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Résumé en français

Dans cette thèse je présente les résultats de mes recherches à l’École Centrale de

Lille au cours des trois dernières années, de 2009 à 2012.

Le management de la chaîne logistique (supply chain management: SCM) est

un thème très intéressant avec une portée internationale à la fois dans le domaine

industriel et académique. La disponibilité des ressources dans la chaîne logistique

n’est pas à la hauteur de nos attentes. L’essence de SCM est l’intégration des

ressources pour améliorer les performances des activités de la chaîne logistique.

L’SCM traditionnel est basée sur un environnement statique. Cette hypothèse

idéale n’est pas adaptée à la situation réelle où existent des contraintes de disponi-

bilité et d’incertitude. Beaucoup de chercheurs ont abordés l’aspect incertain

dans les chaînes logistiques, mais pas d’une façon systématique et n’ont pas pro-

posé de méthode générale pour traiter l’incertitude dans les SCM. Les contraintes

de disponibilité et d’incertitude rendent le management de la chaîne logistique

très compliqué. Nos travaux de recherche se focalisent justement sur la prise en

compte de ces difficultés et de présenter à la communauté des méthodologies et

algorithmes pour la résolution des problèmes d’incertitude dans le management

de la chaîne logistique.

Contexte

Depuis l’émergence de la chaîne logistique, cette dernière a été beaucoup étudiée

par les chercheurs et les industriels. Le premier domaine d’utilisation été l’armé

pour son approvisionnement. Dans les années 90, le SCM a connu une ascension

importante en attirant les attentions des gestionnaires des grandes entreprises.

Les recherches menées ont permis la mise au point de l’intégration de la gestion
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RÉSUMÉ EN FRANÇAIS

de logistique interne et les relations coopératives entre les différentes sociétés im-

pliquées dans la chaîne de gestion. Ce concept de SCM a permis à de nombreux

gestionnaires de prendre des décisions non pas seulement au point de vue de

leurs entreprise, mais plutôt au niveau de toute la chaîne logistique. La maîtrise

de la chaîne logistique est devenue une arme très importante pour la survie de

l’entreprise. En générale, de nombreuses stratégies et activités dans SCM, telles

que la planification de la chaîne logistique, la coopération des membres de la

chaîne, le processus de fabrication, le transport, opèrent tous dans un environ-

nement statique (certain). Toutefois, dans les faits, nous trouvons beaucoup de

situations d’incertitude dans le SCM, qui se produisent dans le système de fabri-

cation, la procédure de distribution, dans les marchés de l’offre et de la demande.

Ces incertitudes que nous ne pouvons pas prévoir vont influencer considérable-

ment les opérations de la chaîne logistique. Par exemple, l’approvisionnement en

retard peut affecter le temps de production, puis influencer le délai de livraison et

peut-être le prix de vente. Une modification de la quantité demandée peut induire

à des gaspillages de la production. Une baisse de la productivité aura un impact

sur la quantité de l’approvisionnement, sur le niveau des stocks, et également

sur le prix de vente. Le problème de véhicules dans le processus de distribution

perturbe directement le temps de distribution. Par conséquent, l’incertitude est

un facteur très important dans l’étude de SCM.

Une chaîne logistique est généralement un réseau de services et d’entreprises

qui remplissent les fonctions d’approvisionnement de produits et de matières, de

transformation de matières, et la fabrication et la distribution des produits finis

aux clients. Plus généralement, une chaîne logistique commence à partir de la

matière première et se termine par la livraison au client, elle commence donc par

l’achat des matières premières, puis la fabrication, puis le stock, et ensuite la

transformation et se termine par la distribution.

Bien que la structure et le degré de complexité de la chaîne logistique peuvent

varier considérablement en fonction des secteurs d’activités et des entreprises,

néanmoins, le fonctionnement normal et la structure sont similaires. Nous pou-

vons diviser une chaîne logistique en cinq phases : l’approvisionnement, la fabrica-

tion, le stockage, la distribution, et la demande. Dans chaque phase de la chaîne

logistique, il existe différents types d’incertitudes. Ainsi, nous pouvons nous

concentrer sur l’incertitude dans chaque phase pour analyser ses conséquences
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RÉSUMÉ EN FRANÇAIS

et tenter de réduire son influence. Nos travaux de recherche se distinguent de

l’existant par le fait que nous analysons la chaîne logistique globale même si nous

résolvons le problème partiel (stock, transport, fabrication . . .).

Aperçu de la thèse

Dans chaque chapitre, nous traitons l’incertitude dans un stade de la chaîne

logistique. Nous nous concentrons sur les problèmes classiques dans SCM. Pour

chaque type d’incertitude, tout d’abord, nous donnons un aperçu de ce qui existe

dans la littérature, puis nous introduisons l’algorithme pour résoudre le problème,

et nous finissons par présenter des exemples numériques tirés des benchmarks (s’ils

existent) pour démontrer l’efficacité des algorithmes que nous proposons.

Le chapitre 1 est une introduction des recherches existantes sur l’incertitude

dans la chaîne logistique. Tout d’abord, nous introduisons l’importance de con-

sidération de l’incertitude dans l’SCM, et nos motivations pour cette partie. Puis,

nous passons en revue l’état de l’art de la recherche connexe selon notre classifi-

cation de l’incertitude (notre façon de considerér cette incertitude) dans la chaîne

logistique. Et nous concluons cette chapitre par présenter les enjeux et les limites

de cette recherche dans la littérature.

Le chapitre 2 traite l’incertitude dans la demande. A la différence des méth-

odes traditionnelles, telles que le contrôle des stocks dynamiques, l’estimation de

la demande, nous proposons d’appliquer la stratégie d’ajournement pour traiter

la demande incertaine dans SCM. Tout d’abord, nous simplifions le réseau normal

de la chaîne logistique en plusieurs sous-systèmes avec une relation entre l’offre et

la demande. Nous suivons la sens de la circulation de l’information, du consom-

mateur à l’approvisionnement, pour calculer les sous-systèmes, un par un. Afin

de satisfaire la demande inattendue pour chaque sous-système, nous le ferons en

deux étapes, la première consiste à exécuter une réaffectation de la demande aux

fournisseurs en utilisant pleinement le stock existant de ces derniers. La deuxième

étape concerne le cas où la quantité demandée dépasse la possibilité de l’offre.

Dans ce cas, nous appliquons la stratégie d’ajournement de l’approvisionnement

ce qui conduit à autoriser un retard de livraison. La distance de transport pour

la période de l’approvisionnement est utilisée comme fonction objectif pour la

réaffectation des demandes.
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Dans le chapitre 3 nous nous focalisons sur l’aspect incertain dans le système

de production. Nous avons choisi le cas des problèmes de type job-shop pour leur

pouvoir d’adapbilité aux variations des demandes des marchés. L’indisponibilité

des machines est la principale incertitude dans ce type de problème (job-shop),

afin de réduire l’effet de cette dernière, nous suggérons d’utiliser la maintenance

conditionnelle (CBM) qui est une sorte de maintenance préventive permettant

de surveiller le fonctionnement des machines et fournit des données pour la plan-

ification de la machine avant l’apparition de la panne. L’application du CBM

rend le problème de l’ordonnancement de job shop flexible dynamique. Nous

proposons d’insérer les tâches préventive de maintenance (PM) dans un pré or-

donnancement obtenu par la résolution du problème standard d’ordonnancement

du job-shop flexible (FJSP). Pour la résolution de ce dernier (FJSP), nous pro-

posons trois approches: l’algorithme génétique hiérarchique (HGA), l’ algorithme

génétique intégré (IGA) et enfin, un algorithme de colonies de fourmis intégré

(IACO).

Dans le chapitre 4 nous nous intéressons à l’incertitude dans la distribution,

et plus particulièrement au niveau du transport. Nous nous concentrons sur

le problème de tournées de véhicules (VRP) qui a reçu beaucoup d’attentions

ces dernières années. Le problème de tournées de véhicules avec ramassage et

livraison (VRPPD) est une extension de VRP avec deux types de demandes de

clients. Pour traiter cette incertitude dans la distribution pour les clients, nous

modélisons le problème de transport en tant que VRPPD non apparié, dans lequel

les relations de ramassage et de livraison ne sont pas déterminées à l’avance. Un

algorithme de groupement génétique modifié (GGA) est développé pour résoudre

ce VRPPD non apparié. À notre connaissance, c’est la première fois que le

VRPPD non apparié est traité en utilisant des métaheursitques.

Pour le chapitre 5, nous traitons le problème bi-niveau du vendeur de jour-

naux, ce dernier représente à lui seul une chaîne logistique miniature. Deux

classes différentes d’incertitude sont considérées; l’incertitude sur la demande et

celle sur le rendement (ou l’incertitude de l’offre). Dans ce problème bi-niveau,

le vendeur et le fournisseur sont considérés ensemble et doivent avoir une bonne

coopération car ils représentent les deux côtés de la même chaîne. Le rendement

incertain est causé principalement par la quantité incertaine des produits. Nous
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utilisons deux algorithmes populaires pour la résolution de ce type de problème;

l’approche Bayésienne et un algorithme hybride floue intelligent.

Nos contributions

Suite à la revue de la littérature existante, nous pouvons dire qu’il existe beaucoup

de travaux concernant l’incertitude dans la chaîne logistique, mais nos travaux

se distinguent par leur aspect systématique qui traite l’ensemble des problèmes

d’incertitude dans les SCM.

Nous avons en premier lieu, classé l’incertitude en perspectice du management

de la chaîne logistique. En se basant sur des situations pratiques et réelles,

la classification de l’incertitude est complète et couvrira tous les stades de la

chaîne logistique. Nous donnons également les trois principales classifications de

l’incertitude trouvées dans la littérature; à savoir celle de la demande, celle de la

production et celle de la distribution.

En deuxième lieu, pour l’incertitude principale de la chaîne logistique, nous

traitons le problème classique, cependant les méthodes que nous proposées pour

résoudre les trois principales incertitudes ne sont pas des véritables méthodes

parallèles. L’approche que nous proposons pour faire face à l’incertitude de la

demande se situe au niveau de la stratégie appliquée aux SCM permettant de

déterminer la manière de gérer les opérations de la chaîne logistique. La réalisa-

tion de cette stratégie a besoin de l’aide de la part des autres étapes comme la

fabrication, l’approvisionnement et la distribution. Naturellement, nos recherches

se sont dirigées vers ces étapes du niveau opérationnel dans la chaîne logistique

en étudiant de manière concrète de l’incertitude de fabrication à la distribution.

Troisièmement, pour le traitement de l’incertitude dans la distribution aux

clients, nous nous somme concentrés sur le problème de tournées de véhicules

non apparié avec ramassage et livraison (VRPPD). À notre connaissance, c’est

la première fois qu’une métaheuristique est appliquée pour résoudre VRPPD non

apparié.

Quatrièmement, avec l’algorithme génétique intégré, testé sur des instances

de benchmark nous obtenons de meilleurs résultats pour FJSP que ceux présentés

dans la littérature.
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Cinquièmement, nous proposons d’appliquer la maintenance conditionnelle

comme méthode d’entretient préventive pour réduire l’indisponibilité des ma-

chines dans le système de fabrication. L’algorithme de l’insertion que nous avons

proposé pour résoudre le problème d’ordonnancement de job shop flexible avec

la maintenance conditionnelle (FJSPPM) est comparable à un autre algorithme

dans la littérature.

