainders d, d′, e, e′ (for all the fits), and also d+, e+, d−, e−, eVπ
when the data for the Kℓ3 form factors is involved.

The expressions for the simulated observables involve the higher order remainders whose
precise value is unknown (see sec. 3.4.2 and sec. 3.4.1). We can use the expected scaling
of the remainders in simulations where m̃s is significantly larger than m̃ to perform their
extrapolation to the simulated quark masses. From the discussion of sec. 3.4.2, we have
d̃′ = O(m̃, m̃s) ≃ p2qrd′, d̃ = O(m̃2

s) = p2d, the same holds for e′ and e respectively.
Therefore we obtain the scaling:
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(

FK
Fπ

)2

p2

(

e− r + 1

2
qre′

)

(4.11)

The input values for the remainders e, d, e
′
, d

′
, e+, d+, e−, d− can be found in

table 3.4.2.
The quantity pref is estimated for both collaborations, but in order to take partially into

account systematic effects related to the determination of lattice spacing and quark masses,
we keep this parameter free in our fits. Since the quark masses are expressed in a mass-
independent scheme involving only multiplicative renormalization, we can determine the
value of p for any data set once we know p for a given reference set using m̃s = (m̃s/m̃s,ref)×
pref .

When computing the values of the observables from the chiral series eqs. (4.3)-(4.4), (4.6)-
(4.7), and (4.8)-(4.9), we need the value of the decay constants and masses on the lattice,
F̃ 2
P , M̃2

P , for the simulated quark masses (for instance the unitarity functions J̄). Therefore,
we computed systematically the values of the decay constants and masses from the lattice
counterparts of their chiral expansions, eqs. (4.3)-(4.4) and eqs. (4.6)-(4.7), rather than
plugging their values obtained from the lattice simulations. This distinction may have some
importance for the Kℓ3 form factors, eqs. (3.97) and (3.104), where we have re-expressed L4

and L5 in terms of F̃ 2
π and F̃ 2

K .
Moreover, the mass M̃η and decay constant F̃η of the η are needed for the evaluation of

the one-loop integral J̄PQ (and the other unitary functions K, L, M , see Appendix A.1).
They are obtained at sufficient accuracy for such purposes using the two following leading-
order formulae reminiscent of the Gell-Mann-Okubo formula (see eqs. (6.6) and (6.7) in
Chapter 5):

F̃ 2
η =

4

3
F̃ 2
K −

1

3
F̃ 2
π , F̃ 2

η M̃
2
η =

4

3
F̃ 2
KM̃

2
K −

1

3
F̃ 2
πM̃

2
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To perform the fit we minimize a standard χ2 function built from the observables consid-
ered, using the “MINUIT” routine from the CERN program library. The uncertainties on
the simulated quantities are obtained by combining the uncertainties in quadrature; no cor-
relation between the different observables is provided in the articles of both collaborations.
Only the statistical errors are available, there is no estimate for the systematic uncertainties
for any of the relevant quantities. Furthermore, we propagate the errors exploiting the co-
variance matrix provided by the “MINOS” subroutine of the MINUIT package, assuming a
gaussian distribution for all the uncertainties calculated by MINUIT.

4.3.2 Results and discussion

Our results are summarized in table 4.7. The first seven rows correspond to the outcome
of the fit, whereas the lower rows are quantities derived from the results of the fit (leading
and next-to-leading order low-energy constants, quantities in the Nf = 2 chiral limit, Kℓ3

quantities, and the relative fraction of LO/NLO/remainders contributions at the minimum
of the χ2 for decay constants and masses), and the last row is the χ2 per degree of freedom.
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PACS − CS RBC/UKQCD

Without Kℓ3 With Kℓ3

r 26.5± 2.3 23.2± 1.5
X(3) 0.59 ± 0.21 0.20 ± 0.14
Y (3) 0.90 ± 0.22 0.43 ± 0.30
Z(3) 0.66 ± 0.09 0.46 ± 0.04
FK/Fπ 1.237 ± 0.025 1.148 ± 0.015

Rem. at limit none d, e
m̃s,ref/ms 1.24 ± 0.08 1.15⋆

ms(2 GeV)[MeV] 70± 4 107
m(2 GeV)[MeV] 2.6 ± 0.3 4.6 ± 0.3
B0(2 GeV)[GeV] 3.34 ± 1.18 0.92 ± 0.67

F0[MeV] 74.8± 4.9 62.2± 2.5

L4(µ) · 103 −0.1± 0.2 2.4 ± 2.0
L5(µ) · 103 1.8 ± 0.4 1.8 ± 1.6
L6(µ) · 103 0.1 ± 0.4 4.7 ± 7.1
L8(µ) · 103 0.8 ± 0.7 4.4 ± 7.1
L9(µ) · 103 × 4.4 ± 2.8

X(2) 0.90 ± 0.01 0.90 ± 0.02
Y (2) 1.04 ± 0.02 1.00 ± 0.03
Z(2) 0.87 ± 0.02 0.90 ± 0.02

B(2 GeV)[GeV] 3.83 ± 0.50 2.09 ± 0.19
F [MeV] 85.8± 0.7 87.7± 0.8

ℓ̄3 5.0 ± 2.1 −0.6± 3.7
ℓ̄4 4.5 ± 0.5 3.3 ± 0.5

Σ/Σ0 1.51 ± 0.51 4.52 ± 2.83
B/B0 1.15 ± 0.26 2.28 ± 1.39
F/F0 1.15 ± 0.08 1.41 ± 0.06

f+(0) 1.004 ± 0.149 0.985 ± 0.008
∆CT · 103 × −0.2± 12.1
∆′
CT · 103 × −126± 104

〈r2〉K+

V [fm2] × 0.248 ± 0.156

〈r2〉K0

V [fm2] × −0.027 ± 0.106

F 2
π 0.66 + 0.22 + 0.12 0.45 + 0.69 − 0.14

F 2
K 0.44 + 0.48 + 0.08 0.34 + 0.76 − 0.10

F 2
πM

2
π 0.60 + 0.30 + 0.10 0.20 + 0.95 − 0.15

F 2
KM

2
K 0.42 + 0.50 + 0.08 0.14 + 0.97 − 0.11

FπFKf+(0) × 0.40 + 0.75 − 0.15

χ2/N 0.9/3 4.4/8

Table 4.7: Results of fits performed on the data from the PACS-CS [96] and
RBC/UKQCD [99, 100, 101] collaborations on pseudoscalar masses and decay constants, and
Kℓ3 form factors in the case of RBC/UKQCD. In all cases, only statistical errors are shown.
In the RBC/UKQCD case, we fixed the lattice strange quark mass (marked with a star).
The LECs are given at the scale µ = mρ. In the PACS-CS case, the Kℓ3 form factor at zero
momentum transfer is a prediction of the fit (with an error combining those obtained from
the fit and the maximal contribution allowed for the remainder from dimensional estimation).
The penultimate set of rows collects the relative fractions of LO/NLO/remainders for decay
constants, masses and Kℓ3 form factor at vanishing transfer momentum (for RBC/UKQCD)
at the minimum.
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General remarks

The fit of RBC/UKQCD results includes only a limited number of data points for the
decay constants and masses, which forces us to fix one of the parameters of the fit − the
simulated strange quark mass. Letting all parameters free gives comparable results for the
central values, but some parameters get very large uncertainties, larger than their allowed
range. Therefore, propagating the errors in such a situation would be meaningless, and
reporting the results of this fit would not provide much information than the constrained fit
presented here.

It is also necessary to impose some bounds on the size of the higher-order remainders,
based on an estimate from resonance saturation as explained in sec. 4.3.1. Indeed, some
of these remainders are pushed to the limits of their range when the set of data is too
small, because there is not enough information for MINUIT to choose a particular value for
these remainders, while keeping them free would lead to a larger contribution from higher
orders and a further decrease of the leading-order contribution. Nonetheless, the situation
improves when data points for higher masses and momenta are included, so that remainders
remains small, within the rescaled window estimated in sec. 4.3.1 − the corresponding table
is provided in Appendix C.

From a qualitative point of view, it is interesting to notice that the results from RBC/UKQCD
are consistent with the fits to the PACS-CS data: r is close to 25, i.e., close to the ratio
2M2

K/M
2
π − 1, even though its value is left free in our framework. Also, we observe in

both cases a suppression of the two order parameters: the quark condensate remains around
X(3) ∼ 0.5, and the squared decay constant is Z(3) ∼ 0.6, leading to a value for the leading-
order term of the squared pion mass Y (3) ∼ 0.8.

Furthermore, the ratio of decay constants FK/Fπ, left free in our fit, comes out slightly
larger (respectively smaller) for PACS-CS (respectively for RBC/UKQCD) than its Standard
Model value, eq. 3.20, in the fit for the decay constants and masses, illustrating the impact
of the chiral extrapolation for the extraction of FK/Fπ. We obtain also values of simulated
strange quark masses and the physical mass in good agreement with the results obtained
by the two collaborations, the discrepancy between the two collaboration coming from the
different choice of renormalization procedure (which explains the low value obtained from
the PACS-CS data [97]). A later article of the same collaboration [97] considered simulations
directly performed at the physical point including non-perturbative renormalization. This
has induced a significant modification for the quark mass renormalisation factor, becoming
Zm = 1.441(15) (non-perturbative) instead of Zm = 1.114 (one-loop perturbation theory)
leading to an increase (decrease) in the values of quark masses (condensates) by a factor
1.30.

r 31.2 ± 2.7
FK/Fπ 1.333 ± 0.072

ms(2 GeV)[MeV] 92.75 ± 0.58 ± 0.95
m(2 GeV)[MeV] 2.97 ± 0.28 ± 0.03

Table 4.8: Results obtained from the PACS-CS collaboration [97] with non-perturbative
renormalization and simulation at the physical point.

This should be taken into account when comparing the results obtained from the PACS-
CS and RBC/UKQCD sets in this thesis. The results obtained in ref. [97] that are relevant
for our discussion are summarised in table 4.8, and can be compared with table 4.6. Since the
simulation was performed at the physical point, there is no further information on low-energy
constants describing the pattern of Nf = 2 and Nf = 3 chiral symmetry breakings.
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Order parameters

The decay constant in the Nf = 3 chiral limit (central values of F0 at 74.8 and 62.2
MeV for PACS-CS and RBC/UKQCD respectively) is found to be rather low, in agreement
with other recent works [111, 112]. The pattern of Nf = 3 chiral symmetry breaking (with
low quark condensate and decay constant) is reflected by the values obtained for the low
energy constants L4 and L6, which are both positive and do not show any sign of Zweig rule
violation (see sec. 2.7.1). As discussed in sec. 3.4.3, positive values of L4 and L6 are known
to induce a significant dependence of the LO chiral order parameters on the strange quark
mass, and therefore it is not surprising to witness a strong supression from the Nf = 2 chiral
limit to the Nf = 3 one.

Let us notice that we obtain values for Nf = 2 chiral order parameters which are in
agreement with the hypothesis of standard χPT, confirming that this framework is appro-
priate for the Nf = 2 sector as shown by the recent data on Kℓ4 decays [62, 63], though this
does not seem to be the case for Nf = 3. The other low energy constants L5,8,9 have values
in agreement with conventional estimates − this was expected in particular for L9 since the
resummed framework induces only minor modifications compared to the usual treatment of
chiral expansions for vector quantities such as the pion electromagnetic form factor.

In chiral expansions, tadpole diagrams generate chiral logarithms of the formM2
P log (M2

P /µ
2)

which can prove troublesome to fit. For instance, the RBC/UKQCD collaboration [99, 100,
101] finds a better agreement of their data on decay constants with polynomial fits than
with chiral series. In our treatment, these chiral logarithms always involve the leading-

order mass
◦
M

2

P . Therefore, a small value of Y (3) tames the chiral logarithms of the form
◦
M

2

P log (
◦
M

2

P /µ
2) in our expansions, so that they become hard to distinguish from a polyno-

mial at the numerical level on the range of masses where Chiral Perturbation Theory could
be valid.

Furthermore, large contributions from next-to-leading order low energy constants, and in
particular L4 and L6 as just discussed, will enhance the quadratic dependance on the quark
masses, and thus the chiral expressions in the resummed framework shall mimic a polynomial
dependence on the quark masses that can not be reproduced in the more usual treatment of
chiral expansions. These mechanisms could explain why chiral logarithms are often difficult
to identify in lattice data, in addition to other effects like a heavy strange quark mass or
lattice systematics.

Kℓ3 form factors

The Kℓ3 form factor at zero momentum transfer, f+(0) = f0(0), involves only the low
energy constants L4,5,6,8, related to decay constants and masses (eq. 3.97). In principle, it
can be predicted from a fit of the latter quantities up to the determination of the remainder
d+. We quote the corresponding results in table 4.7, where the central value for f+(0)
corresponds to the remainders set to zero. The uncertainty on this quantity includes the
maximal size allowed for the remainder d+ based on the dimensional estimate presented
in table 3.4.2, as well as the uncertainties coming from the parameters of the fit. Indeed,
the higher-order remainder d+ hinders any accurate determination of f+(0), unless its value
is also precisely determined from the fit, which is possible once data on Kℓ3 form factors
themselves is included (second column of table 4.7).



98 Analysis of Nf = 2 + 1 lattice data using Resummed Chiral Perturbation Theory

The obtained values for f+(0) are somewhat larger than the Standard Model value,
eq. (3.96), as well as those obtained from the RBC/UKQCD collaboration using different
forms for the extrapolation in quark masses [100, 101]. This illustrates the importance of
the mass extrapolation for lattice simulations at the level of accuracy which is currently
aimed. A particular attention was paid in ref. [101] to the structure of the chiral expansion
of f+(0) = 1 + f2 + f4, where f2 is the next-to-leading order contribution and f4 all the
higher orders. It only involves a combination of chiral logarithms, divided by F 2

0 :

f2 = − 3

256π2F 2
0

[

(M2
K +M2

π)h
(M2

π

M2
K

)

+ (M2
K +M2

η )h
(M2

η

M2
K

)

]

, h(x) = 1 +
2x

1− x2
log x

(4.13)

f2 is free from low energy constants, and thus is said to be known precisely from Chiral
Perturbation Theory. This statement is not totally correct for the following reasons: one
assumes that the value of F0 is close to that of Fπ, so it can be replaced in actual calculations
by the physical value of the pion decay constant, leading to the estimate f2 ≃ −0.023. Since
the difference between the two quantities is a higher-order effect, one can always perform this
replacement. However, using such a prescription, one has to determine how large the higher-
order term f4 can be − and consequently how well the chiral series for f+ converges. If F0 is
significantly lower than Fπ, this forces us to treat the next-to-leading order contribution to
f+(0) more carefully. Besides, we advocated that correlators of vector and axial currents yield
observables with good convergence properties, selecting FπFKf0(0). In this case, we shou ld
replace F 2

0 by FπFK in the evaluation of eq. (4.13), as can be checked in our expression for
f+, eq. (3.97).

Finally, once the Kℓ3 form factors are included in our fits, L9 can be determined from
the pion electromagnetic radius 〈r2〉πV even though the fit does not constrain tightly this
particular low-energy constant. In table 4.7, the deviations from the Callan-Treiman relation
at t = ∆Kπ and its soft-kaon analog at −∆Kπ are given. Their values are of the expected
size for chiral-symmetry breaking quantities for Nf = 2 or 3 flavours respectively, and thus
with the ones obtained in standard Chiral Perturbation Theory, eq. (3.111). The value of
the square radii of the charged and neutral kaons, also shown, have rather large uncertainties
and thus within experimental errors bars, eqs. (3.85-3.88).

Convergence of chiral series

In the last lines of table 4.7 (the five rows before the last), we have indicated for each
fit the contribution from leading, next-to-leading, and higher order remainders, to decay
constants and masses for values of the parameters at the minimum of the fit. We can see
that the series converge well on overall (the HO remainders being much smaller than the sum
LO+NLO), but that the leading order term is far from saturating the series. The values of
Y (3) obtained is smaller than 1, reducing the contribution from chiral logarithms compared
to that from the next-to-leading order low energy constants. We see that the results are
different from the results obtained by the collaborations.

Now does the choice of the chiral series (resummed or standard) have any specific impacts
on the results of the fit ? We can compare the results obtained from the resummed frame-
work (table 4.7) with those from a fit of the same observables, where the next-to-leading
and higher-order contributions (chiral logarithms µP , low energy constants Li, and the re-
mainders) are computed replacing 2mB0, (m+ms)B0 and F0 by the physical pion and kaon
masses and the pion decay constant. This is equivalent to performing the same fit as before
with the following replacements in the next-to-leading order and higher-order contributions:
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r → 2
M2
K

M2
π

− 1, q → M̃2
π

2M̃2
K − M̃2

π

, p→ 2M̃2
K − M̃2

π

2M2
K −M2

π

, Y (3)→ 1 (4.14)

η(r)→ η(r0), ǫ(r)→ ǫ(r0)− 2X(3)
r − r0
r20 − 1

, log

◦
M

2

P

µ2
→ log

M2
P

µ2
(4.15)

both for the observables that we consider, eqs. (4.3)-(4.4), (4.6)-(4.7) and eqs. (4.8-
4.9); and the equations allowing the determination of L4,5,6,8,9, eqs. (3.74) and (3.36)-(3.39).
For PACS-CS collaboration, this leads to a χ2 over degrees of freedom N : χ2/N = 1.1/3
- compared to our result 0.9/3, with very similar values for the fundamental parameters
r,X(3), Y (3), Z(3). For RBC/UKQCD, the fitting procedure yields χ2/N = 9.5/8 (compared
to our result 4.4/8), with much more uncertain values of the fundamental parameters (i.e. r =
14.9±12.1, X(3) = 0.30±0.26, Y (3) = 0.68±0.60). This is not particularly surprising since
our fits to the PACS-CS data led to values of r and Y (3) in good agreement with eq. (4.14),
but not the RBC/UKQCD ones. The corresponding convergence of the pseudoscalar masses
and decay constants is then, with the relative contribution for leading, next-to-leading and
higher orders:

Observable PACS-CS RBC/UKQCD

F 2
π 0.64 + 0.26 + 0.10 0.45 + 0.70 − 0.15

F 2
K 0.42 + 0.51 + 0.07 0.34 + 0.76 − 0.10

F 2
πM

2
π 0.67 + 0.24 + 0.09 0.31 + 0.81 − 0.12

F 2
KM

2
K 0.50 + 0.44 + 0.06 0.15 + 0.94 − 0.11

Table 4.9: Sum of the relative contributions LO+NLO+HO in the case of physical masses
and pion decay constant.

There is no saturation of the series by their leading order. We see that our formulae yields
results that are in good agreement with those obtained after reexpressing the next-to-leading
order contributions in terms of Fπ,Mπ,MK in the PACS-CS case, where Y (3) is close to 1.
On the other hand, when Y (3) is not close to 1 (for instance, in the RBC/UKQCD case), our
formulae provide more efficient and accurate fits (lower χ2 and smaller error bars). From
a more methodological point of view, we avoid a perturbative reexpression of low energy
constants in terms of Fπ,Mπ,MK , in a regime where it is not justified.

Our results confirm the difficulties reported by the two collaborations to fit Nf = 3 next-
to-leading order chiral expressions usually used, and highlights the improvement provided
by our ReχPT formulae for the extrapolations in quark masses of these quantities. As a
further check, we have performed fits where we have taken that the physical masses (and
not the leading-order ones) in the unitarity functions J,K,L,M and the argument of the
chiral logarithms (similarly to what was done in ref. [83]). The quality and parameters of the
fits are almost unchanged, and the outcome for the derived quantities is also very similar,
meaning that the relevant issue is the proper choice of the ”good observables” whose chiral
series converge well.

