Technique de la cinématique inverse pour l'étude des rendements isotopiques des fragments de fission aux énergies GANIL

Olivier DELAUNE Université de Caen Basse-Normandie

Soutenance de thèse sous la direction de Fanny FARGET et Abdelouahad CHBIHI Caen, mardi 30 octobre 2012

MINISTÈRE ENSEIGNEMENT SUPÉRIFUI

ET DE LA RECHERCHE

- Pourquoi et comment étudier la fission ?
- Fission induite par transfert et fusion avec VAMOS
- Fusion-fission avec LISE
- Résultats et discussion

Description macro-microscopique de la fission

Phénomène dynamique

Compétition fission/évaporation

Modèle de la goutte liquide :> Fission symétrique> Déformation identiquedes deux fragments de fission

Description macro-microscopique de la fission

Modèle de la goutte liquide :> Fission symétrique> Déformation identiquedes deux fragments de fission

Prise en compte des effets de couches :> Minima de l'énergie potentielle modifiés> Fission asymétrique

Description macro-microscopique de la fission

Quels gaps en énergie à ces déformations ?

Influence des gaps des couches proton et neutron

Importante correction de couche pour N≈86,88,90 ? Aucun effet visible pour les protons

Influence des gaps des couches proton et neutron : apport de l'expérience

<A_{lourd}> constant (A≈139)

• <Z_{lourd}> constant (Z≈54)

Aucune information sur la distribution en neutrons

Influence des gaps des couches proton et neutron : apport de l'expérience

<A_{lourd}> constant (A≈139)

<Z_{lourd}> constant (Z≈54)

Aucune information sur la distribution en neutrons

Distributions isotopiques en cinématique directe

L'énergie cinétique des produits de fission lourds n'est pas suffisante pour obtenir une résolution suffisante => difficulté importante pour mesurer le Z des fragments lourds

Distributions isotopiques en cinématique inverse

- Produits de fission focalisés vers l'avant : transmission améliorée
- Produits de fission avec une énergie cinétique plus importante : amélioration de l'identification (meilleure résolution)

Distributions isotopiques en cinématique inverse

- Produits de fission focalisés vers l'avant : transmission améliorée
- Produits de fission avec une énergie cinétique plus importante : amélioration de l'identification (meilleure résolution)

Étude de la fission avec la cinématique inverse

	expérience VAMOS		expérience LISE	
Faisceau	²³⁸ U à 6,1 A MeV		²³⁸ U à 24 A MeV	
Cible	¹² C (0,1 mg/cm ²)		⁹ Be (15 mg/cm²)	¹² C (15 mg/cm ²)
Е _{см}	70 MeV		≈ 185 MeV	≈ 240 MeV
Réactions	Fusion	Transfert	Fusion complète et incomplète	
Actinides produits	²⁵⁰ Cf	²³⁸ U, ²³⁹ Np, ^{240,241} Pu	²⁴⁷ Cm	²⁵⁰ Cf
Énergie d'excitation	45 MeV	≈ 10 MeV	≈ 180 MeV	≈ 220 MeV

Plan

- Pourquoi et comment étudier la fission ?
- Fission induite par transfert et fusion avec VAMOS
 - Identification des produits de fission
 - Rendements isotopiques
- Fusion-fission avec LISE
- Résultats et discussion

Fission induite par transfert et fusion

Fission induite par transfert

X. Derkx Thèse de doctorat. Université de Caen Basse-Normandie, 2010

Reconstruction de la distribution angulaire

8 valeurs de $B\rho_0$ différentes

Reconstruction de la distribution angulaire

8 valeurs de $B\rho_0$ différentes

Détermination de l'acceptance en θ

Effet de l'acceptance en θ

Effet de l'acceptance en θ

Effet de l'acceptance en θ

Limites de la transmission dans le référentiel du système fissionnant

15

Correction de l'acceptance en θ

Correction de l'acceptance en θ

Correction de l'acceptance en θ

Fusion-fission mesurée avec LISE

17
Fusion-fission avec LISE : rendements

Simulation de la cinématique

> cinématique proposée par Wilkins TKE = $0.5A_1v_1^2 + 0.5A_2v_2^2 = Z_1Z_2e^2/D$

