
HAL Id: tel-00756048
https://theses.hal.science/tel-00756048v2

Submitted on 23 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible Quality of Service Management of Web Services
Orchestrations

Ajay Kattepur

To cite this version:
Ajay Kattepur. Flexible Quality of Service Management of Web Services Orchestrations. Web. Uni-
versité Rennes 1, 2012. English. �NNT : �. �tel-00756048v2�

https://theses.hal.science/tel-00756048v2
https://hal.archives-ouvertes.fr

N° d’ordre : 4535 ANNÉE 2012

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale MATISSE

présentée par

Ajay KATTEPUR
Préparée à l’unité de recherche IRISA-INRIA : UMR 6074

 DistribCom, Institut de recherche en informatique et systèmes aléatoires
ISTIC - UFR Informatique et électronique

Gestion Flexible de la
Qualité de Service
dans les
Orchestrations de
Services Web.

Flexible Quality of
Service Management
of Web Services
Orchestrations.

Thèse soutenue à Rennes
le 8 Novembre 2012

devant le jury composé de :

Jean-Marc JEZEQUEL
Professeur Université de Rennes 1 / Président

William R. COOK
Professeur Associé Université de Texas à Austin /
Rapporteur

Danilo ARDAGNA
Professeur Assistant Polytechnique de Milan /
Rapporteur

Valérie ISSARNY
Directrice de Recherche, INRIA / Examinateur

Fayçal BOUJEMAA
IT Technology Strategist, Orange / Examinateur

Albert BENVENISTE
Directeur de Recherche, INRIA / Directeur de thèse

Claude JARD
Professeur, Université de Nantes / Co-directeur de
thèse

“ In our highly complex organic state, we advanced organisms respond to our envi-
ronment with an invention of many marvelous analogues. We invent earth and heavens,
trees, stones and oceans, gods, music, arts, language, philosophy, engineering, civiliza-
tion and science. We call these analogues reality. And they are reality. We mesmerize
our children in the name of truth into knowing that they are reality. We throw anyone
who does not accept these analogues into an insane asylum. But that which causes
us to invent the analogues is Quality. Quality is the continuing stimulus which our
environment puts upon us to create the world in which we live. All of it. Every last
bit of it. ”

– Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance:

An Inquiry into Values

Acknowledgments

This thesis has been influenced by many people, chief of which have been my super-
visors Albert Benveniste and Claude Jard. I am grateful for the extremely conducive
and encouraging atmosphere they provided, in order to conduct this research work.
They have tolerated and answered my, sometimes naive, queries relating to all aspects
of computer science and mathematics. Their passion for research has motivated me to
strive for excellence in my work as well.

Further thanks go out to members of the thesis examining committee. Rapporteurs
William Cook and Danilo Ardagna provided detailed feedback on my work and took
time off to attend my defense. Examinateurs Jean-Marc Jezequel, Valérie Issarny and
Fayçal Boujemaa were kind enough to attend my defense and pose interesting and
thought provoking questions.

Working on this thesis has also put me in touch with collaborators: John Thywis-
sen, Sidney Rosario, Sagar Sen and Benoit Baudry have contributed to various aspects
of this work. My thanks to them for providing guidance in topics that were new and
difficult for me. Special thanks to Carole Hounkonnou who helped proofread the intro-
duction in French.

I would like to thank all my friends at DistribCom, INRIA and Rennes, in general,
for making these years of PhD study a memorable one. I have enjoyed the hours of
discussions and banter along with the cricket sessions. My gratitude to Nambi, Srinivas
and Yogesh for helping me with arrangements for the “pot de thèse”.

Finally, love to my parents and family for standing by me throughout the course of
my study.

“We were but stones; Your light made us stars”
– Pearl Jam
Light Years

Contents

I Gestion Flexible de la Qualité de Service dans les Orchestrations
de Services Web. 7

1 Résumé en Français 9
1.1 Technologies de Services Web . 11

1.2 Composition de Services Web . 13

1.3 Langages pour Spécifier des Orchestrations 16
1.4 Qualité de Service . 17

1.4.1 QoS dans les services Web . 17

1.4.2 Composition de QoS . 18
1.4.3 Monotonie dans les Orchestrations 20

1.4.4 Service Level Agreements . 20
1.4.4.1 Négociation . 21

1.4.4.2 Surveillance . 22

1.4.5 Optimisation dépendante de la QoS 23
1.5 Organisation de la thèse . 25

II Flexible Quality of Service Management of Web Services Or-
chestrations. 35

2 Introduction 37
2.1 Web Services Technologies . 38

2.1.1 XML: Extensible mark-up language 39

2.1.2 UDDI: Universal Description, Discovery and Integration 39
2.1.3 WSDL: Web Services Description Language 41

2.1.4 SOAP . 42
2.1.5 REST: Representational State Transfer 43

2.2 Web Service Composition . 43

2.2.1 Workflow Management . 44
2.2.2 Orchestrations . 44

2.2.3 Formal Models for Service Orchestrations 45

2.2.3.1 Statecharts . 45
2.2.3.2 Petri Nets . 45

2.2.3.3 π-calculus . 47
2.2.3.4 Composition Models . 47

2.3 Languages to Specify Orchestrations . 48

2.3.1 BPEL: Business Process Execution language 48
2.3.2 Orc . 49

2.3.2.1 Sites . 49
2.3.2.2 Combinators . 50

2.3.2.3 Values, Definitions and Time 51

2.3.2.4 Semantics . 52

1

Contents Contents

2.3.2.5 Contributions . 53

2.4 Quality of Service . 54

2.4.1 QoS in Web Services . 54

2.4.2 QoS Composition . 56

2.4.2.1 Contributions . 57

2.4.3 Monotonicity in Orchestrations 58

2.4.3.1 Contributions . 58

2.4.4 Service Level Agreements . 59

2.4.4.1 Negotiation . 60

2.4.4.2 Monitoring . 61

2.4.4.3 Contributions . 64

2.4.5 QoS dependent Optimization . 65

2.4.5.1 Contributions . 66

2.5 Thesis Organization . 68

2.5.1 Chapter 3: QoS-Aware Management of Monotonic Service Or-
chestrations . 70

2.5.2 Chapter 4: Leveraging Causality for QoS Tracking in Service
Oriented Systems . 71

2.5.3 Chapter 5: Variability Modeling and QoS Analysis of Web Ser-
vices Orchestrations . 72

2.5.4 Chapter 6: Pairwise Testing of Dynamic Composite Services . . 73

2.5.5 Chapter 7: Optimizing Decisions in Web Services Orchestrations 74

2.5.6 Chapter 8: Importance Sampling/Splitting of Probabilistic Con-
tracts in Web Services . 75

2.5.7 Chapter 9: Negotiation Strategies for Probabilistic Contracts in
Web Services Orchestrations . 76

2.6 Future Work . 77

3 QoS-Aware Management of Monotonic Service Orchestrations 79

3.1 Introduction . 80

3.1.1 Running Example . 80

3.1.2 Key Issues . 82

3.1.2.1 Monotonicity and Consequences for Management 82

3.1.2.2 Handling Probabilistic QoS 84

3.1.3 Our Contribution . 85

3.1.3.1 An Abstract Algebraic Framework for QoS composition 85

3.1.3.2 A Careful Handling of Monotonicity 85

3.1.3.3 Support for Separation of Concerns 86

3.1.3.4 A Methodology: Managing QoS by Contracts 86

3.2 Related Work . 87

3.3 QoS Calculus . 89

3.3.1 An Informal Introduction to the QoS Calculus 89

3.3.2 Some Examples of QoS Domains 91

3.3.3 Formalizing the QoS Calculus . 92

3.4 A Theory of QoS for Workflows . 93

3.4.1 Petri Nets, Occurrence Nets, and Orchestration Nets 94

3.4.2 OrchNets: Definition and QoS Semantics, Application to QoS
Composition . 96

3.4.3 Monotonicity: Results . 98

3.4.4 Probabilistic OrchNets . 100

3.4.5 Ensuring Monotonicity . 100

3.5 Summary of the Theory for Practical Use 101

2

Contents Contents

3.6 Implementing Our Approach . 102
3.6.1 Weaving QoS in Orchestrations 102
3.6.2 Upgrading Orc for QoS . 105
3.6.3 The TravelAgent2/3 Example in Orc 107

3.7 Evaluation of Our Approach . 107
3.8 Conclusion . 112

4 Leveraging Causality for QoS Tracking in Service Oriented Systems 115
4.1 Introduction . 116
4.2 Orc syntax . 117
4.3 Causality . 118

4.3.1 The algebra of causality . 119

4.3.2 Transformation rules . 120
4.3.3 Orc with Causality: Examples 121

4.4 Causality and QoS Tracking . 121
4.4.1 QoS domain . 122

4.4.1.1 The special competition operator 122
4.4.2 Composite QoS, no ambient metrics involved 124
4.4.3 Composite QoS, with ambient metrics involved 125
4.4.4 Extending Orc for QoS . 125
4.4.5 Enhancing the algebra of causality to support QoS: first attempt 125
4.4.6 Enhancing the algebra of causality to support QoS: the right

solution . 126
4.4.7 The rules . 127
4.4.8 Orc with Causality and QoS: Examples 127

4.5 Related work . 127
4.6 Conclusions . 128

5 Variability Modeling and QoS Analysis of Web Services Orchestra-
tions 131
5.1 Introduction . 132
5.2 Foundations . 133

5.2.1 Modeling Variability in Composite Services 133
5.2.2 Service Orchestration using Orc 134
5.2.3 Configuration Generation from Feature Diagram 135
5.2.4 QoS Aspects of the Orchestration 135

5.3 Methodology . 136
5.4 Crisis Management System Case Study 137

5.4.1 Feature Diagram of CMS . 137
5.4.2 Service Orchestrations in CMS 138

5.5 Experiments . 140
5.5.1 Simulation of QoS Distributions 140
5.5.2 Generating a sample of configurations for CMS 140
5.5.3 Evaluating QoS of a Composite Service 141
5.5.4 Evaluating the Pairwise Sampling Technique 143

5.6 Related Work . 145
5.7 Conclusion and Perspectives . 147

6 Pairwise Testing of Dynamic Composite Services 149
6.1 Introduction . 150

6.2 Foundations . 151
6.2.1 Feature Diagrams . 151
6.2.2 Service Orchestrations using Orc 152

3

Contents Contents

6.2.3 Feature Diagrams with Orchestrations 153

6.2.4 Combinatorial Interaction Testing 153

6.2.5 QoS Aspects of the Orchestration 155

6.3 Methodology . 156

6.4 Case Studies . 156

6.4.1 Car Crash Crisis Management System 157

6.4.2 eHealth Management System . 158

6.5 Experiments . 161

6.5.1 Evaluating QoS of the Car Crash Crisis Management System . . 161

6.5.2 Evaluating QoS of the eHealth System 162

6.5.3 Comparison with Random Sampling 163

6.5.4 Consistency of Pairwise Samples 165

6.5.5 Perspectives due to Analysis . 166

6.5.6 Threats to Validity . 167

6.6 Related Work . 167

6.7 Conclusion . 168

7 Optimizing Decisions in Web Services Orchestrations 171

7.1 Introduction . 172

7.2 Fundamentals . 173

7.2.1 Optimization models . 173

7.2.2 QoS in Web Services . 173

7.2.3 Analytic Hierarchy Process . 174

7.3 Methodology . 175

7.4 Formulating Optimization Problems . 176

7.5 Optimization Routines in Orc . 179

7.5.1 QOrc: Upgrading Orc for QoS management 180

7.5.2 Interfacing QOrc to Optimization Services 181

7.6 Optimal Decision Results . 182

7.7 Related Work . 185

7.8 Conclusion . 186

8 Importance Sampling/Splitting of Probabilistic Contracts in Web Ser-
vices 187

8.1 Introduction . 188

8.2 Foundations . 188

8.2.1 QoS in Web Services . 188

8.2.2 Probabilistic Contracts . 189

8.2.3 Orc . 190

8.3 Rare Event Simulation Techniques . 190

8.3.1 Importance Sampling . 191

8.3.2 Importance Splitting . 192

8.4 Dell Supply Chain . 193

8.4.1 Contract Composition . 195

8.4.2 Forecasting . 197

8.5 Upgrading WSLA Specifications . 198

8.6 Related Work . 200

8.7 Conclusion . 200

4

Contents Contents

9 Negotiation Strategies for Probabilistic Contracts in Web Services
Orchestrations 201
9.1 Foundations . 203

9.1.1 Web services’ QoS . 203
9.1.2 Probabilistic Contracts . 203
9.1.3 Contract Negotiation . 204
9.1.4 Orc . 205

9.2 Optimization Formulation . 205
9.2.1 Stochastic Optimization . 206
9.2.2 Web Services’ Negotiation . 206

9.3 GarageOnline Example . 207
9.4 Composite Contract Re-Negotiation . 208

9.4.1 Runtime Negotiation . 209
9.4.2 End-to-end QoS . 210
9.4.3 Re-negotiation methodology . 210

9.5 Negotiation Specification . 211
9.6 Negotiation Results . 212
9.7 Related Work . 213
9.8 Conclusions . 215

10 Implementation Overview 217
10.1 Orc . 217
10.2 Weaving QoS algebraic rules . 218

10.2.1 Updating OIL . 218
10.2.2 Q-Orc: Updating Orc with QoS 219
10.2.3 Monotonicity . 223

10.3 Platform for QoS Management . 224
10.3.1 Management Tasks . 224
10.3.2 Experimentation . 225

11 Appendices 227
11.1 Proofs from Chapter 3 . 227

11.1.1 Proof of 2 . 227
11.1.2 Proof of 3, Sufficiency . 228
11.1.3 Proof of 3, Necessity . 229

11.2 Pairwise Products in Chapters 5 and 6 229
11.3 Dell Example in Chapters 7 and 8 . 229

11.3.1 Orc code . 229
11.3.2 MATLAB code . 232

11.4 Importance Sampling/Splitting codes for Chapter 8. 233
11.5 Stochastic Dominance for Chapter 9 . 234
11.6 Q-Orc Implementation Outline from Chapter 10. 235

Bibliography 252

List of figures 253

5

Contents Contents

6

Part I

Gestion Flexible de la Qualité de
Service dans les Orchestrations

de Services Web.

7

Chapter 1

Résumé en Français

L’internet a eu un impact considérable sur notre vie quotidienne. Ses applications
dont le nombre a augmenté à un rythme rapide sont diverses. Parmi elles figurent
la banque en ligne, l’achat en ligne, les sites de réservation de voyage ou encore les
réseaux sociaux. Le facteur clé dans cette progression a été la révolution logicielle mise
en jeu. Les Services Web ont pour principal objectif de rendre plus modulaire et moins
propriétaire le développement de logiciels et d’applications informatiques. Il peut s’agir
d’une application d’agenda ou de traitement de texte hébergée sur un serveur distant
accessible via Internet. L’utilisation des technologies web avec des protocoles normalisés
réduit l’hétérogénéité tout en facilitant l’interopérabilité.

Les services web émergent dans le monde des systèmes d’information, dans le con-
texte de la mise en oeuvre d’Architectures Orientées Services, en implémentant les
fonctions applicatives élémentaires sous forme de modules. Composés de services nor-
malisés et interopérables, ces modules sont susceptibles d’être ensuite combinés et réu-
tilisés pour donner naissance à de nouvelles solutions ou services composites.

L’orchestration des services web fournit un contrôle centralisé de la gestion et de la
coordination des modules impliqués dans de telles solutions composites. Un exemple
typique est celui d’un service de réservation de voyage contrôlant le flux d’information
entre les trois modules suivants: la réservation du vol, la réservation d’hôtel et la
location de voiture. De par la récursivité de la composition de service, les services
composites peuvent eux aussi être combinés de façon à donner de nouveaux services
composites.

Le contrôle de flux dans l’orchestration des services web dépend à la fois des don-
nées reçues des services invoqués mais aussi de propriétés non fonctionnelles. Par
conséquent, une description exacte des paramètres de Qualité de Service (QoS) est
cruciale dans les architectures orientées service. La qualité de service associée à un
service peut avoir plusieurs formes. Il peut s’agir du temps de réponse, de la sécurité
des informations transmises, du coût de l’invocation, de la renommée du service, etc.
La qualité de service pourrait être un facteur déterminant lorsqu’il s’agira de faire un
choix entre plusieurs services offrant des fonctionalités similaires.

Vu le besoin d’assurer une interaction fiable et efficace entre les services compos-
ites, la notion de contrat de service ou de Service Level Agreement (SLA) a pris de
l’importance. Si l’un des services invoqués ne répond pas aux exigences de QoS, ce
service pourrait avoir des effets néfastes sur la performance des autres services qui est
éventuellement meilleure. Ainsi, pour les fournisseurs de service, il est essentiel de
modéliser, d’étudier et de surveiller les propriétés non fonctionnelles des services of-
ferts. Une fois cela fait, l’orchestration doit impérativement choisir de façon optimale
les services qui vont maximiser la qualité de service perçue par le client.

Dans cette thèse nous étudierons plusieurs aspects de la gestion fiable de la QoS
dans les services web. Quelques uns des aspects considérés sont les suivants:

9

Résumé en Français Résumé en Français

1. Modélisation précise de la QoS - Des efforts considérables ont été fournis à la fois
dans le milieu universitaire et dans celui de l’industrie pour décrire des modèles
sémantiquement précis de composition de service web. Cependant, la question du
traitement de la QoS est orthogonale à celle des spécifications de l’orchestration
et demeure ouverte dans le cas où le flux d’orchestration dépend des paramètres
de QoS comme la latence ou le niveau de sécurité. Les modèles doivent intégrer
de façon précise les aspects QoS au sein des orchestrations en particulier la façon
dont ces aspects QoS influencent le contrôle de flux.

2. Accords contractuels ameliorés - La QoS de l’orchestration dépend de celle des
services invoqués. Par conséquent, il est important que ces services soient con-
tractuellement tenus de répondre à certaines exigences de sorte que l’orchestration
puisse satisfaire son propre contrat de qualité de service. Pour certains services
le niveau de QoS est bien specifié tandis que pour d’autres ce niveau dépend des
observations ou doit être accepté tel quel. La QoS des services invoqués et celle
de l’orchestration doit être surveillée en temps réel. De sorte à s’assurer qu’ils
répondent au niveau de QoS spécifié et qu’ils offrent des solutions de rechange
en cas de dégragation des performances. Une notion à considérer ici est celle
de la non monotonie dans le comportement, quand l’amélioriation d’un service
peut impliquer la détérioration du comportement global. Les contrats de bout
en bout peuvent être basés sur des simulations ou des techniques analytiques.
Les techniques que nous utilisons sont basées sur celle de Monte-Carlo, elles peu-
vent être lentes et présenter une grande variance. C’est pourquoi des techniques
alternatives permettant d’améliorer le processus de simulation sont nécessaires.

3. Outils d’optimisation - A partir d’un ensemble de services et de leur description
contractuelle, une orchestration peut faire un choix parmi plusieurs services al-
ternatifs offrant des fonctionalités similaires avec différents niveaux de QoS. Des
compromis peuvent être faits de façon à optimiser la latence ou le coût engagé
par l’orchestration. De plus, des négociations peuvent être faites pour fournir
de «meilleures» obligations contractuelles permettant d’améliorer l’invocation
d’un service particulier au sein d’une orchestration. Un autre aspect à consid-
érer est celui de fournir de meilleurs outils mathématiques pour les concepteurs
d’orchestration. L’optimisation vue en tant que service peut améliorer de façon
considérable le dynamisme de la gestion via le web de processus complexes dans
le domaine de la logistique et de la recherche opérationnelle.

4. Prise en compte de différents aspects - Dans la mise en place d’une gamme de
produit, plusieurs instances de services composites peuvent être développées. Il
y a de la variabilité supplémentaire dans le choix des services disponibles mais
aussi dans le comportement QoS. Les techniques pour analyser de telles familles
de services sont nécessaires. Dans les services transactionnels, fonctionalité et QoS
interagissent de façon très étroite, menant à des situations où elles ne peuvent
pas être découplées. Il est nécessaire de disposer de techniques permettant de les
traiter conjointement, avec des spécifications fonctionnelles prenant en compte la
gestion de la QoS.

Résumé du chapitre Ce chapitre vise à introduire brièvement les notions de services
web, de composition et de gestion de la QoS. Un aperçu des services web et des tech-
nologies associées (XML, UDDI, WSDL and SOAP) est donné en Section 1.1. Différents
aspects de la composition des services web sont presentés en Section 1.2. Parmi eux
figurent les modèles de flux et les représentations formelles des orchestrations. Deux
langages permettant de spécifier les orchestrations : BPEL et Orc sont étudiés en Sec-
tion 1.3. La Section 1.4 traite en détail la qualité de service dans les services web,

10

Résumé en Français 1.1. Technologies de Services Web

notamment les questions de composition de QoS, d’accords contractuels, de surveil-
lance et d’optimisation y sont traitées. Ce chapitre se termine par un aperçu du reste
de la thèse mettant en évidence les principales contributions.

1.1 Technologies de Services Web

Cette section aborde brièvement les Services Web ainsi que quelques-unes des tech-
nologies et langages associés. Une courte présentation de WSDL, d’UDDI, de SOAP
est fournie. Pour plus d’informations à ce sujet, le lecteur intéressé pourra consulter
[ACKM04, TP02].

Comme défini par le World Wide Web Consortium (W3C), un Service Web est un
système logiciel identifié par un URI, dont les interfaces publiques et les incarnations
sont définies et décrites en XML. Sa définition peut être découverte (dynamiquement)
par d’autres systèmes logiciels. Ces autres systèmes peuvent ensuite interagir avec le
service web suivant la façon décrite dans sa définition, en utilisant des messages XML
transportés par des protocoles Internet [W3c04b].

D’une manière générale, les services Web sont sans état (stateless) et peuvent être in-
voqués un certain nombre de fois par les clients, sans qu’il ne soit nécessaire de partager
des protocoles spécifiques. Chaque requête est, en général, traitée individuellement avec
différentes caractéristiques de qualité dans les réponses.

L’architecture orientée services (SOA) est un nouveau modèle d’interaction applica-
tive qui met en oeuvre des services (composants logiciels) autonomes et hétérognènes (il
peut s’agir par exemple de services s’exécutant sur différentes plates-formes ou détenues
par différentes organisations).

Avec l’évolution des technologies, les applications ont tendance à devenir hétérogènes
et à se spécialiser par métier (entité, service, etc.). Cela provoque un fonctionnement
en silo empêchant certaines formes de transversalité. L’intégration des applications
consiste à développer des connecteurs spécifiques permettant de faire communiquer
entre-eux les différents silos. Les avantages induits comprennnent entre autres une
productivité élevée et une réduction des coûts dans les processus business-to-business
(B2B).

Les trois entités principales intervenant dans les architectures de services web sont
le client du service, le fournisseur du service et le registre des services. Dans une
une telle architecture, il est indispensable de disposer d’une description des services
disponibles et d’un serveur d’annuaire mais aussi de permettre une communication entre
les entités citées ci-dessus. l’architecture orientée service repose sur des technologies et
langages standardisés. En général, XML (Extensible Markup Language) sert à décrire
les données, SOAP est le protocole d’échanges des messages au format XML dans une
logique de RPC (Remote Procedure Call), WSDL (Web Services Description Language)
est utilisé pour décrire le service et UDDI pour lister les services disponibles.

XML: Extensible Mark-up Language

XML (Extensible mark-up language) fournit une syntaxe commune utilisée pour tous
les standards de services Web. Dans le contexte des services Web, plusieurs protocoles
peuvent être utilisés: TCP / IP, HTTP ou les protocoles de transfert de courrier.
Le mécanisme devrait être en mesure de travailler avec une variété de protocoles de
transport. En utilisant SOAP, les services peuvent échanger des messages selon un
format standard: c’est-à-dire convertis en messages XML, transmis puis reconvertis en
une invocation de service. XML est un standard pour définir le contenu d’un message
informatique. Si la sortie d’une application logicielle est au format XML et qu’une
autre application est capable d’interpréter ce langage, elle (cette autre application)

11

1.1. Technologies de Services Web Résumé en Français

peut analyser cette sortie et agir en conséquence. XML permet de spécifier des données
semi-structurées et de les interroger.

UDDI: Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI) [Oas04] est un ensemble de
registres web qui divulguent des renseignements sur une entreprise ou tout autre en-
tité. UDDI complète les technologies basiques de service web en permettant de créer
un annuaire permettant de localiser sur le réseau le services web recherché. Cela place
les Services Web au coeur des entreprises qui opèrent entre elles via Internet. La
spécification UDDI permet à ces entreprises de se localiser et d’effectuer des transac-
tions rapidement, facilement et dynamiquement. UDDI fournit une API qui permet
l’invocation du service Web lui-même. Il peut être utilisé pour:

• trouver des mises en oeuvres de services web qui sont basées sur une définition
commune d’interface abstraite.

• interroger les fournisseurs de services web répertoriés suivant un schéma de clas-
sification connu

• démarrer une recherche de services basée sur un mot-clé général.

• mettre en mémoire cache des informations sur un service Web, puis les mettre à
jour lors de l’exécution.

Il est possible d’utiliser UDDI pour créer des registres privés résidant au sein de
réseaux privés, et offrant leur fonctionnalités à un ensemble spécifique d’utilisateurs.

WSDL: Web Services Description Language

Web Services Description Language (WSDL) [W3c01] fournit une grammaire XML
pour décrire les services réseau comme des points terminaux de communications ca-
pables d’échanger des messages. Les définitions des services WSDL présentent de la
documentation pour les systèmes distribués et servent d’outil pour l’automatisation des
détails relatifs aux communications entre les applications.

L’un des avantages de WSDL c’est qu’il soit un standard à usage général qui peut
être utilisé dans une variété d’environnements. Les normes établies peuvent être en-
veloppées par des interfaces WSDL pour décrire le protocole de communication et le
format de messages requis pour communiquer avec le service. La description orientée
fonction que fournit WSDL présente l’inconvénient d’être statique. Cependant, l’ordre
des messages ou des flux de données ne peuvent pas être traité. Des langues comme
BPEL [OAS07] doivent être utilisés avec WSDL pour spécifier l’ordre de transmission
des messages. WSCI (Interface Web Chorégraphie Services) [W3c02] complète WSDL
et supporte de telles transmissions de messages. WSDL est également limité puisqu’il
ne précise que les aspects syntaxiques des services. Les langages sémantiques comme
OWL-S [W3c04a] essaient de combiner ces fonctionnalités pour la découverte automa-
tique, la définition des protocoles à utiliser pour invoquer le service et la composition
de services.

SOAP

SOAP [W3c00] sert de base pour toutes les interactions entre services web. Il définit
l’organisation des données sous forme texte structuré au format XML pour permettre
l’échange entre pairs. Il précise:

12

Résumé en Français 1.2. Composition de Services Web

• un format de message à sens unique pour encapsuler les informations dans un
document XML,

• des conventions pour définir comment les clients peuvent invoquer procédures
distantes en envoyant un message SOAP et comment les services peuvent répondre
en retournant un message SOAP,

• des règles pour traiter et analyser les messages SOAP au format XML,

• une description de la façon dont les messages SOAP peuvent être transportés
au-dessus de HTTP, SMTP et d’autres protocoles.

SOAP permet l’échange d’informations en utilisant des messages encapsulés dans
une enveloppe. L’enveloppe contient deux parties: un en-tête (Header) et un corps
(Body). L’information principale que l’expéditeur souhaite transmettre au destinataire
est fourni dans le corps. Les informations supplémentaires nécessaires aux traitements
intermédiaires des services (sécurité, ajout de nouveaux messages, etc) sont situées dans
l’en-tête.

REST: Representational State Transfer

REST (Representational State Transfer) [Fie00] est une alternative style architectural
services web utilisée dans l’industrie. Les services web de type REST forment un
ensemble de ressources Web identifiés par des identificateurs de ressources uniformes
(URI). La mise en œuvre sur HTTP/HTTPS, quatre méthodes sont disponibles: GET,
PUT, POST, and DELETE.
En comparant RESTful en SOAP / WSDL services:

Scalabilité - Dans REST toutes les interactions sont sans état (stateless) - chaque
requête doit contenir toutes les informations nécessaires pour que cette demande
soit comprise, et elle ne peut tirer profit d’aucun contexte stocké sur un serveur par
exemple. Cette caractéristique (sans état) améliore la scalabilité des applications.
D’une manière générale, SOAP est aussi sans état. Toutefois, des normes de
niveau plus élevé existent pour créer des services web avec état (stateful) via
SOAP.

Composants indépendants - Dans REST les composants peut être déployés indépen-
damment les uns des autres. Le contenus des sites web peuvent être échangés
sans adaptation à un protocole spécifique.

Composition de services - au sens strict, il n’y a pas de services REST, seulement des
ressources. Les URLs offrent un espace d’adressage global de sorte que les docu-
ments fassent référence (de façon simple) à une ressource qui est dans une autre
organisation. Les primitives d’interaction (GET, POST, PUT, DELETE) découlant
de REST peut être utilisé à partir d’un processus BPEL comme nouvel appel de
service [Pau09].

1.2 Composition de Services Web

Un service Web mis en oeuvre en combinant les fonctionnalités offertes par des services
web individuels est appelé Service Web Composite et le processus qui consiste à com-
biner les services est appelé composition de services web. Les applications sont créées
en combinant les éléments de base fournis par d’autres services. Les services compos-
ites peuvent aussi être combinés suivant un modèle de composition service récursif.

13

1.2. Composition de Services Web Résumé en Français

Les études sur les techniques et les outils disponibles pour l’architecture des services
composites incluent [DS05, HS05].

Cette section donne un aperçu de la gestion de workflow, des orchestrations, des
chorégraphies et des méthodes formelles pour les représenter.

Workflow Management

La notion de Processus d’affaires (Business Process) fait référence à une collection
de tâches exécutées de manière coordonnée entre utilisateurs et applications logicielles
pour accomplir une tâche. On peut appeler workflows une représentation formelle et
exécutable des processus d’affaires. Un système de gestion de workflow fournit un outil
logiciel permettant de concevoir, exécuter et analyser des workflows.

Les systèmes de gestion de workflow visent à automatiser le traitement adminis-
tratif des documents tels que les ordres de mission, les fiches financières et les rapports
d’avancement de projet. Plutôt que de traiter ces tâches par courrier en version papier
ou électronique, les systèmes de gestion de workflow utilisent des formulaires web en
version électronique. Ces systèmes permettent également l’intégration de participants
hétérogènes et distribués, ce qui est crucial pour les grandes entreprises. Elles peuvent
gérer le flux de contrôle et de données entre les diverse participants et les applications,
ce qui permet l’intégration dans la plupart des scénarios d’affaires.

Les systèmes de gestion de workflow ont tendance à être exprimés en langages
graphiques de haut niveau plutôt que sous forme de de langage de programmation.
C’est dans le but de permettre à des personnes qui ont des compétences variées de mod-
éliser les workflows avec beaucoup d’aisance. Les normes élaborées telles que Business
Process Modeling Notation (BPMN) [OMG11] ont été implémentées dans des solutions
commerciales de système de workflow comme IBM ILOG JViews [IBM11] et Oracle
Business Process Management Suite [Ora11]. Celles-ci ont été étendues à des systèmes
de gestion de workflow basés sur le web. Les éditeurs de processus d’affaires comme
BonitaSoft [Bon11], Signavio [Sig11] et Oryx [DOW08] en sont des exemples.

Orchestrations

Les termes orchestration et chorégraphie décrivent deux aspects de la création de pro-
cessus d’affaires à partir de services web composites. Une orchestration représente tou-
jours le contrôle d’un point de vue d’un participant. Dans la plupart des cas, elle est
centralisée dans le traitement des flux de contrôle qui peut être dépendant des données
reçues d’autres participants. Cela diffère de la chorégraphie, qui est plus collabora-
tive et permet à chaque participant impliqué de décrire son rôle dans l’interaction. La
chorégraphie suit les séquences de messages entre de multiples participants et sources
plutôt que de suivre ceux d’un processus d’affaire spécifique exécuté par un participant
unique.

Les orchestrations dans le contexte des services web doivent gérer plusieurs pro-
priétés d’activités, y compris le langage utilisé pour spécifier les compositions, les don-
nées, les transactions et la gestion des exceptions. D’autres techniques proposées en
regard des orchestrations utilisent un contrôle décentralisé [CCMN04] ou sont basées
sur des sessions [FN08].

Modèles formels pour les orchestrations de services

Les orchestrations de services Web spécifient l’ordre et les conditions dans lesquelles les
services web sont invoqués dans une composition cohérente. Bien qu’il existe de nom-
breux langages tels que BPEL [OAS07], COWS [LPT07], Orc [KQCM09] et YAWL

14

Résumé en Français 1.2. Composition de Services Web

[tHvdAAR10] pour représenter les workflows, les orchestrations s’appuient sur les mod-
èles suivants :

Les diagrammes d’état [Har87] sont un formalisme basé sur une machine d’état qui
spécifie les tâches réalisées lors de l’entrée dans un état, lors de la sortie d’un état ou à
l’intérieur d’un état. Le tir de transitions conditionnelles en fonction des données et des
flux de contrôle est également intégré. Les états composites, les actions parallèles et
la synchronisation sont des actions complémentaires et complexes dans les diagrammes
d’états. Ceux-ci possèdent une sémantique formelle pour analyser les spécifications
de services composites. Cette sémantique est liée à des langages tels que le langage
de modélisation unifié (UML) [DH01]. Les diagrammes d’états offrent la plupart des
constructions de flux de contrôle et des dépendances qui sont disponibles dans les
langages de modélisation de processus existants. Pour ces raisons, les diagrammes
d’états ont été utilisés dans l’architecture AgFlow dans [ZBN+04] pour décrire des
compositions dépendantes de la qualité de service.

Un diagramme d’état est constitué d’états et de transitions. Les transitions sont
étiquetées avec des événements, des conditions et des opérations. Les états peuvent
être simples ou composés. Les états simples sont marqués avec un nom d’opération
d’un service donné qui peut être invoqué. Les états composés peuvent être raffinés
en utilisant la relation AND (sous états concurrents) ou la relation OU (sous états
disjoints). L’état initial d’un diagramme d’état est représenté par un cercle plein,
tandis que l’état final est désigné par deux cercles concentriques.

Les réseaux de Petri [Mur89, Rei92] ont été introduits en tant que base pour mod-
éliser des systèmes concurrents. Leur attrait principal est la façon naturelle dont
de nombreux aspects fondamentaux des systèmes concurrents sont identifiés à la fois
mathématiquement et conceptuellement. Leur facilité de modélisation conceptuelle (en
grande partie due à notation graphique simple) a par ailleurs fait des réseaux de Petri
le modèle favori dans de nombreuses applications [vdA96]. Ils sont capables de mod-
éliser les comportements concurrents, non-déterministes et asynchrones qui peuvent
être appliqués aux services web.

Parmi les alternatives proposées, figure Workflow nets [vdABL08] utilisé pour mod-
éliser les workflows génériques avec une entrée unique et des points de sortie. Dans
YAWL [tHvdAAR10], les réseaux de Petri sont étendus pour supporter la modélisa-
tion de patterns de workflow [vdAtHKB02] que les réseaux de Petri traditionnels ne
sont pas capables d’exprimer. [tHvdAAR10] prend en charge des instanciations multi-
ples, fournit des capacités de synchronisation et d’annulation intégrées que l’on trouve
généralement dans les orchestrations.

Le π-calcul [MPW92] est une algèbre de processus qui développe un modèle formel
pour décrire les processus. L’utilisation du π-calcul pour la description des processus
s’explique par les avantages qu’un modèle formel avec une théorie riche fournit pour
la vérification automatique des propriétés exprimées dans un tel modèle. Pour une
orchestration, le π-calcul fournit des constructions permettant d’appeler les services de
façon séquentielle, simultanée ou dépendantes d’exécutions conditionnelles.

Quand un service à lui tout seul est incapable de répondre à toutes les exigences fonc-
tionnelles d’un client, une solution envisageable consiste à générer un service composite.
La composition s’occupe de produire un cahier des charges sur la façon de coordonner
les différents services pour satisfaire la demande du client. Les études réalisées pour
synthétiser automatiquement de tels services composites comprennent [HS05]:

OWL-S [W3c04a]: Une contribution majeure de OWL-S est la modélisation de la façon
dont les services web interagissent avec le «monde réel». La notion de processus
atomiques et composites est le fondement du modèle OWL-S. Les processus OWL-
S sont spécifiés pour avoir des entrées, des sorties, des pré-conditions, et des effets
conditionnels.

15

1.3. Langages pour Spécifier des Orchestrations Résumé en Français

Roman [BCG+03]: Utilise une notion abstraite de service atomique dans le cadre
d’automates à états finis pour décrire les flux de processus. Pour spécifier le
déroulement du processus interne d’un service Web, les systèmes de transitions
où chaque branche correspond à une séquence d’exécutions permises sont utilisés.

Message Based [BFHS03]: Tandis que les modèles OWL-S et Roman mettent l’accent
sur ce qu’un service ou une composition fait, ils ne résolvent pas complètement la
question de la façon dont les services, dans une composition, interagissent entre
eux. La notion de conversations ou de passage de messages est utilisée dans ce
modèle dans un cadre de «pairs à pairs».

1.3 Langages pour Spécifier des Orchestrations

Dans cette section, nous décrivons deux langages utilisés pour spécifier des orchestra-
tions: la norme de l’industrie BPEL et le langage académique Orc. D’autres langages
comme Yet Another Workflow Language [tHvdAAR10], generic web service combina-
tors [CD99] ou Calculus for Orchestration of Web Services [LPT07] existent. Tout
lecteur intéressé peut consulter leurs références.

BPEL: Business Process Execution Language

BPEL [OAS07] est devenu la norme de facto pour décrire les compositions de services
Web. D’autres langages, comme BPML [Ark02] et WSFL [Ley01] sont des alternatives
moins courantes. BPEL peut être utilisé à la fois pour spécifier des orchestrations et
des chorégraphies. Elles peuvent définir la séquence de messages envoyés ou reçus par
les services ainsi que les contraintes d’ordre sur les actions envoyer ou recevoir.

Un moteur d’orchestration peut alors exécuter cette grammaire BPEL, coordonner
des activités et compenser le processus global lorsque des erreurs surviennent. La couche
BPEL est située au-dessus de WSDL. L’interface WSDL définit les opérations permises
tandis BPEL définit comment les enchainer.

Un langage de spécification supplémentaire a été proposé dans Web Services Choreg-
raphy Interface [W3c02]. WSCI définit l’ensemble de la chorégraphie ou de l’échange
de messages entre les services web. WSCI ne décrit que le comportement observable
entre les services Web, il ne traite pas la définition de processus d’affaires executables
comme le fait BPEL. Le traitement XML des flux de données au sein des chorégraphies
a reçu une extension dans [HB09, HB10], où des documents actifs sont créés et modifiés
par des pairs distribués.

Orc

Bien que BPEL a été intégré industriellement, sa sémantique informelle donne lieu
à des parties du langage ayant différentes interprétations possibles, ce qui n’est pas
souhaitable pour modéliser les orchestrations. Un modèle formel pour spécifier et anal-
yser le comportements des orchestrations de services Web est essentiel et très utile. Les
études théoriques pour formaliser et étudier mathématiquement le comportement des
services Web comprennent [Rei08, BKM07]. BPEL a également été examiné dans le
cadre de la sémantique opérationnelle [Fah05] en utilisant comme modèle les réseaux
de Petri [HSS05] et le π-calcul [LM05]. La traduction de BPEL dans des modèles de
flux de travail dans [BP06] fournit des analyses intéressantes, telles que la comparaison
avec YAWL.

Orc [Orc11, KQCM09, Mis10] est utile pour modéliser des calculs distribués, mais
est surtout destiné pour modéliser les orchestrations de services Web sur Internet. Ce
langage est basé sur un cadre mathématique simple et possède une sémantique formelle.

16

Résumé en Français 1.4. Qualité de Service

La simplicité de sa syntaxe et sa grande expressivité le rend très intéressant pour
spécifier les orchestrations. Orc implémente le tree programming pour des orchestrations
où la requête initiale peut être transmise dans des branches parallèles ou enchâınées
en séquence de façon à effectuer la tâche demandée. Les résultats des sous-requêtes
sont regroupés, transmis à d’autres sous-requêtes et finalement retournés à l’apppelant
initial. Cela correspond bien au concept d’orchestration.

Dans langage Orc, le calcul est basé sur l’exécution d’expressions Orc. Les ex-
pressions sont construites récursivement en utilisant les combinateurs Orc concurrents.
Lorsqu’elle est exécutée, une expression Orc appelle les services et peut publier des
valeurs. Les expressions Orc utilisent des sites pour faire référence à des services ex-
ternes. Un site peut être mis en oeuvre sur la machine du client ou sur une machine
distante. Un site peut fournir un service ou jouer le rôle de proxy pour permettre
l’interaction avec un utilisateur.

L’expression Orc la plus simple est un appel site F (p), où F est un nom de site et p
est une liste de paramètres. Ceux-ci qui sont des valeurs ou des variables. L’exécution
d’un site appel invoque le service associé à F en lui envoyant les paramètres p. Si le
site répond, l’appel publie cette réponse. Un site peut donner au plus une réponse à un
appel. Un appel site peut explicitement déclarer qu’il ne donnera jamais de réponse,
dans ce cas, nous disons que l’appel est suspendu. Certains appels site ne peuvent ni
répondre, ni être suspendus.

Orc a quatre combinateurs pour composer des expressions: le combinateur parallèle
| , le combinateur séquentiel >x> , le combinateur réduction <x< et le combinateur
sinon ; . Lorsqu’on constitue des expressions, le combinateur >x> a la plus haute
priorité, suivie de | , puis de <x< , et enfin ; avec la priorité la plus basse.

D’autres aspects comme les types de données (tuples , records , lists), le
traitement de la concurrence (semaphores , channels) et les constructions permet-
tant de créer de nouveaux sites (class) sont mis à disposition des utilisateurs d’Orc.
Pour plus de détails, le lecteur est invité à consulter 1.

1.4 Qualité de Service

Cette section examine en détail différents aspects qui doivent être considérer dans le
cadre de la qualité de service. Partant du concept général de QoS, nous décrivons la
composition de QoS, les SLAs, leur surveillance et leur négociation ainsi que l’optimisation
dépendante de la QoS.

1.4.1 QoS dans les services Web

Deux aspects différents doivent être considérés quand on parle de services:

1. la description fonctionnelle contient les spécifications formelles des fonctionnalités
offertes par le service.

2. la description non fonctionnelle de la façon dont le service remplit ses fonction-
nalités.

Considérons l’exemple d’un service de réservation de train. Sa fonctionnalité (la réserva-
tion d’un billet de train) pourrait être limitée par l’utilisation d’une connexion sécurisée
(la sécurité étant une propriété non-fonctionnelle) ou par la tranche horaire dans laque-
lle les services sont invoqués (la disponibilité étant une propriété non-fonctionnelle).
Pour les services individuels, les propriétés fonctionnelles et non fonctionnelles sont
traitées de façon orthogonale.

1http://orc.csres.utexas.edu/documentation/html/refm anual/refmanual.html#N14CDB

17

http://orc.csres.utexas.edu/documentation/html/refmanual/refmanual.html#N14CDB

1.4. Qualité de Service Résumé en Français

S’agissant des services composites qui invoquent divers services variant suivant leur
caractéristiques fonctionnelles et non fonctionnelles, les caractéristiques de bout en
bout sont intimement liées au contrôle du flux de l’orchestration. La performance fonc-
tionnelle de bout-en-bout repose sur une grande partie des services qui exécutent des
tâches spécifiques et qui transmettent les données nécessaires au sein du contrôle de
flux. Cependant, dans la plupart des orchestrations, les contraintes sur les propriétés
non-fonctionnelles (expiration de délai, niveaux de sécurité, etc) affectent aussi la per-
formance fonctionnelle de bout en bout. C’est pourquoi elle ne peuvent pas être traitées
de façon orthogonale. Les propriétés non-fonctionnelles peuvent également jouer un rôle
important dans toutes les tâches associées aux services, en particulier au niveau de la
découverte, de la sélection et du remplacement de services. On imagine un scénario où
l’on pourrait faire un choix entre plusieurs services, pouvant répondre à la requête d’un
utilisateur et offrant essentiellement la même fonctionnalité, en fonction de certaines
propriétés non fonctionnelles comme le prix ou la performance.

Une certaine analyse est nécessaire pour faire un lien entre les propriétés fonction-
nelles et non fonctionnelles de bout en bout et les propriétés des services invoqués dans
une orchestration. La dépendance et la causalité à l’égard des données dans le flux d’une
orchestration peut fournir des indications sur la performance fonctionnelle de bout en
bout (par exemple la panne d’un certain service peut mener à un interblocage). Des
paliers dans la QoS de bout en bout et leur relation avec le flux de contrôle (invoca-
tion en parallèle, en séquentiel, avec des contraintes) peuvent préciser la contribution
individuelle de chaque service à la performance de bout en bout. Compte tenu de ce
fait, une modélisation précise de la QoS pour les services web est importante pour le
fonctionnement de l’orchestration et pour la spécification, de façon contractuelle, des
propriétés non fonctionnelles des services invoqués.

La QoS couvre toute une gamme de techniques qui répondent aux besoins des
demandeurs et des fournisseurs de services sur la base des ressources réseau disponibles.
Par QoS, nous faisons référence aux propriétés non fonctionnelles des services web
comme la performance, la fiabilité, la disponibilité et la sécurité [TF06]. Les études
sur la QoS pour les services Web ont reçu une attention considérable dans les articles
tels que [TF06, CSM+04, ACH98, AGM08], qui fournissent un large aperçu des aspects
de la QoS et de leur gestion. Des études sur le comportement en temps réel de la
latence et du débit des services ont été faites dans [CTB98, LNJV01, XSCT02]. Les
aspects comme la sécurité et les certificats numériques ont été abordés dans [KM03,
BMR08, KCE+04, BFG05, IM02]. Les stratégies de tarification pour les services web
sont mises en évidence dans [HDHA09]. Toutes les propriétés ci-dessus représentent
des paramètres QoS pour les orchestrations mais les chorégraphies peuvent bénéficier
de modèles élargis prenant en compte l’analyse de la transmission des messages et
l’absence d’interblocage [MPR+10, BZ07].

1.4.2 Composition de QoS

Comme les compositions de services exigent de combiner les fonctionnalités de différents
services, constituer la QoS de ces services devient tout aussi important. Les contrats ou
les valeurs de QoS convenu(e)s avec les sous-traitants doivent être agrégées et comparées
pour produire en sortie la QoS de bout en bout. La composition de QoS est le pro-
cessus d’agrégation de la QoS des services invoqués (éventuellement en sous-traitance)
pour que l’orchestration puisse estimer son propre résultat à l’égard des obligations
contractuelles.

L’orchestration peut disposer d’informations et de modèles sur ses ressources locales
et ses opérations. Cependant, elle ne peut pas disposer d’informations complètes sur la
performance des services distants ou sur l’utilisation du réseau. Elle devra s’appuyer sur

18

Résumé en Français 1.4. Qualité de Service

les obligations contractuelles pour estimer cette performance ou l’accepter telle qu’elle
(par exemple, l’accès à un site web public). La composition de la QoS provenant de
services individuels nécessite un ensemble de règles permettant d’agréger les quanta de
QoS.

En utilisant les simulations de Monte-Carlo ou des techniques analytiques, on peut
déduire la QoS de bout en bout pour une seule exécution du service composite. Toute-
fois, cela ne prend pas en compte la nature probabiliste de certains paramètres et donc,
plusieurs simulations de Monte-Carlo ou données historiques sont nécessaires pour dé-
duire des distributions. L’agrégation des indicateurs probabilistes de QoS peut se faire
en utilisant des valeurs moyennes pour la latence, la disponibilité ou en utilisant des
modèles mathématiques stochastiques et de files d’attente plus appronfondis. Des ap-
proches stochastiques pour la composition et la planification ont été présentées dans
[WHK08, WZZF09].

Pour développer davantage cette notion de composition de QoS, nous prenons
l’exemple du service web composite de la Fig. 1.1. Il met en évidence le processus
typique de la commande des produits informatiques.

Nous détaillons certains aspects du contrôle de flux au sein de l’orchestration. Les
services Check Order et Check Credit vérifient l’information fournie par le client ou une
base de données traite la commande. Une fois cela fait, le Hardware Supplier qui réagit
le plus rapidement et le Software Supplier avec le coût le plus bas sont utilisés pour la
composition. Par ailleurs, une opération timeout peut englober toute l’orchestration
pour éviter que le client n’attende des services «suspendus».

Software Supplier 2

Submit Order

Check Order Check Credit

ok ok
noknok

sync Reject OrderReject Order

Process Order

Hardware Supplier 1 Hardware Supplier 2

Assemble and Deliver

best(Cost)

best(Latency)

Software Supplier 1

Figure 1.1: Un ensemble de service composite orchestration démontrant des com-
posants.

Notons qu’il s’agit d’un workflow typique où interagissent les données des services in-
voqués et la QoS mesurée par l’orchestration. Pour cette raison, les approches utilisant
la théorie des files d’attente [ALZH04, DB78] ou les modèles stochastiques [TLY+04]
pour les performances des services web ont des difficultés à décrire avec justesse le
comportement des services basés sur des transactions. Ces approches sont appropriées
pour l’analyse du réseau et l’étude de compositions de services simplistes. Les ap-
proches basée sur la simulation de performance des services composites peuvent fournir
une description plus réaliste. Des exemples d’études empiriques du comportement de
la performance des services Web sont disponibles dans [HM09, LNJV01].

19

1.4. Qualité de Service Résumé en Français

1.4.3 Monotonie dans les Orchestrations

Une propriété importante que nous considérons ici est la monotonie de l’orchestration
[BRBH08]. Pour qu’une agrégation ou pour que toute approche contractuelle soit val-
able, l’orchestration doit être monotone, c’est-à-dire «si un service fournit de meilleurs
résultats, alors il en sera de même pour l’orchestration». Lorsque plusieurs aspects de la
QoS et des données interagissent, une amélioration de la performance d’un des services
peut quand même dégrader la performance globale. Cette remarque est illustrée dans
une variante, reliant un fournisseur de matériel spécifique à un fournisseur de logiciel
spécifique. L’amélioration du temps de réponse de Hardware Supplier 1 peut entrâıner
un retard de l’orchestration dans son ensemble si le service lent de Software Supplier
1 est invoqué, comme indiqué dans la Fig. 1.2. Les conditions pour éviter que cela
se produise sont données dans [BRBH08]. Parmi elles figure le fait de ne pas lier un
service particulier à un autre (comme on le voit dans la Fig. 1.1). Il est important
de considérer cette remarque dans le cas où l’utilisation de SLAs comme service de
performance supérieure (sous-traitant) peut être inutilement pénalisante du fait de la
détérioration de performance par un autre service.

Software Supplier 2

Process Order

Hardware Supplier 1 Hardware Supplier 2

faster fast

slow fast

best(Latency)

Assemble and Deliver

Software Supplier 1

Figure 1.2: Une non-monotone orchestration.

Les orchestrations qui ne sont pas dépendantes des données (c’est-à-dire où le con-
trôle de flux ne dépend pas des données renvoyées par les services), sont en général
monotone. Toutefois, pour les workflows qui sont dépendants des données, une analyse
minutieuse des conditions de monotonie est nécessaire. Dans la plupart des cas, les
implications de monotonie ont été ignorées, ce qui n’est pas adapté à la gestion basée
sur des. Les articles de Ardagna et al. [AP05], Alrifai & Risse [AR09a] et Zeng et al.
[ZBN+04] identifient néanmoins les notions d’optimisation globale et locale, ce qui per-
met de contrôler les conditions de monotonies. Dans une orchestration, l’optimisation
globale fournit la situation idéale. Dans une orchestration monotone, cela peut être
raffiné avec l’optimisation locale suffisante pour assurer l’optimalité globale.

1.4.4 Service Level Agreements

Afin de fournir un support de QoS dans les services Web, un certain nombre d’extensions
aux normes actuelles ont été proposées. Une proposition visant à publier des ser-
vices Web à QoS imposée en les enregistrant dans l’annuaire UDDI est présentée dans
[Ran03, KBT+09, WVKT06]. Une extension similaire, appelée Q-WSDL, est fournie
dans [D‘A06] avec une approche basée sur des modèles de paramètres de QoS au sein
de WSDL.

Le Service Level Agreement (SLA) (également connu sous le nom de contrat de
niveau service ou convention de service) définit un ensemble d’attentes du client qui
doivent être remplies par un fournisseur [TP05, SRE10]. Il est tout à fait possible que

20

Résumé en Français 1.4. Qualité de Service

les fournisseurs offrent différents services à différents clients. C’est pourquoi, les four-
nisseurs doivent adopter une politique efficace de gestion des ressources qui différencie
les clients suivant les gammes de services.

Un accord de niveau de service est un document qui formalise un accord signé entre
deux parties: le fournisseur et le client. Il spécifie, généralement en termes mesurables,
les services que le fournisseur s’engage à fournir. Les fournisseurs révèlent la perfor-
mance promise sous forme de contrats. Ces contrats sont de nature statistique. Un
contrat typique entre un serveur et un client est le suivant: «le service doit répondre
correctement 90% du temps et, quand il répond correctement, dans 90% des cas, il
répondra en moins de 2 secondes». Dans [PB08, TP05, SRE10, jJMS02], des limites
dures sont utilisées pour les obligations. Une politique de bonus-malus, dans laquelle
un service qui dévie du contrat est puni, y est également prévue.

Une alternative à cette approche consiste à utiliser des modèles probabilistes comme
décrit dans [HWSP04, HWTS07, RBHJ08]. Dans [RBHJ08, HWTS07], les services spé-
cifient leur comportement QoS sous forme de distribution probabiliste des paramètres de
QoS. La distribution peut aussi être spécifiée de façon approximativee par un ensemble
de quantiles. Dans certains cas, des mesures peuvent être utilisés pour obtenir le con-
trat probabiliste. L’utilisation de distributions a l’avantage de supprimer les approches
pessimistes vis-à-vis des contrats, en utilisant des contrats plus souples. L’avantage
d’utiliser des contrats probabilistes réside dans une gamme d’outils statistiques comme
la dominance stochastique [BD03, And96] qui peuvent aisément être intégrés dans la
formulation du SLA.

Etant donné que les valeurs de QoS sont des variables aléatoires, l’estimation des
contrats de bout en bout se fait généralement au moyen de simulations. Quelques ar-
ticles théoriques [ZYZB11] proposent d’agréger les distributions de probabilité, ce qui
est presque impossible lorsque les orchestrations présentent des dépendances dans les
données du contrôle de flux. Des modèles comme SALSA [BHS+10] (Simulated An-
nealing Load Spreading Algorithm) utilisent la théorie des files d’attente pour respecter
les SLAs de façon autonomique, sans un sur-dimensionnement a priori des ressources.

1.4.4.1 Négociation

La négociation de SLA fait référence à une procédure entre deux parties (client et
fournisseur) qui se mettent d’accord sur les termes du SLA. Les parties tentent de
parvenir à un accord basé sur un consensus après avoir échangé plusieurs devis sans
obligation. Les étapes de négociation sont en général les suivantes:

1. le fournisseur publie un modèle décrivant le service et ses conditions éventuelles,
y compris la qualité de service et les compensations possibles en cas de violation.
Ce modèle laisse plusieurs champs vides ou modifiables qui visent à appliquer les
besoins spécifiques de l’utilisateur.

2. le client récupère le modèle et le remplit avec des valeurs décrivant l’utilisation
prévue des ressources. Certains termes du modèle peuvent être supprimés, ajoutés
ou modifiés.

3. ce nouveau document, qui n’engage aucune des parties, est envoyé au fournisseur.
Lorsque le fournisseur reçoit ce document, il se base sur la disponibilité actuelle
des ressources et les politiques à l’égard du client pour renvoyer à ce dernier
un devis. Ce devis correspond à des valeurs sur lesquelles le fournisseur serait
probablement d’accord (même si cela ne l’engage à rien), en fonction des besoins
du client.

4. si le client est satisfait du devis il appose sa signature au document qu’il renvoie
au fournisseur comme une proposition de SLA. Le client est effectivement déjà en

21

1.4. Qualité de Service Résumé en Français

train de proposer un SLA au fournisseur, néanmoins la signature du fournisseur
est manquante.

5. à la réception de la proposition, le fournisseur est libre de la rejeter ou de
l’accepter. Dans ce dernier cas, la proposition devient un contrat de service offi-
ciellement signé par les deux parties, et commence à être un document juridique
valable.

L’échange de devis (étapes 2 et 3) peut être répété un nombre quelconque de fois.
L’utilisateur peut modifier les termes de la demande de devis jusqu’à ce que le devis
du fournisseur réponde aux attentes de ce que le client est prêt à accepter. La dernière
étape pour le client (l’étape 4), qui demande le SLA réel, a une réponse booléenne:
le SLA est accepté ou rejeté par le fournisseur. Dans ce dernier cas, le client peut
repartir en arrière et redemander un devis, dans l’espoir que le fournisseur ait changé
ses conditions. Les étapes 2-3 constituent la partie essentielle de la négociation, puisque
chaque partie peut tirer la négocitation dans n’importe quelle direction. Les parties
peuvent modifier librement les différents termes: la baisse des frais, la baisse de qualité
de service, l’augmentation des intervalles de temps, la baisse des besoins en ressources,
la baisse des compensations, etc.

Une fois qu’un contrat a été signé et accepté, la nécessité de le modifier pourrait être
envisagée (voir la re-négociation). Dans ce cas, la même structure de devis pourrait être
utilisée. La différence principale vient des ressources déjà affectées, et de l’existence
d’un premier contrat à modifier.

Les travaux sur l’automatisation des procédures pour générer de telles procédures de
négociation comprennent [CCP07, DDK+04, YKL+07]. Le processus automatique de
négociation vise à identifier le niveau maximal de qualité admissible selon le budget de
l’utilisateur. [ZZ04] spécifie la vitesse à laquelle les sondes affectés aux services peuvent
déployées sans affecter les performances d’exécution. Dans [RBHJ08], la procédure de
négociation de contrat implique l’accord des deux distributions - une hypothèse côté
client sur la capacité de débit et une garantie côté fournisseur sur la performance.
[BS09b] parle de négociation qui se déroule en utilisant des contraintes souples avec des
opérateurs algébriques modélisés en semi-anneau.

1.4.4.2 Surveillance

Une fois qu’un utilisateur et qu’un service Web ont été réunis, l’exécution du service
et des propriétés connexes doivent être surveillés en permanence. En outre, il est
souhaitable que les ajustements nécessaires se fassent en temps réel sans affecter les
opérations sur le site de l’utilisateur. C’est une tâche difficile puisque le service Web
peut être exécuté sur un système qui n’appartient pas à l’utilisateur, qui n’est pas con-
trolé par celui-ci ou sur un système d’exploitation dont l’utilisateur ignore tout. La
notion de surveillance peut se rapporter à de nombreux aspects des services Web tels
que la charge, la gestion des erreurs [BGG04] néanmoins nous faisons spécifiquement al-
lusion à la surveillance des propriétés non fonctionnelles et des obligations contractuelles
correspondantes.

La surveillance de SLA devient plus compliquée dans le cas des services web com-
posites. Les propriétés d’un service Web composite dépendent de celles des services qui
le constituent et il peut être nécessaire de faire collaborer les entités responsables de la
gestion de chaque service constituant le serveice web composite. Certains paramètres de
QoS comme le temps de réponse ou de l’utilisation des ressources peuvent être contrôlés
par le fournisseur de services, d’autres comme le débit et la sécurité des données peu-
vent exiger d’interroger les clients. Les exemples de travaux sur ce sujet comprennent
[MRLD09, SMS+01, ZLC07].

22

Résumé en Français 1.4. Qualité de Service

La surveillande de QoS peut être appliquée sur les services Web pendant les dif-
férentes phases d’un cycle de vie SOA système. Au cours de la découverte de service,
la surveillance est utile pour obtenir la qualité de service réelle pour une sélection fi-
able de service Web. Une fois le service sélectionné, la surveillance peut être utilisée
afin d’assurer que le service remplit toujours la QoS promise. En particulier, dans les
systèmes SOA d’auto-réparation, quand cette violation a lieu, le système SOA peut
remplacer le service web défectueux par un autre. De toute évidence, les systèmes de
surveillance ne récupérent des données qu’à partir de mesures basiques, étant donné que
les mesures dérivées sont calculées à partir des précédentes par l’intermédiaire d’une
règle prédéfinie.

Web Service Level Agreement Language [LKD+03] est un langage standard pour
spécifier des accords et surveiller les protocoles pour les SLA. Un accord WSLA com-
plète une définition de service. Une description de service (WSDL) définit la relation
d’interface de service entre un service et son application. Quant au WSLA, il définit les
caractéristiques de performance convenues et la façon de les évaluer et de les mesurer.
Le WSLA est utile au système de mesure et de gestion d’une organisation qui vérifie et
gère la conformité de l’organisation avec un WSLA. Les fournisseur de services et les
clients peuvent exécuter leur propre système de mesure et de gestion. Chaque organi-
sation peut accéder aux paramètres mesurés à partir de sources diverses. Par exemple,
les paramètres côté serveur peuvent être accédés à partir du fournisseur et ceux côté
client peuvent être accédés à partir du client.

Une solution de substitution au WSLA est présentée dans SLAng [SLE04] et permet
de spécifier les caractéristiques non-fonctionnelles des contrats conclus entre des parties
indépendantes. [Men02, ZLC07, LZZX10] développent des techniques pour surveiller
les déviations du comportement nominal au niveau de la performance de QoS. D’autres
propositions ont pour but d’élargir le cadre du WSLA pour offrir, négocier et suivre les
accords contractuels dans les compositions de services [DDK+04].

1.4.5 Optimisation dépendante de la QoS

Lorsque la QoS est considérée comme multi-dimensionnelle, ses domaines sont par-
tiellement (pas totalement) ordonnés. Pour résoudre le problème de la comparaison
probabiliste de domaines de QoS qui ne sont que partiellement ordonnés, le Théorème
1 de [TKO77] peut être utilisé. Cela permet de simplifier une comparaison stochastique
de variables aléatoires en une comparaison ordinaire puisque les fonctions sont définies
sur la même affectation expérimentale de probabilité.

Pour optimiser la sélection sur plusieurs domaines de QoS, une sorte d’ordre total
est nécessaire pour générer des fonctions de coût minimum. Il est également possible de
minimiser, sur un domaine, tout en faisant implicitement des compromis sur d’autres
domaines. L’objectif est d’optimiser la QoS de bout en bout (globale) de l’orchestration.
Diverses techniques d’optimisation ont été proposées à cette fin. L’optimisation globale
nécessite d’examiner tous les chemins alternatifs lors du châınage des appels de service.
C’est donc une tâche à effectuer hors-ligne et qui requiert une algèbre pour évaluer
statistiquement la QoS de bout en bout à partir de la QoS de chaque service appelé.

[LB10] propose une architecture permettant la sélection de services logiciels en se
basant sur leur réputation. Un algorithme de sélection est conçu pour la recomman-
dation de service, fournissant aux clients SaaS les meilleurs choix possibles. Dans
[CCGM06], une architecture basée négociation est utilisé pour la sélection des services.
En modélisant cela comme un problème d’optimisation sous contraintes où chaque classe
de QoS est modélisée par des contraintes appropriées, on peut maximiser la QoS globale
d’un flux de requêtes. Dans [YZL07], l’objectif de la sélection des services est modélisé
comme un problème de sac à dos multidimensionnel à choix multiple (MMKP). Des

23

1.4. Qualité de Service Résumé en Français

approches de sélection similaires générant des configurations optimales de services sont
présentées dans [HMR10, XFZ08].

Dans [ZBN+04] la comparaison entre l’optimisation locale et la planification glob-
ale est étudiée. Différents paramètres de QoS sont étudiés (prix, durée, réputation,
disponibilité, taux de réussite) et des règles de composition sont fournies. Une solution
de programmation entière est proposée comme dans [KP09]. Des problèmes similaires
et leur solutions sont également traités dans où la notion de contraintes locales et
d’optimalité globale sur les domaines de QoS est étudiée.

L’utilisation de techniques mathématiques plus intensives comme le contrôle stochas-
tique [SDR09] et la programmation dynamique [Ber07] a également été proposé. Dans
[ZNB+08, GNZ+06], ces techniques sont utilisées pour la sélection et pour la planifi-
cation de la sélection du service composite. Plutôt que de choisir le «meilleur» service
avec des informations à court terme, une approche de programmation dynamique plus
poussée est utilisée. Cette notion supprime l’effet de la non-monotonie et se concen-
tre sur les objectifs de qualité de service globale du service composite. Cependant,
cette technique peut comporter un très grand nombre de calculs et n’est pas appropriée
lorsque les paramètres de QoS varient considérablement des distributions présumées.

24

Résumé en Français 1.5. Organisation de la thèse

1.5 Organisation de la thèse

Cette thèse est organisée en plusieurs chapitres, chaque chapitre correspondant à une
publication. Comme décrit ci-dessous, ces chapitres sont rangés par thèmes (ou con-
cepts) des plus généraux aux plus spécifiques dans le contexte des services Web.

Théorie de la QoS pour les Orchestrations: Dans les orchestrations où il existe des
interactions étroites entre la QoS, les données et la fonction, les architectures
classiques pour prendre en compte QoS ne sont pas assez souples. Les Orches-
trations dépendantes de données peuvent être non-monotones par rapport à la
qualité de service, ce qui signifie que l’amélioration de la QoS d’un service par-
ticulier peut diminuer la qualité de service de bout-en-bout de l’orchestration.
Dans le Chapitre 3, nous développons un calcul riche pour analyser la qualité de
service multidimensionnelle dans un sens probabiliste. En utilisant le modèle or-
chnets, les conditions pour traiter la non-monotonie dans des orchestrations sont
également étudiées. Ces techniques sont mises en oeuvre dans Orc en utilisant la
QoS comme des aspects qui peuvent être «tissés» dans les spécifications fonction-
nelles de l’orchestration. Dans le Chapitre 4, les règles pour tisser une approche
de causalité temporelle et la QoS pour les expressions Orc sont présentées. En
faisant usage de ces règles au dessus de la forme OIL (Orc Intermediary Lan-
guage), les publications Orc peuvent être étendues afin de fournir passé causal et
des incréments de QoS.

QoS pour les lignes de produit de Services Web: Les lignes de produits de services
composites peuvent avoir des configurations multiples présentant un comporte-
ment variable du à la fois à l’incorporation/rejet de service et au comportement
probabiliste de QoS. Batir les deux formes de variabilité conduit à une explosion
combinatoire, en particulier lorsque de multiples services et des combinateurs
d’orchestration sont utilisés. Le Chapitre 5 vise à étudier ces deux aspects de la
variabilité et à faire comprendre leur effet sur la QoS de bout en bout et le SLA
correspondant. Le Chapitre 6 compare l’utilisation de l’échantillonnage combina-
toire avec un échantillonnage aléatoire en fonction de l’efficacité et de la stabil-
ité des configurations générées. Ces techniques démontrent, de façon empirique,
l’avantage d’utiliser des méthodes d’interaction combinatoires pour échantillonner
à la fois l’invocation de variable et la QoS dans les grandes lignes de produits de
services Web composites.

Outils QoS pour les Orchestrations: Alors que des langages comme BPEL et Orc
ont mis l’accent sur des spécifications fonctionnelles (incorporer des combinateurs
pour la concurrence, le choix et ainsi de suite), ils manquent d’outils pour in-
tégrer des aspects plus intensifs mathématiquement. Dans le Chapitre 7, nous
démontrons l’incorporation de paquets d’optimisation au sein des spécifications
d’orchestration. Une conséquence de cela réside dans la meilleure prise de déci-
sion lorsque les flots de contrôle des orchestrations dépendent de modèles de QoS
probabilistes multidimensionnels. Nous proposons également l’utilisation d’une
procédure de requête de haut niveau et flexible pour intégrer ces optimisations
dans des langages tels que Orc.

Amélioration de Service Level Agreements: Pour finir, l’incorporation de ces paramètres
QoS peut conduire à des SLA supérieurs. Dans le Chapitre 8, nous nous concen-
trons sur des simulations Monte-Carlo pour estimer la QoS de bout en bout et
les SLA pour les orchestrations. En cas de distributions à «queue lourde», les
simulations de Monte-Carlo sont inefficaces pour estimer les quantiles extrêmes de

25

1.5. Organisation de la thèse Résumé en Français

valeurs qui démontrent une forte variance. Des techniques de réduction de vari-
ance telles que importance sampling et importance splitting peut s’avérer être des
alternatives plus efficaces, permettant une définition précise d’échantillonnage, de
mesure et de tolérance d’écart dans les déclarations de SLA. Dans le Chapitre 9,
nous étudions la négociation de SLA dans des orchestrations de services compos-
ites, en mettant l’accent sur la sélection optimale de la stratégie de renégociation
pour l’amélioration de la QoS de bout en bout. Nous montrons qu’en formulant le
problème sous forme de programmation en nombres entiers, les contraintes peu-
vent être spécifiées pour sélectionner le service qui offre la meilleure stratégie de
renégociation.

26

Résumé en Français 1.5. Organisation de la thèse

Chapitre 3: Gestion des orchestrations monotones de services avec la
QoS

Nous étudions la gestion des orchestrations de service avec la QoS, en particulier pour
les orchestrations ayant un workflow dépendant des données. Notre étude supporte la
QoS multidimensionnelle. Pour capturer l’incertitude dans la performance et la QoS,
nous apportons un support pour la QoS probabiliste. Avec les hypothèses ci-dessus, les
orchestrations peuvent être non-monotones par rapport à la qualité de service. Cela qui
signifie que l’amélioration de la QoS d’un service peut réduire la qualité de service glob-
ale de l’orchestration. C’est une caractéristique embarrassante pour la gestion de QoS.
Nous étudions la monotonie et fournissons les conditions suffisantes pour cela. Nous
proposons ensuite une théorie complète et une méthodologie pour les orchestrations
monotones. Les règles génériques de composition de QoS sont établies par un calcul
de QoS, capturant aussi la meilleure liaison de service — cependant, la découverte de
service n’est pas dans le cadre de ce travail.

La monotonie permet de justifier l’utilisation d’une approche contractuelle pour la
gestion QoS. Bien que la fonctionnalité et la qualité de service ne puissent pas être
séparées dans la conception des orchestrations complexes, nous montrons que notre
architecture prend en charge la séparation de ces deux préoccupations en permettant
de développer la fonctionnalité et la QoS séparément puis de les «tisser» ensemble pour
obtenir l’orchestration à QoS améliorée. Notre approche est mise en oeuvre au dessus
du langage Orc pour spécifier les orchestrations de service.

Contributions

1. Analyse de la QoS probabiliste dans les orchestrations transactionnelles qui dépen-
dent des données et où la fonctionnalité et la QoS interagissent.

2. Mise en relief de la nécessité d’étudier la monotonie lors la définition de la QoS
dans de telles orchestrations avec le développement d’un calcul riche basé sur
OrchNets.

3. Un contexte théorique pour la pour monotonie avec des extensions pour gérer la
monotonie probabiliste a été développé en utilisant OrchNets et de la ramification
des cellules.

4. L’architecture permet la séparation des préoccupations (inspiré de Développement
Orienté Aspect), qui permet de spécifier séparément les aspects fonctionnels et la
qualité de service.

5. Mise en oeuvre de la théorie en utilisant le mécanisme de réécriture de règles
où la qualité de service est «batie» au sein de la description fonctionnelle des
orchestrations.

6. Mise en oeuvre de cette spécification SLA dans Orc avec les spécifications des
augmentations de QoS et les opérations algébriques pour générer des contrats de
bout en bout.

7. Logiciel : Le TravelAgent, par exemple, avec la déclaration de SLA, les spécifications
fonctionnelles et le cachier des charges de la QoS «batie» précisés dans Orc est
disponible à 2.

Publication

Ce document a été soumis à Springer Formal Methods in System Design (2012) [BJK+12].

2http://orc.csres.utexas.edu/papers/bjkrt2012fmsd.sh tml

27

http://orc.csres .utexas.edu/papers/bjkrt2012fmsd.shtml

1.5. Organisation de la thèse Résumé en Français

Chapitre 4: Leverage Causalité pour QoS suivi dans les systèmes des
service orienté

Dans une orchestration, le contrôle de flux est passé à différents services en fonction de
constructions comme le débit séquentiel / parallèle, si-sinon-alors ou timeouts. Dans
le langage concurrent de programmation Orc, le flux de contrôle entre les sites cir-
cule à l’aide l’un des quatre combinateurs: parallèle , séquentiel , réduction
et Sinon . Une Expression Orc combine les définitions de sites et les valeurs de
ces combinateurs pour produire une spécification d’orchestration. Dans ce document,
nous donnons des règles visant à transformer de tels programmes Orcs dans d’autres
programmes qui permettent de suivre la causalité temporelle des évènements. Les
évènements dans un programme Orc sont des publications, des appels ou des retours
de sites. La causalité temporelle est présentée avec chaque évènement et peut être util-
isée pour le diagnostic des pannes ou d’interblocage dans des orchestrations. Cela est
étendu pour «bâtir » les valeurs de qualité de service ainsi que les règles pour suivre la
causalité. La mise en oeuvre de cela est faite au-dessus d’Orc et la transformation est
réalisée au niveau du language OIL (Orc Intermédiary Language).

Contributions

1. Fournit des règles de réécriture utilisant la syntaxe d’origine Orc pour suivre
l’historique de causalité.

2. Fournit des règles pour batir la QoS théorique en tant que réécriture d’OIL.

3. Met en oeuvre les règles de réécriture dans Orc pour la causalité et la QoS.

4. Logiciel : Un prototype de l’implemntation a été fait au dessus de la version 2.0
d’Orc en Scala.

Publication

Une première version du document devant être soumis est présentée dans [JKTB12].

28

Résumé en Français 1.5. Organisation de la thèse

Chapitre 5: modélisation de la variabilité et analyse de la QoS des
orchestrations de services Web

Le choix sans cesse croissant dans les services divers fait de la variabilité de l’orchestration
de service un aspect essentiel d’un service web composite. L’effet de cette variation sur
la qualité de service (QoS) d’un service composite est critique et c’est le centre de notre
travail. Dans cet article, nous présentons une méthodologie pour la variabilité du mod-
èle d’orchestration d’abord en utilisant un feature diagram (FD). Le FD spécifie une
ligne de produits des orchestrations représentés comme des configurations de services
atomiques invoqués/rejetés. Deuxièmement, en raison de l’ensemble potentiellement
important de configurations, nous employons des techniques de test combinatoire pour
générer automatiquement des configurations couvrant toutes les interactions par paires
valides entre les services. Troisièmement, nous analysons la variation de QoS pour
chaque configuration en utilisant des modèles probabilistes de QoS. En utilisant un
système de gestion de crise, nous montrons expérimentalement que la génération de
paires couvre toutes les valeurs aberrantes de QoS et élimine l’analyse de plus de 75%
de toutes les configurations possibles. L’analyse de QoS des configurations par paires
révèle des configurations dangereuses/inefficaces, aide à déterminer des Service Level
Agreements (SLA) réalistes, et fournit un commentaire précieux pour aider à remodeler
une orchestration.

Contributions

1. Analyse des aspects communs de la variabilité de ligne de produits et des distri-
butions de QoS.

2. le comportement des variables dans l’invocation du service est capturé à l’aide
des modèles caractéristiques.

3. Utilisation d’une technique d’échantillonnage par paires pour gérer l’explosion
combinatoire.

4. L’échantillonnage par paires réduit de manière significative le nombre de config-
urations à analyser.

5. Un cas de gestion de crise est fourni puis analysé afin de mieux générer des SLA.

6. Software: La nouvelle génération d’échantillons qui satisfont les interactions par
paires a été développé en Java et en langage Alloy pour la modélisation. Il est
disponible en téléchargement à l’adresse 3. Les simulations pour les distributions
de QoS ont été effectuées dans MATLAB.

Publication

Une version de ce chapitre a été présentée à la Conférence internationale sur les services
Web (ICWS) 2010 [KSB+10]. Des détails supplémentaires sur les produits générés et
les détails expérimentaux sont inclus.

3http://pairwise-models.googlecode.com/svn/trunk/

29

http://pairwise-models.googlecode.com/svn/trunk/

1.5. Organisation de la thèse Résumé en Français

Chapitre 6: Test par paires de services composites dynamiques

Les services en ligne regroupent les entreprises, les personnes, les systèmes logiciels et
fonctionnent souvent dans des environnements mal compris. En utilisant ces services en
tandem pour orchestrer de façon prévisible une tâche complexe est l’un des principaux
défis de l’informatique orientée service. Une orchestration des services composite sol-
licitant de multiples services atomiques est en proie à un certain nombre de sources de
variation. Par exemple, la disponibilité d’un service atomique et son temps de réponse
sont deux importantes sources de variation. En outre, le nombre de variations possi-
bles dans un service composite augmente de façon exponentielle avec l’augmentation
du nombre de services atomiques. Le test d’un tel service composite présente un enjeu
crucial puisqu’il est souvent très coûteux d’examiner de manière exhaustive l’espace de
variation. Peut-on tester efficacement le comportement dynamique d’un service com-
posite en utilisant uniquement un sous-ensemble de ces variations? C’est la question
qui nous intrigue. Dans ce document, nous modélisons d’abord la variabilité du ser-
vice composite sous forme de diagramme caractéristique (FD) qui capture toutes les
configurations valides de son orchestration. Deuxièmement, nous appliquons le test par
paire pour échantilloner l’ensemble des configurations possibles de façon à obtenir un
sous-ensemble concis. Enfin, nous testons le service composite pour certaines paires
de configurations avec une variété de paramètres QoS tels que le temps de réponse, la
qualité des données, et la disponibilité. En utilisant de deux cas d’études, la gestion des
crises d’accident de voiture et la gestion de la cybersanté, nous montrons que la généra-
tion par paires échantillone efficacement la gamme complète des variations de QoS dans
une orchestration dynamique. La technique d’échantillonnage par paires élimine plus de
99% de redondance dans les configurations, tout en appelant tous les services atomiques
au moins une fois. Nous évalueons rigoureusement les tests par paires pour les critères
tels que: a) la capacité d’échantilloner des paramètres extrêmes de QoS du service,
b) un comportement stable des configurations extraites, c) un ensemble compact de
configurations qui peuvent aider à évaluer les compromis de QoS et d) la comparaison
avec un échantillonnage aléatoire.

