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Résumé

“Techniques fondées sur des vues matérialisées pour la gestion
efficace des données du web”

Konstantinos Karanasos

De nos jours, des masses de données sont publiées à grande échelle dans des formats
numériques. Une part importante de ces données a une structure complexe, typiquement
organisée sous la forme d’arbres (les documents du web, comme HTML et XML, étant les
plus représentatifs) ou de graphes (en particulier, les bases de données du Web Sémantique
structurées en graphes, et exprimées en RDF). Exploiter ces données complexes, qu’elles
soient dans un format d’accès Open Data ou bien propriétaire (au sein d’une compagnie),
présente un grand intérêt. Le faire de façon efficace pour de grands volumes de données
reste encore un défi.

Les vues matérialisées sont utilisées depuis longtemps pour améliorer considérable-
ment l’évaluation des requêtes. Le principe est q’une vue stocke des résultats pre-calculés
qui peuvent être utilisés pour évaluer (une partie d’) une requête. L’adoption des tech-
niques de vues matérialisées dans le contexte de données du web que nous considérons
est particulièrement exigeante à cause de la complexité structurelle et sémantique des
données. Cette thèse aborde deux problèmes liés à la gestion des données du web basée
sur des vues matérialisées.

D’abord, nous nous concentrons sur le problème de sélection des vues pour des ensem-
bles de requêtes RDF. Nous présentons un algorithme original qui, basé sur un ensemble
de requêtes, propose les vues les plus appropriées à matérialiser dans la base des données.
Ceci dans le but de minimiser à la fois les coûts d’évaluation des requêtes, de maintenance
et de stockage des vues. Bien que les requêtes RDF contiennent typiquement un grand
nombre de jointures, ce qui complique le processus de sélection de vues, notre algorithme
passe à l’échelle de centaines de requêtes, un nombre non atteint par les méthodes exis-
tantes. En outre, nous proposons des techniques nouvelles pour tenir compte des données
implicites qui peuvent être dérivées des schémas RDF sans complexifier davantage la
sélection des vues.

La deuxième contribution de notre travail concerne la réécriture de requêtes en util-
isant des vues matérialisées XML. Nous commençons par identifier un dialecte expressif
de XQuery, correspondant aux motifs d’arbres avec des jointures sur la valeur, et nous étu-
dions des propriétés importantes de ces requêtes, y compris l’inclusion et la minimisation.
En nous fondant sur ces notions, nous considérons le problème de trouver des réécritures
minimales et équivalentes d’une requête exprimée dans ce dialecte, en utilisant des vues
matérialisées exprimées dans le même dialecte, et nous fournissons un algorithme cor-
rect et complet à cet effet. Notre travail dépasse l’état de l’art en permettant à chaque
motif d’arbre de renvoyer un ensemble d’attributs, en prenant en charge des jointures sur
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la valeur entre les motifs, et en considérant des réécritures qui combinent plusieurs vues.
Enfin, nous montrons comment notre méthode de réécriture peut être appliquée dans un
contexte distribué, pour la dissémination efficace d’un corpus de documents XML annotés
en RDF.

Mots Clefs: XML, RDF, RDFS, données du web, vues materialisées, optimisation des
requêtes, réécriture de requêtes basée sur des vues, sélection des vues
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Abstract

“View-Based Techniques for the Efficient Management of Web Data”

Konstantinos Karanasos

Data is being published in digital formats at very high rates nowadays. A large share
of this data has complex structure, typically organized as trees (Web documents such as
HTML and XML being the most representative) or graphs (in particular, graph-structured
Semantic Web databases, expressed in RDF). There is great interest in exploiting such
complex data, whether in an Open Data access model or within companies owning it, and
efficiently doing so for large data volumes remains challenging.

Materialized views have long been used to obtain significant performance improve-
ments when processing queries. The principle is that a view stores pre-computed results
that can be used to evaluate (possibly part of) a query. Adapting materialized view tech-
niques to the Web data setting we consider is particularly challenging due to the structural
and semantic complexity of the data. This thesis tackles two problems in the broad context
of materialized view-based management of Web data.

First, we focus on the problem of view selection for RDF query workloads. We present
a novel algorithm, which, based on a query workload, proposes the most appropriate
views to be materialized in the database, in order to minimize the combined cost of query
evaluation, view maintenance and view storage. Although RDF query workloads typi-
cally feature many joins, hampering the view selection process, our algorithm scales to
hundreds of queries, a number unattained by existing approaches. Furthermore, we pro-
pose new techniques to account for the implicit data that can be derived by the RDF
Schemas and which further complicate the view selection process.

The second contribution of our work concerns query rewriting based on materialized
XML views. We start by identifying an expressive dialect of XQuery, corresponding to
tree patterns with value joins, and study some important properties for these queries, such
as containment and minimization. Based on these notions, we consider the problem of
finding minimal equivalent rewritings of a query expressed in this dialect, using material-
ized views expressed in the same dialect, and provide a sound and complete algorithm for
that purpose. Our work extends the state of the art by allowing each pattern node to return
a set of attributes, supporting value joins in the patterns, and considering rewritings which
combine many views. Finally, we show how our view-based query rewriting algorithm
can be applied in a distributed setting, in order to efficiently disseminate corpora of XML
documents carrying RDF annotations.

Keywords: XML, RDF, RDFS, Web data, materialized views, query optimization, view-
based query rewriting, view selection
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Chapter 1

Introduction

The idea of the World Wide Web was first conceived in 1989 1 and the first Web
page was online shortly after. Since then, and over the past two decades, the Web has
undoubtedly shaped the digital (and not only) world as it is perceived today. In its initial
version, the Web was read-only: very few users had the privilege to publish content, with
the vast majority of users being plain consumers of this content. However, the advent
of Web 2.0 would change this picture, by giving a central role to the end users, who
could now both consume and produce Web content. This is the “Read-Write Web”, so
called by Tim Berners-Lee, the creator of the Web 2. Various technologies were built to
facilitate information sharing: blogs, Wikis, mashups, RSS feeds, video sharing websites,
to name a few. More recently, the Semantic Web movement was created in an attempt
to give semantics to the Web data, further promoting the interoperability and sharing
of information, with a view to form “a Web of data that can be processed directly and
indirectly by machines” [BLHL01]. Nowadays, the Web is used in almost all aspects of
our everyday life, from creating, modifying and sharing information to building virtual
societies through social networks.

1.1 Web Data

Initially, traditional relational data, as well as unstructured data (such as documents),
were used on the Web. Albeit useful in various scenarios, these data models often fail
to capture the need for flexibility and the irregularity of Web data. To this end, the semi-
structured data model has gained a lot of popularity for Web applications. Unlike the well-
structured relational data, semi-structured data do not need to abide by a strict schema,
which greatly facilitates the exchange and integration of information [ABS99]. In partic-
ular, XML and RDF have been widely adopted for representing Web data, and have both
been W3C standards since 1998.

XML is a flexible, generic and platform-independent data model that has become the
de facto standard for exchanging data on the Web. XML data are organized in docu-

1. The original proposal is available at http://www.w3.org/History/1989/proposal.html.
2. See, for instance, http://www.mendeley.com/research/bernerslee-readwrite-web/.
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2 CHAPTER 1. INTRODUCTION

ments, which can be seen as labeled, unranked trees. Moreover, XML documents are
self-describing in the sense that their structure is defined by their label structure.

On the other front, RDF is the data model on which the Semantic Web is based. An
RDF dataset is a graph encoded through a set of edges of the form (s, p, o), known as
triples, where s, o (the subject and object of the triple, respectively) are the nodes and p
(property of the triple) the edge between them. RDF facilitates the interoperability and
integration of data on the Web, by assigning to every data resource a unique identifier
(URI), which can then be referenced in a triple. An important aspect of RDF is the
fact that it allows to derive implicit information: RDF Schemas can be used to define
hierarchies of classes and properties, and, based on these semantic relationships, data not
explicitly present in the dataset can be derived through a set of reasoning rules.

1.2 Web Data Management: Main Approaches
As the popularity of the Web increased, so did the amounts of produced Web data.

Indeed, XML and RDF are being used in a plethora of applications: Web sites, Web
services, RSS feeds, governmental agencies, social networks, scientific data, search en-
gines, etc. Most recently, the Linked Open Data initiative for interconnecting the publicly
available RDF datasets through links further contributed to the adoption of RDF.

Efficiently managing Web data is crucial for the end users, as well as for decision
support and data analytics systems of organizations. At the same time, the extreme pace
at which Web data is being produced, along with its complex structure, have made the
Web data management [AMR+12] a highly active area of research.

Below, we briefly outline the various techniques that have been proposed for the stor-
age and retrieval of XML and RDF data.

XML data management Several techniques for storing XML data have focused on map-
ping the data to relational tables. In order to perform this mapping, knowledge based on
the expected queries and structure of the data has been exploited (e.g., [DFS99, STZ+99,
TVB+02]). Apart from the relational approaches, native systems dedicated to the man-
agement of XML data have also been developed [IHW01, NDM+01]. Moreover, novel
join algorithms have been devised for the efficient evaluation of queries against an XML
database [AKJP+02, BKS02].

RDF data management Many approaches have been proposed for storing, indexing and
querying large RDF datasets, with several of them also relying on relational database
back-ends. Among the most prevalent ones stand the triple table (all triples are stored
in a single huge three-column table, e.g., Sesame [BKvH02]), the vertical partition-
ing [AMMH07] (a two-column table is created for each distinct property of the dataset)
and the property tables (a table is created for each set of properties appearing together in
the data, used by Jena [WSKR03]). Various indexing schemes have also been presented
(e.g., Hexastore [WKB08]). Finally, RDF-3X [NW10a], a native RDF management sys-
tem, also relying on the triple table, and applying aggressive indexing, specific join op-
timization and cardinality estimation techniques, is considered one of the most efficient
RDF data management platforms.
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1.3 Motivation: Web Data and Materialized Views
Despite the abundance of proposed methods for manipulating big XML and RDF

datasets, it has been observed that in most cases different approaches fare well on differ-
ent types of data and queries. In this context, having knowledge of the expected query
workload can be of great benefit.

This is the idea behind materialized views, i.e., queries whose results are stored in
the database. Materialized views can be seen as precomputed query results, which can
be exploited in order to expedite query evaluation. The most important problems related
to materialized views are those of view-based query rewriting, view selection and view
maintenance. In the view-based query rewriting, we are given as input a query and a set of
views, and attempt to evaluate the query based on the set of views. In the view selection,
we are given a query workload, and we need to choose the most appropriate views to
be materialized for this specific workload. These views will be subsequently used when
evaluating the queries of the workload. Finally, view maintenance focuses on the problem
of keeping the materialized views up-to-date as the underlying data is updated.

The aforementioned problems have been extensively studied in the relational set-
ting [CHS02, Hal01], as well as in the XML [BOB+04, CDO08, MKVZ11, PZIÖ06,
TYÖ+08], and, recently, in the RDF context [CL10, DCDK11, GKLM12].

View-based data management in the setting of Web (XML and RDF) data for query
optimization purposes is at the core of this thesis.

1.4 Contributions (Thesis Outline)
Aiming at the efficient view-based Web data management, this thesis addresses two

main problems: the view selection for RDF query workloads, and the view-based rewrit-
ing for XML queries. Below we provide an overview of how the thesis is organized, along
with the main contributions of each Chapter.

Chapter 2 provides the necessary background to follow the rest of the thesis. Moreover,
it discusses related works in the areas of XML, RDF and view-based data management.

Chapter 3 focuses on the problem of RDF view selection. The contributions of this
Chapter can be summarized as follows:

– This is the first work to consider the problem of selecting views to be material-
ized, so as to enable the evaluation of the RDF queries of a given workload based
exclusively on the proposed views (without accessing the initial data).

– Inspired from a relational approach, we show how our problem can be modeled as a
state optimization problem, and provide search strategies and heuristics to navigate
in the space of possible view configurations.

– We have devised novel ways to take into account the implicit data during the view
selection process.

– We present an extensive experimental evaluation of our techniques.
– Our approach is generic and can be also applied in the relational setting for selecting

materialized views.
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Chapter 4 deals with the view-based query rewriting for XML queries. In particular:
– We consider a flexible query and view dialect, which is more expressive than the

ones supported by the related works in the field.
– We present a rewriting algorithm which takes as input a query and a set of views

and outputs a rewriting of the query based on this set of views, if one exists. Our
algorithm is sound and complete, and our rewritings are expressed in a generic
algebra that can be easily supported by existing execution engines.

– We discuss the properties of containment, equivalence and minimization for the ex-
pressive language we consider, and provide practical algorithms to check for these
properties.

– As part of our rewriting algorithm, we provide techniques for transforming a tree
pattern to another one by means of our algebra. To the best of our knowledge, ours
is the first study of algebraic transformations on tree patterns.

Chapter 5 presents AnnoVIP, a distributed system we have built for the efficient man-
agement of XML documents, complimented with RDF annotations. AnnoVIP exploits
materialized views in order to speedup query evaluation. To this end, the XML view-
based rewriting algorithm that will be presented in Chapter 4, has been used for creating
execution plans based on existing views published somewhere in the system. Such plans
will then be executed in a distributed fashion over the network.

Chapter 6 provides a summary of the thesis and discusses various proposals for future
work.



Chapter 2

Background and State-of-the-art

Both XML [W3C08] and RDF [www04a] were introduced as W3C recommendations
in 1998, and have since become the two most prominent models for representing data on
the Web. XML is considered the de facto standard for the exchange of Web data and has
immediately drawn the attention of the data management community. A bit later on, the
RDF data model has also gained a lot of popularity and is currently being used in a variety
of applications. In this Chapter, we first discuss the XML (Section 2.1) and then the RDF
data model (Section 2.2). In these Sections we also overview the main approaches that
have been proposed for storing and retrieving XML and RDF data. Moreover, since the
focus of this thesis is the view-based management of Web data, in Section 2.3, we discuss
the main problems that are related to materialized views, along with the main results in
the area.

2.1 Tree Data: XML

The Extensible Markup Language (XML) [W3C08] is a semistructured data model
that has been a W3C recommendation since 1998. It is a flexible, generic and platform-
independent data model and has, thus, become the standard for data exchange on the
Web. Moreover, its semi-structured nature makes it suitable for integrating data that do
not abide by a strict schema. In this Section, we first overview the XML data model, along
with XML languages and typing (Section 2.1.1), and then discuss various approaches for
storing and retrieving XML data (Section 2.1.2).

2.1.1 Data Model, Query Languages and Schemas

XML employs a tree-structured model for representing data, which we briefly present
in Section 2.1.1.1. Then, in Section 2.1.1.2 we provide an overview of the most widely
adopted XML query languages, whereas in Section 2.1.1.3 we discuss how an XML doc-
ument can be typed.

5
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<article>
<publishInfo>
<author>Alice</author>
<year>2012</year>
<country>France</country>

</publishInfo>
<headline>Financial Crisis</headline>
<topic>economy</topic>

</article>

author'
year'

publishInfo'

country'

ar3cle'

headline'

“Financial'
Crisis”'

“Alice”'
“2012”'

“France”'

topic'

“economy”'

Figure 2.1: Example of an XML document.

2.1.1.1 XML Data Model

XML data is organized in documents. In particular, every XML document is a labeled
(every node is assigned a label), unranked (every node can have an arbitrary number of
children), ordered (there is an order between the children of each node) tree. Each node
of the XML tree may be an element, a text node or an attribute. An element node may
contain a list of (sub-)elements, text nodes and/or attributes as children. The text nodes
contain text in Unicode, whereas the attribute nodes have a label, as well as a value.
Moreover, every well-structured XML document has a single root element that contains
all the other nodes.

A sample XML document on an article about the financial crisis is depicted in Fig-
ure 2.1. The top part of the Figure provides the serialized representation of the document,
whereas the corresponding XML tree is given at the bottom part of the Figure.

2.1.1.2 XML Query Languages

Various languages have been proposed in the literature for querying XML documents.
The most widely used and supported are XPath [W3C07a] and XQuery [W3C07b], which
are W3C standards. The current versions of both languages rely on a common data model,
namely XDM [W3C07c], and a brief description of them follows.

XPath is a language for navigating inside an XML document in order to select some of
its nodes, by using path expressions. It enables the use of several axes in the path
expressions, so as to facilitate the navigation in the documents, e.g., child, descen-
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dant, ancestor and sibling axes. The current version of XPath is XPath 2.0 and is a
syntactic subset of XQuery. XPath 2.0 extended the data model of the previous ver-
sion, adding features such as intersection and complementation operators, as well as
iteration capabilities. An simple example of an XPath query on the XML document
of Figure 2.1 is q = /article//country, asking for the country that is descendant
of an article in the document (/-edges denote parent-child relationships; //-edges
denote ancestor-descendant ones).

XQuery is a functional language that is more powerful than XPath, and actually makes
use of XPath to access specific parts of the XML documents. At the core of XQuery
stand FLOWR expressions. The For and Let clauses of such expressions allow to
define variables that each is bound to specific nodes of the document. The Order by
clause is optionally used for ordering the results of the XQuery expression, where
as the Where clause imposes various constraints on the selected by the For and Let
clauses expressions. Finally, the Return clause determines the output of the expres-
sion and is capable of constructing new XML documents (and not simply return
collections of values, as XPath does). Various functions (including aggregate func-
tions), as well as user defined functions (UDFs) can be used in XQuery expressions,
turning it to a Turing complete language.

Formal results on XPath and XQuery An overview of formal results on the expressive-
ness of several XPath 1.0 fragments, their connection to first-order logic, as well as com-
plexity results on the evaluation of XPath are given in [BK08]. Among them, it is shown
that the core navigational XPath fragment, along with the aggregate features of the lan-
guage can express all first-order queries. Moreover, the combined complexity (i.e., when
both data and queries are considered variable) of full XPath 1.0 evaluation is in PTIME.
However, evaluating a navigational XPath 2.0 query is shown to be a PSPACE-complete
problem [tCM07]. Finally, the expressiveness and complexity for various fragments of
XQuery is studied in [BK09].

2.1.1.3 XML Typing

XML documents are self-describing, that is, the structure of the document is defined
by its label structure. The lack of an a priori defined schema is essential for the flexibility
of XML. However, albeit not compulsory, one can also specify schemas for typing XML
documents, if desired.

There are two mechanisms that are widely used for XML typing: the Document Type
Definition (DTD) [W3C04] and the XML Schema [XML], both of which are W3C rec-
ommendations. Among them, DTD was introduced first, and allows to determine the
structure of a document (e.g., the children that each element with a specific label may
have) through regular expressions. Although more complicated in terms of syntax, the
XML Schema is more expressive, allowing to define constraints that were not possible
through DTD (e.g., constraints on values, enumerated types). An XML document is valid
against a schema, if it respects the constraints that are specified in the given schema. The
theoretical underpinnings for XML typing are provided by tree automata [CDG+07].
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2.1.2 XML Data Management
Although the in-memory processing of queries over XML documents is crucial, the

increasing volumes of available XML data have led to the need of storing such data in
disk. At the same time, new methods were devised for efficiently retrieving XML data
stored in (disk-resident) databases. In this Section, we discuss methods for the efficient
XML storage (Section 2.1.2.1) and retrieval (Section 2.1.2.1).

2.1.2.1 Storing XML Data

Many works have focused on employing relational database systems (RDBMS, in
short) for the storage of XML documents. These works proposed techniques to map
the XML documents to relational tables, based on some observations. Among them,
in [STZ+99], knowledge from given DTDs was used to perform the mapping of XML to
relations, whereas in [DFS99] the mapping was done based on knowledge for expected
data and query workloads. Several other approaches also exist, e.g., [FM00, TVB+02]. In
most of these systems, XML queries are translated to relational ones in order to retrieve
the data.

Along with relational approaches, native XML systems have also been developed,
such as the Lore [IHW01], Tukwila [MW99] and Niagara [NDM+01] systems.

Moreover, the MonetDB column-store system has been used to store and retrieve
XML documents [BGvK+06].

The most important commercial RDBMS also provide support for XML, including
IBM DB2 [BCH+06], Microsoft SQL Server [PCS+04] and Oracle [LM09]. Further-
more, the SQL/XML standard is an extension to the SQL language, providing the xml
datatype, which can be used to store and retrieve XML documents.

Finally, eXist [eXi] and BaseX [Bas] are two open source XML database systems that
have been widely used lately.

2.1.2.2 Retrieving XML Data

When storing XML data in a database, it is a common practice to assign a unique ID to
every XML node. There have been proposed ID schemes that capture information about
the position of each none in the XML document (such as the start and end point of the
node, its depth in the tree, etc.), which can then be used to speed up query evaluation (e.g.,
efficiently determine whether a node is the parent of another). One of the most prominent
ID schemes is Dewey-based IDs [TVB+02, LLCC05].

The ID schemes have been exploited in order to create novel, efficient join algorithms
for the processing of XML queries in databases. More specifically, a variation of the tradi-
tional merge join algorithm, the multi-predicate merge join (MPMGJN) was first proposed
in [ZND+01]. This algorithm was improved by the tree-merge and stack-tree structural
join algorithms [AKJP+02], based on the idea that by sorting the join inputs (candidate
ancestors and descendants), the structural join can be performed through a single pass
over these inputs. The join algorithms mentioned so far need to apply a structural join for
each edge (relationship between nodes) of the XML query. To circumvent this problem



2.2. GRAPH DATA: RDF 9

and further expedite query evaluation, the holistic twig join algorithm [BKS02] builds the
result of the query in a single pass over all the input relationships in parallel, eliminating
the need for storing and sorting intermediate results.

Distributed XML data management A collection of works has focused on the problem
of answering queries over a global XML database published over a peer-to-peer overlay
network, e.g., [BC06, AMP+08, LP08, MKK08, KKMZ12, KKMZ11]. Recently, the
data management of XML documents on the Cloud has also been addressed [KCS11,
CRCM12].

2.2 Graph Data: RDF
The Resource Description Framework (RDF) [www04a] is a graph data model, which

has been recommended by W3C since 1998. Originally designed as a data model for
metadata, RDF has become the cornerstone of the Semantic Web [BLHL01] for de-
scribing information about (Web) resources, in a machine-exploitable way. Its graph-
structured, schema-less nature, along with its capability of expressing implicit informa-
tion, make it suitable for expressing heterogeneous, irregular data, and has thus been
used in a variety of applications. In this Section, we first present the RDF graphs and
queries (Section 2.2.1), then we describe how implicit information is modeled in RDF
(Section 2.2.2), and finally we discuss the proposed approaches for managing RDF data
(Section 2.2.3).

2.2.1 RDF Graphs and Queries

RDF graphs An RDF statement about a resource is expressed as a triple of the form
(s, p, o), stating that a subject s has the corresponding property p, and the value of that
property is the object o. A set of RDF triples forms an RDF graph.

Given a set U of Uniform Resource Identifiers 1 (URIs), a set L of literals (constants),
and a set B of blank nodes (unknown URIs or literals), such that U , B and L are pairwise
disjoint, a triple is well-formed whenever its subject belongs to U∪B, its property belongs
to U , and its object belongs to U ∪B∪L. In the following, we only consider well-formed
triples.

Blank nodes are essential features of RDF allowing to support incomplete information.
For instance, one can use a blank node _:b1 to state that the country of _:b1 is France while
the city of the same _:b1 is Brest.

Figure 2.2 shows how to use triples to describe resources. Observe that the name rdf
represents the RDF namespace 2, which is used when writing the URIs of classes and

1. Uniform Resource Identifiers provide naming schemes for referring to resources using keys, in the
usual database sense.

2. A namespace is a URI used to group resources. When a namespace is given a name, a resource
within that namespace can be simply written name:resource. For instance, inria:oak refers to
resource oak within the namespace inria; it corresponds to the URI http://team.inria.fr/oak
whenever the namespace http://team.inria.fr/ is named inria.

http://team.inria.fr/oak
http://team.inria.fr/
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Constructor Triple
Class assertion (s, rdf:type, o)
Property assertion (s, p, o)

Figure 2.2: RDF statements.

{(mus:vangogh,mus:name,“V anGogh”),
(mus:vangogh, rdf :type,mus:painter),
(mus:vangogh,mus:hasPainted,mus:painting1),
(mus:painter, rdfs:subClassOf,mus:artist)}

“Van Gogh” 

rdf:type 
mus:painter 

mus:painting1 

mus:hasPainted 

mus:name 
mus:vangogh 

mus:artist 

rdfs:subclassOf 

rdf:type 

Figure 2.3: Example of an RDF graph.

properties comprised in the RDF standard.

A more intuitive representation of an RDF graph can be drawn from its triples. Every
(distinct) subject or object value appearing in some triple is represented by a node labeled
with this value. For each triple, there is a directed edge from the subject node to the object
node, labeled with the property value. An example of an RDF graph is given in Figure 2.3.
The top part of the Figure provides the triple representation, whereas the bottom part the
sagittal representation, of the RDF graph. The rectangles represent URIs and the ovals
represent literals. Moreover, the name mus denotes a namespace that is used for our
example.

RDF queries The official language for expressing RDF queries is SPARQL [SPA], and
has been recommended by W3C since 2008. In this thesis, we consider the well-known
subset of SPARQL, consisting of basic graph pattern (BGP) queries. A BGP is a set of
triple patterns, or triples in short. Each triple has a subject, property and object. Subjects
and properties can be URIs, blank nodes or variables; objects can also be literals.

BGP queries can be expressed as conjunctive queries over a table t(s, p, o) that con-
tains all triples of the RDF graph. As an example, consider the following query, which
asks for the name of someone who is a painter, as well as his paintings:

q(Y, Z):−t(X,mus:name, Y ), t(X, rdf :type,mus:painter), t(X,mus:hasPainted, Z)
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Constructor Triple
Subclass constraint (s, rdfs:subClassOf, o)
Subproperty constraint (s, rdfs:subPropertyOf, o)
Domain typing constraint (s, rdfs:domain, o)
Range typing constraint (s, rdfs:range, o)

Figure 2.4: RDFS statements expressing semantic constraints between classes and prop-
erties.

2.2.2 Entailment of Implicit Information
The W3C names RDF entailment the mechanism through which, based on the set of

explicit triples and some entailment rules (to be described shortly), implicit triples are
derived. A triple (s, p, o) is entailed by an RDF graph, if and only if there is a sequence of
applications of entailment rules that leads from the graph to (s, p, o), where at each step
of the entailment sequence, the triples previously entailed are also taken into account.

Some implicit triples are obtained by generalizing existing triples using blank nodes.
For instance, a triple (s, p, o) entails the triple (_:b, p, o), where s is a URI and _:b de-
notes a blank node. Thus, from the triple (mus:vangogh, rdf :type,mus:painter), we
can derive the triple (_:b1, rdf :type,mus:painter), where _:b1 is a blank node.

Various other entailment rules exist, such as the ones that use the rdfs:Class URI
to denote the class to which a resource may belong. Among the existing rules, of par-
ticular interest are the ones derived from an RDF Schema [www04d] (RDFS, in short).
RDFS is a valuable feature of RDF that allows enhancing the descriptions in RDF graphs.
It declares semantic constraints between the classes and the properties used in graphs.
Figure 2.4 shows the allowed constraints and how to express them. The name rdfs de-
notes the RDFS namespace that is used when writing the URIs of classes and properties
comprised in the RDFS standard. For instance, considering the example of Figure 2.3,
we know that mus:vangogh is a painter (mus:painter), and moreover, the painter is
a subclass of the artist (mus:artist). To this end, we can derive the implicit triple
(mus:vagogh, rdf :type,mus:artist), which is depicted with a dashed line in the Figure.

Taking into account implicit triples in query answering is necessary for guaranteeing
the completeness of query results. To this respect, two are the main techniques that have
been proposed: database saturation and query reformulation. The former approach adds in
the database all implicit triples specified in the RDF recommendation [www04a], whereas
the latter reformulates a query into a union of queries in order to account for the implicit
triples, while leaving the database intact [AGR07, CGL+07].

More details about the RDF query answering based both on explicit and implicit
triples are given in Chapter 3 of this thesis.

2.2.3 RDF Data Management
Along with the abundance of available RDF datasets came the interest of the data man-

agement community that has so far proposed a wide variety of approaches for efficiently
storing and querying large RDF graphs, the most prominent of which are described below.
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Some of the earliest works in the field are Jena [WSKR03] and Sesame [BKvH02].
Jena stores the RDF data in property tables, that is, properties that often appear together in
the dataset are clustered and stored in the same relational table. On the other hand, Sesame
uses the triple table, storing all RDF triples in a single, huge, 3-attribute relational table.
However, it has been experimentally shown (e.g., [AMMH07]) that both these systems
suffer from scalability issues when faced with large RDF datasets.

In vertical partitioning [AMMH07] one 2-attribute relation (storing the subject and the
object of the triples) is created for each property value. One of the shortcomings of this
approach is that all tables need to be accessed for queries with variables in the property
position. Vertical partitioning has been tested using both row- and column-store relational
systems [SGK+08].

Hexastore [WKB08] follows the triple table approach, but uses aggressive 6-way in-
dexing (indexes are built for each permutation of the attributes of the triple table), signif-
icantly improving query execution times.

The RDF-3X system [NW10a] is considered one of the most efficient ones for ma-
nipulating RDF datasets. It also relies on the triple table, and employs the aggressive
indexing of Hexastore, specific join optimization techniques (such as Sideways Infor-
mation Passing), as well as join ordering based on more accurate selectivity estima-
tions [NW08, NW09]. An extension of RDF-3X, called x-RDF-3X, added to the system
support for online updates, versioning and transactions [NW10b].

The gStore system [ZMC+11] is one of the few systems (along with, e.g., Grin [UPS07])
that avoids using a relational approach for storing RDF data. Instead, it follows a graph-
based and employs a novel index, with a view to support frequent updates in the data, as
well as queries containing regular expressions with wildcards.

Note that most of the existing systems use dictionary encoding, substituting the string
values of RDF triples with fixed-width identifiers.

RDF support has been added to commercial systems as well, including Oracle [CDES05],
IBM DB2 and Virtuoso [Sof].

Distributed RDF query processing An early work on processing conjunctive RDF
queries over structured peer-to-peer networks based on a distributed hash table (DHT,
in short) was proposed in [LIK06]. Most recently, a scale-out architecture for scalable
RDF data management, exploiting state-of-the-art RDF stores and the MapReduce frame-
work [DG04] was introduced in [HAR11]. Distributed cloud-based RDF data manage-
ment using the Amazon Web Services was presented in [BGKM12].

Limitations of RDF data management systems Despite the significant number of exist-
ing works for managing RDF data, almost none of them actively takes into consideration
the implicit triples brought by the RDF Schemas. In contrast, it is assumed that implicit
information is already available through database saturation. Moreover, there is a lim-
ited support for the full SPARQL language. For example, queries seeking for triples that
are connected via a path of arbitrary length are not supported, although they may be of
practical interest for many applications (e.g., social network graphs). This feature, called
property paths, was introduced in the specification of SPARQL 1.1 (see [ACP12] for more
details on property paths).
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In a recent study on the characteristics of various RDF datasets [DKSU11], the metric
of structuredness was introduced on an attempt to quantify how structured a dataset is
(i.e., how close to structured relational data it is). Such metrics could be used for better
tuning the storage, indexing and querying techniques for RDF datasets.

2.3 Materialized Views
A materialized view is a query whose results (called view extent) are stored in the

database. Views are defined over some base relations (or documents in a document-
oriented database, such as XML databases), which constitute the base data. Due to their
multiple benefits, materialized views have been used in a variety of applications and have,
thus, been extensively studied in the database literature. Some of the most prevalent such
applications are the following:

Query optimization Materialized views can be seen as precomputed query results. To
this end, they can considerably expedite query evaluation, since part of the com-
putation for evaluating the query was performed during the materialization of the
view, and can thus be avoided at execution time. Employing materialized view at
the context of query optimization is at the core of the present thesis.

Data warehouse design A data warehouse is a repository of integrated data, coming
from multiple, possibly distributed and heterogeneous data sources. The informa-
tion stored in a data warehouse can be used for decision support. In this context,
materialized views have been used to optimize the evaluation of such decision sup-
port queries.

Data placement over a network When users are distributed over a network, query re-
sponse times may be high due to the need for data transfer from the data holders to
the end users. In this case, materialized views can also be beneficial, by placing the
data needed by its user in a way that reduces query response time.

In what follows, we present the three basic problems pertinent to materialized views:
answering queries using views (Section 2.3.1), view selection (Section 2.3.2) and view
maintenance (Section 2.3.3). In Section 2.3.4, we briefly discuss some additional prob-
lems related to materialized views.

2.3.1 Answering Queries Using Views

Given a query q and a set of views V , answering queries using views, also known as
view-based query rewriting, deals with the problem of how can q be answered using the
views in V .

Query rewriting in relational databases A comprehensive survey on answering queries
using views in relational databases is given in [Hal01]. Rewriting algorithms in the con-
text of query optimization have been proposed both for System-R style optimizations
(e.g., [CKPS95]) and for transformational optimizers (e.g., [DPT99, GL01]). For data
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integration scenarios, the most important works include the bucket algorithm [LRO96],
the inverse-rules algorithm [DGL00] and the MiniCon algorithm [PH01].

Results on the complexity of the problem of answering queries using materialized
views are reported in [AD98].

Query rewriting in XML As this is the topic of Chapter 4, a detailed discussion on the
XML view-based query rewriting methods is given in Section 4.9.

Query rewriting in RDF Since the conjunctive subset of SPARQL (the BGP queries)
can be mapped to relational conjunctive queries, well-known relational algorithms can
be used to rewrite such queries. Recently, a native query rewriting algorithm under set
semantics for a fragment of SPARQL was proposed in [LDK+11]. Since the output of the
rewriting is a union of (conjunctive) queries of potentially exponential size, optimizations
were discussed to minimize each query of the union, eliminate queries with empty results
and prune the search space of empty rewritings.

2.3.2 View Selection Problem

Given a query workload Q, view selection deals with the problem of choosing the
most suitable view set V to be materialized in order to answer the queries in Q. The
properties that V should exhibit (and possible requirements it should meet) depend on the
specific application. Such properties are commonly associated with the query evaluation
time (using the proposed views), the view storage space and the view maintenance cost.
In some cases the view storage space is given as a bound to the problem.

View selection in relational databases View selection has been extensively stud-
ied, especially in the context of data warehouses for SPJ queries [TS97] and OLAP
queries [Gup97, HRU96, GM05]. Several formal results concerning the view selection
problems are provided in [CHS02].

View selection in XML View selection has been addressed for XPath [MS05, TYT+09],
as well as for XQuery dialects [KMV12].

View selection in RDF Our work [GKLM12], presented in Chapter 3 of this thesis, is
among the first to explore the problem of view selection in RDF databases. Closely re-
lated works are [GKLM12] are [CL10] and [DCDK11]. RDFMatView [CL10] recom-
mends RDF indices to materialize for a given workload, while in [DCDK11] a set of path
expressions appearing in the given workload is selected to be materialized, both aiming
at improving the performance of query evaluation.

2.3.3 View Maintenance

Since the content of the materialized views relies on some base data, view maintenance
deals with the problem of keeping the view data up-to-date while the corresponding base
data is updated.

Views can be updated by recomputing the view upon each update. As this technique
is in most cases highly inefficient, incremental view maintenance is widely adopted, that



2.3. MATERIALIZED VIEWS 15

is, only the needed changes are applied to the view, based on the update of the base data.
The problem of incremental view maintenance has been studied for relational

databases (e.g., [GMS93, CGL+96, SBCL00]), VLSD (Very Large Scale Distributed)
shared-nothing databases (e.g., [ASC+09]), as well as XML databases (e.g., [BGMS11,
STP+05]). The approaches that have been proposed for view maintenance can be catego-
rized as follows:

Immediate (eager) vs. deferred (lazy) In the immediate maintenance, views are up-
dated as part of the transaction that caused the update of the base tables. Clearly,
this imposes a significant overhead on update transactions, especially in the exis-
tence of a large number of views. Contrariwise, in the deferred maintenance, views
are not updated as part of the update transaction; the update of the views can occur
later on.

Pre-update state vs. post-update state Incremental view maintenance relies on a set of
incremental queries, which are issued on the base tables to compute the changes that
need to be applied to the views. These queries can be evaluated either on the pre-
update or the post-update state of the base tables. In the immediate maintenance we
have still access to the pre-update state, which makes the maintenance algorithms
simpler. However, this is not the case for the deferred maintenance, where more
sophisticated algorithms are needed.

Push vs. pull propagation of updates This categorization is related to the way updates
are propagated to the views. In the push mode, eager maintenance is required,
whereas the pull mode can be coupled either with eager or deferred propagation of
the updates.

2.3.4 Problems Related to Materialized Views

Query containment and equivalence The notions of query containment and equivalence
enable the comparison between different reformulations of queries, and are crucial for the
view-related problems discussed in the previous sections.

Given a query q and a database D, by q(D) we denote the result of evaluating q over
D. Let q1, q2 be two queries. Query q1 is contained in q2, denoted q1 v q2, if for any
database D, we have q1(D) ⊆ q2(D). The two queries are equivalent, denoted q1 ≡ q2, if
for any database D, we have q1(D) = q2(D).

Containment and equivalence have been studied for conjunctive queries under set
(e.g., [CM77, KV00]) and bag semantics [CV93, JKV06], as well as for XPath [MS04]
and SPARQL [LPPS12] queries. New results on containment and equivalence for the
XQuery fragment we consider, are given in Chapter 4.

Multi-query optimization Given a query workload, multi-query optimization (MQO,
in short) attempts to find common sub-expressions between the queries, which can be
evaluated only once and then be re-used by the various queries in order to speed up query
evaluation. The process of finding common subexpressions makes the problem closely
related to the view selection (although the goal of MQO is not to materialize the common
subexpressions at the end). MQO is a crucial problem for DBMS and has been the focus
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of research for many years, with [Sel88] being one of the earliest and [ZLFL07] one of
the most recent works in the field.

The MQO problem for SPARQL query workloads was addressed in [LKDL12]. In
this work, the workload is partitioned in groups and techniques for finding common sub-
expressions among each group are considered.

2.4 Summary
In this Chapter we presented two of the most popular data models for representing

and sharing data on the Web, namely XML and RDF, along with the main approaches
that have been proposed by the data management community for the efficient storage and
retrieval of such data. The large amounts of available XML and RDF data nowadays,
along with its complex (tree and graph) structure still raise significant challenges for their
efficient manipulation. To this end, we have discussed the management of data based on
materialized views, which has been widely used for query optimization in many contexts,
and which can thus be greatly beneficial also when employed in the context of the complex
Web data we consider.



Chapter 3

View Selection in Semantic Web
Databases

In this Chapter, we consider the setting of a Semantic Web database, containing both
explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics.
Based on a query workload, we address the problem of selecting a set of views to be ma-
terialized in the database, minimizing a combination of query processing, view storage,
and view maintenance costs. Starting from an existing relational view selection method,
we devise new algorithms for recommending view sets, and show that they scale signifi-
cantly beyond the existing relational ones, when adapted to the RDF context. To account
for implicit triples in query answers, we propose a novel RDF query reformulation algo-
rithm and an innovative way of incorporating it into view selection in order to avoid a
combinatorial explosion in the complexity of the selection process. The interest of our
techniques is demonstrated through a set of experiments.

The work described in this Chapter has led to an early publication in the French national
database conference [GKLM10b] (without formal proceedings). The prototype we built
was demonstrated in [GKLM10a, GKLM11]. The final version of this work, which the
present Chapter closely follows, appeared in [GKLM12].

3.1 Motivation and outline
A key ingredient for the Semantic Web vision [BLHL01] is a data format for de-

scribing items from the real and digital world in a machine-exploitable way. The W3C’s
Resource Description Framework [www04a] (RDF, in short) is a leading candidate for
this role.

At a first look, querying RDF resembles querying relational data. Indeed, at the core
of the W3C’s SPARQL query language for RDF [www08] lies conjunctive relational-
style querying. There are, however, several important differences in the RDF data model.
First, an RDF dataset is a single large set of triples, in contrast with the typical rela-
tional database featuring many relations with varying numbers of attributes. Second,
RDF triples may feature blank nodes, standing for unknown constants or URIs; an RDF

17
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database may, for instance, state that the author of X is Jane while the date of X is
4/1/2011, for a given, unknown resource X . This contrasts with standard relational
databases, where all attribute values are either constants or null. Finally, in typical rela-
tional databases, all data is explicit, whereas the semantics of RDF entails a set of implicit
triples which must be reflected in query answers. One important source of implicit triples
follows from the use of an (optional) RDF Schema [www04a] (or RDFS, in short), to
enhance the descriptive power of an RDF dataset. For instance, assume the RDF database
contains the fact that the driverLicenseNo of John is 12345, whereas an RDF Schema
states that only a person can have a driverLicenseNo. Then, the fact that John is a person
is implicitly present in the database, and a query asking for all person instances in the
database must return John.

The complex, graph-structured RDF model is suitable for describing heterogeneous,
irregular data. However, it is clearly not a good model for storing the data. Existing RDF
platforms, therefore, assume a simple (application-independent) storage model, based on
relational approaches in most cases, complemented by indexes and efficient query eval-
uation techniques [AMMH07, NW08, NW09, NW10b, SGK+08, WKB08], or by RDF
materialized views [CL10, DCDK11]. While indexes or views speed up the evaluation of
the fragments of queries matching them, the query processor may still need to access the
main RDF database to evaluate the remaining fragments of the queries.

We consider the problem of choosing a (relational) storage model for an RDF appli-
cation. Based on the application workload, we seek a set of views to materialize over
the RDF database, such that all workload queries can be answered based solely on the
recommended views, with no need to access the database. Our goal is to enable three-tier
deployment of RDF applications, where clients do not connect directly to the database,
but to an application server, which could store only the relevant views. Alternatively, if
the views are stored at the client, no connection is needed and the application can run
off-line, independently from the database server.

RDF datasets can be very different: data may be more or less structured [DKSU11],
schemas may be complex, simple, or absent, updates may be rare or frequent. Moreover,
RDF applications may differ in the shape, size and similarity of queries, costs of propa-
gating updates to the views, etc. To capture this variety, we characterize candidate view
sets by a cost function, which combines (i) query evaluation costs, (ii) view maintenance
costs and (iii) view storage space. Our contributions are the following:

1. This is the first study of RDF materialized view selection supporting the rewriting
of all workload queries. We show how to model this as a search problem in a space
of states, inspired from a previous work in relational data warehousing [TLS01].

