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The parts-based deformable models for motorbike and aeroplane from [Bouchard & Triggs 2005]. (d) The parts-based deformable models for human body from [Felzenszwalb & Huttenlocher 2005] the state-of-the-art performances in object recognition, while their drawback is relatively high computational cost. To deal with this, there are usually two ways: one is to replace the costly gradient information with other more ecient features, as what we did in the case of OC-LBP; the other is to nd more ecient methods to calculate the gradient information. The DAISY descriptor was initially designed for wide-baseline stereo matching problem, and has shown good robustness against many photometric and geometric transformations. It has never been used in the context of visual object recognition, while we believe that it is very suitable for this problem. DAISY provides a fast way to capture the rst order gradient information in images.

Fourthly, we propose a novel local descriptor called histograms of the second order gradients (HSOG) for visual object recognition. It captures the second order gradient information in images, which, to the best of our knowledge, is seldom investigated in the literature for the purpose of object recognition. Intuitively, the second order gradients applied to a gray level image capture the acceleration information on local variations of pixel gray values. They should not only oer certain discriminative power to distinguish dierent object classes, but also tend to be complementary to the description provided by the rst order gradients. Thus we believe that both the rst and second order gradient information is required to comprehensively describe the visual content of an image. Therefore, we propose the HSOG descriptor as a complement to the existing rst order gradient descriptors, and further improve its performance by using multi-scale extension.

The proposed features / descriptors have been validated and evaluated through comprehensive experiments conducted on several popular datasets such as PASCAL VOC 2007, Caltech 101, and so on. The experimental results clearly show that (1) the multi-scale color LBP features outperform the original LBP and other popular texture features; (2) the gray and color OC-LBP descriptors obtain comparable or superior performances compared to the state-of-the-art descriptors such as SIFT and color SIFT while being more computationally ecient as well; (3) the DAISY descriptor outperforms the state-of-the-art SIFT in terms of both recognition accuracy and computational eciency; (4) the HSOG descriptor obtains superior performance compared to the existing rst order gradient based descriptors such as SIFT, CS-LBP and DAISY, and also provides complementary information to these descriptors. With the rapid development of digital technology, the world is currently experiencing a digital revolution. Particularly, because of the speedy popularization of digital cameras and camera phones, more and more information presented around us nowadays are changing from text-based to multimedia-based, especially in the form of images and videos. For example, the very famous online photo sharing website Flickr 1 reported in August 2011 that it was hosting more than 6 billion photos already and this number continues to grow with a speed of more than 1 billion per year. Another famous social networking website Facebook 2 announced in October 2011 that it was hosting about 140 billion images and thus becomes the largest album in the world.
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Facing such huge amounts of data, the need for solutions of how to eciently manage them and access to appropriate content becomes more and more urgent.

Traditionally, one could rst annotate images manually using keywords and then 1 http://www.flickr.com/ 2 http://www.facebook.com/ Chapter 1. Introduction carry out the search by matching their annotations with the required keywords, just as the cases of the most popular image search engines nowadays like Google Images 3 , Yahoo Images 4 and Picsearch 5 . Technically, this kind of search method relies not on the image content directly, but on the textual information associated with images, e.g. le name, keywords, labels or tags. However, this method quickly becomes inconceivable nowadays because tremendous amount of time and labor is required for annotating such huge amounts of data. Moreover, there exist some other problems for manual annotations:

• When the annotation rules change, the annotation process must be manually performed again on the whole database.

• Since manual annotation might be subjective, there is no guarantee that two dierent persons would produce the same annotation for the same image, which however is generally expected in most applications.

• Since the annotations are in the form of text, choosing language is important for annotating and searching, while most of available annotations are only for a limited number of languages.

In such context, the current trend is to nd out eective and ecient methods to realize automatic image annotation, which means that single or multiple labels could be assigned to an image automatically by computers according to its visual content.

Another way is to skip the annotation step and to realize the content-based image retrieval directly. For these purposes, more and more attentions in recent years have been paid to machine-based visual object recognition and image classication, which serves as the fundamental problem and could greatly be benecial to the mentioned applications.

Chapter 1. Introduction

Problems and objective

Machine-based visual object recognition aims at automatically predicting whether at least one or several objects of given categories are present in an image by computers based on its visual content. More precisely, only categories of objects or generic concepts are taken into account as the goal of object recognition systems. For example, given an image, we aim to nd out if there exists any person or any building in it, rather than a particular person or a particular building. through comprehensive experiments conducted on several popular datasets.
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Approaches and contributions

As we stated, visual object recognition is a very challenging problem, and a lot of factors need to be considered to construct a successful system. Generally speaking, the most important factors lie in two main steps: (1) image feature extraction and ( 2) image classication. Image feature extraction aims at extracting compact and informative feature vectors or descriptors rather than using the raw data from an image to represent its visual content. This is the very rst but also important step because the raw data of an image are usually too huge and impractical to be used directly for the following classication step. Considering the diculties mentioned in the previous section, we hold that a good image feature / descriptor should be both discriminative enough and computationally ecient, while possessing some properties of robustness to changes in viewpoint, scale and lighting conditions. Many dierent image features / descriptors have been proposed in the literature, and the most successful ones are distribution-based local descriptors, such as SIFT [START_REF] Lowe | [END_REF]],

GLOH [Mikolajczyk & Schmid 2005], HOG [START_REF] Dalal | [END_REF], Shape context [Belongie et al. 2002], etc., because of their good performances. Image classication aims at constructing a robust classier which could eectively classify an image or object into given categories based on the extracted image feature vectors or descriptors. Many dierent classiers have also been proposed in the past years, such as Support Vector Machines (SVM) [Cortes & Vapnik 1995], K-Nearest Neighbors (KNN) [Cover & Hart 1967], Articial Neural Networks (ANN) [Bishop 1995], Decision Trees (DT) [Quinlan 1993], Adaboost [Freund & Schapire 1997], etc., where the most popular one nowadays is SVM.

In this thesis, we mainly focus on image feature extraction by proposing sev-Chapter 1. Introduction eral new image features / descriptors for the task of object recognition, and then apply the SVM classier on the proposed features / descriptors to obtain the nal classication results. The proposed features / descriptors intend to capture an object's information from dierent aspects, including global texture distribution, local texture distribution, the rst order gradients and the second order gradients. Our contributions are summarized as follows.

Our rst contribution lies in proposing six multi-scale color local binary pattern features for visual object recognition. The local binary pattern (LBP) operator [Ojala et al. 2002b] is a computationally ecient yet powerful feature for analyzing image texture structures, and has been successfully applied to the applications as diverse as texture classication [Mäenpää et al. 2000a] [Mäenpää et al. 2000b] [Ojala et al. 2002b], texture segmentation [START_REF] Ojala | [END_REF], face recognition [START_REF] Ahonen | [END_REF]] [Ahonen et al. 2006] and facial expression recognition [Zhao & Pietikäinen 2007] [Shan et al. 2009]. However, it has been rarely used for the task of visual object recognition 6 . We hold that the main reasons lie in two as- pects. On one hand, the LBP operator ignores all color information (its calculation is based on gray image), while color is an important clue for distinguishing objects, especially in natural scenes. On the other hand, there can be various changes in lighting and viewing conditions in real-world scenes, leading to large illumination variations of object's appearance, which further complicate the recognition task.

According to its denition, the LBP operator is only invariant to gray-level monotonic light changes, and thus has diculty to deal with the mentioned variations.

Therefore, in order to incorporate color information, as well as to enhance the discriminative power and the photometric invariance property of the original LBP, we propose, in chapter 4, six multi-scale color LBP features which are more suitable for visual object recognition task. Moreover, we apply a coarse-to-ne image division strategy for calculating the proposed features within image blocks in order to encode spatial information of texture structures, thereby further improving their performances.

Our second contribution consists of proposing a new dimensionality reduction is their high computational cost, especially when the size of image or the scale of dataset signicantly increases. Therefore, it is highly desirable that local image descriptors oer both high discriminative power and computational eciency. As we mentioned earlier, the LBP operator is a well known texture feature which has several interesting properties. First of all, it is simple and fast to compute. Moreover, it oers strong discriminative power for describing texture structures while staying robust to monotonic lighting changes. All these advantages make LBP a good candidate for constructing a local descriptor. However, the LBP operator tends to produce high dimensional feature vectors, especially when the number of considered neighboring pixels increases. The so-called curse of dimensionality is a barrier for using it directly to construct a local descriptor. Thus, a key issue of making use of LBP as a local descriptor is to reduce its dimensionality. For this purpose, we propose, in chapter 5, a new dimensionality reduction method for LBP, denoted as the orthogonal combination of local binary patterns (OC-LBP), which proves much more eective compared to the other popular methods such as uniform patterns [Ojala et al. 2002b] and CS-LBP operator [START_REF] Heikkilä | [END_REF]], because our method produces the LBP features with the smallest dimensions while still oering high discriminative power of local texture patterns. The proposed OC-LBP operator is then adopted to construct a distribution-based local image descriptor, denoted as the OC-LBP descriptor, by following a way similar to SIFT. Our aim is to build a more ecient local descriptor by replacing the costly gradient information with local texture patterns in the SIFT scheme. Moreover, since color plays an important role for object recognition and classication especially in natural scenes, as we declared in the rst contribution, we further extend our OC-LBP descriptor to dierent color spaces and propose six color OC-LBP descriptors to enhance the photometric invariance property and the discriminative power of intensity-based descriptor. This Chapter 1. Introduction work could thus be considered as the extension of our rst contribution.

Our third contribution is introducing the DAISY descriptor to the task of visual object recognition. There is now a trend in computer vision community that the scale of the benchmark datasets used for object recognition / image classication becomes larger year by year. However, it is well known that the most popular and state-of-the-art features are gradient-distribution-based local descriptors such as SIFT, GLOH and HOG, whose drawback is their relatively high computational cost.

Thus, more computationally ecient and discriminative local descriptors are urgently demanded to deal with large scale datasets such as ImageNet [Deng et al. 2009] and TRECVID [START_REF] Smeaton | [END_REF]]. Usually, there are two ways to do this. One way is to replace the costly gradient information with other more ecient features, as what we did in the case of the OC-LBP descriptor. The other way is to nd more ecient methods to calculate the gradient information. The DAISY descriptor [Tola et al. 2010], which was initially designed for wide-baseline stereo matching problem, is a new fast local descriptor based on gradient distribution, and has shown good robustness against many photometric and geometric transformations. It has never been used in the context of visual object recognition, while we believe that it is very suitable for this problem, and could well meet the mentioned demand. Therefore, we investigate the DAISY descriptor, in chapter 6, for the task of visual object recognition by evaluating and comparing it with SIFT both in terms of recognition accuracy and computation complexity on two standard image benchmarks. DAISY provides a fast way to calculate the gradient information and proves very promising for the task of visual object recognition.

Our fourth contribution lies in proposing a novel local image descriptor called histograms of the second order gradients (HSOG) for visual object recognition. In the literature, the rst order gradient information is the most eective feature for characterizing an object's appearance or the content of an image, since it can reect the pixel intensity changes for dierent directions in a small neighborhood around each pixel. Thus, many successful and state-of-the-art descriptors, such as SIFT, GLOH, HOG and DAISY, are constructed based on the rst order gradient distribution (histogram) in a local region. However, to the best of our knowledge, local Chapter 1. Introduction descriptors focusing on the second order gradients are seldom investigated in the literature for the purpose of object recognition. Intuitively, the second order gradient information should not only possess certain discriminative power to distinguish dierent objects, but also tends to be complementary to the information provided by the rst order gradients. This hypothesis is motivated by a physical analogy of object motion. Velocity and acceleration of an object are both needed to comprehensively describe a motion process within an unit displacement, which is better than using only velocity. Connecting these concepts to an image, within a predened distance between two pixels, the rst order gradients simulate the velocity of pixel intensity changes, while the second order gradients imitate its acceleration.

In order to ameliorate the quality of visual content representation, both the rst and second order gradient information is valuable. Therefore, we propose, in chapter 7, a novel local image descriptor called histograms of the second order gradients (HSOG) for the task of visual object recognition. Its construction consists of rst computing several rst order oriented gradient maps and then building the second order oriented gradient histograms based on these maps. A DAISY-style spatial pooling arrangement is adopted for taking into account the spatial information, and the principal component analysis (PCA) [Jollie 2002] is applied for dimensionality reduction. The performance of the proposed descriptor is further improved by using multi-scale strategy, which combines the descriptors computed from several concentric local regions with dierent size by late fusion.

Organization of the thesis

The rest of this thesis is organized as follows. • In chapter 4, we give the details of the proposed multi-scale color local binary pattern features, together with the analysis of their invariance properties, and

show their eectiveness on the PASCAL VOC 2007 benchmark.

• In chapter 5, we rst introduce the orthogonal combination of local binary patterns (OC-LBP) which is proposed as a new dimensionality reduction method for LBP. Its eectiveness is shown by comparing with other two popular methods on a standard texture classication dataset. Then we give the details of the proposed gray and color OC-LBP descriptors, and show their eectiveness in three dierent applications by comparing with the state-of-the-art SIFT and color SIFT descriptors both in terms of accuracy and computational cost.

• In chapter 6, we rst present the details of the DAISY descriptor, and then introduce our approach of using DAISY for visual object recognition. Based on two standard image datasets, the Caltech 101 and the PASCAL VOC 2007, we compare DAISY with SIFT both in terms of recognition accuracy and computation complexity. Furthermore, the inuence of dierent parameters in DAISY is analyzed.

• In chapter 7, we give the details of how to compute and construct the proposed histograms of the second order gradients (HSOG) descriptor, and show its eectiveness on the Caltech 101 dataset. The inuence of dierent parameters in HSOG is also experimentally analyzed.

• In chapter 8, we give our conclusions as well as some perspectives for future research directions. 

Introduction of main approaches for object recognition

The recognition of object categories in images and videos is a challenging problem in computer vision, especially when the number of categories is large. The main reasons are due to both high intra-class variations and inter-class similarities. Objects within the same category may look very dierent, while objects from dierent categories may look quite similar (see Figure 2.1 and 2.2 for illustrations). Moreover, depending on dierent viewpoint, scale and illumination, the same object may even appear dissimilar in images. Background clutter and partial occlusion also increase the diculties of object recognition (see Figure 1.2 for an illustration).

In order to address this challenging problem, a lot of attention and eorts have been paid during the past decades by the researchers in computer vision community, and many approaches have been proposed in the literature. These approaches can be generally divided into 4 categories according to the timeline:

• Geometry & matching based approaches The earliest attempts on object recognition mainly focused on using geometric models to represent objects. The main idea is that geometric descriptions of a threedimensional (3D) object allow the projected shape to be accurately predicated in a Chapter 2. Literature Review Binford with his students [Binford 1971] [Agin 1972] [Nevatia & Binford 1977] to extend the blocks world to composite curved shapes in 3D. Their key idea is that many curved shapes can be expressed as a sweep of a variable cross section along a curved axis. Figure 2.3(c) gives an example. A lot of attention was also paid to extract geometric primitives such as lines, circles, etc., which are invariant to certain viewpoint and illumination changes [START_REF] Mundy | [END_REF]].

To work with geometric models, the dominant object recognition approach during this period was based on alignment and matching, which means that two objects are directly compared by matching their geometric models after alignment to decide how similar they are. The work of Huttenlocher and Ullman [Huttenlocher & Ullman 1987] is considered as a representative, where an object is rst aligned with an image using a small number of model pairs and image features, and then the aligned model is compared directly against the image to check if the expected features are present. This method is able to detect transformations not only in scale and illumination conditions, but also in viewing angle. Thus it is able not only to identify the viewed object, but also to estimate the actual pose and 3D position of the object. However, this approach is computationally very expensive because the stored models are usually 3D internal representations of the object and the image features are formed exhaustively. A comprehensive review of geometry-based object recognition can be found in [START_REF] Mundy | [END_REF]].

Appearance & sliding window based approaches

At the time when geometry-based approaches reached the end of their active period, more eorts had started to be focused on appearance-based techniques.

The most representative methods of appearance-based techniques are eigenfaces [Turk & Pentland 1991a] and appearance manifolds [START_REF] Murase | [END_REF]. Turk and Pentland proposed in 1991 the eigenfaces method [Turk & Pentland 1991a] which is considered as one of the rst face recognition systems that are both computationally ecient and relatively accurate. Their approach treats the face recognition problem as an intrinsically 2D recognition problem rather than requiring 3D geometry recovery. The main idea is to project face images into a feature space that Chapter 2. Literature Review spans the signicant variations among the known face images. A set of vectors are rst generated to represent each of the known face images by their gray-level pixel values, the eigenvectors are then computed by selecting the principal components from this set of vectors. These eigenvectors, denoted as eigenfaces, capture main variance among all the vectors, and a small set of eigenvectors could capture almost all the appearance variations of the face images in the training set. For a particular face image, its pixel value vector is projected into a feature space spanned by a set of eigenvectors so that it can be represented by a weighted sum of the eigenfaces with minimum error, and its recognition thus consists of comparing these weights with those of the known faces to nd its nearest neighbor. Some examples of eigenfaces are shown in Figure 2.4(a). The idea of eigenfaces was then adopted and extended by Murase and Nayar in 1995 to recognize generic 3D objects with dierent viewpoints [START_REF] Murase | [END_REF]. They proposed a compact representation of object appearance which is parameterized by viewpoint and illumination. For each object of interest, a large set of images is obtained by automatically varying viewpoint and illumination. This image set is compressed to obtain a low-dimensional continuous subspace, called the eigenspace, where the object is represented as a manifold. For an unknown input object, it is rst projected into the eigenspace, and the recognition is then achieved by nding its closest manifold using Euclidean distance. The exact position of the projection on the manifold determines the viewpoint of the object, as illustrated in Figure 2.4(b).

As appearance-based methods generally require to only focus on the object part and not on the other disturbing parts such as background clutter, the sliding window technique is widely applied to cooperate with them. Its basic idea is to slide a window across the image at dierent scales and to recognize each sub-window as containing the target object or not. This technique was rst applied on face recognition problems [Turk & Pentland 1991b] [Belhumeur et al. 1997] [Viola & Jones 2001] detecting non-rigid deformable objects or objects that can not be shaped by a rectangle. While appearance-based methods have achieved promising results in object recognition tasks, they are not capable enough of handling occlusion, as well as pose and illumination change. In addition, a large set of samples needs to be collected to learn the appearance characteristics and thus requires a high computational cost.

All these limitations have encouraged researchers to pay more attention to the parts and structure based approaches.

Parts & structure based approaches

The idea of parts and structure based approaches comes from the observation that most objects generally consist of several individual parts which are arranged in certain geometric structures. For example, a face consists of two eyes, one nose and one mouth, while an airplane consists of two wings, one fuselage and one tail. 2005]. In [START_REF] Fischler | [END_REF], the authors proposed a parts-based model for face consisting of hair, eyes, nose, mouth and left/right edges, along with spring-like connections between certain pairs of parts, as depicted in Figure 2.5(a). In [START_REF] Weber | [END_REF]], objects are represented as exible constellations of rigid parts which are automatically identied by applying a clustering algorithm on the training set. A statistical shape model is then learned on these parts by a maximum likelihood unsupervised algorithm to get the recognition results. In [Ullman et al. 2001],

objects within a class are represented in terms of common image fragments that are used to build blocks for representing a large variety of dierent objects in a common class. The fragments are selected from a training image set based on a criterion of maximizing the mutual information between the fragment and its class. For recognition, the algorithm detects the fragments of dierent types and combines the evidence of the detected fragments to make the nal decision.

In [Fergus et al. 2003], the authors followed the work of [START_REF] Weber | [END_REF]], and proposed a number of improvements to its constellation model and learning algorithm, such as taking the variability of appearance into account, learning appearance simultaneously with shape, and extending the learning algorithm to eciently learn new object categories. The examples of the learned models for motorbike and car are shown in Figure 2.5(b). In [Bouchard & Triggs 2005], the authors extended the work of [Fergus et al. 2003], and proposed a two-level hierarchical generative model for coding the geometry and appearance of visual object categories. The model is a collection of loosely connected parts containing more rigid assemblies of subparts. They also simplied the correspondence problem by using greedy nearest-neighbor matching in location-appearance space to deal with Chapter 2. Literature Review many more subparts. Some examples of their models for motorbike and aeroplane are shown in Figure 2.5(c). In [Felzenszwalb & Huttenlocher 2005], the authors proposed a computationally ecient framework for parts-based modeling and object recognition which was motivated by the pictorial structure models introduced in [START_REF] Fischler | [END_REF]. They represented an object by a collection of parts arranged in a deformable conguration using spring-like connections between pairs of parts, and demonstrated the techniques by learning models that represent face and human body. Figure 2.5(d) shows some examples of the learned models for human body.

Parts and structure based approaches have several advantages. Firstly, while the global appearance of an object may signicantly vary within a category, the appearance and spatial relationship of its local parts can often still be stable to provide important cues. Secondly, many natural object categories, such as human and animals, have relatively rigid global shape, but with signicant shape variability, and parts-based models can easily represent this kind of covariance structure. However, most approaches can not handle large viewpoint variations or severe object deformations. Moreover, parts-based models require an exponentially growing number of parameters as the number of parts increases. Learning and inference problems for spatial relations also remain very complex and computationally expensive. The recent trend is to apply parts-based models for object detection and localization, rather than for object recognition. A successful example is the discriminatively trained deformable part model [Felzenszwalb et al. 2008] [Felzenszwalb et al. 2010],

which has become the dominant approach in object detection task of the famous PASCAL VOC Challenge [START_REF] Everingham | [END_REF]].

Feature & classier based approaches

Feature and classier based approaches have become popular for object recognition since late 1990s, because of the great development of advanced image features / descriptors and pattern recognition algorithms in the community. Particularly, using local descriptors, e.g. SIFT [START_REF] Lowe | [END_REF]], together with the Bag-of-Features (BoF) representation [Csurka et al. 2004] followed by discriminative classiers such The following sections will focus on these three aspects.

Image feature extraction and representation

The rst step of image analysis for object recognition is to transform an image into the input data for subsequent process. A direct way is to concatenate gray or color values of all the pixels within an image. However, this will result in a very highdimensional vector with a lot of redundant information. It is also very sensitive to any image variations. Therefore, image feature extraction is required, aiming at transforming the content of an image into a set of feature vectors, or descriptors, Chapter 2. Literature Review which are expected to be discriminative, computationally ecient, with reasonable size, and possessed of some robustness properties to image variations (viewpoint, scale, illumination, etc.). After this step, the following process will no longer rely on the image itself, but only on the information carried by the extracted features. Thus, feature extraction is a very important step to ensure the nal good performance of object recognition, and can be considered as the basis of the whole process.

