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Abstract

In the last decade XML became one of the main standards for data storage and exchange
on the Web. Detecting XML query-update independence is crucial to efficiently perform
data management tasks, like those concerning view-maintenance, concurrency control,
and security. This thesis presents a novel static analysis technique to detect XML query-
update independence, in the presence of a schema. Rather than types, the presented
system infers chains of types. Each chain represents a path that can be traversed on
a valid document during query/update evaluation. The resulting independence analysis
is precise, although it raises a challenging issue: recursive schemas may lead to infer
infinitely many chains. This thesis presents a sound and complete approximation tech-
nique ensuring a finite analysis in any case, together with an efficient implementation
performing the chain-based analysis in polynomial space and time.
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Résumé

Pendant la dernière décennie, le format de données XML est devenu l’un des princi-
paux moyens de représentation et d’échange de données sur le Web. La détection de
l’indépendance entre une requête et une mise à jour, qui a lieu en absence d’impact
d’une mise à jour sur une requête, est un problème crucial pour la gestion efficace de
tâches comme la maintenance des vues, le contrôle de concurrence et de sécurité. Cette
thèse présente une nouvelle technique d’analyse statique pour détecter l’indépendance
entre requête et mise à jour XML, dans le cas où les données sont typées par un schéma.
La contribution de la thèse repose sur une notion de type plus riche que celle employée
jusqu’ici dans la littérature. Au lieu de caractériser les éléments d’un document XML
utiles ou touchés par une requête ou mise à jour en utilisant un ensemble d’étiquettes,
ceux-ci sont caractérisés par un ensemble de chaînes d’étiquettes, correspondants aux
chemins parcourus pendant l’évaluation de l’expression dans un document valide pour le
schéma. L’analyse d’indépendance résulte du développement d’un système d’inférence de
type pour les chaînes. Cette analyse précise soulève une question importante et difficile
liés aux schémas récursifs: un ensemble infini de chaînes pouvant être inférées dans ce
cas, est-il possible et comment se ramener à une analyse effective donc finie. Cette thèse
présente donc une technique d’approximation correcte et complète assurant une analyse
finie. L’analyse de cette technique a conduit à développer des algorithmes pour une im-
plantation efficace de l’analyse, et de mener une large série de tests validant à la fois la
qualité de l’approche et son efficacité.
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Chapter 1

Introduction

In the last decade, XML has established itself as one of the main standards for data
storage and exchange on the Web. Along with XML, a family of languages for querying
and manipulating XML data have been devised, such as W3C standards XPath, XQuery
and XSLT languages [SCF+07]. The recent W3C standardization of an update facility
for XML [RCD+11] attracted a big deal of attention by the database community. Many
old questions related to update optimization, already recognized as of crucial importance
for relational databases, are open again for XML. Three central issues related to XML
updates are view-maintenance, concurrency, and security.

View-maintenance Materialized views are precomputed queries from the database,
that are used to expedite query answering. Materialized views have been shown to
improve query evaluation performance by up to several orders of magnitude. View-
maintenance is the problem of propagating into a materialized view the changes in the
base data made by updates. View maintenance is a non-trivial process. Incremental
re-computations of the view can take time proportional to the database size just to
determine that no operation has to be done on the view and, in general, the problem is
non-trivial even for XPath based queries and updates [BGMM09].

Concurrency It is well known that, for ensuring high performances in the execution of
concurrent query and update expressions, it is fundamental to evaluate them in parallel.
Parallel evaluations, with a proper level of safety, can be ensured once one is able to
define concurrency control mechanisms, locking schemes and schedulers which guarantee
serializability of transactions on XML documents. All of this could be achieved, for
instance, by means of a commutativity analysis, able to check if two expressions can
be safely executed on a database independently of their order. Such an analysis would
permit also to optimize logical plans for query languages with side effects, as shown in
[GORS08].

Security Security views are a well studied framework to provide controlled access to
data XML [FCG04]. The idea is that each user-group is provided with an XML view

ix
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consisting of all and only the information that the users of that group are authorized to
access or to update. It is of crucial importance to verify that updates coming from a
user-group are executed respecting access control policies.

A way to entail an advance of technology in all such contexts, is to provide an efficient
solution to the problem of detecting XML query-update independence. Query-update
independence holds when a query and an update over a database do not interact, and
therefore the update does not alter query result.

How can independence detection help tasks of view-maintenance, concurrency and
security control? Intuitively, when a view is specified as a query, being able to determine
that there is no interaction between a query and and update, allows to skip the whole
view maintenance phase. Concerning concurrency control, if a query and an update do
not interact, then they commute, meaning that they can be safely executed in any order,
or even in parallel. Concerning security views, when these specify the part of data that
cannot be accessed or modified, independence can be used to ensure that updates can be
executed without violating the security policy expressed by the views.

A query and an update are independent when the query result is not affected by
update execution, on any possible input database. In all contexts where detecting query-
update independence is of crucial importance, benefits are amplified when query-update
independence can be checked statically. In order to be useful, every static analysis tech-
nique must be sound: if query-update independence is statically detected, then indepen-
dence does hold. The inverse implication (completeness) cannot be ensured in the general
case, since static independence detection is undecidable (see [BC09a]). This means that if
a static analyzer is used, for instance, in a view maintenance system, sometimes views are
re-materialized after updates even if not needed, because the analysis has not been smart
enough to statically detect a view-update independence. Useless view re-materialization
frequently occurs if a static analyzer with low precision is adopted. This can lead to
great waste of time, since view materialization cost can be proportional to the database
size.

High precision of static independence analysis can be ensured by taking into account
schema information. In many contexts, schemas are defined by users, mainly by means
of the DTD or XML Schema languages, while in other contexts quite precise schemas, in
the form of a DTD, can be automatically inferred, by using accurate and efficient existing
techniques like the one proposed by Bex et al. in [BNSV10]. Schema-based detection
of XML query-update independence has been recently investigated. The state of the art
technique has been presented by Benedikt and Cheney in [BC09a]. This technique infers
from the schema the set of node types traversed by the query, and the set of node types
impacted by the update. The query and the update are then deemed as independent if the
two sets do not overlap. This technique is effective since the static analysis i) is able to
manage a wide class of XQuery queries and updates, ii) can be performed in a negligible
time, and iii) as a consequence, even on small documents, can avoid expensive query re-
computation when independence wrt an update is detected. However, the technique has
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some weaknesses. As illustrated in [BC09a], in some cases, independence is not detected
by the static analysis, due to some over-approximation made by the type inference rules.

Contributions

In this dissertation we propose a novel schema-based approach for detecting XML query-
update independence. Differently from [BC09a, Che08, CGMS06], our system infers
sequences of labels, hereafter called chains, to perform a static analysis of the data
accessed by the queries and the updates. Intuitively, for each node that can be selected
by a query/update path in a schema instance, the system infers a chain recording i) all
labels that are encountered from the root to the node and ii) the order of traversal. This
information is at the basis of a precise static independence analysis.

The main contribution of this work is a precise algorithm to detect independence for
a query-update pair q-u knowing that documents are valid wrt a DTD d. It strongly
relies on the following developments.

• Chain-based independence for queries and updates, a static notion, is the founda-
tion of our algorithm: starting from the set of all possible chains associated with a
DTD, our inference system extracts subsets of chains for the query and the update,
capturing the navigation through valid documents made by the evaluation of the
query and the update, respectively. Our inference system is cautiously specified for
dealing with all XPath axes. Chain-based independence is the result of the absence
of overlapping pair of chains for the query and the update. Our inference system
is formally proved to be sound.

• A major step of our work concerns recursive schemas, for which chain-based inde-
pendence analysis may cripplingly involve to deal with an infinite number of chains.
Our technique enabling the restriction of the analysis to finite subsets of query and
update chain is a key contribution, and the core of our algorithm is the resulting
finite analysis. It is proved to be equivalent to the infinite analysis

• Aiming at designing a tractable analysis, we show that by using a DAG-based
representation of inferred chains, the finite analysis can run in polynomial space and
time. Our technique has been carefully implemented, and extensive tests have been
performed to validate our claim of precision and efficiency. Concerning precision,
our results show that our technique outperforms [BC09a] to a large extent.

This work has been published in the International Conference of Very Large Databases
2012 [BTCU12], while preliminary versions have been presented in the 26ème Journée des
Bases de Données Avancées 2010 [BTCU10a] and in the International Formal Methods
Workshop 2010 [BTCU10b].

The thesis is organized as follows. Chapter 2 introduces basic definitions about XML,
schemas, queries and updates. Chapter 3 revises the state-of-the-art for detecting XML
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query-update independence, and provides motivations for the work here presented. Chap-
ter 4 presents our static independence analysis based on schemas and chains. Chapter
5 describes how the chain analysis can be efficiently implemented. Chapter 6 presents
experiments validating our method. Chapter 7 discusses extensions, while Chapter 8
draws conclusions and discusses future perspectives.



Chapter 2

Preliminaries

In this chapter we define the formal framework on top of which we build our work. We
begin by presenting XML and DTDs, as the data model and the type language of semi-
structured databases. Then, we present the XML query and update languages that we
consider, together with their formal semantics, which is used to prove the correctness of
our analysis. We conclude by defining the XML query-update independence problem.

2.1 XML

XML [BPSM+06] is a W3C-recommended language for representing data on the Web.
XML has been designed to facilitate information exchange across different systems, thus
overcoming the limits of its predecessor HTML, that was purposely conceived for dis-
playing. XML is capable of wrapping many different kinds of data, because the data
is represented in a textual form, organized hierarchically in a tree, and the document
structure is self-describing by means of markup tags.

An XML Document is written as a unicode text with markup tags and other meta-
information representing all document nodes. The most important ones we consider are
element and textual nodes. As an example, consider the XML document t1 in Figure
2.1. It is a fragment of a bibliography, containing a single book, with its own title
and author. Textual nodes here are written as the text they represent, for instance
“B. Pierce”. Element nodes are denoted by pairs of open and closing markup-tags, for
instance <book></book>, and are possibly nested inside other elements.

An XML document in its textual form must be well-formed. This essentially means
that it defines a tree structure, the labels of open and closing tags match, and are also
properly nested, so that the closing tag of a node appears always before the close-tag of
its parent. The document t1 is well-formed.

The abstract model underlying XML documents is tree-based. In its textual form,
an XML document looks like the linearization of a tree. In this work, we represent an

1
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<bib>
<book>
<title>
Types and Programming Languages

</title>
<author>
<name>B. Pierce</name>
</author>

</book>
</bib>

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lt1 ← bib[ l1 ]
l1 ← book[ l2, l3 ]
l2 ← title[ l′2 ]
l′2 ← “Types and ...”

l3 ← author[ l′3 ]
l′
3
← name[ l′′

3
]

l′′3 ← “B. Pierce”

Figure 2.1: Document t1 and store (σ, lt1)
XML document as a store σ, which is an environment associating each node location l

with either an element node a[L] or a text node “txt”. In a[L], a is the element tag
(or label), while L = (l1, . . . , ln) is the ordered sequence of children locations in σ. We
denote by dom(σ) the set of locations of σ. A tree is a pair

t = (σ, lt)
where lt is the root location. With a little abuse of notation, we denote by dom(t) the
domain of t, which consists of lt together with all locations connected to lt. We denote
by σ@l the tree t in σ rooted at l. We denote by t ∼ t′ two isomorphic trees t and t′; they
may differ only in terms of names of node locations. The empty sequence of locations is
denoted by (). The concatenation of two sequences of locations L and L′ is denoted by
L ⋅L′, and defined such that L ⋅ () = () ⋅L = L.

In Figure 2.1 we draw the store associated to the XML document t1; this store
is a driving example for most of the definitions provided in the chapter. As already
mentioned, each element tag of t1 corresponds to a single node in the store, and vice
versa. As a subtlety, notice that each node is referenced by a location. A location can
be simply seen as the identifier of the node.

The XML data model has many features, but in this work we consider only element
and textual nodes, since they are the most relevant ones. Most of the missing features,
e.g., string attribute nodes, can be straightforwardly encoded in our model. We consider
tree instances without document-node [BPSM+06] (an unlabeled node which is the parent
of the root). Other mechanisms such as key referencing (ID/IDREF) require to extend
our model, by adding further constraints. We discuss extensions in Chapter 7.
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2.2 Schema Languages

The concept of schema is standard in databases: it is a set of constraints defining a
collection of data. XML documents are self-describing, hence a schema is an optional
feature of XML databases. Nevertheless, any data collection is likely to follow a structure,
and schemas are a very powerful means to express structural constraints. In all the
context where a schema is available, it can be exploited to ensure safe and efficient XML
processing [CGS11].

Many formalisms for writing XML schemas have been proposed, with the notable
distinction of Document Type Defition (DTD) and XML Schema (XSD) as W3C stan-
dards, and RelaxNG as OASIS standard [CM01]. In this work we will focus on the widely
used DTDs. DTDs embody all of the main features of XML schema languages, whilst
still allowing to keep the formalization concise. The extension of DTDs to more powerful
languages such as XSD, by means of extended DTDs [PV00] will be also discussed.

A DTD essentially consists of a list of declarations of elements. As an example, con-
sider the schema bibliography.dtd reported in Figure 2.2. The declaration of elements
follows a specific syntax like <!ELEMENT bib (book∗) > stating that an element tag is de-
fined, that the name of the element is bib, and that the content of the element is modeled
by the regular expression book∗. The reserved word #PCDATA denotes the string type.

DTDs can be formally defined along the line of [MLMK05].

Definition 2.2.1 (DTD). A DTD is a 3-tuple (d, s,Σ) where

• Σ is a finite alphabet for element tags, denoted by a,a2,a
′;

• s ∈ Σ is a non-recursive root-type;

• d is a function from Σ to regular expressions over Σ∪{String}, where String denotes
the string base-type.

For convenience, in this work we assume that the root-type of a DTD is non-recursive.
This implies that the root-element tag is never re-used inside a valid document, as hap-
pens in most practical scenarios. As we will discuss in Chapter 4, Section 4.4.2, this
assumption is made for the sake of formalizations of the finite analysis, and is not re-
strictive. From now on we will use only the d component to specify a DTD, and we will
write ΣS to denote the set Σ ∪ {String}.

In Figure 2.2 we show how a DTD is encoded in our formalism. The verbose decla-
rations are denoted in our formalism in a simpler way, by associating each element tag
with a regular expression modeling the element tag content.

An XML database compliant with all of the structural constraints defined by a schema
is said to be valid against the schema.
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<ELEMENT bib (book∗)>
<ELEMENT book (title,author+)
<ELEMENT title (#PCDATA)>
<ELEMENT author (name)>
<ELEMENT name (#PCDATA)>

bib ← book∗
book ← title,author+
title ← String

author ← name

name ← String

Figure 2.2: DTD bibliography.dtd and the schema model d1

Definition 2.2.2 (Validity). A tree t = (σ, lt) is valid wrt a DTD (d, s,Σ), denoted by
t ∈ d, if and only if there exists a mapping λ ∶ dom(t)↦ ΣS such that

• λ(lt) = sd
• λ(l) = String implies that σ(l) is a text node

• λ(l) = a implies that σ(l) is an element-node a[L], and that the word λ(L) is
generated by the regular expression d(a), i.e., λ(L) ∈ Lang(d(a))

where Lang(r) denotes the language generated by the regular expression r.

As an example, the document t1 in Figure 2.1 is valid wrt the DTD d1 in Figure 2.2,
because there exists a mapping λ such that

• for the root lt1 , we have λ(lt1) = bib
• for all textual nodes, namely l′2 and l′′3 , we have λ(l′2) = λ(l′′3 ) = String ∈ Lang(String)
• for all the sequences of children locations, namely (l1), (l2, l3) and (l′3) we have

λ(l1) = book ∈ Lang(book∗)
λ(l2, l3) = title author ∈ Lang(title,author+)

λ(l′
3
) = name ∈ Lang(name)

A recursive DTD d may not have any XML tree t such that t ∈ d. This is because
the content description of some element a in d is non-terminating, i.e., there exists no
finite subtree rooted at a that satisfies all constraints of d. A DTD d may also feature
the content description of some elements that are unreachable from the root. No subtree
of a valid tree is typed with an unreachable type definition, because there is a unique
root type, and each element type definition is unique.

One can determine whether an element type a in d is non-terminating or unreachable
in linear time (in the size of d). These problems can be reduced to the emptiness problem
for context-free grammars, which can be solved in linear time [HU00]. To simplify the
discussion, in the sequel we assume that all element types in a DTD are terminating,
and that all types in ΣS are reachable from the root.
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DTDs capture all of the main features of XML schema languages. The principal
restriction a DTD imposes is that each element tag definition must be unique. This
is partially relaxed in XSDs, where a tag can have multiple type definitions, but at a
specific condition: two type definitions for the same element tag, are never used in the
same element content description. This is the single type restriction.

To illustrate, a legal fragment of XSD containing two element tag definitions that
cannot be expressed by DTDs, is the following one.

<xs∶element name = “author”>
<xs∶complexType>
<xs∶element name = “name” type = “AuthorName”/>

</xs∶complexType>
</xs∶element>
<xs∶element name = “publisher”>
<xs∶complexType>
<xs∶element name = “name” type = “PublisherName”/>

</xs∶complexType>
</xs∶element>

Notice that XSDs and DTDs have different syntax (XSDs are written as XML docu-
ments). The command xs∶element defines a new element tag, while xs∶complexType is
used here to define the type structure of the element tag. In the example, two element
tags are defined, namely author and publisher. Both have a common child element,
name, specifying the name of the author and that of the publisher.

In DTDs, the definition of name must be unique while, in XSDs, we can use multiple
type definitions. In this case, the schema refers to distinct type definitions AuthorName

and PublisherName (defined elsewhere in the schema) depending on wether name is nested
in author and publisher, respectively. What is powerful here is that the two types can
define completely different structures of the name element.

A fragment of XSD that does not respect the single type restriction is the following.

<xs∶element name = “person”>
<xs∶complexType>
<xs∶choice>
<xs∶element name = “name” type = “AuthorName”/>
<xs∶element name = “name” type = “PublisherName”/>

</xs∶choice>
</xs∶complexType>
</xs∶element>

Here xs∶choice says that only one between the elements is the list can be chosen. In
particular, one between the two name element definitions can be used. This definition is
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illegal in XML Schema, since it is illegal to have two element types with the same name
(i.e., name) but different types (i.e., AuthorName, PublisherName) in the same regular
expression. Indeed, this breaks the single type restriction, and it is not expressible in
DTDs nor in XSDs. Nevertheless it is expressible in RelaxNG.

A formalism that goes beyond that of DTDs and captures the expressivity of XML
Schemas is that of Extended DTDs (EDTDs).

Definition 2.2.3 (Extended DTD and Validation [PV00]). An Extended DTD is a triple(Σ,d′, µ) where

• d′ is a DTD defined over the tag alphabet Σ′

• µ ∶ Σ′S ↦ ΣS is a function, that is the identity on input String

A tree A over Σ is valid wrt the extended DTD (Σ,d′, µ) if and only if there exists a tree
t′ over Σ′ such that µ(t′) = t and t′ is valid wrt the DTD d′.

The crux of the definition is to interpret the two tag alphabets Σ and Σ′ in a way
such that Σ represents all element tags found in the tree instance, while Σ′ contains
a different tag for each type definition in the schema. In case of a tag with mul-
tiple definitions, such as name in the last example, we would have Σ ⊇ {name} and
Σ′ ⊇ {AuthorName,PublisherName} with µ(PublisherName) = name and µ(AuthorName) =
name. The validation of the tree t over Σ wrt the extended DTD is then defined in terms
of validation of a tree t′ over Σ′ wrt a DTD over a “type” alphabet Σ′.

It is worth noticing that EDTDs do not make any assumption on the use of types in
the regular expressions, and hence they are strictly more expressive than XML Schemas,
and roughly correspond to RelaxNG (without interleaving and counting operators). In
this work, we will develop a static analysis relying on DTDs, and in Chapter 7 we will
show that it can be lifted to EDTDs very easily.

XML types are founded on regular tree grammars [HVP05]. Indeed, a schema lan-
guage (e.g., DTD) roughly corresponds to a class of regular tree grammars [MLMK05].
This is needed for designing typed XML query and update language, where types of input
and output expressions can be checked and type safety possibly ensured.

However, our ultimate goal is to develop an access analysis based on schema infor-
mations, which is a problem radically different from that of type-checking. To avoid any
confusion, in this work we adopt the following definition of XML type.

Definition 2.2.4 (XML Type). Let d be a DTD, a type τ ∈ ΣS stands for the set
of nodes A such that

• if τ is the label a then A is the set of all nodes labeled with a belonging to some tree t ∈ d

• if τ is String then A is the set of all textual nodes belonging to some tree t ∈ d
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From this definition, it follows that the tag of each element definition in a DTD is a
type. As an example, consider the bibliographic DTD d1. The type author stands for all
nodes labeled as author belonging to a tree valid wrt the DTD d1.

A DTD induces a type dependency graph, defined as follows.

Definition 2.2.5 (Dependency graph). Let d be a DTD, the dependency graph of d,
denoted by Gd, is a directed graph defined as Gd = (ΣS,⇒d).

The vertex-set of Gd coincides with ΣS, which is the tag-alphabet of the schema
together with the String type. The edge-set of Gd is ⇒d, therefore two (immediately)
reachable types in ΣS are two adjacent vertex in Gd. The root of the graph is sd. The
graph is connected because all types in ΣS are reachable from sd. A DTD d is recursive
if and only if Gd has a cycle.

Proposition 2.2.6. Let Gd be a type dependency graph with n vertices and m edges.

i) n−1 ≤ m ≤ n(n−1)
ii) if m > n(n−1)/2 then Gd is cyclic

Proof. i) If Gd has n vertices, the number of edges in Gd varies from n−1, because the
graph is connected, to n(n−1), because all types can be recursive, except for the root
that we assumed to be non-recursive. ii) An acyclic dependency graph of n vertices with
the maximum number of edges, is such that only one type (the root) is connected with
at most n−1 types, only one type is connected with at most with n − 2 types, and so on
until a single type with no children (e.g., String). This is ∑n

i=1(i − 1) = n(n−1)/2.
We call saturated a DTD d that maximizes the number of edges in the dependency

graph Gd. Saturated DTDs are defined as follows.

Definition 2.2.7. (Saturated DTDs) A recursive DTD d is said to be saturated if Gd has
n vertexes and n(n−1) edges. A non-recursive DTD d is said to be saturated if Gd has n

vertexes and n(n−1)/2 edges.

An example of a saturated and non-recursive DTD and relative dependency graph is
depicted in Figure 2.3. The DTD d2 features 5 elements. The root type a1 is defined
in terms of all other types a2, . . . ,a5, the type a2 is defined in terms of all other types
except the root and itself, namely a3, . . . ,a5, and so on until the singleton type a5 that
has empty content. Note that no edge can be added in Gd2 without introducing recursion.
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a1 ← a2,a3,a4,a5
a2 ← a3,a4,a5
a3 ← a4,a5
a4 ← a5

a1

a2

a3

a4 a5

Figure 2.3: DTD d2 and saturated type-dependency graph Gd2

Inference and Derivations

Throughout this dissertation we will describe several inference systems for checking prop-
erties of XML queries and updates. Inference systems have been nicely formalized in
[Gra03].

Definition 2.2.8 (Inference System). Let J be a set of predicates called judgments. An
inference system I is a set of rules defined over judgments. A rule R is of the form

Υ

β

where Υ ⊆ J is a set of premises and β ∈ J is a judgment called the goal of the rule.

An inference system proves properties (ground judgments) by repeated backward
application of inference rules, in Prolog style. The whole proof is called derivation tree,
that is a tree whose nodes are judgements and edges denote the application of inference
rules. In particular, the root of the derivation tree is the property one aims to prove
and the leafs are axioms. A set of rules is said to be deterministic if for each judgement
created, at most one rule can be applied. This property is necessary to ease the derivation
of an algorithm from the rules. In this dissertation, we will present only deterministic
inference systems.

2.3 Query and Update Languages

XQuery is the XML query language standardized by the W3C [SCF+07]. XQuery stands
to XML databases as SQL stands to relational databases. Nevertheless, the two lan-
guages are deeply different, because they are conceived for different data-models (trees
vs. relations), and different deployments (the web vs. mainframes applications).

XQuery and SQL are both declarative languages. This is a crucial requirement for
any query language in order to ensure logical and physical data independence. XQuery
is a Turing-complete language, while SQL (without advanced features) is not. This
just means that XQuery provides sufficient - perhaps, superabundant - expressive query
power.
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XQuery and SQL are both typed languages, this means that a type representing the
result of an expression can be inferred. XQuery is a functional language, while SQL is
not. This means that XQuery expressions are functions that can be nested or composed,
and that the evaluation of each expression always returns a value with no side effect.

To illustrate, consider the following XQuery expression, where y is a free variable
bound to the root of a bibliographic XML document and x is a bound variable of the
query.

for x in y//book return (x/title, x/author)
The expression iterates over book nodes in the document. At each iteration step, it binds
the current node to the variable x, and then it returns a sequence of title and author of
the book.

Being declarative, XQuery allows to retrieve all books in the document, by invoking
the XPath navigation y//book, independently from how they are effectively stored and
retrieved.

Being functional, expressions can be composed in a sequence, to form the return
clause, or nested to form the whole iterative construct.

Being typed, it is possible to infer the regular expression type (title∗,author∗)∗, to
capture the fact that the result of the query is a possibly empty sequence of title and
author lists.

XQuery is built on top of XPath. XPath is a language designed for navigating tree
structures, along the axes of ancestors, descendants and siblings of a node. XQuery
wraps-up XPath expressions, by introducing programming-language style constructs such
as iteration, let binding, conditional expression, sequence construction, element construc-
tion, type-switching, etc.

The W3C working group has published a rich documentation on the XML query and
update languages [SCF+07, RCD+11]. There is a large amount of details to consider
in a rich language such as XQuery, hence it is a common practice to focus on a subset
of the language that capture the most interesting constructs, so as to make the formal
development intelligible yet effective.

In this work we deal with a large fragment of XQuery considered also in related
approaches [BC09a, BC10], which is defined by the grammar of Table 2.1.

We comment on the main constructs of the language.

(Empty) The empty query is an expression performing no operation.

(Concatenation) A concatenation of queries is used to build new sequences of trees.
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q ∶∶= () (Empty)
∣ q,q (Concatenation)
∣ <a>q</a> (ElementNode)
∣ “txt” (TextNode)
∣ x/axis∶∶φ (Step)
∣ for x in q return q (For)
∣ let x ∶= q return q (Let)
∣ if (q) then q else q (If)

axis ∶∶= self (Axes)
∣ child
∣ descendant
∣ descendant−or−self
∣ parent
∣ ancestor
∣ ancestor−or−self
∣ preceding−sibling
∣ following−sibling

φ ∶∶= a (Node Tests)
∣ text()∣ node()

Table 2.1: Query Language
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(Node Element and Node Text Construction) The importance of node element
and text constructions stems from the fact that they are the only query expression
that extend the input store with new data. Their use is twofold. They can be used
in order to re-structure nodes of the base data, and then present it to the user (e.g.
output a node changing the order of its children). They can be used by update
expressions, in order to create new forests to be added to the store (e.g., insert a
fresh textual node “txt” in a given position).

(XPath Steps) Navigational capabilities are at the heart of all query languages for
semi-structured and, in general, for hierarchical data. Our language grammar in-
cludes downward, upward and sibling XPath navigational axis. This is a large
fragment, considered also by related studies such as [BC09a, BC10].

Preceding and following axes, are not included. They can be easily encoded by
standard rewriting As we will show later, this can be done in a both correct and
complete way. Therefore, the language we consider simulates all XPath navigational
axes.

(Iteration, Let binding and Conditional) Iteration (For), let binding (Let)
and conditional expression (If) represent the most powerful constructs of the lan-
guage, in terms of expressivity. This set of constructs subsumes the standard FLWR
XQuery fragment [SCF+07], that features the where clause instead of the condi-
tional if. Indeed, while the where clause nested in a let or for expression can be
simulated by using an if-then-else expression, the converse is not always true since
the where clause can express only an if-then condition. Therefore the language is
strictly more expressive than its FLWR version.

For the sake of presentation, we adopt some minor syntactic deviation from the W3C
specification [SCF+07]. In XQuery variables are always prefixed by $, in order to avoid
ambiguity during the parsing phase. However, in this work variables will be always clear
from the context and thus, we avoid to prefix them with a reserved symbol. Also, element
construction is denoted by <a>q</a>, without enclosing the inner query q into brackets,
as defined in [SCF+07].

XPath node tests are denoted by φ. In the grammar, a stands for a tag name. We
will use /φ as a shortcut for /child ∶∶ φ while //φ is a (strict) descendant navigation that,
according to the W3C, stands for

/descendant−or−self ∶∶ node()/child ∶∶ φ
In the following we will use step to indicate an XPath step. The node filter node() is
often denoted by the wildcard ∗. XPath expressions of the form

x/step1/step2/ . . . /stepn
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u ∶∶= () (Empty)
∣ u,u (Concatenation)
∣ for x in q return u (For)
∣ let x ∶= q return u (Let)
∣ if (q) then u1 else u2 (If)
∣ delete q0 (Delete)
∣ rename q0 as a (Rename)
∣ insert q pos q0 (Insert)
∣ replace q0 with q (Replace)

pos ∶∶= into (as first ∣ as last)? (Positions)∣ after∣ before
Table 2.2: Update Language

are supported by the grammar by mean of iteration, as follows.

for x1 in x/step1 return

for x2 in x1/step2 return

⋮
for xn in xn−1/stepn return xn/self ∶∶ node()

Recently the W3C standardized an update language for XML called XQuery Update
Facility [RCD+11]. This includes a set of commands that can be used to modify instances
of the XML data model, thus introducing effects to the query language.

As for queries, update commands are declarative and typed. This means that it is
possible to modify an XML document, independently from how this is stored or retrieved,
and also to compute a type describing the modified document. However, XML updates
are not written in a functional way. They are not true functions with a return value that
can be arbitrarily composed or nested.

An example of XML update is the following.

insert < book/ > into x/bib
which inserts a fresh node labeled as book below the root labeled with bib.

XQuery Update Facility is built on XQuery and XPath, that are indeed used to fill
the arguments of update commands.
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The subset of XQuery Update Facility [RCD+11] which we consider is defined in Table
2.2. It is essentially composed of two parts, one of programming constructs shared with
the query language, and one of commands modifying the input store.

(Basic Programming) Like for queries, updates can be composed sequentially or can
be composed by means of let/for statements, where only the return part can contain
update operations. The conditional expression allows to apply different updates,
depending on the boolean value of a conditional query.

(Side-effects) In this work we consider all main constructs of the XQuery Update Fa-
cility, namely node deletion, renaming, insertion and replacement. We consider only
replace update affecting node locations. The extension to the replace node-value
command is straightforward 1, as well as that to the remaining update commands.
Other extensions to the update language are discussed in Chapter 7.

2.4 Formal Semantics

In this section we give the formal semantics of XQuery and XQuery Update Facility.
This will be used in the proofs to show the correctness of our independence analysis. We
begin by defining the semantics of XPath steps as they are the building blocks of both
languages.

2.4.1 Semantics of XPath Steps

Tree relations The semantics of axis navigation and text filtering is defined in [DFF+10].
If σ is a store, the binary parent-child relation among store locations is denoted by
Childσ ⊆ dom(σ) × dom(σ), and (l, l′) ∈ Childσ when l = a[L ⋅ l′ ⋅ L′] ∈ σ. We denote
by Parentσ the inverse of Childσ, by Descendantσ the transitive closure of Childσ, and
by Ancestorσ the inverse of Descendantσ. Finally, Self σ denotes the identity function
on dom(σ). The binary relation that holds between a location and its immediate-right-
sibling is denoted by NextSiblingσ ⊆ dom(σ)×dom(σ). We have that (l, l′) ∈ NextSiblingσ
when la ← a[L ⋅ l ⋅ l′ ⋅ L′] ∈ σ, for some a. We denote by FollowingSiblingσ the transitive
closure of NextSiblingσ, and by PrecedingSiblingσ the inverse of FollowingSiblingσ. If R
is one of the binary relations defined above, provided a location l, we write R(l) for the
set of locations l′ such that (l, l′) ∈ R. For instance Childσ(l) denotes the set of children
of l and FollowingSiblingσ(l) the set of following sibling nodes of l. Of course, it holds
Self σ(l) = { l }. Finally docOrderσ ⊆ dom(σ) × dom(σ) denotes the partial document-
order among store locations, that is total for locations belonging to the same tree, but
is undefined for locations belonging to distinct trees of the store. If Rσ is a relation over
σ defined above, we denote by Rt ⊆ Rσ its subset concerning all and only the locations
belonging to the tree t = (σ, lt).

1
replace value of q0 with q becomes let x ∶= q0 return replace x/text() with q
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Axis Semantics The semantics of an XPath step is given by the composition of the
semantics of a navigational axis axis and that of a test filtering φ. The semantics of a
navigation axis axis wrt a store σ and an input location l, is denoted by [[axis]]lσ and
defined as follows.

[[self]]lσ def
= Self σ(l)

[[child]]lσ def
= Childσ(l)

[[descendant]]lσ def
= Descendantσ(l)

[[descendant−or−self]]lσ def
= Descendantσ(l) ∪ Self σ(l)

[[parent]]lσ def
= Parentσ(l)

[[ancestor]]lσ def
= Ancestorσ(l)

[[ancestor−or−self]]lσ def
= Ancestorσ(l) ∪ Self σ(l)

[[following−sibling]]lσ def
= FollowingSiblingσ(l)

[[preceding−sibling]]lσ def
= PrecedingSiblingσ(l)

The semantics of a test filtering wrt a store σ and an input location l, is denoted by[[φ]]lσ and defined by the following equations.

[[a]]lσ def
= { l ∣ l ← a[L] ∈ σ }

[[text()]]lσ def
= { l ∣ l ← “txt” ∈ σ }

[[node()]]lσ def
= { l ∣ l ∈ σ }

Notice that this rules output either input location, when it satisfies the filtering condition,
or the empty set.

The following examples illustrate the above definitions. Consider the store σ in Figure 2.1.

[[descendant−or−self]]lt1σ = dom(σ)
[[following−sibling]]l2σ = {l3}

[[text()]]l′2σ = {l′2}
[[author]]l′2σ = ∅

An XPath axis axis is said to be downward if it is either child, descendant or
descendant−or−self, backward if it is parent, ancestor or ancestor−or−self, and
horizontal if it is preceding−sibling or following−sibling.
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Step Semantics An XPath step is evaluated by composing axis navigation and step
filtering. An axis navigation results in a set of locations L. This set is explicitly casted
into a sequence L that respects document order. We model this by using an abstract
predicate orderσ(L) = L that holds iff (i) l ∈ L ⇐⇒ l ∈ L and (ii) L = (L1 ⋅ l ⋅ l′ ⋅L2) Ô⇒(l, l′) ∈ docOrderσ. Finally, L is filtered according to φ. Provided that [[axis]]lσ = L and
orderσ(L) = (l1, . . . , ln) step semantics is defined as follows.

[[axis ∶∶ φ]]lσ def
= ([[φ]]l1σ , [[φ]]l2σ , . . . , [[φ]]lnσ )

When [[φ]]lσ = ∅ it is treated as the empty sequence.

Notice that this definition slightly differs from the one in [SCF+07] where sequences
obtained by the evaluation of backward and preceding-sibling axes are returned in inverse
document order. Of course, this detail has no impact on our static analysis.

The following examples illustrate the above definition. Consider the store σ in Fig-
ure 2.1.

[[descendant−or−self ∶∶ node()]]lt1σ = dom(σ)
[[descendant−or−self ∶∶ text()]]lt1σ = (l′2, l′′3 )
[[following−sibling ∶∶ author]]l2σ = (l3)

Notice that [[axis ∶∶ φ]]lσ produces a sequence of nodes without duplicates.

2.4.2 XQuery Semantics

Query semantics is specified in [DFF+10], while we are highly inspired by the succinct
and elegant formalization made in [BC09b], from which we borrow some notions that are
needed for our own presentation.

Query semantics is denoted by the following judgment

σ,γ ⊧ q ⇒ σ′,L

meaning that the execution of the query q over σ outputs a sequence of locations L and
a new store σ′, including σ plus new elements built by q. The dynamic environment γ

binds each free variable of q to a sequence of locations L in σ, this is denoted by γ[x↦ L]
or simply by γ[x↦ l] when L = (l).

Query semantics is reported in Table 2.3. In the rules we also make use of two
auxiliary judgements ⊧copy and ⊧⋆ that model the copy of a sequence of elements and
the iteration over a sequence of elements. These are defined by rule (SQ-Copy) and
(SQ-Iter), respectively.
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σ,γ ⊧ () ⇒ σ, () (SQ-Empty)

σ,γ ⊧ q1 ⇒ σ2,L1 σ2, γ ⊧ q2 ⇒ σ3,L2

σ,γ ⊧ q1,q2 ⇒ σ3,L1 ⋅L2

(SQ-Concat)

σ,γ ⊧ q
copy
⇒ σ2,L l /∈ dom(σ2)

σ,γ ⊧ <a>q</a> ⇒ σ2[l ∶= a[L]], l (SQ-Elt)
l /∈ dom(σ)

σ,γ ⊧ “txt” ⇒ σ2[l ∶= “txt”], l (SQ-Text)

σ,γ ⊧ q ⇒ σ0,L0(L′, σ1) = copy(L0, σ0) σ′ = σ0 ∪ σ1

σ,γ ⊧ q
copy
⇒ σ′,L′

(SQ-Copy)

σ,γ ⊧ q1 ⇒ σ2,L σ2, γ[x ↦ L] ⊧⋆ q2 ⇒ σ3,L
′

σ,γ ⊧ for x in q1 return q2 ⇒ σ3,L′
(SQ-For)

σ,γ[x ↦ ()] ⊧⋆ q ⇒ σ, () (SQ-IterBase)

σ,γ[x ↦ l] ⊧ q ⇒ σ2,L1

σ2, γ[x ↦ L] ⊧⋆ q ⇒ σ3,L2

σ,γ[x ↦ l ⋅L] ⊧⋆ q ⇒ σ3,L1 ⋅L2

(SQ-Iter)

σ,γ ⊧ q1 ⇒ σ2,L σ2, γ[x ↦ L] ⊧ q2 ⇒ σ3,L
′

σ,γ ⊧ let x ∶= q1 return q2 ⇒ σ3,L′
(SQ-Let)

σ,γ ⊧ q ⇒ σ2, l ⋅L σ2, γ ⊧ q1 ⇒ σ3,L1

σ,γ ⊧ if (q) then q1 else q2 ⇒ σ3,L1

(SQ-If1)

σ,γ ⊧ q ⇒ σ2, () σ2, γ ⊧ q2 ⇒ σ3,L2

σ,γ ⊧ if (q) then q1 else q2 ⇒ σ3,L2

(SQ-If2)

γ(x) = l ⋅ () [[axis ∶∶ φ]]lσ = L
σ,γ ⊧ x/axis ∶∶ φ ⇒ σ,L

(SQ-Step)

Table 2.3: Query evaluation rules
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We illustrate the semantics of the language through some running examples. Consider
for instance the following iteration, that returns all parents of textual nodes, evaluated
over the tree t1 in Figure 2.1, wrt the environment γ = { x ↦ lt1 }.

1

σ,γ ⊧ x/descendant ∶∶ text() ⇒ σ,L

2

σ,γ[y ↦ L] ⊧⋆ y/parent ∶∶ node() ⇒ σ,L′

σ,γ ⊧ for y in x/descendant ∶∶ text() return y/parent ∶∶ node() ⇒ σ,L′

The semantics of iteration is standard and modeled by rule (SQ-For). The resulting
sequence of the left subexpression L is bound with variable y and then used for iterating
over the right subexpression. Notice that the evaluation does not change the store σ.

Let us explore more in detail the derivation.

1 The left branch is derived by applying rule (SQ-Step) as follows

[[descendant ∶∶ text()]]lt1σ = (l′2, l′′3 )
σ,γ ⊧ x/descendant ∶∶ text() ⇒ σ, (l′

2
, l′′
3
)

The result sequence is composed of all textual nodes that are descendants of the
root.

2 The right branch is derived by applying rule (SQ-Iter) as follows

[[parent ∶∶ node()]]l′2σ = (l2)
σ,γ[y ↦ l′2] ⊧ y/parent ∶∶ node() ⇒ σ, (l2)

[[parent ∶∶ node()]]l′′3σ = (l′3)
σ,γ[y ↦ l′′3 ] ⊧ y/parent ∶∶ node() ⇒ σ, (l′3)

σ,γ[y ↦ (l′
2
, l′′
3
)] ⊧⋆ y/parent ∶∶ node() ⇒ σ, (l2, l′3)

Here step evaluation is performed for each location bound to y. The results of the
evaluations are concatenated and then returned.

The construction of new elements is the only command that extends the input store
during query evaluation.

To illustrate, consider the following query listing all books of tree t1 in Figure 2.1,
wrt the environment γ = { x↦ lt1 }.

σ,γ ⊧ x/descendant ∶∶ book ⇒ σ, (l1)(lc, σc) = copy(l1, σ) σ′ = σ ∪ σc

σ,γ ⊧ x/descendant ∶∶ book copy
⇒ σ′, (lc) l ∉ dom(σ′)

σ,γ ⊧ <list>x/descendant ∶∶ book</list> ⇒ σ′[l ∶= list[lc]], lc



18 CHAPTER 2. PRELIMINARIES

In this case rule (SQ-Elt) is applied. First, the inner query selecting all books in the
store is evaluated, resulting in the only location l1. Second, the whole subtree rooted
at l1 is copied to a fresh isomorphic tree σc@lc, by means of rule (SQ-Copy). This
operation is modeled here by using an abstract predicate copy(l1, σ). The output store
σ′ is the extension of σ with σc. Finally, lc becomes the child of a fresh node location l

representing the element node labeled with list.

Rewriting of preceding and following axes As said before, following and preceding
axes are not directly dealt with by our system, but they can be expressed by means of
rewriting. We can show that the rewriting is complete, in the sense that it gives the same
result set as the standard semantics.

We show the case of the following axis, since preceding is analogous. Below σ is
a fixed store, while l, la and lf are locations belonging to σ. The W3C semantics for the
axis is as follows.

[[following ∶∶ φ]]lσ def
= orderσ(L) (2.1)

where L is
⋃

la ∈ [[ancestor−or−self ∶∶ node()]]lσ
lf ∈ [[following−sibling ∶∶ node()]]laσ
l′ ∈ [[descendant−or−self ∶∶ φ]]lfσ

{ l′ }

Step x/following ∶∶ φ is rewritten in our language in the following way

x/following ∶∶ φ ≈ qf(φ)
where

qf(φ) = for xa in x/ancestor−or−self ∶∶ node()
for xf in xa/following−sibling ∶∶ node()
return xf/descendant ∶∶ φ

Hence, provided that the judgment σ,x ↦ l ⊧ qf(φ) ⇒ σ,L holds, we have that L is

∏
(la1 , . . . , lan) = orderσ([[ancestor ∶∶ node()]]lσ)(lfi,1 , . . . , lfi,m) = orderσ([[following−sibling ∶∶ node()]]laiσ )
L(i,j) = orderσ([[descendant−or−self ∶∶ φ]]lfi,jσ )

L(i,j)

(2.2)

where ∏ denotes sequence concatenation, with i = 1..n and j = 1..m.



2.4. FORMAL SEMANTICS 19

We claim that a location is in the result of (2.1) if and only if it is in the result of
(2.2). This holds since the resulting locations of all intermediate steps are the same.
Furthermore, if one also wants to enforce that resulting sequences of both (2.1) and (2.2)
are output in the same order (that is, document order), it is sufficient to impose that
locations in the result of step [[ancestor ∶∶ node()]]lσ in (2.2) are iterated in inverted
document order, for instance by imposing i = n..1.

2.4.3 XQuery Update Semantics

In this section we formally define the semantics of update expressions.

As a convention in update expressions, we write q0 for the target expression that is
retrieving the nodes in the input document that are target of the update (e.g. deleted
nodes are target nodes). We simply write q for the source update subexpression, that
is retrieving or producing elements to insert in the database by means of insert or re-
place commands. According to the W3C semantics [RCD+11] the target expression q0 is
required to output a single node otherwise a run time error occurs.

In the W3C specification update evaluation is split into three phases.

1. Creation of an update pending list (UPL) of atomic update commands;

2. Execution of a sanity check on this list, and reorder of atomic updates;

3. Application of the UPL on the input store so as to update the document.

An update pending list ω is a sequence of atomic update commands. An atomic
update commands ι in of the following form.

ι ∶∶ = del(l)∣ ren(l, a)∣ ins(L,pos, l)∣ repl(l,L)
where l is the target location, L the sequence of roots of source elements to be inserted,
and pos is an insertion position defined as before.