Contributions

1. Utilisation de larges cas d’études pour la situation de crise et de cybersanté où
un échantillonnage exhaustif est impossible.

2. Analyse de l’échantillonnage par paires en ce qui concerne la taille, la stabilité et
la capacité à générer de multiples familles de SLA.

3. Preuve empirique sur un échantillonnage aléatoire qui ne peut pas garantir une
couverture suffisante sur toutes les interactions. Les perspectives sur le développe-
ment de plusieurs niveaux de SLA pour les familles de services composites sont
également évaluées.

4. Software: La nouvelle génération d’échantillons qui satisfont les interactions par
paires a été développée en Java et en langage Alloy pour la modélisation. Il est
disponible en téléchargement à l’adresse 4. Les simulations pour les distributions
de QoS ont été effectuées sous MATLAB.

Publication

Une version de ce chapitre a été présentée lors du 6e colloque international sur le génie
logiciel pour les systèmes adaptatifs et autogestionnaire, 2011 [KSB+11].

4http://pairwise-models.googlecode.com/svn/trunk/

30

http://pairwise-models.googlecode.com/svn/trunk/

Résumé en Français 1.5. Organisation de la thèse

Chapitre 7: Optimiser les décisions dans les orchestrations de services
Web

Les orchestrations Services Web emploient en général une comparaison exhaustive des
paramètres de QoS lors de la prise de décision. La capacité d’incorporer des packages
mathématiques plus complexes est nécessaire, notamment dans les cas des workflows
pour l’affectation des ressources et des systèmes de files d’attente. En modélisant
de telles routines d’optimisation comme les appels de service dans les spécifications
d’orchestration, des techniques telles que la programmation linéaire peut être commod-
ément invoquée par des concepteurs de workflow non spécialistes. En s’appuyant sur la
théorie de la QoS précédemment développée, nous proposons l’utilisation d’une procé-
dure de requête haut niveau flexible pour intégrer des optimisations dans des langages
tels que Orc. Le site Optima fournit une extension pour les opérations de tri et de réduc-
tion actuellement employées dans Orc. En outre, l’absence d’une technique objective
pour consolider les paramètres de QoS constitue un problème dans l’identification des
fonctions de coût appropriées. Nous utilisons l’AHP (analytical hierarchical process)
pour générer un ordre total de paramètres de QoS à travers différents domaines. Avec
des constructions pour assurer la cohérence sur des jugements subjectifs, l’AHP offre
une technique appropriée pour produire des fonctions de coût objectives. En utilisant la
châıne d’approvisionnement Dell (Dell Supply Chain) par exemple, nous démontrons la
faisabilité de la prise de décision par des routines d’optimisation, en particulier lorsque
le flux de contrôle est dépendent de la QoS.

Contributions

1. Les hypothèses sur la monotonie et les obligations contractuelles permettent
d’enrichir le meilleur opérateur Orc avec de l’optimisation à travers des domaines
multiples de QoS.

2. Le site Optima peut être utilisé pour intégrer des solveurs dans Orc.

3. Utilise l’AHP pour générer un ordre total sur les domaines de qualité de service
multiples. Item démontré l’intégration de l’optimisation au sein des spécifications
de workflows à l’aide de la châıne d’approvisionnement Dell par exemple.

4. Démontre les conséquences de l’optimisation en temps d’exécution sur la détection
des violations de SLA.

5. Logiciel : Les simulations ont été réalisées en utilisant MATLAB et des solveurs
d’optimisation intégrés. Un exemple du code MATLAB pour l’exemple de Dell
dans Orc est indiqué dans l’annexe 11.3.

Publication

Un document correspondant à ce chapitre a été présenté à la Conférence internationale
sur l’informatique orientée services, 2011 [KBJ11]. Des détails supplémentaires sur
l’appel des bibliothèques mathématiques de Orc sont fournis.

31

1.5. Organisation de la thèse Résumé en Français

Chapitre 8: Echantillonnage d’importance de types Importance Sam-
pling ou Importance Splitting pour les contrats probabilistes dans les
services Web

Avec des services Web de qualité de service (QoS) modélisées comme des variables aléa-
toires, la précision des valeurs échantillonnées pour des SLA spécifiques est remise en
question. Les échantillons dont la répartition est plus faible sont plus précis pour le cal-
cul des obligations contractuelles, ce qui n’est généralement pas le cas pour les services
Web de QoS. En outre, les valeurs extrêmes en cas de distributions à queue lourde (par
exemple 99,99 percentile) sont rarement observées dans les schémas d’échantillonnage
limités. Pour améliorer la précision des contrats, nous proposons l’utilisation de tech-
niques de réduction de variance comme l’échantillonnage d’importance de types Im-
portance Sampling ou Importance Splitting. Nous démontrons cela pour des con-
trats impliquant les opérations de réclammations et de ravitaillement au sein de la
châıne d’approvisionnement Dell. En utilisant les valeurs mesurées, il est aussi possible
d’effectuer des prévisions efficaces de la déviation future des contrats. Une des con-
séquences est une définition plus précise d’échantillonnage, de mesure et de tolérance
de variance dans les déclarations de SLA.

Contributions

1. Démontre l’inefficacité des techniques traditionnelles de Monte-Carlo pour la com-
position contrat.

2. Utilise des techniques d’échantillonnage d’importance de types Importance Sam-
pling ou Importance Splitting pour étudier la composition contrat dans l’exemple
de Dell.

3. Propose d’étendre ces techniques pour la prévision des pannes ou des violations
de contrats.

4. Etend les modèles actuels WSLA pour intégrer la variance dans le comportement
de l’échantillonnage.

5. Logiciel : Les techniques d’échantillonnage d’importance de types Importance
Sampling ou Importance Splitting ont été mises en oeuvre sous MATLAB et
sont fournies dans l’annexe 11.4 pour une utilisation avec l’exemple de Dell.

Publication

Une version courte de ce chapitre a été présentée à la Conférence internationale sur
l’informatique orientée services, 2011 [Kat11]. Ceette version a été étendue avec des
détails supplémentaires et l’utilisation des techniques de type Importance Splitting.

32

Résumé en Français 1.5. Organisation de la thèse

Chapitre 9: Stratégies de négociation pour les contrats probabilistes
dans les Orchestrations de services Web

Les Service Level Agreements (SLA) ont été proposés dans le cadre de services Web
afin de maintenir une performance de QoS acceptable. Ceci est particulièrement cru-
cial pour les orchestrations de services composites qui, pour fournir leur fonctionalité,
peuvent invoquer plusieurs services atomiques. Gérer les SLAs implique d’utiliser des
protocoles de négociation efficaces entre les orchestrations et les services invoqués. Dans
les services composites où les données et la QoS (modélisée dans un cadre probabiliste)
interagissent, il est difficile de sélectionner un service atomique individuel avec qui né-
gocier. Une meilleure amélioration dans un domaine négocié (par exemple, la latence)
pourrait signifier la détérioration dans un autre domaine (par exemple le coût). Dans
ce document, nous proposons comme stratégie de renégociation au dessus de plusieurs
services, une formulation de programmation en nombres entiers basée sur Le critère
de la dominance stochastique d’ordre 1 (First Order Stochastic Dominance). Une con-
séquence de cela est une meilleure performance globale de l’orchestration par rapport
aux stratégies aléatoires pour la re-négociation. Nous montrons aussi que cette stratégie
optimale peut être appliquée à des protocoles de négociation spécifiés dans les langages
comme Orc. Ces stratégies sont nécessaires pour les services composites où les contri-
butions, à la QoS, des services atomiques varient de manière significative.

Contributions

1. Etude des stratégies optimales pour la négociation entre services sous-traités.

2. En utilisant une formulation de programmation en nombres entiers, les contraintes
du critère de la dominance stochastique d’ordre 1 peuvent être spécifiées pour
sélectionner le service qui offre la meilleure stratégie de re-négiociation.

3. La formulation améliore le meilleur opérateur pour la QoS dans les orchestrations
monotones où la sélection optimale pour l’amélioration de services concurrentiels
ne détériore pas la QoS globale.

4. Ceci est démontré dans l’exemple du GarageOnline, où une meilleure performance
globale de l’orchestration est produite par optimum, comparé à la sélection aléa-
toire de services.

5. Logiciel : La comparaison des services en utilisant le critère de la dominance
stochastique d’ordre 1 a été mise en oeuvre sous MATLAB et est représentée
sous forme abrégée dans l’annexe 11.5.

Publication

Ce document a été soumis à la Conférence internationale de l’IEEE sur les services Web
(ICWS) (2012) [KBJ12].

33

1.5. Organisation de la thèse Résumé en Français

34

Part II

Flexible Quality of Service
Management of Web Services

Orchestrations.

35

Chapter 2

Introduction

The internet has had far reaching effects in making our lives easier. From online bank-
ing, eshopping, travel bookings to social networks - the number of applications have
increased at a rapid pace. A principal catalyst in this has been the transformational
software involved. Web Services are the industry focus to develop extensible, self-
contained, modular applications that can be invoked over the internet. An example is
a Calender or a Word Processor service hosted on a remote server that can be accessed
over the internet. Web services expose the functionality of an information system while
allowing easy integration due to the use of standard web protocols. The use of stan-
dard protocols reduces heterogeneity and promotes easy application integration across
organizational boundaries.

A chief advantage is the paradigm of Service Oriented Architectures, that allows
combining these individual web services into more complex interactions. Composite
services can be created through the interaction of functionalities rendered by individual
web services. Web Services Orchestrations provide a centralized control of the interac-
tion, management and coordination involved in such composite services. An instance
is a travel booking service that controls information flow between airline booking, hotel
booking and rental car services. Service compositions may themselves become services,
following a model of recursive service composition.

The control flow in such web services orchestrations is dependent on both data
received from invoked services as well as non-functional properties. Hence, accurate
description of Quality of Service (QoS) metrics is crucial in the analysis of such ar-
chitectures. The QoS of a service can have many dimensions including response time,
security of information transmitted, invocation cost, reputation of the service and so
on. QoS might be a dominant factor over choosing alternative services offering similar
functionalities.

To ensure efficient and reliable interactions between composed services, the notion of
contractual obligations such as Service Level Agreements come into prominence. If one
of the invoked services does not meet its QoS requirements, it can have deleterious effect
on the possibly superior performance of sister services. Hence, it is critical for service
providers to model, study and monitor non-functional properties of offered services.
Once this is done, it is the imperative of the orchestration to optimally choose services
that will maximize the QoS experienced by the client.

In this thesis, we study various aspects of reliable QoS management in web services.
Some aspects considered are:

1. Accurate modeling of QoS - While considerable efforts have been given both by
academia and industry to describe semantically accurate models of web services
compositions, handling of QoS remains orthogonal to orchestration specifications.
This cannot be done in case of orchestration flow dependent on QoS metrics such

37

2.1. Web Services Technologies Introduction

as latency or security levels. Models are needed to integrate clearly the QoS
aspects within orchestrations and how they influence control flow.

2. Improved Contractual Agreements - The QoS of the orchestration is dependent on
the QoS of the services that it calls. Hence, it is important to contractually oblige
services called to meet requirements in order for the orchestration to satisfy its
own contracts. While some services have well studied QoS, others may be depen-
dent on observations or should be accepted as-is. The QoS of the called services
and the orchestration needs to be monitored at runtime, to ensure that they meet
the desired levels, and have alternatives in case of deteriorating performance. A
notion to consider here is non-monotonicity in behavior, when the improvement
of one service may mean deteriorating overall behavior. End-to-end contracts can
be based on simulation or analytic techniques. We make use of Monte-Carlo based
techniques that may be slow and display high variance. Alternative techniques
to improve the simulation process are needed.

3. Optimization tools - Once a set of services and their contractual descriptions are
obtained, an orchestration can select from alternative services offering similar
functionalities with varying QoS performance. Tradeoffs can be made to opti-
mize the net latency or cost incurred by the orchestration. Negotiations may
be involved to provide “better” contractual obligations to enhance a particular
service’s invocation within an orchestration. A further angle to be examined is
providing better mathematical tools for orchestration designers. Optimization
as a service can improve considerably the agility of web based management of
complex workflows for logistics and operations research.

4. Handling multiple aspects - In product-line settings, multiple instances of compos-
ite services may be developed. There is added variability in the choice of services
available along with QoS behavior. Techniques to analyze families of such services
are needed. In transactional services, function and QoS interact tightly - leading
to cases where they cannot be separated. Techniques are needed to handle them
jointly, with functional specifications including QoS management.

Chapter Outline: This chapter is intended to serve as an introductory tutorial for
web services, compositions and QoS management. An overview of web services and
associated technologies (XML, UDDI, WSDL and SOAP) is presented in Section 2.1.
Various aspects of web services’ compositions are dealt with in Section 2.2 such as work-
flow models and formal representations of orchestrations. Two languages for specifying
orchestrations: BPEL and Orc, are studied in Section 2.3. Section 2.4 studies in detail
Quality of Service in web services, including QoS composition, contractual agreements,
monitoring and optimization. This chapter ends with an outline of the rest of the thesis
by giving the principal contributions in Section 2.5.

2.1 Web Services Technologies

This section briefly introduces web services and some of the technologies that surround
them. A brief description of WSDL, UDDI, SOAP and REST are provided. A curious
reader is referred to [ACKM04, TP02] for a comprehensive description of associated
architecture.

As provided by the World Wide Web Consortium (W3C), a Web Service may be
defined as “a software application identified by a URI, whose interfaces and bindings
are capable of being defined, described and discovered as XML artifacts. A web service
supports direct interactions with other software agents using XML-based messages ex-
changed via Internet-based protocols” [W3c04b]. In general, web services are stateless

38

Introduction 2.1. Web Services Technologies

and can be invoked a number of times by clients without the need to share specific pro-
tocols. Each request is, in general, treated separately with differing quality attributes
in responses.

While a web service is often seen as an application available to other such appli-
cation over the web, this might lead to ambiguity over technologies available with a
uniform resource locater (URL) or a script or as a application programming interface
(API). For web services to be effectively used by multiple parties over the internet, the
technologies must be platform and language agnostic. The benefits as compared to
today’s applications include [LPM+09]:

Easy and fast deployment : Enterprises using the Web Service model can provide new
services and products without the investment and delays a traditional enterprise
requires. They may develop new web services by reusing and/or combining ex-
isting ones.

Interoperability : Any web service can interact with other web services. This is achieved
through a XML-based interface definition language and a protocol of collabora-
tion and negotiation. This means that developers do not need to change their
development environments in order to produce or consume web services.

Run-Time Integration: Traditional system architectures incorporate relatively brittle
coupling between various components in the system. These systems are sensitive
to change. A change in the output of one of the subsystems or a new implementa-
tion of a subsystem will often cause old, statically bound collaborations to break
down. Web Services make it possible for significant decoupling and just-in-time
integration of new applications and services, as they are based on the notion of
building applications by discovering and orchestrating network-available services.

Reduced complexity : All components are services. What is important is the type of
behavior a service provides, not how it is implemented. This reduces system
complexity, as application designers do not have to worry about implementation
details of the services they are invoking.

Web services architectures are based on three parties - the service requester, the
service provider and a service registry. For such a model, there is a requirement to
describe available services, provide a directory server and allow communication between
the parties. In general, XML is used to tag the data, SOAP to transfer the data, WSDL
to describe the web service and UDDI to list the available services as shown in Fig. 2.1.
We further discuss some of these technologies.

2.1.1 XML: Extensible mark-up language

A common syntax that is used for all web services standards is provided by XML
(Extensible mark-up language). In the context of web services, several protocols may
be used: TCP/IP, HTTP or mail transfer protocols. The mechanism should be able to
work with a variety of transport protocols. XML is a standard specification for defining
the content of a computer message. If a software application writes its output in XML
and another application is capable of interpreting XML, then it can read the output
and act on it. XML allows specifying semi-structured data and querying them.

2.1.2 UDDI: Universal Description, Discovery and Integration

The Universal Description, Discovery and Integration (UDDI) [Oas04] is a group of
web-based registries that expose information about a business or other entity. UDDI
provides this extension to the basic Web Services technologies by allowing the means to

39

2.1. Web Services Technologies Introduction

Stub

middleware
SOAP−based

Client Application

Service Requestor

WSDL of Service
Provider

WSDL
compiler
(client)

WSDL
compiler
(server)

Service Descriptions

SOAP−based middleware

UDDI
Registry

SOAP messages
to look for services

SOAP messages to
publish service descriptions

SOAP Messages
exchanged on top of
HTTP, SMTP, etc.

middleware
SOAP−based

Skeleton

Service Application

Service Provider

Figure 2.1: Clients invoke web services be exchanging SOAP messages. WSDL speci-
fications are compiled into stubs and skeletons. Providers advertise their services on a
UDDI registry that can be queried by the clients [ACKM04].

create a registry of web services. This takes web services into the realm of companies
doing business with each other over the Internet. The UDDI specification enables
companies to quickly, easily, and dynamically find and transact with one another. The
UDDI provides an API that allows web service invocation itself. It may be used to:

• Find web services implementations that are based on a common abstract interface
definition.

• Query web services providers that are classified according to a known classification
scheme.

• Issue a search for services based on a general keyword.

• Cache information about a web service and then update at run-time.

The specifications for UDDI allow the creation and use of a registry containing
information about businesses and the services they offer. The information is organized
as follows [Mus04].

1. Business entity - A business entity represents information about a company. Each
business entity contains a unique identifier, a short description of the company,
some basic contact information, a list of categories and identifiers that describe
the company, and a URL pointing to more information about the company.

40

Introduction 2.1. Web Services Technologies

2. Business service - Associated with the business entity is a list of business services
offered by the business entity. Each business service entry contains a description
of the service, a list of categories that describe the service, and a list of pointers
to references and information related to the service.

3. Specification pointers - Associated with each business service entry is a list of
binding templates that point to specifications and other technical information
about the service. For example, a binding template might point to a URL that
supplies information on how to invoke the service. It is also possible to use
these pointers to access the service-level agreements that describe the contractual
nature of the usage of the service.

4. Service types - A service type is defined by a tModel. Multiple companies can
offer the same type of service, as defined by the tModel. A tModel specifies
information such as the tModel name, the name of the organization that published
the tModel, a list of categories that describe the service type, and pointers to
technical specifications for the service type such as interface definitions, message
formats, message protocols, and security protocols.

It is possible to use UDDI to create private registries that reside within private networks,
offering functionality to a specific set of users.

2.1.3 WSDL: Web Services Description Language

Web Services Description Language (WSDL) [W3c01] provides a XML grammar for de-
scribing network services as endpoints capable of exchanging messages. WSDL service
definitions provide documentation for distributed systems and describe web services
interfaces. In addition, as services can be made available with different protocols, this
information is contained in the WSDL service description.

A WSDL document defines services as collections of network endpoints, or ports.
In WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. The following example shows
the WSDL definition of a simple service providing stock quotes [W3c01]. The service
supports a single operation called GetLastTradePrice , which is deployed using the
SOAP protocol over HTTP. The request takes a ticker symbol of type string, and
returns the price as a float.

Types - a container for data type definitions using some type system.

<types>
<schema targetNamespace="http://example.com/stockquo te.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="TradePrice">

<complexType>
<element name="price" type="float"/>

</complexType> </element> </schema>
</types>

Message - an abstract definition of the data being communicated.

<message name="GetLastTradePriceInput">
<part name="body" element="xsd1:TradePriceRequest"/> < /message>

<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePrice"/> </messag e>

Operation - an abstract description of an action supported by the service.

41

2.1. Web Services Technologies Introduction

Port Type - an abstract set of operations supported by one or more endpoints.

<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOutput"/>

</operation> </portType>

Binding - a concrete protocol and data format specification for a particular port type.

<binding name="StockQuoteSoapBinding" type="tns:Stock QuotePortType">
<operation name="GetLastTradePrice">

<soap:operation soapAction="http://example.com/GetLa stTradePrice"/>
<input> <soap:body use="literal"/> </input>
<output> <soap:body use="literal"/> </output>

</operation>
</binding>

Port - a single endpoint defined as a combination of a binding and a network address.

Service - a collection of related endpoints.

<service name="StockQuoteService">
<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteBi nding">
<soap:address location="http://example.com/stockquot e"/>

</port> </service>

An advantage of WSDL is that it is a general purpose standard that can be used in a
variety of environments. Established standards can be wrapped by WSDL interfaces to
describe protocols and bindings. WSDL provides a function-centric description of web
services, which has a drawback of being static. However, the order of messages or flow
of data cannot be handled. Languages such as BPEL [OAS07] are needed along with
WSDL to specify the order of message passing. WSCI (Web Services Choreography
Interface) [W3c02] complements WSDL and can support such message passing. WSDL
is also limited by specifying only syntactical aspects or services. Semantic languages
such as OWL-S [W3c04a], try to combine these functionalities for automatic discovery,
binding and composition of services.

2.1.4 SOAP

SOAP [W3c00] is a standard for sending messages and making remote procedure calls
over the Internet. It defines the organization of information in XML in a typed and
structured manner to allow exchange between peers. It specifies the following:

• An one-way message format for packaging information into a XML document.

• Conventions to define how clients can invoke remote procedures by sending a
SOAP message and how services can reply by sending back a SOAP message.

• Rules to process and understand SOAP messages in XML format.

• A description of how SOAP messages can be transported over HTTP, SMTP and
other protocols.

SOAP exchange information using messages encapsulated in an envelope.The en-
velope contains two parts: a header and a body. The core of the information that

42

Introduction 2.2. Web Service Composition

the sender wants to transmit to the receiver is provided in the body. Additional in-
formation necessary for intermediate processing of services (security, adding new mes-
sages, etc.) are located on the header. An example [W3c00] is given below where a
GetLastTradePrice SOAP request is sent to a StockQuote service with a HTTP
request.

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/env elope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/ soap/encoding/">

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

An interested reader is referred to [W3c00] for further details on implementation,
handling and specification of SOAP requests.

2.1.5 REST: Representational State Transfer

Representational State Transfer (REST) [Fie00] architectural style provides an alter-
native abstraction for publishing information and giving remote access to applications.
REST-based or Restful web services are collections of web resources identified by uni-
form resource identifiers (URIs). A common implementation on HTTP/HTTPS pro-
vides four methods: GET, PUT, POST, and DELETE.
When comparing RESTful to SOAP/WSDL based services, the differences include:

• Scalability : In REST all interactions are stateless - each operation stands for itself.
The representations of the resources contain all necessary information. This fact
improves the applications’ scalability. SOAP is also, in general, stateless; however,
higher level standards exist to create stateful web services via SOAP.

• Services Composition: Strictly speaking, there are no REST services, only re-
sources referred to by the URL. However, the interaction primitives (GET, POST,
PUT, DELETE) stemming from REST can be used from within a BPEL process
as new service invocation [Pau09].

• Address Space: REST uses a global address space with URLs, over which each
resource can be addressed. SOAP messages are always addressed to an endpoint,
which is implemented by a SOAP router.

• Interface: REST offers with the GET, POST, PUT, DELETEmethods, a generic
interface. In SOAP all methods for each application must be defined by the user.

2.2 Web Service Composition

A web service that is implemented by combining the functionality offered by many
individual web services are called composite web services and the process of combin-
ing them is called web service composition. Applications are created by combining

43

2.2. Web Service Composition Introduction

the basic building blocks provided by other services. Service compositions may them-
selves become services, following a model of recursive service composition. Surveys on
techniques and tools available for composite service architecture include [DS05, HS05].

This section provides an overview of Workflow management, orchestrations, chore-
ographies and formal methods to represent them.

2.2.1 Workflow Management

Business Process refers to a collection of tasks performed in a coordinated manner
between users and software applications to complete a task. A formal and executable
representation of business processes may be called workflows. A workflow management
system provides a software tool to design, execute and analyze workflows.

Workflow management systems [GHS95] aim to automate administrative processing
of documents such as travel orders, financial statements and project progress reports.
These systems also allow integration of heterogeneous and distributed participants,
which is a requirement for large corporations. They can handle control and data flow
between diverse parties and applications, which allow integration in most business sce-
narios.

Workflow management systems tend to be expressed in high level graphical lan-
guages rather than programming versions. This is to enable people with diverse skill
sets to model workflows with considerable ease. Standards developed such as Busi-
ness Process Model and Notation (BPMN) [OMG11] have received implementation in
commercial workflow systems such as IBM ILOG Jviews [IBM11] and Oracle Business
Process Management Suite [Ora11]. These have been extended to web-based workflow
management systems such as Bonitasoft [Bon11], Signavio [Sig11] and Oryx [DOW08]
business process editors.

Workflows are typically specified by a directed graph that defines the order of exe-
cution among nodes in the process. Nodes can be of the following types [ACKM04]:

1. Work node - Represents a work task to be performed by a user or an application.

2. Routing node - Defines the order in which the execution can be performed. This
can include conditional, parallel and optional control flows.

3. Start and End node - Denote the beginning and completion of the workflow.

By combining these nodes, developers can specify the amount and order in which the
tasks are executed. Contingency plans for failure may also be developed. Using several
instances of the same workflow, several concurrent invocations of a similar workflow is
also possible.

Examples of large workflows making use of web services’ based framework for sup-
port include eGovernment [BRMO01], healthcare [LNS06] [AD05], logistics [FH05] and
communication [AB06b] [GP07].

2.2.2 Orchestrations

Service-Oriented Architecture (SOA) is a paradigm with services modeled as compu-
tational entities that are autonomous and heterogeneous (e.g. running on different
platforms or owned by different organizations). Applications both within and across
organizational boundaries are integrated, avoiding difficulties due to different platforms,
heterogeneous programming languages and so on. Exploiting this kind of ubiquitous
network fabric should result in an increased productivity and in a reduction of costs in
business-to-business (B2B) processes.

The terms orchestration and choreography describe two aspects of creating business
processes from composite web services. As shown in Fig 2.2, an Orchestration always

44

Introduction 2.2. Web Service Composition

represents control from one party’s perspective. In most cases, it is centralized in
handling of control flow which may be dependent on data received from other parties.
This differs from choreography, which is more collaborative and allows each involved
party to describe its part in the interaction. Choreography tracks the message sequences
among multiple parties and sources rather than a specific business process that a single
party executes.

Figure 2.2: An Orchestration refers to an executable process while a Choreography
tracks the message sequences between parties and sources [Pel03].

An orchestration describes how web services can interact with each other, in a
coherent manner. Particularly, it specifies the order in which services are invoked and
the conditions under which a certain service may or may not be invoked. Orchestrations
in the web services context must handle multiple dimensions of activities including the
language used to specify compositions, data, transaction and exception handling. Other
techniques proposed to look at orchestrations include those using decentralized control
[CCMN04] and those based on sessions [FN08].

2.2.3 Formal Models for Service Orchestrations

Orchestrations of web services specify the order and conditions under which individual
web services are invoked in a coherent composition. While there are many languages
such as BPEL [OAS07], COWS [LPT07], Orc [KQCM09] and YAWL [tHvdAAR10] for
representing workflows, they rely on the following models of orchestration:

2.2.3.1 Statecharts

Statecharts [Har87] are a formalism based on state machine that specify the activities
performed when entering, exiting and while within a state. Conditional transitions
firing dependent on data and control flow are also incorporated. Composite states, par-
allel actions and synchronization are additional complex actions present in statecharts.
Statecharts possess a formal semantics for analyzing composite service specifications are
are related to languages such as unified modeling language (UML) [DH01]. Statecharts
offer most of the control-flow constructs and dependencies found in existing process
modeling languages. For these reasons, statecharts have been used in the AgFlow ar-
chitecture in [ZBN+04] to describe QoS dependent compositions. Associated formalisms
to statecharts include Message Sequence Charts [HT03] for communication behavior in
real-time systems.

2.2.3.2 Petri Nets

Petri nets [Mur89, Rei92] were introduced in as a framework to model concurrent
systems. They are capable of modeling aspects such as concurrency, nondeterminism

45

2.2. Web Service Composition Introduction

and asynchronous behavior that can be applied to web services. A Petri net is a tuple
(P, T, F,M0) where:

• P is a finite set of places, denoted by circles.

• T is a finite set of transitions, denoted by rectangles. Note that P ∩ T =

• F is a flow relation such that F ⊆ (P × T) ∪ (T × P).

• M0 the initial marking, is a function M0 : P → N where N is the set of natural
numbers including 0.

A transition t ∈ T is enabled if each input place p ∈ P has tokens in the initial marking
M0. Firing an enabled transition T , removes tokens from each input place p and adds
tokens at each output place p′. Petri nets have behavioral properties that may be
analyzed, such as:

Reachability - A markingM is said to be reachable from M0 if there exists a sequence
of firings of transitions σ = T1...TK that transforms M0 to M . The set of all
reachable markings from M0 is written as R(M0).

Boundness - A Petri net with initial markingM0 is said to be k-bounded, if M(p) ≤ k
for all p ∈ P and M ∈ R(M0). If a net is 1-bounded is said to be safe.

Coverability - A marking M is said to be coverable from M0 if there exists a marking
M ′ ∈ R(M0) such that M(p) ≤M ′(p) for all places p in the net.

Liveness - A Petri net is said to be live if it is deadlock-free. A transition t ∈ T is
said to be: Dead (L0-live) if t can never be fired; L1-live if t can be fired at least
once in some firing sequence; L2-live if given any k ∈ N, then t can be fired at
least k-times in some firing sequence; L3-live if t appears infinitely often in some
firing sequence; Live (L4-live) if t is L1-live for every marking M ∈ R(M0).

Unfolding and analysis of coverability trees are other techniques to study properties of
Petri nets.

As the research on petri nets has progressed, further enhancements have been pro-
posed to model more complex systems, such as:

1. Timed Petri Nets [Wan98] - Obtained from Petri nets by associating a firing time
to each transition of the net.

2. Stochastic Petri Nets [Mar89, BK02] - Uses probability distributions to model the
firing times of transitions.

3. Coloured Petri Nets [JMW07, KCJ98] - Allows colours to be associated with
tokens to distinguish them for complex systems.

Petri nets tend to have many advantages to model workflows for web services includ-
ing partial order semantics to study unfoldings and complex constraints such as timed
transitions. However, they cannot handle data dependent aspects of web services and
may require coloured / timed Petri nets to model complex orchestrations.

Alternatives suggested include Workflow nets [vdABL08] used to model generic
workflows with unique input and output places. In YAWL [tHvdAAR10], Petri nets
are extended to support modeling standard workflow patterns [vdAtHKB02] which tra-
ditional Petri nets are unable to express. It supports multiple instantiations, provides
built-in synchronization and cancellation capabilities, constructs typically found in or-
chestrations.

46

Introduction 2.2. Web Service Composition

2.2.3.3 π-calculus

Process algebras are a popular means to describe and reason about process behaviors.
Their underlying semantic foundation is based on labeled transition systems. The
most well-known process algebras are Milner’s Calculus of Communicating Systems
(CCS [Mil89]) and Hoare’s Calculus of Sequential Processes (CSP [Hoa04]). Like Petri
nets, process algebras are precise and well-studied formalisms that allow the automatic
verification of certain properties of their behaviors. Likewise, they provide a rich theory
on bisimulation analysis, i.e. one can establish whether two processes have equivalent
behaviors. Such analyses are useful to establish whether a service can substitute another
service in a composition or to verify the redundancy of a service.

π-calculus [MPW92] is a process algebra that develops a formal model for describ-
ing processes. The rationale behind using π-calculus to describe processes lies in the
advantages that a formal model with a rich theory provides for the automatic verifica-
tion of properties expressed in such a model. For an orchestration, π-calculus provides
constructs to call services sequentially, concurrently or dependent on conditional ex-
ecutions. For example, consider invocation of two web services A and B. Notations
such as A.B imply B is called after invocation of A; A|B implies they are invoked in
parallel; A + B imply either of them are non-deterministically invoked; while [var
= value] A denotes a conditional invocation of A dependent on var = value.

2.2.3.4 Composition Models

When a single service is unable to meet all the functional requirements of a client,
generating a composite service is a possible option. The composition is concerned with
synthesizing a specification of how to coordinate the individual services to fulfill the
client request. Studies done to automatically synthesize such composite services include
[HS05]:

OWL-S [W3c04a]: A key contribution of OWL-S is the modeling of how web services
interact with the “real world”. The basic building block of the OWL-S model is
the notion of atomic and composite processes. OWL-S processes are specified to
have inputs, outputs, pre-conditions, and conditional effects.

Roman[BCG+03]: Uses a abstract notion of atomic service in a finite-state automata
framework for describing process flows. To specify the internal process flow of
a web service, transition systems are used where each branch corresponds to a
permitted sequencing of executions.

Message Based [BFHS03]: While the OWL-S and Roman models focus on what a
service or composition does, neither completely addresses the issue of how the
services in composition interact with each other. The notion of conversations or
message passing is used in this model in a peer-to-peer framework.

Related formalisms to the models described above include FLOWS and COLOMBO.
FLOWS [BGHM04] atomic processes are based on OWL-S atomic processes with in-
puts, outputs, pre-conditions and conditional affects. The flow of information between
services can occur in two ways: (a) via message passing and (b) via shared access
to the same database. Messages have types, which indicate the kind of information
that they can transmit. COLOMBO [BCG+05] extends on some of the properties of
FLOWS with an automata-based model of the internal behavior of web services, where
the individual transitions correspond to atomic processes, message writes, and message
reads. Colombo also includes a “local store” for each web service, used manage the data
read/written with messages.

47

2.3. Languages to Specify Orchestrations Introduction

In [CH09], the notion of artifacts are developed with a data-centric rather than
a control flow view. Such a view of composite services draws inspiration from the
database community. Artifacts combine both data aspects and process aspects into
a holistic unit, and serve as the basic building blocks from which models of business
operations and processes are constructed. Artifacts are business-relevant objects that
are created, evolved, and archived as they pass through a business.

2.3 Languages to Specify Orchestrations

In this section, we describe two languages used to specify orchestrations: the industry
standard BPEL and the academic language Orc. Other languages like Yet Another
Workflow Language [tHvdAAR10], generic web service combinators [CD99] and Calcu-
lus for Orchestration of Web Services [LPT07] exist and an inquisitive reader is referred
to their references.

2.3.1 BPEL: Business Process Execution language

BPEL [OAS07] has become the de-facto standard language for describing compositions
of web services. Others such as BPML [Ark02] and WSFL [Ley01] are less common
alternatives. BPEL can be used for specification of both orchestrations and choreogra-
phies. They can define the sequence of messages sent / received by services as well
as the ordering constraints on the send / receive actions. BPEL make use of a XML
structure to specify the roles that take part in message passing, port types and message
routing for orchestration specifications.

BPEL supports many structured activities that can have the following constraints
among them:

1. Sequence - Activities that are executed one after the other in the order they are
listed.

2. Switch - A set of activities that are specified with conditions. If the first activi-
ties’ condition is true, it is executed while others are discarded. Using an otherwise
activity, flow when none of the conditions are satisfied may be executed.

3. Pick - When one of the set of available processes are finished, the pick is consid-
ered complete. This can include the first responding service or a timeout.

4. While - Repeatedly executes while a condition is true.

5. Flow - Parallel execution of activities.

An orchestration engine can then execute this BPEL grammar, coordinating activ-
ities and compensating the overall process when errors occur. As shown in Fig. 2.3 the
BPEL specification supports management of the overall process flow as well as activities
that involve interactions with services external to the process itself.

An additional specification language proposed in the Web Services Choreography
Interface [W3c02]. WSCI defines the overall choreography or message exchange between
web services. WSCI describes only the observable behavior between web services, it does
not address the definition of executable business processes as BPEL does. Extensions
of XML based handling of data flow within choreographies have been proposed in
[HB09, HB10], where active documents are created and modified by distributed peers.

48

Introduction 2.3. Languages to Specify Orchestrations

Figure 2.3: A BPEL process flow [Pel03].

2.3.2 Orc

While BPEL has been incorporated industrially, the informal semantics results in parts
of the language having different possible interpretations, which is quite undesirable for
modeling orchestrations. A formal model for specifying and analyzing behaviors of web
service orchestrations is essential and highly useful. Theoretical studies to formalize and
study mathematically web services’ behavior include [Rei08, BKM07]. BPEL has also
received some attentional on operational semantics [Fah05] using Petri net [HSS05] and
π-calculus [LM05] models. The translation of BPEL into workflow patterns in [BP06]
provides interesting analysis such as comparison with YAWL.

Orc [Orc11, KQCM09, Mis10] is useful for modeling distributed computations but
primarily targeted for modeling orchestration of web services over the internet. The
language is based on a clean, mathematical framework and has a sound formal seman-
tics. The simplicity of its syntax, yet its high expressibility makes it interesting to
specify orchestrations. Orc implements the tree programming for orchestrations where
in the initial query can be forwarded in parallel branches or cascaded in sequence to
carry out the required task. The results from the sub-queries can be collected and
forwarded to other sub-queries and finally returned to the initial caller. This paradigm
nicely corresponds to the concept of an orchestration.

The Orc calculus is based on the execution of Orc expressions. Expressions are built
up recursively using Orc’s concurrent combinators. When executed, an Orc expression
calls services and may publish values. Orc expressions use sites to refer to external
services. A site may be implemented on the client’s machine or a remote machine. A
site may provide any service or be a proxy for interaction with an user.

2.3.2.1 Sites

The simplest Orc expression is a site call F (p), where F is a site name and p is a list
of parameters, which are values or variables. The execution of a site call invokes the
service associated with F , sending it the parameters p. If the site responds, the call
publishes that response. A site may give at most one response to a call. A site call
may explicitly report that it will never respond, in which case we say that the call has
halted. Some site calls may neither respond nor halt. Some examples of site calls are:

• Println("hello world") prints hello world to the console and publishes a
signal .

• add(3,4) will add the numbers 3 and 4.

• Random(10) publishes a random integer from 0 to 9, uniformly distributed.

49

2.3. Languages to Specify Orchestrations Introduction

• Prompt("Username:") requests some input from the user, then publishes the
user’s response as a string. If the user never responds, the site waits forever.

• Browse("http:www.google.com") opens a browser window pointing to the
web page and publishes a signal .

• Rwait(420) waits for 420 milliseconds, then publishes a signal .

Orc uses the expressions signal and stop . The expression signal just publishes
a signal when executed and is equivalent to if(true) . The expression stop halts
when executed and is equivalent to if(false) .

Though the Orc calculus itself contains no sites, there are a few fundamental sites
which are so essential to writing useful computations. The site let is the identity
site; when passed one argument, it publishes that argument, and when passed multiple
arguments it publishes them as a tuple. The site if responds with a signal if its
argument is true, and otherwise halts.

2.3.2.2 Combinators

Orc has four combinators to compose expressions: the parallel combinator | , the se-
quential combinator >x> , the pruning combinator <x< and the otherwise combinator
; . When composing expressions, the >x> combinator has the highest precedence,
followed by | , then <x< , and finally ; with the lowest precedence.

1. Parallel Combinator: In F | G, expressions F and G execute independently.
It initiates two independent computations; up to two values will be published
depending on the number of responses received. The sites called by F and G are
the ones called by F | G and any value published by either F or G is published
by F | G. There is no direct communication or interaction between these two
computations. The parallel combinator is commutative and associative.

2. Sequential Combinator: In F >x> G, expression F is evaluated. Each value
published by F initiates a separate execution of G wherein x is bound to that
published value. Execution of F continues in parallel with these executions of G.
If F publishes no values, no executions of G occur. The values published by the
executions of G are the values published by F >x> G. The values published by F
are consumed. The sequential combinator is right associative: F >x> G >y> H
is F >x> (G >y> H). When x is not used in G, one may use the short-hand
F ≫G for F >x> G.

3. Pruning Combinator: In F <x< G, both F and G execute in parallel. Execu-
tion of parts of F which do not depend on x can proceed, but site calls in F for
which x is a parameter are suspended until x is bound to a value. If G publishes
a value, then x is assigned that value; the execution of G is terminated and the
suspended parts of F can proceed. This is the only mechanism in Orc to block
or terminate parts of a computation. The pruning combinator is left associative:
F <x< G <y< H is (F <x< G) <y< H. When x is not used in F , one may use
the short-hand F ≪G for F <x< G.

4. Otherwise Combinator: The execution of F ; G starts with F . If F publishes
no values and then halts, then G executes. We say that F halts if all of the
following conditions hold:

• All site calls in the execution of F have either responded or halted.

• F will never call any more sites.

50

Introduction 2.3. Languages to Specify Orchestrations

• F will never publish any more values.

The otherwise combinator is associative: (F ; G) ; H is the same as F ; (G ; H).

One of the most common concurrent idioms is a fork-join: evaluate two expressions
F and G concurrently and wait for a result from both before proceeding. This is
easy to express in Orc as (F,G) and is equivalent to ((x, y) <x< F) <y< G. This
implementation takes advantage of the fact that a tuple is constructed by a site call,
which must wait for all of its arguments to become available.

2.3.2.3 Values, Definitions and Time

An Orc expression may be preceded by one or more declarations. Declarations are used
to bind values to be used in that expression (or scope).

The declaration val x = G, followed by expression F , executes G, and binds its first
publication to x, to be used in F . This is actually just a different way of writing the
expression F <x< G. Thus, val shares all of the behavior of the pruning combinator.
In fact, the val form is used much more often than the <x< form, since it is usually
easier to read.

The declaration def E(x) = F defines a function named E whose formal parameter
list is x and body is expression F . A call E(p) is evaluated by replacing the formal
parameters x by the actual parameters p in the body F . Unlike a site call, a function
call does not suspend if one of its arguments is a variable with no value. A function call
may publish more than one value; it publishes every value published by the execution
of F . Definitions may be recursive.

Orc is designed to communicate with the external world, and one of the most
important characteristics of the external world is the passage of time. Orc implicitly
accounts for the passage of time by interacting with external services that may take
time to respond. However, Orc can also explicitly wait for a specific amount of time,
using the special site Rwait . The call Rwait (t), where t is an integer, responds with
a signal exactly t milliseconds later.

This allows us to define interesting aspects of concurrent execution of sites:

Recursion: Expression definitions in Orc allows us to introduce recursion in pro-
grams adding significant expressibility. The expression name can appear in the
body of the expression itself, recursively calling the expression. The following ex-
ample defines a metronome, which publishes a signal once every t milliseconds,
indefinitely.
def metronome (t) = signal | Rwait (t) ≫ metronome (t)

Timeout: The ability to execute an expression for at most a specified amount of
time, is an essential ingredient of fault-tolerant and distributed programming.
Orc accomplishes this using the <x< and the Rwait site. The following program
runs F for at most one second, publishing its result if available and the value 0
otherwise.
x <x< (F | Rwait (1000) ≫ 0)

Other aspects such as data types (tuples , records , lists), concurrency han-
dling (semaphores , channels) and constructs to create new sites (class) are also
made available for users of Orc. Details in 1.

1http://orc.csres.utexas.edu/documentation/html/refm anual/refmanual.html#N14CDB

51

http://orc.csres.utexas.edu/documentation/html/refmanual/refmanual.html#N14CDB

2.3. Languages to Specify Orchestrations Introduction

2.3.2.4 Semantics

The abstract syntax of Orc is given in Table 2.1. The invocation of an orchestration
occurs by calling the unique main Expression of an Orc program. It may contain
statements on Definitions, Values and Parameters passed to the orchestration. The
evaluation could return zero or multiple results.

D ∈ Definition ::= def y(x̄) = f
f, g, h ∈ Expression ::= p | p(p̄) | ?k |

f | g | f >x> g | f <x< g | f ; g | D f
v ∈ Orc Value ::= V | D
w ∈ Response ::= V | D | stop
p ∈ Parameter ::= V | D | stop | x
n ∈ Non-publication Label ::= Vk(v̄) | k?w | τ | ⊥
l ∈ Label ::= !v | n

Table 2.1: Abstract syntax of the Orc Calculus.

The internal semantics of Orc is presented in Table 2.2. The semantics is op-
erational, asynchronous, and based on labeled transition systems. As is common in
small-step operational semantics, the syntax of Orc must be extended to represent
intermediate states. ?k is used to denote an instance of a site call that has not yet
returned a value, where k is a unique handle that identifies the call instance. A pub-
lication event, !v, publishes a value v from an expression and τ denotes an internal
event.

A site call involves three steps: invocation of the site, response from the site, and
publication of the result. The Rule SiteCall specifies that a site call V (v̄), where v̄
is a value, transitions to ?k with event V (v̄). The handle k connects a site call to a
site return. A site call occurs only when its parameters are values; in V (x), where x
is a variable, the call is blocked until x is defined. In SiteRet a pending site call ?k
receives a result w from the environment and transitions to the expression w. There
is no assumption that all site calls eventually respond. The Publish rule generates a
publication event !v from its argument value v.

The rules DefDeclare and DefCall are evaluated using call-by-name in the
DefDeclare rule. A single global set of definitions D is assumed with parameters x̄
in DefCall producing an output g.

The Rules for the combinators are as described earlier. When f publishes a value

(f
!v
→ f ′), rule SeqV creates a new instance of the right side; [v/x]g, the expression in

which all free occurrences of x in g are replaced by v. The publication !v is hidden,
and the entire expression performs a τ action. Note that f and all instances of g are
executed in parallel. Because the semantics is asynchronous, there is no guarantee that
the values published by the first instance will precede the values of later instances.
Instead, the values produced by all instances of g are interleaved arbitrarily.

Pruning is similar to parallel composition, except when g publishes a value v. In
this case, rule PruneV terminates g and x is bound to v in f . One subtlety of these
rules is that f may contain both active and blocked subprocesses: any site call that
uses x is blocked until g publishes. In case of Rule OrtherV, if f publishes a value,
the expression publishes the resulting evaluation f ′. However, if the site f halts (⊥),
we execute: stop ; g.

Associated studies on orc include the Tree Semantics [HMM04], Trace Semantics
[CM], Event Structure Semantics [RKB+08], Timed semantics [WKCM08] and Secure
Information Flow [Thy09]. The translation of Orc into workflow patterns [CPM06a],
allows comparison with other languages such as YAWL and BPEL.

52

Introduction 2.3. Languages to Specify Orchestrations

SiteCall
k fresh v̄ closed

V (v̄)
Vk(v̄)
→ ?k

SiteReturn ?k
k?w
→ w

Publish
v closed

v
!v
→ stop

DefDeclare
D is def y(. . .) = . . .

D f
τ
→ [D/y] f

DefCall
D is def y(x̄) = g

D(p̄)
τ
→ [D/y] [p̄/x̄] g

Par
f

l
→ f ′

f | g
l
→ f ′ | g

SeqN
f

n
→ f ′

f >x> g
n
→ f ′ >x> g

SeqV
f

!v
→ f ′

f >x> g
τ
→ f ′ >x> g | [v/x] g

PruneLeft
f

l
→ f ′

f <x< g
l
→ f ′ <x< g

PruneN
g

n
→ g′

f <x< g
n
→ f <x< g′

PruneV
g

!v
→ g′

f <x< g
τ
→ [v/x] f

OtherN
f

n
→ f ′

f ; g
n
→ f ′ ; g

OtherV
f

!v
→ f ′

f ; g
!v
→ f ′

OtherStop
f

⊥
→ stop

f ; g
⊥
→ g

Table 2.2: Internal Structural Operational Semantic Rules of Orc.

2.3.2.5 Contributions

This thesis uses Orc to analyze orchestrations and their associated QoS. Orc, with its
elegant and simple mathematical model can express a variety of orchestration patterns.
In [BJK+12], we focus on extending Orc to handle QoS:

• A comprehensive framework supporting function and QoS together, and allowing
for multi-dimensional QoS metrics.

• The framework allows separation of concerns (inspired from Aspect Oriented De-
velopment), that allows functional and QoS aspects to be specified separately.

• Making use of the rich QoS algebra, the “weaving” mechanism provides a new
Orc program that provides both functional and end-to-end QoS output of the
resulting orchestration.

• An improvement to the pruning operator in Orc is developed, that takes a generic
QoS domain and returns the “best” QoS output.

The extension to tracking causality and QoS in Orc is presented in [JKTB12]. This
information can be used for debugging of large workflows as well as generating partial
order structures of executions. It is a generic technique that may be applied to other
such concurrent systems with similar transformation rules.

• Using the notion of events (publications, site calls and returns) in Orc, rules are
presented to track the causal history of Orc publications.

• Starting with an Orc program, the parsed intermediary form (Orc-intermediary-
language (OIL)) is transformed to provide additional causal information.

• Causality can be used for program analysis and debugging of distributed systems.

• A similar technique can also append QoS contributions of event executions.

53

2.4. Quality of Service Introduction

2.4 Quality of Service

This section reviews in detail, various aspects to consider in QoS. Starting from a
general framework from QoS, we describe QoS composition, SLAs, their monitoring
and negotiation and QoS dependent optimization.

2.4.1 QoS in Web Services

Two different aspects must be considered when talking about services:

1. The functional description contains the formal specification of what exactly the
service can do.

2. The non-functional descriptions of how well the service performs these functions.

For example, in case of a train booking service, invoking its functionality (booking
a train ticket) might be constrained by using a secure connection (security as non-
functional property) or by actually performing the invocation of the services in a certain
point in time (availability as non-functional property). For individual services, the
functional and non-functional properties are treated orthogonally.

Moving on to composite services that invoke multiple services differing in functional
and non-functional characteristics, the end-to-end characteristics are intricately linked
with the orchestration’s control flow. The end-to-end functional performance can rely
on most of the services performing specific tasks and passing required data within con-
trol flow. However, in most orchestration, constraints on non-functional characteristics
(timeout periods, security levels, etc.) also affect the end-to-end functional perfor-
mance, and so, cannot be treated orthogonally. Non-functional properties might also
play an important role in all service related tasks, especially in discovery, selection and
substitution of services. It is simple to imagine a scenario in which services which can
fulfill a user request and which provide basically the same functionality are selected
based on some non-functional properties like price or performance.

Linking the end-to-end functional and non-functional characteristics to those of
invoked services in an orchestration requires analysis. Data dependency and causality in
the flow of an orchestration can provide insights into end-to-end functional performance
(eg. failure of a certain service can lead to a deadlock). Increments in the end-to-end
QoS and their relation to the control flow (invocation in parallel, sequentially, with
constraints) can specify individual services’ contribution to the end-to-end performance.
With these in mind, the accurate modeling of QoS for web services is important to both
functioning of the orchestration and specifying contractually defined non-functional
behavior of invoked services.

QoS covers a whole range of techniques that match the needs of service requesters
with those of the service provider’s based on the network resources available. By QoS,
we refer to non-functional properties of web services such as performance, reliability,
availability, and security [TF06]:

Availability: Availability is the quality aspect of whether the web service is present
or ready for immediate use. Availability represents the probability that a service
is available. Larger values represent that the service is always ready to use while
smaller values indicate unpredictability of whether the service will be available at
a particular time.

Accessibility: Accessibility is the quality aspect of a service that represents the degree
it is capable of serving a web service request. It may be expressed as a probability
measure denoting the success rate or chance of a successful service instantiation
at a point in time. There could be situations when a web service is available

54

Introduction 2.4. Quality of Service

but not accessible. High accessibility of web services can be achieved by building
highly scalable systems. Scalability refers to the ability to consistently serve the
requests despite variations in the volume of requests.

Integrity: Integrity is the quality aspect of how the web service maintains the correct-
ness of the interaction in respect to the source. Proper execution of web service
transactions will provide the correctness of interaction. A transaction refers to
a sequence of activities to be treated as a single unit of work. All the activities
have to be completed to make the transaction successful. When a transaction
does not complete, all the changes made are rolled back.

Performance: Performance is the quality aspect of web service, which is measured in
terms of throughput and latency. Higher throughput and lower latency values
represent good performance of a web service. Throughput represents the number
of web service requests served at a given time period. Latency is the round-trip
time between sending a request and receiving the response.

Reliability: Reliability is the quality aspect of a web service that represents the degree
of being capable of maintaining the service and service quality. The number of
failures per month or year represents a measure of reliability of a web service. In
another sense, reliability refers to the assured and ordered delivery for messages
being sent and received by service requesters and service providers.

Regulatory: Regulatory is the quality aspect of the web service in conformance with
the rules, the law, compliance with standards, and the established service level
agreement. Web services use a lot of standards such as SOAP, UDDI, and WSDL.
Strict adherence to correct versions of standards (for example, SOAP version 1.2)
by service providers is necessary for proper invocation of web services by service
requesters.

Security: Security is the quality aspect of the web service of providing confidentiality
and non-repudiation by authenticating the parties involved, encrypting messages,
and providing access control. Security has added importance because web service
invocation occurs over the public Internet. The service provider can have different
approaches and levels of providing security depending on the service requester.

Work by O’Sullivan et al. [SEH02] attempts to clarify non-functional properties and
their relation to discovery, negotiation, invocation and execution of services. The non-
functional properties covered include Temporal (when) and Spatial (where) availability;
Broadcast channels used to deliver content; Cost structures (per request, commission);
Settlement models for SLAs (subscription, metered, broker-based; Service quality (re-
liability, responsiveness, assurance, empathy, tangibles); Security and trust. The use of
such non-functional criterion for discovery, composition and substitution of services is
also elaborated in [SEH02].

Studies on QoS for web services have received considerable attention in papers such
as [TF06, CMP+04, MM10, CMSA02, CSM+04, ACH98, AGM08], which provide a
broad overview of QoS domains and their management. Studies on real time behavior
of services latency and throughput include [CTB98, LNJV01, XSCT02]. Aspects such as
security and digital credentials have been covered in [KM03, BMR08, KCE+04, BFG05,
IM02]. Pricing strategies for web services are demonstrated in [HDHA09]. While these
represent QoS metrics for orchestrations, choreographies can have extended models
including analysis of message passing and deadlock freeness [MPR+10, BZ07].

55

2.4. Quality of Service Introduction

2.4.2 QoS Composition

As compositions of services require combining functionalities of differing individual
services, composing QoS of such services becomes equally important. Contracts or
QoS values agreed upon with sub-contractors need to be aggregated and compared
to develop an end-to-end QoS output. QoS composition is the process of aggregating
the QoS of invoked (possibly sub-contracted) services in order for the orchestration to
estimate its own performance for contractual obligations.

The orchestration can have details and models about its local resources and opera-
tions. It cannot however have complete information about remote services’ performance
or network usage. It will have to rely on contractual obligations to estimate performance
or accept performance as-is (eg. accessing a public website). The composition of QoS
derived from individual services requires a set of rules for aggregating QoS quanta. In
[CMSA02, CSM+04, CPEV05a], the aggregation functions are presented using BPEL
terminology in Fig. 2.4. Similar models for composing QoS across multiple domains is
presented in [ZBN+04, ZBD+03, RLM+09].

Figure 2.4: Aggregating QoS metrics for various domains and operations [CPEV05a].

Making use of Monte-Carlo simulations or analytic techniques, the end-to-end QoS
for a single run of the composite service may be derived. However, this does not
capture the probabilistic nature of some metrics, which requires multiple Monte-Carlo
runs / historical data to derive distributions. Aggregation of probabilistic QoS metrics
may be done using averaged values for latency, availability (as in Fig. 2.4) or use
more mathematically intensive queuing and stochastic models. Stochastic approaches
to composition and planning have been presented in [WHK08, WZZF09].

To further elaborate this notion of composing QoS, we make use of an example
of a composite web service shown in Fig. 2.5. It demonstrates a typical ordering
process for computer products. We elaborate on some aspects of control flow within the
orchestration. The Check Order and Check Credit services check information provided by
the client or a database to process the order. Once this is done, the fastest responding
Hardware Supplier and the lowest costing Software Supplier are used for composition.
Additionally a timeout operation can encompass the whole orchestration to prevent the
client waiting for “halted” services.

Note that this is a typical workflow where both data from invoked services and QoS
measured by the orchestration interact. For this reason, approaches using queuing
theory [ALZH04, DB78] or stochastic models [TLY+04] for web services’ performance
have difficulty in accurately portraying behavior of transaction based services. These
techniques are suited for network analysis and study of simplistic service compositions.
Instead, simulation based treatment of composite services’ performance can provide
more realistic behavior. Examples of empirical studies of performance behavior of web
services’ behavior are [HM09, LNJV01].

56

Introduction 2.4. Quality of Service

Software Supplier 2

Submit Order

Check Order Check Credit

ok ok
noknok

sync Reject OrderReject Order

Process Order

Hardware Supplier 1 Hardware Supplier 2

Assemble and Deliver

best(Cost)

best(Latency)

Software Supplier 1

Figure 2.5: A composite service orchestration demonstrating assembly of components.

When looking at composite services from a modeling point of view, product lines
may be used [KDS+08, INPJ09]. Essentially, every concrete instance of a product line
can be viewed as a composite service. This is specially true in large systems where
parties may/ may not participate.

2.4.2.1 Contributions

Work on QoS composition is one of the areas studied in [BJK+12]:

• Rich theory is developed to handle probabilistic and multi-dimensional QoS com-
position.

• The abstract algebra supports increments ⊕, synchronization ∨, partial orders �
and competition ⊳ in QoS metrics among invoked services.

• End-to-end measurements of QoS can be performed using this algebra and Monte-
Carlo techniques - leading to distributions of QoS behavior of composite services.

Work on integrating aspects of variability (induced by inclusions/exclusions of services)
and the relative impact on end-to-end QoS is studied in [KSB+10]:

• The variable behavior in service invocation is captured using feature models that
can provide product lines of composite services.

• Handling both probabilistic QoS and such variability results in a combinatorial
explosion of samples that need to be effectively handled.

• The composite services’ behavior is analyzed using combinatorial interaction tech-
niques covering pairs of services rather than exhaustive sampling.

• The demonstration on a crisis management system example shows that this can
lead to efficient analysis of QoS behavior for families of composite services.

Subsequent work in this area is done in [KSB+11]:

• Tackles much larger case studies for crisis and e-health management where ex-
haustive sampling is impossible.

57

2.4. Quality of Service Introduction

• Demonstrates the advantage of pairwise sampling: it guarantees pairwise inter-
action coverage with just a fraction of runs when compared to random sampling.

• As multiple sets of instances can satisfy a given feature model, analysis of the
variance on results across different sets of solutions are also studied.

• Perspectives on developing multiple SLA levels for families of composite services
are also evaluated.

2.4.3 Monotonicity in Orchestrations

An important aspect to consider here is monotonicity of the orchestration [BRBH08].
For any aggregation or contract based approach to be valid, the orchestration should
be monotonic, that is, “if any service performs better, then so will the orchestration”.
When multiple domains of QoS and data interact, an improvement in the performance
in one of the services can deteriorate overall performance nevertheless.

This is seen in a variant of Fig. 2.5, linking a particular hardware supplier with
a particular software supplier. Improvement in response time of Hardware Supplier 1
can entail delaying the whole orchestration by being obliged to invoke the slow service
Software Supplier 1 as shown in Fig. 2.6. Conditions to prevent this from happening
is elaborated in [BRBH08] which include not linking a particular service with another
(as seen in Fig. 2.6). It is important to consider this notion when using SLAs as
a superior performing service (sub-contractor) may be unnecessarily penalized due to
deteriorating performance by another service.

Software Supplier 2

Process Order

Hardware Supplier 1 Hardware Supplier 2

faster fast

slow fast

best(Latency)

Assemble and Deliver

Software Supplier 1

Figure 2.6: A non-monotonic orchestration.

Orchestrations that are not data-dependent (that is, control flow is not dependent on
data returned from services), are in general always monotonic. However, for workflows
that are data-dependent, a careful analysis of conditions for monotonicity is needed.
In most cases, the implications of monotonicity has been ignored, which is not suitable
for contract based management. Papers by except in Ardagna et al. [AP05], Alrifai
& Risse [AR09a] and Zeng et al. [ZBN+04] identify the notion of “global versus local
optimization”, which is a check for monotonic conditions. In a general orchestration,
global optimization provides the ideal case. In monotonic orchestrations, this can be
refined with local optimization enough to ensure global optimality.

2.4.3.1 Contributions

A careful analysis of monotonicity and implications on QoS management are provided
in [BJK+12]:

58

Introduction 2.4. Quality of Service

• Conditions to ensure monotonicity in case of data dependent orchestrations, when
dealing with probabilistic QoS are provided.

• Using OrchNets and branching cells, a theoretical background for monotonicity
is developed, with extensions to handle probabilistic monotonicity.

• Techniques to aggregate QoS are provided when monotonicity is not ensured
(treating as a single transition, pessimistic evaluation). These techniques are
crucial for contract composition is demonstrated on the TravelAgent example.

2.4.4 Service Level Agreements

In order to provide QoS support in web services, a number of extensions to current
standards have been proposed. A proposal to publish QoS-enabled web services by
registering them at the UDDI registry is shown in [Ran03, KBT+09, WVKT06]. A
similar extension is provided by [D‘A06], with a model-driven extension of QoS metrics
within WSDL called Q-WSDL.

Service Level Agreement (SLA) (used synonymously with service contract or con-
tractual obligations) defines a set of consumer expectations which must be met by a
provider [TP05, SRE10]. Since providers will potentially be offering many different
services to different consumers, they must adopt an efficient policy for resource man-
agement which differentiates consumers into service ranges.

A service level agreement is a document which defines the relationship between two
parties: the provider and the recipient. A contract specifies, usually in measurable
terms, what services the provider will furnish. Some metrics that contracts may specify
include:

Service Definition - it describes the services and the manner in which those services
are to be delivered. The information on the services must be accurate and contain
detailed specifications of exactly what is being delivered.

Performance - It deals with monitoring and measuring service level performance.
Essentially, every service must be capable of being measured and the results
analyzed and reported. The benchmarks, targets and metrics to be utilized must
be specified in the agreement itself.

Problems - To minimize the adverse impact of incidents and problems, there must be
an adequate process to handle and resolve unplanned incidents. Formal records
and logs must be maintained of all incidents and problems.

Customer Duties - These include the obligations of the customer with respect to the
service and might include throughput and security constraints.

Providers would expose their promised performance in the form of contracts. Con-
tracts are statistical in nature. A typical contract between a server and a client could
be of the following form : “the service shall respond correctly 90% of the time, and,
when responding correctly, in 90% of the cases it will respond with less than 2 seconds”.
In [PB08, TP05, SRE10, jJMS02] hard bounds are used for obligations. A bonus-malus
policy is provided where a service deviating from a contract is punished.

An alternative to this approach is using probabilistic models as described in [HWSP04,
HWTS07, RBHJ08]. As an example, we make use of an Orange API 2 to repeatedly
test the response time of a sms service. The result of the response time distribution is
presented in Fig. 2.7.

2http://api.orange.com/

59

http://api.orange.com/

2.4. Quality of Service Introduction

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

20

40

60

80

100

120

Response Time (seconds)

N
um

be
r

of
 H

its

Figure 2.7: Response time distribution of an API.

As specified in [RBHJ08, HWTS07], services specify their QoS behavior as a proba-
bilistic distribution of metrics. The distribution can also be approximately specified by
a set of quantiles. In some cases measurements can also be used to derive the proba-
bilistic contract. An advantage of using distributions is that pessimistic approaches to
contracts are removed with softer contracts used. Consider the services A and B with
cumulative distributions F and G, respectively. A is said to first order dominate B iff:

F (x) ≤ G(x) ∀x ∈ R ⇔ EFu(x) ≥ EGu(x) ∀u ∈ U (2.1)

That is, there are more chances of being less than x if the random variable is drawn
according to G than according to F . This allows for some amount of deviation on
part of the provider for outlying QoS values that may cause contractual deviations.
The advantage of using probabilistic contracts is a range of statistical tools such as
stochastic dominance [BD03, And96] can be conveniently incorporated within SLA
formulation.

In [FK98, Zsc10], a QoS specification language for distributed object systems is
presented. This language, called Quality of service Quality Language (QML), is not
restricted to any particular domain (e.g. real-time or multimedia systems) or to any
particular quality of service. QML separates specification of QoS aspects from func-
tional specification aspects. A useful mechanism in QML is the refinement mechanism
that allows QoS aspects to be defined as refinements of existing ones. This notion is
extended to contractual obligations in [FBH05]. The semi ring based Q-automata is
another formal language to describe QoS properties of concurrent systems [CK07].

As QoS values are random variables, estimating end-to-end contracts is generally
done through simulation runs. There are a few theoretical papers [ZYZB11] that pro-
pose aggregating the probability distributions, which is nearly impossible when or-
chestrations have control flow data dependencies. Models such as SALSA [BHS+10]
(Simulated Annealing Load Spreading Algorithm) use queuing theory to autonomously
meet SLAs, without a priori over-dimensioning resources.

2.4.4.1 Negotiation

SLA negotiations relates to the procedure of parties (consumer and providers) agreeing
on the terms of an SLA. The parties try to reach a deal based on a consensus after
exchanging (possibly several) non-binding “quotes”. The typical negotiation steps are
the following:

1. The provider publishes a template describing the service and its possible terms,
including the QoS and possible compensations in case of violation. This template

60

Introduction 2.4. Quality of Service

leaves several fields blank or modifiable, which are meant to hold the user specific
needs.

2. The client fetches the template, and fills it in with values which describe the
planned resource usage. Some terms of the template may be removed or added
or changed.

3. This new document, which engages neither party, is sent to the provider. Receiv-
ing this, the provider, based on the current resource availability and customer
policies, sends back to the client a quote. This quote corresponds to values on
which the provider would probably agree (but this is by no means binding), based
on the client’s needs.

4. The client, if satisfied with the quote, applies his/her signature to the document,
and sends it back to the provider as a SLA proposal. Effectively, the client is
already proposing an SLA to the provider, but the provider’s signature is missing.

5. The provider, receiving the proposal, is free to reject or accept it. In the latter
case, the proposal becomes an SLA officially signed by both parties, and starts
to be a valid legal document.

The quotes exchange (steps 2 and 3) can be repeated any number of times. The
user can tune the terms in the quote request until the provider’s quote is in line with
what the client is ready to accept. The last step for the client, step 4, requesting the
real SLA, has a Boolean answer: the SLA is either accepted or rejected by the provider.
In the latter case, the user can go back to asking for a quote, as the provider might have
changed his conditions. The steps 2-3 are the core part of the negotiation, as each party
can pull the deal in any direction. The parties may freely modify the different terms:
lower fees, lower QoS, longer time slots, fewer resource needs, lower compensations, etc.

Once a contract has been signed and agreed, the necessity of changing it could be
envisaged (see re-negotiation). In that case, the same quote framework could be used.
The main difference comes from the already allocated resources, and the existence of a
first contract to modify.

Work on automating procedures for generating such negotiating procedures include
[CCP07, DDK+04, YKL+07]. The automatic negotiation process aims at identifying
the maximum quality level admissible with respect to the user budget. [ZZ04] specify
the rate at which probes to deployed services can be made without affecting runtime
performance. In [RBHJ08], the procedure for contract negotiation entails agreement
of two distributions - a client side assumption on the throughput rate and the service
provider side guarantee on performance. In [BS09b], negotiation is said to proceed
using relaxed constraints with algebraic operators modeled in a semi ring.

Techniques such as [BAM+08, TZCB08, CP06] combine both analysis of functional
as well as performance of web services. They analyze properties such as WSDL descrip-
tion and proper functioning when overly invoked. As the number of services increases,
analyzing all these properties can entail more involved testing strategies as demon-
strated in [CP06].

2.4.4.2 Monitoring

Once a user and a Web Service have been brought together, service execution and
associated properties need to be continuously monitored. Also, required adjustments
are desirable to take place in real-time without affecting operations at the user’s site.
This is a challenging task as the Web Service may be running on a system that is not own
or controlled by the user or running on an operating system that the user knows nothing

61

2.4. Quality of Service Introduction

about. While monitoring may refer to many aspects of web services such as load, error
handling [BGG04], we specifically refer to monitoring non-functional properties and
corresponding contractual obligations.

The situation with SLA monitoring becomes more complicated in the case of com-
posite Web Services. The properties of a composite Web Service are a function of the
properties of its component services and the managers of the component Web Services
may need to coordinate in a particular way. Some of the QoS metrics such as response
time or resource utilization may be monitored by the service provider; others such as
throughput and security of data may require probing the customers. Examples of work
on this topic include [MRLD09, SMS+01, ZLC07].

Monitoring QoS can be applied on web services during different stages of a SOA
System life cycle. During the Service discovery, monitoring is useful to obtain the real
QoS for a reliable Web Service Selection. Once the service has been selected, monitoring
can be used in order to ensure that the service is still fulfilling the promised QoS.
Particularly, in self -healing SOA Systems, when this requirement violation happens, the
SOA system might change the failing web service by another one. Obviously, monitor
systems retrieve data only from basic metrics, since derived ones are calculated from
the previous ones through a predefined rule.

Web Service Level Agreement Language [LKD+03] is a standard language for speci-
fying agreements and monitoring protocols for SLAs. A WSLA agreement complements
a service definition. While a service description (WSDL) defines the service interface
relationship between a service and its using application, the WSLA defines the agreed
performance characteristics and the way to evaluate and measure them. The WSLA
provides input to the measurement and management system of an organization that
checks and manages an organization’s compliance with a WSLA. Both service provider
and service customer may run their own instrumentation and measurement and man-
agement systems. Each organization may access measured metrics from various sources,
such as server-side metrics from the provider and client-side metrics from the customer.
The relationship between WSLA, client, provider and WSDL is shown in Fig. 2.8.

Figure 2.8: Role of a Web Service Level Agreement [LKD+03].

A WSLA comprises the following major parts:

Parties - describes the parties involved in the management of the Web Service.

62

Introduction 2.4. Quality of Service

<Parties>
<ServiceProvider name="ACMEProvider">
<Contact><City>Yorktown, NY 10598, USA</City></Contact >
<Action xsi:type="WSDLSOAPOperationDescriptionType" n ame="notification"

partyName="ZAuditing">
<WSDLFile>Notification.wsdl</WSDLFile>
<SOAPBindingName>SOAPNotificationBinding</SOAPBindi ngName>
<SOAPOperationName>Notify</SOAPOperationName></Acti on>

</ServiceProvider>

<ServiceConsumername="XInc">
<Contact><City>Hawthorne, NY 10532, USA</City></Contac t>
<Action xsi:type="WSDLSOAPOperationDescriptionType" n ame="notification"

partyName="ZAuditing">
<WSDLFile>Notification.wsdl</WSDLFile>
<SOAPBindingName>SOAPNotificationBinding</SOAPBindi ngName>
<SOAPOperationName>Notify</SOAPOperationName></Acti on>

</ServiceConsumer>
<\Parties>

Service Definitions - describe the services the WSLA is applied to. The service def-
initions represent the common understanding of the contracting parties of the
structure of the service, in terms of operations and the service’s parameters and
metrics that are the basis of the SLA. It also includes the specification of the
measurement of a service’s metrics.

<ServiceDefinition>
<Schedule name="hourlyschedule">
<Period>

<Start>2001-11-30T14:00:00.000-05:00</Start>
<End>2001-12-31T14:00:00.000-05:00</End></Period>

<Interval><Minutes>60</Minutes></Interval>
</Schedule>

<SLAParameter name="Availability_CurrentDownTime" typ e="long" unit="minutes">
<Metric>CurrentDownTime</Metric>
<Communication>

<Source>Measurement</Source>
<Push>Auditing</Push></Communication>

</SLAParameter>
<\SeviceDefinition>

Obligations - define the service level that is guaranteed with respect to the SLAParam-
eters defined in the service definition section. The promises to perform actions
under particular conditions are also represented in this part.

<Obligations>
<ServiceLevelObjective name="ContinuousDowntimeSLO">

<Obliged>ACMEProvider</Obliged>
<Validity>

<Start>2001-11-30T14:00:00.000-05:00</Start>
<End>2001-12-31T14:00:00.000-05:00</End></Validity>

<Expression>
<Predicate xsi:type="Less">

<SLAParameter>Availability_CurrentDownTime</SLAPara meter>
<Value>10</Value></Predicate>

</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

</ServiceLevelObjective>
</Obligations>

Alternatives to WSLA include SLAng [SLE04] that allows the specification of non-
functional features of contracts between independent parties. [Men02, ZLC07, LZZX10]
develop techniques for monitoring deviations in QoS performance from nominal behav-
ior. Other proposals include extending the WSLA framework to offer, negotiate and
monitor contractual agreements in service compositions [DDK+04].

63

2.4. Quality of Service Introduction

In [RBHJ08], [Ros09], the one-sided Kolmogorov-Smirnov gap is used for monitoring
deviation from contracts:

δ(FS , GS) = sup
x∈X

(FS(x)−GS(x)) (2.2)

where FS is the distribution function according to the contract agreed with site S and
GS is the actual runtime distribution function of site S. If this gap is greater than a
tolerance parameter, the contract is said to be deviated from.

Once QoS attributes to be monitored are specified, the composite service can per-
form runtime diagnosis and adaptation to improve end-to-end performance. As studied
in [WWW+07], adaptations can be triggered by violation in QoS contracts or a over-
load on available resources. Adaptation in this case would mean offering a substitute
service or changing some parts of the QoS guarantee until acceptable levels are reached.

2.4.4.3 Contributions

The QoS algebra proposed in [BJK+12] is also used to formally specify contractual
obligations:

• The SLA defines the Qos domains and the associated algebra for various Orc
combinators which are hen “weaved”with these QoS values to generate a tuple of
functional and QoS values.

• The generated distributions (through Monte-Carlo) can be compared using both
data-dependent and pessimistic techniques.

• The effect of monotonicity on such contractual obligations is demonstrated using
the TravelAgent example.

Improving the efficacy of simulation techniques to estimate the end-to-end QoS is the
focus of [Kat11]:

• Traditional Monte-Carlo cannot detect extreme values efficiently, which leads to
imprecise contractual obligations on availability or throughput.

• Rare event simulation techniques (importance sampling/splitting) are applied to
provide low variance measures of extreme quantiles.

• The use of these techniques are demonstrated on the Dell supply chain example
for improving contract composition and forecasting of outages.

• Techniques to specify such extreme quantiles with low variance in languages such
as WSLA is also provided.

Contributions to improving negotiations in composite services are presented in [KBJ12]:

• Selecting one of the participating services in an orchestration for improving end-
to-end QoS behavior is the focus.

• An integer programming formulation based on first order stochastic dominance
is proposed to pick such services.

• The formulation improves upon the “best” operator for QoS in monotonic orches-
trations, where optimal selection for improvement competing services does not
deteriorate end-to-end QoS.

• This is demonstrated on the GarageOnline example, where better end-to-end perfor-
mance of the orchestration is produced by optimal compared to random selection
of services.

64

Introduction 2.4. Quality of Service

2.4.5 QoS dependent Optimization

When considering multi-dimensional QoS, QoS domains are partially, not totally or-
dered. In order to deal with probabilistic comparison of QoS domains that are only
partially ordered, Theorem 1 of [TKO77] may be used. This allows stochastic compar-
ison of random variables to be simplified to ordinary comparison as functions defined
over the same experimental probability setting.

In case of optimized selection over multiple QoS domains, some sort of total ordering
is needed to generate a minimizing cost functions. It is also possible to minimize over
one domain while implicitly handling tradeoffs across others. An example of a QoS
dependent selection can be done as in [PD06]. Grid workflows are used to model web
services architectures. Each web service is modeled as a G/G/k queue with infinite
customer capacity, meaning the number of jobs that can wait in the queue of a web
service is infinite. Table 2.3 provides the necessary parameters for the optimization.

i - web service type
j - index of competing web services
xijy - binary selection variable: workflow task y to be executed on web service j of service type i

Rij - average response time for web service j
diy - deadline allocation of workflow task y assigned to web service of type i
cij - average cost for web service j
eiy - expected cost of a task y allocated to service of type i
fij - reliability of web service j
giy - reliability requirement of a task y

Table 2.3: Parameters for web services workflow optimization.

The objective is to minimize the number of jobs failing to meet their QoS require-
ments. A penalty term hT is introduced with constraint limits z.

minimize hT z (2.3)

Subject to the following constraints:
Expected average response time must be less than the deadline allocation of the work-
flow task.

(Rij − diy) xijy ≤ zdiy ∀i, j, y (2.4)

Expected average cost must be less than the allocated cost.

(cij − eiy) xijy ≤ zciy ∀i, j, y (2.5)

Reliability requirement of a task must be less than the web service reliability.

(giy − fij) xijy ≤ zfiy ∀i, j, y (2.6)

Constraints to assign a task to one and only one web service.

Ni∑

j=1

xijy = 1 ∀i, y (2.7)

xijy ∈ {0, 1} ∀i, j, y (2.8)

zdiy, z
c
iy , z

f
iy ≥ 0 ∀i, y (2.9)

The goal is to optimize the end-to-end (or global) QoS of the orchestration. Various
optimization techniques have been proposed to this end. As global optimization requires
considering all alternative paths when chaining service calls, it is an off-line task that

65

2.4. Quality of Service Introduction

requires an algebra to statically evaluate the end-to-end QoS from the QoS of each
called service.

[LB10], a framework for reputation-aware software service selection and a selection
algorithm is devised for service recommendation, providing SaaS consumers with the
best possible choices. In [CCGM06], a broker based architecture is used for service
selection. By modeling this as a constrained optimization problem, where each QoS
class is modeled by suitable constraints, maximizing overall QoS of a flow of requests is
achieved. In [YZL07], the objective of service selection is modeled as a multidimension
multichoice knapsack problem (MMKP). Similar selection based approaches generating
optimal configurations of services are presented in [HMR10, XFZ08].

In [ZBN+04] local optimization versus global planning is studied. Different QoS
parameters are studied (price, duration, reputation, availability, success rate) and com-
position rules are provided. An integer programming solution is proposed as in [KP09].
Similar problems and solutions are also studied in [AP05, AGI+06, AR09a, QTDC10,
AR09b], where the notion of local constraints and global optimality over QoS domains
are studied.

[CSM02, CSM+04] proposes a predictive QoS model that allows to compute the
QoS of workflows from the QoS of their atomic parts. Individual QoS parameters
are estimated for their minimum, maximum, and averaged values based on measure-
ments. [AGM08] studies service selection in composite service using a queuing network
paradigm. In [YRB+10] [KKK08] a service query framework is presented to select
services with best QoS output from a large service space. The optimization strategy
leverages a QoS-based cost model to select the best execution plans for a composite
service. An interesting contribution of [CPEV08] is the technique of re-binding that
on-line performs a replacement of a service when the latter performance deviates too
much from its nominal behavior.

