

www.thalesgroup.com

Hybridation d'un module de pompe sur un substrat de verre pour application à un LiDAR embarqué

Thomas Nappez

Directeurs de thèse : E. Ghibaudo, J-E Broquin

IMEP-LaHC, Minatec, Grenoble

Responsables industriels : P. Rondeau, J-P Schlotterbeck THALES Avionics S.A., Valence

Soutenance de thèse, 27 septembre 2012, Minatec, Grenoble

Introduction

- LiDAR pour l'avionique
- Pompage optique
- Objectifs de l'étude

Dimensionnement

- Fonctionnement d'une diode laser de pompe
- Dimensionnement du convertisseur modal

Réalisation

- Convertisseur modal
- Verrouillage de la diode laser à ruban large

Perspectives & conclusion

Contexte

Avionique

• Equipements électroniques

Garantir la sécurité du vol

Principe du vol

• Compenser le poids R o Portance Mesure continue de V_{air}

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

• Système anémo-barométrique

• Recommandation

2nd système avec modes de défaillances différents

Mesure optique

Anémométrie laser

Anémométrie-laser • Principe Particule de vitesse V_{air} Lumière incidente (ν_0)

Effet Doppler $\Delta v =$

Lumière réfléchie

• Principe physique différent

Modes de défaillances différents

• Sonde placée à l'intérieur

Contraintes environnementales moins fortes

• ALEV 3 (1988, Sextant Avionique)

Premiers développements

 $\lambda = 10,6 \ \mu m$; $h = 75 \ cm$; 70 kg

Intérêt démontré	\odot
Mesure de référence	\odot
Encombrant	$\overline{\mbox{\scriptsize (s)}}$

Intégration

 $(\nu_0 + \Delta \nu)$

$$=-\frac{2V_{ai}}{\lambda}$$

Optique intégrée

Technologie fibrée (DALHEC 2001)

• Laser à fibres Er³⁺

 λ = 1,53 µm ; L = 15 cm ; 2 kg

Encombrement réduit Composants bas coût Sécurité oculaire Vibration mécanique Securité Se

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Optique intégrée sur verre (NESLIE 2006)

• Laser DFB sur verre Yb³⁺/Er³⁺

Commande électrique Diode laser de pompe 0,98 µm Isolateur

IMEP-LAHC

HALES

Améliorations envisagées

Système actuel

Intégration sur verre

- Multiplexeur (Onestas, 2011)
- Isolateur (Collaboration LT2C, St Etienne)

• Diode laser

Hybridation d'une diode laser sur verre Suppression d'un étage d'amplification

Sujet de l'étude : • hybridation de la diode laser de pompe

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Substrat de verre

Caractéristiques requises pour la pompe optique

Contraintes

- Puissance en sortie DFB > 200 mW
 Efficacité 5 % → P_{pompe} > 4 W
- o Recouvrement pompe/signal
 → Monomode
- Pompage Yb³⁺ sur verre

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Instabilités d'une DL

Revue des solutions existantes

Diode laser à ruban étroit

• Emission monomode

InGaAs/AlGaAs

- R_B = (1..10) %
- $L_{\text{ext}} = (5..200) \text{ cm}$
- $\partial \lambda / \partial T = 0.01 \text{ nm.K}^{-1}$
- $P_s^{\text{max}} = 1 \text{ W}$ (densité de puissance)

- $P_{\rm s} = 1,4$ W
- Solution en optique de volume

Revue des solutions existantes

Intégration du filtre spatial

JDS Uniphase, USP, 2003 (USA)

- Puissance disponible 🛛 🕲
- Compacité
- Coût 😕
- Fiabilité 😕
- Stabilité mécanique

Intégration monolithique

Teem Photonics, USP, 2001 (France)

 Puissance disponible 	\odot
• Compacité	\odot
• Coût	\odot
• Fiabilité	٢
• Stabilité mécanique	\odot