Sixièmement, nous avons démontré l’efficacité de l’algorithme génétique (GA)

que nous avons utilisés dans nos trois exemples de FJSPPM. En outre, dans notre

démarche de résolution de FJSPPM, nous constatons que les résultats trouvés par

GA devancent ceux trouvés par l’algorithme de colonies de fourmis (ACO).

Septièmement, nous proposons deux approches différentes, l’approche bayési-

enne et l’approche à base de variables floues, pour représenter l’incertitude de la

demande et celle du rendement dans le problème du vendeur de journaux. Nous

avons obtenu une valeur de seuil en fonction des paramètres du problème comme

le prix et le coût en utilisant la méthode bayésienne.

Limitation de nos recherches

Toutefois, il existe des limites à nos recherches, tels que le manque de comparaison

avec d’autres approches pour résoudre le VRPPD non apparié ainsi que dans le

problème bi-niveau du vendeur de journaux. Ce manque de comparaison est dû

principalement au manque considérable de recherche dans cette partie et donc

l’inexistance de benchmark, ce qui prouve par la même occasion l’originalité de

notre démarche. Concernant les résultats obtenus pour le FJSPPM, nous pensons

qu’il est encore possible de les améliorer en utilisant de meilleurs heuristiques

et/ou des combinaisons de métaheuristiques. Malheureusement, nous n’avons pas

pu appliquer notre démarche aux problèmes concrets rencontrés dans le monde

industriel afin de pouvoir montrer l’efficacité de nos démarches de résolution.

Néanmoinsn nous espérons pouvoir le faire dans un avenir très proche.
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Introduction

This thesis presents results of my research in École Centrale de Lille in France

during the past three years, from 2009 to 2012.

Supply chain management (SCM) is an attractive theme both in business and

academy in international scope. Availability of resource in supply chain is always

not so optimistic as we expected. The essence of SCM is integrating resource to

improve performance of supply chain activities. Traditional SCM is based on a

static environment. This ideal hypothesis is not suitable for practical situation

where exist constraints of availability and uncertainty. Despite of immense re-

search on uncertainty in SCM, there is no systematic research, neither no general

method for treating uncertainty in supply chain. Constraints of availability and

uncertainty make SCM complicated. Our research is surrounding SCM taking

into account these constraints. We aim to offer some reference to researchers and

decision makers in this research area.

Background

Supply chain has been focused by lots of scholars and practitioners as early as

the concept of logistic emerged. Logistic first emerged in army. With supply

chain the army can get enough support to prepare for the war or defence. Since

1990s, SCM has become a hot topic in business. It has attracted attentions of

high level managers. Research of SCM has developed from integration of inter-

nal logistic management and relationship among cooperated companies to value

addition of the whole value chain. This concept of SCM makes many managers

of enterprizes make decision not at the standpoint of only his company as be-

fore, but at the height of the whole supply chain. In the war of business, supply

chain has become a strong weapon. Generally, many strategies and activities in
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INTRODUCTION

SCM, such as scheduling of supply chain, cooperation of members of supply chain,

process of logistics, transport, manufactures, etc., are all operated in a static en-

vironment imagined. However, factually in procedure of the total SCM, there are

many uncertain cases occurring in manufacturing system, distribution procedure,

demand markets, and supply. Uncertainties which we cannot know predictably

will influence supply chain operations. For example, delayed supply may affect

production time then influence delivery time and maybe selling price. Changed

demand quantity may induce waste of production. Decline in productivity will

impact quantity of supply, inventory level, and also selling price. Problems of

vehicles in distribution process will disturb directly distribution time. Therefore,

dealing with uncertainty is a very important task in SCM.

A supply chain is generally a network of facilities and companies that per-

form the functions of procurement of materials, transformation of materials into

intermediate and finished products, manufacturing, and distribution of finished

products to customers. More generally, a supply chain begins from the raw ma-

terials and ends at the customer, consisting purchasing of raw materials, man-

ufacturing, stock, transformation and distribution. Although the structure and

degree of complexity of supply chain may vary greatly in different industries and

in different firms, the normal function and structure are similar. We can divide

a supply chain into five phases: supply, manufacturing, stock, distribution, and

demand. In each phase of supply chain, there exists uncertainty. Thereby we can

concentrate on uncertainty in each phase to analyze its consequence and attempt

to reduce its influence. The difference of our work to existing research of distinct

type of uncertainty in supply chain is that even when we concentrate on concrete

problem in supply chain, we analyze the problem from the standpoint of SCM.

Outline of the thesis

In each chapter, we treat uncertainty in a certain stage of supply chain. We

concentrate on classic problems in SCM. For each kind of uncertainty, firstly we

give a literature survey, and then we introduce algorithm to solve the problem,

at last numerical examples in benchmark in literature are used to demonstrate

effectiveness of our proposed algorithms.
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INTRODUCTION

Chapter 1 is introduction of existing research about uncertainty in supply

chain. Firstly, we introduce the significance of research of SCM with uncertainty

in consideration, which is our motivation of the research. Then, we survey the

state of the art of related research according to our classification of uncertainty in

supply chain. This classification is also the way we consider uncertainty in SCM.

Limitations and challenges of research in literature is concluded.

Chapter 2 concentrates on treating uncertainty in demand. Different from the

traditional methods, such as dynamic inventory control, estimation of demand,

we propose to apply postponement strategy to treat uncertain demand in SCM.

Firstly, we simplify normal supply chain network with different stages into several

sub systems with relationship of demand-supply. We follow the direction of flow

of information, from consumer market to material supply, to calculate the sub

systems one by one. For each sub system, to satisfy unexpected demand, we

satisfy them during two stages. In the first stage, we execute reallocation of

demand to suppliers to make full use of existing stock of suppliers. For demand

quantity exceeding supply quantity, we postpone supply to it to a delayed delivery

time allowed, which is the second stage. Transport distance during supply period

is considered as objective function to reallocate demand to suppliers.

Chapter 3 focuses on the problem in manufacturing system with uncertainty

in consideration. Job shop, as an adaptive manufacturing mode for variation of

products in consuming market, is chosen for our research in manufacturing sys-

tem. Unavailability of machines is the most important type of uncertainty in job

shop. To reduce this uncertainty, we suggest using condition based maintenance

(CBM), a sort of preventive maintenance to monitor machines’ situation and pro-

vide data to plan maintenance before machines’ breakdown. Application of CBM

makes flexible job shop scheduling problem (FJSP) dynamic. We propose an in-

serting algorithm to add PM into preschedule obtained in normal FJSP. To solve

traditional FJSP, we propose three approaches, a Hierarchical Genetic Algorithm

(HGA), an Integrated Genetic Algorithm (IGA), and an Integrated Ant Colony

Optimization (IACO).

Chapter 4 highlights uncertainty in distribution, especially in transportation

stage. We focus on vehicle routing problem (VRP) which is paid unabated atten-

tions in last several decades. Vehicle routing problem with pickups and deliveries

(VRPPD) is an extension of VRP, allowing two different sorts of demand of
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clients. To treat uncertainty of clients during distribution, we model the trans-

portation problem as unpaired VRPPD, in which relationship of pick up and

delivery are not determined in advance. A modified grouping genetic algorithm

(GGA) is developed for solving unpaired VRPPD. To our knowledge, this is the

first time using metaheursitc for solving unpaired VRPPD.

Chapter 5 is an application of considering uncertainty in a supply chain. We

focus on bi-level newsboy problem, which is a miniature of supply chain. Two dif-

ferent classes of uncertainty are considered, demand uncertainty and yield uncer-

tainty which can also be called supply uncertainty. In bi-level newsboy problem,

newsboy is considered together with his supplier. Both sides are with a good

cooperation relationship. Research of bi-level newsboy problem is critical and

basic to the research of SCM. In newsboy problem we conclude that to the de-

cision maker, the newsboy, uncertain yield of the manufacturer is caused mainly

by uncertain qualification ratio of products. We adopt two popular algorithms

to solve this kind of newsboy problem, the Bayesian approach and fuzzy hybrid

intelligent algorithm.

Contributions of our research

From literature review, we can see that there has been immense research on

uncertainty in supply chain, but our work is the first to give a systematic research.

Firstly, we classify uncertainty from the perspective of supply chain manage-

ment. Based on analysis of supply chain in practical situation, classification of

uncertainty is complete and can cover all stages of supply chain. In addition

to classification method, we give literature review for the three main classes of

uncertainty, uncertainty in demand, distribution and manufacturing.

Secondly, for uncertainty in the main stage of supply chain, we focus on classic

problems to treat them. However, our proposed methods for treating the three

main kinds of uncertainty are factually not parallel. The approach of coping

with uncertainty in demand is at the strategic level of SCM, as it determines the

management manner of supply chain operations. Realization of the strategy needs

assistance of other stages in supply chain, distribution, manufacturing, supply,

etc. Direction of our research is naturally directed to these stages of operational
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level in supply chain. Rather than vague discussion, we consider uncertainty in

concrete executing manner of distribution and manufacturing.

Thirdly, for treating uncertainty of clients in distribution, we focus on un-

paired vehicle routing problem with pickups and deliveries (VRPPD). To our

knowledge, this is the first time of applying metaheuristic to solve unpaired

VRPPD.

Fourthly, with integrated genetic algorithm, we get a better result of an in-

stance in a benchmark for FJSP than that in literature.

Fifthly, we propose to apply condition based maintenance as preventive main-

tenance to reduce unavailability of machines in manufacturing system. The in-

serting algorithm we proposed to solve flexible job shop scheduling problem with

preventive maintenance (FJSPPM) is comparable with another algorithm in lit-

erature.

Sixthly, we have demonstrated the effectiveness of genetic algorithm (GA)

which we have used in three instances of FJSPPM. Furthermore, in procedure of

solving FJSPPM, we find that GA outperforms ant colony optimization (ACO).

Seventhly, we propose two different approaches, Bayesian approach and fuzzy

variable, to represent uncertainties of demand and yield in newsboy problem. We

have obtained a threshold value of relationship between price parameters when

using Bayesian method to solve the problem.

Limitation in our research

There exist limitations in our research, such as lack of comparison with other

approaches in solving unpaired VRPPD and bi-level newsboy problem. This is

actually because there is no benchmark for the research, which just shows orig-

inality of our research. Improvement of results in FJSPPM is needed. Better

heuristic and combination of metaheuristic can be endeavored. We are look for-

warding to do some research in these aspects. Furthermore, we do not have any

applicatory case of supply chain to demonstrate capability of our strategy and

approaches in solving practical problems. We hope there will be some case studies

in this domain.
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Chapter 1

Uncertainty in supply chain

Traditional supply chain management (SCM) is generally based on a static and

determined environment, including deciding production plan, inventory level, dis-

tribution strategy, etc. However, in practical cases, there are always some un-

certain factors impacting execution of plan of decision makers. We give some

examples in literature about the important sense of considering uncertainty in

SCM. The significance of the research topic is just motivation of our research. In

this chapter, we analyze the potential occurring of uncertainty in supply chain and

propose a classification for it. According to this classification, we give a survey

of research on uncertainty in supply chain in literature, the problem focused and

approaches deployed to treat them.