2. Implicit triples entailed by the RDF semantics [www04a] must be reflected in the
recommended materialized views, since they may participate to query results. Two
methods are currently used to include implicit tuples in query results. Database sat-
uration adds them to the database, while query reformulation leaves the database
intact and modifies queries in order to also capture implicit triples. Our approach
requires no special adaptation if applied on a saturated database. For the refor-
mulation scenario, we propose a novel RDF query reformulation algorithm. This
algorithm extends the state of the art in query processing in the presence of RDF
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Schemas [AGR07, CGL+07], and is a contribution that can be applied beyond the
context of this work. Moreover, we propose an innovative method of using reformu-
lation (called post-reformulation), which enables us to efficiently take into account
implicit triples in our view selection approach.

3. We consider efficient search strategies, given that the complexity of complete search
is extremely high. Existing strategies for relational view selection [TLS01] grow
out of memory and fail to produce a solution when the number of atoms in the query
workload grows. Since RDF atoms are short (just three attributes), RDF queries are
syntactically more complex (they have more atoms) than relational queries retriev-
ing the same information, making this scale problem particularly acute for RDF. We
propose a set of new strategies and heuristics which greatly improve the scalability
of the search. Our strategies can be used in the relational setting as well.

4. We study the efficiency and effectiveness of the above algorithms, and their im-
provement over existing similar approaches, through a set of experiments.

This Chapter is organized as follows. Section 3.2 formalizes the problem we consider.
Section 3.3 presents the view selection problem as a search problem in a space of can-
didate states, whereas Section 3.4 discusses the inclusion of implicit RDF triples in our
approach. Section 3.5 describes the search strategies and heuristics used to navigate in
the search space. Then, Section 3.6 outlines the we built to implement our view selection
approach, and Section 3.7 presents our experimental evaluation. Section 3.8 discusses
related works, then we conclude.

3.2 Problem Statement
In accordance with the RDF specification [www04a], we view an RDF database as a

set of (s, p, o) triples, where s is the subject, p the property, and o the object of the triple.
RDF triples are well-formed, that is: subjects can be URIs or blank nodes, properties are
URIs, while objects can be URIs, blank nodes, or literals (i.e., values). Blank nodes are
placeholders for unknown constants (URIs or literals); from a database perspective, they
can be seen as existential variables in the data. While relational tuples including a null
value, commonly used to represent missing information, cannot be joined (null does not
satisfy any predicate), RDF triples referring to the same blank node may be joined to
construct complex results, as exemplified in Section 3.1. Due to blank nodes, an RDF
database can be seen as an incomplete relational database consisting of a single triple
table t(s, p, o), under the open-world assumption [AHV95]. More details about the RDF
data model are given in Chapter 2 of this thesis.

To express RDF queries (and views), we consider the basic graph pattern (BGP, in
short) queries of SPARQL [www08], represented wlog as a special case of conjunctive
queries: conjunctions of atoms, the terms of which are either free variables (also known
as head variables), existential variables, or constants. We assume set semantics both for
the triple table and for the results of our views and queries. Moreover, we do not use a
specific representation for blank nodes in queries, although SPARQL does, because they
behave exactly like existential variables.
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Definition 3.2.1 (RDF queries and views). An RDF query (or view) is a conjunctive query
over the triple table t(s, p, o).

We consider wlog queries without Cartesian products, i.e., each triple shares at least
one variable (joins at least) with another triple. We represent a query with a Cartesian
product by the set of its independent sub-queries. Finally, we assume queries and views
are minimal, i.e., the only containment mapping from a query (or view) to itself is the
identity [CM77].

As a running example, we use the following query q1, which asks for painters that have
painted “Starry Night” and having a child that is also a painter, as well as the paintings of
their children:

q1(X,Z):−t(X, hasPainted, starryNight), t(X, isParentOf, Y ),
t(Y, hasPainted, Z)

Based on views, one can rewrite the workload queries:

Definition 3.2.2 (Rewriting). Let q be an RDF query and V = {v1, v2, . . . , vk} be a set of
RDF views. A rewriting of q based on V is a conjunctive query (i) equivalent to q (i.e., on
any dataset, it yields the same answers as q), (ii) involving only relations from V , and
(iii) minimal, in the sense mentioned above.

We are now ready to define our view selection problem, which relies on candidate
view sets:

Definition 3.2.3 (Candidate view set). Let Q be a set of RDF queries. A candidate view
set for Q is a pair 〈V,R〉 such that:

– V is a set of RDF views,
– R is a set of rewritings such that: (i) for every query q ∈ Q, there exists exactly one

rewriting r ∈ R of q using the views in V ; (ii) all V views are useful, i.e., every
view v ∈ V participates in at least one rewriting r ∈ R.

We consider a cost estimation function cε, which returns a quantitative measure of the
costs associated to a view set. The lower the cost, the better the candidate view set is.
Our cost components account for the effort to evaluate the view-based query rewritings,
the total space occupancy of the views and the view maintenance costs as data changes.
More details about cε are provided in Section 3.3.4.

Definition 3.2.4 (View selection problem). Let Q = {q1, q2, . . . , qn} be a set of RDF
queries and cε be a cost estimation function. The view selection problem consists in
finding a candidate view set 〈V,R〉 for Q such that, for any other candidate view set
〈V ′, R′〉 for Q: cε(〈V,R〉) ≤ cε(〈V ′, R′〉).

3.3 The Space of Candidate View Sets
This Section describes our approach for modeling the space of possible candidate

view sets. Section 3.3.1 introduces the notion of a state to model one such set, while
Section 3.3.2 presents a set of transitions that can be used to transform one state to another.
Then, Section 3.3.3 discusses the details of detecting view and state equivalence and,
finally, Section 3.3.4 shows how to assign a cost estimation to each state.
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Figure 3.1: Sample initial state graph S0, and states attained through successive transi-
tions.

3.3.1 States
We use the notion of state to model a candidate view set together with the rewritings of

the workload queries based on these views. The set of all possible candidate view sets is
then modeled as a set of states, which we adapt from a previous work on materialized view
selection in a relational data warehouse [TLS01]. From here forward, given a workload
Q, we may use S(Q) (possibly with subscripts or superscripts) to denote a candidate view
set for Q. To ease the exposition, we also employ from [TLS01] a visual representation
of each state by means of a state graph.

Definition 3.3.1 (State graph). Given a query set Q and a state Si(Q) = 〈Vi, Ri〉, the
state graph G(Si) = (Ni, Ei) is a directed multigraph such that:

– each triple ti appearing in a view v ∈ Vi is represented by a node ni ∈ Ni;
– let ti and tj be two triples in a view v ∈ Vi, and a join between their attributes ti.ai

and tj.aj (where ai, aj ∈ {s, p, o}). For each such join, there is an edge ei ∈ Ei
connecting the respective nodes ni, nj ∈ Ni and labeled v:ni.ai = nj.aj . We call
ej a join edge;

– let ti be a triple in a view v ∈ Vi and ni ∈ Ni be its corresponding node. For
every constant ci, that appears in the attribute ai ∈ {s, p, o} of ti, an edge labeled
v:ni.ai = ci connects ni to itself. Such an edge is called selection edge.

The graph of v is defined as the subgraph of G(Si) corresponding to v. Observe that
in a view, two nodes may be connected by several join edges if their corresponding atoms
are connected by more than one join predicates.

We define two states to be equivalent if they have the same view sets. Furthermore,
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to avoid a blow-up in the storage space required by the views, we do not consider views
including Cartesian products. In a relational setting, some Cartesian products, e.g., be-
tween small dimension tables in an OLAP context, may not raise performance issues. In
contrast, in the RDF context where all data lies in a single large triple table, Cartesian
products are likely not interesting queries, and their storage overhead is prohibitive. The
absence of Cartesian products from our views entails that the graph of every view is a
connected component of the state graph.

As a (simple) example, consider the state S0(Q) = 〈{v1}, R0〉, where Q = {q1} is a
workload containing only the previously introduced query q1, and v1 = q1. The rewriting
set R0 consists of the trivial rewriting {q1 = v1}. The graph G(S0) is depicted at the
upper left part of Figure 3.1, and since it corresponds to a single view, it comprises only
one connected component.

3.3.2 State Transitions
To enumerate candidate view sets (or, equivalently, states), we use four transitions,

inspired from [TLS01] (the differences between our transition set and the one of [TLS01]
are outlined in Section 3.8). As we show in Section 3.5.1, our transition set is complete,
i.e., all possible states for a given workload can be reached through our four transitions.
The first three transitions remove predicates from views, thus can be seen as “relaxing”,
and may split a view in two, increasing the number of views. The last one factorizes two
views into one, thus reducing the number of workload views. The graphs corresponding
to the states before and after each transition are illustrated in Figure 3.1.

We use v:e to denote an edge e belonging to the view v in a state graph. While we
define rewritings as conjunctive queries, for ease of explanation, we will denote rewritings
by (equivalent) relational algebra expressions. We use σe to denote a selection on the
condition attached to the edge e in a view set graph. Since the query set Q is unchanged
across all transitions, we omit it for readability.

Definition 3.3.2 (View Break (VB)). Let S = 〈V,R〉 be a state, v a view in V and Nv the
set of nodes of the graph of v with |Nv| > 2. Let Nv1 , Nv2 be two subsets of Nv such that:

– Nv1 * Nv2 and Nv2 * Nv1;
– Nv1 ∪Nv2 = Nv;
– the subgraph of the graph of v defined by Nv1 (respectively, by Nv2) and the edges

between these nodes is connected.
We create two new views, v1 and v2. View v1 (respectively, v2) derives from the graph

of v by copying the nodes corresponding to Nv1 (Nv2) and the edges between them. The
head variables of v1 (v2) are those of v appearing also in the body of v1 (v2), together
with all additional variables appearing in the nodes Nv1 ∩Nv2 .

The new state S ′ = 〈V ′, R′〉 consists of:
– V ′ = (V \ {v}) ∪ {v1, v2},
– G(S ′) is obtained from G(S) by removing the graph of v and adding those of v1

and v2, and
– R′ is obtained from R by replacing all the occurrences of v, with πhead(v)(v1 ./ v2),

where ./ is the natural join.
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For example, we apply a view break on the view v1 of state S0 introduced in the
previous Section, and obtain the new state S1:

S1 = 〈{v2, v3}, {q1 = πhead(v1)(v2 ./ v3)}〉

The two newly introduced views v2 and v3 are the following:
v2(X, Y ):−t(X, hasPainted, starryNight), t(X, isParentOf, Y )

v3(X, Y, Z):−t(X, isParentOf, Y ), t(Y, hasPainted, Z)

Definition 3.3.3 (Selection Cut (SC)). Let S = 〈V,R〉 be a state and v:e be a selection
edge in G(S). A selection cut on e yields a state S ′ = 〈V ′, R′〉 such that:

– V ′ is obtained from V by replacing v with a new view v′, in which the constant in
the selection edge e has been replaced with a fresh head variable (i.e., the fresh
variable is returned by v′, along with the variables returned by v),

– G(S ′) is obtained from G(S) by removing the graph of v and adding the one of v′,
and

– R′ is obtained from R by replacing all occurrences of v with the expression
πhead(v)(σe(v

′)).

For instance, we apply a selection cut on the edge labeled v2:n1.o= starryNight of
G(S1) and obtain the state S2, in which v2 is replaced by a new view v4:

S2 = 〈{v3, v4},
{q1 = πhead(v1)(πhead(v2)(σn1.o=starryNight(v4)) ./ v3)}〉

View v4 is the following:
v4(X, Y,W ):−t(X, hasPainted,W ), t(X, isParentOf, Y )

Definition 3.3.4 (Join Cut (JC)). Let S = 〈V,R〉 be a state and v:e be a join edge inG(S)
of the form ni.ai = nj.aj , such that ai, aj ∈ {s, p, o}. A join cut on e yields a state S ′ =
〈V ′, R′〉, obtained as follows:

1. If the graph of v is still connected after the cut, V ′ is obtained from V by replacing
v with a new view v′ in which the variable corresponding to the join edge e becomes
a head variable, and the occurrence of that variable corresponding to ni.ai is re-
placed by a new fresh head variable. The new rewriting set R′ is obtained from R
by replacing v by πhead(v)(σe(v′)). The new graph G(S ′) is obtained from G(S) by
removing the graph of v and adding the one of v′.

2. If the graph of v is split in two components, V ′ is obtained from V by replacing v
with two new symbols v′1 and v′2, each corresponding to one component. In each of
v′1 and v′2, the join variable of e becomes a head variable. The new rewriting set R′

is obtained from R by replacing v by πhead(v)(v′1 ./ e v
′
2). The new graph G(S ′) is

obtained from G(S) by removing the graph of v and adding the ones of v′1 and v′2.

For example, cutting the join edge v4:n1.s = n2.s of G(S2) disconnects the graph of
v4, resulting in two new views, v5 and v6 (see Figure 3.1). View symbol v4 is replaced in
the rewritings by the expression πhead(v4)(v5 ./n1.s=n2.s v6). If we continue by cutting the
edge v3:n4.o = n3.s, v3 is split into v7 and v8. The resulting state S3 is:
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Figure 3.2: Initial state graph S ′0 and state S ′1 attained through a JC.

S3 = 〈{v5, v6, v7, v8},
{q1 = πhead(v1)(πhead(v2)(σn1.o=starryNight(πhead(v4)(v5 ./n1.s=n2.s v6))) ./

πhead(v3)(v7 ./n4.o=n3.s v8)}〉

The new views introduced in S3 are the following:
v5(X,W ):−t(X, hasPainted,W )
v6(X, Y ):− t(X, isParentOf, Y )
v7(X, Y ):− t(X, isParentOf, Y )
v8(Y, Z):− t(Y, hasPainted, Z)

Since the above example covers only the second case of Definition 3.3.4, we will
now provide an example that illustrates the first case as well. For this purpose, we use
a slightly modified version of the sample query q1, namely q′1, in which we replaced the
starryNight constant of the first query atom with the variable Z (which also appears in
the third atom). Query q′1 asks for the painters that have worked on the same painting with
one of their children, as well as these paintings, and is the following:

q′1(X,Z) :−t(X, hasPainted, Z), t(X, isParentOf, Y ), t(Y, hasPainted, Z)

The graph of the initial state S ′0 is depicted at the left-hand side of Figure 3.2. Per-
forming a JC by cutting the join edge v′1:n1.o = n3.o of G(S ′0) does not disconnect the
graph of v′1. A new state S ′1 is obtained, the graph of which is shown at the right-hand
side of Figure 3.2. State S ′1 contains the following new view v′2:

v′2(X,Z,W ) :−t(X, hasPainted,W ), t(X, isParentOf, Y ), t(Y, hasPainted, Z)

As dictated by the first case of the definition of JC, the first occurrence of the join
variable Z in v′1 is replaced by a new fresh variable W in v′2. This is done so that we no
longer have a join between the first and the third atom (if we kept the same variable name
in both positions, the join would remain intact). The Z variable, still present in the third
atom of v′2, as well as the new fresh variable W , become head variables (Z already was
in our example), so that in the rewritings that were using v′1 we can re-impose (through a
selection) the join that was removed by the JC. Thus, v′1 is replaced in the rewritings by
the expression πhead(v′1)(σn1.o=n3.ov

′
2) = πX,Z(σW=Zv

′
2).

Definition 3.3.5 (View Fusion (VF)). Let S = 〈V,R〉 be a state and v1, v2 be two views
in V such that their respective graphs are isomorphic (their bodies are equivalent up to
variable renaming). We denote by 〈i→j〉 the renaming of the variables of vi into those of
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vj . Let v3 be a copy of v1, such that head(v3) = head(v1)∪ head(v2〈2→1〉). Fusing v1 and
v2 leads to a new state S ′ = 〈V ′, R′〉 obtained as follows:

– V ′ = (V \ {v1, v2}) ∪ {v3},
– G(S ′) is obtained from G(S) by removing the graphs of v1 and v2 and adding that

of v3, and
– R′ is obtained from R by replacing any occurrence of v1 with πhead(v1)(v3), and of
v2 with πhead(v2)(v3〈3→2〉)

For example, in state S3, the graphs of v5 and v8 are isomorphic, and can thus be fused
creating the new view v9. Similarly, v6 and v7 can be fused into a new view v10 leading to
state S4.

3.3.3 View and State Equivalence

As mentioned in Definition 3.3.5 above, in order to apply a VF between two views,
we first need to check whether these views are equivalent (up to variable renaming). It
is shown in [CM77] that in the general case, equivalence between conjunctive queries
is NP-complete, which would make VF very expensive. To this end, we have devised a
signature-based filter to more efficiently determine view equivalence. In particular, we
assign a signature to each view taking into account the number of atoms of the view, the
constants and the position (s, p or o) in which each constant appears, as well as the joins
to which each variable participates (for each variable, we count the number of s-s, s-p,
s-o, p-s, etc., joins to which it participates in the views). These signatures are small and
can be built very fast.

If two views are equivalent, their signatures are the same. Thus, in order to test if
v1 ≡ v2, we first compare their signatures. If they are different, we are sure the views are
not identical. If they coincide, we apply the full equivalence test of [CM77]. The filter
eliminates quickly many non-equivalent pairs and speeds up the whole process signifi-
cantly.

As for the state equivalence, we build state signatures by sorting and then concatenat-
ing the signatures of all views composing the state. If two states have different signatures,
they are certainly not equivalent. If they have the same signature, their views should
be checked for equivalence, which is more costly. This efficient state equivalence test
plays an important role when searching for candidate states, as will be explained in Sec-
tion 3.5.1.

3.3.4 Estimated State Cost

To each state, we associate a cost estimation cε, taking into account: the space occu-
pancy of all the materialized views, the cost of evaluating the workload query rewritings,
and the cost associated to the maintenance of the materialized views.

For any conjunctive query or view v, we use len(v) to denote the number of atoms in
v, |v| for the number of tuples in v, and |v|ε for our estimation of this number. We now
detail each of the three cost components. Let S(Q) =〈V,R〉 be a state.
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View space occupancy (VSOε) To estimate the space occupancy of a given view v ∈
V , we need to estimate its cardinality. Several methods exist for estimating RDF query
cardinality [MASS08, SSB+08, NW09]. In this work, we adopt the solution of [NW09],
which consists in counting and storing the exact number of tuples (i) for each given s,
p and o value; (ii) for each pair of (s, p), (s, o) and (s, p) values. This leads to exact
cardinality estimations for any one-atom view with one or two constants. The size of
an one-atom view with no constants is the size of the dataset; three-constants atoms are
disallowed in our framework since they introduce Cartesian products in views.

We now turn to the case of multi-atom views. From each view v ∈ V , and each atom
ti ∈ v, 1 ≤ i ≤ len(v), let vi be the conjunctive query whose body consists of exactly the
atom ti and whose head projects the variables in ti. From our gathered statistics, we know
|vi|. We assume that values in each triple table column are uniformly distributed, and that
values of different columns are independently distributed 1. For the s, p and o columns,
moreover, we store the number of distinct values, as well as the minimum and maximum
values. Then, we compute |v|ε based on the exact counts |vi| and the above assumptions
and statistics, applying known relational formulas [RG03]. Finally, to estimate the space
occupancy of view v, we take into account |v|ε, along with the average size of a triple
attribute (subject, property or object), and the number of attributes in the head of v.

Since the workload is known, we gather only the statistics needed for this workload.
In particular, we count (i) the triples matching each of the query atoms, and (ii) the triples
matching all relaxations of these atoms, obtained by removing constants (as SC does
during the search). Consider, for instance, the following query:

q(X1, X2):−t(X1, rdf :type, picture), t(X1, isLocatIn,X2)

We count the triples matching the two query atoms:

q1(X1):−t(X1, rdf :type, picture), q2(X1, X2):−t(X1, isLocatIn,X2)

as well as the triples matching three relaxed atoms, obtained by removing the constants
from q1 and q2:

q3(X1, X2):−t(X1, rdf :type,X2), q4(X1, X2):−t(X1, X2, picture),
q5(X1, X2, X3):−t(X1, X2, X3).

Based on the cardinalities of the above atoms, we can estimate the cardinality of any
possible view created throughout the search.
Rewriting evaluation cost (RECε) This cost estimation reflects the processing effort
needed to answer the workload queries using the proposed rewritings inR. It is computed
as:

RECε(S) =
∑

r∈R(c1 · ioε(r) + c2 · cpuε(r))

1. A recent work [NM11] provides an RDF query size estimation method that does not make the inde-
pendence assumption. This estimation method could be also easily integrated in our framework.
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where ioε(r) and cpuε(r) estimate the I/O cost and the CPU processing cost of executing
the rewriting r respectively, and c1, c2 are some weights. The I/O cost estimation is:

ioε(r) =
∑

v∈r |v|ε

where v ∈ r denotes a view appearing in the rewriting r. The CPU cost estimation
cpuε(r) sums up the estimated costs of the selections, projections, and joins required by
the rewriting r, computed based on the view cardinality estimations and known formulas
from the relational query processing literature [RG03].
View maintenance cost (VMCε) The cost of maintaining the views in V when the data
is updated, depends on the algorithm implemented to propagate the updates. In a con-
servative way, we chose to account only for the costs of writing/removing tuples to/from
the views due to an update, ignoring the other maintenance operation costs. Consider
the addition of a triple t+ to the triple table, and a view v of len(v) atoms. With some
simplification, we consider that t+ joins with f1 existing triples for some constant f1, the
tuples resulting from this, in turn, join with f2 existing triples, etc. Adding the triple t+
thus causes the addition of f1 · f2 · . . . · flen(v) tuples to v. A similar reasoning holds for
deletions. To avoid estimating f1, f2, . . . , flen(v), which may be costly or impossible for
triples which will be added in the future, we consider a single user-provided factor f , and
compute:

VMCε(S) =
∑

v∈V f
len(v)

The estimated cost cε of a state S is defined as:

cε(S) = cs · V SOε(S) + cr ·RECε(S) + cm · VMCε(S)

where the numerical weights cs, cr and cm determine the importance of each component:
if storage space is cheap cs can be set very low, if the triple table is rarely updated cm can
be reduced etc.
Workload query weights An immediate extension to the cost function is to associate
numerical weights W = {w1, w2, . . . , wn} to each workload query, to reflect, e.g., the
frequency and/or importance of a query. To account for weights, the rewriting evaluation
cost needs to become a weighted sum:

RECε
W (S) =

∑
ri∈R wi · (c1 · io

ε(ri) + c2 · cpuε(ri))

denoting by wi the weight of the query qi, having ri as its corresponding rewriting.
Weights have no other impact on our approach and will be omitted in the sequel for
simplicity.
Impact of transitions on the cost Transition SC increases the view size and adds to
some rewritings the CPU cost of the selection. Thus, SC always increases the state cost.
Transitions JC and VB may increase or decrease the space occupancy, and add the costs
of a join to some rewritings. JC decreases maintenance cost, whereas VB may increase
or decrease it. Overall, JC and VB may increase or decrease the state cost. Finally, VF

decreases the view space occupancy and view maintenance costs, and does not have an
impact on the query processing cost. Thus, VF always reduces the overall cost of a state.
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Semantic relationship RDF notation FOL notation
Class inclusion (c1, rdfs:subClassOf, c2) ∀X(c1(X)⇒ c2(X))
Property inclusion (p1, rdfs:subPropertyOf, p2) ∀X∀Y (p1(X, Y )⇒ p2(X, Y ))
Domain typing of a property (p, rdfs:domain, c) ∀X∀Y (p(X, Y )⇒ c(X))
Range typing of a property (p, rdfs:range, c) ∀X∀Y (p(X, Y )⇒ c(Y ))

Table 3.1: Semantic relationships expressible in an RDFS.

3.4 View Selection & RDF Reasoning

The approach described so far does not take into consideration the implicit triples that
are intrinsic to RDF and that complete query answers. Section 3.4.1 introduces the no-
tion of RDF entailment to which such triples are due 2. Section 3.4.2 presents the two
main methods for processing RDF queries when RDF entailment is considered, namely
database saturation and query reformulation. In particular, we devise a novel reformu-
lation algorithm extending the state of the art. Finally, Section 3.4.3 details how we take
RDF entailment into account in our view selection approach.

3.4.1 RDF entailment

The W3C RDF recommendation [www04a] provides a set of entailment rules, which
lead to deriving new implicit (or entailed) triples from an RDF database. We provide here
an overview of these rules.

Some implicit triples are obtained by generalizing existing triples using blank nodes.
For instance, a triple (s, p, o) entails the triple (_:b, p, o), where s is a URI and _:b denotes
a blank node.

Some other rules derive implicit triples from the semantics of a few special URIs,
which are part of the RDF standard, and are assigned special meaning. For instance, RDF
provides the rdfs:Class URI whose semantics is the set of all RDF-specific (predefined)
and user-defined URIs denoting classes to which resources may belong. For example,
when a triple states that a resource u belongs to a given user-defined class painting,
i.e., (u, rdf:type, painting) using the predefined URI rdf:type, an implicit triple states
that painting is a class: (painting, rdf:type, rdfs:Class).

Finally, some rules derive implicit triples from the semantics encapsulated in an
RDF Schema (RDFS for short). An RDFS specifies semantic relationships between
classes and properties used in descriptions. Table 3.1 shows the four semantic re-
lationships allowed in RDF, together with their first-order logic semantics. Some
rules derive implicit triples through the transitivity of class and property inclusions,
and of inheritance of domain and range typing. For instance, if painting is a sub-
class of masterpiece, i.e., (painting, rdfs:subClassOf,masterpiece), which is a sub-
class of work, i.e., (masterpiece, rdfs:subClassOf, work), then an entailed triple is

2. RDF entailment was also described in Chapter 2; here we recall its basic notions, and give more
details on the part of entailment that is related to this work.
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(painting, rdfs:subClassOf, work). If hasPainted is a subproperty of hasCreated,
i.e., (hasPainted, rdfs:subPropertyOf, hasCreated), the ranges of which are the classes
painting and masterpiece, respectively, i.e., (hasPainted, rdfs:range, painting) and
(hasCreated, rdfs:range,masterpiece), then the following triples are implicit:
(hasPainted, rdfs:range,masterpiece), (hasPainted, rdfs:range, work), and
(hasCreated, rdfs:range, work). Some other rules use the RDFS to derive implicit triples
by propagating values (URIs, blank nodes, and literals) from subclasses and subproper-
ties to their superclasses and superproperties, and from properties to classes typing their
domains and ranges. If a resource u has painted something, i.e., (u, hasPainted, _:b),
implicit triples are: (u, hasCreated, _:b), (_:b, rdf:type, painting), (_:b, rdf:type,
masterpiece), and (_:b, rdf:type, work).

Returning complete answers requires considering all the implicit triples. In practice,
RDF data management frameworks (e.g., Jena 3) allow specifying the subset of RDF en-
tailment rules w.r.t. which completeness is required. This is because the implicit triples
brought by some rules, e.g., generalization of constants into blank nodes, may not be very
informative in most settings. Of particular interest among all entailment rules are usually
those derived from an RDFS, since they encode application domain semantics.

3.4.2 RDF entailment and query answering

We consider here the two main approaches previously proposed to answer queries
w.r.t. a given set of RDF entailment rules: database saturation and query reformulation.
Database saturation The first approach saturates the database by adding to it all the im-
plicit triples specified in the RDF recommendation [www04a]. The benefit of saturation
is that standard query evaluation techniques for plain RDF can be applied on the result-
ing database to compute complete answers [www08]. Nevertheless, saturation also has
drawbacks. First, it needs more space to store the implicit triples, competing with the
data and the materialized views. Observe that saturation adds all implicit triples to the
store, whether user queries need them or not. Second, the maintenance of a saturated
database, which can be seen as an inflationary fixpoint, when adding or removing data
and/or RDFS statements may be complex and costly. Finally, saturation is not always
possible, e.g., when querying is performed at a client with no write access to the database.
Query reformulation The second approach reformulates a (conjunctive) query into an
equivalent union of (conjunctive) queries. The complete answers of the initial query
(w.r.t. the considered RDF entailment rules) can be obtained by standard query evaluation
techniques for plain RDF [www08] using this union of queries against the non-saturated
database.

The benefit of reformulation is that it leaves the database unchanged. However, refor-
mulation has an overhead at query evaluation time.
Query reformulation w.r.t. an RDFS Query reformulation algorithms have been inves-
tigated in the literature for the well-known Description Logic fragment of RDF [AGR07,
CGL+07]: datasets complimented with an RDFS, without blank nodes, and where RDF

3. http://jena.sourceforge.net/
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Algorithm 1: Reformulate(q,S)

Input : an RDF schema S and a conjunctive query q over S
Output: a union of conjunctive queries ucq such that for any database D:

evaluate(q, saturate(D,S)) = evaluate(ucq,D)
1 ucq ← {q}, ucq′ ← ∅
2 while ucq 6= ucq′ do
3 ucq′ ← ucq
4 foreach conjunctive query q′ ∈ ucq′ do
5 foreach atom g in q′ do
6 if g = t(s, rdf :type, c2) and c1 rdfs:subClassOf c2 ∈ S then
7 ucq ← ucq ∪ {q′[g/t(s,rdf :type,c1)]} //rule 3.1

8 if g = t(s, p2,o) and p1 rdfs:subPropertyOf p2 ∈ S then
ucq ← ucq ∪ {q′[g/t(s,p1,o)]} //rule 3.2

9 if g = t(s, rdf :type, c) and p rdfs:domain c ∈ S then
10 ucq ← ucq ∪ {q′[g/∃X t(s,p,X)]} //rule 3.3

11 if g = t(o, rdf :type, c) and p rdfs:range c ∈ S then
12 ucq ← ucq ∪ {q′[g/∃X t(X,p,o)]} //rule 3.4

13 if g = t(s, rdf :type,X) and c1, c2 . . . , cn are all the classes in S then
14 ucq ← ucq ∪

⋃n
i=1{(q′[g/t(s,rdf :type,ci)])σ=[X/ci]} //rule 3.5

15 if g = t(s, X,o) and p1, p2 . . . , pm are all the properties in S then
16 ucq ← //rule 3.6

ucq ∪
⋃m
i=1{(q′[g/t(s,pi,o)])σ=[X/pi]} ∪ {(q′[g/t(s,rdf :type,o)])σ=[X/rdf :type]}

17 return ucq

entailment only considers the rules associated to the RDFS (those of the third kind de-
scribed in Section 3.4.1). However, these algorithms allow reformulating queries from
a strictly less expressive language than the one of our RDF queries (see Section 3.8 for
more details) and, thus, cannot be applied to our setting. Therefore, we propose the Algo-
rithm 1 that fully captures our query language, so that we can obtain the complete answers
of any RDF query by evaluating its reformulation.

The algorithm uses the set of rules of Figure 3.3 to unfold the queries; in this Figure
and onwards, we denote by s, p, respectively, o, a placeholder for either a constant or a
variable occurring in the subject, property, respectively, object position of a triple atom.
Notice that rules (3.1)-(3.4) follow from the four rules of Table 3.1. The evaluate and
saturate functions, used in Algorithm 1 provide, respectively, the standard query evalua-
tion for plain RDF, and the saturation of a dataset w.r.t. an RDFS (Table 3.1). Moreover,
q[g/g′] is the result of replacing the atom g of the query q by the atom g′ and qσ=[X/c] is the
result of replacing any occurrence of the variable X in q with the constant c.

More precisely, Algorithm 1 uses the rules in Figure 3.3 to generate new queries from
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t(s, rdf :type, c1)⇒ t(s, rdf :type, c2),with c1 rdfs:subClassOf c2 ∈ S (3.1)

t(s, p1,o)⇒ t(s, p2,o),with p1 rdfs:subPropertyOf p2 ∈ S (3.2)

t(s, p,X)⇒ t(s, rdf :type, c),with p rdfs:domain c ∈ S (3.3)

t(X, p,o)⇒ t(o, rdf :type, c),with p rdfs:range c ∈ S (3.4)

t(s, rdf :type, ci)⇒ t(s, rdf :type,X), for any class ci of S (3.5)

t(s, pi,o)⇒ t(s, X,o), for any property pi of S and rdf :type (3.6)

Figure 3.3: Reformulation rules for an RDFS S.

the original query, by a backward application of the rules on the query atoms. It then
applies the same procedure on the newly obtained queries and repeats until no new queries
can be constructed. Then, it outputs the union of the generated queries. The inner loop of
the algorithm (lines 5-16) comprises six if statements, one for each of the six rules above.
The conditions of these statements represent the heads (right parts) of the rules, whereas
the consequents correspond to their bodies (left parts). In each iteration, when a query
atom matches the condition of an if statement, the respective rule is triggered, replacing
the atom with the one that appears in the body of the rule. Note that rules 3.5 and 3.6 need
to bind a variable X of an atom to a constant ci, pi, or rdf :type, thus we use σ to bind all
the occurrences of X in the query in order to retain the join on X within the whole new
query.

We now prove the termination and correctness of Reformulate(q,S).

Theorem 3.4.1 (Termination of Reformulate(q,S)). Given a query q over an RDFS S,
Reformulate(q,S) terminates and outputs a union of no more than (2|S|2)m queries,
where |S| is the number of statements in S and m the number of atoms in q.

Proof. For the algorithm to terminate, it suffices to show that rules (3.1)-(3.6) can be
repeatedly applied a finite number of times to each atom of q. Let |S| be the number
of statements in S, |R| be the number of relations (i.e., classes and properties), |C| the
number of classes and |P | the number of properties participating in S. Obviously, |C| +
|P | = |R|. Observe that the atoms resulting from the application of rule 3.2 can only
further trigger the same rule. Likewise, rules 3.3 and 3.4 can only trigger rule 3.2, whereas
rule 3.1 only enables the application of rules 3.1, 3.3, and 3.4. Rule 3.5 only triggers
rules 3.1, 3.3, and 3.4. Lastly, rule 3.6 may trigger any other rule.

Clearly, the worst case (longest sequence of rule applications) occurs when rule 3.6
is applied on an atom of the form t(s, X, Y ): it generates |P | atoms (as many as the dis-
tinct properties of S) of the form t(s, pj, Y ) and one atom of the form t(s, rdf :type, Y ).
Each of the |P | atoms can cause the recursive application of rule 3.2, as explained before.
Rule 3.2 can be applied at most |S| times for each of these atoms (in case S includes only
subPropertyOf statements), leading to a total number of |P ||S| generated atoms. As for
the atom t(s, rdf :type, Y ) also output by rule 3.6, it can trigger rule 3.5, which then gener-
ates |C| new atoms (as many as the distinct classes in S) of the form t(s, rdf :type, ci). As
explained above, each of these |C| atoms can enable the recursive application of rules 3.1,
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3.3 and 3.4 at most |S| times, leading to |C||S| atoms. Summing up, we can have at most
|P ||S| + |C||S| = (|P | + |C|)|S| = |R||S| rule applications. Now observe that the
biggest number of distinct relations that can appear in S is 2|S|, which happens when no
relation is used more than once in the statements in S. Thus, the above sum is updated
to 2|S||S| = 2|S|2 which constitutes the upper bound for the number of reformulations
per atom. That is, if q comprises m atoms, Reformulate(q,S) terminates after at most
(2|S|2)m rule applications, leading to an equal number of queries.

Theorem 3.4.2 (Correctness of Algorithm 1). Let ucq be the output of
Reformulate(q,S), for a query q over an RDFS S. For any database D associated
to S:

evaluate(q, saturate(D,S)) = evaluate(ucq,D).

Proof (Sketch). Soundness We show that if tuple t ∈ evaluate(ucq,D), then
t ∈ evaluate(q, saturate(D,S)). Since t ∈ evaluate(ucq,D), t is an answer to a
query q′ in ucq. Moreover, since D ⊆ saturate(D,S), we have evaluate(q′, D) ⊆
evaluate(q′, saturate(D,S)). By construction, any query built by Algorithm 1 is sub-
sumed by q w.r.t. S, so evaluate(q′, saturate(D,S)) ⊆ evaluate(q, saturate(D,S)), thus
t ∈ evaluate(q, saturate(D,S)).
Completeness We now show that if tuple t ∈ evaluate(q, saturate(D,S)), then
t ∈ evaluate(ucq,D). Since t ∈ evaluate(q, saturate(D,S)), t results from a projec-
tion upon m triples t1, . . . , tm, given that q has m atoms. We therefore have to show that
any ti is also exhibited by a reformulation of the i-th atom of q.

First, observe that our set of rules is capable of capturing all possible cases of query
atoms. Clearly, every atom t(s, p, o) consists of three terms, each being either a variable
or a constant. When an atom contains a variable in p, rule (3.6) is triggered, whereas
when p is specified, rules (3.2) or (3.5) can be used (depending on whether p is rdf :type
or not, respectively). Finally, when p is rdf :type and o is some constant, rules (3.1), (3.3)
and (3.4) can be applied. Hence, all cases of query atoms are treated.

Now, we prove the above claim by induction on the number α of applications of the
saturation rules, needed for ti to be added in saturate(D,S). These rules are the ones
of Table 3.1, applied in a forward-chaining fashion [www04a]. We actually show that
the free variables of the i-th atom of q that are bound by ti, are equally bound by the
evaluation of a reformulation of the i-th atom of q. For α = 0, ti ∈ D (i.e., ti is an explicit
triple), thus ti is also a triple for the evaluation of the non-reformulated i-th atom of q.
Suppose that the claim holds for α < k, and let us consider the case for α = k. Assume
ti is finally added after the application of the first closure rule on a triple tα−1. Then,
tα−1 = (s1, rdf :type, c1) and ti = (s1, rdf :type, c2), where s1, c1 and c2 are constants.
Since t ∈ evaluate(q, saturate(D,S)), ti matches the i-th atom of q, which is, thus, of
the form t(s, rdf :type, c2), t(s, X, c2), t(s, rdf :type,X), or t(s, X, Y ).

In the first case, we perform a reformulation of the i-th atom using rule 3.1 and we
obtain the atom t(s, rdf :type, c1), which indeed returns s1 in the result, as if the triple ti
was stored in D. In the second case, we reformulate the query atom with rule 3.6 and we
obtain (among others) the atom t(s, rdf :type, c2), which, after one more reformulation
using rule 3.1, results in the atom t(s, rdf :type, c1) that was treated by the first case. In
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the third case, we apply rule 3.5, we immediately obtain the atom t(s, rdf :type, c1) and
so we also return s1 in the result. In the last case, we apply rule 3.6 and on the new atom
t(s, rdf :type,X) we apply rule 3.5 and then fall into the previous case.

Thus, for all four cases that can appear after applying the first saturation rule, we have
proved by induction our claim. We proceed the same way for the three other saturation
rules.

3.4.3 View selection aware of RDF entailment
We now discuss possible ways to take RDF implicit triples into account in our view se-

lection approach. As will be explained, the exact way (cardinality) statistics are collected
for each view atom (first described in Section 3.3.4), plays an important role here.
Database saturation If the database is saturated prior to view selection, the collected
statistics do reflect the implicit triples.
Pre-reformulation Alternatively, one could reformulate the query workload and then
apply our search on the new workload. To do so, we extend the definition of
our initial state, as well as our rewriting language to that of unions of conjunctive
queries. More precisely, given a set of queries Q = {q1, . . . , qn}, and assuming that
Reformulate(qi,S) = {q1i , . . . , q

ni
i }, it is sufficient to define S0(Q) = 〈V0, R0〉 as the set

of conjunctive views V0 =
⋃n
i=1{q1i , . . . , q

ni
i } and the set of rewritings R0 =

⋃n
i=1{qi =

q1i ∪· · ·∪q
ni
i }. In this case, statistics are collected on the original (non-saturated) database

for the reformulated queries.
As stated in Theorem 3.4.1, query reformulation can yield a significant number of

new queries, increasing the number of views of our initial state and leading to a serious
increase of the search space. As an example, consider the following simple query on the
Barton [www] dataset:

q(X1, X2, X3):−t(X1, rdf :type, text), t(X1, relatedTo,X2),
t(X2, rdf :type, subjectPart), t(X1, language, fr),
t(X2, description,X3)

q is reformulated with the Barton Schema into a union of 104 queries. Given the very
high complexity of the exhaustive search problem (Section 3.5.1), such an increase may
significantly impact view selection performance.
Post-reformulation To avoid this explosion, we propose to apply reformulation not on
the initial queries, but directly on the views in the final (best) state recommended by the
search.

Directly doing so, introduces a source of errors: since statistics are collected on the
original database, and the queries are not reformulated, the implicit triples will not be
taken into account in the cost estimation function cε. To overcome this problem, we
reflect implicit triples to the statistics, by reformulating each view atom vi into a union
of atoms Reformulate(vi,S) prior to the view search, and then replacing |vi| (i.e., the
cardinality of vi) in our cost formulas with |Reformulate(vi,S)|. This results in having
the same statistics as if the database was saturated. Then, we perform the search using
the (non-reformulated) queries and get the same best state as in the database saturation
approach (as we use the same initial state and statistics). Since materializing the best
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q1,S q1(X1) :−t(X1, rdf :type, picture) (1)
∪ q1(X1) :−t(X1, rdf :type, painting) (2)

q4,S q4(X1, X2) :−(X1, X2, picture) (1)
∪ q4(X1, isLocatIn) :−t(X1, isLocatIn, picture) (2)
∪ q4(X1, isExpIn) :−t(X1, isExpIn, picture) (3)
∪ q4(X1, rdf :type) :−t(X1, rdf :type, picture) (4)
∪ q4(X1, isLocatIn) :−t(X1, isExpIn, picture) (5)
∪ q4(X1, rdf :type) :−t(X1, rdf :type, painting) (6)

Table 3.2: Term reformulation for post-reasoning.

state’s views directly would not include the implicit triples, we need to reformulate these
views first. Theorem 3.4.2 guarantees the correctness of post-reformulation (materializing
the reformulated views on the non-saturated database is the same as materializing the non-
reformulated ones on the saturated database).