B.D. Wilkins et al., Phys. Rev. C 14 (1976)

Simulation de la distribution en état de charge > modèle de Schiwietz G. Schiwietz et P. Grande, NIM B 175 (2001)

Acceptance carrée de ±1°

Acceptance en Bp de 0,8 %

Facteur de correction : N_{produit}/N_{transmis}

- Pourquoi et comment étudier la fission ?
- Fission induite par transfert et fusion avec VAMOS
- Fusion-fission avec LISE

Résultats et discussion

- Rendements isotopiques du ^{240,241}Pu, ²³⁹Np, ²³⁸U
- Vitesse des produits de fission du ²⁵⁰Cf
- Rendements isotopiques du ²⁵⁰Cf
- Excès de neutrons et largeur des distributions isotopiques des produits de fission

Rendements isotopiques des produits de fission du ^{240,241}Pu

E* (MeV)

Distributions isotopiques des fragments de fission du 240,241 Pu (E* \approx 9 MeV)

Données cohérentes avec les mesures précédentes Largeur plus importante dans notre cas du fait de la contamination du ²⁴¹Pu et de l'énergie d'excitation plus importante

Distributions isotopiques des fragments de fission du 240,241 Pu (E* \approx 9 MeV)

Mesure complète des rendements des produits de fission lourds Bon accord avec les précédentes mesures

Distributions en A et en Z des fragments de fission du 240,241 Pu (E* \approx 9 MeV)

C. Schmitt *et al.* NPA 430(1) :21 – 60, 1984. A. Bail *et al.* PRC 84, 034605 (2011)

> Validité de notre méthode de reconstruction des rendements isotopiques

Distributions isotopiques des fragments de fission du ²³⁸U et du ²³⁹Np

²³⁹Np (E*≈6 MeV) (3500 événements)

24

90 100

53

54 Let

₅₅Cs

₅₆Ва

_{Į₅7}La

70

80

椚

Influence des effets de couches proton et neutron

²³⁸U (E*≈7 MeV) ²³⁹Np (E*≈6 MeV) ^{240,241}Pu (E*≈9 MeV)

	0		Pu
<z></z>	39,4	39,9	39,9
<z></z>	53,1	53,1	53,9
<n>_{léger}</n>	58,1	58,8	59,6
<n>_{lourd}</n>	82,7	82,8	83,0

Rôle stabilisateur de Z≈54 et N≈86 (83+3)

- <N>_{lourd}≈ 83

Vitesse des produits de fission du ²⁵⁰Cf

Contradiction avec la conservation de l'impulsion $m_1v_1 = m_2v_2$

Évolution de la déformation avec N

Déformation cohérente : les fragments les moins riches en neutrons étaient les plus déformés Pas visible dans les largeurs des distributions

Rendements isotopiques des produits de fission du ²⁵⁰Cf

- Distributions isotopiques sur deux ordres de grandeur (de ₃₀Zn à ₆₄Gd)
- Environ 600 isotopes identifiés

Distributions en A et en Z des fragments de fission du 250 Cf (E* = 45 MeV)

Pas d'évaporation de proton

Rendements identiques pour deux Z complémentaires

Présence d'un plateau

Distributions en A et en Z des fragments de fission du 250 Cf (E* = 45 MeV)

General model description of fission observables.