A lot of feature extraction methods have been proposed in the literature, and we could summarize them into two main categories: global features and local features.

Global features and corresponding representations

Early work in this domain has mainly utilized global features as image description.

These features are extracted directly from the whole image, and generally take the These global features could be divided into three categories: (1) color, (2) texture and (3) shape.

Color features

Color is perhaps the most direct and expressive of all the visual features. Color features aim at capturing color information, such as color distribution, relationship between dierent colors, etc., contained in an image.

• Color Histogram [START_REF] Swain | [END_REF] • Color Moments [START_REF] Stricker | [END_REF]: Color moments characterize the color distribution of an image into a very compact vector containing the mean, variance and skewness, which are respectively the moments of the 1st order, the 2nd order and the 3rd order as shown in (2.1), (2.2) and (2.3), for each channel of the image's color space.

E i = 1 N N j=1 p ij (2.1) 
σ i = 1 N N j=1 (p ij -E i ) 2
(2.2)

S i = 3 1 N N j=1 (p ij -E i ) 3 (2.3)
where i is the index of each channel, N is total number of image pixels, and p ij is the value of the j-th pixel in channel i. Color moments have the same invariance properties and drawbacks as color histogram.

• Color Coherence Vectors [START_REF] Pass | [END_REF]]: Color coherence vectors propose to consider the coherent colors and the incoherent colors separately in an image. A color is dened as coherent if its proportion of pixels located in a spatial neighborhood area is bigger than a predened threshold, otherwise it is dened as incoherent. Color coherence vectors rst classify each pixel in a given color bin as either coherent or incoherent, then build two histograms by counting the number of the coherent and incoherent pixels with each color respectively. The nal feature vector is the concatenation of these two histo-Chapter 2. Literature Review grams. Its main advantage is the combination of color histogram with spatial information, while the main drawback is its high computational cost.

• Color Correlogram / Color Auto-Correlogram [START_REF] Huang | [END_REF]]: Color correlogram can be understood as a 3-dimensional matrix with size of (n × n × r), where n is the number of color bins in an image and r is the maximal distance between two considered pixels. This matrix is indexed by color pairs, where the k-th entry for (i, j) species the probability of nding a pixel of color i at a distance k away from a pixel of color j in the image.

The nal feature is obtained by decomposing this matrix into a single vector.

As the size of color correlogram is usually too large due to its three dimensions, color auto-correlogram is also proposed to only consider the pair of pixels with the same color i at a distance k, thus resulting in a more compact representation. Their advantages are that they integrate the spatial correlation of colors and robustly tolerate large changes in appearance, viewing position and camera zoom. High computational cost is also their main drawback.

There also exist other color features in the literature, such as Dominant Color, Scalable Color, Color Layout, Color Structure, etc. [Manjunath et al. 2001].

Texture features

Texture is also an important aspect to describe the content of an image. It has no precise denition, but can be intuitively considered as the repeated patterns of local variation of pixel intensities, thereby quantifying the properties such as smoothness, coarseness and regularity in an image.

• Texture Co-occurrence Matrix [Tuceryan & Jain 1998]: the entry (i, j) of P d is the occurrence number of the pair of gray levels i and j which are at a distance d apart. Here N denotes the number of gray levels considered in the image. Usually, the matrix P d is not directly used in an application and a set of more compact features are computed instead from this matrix, as shown in Table 2.1. The main problem of GLCM is that there is no well established method for selecting the optimal displacement vector d. In the practice, four displacement vectors are commonly used: d = (1, 0), d = (0, 1), d = (1, 1) and d = (1, -1).

• Texture Auto-Correlation [Tuceryan & Jain 1998]: The basic principle of texture auto-correlation is to compare the original image with a shifted one.

It measures the coarseness of an image by evaluating the linear spatial relationships between texture primitives. Suppose the displacements according to each axis as dx and dy, then the auto-correlation function can be dened as follows:

f (dx, dy) = M N (M -dx)(N -dy) M -dx i=1 N -dy j=1 I(i, j)I(i + dx, j + dy) M i=1 N j=1 I 2 (i, j) (2.4)
where M × N is the size of the image and I(i, j) is the gray value of the pixel at position (i, j). It can be noticed that large primitives give rise to coarse texture (e.g. rock surface) and small primitives give rise to ne texture (e.g. silk surface). If texture primitives are large, the auto-correlation will decrease slowly while increasing the distance, whereas it will decrease rapidly if texture consists of small primitives. Moreover, if texture primitives are periodic, then Chapter 2. Literature Review the auto-correlation will increase and decrease periodically with the distance.

• Gabor [Daugman 1988]: Gabor lters (or Gabor wavelets) are widely adopted texture features for image analysis. Basically, Gabor lters are a group of wavelets, with each wavelet capturing energy at a specic frequency and a specic direction. They have been found to be particularly appropriate for texture representation and discrimination because frequency and orientation representations of Gabor lters are similar to those of human visual system. A 2D Gabor lter is a Gaussian kernel function modulated by a sinusoidal plane wave. Expanding a signal using this basis provides a localized frequency description, therefore capturing local texture properties of the signal. The mean and standard deviation of the transformed coecients are used to represent the texture feature. Gabor feature has been proven very eective for describing texture [START_REF] Manjunath | [END_REF]] [Zhang et al. 2000], but with disadvantage of high computational complexity because of the substantial convolution, which means it is more suitable for dealing with small images like faces, but will be very time and memory consuming to work on large images, such as natural scenes.

• Local Binary Patterns [Ojala et al. 2002b]: Local Binary Pattern (LBP) operator was rstly introduced as a complementary measure for local image contrast [Ojala et al. 1996], and then becomes a computationally ecient yet powerful feature for texture analysis. The detailed introduction of LBP will be in chapter 4 and 5, since our work presented in these two chapters is based on the LBP feature.

There also exist other texture features in the literature, such as Homogenous Texture, Texture Browsing, etc. [Manjunath et al. 2001].

Shape features

The shape of an object is also an important clue for recognition, especially for rigid objects. Shape is a geometrical description of the external boundary of an object, and can be described by basic geometry units such as points, lines, curves and planes. The popular shape features mainly focus on the edge or contour of an object to capture its shape information.

• Edge Histogram [START_REF] Park | [END_REF] • Line Segments [START_REF] Pujol | [END_REF]]: Pujol and Chen proposed line segment based edge feature using Enhanced Fast Hough Transform (EFHT), which is a reliable and computationally ecient way of extracting line segments from an edge image. Once all the line segments are identied by EFHT, line segment based edge feature is extracted as a histogram of line segments' lengths and orientations. In order to obtain the invariant properties for scaling, translation Chapter 2. Literature Review and rotation, all the lengths are divided by the longest line segment and then an average orientation is computed so that all the angles can be expressed with respect to it. The size of the histogram is determined experimentally and set to 6 bins for orientation and 4 bins for length. Compared to the edge histogram feature, the proposed feature can provide structure information through edge connectivity while still keeping a relatively low computational complexity.

There also exist other shape features in the literature, such as Region Shape, Contour Shape and Shape 3D, which are included in the MPEG-7 standard 1 .

The previously introduced global features are all in the form of a single histogram or feature vector, which also keeps the consistent dimensionality regardless of the size of the input image. Therefore, no further modelling methods are required to transform these descriptions.

A comparison of dierent global features, regarding their category, invariance property and computational cost, is shown in Table 2.2. A detailed comparison of their performances in the context of object recognition is given in Appendix B. The main downside of these global features is their great sensitivity to background clutter, image occlusion, and illumination variations. Moreover, these global methods implicitly assume that the objects of interest should occupy most of the region in images. However, this assumption is hard to be satised in real situations, where background noises always exist, particularly in the case that the object of interest is very small compared to the image size. All these limitations make global features gradually give their way to local image features. 

Local features and corresponding representations

Local keypoint/region detection

Local features are extracted from local image regions, thus it is important to rst detect such regions in a highly repetitive manner. To do so, one could apply certain region detector on images to directly get the output regions. Also, one could rst apply certain point detector to get keypoints in images and then x appropriate regions around these keypoints. There are mainly three strategies for local keypoint/region detection: ( 1 in [START_REF] Schmid | [END_REF]] and [Mikolajczyk et al. 2005].

• Dense Sampling: Several studies [START_REF][END_REF] • SIFT [START_REF] Lowe | [END_REF][START_REF] Lowe | [END_REF]]: Lowe proposed Scale Invariant Feature Transform (SIFT), which is a 3D histogram of gradient locations and orientations, as shown in Figure 2.9(a). The location is quantized into a 4 × 4 location grid and the gradient angle is quantized into 8 orientations, resulting in a 128-dimensional descriptor. The contributions to the gradient orientations are weighted by the gradient magnitudes and a Gaussian window overlaid over the region, thereby emphasizing the gradients near the region center.

SIFT is highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. Moreover, it is invariant to image scaling and rotation, and also provides robust matching ability across a substantial range of ane distortion, minor viewpoint change, noise disturbance and illumination variance.

All these properties ensure its great success in computer vision community, especially for visual object recognition tasks.

• PCA-SIFT [Ke & Sukthankar 2004]: Ke and Sukthankar proposed PCA-SIFT, which applies Principal Component Analysis (PCA) technique [Jollie 2002] on the normalized gradient patches to enhance the distinctiveness and reduce the dimensionality of the original SIFT. A typical patch is 41 × 41 pixels, resulting in a 3042-dimensional vector, which is created by concatenating the horizontal and vertical gradient maps for the patch. The nal dimension of the descriptor is reduced to 36 with PCA.

• Color SIFT • GLOH [Mikolajczyk & Schmid 2005]: Mikolajczyk and Schmid proposed

Gradient Location and Orientation Histogram (GLOH), which can be considered as the extension of the original SIFT to increase its robustness and distinctiveness. GLOH replaces the rectangular location grid used in SIFT with a log-polar one, and applies PCA to reduce the size of the descriptor.

The location is divided into 17 bins (3 bins in radial direction and 8 bins in angular direction, the central bin is not divided) and the gradient orientations are quantized into 16 bins, resulting in a 272-dimensional vector. The nal dimension of the descriptor is reduced to 128 with PCA.

• HOG [START_REF] Dalal | [END_REF]]: Dalal and Triggs proposed Histogram of Oriented Gradient (HOG), which is a 3D histogram of gradient locations and orientations. It is similar to both SIFT and GLOH, because it uses both rectangular and log-polar location grids, as shown in Figure 2.9(b). The main dierence between HOG and SIFT is that HOG is computed on a dense grid of uniformly spaced cells, with overlapping local contrast normalization. This is for better invariance to illumination and shadowing, and can be done by accumulating a measure of local histogram energy over larger spatial blocks and then using the results to normalize all of the sub-images in each block.

The standard HOG descriptor is of 36 dimensions.

• SURF [START_REF] Bay | [END_REF]] [Bay et al. 2008 • CS-LBP [START_REF] Heikkilä | [END_REF] The attributes of these descriptors are summarized in In [START_REF] Brown | [END_REF], the authors proposed a framework to learn local descriptors with dierent combinations of local features and spatial pooling strategies. The previously presented descriptors can thus be incorporated into their framework.

Besides these distribution-based descriptors, there also exist other types of local descriptors such as dierential invariants [START_REF] Koenderink & Van Doorn | [END_REF], steerable lters [Freeman & Adelson 1991], complex lters [START_REF] Schaalitzky | Multi-view Matching for Unordered Image Sets[END_REF],

moment invariants [START_REF] Gool | [END_REF]] and so on.

Several studies 

Bag-of-Features (BoF) representation: discrete distribution

The Bag-of-Features (BOF) method (also called Bag-of-Visual-Words (BoVW)) [Sivic & Zisserman 2003] [Csurka et al. 2004] models an image as a discrete distribution.

Its main idea is adapted from the Bag-of-Words (BoW) representation [START_REF] Salton | Introduction to modern information retrieval[END_REF][START_REF] Mccallum | [END_REF]] in text classication do- As the BoF method discards all spatial information between the extracted local features, some approaches which reuse this useful information are also presented. A drawback of the universal visual vocabulary generated by the unsupervised approaches is its decient discriminative power due to the ignorance of category information. To address this problem, some studies departed from the idea of having one universal vocabulary for all the training data from the whole set of categories. In [Farquhar et al. 2005] [Zhang et al. 2007], category specic vocabularies were trained and agglomerated into a single vocabulary. Although substantial improvements were obtained, these approaches are impractical for a large number of categories as the size of the agglomerated vocabulary and the corresponding histogram representation grows linearly with the number of categories. Therefore, a compact visual vocabulary is preferred to provide a lower-dimensional representa-Chapter 2. Literature Review tion and eectively avoid these diculties. [START_REF][END_REF]] [Fulkerson et al. 2008] [Lazebnik & Raginsky 2009] made use of the mutual information between the features and the categories to reduce the size of visual vocabulary without sacricing its discriminative power. [Moosmann et al. 2006] proposed an ecient alternative, in

Visual vocabulary construction

which training examples are recursively divided using a randomized decision forest and the splits in the decision trees are the comparisons of a descriptor dimension to a threshold. [START_REF] Perronnin | [END_REF] 

HA(ω) = 1 N N n=1        1 if ω = arg min v∈V (D(v, r n )) 0 otherwise (2.5)
where ω is a visual word in the vocabulary V , N is the number of local regions in an image, r n is the feature vector extracted from the n-th local region, and 

D(v,
G σ (x) = 1 √ 2πσ exp(- 1 2 x 2 σ 2 ) (2.6)
where σ is the smoothing parameter of kernel G. Three dierent formula were Chapter 2. Literature Review proposed to cope with word uncertainty (UNC), word plausibility (PLA) and both of them (KCB) respectively:

U N C(ω) = 1 N N n=1 G σ (D(ω, r n )) |V | k=1 G σ (D(v k , r n )) (2.7) P LA(ω) = 1 N N n=1        G σ (D(ω, r n )) if ω = arg min v∈V (D(v, r n )) 0 otherwise (2.8) KCB(ω) = 1 N N n=1 G σ (D(ω, r n )) (2.9)
Recently, several new encoding methods, such as locality-constrained linear encoding [START_REF] Wang | [END_REF], improved Fisher encoding [START_REF] Perronnin | [END_REF], and super vector encoding [Zhou et al. 2010], have been proposed to improve on the standard histogram of quantized local features, and have reported very good results on the tasks of object recognition and image classication. A compara-Chapter 2. Literature Review tive analysis and evaluation of these dierent encoding methods can be found in [START_REF] Chateld | [END_REF]].

Spatial information

The BoF method views images as orderless distributions of local image features, thus losing at the same time all the spatial relationships between these local features. However, we know intuitively that spatial information is important for image classication. Therefore, [Lazebnik et al. 2006] proposed the spatial pyramid method in order to take into account the spatial information of local features, inspired by pyramid match kernels introduced in [Grauman & Darrell 2005b] which build pyramid in feature space while discarding the spatial information. The spatial pyramid method consists of performing pyramid matching in two-dimensional image space and using the traditional clustering techniques in feature space.

Suppose we have M types of features and each of them provides two sets of twodimensional vectors, X m and Y m , representing the coordinates of features of type m found in the respective image. Then the nal kernel is the sum of the separate kernels:

K L (X, Y ) = M m=1 κ L (X m , Y m ) (2.10)
where κ L (X m , Y m ) is the pyramid match kernel of feature type m. This approach has the advantage of maintaining continuity with the BoF paradigm. In fact, it reduces to a standard BoF method when L = 0. Another work [START_REF] Marszalek | Spatial Weighting for Bag-of-Features[END_REF]] exploits spatial relations between fea-Chapter 2. Literature Review The BoF method eectively provides a mid-level representation which helps to bridge the semantic gap between low-level features extracted from an image and high-level concepts to be categorized. Its main limitation is the assumption that the distribution of feature vectors in an image can be known a priori. The optimal size of visual vocabulary, which is the basis of this approach, is also hard to be xed.

Bag-of-Regions Recently, the Bag-of-Regions (BoR) representation has been proposed and applied on several dierent applications such as object recognition [START_REF] Gu | [END_REF]], image retrieval [START_REF] Hu | [END_REF] 

Gaussian Mixture Model (GMM) representation: continuous distribution

The Gaussian Mixture Model (GMM) method models an image as a continuous distribution.

[ [START_REF] Moreno | [END_REF]] and [Farquhar et al. 2005] proposed to model an image as a single Gaussian distribution with full covariance.

However, the monomodal assumption is generally too restrictive. Therefore, [START_REF] Goldberger | [END_REF]] [Vasconcelos 2004] [Vasconcelos et al. 2004] proposed to model an image as a mixture of Gaussian distributions, generally with diagonal covariance. Formally, a GMM is in the form:

p(x) = K k=1 π k N (x|µ k , Σ k ) = K k=1 π k 1 (2π) D 2 |Σ k | 1 2 exp - 1 2 (x -µ k ) T Σ -1 k (x -µ k ) (2.11)
where µ k and Σ k are respectively mean and covariance of the k-th component of a GMM which contains a total of K Gaussians, and D is the dimensionality of the data. The parameters π k are called mixing coecients and must satisfy:

0 ≤ π k ≤ 1 together with K k=1 π k = 1 (2.12)
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The GMM method has two main shortcomings. Firstly, the robust estimation of the GMM parameters may be dicult as the cardinality of the vector set is small. Secondly, it is expensive to compute the similarity between two GMMs.

Therefore, we choose the BoF method for image modelling in our work presented in the following chapters.

Image classication

In order to perform the nal classication based on image representations computed from the extracted features, certain pattern recognition algorithms (classiers) are required. There exist two main kinds of approaches in the literature for making the nal classication: (1) generative methods and ( 2) discriminative methods.

Generative methods produce a probability density model over all the variables and then adopt it to compute classication functions. Dierently, discriminative methods directly estimate the posterior probabilities for classication without attempting to model the underlying probability distributions.

Generative methods

Suppose that x is the set of features representing an image to be classied, and 

C m , m = 1, . . . ,
ln(p(x|C m )) = ln(p(x|µ, Σ, π)) = ln N n=1 K k=1 π k N (x n |µ k , Σ k ) = N n=1 ln K k=1 π k N (x n |µ k , Σ k ) (2.14)
where N is the number of feature vectors in x. Then, we can employ the EM algorithm to maximize this likelihood function for the class C m with respect to the parameters of the GMM, according to the following steps:

1. Initialize all the parameters and compute the initial value of the logarithm of the likelihood function.

2. Expectation step (E-step): Calculate the expected value of the logarithm of the likelihood function under the current estimation of the parameter values:

γ k n = π k N (x n |µ k , Σ k ) K j=1 π k N (x n |µ j , Σ j ) (2.15)
3. Maximization step (M-step): Re-estimate all the parameters:

µ new k = 1 N k N n=1 γ k n x n (2.16) Σ new k = 1 N k N n=1 γ k n (x n -µ new k )(x n -µ new k ) T (2.17) π new k = N k N (2.18)
where

N k = N n=1 γ k n .
4. Evaluate the logarithm of the likelihood function ln(p(x|µ, Σ, π)) and check for convergence of either the parameters or the logarithm of the likelihood. If the convergence criterion is not satised, return to step 2.

After the optimized GMMs for all the classes are obtained, each new sample will be assigned to the class with the maximum value of the logarithm of the likelihood function.

Generative methods oer the advantage of easily adding new classes or new data for a certain class by training the model only for the concerned class rather than for all the classes. It can also deal with the situation of incomplete data. Its main drawback lies in high computational cost of learning process.

Discriminative methods

The objective of discriminative methods is to learn the precise boundaries between dierent classes of samples in a multi-dimensional space (usually the feature space) so that the classication can be performed by considering the position of the image projection in this space. Many discriminative classiers are reported in the literature, and the kernel-based ones are the most popular.

Support Vector Machines (SVM)

Among all the kernel-based discriminative classiers, the Support Vector Machines (SVM) proposed by Vanpik [Cortes & Vapnik 1995] based on his statistical learning theory [Vapnik 1995] is the most famous and popular. SVM constructs a hyperplane in a high or innite dimensional space to linearly separate the samples from dierent classes for classication. A good separation is achieved by constructing the hyperplane that has the maximum distance (margin) to the nearest training data samples of any class. Generally, the larger is the margin, the lower the generalization error of the classier is. An example of good separation hyperplane is illustrated in 

1 2 ω 2 + C N i=1 ξ i subject to y i (ω • x i + b) ≥ 1 -ξ i , i = 1, . . . , N ξ i ≥ 0. (2.19)
where ω is the normal vector of the hyperplane, b determines the oset of the hyperplane from the origin along the normal vector ω, ξ i are slack variables which measure the degree of misclassication of the datum x i , and C is the penalty parameter of the error term which controls the penalty level of the misclassied samples. For a new sample x to be classied, the nal decision function is in the form:

f (x) = sgn N i=1 α * i y i (x i • x) + b * (2.20)
where α * i and b * are the optimized parameters obtained in the training process.

Non-linear SVM The original classication problem for the standard SVM is stated in a nite dimensional space (usually the feature space). However, it often happens that the samples to be classied are not linearly separable in the original space. For this reason, the non-linear SVM was proposed to map the samples from the original nite dimensional space into a higher or innite dimensional space, in which these samples are supposed to be linear and the separation of them is much easier than in the original space. To keep the computational cost reasonable, the mapping used by the non-linear SVM is designed to ensure that the dot products of the samples in the mapped space can be easily computed in terms of a kernel function K( * , * ) in the original space. 

min ω,b,ξ 1 2 ω 2 + C N i=1 ξ i subject to y i (ω • φ(x i ) + b) ≥ 1 -ξ i , i = 1, . . . , N ξ i ≥ 0.
(2.21) where the training samples x i are mapped into a higher or innite dimensional space by the mapping function φ.

The nal decision function for a new sample x is thus changed as:

f (x) = sgn N i=1 α * i y i K(x i , x) + b * (2.22)
where

K(x i , x) = φ(x i ) T φ(x) (2.23)
The kernel function K( * , * ) in equation (2.22) is a very important factor for the non-linear SVM to achieve a good classication performance. The choice of this kernel function and the tuning of its parameters will directly impact the nal results. Unfortunately, to the best of our knowledge, the selection of kernels for a certain application is until now generally done empirically and experimentally, or by cross-validation in some cases. The commonly used kernel functions will be introduced in section 2.3.3. 

