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Abstract

This thesis is dedicated to the problem of machine-based visual object recognition,
which has become a very popular and important research topic in recent years be-
cause of its wide range of applications such as image/video indexing and retrieval,
security access control, video monitoring, etc. Despite a lot of e�orts and progress
that have been made during the past years, it remains an open problem and is still
considered as one of the most challenging problems in computer vision community,
mainly due to inter-class similarities and intra-class variations like occlusion, back-
ground clutter, changes in viewpoint, pose, scale and illumination. The popular
approaches for object recognition nowadays are feature & classi�er based, which
typically extract visual features from images/videos at �rst, and then perform the
classi�cation using certain machine learning algorithms based on the extracted fea-
tures. Thus it is important to design good visual description, which should be both
discriminative and computationally e�cient, while possessing some properties of ro-
bustness against the previously mentioned variations. In this context, the objective
of this thesis is to propose some innovative contributions for the task of visual ob-
ject recognition, in particular to present several new visual features / descriptors
which e�ectively and e�ciently represent the visual content of images/videos for
object recognition. The proposed features / descriptors intend to capture the visual
information from di�erent aspects.

Firstly, we propose six multi-scale color local binary pattern (LBP) features to
deal with the main shortcomings of the original LBP, namely de�ciency of color
information and sensitivity to non-monotonic lighting condition changes. By ex-
tending the original LBP to multi-scale form in di�erent color spaces, the proposed
features not only have more discriminative power by obtaining more local informa-
tion, but also possess certain invariance properties to di�erent lighting condition
changes. In addition, their performances are further improved by applying a coarse-
to-�ne image division strategy for calculating the proposed features within image
blocks in order to encode spatial information of texture structures. The proposed
features capture global distribution of texture information in images.

Secondly, we propose a new dimensionality reduction method for LBP called the
orthogonal combination of local binary patterns (OC-LBP), and adopt it to con-
struct a new distribution-based local descriptor by following a way similar to SIFT.
Our goal is to build a more e�cient local descriptor by replacing the costly gradient
information with local texture patterns in the SIFT scheme. As the extension of our
�rst contribution, we also extend the OC-LBP descriptor to di�erent color spaces
and propose six color OC-LBP descriptors to enhance the discriminative power and
the photometric invariance property of the intensity-based descriptor. The proposed
descriptors capture local distribution of texture information in images.

Thirdly, we introduce DAISY, a new fast local descriptor based on gradient
distribution, to the domain of visual object recognition. It is well known that
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gradient-distribution-based local descriptors such as SIFT, GLOH and HOG obtain
the state-of-the-art performances in object recognition, while their drawback is rel-
atively high computational cost. To deal with this, there are usually two ways: one
is to replace the costly gradient information with other more e�cient features, as
what we did in the case of OC-LBP; the other is to �nd more e�cient methods
to calculate the gradient information. The DAISY descriptor was initially designed
for wide-baseline stereo matching problem, and has shown good robustness against
many photometric and geometric transformations. It has never been used in the
context of visual object recognition, while we believe that it is very suitable for this
problem. DAISY provides a fast way to capture the �rst order gradient information
in images.

Fourthly, we propose a novel local descriptor called histograms of the second
order gradients (HSOG) for visual object recognition. It captures the second order
gradient information in images, which, to the best of our knowledge, is seldom inves-
tigated in the literature for the purpose of object recognition. Intuitively, the second
order gradients applied to a gray level image capture the acceleration information on
local variations of pixel gray values. They should not only o�er certain discrimina-
tive power to distinguish di�erent object classes, but also tend to be complementary
to the description provided by the �rst order gradients. Thus we believe that both
the �rst and second order gradient information is required to comprehensively de-
scribe the visual content of an image. Therefore, we propose the HSOG descriptor
as a complement to the existing �rst order gradient descriptors, and further improve
its performance by using multi-scale extension.

The proposed features / descriptors have been validated and evaluated through
comprehensive experiments conducted on several popular datasets such as PASCAL
VOC 2007, Caltech 101, and so on. The experimental results clearly show that (1)
the multi-scale color LBP features outperform the original LBP and other popular
texture features; (2) the gray and color OC-LBP descriptors obtain comparable or
superior performances compared to the state-of-the-art descriptors such as SIFT
and color SIFT while being more computationally e�cient as well; (3) the DAISY
descriptor outperforms the state-of-the-art SIFT in terms of both recognition accu-
racy and computational e�ciency; (4) the HSOG descriptor obtains superior per-
formance compared to the existing �rst order gradient based descriptors such as
SIFT, CS-LBP and DAISY, and also provides complementary information to these
descriptors.

Keywords: visual description; local descriptor; feature extraction; object recog-
nition; scene classi�cation; SIFT; DAISY; second order gradients; local binary pat-
terns (LBP); color LBP descriptor; CS-LBP; orthogonal combination of LBP (OC-
LBP).
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Résumé

Cette thèse est consacrée au problème de la reconnaissance visuelle des objets basé
sur l'ordinateur, qui est devenue un sujet de recherche très populaire et important
ces dernières années grâce à ses nombreuses applications comme l'indexation et la
recherche d'image et de vidéo , le contrôle d'accès de sécurité, la surveillance vidéo,
etc. Malgré beaucoup d'e�orts et de progrès qui ont été fait pendant les dernières
années, il reste un problème ouvert et est encore considéré comme l'un des problèmes
les plus di�ciles dans la communauté de vision par ordinateur, principalement en
raison des similarités entre les classes et des variations intra-classe comme occlusion,
clutter de fond, les changements de point de vue, pose, l'échelle et l'éclairage. Les ap-
proches populaires d'aujourd'hui pour la reconnaissance des objets sont basé sur les
descripteurs et les classi�eurs, ce qui généralement extrait des descripteurs visuelles
dans les images et les vidéos d'abord, et puis e�ectue la classi�cation en utilisant des
algorithmes d'apprentissage automatique sur la base des caractéristiques extraites.
Ainsi, il est important de concevoir une bonne description visuelle, qui devrait être
à la fois discriminatoire et e�cace à calcul, tout en possédant certaines propriétés
de robustesse contre les variations mentionnées précédemment. Dans ce contexte,
l'objectif de cette thèse est de proposer des contributions novatrices pour la tâche de
la reconnaissance visuelle des objets, en particulier de présenter plusieurs nouveaux
descripteurs visuelles qui représentent e�ectivement et e�cacement le contenu visuel
d'image et de vidéo pour la reconnaissance des objets. Les descripteurs proposés
ont l'intention de capturer l'information visuelle sous aspects di�érents.

Tout d'abord, nous proposons six caractéristiques LBP couleurs de multi-
échelle pour traiter les défauts principaux du LBP original, c'est-à-dire, le dé�cit
d'information de couleur et la sensibilité aux variations des conditions d'éclairage
non-monotoniques. En étendant le LBP original à la forme de multi-échelle dans les
di�érents espaces de couleur, les caractéristiques proposées non seulement ont plus
de puissance discriminante par l'obtention de plus d'information locale, mais possè-
dent également certaines propriétés d'invariance aux di�érentes variations des condi-
tions d'éclairage. En plus, leurs performances sont encore améliorées en appliquant
une stratégie de l'image division grossière à �ne pour calculer les caractéristiques
proposées dans les blocs d'image a�n de coder l'information spatiale des structures
de texture. Les caractéristiques proposées capturent la distribution mondiale de
l'information de texture dans les images.

Deuxièmement, nous proposons une nouvelle méthode pour réduire la dimen-
sionnalité du LBP appelée la combinaison orthogonale de LBP (OC-LBP). Elle
est adoptée pour construire un nouveau descripteur local basé sur la distribution
en suivant une manière similaire à SIFT. Notre objectif est de construire un de-
scripteur local plus e�cace en remplaçant l'information de gradient coûteux par des
patterns de texture locales dans le régime du SIFT. Comme l'extension de notre pre-
mière contribution, nous étendons également le descripteur OC-LBP aux di�érents
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espaces de couleur et proposons six descripteurs OC-LBP couleurs pour améliorer la
puissance discriminante et la propriété d'invariance photométrique du descripteur
basé sur l'intensité. Les descripteurs proposés capturent la distribution locale de
l'information de texture dans les images.

Troisièmement, nous introduisons DAISY, un nouveau descripteur local rapide
basé sur la distribution de gradient, dans le domaine de la reconnaissance visuelle
des objets. Il est bien connu que les descripteurs locaux basés sur la distribution de
gradient tels que SIFT, GLOH et HOG obtenir les performances de l'état-de-l'art
dans la reconnaissance des objets, tandis que leur coût de calcul est relativement
élevé. Pour faire face à cela, il y a généralement deux façons: l'une est de rem-
placer l'information de gradient coûteux par d'autres caractéristiques plus e�caces,
comme nous l'avons fait dans le cas d'OC-LBP; l'autre est de trouver des méthodes
plus e�caces pour calculer l'information de gradient. Le descripteur DAISY a été
initialement conçu pour le problème d'appariement stéréo de grande base, et a dé-
montré une bonne robustesse contre les nombreuses transformations photométriques
et géométriques. Il n'a jamais été utilisé dans le contexte de la reconnaissance vi-
suelle des objets, tandis que nous croyons qu'il est très approprié pour ce problème.
DAISY o�re un moyen rapide pour capturer l'information de gradient du premier
ordre dans les images.

Quatrièmement, nous proposons un nouveau descripteur local appelé his-
togrammes des gradients du second ordre (HSOG) pour la reconnaissance visuelle
des objets. Il capture l'information de gradient du second ordre dans les images,
qui, au meilleur de notre connaissance, est rarement étudiés dans la littérature aux
�ns de la reconnaissance des objets. Intuitivement, les gradients du second ordre
appliqués à une image aux niveaux de gris capturent l'information d'accélération sur
les variations de la valeur de gris des pixels locaux. Ils doivent non seulement o�rir
certaine puissance discriminante pour distinguer les di�érentes classes d'objet, mais
ont aussi tendance à être complémentaires à la description fournie par les gradients
du premier ordre. Ainsi nous pensons que l'information de gradient du premier et
second ordre est nécessaire pour décrire complètement le contenu visuel d'une im-
age. Par conséquent, nous proposons le descripteur HSOG comme un complément
aux descripteurs existants de gradient du premier ordre, et améliorons encore sa
performance en utilisant l'extension de multi-échelle.

Les descripteurs proposés ont été validés et évalués à travers des expériences
complètes e�ectuées sur plusieurs bases de données populaires comme le PASCAL
VOC 2007, Caltech 101, etc.

Mots-clés: description visuelle; descripteur local; l'extraction de caractéris-
tiques; la reconnaissance des objets; la classi�cation de scène; SIFT; DAISY; les
gradients du second ordre; local binaire patterns (LBP); descripteur de LBP couleur;
CS-LBP; la combinaison orthogonale de local binaire patterns (OC-LBP).

xvi



Chapter 1

Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems and objective . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approaches and contributions . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 10

1.1 Context

With the rapid development of digital technology, the world is currently experi-

encing a digital revolution. Particularly, because of the speedy popularization of

digital cameras and camera phones, more and more information presented around

us nowadays are changing from text-based to multimedia-based, especially in the

form of images and videos. For example, the very famous online photo sharing

website �Flickr� 1 reported in August 2011 that it was hosting more than 6 billion

photos already and this number continues to grow with a speed of more than 1

billion per year. Another famous social networking website �Facebook� 2 announced

in October 2011 that it was hosting about 140 billion images and thus becomes the

largest album in the world.

Facing such huge amounts of data, the need for solutions of how to e�ciently

manage them and access to appropriate content becomes more and more urgent.

Traditionally, one could �rst annotate images manually using keywords and then

1http://www.flickr.com/
2http://www.facebook.com/

http://www.flickr.com/
http://www.facebook.com/
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carry out the search by matching their annotations with the required keywords,

just as the cases of the most popular image search engines nowadays like Google

Images 3, Yahoo Images 4 and Picsearch 5. Technically, this kind of search method

relies not on the image content directly, but on the textual information associated

with images, e.g. �le name, keywords, labels or tags. However, this method quickly

becomes inconceivable nowadays because tremendous amount of time and labor is

required for annotating such huge amounts of data. Moreover, there exist some

other problems for manual annotations:

• When the annotation rules change, the annotation process must be manually

performed again on the whole database.

• Since manual annotation might be subjective, there is no guarantee that two

di�erent persons would produce the same annotation for the same image,

which however is generally expected in most applications.

• Since the annotations are in the form of text, choosing language is important

for annotating and searching, while most of available annotations are only for

a limited number of languages.

In such context, the current trend is to �nd out e�ective and e�cient methods to

realize automatic image annotation, which means that single or multiple labels could

be assigned to an image automatically by computers according to its visual content.

Another way is to skip the annotation step and to realize the content-based image

retrieval directly. For these purposes, more and more attentions in recent years have

been paid to machine-based visual object recognition and image classi�cation, which

serves as the fundamental problem and could greatly be bene�cial to the mentioned

applications.

3http://images.google.com/
4http://images.search.yahoo.com/
5http://www.picsearch.com/

2

http://images.google.com/
http://images.search.yahoo.com/
http://www.picsearch.com/
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1.2 Problems and objective

Machine-based visual object recognition aims at automatically predicting whether at

least one or several objects of given categories are present in an image by computers

based on its visual content. More precisely, only categories of objects or generic

concepts are taken into account as the goal of object recognition systems. For

example, given an image, we aim to �nd out if there exists any person or any

building in it, rather than a particular person or a particular building. Figure 1.1

shows some instances of generic object categories �Car�, �Aeroplane�, �Cat� and

�Sofa� respectively.

In fact, visual object recognition is a fundamental problem in computer vision

and pattern recognition. It has a wide range of possible applications besides auto-

matic image annotation, such as video monitoring, video coding systems, security

access control, robot localization, automobile driving support and content-based

image / video indexing and retrieval. Therefore, it has become a very popular

and important research topic in computer vision community in recent years, and

many di�erent methods have been proposed and applied for the recognition of

generic object categories such as vehicles, animals, person, plants, buildings, and so

on [Sivic & Zisserman 2003] [Csurka et al. 2004] [Marszalek & Schmid 2006]

[Marszalek & Schmid 2007] [Lazebnik et al. 2006] [Hegerath et al. 2006]

[Lowe 2004] [Zhang et al. 2007] [van de Sande et al. 2010] [Zhang et al. 2006]

[Chevalier et al. 2007] [Yang et al. 2009b] [Gorisse et al. 2010] [Wang et al. 2009a]

[Guillaumin et al. 2010] [Harzallah et al. 2009] [van Gemert et al. 2010]. Des-

pite a lot of e�orts and progress that have been made during the past years

[Everingham et al. 2010] [Smeaton et al. 2009], visual object recognition remains

an open problem and is still considered as one of the most challenging problems

in computer vision. The main reason lies in the di�culties for computers to cope

with various intra-class variations, including appearance deformation, occlusion,

background clutter, changes in viewpoint, pose, scale and illumination, etc., which

although are much easier problems for human. The typical intra-class variations of

object are illustrated by the horse images in Figure 1.2.

3
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Car Car Car 

Aeroplane Aeroplane Aeroplane 

Cat Cat Cat 

Sofa Sofa Sofa 

Figure 1.1: Di�erent instances of generic object categories (example images from
PASCAL VOC 2007 database)

4
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Pose 

Clutter Illumination 

Viewpoint Appearance 

Scale Occlusion 

Figure 1.2: An illustration of various variations of object in the same category
(example images of the category �horse� from PASCAL VOC 2007 database)

5



Chapter 1. Introduction

In this context, the objective of this thesis is to propose some innovative contribu-

tions for visual object recognition task, in particular concerning several new visual

features / descriptors to e�ectively and e�ciently represent the visual content of

objects in images for recognition. The proposed approaches have been validated

through comprehensive experiments conducted on several popular datasets.

1.3 Approaches and contributions

As we stated, visual object recognition is a very challenging problem, and a lot of fac-

tors need to be considered to construct a successful system. Generally speaking, the

most important factors lie in two main steps: (1) image feature extraction and (2)

image classi�cation. Image feature extraction aims at extracting compact and infor-

mative feature vectors or descriptors rather than using the raw data from an image

to represent its visual content. This is the very �rst but also important step because

the raw data of an image are usually too huge and impractical to be used directly

for the following classi�cation step. Considering the di�culties mentioned in the

previous section, we hold that a good image feature / descriptor should be both dis-

criminative enough and computationally e�cient, while possessing some properties

of robustness to changes in viewpoint, scale and lighting conditions. Many di�erent

image features / descriptors have been proposed in the literature, and the most

successful ones are distribution-based local descriptors, such as SIFT [Lowe 2004],

GLOH [Mikolajczyk & Schmid 2005], HOG [Dalal & Triggs 2005], Shape context

[Belongie et al. 2002], etc., because of their good performances. Image classi�cation

aims at constructing a robust classi�er which could e�ectively classify an image or

object into given categories based on the extracted image feature vectors or desc-

riptors. Many di�erent classi�ers have also been proposed in the past years, such

as Support Vector Machines (SVM) [Cortes & Vapnik 1995], K-Nearest Neighbors

(KNN) [Cover & Hart 1967], Arti�cial Neural Networks (ANN) [Bishop 1995], De-

cision Trees (DT) [Quinlan 1993], Adaboost [Freund & Schapire 1997], etc., where

the most popular one nowadays is SVM.

In this thesis, we mainly focus on image feature extraction by proposing sev-

6
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eral new image features / descriptors for the task of object recognition, and then

apply the SVM classi�er on the proposed features / descriptors to obtain the �nal

classi�cation results. The proposed features / descriptors intend to capture an ob-

ject's information from di�erent aspects, including global texture distribution, local

texture distribution, the �rst order gradients and the second order gradients. Our

contributions are summarized as follows.

Our �rst contribution lies in proposing six multi-scale color local binary pat-

tern features for visual object recognition. The local binary pattern (LBP) operator

[Ojala et al. 2002b] is a computationally e�cient yet powerful feature for analyz-

ing image texture structures, and has been successfully applied to the applications

as diverse as texture classi�cation [Mäenpää et al. 2000a] [Mäenpää et al. 2000b]

[Ojala et al. 2002b], texture segmentation [Ojala & Pietikäinen 1999], face recog-

nition [Ahonen et al. 2004] [Ahonen et al. 2006] and facial expression recognition

[Zhao & Pietikäinen 2007] [Shan et al. 2009]. However, it has been rarely used for

the task of visual object recognition 6. We hold that the main reasons lie in two as-

pects. On one hand, the LBP operator ignores all color information (its calculation

is based on gray image), while color is an important clue for distinguishing objects,

especially in natural scenes. On the other hand, there can be various changes in

lighting and viewing conditions in real-world scenes, leading to large illumination

variations of object's appearance, which further complicate the recognition task.

According to its de�nition, the LBP operator is only invariant to gray-level mono-

tonic light changes, and thus has di�culty to deal with the mentioned variations.

Therefore, in order to incorporate color information, as well as to enhance the dis-

criminative power and the photometric invariance property of the original LBP, we

propose, in chapter 4, six multi-scale color LBP features which are more suitable

for visual object recognition task. Moreover, we apply a coarse-to-�ne image divi-

sion strategy for calculating the proposed features within image blocks in order to

encode spatial information of texture structures, thereby further improving their

performances.

Our second contribution consists of proposing a new dimensionality reduction

6at the time when we started our work in 2008, while being more popular now

7
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method for LBP called the orthogonal combination of local binary patterns (denoted

as OC-LBP), and several new local descriptors based on OC-LBP for image region

description. Nowadays, distribution-based local descriptors, such as SIFT and its

extensions or re�nements, have become the dominant features in the state-of-the-

art recognition / classi�cation systems. However, the downside of these descriptors

is their high computational cost, especially when the size of image or the scale of

dataset signi�cantly increases. Therefore, it is highly desirable that local image

descriptors o�er both high discriminative power and computational e�ciency. As

we mentioned earlier, the LBP operator is a well known texture feature which has

several interesting properties. First of all, it is simple and fast to compute. Moreover,

it o�ers strong discriminative power for describing texture structures while staying

robust to monotonic lighting changes. All these advantages make LBP a good

candidate for constructing a local descriptor. However, the LBP operator tends to

produce high dimensional feature vectors, especially when the number of considered

neighboring pixels increases. The so-called �curse of dimensionality� is a barrier for

using it directly to construct a local descriptor. Thus, a key issue of making use

of LBP as a local descriptor is to reduce its dimensionality. For this purpose, we

propose, in chapter 5, a new dimensionality reduction method for LBP, denoted as

the orthogonal combination of local binary patterns (OC-LBP), which proves much

more e�ective compared to the other popular methods such as �uniform patterns�

[Ojala et al. 2002b] and CS-LBP operator [Heikkilä et al. 2009], because our method

produces the LBP features with the smallest dimensions while still o�ering high

discriminative power of local texture patterns. The proposed OC-LBP operator is

then adopted to construct a distribution-based local image descriptor, denoted as

the OC-LBP descriptor, by following a way similar to SIFT. Our aim is to build a

more e�cient local descriptor by replacing the costly gradient information with local

texture patterns in the SIFT scheme. Moreover, since color plays an important role

for object recognition and classi�cation especially in natural scenes, as we declared

in the �rst contribution, we further extend our OC-LBP descriptor to di�erent

color spaces and propose six color OC-LBP descriptors to enhance the photometric

invariance property and the discriminative power of intensity-based descriptor. This

8
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work could thus be considered as the extension of our �rst contribution.

Our third contribution is introducing the DAISY descriptor to the task of vi-

sual object recognition. There is now a trend in computer vision community that

the scale of the benchmark datasets used for object recognition / image classi�ca-

tion becomes larger year by year. However, it is well known that the most popular

and state-of-the-art features are gradient-distribution-based local descriptors such as

SIFT, GLOH and HOG, whose drawback is their relatively high computational cost.

Thus, more computationally e�cient and discriminative local descriptors are urgen-

tly demanded to deal with large scale datasets such as ImageNet [Deng et al. 2009]

and TRECVID [Smeaton et al. 2006]. Usually, there are two ways to do this. One

way is to replace the costly gradient information with other more e�cient features,

as what we did in the case of the OC-LBP descriptor. The other way is to �nd

more e�cient methods to calculate the gradient information. The DAISY descrip-

tor [Tola et al. 2010], which was initially designed for wide-baseline stereo matching

problem, is a new fast local descriptor based on gradient distribution, and has shown

good robustness against many photometric and geometric transformations. It has

never been used in the context of visual object recognition, while we believe that it is

very suitable for this problem, and could well meet the mentioned demand. There-

fore, we investigate the DAISY descriptor, in chapter 6, for the task of visual object

recognition by evaluating and comparing it with SIFT both in terms of recognition

accuracy and computation complexity on two standard image benchmarks. DAISY

provides a fast way to calculate the gradient information and proves very promising

for the task of visual object recognition.

Our fourth contribution lies in proposing a novel local image descriptor called

histograms of the second order gradients (HSOG) for visual object recognition. In

the literature, the �rst order gradient information is the most e�ective feature for

characterizing an object's appearance or the content of an image, since it can re�ect

the pixel intensity changes for di�erent directions in a small neighborhood around

each pixel. Thus, many successful and state-of-the-art descriptors, such as SIFT,

GLOH, HOG and DAISY, are constructed based on the �rst order gradient distri-

bution (histogram) in a local region. However, to the best of our knowledge, local

9



Chapter 1. Introduction

descriptors focusing on the second order gradients are seldom investigated in the

literature for the purpose of object recognition. Intuitively, the second order gradi-

ent information should not only possess certain discriminative power to distinguish

di�erent objects, but also tends to be complementary to the information provided

by the �rst order gradients. This hypothesis is motivated by a physical analogy of

object motion. Velocity and acceleration of an object are both needed to compre-

hensively describe a motion process within an unit displacement, which is better

than using only velocity. Connecting these concepts to an image, within a pre-

de�ned distance between two pixels, the �rst order gradients simulate the velocity

of pixel intensity changes, while the second order gradients imitate its acceleration.

In order to ameliorate the quality of visual content representation, both the �rst

and second order gradient information is valuable. Therefore, we propose, in chap-

ter 7, a novel local image descriptor called histograms of the second order gradients

(HSOG) for the task of visual object recognition. Its construction consists of �rst

computing several �rst order oriented gradient maps and then building the second

order oriented gradient histograms based on these maps. A DAISY-style spatial

pooling arrangement is adopted for taking into account the spatial information, and

the principal component analysis (PCA) [Jolli�e 2002] is applied for dimensional-

ity reduction. The performance of the proposed descriptor is further improved by

using multi-scale strategy, which combines the descriptors computed from several

concentric local regions with di�erent size by late fusion.

1.4 Organization of the thesis

The rest of this thesis is organized as follows.

• In chapter 2, a review of related work on visual object recognition is presen-

ted. More attention is paid to the feature & classi�er based approaches, which

include image feature extraction; image representation (modelling); classi�ca-

tion algorithms; and fusion strategies.

• In chapter 3, we introduce several standard datasets and popular benchmarks

10
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available in computer vision community for object recognition and image /

video classi�cation tasks. Some of them will be used to carry out experiments

in the following chapters.

• In chapter 4, we give the details of the proposed multi-scale color local binary

pattern features, together with the analysis of their invariance properties, and

show their e�ectiveness on the PASCAL VOC 2007 benchmark.

• In chapter 5, we �rst introduce the orthogonal combination of local binary pat-

terns (OC-LBP) which is proposed as a new dimensionality reduction method

for LBP. Its e�ectiveness is shown by comparing with other two popular me-

thods on a standard texture classi�cation dataset. Then we give the details of

the proposed gray and color OC-LBP descriptors, and show their e�ectiveness

in three di�erent applications by comparing with the state-of-the-art SIFT

and color SIFT descriptors both in terms of accuracy and computational cost.

• In chapter 6, we �rst present the details of the DAISY descriptor, and then

introduce our approach of using DAISY for visual object recognition. Based on

two standard image datasets, the Caltech 101 and the PASCAL VOC 2007,

we compare DAISY with SIFT both in terms of recognition accuracy and

computation complexity. Furthermore, the in�uence of di�erent parameters

in DAISY is analyzed.

• In chapter 7, we give the details of how to compute and construct the proposed

histograms of the second order gradients (HSOG) descriptor, and show its

e�ectiveness on the Caltech 101 dataset. The in�uence of di�erent parameters

in HSOG is also experimentally analyzed.

• In chapter 8, we give our conclusions as well as some perspectives for future

research directions.

11
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In this chapter, we give a review of main approaches and related work for visual

object recognition in the literature. First of all, we brie�y introduce main appro-

aches proposed for the problem of object recognition by generally dividing them

into 4 categories according to the timeline: (1) geometry & matching based; (2)

appearance & sliding window based; (3) parts & structure based; and (4) feature &

classi�er based. Then, since feature & classi�er based approaches have become the

most popular nowadays, a more detailed introduction of them is presented, includ-

ing image feature (global or local) extraction; image representation (or modelling);
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and image classi�cation (generative or discriminative classi�ers). In addition, we

introduce di�erent fusion strategies which aim to improve recognition performance

by fusing di�erent features, since they may carry complementary information to

each other.

2.1 Introduction of main approaches for object recogni-

tion

The recognition of object categories in images and videos is a challenging problem in

computer vision, especially when the number of categories is large. The main reasons

are due to both high intra-class variations and inter-class similarities. Objects within

the same category may look very di�erent, while objects from di�erent categories

may look quite similar (see Figure 2.1 and 2.2 for illustrations). Moreover, depending

on di�erent viewpoint, scale and illumination, the same object may even appear

dissimilar in images. Background clutter and partial occlusion also increase the

di�culties of object recognition (see Figure 1.2 for an illustration).

In order to address this challenging problem, a lot of attention and e�orts have

been paid during the past decades by the researchers in computer vision community,

and many approaches have been proposed in the literature. These approaches can

be generally divided into 4 categories according to the timeline:

• Geometry & matching based approaches

• Appearance & sliding window based approaches

• Parts & structure based approaches

• Feature & classi�er based approaches

2.1.1 Geometry & matching based approaches

The earliest attempts on object recognition mainly focused on using geometric mod-

els to represent objects. The main idea is that geometric descriptions of a three-

dimensional (3D) object allow the projected shape to be accurately predicated in a

14
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Figure 2.1: An illustration of intra-class variations. Examples are all from the class
�chair� of the Caltech image dataset, but have very di�erent appearances.

Figure 2.2: An illustration of inter-class similarities. Examples in the �rst row are
from the class �bike� of the Caltech image dataset, while the ones in the second
row are from the class �motorbike� of the same dataset. They are quite similar in
appearance.
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two-dimensional (2D) image under perspective projection, therefore the recognition

of geometric descriptions can be achieved by using edge or boundary information,

which is invariant to certain illumination changes [Mundy 2006]. L.G. Roberts with

his blocks world model [Roberts 1963] is considered as the origin of computer vision

and object recognition. The blocks world model is a simpli�cation of the real world

where objects are restricted to polyhedral shapes on a uniform background. Poly-

hedra have simple and easily represented geometry and the projection of polyhedra

into images under perspective can be straightforwardly modeled with a projective

transformation. Roberts carefully considered how polyhedra project into perspec-

tive images and established a generic library of polyhedral components that could be

assembled into a composite structure. While the blocks world model only considers

straight lines and �at surfaces as shown in Figure 2.3(a), Guzman [Guzman 1971]

extended it to deal with curved surfaces and boundaries. He avoided di�cult scene

rendering issues by restricting the problem to line drawings, and focused on what

happens when curved surfaces intersect. An example of line drawing for curved

objects is shown in Figure 2.3(b). The drawback of this method is the restriction to

ideal line drawings, which is far away from the real vision problem. Subsequently,

a new geometric representation, the generalized cylinder (GC), was developed by

Binford with his students [Binford 1971] [Agin 1972] [Nevatia & Binford 1977] to

extend the blocks world to composite curved shapes in 3D. Their key idea is that

many curved shapes can be expressed as a sweep of a variable cross section along

a curved axis. Figure 2.3(c) gives an example. A lot of attention was also paid to

extract geometric primitives such as lines, circles, etc., which are invariant to certain

viewpoint and illumination changes [Mundy & Zisserman 1992].