Creation of the UPL The creation of the UPL from an update u is denoted as follows

σ,γ ⊧ u ⇒ σω, ω

As usual, γ binds u free variables to locations in σ and the store σω that extends σ

contains newly created locations potentially used in the UPL ω.
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σ,γ ⊧ () ⇒ σ, ǫ
(SU-Empty)

σ1, γ ⊧ u1 ⇒ σ2, ω1 σ2, γ ⊧ u2 ⇒ σ3, ω2

σ1, γ ⊧ u1,u2 ⇒ σ3, ω1;ω2

(SU-Concat)

σ1, γ ⊧ q ⇒ L,σ2 σ2, γ[x ↦ L] ⊧⋆ u ⇒ σ3, ω

σ1, γ ⊧ for x in q return u ⇒ σ3, ω
(SU-For)

σ1, γ ⊧ q ⇒ L,σ2 σ2, γ[x ↦ L] ⊧ u ⇒ σ3, ω

σ1, γ ⊧ let x ∶= q return u ⇒ σ3, ω
(SU-Let)

σ1, γ ⊧ q ⇒ σ2, l ⋅L σ2, γ ⊧ u1 ⇒ σ3, ω1

σ1, γ ⊧ if (q) then u1 else u2 ⇒ σ3, ω1

(SU-If1)

σ1, γ ⊧ q ⇒ σ2, () σ2, γ ⊧ u2 ⇒ σ3, ω2

σ1, γ ⊧ if (q) then u1 else u2 ⇒ σ3, ω2

(SU-If2)

σ1, γ ⊧ q
copy
⇒ σ2,L σ2, γ ⊧ q0 ⇒ σ3, l0

σ1, γ ⊧ insert q pos q0 ⇒ σ3,ins(L,pos, l0)(SU-Insert)

σ1, γ ⊧ q0 ⇒ σ2, l0

σ1, γ ⊧ delete q0 ⇒ σ2,del(l0)(SU-Delete)

σ1, γ ⊧ q0 ⇒ σ2, l0 σ2, γ ⊧ q
copy
⇒ σ3,L

σ1, γ ⊧ replace q0 with q ⇒ σ3,repl(l0,L)(SU-Replace)

σ1, γ ⊧ q0 ⇒ σ2, l

σ1, γ ⊧ rename q0 as b ⇒ σ2,ren(l0, b)(SU-Rename)

σ,γ[x ↦ ()] ⊧⋆ u ⇒ σ, ǫ
(SU-IterBase)

σ1, γ[x ↦ l] ⊧ u ⇒ σ2, ω1 σ2, γ[x ↦ L] ⊧⋆ u ⇒ σ3, ω2

σ1, γ[x ↦ l ⋅L] ⊧⋆ u ⇒ σ3, ω1;ω2

(SU-Iter)

Table 2.4: Rules for evaluating update expressions to pending update lists
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σ(l′) = a[L1 ⋅ l ⋅L2]
σ⊧ del(l)↝ σ[l′ ∶= a[L1 ⋅L2]] (SAU-Delete)

σ(l) = a[L]
σ⊧ ren(l, b) ↝ σ[l ∶= b[L]] (SAU-Rename)

σ(l′) = a[L1 ⋅ l ⋅L2]
σ⊧ ins(L,before, l)↝ σ[l′ ∶= a[L1 ⋅L ⋅ l ⋅L2]] (SAU-InsertBefore)

σ(l′) = a[L1 ⋅ l ⋅L2]
σ⊧ ins(L,after, l)↝ σ[l′ ∶= a[L1 ⋅ l ⋅L ⋅L2]] (SAU-InsertAfter)

σ(l) = a[L1 ⋅L2]
σ⊧ ins(L,into, l)↝ σ[l ∶= a[L1 ⋅L ⋅L2]] (SAU-InsertInto)

σ(l) = a[L1]
σ⊧ ins(L,into as first, l)↝ σ[l ∶= a[L ⋅L1]] (SAU-InsertFirst)

σ(l) = a[L1]
σ⊧ ins(L,into as last, l)↝ σ[l ∶= a[L1 ⋅L]] (SAU-InsertLast)

σ(l′) = a[L1 ⋅ l ⋅L2]
σ⊧ repl(l,L) ↝ σ[l′ ∶= a[L1 ⋅L ⋅L2]] (SAU-Replace)

σ⊧ ǫ ↝ σ
(SAU-Empty)

σ⊧ ωj ↝ σ′ σ′⊧ ωk ↝ σ′′ {j, k} = {1,2}
σ⊧ ω1, ω2 ↝ σ′′

(SAU-Iter)

Table 2.5: Update pending list application



22 CHAPTER 2. PRELIMINARIES

Sanity Check and Update Reordering In this phase, the sanity checks verify that
UPL is consistent. As in [BC09a], we do not model this phase here, and we defer the
work to an abstract predicate sanitycheck(ω). The check enforces for instance that the
same node is not a target of multiple rename or replace operators, that text nodes are
not the targets of inserts, and that the elements being inserted are rooted at element
nodes, as specified in [RCD+11].

Application of the UPL Applying the UPL ω to the input store σω produces the
updated store σu. This is denoted by

σω⊧ ω ↝ σu

Of course, all locations used in ω are contained in σω.

The composition of all phases of update semantics is denoted by

σ,γ ⊧ u ∶ σu

and it is defined as follows

σ,γ ⊧ u ⇒ σω, ω sanitycheck(ω) σω⊧ ω ↝ σu

σ,γ ⊧ u ∶ σu

As for queries, we explain the semantics of updates through some examples. Let us
consider the execution of the update below that deletes all textual nodes in the tree t1
of Figure 2.1, wrt the environment γ = { x↦ lt1 }.

for y in x/descendant ∶∶ text() return delete y

The end-to-end semantics of the update consists of generating the UPL of nodes to
delete, and then doing the sanity check on the UPL and of applying the update pending
list so as to obtain the updated store σ′.

1

σ,γ ⊧ for y in x/descendant ∶∶ text() return delete y ⇒ σ, (del(l′2),del(l′′3 ))
sanitycheck(del(l′

2
),del(l′′

3
))

2

σ⊧ del(l′2),del(l′′3 )↝ σ′

σ,γ ⊧ for y in x/descendant ∶∶ text() return delete y ∶ σ′
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1 The derivation of the branch generating the UPL with locations to be deleted is the
following.

σ,γ ⊧ x/descendant ∶∶ text() ⇒ σ, (l′
2
, l′′
3
)

σ,γ[y ↦ l′2] ⊧ delete y ⇒ σ, (del(l′2)) σ,γ[y ↦ l′′3 ] ⊧ delete y ⇒ σ, (del(l′′3 ))
σ,γ[y ↦ (l′2, l′′3 )] ⊧⋆ delete y ⇒ σ, (del(l′2),del(l′′3 ))

σ,γ ⊧ for y in x/descendant ∶∶ text() return delete y ⇒ σ, (del(l′
2
),del(l′′

3
))

Here the UPL is computed by first evaluating the navigational expression selecting
all textual nodes, and then by iterating over the resulting sequence of locations.

2 The derivation of the branch applying the UPL is the following.

σ(l′3) = name[l′′3 ] σ′′ = σ[l′3 ∶= name[]]
σ⊧ del(l′′

3
)↝ σ′′

σ′′(l2) = title[l′2] σ′ = σ[l2 ∶= title[]]
σ′′⊧ del(l′

2
)↝ σ′

σ⊧ del(l′2),del(l′′3 )↝ σ′

Here the application of the UPL consists of removing the use of the target locations
by means of rule (SAU-Iter) and (SAU-Delete). As mentioned before, in this
semantics we do not explicitly take into account order of update application, in
fact rule (SAU-Iter) specifies that two update pending lists can be executed in
any order. In order to stress this, in the example, we chose to remove first location
l′′3 and then l2, while the input UPL presents them in inverse order. For instance
for all valid sequences of updates targeting the same locations like

for x in y//a
return (delete x , rename x as b)

the semantics allows to apply non-deterministically the atomic delete and rename
commands in any order. Whatever order of application is chosen, the result of the
update is to delete all nodes labeled as a. Notice that once atomic updates are
collected, we may have that a location is both target of an insert and of a rename.
In fact, the sanity check just enforces that no location is target of multiple rename
or replace.

Another interesting point to stress is that for deleted and replace updates, no node is
destroyed in the store. In fact, if σ,γ ⊧ u ⇒ σω, ω and σω⊧ ω ↝ σu then dom(σ) ⊆
dom(σu). For a tree t=(σ, lt), u(t) denotes the tree (σu@lt, lt). Note that dom(σ)
⊆ dom(σu@lt) may not hold anymore, since σu@lt does not keep locations disconnected
to the root lt after the update.
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To see how the input store is extended by updates such as insert and replace, we
consider the following expression on the tree t1 in Figure 2.1, wrt the environment γ ={ x↦ lt1 }. The update inserts a new tree listing all books as a child of the root.

1

σ,γ ⊧ insert <list>x/descendant ∶∶ book</list> into x/self ∶∶ bib ⇒ ins(L,into, lt1)
sanitycheck(ins(L,into, lt1))

2

σ⊧ ins(L,into, l0)↝ σ′

σ,γ ⊧ insert <list>x/descendant ∶∶ book</list> into x/self ∶∶ bib ∶ σ′
We explore a possible derivation tree of the update semantics, by means of an example.

1 The derivation for the branch generating the UPL is the following.

σ,γ ⊧ x/self ∶∶ bib ⇒ σ, (lt1)
σ,γ ⊧ x/descendant ∶∶ book ⇒ σ1, l1(lc, σc) = copy(l1, σ1) σ′ = σ1 ∪ σc

σ,γ ⊧ <list>x/descendant ∶∶ book</list> copy
⇒ σ′, lc

σ,γ ⊧ insert <list>x/descendant ∶∶ book</list> into x/self ∶∶ bib ⇒ ins(lc,into, lt1)
Here the UPL is composed by a single atomic insert update command. The argu-
ments of the atomic update are taken from the outputs of the target and the source
query. From one hand, the target query simply returns the root of the document.
From the other hand, the source query returns the copy of a fresh tree listing all
books.

2 The derivation concerning the application of the UPL is the following.

σ(lt1) = bib[l1] σ′ = σ[lt1 ∶= bib[l1, lc]]
σ⊧ ins(lc,into, lt1)↝ σ′

Here the root location receives one more child. In this example we chose to insert
the new location in last position. It is worth noticing that when position into is
specified, our semantics, as well as the W3C one, allows to insert the node non-
deterministically, in any position.
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Assumptions on the Query Language In order to simplify the formal treatment,
we do some assumptions on the query language.

(Node Element Construction) We assume that node element construction <a>q</a> is
not used in the left-hand side expression of a for/let-expression. This restriction is
met by a very large class of queries used in practice, while queries like

let x ∶= <a>q</a> return <b>x</b>
can be rewritten by simple variable substitution into

<b><a>q</a></b>
(Text Element Construction) Given that a constant query is independent of any update,

we assume that “txt” is either nested in a for expression.

Updates Preserving the Schema We assume also that the updates are preserving
the schema, in the sense that they do not introduce new chains. Delete updates that
break schema constraints are however allowed. As we show later in Chapter 3, schema
evolution is an issue that goes beyond the scope of detecting independence.

2.5 Query-Update Independence

We now formalize query-update independence. To this end we need a notion of equiva-
lence over XML stores.

Definition 2.5.1 (Equivalence). Given two stores σ and σ′, two locations l ∈ σ and l′ ∈ σ′

are said to be value equivalent, written (σ, l) ≅ (σ′, l′), iff the two trees σ@l and σ′@l′ are
isomorphic (they possibly differ only in terms of locations). We write (σ,L) ≅ (σ′,L′) to
denote the value equivalence on location sequences L = (l1, . . . , ln) and L′ = (l′

1
, . . . , l′n),

with li ∈ σ and l′i ∈ σ
′, and holding iff (σ, li) ≅ (σ′, l′i) for i = 1..n.

Definition 2.5.2 (Independence: q ⊧ u, q ⊧ d u). Let σ be a store and γ a variable
environment over σ.

A query q and an update u are said to be independent wrt (σ,γ) if

σ,γ ⊧ q ⇒ σq,Lq σ,γ ⊧ u ∶ σu σu, γ ⊧ q ⇒ σ′q,L
′
q

implies (σq,Lq) ≅ (σ′q,L′q).
Also, q and u are independent, written q ⊧ u, iff they are independent for any pair(σ,γ).
Finally, q and u are independent wrt the DTD d, written q ⊧ d u, iff for every tree

t = (σ, lt) ∈ d and γ, they are independent for (σ,γ).
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As a natural consequence of the fact that XML data are typed by a schema, we assume
that our independence analysis is run in a context where all data remain consistent wrt
the schema after each update. In case an update triggers schema evolution, then a larger
task of schema maintenance has to be carried on. This task may imply existing views
(queries) to be reformulated in order to be correct wrt the new schema, and thus it is
likely to exclude any other kind of schema-based analysis until its completion.

Conclusions

In this chapter we presented the formal framework on top of which we build our work.
We presented XML databases, schemas, query and update languages, and defined the
problem we study: XML query update independence. In the next chapter we will revise
the state of the art for detecting independence via static analysis.



Chapter 3

Query Update Independence: State

of the Art

In this chapter we present the state of the art techniques for checking XML query-update
independence. In the first part, we report on the theoretical background that is relevant
to detecting independence via static analysis, and outline the intractability of the problem
for practical cases. In the second part, we present a family of approximate algorithms
developed for checking independence that, being sound but not complete, try to ensure
a tractable analysis.

3.1 Decidability and Complexity of Exact Static Indepen-

dence Analysis

Former studies by Benedikt and Cheney [BC09a] and by Raghavachari and Shmueli
[RS06] provided the theoretical background of checking independence via static analysis.
These works show that independence essentially inherits its computational difficulty from
more fundamental problems such as query equivalence and containment. Because of this,
the problem is challenging.

The following results give a flavor on how checking independence ranges from un-
decidability to tractability. Below, boolean atomic queries and updates are expressions
without aggregates and tests on data values returning either the empty sequence or a
constant value [BK06].

Theorem 3.1.1 ([BC09a]). Independence is undecidable for XQuery queries and updates.

Theorem 3.1.2 ([BC09a]). For boolean atomic XQuery queries and updates, indepen-
dence is decidable but non-elementary.

Theorem 3.1.3 ([RS06]). For queries and updates defined by using XPath expressions
featuring descendant navigation, * wildcard operator and predicates, independence is NP-
Complete.

27
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Theorem 3.1.4 ([RS06]). Independence is polynomial for queries and updates defined
by downward XPath expressions using at most two of the following features: descendant
axis, * wildcard and predicates.

In the following, we discuss the main steps of the proofs of the above theorems,
with the aim of giving more details on the links between independence, equivalence and
containment.

The main observation for relating independence with equivalence suggested in [BC09a]
is that we can solve independence if we can solve the equivalence problem for compo-
sitions of queries and updates. Equivalence means that two programs always agree on
their output, once evaluated on the same input database. That is, a query q is indepen-
dent from an update u if the equivalence q ≡ q ○ u holds, provided that the composition
q ○ u and the notion of equivalence ≡ are properly defined. Results on the decidability of
independence follow from this idea, as we now illustrate.

General Undecidability of Independence Benedikt and Cheney showed that in-
dependence is undecidable with a reduction to the satisfiability problem for queries ex-
pressed as first order logic formulas over data trees (corresponding to XQuery expressions)
[BC09a]. It is well known that satisfiability of first order logic is undecidable, and this
is also true in the signature of trees. With signature of trees, we mean the binary and
unary relations that allow to define trees (see [BK09] for more details). The idea is that
we could solve independence if we had solved satisfiability of first order logic over data
trees. Fix an XQuery query q, and define a query update pair in the following way

q
′ = if (/root/a) then q else () u = insert <a/> into /root

Then,

q is unsatisfiable for all σ,γ if and only if q′ is independent of u for all σ,γ

In fact, query q′ outputs constantly the empty sequence (before and after u) on any σ,γ,
if and only if q is not satisfiable on any σ,γ. Since the satisfiability problem for XQuery
queries is undecidable, we conclude that independence for XQuery queries and updates
is generally undecidable. This is stated by Theorem 3.1.1.

Decidability of Boolean Independence for Core Atomic XQuery Benedikt and
Cheney showed also that independence is decidable for a relevant subset of XML queries
and updates [BC09a], as stated by Theorem 3.1.2. Again, the result is obtained from
decidability of satisfiability of first order logic over trees. This result is interesting because
it sheds light on the links between independence and query equivalence.

Each step of the proof is quite dense, and will be detailed next.

1. Define independence using a weaker notion of equivalence.
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2. Restrict the query and update languages.

3. Show that, with such restrictions, queries and updates correspond to first order
interpretations.

4. Show that first order interpretations can be composed and tested to be equivalent,
thus conclude decidability of independence.

1) Define independence using a weaker notion of equivalence.
Several notions of equivalence can be used to define independence (i.e., q ≡ q ○ u),

notably, boolean equivalence, node equivalence or subtree equivalence. They naturally
differ on the test they do. Boolean equivalence checks if the results of two expressions
always agrees on non-emptiness. Node equivalence checks if node ids in result sequences
are isomorphic. Subtree equivalence checks if forests of the two expressions are isomor-
phic. Decidability of boolean query equivalence has been showed in [BK06] for the class
of atomic queries. Differently, decidability of node-equivalence and subtree-equivalence
are still open problems. Consequently, in [BC09a] the authors studied the analogous
problem of boolean independence. Boolean independence just checks if the result of a
query changes from empty to non empty or vice-versa, after update. Now, for testing
boolean independence it is sufficient to translate a query q in a boolean-query of the form
if (q) then 1 else 0.

2) Restrict the query and update language.
Benedikt and Cheney [BC09a] considered XML queries and updates without aggre-

gates and tests on data values, which is originally referred as Core Atomic XQuery in
[BK06]. This is roughly equivalent to the language defined in Section 2.3. Because we
want to check boolean independence, we will consider Boolean Core Atomic XQuery
queries of the form if (q) then 1 else 0, and Core Atomic XQuery updates built on
such expressions

3) Show that queries and updates correspond to first order interpretations.
Benedikt and Koch [BK06] showed that Boolean Core Atomic XQuery queries of

XQuery are given by first-order queries in the signature of trees. First order interpreta-
tions are formulas that define the output structure in function of a given input. First
order interpretations model queries. The crucial point is the following. It can be shown
(see [BC09a]) that the addition of updates to Core Atomic XQuery still yields first or-
der interpretations. This means that, while in general it is true that updates are more
expressive than queries, this is not the case for Core Atomic XQuery. For this fragment
queries and updates have the same expressive power, and they precisely correspond to
first order interpretations.

4) Conclude decidability of independence.
Since first-order interpretations are closed under composition (Theorem 5.1 of [BK09]),

the composition of a query and an update is again a first order interpretation. So the
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goal now is to test equivalence of first order interpretations. In the special case of a
boolean query, a first-order interpretation is just a first-order sentence (a formula with
no variables). First-order sentences can be translated into tree automata. Equivalence of
automata obtained by first order sentences can be decided. Therefore, equivalence of first
order interpretations for boolean queries can be decided. Hence, equivalence of a query
against the composition of a query and an update can be decided. Hence, independence
can be effectively decided. It is worth noticing that it is critical for decidability that data
value comparisons are disallowed.

Benedikt and Cheney also give the complexity of the problem when the tag alphabet
is fixed. This captures the case where a schema is available. In this case, because
the satisfiability problem for first order logic over labeled trees (with fixed alphabet)
is non-elementary [Vor96] we obtain that the independence problem in the presence of
the schema is non-elementary. As outlined in [Ben10], decidability of equivalence, and
hence independence, when considering powerful notions of equivalence such as node and
subtree equivalence is still an open question.

NP-Completeness for XPath(//,∗, []) fragment Another contribution to the study
of XML independence comes from the work of Raghavachari and Shmueli [RS06]. This
work investigates the complexity of detecting conflicting query and update expressions.
A query and an update conflict when a node accessed by the query is also impacted by the
update. This is a dual notion of independence, that indeed holds in the absence of con-
flicts. Detecting conflicting expressions has been proved NP-complete for XML queries
and updates expressed in the downward fragment of XPath featuring * wildcard and
branching, and a notion of delete/insert node-conflict reminiscent of node-equivalence
(are the ids of resulting sequences isomorphic?). NP-completeness follows from a re-
duction to the complement of the containment problem for XPath. Actually, it follows
from the dual non-containment problem. The non-containment problem for XPath asks
wether two expressions disagrees on the emptiness of the result, for some trees. In brief,
it turns out that detecting this property is enough to detect if the result of a query may
change after update. For instance, by taking an instance for which query result is empty
and adding some data so as to get a non-empty query result. This operation is possible
if the expressions are not in the containment relation. Updates are defined in terms
of queries, hence solving non-containment between query-paths and update-paths would
solve the problem of determining if the expressions conflict. Miklau and Suciu previously
showed that non-containment is NP-hard [MS04], that in turn determines the hardness
of independence.

Polynomial fragments of XPath(//,∗, []) Along the line of the previous result,
Ravagachari and Shmueli also showed that by further restricting the query and update
language polynomial time algorithms for independence can be given [RS06]. This is stated
by Theorem 3.1.3. This holds for queries and updates written with path expressions
belonging to a subset of XPath(//,∗, []) which is employing at most two features among
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descendant navigation “//”, * wildcard and branching “[ ]”. The authors in [RS06] showed
the relationship with query containment of XPath expressions for such languages [MS04,
AYCLS01]. This shows that tractable algorithms for independence can be given only
by substantially restricting the query and update language. These subsets of XPath are
quite restrained and may not support realistic XQuery workloads.

The results we discussed show that independence is not tractable in practical cases.
Its general undecidability and hardness suggest that in order to do static analysis one is
obliged to proceed with approximate algorithms, trading completeness with tractability,
and then devise analysis that can be useful in practice. This is what motivated recent
research efforts towards approximate techniques discussed next.

3.2 Approximate Algorithms

The hardness of independence leads to attack the problem with approximate solutions.
Approximate algorithms are sound but not complete methods, that is, they either cor-
rectly detect an independence or conservatively raise a conflict. As we will see throughout
this dissertation, approximate solutions can be extremely effective by exploiting struc-
tural properties of queries and updates.

The state-of-the-art techniques for detecting independence reformulate the problem
in terms of an intersection problem. Precisely, testing independence is made by checking
whether the data needed by a query intersects with the data affected by an update.
The techniques now decompose the problem in two parts: 1) providing an abstract
representation of the data that is accessed by the query and impacted by the update,
and 2) defining the intersection test. Before illustrating the state-of-the-art, we discuss
the problem of providing an abstract representation of the data and show a link with
XML projection.

The problem of computing a subset of the input database that is accessed by a
query, and that is sufficient for its execution, is known as XML data-projection [MS03,
BCCN06]. This problem has been studied also for updates in [BBC+11]. The set of
nodes involved by query/update execution is usually captured via static analysis. XML
projection has developed the ideas of using either XPath navigational paths or XML types
(when a schema is available) in order to abstract over the collection of data. These ideas
gave birth to a series of works showing how projection can be used to optimize query
execution [MS03, BCCN06] or for locally updating a database [BBC+11]. Indeed, all
approaches in the current literature dealing with independence [GRS08, BC09a, BC10,
BTCU12] are likely to follow these ideas. However, substantial technical differences arise
between methods for projection and independence, as we will see next.

In the following, we present the state-of-the-art techniques for independence in detail.
We begin by presenting the analysis based on XML types [BC09a] which are the closest
to our work since they use schema information. Then we present the analysis based on
XPath paths [GRS08] and then the approach with destabilizers [BC10].
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3.2.1 Schema-based independence analysis for XML updates [BC09a]

This work is the first to propose a static analysis for detecting independence, in the
presence of a schema. The idea at the basis of the schema-based analysis of [BC09a] is
to infer type-names of nodes that are accessed by a query and impacted by an update,
and then check that these do not overlap. The main contribution of [BC09a] is a type
system that features very low complexity and which is able to detect a consistent number
of independencies statically.

The technique targets a fragment of XQuery that is essentially the one presented in
Section 2.3. Mild differences comes from the fact that queries can navigate on constructed
data, and updates do not need to preserve the schema.

The independence analysis relies on three inference systems.

(RES) An inference system for typing the result (RES) of a query expression. The
judgment d,Γ ⊢(RES) q ∶ τ stands for a relation between the schema d, the static
variable environment Γ, the query q and the set of types τ where τ contains at least
all types of nodes, defined in d, that can be in the result sequences of q.

(SAC) An inference system for typing the data accessed by a query, that is called static
access cover (SAC). The judgment d,Γ ⊢(SAC) q ∶ τ is a relation between the
schema d, the static variable environment Γ, the query q and the set of types τ

where τ contains at least all types of nodes, defined in d, that are needed to evaluate
q.

(IMP) An inference system for typing the data impacted by the update (IMP). The
judgment d,Γ ⊢(IMP) q ∶ τ is a relation between the schema d, the static variable
environment Γ, the query u and the set of types τ where τ contains at least all
types of nodes, defined in d, that are updated by u.

We now illustrate through some examples how these three systems work, and how
type inference is done.

Consider the bibliographic DTD d3 and the following query and update pair, for
which we want to verify independence.

q = for x in doc/descendant ∶∶ book return x/author u = delete doc//title
We always assume that the context of the first navigational step of a query or update

is the schema root type, thus in all of the examples of this chapter we assume that Γ is
a static environment such that Γ(doc) = { bib }. The derivation tree for the inference of
types accessed by q is the following.
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bib ← book∗
book ← title,author+,publisher+

author,publisher ← name

title,name ← String

Figure 3.1: DTD d3

1

d3,Γ ⊢(SAC) doc/descendant ∶∶ book ∶ τ1
2

d3,Γ ⊢(RES) doc/descendant ∶∶ book ∶ τ2
3

d3,Γ[x ↦ τ2] ⊢(SAC) x/author ∶ τ3
d3,Γ ⊢(SAC) for x in doc/descendant ∶∶ book return x/author ∶ τ1 ∪ τ3

The set of types accessed by q is the union of types accessed by its subexpressions,
i.e. τ1 ∪ τ3. Types are inferred by calling system SAC as shown by derivations 1 and
3 . What is inferred for the query in τ1 and τ3? Because doc/descendant ∶∶ book selects
all book nodes in a store, in τ1 we expect to find book and all of its ancestor types defined
in d1. Because x/author selects all author children of nodes bound to x, and x is only
bound to book nodes, in τ3 we expect to find types book and author. Derivation 2
shows also the role of the inference system RES in the process. It is used in order to
provide types for variable x in the subsequent SAC derivation.

By exploring the next level of derivation we can understand more peculiarities of type
inference.

1 The judgment d3,Γ ⊢(SAC) doc/descendant ∶∶ book ∶ τ1 is developed as follows

Γ(doc) = { bib } d3,Γ ⊢(RES) doc/descendant ∶∶ ∗ ∶ Σd3
S
∖ { bib }

d3,Γ ⊢(SAC) doc/descendant ∶∶ book ∶ Σd3
S

The judgment infers the static access cover for doc/descendant ∶∶ book. The in-
ference result is the whole set of types of d3. This is obtained as a union of the
root type (that is the context type for the step descendant ∶∶ ∗), together with
all descendant types of the root (that type the result of the step descendant ∶∶ ∗).
This last one is obtained by calling the RES system.

The first peculiarity of the system SAC we can observe is how the static ac-
cess cover is computed. As said before, a sound static access cover would contain
types for book nodes and their ancestors. To accomplish this, the navigational step
descendant ∶∶ book is approximated by replacing the book label with the ∗ wild-
card (denoting any node). This of course makes the analysis sound but imprecise,
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because all schema types are inferred, and thus also all types unrelated with the
step. As a consequence of this, the query is likely to be deemed dependent wrt
almost all updates. We stress that this is always the case, for all queries starting
with a descendant navigation.

2 The judgment d3,Γ ⊢(RES) doc/descendant ∶∶ book ∶ τ2 is developed as follows.

Γ(doc) = {bib} τ2 = { book ∣ book is a descendant type of bib in d3 }
d3,Γ ⊢(RES) doc/descendant ∶∶ book ∶ { book }

It infers types for the result of doc/descendant ∶∶ book, this time for providing
input to the next inference step. The derivation stresses that schema information
is used in order to check if type book is a descendant of type bib. If this is not the
case then τ2 = ∅.

3 The judgment d3,Γ[x ↦ τ2] ⊢(SAC) x/author ∶ τ3 is developed in the following way

d3,Γ[x ↦ { book }] ⊢(RES) x/∗ ∶ { title,author,publisher }
d3,Γ[x ↦ { book }] ⊢(SAC) x/author ∶ { book, title,author,publisher }

This infers the static access cover for x/author. The result is constituted by the
union of types bound to variable x with the types of nodes in the result of step x/∗.
Once again we observe that the child step is approximated, by replacing the label
author with ∗. This means that all children types of book are inferred namely
title, author and publisher. Once again, the typing is sound but is not precise since
while type author is needed by step x/author, types title and publisher are not.
Analogously to the previous case, the query is likely to be deemed as dependent
wrt all updates impacting a node related to book.

Once types are inferred for the query, the update is analyzed.

The types of a node impacted by u are inferred by the system IMP as follows.

d3,Γ ⊢(RES) doc//title ∶ { title } d3,Γ[x ↦ { title }] ⊢(RES) x/parent ∶∶ ∗ ∶ { book }
d3,Γ ⊢(IMP) delete doc//title ∶ { book }

The set of types deleted by the update is computed in two steps. First, system RES
infer types for nodes effectively deleted, that are those returned by the target expression
doc//price. Second, a parent navigation for such types is performed. This is the second
peculiarity of the system, and it is meant to state that a node whose children are modified
by the update is considered as impacted by the update as well. For the DTD d3, this
means that the data type impacted by the update is book. As a consequence of this, the
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update is deemed dependent with all queries accessing book or one of its children. The
same approximation is done for rename, insert and replace updates.

After type inference is done, for the analysis to be sound, all descendant types of
nodes in the result of the query are also added to the set of types accessed by the query.
For instance, because author types the root of a subtree output by q, all descendant types
of author, namely name and String, are included in the result of the analysis.

Once type inference is done for q and u, providing sets of accessed and updated types
τq and τu, static independence holds iff

τq ∩ τu = ∅

Another peculiarity of this method is that by basing an analysis on type-names, even
if type inference is precise, independence cannot be detected in many cases. In fact,
when a type is reused in several definitions, it may be difficult, or even impossible, to
disambiguate it.

To illustrate, consider again the DTD d3, the environment Γ, and the following pair
of query and update expressions.

q = doc//author/name and u = delete doc//publisher/name

Assume that the type name is inferred for both expressions. This type captures
both nodes returned by the query and nodes impacted by the update, that are la-
beled with name. However, the sets of accessed and updated nodes here are disjoint,
because the query accessed nodes labeled with name nested into nodes labeled with
author while the update deletes nodes labeled with name nested into nodes labeled with
publisher. 1 By using sets of type names, without recording any information on ancestor
types, independence cannot be detected in many cases such as this one.

So far, we have seen a running example of the independence analysis based on types,
and the use of inference system RES, SAC and IMP. Now we discuss how this technique
supports updates that do not preserve the schema.

As said before, not assuming schema preservation is a nice property of the type-
based analysis. However, when flows of updates (possibly violating the initial schema)
are evaluated this property alone does not ensure the success of the analysis: one needs
to maintain the schema after each update which does not preserve the schema 2. Indeed,
a flow of updates may change completely the structure of the schema thus making the
static analysis unsound.

1Recall that if more than one node labeled with publisher is selected by the update path then the
update has to be encoded by means of iteration, otherwise a run-time error is raised.

2A sound method for determining if an update preserves a schema and for maintaining the schema
can be found in [BC09b]
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To see this, consider the following update renaming all labels of the schema, provided
the DTD d3 and the environment Γ.

u1 = for x in doc//book
rename x as “livre”
rename x/title as “titre”
rename x/author as “auteur”
rename x//name as “nom”

How does the analysis detect that a query like q = doc//livre, whose result is empty
over any document valid wrt the DTD, is now drawing some data from this renaming?
This case is covered since, while computing the static access cover of the query, system
SAC approximates doc//livre with doc//∗. This makes the analysis sound, despite the
fact that u1 does not preserve the schema. Indeed, in the intersection of type-names
inferred from q and u1 is non-empty.

At this point, if the DTD d3 is not maintained, the analysis may turn to be unsound.
Consider an update u2 possibly conflicting with q over the (invalid) document instance
obtained after u1 such as

u2 = delete doc//livre
Because no definition of livre is found in d3, the set of types inferred from u2 over d3 is
empty, and thus independence of q and u2 is assumed, while it should not. Therefore,
after an update breaking schema constraints the schema needs to be maintained if one
aims at a sound analysis.

This short discussion shows that preservation of schema constraints is a problem
orthogonal to that of independence. Schema evolution has been studied in [BC09b,
CGM11] and it is out of the scope of our work.

We conclude this section by discussing simplicity and complexity of the type analysis
of [BC09a] which are the most important features of the system. The approximations
made by the type system discussed are motivated by avoiding a complex analysis and
providing a simple inference system. The advantages of a simple type system are that it
can be easily understood, implemented and proved correct. Proofs of the type systems
have been provided and worst case complexity studied. The independence analysis runs
in O((∣d∣2 + ∣q∣)2 + ∣u∣) and it turns out to be very fast in practice.

3.2.2 Commutativity analysis for XML updates [GRS08]

Another approach for detecting independence can be drawn from the commutativity anal-
ysis of XML updates proposed by Ghelli, Rose and Siméon in [GRS08]. This technique
relies on an extension of the path-based analysis proposed in [MS03] that overapproxi-
mates the nodes accessed and modified by a given expression, by means of simple XPath
expressions for which disjointness is decidable.
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This work on commutativity distinguishes itself by two main aspects. First, it studies
commutativity of updates, a different problem from that of independence. Second, and
more importantly, this study considers XML languages with an iterative semantics, thus
different from languages with a snapshot semantics like the one introduced in Section
2.3. As we discuss next, these two differences can be actually levelled out since commu-
tativity allows to detect independence and the path-based approach suits to both kinds
of semantics.

We discuss first the links between independence and commutativity. Roughly speak-
ing, independence asks wether the result of a query is preserved after updating, while
commutativity asks if the application order of two updates is irrelevant. Deciding com-
mutativity allows to decide independence. Conceptually, this is true because updates are
written in terms of queries. This implies that, an instance of the independence prob-
lem for q,u can be reduced to a commutativity one by rewriting q as a new update
u′ = replace q with q, and then check that u′ commutes with u. This reduction also
shows that checking commutativity is at least as hard as checking independence.

The commutativity analysis of [GRS08] has been developed for query languages with
side-effects (i.e., updates) such as of XQuery! [GRS06] and XQueryP [CCF+06]. These
languages have a so called iterative semantics, they support immediate update appli-
cation and explicit left-to-right evaluation order. This is a main difference with the
languages considered in [BC09a, BC10, BTCU12], that have a snapshot semantics. Iter-
ative languages have a strict left to right evaluation order, while languages with snapshot
semantics reorder their updates before application: insert and replace are executed first,
then rename and finally delete. Iterative languages allow to see the effects of updates
during evaluation.

While iterative languages seem more intuitive, they have a more involved semantics.
This is because any expression can read data that it previously inserted. To illustrate,
a (possibly) non terminating update such as the following can easily be written in an
iterative language.

for x in doc//name return insert <name/> after x

Assuming that the base data contains at least one node labeled with name (that is also
a descendant of the node bound to doc), the expression keeps on extending the iterating
sequence of name nodes forever.

Much more machinery effort has to be done in order to prove the soundness of the
commutativity analysis for a language with iterative semantics, with respect to languages
with snapshot semantics. Many expressions that do not commute in iterative languages
do commute in snapshot language (simply because they do not have the same effect), so
an analysis for an iterative language is likely to work also for a language with snapshot
semantics. Of course, it is possible to define a more general (and less precise) static
analysis that works for both kinds of languages.
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We proceed now with the description of the path-based analysis, thus illustrating its
characteristics.

The path-based analysis relies on a system of simple path inference. Simple paths
are expressions belonging to the fragment of XPath composed by downward and upward
navigation, plus the wildcard *. Predicates, as well as data values and sibling axis, are
not allowed.

The analysis relies on an inference system (PATH) for inferring the simple paths of
an expression. The judgment Γ ⊢(PATH) q ∶ (rt,ac,up) is a relation between the static
variable environment Γ, the query q and the sets of paths (rt,ac,up) where rt is the
set of path leading to returned subtrees of q, ac is the set of path representing nodes
accessed but possibly not returned by q, and up is the set of path representing nodes
that are updated by q.

Distinguishing among these three kinds of paths allows to capture two main aspects
of the language. First, side-effects, by distinguishing between update paths from the rest.
Second, query semantics, by distinguishing between accessed and return paths.

Note that here the analysis is supported by a single inference system, and most
importantly, the analysis does not depend on an input schema. In the following examples
the steps navigating from the root of a tree are written without an explicit variable.

To illustrate the (PATH) inference system, we consider again the following query-
update pair.

q = for x in /descendant ∶∶ book return x/author u = delete //price

Inference of return, used and update paths for q is derived in the following way.

1

Γ ⊢(PATH) /descendant ∶∶ book ∶ (rt,ac,up)
2

Γ[x ↦ rt] ⊢(PATH) x/author ∶ (rt′,ac′,up′)
Γ ⊢(PATH) for x in /descendant ∶∶ book return x/author ∶ (rt′, ac ∪ ac′, up ∪ up′ )

Accessed and updated paths inferred for the whole expression are those inferred from
each subexpression only. Return paths for the whole expression are naturally those on the
right subexpression. Next we will see how the static environment Γ helps in reconstructing
navigational paths by following variable bindings.

Notice that the rule for path extraction introduces a bit of imprecision since all
accessed and updated paths of the left subexpressions are kept in the final result, in-
dependently of the right subexpression. This means that, for instance, when the right
branch of the iteration query performs no operation, and thus the query does nothing,
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the set of inferred paths for the whole expression may not be empty, while it should.
This is the case for the following query

for x in //book return ()
for which path //book is inferred, despite the fact that inferring an empty set of returned
and accessed path would still be sound.

Let us explore further derivations and comment on other peculiarities of the analysis.

1 The judgment Γ ⊢(PATH) /descendant ∶∶ book ∶ (rt,ac,up) is developed as follows

rt = {/descendant ∶∶ book}
Γ ⊢(PATH) /descendant ∶∶ book ∶ (rt, rt,∅)

In this case path inference is a simple path extraction. Notice that return and
accessed paths coincide, and of course no update path is inferred.

2 The judgment Γ[x ↦ rt] ⊢(PATH) x/author ∶ (rt′,ac′,up′) is developed as follows

Γ[x↦ rt] ⊢(PATH) x ∶ (rt,∅,∅) rt′ = rt × {/author} ac′ = prefixes(rt′)
Γ[x ↦ rt] ⊢(PATH) x/author ∶ (rt′,ac′,∅)

Here the system first reconstructs simple paths by following variable bindings.
Indeed, the path /descendant ∶∶ book that is bound to x is combined in a cartesian
product with step /author in order to infer rt′ = { /descendant ∶∶ book/author }.
Accessed paths are defined as prefixes of inferred paths. Of course, no update path
is inferred since the operation has no side-effect.

The application of the rule may lead to infer exponentially many paths for some
rare expressions such as the following one.

for x1 in (x0/a , x0/b ) . . . xn in (xn−1/a , xn−1/b ) return xn

this expression would produce exactly 2n return paths and O(n2n) accessed paths.
This kind of expressions are however very rare in practice.

Now that paths are inferred from the query, we focus on the update. Path inference
for the update expression is derived as follows

Γ ⊢(PATH) //price ∶ ({ //price },∅,∅)
ac = { //price } up = { //price } × { /descendant−or−self ∶∶ ∗ }

Γ ⊢(PATH) delete //price ∶ (∅,ac,up)
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Here nodes deleted by the expression are captured by combining return paths of//price with a descendant−or−self ∶∶ ∗ step, denoting that whole subtrees rooted at
prices are deleted. Return paths for the target query become also accessed paths for the
whole expression. No return path is inferred for the whole update.

Notice that the path analysis precisely capture only the deleted subtrees without
including their parent, as is done by the type analysis.

Another characteristics of the analysis is how updates paths are extracted from insert
and replace commands. To illustrate, consider the following update.

insert //author into /site/book
Paths for the update are extracted in the following way.

Γ ⊢(PATH) //author ∶ (rt1,ac1,up1) Γ ⊢(PATH) /site/book ∶ (rt2,ac2,up2)
ac = rt1 × {/descendant−or−self ∶∶ ∗} up = rt2/ × {descendant ∶∶ ∗}

Γ ⊢(PATH) insert //author into /site/book ∶ (∅ , ac1 ∪ ac2 ∪ ac , up1 ∪ up2 ∪up)

Accessed paths extracted from the two subexpressions become accessed paths for
the whole update. Moreover, return paths for the source expression //author are com-
bined with a self or descendants axis, and become accessed paths for the whole update,
mimicking the fact that an entire subtree is copied.

Update paths extracted from the subexpressions (if any) become update paths for
the whole update. Notice that the set of inserted paths is inferred by combining path/site/book with a descendant step, mimicking that the whole subtree rooted at book is
updated. This of course is sound, but not complete. For instance, the update is deemed
as non-commuting with query /site/book/title, while it does.

Once return, accessed and update paths are inferred from the expressions, an inter-
section test is run. The subset of XPath considered for inference includes downward and
backward navigational axes, and * wildcard. Branching is excluded. For this language
intersection is decidable. While results in [Hid03] show that the intersection problem for
downward XPath expressions is NP-complete, [HKL05] approach shows that intersection
is solvable in quadratic time for the downward fragment only.

One of the most important features of the path analysis, is that it works independently
without requiring a schema. However, in all the cases where schema is available, schema
constraints cannot be easily plugged into the path-based analysis. Soundness of the path-
based commutativity analysis has been proved in [GRS08], and also its benefits have been
showed when used for optimizing logical plans of queries with side-effects [GORS08].
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3.2.3 Destabilizers and independence of XML updates [BC10]

Destabilizers [BC10] are a generalization of the idea of statically approximating the set
of accessed nodes found in some prior work [BCCN06, MS03, GRS08] and then testing
intersection, combined with the concrete use of the data. The destabilizer framework
can work in principle for any language and data-model, in [BC10] they are formally
implemented for XML queries and updates.

The formal definition of destabilizers is quite technical, thus here we provide just a
gentle introduction to the approach, discuss the problematics in computing destabilizers
and outline how they are concretely used.

Given a query q, the destabilizer of q, denoted by ∆(q), is defined as the set of updates
that may change the answer of q. From this follows that an update u is independent wrt a
query q when u does not overlap with ∆(q). In the following we will distinguish between
dynamic or static, and exact or approximate destabilizers. Dynamic destabilizers are
composed by atomic update commands, while static ones are update expressions. Exact
destabilizers are minimal, in the sense that they produce no false negative (updates that
do not change the answer of q), while approximated ones may produce false negatives.

An exact dynamic destabilizer is a minimal set of atomic update commands that can
affect the result of a query q evaluated over the tree t. We recall that an atomic update
command is an operation of

del(_) ins(_,_,_) ren(_,_) repl(_,_)
As an example, consider the document t = (σ, lt) with two nodes

σ = { lt ← bib[l1]
l1 ← book[]

Let q be the query /bib/book. The exact dynamic destabilizer of q wrt t, denoted by
∆d(q, t), is composed by all atomic update commands targeting either lt or l1 in t. The
atomic updates that can alter lt are the followings

del(lt) ren(lt, “a”) repl(lt, l′)
where l′ is a location not isomorphic to lt, and a is a string different from bib.
The atomic updates that can alter l1 are the followings.

del(l1) ins(Li,pos, lt) ins(Li,pos
′, l1) ren(l1, “b”) repl(l1,Li)

where Li is a non empty sequence of locations containing a node not labeled with book,
pos is one of {into,into as first,into as last}, pos′ is one of {before,after}, and
b is a string different from book.
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An update u is independent of a query q if the UPL produced by u over t does not
overlap with ∆d(q, t). Consider the update

u1 = insert < new/ > into /bib
u1 over t generates the atomic update ins(lnew,into, lt). Because lnew is not labeled
with book, q is independent of u1. Differently, the update

u2 = delete /bib/∗
is not independent with q because it generates the atomic update del(l1) which also
belongs to ∆d(q, t).

Benedikt and Cheney [BC10] illustrate that it is not feasible to deal with dynamic
destabilizers as concrete sets of atomic update sequences. Therefore, destabilizers are
treated at a symbolic level. The set of nodes involved in atomic updates in ∆d(q, t)
is approximated by any update expression targeting those locations. Since updates are
defined in terms of queries, it turns out that the destabilizer set is defined as a set of
query expression targeting all nodes that are arguments of the atomic updates. For
q = /bib/book, the exact static destabilizer ∆s(q, t) approximating the dynamic one, is
simply

∆s(q, t) = { /bib, /bib/book }
In developing a static destabilizer, there is a trade-off between the precision (how close
it is to the dynamic analog) and the complexity of analyzing the resulting query. The
generic static destabilizer defined as above is frequently a significant over-approximation
of the runtime destabilizer. For example, a query may be sensitive to update sequences
that can only affect a node via a particular update operation. In its simplest form, the
static destabilizer cannot capture this aspect. The authors presented a query-rewriting
technique that provides a useful, sound approximation. Destabilizers sensitive to up-
date operations (precise for each update), as well as destabilizers sensitive to different
equalities (precise for boolean, node and subtree equivalence) are also defined in [BC10].