1.1 Supply chain management

Supply chain has been focused by lots of scholars and practitioners as early as

the concept of logistic emerged. Logistic first emerged in armies. With supply

chain the army can get enough support to prepare for the war or defence. Since

1990s, supply chain management (SCM) has attracted attentions of the high level

managers. Research of SCM has developed from integration of the internal logistic

management and relationship among cooperated companies to the efficiency and

the value addition of the whole value chain. SCM involves wide range of areas

and multidisciplinary application. It can conclude various activities and decision

making in each stage of a supply chain.

29



1. UNCERTAINTY IN SUPPLY CHAIN

The concept of SCM in business makes managers of enterprizes make decision

not at the standpoint of only his company as before, but at the height of the

whole supply chain. In the war of business, supply chain has become a strong

weapon. Generally, many strategies and activities in SCM, such as scheduling of

supply chain, cooperation of members of supply chain, process of logistics, trans-

port, manufactures, etc., are all operated in a static environment. However, in

the real process of the total SCM, there are many uncertain cases occurring in

manufacturing, distribution, demand markets, supply, and other stages in supply

chain. Uncertainties which we cannot know predictably can easily influence sup-

ply chain operations. For example, delayed supply may affect production time

and consequently influence delivery time and probably selling price. Changed de-

mand quantity may induce production waste. Decline in productivity may impact

easily supply quantity, inventory level, and selling price. Problems of vehicles in

distribution process will disturb directly distribution time. From these examples

we can state that dealing with uncertainties is a very important theme in SCM.

1.2 Significance of considering uncertainty in SCM

Uncertainty may induce disturbs in SCM. If we do not consider uncertainty in

planning of supply chain activities, it will not carry on in the way we expected.

Uncertainty impact performance of supply chain in different dimensions. Vorst

et al. (1998) stated that SCM should be concerned with reduction or even elim-

ination of uncertainty to improve performance of supply chain. The results of

case study suggested that reduction of uncertainty can improve service levels

significantly. According to industrial survey conducted by Protiviti and APICS

(American Production and Inventory Control Society), 66% of respondents con-

sidered supply interruption as one of the most significant concerns among all the

supply chain related risks. Mula et al. (2006) indicated that models for produc-

tion planning which do not recognize the uncertainty can be expected to generate

inferior planning decisions as compared to models that explicitly account for the

uncertainty. Koh & Saad (2003) suggested diagnosing uncertainties to help get

the optimum performance of delivery. Therefore, we can observe the sense of

considering uncertainty in SCM. Yu & Li (2000) stated that a critical role of
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1.3 Research review about uncertainty in supply chain

a logistic manager was how to make an optimization decision under uncertain,

noisy, and incomplete information.

1.3 Research review about uncertainty in supply

chain

Despite of wide range of activities SCM covers, the primary task is often described

as uncertainty reduction (Davis, 1993; Mason-Jones & Towill, 1998). Risk and

uncertainty are synchronous. Even they are seen as synonymous (Helliar et al.,

2001). Risk may be seen as a consequence of uncertainty (Lalwani et al., 2006).

Knight (1921). In his seminal work on risk and uncertainty, he ascertained that

change in itself is not a risk but that the future uncertainties associated with

change may well be risky. Risk is defined as the possibility of bringing about

misfortune or loss while uncertainty is associated with those things that are not

able to be accurately known or predicted (Collins Dictionary, 1996). According

to this definition, uncertainty is not certain to bring misfortune to supply, but

it is certainly risky. When there is a large deviation between reality and expec-

tation, performance of results may not be consistent with plan. Even though

reality is better than our expectation, they do not certainly bring benefits. For

example, when order quantity is larger than that of forecasts, sales quantity may

not increase as inventory level is set according to forecast value.

There has already been a lot of research about uncertainty in different sections

of supply chain, even though the researchers do not analyze uncertainty from the

angle of supply chain. We give an overall overview about it in following sub

sections. Relatively, less research of uncertainty is on the standpoint of the whole

supply chain. Different clusters of sources of uncertainty are identified and for

each source of uncertainty, several improvement principles are identified in the

work of Vorst et al. (1998). Study of applying different and balanced forms of

flexibility to cope with uncertainty in turbulent environments was discussed by

Dreyer & Grønhaug (2004). They focus on empirical studies of practical industry,

i.e., fish processing plants in Norway. Although it is demonstrated a successful

strategy, it may conflict with other evaluation criterias. Ottesen & Grønhaug

(2002) stated that, disadvantage of vertical integration, their promising strategy

to reduce uncertain supply, is that it may come at the expense of flexibility.

31



1. UNCERTAINTY IN SUPPLY CHAIN

The two researches are on the same fish industry. It is observed that a strategy

demonstrated appealing may not always be suitable. Ho et al. (2005) deployed

a structural approach to measure supply chain uncertainty and their results for

an e-commerce system produce a validated uncertainty scale that can help in

diagnosing supply chain problems. However, the concrete approach of monitoring

and assessing supply chain performance is only on way of envisaging.

We classify uncertainty in supply chain according to function of various stages.

For a certain supply chain, firstly we decompose it into different phases. For a

typical supply chain, it consists of initial supply of material, manufacturing, dis-

tribution, and consumer market. We hence category literature about uncertainty

in supply chain as follows: uncertainty in demand, supply, manufacturing, and

distribution. Besides these four preliminary sorts of uncertainty, we also refer to

other kinds, which are detailed in one certain scope in supply chain.

1.3.1 Uncertainty in supply

We can define supply from two aspects. One is as mentioned in our work, in the

first phase of supply chain, supply of materials, parts, or semi-finished products

to manufacturers. This kind of supply is of the narrow sense. The other can be

considered as all kinds of supplies to demanders in any relationship of supply-

demand. Such as, retailers of goods to final customers, supplier of a certain

medicament to a clinic, wholesalers to distributors, are all on the side of supply.

This kind of supply is of the broad sense. Literature on uncertain supply are

mostly focusing on supply with broad sense. Most research of supply uncertainty

is on investigating impact of supply uncertainty to performance of organizations

(Boonyathan & Power, 2007; Deo & Corbett, 2010). In research of Boonyathan

& Power (2007), results of analysis of a survey of two kinds of industries, prod-

uct organization and service organization, show that in both industries, supply

uncertainty is a more significant determinant of performance than demand un-

certainty. Influence of uncertain supply and uncertain demand to performance

of supply chain are compared. The implication is to make supply chain manager

decide to focus on which section of supply chain.

Moreover, decision making under uncertain supply is also studied. Anupindi

& Akella (1993) suggested different supply strategy for material supply. They
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address the operational issue of quantity allocation between two uncertain sup-

pliers and its effects on the inventory policies of the buyer. Based on the type

of delivery contract a buyer has with the suppliers, they suggest three models

for the supply process. Shou et al. (2009) studied three scenarios of coordina-

tion of supply chains and gave propositions from three different levels’ strategy,

the operational level, design level and strategic level. Under supply uncertainty

and supply chain competition, there are different optimization decisions of order

quantity in different scenarios. They treated uncertain supply as a quantified

value. Decision of allocation of scarce resource under uncertain supply was stud-

ied by Deo & Corbett (2010). Their model of clinics is discussed to apply into

other intertemporal resource allocation decisions.

From the view of supply chain, Wilding et al. (1998) demonstrated that inter-

nal supply uncertainty can be generated from parallel interactions when members

at the same tier interact because of supply disruption. Lee et al. (1997); Sterman

(1989); Towill et al. (1992) have also found that supply is uncertain because of

the supplier performance. There will be chain reaction of uncertain supply to the

whole supply chain. However, when we analyze impact of uncertain supply, it

is intuitive to observe its direct influence to its down-stream companies. There

is neither little study on the impact of uncertain supply to the whole supply

chain. Therefore, we can conclude that research of uncertain supply should con-

centrate on the first denotation of supply we mentioned above. Our work about

uncertainty in manufacturing and uncertain yield in newsboy problem, which we

introduce in consecutive sections, is also based on this standpoint.

Thereby, for supply in the broad sense, we cannot uniformly discuss its im-

pact, its cause and method to cope with. Concrete problems should be treated

differently. For example, for supply of a supermarket, suppliers are distributors,

or factory with direct supply. Uncertain supply manifests quantity, quality, and

delivery time of goods. Cause of the uncertainty may be different, such as error of

supplier, natural disaster in transportation, delay of supplier of upper level, short-

age of goods, etc. While for a wholesaler, whose supplier is always manufacturer,

supply uncertainty is mainly caused by problems in procedure of fabrication. For

the uncertainty in manufacturing, we will discuss later.

For supply of narrow sense, its direct impact is affecting product planning of

manufacturer. The preliminary cause is shortage of resource. The best way to
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reduce this source is to find substitution for scarce resource. Another cause is

competition in resource market. General treatment is to keep a certain level of

inventory and profitable contract with both suppliers and adversaries.

1.3.2 Uncertainty in demand

Although Boonyathan & Power (2007) state that supply uncertainty is a more

significant determinant of performance than demand uncertainty from the result

of survey in both industries of products and service. From the point of SCM,

it is easy to find that demand uncertainty is more difficult to treat than supply

uncertainty. In supply chain, demand is market, which is dynamic and cannot be

controlled.

1.3.2.1 Factors causing uncertainty in demand

Similar to supply, we also have different definitions for demand. In order to avoid

reduplicative analysis as in previous section of uncertain supply, we would like to

directly define demand as demand in consumer market. Uncertainties in demand

are mainly oscillations and surges of demand. Because market is dynamic, un-

certainty is an inherent characteristic of demand. A common theme in literature

is that internal demand fluctuations are the dominant source of uncertainty in

supply chains (Mason-Jones & Towill, 1998; Taylor, 2000; Towill et al., 1992).

Consumer is the primary factor causing demand fluctuation. Consumers’ neces-

saries, desire and anticipation of consummation, value of consuming, tendency,

belief in the production, manner of consummation, as well as the degree of infec-

tion between consumers can all influence the quantity of consummation. Another

factor impacting demand is the external environment, such as the policy, adver-

tisement, accuracy degree of searching information, production and its life cycle,

and so on.

1.3.2.2 Impact of uncertainty in demand on supply chain

Uncertainties in demand affect easily inventory level of the upstream enterprizes

in supply chain, supply of raw materials, manufacturers, retailers, etc. Some re-

searches verify that impact of uncertainty of demand to the retailer is larger than

that to the manufacturer. Because of demand uncertainty and inaccurate and
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asymmetric information, there is a very universal phenomenon called “Bullwhip

Effect”, which causes hard measurable consequences of poor customer service

level. Meanwhile, this phenomenon deteriorates in the process of broadcasting.

The distance of the broadcasting is longer, the augment of the uncertainty in-

creases. Between the two ends of a supply chain, the material and the consumer,

the deviation is the largest.

1.3.2.3 Conventional methods to cope with uncertainty in demand

As dealing with uncertainties in demand is so urgent, many researchers have con-

sidered it in SCM. In literature, conventional methods of demand estimation and

inventory control are discussed most (Campuzano et al., 2010; Choi et al., 2005;

Kevork, 2010; Reiner & Fichtinger, 2009; Strijbosch & Moors, 2006). Neverthe-

less, the main disadvantage of traditional methods is that they concentrate in

a small scope of optimization. Although make to order and demand-pull man-

ner is superior to mass process, for many products, like daily consumer goods,

their demand quantity change dynamically, the best way is still mass production

and keeping enough inventory. In this case warehouse is needed and production

quantity can only be determined according to a forecasting value.

