●○○○○○○	Partitionnement 0000	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
École Doctorale	SPIGA			Années universita	aires 2009/2012
	FSTTAR	École des Parist	Ponts cel		Centrale Nantes

Thèse de doctorat

Modèle de contact dynamique pneumatique/chaussée par approche multi-aspérités : application au bruit de roulement

Guillaume DUBOIS

Directrice de thèse : F. Anfosso-Lédée (Ifsttar)

thèse : H. Yin (ENPC)

Co-directeur de thèse : H.

Encadrant :

J. Cesbron (Ifsttar)

Introduction •••••••	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					

Problématique : réduire le bruit des transports (1/2)

Le bruit de trafic routier

• 2 Français sur 3 déclarent être gênés par le bruit à leur domicile (TNS Sofres, 2010)

Introduction •••••••	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					

Problématique : réduire le bruit des transports (1/2)

Le bruit de trafic routier

• 2 Français sur 3 déclarent être gênés par le bruit à leur domicile (TNS Sofres, 2010)

 753 millions d'euros en France en 2009 dépensés pour la lutte contre le bruit du trafic routier (Commission des comptes, 2011)

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					

Problématique : réduire le bruit des transports (1/2)

Le bruit de trafic routier

• 2 Français sur 3 déclarent être gênés par le bruit à leur domicile (TNS Sofres, 2010)

 753 millions d'euros en France en 2009 dépensés pour la lutte contre le bruit du trafic routier (Commission des comptes, 2011)

Aspects législatifs :

- Code de l'Environnement (articles L.571-9 et L571-10)
- Directive Européenne 2002/49/CE

ntroduction	
0000000	

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Problématique : réduire le bruit des transports (2/2)

Le bruit de contact pneumatique/chaussée

 Prédominance du bruit de contact pneumatique/chaussée (3ème rapport de vitesse pour VL, VL hybride et électrique)

Introduction	Partitionnement	Loi de contact	N
0000000	0000	00000	С

lodèle de contact

Prévision du bruit

Conclusions

Contexte

Problématique : réduire le bruit des transports (2/2)

Le bruit de contact pneumatique/chaussée

 Prédominance du bruit de contact pneumatique/chaussée (3ème rapport de vitesse pour VL, VL hybride et électrique)

0

Introduction	Partitionnement	Loi de contact	Modèle de c
0000000	0000	00000	00000000

odèle de contact

Prévision du bruit

Conclusions

Contexte

Problématique : réduire le bruit des transports (2/2)

Le bruit de contact pneumatique/chaussée

 Prédominance du bruit de contact pneumatique/chaussée (3ème rapport de vitesse pour VL, VL hybride et électrique)

- Les mécanismes générateurs :
- Pneumatique : nombreuses études et avancées de la part des manufacturiers.

Introduction	Partitionnement	Loi de contact	Modèle de co
0000000	0000	00000	000000000

e de contact 00000000000000 Prévision du bruit

Conclusions

Contexte

Problématique : réduire le bruit des transports (2/2)

Le bruit de contact pneumatique/chaussée

 Prédominance du bruit de contact pneumatique/chaussée (3ème rapport de vitesse pour VL, VL hybride et électrique)

- Les mécanismes générateurs :
- Pneumatique : nombreuses études et avancées de la part des manufacturiers.
- Chaussée : optimisation nécessaire des paramètres de chaussée (texture, absorption, rigidité, etc.)

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Introduction
00000000

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Introduction
00000000

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Modélisation du bruit de contact pneu/chaussée

Modélisation physique complète

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contouto					

Interaction pneumatique/chaussée (1/2)

Complexité du problème de contact (Andersson et Kropp, 2008)

Grandes dimensions de l'aire de contact

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					

Interaction pneumatique/chaussée (1/2)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusion
00000000	0000	00000	000000000000000000000000000000000000000	0000000000	00000

Contexte

Interaction pneumatique/chaussée (1/2)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit
00000000	0000	00000	000000000000000000000000000000000000000	0000000000

Conclusions

Contexte

Interaction pneumatique/chaussée (1/2)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée
- Présence de forces de frottement et d'adhésion

Introduction	Partitionnement	Loi de contact	Modèle de contact	Pré
00000000	0000	00000	000000000000000000000000000000000000000	00

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (1/2)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée
- Présence de forces de frottement et d'adhésion
- Dépendance en fréquence et en température des matériaux

Introduction	Partitionnement	Loi de contact	Modèle de contact
00000000	0000	00000	000000000000000000000000000000000000000

Prévision du bruit
0000000000

Conclusions

Contexte

Interaction pneumatique/chaussée (1/2)

Complexité du problème de contact (Andersson et Kropp, 2008)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée
- Présence de forces de frottement et d'adhésion
- Dépendance en fréquence et en température des matériaux

Hypothèses simplificatrices

Efforts de contact tangentiels négligeables

Introduction	Partitionnement	Loi de contact	Modèle de contact
00000000	0000	00000	000000000000000000000000000000000000000

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (1/2)

Complexité du problème de contact (Andersson et Kropp, 2008)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée
- Présence de forces de frottement et d'adhésion
- Dépendance en fréquence et en température des matériaux

Hypothèses simplificatrices

- Efforts de contact tangentiels négligeables
- Surface de chaussée parfaitement rigide

Introduction	Partitionnement	Loi de contact	Modèle de contact
00000000	0000	00000	000000000000000000000000000000000000000

ct Prévisi

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (1/2)

Complexité du problème de contact (Andersson et Kropp, 2008)

- Grandes dimensions de l'aire de contact
- Variation temporelle de l'aire de contact
- Nature aléatoire et multi-échelles de la surface de chaussée
- Présence de forces de frottement et d'adhésion
- Dépendance en fréquence et en température des matériaux