4.3.3 Impact of alternative treatments of unitarity contributions

As discussed in sec. 3.7, there exist alternative prescriptions concerning the replacement

of leading order masses
◦
M

2

P by their physical values in the unitarity contributions. We
have indicated that the prescription adopted in ref. [92] and in the present thesis exhibits
a logarithmic divergence when Y (3) → 0. As pointed out in ref. [85], one can avoid this
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unwelcome divergence by replacing the leading order masses by the physical ones in JrPQ(0)
in Zu. This induces very limited changes in our analyses, i.e. the following change in the
expressions of the form factors:

t log

◦
M

2

P

µ2
→ t log

M2
P

µ2
(4.16)

whereas masses and decay constants remain unaffected. leading order masses should
then be replaced by physical masses in the arguments of the logarithms for F 2

πF
π
V , eq. (3.66),

and 〈r2〉πV , eq. (3.71), the definition of Lr9 in eq. (3.74), F 2
KF

K+

V , eq. (3.77) and F 2
KF

K0

V ,
eq. (3.78), as well as 〈r2〉πK+, eq. (3.82). We have performed the RBC/UKQCD fit with this
new prescription 2. As could be expected from the outcome of the fit with Y (3) not extremely
close to 1, there is almost no change with respect to the previous fit, with a χ2 = 4.4/8 and
values of the fundamental parameters almost unchanged:

r = 23.2 ± 1.7, X(3) = 0.20 ± 0.16, Y (3) = 0.44 ± 0.34, Z(3) = 0.46 ± 0.04 (4.17)

L9 is unaffected, but the predictions for the kaon radii are slightly modified:

〈r2〉K+

V = 0.220 ± 0.155 fm2, 〈r2〉K0

V = −0.028 ± 0.106 fm2 (4.18)

We see that even in this case where Y (3) can be rather small (but not strictly zero), the
overall picture is not modified by different prescriptions concerning the logarithms coming
from JrPQ(0) in Zu and affecting (in principle) the chiral expansion of the form factors.

As described in sec. 3.7, other prescriptions have been proposed to modifiy the unitarity
part of the chiral expansions in order to ensure that higher-order remainders will be small. In
order to check the stability of our results, we have also performed a fit of the RBC/UKQCD
data with the prescription of ref. [81]. We obtain a slightly better fit χ2 = 4.0/8, with
essentially the same fundamental parameters:

r = 23.1 ± 1.4, X(3) = 0.19 ± 0.13, Y (3) = 0.43 ± 0.30, Z(3) = 0.44 ± 0.03 (4.19)

A few quantities are slightly modified:

FK
Fπ

= 1.152±0.013, F0 = 61.4±2.2 MeV, L5(Mρ)·103 = 3.0±2.4, 〈r2〉K+

V = 0.220±0.155 fm2

(4.20)
whereas the rest of the outcome is essentially unchanged. We see therefore that the

prescriptions of refs. [81] and [92], though different in principle, yield very similar results in
practice, which gives us further confidence in the stability of our results with respect to the
prescriptions adopted for the unitarity and tadpole contributions.

4.4 Summary

In this chapter, we presented the methods and results found in ref. [92]. We used the 2 + 1
lattice data provided by the RBC/UKQCD [99, 100, 101] and PACS-CS [96] collaborations,
in order to fit the expressions of decay constants, masses and Kℓ3 form factors obtained in
the framework of Resummed χPT. After a presentation of our fitting method, we shown our
results and discussed their various issues. We pinpoint here the main tendencies:

2The fit of PACS-CS involves masses and decay constants only and is not affected by the change of
prescription.
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• The decay constant and the quark condensate in theNf = 3 limit (mu = md = ms = 0)
are both small and suppressed compared to the Nf = 2 case (mu = md = 0 and ms

physical).

• The low-energy constants L4 and L6 do not follow the Zweig rule suppression generally
advocated to set them to zero at the η-mass scale.

• The other low-energy constants L5, L8 and L9 have values in good agreement with
usual estimates.

• The ratio of quark masses r remains quite close to the most simple estimate from
pseudoscalar masses.

• Nf = 2 chiral order parameters are in good agreement with the values extracted from
Kℓ4 decays.

• When the sets of data are large enough, the NNLO remainders remain in the expected
range from a naive dimensional estimate.

• The expected numerical competition between leading and next-to-leading order chiral
expansions indeed occurs for F 2

π , F 2
K , F 2

πM
2
π and F 2

KM
2
K .

Beyond this description of the pattern of Nf = 3 chiral symmetry breaking and its
implication for the convergence of chiral expansions, we point out that the values obtained
for the kaon electromagnetic radii are in good agreement with experimental data. In the case
of RBC/UKQCD, the value obtained for the Kℓ3 form factor f+(0) with our fits is slightly
larger than the ones quoted by the collaboration, relying on alternative formulae for the
chiral expansion of the Kℓ3 form factors. This has naturally an impact on the determination
of |Vus|, considering the level of accuracy achieved in Kℓ3 decays [66, 67].

We should also emphasize that the framework of Resummed χPT used in those fits does
not contain any bias concerning the size of X(3), Y (3) and Z(3) or on the relative size
of the leading and next-to-leading orders contributions. It is compatible with the usual
assumptions that chiral series of decay constants, squared masses and Kℓ3 form factors are
saturated by their leading order contribution, but it also accommodates situations where
there is a numerical competition between leading order and next-to-leading order terms.
It turns out that the lattice data set from the RBC/UKQCD and PACS-CS collaborations
favour values for the three quantities X(3), Y (3), Z(3) smaller than 1, with a χ2/d.o.f. which
ranges from fairly good to excellent.

Finally, lattice simulations could provide a valuable tool to investigate some issues related
to the structure of QCD vacuum. In the two last chapters of this thesis, we shall turn
to the study of the two topological quantities introduced in Chapter 1: the topological
susceptibility and the fourth cumulant of the winding number, which will be studied in the
light of Resummed χPT (Chapter 5). We will also include the topological susceptibility in
the fits presented here and discuss further uses concerning lattice data (Chapter 6).
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Chapter 5

Topological observables

5.1 Introduction

We have seen in the previous chapter that one can use the dependence of the spectrum of
pseudoscalar mesons on the light quark masses to extract information on the quark con-
densate and the decay constant in the Nf = 3 chiral limit. Two alternative strategies are
often used in lattice simulations to determine the three-flavour quark condensate, both being
related to the topological properties of QCD on the lattice: the first one consists in studying
the infrared end of the spectrum of the Dirac operator directly, as the accumulation of its
eigenvalues around zero provides information on the value of the quark condensate [74, 113]
(see sec. 1.4.4). We will not address this type of determination in this thesis, even though
we notice that lattice determinations of the condensate by this method found a suppression
for the three-flavour case (Σ(2)/Σ(3) = 1.30± 0.54 in [117]). Another possibility consists in
studying the topological susceptibility χt and the fourth cumulant c4 of the winding number
ν defined in the last paragraph of sec. 1.4.5, which will be the main focus of the present
chapter.

The work presented in this chapter is the object of the articles [93, 94]. After having
re-stated the definitions of χt and c4, we will obtain their expressions up to next-to-leading
order in Nf = 3 χPT, in the standard and in the Resummed frameworks. In particular, we
will discuss the importance of identifying the η-pole in these results in order to minimize
the size of higher order remainders. We will analyse briefly the potential of the topological
suceptibility and the fourth cumulant to extract the pattern of three-flavour chiral symmetry
breaking before drawing some first few conclusions.

5.2 Derivation through the effective potential

5.2.1 Structure of the one-loop generating functional

In the case of large volumes and small quark masses, the partition function is dominated by
the lightest states of the theory, i.e. the pseudoscalar Goldstone bosons, and therefore it is
possible to rely on Chiral Perturbation Theory to extract information concerning χt and c4
through (1.83). Dealing with constant source terms, we can focus on modes with vanishing
momentum, i.e. the matrix collecting the Goldstone bosons becomes independent of the
space-time coordinates x:

Z[θ0,M ] =

∫

[DU ]e−V Leff [U,θ0,M ] = e−VW [θ0,M ] (5.1)

Leff being the χPT lagrangian, and W is the Euclidean effective potential, which can
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be derived at one-loop from the expression found in [2] in the Minkowskian metric. As
shown in [3], in the case of finite-volume simulations with periodic boundary conditions, the
effective theory is described by the same lagrangian as in the infinite volume. The properties
of this partition function have been extensively studied in refs. [74, 113], and in particular
the distribution of the winding number ν according to the leading-order chiral lagrangian.

The source θ(x) in the generating functional (see sec. 2.4.2) is only affected by axial
flavour-singlet transformations, and thus connected to that of the (pseudo)scalar source
term through (from (2.22) and (2.42)):

[s(x) + ip(x) = M, θ(x) = θ0]↔ [s(x) + ip(x) = gLMg†R, θ(x) = θ0 + arg(det[M ])] (5.2)

with M being the general quark-mass matrix. If one of the quark masses is equal to zero,
this transformation can also be used to shift the vacuum angle θ0 by an arbitrary amount
without modifying the theory: the χPT effective potential becomes independent of θ0, and
its derivatives, i.e., χt and c4, should vanish in this limit.

In refs. [93, 119, 133], the same approach was carried out using the next-to-leading order
chiral lagrangian in order to compute the chiral expansion of the topological susceptibility
χt, using either the generic approach from the effective potential or diagrammatic analysis,
and to assess its potential in extracting the three-flavour chiral condensate from lattice
computations. In a similar way, the fourth cumulant c4 can be computed at next-to-leading
order χPT using the same methods.

We can follow the arguments of ref. [119] to derive the expression of the topological
susceptibility and c4 in an elegant way using the effective potential of the theory. The latter
can be obtained from the one-loop generating functional Z discussed in sec. 2.5.4, but in the
absence of a source term for the vacuum angle. This is however sufficient for our purposes,
as a constant source term θ can be introduced in the effective potential via an anomalous
UA(1) rotation which leaves the generating functional invariant: Z(s + ip = s0 + ip0, θ =
θ0) = Z((s0 + ip0)e

iθ0/N , 0) (see eq. (2.43)).
The one-loop generating functional Z computed in [2] is thus enough for our purposes

since we want to determine the contribution of order O(θ4) in the effective potential. We set
the sources

vµ = aµ = 0, (s + ip) =Meiθ/N M = diag(m1, . . . mN ) (5.3)

where N denotes the number of light flavours considered (we use here the notation N
instead of Nf to simplify the writing). It is easy to determine the classical solution to the
leading order equation of motion under the form:

Ū = (eiα1 . . . eiαN )
∑

j

αj = 0 (5.4)

which should minimize the leading order lagrangian (eq. (2.46), extended to the case of
an arbitrary number of flavours [115]):

L(2)
eff = F 2

NBN
∑

j

mj cos(φj) (5.5)

with φj = θ/N − αj under the condition that
∑

j φj = θ. This lagrangian involves the

pseudoscalar decay constant FN and the chiral condensate Σ(N) = −F 2
NBN in the chiral

limit of N massless flavours.
Using a Lagrange parameter, we can determine the minimum as an expansion in powers

of θ [119]:
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φi =
m̄

mi
θ +

[

(

m̄

mi

)3

−
(

m̄

mi

)

m̄3

m̄[3]

]

θ3

6
+O(θ5) (5.6)

where we have introduced the notation for the various sums and harmonic means:

m̄[k] ≡ 1
∑

j
1
mk

j

, s[k] ≡
∑

j

mk
j , m̄ ≡ m̄[1] , s ≡ s[1] (5.7)

We can then plug this expression into the one-loop generating functional Z (eq. (2.65))
evaluated at the point eq. (5.3) (there is no contribution from the anomalous part ZA).

Zt/V →
∑

P





N

2(N2 − 1)
F 2
N −

◦
M

2

P

32π2
log

◦
M

2

P

µ2



σχPP (5.8)

+ 16B2
NL

r
6;N (µ)





∑

j

mj cos φj





2

− 16B2
NL

r
7;N (µ)





∑

j

mj sinφj





2

+ 8B2
NL

r
8;N (µ)

∑

j

m2
j cos 2φj

Zu/V →
1

4

∑

P,Q

∫

dx JrPQ(x)σχPQσ
χ
QP (5.9)

with:

σχPQ =
BN
4
〈{λP , λ†Q}(uMue−iθ/N + u†Mu†eiθ/N )〉 − δPQ

◦
M

2

P (5.10)

=
BN
2
〈{λP , λ†Q}A〉

u = (eiα1/2 . . . eiαn/2) , A = (m1(cosφ1 − 1), . . . mN (cosφN − 1)) (5.11)

◦
M

2

P denotes the leading-order contribution to the masses of the N2 − 1 pseudoscalar

mesons, Jr corresponds to the one-loop scalar integral with two mesons P and Q, and L(2)
eff

is the next-to-leading order chiral lagrangian (eq. (2.62)) collecting low-energy constants, in
particular those denoted L6, L7, L8 in the basis of operators in eq. (2.62) for N = 3 χPT.

Using eq. (5.6), we have the expansion of the trigonometric functions:

∑

j

mj cos φj = s− m̄θ2

2
+

m̄4

m̄[3]

θ4

24
+O(θ6) (5.12)

∑

j

mj sinφj = Nm̄θ −N m̄4

m̄[3]

θ3

6
+O(θ6) (5.13)

∑

j

m2
j cos 2φj = s[2] − 2Nm̄2θ2 +

2

3
N
m̄5

m̄[3]
θ4 +O(θ6) (5.14)

as well as the expansion of σχ:



106 Topological observables

σχPQ =
BN
2

∑

i

{λP , λ†Q}iimi

[

−
(

m̄

mi

)2 θ2

2
+

(

m̄

mi

)2
[

4
m̄3

m̄[3]
− 3

(

m̄

mi

)2
]

θ4

24
+O(θ6)

]

(5.15)

and the scalar integral at vanishing transfer momentum (see Appendices A.1 and A.2 for
a detailed account of J̄PQ and σχPQ):

∫

dx JrPQ(x) = −2kPQ = − 1

16π2

◦
M

2

P log
◦
M

2

P

µ2 −
◦
M

2

Q log
◦
M

2

Q

µ2

◦
M

2

P −
◦
M

2

Q

(5.16)

so that all the elements in Zt and Zu are simple functions of the quark masses and the
low-energy constants.

5.2.2 NLO expression of the topological susceptibility and the fourth cu-
mulant

• Topological susceptibility:

We are now in a position to determine the one-loop expression of the first two cumulants
of the winding number. At the order O(θ2), needed for the topological susceptibility χt, one
has the following contribution:

Zt/V → θ2

2

[

−BNF 2
Nm̄+B0

∑

P,i

◦
M

2

P

64π2
log

◦
M

2

P

µ2

m̄2

mi
{λP , λ†P }ii (5.17)

−32B2
NL

r
6;N (µ)sm̄− 32B2

0L
r
7;N (µ)N2m̄2 − 32B2

0L
r
8;N (µ)Nm̄2

]

Zu/V → 0 (5.18)

Using the summation formula:

∑

P

{λP , λ†P }ij =
4(N2 − 1)

N
δij (5.19)

the expression of the topological susceptibility at one loop given in refs. [93, 119, 133] is
recovered in a straightforward way:

χt = BNF
2
Nm̄−BN

∑

P,i

◦
M

2

P

64π2
log

◦
M

2

P

µ2

m̄2

mi
{λP , λ†P }ii (5.20)

+ 32B2
NL

r
6;N(µ)sm̄+ 32B2

NN [NLr7;N (µ) + Lr8;N (µ)]m̄2

Let us notice that ref. [119] obtained this result by determining the classical solution
eq. (5.6) corresponding to the minimum of the chiral Lagrangian up to next-to-leading or-
der. This is actually an unnecessary complication, since the expression of the one-loop
effective potential given in ref. [2] is precisely designed to require the classical solution from
the leading-order Lagrangian only. Indeed we recover the expression of the topological sus-
ceptibility without performing the same elaborate minimization of ref. [119].
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In the case of Nf = 3, we have performed the calculation keeping all orders in strong
isospin-breaking and obtained (the meaning of the notation “no pole” will be explained in
the following section when we perform the same calculations using diagrammatic methods):

χno pole
t = m̄F 2

0B0 + 32m̄(mu +md +ms)B
2
0L

r
6(µ) + 96m̄2B2

0(3L7 + Lr8(µ)) (5.21)

− m̄2B0

32π2
×
[

∑

i6=j

(mi +mj)
2B0

mimj
log

B0(mi +mj)

µ2

+
(mu +md

mumd
+

2 sin ǫ cos ǫ√
3

md −mu

mumd

+
2

3
sin2 ǫ

2mumd −ms(mu +md)

mumdms

) ◦
M2
π0 log

◦
M2
π0

µ2

+
(4mumd +ms(mu +md)

3mumdms
− 2 sin ǫ cos ǫ√

3

md −mu

mumd

− 2

3
sin2 ǫ

2mumd −ms(mu +md)

mumdms

) ◦
M2
η log

◦
M2
η

µ2

]

+O(m3
q)

This expression is indeed independent of the renormalization scale µ and agrees with
ref. [119] in the isospin limit, as expected. In the isospin limit m = mu = md for N = 3
flavours, one has [93, 119, 133]:

χno pole
t =

B0F
2
0mms

m+ 2ms
(5.22)

+
32mmsB

2
0L

r
6(µ)(2m2 + 5mms + 2m2

s)

(m+ 2ms)2
+

96m2m2
sB

2
0 [3L7 + Lr8(µ)]

(m+ 2ms)2

− 3B2
0m

2m2
s

8π2(m+ 2ms)2
log

◦
M

2

π

µ2
− mmsB

2
0(m+ms)

2

8π2(m+ 2ms)2
log

◦
M

2

K

µ2

− mmsB
2
0(2m+ms)

72π2(m+ 2ms)
log

◦
M

2

η

µ2
+ χno pole

t d
χno pole

t

where d
χno pole

t
is a remainder collecting higher-order contributions, which starts atO(m2).

The leading order formula for the topological susceptibility was exploited by the TWQCD
collaboration to extract the value of the three-flavour quark condensate [120] from RBC/UKQCD
configurations with 2+1 domain-wall fermions [98]: Σ(3, 2 GeV) = [259(6)(9) MeV]3 (in the
MS scheme). Another study was performed by the RBC and UKQCD collaborations based
on data at larger volumes using the NLO formula [122], but it was not fully exploited as only
a consistency check with the dependence on mu,d was performed and the three-flavour quark
condensate was not determined by this method. It seems obvious that an accurate determi-
nation of the quark condensate from the topological susceptibility requires to go beyond a
leading-order analysis, the same remark also applies for the fourth cumulant c4.
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• Fourth cumulant:

At the order O(θ4) leading to the fourth cumulant c4, the one-loop generating functional
reads:

Zt/V → θ4
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which yields the one-loop expression of the fourth cumulant:
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To our knowledge, eq. (5.26) is the first next-to-leading order computation of the fourth
cumulant in χPT. Let us add that this formula agrees with the leading-order result presented
in ref. [119]. Equations (5.20) and (5.26) could be used in principle to derive the expression
of χt and c4 for an arbitrary number of flavours N . However, one should emphasise that
the notation and definitions of the low-energy constants in these equations are derived from
the three-flavour case which will be our main focus. In sec. 5.5, we will discuss how these
formulae must be adapted in the case of N = 2 Chiral Perturbation Theory.