Objectif : développer la technologie pour réaliser un démonstrateur

 \bigotimes

Etude menée

Convertisseur Puce complète

Rétroaction : stabilisation temporelle

Variations de puissance

• Origine des variations

• Influence des variations

Problème des variations lentes

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Effondrement de cohérence

• Diode laser seule

• Diode laser avec rétroaction

Rétroaction : stabilisation spectrale

Principe

• Réflexion sélective en fréquence

Réseau de Bragg

Mécanisme

 $R_{\text{ext}}(v)$ -

Stabilisation spectrale et temporelle

HALES

Rétroaction : verrouillage du mode fondamental

- Filtrage des modes d'ordre supérieur
 - Epanouisseur dans la cavité externe

- Réflexion du mode fondamental
 - Rétroaction sur la partie monomode

 Diminution des pertes pour m = 0
 Transition adiabatique

Dimensionnement de l'épanouisseur

Contraintes du convertisseur modal

Guide d'onde d'entrée

• Modes d'une diode laser

• Asymétrie & fort confinement

Guide d'onde de sortie

• Mode du guide actif

• Symétrie quasi-circulaire & faible confinement

IMEP-LAHC

Contraintes différentes : échange d'ions sur verre

HALES

Echange d'ions dans un verre

Echange d'ions thermique

• Profil diffusé $\sigma \approx (2..5) \, \mu m$

• Profil symétrisé $\sigma_x \approx \sigma_v \approx (5..10) \ \mu m$

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Echange sous champ

• Profil à quasi-saut $\sigma \approx (1..3) \mu m$

Efficacité de couplage

Recouvrement vertical	Entrée	Sortie
Ech. therm.	62 ± 3	88 ± 1
Enterrage	39 ± 2	95 ± 1
ESC	76 ± 2	70 ± 3

Côté DL : ESC

IMEP-LAHO

Côté DFB : Ech. therm.

Echange sous champ sélectif

Adiabaticité

• $E_{\text{ext}}(z = 1 \text{ cm}) = E_0 / 100$

• 90 % de variation en 5 mm

o Critère

 $\tan \theta_y(z) \ll \frac{d(z)}{\lambda_0} \left(n_{\rm eff}(z) - n_{\rm eff}^{\rm ray} \right)$ Love et al., *IEEE Proc. Of Opt., 1991*

Marge de 10 %

Paramètres *T*, *E*, *t* optimisés pour couplage

Dimensionnement du convertisseur modal

Transition horizontale

Synthèse

Adiabaticité

 $\theta_x(z) < \frac{\lambda_0}{n_0 w(z)}$

Milton et al., JQE, 1977

• Epanouisseur linéaire

 $L_{\rm epa} > 16 \ {\rm mm}$

• Epanouisseur exponentiel & parabolique

 $L_{\rm epa} > 5 \ \rm mm$

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Organisation de l'étude

• Dimensionnement

Rétroaction

Convertisseur modal

o Réalisation et caractérisation

Convertisseur

Puce complète

Procédé de fabrication

Premiers résultats

Fabrication

Profil de mode

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Pertes par propagation

• Bancs de caractérisation

Quatre inconnues → quatre mesures

Optimisation du procédé d'ESC

Origine des pertes

 Présence de bulles dans les bains

 Mauvaise tenue du masque (Al₂O₃)

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Optimisation

• Epaisseur Al₂O₃ doublée

- Plaquette retournée
- Agitation automatique
 - → Décollement des bulles

Procédé d'ESC validé

Transition verticale

Différence de confinement

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

THALES

Transition horizontale

Objectif

Intensité en sortie

Effet de pointe lors de l'ESC

Calcul du mode fondamental

Mesure des pertes à la transition

• Bancs de caractérisation

Méthode des 4 mesures + 2 mesures supplémentaires

Pertes en excès

	L _{epa} [mm]	P_{epa} [dB]
	15	$1,1 \pm 0,7$
LIN	10	Х
	5	$1,6 \pm 0,7$
	15	$1,1 \pm 0,7$
EXP	10	$1,0 \pm 0,7$
	5	$0,8 \pm 0,7$
	15	$2,3 \pm 0,7$
PAR	10	$2,1 \pm 0,7$
	5	х