In practice, production planning is usually made according to demand fore-

casting. David & Peter (1994) demonstrated the importance of good forecasting

in a multi-product/multi-plant production/distribution system. The importance

of demand forecasting is also reflected in other social problems, like infrastructure

investment, such as transportation system, concert hall, stadiums, museums, ex-

hibit centers, etc. All these projects are executed on a planning scheme, in which

demand forecasting is necessary. There have been immense researches contributed

to development of demand forecasting. Lots of effective methods of demand fore-

casting have been proposed, survey of buyers’ intentions, Delphi method, ex-

pert opinion, smoothing models, time series methods, judgmental approach, etc.

Forecasting is difficult to master (Ascher, 1979). Demand forecasts remained re-

markably inaccurate for decades (Ascher, 1979; Flyvbjerg, 2005; Flyvbjerg et al.,

2005). Flyvbjerg (2008) stated that despite all claims of improved forecasting

models, better data, etc., no improvement in forecasting accuracy seems to have

taken place. In the research about “bullwhip ”of Chen et al. (2000), demand fore-

casting is considered one of the two most important factors causing “bullwhip”
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effect. Accuracy degree of forecasts depends not only on choice of forecasting

model and quality of collected data, but also impacted by other factors, like

psychological action of forecasters, bias induced by political-economic impaction,

strategic misrepresentation, and so on. Reference class forecasting described by

Flyvbjerg (2008) seems to have considered more practical factors of forecasters

than conventional forecasting method. But we can see that outside view of situ-

ation is actually another subject action, different in problems. Some other kinds

of combined forecast are illustrated superior to single method in improving accu-

racy (Bates & Granger, 1969; Granger & Ramanathan, 1984; Mahmoud, 1984).

Other experts (Collopy & Armstrong, 1992) have shown that rule-based forecasts

produce more accurate results than combined forecasts. We can conclude that no

forecasting method developed is general to all problems. The trend is to choose

an optimal one among them. This is also the strategy of many firms of consultant

in forecasting.

Kimball (1988) described the mechanics of a single stage that operates a base

stock policy in the face of random but bounded demand. Deployment of inven-

tory as safety stock for addressing demand uncertainty was examined by Graves

& Willems (2003). Yano & Robert (1987) used safety stock as protection against

demand variations. Although it is maintaining desirable levels of customer ser-

vice, rescheduling the material requirement planning system may impact safety

stock. They indicated that safety stock may change when rescheduling the sys-

tem and increasing safety stock may actually result in degraded performance when

rescheduling is frequent. Sridharan & Lawrence LaForge (1989) surveyed that one

approach suggested in the literature to reduce schedule instability is to introduce

safety stock at the master production schedule (MPS) level to act as a buffer

against differences in actual and forecast requirements. System’s performance is

sensible with quantity of safety stock. Compared to the alternative of no safety

stock, small amount of safety stock improved schedule stability. However, further

increases in the safety stock level often lead to increases in schedule instability

and a higher cost penalty. Determining appropriate stocks in stochastic multi-

state production/distribution systems is a very difficult task (Inderfurth, 2002).

Dynamic programming algorithm for solving the safety stock optimization prob-

lem was developed by Inderfurth (2002). Moreover, uncertainty in supply chain

can also impact determination of safety stock. The joint effect of lead time and

36



1.3 Research review about uncertainty in supply chain

demand uncertainties, as well as the effect of “fair shares ”allocation, on safety

stocks is studied by Schwarz (2000). Kelle & Silver (1990) stated that the amount

of safety stock required depends upon, among other factors, the average value and

variability of the length of the replenishment lead time. Because of additional

cost of stock, managers are always preferable to reduction of safety stock under

the premise of guarantee to meet customers’ needs. Kelle & Silver (1990) used a

strategy of order splitting to reduce safety stock amounts. Besides determination

of amounts of safety stock, another core problem is placement of safety stock

(Graves & Willems, 2000, 2003).

There are close relationship between the two common strategies. On one

hand, in most cases the two interact and can impact on each other. Sridharan

& Lawrence LaForge (1989) suggest that efforts to reduce setup costs and im-

prove forecasting accuracy may be useful alternatives to increasing safety stock

in dealing with the schedule instability problem. On the other hand, decision of

amount of safety stock is always based on demand forecasting (David & Peter,

1994; Eppen & Martin, 1988). David & Peter (1994) analyzed safety stock lev-

els for a multi-product/multi-plant production/distribution system with seasonal

stochastic demand which is based on demand forecasting.

Demand forecasting and strategy of safety stock are both strategies of plan

ahead. However things always carry on in a track differing with plan. Control in

action is needed in practice. In recent years, strategies of robustness and flexibility

have become hot. Some researchers have tried to form a robust supply chain to

make it immune to the uncertainties of demand. However, most of them is just a

fantastic idea and hard to realize. Flexible and agile systems have also been much

tried to improve the ability to cope with uncertainties in demand. Barad & Even

(2003) considered flexibility as the ability of the manufacturing system to cope

with internal and external variation with high competitive competency and high

economic profitability. Swafford et al. (2008) presented an approach to achieve

supply chain agility through IT integration and flexibility. In their opinion, supply

chain flexibility represents operational abilities within the supply chain functions

and supply chain agility represents the speed of the aggregate supply chain to

adapt in a more customer-responsive manner. Tang (2006) considered in his

research robust strategies for mitigating operational and disruption risks and

enhancing the efficiency and resiliency of supply chain management.
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1.3.3 Uncertainty in manufacturing

Different to uncertain external environment like demand uncertainty, uncertain-

ties in manufacturing is internal uncertainties, which are caused by the staff,

machines or some other internal elements. Comparing with external uncertain-

ties, the internal ones are rather more dependent on the structures and planning

schedules of the company or factory. Although the intuitional concept of internal

uncertainties seems easier to solve than that of external ones, disturbances of un-

certainty in manufacturing often interrupt manufacturing process of one product

or even more related products, consequently causing more lead time, and conse-

quently delaying delivery time. Uncertainties in process of manufacturing mainly

include (Barad & Even, 2003): machine breakdown; staffing/operator problems;

unexpected orders; cancelation or modification of existing orders; early or late

arrival of raw materials; modification of release and due dates; uncertainty in the

duration of processing of activities.

1.3.3.1 Complexity of keeping stability and flexibility in modern man-

ufacturing system

Rapid development of technologies, global competitions, variation of customers’

tendencies, and shorter product cycle time are the main factors impacting man-

ufacturing enterprizes’ external environment. Availability of materials, staff, and

machines are the bases to keep operations of production. Moreover, manufac-

turing system is becoming more complex with development of technology and

the multifunctional need of products. At present, the growing complexity is one

of the most significant characteristics of manufacturing, which is manifested not

only in manufacturing system, but also in the products to be manufactured, in

the processes, and the company structures (Wiendahl & Scholtissek, 1994). To

our knowledge, the more complex is the system, the less stable is it, i.e., it is more

difficult to keep system’s stability. Stability is directly related to continuity and

efficiency of production. High stability can reduce uncertainty of manufacturing

system from aspect of system performance. Even for a manufacturing system with

good performance, it may be disturbed by external uncertainty. Like variation of

products, we need a manufacturing system robust and flexible. Flexible manufac-

turing system (FMS) emerged exactly in the context of products diversification.
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However, FMS is with a more complicated structure than conventional manufac-

turing system. Therefore, FMS is usually with a lower stability. We can observe

that it is not easy to reduce external and internal uncertainties simultaneously.

We should cope with different uncertainty with different strategy.

1.3.3.2 Advanced manufacturing system

From the perspective of SCM, considering realizing the most efficient manufac-

turing manner and responding to production dynamics caused by disruption of

uncertainty, there are some promising strategies and concepts to make production

adaptable to consumer market, such as demand driven manufacturing, Kanban

system, lean production, etc. The ideal systems, such as the material require-

ment planning (MRP), manufacturing resource planning (MRPII) and enterprize

resource planning (ERP) are recommended to get the most efficiency of resources

of the companies and to realize minimization of costs and shortest lead time of

manufacturing. MRPII focuses on management of resources of human, wealth

and equipment within enterprize. This is a weakness in present strong competi-

tion. Modern business of manufacturing relies on the superiority of technique and

cooperation between the suppliers, customers and distributors as an entire supply

chain. Therefore, traditional MRPII is not satisfied in this environment. Based

on MRP, MRPII, ERP, lean production (LP), computer integrated manufacturing

system (CIMS), agile manufacturing, and some other management theories are

developed. Moreover, thanks to advanced manufacturing technologies (AMT),

such as flexible manufacture system (FMS), computer numerical control (CNC),

computer aided design (CAD), computer aided manufacturing (CAM), etc., pro-

duction is more efficient. The rapid developed internet technology, mechanical

engineering technique, electronic technique, and automatic technique, all con-

tribute much to the modern manufacturing. The low level of these equipments

and machines are all to help to realize the high level strategy and decision. They

are the basis of realizing advanced theory in manufacturing.

However, none of these existing theories above considers uncertainties in pro-

cess of manufacturing. These years many scholars and researchers have paid

attention to uncertainties in manufacturing. The normal uncertainties, external

late supply, internal late supply, planned set-up time exceeded, machine break-

downs, labor unavailability, tooling unavailability, demand batch size enlargement
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and customer design changes, were discussed by Koh & Saad (2003). They used

parts delivered late (PDL) and finished products delivered late (FPDL) as the

criteria of delivery performance of MRP-controlled manufacturing environment,

and demonstrate the influence degree of identified uncertainties by experiments

of simulation. They suggested enterprizes to implement the optimum use of

buffer or slack. Also in the domain of MRP-controlled manufacturing, Minifie

& Robert (1990) developed a dynamic MRP-controlled manufacturing system

simulation model to study the interaction effects of demand and supply uncer-

tainties. Brennan et al. (1994) examined the performance of MRP-controlled

manufacturing environment under demand and lead time uncertainties. Kanet &

Sridharan (1998) examined late delivery of raw materials, variations in process

lead-times, interoperation move times and queue waiting times in MRP-controlled

manufacturing environment. It can be concluded that in the area of exploring

uncertainties in the MRP-controlled manufacturing environment, the simulation

modeling appears to be the most common research methodology used.

1.3.3.3 Research on strategic level to consider uncertainty in manu-

facturing system

Almost all the manufacturing companies must prepare for two kinds of business

model: lot size production, multi-product and small batch. The variety of produc-

tion decides the complexity of structure, and consequently induces the instability

of the production system. Burns & Stalker (2009) posited that as a firm’s envi-

ronment becomes more complex and/or unpredictable, there is a need for a more

organic structure. Thus, firms in relatively certain and predictable environments

would have a mechanistic structure with greater subdivision of tasks and simpler

jobs. In contrast, firms in uncertain and unpredictable environments would have

more organic structures, with less specialization and more complex jobs.