The use of more mathematical intensive techniques such as stochastic control [SDR09]
and dynamic programming [Ber07] has also been proposed. In [ZNB+08, GNZ+06],
these techniques are used for selection and planning of composite service selection.
Rather than selecting the “best” service with short term information, a more involved
dynamic programming approach is used. This notion removes the effect of non-monotonicity
and focuses on overall QoS goals of the composite service. However, this technique can
prove to be computationally intensive and not suitable when QoS metrics vary signifi-
cantly from assumed distributions.

The use of Dynamic Programming and Divide-and-Conquer approaches for a query
optimization framework is proposed in [YB07]. However, the composition of workflows
and QoS aspects are treated together. This entails assumptions on the knowledge
of web services’ QoS values before generating possible service execution paths. Such
a selection, composition and QoS querying mechanism is also employed in [USM06].
Web services are modeled as function calls with optimization over select-project-join
ordering of the services to reduce total run time. In [AGP08] reconfiguration using
dynamic programming constraints are used for resource allocation and load balancing.

2.4.5.1 Contributions

In [BJK+12], the“best”operator and conditions on monotonicity ensure local vs. global
optimization. Instead of performing computationally intensive dynamic programming,
the monotonic assumptions ensure an approximate optimal selection of services. Local
decisions taken for improvement (either through optimization / exhaustive search) will
not deteriorate end-to-end QoS as a result of this.

While significant work has been done in the areas of optimal service selection and
optimal composition assignments dependent on QoS, the use of optimization packages

66

Introduction 2.4. Quality of Service

within workflows is missing. The use of these tools is important for resource allocation
and load balancing in a variety of operational research problems as shown in [KBJ11]:

• The assumptions on monotonicity and contractual obligations allow the “best”
operator in Orc to be extended with optimization across multiple QoS domains.

• Incorporation of the Optima site is proposed that enables mathematical pack-
ages to be called within Orc - this enables complex workflows such as the Dell
choreography to be specified.

• In order to develop total ordering of QoS domains (required for optimization
specifications), a multi-criterion decision process is used to generate objective
cost functions from consistent subjective judgments.

• Using such a technique, complex manipulation of resources such as optimizing
restocking policies can be developed.

67

2.5. Thesis Organization Introduction

2.5 Thesis Organization

This thesis is organized into multiple chapters, with each chapter corresponding to a
publication. The chapters are arranged from general to specific themes in the web
services’ context as described below:

QoS theory for Orchestrations: In orchestrations where there are tight interactions
between QoS, data, and function, classical frameworks for dealing with QoS are
not flexible enough. Data dependent Orchestrations may be non-monotonic with
respect to QoS, meaning that improving the QoS of an individual service may
decrease the end-to-end QoS of the orchestration. In Chapter 3: QoS-Aware
Management of Monotonic Service Orchestrations, we develop a rich calculus to
analyze multi-dimensional QoS in a probabilistic sense. Using the model orchnets,
conditions to handle non-monotonicity in orchestrations are also studied. These
techniques are implemented in Orc using QoS as aspects that may be “weaved”
into functional orchestration specifications. In Chapter 4: Leveraging Causality
for QoS Tracking in Service Oriented Systems, rules for weaving causal history
and QoS for Orc expressions are discussed. By making use of these rules over
the Orc Intermediary Language (OIL) form, Orc publications can be extended to
provide causal past and QoS increments.

QoS for Product lines of Web Services: Product lines of composite services can have
multiple configurations displaying variable behavior due to both service incorpo-
ration/rejection and probabilistic QoS behavior. Tacking both forms of variability
leads to a combinatorial explosion, specially when multiple services and orchestra-
tion combinators are used. Chapter 5: Variability Modeling and QoS Analysis of
Web Services Orchestrations aims to study both these aspects of variability and
understand their effect on end-to-end QoS and corresponding SLAs. Chapter
6: Pairwise Testing of Dynamic Composite Services compares the use of combi-
natorial sampling with random sampling with respect to efficiency and stability
of generated configurations. These techniques demonstrate, empirically, the ad-
vantage of using combinatorial interaction methods for sampling both variable
invocation and QoS in large product lines of composite web services.

QoS tools for Orchestrations: While languages such as BPEL and Orc have focused to-
ward functional specifications (incorporating combinators for concurrency, choice
and so on), toolkits to incorporate more mathematically intensive aspects are
missing. In Chapter 7: Optimizing Decisions in Web Services Orchestrations, we
demonstrate incorporation of optimization packages within orchestration specifi-
cations. A consequence of this is improved decision making when orchestrations’
control flow are dependent on multi-dimensional, probabilistic models of QoS. We
also propose the use of a high-level flexible query procedure for embedding such
optimizations in languages such as Orc.

Improving Service Level Agreements: Finally, the incorporation of these QoS met-
rics can lead to superior SLAs. In Chapter 8: Importance Sampling/Splitting of
Probabilistic Contracts in Web Services, we focus on Monte-Carlo runs for esti-
mating end-to-end QoS and SLAs for orchestrations. In case of heavy-tailed QoS
distributions, Monte-Carlo runs are inefficient to estimate the extreme quantiles
of values that demonstrate high variance. Variance reduction techniques such
as importance sampling and importance splitting can prove to be more efficient
alternatives, enabling precise definition of sampling, measurement and variance
tolerance in SLA declarations. In Chapter 9: Negotiation Strategies for Prob-
abilistic Contracts in Web Services Orchestrations, we study the negotiation of

68

Introduction 2.5. Thesis Organization

SLAs in composite service orchestrations, with emphasis on selecting the optimal
re-negotiation strategy for end-to-end QoS improvement. We demonstrate that
using an integer programming formulation, constraints may be specified to select
the service that provides the best re-negotiation strategy.

The pages that follow contain abstracts of individual chapters along with their salient
contributions.

69

2.5. Thesis Organization Introduction

2.5.1 Chapter 3: QoS-Aware Management of Monotonic Service Or-
chestrations

We study QoS-aware management of service orchestrations, specifically for orchestra-
tions having a data-dependent workflow. Our study supports multi-dimensional QoS.
To capture uncertainty in performance and QoS, we provide support for probabilistic
QoS. Under the above assumptions, orchestrations may be non-monotonic with respect
to QoS, meaning that improving the QoS of a service may decrease the end-to-end QoS
of the orchestration, an embarrassing feature for QoS-aware management. We study
monotonicity and provide sufficient conditions for it. We then propose a comprehensive
theory and methodology for monotonic orchestrations. Generic QoS composition rules
are developed via a QoS Calculus, also capturing best service binding—service discov-
ery, however, is not within the scope of this work. Monotonicity provides the rationale
for a contract-based approach to QoS-aware management. Although function and QoS
cannot be separated in the design of complex orchestrations, we show that our frame-
work supports separation of concerns by allowing the development of function and QoS
separately and then“weaving”them together to derive the QoS-enhanced orchestration.
Our approach is implemented on top of the Orc script language for specifying service
orchestrations.

Contributions

1. Analyzes probabilistic QoS in data-dependent transactional orchestrations with
function and QoS interacting.

2. Emphasis the need to study monotonicity in defining QoS in such orchestrations
with the development of a rich calculus based on OrchNets.

3. Using OrchNets and branching cells, a theoretical background for monotonicity
is developed, with extensions to handle probabilistic monotonicity.

4. The framework allows separation of concerns (inspired from Aspect Oriented De-
velopment), that allows functional and QoS aspects to be specified separately.

5. Implements the theory using the mechanism of rewriting rules where QoS is
“weaved” within functional description of orchestrations.

6. Implements this SLA specification into Orc with specifications of increments in
QoS and algebraic operations for generating end-to-end contracts.

7. Software: The TravelAgent example with the SLA declaration, functional specifi-
cation and QoS “weaved” specification are specified in Orc and available at 3.

Publication

This paper was submitted to the Springer Formal Methods in System Design (2012)
[BJK+12].

3http://orc.csres.utexas.edu/papers/bjkrt2012fmsd.sh tml

70

http://orc.csres.utexas.edu/papers/bjkrt2012fmsd.shtml

Introduction 2.5. Thesis Organization

2.5.2 Chapter 4: Leveraging Causality for QoS Tracking in Service
Oriented Systems

Service Oriented Architectures (SOA) allow individual software components (services)
to autonomously describe their functionalities in order to be composed into more com-
plex services. Such compositions can involve many structured interaction paradigms
such as concurrency, access control mechanisms and shared memory references. Causal-
ity of events in such environments is a crucial tool for analysis of event traces, diagnosis
of faulty behavior and more generally tracking Quality of Service (QoS) metrics. In
this paper, we make use of the concurrent programming language Orc to describe in-
teractions in service oriented systems. Building on the formal semantics of Orc, we
provide transformation rules to equip Orc events with their causal histories. As a con-
sequence, we demonstrate that QoS increments produced by events can be tracked in
service oriented systems. The transformations are implemented as rewriting rules over
the Orc Intermediary Language (OIL), which is an abstract syntax tree using only the
core Orc calculus.

Contributions

1. Enhances events in distributed executions with causality.

2. Provides rewriting rules using the original Orc syntax to track causal history.

3. Provides rules to weave QoS theory as rewriting of OIL.

4. Implements the rewriting rules in Orc for causality and QoS.

5. Software: A prototype of the causality and QoS tracking implementation has
been done over the Orc ver 2.0 in Scala with examples shown in the paper.

Publication

A first version of the paper submitted to the 9th International Workshop on Web
Services and Formal Methods(2012) is presented in [JKTB12].

71

2.5. Thesis Organization Introduction

2.5.3 Chapter 5: Variability Modeling and QoS Analysis of Web Ser-
vices Orchestrations

The ever-growing choice in diverse services is making service orchestration variability
an essential aspect of a composite web service. Influence of this variation on the Qual-
ity of Service (QoS) of a composite service is critical and the focus of our work. In
this paper, we present a methodology to first model orchestration variability using a
feature diagram (FD). The FD specifies a product line of orchestrations represented
as configurations of invoked/rejected atomic services. Second, due to the potentially
large set of configurations we employ combinatorial testing techniques to automati-
cally generate configurations covering all valid pairwise interactions between services.
Third, we analyze QoS variation for each configuration using probabilistic models of
QoS. Using a crisis management system case study we experimentally show that pair-
wise generation covers all QoS outliers and eliminates analysis of > 75% of all possible
configurations. The QoS analysis of the pairwise configurations reveals unsafe/inef-
fective configurations, helps determine realistic Service Level Agreements (SLAs), and
provides valuable feedback to help remodel an orchestration.

Contributions

1. Analyses joint aspects of product line variability and QoS distributions.

2. Variable behavior in service invocation is captured using feature models.

3. Uses a pairwise sampling technique to handle the combinatorial explosion.

4. Pairwise sampling significantly reduces the number of configurations to be ana-
lyzed.

5. Provides a crisis management case study that is analyzed to better generate SLAs.

6. Software: The generation of samples that satisfy pairwise interactions was devel-
oped in Java and the Alloy language for modeling. It is available for download at
4. The simulations for the QoS distributions were performed in MATLAB.

Publication

A version of this chapter was presented at the International Conference on Web Ser-
vices (ICWS) 2010 [KSB+10]. Additional details on the products generated and the
experimental details are included.

4http://pairwise-models.googlecode.com/svn/trunk/

72

http://pairwise-models.googlecode.com/svn/trunk/

Introduction 2.5. Thesis Organization

2.5.4 Chapter 6: Pairwise Testing of Dynamic Composite Services

Online services encapsulate enterprises, people, software systems and often operate in
poorly understood environments. Using such services in tandem to predictably orches-
trate a complex task is one of the principal challenges of service-oriented computing.
A composite service orchestration soliciting multiple atomic services is plagued by a
number of sources of variation. For instance, availability of an atomic service and its
response time are two important sources of variation. Moreover, the number of possible
variations in a composite service increases exponentially with increase in the number
of atomic services. Testing such a composite service presents a crucial challenge as its
often very expensive to exhaustively examine the variation space. Can we effectively
test the dynamic behavior of a composite service using only a subset of these varia-
tions? This is the question that intrigues us. In this paper, we first model composite
service variability as a feature diagram (FD) that captures all valid configurations of
its orchestration. Second, we apply pairwise testing to sample the set of all possible
configurations to obtain a concise subset. Finally, we test the composite service for se-
lected pairwise configurations for a variety of QoS metrics such as response time, data
quality, and availability. Using two case studies, Car crash crisis management and
eHealth management, we demonstrate that pairwise generation effectively samples the
full range of QoS variations in a dynamic orchestration. The pairwise sampling tech-
nique eliminates over 99% redundancy in configurations, while still calling all atomic
services at least once. We rigorously evaluate pairwise testing for the criteria such as:
a) ability to sample the extreme QoS metrics of the service b) stable behavior of the
extracted configurations c) compact set of configurations that can help evaluate QoS
tradeoffs and d) comparison with random sampling.

Contributions

1. Unlike Chapter 5, uses large case studies for crisis and e-health management
where exhaustive sampling is impossible.

2. Provides analysis of pairwise sampling with respect to size, stability and ability
to generate multiple families of SLAs.

3. Empirically provides evidence over random sampling that cannot guarantee suf-
ficient coverage over all interactions.

4. Perspectives on developing multiple SLA levels for families of composite services
are also evaluated.

5. Software: The generation of samples that satisfy pairwise interactions was devel-
oped in Java and the Alloy language for modeling. It is available for download at
5. The simulations for the QoS distributions were performed in MATLAB.

Publication

A version of this chapter was presented at the 6th international symposium on Software
engineering for adaptive and self-managing systems, 2011 [KSB+11]. Additional figures
and experiments are included.

5http://pairwise-models.googlecode.com/svn/trunk/

73

http://pairwise-models.googlecode.com/svn/trunk/

2.5. Thesis Organization Introduction

2.5.5 Chapter 7: Optimizing Decisions in Web Services Orchestra-
tions

Web services orchestrations conventionally employ exhaustive comparison of runtime
quality of service (QoS) metrics for decision making. The ability to incorporate more
complex mathematical packages are needed, especially in case of workflows for resource
allocation and queuing systems. By modeling such optimization routines as service
calls within orchestration specifications, techniques such as linear programming can be
conveniently invoked by non-specialist workflow designers. Leveraging on previously
developed QoS theory, we propose the use of a high-level flexible query procedure for
embedding optimizations in languages such as Orc. The Optima site provides an ex-
tension to the sorting and pruning operations currently employed in Orc. Further, the
lack of an objective technique for consolidating QoS metrics is a problem in identifying
suitable cost functions. We employ the analytical hierarchy process (AHP) to generate
a total ordering of QoS metrics across various domains. With constructs for ensuring
consistency over subjective judgments, the AHP provides a suitable technique for pro-
ducing objective cost functions. Using the Dell Supply Chain example, we demonstrate
the feasibility of decision making through optimization routines, specially when the
control flow is QoS dependent.

Contributions

1. The assumptions on monotonicity and contractual obligations allow the “best”
operator in Orc to be extended with optimization across multiple QoS domains.

2. The site Optima can be used to integrate optimization solvers within Orc.

3. Uses the AHP to generate a total ordering over multiple QoS domains.

4. Demonstrated integrating optimization within workflow specifications using the
Dell supply chain example.

5. Demonstrates the implications of runtime optimization on detection of SLA vio-
lations.

6. Software: The simulations were performed using MATLAB and integrated op-
timization solvers. An example of the code for the Dell example in Orc and
MATLAB is shown in Appendix 11.3.

Publication

A paper corresponding to this chapter was presented at the International Conference
on Service Oriented Computing, 2011 [KBJ11]. Additional details on invoking mathe-
matical libraries from Orc are provided.

74

Introduction 2.5. Thesis Organization

2.5.6 Chapter 8: Importance Sampling/Splitting of Probabilistic Con-
tracts in Web Services

With web services quality of service (QoS) modeled as random variables, the accuracy
of sampled values for precise service level agreements (SLAs) come into question. Sam-
ples with lower spread are more accurate for calculating contractual obligations, which
is typically not the case for web services QoS. Moreover, the extreme values in case of
heavy-tailed distributions (eg. 99.99 percentile) are seldom observed through limited
sampling schemes. To improve the accuracy of contracts, we propose the use of vari-
ance reduction techniques such as importance sampling and importance splitting. We
demonstrate this for contracts involving demand and refuel operations within the Dell
supply chain example. Using measured values, efficient forecasting of future deviation
of contracts may also be performed. A consequence of this is a more precise definition
of sampling, measurement and variance tolerance in SLA declarations.

Contributions

1. Demonstrates inefficiencies of traditional Monte-Carlo techniques for contract
composition.

2. Applies available importance sampling / splitting techniques to study contract
composition in the Dell example.

3. Proposed extending these techniques to forecast outages or contract violations in
future.

4. Extends current WSLA models to incorporate variance in sampling behavior.

5. Software: The importance sampling/splitting techniques were implemented in
MATLAB and are provided in Appendix 11.4 for use with the Dell example.

Publication

A short version of this chapter was presented at the International Conference on Service
Oriented Computing, 2011 [Kat11]. This has been extended with additional details and
the use of importance splitting techniques.

75

2.5. Thesis Organization Introduction

2.5.7 Chapter 9: Negotiation Strategies for Probabilistic Contracts
in Web Services Orchestrations

Service Level Agreements (SLAs) have been proposed in the context of web services
to maintain acceptable quality of service (QoS) performance. This is specially crucial
for composite service orchestrations that can invoke many atomic services to render
functionality. A consequence of SLA management entails efficient negotiation proto-
cols among orchestrations and invoked services. In composite services where data and
QoS (modeled in a probabilistic setting) interact, it is difficult to pick an individual
atomic service to negotiate with. A superior improvement in one negotiated domain
(eg. latency) might mean deterioration in another domain (eg. cost). In this paper,
we propose an integer programming formulation based on first order stochastic dom-
inance as a strategy for re-negotiation over multiple services. A consequence of this
is better end-to-end performance of the orchestration compared to random strategies
for re-negotiation. We also demonstrate this optimal strategy can be applied to ne-
gotiation protocols specified in languages such as Orc. Such strategies are necessary
for composite services where QoS contributions from individual atomic services vary
significantly.

Contributions

1. Studies optimal strategies for negotiation among sub-contracted services.

2. Using an integer programming formulation, first order stochastic dominance con-
straints may be specified to select the service that provides the best re-negotiation
strategy.

3. The formulation improves upon the “best” operator for QoS in monotonic orches-
trations, where optimal selection for improvement competing services does not
deteriorate end-to-end QoS.

4. This is demonstrated on the GarageOnline example, where better end-to-end perfor-
mance of the orchestration is produced by optimal compared to random selection
of services.

5. Software: The comparison of services based on first order stochastic dominance
was implemented in MATLAB and is shown in a shortened form in Appendix
11.5.

Publication

This paper was accepted at the IEEE International Conference on Web Services (ICWS)
(2012) [KBJ12].

76

Introduction 2.6. Future Work

Chapter Dependencies

Though most chapters are self contained, a reader is suggested some background read-
ing:

• Chapter 3: QoS-Aware Management of Monotonic Service Orchestrations - self
contained.

• Chapter 4: Causality and QoS Management in Orc - requires Chapter 3 to un-
derstand QoS domains and weaving within Orc.

• Chapter 5: Variability Modeling and QoS Analysis of Web Services Orchestrations
- self contained.

• Chapter 6: Pairwise Testing of Dynamic Composite Services - self contained;
useful to read Chapter 5 to understand some of the experiments.

• Chapter 7: Optimizing Decisions in Web Services Orchestrations - self contained.

• Chapter 8: Importance Sampling/Splitting of Probabilistic Contracts in Web
Services - self contained.

• Chapter 9: Negotiation Strategies for Probabilistic Contracts in Web Services
Orchestrations - requires Chapter 3 to understand monotonicity.

2.6 Future Work

Listed here are some topics that may be investigated in future in line with some of the
contributions of the thesis:

QoS in Choreographies - While techniques to study QoS in orchestrations (Chapters
3, 4) have been examined in this thesis, the extension to choreographies involves
other aspects (deadlock freeness, heterogeneous QoS measures, resource alloca-
tion). Extending some of the concepts developed in this thesis (such as causality)
may be done for such applications. Contract compositions for large scale chore-
ographies is also a topic that needs analysis - as the interactions are more complex
with message passing, more stringent monitoring techniques may be needed. The
techniques outlined in Chapter 8 can be upgraded to suit such contract composi-
tion techniques.

Security - While security has been studied in Chapter 3, the further study of protocols
needs emphasis. In a composite service scenario, access control frameworks would
need to be developed to select the types of data that can be accessed by particular
classes of services. A natural extension of security policies will be reputation with
companies offering such protocols becoming reputed“brands”of service providers.

Resource Management - With cloud computing frameworks coming into the forefront,
the relationship between Software-as-a-Service (SaaS) and lower layers such as
databases (Platform-as-a-Service: PaaS) or servers (Infrastructure-as-a-Service:
IaaS) needs analysis. Policies on QoS management at the SaaS level would trans-
late to queue management at PaaS and efficient energy usage at the IaaS levels.
Such policies require a deeper understanding of tradeffs and optimized resource
management with general tools such as in Chapter 7 proving useful.

77

2.6. Future Work Introduction

Industrial Scenarios - Studies of actual contractual agreements for large companies
(IBM, Amazon web services) could lead to realistic models of QoS - mimicking
subjective measures used by clients. Using monitored contractual data (cost of
contract, recovery time since downtime, availability), better strategies for resource
allocation to prevent contract violations may be envisioned. Some aspects of
productline variability (Chapter 5) and contract composition (Chapter 8) can be
extended to support these requirements.

Automated Negotiations - Automating some features of the negotiation protocols de-
scribed in Chapter 9 can be useful for runtime integration of discovered services.
The called service should have contractual obligations that can be easily described
and added on to the current orchestration specification.

78

Chapter 3

QoS-Aware Management of
Monotonic Service
Orchestrations

Albert Benveniste, Ajay Kattepur
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Sidney Rosario, John Thywissen
Dept. of Computer Science,
The University of Texas at Austin, U.S.A.

Abstract

We study QoS-aware management of service orchestrations, specifically for orchestra-
tions having a data-dependent workflow. Our study supports multi-dimensional QoS.
To capture uncertainty in performance and QoS, we provide support for probabilistic
QoS. Under the above assumptions, orchestrations may be non-monotonic with respect
to QoS, meaning that improving the QoS of a service may decrease the end-to-end QoS
of the orchestration, an embarrassing feature for QoS-aware management. We study
monotonicity and provide sufficient conditions for it. We then propose a comprehensive
theory and methodology for monotonic orchestrations. Generic QoS composition rules
are developed via a QoS Calculus, also capturing best service binding—service discov-
ery, however, is not within the scope of this work. Monotonicity provides the rationale
for a contract-based approach to QoS-aware management. Although function and QoS
cannot be separated in the design of complex orchestrations, we show that our frame-
work supports separation of concerns by allowing the development of function and QoS
separately and then“weaving”them together to derive the QoS-enhanced orchestration.
Our approach is implemented on top of the Orc script language for specifying service
orchestrations.

79

3.1. Introduction Chapter 3

3.1 Introduction

Quality of Service (QoS) is becoming increasingly important for the use of composite
services in business processes and workflows [CSM02, CSM+04]. QoS-aware manage-
ment of workflows and business processes proves to be advantageous in four composite
service management activities [CSM+04]:

1. QoS-based design,

2. QoS-based on-line service selection,

3. QoS monitoring, and

4. QoS-based adaptation or reconfiguration.

Various approaches [ST07, HWSP04, HWTS07, MCD08, ZYZB11, CGK+11] can
be used to address the above activities depending on the assumptions made:

Process Definition The workflow process underlying the composite service can be stat-
ically defined and independent of the data exchanged while the service is being exe-
cuted. Alternatively, the workflow can be data-dependent, e.g., by involving “if-then-
else” branching, also referred to as “switch” (the BPEL construct) or “conditional” by
some authors. A number of authors abstract this branching as a probabilistic choice.

QoS Dimensions Quite often, several dimensions for QoS must be handled, leading
to the consideration of multi-dimensional QoS. Also, the QoS response of a requested
service may or may not depend on the parameters of the request—for instance, simple
versus complex queries may result in different response times by the service.

Uncertainty in QoS For simple basic QoS policies, QoS guarantees exposed by the
service or expected by the user are typically stated as fixed bounds. QoS is, however,
generally subject to uncertainties, due to the numerous hidden sources of nondetermin-
ism (servers, OS, queues, and network infrastructure). Therefore, a number of authors
have agreed that QoS should be characterized in probabilistic terms.

In this paper, we consider Activities 1, 2, and 3, under the following 1. Activity 4—
QoS-based adaptation and reconfiguration—is not considered:

Assumption 1

• Regarding Process Definition: Workflows may be data-dependent and may involve
unbounded but terminating loops.

• Regarding QoS Dimensions: The considered composite service may involve multi-
dimensional QoS; QoS domains are thus partially, not totally ordered. QoS values
may be data-dependent and dynamically defined for each service call.

• Regarding Uncertainty in QoS: QoS is considered probabilistic.

3.1.1 Running Example

The following example will be used throughout this paper. We begin with a simple
form for it and then develop some variations.

Fig. 3.1(a) depicts a simple orchestration for a travel agent. The user enters the
location of a place to visit. Two Airline sites are invoked in parallel with the one offering
“best” cost being selected. Next, two Hotel reservation sites are invoked and selection

80

Chapter 3 3.1. Introduction

(a)

best(cost, category)

Present Invoice

AirlineCompany1 AirlineCompany2

HotelBookingA HotelBookingB

Submit Order (location)

best(cost)

(b)

Figure 3.1: TravelAgent1: Simple travel agent; (a) informal diagram, and (b) Petri net form,
where rectangles figure transitions and rounded rectangles figure places. This orchestration has
a data-independent workflow.

occurs on the basis of cost and category, seen both as QoS dimensions. The selection on
cost/category may be done through lexicographic or weighted ordering. The results are
presented as an invoice. This orchestration exhibits a data-independent control flow.
It has a two-dimensional QoS, with the two dimensions being cost and hotel category.
Multi-dimensional QoS is used in this and the following examples and is indeed often
encountered. Observe that the two QoS dimensions in this example are correlated.

This diagram is reformulated into that Fig. 3.1(b), to be interpreted as a Petri net,
where rectangles figure transitions and rounded rectangles figure places. Each query to
the orchestration is modeled by a token traversing the input transition. Upon entering
the first place, the transition to traverse must be chosen. This choice is based on best
cost among offers by airline companies. Subsequently, the token enters the second place,
where choice among different hotel booking services (shown as transitions) occurs based
on both cost and category. This alternative Petri net description is a formalization of
the previous description. We shall follow this Petri net modeling style hereinafter.

Fig. 3.2 shows a variation of Fig. 3.1(b) with a control flow dependent on returned
data and QoS values. A loop is introduced in the decision process that checks if the
total Cost is within the budget and can ask the user to specify preferences again. The
presentment of the Invoice is guarded by a timer. The choice at the place labeled with
“best(latency)” depends on which subsequent transition fires first. Thus, if the Invoice

is ready before Timeout occurs, then it is emitted, otherwise a “timeout” message
is returned. This timeout mechanism ensures that the loop terminates within a pre-
specified time bound, possibly with a failure. This orchestration has a three-dimensional

81

3.1. Introduction Chapter 3

Figure 3.2: TravelAgent2: A variation of TravelAgent1 having a data-dependent workflow.

QoS, with the dimensions being cost, hotel category, and latency (due to timers).

3.1.2 Key Issues

We now review some issues that we think are important in addressing Activities 1 (pro-
cess design), 2 (on-line service selection), and 3 (process monitoring).

3.1.2.1 Monotonicity and Consequences for Management

A basic assumption underpinning the management of composite services is that QoS
improvements in component services can only be better for the composite service. For
example, referring to Activity 1, once service selection in QoS-based design has been
performed (e.g., using optimization), a selected service is not expected to get dese-
lected if it improves its QoS performance. The same remark holds for Activity 2: Once
services have been selected on the basis of QoS performance, reconfiguration will not
occur unless some requested service’s performance degrades. Similarly, monitoring (Ac-
tivity 3) consists of checking components for possible degradations in QoS. In general,
we believe that the term “Quality of Service” presupposes that “better QoS is indeed
better overall”. In other words, the better the involved services1 perform, the better
the composite service performs.

This general property is important, so we give it a name—monotonicity. If a com-
posite service fails to be monotonic, the common understanding of QoS is no longer
valid and negotiations between the service provider and service requester regarding QoS
issues become nearly unmanageable. We see monotonicity as a highly desirable feature,
so we make it a central topic of this work.

Monotonicity always holds for orchestrations having a data-independent workflow—
the orchestration shown in Fig. 3.1 is an example. A careful inspection shows that the
orchestration of Fig. 3.2, which possesses a data-dependent workflow, is also monotonic.

However, monotonicity is not always satisfied under 1. Consider the example in
Fig. 3.3. This orchestration performs late binding of service by deciding on-line and

1Involved services include all services that can potentially be requested by the composite service.
For example, if the composite service involves an if-then-else branch, only one branch will actually be
executed, but both are involved in the composite service.

82

Chapter 3 3.1. Introduction

Figure 3.3: A simple orchestration where monotonicity does not hold; the two alternatives are
selected on the basis of best cost of air fare.

Figure 3.4: TravelAgent3: A variation of TravelAgent2 lacking monotonicity.

based on the cost of the airline ticket, which company to select. The two companies
then propose different sets of hotels, shown by the two steps HotelBooking(Company1/2).
Let c1 and c2 be the cost of ticket for Companies 1 and 2, and h(c) be the optimum
cost of the hotel booking if company c was selected. Suppose c1 < c2 and h(c1) < h(c2)
both hold. Then, the left branch is preferred and yields a total cost QoS for the
orchestration equal to c1 + h(c1). Now, suppose Company 2 improves its offer beyond
Company 1: c2 < c1. Then, the right branch will be selected and total cost c2 + h(c2)
will result. Now, it may very well be that c2 + h(c2) > c1 + h(c1) still holds, meaning
that the improvement in QoS of Company 2 has resulted in a degradation of total QoS.
The orchestration of Fig. 3.3 is non-monotonic. Differences in “local” versus “global”
optimization due to lack of monotonicity were identified in [AP05, AR09a, ZBN+04]—
“monotonicity”was not mentioned in the referred works but the concept was identified.
The above example may seem trivial and obvious. However, TravelAgent3 in Fig. 3.4, is
not monotonic either, despite it being a quite minor modification of TravelAgent2.

To summarize, this issue of monotonicity is essential. However, it seems under-
estimated in the literature, with the exception of [AP05, AR09a, ZBN+04], as our
discussion of related work will show.

Assume that monotonicity is addressed, either by enforcing it, or by dealing with

83

3.1. Introduction Chapter 3

the lack of it. Then, new avenues for composite service management under 1 can be
considered, by taking advantage of monotonicity:

(a) A requested service improving its QoS can only improve the QoS of the orchestra-
tion. Therefore, it is enough for the orchestration to monitor QoS degradations
for each requested service. Negotiations and penalties occur on the basis of under-
standable rules. Whenever acceptable, relations between the orchestration and
its requested services can rely on QoS contracts. It is then the duty of the orches-
tration (or of some third party) to monitor such contracts for possible violation
(Activity 3).2

(b) Since we build on a contract-based philosophy, the orchestration itself must be
able to offer QoS contracts to its customers. This brings to the table the need
for relating the contracts the orchestration has with its requested services, to the
overall contract it can offer to its customers (Activity 1). We refer to this as
contract composition.

(c) Thanks to monotonicity, it is possible to perform QoS-based late binding of ser-
vices (Activity 2) by selecting, at run time, the best offer among a pool of possible
candidates—by“possible”we mean candidates offering some given function or sat-
isfying some given property.

3.1.2.2 Handling Probabilistic QoS

To handle uncertainty in QoS, probabilistic frameworks have been favored by several
authors [ST07, HWSP04, HWTS07, MCD08, ZYZB11, CGK+11, ZBN+04, ZNB+08,
ZBD+03, RBHJ07, RBHJ08]. When the workflow of the orchestration is statically
defined regardless of data, rules for composing QoS probability distributions of the re-
quested services have been proposed by several authors for various QoS domains [AGM08,
ACP11, AGI+06, AP05, AR09a, CCGP10, YL05]. These serve as a basis to perform
Activities 1 and 2. Optimal service selection among different options has been solved
by efficient optimization methods, by using, e.g., Markov models [ACP11, CGK+11].

For orchestrations exhibiting data-dependent workflow or QoS values, however, such
methods do not apply. The QoS-aware model of the orchestration combines probabil-
ity and non-determinism — non-determinism arises from the data-dependent selection
among alternatives. Markov models do not apply and Markov Decision Process models
must be considered instead. The successive data-dependent choices performed are re-
ferred to as the scheduler of the MDP. Optimization can then be stated in two different
ways. In most approaches [ST07, HWSP04, HWTS07, MCD08, ZYZB11, CGK+11], the
scheduler itself is also randomized, thus resulting in a larger Markov model (assuming
that sources of randomness are all independent). Alternatively, a max-min optimization
can be performed, where the min is computed among the different service alternatives
for a given fixed scheduler, and then the max over schedulers is computed. These meth-
ods have been widely used for Activity 1 of off-line orchestration design. Activity 2
of optimal on-line service selection or binding is much more demanding. Mathemati-
cally speaking, this activity amounts to solving a stochastic control problem [Ala92],
in which, at each decision step, the expected remaining overall QoS is optimized and
best decision is taken. Stochastic control is computationally demanding unless the
considered orchestration is very small—this approach has not been considered in the
literature.

2Contracts may not be established with services having huge customer basis (e.g., Google services).
Such services are then used on the basis of estimated QoS based on measurements.

84

Chapter 3 3.1. Introduction

In the previous paragraph, we have advocated the importance of monotonicity and
have discussed its (good) consequences for QoS-aware management of composite ser-
vices. Can we lift these considerations to probabilistic QoS? To compare random vari-
ables, stochastic ordering has been proposed in various forms and extensively used
in the area of economics and operations research [Tet77, Mos94, Mos07]. Using this
concept, monotonicity was lifted to the probabilistic setting for the particular case of
latency in [BRBH09]. Assuming that monotonicity can be lifted to the probabilistic
setting for general (possibly multi-dimensional) QoS, the approach outlined in (a), (b),
and (c) above becomes applicable and simple techniques can be developed to perform
Activities 1, 2, and 3, based on QoS contracts. This agenda was developed by a sub-
group of authors of this paper in [RBHJ07, RBHJ08, BRBH09], for the restricted case
of latency.

3.1.3 Our Contribution

In this paper we extend our previous work on QoS-aware management of composite
services under 1, to generic, possibly multi-dimensional, QoS. Our approach proceeds
through the three steps (a), (b), and (c). Overall, we see our main contribution as
being a comprehensive and mathematically sound framework for contract based QoS-
aware management of composite services, relying on monotonicity. This framework
consists of the following.

3.1.3.1 An Abstract Algebraic Framework for QoS composition

As QoS composition is the primary building block of QoS-aware management, it is of
interest to develop abstract algebraic composition rules. We propose such an abstract al-
gebraic framework encompassing key properties of QoS domains and capturing how the
QoS of the orchestration follows from combining QoS contributions by each requested
service. This algebraic framework relies on an abstract dioid (D,max,⊕), where D is
the (possibly multi-dimensional) QoS domain. The abstract addition of the dioid iden-
tifies with the “max” operation associated with the partial order of the QoS domain; it
captures both the preference among services in competition and the cost of synchroniz-
ing the return of several services requested in parallel. The increment in QoS caused by
the different service calls is captured by the abstract multiplication of the dioid, here
denoted by ⊕. A dioid framework for QoS was already proposed in [BS09a] and an
algebraic framework on top of process algebras was proposed in [GGK+11]. With com-
parison to the above references, we propose in addition a new competition operator that
must be considered when performing late binding; this competition operator captures
the additional cost of on-line comparing the QoS within a pool of competing services.
We show how our abstract algebraic framework can be specialized to encompass known
QoS domains.

3.1.3.2 A Careful Handling of Monotonicity

We then study monotonicity in this generic QoS context, by proposing conditions en-
suring it for both non-probabilistic and probabilistic QoS frameworks. Guidelines for
how to enforce monotonicity are derived and ways are proposed to circumvent a lack
of monotonicity. The mathematical justification of the extension required to deal with
probabilistic QoS domains that are only partially, not totally ordered is non-trivial.
Due to lack of space, we omit this mathematical justification here and refer the reader
to [Ros09, RBJ09b]. We see our in-depth treatment of monotonicity as a major contri-
bution, as this issue has been scarcely recognized and was not properly handled. Due
to lack of space, probabilistic contract monitoring and composition is not detailed here.

85

3.1. Introduction Chapter 3

However, once monotonicity is extended to general QoS, the extension of the techniques
developed in [RBHJ08] raises no particular problem, see [Ros09] for details.

3.1.3.3 Support for Separation of Concerns

QoS-aware management of composite services requires developing a QoS-aware model
of a service orchestration, which can be cumbersome. At least it is a significant increase
in difficulty, compared to the only specification of the function of the orchestration. It is
thus desirable to offer means to develop function and QoS in most possible orthogonal
ways. By taking advantage of our abstract algebraic QoS framework, we are able
to address this need. More precisely, we have developed an implementation of our
approach in which QoS-aware orchestration models are automatically generated, from
a specification of the function only, augmented with the declaration of the QoS domains
and their algebra. This model can be executed to analyze the orchestration and perform
QoS contract composition. We have implemented this technique on top of the Orc
language for orchestrations [KCM06, MC06].3

3.1.3.4 A Methodology: Managing QoS by Contracts

By building on top of monotonicity, we advocate the use of contract based QoS-aware
management of composite services, in which the considered orchestration establishes
QoS contracts with both its users and its requested services. We briefly review how the
Activities 1–3 are performed in this context.

Regarding Activity 1, contract based design amounts to performing QoS contract
composition [RBHJ08], which is the activity of estimating the tightest end-to-end QoS
contract an orchestration can offer to its customer, from knowing the contract with
each requested service. QoS composition is developed in Section 3.4.2.

Consider Activity 2 for a monotonic orchestration. Late service selection or binding
is performed on the basis of run-time QoS observations, by simply selecting, among
different candidates, the one offering best QoS. Monotonicity ensures that this short-
sighted policy will not lead to a loss in overall QoS performance of the orchestration.
Best service binding is a built-in mechanism in our model, see 1 in Section 3.4.2.

Focus now on Activity 3 for a monotonic orchestration. To ensure satisfaction of the
QoS contract with its users, it is enough to monitor the conformance of each requested
service with respect to its contract, since a requested service improving its QoS can
only improve the overall QoS of the orchestration. This was developed in [RBHJ08]
for the case of latency and the techniques developed in this reference extend to multi-
dimensional QoS.

To account for uncertainty in QoS, QoS is considered probabilistic. More precisely,
soft probabilistic QoS contracts were first proposed in [RBHJ07, RBHJ08] for the case of
latency and are extended in this paper to multi-dimensional QoS. Such contracts consist
of the specification of a probability distribution for the QoS dimensions. Performing this
requires formalizing what it means, for a service, to perform better than its contract.
We rely for this on the notion of stochastic ordering [Tet77, Mos94, Mos07] for random
variables, a concept that is widely used in econometrics. All our results regarding
monotonicity extend to the case in which ordering of QoS values is replaced by stochastic
ordering. This allows us to lift our handling of Activities 1–3 to probabilistic contracts.
In particular, the statistical monitoring techniques proposed in [RBHJ08] allow for
monitoring the violation of contracts in this context.

To validate our approach, we illustrate the use of this tool in performing contract
composition for the example TravelAgent2.

3http://orc.csres.utexas.edu/

86

http://orc.csres.utexas.edu/

Chapter 3 3.2. Related Work

The paper is organized as follows. Related work is discussed in Section 3.2. Our QoS
calculus is developed in Section 3.3; it provides the generic basis for QoS composition.
Section 3.4 develops our theory of QoS for services orchestrations. Algebraic rules
for QoS composition and best service binding are developed. Monotonicity is studied.
Support for probabilistic QoS is presented. Section 3.4 is technical; a summary of its
important results for practical use is provided in Section 3.5. In Section 3.6 we present
the implementation of our approach on top of the Orc language. Evaluation of this
implementation on the TravelAgent2/3 is discussed in Section 3.7.

3.2 Related Work

We restrict ourselves to papers dealing with QoS-aware management of composite ser-
vices and addressing one or several of the Activities 1–4. We focus on papers dealing
with probabilistic QoS (or at least uncertainty in QoS). In addition, we have included
a few more papers, because either the issue of monotonicity is relevant to them, or
they address QoS composition in an interesting way. With few exceptions, all papers
address multi-dimensional QoS. Tables 3.1 and 3.2 categorize these papers according
to the following criteria:

• support for probabilistic QoS;

• type of algorithm proposed to address Activities 1–3.

As the literature reported is already considerable, we focus (with a few exceptions) our
detailed discussion on the papers addressing at least one of the Activities 1–3 under 1.
As we believe mathematical soundness is a serious issue, we discuss it carefully.

Our bibliographical study divides into two parts. Table 3.1 collects papers that
are relevant according to our criteria but do not face the issue of monotonicity, be-
cause restrictions ensuring built-in monotonicity are clearly stated on the control flow
of the considered orchestration. More precisely, the underlying control flow is data-
independent, which by itself guarantees monotonicity. To save space, we refer the
reader to the comments in the table regarding these papers and do not discuss them
any further.

Table 3.1: Literature survey: Papers dealing with orchestrations exhibiting a data-
independent workflow
Paper Probabilistic QoS? Algorithms to address Activities 1, 2,

and 3

Ardagna et al. (2008)
[AGM08]

Probabilistic QoS supported
Analytic techniques for QoS
composition, queuing networks models

Service selection by NL Programming
Probabilistic Model Checking for verifying
guarantee of service

Abundo et al. (2011)
[ACP11]

Probabilistic QoS supported
Analytic techniques for QoS
composition

MDP formulation of admission control
subject to QoS requirements

Ardagna et al.(2006)
[AGI+06]; Cardellini et al.
(2010) [CCGP10]; Yu and
Lin (2005) [YL05]

Probabilistic QoS supported
Simulation techniques for QoS
composition

QoS-aware service selection solved via linear
programming

Cao et al. (2005) [CCL05] Probabilistic QoS not supported Optimizing some QoS parameters subject to
QoS constraints using Genetic Algorithms

Limam and Boutaba (2010)
[LB10]

Probabilistic QoS supported
Simulation techniques for QoS
composition

Service selection based on reputation and
estimated QoS (with feedback to reputation)

We next review the literature collected in Table 3.2, where issues of monotonicity
are relevant.

87

3.2. Related Work Chapter 3

We begin with the work of Yu and Bouguettaya [YB08]. Built-in monotonicity is
still ensured, due to proper restrictions on the control flow of the considered orches-
trations. We nevertheless discuss it because specific issues of interest are studied. A
Service Query Algebra is proposed in which composite services are seen as graphs. They
can be further composed. QoS composition is one aspect of this service composition.
QoS is treated in a fully algebraic style, very much like our present approach. Prob-
abilistic aspects are not extensively developed, however. The work by Bistarelli and
Santini [BS09a, BS09b] is discussed here because it explicitly refers to monotonicity in
its title. This is, however, misleading in that this term is used in the totally different
setting of “belief revision”, a kind of logic in which facts can get falsified (thus the
world is not monotonic in this sense). Frolund and Koistenen [FK98] propose QML, a
general purpose language for QoS specification for distributed object-oriented systems.
The language aspect is emphasized, not the underlying orchestration model. As the
language is general, monotonicity cannot be guaranteed. However, we do not see this
study as really addressing service orchestrations.

For the next group of papers, the authors seem unaware of the issue of monotonicity
for the type of orchestration they consider (we do not repeat this fact for the different
papers). Sato and Trivedi (2007) [ST07] provide a precise evaluation of reliability and
performance characteristics in the presence of failures and retries, using Continuous-
Time Markov Chain models. Marzolla and Mirandola (2007) [MM07] develop accurate
queuing network models and evaluation techniques to derive performance bounds for
the quick identification of bottlenecks in service orchestrations. Gilmore et al.[GGK+11]
is an interesting paper, in which a rich UML-related formalism, called UML4SPA, is
proposed to capture flexible QoS definitions in general composite services. This work
is restricted to time as the only QoS dimension. The entire chain, from the UML
modeling to the formal analysis tool PEPA based on timed process algebras is devel-
oped, with great technical details (except for the probabilistic aspects, which are not
detailed). Ivanovic [ICH10] studies in detail how to deal with data-dependent QoS to
perform run-time adaptation and monitoring. Service selection in composite service op-
timization and (re)binding is analyzed in [CPEV05b, CPEV05a, CPE+06, CPEV08].
An interesting contribution of [CPEV08] is the technique of re-binding that on-line
performs a replacement of a service when the latter performance deviates too much
from its nominal behavior. Cardoso et al.[CSM02, CSM+04] propose a predictive QoS
model that allows to compute the QoS of workflows from the QoS of their atomic parts.
Individual QoS parameters are estimated for their minimum, maximum, and averaged
values based on measurements. Rules to compute QoS composition incrementally are
used (the SWR rules published in the first author’s PhD), with a special attention paid
to fault-tolerant systems. Probabilistic QoS is possibly supported, with, however, little
technical details. The work by Hwang et al. [HWSP04, HWTS07] is very interesting
in its study of probabilistic QoS composition via analytic techniques. To avoid the
computational cost resulting from state explosion in composite services, heuristic ap-
proximations are proposed. In a similar direction, the work of Zheng et al. [ZYZB11]
proposes a very interesting comparison between analytic and simulation approaches
for probabilistic QoS composition. The former are advocated, due to considerations
of computational cost. The work by Menascé et al. [MCD08] gives a mathematically
precise development of optimal service selection with cost and latency as QoS dimen-
sions. The BPEL constructs are supported, including the “switch”, which is a source of
possible lack of monotonicity; alternative branches of the switch are assigned a proba-
bility. A very interesting heuristic is provided to perform near-to-optimal selection at a
reasonable computational cost. The long and rich paper by Calinescu et al. [CGK+11]
presents a methodology and extensive toolkit for performing Activities 1–4 listed in our
introduction. Markov types of models are used in this toolkit, ranging from discrete and

88

Chapter 3 3.3. QoS Calculus

continuous Markov chains to Markov Decision Processes to deal with non-deterministic
choices or data-dependent branching. QoS analyses are supported thanks to a formula-
tion using probabilistic temporal logic and associated model checkers. The methodology
and toolkit reuses existing tools and did not need the development of any new engine.
The paper lacks mathematical details, however, regarding the models and algorithms
used.

The issue of monotonicity is identified in only three papers from our list, albeit under
a different wording than ours. Ardagna et al. [AP05] discuss local versus global QoS
guarantees and explain why optimizing QoS guarantees of local execution paths may
not lead to the satisfaction of global QoS guarantees. Alrifai & Risse [AR09a] propose
a similar approach using MMKP for computationally efficient selection over global and
local constraints. In Zeng et al. [ZBN+04], a thorough comparison is made between
local versus global optimization in service selection. It is argued that performing local
optimization may not lead to optimal selection; indeed, the beginning of Section 3.4.2
in this paper explains exactly our example of Fig. 3.3. The paper explains that global
optimization always provides a relevant selection, which is certainly correct. We have,
however, explained in our introduction why we believe that not having monotonicity
leads to a strange understanding of QoS management. Now, referring to our taxonomy,
in monotonic orchestrations, local optimization is enough to ensure global optimality.
Other major features of this paper are summarized in the table.

To conclude on this bibliographical study, we notice that the issue of monotonicity
is mostly ignored in the literature on composite Web services, whereas it is known in
the area of performance studies for general computer architectures. Our work focuses
on monotonicity, its conditions, and its consequences for QoS-aware management of
composite Web services.

3.3 QoS Calculus

In this section we develop our QoS calculus as a basis for QoS composition. A toy
example allows us to motivate our abstract algebra. Then we illustrate how this algebra
can encompass concrete QoS domains. Finally the algebra itself is formalized.

3.3.1 An Informal Introduction to the QoS Calculus

We begin by reviewing the algebra needed for composing QoS. In dealing with multi-
dimensional QoS, several approaches can be taken. First, one can see QoS as only
partially, not totally ordered. In this case QoS outcomes q and q′ satisfy q≤q′ if and
only if q(i)≤q′(i) holds for any dimension i = 1 . . . n of the QoS. Alternatively, one could
prioritize dimensions and then take the lexicographic (total) order q≤q′ iff there exists
some i such that q(j)=q′(j) for j < i and q(i)≤q′(i). Finally, different dimensions could
be weighted by considering

∑
iwiq(i) with its total order, where the wi’s are weights to

be selected, e.g., by using AHP (Analytical Hierarchy Process) [Tho90]. Finally, recall
that dealing with uncertainty is by regarding QoS outcomes as random variables.

We use colored Petri nets to model the executions of a service orchestration. Queries
are represented by tokens that circulate throughout the net and service calls are rep-
resented by transitions. To represent QoS parameters and how they evolve while the
query is being processed by the orchestration, we equip the tokens with a color, con-
sisting of a pair

(v, q) = (data, QoS value). (3.1)

Fig. 3.5 shows such a net. Each query is represented by a token entering the net at
the top place. The marking shown figures the reception of such a query by the net:

89

3.3. QoS Calculus Chapter 3

Figure 3.5: A simple example. Only QoS values are mentioned — with no data. Each place
comes labeled with a QoS value q which is the q-color of the token if it reaches that place.

it results in the launching of three sub-queries in parallel. The first two sub-queries
re-synchronize when calling t2. The third sub-query branches toward either calling t′1
or calling t′′1 and then confluences. The processing of the query ends when the token
reaches the exit place. With reference to this figure, the different operators needed
to compute the evolution of QoS parameters are introduced next. In the following
discussion, we only consider choices governed by QoS (data-driven choices play no role
in QoS evaluation).

Basic Operators on QoS

The objective is to capture, via generic operators, how QoS parameters get modified
when calling a service (traversing a transition), when synchronizing the responses of
services (figured by several tokens consumed by a same transition), or when different
services compete against each other (such as t′1 and t′′1 in Fig. 3.5).

Incrementing QoS When traversing a transition, each token gets its QoS value
incremented, which is captured by operator ⊕. For example, the left most token has
initial QoS value q0, which gets incremented as q1 = q0⊕δq1 when traversing transition
t1.

Synchronizing tokens A transition t is enabled when all places in its preset have
tokens. For the transition to fire, these tokens must synchronize, which results in the
“worst” QoS value, denoted by the supremum ∨ associated to a given order ≤, where
smaller means better. For example, when the two input tokens of t2 get synchronized,
the resulting pair of tokens has QoS q′′0 ∨ q1. This is depicted in Fig. 3.5 by the shaded
area.

QoS composition policy Focus on the conflict following place q′0. The QoS alters
the usual semantics of the conflict by using a QoS composition policy that is reminiscent
of the classical race policy [MBB+89]. The competition between the two conflicting
transitions in the post-set is solved by using order ≤ also used for token synchronization:

90

Chapter 3 3.3. QoS Calculus

test whether q′o ⊕ δq′1 ≤ q′o ⊕ δq′′1 holds, or the converse. The smallest of the two wins
the competition—nondeterministic choice occurs if equality holds.

However, comparing q′o ⊕ δq′1 and q′o⊕ δq
′′
1 generally requires knowing the two alter-

natives, which in general can affect the QoS of the winner. This is taken into account
by introducing a special operator “✁”: If two transitions t and t′ are in competition
and would yield tokens with respective QoS values q and q′ in their post-sets, the cost
of comparing them to set the competition alters the QoS value of the winner in that—
assuming the first wins—q is modified and becomes q ✁ q′, where ✁ denotes a new
operator called the competition function. For the case of the figure, we get

if (q′o ⊕ δq′1) ≤ (q′o ⊕ δq′′1)
then t′1 fires and q′1 = (q′o ⊕ δq′1)✁ (q′o ⊕ δq′′1)

if (q′o ⊕ δq′1) ≥ (q′o ⊕ δq′′1)
then t′′1 fires and q′′1 = (q′o ⊕ δq′′1)✁ (q′o ⊕ δq′1)

(3.2)

3.3.2 Some Examples of QoS Domains

We now instantiate our generic framework by reviewing some examples of QoS domains,
with their associated relations and operators ⊕,≤, and ✁.

Latency QoS value of a token gives the accumulated latency d, or “age” of the token
since it was created when querying the orchestration. Corresponding QoS domain is
R+, equipped with ⊕d = +, and ≤d= the usual order on R+. Regarding operator ✁d,
for the case of latency with race policy [MBB+89], comparing two dates via d1 ≤d d2
does not impact the QoS of the winner: answer to this predicate is known as soon as the
first event is seen, i.e., at time min(d1, d2). Hence, for this case, we take d1 ✁d d2 = d1,
i.e., d2 does not affect d1. This is the basic example of QoS parameter, which was
studied in [BRBH09].

Security level QoS value s of a token belongs to ({high, low},≤s), with high≤s low.
Each transition has a security level encoded in the same way, and we take ⊕s = ∨s,
reflecting that a low security service processing a high security data yields a low security
response. Regarding operator ✁s, again, comparing two values via s1≤s s2 does not
impact the QoS of the winner: QoS values are strictly “owned” by the tokens, and
therefore do not interfere when comparing them. Hence, we take again s1 ✁s s2 = s1,
i.e., s2 does not affect s1. More complex partially ordered security domains can be
handled similarly.

We do not claim that this solves security in orchestrations. It only serves a more
modest but nevertheless useful purpose, namely to propagate and combine security
levels of the requested services to derive the security level of the orchestration. How
security levels of the requested services is established is a separate issue, e.g., by relying
on reputation or through the negotiation of security contracts.

Reliability Reliability is captured similarly as follows. The QoS attribute of a token
takes its value in the set ({valid, invalid},≤r), with valid≤r invalid. Other operators
follow as for the case of Security level. A service returning “invalid” is an indication
of a failure. By equipping this QoS domain with probability distributions we capture
reliability in our setting.

Cost QoS value c captures the total cost of building a product by assembling its parts.
Referring to Fig. 3.5, costs are accumulated when tokens get synchronized. When a
token traverses a transition, its cost is incremented according to the cost of the action

91

3.3. QoS Calculus Chapter 3

being performed. A natural definition for the corresponding QoS domain would thus
be (Dc,≤c,⊕c) = (R,≤,+) or (Z,≤,+). Unfortunately, when taking this definition,
synchronizing tokens using ∨c amounts to taking the worst cost, which is not what we
need. We need instead the sum of the costs of incoming tokens, an operation different
from ∨c.

The right idea is to encode the cost by using multi-sets. The overall cost held
by a token is obtained by adding the costs of the constituting parts plus the costs of
successive assembly actions. Parts and actions are then handled as “quanta of cost” and
the token collects them while traversing the orchestration. This leads to defining the
QoS domain as a multi-set of cost types: Dc = Q 7→ N, where Q is a set of cost types
equipped with a cost labeling function λ : Q 7→ R+. Each q ∈ Q corresponds to either
a part or an assembly action and has a unique identifier. Domain Dc is equipped with
the partial order of functions and ∨c follows as the corresponding least upper bound.
Recall that operator ∨c is used to synchronize tokens, see Fig. 3.5. In this context,
it makes sense to assume that cost types held by the tokens for synchronization are
different. For this case, ∨c coincides with the addition of multi-sets and costs get added
as wished. Traversing a transition amounts to adding the corresponding quantum
in the set, hence, identifying singletons with the corresponding element, ⊕c is again
the addition of multi-sets. Finally, (Dc,≤c,⊕c) = (Q 7→ N,⊆,+). As before, the
competition function is c1 ✁c c2 = c1 when c1≤c c2, i.e., c2 does not affect c1.

Composite QoS, first example we may also consider a composite QoS parameter
consisting of the pair (s, r), where s is as above and r is some Quality of Response with
domain Dr, equipped with ≤r and ✁r. Since the two components s and r are similar
in nature, we simply take ≤=≤s × ≤r and ✁ = (✁s , ✁r).

Composite QoS, second example So far the special operator ✁ did not play any
role. We will need it, however, for the coming case, in which we consider a composite
QoS parameter (s, d), where s and d are as above. We want to give priority to security
s, and thus we now take ≤ to be the lexicographic order obtained from the pair (≤s,≤d)
by giving priority to s.

Focus on operator ✁. Consider the marking resulting after firing t1 and t′1 in Fig.
3.5, enabling t2 and t′2, which are in conflict. Let the QoS value of the token in postset
of t2, i.e. q2 = (low , d2). (Recall that q2 = (q′′o ∨ q1)⊕ δq2.) Similarly, let q′2 = (low , d′2)
where d′2 >d d2. From the competition rule, transition t2 wins the conflict and the
outgoing token has QoS value q2 = (low , d2). However, the decision to select t2 can
only be made when q′2 is known, that is, at time d′2. The reason for this is that, since at
time d2 a token with security level low is seen at place following t2, it might be that a
token with security level high later enters place following t′2. The latter would win the
conflict according to our QoS composition policy — security level prevails. Observing
that the right most token indeed has priority level low can only be seen at time d′2. Thus
it makes little sense assigning q2 = (low , d2) to the outgoing token; it should rather be
q2 = (low , d′2). This is why a non-trivial operator ✁ is needed, namely, writing ≤ for
short instead of ≤d:

(s, d) ✁ (s′, d′) =
if d ≤ d′ and s = low then(s, d′) else (s, d)

(3.3)

3.3.3 Formalizing the QoS Calculus

D̈ı£¡finition 3.1 (QoS domains) A QoS domain is a tuple Q = (D,≤,⊕,✁) where:

92

Chapter 3 3.4. A Theory of QoS for Workflows

• (D,≤) is a partial order that is a complete upper lattice, meaning that every
subset S ⊆ D has a unique least upper bound denoted by

∨
S. By convention,

we interpret synchronization order ≤ as “better”. Hence operator ∨ amounts to
taking the “worst” QoS and is used while synchronizing tokens.

• Operator ⊕ : D × D → D captures how a transition increments the QoS value; it
satisfies the following conditions:

1. there exists some neutral element 0 satisfying ∀q ∈ D ⇒ q ⊕ 0 = 0⊕ q = q;

2. ⊕ is monotonic: q1 ≤ q′1 and q2 ≤ q′2 together imply (q1 ⊕ q2) ≤ (q′1 ⊕ q′2).

3. ∀q, q′ ∈ D, ∃δq ∈ D such that q ≤ q′ ⊕ δq.

Condition 3) is a technical condition expressing that order ≤ is “rich enough”.

• The competition function ✁ : D × D∗ → D, where D∗ =
⊎∞

k=0D
k and D0 = ∅,

maps a pair consisting of 1/ the QoS resulting from the synchronization of the
input tokens, and 2/ the tuple of the QoS of other tokens that must be considered
when applying competition. We require the following regarding ✁:

1. q ✁ ǫ = q where ǫ denotes the empty tuple, that is, if no competition occurs,
then q is not altered;

2. ✁ is monotonic:

q ≤ q′ and q1 ≤ q′1, . . . , qn ≤ q′n
⇓

(q ✁ (q1, . . . , qn)) ≤ (q′ ✁ (q′1, . . . , q
′
n))

Examples were given in Section 3.3.1. It is easily checked that axioms are met by
these examples. The actual size of the second component of competition function ✁ is
dynamically determined while executing the net, this is why the domain of ✁ is D×D∗.

If some QoS parameter q of the orchestration is irrelevant to a service it involves, we
take the convention that this service acts on tokens with a 0 increment on the value of
q. With this convention we can safely assume that the orchestration, all its requested
services, and all its tokens use the same QoS domain. This assumption will be in force
in the sequel.

3.4 A Theory of QoS for Workflows

This section collects the technical material in support of our theory and developments.

We first recall the needed background on Petri nets as a basic model for service
orchestrations. Then we develop our formal QoS-aware model of orchestrations, to-
gether with the rules for QoS composition and best service binding. We then study
monotonicity. The above material is then lifted to probabilistic QoS. We conclude by
some methodological discussion.

The OrchNets we propose as a model to capture QoS in composite services are
a special form of colored occurrence nets (CO-nets) with read arcs. Executions of
Workflow Nets [vdA98, vdA97] are also CO-nets. The reader can compare our approach
with the graph-based approach of [YB08]. Before providing the formal definition of
OrchNets, we need some background on Petri nets and occurrence nets.

93

3.4. A Theory of QoS for Workflows Chapter 3

3.4.1 Petri Nets, Occurrence Nets, and Orchestration Nets

A Petri net with read arcs [Mur89] is a tuple N = (P,T ,F ,R,M0), where: P is a set
of places, T is a set of transitions such that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P)

is the flow relation, R ⊆ P × T is the read relation, and M0 : P → N is the initial
marking. We require that F ∩R = ∅. For x ∈ P ∪ T , we call •x = {y | (y, x) ∈ F} the
preset of x, x• = {y | (x, y) ∈ F} the postset of x, ◦t = {p | (p, t) ∈ R} the context of
t, and we set •t = •t ∪ ◦t.

A marking is a mapM : P → N. Firing transition t at markingM requiresM(p) >
0 for every p ∈ •t and yields the new marking M ′ such that M ′(p) = M(p) − 1 for
p ∈ •t \ t•, M ′(p) = M(p) + 1 for p ∈ t• \ •t, and M ′(p) = M(p) otherwise. In words,
tokens are consumed from the preset, read but not consumed from the context, and
produced in the postset.

For a net N = (P,T ,F ,R,M0) the causality relation � is the transitive and reflex-
ive closure of F and we set ≺ = � ∩ 6=. For a node x ∈ P ∪ T , the set of causes of x
is ⌈x⌉ = {y ∈ P ∪ T | y � x}. For two transitions t and t′, say that t weakly causes t′,
written tր t′ (or, sometimes, t′ տ t), if either t ≺ t′ or ◦t ∩ •t′ 6= ∅ (if t occurs, then it
must occur before t′). Say that a set T ⊆ T of transitions is in conflict, written #T , if
there exist t, t′ ∈ T such that •t∩ •t′ 6= ∅ or there exists a cycle t0 ր t1 ր · · · ր tn = t0
where t0, . . . , tn−1 ∈ T .4

Occurrence nets A Petri net is safe if all its reachable markingsM satisfyM(P) ⊆ {0, 1}.
A safe net N = (P,T ,F ,R,M0) is an occurrence net (O-net) iff

1. � is a partial order and ⌈t⌉ is finite for any t ∈ T ;

2. for each place p ∈ P, |•p| ≤ 1;

3. for each t ∈ T , ¬#⌈t⌉ holds;

4. M0 = {p ∈ P|•p = ∅} holds.

Occurrence nets are a good model for representing the possible executions of a concur-
rent system. Executions are formalized via the notion of configuration.

A configuration of N is a subnet κ of nodes of N such that: 1/ κ is causally closed,
i.e, if x � x′ and x′ ∈ κ then x ∈ κ; and, 2/ κ is conflict-free. For convenience, we
require that the maximal nodes in a configuration are places. A configuration κ2 is said
to extend configuration κ1 (written as κ1 � κ2) if κ1 ⊆ κ2 and ∄t ∈ κ2 \ κ1, t

′ ∈ κ1
such that t ր t′. Two configurations κ and κ′ are said to be compatible if 1/ κ ∪ κ′ is
a configuration, and 2/ κ � κ ∪ κ′ and κ′ � κ ∪ κ′. Node x is called compatible with
configuration κ if ⌈x⌉ and κ are compatible. Transition t is enabled by κ if t 6∈ κ and
κ ∪ {t} ∪ t• is a configuration. For κ a configuration, its future Nκ is defined as

Nκ = maxPlaces(κ) ∪
{x ∈ P ∪ T | x 6∈ κ and x is compatible with κ}

(3.4)

where maxPlaces(κ) is the set of maximal nodes of κ (which are all places). Two nodes
x and y are said to be concurrent if they are compatible and neither xր y nor xտ y
holds. Two sets of nodes X and Y are said to be concurrent if x and y are concurrent
for any two x ∈ X and y ∈ Y .

4Tuple (T ,�,ր) is a pre-Asymmetric Event Structure in the sense of [Win86].

94

Chapter 3 3.4. A Theory of QoS for Workflows

Unfoldings and Orchestration nets The executions of a safe Petri net N can be
represented by its unfolding UN , which is an occurrence net collecting all executions
of N in such a way that common prefixes are represented once. For example, Fig.
3.5 shows a net, the unfolding of which is obtained by removing the maximal (exit)
place and attaching a different copy of this exit place to each exit transition. Formally,
unfoldingUN is derived fromN [ERV02] in the following way. ForN = (P,T ,F ,R,M0)
and N ′ = (P ′,T ′,F ′,R′,M ′

0) two safe Petri nets, a morphism ϕ : N → N ′ is a function
from P ∪ T to P ′ ∪ T ′, mapping P to P ′ and T to T ′, preserving the initial marking:
ϕ(M0) = M ′

0, and preserving the flow and read relations: ϕ(•t) = •ϕ(t), ϕ(t•) = ϕ(t)•,
and ϕ(◦t) = ◦ϕ(t). If N ′ is another occurrence net and ψ′ : N ′ → N is a morphism,
then there exists a third morphism ψ : N ′ → UN such that ψ′ factorizes as ψ′ = ϕ ◦ ψ,
where ◦ is the composition of functions. This property characterizes the unfolding UN .

We call Orchestration net a safe Petri net possessing a finite unfolding. We insist
that Petri nets with loops can still possess a finite unfolding. An example of this is
the Petri net modeling the examples TravelAgent of Fig. 3.2 and Fig. 3.3, which
involve successive retries guarded by a timeout. In the sequel we only consider Petri
nets that are orchestration nets. Examples of Orchestration nets are the loop-free and
1-safe WorkFlow nets (WFnets). WF-nets were proposed by van der Aalst [vdA97,
vdAtHKB03, vdAvH02] and are Petri nets with a special initial place (where the initial
tokens are provided) and a special final place (from which tokens exit the net).

Branching cells The discussion of the example in Section 3.3.1 revealed the need to
consider, dynamically while execution progresses, the set of transitions that are both
enabled and in conflict with a considered transition. This was studied by Abbes and
Benveniste with the notion of branching cell [AB06a], for symmetric event structures
or nets without read arcs. This notion was subsequently extended to nets with read
arcs by Rosario [Ros09, Chapter 4]. We recall this notion now. Let N be an occurrence
net with read arcs. For two transitions t, t′ ∈ T , say that t is in weak conflict with
t′, written t ր

#
t′, if either #{t, t′} or [tր t′] ∧ ¬[t < t′], expressing that t′ preempts

t from occurring. Then, say that t′ is in minimal asymmetric conflict with t, written
tր

#m
t′, if:

1. tր
#
t′, i.e., t is in weak conflict with t′;

2. ({t} × ⌈t′⌉)∩ ր
#
= {(t, t′)}, i.e., t is in weak conflict with no cause of t′;

3.
(
(⌈t⌉ × ⌈t′⌉)× (ր

#
∩

#
տ
)
⊆ {(t, t′)}, that is, t and t′ are the only pair (x, x′) of

nodes in the respective causes of t and t′ such that both x ր
#
x′ and x

#
տ x′

possibly occur.

A prefix M of N is a causally closed subnet of N whose maximal nodes are places;
formally,M is closed under operations t→ ⌈t⌉ and t→ t•. PrefixM is called a stopping
prefix if it is symmetrically closed under minimal asymmetric conflict: formally t ∈M
and t′ ր

#m
t or t ր

#m
t′ imply t′ ∈ M . Branching cells of occurrence net N are

inductively defined as follows:

1. every minimal (for prefix relation) stopping prefix of N is a branching cell, and,

2. let B be any such branching cell and κ any maximal configuration of it, then any
branching cell of Nκ is a branching cell of N ,

where Nκ, the future of κ, is defined in (3.4). In the example of Fig. 3.5, transitions
t′1 and t′′1, along with their pre and post sets form one of the branching cells of the net.

95

3.4. A Theory of QoS for Workflows Chapter 3

We will need the following results regarding branching cells of finite occurrence nets:

configurations are tiled by branching cells; (3.5)

the minimal branching cells of an
occurrence net are pairwise concurrent,

(3.6)

where “minimal” refers to the causality order.

3.4.2 OrchNets: Definition and QoS Semantics, Application to QoS
Composition

Throughout this section we assume a QoS domain (D,≤,⊕,✁). OrchNets formalize
the notion of an orchestration with its QoS. The mathematical semantics of OrchNets
formalizes QoS contract composition, i.e., the process of deriving end-to-end QoS of
the orchestration from the QoS of its involved services.

D̈ı£¡finition 3.2 (OrchNet) An OrchNet is a tuple N = (N,V,Q,Qinit) consisting
of

• A finite occurrence net N with token attributes

c = (v, q) = (data, QoS value)

• A family V = (νt)t∈T of value functions, mapping the data values of the transi-
tion’s input tokens to the data value of the transition’s output token.

• A family Q = (ξt)t∈T of QoS functions, mapping the data values of the transition’s
input tokens to a QoS increment.

• A family Qinit = (ξp)p∈min(P) of initial QoS functions for the minimal places of
N .

Values, assumptions, and QoS functions can be nondeterministic. We introduce a
global, invisible, daemon ω that resolves this nondeterminism and we denote by Ω its
domain. That is, for ω ∈ Ω, νt(ω), ξt(ω), and ξp(ω) are all deterministic functions of
their respective inputs.

We now explain how the presence of QoS values attached to tokens affects the semantics
of OrchNets. Any place p of occurrence net N has a pair (vp, qp) = (data, QoS value)
assigned to it, which is the color held by a token reaching that place. In the following
QoS composition policy, the role of data in the semantics has been abstracted—taking
it into account would only increase the notational burden without introducing changes
worth the study.

Competition step 3 formalizes on-line service binding based on best QoS.
Step 4 of QoS composition policy simplifies for all examples of Section 3.3.1 except

for the last one, see formula (3.3). Since occurrence net N is finite, the QoS composition
policy terminates in finitely many steps when Nκ(ω) = ∅. The total execution thus
proceeds by a finite chain of nested configurations: ∅ = κ0(ω) ≺ κ1(ω) · · · ≺ κn(ω).
Hence, κn(ω) is a maximal configuration of N that can actually occur according to
the QoS composition policy, for a given ω ∈ Ω. We generically denote this maximal
configuration by

κ(N , ω). (3.9)

For the example of latency, our QoS composition policy boils down to the classical race
policy [MBB+89]. In general, our QoS composition policy bears some similarity with

96

Chapter 3 3.4. A Theory of QoS for Workflows

Algorithm 1: QoS composition policy

1 Let ω ∈ Ω be any value for the daemon. The continuation of any finite
configuration κ(ω) is constructed by performing the following steps, where we
omit the explicit dependency of κ(ω), νt(ω), and ξt(ω), with respect to ω:

1. Choose nondeterministically a minimal branching cell B in the future of κ —
this is possible by (3.6).

2. For t any minimal transition of B, compute:

qt =
(∨

p′∈•t qp′
)
⊕ ξt(vp′ | p

′ ∈ •t) (3.7)

where we recall that •t = •t ∪ ◦t is the union of the preset of t and the context of
t.

3. Competition step: select nondeterministically a minimal transition t∗ of B such
that no other minimal transition t of B exists with qt < qt∗ . The set Ω of
daemons is extended to resolve this additional nondeterminism.

4. Augment κ to κ′ = κ ∪ {t∗} ∪ t
•
∗, and assign, to every p ∈ t•∗, the pair (v, q),

where

v = νt(vp′ | p
′ ∈ •t)

q = qt∗ ✁ (qt | t ∈ B, t minimal, t 6= t∗)
(3.8)

Observe that the augmented configuration κ′ as well as the pair (v, q) depend on
ω. ✷

the “preselection policies” of [MBB+89], except that the continuation is selected based
on QoS values in our case, not on random selection. We will also need to compute the
QoS for any configuration of N , even if it is not a winner of the competition policy.
We do this by modifying 1 as follows: We are now ready to define what the QoS value
of an OrchNet is:

D̈ı£¡finition 3.3 (End-to-end QoS) For κ any configuration of occurrence net N ,
and ω any value for the daemon, the end-to-end QoS of κ is defined as

Eω(κ,N) =
∨
p∈maxPlaces(κ) qp(ω) (3.10)

The end-to-end QoS Eω(N) and loose end-to-end QoS Fω(N) of OrchNet N are re-
spectively given by

Eω(N) = Eω(κ(N , ω),N) (3.11)

Fω(N) = max{Eω(κ,N) | κ ∈ V (N)} (3.12)

where function max picks one of the maximal values in a partially ordered set, κ(N , ω)
is defined in (3.9), and V (N) is the set of all maximal configurations of net N .

Observe that Eω(N) ≤ Fω(N) holds and Eω(N) is indeed observed when the orches-
tration is executed. The reason for considering in addition Fω(N) will be made clear
in the next section on monotonicity.

So far formulas (3.11) and (3.12) provide the composition rules for deriving the
end-to-end QoS for each individual call to the orchestration. Monte-Carlo simula-
tion techniques can then be used on top of (3.11) and (3.12) to derive the end-to-
end probabilistic QoS contract from the contracts negotiated with the requested ser-
vices [RBHJ07, RBHJ08]. See also [Kat11] for fast Monte-Carlo simulation techniques.

97

3.4. A Theory of QoS for Workflows Chapter 3

Algorithm 2: QoS of an arbitrary configuration

1 Let κmax be any maximal configuration of N and κ � κmax a prefix of it. With
reference to 1, perform: step 1 with B any minimal branching cell in κmax \ κ,
step 2 with no change, and then step 4 for any t as in step 2. Performing this
repeatedly yields the pair (vp, qp) for each place p of κmax. ✷

3.4.3 Monotonicity: Results

The monotonicity of an orchestration with respect to QoS is studied in this section,
for the non-probabilistic setting. Extension to the probabilistic setting is discussed in
Section 3.4.4. We provide sufficient and structurally necessary conditions for mono-
tonicity, when QoS is measured in terms of tight end-to-end QoS—missing proofs are
deferred to Appendix. When these conditions fail to hold, then loose end-to-end QoS
can be considered when dealing with contracts, as monotonicity is always guaranteed
when using it. Monotonicity is assumed in the rest of the paper. Also, to simplify the
presentation, the following assumption will be in force:

Assumption 2 QoS functions ξt can be increased at will within their respective domain
of values, independently for each transition t.

This assumption rules out cases in which one requires, e.g., that QoS

functions ξt and ξt′ can be modified at will, but subject to the constraint ξt = ξt′ .
The general case yields similar results, at the price of more complex notations [RBJ09b].

For two families Q and Q′ of QoS functions, write Q′ ≥ Q and Q′
init ≥ Qinit to mean:

∀ω ∈ Ω,∀t ∈ T ⇒ ξ′t(ω) ≥ ξt(ω)
respectively ∀t ∈ T ⇒ Qinit(t) ≥ Qinit(t)

(3.13)

For N ′ = (N,V,Q′, Q′
init) (observe that N and V are unchanged), write

(i) N ′ ≥ N ;

(ii) E(N ′) ≥ E(N);

(iii) F (N ′) ≥ F (N);

to mean that, respectively

(i) Q′ ≥ Q and Q′
init ≥ Qinit both hold;

(ii) ∀ω ∈ Ω, Eω(N
′) ≥ Eω(N) holds;

(iii) ∀ω ∈ Ω, Fω(N
′) ≥ Fω(N) holds.

D̈ı£¡finition 3.4 Call OrchNet N monotonic if

∀N ′ : N ′ ≥ N =⇒ E(N ′) ≥ E(N)

Call OrchNet N loosely monotonic if

∀N ′ : N ′ ≥ N =⇒ F (N ′) ≥ F (N)

The following immediate result justifies considering also the loose end-to-end QoS:

98

Chapter 3 3.4. A Theory of QoS for Workflows

Theorem 1 Any OrchNet is loosely monotonic.

Consequently, it is always sound to base contract composition and contract monitor-
ing [RBHJ08] on loose end-to-end QoS. This, however, has a price, since loose end-to-
end QoS is pessimistic compared to (actual) end-to-end QoS. The next theorem gives
conditions ensuring monotonicity—based on E(N):

Theorem 2 OrchNet N = (N,V,Q,Qinit) is monotonic if and only if:

∀ω ∈ Ω,∀κ ∈ V (N)
=⇒ Eω(κ,N) ≥ Eω(κ(N , ω),N)

(3.14)

where V (N) is the set of all maximal configurations of net N and κ(N , ω) is defined
in (3.9).

Condition (3.14) expresses that 1 implements globally optimal service selection. It is
costly to verify and may not even be decidable in general.

Thus, we develop a structural condition for monotonicity for Orchestration nets N
(Section 3.4.1). Orchestration net N induces an OrchNet NN = (UN , νN , QN , Qinit) by
attaching, to each transition t of the unfolding UN of N , the value and QoS inherited
from N through the unfolding N 7→ UN .

Theorem 3 Let N and UN be as before. A sufficient condition for OrchNet NN = (UN , νN , QN , Qinit)
to be monotonic is that every branching cell B of UN satisfies the following condition:

∀t1, t2 ∈ B, t1 6= t2 =⇒ ϕ(t1)
• = ϕ(t2)

•. (3.15)

If, in addition, every transition of N is reachable and partial order (D,≤) is such that
for every q ∈ D, there exists q′ ∈ D such that q′ > q, then (3.15) is also necessary.

The notion of branching cell is dynamic in that it is defined on the unfoldingUN . We can
propose a simpler structural condition by using the known notion of “cluster” [Mur89]
directly defined on N . For a net N , a cluster is a minimal set c of places and transitions
of N such that

∀t ∈ c =⇒ •t ⊆ c
∀p ∈ c =⇒ p• ⊆ c
∀p ∈ c =⇒ {t ∈ T | ◦t ∋ p} ⊆ c

(3.16)

The third condition accounts for read arcs, whereas the other conditions characterize
clusters for standard Petri nets (without read arcs). It is easily seen that, for B any
branching cell of the unfolding UN (see Section 3.4.1), ϕ(B) ⊆ c, for some cluster c of
N . The following is an immediate consequence of 3:

Corollary 1 A sufficient condition for the OrchNet NN = (UN , νN , QN , Qinit) to be
monotonic is that every cluster c of N satisfies the following condition:

∀t1, t2 ∈ c, t1 6= t2 =⇒ t•1 = t•2. (3.17)

In words, a sufficient condition for monotonicity is that, each time branching has oc-
curred in net N , a join occurs right after.