Benedikt and Cheney showed that calculating an exact static destabilizers is not
feasible even for a core XML query language, hence the analysis needs to abstract away
from some features in order to be effectively executed. This is stated by the following
theorem.

Theorem 3.2.1 ([BC10]). There is no elementary time algorithm for constructing an
operation-sensitive minimal static destabilizer.

The formal definition of a destabilizer is reminiscent of a path analysis. The main
difference with the path-based approach is that destabilizers also consider the source
document for the overlapping test. To illustrate, consider the following query q and
update u over the previous document t.

q = for x in /bib return <list>x/book</list> u = delete //book/title
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The destabilizer for the query is

∆s(q, t) = { /bib , /bib/book/descendant−or−self ∶∶ ∗ }
Now, while running the intersection test between u and ∆s(q, t), we consider also the
actual data of t.

The intersection tests of the destabilizers approach is more accurate that the one of
previous techiques. While the path analysis (and also the type analysis) would exclude
independence, the destabilizer analysis correctly deem the independence, because there is
no data in the store corresponding to title nodes. In fact, the path analysis (and also the
type analysis) does not take into account the document. This is because the path analysis
would see that the path targeting delete nodes //book/title/descendant−or−self ∶∶ ∗
intersects with path /bib/book/descendant−or−self ∶∶ ∗ (inferred for q).

The source document is taken into account by translating queries into logical formu-
las, and then transforming the intersection test of query and update paths to a satis-
fiability problem, solved with SAT-solvers. Several exact and approximate translation
are proposed. These allow to trade between precision and efficiency of the analysis. In
the following, we limit ourselves to discuss translations, without reporting the formal
development, that can be found in [BC10].

We discuss now exact solutions. Queries without element construction can be trans-
lated to first-order formulas over the child, descendant and sibling relations, and then
disjointness analysis for these queries reduces to satisfiability for first-order formulas over
trees FO(Trees). However it follows from results of [Vor96] that there is a non-elementary
lower bound on the complexity of satisfiability. The solver used for resolution of this for-
mulas is Yices [DM06]. Another strategy is to convert expression into monadic second
order logic (MSO). It follows from results in [SM73] that there is a non-elementary lower
bound on the complexity of satisfiability of MSO over trees. The solver used for MSO

resolution is MONA [KM11].

We discuss approximate solutions. To check intersection of query expressions on
database instances, the authors propose first a reduction to existential second order
logic (ESO) which uses as support an arithmetic encoding of the input document. This
solution has an overhead that depends on the document to analyze, and this could not be
reasonable for large documents. We recall that path intersection is NP-hard in general,
even if for downward-only paths, overlapping is exactly decidable in quadratic time.

In [JGL12] Junedi, Genevès and Layïda showed that the efficiency of destabilizer can
be enhanced wrt the work of [BC10] by checking satisfiability of logical formulas using
their µ-solver [GLS07, GL08]. Their approach is based on translating XPath expressions
into µ-calculus formulas. As outlined above, the theoretical complexity of satisfiability
on MSO formulas is known to be non-elementary, whereas it is exponential for simplex
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based linear arithmetic satisfiability. The complexity of satisfiability on µ-formulas is sim-
ple exponential. The resulting approach resulted to be far more competitive wrt solver
such as MONA and Yices. An evidence from experiments in [JGL12] is that the domi-
nant inference cost does not necessarily reside in the resolution procedure, but mostly in
constructing destabilizers, parsing formulas and initializing the auxiliary libraries for res-
olution. The time spent in the resolution procedure better reflects the intrinsic difficulty
of each problem instance.

In conclusion, the merit of destabilizers is twofold. It is a modular framework that
generalizes concepts of all previous approaches to independence. It promotes the practical
use of SAT-solvers for intersection analysis. The approach does not require a schema,
even if they can be handled by adding schema constraints in the satisfiability test. While
former experiments in [BC10] showed some limits of the approach concerning the cost
of the destabilizer analysis, recent works of [JGL12] showed that destabilizers can be
implemented efficiently.

Conclusions

In this chapter we presented the theoretical background and the state-of-the-art tech-
niques for checking XML query update independence. We discussed theoretical results
that show the computational difficulty of the problem. Then we discussed three approx-
imated analysis that, being sound but not complete, try to make the analysis tractable.
All approaches distinguish for simplicity, precision and complexity. The type-based anal-
ysis [BC09a] requires a schema in order to be executed, it is simple to implement and it
runs in polynomial time, but it may be not precise. The path-based analysis [GRS08]
works without requiring a schema but when structural constraints are available they can-
not be easily integrated. It is also simple to implement but for some expression the path
extraction may occur in blowups, and also exact checking of path disjunction turns out
to be NP-hard. The destabilizer analysis [BC10] is a modular framework that general-
izes all previous ideas, and allow to perform an independence analysis varying precision
and complexity of the approach. The method works without schemas, but it can easily
integrate structural constraints.

In the next chapters we present our technique for detecting independence based on
schemas, showing how it can ensure a precise analysis while still keeping inference poly-
nomial in time and space.



Chapter 4

Independence Analysis based on

Schema-Chains

This chapter presents the main contribution of this thesis: a novel method for detecting
XML query update independence, in the presence of a schema. We present an inference
system for computing the set of navigational paths accessed by queries and updates,
called chains. We prove the chain-based inference system to be sound and more precise
than the related approach based on types. We present a static notion of independence,
based on chains, that we show to be decidable, even for recursive schemas which can
generate infinite sets of chains.

The chapter is organized in four parts. In the first part, we present a system for chain
inference. In the second part, we show the correctness of the type system. In the third
part, we present a static notion of independence based on chains. In the fourth part, we
show the decidability of the notion of static independence.

4.1 Introduction

As explained in the previous chapter, the type analysis for checking independence defined
in [BC09a] is designed so as to infer information about accessed data, by abstracting away
from some of the structural properties expressed by queries and updates. This is done
in order to keep the systems relatively simple, and to make the inference fast. Actually,
the main structural information which is traded is data-nesting, that defines the way in
which types interact.

Data-nesting is a synonym of hierarchical information. Together with document or-
der, it entails that the semantics of a subtree depends on its position in the document.
Describing a collection of accessed and updated trees with a set of types-names, is equiv-
alent to consider all possible trees with fixed tag alphabet, ignoring any constraint on
the hierarchy of data. Unfortunately, in many cases this causes lack of precision because
of the tree shape of XML data.
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The goal of this work is to improve the precision of the method proposed in [BC09a]
by exploiting schema information in a different way. Rather than inferring sets of type-
names accessed by the expressions, our goal is to infer sequences of accessed types, called
chains, that essentially correspond to navigational paths traversed by query and update
expressions on valid schema instances. Chains will form the basis of an extremely precise
independence analysis.

We present now formal definitions about chains. We begin by defining the notion of
type and chain of types for a node location belonging to a store.

Definition 4.1.1 (Node Type and Chain). Given a store σ, the type of a location l ∈
dom(σ), denoted by type(l) is defined as

type(l) = { a if σ(l) = a[L]
String otherwise

The chain associated to location l, denoted by cσl , is defined by

cσl = { type(l) if l has no parent
cσ
parent(l).type(l) otherwise

If t = (σ, lt) and l ∈ dom(t) then we denote by ctl the chain ctl = cσl . To illustrate,
consider the tree t2 in Figure 4.1. Here the type of the root location lt2 is type(lt2) = bib,
and it also coincides with its own chain cσlt2

, because the root node has no parent. The

type of l′3 and l′4 are the same, indeed type(l′3) = type(l′4) = name. However their chains
differ since

cσl′
3

= bib.book.author.name cσl′
4

= bib.book.publisher.name

Notice that since the store coincides with the tree, we have that cσl = c
t2
l

for all l ∈ dom(σ).
As a convention in the notation, we use “.” to separate two consecutive labels in a chain.
Notice also that this definition considers only rooted chains, where the starting symbol
is always the root.

We stress that the above definition works for any XML tree and node location, inde-
pendently from schema constraints. However, dealing with schemas is our ultimate goal.
Hence in order to develop a static analysis which is correct we need to ensure that, if a
document is compliant with a schema, then all node chains in the document are induced
by the schema.

To formalize this property, we define the set of chains induced by a schema relying
on a reachability relation between types.

Definition 4.1.2 (Reachability and Chains). Given a DTD d, we denote by a⇒d b

the reachability relation that holds for a pair a,b ∈ ΣS if b occurs in the regular expres-
sion d(a). A chain c over d is a non-empty sequence of labels

a1 .a2 . . . .an

such that ai ⇒d a(i+1) for i = 1 . . . n−1.
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<bib>
<book>
<title>

Types and Programming Languages
</title>
<author>
<name>B. Pierce</name>
</author>
<publisher>
<name>MIT Press</name>
</publisher>

</book>
</bib>

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lt2 ← bib[ l1 ]
l1 ← book[ l2, l3 l4 ]
l2 ← title[ l′2 ]
l′2 ← “Types and ...”
l3 ← author[ l′

3
]

l′
3
← name[ l′′

3
]

l′′
3
← “B. Pierce”

l4 ← publisher[ l′
4
]

l′
4
← name[ l′′

4
]

l′′4 ← “MIT Press”

Figure 4.1: Document t2 and store (σ, lt2)
The set of chains associated with the DTD d is denoted by Cd. Observe that chains

in Cd are of finite length and may start with any DTD symbol. The set Cd is infinite
only if d is a vertical-recursive schema (i.e., some type is defined in terms of the type
itself). The empty chain is denoted by ǫ, and we assume, as a convention, that it is never
induced by any schema. Given two chains c1 and c2, the concatenation of c1 and c2 is
denoted c1.c2, of course c1.ǫ = c1. We write c1 ⪯ c2 to indicate that c1 is a prefix of c2,
that is c2 = c1.c for some chain c.

As an example of schema chains, consider the DTD d3 in Figure 3.1. The set Cd3

includes the chains

bib.book.title.String bib.book.author.name.String bib.book.publisher.name.String

and all their non-empty subsequences. For instance, bib and author.name.String are
Cd3 -chains, while bib.author and book.String are not.

Relation ⇒d is both sound and complete. Soundness means that for any pair of
parent-child locations belonging to a valid tree, there exists a correspondent pair of
types in ⇒d. Completeness means that the relation is also minimal, thus removing one
pair from ⇒d we beak soundness. This is stated by the following lemmas. Proofs are
reported in Chapter 9.

Lemma 4.1.3 (Soundness of ⇒d). Let d be a DTD and t = (σ, lt) ∈ d a valid tree. If(l, l′) ∈ Child t then type(l)⇒d type(l′).
Lemma 4.1.4 (Completeness of ⇒d). For all DTD d, if a⇒d b then there exists a valid
tree t = (σ, lt) ∈ d, and a pair of locations (l, l′) ∈ Child t, such that type(l) = a and
type(l′) = b.
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At this point, we can reconcile chains associated to node locations (Definition 4.1.1)
and chains induced by a schema (Definition 4.1.2) by stating that, when we consider a
document valid against a schema, all node-chains are schema-chains.

Proposition 4.1.5. Given a valid tree t ∈ d and a location l ∈ dom(t) we have ctl ∈ Cd.

Proof. Immediate by Lemma 4.1.3.

The converse of this proposition is not true. Not all of the schema-chains are node-
chains of a tree, for all valid schema instance. This is because some elements may be
optional. Therefore, what can be proved is that for all rooted schema chain there exists a
document instance including a node with that chain. This, as a corollary of Lemma 4.1.4.

At this point, we formally defined types and chains for documents and schemas. We
have shown that schema chains can be safely used in order to abstract over tree chains
(Proposition 4.1.5), as a corollary of validity. The sequel of the chapter is dedicated to
define an independence analysis based on schema-chains.

4.2 Chain Inference

We begin by defining chain inference for XPath navigational steps, we then generalize to
queries and updates.

4.2.1 Step Chain Inference

The definition of our chain inference system makes the assumption that the inference is
made starting from an input set of chains C. Given a DTD d, this set can be either Cd

(possibly infinite analysis) or a finite subset of Cd (finite analysis). We would like to stress
that assuming a pre-computed chain set is only made to ease the formal presentation.
Any reasonable implementation can avoid this, by inferring chains in C on the fly (see
Chapter 5).

The first ingredient for query/update chain inference is chain inference for a single
XPath step. We first define chain inference for axes, and then for node tests. Axis chain
inference aims at inferring all chains that can be generated by axis navigation, in a d

instance, starting from a node typed by a chain c ∈ C. Chain inference for XPath axes is
defined below, where we assume that c′, c′′ ≠ ǫ.

AC(c,self)
def
= { c }

AC(c,child)
def
= { c.a ∣ c.a ∈ C }

AC(c,descendant)
def
= { c.c′ ∣ c.c′ ∈ C }

AC(c,parent)
def
= { c′ ∣ c = c′.a }

AC(c,ancestor)
def
= { c′ ∣ c = c′.c′′ }



4.2. CHAIN INFERENCE 49

Chain inference rules strictly mimic XPath semantics of axes. It is worth noticing that
all navigations follows from the reachability relation ⇒d. Notice also that

AC(c,axis−or − self) = AC(c,axis) ∪AC(c,self)

for axis ∈ {descendant,ancestor}.
We illustrate step chain inference over the DTD d3 in Figure 3.1, with the following

examples.

ACd3
(bib.book,child) = { bib.book.title

bib.book.author

bib.book.publisher }
ACd3

(bib.book.author,descendant) = { bib.book.author.name

bib.book.author.name.String }
ACd3

(bib.book.author,parent) = { bib.book }

Chain inference for sibling axes has a slightly more involved definition. First we need
to define a relation between sibling types. This is needed in order to deal with horizontal
axis.

Definition 4.2.1 (Sibling-type relation). Two types a,b are said to be siblings wrt a
regular expression r, denoted by a<r b if there exists a word u belonging to the language
generated by r in which a letter a occurs before a letter b. The relation <r is inductively
defined as follows

<()
def
= ∅

<a
def
= ∅

<r1∣r2
def
= <r1 ∪ <r2

<r1,r2
def
= <r1 ∪ <r2 ∪ Sym(r1) × Sym(r2)

<r+
1

def
= <r1,r1

<r∗
1

def
= <r1,r1

where Sym(r) is the set of symbols used in the regular expression r.

In the following rules, with a little abuse of notation, given a chain c on d, we use
d(c) to indicate either the regular expression d(a), when c = c′.a, or the empty regular
expression ǫ, when c = c′.String. Chain inference for preceding/following-sibling axes is
defined as follows.

AC(c,following−sibling)
def
= { c′.b ∈ C ∣ c = c′.a, a <d(c′) b }

AC(c,preceding−sibling)
def
= { c′.a ∈ C ∣ c = c′.b, a <d(c′) b }
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It is worth noticing that this sibling typing is very precise, since the sibling relation
is evaluated for a particular regular expression. To illustrate, let r1, r2 be two regular
expressions in d. It may be that a<r1 b but a /<r2 b, and this difference can be captured
using chains. This is not the case for the type analysis in [BC09a] that would consider a

and b as sibling types in all cases.

Step chain inference for sibling axes over DTD d3 is exemplified below.

ACd3
(bib.book.title,following−sibling) = { bib.book.author

bib.book.publisher }
ACd3

(bib.book.title,preceding−sibling) = ∅

As a more involved example of the sibling relation <r consider for instance

<a,(b ∣ f)+,g = {(b,b), (b, f), (f,b), (f, f), (a,b), (a, f), (a,g), (b,g), (f,g)}
since

<a,(b ∣ f)+,g = <a,(b ∣ f)+ ∪ <g ∪ {a,b, f} × {g}
= <a ∪ <(b ∣ f)+ ∪ {a} × {b, f} ∪ {a,b, f} × {g}
= <(b ∣ f),(b ∣ f) ∪ {a} × {b, f} ∪ {a,b, f} × {g}
= <b ∣ f ∪ {b, f} × {b, f} ∪ {a} × {b, f} ∪ {a,b, f} × {g}
= <b ∪ <f ∪ {b, f} × {b, f} ∪ {a} × {b, f} ∪ {a,b, f} × {d}
= {b, f} × {b, f} ∪ {a} × {b, f} ∪ {a,b, f} × {g}
= {(b,b), (b, f), (f,b), (f, f), (a,b), (a, f), (a,g), (b,g), (f,g)}

It the development we assumed left associativity for union and concatenation, that im-
plies r1, r2, r3 = (r1, r2), r3. It is worth noticing that the relation <r considers all fol-
lowing siblings of a given type, like (a,g), and not just the immediate ones. Also,
<a = <b = <f = <g = ∅.

The following two lemmas state that the relation <r is both sound and complete.

Lemma 4.2.2 (Soundness of <r ). Let d be a DTD and t = (σ, lt) ∈ d a valid tree. If(l, l′) ∈ FollowingSibling t and ctl = c.a then type(l)<d(c) type(l′).
Lemma 4.2.3 (Completeness of <r ). For all DTD d, If a<d(c) b then there exists a valid
tree t = (σ, lt) ∈ d, and a pair of locations (l, l′) ∈ FollowingSibling t, such that type(l) = a
and type(l′) = b, with ctl = c.a and ctl′ = c.b.
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Rules for node-test chain inference are easier and defined below.

TC( c,node() ) def
= { c }

TC( c, a )
def
= { c ∣ c = c′.a }

TC( c,text() ) def
= { c ∣ c = c′.String }

Composition of axis and node-filters is noted as

TC(AC(c,axis), φ )

that stands for
⋃

c′∈AC(c,axis)

TC( c
′, φ )

To illustrate, consider the following examples over DTD d3

TCd3
(ACd3

(bib.book.author,descendant),text() ) = { bib.book.author.name.String }
TCd3

(ACd3
(bib.book.title,following−sibling), author ) = { bib.book.author }

In this section we defined chain inference for XPath steps, the building blocks of our
analysis. We will define next chain inference for query and update expressions. It is
worth noting that in the above examples we considered only rooted chains, where the
first symbol is the root type. This is because these chains are the ones that make sense for
the access analysis, despite the fact that all definitions work also for non-rooted chains.

4.2.2 Query Chain Inference

The analysis of query and update chains requires to further structure the inference pro-
cess, in order to better describe the behavior of query and update expression, and prepare
for a more precise independence analysis. For this aim, we introduce several classes of
chains that we use to capture accessed and updated data.

As output of inference, our system produces chains of different kinds. The classifi-
cation resembles that of Marian and Simeon in [MS03] for query path extraction, and
of Ghelli et al. in [GRS08] for update path extraction, and is needed in order to reflect
different way a query manipulates nodes during its evaluation. Reflecting this distinction
is crucial for soundness and precision of the independence analysis.

In our framework, a query chain belongs to one of the following three disjoint classes.

• Return chains type input document nodes (return nodes) that are roots of subtrees
outputted by the query. All descendants of a return node are in the query result,
thus a return chain c implicitly embodies these descendants. Now, if a change
made by an update u targets a return node or some of its ancestors or descendants,
query-update independence is not guaranteed.
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• Used chains type nodes (used nodes) belonging to the input document and partic-
ipating to the query evaluation, without necessarily being part of the result itself.
Clearly, if a change of an update u targets a used node or some of its ancestors,
then query-update independence is not guaranteed. However, if it targets a used
node descendant then independence may still hold.

• Element chains type newly constructed elements; an element chain is of the form a.c,
where a is the tag of the constructed a element, while c traverses nodes belonging
to the subtree rooted at the a element. Extracting these chains is important to
record the structure of forests built and inserted by update expressions.

For updates, we have one class of chains:

• The purpose of an Update chain, denoted by c ∶ c′, is twofold: c types nodes l

whose content may be changed by the update and c′, rooted at a child label of l,
types descendants of l (either introduced or removed by the update) involved in
the changes. For example, given c ∶ c′, independence is not guaranteed if a query
returns an element whose root is typed by c.a, with a a prefix of c′.

Rules for query chain inference are presented in Table 4.1. These rules prove judge-
ments of the form:

Γ ⊢C q ∶ (r, v, e)
meaning that starting from a variable environment Γ and a set of chains C, the chain
inference for query q produces the sets r, v and e, containing the return, used and element
chains for q, respectively. Γ is a static variable environment that associates each query
free-variable x with a set Γ(x) of chains, typing nodes that can be assigned to the variable
during query evaluation. When x is bound to a single chain, we write x↦ c as a shorthand
of x↦ { c }.

All the rules mimic query semantics [DFF+10, BC09b] introduced in Section 2.3. Rule
(Empty) returns no chain, as the empty query performs no operation. Rule (Concat)
returns the union of return, used and element chains for the two expressions.

Navigational steps are captured by rule (StepF) and (StepUH) dealing with forward
and upward/horizontal navigations respectively. Rule (StepF) produces only return
chains, by using in turn step chain inference rules defined in the previous section. This
is due to the fact that forward navigations only extend input chains, without loosing
track of visited ancestor types. Differently, rule (StepUH) produces also used chains.
These are input chains leading to a non-empty result for the axis inference. These chains
are needed for developing a correct access analysis, since return chains produced by an
horizontal/upward step may not contain as a prefix the input chain in Γ(x) from which
they have been generated. Also, these input chains are kept as used chains because the
descendants of the locations they are typing do not need to be accessed as well.
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Γ ⊢C () ∶ (∅,∅,∅) (Empty)
Γ ⊢C qi ∶ (ri, vi, ei) i=1,2

Γ ⊢C q1,q2 ∶ (r1 ∪ r2, v1 ∪ v2, e1 ∪ e2) (Conc)

axis ∈ {self,child,descendant−or−self}
rc = TC(AC(c,axis), φ ) for any c ∈ Γ(x)

Γ ⊢C x/axis∶∶φ ∶ ( ⋃
c∈Γ(x)

rc,∅,∅) (StepF)

axis ∈ {parent,ancestor,ancestor−or−self,
following−sibling,preceding−sibling}
rc = TC(AC(c,axis), φ ) for any c ∈ Γ(x)
Γ ⊢C x/axis ∶∶ φ ∶ ( ⋃

c∈Γ(x)

rc , ⋃
c ∈ Γ(x)
rc ≠ ∅

{c},∅) (StepUH)

Γ ⊢C q1 ∶ (r1, v1, e1)
Γ[x↦ c] ⊢C q2 ∶ (rc, vc, ec) for any c ∈ r1

Γ ⊢C for x in q1 return q2 ∶ (⋃
c∈r1

rc, v1 ∪⋃
c ∈ r1

rc∪ec ≠ ∅

(vc ∪{c}), ⋃
c∈r1

ec) (For)

Γ ⊢C q1 ∶ (r1, v1, e1) Γ[x ↦ r1] ⊢C q2 ∶ (r2, v2, e2)
Γ ⊢C let x ∶= q1 return q2 ∶ (r2, r1 ∪ v1 ∪ v2, e2) (Let)

Γ ⊢C qi ∶ (ri, vi, ei) i=0..2

Γ ⊢C if (q0) then q1 else q2 ∶ (r1 ∪ r2, ⋃
i=0..2

vi ∪ r0, e1 ∪ e2) (If)

Γ ⊢C “txt” ∶ (∅,∅,{String}) (Text)

Γ ⊢C q ∶ (r, v, e)
e0 = { a.a.c′ ∣ c.a ∈ r, c.a.c′ ∈ r } ∪ { a.c ∣ c ∈ e } ∪ { a ∣ r ∪ e=∅ }

Γ ⊢C <a>q</a> ∶ (∅, r ∪ v, e0) (Elt)

Table 4.1: Chain Inference Rules for Queries
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The following examples are made on the DTD d3 in Figure 3.1, and we assume that
variable doc is always bound to bib in Γ.

To illustrate rules (StepF) and (StepUH), consider , and the query

doc//title/following−sibling ∶∶ author
Chain inference for this expression is done by analyzing the two steps in sequence. Rule
(StepF) infers chain bib.book.title for the step doc//title. By applying rule (StepUH)
on the step following−sibling ∶∶ author, provided that Γ′ = Γ ∪ { x ↦ bib.book.title },
we obtain the following derivation.

TCd3
(ACd3

(bib.book.title,following−sibling), author ) = {bib.book.author}
Γ′ ⊢Cd3

x/following−sibling ∶∶ author ∶ ({bib.book.author},{bib.book.title},∅)
The rule produces a return chain, namely bib.book.author, that is typing subtrees rooted
at author returned by the query, but also a used chain, namely bib.book.title, that is
typing locations accessed before getting to the result.

Rules (For) and (Let) are very similar, thus we mainly comment on the former.
According to query semantics, rule (For) performs an iteration on the set of return
chains inferred for q1 and, at each iteration step, it evaluates q2. We illustrate this
process through an example. Consider the DTD d3 and the following query

for x in doc/descendant ∶∶ name return x/parent ∶∶ ∗
The expression iterates on the sequence of document nodes labeled with name, and
outputs the parent of the each node. Here, chain inference for the left subexpres-
sion /descendant ∶∶ name produces two return chains ca = bib.book.author.name and
cp = bib.book.publisher.name. Accordingly, chain inference for the right subexpression
x/parent ∶∶ ∗ is done twice, with x bound to ca and cp respectively.

Moreover, three other operations are necessary in order to perform a correct and
precise analysis.

First, return chains for q1 are converted into used chains for the whole expression.
This is needed because chain inference is a bottom-up process: inside q1 a path expression
is seen as a query producing a result (and as such it locally produces return chains), while
it only selects nodes to be used in the outer iteration for x in q1 return q2. To
illustrate, consider the query

for x in doc//publisher return

for y in doc//name return y

In this case the return chain bib.book.publisher inferred for the step //publisher, should
not be considered as a return chain for the whole expression, since the descendants of
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nodes labeled with publisher are not accessed by the expression. Rather, it should be
considered as a used chain for the whole expression.

Second, return chains for q1 that are irrelevant for q2 are filtered out. To illustrate,
consider the query

for x in doc//node() return

if (x/title ) then x/author else ()
Chain inference for the expression doc//node() returns all rooted chains of the schema.

If these are all kept in the final result, the analysis is jeopardized since the query would
be consider as dependent wrt almost every update. Our system avoids this, by discarding
all return chains of doc//node() that do not further satisfy x/title. Chain inference for
the whole expression only produces the used chain bib.book.title and the return chain
bib.book.author.

Third, used chains for q1 become chains for the whole expression. This operation is
needed in order to ensure a sound analysis. Consider the DTD d3 and following query

for x in doc//title/following−sibling ∶∶ author return x

here the left query doc//title/following−sibling ∶∶ author makes the system inferring
a return chain bib.book.author and a used chain bib.book.title. Now, in order to have a
sound analysis, the chain bib.book.title should be inferred as a used chain for the whole
expression.

Rule (If) is similar to rule (Concat). It invokes chain inference for each subexpres-
sion, and then outputs the proper union of sets inferred for the subexpressions. As an
example consider the query

for x in doc//book return

if (x/price) then x/author else x/title
This case illustrates well that a correct analysis needs the chains inferred for all

subexpressions, namely bib.book.price, bib.book.author, bib.book.title. Return chains for
the then-branch (bib.book.author) and the else-branch (bib.book.title) become return
chains for the whole expression. Differently, the return chain inferred for the boolean
conditional-query (bib.book.price) is converted into a used chains for the whole expres-
sion, since this is just needed to perform boolean tests on the existence of some nodes,
without requiring the whole subtrees.

Element queries <a>q</a> are dealt with by rule (Elt). In the element construction
rule, τ denotes all descendant chains of chains in the set τ wrt C.

τ
def
= { c.c′ ∈ C ∣ c ∈ τ }

This rule infers element chains of the form a.c, where c is obtained from either an
element or return chain of q. The rule also infers a set of used chains, composed by i) used
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chains of q and ii) return chains of q converted into used chains for the whole expression.
To this end r is used to extend returned chains of the inner query. This return-to-used
chain conversion is needed to correctly handle nested element construction. For instance,
consider the following query q = for x in doc//book return <livre>q′</livre> where

q′ = x/title ,
<auteur>
x/author/name

</auteur>
The expression restructures the result of a query selecting some informations on the books
in the bibliography, changing both the structure and the label of nodes of a tree labeled
with book. Element chains for q are inferred in terms of chains for q′. So, element chains
for q are livre.title and livre.auteur.name, given that for q′ the return chain is bib.book.title
(for x/title) and the element chain is auteur.name (for <auteur>x/author/name</auteur>).
In order to avoid ending up with a wrong element chain for q, i.e., title.name the
return chain bib.book.author.name inferred for x/author/name does not have to be-
long to the set of return chains for q′. At the same time, we must record the fact
that the whole subtree rooted at name is accessed. This is handled by the return-
to-used conversion of the return chain bib.book.author.name when inferring chains for
<auteur>x/author/name</auteur>. The return-to-used conversion extends r, the set
of return chains of the inner query x/author/name, with all possible continuations by
means of r and then it converts chains in r to used chains for the whole expression.

It is worth stressing that if we just convert return chains to used ones without the
extension r, then we loose their semantic property of representing entire subtrees of data.
Notice that this extension is needed for the purpose of the formal presentation although
any efficient implementation can avoid performing these extensions by using intensional
representations.

Rule (Text) deals with expressions building new text nodes. The rule simply infers
String as an element chain for the built textual node. With a little abuse of notation, for
simplicity, we preferred not to use another class of chains.

In this section we illustrated chain inference rules for for query expressions. As update
expressions are defined in terms of queries, we will see, in the next section, that chain
inference rules for updates rely on the rules for query chain inference.

4.2.3 Update Chain Inference

Rules for update chain inference are presented in Table 4.2. These rules prove judgments
of the form

Γ ⊢C u ∶ U

meaning that starting from a static variable environment Γ and a set of chains C, the
chain inference for the update u produces the set of update chains U.



4.2. CHAIN INFERENCE 57

As seen before, update chains are of the form c ∶ c′. Essentially, the prefix c types
updated nodes, that are nodes whose children are modified by the update, while the
suffix c′ types modified children or new inserted/replaced descendants.

The most important inference rules are the ones corresponding to delete, rename,
insert and replace operations, which are explained in the sequel.

bib ← book∗
book ← title?,author∗,publisher∗

author,publisher ← name∗
title,name ← String?

Figure 4.2: DTD d4

The following examples are made on the DTD d4, and again we assume that variable
doc is always bound to bib in Γ. We recall that when the update target query returns
a sequence with more than one location, this has to be bound to a variable and then
the update command has to applied by means of iteration, otherwise a dynamic error is
raised. However for the sake of conciseness, and w.l.o.g., in the following examples we
do not make iteration explicit and assume that the update target query returns only one
location.

Inference for delete expressions is defined by the (Delete) rule, which simply puts
the separator “:” just before the last symbol of each return chain of the target query. A
delete chain c ∶ a captures the fact that a node typed by c has a child labeled by a which
may be deleted. As an example, consider the update

delete doc//publisher
By applying rule (Delete) we obtain the following derivation

Γ ⊢Cd4
doc//publisher ∶ ({bib.book.publisher},∅,∅)

Γ ⊢Cd4
delete doc//publisher ∶ {bib.book ∶ publisher}

showing how return chains inferred for the target query become update chains.

For rename updates, the process is similar. Rule (Rename) infers chains c ∶ a where
a is the tag of the target node before renaming, but it also produces chains c ∶ b, where b

is the tag of the target node after renaming. Recall that textual nodes are never target
of rename commands. As an example, consider the DTD d4 and the rename update

rename doc//author as publisher
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By applying rule (Rename) we obtain the following derivation.

Γ ⊢Cd4
doc//author ∶ ({bib.book.author},∅,∅)

Γ ⊢Cd4
rename doc//author as publisher ∶ {bib.book ∶ author,bib.book ∶ publisher}

In this case the update chains capture both the fact that subtrees rooted at author

disappear and that subtrees rooted at publisher appear.

Chain inference for insert-into expressions (position ranges over into, first and last) is
specified by the rule (Insert-1). For any chain c ∶ c′ inferred, the prefix c is a return chain
of the target query q0 (typing the insertion point), while the suffix c′ is either a return
or element chain of the source expression q typing a branch of a node element returned
by q itself; this element can either be a new one or a sub-element of the input document;
in both cases the suffix chain corresponds to inserted data. As an example, consider the
DTD d4 and the update expression insert <name/> into doc/self ∶∶ bib/book. By
applying rule (Insert-1) we obtain the following.

Γ ⊢Cd4
<name/> ∶ (∅,∅,{name}) Γ ⊢Cd4

doc/self ∶∶ bib/book ∶ ({bib.book},∅,∅)
Γ ⊢Cd4

insert <name/> into doc/self ∶∶ bib/book ∶ {bib.book ∶ name}
Rule (Insert-2) is similar, and deals with insert-before/after updates.

The two rules for insert updates rely on the fact that element chains can be extracted
in source queries. The fact that we opportunely attach element chains of the source-
expression to result chains of the target-expression, allow us to have a precise analysis.
It is worth saying that related update analysis of [BC09a] and [GRS08] define as updated
everything below the parent of the source location. This design choice has a strong impact
for this case, since it is likely to make the analysis deem the update as dependent with
almost all queries accessing information concerning the book, while it should only raise
conflicts on name elements.

This last case suggests also that element chains are necessary for a precise indepen-
dence analysis, when dealing with updates. To illustrate, consider the following update
over the DTD in Figure 4.2.

for x in doc//book return

insert <author>q′</author> into x
Here the source expression is an element query, for which we infer element chains of

the form author.c′, with c′ a chain inferred for q′. The update chain bib.book ∶ author.c′

is obtained by concatenation of the chain bib.book associated with the target expression
x, and the chain author.c′. This allows one to conclude independence wrt the query
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Γ ⊢C q0 ∶ (r0, v0, e0)
U = { c ∶ a ∣ c.a ∈ r0 }
Γ ⊢C delete q0 ∶ U

(Delete)

Γ ⊢C q0 ∶ (r0, v0, e0)
U = { c ∶ a ∣ c.a ∈ r0 } ∪ { c ∶ b ∣ c.a ∈ r0 }

Γ ⊢C rename q0 as b ∶ U
(Rename)

Γ ⊢C q ∶ (r, v, e) Γ ⊢C q0 ∶ (r0, v0, e0) pos ∈ {into,first,last}
U = { c ∶ c′ ∣ c ∈ r0, c′.c′′ ∈ e, c′ ≠ ǫ } ∪ { c ∶ a.c′′ ∣ c.a ∈ r0, c′.a ∈ r, c′.a.c′′ ∈ C }

Γ ⊢C insert q pos q0 ∶ U
(Insert-1)

Γ ⊢C q ∶ (r, v, e) Γ ⊢C q0 ∶ (r0, v0, e0) pos ∈ {after,before}
U = { c ∶ c′ ∣ c.a ∈ r0, c′.c′′ ∈ e, c′ ≠ ǫ } ∪ { c ∶ b.c′′ ∣ c.a ∈ r0, c′.b ∈ r, c.′b.c′′ ∈ C }

Γ ⊢C insert q pos q0 ∶ U
(Insert-2)

Γ ⊢C q ∶ (r, v, e) Γ ⊢C q0 ∶ (r0, v0, e0)
U = { c ∶ a ∣ c.a ∈ r0 } ∪ { c ∶ b.c′′ ∣ c.a ∈ r0, c′.b ∈ r, c′.b.c′′ ∈ C } ∪ { c ∶ c′ ∣ c.a ∈ r0, c′.c′′ ∈ e, c′ ≠ ǫ }

Γ ⊢C replace q0 with q ∶ U
(Replace)

Γ ⊢C u = () ∶ ∅(TU-Empty)
Γ ⊢C u1 ∶ U1 Γ ⊢C u2 ∶ U2

Γ ⊢C u1,u2 ∶ U1 ∪U2

(TU-Concat)

Γ ⊢C q ∶ (r, v, e)
Γ[x ↦ c] ⊢C u ∶ Uc for any c ∈ r

Γ ⊢C for x in q return u ∶ ⋃
c

Uc

(TU-For)
Γ ⊢C q ∶ (r, v, e) Γ[x ↦ r] ⊢C u ∶ U

Γ ⊢C let x ∶= q return u ∶ U
(TU-Let)

Γ ⊢C q ∶ (r, v, e) Γ ⊢C ui ∶ Ui i = 1,2

Γ ⊢C if (q) then u1 else u2 ∶ U1 ∪ U2

(TU-If)

Table 4.2: Chain Inference Rules for Updates
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doc//title, whose unique return chain is bib.book.title (forasmuch as title element is
never a descendant of an author element): the update chain is not a prefix of the query
chain and vice-versa.

Now, let us do the analysis without considering element chains: for the source ex-
pression <author>q′</author>, the best that can be done is to infer the chain

bib.book ∶ _

telling that something happens beneath book elements. As a consequence, we would
not deduce the independence. As said in the introduction, for similar reasons [BC09a]
wrongly excludes independence for similar cases.

In the presence of nested element construction, the same remark holds. In the previ-
ous example, if q′ is

<first>Umberto</first>,<second>Eco</second>
then by composing element chains during the inference, we end up with the following
update chains bib.book ∶ author.first.String, bib.book ∶ author.second.String, bib.book ∶
author, bib.book ∶ author.first and bib.book ∶ author.second. Indeed, this is necessary to
exclude independence wrt the query doc//author/email (assuming the DTD allows for
email elements into author elements).

The rule for replace expressions (Replace) is built on the same principles as (Insert-
2) and (Delete) rules. The chains produced by the expression capture the fact that
replaced subtrees are now missing, and that replacing subtrees can now be retrieved. As
an example, consider the DTD d4 and the rename update

replace doc//author/name with doc//publisher/name

By applying rule (Replace) we obtain the following.

Γ ⊢Cd4
doc//author/name ∶ ({bib.book.author.name},∅,∅)

Γ ⊢Cd4
doc//publisher/name ∶ ({bib.book.publisher.name},∅,∅)

Γ ⊢Cd4
replace doc//author/name with doc//publisher/name ∶ { bib.book.author ∶ name,

bib.book.author ∶ name.String
}

Once again the update chain is obtained by the concatenation of the target and the
source expression. Notice that the update chain contains also the expansion of the return
chain for the source query. This is done in order to completely trace inserted structures.

Remaining rules for the empty update, concatenation, iteration, let-binding and con-
ditional expressions are formulated in the same spirit as for query chain inference.

In this section we presented rules for update chain inference, showing also that they
are built on top of rules for query chain inference. We illustrated the precision of the
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chain inference with examples compared with related work. In the next section, we will
formally prove that query and update chain inference rules are correct, in the sense that
they allow to infer types capturing all data which are accessed and updated by query
and update expression.

4.3 Correctness and Precision of Chain Inference

In this section we show the correctness of the chain inference system for queries and
updates. We begin by showing correctness of XPath step chain inference, for which
completeness also hold. Then, we state the correctness for queries and updates. The
proofs of all statements of this section can be found in the appendix 9.

Soundness of axis and node-test chain inference wrt query semantics is stated below.

Lemma 4.3.1 (Soundness of Step Chain Inference). Let d be a DTD, t = (σ, lt) ∈ d be a
valid tree, and l ∈ dom(σ) be a location of the tree. If

σ, (x ∶= l) ⊧ x/axis ∶∶ φ ⇒ σ,L

then for each location l′ ∈ L we have that

ctl′ ∈ TC(AC(c
t
l ,axis), φ )

A complete chain inference demands also the set of inferred chains to be minimal, so
that each inferred chain is typing a result location belonging to some valid tree instance.
The completeness of ⇒d and <d(a) entails that step chain inference is minimal.

Lemma 4.3.2 (Completeness of Step Chain Inference). Let d be a DTD and c ∈ Cd a
chain. If

c′ ∈ TCd
(ACd

(c,axis), φ )

then there exists a valid tree t = (σ, lt) ∈ d and a location l ∈ dom(t) such that ctl = c and,
assuming that σ, (x ∶= l) ⊧ x/axis ∶∶ φ ⇒ σ,L we have that ctl′ = c

′, for some l′ ∈ L.

Showing that chain inference is complete for navigational axes is easy, since chains
carry a navigational context that leads inference rules to strictly mimic axis semantics
even with backwards and horizontal navigations.
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4.3.1 Soundness of Query Chain Inference

Proving soundness of query chain rules consists of proving that, for any schema instance,
any node used or built by the query q is captured (typed) by the chains inferred for q.
The proof relies on the notion of projection for XML [MS03, BCCN06].

A tree t′ is said to be a projection of t, denoted by t′ ⪯ t, if t′ is obtained from t

by removing some subtrees of t. According to our formalism, we define the projection
of a tree t induced by a set of locations L ⊆ dom(t), provided that L is non-empty and
upward closed with respect to the node parent-child relationship in t. This simply means
that if l ∈ L and l′ is the parent of l in σ then l′ ∈ L.

Given a sequence of locations L, we define the filtering of L wrt a set of node locations
L, denoted by L∣L, as the subsequence of L that contains only identifiers in L and that
preserves the order of L. The projection of a tree t = (σ, lt) wrt a set of locations
L ⊆ dom(σ), is defined as t∣L = (σ∣L, lt), where

σ∣L
def
= { l ← a[L∣L] ∣ l ∈ L, (l ← a[L]) ∈ σ } ∪ { l ← “txt” ∣ l ∈ L, (l←“txt”) ∈ σ }

That is the store obtained by removing the use of all element and text node locations
not in L.

Given a query q, we can define a notion of projection wrt q. We say that a store σ∣L
is a q-projection of σ if, provided that σ, γ ⊧ q ⇒ σ,L and σ∣L, γ ⊧ q ⇒ σ∣L,L

′ we can
conclude (σ,L) ≅ (σ∣L,L′)

This definition enforces L to contain all locations needed in order to evaluate q,
without altering the result of q. Given two trees t = (σ, l) and t′ = (σ′, l), if σ′ is a
q-projection of σ then t′ is a q-projection of t.

A tree t′ is said to be a minimal q-projection of t if for all t′′ strict projections of
t′ we have that t′′ is not a q-projection of t′ (or, equivalently, of t). Here strict means
that dom(t′′) ⊊ dom(t′). Notice that, in general, a projection is not minimal. In the
sequel we also show that a minimal projection is not unique, due to the query language
considered.

To illustrate the above concepts, consider again the tree t2 in Figure 4.1 that we
report below. A projection of t2 can be obtained by choosing the set of locations L ={lt2 , l1, l2, l3, l4}, that induces the projection of the book element with its own children
nodes. However the sets L1 = {l1, l2} or L2 = {lt2 , l2} do not induce projections because
they are not closed wrt the node parent-child relation, since L1 misses lt2 and L2 misses
l1. Neither L = ∅ induces a projection because it contains no location.

Now, let us consider the query q = //title, selecting all titles of book in the store. By
evaluating q over t2, we get the subtree rooted at l2, since there is only one book in t2.
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<bib>
<book>
<title>

Types and Programming Languages
</title>
<author>
<name>B. Pierce</name>
</author>
<publisher>
<name>MIT Press</name>
</publisher>

</book>
</bib>

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lt2 ← bib[ l1 ]
l1 ← book[ l2, l3 l4 ]
l2 ← title[ l′2 ]
l′2 ← “Types and ...”
l3 ← author[ l′

3
]

l′
3
← name[ l′′

3
]

l′′
3
← “B. Pierce”

l4 ← publisher[ l′
4
]

l′
4
← name[ l′′

4
]

l′′4 ← “MIT Press”

Figure 4.3: Document t2 and store (σ, lt2)
Also, in order to reach the result, we need all ancestor locations of l2, namely lt and l1.
The set of locations Lq = {lt2 , l1, l2, l′2} can be used in order to build a q-projection of t2.
The result of q over t2∣Lq is equal to q over t2. In fact, all other locations in the store
are not needed by the query because they concern complementary information such as
authors and publishers of a book.

It is worth noticing that in the definition of projection we employed a notion of forest-
equivalence ≅, that checks only if the two resulting forests are isomorphic, regardless of
the node identifiers. Above, we have an example of a stronger equivalence, since not only
the structure of the results is the same, but also the node identifiers coincide.

To illustrate minimality of projection, consider again the tree t2, a dynamic environ-
ment γ = { doc↦ lt2 } and the query

q = for x in doc//book return

if (x/author,x/publisher) then x/title else ()
that returns the title of a book either if this has an author or a publisher child node (that
is, if the sequence (x/author,x/publisher) is non-empty). For this expression, we have a
number of q−projections, namely

L1 = {lt2 , l1, l2, l′2, l3, l4} L2 = {lt2 , l1, l2, l′2, l3} L2 = {lt2 , l1, l2, l′2, l4}
and all backward-closed supersets of L1,L2,L3. It could seem surprisingly that L2 and
L3 are projections, because they both discard a node location that is used for building
the sequence used by the conditional test. Anyway this is correct, since we need only
one of l3 and l4 in order to ensure the conditional expression to be non-empty. In this
case we have that L1 is not minimal simply because L2,L3 ⊊ L1. Differently, L2 and L3
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are minimal, since by removing any of their locations we may either break backward-
closeness or alter the query result (by turning the value of the conditional expressions to
empty). This shows that a minimal projection is not unique.