Hypothèses simplificatrices

- Efforts de contact tangentiels négligeables
- Surface de chaussée parfaitement rigide
- Hypothèses de petites déformations

Introduction
00000000

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (2/2)

Approches numériques

Élements finis classiques : FEM : Laursen (2002) - 3D Sellgren *et al.* (2003) - 3D BEM : Wriggers (2002) - 3D ALE : Nackenhorst (2004) - 3D

Élements finis périodique : FEM : Meftah (2011) - 3D

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (2/2)

Approches numériques Élements finis classiques : FEM : Laursen (2002) - 3D Sellgren *et al.* (2003) - 3D BEM : Wriggers (2002) - 3D ALE : Nackenhorst (2004) - 3D

Élements finis périodique : FEM : Meftah (2011) - 3D

Fondation élastique de Winkler (1867) Kropp (1992) - 2D $u = \frac{U}{\Omega}$ $k_{u}(\varphi, t) \cdot k_{j}(\varphi)$ $k_{u}(\varphi, t) \cdot k_{j}(\varphi)$ Hamet et Klein (2001) - 3D

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (2/2)

Approches numériques

Élements finis classiques : FEM : Laursen (2002) - 3D Sellgren *et al.* (2003) - 3D BEM : Wriggers (2002) - 3D ALE : Nackenhorst (2004) - 3D

Élements finis périodique : FEM : Meftah (2011) - 3D

Fondation élastique de Winkler (1867)

Kropp (1992) - 2D

Hamet et Klein (2001) - 3D

Approches analytiques (Boussinesq, 1885)

Méthode d'Inversion de Matrice (MIM) - 3D

Université de Chalmers : Larsson (2002) - Quasi-3D Wullens et Kropp (2004) - 3D

Multi-aspérités : Fujikawa et al. (1999) - 2D Sameur (2004) - 3D Cesbron (2007) - 3D

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contexte

Interaction pneumatique/chaussée (2/2)

Approches numériques

Élements finis classiques : FEM : Laursen (2002) - 3D Sellgren *et al.* (2003) - 3D BEM : Wriggers (2002) - 3D ALE : Nackenhorst (2004) - 3D

Élements finis périodique : FEM : Meftah (2011) - 3D

Fondation élastique de Winkler (1867)

Kropp (1992) - 2D

Hamet et Klein (2001) - 3D

Approches analytiques (Boussinesq, 1885)

Méthode d'Inversion de Matrice (MIM) - 3D

Université de Chalmers : Larsson (2002) - Quasi-3D Wullens et Kropp (2004) - 3D

Multi-aspérités : Fujikawa *et al.* (1999) - 2D Sameur (2004) - 3D **Cesbron (2007) - 3D**

Soutenance de thèse de Guillaume DUBOIS

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					
Enieu et d	obiectifs de la	thèse			

Compléter les connaissances sur la modélisation du contact pneumatique/chaussée, afin de :

mieux prévoir le bruit de roulement

Introduction ○○○○○●○	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					
Enjeu et d	biectifs de la	thèse			

Compléter les connaissances sur la modélisation du contact pneumatique/chaussée, afin de :

- mieux prévoir le bruit de roulement
- optimiser les principaux paramètres de la chaussée influant sur le bruit résultant

Introduction ○○○○○●○	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					
Enjeu et d	obiectifs de la	thèse			

Compléter les connaissances sur la modélisation du contact pneumatique/chaussée, afin de :

- mieux prévoir le bruit de roulement
- optimiser les principaux paramètres de la chaussée influant sur le bruit résultant

Objectifs

• Développer un modèle de contact dynamique pneumatique/chaussée

Introduction 00000000	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Contexte					
Enjeu et d	objectifs de la	thèse			

Compléter les connaissances sur la modélisation du contact pneumatique/chaussée, afin de :

- mieux prévoir le bruit de roulement
- optimiser les principaux paramètres de la chaussée influant sur le bruit résultant

Objectifs

- Développer un modèle de contact dynamique pneumatique/chaussée
- Établir un lien entre la texture, les forces de contact dynamiques et le niveau de bruit

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012
Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Surfaces utilisées (piste de Nantes)

10 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Surfaces utilisées (piste de Nantes)

10 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Surfaces utilisées (piste de Nantes)

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusio
00000000	0000	00000	000000000000000000000000000000000000000	000000000	00000

Principe du partitionnement

Seuillage itératif (Cesbron, 2007)

Introduction
00000000

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Principe du partitionnement

Seuillage itératif (Cesbron, 2007)

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Principe du partitionnement

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Principe du partitionnement

11 / 50

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

Exemple pour la surface E2 :

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

12/50

Exemple pour la surface E2 :

Pour l'ensemble des surfaces sur 2 m

 Partitionnement total de la surface en tenant compte de la forme des aspérités

Soutenance de thèse de Guillaume DUBOIS

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

Exemple pour la surface E2 :

Pour l'ensemble des surfaces sur 2 m

- Partitionnement total de la surface en tenant compte de la forme des aspérités
- Relation densité / granulométrie

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

Exemple pour la surface E2 :

Pour l'ensemble des surfaces sur 2 m

- Partitionnement total de la surface en tenant compte de la forme des aspérités
- Relation densité / granulométrie
- Temps de calcul important (~ 100 h)

Soutenance de thèse de Guillaume DUBOIS

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour faible chargement

Loi de contact à faible chargement $P_{k} = 2Gf_{k}(\delta_{k})$ Cylindre Sphère $P_{k} = 2E^{*}a\delta_{k} \qquad P_{k} = \frac{4}{3}E^{*}\sqrt{R}\delta_{k}^{\frac{3}{2}}$ Cône Quelconque $P_{k} = \frac{2}{\pi}E^{*}\tan\theta\delta_{k}^{2} \qquad P_{k} = C_{k}E^{*}\delta_{k}^{\gamma_{k}}$