99

3.4. A Theory of QoS for Workflows Chapter 3

Figure 3.6: Enforcing monotonicity through service aggregation, mid diagram, with δq′
12

=
δq′

1
⊕ δq′

2
and δq′′

12
= δq′′

1
⊕ δq′′

2
. Pessimistic QoS evaluation, right diagram, with δq12 =

δq′
12
∨δq′′

12
.

3.4.4 Probabilistic OrchNets

To account for uncertainties in QoS performance, soft probabilistic contracts were pro-
posed in [RBHJ07], with associated composition and monitoring procedures, for the
particular case of response time. In [RBJ09a, RBHJ08] the above approach was ex-
tended to more general QoS. In this section, we describe the corresponding model of
probabilistic OrchNets, an extension of OrchNets supporting probabilistic behavior of
QoS parameters. Details are found in [RBJ09b].

In probabilistic OrchNets, the nondeterministic QoS functions ξt and initial QoS ξp
are now random, and so are the non-deterministic selections of minima in competition
step of 1. Equivalently, the set Ω for the values of the daemon is equipped with some
probability P. In [RBJ09b], we also study monotonicity of probabilistic OrchNets. To
define monotonicity, we need to give a meaning to (3.13) when ξt is random. This is
achieved by considering the stochastic partial order [Tet77] induced by partial order ≤
defined on D. We briefly recall this notion next—see [RBJ09b] for details. Consider
ideals of D, i.e., subsets I of D that are downward closed: x ∈ I and y ≤ x =⇒ y ∈ I.
Examples of ideals are: for R+, the intervals, [0, x] for all x; for R+ × R+ equipped
with the product order, arbitrary unions of rectangles [0, x] × [0, y]. Now, if ξ has
values in D, we define its distribution function by F (I) = P(ξ ∈ I), for I ranging
over the set of all ideals of D. For ξ and ξ′ two random variables with values in D,
with respective distribution functions F and F ′, define ξ′ ≥s ξ iff for any ideal I of D,
F ′(I) ≤ F (I) holds. With this new interpretation of the order, we show in [RBJ09b]
that Theorems 1–3 are still valid.

3.4.5 Ensuring Monotonicity

1 in Section 3.4.3 provides guidelines regarding how to enforce monotonicity. Consider
again the workflow of Fig. 3.5 and the two alternative branches beginning at the place
labeled with QoS q′0 and ending at the place labeled with the QoS q′2. This pattern is
a source of non-monotonicity as we have seen. One way of enforcing monotonicity is
by invoking 1 in Section 3.4.3. Aggregate the two successive transitions in each branch
and regard the result as a single transition (t′12 for the left branch and t′′12 for the
right branch). The QoS increments of t′12 and t′′12 are equal to δq′12 = δq′1 ⊕ δq′2 and
δq′′12 = δq′′1 ⊕ δq′′2 , respectively. The resulting Orchestration net satisfies the condition
of 1 and thus is monotonic. This process of aggregation is illustrated on Fig. 3.6, mid
diagram.

An alternative to the above procedure consists in not modifying the orchestration

100

Chapter 3 3.5. Summary of the Theory for Practical Use

but rather changing the QoS evaluation procedure. Referring again to Fig. 3.5, isolate
the part of the workflow that is a source of non-monotonicity, namely the subnet shown
on Fig. 3.6, left. For this subnet, use pessimistic formula (3.12) to get a pessimistic but
monotonic bound for the QoS of this subnet. For this example, the pessimistic bound
is equal to δq12 = δq′12∨δq

′′
12. We then plug the result in the evaluation of the QoS of

the overall orchestration, by aggregating the isolated subnet into a single transition t12,
with QoS increment δq12. This is illustrated on Fig. 3.6, right diagram.

The above two procedures yield different results. By aggregating service calls per-
formed in sequence, the first procedure delays the selection of the best branch. The
second procedure does not suffer from this drawback. In turn, it results in a pessimistic
evaluation of the end-to-end QoS. Both approaches restore monotonicity.

3.5 Summary of the Theory for Practical Use

So far we have introduced a rich body of technical material to support contract based
QoS management of data-and-QoS dependent orchestrations. Some of this material was
needed for the soundness of our approach but need not be implemented to perform QoS
management. In this section we collect the key concepts we really need to implement.

Monotonicity Orchestrations must be monotonic in that

if any requested service performs better,
then so will the orchestration.

(3.18)

Our study of monotonicity used the framework of OrchNets in its full depth. For a
high level understanding, the reader may ignore this study and simply remember that
we have effective ways to check or ensure (3.18).

OrchNets as a Practical Framework for QoS The actual use of the framework of Or-
chNets for the practical enhancement of an orchestration language is, indeed, limited.
To implement rich QoS management on top of an orchestration language, we only need
to be able to perform the following:

• To take the proper decision based on QoS regarding competing events, actions,
or service calls while executing an orchestration. Key here is to identify which
events, actions, or service calls are in competition when making this decision.

• To compute the end-to-end QoS of a given execution of an orchestration by com-
posing the QoS of the different services.

To perform the above, we only need to perform the following tasks, while running an
orchestration:

(a) Since the QoS algebra relies on the knowledge of causality relations between
events, actions, or service calls, we need to keep track of causal dependencies
while executing the orchestration.

(b) We must identify which events, actions, or service calls are in competition at each
stage of a given execution of the orchestration.

(c) We need to implement the QoS algebra with its relations and operators

– ⊕ (incrementing QoS),

– ≤ (comparing QoS), and

101

3.6. Implementing Our Approach Chapter 3

– ✁ (resolving competition based on QoS).

(d) Then, we need to be able to compute the end-to-end QoS of an execution of the
orchestration, following Sections 3.3.3 and 3.4.2.

3.6 Implementing Our Approach

We have implemented our approach and we now present two aspects of this implementa-
tion. We first explain how our approach supports separation of concerns in QoS-aware
orchestration modeling. We also illustrate contract composition as a method for QoS-
based design of composite services.

3.6.1 Weaving QoS in Orchestrations

Separation of concerns has been advocated as a recommended design discipline in the
development of complex software systems. The consideration of QoS in composite
services is a source of significant increase in complexity. On the other hand, tight in-
teraction between QoS and the function performed makes QoS a crosscutting concern.
Aspect Oriented Programming (AOP) has been advocated as a solution to support sep-
aration of crosscutting concerns in software development [KLM+97, Kis02]. In AOP,
the different aspects are developed separately by the programmer. Their weaving is
performed using joinpoints and pointcuts, and by having advice refining original point-
cuts. In this section we develop a compile-time weaving of QoS aspects in composite
services.

Observe first that our formal model of OrchNets offers by itself support for sep-
aration of concerns in QoS management. Once the involved QoS domains have been
specified with their algebraic operations, the execution policy of OrchNets (1) entirely
determines how QoS interferes with the execution of the orchestration, see the discus-
sion of the example of Fig. 3.5 in Section 3.3.1.

Van der Aalst’s WF-nets (WFnets) [vdA97, vdAtHKB03, vdAvH02] are a Petri net
formalism and are thus closely related to the functional part of our OrchNets. The
compile-time weaving of QoS into WF-nets is best illustrated by the example of Fig.
3.7, where the XML-like specification explains how a functional description of a com-
posite service can be complemented with its QoS specification. The original functional
specification is BPEL-compliant and is written in boldface. Add-ons for QoS are writ-
ten in italics and consist of the WSLA specification of the Interface, playing the role
of a rich SLA specification. Two QoS domains are declared: RTime (for ResponseTime)
and Cost. These domains come up with the declaration of their associated operators
following Section 3.3.2, namely Cost.leq, Cost.oplus, Cost.vee, Cost.compet

and similarly for RTime—this is not shown on the figure since such QoS domains should
be predefined and available from a library. The Interface also contains, for each called
site, the declaration of the QoS parameters that are relevant to it—site1 knows only
RTime whereas site2 knows the two. The functional part of this specification (shown
in boldface) collects four site calls or returns, each of which constitutes a pointcut.

The QoS-enhanced orchestration is automatically generated from the specification
shown in Fig. 3.7—to save space, we do not show it but we only discuss the steps
performed in generating it. The added code is written in roman . The first step is to
initialize the metrics relevant to the orchestration:

<assign>
<$orch.RTime = 0 />
<$orch.Cost = 0 />

</assign>

102

Chapter 3 3.6. Implementing Our Approach

<SLA>
<SLAParameter name = "ResponseTime"
type = "float" unit = "milliseconds">

<Metric>ResponseTime</Metric>
<Function>

<Metric>ResponseTimeOplus</Metric>
<Metric>ReponseTimeCompare</Metric>
<Metric>ReponseTimeCompete</Metric>

</Function>
</SLAParameter>
<SLAParameter name = "Cost"
type = "integer" unit = "euro">

<Metric>Cost</Metric>
<Function>

<Metric>CostOplus</Metric>
<Metric>CostCompare</Metric>
<Metric>CostCompete</Metric>

</Function>
</SLAParameter>
<ServiceDefinition name="orch">
<MetricURI http://orch.com/getMetric
?ResponseTime />
<MetricURI http://orch.com/getMetric?Cost />
</ServiceDefinition>
<ServiceDefinition name="site1">
<MetricURI http://site1.com/getMetric
?ResponseTime />
</ServiceDefinition>
<ServiceDefinition name="site2">
<MetricURI http://site2.com/getMetric
?ResponseTime />
<MetricURI http://site2.com/getMetric?Cost />
</ServiceDefinition>

</SLA>

<process>
<sequence>

<invoke name = ”site1(-)” ... />
<receive name = ”site1(-)” ... />
<invoke name = ”site2(-)” ... />
<receive name = ”site2(-)” ... />

</sequence>
</process>

Figure 3.7: Separation of concerns in QoS-aware specification. The functional specification is
depicted last in boldface, whereas the QoS part is shown in italics on top in the form of a
rich SLA specification.

The sequence begins with the initialization of the response time carried by the token
using the <assign> declaration. Concurrent invocation of the site(-) and clock =

site.clock.store follow, using the <flow></flow> declaration. Once the site(-)

returns, the difference between the current clock and site.clock.store is assigned
to site.RTime . Resulting weaving is obtained by applying the generic rewriting rule
shown on Fig. 3.8. The same mechanism is used for the response time of site2 and
the end-to-end response time of the orchestration follows by adding the above two.
Each pointcut shown in boldface in this figure is refined by the corresponding advice
(in roman) following it.

The end-to-end evaluation of Cost for the orchestration is computed in a different
way, because this kind of QoS is individually carried by the tokens representing the
queries while being processed by the orchestration. Since Cost is relevant to site2 by
interface declaration in Fig. 3.7, the call to site2 is augmented with the return of the
cost of calling site2 . This weaving is obtained by applying the generic rewriting rule

103

3.6. Implementing Our Approach Chapter 3

<sequence>
<invoke name = ”site(-)” />
...
<receive name = ”site(-)” />
</sequence>

rewrites as:

<sequence>
<flow>

<invoke name = ”site(-)” />
<sequence>

<invoke "clock()"/>
<receive "clock()"

outputVariable = "clock"/>
<assign>

<$site.clock.store = $clock />
</assign>

</sequence>
</flow>
...
<flow>

<receive name = ”site(-)” />
<sequence>

<invoke "clock()"/>
<receive "clock()"

outputVariable = "clock"/>
<assign>

<$site.RTime =
$clock - $site.clock.store />

<$orch.RTime =
$orch.RTime + $site.RTime />

</assign>
</sequence>

</flow>
</sequence>

Figure 3.8: Rewriting rule for weaving response time.

<sequence>
<invoke name = ”site(-)”/>
<receive name = ”site(-)”/>
</sequence>

rewrites as:

<sequence>
<invoke name = ”site(-)” />
<receive name = ”site(-)”

outputVariable = "site.Cost" />
<assign>

<$orch.Cost =
$orch.Cost + $site.Cost />

</assign>
</sequence>

Figure 3.9: Rewriting rule for weaving cost.

of Fig. 3.9. Here, the invoke pointcut is not refined, only the receive is refined, by
the advice code (in roman) following it.

The automatic generation of the augmented program from the original specification
is a direct coding of the 1. Rules for other constructions such as the firing of a transition
with several input places and the competition when a token exits a place with possible
choices, are derived similarly, following 1. For general WFnets, we must keep track of
the different tokens and attach QoS values to them. This amounts to keeping track
of causalities between site calls that result from the WFnet. To support the weaving,

104

Chapter 3 3.6. Implementing Our Approach

pointcuts need not be explicitly declared by the programmer. They are instead obtained
by pattern matching searching for keywords invoke and receive in the functional
specification.

Instead of developing a tool implementing the above technique for WFnets, we
have performed a prototype implementation on top of the Orc orchestration language.
This is explained in the next section and subsequently illustrated using the TravelAgent2

example of Fig. 3.2.

3.6.2 Upgrading Orc for QoS

Background on Orc Orc [CPM06b] is a general purpose language aimed to encode
concurrent and distributed computations, particularly workflows and Web service or-
chestrations. An orchestration described in Orc is essentially an Orc expression. An
Orc expression is either a site or is built recursively using any of the four Orc combina-
tors. A site models any generic service. A site can be called with a list of parameters,
and all these parameters’ values have to be defined before the call can occur. A call
to a site returns (or publishes) at most one value; it may also halt without returning
a value. The identity site, which publishes the value x it receives as a parameter, is
denoted by x (the name of its parameter). Orc allows composing service calls or actions
by using a predefined small set of combinators that we describe next. In the parallel
composition f | g, expressions f and g run in parallel. There is no direct interaction
between parts of f and g and the returns are merged by interleaving them. The se-
quential composition f >x> g starts by running f . For every value v published by f , a
new instance of g is run in parallel, with the value of x bound to v in that instance. As
a particular case, f≫g performs f and then g, in sequence. The pruning composition
f <x< g runs f and g in parallel. When g publishes its first value v, the computation
of g is terminated, and occurrences of x in f are replaced by v. Since f is run in parallel
with g, site calls in f that have x as a parameter are blocked until g publishes a value.
Finally, the otherwise combinator f ; g runs f first. If f publishes a value, g is entirely
ignored. However if the computation of f halts, then g is run. Orc also has built in
sites to track passage of time (Rclock, Rwait), deal with data structures (tuples, lists,
records), handle concurrency (semaphores, channels) and define new sites (class). An
interested reader is referred to the Orc documentation 5 for details.

Upgrading Orc We now describe how we integrate our QoS framework into the Orc
language. In particular, we explain how we perform the four tasks (a), (b), (c), and
(d), of Section 3.5 within Orc.

The first task (a) is to track the causal relations between execution events in the
Orc interpreter. This was straightforward for WFnets, since causality is revealed by the
graph structure of the net. It is not immediate for Orc programs, however. The event
structure semantics of Orc [RKB+07] served as a formal specification for this. It turns
out that causality can be cast into our generic algebraic framework for QoS developed in
Section 3.3.3. Causalities are represented as pairs x = (e, C), where e is the considered
event and C = {x1, . . . , xk} is the set of its direct causes, recursively encoded as pairs
of the same kind. The QoS domain encoding causalities is defined similarly to the
QoS domain “Cost” of Section 3.3.2. Consequently, the generic technique developed to
weave QoS into an Orc program can be instantiated to generate causalities. Details
will be reported elsewhere. As a small illustration example, consider the computation
of causalities for the following Orc program:

((2 ≫ x) <x< (1 ≫ 3)) ≫ print(4)

5http://orc.csres.utexas.edu/documentation.shtml

105

http://orc.csres.utexas.edu/documentation.shtml

3.6. Implementing Our Approach Chapter 3

We apply our generic weaving method by seeing causality as a QoS domain. We make
use of two data structures in Orc : tuples, such as (f, g) and finite lists, such as [f, g].
The causal history is stored as a list of lists with the tuple (publication, causal past)
published in the transformed program. The weaving yields the following causality-
enhanced Orc program:

(
((
((((2, []) >t> (x >(x0,)> (x0, union([x], [t])))) <x<
((((1, []) >t> (3, [t]))
() >t> ((”print”, [t]) >x0> (print(4), [x0]))
)

The first event has an empty causal past (represented by []). Through pattern matching,
this is propagated to the next event with causal history accumulated. The output of
its execution yields the partial order of causes of the publication of print(4):

4(signal, [(print, [(3, [(3, [(1, [])]), (2, [])])])])

So far for task (a). Focus now on task (b). In its basic form, Orc does offer a way
to select one publication among several candidate ones, namely by using the pruning
operator. Indeed, in the Orc expression

f <x< (E1 | E2 | · · · | En) (3.19)

the first publication by E1, E2, . . . , or En, preempts any future publication of the
parallel composition g∆E1 | E2 | · · · | En. Since only one publication of g is picked,
all possible publications of g are in mutual conflict when in the context of (3.19). One
can regard (3.19) as implementing task (b) for the particular case when the conflict is
resolved on the basis of the time of occurrence of the conflicting publications, seen as
a QoS parameter—only the earliest one survives. We propose to lift the Orc pruning
operator by resolving the conflict on the basis of an arbitrary QoS parameter q given
as a parameter of the generalized pruning:

f <x<q (E1 | E2 | · · · | En) (3.20)

Expression (3.20) is macro-expanded in core Orc for the case where f is the identity:

x <x<q (E1 | E2 | · · · | En) (3.21)

∆ x <x< sortq(E1 | E2 | · · · | En)

where expression sortq(E1 | E2 | · · · | En) stores as a stream all publications of
(E1 | E2 | · · · | En) upon termination and then reorders this stream according to
the partial order defined by QoS parameter q.6 For the special case where QoS pa-
rameter q is just the response time d, then x <x<d (E1 | E2 | · · · | En) boils down to
x <x< (E1 | E2 | · · · | En), the original pruning operator.

Task (c) of implementing the QoS algebra is handled as in the SLA declarations of
Section 3.6.1.

Finally, task (d) is much less obvious than for WFnets. The reason is that Orc
does not handle explicitly states, transitions, and causality. Rewriting rules are needed
that automatically transform functional Orc code by enhancing it for QoS, structurally.
This resembles what we briefly presented regarding causality. Details will be presented
elsewhere.

6Since QoS values may be partially ordered, this choice could be non-deterministic.

106

Chapter 3 3.7. Evaluation of Our Approach

3.6.3 The TravelAgent2/3 Example in Orc

The TravelAgent2 orchestration is specified in Orc following the informal specification
of Section 3.1. In addition, declarations for contractual specifications of the overall
orchestration (Fig. 3.2) are included. The QoS-weaved description as in Section 3.6.2
is also provided to efficiently handle data and QoS.

SLA Declaration

For the TravelAgent2 example, the chosen QoS metrics are:

1. Inter-Query Time: This metric specifies the ordering ≤ of inter-query intervals
for each site. For this metric the ⊕ operator is not specified, since QoS is not
incremented when traversing sites.

2. Response Time: This metric specifies the order ≤, increment ⊕ and synchro-
nization ∨ of response time values. The simulation clock is used to compute
the latency between site call and return, which is then passed through a QoS
enhanced token. The bestQoS operator is used to choose among the competing
values according to the order specified.

3. Cost : This class is known by site Cost() treated as described in Section 3.3.2. The
partial ordering ≤, competition ✁ as bestQoS, increment ⊕ and synchronization
∨ are specified.

The declaration of the QoS operators and algebra is presented in Fig. 3.10 for the
TravelAgent2 orchestration. We make use of the def class declaration to implement
new sites to track QoS metrics. Data structures and operations on records {. .},
lists [f, g] and tuples (f, g) are used. Other general sites available in Orc such as real
time (Rtime) rewritable storage locations (Ref and FIFO channels (Channel) are also
invoked.

QoS Weaving

The QoS-weaved specification of the TravelAgent2 orchestration is provided with the
original functional specification in bold(Fig. 3.11) and the QoS specification in roman
(Fig. 3.12). The algebra specified in Fig. 3.10 is added as advice code to sites spec-
ifying the necessary QoS domains. Increments to domains Cost and ResponseTime are
accumulated as the control flow progresses in the orchestration.

The general purpose Dictionary site is used as a mutable map from field names
to values, references to which are accessed using . access. Values held by references
are obtained using x? (equivalent to x.read()) and set using x := y (equivalent to
x.write(y)).

The advantage of abstracting away such QoS manipulation is that the end-to-end
QoS may be extracted as an aspect of the functional specification. The code is installed
on the Orc site at url http://orc.csres.utexas.edu/papers/bjkrt2012tse.sht ml ,
from where it can be run.

3.7 Evaluation of Our Approach

In this section, we make use of our implementation for performing contract composition,
that is, estimating the end-to-end QoS of the TravelAgent2 and TravelAgent3 examples.
The former is monotonic whereas the latter is not. Our study illustrates the effect of
monotonicity and substantiates the need for the rich theory developed in this paper.

107

http://orc.csres.utexas.edu/papers/bjkrt2012tse.shtml

3.7. Evaluation of Our Approach Chapter 3

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))

def class InterQueryTime()=
def QoS(sitex) =

val s = {. r = Ref(0), c = Channel() .}
val curTime = Rclock().time()
s.r? >p>
(s.c.put(curTime-p) | s.r := curTime) >>
Dictionary() >sitex>
sitex.InterQueryTime := s >>
stop

def QoSCompare(it1, it2) = it1 >= it2
def QoSCompete(it1, it2) = bestQoS(QoSCompare, [it1, it2])
stop

def class ResponseTime() =
def QoS(sitex, d) = Rclock().time()-d >q> q
def QoSOplus(rt1, rt2) = rt1+rt2
def QoSCompare(rt1, rt2) = rt1 <= rt2
def QoSCompete(rt1, rt2) = bestQoS(QoSCompare, [rt1, rt2])
def QoSVee(rt1, rt2) = max(rt1, rt2)
stop

def class Cost() =
def QoS(sitex, c)=

val s = Ref([])
s? >x> QoSOplus(x, []) >q> s := q >> Dictionary() >sitex>
sitex.Cost := s

def QoSOplus(c1, c2) =
def Oplus([], []) = []
def Oplus(x:xs, y:ys) = (x+y):Oplus(xs, ys)
Oplus(c1, c2)

def QoSCompare(c1, c2) =
def Compare([], []) = true
def Compare(x:xs, y:ys) = (x <= y) && Compare(xs, ys)
Compare(c1, c2)

def QoSCompete(c1, c2) = bestQoS(QoSCompare, [c1, c2])
def QoSVee(c1, c2) =

def Vee([], []) = []
def Vee(x:xs, y:ys) = max(x, y):Vee(xs, ys)
Vee(c1, c2)

stop

Figure 3.10: Declaration of the SLA for the TravelAgent2 orchestration.

The experiments

Each orchestration is specified as a QoS weaved specification such as explained in Ap-
pendix. For each trial, QoS values for each called site are drawn according to their
specified contracts and then our automatic QoS evaluation procedure applies—we will
actually use both the normal QoS evaluation from (3.11) and the “pessimistic” QoS
evaluation from (3.12) and compare them. Drawing 20, 000 successive trials yields, us-
ing Monte-Carlo estimation, an estimate of the end-to-end contract in the form of a
probability distribution. QoS dimensions considered here are latency, cost, and cate-
gory. When choices are performed according to two dimensions or more (e.g., cost and
category), we make use of a weighing technique following AHP [Tho90].

Fig. 3.13 displays the results of two experiments, corresponding to two different sets
of contracts exposed by the called sites, shown on diagrams (a) for latency, and (c) for
cost. In order to evaluate the end-to-end QoS of the TravelAgent 2/3 orchestrations in
a realistic setting, the AirlineCompany and HotelBooking sites are modeled as distributed
applications hosted on a GlassFish 3.1 server on the INRIA local area network—each
call to AirlineCompany or HotelBooking results in a parallel call to one of the above men-
tioned GlassFish applications and the corresponding latency is recorded and used for
end-to-end QoS evaluation. Other sites are assumed to react much quicker and are

108

Chapter 3 3.7. Evaluation of Our Approach

val AirlineList = [”Airline 1”, ”Airline 2”]
val HotelList = [”Hotel A”, ”Hotel B”]

--BestQoS and simulation utilities
def bestQ(comparer, publisher) = head(sortBy(comparer, collect(publisher)))
def cat() = if (Random(1) = 1) then ”Economy” else ”Premium”
val simElapsedTime = Rclock()

--TravelAgent definition
def TravelAgent(SalesOrder, Budget) =

def inquireCost(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := Random(100)
>> ProductDetails

def inquireCategory(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := Random(100) >>

ProductDetails.category := cat() >> ProductDetails

def compareCost(x, y) = x.cost? <= y.cost?
def compareCategory(x, y) = if x.category ?= ”Economy” then false else
if y.category ?= ”Economy” then true else compareCost(x, y)

def SubmitOrder(SalesOrder, Budget) = Dictionary() >GenerateInvoice>
GenerateInvoice.TravelAgent := SalesOrder.ordernumber? >>

GenerateInvoice.acceptedTime := simElapsedTime.time() >>

Println(”Order ”+GenerateInvoice.TravelAgent?+” accepted at time ”
+GenerateInvoice.acceptedTime?) >> (GenerateInvoice, Budget)

def AirlineCompany(GenerateInvoice) = bestQ(compareCost,
defer(inquireCost, AirlineList)) >q> GenerateInvoice.AirQuote := q

def HotelBooking(GenerateInvoice) = bestQ(compareCategory,
defer(inquireCategory, HotelList)) >q> GenerateInvoice.HotelQuote := q

def CheckBudget(GenerateInvoice, Budget) = if (GenerateInvoice.AirQuote?.cost? +
GenerateInvoice.HotelQuote?.cost? <: Budget) then GenerateInvoice else
(Println(”Resubmit Order ”+GenerateInvoice.TravelAgent?)>> Dictionary()
>SalesOrder> SalesOrder.ordernumber := GenerateInvoice.TravelAgent? >>

(SalesOrder, SubmitOrder(SalesOrder, Budget)))

def timeout(x, t, SalesOrder) = Let(Some(x) |
(Rwait(t) >> notifyFail(SalesOrder, ”Timeout”) >> None()))

def notifyFail(SalesOrder, reason) =
Println(”Order ”+SalesOrder.id?+” failed: ”+reason) >> stop

timeout((SubmitOrder(SalesOrder, Budget) >(GenerateInvoice, Budget)>
AirlineCompany(GenerateInvoice) >> HotelBooking(GenerateInvoice) >>

CheckBudget(GenerateInvoice, Budget)) , 2000, SalesOrder)
>Some(GenerateInvoice)> GenerateInvoice

--Simulation
def simulateOrders(n) = Dictionary() >SalesOrder>
SalesOrder.ordernumber := n >> Println(”Order ”+n+” created”) >> SalesOrder
| Rwait(Random(100)) >> simulateOrders(n+1)

simulateOrders(1) >SalesOrder> TravelAgent(SalesOrder, 50) >GenerateInvoice>
Println(”Invoice for order ”+SalesOrder.ordernumber?+”
presented at time ”+simElapsedTime.time()) >>stop

Figure 3.11: Orc functional specification.

drawn from a Student-t distribution, not shown in the figures. Costs, on the other
hand, are drawn from some Gaussian distributions (with small variance/mean ratio);
note that we could as well have costs deterministic, this would not change our method.
The random numbers and distributions were generated using the built-in functions in
the MATLAB statistics toolbox7. For N Monte-Carlo runs of the orchestration, the
simulation time considering the response time δ, MATLAB proccessing time µ and
timeout T would be

∑N
i=1 (max(δi, T) + µi).

Fig. 3.13 displays the estimated end-to-end QoS in diagrams (b) for latency and
(d) for cost. The results are shown for both the normal QoS evaluation from (3.11) and
the “pessimistic” QoS evaluation from (3.12). Not surprisingly, pessimistic evaluation
yields larger end-to-end QoS estimates.

Now, recall that TravelAgent2 is monotonic, whereas TravelAgent3 is not. What are
the consequences of this? In Fig. 3.13-right, the cost for AirlineCompany2 has been re-
duced as compared to Fig. 3.13-left. For the monotonic orchestration TravelAgent2, this
reduction results in a reduction of the overall cost. For the non-monotonic orchestration
TravelAgent3, however, this reduction gives raise to an increase in overall cost. On the
other hand, pessimistic QoS evaluations are always monotonic, see 1; the results shown

7http://www.mathworks.com/products/statistics/

109

http://www.mathworks.com/products/statistics/

3.7. Evaluation of Our Approach Chapter 3

--include the SLA Declaration sites
include "SLADeclaration.orc"

val AirlineList = [”Airline 1”, ”Airline 2”]
val HotelList = [”Hotel A”, ”Hotel B”]

--BestQoS and simulation utilities
def bestQ(comparer, publisher) = head(sortBy(comparer, collect(publisher)))
def cat() = if (Random(1)=1) then ”Economy” else ”Premium”
val simElaspedTime = Rclock()
val RTimer = Ref(0)

--TravelAgent definition
def TravelAgent(SalesOrder, Budget, ResponseTime, Cost) =

def inquireCost(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := Random(100) >>

ProductDetails
def inquireCategory(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := Random(100) >>

ProductDetails.category := cat() >> ProductDetails

def compareCost(x, y) = x.cost? <= y.cost?
def compareCategory(x, y) = if x.category ?= ”Economy” then false else if
y.category ?= ”Economy” then true else compareCost(x, y)

def SubmitOrder(SalesOrder, Budget) = (Dictionary() >GenerateInvoice>
GenerateInvoice.TravelAgent := SalesOrder.ordernumber? >>

GenerateInvoice.acceptedTime := simElaspedTime.time() >> Println(”Order ”
+GenerateInvoice.TravelAgent?+” accepted at time ”+GenerateInvoice.acceptedTime?)
>> (GenerateInvoice, Budget), Rclock().time())
>((GenerateInvoice, Budget), d)> ((GenerateInvoice, Bud get),
ResponseTime().QoS(SubmitOrder, d))

def AirlineCompany(GenerateInvoice, Cost) = (bestQ(compareCost,
defer(inquireCost, AirlineList)) >q> GenerateInvoice.AirQuote := q >>
Cost().QoS(AirlineCompany, [q]), Rclock().time()) >(q, d)>
(q, ResponseTime().QoS(AirlineCompany, d))

def HotelBooking(GenerateInvoice, Cost) = (bestQ(compareCategory,
defer(inquireCategory, HotelList)) >q> GenerateInvoice.HotelQuote := q >>
Cost().QoS(AirlineCompany, [q]), Rclock().time()) >(q, d)>
(q, ResponseTime().QoS(HotelBooking, d))

def CheckBudget(GenerateInvoice, Budget, Cost) = (if
(GenerateInvoice.AirQuote?.cost? + GenerateInvoice.HotelQuote?.cost? <: Budget)
then GenerateInvoice else (Println(”Resubmit Order ” +GenerateInvoice.TravelAgent?+
” with bigger budget”)>> Dictionary() >SalesOrder> SalesOrder.ordernumber :=
GenerateInvoice.TravelAgent? >> (SalesOrder, SubmitOrder(SalesOrder, Budget)))
>r> Cost().QoSOplus(GenerateInvoice.AirQuote?, Genera teInvoice.HotelQuote?) >v>
Cost().QoSCompete(v, Budget) >> r, Rclock().time()) >(r, d)>
(r, ResponseTime().QoS(CheckBudget, d))

def timeout(x, t, SalesOrder) = Let(Some(x) | (Rwait(t) >>

notifyFail(SalesOrder, ”Timeout”) >> None()))
def notifyFail(SalesOrder, reason) = Println(”Order ”+SalesOrder.id?+”
failed: ”+reason) >> stop

SubmitOrder(SalesOrder, Budget) >((GenerateInvoice, Budget), RT)>
timeout((AirlineCompany(GenerateInvoice, Cost) >(q, RT1)> (q,
ResponseTime().QoSOplus(RT, RT1)) >(q, RT)>
HotelBooking(GenerateInvoice, Cost) >(q, RT2)> (q,
ResponseTime().QoSOplus(RT, RT2)) >(q, RT)>
CheckBudget(GenerateInvoice, Budget, Cost)) >(r, RT3)> (r,
ResponseTime().QoSOplus(RT, RT3)) >(r, RT)>
RTimer := RT >> r, 2000, SalesOrder) >Some(r)>
(GenerateInvoice, ResponseTime().QoSCompete(RTimer?, 2000))
>(GenerateInvoice, RT)> (GenerateInvoice, RT)

| InterQueryTime().QoS(TravelAgent)

--Simulation
def simulateOrders(n) = Dictionary() >SalesOrder> SalesOrder.ordernumber := n
>> Println(”Order ”+n+” created”) >> SalesOrder |
Rwait(Random(100)) >> simulateOrders(n+1)

simulateOrders(1) >SalesOrder> TravelAgent(SalesOrder, 50, ResponseTime,
Cost) >GenerateInvoice> Println(”Invoice for order ”+SalesOrder.ordernumber?+”
presented at time ”+simElaspedTime.time()) >> stop

Figure 3.12: Orc QoS-weaved specification

conform to this theorem.

Once these end-to-end measurements are taken, the negotiation of contracts and
their monitoring may be done as in [RBHJ07, RBHJ08]. This follows the Monte-Carlo
procedure explained in [RBHJ07, RBHJ08] and is thus omitted.

110

Chapter 3 3.7. Evaluation of Our Approach

(a)

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
um

. D
en

si
ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
um

. D
en

si
ty

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2 (11)
TravelAgent2 pessimistic (12)
TravelAgent3 (11)
TravelAgent3 pessimistic (12)

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2
TravelAgent3

(b)

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
um

. D
en

si
ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
um

. D
en

si
ty

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2 (11)
TravelAgent2 pessimistic (12)
TravelAgent3 (11)
TravelAgent3 pessimistic (12)

TravelAgent2
TravelAgent3

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

Figure 3.13: We show results from two experiments. For each experiment we display cumula-
tive densities of: (a) Measured latency of invoked services (b) End-to-end latency for TravelAgent
2/3 orchestrations through two evaluation schemes (c) Measured cost of invoked services (d)
Returned cost invoice of TravelAgent 2/3 orchestrations.

Discussion

When dealing with monotonic orchestrations, our contract composition procedure per-
forms at once, both QoS evaluation and optimization. Competing alternatives are
captured by the different choices occurring in the orchestration. According to 1, choice
among competing alternatives is by local optimization, which implements global opti-
mization since the orchestration is monotonic. Despite the use of Monte-Carlo simula-
tions, this simple policy is cheaper than global optimization, even if analytic techniques
are used for composing probabilistic QoS. Furthermore, when applied at run time, 1
implements late binding of services with optimal selection in a very cheap way.

Of course, there is no free lunch. If the considered orchestration is not monotonic,

111

3.8. Conclusion Chapter 3

the above approach does not work as such, as already pointed out in [ZBN+04, AP05,
AR09a], see Section 3.2. The bypasses developed in Section 3.4.5 must be used. The
aggregation procedure results in aggregating sites that are called in sequence, which
increases granularity of the orchestration. When applied in the context of late binding,
the decision is delayed until alternatives have all been explored—thus, it is hard to
claim that late binding has been achieved by doing so. If pessimistic evaluation is
followed, then immediate choices can be applied but, as we said, the end-to-end QoS
evaluation that results is pessimistic in that the evaluation accumulates worst QoS
among alternatives. So, none of the above techniques is fully satisfactory for non-
monotonic orchestrations. In turn, global optimization always applies and implements
best service selection—however, we question the meaning of QoS aware management
when orchestrations are non-monotonic.

3.8 Conclusion

We have studied the QoS aware management of composite services, with emphasis on
QoS-based design and QoS-based on-line service selection. We have advocated the im-
portance of monotonicity—a composite service is monotonic if a called site improving
its QoS cannot decrease the end-to-end QoS of the composite service. Monotonicity
goes hand-in-hand with QoS, as we think. For monotonic orchestrations, “local” and
“global” optimization turn out to be equivalent. This allowed us to propose simple
answers to the above tasks. Corresponding techniques are valid for both determinis-
tic and probabilistic frameworks for QoS. We have proposed techniques to deal with
the lack of monotonicity. We have observed that the issue of monotonicity has been
underestimated in the literature.

To establish our approach on firm bases, we have proposed an abstract QoS calculus,
whose algebra encompasses most known QoS domains so far. How QoS based design
and on-line service selection are performed in our approach is formalized by the model
of OrchNets. Our framework of QoS calculus and OrchNets supports multi-dimensional
QoS parameters, handled as partial (not total) orders. To account for high uncertainties
and variability in the performance of Web services, we support probabilistic QoS.

QoS and function interfere; still, the designer expects support for separation of con-
cerns. We provide such a support by allowing for separate SLA declaration and func-
tional specification, followed by weaving to generate QoS-enhanced orchestrations. Our
weaving techniques significantly clarifies the specification. Finally, we have proposed a
mild extension of the Orc orchestration language to support the above approach—the
principles of our extension could apply to BPEL [BPE07] as well.

We believe that our approach opens new possibilities in handling orchestrations
with rich QoS characteristics.

112

Chapter 3 3.8. Conclusion

Table 3.2: Literature survey: Papers dealing with orchestrations allowing for a data-
dependent workflow (thus exhibiting a risk of non-monotonicity). The issue of mono-
tonicity is ignored, except in the work of the authors of this paper and in Ardagna
et al. [AP05], Alrifai & Risse [AR09a] and Zeng et al. [ZBN+04] where it is identified
through the discussion on global versus local optimization.
Paper Probabilistic QoS? Algorithms to address Activities 1, 2,

and 3
Yu and Bouguettaya (2008)
[YB08]

QoS parameters can be defined as “the
prob. of something”, composition rules
are proposed

Extensive study of QoS algebra
Optimization of service selection by Dynamic
Programming applied to the orchestration
modeled as a directed graph

Bistarelli and Santini (2009,
2009) [BS09a],[BS09b]

Probabilistic QoS supported
Analytic techniques for composing
component QoS to get overall service QoS

Formal language based on semirings used to
aggregate QoS
However, composition rules for QoS are not
detailed

Frolund and Koistenen (1998)
[FK98]

Probabilistic QoS supported
presents the QML language for QoS
specifications in component based systems

Rich specification of contracts
No formal mathematical analysis of QoS aspects

Sato and Trivedi (2007) [ST07] Probabilistic QoS supported for
performance and reliability

Precise evaluation of reliability and performance
characteristics in the presence of failures

Marzolla and Mirandola
(2007) [MM07]

Probabilistic QoS supported for response
time and throughput using queuing
network models

Performance bounds for quick identification of
bottlenecks in orchestrations

Gilmore et al. (2011)
[GGK+11]

Probabilistic QoS supported through
UML MARTE profile for
latency/throughput only

UML4SOA supports rich and extensible QoS
definitions
Analysis of QoS via mapping of UML activity
diagrams to PEPA timed process algebra

Ivanovic et al. (2010) [ICH10]; Probabilistic QoS not supported Data-aware QoS estimations used in run-time
adaptation and monitoring

Canfora et al. (2006, 2008)
[CPEV05b, CPEV05a,
CPE+06, CPEV08]

Probabilistic QoS not supported Techniques to “re-bind” alternative services are
extensively studied.

Cardoso et al. (2002, 2004)
[CSM02, CSM+04]

Probabilistic QoS supported but with
little details
Composition of QoS values explained but
composition of QoS distributions not
explained

Generic formulae presented with rules for
composing workflows’ QoS and tested on a
genome based workflow.

Hwang et al. (2004,2007)
[HWSP04, HWTS07]

Probabilistic QoS supported
Analytic techniques for QoS composition

Efficient approximations for the analytic
evaluation of Probabilistic QoS composition are
proposed

Menascé et al. (2008)
[MCD08]

Probabilistic QoS supported
Analytic techniques for QoS composition,
mathematical details provided

Optimal service selection precisely formulated
and solved with an efficient heuristic

Zheng et al. (2011) [ZYZB11] Probabilistic QoS supported
Both Simulation and Analytic techniques
for QoS composition

Simulation and Analytic techniques are compared

Calinescu et al. (2011)
[CGK+11]

Probabilistic QoS supported
Analytic techniques for QoS composition
(Markov models, DMC, CMC, MDP)

Using probabilistic temporal logic, formally
specifies QoS
Extensive toolkit and model checkers used to
implement Activities 1–4 but little details on
algorithms

Zeng et al. (2004, 2008, 2003)
[ZBN+04],[ZNB+08, ZBD+03]

Probabilistic QoS supported (restricted to
Gaussian distributions)
Analytic techniques for QoS composition

Integer programming formulation
Compares global constraints and local
optimization in dynamic environments
Issue of monotonicity pinpointed through
discussion of local vs. global QoS optimization

Ardagna et al.(2005) [AP05];
Alrifai & Risse(2009) [AR09a]

Probabilistic QoS not supported QoS-aware service selection solved via Mixed
Integer Linear Programming / Multi-dimension
Multi-choice 0-1 Knapsack Problem (MMKP)
Issue of monotonicity pinpointed through
discussion of local vs. global QoS guarantees

Rosario et al. (2007, 2008,
2009)
[RBHJ07, RBHJ08, BRBH09]

Probabilistic QoS supported, Soft
Probabilistic contracts restricted to
latency
Monte-Carlo simulation for QoS
composition

In-depth study of monotonicity
Contract composition and optimal service binding
Statistical QoS contract monitoring

Rosario et al. (2009)
[RBJ09b, RBJ09a]

Probabilistic multi-dimensional QoS
supported, Soft Probabilistic contracts
Monte-Carlo simulation for QoS
composition

Probabilistic monotonicity
Preliminary version of this paper

113

3.8. Conclusion Chapter 3

114

Chapter 4

Leveraging Causality for QoS
Tracking in Service Oriented
Systems

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Ajay Kattepur, Albert Benveniste
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

John Thywissen
Dept. of Computer Science,
The University of Texas at Austin, U.S.A.

Abstract

Service Oriented Architectures (SOA) allow individual software components (services)
to autonomously describe their functionalities in order to be composed into more com-
plex services. Such compositions can involve many structured interaction paradigms
such as concurrency, access control mechanisms and shared memory references. Causal-
ity of events in such environments is a crucial tool for analysis of event traces, diagnosis
of faulty behavior and more generally tracking Quality of Service (QoS) metrics. In
this paper, we make use of the concurrent programming language Orc to describe in-
teractions in service oriented systems. Building on the formal semantics of Orc, we
provide transformation rules to equip Orc events with their causal histories. As a con-
sequence, we demonstrate that QoS increments produced by events can be tracked in
service oriented systems. The transformations are implemented as rewriting rules over
the Orc Intermediary Language (OIL), which is an abstract syntax tree using only the
core Orc calculus.

115

4.1. Introduction Chapter 4

4.1 Introduction

Service Oriented Systems [Erl05] have received considerable attention due to the abil-
ities of individual components to be platform agnostic while allowing integration with
other such components. A key driver is the use of web services [ACKM04] to inte-
grate individual functionalities with structured control flows, thus leading to composite
services.

The execution of such systems can have many concurrent parties and threads in-
teracting. In such systems, the number of execution paths can be large, leading to
indeterminate outcomes. Moreover, shared resources such as references can be a source
of indeterminacy which requires access control privileges; absence of this can lead to
deadlock in many cases. Techniques to understand events and their causes are needed
both to understand the global states and for fault diagnosis.

More generally, some knowledge about causal dependencies is critical in computing
Quality of Service (QoS) metrics. As an example, latency of a service obviously depends
of the causal structure of its internal events. The latency of the execution of concurrent
events will result in the maximum latency of each event, while the latency of causally
related events will be the addition of latency values. Tracking causality can also be
leveraged to compute security levels, reliability and cost increments associated with
each events - useful metrics for characterizing QoS in SOA systems.

Causality [SM94] has been studied the context of distributed systems by making use
of partial orders in local clocks. While other techniques such as logical time [Lam78]
or event structures [RKB+08] have been used in distributed environments, practical
tools for programmers of service oriented systems needs some work. The reasons for
extracting the causality between events are:

1. Concurrency Aware Debugging - Trace executions in distributed systems can have
many possible outcomes due to various sources of non-determinacy introduced at
the program/compiler level. However, the partial order executions provided by
the causality are not prone to this and may be reproduced on multiple engines.
Hence, debugging may be performed more accurately in concurrent systems using
causality rather than traces.

2. QoS aware evaluation - The causality produced can be extended to tracking and
aggregating QoS. While a causally aware event produces its causal past, a QoS
aware event provides the QoS increment for each associated domain.

3. Execution platform constraints - Though many distributed applications may have
multi-threaded semantics, at the token level this may be converted to a single
thread (for token/program optimization). Such executions are not observed unless
the causality is carefully observed between events in multi-threaded systems.

In this paper, we begin with the formalism proposed in the concurrent programming
language Orc [KQCM09]. It is an elegant way to describe interactions in service oriented
environments. We propose to extend the outputs produced by such Orc programs to
include causal histories given in terms of partial orders of events (site calls, site returns
and publications).

We give rules to transform a given Orc program into one that can track the causality
of executed events. Causal history is presented along with each event and can be used
for failure diagnosis and thread management in distributed systems. This is extended
to tracking QoS in addition to causality with similar transformation rules. The imple-
mentation of this is done in the Orc Intermediary language (OIL) level, that makes use
of the core Orc calculus in XML form. We envision this approach to be generic and

116

Chapter 4 4.2. Orc syntax

one that can be applied to other concurrent formalisms for tracking causality / QoS
increments.

The rest of this chapter is arranged as follows: An overview of the Orc semantics
and OIL language is provided in Section 4.2. The transformation rules and examples
of causality aware Orc are presented in Section 4.3. Extension of these rules for QoS
tracking are provided in Section 4.4.

4.2 Orc syntax

The abstract syntax of Orc is given in Table 4.1. The invocation of an orchestration
occurs by calling the unique main Expression of an Orc program. It may contain
statements on Definitions, Values and Parameters passed to the orchestration. The
evaluation could return zero or multiple results.

D ∈ Definition ::= def y(x̄) = f
f, g, h ∈ Expression ::= p | p(p̄) | ?k |

f | g | f >x> g | f <x< g | f ; g | D f
v ∈ Orc Value ::= V | D
w ∈ Response ::= V | D | stop
p ∈ Parameter ::= V | D | stop | x
n ∈ Non-publication Label ::= Vk(v̄) | k?w | τ | ⊥
l ∈ Label ::= !v | n

Table 4.1: Abstract syntax of the Orc Calculus.

Internal semantics of Orc is presented in Table 4.2. The semantics is operational,
asynchronous, and based on labeled transition systems. As is common in small-step
operational semantics, the syntax of Orc must be extended to represent intermediate
states. ?k is used to denote an instance of a site call that has not yet returned a value,
where k is a unique handle that identifies the call instance. A publication event, !v,
publishes a value v from an expression and τ denotes an internal event.

A site call involves three steps: invocation of the site, response from the site, and
publication of the result. The Rule SiteCall specifies that a site call V (v̄), where v̄
is a value, transitions to ?k with event V (v̄). The handle k connects a site call to a
site return. A site call occurs only when its parameters are values; in V (x), where x
is a variable, the call is blocked until x is defined. In SiteRet a pending site call ?k
receives a result w from the environment and transitions to the expression w. There
is no assumption that all site calls eventually respond. The Publish rule generates a
publication event !v from its argument value v.

The rules DefDeclare and DefCall are evaluated using call-by-name in the
DefDeclare rule. A single global set of definitions D is assumed with parameters x̄
in DefCall producing an output g.

The Rules for the combinators are as described earlier. When f publishes a value

(f
!v
→ f ′), rule SeqV creates a new instance of the right side; [v/x]g, the expression in

which all free occurrences of x in g are replaced by v. The publication !v is hidden,
and the entire expression performs a τ action. Note that f and all instances of g are
executed in parallel. Because the semantics is asynchronous, there is no guarantee that
the values published by the first instance will precede the values of later instances.
Instead, the values produced by all instances of g are interleaved arbitrarily.

Pruning is similar to parallel composition, except when g publishes a value v. In
this case, rule PruneV terminates g and x is bound to v in f . One subtlety of these
rules is that f may contain both active and blocked subprocesses: any site call that

117

4.3. Causality Chapter 4

uses x is blocked until g publishes. In case of Rule OrtherV, if f publishes a value,
the expression publishes the resulting evaluation f ′. However, if the site f halts (⊥),
we execute: stop ; g.

SiteCall
k fresh v̄ closed

V (v̄)
Vk(v̄)
→ ?k

SiteReturn ?k
k?w
→ w

Publish
v closed

v
!v
→ stop

DefDeclare
D is def y(. . .) = . . .

D f
τ
→ [D/y] f

DefCall
D is def y(x̄) = g

D(p̄)
τ
→ [D/y] [p̄/x̄] g

Par
f

l
→ f ′

f | g
l
→ f ′ | g

SeqN
f

n
→ f ′

f >x> g
n
→ f ′ >x> g

SeqV
f

!v
→ f ′

f >x> g
τ
→ f ′ >x> g | [v/x] g

PruneLeft
f

l
→ f ′

f <x< g
l
→ f ′ <x< g

PruneN
g

n
→ g′

f <x< g
n
→ f <x< g′

PruneV
g

!v
→ g′

f <x< g
τ
→ [v/x] f

OtherN
f

n
→ f ′

f ; g
n
→ f ′ ; g

OtherV
f

!v
→ f ′

f ; g
!v
→ f ′

OtherStop
f

⊥
→ stop

f ; g
⊥
→ g

Table 4.2: Internal Structural Operational Semantic Rules of Orc.

Orc Intermediary Language

In the OIL representation, variable names are eliminated using de Bruijn indices [Bru72].
In the lambda calculus form [Chu85], while functions are nameless, variable names are
still used. The de Bruijn indices specify the number of levels to traverse from a ref-
erence depth to reach the binding value. An example in lambda calculus is λx.λy. x
becomes λ.λ. 2. Note that de Bruijn indexed reference depth from one and OIL indexes
reference depth from zero.

4.3 Causality

In this section, the transformation rules for implementing causality within Orc are
presented with examples.

We consider any Orc program, which has been already parsed and expanded into its
Orc calculus intermediate form. In this program, we distinguish the actions, which are
the site calls, the corresponding returns and the publications. An event is the occurring
of such an action during the execution of the Orc program. The events are linked with
causal dependencies, which force the events to be executed in a certain order. We can
distinguish three kinds of dependencies:

• the dependencies that are imposed by the control flow of the program defined by
the semantics of the Orc combinators;

• the dependencies that are imposed by the binding mechanism of Orc variables;

• the dependencies that are provided by the server executing the site calls. These
external dependencies are not part of the Orc description. We will consider that
the possible return of a site call is directly caused by this call. In the case where

118

Chapter 4 4.3. Causality

there exist other dependencies imposed by the server (use of a channel for exam-
ple), we will consider that there are exposed by the server and are part of the
returned value given as a pair (v,X), where v is the return value and X a set of
events that are the direct causes of the return.

As shown in Fig. 4.1, the execution of an Orc program/expression proceeds by
parsing into the Orc Intermediary Language (OIL) form, that consists of only the core
Orc calculus. Our methodology is to provide rewriting rules over OIL that enhances
publications with their causal pasts. This enhanced OIL form, when compiled, produces
both the original publication along with causal information. Similarly, this can be
extended to tracking QoS increments with OIL rewriting rules.

Transformation Rules

1

Core Orc
Calculus form (OIL)

<oil>
 <constant>

 <integer>1</integer>
 </constant>
</oil>

<call>

<site>orcCauses.WrapConstant</site>
<target>

</target>
...

</call>

Transformed
OIL Output

Orc CompilerOrc Compiler

Orc Output
1

Orc Output
Enhanced with
Causality

(1,Set((signal,Set())))

Orc Expression

Figure 4.1: Technique to enrich Orc outputs with Causality.

4.3.1 The algebra of causality

Orc events are of three types: publications, site calls and site returns. An event is a
pair:

e = (v,X)

where v is the value of the Orc-event (publication, call, return) and X is, recursively,
a finite set of pairs of the same kind as e. For e as above, we write X =↓e, v = v(e)
by abuse of notation. ↓e is empty for the initial events. This defines inductively the
domain of events E . E can be equipped with a partial order relation ≤ defined as a
prefix relation:

e≤e′ iff ∃ {ei | 1 ≤ i ≤ n} s.t. (e1 = e) ∧ (en = e′) ∧
∧

1<i≤n

ei ∈↓ei−1

and we denote by → be the transitive reduction of partial order ≤ on causalities:

e→ e′ iff e ≤ e′ and 6 ∃e′′ : e < e′′ < e′

Considering two events e, e′ ∈ E , it is always possible to build a least upper bound
(lup) of {e, e′} by considering a new event e′′ = (v(e′′), {e, e′}) (as usual e′′ is denoted
by e ∨ e′). It is also possible to extend an event e with an other event by creating a
new event e′ = (v(e′), {e}). We will note as e⊕ e′ this new event. ⊕ is thus monotonic
with respect to the prefix order ≤. ∨ and ⊕ are just simple union of sets.

119

4.3. Causality Chapter 4

4.3.2 Transformation rules

The transformation rules, directed by the syntax of an Orc program, are presented
inductively. They use a context c, which is a set of events. The expression of the
left hand side, bracketed as [[]]c is rewritten in the expression of the right hand side.
The intention of these rules is to propagate the causes (in c) over the Orc combinators
to push them toward the publications. The transformed program will publish events
(v(e), ↓e) in which v(e) is the value published by the original program and ↓e the set
of events that are causes of this publication. See Figure 4.2 for corresponding rules.

[[def v(x1, . . . , xn) = f]]c → def v(x1, . . . , xn) = [[f]]c
[[f | g]]c → [[f]]c | [[g]]c

[[f >x> g]]c → [[f]]c >x> [[g]]{x}
[[f <x< g]]c → [[f]]c <x< [[g]]c

[[v]]c → (v, c)
[[x]]c → x >(v,)> (v, {x} ∪ c) – v fresh

– function call
[[v(x1, . . . , xn)]]c → (x1, . . . , xn) >((v1,X1), . . . , (vn,Xn))>

v(((v1,X1 ∪ c), . . . , (vn,Xn ∪ c)) − vi,Xi fresh
– site call

[[v(x1, . . . , xn)]]c → (x1, . . . , xn) >((v1,), . . . , (vn,))>
(”v”,

⋃
1≤i≤n xi ∪ c) >u> v(v1, . . . , vn)

>(v′,X)> (v′,X ∪ {u})− vi, v
′,X fresh

Figure 4.2: The basic rules

We now justify these rules with comments on each transformation:

• The transformation of an Orc program f starts by evaluating [[f]]∅ having a null
causal past. This is passed as a top level expression to any Orc program.

• During a function call, the causes are propagated by adding the context to each
causal pasts of the specific parameter.

• The publications are done in three constructs: evaluation of a value v, evaluation
of a variable x, or site calls.

– Publishing a value v is just replaced by the publication of the value-causality
pair (v, c) where c is the current context.

– Publication of a variable x needs to recover the value v of the event x and
then to publish a value-causality pair (v, {x} ∪ c), the causes of this new
event being now the aggregation of x and c, the current context.

– The result of the transformation of site calls is a program able to publish
a set of associated events: one event for the call action, one event for the
publication of the returned value (v,X) (if the site does not respond, the
second event will not be produced). We decided to name the call event by
the name of the site.

• For the Orc combinators, the rules are:

– For the | combinator, the causal past is replicated for each of the expres-
sions.

120

Chapter 4 4.4. Causality and QoS Tracking

– For the >x> combinator, a dependency in the control flow is recorded. In
f >x> g, the publications of f are the causes of the publications of g with
variable x conveying these causes.

– For the <x< combinator, causal pasts are recorded for each expression with
the pruning operator propagating the the value-causality pair using variable
x.

The transformations are derived from the syntax of any Orc program. In order
for any Orc engine to derive the causality of an executed Orc program, this causality
calculus must be followed.

Tracking causality on programs using the “otherwise” operator: the other-
wise (“f ; g”) Orc combinator poses a specific problem. According to its semantics, g
must be executed if f halts. The problem is that f is allowed to run until it halts:
during this phase, it can produce events (there is no roll-back mechanism). In term
of causality, we thus have to track the events that are produced before halting and to
consider that there are possible causes of events of g. Since there is no explicit variable
to piggyback the causal information between f and g, we have to record the events of
f in a special memory. It can be declared in Orc using the Ref() site - a rewritable
reference value.

The idea is to maintain the set of maximum events (with respect to the causal order
relation) and to use it to implement the otherwise operator. Now, any publishing action
is replaced by a publish/record action, denoted for instance by track(u), where u is a
publication event. This function can be defined in Orc by:

val trace = Ref([])
def max(u,m) = if member(u,m) then signal

else trace? >t> trace := append([u], t)≫ signal
def record(u) = trace? >m> max(u,m)
def track(u) = (u, record(u)) > (y,) > y

The actual implementation of this tracking can be done more efficiently in Orc by
using Scala traits such as mutable sets. The complete transformation system is shown
in Figure 4.3.

4.3.3 Orc with Causality: Examples

This was done by appending the OIL output with causal information of events. A pro-
gram starts off with an orcCauses.EmptyCause site that produces a tuple of (signal,Set()) .
The output of the transformed program returns the Orc publication with its causal past
with Set() representing a null causal past. Examples of transformed outputs produced
by this are shown in Table 4.3.

The OIL output with causality in bold is given for the expression 1 >x> x in Fig. 4.4.
The orcCauses.WrapConstant and orcCauses.WrapVariable sites implement
causality for constants and variables, respectively.

4.4 Causality and QoS Tracking

In this section, we extend the rules for causality to QoS tracking in Orc. A reader is
referred to Chapter 3 for further details on QoS algebra and the “weaving” procedure.

121

4.4. Causality and QoS Tracking Chapter 4

[[def v(x1, . . . , xn) = f]]c → def v(x1, . . . , xn) = [[f]]c
[[f | g]]c → [[f]]c | [[g]]c

[[f >x> g]]c → [[f]]c >x> [[g]]{x}
[[f <x< g]]c → [[f]]c <x< [[g]]c

[[f ; g]]c → [[f]]c ; track((”h”, trace.getAll())) >x> [[g]]{x}
−x fresh

[[v]]c → track((v, c))
[[x]]c → x >(v,)> track((v, {x} ∪ c))− v fresh

– function call
[[v(x1, . . . , xn)]]c → (x1, . . . , xn) >((v1,X1), . . . , (vn,Xn))>

track(v(((v1,X1 ∪ c), . . . , (vn,Xn ∪ c)))
−vi,Xi fresh

– site call
[[v(x1, . . . , xn)]]c → (x1, . . . , xn) >((v1,), . . . , (vn,))>

track((”v”,
⋃

1≤i≤n xi ∪ c)) >u> v(v1, . . . , vn)

>(v′,X)> track((v′,X ∪ {u}))
−vi, v

′,X fresh

Figure 4.3: The complete rules

Orc Expression Output

1 >x> x (1, Set((signal, Set()), (1, Set((signal, Set())))))

def f(x) = x

f(1) (1, Set((1, Set((signal, Set())))))

import site (+) = ”orc.lib.math.Add” (3, Set((1, Set((signal, Set()))),
1+2 (2, Set((1, Set((signal, Set())))))))

((2 ≫ x) <x< (1 ≫ 3)) ≫ 4 | 5 (5, Set((signal, Set())))
(4, Set((3, Set((signal, Set()),
(3, Set((1, Set((signal, Set())))))))))

Table 4.3: Causality Enhanced Orc output

4.4.1 QoS domain

Referring to [BJK+12], the QoS domains consist of:

Q = (Dq,≤q,⊕q,✁q)

where the dummy symbol “q” refers to a particular (possibly multi-dimensional) QoS
metric. The neutral element for ⊕q is denoted 0. Instances of Q are listed next.

4.4.1.1 The special competition operator

The special operator ✁q is trivial for QoS metrics that are attached to the token,
regardless of any ambient metrics or attribute:

q ✁q (q(1), . . ., q(k)) = q (4.1)

where (q(1), . . ., q(k)) is the tuple of other tokens for consideration in the competition
(the losers). Reason is that, for this case, waiting for all competing incoming tokens has
no extra cost, and so does comparing. To summarize, for a QoS domain not involving
ambient metrics but only token-held metrics, operator ✁q is trivial.

122

Chapter 4 4.4. Causality and QoS Tracking

<oil>
<sequence>
<left>
<call>
<target><constant><site>orcCauses.EmptyCauses</site></constant></target>
<args></args>

</call>
</left>
<right>

<sequence varname="x">
<left>

<call>
<target><constant><site>orcCauses.WrapConstant</site></constant></target>
<args>

<constant><integer>1</integer></constant>
<variable index=”0”></variable>

</args>
</call>

</left>
<right>

<call>
<target><constant><site>orcCauses.WrapVariable</site></constant></target>
<args>

<variable varname="x" index="0"></variable>
<variable index=”0”></variable>

</args>
</call>

</right>
</sequence>

</right>
</sequence>

</oil>

Figure 4.4: OIL Rewriting to include Causal Information.

In contrast, operator ✁q is non trivial for QoS metrics such that:

1. some ambient metrics is involved;

2. solving the competition requires collecting incoming tokens for which the ambient
metrics may not be optimal.

A typical example of an ambient metrics is duration, as it relies on time. As soon as
the considered ambient metrics is involved in combination with additional dimensions
(security, cost, quality of data. . .), solving conflicts generically requires receiving tokens
for which the ambient metrics may not be optimal. The ✁q competition operator
delivers for the outgoing token (which is selected according to best multi-dimensional
QoS) an ambient metrics that is equal to the worst one among the tokens taking part
in the comparison. Whenever the multiple dimensions are taken as equal citizens (no
priority) or else some priority is applied, makes no difference.

However, for the special case of duration acting as a one-dimensional metrics, se-
lection can occur as soon as the first incoming token is received and there is no need
to wait for more tokens. Thus, operator ✁q is still trivial for this special case of an
ambient metrics.

Latency

This is a case of a one-dimensional ambient metrics. Thus, operator ✁q is trivial.

type latency :

Dq = R
≤q = ≤
⊕q = +
✁q : trivial, see (4.1)

123

4.4. Causality and QoS Tracking Chapter 4

Data quality

type data quality :

(Dq,≤q) = any finite partial order
⊕q = ∨q (associated to ≤q)
✁q : trivial, see (4.1)

This QoS domain captures in particular the following sub-cases:

• valid/exception: the finite domain consists of {valid, exceptionI}, for I ⊆ {1. . .n},
with valid ≤q exceptionI ≤q exceptionJ whenever I⊆J ; exceptionI means that
exceptioni have been raised for i ∈ I.

• security : the simplest case is to have a security level equal to {high,low} with
high ≤q low. More general partial orders are used in the area of security.

• reliability : This can be captured using the domain ({valid, invalid},≤r), with
valid≤r invalid. Other operators follow as for the case of data quality. A service
returning “invalid” is an indication of a failure.

This category of metrics is non ambient.

Cost

We assume a set Q of cost types and a labeling function λ : Q 7→ R+.

type cost :

Dq = Q 7→ N (multiset of cost quanta)
≤q = partial order of functions with values in N
⊕q = ∨q (associated to ≤q)
✁q : trivial, see (4.1)

The actual accumulated cost is then obtained by summing over all the cost quanta
collected within q.

A slight variation of this QoS domain can be defined to capture stock levels. The
difference is that stock can be both incremented or decremented. We must then replace
Q 7→ N by Q 7→ Z and adapt the order and ⊕ operation accordingly.

This category of metrics is non ambient.

4.4.2 Composite QoS, no ambient metrics involved

Here we consider the case of a multi-dimensional QoS domain, where the different
dimensions are handled on an equal basis, with no priority. Observe that the resulting
product order cannot be total.

type composite:

Dq = Dq1 × Dq2 × · · · × Dqn

≤q = ≤q1 × ≤q2 × · · · × ≤qn

⊕q = ⊕q1 ×⊕q2 × · · · × ⊕qn

✁q : trivial, see (4.1)

The product order may be altered by considering a priority, which is a partial order
�q over the set {1, . . . , n} of dimensions. Thus:

(q1, . . . , qn) <q (q
′
1, . . . , q

′
n) iff ∃1 ≤ j ≤ n :

{
∀i ≺ j : qi = q′i

∧ qj <qj q
′
j

This yields a total order if the priority and the orders for all dimensions are total. A
particular case is that of lexicographic order where the priority is just the natural order
among integers.

124

Chapter 4 4.4. Causality and QoS Tracking

4.4.3 Composite QoS, with ambient metrics involved

Here we consider the case of a two-dimensional QoS domain, where the second dimen-
sion only is ambient.

type composite/ambient :

Dq = Dq1 × Dq2

≤q = ≤q1 × ≤q2

⊕q = ⊕q1 ×⊕q2

q ✁q (q(1), . . . , q(k)) = (q1,maxi∈I q2(i))

where I ⊆ {1, . . . , k} is the subset of the tokens having participated to the competition
when the winner is decided.

4.4.4 Extending Orc for QoS

In its basic form, Orc does offer a way to select one publication among several candidate
ones, namely by using the pruning operator. Indeed, in the Orc expression

f <x< (E1 | E2 | · · · | En) (4.2)

the first publication by E1, E2, . . . , or En, preempts any future publication of the
parallel composition g∆ E1 | E2 | · · · | En. Since only one publication of g is picked,
all possible publications of g are in mutual conflict when in the context of (4.2). One
can regard (3.19) as implementing task (b) for the particular case when the conflict is
resolved on the basis of the time of occurrence of the conflicting publications, seen as
a QoS parameter — only the earliest one survives. We propose to lift the Orc pruning
operator by resolving the conflict on the basis of an arbitrary QoS parameter q given
as a parameter of the generalized pruning:

f <x<q (E1, E2, . . . , En) (4.3)

Expression (4.3) is macro-expanded in core Orc

f <x<q (E1, E2, . . . , En) (4.4)

∆ f <x< sortq(E1, E2, . . . , En)

where expression sortq(E1, E2, . . . , En) stores all first publications of E1, E2, . . . , En;
upon termination of the entire expression, it then selects a best one according to
the partial order defined by QoS parameter q.1 For the special case where QoS pa-
rameter q is just the response time d, then f <x<d (E1, E2, . . . , En) boils down to
f <x< (E1, E2, . . . , En), the original pruning operator.

Remark: For expression sortq(E1, E2, . . . , En), we assume the sortq operator waits
until the entire expression terminates. It is also possible that sortq knows the “best”
value that cannot be improved upon; in such cases, it can wait until a site produces
this and discards responses from other sites.

4.4.5 Enhancing the algebra of causality to support QoS: first attempt

We first propose a first attempt based on a direct extension of the causality calculus
developed in Section 4.3. A QoS-event is a triple

e = (v, q;X)

1Since QoS values may be partially ordered, this choice could be non-deterministic.

125

4.4. Causality and QoS Tracking Chapter 4

where v is an Orc-event (publication), q is its QoS-increment, and X is, recursively, a
finite set of pairs of the same kind as e. For e as above, we write X =↓e, v = v(e), and
q = q(e) by abuse of notation. ↓e is empty for the initial events. Special cases are of
interest:

• q(e) = 0 (neutral contribution to the QoS by event e) but v(e) non trivial corre-
sponds to publications that are not site calls or do not contribute to the QoS.

• v(e) = ǫ (absence of publication for event e) but q(e) 6= 0 corresponds to hidden
actions contributing to the QoS.

This defines inductively the domain of QoS-events Eq. Eq can be equipped with a partial
order relation ≤ defined as a prefix relation:

e≤e′ iff ∃ {ei | 1 ≤ i ≤ n} s.t. (e1 = e) ∧ (en = e′) ∧
∧

1<i≤n

ei ∈↓ei−1

and we denote by → be the transitive reduction of partial order ≤ on causalities:

e→ e′ iff e ≤ e′ and 6 ∃e′′ : e < e′′ < e′

So far q(e) is not the cumulated QoS value when v is published; it is rather the incre-
ment, to the QoS, caused by publishing v. So, the natural guess for the cumulated QoS
is

Q(e) =

(
∨

e′→e

Q(e′)

)
⊕q q(e) (4.5)

Warning: Now, at this point we must observe that this formula does not take into
account the effect of the competition function when selecting the best event in operator
sortq. To take this into account, we must enhance the causality calculus to keep track
of the events that were in immediate conflict will all events that occurred. Actually,
this needs to be done only for immediate conflicts resulting from applying the sortq
operator. This enhancement is developed in the following section.

4.4.6 Enhancing the algebra of causality to support QoS: the right
solution

A QoS-event is a tuple
e = (v, q;X,Y)

where

• v is an Orc-event (publication);

• q is its QoS-increment;

• X and Y are, recursively, finite sets of tuples of the same kind as e.

For e as above, X =↓e is the set of causes of e, Y = #(e) is the set of events that are
in immediate conflict with e under operator sortq (thus, #(e) = ∅ by convention if v
does not result from applying sortq), v = v(e), and q = q(e) by abuse of notation. ↓e
is empty for the initial events.

This defines inductively the domain of QoS-events Eq. Eq can be equipped with a
partial order relation ≤ defined as a prefix relation:

e≤e′ iff ∃ {ei | 1 ≤ i ≤ n} s.t. (e1 = e) ∧ (en = e′) ∧
∧

1<i≤n

ei ∈↓ei−1

126

Chapter 4 4.5. Related work

Orc Expression Output
1 | 2 (1, 8, Set((signal, 0, Set(), Set())), Set((signal, 0, Set(), Set())))

(2, 5, Set((signal, 0, Set(), Set())), Set((signal, 0, Set(), Set())))

((2 ≫ x) <x< (5, 1, Set((signal, 0, Set(), Set())), Set((signal, 0, Set(), Set())))
(1 ≫ 3)) ≫ 4 | 5 (4, 7, Set((3, 5, Set((signal, 0, Set(), Set()),

(3, 5, Set((1, 5, Set((signal, 0, Set(), Set())),
Set((signal, 0, Set(), Set())))), Set((1, 5, Set((signal, 0, Set(), Set())),
Set((signal, 0, Set(), Set())))))), Set((signal, 0, Set() , Set())))),
Set((3, 5, Set((signal, 0, Set(), Set()),
(3, 5, Set((1, 5, Set((signal, 0, Set(), Set())),
Set((signal, 0, Set(), Set())))), Set((1, 5, Set((signal, 0, Set(), Set())),
Set((signal, 0, Set(), Set())))))), Set((signal, 0, Set() , Set())))))

Table 4.4: Causality and QoS Enhanced Orc output

and we denote by → be the transitive reduction of partial order ≤ on causalities.

Now, we are ready to correct formula (4.5) by taking QoS-based conflicts into ac-
count. For e an event that occurred, its cumulated QoS Q(e) is computed as follows:

Q(e) =

((
∨

e′→e

Q(e′)

)
⊕q q(e)

)
✁
(
Q(e′) | e′ ∈ #(e)

)
(4.6)

4.4.7 The rules

The rules follow directly from Figure 4.3 and formula (4.6).

4.4.8 Orc with Causality and QoS: Examples

We once again use the OIL rewriting to include both causality and QoS in 4.4. A
program starts off with an OrcCauses.EmptyCause site that produces a tuple of (signal,
EmptyQoS, Set(), Set()) . This follows the formulation given in Section 4.4.6
with conflicting events tracked as well. The output produces (Functional Data,
QoS Increment, Causality, Conflicting Events) . Note that only QoS in-
crements are displayed: these may be aggregated into the eq.(4.6) to produce the
end-to-end QoS when needed (for example on the final publication).

4.5 Related work

The work by Lamport [Lam78] introduces the notion of logical clocks in distributed
systems. Events in a distributed system may be only partially ordered with respect to
such clocks. For example, a→ b implies that a is in the causal past of b; if a and b are
concurrent, neither is in the causal past of the other. By assigning a logical clock Ci

for each process Pi, conditions to ensure logical time increments may be presented. For
instance. if an event <a> in process Pi is sent to process Pj marked with event ,
then Ci<a> ≤ Cj (implying a → b). This can be provided with implementation
rules: if a process receives an event with a timestamp T , it should advance its own clock
to Cj ≥ T . An extension of logical time to total ordering of events is also presented.
Total ordering a⇒ b is ensured if and only if: Ci<a> ≤ Cj; or Ci<a> = Cj
and processes Pi ≺ Pj . An example presented where total ordering of events is necessary
- shared resources among many distributed processes.

This has been extended in [Mis11] virtual time in client-server networks. In this, the
concept of virtual time/timeouts (logical time with relevant magnitude) is proposed as
a tool in distributed systems. The virtual time may be used to to control independent
threads in distributed systems to be executed with some ordering (in virtual time). An
event e in this model, if scheduled to happen at time t in the real world, is placed in

127

4.6. Conclusions Chapter 4

the scheduler queue with signature (e, t). Further, if an event has to proceed after k
units of time (Vwait (t)), the event will be processed as (e, t+ k).

A client-service paradigm is proposed in [Mis11]. The clients all have virtual clocks
with each event being a start or and end event; servers do no have a clock but can
be shared memories, databases and support get() or put() operations. The start
and end events on each client has a partial order relationship. Furthermore, causality
(events x ≺ y), monotonicity (tx ≺ ty) and eagerness properties of the system may be
studied (eagerness and duration waiting constraints are absent in [Lam78]). A time-
stamping algorithm is presented with timing constraints presented for passive, active
and quiescent events. The monotonicity conditions on the events can be used to impose
order on causally unrelated events. An application of this algorithm is in distributed
simulations, where clients cannot advance their clocks until no other messages are
received from clients with lower clocks. The algorithm presented can be used to set
bounds on the execution of the clients (in virtual time); this can lead to properties such
as deadlock-freeness in such distributed settings.

In [JJJR94], the causal partially ordered set is used for online evaluation of prop-
erties in distributed computations. Such techniques for trace evaluation in distributed
composite services are also studied in [SG03]. A partial order trace analyzer is presented
for predicate detection: to determine if a trace satisfies certain properties. Offline anal-
ysis of causality in traces is used in [AMW+03] for debugging web-based distributed
applications. The use of causal reasoning and resource management for project plan-
ning is proposed in [SKD01]. Transformation of concurrent Java programs has been
proposed in [BT98] for testing and debugging. Such transformations enables analysis
of vector clocks for detecting race conditions in multithreaded programs.

In [PH12], execution traces are used to validate QoS metrics in distributed appli-
cations, with focus on modifying traces to maintain QoS levels. In [BMRS10], a soft-
constraint logic programming technique is used to solve QoS routing problems, that
resembles the QoS algebra proposed in this paper. In [BM11, DNFM+05], c-semiring
based algebraic operators are used for QoS composition modeling in SOA. A priori-
tized choice operator is introduced in this formalism to enhance constraint dependent
negotiation specifications. This is also applied to specifying service level agreements in
[BM07].

In our work, we extend the publications of distributed systems to publish the causal
past of each event. By providing transformation rules on the concurrent programming
Orc [KQCM09], the publications are enriched with causal information. This is useful for
debugging and can be replicated on other Orc engines (not true of traces). The causality
transformation can also be used to accumulate QoS according to developed algebra.
While concepts like virtual time and logical time impose control flow constraints on the
execution, the transformation rules merely provide the causal history of the events in
a distributed setting. This can be extended with rules (such as with virtual time) to
diagnosis and ordering of event execution, dependent on the causal past of the event.

4.6 Conclusions

The tracking of causality in distributed environments such as service oriented systems
can lead to better debugging and thread level analysis. In this paper, we have demon-
strated the inclusion of causal semantics into Orc, a concurrent programming language.
Using the Orc calculus form, rules have been presented to publish both events and their
causal past. These transformation rules have been extended to QoS algebra, with the
causal transformations enabling tracking QoS metrics. The implementation has been
done using rewriting rules over the Orc Intermediary language (OIL) form. Such tech-
niques for tracking causality/QoS are generic in nature and may be applied to other

128

Chapter 4 4.6. Conclusions

concurrent formalisms.

129

4.6. Conclusions Chapter 4

130

Chapter 5

Variability Modeling and QoS
Analysis of Web Services
Orchestrations

Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Abstract

The ever-growing choice in diverse services is making service orchestration variability
an essential aspect of a composite web service. Influence of this variation on the Qual-
ity of Service (QoS) of a composite service is critical and the focus of our work. In
this paper, we present a methodology to first model orchestration variability using a
feature diagram (FD). The FD specifies a product line of orchestrations represented
as configurations of invoked/rejected atomic services. Second, due to the potentially
large set of configurations we employ combinatorial testing techniques to automati-
cally generate configurations covering all valid pairwise interactions between services.
Third, we analyze QoS variation for each configuration using probabilistic models of
QoS. Using a crisis management system case study we experimentally show that pair-
wise generation covers all QoS outliers and eliminates analysis of > 75% of all possible
configurations. The QoS analysis of the pairwise configurations reveals unsafe/inef-
fective configurations, helps determine realistic Service Level Agreements (SLAs), and
provides valuable feedback to help remodel an orchestration.

131

5.1. Introduction Chapter 5

5.1 Introduction

Inherent choice in an ever-growing world of services is making orchestration variability
a significant aspect of a composite web service. The different ways of orchestrating
atomic services can be seen as either multiple variants of a composite service created
offline or an online composite service that reconfigures dynamically. In either case, we
expect to observe variation in Quality of Service (QoS) across different orchestrations.
This variation in QoS must not only take into account service variability but also the
uncertainty/probabilistic nature of QoS itself.

It is important to consider orchestration variability and its implications on compos-
ite service behavior. For instance, not considering variability leads to misrepresentation
of contractual agreements on QoS [TP05]. Contractual agreements such as service level
agreements (SLAs) [PB08] are the industry standard to ensure QoS compliance be-
tween service providers and customers. Usual deviations from SLAs are a result of
non-incorporation of QoS variability and in particular QoS outliers in its specification.
Therefore, we need systematic analysis of variability in order to improve robustness of
contractual SLAs.

Modeling variability in web service orchestrations and analyzing the consequent
variation in QoS is the principal subject of this paper. We present a methodology
to model orchestration variability using feature diagrams (FDs). Feature diagrams
[KCH+90] provide a graphical constraints-based framework to specify a product-line of
orchestrations. Each orchestration in the product-line is represented as an authorized
configuration of invoked/rejected atomic services. In most cases the FD specifies a
very large set of configurations making exhaustive sampling infeasible. Instead, we
sample the set of all possible configurations by systematically analyzing configurations
covering all valid pairwise service interactions [BV05]. Finally, we use probabilistic
models of QoS [RBHJ08] to analyze variants of orchestrations derived from all valid
configurations.