Consider the query q of Section 3.3.4, with the following Schema:

S = {(painting, rdfs:subClassOf, picture),
(isExpIn, rdfs:subPropertyOf, isLocatIn)}

We first count the exact number of triples matching the query atoms and their relaxed
versions, namely q1 to q5 (see Section 3.3.4).

We now reformulate each qi based on S into a union of queries, denoted qi,S . Ta-
ble 3.2 illustrates this for q1 and q4. Rule 1 (Figure 3.3) has been applied on q1, adding
to it a second union term. Applying rule 6 on q4 leads to replacing X2 with isLocatIn,
isExpIn, and rdf :type respectively in the second, third and fourth union terms of q4,S . In
turn, the second term triggers rule 2 producing a fifth term, while the fourth term triggers
rule 1 to produce the sixth union term.

The cardinality of each reformulated atom qi,S is estimated prior to the search. Then,
we perform the search for the non-reformulated version of q using these statistics, and get
the following best state:

v1(X1, X2):−t(X1, rdf :type,X2), v2(X1, X2):−t(X1, isLocatIn,X2)
r3 = πv1.X1,v2.X2(σX2=picture(v1) ./v1.X1=v2.X1 v2)

After the search has finished, instead of the recommended views v1 and v2, we mate-
rialize their reformulated variants v′1 and v′2:

v′1(X1, X2):−t(X1, rdf :type,X2)
∪ v′1(X1, painting):−t(X1, rdf :type, painting)
∪ v′1(X1, picture):−t(X1, rdf :type, picture)
∪ v′1(X1, picture):−t(X1, rdf :type, painting)

v′2(X1, X2):−t(X1, isLocatIn,X2)
∪ v′2(X1, X2):−t(X1, isExpIn,X2)

Executing r3 on v′1 and v′2 provides the complete answers for q.
In post-reformulation, finding the best state does not require saturating the database,

nor multiplying the queries (as pre-reformulation does) and making the search space size
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explode. Thus, this is the best approach for situations where database saturation is not an
option, which is also shown through our experiments in Section 3.7.5.

Some measurements about the cost of statistics collection for each of the three rea-
soning approaches are also given in Section 3.7.5.

3.5 Searching for View Sets
This Section discusses strategies for navigating in the search space of candidate view

sets (or states), looking for a low- or minimal-cost state. We discuss the exhaustive search
strategies and identify an interesting subset of stratified strategies in Section 3.5.1, based
on which we analyze the size of the search space. In Section 3.5.2, we present several
efficient optimizations and search heuristics.

3.5.1 Exhaustive Search Strategies
We define the initial state of the search as S0(Q) = 〈V0, R0〉, such that V0 = Q, i.e.,

the set of views is exactly the set of queries, and each rewriting in R0 is a view scan. The
state graph G(S0) corresponds to the queries in Q. Clearly, the rewriting cost of S0 is low,
since each query rewriting is simply a view scan. However, its space consumption and/or
view maintenance costs may be high.

We denote by S τ−→ S ′ the application of the transition τ ∈ {SC,JC,VB,VF} on a state
S, leading to the state S ′.

Definition 3.5.1 (Path). A path is a sequence of transitions of the form: S0
τ0−→ S1, S1

τ1−→
S2, . . ., Sk−1

τk−1−−→ Sk.

For instance, in Figure 3.4, (S0
SC(c2)−−−→ S3), (S3

JC−→ S6) is a path. We may denote a
path simply by its transitions, e.g., (SC(c2), JC).

It can be shown that any path is cycle-free. The intuition is that SC and JC remove
query-specified predicates from the views, and no transition ever brings them back. Sim-
ilarly, VB and JC always create smaller views, while no transition replaces a view (or two
views) by a larger one. It follows that any path is of finite length.

Theorem 3.5.1 (Completeness of the transition set). Given a workload Q and an initial
state S0, for every possible state S(Q), there exists a path from the initial state S0 to S.

Proof. Given a workload Q, an initial state S0 and a possible state S(Q) = 〈V,R〉 that
corresponds to a candidate view set for Q, we show that S can be attained through a
sequence of transitions, all of which belong to our transition set {SC,JC,VB,VF}.

By the definition of the candidate view set, we know that from every view v, there
exists an embedding φ into at least one query qv ∈ Q, otherwise, v would not be usable
in any query rewriting. If φ mapped two atoms of v to the same atom of qv, then v
would be non-minimal, which contradicts our definition of the candidate view set (see
Definition 3.2.3). Thus, φ maps each v atom to a distinct qv atom, which entails that v has
at most as many atoms as qv.
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Q = {q}

q(Y, Z):−
t(X, Y, c1),

t(X,Z, c2)

S0 S1

S2

S3

S4

S5

S6

S7 S8
JC

SC(c1)

SC(c2)

SC(c2)

SC(c1)

SC(c1)

SC(c2)

JC

SC(c2)

SC(c1)

JC

JC

VF

V0 {q(Y,Z):−t(X,Y, c1), t(X,Z, c2)}
V1 {q1(X1, Y ):−t(X1, Y, c1); q2(X2, Z):−t(X2, Z, c2)}
V2 {q(Y,Z,W1):−t(X,Y,W1), t(X,Z, c2)}
V3 {q(Y,Z,W2):−t(X,Y, c1), t(X,Z,W2)}
V4 {q(Y,Z,W1,W2):−t(X,Y,W1), t(X,Z,W2)}
V5 {q1(X1, Z,W1):−t(X1, Z,W1); q2(X2, Z):−t(X2, Z, c2)}
V6 {q1(X1, Z):−t(X1, Z, c1); q2(X2, Z,W2):−t(X2, Z,W2)}
V7 {q1(X1, Z,W1):−t(X1, Z,W1); q2(X2, Z,W2):−t(X2, Z,W2)}
V8 {q(X,Y, Z):−t(X,Y, Z)}

Figure 3.4: Sample exhaustive strategy (solid arrows), EXNAÏVE strategy (solid and
dashed arrows), and view sets corresponding to each state.

To start with, assume that our workload Q consists of a single query q. Each state
consists of a possible view set that can be used to rewrite q. We initially assume that no
rewriting uses a specific view more than once. We now distinguish two cases depending
on the number of views |V | in S:
|V| = 1. In this case q is rewritten based only on one view v. Then v must have the same
number of atoms as q: we have already shown that v cannot have more atoms than q; if v
had less atoms than q, it could not suffice to rewrite q. Moreover, the graph of v has to be
a subgraph of q (i.e., less restrictive than q) in order to be able to answer q. By repeatedly
applying a number of SC and JC starting from q, we can obtain all possible subgraphs of
q, among which we find the graph of the given view v. This means that in this case we
can reach S starting from S0.
|V| ≥ 1. Now assume that V contains k > 1 views, all of which participate to the
(single) rewriting r of q. Hence, all views can be embedded into q. Notice though, that
for every two views v1, v2 ∈ V , the nodes of q to which v1 is mapped cannot be a subset
of the nodes of q to which v2 is mapped, because this entails the existence of a rewriting
r′ which does not use v1, making r non-minimal, which contradicts our assumptions 4

(Definition 3.2.3). Starting from the initial view q ∈ S0, we can use a sequence of JC

and VB to split q into a set of views Vq, containing exactly k views. The k views of Vq
are created so as to establish a one-to-one correspondence between V and Vq, as follows.
For each view v ∈ V , we create exactly one view v1 ∈ Vq consisting of the q atoms to

4. This is also the reason we impose the restriction in the definition of VB that when a view is broken
into two new views with node sets N1 and N2, we should have N1 * N2 and N2 * N1.
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which v is mapped. This means that by construction v can be embedded into vq. Thus,
the graph of v is a subgraph of vq and since they have the same number of nodes (as v
and vq have the same number of atoms), we can reach v from vq by a sequence of SC and
JC, as explained in the previous case when |V | = 1. Thus, starting from q we have shown
how we can create the set V and reach from S0 the state S.

We now turn to the case when we still have one query q in our workload, but the
rewriting of q can use the same view more than once. We construct a new state S ′ in
which we have created for each view of the view set V of S as many copies as the number
of times it is used in the rewriting of q. Thus, in S ′ the rewriting of q includes views that
are used only once. Reaching S from S ′ can be done easily by applying a sequence of
VFs which revert the view duplication steps that brought us to S ′. Moreover, showing
that S ′ is attainable from S0 falls into the case when |V | ≥ 1 that was described above.
Hence, S can be indeed attained from S0.

Assume now that we have more than one, say m, queries in Q. The set of rewritings
R of the given state S contains m rewritings. We distinguish two cases:
No view in V is used in more than one rewriting. In this case, we can treat each query
q ∈ Q as a separate initial state and, as explained above, construct all the views that
participate in the rewriting of q. This way we will obtain m new states, one for every
query. Once this is done, we combine the m states and create a single state that has as
views the union of views of the individual “one-query” states, and as rewritings the union
of rewritings of the m states. This is equivalent to the state S.
Some views in V are used in multiple rewritings. Given a state S, we construct a new
state S ′ in which we copy each V view that participated in nv rewritings in S, into nv
distinct views, each of which participates to exactly one rewriting in S ′ 5. It follows from
the case above (when no view could be used in more than one rewriting) that S ′ can be
reached from S0 using our set of transitions. Moreover, one can easily reach S from S ′

by simply applying a sequence of VFs which revert the view duplication steps we took to
obtain S ′. Thus, we have shown that S can be obtained from S0.

Definition 3.5.2 (Strategy). A search strategy Σ is a sequence of transitions of the form:

Σ = (Si1
τi1−→ S ′i1), (Si2

τi2−→ S ′i2), . . . , (Sik−1

τik−1−−−→ S ′ik−1
), (Sik

τik−→ S ′ik)

where Si1 = S0, for every j ∈ [1..k] τij ∈ {SC,JC,VB,VF}, and for every j ∈ [2..k]
there exists l < j such that S ′il = Sij (each state but S0 must be attained before it is
transformed).

For example, for the one-query workload depicted at the top left of Figure 3.4, one
possible strategy is:

Σ1 = (S0
SC(c1)−−−→ S2), (S2

SC(c2)−−−→ S4), (S0
SC(c2)−−−→ S3),

(S3
SC(c1)−−−→ S4), (S0

JC−→ S1)

5. Observe that our definitions of views and candidate view sets do not preclude the existence of two
identical views in the same candidate view set, as long as each view is minimal.
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Algorithm 2: EXNAÏVE(S0)

Input : an initial state S0

Output: the best state Sb found
1 Sb ← S0, Snew ← null, CS ← {S0}, ES ← ∅
2 while CS 6= ∅ do
3 foreach state Sc ∈ CS do
4 Snew ← applyTrans({SC,JC,VB,VF}, Sc, (ES ∪ CS))
5 if Snew = null then move Sc from CS to ES
6 else
7 CS ← CS ∪ {Snew}
8 if cε(Snew) < cε(Sb) then Sb ← Snew

A strategy Σ is exhaustive if any state S that can be reached through a path, is also
reached in Σ (not necessarily through the same path). For instance, in Figure 3.4, the solid
arrows depict an exhaustive strategy, reaching all possible states.

We first consider a simple family of strategies called EXNAÏVE and described through
Algorithm 2. EXNAÏVE strategy (as all strategies presented in this work) maintains a
candidate state set CS and a set of explored states ES. CS keeps the states on which
more transitions can be possibly applied and is initially {S0}. ES is disjoint from CS
and is empty in the beginning. A state S is explored, when any state S ′ = τ(S) obtained
by applying some transition τ ∈ {SC, JC, VB, VF} to S, already belongs either to CS or
to ES. EXNAÏVE at each point picks a state Sc from CS and tries to apply a transition
to it (applyTrans, line 4). If no new state is obtained, Sc was already explored and is
moved to ES (line 5); otherwise, the newly obtained state (Snew) is copied to CS (line 7).
During the search, we also keep the best state found so far (denoted Sb), i.e., having the
lowest cost cε(S) (line 8). The strategy stops when no new states can be found. Clearly,
EXNAÏVE strategies are exhaustive. In Figure 3.4, the solid and dashed arrows, together,
illustrate an EXNAÏVE strategy.

Note that checking whether a state S belongs toCS orES is done using the signature-
based filter presented in Section 3.3.3. To this end, we organized the CS and ES sets as
hash maps where on a state signature we keep one or several states. This speeds up the
process of look-up, since we search in CS and ES directly by a look-up on S’s signature.

For a given strategy Σ, the paths to a state S ∈ Σ, denoted ↪→S, is the set of all Σ
paths whose final state is S. In an EXNAÏVE strategy there may be multiple paths to some
states, e.g., S6 is reached twice in our example, which slows down the search. We define
the notion of stratification to reduce the number of such duplicate states.

Definition 3.5.3 (Stratified path). A path p ∈ ↪→S for some state S ∈ Σ is stratified iff it
belongs to the regular language: VB* SC* JC* VF*.

A stratified path constrains the order among the types of transitions on the path: all
possible view breaks appear only in the beginning of the path and are followed by the
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selection cuts. Join cuts appear only after all selection cuts are applied and are in turn
followed by zero or more view fusions. In Figure 3.4, all solid-arrow paths starting from
S0 are stratified.

The following theorem formalizes the interest of stratified paths.

Theorem 3.5.2 (Completeness of stratified paths). Let Q be a query workload and S(Q)
be a state for Q. There exists a stratified path leading from the initial state S0 to S.

Proof. If S is a state for Q, due to Theorem 3.5.1, there exists a path p belonging to some
strategy Σ (for instance, an EXNAÏVE strategy) reaching S. We show that if p is not
stratified, it can be transformed into a stratified path p′, which also has S as its final state.
Notice that paths including a single transition are always stratified, so hereafter, we focus
only on paths of bigger length.

For a given transition τ appearing in a path p, we define the forward inversion count
of τ in p (denoted FIC(τ, p)) as the number of transitions that appear after τ in p, and
that should appear before τ if p was stratified. For instance, consider the path p1 =
(SC1, VF1, JC1, VF2, SC2, VB1, JC2) where the states are not shown, and transitions of
the same kind are distinguished by their subscripts. We have FIC(SC2, p1) = 1, since
VB1 appears after SC2; the other transition appearing after SC2, namely JC2, does not
violate stratification. Similarly, FIC(JC1, p1) = 2 since SC2 and VB1 appear after JC1

in p1; moreover, FIC(VB1, p1) = 0 and FIC(VF2, p1) = 3. Clearly, for any τ ∈ p,
0 ≤ FIC(τ, p) < |p|, where |p| is the number of transitions in p.

Further, we define the forward inversion count of a path p as the sum of all the FICs
of the transitions in p, that is: FIC(p) =

∑
τ∈p FIC(τ, p). Path p is stratified if and only

if FIC(p) = 0.
We now turn to consider our non-stratified path p. From the definition of stratified

paths, one easily derives a set of six elementary stratification violations: these are path
fragments of the form (τ1, τ2), each of which contradicts stratification, and at least one
of which must be present in any non-stratified path. For each such violating fragment pv
going from a state S1 to another state S3, we provide another path fragment ps going from
S1 to S3, and which is stratified.

Case 1 (pv = S1
JC−→ S2

SC−→ S3). By the semantics of SC and JC, it follows readily that,
since SC and JC target different edges of the state graph, there exists a state S ′1, such that
we can now reach S3 through the stratified path ps = S1

SC−→ S ′1
JC−→ S3.

Case 2 (pv = S1
VF−→ S2

SC−→ S3). Here we distinguish two cases:
– If VF and SC are performed at different places of S1 (VF fuses two views, while

SC cuts an edge from a third, distinct view), then we can apply them in the inverse
order and reach S3 with the stratified path ps = S1

SC−→ S ′1
VF−→ S3. This case is

similar to Case 1 above.
– In pv, when SC erases a selection on a constant appearing in the fused view resulting

from VF , we need to apply two SC steps prior to VF in order to attain S3 from S1

through the stratified path ps = S1
SC−→ S ′1

SC−→ S ′2
VF−→ S3.

Case 3 (pv = S1
VF−→ S2

JC−→ S3). Three sub-cases can occur:
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– When VF and JC are applied on different views, we can reach reach S3 through the
stratified ps = S1

JC−→ S ′1
VF−→ S3.

– When JC is applied on the view resulting from VF and it does not disconnect this
view, we need the stratified path ps = S1

JC−→ S ′1
JC−→ S ′2

VF−→ S3, whereas
– if it disconnects the view, we need two JC steps and then two VF, that is the path
ps = S1

JC−→ S ′1
JC−→ S ′2

VF−→ S ′3
VF−→ S3.

Case 4 (pv = S1
SC−→ S2

VB−→ S3). In a way similar to the above cases, if SC and VB

affect different views, it suffices to use the stratified path ps = S1
VB−→ S ′1

SC−→ S3, while
when VB is performed on the view resulting from SC, we need the new path ps = S1

VB−→
S ′1

SC−→ S ′2
SC−→ S3.

Case 5 (pv = S1
JC−→ S2

VB−→ S3). In the simple case that JC and VB are applied on
different views, we can reach S3 through the stratified path ps = S1

VB−→ S ′1
JC−→ S3. When

JC and VB affect the same view, we distinguish the following sub-cases:
– Assume that JC does not disconnect the view on which it is applied. Notice that, by

definition, VB may remove some of the edges of the view to which it is applied. If
the edge that JC removes would also be removed by VB (if it is applied prior to JC),
then we can omit JC and reach S3 through the path ps = S1

VB−→ S3. In the opposite
case, JC removed an edge that has to be also removed from both the views output
by VB. Thus, we need the stratified path ps = S1

VB−→ S ′1
JC−→ S ′2

JC−→ S3.
– If JC disconnected the view, then the sequence of JC followed by VB created lead to

three views, and JC was applied in a different part of the initial view. Thus, we can
simply use the inverse order of transitions and still reach S3, through the stratified
path ps = S1

VB−→ S ′1
JC−→ S3.

Case 6 (pv = S1
VF−→ S2

VB−→ S3). In this case, if VF and VB affect different views, we
need the stratified path ps = S1

VB−→ S ′1
VF−→ S3, while when VB is performed on the view

resulting from VF, we need the new path ps = S1
VB−→ S ′1

VB−→ S ′2
VF−→ S ′3

VF−→ S3.
Applying one of the path substitutions above on a sub-path pv = (τ1, τ2) of p turns

it into a new path p′, in which pv is replaced with a subpath ps of one of the following
forms: (τ ′2, τ

′
1), (τ ′2, τ

′
1, τ
′′
1 ), (τ ′2, τ

′′
2 , τ

′
1) or (τ ′2, τ

′′
2 , τ

′
1, τ
′′
1 ) 6. In all cases, we have:

FIC(τ ′1, p
′) = FIC(τ ′′1 , p

′) = FIC(τ1, p)− 1
FIC(τ ′2, p

′) = FIC(τ ′′2 , p
′) = FIC(τ2, p)

In other words, the FIC of the first among the two transitions is diminished by 1. This
is because (i) the path substitution ensures that τ ′2 (and τ ′′2 ) no longer contributes to the
FIC of τ ′1 (and τ ′′1 ), (ii) no other transition introduced by the path substitution contributes
to FIC(τ1) and (iii) the FICs of p transitions after the end of pv are unaffected by the
substitution.

To turn p into a stratified path p′, our first step is to bring all VFs at the end of the
path. To do so, we repeatedly identify the last VF transition in the current path pc, call
it VFk, for which FIC(VFk, pc) 6= 0 and apply on VFk and its successor transition, the

6. Notice that τ ′1, τ ′′1 are of the same kind as τ1, and τ ′2, τ ′′2 are of the same kind as τ2.
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path substitution which is appropriate (one of Cases 2, 3 and 6 is sure to apply). Each step
reduces FIC(VFk, pc) by 1. At the end of this step, the FIC of all VF transitions in the
transformed path is 0, which also means that all VFs are placed at the end of the path.

We now continue the procedure for the JCs: we identify the last occurrence of JC,
call it JCk, for which FIC(JCk, pc) 6= 0 and we apply Case 1 or 5, depending on its
successor transition. When this step is finished, we repeat the procedure for SCs to place
them immediately before the JCs. We do not need to do the same for VBs, as previous
operations have already pushed them at the beginning of the resulting path p′ which, by
now, is stratified, i.e., for all its transitions τ we will have FIC(τ, p′) = 0 and, thus,
FIC(p′) = 0.

Notice though that some path substitutions increase the length of the path, e.g.,
(SC,VB) may be replaced by (VB,SC,SC). However, for all violations there exists one
case that does not affect the length of the path. At the same time, a bound holds on the
maximal path size, as follows:

– The number of VBs that can be applied successively on a given state is limited,
because each time the views that result from a VB have less atoms than the view
VB is applied on.

– SCs and JCs are bound by the number of edges in the graphs of the views, which is
finite.

– An infinite number of VFs would mean an infinite number of initial queries, which
is a contradiction.

Thus, the above procedure always terminates and results in a stratified path p′.

We can now identify an interesting family of strategies.

Definition 3.5.4 (Stratified strategy). A strategy Σ is stratified iff for any S ∈ Σ and p ∈
↪→S, p is stratified.

In Figure 3.4, any topological sort of the solid edges is a stratified strategy, more effi-
cient than the EXNAÏVE one illustrated in the Figure, since the latter performs four extra
transitions. Observe that a stratified strategy does not constrain the order of transitions
that are not on the same path. For instance, in Figure 3.4, a stratified strategy may apply
the transition S0

JC−→ S1 before all the SCs.
We now define the important family of EXSTR strategies. Starting from the initial

state S0, an EXSTR strategy picks any state on which it applies any applicable transition,
preserving the stratification of all strategy paths. Several EXSTR strategies may exist for
a workload, differing in their ordering of the transitions. We will simply use EXSTR to
refer to any of them. The EXNAÏVE strategy (Algorithm 2) can be turned to an EXSTR

one through the following modification: when applyTrans (line 4) is called on a state Sc,
it should apply the transitions in a stratified way, i.e., first it attempts a VB and only if no
new state is obtained, it applies an SC, and then a JC and, finally, a VF.

Theorem 3.5.3 (Interest of EXSTR). (i) Any EXSTR strategy is exhaustive. (ii) For a
given workload Q, and arbitrary EXSTR strategy ΣS and EXNAÏVE strategy ΣN , ΣS has
at most the number of transitions of ΣN .
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Proof. Exhaustiveness of EXSTR strategies follows from the fact that any state can be
reached by a stratified path (Theorem 3.5.2), and that EXSTR only stops when no more
states can be discovered. Moreover, ΣS disables some transitions by restricting the out-
going transitions of a state S depending on S’s incoming paths ↪→S, whereas ΣN allows
these transitions.

Due to Theorem 3.5.3, among the exhaustive strategies, we will only consider wlog
the stratified ones.

Size of the search space We quantify the size of the search space by the number of
states that can be reached through our transitions for a given query workload Q. Due to
Theorem 3.5.1, this number is equal to the number of all possible states for Q.

We start the analysis by considering that Q consists of a single query q of n atoms.
Consider a possible state S(Q) = 〈V,R〉. Every view v ∈ V participates in the rewriting
r of q and can, thus, be embedded into it. This means that the graph of v is a subgraph of
the graph of q. Since r is a complete rewriting of q, the union of the nodes of the graphs
of the views in V is equal to the node set of the graph of q. In other words, the node sets
of the view graphs constitute a cover for the node set of q.

However, the set of nodes of a view graph does not uniquely determine a view: we
can have more than one different states that have the same node sets for their views. This
occurs because they may have different selection and join edges. For instance, consider
the query q(Y ) = t(c1, X, c2), t(X, c3, Y ) and the view sets V1 = v1, v2 and V2 = v3, v2,
where v1(X1) = t(c1, X1, c2), v2(X2, Y ) = t(X2, c3, Y ) and v3(X1) = t(c1, X1, Z). In
this case, the graphs of the views of V1 and of V2 are the same cover of the nodes of the
query graph, but the views are not the same (v1 has one more selection edge than v3).

To this end, we define a restricted class of states Cr, the view sets of which can be
exclusively determined by their node sets. Assume a cover of the node set of the query
graph. For each subset of nodes Ns in this cover, we construct a graph Gs which also
has Ns as its node set. As for the edge set of Gs, it includes all the selection edges of
the query graph that are incident to the nodes of Ns, as well as all the join edges between
these nodes. Notice that there are some cases in which the graph that is created is not
connected. These graphs correspond to views with Cartesian products and, thus, do not
lead to valid rewritings in our setting. However, in the worst case that a query is a clique,
every possible subset of its nodes represents a connected graph. Moreover, the cover of
the query node set has to be minimal, otherwise our rewritings will not be minimal.

Observe that the states in Cr are those obtained by applying only VBs and from the
JCs only those that disconnect the graph of a view. They are the most restricted states
(having views with the biggest number of selection and join edges) given a specific cover
of the query nodes, as no additional SCs or JCs are applied on them.

Given the above, the problem of enumerating the states inCr is reduced to the problem
of finding the minimal covers of the query node set. Hence, the number of states in Cr is
bound by the number of minimal covers.

Let µ(n, k) be the number of minimal covers with k members of a set of n elements,
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given by the following formula:

µ(n, k) =
1

k!

ak∑
m=k

(
2k − k − 1

m− k

)
m! S(n,m)

where S(n,m) is the Stirling number of the second kind (i.e., the number of ways to
partition a set of n objects into m groups) and ak = min(n, 2k − 1). The overall upper
bound of the number of states in Cr, given one query of n atoms is:

NSr(q, n) =
n∑
k=1

µ(n, k)

For each state Sr ∈ Cr, we can obtain more states through SCs and JCs (those JCs that
do not disconnect the graphs). We now need to compute how many such states can we
have for a given Sr. To do so, we will first compute the number of nodes of the views in
Sr and subsequently the number of selection and join edges. Assume that the query q has
n nodes and the view set of Sr comprises k views. In the best case we will have n nodes in
total in the views and this happens when all the views were created through JCs (no view
node was duplicated). In the worst case, each of the views should cover as many of the
query nodes as possible, but without having a view covering a subset of the query nodes
of another (due to the need for minimal rewritings). This means that each of the k views
should cover n−k query nodes: if a view covered n−k+1 then there would exist another
view that would cover a subset of the query nodes of this view. For each node we can have
at most 3 selection edges. Hence, each of the k views has 3(n−k) selection edges. As for
the join edges, in the worst case the view will be a clique, having (n−k)(n−k−1)

2
join edges.

To this end, the k views will have |esj| = k
(

3(n− k) + (n−k)(n−k−1)
2

)
= k(n−k)(n−k+5)

2

edges leading to at most 2|esj | for each Sr state.
We define the class of states Cre that includes all the states being obtained from the

initial one by applying any possible sequence of VB, SC and JC transitions. For this class
we now have:

NSre(q, n) =
n∑
k=1

2|esj |µ(n, k)

Finally, on each state Sre ∈ Cre, we can apply a sequence of VFs to obtain new states.
In the worst case, any subset of the views in the view set Vre of Sre consists of isomorphic
views. Thus, the number of states resulting from Sre by applying VF is bound by the
number of partitions of the view set of Vre. Assuming the size of Vre is k and denoting by
Bk the Bell number (the number of partitions of a set of size k), an upper bound for the
total number of distinct states belonging to the complete class of states, denoted Cref , is:

NSref (q, n) =
n∑
k=1

2|esj |µ(n, k)Bk

We now escalate to the general case when our workload Q consists of nq queries.
Assume each query qi has ni atoms, where 1 ≤ i ≤ nq and

∑nq

k=1 ni = n. Then the total
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number of states is:

NSref (Q, n) =

nq∑
k=1

NSref (qi, ni)

Clearly, the above sum is asymptotically bound by the query with the biggest number
of atoms. Thus, the worst case is to have a single query in the workload, because this
will lead to the biggest number of atoms per query for a given number of atoms. Thus,
in the worst case we have NSref (Q, n) = NSref (q, n), where q the single query of the
workload.
Time complexity The time complexity of exhaustive search can be derived from the num-
ber of states created by each transition and the time complexity of the transition. The cost
of a SC, JC and VB is linear in the size of the largest view, which is bound by 3n, whereas
VF requires checking query equivalence, which is in O(2n) [CM77].

The complexity of exhaustive search is very high and, even if views are selected off-
line and thus time is not a concern, it brings real issues due to memory limitations. This
highlights the need for robust strategies with low memory needs, and efficient heuristics.

3.5.2 Optimizations and heuristics
We now discuss a set of search strategies with interesting properties, as well as a set

of pruning heuristics which may be used to trade completeness for search efficiency.
Depth-first search strategies (DFS) A (stratified) strategy Σ is depth-first iff the order
of Σ’s transitions satisfies the following constraint. Let S be a state reached by a path
p of the form VB*. Immediately after S is reached, Σ enumerates all states recursively
attainable from S by SC only. This process is then repeated with JC and then with VF.
The pseudocode of DFS can be obtained by replacing lines 3-4 of Algorithm 2 with the
following ones, where recApplyTrans returns all states that can be reached by a specific
transition starting from a given state:

foreach state SVB ∈ {recApplyTrans(VB, S0)} do
foreach state SSC ∈ {recApplyTrans(SC, SVB)} do

foreach state SJC ∈ {recApplyTrans(JC, SSC)} do
foreach state SVF ∈ {recApplyTrans(VF, SJC)} do
· · ·

For instance, in Figure 3.4, the following strategy Σ3 is DFS:

Σ3 = (S0
SC(c1)−−−→ S2), (S2

SC(c2)−−−→ S4), (S4
JC−→ S7),

(S7
VF−→ S8), (S0

SC(c2)−−−→ S3), (S3
JC−→ S6)

An advantage of DFS strategies is that they fully explore each obtained state more quickly,
reducing the number of states stored in CS. This results in a significant reduction of
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the maximum memory needs during the search, compared, e.g., with EXNAÏVE, which
develops a huge number of candidates before fully exploring them.
Aggressive view fusion (AVF) This technique can be included in any strategy and is
based on the fact that VF can only decrease the overall cost of a state (Section 3.3.4).
Once a new state S is obtained through some SC, JC or VB, we recursively apply on S
all possible VFs (until no more views can be fused). It can be shown that such repeated
VFs converge to a single state SVF. We then discard all intermediate states leading from
S to SVF and add only SVF to CS. Thus, AVF preserves the optimality of the search, all
the while eliminating many intermediary states whose estimated cost is guaranteed to be
higher than that of SVF. For example, assume we reach a state S containing three identical
views. We apply a VF on S fusing two of the three views and obtain the state S ′. We then
apply a VF on S ′ fusing the two remaining identical views and obtain SVF. AVF discards
S ′ and keeps only SVF to continue the search.
Greedy stratified (GSTR) This strategy starts by applying all possible VB transition se-
quences on S0. It then discards all the obtained states but Sb, and repeatedly applies on
it all possible SC. Keeping only Sb, it proceeds in the same way by applying JC and then
VF. The interest of GSTR lies in the possibility to combine it with the AVF technique,
leading to the GSTR-AVF strategy. GSTR-AVF has low memory needs due to the many
states dropped by GSTR and AVF, and moves fast towards lower-cost states due to AVF.
Although neither GSTR nor GSTR-AVF can guarantee optimality, they perform well in
practice, as our experiments show.
Stop conditions We use some stop conditions to limit the search by considering that
some states are not promising and should not be explored. Clearly, stop conditions
lead to non-exhaustive search. We have considered the following stop conditions for a
state S.

– stoptt(S): true if a view in S is the full triple table t.
– stopvar(S): true if a view in S has only variables. The idea is that we reject S since

we consider its space occupancy to be too high. In general, this condition may be
satisfied even by the initial state S0. In this case, stopvar would prevent any search.
However, such queries are of very limited interest. Therefore, stopvar can be used
in many settings to restrict the search while leaving many meaningful options.

– stoptime(S): true if the search has lasted more than a given amount of time. Observe
that our approach is guaranteed to have some recommended Sb state at any time.

Pull&push constants technique (PPC) This technique makes educated guesses on which
selection edges to cut and which to preserve. It orders all constants from the workload,
according to their number of occurrences. The more frequent the constant, the more likely
it is to appear in the selected view state, because it represents a selective condition shared
by many views. Thus, prior to any search, we cut all selection edges corresponding to
constants appearing one or very few times (“pull constants” part), since these constants
will most probably not appear in a low-cost state. If this pre-processing removes l selec-
tion edges, this diminishes the search space by a significant factor of 2l, given that the
subsequent search (regardless of its strategy) will be applied on an initial CS of just one
state (obtained from S0 by the l successive SCs). After the search has finished, however,
we may be able to “push” back some of the constants cut in the “pull” stage. This is the
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case if, for a recommended view v, all rewritings using v apply the same selection on v,
corresponding to a constant eagerly removed by the “pull”.

PPC may compromise optimality, given that the comparisons performed during the
search ignore the fact that some selections may be brought back by the post-processing.

For example, consider the following two simple queries:

q3(X1, X2):−t(X1, hasT itle,X2), t(X1, type, paint)
q4(X3):−t(X3, hasT itle, starryNight)

If we apply PPC by pulling some of the constants that appear only once in the work-
load, namely paint and night, our initial state becomes:

v3(X1, X2, X4):−t(X1, hasT itle,X2), t(X1, type,X4)
v4(X3, X5):− t(X1, hasT itle,X5)

Assume the best state of the search is obtained after applying a JC on v3 (leading to
two new views v5 and v6) and a VF between v5 and v4. The views of the state are:

v6(X1, X4):-t(X1, type,X4), v7(X6, X7):-t(X6, hasT itle,X7)

The rewritings are (projections are omitted for readability):

q3 = σX4=paint(v7 ./X6=X1 v6), q4 = σX7=night(v7)

In this case, removing the constant night was a good choice, as it enabled a VF.
However, removing paint did not help and this constant can be pushed back, creating the
view v8(X1):-t(X1, type, paint) which will be used instead of v6 in the rewriting of q3. The
resulting state with paint pushed back has a lower cost, since v8 occupies less space than
v6, and the rewriting of q3 is also more efficient (a simple scan on a smaller table).

3.6 The RDFViewS System

To assess the interest of our view selection approach in practice, we have built the
RDFViewS system [GKLM10a], standing for RDF View Selection. RDFViewS focuses
on automatically choosing the materialized views that are most appropriate for a given
dataset and query workload. All our techniques for exploring possible view configura-
tions and taking into account the implicit data brought by an RDFS, presented in Sec-
tions 3.5 and 3.4, respectively, of this Chapter, have been implemented and incorporated
in RDFViewS.

The system takes as input a workload of conjunctive SPARQL queries and possibly
an RDFS, and outputs a set of views to be materialized, along with the rewritings of the
workload queries based on this view set. It uses a relational database back-end to store the
original RDF data, as well as the materialized views. RDFViewS can be seen, in effect,
as a means to tune an RDF database based on the knowledge of the query workload, to be
used in conjunction with off-the-shelf RDBMSs. The basic choices we made with respect
to the platform and the data storage are discussed in Section 3.6.1, whereas Section 3.6.2
presents the architecture of the system.
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Figure 3.5: RDFViewS architecture.

3.6.1 Platform and Data Storage Details

RDFViewS has been fully implemented as a Java 6 application. To store our data
and views, and facilitate the evaluation of the rewritings, we needed a database back-end
of reasonable scalability. To that end, we chose PostgreSQL (version 8.4.3), both for its
reputation as a (free) efficient platform, and because it has been used in several related
works [AMMH07, NW08, NW09, SGK+08, WKB08]. Integrating our view selection
approach with another platform is easy, as soon as that platform supports the evaluation
of our select-project-join rewritings, and provided that the cost function is appropriately
customized to account for the respective evaluation engine.

As in many previous works, for efficiency, we stored the data in a dictionary-encoded
triple table, using a distinct integer for each distinct URI or literal appearing in an s, p
or o value. The encoding dictionary was stored as a separate table indexed both by the
integer dictionary code and by the encoded constant. The triple table was clustered by the
columns p and then s, to enhance the efficiency of (frequent) queries where the p values
are specified in most or all atoms. Moreover, we indexed the encoded triple table on s, p,
o, and all two- and three-column combinations.

3.6.2 System Architecture

The architecture of RDFViewS is depicted in Figure 3.5. The RDF data is initially
stored into an RDBMS as a single triple table (TT). The conjunctive SPARQL query
workload is provided as input to the Workload Processor module, through a GUI. The
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query workload is then used to create the initial state of the search (see Section 3.5.1).
Subsequently, the initial state is loaded to the States Navigator module, which in-

corporates all the search strategies and heuristics, presented in Section 3.5. Through the
GUI, the user can select the search strategy that better meets her needs. Moreover, she can
tune the weights of the cost function (Section 3.3.4), based on the importance of each cost
component (query execution time, view storage space or view maintenance cost) for the
specific application. Then, the search for the best state (view configuration) is performed,
according to the desired search strategy and cost estimation.

Once this search has finished, the View Materializer module materializes the chosen
set of views, after translating them to SQL. Then, the rewritings contained in the best
state are pushed to the Query Executor, which stores them for future use. Whenever a
user issues a query from the input query workload, the Query Executor uses the stored
rewritings to efficiently answer the query by using the already materialized views.

In case an RDFS is also given as input to the system, it is taken into account by em-
ploying one of the approaches discussed in Section 3.4: in database saturation the implicit
triples are added to the database, in pre-reasoning the queries are reformulated prior to the
search, whereas in post-reformulation the views of the chosen state are reformulated.

3.7 Experimental Evaluation
To experimentally evaluate our approach, we used our RDFViewS system, which was

presented in the previous Section. Below we give some more details about our experi-
mental setting.
Data and queries As in previous works [AMMH07, NW08, WKB08], we used the Bar-
ton RDF dataset and RDFS [www]. The initial dataset consists of about 50 million triples.
After some cleaning (removing formatting errors, eliminating duplicates etc.), we kept
about 35 million distinct triples.

The Barton query workload [www] contains few queries with no commonality among
them. To better test our approach, we built two query generators, producing queries
of controllable size, shape, and commonality. The first one simply outputs the desired
queries, and has maximum flexibility. The second takes as input not only the workload
characteristics, but also a dataset (RDF + RDFS) and generates queries having non-empty
results on the given dataset. We used it to obtain interesting workloads on the Barton
dataset.
Weights of cost components For V SO andREC (Section 3.3.4), we used cs=1 and cr=1.
For each workload, we set the value of cm taking into account the database size and the
average number of atoms in each query, so that for the initial state S0, cm ·VMC is within
at most two orders of magnitude from the other two cost components, namely cs · V SO
and cr ·REC. In most cases, this lead to cm=0.5. Finally, we set f=2 in VMC, since this
value gave the most appropriate range to VMC throughout the search.
Hardware and memory The PostgreSQL server ran on a separate 2.13 GHz Intel Xeon
machine with 8GB RAM. We ran the search algorithms on two classes of hardware: a
desktop 8-core Intel Xeon 2.13 GHz machine with 16 GB RAM (the JVM was given 4



3.7. EXPERIMENTAL EVALUATION 49

GB), and several cluster machines, each of which was a 4-core Intel Xeon 2.33 GHz with
4 GB RAM (the JVM was given 3 GB). Each experiment ran on one machine. While
there are opportunities for parallelization (see Section 3.9), we did not exploit them in
this work. All machines were running Mandriva Linux 2.6.31.

In the sequel, we briefly present the search strategies used in the relational ap-
proach [TLS01] in Section 3.7.1, and compare with them in Section 3.7.2. In Section 3.7.3
we highlight the impact of our heuristics in the search, and give results on the achieved
cost reductions for large workloads in Section 3.7.4. Section 3.7.5 assesses the perfor-
mance of our reasoning approaches, then Section 3.7.6 reports on the impact of our view
selection approach on query evaluation, and, finally, Section 3.7.7 provides more details
on the used cost components.

3.7.1 Competitor search strategies

We have implemented the three strategies, Pruning, Greedy and Heuristic, introduced
in the relational view selection work which inspired our states and transitions [TLS01].
All these strategies follow a divide-and-conquer approach. They start by breaking down
the initial state into a set of one-query states, and apply all possible edge removals, then
all possible view breaks on each such state. Then, they seek to put back together states
corresponding to the complete workload by adding up and, when appropriate, fusing,
one state for each workload query. Since any combination of partial states leads to a valid
state in [TLS01], the number of states thus created explodes. To avoid it, Pruning discards
partial states outgrowing the given space or cost budget, whereas Greedy develops very
few states: it only keeps the best combined state, say, for the workload queries {q1, q2},
even though this may prevent finding the best combined state for {q1, q2, q3}. Finally,
Heuristic resembles Pruning, except that after having built all one-query states, it only
keeps: the minimal-cost state for each query, and any states which offer some view fusing
opportunity. Since our algorithms do not use a cost or space budget, we did not give one
to the [TLS01] strategies either. This does not prevent their pruning which is mostly based
on comparing two states and discarding the less interesting one.

Search strategy acronyms In the sequel, for convenience, we will refer to the [TLS01]
strategies simply as Pruning, Greedy and Heuristic. Among the strategies we propose (see
Section 3.5.2), DFS is the (stratified) depth-first search, while GSTR is the greedy strategy.
The suffixes -AVF and -PPC after a strategy name denote aggressive view fusion and
pull&push constants, respectively, applied in conjunction with that strategy. The suffix
-STV denotes that the stopvar stop condition is used, while -PPC-k, where k is an integer,
denotes the pull&push constants optimization that removes all selection predicates on
constants that appear less than k times in the workload.
Relative cost reduction To assess search effectiveness, we define the relative cost reduc-
tion (rcr) of a given strategy Σ and workload Q, as the ratio (cε(S0)− cε(Sb))/cε(S0) at a
given moment, that is, the fraction of the cost of the initial state S0, avoided by the current
best state found by Σ by that moment during the search.
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Figure 3.6: Strategy comparison on small workloads.

3.7.2 Comparison with existing strategies

We compare our strategies with those of [TLS01] for two small workloads of 5 queries
each. While the queries they tested involve on average 4 relations, one needs more RDF
atoms than relations to express the same logical query, since data that would fit in a wide
relational tuple is split over many RDF triples. Thus, queries in the first and second
workload have 5 and 10 atoms each, respectively.