To work with geometric models, the dominant object recognition approach

during this period was based on alignment and matching, which means that two

objects are directly compared by matching their geometric models after align-

ment to decide how similar they are. The work of Huttenlocher and Ullman

[Huttenlocher & Ullman 1987] is considered as a representative, where an object

is �rst aligned with an image using a small number of model pairs and image fea-

tures, and then the aligned model is compared directly against the image to check

16
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(a) (b) (c) 

Figure 2.3: Geometry-based object recognition: (a) A 3D polyhedral description of
the blocks world scene [Roberts 1963]. (b) The feature analysis of a line drawing
for describing curved objects [Guzman 1971]. (c) A range image of a doll and the
resulting set of generalized cylinders [Agin 1972].

if the expected features are present. This method is able to detect transformations

not only in scale and illumination conditions, but also in viewing angle. Thus it

is able not only to identify the viewed object, but also to estimate the actual pose

and 3D position of the object. However, this approach is computationally very ex-

pensive because the stored models are usually 3D internal representations of the

object and the image features are formed exhaustively. A comprehensive review of

geometry-based object recognition can be found in [Mundy 2006].

2.1.2 Appearance & sliding window based approaches

At the time when geometry-based approaches reached the end of their active

period, more e�orts had started to be focused on appearance-based techniques.

The most representative methods of appearance-based techniques are eigenfaces

[Turk & Pentland 1991a] and appearance manifolds [Murase & Nayar 1995]. Turk

and Pentland proposed in 1991 the eigenfaces method [Turk & Pentland 1991a]

which is considered as one of the �rst face recognition systems that are both com-

putationally e�cient and relatively accurate. Their approach treats the face recog-

nition problem as an intrinsically 2D recognition problem rather than requiring 3D

geometry recovery. The main idea is to project face images into a feature space that

17
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spans the signi�cant variations among the known face images. A set of vectors are

�rst generated to represent each of the known face images by their gray-level pixel

values, the eigenvectors are then computed by selecting the principal components

from this set of vectors. These eigenvectors, denoted as eigenfaces, capture main

variance among all the vectors, and a small set of eigenvectors could capture almost

all the appearance variations of the face images in the training set. For a particular

face image, its pixel value vector is projected into a feature space spanned by a set of

eigenvectors so that it can be represented by a weighted sum of the eigenfaces with

minimum error, and its recognition thus consists of comparing these weights with

those of the known faces to �nd its nearest neighbor. Some examples of eigenfaces

are shown in Figure 2.4(a). The idea of eigenfaces was then adopted and extended

by Murase and Nayar in 1995 to recognize generic 3D objects with di�erent view-

points [Murase & Nayar 1995]. They proposed a compact representation of object

appearance which is parameterized by viewpoint and illumination. For each object

of interest, a large set of images is obtained by automatically varying viewpoint and

illumination. This image set is compressed to obtain a low-dimensional continuous

subspace, called the eigenspace, where the object is represented as a manifold. For

an unknown input object, it is �rst projected into the eigenspace, and the recogni-

tion is then achieved by �nding its closest manifold using Euclidean distance. The

exact position of the projection on the manifold determines the viewpoint of the

object, as illustrated in Figure 2.4(b).

As appearance-based methods generally require to only focus on the object part

and not on the other disturbing parts such as background clutter, the �sliding win-

dow� technique is widely applied to cooperate with them. Its basic idea is to slide a

window across the image at di�erent scales and to recognize each sub-window as con-

taining the target object or not. This technique was �rst applied on face recognition

problems [Turk & Pentland 1991b] [Belhumeur et al. 1997] [Viola & Jones 2001],

and then extended to generic object recognition [Papageorgiou & Poggio 2000]

[Agarwal & Roth 2002] [Schneiderman & Kanade 2004]. The potential advantage

of these sliding window-based techniques is their ability of achieving object recog-

nition and localization at the same time. Their drawback lies in the failure of
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(a) (b) 

Figure 2.4: Appearance-based object recognition: (a) Some example images of eigen-
faces (http://www.geop.ubc.ca/CDSST/eigenfaces.html/). (b) An illustration of
3D object recognition based on appearance manifolds [Murase & Nayar 1995].

detecting non-rigid deformable objects or objects that can not be shaped by a rect-

angle. While appearance-based methods have achieved promising results in object

recognition tasks, they are not capable enough of handling occlusion, as well as pose

and illumination change. In addition, a large set of samples needs to be collected to

learn the appearance characteristics and thus requires a high computational cost.

All these limitations have encouraged researchers to pay more attention to the parts

and structure based approaches.

2.1.3 Parts & structure based approaches

The idea of parts and structure based approaches comes from the observation that

most objects generally consist of several individual parts which are arranged in cer-

tain geometric structures. For example, a face consists of two eyes, one nose and

one mouth, while an airplane consists of two wings, one fuselage and one tail. The

parts-based deformable models were thus proposed to exploit this observation by

decomposing an object into connected parts. For an object, each part encodes its

local visual properties, while the deformable con�guration is represented by connec-

tions between certain pairs of parts to de�ne its global geometric structure. The

recognition is achieved by �nding the best match of such a parts-based model to an

input image. The best match can be found by minimizing an energy function which

19
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measures both a match cost for each part and a deformation cost for each pair of

connected parts.

The application of parts-based deformable models for object recog-

nition can trace back to the work of Fischler and Elschlager in 1973

[Fischler & Elschlager 1973], and has attracted renewed attention in

early 2000s [Weber et al. 2000] [Ullman et al. 2001] [Fergus et al. 2003]

[Bouchard & Triggs 2005] [Felzenszwalb & Huttenlocher 2005]. In

[Fischler & Elschlager 1973], the authors proposed a parts-based model for

face consisting of hair, eyes, nose, mouth and left/right edges, along with spring-like

connections between certain pairs of parts, as depicted in Figure 2.5(a). In

[Weber et al. 2000], objects are represented as �exible constellations of rigid parts

which are automatically identi�ed by applying a clustering algorithm on the training

set. A statistical shape model is then learned on these parts by a maximum likeli-

hood unsupervised algorithm to get the recognition results. In [Ullman et al. 2001],

objects within a class are represented in terms of common image fragments that

are used to build blocks for representing a large variety of di�erent objects in

a common class. The fragments are selected from a training image set based

on a criterion of maximizing the mutual information between the fragment and

its class. For recognition, the algorithm detects the fragments of di�erent types

and combines the evidence of the detected fragments to make the �nal decision.

In [Fergus et al. 2003], the authors followed the work of [Weber et al. 2000], and

proposed a number of improvements to its constellation model and learning

algorithm, such as taking the variability of appearance into account, learning

appearance simultaneously with shape, and extending the learning algorithm to

e�ciently learn new object categories. The examples of the learned models for

motorbike and car are shown in Figure 2.5(b). In [Bouchard & Triggs 2005], the

authors extended the work of [Fergus et al. 2003], and proposed a two-level hierar-

chical generative model for coding the geometry and appearance of visual object

categories. The model is a collection of loosely connected parts containing more

rigid assemblies of subparts. They also simpli�ed the correspondence problem by

using greedy nearest-neighbor matching in location-appearance space to deal with
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many more subparts. Some examples of their models for motorbike and aeroplane

are shown in Figure 2.5(c). In [Felzenszwalb & Huttenlocher 2005], the authors

proposed a computationally e�cient framework for parts-based modeling and object

recognition which was motivated by the pictorial structure models introduced in

[Fischler & Elschlager 1973]. They represented an object by a collection of parts

arranged in a deformable con�guration using spring-like connections between pairs

of parts, and demonstrated the techniques by learning models that represent face

and human body. Figure 2.5(d) shows some examples of the learned models for

human body.

Parts and structure based approaches have several advantages. Firstly, while the

global appearance of an object may signi�cantly vary within a category, the appea-

rance and spatial relationship of its local parts can often still be stable to provide

important cues. Secondly, many natural object categories, such as human and an-

imals, have relatively rigid global shape, but with signi�cant shape variability, and

parts-based models can easily represent this kind of covariance structure. However,

most approaches can not handle large viewpoint variations or severe object defor-

mations. Moreover, parts-based models require an exponentially growing number

of parameters as the number of parts increases. Learning and inference problems

for spatial relations also remain very complex and computationally expensive. The

recent trend is to apply parts-based models for object detection and localization,

rather than for object recognition. A successful example is the discriminatively

trained deformable part model [Felzenszwalb et al. 2008] [Felzenszwalb et al. 2010],

which has become the dominant approach in object detection task of the famous

PASCAL VOC Challenge [Everingham et al. 2010].

2.1.4 Feature & classi�er based approaches

Feature and classi�er based approaches have become popular for object recogni-

tion since late 1990s, because of the great development of advanced image features

/ descriptors and pattern recognition algorithms in the community. Particularly,

using local descriptors, e.g. SIFT [Lowe 2004], together with the Bag-of-Features

(BoF) representation [Csurka et al. 2004] followed by discriminative classi�ers such
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(a) (b) 

(d) (c) 

Figure 2.5: Parts-based object recognition: (a) The parts-based deformable model
for face from [Fischler & Elschlager 1973]. (b) The parts-based deformable models
for motorbike and car from [Fergus et al. 2003]. (c) The parts-based deformable
models for motorbike and aeroplane from [Bouchard & Triggs 2005]. (d) The parts-
based deformable models for human body from [Felzenszwalb & Huttenlocher 2005].
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Figure 2.6: An overview of feature and classi�er based object recognition (revised
from Figure 2 & 3 in [van de Sande et al. 2010])

as Support Vector Machine (SVM) [Cortes & Vapnik 1995] has become the domi-

nant paradigm since 2004. Generally speaking, feature and classi�er based appro-

aches consist of two main steps, as depicted in Figure 2.6. The �rst step is image

feature extraction and representation, which aims to extract a set of feature vectors,

or descriptors, from an image to describe its visual content, and to transform the

extracted features into more compact and informative representations by applying

certain image modelling methods. The second step is image classi�cation, which

accepts the image representations based on the extracted features and performs the

�nal classi�cation by utilizing certain pattern recognition algorithms (classi�ers). In

addition, as di�erent features may carry complementary information to each other,

fusion strategies are also required to further improve the recognition performance.

The following sections will focus on these three aspects.

2.2 Image feature extraction and representation

The �rst step of image analysis for object recognition is to transform an image into

the input data for subsequent process. A direct way is to concatenate gray or color

values of all the pixels within an image. However, this will result in a very high-

dimensional vector with a lot of redundant information. It is also very sensitive

to any image variations. Therefore, image feature extraction is required, aiming at

transforming the content of an image into a set of feature vectors, or descriptors,
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which are expected to be discriminative, computationally e�cient, with reasonable

size, and possessed of some robustness properties to image variations (viewpoint,

scale, illumination, etc.). After this step, the following process will no longer rely on

the image itself, but only on the information carried by the extracted features. Thus,

feature extraction is a very important step to ensure the �nal good performance of

object recognition, and can be considered as the basis of the whole process.

A lot of feature extraction methods have been proposed in the literature, and we

could summarize them into two main categories: global features and local features.

2.2.1 Global features and corresponding representations

Early work in this domain has mainly utilized global features as image description.

These features are extracted directly from the whole image, and generally take the

form of a single vector or histogram based on the statistical analysis of an image

pixel by pixel. They thus encode global visual content of an image. Di�erent global

features have been proposed in the literature, and we present here several ones that

we have studied and investigated in our work. We choose these features since they

are the most popular ones among global features. An evaluation and comparison of

di�erent global features in the context of object recognition is given in Appendix B.

These global features could be divided into three categories: (1) color, (2) texture

and (3) shape.

2.2.1.1 Color features

Color is perhaps the most direct and expressive of all the visual features. Color

features aim at capturing color information, such as color distribution, relationship

between di�erent colors, etc., contained in an image.

• Color Histogram [Swain & Ballard 1991]: Color histogram is the simplest

and most common way for expressing the color characteristics of an image. It

is a representation of the color distribution of image pixels. Generally, each

channel of the image's color space, such as RGB or HSV, is �rst quantized

into an appropriate number of color ranges (called �bins�), and a histogram is
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then built by counting the number of image pixels located in each bin. The

more number of bins are selected, the more detailed color distribution could

be obtained, but the higher dimensional histogram will be generated. The

number of bins is thus a trade-o� between feature information and size. Color

histogram is invariant to translation and rotation of the viewing axis, and

robust to viewpoint change, but with no spatial information.

• Color Moments [Stricker & Orengo 1995]: Color moments characterize the

color distribution of an image into a very compact vector containing the mean,

variance and skewness, which are respectively the moments of the 1st order,

the 2nd order and the 3rd order as shown in (2.1), (2.2) and (2.3), for each

channel of the image's color space.

Ei =
1

N

N∑
j=1

pij (2.1)

σi =

√√√√ 1

N

N∑
j=1

(pij − Ei)2 (2.2)

Si = 3

√√√√ 1

N

N∑
j=1

(pij − Ei)3 (2.3)

where i is the index of each channel, N is total number of image pixels, and

pij is the value of the j-th pixel in channel i. Color moments have the same

invariance properties and drawbacks as color histogram.

• Color Coherence Vectors [Pass et al. 1996]: Color coherence vectors pro-

pose to consider the coherent colors and the incoherent colors separately in

an image. A color is de�ned as coherent if its proportion of pixels located in

a spatial neighborhood area is bigger than a prede�ned threshold, otherwise

it is de�ned as incoherent. Color coherence vectors �rst classify each pixel in

a given color bin as either coherent or incoherent, then build two histograms

by counting the number of the coherent and incoherent pixels with each color

respectively. The �nal feature vector is the concatenation of these two histo-
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grams. Its main advantage is the combination of color histogram with spatial

information, while the main drawback is its high computational cost.

• Color Correlogram / Color Auto-Correlogram [Huang et al. 1997]: Col-

or correlogram can be understood as a 3-dimensional matrix with size of

(n × n × r), where n is the number of color bins in an image and r is the

maximal distance between two considered pixels. This matrix is indexed by

color pairs, where the k-th entry for (i, j) speci�es the probability of �nding

a pixel of color i at a distance k away from a pixel of color j in the image.

The �nal feature is obtained by decomposing this matrix into a single vector.

As the size of color correlogram is usually too large due to its three dimensi-

ons, color auto-correlogram is also proposed to only consider the pair of pixels

with the same color i at a distance k, thus resulting in a more compact rep-

resentation. Their advantages are that they integrate the spatial correlation

of colors and robustly tolerate large changes in appearance, viewing position

and camera zoom. High computational cost is also their main drawback.

There also exist other color features in the literature, such as Dominant Color,

Scalable Color, Color Layout, Color Structure, etc. [Manjunath et al. 2001].

2.2.1.2 Texture features

Texture is also an important aspect to describe the content of an image. It has no

precise de�nition, but can be intuitively considered as the repeated patterns of local

variation of pixel intensities, thereby quantifying the properties such as smoothness,

coarseness and regularity in an image.

• Texture Co-occurrence Matrix [Tuceryan & Jain 1998]: Gray Level Co-

occurrence Matrix (GLCM) is a measurement of how often di�erent combina-

tions of gray level pixel values occur in an image. It estimates image properties

of the second order texture statistics by considering the relationship between

groups of two neighboring pixels in the image. Given a displacement vector

d = (dx, dy), GLCM Pd of size N ×N for d is calculated in such a way that
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Table 2.1: Some texture features extracted from gray level co-occurrence matrix
(GLCM)

Texture feature Formula

Energy
√∑

i

∑
j P

2
d (i, j)

Entropy −
∑

i

∑
j Pd(i, j) lnPd(i, j)

Contrast
∑

i

∑
j(i− j)2Pd(i, j)

Homogeneity
∑

i

∑
j

Pd(i,j)
1+(i−j)2

the entry (i, j) of Pd is the occurrence number of the pair of gray levels i and

j which are at a distance d apart. Here N denotes the number of gray levels

considered in the image. Usually, the matrix Pd is not directly used in an

application and a set of more compact features are computed instead from

this matrix, as shown in Table 2.1. The main problem of GLCM is that there

is no well established method for selecting the optimal displacement vector

d. In the practice, four displacement vectors are commonly used: d = (1, 0),

d = (0, 1), d = (1, 1) and d = (1,−1).

• Texture Auto-Correlation [Tuceryan & Jain 1998]: The basic principle of

texture auto-correlation is to compare the original image with a shifted one.

It measures the coarseness of an image by evaluating the linear spatial relat-

ionships between texture primitives. Suppose the displacements according to

each axis as dx and dy, then the auto-correlation function can be de�ned as

follows:

f(dx, dy) =
MN

(M − dx)(N − dy)

∑M−dx
i=1

∑N−dy
j=1 I(i, j)I(i+ dx, j + dy)∑M
i=1

∑N
j=1 I

2(i, j)
(2.4)

where M ×N is the size of the image and I(i, j) is the gray value of the pixel

at position (i, j). It can be noticed that large primitives give rise to coarse

texture (e.g. rock surface) and small primitives give rise to �ne texture (e.g.

silk surface). If texture primitives are large, the auto-correlation will decrease

slowly while increasing the distance, whereas it will decrease rapidly if texture

consists of small primitives. Moreover, if texture primitives are periodic, then
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the auto-correlation will increase and decrease periodically with the distance.

• Gabor [Daugman 1988]: Gabor �lters (or Gabor wavelets) are widely adopt-

ed texture features for image analysis. Basically, Gabor �lters are a group

of wavelets, with each wavelet capturing energy at a speci�c frequency and

a speci�c direction. They have been found to be particularly appropriate for

texture representation and discrimination because frequency and orientation

representations of Gabor �lters are similar to those of human visual system. A

2D Gabor �lter is a Gaussian kernel function modulated by a sinusoidal plane

wave. Expanding a signal using this basis provides a localized frequency de-

scription, therefore capturing local texture properties of the signal. The mean

and standard deviation of the transformed coe�cients are used to represent

the texture feature. Gabor feature has been proven very e�ective for describing

texture [Manjunath & Ma 1996] [Zhang et al. 2000], but with disadvantage of

high computational complexity because of the substantial convolution, which

means it is more suitable for dealing with small images like faces, but will be

very time and memory consuming to work on large images, such as natural

scenes.

• Local Binary Patterns [Ojala et al. 2002b]: Local Binary Pattern (LBP)

operator was �rstly introduced as a complementary measure for local image

contrast [Ojala et al. 1996], and then becomes a computationally e�cient yet

powerful feature for texture analysis. The detailed introduction of LBP will

be in chapter 4 and 5, since our work presented in these two chapters is based

on the LBP feature.

There also exist other texture features in the literature, such as Homogenous

Texture, Texture Browsing, etc. [Manjunath et al. 2001].

2.2.1.3 Shape features

The shape of an object is also an important clue for recognition, especially for

rigid objects. Shape is a geometrical description of the external boundary of an
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Vertical Edge Horizontal Edge 45 Degree Edge 135 Degree Edge Non-directional Edge 

Figure 2.7: Five types of edge and the corresponding �lters for edge detection used
in edge histogram

object, and can be described by basic geometry units such as points, lines, curves

and planes. The popular shape features mainly focus on the edge or contour of an

object to capture its shape information.

• Edge Histogram [Park et al. 2000]: Edge histogram describes edge informa-

tion with a histogram based on edge distribution in an image. Five types

of edges, namely vertical, horizontal, 45-degree diagonal, 135-degree diagonal

and non-directional, are considered as shown in Figure 2.7. To compute edge

histogram, an image is �rst divided into 4×4 non-overlapping blocks, resulting

in 16 equal-sized sub-images regardless of the size of the original image. In

each of the sub-images, a histogram of edge distribution with 5 bins corre-

sponding to 5 types of edges is computed, leading to a �nal histogram with

16×5 = 80 bins after concatenation. An extended version of edge histogram is

also proposed by partitioning the image into 4× 1, 1× 4 and 2× 2 sub-images

in order to integrate the information of edge distribution in di�erent scales.

• Line Segments [Pujol & Chen 2007]: Pujol and Chen proposed line segment

based edge feature using Enhanced Fast Hough Transform (EFHT), which is a

reliable and computationally e�cient way of extracting line segments from an

edge image. Once all the line segments are identi�ed by EFHT, line segment

based edge feature is extracted as a histogram of line segments' lengths and

orientations. In order to obtain the invariant properties for scaling, translation
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and rotation, all the lengths are divided by the longest line segment and then

an average orientation is computed so that all the angles can be expressed with

respect to it. The size of the histogram is determined experimentally and set to

6 bins for orientation and 4 bins for length. Compared to the edge histogram

feature, the proposed feature can provide structure information through edge

connectivity while still keeping a relatively low computational complexity.

There also exist other shape features in the literature, such as Region Shape,

Contour Shape and Shape 3D, which are included in the MPEG-7 standard 1.

The previously introduced global features are all in the form of a single histogram

or feature vector, which also keeps the consistent dimensionality regardless of the

size of the input image. Therefore, no further modelling methods are required to

transform these descriptions.

A comparison of di�erent global features, regarding their category, invariance

property and computational cost, is shown in Table 2.2. A detailed comparison of

their performances in the context of object recognition is given in Appendix B. The

main downside of these global features is their great sensitivity to background clut-

ter, image occlusion, and illumination variations. Moreover, these global methods

implicitly assume that the objects of interest should occupy most of the region in

images. However, this assumption is hard to be satis�ed in real situations, where

background noises always exist, particularly in the case that the object of interest

is very small compared to the image size. All these limitations make global features

gradually give their way to local image features.

2.2.2 Local features and corresponding representations

Local image features have received a lot of attention in recent years, and they have

already gained the popularity and dominance in object recognition / classi�cation

tasks nowadays. Instead of operating on the whole image, the key idea of local

features is to extract distinctive information from local image regions centered either

1http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm/
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Table 2.2: Comparison of the popular global features in the literature
(Rotat.=Rotation; Viewp.=Viewpoint; Illum.=Illumination; Inva.=Invariance;
Compu.=Computation)

Feature Category Rotat.
Inva.

Viewp.
Inva.

Illum.
Inva.

Compu.
Cost

Color Histogram Color Yes Yes No Low
Color Moments Color Yes Yes No Low
Color Coherence Vectors Color Yes Yes No High
Color (Auto-)Correlogram Color Yes No No High
Co-occurrence Matrix Texture No No No Medium
Auto-Correlation Texture No No No Low
Gabor �lters Texture No No Yes High
Edge Histogram Shape No No Yes High
Line Segments Shape No No Yes Medium

on some sparse keypoints with certain invariance properties, for instance with respect

to scale and viewpoint change, or simply on a dense sampling grid. By this way, local

features could be more discriminative and robust to image variations, compared to

the global ones. Generally, local feature extraction consists of two main steps: (1)

local keypoint/region detection and (2) local descriptor extraction.

2.2.2.1 Local keypoint/region detection

Local features are extracted from local image regions, thus it is important to �rst

detect such regions in a highly repetitive manner. To do so, one could apply cer-

tain region detector on images to directly get the output regions. Also, one could

�rst apply certain point detector to get keypoints in images and then �x appro-

priate regions around these keypoints. There are mainly three strategies for local

keypoint/region detection: (1) interest points/regions; (2) dense sampling; and (3)

random sampling.

• Interest Points/Regions: Interest points are usually keypoints located on

edges or corners. Interest regions are usually regions containing a lot of in-

formation about image structures like edges and corners, or local blobs with

uniform brightness. Many interest point/region detectors have been proposed

in the literature: Harris and Stephens [Harris & Stephens 1988] proposed Har-
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ris corner detector which is based on the second moment matrix and respon-

ds to corner-like features. It is invariant to rotation. Hessian blob detec-

tor was proposed by Beaudet [Beaudet 1978] based on the Hessian matrix.

It gives strong responses on blobs and ridges because of the second order

derivatives. It is also invariant to rotation. Lindeberg [Lindeberg 1998] devel-

oped Laplacian blob detector which is scale-invariant, and a blob is de�ned

by a maximum of the normalized Laplacian in scale-space. Harris-Laplace

detector [Mikolajczyk & Schmid 2001] was proposed as an extension of the

original Harris detector by adding the scale-invariant property. The points

are �rst detected by the scale-adapted Harris function and then selected in

scale-space by the Laplacian of Gaussian operator. It is thus invariant to

both rotation and scale changes. Another scale-invariant detector is Di�er-

ence of Gaussian (DoG) proposed by Lowe [Lowe 1999] [Lowe 2004]. DoG

is an approximation of the normalized Laplacian scale by calculating di�er-

ences of Gaussian blurred images at several adjacent local scales. It can also

be calculated in a pyramid way which makes it much faster than the Lapla-

cian scale space while keeping comparable results. Harris-A�ne and Hessian-

A�ne detectors [Mikolajczyk & Schmid 2002] [Mikolajczyk & Schmid 2004]

were proposed to further extend the scale-invariant detector to obtain invari-

ance against image a�ne transformations. The a�ne adaptation is based

on the shape estimation properties of the second moment matrix. Maximal-

ly Stable Extremal Regions (MSER) [Matas et al. 2002] is a watershed-like

algorithm based on intensity value connected component analysis of an ap-

propriately thresholded image. The obtained regions are of arbitrary shape

and they are de�ned by all the border pixels enclosing a region, where all

the intensity values within the region are consistently lower or higher with

respect to the surrounding. There also exist other detectors in the liter-

ature such as entropy based salient region detector [Kadir & Brady 2001],

edge based region detector (EBR) and intensity based region detector (I-

BR) [Tuytelaars & Gool 2000] [Tuytelaars & Gool 2004]. The comprehen-

sive review and evaluation of interest point/region detectors can be found
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Interest Points/Regions 

(Harris-Laplace) 
Dense Sampling 

Figure 2.8: Comparison of interest points/regions and dense sampling strategies for
local keypoint/region detection (examples from [van de Sande et al. 2010])

in [Schmid et al. 2000] and [Mikolajczyk et al. 2005].

• Dense Sampling: Several studies [Winn et al. 2005] [Li & Perona 2005]

[Agarwal & Triggs 2006] [Furuya & Ohbuchi 2009] have shown experimental-

ly that extracting local features on a dense sampling grid outperforms that of

using interest point/region detectors.

• Random Sampling: Other studies [Marée et al. 2005] [Nowak et al. 2006]

have proposed to use random sampling strategy for localizing key-

points/regions. As the name implies, keypoints/regions are randomly selected

in images for local descriptor extraction.

Figure 2.8 shows the comparison of interest points/regions and dense sampling

strategies for local keypoint/region detection. It is worth noticing that combin-

ing di�erent strategies may provide further improvements. The winning system of

the PASCAL VOC challenge 2007 [Everingham et al. 2007] demonstrated that the

combination of interest points detector and dense sampling strategy performs clearly

better than either of the two separately.

2.2.2.2 Local descriptor extraction

After local keypoint/region detection, the detected regions or local neighborhood

around the detected keypoints are described by local image descriptors, which should

be discriminative, computationally e�cient, and robust against various image vari-
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ations such as scaling, a�ne distortions, viewpoint and illumination changes. Many

di�erent local descriptors have been proposed in the literature, and the most pop-

ular ones are distribution-based descriptors, which represent region properties by

histograms. The most popular local descriptors applied to the domain of object

recognition are listed as follows:

• SIFT [Lowe 1999] [Lowe 2004]: Lowe proposed Scale Invariant Feature Trans-

form (SIFT), which is a 3D histogram of gradient locations and orientations,

as shown in Figure 2.9(a). The location is quantized into a 4 × 4 location

grid and the gradient angle is quantized into 8 orientations, resulting in a

128-dimensional descriptor. The contributions to the gradient orientations

are weighted by the gradient magnitudes and a Gaussian window overlaid

over the region, thereby emphasizing the gradients near the region center.

SIFT is highly distinctive, in the sense that a single feature can be correct-

ly matched with high probability against a large database of features from

many images. Moreover, it is invariant to image scaling and rotation, and

also provides robust matching ability across a substantial range of a�ne dis-

tortion, minor viewpoint change, noise disturbance and illumination variance.

All these properties ensure its great success in computer vision community,

especially for visual object recognition tasks.

• PCA-SIFT [Ke & Sukthankar 2004]: Ke and Sukthankar proposed PCA-

SIFT, which applies Principal Component Analysis (PCA) technique

[Jolli�e 2002] on the normalized gradient patches to enhance the distinctive-

ness and reduce the dimensionality of the original SIFT. A typical patch is

41 × 41 pixels, resulting in a 3042-dimensional vector, which is created by

concatenating the horizontal and vertical gradient maps for the patch. The

�nal dimension of the descriptor is reduced to 36 with PCA.

• Color SIFT [van de Sande et al. 2008] [van de Sande et al. 2010]: Van de

Sande et al. proposed several color SIFT descriptors by extracting the

SIFT feature in di�erent color spaces, including HSV-SIFT, HueSIFT, Op-

ponentSIFT, C-SIFT, RGB-SIFT, rgSIFT and transformed color SIFT. The
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SIFT features computed in each individual channel are concatenated as the

�nal color SIFT feature. The aim is to increase the photometric invariance

property and the discriminative power of the original SIFT. Their perfor-

mances were also evaluated and compared in the context of object recogni-

tion, and the results demonstrated that combining SIFT with color clues is a

promising way to improve the recognition performance.