We use our methodology to investigate merits of systematically sampling the set of
all configurations of web service orchestrations. Random sampling of configurations,
generally employed, is both ineffective and expensive because it cannot be systematic
and requires computing QoS values for a large number of configurations. Moreover,
random sampling is not easy when FD constraints like mutual exclusion/requirement
need to be satisfied. This work focuses on the adaptation of combinatorial interaction
testing (CIT) [CDFP97] to select a sample of configurations that covers all pairwise
interactions of services while satisfying all FD constraints. We use the recently proposed
scalable approach in [PSK+10] for generating these configurations. CIT is based on the
observation that most of the faults are triggered by interactions between a small number
of variables [KW04]. For example, consider the output quality of printing web pages
depending on a hypothetical combination of parameters represented in Table 5.1.

Parameters Options

Operating System Windows, Linux, Macintosh
Browser IE, Firefox, Chrome, Opera

Printer Model HP, Canon, Xerox, Epson
Printer Type Ink-Jet, Laser
Orientation Portrait, Landscape

Size A3, A4, A5, A6
Color B/W, Multicolor

Table 5.1: Examples of printing parameters requiring comparison.

An exhaustive generation of combinations of these parameter options would entail

132

Chapter 5 5.2. Foundations

1536 cases with many redundancies. Pairwise coverage of optional combinations would
require just 17 tests, resulting in a reduction of close to 99%. The number of exhaustive
tests will increase exponentially with addition of more parameters/options requiring an
employment of efficient sampling strategies.

Pairwise coverage test generation has been used to detect faults in software systems
in prior work [BV05], [CDFP97]. However, the application of these coverage-based
techniques to sample configurations in service orchestrations is yet to be examined.
This work performs such an examination through a series of experiments that aim at
investigating several facets of the question: is pairwise service interaction sampling
of orchestration configurations effective for overall QoS analysis and the consequent
definition of a global SLA?

All experiments are based on a crisis management system (CMS) case study de-
scribed comprehensively in [KGM09]. This paper reports on the following questions:

• Is it possible to automatically sample the orchestration configurations space to
select configurations that cover all pairwise service interactions?

• What global QoS metrics can we infer from a pairwise sample?

• How stable is the SLA computed from a pairwise sample? This question is re-
lated to the fact that the automatic generation of pairwise configurations is not
deterministic and thus the global contract might vary depending on the generated
sample.

• Is pairwise sampling more effective and efficient compared to exhaustive sampling
of the configuration space?

From our experimentation, it is shown that analysis of a family of configurations (and
their corresponding QoS values) can be accurately represented by a small set of con-
figurations satisfying pairwise interactions. Consistency of various generated pairwise
solutions are also demonstrated through simulations. This comprehensive analysis of
variability helps the orchestrator understand the global QoS extremities of the com-
posite service before negotiating a SLA agreement. Deterioration in service quality
or non-compliance of SLA standards during online deployment of the service is thus
prevented. Improvements in the orchestration model to eliminate some deviant con-
figurations (causing excessive deterioration of end-to-end QoS) or grouping a family of
configurations with similar QoS behavior are other extensions of this technique.

This paper is organized as follows. Section 5.2 provide foundations required for our
methodology. These include feature diagrams, Orc, pairwise configuration generation
and formal description of QoS metrics. The methodology followed in this paper is
briefly presented in Section 5.3. In Section 5.4 the crisis management system (CMS)
is described. Comprehensive analysis of the CMS case study is done in Section 5.5.
Emphasis was placed on the probabilistic distribution simulations and efficient pairwise
generation of configurations. Evaluation of these schemes to generate families of QoS
output was done in 5.5.3. Study of the robustness of pairwise interactions and its
comparison with exhaustive configurations was also done in 5.5.4. Related work in
literature is presented in Section 5.6 followed by conclusions and perspectives in Section
5.7.

5.2 Foundations

5.2.1 Modeling Variability in Composite Services

Variability in a composite service derives from choice in several available online services.
Each of these configurations represents a set of invoked or rejected atomic services.

133

5.2. Foundations Chapter 5

Selection of some services in a configuration may compulsorily link the selection of
other services, while mutually excluding other services. In this paper, we model the
variability in service configurations using a feature diagram (used interchangeably with
feature model) often used to model Software Product Lines (SPLs).

Feature Diagrams (FD) introduced by Kang et al. [KCH+90] compactly represent
all the products of a SPL (referred to as configurations in this paper) in terms of
features which can be composed. Feature diagrams have been formalized to perform
SPL analysis [SHTB07]. In [SHTB07], Schobbens et al. propose a generic formal
definition of FD which subsumes many existing FD dialects. We define a FD as follows:

• A FD consists of k features f1, f2, ..., fk

• A feature fi may be associated with a software asset such as an atomic service.

• Features are organized in a parent-child relationship in a tree T . A feature with
no further children is called a leaf.

• A parent-child relationship between features fp and fc are categorized as follows:

– Mandatory - child feature fc is required if fp is selected.

– Optional - child feature fc may be selected if fp is selected.

– OR - at least one of the child-features fc1,fc2,..,fc3 of fp must be selected.

– Alternative (XOR) - one of the child-features fc1,fc2,..,fck of fp must be
selected.

• Cross tree relationships between two features fi and fj in the tree T are catego-
rized as follows:

– fi requires fj - The selection of fi in a product implies the selection of fj.

– fi excludes fj - fi and fj cannot be part of the same product and aremutually
exclusive.

Using the FD we create and validate configurations (i.e a selection of features in the
FD) of atomic services invocations/rejections.

5.2.2 Service Orchestration using Orc

While the FD describes a set of services invoked/rejected, it is crucial to formally de-
scribe the causal link between the invoked atomic services using an orchestration. The
business process execution language (BPEL) [IBM+07], an industry standard for de-
scribing orchestrations, has the disadvantages of inherent complexity of the language
and restrictions in combinatorial service descriptions [KCW06]. Orc [MC07] serves as a
simple yet powerful concurrent programming language to describe web services orches-
trations. Though the Orc language is used for our study, the presented methodology is
sufficiently general to be applied to other languages like BPEL.

The fundamental declaration used in the Orc language is a site. When a site is
made available to Orc, its type is also made available to the Orc. The type of a site is
itself treated like a service - it is passed the types of its arguments, and responds with a
return type for those arguments. An Orc expression represents an execution and may
call services to publish some number of values (possibly zero). The parallel combinator
F |G, where F and G are Orc expressions, runs by executing F and G concurrently.
The sequential combinator, written F >x> G or F ≫ G, combines the expression F ,
which may publish some values, with another expression G, which will use the values as
they are published; x transmits the values from F to G. The execution of the pruning

134

Chapter 5 5.2. Foundations

combinator F <x< G starts by executing F and G in parallel. Whenever F publishes a
value, that value is published by the entire execution. When G publishes its first value,
that value is bound to x in F , and then the execution of G is immediately terminated.
In the otherwise combinator, written F ;G first site F is executed. If F completes and
has not published any values, then G executes. If F did publish one or more values,
then G is ignored. In the fork-join combinator (F,G), two processes F and G are
invoked concurrently. The process waits until a response is obtained from both atomic
services. Further examples of using these combinators can be seen in [MC07].

5.2.3 Configuration Generation from Feature Diagram

Combinatorial interaction testing (CIT) has been proposed by Cohen et al. [CDFP97]
to select a subset of all combinations of variables that define the input domain of
a program, while still guaranteeing a certain level of coverage. This has led to the
definition of pairwise interaction testing, or 2-wise testing. This samples the set of all
combinations in such a way that all possible pairs of variable values are included in the
set of test data. Pairwise testing has been generalized to t-wise testing which samples
the input domain to cover all t-wise combinations.

Definition. 1 Covering Array - A covering array CA(N ; t, k, v) is a N × k array
of data taken from an alphabet of size v, with the property that every N × t sub-array
contains all ordered subsets of size t from v symbols at least once.

In this definition, N is the number of experiments, the strength t of the array is
the parameter that allows achieving 2-wise (pairwise), 3-wise or t-wise combinations.
The k columns on this array correspond to all the variables in the input domain. For
the generation of services configurations, k is the number of services, and v is 2 since
we have only boolean variables (services may be present or absent in a configuration).
The problem of generating a minimal covering array for a set of variables is a com-
plex optimization problem that has been studied in extensive prior work for example
[CDFP97]. It is important to notice that there exist very few studies that have tackled
the automatic generation of CIT in the presence of constraints between variables. In
order to include properties that forbid combinations of values, CIT generation tech-
niques have to allow the introduction of constraints in the algorithms that generate
covering arrays. We have developed a solution to generate t-wise configurations that
satisfy all constraints modeled in a feature model [PSK+10]. This solution is based on
the Alloy analyzer and SAT solving.

As the CIT removes redundant solutions, there are a myriad of sets of configurations
that satisfy all the pairwise constraints. So, there are many sets of pairwise configu-
ration solutions (referred to as samples from now) that exist for a particular feature
diagram. The consistency of these samples of solutions must be tested to determine
the accuracy and stability in selecting pairwise combinations.

5.2.4 QoS Aspects of the Orchestration

The use of hard contracts to regulate QoS parameters such as response time, availability
and so on has been the norm for most SLAs. However these take into account many
outliers that are the result of some rare deviations in QoS which generate pessimistic
SLAs. Probabilistic analysis of QoS parameters as shown in [RBHJ08] [HWTS07]
provides a more realistic study of actual web services’ behavior.

The following QoS parameters have been chosen:

1. Latency / Response Time (T) - Denotes the overall delay due to the time taken
by a web service to respond. It is a discrete value that may be modeled as a long
tailed distribution incorporating some rare deviations.

135

5.3. Methodology Chapter 5

2. Availability (α) - The probability that a service is active and can respond to a
service call. For a well managed service, this value is generally quite high.

3. Cost (χ) - Refers to the monetary cost associated with each invocation of a
particular atomic service.

4. Data Quality (ξ) - A subjective measure of trade off to high Cost and Response
times of web services. It measures the “Quality” of the output of the web service
and the beneficial aspects of including a new atomic service into the composite
orchestration.

Extending these QoS parameters to an orchestration involves the use of Orc com-
binators as described previously. Taking two sites si and sj, the QoS parameters may
be applied as shown in Table 5.2 depending on the Orc combinators used. The cases
of composing the service sij using the sequential and fork-join combinators have been
considered. The latency, cost and availability metrics for the composite service sij are
derived as shown in [CMSA02] with Max(p, q) representing the maxima of the values
p and q.

Expression sij , si ≫ sj sij , (si, sj)

Latency T (sij) = T (si) + T (sj) T (sij) =Max(T (si), T (sj))

Cost χ(sij) = χ(si) + χ(sj) χ(sij) = χ(si) + χ(sj)

Availability α(sij) = α(si)× α(sj) α(sij) = α(si)× α(sj)

Table 5.2: QoS metrics discussed in [CMSA02] extended to Orc combinators.

5.3 Methodology

We present a methodology designed to examine: (a) A superior technique for sampling
the possible configurations to ensure efficient portrayal of QoS behavior of a composite
service; (b) The need for probabilistic analysis of QoS in variable service orchestrations.
The following steps summarize our methodology:

1. The inputs are: (a) Variability and constraints of a set of configurations of services
modeled in a FD; (b) A composite service orchestration in Orc to specify causality
and service interactions. The modeling inputs may be specified as a 3-tuple (S,
FD, O) where:

• S is the set of services that can be used. In a configuration, subsets S1, ..., SN
of these services are used.

• FD is the constraints for the services included in a particular configuration.

• O is the set of orchestrations O1, ..., OM in a composite service. These or-
chestrations invoke the services S1, ..., SN according to the configuration con-
straints specified by the FD.

2. The CIT with pairwise constraints satisfied is then used to sample a set of config-
urations from the FD. This represents a subset of configurations that effectively
cover all the exhaustive configurations in the FD.

3. For each of the sampled configurations we analyze the QoS for orchestrations in-
voking all atomic services in the configuration. These include a set of parameters
to analyze tradeoff between atomic services’ inclusion / deletion between config-
urations. Probabilistic models of response time are used to provide an accurate
portrayal of the services’ behavior along with comparison with other QoS metrics.

136

Chapter 5 5.4. Crisis Management System Case Study

4. Comparisons with randomly generated configurations and consistency over multi-
ple sample sets is included to experimentally study the robustness of the proposed
pairwise analysis scheme.

For the rest of the paper, we explain in detail this methodology applied to the crisis
management system case study.

5.4 Crisis Management System Case Study

Drawing from the comprehensive documentation in [KGM09], the chosen composite
service models a typical crisis management system (CMS). The need for such crisis
management systems has grown significantly over time with efficient collaboration of
various (distributed) parties responsible for speedy assistance and recovery. These are
examples of emergency situations that are unpredictable and lead to severe after-effects
unless handled immediately. A CMS facilitates this process by orchestrating the com-
munication, co-ordination and deployment between all parties involved in handling the
crisis. A thorough analysis of QoS aspects of a CMS will not only ensure optimal per-
formance of such mission critical systems, but also ensure speedy and reliable assistance
to the parties in need of aid.

5.4.1 Feature Diagram of CMS

In Figure 5.1, we present the Crisis Management System (CMS) FD [KGM09]. The
CMS FD contains several features that are associated with software assets represented
by atomic services. For example, the Local Operator feature is represented by the
GSMLocalOperator web service. Constraints such as optional, requires and mutual
exclusion (XOR) are also incorporated. For example, the LocalOperator and Interna-
tionalOperator features are mutually exclusive while the HospitalAdmit feature requires
the Ambulance feature.

Crisis Management
System

Communication

Crisis Type

GSM Telephony GPS Location

Fire
Health

Emergency
Car

Accident
Theft

Local
Operator

International
Operator

Fire Station Ambulance

Hospital
Admit

Police

Surveillance
Camera

Legend

Mandatory

Optional

XOR

CrisisOrchestration

CrisisManager

GPSLocation

GSMIntlOperator

GSMLocalOperator

Fire

Ambulance

Hospital

Police

Surveillance

Feature

Service

Asset

CommunicationManager

Figure 5.1: Feature Diagram / Model of the Crisis Management System with associated
real-world service assets.

137

5.4. Crisis Management System Case Study Chapter 5

5.4.2 Service Orchestrations in CMS

A host of web services used for the orchestration are described in detail in Table 5.3.
These have generic input-output descriptions that can be modified according to require-
ments.

Web Service Description
CrisisOrchestration Uses the customer input to orchestrate the CMS system
CrisisManager Selects the emergency services to

include in the orchestration
CommunicationManager Selects the communication services to

include in the orchestration
GPSLocation Sets up the GPS location of the emergency area
GSMLocalOperator Sets up a local GSM communication link for personnel
GSMIntlOperator Sets up an international GSM communication

link for personnel
Ambulance Contacts and waits for a response from

nearby ambulance agencies
Hospital Contacts and waits for a response from nearby hospitals
Police Contacts and waits for a response from

nearby police stations
Surveillance Connects to surveillance tapes from the affected area
Fire Contacts and waits for a response from fire stations

Table 5.3: Web Services in the CMS Orchestration.

The FD (Fig. 5.1) and the orchestration (Fig. 5.2) cover two dimensions that are
complementary to each other. While the FD represents the variability in the configura-
tions, the orchestration specifies the order in which the services are called. Making use
of the terminology in [SHTB07], primitive features are “features” that are of interest
and that will be incorporated in real-world services. On the contrary, decomposable
features are just intermediate nodes used for decomposition. It is up to the modeler to
determine such classification of features in the FD. We extend the semantics given in
[SHTB07] to ensure compatibility of an orchestration with the feature model as follows:

• The set of available services S are the primitive nodes of the FD D;

• For each orchestration, the set of corresponding services invoked (denoted N);

• N ⊆ S in a configuration;

def CrisisOrchestration(call,type) = CommunicationManager(call) >>
CrisisManager(type)

def CommunicationManager(call) = (l,in) >>
(LocalOperator(in),IntlOperator(in),GPSLocation())

def GPSLocation() = (x,y)
def GSMLocalOperator(l) = Let(query(l) | Timer(l))
def GSMIntlOperator(in) = Let(query(in) | Timer(in))

def CrisisManager(type) = (f,a,h,p,s) >>
(Fire(f),Ambulance(a),Hospital(h),Police(p),Surveil lance(s))

def Fire(f) = Let(query(f) | Timer(f))
def Ambulance(a) = Let(query(a) | Timer(a))
def Hospital(h) = Let(query(h) | Timer(h))
def Police(p) = Let(query(p) | Timer(p))
def Surveillance(s) = Let(query(s) | Timer(s))

Table 5.4: Orc representation of the CMS orchestration.

138

Chapter 5 5.4. Crisis Management System Case Study

Figure 5.2: Composite Web Service Orchestration of the CMS.

• A model of D is a subset of its (primitive and decomposable) nodes;

• There must exist a model of D ([[D]]) such that [[D]] ∩ S = N (a model of a FD
is a subtree that is valid w.r.t. the operators and the dependence relation).

Drawing from the real-world services and the constraints shown in Fig. 5.1, the compos-
ite service may be developed by an orchestrator. Automatic compositions of composite
services from feature model constraints (with additional attributes to describe orches-
tration interactions), is out of the scope of this paper and will be investigated in future
work.

The composite service orchestration is represented succinctly in Fig. 5.2 and the
Orc representation is presented in Table 5.4. Calling the CrisisOrchestration service
invokes the CommunicationManager and CrisisManager operations in sequence. The
CommunicationManager service calls the GPSLocation and either one of the GSM-
LocalOperator and the GSMIntlOperator services that are mutually exclusive (Mux).
The outputs are synchronized and merged (Merge) before dynamically invoking the op-
tional services through the CrisisManager. The varying timer values are used to invoke
/ discard the Fire, Ambulance, Hospital, Police and Surveillance services. The outputs
of these services are merged and synchronized. In the Orc model presented in Table
5.4, the generic service query() is used to represent the invocation of a particular web
service. The setting of timer values (Timer()) results in the various associated configu-
rations in the system and is an example of defining orchestration parameters. Another
level of control is the global timeout value associated with the composite service. This
has to be associated with the overall SLA of the composite service to provide optimal
durations for response. A more verbose BPEL representation of the orchestration is
presented, re-emphasizing the clarity and elegance of the Orc representation.

<sequence>
<invoke CommunicationManager inputVariable="Call"/>
<flow>

139

5.5. Experiments Chapter 5

<invoke GPSLocation/>
<pick>

<onMessage><invoke GSMLocalOperator inputVariable="l" /></onMessage>
<onAlarm "Timer(l)"><empty /></onAlarm>

</pick>
<pick>

<onMessage><invoke GSMIntlOperator inputVariable="in" /></onMessage>
<onAlarm "Timer(in)"><empty /></onAlarm>

</pick>
</flow>
<invoke CrisisManager inputVariable="type"/>
<flow>

<pick>
<onMessage><invoke Fire inputVariable="f"/></onMessag e>

<onAlarm "Timer(f)"><empty /></onAlarm>
</pick>
<pick>

<onMessage><invoke Ambulance inputVariable="a"/></onM essage>
<onAlarm "Timer(a)"><empty /></onAlarm>

</pick>
<pick>

<onMessage><invoke Hospital inputVariable="h"/></onMe ssage>
<onAlarm "Timer(h)"><empty /></onAlarm>

</pick>
<pick>

<onMessage><invoke Police inputVariable="p"/></onMess age>
<onAlarm "Timer(p)"><empty /></onAlarm>

</pick>
<pick>

<onMessage><invoke Surveillance inputVariable="s"/></ onMessage>
<onAlarm "Timer(s)"><empty /></onAlarm>

</pick>
</flow>

<sequence>

5.5 Experiments

We perform experiments using the methodology described in Section 5.3 for the CMS
case study. This involved simulating probabilistic QoS of atomic services, pairwise
generation of configurations and finally, analysis of composite services’ probabilistic
QoS behavior for the variable configurations.

5.5.1 Simulation of QoS Distributions

The first step is simulating the probabilistic response time distributions of each atomic
web service as done in [RBHJ08]. For this, we make use of the t-location distribution
fitting feature in MATLAB as shown in Fig. 5.3. By varying the degrees of freedom ν
and non-centrality parameter δ in the dfittool of MATLAB, it is possible to generate
various heavy tailed distributions that mimic the response times of web services. These
are used to simulate the response times of actually invoked atomic services. This t-
distribution fitting was used to generate various distributions of services’ response times
with varying parameters.

5.5.2 Generating a sample of configurations for CMS

We transform the CMS FD to constraint satisfaction problem model in the language
Alloy as described in [PSK+10]. All pairwise interactions between features are trans-
formed to Alloy predicates. The goal of solving the Alloy model is to find the minimal
set of configurations that cover conjunctions of all valid pairwise predicates. The first
step involves detection of all valid pairs that conform to the FD. In the second step,
we construct conjunctions of pairwise predicates and solve them via incrementally in-
creasing the scope of the solution size. The result is a minimal set of configurations

140

Chapter 5 5.5. Experiments

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7

8

9

Time (seconds)

N
um

be
r o

f H
its

Actual response time
t−distribution fit

Figure 5.3: Distribution fitting of actual response times of a web service invocation.

that cover conjunctions of all valid pairs.

A set of 15 configurations, C1 to C15, were deemed sufficient by the pairwise gen-
eration methodology to represent the configuration sample space. These are shown in
Table 5.5 with a × representing service invocation. Guidelines for setting experimental
parameters in order to efficiently generate solutions may be found in [PSK+10].

Web Service C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
CrisisOrchestration × × × × × × × × × × × × × × ×
CommunicationManager × × × × × × × × × × × × × × ×
CrisisManager × × × × × × × × × × × × × × ×
GPSLocation × × × × × × × × × × × × × × ×
GSMLocalOperator × × × × × × ×
GSMIntlOperator × × × × × × × ×
Fire × × × × × × ×
Ambulance × × × × × × × × ×
Hospital × × × × × × × × ×
Police × × × × × × × × ×
Surveillance × × × × × ×

Table 5.5: Web services in the Orchestration and the variable Configurations (C1 to
C15) with × representing a service invocation.

In relation to the configurations in Table 5.5 examples of two generated cases are
shown in Fig. 5.4. These configurations cover tuples specified in nos. C1 and C15.
While the basic configuration C15 has none of the optional services, C1 has three of
the optional services invoked. Such variability in orchestration can produce radically
different QoS values.

While this view makes use of static invocation of an orchestration (based on the FD
configurations), another view is also possible: dynamic invocation of the configurations
in a FD by a self-reconfiguring composite service. This would create orchestrations
dynamically and link them to a particular FD configuration. However, due to the
added control of systematic configuration generation from FDs, we resort to static
invocation of orchestrations.

5.5.3 Evaluating QoS of a Composite Service

The efficacy of the QoS analysis procedure was tested experimentally. The web ser-
vices of the CMS were assigned random response times from a range of heterogeneous
t-distributions. The range of parameter values for these distributions in MATLAB in-
cluded degrees of freedom (ν) varying from 3 to 6 and non-centrality (δ) varying from
5 to 10 seconds.

For an invoked service, the individual timeout value was set sufficiently high (95
percentile of the response time distribution). The global timeout value was also set

141

5.5. Experiments Chapter 5

Figure 5.4: Varying configurations of the atomic services (a) Configuration C1 (b)
Configuration C15.

sufficiently high (300 seconds) to allow capture of outliers in the distribution. For
each chosen configuration, 10,000 Monte-Carlo runs on the chosen services in the
orchestration (representing a partial order of the composite service) was performed.
The response time of the orchestration was collected during each run to generate an
associated distribution.

As seen in Fig. 5.5, the pairwise generated configurations cover a range of re-
sponse time distributions. The three worst performing configurations (C4, C8, C12)
are compared as an example. The median and 90 percentile changes between these
configurations are shown. This demonstrates the use of a few configurations to test
significant changes in QoS parameters in a composite service.

In Fig. 5.5, the three worst performing configurations have a significant contribution
to the percentile deviations of the response time distribution. This is further seen in
the box-plot representation in Fig. 5.6. On each box, the red central mark is the
median, the horizontal edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points (not considered outliers) and outliers plotted
individually. The boxplot captures the minima, 25, 50, 75 and 95 percentile values of a
configuration’s response time distribution. The three worst performing configurations
(C4, C8, C12), in terms of response times’ values, are once again compared in the
box-plot (horizontal dotted lines passing through the medians).

Additional parameters such as availability of a service, the cost entailed in calling
atomic services and output data quality is also studied in tandem. Using the combina-
tors described in Table 5.2, the QoS parameters were analyzed for each configuration
generated by the pairwise interactions. Setting atomic service availability to 0.95 (rep-
resenting service availability in 95% of invocations) the composite availability each
configuration is shown in Table 5.7. The output data quality ξ is related to the cost
χ by the constant κ given by ξ = χ/κ (assuming linear increase in data quality with
each atomic service invocation). For example, setting the χ = 5 units for each invoked
atomic service, the cost of each configuration is shown in Table 5.7. Furthermore, set-
ting κ = 20, the output data quality of the configurations may also be derived. A
higher availability and data quality with lower costs and response times are desirable.
For example, comparing C3 and C4, calling additional services entails lower availabil-

142

Chapter 5 5.5. Experiments

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

Response Time (seconds)

N
um

be
r

of
 H

its

90 percentile

50 percentile

Figure 5.5: Response times of the pairwise configurations with emphasis on comparing
the three configurations with highest response times.

ity and higher costs to the orchestrator, albeit with additional output data quality.
Though simplistic in outlook (due to subjectivity of cost and data quality of atomic
services), this trade-off of parameters must be taken into account. These myriad of
QoS parameters accurately quantify run-time behavior of the composite service.

From these results, the orchestrator can have a global overview of the performance
of the composite service. The possibilities include:

1. Setting the SLA keeping into account the worst performing configuration. This
will prevent contract deviation during actual deployment of the service.

2. Setting a family of SLAs for a set of configurations taking into account trade-
offs between QoS metrics and the output quality of configurations. This leads
to a product line of composite services with extensively analyzed SLAs. For
example, the configurations C2, C8 and C13 with very similar characteristics
can be grouped as a separate line of services.

3. Eliminating certain deviating configurations to improve the overall performance.
This may be done by adding further constraints in the orchestration/feature mod-
els. For example, consider the services C4 and C12. Eliminating these configu-
rations (by addition of constraints) reduces the output data quality by 0.25 units
as seen Table 5.7. However, it improves the 90, 50, 75 and 25 percentiles of the
overall response time distributions by 11.53, 10.3, 9.3 and 8.87 seconds respec-
tively. These are significant durations if the orchestrator of a composite service
is vying to compete with other companies offering lower response time durations
for similar quality services.

Using the pairwise analysis scheme, these imperative qualitative results are obtained
with quantitative efficiency even when the number of services are considerably large.

5.5.4 Evaluating the Pairwise Sampling Technique

To experimentally test the efficacy of combinatorial testing the 15 pairwise configura-
tions (Table 5.5) were compared with all the 64 exhaustive independent configurations

143

5.5. Experiments Chapter 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Configurations

50
percentile

Figure 5.6: Box-plot representation of the pairwise configurations with the median
values marked for the extreme cases.

of the CMS orchestration. As shown in Fig. 5.7, the comparison is made using the 25,
50, 75 and 90 percentiles of response time distributions for 10,000 Monte-Carlo runs in
MATLAB. These families of exhaustive configurations (with few millisecond redundant
deviations) are represented by one pairwise configuration. The pairwise configurations
are able to capture the extreme values representing greater than 55 seconds of quantile
deviation. This represents greater than 75% decrease in the number of exhaustive tests,
which will increase in an exponential fashion with introduction of new services.

The accuracy of the pairwise sampling scheme is further demonstrated in Table
5.6 where the mean and maximum deviations of the pairwise values from the nearest
exhaustive values are provided. These are expressed as a percentage of the mean inter-
family response time difference. The inter-family response time difference is the average
difference between percentile values of two adjacent pairwise samples (8.96 seconds).
Compared to this difference, the deviation in accuracy between the pairwise and ex-
haustive samples can be ignored for practical purposes. Thus, for such orchestrations
with numerous configurations, using pairwise interactions is a sufficient choice in order
to examine the entire sample space.

Percentile values 25 50 75 90

Mean 1.1326% 1.3471% 1.3438% 1.5471%

Maximum 9.0075% 7.2147% 7.1243% 5.2030%

Table 5.6: Deviations of the pairwise and exhaustive analysis values.

Given one orchestration, there can be many different sets of configurations that
cover all pairwise services interactions. To evaluate the efficacy of each sample solution,
the QoS behavior was computed on the various generated configurations present in a
sample. This was done in order to evaluate the stability of pairwise interaction coverage
as a sampling heuristic to estimate the global QoS for an orchestration. A collection
of 40 samples that satisfy the pairwise interaction testing were generated for the CMS.
The statistics of the worst performing configuration (with highest response time) in
each sample was collected through 10,000 Monte-Carlo runs and is shown in Fig. 5.8.
For example, the highest response time in Fig. 5.7 has the 25, 50, 75 and 90 percentile

144

Chapter 5 5.6. Related Work

30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Response Time (seconds)

P
er

ce
nt

ile
 V

al
ue

s

(a)

30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Response Time (seconds)

P
er

ce
nt

ile
 V

al
ue

s

(b)

15 Pairwise
Configurations

64 Exhaustive
Configurations

Figure 5.7: Comparison of pairwise and exhaustive generation of configurations with
25, 50, 75 and 90 percentile values of response time distributions.

values as 73, 81, 91.5 and 104 seconds, respectively. The objective of studying this
variance is to check whether the entire range of QoS values: minima (representing no
optional services) to maxima (representing all or most optional services) are present in
each pairwise sample. In Fig. 5.8, the percentile values show only a few milli-seconds
of deviance. The highest variance of 0.8 seconds seen in the 90 percentile value may be
attributed to outliers included in the extreme configurations. An example showing the
percentile deviation of two pairwise samples is also shown in Fig. 5.9.

Variance study over a range of samples display the need to analyze many percentiles
to accurately estimate the deviation of particular configurations. Use of more than one
sample should improve robustness of the offline analysis framework as certain extreme
configurations may not occur always. Use of domain specific information may also
be required to further ensure robustness of samples. As QoS metrics are modeled as
random variables, performing more than one analysis study (combination of more than
one sample and various percentile levels) should yield more robust results for SLA
computation.

5.6 Related Work

The combinatorial testing framework described by Cohen et al. [CDFP97] has been
applied extensively to efficient testing for fault detection. In the work of Cohen et al.
[CDS08], this technique is extended to software product lines with highly configurable
systems. Modeling variability in SPLs using feature models is the work of Jaring and
Boschet [JB02] where they show that the robustness of a SPL architecture is related
to the type of variability. To ensure that constraints in the FD are incorporated in the
efficient sampling of t-wise tests, the solver proposed by Perrouin et al. [PSK+10] is
used. In [MMLP09], variability in software as a service applications are modeled using

145

5.6. Related Work Chapter 5

5 10 15 20 25 30 35 40
70

75

80

85

90

95

100

105

Samples

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

25 percentile with variance 0.1135 seconds
50 percentile with variance 0.1519 seconds
75 percentile with variance 0.2850 seconds
90 percentile with variance 0.7997 seconds

Figure 5.8: Percentile values of most deviant scenarios generated by pairwise interac-
tions for the CMS orchestration.

the orthogonal variability model to study the customization choices in such workflows.

Pre-deployment testing of SLAs has been studied by Di Penta et al. [PCE07], where
they make use of genetic algorithms to generate test data causing SLA violations. Anal-
ysis of white and black box approaches are provided in the paper. In [BCP+05], Bruno
et al. make use of regression testing to ensure that an evolving service maintains the
functional and QoS assumptions. The service consistency verification due to evolution
is done by executing test suites contained in a XML encoded facet attached to the
service.

The use of probabilistic QoS and soft contracts was introduced by Rosario et. al
[RBHJ08] and Bistarelli et al. [BS09b]. Instead of using fixed hard bound values for
parameters such as response time, the authors proposed a soft contract monitoring
approach to model the QoS measurement. The composite service QoS was modeled
using probabilistic processes by Hwang et al. [HWTS07] where the authors combine
orchestration constructs to derive global probability distributions.

In our paper, we extend these two notions to analyze the QoS of a composite or-
chestration under various configurations. The hard contract notions of end-to-end QoS
are replaced by the probability quantile based approach. This provides the service
provider the technique for estimating composite service QoS distributions and estimat-
ing the global soft contract SLA. Though formal analysis of end-to-end QoS has been
studied in Cardoso et al. [CMSA02], there are no practical testing tools available for
the service provider. The pairwise testing procedure has been shown to outperform
other testing techniques in [CDFP97]. We extend this testing tool to develop a generic
testing methodology to query end-to-end QoS of a web service.

Related empirical studies of optimal QoS compositions make use of genetic program-
ming in Canfora et al. [CPEV05a] and linear programming in Zeng et al. [ZBN+04].
These are dynamic techniques to choose the best possible atomic services and config-
urations keeping QoS in mind. This differs from our work as they assume that there
are choices in the best possible atomic web services. The goal in our paper is to ana-
lyze the variable configurations that may result due to invocation or non-invocation of
particular web services.

146

Chapter 5 5.7. Conclusion and Perspectives

30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

Response Time (seconds)

P
er

ce
nt

ile
 V

al
ue

(a)

30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

Reponse Time (seconds)

P
er

ce
nt

le
 V

al
ue

s

(b)

Pairwise Sample 1
(15 Configurations)

Pairwise Sample 2
(20 Configurations)

Figure 5.9: Comparison of two pairwise samples with 25, 50, 75 and 90 percentile values
of response time distributions.

5.7 Conclusion and Perspectives

Accurate offline analysis of a composite web service before its deployment is essential
to ensure non-repudiation of a SLA contract. This is necessary to maintain optimal
QoS behavior of mission-critical services such as crisis management. In order to do this,
the service provider must keep in mind the probabilistic aspect of QoS parameters and
the variable configurations in a composite service. In this paper, we study an analysis
framework to test the QoS of an orchestration before deployment. Further, the notion
of systematic pairwise sampling procedure has also been demonstrated, which provides
a more efficient sampling of the configuration space than exhaustive trails while still
maintaining sufficient coverage. Larger FD and orchestration models can be analyzed
using the divide-and-compose approaches [PSK+10] to handle this scalability issue.
This should provide a simple, systematic and stochastically correct methodology for
pre-deployment QoS analysis of a composite service.

While this paper concentrates on a particular composition of fixed atomic services,
a future area of interest would be optimal compositions. The use of configurations and
scenarios modeled by a FD leads to a family of composite services. These, in turn, may
be used to generate many versions of the orchestrations. This will prove useful for both
obtaining realistic QoS bounds and product generation of families of services.

147

5.
7.

C
on

cl
u
si
on

an
d
P
er
sp
ec
ti
v
es

C
h
ap

te
r
5

Metric C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Availability (α) 0.6634 0.6302 0.6983 0.5987 0.7738 0.6983 0.7351 0.6302 0.6983 0.6634 0.6983 0.5987 0.6302 0.6634 0.7738
Cost (χ) 40 45 35 50 25 35 30 45 35 40 35 50 45 40 25
Data Quality (ξ) 2.0000 2.2500 1.7500 2.5000 1.2500 1.7500 1.5000 2.2500 1.7500 2.0000 1.7500 2.5000 2.2500 2.0000 1.2500

Table 5.7: Availability, Data Quality and Cost of the pairwise configurations.

14
8

Chapter 6

Pairwise Testing of Dynamic
Composite Services

Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Abstract

A composite service orchestration soliciting multiple atomic services is plagued by a
number of sources of variation. For instance, availability of an atomic service and its
response time are two important sources of variation. Moreover, the number of possible
variations in a composite service increases exponentially with increase in the number
of atomic services. Testing such a composite service presents a crucial challenge as its
often very expensive to exhaustively examine the variation space. Can we effectively
test the dynamic behavior of a composite service using only a subset of these varia-
tions? This is the question that intrigues us. In this paper, we first model composite
service variability as a feature diagram (FD) that captures all valid configurations of
its orchestration. Second, we apply pairwise testing to sample the set of all possible
configurations to obtain a concise subset. Finally, we test the composite service for se-
lected pairwise configurations for a variety of QoS metrics such as response time, data
quality, and availability. Using two case studies, Car crash crisis management and
eHealth management, we demonstrate that pairwise generation effectively samples the
full range of QoS variations in a dynamic orchestration. The pairwise sampling tech-
nique eliminates over 99% redundancy in configurations, while still calling all atomic
services at least once. We rigorously evaluate pairwise testing for the criteria such as:
a) ability to sample the extreme QoS metrics of the service b) stable behavior of the
extracted configurations c) compact set of configurations that can help evaluate QoS
tradeoffs and d) comparison with random sampling.

149

6.1. Introduction Chapter 6

6.1 Introduction

In a service-oriented world actors such as data sources, knowledge bases, people, pro-
cesses, businesses, hardware sensors/actuators and software systems are all seen as
services. In such a world, a composite service orchestrates a number of self-contained
atomic services to perform complex tasks. The unpredictable and dynamic nature
of each of these atomic services ultimately renders the functional and non-functional
behavior of a composite service unpredictable and dynamic. For instance, the crisis
management system in a large city orchestrates a number of atomic services such as
the ambulance service, police service, GPS service, and phone service. The variable
nature of each of these services renders the overall behavior of the crisis management
system variable and dynamic.

Untested dynamic behavior of a composite service can have several critical conse-
quences. For instance, a crisis management system dealing with an earthquake must
mobilize a multitude of services within a predictable time frame and seldom deviate
from it. An untested composite service may exhibit unreliable deviations from con-
tractual agreements on Quality of Service (QoS) [TP05]. Service level agreements
(SLAs) [PB08] are the industry standard to specify constraints on QoS for both service
providers and consumers. Habitual deviations from SLAs are a result of ignoring QoS
outliers and dynamic behavior of a composite service.

A key challenge in testing a composite service emerges from its inherent variability.
We enlist three important dimensions to composite service variability (a) The variation
in selection/non-selection of equivalent atomic services used in a composite service (b)
The variation in QoS of each of these atomic services leads to variations in composite
service QoS. For instance, in [RBHJ08] we develop probabilistic models of QoS vari-
ability in atomic services (c) The variation in the way atomic services are called in a
composite service such as in sequence or in parallel. In this paper, we are primarily
concerned with the first two sources of variability. Changes in the orchestration can be
triggered by these sources, enabling self-* composite services. We use the general term
dynamic composite service to encompass self-* service-oriented systems.

With an increase in number of equivalent atomic services there is an exponential
increase in the invocations of a composite service. It is impractical and computationally
expensive to test a composite service for all its possible variations. Therefore we ask,
can we effectively test the dynamic behavior of a composite service using only a subset
of these variations? Answering this question is the subject of this paper.

We present a methodology for combinatorial interaction testing (CIT) dynamic com-
posite services. In particular, we perform pairwise testing of composite services. The
methodology consists of three main phases: (1) Modeling variability in a composite ser-
vice (2) Generation of composite service configurations satisfying pairwise interactions
(3) Analyzing these composite service configurations to test composite service QoS. In
our approach, we model the variability of a composite service as a feature diagram
where each feature represents an atomic service. Inter-feature constraints represent
dependencies between atomic services. Feature Diagrams (FD) [KCH+90] provide a
formal framework to specify authorized variations in the configuration of a composite
service. We transform the feature diagram and pairwise interactions between features
(or atomic services) to a single constraint satisfaction problem in the formal specifica-
tion language Alloy [Jac08]. We solve the Alloy model to generate valid configurations
of the composite service. The generation methodology is an extension of our previ-
ous work[PSK+10] to dynamic composite services. We empirically investigate the QoS
of the resulting configurations. We demonstrate that combinatorial interaction test-
ing (CIT) [CDFP97] to select a subset of configurations that covers all valid pairwise
interactions of services is an efficient technique to sample configurations of an orches-

150

Chapter 6 6.2. Foundations

tration. Our premise is based on the observation that most software faults are triggered
by interactions between a small number of variables [KW04]. For example, consider
the car crash crisis management system case study [KGM09] that we will examine in
this paper. With 25 optional features that may / may not be invoked in a specific
orchestration, the total number of exhaustive tests required will be 33, 554, 432. This
is an extremely large number of tests that would considerable time and effort for QoS
analysis. The number of tests satisfying pairwise interaction is just 185 reducing the
number of required tests by 99.99%.

Pairwise testing has been used to detect faults in software systems in extensive prior
research [CDFP97]. Our main contribution is the application of pairwise testing to sam-
ple configurations in dynamic composite services: one form of efficient self-monitoring
of variable behavior. This is based on the hypothesis that composite services’ QoS be-
havior uncover faults in a service-oriented systems where choice of atomic services and
the orchestration between them are primary artifacts. The extensive empirical studies,
based on two case studies which are the car crash crisis management system (C 3MS)
[KGM09] and a eHealth administration system, support our claims about pairwise
testing dynamic composite services:

1. C1: Pairwise testing is an sufficient coverage strategy for dynamic composite
service orchestrations

2. C2: Pairwise testing covers a wide range of QoS in dynamic composite services

3. C3: Pairwise testing is better than random testing

4. C4: Pairwise testing is a stable strategy to define global SLA for a dynamic
composite service

5. C5: Pairwise testing is useful to generate families of orchestrations with differing
SLAs

The paper is organized as follows. Section 6.2 provide foundational material to
understand our paper. This includes feature diagrams in 6.2.1, the Orc language for
specifying orchestrations in 6.2.2, pairwise configuration generation in 6.2.4, and formal
description of QoS metrics in 6.2.5.The methodology followed in this paper is discussed
in Section 6.3. The case studies for experiments are put forth in Section 6.4. The
experiments related to QoS analysis are presented in 6.5. Comparison with respect to
random generation and the stability of pairwise analysis are shown in 6.5.3 and 6.5.4,
respectively. Further deliberation and perspectives of our analysis scheme are presented
in Section 6.5.5. Threats to the validity of the empirical studies are discussed in Section
6.5.6. Related work in literature is put forth in Section 6.6. We conclude in Section
6.7.

6.2 Foundations

In this section we present background or foundational ideas required to understand the
rest of the paper. We present these concepts to make the paper as self-contained as
possible.

6.2.1 Feature Diagrams

Feature Diagrams (FD) introduced by Kang et al. [KCH+90] compactly represent
all the products (referred to as configurations in this paper) of a software product
line (SPL) in terms of features which can be composed. Feature diagrams have been

151

6.2. Foundations Chapter 6

formalized to perform SPL analysis [SHTB07]. In [SHTB07], Schobbens et al. propose
a generic formal definition of FD which subsumes many existing FD dialects. We define
a FD as follows:

• A FD consists of k features f1, f2, ..., fk

• Each feature fi may be associated with a software asset such as an atomic service.

• Features are organized in a parent-child relationship in a tree T . A feature with
no children is called a leaf.

• A parent-child relationship between features fp and fc are categorized as follows:

– Mandatory - child feature fc is required if fp is selected.

– Optional - child feature fc may be selected if fp is selected.

– OR - at least one of the child-features fc1,fc2,..,fc3 of fp must be selected.

– XOR - one of the child-features fc1,fc2,..,fck of fp must be selected.

• Cross tree relationships between two features fi and fj in the tree T are catego-
rized as follows:

– fi requires fj - The selection of fi in a product implies the selection of fj.

– fi excludes fj - fi and fj cannot be part of the same product and aremutually
exclusive.

6.2.2 Service Orchestrations using Orc

A dynamic composite service is an orchestration of atomic services. We express the
orchestration of atomic services available in an FD using the Orc language. Orc [MC07]
serves as a simple yet powerful concurrent programming language to describe and exe-
cute service orchestrations.

The fundamental declaration used in the Orc language is a site. The type of a site
is itself treated like a service - it is passed the types of its arguments, and responds
with a return type for those arguments. An Orc expression represents an execution
and may call external services to publish some number of values (possibly zero).

Orc has the following combinators that are used on various examples as seen in
[MC07]. The Parallel combinator F |G, where F and G are Orc expressions, runs by
executing F and G concurrently. Whenever F or G communicates with a service or
publishes a value, F |G does so as well. The execution of the Sequential combinator
F >x> G starts by executing F . Sequential operators may also be written compactly
as F ≫ G. Values published by copies of G are published by the whole expression,
but the values published by F are not published by the whole expression; they are
consumed by the variable binding. If there is no response from either of the sites,
the expression does not terminate. While the above two composition operators are for
creating threads, Orc uses the following construct to prune operations. The Pruning
combinator, written F <x< G, allows us to block a computation waiting for a result,
or terminate a computation. The execution of F <x< G starts by executing F and
G in parallel. Whenever F publishes a value, that value is published by the entire
execution. When G publishes its first value, that value is bound to x in F , and then
the execution of G is immediately terminated. The Otherwise combinator, written F ;G
has the following execution. First, F is executed. If F completes, and has not published
any values, then G executes. If F did publish one or more values, then G is ignored.
The publications of F ;G are those of F if F publishes, or those of G otherwise. In the
Fork-Join combinator, two processes are invoked and run concurrently. The process

152

Chapter 6 6.2. Foundations

waits until a response is obtained from both. This may be represented as (F,G) where
the process waits for responses from both atomic services F and G.

6.2.3 Feature Diagrams with Orchestrations

The FD and the orchestration cover two dimensions that are complementary to each
other. While the FD represents the variability in the configurations, the orchestration
specifies the order in which the services are called. Making use of the terminology
in [SHTB07], primitive features are “features” that are of interest and that will be
incorporated in real-world services. On the contrary, decomposable features are just
intermediate nodes used for decomposition. It is up to the modeler to determine such
classification of features in the FD. We extend the semantics given in [SHTB07] to
ensure compatibility of an orchestration with the feature model as follows:

• The set of available services S are the primitive nodes of the FD D;

• For each orchestration, the set of corresponding services invoked (denoted N);

• N ⊆ S in a configuration;

• A model of D is a subset of its (primitive and decomposable) nodes;

• There must exist a model of D ([[D]]) such that [[D]] ∩ S = N (a model of a FD
is a subtree that is valid w.r.t. the operators and the dependence relation).

Drawing from the real-world services and the constraints shown in a FD, the composite
service may be developed by an orchestrator.

6.2.4 Combinatorial Interaction Testing

We use combinatorial interaction testing (CIT) to synthesize a subset of configurations
represented by the FD of a dynamic composite service. Originally, CIT was proposed
by Cohen et al. [CDFP97] to select a subset of all combinations of variables that define
the input domain of a program, while still guaranteeing a certain level of coverage. This
has led to the definition of pairwise interaction testing, or 2-wise testing. This samples
the set of all combinations in such a way that all possible pairs of variable values are
included in the set of test data. Pairwise testing has been generalized to t-wise testing
which samples the input domain to cover all t-wise combinations. In this paper, a set
of test data is often represented in the form of a covering array that contains all t-wise
interaction of features in a FD.

Definition. 2 Covering Array - A covering array CA (N ; t, k, v) is a N × k array
on v symbols with the property that every N × t sub-array contains all ordered subsets
of size t from v symbols at least once.

From the definition of a covering array, the strength t of the array is the parameter
that allows achieving 2-wise (pairwise), 3-wise or t-wise combinations. The k columns
on this array correspond to all the variables in the input domain which in our case are
the features in a FD. For the generation of dynamic composite service configurations, k
is the number of services, and v is 2 since we have only boolean variables (services may
be present or absent in a configuration). The covering array is a set of configurations
of features.

We demonstrate the concept of a minimal covering array using an example. Consider
the set of four atomic services (A, B, C, D) with varying response times. The atomic
services can be composed in 24 exhaustive combinations. However, if we consider the

153

6.2. Foundations Chapter 6

service combinations in pairs, we require fewer configurations. These can be subsumed
by 6 sets of configurations that cover these pairs of interactions resulting in removal of
62.5% of redundancies. This is shown in Table 6.1 where, for example, interaction (A,
B) refers to calling both service A and B while (A, ¬B) refers to calling only A with B
explicitly not invoked.

Pairwise Interaction Configurations

(A, B); (A, C); (A, D); (B, C); (C,D) (A, B, C, D)
(A, ¬B); (A, ¬C); (A, ¬D) (A)
(B, D); (B, ¬A); (B, ¬C); (D, ¬A) (B, D)
(C, ¬A); (C, ¬B); (C, ¬D) (C)
(D, ¬B); (D, ¬C) (A, D)
(B, ¬D) (A, B, C)

Table 6.1: Subsuming pairwise interactions in configurations

Essentially, the use of pairwise sampling reduces the number of cases needed to
generate a range of outputs, a few of which that may be considered faulty. Consider
a system S having a set of inputs p and a set of outputs q. With random testing,
in which input vectors satisfying p are randomly generated, and the output of each
execution is compared with the postcondition q as a set of tests. As structural features
of system S are hidden, the efficacy of using manually designed test cases can be seen
mainly through their cost effectiveness. In our case, we view this as the decrease in the
number of samples needed to generate extreme output values (faults).

Let ω ∈ p be a set of tests for the system S. This produces a set of specifications

ω
S
→ q′, where q′ ∈ q. A successful set of tests is one that has a minimal cardinality of

cases |ω| and maximal variance in the set of outputs q′. This generates a range of values
as the system output. Empirical studies have shown pairwise sampling to be superior
for precisely such a case - efficiently generating a minimal set of tests to generate all
dual combinations of input values. This in turn produces a range of outputs q′ that
have higher variance than other comparative techniques of similar cardinality |ω|.

The problem of generating a minimal covering array for a set of variables is a com-
plex optimization problem that has been studied in extensive prior work for example
[CDFP97]. It is important to notice that there exist very few studies that have tack-
led the automatic generation for CIT in the presence of constraints between variables
[CDS08]. In order to include properties that forbid combinations of values, CIT gen-
eration techniques have to allow the introduction of constraints in the algorithms that
generate covering arrays. In recent work [PSK+10], we present a solution to generate
t-wise configurations that satisfy all simultaneously constraints modeled in a feature
diagram.

We transform the feature diagram to constraint satisfaction problem model in the
language Alloy as described in [PSK+10]. The features in the FD are transformed to
concepts in Alloy called signatures. Inter-feature constraints in the FD are transformed
to Alloy facts. All pair-wise interactions between features are transformed to Alloy
predicates. The goal of solving the Alloy model is to find the minimal set of configu-
rations that cover conjunctions of all valid pair-wise predicates. The first step involves
detection of all valid pairs that conform to the FD. In the second step, we construct
conjunctions of pair-wise predicates and solve them via incrementally increasing the
scope of the solution size. The result is a minimal set of configurations that cover con-
junctions of all valid pairs. At times the SAT solver in Alloy is not scalable for a large
FD. We apply divide-and-compose approaches as described in [PSK+10] to handle this
scalability issue.

154

Chapter 6 6.2. Foundations

6.2.5 QoS Aspects of the Orchestration

In this paper, we test dynamic composite services for their probabilistic QoS behavior.
In this section we summarize our work in [RBHJ08], that presents the derivation of
composite service QoS behavior from individual atomic service behaviors. Probabilistic
analysis of QoS parameters as described in [RBHJ08] [HWTS07] provide a more realistic
study of actual services’ behavior. The following QoS parameters have been chosen for
experiments in this paper:

1. Latency / Response Time (T) - Denotes the overall delay due to the time taken
by a service to respond. It is a discrete value that may be modeled as a long
tailed distribution incorporating some rare deviations.

2. Availability (α) - The probability that a service is active and can respond to a
service call. For a well managed service, this value is generally quite high.

3. Cost (χ) - Refers to the monetary cost associated with each invocation of a
particular atomic service.

4. Data Quality (ξ) - A subjective measure of trade off to high Cost and Response
times of services. It measures the ”Quality” of the output of the service and the
beneficial aspects of including a new atomic service into the composite orchestra-
tion.

These QoS metrics are normally defined for an atomic service. We derive these QoS
metrics for a dynamic composite service by analyzing its orchestration. This analysis
involves giving a semantic to a composite service QoS based on individual atomic service
QoS and the Orc combinators (see Section 5.2.2) associating them. Taking two sites
si and sj, the QoS metrics may be computed as shown in Table 6.2 based on the Orc
combinators in use. The cases of composing the service sij using the sequential and fork-
join combinators have been considered. The latency, cost and availability metrics for
the composite service sij are derived as shown in [CMSA02] withMax(p, q) representing
the maxima of the values p and q. For the sequential case, the latency and cost of the
composite service is a sum of the atomic services’ parameters while the availability is
a product of such parameters. Similarly, the maxima of the atomic services’ response
times contributes to the global response time under parallel invocation.

Orc Code sij , si ≫ sj sij , (si, sj)

Latency T (sij) = T (si) + T (sj) T (sij) =Max(T (si), T (sj))
Cost χ(sij) = χ(si) + χ(sj) χ(sij) = χ(si) + χ(sj)

Availability α(sij) = α(si)× α(sj) α(sij) = α(si)× α(sj)

Table 6.2: QoS metrics extended to Orc combinators.

Some QoS metrics of an atomic service may be modeled as a random variable con-
forming to a probability distribution. We need to simulate the QoS metric by sampling
from a probability distribution. For instance, we need to simulate the probabilistic
response time distributions of each atomic service as done in [RBHJ08]. By varying
the degrees of freedom ν and non-centrality parameter δ in the t-distribution dfittool
of MATLAB, it is possible to generate various heavy tailed distributions that mimic
the response times of services. We sample these distributions to simulate the response
times of actually invoked atomic services. In this paper, the t-distribution fitting was
used to generate various distributions of services’ response times.

155

6.3. Methodology Chapter 6

6.3 Methodology

We present the methodology for pairwise testing and QoS analysis of dynamic composite
services.

1. Inputs: The inputs to our methodology is tuple (S, FD, O, Strategy):

(a) S is the set of all atomic services that can be used in a dynamic composite
service.

(b) FD is a feature diagram that specifies various features in a dynamic com-
posite service and the constraints between them. Primitive features in an
FD are each associated with an atomic service Si. A valid configuration
Ck of a FD is the set of m features f1, f2, ..., fM that conform to the con-
straints in the FD. The features in valid configurations represents sets of
atomic services S1, S2, ..., SN . The sets are subsets of S. See Section 5.2.1
for formal definition of a FD.

(c) O is the overall orchestration of the dynamic composite service. The or-
chestration is reconfigured based on valid configurations of the FD. The
orchestration O may be reconfigured to orchestrations O1, O2, .., ON for all
valid configurations C1, C2, .., CN of the FD. An orchestration only invokes
the set of atomic services present in a valid configuration of the FD. In our
paper, O is an Orc orchestration. See Section 5.2.2 for brief description of
Orc.

(d) Strategy is the strategy used to generate configurations. In this paper, we
consider two strategies to guide generation of valid FD configurations:

i. Random Generation : We randomly select configurations conforming to
FD by solving the Alloy model representing only the FD.

ii. Pairwise Generation : We generate a set of configurations that satisfy
all pairwise interactions between features in FD. These configurations
also satisfy the constraints in the FD.

2. Configuration Generation: We generate the configurations using the tech-
nique described in [PSK+10] and briefly outlined in Section 5.2.3. The process
involves transformation of the FD to a constraint satisfaction problem in Alloy.
A chosen Strategy to generate configurations is also transformed in conjunction
with the Alloy model. Solving the Alloy model gives valid configurations. Let the
set of output configurations be C1, C2, ...CN for a chosen strategy Strategy.

3. Empirical Analysis of QoS: The output configurations from the previous step
C1, C2..., CN reconfigures O to orchestrations O1, O2, ..ON by selecting only the
atomic services that are present in each of the configurations. We compute QoS for
each of the orchestrations invoking all atomic services in the configuration using
the semantics described in Section 5.2.4. We use the experiments to address the
questions motivated in Section 6.1.

6.4 Case Studies

We consider two case studies for our experiments as described in Sections 6.4.1 and
6.4.2.

156

Chapter 6 6.4. Case Studies

6.4.1 Car Crash Crisis Management System

The need for crisis management systems has grown significantly over time [KGM09].
Crisis management involves identifying, assessing, and handling the crisis situation. A
crisis management system facilitates this process by orchestrating the communication
between all (distributed) parties involved in handling the crisis. The car crash crisis
management system (C 3MS) [KGM09] includes all the functionalities of a general
crisis management systems, and some additional features specific to car crashes such as
facilitating the rescuing of victims at the crisis scene and the use of tow trucks to remove
damaged vehicles. As described in [KGM09], the main goals of this system include: a)
Facilitating the rescue mission carried out by the police / firemen and providing them
with detailed information on the location of the crash. b) Managing the dispatch of
ambulances or other alternate emergency vehicles to transport victims from the crisis
scene to hospitals. c) Coordinating the first-aid missions by providing relevant medical
history of identified victims by querying data bases of local hospitals. d) Ushering the
medical treatment process of victims by providing important information about the
crash to the concerned workers. e) Managing the use of tow trucks to remove obstacles
and damaged vehicles from the crisis scene.

In Figure 6.1, we present the Car Crash Crisis Management System (C 3MS) FD
[KGM09]. The C 3MS FD contains several features that are associated with software
assets represented by atomic services. For example, the Paramedic feature is repre-
sented by the Paramedic service. Some sets of features like Police and PoliceMan are
subsumed by a single service Police. Constraints such as optional, requires and mutual
exclusion (XOR) are also incorporated. For example, the GPS and GSM features are
mutually exclusive while the Doctor feature requires the PublicHospital feature.

Crisis Management
System

Communication

Crisis Type

GSMGPS

Legend

Mandatory

Optional

XOR

Feature

Service

Asset

InternalResource

FirstAidMaterial
HumanResource

Coordinator

Observer

Worker

Paramedic

WitnessHumanVictims

Small

Area

Sudden Crisis

Major Accident

Car Crash

External
Service Used

External
Company

Governmental
Services

Medical
Services

Garage
Tow Truck

Private
Ambulance
Company

Public Hospital

Hospital Worker Doctor Ambulance

Police

PoliceMan Fire department

Fire

IT-Option

Database
System

Authentication
System

Surveillance
System

Mission

Remove Obstacle

Rescue

Observe

Transport

Investigation

Nurse the wounded

Sort the wounded

CrisisType

Area

Police

Fire

Figure 6.1: C 3MS Feature Diagram.

--C3MS Orchestration--

def CrisisManagementSystem() =
CrisisType() >> (HumanVictims(h), Witness(w)) >> Area()
>> CommunicationManager(gs,gp) >> InternalResource(o) >>
(Mission(), ITOption(IT),ExternalServices(), Medical(md))

def CommunicationManager(gs,gp) = (GSM(gs),GPS(gp))

157

6.4. Case Studies Chapter 6

def InternalResource(o) =
(AidMaterial(),Coordinator(),Paramedic(),Observer(o))

def Mission() = (RemoveObstacle(robs),Rescue(re),Observe(ob),Transp ort(tr),
def Investigation(in),NurseWounded(nw),SortWounded(sw))
def ITOption(IT) = (su,au,db) >>

(SurveillanceSystem(su),AuthenticationSystem(au), Da tabaseSystem(db))
def ExternalServices() = (ExternalCompany(ec),GovernmentServices())
def Medical(md) = (pac,ph) >> (PrivateAmbulance(pac),PublicHospital(ph))

def ExternalCompany(ec) = tt >> TowTruck(tt)
def GovernmentServices() = (Police(pm),Fire(fm))
def PublicHospital(ph) = (hw,amb,doc) >>

(HospitalWorker(hw),Ambulance(amb),Doctor(doc))

Figure 6.2: Composite Service Orchestration of the C 3MS .

The composite service orchestration is represented succinctly in Fig. 6.2 and the
Orc pseudo code is also presented. They represent a family of configurations that may
be invoked. Calling the CrisisManagementSystem() service invokes other services like
CrisisType and InternalResource() operations in sequence. These services, in turn, may
call other services in parallel or services, passing some parameters in the process. For
instance, the CommunicationManager() services calls the GPS() and GSM() services
in parallel, while passing some parameter values for invocation of these services. The
setting of these parameter results in the various associated configurations in the system.
Operations such as mutual exclusion (MUX) and synchronization (Merge) may be
performed using Orc constructs. Another level of control is the global timeout value
associated with the composite service. This has to be associated with the overall SLA
of the composite service to provide optimal durations for response.

6.4.2 eHealth Management System

The need for efficient hospital management stems has been discussed in [SAP06]. A
hospital administration system is devised to remove some of the inefficiency plaguing

158

Chapter 6 6.4. Case Studies

current protocols such as cumbersome admission time, duplicate data entry, redundant
lab tests, ineffective treatment coordination, and billing processes. Drawing inspiration
from [SAP06] composite health care applications are required to connect various par-
ties and locations. The information flows seamlessly across organizational and system
boundaries emitting from the use of such a centralized orchestration. This enhanced
visibility gives everyone involved a unified view of relevant information and gives pro-
cess owners the ability to improve existing methods and procedures. The eHealth
system can be viewed as an extension of the C 3MS medical services to transport in-
jured victims for speedy treatment of injuries. Examples of the utility of healthcare
applications include: a) Healthcare providers can access the medical information of a
prospective patient and use ambulance services to transfer the client to relevant health-
care facilities. b) Physicians can review a patient’s medical history even though this
data resides in several systems managed by diverse providers. c) Insurance claims and
financial options can be updated and handled in a speedy way. d) Doctors can use a
composite application to determine the appropriate medication for a patient, order the
drug, check the status of pharmacy approval, and monitor how the drug is dispensed.
e) Special needs of the patient such as catering specific food items and lab tests can be
coordinated in an effective way.

Fig. 6.3, presents the eHealth management system FD. Similar to the C 3MS FD, it
contains several features that are associated with software assets represented by atomic
services. Constraints such as optional, requires and mutual exclusion (XOR) are also
incorporated. Two versions of the similar service Ambulancef and Ambulances are in
mutual exclusion. These atomic features or services can be set to varying QoS values
resulting in interesting combinations of services.

Health Emergency
System

Transport HospitalAdmit

Ambulance

Ambulance

Legend

Mandatory

Optional

XOR

Feature

Service

Asset

Ambulance

Documents

HealthRecords

InsuranceCompany

Discharge Billing

Treatment

HealthRecords

HealthRecords

InsuranceCompany

InsuranceCompany

AdmitRoom

SpecialRoom

Ward

SpecialRoom

SpecialRoom

Ward

Ward

Pharmacy

Doctor

Testing

Catering

Pharmacy

Pharmacy

Doctor

Doctor

Testing

Testing

Catering

Catering

f

s

s

f

s

f

s

f
f

s

f

s

f

s

f

s

f
s

Figure 6.3: eHealth Feature Diagram.

The web services used for the orchestration of the eHealth system are shown in Fig.
6.4. The operations are generic with services such as HealthForms and InsuranceForms
used to request relevant medical history and insurance status of the patient, respectively.

The Orc pseudo code for the eHealth system is presented with the distinguishing
feature being the choice of services that can be used to perform similar goals. For
instance, either one of the mutually exclusive (MUX) services Testingf () or Testings()
services can be used to request for lab tests. However, the QoS associated with each of

159

6.4. Case Studies Chapter 6

Figure 6.4: Composite Web Service Orchestration of the eHealth system.

these services is different resulting in varying overall composite service QoS.

--eHealth Orchestration--

def HealthEmergencySystem() = Transport() >> HospitalAdmit() >> Billing()
>> Discharge()

def Transport() = a >> Ambulance(a)
def HospitalAdmit() = Documents() >(hf,in) >

(HealthRecords(hf),InsuranceRecords(in)) >> AdmitRoom() >> Treatment()
def AdmitRoom() = (sr,w) >> (SpecialRoom(sr),Ward(w))
def Treatment() = (d,t,c,p) >>

((Doctor(d),Testing(t),Catering(c),Pharmacy(p))

def Ambulance(a) = Let(Ambulance_f() | Ambulance_s())
def HealthRecords(hf) = Let(HealthRecords_f() | HealthRecords_s())
def InsuranceCompany(in) = Let(InsuranceCompany_f() | InsuranceCompany_s())
def SpecialRoom(sr) = Let(SpecialRoom_f() | SpecialRoom_s())
def Ward(w) = Let(Ward_f() | Ward_s())
def Doctor(d) = Let(Doctor_f() | Doctor_s())
def Testing(t) = Let(Testing_f() | Testing_s())
def Catering(c) = Let(Catering_f() | Catering_s())
def Pharmacy(p) = Let(Pharmacy_f() | Pharmacy_s())

160

Chapter 6 6.5. Experiments

6.5 Experiments

Based on the methodology in Section 6.3 we perform experiments involving pairwise
generation of configurations followed by simulations to obtain probabilistic QoS of dy-
namic composite services. We consider both case studies for these experiments.

6.5.1 Evaluating QoS of the Car Crash Crisis Management System

Configuration Generation: We first use the approach presented in [PSK+10] to
generate a minimal set (given the resource constraints) of configurations that satisfy
all valid pairwise interactions in the C 3MS case study. The input settings to the
configuration generator are (a) Maximum scope for Alloy solver (b) Maximum time to
solve (c) Divide-and-compose strategy for scalable generation. The maximum scope
is set to 8 and maximum time to 2000 milli-seconds with use of incremental growth
strategy. Through this technique, 185 configurations for the C 3MS case study were
generated. The 185 configurations satisfy all valid pairwise interactions between services
in the C 3MS FD that originally specify 225 configurations. All invalid pairs that do
not conform to the FD are rejected by the approach. For instance, the not including
the Mission feature in a configuration is invalid as it is a mandatory feature.
Computing Response Time: Second, we compute response times for these 185
configurations. We assign each atomic service in the dynamic composite service a
t-distribution to model response time. The random settings for the atomic service
t-distributions were degrees of freedom ν from 3 to 8 and non-centrality parameter
δ from 5 to 15 seconds, respectively. We choose these values to provide diversity in
atomic response times. For a chosen atomic service (in the current configuration), the
individual timeout value was set to 95 percentile of the response time distribution.
This largely ensures that the composite service obtains the result of the atomic service
and not a timeout. For each of the 185 configuration, we obtain 10,000 Monte-Carlo
samples of response times from all atomic services in a configuration. We compute
the composite service response time from these atomic service response times. We
collect the response times for the composite service for each configuration to create a
t-distribution for the composite service. We set the global timeout of the composite
service to a sufficiently high value (300 seconds) to allow capture of outliers in the
distribution.

As seen in Fig. 6.5, the pairwise generated configurations cover a range of response
time distributions. The distributions were sorted in increasing order of response time
and are shown. The slowest and the fastest composite services are marked. Their
median values are shown to be 113 and 201 seconds, respectively. This demonstrates
the use of a few configurations to test significant changes of about 88 seconds response
time in a composite service. These results support the claims C1 and C2 in Section
6.1, that pertain to the effectiveness of pairwise sampling to generate a wide range of
orchestrations and output QoS values.
Computing other QoS metrics: We compute additional QoS metrics such as avail-
ability of a service, the cost entailed in calling atomic services and output data quality
for the 185 configurations. We compute QoS for a composite service based on rules
given in Table 5.2 for different Orc combinators in an orchestration. For example,
when we set atomic service availability to 0.99 (representing service availability in 99%
of invocations) the composite availability of each configuration is shown in Fig. 6.6.
The output data quality ξ is related to the cost χ by the constant κ given by ξ = χ/κ
(assuming linear increase in data quality with each atomic service invocation). The
output data quality ξ is can also be derived exponentially from the cost χ by ξ = eχ/κ.
For example, setting the χ = 5 units for each invoked atomic service, the cost of each
configuration is shown in Fig. 6.6. Furthermore, setting κ = 20, the linear and expo-

161

6.5. Experiments Chapter 6

0

20

40

60

80

100

120

140

160

180

0
50

100
150

200
250

300
350

400

0

200

400

600

800

1000

1200

Response Time (seconds)
Configurations

N
um

be
r

of
 H

its

Figure 6.5: Response time distributions of the 185 pairwise configurations for C 3MS .

nential output data quality of the configurations may also be derived. These variations
in data-quality, response time and cost help analyze trade-offs between QoS parameters.
These variations in QoS parameters substantiate the claim C5 about pairwise testing
in Section 6.1 referring to its use in generating families of composite services.

0 20 40 60 80 100 120 140 160 180

0.7

0.8

0.9

Configurations

A
va

ila
bi

lit
y

0 20 40 60 80 100 120 140 160 180
40

50

60

70

80

Configurations

C
os

t

0 20 40 60 80 100 120 140 160 180
2

2.5

3

3.5

4

Configurations

Li
ne

ar
 D

at
a

 Q
ua

lit
y

0 20 40 60 80 100 120 140 160 180
0

20

40

60

Configurations

E
xp

on
en

tia
l

D
at

a
Q

ua
lit

y

Figure 6.6: Availability, Data Quality and Cost of the pairwise configurations of C 3MS .

6.5.2 Evaluating QoS of the eHealth System

Configuration Generation: For the eHealth system, we generate 188 configurations
that satisfy all valid pairwise interactions from a total set of 212 configurations. The
initial settings for configuration generation were exactly the same as in the C3MS case
study.

Computing Response Time: For each of the 188 configurations, we model atomic

162

Chapter 6 6.5. Experiments

service QoS as t-distributions. The parameters of these distribution are chosen in
random in certain bounds to ensure diversity. The parameter degrees of freedom ν was
from 3 to 8 and non-centrality parameter δ from 5 to 15 seconds, respectively. For the
faster services (marked with the subscript f), the δ parameter was set between 3 to 5
seconds, representing a faster response to a service call.

We obtain 10,000 Monte-Carlo samples of response times for each of the atomic
services and compute the composite service response time distribution. As seen in
Fig. 6.7, the pairwise generated configurations cover a wide range of response time
distributions. The distributions are sorted in increasing order of response time. The
slowest and the fastest composite services are marked with median values. In the case
of eHealth, the 30 seconds range in response time values is due to the added diversity
of choice in choosing a fast or slow atomic service.

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

300

350

400

0

200

400

600

800

1000

1200

Response Time (seconds)Configurations

N
um

be
r

of
 H

its

Figure 6.7: Response time distributions of the 188 pairwise configurations for eHealth.

Computing other QoS metrics: We use the rules for combinators described in
Table 5.2 to compute QoS of composite service orchestrations. Setting atomic service
availability to 0.99 the composite availability each configuration is shown in Fig. 6.8.
We observe that the cost of the composite service varies with the choice of fast or slow
services. A faster service (with subscript f) is set double the cost of its slower (with
subscript s) counterpart. This changes the range of cost and data quality available for
different configurations as seen in Fig. 6.8.

6.5.3 Comparison with Random Sampling

It has been shown in [CDFP97] that pairwise interaction testing of such configurations
is advantageous over random testing since its systematic and provides a better coverage.
With random runs, it is impossible to determine if all the atomic services have been
invoked at least once. The configurations leading to extreme test case values need not
be necessarily generated during random runs and there may be many redundant con-
figurations invoked repeatedly. Setting SLAs based on random runs is both non-robust
and can lead to habitual deviance. Generating families of configuration with accurately
fixed bounds on QoS is also not possible. For these reasons, pairwise generation has
comparative advantages over random runs.

Three sets of random configurations were generated as shown in Fig. 6.9, each with

163

6.5. Experiments Chapter 6

0 20 40 60 80 100 120 140 160 180
0.82

0.84

0.86

0.88

Configurations
A

va
ila

bl
ity

0 20 40 60 80 100 120 140 160 180
30

35

40

45

50

Configurations

C
os

t

0 20 40 60 80 100 120 140 160 180
1.5

2

2.5

Configurations

Li
ne

ar
 D

at
a

Q
ua

lit
y

0 20 40 60 80 100 120 140 160 180
4

6

8

10

12

14

Configurations

E
xp

on
en

tia
l

D
at

a
Q

ua
lit

y

Figure 6.8: Availability, Data Quality and Cost of the pairwise configurations of
eHealth.

original configuration size 185. In each case, the number of valid configurations was
found to be 17, 21 and 24 resulting in a maximum efficient generation percentage of
12.97%. Not only are there deviations in the number of valid configurations for each
run (17, 21, 24), but also in the QoS metrics output in each run. SLA deviations are a
result of resorting to such insufficient random runs of a composite service, which might
generate invalid and redundant scenarios. To test the effectiveness of combinatorial

2 4 6 8 10 12 14 16 18 20 22 24
120

140

160

180

200

220

240

Valid Configurations

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

25 percentile
50 percentile
75 percentile
90 percentile

Figure 6.9: Three runs of random generation of configurations for C 3MS .

testing the 185 pairwise configurations were compared with random samples for the
C 3MS . All the mandatory features were set to be invoked with the constrained and
optional features randomized in invocation for the random case. This random sampling
was performed by a Markov decision process of traversing features in the FD, which
will always lead to generation of valid configurations (based on constraints). The com-

164

Chapter 6 6.5. Experiments

parison with pairwise is shown in Fig. 6.10 and it is seen that random generation can
cover a large range of QoS values if sufficient number of configurations are generated.
To determine that number, however, requires analysis of pairwise interactions. The
random configurations are deficient as they cannot guarantee a) invocation of every
possible service at least once; b) generating the extreme configurations for a particular
composite service in every sample. When compared to the pairwise generation scheme
that covered all pairs of services, the random generation covered only 8.8% of the ser-
vice pairs. This shows that the same set of services are redundantly invoked in many
configurations during random generation. Thus, for such orchestrations with numerous

0 20 40 60 80 100 120 140 160 180

100

150

200

250

Configurations

R
es

op
ns

e
T

im
e

(s
ec

on
ds

)

25 percentile pairwise
50 percentile pairwise
75 percentile pairwise
90 percentile pairwise
25 percentile random
50 percentile random
75 percentile random
90 percentile random

Figure 6.10: Comparison of pairwise and random response time (arranged in increasing
order) of percentile values for 185 configurations of C 3MS .

configurations, using pairwise interactions is a sufficient choice in order to examine the
entire sample space. These results support our claim C3 in Section 6.1, referring to
the comparison between pairwise and random sampling.

6.5.4 Consistency of Pairwise Samples

Given one orchestration, there can be many different sets (or solutions) of configura-
tions that cover pairwise services interactions. Thus, we compute QoS behavior over
different samples of configurations. This aims at evaluating the stability of pairwise
testing as a sampling technique to estimate the global QoS for a dynamic composite
service. A collection of 10 samples that satisfy the pairwise interaction testing were
generated for the eHealth case. The percentile statistics of the configurations in each
sample was collected through 10,000 Monte-Carlo runs and is shown in Fig. 6.11. The
lowest and highest percentile values of the configurations in each sample were collected.
The mean inter-sample difference for the random case is 12.94 seconds compared to
6.44 seconds for the pairwise case. Further, these were compared with 10 samples
of randomly generated configurations (with 300 configurations in each sample) in Fig.
6.11. Again, all the mandatory features were set to be invoked with the constrained
and optional features randomized in invocation for the random configurations. The
number of valid configurations for each sample ranged between 3.5% to 9% of the 300
configurations. Comparing the two cases, the stability of the pairwise generation is
demonstrated through its consistently low standard deviation values in Table 6.3 when

165

6.5. Experiments Chapter 6

compared to random samples. Once again, the lowest and the highest percentile values
of all the configurations in a particular sample are compared. These results support
claim C4 in Section 6.1, referring to the stability of pairwise sampling.

1 2 3 4 5 6 7 8 9 10
80

90

100

110

120

130

140

150

160

170

180

190

Samples

T
im

e
(s

ec
on

ds
)

Pairwise 25 percentile minima
Pairwise 25 percentile maxima
Pairwise 50 percentile minima
Pairwise 50 percentile maxima
Pairwise 75 percentile minima
Pairwise 75 percentile maxima
Pairwise 90 percentile minima
Pairwise 90 percentile maxima
Random 25 percentile minima
Random 25 percentile maxima
Random 50 percentile minima
Random 50 percentile maxima
Random 75 percentile minima
Random 75 percentile maxima
Random 90 percentile minima
Random 90 percentile maxima

Figure 6.11: Comparing stability of pairwise and random samples for eHealth.

Percentile 25(min.) 25(max.) 50(min.) 50(max.) 75(min.) 75(max.) 90(min.) 90(max.)
Pairwise Std. Dev. (secs.) 2.18 1.52 2.59 1.73 2.90 1.82 3.19 1.83
Random Std. Dev. (secs.) 4.14 4.17 4.21 4.51 4.43 4.76 4.63 5.07

Table 6.3: Standard Deviation values for pairwise and random samples.

6.5.5 Perspectives due to Analysis

The methodology evaluated for the C 3MS and the eHealth orchestrations can lead
to many possibilities for improving QoS metrics for composite services. This includes
setting the SLA keeping into account the worst performing configuration. This will
prevent contract deviation during actual deployment of the service.

A family of SLAs for a set of configurations taking into account trade-offs between
QoS metrics and the output quality of configurations may be proposed. This leads
to families of composite services with extensively analyzed SLAs. Configurations may
be grouped along with their QoS behavior to develop an extended product line of
composite services. For example, categories of services may be constructed for the
C 3MS orchestration (based on Figs. 6.5 and 6.6) as shown in Table 6.4. Similarly, the
two categories of service families for the eHealth case (Figs. 6.7 and 6.8) is shown in
Table 6.5. In both cases, the family of services with higher data quality is traded-off
by a slightly higher response time.

While the diversity in QoS families for the C 3MS is due to optional services that
may / may not be included, the variability in the eHealth case is mainly due to other fac-
tors. An inherent choice in replacing a slow atomic service with a fast counterpart can
lead to a range of QoS values. Generated configuration families can use of combination
of these options of optimally compose atomic services to specific QoS bounds. These
service families can have associated contracts (albeit in the soft-sense as in [RBHJ08])
to monitor deviations from specifications. These instances support our claim C5 in
Section 6.1, that pertains to developing families of composite service orchestration with

166

Chapter 6 6.6. Related Work

Configuration Families Bronze Silver Gold
90 percentile Response Time (T) < 183 s < 216 s ≥ 216 s
Median Response Time (T) < 150 s < 179 s ≥ 179 s
Availability (α) > 0.75 > 0.71 ≥ 0.71
Cost (χ) < 60 < 70 ≥ 70
Linear Data Quality (ξ) < 3 < 3.5 ≥ 3.5
Exponential Data Quality (ξ) < 20 < 30 ≥ 30

Table 6.4: Configuration families for C 3MS .