Figure 3.6 shows the rcr of the three strategies of [TLS01] and our strategies DFS-
AVF-STV and GSTR-AVF-STV. The reasons for using the specific heuristics on our strate-
gies are explained in Section 3.7.3. The Figure considers workloads of star and chain
queries, which are typical in RDF. In particular, star queries translate to query graphs
(Definition 3.3.1) that are cliques (each atom is connected to all others), allowing for
many VBs and JCs and, therefore, have a search space of increased size, whereas chain
queries can be considered an average case regarding the difficulty of the search. The
workloads were generated both with high and low commonality across queries and we
used the stoptime stop condition, set to 30 minutes. While this may seem long, recall
that the complexity of search is high (Section 3.5.1); we consider this duration accept-
able as view selection is an off-line process. The overhead is worth it especially for large
workloads, and/or queries asked repeatedly.

As can be seen in Figure 3.6, for the smaller workload, all strategies ran well, with
DFS-AVF-STV and GSTR-AVF-STV being the best. The runs did not finish, i.e., the
strategies might have found better solutions by searching longer. Greedy managed to
reduce the cost significantly for chains but failed to find any state better than the initial
one for stars queries. For the larger workload, the [TLS01] strategies failed to produce any
solution, as they outgrow the available memory building partial states (for 1, 2, 3 queries
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etc.) before building any state covering all 5 queries. In contrast, DFS-AVF-STV and
GSTR-AVF-STV keep running and achieve interesting cost reductions. The same trend
was observed on workloads with cycle- and random graph-shaped queries (we generated
both sparse and dense graphs), at high and low commonality.

Thus, from now on, and in particular for large workloads, we focus only on our strate-
gies, since those of [TLS01] systematically outgrow the memory before reaching a full
candidate view set.

3.7.3 Impact of heuristics and optimizations

We now study the impact of the AVF, STV and PPC techniques on the search space ex-
plored by our algorithms. Tiny workloads of 2 queries of 4 atoms each, suffice to illustrate
this. We used the DFS and GSTR strategies with several combinations of heuristics and
compared them with the 3 algorithms of [TLS01]. Figure 3.7 shows numbers collected
with the DFS strategies on star-shaped, chain-shaped and mixed query workloads. Fig-
ures 3.8 and 3.9 show results obtained with the same workloads running the GSTR strat-
egy and the algorithms of [TLS01] respectively. The created states are those reached by
the search. States previously attained through a different path are recognized by searching
for their presence in the ES or CS sets (Section 3.5), considered duplicates and ignored.
The STV heuristic leads to discarding some states. Finally, explored states are those from
which all outgoing transitions respecting the given strategy have been explored.

A first remark based on Figure 3.7 is that the number of duplicate states may be quite
important. Duplicates occur because even when using a stratified strategy, a state may be
reached by more than one path. For instance, assume for some given views v1, v2 that an

SC modifies v1 into v′1 (denoted v1
SC(c1)−−−→ v′1) and similarly v2

SC(c2)−−−→ v′2. From the state
(v1, v2), our algorithms reach the state (v′1, v

′
2) twice: once through (v1, v

′
2) and a second

time through (v′1, v2). Our algorithm identifies such states as soon as they are created, in
order not to repeat their exploration.

AVF alone has marginal effect on the number of states explored, but STV prunes the
space very efficiently regardless of the workload type. As for PPC-1, its impact is not
always beneficial w.r.t. the search space size. Although it dramatically cuts down the total
search space size of a star-shaped query workload, using PPC on chain-shaped queries
does not significantly reduce the number of duplicates reached. Chains generally contain
less constants than stars, thus attempting to reduce the space size simply by removing
constants has a mild effect. In this case, PPC-1 reduced the total search space size only
by 21%.

In Figure 3.8, the GSTR strategy is used in conjunction with AVF, since we observed
through our experiments that AVF when used with GSTR significantly improved the cost
of the best returned state (not waiting until the last stage of GSTR to perform VFs, in-
creases the chances to find a better state). As can be seen from the Figure, GSTR overall
generates much less states than DFS. The STV heuristic did not have an impact in these
cases, because it seems that the states discarded from this heuristic were not among those
states that GSTR was going to continue the search upon. As for PPC-1, it reduced the
number of explored states for stars, but had no significant impact on the chain-query
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Figure 3.7: Impact of heuristics on the DFS strategy for star, chain and mixed query
workloads.

workload.
Let us now examine the search space size for the three strategies of [TLS01] (Fig-

ure 3.9). Due to the differences in the nature of the searches, we cannot directly compare
the number of states created by those strategies with the ones created by ours. In particu-
lar, for the strategies of [TLS01], we measure the one-query states and the final states. As
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Figure 3.8: Impact of heuristics on the GSTR strategy for star, chain and mixed query
workloads.

explained in Section 3.7.1, all three strategies first create one-query states (states for each
of the queries of the workload) and then combine them to reach final states (which contain
rewritings for all the queries). As expected, all three strategies generate the same num-
ber of one-query states, as in this stage no pruning has been performed yet. The Greedy
strategy has only one final state, as it only picks each time the best state (resulting from a
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Figure 3.9: Impact of heuristics on the Greedy, Heuristic and Pruning strategies for star,
chain and mixed query workloads.

combination of one-query states) to continue the search. Between Pruning and Heuristic,
we observe that the additional heuristic criterion that the latter uses, indeed contributes in
generating less final states.

Optimality of search strategies We also studied the evolution of the best cost with the
search time both for DFS and GSTR with various combinations of heuristics. Figures 3.10
and 3.11 show the results of this experiment. We recall that DFS and DFS-AVF are optimal
(i.e., they find the globally optimal state).

The experiment illustrates, first, that GSTR explores much less states and therefore is
much faster (3 orders of magnitude in this example) than DFS. On this example which was



3.7. EXPERIMENTAL EVALUATION 55

0E+00

4E+07

8E+07

1E+08

2E+08

2E+08

00.001 00.010 00.100 01.000 10.000 100.0001000.000

C
o
st

Time (ms)

DFS
DFS-AVF
DFS-STV
DFS-AVF-STV
DFS-PPC1
DFS-AVF-PPC1
DFS-AVF-STV-PPC1

0E+00

4E+07

8E+07

1E+08

2E+08

2E+08

001 010 100 1000 10000

C
o
st

Time (ms)

GSTR
GSTR-STV
GSTR-AVF
GSTR-PPC1
GSTR-AVF-STV
GSTR-AVF-PPC1
GSTR-AVF-STV-PPC1

1 10 100 1K 10K 100K 1M

1 10 1K 10K

Figure 3.10: Cost reduction over time with an exhaustive DFS strategy and various com-
binations of heuristics.
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Figure 3.11: Cost reduction over time with GSTR strategy and various combinations of
heuristics.

purposely small, all DFS variants converged to the same globally optimal state, although
this cannot be guaranteed in general. Observe, however, that the final state reached by
GSTR versions is not the optimal one, reached by plain DFS. In particular, on this example
the ratio between the cost of the optimal state (found by DFS) and that of the best state
obtained by GSTR ranges from 0.28 to 0.99, depending on the heuristics used. Again,
this ratio holds for this specific example and depends on the given workload.

Among the DFS variants, we notice that applying AVF has a consistently good impact,
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Figure 3.12: Relative cost reduction for large workloads.

i.e., the cost of the best state found decreases more quickly when AVF is enabled. Hence,
by using AVF, we can stop the search earlier and get a better result than the plain DFS

would give at the same point. The combination of all heuristics yielded the best results in
this example, although in general, PPC and STV may compromise the quality of the best
state in exchange for shortening the search.

Among the GSTR variants, an interesting remark is that the PPC heuristic leads to
attaining a better final state than if PPC is not used. This can be explained as follows.
Applying PPC at the very beginning of the search leads to a state from which the heuris-
tic exploration of GSTR turned out to find a better final state. However, this cannot be
guaranteed in general.

In the sequel, given the above results, we will systematically use the combination
AVF-STV both for DFS and GSTR, since these heuristics make the search significantly
faster in most cases, without returning a state with a significantly bigger cost.

3.7.4 Cost reduction on large workloads

We study the scalability of our DFS and GSTR algorithms for large query workloads.
To this purpose, we generated workloads of 5, 10, 20, 50, 100 and 200 queries; each query
has 10 atoms, i.e., the views of the initial states contain 10 atoms on average. We consider
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Workload Q |Q| #a(Q) #c(Q) |Qr| #a(Qr) #c(Qr)
Q1 5 33 35 20 143 157
Q2 10 76 77 231 1436 1651

Table 3.3: Workloads used for reformulation experiments.

workloads consisting of: star queries only; chain queries only; random-graph shaped
queries (with two variants, dense graph and sparse graph); mixed, combining queries
of all previous shapes. For each kind of workload, we generate three low- and three
high-commonality variants. On each of these 30 workloads, we ran DFS-AVF-STV and
GSTR-AVF-STV. We used the stoptime stop condition set to 3 hours. These experiments
ran in the cluster.

Figure 3.12 plots for each of the 10 workload types, the rcr averaged over the 3
workloads of that type, at the end of the search. A first remark is that DFS’s relative
cost reduction is very impressive overall, and in many cases around 0.99. Second, note
that the rcr of GSTR-AVF-STV is generally smaller than that of DFS-AVF-STV, because
GSTR explores significantly fewer states than DFS and might miss interesting opportu-
nities. Third, we can distinguish “easier” workloads, such as chains and random-sparse
graphs, resulting in query graphs with fewer edges and, thus, fewer transitions. For such
workloads, the rcr is higher since the search space is smaller (and bigger part of it was
explored). Stars and random-dense graphs are difficult cases, as they lead to many edges,
thus smaller rcrs. Finally, the rcrs obtained for high-commonality workloads are gener-
ally higher than for low-commonality, e.g., for random-dense and mixed workloads. This
confirms the intuition that more factorization opportunities lead to higher gains.

We conclude that DFS-AVF-STV scales well up to 200 queries, depending on the
workload structural complexity, and can achieve very significant reductions in the state
cost.

3.7.5 View selection and implicit triples

We now study the impact of implicit triples on view selection performance. Starting
from a non-saturated database D and workload Q, three scenarios are possible: (i) satu-
rated database Ds, search on Q, using the statistics of Ds; (ii) original database D, search
on the pre-reformulated workload Qr, using the statistics of D; (iii) original database D,
search on Q, using the statistics of the saturated database Ds (recall from Section 3.4.3
that we gather them without actually saturating the database). Of course, we consider
the same RDF entailment rules for the three scenarios, i.e., those brought by an RDFS.
Saturation and post-reformulation coincide for any search algorithm, since they lead to
the same input statistics and workload. Hence, we only study the search for pre- and
post-reformulation.

This experiment uses the Barton dataset as well. The schema consists of 39 classes,
61 properties, 24 rdfs:subClassOf statements, 2 rdfs:subPropertyOf statements, 39
rdfs:domain statements and 41 rdfs:range statements. We generated two satisfiable work-
loads Q1 and Q2, whose properties and those of their reformulated versions Qr

1 and Qr
2



58 CHAPTER 3. VIEW SELECTION IN SEMANTIC WEB DATABASES

Q2

0E+00

1E+11

2E+11

3E+11

4E+11

0.01 1 100 10000

pre-reform. post-reform.

Time (sec)

Q1

0E+00
3E+09
6E+09
9E+09
1E+10
2E+10

0.01 1 100 10000

C
os

t

pre-reform post-reform.

Time (sec)

Figure 3.13: Search for view sets using reformulation.

are given in Table 3.3. |Q| denotes the number of queries in Q, #a(Q) the number of
atoms, and #c(Q) the number of constants. Q1 is a subset of Q2.

Figure 3.13 shows the evolution of the best cost found by DFS-AVF-STV for both
workloads (post-reformulation) and their reformulated variants (pre-reformulation). The
search was cut after 3 hours. We see that the initial state for reformulated workloads
has higher cost than the original workloads. Further, the best state cost decreases rapidly
with post-reformulation, because the workload is much smaller and the search space is
traversed faster. In contrast, the important workload sizes slow down the cost decrease
for pre-reformulation. At the end of the search, pre-reformulation’s best cost found is
higher than that of post-reformulation, by a factor of 2.7 for Q1, and 22 for Q2. This
confirms our expectation that the advantages of post-reformulation are most visible for
larger workloads (with larger Qr). Moreover, the best cost is reached faster in post-
reformulation.

In general, the number of implicit triples increases with the size of the database D
and of the Schema S. Let |D| be the number of triples in the database and |S| the num-
ber of statements in the RDFS. Given the statements allowed in an RDFS (Table 3.1), in
the worst case each triple can yield two triples by a first application of the rules, result-
ing in 2 · |D| implicit triples. This is the case when each of the triples uses a property
whose domain and range is the same. In fact, if triple t = (u1, p, u2) appears in D,
and (p, rdfs:domain, c) and (p, rdfs:range, c) appear in S, t leads to two implicit triples:
t′ = (u1, rdf:type, c) and t′′ = (u2, rdf:type, c). In turn, each of the t′ and t′′ can yield
new triples through subclass statements. In the worst case, there are 2 · |S| distinct classes
in S (two classes participate in each statement, and the bound of 2 · |S| classes is reached
when each class appears only in a single statement in S). Thus, it follows that the size of
the saturation is in O(|D| · |S|).

Similarly, |Qr| may be exponentially larger than |Q| (see Theorem 3.4.1). In a
reformulation-based setting, view selection based on post-reformulation is clearly bet-
ter than based on pre-reformulation, since the initial state is better and search is faster,
especially for large workloads. Among saturation and post-reformulation, the best choice
strongly depends on the context (distribution, rights to update the database, frequency
and types of updates, etc.) as explained in Section 3.4.2. The views recommended in a
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Figure 3.14: Execution times for queries with RDFS.

saturation and a post-reformulation context are the same.

Cost of statistics collection In order to assess the additional cost brought by the statistics
collection in each of the three reasoning approaches, we measured the corresponding time
needed to gather the statistics for a workload of 10 queries, having a total of 24 atoms on
the Barton database. Overall, we found these costs to be acceptable:

– gathering the (workload-relevant) statistics on the saturated database took 59 sec-
onds, while saturating the Barton dataset took 37 minutes;

– gathering the statistics for pre-reasoning took 147 seconds;
– post-reasoning requires estimating the size of a set of atoms: those appearing in the

workload, as well as any relaxation thereof (the size of these atoms is counted in all
cases, as explained in Section 3.3.4). Recall though that in the post-reformulation
approach, the size of this set of atoms must be counted as if the database was satu-
rated, without actually saturating it, as explained in Section 3.4.3. Observe that the
most relaxed atom t0, defined by (?X, ?Y, ?Z) (the size of the saturated database)
needs to be counted for any workload, because it is a relaxation of any possible
query atom. In our workload, computing the size of this “most general” term took
849 seconds, which is quite high, but observe that this only needs to be gathered
once for the whole database, and can be subsequently cached and re-used for vari-
ous workloads. Computing the size of all other relaxed atoms in our example took
391 seconds, which is comparable with the 147 seconds of pre-reformulation. Thus,
the overhead of the statistics collection in the case of reformulation is not signifi-
cant, given the benefit that this approach brings compared to pre-reformulation with
respect to the time needed for the actual search.

3.7.6 View-based query evaluation
We now study the benefits that our recommended views actually bring to query

evaluation (recall though that our view selection does not optimize for query evalua-
tion only, but for a combination including storage and maintenance costs). For the
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DFS GSTR TT DFSr GSTRr TT s

Q1
3 596 600 732 154 623 19282

Q2
3 559 586 271 76 587 3317

Q3
3 1798 3277 271 76 3354 95755

Q4
3 1014 1037 23479 1537 1068 62688

Q5
3 75 77 1772 146 71 11490

Table 3.4: Execution times (msec) for high commonality workload of 5 queries.

DFS GSTR TT DFSr GSTRr TT s

Q1
4 90 39 1635 75 121 460

Q2
4 48 43 4525 31 64 17930

Q3
4 3014 9210 66 3101 17034 54989

Q4
4 11 13 367 39 59 238

Q5
4 43 257 1451 70 158 1192

Table 3.5: Execution times (msec) for low commonality workload of 5 queries.

workload Q1 described in Section 3.7.5, we materialized the views recommended by
pre- and post-reformulation, and ran the 5 queries Q1

1 to Q5
1 of Q1 using (i) the views,

(ii) the (dictionary-encoded, heavily indexed) saturated triple table in PostgreSQL, (iii) a
restricted version of (ii) only with the triples needed for answering Q1, (iv) RDF-
3X [NW10b] (loading the saturated database in it), and (v) the materialization of the query
workload (initial state). RDF-3X times were put as a reference; by using PostgreSQL
(even with views) we did not expect to get better times than those of a state-of-the-art
RDF-specific platform.

The views were materialized in 81 seconds for post-reformulation (the total view size
was 433 MB or 15% of the database size), and 103 seconds for pre-reformulation (601
MB or 21% of the database size). Figure 3.14 shows that using our views, queries are
evaluated more than an order of magnitude faster than on the triple table, even when
using the restricted triple table (iii). Both pre- and post-reformulation performed in the
range of RDF-3X. This is a promising result, since our approach can be used on top of
RDF-3X and achieve an even bigger gain. Finally, as expected, materializing the queries
gives the best results (simply scanning the views is sufficient).

Tables 3.4 and 3.5 show the detailed query evaluation times for 2 additional work-
loads, Q3 and Q4, of high and low commonality respectively, consisting of 5 queries
each. The first three columns do not take into account any RDF Schema, while in the
last three the Barton RDF Schema was used. Columns DFS and GSTR report the times
obtained using the views that were recommended by the respective strategies (note that,
as usual, the AVF and STV heuristics were enabled). Column TT refers to the evaluation
of the workloads directly onto the triple table. Likewise, columns DFSr and GSTRr use
the views recommended by the two corresponding strategies through post-reformulation,
while for TT s the saturated version of the triple table was used.

When the view sets recommended by our search strategies are used in answering the
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Figure 3.15: Cost reduction with varying cost components.

queries, the evaluation times in most cases are better than when using the triple table. The
gain in time though is much more significant when the RDFS is present. These examples
also show that view sets recommended by DFS are generally more efficient than those
found by GSTR whether implicit triples are taken into account or not.

Overall, pre-computed views are likely to speed up query evaluation in any platform,
simply by avoiding computations at runtime. Moreover, our framework (i) avoids the
overhead of query rewriting at run-time, as query rewritings are also pre-computed, and
(ii) could easily translate our rewritings directly to any RDF platform’s logical plans,
exploiting its physical optimization capabilities.
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Figure 3.16: Average number of atoms per view in selected states.

3.7.7 Influence of the cost function components
To examine how each component of the cost function (see Section 3.3.4) affects the

search, we ran several searches using DFS-AVF-STV with multiple combinations of the
cost components. Since most of the cost reduction is achieved within the first minutes of
search, we set the timeout at 5 minutes. Each workload had an average of 5 atoms per
query, while workload sizes varied from 5 to 200 queries. Figure 3.15 shows the cost of
the best state over time for typical workloads of 20 chain and mixed queries. Our online
experiment page [www11] hosts a complete set of results with varying weights for the
cost components. Overall, we observed that a reduction of at least 1 order of magnitude
is achieved within 5 minutes regardless of the input workload size or type.

We now study the impact of cm (the weight of the view maintenance component) on
the characteristics of the proposed views and, in particular, on the average number of
atoms in the views. We set cs = 1 and cr = 1 and varied cm from 5 · 104 to 0.5. The
results are depicted in Figure 3.16, showing that relaxing cm has a direct impact on the
number of atoms in the views. As expected, a strong VMC weight tends to promote
smaller views of approximately 1.8 atoms on average (since the smaller the number of
atoms, the smaller the maintenance cost).

3.7.8 Experiments conclusion
Our experiments have shown that the GSTR and DFS strategies scale well on up to

200 queries and achieve impressive cost reduction factors in many cases close to 99%.
The strategies of [TLS01] are also effective for small workloads, but for larger ones they
outgrow the memory before producing a solution. The AVF and STV heuristics are effi-
cient and effective, i.e., they reduce the search space while preserving view set quality.
Post-reformulation largely outperforms pre-reformulation in terms of speed and effective-
ness of the proposed candidate view set. Finally, our recommended views reduce query
evaluation times by several orders of magnitude. A digest of our experimental results can
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found at [www11].
A tighter integration of the view selection tool with the internals of the data manage-

ment platform, and/or using a dedicated RDF system, is likely to increase performance
gains even more.

3.8 Related works
Our work is among the first to explore materialized view selection in RDF databases.

The closest works related to ours are [CL10] and [DCDK11]. RDFMatView [CL10]
recommends RDF indices to materialize for a given workload, while in [DCDK11] a set
of path expressions appearing in the given workload is selected to be materialized, both
aiming at improving the performance of query evaluation. Unlike our approach, none of
these works aims at rewriting the queries completely using the materialized indices or
paths and, thus, cannot be used in scenarios where the client needs to process her queries
even without access to the database. Moreover, they do not consider the implicit triples
that are inherent to RDF.

Many research works have addressed the efficient processing of RDF queries and up-
dates, e.g., [AMMH07, SGK+08, WKB08, NW08, NW09, NW10b, UPS07], proposing
various storage and indexing models. A detailed description of the existing RDF data
management platforms is given in Chapter 2 of this thesis (Section 2.2.3). These tech-
niques have been shown to result in good RDF query and update performance. We view
our approach as complementary to these works, since we seek to identify materialized
views to store on top (independently) of the base store and indexes. To adapt our ap-
proach to a specific RDF data management platform, one only needs (i) an execution
framework capable of evaluating our simple select-project-join rewritings, and (ii) possi-
bly tailoring the cost function to the particularities of the platform. Our approach improves
performance by exploiting pre-computed results and thus avoiding computations at query
evaluation time, gains likely to extend to any context.

Techniques to estimate the selectivity of RDF query patterns were proposed in [MASS08,
SSB+08, NM11]. We compute the simple cardinalities advocated in RDF-3X [NW09],
which are also shown to lead to satisfactory join size estimation. Other cardinality esti-
mation frameworks could easily be plugged in our approach.

Materialized view selection has been intensely studied in relational databases [CHS02]
and data warehouses [JLVV01]. We used [TLS01] as a starting point for our work, as it is
one of the prevalent works in the area and the closest to our problem definition and query
language. However, in [TLS01] the restriction that no relation may appear twice in a
workload query is imposed, under which view equivalence can be tested in PTIME. This
simplification is incompatible with RDF queries, which repeatedly use the triple table. In
our context, determining view equivalence (needed for VF and for the search strategies)
is NP-complete [CM77]. This, along with the typically bigger size of RDF queries com-
pared to the relational ones (since only one table with three attributes is used), increase the
complexity of the problem even more. Hence, the strategies presented in [TLS01] are not
effective in our context. We innovate over [TLS01] by proposing new search strategies
and heuristics, which, as demonstrated in Section 3.7, do not suffer from memory limita-



64 CHAPTER 3. VIEW SELECTION IN SEMANTIC WEB DATABASES

tions and lead to the selection of efficient views, even if we limit the time of the search.
The set of transitions used in [TLS01] comprised: edge removal (ER′), attribute removal
(AR′), view break (VB′), view merging (VM′), and attribute transfer (AT′). We modified
them for our context as follows. First, AR′ and AT′ do not apply in our setting due to
the differences between the SQL-like language they use and our Datalog formalism. In
particular, AR′ considers that a given attribute (variable in our setting) can appear more
than once in the query head, while AT′ assumes that constants may appear in the query
head. Neither is supported in our Datalog formalism (we could extend it to include them,
but this would not enlarge the set of candidate view sets). Second, in [TLS01], join edges
are removed by ER′ (which may introduce a Cartesian product) but only VB′ can split a
view in two smaller ones. We allow JC, which removes join edges, to also split a view in
two if its graph has become disconnected. Finally, the transition VM′ of [TLS01] fuses
views with inequality predicates, which are not needed in our RDF context.

More details about existing view selection approaches are provided in Chapter 2. In
the same Chapter, the related problems of multi-query optimization (which identifies com-
mon query subexpressions) and view-based query rewriting (in which views are the input
and not the output to the problem) are also discussed.

Query reformulation (also known as unfolding) is directly related to query answer-
ing under constraints interpreted in an open-world assumption (e.g., [Ros11]), i.e., when
constraints are used as deductive rules. In particular, our query reformulation algorithm
builds on those in the literature considering the so-called Description Logic (DL) frag-
ment of RDF [AGR07, CGL+07], i.e., description logic constraints. This fragment corre-
sponds to RDF databases without blank nodes that are made of an RDFS, called a Tbox,
and a dataset made of assertions for classes and properties in the RDFS, called an Abox,
i.e., well-formed triples of the form (s, rdf:type, c) or (s, p,o), where c is a class and p
a property of the RDFS. Lastly, the RDF entailment rules considered are only those ded-
icated to an RDFS (see Section 3.4.1). Reformulation algorithms for the DL fragment of
RDF actually reformulate queries from a strictly less expressive language than our RDF
queries. They only support atoms in which the class or the property is specified i.e., they
do not support atoms like t(s, rdf:type, X) or t(s, X,o) with X a variable, stating re-
spectively that s is an instance of a class or that s is somehow related to o. To overcome
this, our reformulation algorithm extends the state of the art to our RDF queries, i.e., the
BGP of SPARQL.

3.9 Conclusion and future work
We considered the setting of a Semantic Web database, including both explicit

data encoded in RDF triples, and implicit data, derived from the RDF entailment
rules [www04a]. Implicit data is important since correctly evaluating a query against
an RDF database also requires taking it into account. In this context, we have addressed
the problem of efficiently recommending a set of views to materialize, minimizing a com-
bination of query evaluation, view storage and view maintenance costs. Starting from
an existing relational approach, we have proposed new search algorithms and shown that
they scale to large query workloads, for which previous search algorithms fail. Notice
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that our search algorithms can be applied not only in the context of RDF data, but also in
the relational setting.

In the presence of an RDF Schema, our view selection approach can be used both with
a saturated RDF database (where all implicit triples are added explicitly to the data), and
with a non-saturated one (when queries need to be reformulated to reflect implicit triples).
We have proposed a new algorithm for reformulating queries based on an RDF Schema,
as well as a novel post-reformulation method for taking into account implicit triples in a
query reformulation context. Post-reformulation can be much more efficient than naïve
pre-reformulation, due to the high complexity of view search in the number of queries.

As future work, we consider parallelizing our view search algorithms by identifying
workload queries that do not have many commonalities and running the search in parallel
for each group. We also consider extending our query and view language, as well as
adapting our approach to dynamic query workloads.





Chapter 4

Efficient XQuery Rewriting using
Multiple Views

In this Chapter, we consider the problem of rewriting XQuery queries using multiple
materialized XQuery views. The XQuery dialect we use to express views and queries
corresponds to tree patterns (returning data from several nodes, at different granularities,
ranging from node identifiers to full XML subtrees) with value joins. We provide the first
sound and complete query rewriting algorithm for this problem. Our algorithm only finds
minimal rewritings, that is, those in which no view is redundant. Our work extends the
state of the art by considering more flexible views than the XPath 1.0 dialects previously
considered, and more powerful rewritings.

The algorithm presented in this Chapter is a significantly expanded and reworked version
of [MKVZ11]. We detail the novel content of this Chapter with respect to that publication
in the following Section.

4.1 Motivation and outline
Query rewriting based on materialized views is a well-known performance enhance-

ment technique in databases. While it was mostly used in relational databases [LRO96,
PL00], query rewriting has recently received attention also in the context of XML
databases, e.g., [ABMP07, BOB+04, CDO08, TYÖ+08, XO05].

In this Chapter, we study the problem of rewriting queries from an expressive XQuery
dialect, using multiple views from the same dialect. As in [ABMP07, BOB+04, CC10,
CDO08, ODPC06, PZIÖ06, TYÖ+08], we consider equivalent rewritings, which com-
pute the same results as the original query, but rely exclusively on the materialized views
(without accessing the original XML documents). In this context, given a set of views and
a query, the task of evaluating the query can be split into three successive steps: (i) filter
the view set to eliminate (as much as possible) those views which cannot be part of an
equivalent query rewriting; (ii) find one or several rewritings of the query; (iii) through a
process of logical and physical optimization, pick the rewriting which looks most promis-
ing, enumerate physical plans which may compute this rewriting, pick the best one and

67
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evaluate it.
Task (ii) above, i.e., query rewriting, has generally high computational complexity

even for simple view and query languages. This is why step (i) is important: any reduc-
tion in the number of views to use during rewriting is likely to significantly impact the time
and memory needs of the rewriting. In the literature, view filtering is typically performed
by testing some form of embedding from each view into the query [BOB+04, MS05].
More recently, [TYÖ+08] has proposed a highly efficient view filtering method, when
the query and the views are expressed in XPath{/,//,∗,[ ]}. The filtering method is shown
to perform well in practice, however, when it comes to step (ii), to avoid the high com-
plexity of embedding tests in the presence of ∗ [MS04], the authors adopt some heuristics
which in some cases make their proposed rewriting algorithm incomplete. Restricted to
XPath{/,//,[ ]}, the approach in [TYÖ+08] is complete and very efficient. Optimizing and
executing a rewriting (task (iii)) is a problem in itself, whose solution needs to take into
account parameters such as the available storage structure and access methods, including
possible indices on the materialized views, available physical operators, data distribution
etc. Parameters characterizing a solution to this problem may be a cost model or an op-
timization strategy. Some recent works [CC10, PZIÖ06] focus on task (iii), providing
efficient physical operators for view joins.

The focus in this work is on the core task (ii) above, that is: given a query and a set
of views (which we assume already filtered), find all the possible equivalent rewritings of
the query based on the views. Three main dimensions set our work apart from previous
related works [BOB+04, CC10, CDO08, ODPC06, PZIÖ06, TYÖ+08].

First, we are only interested in minimal rewritings, i.e., those from which no view can
be removed while still preserving the equivalence between the rewriting and the original
query. We focus on minimal rewritings since regardless of the particular rewriting eval-
uation engine, a non-minimal rewriting will always entail more processing than a corre-
sponding minimal one. Indeed, as the experiments we presented in [MKVZ11] show, the
processing time difference between executing minimal and non-minimal rewritings is of-
ten very significant. To develop minimal rewritings only, we introduce a novel bottom-up
rewriting approach, which builds partial rewritings by combining at every step, a smaller
rewriting with an extra view. The combination either produces a rewriting over a bigger
view set, or fails if it is non-minimal, i.e., if the new view was redundant with respect to
the smaller rewriting. Thus, rewriting minimality is enforced and preserved throughout
the process.

Second, we consider a rich dialect of XQuery, where a single query (respectively,
view) can return (respectively, store) information from several nodes, and including value
joins. In contrast, views in [BOB+04, CDO08, TYÖ+08] have a single return node, and
each view must store: the subtree rooted at its return node, the node identifier (or ID, in
short), and (in [BOB+04]) the full label path to the node and other information. In our
work, one can specify at various granularity levels what a view stores from each node,
which again leads to more flexibility. Views and queries in [ODPC06] support group-by
but not node IDs, which removes some rewriting opportunities while creating new ones.
The focus in [CC10] and [PZIÖ06] is on task (iii), providing efficient physical operators
in the particular case where views store IDs for all view nodes.
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Finally, our rewritings are expressed in a generic logical XML algebra, compatible
with many well-established XQuery processing platforms (see, e.g., [GJÖY09]). If the
views are materialized as XML documents, our rewritings can directly be translated to
XQuery statements, to be evaluated over the views by an off-the-shelf XQuery engine.

The contributions of this Chapter can be listed as follows.

1. We identify a joined tree pattern language corresponding to a rich, meaningful sub-
set of XQuery. This language goes beyond the XPath 1.0 dialects considered in
previous rewriting works [BOB+04, CDO08, TYÖ+08, XO05] in three important
ways: (i) a single tree pattern may return data from several different nodes (thus,
one tree pattern may return the year and the title of a publication), (ii) our language
allows to distinguish between the identifier of a node, its text value, and its serial-
ized image, in the spirit of the W3C XPath and XQuery data model, and (iii) we
allow value joins in the language. Extensions (i) and (ii) have been previously
made in the richer XAM tree pattern language [ABM05]. In the present work, we
omit some XAM features (notably, nested and optional edges, as well as binding
patterns) while adding value joins which are useful in many practical applications.
Observe that some previous works on tree patterns, e.g., [MS04], also allowed ∗-
labeled nodes, leading to the XPath{/,//,[ ]} dialect. The extension of our algorithm
to ∗ nodes is left for future work.
An important original contribution of the present Chapter is to define containment
and minimality for the rich pattern considered in this work; we provide practical
algorithms for deciding containment, and for minimizing such tree patterns. These
questions have not been addressed in previous works.

2. We study the problem of rewriting queries expressed by means of such joined tree
patterns, using multiple views expressed in the same formalism. This amounts
to rewriting XQuery queries corresponding to this dialect, using similar XQuery
views. We consider equivalent rewritings only, restrict our search to minimal rewrit-
ings, and provide a complete algorithm for solving this rewriting problem. To make
search as efficient as possible, we identify left-deep query tree-organized rewritings
(LDQTs, in short), a tight subset of all the possible minimal rewritings, and focus
only on finding LDQTs. We show that any other minimal equivalent rewriting can
be obtained from a corresponding LDQT by the optimizer.

3. An important component of our rewriting algorithm is the ability to manipulate a
pattern by means of an algebra, in order to modify it in a specific desired way (add
or remove a node, alter its structure, etc.). It turns out that due to fundamental
differences between the two models (patterns versus algebras), the algebraic trans-
formations needed to perform such transformations may be simple, complex, or
they may not exist. To the best of our knowledge, ours is the first study of the
impact of algebraic transformations on a tree pattern. This question is of interest
in any XML processing context where queries correspond to some (tree) pattern
formalisms, while the processing is modeled by algebraic operators.

Our rewriting algorithm has very high complexity in the total size of the query and
views, which is expected since our work extends the language of [CDO08] (which estab-
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lished coNP-hardness for XPath{/,//,[ ]} query rewriting using views with IDs) to a richer
query and view language. For moderate-size queries and views and large databases, the
high rewriting costs are still an acceptable price to pay, considering the reduction in query
processing time that views may bring. This has been demonstrated by experiments we
described in [MKVZ11].

This Chapter is a significantly enlarged and re-worked version of our publica-
tion [MKVZ11]. Contribution 1 above is completely new, while in this thesis we have
also significantly re-structured the rewriting algorithm and studied the algebraic pattern
transformations (contribution 3) that [MKVZ11] only hinted at, through examples. Note
that in [MKVZ11], we had implemented an early version of the algorithm. The current
version, described in this Chapter, is not fully implemented yet (it uses the same basic
structure as in [MKVZ11], but includes many new building blocks).

The remainder of the Chapter is organized as follows. Section 4.2 outlines the rewrit-
ing problem we consider, and our solution to this problem, based on an example. The next
Sections then detail our approach. Section 4.3 specifies the XQuery dialect we use for
views, queries and rewritings, as well as the internal models used by our algorithm: tree
patterns and algebra. Section 4.4 provides our study of important properties for our pat-
terns, as well as for DAG-shaped patterns, not used in our views and queries, but produced
during the rewriting process. For readability, we first describe our complete algorithm for
building minimal rewritings in the restricted case when both the query and views consist
of single tree patterns (no value joins across patterns) in Section 4.5. Section 4.6 discusses
how one can modify a tree pattern by applying algebraic transformations. Based on these,
Section 4.7 details the inner workings of the rewriting algorithm. Section 4.8 generalizes
the algorithm from Section 4.5 to handle our general language (with value joins). We then
provide more details on the related works, and we conclude.

4.2 Motivating Example
Our query rewriting approach is illustrated by the example depicted in Figure 4.1. The

Figure shows two views v1 and v2, a query q, and three increasingly larger logical plans p1,
p2, and p3, such that p3 is an equivalent rewriting of q using v1 and v2. The Figure shows
the query and views as tree patterns, and the plans in an algebraic formalism. The details
on their corresponding XQuery syntax and on the algebra will be provided in Section 4.3.

Each solid single (double) edge in Figure 4.1 denotes parent-child (ancestor-descendant)
relationships. The view v1 stores the identifiers (or IDs, in short) and the contents (the
full XML subtrees, without including the IDs of the corresponding nodes, denoted cont)
of the affiliations of all conference papers, along with the IDs of these papers. View v2
stores the title and the publishing country of the books edited by IEEE and published the
same year as an ICDE paper whose author must have an email, as well as the IDs of
these papers and of their authors. We use the notation val to denote the string value of
an element, obtained by concatenating all the text descendants of that element [w3c07d].
The predicate [=IEEE] imposes that the val of the respective element should be equal
to ‘IEEE’. The dashed line connecting the two nodes labeled year in v2 joins the two tree
patterns, on the condition that the value of the year elements be the same on both sides.
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In this paper, we make the following contributions:
(1) We identify the problem of minimally rewriting XML
queries of a rich, meaningful XQuery subset using multiple
views, characterize the size of the rewriting search space,
and provide a complete algorithm for solving this problem.
Our language includes FLWR expressions with value joins,
XPath navigation and return of multiple values and subtrees,
and extends in various ways languages considered in previous
works [3], [4], [5], [6], as we detail in Section VIII. To make
search as efficient as possible, we identify left-deep query tree-
organized rewritings (LDQTs, in short), a tight subset of all
the possible minimal rewritings, and focus only on finding
LDQTs. We show that any other minimal equivalent rewriting
can be obtained from a corresponding LDQT by the optimizer.
(2) As a sub-problem of query rewriting, we solve the question
of computing the tree pattern obtained by joining two smaller
tree patterns (if it exists). This extends the problem of XPath
intersection [4] to more complex patterns (and corresponding
XQuery queries). We explain the extra difficulties encountered
in this context, and show how to solve them.
(3) We have fully implemented our algorithms and demon-
strate their efficiency and large benefits for query execution in
the presence of views through a series of experiments.

Our rewriting algorithm has exponential complexity in the
total size of the query and views, which is expected since our
work extends the language of [4] (which established co-NP
hardness for XPath{/,//,[ ]} rewriting using views with IDs)
to a richer query and view language. This is not a problem
in practice, especially in view of the benefits for total query
execution time, as shown in Section VII.

The paper is organized as follows. Section II outlines
the rewriting problem we consider, and our solution to this
problem, based on an example. The next Sections then detail
our approach. Section III specifies the XQuery dialect we
use for views, queries and rewritings, as well as the internal
models used by our algorithm: tree patterns and algebra.
For readability, we first describe our complete algorithm for
building minimal rewritings in the restricted case when both
the query and views consist of single tree patterns (no value
joins across patterns) in Section IV. Section V focuses on a
crucial problem at the core of this algorithm: computing the
join of two expressive tree patterns with several return nodes.
Section VI generalizes the algorithm from Section IV to handle
our general language (with value joins). Section VII validates
our approach through a set of experiments. We then provide
more details on the related works, and we conclude.

II. MOTIVATING EXAMPLE

Our query rewriting approach is illustrated by the example
depicted in Figure 1. The Figure shows two views v1 and
v2, a query q, and three increasingly larger logical plans p1,
p2, and p3, such that p3 is an equivalent rewriting of q using
v1 and v2. The Figure shows the query and views as tree
patterns, and the plans in an algebraic formalism. The details
on their corresponding XQuery syntax and on the algebra will
be provided in Section III.
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Fig. 1. Sample views, query, and algebraic rewritings.

Each solid single (double) edge in Figure 1 denotes parent-
child (ancestor-descendant) relationships. The view v1 stores
the identifiers (or IDs, in short) and the contents (the full
XML subtrees, without including the IDs of the corresponding
nodes, denoted cont) of the affiliations of all conference
papers, along with the IDs of these papers. View v2 stores
the title and the publishing country of the books edited by
IEEE and published the same year as an ICDE paper whose
author must have an email, as well as the IDs of these papers
and of their authors. We use the notation val to denote the
string value of an element, obtained by concatenating all the
text descendants of that element [14]. The predicate [=IEEE]
imposes that the val of the respective element should be equal
to ‘IEEE’. The dashed line connecting the two nodes labeled
year in v2 joins the two tree patterns, on the condition that
the value of the year elements be the same on both sides. The
query q asks for the title and country of books edited by IEEE
and published the same year and in the same country as some
author of an ICDE paper, for which an e-mail is specified.

We now show how we build an equivalent algebraic rewrit-
ing of q using v1 and v2. The query asks for the country
in author/affiliation. Plan p1 applies a navigation operator,
denoted nav, on top of the view v1, searching for descendants
labeled country within the affiliation subtrees, and retaining
their string values. Here, the small tree pattern //countryval is
a parameter of the algebraic nav operator. Underneath p1, we
show the tree pattern equivalent to this plan. Navigation has
added the bottom countryval node.

Plan p2 joins the view v2 with the plan p1, on the paper ID.

Figure 4.1: Sample views, query, and algebraic rewritings.

The query q asks for the title and country of books edited by IEEE and published the same
year and in the same country as some author of an ICDE paper, for which an e-mail is
specified.

We now show how we build an equivalent algebraic rewriting of q using v1 and v2.
The query asks for the country in author/affiliation. Plan p1 applies a navigation operator,
denoted nav, on top of the view v1, searching for descendants labeled country within
the affiliation subtrees, and retaining their string values. Here, the small tree pattern
//countryval is a parameter of the algebraic nav operator. Underneath p1, we show the tree
pattern equivalent to this plan. Navigation has added the bottom countryval node.

Plan p2 joins the view v2 with the plan p1, on the paper ID. At its right, we show the
pattern equivalent to this plan. Note that the paper node has now three children (year,
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author, and affiliation). Observe that after the join on paper ID, the parent of the paper
node is labeled ICDE (as in v2), whereas the confs node is pushed one level up, as an
ancestor of the ICDE node. This is because the paper node can only have one parent, and
v2 specifies its label is ICDE. The confs node must then be an ancestor of the ICDE node
in the join result. Such reasoning has first been made in [CDO08], for a strict subset of
our language (with only one return node and no value joins). In [TYÖ+08], when joining
two XPath views on their target node ID, the order among the ancestors of the join node
can be established by a physical join operator over the views, exploiting the expressive
IDs they use. The join may return an empty result if the nodes belong to different paths,
and this would only be detected at runtime. In our work, as in [CDO08], we do such
reasoning statically on the views, without accessing the view data.