Coming back to three flavours, it is straightforward to check that our next-to-leading
expression for c4 is indeed scale independent, even in the presence of strong isospin. In the
isospin limit m = mu = md, one can find easily the expression for c4 (the meaning of the
notation “no pole” will be explained in the following section when we will perform the same
calculations using diagrammatic methods):
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where dno pole
c4 is a remainder collecting higher order contributions, starting at O(m2

q).
The above formula features chiral logarithms of different origins. Some of them come

from tadpole contributions (Zt), whereas others stem from the loop function JrPQ taken at
vanishing momentum transfer as indicated in eq. (5.16) (Zu). At this order, one could in
principle redefine the argument of (some of) the logarithms in order to have physical masses
instead of leading order masses. This change would not affect the rest of next-to-leading order
expansion, apart from a redefinition of higher order remainders. Following the discussion in
refs. [81, 85, 92], we will consider either the above prescription where all the logarithms have
leading order masses as their arguments, or the one where we take physical masses for the
unitary logarithms but leading order ones for the tadpole logarithms (for a discussion about
this topic see secs. 3.3.2 and 3.7). If we perform this separation, we obtain:
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It is obvious that the higher order remainder d′c4
no pole has absorbed this redefinition

of the argument of the logarithms. In the following section, we will show the computation
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for c4 using Feynman diagrams and performing this distinction, keeping in mind that we
can always revert to the prescription in eq. (5.27) by setting leading order masses in the
argument of all the logarithms. For both prescriptions eqs. (5.27) and (5.28), we see that c4
vanishes in the limit where m = 0 or ms = 0. This is expected since the effective potential
becomes independent of θ in the limit where at least one of the quark masses vanishes, as
the vacuum angle can be rotated away through an anomalous UA(1) rotation.

5.3 Derivation using diagrammatic analysis

5.3.1 Combinatorics

It is also possible to derive the value of χt and c4 using the formalism of Feynman diagrams in
Nf = 3 χPT. It is obviously completely equivalent to the previous approach in terms of the
one-loop generating functional, but it allows one to separate the contributions coming from
the propagation of the different meson fields. Computing the second and fourth derivatives
of the generating functional with respect to θ, we obtain:

δ2Z

δθ2

∣

∣

∣

∣
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+
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with L =
∫

Leff . At leading order, only the leading-order chiral Lagrangian L(2)
eff (eq. 5.5)

is needed, and more precisely, as all incoming momenta vanish, the mass term with Meiθ/N .
The tree diagrams generated for both quantities χt and c4 are indicated in figures 5.1 and 5.2
respectively, in the same order as the derivatives in eq. (5.29). χt and c4 are derived from
W [θ] with θ = Cst meaning that all mesons lines have vanishing momentum. Using the

expression (2.46) of L(2)
eff , we obtain for the first two derivatives in terms of U , M and θ, for

Nf = 3:
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4
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δ2L(2)
eff

δθ2
= −1

9
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4
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We now proceed to the expansion in Φ as in eq. (2.48) to illustrate the coupling between
the light mesons and the θ induced vertices. Setting θ to 0, we get, with Φ defined in
sec. 2.4.3:
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6F 4
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We see that a θ induced vertex from an even(odd) number of derivatives can only couple
to an even (odd) number of vertices. Moreover, since χ = 2mB0, we see that a single meson

coupling to δL(2)
eff/δθ is necessarily an η meson in the isospin limit.
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Now it is easy to compute these diagrams, with the respective contributions in the isospin
limit:
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corresponding, as expected, to the leading order results obtained in the previous section.
In eqs. (5.32) and (5.33), the terms are indicated in the same order as the derivatives in
eqs. (5.29). The third term in eq. (5.29) cannot yield any contribution to c4 at tree level,
whereas the fifth term yields both diagrams 4 and 5. In figures 5.1 and 5.2, the number inside
each circle indicates the number of derivatives with respect to θ applied to L1 to obtain the
corresponding θ-induced vertex, whereas the four-leg central vertex in diagram 5 is obtained
directly from L1 (taking the term proportional to B0, which has no derivatives).

Moving to next-to-leading order, we can dress the tree diagrams by a) inserting a vertex

from the next-to-leading order lagrangian L(4)
eff eq. (2.62) inside one of the propagators, b)

replacing a θ-induced vertex from L(2)
eff by its counterpart from L(4)

eff , c) adding a loop on one

of the θ-induced vertices from L(2)
eff , d) adding a vertex from L(2)

eff to build a loop either as a
rescattering diagram or a tadpole on one of the propagators. These operations are illustrated
in figures 5.1, 5.3 and 5.4. The number inside each circle (respectively square) indicates the

number of derivatives with respect to θ applied to L(2)
eff (respectively L(4)

eff to obtain the
corresponding θ-induced vertex. In addition to dressing the diagrams in figure 5.2, one can

also take more legs out of the θ-induced vertices from L(2)
eff and draw new diagrams, given

in figure 5.4.
We provide the contributions of the different diagrams in Appendices D.1 and D.2 (in the

isospin limit), and one can check explicitly that the sum of all these diagrams yields indeed
eqs. (5.22) and (5.28) as expected.

5.3.2 Isolating the η propagator

According to the analysis of the previous section, the powers of (m + 2ms) in the denom-
inator of eqs. (5.22) and (5.28) are related to the propagation of η mesons with vanishing
momentum, which are the only states coupling to the θ-induced vertices in the isospin limit.
Since we used next-to-leading order χPT, it is normal that the η-mass involved in the propa-

gator is the leading order value
◦
M

2

η= 2(2ms +m)/3. However, if we go to higher and higher
orders in Chiral Perturbation Theory, there would be tadpole and counterterm contributions
to the propagator which would shift the propagator masses from leading order to physical
value. This is already the case with some of the contributions in the different tree diagrams,
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Figure 5.1: Diagrams involved in the evaluation of the correlator χt at LO (a and b) and
NLO (c, d, e, f, g and h). The θ induced vertices are represented by the circles, containing the
number of derivatives with respect to θ. The propagating η and π0 mesons are represented by
the solid lines attached to the sources, whereas the loops contain any of the eight Goldstone

bosons. Any line crossing corresponds to the four-point vertex from L(2)
eff , and the white

square in diagrams (f), (g) and (h) to the NLO counter-terms from L(4)
eff .

1 2 3 4 5

34 3 1 2

1

1

1

1

1

1 1

1 1

1

Figure 5.2: Tree diagrams contributing to c4. The θ-induced vertices are denoted by circles
containing the number of derivatives with respect to θ applied to the mass term from the
LO Lagrangian in order to obtain the corresponding vertex.

which arise when one inserts a tadpole or a next-to-leading order low energy constant in the
propagator. These ”double-propagator” contributions should actually be reabsorbed inside

the mass of the η propagator to shift its pole from
◦
M

2

η to M2
η .

This problem is all the more acute if we do not assume that three-flavour chiral symmetry
breaking is triggered by large values of the chiral condensate and the pseudoscalar decay
constant. In this case, the leading order contribution to the η mass might be significantly
different from its physical value, due to large contributions from next-to-leading order terms

in its chiral expansion. In view of the large powers of
◦
M

2

η or M2
η involved (up to the fourth

order for diagram 5 in the case of c4), this distinction might be quite important, and suggests
that one should identify the contributions due to η propagation in the previous computation
and replace the leading order η mass by its physical value. This point of view is in agreement
with the philosophy of Resummed χPT (see Chapter 3), which is built to accommodate such
patterns of chiral symmetry breaking and where physically-motivated redefinitions of the
chiral expansions are performed in order to limit the size of higher-order remainders.

Let us notice that a similar discussion takes place when one considers the two-point
correlators of the axial current and/or pseudoscalar density, where the propagation of a single
Goldstone boson occurs also at leading order. Indeed, in refs. [75, 76, 77, 78, 79, 80, 81, 92], it
was considered that the decay constants and masses as they could be obtained from the next-
to-leading order expression of 〈AµAν〉 (see sec. 3.4.1), where the propagators are explicitly
expressed in terms of the physical masses, considering either the correlator at 0 (for F 2

π ) or
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Figure 5.3: Scattering diagrams contributing to c4 at one loop and obtained by dressing the
tree diagram 5, either by adding a tadpole loop (first two lines) or by replacing a LO vertex
by its NLO counterpart (denoted by a square). The θ-induced vertices are denoted by circles
(squares respectively) containing the number of derivatives with respect to θ applied to the
mass term from the LO (NLO respectively) Lagrangian in order to obtain the corresponding
vertex.
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Figure 5.4: Additional diagrams involving local terms contributing to c4 at one loop and not
derived by dressing tree diagrams.

its residue at the pseudoscalar pole (for F 2
πM

2
π). In the case of χt it yields:

χ(q2) =
∑

P=π0,η

RP
M2
P − p2

+ S(q2) (5.34)
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where RP ≡ |〈Ω|ω|P 〉|2 is the relevant coupling to Goldstone bosons, and S is analytic
up to the next thresholds (the first singularities being the cut from s ≥ 9M2

π and pole at
M2
η′). One obtains the separation:

χpole =
R

M2
η

+ S , R ≡ Rη = |〈Ω|ω|η〉|2 , S ≡ S(0) (5.35)

The π0 meson does not couple to the winding number density in the isospin limit mu =
md, due to G-parity. Using the expression of χno pole

t eq. (5.22), we get up to next-to-leading
order the pole residue R and the analytical piece S:
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It is easy to check that eq. (5.35) coincides with eq. (5.21) in the isospin limit, up to
higher-order terms in the chiral expansion: one simply re-expand the pole 1/M2

η by taking
the chiral series of M2

η up to next-to-leading order, and truncate all the higher order terms
that may appear.

In the same manner, the leading expression for c4 eq. (5.33) could be understood as:

c4 = − 1
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In the present case, it is quite straightforward for each diagram to identify the NLO
contributions that should be absorbed in the shift since the structure of the η mass up
to NLO is well known [2]. It yields the following expressions for the different diagrams,
which should be added to obtain the next-to-leading order expression of c4 with a physical
η propagator:

• Diagrams 1
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(Having isolated the η propagator in the expressions of χt and c4, we will postpone the
discussion of HO remainders to sec. 5.6.2).

5.4 Expected sensitivity to the three-flavour chiral conden-
sate

Now we discuss the sensitivity of the cumulants of the winding number to the pattern of
chiral symmetry breaking in the limit of three massless quarks. We see that the topological
susceptibility eq. (5.20) involves the three-flavour quark condensate Σ(3) together with the
Zweig-rule violating next-to-leading order low-energy constants L6 in the combination (see
sec. 5.6):

χ↔ F 2
0B0 + 32B2

0L
r
6s (5.49)

As discussed in [78], for physical quark masses, this combination is actually very close to
the quark condensate defined in the two-flavour chiral limit mu,md → 0, but ms kept at its
physical value (eq. (2.79)):

Σ(2) = − lim
mu,md→0

〈0|ūu|0〉 = F 2
0B0+32msB

2
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r
6(µ)−msB

2
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72π2
log

4msB0

3µ2
+. . .

(5.50)
where the ellipsis denotes higher order contributions starting at O(m2

s). For simulations
close to the physical case where m is much smaller than ms, the topological susceptibility
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essentially probes the two-flavour quark condensate (as the two quantities differ only by a
contribution suppressed by a factor m/ms), and consequently, χt does not not probe the
three-flavour quark condensate (defined in the corresponding chiral limit mu,md,ms → 0),
contrary to what is often asserted.

The situation becomes more interesting when turning to the fourth cumulant c4, which
involves L6 in two different combinations:

c4 ↔ F 2
0B0 + 32B2

0L
r
6s , −96B2

0L
r
6

m̄[3]

m̄2
(5.51)

For simulations close to the physical quark mass hierarchy, the first term corresponds
to the two-flavour condensate (like for the topological susceptibility), but the second term
opens the possibility to disentangle Lr6 and Σ(3) by considering the dependence of c4 on the
light-quark mass m. Therefore, contrary to χt, the fourth cumulant c4 may provide a probe
of the pattern of three-flavour chiral symmetry breaking even for simulations close to the
physical case.

Before turning to lattice settings close to the physical quark mass hierarchy, let us em-
phasise that simulations with degenerate quarks could be much more interesting to extract
the three-flavour condensate from topological quantities. Indeed, in the limit where the N
quarks in Eqs (5.20) and (5.26) are degenerate with mass m̂ (leading to pseudoscalar mesons
with a common physical mass M), the following combination

χno pole +
N2

4
cno pole
4 =

3m̂2F 2
NBN

4N
+
N2 − 1

N2

3m̂2B2
N

32π2
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N2

3m̂2B2
N

32π2
log

2m̂BN
M2

+O(m̂3)

(5.52)
does not involve next-to-leading order low-energy constants, and would thus be partic-

ularly suited to determine the quark condensate Σ(N) = F 2
NBN in the chiral limit of N

massless flavours from simulations with N degenerate light quarks.

5.5 The two-flavour case

As indicated after eq. (5.26), it is possible to compute the topological susceptibility or the
fourth cumulant in N = 2 χPT [1] (see sec. 2.6 for the presentation of Nf = 2 χPT) built
around the two-flavour chiral limit mu = md = 0 (but ms kept physical).

It is straightforward to repeat the same arguments as in sec. 5.2.1 with the generating
functional of Nf = 2 χPT given in ref. [1], in order to obtain the two-flavour expressions in
the isospin limit:

χno pole =
mBF 2

2
+ 2m2B2[ℓr3(µ) + hr1(µ)− ℓ7 − h3]−

3B2m2

32π2
log
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+O(m3) (5.53)

cno pole
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+ 3 log
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π
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]
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where we have performed the same separation between unitarity and tadpole contribu-
tions for c4 as in the N = 3 case. These formulae should be used to extract the two-flavour
chiral condensate from simulations performed at m̃s = ms and various values of the light
quark mass m̃.

Let us emphasize the ambiguity of the alternative expression used in the literature [119,
122] and derived from eqs. (5.20) and (5.26) by setting N = 2. The resulting expressions
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have the same structure as eqs. (5.53), but they involve low-energy constants usually labelled
L6, L7, L8 which are very easy to misunderstand. Their names allude the three-flavour case,
but they are actually defined in the two-flavour chiral limit. In our notation, we would
denote them as L6,7,8;N=2 which have definitions and values that differ from those in three-
flavour χPT (which we would denote L6,7,8;N=3). Moreover the connection between these
low-energy constants L6,7,8;N=2 and the usual ℓi and hi is not straightforward. In order to
avoid any confusion and make a direct connection with N = 2 χPT [1], one should always use
the expressions Eqs. (5.53) to deal with the two-flavour chiral expansions of the topological
susceptibility and the fourth cumulant.

One can go further and actually match N = 2 and N = 3 chiral theories in order to
exhibit the ms-dependence of N = 2 low-energy constants [1, 135, 136, 137], yielding the
next-to-leading order matching formulae for the quark condensates and pseudoscalar decay
constants (eqs. (2.78) and (2.79)):
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as well as for the relevant next-to-leading order low-energy constants:

2m2B2[ℓr3(µ) + hr1(µ)− ℓ7 − h3] = 24m2B2
0 [Lr6 + 3Lr7 + Lr8]−

m2B2
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32π2
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log
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− 5m2B2
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144π2
− F 2

0B0m
2

4ms

It is then easy to check that eqs. (5.53) correspond indeed to the second-order expansion
in m of the three-flavour results eqs. (5.22) and (5.28), providing a further cross-check of
these equations.

One more comment is in order concerning the low-energy constants involved in eqs. (5.53).
First, one might be surprised that two high-energy counter-terms h1 and h3 arise in these
expansions. Indeed, these high-energy counterterms encode physics of higher energy scales
that are not included dynamically in the theory and their value is dependent on its ultraviolet
regularisation. This seems to contradict the fact that χt and c4 are topological quantities
related to chiral symmetry breaking arising in QCD at low energies. This paradox can be
solved thanks to the matching with three-flavour χPT. The two-flavour chiral expansions
of χt and c4 involve only the difference of high energy counterterms h1 − h3, which can be
matched with three-flavour χPT as in eq. (5.56). The next-to-leading order expansion of
h1 − h3 in powers of ms involves only N = 3 low-energy constants, but none of the high-
energy counterterms Hi. It means that h1 − h3 is a combination of N = 2 high-energy
counterterms which is characterised by the dynamics of K and η mesons but is independent
of the ultraviolet regularisation of the theory in relation with more massive (non-Goldstone)
degrees of freedom. Indeed we have seen that our three-flavour results for χt and c4 rely
crucially on the propagation of the η-meson, which is not a dynamical degree of freedom of
two-flavour χPT. Therefore, all the diagrams in N = 3 χPT involving the propagation of K
and η mesons (such as figure 5.2) must be absorbed into high-energy counterterms once the
computation is performed in N = 2 χPT. The presence of h1−h3 in eq. (5.54) is thus normal
and can be easily explained by the role of the η meson when computing the next-to-leading
order expansions of χt and c4.
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5.6 Topological observables on the lattice

In this section, we will now study the behavior of the topological susceptibility on the lattice,
as we have done in the preceeding chapter regarding decay constants, masses, and form
factors. Two cases will be taken into account separately: a first case corresponding to the
“no pole” expression eq. (5.22), and a second case for which the physical η pole has been
isolated, eq. (5.35).

5.6.1 Resummed framework (1): no η pole

In Chapter 3, we have argued that the pattern of Nf = 3 chiral symmetry breaking could
be affected significantly by vacuum fluctuations of ss̄ pairs, leading to the suppression of
the quark condensate, the enhancement of L4 and L6, and finally a numerical competition
between leading order and next-to-leading order contributions in Nf = 3 chiral expansions.
As indicated in sec. 3.4.3, such a problem would occur for χt and c4, which explains why we
want to analyse these quantities in the Resummed χPT framework.

We consider now a lattice simulation with dynamical quarks of unphysical masses (m̃, m̃, m̃s),
and we use again the notation of Chapter 4: p = m̃s/ms, q = m̃/m̃s. If we do not isolate
the contribution from the η pole and simply re-express eq. (5.21) using eqs. (3.13) and (4.2),
we obtain the expression for the topological susceptibility on the lattice χ̃t (following the X̃
notation of sec. 2.2):
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If we replace L6,7,8 by their expressions in terms of leading order quantities and physical
observables (eq. (3.60) and eqs. (3.32)-(3.39), and if we consider a simulation at the physical
point (q = 1/r, p = 1), the topological susceptibility boils down to:

χno pole
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πM

2
π

2

r
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[
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2r(2r + 1)
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9
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(r − 1)2(r + 2)
∆GMO

]

+ ... (5.58)

where the ellipsis denotes higher-order remainders. Eq. (5.58) shows that in the physical
case, the topological susceptibility has no sensitivity to the three-flavour condensate X(3)
(as was seen before in sec 5.4).