Our first task is to increase stability of system, and then the flexibility to

cope with different uncertainties emerging in the production process. Flexibility

is considered a multi-dimensional construct. Pagell & Krause (1999) focused on

the following three types of flexibility: product mix, new product introduction

and modification. Concerning on the flexibility in production, there are some

distinct views. In general, many researchers deemed that there is an obvious
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relation between the flexibility level, environmental uncertainties and the perfor-

mance of company. Such as Gerwin (1993), suggests that manufacturers that

are facing increasingly uncertain environments often respond with increased op-

erational flexibility; and Swamidass & Newell (1987), suggest that increases in

manufacturing flexibility lead to increases in firm performance. Flexibility is often

examined at the strategic level to help managers make decision. Pagell & Krause

(1999) discussed the relationship between flexibility at the operational level and

the environmental uncertainties. They concluded a quite different result through

a mail survey of North American Manufacturers: no relationship was found be-

tween the measures of environmental uncertainty and operational flexibility; no

relationship was found between a firm’s performance and its effort to align the

level of operational flexibility with its external environment. All these methodolo-

gies are working on dealing with the external uncertain environment. This is like

the demand uncertainty, which we treated in the proceeding chapters. Here, we

aim to solving the uncertainties in the firm itself, the manufacturing uncertainties,

which is considered as the internal uncertainty. In despite of the results discussed

in the past, we believe there is a relationship among the internal uncertainty of

manufacturing, the operational flexibility, and the firm’s performance.

Flexibility is seen as a way for manufacturing organizations to adapt to uncer-

tain external environments (Pagell & Krause, 1999). Swamidass & Newell (1987)

noted that increases in flexibility were generally linked to increased performance.

Moreover, they concluded that one way to cope with increased environmental un-

certainty is through increased manufacturing flexibility. Gerwin (1993) presented

a model that posits that environmental uncertainty leads to manufacturing strat-

egy and hence the flexibility requirements of the system. The structural con-

tingency theory makes the measurement of uncertainties and flexibilities more

important. The decision makers often employ different strategies according to

their perception of the environment. As to the measurement of environment,

Duncan et al. (1972) proposed six perceptual items to the environmental uncer-

tainties, such as actual users of products of the firm, competitors of supply of raw

materials, competitors of customers, government regulation, etc.
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1.3.3.4 Research on operational level to consider uncertainty in man-

ufacturing system

Besides research of uncertainty on strategic level, there are also some studies on

operation level to cope with uncertainty. Early in 90s in last century, the ap-

proaches to manage changes and uncertainties in manufacturing have emerged.

Kádár & Monostori (1998) proposed a distributed, multi-agent holonic-like sys-

tem and it is hoped to reach a dynamic behavior through increased autonomy

of agents in dynamic changing conditions. A rolling horizon approach was pro-

posed by Tolio & Urgo (2007), which applied a two-stage stochastic program-

ming method against the occurrence of multiple uncertain events, and the need

of resources was modeled through a scenario based formulation. It is concluded

by many scholars that the effect of uncertainties can be reduced through the

rescheduling of the planning or orders, or softened by the changes of MRP pa-

rameters, such as the safety stock, safety lead time, planned lead time, lot-sizing

rules, freezing or planning horizon. Morel et al. (2003) proposed a model using

the principle of Holonic Manufacturing System. Vandaele & De Boeck (2003)

developed software dedicated to high level tuning under input and output un-

certainties. The aim is to find a reduced lead time, optimal lot-sizing and the

utilization levels of the system in order to guarantee a high customer service level.

Koh & Saad (2003) presented a business model to diagnose the underlying causes

of uncertainties. Another approach that appears is the use of fuzzy model to deal

with uncertainties. That is how Mula et al. (2006) worked on both demand and

lead time uncertainties. Grabot et al. (2005) dealt with demand uncertainty for

a system with multi-product and multi-level.

It can be briefly summarized that for coping with uncertainty in manufactur-

ing system, the promising strategy is to firstly plan ahead and then control in

actions. An advanced manufacturing mode should be applied, to keep excellent

cooperation with all parts in firms. For operational detail, within the pure pro-

duction, both production plans and technological procedure play important roles,

either in aspects of reducing uncertainty and increasing production efficiency.
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1.3.4 Uncertainty in distribution

Distribution in supply chain is a process with multi participants. This charac-

teristic brings strong uncertainty. Problems in the distribution process will not

only affect distribution activity itself, but also reduce supply chain performance,

and may even cease operation of the supply chain. Before discussing uncertainty

in distribution, we decompose it in details to recognize better the procedure of

distribution. It includes two major parts: handling and transportation. Han-

dling is the picking, loading and unloading procedure of goods, between factory

or warehouse and transportation vehicles. We can see that handling is inter-

nal procedure, which can be better controlled compared to external procedure,

transportation. Transportation can be impacted by many external factors, like

the weather, traffic condition. Uncertainty in external environment is difficult to

handle and always takes more interests of researchers.

1.3.4.1 Research priorities of uncertainty in distribution

Uncertainty in distribution mostly concentrates on tardy delivery time (Ray et al.,

2005; Weng & McClurg, 2003) and delivery frequency (Frey & Rhodes, 1998;

Lalwani et al., 2006). It is interesting to find that uncertain delivery time is

always considered together with uncertain demand in literature. The efficiency

of supplier-buyer coordination in coping with the uncertainty in delivery time

and demand was discussed by Ray et al. (2005); Weng & McClurg (2003). Ray

et al. (2005) discussed decision making of supply chain affected by the business

characteristic, demand uncertainty and delivery time variability. Lalwani et al.

(2006) found that impact of uncertainties associated with stock holding costs

and delivery frequencies to distribution network is more substantial than that of

the intuitive factors, customer volume changes and transport tariffs. Different

uncertainties’ effects on delivery date were discussed by Koh & Saad (2003).

From results of literature review, we observe that research about uncertainty

in distribution is not too much. As mentioned above, we decompose distribu-

tion procedure into handling and transportation. We can analyze uncertainty in

distribution from these two aspects respectively.

Uncertainty in handling process origins from following sources:
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• Characteristic of handling equipment. Handling equipment is always with

certain reliability. For some handling equipment with oversize or over-

weight, disassembly is needed and this may impact handling efficiency.

• Working environment. Because of transmission attributes of handling pro-

cedure, there is always not enough space for executing handling. This needs

handling scheme planned before execution, to coordinate workers on differ-

ent handling equipment. High handing efficiency needs smooth handling

channel, including good road condition and enough working space.

We can specify uncertainty in handling process into scope of equipment and

facilities planning. To our knowledge, there is no research on this regard. The

major reason is probably that it is biased in favor of practical application, such

as material handling path planning in factory. Therefore it does not need much

research in theoretical research.

1.3.4.2 Research of uncertainty in transportation system

Uncertainty in transportation system for people’s travel, e.g., Metropolitan Plan-

ning, has recently received some attention (Krishnamurthy & Kockelman, 2003;

Mahmassani, 1984; Pradhan & Maria Kockelman, 2002), mainly focuses on con-

sideration of uncertainty of travel demand, inputs and parameters of models, po-

litical and technical environment. Different to transportation for people’s travel,

planning for transportation in supply chain always consider uncertainty in pro-

cedure of path planning. For distribution routing planning, there are two kinds

of models widely used, Traveling Salesman Problem (TSP) and Vehicle Routing

Problem (VRP). Uncertainty is paid attention in routing planning with the two

models (Alfa, 1987; Laporte et al., 1992). Like demand quantity , the most widely

used approach for treating uncertainty of distribution time is based on represen-

tation of probability distribution for it (Fu, 2002; Gendreau et al., 1996; Haghani

& Jung, 2005).

Sources of uncertainty in distribution path planning mainly include: uncer-

tainty in vehicles, uncertainty of routes, and uncertainty of clients. There is some

research treating uncertainty from these aspects. Uncertainty of vehicles refers

to uncertain condition of vehicle, like breakdown and traffic accidents. In a series

of research of Li et al. (2007), they contributed to rescheduling problem with
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disruption of vehicles’ breakdown. Mu et al. (2010) proposed a new class of VRP,

disrupted VRP, and using two algorithms to generate new routes for disrupted

VRP plan. Situation of routes contribute much to traveling time. E.g., when a

vehicle sinks into traffic jam, all following schedules could be influenced. Even

delayed time cannot be forecasted. Routes affected by weather like in fog or rainy

days, travel speed may slow down. A schedule re-optimized was suggested by Xi-

ang et al. (2008). Huisman et al. (2004) proposed an dynamic vehicle scheduling

approach in order to avoid trips starting late in environments characterized by

significant traffic jams. Traffic congestion was coped with in dial-a-ride by Fu

(2002). Although we expect that all clients carry on according to reservation,

there are always some unavoidable cases where request changes. Such as absence

of clients, cancelation of requests, new arrival of request, etc. Sometimes the

location and size of a customer order is not known deterministically until vehicle

arrives. Dynamic VRP for covering all orders was solved by Chen & Xu (2006),

using a dynamic column generation algorithm. Random demand was considered

in stochastic VRP (Gendreau et al., 1996; Xiang et al., 2008).

1.3.5 Other kinds of uncertainty

Besides the four main kinds of uncertainties we discus above, there are some other

sorts studied and defined in literature:

• Uncertainty in logistic was studied by Yu & Li (2000). In their work,

the heavy burden of computation of conventional stochastic programming

(Mulvey & Ruszczyński, 1995; Mulvey et al., 1995) for scenario study sorts

out through adding variables into linear programming. Although they have

reduced computation burden compared to previous methods for the same

kind of problem, the limitation of their method is obvious that scenario-

based research depends too much on parameters in scenarios and at the

application of linear model.

• Uncertainty in supply chain relationship. Researchers generally agree that

uncertainty is a major driving force behind the effective establishment of

supply chain relationships. Williamson (1979) clearly stated when he classi-

fied types of organizational relationships thus: “the three critical dimensions

for characterizing transactions are: 1) uncertainty, 2) the frequency with
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which transactions recur, and 3) the degree to which durable transaction-

specific investments are incurred. Of these three, uncertainty is widely

conceded to be a critical attribute ”. The importance of supply chain rela-

tionships has been identified by Handfield et al. (1999) when they state that

“without a foundation of effective supply chain organizational relationships,

any efforts to management the flow of information or materials across the

supply chain are likely to be unsuccessful ”.

• Supply chain risk uncertainty. Operation of supply chain is based on firm-

to-firm cooperation. It consists of information and resource sharing, within

which there is a supply chain project investment. For any kind of invest-

ment, there is some risk. Estimation of risk in supply chain is already an

appealing and important research area in SCM, especially in the prelim-

inary planning of supply chain. It refers to much knowledge in economy

area. Decision making under conditions of supply chain risk uncertainty is

of great importance, but there is a lack of investigations that center on sup-

ply chain investment decisions when facing high levels of risk uncertainty

(Hult et al., 2010). In their work, different real options are investigated for

related supply chain projects under high supply chain risk.

• Information uncertainty. Information sharing is considered as an impor-

tant role in reducing demand uncertainty in supply chain. However, there

is also uncertainty in information. Information uncertainty exists mainly

in incompleteness, distortion, and amplification of information. The most

universe phenomenon is “information silos ”, i.e., lack of reciprocity among

enterprize information systems. In context of competition, enterprizes are

always self-closed in resources, both in material and information resource.