We now discuss how to go from p2 to the equivalent rewriting p3. A first important
remark is that in the pattern produced by the plan p2, affiliation is a sibling of author,
instead of being its child. Therefore, an adaptation is needed, materialized by the lower
selection in p3, namely σauthor.ID≺ affiliation.ID, where the ≺ symbol stands for a binary
“isParentOf” predicate. We assume in this example that the IDs of author and affiliation
are structural, that is, one can determine the structural relationships (parent or ancestor)
between two nodes just by comparing their IDs. If the IDs were not structural, no equiv-
alent rewriting of q using v1, v2 exists, since one cannot ensure the affiliation nodes from
v1 are children of the author nodes from v2. (In cases not requiring structural predicates,
we may obtain rewritings even based on simple IDs.)

Our rewriting algorithm then realizes that the query-specified join on year is already
applied by v2, whereas equality of the two country nodes still needs to be enforced. The
rewriting is completed by applying the top selection of plan p3 (and a final projection, not
shown in Figure 4.1).

We now illustrate the differences between our work and the closest related ones [CDO08,
TYÖ+08] using XPath views. Since these works do not handle value joins, for the pur-
pose of the comparison, we restrict q to its leftmost tree pattern only. Moreover, as the
other approaches do not support queries and views with multiple return nodes, we have
to further simplify the query so that only one node is returned, e.g. the val of country
nodes. Among the views which [CDO08] and [TYÖ+08] may use to rewrite this re-
stricted query are v′1, v′′1 and v′′′1 shown at the bottom of Figure 4.1 (one could also copy
under the paper nodes of v′1, v

′′
1 and v′′′1 the subtrees of the paper query node, as existential

branches). Observe that v′1, v
′′
1 and v′′′1 store whole paper contents, which may be much

larger than what the query needs. This drawback is due to the single return node in XPath
1.0, forcing the view to store the least common ancestor of all nodes from which some
information is returned by the query. In contrast, v1 and v2 only store what the query
needs. Moreover, [CDO08] and [TYÖ+08] would produce a rewriting using all of v′1, v

′′
1

and v′′′1 , whereas our algorithm understands that v′′1 and v′′′1 suffice for a minimal rewriting.
A procedure to minimize non-minimal rewritings is sketched in [TYÖ+08], however, it
relies on the special properties of the IDs they use.
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1 q := for absV ar (, (absV ar|relV ar))*
(where pred (and pred)*)? return ret

2 absV ar := xi in doc(uri) p
3 relV ar := xi in xj p // xj introduced before xi
4 pred := string(xi) = (string(xj) | c)
5 ret := 〈l〉 elem* 〈/l〉
6 elem := 〈li〉{ (xk | id(xk) | string(xk)) }〈/li〉

Figure 4.2: Grammar for views and queries.

4.3 Views, Queries and Problem Statement

In this Section, we describe the XML query dialect we consider in Section 4.3.1. We
then present a joined tree pattern formalism on which we will rely for our algorithm, in
Section 4.3.2. Based on these, Section 4.3.3 formalizes the rewriting problem we address.

4.3.1 XQuery Dialect

Let L be a finite set of XML node names, and XP be the XPath{/,//,[ ]} lan-
guage [MS04]. We consider views and queries expressed in the XQuery dialect described
in Figure 4.2. In the for clause, absV ar corresponds to an absolute variable declaration,
which binds a variable named xi to a path expression p ∈ XP to be evaluated starting
from the root of some document available at the URI uri. The non-terminal relV ar al-
lows binding a variable named xi to a path expression p ∈ XP to be evaluated starting
from the bindings of a previously-introduced variable xj . The optional where clause is
a conjunction over a number of predicates, each of which compares the string value of a
variable xi, either with the string value of another variable xj , or with a constant c.

The return clause builds, for each tuple of bindings of the for variables, a new element
labeled l, having some children labeled li (l, li ∈ L). Within each such child, we allow
one out of three possible information items related to the current binding of a variable
xk, declared in the for clause: (i) xk denotes the full subtree rooted at the binding of xk;
(ii) string(xk) is the string value of the binding; (iii) id(xk) denotes the ID of the node to
which xk is bound.

There are important differences between the subtree rooted at an element (or, equiv-
alently, its content), its string value and its ID. The content of xi includes all (element,
attribute, or text) descendants of xi, whereas the string value is only a concatenation of
n’s text descendants [w3c07d]. Therefore, string(xi) is very likely smaller than xi’s con-
tent, but it holds less information. Second, an XML ID does not encapsulate the content
of the corresponding node. However, XML IDs enable joins which may stitch together
tree patterns into larger ones. Our XQuery dialect distinguishes IDs, value and contents,
and allows any subset of the three to be returned for any of the variables, resulting in
significant flexibility.

For illustration, Figure 4.3 shows the query q and the views v1 and v2 from Figure 4.1,
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for $p in doc("confs")//confs//ICDE/paper, $y1 in $p/year,
$a in $p//author[email], $c1 in $a/affiliation//country,

q $b in doc("books")//book, $y2 in $b/year, $e in $b/editor,
$t in $b//title, $c2 in $b//country

where $e=‘IEEE’ and $y1=$y2 and $c1=$c2
return 〈res〉 〈tval〉{string($t)}〈/tval〉 〈/res〉

v1 for $p in doc("confs")//confs//paper, $a in $p/affiliation
return 〈v1〉 〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉

〈acont〉{$a}〈/acont〉 〈/v1〉
for $b in doc("books")//book, $c in $b//country, $e in $b/editor,

$t in $b/title, $y1 in $b/year, $p in doc("confs")//ICDE/paper,
v2 $y2 in $p/year, $a in $p//author[email]

where $e=‘IEEE’ and $y1=$y2
return 〈v2〉 〈cval〉{string($c)}〈/cval〉 〈tval〉{string($t)}〈/tval〉

〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉 〈/v2〉
for $v1 in doc("v1.xml")//v1, $p1 in $v1/pid, $af1 in $v1/aid,

$c1 in $v1//acont//country, $v2 in doc("v2.xml")//v2,
r $c2 in $v2/cval, $t2 in $v2/tval, $p2 in $v2/pid, $a2 in $v2/aid

where $p1=$p2 and parent($a2,$af1) and $c1=$c2
return 〈res〉 〈tval〉{$v2/tval}〈/tval〉 〈/res〉

Figure 4.3: Sample query, views, and rewriting.

in our XQuery dialect. The XQuery expression r corresponds to the algebraic plan p3
of Figure 4.1, dictating how q can be answered using exclusively v1 and v2. The parent
custom function returns true iff inputs are node IDs, such that the first identifies the parent
of the second. Moreover, as usual in XQuery, the variable bindings that appear in the
where clauses imply the string values of these bindings (e.g. $e=‘IEEE’ is implicitly
converted to string($e)=‘IEEE’).

Order of results As per XQuery semantics, results follow the order of the bindings of the
for variables, and are thus obtained in the order they appear in the query. For instance, in
Figure 4.3, results of v1 are ordered first by the $p bindings and then by $a bindings etc.
Our rewriting preserves query semantics including such duplicates, and result order.

4.3.2 Patterns and Algebra
We use a dialect of joined tree patterns to internally represent views and queries, some

examples of which appeared in Figure 4.1. Section 4.3.2.1 formally presents our joined
pattern dialect, whose semantics we define next. Section 4.3.2.2 defines pattern seman-
tics based on embeddings from individual tree patterns into XML documents. Given the
important role that the XML algebra plays in our context, we also provide an alternative,
equivalent definition of joined tree pattern semantics in Section 4.3.2.3, based on this
algebra.
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a ×Rd

b ×Rd
c

Figure 4.4: Sample tree pattern and its algebraic semantics.

4.3.2.1 Tree and Joined Patterns

Formally, a tree pattern p is a tree whose nodes carry labels from L. Each node n ∈ p
may be annotated with zero or more among: ID, val and cont, standing for n’s ID, the
concatenation of the values of n’s descendant text nodes, and the serialization of the full
subtree rooted at n, respectively. Moreover, n may be annotated with a value equality
predicate of the form [=c] where c is some constant. The pattern edges are either simple
for parent-child or double for ancestor-descendant relationships.

A joined (tree) pattern is a set of tree patterns, connected through value joins, which
are denoted by dashed edges.

As can be seen comparing Figures 4.1 and 4.3, the translation from our XQuery dialect
to the joined tree patterns is quite straightforward. The only XQuery syntax aspect not
reflected in the joined tree patterns is the name assigned to elements created by the return
clause. This information is irrelevant to rewriting, therefore it is directly transmitted to
the optimizer which will insert the appropriate element constructor operators on top of
the rewritings we produce.

4.3.2.2 Pattern Semantics Based on Embeddings

We now define the semantics of (joined) tree patterns based on embeddings. Note that
embeddings have already been used to define semantics of other tree pattern dialects, e.g.,
in [AYCLS02].

Tree pattern semantics Let φ be an embedding from a tree pattern p to a document d.
As customary [AYCLS02], φ preserves node labels, and if n is a /-parent (respectively,
a //-parent) of node m in tp, then φ(n) is a parent (respectively, a parent or ancestor) of
φ(m) in d. The semantics of p on d, denoted p(d), is a list of tuples. The attributes in
each tuple are obtained by traversing p in depth-first order and for each p node n, adding
n.ID if n is annotated with id, then n.val if n is annotated with val, then n.cont if n is
annotated with cont. For instance, the semantics of the tree pattern p in the left-hand side
of Figure 4.4 is a table with tuples of type (a.ID, b.val). There is a tuple in p(d) for each
embedding of p in a distinct (a,b) pair of d nodes. The tuples in p(d) follow the order of
their corresponding (a, b) nodes.
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d q
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c c c
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Figure 4.5: Set (1 tuple), bag (3 tuples) and XQuery (2 tuples) semantics.

Joined pattern semantics Let jp be a joined pattern and D a set of documents. There
is an embedding ψ from jp to D if there is a tree embedding [AYCLS02] from each tree
pattern of jp to a document in D, and the join predicates of jp are respected by the values
of the documents to which the tree patterns of jp are embedded. The semantics of jp(D)
is again a list of tuples, and the attributes in each tuple are obtained by concatenating the
attributes appearing in the tuples of the tree patterns of jp. Each tuple corresponds to a
distinct embedding of the return nodes of jp on the documents of D.

Duplicates: bag, set and XQuery semantics When evaluating a joined pattern query
q over a document d, depending on the considered semantics (bag, set or XQuery), the
results of the evaluation may differ in terms of cardinality. In all cases, to compute q(d),
we first find all the embeddings of q on d. Then, under bag semantics, we directly output
these embeddings; under set semantics, we perform a duplicate elimination on the results
(we keep no duplicates); finally, under XQuery semantics, which is the one we target and
was described above, we keep the distinct embeddings determined by the return nodes of
q, but remove the duplicates brought by the existential nodes. As an example, let d and
q be the document and query, respectively, depicted in Figure 4.5. Notice that q can be
embedded 3 times in d, c is an existential node in q, and assume that bL.val = bR.val.
Under bag semantics we would return 3 tuples, under set semantics 3 tuples, whereas
under XQuery semantics 2 tuples (the double embedding on bL is considered only once).

4.3.2.3 Algebraic Pattern Semantics

To better highlight the connection between views and rewritings, we provide an alter-
native algebraic definition of the semantics. This semantics is a restriction of the more
general tree patterns semantics, defined in [ABM05], which we extend for the case of
joined patterns.

Algebra Let A be the algebra consisting of the following operators:

1. scan of all tuples from a view v, denoted scan(v) (or simply v for brevity, whenever
possible);

2. selection, denoted σpred, where pred is a conjunction of predicates of the form a�c
or a� b, a and b are attribute names, c is some constant, and � is a binary operator
among {=,≺,≺≺};

3. cartesian product, denoted ×. We also use joins, defined, as usual, as selections
over ×;
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4. projection, denoted πcols, where cols is the attributes list that will be projected

5. duplicate elimination (denoted δ)

6. sort, denoted scols, where cols is the list of attributes defining the ordering;

7. navigation, denoted nava,np, is a unary algebraic operator, parameterized by one of
its input columns’ name a, and a tree pattern np. The name a must correspond to
a cont attribute. Let t be a tuple in the input of nav, and np(t.a) be the result of
evaluating the pattern np on the XML fragment stored in t.a. Then, nava,np outputs
the tuples {t×np(t.a)}, obtained by successively appending to t each of the tuples
in np(t.a).

An example of navigation appeared in the plan p1 of Figure 4.1. The plan p1 outputs
4-attribute tuples: paper IDs, affiliation IDs and contents (coming from v1), as well as
country values (by virtue of the navigation).

The nav operator adds attributes and may add tuples, all the while possibly remov-
ing other tuples. For instance, let p1 denote the pattern //acont, let e1 be an algebraic
expression equivalent to p1, and assume that on a document d, we have:

p1(d)={(“<a/>”), (“<a><b>b1</b><b>b2</b><b>b3</b></a>”)}

Then, navacont,/bcont(e1)(d), corresponding to the pattern p2 = //acont/bcont, is:

{(“<a><b>b1</b><b>b2</b><b>b3</b></a>”, “<b>b1</b>”),
(“<a><b>b1</b><b>b2</b><b>b3</b></a>”, “<b>b2</b>”),
(“<a><b>b1</b><b>b2</b><b>b3</b></a>”, “<b>b3</b>”)}

Observe that the first tuple has been erased by nav (since there was no match of the
/b pattern in this tuple), while the second tuple has been transformed into three, one for
each b element.

Tree pattern semantics Given a document d and label a ∈ L, we denote by Rd
a and call

virtual canonical relation of a in d, the list of tuples of the form (n.ID, n.val, n.cont)
obtained from all the a-labeled nodes n in d. The tuples in Rd

a follow the order of appear-
ance of the corresponding nodes in d. We denote by ≺ the parent comparison operator,
which returns true if its left-hand argument is the ID of the parent of the node whose ID
is the right-hand argument. Similarly, ≺≺ is the ancestor comparison operator. Observe
that ≺ and ≺≺ are only abstract operators here (we do not make any assumption on how
they are evaluated).

We consider first the case when all pattern nodes are annotated with ID, val and cont,
and no value predicate. Then, p(d) is an algebraic expression obtained as follows:

1. Let Rp be the set of virtual canonical relations obtained by considering Rd
a once for

each p node labeled a;

2. For each edge e from the p node n to a childm, let pred(e) be the predicate n.ID ≺
m.ID (if e is a parent-child edge) or n.ID≺≺m.ID (if e is an ancestor-descendant
edge);
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3. Define p(d) as sID(σ∧
e(pred(e))

(×Ri∈Rp(Ri))), where sID denotes sorting by the IDs
of all tree pattern nodes, ordered by a left-deep traversal of the tree pattern.

We now consider predicates of the form [=c] on p nodes. Let pred(n) be the value
predicate of a tree pattern node n (or true if n has no predicate). Then, p(d) becomes:

sID(σ∧
e(pred(e)) ∧

∧
n(pred(n))

(×Ri∈Rp(Ri)))

We now consider the general case. Given a tree pattern p, let πp1 be a projection
operator which retains from any p node annotated with at least one among ID, val or
cont: its ID attribute, whether or not n is annotated with ID, and its val (resp. cont)
attribute, if the node is annotated with val (resp. cont).

Further, let πp2 be a projection operator which retains from any p node, its ID (resp.,
val or cont), if the node is annotated with ID (resp., val or cont). Based on these ingre-
dients, the semantics of a general tree pattern is defined as:

πp2(sID(δ(πp1(σ∧
e(pred(e)) ∧

∧
n(pred(n))

(×Ri∈Rp(Ri))))))

Intuitively, the inner projection πp1 followed by duplicate elimination turns to non-return
all the nodes which do not project any attribute in the tree pattern. However, we need two
projections, the inner keeping some IDs not required by the tree pattern (to preserve se-
mantics during duplicate elimination and enable sorting), and the outer one, which keeps
exactly the attributes required by the tree pattern.

As an example, Figure 4.4 depicts a tree pattern, along with the algebraic expression
corresponding to its semantics.

Joined tree pattern semantics Let jp be a joined tree pattern over the set Tjp =
{p1, p2, . . . , pm} of tree patterns. Let VJ jp = {vj1, vj2, . . . , vjk} be the set of its value
join predicates, where each vji is of the form pi1 .n1.val = pi2 .n2.val, imposing that the
value of node n1 from the tree pattern pi1 be equal with that of the node node n2 from the
tree pattern ti2 , 1 ≤ i1, i2 ≤ m. Before defining the formal semantics of a joined pattern,
we introduce its extended version.

Definition 4.3.1 (Extended joined pattern). Let jp be a joined pattern. The extended
version of jp, denoted jpx, is obtained from jp by adding a val attribute to every node of
jp participating in a value join (if the node did not already have val).

By definition, every node n and every tree pattern p in jp has a corresponding node
nx and tree px (which we call extended tree pattern), respectively, in jpx.

The semantics of jp is defined by the algebraic expression πjp(σ∧i=1,...,k vji
(px1 × px2 ×

. . . × pxm)), where πjp is a projection retaining all the attributes of the original patterns
p1, p2, . . . , pm, and eliminating the val attributes not present in p1, p2, . . . , pm. Note
that while each tuple in the semantics of a tree pattern corresponds to data from a single
document, a tuple in a joined tree pattern may be built with data from different documents.
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4.3.3 Formal Problem Statement
We first formalize equivalent and minimal rewritings.

Definition 4.3.2 (Equivalent rewriting). Given a set of joined pattern views V and a joined
pattern query q, an equivalent rewriting (or rewriting, in short) of q using V is an A
expression e whose leaves are views from V , such that for any document d, e(d) = q(d),
that is, evaluating e over d yields the same results as evaluating q over d.

Definition 4.3.3 (Minimal rewriting). A rewriting e of the query q using V is minimal if
no other rewriting of q uses a proper subset of the view instances used in e.

Minimal rewritings should be distinguished from min-size rewritings, i.e., the (mini-
mal) rewritings using the smallest possible number of views. Min-size rewritings do not
always lead to the most efficient plans. For instance, the single view (//confID,cont ×
//bookID,cont) suffices to answer the query q in Figure 4.1, yet it is very large and the
rewriting based on v1 and v2 is likely to be much more efficient.

Intuitively, minimal rewritings are likely to lead to more efficient evaluation plans
than non-minimal ones. In particular, under some generic assumptions on the rewriting
evaluation cost model, it can be shown that a minimal is guaranteed to have lower cost
than any non-minimal rewriting built on it. More specifically, we assume that:

– The cost to scan a view is linear in the size of the view and the scan cost per tuple
is the same for all views.

– The cost of a join is linear in the size of each input and in the size of the output.
This is the case, for instance, for hash-joins, merge-joins and XML specific join
algorithms [AKJP+02].

Observe that in some setting these assumptions may be too restrictive, e.g., when data
transfers are involved, when indexes are available on some of the views.

Therefore, the problem we consider is: given a query q and a view set V , find minimal
A rewritings of q using V . The best minimal rewriting should be chosen by the optimizer.

4.4 Preliminaries on Patterns
Our query rewriting approach requires different kinds of reasoning on queries ex-

pressed in the joined tree pattern language we consider. This language is a restricted
conjunctive version of XAMs [ABM05], and can be viewed as (conjunctive) tree patterns
with multiple return nodes and many possible return attributes, connected by value joins.
Fundamental notions such as the containment, equivalence and minimality for our joined
tree pattern language have not been defined in previous works, and they turn out to be
quite different from the ones which apply in the more traditional setting of single return
node XPath patterns [AYCLS02, MS04].

In this Section, we define such fundamental notions and provide efficient procedures
to test when they hold. For readability, we first consider the restriction of our language
to single tree patterns (with multiple return node and possibly multiple attributes per
return node). Section 4.4.1 defines containment among such tree pattern queries, and
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provides a PTIME procedure for checking containment among such tree patterns. Sec-
tion 4.4.2 defines the notion of tree pattern minimality in our context, and shows that an
existing minimization algorithm can be slightly modified to also apply in our case. Sec-
tion 4.4.3 introduces tree pattern equivalence and provides a Theorem which leads to a
polynomial-time equivalence test. Next, Section 4.4.4 revisits the notions of containment,
equivalence and minimization for the general case of joined tree pattern queries. Finally,
Section 4.4.5 studies containment among DAG patterns, which generalize our (many re-
turn nodes, many attributes) tree patterns by allowing nodes to be organized in a directed
acyclic graph, not necessarily a tree. The reason we consider DAG patterns is that, al-
though the views and queries we consider only feature (possibly joined) tree patterns, we
may obtain DAG patterns as a result of applying algebraic operations on our views. The
connection between many-views XML rewriting and DAG patterns has also been made,
e.g., in [CDO08]. We revisit it here for our context where multiple nodes may return
various subsets of attributes.

4.4.1 Tree Pattern Containment
A crucial notion for the rewriting problem we consider, is that of tree pattern con-

tainment. To define it for our specific brand of tree patterns, we start with an auxiliary
notion:

Definition 4.4.1 (Tree pattern signature). Let p be a tree pattern and {a1, a2, . . . , am} the
set of return attributes of p. For each attribute ai, 1 ≤ i ≤ m, let li be the label of the
node that attribute ai is attached to and ti ∈ {ID, cont, val} the type of ai. The signature
of p, denoted Sat(p), is the multiset {l1.t1, l2.t2, . . . , lm.tm}.

We also use the notion of node signature for a node n of a tree pattern p, denoted
Sat(n, p), defined as the subset of Sat(p) referring only to the attributes of n. For example,
in Figure 4.6, Sat(p1) = {b.val, e.ID} and Sat(p2) = Sat(p) = {b.val, b.val}. Moreover,
Sat(e, p1) = {e.ID}.

We are now ready to define tree pattern containment:

Definition 4.4.2 (Tree pattern containment). Let p, p′ be two tree patterns. Pattern p is
contained in p′, denoted p v p′, if (i) Sat(p) = Sat(p

′), and (ii) for any document d,
p(d) ⊆ p′(d).

Observe that in our setting, containment only holds for patterns having the same sig-
nature. For instance, in Figure 4.6, p and p1 are incomparable since p returns tuples of the
form (b.val, b.val), while p1 returns tuples of the form (b.val, e.ID).

Our next task is to identify criteria for deciding when a pattern is contained in another.
To that end, we define:

Definition 4.4.3 (Structural embedding). Given two tree patterns p and p′, a structural
embedding φ from p′ to p, denoted φ : p′

s−→ p, is a function that maps each node in p′ to
some node in p, respecting node labels and edge relationships:

1. if r is the root of p′, then φ(r) is the root of p;



4.4. PRELIMINARIES ON PATTERNS 81
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Figure 4.6: Tree pattern containment.

2. for each node n of p′, n and φ(n) have the same label;

3. for each /-edge (n1, n2) in p′, (φ(n1), φ(n2)) is a /-edge in p;

4. for each //-edge (n1, n2) in p′, there is a path from φ(n1) to φ(n2) in p.

In Figure 4.6, there is a structural embedding from each of the patterns p1, p2, p3 to p,
as well as from p′2 to p′1, and from p′4 to p′3.

For tree patterns belonging to the XPath{/,//,[ ]} dialect, it has been shown in [AYCLS02]
that the existence of a structural embedding from p′ to p is a necessary and sufficient con-
dition for p to be contained in p′ (i.e., p v p′). The same holds for the larger XPath{∗,/,//,[ ]}

dialect [MS04]. Interestingly, their findings also hold for tree patterns with multiple re-
turn nodes, but this only corresponds, in terms of our tree pattern language, to patterns
such that any return node can only return ID.

In contrast, in our setting, a structural embedding, although necessary, is not a suffi-
cient condition for containment. To see why, let Mod(p) be the set of documents d, for
which p(d) is non-empty. For boolean and single return node tree patterns, for p v p′

to hold, it suffices to show that Mod(p) ⊆ Mod(p′); in turn, this inclusion is guaranteed
by p′ s−→ p [MS04]. For our patterns with multiple return nodes, for p v p′ to hold, we
also need that Mod(p) ⊆ Mod(p′), but this is insufficient. For instance, consider the
document d shown in Figure 4.6, where for the purpose of the explanation, we have dis-
tinguished the two b elements as bL at the left and bR at the right. In this Figure, p 6v p2:
indeed, the tuple (bLval, bRval) belongs to p(d), while it does not belong to p2(d). Thus,
containment does not hold, even though clearly Mod(p) ⊆ Mod(p2). Likewise, in the
same Figure, Mod(p′1) = Mod(p′2), however p′1 6v p′2, as witnessed by the document
d′. As soon as the elements bL′ and bR′ from d′ do not have identical values, the tuple
(bL′val, bR′ID, bR′cont) belongs to p′1(d

′) and it does not belong to p′2(d
′). The intuition behind

these examples is: for a pattern p to be contained in a pattern p′, both with multiple return
nodes, the attributes of the return nodes of p′ should be able to take values from all the
document node sets that the attributes of p can take values.

A final observation concerns the predicates which may be found in patterns. For
instance, in Figure 4.6, p 6v p3, because p3 has a predicate that is not present in p, making
p3 more restrictive than p.



82 CHAPTER 4. EFFICIENT XQUERY REWRITING USING MULTIPLE VIEWS

We formalize this discussion by the following criterium for deciding containment of
tree patterns with multiple return nodes:

Theorem 4.4.1 (Tree pattern containment). Let p, p′ be two tree patterns. p v p′ iff:

1. Sat(p) = Sat(p
′);

2. there exists an embedding φ : p′
s−→ p such that:

(a) for each node n′ of p′, Sat(n′, p′) ⊆ Sat(φ(n′), p);

(b) if n1, n2 are p′ nodes such that φ(n1) = φ(n2), then Sat(n1, p
′)∩Sat(n2, p

′) =
∅;

(c) if the node n′ of p′ has a value predicate [= c], then φ(n′) in p has the same
predicate.

Proof. (“If” direction) Assuming the above hypotheses hold, we show that for any doc-
ument d and for any tuple t ∈ p(d), we have t ∈ p′(d). Since t ∈ p(d), there exists an
embedding ψt from p to d, mapping the return nodes of p to a set of nodes in d. Note
that each attribute an of a return node n ∈ p is evaluated on node ψt(n) ∈ d. One can
compose ψt with the embedding φ provided by the hypothesis 2, and obtain ψ′t = ψt ◦ φ,
which is an embedding from p′ into d. Our task now is to show that ψ′t leads to the same
tuple t being present in p′(d). More specifically, we show that for any return node n ∈ p
having the attribute an, where an ∈ {ID, val, cont}, there exists a node n′ ∈ p′ such that
φ(n′) = n and n′ is also annotated an. This way, ψ′t will give to the return attributes of p′

the same values that ψt gives to the attributes of p, and thus have t ∈ p′(d).
Assume to the contrary that for some node n ∈ p, such an n′ does not exist. Still,

there must exist some n′′ ∈ p′ having the attribute an, otherwise Sat(p) 6= Sat(p
′), which

contradicts hypothesis 1. Let np be the node of p such that φ(n′′) = np; by construction,
np 6= n. If np does not have an an attribute, then Sat(n′′, p′) * Sat(φ(n′′), p), which
contradicts our hypothesis 2(a). If np has such an attribute, for Sat(p) = Sat(p

′) to hold,
there should be another node np′ ∈ p′ having an, and such that φ(np′) = np. This
contradicts hypothesis 2(b), which dictates, since n′′ and np′ both embed into np, that
Sat(n

′′, p) ∩ Sat(np′ , p) = ∅.
These contradictions show that n′ ∈ p′ must exist as we required. Thus, whenever ψt

gives values to the attributes of p from a set of d nodes, ψt′ also gives the same values to
the attributes of p′. Moreover, hypothesis 2(c) ensures that p′ is less restrictive than p in
terms of value predicates. All these guarantee that t ∈ p′(d).
(“Only if” direction) Obviously, condition 1 holds by Definition 4.4.2. We show that if
any other hypothesis does not hold, then p 6v p′, i.e., for some document d there exists a
tuple t ∈ p(d) such that t /∈ p′(d).

We build a document d based on p as follows. For every node in p we add a node in d
with the same label, and for each edge in p, we add a parent-child edge in d. Moreover,
every value predicate on a p node is satisfied by the value of the corresponding d node.
Let ψd be the embedding from p to d. Obviously p′ can also be embedded to d through
the composition ψ′d = ψd ◦ φ. Let t ∈ p(d) be the tuple resulting from ψd.

Assume that condition 2(a) does not hold, i.e., there exists a node n′ of p′ such that
Sat(n

′, p′) * Sat(φ(n′), p). This means that n′ has an attribute an′ that is not present in
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Figure 4.7: Tree pattern minimality.

φ(n′) ∈ p. Since Sat(p) = Sat(p
′), there is another node np in p having an an′ attribute.

Clearly φ(n′) 6= np and, thus, np and n′ are mapped to different nodes in d, giving p a
different value for its an′ attribute than the value given to the one of p′. Hence, t /∈ p′(d).

Assume now that 2(b) does not hold, that is, there are two p′ nodes mapping to the
same p node and having at least one attribute in common. As Sat(p) = Sat(p

′), in a way
similar to the one used above for condition 2(a), we can show that t /∈ p′(d). Finally,
assume that condition 2(c) does not hold, that is, a node n′ in p′ has a value predicate that
is not present in φ(n′) of p. We chose the d node corresponding to ψ′d(φ(n′)) such that its
value does not satisfy this predicate. Thus, the result of p′(d) based on ψ′d is empty, and
thus t /∈ p′(d).

4.4.2 Tree Pattern Minimality
A node n of a tree pattern p is redundant if by removing n from p, the results of

evaluating p over any document d remain the same.
Before further discussing about redundant nodes, we introduce the following notion:

Definition 4.4.4 (Structural endomorphism). Given a tree pattern p, a structural endo-
morphism is a structural embedding (as per Definition 4.4.3) from p to itself.

It has been shown that in a tree pattern p with a single return node, a node n ∈ p is re-
dundant, iff there is a structural endomorphism on p that is not identity on n [AYCLS02].

It turns out that for tree patterns with multiple return node, such an endomorphism
may exist even within a minimal pattern. For instance, consider the multiple return node
patterns p and p′ in Figure 4.7. Each of them has an isomorphism that is not the identity
on their respective leftmost b nodes. However, the left b of p′ is obviously redundant, and
can thus be removed without affecting p semantics. In contrast, the leftmost b node in
p is a return node and cannot be removed without affecting p semantics. In particular, p
returns 4 tuples on the sample document d; if we removed the left b from p, we would get
only 2 tuples.

We formalize the necessary and sufficient conditions for a node to be redundant in our
tree pattern language, as follows. We say a node is existential if it is not a return node,
and furthermore, none of its descendants are return nodes.

Proposition 4.4.2 (Redundancy test). A node n of a tree pattern p with multiple return
nodes is redundant, iff (i) n is existential and (ii) there is a structural endomorphism on
p that is not identity on n.
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Proof. We first prove if a node n is not existential, then it cannot be redundant. Either n
is a return node, or it is non-return but has some return descendants. If n is a return node,
clearly removing it will change p semantics, since even the pattern signature changes.
Assume now that n is non-return, thus, it has a descendant n′ that is a return node. As
n′ is return, it contributes to the results of p(d) through its bindings on some d nodes.
Removing n from p will change the path from the root of p to n′ and, therefore, the
bindings of n′ on some documents. Thus, n is not redundant, because if removed, it
changes the results of p(d).

Having proved that the redundant nodes are always existential, the rest of the
proof follows readily from the corresponding proof for tree patterns with single return
nodes [AYCLS02].

A tree pattern is minimal if it does not include any redundant nodes.

Minimization algorithm A polynomial algorithm has been proposed for minimiz-
ing a tree pattern, running in O(n4) in the worst case, where n the number of
nodes [AYCLS02]. This algorithm can also be applied in our setting with the modifi-
cation that if the leaf is non-existential (i.e., is a return node in this case), it is directly
considered as non-redundant.

4.4.3 Tree Pattern Equivalence
Two tree patterns p, p′ are equivalent, denoted p ≡ p′, if p v p′ and p′ v p. We

now introduce a more relaxed version of equivalence that is based only on the structural
characteristics of the patterns.

Definition 4.4.5 (Structural equivalence). Two minimal tree patterns p and p′ are struc-
turally equivalent, denoted p

s≡ p′, iff there exist φ : p
s−→ p′ and φ−1 : p′

s−→ p.

Structural equivalence is necessary and sufficient for two tree patterns with single
return nodes to be equivalent. In contrast, this is not the case for tree patterns with multiple
return nodes, for which structural embeddings are not sufficient for containment, as shown
in Section 4.4.1.

Theorem 4.4.3 (Tree pattern equivalence). Two minimal tree patterns p1 and p2 are equiv-
alent, denoted p1 ≡ p2, iff there exists a structural embedding φ : p1

s−→ p2 such that:

1. φ is bijective;

2. φ−1 : p2
s−→ p1 is a structural embedding;

3. for each node n of p1, Sat(n, p1) = Sat(φ(n), p2);

4. a node n ∈ p1 has a value predicate [=c], iff φ(n) ∈ p2 has the same predicate.

Proof. (“If” direction) If the above conditions hold, it is easy to see that, according to
Theorem 4.4.1, p1 v p2 and p2 v p1, and thus, p1 ≡ p2.
(“Only if” direction) Since p1 ≡ p2, we have p1 v p2 and p2 v p1. Theorem The-
orem 4.4.1 entails the presence of two structural embeddings φ1 : p1

s−→ p2 and
φ2 : p2

s−→ p1.
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Condition 1: We need to show that φ1 is both injective and surjective. We will first show
that it is injective. Assume it is not. Let n1, n2 be nodes of p1 and n′ a node of p2 such that
φ1(n1) = φ1(n2) = n′. Moreover, let n3 be a node of p1 such that φ2(n

′) = n3. Note also
that the composition φ21 = φ2 ◦φ1 is a structural endomorphism (see Definition 4.4.4) on
p1 and that φ21(n1) = φ21(n2) = n3. We will show that both n1 and n2 are non-existential.
Assume that n1 is existential. If n3 is different from n1, Proposition 4.4.2 entails that n1

is redundant (φ21 is an endomorphism different from the identity on n1). However, p1 is
minimal by hypothesis, therefore, n3 coincides with n1. At the same time, n2 has to be
non-existential, otherwise it would be redundant (since φ21(n2) = n1). Moreover, given
φ1 and φ2, Theorem 4.4.1 imposes the following relations:

Sat(n1, p1) ⊆ Sat(n′, p2) (4.1)

Sat(n2, p1) ⊆ Sat(n′, p2) (4.2)

Sat(n
′, p2) ⊆ Sat(n3, p1)

n1≡n3====⇒ Sat(n
′, p2) ⊆ Sat(n1, p1) (4.3)

From (4.1) and (4.3) it follows that Sat(n1) = Sat(n
′), and since Sat(n1) = ∅ (n1 is

existential and thus non-return), it holds Sat(n′) = ∅. From (4.2) it follows that Sat(n2) =
∅, i.e., n2 is also non-return. But, as we have already shown, n2 is non-existential and,
thus, must have a return descendant, which is mapped through φ1 to a return descendant
n′′ of n′ in p2. However, since n′ is mapped to n1 through φ2, n′′ has to be mapped to a
return descendant of n1. This is a contradiction, because n1 is existential and cannot have
return descendants. Therefore, n1 is non-existential. We can similarly show that n2 is not
existential either.

We have thus shown that both n1 and n2 either are return nodes, or have return de-
scendants. We now show that φ1 is injective for the return nodes of p1. In the proof of
Theorem 4.4.1, we showed that if p1

s−→ p2, for every return node n2 ∈ p2 there is a
node n1 ∈ p1 such that n2 = φ1(n1). Since we also have p2

s−→ p1, it follows that p1
and p2 have the same number of return nodes, and, thus, φ1 has to be injective for the
return nodes (otherwise, some return nodes of p2 would not be mapped by φ1, which is
not allowed).

Next, we show that φ1 is injective also for the non-existential nodes that are non-
return. To this regard, assume n1 and n2 are non-existential and non-return, mapped to
the same n′ node of p2. We construct a document d such that there is an injective mapping
ψ1 from p1 to d: for each node in p1 we add a node in d with the same label; for each
/-edge in p1 we add an edge in d; for each //-edge (n11, n12) in p1, we add a new node
nd in d with a fresh label that is not present neither in p1 nor in p2, and add the edges
(ψ1(n11), nd) and (nd, ψ1(n12)); each value predicate on a p1 node is satisfied by the
value of the corresponding d node. The embedding ψ1 yields a tuple t ∈ p1(d) when p1
is evaluated on d. One can embed p2 into d through ψ1 ◦ φ2; this mapping embeds n′ in
a d node that is neither n1 nor n2, giving different values to the return descendants of n′.
Thus, t /∈ p2(d), which is a contradiction since p2 v p1. Therefore, φ1 is injective for all
types of nodes.

Given that φ1 is injective, we will show that it is also surjective, i.e., for every node
n2 ∈ p2, there is a node n1 ∈ p1 such that φ1(n1) = n2. Assume this is not the case.



86 CHAPTER 4. EFFICIENT XQUERY REWRITING USING MULTIPLE VIEWS

This, together with the fact that φ1 is injective, entails that there is an additional node in
p2 that is not “covered” by φ1. Then, one can construct a document d into which p1 can
be embedded but p2 cannot. This leads to a contradiction, since p1 v p2. Thus, φ1 is
bijective.
Condition 2: Obviously, for every node n of p2, n and φ−1(n) have the same labels. More-
over, for every /-edge (n1,n2) in p2, (φ−1(n1),φ−1(n2)) is also a /-edge in p1; otherwise,
φ−1(n1) would not map through φ to n1, and similarly φ−1(n2) would not map through
φ into n2. Finally, in a similar way, for every //-edge (n1,n2) in p2, (φ−1(n1),φ−1(n2))
is also a //-edge in p1, and thus, there is a path from φ−1(n1) to φ−1(n2). Therefore, all
conditions of Theorem 4.4.1 hold for φ−1 to be a structural embedding from p2 to p1.
Condition 3: According to Theorem 4.4.1 and conditions 1 and 2, for every node n
of p1, we have Sat(n, p1) ⊆ Sat(φ(n), p2) ⊆ Sat(φ

−1(φ(n)), p1). Thus, Sat(n, p1) =
Sat(φ(n), p2).
Condition 4: If a node n of p1 has a value predicate that φ(n) of p2 does not have, it is
easy to build a document in which p2 can be embedded, but p1 cannot, by virtue of the
additional predicate. This is a contradiction since p2 v p1. The same holds for predicates
present in p2 but not in p1.

4.4.4 Joined Tree Pattern Preliminaries
In this Section we discuss containment, minimality and equivalence of joined tree

patterns.
Given a joined pattern jp and a set of documents D, we denote by jp(D) the result

of evaluating jp on D. A joined pattern jp′ is contained into another joined pattern jp′,
denoted jp v jp′, if jp(D) ⊆ jp′(D) for any document set D. The joined patterns jp, jp′

are equivalent, denoted jp ≡ jp′, if jp(D) ⊆ jp′(D) and jp′(D) ⊆ jp(D).

Definition 4.4.6 (Structural embedding). For a tree pattern t, let Nt denote the set of t
nodes. Given two joined patterns jp and jp′, a structural embedding φ : jp′

s−→ jp is a
function such that:

1. For every tree pattern p′ of jp′, the restriction of φ toNp′ is a structural embedding
from p′ to a tree pattern p of jp, i.e., φ|Np′

: p′
s−→ p;

2. If jp′ has a value join 1 between n′1 and n′2, there also exists a value join between
nodes φ(n′1) and φ(n′2).

Let Tjp = {pi}m be the set of tree patterns of a joined pattern jp. We define the
signature of jp as Sat(jp) =

⊎m
i=1 Sat(pi). By ] we denote the bag union of a set of

multisets, i.e., the union that preserves the duplicate elements of the input multisets.

Theorem 4.4.4 (Joined pattern containment). Let jp and jp′ be two joined patterns. jp v
jp′ iff:

1. Here we assume that the transitive closure of the value joins has been added to the pattern. For
instance, if there are value joins between the nodes n1, n2 and n2, n3, we also add a value join between
n1, n3.
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1. Sat(jp) = Sat(jp
′);

2. there exists a structural embedding φ : jp′
s−→ jp such that: if np′ is the root of

a tree pattern p′ ∈ jp′, then φ(np′) = np is the root of a tree pattern p ∈ jp and
p v p′.

Proof. (“If” direction) We have to show that if the above hypotheses hold, then jp v jp′,
i.e., if for a set of documents D there is a tuple t ∈ jp(D), then t ∈ jp′(D). Since
t ∈ jp(D), there is an embedding ψt from jp to D. Pattern jp′ can also be embedded to
D, through the composition ψ′t = ψt ◦ φ. Indeed, according to hypothesis 2, every tree
pattern of jp′ embeds into a document in D. Moreover, since ψt respects the value joins
of jp, ψ′t respectively respect the value joins of jp′. At the same time, hypotheses 1 and 2
ensure that each return attribute of jp′ can take values through ψ′t from the same nodes of
D that jp takes values. Thus, tuple t ∈ jp′(D).
(“Only if” direction) If jp v jp′, condition 1 holds by definition. Assume that condition
2 does not hold. We will show that jp 6v jp′, i.e., for a document set D there exists a
tuple t ∈ jp(D) such that t /∈ jp′(D). There exist two tree patterns p of jp and p′ of
jp′ such that p 6v p′. Based on this, we can construct a document set such that a tuple
t ∈ jp(D) contains in the positions of the attributes that correspond to p some values that
cannot be taken by jp′(D) (those values that make p 6v p′). Thus, t /∈ jp(D), which is a
contradiction.

Proposition 4.4.5 (Redundancy check). A node n of a joined pattern jp is redundant,
iff the node corresponding to n in the extended pattern jpx (recall Definition 4.3.1) is
redundant in jpx.

Proof. The proof follows from Proposition 4.4.2 and the following remark. Let p be the
jp tree pattern to which n belongs. Observe that in order to be redundant in jp, n must
also be redundant in p. Now let us consider the possibility that n, or one of its descendants,
participates in a value join in jp; if this is the case, n is not redundant for jp, even if it is
redundant for p. In more detail:

– If n participates in a value join and we remove n, then the value join is no longer
ensured.