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour faible chargement

Lai de contact à faible chargement				
Loi de contact a la	ble chargement			
$P_k = 2Gf_k(\delta_k)$				
Cylindre	Sphère			
$P_k = 2E^*a\delta_k$	$P_k = \frac{4}{3} E^* \sqrt{R} \delta_k^{\frac{3}{2}}$			
Cône	Quelconque			
$P_k = \frac{2}{\pi} E^* \tan \theta \delta_k^2$	$P_k = C_k E^* \delta_k^{\gamma_k}$			

- *C_k* dépend de la géométrie et des dimensions de la pointe
- γ_k est caractéristique de la forme de la pointe

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour faible chargement

Loi de contact à faible chargement $P_{k} = 2Gf_{k}(\delta_{k})$ Cylindre Sphère $P_{k} = 2E^{*}a\delta_{k} \qquad P_{k} = \frac{4}{3}E^{*}\sqrt{R}\delta_{k}^{\frac{3}{2}}$ Cône Quelconque $P_{k} = \frac{2}{\pi}E^{*}\tan\theta\delta_{k}^{2} \qquad P_{k} = C_{k}E^{*}\delta_{k}^{\gamma_{k}}$

C_k dépend de la géométrie et des dimensions de la pointe

 γ_k est caractéristique de la forme de la pointe

• Définition uniquement valable pour $\delta_k \lesssim 1 \text{ mm}$

14 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour faible chargement

Loi de contact à faible chargement				
$P_k = 2Gf_k(\delta_k)$				
Cylindre	Sphère			
$P_k = 2E^*a\delta_k$	$P_k = \frac{4}{3} E^* \sqrt{R} \delta_k^{\frac{3}{2}}$			
Cône	Quelconque			
$P_k = \frac{2}{\pi} E^* \tan \theta \delta_k^2$	$P_k = C_k E^* \delta_k^{\gamma_k}$			

- *C_k* dépend de la géométrie et des dimensions de la pointe
- γ_k est caractéristique de la forme de la pointe
- Définition uniquement valable pour $\delta_k \lesssim 1 \text{ mm}$
- Problème de convergence du modèle de contact

Partitionnement

Loi de contact 00000

Modèle de contact

Prévision du bruit

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

Soutenance de thèse de Guillaume DUBOIS

15 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

$$P_{k} = 2Gf_{k}(\delta_{k}) = \begin{cases} 0\\ C_{k}E^{*}\delta_{k}^{\gamma k}\\ K_{k}E^{*}(\delta_{k} - d_{k}) + C_{k}E^{*}d_{k}^{\gamma k} \end{cases}$$

 $\begin{array}{ll} {\rm si}\; \delta_k \leq 0 & {\rm Non-contact} \\ {\rm si}\; 0 < \delta_k < d_k & {\rm Loi}\; {\rm de}\; {\rm puissance} \\ {\rm si}\; d_k \leq \delta_k & {\rm Linéaire} \end{array}$

15 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

Loi de contact analytique d'une aspérité quelconque (Dubois et al., 2012)

$$P_{k} = 2Gf_{k}(\delta_{k}) = \begin{cases} 0 \\ C_{k}E^{*}\delta_{k}^{\gamma_{k}} \\ K_{k}E^{*}(\delta_{k} - d_{k}) + C_{k}E^{*} \end{cases}$$

 $\begin{array}{ll} {\rm si}\; \delta_k \leq 0 & {\rm Non-contact} \\ {\rm si}\; 0 < \delta_k < d_k & {\rm Loi\; de\; puissance} \\ d_k^{\gamma_k} & {\rm si\;} d_k \leq \delta_k & {\rm Linéaire} \end{array}$

4 paramètres C_k dépend de la géométrie et des dimensions de l'aspérité γ_k est caractéristique de la forme de l'aspérité

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

Loi de contact analytique d'une aspérité quelconque (Dubois et al., 2012)

$$P_{k} = 2Gf_{k}(\delta_{k}) = \begin{cases} 0 \\ C_{k}E^{*}\delta_{k}^{\gamma_{k}} \\ K_{k}E^{*}(\delta_{k} - d_{k}) + C_{k}E^{*} \end{cases}$$

 $\begin{array}{ll} {\rm si}\; \delta_k \leq 0 & {\rm Non-contact} \\ {\rm si}\; 0 < \delta_k < d_k & {\rm Loi\; de\; puissance} \\ d_k^{\gamma_k} & {\rm si\;} d_k \leq \delta_k & {\rm Linéaire} \end{array}$

15 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

Loi de contact analytique d'une aspérité quelconque (Dubois et al., 2012)

$$P_{k} = 2Gf_{k}(\delta_{k}) = \begin{cases} 0\\ C_{k}E^{*}\delta_{k}^{\gamma_{k}}\\ K_{k}E^{*}(\delta_{k} - d_{k}) + C_{k}E^{*} \end{cases}$$

15 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Définition analytique de la loi de contact

Définition analytique pour l'ensemble du chargement

Dubois et al., Int. J. Mech. Sci., janvier 2012

15 / 50

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Étude statistique des paramètres de contact

Distribution statistique des paramètres de contact (E2 : BBSG 0/10)

6 paramètres de contact

4 décrivant la loi de contact pour chaque aspérité

 C_k, γ_k, d_k et $K_k (k \in [1, N])$

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Étude statistique des paramètres de contact

Distribution statistique des paramètres de contact (E2 : BBSG 0/10)