Cooperation among enterprizes is always limited in temporary trades. In-

formation sharing is almost executed only internal the enterprize. Poor level

of information sharing is a major cause of information uncertainty. Another

factor inducing uncertain information is information transfer manner. In

conventional supply chain, information is progressively transferred, from

low stream firms to upstream firms. “Bullwhip ” effect is exactly caused by

information asymmetry in this transmission. Integrated supply chain mode
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is obviously superior to conventional mode. In integrated supply chain sys-

tem, all supply chain firms can share demand information of consumers and

can benefit for catching earlier more accurate information. Therefore, in or-

der to reduce information uncertainty, supply chain cooperation mechanism

and information sharing technique are needed.

• Forecasting uncertainty. Loss resulting from forecasting uncertainty is ob-

vious. The future is always unknown. Although many scholars and re-

searchers have spent much work on developing method of forecasting, which

can be seen from literature about demand forecasting in section 1.3.2, it has

the inherent characteristic of uncertainty. Efficiency of forecast relates to

methods of forecasting, and also depends upon forecast horizon. Long-term

forecasting is with larger uncertainty than short-term forecasting caused

by the distant future (Al-Saba & El-Amin, 1999). Order forecast horizon

was considered the first and main cluster of sources of uncertainty by Vorst

et al. (1998). Forecasting is used throughout the supply chain, from de-

mand forecasting to prediction of availability of supply. Many decisions are

made on the base of forecasting, e.g., inventory level is based on forecasting

of production yield, lead time and demand; pricing is based on forecast-

ing of market share, assessment of competitors’ capacity, investment return

rate, inflation, etc. Al-Saba & El-Amin (1999) applied method of Artificial

Neural Network for long-term forecast, which was characterized with large

uncertainty, to get accurate results. Forecast uncertainty is increasingly

paid attention in research of SCM. Giordani & Söderlind (2003) studied

the inflation uncertainty reported by individual forecasters in a survey and

results showed that forecasters underestimate inflation uncertainty.

• Cost uncertainty. Financial activities account much in supply chain op-

eration. There are various types of cost in supply chain, materials cost,

production cost, stock holding costs, transportation cost, wage rates, etc.

Even there are some marginal costs to investment. Because of diversifica-

tion of calculation manner of costs, consideration point of cost differs in

firms. As its complication refers to economics and specialty, we will not

spend much effort in this regard. We would like to concern about research

from this respective which is general in SCM. Hartman (1972) examined
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effects of uncertain output price, wage rates and investment costs on quan-

tity of investment undertaken by a firm. Obvious effect of stock holding

costs on distribution network was found by Lalwani et al. (2006).

1.4 Conclusions

The sense of taking uncertainty into account in SCM is stated by many re-

searchers. It is obvious that we should pay attention to unavailability of re-

sources in supply chain. We aim to get a complete analysis of uncertainty in

SCM. Analyzing uncertainty in different stages of supply chain will almost cover

all potential cases. From literature review, we can find that although there is

immense research on uncertainty in supply chain, there is no systematic research

of SCM with uncertainty in consideration.

Most of work in literature is limited in a narrow scope of research point

through focusing on scenarios study. We are not to negate the function of scenario

study. Actually it is found that scenarios planning is an effective method to learn

about the future by understanding the nature and impact of the most uncertain

and important driving forces affecting the world. But it is not yet demonstrated

the best way for research of uncertainty in SCM. Therefore, other strategy should

be attempted. The methods for treating problems are also appropriate for certain

case they concentrate. In our work, we aim to propose an general way to solve

uncertainty in supply chain. This helps supply chain managers to give complete

consideration of uncertainty in the procedure of decision making.
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Chapter 2

Coping with uncertain demand in

supply chain

Uncertain demand is one of the most important kinds of uncertainty in supply

chain. We have concluded in precedent chapter that the two preliminary tradi-

tional methods, safety stock and demand estimation, are with disadvantage of

improvement. These two methods are on the operational level to treat uncer-

tainty. They work well in a certain extent. Different from them, from strategic

level we propose to apply an intuitive and rather simple approach, postponement

strategy. Postponement has been appreciated in recent decades, mainly in man-

ufacturing period of realizing mass customization and decoupled system. With

postponement strategy, we could address demand with different quantity flexibly.

Based on assumption of ideal cooperation among all the enterprizes in the same

supply chain, a linear programming model is generated, with objective of satisfy-

ing demand of consumer markets while minimizing supply cost. Through results

tested in a numeric example, it is demonstrated feasible to schedule supply pro-

cedure in supply chain regardless of quantity of demand and to supply different

replenishment strategy for decision maker.

2.1 Introduction of postponement strategy

Originally, postponement was known as late customization or delayed product dif-

ferentiation, which was first discussed by W. Alderson (1957) (Alderson (2006)).

Since then, postponement strategy has been applied in many industries, including

49



2. COPING WITH UNCERTAIN DEMAND IN SUPPLY CHAIN

high-tech industry, food industry, garments industry, etc. It is necessary to rec-

ognize that postponement strategy is a double-sided sword. It can bring benefits

to enterprize, such as reduced inventory, pooling risk, accurate forecast. Mean-

while, the disadvantages also exist, like high cost of designing and manufacturing

of the common components, cost of reconfiguration of the supply chain structure,

etc. Therefore, it can be stated that postponement strategy is not suitable to

all situations. It depends upon the real situation. There is a trade-off between

additional costs and the benefits. Some researchers also indicated this point.

Huang & Li (2008) suggested firms to choose the suitable postponement decision

according to their business environment, static decision or dynamic decision, to

cope with external environmental changes. Although postponement is often used

by suppliers, it is as well used by demanders. Graman (2010) implied an order

postponement in a supply chain. He showed that both manufacturer and retailer

gained when the order was placed later under some conditions. Many factors

may impact effects of applying postponement strategy, products price, cost of

each stage in supply chain, packaging, assembling, inventory cost, service-level,

etc. Ma et al. (2002) found that a key factor for commonality and postponement

decisions is interaction between processing time and component procurement lead

time.

The approach of postponement is concreted according to the practical prob-

lem by different authors, to achieve coping with distinct problems. Graman

(2010) proposed a partial-postponement decision cost model and demonstrated

its application in determining inventory level of finished-goods and postponement

capacity. The problem was solved through using a non-linear programming for-

mulation. He also illustrated the relationship and interaction between the related

factors and the expected costs and the postponement capacity. Zeng et al. (2006)

developed a systematic approach to determine the optimal timing for staged order

commitment, with categorizing attributes and aggregation of processes to reduce

complexity.

Postponement is proved an effective method to treat demand uncertainty by

some researchers. Cvsa & Gilbert (2002) proposed a two-tier supply chain model

to demonstrate that below a threshold level of demand uncertainty the supplier

as well as the buyers can benefit from providing early purchasing opportunities
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2.2 Postponement applied to address uncertain demand in supply
chain

versus postponement. As defined by Graman (2010), while certain parts of de-

mands are solved through make-to-stock strategy, a combination of this strategy

and postponement is called “partial ” or “tailored” postponement. The partial

postponement strategy is a flexible method to respond to demand uncertainty.

In the scenario that demand is independent of time and stochastic, Aviv & Fed-

ergruen (1999) indicated that benefits of postponement were confined into two

factors, statistic economies of scale and risk pooling via common buffers.

Before attempt of applying postponement strategy, we would like to explain

its meaning clearly. Although postponement is similar to delay, it is necessary

to distinguish the difference between them. In fact, the term “delay” is always

regarded detrimental, especially, delay in production and delay in transporta-

tion. It is exactly a type of uncertainty in supply chain. Sipahi & Delice (2010)

proposed a differential equation to analyze impact of three types of delay on in-

ventory behavior and to obtain an ordering policy to make inventory variation

insensitive to the detrimental effects of delay. Here, postponement is a subjective

strategy, rather than an objective delay phenomenon in supply chain process.

2.2 Postponement applied to address uncertain

demand in supply chain

In most cases, conventional sense of supply chain is actually supply chain net-

work. Each phrase in supply chain may consist of several companies with the

same function. Relationship among them is competition and cooperation. We

can state that from the angle of cooperation, integration should be emphasized

for the plan on strategic level. While for decision on tactical and operational

level, such as concrete manner of cooperation and execution of strategy, decom-

position is necessary. In our work, we focus on allocation of supply. It is obvious

that decomposition of supply chain is needed during calculation. Based on this

concept, we transfer the complexity planning problem of supply chain network

into resolution of several sub systems (Zheng & Mesghouni, 2011a,b)

51
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2.2.1 Decomposition of supply chain

We concentrate on a normal supply chain in manufacturing industry modeled in

Figure 2.1. It is obvious that quantity of goods prepared in each stage should be

decided according to demand quantity in last node, consumer market. To solve

this problem in the whole supply chain, firstly, we simplify the structure of supply

chain as in Figure 2.2. Through the process of structure simplification, research

of the complicated supply chain network is turning to subsystems of supply chain.

There is only one level of demand-supply relation in a subsystem. Our main idea

is when demand occurs, according to the total inventory level of all the suppliers,

we allocate supply task of equal quantity of demand to certain suppliers.

Figure 2.1: Normal supply chain structure

Figure 2.2: Simplified supply chain structure

In literature viewed, postponement used in managing demands in period of

supply is much fewer than that in manufacturing. In our work, we aim to apply

postponement strategy in supply section, which meets directly uncertain demand

in supply chain. When demand quantity exceeds expected value, i.e., inventory

level, we postpone the quantity which can not be satisfied immediately with

stock. In literature, the work most similar to ours is that of Iyer et al. (2003).
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2.2 Postponement applied to address uncertain demand in supply
chain

They analyzed demand postponement as a strategy to handle demand surges

and showed that postponement strategy may lead to reduced investment in initial

capacity. But the model was limited in a single period of postponement demands.

In our work, based on the model of Iyer et al. (2003), we consider the practical

condition that includes both the regular period and the postponed period.

2.2.2 Description of approach of application of postpone-

ment

Postponing unsatisfied demand means that it disregards to uncertain quantity

of demand. It works under the environment where the hardware in the supply

chain does not change, like the capacity of inventory or manufacturing efficiency.

We respond to demand surges after the demands having occurred. What the

suppliers should do before demand unfolds is keeping the normal safe stock level

and negotiating a good cooperation contracts among them. Our approach is

feasible in an absolute cooperative environment, from the standpoint of the whole

supply chain.

Following the direction of information, i.e., from consumer market to material

supply, firstly we calculate sub system 1 in Figure 2.2, which is at the end of supply

chain and with demand from consumer market as input data. Computation

results of sub system 1 can then be used as input data for its precedent sub system

2. Iteration of the same kind of computation carry on until we get all planning

for the entire supply chain. As in Figure 2.2, three iterations are needed. Spirit

of our approach of postponement is that we do not concern demand distribution

or prior planning of supply. We focus on scheduling of supply in a subsystem of

supply-demand described in Figure 2.2, to make clear the flow of goods.

After occurring of uncertainty of demand, demand quantity of a demander

i, Di, is identified. Firstly, we concentrate on the question of deciding quantity

supplied to each demander with stock. β is given to represent the ratio of quantity

of demand postponed, thereby 1 − β is the part of demand satisfied with stock

immediately. We denote that postponed demand carry in a postponement period,

while serviced parts of demand supplied in regular period. αij is set to describe

the ratio of demand i serviced by supplier j in regular period. This step is called

scheduling process. The next step is to complete the unsatisfied demand, i.e. the

postponed part β, with βij to describe the ratio of demand i satisfied by supplier
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j in postponement period. We call this step a rescheduling process of supply in

this sub system. At this point we have completed scheduling for a sub system.