• GLOH [Mikolajczyk & Schmid 2005]: Mikolajczyk and Schmid proposed

Gradient Location and Orientation Histogram (GLOH), which can be con-

sidered as the extension of the original SIFT to increase its robustness and

distinctiveness. GLOH replaces the rectangular location grid used in SIFT

with a log-polar one, and applies PCA to reduce the size of the descriptor.

The location is divided into 17 bins (3 bins in radial direction and 8 bins in

angular direction, the central bin is not divided) and the gradient orientations

are quantized into 16 bins, resulting in a 272-dimensional vector. The �nal

dimension of the descriptor is reduced to 128 with PCA.

• HOG [Dalal & Triggs 2005]: Dalal and Triggs proposed Histogram of Ori-

ented Gradient (HOG), which is a 3D histogram of gradient locations and

orientations. It is similar to both SIFT and GLOH, because it uses both rect-

angular and log-polar location grids, as shown in Figure 2.9(b). The main

di�erence between HOG and SIFT is that HOG is computed on a dense grid

of uniformly spaced cells, with overlapping local contrast normalization. This

is for better invariance to illumination and shadowing, and can be done by

accumulating a measure of local histogram �energy� over larger spatial blocks

and then using the results to normalize all of the sub-images in each block.

The standard HOG descriptor is of 36 dimensions.

• SURF [Bay et al. 2006] [Bay et al. 2008]: Bay et al. proposed Speeded-Up

Robust Features (SURF), which is inspired by SIFT, but several times faster

to compute. Instead of the gradient information in SIFT, SURF computes

the Haar wavelet responses, and exploits integral images for computational

e�ciency. The input region around a keypoint is divided into 4×4 sub-regions,
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within which the sum of the �rst order Haar wavelet responses in both x and

y directions are computed, as shown in Figure 2.9(d). The standard SURF

descriptor is of 64 dimensions.

• Shape Context [Belongie et al. 2002]: Belongie et al. proposed Shape Con-

text, which is also similar to SIFT, but is based on edges. It is a 2D histogram

of edge point locations, where the log-polar location grid is used, as shown in

Figure 2.9(c). Its aim is to describe the distribution of edge points on a shape

with respect to the reference point. The contour of shape can be detected by

any edge detector, e.g. Canny edge detector, and edge points are regularly

sampled over the whole shape contour. The location is divided into 5 bins in

radial direction and 12 bins in angular direction, resulting in a 60-dimensional

descriptor.

• CS-LBP [Heikkilä et al. 2009]: Heikkila et al. proposed Center-Symmetric

Local Binary Pattern (CS-LBP) descriptor, which combines the strengths of

both SIFT and LBP. It adopts the SIFT-like approach for descriptor construc-

tion, but replaces the gradient information used in SIFT with the CS-LBP

feature, which is a modi�ed version of the original LBP. Instead of comparing

each neighboring pixel with the central one, CS-LBP only compares center-

symmetric pairs of pixels, as shown in Figure 2.9(e). This could halve the num-

ber of comparisons, and reduce the size of the LBP histogram. The standard

CS-LBP applies 4× 4 location grid and 8 neighboring pixels for computation,

resulting in a 256-dimensional descriptor.

The attributes of these descriptors are summarized in Table 2.3, including the

representation type (sparse or dense), encoded information, spatial pooling scheme

(neighborhood grid), computation method (comp.), and dimensionality (dim.). It

should be noted that the items in the column of representation type and dimension-

ality can be changed according to di�erent applications, and the ones listed in the

table are directly cited from the original papers. A detailed comparison of some of

these descriptors in the context of object recognition is given in Appendix B.
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(a) 

(b) (c) 

(d) 

(e) 

Figure 2.9: Illustrations of popular local image descriptors: (a) SIFT; (b) HOG; (c)
Shape Context; (d) SURF; (e) CS-LBP (�gures from the original papers)
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Table 2.3: Attribute summary of main local image descriptors applied to object
recognition in the literature

Descriptor Type Information Grid Comp. Dim.

SIFT Sparse Gradient Rect. Distr. 128
PCA-SIFT Sparse Gradient Rect. Distr. 36
Color SIFT Sparse Gradient Rect. Distr. 384
GLOH Sparse Gradient Polar Distr. 128
HOG Dense Gradient Rect. & Polar Distr. 36
SURF Sparse Wavelet response Rect. Filter 64
Shape Context Sparse Edge points Polar Distr. 60
CS-LBP Sparse Binary patterns Rect. Distr. 256

In [Brown et al. 2011], the authors proposed a framework to learn local descrip-

tors with di�erent combinations of local features and spatial pooling strategies. The

previously presented descriptors can thus be incorporated into their framework.

Besides these distribution-based descriptors, there also exist other types of local

descriptors such as di�erential invariants [Koenderink & van Doorn 1987], steerable

�lters [Freeman & Adelson 1991], complex �lters [Scha�alitzky & Zisserman 2002],

moment invariants [Gool et al. 1996] and so on. Several studies

[Mikolajczyk & Schmid 2005] [Zhang et al. 2007] [Li & Allinson 2008]

[van de Sande et al. 2010] have been conducted to comprehensively evaluate

and compare the performances of di�erent local image descriptors, and they almost

have given the consistent conclusions that distribution-based local descriptors

perform the best, and therefore have been widely applied to the tasks of object

recognition.

After local feature extraction, each image is represented by a set of local des-

criptors. It is unreasonable to feed them directly into a classi�er. On one hand,

the dimensions of these descriptors are relatively high because of the large number

of keypoints/regions (normally around thousands) in images. On the other hand,

the number of local descriptors in each image varies because the number of key-

points/regions changes from one image to another one. Thus, an e�cient feature

modelling method is required to transform these high dimensional and variable num-

bers of local descriptors into a more compact, informative and �xed-length repre-
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sentation for further classi�cation. Two leading modelling methods in the literature

are Bag-of-Features (BoF) and Gaussian Mixture Model (GMM).

2.2.2.3 Bag-of-Features (BoF) representation: discrete distribution

The �Bag-of-Features� (BOF) method (also called �Bag-of-Visual-Words� (BoVW))

[Sivic & Zisserman 2003] [Csurka et al. 2004] models an image as a discrete dis-

tribution. Its main idea is adapted from the �Bag-of-Words� (BoW) represen-

tation [Salton & McGill 1983] [McCallum & Nigam 1998] in text classi�cation do-

main, and is to represent an image as an orderless collection of local descriptors

based on an intermediate representation called �visual vocabulary�. More precisely,

it consists of two main steps: (1) visual vocabulary construction and (2) histogram

encoding. A visual vocabulary is �rst constructed by applying a clustering algorithm

on the training data, and each cluster center is considered as a �visual word� in the

vocabulary. All the descriptors extracted from an image are then quantized to their

closest visual word (hard assignment) or several close visual words (soft assignment)

in an appropriate metric space by a certain encoding method. The number of the

descriptors assigned to each visual word is accounted into a histogram as the �nal

BoF representation. In other words, each image is characterized by a histogram of

visual words frequencies. Figure 2.10 shows an illustration of this process. Some

representative methods for each of these two steps are introduced in the following.

As the BoF method discards all spatial information between the extracted local

features, some approaches which reuse this useful information are also presented.

Visual vocabulary construction The visual vocabulary is constructed o�ine

on the training data by unsupervised or supervised learning methods. The k-means

clustering algorithm [MacQueen 1967] is the most popular one. It is an unsuper-

vised clustering algorithm which proceeds by iterated assignments of points to their

closest cluster centers and re-computation of the cluster centers. The number of

the cluster centers k is prede�ned empirically. The advantage of k-means is its

simple and e�cient implementation, while its drawback is that most of the clus-

ter centers are drawn irresistibly towards dense regions of the sample distribution
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Figure 2.10: An illustration of the �Bag-of-Features� (�Bag-of-Visual-Words�)
method (example from [Yang et al. 2007])

which do not necessarily correspond to discriminative ones. [Jurie & Triggs 2005]

proposed a radius-based clustering, which avoids setting all cluster centers into high

density areas and assigns all features within a �xed radius of r to one cluster.

[Wu & Rehg 2009] proposed to use one-class SVM and the Histogram Intersection

Kernel (HIK) instead of the popular Euclidean distance for clustering.

A drawback of the universal visual vocabulary generated by the unsupervised

approaches is its de�cient discriminative power due to the ignorance of category

information. To address this problem, some studies departed from the idea of hav-

ing one universal vocabulary for all the training data from the whole set of cate-

gories. In [Farquhar et al. 2005] [Zhang et al. 2007], category speci�c vocabularies

were trained and agglomerated into a single vocabulary. Although substantial im-

provements were obtained, these approaches are impractical for a large number of

categories as the size of the agglomerated vocabulary and the corresponding his-

togram representation grows linearly with the number of categories. Therefore, a

compact visual vocabulary is preferred to provide a lower-dimensional representa-
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tion and e�ectively avoid these di�culties. [Winn et al. 2005] [Fulkerson et al. 2008]

[Lazebnik & Raginsky 2009] made use of the mutual information between the fea-

tures and the categories to reduce the size of visual vocabulary without sacri�cing its

discriminative power. [Moosmann et al. 2006] proposed an e�cient alternative, in

which training examples are recursively divided using a randomized decision forest

and the splits in the decision trees are the comparisons of a descriptor dimension

to a threshold. [Perronnin et al. 2006] characterized images using a set of category

speci�c histograms, where each histogram describes whether the content can be best

modeled by the universal vocabulary or by its corresponding category vocabulary.

Another group of methods [Vogel & Schiele 2004] [Yang et al. 2008]

[Liu et al. 2009] claimed that the semantic relations between features are use-

ful for classi�cation and attempted to bring the semantic information into visual

vocabulary construction. In [Vogel & Schiele 2004], a semantic vocabulary was

constructed by manually associating local image regions to certain semantic

concepts such as �stone�, �sky�, �grass� and so on. However, the fact that it requires

huge manual labor for labeling local image regions among large amount of training

data makes it impractical in such cases. [Yang et al. 2008] proposed to unify the

process of visual vocabulary generation and classi�er training, and to encode an

image by a sequence of visual bits which capture di�erent aspects of image features

and constitute the semantic vocabulary. The method proposed by [Liu et al. 2009]

can automatically learn a semantic visual vocabulary using di�usion maps which

capture the semantic and geometric relations of feature space.

Histogram encoding Once a visual vocabulary is constructed, a feature encoding

method is needed to assign local descriptors to the visual words and characterize the

visual content of an image by a histogram of visual words frequencies. Generally,

there are two strategies for histogram encoding: (1) hard assignment and (2) soft

assignment.

Hard assignment simply assigns the extracted local feature vectors to their single

best (usually the nearest) visual word respectively, according to a certain distance
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measure, as shown in equation (2.5):

HA(ω) =
1

N

N∑
n=1


1 if ω = arg minv∈V (D(v, rn))

0 otherwise

(2.5)

where ω is a visual word in the vocabulary V , N is the number of local regions

in an image, rn is the feature vector extracted from the n-th local region, and

D(v, rn) is the distance between rn and each visual word v. The advantages of hard

assignment include its computational simplicity and the fact that it leads to a sparse

histogram. However, problems could occur for feature vectors located in ambiguous

areas. In [van Gemert et al. 2008] [van Gemert et al. 2010], two di�erent issues are

considered: word uncertainty and word plausibility. Word uncertainty refers to the

problem of selecting the correct visual word out of two or more relevant candidates,

while word plausibility denotes the problem of selecting a visual word without any

suitable candidate in the vocabulary, as illustrated in Figure 2.11. Soft assignment

is thus proposed to address these issues.

There are two kinds of approaches for soft assignment. The �rst one consi-

sts in performing probabilistic clustering using typically a Gaussian Mixture Mod-

el (GMM) [Farquhar et al. 2005, Winn et al. 2005, Perronnin et al. 2006], and each

feature vector contributes to multiple visual words according to its posterior prob-

ability of the Gaussian given each visual word. Although these works are able to

deal with word uncertainty by considering multiple visual words, they ignore word

plausibility. On the contrary, [Boiman et al. 2008] copes with word plausibility by

using the distance to the single best neighbor in feature space without taking into

account word uncertainty. [van Gemert et al. 2008] [van Gemert et al. 2010] made

the assignment using a decreasing function of the Euclidean distance between feature

vectors and word centroids, paired with a Gaussian kernel:

Gσ(x) =
1√
2πσ

exp(−1

2

x2

σ2
) (2.6)

where σ is the smoothing parameter of kernel G. Three di�erent formula were
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Figure 2.11: Illustration of visual word uncertainty and plausibility. The small
dots represent image features, the labeled red circles are visual words found by
unsupervised clustering. The triangle represents a data sample that is well suited
to hard assignment approach. The di�culty with word uncertainty is shown by the
square, and the problem of word plausibility is illustrated by the diamond. (example
from [van Gemert et al. 2008])

proposed to cope with word uncertainty (UNC), word plausibility (PLA) and both

of them (KCB) respectively:

UNC(ω) =
1

N

N∑
n=1

Gσ(D(ω, rn))∑|V |
k=1Gσ(D(vk, rn))

(2.7)

PLA(ω) =
1

N

N∑
n=1


Gσ(D(ω, rn)) if ω = arg minv∈V (D(v, rn))

0 otherwise

(2.8)

KCB(ω) =
1

N

N∑
n=1

Gσ(D(ω, rn)) (2.9)

Recently, several new encoding methods, such as locality-constrained linear en-

coding [Wang et al. 2010], improved Fisher encoding [Perronnin et al. 2010], and

super vector encoding [Zhou et al. 2010], have been proposed to improve on the

standard histogram of quantized local features, and have reported very good re-

sults on the tasks of object recognition and image classi�cation. A compara-
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tive analysis and evaluation of these di�erent encoding methods can be found in

[Chat�eld et al. 2011].

Spatial information The BoF method views images as orderless distributions

of local image features, thus losing at the same time all the spatial relationsh-

ips between these local features. However, we know intuitively that spatial in-

formation is important for image classi�cation. Therefore, [Lazebnik et al. 2006]

proposed the �spatial pyramid� method in order to take into account the spat-

ial information of local features, inspired by pyramid match kernels introduced in

[Grauman & Darrell 2005b] which build pyramid in feature space while discarding

the spatial information. The �spatial pyramid� method consists of performing pyra-

mid matching in two-dimensional image space and using the traditional clustering

techniques in feature space.

Suppose we haveM types of features and each of them provides two sets of two-

dimensional vectors, Xm and Ym, representing the coordinates of features of type

m found in the respective image. Then the �nal kernel is the sum of the separate

kernels:

KL(X,Y ) =
M∑
m=1

κL(Xm, Ym) (2.10)

where κL(Xm, Ym) is the pyramid match kernel of feature type m. This approach

has the advantage of maintaining continuity with the BoF paradigm. In fact, it

reduces to a standard BoF method when L = 0. Figure 2.12 shows an example of

constructing a three-level spatial pyramid.

The winning system [van de Sande et al. 2010] for object classi�cation task in

the PASCAL VOC Challenge [Everingham et al. 2010] provided some modi�cations

of the standard �spatial pyramid� method. An image is �rst divided into 1 × 1 +

2 × 2 + 1 × 3 spatial levels, as shown in Figure 2.13, one unique vocabulary is

then constructed for the whole image, and the BoF representations are computed

using this vocabulary for each spatial level, which are fused later using the extended

Gaussian kernel.

Another work [Marszalek & Schmid 2006] exploits spatial relations between fea-
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Figure 2.12: An example of constructing a three-level spatial pyramid. The image
has three feature types, indicated by circles, diamonds, and crosses. At the top, the
image is subdivided at three di�erent levels of resolution. Next, for each level of
resolution and each channel, the features that fall in each spatial bin are counted.
Finally, each spatial histogram is weighted according to its level. (example from
[Lazebnik et al. 2006])

(a) 1×1 (b) 2×2 (c) 1×3 

Figure 2.13: The spatial pyramid used in the winning system for object classi�cation
task in the PASCAL VOC Challenge (example from [van de Sande et al. 2010])
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tures by making use of object boundaries provided during supervised training. They

boost the weights of features that agree on the position and shape of the object and

reduce the weights of background features, thus suitable to solve the problem of

background clutter.

The BoF method e�ectively provides a mid-level representation which helps to

bridge the semantic gap between low-level features extracted from an image and

high-level concepts to be categorized. Its main limitation is the assumption that the

distribution of feature vectors in an image can be known a priori. The optimal size

of visual vocabulary, which is the basis of this approach, is also hard to be �xed.

Bag-of-Regions Recently, the Bag-of-Regions (BoR) representation has been

proposed and applied on several di�erent applications such as object recognition

[Gu et al. 2009], image retrieval [Hu et al. 2011] [Vieux et al. 2012] and scene clas-

si�cation [Gokalp & Aksoy 2007]. The BoR approach extends the classical BoF

method to be based not only on keypoint-based descriptors, but also on the features

extracted from image regions. After region extraction by an image segmentation

algorithm, a vast amount of di�erent visual features could be computed from im-

age regions, such as color, texture and shape, as introduced in section 2.2.1. Then,

visual vocabulary construction and histogram encoding are performed by following

the way similar to the BoF method. The �nal frequency histogram is used as the

representation of an image. An example of the BoR representation is shown in

Figure 2.14.

The BoR representation aims at using image regions because they have some

pleasant properties: (1) they encode shape and scale information of objects natu-

rally; (2) they specify the domains on which to compute various features, without

being a�ected by clutter from outside the region [Gu et al. 2009]. However, the

bottleneck of this approach lies in the di�culty of choosing a good image segmen-

tation algorithm for region extraction, because image segmentation itself is still a

very challenging problem and the results are not always satisfactory.
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Figure 2.14: An example of the BoR representation (from [Gu et al. 2009])

2.2.2.4 Gaussian Mixture Model (GMM) representation: continuous

distribution

The Gaussian Mixture Model (GMM) method models an image as a con-

tinuous distribution. [Moreno et al. 2003] and [Farquhar et al. 2005] proposed

to model an image as a single Gaussian distribution with full covariance.

However, the monomodal assumption is generally too restrictive. Therefore,

[Goldberger et al. 2003] [Vasconcelos 2004] [Vasconcelos et al. 2004] proposed to

model an image as a mixture of Gaussian distributions, generally with diagonal

covariance. Formally, a GMM is in the form:

p(x) =
K∑
k=1

πkN (x|µk,Σk)

=
K∑
k=1

πk
1

(2π)
D
2 |Σk|

1
2

exp

[
−1

2
(x− µk)TΣ−1k (x− µk)

] (2.11)

where µk and Σk are respectively mean and covariance of the k-th component of a

GMM which contains a total of K Gaussians, and D is the dimensionality of the

data. The parameters πk are called mixing coe�cients and must satisfy:

0 ≤ πk ≤ 1 together with
K∑
k=1

πk = 1 (2.12)
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The GMM method has two main shortcomings. Firstly, the robust estimation

of the GMM parameters may be di�cult as the cardinality of the vector set is

small. Secondly, it is expensive to compute the similarity between two GMMs.

Therefore, we choose the BoF method for image modelling in our work presented in

the following chapters.

2.3 Image classi�cation

In order to perform the �nal classi�cation based on image representations computed

from the extracted features, certain pattern recognition algorithms (classi�ers) are

required. There exist two main kinds of approaches in the literature for making the

�nal classi�cation: (1) generative methods and (2) discriminative methods.

Generative methods produce a probability density model over all the variables

and then adopt it to compute classi�cation functions. Di�erently, discriminative

methods directly estimate the posterior probabilities for classi�cation without att-

empting to model the underlying probability distributions.

2.3.1 Generative methods

Suppose that x is the set of features representing an image to be classi�ed, and

Cm,m = 1, . . . ,M are a set of class labels, generative methods estimate the poste-

rior probability p(Cm|x) in a probabilistic framework, according to which x will be

classi�ed into the target class. For instance, if we wish to minimize the number of

misclassi�cations, x will be assigned to the class with the largest posterior proba-

bility. According to the Bayes theorem, the posterior probability p(Cm|x) can be

expressed in the following form:

p(Cm|x) =
p(x|Cm)p(Cm)

p(x)
(2.13)

where p(Cm) is the prior probability of the class Cm, p(x|Cm) is the probability den-

sity (also called likelihood) of the class Cm, and p(x) is the probability density over

all the classes. As p(x) stays constant when considering the posterior probability
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for each class, its computation is not necessary. Moreover, if we know that the prior

probabilities are equal, or if we make this assumption, the decision can be realized

only depending on the likelihood function p(x|Cm) for each class.

The typical generative method relies on a GMM to model the distribution of

the training samples. The set of the GMM parameters can be e�ciently learned

by using the Expectation Maximization (EM) algorithm. If we consider a GMM

for modeling the speci�c class Cm, then the logarithm of the likelihood function is

given by:

ln(p(x|Cm)) = ln(p(x|µ,Σ, π)) = ln
N∏
n=1

{
K∑
k=1

πkN (xn|µk,Σk)

}

=

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

} (2.14)

where N is the number of feature vectors in x. Then, we can employ the EM

algorithm to maximize this likelihood function for the class Cm with respect to the

parameters of the GMM, according to the following steps:

1. Initialize all the parameters and compute the initial value of the logarithm of

the likelihood function.

2. Expectation step (E-step): Calculate the expected value of the logarithm

of the likelihood function under the current estimation of the parameter values:

γkn =
πkN (xn|µk,Σk)∑K
j=1 πkN (xn|µj ,Σj)

(2.15)

3. Maximization step (M-step): Re-estimate all the parameters:

µnewk =
1

Nk

N∑
n=1

γknxn (2.16)

Σnew
k =

1

Nk

N∑
n=1

γkn(xn − µnewk )(xn − µnewk )T (2.17)

πnewk =
Nk

N
(2.18)
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where Nk =
∑N

n=1 γ
k
n.

4. Evaluate the logarithm of the likelihood function ln(p(x|µ,Σ, π)) and check

for convergence of either the parameters or the logarithm of the likelihood. If

the convergence criterion is not satis�ed, return to step 2.

After the optimized GMMs for all the classes are obtained, each new sample will

be assigned to the class with the maximum value of the logarithm of the likelihood

function.

Generative methods o�er the advantage of easily adding new classes or new data

for a certain class by training the model only for the concerned class rather than

for all the classes. It can also deal with the situation of incomplete data. Its main

drawback lies in high computational cost of learning process.

2.3.2 Discriminative methods

The objective of discriminative methods is to learn the precise boundaries between

di�erent classes of samples in a multi-dimensional space (usually the feature space)

so that the classi�cation can be performed by considering the position of the im-

age projection in this space. Many discriminative classi�ers are reported in the

literature, and the kernel-based ones are the most popular.

2.3.2.1 Support Vector Machines (SVM)

Among all the kernel-based discriminative classi�ers, the Support Vector Machines

(SVM) proposed by Vanpik [Cortes & Vapnik 1995] based on his statistical learning

theory [Vapnik 1995] is the most famous and popular. SVM constructs a hyper-

plane in a high or in�nite dimensional space to linearly separate the samples from

di�erent classes for classi�cation. A good separation is achieved by constructing the

hyperplane that has the maximum distance (margin) to the nearest training data

samples of any class. Generally, the larger is the margin, the lower the generalization

error of the classi�er is. An example of good separation hyperplane is illustrated in

Figure 2.15. New samples are then mapped into the same space and predicted to a

class based on which side of the hyperplane they fall into.
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Figure 2.15: An illustration of di�erent hyperplanes: H3 does not separate two
classes; H1 does separate two classes, but with a small margin; H2 separates two
classes with the maximum margin.

Linear SVM The standard SVM is a linear classi�er for binary classi�cation

problem. Given a set of N labelled training samples (xi, yi), i = 1, . . . , N , where

xi ∈ RD are the feature vectors representing the samples with D dimensions while

yi ∈ {−1, 1} are the sample labels, SVM constructs a D−1-dimensional hyperplane

with the maximum margin in the feature space to linearly separate these samples

into two prede�ned classes, as illustrated in Figure 2.16, by solving the following

optimization problem:

min
ω,b,ξ

{
1

2
‖ω‖2 + C

N∑
i=1

ξi

}

subject to yi(ω · xi + b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0.

(2.19)

where ω is the normal vector of the hyperplane, b determines the o�set of the hyper-

plane from the origin along the normal vector ω, ξi are slack variables which measure

the degree of misclassi�cation of the datum xi, and C is the penalty parameter of

the error term which controls the penalty level of the misclassi�ed samples.
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Figure 2.16: An illustration of maximum-margin hyperplane for an SVM trained
with samples from two classes (samples on the margins are called the support vec-
tors)

For a new sample x to be classi�ed, the �nal decision function is in the form:

f(x) = sgn

{
N∑
i=1

α∗i yi(xi · x) + b∗

}
(2.20)

where α∗i and b
∗ are the optimized parameters obtained in the training process.

Non-linear SVM The original classi�cation problem for the standard SVM is

stated in a �nite dimensional space (usually the feature space). However, it often

happens that the samples to be classi�ed are not linearly separable in the original

space. For this reason, the non-linear SVM was proposed to map the samples from

the original �nite dimensional space into a higher or in�nite dimensional space, in

which these samples are supposed to be linear and the separation of them is much

easier than in the original space. To keep the computational cost reasonable, the

mapping used by the non-linear SVM is designed to ensure that the dot products

of the samples in the mapped space can be easily computed in terms of a kernel

function K(∗, ∗) in the original space.
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For the training of the non-linear SVM classi�er, the optimization problem in

the linear SVM training as equation 2.19 is changed as:

min
ω,b,ξ

{
1

2
‖ω‖2 + C

N∑
i=1

ξi

}

subject to yi(ω · φ(xi) + b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0.

(2.21)

where the training samples xi are mapped into a higher or in�nite dimensional space

by the mapping function φ.

The �nal decision function for a new sample x is thus changed as:

f(x) = sgn

{
N∑
i=1

α∗i yiK(xi, x) + b∗

}
(2.22)

where

K(xi, x) = φ(xi)
Tφ(x) (2.23)

The kernel function K(∗, ∗) in equation (2.22) is a very important factor for

the non-linear SVM to achieve a good classi�cation performance. The choice of

this kernel function and the tuning of its parameters will directly impact the �nal

results. Unfortunately, to the best of our knowledge, the selection of kernels for

a certain application is until now generally done empirically and experimentally,

or by cross-validation in some cases. The commonly used kernel functions will be

introduced in section 2.3.3.

Multi-class SVM The standard SVM is a binary classi�er, whereas many classi-

�cation problems involve multiple classes. Two common strategies are designed to

extend SVM for dealing with multi-class problems: (1) one-against-all and (2) one-

against-one. The �one-against-all� strategy constructs one SVM binary classi�er for

each class by taking the samples in the considered class as the positive samples and

all the other samples as the negative ones. The �one-against-one� strategy constructs

one SVM binary classi�er for each pair of the classes, and the �nal classi�cation is
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done in a max-wins voting way: every classi�er assigns the sample to one of the two

classes, and the vote for the assigned class is then increased by one, and the sample

is �nally classi�ed to the class with the most votes. Such strategy is adopted in

C-SVC of the popular LibSVM implementation [Chang & Lin 2001].

2.3.2.2 Multiple Kernel Learning (MKL)

The SVM classi�er only uses single kernel for solving learning problems. Recent-

ly, some studies [Lanckriet et al. 2004] [Yang et al. 2009b] [Vedaldi et al. 2009] have

demonstrated the e�ectiveness of using multiple kernels instead of a single one for

improving the classi�cation performance.

The combination of multiple kernels is de�ned as follows:

K(xi, x) =

M∑
m=1

βmKm(xi, x)

with βm ≥ 0,

M∑
m=1

βm = 1

(2.24)

whereM is the total number of kernels, and βm is the weight for each kernel which is

optimized during the training process. Each basis kernel Km can either be di�erent

kernels with di�erent parameter con�gurations or kernels computed from di�erent

sets of features. Therefore, MKL can also be interpreted as a kind of fusion technique

in certain sense. The �nal decision function of MKL is in the following form, which

is similar to the one of SVM except the combined kernels:

f(x) = sgn

{
N∑
i=1

α∗i yi

M∑
m=1

βmKm(xi, x) + b∗

}
(2.25)

where α∗i and b
∗ are the optimized parameters obtained in the training process. Here

α∗i and βm can be learned in a joint optimization problem as in [Bach et al. 2004]

[Rakotomamonjy et al. 2008].

An extension of the precedent simple MKL is presented in [Yang et al. 2009b]

and called the Group-Sensitive MKL (GS-MKL). An intermediate notion of �group�

between object categories and individual images has been introduced to the MKL
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framework to seek a trade-o� between capturing the diversity and keeping the in-

variance for each class in the training process. In GS-MKL, the weight of each kernel

βm depends not only on the corresponding kernel functions, but also on the �groups�

that two compared images belong to. Thus, the combined kernel in equation (2.24)

and the �nal decision function in equation (2.25) are respectively rewritten as:

K(xi, x) =
M∑
m=1

βc(xi)m βc(x)m Km(xi, x) (2.26)

f(x) = sgn

{
N∑
i=1

α∗i yi

M∑
m=1

βc(xi)m βc(x)m Km(xi, x) + b∗

}
(2.27)

where c(xi) and c(x) are the group indices of the sample xi and x respectively.

Although GS-MKL is shown to be very e�ective for image classi�cation accord-

ing to the experiments on several datasets [Yang et al. 2009b], the optimal way to

get the group index for each image remains debatable. The authors applied some

clustering methods, namely k-means [MacQueen 1967] and probabilistic Latent Se-

mantic Analysis (pLSA) [Hofmann 1999], to get a set of groups whose number is

manually de�ned. It remains unclear how to choose the optimal number of groups

and the corresponding clustering method.

2.3.2.3 Other typical classi�ers

Besides the kernel-based classi�ers, we brie�y present here several other typical

discriminative classi�ers.