Guide d'onde d'entrée

Couplage en bout

• Diode laser

105 µm

• Guide d'onde d'entrée

• Efficacité de couplage mesurée : $\eta_{DL} = (21 \pm 1) \%$

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Solution : réseau de fenêtres

• Simulation ($\Delta V = 0$)

Convertisseur modal

Convertisseur à plots

• Structure

• Fabrication (plots 2 µm x 2 µm)

Convertisseur à réseau

• Structure

Taille minimale inscriptible : $p = 6 \ \mu m$; $w_p = 2 \ \mu m$

• Intensité en sortie du GO large

 $85\,\mu m$

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

THALES

Deux étapes de validation

• Démonstration du verrouillage

• Intégration du réseau de Bragg

 $R_{\rm R}$ (979 nm) = 80 % ; $\Delta \lambda_{\rm B}$ = 0,3 nm ; $L_{\rm ext}$ = 1 m

• Réduction du seuil

 $I_{\rm th} = 245 \text{ mA} \rightarrow I_{\rm th} = 225 \text{ mA}$

• Pic autour de $\lambda_{\rm B}$

• Plusieurs pics lasers

Répartition m=0 inhomogène

HALES

Caractérisation du verrouillage

Loi de puissance / courant

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

P(*I* = 1,5 A) = 94 mW
 Sans réseau :
 P = 7,5 mW

Verrouillage intégré

Réseau de Bragg

Verrouillage intégré

IMEP-LAHC

THALES

Banc de caractérisation Analyseur de spectre **DL** ruban FO monomode Puce optique **Spectres** • Pic stable autour de $\lambda_{\rm B}$ 100 $0,10 \text{ nm} < \Delta \lambda_{\mathsf{B}} < 0,50 \text{ nm}$ Intensité [u.a., échelle log.] $d\lambda/dT < 0.07 \text{ nm.A}^{-1}$ 50 *SMSR* > 20 dB pour *I* < 1,8 A 0 Verrouillage intégré I=2.0A démontré I=1.5A -50I=1.0A • Puissance en sortie I=0.8A --- --- --- --- ---I=0.5A -100I=0.3A $R_{\rm B}$ élevée & faible couplage I=0.26A $P_{\rm s}$ (I = 1,5 A) = 700 μ W 976 977 978 979 Longueur d'onde [nm]

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

34 /

Améliorer le couplage avec la diode laser

• Démonstrateur : $\eta_{DL} = (21 \pm 1)\%$

• Convertisseur à réseau : $\eta_{DL} = (47 \pm 2)\%$

Resserrer le réseau de fenêtre

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales S.A. Ce document est la propriété de Thales Group et il ne peut être reproduit ou communiqué sans autorisation écrite de Thales S.A.

Diminuer la force du réseau

• Supprimer la résine résiduelle après développement

Modification de la résine

Nettoyage 0₂ avant gravure

Contrôle fin de la durée de gravure dans le verre P_{pompe} maximale $\alpha_c^{DL} = 70 \% : R_B = 7 \%$ $\Rightarrow P_p^{fibre} = 0,41 \times P_{DL}$ $P_p^{fibre} = 800 \text{ mW}$

35 /

Perspective : pompage intra-cavité

Pompage monolithique

• R_B élevée

Puissance intra-cavité
élevée

• Pompage intra-cavité

Pompage laser DFB

• Milieu non linéaire

Génération de seconde harmonique

• Laser DFB encapulé Casale et al., *Proc. of SPIE* (8264), 2012

HALES

- Objectif : réalisation d'une source de pompe optique pour l'avionique
 - BALD & convertisseur modal sur verre
 - Rétroaction optique avec réseau de Bragg

Réalisation d'un convertisseur modal

- Couplage en entrée : $\eta_{DL} = 50 \%$
- Couplage en sortie : $\eta_{FO} = 70 \%$
- Transition adiabatique

- Verrouillage de la BALD
 - Démonstration de la faisabilité
 - **ο** *P* = 700 μW
- Perspectives
 - *P* = 800 mW

• Pompage intra-cavité

IMEP-LAHC