The goal of the chain analysis is to capture all nodes needed by all minimal projections
of the query wrt all documents valid wrt a schema. To this end, we define how to connect
chains with projections. Given a set of chains τ , the set Ltτ of locations in t typed by
chains in τ is defined as follows.

Ltτ
def
= { l ∈ dom(t) ∣ ctl .c ∈ τ }

Dynamic and static variable environments have to link data and types in a consistent
way, in order to ensure correctness of chain inference. This is stated next.

Definition 4.3.3 (Consistent environments). Let d be a DTD, t = (σ, lt) ∈ d a valid tree,
γ a dynamic environment binding variables to locations of σ and Γ a static environment
binding variables to chains of Cd. The environments γ and Γ are said to be consistent if
l ∈ γ(x) implies cσl ∈ Γ(x), for all l ∈ dom(σ). We denote this by σ ⊧d γ ∶ Γ.

The following theorem formally states that chains inferred for a query q cover the
structure of data relevant for the query, and newly constructed elements.

Theorem 4.3.4 (Soundness of Query Chain Inference). Let d be a DTD, t = (σ, lt) ∈ d
a valid tree, q a query, γ a dynamic environment and Γ a static environment such that
σ ⊧d γ ∶ Γ. Provided σ,γ ⊧ q ⇒ σnew,L and Γ ⊢Cd

q ∶ (r, v, e) the following hold.

1. if tmin is a minimal q-projection of t then tmin ⪯ t∣Lt
r∪v
⪯ t

2. if tnew = (σnew, lnew) with lnew ∈ L∖dom(σ) is a fresh subtree then dom(tnew) = Ltnew

e

The first item of Theorem 4.3.4 states that chain inference is sound for used and return
chains: a projection of any valid input tree made in terms of used and return chains
includes every minimal q-projection, hence preserves query semantics (the projection
contains all the query needs for its evaluation). The second item is dedicated to element
chain inference which is one of the key feature of our query-update analysis as already
illustrated. Intuitively, this statement says that if element chains are used to project
newly constructed elements (notice that l′ ∈ L∖dom(σ)) no node is pruned out, so element
chains cover all possible chains in new elements of the query result. We conclude that our
type inference system gives, as a side effect, a type-projector for the query [BCCN06].
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4.3.2 Soundness of Update Chain Inference

Proving update chain soundness consists of establishing a link between i) nodes in the
stores t and u(t) that are involved in the changes (deletion, insertion, renaming, and
replacements) made by u and ii) nodes in these trees which are typed by the chains
statically inferred for u.

We stress that the evaluation of an update u on a tree t = (σ, lt) ∈ d is a two phase
process, that first generates the PUL ω together with an extended σω containing the
arguments of atomic insert and replace updates, for which the following relations hold.

σ,γ ⊧ u ⇒ σω, ω σω⊧ ω ↝ σu

Recall that σω includes σ, and that u(t) denotes the tree (σu@lt, lt).
Definition 4.3.5 (Involved Location). We say that the update u involves the location
l ∈ dom(σω) if one of the following hold.

• l is the target location of an elementary delete command in ω

• l is the target location of an elementary rename command in ω

• l is a location, or the descendant of a location, in the source list L of a command
ins(L,_,_) in ω

• l is the target location of an elementary replace command in ω

• l is a location, or the descendant of a location, in the source list L of a command
repl(_,L) in ω

The static analysis for update expressions is correct if all involved locations are typed
by some update chains. In the following, we present examples of involved locations and
how they are typed by the analysis.

The following examples are made over the tree t2 in Figure 4.1, which is valid against
the DTD d4 in Figure 4.2. As before, we assume that variable doc is bound to location
lt2 during dynamic evaluation and bound to type bib during static analysis.

Consider the following sequence of delete and rename updates

delete doc//title, rename doc//publisher as “author”

The update produces a pending list composed of two atomic update commands

ren(l4, “author”) , del(l2)
meaning that the label of l4 (the publisher node) has to be renamed as “author” and that
the location l2 has to be deleted. In this case both l2 and l4 are involved locations, since



66 CHAPTER 4. INDEPENDENCE ANALYSIS BASED ON SCHEMA-CHAINS

they are target locations of elementary update commands. Note first that an involved
location may belong to the initial tree t but not to the updated tree u(t), for instance
l2, and a location may also belong to both trees like for instance l4.

The static analysis for the delete updates over the DTD d4 produces the chain c =
bib.book ∶ title, that is the chain of the deleted location l2, in fact ct2

l2
= c. Concerning the

rename expression, two chains are inferred c1 = bib.book ∶ publisher and c2 = bib.book ∶
author. These two chains type the renamed node in the original and in the updated tree
respectively, since

ct2
l4
= c1 c

u(t2)
l4

= c2

Involved locations for insert expressions are illustrated by the following example.
Consider the tree t2 and the update

insert <author/ > into doc/self ∶∶ bib/book
In this case, the first phase of the evaluation produces a PUL composed of the command
ins(l′,into, l1) together with the store σ extended with a fresh element node labeled
as author, which is referenced by a fresh location l′. Then, applying the PUL attaches
location l′ as children of l1 (which refers to the book node). The critical location for
the PUL is l′. The static analysis for the update over the DTD d4 returns the chain
c = bib.book ∶ author and this is correct since c

u(t2)
l′

= c.

Involved locations for replace expressions are illustrated by the following example.
Consider tree t2 and the update

replace doc//author/name with doc/publisher/name

here the update first build a fresh tree referenced by lc, which is a copy of the one rooted
at l′

3
. Then lc replaces l′

4
(referencing to the publisher name). This results in the atomic

update command
repl(l′4, lc)

The critical locations are l′
4
, lc and all descendants of lc. l′4 is a critical location because it

is the target of the replace command. lc and all of its descendants are critical locations,
because lc is the source locations of the update. We stress on the fact that descendants
of lc are fresh locations as well.

The static analysis wrt the DTD d4 returns chain c = bib.book.author ∶ name typing
the replaced location l′4. Chain inference outputs also c = bib.book.publisher ∶ name and
c = bib.book.publisher ∶ name.String that are the chains for lc and for the child of lc.

At this point we can state the correctness of the chain analysis for update expressions.
The theorem below states that all locations involved by the update u are typed by chains
inferred from u.
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Theorem 4.3.6 (Soundness of Update Chain Inference). Let d be a DTD, t = (σ, lt) ∈ d
a valid tree, u an update, γ a dynamic environment and Γ a static environment such that
σ ⊧d γ ∶ Γ. Provided that

σ,γ ⊧ u ⇒ σω, ω σω⊧ ω ↝ σu Γ ⊢Cd
u ∶ U

it holds that

• if l ∈ dom(σ) is a location in t, and the update u involves l then there exists c ∶ c′ ∈ U
such that cσl = c.c

′, where c′ ≠ ǫ.

• if l is a location in u(t), i.e. l ∈ dom(σu@lt), and the update u involves l then there
exists c ∶ c′ ∈ U such that cσu

l
= c.c′, where c′ ≠ ǫ.

In the above statement, in case a location l belongs both to t and u(t), it may be that
the chain typing l in t is different from the chain typing l in u(t) (e.g., due to renaming).
Although we made the assumption that the update expression is preserving the schema, it
is worth noticing that Theorem 4.3.6 holds also for updates violating schema constraints
(u(t) ∉ d), since chains corresponding to deleted or inserted nodes are always traced by
the system regardless of correctness wrt the schema.

In this section we showed the correctness of chain inference for query and updates.
This will be used in the remaining of the chapter to define a notion of independence, and
show its correctness.

4.4 Independence Analysis

In this section we define a notion of query update independence based on chain overlap-
ping. We show that this static notion of independence is correct and implies independence
on all schema instances. We show that, for recursive schemas, the notion of independence
based on chains does not have a trivial terminating algorithm. To overcome this issue,
we propose a finite analysis which is complete wrt the infinite analysis and terminates in
all cases.

4.4.1 Infinite Analysis

The notion of query-update independence q ⊧ d u (Definition 2.5.2) is based on the se-
mantics of q and u, and involves all possible d instances. The static counterpart of this
notion is now proposed and is of course based on query and update chain inference. As
chain inference depends on a set C of chains, we first introduce a general static notion of
C-independence. Given two sets of chains τ1 and τ2, the set of conflicting pairs of chains
for τ1, τ2 is defined as follows.

confl(τ1, τ2) def
= { (c1, c2) ∣ c1 ∈ τ1, c2 ∈ τ2, c1 ⪯ c2 }
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Definition 4.4.1 (C-independence). Let d be a DTD, q a query and u an update, with
at most only one free variable x, and Γ = { x ↦ sd } a static environment. The query q

and the update u are C-independent, denoted by q ⊥C u, if provided that Γ ⊢C q ∶ (r, v, e)
and Γ ⊢C u ∶ U we have

confl(r,U) = ∅ confl(U, r) = ∅ confl(U, v) = ∅

Cd-independence can be decided in a finite amount of time when chain inference
produces a finite set of chains i.e. when d has no vertical recursion. The next section
provides a technique to capture Cd-independence by means of a finite analysis.

bib ← book∗
book ← title?,author∗,publisher∗,price?

author,publisher ← name∗
title,name,price ← String?

Figure 4.4: DTD d5

We illustrate the definition of C-independence throughout some examples. We con-
sider DTD d5 of Figure 4.4. In the queries and updates below, we assume as before that
variable doc is bound to bib. We check independence of query

q = for x in doc//book return

if (x/price) then x/author else x/publisher
against the following updates

u1 = delete doc//title
u2 = rename doc//publisher as “author”

u3 = insert <price> 50 <price/> into doc//book
u4 = replace doc//price/text() with “10”

The static analysis infers, from the query, rq = { bib.book.author,bib.book.publisher }
and vq = { bib.book,bib.book.price }. The following static independences hold.

q is Cd5-independent of u1: the expressions are independent because the update does
not delete any node that the query accesses or outputs. The static analysis infers
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from the update U = { bib.book ∶ title }. Indeed, there is no pair of conflicting query
and update chains.

query update

bib.book.price /⪰ bib.book ∶ title
bib.book.author /⪯ /⪰ bib.book ∶ title

bib.book.publisher /⪯ /⪰ bib.book ∶ title

Hence it results that confl(r,U) = confl(U, r) = confl(U, v) = ∅.

q is not Cd5-independent of u2: the expression are conflicting because the update may
change the result of the query. The static analysis infers from the update U ={ bib.book ∶ publisher,bib.book ∶ author }. Indeed, query return-chains conflict with
update chains.

query update

bib.book.publisher ⪯ bib.book ∶ publisher
bib.book.publisher ⪰ bib.book ∶ publisher

bib.book.author ⪯ bib.book ∶ author
bib.book.author ⪰ bib.book ∶ author

Hence it results that confl(r,U) = confl(U, r) ≠ ∅
q is not Cd5 -independent of u3: the expressions may conflict because the data inserted

by the update are accessed by the conditional query. The static analysis infers
from the update U = { bib.book ∶ price,bib.book ∶ price.String }. Indeed, a used
chain conflicts with an update chain.

update query

bib.book ∶ price.String /≺ bib.book.price

bib.book ∶ price ⪯ bib.book.price

Hence it results that confl(U, v) ≠ ∅.

q is Cd5 -independent of u4: the expressions are independent because the update does
not affect the result of the query. In fact, the update impacts the textual node
below the price node which is accessed by the query, without changing the boolean
value of the conditional expression.

update query

bib.book.price ∶ String /≺ bib.book.price

Hence it results that confl(r,U) = confl(U, r) = confl(U, v) = ∅.

We conclude this section by formally stating the soundness of the independence anal-
ysis based on chains. When C is taken as the set Cd of chains generated for the DTD d,
C-independence implies ⊧ d independence, as stated by the following theorem.
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Theorem 4.4.2 (Soundness of Cd independence). Let d be a DTD, q a query and u an
update, with only one free variable. Then,

q ⊥Cd
u implies q ⊧ d u

As already stated, updates are assumed to preserve the schema. The above theorem
needs this assumption in order to correctly use query chains in the independence analysis.
Actually, if deletions violate the schema (a mandatory node is deleted), the notion of
static independence ⊥Cd

is still sound. The problem comes from insertions creating new
chains (not belonging to Cd) because they are not considered during chain inference for
queries. As a consequence, the analysis made to check ⊥Cd

could miss conflicting chains.

In this section we defined a notion of static independence based on chains which is
sound. In the next section we will show how independence can be verified when recursive
query and schemas may entail the inference of infinite sets of chains.

4.4.2 Finite Analysis

The notion of Cd-independence (Definition 4.4.1) cannot be directly used to define a
terminating decision algorithm, because for DTDs with vertical recursion the sets of
inferred chains can be infinite. In this section we show how to finitely approximate sets
of inferred chains so that Cd-independence can be detected in finite time.

One feature of chains generated by a recursive DTD d is that some of them contain
multiple occurrences of (recursively defined) tags. So one way to characterize a finite set
of d-chains is to restrict to chains having at most k occurrences of each tag. Hereafter,
these chains are called k-chains, and for any set of chains τ , its subset of k-chains is
denoted by τk. Thus, Ck

d denotes the set of k-chains generated by d.

As illustrated next, a multiplicity value k can be inferred from the query q and update
u, so that independence according to chains in Cd is equivalent to independence according
to inferred chains in Ck

d. The value k is derived by a two-steps static analysis.

Given an expression e, being either a query q or an update u, the first step associates
a value ke to e such that the set of ke-chains inferred for e is representative of all possible
inferred chains for e. Intuitively, the representative set of inferred chains for an expression
synthesizes all possible inferred chains: any possible inferred chain can be mapped to a
chain in the representative set by some folding transformations, according to recursive
definitions in the DTD.

The second step infers a value k from the values kq and ku, such that the search of
conflicting chains decisive for statically detecting q-u independence can be safely done in
the finite set of inferred k-chains.
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Inferring the values kq and ku mainly depends on navigational properties of the XPath
expressions occurring in the query and update. Thus, we start the discussion by focusing
on XPath expressions p, and then consider FLWR expressions.

In the discussion, most of the examples are made on the following recursive DTD d6.
As before, variable doc in the expressions is meant to be bound to the root of d6, that is
store.

store ← component∗
component ← description, complist?,uselist?

uselist ← component+
complist ← component+

description ← String

The inference of the k value depends on the navigational axes employed in the XPath steps.

Dealing with child, self and parent

The case where paths employ only the child, self or parent axis is a special one. In
fact, such paths always generate a finite number of chains, hence a finite number of
representative chains, and no folding is needed. What remains to do is to find a k value
that fits all representative chains. The particularity of these paths is that they explicitly
indicate how many times a single tag has to be matched: a good choice for kp is the
maximal tag frequency in the path p.

To illustrate, consider the following downward path p

doc/self ∶∶ store/component/complist/component/description
there are four tags in p, all but component have frequency 1, while component has
frequency 2. Therefore, the maximal tag frequency is 2, and indeed 2-chains include the
representative chain

store.component.complist.component.description

which is the only chain inferred for this path (for clarity, we over line the tag with
k-frequency).

The same holds for the navigational path with backward axis

doc/self ∶∶ store/component/complist/component/parent ∶∶ complist

Here, the chains inferred from the path are 2-chains

store.component.complist.component

store.component.complist.component.complist
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Similarly, for the path

doc/self ∶∶ store/component/complist/∗
we infer kp = 2, since the wildcard ∗ stands for any label.

It is worth noticing that, for the analysis to be correct, the query/update free variables
have to be always bound to the schema root type. If we relax this assumption, the chain
analysis may turn out to be unsound for recursive schemas. To see this, consider for
instance the query

doc/component

with doc initially bound to the chain store.component.description. The chain inferred for
the query is store.component.description.component, which is a 2-chain. However, since
for this expression k = 1, the analysis infers the empty set of used, return and element
chains for the query, thus deeming it as independent of any update, while it should not.

Dealing with descendant and ancestor

When a path p makes use of the descendant axis, the number of chains inferred for an
expression may not be finite, and the length of inferred chains totally unrelated to the
length of p. For instance, the path

doc/descendant ∶∶ description
makes the system inferring an infinite number of chains, of unbounded length.

This is what led us to reason in terms of tag frequency rather than path length. To
generate a finite set of chains, the value kp is determined by taking into account the
number of occurrences of descendant axes in p.

To illustrate this, we still consider the schema d6, and observe that the type component

is defined in terms of description, uselist and complist, and the two latter are defined in
terms of component. These mutual recursive definitions entail that, in a valid document
instance, a node with type uselist can be a descendant of a node with type complist,
and vice versa, along the same chain of the tree. In addition, a chain connecting uselist

and complist nodes always contains an intermediate component label, which also occurs
before the first occurrence of a description, uselist, and complist label.

As a consequence, for the following path

p = doc/descendant ∶∶ complist/descendant ∶∶ uselist/descendant ∶∶ description
the shortest chain that is inferred is the 3-chain

store.component.complist.component.uselist.component.description
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Simple tag frequency, like for the previous cases, would lead to kp = 1. This is not
satisfactory because no 1-chain is inferred for p . To reflect the fact that each recursive
axis may permit any tag to repeat once in inferred chains, the correct maximal tag
frequency we have to consider for the path p is 3; in fact, 3-chains do allow to infer
a non-empty set of representative chains - other inferred chains can be obtained by
unfolding recursion.

Of course, an XPath expression may combine both recursive and non-recursive axes.
In this case, for a path p we obtain kp as the sum of two components computed indepen-
dently: the maximal tag frequency for non-recursive steps, and the number of recursive
steps in p. As an example, for

p = doc/descendant ∶∶ component/uselist/component

we have kp = 2 since the maximal tag frequency for the path suffix /uselist/component

is 1, and there is 1 descendant step /descendant ∶∶ component.

Recursive backward axes are handled similarly. Here we have to pay attention to the
fact that chains navigated by an ancestor step are prefixes of some chains generated by
previous steps. Consider

p = doc/descendant ∶∶ uselist/ancestor ∶∶ complist

Here kp has to be such that the used chain

store.component.complist.component.uselist

can be generated. Thus, we enforce ancestor steps to increment the tag frequency by 1.
This is reminiscent of what we have seen before in the case of descendant; the way p is
processed can be compared to the way would be processed the navigational path

doc/descendant ∶∶ complist/descendant ∶∶ uselist
and therefore chains containing complist as ancestor of uselist need to be generated for p.

Concerning paths p employing either descendant−or−self or ancestor−or−self, kp is
computed as for the self-less axes. The same holds for shortcut expressions like p = //φ,
that stands for p′ = /descendant−or−self ∶∶ ∗/φ, when φ ≠ ∗. It follows that kp = kp′
simply because the sets of chains inferred for the two expressions are exactly the same.

It is worth noticing that by assuming that the root-type of a DTD is non-recursive
we can provide a uniform the definition of the k value, and simplify proofs. To illus-
trate, consider the DTD d = { a ← a? }, the query q = x/child ∶∶ a, and the static
environment Γ = { x ↦ a }. Our system infers from q the 2-chain a.a. However, since
kq = F(a,x/child ∶∶ a) = 1 the chain a.a is ruled-out from inference, while it should not.
The same happens if q = x/descendant ∶∶ a. This of course can be captured by setting
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F(a,x/axis ∶∶ φ) = 2 if i) x is bound to the singleton root-type, ii) the root-type is recur-
sive, iii) the root-type satisfies φ, and of course iv) axis is downward. This would make
the formal definition for the base case quite inelegant, while assuming a non-recursive
root-type we have an uniform formalization of the tag frequency. This discrepancy is also
caused by the fact that, as discussed in Chapter 2, we do not have the document-node
in our data-model.

Dealing with sibling axes

Sibling axes are managed as child and parent axes. Consider the following recursive DTD d7

store ← component∗
component ← description, component?

description ← String

and the navigational path

doc/descendant ∶∶ description/following−sibling ∶∶ component

For this path, the used 1-chain store.component.description and the return 2-chain

store.component.component

are the needed chains. The presence of the recursive step /descendant ∶∶ description
entails k = 2.

Dealing with FLWR expressions and Updates

Based on concepts previously illustrated, we provide now formal definitions to deal with
the general case of a FLWR expression e.

As seen before, the computation of ke is decomposed into two tasks. The first one de-
termines via the function F(a,e) the frequency of each tag a ∈ Σ on the whole expression,
in order to derive the maximal frequency. The second task computes via the function
R(e) the maximal number of recursive steps used by a navigational path embodied in
the whole expression. The value ke is the sum of these two values. Formally:

ke
def
= max{ F(a,e) ∣ a ∈ Σ } + R(e)

The functions F(a,e) and R(e) are defined by structural induction in Table 4.3 and
4.4, respectively.

When e is a for or a let expression, the value ke is specified by summing the sub-
expression values. This is captured by rules (F-For/Let) and (R-For/Let). This



4.4. INDEPENDENCE ANALYSIS 75

F(a, ()) = 0(F-Empty)
F(a, “txt”) = 0(F-Text)

f = F(a,q)
F(a,<a>q</a>) = f + 1(F-Element)

axis is recursive

F(a,axis ∶∶ φ) = 0(F-Step1)
φ ∉ {a,node()}
F(a,axis ∶∶ φ) = 0(F-Step2)

axis is not recursive
φ ∈ {a,node()}
F(a,axis ∶∶ φ) = 1 (F-Step3)

f1 = F(a,q1) f2 = F(a,q2)
F(a,q1,q2) =max(f1, f2) (F-Concat)

f0 = F(a,q0) f1 = F(a,q1) f2 = F(a,q2)
F(a,if (q0) then q1 else q2) =max(f0, f1, f2)(F-If)

f1 = F(a,q1) f2 = F(a,q2)
F(a,for x in q1 return q2) = f1 + f2 (F-For)

f1 = F(a,q1) f2 = F(a,q2)
F(a,let x ∶= q1 return q2) = f1 + f2 (F-Let)

f = F(a,q)
F(a,delete q) = f (F-Delete)

f = F(a,q)
F(a,rename q as a) = 1 + f (F-Rename1)

f = F(a,q) a ≠ b

F(a,rename q as b) = f (F-Rename2)

f = F(a,q) f0 = F(a,q0)
F(a,insert q pos q0) = f + f0 (F-Insert)

f0 = F(a,q0) f = F(a,q)
F(a,replace q0 with posq) = f0 + f (F-Replace)

f1 = F(a,u1) f2 = F(a,u2)
F(a,u1,u2) =max(f1, f2) (F-UConcat)

f0 = F(a,q0) f1 = F(a,u1) f2 = F(a,u2)
F(a,if (q0) then u1 else u2) =max(f0, f1, f2) (F-UIf)

f = F(a,q) f ′ = F(a,u)
F(a,for x in q return u) = f + f ′ (F-UFor)

f = F(a,q) f ′ = F(a,u)
F(a,let x ∶= q return u) = f + f ′ (F-ULet)

Table 4.3: F definition.
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R(()) = 0(R-Empty)
R(“txt”) = 0(R-Text)

r =R(q)
R(<a>q</a>) = r (R-Element)

axis is recursive

R(axis ∶∶ φ) = 1 (R-Step1)
axis is not recursive

R(axis ∶∶ φ) = 0 (R-Step2)

r1 =R(q1) r2 =R(q2)
R(q1,q2) =max(r1, r2) (R-Concat)

r0 =R(q0) r1 =R(q1) r2 =R(q2)
R(if (q0) then q1 else q2) =max(r0, r1, r2) (R-If)

r1 =R(q1) r2 =R(q2)
R(for x in q1 return q2) = r1 + r2 (R-For)

r1 =R(q1) r2 =R(q2)
R(let x ∶= q1 return q2) = r1 + r2 (R-Let)

r =R(q)
R(delete q) = r (R-Delete)

r =R(q)
R(rename q as b) = r (R-Rename)

r =R(q) r0 =R(q0)
R(insert q pos q0) = r + r0 (R-Insert)

r0 =R(q0) r =R(q)
R(replace q0 with posq) = r0 + r (R-Replace)

r1 =R(u1) r2 =R(u2)
R(u1,u2) =max(r1, r2) (R-UConcat)

r0 =R(q0) r1 =R(u1) r2 =R(u2)
R(if (q0) then u1 else u2) =max(r0, r1, r2) (R-UIf)

r =R(q) r′ =R(u)
R(for x in q return u) = r + r′ (R-UFor)

r =R(q) r′ =R(u)
R(let x ∶= q return u) = r + r′ (R-ULet)

Table 4.4: R definition.
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is motivated by the fact that, for instance, for-expressions are usually used to encode
nested iterations performed by XPath paths, like in the query

for x in doc/a for y in x/b return y

This definition leads in some cases to an overestimation of the value ke that would
be actually sufficient for a finite analysis. For instance, for the query

q = for x in doc/a/a for y in doc/a/b return x,y

we have F(a,q) = 3, while the value 2 would be sufficient. It is worth saying that this
overestimation raises the kq value. More precision can be obtained by tracing variable
bindings in the definition of F . The same argument holds for R. However, this would
make the formalization cumbersome without being a decisive factor for the analysis.
Thus, our choice has been guided by simplicity and conciseness of F and R definitions.

The rules for element construction, (F-Element) and (R-Element), deserve some
comment. Note that tags of constructed elements are taken into account. Indeed, these
elements can be inserted by an update as children of existing elements, thus generating
new chains pointing nodes that can be accessed by a query. Consider the recursive schema
d7 and the following update u.

for x in doc/self ∶∶ store/component return

insert

<component>
<component>
<description/>
</component>

</component>
into x

As already outlined, precision of the independence analysis relies (among other things)
on the chains generated for element construction. The rules in Table 4.3 lead to infer
ku = F(u, component) = 3, and thus the chain

store.component ∶ component.component.description

is inferred for the finite analysis. The inferred value is the same, if u is a replace update
instead of an insert update.

Tag frequency for delete update expression is determined as for queries. For rename
expressions tag frequency is determined by observing that for recursive schemas, after
renaming, the frequency of the renaming label may increase of 1. To illustrate, consider
the DTD d7 update

u = rename doc//description as “component”
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In this case, if we settle F(u, component) = 1 to capture the fact that a new node labeled
with component appears. Together with R(//description) = 1, this makes ku = 2, and
indeed this is the multiplicity value needed to infer the 2-chains

store.component ∶ description and store.component ∶ component

Notice that if the frequency of component is not kept into account then ku = 1 and chain
store.component ∶ component is wrongly excluded from inference.

Finite independence analysis

We see now how to use the values kq and ku in order to determine a k value such that
Cd-independence can be detected by restricting the analysis to k-chains.

Consider the following query and update pair over the DTD d6.

q = /descendant ∶∶ complist u = delete /descendant ∶∶ uselist
The two expressions are dependent because uselist is an ancestor of complist and

they are both navigated by a recursive axis. It results that kq = 1 and ku = 1. At this
point, we could argue that a sound choice is

k =max(kq, ku)
which allows the finite analysis to infer the query chain

store.component.complist

and the update chain
store.component ∶ uselist

Unfortunately, these chains do not conflict, and rule out dependence. The problem here
comes from the fact that the update may change a descendant of a query returned node,
and that k = max(kq, ku) does not permit to capture this in the finite analysis. It may
also occur that a query navigates descendants of nodes inserted/created by the update,
and again such a definition rules out independence. To avoid this problem, it is necessary
that representative chains that are inferred for the update cover query returned nodes,
and vice versa. To this end, while inferring chains for the update u, structural properties
of the query q have also to be taken into account. This is obtained by setting

k = kq + ku

Now with k = 2 it is possible to infer 2-chains witnessing the conflict such as

store.component.complist ⪯ store.component.complist.component ∶ uselist
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4.4.3 Soundness of the Finite Chain Analysis

In this section we state one of our main results, soundness of the finite analysis.

Theorem 4.4.3 (Soudness of Ck
d Independence). Let d be a DTD, q a query and u an

update, with only one free variable. Let k = kq + ku as defined above, then

q ⊥Ck
d
u implies q ⊧ d u

We develop the main steps of the proof of the Theorem. The thesis follows by
showing that q ⊥Cd

u is equivalent to q ⊥Ck
d
u. Proving that q ⊥Cd

u implies q ⊥Ck
d

u is straightforward since Ck
d ⊆ Cd. Also, we reason in terms of dependence, rather

than independence. We prove that Cd-dependence implies Ck
d-dependence (these notions

directly follow from Definition 4.4.1) by showing that from any pair of chains in Cd,
witness of dependence, it is possible to identify a pair of k-chains in Ck

d, witness of
dependence.

The proof is composed of three steps. First, we show that there exists a folding from
query chains to k-query-chains, for any query q (Lemma 4.4.4). Then, we show that there
exists a folding from query chains to k-query-chains also preserving the prefix relation ⪯,
for any pair of queries (q,q′) (Lemma 4.4.5). Finally, we show that such a folding exists
for chains inferred for any query-update pair (q,u) (Theorem 4.4.3). Proofs are reported
in Chapter 9.

Given a DTD d, we define a folding relation ↪d⊆ Cd × Cd as

↪d
def
= { (c1, c2) ∣ c1 = c.a.c′.a.c′′ ∧ c2 = c.a.c

′′ }
Notice that, above, the symbol a is a recursive type of the schema. We denote by ↪∗d the
reflexive and transitive closure of ↪d.

We state now the correctness of the k-folding for a single query. In the statements
below we consider that, if c is a used (respectively return or element) chain, then c′ is a
used (respectively return or element) chain.

Lemma 4.4.4 (Folding). Let d be a DTD, q a query with only one free variable x, and
Γ = { x ↦ sd } a static environment. Assume that Γ ⊢Cd

q ∶ (r, v, e) and τ = r ∪ v ∪ e. For
each chain c ∈ τ there exists a chain c′ ∈ τ such that c↪∗d c′ and c′ is a kq-chain.

As an example, consider DTD d6 and the query q = //component. In this case kq = 1
and we have, for instance, the following 2-chain folding onto a 1-chain.

store.component.uselist.component ↪d store.component
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When q and u are Cd-dependent, at least one of confl(U, v), confl(r,U), confl(U, r)
is nonempty (see Definition 4.4.1). This implies that there exists a conflicting pair of
inferred chains, witness of the Cd-dependence of q and u. As updates are defined in
terms of queries, the next lemma which focuses on “conflicting" query chains is needed
to conclude the proof of Theorem 4.4.3.

Lemma 4.4.5 (Folding and Conflict Preservation). Let d be a DTD, q1,q2 two queries
with only one free variable x, and Γ = { x ↦ sd } a static environment. Assume that
Γ ⊢Cd

qi ∶ (ri, vi, ei) and τi = ri ∪ vi ∪ ei. For each pair of chains (c1, c2) ∈ τ1 × τ2 such that
c1 ⪯ c2, there exists (c′

1
, c′

2
) ∈ τ1×τ2 such that c′

1
⪯ c′

2
and ci ↪

∗
d c
′
i with c′i a (kq1+kq2)-chain(i = 1,2).

As an example, consider DTD d6 and the query q = //uselist and the update u =
delete //complist. In this case k = kq + ku = 2 and and we have, for instance, the
following conflicting chains folding onto k-chains, and preserving the conflict. Below, for
the sake of concision, st = store, co = component, ul = uselist, and cl = complist.

st.co.ul.co.ul.co.ul ↪∗d st.co.ul

⪯ ⪯
st.co.ul.co.ul.co.ul.co.cl ↪∗d st.co.ul.co.cl

While, if we have that k < 2 then the folding does not preserve the conflicts.

st.co.ul.co.ul.co.ul ↪∗d st.co.ul

⪯ /⪯
st.co.ul.co.ul.co.ul.co.cl ↪∗d st.co.cl

Conclusions

In this chapter we presented two of the main contributions of this thesis: a type system
for chain inference and a static notion of independence based on chains. We proved
also that both the type system and the independence analysis are correct. Moreover, we
illustrated how to make the static notion of independence verifiable in a finite time, even
in the case where inference entails an infinite number of query and update chain. In the
next chapter we will discuss algorithms and data structures for efficiently implementing
the chain-based independence.



Chapter 5

Implementing the Chain-based

Independence Analysis

In this chapter we present algorithms for efficiently implementing the chain-based inde-
pendence analysis. Chain inference poses significant challenges from the computational
point of view. Because of the expressivity of the schema and of the query/update lan-
guages considered, it is easy to have exponential blowups of chains during inference. In
light of this, we present a data-structure for storing chains based on DAGs, and algorithms
implementing the chain-based independence analysis, that allow to run the independence
analysis in polynomial space and time, whilst still retaining an high precision.

5.1 Introduction

Chain inference is a challenging problem not only from a formal point of view, but also
from a computational point of view. In fact, the number of distinct chains inferred for
a single expression may be exponential in the size of the input DTD. This happens for
DTDs that make heavy use of recursive definitions, but also for non-recursive ones, like
for DTD d8, that is defined by the following set of productions.

a← b1, f1 . . . b(i−1) ← (bi , fi)? f(i−1) ← (bi , fi)?
with 1 ≤ i ≤ n.

The DTD d8 employes 2n + 1 types, and a simple navigational query like //bn makes
the system inferring Ω(2n) chains. Namely, all chains of the form

a x1 x2 . . . x(n−1) bn

with xi ∈ {bi, fi}. This happens because types are heavily reused in the schema. If no
type is reused, it turns out that, the DTD is non-recursive and the number of chains
becomes linear in the size of the schema.

81
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This already demonstrates the expressive power of the constraints that can be defined
by a non-recursive DTD. The situation is even exacerbated by the use of recursion, where
it is possible to reproduce the previous situation with a schema featuring just three types.
Consider the DTd d9 defined as follows

a ← b, f

b ← (b , f)?
f ← (b , f)?

In this case, the chains of length h + 1 inferred for a navigational step like //b, are again
all chains of the form ax1 x2 . . . x(h−1) b with xi ∈ {b, f}. Again, we have an exponential
blowup since the cardinality of the result is in Ω(2h). As we show later (see Proposition
5.1.5), when the multiplicity value k is considered instead of the chain length h, the
quantity of inferred chains is still exponential.

These examples outline the hardness of chain inference already in terms of cardinality
of the results. If chains are not stored efficiently, this may have a direct consequence on
space occupancy. This is problematic because if the space complexity for intermediate
computations has an exponential upper-bound, then time complexity is at least of the
same order, thus compromising tractability of the analysis.

In the remainder of the chapter we will see that the crux in implementing the chain
analysis is the choice of the data-structure to use for efficiently storing and retrieving
chains. Unsurprisingly, the blowups outlined in the previous example imply that storing
chains requires exponential space for instance if we use a trivial data-structure such as
lists, or a less trivial one, such as trees. In light of this, we propose a compressed data
structure based on DAGs that permits to store chains in polynomial space, paving the
way to the tractability of the analysis.

Cardinality of Schema Chains

In this section, we investigate the cardinality of the set of chains induced by a schema,
and relative issues concerning their space occupancy. We study both non-recursive and
recursive DTDs, and storing chains on lists and trees. Our results show clearly that the
static notion of independence we defined in Chapter 4 may require an exponential time
to be checked.

Recall that given two functions f and g, we say that f is in O(g) or, equivalently,
that g is in Ω(f) if f ≤ Cg + C ′, for two positive constants C,C ′ and all values of the
variables. We say that f is in Θ(g) if f is in O(g) and f is in Ω(g).

The cases when our system produces the larger number of chains are those relative
to saturated schema (defined in Chapter 2).
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Proposition 5.1.1. For a saturated non-recursive DTD d with n types, the cardinality
of Cd is Θ(2n).
Proof. Because d is non-recursive and saturated, ⇒d is a strict total order. It is total,
because all pairs of types in d are adjacent in Gd. It is strict, because d is non-recursive,
and thus ⇒d is irreflexive. This implies that any subset of types in d together with the
order of ⇒d corresponds to a chain in Cd. The size of Cd comes from the size of the
powerset of types in d. This is 2n − 1, without counting the empty chain. Moreover, the
number of rooted chains induced by d coincides with the number of subsets of types of d
that contain at least the root-type. These are exactly 2n−1.

We compare the case of using lists and prefix-trees for storing chains.

List Lists are defined as sequences of objects. Storing chains on lists implies to store
each time the full chain. For instance, chains bib.book.author and store.component are
represented as [bib;book;author] and [store; component] respectively.

Prefix-Trees Prefix-trees are trees where all chain prefixes are stored only once. Each
path in the tree is a chain. This optimizes chain inference wrt using lists. For instance,
given two chains bib.book.title and bib.book.author the prefix-tree allow to store only the
prefix bib.book on a single edge, even if it is shared by both chains.

Proposition 5.1.2. The set of rooted chains induced by a saturated non-recursive DTD
d of n + 1 types requires, to be stored on lists, Θ(n2n) space.

Proof. The proof follows from some combinatorics. As discussed in the proof of Theorem
5.1.1, d being saturated and non-recursive, the power set of types in d is the equivalent
of Cd. Since we count rooted chains, we consider all subsets of types containing the root,
and hence we count n types instead of n + 1. We model space occupancy by making a
weighted sum of all subsets of types of size 1,2, . . . , n. The number of sets of types of
size i in d can be counted by using the number of combinations of i elements chosen from
a set of n elements (n

i
). Then we consider that, by using lists, a subset of size i would

need space proportional to i + 1 (by re-considering also the root). Therefore, list space
occupation is

n∑
i=0

(n
i
)(i + 1) = n∑

i=0

(n
i
)i + n∑

i=0

(n
i
) = n2n−1 + 2n = (n + 2)2n−1

and thus we obtain Θ(n2n).
Next statement shows that, even if we use an optimized data-structure such as prefix-

trees for storing chains, we still need exponential space for storing all schema chains.
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Proposition 5.1.3. The set of rooted chains induced by a saturated non-recursive DTD
d of n types, can be stored on a prefix tree in Θ(2n) space.

Proof. The result follows from defining the size of a tree as a recurrence relation. We
consider the worst case where there is a maximum type dependency for the non-recursive
DTD d. Let us denote by Size(i) the size of the prefix tree containing all rooted chains
of a DTD with i types. For simplicity, we define the space occupancy of a node and of
an edge as 1. The growth of the size of the tree is depicted in Figure 5.1. In general, for
n > 0, we have the recurrence relation

Size(n) = 2 ⋅ Size(n − 1) + 1
from which we conclude that the size of the tree is in Θ(2n).

a0

a0

a1

a0

a1

a2

a2

a0

a1

a2

a3

a3

a2

a3

a3

(n = 1) (n = 2) (n = 3) (n = 4)

Figure 5.1: Prefix-tree for saturated non-recursive schemas with n types

From the previous results we have that trees are just linearly more succinct than lists
for storing chains.

By considering recursive DTDs, the number of chains inferred for an expression aug-
ments substantially. We investigate the cardinality of sets of inferred chains for recursive
schemas. To this end we adopt multisets, defined as follows.

Definition 5.1.4 (Multiset). A multiset (M,µ) is a set of (distinct) elements M together
with a function µ that assigns to each element in M a non-negative integer value of
multiplicity.

For instance, ({a, b} , {(a,1), (b, 3)}) denotes the multiset in which the element a

has one occurrence and b three occurrences. We say that (M ′, µ′) is a sub-multiset of(M,µ) if M ′ ⊆ M and µ′(m) ≤ µ(m), for all m ∈ M . For instance, let M = {a, b},
µ = {(a,1), (b,3)} and µ′ = {(a,0), (b,1)}, the multiset (M,µ′), corresponding to the set{b}, is a sub-multiset of (M,µ). In short, we denote by Mk the multiset (M,µ) where
each element of M has multiplicity k, so that µ(a) = k for all a ∈M .
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Proposition 5.1.5. A saturated recursive DTD d with n+ 1 types induces Ω( (nk)!(k!)n ) and

O( (nk+1)!(k!)n ) rooted k-chains.

Proof. Because d is saturated and recursive, a rooted k-chain is a sequence of types,
whose length is upper bounded by 1 + nk. We model this by using multisets. Let M be
the set of n mutual recursive types in d, and let Mk be the multiset of M elements with
multiplicity k each. A permutation of a multiset M is an ordered arrangement of objects
of M . The set of rooted k-chains of d can be seen as the permutations with repetition of
all sub-multisets of Mk. For instance, let (M,µ′) be the multiset with M = {m1, . . . ,mn}
and

µ′ = { (m1, k−1 ) , (m2, k ) , . . . , (mn, k ) }
We have that (M,µ′) is a sub-multiset of Mk. The permutations associated with (M,µ′)
can be seen as the set of all chains of length nk, where all types repeat exactly k times,
but type m1 repeats exactly k − 1 times. Of course, if b1, b2 are the first and second
occurrence of b, respectively, then ab1b2 and ab2b1 denote the same permutation.

The number of k-chains for d can be computed exactly with the basic combinatorial
formula for permutations with repetition, as the sum of all possible configurations of
multiplicity values k1, . . . , kn (assigned to type-names m1, . . . ,mn) that are ranging from
0 to k. This is

∑
0≤k1,...,kn≤k

(k1 + ⋅ ⋅ ⋅ + kn)!
k1! ⋅ ⋅ ⋅ ⋅ ⋅ kn!

also counting the singleton root-type.

A lower bound for this quantity can be given by computing just part of the inferred
chains, namely the permutations of Mk of maximum length nk (we ignore subsets for
the moment). This can be done with the basic formula and results in

perm(Mk;nk) = (nk)!
k1! ⋅ ⋅ ⋅ ⋅ ⋅ kn!

with k1 = ⋅ ⋅ ⋅ = kn = k. This quantity is exactly the number of rooted k-chains of length
nk, and thus we have the lower bound Ω( (nk)!(k)!n ).

An upper bound for the set of k-chains induced by d is obtained in the following way.
First, notice that the whole set of rooted k-chains of d is the set of prefixes of the chains
of maximal length we computed above. Therefore, consider that each chain of length
1 + nk has nk prefixes. So as to obtain

nk
(nk)!
(k!)n

which gives O( (nk+1)!(k!)n ) as upper bound of inferred chains. This upper bound is not
tight, because we count twice a prefix shared by two chains, but still helpful in order to
understand the result size. It is worth observing that perm(Mk;nk) is strictly smaller
than the number of permutations with repetitions of length nk of n types, that is nnk.
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These results show that chain inference is much harder in the presence of recursive
schemas. Once again, it is possible to show that by using both lists and prefix-trees for
storing chains, the space occupancy is exponential in the size of the DTD and the value k;
prefix trees are still polynomially more succinct than lists. Because space complexity has
a direct impact on time complexity, this suggests that implementing the chain inference
defined in Chapter 4 with one of these two data-structures may compromise scalability,
as shown by the following result.

Theorem 5.1.6. Let d be a DTD with n types and e be a query or update expression of
size m, exact k-chain inference for e is in EXPTIME.

Proof. By Lemma 5.1.5 the maximal number of chains one can infer from DTD d is
in O( (nk+1)!(k!)n ). Consider now the case where each subexpression of e needs to process
all of such chains. All inference rules perform a linear number of operations on a single
chain, but rules for insert and replace updates perform a quadratic number of operations.
Hence we say that each inference step does at most a polynomial number of operations
on the set of input chains. In turn, each operation on a chain can be done in O(nk), that
corresponds to the traversal of the whole chain. We conclude that exact chain inference
for the whole expression of size m can be done in O(m ⋅ nk ⋅ poly( (nk+1)!(k!)n )).

This theorem gives an upper bound to the complexity of the chain inference problem
and it shows that exact chain inference may have an enormous worst-case cost by using
data-structures such as lists or trees. Of course this does not means that for any instance
of the problem, chain inference is expensive. However, in practice it turns out that for
schemas featuring cliques of mutual recursive types, the k analysis works efficiently only
if k is small, and rapidly becomes intractable. From this we can deduce also that, once
chains are inferred from queries and updates (in exponential time), checking for a conflict
may require an exponential time, because of the number of chains one has to consider.

5.2 Storing Chains on DAGs

To overcome the limits outlined in the previous section, we present now a data-structure
for storing chains based on directed acyclic graphs (DAGs) which is exponentially more
succinct than trees, and allows to store chains in polynomial space and makes the analysis
tractable in practice.

The intuition behind the use of DAGs instead of trees is that rather than storing
only once common-prefixes of chains, in many cases we can also store only once common
suffixes of chains. This can be done in a particularly efficient way for XML schemas that,
being regular tree grammars and generate regular trees-of-chains featuring a number of
repeating subtrees.

To illustrate, consider the chains induced by the non-recursive DTD d8, which is
defined by the following set of productions (below, we assume 1 ≤ i ≤ 3).

a← b1, f1 . . . b(i−1) ← (bi , fi)? f(i−1) ← (bi , fi)?
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In Figure 5.2.a we show how the chains of d are stored as a prefix-tree. From now on,
we call CTREE a prefix-tree storing chains. The CTREE shows clearly that by unfolding
schema chains we are unfolding regular subtrees. We stress this fact by marking repeated
subtrees with different colors.