Therefore, the topological susceptibility close to the physical point (p = 1, r = 1/q large)
exhibits a rather poor sensitivity to the three-flavour condensate X(3). In a similar way to
pseudoscalar masses and decay constants, simulations aiming at disentangling the pattern of
three-flavour chiral symmetry breaking should be performed not only for quark masses with
a hierarchy similar to the physical case, but also light (almost) degenerate masses with values
between the physical mu,md and ms. The (unphysical) region where simulations probeX(3)
efficiently can be determined by expanding eq. (5.57) in powers of 1/r:

χ̃no pole
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2
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pqr
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+ . . . (5.59)
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where the ellipsis denotes chiral logarithms and higher order remainders. It is clear from
this expression that we need q = O(1) rather than O(1/r) to get a reasonable sensitivity to
X(3): for instance, q = 1 (i.e., m̃ = m̃s yields [1 − 3p]X(3) + p[3 − (r2 − r)/(2r)], so that
the coefficient of X(3) has a similar size to that of the constant term. This is sketched in a
more quantitative way in fig. 5.5 which compares the topological susceptibility at X(3) = 0
and X(3) = 1 in some illustrative cases 1. The comparison between the two values indicates
the sensitivity to the size of the three-flavour quark condensate, which tends to decrease the
value of the topological susceptibility. We see that the contributions from X(3) are at least
twice as small as the remaining contributions, and they in particular might be hidden in the
uncertainties if q is small (e.g., of O(1/r) if the simulated quark masses are tuned to be close
to the physical ones).

Another way of escaping the poor sensitivity of the topological susceptibility to the
three-flavour quark condensate consists in simulations involving significant isospin breaking,
which can be easily implemented in particular for twisted-mass fermion actions [124, 127]. An
expression for the topological susceptibility on the lattice similar eq. (5.57) can be written,
involving the two quantities qu = m̃u/m̃s and qd = m̃d/m̃s instead of q:

χ̃no pole
t =

F 2
πM

2
π

2

pquqdr

qu + qd + quqd
(5.60)

×
[
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{
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}

+
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9pquqdr
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∆GO

]

+ . . .

where we expressed the next-to-leading order low energy constants L6,7,8 using, as always,
eqs. (3.32)-(3.39) (we have checked that including themd−mu difference in the expressions of
eqs. (3.32)-(3.39) would not modify our conclusions). The ellipsis denotes chiral logarithms
and higher order remainders. The dependence of χt on the two quantities qu and qd is
illustrated in figure 5.6. As expected, χ̃t(qu, qd) = χ̃t(qd, qu) vanishes for qu = 0 or qd = 0
(either mass mu or md being zero) since the theory becomes independent of θ when one of
the quark masses vanishes. The value of the topological susceptibility increases when one of
the two quark masses increases, the other one being kept fixed. As clearly seen in figure 5.6,
the contribution to the topological susceptibility independent of X(3) increases faster than
the one proportional to X(3), so that a scan through values of (m̃u, m̃d) at fixed m̃s could
help to determine unambiguously the contribution (and thus the value) of the three-flavour
quark condensate.

1For this comparison, we assume that the physical value of Fη is known in order to compute the Gell-Mann-
Okubo contribution ∆GMO to L7 (eq. (3.59)). In the following sections, we will not make this assumption
and we will use eq. (3.56) to determine Fη.
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Figure 5.5: The topological susceptibility χ̃no pole
t as a function of the ratio of simulated

quark masses q for X(3) = 0 (solid lines) and X(3) = 1 (dashed lines) for two different
values of p (related to the simulated strange quark mass). For illustration, the remainders
are set to be zero, Y (3) = 0.8, r = 26, FK/Fπ = 1.19 and Fη =130 MeV.

Furthermore, we obtain for the fourth cumulant on the lattice:
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Lr6,7,8(µ) must be replaced by their expressions eqs. (3.34)-(3.35), (3.38)-(3.39) and (3.60)

to evaluate c4. d̃c4 is the higher order remainder which is set to zero in the present analysis
(it is expected to be of order O(m̃2

s) and thus with the scaling d̃c4 ≃ p2dc4 for simulations
where q = m̃/m̃s is small).



Topological observables on the lattice 123

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

χ

X3=0

X3=1

qu

qd

χ

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

Figure 5.6: The topological susceptibility χ̃no pole
t (in units of GeV 4) as a function of qu =

m̃u/m̃s and qd = m̃d/m̃s for X(3) = 0 (solid) and X3 = 1 (dashed with colour levels). For
illustration, the remainders are set to be zero, p = 1, Y (3) = 0.8, r = 26, FK/Fπ = 1.19 and
Fη =130 MeV.

The lattice counterpart of eq. (5.27) can be obtained by replacing all masses in the
logarithms by their leading order values, yielding:
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We will use eq. (5.62) to determine the potentiality of the fourth cumulant c4 to extract
the three-flavour quark condensate from simulations performed with a mass hierarchy similar
to the physical situation.

Let us first consider the physical case where p = 1, q = 1/r. In figure. 5.7, the dependence
of c4 on X(3) and Y (3) is plotted in the case where r = 25, indicating a noticeable sensitivity
to X(3) and a weak sensitivity to Y (3), as expected from the discussion in sec. 5.4. We can
now consider simulations with a near physical strange quark mass and light quark masses
larger than the physical one (i.e., p close to 1 and q ≥ 1/r). The variation of c4 with respect
to p and q, X(3) and Y (3) is shown in figure. 5.8. One notices that the slope of the curve
is very dependent on X(3), and more weakly on Y (3), providing an efficient probe of the
three-flavour quark condensate X(3).

As expected from the qualitative discussion of the previous section, the topological sus-
ceptibility χ has a much weaker sensitivity to X(3), which arises only for values of q closer
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Figure 5.7: c4 (in units of 104 GeV4) as a function of X(3) and Y (3) for p = 1, r = 1/q = 25,
and all HO remainders set to zero.
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Figure 5.8: c4 as a function of q = m̃/m̃s for p = 1 (left panel) and as a function of
p = m̃s/ms for q = 0.15 (right panel). Light (green), dark (blue) and black curves correspond
to X(3) = 0.2, 0.5, 0.8 respectively, whereas solid and dashed curves correspond to Y (3) =
0.9, 0.2 respectively. We take r = 25 and all HO remainders are set to zero.

to 1, i.e., light quark masses away from the physical situation. This can be seen from the
left-hand side of figure 5.9 (we plot here eq. (5.22) obtained without singling out the η-pole).
We also display the normalised fourth cumulant b2 = c4/(12χ) on the right hand-side of
figure 5.9, which exhibits the same interesting features as c4 for the extraction of the three-
flavour quark condensate. We notice that its dependence on the simulated light quark mass
is modified compared to the leading order result [119]:

b̃2;LO = − 2 + q3

12(2 + q)3
= − 1

48
+

q

32
+O(q2) (5.63)

both for the value at the origin and the slope, when the quark condensate does not sat-
urate the thee-flavour expansions of quark masses. Different patterns of three-flavour chiral
symmetry breaking, and in particular, different values of the three-flavour quark condensate,
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Figure 5.10: Order-by-order contributions to χ (left panel) and c4 (right panel) as a function
of X(3) in the case p = 1, q = 0.15, r = 25. Light (green), dark (blue) and black curves
correspond to LO contributions, NLO ones and their sum respectively. Solid and dashed
curves correspond to Y (3) = 0.9, 0.2 respectively (they are identical for the LO contribution
which depends on X(3) and quark masses only). All HO remainders are set to zero.

can modify the dependence of this cumulant on the simulated light quark mass in a striking
way.

In figure 5.10, we indicate the leading and next-to-leading order contributions to χt and
c4 for a simulation with p = 1, q = 0.15. One observes a significant cancellation of the two
contributions in the case of c4, emphasising the need to perform the analysis of this quantity
up to one loop, no matter the pattern of chiral symmetry breaking. Moreover, one notices
that the partial cancellation does not prevent the sum of leading and next-to-leading order
contributions for c4 to exhibit a strong dependence on X(3), contrary to the topological
susceptibility χt which again shows a very mild dependence on X(3) (as expected since
q = m̃/m̃s is small).

5.6.2 Resummed framework (2): with η pole

Identifying the poles corresponding to the propagation of the pseudoscalar mesons is of par-
ticular relevance within Resummed χPT. In this framework, smaller higher order remainders
are expected when singularities of the expansion (and in particular, poles) are correctly lo-
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cated at the physical positions. Thanks to our diagrammatical analysis of the two-point
correlator χ in χPT, we can easily identify the contribution from the propagation of the η
meson in eq. (5.57), and we obtain the expressions for the pole residue and the analytical
piece arising in eq. (5.35), R̃:

R̃ = −(pr(q − 1))2

27
F 2
πM

4
πX(3)Y (3) +

8

27
(pr)3(1− q)2M6

πY (3)3
[

(2q + 1)Lr4 +
q + 2

3
Lr5

]

(5.64)

− 32

27
(pr)3Y (3)3M6

π [(L
r
6 + L7)(q − 1)2(2q + 1) + Lr8(q

2 − 1)(q − 1)]

+
(pr)3(q − 1)

864π2
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πY (3)3
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


6q2 log

◦
M̃2
π

µ2
− (1 + q)2 log
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+

2

9
(q − 4)(q + 2) log

◦
M̃2
η

µ2


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and S̃:

S̃ =
pr(2q + 1)

18
F 2
πM

2
πX(3) +

8

9
(pr)2Y (3)2M4

π [(2q + 1)2(Lr6 + L7) + (2q2 + 1)Lr8] (5.65)
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where the counterterms can be expressed in terms of r,X(3), Z(3) and the remainders.
The topological susceptibility then reads:

χ̃pole
t =

R̃

M̃2
η

+ S̃ + χ̃poled̃χpole (5.66)

where the η mass on the lattice, M̃2
η , is given by the ratio (F̃ 2

η M̃
2
η )/F̃ 2

η , from equa-
tions (6.6)-(6.7) given in sec. 6.2.3. At this stage, one has still to discuss the direct remain-
der χtdχt which corresponds to higher-order terms, and has been added in eq. (5.66) as well
as in eq. (5.57). One wants dχt to start at next-to-next-to-leading order, and thus to be of
order O(m2

q). This expectation can be checked by considering various chiral limits sending m̃
and/or m̃s to zero. As already explained previously, the topological susceptibility χ should
vanish in the limit where one of the quark masses goes to zero. In our framework, this can
be translated as χt → 0 for the three chiral limits:

• m̃s → 0, m̃ fixed: p→ 0, pq fixed,

• m̃→ 0, m̃s fixed: q → 0, p fixed,

• m̃, m̃s → 0, m̃/m̃s fixed: p→ 0, q fixed.

By inspection, one can check that the sum of leading and next-to-leading order in
eq. (5.57) does vanish in these three limits, whereas eqs. (5.64)-(5.65) vanish in these limits
only up to nonzero higher-order corrections. Therefore, if we consider the expression for the
topological susceptibility not singling out the η-pole, eq. (5.57), we can add a higher-order

remainder of the form χ̃no pole
t d̃

χno pole
t

with d̃
χno pole

t
= O(m̃2

q) that has no singularities when

any m̃q → 0. In the situations that we consider (one of the masses much larger than the
other ones), we expect d̃

χno pole
t

to be dominated by m̃2
s contributions.



Topological observables on the lattice 127

0 0.01 0.02 0.03 0.04
m~ [GeV]

0

2

4

6

χpo
le

 10
4 

[ 
G

eV
4 ]

m
 s 

physical

Figure 5.11: The topological susceptibility χ̃pole
t as a function of the light quark mass. The

black [red] points correspond to the (24)3 × 64 volume [(32)3 × 64], using the estimates of

lattice spacings quoted in ref. [122]. The dashed curves correspond to the best fit using χpole
t

with finite-volume effects, as indicated in the last column of table 6.4 (removing finite-volume
effects would lead to almost identical curves). We have not included the lightest point in our
analysis, as discussed in the text. As a reference, we have also indicated the same variation
when the strange quark mass is set to its physical value.

On the other hand, if we single out the η-pole contributions following eq. (5.57), we would

need d̃
χpole

t
to become singular in the chiral limits considered before, so that χ̃pole

t d̃
χpole

t
does

not vanish and cancels the non-vanishing value of eqs. (5.64)-(5.65) coming from higher-order
terms. A more satisfying solution consists in subtracting these higher-order pieces from the
higher order remainders, so that dχt does not exhibit singularities in any of the chiral limits.
In other words, using eqs. (5.64)-(5.65), we write the topological susceptibility as:

C(m̃, m̃s) =
R̃

M̃2
η

+ S̃ , χ̃pole
t = C(m̃, m̃s)− C(0, m̃s)− C(m̃, 0) + χ̃pole

t d̃
χpole

t
(5.67)

One can check that the subtracted terms C(0, m̃s) = O(m̃2
s) and C(m̃, 0) = O(m̃2) are

indeed higher order terms. With the definition eq. (5.67), which will be used in the following,

d̃pole
χ is regular in the chiral limits described above, and can be considered as O(m̃2

s) for the
simulations considered here. Finally, one should notice that R̃ and S̃ involve again not only
the three-flavour condensate X(3) but also next-to-leading order low energy constants, and
in particular L6. This dependence is equivalent to that of eq. (5.57) up to higher orders in
the expansion of the quark masses. It is therefore of no surprise that we find only small
numerical differences between eq. (5.57) and eqs. (5.64)-(5.65) in the range of quark masses
of physical interest, and that the previous conclusion concerning the potentiality of the
topological susceptibility to determine the three-flavour quark condensate still applies in
this setting.

We stress that the fourth cumulant c4 can undergo the same treatment. We will not
display the corresponding equations, but they can be easily recorded from the physical case
shown in sec. 5.3.2. If we call C the sum of all the diagrams with the η propagator being
identified (from sec. 5.3.2), one could naively think that we just have to add to the leading

and next-to-leading order terms a higher order remainder dpole
c4 of the form:
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cpole
4 = C + cpole

4 dpole
c4 (5.68)

However, like in the case of the topological susceptibility, one notices that C does not
vanish in the limit m→ 0 and/or ms → 0, contrary to the expectation that cpole

4 → 0 then,
since the effective potential becomes independent of θ in these limits. This definition of
dpole
c4 must thus exhibit a divergent contribution in these chiral limits, so that cpole

4 dpole
c4 can

compensate the non-vanishing value of C to fulfill cpole
4 → 0.

Such a behaviour of dpole
c4 is not very satisfying, as we would like higher-order remainders

to become smaller and smaller in the limits of vanishing quark masses. This can be resolved
by defining the remainder as

cpole
4 (m,ms) = C(m,ms)− C(m, 0)− C(0,ms) + cpole

4 dpole
c4 (5.69)

This corresponds formally to a redefinition of the higher-order remainder, but has the
important consequence that dpole

c4 exhibits no divergence in the two massless limits, should be
small even in the chiral limit(s) and can be approximated by a polynomial. In the physical

setting where ms is much larger than m, we expect dpole
c4 = O(m2

s).
The difference between the two expressions eqs. (5.28) and (5.69) corresponds to a reshuf-

fling between the sum of leading order and next-to-leading order contributions and higher-
order remainders. Since we hope to achieve a formulation with small higher order remainders,
the numerical differences between these expressions may become important to extract in-
formation on the pattern of N = 3 chiral symmetry breaking from precise lattice values of
c4.

5.7 Summary

This chapter was devoted to the detailed introduction of two topological quantities, the topo-
logical susceptibility χt and the fourth cumulant c4, in the framework of Chiral Perturbation
Theory. They were first derived using the method of effective potential minimization, up to
next-to-leading order, in the case of an arbitrary number of quark flavours. The subsequent
expressions for Nf = 3 were straighforwardly obtained. We then performed the same cal-
culations but this time using diagrammatic methods (in the isospin limit). This helped in
particular to isolate the propagator of the η in order to shift the pole of the two observables

from
◦
M2
η to M2

η .
From this basis, we discussed the expected sensitivity of the two quantities to the three-

flavour quark condensate. We saw in particular that for simulations close to the physical
point, the topological susceptibility would be sensitive to the two-flavour quark condensate
and could not probe the three-flavour quark condensate, contrarily to the fourth cumulant.
We also gave their expressions in the case Nf = 2, and discussed the matching of these
expressions with those obtained in the case Nf = 3 χPT.

In the last section, we studied in more detail the behavior of χt and c4 on the lattice,
separating the cases where the η pole was not identified and where it was singled out.
We showed more precisely how χt exhibited a poor sensitivity to the three-flavour quark
condensate close to the physical point. The same was carried out for c4, which indeed showed
a strong dependence on the quark condensate, as opposed to the topological susceptibility.
We also discussed the treatment of higher order remainders in the two ways of dealing with
the η pole, highlighting that unphysical divergences could affect these remainders if they
are not defined properly. In the final chapter, we will be studying a series of fits to decay
constants, masses and the topological susceptibility using data from 2+1 lattice simulations
in the same spirit as in Chapter 4.



Chapter 6

Fits to lattice data on topological
susceptibility

6.1 Introduction

We want now to exploit the topological susceptibility to improve our determination of the
pattern of three-flavour chiral symmetry breaking. We have however seen in sec. 5.6.1 that
the usual setting of lattice simulations is not appropriate, as the topological susceptibility
is then driven by the two-flavour condensate. If we want to extract information on the
three-flavour pattern, we need either to make simulations away from the physical case (as
discussed in sec. 5.6.1), or to supplement the topological susceptibility with other sources
of information. We will now take this second option, which is also required due to the
number of parameters involved in the next-to-leading order expression of the topological
susceptibility (in particular the parameters of the leading order chiral Lagrangian and higher
order remainders). We shall therefore include pseudoscalar masses and decay constants in our
considerations, and test the compatibility of the topological susceptibility with the pattern
of three-flavour chiral symmetry breaking obtained from the lattice data.

The material presented in this chapter is the object of [93]. There are several lattice
calculations of the topological susceptibility in the literature, e.g. refs. [120, 122]. As an
illustration of our approach, we will focus on the ones from RBC/UKQCD following the
work presented in chapter 4, as this collaboration provides all the details (masses, decay
constants and topological susceptibility) necessary for our analysis. Since the work presented
in Chapter 4, new data from this collaboration have been issued with a new volume and
different quark masses, given in ref. [122], and we will use them as a reference in the coming
sections. We follow the approach of Chapter 4 and perform a fit to the two sets of data in the
243 × 64 (a−1 = 1.73(3) GeV) and 323 × 64 volumes (a−1 = 2.28(3) GeV) with and without
including finite volume effects. In this chapter, the determination of the lattice spacings will
be discussed.

6.2 Fits to lattice data

6.2.1 Lattice inputs

We take our data points for pseudoscalar decay constants and masses as well as for the
topological susceptibility from the recent work of the RBC/UKQCD collaboration [122].
They considered 2 + 1 dynamical flavours of domain wall fermions for two different lattice
volumes 243 × 64 × 16 and 323 × 64 × 16 (where the 16 corresponds to the extent of the
fifth dimension inherent in the domain-wall fermion formulation of QCD). We consider only
unitary sets where the masses of the sea and valence quarks are identical, with parameters
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L a−1 ∆q ∆s Zqm Zsm m̃q m̃s ms p q

24 1.73 0.005 0.04 1.4980 1.4707 0.0211 0.1098 0.0962 1.1420 0.1924
0.010 0.0342 0.3111

32 2.28 0.004 0.03 1.527 1.510 0.0163 0.1056 0.0962 1.0976 0.1539
0.006 0.0232 0.2196
0.008 0.0302 0.2859

Table 6.1: Parameters of the unitary lattice sets taken from ref. [122].

L p q χt · 10−4 F 2
π F 2

K F 2
πM

2
π F 2

KM
2
K

24 1.1420 0.1924 2.90(14) 10.41(13) 13.47(14) 1.129(16) 4.459(50)
0.3111 4.58(25) 12.26(14) 14.85(18) 2.152(25) 5.471(68)

32 1.0976 0.1539 [1.48(14)] 9.799(96) 12.99(11) 0.820(10) 3.988(36)
0.2196 3.22(55) 10.65(10) 13.51(11) 1.265(13) 4.390(38)
0.2859 3.63(72) 11.53(10) 14.16(12) 1.788(18) 4.895(42)

Table 6.2: Lattice data for the pseudoscalar masses and decay constants as well as topological
susceptibility taken from ref. [122].

recalled in table 6.1 and observables in table 6.2. For the masses and decay constants they
correspond to the data used in Chapter 4, without the data on the Kℓ3 form factors, but
adding the ones on the topological susceptibility from [122] corresponding to the same pairs
of quark masses.