Multi-class SVM

Multiple Kernel Learning (MKL)

The SVM classier only uses single kernel for solving learning problems. Recently, some studies [START_REF] Lanckriet | [END_REF]] [Yang et al. 2009b] [Vedaldi et al. 2009] have demonstrated the eectiveness of using multiple kernels instead of a single one for improving the classication performance.

The combination of multiple kernels is dened as follows:

K(x i , x) = M m=1 β m K m (x i , x) with β m ≥ 0, M m=1 β m = 1 (2.24)
where M is the total number of kernels, and β m is the weight for each kernel which is optimized during the training process. Each basis kernel K m can either be dierent kernels with dierent parameter congurations or kernels computed from dierent sets of features. Therefore, MKL can also be interpreted as a kind of fusion technique in certain sense. The nal decision function of MKL is in the following form, which is similar to the one of SVM except the combined kernels:

f (x) = sgn N i=1 α * i y i M m=1 β m K m (x i , x) + b * (2.25)
where α * i and b * are the optimized parameters obtained in the training process. Here α * i and β m can be learned in a joint optimization problem as in [START_REF] Bach | [END_REF] [ [START_REF] Rakotomamonjy | [END_REF]].

An extension of the precedent simple MKL is presented in [Yang et al. 2009b] and called the Group-Sensitive MKL (GS-MKL). An intermediate notion of group between object categories and individual images has been introduced to the MKL Chapter 2. Literature Review framework to seek a trade-o between capturing the diversity and keeping the invariance for each class in the training process. In GS-MKL, the weight of each kernel β m depends not only on the corresponding kernel functions, but also on the groups that two compared images belong to. Thus, the combined kernel in equation (2.24) and the nal decision function in equation (2.25) are respectively rewritten as:

K(x i , x) = M m=1 β c(x i ) m β c(x) m K m (x i , x) (2.26) f (x) = sgn N i=1 α * i y i M m=1 β c(x i ) m β c(x) m K m (x i , x) + b * (2.27)
where c(x i ) and c(x) are the group indices of the sample x i and x respectively.

Although GS-MKL is shown to be very eective for image classication according to the experiments on several datasets [Yang et al. 2009b], the optimal way to get the group index for each image remains debatable. The authors applied some clustering methods, namely k-means [MacQueen 1967] and probabilistic Latent Semantic Analysis (pLSA) [Hofmann 1999], to get a set of groups whose number is manually dened. It remains unclear how to choose the optimal number of groups and the corresponding clustering method.

Other typical classiers

Besides the kernel-based classiers, we briey present here several other typical discriminative classiers.

• Multilayer Perceptron [Rosenblatt 1962 • Decision Tree [START_REF][END_REF]] [Quinlan 1993]: It is a classier in the form of a tree structure, where each node is either a leaf node which indicates the class of samples, or a decision node which species some test to be carried out on a Chapter 2. Literature Review single attribute value, with one branch and sub-tree for each possible outcome of the test. There are a variety of algorithms for building decision trees, such as ID3 [START_REF][END_REF]] and C4.5 [Quinlan 1993].

• K-Nearest Neighbors [Cover & Hart 1967]: It is an instance-based learning algorithm which classies a sample by calculating the distances between this sample and the samples in the training set. Then, it assigns this sample to the class that is most common among its k-nearest neighbors.

• Adaboost [Freund & Schapire 1997]: It calls a weak classier repeatedly in a series of rounds t = 1, . . . , T . For each round, a weak classier is forced to focus on the samples incorrectly classied by the previous weak classier through increasing the weights for these hard samples. Finally, a strong classier can be created by linearly combining these weak classiers.

In conclusion, discriminative methods and generative methods are two dierent ways for classication. Given an observed variable x and an unobserved variable y, discriminative methods model the conditional probability distribution P (y|x),

while generative methods model their joint distribution P (x, y). For tasks such as classication or regression that do not require the joint distribution, discriminative methods generally yield superior performance. Moreover, discriminative methods are less computationally expensive than generative methods. Therefore, we adopt discriminative methods, in particular SVM and MKL, to perform classication in our experiments presented in the following chapters.

Similarity measurement between images

An important factor for image classication is how to measure the similarities between images. The resulting kernels are also important for the performance of the kernel-based discriminative classiers such as SVM and MKL. According to dierent image representations, the similarity measurement between images can be divided into 3 categories: (1) kernel functions for model-free approaches; (2) kernel functions for discrete models; and (3) kernel functions for continuous models.
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Kernel functions for model-free approaches

The model-free approaches directly measure the similarity between two unordered feature sets. Assume that we have two feature sets X = x i , i = 1, . . . , T X and Z = z j , j = 1, . . . , T Z . The simplest approach to dene a similarity measurement between such two sets is the sum of the similarities between all possible pairs of feature vectors. Let k( * , * ) be a Positive Semi-Denite kernel (PSD), the summation kernel [Haussler 1999] is dened as:

K S (X, Z) = 1 T X 1 T Z T X i=1 T Z j=1 k(x i , z j ) (2.28)
However, its discriminative ability is compromised as all possible matchings between features are combined with equal weights. The good matchings could be easily swamped by the bad ones.

[ [START_REF] Wallraven | [END_REF]] and [START_REF] Boughorbel | [END_REF]] both proposed a matching kernel that only considered the similarities of the best matched local features:

K M (X, Z) = 1 2   1 T X T X i=1 max j=1,...,T Z k(x i , z j ) + 1 T Z T Z j=1 max i=1,...,T X k(z j , x i )   (2.29)
Unfortunately, the max operator makes this kernel non-Mercer (not PSD).

Lyu [Lyu 2005] proposed a Mercer kernel to quantify the similarities between feature sets. The kernel is a linear combination of the p-exponentiated kernels between local features:

K(X, Z) = 1 T X 1 T Z T X i=1 T Z j=1 [k(x i , z j )] p (2.30)
p is the kernel parameter and p > 1 gives more inuence to good matchings.

The Earth Mover's Distance (EMD) [START_REF] Rubner | [END_REF]] is a similarity measurement between feature sets and aims at nding an optimal matching that would be Chapter 2. Literature Review required to transform one set into the other. It is dened as: 2.31) subject to the following constraints:

EM D = max f ij ,i=1,...,T X ,j=1,...,T Z T X i=1 T Z j=1 k(x i , z j )f ij ( 
f ij ≥ 0 (2.32) T X i=1 f ij ≤ 1 (2.33) T Z j=1 f ij ≤ 1 (2.34) T X i=1 T Z j=1 f ij = min(T X , T Z ) (2.35)
f ij is the ow between x i and z j . The computation of the EMD requires calculating a similarity between all pairs of components of two sets and optimizing a transportation problem whose complexity is cubic with the number of features.

To address the computational issue, [Grauman & Darrell 2005a] made use of an embedding of the EMD based on the work of [START_REF] Indyk | [END_REF]]. However, the approximation suers from a high error when the feature dimension increases.

All the previous approaches have a high computational complexity: typically O(T X T Z ) with T X and T Z varying from a few hundreds to a few thousands.

Kernel functions for discrete models

Typically, the discrete models are the representations obtained by the Bag-of-Features (BoF) modelling method, and therefore are in the form of histograms.

Let F and F (with the same dimension n) be the histograms of two images, there exist many dierent kernel functions to measure the similarity between them:

• Linear:

K(F, F ) = F T F • Polynomial: K(F, F ) = (γF T F + r) p , γ > 0 • Radial Basis Function (RBF): K(F, F ) = exp(-γ F -F 2 ), γ > 0 • Sigmoid: K(F, F ) = tanh(γF T F + r)
• Chi-square: It is one of the most popular kernel functions applied for visual object recognition task. The Chi-square (χ 2 ) distance between F and F is rst computed as equation ( 2.36):

dist χ 2 (F, F ) = n i=1 (F i -F i ) 2 F i + F i (2.36)
Then, the kernel function based on this distance is computed as equation (2.37):

K χ 2 (F, F ) = e - 1 D dist χ 2 (F,F ) (2.37)
where D is the parameter for normalizing the distances, and is usually set to the average value of distance between each pair of images in the training set.

• Pyramid match [Grauman & Darrell 2005b]: It works by placing a sequence of increasingly coarser grids over the feature space and taking a weighted sum of the number of matches that occur at each level of resolution. Let H l F and H l F denote the histograms of F and F at the resolution l in which we have 2 l bins along each dimension, l = 0, . . . , L, so that H l F (i) and H l F (i) are the numbers of points from F and F that fall into the i-th bin of the grid. Then the number of matches at level l is given by the histogram intersection function as follows:

I(H l F , H l F ) = 2 nl i=1 min(H l F (i), H l F (i)) (2.38)
if we abbreviate I(H l F , H l F ) to I l , nally we get the pyramid match kernel:

K L (F, F ) = I L + L-1 l=0 1 2 L-l (I l -I l+1 ) = 1 2 L I 0 + L l=1 1 2 L-l+1 I l (2.39)
Here, the above γ, r, p and L are all kernel parameters. Chapter 2. Literature Review

Kernel functions for continuous models

Generally, the continuous models are the representations obtained by the Gaussian Mixture Model (GMM) method, and images are modeled as continuous distributions. The probabilistic kernels can be dened between the distributions, such as the Probability Product Kernel (PPK) and the Kullback-Leibler Kernel (KLK).

Assume that we have two continuous distributions p and q dened on the space R D (D is the dimensionality of image features).

Jebara et al. [START_REF] Jebara | [END_REF]] [Jebara et al. 2004] proposed the PPK between two distributions:

K ρ ppk (p, q) = x∈R D p(x) ρ q(x) ρ dx (2.40)
where ρ is a parameter.

The PPK has two special cases. When ρ = 1, the PPK takes the form of the expectation of one distribution under the other. This is referred as the Expected Likelihood Kernel (ELK):

K elk (p, q) = x∈R D p(x)q(x)dx = E p [q(x)] = E q [p(x)]
(2.41) when ρ = 1/2, it is known as the Bhattacharyya Kernel (BHA):

K bha (p, q) = x∈R D p(x) q(x)dx (2.42)
The Kullback-Leibler Divergence (KLD) [Kullback 1968] is dened as follows:

KL(p q) = x∈R D p(x) log p(x) q(x) dx (2.43)
The symmetric KL (SKL) is given by: SKL(p, q) = KL(p q) + KL(q p) (2.44)
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The KLK [START_REF] Moreno | [END_REF]] can then be dened by exponentiating the SKL:

K klk = exp(-γSKL(p, q)) (2.45)
where γ > 0 is the kernel parameter.

Fusion strategies

The idea of fusion is usually adopted in the problem of multimedia data analysis [Ayache et al. 2007]. For example, there are generally three modalities which have to be handled in videos, namely the auditory modality, the textual modality, and the visual modality. Thus, a fusion step is necessary to combine the results of the analysis of each individual modalities to get the nal results [Snoek et al. 2005]. The same idea can also be employed in the task of visual object recognition, since dierent types of features usually extract information in images from dierent aspects, which may be complementary to each other, and thus the fusion of them may improve the recognition performance. In order to extract comprehensive information, dierent types of features are computed from the same image to form several information channels. These channels need to be fused to make the nal decision from dierent information sources. There are several dierent strategies for fusion:

• Early fusion: The features from all the channels are concatenated to build a single feature vector, which is then fed into a classier for the nal classication.

• Late fusion: The feature from each individual channel is rst fed into a classier to get its classication score, and the scores from all the channels are then combined into the nal score according to a certain criterion, such as mean, max, min, and weighted sum. Suppose S i , i = 1, . . . , N represent the scores from N individual channels, the nal score S f usion can be obtained as follows:

-Mean: -Weighted sum:

S f usion = 1 N N i=1 S i
S f usion = 1 N N i=1 (ω i * S i ),
where ω i is the weight for the i-th channel.

• Intermediate fusion: As we stated in section 2.3.2.2, the Multiple Kernel Learning (MKL) method can also be interpreted as a kind of fusion technique.

Dierent from both early and late fusion, MKL combines dierent features in the kernel level, and thus can be considered as a intermediate fusion strategy.

A comparison of early and late fusion strategies is illustrated in Figure 2.17. In this chapter, we introduce several standard datasets and popular benchmarks available in computer vision community for object recognition and image / video classication tasks. Some of them will be used to carry out experiments in the following chapters.

PASCAL VOC

The PASCAL Visual Object Classes (VOC) challenge 1 consists of two components:

(1) a publicly available dataset of images and annotations, together with standard evaluation procedures; and (2) an annual competition and workshop. Organized annually from 2005 to present, this challenge and its associated dataset has become accepted in computer vision and machine learning communities as a benchmark for visual object recognition and detection [START_REF] Everingham | [END_REF]]. • Classication: For each of the twenty classes, predicting presence / absence of an example of that class in the test image.

• Detection: Predicting the bounding box and label of each object from the twenty target classes in the test image.

We participated in the PASCAL VOC challenge in 2009, 2010 and 2011. A brief introduction of our participation can be found in Appendix A.

Besides the challenge organized in each year, the PASCAL VOC 2007 dataset [START_REF] Everingham | [END_REF]] has become a standard benchmark for evaluating object [ Wang et al. 2009b]; [2]: [START_REF] Khan | [END_REF]];

[3]: [Marszalek et al. 2007]; [START_REF] Fu | Visual Object Categorization via Sparse Representation[END_REF]: [Yang et al. 2009b]; [5]: [START_REF] Harzallah | [END_REF]];

[6]: [Zhou et al. 2010 AP value requires both high recall and high precision values. A detailed introduction of AP and MAP can be found in [START_REF] Zhu | [END_REF]]. Some example images from each category are shown in Figure 3.2, and some state-of-the-art results achieved on this dataset in the literature are presented in Table 3.1.

Caltech 101

The Caltech 101 dataset 2 [START_REF] Li | [END_REF]] contains a total of 9146 images, split into 101 dierent object classes (including airplanes, animals, faces, vehicles, chairs, owers, pianos, etc.) and an additional background category. The number of images in 2 Website: http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
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ImageNet

ImageNet 3 [Deng et al. 2009] is a large scale image dataset organized according to the WordNet [Fellbaum 1998] hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a synonym set or synset. There are more than 100,000 synsets in WordNet, and majority of them are nouns (80,000+). The aim of ImageNet is to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and humanannotated. Currently, ImageNet contains about 15 millions of images for more than 20,000 synsets, and the number of images with bounding box annotations is more than 1 million. In its completion, ImageNet will oer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy. 

ImageCLEF

ImageCLEF 4 launched in 2003 as part of the Cross Language Evaluation Forum (CLEF) with the goal of providing an evaluation forum for the cross-language annotation and retrieval of images. Motivated by the need to support multilingual users from a global community accessing the growing amount of visual information, ImageCLEF aims to support the advancement of the eld of visual media analysis, indexing, classication and retrieval by developing the necessary infrastructure for the evaluation of visual information retrieval systems operating in both monolingual, cross-language and language-independent contexts. There are four main tasks in ImageCLEF:

• Photo Annotation 

SIMPLIcity

The SIMPLIcity dataset [START_REF] Wang | [END_REF] 

OT Scene

The dataset from Oliva and Torralba [Oliva & Torralba 2001] hours from a small number of known professional sources broadcast news, TV programs, and surveillance systems. These videos are characterized by a high degree of diversity in creator, content, style, production qualities, original collection device, language, etc. In TRECVID, the following tasks are evaluated:

• Semantic indexing

• Known-item search • Event detection • Instance search
• Content-based copy detection Among these tasks, the semantic indexing task is closely related to object recog- 

Introduction

The Local Binary Pattern (LBP) operator [Ojala et al. 2002b] is a computationally ecient yet powerful texture feature. It was rstly introduced as a complementary measure for local image contrast [Ojala et al. 1996]. The histogram of the binary patterns computed over a region is generally used for texture description. It can be seen as a unied approach to statistical and structural texture analysis. The LBP operator describes each pixel by the relative gray levels of its neighboring pixels. Precisely, for each neighboring pixel, the result will be set to one if its value is no less Because of its computational simplicity, and strong descriptive power for analyzing both micro and macro texture structures, the LBP feature has been successfully applied to many applications as diverse as texture classication [Mäenpää et al. 2000a] [Mäenpää et al. 2000b] [Ojala et al. 2002b], texture segmentation [START_REF] Ojala | [END_REF], face recognition [START_REF] Ahonen | [END_REF] [ [START_REF] Ahonen | [END_REF]] and facial expression recognition [Zhao & Pietikäinen 2007] [ Shan et al. 2009]. However, it has been rarely used in the domain of visual object recognition 1 . We hold that main reasons lie in two aspects. On one hand, the LBP feature ignores all color information (its calculation is based on gray image), while color is an important clue for distinguishing objects, especially in natural scenes.

On the other hand, there can be various changes in lighting and viewing conditions in real-world scenes, leading to large illumination variations of object's appearance, which further complicate the recognition task. According to its denition, the LBP 

Model analysis for illumination changes

Changes in illumination can be expressed by the diagonal model as equation (4.1) and the diagonal-oset model as equation (4.2), where u and c represent respectively the values before and after illumination transformation:

     R c G c B c      =      a 0 0 0 b 0 0 0 c           R u G u B u      (4.1)      R c G c B c      =      a 0 0 0 b 0 0 0 c           R u G u B u      +      O 1 O 2 O 3      (4.2)
Based on these two models, dierent kinds of illumination changes can be ex- 

     R c G c B c      =      a 0 0 0 a 0 0 0 a           R u G u B u     
= c = 1, O 1 = O 2 = O 3 ):      R c G c B c      =      R u G u B u      +      O 1 O 1 O 1     
     R c G c B c      =      a 0 0 0 a 0 0 0 a           R u G u B u      +      O 1 O 1 O 1     

Color LBP features and their properties

In order to incorporate color information into the original LBP, as well as to enhance its discriminative power and photometric invariance property for dealing with dierent kinds of illumination changes as described in section 4.2, six color LBP features are proposed in this chapter. The main idea is to calculate the original LBP operator independently over dierent channels of a certain color space, and then concatenate the resulting histograms to get the nal color LBP feature, as shown in The RGB, HSV , and OP P ON EN T color spaces are chosen for calculating color LBP features because of their own characteristics. RGB is the most popular color space used in electronic systems for sensing, representation and display of images. It uses additive color mixing with primary colors of red, green and blue to reproduce a broad array of colors. HSV color space rearranges the geometry of RGB so that it could be more relevant to human perception, because it is more natural 

  =   aR /a(R + G + B ) aG /a(R + G + B )   =   R /(R + G + B ) G /(R + G + B )   (4.7)
Therefore, r and g channels are scale-invariant, which make this feature invariant to light intensity change as equation ( 4.3).

OPPONENT-LBP. This feature is obtained by computing LBP over all three channels of the OP P ON EN T color space as equation (4.8):

     O 1 O 2 O 3      =      (R -G)/ √ 2 (R + G -2B)/ √ 6 (R + G + B)/ √ 3      (4.8)
Due to the subtraction in channel O 1 and O 2 , the change osets can be cancelled out if they are equal in all channels. This is proven as equation (4.9) (Let a be the equal oset):

  O 1 O 2   =   (R -G)/ √ 2 (R + G -2B)/ √ 6   =   ((R + a) -(G + a))/ √ 2 ((R + a) + (G + a) -2(B + a))/ √ 6   =   (R -G )/ √ 2 (R + G -2B )/ √ 6   (4.9)
Therefore, O 1 and O 2 channels are invariant to light intensity shift as equation (4.4).

O 3 channel represents the intensity information, and has no invariance properties.

nOPPONENT-LBP. Hue-LBP. This feature is obtained by computing LBP over the Hue channel of the HSV color space as equation ( 4.11):

  O 1 O 2   =   O 1 O 3 O 2 O 3   =   √ 3(R-G) √ 2(R+G+B) R+G-2B √ 2 ( 
Hue = arctan( O 1 O 2 ) = arctan( √ 3(R -G) R + G -2B ) (4.11)
Due to the subtraction and the division, Hue channel is scale-invariant and shiftinvariant, therefore this feature is invariant to light intensity change and shift as equation ( 4.5).

TC-LBP. This feature is obtained by computing LBP over all three channels of the transf ormed color space as equation (4.12) (µ is the mean and σ is the standard deviation of each channel):

     R G B      =      (R -µ R )/σ R (G -µ G )/σ G (B -µ B )/σ B      (4.12)
Due to the subtraction and the normalization, all three channels are scale-invariant and shift-invariant, which make this feature invariant to light intensity change and shift as equation (4.5). Furthermore, because each channel is operated independently, this feature is also invariant to light color change and shift as equation (4.2).

Multi-scale color LBP features

Another big limitation of the original LBP operator is that it only covers a xed small neighborhood area (8 neighboring pixels as default), and thus can only get P=8, R=1.0 P=12, R=1.5 P=16, R=2.0 Formally, the LBP code of the pixel at (x c , y c ) is calculated according to the following equation:

LBP P,R (x c , y c ) = P -1 p=0 S(g p -g c ) × 2 p (4.13) S(x) =        1 x ≥ 0 0 x < 0 (4.14)
where g c is the value of the central pixel, g p corresponds to the gray values of the P neighboring pixels equally located on a circle of radius R.

Therefore, the nal multi-scale color LBP features can be obtained by extending color LBP features proposed in section 4.3 to their corresponding multi-scale forms respectively. By doing this, the proposed features are not only invariant to dierent illumination changes, but also scale-invariant to a certain extent. By changing the number of blocks dividing an image, we can obtain dierent levels of spatial information. Usually, the more blocks we divide, the more detailed spatial information we could obtain, and maybe the better recognition performance we could get. On the other hand, more number of blocks means larger feature vector dimensions, and more requirements for storage and computation cost. So the number of blocks should be chosen carefully as a trade-o between recognition performance and feature vector size.

We apply a coarse-to-ne strategy to evaluate the performances of the proposed color LBP features under dierent number of blocks. We found that ner division Chapter 4. Multi-scale Color Local Binary Patterns for Object Recognition

gives better results until a peak reaches. And the features from dierent levels of division are not completely redundant, since combining them can further boost the recognition performance. The detailed analysis is given in section 4.6.2.3.