6 paramètres de contact

4 décrivant la loi de contact pour chaque aspérité

 C_k, γ_k, d_k et $K_k (k \in [1, N])$

2 décrivant le positionnement relatif des aspérités

$$\forall k \in [1, N], \begin{cases} r_k = \overline{r_{kl}} \mid_{l \in \mathcal{V}_k} \\ h_k = \overline{|z_k^s - z_l^s|} \mid_{l \in \mathcal{V}_k} \end{cases}$$

avec :

$$T_{kl} = \sqrt{(X_k^s - X_l^s)^2 + (y_k^s - y_l^s)^2}$$

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Étude statistique des paramètres de contact

Distribution statistique des paramètres de contact (E2 : BBSG 0/10)

6 paramètres de contact

4 décrivant la loi de contact pour chaque aspérité

 $C_k, \gamma_k, d_k \text{ et } K_k (k \in [1, N])$

2 décrivant le positionnement relatif des aspérités

$$\forall k \in [1, N], \begin{cases} \mathbf{r}_{k} = \overline{\mathbf{r}_{kl}} \mid_{l \in \mathcal{V}_{k}} \\ \mathbf{h}_{k} = \overline{|\mathbf{z}_{k}^{s} - \mathbf{z}_{l}^{s}|} \mid_{l \in \mathcal{V}_{k}} \end{cases}$$

avec :

$$r_{kl} = \sqrt{(x_k^s - x_l^s)^2 + (y_k^s - y_l^s)^2}$$

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Étude statistique des paramètres de contact

Paramètres moyens

Paramètres	de contact moyens	et densité	d'aspérités		
Surface	Granulométrie	<i>ī</i> r (mm)	\overline{h} (mm)	\overline{K} (mm)	D (asp/m ²)
С	0,8/1,5	6,07	0,14	6,22	30 985
L2	0/4	6,25	0,19	6,43	29 209
F	1,5/3	6,75	0,59	6,47	24 742
A'	0/6	7,30	0,21	6,37	21 786
E1	0/10	7,96	0,18	7,92	17 512
M2	0/6	8,13	0,21	7,71	17 315
G	0/10	8,11	0,21	8,14	17 112
E2	0/10	8,65	0,28	8,66	15 214
M1	0/10	10,15	0,25	9,25	11 123
А	8/10	13,05	1,65	11,10	6 721

Granulométrie maximale *∧* ⇔ D ∖
Granulométrie maximale *∧* ⇔ *r* et *K* ∧

- Relation moins évidente avec \overline{h}

Soutenance de thèse de Guillaume DUBOIS

Introduction	Partitionnement	Loi de contact	Modèle de contact	Pr
00000000	0000	00000	000000000000000000000000000000000000000	00

Prévision du bruit

Conclusions

Présentation du modèle de contact multi-aspérités

Modèle de contact multi-aspérités

Formalisme de Green et conditions de Signorini

$$\forall t \geq 0, \forall M \in \Sigma(t), \ u(M, t) = \int_0^t \int_{\Sigma(\tau)} G(M|S, t - \tau) p(S, \tau) \mathrm{d}\Sigma(\tau) \mathrm{d}\tau$$

$$\forall t \ge 0, \begin{cases} \forall M \in \bar{\Sigma}_{c}(t), \ u(M, t) - z_{c}(M, t) + \delta + z_{p}(M, t) > 0 & \text{et} \quad p(M, t) = 0 \quad \text{Séparation} \\ \forall M \in \Sigma_{c}(t), \ u(M, t) - z_{c}(M, t) + \delta + z_{p}(M, t) = 0 & \text{et} \quad p(M, t) > 0 \quad \text{Contact} \end{cases}$$

$$P(t) = -\int_{\Sigma_{\mathcal{C}}(t)} p(S, t) \mathrm{d}\Sigma_{\mathcal{C}}(t)$$

Introduction	Partitionnement	Loi de contact	Modèle de contact
00000000	0000	00000	000000000000000000000000000000000000000

Prévision du bruit

Conclusions

Présentation du modèle de contact multi-aspérités

Modèle de contact multi-aspérités

Formalisme de Green et conditions de Signorini

$$orall t \geq 0, orall M \in \Sigma(t), \; u(M,t) = \int_0^t \int_{\Sigma(\tau)} G(M|S,t-\tau) p(S,\tau) \mathrm{d}\Sigma(\tau) \mathrm{d}\tau$$

$$\forall t \ge 0, \begin{cases} \forall M \in \bar{\Sigma}_{c}(t), \ u(M, t) - z_{c}(M, t) + \delta + z_{p}(M, t) > 0 \quad \text{et} \quad p(M, t) = 0 \quad \text{Séparation} \\ \forall M \in \Sigma_{c}(t), \ u(M, t) - z_{c}(M, t) + \delta + z_{p}(M, t) = 0 \quad \text{et} \quad p(M, t) > 0 \quad \text{Contact} \end{cases}$$

$$\mathsf{P}(t) = -\int_{\Sigma_{\mathcal{C}}(t)} p(S, t) \mathrm{d}\Sigma_{\mathcal{C}}(t)$$

Introduction	Partitio
00000000	0000

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Modèle de contact multi-aspérités élastique

- Massif semi-infini élastique
- Modèle de contact quasi-statique
- Pas de vibration
 - Macro-échelle

Micro-échelle

Introduction Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Macro-échelle élastique

Loi de contact

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k) \text{ avec } \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{k=1}^N T_{kk}$$

Introduction Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Macro-échelle élastique

Loi de contact

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k) \text{ avec } \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{k=1}^N T_{k,k}$$

Partitionnement multi-aspérité de la chaussée

$$\forall M \in \Sigma, \ u(M) = \sum_{k=1}^{N} \int_{\Sigma_k} G(M|S) p(S) \mathrm{d}\Sigma_k$$

Introduction Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Macro-échelle élastique

Loi de contact

21 / 50

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k) \text{ avec } \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{k=1}^N T_{kk}$$