In Figures 5.2.(b-d) we show that repeated subtrees can be recursively compressed
until obtaining a DAG that is equivalent to the CTREE. From now on, we call CDAG a
DAG storing chains. In fact, when there is a path (equivalently, a chain) in the CTREE,
there is a path in the CDAG, and vice-versa.
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Figure 5.2: Compression of a CTREE to an equivalent CDAG

As suggested by the example, it is more convenient to perform the inference of the
CDAG rather than the tree. Of course, we avoid to first infer prefix-trees and then
compress them, because this again lead us to infer structures of exponential size. In the
following, when speaking about CDAGs and CTREEs, we assume that they are inferred
on a given DTD d.

A CDAG G is a directed acyclic graph rooted at the schema root-type, that contains
no self-loop and meets the following property.

There is at most one node labeled a at depth h in G (5.1)
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This means that, if two chains happen to have the same type in position h, they will
share a common node in the CDAG at depth h. This property is for instance enjoyed by
the tree in Figure 5.2.d. A CDAG is thus organized per levels.

Property (5.1) makes the width of the CDAG upper-bounded by the number of types
in the schema size. Also, the k-analysis makes the height of a CDAG linear in the size of
the schema. Therefore the number of vertex of a CDAG is always finite, and polynomial
in d and q.

Let us illustrate property (5.1) with some examples over recursive and non-recursive
schemas.

Consider the saturated non-recursive schema d2 previously defined.

a1 ← a2,a3,a4,a5
a2 ← a3,a4,a5
a3 ← a4,a5
a4 ← a5

In Figure 5.3 we compare a CTREE and a CDAG storing all chains of d2. Once again,
we see the unfolding of the regular structure of the schema with the CTREE. By using
DAGs instead of trees we can compress common chain-prefixes and store them only once.
This is the case, for instance, for the subtrees rooted at a4 and a5 at level 2. In this case
one could even compress more, by ignoring levels. However, this would substantially
complicate not only the formal development, but also the implementation phase, thus
resulting error prone for implementors.
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a5
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a5

a5

a1

a2 a3 a4 a5

a3 a4 a5

a4 a5

a5

Figure 5.3: CTREE and CDAG storing chains of d2

Consider now the saturated recursive schema d9 defined at the beginning of the
section.

a ← b, f

b ← b∗ , f?
f ← b? , f∗
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Let us consider all 1-chains induced by d9. The CTREE and CDAG representing such
chains are the same, as depicted in the following. Recall that each rooted path is a chain,

a

b

f

f

b

and 1-chains for d9 are {a, a.b, a.f, a.b.f, a.f.b}.
Now, let us consider all 2-chains for d terminating with type b. This is, for instance,

the specification of chains matching a recursive navigation made by the query //b. Below
we compare a CTREE and a CDAG storing such chains.

A chain in the graph is a rooted path ending with type b. Notice that a chain belongs
to the CDAG if it belongs to the CTREE but, in this case, there are also some chains
belonging to the CDAG that do not belong to the CTREE. The following chains are
obtained as artifacts from the compression.

a

b

b f

b f

b

f

b

b f

b

f

b

b

a

b f

b f

b f

b

a.b.b.b.b a.f.f.f.b

While this could suggest that the analysis imprecise (in fact, by inferring more chain
than needed we may have false-negatives) it does not. The reason is that, because of the
regularity of tree grammars, chains a.b.b.b.b and a.f.f.f.b, are indeed 4-chains matching//b over d9. Therefore in this case chain inference for //b with CDAGs is both sound
and complete, in the sense that it infers all 2-chains matching //b (soundness) and only
chains matching //b (completeness).

While at first sight one could argue that, for the purpose of independence detection, a
refined notion of completeness (wrt k-chains) may be needed, this is not the case. Indeed
a k′-chain matching an expressions, with k′ > k, cannot generate false negatives.



90CHAPTER 5. IMPLEMENTING THE CHAIN-BASED INDEPENDENCE ANALYSIS

To conclude the discussion on the size of CDAGs, we prove that they are always
polynomial in d.

Lemma 5.2.1. Let d be a non-recursive DTD with n + 1 types. The size of a CDAG
inferred for all chains of d is in O(n3).
Proof. Assume that d is a saturated non-recursive schema featuring n + 1 types. The
CDAG storing all d chains is organized in n + 1 levels where a) the root-level has one
node and b) for the remaining n levels, level i has i nodes (1 ≤ i ≤ n). Therefore we

conclude that the CDAG has 1 + n(n+1)
2

nodes. Concerning the number of edges, we
notice first, that, at the root level, the root type is connected with all other n types.
Then, as we said, level i has i types. Assume that a2, . . . ,ai is the sequence of types at
level i, ordered by the number of outgoing edges (ascending order). Because the schema
is saturated, we have that type aj at level i is connected with j − 1 types at level i + 1.
We conclude that the size of the edge-set is n +∑n

i=1∑i−1
j=0 j, which is in O(n3).

Lemma 5.2.2. Let d be a recursive DTD with n types and k a multiplicity value. The
size of a CDAG inferred for k-chains of d is in O(kn3).
Proof. Assume that d is a saturated recursive schema featuring n+1 types. First we notice
that the CDAG storing the k-chains of d has at most kn levels. Therefore, because each
of the n types can repeat in all kn levels, the CDAG has kn2 nodes. Because there exists
at most n2 edges between two consecutive graph levels, the CDAG has O(kn3) edges.
We conclude since no edge crosses multiple levels.
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Chain Inference and Edge-labeling

CDAGs do not allow only to reduce space occupancy, but also to reduce the number of
operations needed by the inference. To illustrate, consider the query q = //book/∗/name

and the DTD d3 previously defined as

bib ← book∗
book ← title,author+,publisher+

author,publisher ← name

title,name ← String

The CTREE and the CDAG storing chains of q over d3 are reported below.

bib

book

author publisher

name name

bib

book

author publisher

name

Now, assume a further inference step has to be done, such as for query

q
′ = q /text()

Now, in order to extend the CTREE, two operations are needed (one for each node name)
while, in order to extend the CDAG, only one operation is needed.

bib

book

author publisher

name name

String String

bib

book

author publisher

name

String

This shows that, with CDAGs, we can also save computations by doing chain inference
by groups of chains. The number of groups of chains is polynomial in the size of a schema
and of a query (in fact, a group is represented by all chains terminating in one node).
Thus this makes polynomial the number of input nodes for an intermediate inference
operation.
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Another ingredient needed in the CDAG representation is a means to represent chains
inferred for unrelated sub-expressions. Intuitively two expressions are related if one draws
data from the other (e.g. by means of variable binding). If this does not happen, the
expressions are unrelated. To illustrate, consider the bibliographic DTD d3 and the
following sequence

q1 , q2 = //book//name/text() , /bib/book/publisher/name/foo
Here the whole expression is constituted of two unrelated queries q1 and q2. It turns out
that these may produce unneeded chains a consequence of overlapping.

The chains inferred for q1 over d3 are

bib.book.author.name.String bib.book.publisher.name.String

The chain inferred for q2 over d3 is

bib.book.publisher.name.foo

The naive CDAG representation of the chains for the two subexpressions is

bib

book

author publisher

name

String foo

If the chains inferred for the two expressions are stored together, without any dis-
tinction, then the CDAG also encodes the chain

bib.book.author.name.foo

which is not a chain that should be inferred neither for q1 nor q2.

In order to overcome ambiguity in the CDAG, we introduce some marking for distin-
guishing among two chains inferred for distinct sub-expressions in the CDAG representa-
tion. We do this by putting on any edge connecting two CDAG-nodes a label identifying
the query/update expressions that produced the chain during inference. These identifiers
are necessary to precisely perform chain inference, and independence checking as well.
The CDAG representation of chains for q1,q2 is the following.
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bib

book

author publisher

name

String foo

q1,q2

q1 q1,q2

q1 q1,q2

q1 q2

We see that the labelled CDAG allows for a more precise analysis, in this case for
instance the chain bib.book.author.name.foo cannot be traced anymore. (through q1 or
q2 identifiers).

Labels help also in dealing with backward navigations. We can observe that if in the
above query q1,q2 we replace q2 by

q2 = /bib/book/publisher/foo/ancestor∶∶∗
when inferring chains for the last step of q2, thanks to edge-labeling, avoids to navigate
upward parts of the CDAG that have not been generated by q2 (i.e., a author node), thus
preserving the precision of the analysis in most of the cases.

Notice that backtracking on unvisited nodes does not affect the correctness of the
analysis, but only its precision. The same observation holds for tracing unvisited chains.
Removing labels, is a possibility if one wants to further lower the complexity of the
analysis, that would result in dealing with a dimension less.

5.3 Chain Inference with CDAGs

In this section we present algorithms for implementing the chain inference with CDAGs.
We first give some auxiliary definitions, and then we present chain inference. We begin
with operators for XPath single steps, then treat navigational queries, element construc-
tion and, finally, we consider updates.

Preliminary definitions

Definition 5.3.1 (CDAGs). A CDAG is a directed acyclic rooted graph G = (V,E, s),
where V ⊆ ΣS ×N is a set of nodes that store a type in ΣS and an integer value denoting
the distance of the node from the root in G, where node (s,0) ∈ V denotes the root type,
and E ⊆ V 2 × N is a set of edges among nodes recording the code of the query/update
subexpression that produced that edge.
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In order to implement our analysis we need some auxiliary tools for managing chains
inferred from queries and updates.

We first need an encoding of query and update expressions that is used for separat-
ing the chains inferred from unrelated subexpressions. The concept of subexpression is
standard: e′ is a subexpression of e, denoted by e′ ∈ e, if the parse tree of e′ is a subtree
of the parse tree of e.

Definition 5.3.2 (Query encoding). The encoding of a query or update expression e is
an injective function id() mapping each subexpression of e to an integer in N. The en-
coding of a set of expressions {e1, . . . ,en} is a function obtained by the union of functions
encoding each ei, with 1 ≤ i ≤ n, provided that this union is still injective.

The definition says that basically any coding would work for the inference task,
provided that we are able to uniquely identify each subexpression. This is why the
function is required to be injective. As an example, consider the sequence

q0 = (q1,q2)
for which we can have the following encoding.

id (e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if e = q1
2 if e = q2
12 if e = q0

provided that there are no other subexpressions in q1,q2.

The second tool we need is a relation for capturing related expressions. As already
said, two expressions are related if one draws data from the other. As an example, for
the query

for x in //book return x/author
expressions //book and x/author are related because the first provides nodes that are
bound to x, and the second accesses the content of x. As the example suggests, in the
language we considered this relationship is established by the use of variables, and allows
to reconstruct all navigational-paths embodied by a query or an update. We assume wlog
that queries are written by using distinct variable-names for distinct variable-definitions.

To formalize this, we need a way to retrieve, given a variable x, the set of navigational
steps that provide data to x. Assume that

e = for/let x in/ ∶= e1 return e2

then the set of navigational expressions providing data to x is defined as ret(e1), where

ret(e) def=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{e} if e = y/step
ret(e2) if e = for/let y in/ ∶= e1 return e2

ret(e1) ∪ ret(e2) if e = if (e0) then e1 else e2 or e = e1,e2
∅ otherwise
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To illustrate function ret(), consider the following query

q = for x in q1 return q2

with q1 = (//title, //author) and q2 = x//book. In this case we have that

ret(q) = { x//book } = ret(q2) ret(q1) = { //title, //author }

We now define expressions related by the use of variables.

Definition 5.3.3 (Variable-Reference). Let e be a query or update expression, and x a
variable defined in e. The set of navigational steps referenced by x, denoted by vr(x), is
defined as vr(x) = ret(ex), provided that ex is a for/let expression introducing x.

To illustrate this definition, consider the query

q = for x in(for y in //a, //d return y//b)
return

let z ∶=
if (//b) then x else x/parent ∶∶ ∗
return x

The variable-reference relation, and its transitive closure, are graphed below.

y
vr(y)
Ð→ //a, //d

x
vr(x)
Ð→ y//b vr(y)

Ð→ //a
x

vr(x)
Ð→ y//b vr(y)

Ð→ //d
z

vr(z)
Ð→ x,x/parent ∶∶ ∗

z
vr(z)
Ð→ x

vr(x)
Ð→ y//b vr(y)

Ð→ //a
z

vr(z)
Ð→ x

vr(x)
Ð→ y//b vr(y)

Ð→ //d
z

vr(z)
Ð→ x/parent ∶∶ ∗ vr(x)

Ð→ y//b vr(y)
Ð→ //a

z
vr(z)
Ð→ x/parent ∶∶ ∗ vr(x)

Ð→ y//b vr(y)
Ð→ //d

With a little abuse of notation, we denote by vr(e), vr(i) and vr(x) the same set,
provided that e = x/step and id(e) = i . The transitive closure of vr(x), vr(e) and vr(i)
are denoted by vr+(x), vr+(e) and vr+(i), respectively.

The following property shows that an exponential number of sequences induced by
the reference variable relation may arise.
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Proposition 5.3.4. Let e be a query or update expression and e1, . . . ,en be a sequence
of subexpressions of e such that e(i+1) ∈ vr(ei). The following holds.

1. the sequence size is bounded by the query size, n ∼ O(∣e∣)
2. the number of such sequences is in the worst case exponential O(2n)
3. if no concatenation or conditional expression is nested in the left-branch of a for or

let expression, then the number of such sequences is linear O(n).
The first item states that the length of a navigational path embodied in a query is

upper bounded by the query size. The second item shows the succinctness of the query
and update languages. It states that a query of size n can embody 2n navigational
paths. The third item states that this succinctness is given by two operators: query
concatenation and conditional expressions.

Proposition 5.3.4 suggests also that chain inference may lead to perform an expo-
nential number of operations if the whole relation vr+() has to be visited. For instance,
this may happen in the presence of backward navigations. Nevertheless, differently from
trees and lists, CDAGs allow to design algorithms that are sound, that run in polynomial
time and that are still precise, as we illustrate next.

Auxiliary Data-Structures The CDAG inference algorithms make use of some global
data structures that we define below. The role of such structures will be clarified during
the presentation of inference algorithms.

• Ret() is an inverted index mapping an expression id i to a set of nodes M in the
CDAG. The set of nodes N corresponds to terminal of return chains inferred for e.

• Upd() is an inverted index mapping an expression e to a set of nodes M in the
CDAG. The set of nodes N corresponds to nodes in the suffix of an update chain
inferred for e.

• Clean() is an inverted index mapping a step e to a set nodes representing dangling
chains for which inference for e failed.

The input of the chain inference algorithm is a query or update expression e, a schema
d and a multiplicity value k. The system outputs a CDAG Grv representing used and
return chains, a CDAG Ge representing element chains and a GU representing update
chains inferred form e, respectively. Note that used and returned chains are put together
in the same CDAG.

Given a CDAG G, and node v belonging to G is a pair v = (a, h), where a is the type
of the node and h is the level of the node in the G. The type of a node v is denoted by
v.type while its height is denoted by v.level . In the examples, a node is also denoted by
v[type,height].
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Chain Inference Algorithms

Algorithm 1: Procedure Child

Input : Node-set M ⊆ Vrv, φ, id i

Output: Infer chains for child ∶∶ φ, side-effect on Ret(), Clean(), Vrv and Erv

1 foreach v ∈M do
2 new_edge ← false

3 if v.level + 1 does not exceeds the chain space then
4 foreach a child-type of v.type do
5 if a satisfies φ then
6 if (a, v.level + 1) ∉ Vrv then
7 Vrv ← Vrv ∪ {(a, v.level + 1)}
8 v′ ← (a, v.level + 1)
9 Erv ← Erv ∪ (v, v′, i)

10 new_edge ← true

11 Ret(i) ← Ret(i) ∪ {v′}
12 if !new_edge then
13 Clean(i)← Clean(i) ∪ {v}

The first procedure we present is the one to infer chains for a navigational expression
of the form x/child ∶∶ φ. Procedure Child is the most important procedure of the system,
since it is the one responsible of extending the CDAGs. Other operators presented later
on are defined in terms of the procedure Child.

The procedure takes as input a set of nodes M ⊆ Vrv, and tries to connect each v ∈M
with a child node v′, provided that v′ satisfies the filtering condition φ. If such v′ is not
a node of the CDAG, then v′ is built and added to the vertex-set of the CDAG (line 7).
Then v′ becomes a terminal node of the expression invoking the child axis. The step
expression x/child ∶∶ φ, for which the procedure infers chains, is referred by identifier i ,
which is also part of the input.

In line 3, we have a condition that ensures the termination of the inference. It says
that a child navigation could be performed, provided that chains do not exceed a certain
length. The maximal length of a chain we infer is nk, provided that that n is the number
of types in d, and k is the multiplicity value in input. This is a sufficient condition to
ensure that all k chains are correctly inferred. Note also that this avoids to keep an hash
table recording the frequency of each tag while doing the chain inference, thus ensuring
better performances.

Finally, in the cases that the child extension for the input node v produces no new
edges, then v is added to the list of possibly dangling nodes to backtrack (Lines 12-13).
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This happens, for instance, if v exceeds the chain space, or none of the children on v

satisfy φ. A dangling node is later removed, provided that itself or one of its descendants
are terminals of used or return chains in the CDAG. This essentially implements the
chain filtering defined in chain inference rules of Chapter 4. For the sake of conciseness,
we do not model this operation here.

Let us illustrate the workflow of the procedure with an example. Consider chain
inference for the query x/book over DTD d3, with x ↦ bib. Inference for the step takes
in input the following CDAG

Grv = ({ v[bib,0] },∅)
and a set M = { v[bib,0] }. The procedure first checks that the chain space would not be
exceeded by attaching a child to v[bib,0], which is trivially true since

v[bib,0].level < nk

where we recall that n is the number of types in d3 (in this case n = 8) and k is the
multiplicity value (in this case k = 1).

At this point, because book is the only child-type of bib, and book satisfies φ=book, the
node v[book,1] is added to V and connected to v[bib,0]. Below, we assume id(x/child ∶∶ φ) = i .
Node v[book,1] is now the terminal of chains inferred for the query. The resulting Grv and
Ret() are the following.

bib

book
i

Grv = (Vrv,Erv) Ret(i) = { v[book,1] }
Vrv = { v[bib,0] , v[book,1] }
Erv = { (v[bib,0] , v[book,1] , i) }

The second procedure defined is the one implementing the self axis. Procedure
Self receives as input a set of nodes M ⊆ Vrv and only checks if the type-name of each
input node satisfies condition φ. If this is true, the input node becomes a terminal for
the expression. This is captured by line 3.

Algorithm 2: Procedure Self

Input : Node-set M ⊆ Vrv, φ, id i

Output: Infer chains for self axis, side-effect on Ret()
1 foreach v ∈M do
2 if v.type satisfies φ then
3 Ret(i) ← Ret(i) ∪ {v}
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Notice that, if a node does not satisfy φ, then no operation is performed here. This
is made on purpose, nodes that do not satisfy the axis test should be dealt with by the
external procedures calling Self.

Consider chain inference for query y/self ∶∶ ∗ over DTD d3, provided that y is bound
to the result of x/book and x↦ bib, computed as in the previous example. Chain inference
for y/self ∶∶ ∗ results in the following CDAG. As before, we assume that id(x/book) = i
and id(y/self ∶∶ ∗)=i ′.

bib

book
i

Grv = (V,E) Ret(i) = { v[book,1] }
V = { v[bib,0] , v[book,1] } Ret(i ′) = { v[book,1] }
E = { (v[bib,0] , v[book,1] , i) }

Note that procedure Self adds no edge in the CDAG, but it just affects Ret(). In
this case because node v[book,1] trivially satisfies φ = ∗ we have Ret(i ′) = { v[book,1] }.

The algorithm implementing the descendant axis is described in the following. We
just describe the algorithm implementing axis descendant since descendant−or−self
is similar.

Descendant-Rec is a recursive procedure that computes chains for navigational
steps of the form x/descendant ∶∶ φ. The descendant axis is computed by invoking
the Child procedure. Because of this, in the pseudo-code, we use a fresh query-id iv
for labeling edges obtained from the iteration of the procedure, that started from node
v. This is simply needed to correctly perform set operations and clean the graph form
artificial edges.

At each iteration step, the procedure tries to extend of one level each input node
v, with all of its children-types (line 5), by calling procedure Child. Before calling
procedure Child, the abstract predicate satisfies uses schema information to check if
some descendant-type of v.type do satisfy the filter φ (line 4). When this is not true,
any operation can be skipped and node v can be added to the backtrack list for the
expression.

If some descendant-type of v.type do satisfy the filter φ but the result of the child-
navigation with ∗-filter is empty, it simply means that the node is at the frontier of the
chain space. In this case the node is added to the list of possibly dangling nodes (line
14). If the result of the child navigation is non-empty (line 6), then we record that some
new labeled-edges has been created (line 7). All nodes in Ret(iv) are saved in the set
M ′ (line 8), and the descendant procedure is iterated on M ′ (line 15). Also, all nodes
in Ret(iv) that satisfy φ, are set as terminal nodes for the expression, by means of the
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Algorithm 3: Procedure Descendant-Rec

Input : Node-set M ⊆ Vrv, φ, id i

Output: Infer chains for descendant axis, side-effect on Ret(), Clean(), Vrv

and Erv

1 M ′ ← ∅
2 foreach v ∈M do
3 new_edge ← false

4 if some descendant-type of v.type satisfies φ then
5 Child({v},∗, iv)
6 if Ret(iv) ≠ ∅ then
7 new_edge ← true

8 M ′ ←M ′ ∪Ret(iv)
9 Self(Ret(iv), φ, i)

10 foreach (v, v′, iv) ∈ E do
11 E ← E ∖ (v, v′, iv)
12 E ← E ∪ (v, v′, i)
13 if !new_edge then
14 Clean(i)← Clean(i) ∪ {v}
15 Descendant-Rec(M ′ , φ, i)

Self procedure (line 9). At this point, all edges produced by the Child procedure with
the input code iv are re-labeled as i edges. Notice that iv is needed to perform this
operation.

We illustrate chain inference for step x/descendant ∶∶ bold with x bound to text over
the recursive DTD d12 defined as

text ← (bold ∣ emph )∗
bold ← emph?,String

emph ← bold?,String

In this case kq = 1 and thus we want to infer 1-chains for the query, namely text.bold

and text.emph.bold. To this aim, procedure Descendant-Rec is iterated three times.
In the first iteration, the procedure takes as input the triplet ({v[text,0]}, φ, i). A child
navigation from the root is then performed. This gives the following intermediate result.
Below, i0 is used to denote iv[text,0] .

text

bold emph
i0 i0 Ret(i0) = { v[bold,1], v[emph,1] }
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Now, because node v[bold,1] satisfies φ, it set as terminal node for the query, and we
have Ret(i) = { v[bold,1] }. Then edges labeled as i0 are relabeled with i . We assume also
that the terminal-index Ret(i0) is set to empty. However, since this is not mandatory
for the correctness of the analysis we do not add it in the pseudocode. The result of the
first iteration is the following.

text

bold emph
i i Ret(i) = { v[bold,1] }

In the second iteration, the procedure takes as input the triplet ({v[bold,1], v[emph,1]}, φ, i).
The procedure iterates over the two input nodes. Let us consider first node v[emph,1]. Be-
low, i1 is used as a shorthand for iv[emph,1]

. Then, node v[emph,1] is extended with its
children types, in the following way.

text

bold emph

bold emph

i i

i1 i1

Ret(i) = { v[bold,1] }
Ret(i1) = { v[bold,2], v[emph,2] }

By following line 9, node v[bold,2] is set as terminal node since it satisfies test φ. Let
us consider now node v[bold,1]. Below we assume i2 = iv[bold,1] . The child navigation creates
an edge between v[bold,1] and v[bold,2]. As we already discussed this is not problematic
because the chain text.bold.bold indeed matches q. Notice also that there is a group of
chains ending at v[emph,2] which does not match the query. They will be removed in the
next iteration.

text

bold emph

bold emph

i i

i ii2 i2

Ret(i) = { v[bold,1], v[bold,2] }
Ret(i2) = { v[bold,2], v[emph,2] }

The third recursive call of the procedure is the one that terminates the inference. In
this iteration step, the input of the procedure is the triplet ({v[bold,2], v[emph,2]}, φ, i). It
turns out that both input nodes have some descendant types that satisfy φ, but they
cannot be further extended, without exceeding the chain space. The maximal length of
chains to consider is 1+nk = 3, because the number of types in the schema is 2 (plus the
root) and k = 1.

Both nodes v[bold,2] and v[emph,2] are thus added to the backtracking list. Because
node v[bold,2] is a terminal node for a query return chain it will not be removed. Because
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text

bold emph

bold

i i

ii

Ret(i) = { v[bold,1], v[bold,2] }

node v[emph,2] is not a terminal node, and it is not shared by any other expression, it is
removed, and also all of its incoming edges. The resulting CDAG is the following.

Procedure parent computes chains for backward steps of the form x/parent ∶∶ φ.
In analogy with the child and descendant axes, this procedure is also used to compute
the ancestor axis. The algorithm backtracks on each parent v′ of an input node v, when
the two nodes are connected by an edge i ′ belonging to the set I of ids that can be
backtracked (which is part of the input). If the procedure is called to infer chains for a
step e = x/parent ∶∶ φ then I is I = vr+(e). If the procedure is iterated to infer chains
for an ancestor then I is defined wrt the ancestor step, as discussed next.

To illustrate, consider chain inference over DTD d3 and the following query

for x0 in x//book
for x1 in x0/author, x0/publisher
for x2 in x1/name

for x3 in x2/parent ∶∶ ∗
for x4 in x3/parent ∶∶ book
return x4

where x is bound to bib.

Below we assume the following coding id(//book) = i0 and id(x0/author) = i11 and
id(x0/publisher) = i21 and for the remaining steps id(xi/stepi) = i(i+1). Chain inference
for the first three lines of the query gives the following CDAG.

bib

book

author publisher

name

i0

i1
1

i2

i2
1

i2

Ret(i0) = { v[book,1] }
Ret(i1

1
) = { v[author,2] }

Ret(i21 ) = { v[publisher,2] }
Ret(i2) = { v[name,3] }

Processing of step x2/parent ∶∶ ∗ is now illustrated. Recall that id(x2/parent ∶∶ ∗)=i3.
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Algorithm 4: Procedure Parent

Input : Node-set M ⊆ Vrv, φ, id i , id set I

Output: Infer chains for parent axis, side-effect on Ret(), Clean()
1 foreach v ∈M do
2 some_parent← false

3 foreach (v′, v, i ′) ∈ E do
4 if v′.type satisfies φ then
5 if i ′ ∈ I then
6 Ret(i) ← Ret(i) ∪ {v′}
7 some_parent← true

8 if !some_parent then
9 Clean(i)← Clean(i) ∪ {v}

The procedure iterates over chains bound to x2, thus over node v[name,3]. Because i2 ∈
vr+(i3), the procedure backtracks to the edges labeled as i2, namely (v[author,2], v[name,3], i2)
and (v[publisher,2], v[name,3], i2).

Let us consider first the edge (v[author,2], v[name,3], i2). Because v[author,2] satisfies φ, it
is set as terminal node for the parent navigation, so Ret(i3) = { v[author,2] }. The second
iteration step on edge (v[publisher,2], v[name,3], i2) is similar.

Processing of step x3/parent∶∶book is now illustrated. Recall that id(x3/parent∶∶book)=i4.
The procedures iterates over chains bound to x2, thus v[author,2] and v[publisher,2]. It

backtracks on both edges labeled as i1
1

and i2
1
, because i1

1
, i2
1
∈ vr+(i3). Let us consider

first edge (v[book,1], v[author,2], i11 ). Because v[book,1] satisfies φ = book, it is set as ter-
minal node for the step, so Ret(i4) = { v[book,1] }. The second iteration step on edge(v[book,1], v[publisher,2], i21 ) is similar, and the resulting CDAG is the following.

bib

book

author publisher

name

i0

i1
1

i2

i2
1

i2

Ret(i0) = { v[book,1] }
Ret(i1

1
) = { v[author,2] }

Ret(i21 ) = { v[publisher,2] }
Ret(i2) = { v[name,3] }
Ret(i3) = { v[author,2], v[publisher,2] }
Ret(i4) = { v[book,1] }

Note that the procedure does not add new edges to the CDAG but it just affects
Ret().

Algorithm 4 is simple, sound and ensure a quite precise analysis at once. It is worth
outlining that, in some rare cases, the algorithms can infer unneeded chains, that is a
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chain that would not be inferred by the type system presented in Chapter 4. This may
happen for expressions that navigate twice the same part of the schema, as illustrated
by the following example over the DTD d3.

let x0 ∶= x//name

let x1 ∶= x0/parent ∶∶ ∗
let x2 ∶= x1/parent ∶∶ ∗
let x3 ∶= x2/publisher
let x4 ∶= x3/name

return x4/parent ∶∶ ∗
where we assume x is bound to bib.

Below we assume id(x//name) = i0 and id(xi/step) = ii+1. In this case, the last
backward step of the query x4/parent ∶∶ ∗ produces an unneeded chain. To see this,
consider the CDAG obtained by inference over all precedent steps.

bib

book

author publisher

name

i0

i0

i0

i0, i3

i0, i4

Ret(i0) = { v[name,3] }
Ret(i1) = { v[author,2], v[publisher,2] }
Ret(i2) = { v[book,1] }
Ret(i3) = { v[publisher,2] }
Ret(i4) = { v[name,3] }

When processing step x4/parent ∶∶ ∗, the procedures iterates over chains bound to
x4, thus v[name,3]. It backtracks on both edges labeled as i0 and i4, because i0, i4 ∈ vr

+(i5)
and i5 is the id of x4/parent ∶∶ ∗. At this point the procedures set as terminal nodes both
v[author,2] and v[publisher,2], while it should backtrack toly on v[publisher,2].

In general, for a pair of codes i1, i2 such that i1 ∈ vr
+(i2), by running Procedure 4

it is possible to visit edges labeled as i1 before those labeled as i2, and this can lead to
infer chains as false negatives. However, it is indeed by avoiding to follow the transitive
closure of relation vr() in the proper order, that we can compute backward navigations
in polynomial time.

The way backward navigations are used in the above example resembles that of a
conditional expression. They allow to verify that node elements labeled with book do
have descendants labeled with name and, if this is the case, descendant nodes of book
ones labeled with publisher are further navigated. Notice that this is not the usual way
of expressing such a property in an XQuery program. The above expression could be for
instance reformulated by using a conditional expression such as

if (x//name) then x/publisher/name/parent ∶∶ ∗ else ()
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Algorithm 5: Procedure Ancestor-Rec

Input : Node-set M ⊆ Vrv, node-set S ⊆ Vrv, φ, id i

Output: Infer chains for ancestor axis, side-effect on Ret(), Clean()
1 M ′ ← ∅
2 foreach v ∈M do
3 if some ancestor-type of v.type satisfies φ then
4 Parent({ v },∗, iv , vr+(i))
5 S ← S ∪Ret(iv)
6 Self(Ret(iv), φ, i)
7 M ′ ←M ′ ∪Ret(iv)
8 else
9 Clean(i)← Clean(i) ∪ {v}

10 Ancestor-Rec((M ′∖S), S,φ, i)

For this expression, chain inference over the DTD d3 is sound and complete wrt the
inference system presented in Chapter 4, because edges inferred for the conditional query
x//name would not be mixed with edges inferred for the rest of the expression.

As illustrated, cases of incompleteness exist but are quite rare in practice and may
have an equivalent formulation for which the analysis is complete. The precision of our
algorithm have been tested over the wide XMark/XPathMark benchmarks as shown in
Chapter 6, without incurring in a situation analogous to the one presented here, and by
showing high improvements wrt the state-of-the-art method.

Algorithms implementing ancestor axes are presented in the following. We just de-
scribe the algorithm implementing axis ancestor since the case for ancestor−or−self is
similar. Procedure Ancestor-Rec computes chains for steps of the form x/ancestor ∶∶ φ.

The procedure performs a bottom-up visit of the CDAG, by simply iterating the
procedure for the parent axis (Line 4). The set of codes that can be visited by procedure
Parent is set as vr+(i), as discussed before. The parents of a node v ∈ M , that are
recorded in Ret(iv), are then filtered by means of procedure Self to check if the satisfy
the ancestor navigation.

Furthermore, the procedure records a set of visited nodes S, so as to perform only
once the parent navigation to each node of the G. This optimization makes the procedure
running in linear time in the size of the CDAG. A node that has no parent satisfying φ

represent a dangling chain that may be removed.
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We illustrate the procedure with an example. Consider the DTD d11 defined as follows

bib ← book∗
book ← title,author,publisher

author,publisher ← name

name ← first, last,String

title,first, last ← String

and the query sequence

q = for x1 in x//author for y1 in y//author
for x2 in x1//first , for y2 in y1/name

return x2/text() return y2/ancestor ∶∶ ∗
with both x and y bound to bib.

Below, we assume that id(x//author) = i11, id(x1//first) = i12, id(x2/text()) = i13,
id(y//author) = i21, id(y1/name) = i22 and id(y2/ancestor ∶∶ book) = i23. Provided that
both x and y are bound to bib, chain inference for q, yields the following CDAG.

bib

book

author publisher

name

first

String

i11 i21

i11

i12

i12

i13

i21

i22

Ret(i11) = { v[author,2] }
Ret(i12) = { v[first,4] }
Ret(i13) = { v[String,4] }
Ret(i21) = { v[publisher,2] }
Ret(i22) = { v[name,3] }

Now, inferring chains for y2/ancestor ∶∶ ∗ consist of visiting all ancestors of nodes
of v[name,3] on Grv with a label in vr+(i22), that means i21 and i22. The set of terminal
nodes for y2/ancestor ∶∶ ∗ is thus Ret(i22) = { v[publisher,2], v[book,1], v[bib,0] }. Notice that
thanks to the edge labeling we avoid to backtrack also to node v[author,2].

Procedure Following-Sibling computes chains for the preceding-sibling naviga-
tional axis, by means of the Parent and Child procedures. Notice that the other
procedure for sibling axis Preceding-Sibling just differ from this one by the test made
in Line 5.
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Algorithm 6: Procedure Following-Sibling

Input : Node set M ⊆ Vrv, φ, id i

Output: Infer chains for preceding−sibling,following−sibling axes,
side-effect on Ret(), Clean(), V and E

1 foreach v ∈M do
2 new_sibling ← false

3 Parent({v},∗, iv , vr+(i))
4 foreach v′ ∈ Ret(iv) do
5 foreach a following-sibling type of v.type that satisfies φ do
6 Child({v},a, i)
7 new_sibling ← true

8 if !new_sibling then
9 Clean(i)← Clean(i) ∪ {v}

To illustrate the procedure, consider chain inference for the following query q over DTD d3
with x↦ bib.

q = for x1 in x0//title
for x2 in x1/following−sibling ∶∶ author
for x3 in x2/parent ∶∶ ∗
return x3/following−sibling ∶∶ book

Below, we assume that id(xi/step)=ii+1. Chain inference for q gives the following CDAG.

bib

book

title author

i1 i4

i1 i2

Ret(i1) = { v[title,2] }
Ret(i2) = { v[author,2] }
Ret(i3) = { v[book,1] }
Ret(i4) = { v[book,1] }

Chain inference for step x2/following−sibling ∶∶ author is performed by backtrack-
ing on edges labeled as i1 ∈ vr

+(i3) created by the previous descendant navigation, and
then by adding node v[author,2] in the CDAG. After this, the parent navigation further
backtracks to node v[book,1]. Chain inference for step x3/following−sibling ∶∶ book is
performed again by backtracking on edges labeled with i1 ∈ vr

+(i4).
Notice that the backward navigation in Line 3 makes this procedure inherently

sound but not complete. Also, in the case where the schema enforces that a type
a is both a following-sibling and a preceding-sibling of a type b (e.g., r ← a,b+,a?)
we have that the result of chain inference for both the sibling axis is the same, if we
start from some CDAG node labeled with b. Again this approximation is sound, but
it may be not complete, because expressions like doc//b/following−sibling ∶∶ a and
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Algorithm 7: Procedure Infer-Query

Input : Query q, Grv and Ge

Output: Infer chains for q, side effect on Grv, Ge and Ret()
1 i ← id(q)
2 switch (q) do
3 case q = x/axis ∶∶ φ
4 call procedure computing x/axis ∶∶ φ
5 case q = q1,q2 or q = if (q0) then q1 else q2

6 foreach j ≤ 2 do
7 Infer-Query(qj)
8 ij ← id(qj)
9 Ret(i) ← Ret(i1) ∪Ret(i2)

10 case q = for/let x in/ ∶= q1 return q2

11 Infer-Query(q1)
12 Infer-Query(q2)
13 Ret(i) ← Ret(i2)
14 case q = “txt”
15 Build(String,_,i)

16 case q = <a>q′</a>
17 Infer-Query(q′)
18 i ′ ← id(q′)
19 Build(a,Ret(i ′), i)
20 Clean-Graph(i)

delete doc//a/preceding−sibling ∶∶ b are deemed dependent, while they are not.
However, this does not depend on how chain inference is implemented, but on the fact
that chains abstract away from structural constraints concerning the horizontal order of
data.

Procedure Infer-Query infers chains for whole query expressions. The procedure
does essentially two things. It recursively infer chains for each subexpression of the query,
and it computes used, return, and element chains for the whole query.

The base case of procedure Infer-Query consist of calling the proper axis navigation
for a step of the form x/axis ∶∶ φ. Recall that for parent axis, the procedure also needs
to pass vr+(x) as input. Return chains for q are set as return chains for the proper
subexpression of q. Note that we do not need any particular extra structure for used
chains of q, since they result to be marked as return chains of each q′ subexpression of q.

We assume that in the first call of the procedure all CDAGs Grv and Ge are initialized,
and the root node is added in Grv. Finally, after chain inference for each subexpression
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Algorithm 8: Procedure Build

Input : Type a ∈ ΣS, node-set M ⊆ Ve, expression id i

Output: Infer element chains for q, side effect on Ve and Ee

1 va ← (a,0)
2 Ve ← Ve ∪ { v[a,0] }
3 foreach v ∈M do
4 v′ ← Copy(v,1, i)
5 Ee ← Ee ∪ (va, v′, i)
6 if v ∈ Vrv then
7 EltRet(i)← EltRet(i) ∪ { v′ }
8 Ret(i)← Ret(i) ∪ { va }

the CDAGs is done, dangling chains are removed by procedure Clean-Graph. This
last operation correspond to the chain filtering made by the rule for iteration presented
in the type system of Chapter 4.

Element chains are inferred by procedure Build. This procedure extends the CDAG
of element chains Ge. The procedure is called either for string query “txt”, or for an
expression of the form <a>q</a>. Because we assume that constructed elements are
never navigated (see Chapter 2), element chains in the Ge are simply stored as trees.
This comports no relevant overhead.

The procedure first creates a fresh node representing the root of the constructed
structure. Then, all nodes in M are copied (Line 4) and connected with va (Line 5).

Function Copy(v), despite not being explicitly modeled here, does three things.
First, it distinguishes if the input node belongs to Grv or to Ge. In the first case, it
simply copies the node. In the second case, it copies the node and all the structure
below. Second, it sets as 1 the height of the copied nodes, and accordingly of all copied
descendants. Third, it marks edges of the copied structure with i .

Finally, according to the rule for element construction presented in Chapter 4, to
record the fact that that a node v′ copy of v should be meant as a whole subtree, we
record v′ in EltRet(i). This has to be done only if the original node v belongs to the
CDAG Grv.
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Algorithm 9: Procedure Infer-Update

Input : Update u, CDAG GU

Output: Infer chains for u, side effect on GU

1 i ← id(u)
2 switch (u) do
3 case u = delete q0

4 Infer-Query(q0)
5 i0 ← id(q0)
6 GU ← Grv

7 Upd(i)← Upd(i0)
8 DescUpd(i)← Upd(i0)
9 case u = rename q0 as a

10 Infer-Query(q0)
11 i0 ← id(q0)
12 M ′ ← Ret(i0)
13 Sibling(Ret(i0),a, i0)
14 Ret(i0)← Ret(i0) ∪M ′

15 GU ← Grv

16 Upd(i)← Upd(i0)
17 DescUpd(i)← Upd(i0)
18 case u = insert q pos q0 or u = replace q0 with q

19 Infer-Query(q)
20 Infer-Query(q0)
21 i0 ← id(q0)
22 i1 ← id(q)
23 GU ← Grv

24 if pos ∈ into (as first∣as last)? then
25 Build-Update(Ret(i1),Ret(i0), i0,Ge)
26 else
27 M ′ ← Ret(i0)
28 Ret(i0)← ∅
29 I ← vr+(ret(q0))
30 Parent(M ′,∗, i0, I)
31 Build-Update(Ret(i0),Ret(e1), i0,Ge)
32 Upd(i)← Upd(i0)
33 if u is a replace then
34 DescUpd(i)← Upd(i0)
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Procedure Infer-Update infers chains from an update expression u. As updates are
defined in terms of queries, this mainly consists of calling procedure Infer-Query for
the update subexpressions.

For delete expressions, update chain inference is the same as query chain inference
for the target expression q0. The update CDAG GU is set as the query CDAG Grv.
Here, CDAG nodes in the prefix c′ of an update chain of the form c ∶ c′ are recorded
by the inverted index Upd(). Furthermore it makes use of another index DescUpd()
thats records the fact that the whole subtrees rooted at Ret(i0) has to be considered
as impacted by the update. This permits to avoid to infer all chains corresponding to
descendants of nodes in Ret(i0).

Chain inference is similar for rename expressions, with the difference that chains
capturing renamed node are inferred by means of a further navigation on the siblings of
the return nodes for q0. Procedure Sibling performs a following-sibling and a preceding-
sibling navigation on the terminal nodes of q0.

Chain inference for insert and replace expressions are similar. They both combine
chains inferred fro the source and for the target expression. The case where an insert
update uses either position after or before is the same as for the replace command. In
both cases it is necessary to perform a parent step, on the result locations of q0. In order
to allow a backward navigation, the set of edges that can be visited has to be computed.
This is done by first retrieving return subexpressions of q0 by means of function ret()
and vr+(), as already outlined.

Chains recording the structure of inserted subtrees are inferred by procedure Build-
Update. The procedure puts an edge between terminal nodes of the target and the
source query expressions. Nodes belonging to the source query are copied, setting also
the level and the label of edges.

Algorithm 10: Procedure Build-Update

Input : Target node-set T ⊆ VU, source node-set S ⊆ Ve, expression id i , CDAG
Ge

Output: Infer element chains for q, side effect on VU and EU

1 foreach v ∈ T do
2 foreach v′ ∈ S do
3 v′′ ← Copy(v′, v.level + 1, i)
4 VU ← VU ∪ { v′′ }
5 EU ← EU ∪ (v′, v′′, i)
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Algorithm 11: Function CheckIndependence

Input : CDAG for query Grv and CDAG for update GU, node sets Mr,Mv ⊆ Vrv

and MU,M
′
U ⊆ VU

Output: Check for a common chain between two graphs
1 foreach h = 0..min(hGrv , hGU

) do
2 foreach (v, v′, i) ∈ Erv and (v, v′, j) ∈ EU do

3 if ((i ′, j′) ∈ I(v′′,v) and i ′ ∈ vr∗(i) and j′ ∈ vr∗(j)) or h = 0 then

4 I(v,v
′) ← I(v,v

′) ∪ { (i, j) }
5 if v ∈Mr ∪Mv and v ∈MU then
6 return false

7 if v ∈Mr then
8 if a descendant of v ∈ GU also belongs to MU then
9 return false

10 if v ∈MU then
11 if a descendant of v ∈ Grv also belongs to Mr ∪Mv (return-element)

then
12 return false

13 return true

The last algorithm we present, is the one checking if query and update CDAGs have
a conflicting chain. The procedure takes as input the set of terminal nodes denoting
chains for used and return query chains, as well as for update nodes and for update and
all descendant nodes. In particular, Mr ⊆ Vrv is set of nodes that are terminal of query
return chains, Mv ⊆ Vrv is set of nodes that are terminal of query used chains, MU ⊆ VU

is set of nodes that are in the suffix of an update chain and M ′
U ⊆ VU is set of nodes that

are in the suffix of an update chain and whose whole subtree is impacted by the update.

The procedure iterates over all the levels of the CDAGs and inductively computes a
product graph, where edges between nodes are sets of pairs of ids of query and update
expressions that simulate the same chain.

At level h, a pair of codes (i, j) is added on the edge connecting a node v with a node
v′ (Line 4) only if it is the continuation of some chains computed at level h − 1 (Line 3).
Formally, this happens when for some node v′′ parent of v there is a pair of codes (i′, j′)
such that i ′ ∈ vr∗(i) and j′ ∈ vr∗(j). Here vr∗(i) denotes the reflexive and transitive
closure of vr(i). This test is trivial for h = 0 since the root has no incoming edge. The
set I(v,v

′) denotes all pair of edges between v and v′ in the product graph.

In order to detect conflicts between query and update chains, and hence to implement
Definition 4.4.1, we perform the following three tests. If we reached a node v such that
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v is both the terminal node of a used or return chain in Grv, and an update node of GU,
then we raise a dependence. Otherwise, if v is only the terminal of a return chain, we
visit GU to search for a descendant of v that also belongs to MU. If this node exists, we
raise a dependence. Otherwise, if v is either an update node of MU or an update node
with all descendants of M ′

U then we visit Grv and we search for a descendant of v that also
belongs to Mr ∪Mv. Of course, this is done by properly following edges corresponding to
related subexpressions.