Experimental evaluation

The PASCAL VOC 2007 image benchmark [START_REF] Everingham | [END_REF]] is used to evaluate the performances of the proposed color LBP features. Its detailed introduction can be found in section 3.1. All the images in this dataset are taken from real-world scenes under variant lighting conditions, which makes it very suitable for evaluating the proposed features.

Experimental Setup

The same multi-scale conguration, as shown in Figure 4.3, is applied for all the proposed color LBP features: 8 neighboring pixels with radius 1, 12 neighboring pixels with radius 1.5, and 16 neighboring pixels with radius 2.

Three widely-used texture features are chosen to make comparisons, including:

Gabor lters [START_REF] Zhang | [END_REF]], Grey Level Co-occurrence Matrix (GLCM) [Tuceryan & Jain 1998], and Texture Auto-Correlation (TAC) [Tuceryan & Jain 1998]. A detailed introduction of these features can be found in section 2.2.1. For Gabor lters, 5 scales and 8 orientations are used. For GLCM, 4 directions (horizontal, vertical and two diagonals) with 1 oset between two pixels are considered. For TAC, (0,2,4,6,8) are applied as position dierence in both x and y directions.

The Support Vector Machine (SVM) algorithm is applied for classication. An introduction of SVM can be found in section 2. It also can be noticed that among these features, Hue-LBP, OPPONENT-LBP and nOPPONENT-LBP have the best overall performance (improvement over 6% than intensity-based multi-scale LBP and over 20% than the original LBP), consistent with their strong properties of illumination invariance.

Comparison with other popular texture features

As one kind of texture feature, the best three multi-scale color LBP features are also compared with other popular texture features, including Gabor, GLCM and TAC.

From the results shown in Figure 4.6, it can be seen that the original LBP already outperforms other popular texture features, proving its superior ability of describing texture structures. The best three multi-scale color LBP features further improve the performances to almost double of the other texture features, demonstrating their strong discriminative power which benets from the properties of illuminationinvariant and scale-invariant.

Inuence of image division strategy

The proposed multi-scale color LBP features are then evaluated under dierent image division strategies. For the number of blocks in images, we equally divide increases. Therefore, it is highly desirable that local image descriptors oer both high discriminative power and computational eciency.

The Local Binary Pattern (LBP) operator [Ojala et al. 2002b] However, the LBP operator tends to produce high dimensional feature vectors, especially when the number of considered neighboring pixels increases. The so-called curse of dimensionality is a barrier for using it directly as a local region descriptor.

Thus, a key issue of making LBP a local region descriptor is to reduce its dimensionality. There exist in the literature two main works, namely uniform patterns [Ojala et al. 2002b] and center-symmetric local binary pattern (CS-LBP) operator [START_REF] Heikkilä | [END_REF]], which address this issue.

In this chapter, we propose a new dimensionality reduction method for LBP, denoted as the orthogonal combination of local binary patterns (OC-LBP), which is more eective and oers high discriminative power of local texture patterns. The basic idea is to rst split the neighboring pixels of the original LBP operator into several non-overlapped orthogonal groups, then compute the LBP code separately for each group, and nally concatenate them together. The experimental results on a standard texture classication dataset show that our method is much more eective than both CS-LBP operator and uniform patterns in terms of dimension reduction, since our method produces the LBP features with the smallest dimensions while still keeping high classication accuracy.

The proposed OC-LBP operator is then adopted to build a distribution-based local image region descriptor, denoted as OC-LBP descriptor, by following a way similar to SIFT: given several local regions of an image, each region is rstly divided into small cells for spatial information; in each cell, the OC-LBP feature is then computed for each pixel and an LBP histogram is constructed; nally, all the histograms from the cells are concatenated and delivered as the nal region descriptor.

Our aim is to build a more ecient local descriptor by replacing the costly gradient information with local texture patterns in the SIFT scheme.

Furthermore, similar to the extension of SIFT to color SIFT, we also extend the and CS-LBP descriptor, and achieve comparable or even better performances than the state-of-the-art color SIFT descriptors. Meanwhile, the proposed descriptors provide complementary information to SIFT, because a fusion of these two kinds of descriptors is found to perform clearly better than either of the two separately.

Moreover, the proposed descriptors are more computationally ecient than color SIFT.

Dimensionality reduction of LBP

Original LBP operator

The original LBP operator was rstly introduced as a complementary measure for local image contrast [Ojala et al. 1996], and can be seen as a unied approach to statistical and structural texture analysis. 

Orthogonal combination of local binary patterns (OC-LBP)

To reduce the dimensionality of the LBP histogram, a straightforward way is to only consider fewer neighboring pixels. For example, the LBP operator with 8 neighbors is mostly used in the applications, and it produces a rather long ( 256 

) ×2 0 + s(n1-nc) ×2 1 + s(n2-nc) ×2 2 + s(n3-nc) ×2 3 + s(n4-nc) ×2 4 + s(n5-nc) ×2 5 + s(n6-nc) ×2 6 + s(n7-nc) ×2 7 Orthogonal_LBP1 = s(n0-nc) ×2 0 + s(n2-nc) ×2 1 + s(n4-nc) ×2 2 + s(n6-nc) ×2 3 Orthogonal_LBP2 = s(n1-nc) ×2 0 + s(n3-nc) ×2 1 + s(n5-nc) ×2 2 + s(n7-nc) ×2 3 OC-LBP = [Orthogonal_LBP1 Orthogonal_LBP2]

Comparison of OC-LBP and other popular LBP dimensionality reduction methods

We make a comparison between the proposed OC-LBP and other two popular dimensionality reduction methods for LBP both in terms of discriminative power and feature dimensionality. These two methods, namely uniform patterns [Ojala et al. 2002b] and CS-LBP [START_REF] Heikkilä | [END_REF] descriptor will be presented in section 5.5.

In [Ojala et al. 2002b], the authors proposed the concept of uniform patterns, which are certain parts of the original LBP, and are considered to be the fundamental properties of texture. These patterns are called uniform because they have one thing in common: no more than two spatial transitions (one-to-zero or zero-to-one) in the circular binary code. For P neighboring pixels, they lead to a histogram of P × (P -1) + 3 dimensions. The uniform patterns have been proven to be an eective way for LBP dimensionality reduction [START_REF] Huang | [END_REF]. In [START_REF] Heikkilä | [END_REF]],

the authors proposed center-symmetric local binary pattern (CS-LBP) operator for dimensionality reduction. They modied the scheme of how to compare the pixels in the neighborhood. Instead of comparing each pixel with the central pixel, they compare center-symmetric pairs of pixels. This halves the number of comparisons compared to the original LBP.

Table 5.1 summarizes the dimensionality of the histograms produced by dierent methods with P neighboring pixels.

As we can see, the most eective scheme in terms of histogram dimensionality reduction is the proposed OC-LBP, which is linear with P the number of neighboring pixels, compared to exponential dimension of the original LBP and CS-LBP, and quadratic dimension of uniform patterns. Then, these methods are further compared in terms of their discriminative power.

Since the LBP operator is originally designed as a texture feature, a standard texture classication dataset [Ojala et al. 2002a] is chosen to carry out the com- algorithm is applied for classication. We compute the χ 2 distance as equation (2.36) to measure the similarity between each pair of the feature vectors. Then, the kernel based on this distance is computed as equation ( 2 

Local region description with OC-LBP

We construct a new local region descriptor based on the proposed OC-LBP operator by following the way similar to the SIFT [START_REF] Lowe | [END_REF]] and CS-LBP [START_REF] Heikkilä | [END_REF] descriptors. Figure 5.2 depicts the construction process. The input of the descriptor is a normalized local image region around the keypoint, which is either detected by certain interest point detector such as Harris-Laplace, or located on a dense sampling grid. The OC-LBP operator is then applied on all the pixels in the region to get their binary pattern values. In order to include coarse spatial information, the region is equally divided into several small cells, within which a histogram is built based on the binary pattern values of all the pixels. The nal descriptor is constructed by concatenating all the histograms from the cells. We adopt the uniform strategy for pixel weighting, as the CS-LBP descriptor, and a SIFT-like approach for descriptor normalization. The descriptor is rstly normalized to unit length, each value is then restricted to be no larger than 0.2 (threshold) so that the inuence of very large values is reduced, and nally the descriptor is renormalized 

Color OC-LBP descriptors

The classical LBP-related descriptors only use gray information. However, as we demonstrated in chapter 4, color information may signicantly improve the discriminative power of a descriptor. Moreover, incorporating color information may enhance the photometric invariance properties when dealing with dierent kinds of illumination changes as described in section 4.2.

In order to incorporate color information, we further extend the OC-LBP descriptor to dierent color spaces and propose six color OC-LBP descriptors in this section. Following the similar way in chapter 4, the main idea is to calculate the original OC-LBP descriptor independently over dierent channels of a certain color space, and then concatenate them to get the nal color OC-LBP descriptor, as TC-OC-LBP. This color descriptor is obtained by computing the OC-LBP descriptor over all three channels of the transf ormed color space as equation (4.12) (µ is the mean and σ is the standard deviation of each channel). Due to the subtraction and the normalization, all three channels are scale-invariant and shift-invariant, which makes this descriptor invariant to light intensity change and shift as equation (4.5). Furthermore, because each channel is operated independently, this descriptor is also invariant to light color change and shift as equation ( 4.2).

It should be noticed that this descriptor has equal values to the RGB-OC-LBP descriptor. Because the LBP is computed by taking the subtraction of the neighboring pixels and the central one, the subtraction of the means in this color space is redundant, as this oset is already cancelled out when computing the LBP. And since the descriptor normalization for each channel is done separately, the division of the standard deviation is also redundant. Therefore, the RGB-OC-LBP descriptor is used in this chapter to represent both descriptors.

Experimental evaluation

We evaluated the proposed intensity-based and color OC-LBP descriptors in three GIST is a popular holistic feature which estimates the dominant spatial structure of a scene to capture a set of perceptual dimensions (naturalness, openness, roughness, expansion and ruggedness). As such it is widely applied for scene classication. SURF is a typical local descriptor using Haar wavelets as features. Finally, CS-LBP is also binary-pattern-based and provides a way for LBP dimensionality reduction, as introduced in section 5.2.

Parameter selection

There are three parameters to be xed for the proposed OC-LBP descriptors, including the number of neighboring pixels for the OC-LBP operator (P ), the radius of neighboring circle for the OC-LBP operator (R), and the number of cells for each region (M × M ). For simplicity, the parameters P and R are evaluated in pairs, such as ( From the results shown in Table 5.3, it can be seen that the best performance is obtained when the value of (P, R) pair is set to (12, 2) and the number of cells is set to 3 × 3. We apply this parameter setting on gray OC-LBP descriptor and all color OC-LBP descriptors in the following experiments.

Experiments on image matching

We adopt the same dataset introduced in section 5.5.1 to evaluate the proposed descriptors in the application of image matching. The performances of the descriptors are evaluated by the matching criterion, which is based on the number of correctly and falsely matched regions between a pair of images. Two image regions are considered to be matched if the Euclidean distance between their descriptors is below a threshold. The number of correct matches is determined by the overlap error recall = #correct matches #correspondences

(5.1)

1 -precision = #f alse matches #all matches (5.2)
where #correspondences is the ground truth number of matches between the images.

By changing the distance threshold, we can obtain the recall versus 1-precision curve.

Experimental setup

We use the software package mentioned in section 5.5.1 for interest region detection, region normalization, and SIFT computation. We implement the CS-LBP descriptor according to [START_REF] Heikkilä | [END_REF], and apply the same parameter setting as the OC-LBP descriptor for fair comparison. To compute color SIFT descriptors, we use the ColorDescriptor software available online [Koen van de Sande ].

Experimental results

The image matching results on the Oxford dataset are shown in Figure 5.5 and show that the color OC-LBP descriptors also achieve slightly better performances than color SIFT.

Experiments on object recognition

In order to evaluate the proposed descriptors in the application of object recognition, two standard image datasets are used: the PASCAL VOC 2007 benchmark [START_REF] Everingham | [END_REF]] and the SIMPLIcity dataset [START_REF] Wang | [END_REF]. A detailed introduction of both datasets can be found in chapter 3.

These two datasets have dierent characteristics. In the SIMPLIcity dataset, most images have little or no clutter. The objects tend to be centered in each image. Most objects are presented in a stereotypical pose. In the PASCAL VOC 2007 benchmark, all the images are taken from the real-world scenes, thus with background clutter, occlusions, and various variations in viewpoint, pose and lighting condition, which increase the diculties of object recognition in this dataset.

Our approach for object recognition

The block diagram of our approach for visual object recognition is depicted in We apply the popular Bag-of-Features (BoF) method [Csurka et al. 2004] because of its great success in object recognition tasks. A detailed introduction of the BoF method can be found in section 2.2.2.3. Specically, we build a vocabulary of 1000 visual words for the SIMPLIcity dataset and 4000 visual words for the PASCAL VOC 2007 benchmark for each kind of local descriptors respectively by applying the k-means clustering algorithm on a subset of the descriptors which are randomly selected from the training data.

Classication

The Support Vector Machine (SVM) algorithm is applied for object classication.

An introduction of SVM can be found in section 2. 

Experimental results on SIMPLIcity

The object recognition results on the SIMPLIcity dataset are shown in Table 5.6

and Table 5.7. The similar observations to that on the PASCAL VOC benchmark can be noticed. The color OC-LBP descriptors outperform CS-LBP, SURF, HOG, SIFT as well as the intensity-based OC-LBP, and achieve comparable results with the color SIFT descriptors. Further improvement (nearly 5%) can be obtained by fusing three color OC-LBP and three color SIFT descriptors, since they provide complementary information to each other.

Experiments on scene classication

We also evaluated the proposed descriptors in the application of scene classication.

The dataset from Oliva and Torralba [Oliva & Torralba 2001] is used, and denoted as OT scene dataset. Its detailed introduction can be found in section 3.6. [START_REF] Lowe | [END_REF]], GLOH [Mikolajczyk & Schmid 2005] and HOG [START_REF] Dalal | [END_REF],

as the main trend in object recognition tasks. Among them, SIFT is considered as the most powerful and successful one, and has been widely applied as the dominant feature in the state-of-the-art recognition/classication systems [START_REF] Everingham | [END_REF]]. The classic SIFT is a sparse descriptor computed on a set of points of interest (or keypoints) in images. However, several studies [Li & Perona 2005[START_REF] Furuya | [END_REF] have shown that dense SIFT (SIFT computed on a dense grid) performs better than the original one for the task of object recognition.

There is now a trend in computer vision community that the scale of the benchmark datasets used for object recognition / image classication becomes larger year by year. However, it is well known that the downside of the state-of-the-art descriptors, including SIFT, GLOH, HOG, etc., is their relatively high computational cost, especially when the size of image or the scale of dataset signicantly increases. Therefore, more computationally ecient and discriminative local descriptors are urgently demanded to deal with large scale datasets such as ImageNet [Deng et al. 2009] and TRECVID [START_REF] Smeaton | [END_REF]].

Usually, there are two ways to do this. One way is to replace the costly gradient information with other more ecient features, like LBP, as what we did in the case of the OC-LBP descriptor in chapter 5. The other way is to nd more ecient methods to calculate the gradient information.

The DAISY descriptor [Tola et al. 2010], which was initially designed for widebaseline stereo matching problem, is a newly introduced fast local descriptor based on gradient distribution, and has shown good robustness against many photometric and geometric transformations. It has never been used in the context of visual object recognition, while we believe that it is very suitable for this problem, and could well meet the mentioned demand. Therefore, in this chapter, we investigate the DAISY descriptor for the task of visual object recognition by evaluating and comparing it with the state-of-the-art SIFT both in terms of recognition accuracy and com-Chapter 6. Visual Object Recognition Using the DAISY Descriptor putation complexity on two standard image datasets: Caltech 101 [START_REF] Li | [END_REF] and PASCAL VOC 2007 [START_REF] Everingham | [END_REF]]. DAISY provides a fast way to calculate the gradient information and proves very promising for the task of visual object recognition.

The DAISY descriptor

Similar to SIFT, the DAISY descriptor is a 3D histogram of gradient locations and orientations. The dierences between them lie in two aspects. One is that DAISY replaces the weighted sums of gradient norms used in SIFT by convolutions of gradients in specic directions with several Gaussian lters. This is for computing descriptor eciently at every pixel location, because the histograms only need to be computed once per region and could be reused for all neighboring pixels. The other is that DAISY uses a circular neighborhood conguration instead of the rectangular one used in SIFT, as the comparison shown in Figure 6.1.

Given an input image I, a certain number of orientation maps G o , one for each quantized direction o, are rst computed. They are formally dened as:

G o = ∂I ∂o + (6.1)
The + sign means that only positive values are kept to preserve the polarity of the intensity changes.

Each orientation map, which represents the image gradient norms for that direction at all pixel locations, is then convolved several times with Gaussian kernels of dierent standard deviation values to obtain the convolved orientation maps. The eciency of DAISY descriptor comes right here, because Gaussian lters are separable and thus the convolutions can be implemented very eciently. This means the convolutions with large Gaussian kernel can be obtained from several consecutive convolutions with smaller kernels. The computational amount is thus reduced.

At each pixel location, its neighborhood is divided into circles of dierent size located on a series of concentric rings, as shown in where the radius of each circle is proportional to its distance from the center.

Chapter 6. Visual Object Recognition Using the DAISY Descriptor each circle is proportional to its distance from the central pixel, and the standard deviation of Gaussian kernel is proportional to the size of the circle. A vector is then made within each circle by gathering the values of all the convolved orientation maps with corresponding Gaussian smoothing. The nal DAISY descriptor is made by concatenating all the vectors from the circles, after they are normalized to unit norm.

There are mainly four parameters to determine the shape of the DAISY descriptor: neighborhood area radius (R); number of quantized orientations (o); number of convolved orientation rings (r); and number of circles on each ring (c). The inuence of dierent parameters will be analyzed experimentally in section 6.4.

Approach for visual object recognition

The approach applied in this chapter for visual object recognition is similar to the one introduced in section 5.5.3. The block diagram of the approach is depicted in Figure 5.7.

Feature extraction

We extract the DAISY and SIFT descriptors from input images as their features.

The original DAISY descriptor introduced in section 6.2 is designed for wide-baseline stereo matching, so it is computed at every pixel location, leading to a very high dimensional descriptor. For example, a 500 × 350 image will yield a DAISY descriptor with the size of 175000 × 200 by default. Such high dimension is impractical for the task of object recognition because of the huge computation and storage requirements, especially for large images and datasets.

Therefore, we extract the DAISY descriptor on a dense grid for our purpose.

Instead of at every pixel location, it is only computed on a dense sampling grid, which is the same as how the dense SIFT descriptor is computed. The sampling spacing is the parameter to control the number of sampling points. By this way, the dimension of the DAISY descriptor is reduced signicantly, making it suitable to visual object recognition tasks.
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Bag-of-Features modelling

To transform the extracted local descriptors (DAISY or SIFT) into a more compact, informative and xed-length representation for further classication, we apply the popular Bag-of-Features (BoF) method [Csurka et al. 2004] because of its great success in object recognition tasks. A detailed introduction of the BoF method is given in section 2.2.2.3.

Since the BoF method ignores all spatial information of local descriptors, we also apply the spatial pyramid [Lazebnik et al. 2006] technique (see section 2.2.2.3

for a detailed introduction) to take into account coarse spatial relationship between them.

Classication

The Support Vector Machine (SVM) algorithm is applied for object classication.

An introduction of SVM can be found in section 2.3.2.1. Once all local descriptors are transformed to xed-length feature vectors by the BoF method, the χ 2 distance is computed as equation (2.36) to measure the similarity between each pair of the feature vectors. Then, the kernel function based on this distance is computed as equation (2.37) for the SVM training and prediction. Finally, for each test image, the output probabilities of the SVM classier are used to predict the object categories.

Experimental evaluation

In order to evaluate the performance of the DAISY descriptor, as well as to compare it with the state-of-the-art SIFT descriptor in the context of object recognition, we use two standard image datasets: Caltech 101 [START_REF] Li | [END_REF]] and PASCAL VOC 2007 [START_REF] Everingham | [END_REF]. A detailed introduction of both datasets can be found in chapter 3. 

Experimental setup

We follow the approach described in section 6. As we can see from the results, the recognition accuracy is improved for The following conclusions can be made: 8 orientations perform clearly better than 4, while 12 show no superiority to 8, indicating that 8 orientations are sucient;

the performance keeps improving as the number of rings increases, showing that more rings are better, since more neighboring information is included; 4, 8 and 12 circles have very similar performances, implying that large number of circles on each ring is unnecessary, due to overlapping of adjacent regions. Therefore, 8o3r4c is a good choice of parameters for DAISY, and is applied in our experiments. per image (about size of 300×200) 1 . It can be seen that the best DAISY (15R8o3r4c) is 3 times faster than SIFT, with more than 4% superiority on performance. Even a simpler DAISY (15R4o1r4c) can obtain comparable performance to SIFT, with only 1/6 descriptor length and 12 times faster computation.

Conclusions

In this chapter, we investigated DAISY, an ecient local descriptor, for the task of visual object recognition. We carefully evaluated its performances with dierent parameter settings on two standard image datasets, namely Caltech 101 and PAS-1 We use the MATLAB implementations available online for computing both descriptors. For DAISY, http://cvlab.epfl.ch/~tola/daisy.html. For SIFT, http://www.vlfeat.org/. Chapter 6. Visual Object Recognition Using the DAISY Descriptor Since long ago, it has been admitted that human visual processing could not be explained only by the rst order mechanisms which capture the spatiotemporal variations in luminance, and the second order based ones capture complementary information such as dierence of texture and spatial frequency [Smith & Scott-Samuel 2001]. Despite the great variety in design principle and implementation, the overwhelming majority of the existing local image descriptors share one common ground that they make use of the information of the rst order gradients, e.g. locations, orientations and magnitudes. In contrast, quite limited eorts are made on the second order gradients. In [START_REF] Brown | [END_REF], the authors proposed an unied framework for local descriptor design, and pointed out high order gradients (2nd and 4th) are helpful in the application of multi-view stereo matching. However, to the best of our knowledge, local image descriptors based on the second order gradients are seldom investigated in the literature for the purpose of object recognition. Intuitively, the second order gradient information should not only possess certain discriminative power to distinguish dierent object classes, but also tend to be complementary to the information provided by the rst order gradients. This intuition could also be characterized by an analogy of object motion which requires not only the velocity but also the acceleration for a comprehensive description. According to this analogy, within a pre-dened distance between two pixels, the rst order gradients imitate the velocity of the gray value variation, while the second order gradients simulate its corresponding acceleration. where the '+' sign means that only positive values are kept to preserve the polarity of the intensity changes, while the negative ones are set to zero.