We denote ∆q = a(m̃q − mres) the combination corresponding to bare masses (before
addition of the residual massmres and the conversion into the M̄S scheme by a multiplication
by Zm). We give a−1 and quark masses in units of GeV, χt in units of 10−4 GeV4, F 2

P in
units of 10−3 GeV2, F 2

PM
2
P in units of 10−3 GeV4. The dimensionful quantities have been

converted from the lattice results by multiplying by the appropriate power of the lattice
spacing, assuming for the latter the values quoted in the table. When the lattice spacings
are allowed to vary and included in the parameters of the fits in sec. 6.3.1, these quantities
are naturally rescaled by the appropriate power of the relevant lattice spacing.

In table 6.2, we do not include uncertainties coming from the determination of the lattice
spacings, as these uncertainties would be completely correlated. Moreover, as explained
at the end of sec. 6.2.4, we do not include the value of the topological susceptibility at a
lighter quark mass given in ref. [122], since it is likely to be affected by large systematics of
unknown origin. In sec. 6.2.4, we discuss the determination of the lattice spacings performed
in ref. [122] using the mass of the Ω baryon, gathered in table 6.3.

L a−1 ∆q ∆s aMΩ

24 1.73 0.005 0.04 1.013(3)
0.010 1.028(4)

32 2.28 0.004 0.03 0.760(2)
0.006 0.765(2)
0.008 0.766(3)

Table 6.3: Lattice data for the Ω baryon taken from ref. [122].

A last comment is in order concerning the determination of the topological susceptibility
in ref. [120], based on gauge configurations for a smaller volume (16)3 × 32 in refs. [98, 134].
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In principle, this work could provide valuable additional information, but we have not been
able to obtain consistent fits of the masses and decay constants of pions and kaons with the
three ensembles (16)3 × 32, (24)3 × 64, (32)3 × 64, leading us to suspect an underestimation
of the errors attached to the data for (16)3 × 32. We have thus decided to keep only data
for (24)3 × 64, (32)3 × 64, which were obtained for larger volumes and lighter quark masses,
and thus less likely to be affected by sizable systematics.

Concerning c4, several lattice computations of the (normalized) fourth cumulant have
been performed in pure gauge theory for different number of colours [138, 139, 140]. Even
though their values for 3 colours are rather close to those that we will obtain in the following,
they cannot be used to investigate the role of sea quark-pairs in chiral symmetry breaking (see
ref. [141] for more details and references on these simulations). There exist also computations
with 2 and (2+1) dynamical fermions from the TWQCD collaboration [120, 123], whose
central values are in the same ball park as our results, but with so large uncertainties that
any practical comparison with our figures is meaningless at the current stage. So, no data
concerning c4 were included in our fits.

6.2.2 Finite-volume effects

Before delving into the heart of the matter, it is necessary to introduce the issue of finite-
volume effects, and how the next-to-leading order expressions for decay constants, masses
and topological susceptibility are to be modified. Two different lattice artefacts can affect
the results of simulations before considering the continuum limit: the first corresponds to the
finite size of the lattice spacing, which can be included, in principle, in the chiral expansion
through spurions that depends on the implementation of the fermion action (see ref. [128]
and references therein). We will not include this effect in the first step of our analysis, but
we will include it (partially) in our final fits.

A second effect comes from the finiteness of the volume used for lattice simulations, which
induces finite-volume modifications of the chiral expansions. As discussed in refs. [113, 129,
130, 131, 132], the finite-volume effects for next-to-leading order chiral perturbation theory
amount to a modification of the chiral logarithms:

◦
M2
P

16π2
log

◦
M2
P

µ2
→ 1

2L3

∑

ℓ

1

ωP
=

1

2L3
σP (6.1)

where ℓ ∈ 2π/L×Z3 and ωP =

√

ℓ2+
◦
M2
P is the quantized momentum. The summation

over the three spatial directions comes from the quantization of momenta due to the peri-
odic boundary conditions on the lattice box (making it a torus in practice). We consider
simulations where the time component is significantly larger than the spatial components,
and therefore consider only the finite-volume effects related to the latter [130, 131, 132]. One
can relate the finite-volume chiral “logarithm” with its infinite-volume counterpart through
the function:

σP
L3

=

◦
M2
P

8π2
log

◦
M2
P

µ2
+ ΞP (6.2)

where the function ΞP = ξ1/2(L,
◦
M2
P ) was introduced in ref. [130]. An alternative defini-

tion of ΞP was proposed in ref. [80] and is rediscussed in Appendix B. So, in practice, one
has to make the (very simple) shift (6.1) in order to take finite-volume effects into account
in next-to-leading order chiral expressions. We will take into account these corrections in
the following analysis for all the quantities of interest: for masses and decay constants, the
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corrections can be read directly from the expressions in ref. [92] (one has simply to make the
shift (6.1) to recover the expansions at finite volume). In the same manner, we have for the
topological susceptibility the following correction from finite-volume effects to the expression
without singling out the η-pole:

χno pole
t (L) = χno pole

t (∞)− 1

8
Y (3)M2

π

pqr

(q + 2)2

[

6Ξπ + 4(q + 1)ΞK +
2

3
(2q + 1)Ξη

]

(6.3)

and when one singles out the η-pole:

R̃(L) = R̃(∞) +
(pr)2(q − 1)

54
Y (3)2M4

π

[

3qΞπ − (1 + q)ΞK +
1

3
(q − 4)Ξη

]

(6.4)

S̃(L) = S̃(∞)− pr

72
Y (3)M2

π

[

6qΞπ + 4(q + 1)ΞK +
2

3
(2 + q)Ξη

]

(6.5)

where the quantities labeled at infinity are taken in the infinite volume limit. We neglect
any dependence of the higher-order remainders on finite-volume effects, effectively identifying
the higher-order remainders at finite and infinite volumes.

6.2.3 Parameters and data

The fits include the data collected in sec. 6.2.1, i.e. pion and kaon masses and decay constants
as well as the topological susceptibility. Similarly as in Chapter 4, we build a χ2 depending
on the following parameters:

• the three leading-order parameters r,X(3), Z(3) (eq. 3.13)

• a reference ratio between a simulated strange quark (chosen conventionally to be for
the 243 simulations) and the physical strange quark mass,

• the higher order remainders associated with the pion and kaon masses and decay con-
stants (denoted d, e, d′, e′),

• the ratio FK/Fπ (on the other hand, we set Fπ = 92.2 MeV),

• if the topological susceptibility is included, the corresponding higher-order remain-
ders for the η mass and decay constant (dη , eη) as well as the one for the topological
susceptibility (dχt).

Higher order remainders are restricted to remain within a range based on a naive dimen-
sional analysis, as was described in sec. 3.4.2. At this step, we will include no discretization
error effects in our three-flavour chiral expansions, and we shall come back to that issue in
sec. 6.3.1.

We also need the following expressions for the η mass and decay constant for lattice
simulations:

F̃ 2
η = F 2

πZ(3) + 8pqr

(

1

q
+ 2

)

Y (3)M2
πL

r
4(µ) +

8

3
pqr

(

2

q
+ 1

)

Y (3)M2
πL

r
5(µ) (6.6)

− M2
π

32π2
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◦
M̃2
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µ
+ F̃ 2

η ẽη
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where L7 is given by eq. (3.60), and equivalent expressions for Lr4,5,6,8 can be found from
eqs. (3.32) to (3.39) in terms of r,X(3), Z(3), higher order remainders, masses and decay
constants ). The higher order remainders d̃η, ẽη are supposed to scale like m̃2

s for simulations
where the simulated strange quark is much heavier than the other ones.

6.2.4 Results and discussion

In this section, we discuss a first series of fits, including or not the topological susceptibility
as well as finite volume effects. As shown in table 6.4, the pattern of Nf = 3 chiral symmetry
breaking with low quark condensate and decay constant observed in [122] is confirmed by
our analysis, whether we include or not the topological susceptibility in our fit. The outcome
of the fit is thus mainly driven by the spectrum of pseudoscalar mesons, but the quality of
the agreement is not modified by the inclusion of the topological susceptibility, which thus
exhibits a good compatibility with the rest of the fit and is consistent with the pattern of
chiral symmetry breaking described in Chapter 4. As in our previous work, L4 and L6 do not
show any sign of Zweig suppression and the competition between leading and next-to-leading
orders in three-flavour chiral expansions is clearly seen. We obtain values for the Nf = 2
chiral order parameters in agreement with expectations from two-flavour χPT [1] as well as
experimental information on ππ scattering, such as that from Kl4 decays [53, 54, 56, 57, 58,
62, 63]. The values of ℓ̄3 and ℓ̄4 given there can be compared to the one obtained from the
RBC/UKQCD collaboration, ref. [122]: ℓ̄3 = 2.82(16), ℓ̄4 = 3.76(9) in infinite-volume χPT
and ℓ̄3 = 2.57(18), ℓ̄4 = 3.83(9) in finite-volume χPT. One can also recall the value quoted
by the Flavour Lattice Averaging Group [95] for ℓ̄3 = 3.2(8) (no value was quoted for ℓ̄4 in
this reference). Finally, one notices that singling out the η-pole or not in the expression of
the topological susceptibility does not modify significantly the analysis: the values obtained
with eqs. (5.57) and (5.64)-(5.65) are very close numerically for the ranges of parameters
considered here.
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Fit name A1 A2 A3 A4 A5

χt No No χnopole
t χpole

t χpole
t

Finite volume No Yes No No Yes

r 23.0 ± 0.7 23.4 ± 0.7 23.0 ± 0.7 23.0 ± 0.7 23.4 ± 0.7
X(3) 0.33 ± 0.10 0.34 ± 0.05 0.33 ± 0.06 0.33 ± 0.06 0.34± 0.05
Y (3) 0.49 ± 0.15 0.53 ± 0.07 0.49 ± 0.08 0.49 ± 0.08 0.53± 0.07
Z(3) 0.68 ± 0.03 0.65 ± 0.03 0.68 ± 0.03 0.68 ± 0.03 0.65± 0.03
FK/Fπ 1.17 ± 0.01 1.17 ± 0.01 1.17 ± 0.01 1.17 ± 0.01 1.17± 0.01

Rem. at limit d d d, e, dχt d, e, dχt d, eη , dχt

m̃s(24
3)/ms 1.12 ± 0.02 1.12 ± 0.02 1.12 ± 0.02 1.12 ± 0.02 1.12± 0.02

ms(2 GeV)[MeV] 98.1 ± 1.7 98.4 ± 1.8 98.0 ± 1.7 98.0 ± 1.7 98.4 ± 1.8
m(2 GeV)[MeV] 4.3 ± 0.1 4.2± 0.1 4.3± 0.1 4.3± 0.1 4.2± 0.1

Σ
1/3
0 (2 GeV)[MeV] 186± 19 211± 7 186 ± 11 186 ± 12 189± 10
B0(2 GeV)[GeV] 1.12 ± 0.34 1.22 ± 0.17 1.11 ± 0.21 1.12 ± 0.21 1.22± 0.17

F0[MeV] 75.9 ± 1.3 74.4 ± 1.4 75.9 ± 1.3 75.9 ± 1.3 74.5 ± 1.4
Fη [MeV] − − 117 ± 16 128 ± 10 124 ± 6

χt · 104[GeV4] − − 0.51 ± 0.01 0.49 ± 0.02 0.50± 0.02
m̃s(32

3)/ms 1.08 ± 0.02 1.09 ± 0.02 1.07 ± 0.02 1.08 ± 0.02 1.07± 0.02

L4(µ) · 103 1.12 ± 0.46 0.65 ± 0.45 1.13 ± 0.30 1.12 ± 0.30 0.60± 0.43
L5(µ) · 103 2.13 ± 0.78 2.05 ± 0.40 2.14 ± 0.53 2.13 ± 0.53 2.04± 0.39
L6(µ) · 103 3.00 ± 3.05 2.55 ± 0.89 3.13 ± 1.44 3.10 ± 1.42 2.52± 0.88
L7(µ) · 103 − − −2.60 ± 1.02 −1.82 ± 0.47 −1.70 ± 0.40
L8(µ) · 103 4.12 ± 2.74 3.39 ± 1.13 4.17 ± 1.79 4.12 ± 1.77 3.35± 1.11

X(2) 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90± 0.01
Y (2) 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00± 0.01
Z(2) 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.90± 0.01

Σ1/3(2 GeV)[MeV] 260 ± 3 261± 3 260 ± 2 260 ± 3 261 ± 2
B(2 GeV)[GeV] 2.26 ± 0.07 2.31 ± 0.06 2.26 ± 0.07 2.26 ± 0.07 2.31± 0.06

F [MeV] 88.0 ± 0.4 87.8 ± 0.2 88.1 ± 0.2 88.0 ± 0.22 87.8± 0.14
ℓ̄3 −1.6± 1.4 −0.5± 0.9 −1.6 ± 1.2 −1.6± 1.2 −0.5± 0.9
ℓ̄4 3.0 ± 0.3 3.2± 0.1 3.0± 0.1 3.0± 0.2 3.2± 0.1

Σ/Σ0 = Σ(2)/Σ(3) 2.72 ± 0.78 2.64 ± 0.35 2.74 ± 0.46 2.72 ± 0.46 2.62± 0.35
B/B0 = B(2)/B(3) 2.02 ± 0.56 1.89 ± 0.23 2.03 ± 0.32 2.02 ± 0.33 1.89± 0.22
F/F0 = F (2)/F (3) 1.16 ± 0.02 1.18 ± 0.02 1.16 ± 0.02 1.16 ± 0.02 1.18± 0.02

χ2/N 28.7/11 18.7/11 29.2/12 29.4/12 19.2/12
Gaussian equiv. 3.0σ 1.8σ 2.9σ 2.9σ 1.7σ

Table 6.4: Results of fits performed on the data from RBC/UKQCD collaboration on pseu-
doscalar masses and decay constants, including or not the topological susceptibility [122].
In two cases, finite-volume effects are taken into account. In all cases, we considered only
data with light pions and only statistical errors are shown. The LECs are given at the scale
µ = Mρ.
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Focusing on the results including χpole
t with finite-volume effects, we obtain the follow-

ing convergence at χ2
min with the relative leading order, next-to-leading and higher order

contributions:

F 2
π : 0.65 + 0.40− 0.05 , F 2

πM
2
π : 0.35 + 0.79 − 0.14

F 2
K : 0.47 + 0.56− 0.03 , F 2

KM
2
K : 0.24 + 0.86 − 0.10

F 2
η : 0.40 + 0.57 + 0.03 , F 2

ηM
2
η : 0.23 + 0.80 − 0.03

χpole
t : 0.22 + 0.63 + 0.15 ,

(6.8)

showing that the global convergence is good (small higher order remainders), but the
leading and next-to-leading order contributions are indeed competing numerically, confirming
the results obtained in the previous chapter. However, fitting the RBC/UKQCD data in
the two volumes, we obtain a rather poor fit of χ2/d.o.f.=29.4/12 without finite-volume
effects, which can be seen as a 2.9σ discrepancy in a naive (purely Gaussian) statistical
interpretation. The fit improves when one includes finite-volume effects, getting down to a
1.7σ effect, as can be seen by comparing the fits A1 and A2 (or A4 and A5) in table 6.4.
Indeed, even though these effects are rather small in the ranges of quark masses considered
here, they tend to bring the various quantities in better agreement with the lattice data (cf.
sec. 6.2.1). The main contribution to the minimum chi square χ2

min comes from Fπ (we will
come back to this issue in the next section) whereas the topological susceptibility contributes
only marginally.

In figure 5.11 are illustrated the results of the fit for the topological susceptibility as a
function of the simulated light-quark mass. Finite-volume effects have little impact, since at
large m̃, the product of M̃πL is much larger than 1 and thus finite-volume effects are small,
whereas at small m̃, the topological susceptibility (with or without finite volume effects) goes
to 0 linearly. One notices also the linearity of the three curves, related to the fact that q
remains small (≤ 0.4) in this range of m̃, so that the topological susceptibility in eq. (5.57)
or (5.64)-(5.65) can be expanded in powers of q with only small O(q2) corrections. As is clear
from eq. (5.57), the slopes of these curves at zero are not directly related to the three-flavour
quark condensate, as it involves also the next-to-leading order low energy constant Lr6 as
well as chiral logarithms.