To illustrate, consider DTD d11 and the following query and updates.

q = for x′ in x//author , for y′ in y//publisher
return x′//first return y′//last

u1 = delete z//name u2 = for z′ in z//publisher
return delete z′//first

We run Algorithm 11 and show the result of the product graph for the pairs q-u1
and q-u2, respectively. Below, we assume that x,y and z are all bound to bib. Further-
more, id(x//author) = x1, id(x′//first) = x2, id(y//publisher) = y1, id(y′//last) = y2,
id(z//name) = z1, id(z//publisher) = z2 and id(z′//first) = z3.

The product graph for q-u1 is the following.

bib

book

author publisher

name

first last

x1 y1

x1

x2

x2 y2

y1

y2

bib

book

author publisher

name

z1

z1

z1

z1

z1

bib

book

author publisher

name

{x1, y1} × {z1}

{x1} × {z1}

{x2} × {z1}

{y1} × {z1}

{y2} × {z1}

In this case there are two conflicting chains because the query and the update access
and impacts nodes labeled with name. After node v[name,3] ∈ GU has been recognized as
a node in the prefix of an update chain, the procedure start searching for a descendant
of node v[name,3] ∈ Grv that is also the terminal of a used or return chain, by following
ids x2, y2. The procedure then reaches both v[first,4] and v[last,4] and hence a conflict is
correctly raised by the procedure.
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The product graph for q-u2 is the following.

bib

book

author publisher

name

first last

x1 y1

x1

x2

x2 y2

y1

y2

bib

book

publisher

name

first

z2

z2

z3

z3

bib

book

publisher

name

first

{x1, y1} × {z2}

{y1} × {z2}

{y2} × {z3}
∅ ×∅

In this case there is no conflicting chain between the two expressions. Notice first
that chains for the left subexpression of sequence q does not simulate any chain inferred
for u. This is reflected by the fact that in the product graph there is no edge with id
x1 after node v[book,1]. Similarly, also the right subexpression of sequence q does not
simulated after node v[name,3] in the CDAG, because in the product graph there is no
edge connecting v[name,3] with node v[first,4].

5.4 Complexity of Chain Inference with CDAGs

In this section we present some results on the complexity of algorithms defined in the
previous section. We mainly distinguish between recursive and non-recursive schemas,
and outline how complexity can be lowered for some interesting classes of queries and
updates.

Theorem 5.4.1. Let d be a non recursive DTD with n type definitions, and e a query
or update expression of size m. By using Algorithms 1-10 of Section 5.3 chain inference
can be done in O(mn3) space and O(mn5) time.

Proof. When d is not recursive, the k value stop being determinant for the analysis since
no label repeats twice in any schema chain. We first consider the case where e is not
an insert or replace update. By Lemma 5.2.1, we know that the worst-case size of the
CDAG inferred for e is O(n3). This, together with the fact that each edge can be labeled
with a code, and that the number of codes is upper bounded by the size of the query
entails that the CDAG needs at most O(mn3) space. Moreover, by using Algorithms
1-11 of Section 5.3 Chain inference for any navigational step, can be computed in the
worst case with a traversal of the CDAG, hence in O(n3), for each input nodes. The
number of input nodes is upper bounded by the number of nodes in the CDAG. By
Lemma 5.2.1, there are at most O(n2) nodes in the CDAG. For the whole expression
it follows that inference time is in O(mn5). If e is an insert or replace update, then by
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making a cartesian product of chains for the target and source update expressions with
Procedure build update, we have an overhead which is at most quadratic in the number
or terminal nodes of each expression. However, since we assumed that updates preserve
the schema, this cannot result in more than O(n2) pairs of CDAG nodes corresponding
to types satisfying the insert or replace expression. This overhead does not affect the
asymptotical complexity.

Corollary 5.4.2. Let d be a non recursive DTD with n type definitions, and e a query
or update expression of size m. By using Algorithms 1-10 of Section 5.3, the followings
holds.

1. If e does not use step filter node() then chain inference can be done in O(mn4)
time;

2. If e does not use recursive downward an backward axis then chain inference can be
done in O(mn2) time;

3. If e does not use both step filter node() and recursive axis then chain inference can
be done in O(mn);

4. If each navigational step of e returns a fixed number of chains, then chain inference
can be done in O(mn3).

Proof. Analogous to the proof of Theorem 5.4.1.

The above restriction are often met in practice, and in particular by expressions used
in our testbed (when the recursive component of the XMark schema is not visited at all
by the expression).

Theorem 5.4.3. Let d be a recursive DTD with n + 1 type definitions, and e a query
or update expression of size m. By using Algorithms 1-10 of Section 5.3 chain inference
can be done in in O(mkn3) space and O(mk2n5) time.

Proof. We first consider the case where e is not an insert or replace update. By Lemma
5.2.2 we know that the worst-case size of the CDAG inferred for k-chains of e is O(kn3).
Because each edge can be labeled with any code, the worst-case space occupancy for the
CDAG is in O(mkn3). By using Algorithms 1-10 of Section 5.3, chain inference for any
navigational step can be computed in the worst case with a traversal of the CDAG, hence
in O(kn3), for each input nodes. The number of input nodes is upper bounded by the
number of nodes in the CDAG. By Lemma 5.2.1, there are at most O(kn2) nodes in the
CDAG. For the whole expression then inference time is in O(mk2n5). If e is an insert or
replace update, Procedure build update introduce an overhead which is quadratic in
the the size of the number or terminal nodes of each expression. At most O(kn2) nodes
are inferred for each expression. However, since we assumed that updates preserve the
schema, this cannot result in more than O(mkn3) pairs of CDAG nodes corresponding
to types satisfying the insert or replace expression. Hence asymptotic complexity is not
affected by this operation.



116CHAPTER 5. IMPLEMENTING THE CHAIN-BASED INDEPENDENCE ANALYSIS

Further restrictions on the the expression would lower again upper bounds.

Corollary 5.4.4. Let d be a recursive DTD with n + 1 type definitions, and e a query
or update expression of size m. By using Algorithms 1-10 of Section 5.3, the followings
holds.

1. If e does not use step filter node() then chain inference can be done in O(mk2n4)
time;

2. If e does not use recursive downward an backward axis then chain inference can be
done in O(mkn3) time;

3. If e does not use both step filter node() and recursive axis then chain inference can
be done in O(mkn2) time;

4. If each navigational step of e returns a fixed number of chains, then chain inference
can be done in O(mkn3) time.

Proof. Analogous to the proof of Theorem 5.4.1.

As suggested by the statement complexity of chain inference can be lowered in many
cases of practical relevance. In particular, if we assume that during chain inference each
XPath step can have a fixed number of CDAG nodes as input, time complexity goes down
to O(mkn3). The size of the input is likely to be close to 1 for most XPath steps used
in practice. This holds in particular for XMark and XPathMark expressions. Another
fact observable from such expressions is that they employ a small number of recursive
navigations, thus further lowering the complexity.

Theorem 5.4.5. Checking independence between two CDAGs inferred for a query q

and an update u over a DTD d, can be done by Function 11 in O(km2n3) time, where
k = kq + ku and m =min{ ∣q∣, ∣u∣ }.
Proof. Function 11 iterates on the levels of the CDAGs. Each CDAG has at most nk

levels, and there are at most n2 edges between the two levels. Moreover, each edge is
labeled with at most m codes. Each code for an edge in the query CDAG may be paired
with each code for the same edge in the update CDAG, and this can be done in O(m2)
per edge. Putting everything together we have O(km2n3).
Conclusions

In this section we provided algorithms for efficiently implementing our independence
analysis based on schema chains. We showed that chain inference is challenging from the
computational point of view, because schema constraints can lead to infer an exponential
number of chains. To overcome this limitation, we proposed a conservative implementa-
tion of the chain analysis that runs in polynomial space and time. In the next chapter
experiments will show that the proposed CDAG algorithm is highly precise.



Chapter 6

Experiments

In this chapter we report on experiments made for validating the efficiency of the chain-
based independence analysis. We describe the benchmarks we used as well as results
obtained witnessing precision and efficiency of our technique.

6.1 Benchmarks and Experimental Settings

Our technique has been fully implemented in Java 6. We performed extensive experiments
by using our Java implementation, in order to measure i) efficiency, ii) precision and iii)
scalability of our static analysis. We used two different benchmarks: a first one based on
XMark /XPathMark, and a second one, dubbed R-benchmark, we specifically designed
to measure scalability, that are now described.

Independence benchmark We used a superset of the independence benchmark adopted
by Benedikt and Cheney in [BC09a]. Our benchmark is composed of a set of 36 queries
vi and a set of 31 updates ui. A query belongs to either the XMark query set q1–q20
[SWK+02], or to the XPathMark query set A1–A8/B1–B8 [Fra05]. Queries in the group
Ai of XPathMark only use downward axes, whereas Bi queries use upward and horizon-
tal axes as well. Concerning updates, a first set corresponds to those used in [BC09a].
These are derived from the XPathMark query set A1–A8/B1–B8 and are of the form
UAi=delete Ai or UBi=delete Bi.

It is worth observing that not all of the delete-updates preserve the schema, but as
already seen (Section 4) this is safe because if a chain does not belong to the schema
then it is not inferred for these updates. Instead, remaining updates are defined so as to
preserve the schema. We added a set of 15 updates formed by insert expressions UI1–
UI5, rename expressions UN1–UN5, and replace expressions UP1–UP5. These updates
have been defined so as to cover all different types of nodes in XMark documents, and in
particular those parts defined by mutually recursive types. It is worth remarking that,
even if not all of the delete-updates of the testbed preserve the schema (see UA4, UA5,
UA6, UA7, UA8, UB1, UB5, UB6, UB7, UB8 ), the correctness of our technique is still
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ensured, since no new chain is created by these expressions. As outlined before, our
technique is just unaware of new chains built by breaking schema constraints. In light of
this, insert, rename and replace update expressions have been chosen in order to preserve
document validity.

Before performing the tests, XMark and XPathMark expressions have been oppor-
tunely rewritten into expressions belonging to the XQuery fragment we consider (Section
3), as done in [BC10]. The rewriting essentially consists of: putting predicate conditions
in disjunctive form, removing attribute use, and extracting paths from functions calls and
arithmetic expressions. Clearly, the rewriting is such that a query and an update are in-
dependent if the rewritten query and update are. Updates extending XMark/XPathMark
benchmark are reported in Table 6.2.

This benchmark has been used in order to measure precision and efficiency of our
technique.

R-benchmark This benchmark is formed by schemas and expressions with a massive
use of recursion. The benchmark is constituted of five saturated-recursive schemas with
1,3,5,10 and 20 recursive types, denoted by d1,d3,d5,d10, and d20 respectively. In
general, schema dn is defined as

a0 ← (a1∣ . . . ∣an)∗
a1 ← (a1∣ . . . ∣an)∗
⋮

an ← (a1∣ . . . ∣an)∗
The benchmark also features a series of XPath expressions consisting on 1,5 and 10

consecutive descendant−or−self ∶∶ node() steps, denoted by e1,e5 and e10 respectively.
In general, expression en is defined as

descendant−or−self ∶∶ node()
1
/ . . . /descendant−or−self ∶∶ node()n

This benchmark is designed for understanding the impact of recursion in the perfor-
mances of our analysis, and draw conclusions on its scalability.

Configuration

We ran all tests on a desktop 4-core Intel Xeon 2.13 GHz machine with 8 GB RAM
(the JVM was given 2 GB) running Linux. To avoid perturbations coming from system
activity, we ran each experiment ten times, discarded the best and the worst performance,
and computed the average of the remaining times.



6.2. EXPERIMENTAL RESULTS 119

0

25

50

75

100

UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8

IN
D

E
P

E
N

D
E

N
C

IE
S

 D
E

T
E

C
T

E
D

 (
%

)

DELETE UPDATES

types										chains

0

25

50

75

100

UI1 UI2 UI3 UI4 UI5 UN1 UN2 UN3 UN4 UN5 UP1 UP2 UP3 UP4 UP5

IN
D

E
P

E
N

D
E

N
C

IE
S

 D
E

T
E

C
T

E
D

 (
%

)

INSERT																																		RENAME																																		REPLACE

Figure 6.1: Static Analysis Precision: Types vs Chains

6.2 Experimental Results

Precision on XMark

Independence (Definition 2.5.2) is undecidable in general [BC09a], so for the purpose
of measuring precision, for each update ui we manually determined independent pairs(ui,qj), and reported in Table 6.2 of the appendix. (note that for most pairs in the
considered testbed independence is evident, so this process is much less time consuming
than one may guess). We then express precision as the percentage of independent pairs
that are deemed independent by our static analysis too. To estimate improvements wrt
the alternative schema-based technique [BC09a] we computed the same percentages for
that technique by using the public tool [Che09].

Results are reported in Figure 6.2.b. Our chain-based analysis turned out to be
precise. Percentages goes from 72% to 100%, while the average precision is 96%. Also,
Figure 6.2.b shows that the analysis proposed in [BC09a] (that has an average detection of
49%) is always outperformed in terms of precision by our static analysis, and in some cases
improvements are huge. This happens in particular for updates UB1, UB5, UB6, UB8
(employing backward and horizontal axes). For these updates, the over-approximation
made by type rules in [BC09a] entails a high number of false negatives. Our chain
based inference instead is so precise to avoid most of these false-negatives. In general,
improvements in terms of precision go from 8% (UN4) to 96% (UP1), and the average
gain is 46%. In particular, precision of our analysis remains high in the presence of views
using upward and horizontal axes (XPathMark queries in the group B). These queries
are likely to be among the most expensive ones to re-evaluate after document updating.
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Figure 6.2: Static Analysis Time: Types vs Chains

As expected, we found that in some cases independence is not captured by our static
analysis. This happens for pairs that make use of particular node position, identity or
value conditions whose semantics is not precisely captured by our static analysis. Also,
our system is not able to understand that the renaming performed by UN4 does not
change any document tag, thus excluding independence in many cases (the same holds
for [BC09a]).

Inference time on XMark

We measured the time needed by the static analysis to detect independence of each update
wrt the whole set of XMark queries. The XMark schema is particularly suitable for
testing the performances of our technique since the type dependency graph of this schema
contains 5 mutually recursive types that form two cliques of size 2 and 3 respectively.
We recall that the execution cost depends on the three parameters ∣d∣, ∣e∣ and k. In this
testbed we have ∣d∣ = 76, and ∣e∣ ≤ 20, while multiplicity values k range from 2 to 6. As
observed in Section 5.4, in many cases chain inference can be substantially lowered.

Time values include the time for CDAGs inference and comparison, for each pair of
expressions. Results are collected in Figure 6.2. It shows that the analysis is quite fast:
in the worst case the analysis is performed in less than 40 ms for the whole set of queries,
while the average cost is around 15 ms. According to complexity results of Section 5.4,
inference time is influenced by i) the k values needed by a query-update pair and ii)
the number of recursive types of the schema effectively unfolded. We see small changes
in inference time values according to the k value (e.g., the pair UB1-UB2). Yet, two
expressions having the same k value may have different time costs for chain inference,
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depending on the effective number of recursive types unfolded by the analysis (e.g., the
pair UI3-UP3).

Running times obtained from the available OCaml implementation [Che09] of the
analysis presented in [BC09a] are rather close to ours: the average time for analyzing
an update vs all of the queries is around 10 ms. It is worth observing, that inference
time for [BC09a] has no sensible oscillations, while in our case inference time depends
on k, hence on the query and update expressions. The analysis presented in [BC09a]
has worst case time complexity O((∣d∣2+∣q∣)2+∣u∣), and thus is expected to be faster than
our analysis in the presence of recursive schemas. Nevertheless, as shown shortly, our
running times remain low enough to ensure high time savings in queries maintenance,
even when queries are defined on relatively small documents.

Benefits of the Independence Analysis

Besides experimenting on our prototype, we verified that the precision and the efficiency
of our method directly translate in time-savings when our static analysis is used to
optimize view maintenance. Along the line of [BC09a], we simulated a view-maintenance
scenario, where views are expressed as query, and on updates views are simply refreshed.
We measured time savings obtained by avoiding the refreshing of views (queries) which
our analysis deem as independent of an update.

We used three XQuery engines: Saxon 9.2EE, BaseX 7.0.1 and QizX 4.4 1. This, in
order to make a faithful comparison of the three systems. We considered a 1MB XMark
document and we scaled to 10MB and 100MB, in order to measure time savings in larger
XML corpora. Our test results only take into account query answering time, dried of
import time and indexing time. This, in order to make a faithful comparison of the
three systems. Saxon is a main-memory engine, that uses data summaries for rapidly
access data. Differently, BaseX and QizX are persistent system that exploit indexing.
We settled the common full-text indexes for the latter engines. Document were updated
off-line, in order to ensure query answering independent from update executions. For
this experiment only, the JVM was given 4GB of RAM, in order to minimize memory
swapping.

Results are reported in Figure 6.2.c. Refreshing time has been measured without
import and indexing time (a full-text index has been settled for both BaseX and QizX),
that we assume asymptotically constants since done only once, and updating and index-
maintenance times, that is orthogonal to our goals. As in [BC09a], for each update
ui we measured the time ri needed for refreshing all the 36 queries after the update,
and the time r

type
i and rchain

i needed to refresh only queries that are not deemed as
independent by the static analysis of [BC09a] and by ours, respectively. In Figure 6.2.c,
for each of the three used engines we report the averages of all refreshing times ri, r

type
i

1www.saxproject.org, www.basex.org, www.xmlmind.com
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Figure 6.3: View Refreshing: Types vs Chains

rchain
i . As a consequence of time efficiency and precision of our static analysis, even for a

relatively small document of 1MB, our independence analysis ensures high time savings
for all engines: 82% for Saxon, 75% for BaseX and 85% for QizX. While type based
analysis [BC09a] ensures much lower time savings: 36% for Saxon, 31% for BaseX and
37% for QizX. These percentages are essentially the same as those obtained for 10MB
and 100MB documents, both for our technique and for that of [BC09a]. This is because
in the considered benchmark, queries that are not statically deemed as independent of
an update, and hence refreshed, are the most expensive ones to refresh.
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Figure 6.4: Chain Inference Time on R-benchmark

Scalability on R-benchmark

We ran experiments on the R-benchmark by ranging over each saturated recursive schema
dn (n ranging over {1,3,5,10,20}), and each expression em (m ranging over {1,5, 10}).
Also, for each run we varied the multiplicity values, by considering kem, kem + 5 and
kem + 10.

Results are now described. The schema d5 is quite complex, it contains 5 mutually
recursive types. We can see from Figure 6.2 that even with such complex form of re-
cursion, for e5, and for each k ∈ {5,10,15}, chain inference is still fast (inference time is
around a decimal of a second). For schema d10, featuring an extremely complex form of
recursion, inference time is around five seconds for e5, while for e10 the time exceeds ten
seconds. The same happens for more complex cases. These test results show that even
for forms of recursions that are unlikely to occur in practice (like the d5-e5 case), chain
inference is still fast, while it takes more than one second for extremely complex cases.

We see that augmenting k does not substantially raise the inference time for an
expression. This explained by the fact that a larger k value just enlarges the space of
returned chains, without resulting in more context switches (where chains for step i are
passed as input of chains for step i+1) that dominate the cost of inference. We see that for
d10 and d20, computing chains for e5 is expensive, while for smaller queries the analysis
can be afforded on such schemas. In such a case, even if unlikely to occur in practice, our
analysis can still ensure substantial time savings in view maintenance and thus it may
be worth running the analysis.

In this chapter we presented a set of experiments validating the precision and the
efficiency of our independence analysis. On the XMark benchmark, our method resulted
to have double precision as the related approach based on types and comparable inference
time, thus validating the interest of using our analysis based on chains. Despite the fact
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that our method runs in polynomial space and time, the non-linear complexity required
us to perform a worst-case analysis, so as to outline when a massive use of recursion may
slow down inference time. This confirmed the analysis is fast for a large class of schemas
we find in practice.
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A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8
1 2 2 1 2 2 1 1 2 3 2 2 3 3 2 3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
1 1 2 1 2 3 3 1 2 1 1 1 1 2 2 2 1 1 2 1

Table 6.1: k values for XMark/XPathMark query and update expressions

UI1 for x in //person/people[not(homepage)] return
k = 3 insert <homepage>{“www.myhome.com”}</homepage> into x Insert a default node for unfilled homepages.
UI2 let i :=//item[1] return
k = 3 for x in //regions return

if(empty(x/item)) then insert i into x else () Insert the first document item into empty regions.
UI3 insert site/closed_auctions/closed_auction[1]
k = 2 into /site/closed_auctions Duplicate the first closed auction.
UI4 for x in //watches//watch return
k = 3 insert <watch open_auction={"open_auction5"}/> after x Insert a node for each watch element.
UI5 insert "first_text_element" as first into //text[1] Mark the first text element with a statement.
k=1
UN1 for x in //item/description/text/keyword return
k = 2 rename x with bold Rename some keywords elements as bold.
UN2 for x in //bold return
k = 2 rename x with emph Rename all bold elements as emph.
UN3 for x in //profile return
k = 2 rename x/education with interest Rename all education elements as interest.
UN4 for x in //item[payment] return
k = 2 rename x with item Rename some item elements as item.
UN5 for x in //person[not(address) and phone] return
k = 3 rename x/phone with address Rename some phone element as address.
UP1 replace //open_auctions/open_auction[@id=“open_auction0”]
k = 2 with () Replace an open auction with empty.
UP2 for x in //open_auction[@id=“open_auction0”] return
k = 3 replace x/bidder/personref[@id=“person1”]

with <personref id={"person89"}/> Replace a bidder in an open auction.
UP3 for x in //emph return
k = 2 let y:= x/text() return Replace all emph elements with bold ones,

replace x with <bold>{y}</bold> yet preserving content.
UP4 for x in //text[count(//keyword=“fornitures”)=0] return
k = 3 replace x with <text>{"element_removed"}</text> Replace some text elements removing their content.
UP5 replace () with //keyword//bold Replace nothing.
k = 2

Table 6.2: insert, rename and replace update expressions extending benchmark of [BC09a]
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A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Types[BC09a] Chains TOT Types[BC09a] (%) Chains (%)

UA1 D D D D D I I I I I I I I I I I I I I 17 30 31 55 97
UA2 D D D D D D I I I I I I I N N I 20 27 30 67 90
UA3 D D D D D D I I I I I I I N N I 20 27 30 67 90
UA4 I I I D D I I I I I I I I I I I I I I I I I I I I I I I 8 34 34 24 100
UA5 I I I D D I I I I I I I I I I I I I I I I I I I I I I I 8 34 34 24 100
UA6 I I I D D D I I I I N D I I I D D D D I I I I D I N 11 25 27 41 93
UA7 I I I D D D I I I I N D I I I D D D D I I I I D I N 11 25 27 41 93
UA8 I I I D D D I I I I N D I I I D D D D I I I I D I N 11 25 27 41 93
UB1 I I I I I I D I D D I I I I I I I I I I D I I D I 11 31 31 35 100
UB2 I D D I N N I I I I I I D I I I I 20 31 33 61 94
UB3 I I I I D D I I D I D D D I I I I I I I I I 15 30 30 50 100
UB4 I I I I D D I I D I D D D I I I I I I I I I 15 30 30 50 100
UB5 I I I I I I D I D D I I I I I N I I I I D I I D I 11 30 31 35 97
UB6 I I I I I I D I D D I I I I I N I I I I D I I D I 11 30 31 35 97
UB7 I I I D D D I I I I N D I I I D D D D I I I I D I N 11 25 27 41 93
UB8 I I I I I I I I D I I I I I I I I I I I I 15 35 35 43 100
UI1 I I I I D D I I I I I I I I D I I I I D D 15 31 31 48 100
UI2 I D D D D I I D D I N D D I D 23 26 27 85 96
UI3 D D D D D I I I I D I I I I I I I I I I D I D D D I I I I I D D I I I I 0 24 24 0 100
UI4 I I I I I I I I I I I I I I I I I I I I N 15 35 36 42 97
UI5 I I I I I I I I I I I I D I I I I 20 35 35 57 100
UN1 N N N I I I I I I I I I D I I I I 20 32 35 57 91
UN2 D D D I D N I I I I I I I D D I 20 28 30 67 93
UN3 I I I I I I I I I I D I N I I N 20 33 35 57 94
UN4 I N N N N I I N I N N I N 23 26 36 64 72
UN5 I I I I D D I I I I I I I I D I I I I I N 15 32 33 45 97
UP1 I I I I I I I I I N D D I I I D I D D D I I D I I I D D I I I I I D I I 0 25 26 0 96
UP2 I I D D I I I I I I D I I I I I I I 19 33 33 58 100
UP3 D D D I D N I I I I I I D I D D I 20 28 29 69 97
UP4 D D D D D I D I I I I I I I I D I D D I 17 27 27 63 100
UP5 36 36 36 100 100

49% 96%

Table 6.3: Query-Update independent pairs detected. D=dynamic dependence; I=independence detected by chains but not
by types; N=independence undetected by both approaches; White space = independence detected by both approaches



Chapter 7

Extensions

In this chapter we illustrate how our chain-based type system can be extended in order to
deal with features not considered in the previous formal development. We will first focus
on additional features concerning queries and updates, and then on those concerning
schema mechanisms.

7.1 Queries and Updates

The XQuery fragment we have considered, is the same as the one considered in the
related approaches [BC09a, BC10], and leaves out several query mechanisms. These can
be handled by extending our framework by either by means of query rewriting or by
defining new inference rules.

7.1.1 Query rewriting

Query rewriting can be adopted to rewrite a query-update pair q-u into a pair q′-u′

belonging to the language we presented in Section 2.3, and such that static independence
holds for q-u if it holds for q′-u′. Thus, here query rewriting is used wrt independence,
not wrt to equivalence of XQuery expressions.

As already mentioned, rewriting has already been used in related approaches [BC09a,
BCCN06] as well as in our tests for dealing with XMark queries in performed tests. For
instance, XMark query q14

let $auction ∶= doc(”auction.xml”) return

for $i in $auction/site//item
where

contains(string(exactly−one($i/description)),”gold”)
return $i/name/text()

127
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is rewritten into

let $auction ∶= doc(”auction.xml”) return

for $i in $auction/site//item
if ($i/description/descendant−or−self ∶∶ node())
then $i/name/text()
else ()

The rewriting replaces the where clause with an if − then − else clause; function
calls are discarded and only the used paths are retained; note the adding of the step
descendant−or−self ∶∶ node() in order to capture the fact that discarded function calls
needs descendants of nodes selected by the path $i/description. Recall that symbol $ is
used to denote a variable in XQuery.

Query rewriting is an obvious solution to deal with conditional queries of the form

if (q) then q1 else q2

If we do not consider negation, the condition q is rewritten into a query q′, by replacing
in q each operator θ ∈ {and,or,=,<=} with the query concatenation operator “,”. For
instance, let x and y be two variables, predicate

q = (x/a and x/b) or x/c/text()=y/f /text()
is rewritten into q′ = (x/a, x/b, x/c/text(), y/f /text() ). It is easy to see that if an
update does not impact q′ then it does not impact q.

Negation requires to take into account that an update modifying a node which is
neither used nor returned by q can impact not(q). For instance, assume variable x

bound to a node having a and b children only, then an update deleting all a children
impacts not(x/b).

Negation is taken into account by rewriting not(q) into q′ by simply replacing each
node-test in q with the node-test node(). This rewriting ensures a sound analysis with
a loss of precision in some cases. For the previous example, not(x/b) is rewritten into
x/node(), enabling the chain analysis to exclude independence with the aforementioned
deletion.

The above described rewriting is essentially the same used in [BCCN06] in the con-
text of type-based projection for query optimization. According to the above illustrated
rewriting, a projection for q′ is indeed a sound projection for q as well.

7.1.2 New Inference Rules

Query mechanisms left out can be handled by introducing new rules for inferring chains
and by determining the k multiplicity value. For instance we can add new rules to handle
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where and order − by clauses and builtin functions. These new rules are quite similar to
the existing ones, and presented in Table 7.1 whereas rules for inferring the multiplicity
k value are presented in Table 7.2.

For the where clause the extension consists of adding two new rules for for and let

expressions containing a where clause. For the order − by clause a similar reasoning
applies. For conciseness, we restrict to descending ordering (the parameter does not
affect the analysis), and assume where always co-occurs with order− by.

Concerning types switch expressions like

typeswitch(q)
case T1 return q1

⋮
case Tn−1 return qn−1

default return qn

a sound and precise analysis can be ensured without involving types Ti in the analy-
sis. The chain inference for these expressions is similar to the chain inference for if
expressions.

During chain inference for each query qi, the type Ti could be taken into account to
improve precision, by filtering out those chains inferred from q that can not be generated
by any of the Ti’s in the spirit of the precise type analysis provided in [BCF03] for
pattern-matching in the CDuce language.

For functions call f(q1, . . . ,qn) new rules needs to take into account the nature of
the function itself, and more specifically the way input parameters are used. Table 7.1
collects rules for several XQuery built-in functions used in the XMark query set that
show how to deal with possible different cases.

For instance, the rule for count(q) is simple: it states that used chains of count(q)
are those of q plus the return chains of q, and also that count(q) has no return chains.
The return-to-used conversion is illustrated by the following example. Consider the query
count(x//employee), for the argument x//employee we infer return chains pointing to
employee elements selected by x//employee.

Since counting these nodes does not depend on their descendants (e.g., employee has
salary element as child), for a precise-analysis the return-to-used conversion is needed.
Concerning element chains eventually inferred from the input q, these do not have to be
considered as chains for count(q). Recall that element chains are inferred for return

clauses of queries inside updates, so that precise chain inference for insert/replace updates
can be done.

For the function string (that converts a value or a node to a string) the rule is
simpler: used and return chains of string(q) are those of q. In this case the conversion is
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not needed due to the semantics of the string function: the descendants of return nodes
of q are needed to compute the function output. Aggregation functions sum,min,max and
avg, as well as conversion functions such as data and number are treated in the same
way as string. Finally, contains function is defined similarly too, by collecting used
and return chains of the queries passed as parameters.

For user-defined functions calls the rewriting method can be used as follows. Assum-
ing that the definition of the function f is non recursive and given by

(x1, . . . ,xn) = q
the function call f(q1, . . . ,qn) is rewritten into

let x1 ∶= q1

⋮
let xn ∶= qn

return q

for chain inference and independence analysis (of course the rewriting is recursively done
inside q eventually). Dealing with recursive functions raises problems wrt to determining
the multiplicity value k, and is out of the scope of this work.

Concerning transform expressions of the form

copy x ∶= q1

modify u1

return q2

we have to notice that they do not change the input document, but rather a copy of some
of its fragments.

In order for a transform query to be independent of an update u, we need that q1,
q2 and the ’query component’ of u1 (the part of u1 that queries the schema instance) be
independent of u. So chain inference for transform queries can be specified by relying
on the existing chain inference for q1 and q2, while for inferring chains from u1 some
modifications on update chain inference need to be done so that chains coming from the
query component of u be taken into account. We leave this extension as future work.
Note that the same kind of extension is needed for the related approach [BC09a].

Concerning the inference of the k multiplicity value for added constructs this is done
along the lines of definitions for the core considered in Section 2.3. The extended defini-
tion is reported in Table 7.2.
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Γ ⊢C q1 ∶ (r1, v1, e1)
Γ[x↦ c] ⊢C q

w ∶ (rwc , vwc , ewc )
Γ[x ↦ c] ⊢C q

o ∶ (roc , voc , eoc)
Γ[x ↦ c] ⊢C q2 ∶ (rc, vc, ec) for any c∈r1

Γ ⊢C

for x in q1

where qw

order−by qo

return q2

∶ (⋃
c∈r1

rc, v1 ∪⋃
c∈r1

λ∈{w,o}

(rλc ∪ vλc ) ∪ ⋃
c∈r1

rc∪ec ≠ ∅

(vc ∪{c}), ⋃
c∈r1

ec)
(ForWhereOb)

Γ ⊢C q1 ∶ (r1, v1, e1)
Γ[x↦ r1] ⊢C q

w ∶ (rw, vw, ew)
Γ[x ↦ r1] ⊢C q

o ∶ (ro, vo, eo)
Γ[x ↦ r1] ⊢C q2 ∶ (r, v, e)

Γ ⊢C

let x ∶= q1
where qw

order−by qo

return q2

∶ (r, r1 ∪ ⋃
λ∈{w,o}

(rλ ∪ vλ) ∪ v2, e2)
(LetWhereOb)

Γ ⊢C q ∶ (r0, v0, e0)
Γ[x ↦ r] ⊢C qi ∶ (ri, vi, ei) for any i∈{1, . . . , n}

Γ ⊢C

typeswitch q

case T1 return q1

∶
case Tn−1 return qn−1

default return qn

∶ ( ⋃
i∈{0...n}

ri, ⋃
i∈{0...n}

vi, ⋃
i∈{1...n}

ei)

(TypeSwitch)

Γ ⊢C q ∶ (r, v, e)
Γ ⊢C count(q) ∶ (∅, r ∪ v,∅) (Count)

Γ ⊢C q ∶ (r, v, e)
Γ ⊢C string(q) ∶ (r, v,∅) (String)

Γ ⊢C qi ∶ (ri, vi, ei) for i = 1,2

Γ ⊢C contains(q1, q2) ∶ (r1 ∪ r2, v1 ∪ v2,∅) (Contains)

Table 7.1: Chain Inference Rules for Extensions
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f = F(a,q1) +max{F(a,q2),F(a,qw),F(a,qo) }
F(a,for/let x q1 where q

w order−by qo return q2) = f (F-order-by)

f = F(a,q) +max{F(a,qi)}
F(a,typeswitch q case Ti return qi default return qn) = f (F-TypeSwitch)

f =max{ F(a,q1),F(a,q2) }
F(a,contains(q1,q2)) = f (F-contains)

f = F(a,q)
F(a,string(q)) = f (F-string)

f = F(a,q)
F(a,count(q)) = f (F-count)

r =R(q1) +max{R(q2),R(qw),R(qo) }
R(for/let x q1 where q

w order−by qo return q2) = r (R-order-by)

r =R(q) +max{R(qi)}
R(typeswitch q case Ti return qi default return qn) = r (R-TyeSwitch)

r =max{R(q1),R(q2) }
R(contains(q1,q2)) = r (R-contains)

r =R(q)
R(string(q)) = r (R-string)

r =R(q)
R(counts(q)) = r (R-count)

Table 7.2: F(, ) and R() definition for Extensions
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7.2 Schemas

7.2.1 Attributes

As most of the studies on XQuery type systems [BCCN06, BC09a], we have excluded at-
tribute types in our presentation, mainly because these does not introduce any particular
issue. In any case, our implementation and our tests take attribute types into account.

To handle attribute types, the implementation considers chains possibly having a
final label of the form @α. A chain c.@α is generated by a schema if an element pointed
by c in a schema instance may have an attribute labeled as α (w.l.o.g, we assume the
symbol @ not used in element tags defined by the schema). To infer such chains, the
following new rule handling the attribute axis has been implemented:

AC(c,attribute)
def
= { c.@α ∣ c.@α ∈ C }

Chain based independence is straightforwardly extended to handle the attribute ex-
tension. Furthermore, the inference of the k multiplicity value is not impacted by at-
tribute types, as they cannot occur more than once in a chain.

7.2.2 Keys and foreign-keys integrity constraints

Concerning ID/IDREF constraints in DTDs, and key/keyref constraints in XSDs (stud-
ied in [AFL02]), we assume they are preserved by updates, as we assume that validity is
preserved (Section 2.4). So, in order to ensure precise and sound independence analysis,
chain inference does not need to consider these constraints. Our notion of static inde-
pendence only concerns the type component of the schema, while these constraints pose
restrictions on the values of attributes and elements in a document, and do not impact
its structure.

To better illustrate, consider the following XMark q8 [SWK+02] query

let $auction ∶= doc(”auction.xml”)
for $p in $auction/site/people/person
let $a ∶=
for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t
return < item person = ”$p/name/text()” > count($a) < /item >

Here ID/IDREF attributes are used, and selected by the following path expressions.

p1 = doc(”auction.xml”)/site/people/person/@id

p2 = doc(”auction.xml”)/site/site/closed_auctions/
closed_auction/buyer/@person
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Hence our chain inference system generates chains

site.people.person.@id

site.site.closed_auctions.closed_auction.buyer.@person

If an update u changes either an id or person attributes, then are generated update
chains like

site.people.person ∶ @id

site.site.closed_auctions.closed_auction.buyer ∶ @person

These chains conflict with query chains, hence static independence is excluded.

Keyref constraints in XML Schema XML Schema provides powerful mechanisms
to define keys and references formed by multiple attribute/element nodes. To this end,
a fragment of XPath including downward axes and no predicates is used to specify the
position and structure of keys and references. The example below is borrowed from the
W3C specification [TBMM04].

< xs ∶ key name = “regKey” >
<! − −vehicles are keyed by a pair of state and plate− − >
< xs ∶ selector xpath = “ .//vehicle”/ >
< xs ∶ field xpath = “@state”/ >
< xs ∶ field xpath = “@plateNumber ”/ >
< /xs ∶ key >
< xs ∶ keyref name = “carRef” refer = “regKey” >
<! − − people“s cars are a reference− − >
< xs ∶ selector xpath = “ .//car ”/ >
< xs ∶ field xpath = “@regState”/ >
< xs ∶ field xpath = “@regPlate”/ >
< /xs ∶ keyref >

Both declarations are made inside the definition of a root element (whose definition
can be found in [TBMM04]). So the two selectors .//vehicle and .//car navigates starting
from a root element, and respectively select the parents of the key regKey and foreign
key carRef . Both key and foreign keys consist of a pair of attributes selected by relative
path expressions in the xs ∶ field elements. Field paths navigate starting from nodes
selected by respective selectors. An important distinction wrt DTDs is that a field path
may also select subelements of elements selected by the selector.

It is worth observing that the specification of key and keyref constraints and the
specification of the type of the documents are different in nature. The purpose of key and
keyref is to constraint the values of the elements of documents valid wrt a schema and have
no impact on their structure. These constraints are defined using paths navigating valid
documents. As a consequence, as for DTDs, key and keyref constraints can be totally
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ignored by the static analysis in order to ensure a sound and precise static detection of
independence.

One of the nice features of our static analysis is that it can be directly extended so
as to capture Extended DTDs, and thus it is suitable also for XML Schema and a core
of RelaxNG type languages.

7.2.3 Extended DTDs

As outlined in Chapter 1, EDTDs differ from DTDs mainly because they allow to write
several type definitions for the same element. In order to perform our chain analysis, we
have to reflect this aspect while doing chain inference.

Recall that in an EDTD [PV00] we have a “type alphabet” Σ′ = {ai∣a ∈ Σ} and a
mapping to a “tag alphabet” µ such that µ(ai) = a for all ai ∈ Σ′. This captures the fact
that two types differently indexed produce the same label but possibly different content
models.

That said, it is sufficient to change the definition of reachability Definition 4.1.2, and
of some step chain inference rules. Both changes are straightforward. Reachability should
be redefined so as chains contain indexed symbols ai instead of a, referring to different
definitions of the same element tags.

Then, chain inference rule for step filtering has to be modified in order to deal with
indexed symbols, as follows.

TC( c.ai,b ) = { c.ai ∣ µ(ai) = b}
Note that inference rules for axis chain inference remains unchanged.

Once chains have been inferred for a query and an update, to check query-update
independence we use a slight variation of Definition 4.4.1, where we look for overlapping
chains up to indexes i in chains symbols ai’s.

Notice that precision of the inference as well as complexity results remain unchanged
for the EDTD case, since this can be simply seen as a schema with more definitions. Also
<r definition can be easily adapter for dealing with interleaving operator of Relax NG.

For EDTDs, the CDAG compression needs to be a bit more careful. In Figure 7.2.3 we
write an EDTD d10, featuring two definitions of element name, that are used in different
contexts. Consider CDAG storing chains of d10 made by considering only the tag-name
of types, depicted in (a). This way of representing chains would include some artifacts
(chains that do not belong to the schema), such as the following ones.

book.author.name.String book.publisher.name.first.String book.publisher.name.last.String



136 CHAPTER 7. EXTENSIONS

book← author,publisher

author ← name1

publisher ← name2

name1 ← first, last

name2 ← String

first, last← String

book

author publisher

name

first last String

String

(a)

book

author publisher

name1 name2

first last String

String

(b)

Figure 7.1: Example of CDAGs for EDTD

However, this situation can be simply avoided by considering that type name1 and name2
come from different definitions. The result is depicted in (b). We stress that types name1
and name2 are considered as different when we store chains, but as the same type name

when we do independence detection. Notice that the CDAG inferred from an EDTD is
again polynomial in the size of the EDTD.

Conclusions

In this chapter we discussed some extension of our static analysis based on schema chains.
We would like to stress that dealing with extensions is easy because our chain inference
and independence analysis are based on the notions of used, return and element nodes
(Chapter 4). These are universal and essential notions, in the sense that each processed
node of whatever kind of query one wants to add to the framework falls in one of these
three categories. Thus, generalizing our framework for a new query construct mainly
consists of identifying how used, return and element nodes are determined. This simply
requires the understanding of the semantics of query constructs. In the next chapter we
draw the conclusions of our work and we outline possible future perspectives.



Chapter 8

Conclusions and Future Perspectives

In this thesis we have tackled the problem of statically detecting query-update inde-
pendence in the context of typed XML databases. After having outlined the important
issues raised by this problem in the context of XML data management, we provided an
exhaustive overview of related existing techniques, by including both typed an untyped
approaches. As discussed, existing techniques still suffer of several limitations.

To overcome these limitations, in this thesis we made the following contributions:

• We presented a type system able to statically detect XML query-update inde-
pendence. One of the main features of the type system is the chain inference
component, allowing to infer information at the basis of an highly precise analysis.

• We proposed a method to restrict the analysis to a finite set of chains in the presence
of recursive schemas.

• We proposed techniques for a sound and efficient implementation of the above
mentioned finite analysis.

• We conducted extensive experiments in order to validate precision and efficiency of
our static analysis. As shown by test results, our technique succeeded from both
aspects.

We also illustrated how the static analysis can be extended in order to deal with
several features not considered in the core query and update languages, in order to show
that the analysis is amenable to be adopted in most of the XQuery query and update
languages, by preserving precision and efficiency.
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8.1 Future Perspectives

We discuss here some future directions that we believe are worth being investigated.

α-types

One of the main goals of this thesis is to show that schema information can be an ex-
tremely powerful tool for optimizing XML queries and updates. We presented a type
system for inferring static projections of queries and updates (Theorems 4.3.4 and 4.3.6),
used for the purpose of checking independence, that takes deeply into account infor-
mations concerning the hierarchical structure of data. We believe that a schema-based
analysis, that is precise, cannot abstract away from such structural constraints. At the
same time, when designing a method, there is a quest for tractability and efficiency of
static analysis. Our method can run in polynomial time by introducing some approxima-
tions and has been proved fast by experiments. However particular applications may be
interested in further lowering the computational time needed by the analysis. As shown
in Chapters 3 and 6, one way to do this is to simplify the system and infer simple types
[BC09a] rather than chains of types. To mitigate the lack of precision that this approach
comports, it would be interesting to study inference for a parametric notion of type,
called α-type. An α-type is a chain (not necessarily rooted) whose length is given by α

(a positive natural value) and whose first α−1 type labels determine the context of the
type indicated by the αth symbol, typing a set of nodes accessed by the query or update.
The parameter α determines the amount of contextual information used to disambiguate
types during the inference, and it can be opportunely tuned so as to vary the precision
of the independence analysis wrt the computational resources that are available, because
also the cost of the inference would result to be mainly determined by α. Note that with
such an approach we would have that α = 1 would enable to capture the type system in
[BC09a], while unbounded α would enable to capture the infinite analysis here proposed.
One of the main interesting aspects of this research consists of finding methods for com-
puting optimal α values, by taking into account queries, updates, schemas, and required
constraints about execution time.

Probabilistic Independence Analysis

The decision procedure that we developed to check static independence gives a binary
answer yes/no. However, because our method performs a conservative analysis, a query
and an update may still be independent over a schema instance, even if this has been
excluded by the static analysis. This may happen for instance, because a conflict is de-
tected on an optional element tag that occurs quite rarely in practice. This said, it seems
interesting to refine our method so as to take into account schemas with probabilities.
Probabilistic schemas are useful in many contexts. As discussed in [AAD+12], they can
be used for instance to describe the distribution of the data, telling how many element
nodes of a certain type are found in the database. By assigning to each chain an uncer-
tainty value one could also estimate the probability that a conflict happened. This for
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instance can be used to design more sophisticated view-maintenance algorithms that do
maintenance only when the estimated probability of conflict is higher than a treshold.

Schema-less Analysis

Designed for the Web, XML documents do not always come with a schema. Besides
relying on schema inference techniques such as the one proposed by Bex et al. [BNSV10],
this case can be handled by performing chain inference starting from a data summary
(e.g., DataGuide) in place of a schema. A DataGuide essentially is a superset of the
chains belonging to the data, and can be efficiently inferred [GW97]. Our system rules
can be easily adapted because of the chain based nature of a DataGuide.