Each gradient map describes gradient norms of the input image region in a direction o at every pixel location. We then convolve its gradient maps with a Gaussian kernel G. The standard deviation of the Gaussian kernel G is proportional to the radius of the given neighborhood, R, as equation (7.2):

ρ R o = G R * G o (7.2)
The purpose of the convolution with Gaussian kernels is to allow the gradients to shift within a neighborhood without abrupt changes.

At a given pixel location (x, y), we collect all the values of these convolved gradient maps at that location and build the vector ρ R (x, y) as:

ρ R (x, y) = ρ R 1 (x, y), • • • , ρ R N (x, y) T (7.3)
This vector, ρ R (x, y), is further normalized to unit norm vector, which is called in the subsequent entire orientation vector and denoted by ρ R , and the image region can be thus represented by entire orientation vectors. Specically, given an image region I, we generate an Oriented Gradient Map (OGM) J o for each orientation o dened as: The total number of the divided circles can be calculated as T = CR × C + 1.

J o (x, y) = ρ R o (x, y) (7.4)
Within each circle CIR j , j = 1, 2, . . . , T , and for each rst order OGM J o , o = 1, 2, . . . , N , a second order oriented gradient histogram, h oj , is built as equation (7.10) by accumulating the gradient magnitudes mag o of all the pixels with the same quantized orientation entry n o .

h oj (i) = (x,y)∈CIR j f (n o (x, y) == i) * mag o (x, y) (7.10) where i = 0, 1, . . . , N -1; o = 1, 2, . . . , N , j = 1, 2, . . . , T , f (x) =    1, if x is true 0, otherwise (7.11) 
Then, for each rst order OGM J o , its second order oriented gradient histogram h o is generated by concatenating all the histograms from T circles as equation (7.12): 7.12) where o = 1, 2, . . . , N . The HSOG descriptor is obtained by concatenating all N histograms of the second order oriented gradient as equation (7.13). Each histogram h o is normalized to an unit norm vector ĥo before the concatenation.

h o = [h o1 , h o2 , h o3 , • • • , h oT ] T ( 
HSOG = [ ĥ1 , ĥ2 , ĥ3 , • • • , ĥN ] T (7.13)

Dimensionality reduction

The dimension of the achieved HSOG descriptor is T × N 2 , which is relatively high (from hundreds up to more than one thousand) for the following steps. In order to reduce the dimensionality and increase the discriminative power, we further apply Chapter 7. Histograms of the Second Order Gradients (HSOG) for Object Recognition the well known Principal Component Analysis (PCA) technique [Jollie 2002], since it has been successfully applied in the PCA-SIFT and GLOH cases for the same objective.

To build the eigenspace, we located 76,000 local image patches by applying the Harris-Laplace interest point detector [Mikolajczyk & Schmid 2004] on a diverse collection of images which is out of the dataset for validation. Each of these patches was adopted to compute its HSOG descriptor, and PCA was applied on the covariance matrix of these descriptors. The matrix consisting of the top n eigenvectors was stored and utilized as the projection matrix.

For a certain local image region, its HSOG descriptor is rstly computed and then projected into a low-dimensional feature space by multiplying the pre-trained projection matrix. The dimension of the nal HSOG descriptor is hence reduced to n. We experimentally determined the best values for n, and set n = 128 in the following experiments. The discussion about the choice of the value n will be presented in section 7.4.3.

Attribute comparison with main local descriptors

As we presented in section 2.2.2.2, the attributes of the most popular local descriptors applied to the domain of object recognition are summarized in Table 2.3, including representation type (sparse or dense), encoded information, spatial pooling scheme (neighborhood grid), computation method (comp.), and dimensionality (dim.). The comparisons can now be updated as in Table 7.1 after we introduced the DAISY descriptor in chapter 6 and proposed the HSOG descriptor in this chapter.

Experimental evaluation

We evaluate the proposed HSOG descriptor in the context of visual object recognition on the standard Caltech 101 dataset [START_REF] Li | [END_REF]]. Its detailed introduction can be found in section 3. SIFT uses the standard conguration as in [START_REF] Lowe | [END_REF]], thus with 128-dimension.

DAISY applies the same parameter setting as HSOG, and its dimension is 104. The parameters of CS-LBP are set according to [START_REF] Heikkilä | [END_REF], i.e. the 4 × 4 grid with CS-LBP 2,8,0.01 , resulting in a 256-dimensional descriptor.

We can see from Table 7.3 that the single-scale HSOG outperforms the rst order gradient based descriptors, i.e. CS-LBP, DAISY and SIFT, and the categorization result achieved by multi-scale HSOG which combines the ones of four dierent regions is signicantly increased by over 10%, clearly demonstrating the eectiveness of the HSOG descriptor. On the other hand, the fusion of the single scale (Ss) HSOG or multi-scale (Ms) HSOG with SIFT, DAISY or CS-LBP improves the categorization accuracy again, indicating that HSOG provides complementary information to that given by the existing local image descriptors, and their joint use is a promising way for visual content representation. Also, we calculated the average computation time required for each input image (about size of 300 × 250) of these local descriptors using an Intel Core 2 Duo CPU @ 3.16 GHz with 3GB RAM, and it can be seen that the current version of HSOG is 3 times slower than SIFT. Nevertheless, it should be noted that because each rst order OGM and its corresponding second order gradients can be computed individually, the current implementation of HSOG can be accelerated by GPU programming as we mentioned in section 7.4.4, which makes HSOG run approximately N times faster (N is the number of OGMs, e.g. 8 in our case), leading to a consumed time Chapter 7. Histograms of the Second Order Gradients (HSOG) for Object Recognition 

Conclusions

In this chapter, we presented a novel local image descriptor for object recognition, making use of histograms of the second order gradients, denoted as HSOG. The proposed HSOG descriptor intends to capture the acceleration information on pixel gray value changes, while the existing descriptors in the literature, such as SIFT, HOG, DAISY, etc., are based on the rst order gradient information. The recognition results achieved on the Caltech 101 dataset clearly demonstrate that the proposed HSOG descriptor possesses a good discriminative power to distinguish dierent object categories, especially embedded with more spatial information provided by the multi-scale strategy. Furthermore, the information given by HSOG proves complementary to that based on the existing ones which exploit the rst order gradient information.

Chapter 8

Conclusions and Future Work Our rst contribution is presented in chapter 4. We propose six multi-scale color local binary pattern (LBP) features to incorporate color information into the original LBP operator, which is a computationally ecient yet powerful texture feature that has been successfully applied to many applications as diverse as texture classication, texture segmentation, face recognition and facial expression recognition.

Chapter 8. Conclusions and Future Work

However, it has two main shortcomings. On one hand, the original LBP ignores all color information because its calculation is based on gray images, while color is an important clue for distinguishing objects, especially in natural scenes. On the other hand, the original LBP is only invariant to gray-level monotonic illumination changes, and thus is decient in power to deal with various lighting condition changes in real-world scenes, which further complicate the recognition task. Therefore, the aim of the proposed features is to incorporate color information, as well as to enhance the discriminative power and the photometric invariance property of the original LBP. In addition, in order to encode spatial information of texture struc- Our fourth contribution is presented in chapter 7. We propose a novel local image descriptor called histograms of the second order gradients (denoted as HSOG)

for visual object recognition. In the literature, the most eective feature for characterizing an object's appearance or the content of an image is the rst order gradient information, based on which many successful and state-of-the-art descriptors, such as SIFT, GLOH, HOG and DAISY, are constructed. Intuitively, the second order gradient information, which, to the best of our knowledge, is seldom investigated in the literature for object recognition, should not only possess certain discriminative power to distinguish dierent objects, but also tends to be complementary to the description provided by the rst order gradients. Indeed, since long ago, it has been admitted that human visual processing could not be explained only by the rst order mechanisms which capture the spatio-temporal variations in luminance.

The second order mechanisms could capture complementary information such as dierence of texture and spatial frequency. This intuition could also be characterized by an analogy of object motion which requires not only the velocity but also the acceleration for a comprehensive description. According to this analogy, within a pre-dened distance between two pixels, the rst order gradient imitates the velocity of the gray value variation, while the second order gradient simulates its 

Perspectives for future work

We present in this section some perspectives for future research directions.

For the OC-LBP descriptor, we now use 4-orthogonal-neighbor as the basic unit to divide the neighboring pixels of the original LBP operator into non-overlapping groups. Other types of the basic unit could also be considered. For example, we could use the basic unit of 3-equilateral-triangular-neighbor, which would further reduce the dimensionality of the original LBP. Therefore, the performance of the descriptor using dierent basic units remains to be evaluated through comprehensive experiments in future.

For the HSOG descriptor, other ways for gradient computation could also be adopted. According to [START_REF] Dalal | [END_REF], the descriptor performance is sensitive to the way in which gradients are computed. Therefore, future work could be done by evaluating the performance of the HSOG descriptor with dierent ways to compute gradients, such as uncentred 1D mask [-1, 1], cubic-corrected 1D mask [1, -8, 0, 8, -1], 3 × 3 Sobel masks, and 2 × 2 diagonal masks [ 0 1 -1 0 ], [ -1 0 0 1 ], as in [START_REF] Dalal | [END_REF]. Moreover, since the rst and second order gradients are computed separately in the HSOG construction, they could adopt dierent ways for computation as well. In addition, the performance of the HSOG descriptor may be improved by applying the linear discriminant analysis (LDA), which is a discriminative technique, to replace the principal component analysis (PCA), which is a non-discriminative technique, for its dimension reduction.

The DAISY and the HSOG descriptors could also be incorporated with color information to enhance their discriminative power and photometric invariance

properties, as what we did in the cases of LBP and OC-LBP.

For the extraction of the proposed features / descriptors, dierent parts of an image are now equally treated. In other words, the features extracted from the dierent parts of an image are considered to have equal importance, regardless of their locations in the image. However, intuitively, they should have dierent importance. For example, the features extracted from the object area should have greater importance than those from the background area, especially in the case of datasets with big background clutter. This point has been conrmed in [START_REF] Zhang | [END_REF]].

Therefore, future work could be done to rst locate the interest areas (usually the objects) in images by some detection or segmentation techniques, and then assign dierent weights to the features during extraction according to their locations in images.

For the classication, we now apply the standard SVM algorithm, which considers each training sample equally while training the classier. However, due to intra-class variations and inter-class correlations, it is dicult for SVM to deal with the complexity of data distribution when the samples within the same category exhibit diversities and the samples from dierent categories display similarities in terms of visual attributes. Therefore, future work could be done to introduce dierent weights for dierent samples during the SVM training process. How to decide the values of weights for dierent samples also remains a problem, while [START_REF] Malisiewicz | [END_REF], [Lin et al. 2007] and [Yang et al. 2009b] provide some ideas. 
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Figure 1 . 1 shows[

 11 some instances of generic object categories Car, Aeroplane, Cat and Sofa respectively. In fact, visual object recognition is a fundamental problem in computer vision and pattern recognition. It has a wide range of possible applications besides automatic image annotation, such as video monitoring, video coding systems, security access control, robot localization, automobile driving support and content-based image / video indexing and retrieval. Therefore, it has become a very popular and important research topic in computer vision community in recent years, and many dierent methods have been proposed and applied for the recognition of generic object categories such as vehicles, animals, person, plants, buildings, Zhang et al. 2007] [van de Sande et al. 2010] [Zhang et al. 2006] [Chevalier et al. 2007] [Yang et al. 2009b] [Gorisse et al. 2010] [Wang et al. 2009a] [Guillaumin et al. 2010] [Harzallah et al. 2009] [van Gemert et al. 2010]. Despite a lot of eorts and progress that have been made during the past years [Everingham et al. 2010] [Smeaton et al. 2009], visual object recognition remains an open problem and is still considered as one of the most challenging problems in computer vision. The main reason lies in the diculties for computers to cope with various intra-class variations, including appearance deformation, occlusion, background clutter, changes in viewpoint, pose, scale and illumination, etc., which although are much easier problems for human. The typical intra-class variations of object are illustrated by the horse images in Figure 1.2.
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 1112 Figure 1.1: Dierent instances of generic object categories (example images from PASCAL VOC 2007 database)
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  at the time when we started our work in 2008, while being more popular now Chapter 1. Introduction method for LBP called the orthogonal combination of local binary patterns (denoted as OC-LBP), and several new local descriptors based on OC-LBP for image region description. Nowadays, distribution-based local descriptors, such as SIFT and its extensions or renements, have become the dominant features in the state-of-theart recognition / classication systems. However, the downside of these descriptors

Figure 2 . 1 :

 21 Figure 2.1: An illustration of intra-class variations. Examples are all from the class chair of the Caltech image dataset, but have very dierent appearances.

Figure 2 . 2 :

 22 Figure 2.2: An illustration of inter-class similarities. Examples in the rst row are from the class bike of the Caltech image dataset, while the ones in the second row are from the class motorbike of the same dataset. They are quite similar in appearance.

Figure 2 . 3 :

 23 Figure 2.3: Geometry-based object recognition: (a) A 3D polyhedral description of the blocks world scene [Roberts 1963]. (b) The feature analysis of a line drawing for describing curved objects [Guzman 1971]. (c) A range image of a doll and the resulting set of generalized cylinders [Agin 1972].
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 24 Figure 2.4: Appearance-based object recognition: (a) Some example images of eigenfaces (http://www.geop.ubc.ca/CDSST/eigenfaces.html/). (b) An illustration of 3D object recognition based on appearance manifolds [Murase & Nayar 1995].
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 226 Figure 2.5: Parts-based object recognition: (a) The parts-based deformable model for face from [Fischler & Elschlager 1973]. (b) The parts-based deformable models for motorbike and car from [Fergus et al. 2003]. (c) The parts-based deformable models for motorbike and aeroplane from [Bouchard & Triggs 2005]. (d) The partsbased deformable models for human body from [Felzenszwalb & Huttenlocher 2005].

  form of a single vector or histogram based on the statistical analysis of an image pixel by pixel. They thus encode global visual content of an image. Dierent global features have been proposed in the literature, and we present here several ones that we have studied and investigated in our work. We choose these features since they are the most popular ones among global features. An evaluation and comparison of dierent global features in the context of object recognition is given in Appendix B.
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Figure 2 .

 2 Figure 2.7: Five types of edge and the corresponding lters for edge detection used in edge histogram

  ]: Edge histogram describes edge information with a histogram based on edge distribution in an image. Five types of edges, namely vertical, horizontal, 45-degree diagonal, 135-degree diagonal and non-directional, are considered as shown in Figure 2.7. To compute edge histogram, an image is rst divided into 4×4 non-overlapping blocks, resulting in 16 equal-sized sub-images regardless of the size of the original image. In each of the sub-images, a histogram of edge distribution with 5 bins corresponding to 5 types of edges is computed, leading to a nal histogram with 16×5 = 80 bins after concatenation. An extended version of edge histogram is also proposed by partitioning the image into 4 × 1, 1 × 4 and 2 × 2 sub-images in order to integrate the information of edge distribution in dierent scales.

  Local image features have received a lot of attention in recent years, and they have already gained the popularity and dominance in object recognition / classication tasks nowadays. Instead of operating on the whole image, the key idea of local features is to extract distinctive information from local image regions centered either 1 http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm/ Line Segments Shape No No Yes Medium on some sparse keypoints with certain invariance properties, for instance with respect to scale and viewpoint change, or simply on a dense sampling grid. By this way, local features could be more discriminative and robust to image variations, compared to the global ones. Generally, local feature extraction consists of two main steps: (1) local keypoint/region detection and (2) local descriptor extraction.
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 28 Figure 2.8: Comparison of interest points/regions and dense sampling strategies for local keypoint/region detection (examples from [van de Sande et al. 2010])

  [van de Sande et al. 2008] [van de Sande et al. 2010]: Van de Sande et al. proposed several color SIFT descriptors by extracting the SIFT feature in dierent color spaces, including HSV-SIFT, HueSIFT, Op-ponentSIFT, C-SIFT, RGB-SIFT, rgSIFT and transformed color SIFT. The Chapter 2. Literature Review SIFT features computed in each individual channel are concatenated as the nal color SIFT feature. The aim is to increase the photometric invariance property and the discriminative power of the original SIFT. Their performances were also evaluated and compared in the context of object recognition, and the results demonstrated that combining SIFT with color clues is a promising way to improve the recognition performance.

Figure 2 .

 2 Figure 2.9(c). Its aim is to describe the distribution of edge points on a shape with respect to the reference point. The contour of shape can be detected by any edge detector, e.g. Canny edge detector, and edge points are regularly sampled over the whole shape contour. The location is divided into 5 bins in radial direction and 12 bins in angular direction, resulting in a 60-dimensional descriptor.

  ]: Heikkila et al. proposed Center-Symmetric Local Binary Pattern (CS-LBP) descriptor, which combines the strengths of both SIFT and LBP. It adopts the SIFT-like approach for descriptor construction, but replaces the gradient information used in SIFT with the CS-LBP feature, which is a modied version of the original LBP. Instead of comparing each neighboring pixel with the central one, CS-LBP only compares centersymmetric pairs of pixels, as shown in Figure 2.9(e). This could halve the number of comparisons, and reduce the size of the LBP histogram. The standard CS-LBP applies 4 × 4 location grid and 8 neighboring pixels for computation, resulting in a 256-dimensional descriptor.

Figure 2

 2 Figure 2.9: Illustrations of popular local image descriptors: (a) SIFT; (b) HOG; (c) Shape Context; (d) SURF; (e) CS-LBP (gures from the original papers)
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  Sande et al. 2010] have been conducted to comprehensively evaluate and compare the performances of dierent local image descriptors, and they almost have given the consistent conclusions that distribution-based local descriptors perform the best, and therefore have been widely applied to the tasks of object recognition. After local feature extraction, each image is represented by a set of local descriptors. It is unreasonable to feed them directly into a classier. On one hand, the dimensions of these descriptors are relatively high because of the large number of keypoints/regions (normally around thousands) in images. On the other hand, the number of local descriptors in each image varies because the number of keypoints/regions changes from one image to another one. Thus, an ecient feature modelling method is required to transform these high dimensional and variable numbers of local descriptors into a more compact, informative and xed-length repre-Chapter 2. Literature Review sentation for further classication. Two leading modelling methods in the literature are Bag-of-Features (BoF) and Gaussian Mixture Model (GMM).

  main, and is to represent an image as an orderless collection of local descriptors based on an intermediate representation called visual vocabulary. More precisely, it consists of two main steps: (1) visual vocabulary construction and (2) histogram encoding. A visual vocabulary is rst constructed by applying a clustering algorithm on the training data, and each cluster center is considered as a visual word in the vocabulary. All the descriptors extracted from an image are then quantized to their closest visual word (hard assignment) or several close visual words (soft assignment)in an appropriate metric space by a certain encoding method. The number of the descriptors assigned to each visual word is accounted into a histogram as the nal BoF representation. In other words, each image is characterized by a histogram of visual words frequencies. Figure2.10 shows an illustration of this process. Some representative methods for each of these two steps are introduced in the following.

  The visual vocabulary is constructed oine on the training data by unsupervised or supervised learning methods. The k-means clustering algorithm [MacQueen 1967] is the most popular one. It is an unsupervised clustering algorithm which proceeds by iterated assignments of points to their closest cluster centers and re-computation of the cluster centers. The number of the cluster centers k is predened empirically. The advantage of k-means is its simple and ecient implementation, while its drawback is that most of the cluster centers are drawn irresistibly towards dense regions of the sample distribution

Figure 2 .

 2 Figure 2.10: An illustration of the Bag-of-Features (Bag-of-Visual-Words) method (example from [Yang et al. 2007])

Figure 2 .

 2 Figure 2.11: Illustration of visual word uncertainty and plausibility. The small dots represent image features, the labeled red circles are visual words found by unsupervised clustering. The triangle represents a data sample that is well suited to hard assignment approach. The diculty with word uncertainty is shown by the square, and the problem of word plausibility is illustrated by the diamond. (example from [van Gemert et al. 2008])

Figure 2 .

 2 12 shows an example of constructing a three-level spatial pyramid.The winning system [van deSande et al. 2010] for object classication task in the PASCAL VOC Challenge[START_REF] Everingham | [END_REF]] provided some modications of the standard spatial pyramid method. An image is rst divided into 1 × 1 + 2 × 2 + 1 × 3 spatial levels, as shown in Figure2.13, one unique vocabulary is then constructed for the whole image, and the BoF representations are computed using this vocabulary for each spatial level, which are fused later using the extended Gaussian kernel.

Figure 2 .

 2 Figure 2.12: An example of constructing a three-level spatial pyramid. The image has three feature types, indicated by circles, diamonds, and crosses. At the top, the image is subdivided at three dierent levels of resolution. Next, for each level of resolution and each channel, the features that fall in each spatial bin are counted.Finally, each spatial histogram is weighted according to its level. (example from[Lazebnik et al. 2006]) 

Figure 2 .

 2 Figure 2.13: The spatial pyramid used in the winning system for object classication task in the PASCAL VOC Challenge (example from [van de Sande et al. 2010])

Figure 2 .

 2 Figure 2.15. New samples are then mapped into the same space and predicted to a class based on which side of the hyperplane they fall into.

Figure 2 .

 2 Figure 2.15: An illustration of dierent hyperplanes: H3 does not separate two classes; H1 does separate two classes, but with a small margin; H2 separates two classes with the maximum margin.

Figure 2 . 16 :

 216 Figure 2.16: An illustration of maximum-margin hyperplane for an SVM trained with samples from two classes (samples on the margins are called the support vectors)

  The standard SVM is a binary classier, whereas many classication problems involve multiple classes. Two common strategies are designed to extend SVM for dealing with multi-class problems: (1) one-against-all and (2) oneagainst-one. The one-against-all strategy constructs one SVM binary classier for each class by taking the samples in the considered class as the positive samples and all the other samples as the negative ones. The one-against-one strategy constructs one SVM binary classier for each pair of the classes, and the nal classication is Chapter 2. Literature Review done in a max-wins voting way: every classier assigns the sample to one of the two classes, and the vote for the assigned class is then increased by one, and the sample is nally classied to the class with the most votes. Such strategy is adopted in C-SVC of the popular LibSVM implementation[START_REF] Chang | LIBSVM: A Library for Support Vector Machines[END_REF]].