6.3 Improved fits to pseudoscalar spectrum and topological

susceptibility

6.3.1 The dependence of Fπ on the lightest quarks

Our approach, allowing for a numerical competition between leading order and next-to-
leading order contributions to three-flavour chiral series, has provided a good, but not
completely satisfying, fit of masses, decay constants and topological susceptibility from the
RBC/UKQCD data. This is illustrated in the lower part of figure 6.1, where we plot F̃π as
a function of m̃ (as given by the equivalent of eqs. (6.6)-(6.7) for F̃ 2

π and F̃ 2
πM̃

2
π , see sec. 2.2

in the previous chapter). The (dashed) curves correspond to our best fit (last column in
table 6.4) and the solid line indicates the dependence of Fπ for a physical ms in an infinite
volume. Indeed, in spite of this broad agreement, we notice that we get a large contribution
to χ2

min from the F̃π data points. This is a reminder of the problem encountered in [122],
where neither a chiral nor an analytic extrapolation formula was able to accommodate the
observed dependence of F̃π on m̃ with the physical point (mphys, Fπ). Our formalism can
include both pieces of information with a reasonable χ2

min, but we can improve the latter by
letting the physical value of Fπ vary as a free parameter. We obtain the results indicated as
fit B1 in the first column of table 6.5 with a very low value of Fπ = 86.4 MeV, in agreement
with the results in ref. [122].
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Fit name B1 B2 B3 B4 B5

χt No No No No χpole
t

Finite volume Yes Yes Yes Yes Yes
Lattice spacing Fixed From MΩ Fixed From MΩ From MΩ

O(a2) corr No No Yes Yes Yes

Fπ[MeV] 86.5 ± 2.2 92.2⋆ 92.2⋆ 92.2⋆ 92.2⋆

r 25.6 ± 1.1 26.1 ± 1.1 23.3 ± 0.8 25.6 ± 1.1 25.6 ± 1.0

X(3) 0.40 ± 0.04 0.54 ± 0.05 0.35 ± 0.07 0.55 ± 0.04 0.55± 0.04
Y (3) 0.79 ± 0.10 0.86 ± 0.08 0.52 ± 0.05 0.91 ± 0.06 0.91± 0.07
Z(3) 0.50 ± 0.07 0.62 ± 0.05 0.68 ± 0.07 0.60 ± 0.05 0.60± 0.04
FK/Fπ 1.23 ± 0.03 1.25 ± 0.03 1.17 ± 0.02 1.25 ± 0.02 1.25± 0.02

Rem. at limit − d e d, e d, e, dη , eη , dχt

m̃s(24
3)/ms 1.14 ± 0.03 1.62 ± 0.16 1.12 ± 0.03 1.71 ± 0.13 1.71± 0.13

a−1(243)[GeV] 1.73⋆ 2.14 ± 0.12 1.73⋆ 2.02 ± 0.08 2.19± 0.08
a−1(323)[GeV] 2.28⋆ 2.76 ± 0.13 2.28⋆ 2.82 ± 0.09 2.81± 0.09

c1 − 9.08 ± 0.44 − 8.98 ± 0.37 8.98± 0.37
c2 − 1.42 ± 0.43 − 1.44 ± 0.44 1.44± 0.43

cFπ [GeV2] − − 0.13 ± 0.14 −1.09 ± 1.19 −1.09 ± 1.19
cFK

[GeV2] − − 0.13 ± 0.17 0.09 ± 0.48 0.09± 0.48

ms(2 GeV)[MeV] 96.5 ± 2.2 83.9 ± 8.1 97.9 ± 2.2 81.2 ± 6.0 81.2 ± 6.0
m(2 GeV)[MeV] 3.8 ± 0.2 3.2 ± 0.4 4.2 ± 0.1 3.2± 0.3 3.2± 0.3

Σ
1/3
0 (2 MeV)[GeV] 197 ± 7 240 ± 16 191 ± 2 243 ± 12 243± 12
B0(2 GeV)[GeV] 2.03 ± 0.32 2.60 ± 0.52 1.21 ± 0.12 2.81 ± 0.39 2.81± 0.38

F0[MeV] 61.5 ± 5.2 72.8 ± 2.8 76.0 ± 3.7 71.3 ± 2.4 71.3 ± 2.4
Fη [MeV] − − − − 123 ± 3

χpole
t · 104[GeV4] − 0.33 ± 0.03 0.41 ± 0.03 0.33 ± 0.03 0.43± 0.03
m̃s(32

3)/ms 1.09 ± 0.03 1.52 ± 0.15 1.08 ± 0.03 1.61 ± 0.12 1.61± 0.12

L4(µ) · 103 0.28 ± 0.29 −0.11± 0.14 0.99 ± 0.17 −0.08 ± 0.09 −0.08 ± 0.09
L5(µ) · 103 1.62 ± 0.19 2.13 ± 0.21 2.03 ± 0.43 2.00 ± 0.20 2.01± 0.20
L6(µ) · 103 0.47 ± 0.35 0.09 ± 0.10 2.53 ± 0.79 0.05 ± 0.07 0.04± 0.07
L7(µ) · 103 − − − − −0.25 ± 0.14
L8(µ) · 103 1.08 ± 0.38 1.13 ± 0.20 3.42 ± 0.88 1.04 ± 0.14 1.04± 0.09

X(2) 0.89 ± 0.02 0.89 ± 0.01 0.90 ± 0.01 0.88 ± 0.01 0.88± 0.01
Y (2) 1.03 ± 0.02 1.03 ± 0.01 0.99 ± 0.01 1.04 ± 0.01 1.04± 0.01
Z(2) 0.86 ± 0.02 0.86 ± 0.01 0.91 ± 0.01 0.86 ± 0.01 0.85± 0.01

Σ1/3(2 GeV)[MeV] 258 ± 4 248± 2 261 ± 3 285 ± 7 285 ± 8
B(2 GeV)[GeV] 2.68 ± 0.16 3.13 ± 0.42 1.90 ± 0.18 3.18 ± 0.28 3.18± 0.27

F [MeV] 80.2 ± 2.9 85.5 ± 0.50 88.0 ± 0.4 85.2 ± 0.4 85.2 ± 0.4
ℓ̄3 4.0 ± 1.5 4.5 ± 0.9 −1.0± 0.9 4.6± 0.7 4.6± 0.7
ℓ̄4 4.2 ± 0.4 4.7 ± 0.3 3.1 ± 0.3 4.9± 0.3 4.9± 0.3

Σ/Σ0 = Σ(2)/Σ(3) 2.24 ± 0.22 1.66 ± 0.14 2.54 ± 0.02 1.61 ± 0.11 1.61± 0.11
B/B0 = B(2)/B(3) 1.32 ± 0.17 1.20 ± 0.10 1.90 ± 0.18 1.13 ± 0.09 1.13± 0.08
F/F0 = F (2)/F (3) 1.30 ± 0.08 1.17 ± 0.05 1.15 ± 0.06 1.19 ± 0.04 1.19± 0.04

χ2/N 12.1/10 17.3/12 18.1/9 16.0/10 16.2/11
Gaussian equiv. 1.1σ 1.5σ 2.1σ 1.6σ 1.5σ

Table 6.5: Results of fits performed on the data from RBC/UKQCD collaboration on pseu-
doscalar masses, decay constants and topological susceptibility [122]. The first fit lets Fπ
vary freely. The other columns either a determination of the lattice spacings using the Ω
mass or O(a2) discretisation effects for the decay constants. The star superscript indicates
a quantity set to a fixed value (no uncertainty). These results should be compared with fits
A2 and A5 of table 6.4.
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Figure 6.1: The pion decay constant as a function of the light-quark mass. Blue/ [red] points
correspond to the data for the (24)3 × 64 volume [(32)3 × 64], using the estimates of lattice
spacing given in ref. [122]. Purple [orange] points correspond to the same points, using our
own estimates of lattice spacing discussed in sec. 6.2.4. The dashed curves indicate our best
fit in each case (A5 and B5), as given in the last columns of tables 6.4 and 6.5 respectively.
They are interrupted for M̃πL ≤ 2 where our description of finite-volume effects becomes
unreliable. The solid curves indicate the corresponding variations for the physical value
of the strange quark mass, without finite-volume effects. In both cases (estimate of the
lattice spacings from ref. [122] or sec. 6.3.1), the position of the physical point (mphys, Fπ) is
indicated with a square.

This discrepancy between lattice and physical values of Fπ hints at a more general issue
concerning the determination of the absolute scale of lattice quantities, which is obtained by
converting the lattice spacing into physical units. In [122], it was determined by identifying
“scaling trajectories” corresponding to lines in the (a, m̃, m̃s) space with fixed M̃π/M̃Ω and
M̃K/M̃Ω ratios. An iterative interpolation method was used to reach values of Mπ,MK ,MΩ

corresponding to physical values of their ratios, which was identified as the physical point
for the quark masses. The lattice spacings were then determined by requiring that 1/a =
1.672/(aM̃Ω) GeV where 1.672 GeV is the physical mass of this baryon and aM̃Ω is the mass
of the Ω as measured in lattice units. The actual interpolation was performed through two
kinds of interpolating formulae for the hadron masses in terms of quark masses, either based
on next-to-leading two-flavour χPT or an analytic (polynomial) ansatz, fitted to partially-
quenched data. This led to values of the lattice spacing that were compatible and quoted
with an accuracy at the level of a few percents.

However, such determinations based on the quark-mass dependence of light-meson quan-
tities might be affected significantly if one takes into account the numerical competition
between leading and next-to-leading order contributions to three-flavour chiral series. This
means that one should consider at the same time the chiral expansions of F 2

PM
2
P and F 2

P

and include higher order remainders, to determine the dependence of Mπ and MK on the
quark masses. But, as far as the Ω mass is concerned, we will follow ref. [122] and take a
linear dependence on the quark masses

M̃Ω = MΩ + c1(m̃s −ms) + c2(m̃−m) (6.9)

inspired by the analysis of RBC/UKQCD. A fully consistent treatment should include a
treatment of the baryon masses in the resummed framework, extending eq. (6.9) to chiral
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logarithms and higher order remainders. Such an analysis is however beyond the scope of
this thesis (in the present case, we have checked that adding a quartic term in eq. (6.9) does
not change the results discussed below).

In addition, since we are interested in effects related to lattice spacing, we should also
consider discretization errors, which could reach 10 to 15% in the analysis of [122]. We
follow the latter analysis and include only leading-order discretization effects affecting the
decay constants 1:

F̃ 2
π (a, V, m̃, m̃s) = F̃ 2

π (0, V, m̃, m̃s) + F 2
πZ(3)cFπa

2 (6.10)

F̃ 2
K(a, V, m̃, m̃s) = F̃ 2

K(0, V, m̃, m̃s) + F 2
πZ(3)cFK

a2

where the correction term is defined with respect to the leading-order term in the chiral
expansion. The errors are O(a2), and not O(a), due to the good chiral properties of domain-
wall fermions (see sec. 2.2).

6.3.2 Including the lattice spacings in the fits

We are not in a position to perform the same joint determination of lattice spacings and
quark masses as the RBC/UKQCD collaboration to include the dependence of the pion and
kaon masses on the light-quark mass inferred from Resummed χPT from scratch. However,
we can perform a combined fit of the pion and kaon masses and decay constants, as well
as the Ω mass (see sec. 6.2.1), with the parameters from sec. 6.2.3 and the parameters
corresponding to the Ω mass formula eq. (6.9):

• the three leading-order parameters r,X(3), Z(3)

• a reference ratio between a simulated strange quark (chosen conventionally to be for
the 243 simulations) and the physical strange quark mass

• the higher order remainders associated with the pion and kaon masses and decay con-
stants (denoted d, e, d′, e′)

• the ratio FK/Fπ (on the other hand, we set Fπ = 92.2 MeV)

• if the topological susceptibility is included, the corresponding higher order remain-
ders for the η mass and decay constant (dη , eη) as well as the one for the topological
susceptibility (dχt).

• if the lattice spacings are left free, the two effective constants c1, c2 for the Ω mass
(eq. (6.9)).

• if discretisation errors are included, the two effective constants cFπ , cFK
for the decay

constants (eqs. (6.10)).

Our approach is not very different in its spirit from the “combined scaling and chiral
fitting” performed in ref. [122], up to the following modifications: we include information on
the values of the masses and decay constants at the physical point, we consider F 2

PM
2
P and

F 2
P rather than M2

P and FP , we use three-flavour resummed χPT rather than two-flavour
expansions to perform the interpolation of the data, we include the presence of higher order

1In principle, one should consider all the terms coming from discretisation effects and due to the breaking
of chiral symmetry, and also add correction terms for the masses. This would however increase the number
of free parameters and lead to fits with a poor stability, due to flat directions in the subspace of correction
terms and the limited number of data points.



Improved fits to pseudoscalar spectrum and topological susceptibility 139

remainders, we do not include partially-quenched data and we fix at the same time m,ms

and the lattice spacings in contrast with the two-step procedure in [122] (physical masses
first, lattice spacing afterwards).

6.3.3 Results and discussion

The results are given in table. 6.5 including finite-volume effects. First we consider fits
B2, 3, 4 without the topological susceptibility, including or not discretization errors and lat-
tice spacing determined from MΩ. Discretization errors remain generally small (at most 5%)
apart for F 2

π in fit B4 (20% effect, in good agreement with the results of ref. [122]), but
lead to enlarged uncertainties on the other parameters. We notice that these discretisation
effects are compatible with zero within error bars, which explains that the fits A2 and B3
(differing only through the effect of discretisation errors) yield very similar results. The
re-determination of lattice spacing through MΩ performed in B2 and B4 has a much more
significant impact, as it tends to decrease the lattice spacings significantly (20-30%) as well
as the value of the physical quark masses, and to increase Fπ/FK noticeably. In these fits,
the simulated quark masses stand much further away from the physical value than quoted
in ref. [122], implying that higher order remainders at the simulated quark masses (scaling
generically as p2 with respect to the higher order at the physical point) play a significant
role in the chiral expansion of observables (up to 40% for the heaviest m̃s). The large er-
ror bars for dimensionful quantities is a reflection of the uncertainty on the lattice spacings
determined from MΩ.

The topological susceptibility is introduced among the inputs in the fit B5. As in
sec. 6.2.4, the role of this input in the fit is marginal compared to the other data, and
the outcome of fits B4 and B5 is very similar. Indeed, the chi-square obtained from fit
B5 gets similar contributions from Fπ, FπMπ, FKMK and MΩ, whereas the contribution
from the topological susceptibility is small. The rest of the analysis is unchanged, with a
competition between leading and next-to-leading order contributions for the observables of
interest (Ô = LO +NLO +HO):

F 2
π : 0.60 + 0.25 + 0.15 , F 2

πM
2
π : 0.55 + 0.30 + 0.15

F 2
K : 0.38 + 0.52 + 0.10 , F 2

KM
2
K : 0.37 + 0.52 + 0.11

F 2
η : 0.33 + 0.58 + 0.09 , F 2

ηM
2
η : 0.35 + 0.66 − 0.01

χpole
t : 0.50 + 0.35 + 0.15

(6.11)

The competition between leading and next-to-leading order terms of the chiral expansions
observed in the previous fits remains though a bit less pronounced: Y (3) is closer to one,
and the value of L6 is closer to zero, but there is still an enhancement of next-to-leading
contributions to observables. Indeed, this enhancement is parametrised by msB0∆L4 and
msB0∆L6 (see sec. 3.4.3) rather than L4 and L6 themselves, as can be seen for instance in
eqs. (3.56)-(3.57) (see also figure 3.2).

Furthermore, the fitB5 features a fairly good χ2
min/N compared to the results in ref. [122],

taking into account that our fit reproduces the physical values of the pseudoscalar masses
and Fπ by construction. We agree with ref. [122] on the size of discretisation errors, but
obtain different results concerning the determination of the lattice spacings from MΩ. The
main difference stems from our use of Resummed χPT in the fit, as can be illustrated by
performing the same fit as B5 but constraining X(3) and Z(3) to remain between 0.9 and
1.05. This last constraint mimics the usual assumption made in three-flavour χPT that
both Fπ and Mπ are nearly saturated by their leading order term. The minimum of the fit
may look satisfying with r = 26.1, X(3) = 0.9, Y (3) = 0.97, Z(3) = 0.93, FK/Fπ = 1.18
and values of the lattice spacings compatible at the 5% level with ref. [122], but the value
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at the minimum is rather awful with χ2
min = 151/11. This shows clearly that allowing for

a numerical competition between leading and next-to-leading order is mandatory to reach
decent fits to the whole set of data considered here.

Finally, the results from B5 can be illustrated through the upper part of figure 6.1.
The change in the value of the lattice spacings rescales all lattice data points, which fall
on the dashed curves corresponding to the best ReχPT fit including finite-volume effects
(responsible for most of the curvature at small m̃) more easily than in sec. 6.2.4. The values
of p = m̃s/ms and Y (3) are larger than in fit A5: from eq. (3.56) (which has a similar
structure to the Resummed χPT expression for F̃π), we see that the next-to-leading order
contributions are proportional to the product p × Y (3) and tend thus to drive the dashed
curves corresponding to the two volumes further apart than in the previous section. We also
display the solid curve corresponding to the physical value of ms in an infinite volume, which
by construction passes through the physical point Fπ = 92.2 MeV (this point corresponds
to a slightly different value of m̃ from sec. 6.2.4). The curvature is then essentially tied to
the value at the origin, i.e., Z(2): a lower value of Z(2) will yield a steeper increase of F̃π
when m̃ increases. The dependence of Z(2) on the various parameters can be read from the
three-flavour expansion of F 2

π in the chiral limit mu = md = 0 [79]:

Z(2) =
r

r + 2
[1− η(r)] +

2

r + 2
Z(3)− r

r + 2
Y (3)g1 + . . . (6.12)

where g1 denotes a small positive combination of chiral logarithms (around 7% near the
physical point) and the ellipsis indicate higher order remainders (see sec. 3.4.3). Therefore, a
dependence with a stronger curvature around the physical point and a flatter behavior above
can be achieved by taking a larger value Y (3) or a smaller value of Z(3), as illustrated in
figure 6.2 and observed in fit B5 compared to A5. As an illustration, we indicate on the same
figure the curves obtained with the same inputs as the best values for fit B5 of table 6.5, but
setting Y (3) = 1 and/or Z(3) = 1. The case of a complete saturation of the chiral series for
F 2
π and F 2

πM
2
π by their leading order contribution (X(3) = Z(3) = 1) yields a higher Z(2)

and a flatter curve than our best fit.

At last, we notice that an increase of r (at fixed p) yields a slight increase of Z(2), but
more importantly an upward shift of the physical value of m̃, so that the corresponding line
remains above the best-fit curve over a larger range of m̃. The combination of these effects
allows our formulae to reproduce a diversity of behaviours for the dependence of F̃π on m̃,
including the one exhibited by the RBC/UKQCD data.

Finally, we can illustrate typical values for the fourth cumulant c4 and b2 for current
lattice simulations. We consider the results of fit B5 from table 6.5: one notices the rather
low values for the quark condensate and the pseudoscalar decay constant in the three-flavour
chiral limit: X(3) = 0.55±0.04 and Z(3) = 0.60±0.04. Using the outcome of this fit (includ-
ing the correlations among the leading order parameters and the higher order remainders),

we obtain the predictions for χno polet , cno pole4 and b2 collected in table 6.6 for the different
sets considered in sec. 6.2.1 as well as in the physical case. The values for p = m̃s/ms are
different from those quoted in ref. [122], since we have reassessed the determination of the
lattice spacing and quark mass based on the mass of the Ω baryon (see sec. 6.3.1). Finite-
volume effects are not included, whereas the effect of higher order remainders is taken into
account (including an estimate of d̃c4 that enlarges the corresponding uncertainty of c̃4). As
in the case of the topological susceptibility illustrated in the previous sections, the impact of
d̃c4 can be easily modeled and determined from a fit once a sufficiently large set of values at
different simulated quark masses is available. It would be very interesting to compare these
predictions for c4 and b2 with data from lattice simulations.

To conclude, since the results presented in table 6.4 do not include effects related to
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Figure 6.2: The pion decay constant as a function of the light-quark mass, according to the
best fit in the last column of table 6.5 (solid), with the same inputs but setting Y (3) = 1
and/or Z(3) = 1 (dashed and dashed-dotted curves), and with the same inputs but setting
r = 35 (dotted curve). The physical point according to the fit result is indicated with a
square.

Case p q χt · 104 [GeV4] c4 · 104 [GeV4] b2
Ls = 24 1.71 0.192 5.66 ± 1.54 −0.81 ± 0.47 −0.012 ± 0.009

1.71 0.311 8.98 ± 2.61 −0.87 ± 0.75 −0.008 ± 0.010

Ls = 32 1.61 0.154 3.88 ± 0.83 −0.67 ± 0.32 −0.014 ± 0.007
1.61 0.220 5.60 ± 1.26 −0.84 ± 0.47 −0.013 ± 0.008
1.61 0.286 7.23 ± 1.71 −0.89 ± 0.61 −0.010 ± 0.009

Physical 1 1/r 0.40 ± 0.02 −0.10 ± 0.01 −0.021 ± 0.004

Table 6.6: Predictions for the topological susceptibility and the fourth cumulant (without
identifying the η pole) for different lattice data sets presented in sec. 6.2.1 and in the physical
case, following the analysis performed in sec. 6.3.1 leading to the results of table 6.5.

lattice spacings and since the determination of the lattice spacings involves assumptions on
the form of chiral extrapolation, we consider the most complete fit B5 in table 6.5 as the
final result of our analysis, featuring a satisfying χ2

min/N . Interestingly, these results show
a good compatibility with what was obtained in ref. [92] for the parameters of the leading
order chiral lagrangian according to the results of the PACS-CS collaboration [96]. The value
of the condensate in the Nf = 3 chiral limit is:

(Σ(3; 2GeV))1/3 = 243 ± 12MeV (6.13)

on the lower side of was obtained by the RBC/UKQCD collaboration (i.e., 256 ± 6
MeV) [122], while the condensate in the two-flavour limit is

(Σ(2; 2GeV))1/3 = 285± 8MeV , Σ(2; 2GeV)/Σ(3; 2GeV) = 1.51 ± 0.11 (6.14)

which illustrates the paramagnetic suppression of the Nf = 3 condensate with respect to
the Nf = 2 one (a similar statement holds for the pseudoscalar decay constant).
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6.4 Summary

In this chapter, we have presented the fits that we have performed on decay constants,
masses and topological susceptibility (excluding here the Kℓ3 form factors). This work was
the object of [93]. The fitting method we used is the same as in Chapter 4, with the
difference that in some of the fits, we performed a determination of lattice spacings from the
Ω mass, we included discretization effects partially and we took into account finite-volume
effects. We used the 2 + 1 lattice data provided by the RBC/UKQCD [122] collaboration.
The parameters upon which ours fits were performed are the same as in Chapter 4, adding
the higher-order remainders related to topological susceptiblity (dη , eη, and dχt). In our
“Improved series” of fits in sec. 6.3, we also added to those parameters the lattice spacings
a and the quantities c1 and c2 related to the dependence of the Ω mass on the light quarks
masses, as well as cFπ and cFK

stemming from the dicretization effects of order O(a2) for the
π and K decay constants.