Independence Analysis for the Semantic Web

Query-update independence for Semantic Web databases is an open problem. Semantic
web databases are graphs written in RDF. Despite designed for tree-shaped data, we
believe that our method can be applied also for RDF graphs by making an analysis
of accessed classes of data, provided that an ontology or a data summary is available.
Also, our method could be applied for n-SPARQL, the navigational language for RDF
[PAG10].
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Chapter 9

Proofs

In this chapter we prove the statements concerning the correctness of our chain analysis.
The whole proof is organized in two main parts. In the first part we prove that the
chain-based independence analysis is sound, in the case where a possibly infinite set of
chains is inferred for an expression over a schema. In the second part we prove that
the finite restriction to the subset of k-chains yields an analysis that is equivalent to the
infinite one.

Proving that the possibly infinite chain analysis is sound mainly consists of showing
that the sets of return, used, element and update chains inferred for an expression cor-
rectly abstract the data that is accessed/updated during the evaluation of the expression,
over a valid schema instance. As a corollary of this we conclude the correctness of our
notion of chain-based independence.

Proving that the finite restriction to the subset of k-chains yields an analysis that is
equivalent to the infinite one. Consists of two main tasks. We first show that all chains
can be reduced to k-chains. Then we show that any pair of conflicting chains can be
reduced to a pair of conflicting k-chains. These proofs are developed by first introducing
linear-path queries (see Section 9.2).

9.1 Soundness of Chain Inference in the Possibly Infinite

Case

In this section we prove that our analysis makes a sound abstraction of accessed/updated
data in the possibly infinite case. Because updates are defined in terms of queries, and
queries in turn are defined by using navigational capabilities, the proof is structured
as follows. We first prove correctness for XPath navigational steps. We then prove
correctness for XQuery expressions. We finally prove correctness for XQuery Update
expressions. Furthermore, we show that for XPath navigational steps chain inference is
also complete.
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9.1.1 Soundness and Completeness of Schema Type Relations

Correctness (and also completeness) of chain inference for XPath navigational steps relies
on the correctness of the auxiliary relations defined to capture with types the parent-child
and sibling relations among documents nodes, namely ⇒d and <r .

We show that ⇒d and <r are both sound and complete. Soundness means that for
any pair of parent-child (respectively sibling) locations belonging to a valid tree, there
exists a correspondent pair of types in ⇒d (respectively in <r ). Completeness means
that these relations are also minimal, thus removing one pair from ⇒d or <r we beak
soundness.

Lemma 4.1.3 (Soundness of ⇒d) Let d be a DTD and t = (σ, lt) ∈ d a valid tree. If(l, l′) ∈ Child t then type(l)⇒d type(l′).
Proof. Since t ∈ d, by definition of validity (Section 2.2) it follows that type(l2) ∈
d(type(l1)) and thus type(l1)⇒d type(l2).
Lemma 4.2.2 (Soundness of <r ) Let d be a DTD and t = (σ, lt) ∈ d a valid tree. If(l, l′) ∈ FollowingSibling t and ctl = c.a then type(l)<d(c) type(l′).
Proof. If (l1, l2) ∈ FollowingSibling t and (l, l1) ∈ Child t and r = d(ctl) then, by definition
of validity, there exists a word w ∈ Lang(r) where type(l1) occurs before type(l2). We
show that this in turn implies that type(l1)<r type(l2). By cases on r.

Base.

(Cases r = ǫ and r = a) Trivial since such w cannot exist.

Induction.

(Case r = r1,r2) Because Lang(r1, r2) = Lang(r1)∪Lang(r2)∪ Lang(r1)×Lang(r2) then ei-
ther w ∈ Lang(r1)∪Lang(r2) or w ∈ Lang(r1)×Lang(r2). In the first case, we conclude
by induction on r1, r2. In the second case, we conclude since (type(l1), type(l2)) ∈
Sym(r1) × Sym(r2) ⊆ <r .

(Case r = r1∣r2) In this case we have that Lang(r) = Lang(r1)∪Lang(r2). Hence at least one
of type(l1)<r1 type(l2) and type(l1)<r2 type(l2) hold, and we conclude by induction.

(Cases r = r+ and r = r∗ and r = r?) Immediate since <r+
1
=<r1,r1 and r∗=r+∣ǫ and r?=r∣ǫ.
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Let L = (l1, . . . , ln) be a sequence of location, in the following, with a little abuse of
notation, we write type(L) for denoting the word type(l1), . . . , type(ln).
Lemma 4.1.4 (Completeness of ⇒d) For all DTD d, if a⇒d b then there exists a valid
tree t = (σ, lt) ∈ d, and a pair of locations (l, l′) ∈ Child t, such that type(l) = a and
type(l′) = b.
Proof. i) Recall that the DTD d does not contain any type definition which is non-
terminating or unreachable from the root. If a⇒d b then there exists a chain c ∈ Cd of
the form

a1 . . . a(n−1) .an

where a1 = sd, an−1 = a, and an = b. In order to conclude the thesis, we want to show that
there exists a valid tree t ∈ d and a pair of locations (l1, l2) ∈ Child t such that

ctl2 = a1 . . . an

Such t can be built with the following recursive procedure.

Start with i = 1.

1. (Generate an element of the desired chain)

Let l be a location such that type(l) = ai. Attach to l a finite sequence of locations
L such that the following hold.

• type(L) ∈ Lang(d(ai));
• type(l′) = a(i+1) for some l′ ∈ L;

2. (Recursively generate the desired chain)

For all l′ ∈ L such that type(l′) = a(i+1) do the following. If i < n then increment i

by 1 and apply recursively step 1 on l′. Else, the desired chain of nodes is obtained.
Go to the next step.

3. (Complete the tree so as to make it valid)

For all l′ ∈ dom(t), such that Child t(l′) = ∅ and that ǫ ∉ Lang(type(l′)) do the
following. Attach to l′ a finite and valid sequence of locations L′ such that let
r′ = d(type(l′))

• r′′ is the regular expression obtained by replacing each ∗-guarded or optional
subterm of r′ with ǫ (e.g. a?∣b+,a∗ becomes ǫ∣b+);

• type(L′) ∈ Lang(r′′)
Repeat this step until obtaining a valid tree.

This procedure always terminates producing a finite tree since the all definitions in d

terminates. Furthermore, this tree contains a pair of locations (l1, l2) ∈ Child t such that
ctl2 = a1 . . . an, where of course type(l1) = a and type(l2) = b.
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Lemma 4.2.3 (Completeness of <r ) For all DTD d, If a<d(c) b then there exists a valid
tree t = (σ, lt) ∈ d, and a pair of locations (l, l′) ∈ FollowingSibling t, such that type(l) = a
and type(l′) = b, with ctl = c.a and ctl′ = c.b.

Proof. By Lemma 4.1.4 we know that we can build a tree instance with a location l′′

typed by a chain c ∈ Cd. If a<d(c) b we claim that we can build a sequence of locations
l1, . . . , ln such that the word type(l1), . . . , type(ln) belongs to the language of d(c), and
for some locations li and lj with 1 ≤ i < j ≤ n we have that type(li) = a and type(lj) = b.
We show this by induction on the structure of r = d(c).
Base.

(Cases r=ǫ and d(c)=a) Trivial since they do not satisfy the hypothesis.

Induction.

(Case r = r1,r2) If it holds that a<r1 b∪a<r2 b then we conclude by induction. Otherwise,
because a<d(c) b we have that a ∈ Sym(r1) and b ∈ Sym(r2). Therefore there exist
two words w1 ∈ Lang(r1) and w2 ∈ Lang(r2) such that a ∈ w1 and b ∈ w2. At this
point take a sequence of locations L such that type(L) = w1w2.

(Case r = r1∣r2) In this case it holds that a<r1 b ∪ a<r2 b and we conclude by induction.

(Cases r = r+ and r = r∗ and r = r?) Immediate since <r+
1
= <r1,r1 and r∗=(r+∣ǫ) and r?=(r∣ǫ).

To conclude the thesis it suffices to complete the tree so as to obtain a valid instance.
This can be done by applying the procedure described at point 3 of Lemma 4.1.4.

9.1.2 Axis chain inference

In this section we prove that chain inference for XPath navigational is sound.

Lemma 9.1.1 (Soundness of Step Chain Inference). Let d be a DTD, t = (σ, lt) ∈ d be a
valid tree, and l ∈ dom(σ) be a location of the tree. If

σ, (x ∶= lx) ⊧ x/axis ∶∶ φ ⇒ σ,L

then for each location l′ ∈ L we have that

cσl ∈ TC(AC(c
σ
lx
,axis), φ )

Proof. By case analysis on axis. Since node() is used as test filtering, we consider the
correspondent axis evaluation and we leave as implicit the set-to-sequence conversion of
rule by mean of document order.

[axis = self] We conclude immediately since by definition

[[self]]σlx = { lx } and ACd
(clx ,self) = { clx }
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[axis = child] By definition [[child]]σlx = Childσ(lx)
Since the document is valid wrt the DTD d, for all l ∈ Childσ(lx), let ax = type(lx)
and a = type(l) we have that ax⇒d a, with ax ∈ Σ and a ∈ ΣS. Therefore the type
chain of the location l is cl = clx .a and by definition clx .a ∈ Cd. We conclude since

ACd
(clx ,child) = { clx .a ∣ clx .a ∈ Cd }

[axis = descendant] By definition we have that

[[descendant]]σlx = Descendantσ(lx)
For all l ∈ Descendantσ(lx) let L = (l1, l2, . . . , ln) be the sequence of nodes such
that (li, li+1) ∈ Childσ for i = 1..n−1, with l1 = lx and ln = l. Since the document
is valid wrt the DTD d, for all pair of locations li, li+1 ∈ L, let ai = type(li), we
have that ai⇒d ai+1.Therefore alx ⇒

+
d al, and the type chain of the location l is

cl = clx .a2.a3 . . . a ∈ Cd. We conclude since

ACd
(clx ,descendant) = { clx .c ∣ clx .c ∈ Cd , c ≠ ǫ }

Notice that case axis = descendant−or−self is analogous.

[axis = parent] By definition

[[parent]]σlx = Parentσ(lx)
Since the document is valid wrt the DTD d, for l ∈ Parentσ(lx), let ax = type(lx)
and a = type(l) we have a⇒d ax. Therefore clx = c.ax, where the type chain of the
location l is cl = c. We conclude since

ACd
(cl.ax,parent) = { cl }

[axis = ancestor] This case is similar to the case of descendant−or−self axis.

By definition we have that

[[ancestor]]σlx = Ancestorσ(lx)
Given l ∈ Ancestorσ(lx), let L = (l1, l2, . . . , ln) be the sequence of nodes such that(li, li+1) ∈ Childσ for i = 1..n−1 with l1 = l and ln = lx. Since the document is
valid wrt the DTD d, for all pair of locations li, li+1 ∈ L, let ai = type(li) we have
that ai⇒d ai+1 and ai ∈ ΣS. Therefore al ⇒

+
d alx and the type chain of location l is

clx = cl.a2. . . . a ∈ Cd. We conclude since

ACd
(clx ,ancestor) = { c ∣ clx = c.c′ , c′, c′′ ≠ ǫ }

Notice that case axis = ancestor−or−self is analogous.
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[axis = following−sibling] By definition we have that

[[following−sibling]]σlx = FollowingSiblingσ(lx)
Let lp be the parent of lx, i.e., lp ∈ Parentσ(lx). Since the document is valid wrt
the DTD d, let ax = type(lx) and ap = type(lp) we have that ap ⇒d ax. There-
fore clx = clp .ax ∈ Cd. Since the document is valid wrt the DTD d, for lf ∈
FollowingSiblingσ(lx), let af = type(lf) we have that ap ⇒d af and a<d(clp) b.
Therefore clf = cp.af ∈ Cd. We conclude since by definition

ACd
(clx ,following−sibling) = { cp.af ∈ Cd ∣ clx=cp.ax ∧ ax <d(clp) af }

Notice that case axis = preceding−sibling is analogous.

Test chain inference

Soundness of chain inference for test filtering is stated by the following theorem. For
simplicity, we present it together with completeness.

Lemma 9.1.2 (Test Filtering Soundness and Completeness). If σ, (x ∶= lx) ⊧ x/self ∶∶
φ ⇒ σ,L then

TCd
( cσlx , φ ) = { cσlx ∣ lx ∈ L }

Proof. By case analysis on φ. Since self is used as navigational axis, we directly translate
the judgment into the proper test filtering [[φ]]lxσ . Also note that the sequence L is equal
to lx alone when the test is evaluated to true and L is empty otherwise.

[φ = a ∈ Σ] By definition of node test filtering we have that [[a]]lxσ = { lx ∣ lx ← a[L] ∈ σ }
and we conclude immediately completeness since TCd

( clx ,a ) = { clx ∣ clx = c.a }.
[φ = text()] As before, completeness follows by definition since [[a]]lxσ = { lx ∣ lx ←

“txt” } and TCd
( clx ,a )={ clx ∣ clx=c.String }.

[φ = node()] By definition [[φ]]σlx=lx and TCd
( clx ,node() )={clx}.
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9.1.3 Completeness of step chain inference

Lemma 9.1.3 (Completeness of Step Chain Inference). Let d be a DTD and c ∈ Cd a
chain. If

c′ ∈ TCd
(ACd

(c,axis),node() )
then there exists a valid tree t = (σ, lt) ∈ d and a location lx ∈ dom(t) such that clx = c

and, assuming that σ, (x ∶= lx) ⊧ x/axis ∶∶ node() ⇒ σ,L we have that cσl′ = c
′, for some

l′ ∈ L.

Proof. As before, since node() is used as test filtering, we directly translate the judgment
into the proper axis evaluation and we leave as implicit the set-to-sequence conversion
by mean of document order. The we conclude by a case analysis on axis.

[axis = self] By Lemma 4.1.4, for all input chains c then there exists a valid tree
t = (σ, lt) ∈ d and a location lx ∈ dom(t) such that clx = c. We conclude immediately
since by definition we have that ACd

(clx ,self) = { clx } and [[self]]σlx = { lx }.
[axis = child] By definition

ACd
(c,child) = { c.a ∣ c.a ∈ Cd }

By Lemma 4.1.4, for all input rooted chains c.a ∈ Cd then there exists a valid tree
t = (σ, lt) ∈ d and a location l ∈ dom(t) such that cl = c.a. To conclude it suffices to
fix clx = c.

[axis = descendant] By definition we have that

ACd
(c,descendant) = { c.c′ ∣ c.c′ ∈ Cd , c

′ ≠ ǫ }
By Lemma 4.1.4, for all input rooted chains c.c′ ∈ Cd then there exists a valid tree
t = (σ, lt) ∈ d and a location l ∈ dom(t) such that cl = c.c

′. To conclude it suffices
to fix clx = c.

Case [axis = descendant−or−self] is analogous.

[axis = parent] By definition we have that

ACd
(c.a,parent) = { c }

By Lemma 4.1.4, for all input rooted chains c ∈ Cd then there exists a valid tree
t = (σ, lt) ∈ d and a location l ∈ dom(t) such that cl = c. To conclude it suffices to
fix clx = c.a.

[axis = ancestor] By definition we have that

ACd
(c,ancestor) = { c′ ∣ c′ ⪯ c , c ≠ ǫ }

By Lemma 4.1.4, for all input rooted chains c.c′ ∈ Cd then there exists a valid tree
t = (σ, lt) ∈ d and a location l ∈ dom(t) such that cl = c. To conclude it suffices to
fix clx = c.c

′.

Case ancestor−or−self is analogous.
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[axis = following−sibling] By definition we have that

ACd
(c.a,following−sibling) = { c.b ∈ Cd ∣ a<d(c) b }

By Lemma 4.1.4, for all input rooted chains c ∈ Cd then there exists a valid tree
t = (σ, lt) ∈ d and a location lp ∈ dom(t) such that clp = c, and such that the sequence
of children of lp contains two locations l, l′ such that type(l) = a and type(l′) = b
and a<d(clp) b.

Case preceding−sibling is analogous.

Putting everything together, we can prove the theorems of soundness and complete-
ness for chain inference of XPath Step expressions.

Lemma 4.3.1 (Step Chain Soundness). Let d be a DTD, t = (σ, lt) ∈ d be a
valid tree, and l ∈ dom(σ) be a location of the tree. If

σ, (x ∶= l) ⊧ x/axis ∶∶ φ ⇒ σ,L

then for each location l′ ∈ L we have that

cσl′ ∈ TC(AC(c
σ
l ,axis), φ )

Proof. By Lemma 9.1.1 and Lemma 9.1.2.

Lemma 4.3.1 (Step Chain Completeness). Let d be a DTD and c ∈ Cd a chain.
If

c′ ∈ TCd
(ACd

(c,axis), φ )

then there exists a valid tree t = (σ, lt) ∈ d and a location l ∈ dom(t) such that cl = c and,
assuming that σ, (x ∶= l) ⊧ x/axis ∶∶ φ ⇒ σ,L we have that cσl′ = c

′, for some l′ ∈ L.

Proof. By Lemma 9.1.3 and Lemma 9.1.2.

9.1.4 Soundness of Query Chain Inference

In this section we prove the correctness of chain inference for query expressions. We
introduce first some auxiliary definitions and properties that we will use later in our
formal development.
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Auxiliary definitions

The notion of correctness we stated (Theorem 4.3.4) relies on tree projections (Section
4.3.1 ).

Let σ be a store and L1,L2 be two sequences of locations belonging to dom(σ). The
merge of L1,L2, denoted by L1 ⊎L2, is defined as the sequence L such that

• l ∈ L1 ⋅L2 iff l ∈ L;

• for all l, l′ ∈ L we have that l ≠ l′;

• (li, li+1) ∈ L implies (li, li+1) ∈ docOrderσ.

Let σ be a store and σ1, σ2 be two of its projections. The stores obtained by only common
and uncommon locations between σ1 and σ2 are defined as follows.

common(σ1, σ2) def= { l ← a[L1⊎L2 ] ∣ l ← a[L1] ∈ σ1 , l ← a[L2] ∈ σ2 }
uncommon(σ1, σ2) def= { l ← a[L] ∣ l ∉ dom(σ1) ∩ dom(σ2) }

Definition 9.1.4 (Merge of Projections). Let σ be a store and σ1, σ2 be two of its pro-
jections. The merge of σ1 and σ2, denoted by σ1 ⊎ σ2, is defined as

σ1 ⊎ σ2
def
= common(σ1, σ2) ∪ uncommon(σ1, σ2)

Let l ∈ dom(σ1)∩dom(σ2) be a location, the merge of the trees t1 = (σ1, l) and t2 = (σ2, l),
denoted by t1 ⊎ t2, is defined as t1 ⊎ t2

def
= (σ1 ⊎ σ2, l).

We outline some simple properties of the merge operator.

Proposition 9.1.5. Given a tree t and two of its projections, t1, t2 ⪯ t, the following
properties hold.

1. t1 ⪯ t1 ⊎ t2

2. t1 ⊎ t2 ⪯ t

3. t′1 ⪯ t1 and t′2 ⪯ t2 implies t′1 ⊎ t
′
2 ⪯ t1 ⊎ t2

Proof. 1) Follows from the definition of merge.
2) Follows from the definition of merge and from ti ⪯ t.
3) Follows since, by the point 1), we have that t′

1
⪯ t1 ⊎ t2 and t′

2
⪯ t1 ⊎ t2. Therefore

t′1 ⊎ t
′
2 ⪯ t1 ⊎ t2.
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We prove now an auxiliary lemma concerning return chains.

Proposition 9.1.6. Let d be a DTD, t = (σ, lt) ∈ d a valid tree, q a query, γ a dynamic
environment and Γ a static environment such that σ ⊧d γ ∶ Γ. Provided σ,γ ⊧ q ⇒
σnew,L and Γ ⊢Cd

q ∶ (r, v, e), if l ∈ L ∩ dom(t) then cσl ∈ rq.

Proof. By induction on the structure of q.
Base.

[q = ()] Immediate since rq = ∅.

[q = “txt”] Immediate since l ∉ dom(t).
Induction

[q = q1,q2] By induction on q1,q2 and by noticing that rq = rq1 ∪ rq2 .

[q = <a>q′</a>] Immediate since l ∉ dom(t).
[q = x/step] By correctness of step chain inference (Theorem 4.3.1), and since resulting

chains are in rq.

[q = for x in q1 return q2] First we notice that Lq = Lq2 . We conclude by inductive
hypothesis on q2 and because rq = rq2 .

[q = let x ∶= q1 return q2] Analogous to the for case.

[q = if (q0) then q1 else q2] First we notice that either Lq = Lq1 or Lq = Lq2 . We
conclude by inductive hypothesis on q1,q2 and because rq = rq1 ∪ rq2 .
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Theorem 4.3.4 ((Soundness of Query Chains)) Let d be a DTD, t = (σ, lt) ∈ d a valid

tree, q a query, γ a dynamic environment ad Γ a static environment such that σ ⊧d γ ∶ Γ.
Provided σ,γ ⊧ q ⇒ σnew,L and Γ ⊢Cd

q ∶ (r, v, e) the following holds.

1. if tmin is a minimal q-projection of t then tmin ⪯ t∣Lt
r∪v
⪯ t

2. if tnew = (σnew, lnew) with lnew ∈ L∖dom(σ) is a fresh subtree then dom(tnew) = Ltnew

e

For the sake of conciseness we adopt the following abbreviations. The sequence Lq

denotes the result q evaluation, that is σ,γ ⊧ q ⇒ σq,Lq. The sets of chains rq, vq, eq
denote the sets of return, used and element chains inferred for q, that is Γ ⊢Cd

q ∶(rq, vq, eq).
We prove the point 1.

Proof. By structural induction on q.

Base.

[q = (),q = “txt”] We conclude immediately since the q-projection of t is empty.

Induction.

[q = q1,q2] A minimal q-projection t′ is the merge of a minimal q1-projection t′1 with a
minimal q2-projection t′2. This follows from the semantics rule (SQ-Concat). By
inductive hypothesis we have that

t′1 ⪯ t∣rq1∪vq1
and t′2 ⪯ t∣rq2∪vq2

By Proposition 9.1.5

t′ = t′1 ⊎ t
′
2 ⪯ t∣rq1∪vq1

⊎ t∣rq2∪vq2

By chain inference rule (Concat) we have that rq = rq1 ∪ rq2 and vq = vq1 ∪ vq2 .
Therefore we conclude

t′ ⪯ t′1 ⊎ t
′
2 ⪯ t∣rq∪vq

[q = <a>q′</a>] In this case, a tree projection is minimal for q if and only if it is min-
imal for q′. This follows from the fact that element construction always produces
fresh locations that do not belong to the original store. This is specified by seman-
tics rules (SQ-Elt) and (SQ-Copy). By inductive hypothesis, if t′ is a minimal
projection for q′ then t′ ⪯ t∣rq′∪vq′ . Following rule (Elt) we have that rq = ∅ and

vq = rq′ ∪ vq′

We conclude since t′ ⪯ t∣vq .
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[q = x/step] Semantics of step navigation is defined by rule (SQ-Step). We assume
that x is bound to a single location lx in γ. The general case where x is bound to
a sequence of locations goes by induction and concludes this case.

We distinguish between two main cases depending on the axis steps being for-
ward or not.

(axis is forward) Since axis is forward, for all location l ∈ Lq we have that
either l is a descendant of lx, or l = lx if axis = self. Let t′ be a minimal
q-projection of t. Projection t′ allows to correctly evaluate q, hence it is given
by all locations in Lq together with their ancestors and their descendants.
Formally, t′ = (σ∣L, lt) where

L = ⋃
l∈Lq

{l} ∪ [[ancestor]]σl ∪ [[descendant]]σl
Notice that t′ is both minimal and unique. Notice also that it may be the
case that Lq = () and thus t′ is the empty forest. Because σ ⊧d γ ∶ Γ we have
that clx ∈ Γ(x). By Theorem 4.3.1 step chain inference is correct. Therefore,
following rule (StepF) we can conclude that if l ∈ Lq then cl ∈ rq. Notice also
that cl types any location l′ that is an ancestors of l. The descendants of l are
typed by the prolongation of cl, that belongs to rq. By rule (StepF) no used
chain is inferred. Therefore we conclude

t′ ⪯ t∣rq

(axis is backward or horizontal) In this case, since the axis is either backward
or horizontal, all resulting locations l ∈ Lq are not descendants of lx. Notice
however that it may be the case that l = lx if axis = ancestor−or−self. Let
t′ be a minimal q-projection of t. Because t′ allows to correctly evaluate q, it
must contain: i) all locations in the result sequence Lq, together with their
respective ancestors and descendants and ii) the input location lx together
with its ancestors, but only in the case that Lq ≠ (). We stress that we may
not need to include the descendants of lx in the projection, for instance if we
are evaluating an horizontal axis. Formally, t′ = (σ∣L, lt) where L is

⋃
l∈Lq

{l} ∪ [[ancestor]]σl ∪ [[descendant]]σl ∪ { lx ∣ Lq ≠ () }

Notice that for backward and horizontal axis we have [[ancestor]]σl ⊆ [[ancestor]]σlx .
Also, t′ is unique. Because σ ⊧d γ ∶ Γ we have that clx ∈ Γ(x). By Theorem
4.3.1 step chain inference is correct. Therefore, for all l ∈ Lq we have that
cl ∈ rq. Furthermore, if L ≠ () then clx ∈ vq. We conclude that

t′ ⪯ t∣rq∪vq
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When γ(x) = L query evaluation is performed by means of iteration, as defined
by rules (SQ-Iter) and (SQ-IterBase). Let t′ be the minimal q-projection for
γ = { l ∈ L }. By inductive hypothesis, chain inference is correct for each l ∈ L. Let
t′l be the minimal query q-projection for γ = { l }. We conclude since by Lemma
9.1.5

t′ = ⊎
l∈L

t′l ⪯ trq∪vq

[q = for x in q1 return q2] Semantics of iteration is defined by rule (SQ-For).
Query q2 is evaluated once for each location l ∈ Lq1 binding x with l in γ. We
denote by tl

2
a minimal q2-projection of t obtained by assuming that x↦ l ∈ γ. We

denote by L1 the set of result locations of q1 that are also productive for q2, that
is L1 = { l ∈ L1 ∣ tl2 ≠ () }.
A minimal q-projection of t is defined as t′ = t1 ⊎ t2 where t1 is a minimal q1-
projection of t that ensures only locations in L1 in the result sequence of q1, and t2
is a minimal q2-projection of t obtained by the merge of all q2-minimal projections
of t where x is bound to a location l ∈ L1.

We want to show that
t′ = t1 ⊎ t2 ⪯ t∣rq∪vq

We show first t2 ⪯ t∣rq∪vq . By inductive hypothesis, provided that li ∈ L1 and
Γ[x↦ {cli}] ⊢C q2 ∶ (ri, vi, ei) it follows that

tl2 ⪯ t∣ri∪vi

By Lemma 9.1.5 we have also that

t2 = ⊎
l∈L1

tl2

In general, if the result of q2 is non-empty then ri ∪ ei ≠ ∅.

By rule (For)
rq = ⋃

cli∈rq1

ri and vq ⊇ ⋃
ri∪ei≠∅

{vi}
from which it follows

t2 ⪯ t∣rq∪vq

We show t1 ⪯ t∣vq . By inductive hypothesis,

t1 ⪯ t∣rq1∪vq1

however since t′ does not need the descendants of result locations of q1, we have
also that t1 ⪯ t∣rq1∪vq1 . Then, because we need only result locations in L1 we have
that t1 ⪯ t∣r′

1
∪vq1

where
r′1 = ⋃

cli
∈rq1

ri ∪ ei ≠ ∅

{ cli }
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By rule (For) we have that
rq1 ∪ vq1 ⊆ vq

and therefore we conclude
t1 ⪯ t∣vq

Putting everything together, by Lemma 9.1.5

t1 ⊎ t2 ⪯ t∣rq∪vq

[q = let x ∶= q1 return q2] The semantics of the let binding is defined by rule
(SQ-Let). Let ti be a minimal qi-projection for qi. Notice that in the evaluation
of q2, x is bound to the resulting sequence of q1 in γ (no iteration is performed by
the rule).

By inductive hypothesis

t1 ⪯ t∣rq1∪vq1 and t2 ⪯ t∣rq2∪vq2

Following rule (Let) we have that

rq1 ∪ vq1 ⊆ vq

Therefore
t1 ⪯ t∣vq

Furthermore, by rule (Let) we have that

rq2 ∪ vq2 ⊆ rq ∪ vq

Therefore
t2 ⪯ t∣rq∪vq

Now t′ = t1 ⊎ t2 is a minimal q-projection of t. By Proposition 9.1.5 we conclude

t1 ⊎ t2 ⪯ t∣rq∪vq

[q = if (q0) then q1 else q2] The semantics of the conditional expression is defined
by rules (SQ-If). Let t′, t0, t1 and t2 minimal projection of t for q,q0,q1 and q2,
respectively. By inductive hypothesis

ti ⪯ t∣rqi∪vqi
for i = 0..2

According to the semantics of the conditional expression

t′ ⪯ ⊎
i=0..2

ti

and then we conclude by rule (If) since

⊎
i=0..2

ti ⪯ t∣rq∪vq
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We prove the point 2.

Proof. By structural induction on q.

Base.

[q = ()] The empty query does not construct any element.

[q = “txt”] The query constructs a fresh text-node and by rule (Text) we have that
String ∈ e.

Induction

[q = q1,q2] The constructed elements returned by q are obtained by the concatenation
of those returned by q1 and q2, respectively. By inductive hypothesis the statemet
holds for q1,q2 and since eq = eq1 ∪ eq2 we conclude.

[q =< a > q′ < /a >] Following the rule for query semantics (SQ-Constr), the query q

adds to the input store σ a new location, say la, such that (la ← a[Lcopy

q′
]), where

L
copy

q′
denotes the copy of Lq′ . The resulting store is denoted by σq. We distinguish

four cases depending on wether the subexpression q′ returns i) only locations be-
longing to the input tree, ii) only constructed elements, iii) both constructed and
input elements, or iv) the empty sequence.

i) We assume that l ∈ Lq′ implies l ∈ dom(t), where t = (σ, lt) denotes the input
tree. By Proposition 9.1.6 we know that for all l ∈ Lq′ we have cl ∈ rq′ . By
rule (Elt), if cl = c.b and c.b.c′ ∈ rq′ then a.b.c′ ∈ eq. Therefore let t′ = σq@la
we conclude

t′ ⪯ t′∣eq

ii) We assume that l ∈ Lq′ implies l ∉ dom(t), where t = (σ, lt) denotes the input
tree. By inductive hypothesis, for all tree t′′ = σq@la, with l ∈ Lq′ , we have
that

t′′ ⪯ t′′∣eq′

By rule (Elt), if c ∈ eq′ then a.c ∈ eq. Let t′ = σq@la, we conclude that all
locations of t′ are typed by a prefix of a chain in eq. Formally we have

t′ ⪯ t′∣eq

iii) In the case where q′ provides both input and fresh data, we conclude by rea-
soning as in i) and ii).

iv) We assume Lq′ = (). In this case, the result of q is a tree composed by a single
node labeled a. By inductive hypothesis we assume the system to be correct
on q′, but it may not be complete, thus we do not know if rq′∪eq′ = ∅ or not.
So we distinguish between the two cases. If rq′∪eq′ = ∅ (hence the system is
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also complete for q′) we conclude since by rule (Elt) a ∈ eq. If rq′∪eq′ ≠ ∅
(hence the system is correct but not complete for q′) then rule (Elt) produces
element chains as described in i) and ii). Since all these chains will start with
label a, we can conclude that the resulting element of q is always typed.

[q = x/step] No element is constructed by the query.

[q = for x in q1 return q2] The elements constructed and returned by q are those
constructed and returned by q2. We conclude by inductive hypothesis on q2.

[q = let x ∶= q1 return q2] Analogous to the for case.

[q = if (q0) then q1 else q2] The elements constructed and returned by q are those
constructed and returned either by q1 or q2. We conclude by inductive hypothesis
on q1 and q2.

Summing up, we proved that query chain inference is sound. This means two things.
First, that locations in the input document accessed by the query are typed by some
inferred chains. Second, that locations created and returned by the query are typed by
some inferred chains. Completeness (whether inference yields to minimal sets of chains)
is still open, and we leave it as a future work.
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9.1.5 Soundness of Update chain Inference

In this section we prove that chain inference for update expressions is correct. As updates
are defined in terms of queries, the proof relies on correctness of chain inference for query
expressions (Theorem 4.3.4). Chain inference for updates is sound in the sense that all
chains required to type locations involved by an update are inferred.

Theorem 4.3.6 (Soundness of Update Chain Inference) Let d be a DTD, t a
valid tree t = (σ, lt) ∈ d, and u an update with at most one free variable x, γ = { x ↦ lt }
a dynamic environment, and Γ = { x↦ sd } a static environment. Provided that

σ,γ ⊧ u ⇒ σω, ω σω⊧ ω ↝ σu Γ ⊢Cd
u ∶ U

it holds that

• if l ∈ dom(σ) is a location in t, and the update u involves l then there exists c ∶ c′ ∈ U
such that cσl = c ∶ c

′, where c′ ≠ ǫ.

• if l is a location in u(t), i.e. l ∈ dom(σu@lt), and the update u involves l then there
exists c ∶ c′ ∈ U such that cσu

l
= c ∶ c′, where c′ ≠ ǫ.

Proof. By structural induction on u.

Base.

[u = ()] No location is involved by the empty update. As defined by rules (SU-
Empty) and (SAU-Empty), u yields an empty update pending list, that performs no
operation. Notice also that following rule (Empty) no chain is inferred.

[u = delete q0] Update u involves all locations in Lq0 (that is the resulting sequence
of q0). As defined by rule (SU-Delete), there should be exactly one location in Lq0 .
We assume Lq0 = (l0), with l0 ∈ dom(t). By rule (SAU-Delete) l0 is detached from its
parent. By rule (SanityCheck) this operation is correct since l0 is mutable and thus
can be updated. By Proposition 9.1.6 cσl0 ∈ rq0 . The statement follows by definition since
by following rule (Delete) we have that given cσl0 = c.a0 then c ∶a0 ∈ U.

[u = rename q0 as b] Update u involves all locations in Lq0 . As defined by rule
(SU-Rename) there is at most one location l0 ∈ dom(t) in the resulting sequence of q0.
We assume Lq0=(lq0). By rule (SAU-Rename) the label of l0 is renamed in label b.
This is correct since by rule (SanityCheck) l0 is mutable, and thus can be updated,
and the location is not the target of several rename expressions. By Proposition 9.1.6
cσl0 ∈ rq0 . In this case, we have that the renamed location belongs both to the original
and to the updated store. We conclude now that in both cases the location is typed. Let
cσl0 = c.a0 by rule (Rename) we have c ∶a0 ∈ U. Let cσu

l0
= c.b by rule (Rename) we have

that c ∶ b ∈ U.
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[u = insert q (into ∣into as first ∣into as last) q0] The locations involved by u

are copies of source locations in Lq, together with their descendants. As defined by rules
(SAU-InsertInto), (SAU-InsertFirst) and (SAU-InsertLast), these locations are
in turn inserted as children of location Lq0 . By rule (SU-Insert1) there is at most one
target location in the resulting sequence of q0, hence Lq0 = (l0). Source locations in Lq are
typed by inferred chains, as stated by Theorem 4.3.4. We recall this fact, distinguishing
between fresh and input source locations.

• If l ∈ Lq belongs to the input document then by Proposition 9.1.6 we have that
cσl ∈ rq. Furthermore, for all l′ descendant of l we have cσl′ ∈ rq.

• If l ∈ Lq is a fresh location, by Theorem 4.3.4, we have that l is typed by some
chains in eq, formally cσw

l
.e ∈ eq. Furthermore, for all l′ descendant of l we have

cσw

l′
.e′ ∈ eq. Recall that σw is an intermediate store containing source locations that

are arguments of elementary update commands, to be applied further.

Locations involved by u belongs to the updated store σu only. We conclude showing that
chains typing these locations are in U. By Proposition 9.1.6 cσl0 ∈ rq0 . By rule (Insert1)
we have that

• if c.a ∈ rq and c.a.c′ ∈ rq then cσl0 ∶ a.c
′ ∈ U

• if e ∈ eq then cσl0 ∶e ∈ U

[u = insert q (after ∣before) q0] This case is similar to the previous one, except for
the fact that chains for after/before expressions have a different definition. The locations
involved by u are copies of source locations in Lq, together with their descendants. As
defined by rules (SAU-InsertAfter), and (SAU-InsertBefore), these locations are
in turn inserted as children of location Lq0 . By rule (SU-Insert2) there is at most one
target location in the resulting sequence of q0, hence Lq0 = (l0). Source locations in Lq

are typed as stated by Theorem 4.3.4. We recall this fact, distinguishing between fresh
and input source locations.

• If l ∈ Lq belongs to the input document then By Proposition 9.1.6 we have that
cσl ∈ rq. Furthermore, for all l′ descendant of l we have cσl′ ∈ rq.

• If l ∈ Lq is a fresh location, by Theorem 4.3.4 we have that l is typed by some
chains in eq, formally cσw

l
.e ∈ eq. Furthermore, for all l′ descendant of l we have

cσw

l′
.e′ ∈ eq. Recall that σw is an intermediate store containing source locations that

are arguments of elementary update commands not yet applied.

Locations involved by u belongs to the updated store σu. We conclude showing that
chains for those locations are in U. By Proposition 9.1.6 cσl0 ∈ rq0 . Now we can conclude
since by rule (Insert1), if cσl0 = c.a we have that

• if c.a ∈ rq and c.a.c′ ∈ rq then c ∶ c′ ∈ U
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• if e ∈ eq then c ∶ e ∈ U

[u = replace q0 with q] In this case soundness follows as for delete and insert
cases. The locations involved by u are copies of source locations in Lq together with
their descendants, and target locations returned by q0. By rule (SU-Replace) there is
only one target location l0 in the resulting sequence of q0, hence Lq0=(l0). We first treat
the typing of source locations and the the typing of target locations. Source locations
in Lq are typed as stated by Theorem 4.3.4. We recall this fact, distinguishing between
fresh and input source locations.

• If l ∈ Lq belongs to the input document then By Proposition 9.1.6 we have that
cσl ∈ rq. Furthermore, for all l′ descendant of l we have cσl′ ∈ rq.

• If l ∈ Lq is a fresh location, by Theorem 4.3.4 we have that l is typed by some
chains in eq, formally cσw

l
.e ∈ eq. Furthermore, for all l′ descendant of l we have

cσw

l′
.e′ ∈ eq. Recall that σw is an intermediate store containing source locations that

are arguments of elementary update commands not yet applied.

By Proposition 9.1.6 cσl0 ∈ rq0 . Now we can conclude that source locations are typed
since by rule (Replace) let cσl0 = c.a we have that

• if c.a ∈ rq and c.a.c′ ∈ rq then c ∶ a.c′ ∈ U

• if e ∈ eq then c ∶ e ∈ U

Concerning target locations, the statement follows since let cσl0 = c.a we have that c ∶ a ∈ U.

Induction.

[u = u1,u2] The locations involved by the concatenation of two updates is the union
of the locations involved by each expression. We conclude by inductive hypothesis on
u1,u2.

[u = for x in q return u1] The locations involved by the update are those involved
by u1 when x is bound to each node in the resulting sequence of q. By Proposition 9.1.6
the chain corresponding to all return location of q are inferred in rq. By inductive
hypothesis the statement holds for the update u1 when x is bound to a return chain
inferred for q. This is described by rule (For), and therefore we conclude that the
statement holds for u.

[u = let x ∶= q return u1] The locations involved by the update are those involved
by u1 when applied with x bound to the resulting sequence of q. By Proposition 9.1.6 the
chain corresponding to all return location of q are inferred in rq. By inductive hypothesis
the statement holds for the update u1 when x is bound to the resulting sequence of q.
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This is described by rule (Let), and therefore we conclude that the statement holds for
u1.

[u = if (q) then u1 else u2] The chains involved by u are those involved by u1 or
u2. By inductive hypothesis the statement holds for u1,u2 and we conclude that it holds
also for u.

In this section we proved the soundness of update chain inference. We showed that
involved locations are always typed by some update chains, and that these update chains
are correctly inferred. As for queries, completeness remains open and it is left as a future
work. It is worth noticing however that completeness of chain inference for updates
requires (as a necessary condition) chain inference for queries to be complete.
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9.1.6 Soundness of Chain-based Independence

Proposition 9.1.7. If q ⊥Cd
u, then we have:

I t
U ∩L

t
r∪v = I

u(t)
U
∩ Lu(t)

r∪v = ∅

Proof. We treat separately parts of the statement concerning t and u(t).
We show I t

U ∩ L
t
r∪v = ∅, aiming at obtaining a contradiction. Assume there is an

involved location l0 belonging to a minimal q-projection, hence l ∈ I t
U ∩ L

t
r∪v. We recall

that the set of nodes of t typed by update chains in U is defined as

I t
U = { l ∈ dom(t) ∣ cl = c ∶ c′ ∈ U c′ ≠ ǫ }

and the set of nodes in a tree t typed by chains in r ∪ v is defined as

Ltr∪v = { l ∈ dom(t) ∣ cσl0.c ∈ r ∪ v }
From these definitions we conclude that cσl0 ∈ U and cσl0 ∈ r ∪ v. Hence,

U ∩ (r ∪ v) ≠ ∅
By hypothesis q ⊥Cd

u and then

confl(r,U) = confl(U, r) = confl(U, v) = ∅
Assume c ∶α.c′ ∈ U. Since confl(r,U) = ∅ there cannot exists cq ∈ r such that cq ⪯ c ∶α.c′.
Since confl(U, r) = ∅ there cannot exists cq ∈ r such that c.α.c′ ⪯ cq. Hence we conclude
that c.α.c′ ∉ r. Finally, since confl(U, v) = ∅ there cannot exists cq ∈ v such that c ⪯ cq.
Hence we conclude c.α.c′ ∉ v. Therefore from q ⊥Cd

u follows

U ∩ (r ∪ v) = ∅
a contradiction.

The same reasoning holds for proving I u(t)
U
∩ Lu(t)

r∪v = ∅.

Theorem 4.4.2 (Soundness of Cd independence) Let d be a DTD, t = (σ, lt) ∈ d a
valid tree, q a query, u an update, γ a dynamic environment and Γ a static environment
such that σ ⊧d γ ∶ Γ. Then,

q ⊥Cd
u implies q ⊧ d u

Proof. If q ⊥Cd
u then by Proposition 9.1.7 we have that locations involved by the up-

date are disjoint from location in a query projection. Since a query projection ensures
preservation of query semantics under evaluation we can conclude q ⊧ d u.
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9.2 Soundness of the Chain Analysis for the Finite Case

In this section we prove that the independence analysis based on chains in possibly infinite
case can be equivalently performed on a finite subset of k-chains. The main statement
we prove is that a query and an update are conflicting if and only if they are conflicting
on a finite set of k-chains. As a consequence of this, two expressions are independent if
they do not conflict on a specific set of k-chains.

The proof is constituted of two main parts. We first prove that each chain inferred
from an expression can be folded to a k-chain inferred for the same expression, yet
preserving all informations concerning the behavior of the query. Then we show that
this folding can be done also for a pair of conflicting expressions thus preserving all
interactions between a query and update also in the finite analysis.

We develop our proof with the aid of linear-path queries, a subclass of queries defined
in Chapter 2 that simplify the formal development yet allowing us to represent all query
and update chains.

9.2.1 Folding Lemma for a Single Expression

In this section we prove Lemma 4.4.4 that states the existence of a folding relation
between query chains and k-query-chains. We will reduce the problem to that of showing
a folding relation for a subclass of expressions considered in this paper, called linear-path
queries (lp queries).

Linear-path queries are defined in order to represent all navigational paths of a query
that are superposed at the syntactic level, and are defined as follows.

Definition 9.2.1 (Linear-path queries). A linear-path query, denoted by q, is an expres-
sion matching the following grammar

q ∶∶= <a> q </a> ∣ q̄
q̄ ∶∶= for x in x/axis ∶∶ φ return q̄ ∣ x/axis ∶∶ φ ∣ “txt”

Linear-path queries are the equivalent of navigational XPath expression without
branching, plus both element and text node construction. These expressions are called
linear because the grammar allows only for linear recursion. In fact, an iteration possibly
nests only another iteration (on its right branch), and an element construction possibly
nests either another element construction or an iteration. Also, element constructions
are allowed only at the outermost level of the query.
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A query q is always reformulated in a set of lp queries τq. To illustrate the process,
consider the query q defined as

for x1 ∶= x//author,x//editor
return

x1/self ∶∶ author
is translated into

τq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for x1 in x//author
return

x1/self ∶∶ author
,

for x1 in x//editor
return

x1/self ∶∶ author
, x//author, x//editor

⎫⎪⎪⎪⎬⎪⎪⎪⎭
It is easy to see that this reformulation provides an over-approximation of all nav-

igational paths embodied in q, and hence all chains inferred for the original query are
contained in the set of chains inferred for the reformulated ones. At the same time, we
have that kq = 2 and for all q ∈ τq it holds that kq ≤ kq, hence all chains inferred for a
reformulated expression can be folded to kq-chains.