• Multilayer Perceptron [Rosenblatt 1962]: It is a feed forward arti�cial neu-

ral network model that maps sets of input data onto a set of appropriate

output. It consists of multiple layers of nodes in a directed graph which is

fully connected from one layer to the next. The back-propagation technique

is usually used for training the network.

• Decision Tree [Quinlan 1986] [Quinlan 1993]: It is a classi�er in the form of

a tree structure, where each node is either a leaf node which indicates the class

of samples, or a decision node which speci�es some test to be carried out on a
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single attribute value, with one branch and sub-tree for each possible outcome

of the test. There are a variety of algorithms for building decision trees, such

as ID3 [Quinlan 1986] and C4.5 [Quinlan 1993].

• K-Nearest Neighbors [Cover & Hart 1967]: It is an instance-based learning

algorithm which classi�es a sample by calculating the distances between this

sample and the samples in the training set. Then, it assigns this sample to

the class that is most common among its k-nearest neighbors.

• Adaboost [Freund & Schapire 1997]: It calls a weak classi�er repeatedly in a

series of rounds t = 1, . . . , T . For each round, a weak classi�er is forced to focus

on the samples incorrectly classi�ed by the previous weak classi�er through

increasing the weights for these hard samples. Finally, a strong classi�er can

be created by linearly combining these weak classi�ers.

In conclusion, discriminative methods and generative methods are two di�erent

ways for classi�cation. Given an observed variable x and an unobserved variable

y, discriminative methods model the conditional probability distribution P (y|x),

while generative methods model their joint distribution P (x, y). For tasks such as

classi�cation or regression that do not require the joint distribution, discriminative

methods generally yield superior performance. Moreover, discriminative methods

are less computationally expensive than generative methods. Therefore, we adopt

discriminative methods, in particular SVM and MKL, to perform classi�cation in

our experiments presented in the following chapters.

2.3.3 Similarity measurement between images

An important factor for image classi�cation is how to measure the similarities be-

tween images. The resulting kernels are also important for the performance of the

kernel-based discriminative classi�ers such as SVM and MKL. According to di�erent

image representations, the similarity measurement between images can be divided

into 3 categories: (1) kernel functions for model-free approaches; (2) kernel functions

for discrete models; and (3) kernel functions for continuous models.
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2.3.3.1 Kernel functions for model-free approaches

The model-free approaches directly measure the similarity between two unordered

feature sets. Assume that we have two feature sets X = xi, i = 1, . . . , TX and

Z = zj , j = 1, . . . , TZ . The simplest approach to de�ne a similarity measurement

between such two sets is the sum of the similarities between all possible pairs of

feature vectors. Let k(∗, ∗) be a Positive Semi-De�nite kernel (PSD), the summation

kernel [Haussler 1999] is de�ned as:

KS(X,Z) =
1

TX

1

TZ

TX∑
i=1

TZ∑
j=1

k(xi, zj) (2.28)

However, its discriminative ability is compromised as all possible matchings between

features are combined with equal weights. The good matchings could be easily

swamped by the bad ones.

[Wallraven et al. 2003] and [Boughorbel et al. 2004] both proposed a matching

kernel that only considered the similarities of the best matched local features:

KM (X,Z) =
1

2

 1

TX

TX∑
i=1

max
j=1,...,TZ

k(xi, zj) +
1

TZ

TZ∑
j=1

max
i=1,...,TX

k(zj , xi)

 (2.29)

Unfortunately, the �max� operator makes this kernel non-Mercer (not PSD).

Lyu [Lyu 2005] proposed a Mercer kernel to quantify the similarities between

feature sets. The kernel is a linear combination of the p-exponentiated kernels

between local features:

K(X,Z) =
1

TX

1

TZ

TX∑
i=1

TZ∑
j=1

[k(xi, zj)]
p (2.30)

p is the kernel parameter and p > 1 gives more in�uence to good matchings.

The Earth Mover's Distance (EMD) [Rubner et al. 2000] is a similarity measure-

ment between feature sets and aims at �nding an optimal matching that would be
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required to transform one set into the other. It is de�ned as:

EMD = max
fij ,i=1,...,TX ,j=1,...,TZ

TX∑
i=1

TZ∑
j=1

k(xi, zj)fij (2.31)

subject to the following constraints:

fij ≥ 0 (2.32)

TX∑
i=1

fij ≤ 1 (2.33)

TZ∑
j=1

fij ≤ 1 (2.34)

TX∑
i=1

TZ∑
j=1

fij = min(TX , TZ) (2.35)

fij is the �ow between xi and zj . The computation of the EMD requires calcu-

lating a similarity between all pairs of components of two sets and optimizing a

transportation problem whose complexity is cubic with the number of features.

To address the computational issue, [Grauman & Darrell 2005a] made use of an

embedding of the EMD based on the work of [Indyk & Thaper 2003]. However, the

approximation su�ers from a high error when the feature dimension increases.

All the previous approaches have a high computational complexity: typically

O(TXTZ) with TX and TZ varying from a few hundreds to a few thousands.

2.3.3.2 Kernel functions for discrete models

Typically, the discrete models are the representations obtained by the Bag-of-

Features (BoF) modelling method, and therefore are in the form of histograms.

Let F and F ′ (with the same dimension n) be the histograms of two images, there

exist many di�erent kernel functions to measure the similarity between them:

• Linear: K(F, F ′) = F TF ′

• Polynomial: K(F, F ′) = (γF TF ′ + r)p, γ > 0

• Radial Basis Function (RBF): K(F, F ′) = exp(−γ‖F − F ′‖2), γ > 0
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• Sigmoid: K(F, F ′) = tanh(γF TF ′ + r)

• Chi-square: It is one of the most popular kernel functions applied for visual

object recognition task. The Chi-square (χ2) distance between F and F ′ is

�rst computed as equation (2.36):

distχ2(F, F ′) =
n∑
i=1

(Fi − F ′i )2

Fi + F ′i
(2.36)

Then, the kernel function based on this distance is computed as equa-

tion (2.37):

Kχ2(F, F ′) = e
−

1

D
distχ2 (F,F

′)
(2.37)

where D is the parameter for normalizing the distances, and is usually set to

the average value of distance between each pair of images in the training set.

• Pyramid match [Grauman & Darrell 2005b]: It works by placing a sequence

of increasingly coarser grids over the feature space and taking a weighted sum

of the number of matches that occur at each level of resolution. Let H l
F and

H l
F ′ denote the histograms of F and F ′ at the resolution l in which we have

2l bins along each dimension, l = 0, . . . , L, so that H l
F (i) and H l

F ′(i) are the

numbers of points from F and F ′ that fall into the i-th bin of the grid. Then

the number of matches at level l is given by the histogram intersection function

as follows:

I(H l
F , H

l
F ′) =

2nl∑
i=1

min(H l
F (i), H l

F ′(i)) (2.38)

if we abbreviate I(H l
F , H

l
F ′) to I l, �nally we get the pyramid match kernel:

KL(F, F ′) = IL +

L−1∑
l=0

1

2L−l
(I l − I l+1)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l

(2.39)

Here, the above γ, r, p and L are all kernel parameters.
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2.3.3.3 Kernel functions for continuous models

Generally, the continuous models are the representations obtained by the Gaussian

Mixture Model (GMM) method, and images are modeled as continuous distributi-

ons. The probabilistic kernels can be de�ned between the distributions, such as the

Probability Product Kernel (PPK) and the Kullback-Leibler Kernel (KLK).

Assume that we have two continuous distributions p and q de�ned on

the space RD (D is the dimensionality of image features). Jebara et al.

[Jebara & Kondor 2003] [Jebara et al. 2004] proposed the PPK between two dist-

ributions:

Kρ
ppk(p, q) =

∫
x∈RD

p(x)ρq(x)ρdx (2.40)

where ρ is a parameter.

The PPK has two special cases. When ρ = 1, the PPK takes the form of the

expectation of one distribution under the other. This is referred as the Expected

Likelihood Kernel (ELK):

Kelk(p, q) =

∫
x∈RD

p(x)q(x)dx = Ep[q(x)] = Eq[p(x)] (2.41)

when ρ = 1/2, it is known as the Bhattacharyya Kernel (BHA):

Kbha(p, q) =

∫
x∈RD

√
p(x)

√
q(x)dx (2.42)

The Kullback-Leibler Divergence (KLD) [Kullback 1968] is de�ned as follows:

KL(p‖q) =

∫
x∈RD

p(x) log
p(x)

q(x)
dx (2.43)

The symmetric KL (SKL) is given by:

SKL(p, q) = KL(p‖q) +KL(q‖p) (2.44)
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The KLK [Moreno et al. 2003] can then be de�ned by exponentiating the SKL:

Kklk = exp(−γSKL(p, q)) (2.45)

where γ > 0 is the kernel parameter.

2.4 Fusion strategies

The idea of �fusion� is usually adopted in the problem of multimedia data analysis

[Ayache et al. 2007]. For example, there are generally three modalities which have

to be handled in videos, namely the auditory modality, the textual modality, and

the visual modality. Thus, a fusion step is necessary to combine the results of the

analysis of each individual modalities to get the �nal results [Snoek et al. 2005]. The

same idea can also be employed in the task of visual object recognition, since di�erent

types of features usually extract information in images from di�erent aspects, which

may be complementary to each other, and thus the fusion of them may improve the

recognition performance. In order to extract comprehensive information, di�erent

types of features are computed from the same image to form several information

channels. These channels need to be fused to make the �nal decision from di�erent

information sources. There are several di�erent strategies for fusion:

• Early fusion: The features from all the channels are concatenated to build

a single feature vector, which is then fed into a classi�er for the �nal classi�-

cation.

• Late fusion: The feature from each individual channel is �rst fed into a

classi�er to get its classi�cation score, and the scores from all the channels

are then combined into the �nal score according to a certain criterion, such as

mean, max, min, and weighted sum. Suppose Si, i = 1, . . . , N represent the

scores from N individual channels, the �nal score Sfusion can be obtained as

follows:

- Mean: Sfusion = 1
N

∑N
i=1 Si
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Figure 2.17: A comparison of early and late fusion strategies: (a) early fusion; (b)
late fusion

- Max: Sfusion = max(S1, . . . , SN )

- Min: Sfusion = min(S1, . . . , SN )

- Weighted sum: Sfusion = 1
N

∑N
i=1(ωi ∗ Si), where ωi is the weight for

the i-th channel.

• Intermediate fusion: As we stated in section 2.3.2.2, the Multiple Kernel

Learning (MKL) method can also be interpreted as a kind of fusion technique.

Di�erent from both early and late fusion, MKL combines di�erent features in

the kernel level, and thus can be considered as a intermediate fusion strategy.

A comparison of early and late fusion strategies is illustrated in Figure 2.17.
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2.5 Conclusions

In this chapter, a review of main approaches proposed in the literature for visual

object recognition is presented. In particular, more attention is paid to the feature &

classi�er based approaches, because they have become the most popular framework

for object recognition and classi�cation tasks nowadays. Typically, this kind of

approach consists of three steps: (1) extraction of image features (global or local); (2)

image representation (or modelling); and (3) image classi�cation (machine learning)

algorithms. The popular methods adopted for each of these steps are reviewed

in detail respectively. Moreover, several fusion strategies for combining di�erent

features are also introduced.

We apply the feature & classi�er based approach for object recognition in

this thesis, and we believe that the visual description (features) of images is a

key step. Parikh and Zitnick have recently con�rmed this point in their work

[Parikh & Zitnick 2010]. Through statistical analysis on three main factors for visu-

al recognition: (1) features; (2) amount of training data; and (3) learning algorithms,

they have found that the main factor impacting the performance is the choice of

features. Therefore, the following chapters of this thesis will focus on the visual

description of images, and will propose several e�ective and e�cient visual features

for object recognition. Regarding to the other steps including image modelling and

classi�cation algorithms, we apply the most popular techniques such as the Bag-of-

Features modelling and the SVM classi�er.
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In this chapter, we introduce several standard datasets and popular benchmarks

available in computer vision community for object recognition and image / video

classi�cation tasks. Some of them will be used to carry out experiments in the

following chapters.

3.1 PASCAL VOC

The PASCAL Visual Object Classes (VOC) challenge 1 consists of two components:

(1) a publicly available dataset of images and annotations, together with standard

evaluation procedures; and (2) an annual competition and workshop. Organized

annually from 2005 to present, this challenge and its associated dataset has become

accepted in computer vision and machine learning communities as a benchmark for

visual object recognition and detection [Everingham et al. 2010].

1Website: http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Chapter 3. Datasets and Benchmarks

The goal of this challenge is to recognize objects from a number of visual object

classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a

supervised learning problem in that a training set of labelled images is provided.

The number of object classes considered was only 4 in the starting year of 2005, and

then increased to 10 in 2006, and has further increased to 20 since 2007. The object

classes that have been selected are:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

There are two principal challenge tasks:

• Classi�cation: For each of the twenty classes, predicting presence / absence

of an example of that class in the test image.

• Detection: Predicting the bounding box and label of each object from the

twenty target classes in the test image.

We participated in the PASCAL VOC challenge in 2009, 2010 and 2011. A brief

introduction of our participation can be found in Appendix A.

Besides the challenge organized in each year, the PASCAL VOC 2007 dataset

[Everingham et al. 2007] has become a standard benchmark for evaluating object

recognition and detection algorithms, because all the annotations were made avail-

able in 2007 by the organizers but since then they have not made the test annotations

publicly available. The PASCAL VOC 2007 dataset contains nearly 10 000 images

of 20 object classes, which contain di�erent number of images, from hundreds to

thousands. The dataset is divided into a prede�ned training set (2501 images), val-

idation set (2510 images) and test set (4952 images). The mean average precision

(MAP) across all the classes is used as the evaluation criterion. Average precision

(AP) measures the area under the precision-recall curve for each class, and a good
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Table 3.1: Some state-of-the-art results achieved on the PASCAL VOC 2007
dataset in the literature ([1]: [Wang et al. 2009b]; [2]: [Khan et al. 2009];
[3]: [Marszalek et al. 2007]; [4]: [Yang et al. 2009b]; [5]: [Harzallah et al. 2009];
[6]: [Zhou et al. 2010]; [7]: [Perronnin et al. 2010]; [8]: [Wang et al. 2010]; [9]:
[Chat�eld et al. 2011])

AP (%) [1] [2] [3] [4] [5] [6] [7] [8] [9]

airplane 65.0 65.0 77.5 79.4 77.2 79.4 75.7 74.8 79.0
bicycle 44.3 48.0 63.6 62.4 69.3 72.5 64.8 65.2 67.4
bird 48.6 44.0 56.1 58.5 56.2 55.6 52.8 50.7 51.9
boat 58.4 60.0 71.9 70.2 66.6 73.8 70.6 70.9 70.9
bottle 17.8 20.0 33.1 46.6 45.5 34.0 30.0 28.7 30.8
bus 46.4 49.0 60.6 62.3 68.1 72.4 64.1 68.8 72.2
car 63.2 70.0 78.0 75.6 83.4 83.4 77.5 78.5 79.9
cat 46.8 49.0 58.8 54.9 53.6 63.6 55.5 61.7 61.4
chair 42.2 50.0 53.5 63.8 58.3 56.6 55.6 54.3 56.0
cow 29.6 32.0 42.6 40.7 51.1 52.8 41.8 48.6 49.6
table 20.8 39.0 54.9 58.3 62.2 63.2 56.3 51.8 58.4
dog 37.7 40.0 45.8 51.6 45.2 49.5 41.7 44.1 44.8
horse 66.6 72.0 77.5 79.2 78.4 80.9 76.3 76.6 78.8
motor 50.3 59.0 64.0 68.1 69.7 71.9 64.4 66.9 70.8
person 78.1 81.0 85.9 87.1 86.1 85.1 82.7 83.5 85.0
plant 27.2 32.0 36.3 49.5 52.4 36.4 28.3 30.8 31.7
sheep 32.1 35.0 44.7 48.8 54.4 46.5 39.7 44.6 51.0
sofa 26.8 42.0 50.6 56.4 54.3 59.8 56.6 53.4 56.4
train 62.8 68.0 79.2 75.9 75.8 83.3 79.7 78.2 80.2
monitor 33.3 49.0 53.2 54.4 62.1 58.9 51.5 53.5 57.5

mean 44.9 50.2 59.4 62.2 63.5 64.0 58.3 59.3 61.7

AP value requires both high recall and high precision values. A detailed introduc-

tion of AP and MAP can be found in [Zhu 2004]. Some example images from each

category are shown in Figure 3.2, and some state-of-the-art results achieved on this

dataset in the literature are presented in Table 3.1.

3.2 Caltech 101

The Caltech 101 dataset 2 [Li et al. 2007] contains a total of 9146 images, split into

101 di�erent object classes (including airplanes, animals, faces, vehicles, chairs, �ow-

ers, pianos, etc.) and an additional background category. The number of images in

2Website: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Table 3.2: Some state-of-the-art results (%) achieved on the Caltech 101 dataset in
the literature

hhhhhhhhhhhhhhhhhMethod
Training Images

5 10 15 20 25 30

[Zhang et al. 2006] 46.6 55.8 59.1 62.0 � 66.2
[Lazebnik et al. 2006] � � 56.4 � � 64.6
[Gri�n et al. 2007] 44.2 54.5 59.0 63.3 65.8 67.6
[Boiman et al. 2008] 56.9 � 72.8 � � 79.1
[Jain et al. 2008] � � 61.0 � � 69.1
[Yang et al. 2009a] � � 67.0 � � 73.2
[Wang et al. 2010] 51.2 59.8 65.4 67.7 70.2 73.4
[Gehler & Nowozin 2009] 54.2 65.0 70.4 73.6 75.7 77.8
[Yang et al. 2009b] � 65.1 73.2 80.1 82.7 84.3

each category varies from 31 to 800, and most categories have about 50 images. The

dataset is not divided into a prede�ned training set and test set, and the common

strategy for experiments is to randomly select (5,10,15,20,25,30) number of images

from each class for training and the rest images for test. The average classi�cation

accuracy across all the classes is used as the evaluation criterion. Figure 3.1 shows

some example images from the dataset, and Table 3.2 presents some state-of-the-art

results achieved on this dataset in the literature.

3.3 ImageNet

ImageNet 3 [Deng et al. 2009] is a large scale image dataset organized according

to the WordNet [Fellbaum 1998] hierarchy. Each meaningful concept in WordNet,

possibly described by multiple words or word phrases, is called a �synonym set� or

�synset�. There are more than 100,000 synsets in WordNet, and majority of them

are nouns (80,000+). The aim of ImageNet is to provide on average 1000 images

to illustrate each synset. Images of each concept are quality-controlled and human-

annotated. Currently, ImageNet contains about 15 millions of images for more than

20,000 synsets, and the number of images with bounding box annotations is more

than 1 million. In its completion, ImageNet will o�er tens of millions of cleanly

sorted images for most of the concepts in the WordNet hierarchy.

3Website: http://www.image-net.org/
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Starting from 2010, the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) is organized based on a subset of ImageNet dataset. The aim of this

competition is to estimate the content of images for the purpose of retrieval and

automatic annotation. The general goal is to identify the main objects present

in images. Given a subset of ImageNet for training and a set of images with no

annotation for test, algorithms will have to produce labels specifying what objects

are present in the images. In ILSVRC 2011, 1000 object categories are selected

for recognition, and the training set contains 1.2 million images. The number of

images included in the validation and test set are 50,000 and 100,000 respectively.

Figure 3.5 shows some example images from the dataset for each of 1000 categories.

3.4 ImageCLEF

ImageCLEF 4 launched in 2003 as part of the Cross Language Evaluation Forum

(CLEF) with the goal of providing an evaluation forum for the cross-language an-

notation and retrieval of images. Motivated by the need to support multilingual

users from a global community accessing the growing amount of visual information,

ImageCLEF aims to support the advancement of the �eld of visual media analysis,

indexing, classi�cation and retrieval by developing the necessary infrastructure for

the evaluation of visual information retrieval systems operating in both monolin-

gual, cross-language and language-independent contexts. There are four main tasks

in ImageCLEF:

• Photo Annotation

• Medical Retrieval

• Plant Identi�cation

• Wikipedia Retrieval

Among these tasks, photo annotation (also called visual concept detection and

annotation) is closely related to object recognition. It aims at automatically an-

notating a large number of consumer photos with multiple annotations. The task

4Website: http://www.imageclef.org/
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can be solved by following three di�erent approaches: (1) visual information only;

(2) Flickr user tags only; and (3) Multi-modal approaches combining visual infor-

mation and Flickr user tags. The task uses a subset of the MIR Flickr 1 million

image dataset for the annotation challenge. In ImageCLEF 2011, the training set

consists of 8,000 photos annotated with 99 visual concepts, which describe the scene

(indoor, outdoor, landscape, etc.), depicted objects (car, animal, person, etc.), the

representation of image content (portrait, gra�ti, art), events (travel, work, etc.),

quality issues (overexposed, underexposed, blurry, etc.) or sentiments (happy, ac-

tive, funny, etc.). The test set consists of 10,000 photos with EXIF data and Flickr

user tags. The evaluation is conducted by the interpolated Average Precision and

the example-based F-measure.

3.5 SIMPLIcity

The SIMPLIcity dataset [Wang et al. 2001] is a subset of the COREL image

database. It contains totally 1000 images, which are equally divided into 10 dif-

ferent categories: African people, beach, building, bus, dinosaur, elephant, �ower,

horse, mountain and food. Half of the images are randomly chosen for training and

the other half images are for test. The average classi�cation accuracy is used as the

evaluation criterion. Some example images from the dataset are shown in Figure 3.3.

3.6 OT Scene

The dataset from Oliva and Torralba [Oliva & Torralba 2001] is denoted as the OT

scene dataset. It consists of 2688 color images from 8 scene categories: coast (360

samples), forest (328 samples), mountain (374 samples), open country (410 samples),

highway (260 samples), inside city (308 samples), tall building (356 samples) and

street (292 samples). Half of the images are randomly chosen for training and the

other half are for test. The average classi�cation accuracy is used as the evaluation

criterion. Figure 3.4 shows some example images from the dataset for each category.
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3.7 TRECVID

The TREC Video Retrieval Evaluation (TRECVID) challenge 5

[Smeaton et al. 2006] is organized annually by the National Institute of Stan-

dards and Technology (NIST) from 2001, and has become a popular and also

very challenging benchmark in video domain. The main goal of this challenge

is to promote progress in content-based analysis and retrieval from digital video

via open, metrics-based evaluation. TRECVID uses video data of more than 400

hours from a small number of known professional sources � broadcast news, TV

programs, and surveillance systems. These videos are characterized by a high

degree of diversity in creator, content, style, production qualities, original collection

device, language, etc. In TRECVID, the following tasks are evaluated:

• Semantic indexing

• Known-item search

• Event detection

• Instance search

• Content-based copy detection

Among these tasks, the semantic indexing task is closely related to object recog-

nition. Its aim is to automatically analyze the meaning conveyed by videos and tag

video segments (shots) with semantic concept labels. More precisely, given the test

collection, master shot reference, and concept de�nitions, participants are required

to return for each concept a list of at most 2000 shot IDs from the test collection

ranked according to the possibility of detecting the concept. In TRECVID 2011,

there are totally 346 concepts. The test set includes 200-hour video data with du-

rations between 10 seconds and 3.5 minutes, while the development set contains

400-hour video data with durations just longer than 3.5 minutes. The mean ex-

tended inferred average precision (mean xinfAP) [Yilmaz et al. 2008] is used as the

evaluation criterion.

5Website: http://trecvid.nist.gov/
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Table 3.3: Attribute summary of main datasets and benchmarks available for ob-
ject/concept recognition

Dataset Domain Type Class Train Val. Test

PASCAL VOC 2007 Image Object 20 2501 2510 4952
Caltech 101 Image Object 101 510-3060 � the rest
ImageNet 2011 Image Object 1000 1.2M 50K 100K
ImageCLEF 2011 Image Concept 99 8K � 10K
SIMPLIcity Image Object 10 500 � 500
OT Scene Image Scene 8 1344 � 1344
TRECVID 2011 Video Concept 346 400hour � 200hour

We participated in the TRECVID challenge in 2011. A brief introduction of our

participation can be found in Appendix A.

The attributes of the presented datasets and benchmarks are summarized in Ta-

ble 3.3, including the domain (image or video), type of recognition (object, concept,

etc.), number of classes to be identi�ed, and scale of data for training, validation

and test respectively.
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Figure 3.1: Example images of the Caltech 101 dataset

Aeroplane         Bicycle             Bird               Boat              Bottle               Bus                 Car 

      Cat               Chair              Cow          Dining table        Dog               Horse         Motorbike 

   Person        Potted plant        Sheep              Sofa              Train        TV/monitor 

Figure 3.2: Example images of the PASCAL VOC 2007 dataset
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African people beach building bus dinosaur 

elephant flower horse mountain food 

Figure 3.3: Example images of the SIMPLIcity dataset

coast forest highway inside city 

mountain open country street tall building 

Figure 3.4: Example images of the OT Scene dataset
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Figure 3.5: Example images of the ImageNet dataset
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4.1 Introduction

The Local Binary Pattern (LBP) operator [Ojala et al. 2002b] is a computationally

e�cient yet powerful texture feature. It was �rstly introduced as a complementary

measure for local image contrast [Ojala et al. 1996]. The histogram of the binary

patterns computed over a region is generally used for texture description. It can be

seen as a uni�ed approach to statistical and structural texture analysis. The LBP

operator describes each pixel by the relative gray levels of its neighboring pixels.

Figure 4.1 illustrates the calculation of the LBP code for one pixel with 8 neighbors.

Precisely, for each neighboring pixel, the result will be set to one if its value is no less
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Figure 4.1: Calculation of the original LBP operator

than the value of the central pixel, otherwise the result will be set to zero. The LBP

code of the central pixel is then obtained by multiplying the results with weights

given by powers of two, and summing them up together. The �nal LBP feature of

an image is generally distribution-based and consists of computing the LBP code

for each pixel within the image and building a histogram based on these codes. It

can be noticed that the LBP feature is very fast to calculate, and is invariant to

monotonic illumination changes.

Because of its computational simplicity, and strong descriptive power for

analyzing both micro and macro texture structures, the LBP feature has

been successfully applied to many applications as diverse as texture classi-

�cation [Mäenpää et al. 2000a] [Mäenpää et al. 2000b] [Ojala et al. 2002b], tex-

ture segmentation [Ojala & Pietikäinen 1999], face recognition [Ahonen et al. 2004]

[Ahonen et al. 2006] and facial expression recognition [Zhao & Pietikäinen 2007]

[Shan et al. 2009]. However, it has been rarely used in the domain of visual object

recognition 1. We hold that main reasons lie in two aspects. On one hand, the LBP

feature ignores all color information (its calculation is based on gray image), while

color is an important clue for distinguishing objects, especially in natural scenes.

On the other hand, there can be various changes in lighting and viewing conditions

in real-world scenes, leading to large illumination variations of object's appearance,

which further complicate the recognition task. According to its de�nition, the LBP

1at the time when we started our work in 2008, while being more popular now
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feature is only invariant to gray-level monotonic light changes, and thus is de�cient

in power to deal with the mentioned variations.

Therefore, in order to incorporate color information, as well as to enhance the

discriminative power and the photometric invariance property of the original LBP,

we propose, in this chapter, six multi-scale color LBP features which are more

suitable for visual object recognition task. The performances of the proposed fea-

tures are analyzed experimentally using the PASCAL VOC 2007 image benchmark

[Everingham et al. 2007].

4.2 Model analysis for illumination changes

Changes in illumination can be expressed by the diagonal model as equation (4.1)

and the diagonal-o�set model as equation (4.2), where u and c represent respectively

the values before and after illumination transformation:
Rc

Gc

Bc

 =


a 0 0

0 b 0

0 0 c




Ru

Gu

Bu

 (4.1)


Rc

Gc

Bc

 =


a 0 0

0 b 0

0 0 c




Ru

Gu

Bu

+


O1

O2

O3

 (4.2)

Based on these two models, di�erent kinds of illumination changes can be ex-

pressed as follows [van de Sande et al. 2010]:

Light intensity change. Image values change by a constant factor in all chan-

nels (a = b = c): 
Rc

Gc

Bc

 =


a 0 0

0 a 0

0 0 a




Ru

Gu

Bu

 (4.3)

Light intensity shift. Image values change by an equal o�set in all channels
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(a = b = c = 1, O1 = O2 = O3):
Rc

Gc

Bc

 =


Ru

Gu

Bu

+


O1

O1

O1

 (4.4)

Light intensity change and shift. Image values change by combining two

kinds of change above:


Rc

Gc

Bc
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
a 0 0

0 a 0

0 0 a



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Bu

+


O1

O1

O1

 (4.5)

Light color change. Image values change in all channels independently (a 6=

b 6= c), as equation (4.1).

Light color change and shift. Image values change in all channels indepen-

dently with arbitrary o�sets (a 6= b 6= c and O1 6= O2 6= O3), as equation (4.2).

4.3 Color LBP features and their properties

In order to incorporate color information into the original LBP, as well as to en-

hance its discriminative power and photometric invariance property for dealing with

di�erent kinds of illumination changes as described in section 4.2, six color LBP fea-

tures are proposed in this chapter. The main idea is to calculate the original LBP

operator independently over di�erent channels of a certain color space, and then

concatenate the resulting histograms to get the �nal color LBP feature, as shown in

Figure 4.2.