Partitionnement multi-aspérité de la chaussée

$$\forall M \in \Sigma, \ u(M) = \sum_{k=1}^{N} \int_{\Sigma_k} G(M|S) p(S) \mathrm{d}\Sigma_k$$

Interaction décrite aux sommets des aspérités

$$\forall l \in [1, N], \forall (M, S) \in \Sigma_k \times \Sigma_l, G(M, S) = G(x_k^s, y_k^s; \xi_l^s, \eta_l^s) \equiv T_{kl}$$

ntroduction Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Macro-échelle élastique

Loi de contact

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k) \text{ avec } \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P_l$$

Partitionnement multi-aspérité de la chaussée

$$\forall M \in \Sigma, \ u(M) = \sum_{k=1}^{N} \int_{\Sigma_k} G(M|S) p(S) \mathrm{d}\Sigma_k$$

Interaction décrite aux sommets des aspérités

$$\forall l \in [1, N], \forall (M, S) \in \Sigma_k \times \Sigma_l, G(M, S) = G(x_k^s, y_k^s; \xi_l^s, \eta_l^s) \equiv T_{kl}$$

...

$$\Rightarrow \quad \forall k \in [1, N], \ \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P$$

Soutenance de thèse de Guillaume DUBOIS

ntroduction Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Macro-échelle élastique

Loi de contact

21 / 50

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k) \text{ avec } \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P_l$$

Partitionnement multi-aspérité de la chaussée

$$\forall M \in \Sigma, \ u(M) = \sum_{k=1}^{N} \int_{\Sigma_k} G(M|S) p(S) \mathrm{d}\Sigma_k$$

Résolution à l'aide d'un algorithme de Newton-Raphson

$$\forall l \in [1, N], \forall (M, S) \in \Sigma_k \times \Sigma_l, G(M, S) = G(x_k^s, y_k^s; \xi_l^s, \eta_l^s) \equiv T_{kl}$$

N/

$$\implies \forall k \in [1, N], \ \delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P$$

Soutenance de thèse de Guillaume DUBOIS

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Modèle de contact multi-aspérités élastique					
Micro-échelle élastique					

$$\mathbf{A}_{kk}\mathbf{p}_k^0=\mathbf{b}_k^0$$

Résolution

MIM locale à force imposée $(P_k \text{ macro-échelle})$

22 / 50

Partitionnement

Loi de contact

Modèle de contact Prévision du bruit

Modèle de contact multi-aspérités élastique

Validation (Dubois et al., 2012)

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Validation (Dubois et al., 2012)

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

23 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Évaluation d'empreintes statiques (1/2)

IFSTTAR, NANTES - 27 septembre 2012

24 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités élastique

Évaluation d'empreintes statiques (2/2)

Partitionnement

Loi de contact

Modèle de contact Prévision du bruit

Modèle de contact multi-aspérités élastique

Evaluation d'empreintes statiques (2/2)

Soutenance de thèse de Guillaume DUBOIS

Introduction	Partition
00000000	0000

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Modèle de contact multi-aspérités viscoélastique

- Massif semi-infini viscoélastique
- Modèle de contact dynamique
- Pas de vibration

Macro-échelle

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k)$$
$$\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P_l$$

27 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k)$$
$$\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl}P_l$$

27 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], \ P_k = 2Gf_k(\delta_k)$$
$$\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl}P_l$$
$$\sigma = 2G\varepsilon$$

↓ Radok (1957)

v Haaon (1007)

 $\sigma(t) = \int_0^t \psi(t- au) rac{\partial arepsilon(au)}{\partial au} \mathrm{d} au$

Convolution

27 / 50

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], P_k = 2Gf_k(\delta_k)$$
$$\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl}P_l$$

 $\sigma = 2G\varepsilon$

↓ Radok (1957)

 $\sigma(t) = \int_0^t \psi(t-\tau) \frac{\partial \varepsilon(\tau)}{\partial \tau} \mathrm{d}\tau$

Convolution

 ψ : fonction de relaxation ϕ : fonction de fluage Utilisation de modèle rhéologique classique

27 / 50

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], P_k = 2Gf_k(\delta_k)$$
$$\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl}P_l$$

$$\sigma = 2G\varepsilon$$

↓ Radok (1957)

$$\sigma(t) = \int_0^t \psi(t-\tau) \frac{\partial \varepsilon(\tau)}{\partial \tau} \mathrm{d}\tau \qquad \mathsf{C}$$

 $P_k(t) = \int_0^t \psi(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\tau} (f_k(\delta_k(\tau))) \mathrm{d}\tau$

Convolution

 ψ : fonction de relaxation ϕ : fonction de fluage Utilisation de modèle rhéologique classique

27 / 50

Dubois et al., Wear, octobre 2011

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Macro-échelle viscoélastique (Dubois et al., 2011)

Macro-échelle élastique :

$$\forall k \in [1, N], P_k = \frac{2Gf_k(\delta_k)}{\delta_k = z_{c,k}^s - \delta - z_{p,k}^s - \sum_{\substack{l=1\\l \neq k}}^N T_{kl}P_l$$

$$\sigma = 2G\varepsilon$$

↓ Radok (1957)

$$\sigma(t) = \int_0^t \psi(t-\tau) \frac{\partial \varepsilon(\tau)}{\partial \tau} d\tau \qquad \text{Convolution}$$

 ψ : fonction de relaxation ϕ : fonction de fluage Utilisation de modèle rhéologique classique

$$P_k(t) = \int_0^t \psi(t-\tau) \frac{\mathrm{d}}{\mathrm{d}\tau} (f_k(\delta_k(\tau))) \mathrm{d}\tau$$

 $\forall t > 0, \ P_k(t) = \psi(0) f_k(\delta_k(t)) + P_k^{old}(t)$

$$\delta_k(t) = z_{c,k}^s - \delta(t) - z_{p,k}^s - u_k^{old}(t) - \phi(0) \sum_{\substack{l=1\\l \neq k}}^N T_{kl} P_l(t)$$