– If a descendant n′ of n participates in a value join and by removing n we obtain
the new joined pattern jp′, the path to n′ in jp′ is less restrictive (since node n was
removed) than the path above the corresponding node in jp. Thus a document can
be constructed in which jp′ can be embedded, but the more restrictive jp cannot.
Thus, jp and jp′ do not yield the same results on every document and n is not
redundant.

The above two conditions are ensured by checking if ex is redundant for the tree pattern
tx of jpx to which it belongs. In fact, by using the extended version of jp, we turn all
nodes that them or one of their descendants participate in a value join to non-existential,
making sure that they will not be characterized as redundant.

A joined pattern is minimal if it does not contain any redundant nodes. Observe that
minimality concerns only nodes and not value join edges, whose transitive closure is
assumed to be present in the pattern.
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Minimization algorithm To minimize a joined pattern jp, we build its extended version
jpx and run the minimization algorithm for the tree patterns (described in Section 4.4.2)
for each tree pattern of jpx. Let jpxmin be the resulting joined pattern. Then, the joined
pattern jpmin obtained from jpxmin by removing the additional attributes introduced in jpx

is, according to Proposition 4.4.5, the minimized version of jp.

Theorem 4.4.6 (Joined pattern equivalence). Two minimal joined patterns jp1, jp2 are
equivalent (jp1 ≡ jp2), iff there exists a structural embedding φ : jp1

s−→ jp2 such that:

1. φ is an isomorphism;

2. φ−1jp2
s−→ jp1 is a structural embedding;

3. if np1 is the root of a tree pattern p1 ∈ jp1, then φ(np1) = np2 is the root of a tree
pattern p2 ∈ jp2 and p1 ≡ p2.

Sketch. (“If” direction) If the above hypotheses hold, then according to Theorem 4.4.4,
it can be easily shown that jp1 v jp2 and jp2 v jp1. Thus, jp1 ≡ jp2.
(“Only if” direction) Condition 1: We prove condition 1 in the same way as we proved
condition 1 of Theorem 4.4.3.
Condition 2: According to the proof of Theorem 4.4.3, for every tree pattern p1 of jp1,
mapped to a tree pattern p2 of jp2 through φ, the inverse of the restriction of φ to the node
set Np1 of p1, denoted φ|Np1

−1, defines a structural embedding from p2 to p1. Moreover,
there is a value join between nodes n11 and n12 of jp1, iff there is a value join between
φ(n11) and φ(n12) in jp2. If this is not the case, then the set of value joins of the one joined
pattern is more restrictive than the other’s one, and a document set for which the two
joined patterns do not return the same results can be built. From this and Definition 4.4.6
follows that φ−1 : jp2

s−→ jp1.
Condition 3: We have shown that φ is an isomorphism and defines a two-way structural
embedding between jp1 and jp2. Let p1 be a tree pattern of jp1 which φ1 maps to tree
pattern p2 of jp2. The restriction φ|Np1

, where Np1 is the node set of p1, is also an iso-
morphism defining a two-way structural embedding between p1 and p2. Moreover, for
jp1 and jp2 to give the same results on every document set, every node n1 of p1 should
have the same signature as φ(n1) in p2, and also have the same value predicates. Then,
according to Theorem 4.4.3, p1 ≡ p2.

4.4.5 DAG Pattern Preliminaries
Although our views and queries can only be expressed as (joined) tree patterns, the

intermediate products of our rewriting algorithm may temporarily take the form of DAG
patterns. In this Section we discuss containment of such patterns, as well as how a DAG
can be transformed to a tree.

DAG patterns and semantics A DAG pattern dp is a directed acyclic graph, whose nodes
carry labels from L and are annotated with zero or more among the attributes ID, val and
cont. A dp node may also be annotated with a value equality predicate. Moreover, each
DAG pattern has a unique root node. Unlike tree patterns, for each node n of a DAG
pattern dp, there may be more than one incoming paths from the root of dp to n.



4.4. PRELIMINARIES ON PATTERNS 89

dp1 p1 dp2 p21 p22 p23

a b

cID

a

b

cID

aID aval

b

aID

aval

b

aval

aID

b

aID,val

b

Figure 4.8: DAGs and interleavings.

The semantics of a DAG pattern dp is defined in the same way as the semantics of a
tree pattern, with the difference that when there is an embedding from dp to a document
tree t, all incoming paths to a dp node n should be satisfied by the embedding.

DAG pattern containment Definitions 4.4.1, 4.4.2, 4.4.3 of tree pattern signature, con-
tainment and structural embedding, respectively, carry directly to DAG patterns. More-
over, Theorem 4.4.1 can also serve as the basis for deciding containment between DAG
patterns dp1, dp2 (denoted dp1 v dp2).

Interleavings We now introduce the notion of interleavings that will be then used to
express a DAG pattern with multiple return nodes as a union of tree patterns. The inter-
leavings for tree patterns with single return nodes were introduced in [BFK05] and were
also used in [CDO08]. In those cases, only the single return node of the DAG pattern was
allowed to have multiple incoming paths. Informally, an interleaving is a tree pattern that
respects the labels and the relationships of all paths of the respective DAG. For instance,
in Figure 4.8, dp1 is a DAG pattern and p1 is one of its interleavings (in fact, in this case
it is its only interleaving).

In what follows, we describe how an interleaving can be built in our case, where every
node is allowed to have multiple incoming paths. We term such nodes multi-incoming
nodes.

Let dp be a DAG pattern and n be a multi-incoming node in dp, none of whose ances-
tors are multi-incoming. We replace the set of paths {pni

} from the root of dp to n with a
new single path p′n such that:

1. there exists a surjective function φi, mapping each node of {pni
} to a p′n node (φi

does not need to be injective);

2. for each node n of {pni
}, n and φi(n) have the same label;

3. for each /-edge (n1, n2) in {pni
}, (φi(n1), φi(n2)) is a /-edge in p′n, and for each

//-edge (n1, n2) in {pni
}, there is a path from φi(n1) to φi(n2) in p′n;

4. when one or more nodes of {pni
} are mapped to the same p′n node np, np is anno-

tated with the bag union of the attributes of these nodes 2;

2. If two such nodes have the same attribute, this attribute will appear twice in np with the obvious
semantics of outputting it twice in the resulting tuples as well. This way p′n has the same signature with the
union of signatures of the paths it replaces.
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5. the outgoing edges of each node n of {pni
} that do not belong to {pni

}, are attached
to φi(n) in p′n;

6. if n has a value predicate, φi(n) has the same predicate. Moreover, if two dp nodes
are mapped to the same p node and they both have a value predicate, they should
have the same one.

We repeat the above process, each time replacing the incoming paths of a multi-
incoming node with a single path, until there are no more multi-incoming nodes. The
resulting tree pattern is an inverleaving pi for dp.

For instance, in Figure 4.8, dp2 is a DAG pattern with multiple return nodes, and
p21, p22, p23 are interleavings of dp2.

We now use the interleavings to express a DAG as a union of tree patterns. This result
follows from a similar result stated in [BFK05, CDO08].

Lemma 4.4.7. A DAG pattern is equivalent to the union of its interleavings.

Similar to a result from [CDO08], we also have that:

Proposition 4.4.8. If a tree pattern p is equivalent to a DAG pattern dp, then p is equiva-
lent to one of dp’s interleavings.

Proof. (Sketch) According to Lemma 4.4.7, dp is equivalent to the union of its interleav-
ings. For dp to be equivalent to a tree pattern p, a member of the union of its interleavings
should contain all the rest and be equivalent to p.

Notice that in Figure 4.8, dp2 cannot be transformed to a tree pattern, because none of
its interleavings contains the rest.

It has been previously shown [BFK05] that there may be exponentially many inter-
leavings for an XPath 1.0 tree pattern, and thus for our tree pattern language.

We define the transformation DAG2Tree(d) that takes as input a DAG pattern d
and transforms it into an equivalent tree pattern p, if one such pattern exists, or fails if
none can be found. DAG2Tree starts by expressing d as the union of its interleavings
(Lemma 4.4.7), and then tries to find an interleaving that contains all the others (Proposi-
tion 4.4.8). If one is found, DAG2Tree returns it.

4.5 Tree Pattern Query Rewriting Overview
This Section outlines our algorithm for finding view-based query rewritings (see Sec-

tion 4.3.3 for formal problem definition), for the case when the query and views corre-
spond to single tree patterns. From the XQuery syntax viewpoint, this restriction amounts
to replacing rules 1 and 4 in the grammar of Figure 4.2 with:

1′ q := for absV ar (, relV ar)*
(where pred (and pred)*)? return ret

4′ pred := string(xi) =c
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Algorithm 3: Tree Pattern Rewriting (TPR)
Input : View set V = {v1, v2, . . . , vn}, query q
Output: All minimal algebraic rewritings e of q using V

1 S1 ← ∅; Scrt ← ∅; Sspo ← ∅
//Filter views and add the useful (p, e, φ) to S1

2 foreach v ∈ V do
3 foreach embedding φ : v

s−→ q do
4 if ViewFilter(q, v, φ) then

//Check if v is directly a solution
5 if v ≡ q then output solution scan(v)
6 else add (v, scan(v), φ) to S1

//Attempt single view rewritings
7 foreach (p1, e1, φ1) ∈ S1 do
8 Sspo ← TPTransform(q, p1, e1, φ1)
9 foreach (ps, es, φs) ∈ Sspo do

10 if ps ≡ q then output solution es
11 else add (ps, es, φs) to Scrt

12 S1 ← Scrt
//Join partial rewritings

13 while new (p, e, φ) triples are added to Scrt do
14 ((p1, e1, φ1), (p2, e2, φ2))← PickPair(q, S1, Scrt)
15 (p, e, φ)← TPJoin(q, (p1, e1, φ1), (p2, e2, φ2))
16 if (p, e, φ) 6= null then
17 Sspo ← TPTransform(q, p, e, φ)
18 foreach (ps, es, φs) ∈ Sspo do
19 if ps ≡ q then output solution es
20 else add (ps, es, φs) to Scrt

We consider the view-based query rewriting for the full language in Section 4.8.
In Section 4.5.1 we provide an overview of the tree pattern rewriting algorithm,

whereas in Section 4.5.2 we identify some interesting classes of rewritings, on which
we focus our search.

4.5.1 TPR Algorithm Overview
Our tree pattern rewriting algorithm, called TPR, takes as input a tree pattern query q

and a set of tree pattern views V , and outputs all minimal algebraic rewriting of q based
exclusively on V . It is outlined in Algorithm 4 and consists in three stages: the view
filtering, single view rewriting, and joining partial rewritings stages. Here we provide a
brief overview of the whole algorithm; individual steps will be detailed in Section 4.7,
along with completeness and termination results, as well as optimizations.
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The algorithm starts by identifying all possible ways in which a view could be used
to answer query q, that is, all possible structural embeddings of each view to q (line 3).
Then, the view filtering (line 4) step discards views which cannot appear in a rewriting,
based on some pruning criteria, as we will detail in Section 4.7. At this point, if a view is
directly equivalent to the query, it is output as a solution.

We then build the S1 set, containing, for each view v defined by the tree pattern p, and
embedding φ from v into q, triples of the form (view tree pattern p, algebraic expression
e, embedding φ), where e is a scan over v. Clearly, the pattern p and the expression e
are equivalent, that is, they return the same data regardless of the content of the XML
database. It turns out that throughout its execution, algorithm TPR only needs to manip-
ulate (pattern, expression, embedding) triples such that the pattern is a tree pattern and is
equivalent to the algebraic expression; this will be explained in Section 4.5.2.

During the single view rewriting stage (lines 7-11), the algorithm applies various trans-
formations on each (p, e, φ) triple of S1 (TPTransform function). Each transformation
(i) adds one or several algebraic operators on top of e, while simultaneously (ii) altering
p to keep it equivalent to the modified algebraic expression and (iii) modifying φ accord-
ingly, to embed the modified p into the query. Sample transformations aim at adding,
for example, a value selection on a view, or a selection on node IDs to transform a //
edge into a / edge etc. Modifying (pattern, expression, embedding) triples, all the while
keeping them in sync is a pretty complex process, which we discuss in Section 4.6.

This stage, thus, produces (pattern, expression, embedding) triples, such that the ex-
pression is based on a single view. If the pattern is equivalent to the query, the algebraic
expression is an equivalent rewriting of the query using only that view. Otherwise, the
triple produced by TPTransform is considered a partial rewriting based on which to
continue the search, as we explain below.

During the joining partial rewritings stage (lines 13-20), partial rewritings are com-
bined using equality joins on node IDs (and, if IDs are structural, by structural joins as
well), by applying the TPJoin operation. To further refine the result of a join by adding
necessary constraints from the query, we may call the TPTransform function again dur-
ing this stage. The order in which the partial rewritings are combined is encapsulated
within the function PickPair; we will discuss concrete orders in Section 4.7.

Importantly, during this stage, we build a join of two partial rewritings, only if the
join result is closer to an equivalent query rewriting than each of the inputs to the join;
in other words, by design we only build minimal algebraic expressions. This has two
advantages: (i) reducing the algorithm running time since we only enumerate minimal
join expressions; (ii) producing minimal rewritings only, which, under the cost hypothesis
we consider (Section 4.3.3), lead to lower evaluation costs.

4.5.2 Left-Deep Query Tree Organized Rewritings (LDQT)

This Section makes two crucial observations on the space of partial or equivalent
rewritings. Each observation leads to identifying a subset of all possible rewritings, and
shows that it suffices to search within this class, while still preserving completeness.

We first observe that algebraic expressions (and in particular, rewritings of a query
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Figure 4.9: Sample views, query, non-left-deep rewriting, and two corresponding left-
deep rewritings.

based on the same set of views) may differ in the details of their algebraic syntax, yet
represent fundamentally the same (equivalent) rewriting. For instance, if e = σcond(v1 ./
(v2 ./ v3)) is a rewriting, where cond is a predicate on the view v1, then so is e′ =
((σcond(v1) ./ v2) ./ v3). Our search for rewritings should not spend time enumerating
candidate rewritings that can be obtained from one another by pushing σ and π operators,
exploiting the transitivity of the =, ≺ and≺≺ comparison operators, re-ordering joins etc.
Instead, such transformations should be left to the subsequent optimization stage, and
rewriting should focus on finding fundamentally different alternatives.

Left-deep rewritings formalize this intuition:

Definition 4.5.1 (Left-deep rewriting). A rewriting e of the query q is left-deep iff: (i) all
× operators in e are binary, and their right-hand children contain no × operator (e is a
left-deep binary tree); (ii) all σ, π and δ are pushed as low as possible in e; (iii) all the
nav operators are applied below any × operator.

From a rewriting e, one can obtain by algebraic transformations several left-deep
rewritings, as illustrated in Figure 4.9, where for readability, we write a ≺ b instead of
a.ID ≺ b.ID (and similarly for other predicates). Note also that here and in the sequel,
we may omit drawing the edge above a top pattern node, whenever the discussion does
not require it. In Figure 4.9, e′ and e′′ are left-deep rewritings obtained from e. We call
the set of left-deep rewritings obtainable from a rewriting e via algebraic transformations,
the corresponding left-deep rewritings of e.

Our second observation exploits the inner connection between tree patterns and alge-
braic operators. We first introduce:

Definition 4.5.2 (LDT rewriting). A left-deep rewriting is tree-organized (LDT rewriting,
in short), iff each sub-plan p of e, such that p is a child of a × operator, is equivalent to
some tree pattern tp.

In Figure 4.9, e′ is an LDT rewriting, since the leaf operators corresponding to scans
of the views v1, v2 and v3 are equivalent to the respective view tree patterns. Moreover, the
plan σa≺b(v1×v2) is equivalent to the tree pattern //aID/bID. In contrast, e′′ in Figure 4.9 is
not an LDT rewriting: its sub-plan v1× v2 is a child of a × operator, and is not equivalent
to any tree pattern, since it combines data from unrelated nodes.
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We now state an important property:

Proposition 4.5.1. Let e be any rewriting of q using V . Then, there exists an LDT rewrit-
ing e′ corresponding to e.

Proof. We start by proving the existence of the LDT rewriting e′.
Let e1, e2, . . . , el be the set of left-deep rewritings corresponding to e, and assume that

in all ei, 1 ≤ i ≤ k, there are some × children, which are not equivalent to any pattern.
For a given ei, let pi be a lowermost such sub-tree, i.e., such that all descendant of pi, are
equivalent to some tree pattern (pi is guaranteed to exist since the leaves of ei are view
scans.)

If pi is not equivalent to any tree pattern, this means that pi’s output tuples have infor-
mation coming from at least two unrelated view nodes, i.e., having no common ancestor.
(An example is the left-hand child of the × operator in the e′′ rewriting of Figure 4.9: it
returns IDs of unrelated bs and cs.) Without loss of generality, let us assume there are ex-
actly two such unrelated nodes, x and y. On the path from pi to the root of ei, let pj be the
lowermost operator (either a child of ×, or the root of ei itself) such that pj is equivalent
to a tree pattern. (Clearly, pj exists, because ei is equivalent to q.) For pj to transform its
non tree-pattern-equivalent input to some tree-pattern-equivalent output, it has to relate
data from the unrelated nodes x and y, by ensuring they have a common ancestor, say z.
Thus, pj must be a selection, which applies at least two predicates of the form z ≺ x (or
z≺≺x) and z ≺ y (or z≺≺y), such that z is a view node which does not contribute to px (if
z contributed to px, then these predicates would have been pushed down by the definition
of left-deep rewritings, and px would then be equivalent to a tree pattern). In Figure 4.9,
pj is the σ operator in e′′.

We now identify the following operator nodes in ei:
pz the lowermost× child, descendant of pj , which already has the attributes in pj’s input,

coming from the view node z. (In Figure 4.9, pz is v1.)
px the lowermost × child, descendant of pi, which has all the attributes in pi’s input(s),

coming from the view node x. (In Figure 4.9, px is v2.) By choice of pi, px is
equivalent to a tree pattern.

py the lowermost × child, descendant of pi, which has all the attributes in pi’s input(s),
coming from the view node y. (In Figure 4.9, py is v3.) Similarly to px, py is also
equivalent to a tree pattern.

We build an expression e′ by copying ei and in this copy, swapping the subtrees px, py
and pz of ei. More specifically:

1. we add a ×pz branch immediately above px, and on top of the × we push all pj
operations (σ, π, de) which can be evaluated here; the result will be equivalent to a
tree pattern, since px was equivalent to one, and we have pushed all the operators
from pi up to pj which related x to z (the nodes nx and nz are related);

2. on top of this, we copy all operators from px to pi, until (and including) the ×
connecting it with py;

3. on top of this ×, we push all operators from pi which can apply now; the result will
be equivalent to a tree pattern (by a similar reasoning);
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4. we remove the pz subtree from its initial place under pj since it has been pushed
down.

Applying this procedure to e′′ in Figure 4.9 yields the rewriting e′, in which each ×
child is equivalent to a tree pattern.

Coming back to the proof, it is easy to see that e′ is equivalent to ei, since it has
been obtained by re-ordering the branches of ei; and, e′ is also left-deep. Thus, we
have obtained a left-deep rewriting corresponding to e, in which the lowermost node non-
equivalent to a tree pattern is higher than the one in ei.

By repeating the above procedure, we can lift the pi node arbitrarily high in e′. Given
that the root of e′ is equivalent to the (query) tree pattern, it follows that there is always
a left-deep rewriting corresponding to e, such that all its subtrees are equivalent to some
tree pattern.

For example, in Figure 4.9, the rewriting e′ is LDT and corresponds to e. Observe
that e′ does not need to be unique: swapping v2 with v3 and b with c in the predicates of
e′ in Figure 4.9 yields another LDT rewriting e′′′, in which all × children operators are
equivalent to some tree pattern.

An important subset of LDT rewritings consists of:

Definition 4.5.3 (LDQT rewriting). An LDT rewriting e is query-tree-organized (LDQT
in short) iff for each sub-plan p of e, such that p is a child of a × operator, and p is
equivalent to the tree pattern tp, tp can be embedded into q.

For example, the LDT rewriting e′ in Figure 4.9 is an LDQT rewriting, since the tree
pattern equivalent to σa≺b(v1 × v2) is the left branch of q. In this example, a sample
LDT rewriting which is not LDQT, would be σb≺a(v1 × v2), equivalent to the tree pattern
//bID/aID, which cannot be embedded in q.

Proposition 4.5.2. Let e be a rewriting of q. There exists an LDQT rewriting e′ corre-
sponding to e.

Proof. Let p be a × child in e′ such that its equivalent tree pattern t cannot be embedded
in q. Then, t (and its equivalent p) enforces some condition that is not present in the query
(such as a node which does not appear in the query, or two nodes which do appear in
the query but in a structural relationship contradicting the one in the query). Then, this
condition will still hold on the output of e′, since no algebraic operator between p and e′

can “lift” it; therefore, the rewriting e′ is not equivalent to the query (contradiction).

Observe that several LDQTs may correspond to a given rewriting, e.g., in Figure 4.9,
e′ and e′′′ mentioned above are LDQTs corresponding to e.

Proposition 4.5.2 is of crucial importance, as it allows us to build and use only LDQT
rewritings during the rewriting. Any non-LDQT rewriting e can be derived by the opti-
mizer from its corresponding LDQT rewriting e′, by reversing the algebraic transforma-
tions which compute e′ from e.
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Figure 4.10: Value predicate adaptation and navigation.

4.6 Algebraic Transformations on Tree Patterns and DAGs
In this Section, we consider the problem at the core of the TPTransform function used

by the rewriting algorithm: given a (tree or DAG) pattern p and a target tree pattern p′,
how can one transform p into p′ by means of algebraic operations? More precisely, we are
given the pattern p, and an algebraic expression e equivalent to p, and we are interested in
ways of applying algebraic operations on e (while also modifying p to keep it equivalent
to the modified expression) until they are both equivalent to p′ and thus, the expression is
a way to compute p′. To ease reading, our discussion is organized into subsections, each
corresponding to a type of transformation one could apply on p.

4.6.1 Value Predicate Adaptation (ValPredAd)

We first discuss how value equality predicates can be algebraically added to a tree
pattern. Let p1, p2 be two tree patterns, such that there is a structural embedding (see
Definition 4.4.3) φ : p1

s−→ p2, and let e1 be the corresponding algebraic expression of p1.
We define the transformation ValPredAd(p1,p2), which computes modified versions of p1
and e1 as follows. ValPredAd visits each node n1 ∈ p1, and for each value predicate of
the form [= c] attached to φ(n1) ∈ p2 and not attached to n1:

– if n1 is val-return, the predicate [=c] is added to n1 and e1 is substituted by
σn1.val=c(e1), i.e., a selection is added on top of e1;

– if n1 is not val-return, both p1 and e1 are left intact and the function continues to
the next node.

ValPredAd returns: (i) the pattern p′1 obtained by modifying p1; (ii) the (equivalent)
algebraic expression e′1 obtained from e1; (iii) the embedding φ′ : p′1

s−→ p2, which is the
same as φ (p1 and p′1 have the same structure).

As an example consider patterns p1 and p2 of Figure 4.10, with p2 having two value
predicates not present in p1. In this case, ValPredAd adds a value predicate on p1’s b
node, but not on its c node, since the latter is not val-return.

4.6.2 Navigation (Nav)

Since a tree pattern (view) node annotated with cont denotes the fact that complete
XML subtrees matching that view node are stored in the view, we may extend the view
to add more (possible return) nodes. This is done through the nav operator (see Sec-
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tion 4.3.2) and has been first introduced as a technique in one-view rewritings of tree
patterns with single return nodes [XO05].

Let p1, p2 be two tree patterns, such that there exists φ : p1
s−→ p2, and let e1 be

the algebraic expression corresponding to p1. We define the Nav(p1,p2) transformation,
which returns modified versions of p1 and e1 as follows. Nav visits each cont-return node
n1 ∈ p1 and applies a nav operator on e1, requiring that we navigate inside the n1.cont
attribute to retrieve matches for a pattern p′, defined as follows. Pattern p′ is a copy of
p2’s sub-pattern rooted in φ(n1), from which we remove all ID stored attributes (while
preserving all val and cont attributes). IDs are treated differently since in our model, we
assume node IDs are not part of cont values, the latter corresponding to serialized XML
subtrees. Each navn1.cont,p′ operator thus introduced has the effect of adding to p1 all the
nodes found under φ(n1), along with their attributes (modulo the ID issue above).

Nav returns: (i) a new tree pattern p′1 enriched with all the nodes introduced by the se-
quence of nav operators; (ii) an algebraic expression e′1 of the form nav(nav(. . . (e1) . . .)),
equivalent to p′1; (iii) an embedding φ′ : p′1

s−→ p2 that is the same as φ for the nodes of
p′1 that also appeared in p1, and that maps 1-1 each of the additional nodes of p′1 to the
corresponding nodes of p2.

Nav is illustrated by an example in Figure 4.10. Applying Nav on p3 and p4 leads to
navigate within p3’s a.cont attribute, leading to the pattern p′3.

4.6.3 Attribute Elimination (AttElim)

We now consider the problem of eliminating some of the attributes of a tree pattern
p in order to obtain a pattern p′ that is structurally equivalent to p, (p

s≡ p′, see Defi-
nition 4.4.5), but p′ contains only a subset of p’s attributes. Note that all results of this
Section carry over to the more general case of DAG patterns as well.

Clearly, moving from p to p′ leads to fewer attributes in the relations corresponding
to the pattern (or view) content. It may also lead to fewer tuples. To see why, consider the
patterns p = //aID//bval, p′ = //aID[//b], and the document <a><b1/><b2/></a>,
where b1 denotes the first b element and b2 denotes the second. In this case, p and
e compute the tuple set {(a.ID, b1.val), (a.ID, b2.val)} while p′ returns {(a.ID)}, i.e., p′

indeed returns less tuples than p. This happens because in p′ the b node has become
existential and the number of results is determined only by the return node a.

It is important to note that for any document d, since p and p′ are structurally equiv-
alent, they can be embedded in exactly the same ways to d. More formally, for any
embedding φ : p → d, there exists an embedding φ′ : p′ → d, such that for any n ∈ p
and the corresponding node n′ ∈ p′, we have φ(n) = φ(n′). The opposite also holds (for
any embedding φ′ : p → d, there is an embedding φ such that for any n ∈ p and the
corresponding node n′ ∈ p′, φ(n) = φ′(n′)).

This tight connection between the ways p and p′ can be embedded in the database,
together with the fact that any return node of p′ is also a return node in p, guarantees
that a tuple in p′(d) can only take values that also appear together in some p tuple. The
following Lemma formalizes the above remarks; the proof is quite straightforward and
thus we omit it.
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Figure 4.11: Attribute elimination.

Lemma 4.6.1 (Tuples resulting from attribute elimination). Let p, p′ be two patterns such
that p

s≡ p′ and for any node n ∈ p and corresponding node n′ ∈ p′, the return attributes
of n′ are a subset of the return attributes of n. Then, for any document d:

1. for any tuple t′ ∈ p′(d), there exists a tuple t ∈ p(d) such that t restricted to t′’s
attributes is exactly t′, in other words: πp′(t) = t′, where πp′ designates a projection
retaining exactly the return attributes of p′

2. for each tuple t′ ∈ p′(d), such that t′ appears nt′ times in p′(d), let T be the set of
tuples {t ∈ p(d) | πp′(t) = t′} and for each t ∈ T , let nt be the number of times
that t appears in p(d). Then, we have:

nt′ ≤
∑

t∈T nt

In the example at the beginning of this Section, taking t′ =(a.ID), we obtain T = {(a.ID,
b1.val), (a.ID, b2.val)}. We have nt = 1 and

∑
t∈T nt = 2.

Let e be the algebraic expression corresponding to p. Lemma 4.6.1 entails that in order to
adjust e into an expression e′ corresponding to p′, one must (i) necessarily remove some
columns from e, and (ii) possibly reduce the multiplicity of some tuples from e.

In our algebraic toolbox (Section 4.3.2.3), projection is the obvious tool for removing
columns, whereas duplicate elimination is the tool for adjusting the tuple multiplicity. In
the relational setting, under set semantics, a projection suffices to eliminate an attribute.
Under bag semantics, a duplicate elimination is also needed on top of the projection. As
explained in Section 4.3, the semantics of our views carries the W3C’s intended XPath
and XQuery semantics into a tuple-based setting, where it is defined by the number of
bindings (embeddings) of the return nodes of the tree pattern on a given document. Under
this semantics, although projection is used to remove columns, the situations when a
duplicate elimination is needed are not obvious. Moreover, when duplicate elimination is
necessary, it may not be sufficient in order to adjust the multiplicity of the results, all the
while attaining the exact semantics of the target pattern p′.

A simple example illustrates projection. In Figure 4.11, to transform p2 into p′2, one
only needs to project out the c.val attribute. However, some other cases raise more dif-
ficulties. Consider pattern p3 in Figure 4.11, for which p3(d2) returns the following six
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tuples 3:

a.ID b.val c.val d.val

a1.ID b1.val c1.val d1.val
a1.ID b1.val c1.val d2.val
a1.ID b1.val c3.val d1.val
a1.ID b2.val c3.val d2.val
a1.ID b2.val c2.val d3.val
a1.ID b2.val c4.val d3.val

Assume that our goal is to eliminate from p3, the val attribute of the c node (underlined
in the Figure), in order to obtain the pattern p′3 in the Figure. Thus, assuming e is an
algebraic expression corresponding to p3, we are searching for an algebraic expression of
the form α(e3), which must be equivalent to p′3. A first option is e′ = π(e3), where the
projection removes the undesired cval attribute. However, e′ is not equivalent to p′3: while
e′ returns six tuples (a simple projection does not remove duplicates), p′3(d2) returns only
the following three tuples:

a.ID b.val d.val

a1.ID b1.val d1.val
a1.ID b1.val d2.val
a1.ID b2.val d3.val

A second option then is to take e′′ = δ(π(e′)), where δ is a duplicate elimination operator.
Nevertheless, depending on the actual values carried by the nodes of d2 (values are not
shown in the Figure), e′′ may return anywhere from one to three tuples. For instance, if
b1.val = 2, b2.val = 4, d1.val = d2.val = 5 and d3.val = 7, then e′′ returns two tuples.
On the contrary, if b1.val = b2.val and d1.val = d2.val = d3.val, e′ outputs only one
tuple.

The last example has shown that adapting the algebraic expression e corresponding
to a pattern p, in order to get an expression equivalent to a given different pattern p′, is
quite involved. It turns out that in some cases, it is impossible, that is: starting from a tree
pattern p and equivalent algebraic expression e, there is no algebraic expression e′ = α(e)
such that e′ be equivalent to a pattern p′ obtained from p by removing some of p’s return
attributes.

In the sequel, we address the different cases which may arise when attempting to
eliminate some attributes of a pattern p in order to obtain pattern p′.

4.6.3.1 Eliminating a Subset of Each Node’s Attributes

This is the case when we eliminate from each return node of p only a (possibly empty)
strict subset of its attributes. The important aspect is that p and p′ have the same return
nodes, that is: from no node of p do we remove all attributes.

3. Note that we have used subscripts to distinguish between the nodes of d2 having the same labels.
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Lemma 4.6.2 (Eliminating attribute subsets). Let p, p′ be two structurally equivalent pat-
terns, such that for each node n ∈ p: (i) n is a return node iff the corresponding node
n′ ∈ p′ is a return node; (ii) n has at least the attributes of n′. Let e be the algebraic
expression corresponding to p. Then, πp′(e) ≡ p′.

Proof. We first show that πp′(p) ⊆ p. Let φ : p → d be a mapping from p to an XML
document d, and t ∈ p(d) be the tuple corresponding to this embedding. Let φ′ : p → d
be the embedding obtained by restricting φ to only the attributes of p′. Clearly, φ′ is also
an embedding from p′ into d; let t′ ∈ p′(d) be the tuple corresponding to φ′. Clearly,
πp′(t) = t′, where πp′ is the projection removing all but p′’s attributes. Generalizing this
over all embeddings φ : p→ d, we obtain that πp′(p(d)) ⊆ p′(d).

We now consider the opposite inclusion, that is: p′(d) ⊆ πp′(p(d)). Let t′ ∈ p′(d) be
a tuple produced by the embedding φ′ : p′ → d. Given that p and p′ have the same return
nodes, there is a bijection between their respective sets of embeddings into d, thus to each
such embedding φ′ corresponds exactly one embedding φ : p → d. It follows that there
exists a tuple t ∈ p(d) such that πp′(t) = t′, finalizing our proof.

As an example, consider eliminating b.val from pattern p1 depicted in Figure 4.11
to obtain p′1. Node b remains a return node after the elimination, and πa.val,b.ID(p1) is
equivalent to p′1. In particular, p1(d1) and p′1(d1) return the same two tuples (if we project
out the b.val column from p1(d1)).

4.6.3.2 Elimination of All Attributes of Some Nodes

This case occurs when we eliminate all attributes of some p nodes, turning them to
non-return ones, that is, p′ has a subset of the return nodes of p. Recall that our goal is to
adjust e, the algebraic expression corresponding to p, into an expression e′ corresponding
to p′.

In Figure 4.11, in order to turn p2 to p′2 we can simply project out c.val, since p2 and p′2
give the same number of tuples when evaluated on some document (e.g., they both return
3 tuples on d2). In other cases, though, a projection is insufficient, as we have discussed
for p3 and p′3 in Figure 4.11, in the beginning of Section 4.6.3.

We say that a node of p is embedding-dependent, if by turning it to non-return and
obtaining p′, the embeddings of p (restricted to the remaining attributes) are the same as
the ones of p′ to any document d. More formally:

Definition 4.6.1 (Embedding-dependent nodes). Let p, p′ be two tree patterns such that
p′ is obtained from p by turning a node n ∈ p into a non-return node (removing all
attributes of n). LetNp,Np′ be the sets of return nodes of p and p′, respectively. Obviously,
Np = Np′ ∪ {n}.

For a given document d, let Φdp, Φ
d
p′ be the sets of embeddings of the return nodes of p

and p′, respectively, into d. We denote by Φdp|Np′
the restriction of Φdp to Np′ .

We say node n is embedding-dependent in p, iff for any document d, Φdp′ = Φdp|Np′
.

Otherwise, we say n is embedding-independent.

The following Lemma determines under which conditions n is embedding-dependent:
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Lemma 4.6.3 (Embedding-dependency check). A node n ∈ p is embedding-dependent,
iff at least one of the following holds:

1. n has a return descendant ndes and there is a /-path between n and ndes. In this
case, we say that n is embedding-dependent on ndes;

2. n has both a return descendant ndes and a return ancestor nanc, and is connected to
nanc through a /-path. In this case, we say n is embedding-dependent on ndes and
nanc.

Proof. (“If” direction) We show that if one of the two hypotheses hold, then n is
embedding-dependent, that is, for any document d, we have Φdp′ = Φdp|Np′

, where p′ the
pattern obtained from p by turning n to non-return.

Assume hypothesis 1 holds. Let d be a document and φ ∈ Φdp an embedding that maps
(binds) ndes to node ndesd ∈ d. Since n and ndes are connected with a /-path, starting
from node ndesd ∈ d and going up the path towards the root of d, after as many steps as
the length of path going from n to ndes, we always arrive at the same unique d node, say
nd, for any embedding φ that maps ndes to ndesd . In other words, n’s binding through any
embedding φ ∈ Φdp is uniquely determined by the binding of ndes. Then, if we turn n to a
non-return node and obtain p′, the embeddings of p′ will be the same as the restriction of
the embeddings of p to the node set Np′ , i.e., Φdp′ = Φdp|Np′

.
Now assume hypothesis 2 holds. Let d be a document and φ ∈ Φdp an embedding

that maps nanc to a node nancd ∈ d, and ndes to a node ndesd ∈ d. Then, φ must map n to
the only node that appears in d on the path going down from nancd to ndesd , after as many
steps as there are /-edges between nanc and n in p. In other words, all embeddings φ
mapping nanc to a fixed nancd and ndes to a fixed ndesd , also map n to the same node in d. In
particular, this means that to any embedding φ′ ∈ Φdp′ corresponds exactly one embedding
from φ ∈ Φdp|Np′

, namely, the one embedding φ that coincides with φ′ on its choice of nancd

and ndesd . Generalizing this over all embeddings φ′ ∈ Φdp′ , we obtain that Φdp′ = Φdp|Np′
.

(“Only if” direction) We show that if none of the two conditions hold, then n is
embedding-independent. To that end, we build a document d such that, if we turn n
into a non-return node in p′, we get Φdp′ 6= Φdp|Np′

. We start by building a document d
isomorphic to p: for each node in p, d has a node with the same label, and for each (/ or
//)-edge between two nodes in p, we add an edge between the corresponding nodes in d.
For a given node m ∈ p, we denote by md the corresponding node in d.

The remainder of our proof is organized according to the existence or not of return
ancestors and/or descendants of n, and on whether there are /-paths connecting them to
n. With respect to the ancestors, exactly one of the following three holds: (i) n has no
return ancestors; (ii) n has return ancestors but it is not connected by a /-path to a return
ancestor; (iii) n has return ancestors and a /-path to at least one of them. Similarly, three
cases hold for n’s return descendants, allowing a total of nine possibilities. Table 4.1
depicts this space of possibilities. Hypothesis 1 of our Lemma corresponds to the bottom
row, while Hypothesis 2 of the Lemma corresponds exactly to the lower two cells on the
rightmost column. We now identify three cases (denoted A, B and C) which are also
mutually exclusive and which, together, cover all the situations when neither of the two
hypothesis hold. For each case, a different modification of the document d built out of p
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above, will produce a new document demonstrating that n is not binding-independent.

n has no return an-
cestor

n has return ances-
tors but no / path to
a return ancestor

n has a /-path to
some return ances-
tor

n has no return de-
scendant

Case A Case A Case A

n has return de-
scendants but no /
path to a return de-
scendant

Case B Case C Hypothesis 2

n has a / path
to some return de-
scendant

Hypothesis 1 Hypothesis 1 Hypothesis 1 and
Hypothesis 2

Table 4.1: Analysis of cases for the “Only if” proof of Lemma 4.6.3.

Case A: n has no return descendant In this case, if we remove n’s attributes, n is
existential in the obtained pattern p′. Let md be the parent of nd in d. We copy the subtree
of d that is rooted at nd, as a child of md. Now md has two children to which n can
be bound through an embedding. Thus, p(d) returns two tuples. However, since n is
existential in p′, p′(d) returns only one tuple. Hence, for this particular d, Φdp′ 6= Φdp|Np′

.

Case B: n has a return descendant, there is no /-path to a return descendant and n
has no return ancestor The path from n to ndes contains at least one //-edge. Going
down from n to ndes, let n1 be the first node above a //-edge in p (note that n1 and n may
coincide). We alter d in the following way: we copy the path from the root of d to nd1
and add it as a child of nd1, and we move the children of nd1 (along with their subtrees) at
the end of the newly added path. Clearly, p can now be embedded twice in the modified
version of d and p(d) returns two tuples. In contrast, p′(d) returns only one tuple, since n
is non-return in p′.

Case C: n has a return ancestor, a return descendant, and /-paths to neither Let
nanc, ndes be the return ancestor and descendant, respectively, of n. As we go up from n
to nanc, let n1 be the first node below a //-edge. Similarly, let n2 be the first node above
a //-edge, on the way from n down to ndes. We modify d by copying the path from n1

to n2 and adding it as a child of nd1. Then, on this modified document d, p(d) returns two
tuples, whereas p′(d) returns one tuple.

Figure 4.11 illustrates the embedding-dependent property. In p1, a is embedding-
dependent on b (/-path to it), but b is embedding-independent (no return descendant).
In p2, b is embedding-dependent on a and c (a is return /-ancestor and c return descen-
dant), and c is embedding-dependent on d (return /-descendant). In p4, c is embedding-
independent (no /-path neither to the return descendant not to the return ancestor).

From the proof of the above Lemma, it becomes clear that in the cases when n is
embedding-independent, the embeddings of p′ on any document d is a subset of the re-
striction on p′ attributes of embeddings of p on d. This was explained also in the beginning
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of this Section (Section 4.6.3): the tuples returned from p′ can have smaller multiplicity
than the ones of p, but not different values, which brings us to the following Lemma:

Lemma 4.6.4 (Embedding-independence). If a node n is embedding-independent, then
Φdp′ ⊆ Φdp|Np′

for any document d.

We now formally identify the cases for which we can eliminate some attributes of p
through a simple projection over the equivalent expression of p:

Lemma 4.6.5 (Attr. elimination only through projection). Let p be a pattern, e the expres-
sion corresponding to p, and p′ be a pattern obtained from p by removing some attributes.
There exists an expression of the form π(e) that is equivalent to p′, iff for each node n ∈ p,
some of whose attributes are eliminated in p′, one of the following holds:

1. n remains a return node in p′;

2. n is embedding-dependent in p′ (see Definition 4.6.1).

Proof. (“If” direction) If n remains a return node, Lemma 4.6.2 has shown that p′ is
equivalent to a projection over e.

Assume now that n is embedding-dependent. From Definition 4.6.1, we have that
Φdp′ = Φdp|Np′

for any document d. It follows that pattern p′ is equivalent to a projection
over e: we only need to project out the attributes of n and then, for any document d
the tuples returned by p′(d) and by the projection π(e) will be the same, since the set of
embeddings of p, restricted to the attributes of p′, is the same as the set of embeddings of
p′ on d.
(“Only if” direction) We show that if none of the conditions of the lemma hold, that is,
if n is non-return in p′ and is not embedding-dependent either, then p′ is not equivalent to
a projection over e. According to Definition 4.6.1, if n is not embedding-dependent, we
have Φdp′ 6= Φdp|Np′

for some document d. Thus, there exists a document d, for which the
set of embeddings of p′ and those of p when restricted to the attributes of p′, are not the
same. Therefore, p′ cannot equivalent to a projection over e.

In Figure 4.11, p′1 is equivalent to a projection over the expression corresponding to
p1 (the b node remains return), and p′2 can also be obtained from p2 through a projection
(the c node is embedding-dependent, due to the /-path from c to d). In contrast, p′3 cannot
be obtained from p3 only through a projection.