The RGB, HSV , and OPPONENT color spaces are chosen for calculating

color LBP features because of their own characteristics. RGB is the most popular

color space used in electronic systems for sensing, representation and display of

images. It uses additive color mixing with primary colors of red, green and blue to

reproduce a broad array of colors. HSV color space rearranges the geometry of RGB

so that it could be more relevant to human perception, because it is more natural
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Figure 4.2: Calculation of color LBP feature

to think about a color in terms of hue and saturation than in terms of additive color

components. OPPONENT color space is constructed to be consistent with human

visual system, because it proves more e�cient for human visual system to record

di�erences between responses of cones, rather than each type of cone's individual

response. Details of the proposed color LBP features and their properties are listed

as follows:

RGB-LBP. This feature is obtained by computing LBP over all three channels

of the RGB color space. It is invariant to monotonic light intensity change due to

the property of the original LBP, and has no additional invariance properties.

nRGB-LBP. This feature is obtained by computing LBP over both r and g

channels of the normalized RGB color space as equation (4.6) (b channel is redun-

dant because r + g + b = 1):

 r

g

 =

 R/(R+G+B)

G/(R+G+B)

 (4.6)

81



Chapter 4. Multi-scale Color Local Binary Patterns for Object
Recognition

Due to the normalization, the change factors can be cancelled out if they are constant

in all channels. This is proven as equation (4.7) (Let a be the constant factor):

 r

g

 =

 R/(R+G+B)

G/(R+G+B)

 =

 aR′/(aR′ + aG′ + aB′)

aG′/(aR′ + aG′ + aB′)


=

 aR′/a(R′ +G′ +B′)

aG′/a(R′ +G′ +B′)

 =

 R′/(R′ +G′ +B′)

G′/(R′ +G′ +B′)

 (4.7)

Therefore, r and g channels are scale-invariant, which make this feature invariant

to light intensity change as equation (4.3).

OPPONENT-LBP. This feature is obtained by computing LBP over all three

channels of the OPPONENT color space as equation (4.8):


O1

O2

O3

 =


(R−G)/

√
2

(R+G− 2B)/
√

6

(R+G+B)/
√

3

 (4.8)

Due to the subtraction in channel O1 and O2, the change o�sets can be cancelled

out if they are equal in all channels. This is proven as equation (4.9) (Let a be the

equal o�set):

 O1

O2

 =

 (R−G)/
√

2

(R+G− 2B)/
√

6


=

 ((R′ + a)− (G′ + a))/
√

2

((R′ + a) + (G′ + a)− 2(B′ + a))/
√

6


=

 (R′ −G′)/
√

2

(R′ +G′ − 2B′)/
√

6


(4.9)

Therefore, O1 and O2 channels are invariant to light intensity shift as equation (4.4).

O3 channel represents the intensity information, and has no invariance properties.

nOPPONENT-LBP. This feature is obtained by computing LBP over two
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channels of the normalized OPPONENT color space as equation (4.10):

 O′1

O′2

 =

 O1
O3

O2
O3

 =

 √
3(R−G)√

2(R+G+B)

R+G−2B√
2(R+G+B)

 (4.10)

Due to the normalization by intensity channel O3, O
′
1 and O′2 channels are scale-

invariant, which make this feature invariant to light intensity change as equa-

tion (4.3).

Hue-LBP. This feature is obtained by computing LBP over the Hue channel

of the HSV color space as equation (4.11):

Hue = arctan(
O1

O2
) = arctan(

√
3(R−G)

R+G− 2B
) (4.11)

Due to the subtraction and the division, Hue channel is scale-invariant and shift-

invariant, therefore this feature is invariant to light intensity change and shift as

equation (4.5).

TC-LBP. This feature is obtained by computing LBP over all three channels of

the transformed color space as equation (4.12) (µ is the mean and σ is the standard

deviation of each channel):


R′

G′

B′

 =


(R− µR)/σR

(G− µG)/σG

(B − µB)/σB

 (4.12)

Due to the subtraction and the normalization, all three channels are scale-invariant

and shift-invariant, which make this feature invariant to light intensity change and

shift as equation (4.5). Furthermore, because each channel is operated independent-

ly, this feature is also invariant to light color change and shift as equation (4.2).

4.4 Multi-scale color LBP features

Another big limitation of the original LBP operator is that it only covers a �xed

small neighborhood area (8 neighboring pixels as default), and thus can only get
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P=8, R=1.0 P=12, R=1.5 P=16, R=2.0 

Figure 4.3: Multi-scale LBP operator

very limited local information. In order to obtain more local information by covering

larger neighborhood area with di�erent size, and therefore to increase its discrimi-

native power, multi-scale LBP operator [Ojala et al. 2002b] is applied by combining

di�erent LBP operators which use a circular neighborhood with di�erent radius and

di�erent number of neighboring pixels. Figure 4.3 gives an example.

Formally, the LBP code of the pixel at (xc, yc) is calculated according to the

following equation:

LBPP,R(xc, yc) =
P−1∑
p=0

S(gp − gc)× 2p (4.13)

S(x) =


1 x ≥ 0

0 x < 0

(4.14)

where gc is the value of the central pixel, gp corresponds to the gray values of the

P neighboring pixels equally located on a circle of radius R.

Therefore, the �nal multi-scale color LBP features can be obtained by extending

color LBP features proposed in section 4.3 to their corresponding multi-scale forms

respectively. By doing this, the proposed features are not only invariant to di�erent

illumination changes, but also scale-invariant to a certain extent.
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Image 

LBP Histogram 

Final Histogram 

LBP Histogram 

Figure 4.4: Computing color LBP features within image blocks

4.5 Computing color LBP features within image blocks

Usually, an image can be represented as a single histogram computed by applying

each of the proposed color LBP features over the whole image. However, this only

encodes the occurrences of the texture structures in images without any information

about their locations.

Therefore, in order to include the coarse spatial relations of the texture struc-

tures, we equally divide an image into M ×M non-overlapping blocks within which

an LBP histogram is computed. The �nal LBP feature of the whole image is then

the concatenation of the LBP histograms computed within all the blocks, as shown

in Figure 4.4.

By changing the number of blocks dividing an image, we can obtain di�erent

levels of spatial information. Usually, the more blocks we divide, the more detailed

spatial information we could obtain, and maybe the better recognition performance

we could get. On the other hand, more number of blocks means larger feature

vector dimensions, and more requirements for storage and computation cost. So

the number of blocks should be chosen carefully as a trade-o� between recognition

performance and feature vector size.

We apply a coarse-to-�ne strategy to evaluate the performances of the proposed

color LBP features under di�erent number of blocks. We found that �ner division

85



Chapter 4. Multi-scale Color Local Binary Patterns for Object
Recognition

gives better results until a peak reaches. And the features from di�erent levels of

division are not completely redundant, since combining them can further boost the

recognition performance. The detailed analysis is given in section 4.6.2.3.

4.6 Experimental evaluation

The PASCAL VOC 2007 image benchmark [Everingham et al. 2007] is used to eval-

uate the performances of the proposed color LBP features. Its detailed introduction

can be found in section 3.1. All the images in this dataset are taken from real-world

scenes under variant lighting conditions, which makes it very suitable for evaluating

the proposed features.

4.6.1 Experimental Setup

The same multi-scale con�guration, as shown in Figure 4.3, is applied for all the

proposed color LBP features: 8 neighboring pixels with radius 1, 12 neighboring

pixels with radius 1.5, and 16 neighboring pixels with radius 2.

Three widely-used texture features are chosen to make comparisons, in-

cluding: Gabor �lters [Zhang et al. 2000], Grey Level Co-occurrence Ma-

trix (GLCM) [Tuceryan & Jain 1998], and Texture Auto-Correlation (TAC)

[Tuceryan & Jain 1998]. A detailed introduction of these features can be found

in section 2.2.1. For Gabor �lters, 5 scales and 8 orientations are used. For GLCM,

4 directions (horizontal, vertical and two diagonals) with 1 o�set between two pixels

are considered. For TAC, (0,2,4,6,8) are applied as position di�erence in both x and

y directions.

The Support Vector Machine (SVM) algorithm is applied for classi�cation. An

introduction of SVM can be found in section 2.3.2.1. Here the LibSVM implemen-

tation [Chang & Lin 2001] is used. Once all the features are extracted from the

dataset, the Chi-square (χ2) kernel is computed as equation (2.36) and (2.37) for

the SVM training and prediction. The Chi-square (χ2) kernel is chosen for SVM

because it is very suitable for computing similarities between features in terms of

histogram, and has been proven to outperform other popular kernels such as linear,
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Figure 4.5: Comparison of the proposed multi-scale color LBP features and the
original LBP (�m-s� is the abbreviation of �multi-scale�)

quadratic and RBF (Radial Basis Function) [Zhang et al. 2007]. Finally, for each

category, the precision-recall curve is plotted according to the output decision values

of the SVM classi�er, and the AP (Average Precision) value is computed based on

the proportion of the area under this curve. We train the classi�er on the training

set, then tune the parameters on the validation set, and obtain the classi�cation

results on the test set.

4.6.2 Experimental Results

4.6.2.1 Comparison with the original LBP

The proposed multi-scale color LBP features are �rst compared with the original

LBP with 8 nearest neighbors.

From the results shown in Figure 4.5, it can be seen that intensity-based multi-

scale LBP outperforms the original LBP by 14.1%, proving the importance of ob-

taining more local information and invariance to scaling. The proposed multi-scale

color LBP features all further outperform intensity-based multi-scale LBP, with the

improvements from 2.5% to 10.2% (17.0% to 25.8% if compared with the original

LBP), which proves that the proposed features truly have more discriminative pow-

er bene�tting from color information and the additional properties of illumination
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Figure 4.6: Comparison of the proposed multi-scale color LBP features and other
popular texture features (�m-s� is the abbreviation of �multi-scale�)

invariance.

It also can be noticed that among these features, Hue-LBP, OPPONENT-LBP

and nOPPONENT-LBP have the best overall performance (improvement over 6%

than intensity-based multi-scale LBP and over 20% than the original LBP), consis-

tent with their strong properties of illumination invariance.

4.6.2.2 Comparison with other popular texture features

As one kind of texture feature, the best three multi-scale color LBP features are also

compared with other popular texture features, including Gabor, GLCM and TAC.

From the results shown in Figure 4.6, it can be seen that the original LBP already

outperforms other popular texture features, proving its superior ability of describing

texture structures. The best three multi-scale color LBP features further improve

the performances to almost double of the other texture features, demonstrating

their strong discriminative power which bene�ts from the properties of illumination-

invariant and scale-invariant.

4.6.2.3 In�uence of image division strategy

The proposed multi-scale color LBP features are then evaluated under di�erent

image division strategies. For the number of blocks in images, we equally divide
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Table 4.1: Mean Average Precision (MAP) of the proposed multi-scale color LBP
features under di�erent image division strategies (�m-s� is the abbreviation of �multi-
scale�)

XXXXXXXXXXXFeature
Block(s)

1× 1 2× 2 3× 3 4× 4 5× 5 Fusion

LBP(original) 0.283 0.340 0.363 0.360 0.358 0.379
LBP(m-s) 0.323 0.346 0.374 0.365 0.361 0.403
RGB-LBP(m-s) 0.335 0.355 0.380 0.373 0.370 0.414
nRGB-LBP(m-s) 0.331 0.350 0.378 0.370 0.368 0.410
Hue-LBP(m-s) 0.356 0.374 0.392 0.385 0.380 0.425
TC-LBP(m-s) 0.334 0.353 0.380 0.374 0.370 0.415
OPPONENT-LBP(m-s) 0.351 0.370 0.390 0.382 0.378 0.424
nOPPONENT-LBP(m-s) 0.344 0.365 0.386 0.380 0.375 0.421

each image into 1 × 1, 2 × 2, . . . , 5 × 5 non-overlapping blocks, and extract the

proposed features respectively.

From the results shown in Table 4.1, it can be seen that extracting the proposed

features within image blocks instead of the whole image is a simple, but e�cient

and e�ective way to improve their recognition performances. When the number

of blocks increases from 1 × 1 to 2 × 2, the improvements of the MAP values are

20.1% for the original LBP, 7.1% for intensity-based multi-scale LBP, and 5.1% to

6.1% for multi-scale color LBP features respectively. When the number of blocks

increases from 2 × 2 to 3 × 3, the improvements of the MAP values are 6.8% for

the original LBP, 8.1% for intensity-based multi-scale LBP, and 4.8% to 8.0% for

multi-scale color LBP features respectively. Then the MAP values start to decrease

if the number of blocks continues to increase. This may be because the important

texture structures of objects are broken into pieces if the block size is too small.

Therefore, 3×3 could be an appropriate number of blocks for the proposed features

with good performance and relatively low dimensions.

Furthermore, we found that the features from di�erent levels of division are not

completely redundant, since fusing them can further boost the recognition perfor-

mance. The MAP values improve, after fusion of the features from all the �ve levels,

4.4% for the original LBP, 7.8% for intensity-based multi-scale LBP, and 8.4% to

9.2% for multi-scale color LBP features respectively.
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Table 4.2: Fusion of di�erent color LBP features in 3 × 3 blocks (�m-s� is the
abbreviation of �multi-scale�)

Feature Mean Average Precision (MAP)

Hue-LBP(m-s) 0.392
OPPONENT-LBP(m-s) 0.390
nOPPONENT-LBP(m-s) 0.386
Fusion 0.411

4.6.2.4 Fusion of di�erent color LBP features

It is also worthy to notice that from the results shown in Table 4.2, further im-

provement (about 5%) on performance can be obtained by fusing the best three

multi-scale color LBP features, proving that di�erent color LBP features can pro-

vide complementary information to each other, and the fusion of them can boost

the recognition performance.

4.7 Conclusions

In this chapter, we propose six multi-scale color LBP features to deal with the

main shortcomings of the original LBP, namely de�ciency of color information and

sensitivity to non-monotonic lighting condition changes. The proposed features not

only have more discriminative power by obtaining more local information, but also

possess invariance properties to di�erent lighting condition changes. They also keep

the advantage of computational simplicity from the original LBP. In addition, we

apply a coarse-to-�ne image division strategy for calculating the proposed features

within image blocks in order to encode spatial information of texture structures,

thereby further improving their performances. The experimental results on the

PASCAL VOC 2007 image benchmark prove that the proposed features can gain

signi�cant improvement on recognition accuracy, and thus are promising for real-

world object recognition tasks.
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5.1 Introduction

Machine-based automatic object recognition and scene classi�cation is one of the

most challenging problems in computer vision. The di�culties are mainly due to

intra-class variations and inter-class similarities. Therefore, a key issue and the

�rst important step when solving such problems is to generate good visual content

descriptions, which should be both discriminative and computationally e�cient,

while possessing some properties of robustness to changes in viewpoint, scale and

lighting conditions.

Local image descriptors have received a lot of attention in recent years, and have

already gained the popularity and dominance in image analysis and understanding

tasks nowadays. Many di�erent local descriptors have been proposed in the lit-

erature (see section 2.2.2.2 for a more detailed introduction). Several comprehen-

sive studies on local descriptors [Mikolajczyk & Schmid 2005] [Zhang et al. 2007]

[Li & Allinson 2008] have shown that distribution-based descriptors perform sig-

ni�cantly better than other features, and achieve the best results in tasks as di-

verse as image region matching, texture classi�cation, object recognition and scene

classi�cation. Among them, SIFT [Lowe 2004] is considered as the most powerful

and successful one, and has been widely applied as the dominant feature in the

state-of-the-art recognition / classi�cation systems [Everingham et al. 2010]. More-

over, since SIFT is an intensity-based descriptor without any color information,

several color SIFT descriptors have been proposed [Abdel-Hakim & Farag 2006]

[Bosch et al. 2008] [van de Weijer et al. 2006] [Burghouts & Geusebroek 2009] to

enhance its discriminative power. In [van de Sande et al. 2010], the authors evalu-

ated di�erent color descriptors in a structured way, and recommended to use color

SIFT descriptors for object and scene recognition because they outperform the or-

iginal SIFT. However, the downside of color SIFT descriptors is their high compu-

tational cost, especially when the size of image or the scale of dataset signi�cantly

increases. Therefore, it is highly desirable that local image descriptors o�er both

high discriminative power and computational e�ciency.

The Local Binary Pattern (LBP) operator [Ojala et al. 2002b] introduced in

92



Chapter 5. Image Region Description Using Orthogonal Combination
of Local Binary Patterns Enhanced with Color Information

chapter 4 is a well known texture feature which has been successfully applied to

many applications. It has several interesting properties. First of all, it is simple and

fast to compute. Moreover, it o�ers strong discriminative power for the descrip-

tion of texture structure while staying robust to monotonic lighting changes. All

these advantages make LBP a good candidate for describing local image regions.

However, the LBP operator tends to produce high dimensional feature vectors, es-

pecially when the number of considered neighboring pixels increases. The so-called

�curse of dimensionality� is a barrier for using it directly as a local region descriptor.

Thus, a key issue of making LBP a local region descriptor is to reduce its dimen-

sionality. There exist in the literature two main works, namely �uniform patterns�

[Ojala et al. 2002b] and center-symmetric local binary pattern (CS-LBP) operator

[Heikkilä et al. 2009], which address this issue.

In this chapter, we propose a new dimensionality reduction method for LBP,

denoted as the orthogonal combination of local binary patterns (OC-LBP), which

is more e�ective and o�ers high discriminative power of local texture patterns. The

basic idea is to �rst split the neighboring pixels of the original LBP operator into

several non-overlapped orthogonal groups, then compute the LBP code separately

for each group, and �nally concatenate them together. The experimental results

on a standard texture classi�cation dataset show that our method is much more

e�ective than both CS-LBP operator and �uniform patterns� in terms of dimension

reduction, since our method produces the LBP features with the smallest dimensions

while still keeping high classi�cation accuracy.

The proposed OC-LBP operator is then adopted to build a distribution-based

local image region descriptor, denoted as OC-LBP descriptor, by following a way

similar to SIFT: given several local regions of an image, each region is �rstly divid-

ed into small cells for spatial information; in each cell, the OC-LBP feature is then

computed for each pixel and an LBP histogram is constructed; �nally, all the histo-

grams from the cells are concatenated and delivered as the �nal region descriptor.

Our aim is to build a more e�cient local descriptor by replacing the costly gradient

information with local texture patterns in the SIFT scheme.

Furthermore, similar to the extension of SIFT to color SIFT, we also extend the
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OC-LBP descriptor to di�erent color spaces and propose six color OC-LBP descri-

ptors in this chapter to increase the photometric invariance properties and enhance

the discriminative power of the intensity-based descriptor. In chapter 4, we have

proposed several color LBP features, which are based on the original LBP operator

and serve as global features. Di�erent from them, the proposed color OC-LBP desc-

riptors in this chapter are based on the orthogonal combination of the LBP operator,

and serve as local features. They could thus be considered as the extensions of our

previous work in chapter 4. The experimental results in three di�erent application-

s show that the proposed descriptors outperform the popular SIFT, HOG, SURF

and CS-LBP descriptor, and achieve comparable or even better performances than

the state-of-the-art color SIFT descriptors. Meanwhile, the proposed descriptors

provide complementary information to SIFT, because a fusion of these two kinds

of descriptors is found to perform clearly better than either of the two separately.

Moreover, the proposed descriptors are more computationally e�cient than color

SIFT.

5.2 Dimensionality reduction of LBP

5.2.1 Original LBP operator

The original LBP operator was �rstly introduced as a complementary measure for

local image contrast [Ojala et al. 1996], and can be seen as a uni�ed approach to

statistical and structural texture analysis. The detailed introduction of the original

LBP operator is given in chapter 4. The advantage of the LBP feature is that it is

very fast to calculate, and is invariant to monotonic illumination changes. Thus it

is a good candidate for local image region description.

However, the drawback of the LBP feature lies in the high dimensional histogram

produced by the LBP codes. Let P be the total number of neighboring pixels,

then the LBP feature will have 2P distinct values, resulting in a 2P -dimensional

histogram. For example, the size of the LBP histogram will be 256/65536 if 8/16

neighboring pixels are considered. It will rapidly increase to a huge number if more

neighboring pixels are taken into consideration. Thus, a dimensionality reduction
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method for LBP is needed to address this problem.

5.2.2 Orthogonal combination of local binary patterns (OC-LBP)

To reduce the dimensionality of the LBP histogram, a straightforward way is to only

consider fewer neighboring pixels. For example, the LBP operator with 8 neighbors

is mostly used in the applications, and it produces a rather long (256-dimensional)

histogram, see the left column of Figure 5.1 for an illustration. The size of the

LBP histogram will signi�cantly reduce to 16 if only 4 neighboring pixels are taken

into account, as illustrated in the middle column of Figure 5.1. However, this brut

reduction also decreases the discriminative power of the LBP feature because com-

pared to 8 neighbors, only horizontal and vertical neighbors are considered, and the

information of diagonal neighborhood is discarded. We need to �nd out a trade-

o� between the reduction of the LBP histogram dimensionality and its descriptive

power.

In this chapter, we propose an orthogonal combination of local binary patterns,

namely OC-LBP, which drastically reduces the dimensionality of the original LBP

histogram while keeping its discriminative power. Speci�cally, given P neighboring

pixels equally located on a circle of radius R around a central pixel c, OC-LBP

is obtained by combining the histograms of [P/4] di�erent 4-orthogonal-neighbor

operators, each of which consists of turning the previous 4 orthogonal neighbors by

one position in a clockwise direction. The dimension of an OC-LBP based histogram

is thus 24 × [P/4] or simply 4× P , which is linear with the number of neighboring

pixels in comparison to 2P for the original LBP-based scheme.

Figure 5.1 illustrates the construction process of an OC-LBP operator with 8

neighboring pixels. In this case, two regular 4-neighbor LBP operators are consid-

ered. The �rst one consists of the horizontal and vertical neighbors, and the second

one consists of the diagonal neighbors. By concatenating these two LBP histograms,

we obtain the OC-LBP histogram with 32 dimensions, which is 8 times more com-

pact than the original 8-neighbor LBP histogram (256 dimensions). Meanwhile, this

combination keeps quite well the discriminative power of the original LBP because

it preserves the same number of distinct binary patterns (24 × 24) as before (28).
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OC-LBP  =  [Orthogonal_LBP1  Orthogonal_LBP2] 

Figure 5.1: Calculation of the original LBP and OC-LBP operators with 8 neigh-
boring pixels

This orthogonal combination of local binary patterns (OC-LBP) can also be

generalized in di�erent ways. For instance, the neighboring pixels of the original

LBP can be �rstly split into several non-overlapped orthogonal groups, then the

LBP code can be computed separately for each group, and �nally the histograms

based on these separate LBP codes can be concatenated and used as the image

description.

5.2.3 Comparison of OC-LBP and other popular LBP dimension-

ality reduction methods

We make a comparison between the proposed OC-LBP and other two popular

dimensionality reduction methods for LBP both in terms of discriminative pow-

er and feature dimensionality. These two methods, namely �uniform patterns�

[Ojala et al. 2002b] and CS-LBP [Heikkilä et al. 2009], are compared in this sec-

tion with OC-LBP on operator level. The comparisons in the context of local region
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Table 5.1: Comparison of the histogram dimensionality of di�erent methods with P
neighboring pixels

LBP Uniform patterns CS-LBP OC-LBP

2P P × (P − 1) + 3 2[P/2] 4× P

descriptor will be presented in section 5.5.

In [Ojala et al. 2002b], the authors proposed the concept of �uniform patterns�,

which are certain parts of the original LBP, and are considered to be the fundamental

properties of texture. These patterns are called �uniform� because they have one

thing in common: no more than two spatial transitions (one-to-zero or zero-to-one)

in the circular binary code. For P neighboring pixels, they lead to a histogram of P×

(P − 1) + 3 dimensions. The �uniform patterns� have been proven to be an e�ective

way for LBP dimensionality reduction [Huang et al. 2011]. In [Heikkilä et al. 2009],

the authors proposed center-symmetric local binary pattern (CS-LBP) operator for

dimensionality reduction. They modi�ed the scheme of how to compare the pixels

in the neighborhood. Instead of comparing each pixel with the central pixel, they

compare center-symmetric pairs of pixels. This halves the number of comparisons

compared to the original LBP.

Table 5.1 summarizes the dimensionality of the histograms produced by di�erent

methods with P neighboring pixels.

As we can see, the most e�ective scheme in terms of histogram dimensionality

reduction is the proposed OC-LBP, which is linear with P � the number of neigh-

boring pixels, compared to exponential dimension of the original LBP and CS-LBP,

and quadratic dimension of �uniform patterns�. Then, these methods are further

compared in terms of their discriminative power.

Since the LBP operator is originally designed as a texture feature, a standard

texture classi�cation dataset [Ojala et al. 2002a] is chosen to carry out the com-

parisons. This dataset, namely Outex_TC_00014, contains images of 68 di�erent

textures, such as canvas, carpet, granite, tile, sandpaper, wood, and so on. Each

kind of texture produces three images of size 746× 538 pixels under three di�erent

illuminants: 2856K incandescent CIE A light source (Inca), 2300K horizon sunlight
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(Horizon) and 4000K �uorescent TL84 (TL84). Then each image is equally divided

into 20 non-overlapping sub-images of size 128×128 pixels, resulting in 1360 images

for each illuminant. The training set is constituted by half of the images under the

Inca illuminant, and the test set is constituted by half of the images under the two

other illuminants (Horizon and TL84). Therefore, the total numbers of training and

test images are 680 and 1360 respectively.

For texture classi�cation, we follow the same process for all the features (the

original LBP, �uniform patterns�, CS-LBP and the proposed OC-LBP). For each

image in the training / test set, each of the operators is applied on all the pixels of the

image to get their binary pattern values, and the histogram computed throughout

the image is then used as its texture feature. The Support Vector Machine (SVM)

algorithm is applied for classi�cation. We compute the χ2 distance as equation (2.36)

to measure the similarity between each pair of the feature vectors. Then, the kernel

based on this distance is computed as equation (2.37) for the SVM training and

prediction. Finally, each test image is classi�ed into texture category with the

maximum SVM output decision value. We tune the parameters of the classi�er on

the training set via 5-fold cross-validation, and obtain the classi�cation results on

the test set.

The classi�cation results and comparisons are presented in Table 5.2. It can be

seen that the classi�cation accuracy generally keeps improving when the number

of neighboring pixels increases, suggesting that the consideration of more neighbors

can be bene�cial to the operator's performance. However, the increment speed of

histogram size for the original LBP is devastating. For example, the LBP histogram

size with 20 neighboring pixels is so enormous that it is impractical to be used

directly. This shows the importance of dimensionality reduction for LBP. The CS-

LBP operator reduces the LBP histogram size to its square root, but it also decreases

the classi�cation accuracy. One possible reason is that it discards the information

of central pixel in comparison. The �uniform patterns� show good performances,

because it signi�cantly reduces the LBP histogram size, while still keeping high

discriminative power. Actually, it performs even a little better than the original

LBP, because it only keeps the most important part of LBP and removes the other
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Table 5.2: Comparison of di�erent LBP dimensionality reduction methods in terms
of histogram size and classi�cation accuracy on Outex_TC_00014 (P,R� P neigh-
boring pixels equally located on a circle of radius R)

P,R
LBP Uniform patterns CS-LBP OC-LBP

Bins Result Bins Result Bins Result Bins Result

4,1 16 58.5% 15 58.8% 4 27.8% 16 58.5%
8,1 256 61.4% 59 66.1% 16 50.2% 32 65.4%
12,2 4096 68.7% 135 72.4% 64 61.8% 48 72.7%
16,2 65536 67.6% 243 73.4% 256 54.7% 64 73.2%
20,3 1048576 � 383 74.0% 1024 55.7% 80 74.6%

disturbances. Compared to these two methods, the proposed OC-LBP operator is

more e�ective, because it outperforms CS-LBP and achieves almost the same high

performance as the �uniform patterns� but with the smallest histogram size among

them. Therefore, the proposed OC-LBP is very suitable for local image region

description.

5.3 Local region description with OC-LBP

We construct a new local region descriptor based on the proposed OC-LBP

operator by following the way similar to the SIFT [Lowe 2004] and CS-LBP

[Heikkilä et al. 2009] descriptors. Figure 5.2 depicts the construction process. The

input of the descriptor is a normalized local image region around the keypoint, which

is either detected by certain interest point detector such as Harris-Laplace, or locat-

ed on a dense sampling grid. The OC-LBP operator is then applied on all the pixels

in the region to get their binary pattern values. In order to include coarse spatial

information, the region is equally divided into several small cells, within which a

histogram is built based on the binary pattern values of all the pixels. The �nal des-

criptor is constructed by concatenating all the histograms from the cells. We adopt

the uniform strategy for pixel weighting, as the CS-LBP descriptor, and a SIFT-like

approach for descriptor normalization. The descriptor is �rstly normalized to unit

length, each value is then restricted to be no larger than 0.2 (threshold) so that the

in�uence of very large values is reduced, and �nally the descriptor is renormalized
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OC-LBP histogram 

OC-LBP histogram 
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descriptor Normalized 

region 

Detected interest regions 

Figure 5.2: Construction of local image descriptor with OC-LBP

to unit length. We denote this new local image descriptor as OC-LBP descriptor.

5.4 Color OC-LBP descriptors

The classical LBP-related descriptors only use gray information. However, as we

demonstrated in chapter 4, color information may signi�cantly improve the dis-

criminative power of a descriptor. Moreover, incorporating color information may

enhance the photometric invariance properties when dealing with di�erent kinds of

illumination changes as described in section 4.2.

In order to incorporate color information, we further extend the OC-LBP des-

criptor to di�erent color spaces and propose six color OC-LBP descriptors in this

section. Following the similar way in chapter 4, the main idea is to calculate the

original OC-LBP descriptor independently over di�erent channels of a certain col-

or space, and then concatenate them to get the �nal color OC-LBP descriptor, as

shown in Figure 5.3.

Details of the proposed color OC-LBP descriptors and their properties are as

follows:

RGB-OC-LBP. This color descriptor is obtained by computing the OC-LBP

descriptor over all three channels of the RGB color space. It is invariant to mono-

tonic light intensity change due to the property of the original OC-LBP descriptor.