Dubois *et al.*, Wear, octobre 2011

27 / 5<u>0</u>

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Empreinte macro-échelle viscoélastique (1/2)

duction	Partitionnement	Loi de
00000	0000	0000

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Empreinte macro-échelle viscoélastique (2/2)

IFSTTAR, NANTES - 27 septembre 2012

 P_{k-max} (N)

48.2

62,9

63,0

63.0

63,0

oduction	Partitionnement	Loi de contact
000000	0000	00000

Modèle de contact

Prévision du bruit

Conclusions

Modèle de contact multi-aspérités viscoélastique

Empreinte macro-échelle viscoélastique (2/2)

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

 P_{k-max} (N)

48.2

62,9

63,0

63,0

Introduction	Partitionn
00000000	0000

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Modèle de contact multi-aspérités complet

- Massif semi-infini viscoélastique
- Modèle de contact dynamique
- Vibration de la ceinture du pneumatique

Macro-échelle

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Macro-échelle viscoélastique avec vibration

Sans vibration :

$$\forall t > 0, \ P_k(t) = \psi(0)f_k(\delta_k(t)) + P_k^{old}(t)$$

$$\delta_{k}(t) = z_{c,k}^{s} - \delta(t) - z_{p,k}^{s} - u_{k}^{old}(t) - \phi(0) \sum_{\substack{l=1\\l\neq k}\\l\neq k}^{N} T_{kl} P_{l}(t)$$

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Macro-échelle viscoélastique avec vibration

Sans vibration :

 $\forall t > 0, P_k(t) = \psi(0)f_k(\delta_k(t)) + P_k^{old}(t)$

 $\delta_{k}(t) = z_{c,k}^{s} - \delta(t) - z_{p,k}^{s}(t) - u_{k}^{old}(t) - \phi(0) \sum_{\substack{l=1\\ l \neq k}}^{N} T_{kl} P_{l}(t)$

Partitionnement

Loi de contact

Modèle de contact

Δ1

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Macro-échelle viscoélastique avec vibration

Sans vibration :

 $\forall t > 0, P_k(t) = \psi(0)f_k(\delta_k(t)) + P_k^{old}(t)$

 $\mathbf{z}_{p,k}^{s}(t) = z_{p,k}^{s,0} + \sum_{l=1}^{N_{cp}^{old}} \int_{0}^{t} G_{kl}^{p}(t-\tau) P_{l}(\tau) \mathrm{d}\tau$

$$\delta_k(t) = z_{c,k}^s - \delta(t) - z_{p,k}^s(t) - u_k^{old}(t) - \phi(0) \sum_{\substack{l=1\\l\neq k}}^N T_{kl} P_l(t)$$

Modèle vibratoire de plaque orthotrope (Kropp, 1992)

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} B_{kl}^{o}(t- au) &= C \sum_{i=1}^{\infty} A_{kl}^{i} \sum_{j=0}^{\infty} B_{kl}^{ij} \sin(\Omega_{ij}(t- au)) e^{-\eta_{ij}\Omega_{ij}(t- au)} \end{aligned}$$

ntroduction	Pa
00000000	0

artitionnement Lo

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Forces de contact sur plusieurs mètres à 90 km/h (1/4)

Étape 1

Étape 2

Chargement à macro-échelle jusqu'à atteindre 3 000 N

Roulement à macro-échelle à vitesse constante Roulement à micro-échelle (itération « zéro ») Pas de dynamique locale

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Forces de contact sur plusieurs mètres à 90 km/h (2/4)

Configuration « pneu standard » (P2RN, 2009)

Michelin Energy E3A, 195/60 R15

Modèle de plaque orthotrope (Kropp, 1992)

Paramètres de la plaque orthotrope (P2RN, 2009)

Paramètres	Symboles	Unités	Valeurs
Tension	To	N/m	4,4.10 ⁴ (1+0,05 <i>i</i>)
Rigidité (radiale)	B _x	Nm	4(1+0,2 <i>i</i>)
Rigidité (latérale)	By	Nm	4(1+0,2 <i>i</i>)
Masse	m''	kg/m ²	12,384
Rigidité (pression)	Sa	N/m ³	5,73.10 ⁵ (1+0,1 <i>i</i>)
Largeur	I _X	m	0,32
Périmètre	l _y	m	1,8347
Largeur (bande)	b	m	0,14

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

33 / 50

34 / 50

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Forces de contact sur plusieurs mètres à 90 km/h (3/4)

Soutenance de thèse de Guillaume DUBOIS

Résultats à macro-échelle

	1	2	3	4
\mathcal{A} (cm ²)	139	113	147	167
t_c (h)	0,55	0,76	4,93	5,63

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Forces de contact sur plusieurs mètres à 90 km/h (3/4)

Résultats à macro-échelle

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Contact pneumatique/chaussée avec vibrations

Forces de contact sur plusieurs mètres à 90 km/h (4/4)

Résultats à micro-échelle

Soutenance de thèse de Guillaume DUBOIS

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Mesure du bruit de roulement

Description des essais et traitement des données

Mesure en continu

« pneu standard » : Michelin Energy E3A, 195/60 R15 10 revêtements (A, A', C, E1, E2, F, G, L2, M1, M2) un passage de 65 km/h à 110 km/h par pas de 5 km/h

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Mesure du bruit de roulement

Description des essais et traitement des données

Mesure en continu

« pneu standard » : Michelin Energy E3A, 195/60 R15 10 revêtements (A, A', C, E1, E2, F, G, L2, M1, M2) un passage de 65 km/h à 110 km/h par pas de 5 km/h

Niveau de bruit reconstitué pour chaque surface et chaque tiers d'octave

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions	
Mesure du bruit de roulement						