Configuration Families Standard Premium
90 percentile Response Time (T) < 171 s ≥ 171 s
Median Response Time (T) < 139 s ≥ 139 s
Availability (α) > 0.85 ≤ 0.85
Cost (χ) ≤ 40 > 40
Linear Data Quality (ξ) ≤ 2 > 2
Exponential Data Quality (ξ) ≤ 8 > 8

Table 6.5: Configuration families for eHealth.

significantly different QoS behavior. With numerous possible combinations of atomic
services, such a dedicated families of services with significantly different QoS outputs
enable accurate monitoring of services provided. The pairwise scheme is both a robust
and compact representation of the behavior space of the set of orchestrations. This
provides an effective pre-SLA technique to enunciate the QoS metrics and threshold
levels.

6.5.6 Threats to Validity

This section considers the threats to the validity of the experimental results. These may
be internal (whether there is a bias/error in the experimental design which could affect
the causal relationship) or external (ability to generalize the results of the experiment
to industrial practice).

The hypothesis studied in this paper concerns the use of pairwise sampling to evalu-
ate QoS of large orchestrations. Sources of internal error can be a result of the MiniSAT
solver used to generate the pairwise configurations or the MATLAB statistical tools
used for QoS evaluation. These tools have not been compared with available alterna-
tives for consistency of results. Furthermore, the assumption is that for each sample
of configurations, the pairwise analysis scheme can provide consistently large range of
QoS values. Systematic bias in QoS may be introduced in samples when extreme cases
are not generated.

To ensure scalability to large industry level FDs, the pairwise generation in [PSK+10]
makes use of incremental growth / binary splitting schemes. Redundancies in the num-
ber of configurations can be seen due to these schemes. For generating more than one
sample of solutions, the symmetry breaking scheme in Alloy was used. This introduces
more constraints with each proceeding sample, which increases the time required to
generate such samples.

6.6 Related Work

The combinatorial testing framework described by Cohen et al. [CDFP97] has been
applied extensively to efficient testing for fault detection. In the work of Cohen et al.
[CDS08], this technique is extended to software product lines with highly configurable
systems. Modeling variability in SPLs using feature models is the work of Jaring and
Boschet [JB02] where they show that the robustness of a SPL architecture is related to
the type of variability. To ensure that constraints in the FD are incorporated in the effi-
cient sampling of t-wise tests, the scalable solver proposed by Perrouin et al. [PSK+10]

167

6.7. Conclusion Chapter 6

is used. In [MMLP09], variability in software as a service applications are modeled using
the orthogonal variability model to study the customization choices in such workflows.
In the recent work by Arcuri and Briand [AB11], random testing has been formally
shown to perform arbitrarily worse than pairwise testing, when constraints are present
among features.

Pre-deployment testing of SLAs has been studied by Di Penta et al. [PCE07], where
they make use of genetic algorithms to generate test data causing SLA violations. Anal-
ysis of white and black box approaches are provided in the paper. In [BCP+05], Bruno
et al. make use of regression testing to ensure that an evolving service maintains the
functional and QoS assumptions. The service consistency verification due to evolution
is done by executing test suites contained in a XML encoded facet attached to the
service.

The use of probabilistic QoS and soft contracts was introduced by Rosario et. al
[RBHJ08] and Bistarelli et al. [BS09b]. Instead of using fixed hard bound values for
parameters such as response time, the authors proposed a soft contract monitoring
approach to model the QoS measurement. The composite service QoS was modeled
using probabilistic processes by Hwang et al. [HWTS07] where the authors combine
orchestration constructs to derive global probability distributions.

In our paper, we extend these two notions to analyze the QoS of a composite orches-
tration under various configurations. Effective sampling of orchestrations is necessary
specially in conjunction with exceedingly flexible and large configuration spaces. When
combined with the probabilistic behavior QoS behavior of services, this provides an
accurate portrayal of the composite service’s end-to-end QoS. In a recent submission
[KSB+10], similar methodology is used to compare pairwise and exhaustive analysis of
configuration spaces in smaller orchestrations. In this paper, that notion is extended to
comparison with random runs of larger configuration spaces (where exhaustive analysis
is impossible). This entails a scalable approach for robust pairwise interaction genera-
tion that is not required for the smaller examples. The case studies and corresponding
experiments are much larger in this paper and study the effect of not only orchestration
variability, but also choice in compatible atomic service counterparts. Correspondingly,
this requires further experiments on the sampling robustness and comparison with ran-
dom generation, which is not included in [KSB+10].

Though formal analysis of end-to-end QoS has been studied in Cardoso et al.
[CMSA02], there are no practical testing tools available for the composite service
provider. The pairwise testing procedure has been shown to outperform other test-
ing techniques in [CDFP97]. We extend this testing tool to develop a generic testing
methodology to query end-to-end QoS of a web service. Related empirical studies of op-
timal QoS compositions make use of genetic programming in Canfora et al. [CPEV05a]
and linear programming in Zeng et al. [ZBN+04]. These are dynamic techniques to
choose the best possible atomic services and configurations for SLAs. The goal in our
paper is to analyze the dynamic configurations that may result due to invocation/non-
invocation of particular web services when atomic SLAs have already been established.

6.7 Conclusion

We demonstrate that combinatorial interaction testing and in particular pairwise test-
ing effectively portrays the overall behavior of a dynamic composite service. Pairwise
testing drastically reduces the number of composite service configurations while suc-
cessfully analyzing a wide range of QoS values. It provides good coverage for two large
case studies (C 3MS and eHealth). We also observe that the analysis remains stable
over multiple solutions for the same case study. Pairwise testing is superior to random
generation of configurations in terms of coverage and stability of results. Pairwise test-

168

Chapter 6 6.7. Conclusion

ing helps specify SLAs based on a deterministic and systematic sampling scheme rather
than random sampling. We use our approach to create many families of composite ser-
vices which can be seen as products with varying costs and SLAs. We largely augment
the predictability of a dynamic composite service by performing offline pairwise testing
in advance.

169

6.7. Conclusion Chapter 6

170

Chapter 7

Optimizing Decisions in Web
Services Orchestrations

Ajay Kattepur, Albert Benveniste
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Abstract

Web services orchestrations conventionally employ exhaustive comparison of runtime
quality of service (QoS) metrics for decision making. The ability to incorporate more
complex mathematical packages are needed, especially in case of workflows for resource
allocation and queuing systems. By modeling such optimization routines as service
calls within orchestration specifications, techniques such as linear programming can be
conveniently invoked by non-specialist workflow designers. Leveraging on previously
developed QoS theory, we propose the use of a high-level flexible query procedure for
embedding optimizations in languages such as Orc. The Optima site provides an ex-
tension to the sorting and pruning operations currently employed in Orc. Further, the
lack of an objective technique for consolidating QoS metrics is a problem in identifying
suitable cost functions. We employ the analytical hierarchy process (AHP) to generate
a total ordering of QoS metrics across various domains. With constructs for ensuring
consistency over subjective judgements, the AHP provides a suitable technique for pro-
ducing objective cost functions. Using the Dell Supply Chain example, we demonstrate
the feasibility of decision making through optimization routines, specially when the
control flow is QoS dependent.

171

7.1. Introduction Chapter 7

7.1 Introduction

A composite web service is an application whose implementation calls other self-contained
atomic services. A composite web service orchestration specifies the interaction, man-
agement and coordination between these atomic services. Such a composite service
can take decisions to invoke or pass parameters to atomic services depending on re-
turned data and quality of service (QoS) metrics. Traditional orchestrations make
use of simple comparisons of returned values from atomic services for decision mak-
ing purposes. While such comparisons are plausible in small orchestrations, involved
operations such as multi-criteria decisions from a directory of hundreds of distributed
services would require optimizations strategies. With QoS metrics modeled as ran-
dom variables [HWTS07], the use of probabilistic contracts for service level agreements
(SLAs) [RBHJ08] becomes mandatory. Optimizing these random variables for decision
making is a natural extension of the probabilistic nature of both composition as well
as contracts.

As switching between technologies while developing workflows is detrimental, inte-
gration of optimization techniques as part of the specifications of a service orchestra-
tion or choreography is required. We show that optimization of QoS metrics can be
formulated within concurrent programming languages like Orc [KQCM09]. Employ-
ing specialized sites that perform optimization routines, alternatives to conventional
sorting and searching techniques may be incorporated within workflow specifications.

As the designers of such workflows are assumed to be non-specialists in optimiza-
tion modeling, we propose techniques for formulating complex queries through simple
user judgements / constraints. This will relieve the dependency on domain-specific and
involved concepts such as queuing and process management theory in order to gener-
ate realistic cost functions. Weighing parameters effectively is done by employing the
analytic hierarchy process (AHP) [Saa80]. It provides a simple approach for retaining
consistency of subjective evaluations of QoS metrics across different domains.

To prevent deadlock in an orchestration where there are intricate links between
parameters, it is essential that optimal settings are employed. This is demonstrated
in the QoS dependent choreography of the Dell supply chain example [KZC+04]. By
modeling this choreography as a linear programming problem, we demonstrate the
efficacy of our technique to ensure contractual obligations with shared resources. Due
to the tractable nature of AHP, cost functions can be generated to set suitable resupply
batch sizes for varying demand rates. This exemplifies clearly a situation where the
control flow is dependent on optimal setting of parameters.

The paper is organized as follows: Section 7.2 presents background material re-
quired for understanding the rest of the paper. This includes optimization models,
Orc language for orchestrations, the analytic hierarchy process and QoS aspects of web
services. The methodology proposed in this paper is outlined in Section 7.3 with em-
phasis on formulating optimizations in web services. Section 7.4 elucidates the Dell
logistics example as an optimization of QoS metrics. Extending this notion to general
orchestration problems, in Section 7.5, we formulate a general site that provides such
optimization routines in the Orc context. Results for optimization runs of both exam-
ples are presented in Section 7.6. This is followed by related work and conclusions in
Sections 7.7 and 7.8, respectively.

172

Chapter 7 7.2. Fundamentals

7.2 Fundamentals

7.2.1 Optimization models

Optimization problems may be formulated as [BV09]:

min f0(a, x)
s.t. fi(a, x) ≤ 0, i = 1, . . . ,m

(7.1)

where f0 is the objective function, fi are the set of constraint functions dependent on
the input vector x = (x1, x2, . . . , xN)T and model parameters a = (a1, a2, . . . , aM)T .
This can be solved in a variety of linear, non-linear, stochastic and exhaustive search
techniques. Approximate bounds to reduce stochastic uncertainty can also be used.
This can lead to three categories of minimization problems.

• Minimization of primary expected costs subject to secondary cost constraints.

min F0(a, x)
s.t. Fi(a, x) ≤ Fmax

i , i = 1, . . . ,m
(7.2)

where F0(a, x) is the primary goal, Fi(a, x) are secondary constraints with worst-
case bounds represented by Fmax

i .

• Minimization of the cost function with positive weights k0, k1, . . . , km.

min

m∑

i=0

kiFi(a, x) (7.3)

• Minimization of the maximum weighted expected costs.

min max
0≤i≤m

kiFi(a, x) (7.4)

Such formulations of cost functions with constraints can be applied to a variety of
decisions within the web services framework. Further analysis of aspects such as Pareto-
Optimality and multi-objective decision making may be explored in [MA04].

7.2.2 QoS in Web Services

Available literature on industry standards in QoS [Men02] provide a family of QoS
metrics that are needed to specify SLAs. These can be subsumed into the following
four general QoS observations 1:

1. δ ∈ R+ is the service latency. When represented as a distribution, this can
subsume other metrics such as availability and reliability of the service.

2. $ ∈ R+ is the per invocation service cost.

3. ζ ∈ Dζ is the output data quality. This can represent other metrics such as data
security level and non-repudiation of private data over a scale of values.

4. λ ∈ R+ is the inter-query interval, equivalent to considering the query rate for a
service. Performance of the service will depend on negotiations with the amount
of queries that can be made in a given time interval.

1Aspects such as scalability, interoperability and robustness are not dealt with as they are specific
to the supplier side operation (not necessarily part of SLAs).

173

7.2. Fundamentals Chapter 7

Along with QoS, the web service performs its task and returns some functional data
ρ ∈ Dρ as the output. The tuple of (Data value, QoS value) is used for the decision
process within orchestrations. The implementation of Orc allows such typing to be
specified for input and output parameters, which can be extended to QoS typing for
orchestrations.

For comparing metrics with differing scales and units of measurement, a normaliza-
tion or scaling technique is needed. As developed in [LB10] [ZBN+04], the normalization
of QoS values qi in a domain DQ can be performed using a scaling function, prior to
optimization. The scaling function S(qi) in eq. (7.5) ensures that the range of QoS
values falls within [0, 1] for equivalent comparison. Essentially, this prevents larger scale
values in domains (eg. latency) nullifying optimal selection in smaller valued domains
(eg. boolean valued availability).

S(qi) =
qi − qmin

qmax − qmin
(7.5)

where qmin and qmax are the minima and maxima of the (available) distributions of
these QoS domains. A generic range of values for metrics such as data quality or service
invocation costs may be reduced to a comparable scales via this method. An example
of scaling measured values is shown in Table 7.1. The measured values are scaled to the
range [0, 1] with the scaling invariant to changes in measurement units of, for instance,
the response time δ.

Metric Measurement qi Scaled Value S(qi)
δ(hours) (0.017, 0.001, 0.0095, 0.01) (1, 0, 0.53125, 0.5625)
δ(seconds) (61.2, 3.6, 34.2, 36) (1, 0, 0.53125, 0.5625)
$(Euros) (9.5, 3.4, 6.8, 12) (0.7093, 0, 0.3953, 1)
ζ([1, 10]) (6, 1, 3, 8) (0.7143, 0, 0.2857, 1)

Table 7.1: Scaling QoS metrics across domains to the range [0,1].

7.2.3 Analytic Hierarchy Process

Multiple dimensions in web services’ QoS are only partially ordered, with comparisons
between domains not possible. In order to use optimization routines, a total ordering of
these domains is mandatory. To reconcile this, the analytic hierarchy process (AHP) can
be used. Introduced by [Saa80], AHP can be used to objectify subjective evaluations of
multi-criteria decisions, which essentially develops tradeoffs between domains. In order
to briefly explain the AHP, we make use of an example.

Consider the pairwise assignment of relative ranks for QoS metrics as defined by a
user. It is a matrix that defines the relative change between dependent QoS metrics
δ, $, ζ, λ and ρ. For simplicity, all parameters are classified as the same hierarchical
level with values assigned using the relative comparison shown in Fig. 7.1. This in
turn will produce a matrix W = (wij) as shown in eq. 7.6 with the subjective pairwise
comparison of criterion.

W =

δ $ ζ λ ρ

δ 1 1 5 3 5
$ 1 1 5 3 5
ζ 1/5 1/5 1 1 2
λ 1/3 1/3 1 1 3
ρ 1/5 1/5 1/2 1/3 1

(7.6)

The principal eigenvector of the positive reciprocal matrix W provides the relative
rankings of the parameters. As the principal diagonal of the matrix W consists of real

174

Chapter 7 7.3. Methodology

Figure 7.1: Comparison Scale for AHP [Saa80].

values, the principal eigenvector (and corresponding highest eigenvalue) are also real
valued.

Definition. 3 Perron Frobenius Theorem: For a given positive matrix W, the
only positive vector υ and only positive constant c that satisfy Wυ = cυ, is a vector υ
that is a positive multiple of the principle eigenvector of W and the only such c is the
principal eigenvalue of W.

This eigenvector may be normalized to provide the priority vector for the QoS metrics.
This will generate a weighted cost function for minimization, which is superior to cost
function weights obtained by least squares [Saa03]. For the example above, the linear
cost function after generating the normalized weight vector is shown in eq. (7.7) with
scaling of values done previously according to eq. (7.5).

Z = 0.3625δ + 0.3625$ + 0.0935ζ + 0.1237λ + 0.0579ρ (7.7)

A unique feature of the AHP is its ability to estimate consistency in the subjective
evaluation of criteria.

Definition 1 A n×n positive reciprocal matrix W = (wij) is a Consistent Matrix,
if the highest eigenvalue cmax equals n. This is equivalent to wij = υi/υj , where the
eigenvector υ corresponds to eigenvalue cmax. Since small changes in wij imply changes
in cmax, the deviation from n is a deviation from consistency given by (cmax−n)/(n−1)
which is called the consistency index (CI).

This technique evaluates the perturbation in the highest eigenvalue due to changes
in subjective evaluation of metrics in W. The values of the consistency index are used
to generate a consistency ratio (CR), that is used to determine the consistency of the
comparison. The consistency ratio must be ≤ 0.1, indicating deviations from subjective
evaluations are less than an order of magnitude [Saa80]. For the example above, the
highest eigenvalue has the value 5.122, producing a CI = 0.0280 and a CR = 0.0252,
which is within the specified limits. Techniques outlined in [Saa03] provide steps and
tools to improve consistency in the weight matrix.

7.3 Methodology

The following steps are used to solve optimization problems in web services:

175

7.4. Formulating Optimization Problems Chapter 7

1. Scaling Inputs: Obtain the pair of QoS domains and vector of values (DQ,q)
required for evaluation of the orchestration. For each domain DQ, scale the values
q to the range [0, 1] as specified in eq. (7.5).

2. Consistent Judgements: Extract the comparative judgement matrix W =
(wij) from the user. From this, obtain the maximum eigenvalue cmax and the
corresponding normalized eigenvector υ. If this judgement matrix is not consis-
tent, examine the judgment for an entry wij for which wijυj/υi is the largest,
and see if this entry can reasonably be made smaller. Such a change of wij also
produces a new comparison matrix with a smaller eigenvalue, resulting in a possi-
bly consistent matrix [Saa03]. This process may be performed either manually or
automatically through iterative perturbations of W until consistency is achieved.
Once a consistent matrix is obtained, the objective function Z to be minimized
with linear weights υ and (DQ,q) values may be generated.

3. Constraints: The scaled optimization constraints C in the form (DQ,�,KQ),
where DQ is a QoS domain, � is a specified partial order and KQ is the threshold
value (constant or distribution quantiles), may also be set by the user.

4. Optimization: With a selected constraint satisfying solver with inputs (Z,C),
optimization is performed. If constraints

∑N
i=1 xi = 1, xi ∈ {0, 1} for model

variables x exists inC, it implies an integer programming problem (eg. selecting a
single site). In the absence of such a constraint, the solver employs a conventional
linear programming approach (eg. finding an optimal setting from a continuous
distribution).

The only inputs required from the user are the judgement matrix and constraints over
QoS domains. This methodology is intended to enhance previous theory [RBJ09b] with
optimization routines to compare returned QoS token values.

7.4 Formulating Optimization Problems

In this section, we investigate the Dell supply chain, a choreography of Dell Plant and
Supply orchestrations with a shared Revolver resource. This exemplifies the optimiza-
tion of setting inventory levels to ensure efficient control flow and preventing contractual
deviations.

The working of the Dell supply chain is taken from [KZC+04]. After a customer
places an order, either by phone or through the Internet on www.dell.com , Dell
processes the order through financial evaluation (credit checking) and configuration
evaluations (checking the feasibility of a specific technical configuration), which takes
two to three days, after which it sends the order to one of its manufacturing plants
in Austin, Texas. These plants can build, test, and package the product in about
eight hours. The general rule for production is first in, first out, and Dell typically
plans to ship all orders no later than five days after receipt. In most cases, Dell has
significantly less time to respond to customers than it takes to transport components
from its suppliers to its assembly plants. To compensate for long lead times and buffer
against demand variability, Dell requires its suppliers to keep inventory on hand in the
Austin revolvers (for “revolving” inventory). Revolvers are small warehouses located
within a few miles of Dell’s assembly plants. Each revolver is shared by several suppliers.
Inventory in revolvers is owned and managed by suppliers and charged to Dell indirectly
through component pricing. To help suppliers make good management decisions, Dell
shares its forecasts with them once per month.

The overall architecture of the Dell supply chain is shown in Fig. 7.2. Boxes denote
peers (actors of the system), and multiple boxes or icons indicate that there exist several

176

www.dell.com

Chapter 7 7.4. Formulating Optimization Problems

Figure 7.2: Architecture of the Dell example.

instances of the considered peer. As the “Dell supervisor” involves monitoring (a topic
in itself) and a lot of algorithmic inventory management, we leave aside this part of the
application.

In the Dell supply chain [KZC+04], QoS metrics are functional in nature, with
slight changes in optimal settings sending the supply chain to a dead state. The Dell
application is a system that processes orders from customers interacting with the Dell
webstore. According to [KZC+04], this consists of the following prominent entities:

• Dell Plant - Receives the orders from the Dell webstore and is responsible for the
assembly of the components. For this they interact with the Revolvers to procure
the required items.

• Revolvers - Warehouses belonging to Dell which are stocked by the suppliers.
Though Dell owns the revolvers, the inventory is owned and managed by the
Suppliers to meet the demands of the Dell Plant.

• Suppliers - They produce the components that are sent to the revolvers at Dell.
Periodic polling of the Revolvers ensures estimates of inventory levels and their
decrements.

The interaction between the Dell Plant, Revolvers and the Suppliers may be sum-
marized in Fig. 7.3. The requests made by the plant for certain items will be favorably
replied to if the revolvers have enough stock. This stocking of the revolvers is done
independently by the suppliers. The suppliers periodically poll (withdraw inventory
levels) from the revolvers to estimate the stock level. In such a case, a contract can
be made on the levels of stock that must be maintained in the revolver. The customer
side agreement limits the throughput rate. The supplier side agreement ensures con-
stant refueling of inventory levels, which in turn ensures that the delay time for the
customer is minimized. Thus, it represents a choreography comprising two plant-side
and supplier-side orchestrations interacting via the revolver as a shared resource.

The critical aspect in the Dell choreography is efficient management of revolver
levels. As discussed in [KZC+04], for the efficient working of the supply chain, the
interaction between the Dell Plant and the Supply-side workflows should be taken into
account. This will involve optimizing critical QoS metrics listed in Table 7.2. They are
also presented informally in Fig. 7.3.

For the plant-side behavior, the demand λt reduces the current revolver level (µt =
µt−1 − λt). Constant polling at a rate ρ ensures the re-fueling of revolver inventory
within a supply delay δsup. When the value of the revolver token drops below a critical
level µc, the supplier begins the process of refueling the inventory. The refueling batch
size β is governed by the maximal capacity of the revolver µmax. Optimal setting of

177

7.4. Formulating Optimization Problems Chapter 7

t Unit of time with t ∈ 1, 2, ...T hours
λt Number of queries per unit time that the

plant requests the revolver
δcust Waiting time for the plant

µt Stock level for an item in the revolver at time t
µc Critical stock levels of the item in the revolver
µmax Maximum stock level allowed in the revolver

ρ Inventory polling period of the supplier
β Size of the refueling batch from the supplier
δsup Delay period for refueling the revolver
υµc , ...υβ Normalized eigenvector from the consistent AHP matrix

Table 7.2: QoS Metrics for the Dell Supply Chain.

Figure 7.3: QoS interactions in the Dell supply chain.

these parameters minimizes the customer waiting time δcust. If the supplier does not
refuel on time, the choreography sets into deadlock with the plant waiting for (possible)
restocking. A deadlock occurs when a choreography reaches a state that (1) is not final
and (2) can not be left without violating the message ordering of the choreography.

Considering estimated distributions of customer demand and refueling delays, effec-
tive settings for supplies may be set. Using AHP weights, the optimization procedure
is given as a linear programming problem (without any integer constraints). More
classical logistics cost functions [Rar98] can also be applied to similar problems.

minimize Z = υµcµc + υµmaxµmax + υββ (7.8)

Subject to the following user-specified constraints:

0 ≤ µc ≤ µmax (7.9)

0 ≤ β ≤ µmax (7.10)

µmax − µc + (λt × δsup) = β (7.11)

0 ≤ µmax ≤ K × λt (7.12)

Constraints in eqs. (7.9) and (7.10) limit the revolver critical level µc and the supplier
batch size β to be less than the maximal revolver capacity µmax. The constraint in eq.
(7.11) essentially controls the revolver batch size, dependent on the critical / maximum
level in the revolver and the plant query rate λt. Estimates of λt are provided to
the supplier during the polling period through measured decrements in the revolver

178

Chapter 7 7.5. Optimization Routines in Orc

levels. The supplied batch β also incorporates the decrement in inventory since the
critical level was detected, and the delay in restocking δsup. Finally, the constraint
in eq. (7.12) prevents overstocking of items in the revolver by limiting the capacity
to be proportional to the demand. Optimal setting of these parameters is tested by
the constant demand for products λt which must be delivered while minimizing the
customer delay δcust. Essentially, these constraints ensure the revolver level does not
fall to zero, which would mean rejection or long delays in orders (deadlock in the
choreography).

7.5 Optimization Routines in Orc

While the previous sections demonstrate the utility of optimization techniques when
applied to decisions in workflows, it is imperative to provide a convenient technique
to embed such mathematical packages within orchestrations. Extending Orc [MC07]
with a suitable interface will enable smooth integration of optimization libraries for the
utility of workflow designers. In this section, we provide a high-level specification of
optimizing QoS metrics within Orc.

Orc [MC07] serves as a simple yet powerful concurrent programming language to
describe web services orchestrations. The fundamental declaration used in the Orc
language is a site. The type of a site is itself treated like a service - it is passed the
types of its arguments, and responds with a return type for those arguments. An
Orc expression represents an execution and may call external services to publish some
number of values (possibly zero).

Orc has the following combinators that are used on various examples as seen in
[MC07]. The Parallel combinator X|Y , where X and Y are Orc expressions, runs by
executing X and Y concurrently; returns from X and Y are interleaved. Whenever
X or Y communicates with a service or publishes a value, X|Y does so as well. The
execution of the Sequential combinator X >t> Y starts by executing X. Sequential
operators may also be written compactly as X ≫ Y . Values published by copies
of Y are published by the whole expression, but the values published by X are not
published by the whole expression; they are consumed by the variable binding. If there
is no response from either of the sites, the expression does not terminate. The Pruning
combinator, written X <t< Y , allows us to block a computation waiting for a result,
or terminate a computation. The execution of X <t< Y starts by executing X and
Y in parallel. Whenever X publishes a value, that value is published by the entire
execution. When Y publishes its first value, that value is bound to t in X, with the
execution of Y immediately terminated. The Otherwise combinator, written X;Y has
the following execution. First, X is executed. If X completes, and has not published
any values, then Y executes. If X did publish one or more values, then Y is ignored.
The publications of X;Y are those of X if X publishes, or those of Y otherwise.

Consider the following two Orc expressions - one of which chooses the fastest re-
sponding service; another produces the lowest costing service value:

def minLatencySite() = s <s< (Site_1 |...| Site_N)
def minCostSite() = (Site_1 ,..., Site_N) >(c_1 ,..., c_N) > minimum([c_1

,..., c_N])

Combining these expressions in Orc can currently be done with priorities, that is,
choosing a site with lower cost over one with lower latency, or vice versa. This can
be detrimental in typical situations involving more than one QoS metric. Finding an
optimal service that provides a “middle path” solution from various domains can be
beneficial. Such an expression in Orc with weights w:

def optimalSite() = (Site_1 ,..., Site_N) >((d_1,c_1) ,...,(d_N,c_N)) >
minimum([w * d_1 + (1-w) * c_1 ,..., w * d_N + (1-w) * c_N])

179

7.5. Optimization Routines in Orc Chapter 7

A drawback of the above formulation is that exhaustive comparison of metrics are
still used. In order to overcome this, the selection of services can be formulated as an
optimization problem. Such a formulation is useful in a variety of orchestrations where
the control flow is dependent on optimal resolution of competition between services. A
point to note here is that the fastest service cannot be given priority as the orchestration
waits for responses from all services (until timeout).

In [RBJ09b], the “best” operator provides a general function for comparison of a
variety of metrics. We propose an extension of this to satisfy more complex queries,
when “enumerate and evaluate” is both ineffective and slow. Moreover, there are no
standard sets of QoS parameters that are declared in general for all orchestrations -
which draws the need for a framework for totally ordered metrics.

7.5.1 QOrc: Upgrading Orc for QoS management

A proposal is making use of a QoS enhanced orchestration declaration called QOrc. Ev-
ery invoked service responds with not only the desired output data but also with a set of
QoS values. So, selection of a service can entail complex queries dependent on a variety
of parameters for optimization. Consider a site Optima that may be invoked dur-
ing an orchestration run. This site has input tuple (QoS, AHPWeight, Constraint,

Routine) where QoS is the set of QoS domains with a list of corresponding values,
AHPWeight is a set of (normalized) weights dependent on AHP criterion, Constraint

are the (normalized) constraint functions and Routine is the optimization protocol to
be employed. The user can specify the routine to be either binary integer or linear
programming depending on the problem. A typical implementation in Orc is:

def class Optima() =
type Latency = Number
type Cost = Number

val Latency = Ref()
val Cost = Ref()
val QoS = (Latency,Cost)
val AHPWeight = (0.3,0.7)
val Constraint = ((Latency,("<:"),0.5), (Cost,("<:"),0.8))
val Routine = "bin"
def Optimization(QoS, AHPWeight, Constraint, Routine) = lpsolve
stop

For example, the following orchestration describes optimal selection from three generic
services, while using the Optima site.

signal >> (Site1(), Site2(), Site3()) >(s1,s2,s3) >
Optima().Optimization(
([s1.latency?,s1.cost?],[s2.latency?,s2.cost?],[s3. latency?,s3.cost?]),
AHPWeight, Constraint, Routine)

A library of optimization routines available as services allow complex decision mak-
ing in orchestrations, even to non-specialized users of such tools. As described in the
COIN-OR (COmputational INfrastructure for Operations Research) project [FMM08]
[FG01], a host of solvers and APIs are provided for integrating optimization. A va-
riety of input formats such as AMPL (A Modeling Language for Mathematical Pro-
gramming), MPS (Mathematical Programming System) and GAMS (General Algebraic
Modeling System) may be used to specify the problems.

180

Chapter 7 7.5. Optimization Routines in Orc

7.5.2 Interfacing QOrc to Optimization Services

We use the example of the LP file format used for the open-source lpsolve2 solver to
demonstrate the compatibility of an input from Orc. The input syntax of the LP for-
mat uses an Objective Function with associated Constraints and variable Declarations.
With the inputs provided from the Orc Optima site, the optimization problem can
be conveniently formulated to the binary integer problem. Formulation of linear or
more complex quadratic problems can follow this procedure to conceal intricacies of
mathematical packages from non-specialist users. The transformation of these inputs,
through an interface, into a LP optimization routine is represented below:

• Generate variables x1, x2 ... xN , where N equals the number of participat-
ing services. These are the variables that will be the valued as 1 or 0 during
optimization and represent the selection / rejection of a particular SiteN() .

• The AHPWeight values (w1, w2) , and corresponding QoSvalues [l1,...,lN],

[c1,...,cN] are combined with the variables to generate a linearly weighted
cost function (w1 l1 + w2 c1)x1 +...+ (w1 lN + w2 cN)xN .

• The Constraint values provide the specified domains, partial orders and cor-
responding thresholds (K1, K2) , which are transformed into (l1 x1 +...+ lN

xN <= K1; c1 x1 +... + cN xN <= K2).

• As the Routine ”binary integer” is set, values x1, x2,..., xN are further con-
strained to be binary valued. A further constraint automatically specified is the x1

+ x2 +...+ xN = 1 , restricting only a single site is selected by the optimization
procedure.

The results of such a transformation produces a LP format of the problem, that can
be solved by the lpsolve optimization solver. Due to the elegant nature of Orc, this
is equivalent to calling another (possibly external) Site with input Optima format and
output LP format.

/ * Objective function * /
min: (0.3 l1 + 0.7 c1) x1 + (0.3 l2 + 0.7 c2) x2 + (0.3 l3 + 0.7 c3) x3 ;
/ * Variable bounds * /
l1 x1 + l2 x2 + l3 x3 <= 0.5;
c1 x1 + c2 x2 + c3 x3 <= 0.8;
x1 + x2 + x3 = 1;
bin x1, x2, x3;

This can be enhanced in future with direct calls to optimization packages (local
or external) from within Orc as described. This would prevent switching between
technologies while developing workflows in Orc and associated management of QoS
dependent decisions. An example of encoding the optimization routine in Orc below
with the output of the resulting optimization plugged into the LPSolve IDE in Fig. 7.4.

type Latency = Number
type Cost = Number
val Latency = Ref()
val Cost = Ref()
val QoS = (Latency,Cost)
val AHPWeight = (0.3,0.7)
val Constraint = ((Latency,("<:"),0.5), (Cost,("<:"),0.8))
val Routine = "bin"
def compareorder(p) =

if (p="<:") then "<=" else if (p=":>") then "=>" else "="

2http://lpsolve.sourceforge.net/5.5/

181

http://lpsolve.sourceforge.net/5.5/

7.6. Optimal Decision Results Chapter 7

--/* Objective function */
--min: (0.3 l1 + 0.7 c1) x1 + (0.3 l2 + 0.7 c2) x2 + (0.3 l3 + 0.7 c3) x3;
--/* Variable bounds */
--l1 x1 + l2 x2 + l3 x3 <= 0.5;
--c1 x1 + c2 x2 + c3 x3 <= 0.8;
--x1 + x2 + x3 = 1;
--bin x1, x2, x3;

def Optima(QoS,AHPWeight,Constraint,Routine) =
QoS>(q1,q2,q3) > AHPWeight >(A1,A2) > Println("/ * Objective function * /") >>
Println("min: "+((A1 * head(q1)) + ((A2) * last(q1)))+" x1 +
"+((A1 * head(q2)) + ((A2) * last(q2)))+" x2 +
"+((A1 * head(q3)) + ((A2) * last(q3)))+" x3;")
>> Println("/ * Variable bounds * /") >> Constraint
>((D1,p1,t1),(D2,p2,t2)) > Println(head(q1)+" x1 + "+head(q2)+" x2 +
"+head(q3)+" x3 "+compareorder(p1)+" "+t1+" ;") >>
Println(last(q1)+" x1 + "+last(q2)+" x2 + "+last(q3)+"
x3 "+compareorder(p2)+" "+t2+";")
>> Println("x1 + x2 + x3 "+compareorder("=")+" 1;")
>> Println(Routine+ " x1, x2, x3;")

-- Sites return random latency, cost values
def Site1() = Dictionary() >s1> s1.latency:=URandom()
>> s1.cost:=URandom() >> s1

def Site2() = Dictionary() >s2> s2.latency:=URandom()
>> s2.cost:=URandom() >> s2

def Site3() = Dictionary() >s3> s3.latency:=URandom()
>> s3.cost:=URandom() >> s3

signal >> (Site1(), Site2(), Site3()) >(s1,s2,s3) >
Optima(([s1.latency?,s1.cost?], [s2.latency?,s2.cost ?],

[s3.latency?,s3.cost?]), AHPWeight, Constraint, Routin e)

7.6 Optimal Decision Results

The results of the optimization procedure are described in this section. Rather than
concentrating on optimization aspects (primal-dual feasibility, relative error, number
of iterations, etc.), we focus on the implications of using optimization as a tool in
orchestrations.

Consider a plant-side site in Orc, order(orderQnty, dellStock) , that decre-
ments ordered quantities orderQnty from the revolver counter dellStock . Sim-
ilarly, the supply-side site supply(polling, criticalLvl, batch, dellStock) ,
polls with interval polling and refuels with batch quantity when the dellStock

counter falls below criticalLvl . Over a period of time, with varying frequencies of
orders, it is essential that the supplier varies parameters accordingly to ensure consis-
tent revolver levels. Guarantees for plant and supply chain behavior may be proposed
with revolver levels as a common resource for monitoring. A portion of the Orc repre-
sentation for the plant-side and the supplier-side behavior is shown:

val dellStock = Counter(K)

--Plant--
def order(orderQnty,dellStock) = dellStock.value() >curLvl>

(if(orderQnty<curLvl) then (decrement(dellStock,orderQnty) >> orderQnty)
else (order(orderQnty,dellStock)))

--Supplier--
def supply(polling,criticalLvl,batch,dellStock) = dellStock.value() >curLvl>

(if(curLvl<=criticalLvl) then (increment(dellStock,criticalLvl)
>> Rtimer(polling) >> supply(polling,criticalLvl,batch,dellStock))

182

Chapter 7 7.6. Optimal Decision Results

Figure 7.4: Output of the Orc program plugged into the LPSolve IDE.

else (Rtimer(polling) >> supply(polling,criticalLvl,batch,dellStock)))

While the plant decrements the stock level counter for the order of size K_1, the
supplier refuels inventory with a batch size K_2 when the stock level falls below l_c .
Orc sites such as Counter and Rtimer are used in this program. The increment and
decrement sites are used to represent the change in the counter values with ordering
and refueling, respectively.

The AHP weight matrix shown in Table 7.3 is used for the optimization of the
problem described in Section 7.4 using the linprog function in MATLAB. These are the
judgement criteria that can be fixed by the user / service orchestrator as the inputs to
the optimization solver. The polling period ρ is set to a constant of 1 hour to limit model
parameters. By setting the customer demand and supplier delay distributions, the

wµc wµmax wβ Normalized Vector υ

wµc 1 1/3 1/5 0.1047
wµmax 3 1 1/3 0.2583
wβ 5 3 1 0.6370

cmax = 3.0385, CI = 0.0193, CR = 0.0370

Table 7.3: Parameters for Dell supply chain optimization.

optimization produces the distributions of the refuel batch size, critical and maximum
stock levels as shown in Fig. 7.5. These settings, when applied to the Dell system
provides the system performance as shown in Fig. 7.6. The cumulative distribution of
the revolver inventory remains stochastically above the critical distribution for 10000

183

7.6. Optimal Decision Results Chapter 7

runs, being refueled periodically by the supplier. As a consequence, the revolver stock
level µt does not drop to zero throughout the simulation period. This demonstrates that
the optimization formulation through AHP is robust to changes in inputs of demand and
delay distributions. Though scaling as in eq. (7.5) has been employed, the normalized
values are omitted from figures (to demonstrate realistic outputs).

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Customer Demand λ
t
 (items / hour)

F
re

qu
en

cy

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Batch Size β (items)

F
re

qu
en

cy

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Supply Refuel Delay δ
sup

 (hours)

F
re

qu
en

cy

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

Number of items

F
re

qe
nc

y

Critical Revolver Level µ
c

Maximum Revolver Level µ
max

Figure 7.5: Optimal setting of parameters in the Dell Supply Chain.

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Items Procured

C
um

ul
at

iv
e

F
re

qu
en

cy

Revolver Level µ
t

Maximum Revolver Level µ
max

Critical Revolver Level µ
c

Figure 7.6: Distributions of the inventory levels in the Dell system.

As further seen in one particular setting of the Dell example in Fig. 7.7, the linear
programming method converges within a few iterations to the optimal value. This is
true for well formulated linear programming problems with optimal outputs produced
(relative errors of the order of ≤ 10−6) for most input settings.

Parameters for optimal evaluations such as relative error, maximum number of
iterations and so on can be set conveniently with most generic optimization solvers.
Such a precise setting of parameters are needed for orchestrations like the Dell supply
chain, to prevent unwarranted delay in production and supply of parts (choreography
deadlock). This example highlights the crucial use of optimization and associated
packages for managing QoS in complex workflows.

Such optimization of decisions within web services serve two purposes :

184

Chapter 7 7.7. Related Work

Figure 7.7: Optimization output for a single setting of the Dell example in MATLAB.

1. Optimization of a variety of parameters should produce efficient and beneficial
choices in service orchestrations. Such optimizations can be applied to intricate
workflows in logistics and queuing systems to optimize resource allocations. Ex-
pecting comparative judgement between metrics and simple constraints reduces
the onus of a orchestration designer to understand intricacies of more complex op-
timization modeling in workflows. Incorporating this technique within languages
such as Orc should provide a useful tool for designers of complex workflows.

2. Efficient, multi-dimensional tradeoff dependent decision making. This means a
lower priority metric should not prevent a composite service run. Conventional
enumerate options would wait until timeout to find the “best” return from a
particular metric. Constraint dependent optimization can prevent this with all
metrics crossing the constraint threshold available immediately for selection.

7.7 Related Work

Analysis of QoS in web services orchestrations has received considerable attention. In
[HWTS07], Hwang et al. use QoS parameters as random variables for composition.
Rosario et al. [RBHJ08] provide a framework for probabilistic contracts modeling
QoS parameters as random variables. Instead of using fixed hard bound values for
parameters such as response time, the authors proposed a soft contract monitoring
approach to model the QoS bounds. This is further developed with a theory for QoS
modeling within the Orc framework in [RBJ09b]. We extend the “best” operator from
this theory to accommodate alternatives to exhaustive search.

Though there are many techniques available for optimizing functions [BV09] rou-
tines needed to incorporate them into orchestrations is still a developing area. In the
paper by Alrifai and Risse [AR09a] the use of mixed integer programming is proposed
to find the optimal decomposition of global QoS constraints into local constraints. Op-
timal QoS compositions make use of genetic programming in Canfora et al. [CPEV05a]
and linear programming in Zeng et al. [ZBN+04]. The use of a reputation guided selec-
tion and feedback dependent policy for web services is outlined in [LB10]. In [YZL07],
the optimization of dynamic service compositions are modeled as a multidimension-
multichoice knapsack problem (MMKP). MMKP of medium sizes can be solved by
most commercial integer-linear programming solvers, as employed in this paper. A
framework for specifying optimizations within Orc workflows would aid in deploying
real-world applications. This can then be combined with a host of optimization solvers
[FMM08] [FG01] applied to most QoS dependent decisions in service orchestrations.

In this paper, we extend the concepts of optimizing cost function defined via AHP
to complex queries in workflows. Extending such a framework to orchestrations can
provide more complex queries to be incorporated with flexibility in comparing domains.

185

7.8. Conclusion Chapter 7

The Dell optimization example from [KZC+04] provide realistic case studies within the
web service framework where optimal QoS values affect functioning of the orchestration.

Analytical hierarchy process developed by Saaty [Saa80] has been shown to be
applied to diverse fields including manufacturing, logistics, finance and management.
Work by Ho [HLH10] reviews the combination of AHP to mathematical models includ-
ing linear programming, integer linear programming, mixed integer linear programming,
and goal programming. An application of AHP for automated negotiation of SLAs
are studied in [CCP07]. In [YSS05], another multi-criteria decision making approach
(PROMETHEE) is used to extend the decision making for exhaustive comparison of
web services’ QoS.

7.8 Conclusion

With increasing need for decision making capabilities in services orchestrations, the
use of mathematical packages like optimization should be employed for leveraging QoS
dependent choices. Embedding optimization routines as part of orchestration specifying
languages like Orc provides the capability to use these tools for runtime decision making
in a variety of workflows. A simple extension of user defined criterion and constraints is
proposed to specify such optimization problems for non-specialist workflow designers.
By applying the AHP, we show that a consistent minimizing cost function can be
developed for total ordering QoS metrics. Demonstrating this methodology for the
Dell supply chain example, it is shown to be effective in solving realistic problems in
resource allocation and logistics. Such techniques are required to estimate optimal
decisions on runtime, dependent on variations in associated QoS parameters.

186

Chapter 8

Importance Sampling/Splitting
of Probabilistic Contracts in Web
Services

Ajay Kattepur IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Abstract

With web services quality of service (QoS) modeled as random variables, the accuracy
of sampled values for precise service level agreements (SLAs) come into question. Sam-
ples with lower spread are more accurate for calculating contractual obligations of the
population, which is typically not the case for web services QoS. Moreover, the extreme
values in case of heavy-tailed distributions (eg. 99.99 percentile) are seldom observed
through limited sampling schemes. To improve the accuracy of contracts, we propose
the use of variance reduction techniques such as importance sampling and importance
splitting. A consequence of this is a formulation of a more precise SLA definition for
orchestrations and choreographies. We demonstrate this for contracts involving de-
mand and refuel operations within the Dell supply chain example. Using measured
values, efficient forecasting of future deviation of contracts may also be performed. A
consequence of this is a more precise definition of sampling, measurement and variance
tolerance in SLA declarations.

187

8.1. Introduction Chapter 8

8.1 Introduction

Web services continue to attract applications in many areas [ACKM04]. With increasing
efforts to standardize performance of web services, focus has shifted to Quality of Service
(QoS) levels. This is important to consider in case of orchestrations that specify the
control flow for multiple services. To this end, contractual guarantees and service level
agreements (SLAs) [BSC01] are critical to ensure adequate QoS performance.

QoS metrics being random variables, the treatment of contractual obligations tends
toward probabilistic criterion [RBHJ08]. Contractual obligations may be specified as
varying percentile values of such distributions rather than “hard” values. In [RBJ09b],
composition and monitoring such contracts with stochastic dominance have been ex-
amined.

As metrics such as response time and throughput rates can have heavy tails, esti-
mating extreme values becomes difficult with few observations. The availability of a
web service might need contracts for extreme percentiles in the response time profile
(99.99 percentile). For instance, an ambulance or disaster management web service
must be available 24 × 7, indicating a high availability requirement. These values are
dependent on sampled random values and can lead to high variance in contractual
guarantees.

The use of importance sampling and importance splitting [Buc04] is proposed as a
solution to these problems. Disadvantages of conventional Monte-Carlo techniques such
as high variance of percentile values may be eliminated. In case of heavy tailed distri-
butions, unobserved extreme percentiles can be quantified with higher accuracy. These
are stochastically “important” observations to estimate contractual deviations. These
issues are demonstrated with the Dell example [KZC+04], a choreography involving
Dell Plant and Supplier orchestrations. We study more accurate bounds for supplier
contracts with varying plant demand rates. Further, we show how QoS metrics such as
stock level deviations (specially long delays) can be estimated with low variance.

Using a precise declaration of distribution structures, exact quantiles and variance
in measurements can be derived. This form of extended specifications will reduce
ambiguities in SLA specifications, for example in standards such as WSLA [LKD+03].
Monitoring deviations in contracts can also be simplified with stochastic dominance
relations replaced by probability of exceeding specific quantile values.

The rest of the paper is organized as follows: Section 8.2 contains foundations
for the paper including QoS in web services 8.2.1, probabilistic contracts 8.2.2 and
Orc 8.2.3. Importance sampling and Importance Splitting are briefly introduced in
Section 8.3. The Dell application is introduced in Section 8.4 with the “Plant” and
“Supplier”workflows interacting in a choreography. The two application of importance
sampling with respect to the Dell supply chain are described in Sections 8.4.1 and 8.4.2.
Upgrading current WSLA specifications to include such quantile values are studied in
8.5. Related work and conclusions of the paper are included in Sections 8.6 and 8.7,
respectively.

8.2 Foundations

This section introduces concepts required to understand the rest of the paper.

8.2.1 QoS in Web Services

Available literature on industry standards in QoS [W3c03] provide a family of QoS
metrics that are needed to specify SLAs. These can be subsumed into the following
four general QoS observations:

188

Chapter 8 8.2. Foundations

1. Service latency or Response Time ∈ R+ - When represented as a distribution,
this can subsume other metrics such as availability and reliability of the service.

2. Per invocation service cost ∈ R+ - Can be modeled as a number extracted from
a uniform distribution of cost ranges.

3. Output Data Quality ∈ N - This can represent other metrics such as data security
level and non-repudiation of private data over a scale of values.

4. Inter-query interval ∈ R+ - equivalent to considering the query rate for a service.
Performance of the service will depend on negotiations with the amount of queries
that can be made in a given time interval.

Along with QoS, a functional web service returns some data value. The tuple of (Data
value, QoS value) is used for the decision process within orchestrations. To handle such
diverse domains, metrics and algebra for QoS, a framework is proposed in [RBJ09b].
Using such an algebra, QoS metrics may be defined explicitly with domains, increments
and comparisons within service orchestrations.

8.2.2 Probabilistic Contracts

To handle such diverse domains, metrics and algebra for QoS, a framework is pro-
posed in [RBJ09b]. Using such an algebra, QoS metrics may be defined explicitly with
domains, increments and comparisons within service orchestrations.

For a domain DQ of a QoS parameter Q, behavior can be represented by its distri-
bution FQ:

FQ(x) = P(Q ≤ x) (8.1)

Making use of stochastic ordering [BD03], this is refined for probability distributions
F and G over a totally ordered domain D:

GQ � FQ ⇐⇒ ∀x ∈ DQ, GQ(x) ≥ FQ(x) (8.2)

That is, there are more chances of being less than x (partial order �) if the random
variable is drawn according to G than according to F . A QoS contract must specify
the obligations of the two parties:

• The obligations that the orchestration has regarding the service are seen as as-
sumptions by the service - the orchestration is supposed to meet them.

• The obligations that the service has regarding the orchestration are seen as guar-
antees by the service - the service commits to meeting them as long as assumptions
are met.

Definition. 4 A probabilistic contract is a pair (Assumptions, Guarantees), which both
are lists of tuples (Q,DQ, FQ), where Q is a QoS parameter with QoS domain DQ and
distribution FQ.

Once contracts have been agreed, they must be monitored by the orchestration for
possible violation as described in [RBHJ08].

189

8.3. Rare Event Simulation Techniques Chapter 8

8.2.3 Orc

Orc [MC07] serves as a simple yet powerful concurrent programming language to de-
scribe web services orchestrations. The fundamental declaration used in the Orc lan-
guage is a site. The type of a site is itself treated like a service - it is passed the types
of its arguments, and responds with a return type for those arguments. An Orc expres-
sion represents an execution and may call external services to publish some number of
values (possibly zero).

Orc has the following combinators that are used on various examples as seen in
[MC07]. The Parallel combinator X|Y , where X and Y are Orc expressions, runs by
executing X and Y concurrently; returns from X and Y are interleaved. Whenever
X or Y communicates with a service or publishes a value, X|Y does so as well. The
execution of the Sequential combinator X >t> Y starts by executing X. Sequential
operators may also be written compactly as X ≫ Y . Values published by copies
of Y are published by the whole expression, but the values published by X are not
published by the whole expression; they are consumed by the variable binding. If there
is no response from either of the sites, the expression does not terminate. The Pruning
combinator, written X <t< Y , allows us to block a computation waiting for a result,
or terminate a computation. The execution of X <t< Y starts by executing X and
Y in parallel. Whenever X publishes a value, that value is published by the entire
execution. When Y publishes its first value, that value is bound to t in X, with the
execution of Y immediately terminated. The Otherwise combinator, written X;Y has
the following execution. First, X is executed. If X completes, and has not published
any values, then Y executes. If X did publish one or more values, then Y is ignored.
The publications of X;Y are those of X if X publishes, or those of Y otherwise. An
interested reader is referred to 1 for further documentation, examples and idioms of
Orc.

8.3 Rare Event Simulation Techniques

In case of web services’ SLAs, these rare event simulations can be used to determine
the occurrence of failure or deviation from contracts. Traditional Monte-Carlo (MC)
methods waste a lot of time in a region of the state space which is “far” from the rare
set of interest. Modifying the underlying distributions to move “near” the states of
interest provides a more efficient means of analysis. With typical Monte-Carlo (MC),
if the mean µ = 10−5 and if we want the expected number of occurrences of this event
to be at least 100, we must take approximately N = 107 runs. For lower values of N ,
not even a single occurrence of this event may be seen - leading to the faulty conclusion
that the event does not occur.

The use of rare event simulations in web services:

1. High Availability Contracts - High availability refers to the ability of a system
to perform its function continuously (without interruption) for a significantly
longer period of time than the reliabilities of its individual components would
suggest. The degree of availability can be characterized by orders of magnitude.
In order to compose services with pre-defined contracts, such high availability
requirements need precise definitions. Once contractual guarantees are agreed
upon, using importance sampling, the rate of deviation from extreme percentiles
may be extracted. This can then be composed to obtain end-to-end availability
of composite services.

1http://orc.csres.utexas.edu/index.shtml

190

http://orc.csres.utexas.edu/index.shtml

Chapter 8 8.3. Rare Event Simulation Techniques

2. Forecasting - In case of large web services, monitoring is dependent on samples of
observed values obtained from a QoS distribution. For such cases, non-deviation
of contracts may not necessarily imply adequate performance levels. If the cus-
tomer of an atomic service desires to query the probability of the service fail-
ing over an interval, conventional sampling may not suffice. In such cases, the
observed values can be combined with importance sampling to provide better
estimates for contractual deviation. With more precise estimates, contingency
plans can be made to replace certain services with alternatives in case of outage
scenarios.

As in the case of most statistical techniques, the monitoring of contracts is also
based on samples of the population of QoS. If the variance in values of the sample set
is large then the mean is not as representative of the data as if the spread of data is
small. If only a sample is given and we wish to make a statement about the population
standard deviation(from which the sample is drawn), then we need to use the sample
standard deviation. If Q1, Q2, ..., QN is a sample of N observations, the sample variance
is given by:

s2 =

∑N
i=1(Qi − Q̄2)

N − 1
(8.3)

with Q̄ as the sample mean. This sample standard deviation can be used to represent
the deviation in the population QoS output and is used in this paper.

8.3.1 Importance Sampling

Importance sampling (IS) [Buc04] increases the probability of the rare event while
multiplying the estimator by an appropriate likelihood ratio so that it remains unbiased.
Consider the case of a random variable Q with probability density function (PDF) FQ

for which the probability of a rare event P(H(Q) > Φ) is to be estimated. Here H(Q) is
a continuous scalar function and Φ is the threshold. Using Monte-Carlo, one generates
independent and identically distributed samples Q1, Q2, ...QN from the PDF FQ and
then estimates the probability:

PMC =
1

N

N∑

i=1

1H(Qi)>Φ (8.4)

where 1H(Q)>Φ is 1 if H(Q) > Φ and 0 otherwise. For a rare event, such a technique
needs many runs for low variance estimates.

With Importance Sampling (IS) [Buc04], variance can be reduced without increasing
the number of samples. The idea is to generate samples Q1, Q2, ...QN from an auxiliary
PDF GQ and then estimate probability:

PIS =
1

N

N∑

i=1

H(Qi)1H(Qi)>Φ
FQ(Qi)

GQ(Qi)
(8.5)

It is evident that GQ should be chosen such that it has a thicker tail than FQ. If FQ

is large over a set but GQ is small, then
(

FQ

GQ

)
would be large and it would result in a

large variance. It is useful if we can choose GQ to be similar to FQ in terms of shape.
Analytically, we can show that the best GQ is the one that would result in a variance
that is minimized [Buc04]. In order to perform this selection, some sort of knowledge
about the distribution is assumed, either through theory or pre-collected statistical
data.

191

8.3. Rare Event Simulation Techniques Chapter 8

Instead of a pure Monte-Carlo run for determining the assumption/guarantee con-
tracts as in [RBHJ08], the importance sampling algorithm may be used. Such a proce-
dure requires generation of accurate quantiles and threshold from probabilistic distri-
butions. Rather than concentrating on median / mean values that may be estimated
with high confidence, it is critical for precise SLAs to determine > 90 percentiles of
such distributions with accuracy. With inputs of a sampling distribution G, observed
distribution F and the function H to select the occurrence of the “rare” event:

Algorithm 3: Importance Sampling

1 Choose G such that sup(G) ⊃ sup(F ·H)
2 for i = 1...n do
3 Generate Xi ∼ G

4 Set W (Xi) =
F (Xi)
G(Xi)

5 Return E [H(X)] =
∑n

i=1 W (Xi)H(Xi)
n

Choosing the right distribution to sample from will involve using the cross entropy
method [RK04], which can provide near optimal distributions for variance reduction. A
generic cross entropy algorithm is given as follows with v representing tuning parameter
for distribution families f(Xi;v).

Algorithm 4: Cross Entropy Algorithm

1 Choose initial parameter vectors v0; set t = 1
2 Generate X1, . . . ,XN from distribution f(.;vt−1)
3 while vt 6= vt−1 do

4 Solve vt = argmax︸ ︷︷ ︸
v

1
n

∑N
i=1H(Xi)

F (Xi)
f(Xi;vt−1)

log f(Xi;v)

5 Set t = t+ 1

6 Return distribution G(.) = f(.;vt)

8.3.2 Importance Splitting

Another alternative to traditional Monte Carlo that does not depend on the prior knowl-
edge of distributions. This makes use of multiple quantiles α to determine thresholds
that must be crossed to draw closer to possibility of obtaining rare events. Impor-
tance splitting (ISP) is based on the assumption that rarity comes from the occurrence
of a low probability transition that can be decomposed in several higher-probability
transitions.

Using a stochastic process X(S) in a space S, the state may be partitioned into two
subsets S = C ∪R. Here, R is the set of states that are rare and of interest (eg. 99
percentile), while C are the more commonly observed states. As the steady state is
reached (X(S) ⇒ X∞), a measure that is needed is E(f(X∞)), where f(x) = 1{x∈R}.
Traditional importance splitting [LDT07] algorithms divide the sample space into fixed
quantiles α and produce new values from samples φ(X) crossing these threshold quan-
tiles (using Metripolis-Hastings or Gibbs sampling algorithms). Essentially, this process
increases the likelihood of observing quantiles that are “far” away from general obser-
vations.

Improvements proposed in [CDMFG11] intend to remove fixing these quantiles when
the system is a black box, without any knowledge of the quantile ranges. In this algo-
rithm, multiple levels are sequentially generated starting from an initial level Φ(X)(1−p0)

192

Chapter 8 8.4. Dell Supply Chain

Algorithm 5: Importance Splitting

1 Set k = 0

2 Generate Nk samples Xk
1 , ...,X

k
Nk

from fk(X) and their α quantiles qkα
3 Set threshold S to determine the rare event P(φ(X) > S)

4 while qkα < S do
5 Determine subset φ(X) > qkα and its conditional density fk
6 k = k + 1

7 Return P = (1− α)k × 1
Nk

∑Nk

i=1 1φ(Xk
i
)
>S

with p0 typically between 0.75 ≤ p0 ≤ 0.8. Once the final threshold level L is crossed,
the probability of the rare event is estimated. As this is closer to the web services’
distributions case (where quantiles may be unknown), we make use of this algorithm
as the ISP case for the rest of the paper.

Algorithm 6: Importance Splitting with adaptive levels [CDMFG11]

1 Set k = 0
2 Generate N samples X1, ...,XN from fk(X) and their (1− p0) quantile
L1 = Φ(X)(1−p0)

3 Set threshold L of the quantile to be crossed
4 while Lk < L do
5 Generate N samples from X|Φ(X)(1−p0) > Lk Compute the quantile

Lk+1 = Φ(X)(1−p0)

6 k = k + 1

7 Return P = (p0)
k × 1

N

∑N
i=1 1(1−p0)>L

8.4 Dell Supply Chain

To demonstrate the variation in the QoS domains in real-world services, we study
the Dell example [KZC+04]. The Dell application is a system that processes orders
from customers interacting with the Dell webstore. After a customer places an order,
either by phone or through the Internet on www.dell.com , Dell processes the order
through financial evaluation (credit checking) and configuration evaluations (checking
the feasibility of a specific technical configuration), which takes two to three days, after
which it sends the order to one of its manufacturing plants in Austin, Texas. These
plants can build, test, and package the product in about eight hours. The general rule
for production is first in, first out, and Dell typically plans to ship all orders no later
than five days after receipt. In most cases, Dell has significantly less time to respond
to customers than it takes to transport components from its suppliers to its assembly
plants. To compensate for long lead times and buffer against demand variability, Dell
requires its suppliers to keep inventory on hand in the Austin revolvers (for “revolving”
inventory). Revolvers are small warehouses located within a few miles of Dell’s assembly
plants. Each revolver is shared by several suppliers. Inventory in revolvers is owned
and managed by suppliers and charged to Dell indirectly through component pricing.
To help suppliers make good management decisions, Dell shares its forecasts with them
once per month.

The overall architecture of the Dell supply chain is shown in Fig. 8.1. Boxes denote
peers (actors of the system), and multiple boxes or icons indicate that there exist several

193

www.dell.com

8.4. Dell Supply Chain Chapter 8

Figure 8.1: Architecture of the Dell example.

instances of the considered peer. As the “Dell supervisor” involves monitoring (a topic
in itself) and a lot of algorithmic inventory management, we leave aside this part of the
application.

According to [KZC+04], this consists of the following prominent entities:

• Dell Plant - Receive the orders from the Dell webstore and are responsible for the
assembly of the components. For this they interact with the Revolvers to procure
the required items.

• Revolvers - Warehouses belonging to Dell which are stocked by the suppliers.
Though Dell owns the revolvers, the inventory is owned and managed by the
Suppliers to meet the demands of the Dell Plant.

• Suppliers - They produce the components that are sent to the revolvers at Dell.
Periodic polling of the Revolvers ensure estimates of inventory levels and their
decrements.

Essentially, there are a Dell Plant and Supplier orchestrations that are chore-
ographed through common Revolvers. The critical aspect in the Dell choreography
is efficient management of revolver levels. It is a shared buffer resource that is accessed
by both the Dell Plant and the Suppliers. As discussed in [KZC+04], for the efficient
working of the supply chain, the interaction between the Dell Plant and the Supply-side
workflows should be taken into account. The QoS metrics are functional in nature, with
slight changes in optimal settings sending the supply chain to a dead state.

Consider a plant-side site in Orc, order(orderQnty, dellStock) , that decre-
ments ordered quantities orderQnty from the revolver counter dellStock . Sim-
ilarly, the supply-side site supply(polling, criticalLvl, batch, dellStock) ,
polls with interval polling and refuels with batch quantity when the dellStock

counter falls below cricticalLvl . Over a period of time, with varying frequencies of
orders, it is essential that the supplier varies parameters accordingly to ensure consis-
tent revolver levels. Guarantees for plant and supply chain behavior may be proposed
with revolver levels as a common resource for monitoring. A portion of the Orc repre-
sentation for the plant-side and the supplier-side behavior is shown below.

val dellStock = Counter(K)

--Plant--
def order(orderQnty,dellStock) = dellStock.value() >curLvl>

(if(orderQnty<curLvl) then (decrement(dellStock,orderQnty) >> orderQnty)
else (order(orderQnty,dellStock)))

--Supplier--

194

Chapter 8 8.4. Dell Supply Chain

def supply(polling,criticalLvl,batch,dellStock) = dellStock.value() >curLvl>
(if(curLvl<=criticalLvl) then (increment(dellStock,criticalLvl)
>> Rtimer(polling) >> supply(polling,criticalLvl,batch,dellStock))
else (Rtimer(polling) >> supply(polling,criticalLvl,batch,dellStock)))

While the plant decrements the stock level counter for the order of size orderQnty ,
the supplier refuels inventory with a batch size batch when the stock level falls below
criticalLvl . Orc sites such as Counter and Rtimer are used in this program.
The increment and decrement sites are used to represent the change in the counter
values with ordering and refueling, respectively.

The requests made by the plant for certain items will be favorably replied to if the
revolvers have enough stock. This stocking of the revolvers is done independently by the
suppliers. The suppliers periodically poll (withdraw inventory levels) from the revolvers
to estimate the stock level. In such a case, a contract can be made on the levels of
stock that must be maintained in the revolver. The customer side agreement limits the
throughput rate. The supplier side agreement ensures constant refueling of inventory
levels, which in turn ensures that the delay time for the customer is minimized. Thus,
it represents a choreography comprising two plant-side and supplier-side orchestrations
interacting via the revolver as a shared resource.

8.4.1 Contract Composition

For the Dell example, as QoS metrics are inherent to the functionality of the chore-
ography, specifying explicitly probabilities of outage is necessary. Proposed are the
following two concrete metrics that qualitatively evaluate these workflows:

• Assumption: The demand (number of orders/hour) distributions from the Dell
plant made to a particular revolver. It is the prerogative of the plant to maintain
demand within acceptable range of the contracts.

• Guarantee: The delay (hours) distribution in obtaining products from revolvers.
This, in turn, is dependent on the availability of products in the revolver. The
suppliers ensure efficient and timely refueling to maintain acceptable delays in
the supply chain.

Consider the assumption on the query rate of the customer shown as an exponential
distribution as in Fig. 8.2. Repeatedly pinging the service in order to receive boundary
values of the distribution is expensive and not reflective of run-time performance. This
is demonstrated for three values in Table 1 with 10000 runs. Conventional Monte-
Carlo does not detect the probability of inter-query periods being less than 100, 50 or
20 minutes (which can be fallaciously interpreted as the rare event never occurring).

Using an importance sampling distribution, accurate mean and sampling variance
values are produced for the probability of crossing these thresholds. Such a level of
accuracy is needed specially for critical web services (crisis management such as am-
bulance or fire stations). For conventional web services contracts as well, such precise
contractual obligations can reduce the need for extended monitoring of services con-
tracts.

A corresponding guarantee from the service provider regarding the response time
may be estimated as a long tailed distribution (Fig. 8.3, Table 2). Once again we con-
centrate on the outlying percentile values. The outputs for the traditional Monte-Carlo
runs produce higher sample variance compared to the importance sampling scheme.

We repeat the same experiment using importance splitting in a similar setting for
response time distributions that cannot be fit into a particular distribution. For exam-
ple, consider the distribution shown in Fig. 8.4 that is a typical web service response
time measured online. When such a service intends to provide a guarantee, extreme

195

8.4. Dell Supply Chain Chapter 8

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

Inter−Query Interval (minutes)

F
re

qu
en

cy

Observation
Importance Sampling

Figure 8.2: Inter-query period distributions and fitting.

0 20 40 60 80 100 120
0

50

100

150

200

250

Response Time (minutes)

F
re

qu
en

cy

Observations
Importance Distribution
99.9 percentile
99.99 percentile
99.999 percentile

Figure 8.3: Response time distributions and fitting.

quantiles are not observed by conventional Monte-Carlo. This can be remedied by using
importance splitting as shown in Table 8.3. We make use of algorithm 6 to measure
the probability of percentile values crossing the specified threshold.

However, in most general settings, it may be assumed that a distribution fit is possible
for latency or inter-query intervals. In such cases, importance sampling is quicker and
computationally less expensive. When this is not possible, a combination of either of
these (IS/ISP) techniques may be used.

Inter-query period (mins.) mean MC variance MC mean IS variance IS
100 0 0 0.0086 0.0094
50 0 0 0.0018 7.36× 10−5

20 0 0 7.99× 10−5 7.37× 10−6

Table 8.1: Inter-query periods by Monte-Carlo (MC) and Importance Sampling (IS).
Percentile Latency (mins.) mean MC variance MC mean IS variance IS

99.9 44.61 0.0022 2.456× 10−6 0.0018 3.5548 × 10−7

99.99 69.58 5.2× 10−4 5.65× 10−7 3.04× 10−4 3.82× 10−8

99.999 125.70 1.1× 10−4 1.19× 10−7 3.47× 10−7 3.12× 10−9

Table 8.2: Latency by Monte-Carlo (MC) and Importance Sampling (IS) schemes.

196

Chapter 8 8.4. Dell Supply Chain

0 5 10 15 20 25 30 35 40 45 50 55
0

500

1000

1500

2000

2500

3000

Response Time (minutes)

F
re

qu
en

cy

Figure 8.4: Measured response time and thresholds (without distribution fitting).

Percentile Latency Threshold(mins.) mean ISP variance ISP

99 20.0 0.0048 0.0025
99.9 40.0 1.269 × 10−4 1.1081 × 10−4

99.99 50.0 9.985 × 10−5 1.4979 × 10−7

Table 8.3: Latency by Importance Splitting (ISP) schemes.

8.4.2 Forecasting

Traditional forecasting models like autoregressive moving averages [MW77] rely heavily
on accurate mathematical modeling of workflow processes. In this section, we propose
using pre-identified contracts / observations to provide an easier method of forecasting
outages in web services orchestrations. Consider a Dell revolver with critical stock of 10
items, refueling batch 50 items and a polling period of 10 hours. With an assumption
distribution of orders/hour shown in Fig. 8.5, the response time distribution obtained
over a period of 1 week is shown in Fig. 8.6. If an item is available, it is procured
immediately. Else, it is refueled with a supplier delay when polling detects sub-critical
revolver levels.

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
0

20

40

60

80

100

120

Number of Orders / Hour

F
re

qu
en

cy

Figure 8.5: Assumption: Plant side demand distributions.

In order to develop a guarantee distribution, the Dell plant must estimate the prob-
ability that delays over 72, 96 or 120 hours are experienced (leading to cancellation
in orders). Through importance sampling, these values can be better estimated as in

197

8.5. Upgrading WSLA Specifications Chapter 8

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Procurement Delay (hours)

F
re

qu
en

cy

Observation
Importance Sampling
Threshold 1
Threshold 2
Threshold 3

Figure 8.6: Guarantee: Supplier side procurement delays.

Table 3. Notice that the variance through importance sampling is several orders of
magnitude lower than conventional Monte-Carlo. The Dell plant can provision more
stringent supplier obligations to reduce the delays. For instance, changing the critical
stock to 50 items, refueling batch 200 items produces a new set of values, with lower
probabilities of crossing outlying values as shown in Table 4.

Such changes produced by improved supplier performance is barely observed through
traditional Monte-Carlo sampling, thus proving the efficacy of Importance Sampling.
Application of forecasting through pre-negotiated contracts emphasize the need for
precise contractual obligations needed in web services.

Delay (hours) mean MC variance MC mean IS variance IS

72 0.002 3.2 × 10−3 0.0016 1.72 × 10−7

96 0 0 3.88 × 10−4 3.71 × 10−8

120 0 0 1.02 × 10−4 6.25 × 10−9

Table 8.4: Original contract estimates.
Delay (hours) mean MC variance MC mean IS variance IS

72 0 0 4.08 × 10−4 1.35 × 10−8

96 0 0 9.91 × 10−5 1.89 × 10−9

120 0 0 2.734 × 10−5 6.74 × 10−10

Table 8.5: Reformulated contract estimates providing lower probabilities of delay.

8.5 Upgrading WSLA Specifications

The WSLA framework has components to specify and monitor contracts within the
web services. The currently employed WSLA framework is of the form:

<Obligations>

<Schedule name="MainSchedule">
<Period>
<Start>2011-04-01 T12:00</Start> <End>2011-05-01 T12:0 0</End> </Period>
<Interval>
<Hours>1</Hours> <Minutes>0</Minutes> <Seconds>0</Sec onds> </Interval>

</Schedule>

198

Chapter 8 8.5. Upgrading WSLA Specifications

<SLAParameter name="AverageResponseTime" type="float" unit="seconds">
<Metric>AverageResponseTime</Metric> </SLAParameter>

<Predicate xsi:type="wsla:Less">
<SLAParameter>AverageResponseTime</SLAParameter>

<Value>5</Value>
</Predicate>

</Obligations>

In such a case, the contract is formulated as a AverageResponseTime value
that must not cross a threshold. The monitoring procedure is also specified with an
<Interval> period of 1 hour. Such a monitoring strategy can lead to outages (when
not monitored) or very pessimistic contracts. Based on rich specifications of languages
such as QML [FK98], this can be refined with precise probabilistic percentile values of
QoS distributions.

<Obligations>

<Assumptions>
<SLAParameter name="InterQueryPeriod" type="float" uni t="seconds">

<Metric>InterQueryPeriod</Metric> </SLAParameter>
<Predicate xsi:type="wsla:Greater">

<SLAParameter>InterQueryPeriod</SLAParameter>
<Percentile>99</Percentile> <Value>30</Value>
<Percentile>50</Percentile> <Value>70</Value>
<MeasurementVariance>10^-3</MeasurementVariance> </P redicate>

</Assumptions>

<Guarantees>
<SLAParameter name="ResponseTime" type="float" unit="s econds">

<Metric>ResponseTime</Metric> </SLAParameter>
<Predicate xsi:type="wsla:Less">

<SLAParameter>ResponseTime</SLAParameter>
<Percentile>99</Percentile> <Value>15</Value>
<Percentile>50</Percentile> <Value>6.50</Value>
<MeasurementVariance>10^-3</MeasurementVariance> </P redicate>

</Guarantees>

</Obligations>

The contract now specifies the contract from the assumption-guarantee viewpoint.
For any measurement period, the <Percentile> values of the ResponseTime should
be less than the specified bounds. On the other hand, the InterQueryPeriod should
be greater than the threshold values. In both cases, the sample variance is taken into
account.

Such a framework allows for distributions to be used for both contractual specifi-
cation and monitoring deviations. Essentially, it provides a “low variance bound” for
probabilistic contracts (with some deviations allowed). To generate contractual obliga-
tions with low variance, importance sampling is needed, specially for outlying values in
the distributions. In languages such as Orc [MC07], these interfaces can be provided as
prelude to orchestration descriptions. An example of a simple SLA declaration in Orc
would be of the form:

def class ResponseTimeSLA() =
val percentileVal = { . per95 = 80000, per75 = 60000, per50 = 45000 .}
def prctile(h:t,k) = 10000 * URandom()
def ResponseTime([d1,d2,d3]) =

prctile([d1,d2,d3], 95) <= percentileVal.per95 &&
prctile([d1,d2,d3], 75) <= percentileVal.per75 &&
prctile([d1,d2,d3], 50) <= percentileVal.per50

199

8.6. Related Work Chapter 8

stop

signal >> ResponseTimeSLA().ResponseTime([1,2,3])

Here, the function prctile is similar to MATLAB with the operation performed on
the list of monitored response time values [d1,...dN] . For orchestrations written in
Orc, this can provide a suitable interface for QoS declarations before proceeding with
the functional descriptions of the workflows.

8.6 Related Work

In [W3c03], a general overview of QoS aspects to consider in web services are discussed.
This is formulated as contractual obligations in the WSLA framework [LKD+03]. Fur-
ther work on precise contracts for web services is done in [SLE04]. The proposed SLAng
protocol supports different tiers of the web services’ architecture including CPU load,
security and backup of data. The general purpose QML [FK98] is equipped with fine
grained types, aspects, attributes, constraints and contractual specification at the QoS
interface level.

The use of probabilistic QoS and contracts was introduced by Rosario et al. [RBHJ08]
and Bistarelli et al. [BS09b]. Instead of using hard bound values for parameters such
as response time, the authors proposed a probabilistic contract monitoring approach
to model the QoS bounds. The composite service QoS was modeled using probabilistic
processes by Hwang et al [HWTS07] where the authors combine orchestration con-
structs to derive global probability distributions.

In [GGMT08], Gallotti et al propose using a probabilistic model checker to assess
non-functional quality attributes of workflows such as performance and reliability. Val-
idating SLA conformance is studied by Boschi et al [BDZ06]. A series of experiments
to evaluate different sampling techniques in an online environment is studied. Models
such as SALSA [BHS+10] (Simulated Annealing Load Spreading Algorithm) use queu-
ing theory to autonomously meet SLAs, without a priori over-dimensioning resources.

The use of importance sampling to change probability of occurrence of events in
well known [Buc04]. An associated work in this area is importance splitting [MPLG10].
Importance splitting considers the estimation of a rare event by deploying several con-
ditional probabilities during simulation runs, reducing the need to identify importance
distributions as used in this case.

8.7 Conclusion

QoS aspects are critical to the functioning of most web service orchestrations and chore-
ographies, needing more precise specifications of SLAs. This is difficult as distributions
of QoS values have high variance when sampled with inefficient Monte-Carlo techniques.
In most cases, the tails of QoS distributions are either neglected or averaged out in con-
tractual specifications. Applying importance sampling to such distributions can provide
better estimates of outlying values with relatively low variance. As demonstrated in
this paper on the Dell supply chain application, importance sampling can have signif-
icant imperatives for both contract composition as well as forecasting deviations for
critical services. The extension of this approach in case of WSLA specifications are also
provided with a precise definition of sample variance.

200

Chapter 9

Negotiation Strategies for
Probabilistic Contracts in Web
Services Orchestrations

Ajay Kattepur, Albert Benveniste
IRISA/INRIA, Campus Universitaire de Beaulieu,
Rennes-Cedex, France.

Claude Jard
ENS Cachan, IRISA, Université Européenne
de Bretagne, Bruz, France.

Abstract

Service Level Agreements (SLAs) have been proposed in the context of web services
to maintain acceptable quality of service (QoS) performance. This is specially crucial
for composite service orchestrations that can invoke many atomic services to render
functionality. A consequence of SLA management entails efficient negotiation proto-
cols among orchestrations and invoked services. In composite services where data and
QoS (modeled in a probabilistic setting) interact, it is difficult to select an individual
atomic service to negotiate with in order to improve end-to-end QoS performance. A
superior improvement in one negotiated domain (eg. latency) might mean deteriora-
tion in another domain (eg. cost); improvement in one of the invoked services may
be annulled by another due to the control flow specified in the orchestration. In this
paper, we propose a integer programming formulation based on first order stochastic
dominance as a strategy for re-negotiation over multiple services. A consequence of this
is better end-to-end performance of the orchestration compared to random selection of
services for re-negotiation. We also demonstrate this optimal strategy can be applied to
negotiation protocols specified in languages such as Orc. Such strategies are necessary
for composite services where QoS contributions from individual atomic services vary
significantly.

201

Chapter 9 Chapter 9

Web services continue to attract applications in many areas [ACKM04]. With
increasing efforts to standardize performance of web services, focus has shifted to Qual-
ity of Service (QoS) levels. Maintaining efficient QoS levels of invoked services is a
major prerogative of composite web service orchestrations, in order to maintain end-
to-end QoS requirements. Contractual guarantees and service level agreements (SLAs)
[BSC01] are critical to ensure adequate QoS performance of such composite services.

An important aspect of such service level agreements is negotiation among service
providers [CCP07] [YKL+07]. The orchestration considers the end-to-end QoS against
individual SLAs agreed with service providers. Negotiation ensures an acceptable level
of QoS is maintained in composite service orchestrations, where the deterioration of
individual services result in deteriorating overall performance. End-to-end performance
is generally estimated through Monte-Carlo runs for composite services, having complex
data and QoS interactions.

QoS metrics being random variables, the treatment of such contractual obligations
tends toward probabilistic criterion [RBJ09b]. SLAs (used synonymously with con-
tracts) may be specified as varying percentile values of such distributions rather than
“hard”values. In [RBJ09b], composition and monitoring such contracts with stochastic
dominance have been examined.

In this paper, we examine negotiation of such probabilistic contracts having as-
sumptions and guarantees. If the assumptions on certain metrics (such as throughput)
is maintained by an orchestration, the sub-contractors guarantee a certain level or
performance, for example latency. Considering this setting, the negotiation involves
improvement in guarantees of the sub contractors such that overall improvement in
end-to-end QoS is observed.

The problem here is to select the necessary service to re-negotiate with. In case of
large orchestrations having both returned data and QoS values interacting, improving
one service might not necessarily improve the end-to-end QoS. By the term improve-
ment, we refer to first order dominance [BD03], that has been used to compare proba-
bility distributions (in the sense, drawing from one distribution is more likely to produce
lower values). In composite service orchestration where individual sites may be invoked
using a number of constructs (parallel, in sequence, fork-join, using timeouts/halting),
identifying a particular service that may improve end-to-end QoS is difficult.