NRGB-OC-LBP. This color descriptor is obtained by computing the OC-LBP
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Figure 5.3: Calculation of color OC-LBP descriptor

descriptor over both r and g channels of the normalized RGB color space as equa-

tion (4.6) (b channel is redundant because r+ g+ b = 1). Due to the normalization,

the change factors can be cancelled out if they are constant in all channels. There-

fore, r and g channels are scale-invariant, which makes this descriptor invariant to

light intensity change as equation (4.3).

OPPONENT-OC-LBP. This color descriptor is obtained by computing the

OC-LBP descriptor over all three channels of the OPPONENT color space as

equation (4.8). Due to the subtraction in channel O1 and O2, the change o�sets can

be cancelled out if they are equal in all channels. Therefore, O1 and O2 channels

are invariant to light intensity shift as equation (4.4). O3 channel represents the

intensity information, and has no invariance properties.

NOPPONENT-OC-LBP. This color descriptor is obtained by computing the

OC-LBP descriptor over two channels of the normalized OPPONENT color space

as equation (4.10). Due to the normalization by intensity channel O3, O
′
1 and O′2

channels are scale-invariant, which makes this descriptor invariant to light intensity

change as equation (4.3).

Hue-OC-LBP. This color descriptor is obtained by computing the OC-LBP
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descriptor over the Hue channel of the HSV color space as equation (4.11). Due to

the subtraction and the division, Hue channel is scale-invariant and shift-invariant,

therefore this descriptor is invariant to light intensity change and shift as equa-

tion (4.5).

TC-OC-LBP. This color descriptor is obtained by computing the OC-LBP des-

criptor over all three channels of the transformed color space as equation (4.12) (µ

is the mean and σ is the standard deviation of each channel). Due to the subtrac-

tion and the normalization, all three channels are scale-invariant and shift-invariant,

which makes this descriptor invariant to light intensity change and shift as equa-

tion (4.5). Furthermore, because each channel is operated independently, this desc-

riptor is also invariant to light color change and shift as equation (4.2).

It should be noticed that this descriptor has equal values to the RGB-OC-LBP

descriptor. Because the LBP is computed by taking the subtraction of the neigh-

boring pixels and the central one, the subtraction of the means in this color space

is redundant, as this o�set is already cancelled out when computing the LBP. And

since the descriptor normalization for each channel is done separately, the division of

the standard deviation is also redundant. Therefore, the RGB-OC-LBP descriptor

is used in this chapter to represent both descriptors.

5.5 Experimental evaluation

We evaluated the proposed intensity-based and color OC-LBP descriptors in three

di�erent applications: (1)image matching, (2)object recognition and (3)scene clas-

si�cation. The proposed descriptors are compared with several state-of-the-art

descriptors including SIFT [Lowe 2004], color SIFT [van de Sande et al. 2010], CS-

LBP [Heikkilä et al. 2009], HOG [Dalal & Triggs 2005], SURF [Bay et al. 2008] and

GIST [Oliva & Torralba 2001]. These descriptors have been chosen for their diver-

sity in terms of local visual content characterization. While SIFT and color SIFT

are the most popular and successful local descriptors in the literature, HOG is also

a popular descriptor which captures local object appearance and shape through the

distribution of intensity gradients. As such it is widely used for object detection
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and recognition. GIST is a popular holistic feature which estimates the dominant

spatial structure of a scene to capture a set of perceptual dimensions (naturalness,

openness, roughness, expansion and ruggedness). As such it is widely applied for

scene classi�cation. SURF is a typical local descriptor using Haar wavelets as fea-

tures. Finally, CS-LBP is also binary-pattern-based and provides a way for LBP

dimensionality reduction, as introduced in section 5.2.

5.5.1 Parameter selection

There are three parameters to be �xed for the proposed OC-LBP descriptors, in-

cluding the number of neighboring pixels for the OC-LBP operator (P ), the radius

of neighboring circle for the OC-LBP operator (R), and the number of cells for each

region (M ×M). For simplicity, the parameters P and R are evaluated in pairs,

such as (4,1), (8,1), (12,2), (16,2), (20,3), etc. Also, we select the parameters based

on the gray OC-LBP descriptor, and apply the best settings on all color OC-LBP

descriptors.

We adopt the standard Oxford image matching dataset

[Visual Geometry Group ] for parameter selection. This dataset contains im-

age pairs with di�erent geometric and photometric transformations (image blur,

viewpoint change, illumination change, etc.) and di�erent scene types (structured

and textured). The sample image pairs are shown in Figure 5.4. Here the image

pair named �Graf� is used for parameter selection as in [Heikkilä et al. 2009]. To

compute the descriptors, an interest region detector is required at �rst to detect

interest regions in each image. We apply the Harris-A�ne detector to detect the

corner-like structures in images. It originally outputs the elliptic regions of varying

scales, and all the regions are then normalized and mapped to a circular region

with �xed radius to obtain scale and a�ne invariance. The normalized regions are

also rotated to the direction of their dominant gradient orientations to obtain the

rotation invariance. We use the software package available on the same website as

the dataset for interest region detection and normalization. Each detected region

is normalized to the size of 41 × 41 pixels. Then, all the regions from each image

are described by the OC-LBP descriptor, and are matched by applying nearest
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Figure 5.4: Sample image pairs of the Oxford dataset

Table 5.3: Parameter selection results (matching score %) for the OC-LBP descriptor

PPPPPPPPPP,R
Cells

1× 1 2× 2 3× 3 4× 4 5× 5

4,1 2.84 19.11 25.43 25.77 25.48
8,1 8.76 26.79 34.07 32.88 31.23
12,2 13.77 33.56 39.31 36.75 34.64
16,2 11.43 32.48 38.74 35.67 33.56
20,3 13.03 34.47 38.91 37.26 34.41

neighbor strategy. A matching score is obtained by measuring the percentage of

the correct matches.

From the results shown in Table 5.3, it can be seen that the best performance

is obtained when the value of (P,R) pair is set to (12, 2) and the number of cells is

set to 3 × 3. We apply this parameter setting on gray OC-LBP descriptor and all

color OC-LBP descriptors in the following experiments.

5.5.2 Experiments on image matching

We adopt the same dataset introduced in section 5.5.1 to evaluate the proposed des-

criptors in the application of image matching. The performances of the descriptors

are evaluated by the matching criterion, which is based on the number of correctly

and falsely matched regions between a pair of images. Two image regions are con-

sidered to be matched if the Euclidean distance between their descriptors is below

a threshold. The number of correct matches is determined by the �overlap error�
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[Mikolajczyk & Schmid 2002]. A match is assumed to be correct if this error value

is smaller than 0.5. The results are presented by recall versus 1-precision curve:

recall =
#correct matches

#correspondences
(5.1)

1− precision =
#false matches

#all matches
(5.2)

where #correspondences is the ground truth number of matches between the images.

By changing the distance threshold, we can obtain the recall versus 1-precision curve.

5.5.2.1 Experimental setup

We use the software package mentioned in section 5.5.1 for interest region detection,

region normalization, and SIFT computation. We implement the CS-LBP descriptor

according to [Heikkilä et al. 2009], and apply the same parameter setting as the OC-

LBP descriptor for fair comparison. To compute color SIFT descriptors, we use the

�ColorDescriptor� software available online [Koen van de Sande ].

5.5.2.2 Experimental results

The image matching results on the Oxford dataset are shown in Figure 5.5 and

Figure 5.6. Figure 5.5 shows the comparisons of the proposed gray and color OC-

LBP descriptors with the popular SIFT and CS-LBP descriptors. Figure 5.6 shows

the comparisons of the best three color OC-LBP descriptors with the state-of-the-art

color SIFT descriptors.

We can see from the results in Figure 5.5 that: (1) the OC-LBP descriptor per-

forms better than the popular CS-LBP and SIFT descriptors; (2) the color OC-LBP

descriptors outperform the intensity-based OC-LBP descriptor in most of the cases,

proving the usefulness of incorporating color information and additional photometric

invariance properties; (3) among the proposed color OC-LBP descriptors, Hue-OC-

LBP, RGB-OC-LBP and NOPPONENT-OC-LBP descriptors have the best overall

performance, consistent with their strong properties of illumination invariance.

We then compare the best three color OC-LBP descriptors with their counter-
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Figure 5.5: Image matching results on the Oxford dataset (comparisons of the pro-
posed descriptors with the popular SIFT and CS-LBP descriptors)
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Figure 5.6: Image matching results on the Oxford dataset (comparisons of the best
three color OC-LBP descriptors with the state-of-the-art color SIFT descriptors)
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Figure 5.7: Flow chart of our approach for object recognition

parts, the state-of-the-art color SIFT descriptors. The best three color SIFT descr-

iptors are chosen according to [van de Sande et al. 2010]. The results in Figure 5.6

show that the color OC-LBP descriptors also achieve slightly better performances

than color SIFT.

5.5.3 Experiments on object recognition

In order to evaluate the proposed descriptors in the application of object recogni-

tion, two standard image datasets are used: the PASCAL VOC 2007 benchmark

[Everingham et al. 2007] and the SIMPLIcity dataset [Wang et al. 2001]. A detailed

introduction of both datasets can be found in chapter 3.

These two datasets have di�erent characteristics. In the SIMPLIcity dataset,

most images have little or no clutter. The objects tend to be centered in each im-

age. Most objects are presented in a stereotypical pose. In the PASCAL VOC 2007

benchmark, all the images are taken from the real-world scenes, thus with back-

ground clutter, occlusions, and various variations in viewpoint, pose and lighting

condition, which increase the di�culties of object recognition in this dataset.

5.5.3.1 Our approach for object recognition

The block diagram of our approach for visual object recognition is depicted in Fig-

ure 5.7.
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5.5.3.2 Feature extraction

The interest points in images are �rstly detected by applying the Harris-Laplace

salient point detector, which uses a Harris corner detector and subsequently the

Laplacian for scale selection. Then a set of local descriptors, including gray OC-

LBP, three best color OC-LBP, CS-LBP, SURF, HOG, SIFT and three best color

SIFT, are extracted from local region around each interest point. Unlike the settings

in the application of image matching, the descriptors are not rotated to their domi-

nant orientations, because this rotation invariance is useful for image matching, but

decreases the accuracy for object recognition.

5.5.3.3 Bag-of-Features modelling

After the step of feature extraction, each image is represented by a set of local

descriptors. The number of local descriptors in each image varies because the num-

ber of the interest points (normally around thousands) changes from one image to

another one. Thus, an e�cient modeling method is required to transform this vari-

able number of local descriptors into a more compact, informative and �xed length

representation for further classi�cation.

We apply the popular Bag-of-Features (BoF) method [Csurka et al. 2004] be-

cause of its great success in object recognition tasks. A detailed introduction of the

BoF method can be found in section 2.2.2.3. Speci�cally, we build a vocabulary

of 1000 �visual words� for the SIMPLIcity dataset and 4000 �visual words� for the

PASCAL VOC 2007 benchmark for each kind of local descriptors respectively by

applying the k-means clustering algorithm on a subset of the descriptors which are

randomly selected from the training data.

5.5.3.4 Classi�cation

The Support Vector Machine (SVM) algorithm is applied for object classi�cation.

An introduction of SVM can be found in section 2.3.2.1. Here the LibSVM im-

plementation [Chang & Lin 2001] is used. Once all the local descriptors are trans-

formed to �xed-length feature vectors by the BoF method, the χ2 distance is comput-

109



Chapter 5. Image Region Description Using Orthogonal Combination
of Local Binary Patterns Enhanced with Color Information

Table 5.4: Object recognition results on the PASCAL VOC 2007 benchmark (�NOP-
OC-LBP� is the abbreviation of �NOPPONENT-OC-LBP�, �OP-SIFT� is the ab-
breviation of �OPPONENT-SIFT�)

AP (%) OC-
LBP

Hue-
OC-
LBP

NOP-
OC-
LBP

RGB-
OC-
LBP

CS-
LBP

HOG SURF SIFT OP-
SIFT

C-
SIFT

RGB-
SIFT

airplane 62.2 64.3 64.2 61.9 59.2 52.1 39.7 56.0 59.9 58.7 57.8
bicycle 38.6 35.4 39.1 42.0 44.8 26.9 45.9 44.9 43.8 38.9 44.6
bird 25.9 32.9 34.8 32.1 27.4 25.0 26.7 28.2 27.7 32.1 22.5
boat 56.4 56.0 60.8 59.5 53.0 40.6 21.0 45.7 49.1 51.8 46.6
bottle 15.0 20.4 20.0 20.3 19.5 12.8 10.2 19.6 21.2 21.4 21.0
bus 37.8 35.5 35.0 41.1 33.2 38.3 28.1 37.7 38.0 32.5 37.7
car 62.6 60.5 61.4 65.1 63.1 58.1 52.5 55.0 57.4 53.2 56.1
cat 38.9 39.3 39.7 42.9 40.2 27.5 24.3 36.5 37.7 34.1 37.3
chair 39.0 40.5 41.3 39.3 38.7 43.8 33.3 44.5 42.4 45.9 43.5
cow 20.6 21.5 14.6 24.9 18.3 19.8 20.8 25.9 17.0 16.6 27.8
table 35.0 36.1 37.0 32.0 33.1 33.6 25.7 29.6 36.7 38.7 29.1
dog 32.8 35.3 29.4 33.4 31.7 20.4 23.8 26.5 29.8 29.1 28.8
horse 57.6 64.6 63.6 58.3 55.2 59.3 50.7 57.0 59.1 61.9 54.8
motor 36.9 39.2 41.7 37.3 34.1 37.2 37.4 30.2 33.9 44.4 32.1
person 74.1 77.2 75.5 74.7 73.0 66.2 70.8 73.1 74.5 76.6 72.7
plant 21.3 22.7 26.7 20.1 17.5 10.4 13.8 11.5 19.9 27.1 11.5
sheep 12.3 23.5 26.0 19.9 16.9 18.4 9.4 27.4 31.2 30.9 19.4
sofa 25.8 27.8 27.5 25.0 19.0 26.3 19.3 23.6 22.9 23.2 24.6
train 56.1 44.2 51.7 55.5 56.8 52.7 42.9 53.4 54.5 58.5 51.1
monitor 25.6 29.2 27.9 31.8 31.7 32.3 25.7 33.7 35.0 27.3 35.6

Mean 38.7 40.3 40.9 40.9 38.3 35.1 31.1 38.0 39.6 40.1 37.7

ed as equation (2.36) to measure the similarity between each pair of feature vectors.

Then, the kernel function based on this distance is computed as equation (2.37) for

the SVM training and prediction.

For the SIMPLIcity dataset, each image is classi�ed into the category with the

maximum SVM output decision value. We tune the parameters of the classi�er on

the training set via 5-fold cross-validation, and obtain the results on the test set. For

the PASCAL VOC 2007 benchmark, the precision-recall curve is plotted for each

category according to the output decision values of the SVM classi�er, and the AP

(Average Precision) value is computed based on the proportion of the area under

this curve. We train the classi�er on the training set, then tune the parameters on

the validation set, and obtain the classi�cation results on the test set.
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Table 5.5: Fusion results of color OC-LBP and color SIFT on the PASCAL VOC
2007 benchmark

AP (%) FUSION
(3 Color OC-LBP)

FUSION
(3 Color SIFT)

FUSION
(3 Color OC-LBP
+3 Color SIFT)

airplane 67.0 61.8 67.8
bicycle 48.0 49.8 56.4
bird 36.7 35.0 43.4
boat 62.2 52.9 60.9
bottle 17.6 23.6 26.2
bus 46.4 44.4 51.3
car 67.8 61.7 68.6
cat 45.8 41.7 46.2
chair 43.6 48.2 48.6
cow 26.9 29.1 29.2
table 43.2 41.8 48.2
dog 35.8 32.9 39.3
horse 64.9 64.8 69.6
motor 46.1 48.3 53.3
person 77.8 77.3 79.2
plant 27.3 26.5 31.3
sheep 24.3 33.8 31.7
sofa 32.4 30.6 37.5
train 60.1 62.9 68.3
monitor 35.1 38.1 39.5

Mean 45.5 45.3 49.8

5.5.3.5 Experimental results on PASCAL VOC 2007

The object recognition results on the PASCAL VOC 2007 benchmark are shown in

Table 5.4. It can be seen that: (1) the proposed OC-LBP descriptor achieves the

performance of 38.7% MAP, which is better than SURF and HOG, and comparable

with CS-LBP and SIFT; (2) the best three color OC-LBP descriptors (Hue-OC-LBP,

NOPPONENT-OC-LBP and RGB-OC-LBP) achieve 40.3%, 40.9% and 40.9% MAP

respectively, which outperform the intensity-based OC-LBP by about 2% ∼ 3%,

indicating that they truly bene�t from additional color information and illumination

invariance properties; (3) compared to the state-of-the-art color SIFT descriptors,

the best three color OC-LBP descriptors achieve comparable or even better results.

After analyzing the detailed results in Table 5.4 by each object category, we
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could observe that the LBP-based descriptors generally perform better on the non-

rigid object categories such as bird, cat, dog, horse, person, plant and sofa, while

the SIFT-based descriptors are generally better for the rigid object categories such

as bicycle, bottle, chair, table, motor, train and monitor. Also, the color descriptors

with di�erent photometric invariance properties perform di�erently on the same

object category. Therefore, we further combine di�erent color OC-LBP descriptors,

as well as color OC-LBP and color SIFT by average late fusion to check if they can

provide complementary information to each other. The fusion results are shown in

Table 5.5.

It can be observed that: (1) a great performance improvement (about 5%) can be

obtained by fusing di�erent color descriptors, both for OC-LBP and SIFT, proving

that di�erent color descriptors are not entirely redundant; (2) the color OC-LBP

descriptors still achieve comparable or slightly better results than color SIFT after

fusion; (3) the performance can be further improved (more than 4%) by fusing color

OC-LBP and color SIFT, indicating that these two kinds of descriptors can provide

complementary information to each other.

5.5.3.6 Experimental results on SIMPLIcity

The object recognition results on the SIMPLIcity dataset are shown in Table 5.6

and Table 5.7. The similar observations to that on the PASCAL VOC benchmark

can be noticed. The color OC-LBP descriptors outperform CS-LBP, SURF, HOG,

SIFT as well as the intensity-based OC-LBP, and achieve comparable results with

the color SIFT descriptors. Further improvement (nearly 5%) can be obtained by

fusing three color OC-LBP and three color SIFT descriptors, since they provide

complementary information to each other.

5.5.4 Experiments on scene classi�cation

We also evaluated the proposed descriptors in the application of scene classi�cation.

The dataset from Oliva and Torralba [Oliva & Torralba 2001] is used, and denoted

as OT scene dataset. Its detailed introduction can be found in section 3.6.
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Table 5.6: Object recognition results on the SIMPLIcity dataset (�NOP-OC-LBP�
is the abbreviation of �NOPPONENT-OC-LBP�, �OP-SIFT� is the abbreviation of
�OPPONENT-SIFT�)

Accuracy
(%)

OC-
LBP

Hue-
OC-
LBP

NOP-
OC-
LBP

RGB-
OC-
LBP

CS-
LBP

HOG SURF SIFT OP-
SIFT

C-
SIFT

RGB-
SIFT

people 70.0 84.0 80.0 78.0 70.0 58.0 72.0 76.0 76.0 84.0 74.0
beach 74.0 82.0 86.0 76.0 82.0 68.0 76.0 82.0 88.0 86.0 82.0
building 82.0 86.0 84.0 82.0 80.0 66.0 66.0 74.0 78.0 74.0 70.0
bus 98.0 96.0 96.0 98.0 88.0 90.0 92.0 94.0 96.0 90.0 96.0
dinosaur 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
elephant 74.0 70.0 72.0 72.0 80.0 70.0 78.0 88.0 84.0 74.0 94.0
�ower 82.0 94.0 88.0 86.0 88.0 58.0 70.0 92.0 96.0 86.0 88.0
horse 98.0 98.0 98.0 96.0 96.0 92.0 82.0 96.0 98.0 100.0 94.0
mountain 68.0 68.0 74.0 68.0 64.0 64.0 50.0 62.0 70.0 72.0 70.0
food 88.0 92.0 100.0 96.0 80.0 72.0 78.0 86.0 88.0 94.0 90.0

Mean 83.4 87.0 87.8 85.2 82.8 73.8 76.4 85.0 87.4 86.0 85.8

Table 5.7: Fusion results of color OC-LBP and color SIFT on the SIMPLIcity dataset

Accuracy
(%)

FUSION
(3 Color OC-LBP)

FUSION
(3 Color SIFT)

FUSION
(3 Color OC-LBP
+3 Color SIFT)

people 86.0 86.0 86.0
beach 86.0 88.0 86.0
building 86.0 78.0 86.0
bus 100.0 98.0 100.0
dinosaur 100.0 100.0 100.0
elephant 82.0 90.0 86.0
�ower 98.0 100.0 98.0
horse 98.0 100.0 100.0
mountain 78.0 76.0 82.0
food 96.0 96.0 98.0

Mean 91.0 91.2 92.2
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5.5.4.1 Experimental setup

For this scene classi�cation problem, our approach is the same as the one used for

object recognition, as described in section 5.5.3.1, but with a di�erent setting. In-

stead of detecting interest points in images using the Harris-Laplace detectors, we

apply the dense sampling strategy to locate keypoints for local descriptor computa-

tion. This is because for scene classi�cation, we prefer to focus on the content of the

whole image, rather than on �object� part only. Speci�cally, the sampling spacing is

set to 6 pixels, resulting in around 1700 keypoints per image. A visual vocabulary

of 2000 �visual words� is constructed for each kind of local descriptor to build their

Bag-of-Features (BoF) representations.

We randomly choose half of the images from each scene category for training,

and the other half for test. The recognition accuracy is used as the evaluation

criterion. We tune the parameters of the classi�er on the training set via 5-fold

cross-validation, and get the classi�cation results on the test set.

5.5.4.2 Experimental results

The classi�cation results on the OT scene dataset are shown in Figure 5.8. It can

be seen that the proposed OC-LBP descriptor performs better than SURF, and

achieves comparable results with GIST, CS-LBP and SIFT. The proposed color

OC-LBP descriptors further demonstrate their e�ectiveness as they display superior

performances than all the intensity-based descriptors. They also show their ability

of being complementary to the state-of-the-art color SIFT descriptors, since their

fusion (fusion 3 in the �gure) clearly improves the performance. It is worthy to

notice that the NOPPONENT-OC-LBP descriptor does not perform well in this

case, while its performance is quite good in the application of object recognition.

We believe the main reason is that the OT scene dataset contains more varieties of

illumination changes than the object recognition datasets, and the NOPPONENT-

OC-LBP descriptor is de�cient in power of dealing with these variations, because

it is only invariant to light intensity change. This also explains why RGB-OC-LBP

and RGB-SIFT perform the best among the color descriptors, since they possess
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Figure 5.8: Classi�cation results on the OT scene dataset

the strongest invariance properties (invariant to light color change and shift).

5.5.5 Computational cost comparison between descriptors

As we stated in the introduction, a good local descriptor should be both discrimina-

tive and computationally e�cient. The discriminative power of the proposed gray

and color OC-LBP descriptors has been demonstrated by the previous experiments

and applications, and they achieve comparable or even better performances than the

state-of-the-art descriptors. In this section, we show the computational e�ciency of

the proposed descriptors in comparison with the popular SIFT and color SIFT.

The comparisons are conducted on the 4 image datasets used in the previous

experiments by utilizing a computer with Intel Core 2 Duo CPU @ 3.16 GHz and

3GB RAM. We implement the gray and color OC-LBP descriptors by a mixture

of C and Matlab, and use the �ColorDescriptor� software [Koen van de Sande ] to

compute the SIFT and color SIFT descriptors. We record in Table 5.8 the average

computation time required per image for each descriptor respectively.

It can be seen that the OC-LBP descriptor is about 4 times faster to compute

than SIFT. When incorporating color information, the computations of color descr-

iptors are about 3 times slower than the intensity-based descriptors, mainly because
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Table 5.8: Computational cost comparison between OC-LBP and SIFT descriptors

Times (s) Oxford
(900×600)

SIMPLIcity
(384× 256)

PASCAL
(500×375)

OT Scene
(256×256)

OC-LBP 0.273 0.062 0.101 0.042
Hue-OC-LBP 1.065 0.197 0.317 0.137
NOPPONENT-OC-LBP 0.889 0.181 0.296 0.117
RGB-OC-LBP 0.676 0.178 0.288 0.115

SIFT 1.064 0.328 0.432 0.161
C-SIFT 3.304 0.975 1.311 0.488
OPPONENT-SIFT 3.196 0.959 1.297 0.483
RGB-SIFT 3.147 0.955 1.282 0.477

Total (3 color OC-LBP) 2.630 0.556 0.901 0.369
Total (3 color SIFT) 9.647 2.889 3.890 1.448

of the increasing channels. However, the color OC-LBP descriptors are still about

4 times faster than color SIFT. Therefore, the proposed descriptors are much more

computationally e�cient, and thus are more suitable for large scale problems.

5.6 Conclusions

In this chapter, a new operator called the orthogonal combination of local binary

patterns, denoted as OC-LBP, has �rstly been proposed. It aims at reducing the

dimensionality of the original LBP operator while keeping its discriminative power

and computational e�ciency.

We have also introduced several new local descriptors for image region descrip-

tion based on the proposed OC-LBP operator: the gray OC-LBP descriptor and six

color OC-LBP descriptors, namely RGB-OC-LBP, NRGB-OC-LBP, OPPONENT-

OC-LBP, NOPPONENT-OC-LBP, Hue-OC-LBP and TC-OC-LBP. The proposed

descriptors incorporate color information to increase their discriminative power, and

also to enhance their photometric invariance properties of dealing with di�erent il-

lumination changes.

The experiments in three di�erent applications � image matching, object recog-

nition and scene classi�cation � show the e�ectiveness of the proposed descrip-

tors. They outperform the popular SIFT, CS-LBP, HOG and SURF descriptors,
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and achieve comparable or even better performances than the state-of-the-art color

SIFT descriptors. Meanwhile, they provide complementary information to SIFT,

since further improvement can be obtained by fusing them.

Moreover, the proposed gray and color OC-LBP descriptors are about 4 times

faster to compute than the SIFT and color SIFT descriptors respectively. Therefore,

they are very promising for large scale recognition problems.

117





Chapter 6

Visual Object Recognition Using

the DAISY Descriptor

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 The DAISY descriptor . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Approach for visual object recognition . . . . . . . . . . . . 123

6.3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.2 Bag-of-Features modelling . . . . . . . . . . . . . . . . . . . . 124

6.3.3 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.2 Results on Caltech 101 . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3 Results on PASCAL VOC 2007 . . . . . . . . . . . . . . . . . 127

6.4.4 In�uence of parameters in DAISY . . . . . . . . . . . . . . . 128

6.4.5 Computational cost . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Introduction

As we stated in chapter 5, visual content description is a key issue for the task of

machine-based visual object recognition. A good visual descriptor should be both

discriminative and computationally e�cient, while possessing some properties of
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robustness to changes in viewpoint, scale and lighting conditions. The recent liter-

ature has featured the gradient-distribution-based local descriptors, such as SIFT

[Lowe 2004], GLOH [Mikolajczyk & Schmid 2005] and HOG [Dalal & Triggs 2005],

as the main trend in object recognition tasks. Among them, SIFT is con-

sidered as the most powerful and successful one, and has been widely applied

as the dominant feature in the state-of-the-art recognition/classi�cation systems

[Everingham et al. 2010]. The classic SIFT is a sparse descriptor computed on

a set of points of interest (or keypoints) in images. However, several studies

[Li & Perona 2005] [Furuya & Ohbuchi 2009] have shown that dense SIFT (SIFT

computed on a dense grid) performs better than the original one for the task of

object recognition.

There is now a trend in computer vision community that the scale of the bench-

mark datasets used for object recognition / image classi�cation becomes larger year

by year. However, it is well known that the downside of the state-of-the-art des-

criptors, including SIFT, GLOH, HOG, etc., is their relatively high computation-

al cost, especially when the size of image or the scale of dataset signi�cantly in-

creases. Therefore, more computationally e�cient and discriminative local descr-

iptors are urgently demanded to deal with large scale datasets such as ImageNet

[Deng et al. 2009] and TRECVID [Smeaton et al. 2006].

Usually, there are two ways to do this. One way is to replace the costly gradient

information with other more e�cient features, like LBP, as what we did in the case

of the OC-LBP descriptor in chapter 5. The other way is to �nd more e�cient

methods to calculate the gradient information.

The DAISY descriptor [Tola et al. 2010], which was initially designed for wide-

baseline stereo matching problem, is a newly introduced fast local descriptor based

on gradient distribution, and has shown good robustness against many photometric

and geometric transformations. It has never been used in the context of visual object

recognition, while we believe that it is very suitable for this problem, and could well

meet the mentioned demand. Therefore, in this chapter, we investigate the DAISY

descriptor for the task of visual object recognition by evaluating and comparing

it with the state-of-the-art SIFT both in terms of recognition accuracy and com-
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putation complexity on two standard image datasets: Caltech 101 [Li et al. 2007]

and PASCAL VOC 2007 [Everingham et al. 2007]. DAISY provides a fast way to

calculate the gradient information and proves very promising for the task of visual

object recognition.

6.2 The DAISY descriptor

Similar to SIFT, the DAISY descriptor is a 3D histogram of gradient locations

and orientations. The di�erences between them lie in two aspects. One is that

DAISY replaces the weighted sums of gradient norms used in SIFT by convolutions

of gradients in speci�c directions with several Gaussian �lters. This is for computing

descriptor e�ciently at every pixel location, because the histograms only need to be

computed once per region and could be reused for all neighboring pixels. The other

is that DAISY uses a circular neighborhood con�guration instead of the rectangular

one used in SIFT, as the comparison shown in Figure 6.1.