Résultats de la mesure du bruit de roulement

Configuration pneu standard : 90 km/h

Partitionnement

Loi de contact

Modèle de contact

Prévision du bruit

Conclusions

Corrélations des paramètres de lois de contact avec le bruit

Paramètres à corréler avec un niveau de bruit global recomposé

Paramètres d	e contact et d	le bruit à corréler
--------------	----------------	---------------------

Surface	Granulométrie	<i>ī</i> (mm)	<u></u> <i>h</i> (mm)	\overline{K} (mm)	D (asp/m ²)	<i>L_{r - BF}</i> (dB) 90 km/h
С	0,8/1,5	6,07	0,14	6,22	30 985	94,4
L2	0/4	6,25	0,19	6,43	29 209	94,3
F	1,5/3	6,75	0,59	6,47	24 742	97,3
A'	0/6	7,30	0,21	6,37	21 786	94,7
E1	0/10	7,96	0,18	7,92	17 512	93,4
M2	0/6	8,13	0,21	7,71	17 315	95,0
G	0/10	8,11	0,21	8,14	17 112	94,6
E2	0/10	8,65	0,28	8,66	15 214	96,9
M1	0/10	10,15	0,25	9,25	11 123	97,2
A	8/10	13,05	1,65	11,10	6 721	102,2

Soutenance de thèse de Guillaume DUBOIS

oductionPartitionnementLoi de contact0000000000000000

Modèle de contact

Prévision du bruit

Conclusions

Corrélations de la texture et des forces de contact avec le bruit

Courbes d'isocorrélation : « pneu standard » (90 km/h)

Coefficient de corrélation : « pneu standard » (90 km/h)

Fréquence de coupure : 800 Hz

Fréquence de coupure : 800 Hz

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions			
Corrélations de	Corrélations de la texture et des forces de contact avec le bruit							
Estimatio	n du bruit (1/2	2)						

$$L_{B- ext{estime}}(f_j) = a_j L_{lpha}(f_j) + b_j$$

Texture (méthode empirique)

Force (méthode hybride)

Prévision du bruit globalement meilleure avec les forces de contact $\varepsilon_T = 2,9 \text{ dB}$ $\varepsilon_F = 1,4 \text{ dB}$

Soutenance de thèse de Guillaume DUBOIS

 $\varepsilon_T = 1.3 \text{ dB}$

 $\varepsilon_F = 0.4 \text{ dB}$

45 / 50
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Conclusions					

• Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D

Conclusions	0000	00000	000000000000000000000000000000000000000	000000000	•0000
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

- Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D
- Nouvelle loi de contact adaptée à la gamme de chargement pneumatique/chaussée

Oneshusiana					
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

- Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D
- Nouvelle loi de contact adaptée à la gamme de chargement pneumatique/chaussée

Conclusions sur le modèle de contact

• Validation du modèle élastique à micro-échelle : taille, résolution, rapidité

Oneshusiana					
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

- Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D
- Nouvelle loi de contact adaptée à la gamme de chargement pneumatique/chaussée

Conclusions sur le modèle de contact

- Validation du modèle élastique à micro-échelle : taille, résolution, rapidité
- Calculs sur plusieurs mètres de chaussée

Canalusiana					
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

- Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D
- Nouvelle loi de contact adaptée à la gamme de chargement pneumatique/chaussée

Conclusions sur le modèle de contact

- Validation du modèle élastique à micro-échelle : taille, résolution, rapidité
- Calculs sur plusieurs mètres de chaussée
- Introduction de la viscoélasticité à macro-échelle : diminution de l'aire de contact

Canalusiana					
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

- Partitionnement : décomposition multi-aspérités d'une surface de chaussée 3D
- Nouvelle loi de contact adaptée à la gamme de chargement pneumatique/chaussée

Conclusions sur le modèle de contact

- Validation du modèle élastique à micro-échelle : taille, résolution, rapidité
- Calculs sur plusieurs mètres de chaussée
- Introduction de la viscoélasticité à macro-échelle : diminution de l'aire de contact
- Introduction de la vibration à macro-échelle : nécessité de validation expérimentale

0000 0000	00000	000000000000000000000000000000000000000	000000000	00000
onclusions				

Conclusions sur la prévision du bruit

• Estimation rapide du niveau de bruit recomposé à basses fréquences à partir des paramètres de contact

00000000	0000	00000	000000000000000000000000000000000000000	0000
Conclusions				

Conclusions sur la prévision du bruit

- Estimation rapide du niveau de bruit recomposé à basses fréquences à partir des paramètres de contact
- Meilleure corrélation Force/Bruit que Texture/Bruit

Conclusions					
Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions

Conclusions sur la prévision du bruit

- Estimation rapide du niveau de bruit recomposé à basses fréquences à partir des paramètres de contact
- Meilleure corrélation Force/Bruit que Texture/Bruit
- Bonne estimation du spectre de bruit à basses fréquences avec les forces de contact

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

 Étudier expérimentalement l'influence des effets dynamiques sur le contact

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)
- Améliorer le modèle de contact multi-aspérités en :

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)
- Améliorer le modèle de contact multi-aspérités en :
 - incorporant les effets dynamiques à micro-échelle

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)
- Améliorer le modèle de contact multi-aspérités en :
 - incorporant les effets dynamiques à micro-échelle
 - généralisant la méthode multi-échelles en fonction de l'application souhaitée

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)
- Améliorer le modèle de contact multi-aspérités en :
 - incorporant les effets dynamiques à micro-échelle
 - généralisant la méthode multi-échelles en fonction de l'application souhaitée
 - simplifiant la description de l'interaction en fonction de la distance aux autres aspérités

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Étudier expérimentalement l'influence des effets dynamiques sur le contact
- Mettre en relation le modèle de contact multi-aspérités avec d'autres méthodes récentes (Meftah, 2011)
- Améliorer le modèle de contact multi-aspérités en :
 - incorporant les effets dynamiques à micro-échelle
 - généralisant la méthode multi-échelles en fonction de l'application souhaitée
 - simplifiant la description de l'interaction en fonction de la distance aux autres aspérités
 - comparant différents modèles vibratoires (anneaux, FEM, etc...)