From our first series of fits (sec. 6.2.4), we have confirmed that these data do suggest
a suppression of the leading order Nf = 3 chiral order parameters (quark condensate and
pseudoscalar decay constant) and the enhancement of next-to-leading order contributions
related to the violation of the Zweig rule in the scalar sector (L4 and L6 contributions).
This outcome is mainly driven by the input from pseudoscalar masses and decay constants.
The data on topological susceptibility shows a good compatibility with the pattern of three-
flavour chiral symmetry breaking already discussed in Chapter 4. In addition, we confirm
the difficulties (though at a lesser degree) encountered by the RBC/UKQCD collaboration
to accommodate the dependence of Fπ on the light-quark mass m = mu = md given by their
data and the physical value of Fπ at the same time.

This problem has led us to reconsider the procedure used to determine the lattice spacing
using our expressions to describe the dependence of the pseudoscalar observables on the
quark masses, in our second series of fits in sec. 6.3: we performed a joint fit of pion/kaon
observables and the Ω mass to fix the lattice spacings at the same time as the parameters of
the chiral lagrangian. We also considered leading-order discretization errors that may affect
the kaon and pion decay constants, and that are expected to be the most important effects
among discretization errors. We finally performed a fit combining these two effects and
adding data on the topological susceptibility (fit B5). We noticed a significant enhancement
(20%-30%) of the inverse of lattice spacings compared to the values quoted in ref. [122],
as well as small discretization errors (5% or less, and compatible with zero). Like in the
previous analysis, the data on the topological susceptibility play a marginal role, but show
a good compatibility with the rest of the data, yielding a satisfying χ2

min/N . Since they
include the largest sets of data and use ReχPT consistently for the fit of the data and the
determination of the lattice spacings, the results of fit B5 should thus be considered as the
actual outcome of our analysis.

This confirms the suppression of the three-flavour quark condensate and decay constant,
while pointing at interesting new sources of systematics uncertainties (determination of the
lattice spacings, extrapolation to light quark masses). Obviously, our result does not include
properly all the correlations, and it would be very interesting that lattice collaborations
include Resummed χPT formulae as an alternative to the standard chiral expansion to
assess more precisely these uncertainties.
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“Et lorsque Sophia découvrit la conséquence de son désir, celle-ci prit la forme d’un serpent
à face de lion, et ses yeux étaient comme les feux flamboyants des éclairs. Elle le chassa

hors de sa portée, hors de ce royaume, afin qu’aucun des immortels ne le voit, car elle
l’avait engendré dans l’ignorance.”

Le livre secret de Jean, Bibliothèque de Nag-Hammadi

In this thesis, we studied some aspects of low-energy QCD below the scale of chiral
symmetry breaking (Λχ), where the usual perturbative methods consisting in the expansion
in terms of powers of the strong coupling constant is no more relevant. We have seen that
the spontaneous breaking of chiral symmetry generates an octet of Goldstone bosons that
are identified with the eight pseudo-scalar light mesons π, K and η once light quark masses
are included. Because of the light quark mass hierarchy mu ∼ md ≪ ms, we can consider
two different chiral limits: the Nf = 3 chiral limit, for which all of the light flavours are sent
to zero: mu,d,s → 0, and the Nf = 2 chiral limit, for which the u and d quark masses are
sent to 0, but with ms kept at his physical value: mu,d → 0, ms physical. One fundamental
question is then: are the patterns of chiral symmetry breaking stemming from the Nf = 3
and Nf = 2 chiral limits identical, or do they differ, and how ?

We have seen that the two main order parameters of chiral symmetry breaking, the
quark consensate Σ, and the decay constant F , should decrease when one goes from the
Nf = 2 to the Nf = 3 chiral limits, due to the presence of massive strange quark sea-pairs in
the vacuum. This in turn would impact the convergence of the series expansions calculated
within the framework of the effective theory of low-energy QCD, Chiral Perturbation Theory.
The leading order contributions, which involve both Σ and F , would be suppressed in this
situation. On the other hand, the Zweig rule suppressed, next-to-leading order low-energy
constants L4 and L6 of the three-flavour theory would be enhanced, as they account for the
dependence on the strange quark mass ms of the order parameters (eqs. (2.78) and (2.79)).
The combination of these two effects could lead to a numerical competition between the
leading and next-to-leading order in the Nf = 3 chiral expansions.

Indeed, many problems of convergence have been experienced both in phenomenological
analysis (interpretation of experimental data on ππ scattering, fits to NNLO chiral expan-
sions) and in the extrapolation of results obtained in Lattice QCD (incompatibility between
lattice results, values at the physical point and curvature from the chiral expansions). One
could obviously choose to dismiss the whole idea of an expansion around the chiral limit
mu = md = ms = 0, arguing that strange quark is too massive for such an expansion.
However, one would also hope that this could only be an accident involving LO and NLO
contributions, and that the problem of convergence would be tamed at higher orders in the
chiral expansion (as suggested by simple models of correlator saturation by resonances).
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We have decided to take the second approach, and assumed that the convergence prob-
lems in three-flavour chiral expansions would be restricted to LO and NLO, and that an
appropriate treatment of chiral series could be designed to cope with a numerical competi-
tion between their two first orders.

This framework, called Resummed χPT, has already been applied to some physical ob-
servables (pseudoscalar masses, decay constants, ππ and πK scatterings). The purpose of
this thesis was to apply it to settings and observables closer to Lattice QCD simulations.
We considered observables related to pseudoscalar mesons (masses, decay constants, elec-
tromagnetic and Kℓ3 form factors) for values of quark masses different from the physical
masses. We also discussed topological observables describing the distribution of the gluonic
winding number, namely the topological susceptibility and the fourth cumulant of the wind-
ing number. In both cases, we performed fits to available lattice data to extract information
on the pattern of chiral symmetry breaking, with an outcome in agreement with our expec-
tation: the three-flavour quark condensate and decay constant are significantly suppressed
compared to the two-flavour case, whereas the low energy constants L4 and L6 are larger
than assumed on the basis of the Zweig rule. There is no indication of large higher order
remainders, indicating that the problems of convergence are indeed limited to leading and
next-to-leading orders. Moreover, there are significant differences in the results of our ex-
trapolations of pseudoscalar observables to the physical point, compared to those performed
assuming a saturation of the chiral series by their leading order (this is exemplified by the
extracted values of FK/Fπ and the Kℓ3 form factor f+(0)).

In the course of our study, we have also encountered several interesting features: we have
seen the role played by the determination of the lattice spacing, which is generally performed
at the same time as the value of the light quark masses, using chiral extrapolations. It seems
clear that a change in the formulae used to perform this extrapolation can have a significant
impact on the systematics attached to the physical values of an observable computed on
the lattice, and that these systematics should be investigated in more detail in the analysis
of lattice results. Moreover, we have seen that the topological susceptibility is not the
most appropriate topological observable to extract the three-flavour quark condensate in a
setting with a quark mass hierarchy similar to the physical case. Indeed, the topological
susceptibility is actually sensitive to the two-flavour quark condensate which may differ
significantly from the three-flavour one. On the contrary, the fourth cumulant has the
potentiality to extract the latter order parameter and should be investigated in closer details
by lattice collaborations.

In Chapter 1, we have recalled the main issues concerning QCD and chiral symmetry.
Particular emphasis was put on the introduction to spontaneous symmetry breaking, before
moving to general considerations concerning the structure of the QCD vacuum. In Chapter 2,
we made a general overview of Lattice QCD and Effective Field theories, before introducing
in detail Chiral Perturbation Theory from the ground up, for three as well as for two light
quark flavours.

Resummed Chiral Perturbation Theory was presented in Chapter 3. In particular, we
have applied it to decay constants, masses, electromagnetic and Kℓ3 form factors, and in
Chapter 4 we performed fits to lattice data. One of the major conclusions we drew was that
the leading and next-to-leading order indeed competed in the case of Nf = 3 chiral series.
Also, there was indeed a suppression of the three-flavour condensate and pseudoscalar decay
constants, and this scenario provided a good description of lattice data from two different
collaborations.

Finally, Chapters 5 and 6 were devoted to the study of the topological susceptibility
χt and the fourth cumulant c4, where they were evaluated up to NLO in Standard and
Resummed χPT and their sensibility on the Nf = 3 quark condensate probed in the a pre-
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liminary study (Chapter 5), before tackling new series of fits that included decay constants,
masses and the topological susceptiblity (Chapter 6), which also included finite-volume ef-
fects and the determination of the lattice spacing a. The conclusions concerning the pattern
of three-flavour chiral symmetry breaking were similar to the previous case, but pointed
towards a significant underestimate of the uncertainties attached to the determination of the
lattice spacing from a joint fit to the π, K and Ω masses and quark masses.

The study we have made during these three fruitful years could provide indeed a sys-
tematic tool to the community, to latticists, chiralists as well as experimentalists, in order
to circumvent the potential problems of convergence encountered in Nf = 3 chiral series,
and to assess the systematic uncertainties associated with chiral extrapolations and deter-
mination of lattice spacing in a more detailed way, as our results suggest that these effects
can be underestimated if one considers only the standard version of χPT. And, last but not
least, it could also help to better understand the very difficult and still unsolved problem
of non-perturbative QCD, and to probe the Standard Model in one of its most challenging
aspects, i.e. the hadronic sector at low energies.
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Appendix A

Unitarity integrals and source
terms from the generating
functional

A.1 The one-loop unitarity integrals J̄ , K, L and M

One-loop unitarity diagrams lead to the following one-loop integral in d-dimensions:

J(k2) = −i
∫

ddq

(2π)d
1

(M2
P − q2)(M2

Q − (k − q)2) (A.1)

for arbitrary masses MP and MQ, P and Q being any light meson. This integral is
divergent for d = 4 and therefore must be renormalized. We define the substracted integral
J̄(s), which is finite at d = 4:

J̄(s) = J(s)− J(0), s ∈ R (A.2)

where the quantity J(0) gathers the divergence:

J(0) = −2κ(ǫ)− 2kPQ +O(ǫ), ǫ = 4− d (A.3)

κ(ǫ) =
µ−ǫ

16π2

[

− 1

ǫ
− 1

2
(ln 4π − γ + 1)

]

(A.4)

kPQ =
1

32π2

(

M2
P ln

M2
P

µ2
−M2

Q ln
M2
Q

µ2

)

(A.5)

µ being the renormalization scale stemming from the dimensional regularization, and γ
the Euler-Mascheroni constant [6, 8].

J̄(s) is expressed as an integral over the Feynman parameter λ:

J̄(s) = − 1

16π2

∫ 1

0
dλ ln

M2
P − sλ(1− λ)− λ(M2

P −M2
Q)

M2
P (1− λ) + λM2

Q

(A.6)

which can be reduced to:

J̄(s) =
1

32π2

[

2 + ln
M2
Q

M2
P

(

∆PQ

s
− ΣPQ

∆PQ

)

− δ

s
ln

(s+ δ)2 −∆2
PQ

(s− δ)2 −∆2
PQ

]

(A.7)
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with the notations ΣPQ = M2
P +M2

Q, ∆PQ = M2
P −M2

Q and δ2 = (s− (MP +MQ)2)(s−
(MP −MQ)2).

We also need the derivatives of J̄(s) at s = 0:

J̄
′
(0) =

1

32π2

(

ΣPQ

∆2
PQ

+ 2
M2
PM

2
Q

∆3
PQ

ln
M2
P

M2
Q

)

(A.8)

J̄
′′
(0) =

1

32π2

(

2

3∆4
PQ

(3Σ2
PQ − 2∆2

PQ) + 4
M2
PM

2
Q

∆5
PQ

ln
M2
P

M2
Q

)

(A.9)

We can now define the combination:

¯̄JPQ = J̄(s)− J̄ ′
(0) (A.10)

In the expression (2.70) of the one-loop unitarity contribution Zu of the generating func-
tional Z eq. (2.65), we have the following expressions for the renormalized integrals J , K,
L, and M in Fourier space:

KPQ(s) =
∆PQ

2s
J̄PQ(s) (A.11)

LPQ(s) =
∆2
PQ

4s
J̄PQ(s) (A.12)

M r
PQ(s) =

1

12s
(s− 2ΣPQ)J̄PQ(s) +

∆2

3s2
¯̄JPQ(s)− 1

6
kPQ +

1

288π2
(A.13)

A.2 Expression for the source terms Γ̂µ and σ̄

In Zu eq. (2.70) we have the source terms Γ̂µ and σ̄:

Γ̂µPQ = −1

2
Tr([λP , λ

†
Q]Γµ) (A.14)

σ̄PQ = σ∆
PQ + σχPQ (A.15)

σ∆
PQ =

1

2
Tr([λP ,∆µ][λ

†
Q,∆

µ]) (A.16)

σχPQ =
1

8
Tr({λP , λ†Q}(uχ†u+ u†χu†))− δPQ

◦
M

2

P (A.17)

with the following expression for the quantities Γµ and ∆µ:

Γµ =
1

2
[u†, ∂µu]−

1

2
iu†rµu−

1

2
iulµu

† (A.18)

∆µ =
1

2
u†DµŪu

† = −1

2
u(DµŪ)†u (A.19)

where we have Ū = u2 the classical solution of the chiral lagrangian’s equations of motion.
Dµ is the covariant derivative eq. (2.38). The matrices λP are the SU(3) generators, where
P = π0, π+... η.
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Tadpole propagator at finite
volume

Periodic boundary conditions lead to quantized momentum: ~p~n =
(

2π n1

L1
, 2π n2

L2
, 2π n3

L3
, 2π n4

T

)

.

In the case of the topological susceptibility χt and the fourth cumulant c4, the exterior mo-
menta are zero pext = 0, so only the loops are affected by the quantization. One has then to
simply replace their propagators at V = ∞ by the propagators in the box. We begin with
the general case of a four-dimensional box:

∆(~x,M2)|V=∞ =
1

(2π)4

∫

d4p
ei~p.~x

p2 +M2
(B.1)

In the finite case, the periodic boundary conditions allows to write the Fourier transform
of the propagator:

∆(~x,M2)|V =
1

V

∑

~n∈Z4

∼
∆ (~p~n,M

2)ei~p~n.~x (B.2)

where V = L3T . We define the “4-vector” α = (L,L,L, T ). Poisson’s resummation [11]
formula:

∑

~n∈Z4

∆(~x+ α~n,M2)|V=∞ =
1

V

∑

~n∈Z4

∼
∆ (~p~n,M

2)ei~p~n.~x (B.3)

implies the following link between ∆(~x,M2)|V and ∆(~x,M2)|V=∞:

∆(~x,M2)|V =
∑

~n∈Z4

∆(~x+ α~n,M2)|V=∞ (B.4)

We therefore obtain:

∆(~x,M2)|V = ∆(~x,M2)|V=∞ +
∑

~n∈(Z4)⋆

∆(~x+ α~n,M2)|V=∞ (B.5)

The finite-volume effects are contained in the second term of the above equation (B.5):
each term of the sum corresponds to the n-times for which the particle will run around the
box. Besides, we can write:
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∆(~x+ α~n,M2)|V=∞ =
1

(2π)4

∫

d4p
ei~p.(~x+α~n)

p2 +M2
(B.6)

Putting ~x = 0, we have the expression of the loop’s propagator at finite-volume:

∆(0,M2)|V =
1

(2π)4

∫

d4p
1

p2 +M2
+

∑

~n∈(Z4)⋆

1

(2π)4

∫

d4p
ei~p.(α~n)

p2 +M2
(B.7)

The second term of the r.h.s. in eq. (B.7) can be re-expressed as a Bessel integral:

1

(2π)4

∫

d4p
ei~p.(α~n)

p2 +M2
=

1

(4π)2

∫ ∞

0
dλλ−2e−M

2λe−
|α~n|
4λ

2

(B.8)

=
M

4π2|α~n|K1(M |α~n|)

where |α~n| is the norm of the euclidean four-vector α~n. We define:

∆(α~n,M2)|V=∞ =
M

4π2|α~n|K1(M |α~n|) (B.9)

Finally, we obtain:

∆(0,M2)|V = ∆(0,M2)|V=∞ +
∑

~n∈(Z4)⋆

∆(α~n,M2)|V=∞ (B.10)

From that point one only has to make the replacement ∆(0,M2)|V=∞ → ∆(0,M2)|V in
the expression of the different observables.

• It is possible to proceed in an identical way for a purely spatial box. This is in fact the
situation when we evaluate the finite-volume effects in Chapter 5 because the dependence
on t is used to extract the observables. The propagator (B.2) is rewritten in that case, with
V = L3:

∆(τ, ~x,M2)|V =
1

V

∑

~n∈Z3

∫

dp0

2π

∼
∆ (p0, ~p~n,M

2)ei(p0τ+~p~n.~x) (B.11)

where we integrate over the time component p0 of the momentum which remains contin-
uous, and sum over the spatial components ~p~n. In the spatial box eq. (B.4) then gives:

∆(τ, ~x,M2)|V =
∑

~n∈Z3

∆(τ, ~x+ α~n,M2)|V=∞ (B.12)

It is now necessary to evaluate ∆(τ, ~x+ α~n,M2)|V=∞. By putting x = 0:

∆(0, α~n,M2)|V=∞ =

∫

dp0d
3~p

(2π)4
ei~p.(α~n)

p2
0 + ~p2 +M2

(B.13)

The integral over p0 is easily calculated:
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∫ +∞

−∞

dp0

2π

1

p2
0 + a2

=
1

2a
, a > 0 (B.14)

All that’s left to do is to evaluate the remaining integral:

∆(0, α~n,M2)|V=∞ =

∫

d3~p

(2π)3
ei~p.(α~n)

2
√

~p2 +M2
(B.15)

Using the following trick:

1

αs
=

1

Γ(s)

∫ ∞

0
dλe−αλλs−1 (α > 0, s > 1) (B.16)

then, integrating over ~p3, one obtains:

∆(0, α~n,M2)|V=∞ =

∫ ∞

0

dλ

16π2
λ−2e−M

2λe−
|α~n|
4λ (B.17)

Finally, we have simply:

∆(0,M2)|V = ∆(0,M2)|V=∞ +
∑

~n∈(Z3)
⋆

∆(α~n,M2)|V=∞ (B.18)

The result for the propagator in a three-dimensional box is therefore the same as the
propagator in a four-dimensional one, up to the fact that the sum only runs over the spatial

dimensions. We have the following dictionary between the function ΞP = ξ1/2(L,
◦
M

2

P )
defined in sec. 6.2.2 and the propagator (B.17):

ΞP ←→
∑

~n∈(Z3)
⋆

∆(α~n,M2)|V=∞ (B.19)
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Appendix C

“Total” fits including additional
data points for higher masses and
momenta

In sec. 4.3.2, we considered fits to both PACS-CS and RBC/UKQCD data restricted to the
low-mass and low-momentum region. We have also performed fits to the whole sets of data
available (“Total” data), in order to test the stability of our results, and to illustrate the
interest of having larger data sets to determine the higher order remainders in an accurate
way. We are aware that some of the data points considered here may stand outside the
region of validity for ReχPT, but we found nevertheless interesting to provide these results,
showing a good consistency with those obtained with “subset” data (table 4.7).