Figure 2 .

 2 Figure 2.17: A comparison of early and late fusion strategies: (a) early fusion; (b) late fusion

  , a review of main approaches proposed in the literature for visual object recognition is presented. In particular, more attention is paid to the feature & classier based approaches, because they have become the most popular framework for object recognition and classication tasks nowadays. Typically, this kind of approach consists of three steps: (1) extraction of image features (global or local); (2) image representation (or modelling); and (3) image classication (machine learning) algorithms. The popular methods adopted for each of these steps are reviewed in detail respectively. Moreover, several fusion strategies for combining dierent features are also introduced. We apply the feature & classier based approach for object recognition in this thesis, and we believe that the visual description (features) of images is a key step. Parikh and Zitnick have recently conrmed this point in their work [Parikh & Zitnick 2010]. Through statistical analysis on three main factors for visual recognition: (1) features; (2) amount of training data; and (3) learning algorithms, they have found that the main factor impacting the performance is the choice of features. Therefore, the following chapters of this thesis will focus on the visual description of images, and will propose several eective and ecient visual features for object recognition. Regarding to the other steps including image modelling and classication algorithms, we apply the most popular techniques such as the Bag-of-Features modelling and the SVM classier. VOC . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Caltech 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4 ImageCLEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 SIMPLIcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 OT Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7 TRECVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

  recognition and detection algorithms, because all the annotations were made available in 2007 by the organizers but since then they have not made the test annotations publicly available. The PASCAL VOC 2007 dataset contains nearly 10 000 images of 20 object classes, which contain dierent number of images, from hundreds to thousands. The dataset is divided into a predened training set (2501 images), validation set (2510 images) and test set (4952 images). The mean average precision (MAP) across all the classes is used as the evaluation criterion. Average precision (AP) measures the area under the precision-recall curve for each class, and a good Chapter 3. Datasets and Benchmarks

3

  Website: http://www.image-net.org/ Chapter 3. Datasets and Benchmarks Starting from 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is organized based on a subset of ImageNet dataset. The aim of this competition is to estimate the content of images for the purpose of retrieval and automatic annotation. The general goal is to identify the main objects present in images. Given a subset of ImageNet for training and a set of images with no annotation for test, algorithms will have to produce labels specifying what objects are present in the images. In ILSVRC 2011, 1000 object categories are selected for recognition, and the training set contains 1.2 million images. The number of images included in the validation and test set are 50,000 and 100,000 respectively.

Figure 3 .

 3 Figure 3.5 shows some example images from the dataset for each of 1000 categories.

  is a subset of the COREL image database. It contains totally 1000 images, which are equally divided into 10 different categories: African people, beach, building, bus, dinosaur, elephant, ower, horse, mountain and food. Half of the images are randomly chosen for training and the other half images are for test. The average classication accuracy is used as the evaluation criterion. Some example images from the dataset are shown in Figure 3.3.

[

  [START_REF] Smeaton | [END_REF]] is organized annually by the National Institute of Standards and Technology (NIST) from 2001, and has become a popular and also very challenging benchmark in video domain. The main goal of this challenge is to promote progress in content-based analysis and retrieval from digital video via open, metrics-based evaluation. TRECVID uses video data of more than 400

  nition. Its aim is to automatically analyze the meaning conveyed by videos and tag video segments (shots) with semantic concept labels. More precisely, given the test collection, master shot reference, and concept denitions, participants are required to return for each concept a list of at most 2000 shot IDs from the test collection ranked according to the possibility of detecting the concept. In TRECVID 2011, there are totally 346 concepts. The test set includes 200-hour video data with durations between 10 seconds and 3.5 minutes, while the development set contains 400-hour video data with durations just longer than 3.5 minutes. The mean extended inferred average precision (mean xinfAP) [Yilmaz et al. 2008] is used as the evaluation criterion. 5 Website: http://trecvid.nist.gov/ Chapter 3. Datasets and Benchmarks
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 3334 Figure 3.3: Example images of the SIMPLIcity dataset

Figure 4 .

 4 Figure 4.1 illustrates the calculation of the LBP code for one pixel with 8 neighbors.

Figure 4 . 1 :

 41 Figure 4.1: Calculation of the original LBP operator

  pressed as follows [van de Sande et al. 2010]: Light intensity change. Image values change by a constant factor in all channels (a = b = c):

( 4 . 3 )

 43 Light intensity shift. Image values change by an equal oset in all channelsChapter 4. Multi-scale Color Local Binary Patterns for Object Recognition (a = b

( 4 . 4 )

 44 Light intensity change and shift. Image values change by combining two kinds of change above:

  color change. Image values change in all channels independently (a = b = c), as equation (4.1). Light color change and shift. Image values change in all channels independently with arbitrary osets (a = b = c and O 1 = O 2 = O 3 ), as equation (4.2).

Figure 4

 4 Figure 4.2.
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 4 Multi-scale Color Local Binary Patterns for Object Recognition

Figure 4 . 2 :

 42 Figure 4.2: Calculation of color LBP feature

  normalization by intensity channel O 3 , O 1 and O 2 channels are scaleinvariant, which make this feature invariant to light intensity change as equation (4.3).

Figure 4 . 3 :

 43 Figure 4.3: Multi-scale LBP operator

Figure 4 .

 4 3 gives an example.

Chapter 4 .Figure 4 . 4 :

 444 Figure 4.4: Computing color LBP features within image blocks
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 3214546 Figure 4.5: Comparison of the proposed multi-scale color LBP features and the original LBP (m-s is the abbreviation of multi-scale)
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 7 ConclusionsIn this chapter, we propose six multi-scale color LBP features to deal with the main shortcomings of the original LBP, namely deciency of color information and sensitivity to non-monotonic lighting condition changes. The proposed features not only have more discriminative power by obtaining more local information, but also possess invariance properties to dierent lighting condition changes. They also keep the advantage of computational simplicity from the original LBP. In addition, we apply a coarse-to-ne image division strategy for calculating the proposed features within image blocks in order to encode spatial information of texture structures, thereby further improving their performances. The experimental results on the PASCAL VOC 2007 image benchmark prove that the proposed features can gain signicant improvement on recognition accuracy, and thus are promising for real-. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 Dimensionality reduction of LBP . . . . . . . . . . . . . . . . 94 5.2.1 Original LBP operator . . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Orthogonal combination of local binary patterns (OC-LBP) . 95 5.2.3 Comparison of OC-LBP and other popular LBP dimensionality reduction methods . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Local region description with OC-LBP . . . . . . . . . . . . 99 5.4 Color OC-LBP descriptors . . . . . . . . . . . . . . . . . . . . 100 5.5 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . 102 5.5.1 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . 103 5.5.2 Experiments on image matching . . . . . . . . . . . . . . . . 104 5.5.3 Experiments on object recognition . . . . . . . . . . . . . . . 108 5.5.4 Experiments on scene classication . . . . . . . . . . . . . . . 112 5.5.5 Computational cost comparison between descriptors . . . . . 115 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information 5.1 Introduction Machine-based automatic object recognition and scene classication is one of the most challenging problems in computer vision. The diculties are mainly due to intra-class variations and inter-class similarities. Therefore, a key issue and the rst important step when solving such problems is to generate good visual content descriptions, which should be both discriminative and computationally ecient, while possessing some properties of robustness to changes in viewpoint, scale and lighting conditions. Local image descriptors have received a lot of attention in recent years, and have already gained the popularity and dominance in image analysis and understanding tasks nowadays. Many dierent local descriptors have been proposed in the literature (see section 2.2.2.2 for a more detailed introduction). Several comprehensive studies on local descriptors [Mikolajczyk & Schmid 2005] [Zhang et al. 2007] [Li & Allinson 2008] have shown that distribution-based descriptors perform signicantly better than other features, and achieve the best results in tasks as diverse as image region matching, texture classication, object recognition and scene classication. Among them, SIFT [Lowe 2004] is considered as the most powerful and successful one, and has been widely applied as the dominant feature in the state-of-the-art recognition / classication systems [Everingham et al. 2010]. Moreover, since SIFT is an intensity-based descriptor without any color information, several color SIFT descriptors have been proposed [Abdel-Hakim & Farag 2006] [Bosch et al. 2008] [van de Weijer et al. 2006] [Burghouts & Geusebroek 2009] to enhance its discriminative power. In [van de Sande et al. 2010], the authors evaluated dierent color descriptors in a structured way, and recommended to use color SIFT descriptors for object and scene recognition because they outperform the original SIFT. However, the downside of color SIFT descriptors is their high computational cost, especially when the size of image or the scale of dataset signicantly

Chapter 5 .

 5 Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information OC-LBP descriptor to dierent color spaces and propose six color OC-LBP descriptors in this chapter to increase the photometric invariance properties and enhance the discriminative power of the intensity-based descriptor. In chapter 4, we have proposed several color LBP features, which are based on the original LBP operator and serve as global features. Dierent from them, the proposed color OC-LBP descriptors in this chapter are based on the orthogonal combination of the LBP operator, and serve as local features. They could thus be considered as the extensions of our previous work in chapter 4. The experimental results in three dierent applications show that the proposed descriptors outperform the popular SIFT, HOG, SURF

  -dimensional) histogram, see the left column of Figure 5.1 for an illustration. The size of the LBP histogram will signicantly reduce to 16 if only 4 neighboring pixels are taken into account, as illustrated in the middle column of Figure 5.1. However, this brut reduction also decreases the discriminative power of the LBP feature because compared to 8 neighbors, only horizontal and vertical neighbors are considered, and the information of diagonal neighborhood is discarded. We need to nd out a tradeo between the reduction of the LBP histogram dimensionality and its descriptive power. In this chapter, we propose an orthogonal combination of local binary patterns, namely OC-LBP, which drastically reduces the dimensionality of the original LBP histogram while keeping its discriminative power. Specically, given P neighboring pixels equally located on a circle of radius R around a central pixel c, OC-LBP is obtained by combining the histograms of [P /4] dierent 4-orthogonal-neighbor operators, each of which consists of turning the previous 4 orthogonal neighbors by one position in a clockwise direction. The dimension of an OC-LBP based histogram is thus 2 4 × [P/4] or simply 4 × P , which is linear with the number of neighboring pixels in comparison to 2 P for the original LBP-based scheme.

Figure 5 . 1

 51 Figure 5.1 illustrates the construction process of an OC-LBP operator with 8 neighboring pixels. In this case, two regular 4-neighbor LBP operators are considered. The rst one consists of the horizontal and vertical neighbors, and the second one consists of the diagonal neighbors. By concatenating these two LBP histograms, we obtain the OC-LBP histogram with 32 dimensions, which is 8 times more compact than the original 8-neighbor LBP histogram (256 dimensions). Meanwhile, this combination keeps quite well the discriminative power of the original LBP because it preserves the same number of distinct binary patterns (2 4 × 2 4 ) as before (2 8 ).

Figure 5 . 1 :

 51 Figure 5.1: Calculation of the original LBP and OC-LBP operators with 8 neighboring pixels

  parisons. This dataset, namely Outex_TC_00014, contains images of 68 dierent textures, such as canvas, carpet, granite, tile, sandpaper, wood, and so on. Each kind of texture produces three images of size 746 × 538 pixels under three dierent illuminants: 2856K incandescent CIE A light source (Inca), 2300K horizon sunlight Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information (Horizon) and 4000K uorescent TL84 (TL84). Then each image is equally divided into 20 non-overlapping sub-images of size 128 × 128 pixels, resulting in 1360 images for each illuminant. The training set is constituted by half of the images under the Inca illuminant, and the test set is constituted by half of the images under the two other illuminants (Horizon and TL84). Therefore, the total numbers of training and test images are 680 and 1360 respectively.For texture classication, we follow the same process for all the features (the original LBP, uniform patterns, CS-LBP and the proposed OC-LBP). For each image in the training / test set, each of the operators is applied on all the pixels of the image to get their binary pattern values, and the histogram computed throughout the image is then used as its texture feature. The Support Vector Machine (SVM)

  .37) for the SVM training and prediction. Finally, each test image is classied into texture category with the maximum SVM output decision value. We tune the parameters of the classier on the training set via 5-fold cross-validation, and obtain the classication results on the test set.The classication results and comparisons are presented in Table5.2. It can be seen that the classication accuracy generally keeps improving when the number of neighboring pixels increases, suggesting that the consideration of more neighbors can be benecial to the operator's performance. However, the increment speed of histogram size for the original LBP is devastating. For example, the LBP histogram size with 20 neighboring pixels is so enormous that it is impractical to be used directly. This shows the importance of dimensionality reduction for LBP. The CS-LBP operator reduces the LBP histogram size to its square root, but it also decreases the classication accuracy. One possible reason is that it discards the information of central pixel in comparison. The uniform patterns show good performances, because it signicantly reduces the LBP histogram size, while still keeping high discriminative power. Actually, it performs even a little better than the original LBP, because it only keeps the most important part of LBP and removes the other Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information

Figure 5 . 2 :

 52 Figure 5.2: Construction of local image descriptor with OC-LBP

shown in Figure 5. 3 .Figure 5 . 3 :

 353 Figure 5.3: Calculation of color OC-LBP descriptor

  dierent applications: (1)image matching, (2)object recognition and (3)scene classication. The proposed descriptors are compared with several state-of-the-art descriptors including SIFT [Lowe 2004], color SIFT [van de Sande et al. 2010], CS-LBP [Heikkilä et al. 2009], HOG [Dalal & Triggs 2005], SURF [Bay et al. 2008] and GIST [Oliva & Torralba 2001]. These descriptors have been chosen for their diversity in terms of local visual content characterization. While SIFT and color SIFT are the most popular and successful local descriptors in the literature, HOG is also a popular descriptor which captures local object appearance and shape through the distribution of intensity gradients. As such it is widely used for object detection Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information and recognition.
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 54 Figure 5.4: Sample image pairs of the Oxford dataset
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 5655565 Figure 5.6. Figure 5.5 shows the comparisons of the proposed gray and color OC-LBP descriptors with the popular SIFT and CS-LBP descriptors. Figure 5.6 shows the comparisons of the best three color OC-LBP descriptors with the state-of-the-art color SIFT descriptors. We can see from the results in Figure 5.5 that: (1) the OC-LBP descriptor performs better than the popular CS-LBP and SIFT descriptors; (2) the color OC-LBP descriptors outperform the intensity-based OC-LBP descriptor in most of the cases, proving the usefulness of incorporating color information and additional photometric invariance properties; (3) among the proposed color OC-LBP descriptors, Hue-OC-LBP, RGB-OC-LBP and NOPPONENT-OC-LBP descriptors have the best overall performance, consistent with their strong properties of illumination invariance.We then compare the best three color OC-LBP descriptors with their counter-

  in images are rstly detected by applying the Harris-Laplace salient point detector, which uses a Harris corner detector and subsequently the Laplacian for scale selection. Then a set of local descriptors, including gray OC-LBP, three best color OC-LBP, CS-LBP, SURF, HOG, SIFT and three best color SIFT, are extracted from local region around each interest point. Unlike the settings in the application of image matching, the descriptors are not rotated to their dominant orientations, because this rotation invariance is useful for image matching, but decreases the accuracy for object recognition. 5.5.3.3 Bag-of-Features modelling After the step of feature extraction, each image is represented by a set of local descriptors. The number of local descriptors in each image varies because the number of the interest points (normally around thousands) changes from one image to another one. Thus, an ecient modeling method is required to transform this variable number of local descriptors into a more compact, informative and xed length representation for further classication.

3 . 2 . 1 .

 321 Here the LibSVM implementation [Chang & Lin 2001] is used. Once all the local descriptors are transformed to xed-length feature vectors by the BoF method, the χ 2 distance is comput-Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information

For

  the SIMPLIcity dataset, each image is classied into the category with the maximum SVM output decision value. We tune the parameters of the classier on the training set via 5-fold cross-validation, and obtain the results on the test set. For the PASCAL VOC 2007 benchmark, the precision-recall curve is plotted for each category according to the output decision values of the SVM classier, and the AP (Average Precision) value is computed based on the proportion of the area under this curve. We train the classier on the training set, then tune the parameters on the validation set, and obtain the classication results on the test set. Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information

Chapter 5 .Figure 5

 55 Figure 5.8: Classication results on the OT scene dataset

5. 5 . 5

 55 Computational cost comparison between descriptorsAs we stated in the introduction, a good local descriptor should be both discriminative and computationally ecient. The discriminative power of the proposed gray and color OC-LBP descriptors has been demonstrated by the previous experiments and applications, and they achieve comparable or even better performances than the state-of-the-art descriptors. In this section, we show the computational eciency of the proposed descriptors in comparison with the popular SIFT and color SIFT. The comparisons are conducted on the 4 image datasets used in the previous experiments by utilizing a computer with Intel Core 2 Duo CPU @ 3.16 GHz and 3GB RAM. We implement the gray and color OC-LBP descriptors by a mixture of C and Matlab, and use the ColorDescriptor software [Koen van de Sande ] to compute the SIFT and color SIFT descriptors. We record in Table 5.8 the average computation time required per image for each descriptor respectively. It can be seen that the OC-LBP descriptor is about 4 times faster to compute than SIFT. When incorporating color information, the computations of color descriptors are about 3 times slower than the intensity-based descriptors, mainly because Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information

5. 6

 6 ConclusionsIn this chapter, a new operator called the orthogonal combination of local binary patterns, denoted as OC-LBP, has rstly been proposed. It aims at reducing the dimensionality of the original LBP operator while keeping its discriminative power and computational eciency.We have also introduced several new local descriptors for image region description based on the proposed OC-LBP operator: the gray OC-LBP descriptor and six color OC-LBP descriptors, namely RGB-OC-LBP, NRGB-OC-LBP, OPPONENT-OC-LBP, NOPPONENT-OC-LBP, Hue-OC-LBP and TC-OC-LBP. The proposed descriptors incorporate color information to increase their discriminative power, and also to enhance their photometric invariance properties of dealing with dierent illumination changes.The experiments in three dierent applications image matching, object recognition and scene classication show the eectiveness of the proposed descriptors. They outperform the popular SIFT, CS-LBP, HOG and SURF descriptors,

Figure 6 Figure 6 . 1 :

 661 Figure 6.1: Comparison of SIFT and DAISY shapes. (a) SIFT uses a rectangular grid [Lowe 2004]. (b) DAISY considers a circular conguration [Tola et al. 2010],

  These two datasets have dierent characteristics. In Caltech 101, most images have little or no clutter. The objects tend to be centered in each image. Most objects are presented in a stereotypical pose. In PASCAL VOC 2007, all the images are taken from the real-world scenes, thus with background clutter, occlusions, and Chapter 6. Visual Object Recognition Using the DAISY Descriptor

Figure 6 . 2 :

 62 Figure 6.2: Experimental results on the Caltech 101 dataset (sp is the abbreviation for spatial pyramid)

Figure 6 . 3 :

 63 Figure 6.3: Experimental results on the PASCAL VOC 2007 dataset (sp is the abbreviation for spatial pyramid)

6. 4 . 4

 44 Inuence of parameters in DAISYAs described in section 6.2, there are mainly 4 parameters to control the DAISY descriptor: neighborhood area radius (R); number of quantized orientations (o); number of convolved orientation rings (r); and number of circles on each ring (c).The inuences of dierent parameters are evaluated experimentally on the Caltech 101 dataset. To do this, we obtain a series of line graphs of recognition accuracy by alternately changing one parameter while xing the others. To keep the scales of dierent orientation rings, we set R as 5 for 1 ring, R as 10 for 2 rings, and R as 15 for 3 rings. The results are shown in Figure6.5,Figure 6.6 and Figure 6.7. 
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 6667 Figure 6.5: Performance comparison for dierent number of quantized orientations used in DAISY
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 71 Figure 7.1: Construction process of the proposed HSOG descriptor

Figure 7 . 2 Figure 7 . 2 : 2 + 2 (

 727222 Figure 7.2 illustrates such a process. Thanks to the computation of gradient maps as well as the following normalization step, OGMs possess the property of being invariant to ane lighting transformations, which can be inherited by the whole HSOG descriptor.