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

• Modèle physique complet pour la prévision du bruit :

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Modèle physique complet pour la prévision du bruit :
 - Macro-échelle : vibration du pneumatique et rayonnement du bruit

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Modèle physique complet pour la prévision du bruit :
 - Macro-échelle : vibration du pneumatique et rayonnement du bruit
 - Micro-échelle : frottement et air-pumping

Introduction 00000000	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Modèle physique complet pour la prévision du bruit :
 - Macro-échelle : vibration du pneumatique et rayonnement du bruit
 - Micro-échelle : frottement et air-pumping
- Générer de nouvelles surfaces 3D à partir des paramètres de contact optimisés

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions
Perspectives					

- Modèle physique complet pour la prévision du bruit :
 - Macro-échelle : vibration du pneumatique et rayonnement du bruit
 - Micro-échelle : frottement et air-pumping
- Générer de nouvelles surfaces 3D à partir des paramètres de contact optimisés
- Utiliser le modèle de contact dynamique multi-aspérités pour la modélisation de la résistance au roulement, de l'adhérence...

Introduction	Partitionnement	Loi de contact	Modèle de contact	Prévision du bruit	Conclusions ○○○●

MERCI DE VOTRE ATTENTION

Et merci à toute l'équipe Acoustique...

Soutenance de thèse de Guillaume DUBOIS

IFSTTAR, NANTES - 27 septembre 2012

Liste des Publications

Articles dans des revues internationales avec comité de lecture

- A1: G. Dubois, J. Cesbron, H.P. Yin, F. Anfosso-Lédée : Macro-scale approach for rough frictionless multi-indentation on a viscoelastic half-space : Wear 272 (1) : 69-78 (2011)
- A2: G. Dubois, J. Cesbron, H.P. Yin, F. Anfosso-Lédée : Numerical evaluation of tyre/road contact pressures using a multi-asperity approach : International Journal of Mechanical Sciences 54 : 84-94 (2012)

Communications avec actes dans un congrès international

- C1: G. Dubois, J. Cesbron, H.P. Yin, F. Anfosso-Lédée : A multi-asperity tyre/road contact model for rolling noise prediction : Proc. Forum Acusticum, Aalborg – Danemark (26 Juin - 1 Juillet 2011)
- C2: J. Cesbron, G. Dubois, H.P. Yin, F. Anfosso-Lédée : Relations between contact model quantities and tyre/road noise : Proc. Forum Acusticum, Aalborg – Danemark (26 Juin - 1 Juillet 2011)
- C3: H.P. Yin, J. Cesbron, G. Dubois, D. Duhamel, F. Anfosso-Lédée : A multi-asperity approach for modelling the contact between rough surfaces and applications to the tyre/road contact : Proc. Colloquium Euromech 514 « New trends in contact mechanics », Cargèse – France (27 - 31 Mars 2012)
- C4: G. Dubois, J. Cesbron, F. Anfosso-Lédée, H.P. Yin : Low frequency statistical estimation of rolling noise from numerical tyre/road contact pressures : Proc. Acoustics 2012, Nantes – France (23 - 27 Avril 2012)
- C5: J. Cesbron, G. Dubois, F. Anfosso-Lédée, H.P. Yin: Tyre/road noise : influence of multi-asperity road surface properties on tyre/road contact stresses : Proc. Inter-noise 2012, New-York – USA (19 - 22 Août 2012)
- C6: H.P. Yin, G. Dubois, J. Cesbron, F. Anfosso-Lédée, Q-H. Bui, D. Duhamel : A numerical macro-scale approach for the tire/road viscoelastic contact for the noise prediction : Proc. Inter-noise 2012, New-York – USA (19 - 22 Août 2012)

Lois statistiques des paramètres de contact

Loi de densi	té de probab	ilité pour les	10 surface	es utilisées	;		
Surface	<i>r_k</i> (mm)	h _k (mm)	C _k	γ_k	d _k (mm)	<i>K_k</i> (mm)	
Α	\mathcal{N}	GEV	GEV	GEV	GEV	GEV	
A'	\mathcal{N}	\mathcal{LN}	\mathcal{N}	GEV	\mathcal{N}	\mathcal{N}	
С	\mathcal{N}	GEV	GEV	GEV	GEV	GEV	
E1	\mathcal{N}	\mathcal{LN}	GEV	GEV	GEV	GEV	
E2	\mathcal{N}	\mathcal{LN}	GEV	GEV	GEV	GEV	
F	\mathcal{N}	GEV	GEV	GEV	GEV	GEV	
G	\mathcal{N}	GEV	GEV	GEV	GEV	GEV	
L2	\mathcal{N}	\mathcal{LN}	G	GEV	G	G	
M1	\mathcal{N}	\mathcal{LN}	\mathcal{N}	GEV	\mathcal{N}	\mathcal{N}	
M2	Ň	\mathcal{LN}	\mathcal{N}	GEV	\mathcal{N}	Ň	

- r_k : loi normale
- γ_k : loi généralisée des valeurs extrêmes
- h_k: loi log-normale pour (A', E1, E2, L2, M1 et M2); loi généralisée des valeurs extrêmes pour (A, C, F et G)
- C_k, d_k et K_k : loi identique pour une même surface : normale pour poreux (A, M1, M2), généralisée des valeurs extrêmes pour les autres
- Taille représentative = 30 cm × 30 cm