We now turn to the cases which do not meet the conditions of Lemma 4.6.5. In
such cases, a return node of p is necessarily no longer return in p′ (otherwise, we fall in
the situation discussed in Section 4.6.3.1) and is embedding-independent (otherwise, a
projection would be sufficient to get p′). As Lemma 4.6.4 also reveals, we need to adjust
the multiplicity of the tuples obtained through the projection. The only tool to do so, is
by applying a duplicate elimination over the projection. However, as explained in the
beginning of Section 4.6.3, there are cases, such as p3 of Figure 4.11, when duplicate
elimination does not preserve the semantics of p′3 (in that case, we showed that depending
on the values of d1, we may get from the projection over e3 (the expression equivalent to
p3) one or two tuples, instead of three).
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The following Lemma formalizes the cases for which performing a duplicate elimi-
nation preserves the semantics of p′, that is, it does not remove any desired tuples from
the projection over the expression equivalent to p for some document d (as occurred in
the case of p3 explained above). Note that we first treat the case when all attributes are
removed from some nodes of p.

Lemma 4.6.6 (Attr. elimination when dupl. elimination is necessary). Let p be a pattern,
e the expression corresponding to p, and p′ be a pattern obtained from p by turning some
nodes of p to non-return. If (according to Lemma 4.6.5) p′ is not equivalent to an expres-
sion π(e), then p′ is equivalent to an expression δ(π(e)), iff for each return node n′ of p′,
one of the following holds:

1. n′ is ID-return;

2. n′ is embedding-dependent on p′ nodes that are ID-return.

Proof. (“If” direction) First, assume that all return nodes of p′ are ID-return. This means
that, given a document d, p(d) does not contain any duplicates, because each tuple corre-
sponds to a unique set of bindings of the return nodes of p′ to some d nodes. Since for
each such d node, we also get its ID in the result of the tuple (every p′ node is ID-return),
p′(d) does not contain any duplicates. Thus, if in e(d) we project out all attributes refer-
ring to nodes of p that became non-return in p′, and then perform a duplicate elimination
over π(e(d)), we obtain exactly the tuples of p′(d).

Assume now that there are some nodes of p′ that are not ID-return, but are
embedding-dependent on some other p′ nodes that are ID-return (see Definition 4.6.1
and Lemma 4.6.3). Let ndep ∈ p′ be such a node, and consider the case when ndep de-
pends on a single other node nind ∈ p′ (a similar discussion holds also for the situation
when ndep is embedding-dependent on two nodes instead of one). In this case, for a given
document d, and for a given embedding φ : p′ → d, φ(nind) determines the d node in
which ndep is mapped. Thus, based on the unique set of bindings of the ID-return p′

nodes and the fact that the remaining return nodes are embedding-dependent on them,
there will be no duplicates in p′(d). It follows that, as explained for the case when all
return nodes are ID-return, the expression δ(π(e)) is equivalent to p′.
(“Only if” direction) Let n′ be a return, but not ID-return, node in p, which is embedding-
independent. It is easy to create a document (such as the ones described in the proof of
Lemma 4.6.3), such that for the same set of bindings of the ID-return nodes of p′, n′ can
be bound to two different d nodes, say nd1, nd2, leading to two tuples. If n′ is val-return
and nd1.val = nd2.val, then the two tuples are the same (but both are included in the
result of p′(d) because they correspond to unique sets of bindings of the return p′ nodes),
and performing a duplicate elimination on π(e) will lead to a different semantics than p′;
in particular, they will differ on the document we constructed. Thus, no expression of the
form δ(π(e)) can be equivalent to p′, because the duplicate elimination will remove one
of the two afore-mentioned tuples. The same can be shown if n′ is cont-return.

For instance, in Figure 4.11, to obtain p′3 from p3, a duplicate elimination is needed
(c becomes non-return and there is no /-connected ID-return descendant). However, the
conditions of Lemma 4.6.6 are not met, hence, we cannot obtain p′3 from p3. On the
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contrary, we can project out c.val from p4 and apply a duplicate elimination (b and d are
ID-return and a is embedding-dependent on b).

Consider now pattern p5 in Figure 4.11, and assume we want to remove some of its
attributes and obtain pattern p6. Let e5 be the equivalent expression to p5. We first apply
a projection over p5, that is, πc.val to remove the attributes not present in p6. Clearly, a
duplicate elimination is needed on top of the projection (b that was turned to non-return
is embedding-independent in p6). However, we cannot apply Lemma 4.6.6 on p6 to check
if a duplicate elimination can be performed, because, although we removed part of c’s
attributes, we did not remove all of them, as the Lemma requires. Moreover, notice that
the rest of the requirements of Lemma 4.6.6 are not met either, and according to that,
we cannot perform a duplicate elimination over the projection and preserve p5 seman-
tics. Nevertheless, we can obtain p6 by first obtaining p′5. In fact, p6 is equivalent to the
expression πc.ID,c.val(δ(πc.val(e))), which brings us to the following Lemma:

Lemma 4.6.7. Let p be a pattern, e the expression corresponding to p, and p′ be a pattern
obtained from p removing some of its attributes. Let p′′ be a pattern obtained from p by
(i) keeping only the attributes of p′; (ii) for each return node of p′, if the corresponding
node in p had an ID, add that ID attribute in p′.

Then, p′ is equivalent to the expression πp′(δ(πp′′(e))), iff p′′ is equivalent to δ(πp′′(e))
(where we denoted πpx(e) a projection keeping exactly the attributes of px).

Proof. We start by clarifying the role of p′′. This pattern is an “intermediary ver-
sion” between p and p′, having at most the attributes of the former and at least the
attributes of the latter. More specifically, p′′ preserves IDs for all p nodes that are
still return in p′, while being restricted to p′’s attributes otherwise. For instance,
if p = //aID,val//bval[//cID,val]//dval and p′ = //a//b[//cval]//dval, then p′′ =
//a//b[//cID,val]//dval.

The “if” direction is straightforward: if p′′ ≡ e′′ = δ(πp′′(e)), then it follows from
Lemma 4.6.5 that p′ ≡ πp′(e

′′) = πp′(δ(πp′′(e))), since p′′ and p′ have the same return
nodes.

For the “only-if” direction, we show that if p′′ 6≡ δ(πp′′(e)), then p′ 6≡ πp′(δ(πp′′(e))).
Since p′′ 6≡ δ(πp′′(e)), we have one of the following:

1. p′′ ≡ πp′′(e) (Lemma 4.6.5). Then according to the same Lemma, p′ ≡ πp′(πp′′(e)),
thus, indeed p′ 6≡ πp′(δ(πp′′(e))).

2. p′′ cannot be equivalent to an expression over e even after duplicate elimination
(Lemma 4.6.6), thus, the semantics of p′′ are not preserved through δ(πp′(e)). If
this is the case, we cannot perform a projection over δ(πp′(e)) and preserve the se-
mantics of p′ that has the same return nodes as p′′ (Lemma 4.6.5). Hence, we have
p′ 6≡ πp′(δ(πp′′(e))). Moreover, p′ cannot be equivalent to δ(πp′(e)): if p′′ cannot be
equivalent to δ(πp′′(e)) that has even more ID-return nodes than p (Lemma 4.6.6
has shown that ID-return nodes can only help in applying duplicate elimination
while preserving the semantics of the target pattern), then definitely duplicate elim-
ination cannot be successfully applied over πp′′(e) to obtain p′.
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Algorithm 4: Attribute Elimination (AttElim)

Input : Tree patterns p, p′, with p
s≡ p′ and p′ having a subset of p’s attributes;

expression e ≡ p
Output: Expression e′ = α(e) such that e′ ≡ p′

//Check if p′ ≡ π(e) (Lemma 4.6.5)
1 only_projection← true
2 foreach node n ∈ p s.t. Sat(n, p) 6= Sat(n, p

′) do
3 if Sat(n, p′) = 0 and n embedding-independent in p′ then
4 only_projection← false

5 if only_projection = true then return πp′(e)
//Check if p′ ≡ δ(π(e)) (Lemma 4.6.6) or p′ ≡ π(δ(π(e)))
(Lemma 4.6.7)

6 Build p′′ from p′, adding ID to node n ∈ p′′ if n had an ID in p and Sat(n, p′) 6= 0
7 foreach node n ∈ p′′ s.t. Sat(n, p′′) 6= 0 do
8 if n !ID-return and !embedding-dependent on ID-return nodes then
9 return null

10 if p′ ≡ p′′ then return δ(πp′′(e))
11 else return πp′(δ(πp′′(e)))

4.6.3.3 Attribute Elimination Algorithm

We now present Algorithm AttElim (Algorithm 5), which takes as inputs two patterns
p and p′, such that p

s≡ p′ (see Definition 4.4.5), with p′ having a subset of p’s attributes,
as well as the expression e ≡ p. AttElim attempts to eliminate these additional attributes
in order to obtain p′ through an algebraic expression e′ built over e. If the algorithm
succeeds, it returns e′. However, it may fail to find such an algebraic expression.

In the algorithm, Sat(n, p) is the node signature of a node n ∈ p (see Definition 4.4.1).
Since p

s≡ p′, if n is a node of p, then p′ also has a node n of the same label. However, if
Sat(n, p) ⊂ Sat(n, p

′), then some attributes of n ∈ p should be eliminated.
First, we check if p′ is equivalent to a projection over e, that is, an expression of the

form π(e), according to Lemma 4.6.5 (lines 1-4).
If this is not the case, a duplicate elimination is also needed on top of the projec-

tion over e. To this end, in the rest of the algorithm, we check if a duplicate elimination
can be successfully applied, while preserving the semantics of p′, leading to an expres-
sion δ(π(e)) (Lemma 4.6.6) or an expression π(δ(π(e))) (Lemma 4.6.7). Otherwise the
algorithm fails, meaning that p′ cannot be obtained through an expression over e.

Proposition 4.6.8 (Completeness of AttElim). Algorithm AttElim is complete, i.e., given
two tree patterns p, p′ as input, such that p

s≡ p′ and p′ having a subset of p’s attributes, if
p′ is equivalent to an algebraic expression over e (the expression equivalent to p), AttElim
will find one such expression.

The completeness of AttElim follows readily from Lemmas 4.6.5, 4.6.6 and 4.6.7,
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which capture all cases in which projection and duplicate elimination can be used to
algebraically obtain p′ from p.

4.6.4 Node Unification (NodeUnif)
In this Section we present the node unification transformation which, given a (DAG or

tree) pattern, aims at unifying (or collapsing) some of its nodes, which has the net effect
of turning the pattern into one with fewer nodes. In our query rewriting context, the goal
is to unify nodes of the pattern that are mapped to the same query node: in order to arrive
to an expression equivalent to the query, the mapping from the pattern that is equivalent
to the rewriting expression, to the query should be bijective (see Theorem 4.4.3).

Formally, we are given as input a DAG pattern dp along with its corresponding alge-
braic expression e, and a structural embedding φ : dp

s−→ p from dp into a tree pattern p
(in our context, the role of p will be played by a tree pattern extracted from the query that
we seek to rewrite). We say two nodes n1, n2 ∈ dp are unification candidates whenever
φ(n1) = φ(n2), that is, whenever the two nodes are mapped to the same p nodes. The
unification of n1 and n2 is defined as the process that substitutes both n1 and n2 in dp, by a
single node nu, (i) having as attributes the union of the attributes of n1 and n2, (ii) as direct
ancestors in the pattern, the union of the ancestors of n1 and n2, and (iii) as descendants,
the union of their descendants. Node unification on a DAG pattern may lead to either a
tree or a DAG pattern, and similarly, from a tree pattern, unification may produce either a
tree or a DAG. That is why, for most generality, we define it on DAG patterns. Note that
the output pattern of node unification can be also structurally embedded to p through φ,
if we also substitute the mapping of n1 and n2 to a node np of p, by the mapping of nu to
the same np node.

Given dp, e, φ, and a pair of unification candidates, transformation NodeUnif-1 at-
tempts to unify the unification candidates, and returns the modified versions of dp, e and φ.
In order to unify two nodes n1 and n2 through an algebraic expression, both of them need
to be ID-return nodes. Then, we add a selection over e, imposing that n1.ID = n2.ID.
In the resulting pattern, n1 and n2 are unified into node nu. If n1 and n2 have a common
direct descendant, nu will be connected to it through a //-edge if both n1 and n2 were
connected to it with such an edge, otherwise through a /-edge.

For instance, in Figure 4.12, both d nodes of dp are ID-return and are mapped to the
same p node. To this end, we apply a selection on e (let e′ = σ(e) be the corresponding
expression) unifying the two d nodes, and obtain dp′.
Confluence and order-independence For a given dp, e and φ, several unification candi-
date pairs may exist, in which case NodeUnif-1 may be applied repeatedly, leading to a
chain of transformations of the form:

(dp, e, φ)
NodeUnif-1−−−−−−−−→ (dp1, e1, φ1)

NodeUnif-1−−−−−−−−→ (dp2, e2, φ2) . . .
NodeUnif-1−−−−−−−−→ (dpk, ek, φk)

It turns out that whenever several NodeUnif-1 transformation can apply, the order
in which they are applied does not change the final result. On the algebra side, this
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Figure 4.12: Node unification.

is confirmed by the intuition that selections are commutative; on the pattern side, the
corresponding observation is that unifying two nodes never prevents the unification of
another pair of nodes.

This enables us to define the NodeUnif transformation which, given a (d, p, e) triple,
identifies all unification candidates and repeatedly applies NodeUnif-1 until there is no
unification candidate pair left.

Proposition 4.6.9 (NodeUnif completeness). NodeUnif is complete, i.e., given a pattern
dp that is structurally embedded to a tree pattern p, and the expression e that is equivalent
to dp, if there is an algebraic expression over e that can unify the nodes of dp mapped to
the same p node, then NodeUnif will find such an expression.

Proof. Given all operators of our algebra, adding an ID selection is the only way to
algebraically impose that two nodes are the same. Moreover, the above observation about
the order of applying node unification entails that NodeUnif will output a pattern, in
which no more nodes can be algebraically unified.

Note that we have presented a different way of unifying nodes, through the DAG2Tree
operation, in Section 4.4.5. However, DAG2Tree does not apply algebraic operations.
Instead, it uses properties of DAG patterns, namely the interleavings, in an attempt to
transform a DAG pattern to a tree. During DAG2Tree, two nodes that have the same
immediate common descendant and are connected to it through a /-edge, may be unified;
the two nodes do not need to be ID-return. For instance, in Figure 4.12, the two c nodes
cannot be unified through NodeUnif, but they can be unified through DAG2Tree.

4.6.5 Structural Refinement (StructRef)
Our last algebraic pattern transformation is structural refinement, which takes as input

a DAG pattern dp (together with its equivalent algebraic expression e) and a tree pattern
p, such that there exists φ : dp

s−→ p. Again, in practice, the role of p is played by a tree
pattern obtained from the query we seek to rewrite. Structural refinement attempts to add
some structural relationships not originally present on dp, but which are present in p.
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Figure 4.13: Structural refinement.

In particular, consider two nodes n1, n2 ∈ dp, such that there exists a path (of one or
more edges) going down from φ(n1) to φ(n2) ∈ p, whereas no path goes down from n1

to n2 in dp. Assume that n1 is the only ID-return dp node mapping to φ(n1), in other
words, for any ID-return n ∈ dp such that n 6= n1, φ(n) 6= φ(n1) holds. We define the
transformation StructRef-1, such that n1, n2 are both ID-return, it can algebraically add
one of the following relationships:

1. if there is a //-edge or a path (consisting of both /- and //-edges) between φ(n1)
and φ(n2) in p, we connect n2 through a //-edge to n1 and obtain a new DAG
pattern dp′. The algebraic counterpart of this operation is to add a selection of the
form n1.ID≺≺n2.ID on top of e;

2. if φ(n2) is a /-child of φ(n1), we connect n2 through a /-edge to n1 and obtain a
new DAG pattern dp′. To keep the algebraic expression aligned with the modified
pattern, we add a selection of the form n1.ID ≺ n2.ID on top of e.

The reason for the constraint that φ maps only n1 to φ(n1) and no other ID-return
dp node, is to ensure StructRef-1 is deterministic (had there been more nodes like n1, it
would not be clear to which of them to connect n2). Moreover, note that in all cases there
exists φ′ : dp′

s−→ p, mapping the dp′ nodes to the same p nodes that φ mapped the nodes
of dp.

For instance, consider the patterns in Figure 4.13. We have dp1
s−→ p1, and we can

impose the selection with predicate c.ID ≺ d.ID (which is present in p1 but not in dp1)
and obtain pattern dp1. Then, we can apply b.ID ≺ c.ID and obtain dp′′1. Observe that
there are no more relationships from in p1 that could be added to dp1. Likewise, we have
dp2

s−→ p2, and we can impose the relationship b.ID ≺ d.ID to obtain the DAG pattern
dp′2. However, in dp3 we cannot impose the relationship that b is a parent of c (which
appears in p3), because there are two ID-return b nodes in dp3 mapped to the same p3
node.

In a very similar way to NodeUnif-1, StructRef-1 can be applied repeatedly, and
moreover, the order in which a sequence of StructRef-1 transformations are applied does
not change the result. The intuition for the proof is again that the order of selection
operators does not impact the algebraic semantics, and no application of StructRef-1
precludes another one. Thus, we define the operation StructRef which, given as input a
DAG pattern dp and a tree pattern p such that dp s−→ p, and an expression e equivalent to



110 CHAPTER 4. EFFICIENT XQUERY REWRITING USING MULTIPLE VIEWS

dp, repeatedly applies StructRef-1 on dp, e and φ until no relation from p has been left
to apply on dp.

For instance, consider patterns dp1, p1 in Figure 4.13 that are given as input in Struc-
tRef. Regardless the order in which relationships are added, the output pattern should
be dp′′1. An order could be to start from dp1, then obtain dp′1 and then dp′′1, as explained
above. However, one could also start from dp1, then obtain dp′′′1 (b ancestor of d), then
obtain dp′′′′1 (b is parent of c), and finally obtain dp′′1 (c parent of d).

Proposition 4.6.10 (StructRef completeness). StructRef is complete, i.e., given a pattern
dp that is structurally embedded to a tree pattern p, and the expression e that is equivalent
to dp, if there is an algebraic expression over e that can impose additional structural
relationships to dp that are present in p, then StructRef will find such an expression.

Proof. Given our algebra, the selection is the only operator that can be used to alge-
braically impose a new structural relationship on a pattern. Furthermore, since we showed
that the order in which we impose the additional relationships does not alter the result of
StructRef, it is guaranteed that it will output a pattern in which no more relationships can
be imposed algebraically, together with the algebraic expression.

We come back to our last example for an interesting remark. On the two StructRef
paths from dp1 to dp′′1 (different orderings of the individual refinement steps), the selection
predicates in the first case were b.ID ≺ c.ID, c.ID ≺ d.ID, whereas in the second they
were b.ID ≺ c.ID, c.ID ≺ d.ID and b.ID≺≺c.ID. Clearly, the last predicate in the
second case is not necessary (it is covered by the other two).

A simple efficient algorithm can be devised for implementing StructRef while avoid-
ing such unnecessary predicates. We visit each node n ∈ dp and mark node φ(n) ∈ p
whenever n is ID-return and there is no other dp node mapping to φ(n). Then, we
perform a top down traversal of p and for each marked node np, we apply in dp the rela-
tionship that np has with its closest marked ancestor.

Finally, observe that DAG2Tree (see Section 4.4.5) can also impose structural rela-
tionships that are not present in the initial pattern, but in this Section we discuss only
algebraic transformations.

4.7 Tree Pattern Queries Rewriting Details

We have given an overview of our tree pattern rewriting algorithm TPR in Section 4.5.
The algorithm relied on a set of functions: FilterView, TPTransform, PickPair and
TPJoin. Each of these functions is relatively complex, thus in Section 4.5 we only gave
some intuition for their roles.

In this Section, we spell out all the specifics of algorithm TPR which were not given
in Section 4.5. Section 4.7.1 details the functions mentioned above, whereas Section 4.7.2
tackles the termination and completeness of the TPR algorithm.
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4.7.1 Rewriting Algorithm Functions
In this Section we detail the functions participating in the TPR Algorithm 4 that were

briefly presented in Section 4.5.

4.7.1.1 View Filtering (Function ViewFilter)

Given the set of tree pattern views V , ViewFilter discards some views that cannot
participate in an equivalent rewriting of the query q. This function is called by Algo-
rithm TPR before actually attempting to build rewritings. The purpose is to reduce the
number of views given as input to the rewriting process, and thus reduce the complexity
of rewriting q.

Function ViewFilter discards a view v ∈ V , if one of the following holds:

1. There is no structural embedding (Definition 4.4.3) from v into q.

2. The following conditions hold: (i) there is no structural embedding from φ into
the query such that all the query nodes are target nodes of the embedding; (ii) any
transformation of v by expanding v’s pattern through nav operators as described in
Section 4.6.2 leads to a pattern v′ which does not satisfy condition (i) above, either;
(iii) no node of v is ID-return.

3. The following two conditions hold: (i) for any structural embedding from v to q,
there exist some nodes n1

v, n
2
v, . . . , n

k
v ∈ v (not necessarily the same nodes for each

φ), such that φ(n1
v) = φ(n2

v) = . . . = φ(nkv) = nq for some query node nq, and the
union of the attributes of n1

v, n
2
v, . . . , n

k
v is not a superset of nq’s attributes; (ii) no

node of v is ID-return.

Proposition 4.7.1 (Soundness of ViewFilter). ViewFilter is sound, i.e., it does not dis-
card views that could be used in a rewriting of the query.

Proof. We show that none of the views that are discarded by ViewFilter could lead to a
rewriting of query q.

Condition 1 requires a structural embedding φ : v
s−→ q in order to keep v. It has

been previously shown in the case of XPath (single return node) queries and views, that
such an embedding is a necessary condition in order for a view to be able to participate
in a query rewriting [TYÖ+08], and the proof for our more general language is very
similar. Intuitively, when v cannot be embedded in the query, this means that there is
some condition (edge) in v such that a similar structural condition does not hold in the
query. However, none of our algebraic operators can remove (relax) structural or value
constraints, but only possibly add constraints (e.g., add a value selection predicate, add an
equality over the IDs of two nodes, etc.). Therefore, the rewriting process will not be able
to remove the view constraint preventing a structural embedding into the query, and the
view could participate at most in a partial (not equivalent) query rewriting. This is why
the view can be removed.

Conditions 2 and 3 consider cases when a view is not sufficient on its own (does not
store all required information) to answer q, either in terms of structure (condition 2) or in
terms of return attributes (condition 3). In such cases, v needs to have some ID-return
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nodes, so that it can be joined with other views covering the query nodes (or attributes)
that v does not. If v does not have such join-enabling IDs, it can be safely discarded.

4.7.1.2 Tree Pattern Transformations (Function TPTransform)

In this Section we describe the function TPTransform, which applies a set of alge-
braic transformations on a given pattern in order to add on it some conditions from the
query. TPTransform is outlined in Algorithm 6. It takes as input a triple (tree pattern
p, equivalent algebraic expression e, embedding φ : p

s−→ q) as well as a query q. First
(lines 3-6), TPTransform applies all algebraic transformations presented in Section 4.6
until no more new (pattern, expression, embedding) triples can be obtained. As already
explained, our transformations may yield a DAG instead of a tree pattern. However, we
are interested only in LDQT rewritings (see Section 4.5.2), thus, all our partial rewritings
need to be tree patterns. To that end, for each obtained pattern, we apply the DAG2Tree
operation (Section 4.4.5) which seeks to transform the obtained pattern into a tree pat-
tern. If DAG2Tree does not succeed, we can safely discard p. Finally, we minimize the
remaining tree patterns (see Section 4.4.2) and output them. The minimization is needed,
since the subsequent steps (including the tree pattern equivalence check) operate over
minimized tree patterns.

As we showed in Section 4.6, each of our transformations takes as input a (DAG or
tree) pattern p and a tree pattern p′, and tries to impose as many restrictions as possible
from p′ to p. For instance, ValPredAd will attempt to add on p as many value predicates
of p′ as possible.

When a sequence of successive transformations can be applied, it may be the case
that the state obtained after applying all of them cannot lead to a rewriting, while an
intermediary state reached by applying only a subset of the transformations may have
allowed it. For instance, consider the pattern p1 and the query q1 in Figure 4.14. If we
apply AttElim(p1, q1), the b.ID will be eliminated from p1. However, if the tree pattern
p′1 = bID,val/c is available, we can join p1 with p′1 and get a rewriting for q1.

To avoid missing rewritings this way, during TPTransform we do not give as second
input to the transformation functions the query as such, but various modified versions of
it (patterns structurally equivalent to q but having subsets of its attributes, subtrees of q,
etc.), so that we generate all such intermediary states and preserve completeness.

Moreover, notice that two transformations τ1, τ2 may alternate on a transformation
path, that is, one may apply τ1, then τ2, then τ1 again etc. For instance, consider pattern
p2 and query q2 in Figure 4.14. We first apply a StructRef and obtain p′2. In p′2 we cannot
impose the restriction that b is a parent of c (although it appears in q2), because we have
two ID-return b nodes (see Section 4.6.5). However, we can apply NodeUnif, obtain p′′2
in which the two b nodes are unified, and then apply on p′′2 StructRef to obtain a pattern
equivalent to the query.

Proposition 4.7.2 (Completeness of TPTransform). Given a tree pattern p, an algebraic
expression e equivalent to p, a query q, and an embedding φ : p

s−→ q, TPTransform
outputs all (tree patterns p′, expression e′, structural embedding φ′ embedding p′ s−→ q)
triples such that:
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p1 q1 p2 q2 p′2 p′′2

a

bval bID

a

bval

c

a

bID bID cID dID

a

bID

cID

dID

a

bID bID cID

dID

a

bID cID

dID

p2
StructRef−−−−−−→ p′2

NodeUnif−−−−−−→ p′′2
StructRef−−−−−−→ q2

Figure 4.14: Ordering of transformations in TPTransform.

Algorithm 5: Tree Pattern Transformations (TPTransform)
Input : Query q, tree pattern p, algebraic expression e equivalent to p, embedding

φ : p
s−→ q

Output: Set Sout of triples (pi, ei, φi), such that pi a tree pattern obtained through
expression ei built upon e, p s−→ p′

s−→ q (φi is the embedding of pi to q),
and Sat(p′) ⊆ Sat(p)

//set of algebraic transformations
1 T = {ValPredAd,Nav,AttElim,NodeUnif ,StructRef}
2 Sout = {(p, e, φ)}
//Apply all transformations to obtain new patterns

3 while new triples are added to Sout do
4 foreach pattern pc ∈ Sout do
5 apply a transformation τ ∈ T on pc
6 add the new (pn, en, φn) to Sout

//Transform DAGs to trees and discard those that failed
7 foreach pattern pc ∈ Sout do
8 pc ← DAG2Tree(pc)
9 if (pc) = null then remove pc from Sout

10 else pc ←Minimize(pc)

11 return Sout

1. e′ is an algebraic expression built on top of e, that is, e′ = α(e) for some combina-
tion α of operators from our algebra 4,

2. we have p s−→ p′, and

3. for each node ni ∈ p such that φ(ni) = n′, we have Sat(n′, p′) ⊆ ∪ni∈p(Sat(ni, p)),
that is, the union of attributes of the p nodes that are mapped to the same node
n′ ∈ p′ is a superset of n′’s attributes.

4. Note that join operators are not allowed to participate in α, since we have not considered the joining
of patterns so far.
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Proof. Let (p′, e′, φ′) be a triple satisfying the above three characteristics. We show that
p′ can be obtained by TPTransform.

Since there exists φ : p
s−→ p′, the structures of p and p′ may only differ in the following

ways (see Section 4.4.1):
– p′ may have some nodes to which no p node corresponds, that is, there may exist a

node n′ ∈ p′ such that for any node n ∈ p, φp(n) 6= n′;
– some nodes of p′ may have some value predicates that do not appear in the corre-

sponding nodes of p, that is: for some nodes n ∈ p and φp(n) ∈ p′, φp(n) carries
a predicate not present on n (the presence of the embedding ensures that if n has a
predicate, φp(n) also has it);

– a //-edge (n1, n2) in pmay be embedded through φp into a longer path from φp(n1)
to φp(n2) in p′;

– two nodes in p may be embedded by φp into the same p′ node.
Moreover, p and p′ may differ in their respective attributes, to the extent allowed by

hypothesis 3.
Let P be the path of algebraic operators leading from p to α(p) ≡ p′. The only oper-

ators that may appear in P are: σ (on value or ID conditions), nav, δ and π. Importantly,
thanks to the commutativity properties of these operators, there exists a path P ′ leading
from p to p′, and of the form:

nav∗ σ∗ (π | δ)∗

More specifically, let e1 be the algebraic expression obtained after the nav∗ σ∗ pre-
fix of P ′. It is easy to see that e1 corresponds to a pattern p1: the nav and σ algebraic
operators, when given a (tree or DAG) pattern as input, are guaranteed to also output a
pattern. From the definition of our Nav, ValPredAd, NodeUnif and StructRef transfor-
mations, it follows that we are able to build a transformation path going from p to p1 (and
its equivalent expression e1).

Remains then to be shown that there exists a transformation path leading from p1 to
p′. Let P2 be the second part of P , from p1 to p′; recall that P2 is of the form (δ |π)∗. Let
att denote the attributes of e1 which are kept after applying all the projections of P2. We
build the pattern p2 that is structurally equivalent to p1 and has exactly the attributes att.
We invoke the AttElim algorithm to find a way to compute p2 out of p1. Proposition 4.6.8
has established that if an algebraic expression can compute p2 out of p1, AttElim will find
it and output an expression of the form e2 = (π |δ)∗(e1). If p2 is not already p′, then p′

can be obtained from p2 by applying our transformation DAG2Tree.

Proposition 4.7.3 (Termination of TPTransform). Given a tree pattern p, an algebraic
expression e equivalent to p, a query q, and an embedding φ : p

s−→ q, TPTransform
terminates.

Proof. By definition, TPTransform produces tree patterns p′ that are more restrictive
than p and less than q, since we have p s−→ p′

s−→ q. By exhaustively applying our trans-
formations, we reach a point when we cannot further restrict the obtained tree patterns
without adding (structural or value) constraints that are not present in the query. Thus, the
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Algorithm 6: Tree Pattern Joining (TPJoin)
Input : Query q, triples (p1, e1, φ1),(p2, e2, φ2), where e1,e2 two partial rewriting

expressions, p1, p2 their tree patterns, φ1, φ2 their structural embeddings to
q

Output: Set Sout of triples (p, e, φ), where p the result of joining p1 with p2, e the
expression to obtain p, φ the embedding from p to q

1 Sout ← ∅
2 foreach ID-return node n1 ∈ p1, n2 ∈ p2 do
3 p = null
4 if φ1(n1) = φ2(n2) then
5 e← e1 ./n1.ID=n2.ID e2
6 create DAG p from p1, p2 by unifying n1 with n2

7 else if φ1(n1) parent of φ2(n2) then
8 e← e1 ./n1.ID≺n2.ID e2
9 create DAG p from p1, p2 by adding edge n1/n2

10 else if φ1(n1) ancestor of φ2(n2) then
11 e← e1 ./n1.ID≺≺n2.ID e2
12 create DAG p from p1, p2 by adding edge n1//n2

13 if p 6= null then
14 φ = φ1 ∪ φ2

15 add (p, e, φ) to Sout

16 return Sout

procedure of applying structural restrictions on p to get new patterns terminates. More-
over, removing attributes from the obtained patterns (through AttElim) also terminates
(in the worst case, when no more attributes are left in the pattern).

Optimizations on TPTransform We now make some observations that can lead to a more
efficient version of TPTransform. Formally defining these observations and proving that
they do not compromise the completeness of TPTransform is left as future work.

It is easy to show that ValPredAd can be exhaustively applied only once for every
(pattern, expression, embedding) in the beginning of TPTransform. Moreover, we can
show that NodeUnif and StructRef can be exhaustively applied on the versions of the
patterns obtained after applying AttElim and Nav, and in particular NodeUnif can be
applied after StructRef (based on the fact that NodeUnif can enable some StructRef
applications that were not possible before). We are currently investigating also other
possible ways to reduce the number of created intermediary states in order to enhance the
performance of TPTransform.
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4.7.1.3 Joining Two Partial Rewritings (Function TPJoin)

The TPJoin function is responsible for combining two partial LDQT rewritings, each
based on one or more views, in order to obtain new partial LDQT rewritings. The combi-
nation is done via a join (either by ID equality, or by the structural condition ≺ or ≺≺ ).

TPJoin is outlined in Algorithm 7. It takes as input two triples of the form (tree
pattern pi, algebraic expression ei, embedding φi : pi

s−→ q), as well as query q. It forms
all pairs (n1, n2) of ID-return nodes n1 ∈ p1 and n2 ∈ p2, and attempts to apply an equi-
or structural-join on them. More specifically:

– If both nodes are mapped to the same q node, that is, φ1(n1) = φ2(n2), an equi-join
is attempted.

– If φ1(n1) and φ2(n2) are connected through a path in q, a structural join is at-
tempted: (i) on the condition n1 ≺ n2, if φ(n1) is a /-parent of φ(n2) in q, (ii) on
the condition φ(n1)≺≺φ(n2), if φ(n1) is a //-parent or an ancestor of φ(n2).

– If none of the above holds, φ1(n1) and φ2(n2) do not belong to the same path in q,
and thus cannot be combined through a join.

The resulting pattern is, in the general case, a DAG pattern p. TPJoin outputs the
pattern together with the equivalent algebraic expression e and the embedding φ : p

s−→ q
(resulting from the union of φ1 with φ2).

Notice that while pattern p may be a DAG and not a tree pattern, Proposition 4.5.2
has stated that we only need to keep those partial rewritings that are LDQTs, in particular,
that are equivalent to some subtree of the query. For instance, let v1 = //a//bID and
v2 = //c//bID, e1 = scan(v1) and e2 = scan(v2), q = //a//c//bID, and assume we
build the partial rewriting e3 = e1 ./b.ID e2. In the resulting DAG pattern, the b node
has a //-parent labeled a and another //-parent labeled c. Clearly, this DAG pattern
is not equivalent to any tree pattern, and in particular to any part of the query. Thus,
Proposition 4.5.2 allows us to discard the partial rewriting e3.

A second important observation is that in some cases where the result of a join is
not an LDQT, applying some transformations may transform it into an LDQT one. For
example, let v′1 = //aID//bID and v′2 = //cID//bID, and let q = //a//c//bID. As in the
previous example, let e′1 = scan(v1), e′2 = scan(v2) and let the plan p = e′1 ./b.ID e′2. In
a way similar to the above example, the plan p has no equivalent tree pattern. However, if
node IDs are structural, one can build p′ = σa.ID≺≺c.ID(p), which is an LDQT rewriting
for q. The selection is inspired by the query, which specifies that a should be an ancestor
of c.

In order to exploit all such opportunities of turning a DAG into a tree patter, with or
without adding algebraic operators, the rewriting algorithm (TPR) applies TPTransform
on each result returned by TPJoin (line 17).

Optimizations on TPJoin Instead of performing all possible joins between the ID-return
nodes of two patterns, it can be shown that we can attempt a much smaller number of
joins, without losing any rewritings. For instance, when performing an equi-join between
two patterns, we do not need to consider all possible equi-joins between the two nodes
of the patterns, because many of them will end up producing the same patterns multiple
times after the application of TPTransform (e.g., due to NodeUnif, which also imposes
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ID-equality predicates between nodes, the join result will be the same regardless of the
pair of nobes we choose to perform the join). Formalizing this remark and proving that it
preserves completeness is left as future work.

4.7.1.4 Join Enumeration Strategies (Function PickPair)

In Algorithm TPR (section 4.5), the function PickPair dictates the order in which the
partial rewritings will be chosen to be combined by TPJoin. In this Section we discuss
PickPair’s inner workings.

PickPair only combines a pair of rewritings such that one of them is built from a
single view. In other words, PickPair builds left-deep join trees. We do this in order to
(i) avoid building all the bushy join trees equivalent to a given left-deep join tree, since
the choice of the join order rightfully belongs to the optimizer and should not be made
during rewriting, and (ii) grow our rewritings by only one view at a time, so as to be able
to check immediately after the join, if the newly added view brings some information to
the rewriting. If it does not, then the new join is non-minimal, and it is discarded directly.

We describe below three possible strategies for PickPair. Observe that other strategies
could also be applied.

Naïve dynamic programming (NDP) first attempts all joins of a partial rewriting built
on one view, with another similar partial rewriting built on two views. Then, it
attempts all joins between partial rewritings of two views, and partial rewritings of
one view. At stage k, it attempts all possible joins between partial rewritings of
k − 1 views and partial rewritings of one view.

Query-driven dynamic programming (QDP) is similar to NDP. Nevertheless, to ob-
tain candidate pairs of a k-views rewriting and a one-view rewriting, QDP iterates
over the query nodes. Let φx be the embedding of a view vx to q. When considering
query node n, QDP iterates over all view nodes ni ∈ vi such that φi(ni) = n, and
such that ni is annotated ID in vi. Then QDP iterates over all descendants of n in
q, let m be one such descendant, and searches for view vj and some node nj ∈ vj
such that φj(nj) = m and nj is annotated with ID in vj . Thus, QDP does not try
to join partial rewritings embedded in disjoint areas of the query, or rewritings with
no ID to join on (which NDP attempts to do, and fails).

Query-driven depth-first (QDF) At any point during the search, QDF picks the partial
rewriting whose embedding in the query covers the largest number of query nodes,
and seeks to combine it with one-view partial rewritings (those covering most query
nodes first).

NDP and QDP find a rewriting of k views only after all rewritings of l views, l < k.
In particular, they find min-size rewritings (Section 4.3.3) before the other rewritings.
However, if the smallest rewriting involves many views, say k, NDP and QDP may take
a long time building all partial rewritings of sizes 1, 2, . . ., k − 1. QDF uses the number
of query nodes that the partial rewriting embeds to (or covers) as a hint to how many
extra views must be joined, to obtain a query rewriting. This may lead QDF to finding
a first minimal rewriting fast (if one exists). However, this property cannot be formally
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guaranteed in all cases, and indeed one can build counter-examples where QDF’s greedy
strategy, driven by the coverage of the query nodes, will not lead to finding a rewriting
faster than QDP.

4.7.2 Completeness and Termination of TPR algorithm
Theorem 4.7.4 (Completeness of TPR). Algorithm TPR is complete, i.e., given a query
q and a set of views V it finds all minimal rewritings of q based on V that can be obtained
through our algebra.

Proof. The completeness of TPR follows readily from the completeness of TPTrans-
form (Proposition 4.7.2) and the fact that TPJoin (Section 4.7.1.3) tries all possible joins
between the ID-return nodes of the patterns.

Theorem 4.7.5 (Termination of TPR). Given a query q and a set of views V , Algorithm
TPR terminates.

Proof. (Sketch) The termination of TPR follows from the termination of the functions it
includes. In particular, we have shown that TPTransform terminates in Proposition 4.7.3.
ViewFilter and TPJoin clearly terminate. Finally, PickPair also terminates, since there
is a finite number of possible candidate pairs of ID-annotated view nodes to join.

4.8 Rewriting Joined Tree Pattern Queries
We now turn to the problem of rewriting a query in our full language, consisting of

several tree patterns (or an XQuery) with value joins, using a set of views JV of the
same kind. Let jq = πjq(σjq(t

x
1 × tx2 × . . . × txnq

)) be a joined query with {txi }1≤i≤nq

being the extended versions (annotating with val all ti nodes involved in value joins; see
Definition 4.3.1) of its tree patterns, and JV comprise the views {vi}1≤i≤n, where each
vi is of the form πvi(σvi(t

vi
1 × tvi2 × . . . tvinvi

)). Let e(vj1 , vj2 , . . . , vjk) be an equivalent
algebraic rewriting of jq using the views vji , where 1 ≤ ji ≤ n for all 1 ≤ i ≤ k. We
have:

Proposition 4.8.1 (Joined-views rewriting). For each tree pattern ti of jq, let txi be its
extended version, annotating with val all ti nodes involved in value joins. For every txi ,
there exists a (LDQT) rewriting, based only on the (extended versions of the) tree patterns
of the views vj1 , vj2 , . . . , vjk involved in the rewriting e of jq.

Proof. As stated in Section 4.3.2, every joined tree pattern including the tree patterns t1,
t2, . . . , tm, can be written as an algebraic expression of the form πjt(σjt(t

x
1 × tx2 × . . . ×

txm)), where txi , 1 ≤ i ≤ m is the extended version of ti (see Definition 4.3.1), πjt is
a projection retaining all the attributes of the original (non-extended) tree patterns, and
σjt = σ∧

i=1,...,k vji
is the conjunction of all the equality predicates that define the value

joins. Hence, the joined query jq can be written as:

jq = πjq(σjq(t
x
1 × tx2 × . . .× txnq

)) (4.4)
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Algorithm 7: Joined tree pattern rewriting (JTPR)
Input : View set JV = {v1, v2, . . . , vn}, query jq
Output: All minimal algebraic rewritings of jq based on JV

1 V ← ∪v∈JV (∪t∈v v.tx) //v.tx ← extend(v.t)
2 Lrw ← ∅, Lrwt ← ∅
3 for t ∈ jq do
4 Lrwt(t)← TPR(V , t)
5 if Lrwt(t) = ∅ then exit

6 for rw = (rwt1 × rwt2 × . . .× rwtnq
), such that rwti ∈ Lrwt(jq.ti), 1 ≤ i ≤ nq do

7 discardRW ← false
8 for v.txi appearing n times in rw do
9 for v.txj ∈ v, v.txi 6= v.txj do

10 if v.txj appears m times in rw and m 6= n then discardRW ← true

11 if !discardRW and vjCheck(rw, jq) then
12 canonical(rw)
13 replace v.tx1 × . . .× v.txk in rw with v
14 rw ← πvj(σpredvj(rw)))
15 joinExpression(rw)
16 add rw to Lrw
17 else discard rw

18 return Lrw

by adding, in the initial projection, the projections that were brought by the extended
versions of the tree patterns.