7. 4 . 2 Figure 7 . 4 :Figure 7

 42747 Figure 7.4: Inuence of dierent parameters in HSOG. (a) the number of quantized orientations N ; (b) the number of concentric rings CR; (c) the number of circles on each ring C.
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 81 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.2 Perspectives for future work . . . . . . . . . . . . . . . . . . . 1538.1 ConclusionsIn this thesis, we focus on the problem of machine-based visual object recognition, which is a very active and important research topic during recent years, and still remains one of the most challenging problems in computer vision community. We follow the popular feature & classier based approaches. As the very rst step, visual content description is considered as one of the key issues for this problem. A good visual descriptor, which is both discriminative and computationally ecient while possessing some invariance properties against changes in viewpoint, scale and illumination, could greatly improve the classication performance. In such context, we propose, in this thesis, some innovative contributions to the task of visual object recognition, in particular by presenting several new visual features / descriptors to eectively and eciently represent the visual content of images. Our contributions are summarized as follows.

  tures, a coarse-to-ne image division strategy is applied for calculating the proposed features within image blocks, and the performances are further improved. The experimental results on the PASCAL VOC 2007 benchmark prove that the proposed features can gain signicant improvement on recognition accuracy, and thus are promising for real-world object recognition tasks.Our second contribution lies in a new type of local image descriptor based on LBP. In chapter 5, we propose several new local descriptors based on the orthogonal combination of local binary patterns (denoted as OC-LBP) to deal with the downside of the state-of-the-art descriptors such as SIFT and its extensions or renements, their relatively high computational cost. With the trend of signicant increase of the dataset scale, it is highly desirable that local descriptors oer both high discriminative power and computational eciency. The LBP operator is a good candidate to be used to construct a local descriptor, because of its computational simplicity and strong descriptive power for texture structures. However, the barrier lies in the high dimensional feature vectors that it produces, especially when the number of considered neighboring pixels increases. Therefore, we rst propose a new dimensionality reduction method for LBP, namely the orthogonal combination of local binary patterns (the OC-LBP operator). It proves much more eective than other popular methods such as uniform patterns and CS-LBP operator by the experiments on a standard texture classication dataset. Then, we adopt the OC-LBP operator to construct a distribution-based local descriptor, denoted as the OC-LBP descriptor, by following a way similar to SIFT. Our aim is to Chapter 8. Conclusions and Future Work build a more ecient local descriptor by replacing the costly gradient information with local texture patterns in the SIFT scheme. Moreover, as the extension of our rst contribution, we also propose six color OC-LBP descriptors by extending the intensity-based OC-LBP descriptor to dierent color spaces in order to enhance its discriminative power and photometric invariance property. The experimental results in three dierent applications image matching, object recognition and scene classication show the eectiveness of the proposed descriptors. They outperform the popular SIFT and CS-LBP descriptors, and achieve comparable or even better performances than the state-of-the-art color SIFT descriptors. Meanwhile, they provide complementary information to SIFT, since further improvement can be obtained by fusing these two kinds of descriptors. Moreover, the proposed gray and color OC-LBP descriptors are about 4 times faster to compute than the SIFT and color SIFT descriptors respectively. Therefore, they are very promising for large scale recognition problems.Our third contribution is presented in chapter 6. We introduce the DAISY descriptor for the task of visual object recognition. There is now a trend in computer vision community that the scale of the benchmark datasets used for object recognition / image classication becomes larger year by year. However, it is well known that the gradient-distribution-based local descriptors such as SIFT, GLOH and HOG obtain the state-of-the-art performances, while the main drawback of them is their relatively high computational cost. Thus, more computationally ecient local descriptors are urgently demanded to deal with large scale datasets such as ImageNet and TRECVID. Usually, there are two ways to do this: one is to replace the costly gradient information with other more ecient features, just as what we did in the case of the OC-LBP descriptor; the other is to nd more ecient methods to calculate the gradient information. The DAISY descriptor, which was initially designed for wide-baseline stereo matching problem, is a newly introduced fast local descriptor based on gradient distribution, and has shown good robustness against many photometric and geometric transformations. It has never been used in the task of visual object recognition, while we believe that it is very suitable for this problem. Therefore, we investigate the DAISY descriptor in the context of visual Chapter 8. Conclusions and Future Work object recognition by evaluating and comparing it with the popular SIFT both in terms of recognition accuracy and computation complexity on two standard image benchmarks. The experimental results on Caltech 101 and PASCAL VOC 2007 show that DAISY outperforms SIFT with a shorter descriptor length, and can operate 12 times faster than SIFT when displaying similar recognition accuracies. DAISY thus provides a fast and more ecient way to calculate the gradient information for the task of visual object recognition.

  corresponding acceleration. In order to ameliorate the quality of visual content representation, both the rst and second order gradient information is necessary. The experimental results achieved on the Caltech 101 dataset show that the proposed HSOG descriptor outperforms the rst order gradient based descriptors, e.g. SIFT, CS-LBP and DAISY, by more than 10%, indicating that HSOG possesses a good discriminative power to distinguish dierent object categories, especially embedded Chapter 8. Conclusions and Future Work with more spatial information provided by the multi-scale strategy. Furthermore, the fusion of HSOG with SIFT, CS-LBP or DAISY improves the recognition accuracy again, demonstrating the complementarity of information provided by both the rst and second order gradient based descriptors.
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  Cette thèse est consacrée au problème de la reconnaissance visuelle des objets basé sur l'ordinateur, qui est devenue un sujet de recherche très populaire et important ces dernières années grâce à ses nombreuses applications comme l'indexation et la recherche d'image et de vidéo , le contrôle d'accès de sécurité, la surveillance vidéo, etc. Malgré beaucoup d'eorts et de progrès qui ont été fait pendant les dernières années, il reste un problème ouvert et est encore considéré comme l'un des problèmes les plus diciles dans la communauté de vision par ordinateur, principalement en raison des similarités entre les classes et des variations intra-classe comme occlusion, clutter de fond, les changements de point de vue, pose, l'échelle et l'éclairage. Les approches populaires d'aujourd'hui pour la reconnaissance des objets sont basé sur les Chapter 0. Résumé espaces de couleur et proposons six descripteurs OC-LBP couleurs pour améliorer la puissance discriminante et la propriété d'invariance photométrique du descripteur basé sur l'intensité. Les descripteurs proposés capturent la distribution locale de l'information de texture dans les images. Troisièmement, nous introduisons DAISY, un nouveau descripteur local rapide basé sur la distribution de gradient, dans le domaine de la reconnaissance visuelle des objets. Il est bien connu que les descripteurs locaux basés sur la distribution de gradient tels que SIFT, GLOH et HOG obtenir les performances de l'état-de-l'art dans la reconnaissance des objets, tandis que leur coût de calcul est relativement élevé. Pour faire face à cela, il y a généralement deux façons: l'une est de remplacer l'information de gradient coûteux par d'autres caractéristiques plus ecaces, comme nous l'avons fait dans le cas d'OC-LBP; l'autre est de trouver des méthodes Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

	Introduction
	Contents
	1.1
	Les descripteurs proposés ont été validés et évalués à travers des expériences
	complètes eectuées sur plusieurs bases de données populaires comme le PASCAL
	VOC 2007, Caltech 101, etc.
	: visual description; local descriptor; feature extraction; object recog-
	nition; scene classication; SIFT; DAISY; second order gradients; local binary pat-
	terns (LBP); color LBP descriptor; CS-LBP; orthogonal combination of LBP (OC-
	LBP).

xiv Résumé plus ecaces pour calculer l'information de gradient. Le descripteur DAISY a été initialement conçu pour le problème d'appariement stéréo de grande base, et a démontré une bonne robustesse contre les nombreuses transformations photométriques et géométriques. Il n'a jamais été utilisé dans le contexte de la reconnaissance visuelle des objets, tandis que nous croyons qu'il est très approprié pour ce problème. DAISY ore un moyen rapide pour capturer l'information de gradient du premier ordre dans les images. Quatrièmement, nous proposons un nouveau descripteur local appelé histogrammes des gradients du second ordre (HSOG) pour la reconnaissance visuelle des objets. Il capture l'information de gradient du second ordre dans les images, qui, au meilleur de notre connaissance, est rarement étudiés dans la littérature aux ns de la reconnaissance des objets. Intuitivement, les gradients du second ordre appliqués à une image aux niveaux de gris capturent l'information d'accélération sur les variations de la valeur de gris des pixels locaux. Ils doivent non seulement orir certaine puissance discriminante pour distinguer les diérentes classes d'objet, mais ont aussi tendance à être complémentaires à la description fournie par les gradients du premier ordre. Ainsi nous pensons que l'information de gradient du premier et second ordre est nécessaire pour décrire complètement le contenu visuel d'une image. Par conséquent, nous proposons le descripteur HSOG comme un complément aux descripteurs existants de gradient du premier ordre, et améliorons encore sa performance en utilisant l'extension de multi-échelle. 1.2 Problems and objective . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Approaches and contributions . . . . . . . . . . . . . . . . . . 6 1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 10 1.1 Context

  GLCM P d of size N × N for d is calculated in such a way that

	Gray Level Co-occurrence Matrix (GLCM) is a measurement of how often dierent combina-tions of gray level pixel values occur in an image. It estimates image properties of the second order texture statistics by considering the relationship between groups of two neighboring pixels in the image. Given a displacement vector Table 2.1: Some texture features extracted from gray level co-occurrence matrix (GLCM) Texture feature Formula Energy i j P 2 d (i, j) Entropy -i j P d (i, j) ln P d (i, j) Contrast i j (i -j) 2 P d (i, j) d = (dx, dy), Chapter 2. Literature Review P d (i,j) Homogeneity i j 1+(i-j) 2

  which the sum of the rst order Haar wavelet responses in both x and y directions are computed, as shown in Figure2.9(d). The standard SURF descriptor is of 64 dimensions. Shape Context[Belongie et al. 2002]: Belongie et al. proposed Shape Context, which is also similar to SIFT, but is based on edges. It is a 2D histogram of edge point locations, where the log-polar location grid is used, as shown in

]: Bay et al. proposed Speeded-Up Robust Features (SURF), which is inspired by SIFT, but several times faster to compute. Instead of the gradient information in SIFT, SURF computes the Haar wavelet responses, and exploits integral images for computational eciency. The input region around a keypoint is divided into 4×4 sub-regions, Chapter 2. Literature Review within •

Table 2

 2 

.3, including the representation type (sparse or dense), encoded information, spatial pooling scheme (neighborhood grid), computation method (comp.), and dimensionality (dim.). It should be noted that the items in the column of representation type and dimensionality can be changed according to dierent applications, and the ones listed in the table are directly cited from the original papers. A detailed comparison of some of these descriptors in the context of object recognition is given in Appendix B.

Table 2 .

 2 3: Attribute summary of main local image descriptors applied to object

	recognition in the literature				
	Descriptor	Type	Information	Grid	Comp.	Dim.
	SIFT	Sparse	Gradient	Rect.	Distr.	128
	PCA-SIFT	Sparse	Gradient	Rect.	Distr.	36
	Color SIFT	Sparse	Gradient	Rect.	Distr.	384
	GLOH	Sparse	Gradient	Polar	Distr.	128
	HOG	Dense	Gradient	Rect. & Polar	Distr.	36
	SURF	Sparse	Wavelet response	Rect.	Filter	64
	Shape Context	Sparse	Edge points	Polar	Distr.	60
	CS-LBP	Sparse	Binary patterns	Rect.	Distr.	256

  characterized images using a set of category specic histograms, where each histogram describes whether the content can be best modeled by the universal vocabulary or by its corresponding category vocabulary.

	Another	group	of	methods	[Vogel & Schiele 2004]	[Yang et al. 2008]
	Histogram encoding Once a visual vocabulary is constructed, a feature encoding
	method is needed to assign local descriptors to the visual words and characterize the
	visual content of an image by a histogram of visual words frequencies. Generally,
	there are two strategies for histogram encoding: (1) hard assignment and (2) soft
	assignment.					

[Liu et al. 2009

] claimed that the semantic relations between features are useful for classication and attempted to bring the semantic information into visual vocabulary construction.

In

[START_REF] Vogel | [END_REF]

, a semantic vocabulary was constructed by manually associating local image regions to certain semantic concepts such as stone, sky, grass and so on. However, the fact that it requires huge manual labor for labeling local image regions among large amount of training data makes it impractical in such cases.

[START_REF][END_REF] 

proposed to unify the process of visual vocabulary generation and classier training, and to encode an image by a sequence of visual bits which capture dierent aspects of image features and constitute the semantic vocabulary. The method proposed by

[Liu et al. 2009] 

can automatically learn a semantic visual vocabulary using diusion maps which capture the semantic and geometric relations of feature space.

Hard assignment simply assigns the extracted local feature vectors to their single best (usually the nearest) visual word respectively, according to a certain distance Chapter 2. Literature Review measure, as shown in equation (2.5):

  r n ) is the distance between r n and each visual word v. The advantages of hard assignment include its computational simplicity and the fact that it leads to a sparse

histogram. However, problems could occur for feature vectors located in ambiguous areas.

In [van Gemert et al. 2008] [van Gemert et al. 2010]

, two dierent issues are considered: word uncertainty and word plausibility. Word uncertainty refers to the problem of selecting the correct visual word out of two or more relevant candidates, while word plausibility denotes the problem of selecting a visual word without any suitable candidate in the vocabulary, as illustrated in Figure

2

.11. Soft assignment is thus proposed to address these issues.

There are two kinds of approaches for soft assignment. The rst one consists in performing probabilistic clustering using typically a Gaussian Mixture Model (GMM)

[Farquhar et al. 2005, Winn et al. 2005, Perronnin et al. 2006

], and each feature vector contributes to multiple visual words according to its posterior probability of the Gaussian given each visual word. Although these works are able to deal with word uncertainty by considering multiple visual words, they ignore word plausibility. On the contrary,

[START_REF] Boiman | [END_REF]

] copes with word plausibility by using the distance to the single best neighbor in feature space without taking into account word uncertainty.

[van Gemert et al. 2008] [van Gemert et al. 2010

] made the assignment using a decreasing function of the Euclidean distance between feature vectors and word centroids, paired with a Gaussian kernel:

  each class, its computation is not necessary. Moreover, if we know that the prior probabilities are equal, or if we make this assumption, the decision can be realized only depending on the likelihood function p(x|C m ) for each class.

	p(C m |x) = the training samples. The set of the GMM parameters can be eciently learned p(x|C m )p(C m ) p(x) (2.13) by using the Expectation Maximization (EM) algorithm. If we consider a GMM for modeling the specic class C m , then the logarithm of the likelihood function is where p(C The typical generative method relies on a GMM to model the distribution of given by:

M are a set of class labels, generative methods estimate the posterior probability p(C m |x) in a probabilistic framework, according to which x will be classied into the target class. For instance, if we wish to minimize the number of misclassications, x will be assigned to the class with the largest posterior probability. According to the Bayes theorem, the posterior probability p(C m |x) can be expressed in the following form: m ) is the prior probability of the class C m , p(x|C m ) is the probability density (also called likelihood) of the class C m , and p(x) is the probability density over all the classes. As p(x) stays constant when considering the posterior probability Chapter 2. Literature Review for

  Chapter 2. Literature Review For the training of the non-linear SVM classier, the optimization problem in the linear SVM training as equation 2.19 is changed as:

  ]: It is a feed forward articial neural network model that maps sets of input data onto a set of appropriate output. It consists of multiple layers of nodes in a directed graph which is fully connected from one layer to the next. The back-propagation technique is usually used for training the network.

  Chapter 3. Datasets and BenchmarksThe goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning problem in that a training set of labelled images is provided.

	The number of object classes considered was only 4 in the starting year of 2005, and
	then increased to 10 in 2006, and has further increased to 20 since 2007. The object
	classes that have been selected are:
	• Person: person

1 Website: http://pascallin.ecs.soton.ac.uk/challenges/VOC/ • Animal: bird, cat, cow, dog, horse, sheep • Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train • Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor There are two principal challenge tasks:

Table 3 .

 3 1: Some state-of-the-art results achieved on the PASCAL VOC 2007 dataset in the literature ([1]:

Table 3 .

 3 2: Some state-of-the-art results (%) achieved on the Caltech 101 dataset in the literature

Table 3 .

 3 3: Attribute summary of main datasets and benchmarks available for ob-

	ject/concept recognition						
	Dataset	Domain	Type	Class	Train	Val.	Test
	PASCAL VOC 2007	Image	Object	20	2501	2510	4952
	Caltech 101	Image	Object	101	510-3060		the rest
	ImageNet 2011	Image	Object	1000	1.2M	50K	100K
	ImageCLEF 2011	Image	Concept	99	8K		10K
	SIMPLIcity	Image	Object	10	500		500
	OT Scene	Image	Scene	8	1344		1344
	TRECVID 2011	Video	Concept	346	400hour		200hour
	We participated in the TRECVID challenge in 2011. A brief introduction of our
	participation can be found in Appendix A.				

The attributes of the presented datasets and benchmarks are summarized in Table 3.3, including the domain (image or video), type of recognition (object, concept, etc.), number of classes to be identied, and scale of data for training, validation and test respectively.

  1 at the time when we started our work in 2008, while being more popular now Chapter 4. Multi-scale Color Local Binary Patterns for Object Recognition feature is only invariant to gray-level monotonic light changes, and thus is decient in power to deal with the mentioned variations.

	Therefore, in order to incorporate color information, as well as to enhance the
	discriminative power and the photometric invariance property of the original LBP,
	we propose, in this chapter, six multi-scale color LBP features which are more
	suitable for visual object recognition task. The performances of the proposed fea-
	tures are analyzed experimentally using the PASCAL VOC 2007 image benchmark
	[Everingham et al. 2007].

  This feature is obtained by computing LBP over two Chapter 4. Multi-scale Color Local Binary Patterns for Object Recognition channels of the normalized OP P ON EN T color space as equation (4.10):

Table 4 .

 4 Chapter 4. Multi-scale Color Local Binary Patterns for Object Recognition 2: Fusion of dierent color LBP features in 3 × 3 blocks (m-s is the

	abbreviation of multi-scale)	
	Feature	Mean Average Precision (MAP)
	Hue-LBP(m-s)	0.392
	OPPONENT-LBP(m-s)	0.390
	nOPPONENT-LBP(m-s)	0.386
	Fusion	0.411
	4.6.2.4 Fusion of dierent color LBP features

It is also worthy to notice that from the results shown in Table

4

.2, further improvement (about 5%) on performance can be obtained by fusing the best three multi-scale color LBP features, proving that dierent color LBP features can provide complementary information to each other, and the fusion of them can boost the recognition performance.

  introduced in Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information chapter 4 is a well known texture feature which has been successfully applied to many applications. It has several interesting properties. First of all, it is simple and fast to compute. Moreover, it oers strong discriminative power for the description of texture structure while staying robust to monotonic lighting changes. All these advantages make LBP a good candidate for describing local image regions.

  The detailed introduction of the original LBP operator is given in chapter 4. The advantage of the LBP feature is that it is very fast to calculate, and is invariant to monotonic illumination changes. Thus it is a good candidate for local image region description.However, the drawback of the LBP feature lies in the high dimensional histogram produced by the LBP codes. Let P be the total number of neighboring pixels, then the LBP feature will have 2 P distinct values, resulting in a 2 P -dimensional histogram. For example, the size of the LBP histogram will be 256/65536 if 8/16 neighboring pixels are considered. It will rapidly increase to a huge number if more neighboring pixels are taken into consideration. Thus, a dimensionality reduction Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information method for LBP is needed to address this problem.

  Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information

, are compared in this section with OC-LBP on operator level. The comparisons in the context of local region Chapter 5.

Table 5 .

 5 1: Comparison of the histogram dimensionality of dierent methods with P

	neighboring pixels			
	LBP	Uniform patterns	CS-LBP	OC-LBP
	2 P	P × (P -1) + 3	2 [P/2]	4 × P

Table 5 .

 5 2: Comparison of dierent LBP dimensionality reduction methods in terms of histogram size and classication accuracy on Outex_TC_00014 (P, R P neighboring pixels equally located on a circle of radius R) Compared to these two methods, the proposed OC-LBP operator is more eective, because it outperforms CS-LBP and achieves almost the same high performance as the uniform patterns but with the smallest histogram size among them. Therefore, the proposed OC-LBP is very suitable for local image region description.

	P,R	LBP	Uniform patterns	CS-LBP	OC-LBP
		Bins	Result	Bins	Result	Bins	Result	Bins	Result
	4,1	16	58.5%	15	58.8%	4	27.8%	16	58.5%
	8,1	256	61.4%	59	66.1%	16	50.2%	32	65.4%
	12,2	4096	68.7%	135	72.4%	64	61.8%	48	72.7%
	16,2	65536	67.6%	243	73.4%	256	54.7%	64	73.2%
	20,3	1048576		383	74.0%	1024	55.7%	80	74.6%
	disturbances.							

Table 5 . 3 :

 53 Parameter selection results (matching score %) for the OC-LBP descriptor

	P P,R P P P	P	P P	P P		
	4,1			2.84	19.11	25.43	25.77	25.48
	8,1			8.76	26.79	34.07	32.88	31.23
	12,2			13.77	33.56	39.31	36.75	34.64
	16,2			11.43	32.48	38.74	35.67	33.56
	20,3			13.03	34.47	38.91	37.26	34.41
	neighbor strategy. A matching score is obtained by measuring the percentage of
	the correct matches.					

Cells 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5

Table 5 .

 5 4: Object recognition results on the PASCAL VOC 2007 benchmark (NOP-OC-LBP is the abbreviation of NOPPONENT-OC-LBP, OP-SIFT is the ab-

	breviation of OPPONENT-SIFT)							
	AP (%)	OC-	Hue-	NOP-	RGB-	CS-	HOG SURF SIFT OP-	C-	RGB-
		LBP	OC-	OC-	OC-	LBP				SIFT	SIFT	SIFT
			LBP	LBP	LBP							
	airplane	62.2	64.3	64.2	61.9	59.2	52.1	39.7	56.0	59.9	58.7	57.8
	bicycle	38.6	35.4	39.1	42.0	44.8	26.9	45.9	44.9	43.8	38.9	44.6
	bird	25.9	32.9	34.8	32.1	27.4	25.0	26.7	28.2	27.7	32.1	22.5
	boat	56.4	56.0	60.8	59.5	53.0	40.6	21.0	45.7	49.1	51.8	46.6
	bottle	15.0	20.4	20.0	20.3	19.5	12.8	10.2	19.6	21.2	21.4	21.0
	bus	37.8	35.5	35.0	41.1	33.2	38.3	28.1	37.7	38.0	32.5	37.7
	car	62.6	60.5	61.4	65.1	63.1	58.1	52.5	55.0	57.4	53.2	56.1
	cat	38.9	39.3	39.7	42.9	40.2	27.5	24.3	36.5	37.7	34.1	37.3
	chair	39.0	40.5	41.3	39.3	38.7	43.8	33.3	44.5	42.4	45.9	43.5
	cow	20.6	21.5	14.6	24.9	18.3	19.8	20.8	25.9	17.0	16.6	27.8
	table	35.0	36.1	37.0	32.0	33.1	33.6	25.7	29.6	36.7	38.7	29.1
	dog	32.8	35.3	29.4	33.4	31.7	20.4	23.8	26.5	29.8	29.1	28.8
	horse	57.6	64.6	63.6	58.3	55.2	59.3	50.7	57.0	59.1	61.9	54.8
	motor	36.9	39.2	41.7	37.3	34.1	37.2	37.4	30.2	33.9	44.4	32.1
	person	74.1	77.2	75.5	74.7	73.0	66.2	70.8	73.1	74.5	76.6	72.7
	plant	21.3	22.7	26.7	20.1	17.5	10.4	13.8	11.5	19.9	27.1	11.5
	sheep	12.3	23.5	26.0	19.9	16.9	18.4	9.4	27.4	31.2	30.9	19.4
	sofa	25.8	27.8	27.5	25.0	19.0	26.3	19.3	23.6	22.9	23.2	24.6
	train	56.1	44.2	51.7	55.5	56.8	52.7	42.9	53.4	54.5	58.5	51.1
	monitor	25.6	29.2	27.9	31.8	31.7	32.3	25.7	33.7	35.0	27.3	35.6
	Mean 38.7 40.3 40.9 40.9 38.3 35.1 31.1 38.0 39.6 40.1 37.7
	ed as equation (2.36) to measure the similarity between each pair of feature vectors.	
	Then, the kernel function based on this distance is computed as equation (2.37) for	
	the SVM training and prediction.								

Table 5 .