Iterating procedure of scheduling for the whole supply chain is described as in

Figure 2.3.

Figure 2.3: Procedure of the scheduling with the postponement strategy

As described by Iyer et al. (2003), the specific manner in which demand post-

ponement occurs can follow the following two possible schemes: (a) Postpone

a fraction of demand for each customer: every unit of demand is split with β

delivered in the regular period and 1− β delivered in the postponement period.

In this scheme, every customer is affected and has a fraction of his demand post-

poned; (b) Postpone all demands for a fraction of customers: a fraction 1 − β
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2.2 Postponement applied to address uncertain demand in supply
chain

of the demand is postponed and thus delivered entirely in the postponement pe-

riod, and then the remaining fraction β of the demand is delivered in the regular

period. Note that in this case, any given customer may see his demand delivered

entirely in the regular period or entirely in the postponement period depending

on whether his demand was postponed or not. In our work, different to Iyer et al.

(2003), we consider that the postponement is planned after demand unfolds.

Resumptively, our strategy of postponement is executed in three stages:

1) Determine optimal fraction of total postponed quantity of demand β;

2) Calculate optimal fraction αij for each supply-demand relation in the reg-

ular period.

3) Calculate the optimal fraction βij for each supply-demand relation in the

postponement period.

Before we detail the three steps, we give notations used in following mathe-

matical models.

Notations:

β- Optimal fraction of total postponed demand.

αij - Ratio of demand i satisfied by supplier j in regular period.

βij - Ratio of demand i satisfied by supplier j in postponement period.

For subsystem k,

c1 - Unit cost of production of inventory.

c2 - Unit cost of new manufacturing in postponed period, including all the

costs of manufacturing, cost of material, processing, assembly, etc.

c3 - Unit cost of compensation paid by suppliers to demanders for postpone-

ment, which is assumed to be equivalent to all demanders.

c4 - Unit cost of conservation between the two delivery times.

c5 - Unit cost of transportation.

Di - Demand of ith demander.

D - Total demand, D =
∑n

i=1 Di.

K - Total inventory level of all suppliers, K =
∑m

j=1 kj.

kj - Stock of supplier j.

m - number of suppliers.

n - number of demanders.

pj - Transportation time of jth supplier in the postponement period.

rij - Distance between supplier i and the demander j.
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sj - Supply capacity of jth supplier in the postponement period.

S - Total supply capacity of supplier in the postponement period.

tj - Manufacturing time for supply of jth supplier in the postponement period.

t - Expected manufacturing time constant.

T - Allowable postponing time.

ξ - Threshold of amount for delivery .

In order to reduce the complexity of calculating, we assume that the unit cost

of conversation, c1, the unit cost of manufacturing, c2, and the unit compensation

for postponing to demanders, c3, are all identical to each supplier. The allowable

lead time of delivery T is also equivalent to suppliers.

2.2.2.1 Optimal fraction of total postponed demand

In regular period, (1 − β) fraction of demand is satisfied. Total stock of all the

suppliers must be capable of supply task. We have assumed that information of

suppliers is already known. Their inventory level is constant. We get hence an

inventory constraint as follows:

(1− β)

n
∑

i=1

Di ≤
m

∑

j=1

kj (2.1)

In postponement period, demand is satisfied with new manufacturing. Ac-

cording to the manufacturing capacity (supply capacity) of the suppliers, we can

get the manufacturing constraint:

β

n
∑

i=1

Di ≤
m

∑

j=1

sjtj (2.2)

In inequality above, tj must be controlled in the allowable postponing time

T . Furthermore, the sum of tj and pj can not exceed T .

tj + pj ≤ T (2.3)

Although tj is a decision variable, which can be independent, to simplify

calculation of β, we choose an expected constant t, we note,

S = t

m
∑

j=1

sj (2.4)
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2.2 Postponement applied to address uncertain demand in supply
chain

According to formulations above, we hence obtain

1−
K

D
≤ β ≤

S

D
(2.5)

Total expected cost of supply, including both regular period and postponement

period, is

V1(β) = c1

m
∑

j=1

kj + c2β

n
∑

i=1

Di + c3β

n
∑

i=1

Di + c4(

m
∑

j=1

kj − (1− β)

n
∑

i=1

Di)

= c1K + βD(c2 + c3 + c4) + c4(K −D)

(2.6)

The first term of the formulation above is the cost of the production of inven-

tory; the second term is the new manufacturing cost for satisfying the postponed

demands; the third part is compensation for postponing paid to demanders; the

last part is conservation costs. As transport cost is related to the single amount

of delivery and the calculation is rather complicated, we do not consider it in the

period of calculation of β.

From the function of cost, we find that the cost is proportional to the post-

ponement fraction β. Therefore, the minimum cost of supply could be obtained

with the minimum β.

According to formultation 2.5, the optimal value of β is:

β∗ = 1−
K

D
(2.7)

Accordingly, the minimum expected cost is

V ∗
1 (β) = c1K + (D −K)(c2 + c3 + c4) + c4(K −D)

= c1K + (D −K)(c2 + c3)
(2.8)

2.2.2.2 Optimal fraction of supply quantity to each supplier

After the total postponement fraction has been determined, optimal fraction to

each supplier in regular period αij and that in postponement period βij can be

calculated. Firstly, we discuss calculations of the two parts separately, then we

integrate them to execute the calculation of optimization.
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Optimal fraction of supply to each supplier in regular period

In the relationship of modern enterprizes, the long-term cooperation is appreci-

ated. Goods is usually send to the familiar customers. In our work, we suppose

an ideal situation of the cooperation among the enterprizes in the same supply

chain. Demand is allocated just according to the objective of minimization of

cost and the maximization of service level.

As the cost of production, conservation, compensation for postponing paid to

demanders is concerned with total postponement fraction, here we only have to

consider the distance and cost of transportation with αij. Transport cost concerns

mainly with the distance of delivery rij :

min V2(αij) = min(c5

n
∑

i=1

m
∑

j=1

rij ·Di · αij) (2.9)

Unit cost of transporting c5 is probably inversely proportional to the amount

of delivery. Therefore, for the sake of low cost, suppliers deliver goods only

when they have a reasonable amount. For example, the threshold of the delivery

amount is ξ, when quantity of goods q ≤ ξ, suppliers do not want to carry on

deliver. Without consideration of carpool, there is a delivery amount constraint:

Diαij ≥ ξ (2.10)

Demand satisfied in regular period is

n
∑

i=1

m
∑

j=1

Diαij = (1− β)
n

∑

i=1

Di (2.11)

Demand satisfied in the regular period is serviced with stock, that is

n
∑

i=1

Diαij ≤ kj, ∀j = 1, 2, . . . , m. (2.12)

The natural attribution of the rate of distribution is:

0 ≤ αij ≤ 1 (2.13)

From the formulations above, we can get the fraction of demand postponement

allocated to each supplier.
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Optimal fraction of supply to each supplier in postponement period

After the total postponement fraction and the optimal fraction of supplying of

each supplier in the regular period have been determined, the optimal fraction

of each supplier in the postponement period can be calculated. Different from

calculating the total cost of postponement, the allocation of postponement is

more complicated. As the allocation of demand in regular period, the cost of

transporting concerns mainly with the distance of delivery:

min V3(βij) = min(c5

n
∑

i=1

m
∑

j=1

rij ·Di · βij) (2.14)

Transport amount constraint:

Diβij ≥ ξ (2.15)

The total quantity of postponed demand allocated to suppliers:

n
∑

i=1

m
∑

j=1

Diβij = β∗

n
∑

i=1

Di (2.16)

The postponed demand is satisfied by the new supply capacity (from supply of

upstream enterprize or manufacturing itself):

n
∑

i=1

Diβij ≤ t · sj, ∀j = 1, 2, . . . , m. (2.17)

Demand constraints are:

n
∑

i=1

βij = 1−
n

∑

i=1

αij , ∀j = 1, 2, . . . , m. (2.18)

Natural attribution of the rate of distribution is:

0 ≤ βij ≤ 1 (2.19)

From the calculation of the formulations above, we can get the fraction of demand

postponement allocated to each supplier.
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Integrated calculation

If we use the separated calculation for both regular period and postponement

period, constraints are not considered simultaneously. Consequently we may get

solutions infeasible. Therefore, we integrate the formulations in the two periods

to solve them simultaneously.

We get the integrated formation for optimizations as follows:

min V4(αij, βij) = min(c5

n
∑

i=1

m
∑

j=1

rij ·Di · αij

+ c5

n
∑

i=1

m
∑

j=1

rij ·Di · βij) (2.20)

All the constraints, 2.10, 2.12, 2.13, 2.15, 2.16, 2.17, 2.18, and 2.19, in the two

periods must be satisfied.

2.3 Instance of application of the approach of post-

ponement

To demonstrate the feasibility and effectiveness of our approach dealing with

uncertain demand in supply chain, we apply it to the example in Gumus et al.

(2009).

2.3.1 Description of model from the original SC network

The instance used in (Gumus et al., 2009) is a supply chain network design

presented for a reputable multinational company in alcohol free beverage sector.

Existing supply chain, the cost and capacity data refer to (Gumus et al., 2009).

In the model shown in Figure 2.4, 2 factories (F1, F2), 3 warehouses (W1,

W2, W3) and 6 distributors (D1, D2, D3, D4, D5, D6) are selected from the

company’s system in order to explain existing design of the network, considering

that the product flow is followed by only one type of product of the company. The

problem to solve is to decide and design optimal SC network to satisfy demand,

simultaneously to minimize the supply cost.
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2.3 Instance of application of the approach of postponement

Firstly, we simplify the supply chain network as two subsystems as in Figure

2.5.

Figure 2.4: Supply chain network consisting of factories, warehouses and distrib-
utors

Figure 2.5: Simplified subsystems

Besides applied in the case where inventory of suppliers can not satisfy current

demands, our approach is also an effective scheduling method in allocation of

demand in the case where stock is enough to satisfy demands. To demonstrate

this point, we apply our method in both cases. The two cases correspond to

our instance are just the one with estimated demand and the other one with

unexpected demand.
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Data in Table 2.1, Table 2.2, Table 2.3, Table 2.4 and Table 2.5 is the orig-

inal data obtained from literature. In order to use our methodology, we adjust

some parameters. The concept of transportation distances are replaced by unit

transport costs. Therefore, c5 = 1, rij refers to transport cost.

As we do not know exactly inventory level, we assume that inventory is equal

to warehouse’s capacity. Thus, corresponding the data of capacity of the factories

and warehouses in our model, in subsystem 1, k1 = 3, 785, 630, k2 = 1, 564, 479,

k3 = 346, 094, K =
∑3

j=1 kj = 5, 696, 203; In subsystem 2, k1 = 3, 011, 970,

k2 = 1, 298, 716, K =
∑2

j=1 kj = 4, 310, 686.