Given an input image I, a certain number of orientation maps Go, one for each

quantized direction o, are �rst computed. They are formally de�ned as:

Go =

(
∂I

∂o

)+

(6.1)

The + sign means that only positive values are kept to preserve the polarity of the

intensity changes.

Each orientation map, which represents the image gradient norms for that direc-

tion at all pixel locations, is then convolved several times with Gaussian kernels of

di�erent standard deviation values to obtain the convolved orientation maps. The

e�ciency of DAISY descriptor comes right here, because Gaussian �lters are sepa-

rable and thus the convolutions can be implemented very e�ciently. This means the

convolutions with large Gaussian kernel can be obtained from several consecutive

convolutions with smaller kernels. The computational amount is thus reduced.

At each pixel location, its neighborhood is divided into circles of di�erent size

located on a series of concentric rings, as shown in Figure 6.1(b). The radius of
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(a)

(b)

Figure 6.1: Comparison of SIFT and DAISY shapes. (a) SIFT uses a rectangular
grid [Lowe 2004]. (b) DAISY considers a circular con�guration [Tola et al. 2010],
where the radius of each circle is proportional to its distance from the center.
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each circle is proportional to its distance from the central pixel, and the standard

deviation of Gaussian kernel is proportional to the size of the circle. A vector is then

made within each circle by gathering the values of all the convolved orientation maps

with corresponding Gaussian smoothing. The �nal DAISY descriptor is made by

concatenating all the vectors from the circles, after they are normalized to unit

norm.

There are mainly four parameters to determine the shape of the DAISY descrip-

tor: neighborhood area radius (R); number of quantized orientations (o); number of

convolved orientation rings (r); and number of circles on each ring (c). The in�uence

of di�erent parameters will be analyzed experimentally in section 6.4.

6.3 Approach for visual object recognition

The approach applied in this chapter for visual object recognition is similar to the

one introduced in section 5.5.3. The block diagram of the approach is depicted in

Figure 5.7.

6.3.1 Feature extraction

We extract the DAISY and SIFT descriptors from input images as their features.

The original DAISY descriptor introduced in section 6.2 is designed for wide-baseline

stereo matching, so it is computed at every pixel location, leading to a very high

dimensional descriptor. For example, a 500 × 350 image will yield a DAISY descr-

iptor with the size of 175000 × 200 by default. Such high dimension is impractical

for the task of object recognition because of the huge computation and storage

requirements, especially for large images and datasets.

Therefore, we extract the DAISY descriptor on a dense grid for our purpose.

Instead of at every pixel location, it is only computed on a dense sampling grid,

which is the same as how the dense SIFT descriptor is computed. The sampling

spacing is the parameter to control the number of sampling points. By this way,

the dimension of the DAISY descriptor is reduced signi�cantly, making it suitable

to visual object recognition tasks.
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6.3.2 Bag-of-Features modelling

To transform the extracted local descriptors (DAISY or SIFT) into a more com-

pact, informative and �xed-length representation for further classi�cation, we apply

the popular Bag-of-Features (BoF) method [Csurka et al. 2004] because of its great

success in object recognition tasks. A detailed introduction of the BoF method is

given in section 2.2.2.3.

Since the BoF method ignores all spatial information of local descriptors, we

also apply the spatial pyramid [Lazebnik et al. 2006] technique (see section 2.2.2.3

for a detailed introduction) to take into account coarse spatial relationship between

them.

6.3.3 Classi�cation

The Support Vector Machine (SVM) algorithm is applied for object classi�cation.

An introduction of SVM can be found in section 2.3.2.1. Once all local descriptors

are transformed to �xed-length feature vectors by the BoF method, the χ2 distance

is computed as equation (2.36) to measure the similarity between each pair of the

feature vectors. Then, the kernel function based on this distance is computed as

equation (2.37) for the SVM training and prediction. Finally, for each test image, the

output probabilities of the SVM classi�er are used to predict the object categories.

6.4 Experimental evaluation

In order to evaluate the performance of the DAISY descriptor, as well as to compare

it with the state-of-the-art SIFT descriptor in the context of object recognition, we

use two standard image datasets: Caltech 101 [Li et al. 2007] and PASCAL VOC

2007 [Everingham et al. 2007]. A detailed introduction of both datasets can be

found in chapter 3.

These two datasets have di�erent characteristics. In Caltech 101, most images

have little or no clutter. The objects tend to be centered in each image. Most

objects are presented in a stereotypical pose. In PASCAL VOC 2007, all the images

are taken from the real-world scenes, thus with background clutter, occlusions, and
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Figure 6.2: Experimental results on the Caltech 101 dataset (�sp� is the abbreviation
for �spatial pyramid�)

various variations in viewpoint, pose and lighting condition, which increase the

di�culties of object recognition in this dataset.

6.4.1 Experimental setup

We follow the approach described in section 6.3 for both datasets. The DAISY

and SIFT descriptors are extracted on the same dense grid for fair comparison. The

sampling spacing is set to 6 pixels, resulting in around 2000 and 5000 descriptors per

image for Caltech 101 and PASCAL VOC 2007 respectively. The parameter setting

of 15R8o3r4c is applied for the DAISY descriptor (see section 6.4.4 for reasons),

resulting in a 104-dimensional descriptor. A visual vocabulary with 1000 (for Caltech

101) or 4000 (for PASCAL VOC 2007) �visual words� is then constructed by applying

k-means clustering algorithm to 600 000 randomly selected descriptors from the

training set. Each image is �nally represented by a �xed-length BoF histogram. A
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Figure 6.3: Experimental results on the PASCAL VOC 2007 dataset (�sp� is the
abbreviation for �spatial pyramid�)

1 × 1 (whole image) + 2 × 2 (four equal quarters) + 3 × 1 (three equal horizontal

bars) combination is applied for spatial pyramid. The LibSVM implementation

[Chang & Lin 2001] of the SVM algorithm is used to perform the classi�cation.

6.4.2 Results on Caltech 101

For the Caltech 101 dataset, we follow the common training and testing settings.

Two training sets are constructed respectively by randomly selecting 15 or 30 images

per category. Another 15 images are randomly selected per category for test (except

for categories including less than 45 images). Each test image is classi�ed into the

category with the maximum SVM output decision value. We tune the parameters

of the classi�er on the training set via 5-fold cross-validation, and obtain the clas-

si�cation results on the test set. The experiments are repeated three times with

di�erent training and test sets, and average recognition accuracy is reported. The

results are shown in Figure 6.2.

As we can see from the results, the recognition accuracy is improved for 2.5% (15

training) and 4.5% (30 training) respectively by using DAISY instead of SIFT. When

spatial pyramid information is taken into account, the performances of DAISY and

SIFT are both improved. But still, DAISY outperforms SIFT by 2.1% on average.

Furthermore, when we combine DAISY and SIFT together by multiple kernel learn-
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Figure 6.4: Performance comparison of DAISY and SIFT on the PASCAL VOC
2007 dataset split out per category

ing (MKL) [Rakotomamonjy et al. 2008] algorithm introduced in section 2.3.2.2, the

recognition accuracy is improved signi�cantly for 9.5% (15 training) and 12.1% (30

training), indicating that both descriptors can provide complementary information

to each other.

6.4.3 Results on PASCAL VOC 2007

For the PASCAL VOC 2007 dataset, the precision-recall curve is plotted for each

category according to the output decision values of the classi�er, and the AP (Av-

erage Precision) value is computed based on the proportion of the area under this

curve. We train the classi�er on the training set, then tune the parameters on the
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validation set, and obtain the classi�cation results on the test set. The results are

shown in Figure 6.3.

As we can see, similar to the results on Caltech 101, the performance of DAISY is

better than that of SIFT, although the lead drops a little because the PASCAL VOC

2007 dataset is more challenging. Figure 6.4 shows the performance comparison of

both descriptors split out per category. It can be seen that DAISY is better for some

classes like plane, bike, bus, table, train, etc, while SIFT is better for other classes

like chair, cow, person, plant, sheep, sofa, etc. This proves the complementarities

of both descriptors, and explains why the performance can be improved by fusing

them.

6.4.4 In�uence of parameters in DAISY

As described in section 6.2, there are mainly 4 parameters to control the DAISY

descriptor: neighborhood area radius (R); number of quantized orientations (o);

number of convolved orientation rings (r); and number of circles on each ring (c).

The in�uences of di�erent parameters are evaluated experimentally on the Caltech

101 dataset. To do this, we obtain a series of line graphs of recognition accuracy

by alternately changing one parameter while �xing the others. To keep the scales

of di�erent orientation rings, we set R as 5 for 1 ring, R as 10 for 2 rings, and R as

15 for 3 rings. The results are shown in Figure 6.5, Figure 6.6 and Figure 6.7.

The following conclusions can be made: 8 orientations perform clearly better

than 4, while 12 show no superiority to 8, indicating that 8 orientations are su�cient;

the performance keeps improving as the number of rings increases, showing that

more rings are better, since more neighboring information is included; 4, 8 and 12

circles have very similar performances, implying that large number of circles on each

ring is unnecessary, due to overlapping of adjacent regions. Therefore, 8o3r4c is a

good choice of parameters for DAISY, and is applied in our experiments.
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ring in DAISY

6.4.5 Computational cost

In order to validate the computational e�ciency of DAISY, we compare it with SIFT

in Table 6.1. The comparisons are conducted on the Caltech 101 dataset with 30

training settings, and on an Intel Core 2 Duo CPU @ 3.16 GHz with 3GB RAM. The

last column of the table means the average time required for descriptor extraction

per image (about size of 300×200)1. It can be seen that the best DAISY (15R8o3r4c)

is 3 times faster than SIFT, with more than 4% superiority on performance. Even

a simpler DAISY (15R4o1r4c) can obtain comparable performance to SIFT, with

only 1/6 descriptor length and 12 times faster computation.

6.5 Conclusions

In this chapter, we investigated DAISY, an e�cient local descriptor, for the task

of visual object recognition. We carefully evaluated its performances with di�erent

parameter settings on two standard image datasets, namely Caltech 101 and PAS-

1We use the MATLAB implementations available online for computing both descriptors. For

DAISY, http://cvlab.epfl.ch/~tola/daisy.html. For SIFT, http://www.vlfeat.org/.
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Table 6.1: Performance comparison of DAISY and SIFT

Caltech 101
(30 train)

Recognition
accuracy

Descriptor
length

Computation
time

DAISY
(15R8o3r4c)

48.61% 104 0.218s

DAISY
(15R4o2r8c)

46.36% 68 0.126s

DAISY
(15R4o1r4c)

44.17% 20 0.054s

SIFT 44.06% 128 0.666s

CAL VOC 2007, and compared it with the state-of-the-art SIFT descriptor. The

experimental results showed that DAISY outperforms SIFT with a shorter descr-

iptor length, and can operate 12 times faster than SIFT when displaying similar

recognition accuracy. All these make DAISY a very competitive local descriptor for

the task of visual object recognition.
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7.1 Introduction

As we introduced in section 2.2.2.2, many local image descriptors [Lowe 2004]

[Dalal & Triggs 2005] [Bay et al. 2008] [Tola et al. 2010] [Belongie et al. 2002]

[Heikkilä et al. 2009] calculated based on interest regions have been proposed and

proven competent compared with the global ones, and these local features are

highly distinctive to identify speci�c objects, partially invariant to illumination

variations, robust to occlusions, and insensitive to local image distortions.

Since long ago, it has been admitted that human visual processing could

not be explained only by the �rst order mechanisms which capture the spatio-

temporal variations in luminance, and the second order based ones capture

complementary information such as di�erence of texture and spatial frequency

[Smith & Scott-Samuel 2001]. Despite the great variety in design principle and im-

plementation, the overwhelming majority of the existing local image descriptors

share one common ground that they make use of the information of the �rst order

gradients, e.g. locations, orientations and magnitudes. In contrast, quite limited

e�orts are made on the second order gradients. In [Brown et al. 2011], the authors

proposed an uni�ed framework for local descriptor design, and pointed out high

order gradients (2nd and 4th) are helpful in the application of multi-view stereo

matching. However, to the best of our knowledge, local image descriptors based on

the second order gradients are seldom investigated in the literature for the purpose

of object recognition. Intuitively, the second order gradient information should not

only possess certain discriminative power to distinguish di�erent object classes, but

also tend to be complementary to the information provided by the �rst order gra-

dients. This intuition could also be characterized by an analogy of object motion

which requires not only the velocity but also the acceleration for a comprehensive

description. According to this analogy, within a pre-de�ned distance between two

pixels, the �rst order gradients imitate the velocity of the gray value variation, while

the second order gradients simulate its corresponding acceleration. Therefore, in or-

der to address the confusion caused by intra-class variations as well as inter-class

similarities, and ameliorate the quality of visual content representation, both the
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�rst and second order gradient information is necessary.

Therefore, in this chapter, we propose a novel and powerful local image descrip-

tor, namely Histograms of the Second Order Gradients (HSOG), for object recogni-

tion. As its name implies, HSOG encodes the second order gradient information to

represent local image variations. Speci�cally, for a certain image region, HSOG be-

gins with computing its �rst order Oriented Gradient Maps (OGMs), each of which

is for a quantized direction, and the histograms of the second order gradients are

then extracted on the OGMs. The histograms of all OGMs are further concatenated,

and after PCA-based dimensionality reduction, a compact local image representa-

tion is �nally achieved. Additionally, we embed spatial information by introducing

the multi-scale strategy to improve the categorization accuracy. The experiments

are carried out on the Caltech 101 dataset [Li et al. 2007], and the results clearly

demonstrate the e�ectiveness of the proposed HSOG descriptor and show that they

are also complementary to the �rst order gradient based ones.

7.2 HSOG descriptor construction

In this section, we present the Histograms of the Second Order Gradient (HSOG)

descriptor in detail. Its construction is composed of four main steps: (1) compu-

tation of the �rst order Oriented Gradient Maps (OGMs); (2) computation of the

second order gradients based on these computed OGMs; (3) spatial pooling; and (4)

dimensionality reduction. The entire process is illustrated in Figure 7.1.

7.2.1 Computation of the �rst order Oriented Gradient Maps

(OGMs)

The input of the proposed HSOG descriptor is an image region around the keypoint,

which is either detected by interest point detectors, e.g. Harris-Laplace, or located

on a dense sampling grid. For each pixel (x, y) within the given region I, a certain

number of gradient maps G1, G2, . . . , GN , one for each quantized direction o, are
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Figure 7.1: Construction process of the proposed HSOG descriptor
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�rst computed. They are formally de�ned as:

Go =

(
∂I

∂o

)+

; o = 1, 2, . . . , N. (7.1)

where the '+' sign means that only positive values are kept to preserve the polarity

of the intensity changes, while the negative ones are set to zero.

Each gradient map describes gradient norms of the input image region in a

direction o at every pixel location. We then convolve its gradient maps with a

Gaussian kernel G. The standard deviation of the Gaussian kernel G is proportional

to the radius of the given neighborhood, R, as equation (7.2):

ρRo = GR ∗Go (7.2)

The purpose of the convolution with Gaussian kernels is to allow the gradients to

shift within a neighborhood without abrupt changes.

At a given pixel location (x, y), we collect all the values of these convolved

gradient maps at that location and build the vector ρR(x, y) as:

ρR(x, y) =
[
ρR1 (x, y), · · · , ρRN (x, y)

]T
(7.3)

This vector, ρR(x, y), is further normalized to unit norm vector, which is called

in the subsequent entire orientation vector and denoted by ρR, and the image region

can be thus represented by entire orientation vectors. Speci�cally, given an image

region I, we generate an Oriented Gradient Map (OGM) Jo for each orientation o

de�ned as:

Jo(x, y) = ρR
o

(x, y) (7.4)

Figure 7.2 illustrates such a process. Thanks to the computation of gradient

maps as well as the following normalization step, OGMs possess the property of

being invariant to a�ne lighting transformations, which can be inherited by the

whole HSOG descriptor.
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Figure 7.2: An illustration of the oriented gradient maps for each of the quantized
orientations o

7.2.2 Computation of the second order gradients

Once the �rst order OGMs of all quantized directions are generated, they are em-

ployed as the input for computing the second order gradients in the same image

region. Precisely, for each �rst order OGM, Jo(x, y), o = 1, 2, . . . , N , we consider it

as a regular image, and calculate the gradient magnitude mago and orientation θo

at every pixel location as equation (7.5) and (7.6):

mago(x, y) =

√(
∂Jo(x, y)

∂x

)2

+

(
∂Jo(x, y)

∂y

)2

(7.5)

θo(x, y) = arctan

(
∂Jo(x, y)

∂y

/
∂Jo(x, y)

∂x

)
(7.6)

where o = 1, 2, . . . , N ;

∂Jo(x, y)

∂x
= Jo(x+ 1, y)− Jo(x− 1, y) (7.7)

∂Jo(x, y)

∂y
= Jo(x, y + 1)− Jo(x, y − 1) (7.8)
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Figure 7.3: Spatial pooling arrangement (DAISY-style in [Brown et al. 2011]) of the
proposed HSOG descriptor

Then, each orientation θo is mapped from [−π/2, π/2] to [0, 2π], and quantized

into N dominant orientations, which keeps consistent with the number of the �rst

order OGMs. After quantization, the entry no of each direction θo is calculated as

equation (7.9):

no(x, y) = mod

(⌊
θo(x, y)

2π/N
+

1

2

⌋
, N

)
,o = 1, 2, . . . , N (7.9)

7.2.3 Spatial pooling

Spatial pooling is an e�ective way for local descriptors to encode coarse spatial in-

formation of image pixels. It divides the input image region into sub-regions and

accumulates a histogram of certain property (gradients, edge points, binary pat-

terns, etc.) within each sub-region. All these histograms are then concatenated

to construct the �nal descriptor. Brown et al. [Brown et al. 2011] analyzed di�er-

ent spatial pooling schemes and compared their performances, indicating that the

best performance was achieved by the DAISY-style arrangement, as illustrated in

Figure 7.3. Therefore, we follow this way for spatial pooling of the HSOG descriptor.

The input image region is divided into circles of di�erent size located on a series

of concentric rings. The radius of each circle is proportional to its distance from

the central pixel. As a result, there are four parameters that determine the spatial
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arrangement of the HSOG descriptor: the radius of the region area (R); the number

of quantized orientations (N); the number of concentric rings (CR); the number

of circles on each ring (C). The in�uence of di�erent parameters will be analyzed

experimentally in section 7.4.2.

The total number of the divided circles can be calculated as T = CR × C + 1.

Within each circle CIRj , j = 1, 2, . . . , T , and for each �rst order OGM Jo,

o = 1, 2, . . . , N , a second order oriented gradient histogram, hoj , is built as equa-

tion (7.10) by accumulating the gradient magnitudes mago of all the pixels with the

same quantized orientation entry no.

hoj(i) =
∑

(x,y)∈CIRj

f(no(x, y) == i) ∗mago(x, y) (7.10)

where i = 0, 1, . . . , N − 1; o = 1, 2, . . . , N , j = 1, 2, . . . , T ,

f(x) =

 1, if x is true

0, otherwise
(7.11)

Then, for each �rst order OGM Jo, its second order oriented gradient histogram

ho is generated by concatenating all the histograms from T circles as equation (7.12):

ho = [ho1, ho2, ho3, · · · , hoT ]T (7.12)

where o = 1, 2, . . . , N . The HSOG descriptor is obtained by concatenating all N

histograms of the second order oriented gradient as equation (7.13). Each histogram

ho is normalized to an unit norm vector ĥo before the concatenation.

HSOG = [ĥ1, ĥ2, ĥ3, · · · , ĥN ]T (7.13)

7.2.4 Dimensionality reduction

The dimension of the achieved HSOG descriptor is T ×N2, which is relatively high

(from hundreds up to more than one thousand) for the following steps. In order to

reduce the dimensionality and increase the discriminative power, we further apply
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the well known Principal Component Analysis (PCA) technique [Jolli�e 2002], since

it has been successfully applied in the PCA-SIFT and GLOH cases for the same

objective.

To build the eigenspace, we located 76,000 local image patches by applying the

Harris-Laplace interest point detector [Mikolajczyk & Schmid 2004] on a diverse col-

lection of images which is out of the dataset for validation. Each of these patches

was adopted to compute its HSOG descriptor, and PCA was applied on the covari-

ance matrix of these descriptors. The matrix consisting of the top n eigenvectors

was stored and utilized as the projection matrix.

For a certain local image region, its HSOG descriptor is �rstly computed and

then projected into a low-dimensional feature space by multiplying the pre-trained

projection matrix. The dimension of the �nal HSOG descriptor is hence reduced

to n. We experimentally determined the best values for n, and set n = 128 in

the following experiments. The discussion about the choice of the value n will be

presented in section 7.4.3.

7.3 Attribute comparison with main local descriptors

As we presented in section 2.2.2.2, the attributes of the most popular local desc-

riptors applied to the domain of object recognition are summarized in Table 2.3,

including representation type (sparse or dense), encoded information, spatial pool-

ing scheme (neighborhood grid), computation method (comp.), and dimensionality

(dim.). The comparisons can now be updated as in Table 7.1 after we introduced the

DAISY descriptor in chapter 6 and proposed the HSOG descriptor in this chapter.

7.4 Experimental evaluation

We evaluate the proposed HSOG descriptor in the context of visual object recogni-

tion on the standard Caltech 101 dataset [Li et al. 2007]. Its detailed introduction

can be found in section 3.2.
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Table 7.1: Attribute summary of main local image descriptors applied to object
recognition

Descriptor Type Information Grid Comp. Dim.

SIFT Sparse Gradient (1st) Rect. Distr. 128
PCA-SIFT Sparse Gradient (1st) Rect. Distr. 36
Color SIFT Sparse Gradient (1st) Rect. Distr. 384
GLOH Sparse Gradient (1st) Polar Distr. 128
HOG Dense Gradient (1st) Rect. & Polar Distr. 36
SURF Sparse Wavelet response Rect. Filter 64
Shape Context Sparse Edge points Polar Distr. 60
CS-LBP Sparse Binary patterns Rect. Distr. 256
DAISY Dense Gradient (1st) Polar Filter 200
HSOG Sparse Gradient(2nd) Polar Distr. 128

7.4.1 Experimental setup

We follow the same approach as introduced in section 5.5.3 for object recognition.

The block diagram of the approach is depicted in Figure 5.7.

For each image in the dataset, the Harris-Laplace detector is �rstly applied to

detect interest points, and a local region around each interest point is then selected

to extract the HSOG descriptor. For the purpose of comparison, several state-of-the-

art descriptors are also extracted from these regions, including SIFT [Lowe 2004],

DAISY [Tola et al. 2010] and CS-LBP [Heikkilä et al. 2009]. Speci�cally, we imple-

ment the CS-LBP descriptor according to [Heikkilä et al. 2009], and use the source

codes available online 1 for computing SIFT and DAISY.

We apply the popular Bag-of-Features (BoF) modelling method

[Csurka et al. 2004] introduced in section 2.2.2.3 due to its great success in

object recognition tasks. In our case, a vocabulary of 4000 �visual words� is

constructed for each kind of local descriptors respectively by applying the k-means

clustering algorithm on a subset of the descriptors randomly selected from the

training data as in [van de Sande et al. 2010].

The Support Vector Machine (SVM) algorithm introduced in section 2.3.2.1 is

applied for classi�cation. When all the local descriptors are transformed to �xed-

1Code for SIFT: http://www.vlfeat.org/

Code for DAISY: http://cvlab.epfl.ch/~tola/daisy.html/
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length feature vectors by the BoF method, the χ2 distance is computed as equa-

tion (2.36) to measure the similarity between each pair of the feature vectors. Then,

the kernel function based on this distance is utilized as equation (2.37) for the SVM

training and prediction. Finally, each test image is classi�ed into object class with

the maximum SVM output decision value. We tune the parameters of the classi�er

on the training set via 5-fold cross-validation, and obtain the recognition accuracy

on the test set.

To carry out the experiments on the Caltech 101 dataset, we follow the common

training and test settings as used in [Varma & Ray 2007] [Zhang et al. 2006]. For

each object category, 30 images are randomly selected, while 15 are for training and

the other 15 for test, resulting in totally 1530 images for training and 1530 images for

test respectively. The experiments are repeated three times with di�erent training

and test selections, and the average recognition accuracy is reported.

7.4.2 Parameter selection

Recall that the HSOG descriptor has four parameters: the radius of the region area

(R); the number of quantized orientations (N); the number of concentric rings (CR);

as well as the number of circles on each ring (C). To evaluate their impacts on the

performance of the descriptor, we draw a series of line graphs of the recognition

accuracy on di�erent R by alternately changing one parameter while �xing the

others for N , CR and C. The results are shown in Figure 7.4.

It can be observed from Figure 7.4 (a) that the descriptors with 8 orientations

perform clearly better than that with 4 and 6; while the one with 10 orientations

shows no superiority to that with 8, indicating that 8 orientations are su�cient to

describe local image variations. From Figure 7.4 (b), we can see that the performance

keeps improving when the number of concentric rings increases, showing that the

descriptor based on more rings is better, because more neighboring information is

included. Figure 7.4 (c) shows that raising the number of the circles on each ring

does not improve the performance, implying that large number of circles on each

ring is unnecessary, due to overlapping of adjacent regions.

Another phenomenon from these three �gures is that the performance rises con-
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Figure 7.4: In�uence of di�erent parameters in HSOG. (a) the number of quantized
orientations N ; (b) the number of concentric rings CR; (c) the number of circles on
each ring C.
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Figure 7.5: In�uence of the PCA-based dimensionality reduction for the proposed
HSOG descriptor

tinuously with the size of region area R when it is small. After R reaches a certain

point (about 25 pixels), the performance improvement is not obvious if R continues

increasing. Therefore, we choose the best parameter setting for the proposed HSOG

descriptor as follows: R = 25, N = 8, CR = 3, C = 4.

7.4.3 In�uence of PCA-based dimensionality reduction

We also discussed the impact of the PCA-based dimensionality reduction on the

HSOG performance. A series of curves of the recognition accuracy based on di�erent

region sizes are generated by varying the dimensionality n calculated by PCA from

32 to 256, as shown in Figure 7.5.

We calculated the values of means and deviations of the descriptors with in-

dividual �xed dimensions, and found that the performance of the 128-dimensional

descriptor (44.00± 0.44) was better than those of the others, such as 32 dimension

(42.18±0.63); 64 dimension (42.92±0.84); 96 dimension (43.35±0.80); 160 dimen-

sion (43.62± 0.40); 192 dimension (42.87± 0.79); and 256 dimension (42.78± 0.64).

Therefore, 128 is chosen as the dimensionality of the HSOG descriptor.
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7.4.4 Multi-scale extension

In order to compute the HSOG descriptor, a local image region around keypoints

should be �xed. The optimal size of this region is often selected based on the

scale of the keypoint given by detectors or chosen manually. In section 7.4.2, we

experimentally evaluated the impacts of di�erent region sizes, and selected a good

one. However, a single size of region is probably not enough to characterize the

neighborhood of a keypoint. More spatial information could be embedded if the

regions with multiple sizes are considered. Therefore, we adopt the multi-scale

strategy to further improve the discriminative power of the HSOG descriptor.

We make use of the multiple kernel learning (MKL) algorithm

[Rakotomamonjy et al. 2008] (see section 2.3.2.2 for a detailed introduction)

to combine di�erent HSOG descriptors from multi-scale regions, since this strategy

does not increase the dimensionality of the features, and the similarity scores

based on di�erent parameters can be calculated individually, leading to a realistic

implementation of parallel computing, e.g. GPU programming, without increasing

the time cost. Speci�cally, for each keypoint p, we choose a certain number of

concentric regions around p with increasing sizes. The HSOG descriptor is then

extracted from each region and applied for object recognition independently by

following the approach described in section 7.4.1. The kernel matrices of di�erent

descriptors are combined using MKL to achieve the �nal recognition results.

From the experimental results shown in Table 7.2, we can see that the per-

formance of the HSOG descriptor is signi�cantly improved from 44.64% (the best

single scale region) to 52.55% (4-region fusion) and 54.25% (8-region fusion). This

nearly 10% improvement clearly proves the e�ectiveness of the multi-scale fusion.

Furthermore, 8-region fusion performs better than 4-region fusion, indicating that

the performance could bene�t from more regions.

7.4.5 Performance evaluation and comparison

We evaluate the proposed HSOG descriptor with the best parameter setting on the

Caltech 101 dataset. As introduced in section 7.4.1, we compare it with other state-
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Table 7.2: Performance comparison of the HSOG descriptors (multi-scale regions
vs. single scale regions) on the Caltech 101 dataset

Type Recognition Accuracy (%)

Single-scale

R = 15 42.35 R = 20 43.07
R = 25 44.64 R = 30 43.92
R = 35 43.79 R = 40 44.44
R = 45 43.40 R = 50 43.79

Multi-scale
R = 25 to 40 52.55
R = 15 to 50 54.25

of-the-art descriptors including SIFT, DAISY and CS-LBP as well. The parameter

setting of HSOG is N = 8; CR = 3; C = 4, with the dimensionality of 128.

SIFT uses the standard con�guration as in [Lowe 2004], thus with 128-dimension.

DAISY applies the same parameter setting as HSOG, and its dimension is 104. The

parameters of CS-LBP are set according to [Heikkilä et al. 2009], i.e. the 4× 4 grid

with CS-LBP2,8,0.01, resulting in a 256-dimensional descriptor.