Distributions en Z

Évolution des distributions isotopiques avec l'énergie dans le centre de masse

Évolution de la largeur des distributions isotopiques des produits de fission

Conclusion (I)

- Excès de neutrons : sonde pour les temps de fission → changement de régime observé
 - Fission très rapide à E*=45 MeV
 - Fission plus lente pour les énergies de bombardement plus importantes (émission de particules avant d'atteindre le point selle)
- Contradiction de notre interprétation entre le <N>/Z et le $\sigma_{N(Z)}$ constant du ²⁵⁰Cf à E*=45 MeV et le plateau de la distribution en Z
- Position constante de la valeur moyenne des distributions en proton ET en neutron des fragments lourds → effet stabilisateur de Z=54 et N=86
- Vitesse de fission constante \rightarrow informations sur les déformations à la scission
 - Fragments déficients en neutrons plus déformés
 - Effet non visible dans les largeurs de distribution

Conclusion (II)

- Première utilisation de LISE et VAMOS pour mesurer des rendements de fission : nouvelle méthode d'analyse développée
- La cinématique inverse couplée à l'utilisation d'un spectromètre a permis la mesure complète de distributions isotopiques pour différents systèmes fissionnants
- Identification du système fissionnant avec le détecteur SPIDER dans les réactions de transfert (²³⁸U, ²³⁹Np, ^{240,241}Pu) ainsi qu'une estimation précise de l'énergie d'excitation du système fissionnant
- Bon accord entre nos données et de précédentes mesures

Perspectives

- Au GANIL
 - Expérience de juillet 2011
 - correction des problèmes de SPIDER : amélioration de la résolution et de la statistique
 - utilisation d'un autre bras en vis-à-vis de VAMOS pour mesurer le fragment complémentaire : mesure de l'évaporation de neutrons post-scission
 - Développement de faisceau de Th, ²³⁵U
- Ailleurs
 - Expérience SOFIA à GSI : mesure simultanée de la masse et du numéro atomique des deux fragments de fission pour une quinzaine de pré-actinides
 - Faisceau de pré-actinides à HIE-ISOLDE
- Contraintes sur les modèles

Correction de l'acceptance en ϕ

δ=Βρ/Βρ₀

Très grande acceptance (Bp \approx +-7 %) : fortes aberrations Dépendance en δ de la particule

Correction de l'acceptance en φ

δ=Βρ/Βρ₀

Très grande acceptance (Bp \approx +-7 %) : fortes aberrations Dépendance en δ de la particule

SPIDER : nouvelle expérience

Partage de l'énergie d'excitation (recul / actinide)

SPIDER seul:

SPIDER et VAMOS:

Expérience SOFIA

HIE-ISOLDE

Faisceau pré-actinide 10 MeV/u, > 10^{6} pps : $^{205-220}$ Rn, $^{205-227}$ Fr, $^{212-228}$ Ra Autres faisceaux (232 Th, 235,238 U, ...)

Vitesse des produits de fission

• v_{lab} et θ_{lab} sont mesurés

 \bullet $v_{_{Act}}$ est calculé à partir de la conservation de l'énergie

$$TKE \approx \frac{Z_1 Z_2 e^2}{D}$$
$$D = r_0 A_1^{1/3} \left(1 + \frac{2}{3}\beta_1\right) + r_0 A_2^{1/3} \left(1 + \frac{2}{3}\beta_2\right) + d$$

Avec $Z_2 = Z_{fiss} - Z_1$ et $A_2 = A_{fiss} - A_1$ avec prise en compte de l'évaporation de neutrons

$$v_{fiss} = \sqrt{\frac{2(A_{fiss} - A_1)Z_1(Z_{fiss} - Z_1)e^2}{A_1 m_0 A_{fiss}(r_0 A_1^{1/3}(1 + \frac{2}{3}\beta_1) + r_0 A_2^{1/3}(1 + \frac{2}{3}\beta_2) + d)}}$$

Évaporation de neutrons post-scission

Évolution du noyau composé dans la surface d'énergie potentielle

Noyau composé avec une faible énergie d'excitation fissionnent suivant la vallée asymétrique

Évolution du noyau composé dans la surface d'énergie potentielle

Noyau composé avec une grande énergie d'excitation fissionnent suivant la vallée symétrique

Évolution du noyau composé dans la surface d'énergie potentielle

Pour les grandes énergies de bombardements, une composante à basse énergie apparait du fait que le système fissionnant est moins bien défini (en Z, A et E*). Lorsque l'énergie de bombardement augmente, une partie de l'énergie cinétique est évacuée du système par des émissions de pré-équilibre.