In order to overcome this difficulty, we formulate the problem as an optimization
over minimizing cost of re-negotiation with respect to improvements in latency distri-
bution (in the first order dominance sense): this is referred to as a optimization strategy.
Using the notion of monotonicity [BRBH08], an improvement in the QoS performance
of an individual service contributes positively to the overall improvement in the QoS
(though with varying data-dependent contributions). As we are dealing with distri-
butions and uncertainties, the use of stochastic dominance constraints is necessary.
Stochastic dominance [BD03] has been used extensively in econometrics and related
areas to perform decisions based on uncertainties. We make use of linear relaxations of
these stochastic constraints [NRR06] to formulate it as in integer programming prob-
lem. This provides a straightforward optimization problem that can be solved to obtain
the most efficient re-negotiation strategy considering end-to-end QoS.

We evaluate our approach on a generic GarageOnline example that has both data
and QoS values interacting. From our evaluation, we demonstrate that optimizing over
constraints relating to stochastic dominance will produce better end-to-end contracts
over multiple rounds of negotiation. This is compared against random selection of
services (referred to as random strategy) for re-negotiation of composite services. As it
is difficult to estimate the contribution of individual services to overall improvement,
we believe such an optimization strategy is the best possible approach for transaction
based orchestrations.

202

Chapter 9 9.1. Foundations

As specifying such negotiations is not possible in conventional languages like WSLA
[LKD+03] (multiple rounds, percentile calculations), we specify both the functional
specification and the negotiation language in Orc [KQCM09]. Making use of optimiza-
tion specifications in [KBJ11], the integer programming formulation as a negotiation
strategy can be specified in Orc. An advantage of this is that runtime deterioration
can be monitored to enter re-negotiation directly with participating services.

The rest of the paper is organized as follows: Section 9.1 provides foundation mate-
rial for our paper including QoS in web services in Section 9.1.1, probabilistic contracts
in Section 9.1.2, contract negotiations in Section 9.1.3 and an overview of Orc in Sec-
tion 9.1.4. The optimization formulation based on first order stochastic dominance
constraints is presented in Section 9.2. In Section 9.3 we introduce the GarageOnline

example. The problem of re-negotiating with individual services from a composite or-
chestration context is presented Section 9.4. The methodology used to overcome these
problems are discussed in Section 9.4.3. Negotiation specifications as an extension of
Orc is presented in 9.5. Discussion of results from the negotiation strategy is presented
in Section 9.6. Related literature and conclusions are finally presented in Sections 9.7
and 9.8.

9.1 Foundations

This section provides a broad overview of topics relevant to our work.

9.1.1 Web services’ QoS

Available literature on industry standards in QoS [TF06] provide a family of QoS
metrics that are needed to specify SLAs. These can be subsumed into the following
four general QoS observations 1:

1. δ ∈ R+ is the service latency. When represented as a distribution, this can
subsume other metrics such as availability and reliability of the service.

2. $ ∈ R+ is the per invocation service cost.

3. ζ ∈ Dζ is the output data quality. This can represent other metrics such as data
security level and non-repudiation of private data over a scale of values.

4. λ ∈ R+ is the inter-query interval, equivalent to considering the query rate for a
service. Performance of the service will depend on negotiations with the amount
of queries that can be made in a given time interval.

Along with QoS, the web service performs its task and returns some functional data
ρ ∈ Dρ as the output.

9.1.2 Probabilistic Contracts

For a domain DQ of a QoS parameter Q, behavior can be represented by its distribution
FQ:

FQ(x) = P(Q ≤ x) (9.1)

Making use of stochastic ordering [BD03], this is refined for probability distributions
F and G over a totally ordered domain D:

GQ � FQ ⇐⇒ ∀x ∈ DQ, GQ(x) ≥ FQ(x) (9.2)

1Aspects such as scalability, interoperability and robustness are not dealt with as they are specific
to the supplier side operation (not necessarily part of SLAs).

203

9.1. Foundations Chapter 9

That is, there are more chances of being less than x (partial order ≤) if the random
variable is drawn according to G than according to F .

Following the established approach of WSLA [LKD+03], a contract must specify
the obligations of the two parties.

• The obligations that the orchestration has regarding the service are seen as as-
sumptions by the service - the orchestration is supposed to meet them.

• The obligations that the service has regarding the orchestration are seen as guar-
antees by the service - the service commits to meeting them as long as assumptions
are met.

Definition. 5 A probabilistic contract is a pair (Assumptions, Guarantees), which both
are lists of tuples (Q,DQ, FQ), where Q is a QoS parameter with QoS domain DQ and
corresponding distribution FQ.

Once contracts have been agreed, they must be monitored by the orchestration
for possible violation as described in [RBJ09b]. Monitoring applies to each contracted
distribution F individually, where F is the distribution associated to some QoS param-
eter Q having partially ordered domain DQ. By monitoring the considered service, the
orchestration can get an estimate of the actual distribution of Q.

The problem is, for the orchestration, to decide whether or not G complies with F ,
where compliance is defined according to:

sup
x∈DQ

{FQ(x)−GQ(x)} ≤ ǫ (9.3)

where ǫ is the level of deviation allowed from the contractual distribution.
Monotonicity - It is important to make note of monotonicity in orchestrations as
specified in [BRBH08]. This implies that a superior performance of a particular service
invoked in the orchestration contributes positively to the overall performance of the
orchestration. Such an assumption is crucial in negotiation based framework where
contracts are composed.

9.1.3 Contract Negotiation

Contract negotiations relates to the procedure of parties (clients and providers) agreeing
on the terms of an SLA. The typical negotiation steps are the following:

1. The provider publishes a template describing the service and its possible terms,
including the QoS and possible compensations in case of violation.

2. The client fetches the template, and fills it in with values which describe the
planned resource usage.

3. This new document, which engages neither party, is sent to the provider. Receiv-
ing this, the provider, based on the current resource availability and customer
policies, sends back to the client a quote. This quote corresponds to values on
which the provider would probably agree (but this is by no means binding), based
on the clients needs.

4. The client, if satisfied with the quote, applies his/her signature to the document,
and sends it back to the provider as a SLA proposal.

5. The provider, receiving the proposal, is free to reject or accept it. In the latter
case, the proposal becomes an SLA officially signed by both parties, and starts
to be a valid legal document.

204

Chapter 9 9.2. Optimization Formulation

The quotes exchange (steps 2 and 3) can be repeated any number of times. The
parties may freely modify the different terms: lower fees, lower QoS, longer time slots,
fewer resource needs, lower compensations and so on. Once a contract has been signed
and agreed, the necessity of changing it could be envisaged (re-negotiation).

9.1.4 Orc

Orc [KQCM09] serves as a simple yet powerful concurrent programming language to
describe web services orchestrations. The fundamental declaration used in the Orc
language is a site. The type of a site is itself treated like a service - it is passed the
types of its arguments, and responds with a return type for those arguments. An
Orc expression represents an execution and may call external services to publish some
number of values (possibly zero).

Orc has the following combinators that are used on various examples as seen in
[KQCM09]. The Parallel combinator F | G, where F and G are Orc expressions, runs
by executing F and G concurrently; returns from F and G are interleaved. Whenever
F or G communicates with a service or publishes a value, F | G does so as well. The
execution of the Sequential combinator F >x> G starts by executing F . Values pub-
lished by copies of G are published by the whole expression, but the values published
by F are not published by the whole expression; they are consumed by the variable
binding. If there is no response from either of the sites, the expression does not ter-
minate. Sequential operators may also be written compactly as F ≫G. The Pruning
combinator, written F <x< G, allows us to block a computation waiting for a result, or
terminate a computation. The execution of F <x< G starts by executing F and G in
parallel. Whenever F publishes a value, that value is published by the entire execution.
When G publishes its first value, that value is bound to x in F , with the execution of G
immediately terminated. The Otherwise combinator, written F ; G has the following
execution. First, F is executed. If F completes, and has not published any values, then
G executes. If F did publish one or more values, then G is ignored. The publications
of F ; G are those of F if F publishes, or those of G otherwise.

Declarations are used to bind values to be used in Orc expression. The declaration
val x = G, followed by expression F , executes G, and binds its first publication to x, to
be used in F . The declaration def E(x) = F defines a function named E whose formal
parameter list is x and body is expression F . A call E(p) is evaluated by replacing the
formal parameters x by the actual parameters p in the body F . Orc supports three
types of data structures: tuples, such as (f, g), finite lists, such as [f, g] and records,
such as {.f, g.}. Further details on sites representing semaphores, channels and class
declarations may be found in the Orc documentation 2.

9.2 Optimization Formulation

In this section, we formulate the re-negotiation strategy as an optimization problem.
We start from a general stochastic optimization setting and move on to the web ser-
vices’ re-negotiation strategy. As stochastic optimization involve comparison of random
variables, this can be suitably applied to distributions of QoS values. To reduce the
search space and complexity of comparison, approximations to convert the problem to
integer programming proposed by [NRR06] is used.

2http://orc.csres.utexas.edu/documentation.shtml

205

http://orc.csres.utexas.edu/documentation.shtml

9.2. Optimization Formulation Chapter 9

9.2.1 Stochastic Optimization

For formulating the problem with first order stochastic dominance, we define a triple
(Ω,F,P) as a probability space, where Ω is the entire space, F is a subset of this space
where probability measure P is defined. For the space of all random variables X defined
on the (Ω,F), the right continuous cumulative distribution function (CDF) is defined
as FX(η) = P(X ≤ η), η ∈ R, X ∈ X. For variable X,Y ∈ X, X dominates Y in
the first order sense X � Y , if FX(η) ≤ FY (η),∀η ∈ R. The stochastic optimization
problem with first order dominance constraints may be written as:

min f(X)
subject to: X � Y, X, Y ∈ X

(9.4)

Let (Ω, 2Ω,P) be a probability space with finite events Ω = (ω1, .., ωW) and correspond-
ing probabilities p1, ..., pW . Consider a discrete random variable Y ∈ X with finite
support and realizations yi with probabilities qi (i = 1, 2, ..,m). Assuming a right con-
tinuous step function FY with y1 < y2... < ym, the first order stochastic dominance
constrains in eq. (9.4) may be written as:

P(X ≤ yi) ≤ P(Y ≤ yi), i = 1, ..,m (9.5)

We have P(Y ≤ yi) =
∑i−1

k=1 qk and the P(X ≤ yi) =
∑W

w=1 pwziw; i = 1, ...,m; w =
1, ...,W such that binary decision variables:

ziw =

{
1 if yi −X(ωw) > 0
0 otherwise

If we define a big number M ∈ R satisfying M≥maxw{ym −X(ωw)}, the first order
stochastic constraint problem may be formulated as a binary integer programming
problem:

min f(X)
Subject to: yi −X(ωw) ≤Mziw

W∑

w=1

pwziw ≤
i−1∑

k=1

qk

ziw ∈ {0, 1}
X ∈ X

i = 1, ...,m; w = 1, ...,W

(9.6)

Such a formulation has been proposed in [NRR06] as a relaxation to first order domi-
nance constraints.

9.2.2 Web Services’ Negotiation

Assume there are S1, ...SN services characterized by the triple Sj := (cj , F
′
j(δ), Fj(δ))

representing cost of the service cj along with reformulated F ′
j and original latency Fj

distribution. As we are dealing with re-negotiating a single service from this set, we
also use the inverse proportionality of cost cj and the mean/median of the reformulated

distribution F̂ ′
j (a bigger reformulated mean/median would mean higher cost). While

we focus on the tradeoff between latency and cost, other metrics can be formulated

206

Chapter 9 9.3. GarageOnline Example

similarly using weighted or lexicographic ordering.

min

N∑

j=1

sjcj

Subject to: F ′
j(δ)sj � Fj(δ)sj

cj =
Kj

F̂ ′
j

N∑

j=1

sj = 1, sj ∈ {0, 1}

(9.7)

Continuing with the binary integer formulation, we assign cumulative distributions Fj

with realizations fwj and corresponding probabilities pwj, w = 1, ...,W with index j
referring to a particular service. Similarly, assign cumulative distributions F ′

j with

realizations f ′ij and corresponding probabilities qij, i = 1, ...,m. With F ′
j ≈

∑i−1
k=1 qkj

and the Fj ≈
∑W

w=1 pwjziwj; i = 1, ...,m; w = 1, ...,W and binary decision variables:

ziwj =

{
1 if f ′ij − fwj > 0

0 otherwise

Also define big numbers Mj ∈ R satisfying Mj ≥ maxw{f
′
ij − fwj} (with fwj charac-

terized by pwj), the first order stochastic constraint problem may be formulated as a
binary integer programming problem. The optimization formulation in eq. (9.8) essen-
tially selects the best service Sj to re-negotiate with in terms of cost and latency. It
makes use of the selection procedure outlined in eq. (9.7) with the relaxation of first
order dominance on latency as in eq. (9.6). In this formulation, we select a single ser-
vice Sj (indexed by sj) with the lowest corresponding negotiation cost cj that provides
at least first order dominance with respect to previous latency distributions.

min
N∑

j=1

sjcj

Subject to: (f ′ij − fwj)sj ≤Mjziwjsj

sj

W∑

w=1

pwjziwj ≤ sj

i−1∑

k=1

qkj

cj = Kj/
1
m

m∑

i=1

f ′ij

ziwj ∈ {0, 1}; f ′ij, fwj ∈ X
N∑

j=1

sj = 1, sj ∈ {0, 1}

i = 1, ...,m; w = 1, ...,W ; j = 1, ..., N

(9.8)

Note that higher order stochastic dominance tests exist [BD03]; however, we limit
our formulation to first order dominance for contract compliance. This is done so
that pointwise comparison of QoS values can be made as equivalent to comparing
distributions (see Theorem 5 in [RBJ09b]).

9.3 GarageOnline Example

We consider the GarageOnline demonstrative example presented informally in Fig.
9.1. It describes a web services orchestration to hire/order cars from garages with
associated credit and insurance companies. When an order with a preference of Gold/-
Standard insurance is placed, the fastest responding Garage is chosen. The services

207

9.4. Composite Contract Re-Negotiation Chapter 9

def GarageOnline(Order,Preference) =
val GarageList = ["Garage A", "Garage B"]
val CreditList = ["Credit A", "Credit B"]
val InsureList = ["Insure A", "Insure B"]
val InsureGoldList = ["InsureGold"]
def bestQ(comparer,publisher) = head(sortBy(comparer,collect(publisher)))
def comparePrice(x, y) = x.price? <= y.price?
def compareTime(x, y) = x.time? <= y.time?
def inquireTime(List) = each(List) >sup> Dictionary() >ProductDetails>

ProductDetails.Company := sup >> ProductDetails.time :=
(Rclock().time()) >> ProductDetails

def inquirePrice(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.price := c
>> ProductDetails

def GenerateInvoce(Order,Preference) = Dictionary() >Invoice>
Invoice.SubmitOrder := Invoice.ordernumber? >>
Invoice.acceptedTime := Rclock().time() >> (Invoice,Preference)

def Garage(Invoice) = bestQ(compareTime, defer(inquireTime,GarageList))
>q> Invoice.GarageQuote := q

def Credit(Invoice) = bestQ(comparePrice, defer(inquirePrice,CreditList))
>q> Invoice.CreditQuote := q

def Insure(Invoice,Preference) = if Preference = "Gold" then
defer(inquirePrice,InsureGoldList) else
bestQ(comparePrice, defer(inquirePrice,InsureList))
>q> Invoice.InsureQuote := q

GenerateInvoce(Order,Preference) >(Invoice,Preference) > Garage(Invoice) >>
(Credit(Invoice),Insure(Invoice,Preference)) >x> Invo ice

Table 9.1: The GarageOnline Orc specification.

for Credit and Insurance are then chosen depending on the lowest price returned.
Notice that if the preference is set to “Gold”, the orchestration chooses the InsureGold

service. The Orc specification of the GarageOnline orchestration is presented in Table
9.1. The Dictionary() site is used as a mutable map from field names to values which
are obtained using the . access. Values held by references are obtained using x? and
set using x:=y . Operations on lists proposed in Orc are used to efficiently deal with
multiple sites offering similar functionalities. In this specification we make use of the
bestQ site to select among multiple domains (pruning with respect to latency or other
QoS domains). In this orchestration multiple functionalities (eg. returned best price)
and QoS values (eg. best latency) interact. Due to such subtle interactions contributing
to the end-to-end contractual guarantees, re-negotiation with a particular service may
not necessarily improve overall performance considerably (as discussed in Section 9.4).
Hence, an optimization formulation is required in case of such orchestrations to choose
a feasible negotiation plan.

9.4 Composite Contract Re-Negotiation

This section starts from the runtime negotiation of sites making use of the competi-
tion operator proposed in [RBJ09a]. The difficulty in choosing an optimal strategy
for re-negotiation for end-to-end contractual obligations is then analyzed. Finally, a
methodology for re-negotiation is provided keeping in mind monotonic conditions.

208

Chapter 9 9.4. Composite Contract Re-Negotiation

Yes

GarageA GarageB

GarageOnline (Preference)

Preference = Gold ?

CreditA CreditB

InsureA InsureB

best(Price)

Merge

best(Latency)

Invoice

InsureGoldbest(Price)

No

Figure 9.1: The GarageOnline orchestration.

9.4.1 Runtime Negotiation

Making use of the QoS calculus proposed in [RBJ09a], the QoS domain is a tuple
Q = (D,≤,⊕, ⊳) defined as:

1. (D,≤) defines a QoS domain along with associated partial order. For domains
such as latency and cost, the partial ordering ≤ is preferred while for domains
such as data quality, partial ordering≥ is preferred.

2. ⊕ : D×D → D defines the increments in QoS values (which can be zero). Note that
the operator ⊕ is monotonic with δ′1 ≤ δ1 and δ′2 ≤ δ2 implying δ′1 ⊕ δ′2 ≤ δ1 ⊕ δ2.

3. ⊳ : D×D∗ → D is the competition operator that may be applied as choosing the
“best” choice in many ways: pareto optimal, lexicographic or weighted choice. In
case of synchronization across domains, for example (c1, δ1)⊳(c2, δ2) when ordered
lexicographically would mean if c1 ≤ c2 then (c1,max(δ1, δ2)) else (c2,max(δ1, δ2)).
Note that the competition operator is monotonic with δ′1 ≤ δ1, δ′2 ≤ δ2 implying
δ′1 ⊳ δ

′
2 ≤ δ1 ⊳ δ2.

The runtime specification of the “best” operator specified in Section 9.2 makes use
of domains (cost,latency) for competing services for negotiation. The ⊳ operator is
monotonic as demonstrated below. Consider two services S1,S2 with QoS increments
to the orchestration δ1, δ2. They are both candidates for negotiation with the tuple of
(c1, δ

′
1), (c2, δ

′
2). The operator ⊳ works by:

S1 ⊳ S2 = min(s1c1 + s2c2)
subject to: δ′1 ≤ δ1, δ

′
2 ≤ δ2,

ci = Ki/δ
′
i,
∑

i si = 1, si ∈ {0, 1}
(9.9)

As we have chosen the minimum from cost domain c with a partial order condition ≤ on
latency, the operation is indeed monotonic. The chosen (re-negotiated) service will not
deteriorate the latency δ′ ≤ δ, which in turn will not deteriorate the end-to-end QoS
for a monotonic orchestration. Similar competition policies are shown to be monotonic
using branching cells and unfolding of Petri nets in [RBJ09a].

209

9.4. Composite Contract Re-Negotiation Chapter 9

9.4.2 End-to-end QoS

We examine the difficulty of re-negotiating with individual service when data and QoS
interact in a composite service orchestration. A set of services called with Orc com-
binators sequential (≫), fastest response (pruning ≪δ where δ refers to latency) or
“best” response (fork-join ≪q where q refers to other metrics such as price, returned
data, security level etc.) can have significant differences in overall contribution to the
contract. We summarize the effect of a change ǫ in contractual obligations for latency
(can be seen as a shift in the median relative to the ordering). Assume here monotonic
orchestrations with an improved contract contributing positively to overall behavior.
The Orc combinators determine the effect on overall behavior:

• Sequential - The original contract would be A
δA
≫ B. If a reformulated contract

decreases the value, it will be seen by the whole orchestration as: A
δA−ǫ̂A
≫ B,

where ǫ̂ is the contribution to the end-to-end QoS.

• Fastest Response - The expression ≪δ (A|B) (also written as let (A|B)) refers to
choosing the “best” service according to δ. The original contract would choose the
fastest responding service min(δA, δB). Now we consider improving the contract
such that we have to choose from min(δA− ǫA, δB − ǫB). However, the end-to-end
QoS will decrease only by ǫ̂ that is dependent on the “best” latency response.

• Best value - The expression ≪q (A,B) refers to choosing the “best” service ac-
cording to q (as in fork-join (A,B) >(x, y)> (x, y)). The original contract would
entail the worst responding service max(δA, δB). Now we consider improving the
contract such that we have to choose from max(δA − ǫA, δB − ǫB). However, the
end-to-end QoS will decrease only by ǫ̂ that is dependent on the “best” value
response.

• Orchestration - Emphasis must be placed here on the difficulty in selecting a
particular service in case of a composite orchestration. For example, consider
the Orc expression ((let (A≫B≫C) | X), Y) with the orchestration aware of
the causal history of individual sites. Latency improvements ǫ in say site B
(called sequentially) can improve the overall latency of let (A≫B≫C) and still
be nullified by the performance of site Y (ǫ̂ ≈ 0). Thus, choosing a sequential
or “best” cost/QoS service that can provide optimal improvement in the overall
performance is difficult.

As discussed, the level of improvement may not lead to first order dominance over
previously observed contracts. However, the end-to-end QoS improvement ǫ̂ is indeed
positive due to our assumption of monotonicity. Our methodology provides local im-
provements to contracts, which in turn improves end-to-end QoS (or does not, at least,
deteriorate it).

9.4.3 Re-negotiation methodology

In order to produce an optimal strategy for re-negotiation in orchestrations, we present
the following methodology:

1. Using subcontracts Fj proposed by individual services Sj , generate an end-to-end
contract for the orchestration. Note that some services have no sub-contracts
and must be accepted as-is for performance. Denote this overall contract of the
orchestration as Forch.

2. If the end-to-end contract is acceptable, stop and accept all sub-contracts. Else,
proceed to step 3.

210

Chapter 9 9.5. Negotiation Specification

3. Re-negotiate with one of the sub-contractors offering lowest costing improvements
for an improved contract (in the first order sense). This choice is performed using
Eq. 9.8. Once a new contract F ′

a for service Sa, a ∈ j is selected, repeat step 1
and 2. Increment the number of rounds of re-negotiation.

In the rest of the paper, this methodology is also referred to as an optimal strategy
for re-negotiation. Unlike [RBJ09a], we use only the guarantees for re-negotiation and
ignore the assumptions of the orchestration (throughput of service calls). However,
formulating the assumptions as a tradeoff can be done using a similar methodology.

As we are considering improvements in only the sub-contractors performance, we
intend to study the effect on end-to-end QoS. As discussed in Section 9.4.2, combinators
used in languages such as Orc/BPEL cannot be incorporated into the formulation
without introducing some bias (sequentially invoked services given larger weights) to
selecting a particular service - hence, it is ignored and the notion of monotonicity is
used. For a monotonic orchestration, the re-negotiation formulation will always improve
the overall contract Forch. This follows from the objective function (cj , F

′
j , Fj) used.

As the new service performs with a new contract: F ′
j � Fj (partial ordering defines

the dominance relation), the monotonic orchestration cannot deteriorate due to the
re-negotiated contract. This might incidentally be due to the inverse relation between
cost and latency, which seems a plausible model for service behavior (higher costs
produce better service). Note that we make use of the property of first order stochastic
dominance that allows ordinary comparison of QoS values for monotonic orchestrations.

9.5 Negotiation Specification

While WSLA [LKD+03] as been proposed for specifying SLA contracts, standard lan-
guages for negotiation are limited. We have introduced a percentile-based approach
to improve WSLAs in [Kat11]. However, the WSLA language is not sufficient to deal
with negotiation specifications and multiple rounds of proposals. Further, WSLA does
not support percentile based handling or optimization among metrics, which limits its
applicability to our methodology.

We believe languages such as Orc, that can provide access to external sites and
inherently support recursion, to be a better alternative to specify multiple negotiation
rounds. This can be extended to specify optimization in Section 9.2 making use of
optimization sites proposed in [KBJ11]. Thus, the procedure can be directly applied to
specifications of orchestrations, used to re-configure runtime aspects of the specification.
Essentially, a Negotiation service specified in Orc can use historical runtime metrics
to re-negotiate with services.

To fulfill the negotiation process described in Section 9.4.3, the Negotiation service
has the following operations:

• The getQoS service, when passed the inputs sitex and QoS returns the QoS
values. This may be a distribution (latency) or a constant value (security level)
and are stored in a Channel() site. When a list of values from a distribution is
obtained, it is converted into quantile values and associated probabilities (l →

(f, p)).

• The getOffer site, when passed the inputs sitex and QoS returns a tuple of
(QoSnew, cost) . This represents the increments provided by the individual sites
(sitex) for the QoS domain queried. It must be noted that a null value may be
returned by sites that do not wish to re-negotiate or that have an as-is acceptance
policy.

211

9.6. Negotiation Results Chapter 9

• The Optima site [KBJ11] can be used to specify the integer programming formu-
lation when presented with a set of distributions. It can return the optimal site
for a new contract according to eq. (9.8). We use online optimization services
such as lp-solve provided by [FG01] for performing the optimization procedure.
Note that the Cost weight is kept as 1 in the optimization specification.

We provide this specification for a simple version of GarageOnline having only
GarageA and GarageB as part of the negotiation protocol. This is specified in Orc in
Table 9.2.

def Negotiation(GarageOnline) =
type Latency = Number
type Cost = Number
def getQoS(site, QoSDom) =
val chsite = Channel()
chsite.put(QoS) >> stop; chsite.getAll()

def getOffer(site, QoSDom) =
val chsite = Channel()
chsite.put(QoS) >> stop; (chsite.getAll(), Cost)

def Optima(Objective, Weight, Constraint, Solver) = Output

getQoS(GarageA(),latency) >(l_GarageA) > (f_GarageA,p_GarageA)
>> getQoS(GarageB(),latency) >(l_GarageB) > (f_GarageB,p_GarageB)
>> getOffer(GarageA(),latency) >(l_GarageA,c_GarageA) >

((f’_GarageA,q_GarageA),c_GarageA)
>> getOffer(GarageB(),latency) >(l_GarageB,c_GarageB) >

((f’_GarageB,q_GarageB),c_GarageA)
>> Optima([c_GarageA,c_GarageB], 1, (f_GarageA - f’_Garage A,(:>),K1),

(sum(q_GarageA) - sum(p_GarageA),(:>),K2),
(f_GarageB - f’_GarageB,(:>),K1),
(sum(q_GarageB) - sum(p_GarageB),(:>),K2), ’’binary integer’’)

Table 9.2: The GarageOnline Negotiation specification in Orc using FIFO channels
(Channel()) and pattern matching.

Once this procedure is completed, a Monte-Carlo run of the overall orchestration
GarageOnline may be performed to estimate the improvement in QoS. In case the
improvement is not satisfactory, a renewed round of negotiation may be necessary. An
advantage of this technique is that runtime evaluation of the orchestrations can trigger
re-negotiation protocols to be entered. This is advantageous for systems where QoS
deterioration may mean substantial loss of revenue.

9.6 Negotiation Results

For the GarageOnline example, it is difficult to estimate which service to re-negotiate
with in case of probabilistic SLAs. We use the optimization strategy developed in
Section 9.4.3 to re-negotiate with individual atomic services. The re-negotiation is
done using Eq. 9.8 with 10,000 values generated for both distributions. The values of
fj and f ′j are set as the 0.1, 0.2, ...0.9 quantile in each case with associate probability
p values. Here, fj refers to the quantiles from the original latency distribution and f ′j
refers to the new distribution associated with a cost cj for a site Sj.

Fig. 9.2 compares the improvements with respect to latency (t-location distribution
with varying medians) and Fig. 9.2(c) for cost (generated from a normal distribution).
As noticed, random choices made at runtime for 10 rounds of negotiation produces
neither superior latency nor lower costs. By a round, we refer to one negotiation policy
accepted with a particular service. Hence, an efficient technique for selecting the service

212

Chapter 9 9.7. Related Work

to be negotiated with (Eq. 9.8) is needed. As demonstrated, the improvements in the
end-end-end contract for both latency and cost produce significant improvements using
an optimal strategy. The negotiation strategy required 2.53 minutes on average per
round on MATLAB 2011a running on a 4GB RAM Windows 7 machine.

0 50 100 150 200 250 300 350 400 450
0

2000

4000

6000

8000

10000

(a) Latency (seconds)

C
um

ul
at

iv
e

F
re

q.

0 50 100 150 200 250 300 350 400 450
0

2000

4000

6000

8000

10000

(b) Latency (seconds)

C
um

ul
at

iv
e

F
re

q.

GarageOnline − Original
GarageOnline − Renegotiated − 2 rounds
GarageOnline − Renegotiated − 5 rounds
GarageOnline − Renegotiated − 10 rounds

GarageOnline − Original
GarageOnline − Renegotiated − 2 rounds
GarageOnline − Renegotiated − 5 rounds
GarageOnline − Renegotiated − 10 rounds

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

(c) Cost

N
eg

ot
ia

tio
n

R
ou

nd
s

Optimization strategy
Random strategy

Figure 9.2: Latency improvements with 10 rounds of negotiation for GarageOnline (a)
Using optimization strategy (b) Random strategy. The Fig. (c) shows Cost incurred
with 10 rounds of negotiation.

Further, we demonstrate the improvements seen from individual services in Fig. 9.3
after 10 rounds of negotiation. Some services (eg. GarageA) might improve with every
round while others (eg. CreditB) are not selected for negotiation owing to higher costs
in the optimal strategy. This differs from those services that are selected randomly
for re-negotiation, hence producing higher costs in Fig. 9.2(c). The experiments were
conducted in MATLAB using the bintprog output.

As we see in Fig. 9.3, the services do not contribute equally to overall performance
of the orchestration. An optimization strategy is thus imperative when a number
of rounds of negotiations are taking place. The advantage of using such a strategy
is monotonic improvement in end-to-end QoS, with re-negotiated sites guaranteeing
latency improvements from a first order dominance point of view.

An example of the diagnosis of the optimization is presented in Fig. 9.4 with the
value X representing the vector for service re-negotiation (1 represents the index of the
selected service). Other commercial solvers such as CPLEX or LPSOLVE should work
similarly when invoked as a web service.

9.7 Related Work

The use of probabilistic QoS and soft contracts was introduced by Rosario et al.
[RBJ09a] and Bistarelli et al. [BS09b]. Instead of using fixed hard bound values for
parameters such as latency, the authors proposed a soft contract monitoring approach
to model the QoS measurement. The composite service QoS was modeled using proba-
bilistic processes by Hwang et al. [HWSP04] where the authors combine orchestration
constructs to derive global probability distributions.

Service level agreements (SLAs) have been specified in a number of papers using
WSLA [LKD+03]. In [DDK+04], the framework needed for handling SLAs are described

213

9.7. Related Work Chapter 9

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

F
re

qu
en

cy

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

Latency (seconds)

Garage A − original
Garage A − optimal strategy (10 rounds)
Garage A − random strategy (10 rounds)
Garage B − original
Garage B − optimal strategy (10 rounds)
Garage B − random strategy (10 rounds)

Insure A − original
Insure A − optimal strategy (10 rounds)
Insure A − random strategy (10 rounds)
Insure B − original
Insure B − optimal strategy (10 rounds)
Insure B − random strategy (10 rounds)

Credit A − original
Credit A − optimal strategy (10 rounds)
Credit A − random strategy (10 rounds)
Credit B − original
Credit B − optimal strategy (10 rounds)
Credit B − random strategy (10 rounds)

Figure 9.3: Improvements in performance of individual services after 10 rounds of
optimization strategy.

in detail. In [Kat11], we have presented methodology for introducing percentile based
constraints to WSLA framework, that is essential for probabilistic models. This is in
line with high-level and rich specification languages such as QML [FK98] that provide a
variety of constructs for QoS management. Related studies of optimal QoS compositions
make use of genetic programming in Canfora et al. [CPEV05a] and linear programming
in Zeng et al. [ZBN+04]. These make use of optimization strategies for composition
but do not deal with negotiations.

Probabilistic models for on the fly negotiation of service agreements are presented
in [CCP07]. Multiple QoS dimensions are considered with tradeoffs included for nego-
tiation between a single service provider and customer/orchestration. The automatic
negotiation process in [YKL+07] aims at identifying the maximum quality level admis-
sible with respect to the user budget. In [BS09b], negotiation is said to proceed using
relaxed constraints with algebraic operators modeled in a semi-ring.

While these papers examine algorithms for negotiation with individual services, the
problem of optimizing negotiation and end-to-end QoS has not been studied. This is
an important problem to consider, specially in the case of data and QoS dependent or-
chestrations. We make use of relaxations in stochastic constraints proposed in [NRR06]
to develop a generic strategy for re-negotiation. Such a strategy is critical when there
are a number of services with different contributions to the end-to-end QoS.

The use of dynamic/stochastic programming [SDR09] in service selection has been
proposed in [GNZ+06]. However, incorporating such stochastic constraints entails
heavy computational costs that may not be necessary. Alternatives to using first order
dominance constraints include lighter higher order constraints [LL01]. In this paper, we
make use of linear approximations of stochastic constraints [NRR06] to improve compu-
tational efficiency. Using the optimization specifications provided in [KBJ11], a number
of online solvers [FG01] may be invoked within Orc. This specification allows for run-
time re-negotiation of contractual obligations with the optimal service (dependent on
cost, latency) selected.

214

Chapter 9 9.8. Conclusions

Figure 9.4: An example of an optimization run in MATLAB.

9.8 Conclusions

In this paper, we study the negotiation of SLAs in composite service orchestrations.
While available literature deals with one-to-one negotiation between customers and
clients, little work has been done in optimizing negotiation to improve end-to-end per-
formance of an orchestration. This procedure is difficult to perform when data and
QoS interact, when varied control flow combinators are applied in orchestrations: thus
leading to uncertainty in an individual service’s contribution to overall performance.
We demonstrate that using an integer programming formulation, constraints may be
specified to select the service that provides the best re-negotiation strategy. This, in
turn, would perform much better than random re-negotiation strategies. These pro-
cedures may be specified in languages such as Orc to aid in runtime re-negotiation.
As a consequence, it provides an optimal strategy for re-negotiation for composite web
services orchestrations.

215

9.8. Conclusions Chapter 9

216

Chapter 10

Implementation Overview

In this chapter, we present the implementation of some of the QoS management con-
cepts over Orc. We first review the Orc implementation in Scala; then we provide an
overview of the QoS transformation in Orc/OIL; the effect of monotonicity on vari-
ous QoS management tasks are then discussed; finally, we provide a platform for QoS
management with contribution from various chapters in this thesis.

10.1 Orc

Orc ver 2.0 has been changed considerably from its early implementation in [CjM05],
with the new codebase in Scala [OSV08]. This has reduced the number of lines of
code significantly compared to the previous Java implementation. As Scala provides
better type inheritance procedures, it supports the dynamically typed syntax of Orc.
While the type checker checks for allowed types of values, it is now possible to provide
type information to function declarations. The updated compiler in Orc now provides
support for such dynamic typing. This can lead to better compiler and parser error
messages to aid in debugging.

A standard format for the Orc Intermediary Language (OIL) form has also been
included http://orc.csres.utexas.edu/oil.xsd . This provides an abstract
syntax tree form with the original program represented in the Orc calculus. In the
OIL representation, variable names are eliminated using de Bruijn indices [Bru72]. In
the lambda calculus form, while functions are nameless, variable names are still used.
The de Bruijn indices specify the number of levels to traverse from a reference depth
to reach the binding value.

The Orc 2.0 implementation allows a user to view this OIL representation that
can be appended using XML rewriting tools. An OIL version of the Orc expression
x <x< ((1≫ 4) | (2≫ 5) | 3) is shown below. The pruning operation is the parent
of the tree with variable in the left hand side (of the pruning) and the expression
((1≫ 4) | (2≫ 5) | 3) evaluated on the right.

<oil>
<left>

<sequence>
<left>

<prune varname="x">
<left>

<sequence>
<left><constant><integer>2</integer></constant></le ft>
<right><variable varname="x"></variable></right>

</sequence>
</left>
<right>

<sequence>
<left><constant><integer>1</integer></constant></le ft>

217

http://orc.csres.utexas.edu/oil.xsd

10.2. Weaving QoS algebraic rules Chapter 10

<right><constant><integer>3</integer></constant></r ight>
</sequence>

</right>
</prune>

</left>
<right>

<constant><integer>4</integer></constant>
</right>

</sequence>
</left>
<right>

<constant><integer>5</integer></constant>
</right>

</parallel>

</oil>

The standard library in Orc 2.0 has also been updated providing new data struc-
tures, timers and XML manipulation tools.

10.2 Weaving QoS algebraic rules

object QoS extends ResponseTime

ResponseTime().QoS(site)

....

Cost().QoSCompete(c1,c2)

SLA in Orc
Orc QoS weaving

Monotonicity Assessment
− Checking for Monotonicity
− Enforcement Policies

SLA in Scala

 def QoS
 def QoSOplus
....

Orc Intermediary Language (OIL) XML

QoS "Weaved"OIL XML

Functional Specification
Orc Program

QoS "Weaved"OIL XML

QoS OIL XML weaving

Orc Compiler Orc Compiler

QoS EnhancedOrc Output (hiding redundent publications)

(verbose) (concise)

traitResponseTime{

ResponseTime.QoSOplus(site)

Figure 10.1: QoS enhanced Orc output.

As seen in chapter 3, we provide a model to return a tuple of (data,QoS value) during
the value returned from each site. This is shown in Fig. 10.1, with the “weaving”
performed over the input Orc program. Not that a central role is performed by the
QoS algebraic rules (�,⊕, ⊳,∨) in generating the QoS composed values. Built in sites
such as clock, channels and references may be used to calculate and store the QoS
increments. The automatic generation of a QoS “weaved” site can be performed in two
ways: using Orc declarations or through OIL transforms.

10.2.1 Updating OIL

As every Orc program generates an OIL version encoded in the Orc calculus, the XML
code can be used for pattern matching places where the site can be called. For example,
the goal expression of

def f(x) = x

f(1)

218

Chapter 10 10.2. Weaving QoS algebraic rules

can be invoked in parallel with a QoS.wrapRT site that weaves in the QoS values with
the rules QoS.RTAlgebra . Note that this modification may be done either externally
or using the Scala language in which Orc has been coded.

<oil>
<parallel>
<left>

<unclosedvars></unclosedvars>
<declaredefs>

<defs>
<definition varname="f" arity="1" typearity="0">

<body><variable index="0"></variable></body>
</definition>

</defs>
<body>

<call>
<target><variable varname="f" index="0"></variable></ target>
<args><constant><integer>1</integer></constant></ar gs>

</call>
</body>

</declaredefs>
</left>

<right>
<call>
<target><constant><site>QoS.WrapRT</site></constant></target>
<args><variable varname=”f” index=”2”></variable></args>

</call>
</right>

</parallel>
</oil>

An example output of the goal expression with tuple of (functional output, QoS incre-
ment, Causality) is:

(1, [], Set(1, [], Set(signal, [], Set())))

10.2.2 Q-Orc: Updating Orc with QoS

These are the implementation steps to enhance functional Orc specifications with QoS:

1. SLA / QoS Declaration: A Library of pre-defined QoS classes that specify the
types, domains, operations and units for various metrics. This makes use of the
class construct in Orc that provides the capability to implement sites within
Orc. This can include a variety of QoS domains (Latency, Cost, Security, Reli-
ability, Throughput) that can be instantiated and re-used when required. Note
that multiple units may be specified: eg. seconds and milliseconds for laten-
cy/throughput, cost in items/currencies. As the classes are declared within Orc,
the classes/definitions may be updated when required. An example is shown for
the domain of Latency below:

--Latency.inc

def bestQoS(comparer, publisher) = head(sortBy(comparer, publisher))
val curTime = Rclock()
def LatencyIncrement(sitex) = (sitex,curTime.time()) >(sitex,d) >

(sitex,curTime.time()-d)

type Millisecond = Number
def Millisecond() = signal
type Second = Number
def Second() = signal

-- Types and Definitions for Response Time

219

10.2. Weaving QoS algebraic rules Chapter 10

type ResponseTime = Number
def class ResponseTime(unit) =

def QoS(String) :: Number
def QoS(sitex) = signal >> LatencyIncrement(sitex)

>(_,q)> (Ift(unit = Millisecond) >> q | Iff(unit = Millisecond) >> q/1000)

def QoSOplus(Number,Number) :: Number
def QoSOplus(rt1,rt2) = rt1+rt2

def QoSCompare(Number,Number) :: Number
def QoSCompare(rt1,rt2) = rt1 <= rt2

def QoSCompete(Number,Number) :: Number
def QoSCompete(rt1,rt2) = bestQoS(QoSCompare,[rt1,rt2])

def QoSVee(Number,Number) :: Number
def QoSVee(rt1,rt2) = max(rt1,rt2)
stop

Once these classes are declared, the SLA type checker checks for Ambient/Non-
ambient QoS types before passing the control flow. If the correct typing is not
found, the SLA site blocks further evaluation. A non-ambient metric (eg. cost)
has competition operator defined trivially. However, for ambient metrics (eg.
latency), the competition operator must be specified explicitly when combined
with non-ambient metrics. This would specify whether the lexicographic ordering
implies a infemum/supremum for the ambient metrics.

-- SLA.inc

include "Latency.inc"
include "CPUutilization.inc"
include "InterQuery.inc"
include "Cost.inc"
include "Security.inc"
include "Reliability.inc"

def class NonAmbient(QoStype) =
def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2]))
signal

def class Ambient(QoStype,competition) =
def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy(competition, [q1,q2]))
signal

2. QoS Registry : This registers services with relevant QoS classes, QoS metric
units and specific handles for accessing them. The registry is defined using the
records data structure that can match keys to a record pattern. By provid-
ing multiple QoS units, it is possible to re-use the same class of QoS metrics
multiple times by the same set of sites. Note that handles are also specified –
additional information that must be returned by the service in order to satisfy
the QoS requirements. Instances of handles include cost increments (items/cur-
rency), latency increments (milliseconds/seconds) and security levels that need
to be specified. As the orchestration requires these increments to generate the
end-to-end QoS increment for each domain, the sites must imperatively provide
these handles. A site can also be neutral (zero increment) to certain domains.

An example is provided with three sites f , g and h specified with various QoS
domains, units and handles. An additional QoSMatch site matches the site iden-
tifier with these values when invoked.

220

Chapter 10 10.2. Weaving QoS algebraic rules

-- QoSRegistry.inc

val QoSRegistry =
[

{ . name = "f", QoSDom = ResponseTime, QoSUnit = Millisecond,
Handle = LatencyIncrement .},

{ . name = "f", QoSDom = Cost, QoSUnit = CurrencyDollars,
Handle = CostValue .},

{ . name = "g", QoSDom = ResponseTime, QoSUnit = Second,
Handle = LatencyIncrement .},

{ . name = "g", QoSDom = Cost, QoSUnit = CurrencyDollars,
Handle = CostValue .},

{ . name = "h", QoSDom = ResponseTime, QoSUnit = Second,
Handle = LatencyIncrement .},

{ . name = "h", QoSDom = InterQueryTime, QoSUnit = Second,
Handle = [] .},

{ . name = "h", QoSDom = Cost, QoSUnit = CurrencyDollars,
Handle = CostValue .},

{ . name = "h", QoSDom = SecurityLevel, QoSUnit = Level,
Handle = SecurityValue .}

]

def QoSMatch(siteID) = each(QoSRegistry) >M> Ift(M.name = siteID)
>> (M.QoSDom,M.QoSUnit,M.Handle)

3. Validating Registry Entries: As the registry contains many services with possi-
bly conflicting QoS domains, accurate mapping of service and domains may be
needed. This can be done either permissively (not specified domains produce zero
increments) or strictly (restricting QoS domains according to the mapping).

For a Orc expression def f() = (g1(),...gN()) (service f invoking gi), an
injective partial function is defined as QoS(f) 7→ QoS(gi). Note that this defini-
tion allows for multiple instances of QoS classes to be defined for each of these
services. A QoSValidate site is implemented that checks for strict conformance
of QoS domains between the caller/callee sites.

def QoSValidate(callersiteID,caleesiteID) =
(collect(defer(QoSMatch,callersiteID)),
collect(defer(QoSMatch,caleesiteID)))
>(A,B) > (Ift(A.QoSDom = B.QoSDom) >> signal
| Iff(A.QoSDom = B.QoSDom) >> Println("Registry Entries Missing")
>> stop)

4. QoS Weaving : The QoSWeaver site weaves the values generated by the sites (with
appropriate domains and handles) and generates the tuple of Data, QoS . Note
that the check for the domains and handles are strict with computation stopped
otherwise. For Ambient metrics (eg. Latency , CPUutlization) the compe-
tition operator must be specified. While the supremum for latency is treated as
max, for CPU utilization, it is treated as min (implying inefficient usage).

-- QoSWeaver.inc

def QoSWeaver(site,(lookup,unit,handle)) =

def ResponseTimeCheck(competition) =
Ift(lookup = ResponseTime && handle = LatencyIncrement) >>
(Ambient(ResponseTime,competition)
>> (ResponseTime(unit).QoS(site)))
; stop

221

10.2. Weaving QoS algebraic rules Chapter 10

def CPUutlizationCheck(competition) =
Ift(lookup = CPUutilization && handle = CPUutilizationValue) >>
(Ambient(CPUutilization,competition) >>
(CPUutilization(unit).QoS(site)))
; stop

def CostCheck() =
Ift(lookup = Cost && handle = CostValue) >>
(NonAmbient(Cost) >> Cost(unit).QoS(site,CostValue()))
; stop

def SecurityCheck() =
Ift(lookup= SecurityLevel && handle = SecurityValue) >>
(NonAmbient(SecurityLevel) >> SecurityLevel(unit).QoS(

site,SecurityValue()))
; stop

def InterQueryCheck() =
Ift(lookup= InterQueryTime) >>
(NonAmbient(InterQueryTime) >> InterQueryTime(unit).QoS(site))
; stop

def ReliabilityCheck() =
Ift(lookup= Reliability && handle = ReliabilityValue) >>
(NonAmbient(Reliability) >>
Reliability(unit).QoS(site,ReliabilityValue()))
; stop

signal >> v<v<(ResponseTimeCheck(max) | CostCheck() | SecurityCheck()
| InterQueryCheck()) |ReliabilityCheck() | CPUutlizationCheck(min)

The weaver also incorporates a QoS site that wraps a specific site with the QoS
increment produced by it.

def QoS(site,identifier) =
val Data = Ref()
def QoSCollect(v) = collect(defer2(QoSWeaver,Data?,v))

site >d> Data:=d >> collect(defer(QoSMatch,identifier)) >v>
(Data?, map(QoSCollect,v))

5. Functional Declaration: Once these steps are completed, the Orc expression may
be written after including the necessary sites (QoS Declarations, Registries). The
site declarations must specify the site identifiers that would be invoked from the
registry. An example of a site composite is also shown that invokes two of these
sites after performing the QoSValidate step, to check for correct QoS Domain
declaration.

-- Site Definitions

-- def f(x) = x
def class f(x) =

def function() = x
def QoSID() = "f"
stop

-- def g(y) = y*y
def class g(y) =

def function() = y* y
def QoSID() = "g"

stop

-- def h(k) = k + k

222

Chapter 10 10.2. Weaving QoS algebraic rules

def class h(k) =
def function() = k+k

def QoSID() = "h"
stop

-- def composite(m) = f(m) + g(m)
def composite(m) =

def function() = QoSValidate("f","g") >> ((d1+d2,append(q1,q2))
<((d1,q1),(d2,q2)) < (f(m),g(m)))
def QoSID() = "composite"
stop

Once the sites have been declared, the goal expression may be written with the
relevant classes included. The QoS weaving automatically equips relevant sites
with their QoS increments. Note that the functional declarations can make use
of the QoS outputs as well: eg. append combines two lists of QoS increments.

-- functional.orc

include "SLA.inc"
include "QoSRegistry.inc"
include "QoSWeaver.inc"
include "SiteDefs.inc"

def QoSsite(sitex) = QoS(sitex.function(),sitex.QoSID())

-- Example function that is weaved
1 >> 2 >> ((m,n) <(m,n) < QoSsite(f(7)) | QoSsite(f(8)))
|
QoSsite(g(12)) >(_,q1) > QoSsite(g(13)) >(v,q2) > (v,append(q1,q2))
|
QoSsite(h(25))
|
QoSsite(composite(3))

The output of the above functional declaration is provided below. Every publication
is followed by a list of associated QoS increments. This may be used either to make
control flow decisions within the orchestrations or aggregated for SLA monitoring.

-- Data and QoS weaved outputs

(7, [[1], [[6, 4, 9]]])
(50, [[0], [333], ["High"], [[5, 1, 7]]])
(169, [[1], [[7, 9, 8]], [2], [[9, 3, 2]]])
(12, [[6], [[3, 6, 6]], [0], [[4, 4, 5]]])

Complete code of this implementation with a larger example may be seen in Appendix
11.6. It can also be checked out as a read-only copy from 1.

10.2.3 Monotonicity

The effect of monotonicity in orchestrations has been well discussed in Chapter 3. In
Fig. 10.1, monotonicity plays a crucial role in the design of the orchestration. For
data-independent orchestrations, this conditions are met by default. In case of data-
dependent monotonic orchestrations, locally optimal selection is enough to ensure global
optimality. In order to ensure monotonicity in data dependent workflows, a sufficient
condition is that, each time branching has occurred in net, a join occurs right after.

When this condition cannot be met, techniques specified in Section 3.4.5 may be
used for enforcing monotonicity. One of the techniques is to aggregate two successive

1http://qorc.googlecode.com/svn/trunk/

223

http://qorc.googlecode.com/svn/trunk/

10.3. Platform for QoS Management Chapter 10

transitions in each contributing branch (in the non-monotonic orchestration) and re-
gard the result as a single transition. An alternative is to change the QoS evaluation
procedure by isolating the subnet that leads to monotonicity. Pessimistic bounds on
QoS are taken for this subnet to ensure monotonicity. Though these techniques provide
different QoS composition outputs, both enforce that monotonicity conditions are met.

10.3 Platform for QoS Management

Once a QoS enhanced output of an orchestration is obtained, management of contrac-
tual obligations can be done as outlined in some of the chapters of this thesis. Fig. 10.2
demonstrates some of these tasks and are elaborated.

10.3.1 Management Tasks

1. Monotonic Orchestration Design: The functional specification of the orchestra-
tion must be done in languages such as Orc keeping in mind monotonicity as
specified in Section 10.2.3. This assumption is critical for contract based manage-
ment, with an improvement in one of the subcontracted services not deteriorating
end-to-end contracts.

2. Optimal Late Binding : Collected data on the behavior of invoked services can lead
to interesting QoS management issues. One of these is QoS dependent decision
making in chapter 7. Setting up optimization problems that are dependent on the
performance of some of the invoked services can lead to better end-to-end outputs.
Properties such as load balancing such that assumptions of the orchestration are
not violated can also be done. Optimization also improves the role performed
by the “best” operator ⊳: instead of conventional enumeration and evaluation,
the operation can be converted to optimizing over certain QoS domains with
constraints.

3. Contract Composition: The end-to-end SLA contractual distribution may be ob-
tained using either conventional Monte-Carlo or importance sampling techniques.
Alternatives using analytic techniques (with known probabilities of choice) or
Markov Chains may also be used. The contractual obligations will follow the
assumption-guarantee procedure outlined in chapter 8. This would generate two
distributions, the obligations of the orchestration with respect to invoked services
and the guarantees in QoS performance provided by those services.

4. Negotiation: The end-to-end SLA also leads to negotiation of contractual obliga-
tions as seen in chapter 9. Rather than modifying the design of the orchestration,
negotiating with one of the sub-contractors for improved QoS performance may
be performed. This can involve choosing one of the sub-contracted services to
produce a significant change (in the first order stochastic dominance sense) in the
end-to-end contractual obligations.

5. Monitoring : The end-to-end SLA contract may then be monitored for deviations
in real-time. This can be done through soft contractual techniques by monitoring
historical data / forecasting (chapter 8). The notion of monotonicity introduced
in chapter 3 is crucial here, as an improved performance by an invoked service
will improve and not deteriorate the end-to-end performance.

Other aspects such as reconfigurations dependent on QoS outputs are not examined in
our work.

224

Chapter 10 10.3. Platform for QoS Management

10.3.2 Experimentation

As many of these procedures involve the use of statistical toolboxes, MATLAB or R
mathematical environments are used. The QoS (eg. latency) distributions may be
used to produce distributions (Monte-Carlo/Sampling) with an example of distribution
fitting shown in Fig. 10.3. The link between statistical libraries such as those in MAT-
LAB/R requires linking MATLAB with Orc. While web services can be directly invoked
in MATLAB using wrapper functions (such as createClassFromWsdl), it may be
advantageous to capture streams of data published by an orchestration. Though there
are many ways of doing this (eg. write to file, client-server interaction), the MatClipse
plugin (http://code.google.com/a/eclipselabs.org/p/matclips e/) is one
of the easiest options. Like Orc, this is a plugin that allows invoking MATLAB within
Eclipse.

For QoS Management, we focus on the following tasks:

1. Contract Composition and Negotiation - Once the QoS weaved outputs have been
provided, the end-to-end QoS may be computed. Repeated calls to the orchestra-
tion provides a stream of values that may be generated as probabilistic contracts
within MATLAB. The obtained QoS values may be fit to particular classes of
distributions to generate these contracts. Sub-contracts that are not satisfactory
may be re-negotiated with to result in a reformulated end-to-end contract.

2. Monitoring - As monitoring involves real-time data to be evaluated, the QoS is
read through Orc. For generating distributions and comparing first order domi-
nance, MATLAB may be used, either through the plugin or client/server option.
Any reconfiguration necessary is performed within Orc, depending on the con-
tractual deviations reported.

The code involved in the implementation of some of these techniques has been
provided in Appendix 11. However, extensions to Orc for optimization (chapter 7) and
negotiation (chapter 9) may be used to specify these techniques.

Contract Negotiation

Causality

QoS weavingQoS Algebra

QoS Model

Functional Orchestration Specification

QoS Management

Implement BestQoS

Probabilistic QoS Contract Composition

Contract Monitoring

Late Service Binding
QoS Dependent Optimization

built−in

Handling Monotonicity

ReconfigurationProduct Lines of Services

Figure 10.2: Platform for contract based management of monotonic orchestrations.

225

http://code.google.com/a/eclipselabs.org/p/matclipse/

10.3. Platform for QoS Management Chapter 10

Figure 10.3: Distribution fitting in MATLAB.

Figure 10.4: Web service invocation via SOAP.

In order to have a realistic notion of QoS, it may be necessary to deploy services
on a network and perform some measurements. For this, we make use of the NetBeans
IDE that allows to deploy web service on the GlassFish 3.1 server. An example web
service that returns a random cost with the SOAP invocation/response requests is
shown in Fig. 10.4. Such web services may be invoked over a LAN/WAN network
to provide realistic end-to-end QoS: taking into account network delays, routing and
service processing times.

226

Chapter 11

Appendices

This section collects some additional supplementary material for various chapters pre-
sented previously.

11.1 Proofs from Chapter 3

11.1.1 Proof of 2

Throughout the proof, we fix an arbitrary value ω for the daemon. We first prove the
sufficiency of condition (3.14). Let N ′ be such that N ′ ≥ N . Since operators ⊕ and ✁

are both monotonic, see 3.1, we have, by 2 and formulas (3.10) and (3.11):

Eω(κ(N
′, ω),N ′) ≥ Eω(κ(N

′, ω),N)

By (3.14) applied with κ = κ(N ′, ω), we get that

Eω(κ(N
′, ω),N) ≥ Eω(κ(N , ω),N)

holds. This proves the sufficiency of condition (3.14). We prove necessity by contradic-
tion. Let (N , ω, κ†) be a triple violating condition (3.14), in that

κ† cannot occur, but
Eω(κ

†,N) ≥ Eω(κ(N , ω),N) does not hold.

Now consider the N netN ′ = (N,D,Q′, Qinit) where the family Q′ is such that, ∀t ∈ κ†,
ξ′t(ω) = ξt(ω) holds, and ∀t /∈ κ†, using conditions 1 and 3 for operator ⊕ in 3.1 together
with the assumption that (D,≤) is an upper lattice, we can inductively select ξ′t(ω) such
that the following two inequalities hold:

∨

t∈κ†

qt ≤
(∨

p′∈•t

qp′
)
⊕ ξ′t(ω) (11.1)

ξt(ω) ≤ ξ′t(ω) (11.2)

Condition (11.2) expresses that N ′ ≥ N . By 1 defining QoS composition policy, (11.1)
implies that configuration κ† can win all competitions arising in step 3 of QoS compo-
sition policy, κ(N ′, ω) = κ† holds, and thus

Eω(κ(N
′, ω),N ′) = Eω(κ

†,N ′) = Eω(κ
†,N)

However, Eω(κ
†,N) ≥ Eω(κ(N , ω),N) does not hold, which violates monotonicity.

227

11.1. Proofs from Chapter 3 Appendices

11.1.2 Proof of 3, Sufficiency

Let ϕN be the net morphism mapping UN onto N and let N be any OrchNet built on
UN . We prove that condition (3.14) of 2 holds for N by induction on the number of
transitions in the maximal configuration κ(N , ω) that actually occurs. The base case
is when it has only one transition. Clearly this transition has minimal QoS increment
and any other maximal configuration has a greater end-to-end QoS value.

Induction Hypothesis Condition (3.14) of 2 holds for any maximal occurring con-
figuration with m− 1 transitions (m > 1). Formally, for an OrchNet N ,∀ω ∈ Ω,∀κ ∈
V (N),

Eω(κ,N) ≥ Eω(κ(N , ω),N) (11.3)

must hold if |{t ∈ κ(N , ω)}| ≤ m− 1.

Induction Argument Consider the OrchNet N , where the actually occurring con-
figuration κ(N , ω) has m transitions and let

∅ = κ0(ω) ≺ κ1(ω)(= κ) ≺ · · · ≺ κM(ω)(ω) = κ(N , ω)

be the increasing chain of configurations leading to κ(N , ω) under QoS composition
policy, see (1) — to shorten the notations, we write simply κ instead of κ1(ω) in the
sequel of the proof. We assume that M(ω) ≤ m. Let t be the unique transition such
that t ∈ κ1(ω) and set t̂ = {t} ∪ t•. Let κ′ be any other maximal configuration of N .
Then two cases can occur.

• t ∈ κ′: In this case, comparing the end-to-end QoS of κ(N , ω) and κ′ reduces to
comparing

Eω(κ(N , ω) \ t̂,N κ) and Eω(κ
′ \ t̂,N κ)

where N κ is the future of κ in N = (N,V,A,Q,Qinit), obtained by replacing N
by Nκ, restricting V , A, and Q to Nκ, and replacing Qinit by Eω(κ,N), the QoS
cost of executing configuration κ.

Since κ(N , ω) \ t̂ is the actually occurring configuration in the future N κ of tran-
sition t, using our induction hypothesis, then

Eω(κ
′ \ t̂,N κ) ≥ Eω(κ(N , ω) \ t̂,N κ)

holds, which implies

Eω(κ
′,N) ≥ Eω(κ(N , ω),N)

• t /∈ κ′: Then there must exist a transition t′ ∈ κ′ such that t and t′ belong to
the same branching cell B. Hence, ϕN (t)• = ϕN (t′)• follows from the structural
condition of 3. The futures N κ and N κ′

thus are isomorphic: they only differ in
the initial colors of their places. If Qinit and Q

′
init are the initial QoS values for

the futures N κ and N κ′
, then Qinit ≤ Q′

init holds (since ξt ≤ ξt′ , t
• has QoS lesser

than t′• by monotonicity of ⊕). On the other hand,

Eω(κ(N , ω),N) = Eω(κ(N , ω) \ t̂,N κ) (11.4)

and

Eω(κ
′,N) = Eω(κ

′ \ t̂′,N κ′

)

228

Appendices 11.2. Pairwise Products in Chapters 5 and 6

Now, since N κ′
and N κ possess identical underlying nets and N κ′

≥ N κ, then
we get

Eω(κ
′ \ t̂′,N κ′

) ≥ Eω(κ
′ \ t̂′,N κ) (11.5)

Finally, applying the induction hypothesis to (11.4) and using (11.5) yields
Eω(κ

′,N) ≥ Eω(κ(N , ω),N).

This proves that condition (3.14) of 2 holds and finishes the proof of the theorem.

11.1.3 Proof of 3, Necessity

We will show that when the structural condition of 3 is not satisfied by N , Orchnet
NN can violate condition (3.14) of 2, the necessary condition for monotonicity.

Let B be any branching cell in UN that violates the structural condition of 3. Since
N is sound, all transitions in B are reachable from the initial place and so there are
transitions t1, t2 ∈ B such that •t1 ∩

•t2 6= ∅, •ϕ(t1) ∩
•ϕ(t2) 6= ∅ and ϕ(t1)

• 6= ϕ(t2)
•.

Define [t] = ⌈t⌉ \ t̂ and κ = [t1] ∪ [t2]. κ is a configuration. Since t•1 6= t•2, without
loss of generality, we assume that there is a place p ∈ t•1 such that p /∈ t•2. Let t∗ be
a transition in N κ such that t∗ ∈ p•. Such a transition must exist since p can not be
a maximal place: ϕ(p) can not be a maximal place in N which has a unique maximal
place. Now, consider the Orchnet N ′ > N obtained as follows: using repeatedly
condition 3 for operator ⊕ in 3.1, ξ′t1(ω) = ξt1(ω), ξ

′
t2(ω) ≥ ξt1(ω), and, for all other

t ∈ B, ξ′t(ω) ≥ ξ′t2(ω). For all remaining transitions of N ′, with the exception of t∗,
the QoS increments are the same as that in N and thus are finite for ω. Finally, select
ξ′t∗(ω) such that

ξt1(ω)⊕ ξ′t∗(ω) > Q∗(ω) (11.6)

where Q∗(ω) ∈ D will be chosen later—here we used the additional condition of 3
regarding D, together with condition 3 for operator ⊕ in 3.1. Transition t1 has a
minimal QoS increment among all transitions in the branching cell B. It can therefore
win the competition, thus giving raise to an actually occurring configuration κ(N ′, ω).
Select Q∗(ω) equal to the maximal value of the end-to-end QoS of the set K of all
maximal configurations κ that do not include t1 (e.g., when t2 fires instead of t1). By
(11.6), since t∗ is in the future of t1, we thus have Eω(κ(N

′, ω),N ′) ≥ ξt1(ω)⊕ ξ
′
t∗(ω) >

Q∗(ω) ≥ Eω(κ,N
′) for any configuration κ and, therefore, N ′ violates the condition

(3.14) of 2.

11.2 Pairwise Products in Chapters 5 and 6

The Pairwise configurations from one sample for the Crisis Management System (CMS)
is presented in Table 11.2. The configurations are generated using the constraint satis-
faction technique presented in [PSK+10].

11.3 Dell Example in Chapters 7 and 8

11.3.1 Orc code

Following is the complete Orc code for the Dell choreography.

-- -- -- --
-- Orc additional operators for QoS
-- -- -- --

-- bestQoS simulates the QoS-based prune operator -- both ar guments are lambdas

229

11.3. Dell Example in Chapters 7 and 8 Appendices

product name: Configuration 0_0 Features: CrisisManageme ntSystem LongDistanceCall
GPS InternalResource FirstAidMaterial HumanResource Sys temAdmin Worker Coordinator
FAWorker Observer RemoveObstacle Rescue Mission NurseThe Wounded SortTheWounded Area
Small ExternalServicesUsed GovernmentalServices Police Policeman AuthenticationSystem
CrisisType SuddenCrisis MajorAccident CarCrash External Company GarageTowTruck
MedicalServices Fireman PublicHospital HospitalWorker A mbulance FirstAidWorker
ITOption

product name: Configuration 1_0 Features: CrisisManageme ntSystem LongDistanceCall
GPS InternalResource FirstAidMaterial HumanResource Sys temAdmin Worker Coordinator
FAWorker Observer Transport Mission NurseTheWounded Sort TheWounded Area Small
ExternalServicesUsed GovernmentalServices Policeman Wi tness CrisisType SuddenCrisis
MajorAccident CarCrash MedicalServices PublicHospital A mbulance FirstAidWorker

product name: Configuration 2_0 Features: CrisisManageme ntSystem LongDistanceCall
GPS InternalResource FirstAidMaterial HumanResource Sys temAdmin Worker Coordinator
FAWorker Observer RemoveObstacle Rescue Mission Area Smal l ExternalServicesUsed
GovernmentalServices CrisisType SuddenCrisis MajorAcci dent CarCrash MedicalServices
PublicHospital HospitalWorker FirstAidWorker

product name: Configuration 3_0 Features: CrisisManageme ntSystem LongDistanceCall
GSM GPS InternalResource FirstAidMaterial HumanResource SystemAdmin Worker
Coordinator FAWorker Rescue Observe Transport Mission Are a Small ExternalServicesUsed
GovernmentalServices FireDepartment Policeman HumanVic tims CrisisType SuddenCrisis
MajorAccident CarCrash ExternalCompany Fireman ITOption

product name: Configuration 4_0 Features: CrisisManageme ntSystem LongDistanceCall
InternalResource FirstAidMaterial HumanResource System Admin Worker Coordinator
FAWorker RemoveObstacle Transport Mission Investigation NurseTheWounded Area
Small ExternalServicesUsed GovernmentalServices Police man DatabaseSystem
AuthenticationSystem CrisisType SuddenCrisis MajorAcci dent CarCrash ExternalCompany
GarageTowTruck MedicalServices PrivateAmbulanceCompan y PublicHospital HospitalWorker
Ambulance FirstAidWorker ITOption

Table 11.1: Configurations from a single sample for the CMS.

def bestQoS(publisher, comparer) = head(sortBy(comparer , publisher))

-- -- -- --
-- Simulation Utilities
-- -- -- --

val SimElaspedTime = Rclock().time()
def randomElement(xs) = index(xs, Random(length(xs)))

-- -- -- --
-- Suppliers and Stock;
-- StockLevels assigns a counter to each hardware supplier
-- QueryLevels assigns the query rate to each harware suppli er
-- Stock Price assigns a higher cost to AMD (faster polling, s maller refuel quantities)
-- compared to NVIDIA
-- -- -- --

val HwSupplierList = ["AMD", "NVIDIA"]
val SwSupplierList = ["Symantec", "McAfee"]

import class HashMap = "java.util.HashMap"
val StockLevels = HashMap() >hm> (each(HwSupplierList) >v > hm.put(v, Counter()) >> stop ; hm)
val QueryLevels = HashMap() >hm> (each(HwSupplierList) >v > hm.put(v, Counter()) >> stop ; hm)
val StockPrice = HashMap() >hm> (head(HwSupplierList) >v> hm.put(v, 1500) >> last(HwSupplierList)

>v> hm.put(v, 1000) >> stop ; hm)

-- -- -- --
-- SLA declaration at choreography level
-- -- -- --

-- Increases the query count for a supply revolver
type QoSQueryRate = Number
def QoSQueryRate(Supplier) = QueryLevels.get(Supplier) .value()

230

Appendices 11.3. Dell Example in Chapters 7 and 8

def QoSQueryRateOplus(Supplier) = QueryLevels.get(Supp lier).inc()

-- Compares cost of products
type QoSCost = Number
def QoSCostCompare(QoSCost, QoSCost) :: QoSCost
def QoSCostCompare(q1, q2) = q1.price? <: q2.price?

-- Compares availability of products
type QoSAvail = Boolean
def QoSAvailCompare(QoSAvail, QoSAvail) :: QoSAvail
def QoSAvailCompare(q1, q2) = if ~q1.available? then false else if ~q2.available? then true

else QoSCostCompare(q1, q2)

-- Stock Level operations (increment and decrement)
type QoSStock = Number
def QoSStock(Supplier) = StockLevels.get(Supplier).val ue()
def QoSStockIncrement(Supplier) = StockLevels.get(Supp lier).inc()
def QoSStockDecrement(Supplier) = StockLevels.get(Supp lier).dec()

-- declare which QoS parameter has priority
-- Calls one of the above QoS comparers according to priority
def QoSPriority(x, y) = randomElement(["Cost", "Availabi lity"]) >priority>

(if priority = "Cost" then QoSCostCompare(x,y) else QoSAva ilCompare(x, y))

-- -- -- --
-- Dell Orchestration
-- -- -- --

-- external site, returns random result
def ValidateOrder(SalesOrder) = if URandom() <: 0.95 then s ignal else stop
def CheckCustomerCredit(SalesOrder) = if URandom() <: 0.9 5 then signal else stop

def ValidateSalesOrder(SalesOrder) = (ValidateOrder(Sa lesOrder), CheckCustomerCredit(SalesOrder))
def NotifyFail(SalesOrder, reason) = Println("Order "+Sa lesOrder.id?+" failed: "+reason) >> stop

def GenerateProductionOrder(SalesOrder) = Dictionary() >ProductionOrder>
ProductionOrder.SalesOrder := SalesOrder >> ProductionO rder.AcceptedTime := SalesOrder.WaitTime?
>> ProductionOrder

def InquireAvail(ProductionOrder, SupplierList) = each(SupplierList) >supp> Dictionary()
>ProductDetails> ProductDetails.Supplier := supp >>
ProductDetails.price := StockPrice.get(supp) >>
ProductDetails.available := (QoSStock(supp) >= 1) >> Prod uctDetails

def InquirePrice(ProductionOrder, SupplierList) = each(SupplierList)
>supp> Dictionary() >ProductDetails> ProductDetails.Su pplier := supp
>> ProductDetails.price := Random(100) >> ProductDetails

def OrderHw(ProductionOrder, supp) = QoSStockDecrement(supp) >> Rwait(Random(1000)) >>
ProductionOrder.HwSupplier := supp

def OrderSw(ProductionOrder, supp) = Rclock().wait(Rand om(1000))
>> ProductionOrder.SwSupplier := supp

-- Note race on availability between "inquire" and "order" s teps -- possible timeout

def ProcureHardwareComponents(ProductionOrder) =
bestQoS(collect(defer2(InquireAvail, ProductionOrder ,
HwSupplierList)), ProductionOrder.SalesOrder?.QoSCom pare?) >ProductDetails>
ProductionOrder.HwQuote := ProductDetails
>> OrderHw(ProductionOrder, ProductDetails.Supplier?)

def ProcureSoftwareComponents(ProductionOrder) =
bestQoS(collect(defer2(InquirePrice, ProductionOrder , SwSupplierList)),
QoSCostCompare) >ProductDetails> ProductionOrder.SwQu ote := ProductDetails >>
OrderSw(ProductionOrder, ProductDetails.Supplier?)

def PackAndShipProduct(ProductionOrder) = ProductionOr der.shipTime :=
SimElaspedTime - ProductionOrder.SalesOrder?.WaitTime ?

def Dell(SalesOrder) =
(ValidateSalesOrder(SalesOrder) ; NotifyFail(SalesOrd er, "Sales order rejected")) >>

231

11.3. Dell Example in Chapters 7 and 8 Appendices

GenerateProductionOrder(SalesOrder) >ProductionOrder >
((x <x< Some(ProcureHardwareComponents(ProductionOrde r)) | Rwait(2000) >> None()) >Some(x)> x ;
NotifyFail(SalesOrder, "Hardware not received on time")) >>
ProcureSoftwareComponents(ProductionOrder) >>
PackAndShipProduct(ProductionOrder) >>
ProductionOrder

-- -- -- --
-- Supplier Orchestration
-- -- -- --

def AwaitReorderStockLevel(Supplier, PollPeriod, Reord erLevel) =
if StockLevels.get(Supplier).value() <= ReorderLevel th en signal
else Rclock().wait(PollPeriod) >> AwaitReorderStockLev el(Supplier, PollPeriod, ReorderLevel)

def ReplenishStock(Supplier, ReorderQuantity) = (signal s(ReorderQuantity) >>
QoSStockIncrement(Supplier) >> stop) ; signal

def ManageSupplierInventory(Supplier, PollPeriod, Reor derLevel, ReorderQuantity) =
AwaitReorderStockLevel(Supplier, PollPeriod, ReorderL evel) >>
ReplenishStock(Supplier, ReorderQuantity) >>
Println(Supplier+" replenishing stock, Revolver Level "+ QoSStock(Supplier)) >>
ManageSupplierInventory(Supplier, PollPeriod, Reorder Level, ReorderQuantity)

-- -- -- --
-- Run Simulation
-- -- -- --

-- input QoS tokens: (order id, priority(cost/availabilit y), cost, wait time)
def SimulateOrders(n) = Dictionary() >SalesOrder> SalesO rder.id := n >>

SalesOrder.QoSCompare := QoSPriority >> SalesOrder.Cost := 0 >>
SalesOrder.WaitTime := SimElaspedTime >> Println("Order "+SalesOrder.id?+" created")
>> SalesOrder | Rwait(Random(500)) >> SimulateOrders(n+1)

-- output QoS tokens: (revolver query rate, revolver level, cost, wait time)
ManageSupplierInventory("AMD", 5000, 5, 10)
| ManageSupplierInventory("NVIDIA", 10000, 10, 30)
| SimulateOrders(1) >SalesOrder> Dell(SalesOrder) >Prod uctionOrder>

QoSQueryRateOplus(ProductionOrder.HwSupplier?) >>
Println("Order "+ProductionOrder.SalesOrder?.id?+" sh ipped with
"+ProductionOrder.HwSupplier?+" and "+ProductionOrder .SwSupplier?) >> Println("QoS Metrics:
"+ProductionOrder.HwSupplier?+" Query Count: "+QoSQuer yRate(ProductionOrder.HwSupplier?)+"
Revolver Level "+QoSStock(ProductionOrder.HwSupplier?)+" Customer Wait Time "
+ProductionOrder.shipTime?+" Cost "+ProductionOrder.H wQuote?.price?) >> stop

11.3.2 MATLAB code

The MATLAB implementation of the Dell example discussed in Chapter 7 with a
sample optimization output.

%Set up distributions for delay/throughput
for uu=1:1:20000
v1 = 3;
delta1 = 5;
tdist(uu) = (randn+delta1) ./ sqrt(2. * randg(v1./2) ./ v1);
expdist(uu) = 4 -2 . * log(rand);
end

%Set up AHP weight and the optimization
f = [0.1047; 0.2583; 0.6370;];
A = [1 -1 0 ; 0 -1 1];
B = [-expdist(ceil(1+19999 * rand)) * tdist(ceil(1+19999 * rand)); 0];
Ae = [-1 1 -1];
Be = [-expdist(ceil(1+19999 * rand)) * tdist(ceil(1+19999 * rand))];
[X,fval,output] = linprog(f, A,B, Ae, Be, [0 0 0],[],[],opt imset(’Diagnostics’,’on’,’Display’,’iter’));

%Assign optimization values
cust_delay = tdist(ceil(1+19999 * rand));
cust_through = expdist(ceil(1+19999 * rand));
critical_stock = X(1);

232

Appendices 11.4. Importance Sampling/Splitting codes for Chapter 8.

max_level = X(2);
batch = X(3);
supply_delay = tdist(ceil(1+19999 * rand));
t_refuel = max(tdist);

%Run the Dell Simulation
critical_lvl = critical_stock;
batch_size = batch;
t = 0; mm = 1;
current_lvl = max_level;
current_lvl = max_level - expdist(ceil(1+19999 * rand)) * mm;
if current_lvl < critical_lvl

t = t+1;
if t >= t_refuel

current_lvl = current_lvl + batch_size;
t=0; mm=0;

end
end
current_stockvalue = current_lvl
mm = mm + 1;

MATLAB OUTPUT:
--- -------
Number of variables: 3

Number of linear inequality constraints: 2
Number of linear equality constraints: 1
Number of lower bound constraints: 3
Number of upper bound constraints: 0

Algorithm selected
large-scale: interior point

Residuals: Primal Dual Duality Total
Infeas Infeas Gap Rel
A* x-b A’ * y+z-f x’ * z Error

Iter 0: 1.90e+002 5.59e+000 1.35e+003 1.00e+002
Iter 1: 7.94e-014 6.35e-001 1.70e+002 6.35e-001
Iter 2: 1.28e-010 1.22e-016 3.65e+001 3.64e-001
Iter 3: 6.70e-011 2.01e-016 3.09e+000 4.32e-002
Iter 4: 5.88e-013 2.08e-016 4.17e-003 5.90e-005
Iter 5: 1.02e-013 2.56e-016 2.08e-007 2.95e-009

Optimization terminated.

current_stockvalue =

67.8043

11.4 Importance Sampling/Splitting codes for Chapter 8.

% Importance Sampling
for ii=1:1:I

for jj=1:1:J
% Original Distribution
response(jj) = nctrnd(3,5);

end
% Mean Monte-Carlo with threhsold tt
MeanMC(ii) = sum(response >=tt)/J;
end

for ii=1:1:I
% New distribution for sampling
x = nctrnd(3,10,1,K);
for kk=1:1:K

h = x(kk)>=tt;
b = nctrnd(3,5)/x(kk);
w(kk) = h * b;

end

233

11.5. Stochastic Dominance for Chapter 9 Appendices

% Mean Importance Sampling
MeanIS(ii) = sum(w)/K;
end

% Importance Splitting
X = nctrnd(5.9,6,N,1);
% Estimate the alpha quantile
q_alpha = quantile(X,alpha);
i=0;
while (q_alpha < S)

w = (X>q_alpha);
Y = randsample(X,N,’true’,w);
% Using Metropilos hastings Algorithm
p = MH(quantile(Y,alpha), N, @(x)(nctpdf(x,5.9,6)));
X = (p>=q_alpha). * p + (p<q_alpha). * Y;
% Estimate the new alpha quantile
q_alpha = quantile(X,alpha);
i=i+1;

end

% Metropolis-Hastings function
function [epsilon] = MH(epsilon_0, num_iterations, fpdf)
% pre-generate the random variables
normal_randoms = randn(num_iterations,1);
uniform_randoms = rand(num_iterations,1);
epsilon = zeros(num_iterations,1);
previous_epsilon = epsilon_0;
% for each random element
for i = 1:num_iterations

% add a normally distributed noise
epsilon_tilde = previous_epsilon + normal_randoms(i);
if fpdf(epsilon_tilde) > fpdf(previous_epsilon)

epsilon(i) = epsilon_tilde;
else

if uniform_randoms(i) <= fpdf(epsilon_tilde) / fpdf(prev ious_epsilon)
epsilon(i) = epsilon_tilde;

else
epsilon(i) = previous_epsilon;

end
end
% update the previous draw
previous_epsilon = epsilon(i);

end
end

11.5 Stochastic Dominance for Chapter 9

function[Result] = S_StochasticDominance_trials1(mu_A ,sig_A,mu_B,sig_B)

% order of dominance
Q=1;

% Discretized pdfs
N=2^16;
J=10^6;
dd=normrnd(mu_A,sig_A,1,J);
uu=normrnd(mu_B,sig_B,1,J);
Hi=max([dd uu]);
Lo=min([dd uu]);
h=(Hi-Lo)/(N-1);
X=[Lo+h : h : Hi]’;

Iq_A = 1/h * (nctcdf(X+h/2,mu_A,sig_A)-nctcdf(X-h/2,mu_A,sig_A)) ;
Iq_B = 1/h * (nctcdf(X+h/2,mu_B,sig_B)-nctcdf(X-h/2,mu_B,sig_B)) ;

% check dominance
for q=2:Q+1

Iq_A=h * cumsum(Iq_A);
Iq_B=h * cumsum(Iq_B);

end

234

Appendices 11.6. Q-Orc Implementation Outline from Chapter 10.