Our results are summarized in tables C.1 and C.2. The first series of rows corresponds
to the outcome of the fit, whereas the lower rows are quantities derived from the results
of the fit (leading order and next-to-leading order low-energy constants, quantities in the
Nf = 2 chiral limit, Kℓ3 quantities, relative fraction of LO/NLO/remainders contributions
at the minimum for several observables), and the last row is the χ2 per degree of freedom.
Most of the comments made in sec. 4.3.2 can be restated, with a few changes in the case of
the RBC/UKQCD data (larger value of FK/Fπ and lower value of f+(0) than in the case
presented in Chapter 4). We notice that the fits are fairly good, and that all higher order
remainders turn out to lie within their expected range.
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Without Kℓ3 RBC/UKQCD Total PACS− CS Total

r 25.8 ± 0.9 25.7 ± 0.9
X(3) 0.44 ± 0.03 0.48 ± 0.04
Y (3) 0.77 ± 0.06 0.76 ± 0.07
Z(3) 0.56 ± 0.04 0.63 ± 0.05
FK/Fπ 1.214 ± 0.012 1.239 ± 0.011

Rem. at limit none none
m̃s,ref/ms 1.12 ± 0.03 1.21 ± 0.02

ms(2 GeV)[MeV] 110 ± 3 72± 2
m(2 GeV)[MeV] 4.3± 0.1 2.8± 0.1
B0(2 GeV)[GeV] 1.75 ± 0.14 2.65 ± 0.20

F0[MeV] 69.2 ± 2.2 73.0 ± 2.5

L4(µ) · 103 0.7± 0.1 0.1± 0.2
L5(µ) · 103 1.8± 0.2 2.2± 0.2
L6(µ) · 103 0.8± 0.2 0.5± 0.3
L8(µ) · 103 1.2± 0.3 1.4± 0.3

X(2) 0.90 ± 0.01 0.90 ± 0.01
Y (2) 1.02 ± 0.01 1.03 ± 0.01
Z(2) 0.88 ± 0.01 0.87 ± 0.01

B(2 GeV)[GeV] 2.34 ± 0.07 3.58 ± 0.11
F [MeV] 86.7 ± 0.3 86.3 ± 0.3

ℓ̄3 3.1± 0.6 3.8± 0.6
ℓ̄4 3.9± 0.2 4.2± 0.2

Σ/Σ0 2.07 ± 0.15 1.88 ± 0.14
B/B0 1.32 ± 0.10 1.35 ± 0.11
F/F0 1.25 ± 0.04 1.18 ± 0.04

f+(0) 1.006 ± 0.149 1.011 ± 0.149

F 2
π 0.56 + 0.54 − 0.10 0.63 + 0.28 + 0.09

F 2
K 0.38 + 0.69 − 0.07 0.41 + 0.52 + 0.07

F 2
πM

2
π 0.44 + 0.67 − 0.11 0.48 + 0.50 + 0.02

F 2
KM

2
K 0.31 + 0.77 − 0.08 0.33 + 0.65 + 0.02

χ2/N 13.6/7 13.8/15

Table C.1: Results of fits performed on the data from the RBC/UKQCD [99, 100, 101] and
PACS-CS [96] collaborations on pseudoscalar masses and decay constants, considering all the
available unquenched data (Total). Only statistical errors are shown. The LECs are given at
the scale µ = mρ. The Kℓ3 form factor at zero momentum transfer is a prediction of the fit
(with an error combining those obtained from the fit and the maximal contribution allowed
for the remainder from dimensional estimation). The penultimate set of rows collects the
relative fractions of LO/NLO/remainders for decay constants and masses at the minimum.
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With Kℓ3 RBC/UKQCD Total I RBC/UKQCD Total II

r 24.9± 0.6 25.2 ± 0.9
X(3) 0.43 ± 0.03 0.42 ± 0.03
Y (3) 0.80 ± 0.05 0.78 ± 0.06
Z(3) 0.53 ± 0.03 0.54 ± 0.04
FK/Fπ 1.199 ± 0.009 1.203 ± 0.011

Rem. at limit none none
m̃s,ref/ms 1.15⋆ 1.14 ± 0.03

ms(2 GeV)[MeV] 107 109± 3
m(2 GeV)[MeV] 4.3 ± 0.1 4.3± 0.1
B0(2 GeV)[GeV] 1.80 ± 0.12 1.77 ± 0.14

F0[MeV] 67.1± 1.9 67.6 ± 2.1

L4(µ) · 103 0.76 ± 0.10 0.75 ± 0.10
L5(µ) · 103 1.64 ± 0.12 1.71 ± 0.19
L6(µ) · 103 0.71 ± 0.13 0.76 ± 0.17
L8(µ) · 103 1.18 ± 0.22 1.19 ± 0.23
L9(µ) · 103 5.05 ± 2.25 5.08 ± 2.25

X(2) 0.90 ± 0.01 0.90 ± 0.01
Y (2) 1.02 ± 0.01 1.02 ± 0.01
Z(2) 0.88 ± 0.01 0.88 ± 0.01

B(2 GeV)[GeV] 2.30 ± 0.06 2.31 ± 0.06
F [MeV] 86.5± 0.2 86.6 ± 0.3

ℓ̄3 2.7 ± 0.5 2.9± 0.6
ℓ̄4 4.1 ± 0.2 4.0± 0.2

Σ/Σ0 2.11 ± 0.13 2.14 ± 0.16
B/B0 1.28 ± 0.07 1.31 ± 0.10
F/F0 1.29 ± 0.04 1.28 ± 0.04

f+(0) 0.975 ± 0.006 0.975 ± 0.006
∆CT · 103 4.8 ± 5.7 3.8± 5.8
∆′
CT · 103 −70± 28 −68± 29

〈r2〉K+

V [fm2] 0.224 ± 0.129 0.225 ± 0.129

〈r2〉K0

V [fm2] −0.026 ± 0.098 −0.026 ± 0.097

F 2
π 0.53 + 0.57 − 0.10 0.54 + 0.56− 0.10

F 2
K 0.37 + 0.70 − 0.07 0.37 + 0.70− 0.07

F 2
πM

2
π 0.43 + 0.68 − 0.11 0.42 + 0.69− 0.11

F 2
KM

2
K 0.30 + 0.78 − 0.08 0.30 + 0.78− 0.08

FπFKf+(0) 0.45 + 0.66 − 0.11 0.46 + 0.66− 0.12

χ2/N 33.6/20 33.2/19

Table C.2: Results of two different fits of the data from the RBC/UKQCD [99, 100, 101]
on pseudoscalar masses and decay constants, as well as on Kℓ3 form factors. We considered
all the available unquenched data (Total), and either fixed the lattice strange quark mass
(marked then with a star) or let it vary freely. Only statistical errors are shown and LECs
are given at the scale µ = mρ. The penultimate set of rows collects the relative fractions of
LO/NLO/remainders at the minimum for decay constants, masses and Kℓ3 form factor at
vanishing transfer momentum.
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Appendix D

Expressions of Feynman diagrams
for topological quantities

D.1 Topological susceptibility χt

We use the following notation for the regularized tadpole “bubble” (sec.2.5.4):

∆P (0) =

◦
M

2

P

16π2

[

log

◦
M

2

P

µ2
− 2

ǫ
− ln 4π + γ − 1 + lnµ2 +O(ǫ)

]

, ǫ = 4− d (D.1)

The relevant diagrams for the calculation of the topological susceptibility up to next-to-
leading order are recalled in figure D.1. The expressions (in the isospin limit) for each of the
different diagrams follow.

Figure D.1: Diagrams involved in the evaluation of the topological susceptibility up to NLO. The
circles represent the exterior vertices, containing the number of θ derivatives, while the propagating
η and π0 mesons are represented by the solid lines attached to the sources. The loops contain any of
the eight Goldstone bosons. The crossing lines correspond to the usual four-point vertex (from L(2),
eq. (2.62)), and the white square in diagrams (f), (g) and (h) to NLO counter-terms (from L(4),
eq. (2.62)).

• Tree graphs (a) and (b) from L(2):

(a) = −F
2
0B0

9
(2m+ms), local term (a) (D.2)

(b) =
2

9
F 2

0B0
(m−ms)

2

m+ 2ms
, propagating term (b) (D.3)
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• One-loop graphs (c), (d) and (e) from L(2):

(c) = −iB0

9

[

3m∆π(0) + 2(m+ms)∆
K(0) +

1

3
(m+ 2ms)∆

η(0)

]

(D.4)

(d) = −i−4B2
0

27

[

3(m−ms)

2B0(m+ 2ms)

(

3m∆π(0)− 2ms∆
K(0) +

(m

3
− 4

3

)

∆η(0)

)]

(D.5)

(e) = −i2B
3
0

27

9(m−ms)
2

4B2
0(m+ 2ms)2

[

2

3

(

3m∆π(0)− (10m+ 3ms)∆
K(0)

)

(D.6)

+
1

9
(2m+ 16ms)∆

η(0)

]

• Tree graphs (f), (g) and (h) from L(4) (counter-terms):

(f) = −32

9
B2

0 [(2m +ms)
2(L6 + L7) + (2m2 +m2

s)L8] (D.7)

(g) =
128

9
B2

0

m−ms

m+ 2ms
[(L6 + L7)(m−ms)(2m+ms) + L8(m

2 −m2
s)] (D.8)

(h) = −64

9
B2

0

(m−ms)
2

(m+ 2ms)2
[L6(2m+ms)(m+ 2ms) + 2L7(m−ms)

2 + L8(m
2 + 2m2

s)]

(D.9)

D.2 Fourth cumulant c4

As indicated in sec. 5.3.1, there are several classes of diagrams contributing to the chiral
expansion of c4 up to one loop. They are recalled in this appendix. First, there are five
leading-order diagrams shown in figure D.2. The tree-diagram 5 is dressed by adding a
counter-term or a loop at the level of the vertices or the propagators, the susbsequent dia-
grams are recalled in figure D.3. Finally there are five additional one-loop diagrams collected
in figure D.4 corresponding to the various local terms. In the following, we will give the con-
tribution of the various diagrams with the same distinction for the argument of logarithms
coming from tadpole or from unitarity contributions as in eq. (5.28). The relevant diagrams
are recalled in the following figures D.2, D.3 and D.4. The expressions (in the isospin limit)
for each of the different diagrams follow.

1 2 3 4 5

34 3 1 2

1

1

1

1

1

1 1

1 1

1

Figure D.2: Tree diagrams for c4. The external points stemming from θ derivatives are represented
by a circle, containing the relevant number of derivatives.
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5

1 1

1 1

1

11

1 1

1

1

1 1

1

11

1 1

1 1

1 1

1 1

1

1

1

1

Figure D.3: Scattering One-loop diagrams for c4 involving propagation, obtained by dressing the
tree-diagram 5. The square correspond to an NLO vertex.

6 7 8

9 10

2 2 1
1

2

1 1 1 1

2

1

1

1 1

1

1

Figure D.4: One-loop diagrams for c4 involving local terms.
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• Diagrams 1

− 1

81
B0F

2
0 (2m+ms) +

B2
0m

2

216π2
ln

◦
M2
π

µ2

+
B2

0 (m+ms)
2

648π2
ln

◦
M2
K

µ2
+
B2

0 (m+ 2ms)
2

5832π2
ln

◦
M2
η

µ2

−128

81
B2

0 (ms + 2m) 2Lr6(µ)− 128

81
B2

0 (ms + 2m) 2L7

−128

81
B2

0

(

2m2 +m2
s

)

Lr8(µ) (D.10)

• Diagrams 2

16B2
0F

2
0 (m−ms)

2

243M2
η

− 2B3
0m

2 (m−ms)

81π2M2
η

ln

◦
M2
π

µ2
+

2B3
0 (m−ms) (m+ms)

2

243π2M2
η

ln

◦
M2
K

µ2

−2B3
0 (m−ms) (m− 4ms) (m+ 2ms)

2187π2M2
η

ln

◦
M2
η

µ2

−256B3
0 (m−ms)

2 (2m+ms)

243M2
η

Lr4(µ)− 256B3
0 (m−ms)

2 (m+ 2ms)

729M2
η

Lr5(µ)

+
2560B3

0 (m−ms)
2 (2m+ms)

243M2
η

Lr6(µ) +
2560B3

0 (m−ms)
2 (2m+ms)

243M2
η

L7

+
2560B3

0 (m−ms)
2 (m+ms)

243M2
η

Lr8(µ) (D.11)

• Diagrams 3

−16B2
0(m−ms)

2(m+ 2ms)

243M4
η

+
B4

0m
2 (m−ms) (m+ms)

27π2M4
η

ln

◦
M2
π

µ2
− B4

0 (m−ms) (m+ms)
3

162π2M4
η

ln

◦
M2
K

µ2

+
B4

0 (m−ms) (m+ 2ms)
(

m2 +mms − 8m2
s

)

729π2M4
η

ln

◦
M2
η

µ2

+
512B4

0 (m−ms)
2 (2m+ms) (m+ 2ms)

243M4
η

Lr4(µ) +
512B4

0 (m−ms)
2 (m+ 2ms)

2

243M2
η

Lr5(µ)

−2040B4
0 (m−ms)

2 (m2 +mms +m2
s

)

81M4
η

Lr6(µ)− 2040B4
0 (m−ms)

2 (m2 +mms +m2
s

)

81M4
η

L7

−1024B4
0 (m−ms)

2 (m2 +mms + 2m2
s

)

81M4
η

Lr8(µ) (D.12)

• Diagrams 4

64B4
0F

2
0 (m− 4ms)(m−ms)

3

2187M6
η

− 4B5
0m

2 (4m− 13ms) (m−ms)
2

729π2M6
η

ln

◦
M2
π

µ2

+
2B5

0 (m+ms) (m−ms)
2 (32m2 − 99mms − 23m2

s

)

10935π2M6
η

ln

◦
M2
K

µ2

−4B5
0 (m+ms) (m−ms)

2 (4m2 − 41mms + 64m2
s

)

19683π2M6
η

ln

◦
M2
η

µ2
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−1024B5
0 (m−ms)

3 (m− 4ms) (2m+ms)

729M6
η

Lr4(µ)

−1024B5
0 (m−ms)

3 (m− 4ms) (m+ 2ms)

2187M2
η

Lr5(µ)

+
4096B5

0 (m−ms)
3 (7m2 − 11mms − 14m2

s

)

2187M6
η

Lr6(µ)

+
4096B5

0 (m−ms)
3 (7m2 − 11mms − 14m2

s

)

2187M6
η

L7

+
2048B5

0 (m−ms)
3 (7m2 − 9mms − 28m2

s

)

2187M6
η

Lr8(µ) (D.13)

• Diagrams 5

−32B5
0F

2
0 (m−ms)

4(m+ 8ms)

6561M8
η

+
2B6

0m
2 (m−ms)

3 (5m+ 31ms)

2187π2M8
η

ln

◦
M2
π

µ2

+
2B6

0 (m−ms)
3 (m+ms)

(

m2 − 189mms + 8m2
s

)

32805π2M8
η

ln

◦
M2
K

µ2

+
2B6

0 (m−ms)
3 (m+ 2ms)

(

5m2 + 47mms − 160m2
s

)

59049π2M8
η

ln

◦
M2
η

µ2

+
2B6

0m
2 (m−ms)

4

729π2M8
η

ln
M2
π

µ2
+

2B6
0m

2 (m−ms)
4

2187π2M8
η

ln
M2
K

µ2

+
2B6

0 (m−ms)
4 (m+ 8ms)

2

19683π2M8
η

ln
M2
η

µ2

+
2048B6

0 (m−ms)
4 (m+ 8ms) (2m+ms)

6561M8
η

Lr4(µ)

+
2048B6

0 (m−ms)
4 (m+ 8ms) (m+ 2ms)

19683M8
η

Lr5(µ)

−1024B2
0 (m−ms)

4 (16m2 + 109mms + 64m2
s

)

6561M8
η

Lr6(µ)

−4096B2
0 (m−ms)

4 (4m2 + 7mms + 16m2
s

)

6561M8
η

L7

−4096B2
0 (m−ms)

4 (2m2 + 9mms + 16m2
s

)

6561M8
η

L8

+
2B6

0 (m−ms)
4
(

37m2 + 16mms + 64m2
s

)

19683π2M8
η

(D.14)

• Diagrams 6

B2
0

72π2
m2 ln

M2
π

µ2
+

B2
0

216π2
(m+ms)

2 ln
M2
K

µ2
+

B2
0

1944π2
(m+ 2ms)

2 ln
M2
η

µ2

+
B2

0

1944π2

(

37m2 + 22mms + 13m2
s

)

(D.15)

• Diagrams 7

−B
3
0m

2 (m−ms)

27π2M2
η

ln
M2
π

µ2
− B3

0ms

(

m2
s −m2

)

81π2M2
η

ln
M2
K

µ2

−B
3
0 (m− 4ms) (m−ms) (m+ 2ms)

729M2
ηπ

2
ln
M2
η

µ2
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−B
2
0 (m−ms)

2 (17ms + 28m)

729π2M2
η

(D.16)

• Diagrams 8

2B4
0m

2 (m−ms)
2

81π2M4
η

ln
M2
π

µ2
+

2B2
0m

2
s (m−ms)

2

243π2M4
η

ln
M2
K

µ2

+
2B2

0 (m− 4ms)
2 (m−ms)

2

2187π2M4
η

ln
M2
η

µ2

+
2B2

0 (m−ms)
2
(

28m2 − 8mms + 25m2
s

)

2187π2M4
η

(D.17)

• Diagrams 9

B4
0m

2 (m−ms)
2

81π2M4
η

ln
M2
π

µ2
− B2

0m (m−ms)
2 (m+ms)

243π2M4
η

ln
M2
K

µ2

+
B4

0 (m+ 8ms) (m−ms)
2 (m+ 2ms)

2187π2M4
η

ln
M2
η

µ2
− B4

0 (m−ms)
2 (m+ms)

2

162π2M4
η

ln

◦
M2
K

µ2

+
B4

0 (m−ms)
2
(

19m2 +mms + 16m2
s

)

2187π2M4
η

(D.18)

• Diagrams 10

−4B5
0m

2 (m−ms)
3

243π2M6
η

ln
M2
π

µ2
− 4B2

0mms (m−ms)
3

729π2M6
η

ln
M2
K

µ2

−4B5
0 (m− 4ms) (m+ 8ms) (m−ms)

3

6561π2M6
η

ln
M2
η

µ2
− 2B5

0(m+ms)ms (m−ms)
3

243π2M6
η

ln

◦
M2
K

µ2

−4B5
0 (m−ms)

3
(

28m2 + 13mms − 32m2
s

)

6561π2M6
η

(D.19)

Let us notice that vertices from L(2)
eff with derivatives applied to the internal propagators

generate contact terms which yield tadpole contributions even in the case of the scattering
diagrams 9 and 10 where such contributions would not be expected naively. One can easily
obtain the equivalent contributions with the prescription of eq. (5.27) by setting the LO

masses
◦
M

2

P in the argument of all logarithms.
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