We will show in a constructive way how we can transform the equivalent rewriting
expression e(vj1 , vj2 , . . . , vjk) so as to find a rewriting for each of the tree patterns of jq.
Hereafter, for simplicity, we do not take into account the projections. Thus, e can be
written as an algebraic expression of the form:

jq = σjq(t
x
1 × tx2 × . . .× txnq

) (4.5)

and e can be written as:

e = σvj∧ID(vj1 × vj2 × . . .× vjk) (4.6)

where σvj is the conjunction of the predicates corresponding to the value joins that are
requested in jq but do not appear in the joined views vj1 , vj2 , . . . vjk , and σID is the con-
junction of predicates that correspond to the structural joins between the joined views.
Then, we can replace each joined view with the equivalent algebraic expression (without
again taking into account the projections) and transform equation (4.6) to the following
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one:
e = σvj∧ID((σvj1(vj1.tx1 × vj1.tx2 × . . .× vj1.txn1

))×
(σvj2(vj2.tx1 × vj2.tx2 × . . .× vj2.txn2

))×
. . .×
(σvjk(vjk.tx1 × vjk.tx2 × . . .× vjk.txnk

)))

(4.7)

where each joined view vji , 1 ≤ i ≤ k, is replaced by the expression σvji(vji.tx1 × vji.tx2 ×
. . . × vji.txni

) and ni denotes the number of tree patterns participating in the joined view
vji. By pulling up the selections we get the following expression for e:

e = σvj∧vj1∧vj2∧...∧vjk(σID
(vj1.tx1 × . . .× vj1.txn1

× vj2.tx1 × . . .× vj2.txn2
×

. . .× vjk.tx1 × . . .× vjk.txnk
)

(4.8)

As we have already mentioned, σID captures all the structural joins that have to be
performed between the tree patterns of the joined views that are used in the rewriting. If
we push these selections as lower in e as possible, we can create partitions of the tree
patterns that are structurally connected together. After this transformation, e takes the
following form:

e = σvj∧vj1∧vj2∧...∧vjk
(σID1(s1.t1 × . . .× s1.tm1)×
σID2(s2.t1 × . . .× s2.tm2)×
. . .×
σIDl

(sl.t1 × . . .× sl.tml))

(4.9)

where l is the number of the structurally connected partitions of tree patterns, containing
mi (1 ≤ i ≤ l) tree patterns each, σIDi

denotes the conjunctions of structural predicates
that create the i-th partition, while si.tj (1 ≤ j ≤ ml) is the j-th tree pattern of the i-th
partition.

The conjunction of predicates σvj∧vj1∧vj2∧...∧vjk includes all the predicates correspond-
ing to the value joins that participate in the joined views and to the additional ones that
were added during the rewriting process. As e should be (by definition) equal to jq, the
value equality predicates that stand on top of both expressions should be equal. Thus,
the rest of the expressions should be also equal, which brings us to the following equality
(using equations (4.5) and (4.9)):

tx1 × tx2 × . . .× txnq = σID1(s1.t1 × . . .× s1.tm1)×
σID2(s2.t1 × . . .× s2.tm2)×
. . .×
σIDl

(sl.t1 × . . .× sl.tml)

(4.10)

The left side of the equation (4.10) is a cartesian product over nq tree patterns, whereas
the right side is a cartesian product over l algebraic expressions. We will first prove that
nq = l, that is, both sides contain the same number of terms in their cartesian products.
From the semantics of the tree patterns, we know that a tree pattern can be embedded to
exactly one document at a time. The same holds for each of the algebraic expressions of
the right side, as they are built only with structural joins over tree patterns (a structural join
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has to be evaluated on the same document). Assume now that nq 6= l and, in particular,
that nq > l. We choose l documents, such that each tree pattern txi , 1 ≤ i ≤ l from the
left side of the equation embeds to exactly one of them. At the same time, each of the l
documents contributes to exactly one of the l expressions of the right side. Obviously, we
can choose some different documents to contribute to the remaining nq− l tree patterns of
the left side. At such a case, the two parts of the equation will be unequal (contradiction).
Hence, nq = l.

We will now prove that each of the tree patterns in the left side of the equation (4.10)
is equal to exactly one term of the right cartesian product. It is known in the set theory
that for the non-empty sets A,B,C,D the following holds: A × B = C × D ⇔ A =
C,B = D. The proof is obvious if one considers one-element sets for which A 6= C
and forms the cartesian product of them (by contradiction). The same formula holds if
we consider the cartesian products of sets of tuples (which derive from the evaluation of
some tree patterns or algebraic expressions matching exactly one document at a time).
Moreover, the above formula can be readily generalized for cartesian products over more
than two terms.

From the above observations, we result in the following equalities:

tx1 = σID1(s1.t1 × . . .× s1.tm1)
tx2 = σID1(s2.t1 × . . .× s2.tm2)

...
txnq = σIDl

(sl.t1 × . . .× sl.tml)

(4.11)

which show that each tree pattern of the query can be rewritten using only the tree patterns
of the joined views.

Proposition 4.8.1 states that a rewriting for the joined query “encapsulates” rewritings
for each individual query tree pattern. It is important to notice that rewriting tree patterns
with tree patterns only combines view data “vertically”, i.e. by equality or structural
joins, whereas value joins connect data “horizontally”, across potentially different docu-
ments.

This leads us to Algorithm 8 (called JTPR) for rewriting value-joined tree pattern
queries. Its basic steps can be summarized as follows: (i) extend all tree patterns in jq
and JV , (ii) call Algorithm TPR to rewrite each extended query tree pattern with all the
extended tree patterns from the JV views, (iii) for each combination of rewritings output
by TPR, check if it corresponds (or it can be brought via more selections/projections) to a
rewriting of jq, and if yes, output that rewriting. Algorithm JTPR uses a simple bucket-
like [LRO96] strategy for enumerating combinations of individual tree pattern rewritings.
A more efficient strategy as in [PL00] could also be applied. Section 4.2 has presented an
example.

A more detailed description of the algorithm is now given. First, we create the set
V of tree pattern views, by extracting from JV all the tree patterns contained in the
joined views (line 1). These tree patterns are extended (just like we did at the end of Sec-
tion 4.3.2, when specifying their semantics) with the val annotations corresponding to the
tree pattern nodes involved in value joins. We then rewrite every tree pattern of jq by in-
voking Algorithm TPR (lines 3-4). If Algorithm TPR does not find any result for at least
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one tree pattern of jq, the algorithm fails, as it is impossible to find an algebraic rewriting
for the whole query, if one of its components cannot be rewritten with the available views.

We now have a list Lrwt containing, for each tree pattern of jq, its set of algebraic
rewritings. Then, by choosing one rewriting expression at a time from each set of Lrwt ,
we create the cartesian product (rw) of these expressions (line 6) and we verify whether
it can be used to reach a rewriting of jq based on JV (lines 8-17). A first observation
that leads us to an early pruning step (lines 8-10) is that all tree patterns of a specific
joined view should be present in rw, and not only a subset of them. Thus, the number of
appearances of the tree patterns of the same query in rw should be the same; otherwise
we discard the current expression. A second pruning step is performed by invoking the
function vjCheck (line 11). A rw passes successfully through this step if the value joins
of the joined views of the tree patterns that participate in it are less restrictive than the
ones imposed by the query. At the same time, we compute the additional selections and
projections that should be imposed in our rewriting expression by virtue of the possible
additional value joins that appear in jq.

At this point, it has been verified that our current cartesian product can result in
a rewriting of jq and the corresponding rewriting expression should now be created
(lines 12-16). In line 12, we transform rw to a canonical form that will enable us to
apply further transformations on it. The canonical form of rw is defined as a projection
over a selection over a cartesian product of the tree patterns that participate in rw. We
observe now that the current canonical rewriting expression contains the tree patterns of
the joined views and not the actual joined views we have in our disposal. Hence, we re-
place the tree patterns with the corresponding joined views to get a canonical expression
where only existing views participate (line 13). To this expression we apply, if needed,
an additional projection and/or a selection (line 14), which refer to the additional value
joins of the query and were computed during the vjCheck. Finally, for efficiency rea-
sons, we seek to reduce the number of cartesian products in the rewriting, by replacing
as many of them as possible with joins, which are likely to have more efficient physical
implementations (line 15).

4.9 Related Works
Several works have addressed XML query rewriting using views. Maximally con-

tained rewriting is studied in [LWZ06]. Equivalent rewriting using a single view
is considered in [MS05, XO05, YLHA03]. The works directly comparable to ours
study equivalent XML query rewriting using multiple materialized views [ABMP07,
BOB+04, CDO08, TYÖ+08, ODPC06]. Unlike our work, [ODPC06] does not allow
views to store IDs, which limits view join possibilities. Node IDs appear in the views
in [BOB+04, CDO08, TYÖ+08, ABMP07]. The algorithms in [ABMP07, CDO08] do
not require any special ID property, whereas [ABMP07] exploits also structural IDs
if available. The rewriting algorithm in [BOB+04] requires that views store, next to
each node ID, the complete label path from the document root to the node. Simi-
larly, [TYÖ+08] requires an expressive class of IDs [LLCC05], encapsulating the labels
(and IDs) of all the ancestors of the node. However, such expressive IDs are not avail-
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able in all cases. Our algorithm can work with any type of ID, and exploits (but does
not require) structural IDs when available. From this viewpoint, it most directly com-
pares with [CDO08], which shows that the rewriting problem for the XPath{/,//,[ ]} dialect
(with single return nodes) is coNP-hard, and identifies restricted settings for which the
problem is polynomial. The algorithm in [CDO08] does not exploit structural IDs, and
does not guarantee minimality of the rewriting expressions. We note that the algorithms
in [BOB+04, TYÖ+08] do not provide completeness guarantees.

Concerning the view language, XPath 1.0 dialects in which a view may only store ID
and/or content for one node are used in [BOB+04, CDO08, LWZ06, MS05, TYÖ+08,
XO05, YLHA03], while [CC10, PZIÖ06] assume only IDs are stored, and from all view
nodes. In contrast, views in [ABMP07] and in this work store IDs and/or values and/or
contents for an arbitrary subset of view nodes, leading to more flexibility, but also mak-
ing rewriting more complex. The rewriting algorithm of [ABMP07] requires structural
knowledge about the database under the form of a Dataguide, which is not needed in this
work.

Works complementary to ours [CC10, PZIÖ06] describe efficient physical storage
models for XML views, and efficient holistic twig join algorithms for joining views on
IDs. Our focus here is on identifying logical rewriting plans, on which the physical opti-
mization techniques of [CC10, PZIÖ06] could also apply.

Closely related problems studied in XML databases are materialized view selec-
tion [TYT+09], query containment [MS04, TH04] and minimization [AYCLS02].

Early elements of this work were informally presented in [MZ09], whereas our algo-
rithms were demonstrated in [KZ10].

4.10 Conclusion and Future Work
A powerful tool to speed up query evaluation, in particular within an XML query

evaluation context, is to use materialized views, which store partial pre-computed query
results. Such views can bring important performance gains but require a view-based query
rewriting step preceding execution. In this Chapter, we have considered the problem of
finding equivalent rewritings for queries expressed in an XQuery dialect corresponding to
rich tree pattern languages connected through value joins. We have designed the algorithm
TPR which builds rewritings for single-tree-pattern queries in a bottom-up fashion, by
searching first for all possible one-view rewritings, and then building larger rewritings
in a bottom-up fashion, adding views one by one to a rewriting. By design, TPR only
develops minimal rewritings, i.e., such that no view can be removed while preserving the
rewriting semantics. Based on TPR, we have devised the algorithm JTPR which rewrites
joined tree pattern queries using similar joined tree pattern views. We have shown that
TPR and JTPR are sound and complete for the respective languages they consider.

Throughout the TPR we exploit the duality between tree patterns, on one side, and
algebraic expressions, on the other. The simplest partial rewriting we consider simply
scans a view, thus its algebraic expression is naturally equivalent to the view’s tree pattern.
At the end of the rewriting process though, the algebraic rewriting plan may be quite
complex, yet it has to be equivalent to the query tree patterns, in order to be an equivalent
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rewriting of that query. Through TPR, thus, we juggle with algebraic operators (to build
ever larger rewritings) and equivalent tree patterns (to identify the tree pattern to which
the rewriting is equivalent, when such a tree pattern exists). We have introduced two
main procedures: one for attempting to adapt, through algebraic transformations, a partial
rewriting by adding on it constraints from a query tree pattern (TPTransform), and the
other for combining through a join, two partial rewritings into a larger one (TPJoin). We
formalized the semantics of these procedures, and shown that when called from the TPR
algorithm, they enable the latter to explore all equivalent minimal rewritings built on the
views with the help of the algebra - in other words, to be complete. The completeness of
algorithm JPTR follows from that of TPR.

The algorithm TPR we have described follows the overall structure of the one we
described in [MKVZ11], however, we have completely re-worked and formalized it from
the bottom up. In this Chapter, we also defined basic properties on joined tree patterns,
and provided efficient criteria for establishing these procedures.

Many continuations of this work are possible. First, we may extend it to nested pat-
terns, representing several nested XQuery FLWR blocks [ABM05]. There are also nu-
merous possibilities to improve its performance. Finally, we are considering the auto-
mated recommendation of materialized XML views (on which work has already started
in our team [KMV12]) based on a lattice (AND-OR graph) capturing the way views can
be rewritten based on each other. This is likely to be more efficient than invoking the
rewriting algorithm; at the same time, the AND-OR graph for XML queries and views is
probably quite complex, thus efficient methods for reasoning without completely building
it are needed.



Chapter 5

Distributed Sharing of Annotated
Documents

Apart from their multiple benefits when used in a centralized setting, materialized
views can also be of great importance in a distributed setting, as explained in Chapter 2.
In such a setting, where the data transfers constitute the predominant cost factor in query
execution, the intelligent placement of data across the network can expedite query evalu-
ation considerably.

This is the rationale behind ViP2P (standing for Views in Peer-to-Peer), a DHT-based
distributed platform developed in our group (see http://vip2p.saclay.inria.fr),
exploiting materialized views for the efficient dissemination of XML data among peers.
The rewriting algorithm presented in Chapter 4 is part of the query engine of ViP2P in
order to optimize query evaluation. The architecture of ViP2P was the main topic of a
previous PhD thesis [Zou09] and appeared in [KKMZ12]. Details on the platform, along
with an extended more recent experimental evaluation, are presented in [KKMZ11].

In this Chapter, we present AnnoVIP, a system built on top of ViP2P for the sharing
of documents with annotations. Taking the idea of ViP2P a step further, we consider large
corpora of structured documents (such as HTML and XML Web pages) and semantic an-
notations (typically expressed in RDF), which further complement these documents. Doc-
uments and annotations may be authored independently by different users or programs.
In this distributed scenario, AnnoVIP allows efficiently disseminating such content in a
DHT-based P2P networks, by taking advantage of materialized views.

This Chapter is largely based on the demonstration [KZ10, CRKM+10]. It is worth noting
that AnnoVIP motivated the problem of rewriting tree pattern queries with value joins,
which was the focus of the previous Chapter.

5.1 Motivation and outline
In recent years, more and more software tools, including the most user-friendly ones,

such as text editors, have started to export their contents into some structured document
format, such as HTML or XML. Moreover, annotations have become very popular as a

125
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means to add information to a given document. HTML Meta tags, Dublin Core [Dup]
and social networks’ tagging are among the most common methods to express annota-
tions. Here, we designate by annotation any simple statement in the style of the RDF
standard [www04b], attaching to a given subject (or resource, such as a document, or
a small portion of text) a named property, with a certain value (see Chapter 2 for more
details on the XML and RDF data models).

Using documents and annotations provides the flexibility to handle a variety of appli-
cation scenarios in which documents or RDF alone would not be suitable. As an example,
consider a Web page containing a news item, annotated by a human reader or a text anal-
ysis tool to point out the person names appearing in the page, her positions within various
institutions, etc., or to express subjective opinions regarding the document. One could
suggest modifying the Web page to incorporate the additional information of the anno-
tations. However, this is not always feasible, since the author of the annotations may
be distinct from, and have no control over, the author of the original document; further-
more, the original document should be readable also to those that are not interested in the
extra information. Using only RDF to model all the content, on the other hand, is not
appropriate since end users are familiar with, and expect to use, structured documents.

Documents and annotations are at the center of the WebContent [web] project, in
which our group was involved. The project is focused on building and maintaining ware-
houses of enhanced Web documents on specific topics, e.g., market survey for the EADS
european company (with offices in several countries) or an intelligence survey/warehouse
concerning news from online media, bloggers, etc., concerning a specific area of the
world.

Content publication in WebContent applications is inherently distributed. Documents
coming from the Web are fetched by crawlers running at different sites, possibly re-
formatted, translated from one language to another, and published by the respective sites.
Similarly, documents and annotations authored by domain experts are published from
their sites. WebContent applications require that all sites be able to exploit all the pub-
lished contents. One could have considered uploading all published content to a single
site. However, this raises scalability issues, which may require acquiring dedicated hard-
ware, and introduces a single point of failure.

The ViP2P project In 2008-2011 (thus partially before the beginning of this thesis), our
group has worked on developing the ViP2P platform (the ViP2P project website is at
http://vip2p.saclay.inria.fr). ViP2P is a symmetrical, peer-to-peer plat-
form, based on a distributed hash table [DZD+03] (or DHT, in short). We opted for a
DHT-based architecture since it guarantees upper bounds on the number of hops needed
in order to route a given message in the peer network. At the core of content sharing in
ViP2P stand materialized views over the whole network content. Each peer may locally
store some XML content, and may also define views, describing patterns of intercon-
nected documents and annotations, that the peer is interested in. These views are stored
in a local repository at the peer. Once a view is established, its definition will be indexed
in the DHT network. When documents are published, by looking up in the DHT, the
publishing peer learns if its new content may contribute to some view, and if so, it sends
the respective data to the view. After publication, this lookup is repeated periodically to

http://vip2p.saclay.inria.fr
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identify contributions to views defined later on. Thus, views are updated over time, in the
manner of long-running, de-centralized subscriptions.

A further step in content sharing in ViP2P is materialized view-based query rewriting.
Here, we consider the situation when a peer issues an ad-hoc query, which it has not
declared as a local view. The peer then looks up in the DHT the existing view definitions,
and may rewrite its query based on the views. This process produces a logical algebraic
rewriting plan, which is distributed, since it involves views potentially scattered across
the DHT network. Subsequently, ViP2P’s optimizer and distributed execution engine
take over in computing the distributed plan’s results.

ViP2P’s query and view language as of mid-2009 had two important limitations:

1. value joins were not supported, thus, each view or query was a single tree pattern;

2. parent edges were not supported, thus, each pattern edge was //.

While quite severe for the expressive power, these limitations lead to a greatly simpli-
fied query rewriting algorithm [Zou09].
Extending ViP2P into AnnoViP Motivated by distributed annotated content applications
such as those of the WebContent project outlined above, we have developed AnnoVIP by
extending ViP2P (i) to address the above limitations and (ii) to enable the modeling and
querying of annotations at very fine granularity, i.e., that of a word in a text paragraph.
While initially developed for AnnoVIP both extensions are now part of ViP2P itself;
the expanded rewriting algorithm, capable of handling joined tree pattern queries, is Al-
gorithm JTPR described in Section 4.8. Moreover, from a user perspective, AnnoVIP
extends ViP2P by the support for RDF data next to XML.

Beyond the complex rewriting algorithm which we presented in Chapter 4, the contri-
butions of AnnoVIP are:

1. we demonstrate how, based on distributed joined tree pattern views and queries,
one can annotate distributed content in a peer-to-peer setting, and subscribe to other
peers’ annotations;

2. we accordingly extend the ViP2P architecture to materialize views (or, equiva-
lently, update subscriptions) expressed by joined tree patterns. The extension is
not straightforward since a view may need to join data appearing in the future, any-
where in the DHT network.

In the sequel, Section 5.2 provides an overview of ViP2P. Then, Section 5.3 discusses
content publishing in AnnoVIP, whereas Section 5.4 describes querying. We relate An-
noVIP to existing works in Section 5.5, and then we conclude.

5.2 Overview of ViP2P: Efficient XML Management in
DHT Networks

The ViP2P platform has been developed starting in 2008 in the Gemo (then Leo, now
Oak) group at Inria Saclay. It focuses on the large-scale management of distributed XML
data in a structured peer-to-peer (P2P) setting, namely a DHT network. To provide users
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Figure 5.1: Architecture of a ViP2P peer.

with precise and complete answers to their requests for information, it is assumed that the
requests are formulated by means of a structured query language, and the system must
return complete results. That is, if somewhere in the distributed peer network, an answer
to a given query exists, the system will find it and include it in the query result.

XML data flows in ViP2P can be summarized as follows. XML documents are pub-
lished independently and autonomously by any peer. Peers can also formulate subscrip-
tions, or long-running queries, potentially matching documents published before, or after
the subscriptions. The results of each subscription query are stored at the peer defining
the subscription, and the definition of it is indexed in the peer network. Finally, peers can
ask ad-hoc queries, which are answered in a snapshot fashion (based on the data avail-
able in the network so far) by exploiting the existing subscriptions, which can be seen as
materialized views.

We will now briefly analyze the architecture of ViP2P (depicted in Figure 5.1), to-
gether with its basic functionalities. We first describe the auxiliary modules.

Resource catalog uses the FreePastry DHT [Fre, RD01] to provide the underlying DHT
layer used to keep peers connected, and to index and look up views.

Data exchange module is responsible for all data transfers of significant size and relies
on Java RMI. Note that the DHT is not used for such transfers, because it has been shown
that it becomes the bottleneck when sending important volumes of data [AMP+08].

Data storage Within each peer, view tuples are efficiently stored into a native store, built
using the BerkeleyDB [BDB].

GUI enables users to publish views, documents and pose queries.
We now move to the description of the core modules.

Document management determines to which views the peer’s documents may contribute
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data by using the Resource catalog (View definition lookup module), and extracts and
sends this data to the appropriate consumers (View data extraction module).

View management consists of two sub-modules:

View indexing Based on some strategies, it indexes the available view definitions, by
adding entries to the Resource catalog.

View materialization This module is responsible for keeping views up-to-date with the
latest data arriving at the network.

Query management comprises the following sub-modules for query evaluation:

View lookup This module, given a query, performs a lookup in the Resource catalog to
retrieve the view definitions that may be used to rewrite the query.

Query rewriting Given a query and a set of view definitions, this module exploits the
view-based query rewriting algorithm, presented in Chapter 4, to produce a logi-
cal plan, which, when evaluated based on the views, produces exactly the results
required by the query.

Query optimization This module receives a logical plan that is output by the Query
rewriting module, and translates it to an optimized physical plan. The optimization
concerns both the logical (join reordering, push selections/projections, etc.) and
physical (dictating the exact flow of data during query execution) level.

Query execution This module provides a set of physical operators, implementing the
standard iterator-based execution model [Gra90], which can be executed by any
ViP2P peer in a distributed manner.

5.3 Content publication in AnnoVIP
Having provided a brief overview of the ViP2P architecture in the previous Section,

we now detail the publication of documents, annotations and views in AnnoVIP. Sec-
tion 5.3.1 describes the content which one may publish, whereas Section 5.3.2 outlines
the publication process. To illustrate our explanation, a simple AnnoVIP instance over
six peers is depicted in Figure 5.2. Next to each peer, the Figure shows its published
XML documents (such as xml1, xml2, etc.), annotations (denoted rdf1, rdf2, etc.) and/or
materialized views (v1, v2, etc.).

5.3.1 Content model
The first kind of content we consider consists of XML documents. Each document d

published by peer p has a URI allowing to uniquely determine d inside p and in the whole
network. For example, Figure 5.3 shows an article on the financial crisis, published by
user Alice. This could be the xmlarticle document published by peer p4 in Figure 5.2.

Annotations can target content at very different granularity levels. Thus, one can
annotate a document, an element, a text node, or even a fragment of text, e.g., a phrase
of particular significance, or a person’s name appearing in some text. Therefore, we
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Figure 5.2: AnnoVIP overview.

<article>
<publishInfo>
<author>Alice</author>
<year>2012</year>
<country>. . .</country>

</publishInfo>
<headline>Financial Crisis</headline>
<topic>economy</topic> <body> . . .</body>

</article>

Figure 5.3: Sample published document xmlarticle.

consider that any fragment of a document d, whatever its size, has a URI. Such URIs
are implemented by (offset, length) pairs identifying the fragment in the serialization of
d. Moreover, the URI of d can be easily obtained from the URI of any fragment of d.
This holds in many common URI schemes, such as XPointer [www01], where d.URI is
a prefix of all the URIs of elements in d.

Our model assumes that any XML element has a child labeled URI, whose value is the
actual URI of the element. However, URI-labeled nodes are virtual, that is, they do not
actually appear in the elements (although as we will explain, they are needed for querying
documents and annotations). In a similar manner, any fragment can be seen as a node,
endowed with a URI. Without loss of generality, as well as for conciseness, we focus only
on elements hereafter.

The second class of content we consider concerns annotations, which may be either
produced by human users, possibly with the help of some tools, or by automated mod-
ules (e.g., recognizing named entities within a document). While several dialects can be
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<rdf:RDF xmlns:rdf=“http://www.w3.org/1999-rdf-syntax-ns#”
xmlns:anno=”http://gemo.inria.fr/annotate/”>

<rdf:Description rdf:about=“http://gemo.inria.fr/article.xml#body”>
<anno:authName>Bob</anno:authName>
<anno:authCountry>France</anno:authCountry>
<anno:date>26-6-2009</anno:date>
<anno:rating>interesting</anno:rating>
<anno:seeAlso>“http://gemo.inria.fr/article2.xml”</anno:seeAlso>

</rdf:Description>
</rdf:RDF>

Figure 5.4: Sample annotation rdfanno.

q1 v1

tp3

banks

tp5

tp2

banks

tp1

article

publishInfo

uri val
[val="economy"]

topic

publishInfo

val

ID

val

cont
headline

headline

article
cont

tp4
rdf:description

ID

[val="economy"]
topic

country
val

headline
val

uri val

article
ID

anno:date

rdf:country

val

val
rdf:about val

anno:rating
val

val

val
anno:rating

rdf:country

ID
rdf:description

val
anno:date

val
rdf:about

rdf:authName

ID cont
publishInfo

val
anno:seeAlso

ID
rdf:description

rdf:about
val

val

cont
headline

article

Figure 5.5: Sample queries and views.

used for annotations, such as Dublin Core [Dup], HTML Meta tags, or microformats, for
simplicity, we consider that all annotations have been brought to an RDF format. Thus,
the basic unit of content here is a triple t=(s, p, o), specifying the value o of property
p for the resource s. We assume triples are serialized following the XML syntax for
RDF [www04c]. As customary in RDF, s, p and o range over the set of all URIs, plus the
set of literal (string) values in the case of o.

For instance, let us consider how user Bob at peer p1 in Figure 5.2 produces the new
annotation rdfanno. Assume Bob discovers the xmlarticle published by Alice at p4 and de-
cides to annotate the body of the article as being “interesting”. Bob also suggests another
article (article2.xml), which he finds related. The corresponding RDF annotation appears
in Figure 5.4, together with the author’s (i.e., Bob’s) profile.
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5.3.2 Peer-to-peer views in AnnoVIP

Views and queries are defined in (a slightly extended version of) the joined tree pattern
language described in detail in Chapter 4 of this thesis. Figure 5.5 shows some examples.
The extension we bring for the needs of our annotation scenarios consists of allowing
word nodes in our tree patterns. A word node can only appear as a leaf tree pattern node;
in the Figure, a node corresponding to the word w is denoted w. Tree pattern semantics
(Section 4.3.2.1) extends easily to incorporate such word nodes, by considering that a text
word is a child of its closest enclosing element or ancestor node. Due to the special role
we attach to URIs, we impose that a URI-labeled view node always appears as a child
(not descendant) of another node in the view.

In Figure 5.5, pattern tp1 stores the structural ID and the content of all publishInfo
elements. Pattern tp2 stores the author’s name, as well as the suggested documents for
all annotations, while tp3 keeps the date, country and rating of annotations. Pattern tp4
stores the content of all articles containing the word “banks” and having a headline. Fi-
nally, tp5 stores the URI, the headline and the country of the publisher of all articles about
the economy. Observe that although element URIs are not stored in the original docu-
ment, they must be actually stored in a view, such as tp5. More complex views can be
obtained by joining tree patterns based on some value equality predicates, such as view
v1. Observe that the presence of value joins in the language is crucial for capturing the
connections between content and annotations on that content, via equality predicates of
the form rdf :about.val=uri.val.

View materialization We now consider how published views are filled in with data. As-
sume peer p creates a view v. Then, when a peer pd publishes a document d affecting v, pd
needs to find out that v exists. To that effect, view definitions are indexed for document-
driven lookup as follows. For any label (node name or word) appearing in the definition of
the views v1, v2, . . . , vk, the DHT (in particular, the Resource catalog module, described
in Section 5.2) will contain a pair where the key is the label, and the value is the set of
view URLs v1, v2, . . . , vk.

When a peer pd publishes a document d, pd performs a lookup with all d labels (node
names or words) to find a superset Sa of the views that d might affect. Then, pd evaluates
v(d) for each v ∈ Sa. If v consists of a single tree pattern, the results of v(d) are sent
directly to the peer holding v(d). For example, Figure 5.2 shows the events taking place
when user Bob publishes rdfanno at p1. Firstly, he performs a look up to determine (a
possible superset of) the view definitions to which the new annotation may add some
tuples (step 1). In our Figure, p6 holds a view definition index entry referring to such a
view. Upon receiving the view definition, say that of v2 which p3 holds, p1 extracts the
tuples corresponding to v2(rdfanno) and sends them to p3 (step 2), which appends them to
the view extent. Observe that the contribution of rdfanno to the view could be evaluated
locally at p1, assuming the view is a tree pattern.

Assume now that a view in Sa is a joined tree pattern view, i.e., it contains more than
one tree patterns and some value joins between them. It is not possible to materialize such
a view only by considering document d, as pd needs to know if and where, in the whole
network, some other content may satisfy a value join with d. A first solution could be to
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maintain, instead of the joined pattern view, one view per each tree pattern, and compute
view tuples incrementally as new tuples are added to each tree pattern, in the style of in-
cremental maintenance for join views [GMS93]. However, this may lead to accumulating
a significant amount of (useless) data, if, e.g., many documents matching one view tree
pattern are published, which do not join with any other document or annotation.

We will now describe a more efficient technique for the case when join predicates
do not involve URI attributes. Assume, as above, peer pd publishes a document d. Let
v′ ∈ Sa be a joined pattern view, consisting of two tree patterns, tp1 and tp2, with a value
join between nodes n1 of tp1 and n2 of tp2. If there is an embedding of tp1 in d, instead
of storing the whole tuple in tp1, we store only the value of n1 and the URI of d. Assume
now a document d′ is published and there is an embedding of tp2 in d′. The publishing
peer searches the (value, URI) pairs and finds immediately the documents with which
d′ could be joined, by comparing its n2 value with the available n1 values. Thus, the
peer receives the appropriate documents, joins them and provides new tuples to the view
extent.

Moreover, we have devised a particular technique to treat the materialization of views
including joins over URI attributes. This is the case whenever a view queries documents
with annotations, as the view will involve joins over virtual URI attributes. Notice that
annotations are necessarily published after the content they refer to. Thus, when a new
document is published, it will not contribute (yet) to join views requiring specific annota-
tions over the document. On the contrary, when a newly published annotation matches a
join view, the URI of the annotated element appears in the annotation and the document
enclosing this element can thus be identified. The peer that has published the annotation
then asks the document peer to compute its corresponding tuples, which are joined with
the tuples extracted from the annotation and sent for storage at the site of the view.

5.4 Query rewriting using views
We now consider the processing of a query, such as q in Figure 5.2, posed at a peer

p2, which has not declared q as a local materialized view. First, p needs to find out
which views in the network could possibly be used to answer q. This relies on the same
view definition indexing used for view maintenance. Then, p runs a view-based rewriting
algorithm to find complete rewritings of q using the existing materialized views. Finally,
one rewriting is picked by the optimizer and evaluated over the distributed peers (see
Section 5.2 for the modules used in the querying process).

The rewriting of the queries based on the views was the subject of Chapter 4. Here,
we present the query evaluation process by example.

In Figure 5.2, query q is posed by user Carole at peer p2. To find view definitions
relevant to q, p2 performs a DHT lookup (step 1′). Assume that peers p1 and p4 return
relevant view definitions. Peer p2 then tries to rewrite q based on these views (step 2′).
The outcome of the algorithm is a logical algebraic plan based on some views, in our
example v3 and v4, which are stored in peers p5 and p6 respectively. Subsequently, p2
transforms the rewriting to a distributed physical plan, which is executed in a distributed
fashion in the network (step 3′). For instance, v3 is sent from p5 to p6, where it is joined
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with the local v4 and the result is sent back to p2.
Query q1 asks for the headlines of articles mentioning banks. A possible rewriting

could just use tp4 to navigate through the content of element article and then project the
headline. Now consider a more complex query q2, requiring the headlines of all articles
published in 2009 that were annotated as interesting today in France. Query q2 can be
rewritten using tp3 and tp5 in the obvious way, if these patterns are available as mate-
rialized views. The drawback is that this rewriting still requires evaluating one (value)
join. However, if view v1 were available, q2 could be answered more efficiently, without
evaluating any costly joins.

5.5 Related works

AnnoVIP relates to many works on XML indexing in DHT networks [AMP+08,
GWJD03, RM09], over which it improves by allowing to declare and exploit complex
materialized views to speed-up the processing of specific application queries. A recent,
more general survey on P2P data management can be found in [Abe11].

As already mentioned, we have implemented AnnoVIP on top of VIP2P. The system is
developed in Java, using the Pastry DHT and BerkeleyDB for storing materialized views.
VIP2P’s scalability has been established in large-scale experiments involving up to 1000
peers in a country-wide WAN [Gri], thousands of documents and hundreds of views.

Within the WebContent project [web], another DHT-based platform was previously
developed, integrating two types of DHT content indexes [AAC+08]. However, this
still did not provide sufficient leeway to establish efficient data access support structures.
Moreover, the biggest performance problems of that system [AAC+08] were due to the
frequent joins generated by document-and-annotations queries.

Works related to the efficient evaluation of RDF queries are discussed in Chapter 2
(Section 2.2.3).

5.6 Conclusion and Future Work

Annotated documents are used in a variety of applications nowadays, many of which
are inherently distributed. Users of such systems may pose queries referring both to doc-
uments and annotations, and requiring information residing anywhere in the whole net-
work. Therefore, devising techniques to efficiently manage annotated documents in such
scenarios is important. In this Chapter, we presented AnnoVIP, a distributed system that is
based on a DHT overlay network. In AnnoVIP, users can express their interests as views,
which are materialized in the system. Subsequently, when other users pose queries, these
views are exploited by our view-based query rewriting algorithm in order to improve
query evaluation. AnnoVIP was built on top of ViP2P, a system that has been deployed
on up to 1000 peers and whose scalability has been thoroughly tested [KKMZ11].

More generally, we witness an important proliferation of technical means to issue and
exchange annotations, in particular when exchanging opinions in social or collaborative
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sites, or when processing documents automatically, by text, language and semantic anal-
ysis. This justifies the interest in models and tools enabling to capture both documents
and annotations, if possible without converting one to the format of the other. An ef-
fort in this area has recently started in the group [GKK+11a, GKK+11b], and continues
within a separate PhD thesis. Some more details about this work are given in Chapter 6
(Section 6.2).





Chapter 6

Conclusion and Perspectives

Web data is becoming available at extreme rates nowadays, with big part of it being
expressed in XML (tree-structured) and RDF (graph-structured). Efficiently manipulating
Web data is undoubtedly crucial, but at the same time challenging, due to the size and the
complex structure of the available data. In this thesis we have focused on the manage-
ment of XML and RDF data based on materialized views in order to expedite the query
evaluation over such data.

6.1 Thesis Summary
We have focused on two basic problems, which we summarize below.

RDF view selection We have considered the context of a Semantic Web database in which
both explicit (present in the original database) and implicit (derived by applying the en-
tailment rules of an RDF Schema) data is present. In this context:

– We tackled the problem of selecting a set of views to be materialized in the database
in order to minimize a combined cost of query evaluation, view storage and update
maintenance. We modeled our problem as a state optimization problem, inspired
from an existing relational approach.

– Starting from an initial state (which corresponds to materializing exactly the query
workload), we devised various strategies and heuristics to search for the most ap-
propriate set of views.

– We investigated how we can efficiently take into account implicit data in the view
selection process, based either on database saturation or query reformulation. A
new query reformulation algorithm had to be created for our query and view lan-
guage. Moreover, we proposed an original method (named post-reformulation) to
incorporate query reformulation in the view selection, without increasing the num-
ber of queries upon which the search is done (and thus the complexity of the search)

– We implemented all our algorithms and experimentally showed the benefits of our
approach. Most importantly, our search algorithms can scale up to hundreds of
queries, achieving considerable cost benefits even at such workloads.

XML view-based query rewriting We then tackled the problem of answering XQuery
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queries using XQuery views. In particular:
– We considered an expressive fragment of XQuery, which brings significant exten-

sions to the dialects considered in previous rewriting works (while lacking support
for star nodes that some of these works considered). Our query and view language
is represented by joined patterns, consisting of several tree patterns. Each tree pat-
tern can have multiple return nodes and multiple return attributes for each node.
Moreover, value joins are supported between the nodes of tree patterns.

– Given this query and view language, we devised a novel sound and complete rewrit-
ing algorithm, which finds complete (no need to access the data) and minimal (no
view can be removed and still have a rewriting) rewritings.

– We established various properties for the joined tree patterns we consider, includ-
ing containment, equivalence and minimality, and devised practical algorithms to
efficiently check for such properties.

– We presented ways to transform a tree pattern to another one by means of an alge-
bra.

– We exploited our rewriting algorithm in a distributed setting for the efficient sharing
of XML documents, complemented with RDF annotations.

6.2 Perspectives

The management of RDF data is a highly active area of research. Although numerous
works have been presented the last years to this respect, there are still many opportunities
for improvement in creating a store capable of efficiently accommodating every possible
dataset and query workload. Starting from the work of this thesis on the view-based
management of Web data, we outline below various avenues for future work.

RDF view selection Our work on RDF view selection can be extended to support a more
expressive language, including aggregate queries, which are important for decision sup-
port systems and data warehouses. As far as the efficiency of the search is concerned,
new search strategies applying additional heuristics to guide the search could be devised.
At the same time, partitioning the workload in clusters that share common characteristics
would possibly lead to finding states with even lower cost and parallelization opportuni-
ties could be exploited. As for the implicit triples, it would be interesting to find a solution
that lies between query reformulation and database saturation combining the best of both
worlds.

XML view-based rewriting Our rewriting algorithm could be extended to support *-
labeled nodes in the patterns, as well as to support nesting and optionality. Most im-
portantly though, further techniques for optimizing the algorithm should be exploited,
given the high complexity of the problem. Among them, cost-based heuristics could be
employed in order to avoid joining views that are likely to lead to inefficient rewritings.
Moreover, at the moment we are investigating ways to answer a given query based on
views that may rely on other views.

Self-organizing Web data management systems Exploiting materialized views for
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query optimization purposes is one way of tuning a database system based on knowl-
edge for the query workload. Taking the idea of our work a step further, one can consider
an XML or RDF data management system whose design is automatically adapted accord-
ing to the characteristics of the given dataset and by exploiting the possible knowledge for
the kind of queries that will be posed. Adaptivity can be considered in three main areas:

– Adaptive storage and indexing. The way an XML/RDF dataset is stored and in-
dexed plays a crucial role on the performance of query evaluation. Unfortunately
though, there is no single storage and indexing scheme that works best on all types
of data and queries. Hence, it is important to automatically select the most suitable
way for storing and indexing the dataset by analyzing the specificities of the given
dataset and, if available, of the expected query workload.

– Partitioning. One can observe that parts of the same database may have very differ-
ent characteristics. In fact, some queries may access parts of the data in an OLAP
fashion, others may be purely transactional, whereas others may combine both fea-
tures. Moreover, some parts of the data are expected to be updated at much higher
rates than others. Based on these observations, one can partition the data according
to their features and store each partition in a different way.

– Dynamic adaptivity. In the above two cases, data and queries are considered to
be known in advance and to remain fixed. However, in many systems, updates in
the data and changes in the queries occur. This may alter the characteristics of
the dataset or queries, causing the performance even of a well-adapted system to
degrade over time. Therefore, it is of interest to devise ways to automatically adapt
the system in the presence of such updates.

Joint manipulation of XML and RDF data The idea of jointly manipulating XML and
RDF data started while we were building the AnnoVIP system (see Chapter 5 of this
thesis) for the sharing of XML documents with RDF annotations. However, AnnoVIP
was actually operating over pure XML data, after transforming the RDF annotations to
an XML/RDF format. Transforming data from one data model to another, means that
we are no longer capable of exploiting techniques that have been developed for the orig-
inal data model in which the data was expressed. To this end, we are currently working
on XR [GKK+11a, GKK+11b], a hybrid model between XML and RDF, following and
combining the W3C’s XML, URI and RDF standards so as to enable semantically rich
annotations and querying. XR makes any XML node a first-class citizen by assigning it
a URI and connecting it to a graph of RDF triples. We have devised a query language
and are now investigating ways to build an execution engine that can enable both model-
specific, as well as cross-model optimizations. Work on XR continues within a separate
PhD thesis.

Publish/Subscribe view-based system over Fast Data This is an ongoing work, which
started during my internship at the University of California at San Diego, focusing on
building a distributed view-based publish/subscribe system. The system consists of a
database server and multiple application servers, and is capable of accommodating a sig-
nificant number of clients. The clients subscribe to the data sources of the database server
that interest them using views, and the aim of the system is to keep the clients’ views
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up to date with the least possible latency, under some resource constraints (e.g., process-
ing power, storage capacity, network bandwidth). To this end, multi-query optimization,
partitioning and distribution techniques are exploited. Finalizing the corresponding algo-
rithms and architecture is part of my future work.
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