Result=0; %’No dominance up to order ’ num2str(Q)
Condition_AdomB=prod(0+(Iq_A<=Iq_B));
if Condition_AdomB

Result=1; %’A order-’ num2str(Q) ’ dominates B’
end
Condition_BdomA=prod(0+(Iq_B<=Iq_A));
if Condition_BdomA

Result=2; %[’B order-’ num2str(Q) ’ dominates A’]
end

11.6 Q-Orc Implementation Outline from Chapter 10.

Presented here is the weaving procedure for the TravelAgent example with some
special features:

• Metrics: Multiple domains of QoS metrics are presented. These include ambi-
ent metrics of latency and CPU utilization that are presented with competition
operators defined.

• travelAgent : The example presented makes use of the QoSRegistry and QoSWeaving
sites to specify the QoS domains called by the sites. Examples:
TravelAgent(SalesOrder, Budget, Cost, Latency, Reliabil ity,
InterQuery, Security, CPUutlization) ,
AirlineCompany(GenerateInvoice,Cost) .

• Function + QoS : The functional specification can also make use of QoS values. An
example is appending the final weaved output with the sum of [Cost(Items).
QoSOplus(Hotel, Airline)] .

{- Latency.inc.orc -- Orc program Latency.inc
-
- Created by akattepu on 07-Aug-2012 17:05:11
-}

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))
val curTime = Rclock()
def LatencyIncrement(sitex) = (sitex,curTime.time()) >(sitex,d)> (sitex,curTime.time()-d)

type Millisecond = Number
def Millisecond() = signal
type Second = Number
def Second() = signal

-- Types and Definitions for Response Time
type ResponseTime = Number
def class ResponseTime(unit) =

def QoS(String) :: Number
def QoS(sitex) =

signal >> LatencyIncrement(sitex) >(_,q)> (Ift(unit = Mil lisecond) >> q
| Ift(unit = Second) >> q/1000)

def QoSOplus(Number,Number) :: Number
def QoSOplus(rt1,rt2) = rt1+rt2

def QoSCompare(Number,Number) :: Number
def QoSCompare(rt1,rt2) = rt1 <= rt2

def QoSCompete(Number,Number) :: Number
def QoSCompete(rt1,rt2) = bestQoS(QoSCompare,[rt1,rt2])

def QoSVee(Number,Number) :: Number
def QoSVee(rt1,rt2) = max(rt1,rt2)
stop

235

11.6. Q-Orc Implementation Outline from Chapter 10. Appendices

{- CPU.inc.orc -- Orc program CPU.inc
-
- Created by akattepu on Sep 5, 2012 4:26:28 PM
-}

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))
val curTime = Rclock()

type Percentage = Number
def Percentage() = signal
def CPUutilizationValue(sitex) = (sitex,curTime.time()) >(sitex,d)> (sitex,curTime.time()-d)

>(_,delta)> (100 /(1+ delta))

-- Types and Definitions for Response Time
type CPUutilization = Number
def class CPUutilization(unit) =

def QoS(String) :: Number
def QoS(sitex) = signal >> CPUutilizationValue(sitex)

def QoSOplus(Number,Number) :: Number
def QoSOplus(rt1,rt2) = rt1+rt2

def QoSCompare(Number,Number) :: Number
def QoSCompare(rt1,rt2) = rt1 >= rt2

def QoSCompete(Number,Number) :: Number
def QoSCompete(rt1,rt2) = bestQoS(QoSCompare,[rt1,rt2])

def QoSVee(Number,Number) :: Number
def QoSVee(rt1,rt2) = min(rt1,rt2)
stop

{- Cost.inc.orc -- Orc program Cost.inc
-
- Created by akattepu on 07-Aug-2012 17:06:40
-}

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))
val curTime = Rclock()
def CostValue() = [Random(10),Random(10),Random(10)]

type Items = Number
def Items() = signal
type CurrencyEuros = Number
def CurrencyEuros(y) = y * 100
type CurrencyDollars = Number
def CurrencyDollars(y) = y * 80

-- Types and Definitions for Cost
type Cost = Number
def class Cost(unit) =

def QoS(String,List[Number]) :: List[Number]
def UnitConverter(X,unit) = Ift(unit=Items) >> X | Ift(uni t=CurrencyEuros) >> map(CurrencyEuros,X)

| Ift(unit=CurrencyDollars) >> map(CurrencyDollars,X)
def QoS(sitex,c)=
val s = Ref([])
signal >> (s? >q> (Ift(q=[]) >> s:=c >> s? | Iff(q=[]) >> QoSOp lus(s?,c) >v> s:=v

>> UnitConverter(s?,unit)))

def QoSOplus(List[Number],List[Number]) :: List[Number]
def QoSOplus(c1,c2) =

def Oplus([],[]) = []
def Oplus(x:xs,y:ys) = (x+y):Oplus(xs,ys)
Oplus(c1,c2)

def QoSCompare(List[Number],List[Number]) :: List[Numb er]
def QoSCompare(c1,c2) =

def Compare([],[]) = true
def Compare(x:xs,y:ys) = (x <= y) && Compare(xs,ys)
Compare(c1,c2)

def QoSCompete(List[Number],List[Number]) :: List[Numb er]
def QoSCompete(c1,c2) = bestQoS(QoSCompare,[c1,c2])

236

Appendices 11.6. Q-Orc Implementation Outline from Chapter 10.

def QoSVee(List[Number],List[Number]) :: List[Number]
def QoSVee(c1,c2) =

def Vee([],[]) = []
def Vee(x:xs,y:ys) = max(x,y):Vee(xs,ys)
Vee(c1,c2)

stop

{- InterQuery.inc.orc -- Orc program InterQuery.inc
-
- Created by akattepu on 07-Aug-2012 17:05:47
-}

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))
val curTime = Rclock()
type Millisecond = Number
def Millisecond() = signal
type Second = Number
def Second() = signal

-- Types and Definitions for Inter Query Time
type InterQueryTime = Number
def class InterQueryTime(unit)=

def QoS(String) :: Number
def QoS(sitex) =

val s = {. r = Ref(0), c = Channel() .}
signal >>(sitex,
s.r? >p> (s.c.put(curTime.time()-p) | s.r:=(curTime.tim e())) >> Dictionary()

>sitex> sitex.InterQueryTime := s) >> (Ift(unit = Millisec ond) >> s.r?
| Ift(unit = Second) >> s.r?/1000)

def QoSCompare(Number,Number) :: Number
def QoSCompare(it1,it2) = it1 >= it2

def QoSCompete(Number,Number) :: Number
def QoSCompete(it1,it2) = bestQoS(QoSCompare,[it1,it2])
stop

{- Security.inc.orc -- Orc program Security.inc
-
- Created by akattepu on 07-Aug-2012 17:07:23
-}

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))
val curTime = Rclock()
type Level= String
def Level() = signal
def SecurityValue() = if (URandom() :> 0.5) then "High" else "Low"

-- Types and Definitions for Security
type SecurityLevel = String
def class SecurityLevel(unit) =

def QoS(String,String) :: String
def QoS(sitex,security) =

val k = Ref(0)
signal >>(k? >> Dictionary() >s> s.sitename := sitex >> s.se c := security >> s.sec?)

def QoSOplus(String,String) :: String
def QoSOplus(sl1,sl2) = Ift(sl1="High" && sl2="High") >> " High"
| Iff(sl1="High" && sl2="High") >> "Low"

def QoSCompare(String,String) :: String
def QoSCompare(sl1,sl2) = (sl1 = "High" && sl2="Low")

def QoSCompete(String,String) :: String
def QoSCompete(sl1,sl2) = bestQoS(QoSCompare,[sl1,sl2])

stop

{- Reliability.orc -- Orc program Reliability
-
- Created by akattepu on Sep 5, 2012 2:24:36 PM
-}

237

11.6. Q-Orc Implementation Outline from Chapter 10. Appendices

def bestQoS(comparer, publisher) = head(sortBy(comparer , publisher))

type Level= String
def Level() = signal
def ReliabilityValue() = if (URandom() :> 0.5) then "in_ope ration" else "failure"

-- Types and Definitions for Security
type Reliability = String
def class Reliability(unit) =

def QoS(String,String) :: String
def QoS(sitex,reliability) =

val k = Ref(0)
signal >>(k? >> Dictionary() >s> s.sitename := sitex >> s.se c := reliability >> s.sec?)

def QoSOplus(String,String) :: String
def QoSOplus(sl1,sl2) = Ift(sl1="in_operation" && sl2="i n_operation") >> "in_operation"

| Iff(sl1="in_operation" && sl2="in_operation") >> "fail ure"

def QoSCompare(String,String) :: String
def QoSCompare(sl1,sl2) = (sl1 = "in_operation" && sl2="fa ilure")

def QoSCompete(String,String) :: String
def QoSCompete(sl1,sl2) = bestQoS(QoSCompare,[sl1,sl2])

stop

--- -------------------------------------

{- SLA.inc.orc -- Orc program SLA.inc
-
- Created by akattepu on 02-Aug-2012 10:31:29
-}

include "Latency.inc"
include "CPUutilization.inc"
include "InterQuery.inc"
include "Cost.inc"
include "Security.inc"
include "Reliability.inc"

def class NonAmbient(QoStype) =

def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2]))

signal

def class Ambient(QoStype,competition) =

def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy(competition, [q1,q2]))

signal

--- -------------------------------------
{- QoSRegistry.inc.orc -- Orc program QoSManager.inc

-
- Id
-
- Created by akattepu on 02-Aug-2012 10:59:39
-}

--include "QoSWeaver.inc"

val QoSRegistry =
[

{. name = "TAgent", QoSDom = ResponseTime, QoSUnit = Millise cond, Handle = LatencyIncrement .},
{. name = "TAgent", QoSDom = CPUutilization, QoSUnit = Perce ntage, Handle = CPUutilizationValue .},
{. name = "TAgent", QoSDom = InterQueryTime, QoSUnit = Secon d, Handle = [] .},
{. name = "TAgent", QoSDom = Cost, QoSUnit = CurrencyEuros, H andle = CostValue .},
{. name = "TAgent", QoSDom = SecurityLevel, QoSUnit = Level, Handle = SecurityValue .},
{. name = "TAgent", QoSDom = Reliability, QoSUnit = Level, Ha ndle = ReliabilityValue .},

238

Appendices 11.6. Q-Orc Implementation Outline from Chapter 10.

{. name = "Airline", QoSDom = Cost, QoSUnit = Items, Handle = C ostValue .},

{. name = "Hotel", QoSDom = Cost, QoSUnit = Items, Handle = Cos tValue .}
]

def QoSMatch(siteID) = each(QoSRegistry) >M> Ift(M.name = siteID) >> (M.QoSDom,M.QoSUnit,M.Handle)

def QoSValidate(callersiteID,caleesiteID) = (collect(d efer(QoSMatch,callersiteID)),
collect(defer(QoSMatch,caleesiteID))) >(A,B)> (Ift(A. QoSDom = B.QoSDom) >> signal
| Iff(A.QoSDom = B.QoSDom) >> Println("Registry Entries Mi ssing") >> stop)

--- -------------------------------------
{- QoSWeaver.orc -- Orc program QoSWeaver

-
- Created by akattepu on 08-Aug-2012 14:50:38
-}

def QoSWeaver(site,(lookup,unit,handle)) =

def ResponseTimeCheck(competition) =
Ift(lookup = ResponseTime && handle = LatencyIncrement) >>
Some(Ambient(ResponseTime,competition))
>> (ResponseTime(unit).QoS(site))
; stop

def CPUutlizationCheck(competition) =
Ift(lookup = CPUutilization && handle = CPUutilizationVal ue) >>
Some(Ambient(CPUutilization,competition))
>> (CPUutilization(unit).QoS(site))
; stop

def CostCheck() =
Ift(lookup = Cost && handle = CostValue) >>
Some(NonAmbient(Cost)) >> Cost(unit).QoS(site,CostVal ue())
; stop

def SecurityCheck() =
Ift(lookup= SecurityLevel && handle = SecurityValue) >>
(Some(NonAmbient(SecurityLevel))
>> SecurityLevel(unit).QoS(site,SecurityValue()))
; stop

def InterQueryCheck() =
Ift(lookup= InterQueryTime) >> (Some(NonAmbient(InterQ ueryTime))
>> InterQueryTime(unit).QoS(site))
; stop

def ReliabilityCheck() =
Ift(lookup= Reliability && handle = ReliabilityValue)
>> (Some(NonAmbient(Reliability))
>> Reliability(unit).QoS(site,ReliabilityValue()))
; stop

signal >> v<v<(ResponseTimeCheck(max)| CostCheck() | Sec urityCheck() | InterQueryCheck())
|ReliabilityCheck() | CPUutlizationCheck(min)

def QoS(site,identifier) =
val Data = Ref()
def QoSCollect(v) = collect(defer2(QoSWeaver,Data?,v))

site >d> Data:=d >> collect(defer(QoSMatch,identifier)) >v> (Data?, map(QoSCollect,v))
--- -------------------------------------

{- TAgent.orc -- Orc program TAgent
-
- Created by akattepu on 03-Aug-2012 17:01:05
-}

include "SLA.inc"
include "QoSRegistry.inc"
include "QoSWeaver.inc"

val AirlineList = ["Airline 1", "Airline 2"]
val HotelList = ["Hotel A", "Hotel B"]

--BestQoS and simulation utilities

239

11.6. Q-Orc Implementation Outline from Chapter 10. Appendices

def bestQ(comparer,publisher) = head(sortBy(comparer,c ollect(publisher)))
def cat() = if (Random(1)=1) then "Economy" else "Premium"
val simElaspedTime = Rclock()

--Sites declared
def TravelAgent(SalesOrder,Budget,Cost,Latency,Relia bility,InterQuery,Security,CPUutlization) =

def GenerateOrder(SalesOrder,Budget) = Dictionary() >Ge nerateInvoice>
GenerateInvoice.TravelAgent := SalesOrder.ordernumber ?
>> GenerateInvoice.acceptedTime := simElaspedTime.time ()
>> Println("Order "+GenerateInvoice.TravelAgent?+"
accepted at time "+GenerateInvoice.acceptedTime?) >> (Ge nerateInvoice,Budget)

def inquireCost(List) = each(List) >sup> Dictionary() >Pr oductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := R andom(50)
>> ProductDetails

def inquireCategory(List) = each(List) >sup> Dictionary()
>ProductDetails> ProductDetails.Company := sup
>> ProductDetails.cost := Random(50) >> ProductDetails.c ategory := cat()
>> ProductDetails

def compareCost(x, y) = x.cost? <= y.cost?
def compareCategory(x, y) = if x.category?="Economy" then false

else if y.category?="Economy" then true else compareCost(x, y)

def AirlineCompany(GenerateInvoice,Cost) =
QoS(bestQ(compareCost, defer(inquireCost,AirlineList))
>q> GenerateInvoice >> GenerateInvoice.AirQuote := q, "Ai rline") >(_,AirQoS)>
GenerateInvoice.AirQoS := AirQoS >> GenerateInvoice.Air QoS? >aq> Println(aq)

def HotelBooking(GenerateInvoice,Cost) =
QoS(bestQ(compareCategory, defer(inquireCategory,Hot elList))

>q> GenerateInvoice >> GenerateInvoice.HotelQuote := q, " Hotel") >(_,HotelQoS)>
GenerateInvoice.HotelQoS := HotelQoS >> GenerateInvoice .HotelQoS? >hq> Println(hq)

def CheckBudget(GenerateInvoice,Budget) = if (GenerateI nvoice.AirQuote?.cost? +
GenerateInvoice.HotelQuote?.cost? <: Budget) then Gener ateInvoice

else (Println("Resubmit Order "+GenerateInvoice.Travel Agent?) >> Dictionary()
>SalesOrder> SalesOrder.ordernumber:= GenerateInvoice .TravelAgent?
>> (SalesOrder,GenerateOrder(SalesOrder,Budget)))

def timeout(x, t, SalesOrder) = Let(Some(x)
| (Rwait(t) >> notifyFail(SalesOrder, "Timeout") >> None()))

def notifyFail(SalesOrder, reaSalesOrdern) = Println("O rder "+SalesOrder.id?+" failed:
"+reaSalesOrdern) >> stop

signal>> QoS((timeout((GenerateOrder(SalesOrder,Budg et) >(GenerateInvoice,Budget)>
AirlineCompany(GenerateInvoice,Cost) >> HotelBooking(GenerateInvoice,Cost) >>
CheckBudget(GenerateInvoice,Budget)) , 10000, SalesOrd er) >Some(GenerateInvoice)>
GenerateInvoice),"TAgent")

--Simulation
def simulateOrders(2) = stop
def simulateOrders(n) = Dictionary() >SalesOrder> SalesO rder.ordernumber:= n >> SalesOrder

| Rwait(Random(100)) >> simulateOrders(n+1)

simulateOrders(1) >SalesOrder> TravelAgent(SalesOrder ,150,Cost,ResponseTime)
>(GenerateInvoice,QoS)> ((GenerateInvoice.TravelAgen t?,QoS) |
(GenerateInvoice.AirQoS?,GenerateInvoice.HotelQoS?) >([[aq]],[[hq]])> (aq,hq) >>
(GenerateInvoice.TravelAgent?,append(QoS,[Cost(Item s).QoSOplus(aq,hq)])))

--- -------------------------------------
Output:

Order 1 accepted at time 18
[[[1, 6, 2]]]
[[[2, 4, 9]]]
(1, [[3], [14], [230], [[8, 8, 1]], ["High"], ["failure"]])
(1, [[3], [14], [230], [[8, 8, 1]], ["High"], ["failure"], [3, 10, 11]])

240

Bibliography

[AB06a] Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching
cells and distributed probabilities for event structures. Inf. Comput., 204(2):231–274,
2006.

[AB06b] Mustafa Adacal and Ayse B. Bener. Mobile web services: A new agent-based framework.
IEEE Internet Computing, pages 58–65, 2006.

[AB11] Andrea Arcuri and Lionel Briand. Formal analysis of the probability of interaction fault
detection using random testing. IEEE Transactions on Software Engineering, 99, 2011.

[ACH98] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A survey of qos archi-
tectures. Multimedia Systems, 6:138–151, 1998.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services -
Concepts, Architectures and Applications. Springer-Verlag, 2004.

[ACP11] Marco Abundo, Valeria Cardellini, and Francesco Lo Presti. Optimal admission control
for a qos-aware service-oriented system. In ServiceWave, pages 179–190, 2011.

[AD05] Rainer Anzbock and Schahram Dustdar. Modeling and implementing medical web ser-
vices. Data & Knowledge Engineering, 55:203–236, 2005.

[AGI+06] Danilo Ardagna, Gabriele Giunta, Nunzio Ingraffia, Raffaela Mirandola, and Barbara
Pernici. QoS-DrivenWeb Services Selection in Autonomic Grid Environments. In Robert
Meersman and Zahir Tari, editors, OTM Conferences (2), volume 4276 of Lecture Notes
in Computer Science, pages 1273–1289. Springer, 2006.

[AGM08] Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola. Model driven qos analyses of
composed web services. In ServiceWave, 2008.

[AGP08] Assel Akzhalova, Mahbub Gani, and Iman Poernomo. Model driven qos management
via dynamic programming. In 12th Enterprise Distributed Object Computing Conference
Workshops, pages 87–95, 2008.

[Ala92] Alain Bensoussan. Stochastic Control of Partially Observable Systems. Cambridge Uni-
versity Press, 1992.

[ALZH04] T. Abdelzaher, Ying Lu, Ronghua Zhang, and D. Henriksson. Practical application of
control theory to web services. In American Control Conference, volume 3, 2004.

[AMW+03] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of black boxes.
SIGOPS Oper. Syst. Rev., 37(5):74–89, October 2003.

[And96] Gordon Anderson. Nonparametric tests of stochastic dominance in income distributions.
Econometrica, 64:1183–1193, 1996.

[AP05] Danilo Ardagna and Barbara Pernici. Global and Local QoS Guarantee in Web Service
Selection. In Christoph Bussler and Armin Haller, editors, Business Process Manage-
ment Workshops, volume 3812, pages 32–46, 2005.

[AR09a] Mohammad Alrifai and Thomas Risse. Combining global optimization with local se-
lection for efficient qos-aware service composition. In World Wide Web Conference,
Madrid, Spain, 2009.

[AR09b] Mohammad Alrifai and Thomas Risse. Efficient qos-aware service composition.
Whitestein Series in Software Agent Technologies and Autonomic Computing, pages
75–87, 2009.

[Ark02] A. Arkin. Busness process modeling language 1.0. Technical report,
http://www.bpmi.org, 2002.

[BAM+08] Antonia Bertolino, Guglielmo De Angelis, Antinisca Di Marco, Paola Inverardi, An-
tonino Sabetta, and Massimo Tivoli. A framework for analyzing and testing the perfor-
mance of software services. In ISoLA, 2008.

241

Bibliography Bibliography

[BCG+03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services that export their behavior. Proc. 1st Intl. Conf. on Service
Oriented Computing (ICSOC), pages 43–58, 2003.

[BCG+05] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic compo-
sition of web services in colombo. In Proc. of 13th Itallian Symp. on Advanced Database
Systems, 2005.

[BCP+05] M. Bruno, G. Canfora, M. Di Penta, G. Esposito, and V. Mazza. Using test cases as
contract to ensure service compliance across releases. In Proc. of the 3rd Intl. Conf. in
Service-Oriented Computing, Amsterdam, The Netherlands, 2005.

[BD03] Garry F. Barrett and Stephen G. Donald. Consistent tests for stochastic dominance.
Econometrica, 71:71–104, 2003.

[BDZ06] E. Boschi, S. Denazis, and T. Zseby. A measurement framework for inter-domain sla
validation. Elsevier Computer Communications, 29:7.3–716, 2006.

[Ber07] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control: Vols. 1 and 2.
Athena Scientific, 2007.

[BFG05] Karthikeyan Bhargavan, Cedric Fournet, and Andrew D. Gordon. A semantics for web
services authentication. Theoretical Computer Science, 340:102–153, 2005.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifiation: A new approach to
design and analysis of e-service composition. In World Wide Web Conf. (WWW), 2003.

[BGG04] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed services.
In ICSOC’04, November 15-19, 2004,, 2004.

[BGHM04] D. Berardi, M. Gruninger, R. Hull, and S. McIlraith. Towards a first-order ontology
for web services. In W3C Workshop on Constraints and Capabilities for Web Services,
2004.

[BHS+10] Bas Boone, Sofie Van Hoecke, Gregory Van Seghbroeck, Niels Joncheere, Viviane Jonck-
ers, Filip De Turck, Chris Develder, and Bart Dhoedt. Salsa: Qos-aware load balancing
for autonomous service brokering. Journal of Systems and Software, 83:446–456, 2010.

[BJK+12] Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, and John Thywissen.
Qos-aware management of monotonic service orchestrations. Formal Methods in System
Design (under review), Springer, 2012.

[BK02] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets - An Introduction to the
Theory. Vieweg Verlag, 2002.

[BKM07] Manfred Broy, Ingolf H. Kruger, and Michael Meisinger. A formal model of services.
ACM Transactions Software Engineering and Methodology, 16:1–39, 2007.

[BM07] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: a constraint-based language for
specifying service level agreements. In Proceedings of the 16th European conference on
Programming, ESOP’07, pages 18–32. Springer-Verlag, 2007.

[BM11] Maria Grazia Buscemi and Ugo Montanari. Qos negotiation in service composition. The
Journal of Logic and Algebraic Programming, 80:13–24, 2011.

[BMR08] Azzedine Benameur, Fabio Massacci, and Nataliya Rassadko. Security views for out-
sourced business processes. In SWS’08, Fairfax, Virginia, 2008.

[BMRS10] Stefano Bistarelli, Ugo Montanari, Francesca Rossi, and Francesco Santini. Unicast and
multicast qos routing with soft-constraint logic programming. ACM Trans. Comput.
Logic, 12(1):5:1–5:48, November 2010.

[Bon11] Bonitasoft. Open solution: Open source bpm. Technical report,
http://www.bonitasoft.com/products/features, 2011.

[BP06] Antonio Brogi and Razvan Popescu. From bpel processes to yawl workflows. In 3rd
International Workshop on Web Services and Formal Methods (WS-FM), 2006.

[BPE07] Web Services Business Process Execution Language Version 2.0. Technical report, OA-
SIS Standard, Available from: http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf,
April, 2007.

[BRBH08] Anne Bouillard, Sidney Rosario, Albert Benveniste, and Stefan Haar. Monotony in
service orchestrations. Technical report, INRIA Research Report 6528, 2008.

[BRBH09] Anne Bouillard, Sidney Rosario, Albert Benveniste, and Stefan Haar. Monotonicity in
Service Orchestrations. In Giuliana Franceschinis and Karsten Wolf, editors, Petri Nets,
volume 5606 of Lecture Notes in Computer Science, pages 263–282. Springer, 2009.

242

Bibliography Bibliography

[BRMO01] Athman Bouguettaya, Abdelmounaam Rezgui, Brahim Medjahed, and Mourad Ouzzani.
Internet computing support for digital government. Practical Handbook of Internet
Computing, pages 1–14, 2001.

[Bru72] Nocolaas Govert De Bruijn. Lambda calculus notation with nameless dummies: A
tool for automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae (Elsevier), 34:381–392, 1972.

[BS09a] Stefano Bistarelli and Francesco Santini. A nonmonotonic soft concurrent constraint
language for sla negotiation. Electr. Notes Theor. Comput. Sci., 236:147–162, 2009.

[BS09b] Stefano Bistarelli and Francesco Santini. Soft constraints for quality aspects in service
oriented architectures. In Young Researchers Workshop on Service-Oriented Computing,
2009.

[BSC01] Preeti Bhoj, Sharad Singhal, and Sailesh Chutani. Sla management in federated envi-
ronments. Computer Networks, 35(1):5–24, 2001.

[BT98] A. Bechini and K.-C. Tai. Design of a toolset for dynamic analysis of concurrent java
programs. In Proc. of the 6th Intl. Workshop on Program Comprehension, pages 190–
197, 1998.

[Buc04] James A. Bucklew. Introduction to Rare Event Simulation. Springer Series in Statistics,
2004.

[BV05] K. Z. Bell and M. A. Vouk. On effectiveness of pairwise methodology for testing network-
centric software. In 3rd International Conference on Information and Communications
Technology, 2005.

[BV09] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2009.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography
conformance and contract compliance. In SC 2007, LNCS 4829, 2007.

[CCGM06] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and Raffaela Mirandola. A
framework for optimal service selection in broker-based architectures with multiple qos
classes. In IEEE Services Computing Workshops, 2006.

[CCGP10] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and Francesco Lo Presti.
Adaptive management of composite services under percentile-based service level agree-
ments. In ICSOC 2010, LNCS 6470, pages 381–395, 2010.

[CCL05] Lei Cao, Jian Cao, and Minglu Li. Genetic algorithm utilized in cost-reduction driven
web service selection. In Proc. Intl. Conf. Computational Intelligence and Security, pages
679–686, 2005.

[CCMN04] Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Decentralized
orchestration of composite web services. In World Wide Web Conference, 2004.

[CCP07] Cinzia Cappiello, Marco Comuzzi, and Pierluigi Plebani. On automated generation
of web service level agreements. CAiSE, LNCS, Springer-Verlag Berlin Heidelberg,
4495:264–278, 2007.

[CD99] Luca Cardelli and Rowan Davies. Service combinators for web computing. IEEE Trans-
actions on Software Engineering, 25:309–316, 1999.

[CDFP97] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system: An ap-
proach to testing based on combinatorial design. IEEE Trans. on Software Engineering,
23:437–444, 1997.

[CDMFG11] F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Sequential monte carlo for rare
event estimation. Statistics and Computing, Springer Netherlands, 2011.

[CDS08] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE Trans.
on Software Engineering, 34, 5:633–650, 2008.

[CGK+11] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dynamic
qos management and optimization in service-based systems. Software Engineering, IEEE
Transactions on, 37(3):387 –409, may-june 2011.

[CH09] David Cohn and Richard Hull. Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng. Bull., pages 3–9, 2009.

[Chu85] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1985.

[CjM05] William Cook and jayadev Misra. Implementation outline for orc,
http://orc.csres.utexas.edu/papers/orcimpdraft.pdf. Technical report, UT Austin,
2005.

243

Bibliography Bibliography

[CK07] Tom Chothia and Jetty Kleijn. Q-automata: Modelling the resource usage of concurrent
components. Electronic Notes in Theoretical Computer Science, 175:153–167, 2007.

[CM] William R. Cook and Jayadev Misra. Orchestration in orc: A deterministic distributed
programming model. Department of Computer Sciences, University of Texas at Austin.

[CMP+04] Cinzia Cappiello, Paolo Missier, Barbara Pernici, Pierluigi Plebani, and Carlo Batini.
Qos in multichannel is: the mais approach. In Workshops in Connection with the 4th
International Conference on Web Engineering, 2004.

[CMSA02] Jorge Cardoso, John Miller, Amit Sheth, and Jonathan Arnold. Modeling quality of
service for workflows and web service processes. Technical report, LSDIS Lab, Computer
Science, University of Georgia, 2002.

[CP06] Gerardo Canfora and Massimiliano Di Penta. Testing services and service-centric sys-
tems: Challenges and opportunities. IEEE IT Pro, 6:10–17, 2006.

[CPE+06] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, Francesco Perfetto, and
Maria Luisa Villani. Service Composition (re)Binding Driven by Application-Specific
QoS. In Asit Dan and Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lecture
Notes in Computer Science, pages 141–152. Springer, 2006.

[CPEV05a] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.
An approach for qos-aware service composition based on genetic algorithms. In GECCO,
2005.

[CPEV05b] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.
QoS-Aware Replanning of Composite Web Services. In ICWS, pages 121–129. IEEE
Computer Society, 2005.

[CPEV08] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.
A framework for QoS-aware binding and re-binding of composite web services. Journal
of Systems and Software, 81(10):1754–1769, 2008.

[CPM06a] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns in orc.
In Intl. Conf. on Coordination Models and Languages (COORDINATION), 2006.

[CPM06b] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow Patterns in Orc.
In Coordination, pages 82–96, 2006.

[CSM02] Jorge Cardoso, Amit P. Sheth, and John A. Miller. Workflow Quality of Service. In
Kurt Kosanke, Roland Jochem, James G. Nell, and Angel Ortiz Bas, editors, ICEIMT,
volume 236 of IFIP Conference Proceedings, pages 303–311. Kluwer, 2002.

[CSM+04] Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, and Krys Kochut.
Quality of Service for workflows and Web service processes. J. Web Sem., 1(3):281–308,
2004.

[CTB98] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. Heavy-tailed probability dis-
tributions in the world wide web. In In A Practical Guide To Heavy Tails, chapter 1,
pages 3–26. Chapman & Hall, 1998.

[D‘A06] Andrea D‘Ambrogio. A model-driven wsdl extension for describing the qos ofweb ser-
vices. In IEEE International Conference on Web Services, 2006.

[DB78] Peter J. Denning and Jeffrey P. Buzen. The operational analysis of queueing network
models. Computing Surveys, Vol. 10, No. 3, September 1978, 10:225–261, 1978.

[DDK+04] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web services on demand: Wsla-driven automated man-
agement. IBM Systems Journal, 43, 2004.

[DH01] M. Dumas and A.t. Hofstede. Uml activity diagrams as a workflow specification lan-
guage. In Proc. of the Intl Conf. Unified Modeling Language (UML), 2001.

[DNFM+05] Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, Emilio Tuosto,
and Jean-Marie Jacquet. Coordination Models and Languages, chapter A Process Cal-
culus for QoS-Aware Applications, pages 246–252. Springer Berlin / Heidelberg, 2005.

[DOW08] Gero Decker, Hagen Overdick, and Mathias Weske. Oryx: An open modeling platform
for the bpm community. Hasso-Plattner-Institute, University of Potsdam, Germany,
2008.

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. Int.
J. Web and Grid Services, 1:1–30, 2005.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

244

Bibliography Bibliography

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s Un-
folding Algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

[Fah05] Dirk Fahland. Complete abstract operational semantics for the web service business
process execution language. Technical report, Humboldt-Universitat zu Berlin, 2005.

[FBH05] Viktoria Firus, Steffen Becker, and Jens Happe. Parametric performance contracts for
qml-specified software components. Electronic Notes in Theoretical Computer Science,
141:73–90, 2005.

[FG01] Robert Fourer and Jean-Pierre Goux. Optimization as an internet resource. Interfaces:
OR/MS and E-Business, 31:130–150, 2001.

[FH05] Martin Fenton and Ciara Heavin. Closing the loop: Providing web service solutions
enabling e-logistics integration. In 18th Bled eConference eIntegration in Action, 2005.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[FK98] Sven Frolund and Jari Koistinen. Qml: A language for quality of service specification.
Technical report, Software Technology Laboratory, Hewlett Packard, 1998.

[FMM08] R. Fourer, J. Ma, and K. Martin. Optimization services: A framework for distributed
optimization. Technical report, COIN-OR, 2008.

[FN08] Alessandro Fantechi and Elie Najm. Session types for orchestration charts. In COOR-
DINATION, 2008.

[GGK+11] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, Mirco Tribastone, and
Dániel Varró. Non-functional properties in the model-driven development of service-
oriented systems. Springer Software Systems Model, 10:287–311, 2011.

[GGMT08] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Quality prediction of service
compositions through probabilistic model checking. In Quality of Software Architectures,
pages 119 – 134. LNCS vol. 5281, 2008.

[GHS95] Dimirios Georgakopolis, Mark Hornick, and Amit Sheth. An overview of workflow
management: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

[GNZ+06] Yan Gao, Jun Na, Bin Zhang, Lei Yang, and Qiang Gong. Optimal web services selection
using dynamic programming. In 11th IEEE Symposium on Computers and Communi-
cations, 2006.

[GP07] Donna Griffin and Dirk Pesch. A survey on web services in telecommunications. IEEE
Communications Magazine, 7:28–35, 2007.

[Har87] David Harel. Statecharts:a visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

[HB09] Loic Helouet and Albert Benveniste. Distributed active xml and service interfaces.
Technical report, INRIA Research Report no. 7082, 2009.

[HB10] Loic Helouet and Albert Benveniste. Document based modeling of web services chore-
ographies using active xml. In IEEE International Conference on Web Services, 2010.

[HDHA09] Robert Harmon, Haluk Demirkan, Bill Hefley, and Nora Auseklis. Pricing strategies for
information technology services: A value-based approach. In 42nd Hawaii International
Conference on System Sciences, 2009.

[HLH10] William Ho, Carman K.M. Lee, and George To Sum Ho. Multiple criteria optimization
of contemporary logistics distribution network problems. OR Insight, 23:27–43, 2010.

[HM09] Toan Huynh and James Miller. Empirical observations on the session timeout threshold.
Information Processing and Management, 45:513–528, 2009.

[HMM04] Tony Hoare, Galen Menzel, and Jayadev Misra. A tree semantics of an orchestration
language. In Proc. of the NATO Advanced Study Institute, Engineering Theories of
Software Intensive Systems, NATO ASI Series, 2004.

[HMR10] Joyce El Haddad, Maude Manouvrier, and Marta Rukoz. Tqos: Transactional and qos-
aware selection algorithm for automatic web service composition. IEEE Transaction on
Services Computing, 3:73–85, 2010.

[Hoa04] C. A. R Hoare. Communicating Sequential Processes. Prentice Hall International, 2004.

[HS05] Richard Hull and Jianwen Su. Tools for composite web services: A short overview.
SIGMOD Record, 34:1–10, 2005.

[HSS05] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming bpel to petri nets.
In 3rd International Conference on Business Process Management (BPM 2005), 2005.

245

Bibliography Bibliography

[HT03] David Harel and P.S. Thiagarajan. Message sequence charts. UML for Real: Design of
Embedded Real-time Systems, Kluwer Academic Publishers, pages 1–29, 2003.

[HWSP04] San-Yih Hwang, Haojun Wang, Jaideep Srivastava, and Raymond A. Paul. A proba-
bilistic qos model and computation framework for web services-based workflows. In ER
2004, LNCS 3288, Springer-Verlag Berlin Heidelberg, 2004.

[HWTS07] San-Yih Hwang, Haojun Wang, Jian Tang, and Jaideep Srivastava. A probabilistic ap-
proach to modeling and estimating the qos of web-services-based workflows. Information
Sciences, 177:5484–5503, 2007.

[IBM+07] IBM, BEA, Microsoft, SAP, and Siebel. Business process execution language for web
services ver 1.1. Technical report, 2007.

[IBM11] IBM. Ilog jviews enterprise. Technical report, http://www-
01.ibm.com/software/integration/visualization/jviews/enterprise/, 2011.

[ICH10] Dragan Ivanovic, Manuel Carro, and Manuel Hermenegildo. Towards data-aware qos-
driven adaptation for service orchestrations. In Proceedings of the 2010 IEEE Interna-
tional Conference on Web Services, ICWS ’10, pages 107–114, Washington, DC, USA,
2010. IEEE Computer Society.

[IM02] IBM and Microsoft. Security in a web services world: A proposed architecture and
roadmap, 2002.

[INPJ09] Paul Istoan, Gregory Nain, Gilles Perrouin, and Jean-Marc Jezequel. Dynamic software
product lines for service-based systems. In Ninth IEEE International Conference on
Computer and Information Technology, 2009.

[Jac08] Daniel Jackson. http://alloy.mit.edu. 2008.

[JB02] M. Jaring and J. Bosch. Representing variability in software product lines: A case study.
Proc. of the Second Intl. Conf. on Software Product Lines, London, UK, pages 15–36,
2002.

[JJJR94] C. Jard, G. V. Jourdan, T. Jeron, and J. X. Rampon. A general approach to trace-
checking in distributed computing systems. Proc. of the 14th Intl. Conf. on Distributed
Computing Systems, 1994.

[jJMS02] Li jie Jin, Vijay Machiraju, and Akhil Sahai. Analysis on service level agreement of web
services. Technical report, HP Laboratories Palo Alto, 2002.

[JKTB12] Claude Jard, Ajay Kattepur, John Thywissen, and Albert Benveniste. Leveraging
causality for qos tracking in service oriented systems. 9th International Workshop on
Web Services and Formal Methods (submitted), 2012.

[JMW07] Kurt Jensen, Lars Michael, and Kristensen Lisa Wells. Coloured petri nets and cpn
tools for modelling and validation of concurrent systems. In International Journal on
Software Tools for Technology Transfer, 2007.

[Kat11] Ajay Kattepur. Importance sampling of probabilistic contracts in web services. In
International Conference on Service Orinted Computing, 2011.

[KBJ11] Ajay Kattepur, Albert Benveniste, and Claude Jard. Optimizing decisions in web ser-
vices orchestrations. In International Conference on Service Oriented Computing, 2011.

[KBJ12] Ajay Kattepur, Albert Benveniste, and Claude Jard. Negotiation strategies for prob-
abilistic contracts in web services orchestrations. In International Conference on Web
Services (ICWS), 2012.

[KBT+09] Babak Khosravifar, Jamal Bentahar, Philippe Thiran, Ahmad Moazin, and Adrien
Guiot. An approach to incentive-based reputation for communities of web services.
In ICWS, 2009.

[KCE+04] P. Kearney, J. Chapman, N. Edwards, M. Gifford, and L. He. An overview of web
services security. BT Technology Journal, 22:27–42, 2004.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented domain
analysis (foda) feasibility study. Software Engineering Institute, 1990.

[KCJ98] Lars M. Kristensen, Soren Christensen, and Kurt Jensen. The practitioner’s guide to
coloured petri nets. Int. J. STTT, 2:98–132, 1998.

[KCM06] David Kitchin, William R. Cook, and Jayadev Misra. A Language for Task Orchestra-
tion and its Semantic Properties. In Proc. of the Intl. Conf. on Concurrency Theory
(CONCUR), 2006.

[KCW06] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn. A simplified approach to web
service development. In Australasian workshops on Grid computing and e-research,
volume 54, pages 79–88, 2006.

246

Bibliography Bibliography

[KDS+08] Marcel Karam, Sergiu Dascalu, Haidar Safa, Rami Santina, and Zeina Koteich. A
product-line architecture for web service-based visual composition of web applications.
The Journal of Systems and Software, 81:855–867, 2008.

[KGM09] J. Kienzle, N. Guelfi, and S. Mustafiz. Crisis management systems: A case study for
aspect-oriented modeling. Technical report, McGill Univ., 2009.

[Kis02] Ivan Kiselev. Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN, USA,
2002.

[KKK08] Jong Myoung Ko, Chang Ouk Kim, and Ick-Hyun Kwon. Quality-of-service oriented
web service composition algorithm and planning architecture. The Journal of Systems
and Software, 81:2079–2090, 2008.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

[KM03] Hristo Koshutanski and Fabio Massacci. An access control framework for business pro-
cesses for web services. In ACM Workshop on XML Security, 2003.

[KP09] Kyriakos Kritikos and Dimitris Plexousakis. Mixed-integer programming for qos-based
web service matchmaking. IEEE Transaction on Services Computing, 2:122–139, 2009.

[KQCM09] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. The orc program-
ming language. In Proceedings of FMOODS/FORTE 2009, volume 5522 of Lecture Notes
in Computer Science, pages 1–25. Springer, 2009.

[KSB+10] Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and Claude Jard. Vari-
ability modeling and qos analysis of web services orchestrations. In Proceedings of the
2010 IEEE International Conference on Web Services, ICWS ’10, pages 99–106, 2010.

[KSB+11] Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and Claude Jard. Pairwise
testing of dynamic composite services. In Proceeding of the 6th international symposium
on Software engineering for adaptive and self-managing systems, SEAMS ’11, pages
138–147, 2011.

[KW04] D. R. Kuhn and D. D. Wallace. Software fault interactions and implications for software
testing. IEEE Trans. on Software Engineering, 30:418–421, 2004.

[KZC+04] Roman Kapuscinski, Rachel Q. Zhang, Paul Carbonneau, Robert Moore, and Bill
Reeves. Inventory decisions in dell’s supply chain. Interfaces, 34:191–205, 2004.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21:558–565, 1978.

[LB10] Noura Limam and Raouf Boutaba. Assessing software service quality and trustworthi-
ness at selection time. IEEE Transactions on Software Engineering, 36:559–574, 2010.

[LDT07] Pierre L’Ecuyer, Valerie Demers, and Bruno Tuffin. Rare events, splitting, and quasi-
monte carlo. ACM Transactions on Modeling and Computer Simulation, Vol. 17, No.
2, Article 9, Publication date: April 2007., 17:1–45, 2007.

[Ley01] F. Leymann. Web services flow language ver 1.0. Technical report, IBM, 2001.

[LKD+03] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck. Web
service level agreement (wsla) language specification. Technical report, IBM Corpora-
tion, 2003.

[LL01] Moshe Levy and Haim Levy. Testing for risk aversion: a stochastic dominance approach.
Economics Letters, 71:233–240, 2001.

[LM05] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for ws-bpel. Journal
of Logic and Algebraic Programming, 2005.

[LNJV01] Zhen Liu, Nicolas Niclausse, and César Jalpa-Villanueva. Traffic model and performance
evaluation of web servers. Performance Evaluation, 46:77–100, 2001.

[LNS06] Joan Lu, Tahir Naeem, and John B. Stav. A distributed information system for health-
care web services. In AP Web Workshops, 2006.

[LPM+09] Kelly Lyons, Corrie Playford, Paul R. Messinger, Run H. Niu, and Eleni Stroulia. Busi-
ness models in emerging online services. In Value Creation in e-Business Management,
LNBIP 36, 2009.

[LPT07] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services.
In Proc. of 16th European Symposium on Programming (ESOP’07), volume 4421 of
Lecture Notes in Computer Science, pages 33–47. Springer, 2007.

247

Bibliography Bibliography

[LZZX10] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai, and Bin Xu. The design and implementation
of service process reconfiguration with end-to-end QoS constraints in SOA. Service
Oriented Computing and Applications, 4(3):157–168, 2010.

[MA04] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26:369–395, 2004.

[Mar89] M. Ajmone Marsan. Stochastic petri nets: An elementary introduction. pages 1–29,
1989.

[MBB+89] Marco Ajmone Marsan, Gianfranco Balbo, Andrea Bobbio, Giovanni Chiola, Gianni
Conte, and Aldo Cumani. The effect of execution policies on the semantics and analysis
of stochastic petri nets. IEEE Trans. Software Eng., 15(7):832–846, 1989.

[MC06] J. Misra and W.R. Cook. Computation Orchestration: A Basis for Wide-Area Comput-
ing. Journal of Software and Systems Modeling, May, 2006. Available for download at
http://dx.doi.org/10.1007/s10270-006-0012-1 .

[MC07] J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Software and Systems Modeling, Springer, 6(1):83–110, 2007.

[MCD08] Daniel A. Menascé, Emiliano Casalicchio, and Vinod K. Dubey. A heuristic approach
to optimal service selection in Service Oriented Architectures. In Alberto Avritzer,
Elaine J. Weyuker, and C. Murray Woodside, editors, WOSP, pages 13–24. ACM, 2008.

[Men02] Daniel A. Menascé. Qos issues in web services. IEEE Internet Computing, pages 72–75,
2002.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mis10] Jayadev Misra. Orc tutorial lectures. Technical report, Department of Computer Sci-
ence, University of Texas at Austin, 2010.

[Mis11] Jayadev Misra. Virtual time and timeout in client-server networks. Technical report,
University of Texas at Austin, 2011.

[MM07] Moreno Marzolla and Raffaela Mirandola. Performance prediction of web service work-
flows. In Sven Overhage, Clemens A. Szyperski, Ralf Reussner, and Judith A. Stafford,
editors, QoSA, volume 4880 of Lecture Notes in Computer Science, pages 127–144.
Springer, 2007.

[MM10] Moreno Marzolla and Raffaela Mirandola. Qos analysis for web service applications: a
survey of performance-oriented approaches from an architectural viewpoint. Technical
report, Department of Computer Science, University of Bologna, 2010.

[MMLP09] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to support
customization and deployment of multi-tenant-aware software as a service applications.
In Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems, pp. 18-25, 2009.

[Mos94] Moshe Shaked and J. George Shanthikumar. Stochastic Orders and their Applications.
Academic Press, 1994.

[Mos07] Moshe Shaked and J. George Shanthikumar. Stochastic Orders. Springer, 2007.

[MPLG10] Jerome Morio, Rudy Pastel, and Francois Le Gland. An overview of importance splitting
for rare event simulation. European Journal of Physics, IOP, 31:1295–1303, 2010.

[MPR+10] Michele Mancioppi, Mikhail Perepletchikov, Caspar Ryan, Willem-Jan van den Heuvel,
and Mike P. Papazoglou. Towards a quality model for choreography. In ICSOC/Ser-
viceWave 2009, 2010.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100:1–40, 1992.

[MRLD09] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Com-
prehensive qos monitoring of web services and event-based sla violation detection. In
MW4SOC, Urbana Champaign, Illinois, 2009.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. IEEE, 77:541–580,
1989.

[Mus04] Paul Muschamp. An introduction to web services. BT Technology, 22:9–18, 2004.

[MW77] S. Makridakis and S. Wheelwright. Adaptive filtering: An integrated autoregres-
sive/moving average filter for time series forecasting. Operational Research Quarterly,
28(2):425–437, 1977.

[NRR06] Nilay Noyan, Gabor Rudolf, and Anrej Ruszczynski. Relaxations of linear programming
problems with first order stochastic dominance constraints. Operations Research Letters,
34:653–659, 2006.

248

Bibliography Bibliography

[Oas04] Oasis. Uddi version 3.0.2. Technical report, http://www.uddi.org/pubs/uddi v3.htm,
2004.

[OAS07] OASIS. Web services business process execution language version 2.0. Technical report,
OASIS Web Services Business Process Execution Language, 2007.

[OMG11] OMG. Business process model and notation (bpmn) standard ver 2.0. Technical report,
Business Process Management Initiative, 2011.

[Ora11] Oracle. Business process management suite. Technical report,
http://www.oracle.com/us/technologies/bpm/bpm-suite-078529.html, 2011.

[Orc11] Orc. Orc reference manual v2.0.2. Technical report, The University of Texas at Austin,
2011.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, 2008.

[Pau09] Cesare Pautasso. Restful web service composition with bpel for rest. Data & Knowledge
Engineering, 69:851–866, 2009.

[PB08] Adrian Paschke and Martin Bichler. Knowledge representation concepts for automated
sla management. Decision Support Systems, 46:187–205, 2008.

[PCE07] M. Di Penta, G. Canfora, and G. Esposito. Search-based testing of service level agree-
ments. In Proc. of the 9th Conf. on Genetic and evolutionary computation, London,
England, 2007.

[PD06] Yash Patel and John Darlington. A novel stochastic algorithm for scheduling qos-
constrained workflows in a web service-oriented grid. In International Conference Web
Intelligence and Intelligent Agent Technology, on, pp., 2006.

[Pel03] Chris Peltz. Web services orchestration and choreography. IEEE Computer, 3:46–52,
2003.

[PH12] T. Manjula Peiris and James H. Hill. Adapting system execution traces for
validation of distributed system qos properties. In 15th IEEE Intl. Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing, 2012.

[PSK+10] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. le Traon. Automatic and scalable
t-wise test case generation strategies for software product lines. In Proc. of Intl. Conf.
on Software Testing, 2010.

[QTDC10] Lianyong Qi, Ying Tang, Wanchun Dou, and Jinjun Chen. Combining local optimiza-
tion and enumeration for qos-aware web service composition. In IEEE International
Conference on Web Services, 2010.

[Ran03] S. Ran. A model for web services discovery with qos. ACM SIGecom Exch., 1:1–10,
2003.

[Rar98] R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.

[RBHJ07] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic qos
and soft contracts for transaction based web services. In ICWS, pages 126–133. IEEE
Computer Society, 2007.

[RBHJ08] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic qos and soft contracts
for transaction-based web services orchestrations. IEEE Trans. on Services Computing,
1(4):187–200, 2008.

[RBJ09a] Sidney Rosario, Albert Benveniste, and Claude Jard. Flexible probabilistic qos manage-
ment of transaction based web services orchestrations. In IEEE International Conference
on Web Services, pages 107 –114, 2009.

[RBJ09b] Sidney Rosario, Albert Benveniste, and Claude Jard. A theory of qos for web service
orchestrations. Technical report, INRIA Research Report 6951, 2009.

[Rei92] Wolfgang Reisig. A Primer in Petri Net Design. Springer-Verlag, 1992.

[Rei08] Wolfgang Reisig. Towards a theory of services. In Information Systems and e-Business
Technologies, volume 5 of Lecture Notes in Business Information Processing, pages 271–
281. Springer Berlin Heidelberg, 2008.

[RK04] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
Springer, 2004.

[RKB+07] Sidney Rosario, David Kitchin, Albert Benveniste, William R. Cook, Stefan Haar, and
Claude Jard. Event structure semantics of orc. In Marlon Dumas and Reiko Heckel,
editors, WS-FM, volume 4937 of Lecture Notes in Computer Science, pages 154–168.
Springer, 2007.

249

Bibliography Bibliography

[RKB+08] Sidney Rosario, David Kitchin, Albert Benveniste, William Cook, Stefan Haar, and
Claude Jard. Event structure semantics of orc. In WS-FM, 2008.

[RLM+09] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and Schahram
Dustdar. Towards composition as a service - a quality of service driven approach. In
IEEE International Conference on Data Engineering, 2009.

[Ros09] Sidney Rosario. Quality of Service issues in compositions of Web Services. PhD thesis,
Universite de Rennes 1, 2009.

[Saa80] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New york, 1980.

[Saa03] Thomas L. Saaty. Decision-making with the ahp: Why is the principal eigenvector
necessary. European Journal of Operational Research, 145:85–91, 2003.

[SAP06] SAP. Enterprise services architecture for healthcare - a prescription for innovation.
Solution Brief, Germany, 2006.

[SDR09] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyski. Lectures on Stochastic
Programming: Modeling and Theory. Society for Industrial Mathematics, 2009.

[SEH02] Justin O’ Sullivan, David Edmond, and Arthur Ter Hofstede. What’s in a service? to-
wards accurate description of non-functional service properties. Distributed and Parallel
Databases, 12:117–133, 2002.

[SG03] Alper Sen and Vijay K. Garg. Partial order trace analyzer (pota) for distributed pro-
grams. electronic Notes in Theoretical Computer Science, 70:22–43, 2003.

[SHTB07] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Generic semantics of feature
diagrams. Computer Networks, Elsevier, 51:456–479, 2007.

[Sig11] Signavio. Process editor - software as a service. Technical report,
http://www.signavio.com/en/products/process-editor-as-a-service.html, 2011.

[SKD01] Biplav Srivastava, Subbarao Kambhampati, and Minh B. Do. Planning the project
management way: Efficient planning by effective integration of causal and resource
reasoning in realplan. Artificial Intelligence, 131:73–134, 2001.

[SLE04] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise service level agree-
ments. In Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 179–188, 2004.

[SM94] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing, 7:149–174,
1994.

[SMS+01] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad van Moorsel, and Fabio Casati.
Automated sla monitoring for web services. In DSOM, 2001.

[SRE10] James Skene, Franco Raimondi, and Wolfgang Emmerich. Service-level agreements for
electronic services. IEEE Transactions on Software Engineering, 36:288–304, 2010.

[ST07] N. Sato and Kishor S. Trivedi. Stochastic modeling of composite web services for closed-
form analysis of their performance and reliability bottlenecks. In Bernd J. Krämer,
Kwei-Jay Lin, and Priya Narasimhan, editors, ICSOC, volume 4749 of Lecture Notes in
Computer Science, pages 107–118. Springer, 2007.

[Tet77] Teturo Kamae and Ulrich Krengel and George L. O’Brien. Stochastic inequalities on
partially ordered spaces. The Annals of Probability, 5(6):899–912, 1977.

[TF06] Ioan Toma and Douglas Foxvog. Non-functional properties in web services. Technical
report, Web Services Modeling Ontology (WSMO) Final Draft, 2006.

[Tho90] Thomas L. Saaty. How to make a decision: the Analytic Hierarchy Process. European
Jounral of Operational Research, 48(2):9–26, 1990.

[tHvdAAR10] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell, editors. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.

[Thy09] John A. Thywissen. Secure information flow in the orc concurrent programming lan-
guage. Technical report, The University of Texas at Austin, 2009.

[TKO77] U. Krengel T. Kamae and G. L. O’Brien. Stochastic inequalities on partially ordered
spaces. Annals of Probabability, 5:899–912, 1977.

[TLY+04] Zhangxi Tan, Chuang Lin, Hao Yin, Ye Hong, and Guangxi Zhu. Approximate perfor-
mance analysis of web services flow using stochastic petri net. In Grid and Cooperative
Computing - GCC 2004, volume 3251 of Lecture Notes in Computer Science, pages
193–200. Springer Berlin / Heidelberg, 2004.

250

Bibliography Bibliography

[TP02] Aphrodite Tsalgatidou and Thomi Pilioura. An overview of standards and related tech-
nology in web services. Distributed and Parallel Databases, 12:135–162, 2002.

[TP05] Vladimir Tosic and Bernard Pagurek. On comprehensive contractual descriptions of web
services. In Proceedings of the IEEE e-Technology, e-Commerce, and e-Service, pages
444–449, 2005.

[TZCB08] W.T. Tsai, Xinyu Zhou, Yinong Chen, and Xiaoying Bai. On testing and evaluating
service-oriented software. IEEE Computer, 8:40–46, 2008.

[USM06] K. Munagala U. Srivastava, J. Widom and R. Motwani. Query optimization over web
services. In Intl. Conf. on Very Large Databases, 2006.

[vdA96] Wil M. P van der Aalst. Three good reasons for using a petri-net-based workflow
management system. In Proc. of the Intl. Working Conf. on Information and Process
Integration in Enterprises, 1996.

[vdA97] Wil M. P. van der Aalst. Verification of workflow nets. In ICATPN, pages 407–426,
1997.

[vdA98] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[vdABL08] Wil M. P. van der Aalst and Kristian Bisgaard Lassen. Translating unstructured work-
flow processes to readable bpel: Theory and implementation. Inf. Softw. Technol.,
50(3):131–159, 2008.

[vdAtHKB02] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workfow
patterns. Technical report, Eindhoven University of Technology, Netherlands, 2002.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[vdAvH02] Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

[W3c00] W3c. Simple object access protocol (soap) 1.1. Technical report,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 2000.

[W3c01] W3c. Web services description language (wsdl) 1.1. Technical report,
http://www.w3.org/TR/wsdl, 2001.

[W3c02] W3c. Web service choreography interface (wsci) 1.0. Technical report,
http://www.w3.org/TR/wsci/, 2002.

[W3c03] W3c. Qos for web services: Requirements and possible approaches. Technical report,
W3C Working Group Note, Nov. 2003.

[W3c04a] W3c. Owl-s: Semantic markup for web services. Technical report,
http://www.w3.org/Submission/OWL-S/, 2004.

[W3c04b] W3c. Web services architecture. Technical report, W3C Working Group, 2004.

[Wan98] Jiacun Wang. Timed Petri Nets. Springer International Series on Discrete Event Dy-
namic Systems, 1998.

[WHK08] Wolfram Wiesemann, Ronald Hochreiter, and Daniel Kuhn. A stochastic programming
approach for qos-aware service composition. In Eighth IEEE International Symposium
on Cluster Computing and the Grid, 2008.

[Win86] Glynn Winskel. Event structures. Advances in Petri Nets, pages 325–392, 1986.

[WKCM08] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. A timed semantics
of orc. Theoretical Computer Science, 402:234–248, 2008.

[WVKT06] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection model
for semantic web services. In ICSOC, 2006.

[WWW+07] Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen, and Rodolfo Santiago.
Quality of service contract specification, establishment, and monitoring for service level
management. Journal of Object Technology: Special Issue on Advances in Quality of
Service Management, 6(11):25–44, 2007.

[WZZF09] Kaibo Wang, Xingshe Zhou, Shandan Zhou, and Ning Fu. Simplify stochastic qos
admission test for composite services through lower bound approximation. In IEEE
International Conference on Services Computing, 2009.

[XFZ08] Peng Cheng Xiong, Yu Shun Fan, and Meng Chu Zhou. Qos-aware web service config-
uration. IEEE Trans. on Systems, Man and Cybernetics, 38:888–895, 2008.

251

Bibliography Bibliography

[XSCT02] Wei Xie, Hairong Sun, Yonghuan Cao, and Kishor S. Trivedi. Optimal webserver session
timeout settings for web users. In Computer Measurement Group Conference, pages
799–820, 2002.

[YB07] Qi Yu and Atman Bouguettaya. Framework for web service query algebra and optimiza-
tion. ACM Transactions on the Web, 5:1–34, 2007.

[YB08] Qi Yu and Athman Bouguettaya. Framework for Web service query algebra and opti-
mization. TWEB, 2(1), 2008.

[YKL+07] Jun Yan, Ryszard Kowalczyk, Jian Lin, Mohan B. Chhetri, Suk Keong Goh, and Jiany-
ing Zhang. Autonomous service level agreement negotiation for service composition
provision. Future Gener. Comput. Syst., 23:748–759, July 2007.

[YL05] Tao Yu and Kwei-Jay Lin. Service Selection Algorithms for Composing Complex Ser-
vices with Multiple QoS Constraints. In Boualem Benatallah, Fabio Casati, and Paolo
Traverso, editors, ICSOC, volume 3826 of Lecture Notes in Computer Science, pages
130–143. Springer, 2005.

[YRB+10] Qi Yu, Manjeet Rege, Athman Bouguettaya, Brahim Medjahed, and Mourad Ouzzani.
A two-phase framework for quality-aware web service selection. SOCA, 4:63–79, 2010.

[YSS05] H. Jeong Y. Seo and Y. Song. Best web service selection based on the decision making
between qos criteria of service. In Intl. Conf. on Embedded Soft. and Sys., 2005.

[YZL07] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web, 1, 2007.

[ZBD+03] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z.
Sheng. Quality driven web services composition. In World Wide Web Conference, 2003.

[ZBN+04] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services composition.
IEEE Transactions on Software Engineering, 30:311–326, 2004.

[ZLC07] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the qos for web services. In
ICSOC, 2007.

[ZNB+08] Liangzhao Zeng, Anne H.H. Ngu, Boualem Benatallah, Rodion Podorozhny, and Hui
Lei. Dynamic composition and optimization of web services. Distrib Parallel Databases,
24:45–72, 2008.

[Zsc10] Steffen Zschaler. Formal specification of non-functional properties of component-based
software systems. Softw Syst Model, 9:161–201, 2010.

[ZYZB11] Huiyuan Zheng, Jian Yang, Weiliang Zhao, and Athman Bouguettaya. Qos analysis for
web service compositions based on probabilistic qos. In Gerti Kappel, Zakaria Maa-
mar, and Hamid R. Motahari-Nezhad, editors, ICSOC, volume 7084 of Lecture Notes in
Computer Science, pages 47–61. Springer, 2011.

[ZZ04] Tanja Zseby and Sebastian Zander. Sampling schemes for validating service level agree-
ments. Technical report, Centre for Advanced Internet Architectures, 2004.

252

List of Figures

1.1 Un ensemble de service composite orchestration démontrant des com-
posants. 19

1.2 Une non-monotone orchestration. 20

2.1 Clients invoke web services be exchanging SOAP messages. WSDL spec-
ifications are compiled into stubs and skeletons. Providers advertise their
services on a UDDI registry that can be queried by the clients [ACKM04]. 40

2.2 An Orchestration refers to an executable process while a Choreography
tracks the message sequences between parties and sources [Pel03]. 45

2.3 A BPEL process flow [Pel03]. 49

2.4 Aggregating QoS metrics for various domains and operations [CPEV05a]. 56

2.5 A composite service orchestration demonstrating assembly of components. 57

2.6 A non-monotonic orchestration. 58

2.7 Response time distribution of an API. 60

2.8 Role of a Web Service Level Agreement [LKD+03]. 62

3.1 TravelAgent1: Simple travel agent; (a) informal diagram, and (b) Petri net form,

where rectangles figure transitions and rounded rectangles figure places. This

orchestration has a data-independent workflow. 81

3.2 TravelAgent2: A variation of TravelAgent1 having a data-dependent workflow. 82

3.3 A simple orchestration where monotonicity does not hold; the two alternatives

are selected on the basis of best cost of air fare. 83

3.4 TravelAgent3: A variation of TravelAgent2 lacking monotonicity. 83

3.5 A simple example. Only QoS values are mentioned — with no data. Each place

comes labeled with a QoS value q which is the q-color of the token if it reaches

that place. 90

3.6 Enforcing monotonicity through service aggregation, mid diagram, with δq′
12

=

δq′
1
⊕δq′

2
and δq′′

12
= δq′′

1
⊕δq′′

2
. Pessimistic QoS evaluation, right diagram, with

δq12 = δq′
12
∨δq′′

12
. 100

3.7 Separation of concerns in QoS-aware specification. The functional specification

is depicted last in boldface, whereas the QoS part is shown in italics on

top in the form of a rich SLA specification. 103

3.8 Rewriting rule for weaving response time. 104

3.9 Rewriting rule for weaving cost. 104

3.10 Declaration of the SLA for the TravelAgent2 orchestration. 108

3.11 Orc functional specification. 109

3.12 Orc QoS-weaved specification . 110

3.13 We show results from two experiments. For each experiment we display cu-

mulative densities of: (a) Measured latency of invoked services (b) End-to-end

latency for TravelAgent 2/3 orchestrations through two evaluation schemes (c)

Measured cost of invoked services (d) Returned cost invoice of TravelAgent 2/3

orchestrations. 111

253

List of Figures List of Figures

4.1 Technique to enrich Orc outputs with Causality. 119

4.2 The basic rules . 120

4.3 The complete rules . 122

4.4 OIL Rewriting to include Causal Information. 123

5.1 Feature Diagram / Model of the Crisis Management System with asso-
ciated real-world service assets. 137

5.2 Composite Web Service Orchestration of the CMS. 139

5.3 Distribution fitting of actual response times of a web service invocation. 141

5.4 Varying configurations of the atomic services (a) Configuration C1 (b)
Configuration C15. 142

5.5 Response times of the pairwise configurations with emphasis on compar-
ing the three configurations with highest response times. 143

5.6 Box-plot representation of the pairwise configurations with the median
values marked for the extreme cases. 144

5.7 Comparison of pairwise and exhaustive generation of configurations with
25, 50, 75 and 90 percentile values of response time distributions. 145

5.8 Percentile values of most deviant scenarios generated by pairwise inter-
actions for the CMS orchestration. 146

5.9 Comparison of two pairwise samples with 25, 50, 75 and 90 percentile
values of response time distributions. 147

6.1 C 3MS Feature Diagram. 157

6.2 Composite Service Orchestration of the C 3MS 158

6.3 eHealth Feature Diagram. 159

6.4 Composite Web Service Orchestration of the eHealth system. 160

6.5 Response time distributions of the 185 pairwise configurations for C 3MS .162

6.6 Availability, Data Quality and Cost of the pairwise configurations of
C 3MS . 162

6.7 Response time distributions of the 188 pairwise configurations for eHealth.163

6.8 Availability, Data Quality and Cost of the pairwise configurations of
eHealth. 164

6.9 Three runs of random generation of configurations for C 3MS 164

6.10 Comparison of pairwise and random response time (arranged in increas-
ing order) of percentile values for 185 configurations of C 3MS 165

6.11 Comparing stability of pairwise and random samples for eHealth. 166

7.1 Comparison Scale for AHP [Saa80]. 175

7.2 Architecture of the Dell example. 177

7.3 QoS interactions in the Dell supply chain. 178

7.4 Output of the Orc program plugged into the LPSolve IDE. 183

7.5 Optimal setting of parameters in the Dell Supply Chain. 184

7.6 Distributions of the inventory levels in the Dell system. 184

7.7 Optimization output for a single setting of the Dell example in MATLAB.185

8.1 Architecture of the Dell example. 194

8.2 Inter-query period distributions and fitting. 196

8.3 Response time distributions and fitting. 196

8.4 Measured response time and thresholds (without distribution fitting). . 197

8.5 Assumption: Plant side demand distributions. 197

8.6 Guarantee: Supplier side procurement delays. 198

9.1 The GarageOnline orchestration. 209

254

List of Figures List of Figures

9.2 Latency improvements with 10 rounds of negotiation for GarageOnline

(a) Using optimization strategy (b) Random strategy. The Fig. (c)
shows Cost incurred with 10 rounds of negotiation. 213

9.3 Improvements in performance of individual services after 10 rounds of
optimization strategy. 214

9.4 An example of an optimization run in MATLAB. 215

10.1 QoS enhanced Orc output. 218
10.2 Platform for contract based management of monotonic orchestrations. . 225
10.3 Distribution fitting in MATLAB. 226
10.4 Web service invocation via SOAP. 226

255

Résumé

Les services Web sont des applications logicielles avec des implémentations hétérogènes,
dont les interfaces et les incarnations peuvent être définis, décrits et découverts sur un
réseau. Une orchestration de tels services Web fournit un flux de contrôle centralisé
pour les services composites, qui peuvent invoquer d’autres services en utilisant une série
de constructions (séquentielle, parallèle, avec des timeouts par exemple). L’objectif de
cette thèse est d’étudier l’effet des paramètres de Qualité de Service (QoS) dans la
performance et les obligations contractuelles de ces orchestrations. Tout d’abord, nous
générons un modèle précis pour étudier la QoS probabiliste multi-dimensionnelle dans
les services Web. Lorsque la dépendance des données est présente dans les orchestra-
tions, les conditions pour assurer la monotonie sont nécessaires et sont intégrées. Nous
présentons une algèbre riche pouvant gérer plusieurs dimensions de la QoS et fournir une
composition de contrat probabiliste. Une conséquence de cela est l’«entrelacement» des
paramètres de QoS en spécifications fonctionnelles des orchestrations, qui peut fournir
d’autres fonctionnalités intéressantes comme l’ordonnancement causal d’un flux de con-
trôle d’orchestration. Ensuite, nous étudions les effets de ces modèles de QoS sur la
gestion améliorée des SLAs (Service Level Agreement). Les applications de cette ar-
chitecture de gestion de la QoS sont diverses et comprennent la prise en compte de la
variabilité au sein de la gamme de produits, des progiciels mathématiques pour la prise
de décision, des techniques de simulation avancées pour quantifier les contrats et des
protocoles de négociation améliorés. Certaines de ces techniques sont implémentées au
dessus d’Orc, un langage de programmation concurrente ayant des constructions pour
gérer plusieurs aspects de spécifications d’orchestration.

Mots Clés: QoS, Orchestrations de Services Web, SLA, Orc.

Abstract

Web Services are software applications that have heterogeneous implementations, whose
interfaces and bindings are capable of being defined, described and discovered over a
network. An orchestration of such web services provides a centralized control flow for
composite services, that can invoke other services using a series of constructs (sequen-
tial, parallel, with timeouts for instance). The focus of this thesis is to study the effect
of Quality of Service (QoS) metrics in the performance and contractual obligations
of such orchestrations. Firstly, we generate an accurate model to study probabilistic
multi-dimensional QoS in web services. When data dependency is involved in orches-
trations, conditions to ensure monotonicity are necessary and are incorporated. A rich
algebra is presented that can handle multiple dimensions of QoS and provide prob-
abilistic contract composition. A consequence of this is “weaving” QoS metrics into
functional specifications of orchestrations, that can provide other interesting features
such as the causal history of an orchestration control flow. Secondly, we study the ef-
fects of such models of QoS on improved Service Level Agreement (SLA) management.
From incorporating product line variability and mathematical packages for decision
making, to superior simulation techniques to quantify contracts and improved negotia-
tion protocols: these are the applications of the QoS management framework. Some of
these techniques are implemented over Orc, a concurrent programming language with
constructs to handle multiple features of orchestration specifications.

Key Words: QoS, Web Services Orchestrations, SLA, Orc.

 VU : VU :

 Le Directeur de Thèse Le Responsable de l'École Doctorale
 Albert BENVENISTE

 VU pour autorisation de soutenance

 Rennes, le

Le Président de l'Université de Rennes 1

 Guy CATHELINEAU

 VU après soutenance pour autorisation de publication :

 Le Président de Jury,
 Jean-Marc JEZEQUEL

	I Gestion Flexible de la Qualité de Service dans les Orchestrations de Services Web.
	Résumé en Français
	Technologies de Services Web
	Composition de Services Web
	Langages pour Spécifier des Orchestrations
	Qualité de Service
	QoS dans les services Web
	Composition de QoS
	Monotonie dans les Orchestrations
	Service Level Agreements
	Négociation
	Surveillance

	Optimisation dépendante de la QoS

	Organisation de la thèse

	II Flexible Quality of Service Management of Web Services Orchestrations.
	Introduction
	Web Services Technologies
	XML: Extensible mark-up language
	UDDI: Universal Description, Discovery and Integration
	WSDL: Web Services Description Language
	SOAP
	REST: Representational State Transfer

	Web Service Composition
	Workflow Management
	Orchestrations
	Formal Models for Service Orchestrations
	Statecharts
	Petri Nets
	-calculus
	Composition Models

	Languages to Specify Orchestrations
	BPEL: Business Process Execution language
	Orc
	Sites
	Combinators
	Values, Definitions and Time
	Semantics
	Contributions

	Quality of Service
	QoS in Web Services
	QoS Composition
	Contributions

	Monotonicity in Orchestrations
	Contributions

	Service Level Agreements
	Negotiation
	Monitoring
	Contributions

	QoS dependent Optimization
	Contributions

	Thesis Organization
	Chapter 3: QoS-Aware Management of Monotonic Service Orchestrations
	Chapter 4: Leveraging Causality for QoS Tracking in Service Oriented Systems
	Chapter 5: Variability Modeling and QoS Analysis of Web Services Orchestrations
	Chapter 6: Pairwise Testing of Dynamic Composite Services
	Chapter 7: Optimizing Decisions in Web Services Orchestrations
	Chapter 8: Importance Sampling/Splitting of Probabilistic Contracts in Web Services
	Chapter 9: Negotiation Strategies for Probabilistic Contracts in Web Services Orchestrations

	Future Work

	QoS-Aware Management of Monotonic Service Orchestrations
	Introduction
	Running Example
	Key Issues
	Monotonicity and Consequences for Management
	Handling Probabilistic QoS

	Our Contribution
	An Abstract Algebraic Framework for QoS composition
	A Careful Handling of Monotonicity
	Support for Separation of Concerns
	A Methodology: Managing QoS by Contracts

	Related Work
	QoS Calculus
	An Informal Introduction to the QoS Calculus
	Some Examples of QoS Domains
	Formalizing the QoS Calculus

	A Theory of QoS for Workflows
	Petri Nets, Occurrence Nets, and Orchestration Nets
	OrchNets: Definition and QoS Semantics, Application to QoS Composition
	Monotonicity: Results
	Probabilistic OrchNets
	Ensuring Monotonicity

	Summary of the Theory for Practical Use
	Implementing Our Approach
	Weaving QoS in Orchestrations
	Upgrading Orc for QoS
	The TravelAgent2/3 Example in Orc

	Evaluation of Our Approach
	Conclusion

	Leveraging Causality for QoS Tracking in Service Oriented Systems
	Introduction
	Orc syntax
	Causality
	The algebra of causality
	Transformation rules
	Orc with Causality: Examples

	Causality and QoS Tracking
	QoS domain
	The special competition operator

	Composite QoS, no ambient metrics involved
	Composite QoS, with ambient metrics involved
	Extending Orc for QoS
	Enhancing the algebra of causality to support QoS: first attempt
	Enhancing the algebra of causality to support QoS: the right solution
	The rules
	Orc with Causality and QoS: Examples

	Related work
	Conclusions

	Variability Modeling and QoS Analysis of Web Services Orchestrations
	Introduction
	Foundations
	Modeling Variability in Composite Services
	Service Orchestration using Orc
	Configuration Generation from Feature Diagram
	QoS Aspects of the Orchestration

	Methodology
	Crisis Management System Case Study
	Feature Diagram of CMS
	Service Orchestrations in CMS

	Experiments
	Simulation of QoS Distributions
	Generating a sample of configurations for CMS
	Evaluating QoS of a Composite Service
	Evaluating the Pairwise Sampling Technique

	Related Work
	Conclusion and Perspectives

	Pairwise Testing of Dynamic Composite Services
	Introduction
	Foundations
	Feature Diagrams
	Service Orchestrations using Orc
	Feature Diagrams with Orchestrations
	Combinatorial Interaction Testing
	QoS Aspects of the Orchestration

	Methodology
	Case Studies
	Car Crash Crisis Management System
	eHealth Management System

	Experiments
	Evaluating QoS of the Car Crash Crisis Management System
	Evaluating QoS of the eHealth System
	Comparison with Random Sampling
	Consistency of Pairwise Samples
	Perspectives due to Analysis
	Threats to Validity

	Related Work
	Conclusion

	Optimizing Decisions in Web Services Orchestrations
	Introduction
	Fundamentals
	Optimization models
	QoS in Web Services
	Analytic Hierarchy Process

	Methodology
	Formulating Optimization Problems
	Optimization Routines in Orc
	QOrc: Upgrading Orc for QoS management
	Interfacing QOrc to Optimization Services

	Optimal Decision Results
	Related Work
	Conclusion

	Importance Sampling/Splitting of Probabilistic Contracts in Web Services
	Introduction
	Foundations
	QoS in Web Services
	Probabilistic Contracts
	Orc

	Rare Event Simulation Techniques
	Importance Sampling
	Importance Splitting

	Dell Supply Chain
	Contract Composition
	Forecasting

	Upgrading WSLA Specifications
	Related Work
	Conclusion

	Negotiation Strategies for Probabilistic Contracts in Web Services Orchestrations
	Foundations
	Web services' QoS
	Probabilistic Contracts
	Contract Negotiation
	Orc

	Optimization Formulation
	Stochastic Optimization
	Web Services' Negotiation

	GarageOnline Example
	Composite Contract Re-Negotiation
	Runtime Negotiation
	End-to-end QoS
	Re-negotiation methodology

	Negotiation Specification
	Negotiation Results
	Related Work
	Conclusions

	Implementation Overview
	Orc
	Weaving QoS algebraic rules
	Updating OIL
	Q-Orc: Updating Orc with QoS
	Monotonicity

	Platform for QoS Management
	Management Tasks
	Experimentation

	Appendices
	Proofs from Chapter 3
	Proof of 2
	Proof of 3, Sufficiency
	Proof of 3, Necessity

	Pairwise Products in Chapters 5 and 6
	Dell Example in Chapters 7 and 8
	Orc code
	MATLAB code

	Importance Sampling/Splitting codes for Chapter 8.
	Stochastic Dominance for Chapter 9
	Q-Orc Implementation Outline from Chapter 10.

	Bibliography
	List of figures