These two properties together makes sufficient to show a folding on the set of lp-
queries, to scale on the whole language considered in this work. By showing a kq-folding
for a superset of q chains, we immediately conclude the kq-folding for all q chains. This
simplification is without loss of generality. Queries lp are a sort of normalized form for
the problem of chain inference that simplify the formal development. In previous versions
of this work, we developed proofs directly dealing with the general case. These resulted
to be prolix, because they required involved properties, without clarifying the crux of
the question. Folding for updates expressions will be given later, by means of linear-path
queries.

Reformulating a query in a set of lp-queries

The set of linear-paths induced by a query is defined in Table 9.1. We describe the
reformulation process. Given a query q, the set of lp queries induced by q is obtained
by splitting paths in concatenations (“,”) and conditional expressions, by approximating
let-bindings, by linearizing all iterations of the query and, finally, by rewriting element
constructions.

Let-bindings are approximated by means of iteration. By doing this in principle we
obtain a correct multiplicity values for the expression, however there is a gap to fill in
terms of inferred chains. In fact, iterations discard chains bound to variables if they
do not satisfy navigational specifications, while rule (Let) retains all chains bound to a
variable x no regardless. For this reason, we put the iteration in union with all expression
bound with a new let-variable. These are return chains instead of used ones, but the
nature of the chains is irrelevant for the end of showing a folding relation.
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To illustrate path splitting and let-binding approximation, consider the following
example.

LPQ
⎛⎜⎝
let x1 ∶= x//author,x//editor
return

x1/self ∶∶ author
⎞⎟⎠ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for x1 in x//author
return

x1/self ∶∶ author
,

for x1 in x//editor
return

x1/self ∶∶ author
, x//author, x//editor

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Here the chains pointing to editor elements are discarded by the iteration. This is

correct from the semantics point of view but it is not compliant with the (Let) rule that
also produces chains pointing to editor as used chains.

The functions R●for and R●e are introduced for the linearization of the iterations and
for lifting element constructions.

We describe now the linearization of iterations. Given a for construct, we denote by
Rfor the function that linearizes expressions of the form for x in q1 return q2. Rfor

is defined as the identity on any input query, except for the ones matching the following
case.

Rfor

⎛⎜⎝
for x1 in(for x2 in q2 return q1)
return q0

⎞⎟⎠
def
=

for x2 in Rfor(q2)
for x1 in Rfor(q1)
return Rfor(q0)

Notice that the rule applies locally on a query q and it has to be iterated until fixpoint
for linearizing all subexpressions, until Rfor(q) = q. We denote this by R●for(q). Also,
we denote by R●for(Q) the rewriting of a set of queries Q.

The fixpoint rewriting works as in the following example.

for x1 in(for x2 in
for x3 in x//book
return x3//author
return x2//name)
return x1//first

R●for
Ð→

for x2 in(for x3 in x//book
return x3//author)

return

for x1 in x2//name

return x1//first
R●for
Ð→

for x3 in x//book
for x2 in x3//author
for x1 in x2//name

return x1//first
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LPQ(()) def= ∅ LPQ(“txt”) def= { “txt” }
LPQ(q1,q2) def

= LPQ(q1) ∪ LPQ(q2)
LPQ(x/step) def

= {x/step}
LPQ(q) def

= R●e(LPQ(q))
LPQ(for x in q1 return q2) def

= ⋃qi∈LPQ(qi)R
●
for(for x in q1 return q2)

LPQ(let x ∶= q1 return q2) def
= LPQ(for x in q1 return q2) ∪ LPQ(q1)

LPQ(if (q0) then q1 else q2) def
= ⋃i LPQ(qi)

LPQ(<a>q</a>) def
= ⋃q∈LPQ(q) <a>q</a>

Table 9.1: Linear-path query extraction

For lp queries, element construction is allowed only at the outermost level of the
query. 1 Expressions that do not satisfy this property are rewritten in proper ones by
lifting element construction. For example, the query

for x in y//b return <new>x</new>
is rewritten in

<new>for x in y//b return x</new>
First notice that the semantics of the two expressions is different: the former returns a
forest of n trees, where n is the number of b elements in a tree, while the latter returns
a single tree. Also, that there may be no type definition in the schema employing b as
a label. In this case the chain inference process outputs the empty set for the former
expression, while it outputs the element chain new for the latter. However, while the
semantics of the expressions may differ, the rewriting is still sound for the purpose of
chain inference. In this case, the set of used, return and element chains inferred for the
original and the rewritten expression coincide. In general, it is easy to show that the set
of element chains inferred for a lp query set a sound approximation of the element chains
of the original query.

We denote by Re(q) the function that rewrites a query by lifting element construc-
tions. Re(q) is defined as the identity for all input query, except for the ones matching

1It is worth recalling that we assume also that query do not construct elements in the left branch of
an iteration or let binding.
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one of the following two cases.

Re(for x in q1 return <a>q2</a>)
def
=

<a>for x in q1 return Re(q2)</a>
Re(<a>q</a>) def= <a>Re(q)</a>

The function is intentionally defined to work only on that specific form of iteration. It is
meant to be applied over queries that are (almost) lp queries, up to element construction.
Notice that the rules have to applied until fixpoint is reached, i.e. Re(q) = q. We denote
this by R●e(q). We will use the same notation also when speaking about set of queries.
The fixpoint is unique and always reached by the translation.

As an example consider the previous query

for x in y//b return <new>q</new>
where q = for x2 in y//a return <sub/>. We have that

R●e(for x in y//b return <new>q</new>)
= R●e(<new>for x in y//b return Re(q)</new>)
= R●e(<new>for x in y//b return

<sub>
for x2 in y//a return ()
</sub>
</new>)

= <new>
<sub>
for x in y//b return

for x2 in y//a return ()
</sub>
</new>

This translation is reminiscent of path extraction, however there are two difference.
The first is that in the definition of the set of lp queries associated to an expression,
we do not take into account variable binding. We avoid this process because it is not
needed in order to have a sound k-folding. The second difference, and most important,
is that this process is described formally, but actually never implemented. It is just used
to show that the k-analysis is sound in principle.

Correctness wrt chains of the LPQ() transformation of queries is stated as follows.
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Proposition 9.2.2. Let d be a DTD, q a query, and Γ a static environment. Let us
denote by τq the set of used, return and element chains inferred for q wrt Γ and by τLPQ(q)
the union of used, return, and element chains inferred for each expression in LPQ(q).
Then, τq ⊆ τLPQ(q).

Proof. By induction on the structure of q.

By over approximating the set of chains inferred for an expression, we have that
also the result of a query is always over approximated by its associated set of linear-
path queries. However, what is important for us is not only the resulting locations of a
query, but also the whole set of locations accessed. This can be showed as a corollary of
Proposition 9.2.2.

Computing the Multiplicity Value for lp-queries

In the general case (Section 2.3), the definition of the k value is (necessarily) structured,
because several navigational paths are superposed at the syntactic level. Differently,
linear-path allow us to directly compute the multiplicity value for a given query expression
defined in Chapter 4, without inductive definition. This will be useful in the proof in
order to show that the finite on k-chains is equivalent to the possibly infinite analysis.

Proposition 9.2.3. Let q be an lp query without element construction then

kq =max
a∈Σ

⎧⎪⎪⎨⎪⎪⎩ ∑step∈qF(a,step) +R(step)
⎫⎪⎪⎬⎪⎪⎭

Furthermore, in the case that q is nested inside an element construction, we have

k<a>q</a> = { 1 + kq if a is the most frequent label in q

kq otherwise

Where a is the most frequent label in q if, for all b ∈ ΣS, if we have that

∑
step∈q

F(b,step) ≤ ∑
step∈q

F(a,step)
Proof. Straightforward by induction on q.

The following lemma shows that all lp-queries inferred for an expression have a mul-
tiplicity value bounded by that of the original query.

Proposition 9.2.4. Let d be a DTD, q a query, and Γ a static environment. Let us
denote by τq and τLPQ(q) the union of the set of used, return, and element chains inferred
for q wrt Γ, and for each expression in LPQ(q), respectively. Then, for all query q ∈ LPQ(q)
we have that kq ≤ kq.

Proof. By induction on the structure of q.
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The existence of a folding relation between query chains and k query chains is stated
by the following theorem.

Lemma 9.2.5 (Folding of linear-path queries). Let d be a DTD, q a query with at most
only one free variable x, and Γ = { x ↦ sd } a static environment. For all q ∈ LPQ(q),
provided that Γ ⊢Cd

q ∶ (r, v, e) and τ = r ∪ v ∪ e, for each chain c ∈ τ there exists a chain
c′ ∈ τ such that c↪∗d c

′ and c′ is a kq-chain.

Thanks to the above lemma, we can finally conclude that the folding relation exists
for chains inferred for all queries.

Lemma 4.4.4 (Folding) Let d be a DTD, q a query with at most only one free
variable x, and Γ = { x ↦ sd } a static environment. Assume that Γ ⊢Cd

q ∶ (r, v, e) and
τ = r ∪ v ∪ e. For each chain c ∈ τ there exists a chain c′ ∈ τ such that c↪∗d c′ and c′ is a
kq-chain.

Proof. Let c ∈ τq be a chain. By Lemma 9.2.2 we have that c ∈ τLPQ(q). We conclude since
by Lemma 9.2.5 c can be folded to a kq-chains.

In the the remainder of this section we prove Lemma 9.2.5.

Folding Lemma for lp-queries

The height of an lp-query q, denoted by h(q), is defined as

h( () ) = 0

h(“txt”) = 0

h(x/axis ∶∶ φ) = 0

h(for x in q1 return q2) = 1 +max{h(q1), h(q2)}
h(<a>q</a>) = 1 + h(q)

The following lemma states that any chain can be folded to a 1-chain.

Lemma 9.2.6. Let d be a DTD. For all chain c ∈ Cd there exists a 1-chain c′ ∈ Cd such
that c↪∗d c′.

Proof. Given c ∈ Cd, if c is a 1-chain then we are done. Otherwise c is of the form c = c1.w.c2,
where w is a cycle w = a.a1 . . . an.a. By definition of the folding relation we have that

c1.w.c2 ↪d c1.a.c2

Now if c1.a.c2 is a 1-chain then we are done, otherwise we repeat the folding process until
we obtain a chain c′ with no cycles, such that c ↪∗d c′. This process terminates because
the number of symbols in c is finite.
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Lemma 9.2.5 (Folding of linear-path queries) Let d be a DTD, q a query with at most
only one free variable x, and Γ = { x ↦ sd } a static environment. For all q ∈ LPQ(q),
provided that Γ ⊢Cd

q ∶ (r, v, e) and τ = r ∪ v ∪ e, for each chain c ∈ τ there exists a chain
c′ ∈ τ such that c↪∗d c′ and c′ is a kq-chain.

Proof. By induction on h(q).
Base (h = 0) In this case q has one of the following three forms

() ∣ “txt” ∣ x/axis ∶∶ φ
We conclude the proof by a case analysis.

[q = ()] Straightforward since τq = ∅.

[q = “txt”] Recall that because the query “txt” is independent of any update, in
Chapter 2 we assumed that “txt” is nested into a for expression. Furthermore, because
we do not navigate on constructed sequences, we have that “txt” should be in the right
branch of the for expression. Then, in order to do chain inference for “txt” we must have
a navigational step in the left branch of q that makes kq > 0. In the case where kq = 0
it means that no operation is performed by the left branch of the query and thus chains
for “txt” are not inferred by the type system rules. We conclude since τq = {String} and
String is a 1-chain.

[q = x/axis ∶∶ φ] Because x ↦ sd we have that τq ≠ ∅ only if axis is one of self,
child, descendant, or descendant−or−self. We assume φ = a ∈ Σ and we proceed
with a case analysis on axis. The proof for the case φ ∈ {node(),text()} is analogous,
since node() can be simulated by ranging over all labels in Σ, and text() by considering
only type String.

[axis = child] In this case kq = 1 and we conclude since either τq = ∅ or τq = { sd.a },
where sd ≠ a by hypothesis of non-recursive schema root (see Chapter 2).

[axis = self] In this case kq = 1 and we conclude since either τq = ∅ or τq = { sd }.
[axis = descendant] In this case kq = 1 since R(descendant ∶∶ a) = 1. We conclude

since by Lemma 9.2.6 any chain can be folded to a 1−chain.

[axis = descendant−or−self] Analogous to the self and descendant cases.

Induction (h > 0)

In this In this case q has one of two forms.

<a> q′ </a> ∣ for x in q1 return q2

[q = <a>q′</a>] We prove this case by making a case analysis wrt the set of used,
return and element chains inferred for q.
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used chains By rule (Elt), vq = rq′ ∪ vq′ . All chains inferred for the inner query q′ are
obtained by a derivation tree of height h(q′) < h(q). Then by inductive hypothesis
on q′ we conclude the thesis for all chains in rq′ ∪ vq′ , since they are kq′ -chains and
provided that kq′ ≤ kq they are kq-chains.

return chains By rule (Elt), rq = ∅ hence no return chain is inferred.

element chains We have two main cases to consider.

• If rq′ ∪ vq′ = ∅ then eq = {a}. We conclude since kq = 1.

• If rq′ ∪ vq′ ≠ ∅ then eq = e
e
q ∪ erq where

eeq = { a.c ∣ c ∈ eq′ } erq = { a.a.c′ ∣ c.a ∈ rq′ , c.a.c′ ∈ rq′ }

The two sets are built from element and return chains of q′, respectively. Let
us consider them separately.

– If a.c belongs to eeq then c ∈ eq′ . By inductive hypothesis c is a (kq′)-chain.
If kq = 1 + kq′ then a is the most frequent label in c with frequency upper
bounded by kq′ . Therefore a.c is a (1 + kq′)-chain and hence a kq-chain.
In the case that kq = kq′ then a is not the most frequent label in c. Thus
the frequency of a in c is strictly upper bounded by kq′ . Therefore a.c is
still a kq′-chain and thus a kq-chain.

– If a.a.c′ belongs to erq then c.a ∈ rq′ and c.a.c′ ∈ rq′ . By inductive hypothesis
c.a.c′ can be folded to a (1 + kq′)-chain c1.a.c

′
1. Thus a.a.c′ can be folded

to a.a.c′1. Provided that a.c′1 is a (1 + kq′)-chain, we have that a.a.c′ is
again a (1 + kq′)-chain or the prefix a.c′ can be folded to a (kq′)-chain,
thus obtaining a (1 + kq′)-chain.

[q = for x in q1 return q2] Here q2 possibly nests an arbitrary number n of iter-
ations. In particular, we assume that the rightmost subexpression of q is a navigational
step. It may also be that the rightmost subexpression is a text-element construction, but
in that case the proof is a particular instance of the one given below where one does not
make any use of the static variable environment. Any derivation tree of chain inference
for q must end by applying the (For) rule, i.e., it looks like this (for simplicity we do
not detail all rule operations)
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Γ ⊢C step1 ∶ τ1

x1 ↦ τ1,Γ ⊢C step
2
∶ τ2

⋮

{xi ↦τi}i≤n−1,Γ ⊢C stepn ∶ τn {xi ↦τi}i≤n,Γ ⊢C stepn+1 ∶ τn+1

Γ ⊢C for x1 in step1 . . . xn in stepn return stepn+1 ∶ τq

where stepi is of the form xi/axisi ∶∶ φi, with xi either a free-variable of q bound to
the root-type in Γ, or a bound-variable of q previously defined in {x1, . . . ,xi−1}. Also,
the resulting set of chains τq ⊆ τn∪τn+1, as specified by rule (For).

We denote by h the height of the derivation tree for q. For each variable xi, chains
in τi are obtained by a derivation of height hi < h. By inductive hypothesis, the chains
bound to xi can be folded to ki-chains, where ki is

ki =max
a∈Σ
{ stepi∑
step=step

1

F(a,step) +R(step)}
Since τq ⊆ τn∪τn+1, and all chains in τn are kq-chains, what is left to show is that all chains
inferred for stepn+1 can be folded to kn+1 chains, provided that the static environment
Γ binds variables with chains that can be folded to kn chains. This allows us to conclude
the proof since kn+1 = kq.

We proceed with a case analysis on stepi, assuming as before that φi = a ∈ Σ. We
focus on the cases where τq ≠ ∅, i.e, the inference yields a non-empty result for some
chains bound to x in Γ. When τq = ∅ the thesis follows straightforwardly.

[stepn+1 = x/child ∶∶ a] In this case

τn+1 = ⋃
c∈Γ(x)

TCd
(ACd

( c , child ) , a )

= { c.a ∣ c ∈ Γ(x) }
By inductive hypothesis, for each c ∈ Γ(x) there exists a kn-chain c′ ∈ Γ(x) such
that c ↪∗d c′. Provided this, it follows c.a ↪∗d c′.a. We need to show that c′.a is a
kn+1-chain. We do this by distinguishing two cases, depending on wether kn < kn+1
or kn = kn+1.
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If kn < kn+1, c′ being a kn-chain, it follows that c′.a is a kn+1-chain.

If kn = kn+1, then c′.a is a kn-chain because a appears strictly less than kn times in
c′. In other words, a is not the most frequent label in step1, . . . ,stepn. This can
be shown as follows by considering that

n∑
i=1

F(a,stepi) +R(stepi)
<

n+1∑
i=1

F(a,stepi) +R(stepi)
and provided that

max
a∈Σ
{ n∑
i=1

F(a,stepi) +R(stepi)}
=

max
a∈Σ
{n+1∑
i=1

F(a,stepi) +R(stepi)}
we conclude the case because

n∑
i=1

F(a,stepi) +R(stepi) < kn

In the following we denote by ca the fact that a is the last symbol of the chain c,
that is c = c′.a.

[stepn+1 = descendant ∶∶ a] In this case

τn+1 = ⋃
c∈Γ(x)

TCd
(ACd

( c , descendant) , a )

= { c.ca ∈ Cd ∣ c ∈ Γ(x) }
Given c.ca ∈ τn+1, by inductive hypothesis there exists a kn-chain c′ ∈ Γ(x) such
that c ↪∗d c′. By Lemma 9.2.6 the suffix ca can be folded to a 1-chain. 2 At this
point we have that c.ca ↪∗d c′.c′a. Provided that c′ is a kn-chain and c′a is a 1-chain,
c′.c′a is (1+kn)-chain. We conclude since R(descendant) = 1 and thus kn+1 = kn+1.

[stepn+1 = descendant−or−self ∶∶ a] Analogous to the case descendant.

[stepn+1 = parent ∶∶ a] In this case

τn+1 = ⋃
c∈Γ(x)

TCd
(ACd

( c , parent) , a )

= { ca ∣ c = ca.b ∈ Γ(x) }
2Notice however that c2.a↪

∗
d c
′
2 does not imply c2 ↪

∗
d c
′
2. For instance, b.a.b ↪d b, yet b.a /↪d b.
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where b ∈ Σ ∪ {String}.
We want to show a folding for ca.b and for ca. By inductive hypothesis, for each
cb = ca.b ∈ Γ(x) there exists a kn-chain c′b in Γ(x) such that cb ↪

∗
d c
′
b. We have two

cases to consider, depending on wether a and b are mutually recursive or not.

If a and b are not mutually recursive (a⇒d b but /b⇒∗d a) then none of the chains
belonging to Cd has a cycle involving the two types. So by folding cb to c′b the
suffix a.b is preserved. Let c′b = c

′
a.b, we conclude since ca ↪

∗
d c′a.

If a and b are mutually recursive (a⇒∗d b and b⇒∗d a) then the are two cases to
consider. If the prefix a.b is preserved by some foldings then we conclude. We
discuss the case where the prefix a.b is never preserved by any folding to c′b. This
happens if the schema enforces that b is always defined in terms of a (i.e., a is
always a descendant of b) not the other way.

Notice that in this case b ≠ String and necessarily b ∈ Σ. This implies that the first
occurrence of b precedes any occurrence of b in the input chain cb, hence cb is of
the form

cb = c1. b .b1 .. bn .a .b´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w

and the cycle w is folded in order to respect the multiplicity value kn, thus obtaining
c′b = c

′
1.b.

3

Then we do the following construction. Take w′ = b.wa.b as the folding of w, where
last(wa) = a and wa.b is a 1-chain. Concatenate c′

1
with w′, thus obtaining a(1+kn)-chain

c′ = c′1.w
′

Now it remains to show that kn+1 = 1 + kn. We show it by contradiction. Assume
kn+1 = kn. Then, as shown for the case axis = child, a is not the most frequent
label in step1, . . . ,stepn. Since a belongs to wa, then also this symbols are not
the most frequent in step1, . . . ,stepn. Thus there exists a chain c′a preserving the
suffix b.a. A contradiction.

[stepn+1 = ancestor ∶∶ a] In this case

τn+1 = ⋃
c∈Γ(x)

TCd
(ACd

( c , ancestor ) , a )

= { ca ∣ c = ca.c′ ∈ Γ(x) }
with c′ ≠ ǫ. We want to show a folding for ca.

We have two cases to consider, depending on wether a is recursive or not.

3This happens for instance for schemas such as d1 = {s ← a; a← b?} or d2 = {s ← (a,b); a← b?; b ← a∗}
or d3 = {s ← a; a← b1?; . . . bn−1 ← bn;bn ← a} and a query such as q = //a/parent ∶∶ a
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If a is not recursive, then no chain in Cd has a cycle involving a. The type a is
in a path between two distinct strongly-connected components of the dependency
graph induced by the schema. Therefore c = ca.c2 is of the form

c = c1.a. c2

where c1 and c2 do not share any label. By inductive hypothesis, there exists a
kn-chain c′ ∈ Γ(x) such that c ↪∗d c′. Since c1 and c2 do not share any label, it is
easy to see that

c′ = c′1.a. c
′
2

where ci ↪
∗
d c′i, and c′i is a kn-chain, (i = 1,2). Then c′ = c′1.a is a kn-chain folding

of ca, and a kn+1-chain as well.

If a is recursive, then we distinguish two sub cases cases. If step
1
, . . . ,stepn do

not employ any recursive axis, then no c ∈ Γ(x) need to be folded. Therefore the
proof is concluded straightforwardly by inductive hypothesis on the derivation of
the expression that generated the chains for x.

Otherwise, if some steps in step
1
, . . . ,stepn employ a recursive axis then, anal-

ogously to the case of axis = parent, the label a may not be preserved by the
folding relation. If a is preserved then the conclusion is immediate. We assume
this is not the case.

By inductive hypothesis, there exists a kn-chain c′ ∈ Γ(x) such that c↪∗d c′, and c′

is of the form
c′ = b1 .b2 . . . bm

and bi ≠ a for all i ∈ {1, ..,m}.
We describe a procedure for constructing the desired kn+1-chain.

For all i = 1..m, if
bi⇒

∗
d a and a⇒∗d bi+1

then construct a new chain from c′, by injecting a word u between bi, such as to
obtain a chain of the form

c′′i = b1 ..bi .u .bi+1 ..bm

such that u = a1 . . . ak is a 1-chain with a ∈ u, and bi⇒d a1 and an⇒d bi+1.

Now, to check that c′′i we obtained from the construction is a chain matching the
semantics of stepn it suffices to check that c′′i ∈ Γ(x). If this is not the case, then
we chose another bi and we repeat the process. If no other bi exists than the step
is unsatisfiable. If c′′i ∈ Γ(x) then we define c′′i = c′′a .c

′′, where c′′a is the prefix of
c′′i terminating with a. According to chain inference for the ancestor axis, we have
that c′′a ∈ τn+1 with c′′a is a (1+kn)-chain. Because R(ancestor) = 1, kn+1 = 1 + kn
and we conclude. It remains to show that some c′′i constructed as above belong
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to Γ(x). Assume that for all c′′i we have that c′′a ∉ Γ(x) then we conclude that
step1, . . . ,stepn do not employ recursive navigations. A contradiction.

[stepn+1 = following−sibling ∶∶ a] In this case

τn+1 = ⋃
c∈Γ(x)

TCd
(ACd

( c , following−sibling ) , a )

= { cp.a ∣ c = cp.b ∈ Γ(x) ,b <d(cp) a }
We want to show a folding for cp.a. By case axis = parent, we know that there
exists a (1 + kn)-chain c′p.a ∈ τn such that cp.a ↪

∗
d c′p.a. Also, in this case the last

label of c′p may be a as well. Now independently from whether a = a or not c′p.a

is a 1 + kn-chain, as well as c′p.a. If kn+1 = 1 + kn, then we conclude. Otherwise, if
kn+1 = kn then, analogously to the case axis = child, we can show that a is not
the most frequent label in step

1
, . . . ,stepn, and thus that c′p.a is a kn-chain.

◻

Remark 9.2.7. As a direct corollary of the lemma we can approximate the problem of
query unsatisfiability in presence of a schema just looking on query k-chains. Indeed, if
no k-chain is inferred for the input query expression, then no data match query needs.
Moreover, for the subset of queries and schemas that make our chain inference system
enjoying completeness, we can exactly determine wether a query is satisfiable or not in
presence of a schema.

9.2.2 Folding Lemma with conflict preservation

In this section we prove Lemma 4.4.5, by showing the existence of a folding relation that
preserves also conflicts among chains. We show that such a folding exists for a pair of
expressions if the multiplicity value we take is the sum of the multiplicity value of each
expression.

Lemma 9.2.8. Let d be a DTD, q1,q2 two queries with at most only one free variable
x, and Γ = { x ↦ sd } a static environment. For all q′i ∈ LPQ(qi), provided that Γ ⊢Cd

q
′
i ∶(ri, vi, ei) and τi = ri ∪ vi ∪ ei, for each chain c ∈ τ there exists a chain c′ ∈ τ such that

c ↪∗d c′ and c′ is a kq-chain. For each pair of chains (c1, c2) ∈ τ1 × τ2 such that c1 ⪯ c2,
there exists (c′1, c′2) ∈ τ1 × τ2 such that c′1 ⪯ c′2 and ci ↪

∗
d c′i with c′i a (kq′

1
+kq′

2
)-chain(i=1,2).

Proof. We consider first the case when c1, c2 are either used or return chains. Since
c1 ⪯ c2, we have that c2 is the longest chain and we make a case analysis on q2. We
distinguish three main cases depending on whether q2 contains some recursive axis or
not. If q2 does not contains (forward or backward) recursive axis, τq2 is finite. Moreover,
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all chains in τq2 have height upper bounded by ∣q2∣ and label frequency upper bounded
by

kq2 =max
a∈Σ
{ ∑
step∈q2

F(a,step)}
Since c1 ⪯ c2, it follows that c1 is a kq2 -chain as well. Let k=kq1 + kq2 we conclude
that all pairs of conflicting chains are k-chains, as desired. Notice that if q2 also uses
recursive backward navigation the statement still hold. As a matter of facts, a backward
navigation would just backtrack on the input chain, without affecting the property that
chains inferred for q2 are kq2 chains.

If q2 uses at least one recursive forward axis, then an upper bound of the label
frequency of chains witnessing the conflict is

k = kq1 + kq2

The case requiring the largest k value occur when each prefix of q2 navigates some
descendant of nodes selected by q1, in the sense that c2 ∈ τq2 , when q2 has only one free
variable x, and the chains are derived with the judgment

Γ[x ↦ c1] ⊢Cd
q2 ∶ τq2

In this case let q1 ○ q2 be the composition of the two expressions, that is 4

q1 ○ q2
def
= for x̄ in q1 return q2

By definition we have that kq1○q2 = kq1 + kq2 . By Lemma 4.4.4 we can fold c ∈ τq1○q2
to a kq1+q2-chain c′, such that c′ is of the form c′1.c

′′, with c′1 a kq1-chain for q1 and c′ a(kq1+kq2)-chain for q2, thus exhibiting a pair of folded chains as desired.

In the remaining case where some q′2 prefix of q2 does not navigate descendants of
nodes returned by q1, then either q′2 is navigating some ancestors of types returned by
q1, or q′2 is navigating in parallel a node which is also navigated by q1 (and of course in
order to have a conflict, a sibling navigation should follow in the sequel). In both cases
we need a multiplicity value upper bounded by the one given by the case shown above,
when each q′

2
prefix of path q2 navigates some descendant of c1.

Correctness when either c1 or c2 are element chains follows, since element chains are
either completely specified, and then folding is not needed (seen that label frequency is
precisely kept into account by F(, )), or they have an head completely specified and tail
taken from a return chain, for which we assume the thesis holds by induction.

4Notice that q1 ○ q2 may not be linear anymore, thus with a little abuse of notation we denote by
q1 ○ q2 also R●for(q1 ○ q2)
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Notice that the lemma states something stronger than what is needed for query-
update independence purpose. In fact, it does not only concern used and return chains,
but it also takes into account element chains, even if they are not involved in the definition
of independence.

As before, we generalize from lp queries to the whole language.

Lemma 4.4.5 (k-folding and conflict preservation) Let d be a DTD, q1,q2
two queries with at most only one free variable x, and Γ = { x↦ sd } a static environment.
Provided that Γ ⊢Cd

qi ∶ (ri, vi, ei) and τi = ri ∪ vi ∪ ei, for each pair of chains (c1, c2) ∈
τq1 × τq2 such that c1 ⪯ c2, there exists (c′1, c′2) ∈ τq1 × τq2 such that c′1 ⪯ c

′
2 and ci ↪

∗
d c′i

with c′i a (kq1+kq2)-chain (i=1,2).

Proof. Let LPQ(qi) be the set of linear-path queries associated to qi, and k′i =max{kq′
i
∣q′i ∈

LPQ(qi)}. By Lemma 9.2.2 we have that τLPQ(qi) ⊇ τqi . Moreover, by Lemma 9.2.8 all pair
of chains (c1, c2) ∈ τLPQ(q1) × τLPQ(q2) can be folded to a pair of (k′

1
+k′

2
)-chains preserving

the conflict, and by Proposition 9.2.4 k′i ≤ kqi . Thus all chains in τq1 × τq2 can be folded
into kq1+kq2-chains.

Remark 9.2.9. As a direct corollary of Lemma 4.4.5 we can approximate the problem
of queries disjunction in presence of a schema just looking on query k-chains. Indeed, if
no pair of conflicting k-chain is found for the input query expressions, then no nodes are
selected by both input query expressions on any valid document instance. Furthermore,
for the subset of queries and schemas that make our chain inference system enjoying
completeness, we can exactly solve the query intersection problem in presence of a schema.

We conclude this section by showing the equivalence of the chain analysis in the
infinite and finite case.

Theorem 9.2.10. Let d be a DTD, q a query and u an update, with at most only one
free variable x and Γ = { x ↦ s } a static environment. Then, q ⊥Cd

u iff q ⊥Ck
d
u.

Proof. Direction ⇒) is straightforward since Ck
d ⊆ Cd. We show now direction ⇐) by

showing that q/⊥Cd
u implies q/⊥Ck

d
u.

By structural induction on u.
Base.

[u = ()] No chain is inferred for the empty update, hence it is independent wrt any
query.
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[u = delete q0] In this case q/⊥Cd
u implies

confl(rq,Uu) ∪ confl(Uu, rq) ∪ confl(Uu, vq) ≠ ∅
Since Uu = rq0 (up to ”:” separator), let k = kq + kq0 .
By lemma 4.4.5

confl(rq, rq0) ≠ ∅ implies confl(rkq , rkq0) ≠ ∅
confl(rq0 , rq) ≠ ∅ implies confl(rkq0 , rkq) ≠ ∅
confl(rq0 , vq) ≠ ∅ implies confl(rkq0 , vkq) ≠ ∅

and therefore we conclude q/⊥Ck
d
u.

[u = rename q0 as a] In this case q/⊥Cd
u implies

confl(rq,Uu) ∪ confl(Uu, rq) ∪ confl(Uu, vq) ≠ ∅
Recall that Uu = U1 ∪U2 where

U1 = { c ∶b ∣ c.b ∈ rq0 } and U2 = { c ∶a ∣ c.b ∈ rq0 }
For all conflicting update chain belonging to U1 we conclude as for the delete

case.

For all conflicting update chain belonging to U2 we make a case analysis on the
kind of conflict.

confl(rq,U2) For all (cq, cu) ∈ rq×U2 such that cq ⪯ cu we have two cases to consider: cq ≺ cu
and cq = cu. If cq ≺ cu then confl(rq,U2) ≠ ∅ if and only if confl(rq,U1) ≠
∅ because the conflict arises on a label preceding the renamed one. Then
reasoning as for U1 we conclude q/⊥Ck

d
u. If cq = cu, we distinguish again if

confl(rq,U1) ≠ ∅ or not. If confl(rq,U1) ≠ ∅ then we conclude q/⊥Ck
d
u as before.

If confl(rq,U1) = ∅ then in order for the update to be valid wrt the schema a is
required to be a sibling of a type returned by q0. Since confl(rq,U1) = ∅ then
c.b/∈r0 and this means that q0 specifies a label b ≠ a in the step generating c.b.
We modify q0 substituting b with a and we conclude by Lemma 4.4.5 on q,q0
noticing that adding a a tag in q0 raises a label frequency of 1 at most.

confl(U2, rq) For all (cu, cq) ∈ U2×rq such that cu ⪯ cq we only consider: cu ≺ cq since cq = cu
has been adressed in the case of confl(rq,U2). With a case analysis on the
emptiness of confl(U1, rq) and by substituting a with b in q0, we conclude
q/⊥Ck

d
u as before.

confl(U2, vq) Identical to confl(U2, rq).
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[u = insert q1 pos q0] In this case q/⊥Cd
u implies

confl(rq,Uu) ∪ confl(Uu, rq) ∪ confl(Uu, vq) ≠ ∅
We consider the case pos = into since other cases are similar. Recall that U =
U1 ∪U2 where

U1 = { c ∶e ∣ c ∈ rq0 e ∈ eq1 }
U2 = { c ∶α.c′ ∣ c ∈ rq0 c1.α ∈ rq1c1.α.c

′ ∈ Cd }
We consider first conflicts generated by U1

confl(rq,U1) For all (cq, cu) ∈ rq × U1 such that cq ⪯ cu, let cu = c ∶ e we have two cases to
consider depending on wether cq ⪯ c or c ≺ cq.

If cq ⪯ c, by Lemma 4.4.5 on q,q0 we can fold cq to c′q and c to c′ with
c′q, c

′ both (kq+kq0)-chains. Since e is created by element construction it is
completely specified and it is easy to see that c′.e is a (kq+ku)-chain.

If c ≺ cq by Lemma 4.4.5 on q,q0 we can fold cq to c′q and c to c′ with c′q, c
′ both(kq+kq0)-chains. Let e ⪯ e such that c.e = cq, since e is completely specified

by query syntax by in the element construction then we have c′′q = c
′′.e as a

folding of cq that preserves e as a suffix, with c′′ a folding of c as prefix, and c′′q
is a (kq+kq0)-chain. Also, of course c′′.e is a (kq+ku)-chain and we conclude
q/⊥Ck

d
u.

confl(U1, rq) Analogous to confl(rq,U1).
confl(U1, vq) Analogous to confl(rq,U1).

Concerning U2, we want to show that we can restrict the conflict analysis on a
subset of U2 namely U′2 defined as

U′2 = { c ∶α ∣ c ∈ rq0 c1.α ∈ rq1 }
• If confl(rq,U2) = ∅ then either confl(rq,U′2) or confl(U′

2
, rq).

• If confl(U2, rq) = ∅ then confl(U′
2
, rq).

• If confl(U2, vq) = ∅ then confl(U′
2
, vq).

The proof for confl(r,U′2) follows as for the rename case.

[u = replace q0 with q] The statement follows as a combination of delete and insert

cases.

Induction.

[u = u1,u2] By inductive hypothesis on u1,u2.
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[u = for x in q return u1 ] By inductive hypothesis on the length of the derivation
for q and then for u. Analogous to the case of Lemma 9.2.5.

[u = let x ∶= q return u1 ] Analogous to the for case.

[u = if (q) then u1 else u2] By inductive hypothesis on the length of the derivation
for q,u1 and u2.

Theorem 9.2.11 (Soudness of Ck
d Independence). Let d be a DTD, q a query and u

an update, with at most only one free variable x, which is always bound, during static
analysis, to the root type sd and, during query evaluation, to the root location lt of a valid
tree t ∈ d. Let k = kq + ku as defined above, then q ⊥Ck

d
u implies q ⊧ d u

Proof. Straightforward since by Theorem 9.2.10 q ⊥Cd
u iff q ⊥Ck

d
u, and by Theorem

4.4.2 q ⊥Cd
u implies q ⊧ d u.



Bibliography

[AAD+12] Serge Abiteboul, Yael Amsterdamer, Daniel Deutch, Tova Milo, and Pierre
Senellart. Finding optimal probabilistic generators for XML collections. In
ICDT, 2012.

[AFL02] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On verifying consistency
of XML specifications. In PODS, 2002.

[AYCLS01] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh
Srivastava. Minimization of tree pattern queries. In SIGMOD, 2001.

[BBC+11] Mohamed Amine Baazizi, Nicole Bidoit, Dario Colazzo, Noor Malla, and
Marina Sahakyan. Projection for XML update optimization. In EDBT,
2011.

[BC09a] Michael Benedikt and James Cheney. Schema-based independence analysis
for XML updates. In VLDB, 2009.

[BC09b] Michael Benedikt and James Cheney. Semantics, types and effects for XML
updates. In DBPL, 2009.

[BC10] Michael Benedikt and James Cheney. Destabilizers and independence of
XML updates. PVLDB, 3(1), 2010.

[BCCN06] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo, and Kim Nguyen.
Type-based XML projection. In VLDB, 2006.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In ICFP, 2003.

[Ben10] Michael Benedikt. Analysis of declarative updates: invited talk. In
EDBT/ICDT Workshops, 2010.

[BGMM09] Henrik Björklund, Wouter Gelade, Marcel Marquardt, and Wim Martens.
Incremental XPath evaluation. In ICDT, 2009.

[BK06] Michael Benedikt and Christoph Koch. Interpreting tree-to-tree queries. In
ICALP, 2006.

181



182 BIBLIOGRAPHY

[BK09] Michael Benedikt and Christoph Koch. From XQuery to relational logics.
ACM TODS, 34(4), 2009.

[BNSV10] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren.
Inference of concise regular expressions and DTDs. ACM TODS, 2010.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, FranŊois
Yergeau, and John Cowan. Extensible Markup Language (XML) 1.1 (Second
Edition). Technical report, W3C Consortium, 2006.

[BTCU10a] Nicole Bidoit-Tollu, Dario Colazzo, and Federico Ulliana. Detecting XML
query-update independence. 26ème journée des Bases des données Avancées,
2010.

[BTCU10b] Nicole Bidoit-Tollu, Dario Colazzo, and Federico Ulliana. Detecting XML
query-update independence. International Formal Methods Workshop, 2010.

[BTCU12] Nicole Bidoit-Tollu, Dario Colazzo, and Federico Ulliana. Type-based de-
tection of XML query-update independence. PVLDB, 5(9), 2012.

[CCF+06] Don Chamberlin, Michael Carey, Daniela Florescu, Donald Kossmann, and
Jonathan Robie. XQueryP: Programming with XQuery. In XIME-P, 2006.

[CGM11] Federico Cavalieri, Giovanna Guerrini, and Marco Mesiti. Updating XML
schemas and associated documents through exup. In ICDE, 2011.

[CGMS06] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Static
analysis for path correctness of XML queries. Journal of Functional Pro-
gramming, 16, 2006.

[CGS11] Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Schemas for Safe and
Efficient XML Processing, 2011. Tutorial - ICDE.

[Che08] James Cheney. FLUX: FunctionaL Updates for XML. In ICFP, 2008.

[Che09] James Cheney. XQuery Update analysis tools version 0.1, 2009.
http://homepages.inf.ed.ac.uk/jcheney/programs/.

[CM01] James Clark and Makoto Murata. RELAX NG specification, 2001.

[DFF+10] D Draper, P Fankhauser, M Fernandez, A Malhotra, K Rose, M Rys,
J Siméon, and P Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics.
Technical report, World Wide Web Consortium, 2010.

[DM06] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical
report, 2006.

[FCG04] Wenfei Fan, Chee Yong Chan, and Minos N. Garofalakis. Secure XML
querying with security views. In SIGMOD, 2004.



BIBLIOGRAPHY 183

[Fra05] M. Franceschet. XPathMark - An XPath benchmark for XMark generated
data. In XSym, 2005.

[GL08] Pierre Genevès and Nabil Layaïda. XML reasoning solver user manual.
Technical report, R. Report 6726, INRIA, 2008.

[GLS07] Pierre Genevès, Nabil Layaïda, and Alan Schmitt. Efficient static analysis
of xml paths and types. PLDI, 2007.

[GORS08] Giorgio Ghelli, Nicola Onose, Kristoffer Rose, and Jerome Simeon. XML
query optimization in the presence of side effects. In SIGMOD, 2008.

[Gra03] Hervé Grall. Deux critères de sécurité pour l’exécution de code mobile. Thése,
École des Ponts ParisTech, 2003.

[GRS06] Giorgio Ghelli, Christopher Ré, and Jérôme Simèon. XQuery!: An XML
query language with side effects. In EDBT Workshops, 2006.

[GRS08] Giorgio Ghelli, Kristoffer Høgsbro Rose, and Jérôme Siméon. Commutativity
analysis for XML updates. ACM TODS, 2008.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation
and optimization in semistructured databases. In VLDB, 1997.

[Hid03] Jan Hidders. Satisfiability of XPath expressions. In DBPL, 2003.

[HKL05] Beda Christoph Hammerschmidt, Martin Kempa, and Volker Linnemann.
On the intersection of XPath expressions. In IDEAS, 2005.

[HU00] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation, Second Edition. Addison-Wesley, 2000.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression
types for XML. ACM Trans. Program. Lang. Syst., 27(1), 2005.

[JGL12] Muhammad Junedi, Pierre Genevès, and Nabil Layaïda. XML query-update
independence analysis revisited. DocEng, 2012.

[KM11] Nils Klarlund and Anders Moller. MONA version 1.4 user manual. Technical
report, BRICS, 2011.

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Tax-
onomy of XML schema languages using formal language theory. ACM Trans.
Internet Techn., 5(4):660–704, 2005.

[MS03] A. Marian and J. Siméon. Projecting XML documents. In VLDB, 2003.

[MS04] Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment
of XPath. Journal of ACM, 2004.



184 BIBLIOGRAPHY

[PAG10] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nSPARQL: A naviga-
tional language for RDF. Journal of Web Semantics, 2010.

[PV00] Yannis Papakonstantinou and Victor Vianu. DTD inference for views of
XML data. In PODS, 2000.

[RCD+11] J Robie, D Chamberlin, M Dyck, D Florescu, J Milton, and J Simeon.
XQuery update facility 1.0. Technical report, W3C Consortium, 2011.

[RS06] Mukund Raghavachari and Oded Shmueli. Conflicting XML updates. In
EDBT, 2006.

[SCF+07] Jérôme Siméon, Don Chamberlin, Daniela Florescu, Scott Boag,
Mary F. Fernández, and Jonathan Robie. XQuery 1.0: An
XML query language. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xquery-20070123/.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time (preliminary report). In STOC, 1973.

[SWK+02] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark: A benchmark for XML data management. In VLDB,
2002.

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
XML Schema Part 1: Structures Second Edition. Technical report, World
Wide Web Consortium, Oct 2004. W3C Recommendation.

[Vor96] Sergei G. Vorobyov. An improved lower bound for the elementary theories
of trees. In CADE, 1996.


	Introduction
	Preliminaries
	XML
	Schema Languages
	Query and Update Languages 
	Formal Semantics
	Semantics of XPath Steps
	XQuery Semantics
	XQuery Update Semantics

	Query-Update Independence

	Query Update Independence: State of the Art
	Decidability and Complexity of Exact Static Independence Analysis
	Approximate Algorithms
	Schema-based independence analysis for XML updates BenediktVLDB09
	Commutativity analysis for XML updates GhelliRS08
	Destabilizers and independence of XML updates BenediktC10


	Independence Analysis based on Schema-Chains
	Introduction
	Chain Inference
	Step Chain Inference
	Query Chain Inference
	Update Chain Inference

	Correctness and Precision of Chain Inference
	Soundness of Query Chain Inference
	Soundness of Update Chain Inference

	Independence Analysis
	Infinite Analysis
	Finite Analysis
	Soundness of the Finite Chain Analysis


	Implementing the Chain-based Independence Analysis
	Introduction
	Storing Chains on DAGs
	Chain Inference with CDAGs
	Complexity of Chain Inference with CDAGs

	Experiments
	Benchmarks and Experimental Settings
	Experimental Results

	Extensions
	Queries and Updates
	Query rewriting
	New Inference Rules

	Schemas
	Attributes
	Keys and foreign-keys integrity constraints
	Extended DTDs


	Conclusions and Future Perspectives
	Future Perspectives

	Proofs
	Soundness of Chain Inference in the Possibly Infinite Case
	Soundness and Completeness of Schema Type Relations
	Axis chain inference
	Completeness of step chain inference
	Soundness of Query Chain Inference
	Soundness of Update chain Inference
	Soundness of Chain-based Independence

	Soundness of the Chain Analysis for the Finite Case
	Folding Lemma for a Single Expression
	Folding Lemma with conflict preservation