We can see from Table 7.3 that the single-scale HSOG outperforms the �rst order

gradient based descriptors, i.e. CS-LBP, DAISY and SIFT, and the categorization

result achieved by multi-scale HSOG which combines the ones of four di�erent re-

gions is signi�cantly increased by over 10%, clearly demonstrating the e�ectiveness

of the HSOG descriptor. On the other hand, the fusion of the single scale (Ss) HSOG

or multi-scale (Ms) HSOG with SIFT, DAISY or CS-LBP improves the categoriza-

tion accuracy again, indicating that HSOG provides complementary information to

that given by the existing local image descriptors, and their joint use is a promising

way for visual content representation.

Also, we calculated the average computation time required for each input image

(about size of 300× 250) of these local descriptors using an Intel Core 2 Duo CPU

@ 3.16 GHz with 3GB RAM, and it can be seen that the current version of HSOG

is 3 times slower than SIFT. Nevertheless, it should be noted that because each �rst

order OGM and its corresponding second order gradients can be computed individu-

ally, the current implementation of HSOG can be accelerated by GPU programming

as we mentioned in section 7.4.4, which makes HSOG run approximately N times

faster (N is the number of OGMs, e.g. 8 in our case), leading to a consumed time

147



Chapter 7. Histograms of the Second Order Gradients (HSOG) for
Object Recognition

Table 7.3: Performance and consumed time comparison between the HSOG descri-
ptor and other state-of-the-art descriptors on the Caltech 101 dataset

Descriptor Recognition Accuracy (%) Time (s)

SIFT 40.92 0.316
DAISY 42.48 0.108
CS-LBP 35.62 0.087
HSOG (Ss) 44.64 0.985
HSOG (Ms) 52.55 �

HSOG (Ss) + SIFT 52.81 �
HSOG (Ss) + DAISY 51.70 �
HSOG (Ss) + CS-LBP 50.92 �

HSOG (Ms) + SIFT 56.27 �
HSOG (Ms) + DAISY 54.58 �
HSOG (Ms) + CS-LBP 54.64 �

comparable to the existing descriptors.

7.5 Conclusions

In this chapter, we presented a novel local image descriptor for object recognition,

making use of histograms of the second order gradients, denoted as HSOG. The pro-

posed HSOG descriptor intends to capture the acceleration information on pixel gray

value changes, while the existing descriptors in the literature, such as SIFT, HOG,

DAISY, etc., are based on the �rst order gradient information. The recognition

results achieved on the Caltech 101 dataset clearly demonstrate that the proposed

HSOG descriptor possesses a good discriminative power to distinguish di�erent ob-

ject categories, especially embedded with more spatial information provided by the

multi-scale strategy. Furthermore, the information given by HSOG proves comple-

mentary to that based on the existing ones which exploit the �rst order gradient

information.
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8.1 Conclusions

In this thesis, we focus on the problem of machine-based visual object recognition,

which is a very active and important research topic during recent years, and still

remains one of the most challenging problems in computer vision community. We

follow the popular feature & classi�er based approaches. As the very �rst step,

visual content description is considered as one of the key issues for this problem. A

good visual descriptor, which is both discriminative and computationally e�cient

while possessing some invariance properties against changes in viewpoint, scale and

illumination, could greatly improve the classi�cation performance. In such context,

we propose, in this thesis, some innovative contributions to the task of visual object

recognition, in particular by presenting several new visual features / descriptors to

e�ectively and e�ciently represent the visual content of images. Our contributions

are summarized as follows.

Our �rst contribution is presented in chapter 4. We propose six multi-scale color

local binary pattern (LBP) features to incorporate color information into the origi-

nal LBP operator, which is a computationally e�cient yet powerful texture feature

that has been successfully applied to many applications as diverse as texture clas-

si�cation, texture segmentation, face recognition and facial expression recognition.
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However, it has two main shortcomings. On one hand, the original LBP ignores

all color information because its calculation is based on gray images, while color is

an important clue for distinguishing objects, especially in natural scenes. On the

other hand, the original LBP is only invariant to gray-level monotonic illumina-

tion changes, and thus is de�cient in power to deal with various lighting condition

changes in real-world scenes, which further complicate the recognition task. There-

fore, the aim of the proposed features is to incorporate color information, as well as

to enhance the discriminative power and the photometric invariance property of the

original LBP. In addition, in order to encode spatial information of texture struc-

tures, a coarse-to-�ne image division strategy is applied for calculating the proposed

features within image blocks, and the performances are further improved. The ex-

perimental results on the PASCAL VOC 2007 benchmark prove that the proposed

features can gain signi�cant improvement on recognition accuracy, and thus are

promising for real-world object recognition tasks.

Our second contribution lies in a new type of local image descriptor based on

LBP. In chapter 5, we propose several new local descriptors based on the orthog-

onal combination of local binary patterns (denoted as OC-LBP) to deal with the

downside of the state-of-the-art descriptors such as SIFT and its extensions or re-

�nements, their relatively high computational cost. With the trend of signi�cant

increase of the dataset scale, it is highly desirable that local descriptors o�er both

high discriminative power and computational e�ciency. The LBP operator is a

good candidate to be used to construct a local descriptor, because of its compu-

tational simplicity and strong descriptive power for texture structures. However,

the barrier lies in the high dimensional feature vectors that it produces, especially

when the number of considered neighboring pixels increases. Therefore, we �rst

propose a new dimensionality reduction method for LBP, namely the orthogonal

combination of local binary patterns (the OC-LBP operator). It proves much more

e�ective than other popular methods such as �uniform patterns� and CS-LBP op-

erator by the experiments on a standard texture classi�cation dataset. Then, we

adopt the OC-LBP operator to construct a distribution-based local descriptor, de-

noted as the OC-LBP descriptor, by following a way similar to SIFT. Our aim is to
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build a more e�cient local descriptor by replacing the costly gradient information

with local texture patterns in the SIFT scheme. Moreover, as the extension of our

�rst contribution, we also propose six color OC-LBP descriptors by extending the

intensity-based OC-LBP descriptor to di�erent color spaces in order to enhance its

discriminative power and photometric invariance property. The experimental re-

sults in three di�erent applications � image matching, object recognition and scene

classi�cation � show the e�ectiveness of the proposed descriptors. They outper-

form the popular SIFT and CS-LBP descriptors, and achieve comparable or even

better performances than the state-of-the-art color SIFT descriptors. Meanwhile,

they provide complementary information to SIFT, since further improvement can

be obtained by fusing these two kinds of descriptors. Moreover, the proposed gray

and color OC-LBP descriptors are about 4 times faster to compute than the SIFT

and color SIFT descriptors respectively. Therefore, they are very promising for large

scale recognition problems.

Our third contribution is presented in chapter 6. We introduce the DAISY

descriptor for the task of visual object recognition. There is now a trend in com-

puter vision community that the scale of the benchmark datasets used for object

recognition / image classi�cation becomes larger year by year. However, it is well

known that the gradient-distribution-based local descriptors such as SIFT, GLOH

and HOG obtain the state-of-the-art performances, while the main drawback of

them is their relatively high computational cost. Thus, more computationally e�-

cient local descriptors are urgently demanded to deal with large scale datasets such

as ImageNet and TRECVID. Usually, there are two ways to do this: one is to replace

the costly gradient information with other more e�cient features, just as what we

did in the case of the OC-LBP descriptor; the other is to �nd more e�cient methods

to calculate the gradient information. The DAISY descriptor, which was initially

designed for wide-baseline stereo matching problem, is a newly introduced fast local

descriptor based on gradient distribution, and has shown good robustness against

many photometric and geometric transformations. It has never been used in the

task of visual object recognition, while we believe that it is very suitable for this

problem. Therefore, we investigate the DAISY descriptor in the context of visual
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object recognition by evaluating and comparing it with the popular SIFT both in

terms of recognition accuracy and computation complexity on two standard image

benchmarks. The experimental results on Caltech 101 and PASCAL VOC 2007 show

that DAISY outperforms SIFT with a shorter descriptor length, and can operate 12

times faster than SIFT when displaying similar recognition accuracies. DAISY thus

provides a fast and more e�cient way to calculate the gradient information for the

task of visual object recognition.

Our fourth contribution is presented in chapter 7. We propose a novel local im-

age descriptor called histograms of the second order gradients (denoted as HSOG)

for visual object recognition. In the literature, the most e�ective feature for charac-

terizing an object's appearance or the content of an image is the �rst order gradient

information, based on which many successful and state-of-the-art descriptors, such

as SIFT, GLOH, HOG and DAISY, are constructed. Intuitively, the second order

gradient information, which, to the best of our knowledge, is seldom investigated

in the literature for object recognition, should not only possess certain discrimina-

tive power to distinguish di�erent objects, but also tends to be complementary to

the description provided by the �rst order gradients. Indeed, since long ago, it has

been admitted that human visual processing could not be explained only by the

�rst order mechanisms which capture the spatio-temporal variations in luminance.

The second order mechanisms could capture complementary information such as

di�erence of texture and spatial frequency. This intuition could also be character-

ized by an analogy of object motion which requires not only the velocity but also

the acceleration for a comprehensive description. According to this analogy, with-

in a pre-de�ned distance between two pixels, the �rst order gradient imitates the

velocity of the gray value variation, while the second order gradient simulates its

corresponding acceleration. In order to ameliorate the quality of visual content rep-

resentation, both the �rst and second order gradient information is necessary. The

experimental results achieved on the Caltech 101 dataset show that the proposed

HSOG descriptor outperforms the �rst order gradient based descriptors, e.g. SIFT,

CS-LBP and DAISY, by more than 10%, indicating that HSOG possesses a good

discriminative power to distinguish di�erent object categories, especially embedded
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with more spatial information provided by the multi-scale strategy. Furthermore,

the fusion of HSOG with SIFT, CS-LBP or DAISY improves the recognition ac-

curacy again, demonstrating the complementarity of information provided by both

the �rst and second order gradient based descriptors.

8.2 Perspectives for future work

We present in this section some perspectives for future research directions.

For the OC-LBP descriptor, we now use 4-orthogonal-neighbor as the basic unit

to divide the neighboring pixels of the original LBP operator into non-overlapping

groups. Other types of the basic unit could also be considered. For example, we

could use the basic unit of 3-equilateral-triangular-neighbor, which would further

reduce the dimensionality of the original LBP. Therefore, the performance of the

descriptor using di�erent basic units remains to be evaluated through comprehensive

experiments in future.

For the HSOG descriptor, other ways for gradient computation could also be

adopted. According to [Dalal & Triggs 2005], the descriptor performance is sensi-

tive to the way in which gradients are computed. Therefore, future work could be

done by evaluating the performance of the HSOG descriptor with di�erent ways to

compute gradients, such as uncentred 1D mask [−1, 1], cubic-corrected 1D mask

[1,−8, 0, 8,−1], 3 × 3 Sobel masks, and 2 × 2 diagonal masks [ 0 1
−1 0 ], [−1 0

0 1 ], as

in [Dalal & Triggs 2005]. Moreover, since the �rst and second order gradients are

computed separately in the HSOG construction, they could adopt di�erent ways for

computation as well. In addition, the performance of the HSOG descriptor may be

improved by applying the linear discriminant analysis (LDA), which is a discrim-

inative technique, to replace the principal component analysis (PCA), which is a

non-discriminative technique, for its dimension reduction.

The DAISY and the HSOG descriptors could also be incorporated with col-

or information to enhance their discriminative power and photometric invariance

properties, as what we did in the cases of LBP and OC-LBP.

For the extraction of the proposed features / descriptors, di�erent parts of an
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image are now equally treated. In other words, the features extracted from the

di�erent parts of an image are considered to have equal importance, regardless of

their locations in the image. However, intuitively, they should have di�erent impor-

tance. For example, the features extracted from the object area should have greater

importance than those from the background area, especially in the case of datasets

with big background clutter. This point has been con�rmed in [Zhang et al. 2007].

Therefore, future work could be done to �rst locate the interest areas (usually the

objects) in images by some detection or segmentation techniques, and then assign

di�erent weights to the features during extraction according to their locations in

images.

For the classi�cation, we now apply the standard SVM algorithm, which con-

siders each training sample equally while training the classi�er. However, due to

intra-class variations and inter-class correlations, it is di�cult for SVM to deal with

the complexity of data distribution when the samples within the same category

exhibit diversities and the samples from di�erent categories display similarities in

terms of visual attributes. Therefore, future work could be done to introduce d-

i�erent weights for di�erent samples during the SVM training process. How to

decide the values of weights for di�erent samples also remains a problem, while

[Malisiewicz & Efros 2008], [Lin et al. 2007] and [Yang et al. 2009b] provide some

ideas.
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Appendix A

Participation in the Popular

Challenges

We present here a brief introduction of our participation, during this thesis, in two

popular challenges in computer vision community: the PASCAL VOC challenge 1

in image domain and the TRECVID challenge 2 in video domain, partly based on

the work of this thesis.

A.1 Participation in the PASCAL VOC challenge

The PASCAL Visual Object Classes (VOC) challenge is a popular benchmark for

visual object recognition and detection in image domain. A detailed introduction

of the PASCAL VOC can be found in section 3.1.

We participated in this challenge in 2009, 2010 and 2011 for the classi�cation

task. Its aim is to predict, for each test image, the presence or the absence of each

of the twenty prede�ned classes.

In 2009, we participated in this challenge for the �rst time. The dataset includes

3473 images for training, 3581 images for validation, and 6650 images for test. As

our baseline recognition system, we extracted from each image the dense SIFT

descriptor and a set of global features, including Color Histogram, Color Moments,

Color Coherence Vectors, Gray Level Co-occurrence Matrix, Local Binary Patterns,

Edge Histogram, and Line Segment (see chapter 2 for their detailed introduction),

to describe the visual content of images. A vocabulary of 4000 visual words was

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/
2http://trecvid.nist.gov/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://trecvid.nist.gov/
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created for the Bag-of-Features model of SIFT, and hard assignment was adapted

to build the histogram. The SVM classi�er was used for classi�cation, and the

Chi-square distance was computed as the kernel of SVM for all kinds of features.

The predicted probabilities of di�erent features were fused according to their EER

(Equal Error Rate) to decide the �nal classi�cation results. For each object class,

we trained the classi�er on the �train� set, and tuned the parameters on the �val�

set.

As a result, we achieved MAP (Mean Average Precision) of 45.0%, and ranked

13/20 by teams and 30/48 by submissions. The results by teams from the organizers

are shown in Figure A.1.

Figure A.1: PASCAL VOC challenge 2009 results by teams from the organizers

In 2010, the dataset was enlarged to include 4998 images for training, 5105

images for validation, and 9637 images for test. To improve the performance of our

recognition system, we added our color LBP features presented in chapter 4, and

considered more local descriptors including HOG and color SIFT (dense sampling

+ interest points). A vocabulary of 4000 visual words was created for the Bag-
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of-Features model of each kind of local descriptors. Spatial pyramid information

was also taken into account. The MKL (Multiple Kernel Learning) algorithm was

applied to combine di�erent features and perform the classi�cation. The Chi-square

distance was computed as the kernel for MKL. For each object class, we trained the

classi�er on the �train + val� set, and tuned the parameters via cross-validation.

As a result, we achieved MAP (Mean Average Precision) of 60.0%, and ranked

9/22 by teams and 15/32 by submissions, which was a great improvement compared

to the year of 2009. The results by submissions from the organizers are shown in

Figure A.2.

Figure A.2: PASCAL VOC challenge 2010 results by submissions from the organizers

In 2011, the dataset was enlarged again to include 5717 images for training,

5823 images for validation, and 10994 images for test. We made two submissions

this year. For the submission LIRIS_CLS, we followed the same approach applied

in 2010, but added two new kinds of features to further improve the recognition

performance: color OC-LBP descriptors presented in chapter 5, and the DAISY

descriptor presented in chapter 6. For the submission LIRIS_CLSDET, we im-

proved the performance of the submission LIRIS_CLS by combining it with object
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detection results. For object detection, we applied the HOG feature to train de-

formable part models [Felzenszwalb et al. 2010], and used the models together with

sliding window approach to detect objects. Finally, we combined the outputs of

classi�cation and detection by late fusion.

As a result, our best submission (LIRIS_CLSDET) achieved MAP (Mean Aver-

age Precision) of 66.8%, and ranked 5/13 by teams and 7/20 by submissions, which

was another improvement compared to the year of 2010. The results by submissions

from the organizers are shown in Figure A.3.

Figure A.3: PASCAL VOC challenge 2011 results by submissions from the organizers

A.2 Participation in the TRECVID challenge

The TREC Video Retrieval Evaluation (TRECVID) challenge is a popular bench-

mark in video domain for content-based video analysis and retrieval. A detailed

introduction of the TRECVID can be found in section 3.7.

We participated in the TRECVID challenge in 2011 for the �rst time, and focus

on the semantic indexing task. Its aim is to automatically analyze the meaning con-
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veyed by videos and tag video segments (shots) with semantic concept labels. More

precisely, given the test collection, master shot reference, and concept de�nitions,

participants are required to return for each concept a list of at most 2000 shot IDs

from the test collection ranked according to the possibility of detecting the concept.

In 2011, there are totally 346 concepts. The test set includes 200-hour video data

with durations between 10 seconds and 3.5 minutes, while the development set con-

tains 400-hour video data with durations just longer than 3.5 minutes. There are

two types of runs for participants:

• Full run: including results for all 346 concepts

• Lite run: including results for 50 concepts, which is a subset of all 346 concepts

selected by the organizers

Video 

Shots 

Keyframe 

Selection 

Feature 

Extraction 

BoF 

Modeling 

Homogeneous 

Kernel Map 

Linear 

SVM 

Concept 

Prediction 

Figure A.4: Flowchart of our approach for participating in the semantic indexing
task of the TRECVID challenge 2011

The �owchart of our approach is shown in Figure A.4. For keyframe selec-

tion, we decoded video data and kept single keyframe for each video shot. For

feature extraction, we chose 4 visual features, including dense SIFT, color SIFT,

OC-LBP and DAISY, together with 1 audio feature consisting of MFCC with delta

and acceleration. Then we applied the Bag-of-Features method to transform all the

visual descriptors into the �xed-length histograms to represent the visual content

of the keyframes. For classi�cation, since the popular non-linear SVM classi�er is

impractical for this problem due to the huge scale of video data, we adopted the

solution of using non-linear kernel mapping together with fast linear SVM classi-

�er. We applied the Homogeneous Kernel Map method proposed by Vedaldi and

Zisserman [Vedaldi & Zisserman 2012] for non-linear kernel mapping. Its basic idea

is to transform the data into a compact linear representation which reproduces the

desired non-linear kernel to a very good level of approximation. Finally, we adopt-
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ed a late-fusion strategy which directly averages the output probabilities of all the

classi�ers.

The results are presented in Figure A.5 and A.6. Our best submission (visual

+ audio) achieved the rank of 45/102 for lite run and 37/68 for full run. Consid-

ering that this is our �rst time to participate in this challenge, and we only used

basic features and single keyframe representation due to the limited time, further

improvement could be made by applying more powerful features and using multi-

frame representation in the future work.

Figure A.5: Lite run results of TRECVID challenge 2011

Figure A.6: Full run results of TRECVID challenge 2011
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Comparison of the Popular

Features for Object Recognition

In section 2.2.1, we introduce several popular global features proposed in the lit-

erature, including Color Histogram (CH), Color Moments (CM), Color Coherence

Vectors (CCV), Color Auto-Correlogram (CAC), Gray Level Co-occurrence Matrix

(GLCM), Texture Auto-Correlation (TAC), Gabor, Edge Histogram (EH), and Line

Segments (LS). In section 2.2.2.2, a set of popular local features are presented. We

evaluate and compare these features here in the context of visual object recogni-

tion by carrying out the experiments on the PASCAL VOC 2007 benchmark (see

section 3.1 for an introduction).

Regarding the implementation of the global features, the RGB color space is

adopted for computing all the color features. For CH, each color channel is quantized

into 11 bins, resulting in a 1331-dimensional histogram. For CM, three orders of color

moments are computed respectively in each color channel with a 5×5 image division,

leading to a 225-dimensional vector. For CCV, each color channel is quantized into

4 bins, so that the �nal vector is of 128-dimension. For CAC, each color channel

is quantized into 4 bins, and the maximal distance between two pixels is set to 8,

resulting in a 512-dimensional vector. For GLCM, 4 directions (horizontal, vertical

and two diagonals) with 1 o�set between two pixels are considered. For TAC,

(0,2,4,6,8) are applied as position di�erence in both x and y directions. For Gabor,

5 scales and 8 orientations are used. For EH, 5 types of edge (horizontal, vertical,

45-degree diagonal, 135-degree diagonal and non-directional) are extracted. For LS,

6 orientation bins and 4 length bins are selected for the detected line segments.

For the local features, we select the SIFT, three color SIFT (C-SIFT, Oppo-
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Table B.1: Comparison of popular global features in the context of object recognition
on the PASCAL VOC 2007 benchmark

AP (%) CH CM CCV CAC GLCM TAC Gabor EH LS

airplane 45.3 52.5 45.7 43.9 44.2 25.5 39.3 33.8 36.4
bicycle 21.7 21.1 10.3 16.7 11.4 16.3 17.5 12.8 18.7
bird 24.0 15.2 19.6 22.7 18.1 19.7 15.3 18.3 15.9
boat 30.3 30.7 29.0 22.8 9.0 15.6 12.3 13.5 35.7
bottle 19.1 12.8 10.9 8.6 8.0 7.5 7.8 6.1 12.7
bus 17.6 18.7 20.4 15.5 18.4 13.3 11.6 9.6 24.8
car 40.7 44.1 36.3 30.6 41.5 38.9 33.5 30.1 38.9
cat 22.8 19.2 22.3 15.8 18.9 13.7 15.8 13.6 23.6
chair 23.1 26.4 25.6 22.3 29.5 19.4 19.0 13.5 32.3
cow 9.2 9.9 15.6 14.2 6.9 9.1 8.1 12.9 13.8
table 25.2 21.4 27.5 23.9 19.5 7.1 12.2 5.8 17.5
dog 24.0 25.2 24.0 15.2 23.2 14.9 18.5 13.1 26.6
horse 57.2 55.9 44.7 45.6 31.8 12.4 31.6 27.8 21.1
motor 31.3 31.1 18.6 14.6 19.2 10.5 11.9 16.7 16.0
person 71.0 61.5 65.4 62.1 53.5 56.9 56.5 53.6 65.9
plant 22.6 11.0 20.5 19.4 9.4 7.2 8.7 6.1 8.6
sheep 22.9 15.3 20.6 20.5 13.3 9.6 10.7 12.9 17.8
sofa 11.7 22.4 14.1 12.6 11.0 8.8 11.8 10.2 13.2
train 33.4 38.8 33.8 26.1 24.0 16.3 19.0 21.9 23.7
monitor 13.5 18.7 18.8 14.3 16.2 6.7 15.4 10.1 22.8

Mean 28.3 27.6 26.2 23.4 21.4 16.5 18.8 17.1 24.3

nentSIFT and RGB-SIFT), and HOG descriptors for evaluation. For their extrac-

tion, we use the source codes available online 1 with the default parameter setting.

For classi�cation, the Support Vector Machine (SVM) algorithm (see sec-

tion 2.3.2.1 for an introduction) is applied. Once all the features are extracted from

the dataset, and are transformed into �xed-length histograms by the Bag-of-Features

modelling method (required for local features, 4000 visual words, see section 2.2.2.3

for an introduction), the Chi-square (χ2) kernel is computed as equation (2.36) and

(2.37) for the SVM training and prediction. Finally, the precision-recall curve is

plotted according to the output decision values of the SVM classi�er, and the Av-

erage Precision (AP) value is computed based on the proportion of the area under

this curve. For each category in the dataset, we train the classi�er on the training

1Code for SIFT and color SIFT: http://www.colordescriptors.com/

Code for HOG: http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html/
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Table B.2: Comparison of popular local features in the context of object recognition
on the PASCAL VOC 2007 benchmark (�OP-SIFT� is the abbreviation of �Oppo-
nentSIFT�, �HL� stands for �Harris-Laplace Interest Points�, �DS� stands for �Dense
Sampling�)

AP (%) SIFT
(HL)

SIFT
(DS)

OP-
SIFT
(HL)

OP-
SIFT
(DS)

C-
SIFT
(HL)

C-
SIFT
(DS)

RGB-
SIFT
(HL)

RGB-
SIFT
(DS)

HOG

airplane 56.0 60.9 59.9 64.3 58.7 63.2 57.8 65.2 52.1
bicycle 44.9 41.3 43.8 41.5 38.9 40.2 44.6 40.6 26.9
bird 28.2 29.8 27.7 38.9 32.1 42.5 22.5 30.4 25.0
boat 45.7 55.1 49.1 54.9 51.8 56.1 46.6 54.9 40.6
bottle 19.6 15.4 21.2 22.5 21.4 22.5 21.0 17.7 12.8
bus 37.7 39.9 38.0 40.2 32.5 36.8 37.7 42.4 38.3
car 55.0 63.4 57.4 62.2 53.2 60.1 56.1 64.7 58.1
cat 36.5 40.4 37.7 38.6 34.1 35.5 37.3 42.3 27.5
chair 44.5 45.6 42.4 43.5 45.9 44.3 43.5 43.4 43.8
cow 25.9 25.8 17.0 24.4 16.6 21.6 27.8 25.8 19.8
table 29.6 24.9 36.7 33.2 38.7 26.9 29.1 29.4 33.6
dog 26.5 32.6 29.8 34.3 29.1 30.5 28.8 37.0 20.4
horse 57.0 62.4 59.1 63.4 61.9 69.9 54.8 61.3 59.3
motor 30.2 40.7 33.9 44.7 44.4 42.3 32.1 40.7 37.2
person 73.1 75.3 74.5 76.4 76.6 76.5 72.7 75.8 66.2
plant 11.5 14.6 19.9 14.5 27.1 26.2 11.5 14.6 10.4
sheep 27.4 29.3 31.2 35.0 30.9 33.1 19.4 29.5 18.4
sofa 23.6 34.9 22.9 29.3 23.2 31.8 24.6 31.5 26.3
train 53.4 56.0 54.5 57.8 58.5 60.2 51.1 57.5 52.7
monitor 33.7 37.4 35.0 38.0 27.3 36.6 35.6 37.8 32.3

Mean 38.0 41.3 39.6 42.9 40.1 42.8 37.7 42.1 35.1

set, then tune the parameters on the validation set, and obtain the classi�cation

results on the test set. The detailed results are presented in Table B.1 and B.2.
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Publications

During this thesis, 5 papers have been published, including 1 paper in an interna-
tional journal and 4 papers in international conferences. In addition, 3 papers have
been submitted for review, including 2 papers to international journals and 1 paper
to an international conference.

Accepted Paper in International Journal:

1. C. Zhu, H. Fu, C.E. Bichot, E. Dellandréa, and L. Chen: �Visual Object Recog-
nition Using Multi-scale Local Binary Patterns and Line Segment Feature�,
International Journal of Signal and Imaging Systems Engineering (IJSISE), to
appear, 2011.

Accepted Papers in International Conferences:

1. C. Zhu, C.E. Bichot, and L. Chen: �Visual Object Recognition Using DAISY
Descriptor�, in Proc. of IEEE International Conference on Multimedia and
Expo (ICME), pp.1-6, Barcelona, Spain, 11-15 July 2011.

2. C. Zhu, C.E. Bichot, and L. Chen: �Multi-scale Color Local Binary Patterns
for Visual Object Classes Recognition�, in Proc. of 20th International Confer-
ence on Pattern Recognition (ICPR), pp.3065-3068, Istanbul, Turkey, 23-26
Aug. 2010.

3. C. Zhu, H. Fu, C.E. Bichot, E. Dellandréa, and L. Chen: �Visual Object Recog-
nition Using Local Binary Patterns and Segment-based Feature�, in Proc. of
International Conference on Image Processing Theory, Tools and Applications
(IPTA), pp.426-431, Paris, France, 7-10 July 2010.

4. H. Fu, C. Zhu, E. Dellandréa, C.E. Bichot, and L. Chen: �Visual Object Cat-
egorization via Sparse Representation�, in Proc. of International Conference
on Image and Graphics (ICIG), pp.943-948, Xi'an, China, 20-23 Sept. 2009.

Submitted Papers in International Journals:

1. C. Zhu, C.E. Bichot, and L. Chen: �Image Region Description Using Orthogo-
nal Combination of Local Binary Patterns Enhanced with Color Information�,
submitted to Pattern Recognition (PR), 2011.

2. N. Liu, C. Zhu, Y. Zhang, E. Dellandréa, C.E. Bichot, S. Bres, B. Tellez, and
L. Chen: �Multimodal Recognition of Visual Concepts Using Histograms of
Textual Concepts and Selective Weighted Late Fusion Scheme�, submitted to
Computer Vision and Image Understanding (CVIU), 2011.
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Submitted Paper in International Conference:

1. C. Zhu, D. Huang, C.E. Bichot, Y. Wang, and L. Chen: �HSOG: A Novel
Local Image Descriptor based on Histograms of Second Order Gradients for
Object Recognition�, submitted to European Conference on Computer Vision
(ECCV), 2012.

Other Papers:

1. C. Zhu, C.E. Bichot, and L. Chen: �Color Orthogonal Local Binary Pat-
terns Combination for Image Region Description�, Technical Report, LIRIS
UMR5205 CNRS, Ecole Centrale de Lyon, 2011.

2. C. Zhu, B. Gao, N. Liu, Y. Zhang, C.E. Bichot, E. Dellandréa, and L. Chen:
�ECL-LIRIS at TRECVID 2011: Semantic Indexing�, TRECVID Workshop
Notebook Paper, 2011.

3. N. Liu, E. Dellandréa, C. Zhu, Y. Zhang, C.E. Bichot, S. Bres, B. Tellez,
and L. Chen: �LIRIS-Imagine at ImageCLEF 2011 Photo Annotation task�,
ImageCLEF Workshop Paper, 2011.
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