 5 5: Fusion results of color OC-LBP and color SIFT on the PASCAL VOC After analyzing the detailed results inTable 5.4 by each object category, we Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information could observe that the LBP-based descriptors generally perform better on the nonrigid object categories such as bird, cat, dog, horse, person, plant and sofa, while the SIFT-based descriptors are generally better for the rigid object categories such as bicycle, bottle, chair, table, motor, train and monitor. Also, the color descriptors with dierent photometric invariance properties perform dierently on the same object category. Therefore, we further combine dierent color OC-LBP descriptors, as well as color OC-LBP and color SIFT by average late fusion to check if they can provide complementary information to each other. The fusion results are shown in

	2007 benchmark			
	AP (%)	FUSION	FUSION	FUSION
		(3 Color OC-LBP)	(3 Color SIFT)	(3 Color OC-LBP
				+3 Color SIFT)
	airplane	67.0	61.8	67.8
	bicycle	48.0	49.8	56.4
	bird	36.7	35.0	43.4
	boat	62.2	52.9	60.9
	bottle	17.6	23.6	26.2
	bus	46.4	44.4	51.3
	car	67.8	61.7	68.6
	cat	45.8	41.7	46.2
	chair	43.6	48.2	48.6
	cow	26.9	29.1	29.2
	table	43.2	41.8	48.2
	dog	35.8	32.9	39.3
	horse	64.9	64.8	69.6
	motor	46.1	48.3	53.3
	person	77.8	77.3	79.2
	plant	27.3	26.5	31.3
	sheep	24.3	33.8	31.7
	sofa	32.4	30.6	37.5
	train	60.1	62.9	68.3
	monitor	35.1	38.1	39.5
	Mean	45.5	45.3	49.8
	5.5.3.5 Experimental results on PASCAL VOC 2007
	The object recognition results on the PASCAL VOC 2007 benchmark are shown in
	Table 5.4. It can be seen that: (1) the proposed OC-LBP descriptor achieves the
	performance of 38.7% MAP, which is better than SURF and HOG, and comparable
	with CS-LBP and SIFT; (2) the best three color OC-LBP descriptors (Hue-OC-LBP,
	NOPPONENT-OC-LBP and RGB-OC-LBP) achieve 40.3%, 40.9% and 40.9% MAP
	respectively, which outperform the intensity-based OC-LBP by about 2% ∼ 3%,
	indicating that they truly benet from additional color information and illumination
	invariance properties; (3) compared to the state-of-the-art color SIFT descriptors,
	the best three color OC-LBP descriptors achieve comparable or even better results.

Table 5

 5 However, the color OC-LBP descriptors are still about 4 times faster than color SIFT. Therefore, the proposed descriptors are much more computationally ecient, and thus are more suitable for large scale problems.

	.8: Computational cost comparison between OC-LBP and SIFT descriptors
	Times (s)	Oxford	SIMPLIcity	PASCAL	OT Scene
		(900×600)	(384 × 256)	(500×375)	(256×256)
	OC-LBP	0.273	0.062	0.101	0.042
	Hue-OC-LBP	1.065	0.197	0.317	0.137
	NOPPONENT-OC-LBP	0.889	0.181	0.296	0.117
	RGB-OC-LBP	0.676	0.178	0.288	0.115
	SIFT	1.064	0.328	0.432	0.161
	C-SIFT	3.304	0.975	1.311	0.488
	OPPONENT-SIFT	3.196	0.959	1.297	0.483
	RGB-SIFT	3.147	0.955	1.282	0.477
	Total (3 color OC-LBP)	2.630	0.556	0.901	0.369
	Total (3 color SIFT)	9.647	2.889	3.890	1.448
	of the increasing channels.				

  Chapter 5. Image Region Description Using Orthogonal Combination of Local Binary Patterns Enhanced with Color Information and achieve comparable or even better performances than the state-of-the-art color SIFT descriptors. Meanwhile, they provide complementary information to SIFT, since further improvement can be obtained by fusing them. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 The DAISY descriptor . . . . . . . . . . . . . . . . . . . . . . 121 6.3 Approach for visual object recognition . . . . . . . . . . . . 123 6.3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.2 Bag-of-Features modelling . . . . . . . . . . . . . . . . . . . . 124 6.3.3 Classication . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . 124 6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.2 Results on Caltech 101 . . . . . . . . . . . . . . . . . . . . . . 126 6.4.3 Results on PASCAL VOC 2007 . . . . . . . . . . . . . . . . . 127 6.4.4 Inuence of parameters in DAISY . . . . . . . . . . . . . . . 128 6.4.5 Computational cost . . . . . . . . . . . . . . . . . . . . . . . 130 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.1 Introduction As we stated in chapter 5, visual content description is a key issue for the task of machine-based visual object recognition. A good visual descriptor should be both discriminative and computationally ecient, while possessing some properties of Chapter 6. Visual Object Recognition Using the DAISY Descriptor robustness to changes in viewpoint, scale and lighting conditions. The recent literature has featured the gradient-distribution-based local descriptors, such as SIFT
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	Moreover, the proposed gray and color OC-LBP descriptors are about 4 times
	faster to compute than the SIFT and color SIFT descriptors respectively. Therefore, the DAISY Descriptor
	they are very promising for large scale recognition problems.
	Contents
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  We train the classier on the training set, then tune the parameters on the Chapter 6. Visual Object Recognition Using the DAISY Descriptor validation set, and obtain the classication results on the test set. The results are shown in Figure 6.3.As we can see, similar to the results on Caltech 101, the performance of DAISY is better than that of SIFT, although the lead drops a little because the PASCAL VOC 2007 dataset is more challenging. Figure6.4 shows the performance comparison of both descriptors split out per category. It can be seen that DAISY is better for some classes like plane, bike, bus, table, train, etc, while SIFT is better for other classes like chair, cow, person, plant, sheep, sofa, etc. This proves the complementarities of both descriptors, and explains why the performance can be improved by fusing them.
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	Figure 6.4: Performance comparison of DAISY and SIFT on the PASCAL VOC
	2007 dataset split out per category						
	ing (MKL) [Rakotomamonjy et al. 2008] algorithm introduced in section 2.3.2.2, the
	recognition accuracy is improved signicantly for 9.5% (15 training) and 12.1% (30
	training), indicating that both descriptors can provide complementary information
	to each other.									
	6.4.3 Results on PASCAL VOC 2007				2.5% (15
	training) and 4.5% (30 training) respectively by using DAISY instead of SIFT. When For the PASCAL VOC 2007 dataset, the precision-recall curve is plotted for each
	spatial pyramid information is taken into account, the performances of DAISY and category according to the output decision values of the classier, and the AP (Av-
	SIFT are both improved. But still, DAISY outperforms SIFT by 2.1% on average.
	Furthermore, when we combine DAISY and SIFT together by multiple kernel learn-

erage Precision) value is computed based on the proportion of the area under this curve.

Table 6 .

 6 1: Performance comparison of DAISY and SIFT

	Caltech 101	Recognition	Descriptor	Computation
	(30 train)	accuracy	length	time
	DAISY	48.61%	104	0.218s
	(15R8o3r4c)			
	DAISY	46.36%	68	0.126s
	(15R4o2r8c)			
	DAISY	44.17%	20	0.054s
	(15R4o1r4c)			
	SIFT	44.06%	128	0.666s
	CAL VOC 2007, and compared it with the state-of-the-art SIFT descriptor. The
	experimental results showed that DAISY outperforms SIFT with a shorter descr-
	iptor length, and can operate 12 times faster than SIFT when displaying similar
	recognition accuracy. All these make DAISY a very competitive local descriptor for
	the task of visual object recognition.		

  quantized direction, and the histograms of the second order gradients are then extracted on the OGMs. The histograms of all OGMs are further concatenated, and after PCA-based dimensionality reduction, a compact local image representation is nally achieved. Additionally, we embed spatial information by introducing the multi-scale strategy to improve the categorization accuracy. The experiments are carried out on the Caltech 101 dataset[START_REF] Li | [END_REF], and the results clearly demonstrate the eectiveness of the proposed HSOG descriptor and show that they are also complementary to the rst order gradient based ones. Histograms of the Second Order Gradients (HSOG) for Object Recognition

	Chapter 7. Histograms of the Second Order Gradients (HSOG) for Object Recognition
	rst and second order gradient information is necessary.
	Therefore, in this chapter, we propose a novel and powerful local image descrip-
	tor, namely Histograms of the Second Order Gradients (HSOG), for object recogni-
	tion. As its name implies, HSOG encodes the second order gradient information to
	represent local image variations. Specically, for a certain image region, HSOG be-
	gins with computing its rst order Oriented Gradient Maps (OGMs), each of which 2 nd -order Oriented Gradient Histogram h 1 is for a 7.2 HSOG descriptor construction HSOG Descriptor Normalization
	In this section, we present the Histograms of the Second Order Gradient (HSOG)
	descriptor in detail. Its construction is composed of four main steps: (1) compu-
	tation of the rst order Oriented Gradient Maps (OGMs); (2) computation of the
	second order gradients based on these computed OGMs; (3) spatial pooling; and (4) J 1
	dimensionality reduction. The entire process is illustrated in Figure 7.1. -order OGM
	1 st
	7.2.1 Computation of the rst order Oriented Gradient Maps
	(OGMs) The input of the proposed HSOG descriptor is an image region around the keypoint, which is either detected by interest point detectors, e.g. Harris-Laplace, or located Image Region

Therefore, in order to address the confusion caused by intra-class variations as well as inter-class similarities, and ameliorate the quality of visual content representation, both the on a dense sampling grid. For each pixel (x, y) within the given region I, a certain number of gradient maps G 1 , G 2 , . . . , G N , one for each quantized direction o, are Chapter 7.

  2.Chapter 7. Histograms of the Second Order Gradients (HSOG) for Object Recognition length feature vectors by the BoF method, the χ 2 distance is computed as equation(2.36) to measure the similarity between each pair of the feature vectors. Then, the kernel function based on this distance is utilized as equation (2.37) for the SVM training and prediction. Finally, each test image is classied into object class with the maximum SVM output decision value. We tune the parameters of the classier on the training set via 5-fold cross-validation, and obtain the recognition accuracy on the test set. To carry out the experiments on the Caltech 101 dataset, we follow the common training and test settings as used in [Varma & Ray 2007] [Zhang et al. 2006]. For each object category, 30 images are randomly selected, while 15 are for training and the other 15 for test, resulting in totally 1530 images for training and 1530 images for test respectively. The experiments are repeated three times with dierent training and test selections, and the average recognition accuracy is reported.

Table 7 .

 7 3: Performance and consumed time comparison between the HSOG descriptor and other state-of-the-art descriptors on the Caltech 101 dataset

	Descriptor	Recognition Accuracy (%) Time (s)
	SIFT DAISY CS-LBP HSOG (Ss) HSOG (Ms) HSOG (Ss) + SIFT HSOG (Ss) + DAISY HSOG (Ss) + CS-LBP HSOG (Ms) + SIFT HSOG (Ms) + DAISY HSOG (Ms) + CS-LBP	40.92 42.48 35.62 44.64 52.55 52.81 51.70 50.92 56.27 54.58 54.64	0.316 0.108 0.087 0.985
	comparable to the existing descriptors.	

Table B .

 B 1: Comparison of popular global features in the context of object recognitionMean 28.3 27.6 26.2 23.4 21.4 16.5 18.8 17.1 24.3 nentSIFT and RGB-SIFT), and HOG descriptors for evaluation. For their extraction, we use the source codes available online 1 with the default parameter setting.For classication, the Support Vector Machine (SVM) algorithm (see section 2.3.2.1 for an introduction) is applied. Once all the features are extracted from the dataset, and are transformed into xed-length histograms by the Bag-of-Features modelling method (required for local features, 4000 visual words, see section 2.2.2.3 for an introduction), the Chi-square (χ 2 ) kernel is computed as equation (2.36) and (2.37) for the SVM training and prediction. Finally, the precision-recall curve is plotted according to the output decision values of the SVM classier, and the Average Precision (AP) value is computed based on the proportion of the area under this curve. For each category in the dataset, we train the classier on the training 1 Code for SIFT and color SIFT: http://www.colordescriptors.com/ Code for HOG: http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html/Table B.2: Comparison of popular local features in the context of object recognition on the PASCAL VOC 2007 benchmark (OP-SIFT is the abbreviation of Oppo-nentSIFT, HL stands for Harris-Laplace Interest Points, DS stands for DenseMean 38.0 41.3 39.6 42.9 40.1 42.8 37.7 42.1 35.1 set, then tune the parameters on the validation set, and obtain the classication results on the test set. The detailed results are presented in TableB.1 and B.2. 

	on the PASCAL VOC 2007 benchmark
	AP (%) Sampling)	CH	CM	CCV	CAC	GLCM	TAC	Gabor	EH	LS
	airplane	45.3	52.5	45.7		43.9	44.2	25.5	39.3	33.8	36.4
	bicycle AP (%) 21.7 SIFT 21.1 SIFT 10.3 OP-16.7 OP-	11.4 C-	16.3 C-	17.5 RGB-	12.8 RGB-	18.7 HOG
	bird	24.0 (HL) 15.2 (DS) 19.6 SIFT 22.7 SIFT	18.1 SIFT	19.7 SIFT	15.3 SIFT	18.3 SIFT	15.9
	boat	30.3	30.7	29.0 (HL) 22.8 (DS)	9.0 (HL)	15.6 (DS)	12.3 (HL)	13.5 (DS)	35.7
	bottle airplane 19.1 56.0 12.8 60.9 10.9 59.9	8.6 64.3	8.0 58.7	7.5 63.2	7.8 57.8	6.1 65.2	12.7 52.1
	bus	bicycle	17.6 44.9 18.7 41.3 20.4 43.8	15.5 41.5	18.4 38.9	13.3 40.2	11.6 44.6	9.6 40.6	24.8 26.9
	car	bird	40.7 28.2 44.1 29.8 36.3 27.7	30.6 38.9	41.5 32.1	38.9 42.5	33.5 22.5	30.1 30.4	38.9 25.0
	cat	boat	22.8 45.7 19.2 55.1 22.3 49.1	15.8 54.9	18.9 51.8	13.7 56.1	15.8 46.6	13.6 54.9	23.6 40.6
	chair bottle	23.1 19.6 26.4 15.4 25.6 21.2	22.3 22.5	29.5 21.4	19.4 22.5	19.0 21.0	13.5 17.7	32.3 12.8
	cow bus		9.2 37.7	9.9 39.9 15.6 38.0	14.2 40.2	6.9 32.5	9.1 36.8	8.1 37.7	12.9 42.4	13.8 38.3
	table car	25.2 55.0 21.4 63.4 27.5 57.4	23.9 62.2	19.5 53.2	7.1 60.1	12.2 56.1	5.8 64.7	17.5 58.1
	dog	cat	24.0 36.5 25.2 40.4 24.0 37.7	15.2 38.6	23.2 34.1	14.9 35.5	18.5 37.3	13.1 42.3	26.6 27.5
	horse chair	57.2 44.5 55.9 45.6 44.7 42.4	45.6 43.5	31.8 45.9	12.4 44.3	31.6 43.5	27.8 43.4	21.1 43.8
	motor cow	31.3 25.9 31.1 25.8 18.6 17.0	14.6 24.4	19.2 16.6	10.5 21.6	11.9 27.8	16.7 25.8	16.0 19.8
	person table	71.0 29.6 61.5 24.9 65.4 36.7	62.1 33.2	53.5 38.7	56.9 26.9	56.5 29.1	53.6 29.4	65.9 33.6
	plant dog	22.6 26.5 11.0 32.6 20.5 29.8	19.4 34.3	9.4 29.1	7.2 30.5	8.7 28.8	6.1 37.0	8.6 20.4
	sheep horse	22.9 57.0 15.3 62.4 20.6 59.1	20.5 63.4	13.3 61.9	9.6 69.9	10.7 54.8	12.9 61.3	17.8 59.3
	sofa motor	11.7 30.2 22.4 40.7 14.1 33.9	12.6 44.7	11.0 44.4	8.8 42.3	11.8 32.1	10.2 40.7	13.2 37.2
	train person	33.4 73.1 38.8 75.3 33.8 74.5	26.1 76.4	24.0 76.6	16.3 76.5	19.0 72.7	21.9 75.8	23.7 66.2
	monitor plant	13.5 11.5 18.7 14.6 18.8 19.9	14.3 14.5	16.2 27.1	6.7 26.2	15.4 11.5	10.1 14.6	22.8 10.4
		sheep			27.4	29.3	31.2	35.0	30.9	33.1	19.4	29.5	18.4
		sofa			23.6	34.9	22.9	29.3	23.2	31.8	24.6	31.5	26.3
		train			53.4	56.0	54.5	57.8	58.5	60.2	51.1	57.5	52.7
		monitor	33.7	37.4	35.0	38.0	27.3	36.6	35.6	37.8	32.3

descripteurs et les classieurs, ce qui généralement extrait des descripteurs visuelles dans les images et les vidéos d'abord, et puis eectue la classication en utilisant des algorithmes d'apprentissage automatique sur la base des caractéristiques extraites. Ainsi, il est important de concevoir une bonne description visuelle, qui devrait être à la fois discriminatoire et ecace à calcul, tout en possédant certaines propriétés de robustesse contre les variations mentionnées précédemment. Dans ce contexte, l'objectif de cette thèse est de proposer des contributions novatrices pour la tâche de la reconnaissance visuelle des objets, en particulier de présenter plusieurs nouveaux descripteurs visuelles qui représentent eectivement et ecacement le contenu visuel d'image et de vidéo pour la reconnaissance des objets. Les descripteurs proposés ont l'intention de capturer l'information visuelle sous aspects diérents. Tout d'abord, nous proposons six caractéristiques LBP couleurs de multiéchelle pour traiter les défauts principaux du LBP original, c'est-à-dire, le décit d'information de couleur et la sensibilité aux variations des conditions d'éclairage non-monotoniques. En étendant le LBP original à la forme de multi-échelle dans les diérents espaces de couleur, les caractéristiques proposées non seulement ont plus de puissance discriminante par l'obtention de plus d'information locale, mais possèdent également certaines propriétés d'invariance aux diérentes variations des conditions d'éclairage. En plus, leurs performances sont encore améliorées en appliquant une stratégie de l'image division grossière à ne pour calculer les caractéristiques proposées dans les blocs d'image an de coder l'information spatiale des structures de texture. Les caractéristiques proposées capturent la distribution mondiale de l'information de texture dans les images. Deuxièmement, nous proposons une nouvelle méthode pour réduire la dimensionnalité du LBP appelée la combinaison orthogonale de LBP (OC-LBP). Elle est adoptée pour construire un nouveau descripteur local basé sur la distribution en suivant une manière similaire à SIFT. Notre objectif est de construire un descripteur local plus ecace en remplaçant l'information de gradient coûteux par des patterns de texture locales dans le régime du SIFT. Comme l'extension de notre première contribution, nous étendons également le descripteur OC-LBP aux diérents
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[Mikolajczyk & Schmid 2002]. A match is assumed to be correct if this error value is smaller than 0.5. The results are presented by recall versus 1-precision curve:
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Chapter 2. Literature Review 

Experimental setup

We follow the same approach as introduced in section 5.5.3 for object recognition.

The block diagram of the approach is depicted in Figure 5.7.

For each image in the dataset, the Harris-Laplace detector is rstly applied to detect interest points, and a local region around each interest point is then selected to extract the HSOG descriptor. For the purpose of comparison, several state-of-theart descriptors are also extracted from these regions, including SIFT [START_REF] Lowe | [END_REF]],

DAISY [Tola et al. 2010] and CS-LBP [START_REF] Heikkilä | [END_REF]]. Specically, we implement the CS-LBP descriptor according to [START_REF] Heikkilä | [END_REF], and use the source codes available online 1 for computing SIFT and DAISY.

We apply the popular Bag-of-Features (BoF) modelling method [Csurka et al. 2004] to combine dierent HSOG descriptors from multi-scale regions, since this strategy does not increase the dimensionality of the features, and the similarity scores based on dierent parameters can be calculated individually, leading to a realistic implementation of parallel computing, e.g. GPU programming, without increasing the time cost. Specically, for each keypoint p, we choose a certain number of concentric regions around p with increasing sizes. The HSOG descriptor is then extracted from each region and applied for object recognition independently by following the approach described in section 7.4.1. The kernel matrices of dierent descriptors are combined using MKL to achieve the nal recognition results.

From the experimental results shown in Table 7.2, we can see that the performance of the HSOG descriptor is signicantly improved from 44.64% (the best single scale region) to 52.55% (4-region fusion) and 54.25% (8-region fusion). This nearly 10% improvement clearly proves the eectiveness of the multi-scale fusion.

Furthermore, 8-region fusion performs better than 4-region fusion, indicating that the performance could benet from more regions.

Performance evaluation and comparison

We evaluate the proposed HSOG descriptor with the best parameter setting on the Caltech 101 dataset. As introduced in section 7. For the submission LIRIS_CLS, we followed the same approach applied in 2010, but added two new kinds of features to further improve the recognition performance: color OC-LBP descriptors presented in chapter 5, and the DAISY descriptor presented in chapter 6. For the submission LIRIS_CLSDET, we improved the performance of the submission LIRIS_CLS by combining it with object detection results. For object detection, we applied the HOG feature to train deformable part models [START_REF] Felzenszwalb | [END_REF], and used the models together with sliding window approach to detect objects. Finally, we combined the outputs of • Full run: including results for all 346 concepts Regarding the implementation of the global features, the RGB color space is adopted for computing all the color features. For CH, each color channel is quantized into 11 bins, resulting in a 1331-dimensional histogram. For CM, three orders of color moments are computed respectively in each color channel with a 5×5 image division, leading to a 225-dimensional vector. For CCV, each color channel is quantized into 4 bins, so that the nal vector is of 128-dimension. For CAC, each color channel is quantized into 4 bins, and the maximal distance between two pixels is set to 8, resulting in a 512-dimensional vector. For GLCM, 4 directions (horizontal, vertical and two diagonals) with 1 oset between two pixels are considered. For TAC,(0,2,[START_REF] Fu | Visual Object Categorization via Sparse Representation[END_REF][START_REF] Boiman | [END_REF]8) are applied as position dierence in both x and y directions. For Gabor, 5 scales and 8 orientations are used. For EH, 5 types of edge (horizontal, vertical, 45-degree diagonal, 135-degree diagonal and non-directional) are extracted. For LS, 6 orientation bins and 4 length bins are selected for the detected line segments.

For the local features, we select the SIFT, three color SIFT (C-SIFT, Oppo-
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