Table 2.1: Transport costs from factories to warehouses (cent/case)

Factories Warehouses
W1 W2 W3

F1 0.01 1.15 0.41
F2 1.15 0.01 0.74

Table 2.2: Transport cost from warehouses to distributors (cent/case)

Warehouses Distributors
D1 D2 D3 D4 D5 D6

W1 0.48 0.65 0.63 0.71 0.45 0.42
W2 0.60 0.36 0.55 0.52 0.72 0.76
W3 0.13 0.25 0.17 0.39 0.06 0.05

Table 2.3: Capacities of factories and warehouses

Factories/Warehouses Capacity
F1 3011970
F2 1,298,716
W1 3,785,630
W2 1,564,479
W3 346,094
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Table 2.4: Estimated demand of distributors (case)

distributors demand
D1 116,803
D2 55,425
D3 74,668
D4 9,660
D5 81,539
D6 56,820

Table 2.5: Random demand of distributors (case)

distributors demand
D1 1, 116,803
D2 955,425
D3 1,774,668
D4 1,509,660
D5 1,581,539
D6 856,820

2.3.2 Results of calculation for the case with estimated de-

mand

Different to the work in Gumus et al. (2009), we do not focus on demand estima-

tion. Here we use estimation value of demand as the real occurring demand. The

problem waiting to be solved is a linear programming problem. We use LINDO

6.1 to resolve it.

In order to simplify calculation, we ignore the constraint of transport amount,

which is assumed to satisfy the transportation principle, using some methods such

as out-sourcing, car pooling and so on.

2.3.2.1 Calculation results of subsystem 1

For subsystem 1, from the data of estimated demand quantity in Table 2.4, we

obtain D =
∑6

i=1 Di = 394915. We have got that K = 5696203 in subsystem 1.

As D < K, we need not use the postponement strategy for rescheduling the SC

network, i.e., β = 0. The optimization method is enough for scheduling in this

case.
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From calculation results for subsystem 1, we get allocation of demand of

distributors to each warehouse is specified in Table 2.6. The objective value of

supply cost is 58605.25.

Table 2.6: Allocation of the demand of distributors to each warehouse in the case
with estimated demand
Warehouses Distributors

D1 D2 D3 D4 D5 D6

W1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
W2 0.000000 0.880848 0.000000 0.000000 0.000000 0.000000
W3 1.000000 0.119152 1.000000 1.000000 1.000000 1.000000

2.3.2.2 Calculation results of subsystem 2

From the results in subsystem 1, we get demand quantity in subsystem 2 as in

Table 2.7.

Table 2.7: Allocation of demand of warehouses to each factory in the case with
estimated demand

distributors demand
D1 0
D2 65771
D3 329144

D =
∑i

D = 394915, as we get K = 4310686 for subsystem 2, so D < K. It

is still not necessary to use the postponement strategy. β = 0. From calculation

results we get allocation of demand of warehouses to each factory of subsystem

2 seen in Table 2.8.

Table 2.8: Allocation of demand of warehouses to each factory in the case with
estimated demand

Factories Warehouses
W1 W2 W3

F1 0.000000 0.034962 1.000000
F2 0.000000 0.965038 0.000000
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2.3.3 Results of calculation for the case with unexpected

demand

In uncertain demand environment, where demand quantity exceeds stock, the

postponement strategy is just appropriate to cope with the unexpected demand.

We can get similar calculation results as the ones above.

2.3.3.1 Calculation results of subsystem 1

Compared with algorithms in literature, superiority of our algorithm is that we

can deal with unexpected demands. Quantity of demand in this section we deal

with is beyond inventory level of suppliers.

We calculate total quantity of demand in subsystem 1 with the date in Table

2.5: D =
∑m

j=1 Dj = 7794915. As indicated in section 2.3.1, in subsystem 1

K = 5696203, then we get D > K. Thereby β = β∗ = 1− K
D

= 0.27.

With calculation result we get the ratio of supply for each warehouse in the

regular period and postponement period as shown in Table 2.9 and Table 2.10

respectively.

Table 2.9: Allocation of demand of distributors to each warehouse for subsystem
1 in the case with unexpected demands in regular period

Warehouses Distributors
D1 D2 D3 D4 D5 D6

W1 1.0000 0.0000 0.129865 0.0000 1.0000 1.0000
W2 0.0000 0.057377 0.0000 1.0000 0.0000 0.0000
W3 0.0000 0.0000 0.195019 0.0000 0.0000 0.0000

Table 2.10: Allocation of the demand of distributors to each warehouse for sub-
system 1 in the case with unexpected demands in postponement period

Warehouses Distributors
D1 D2 D3 D4 D5 D6

W1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
W2 0.0000 0.942623 0.480097 0.0000 0.0000 0.0000
W3 0.0000 0.0000 0.195019 0.0000 0.0000 0.0000
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2.3.3.2 Calculation results of subsystem 2

We use the calculation results of subsystem 1 as input data for calculation of

subsystem 2. The upstream supply for the factory is assumed to be enough,

hence supply capacity is the manufacturing capacity. In our example, the total

products needed by the warehouses are much less than the stocks. Therefore, in

the case where factories only need to supply demand in the postponement period

of the warehouses, we need not use the postponement strategy in subsystem 2.

However, we still use the optimization model to get the optimal allocation of

supply. Furthermore, empty warehouse should be replenished. We can calculate

the cost of replenishing the inventory. There exit two other cases: the second

case is that factories only need to send quantity of safe stock to the warehouse,

and the third case is that factories need to fulfill the need of warehouses in the

postponement period, and simultaneously need to replenish the inventory of the

warehouses. We execute the calculations under the three cases separately. Some-

times, manager must make decision of choosing the optimal manner. Through

comparison of calculation results for the three cases above, we can find which

cost least. The one with the lowest cost is the optimal proposal.

Case 1: Factories only need to supply the need in the postponement period

of the warehouses.

In this case, postponement strategy is not needed. We use calculation of the

regular period. We get the objective value: min V2(αij) = 392580.

The optimal allocation of demand is as in Table 2.11.

Table 2.11: Optimal allocation of demand of warehouses to each factory in case
1

Factories Warehouses
W1 W2 W3

F1 0.0000 0.258978 1.000000
F2 0.0000 0.741022 0.000000

For replenishing the inventory, here, D = 5696203, K = 4310686. K < D,

postponement strategy is needed. We get objective value: min V2(αij , βij) =

113330.

The optimal allocation of demand for the regular period is as in Table 2.12,

for the postponement period is as in Table 2.13.
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Table 2.12: Optimal allocation of demand of warehouses to each factory in regular
period

Factories Warehouses
W1 W2 W3

F1 0.795632 0.000000 0.000000
F2 0.000000 0.830127 0.000000

Table 2.13: Optimal allocation of demand of warehouses to each factory in post-
ponement period

Factories Warehouses
W1 W2 W3

F1 0.204368 0.000000 1.000000
F2 0.000000 0.169873 0.000000

The sum of separate supply for demand of warehouses and for replenishing

the inventory of warehouses is 505910.

Case 2: Factories only need to send quantity of safe stock to the warehouse

to satisfy the need of warehouses in the postponement period.

In this case, we use the contrary allocation of the supply to demand. We get:

min V2(αij) = 256220. Allocation of supply of factories to each warehouse is as

in Table 2.14.

Table 2.14: Optimal allocation of the demands of warehouses to each factory in
case 2

Factories Warehouses
W1 W2 W3

F1 0. 000000 0.150693 0.849307
F2 0.000000 1. 000000 0.000000

Case 3: Factories need to fulfill the need of warehouses in the postponement

period, and simultaneously need to replenish the inventory of the warehouses.

In this case, D = 7794915, K = 4310686. K < D, postponement strategy is

needed.

Objective value min V2(αij, βij) = 681630. Optimal allocation of demand for

the regular period is as in Table 2.15, for the postponement period is as Table

2.16.
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Table 2.15: Optimal allocation of demand of warehouses to each factory in regular
period in case 3

Factories Warehouses
W1 W2 W3

F1 0.422688 0.216952 1.000000
F2 0.000000 0.391524 0.000000

Table 2.16: Optimal allocation of demand of warehouses to each factory in post-
ponement period in case 3

Factories Warehouses
W1 W2 W3

F1 0.577312 0.000000 0.000000
F2 0.000000 0.391524 0.000000

2.3.4 Discussions

According to the result of ANN simulation in (Gumus et al., 2009), the first and

second factories, and the first and second warehouses are open, but the third

warehouse is closed. On the other hand, analytical method gives a solution in

which all the factories and warehouses are open. While ANN simulation finds

182, 021 dollars as the minimum cost, analytical method’s result is 167, 231 dol-

lars. Dealing with the same quantity of demands, our results show the optimal

scheduling is that, the first and second factories, the second and third warehouses

are open, while the first warehouse is not used. The minimum cost is 196833.45

dollars. It is not as good as compared to the results in (Gumus et al., 2009),

however, we have conquered the limit of their methods, the constraint that the

capacity of the warehouses should be equal or more than the demand of the dis-

tributor. This is just what we want to deal with, the case where demand quantity

is beyond warehouse capacity.

Furthermore, another advantage of our method is that it can quickly get the

best replenishment strategy after emptying of stocks which is used to satisfy the

demands in regular period. There are usually several strategies to choose, we

can execute our postponement strategy under different cases separately. We can

compare performance of different replenishment strategies to find the one with

least cost as the proposal.
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2.4 Conclusions

In this chapter, we have proposed using postponement strategy in scheduling

of supply chain network to cope with uncertainties in demand, based on the

hierarchal subsystems of the supply chain network and the ideal cooperation of

the agents in supply chain. It is actually a method transforming uncertainty to

certainty. Simplification of supply chain network to demand-supply subsystems is

to simplify computation of large scale of variables. A linear programming model

is employed to get the optimal allocation of the supplier to the demand, with

objective of minimization of supply cost, which concludes manufacturing cost,

compensation cost, manufacturing cost and transport cost. It is demonstrated

feasible and powerful in scheduling of supply chain through numerical example.

We found that, even in the cases where inventory is capable of satisfying demand,

our optimization model is also appropriate. The postponement strategy is only

necessary when the total inventory cannot satisfy unexpected demand. We have

compared the results of treating the same demands to the results in (Gumus

et al., 2009). It is completely competitive.

Inevitably, some drawbacks and limits exist in our research. We have not

considered the physical position relationship among members of supply chain. In

that case, we need more data, this makes the scheduling more complicated. In

our future study, we can take it into account to complete practical scheduling,

to avoid the phenomenon of roundabout. As to the products in the logistics,

we only have treated the flow of finished products. The treatment of materials

and parts will be more interesting and complex. Another drawback is in the

calculation. In fact, in order to get the parameters needed in calculation of linear

programming in LINDO 6.1, we have done a lot of preparing work by hands,

using programming in software will bring much convenience. As well, the usage

of the linear programming is limited in small scale of calculation. For larger

scale of calculation, a heuristic algorithm should be more appropriate. If all

the calculations are integrated in software or a tool box, it will be much more

convenient and simpler for the managers to use our method. It is worthy to

realize a visual process of all the design and calculation procedures.
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Chapter 3

Flexible job shop scheduling

problem under uncertainty

environment

Uncertainty in manufacturing includes mainly unavailability of machines, new

arrival tasks and uncertain processing time of products. In our work, we focus on

flexible job shop, which is an appropriate manner for modern consumer market.

We suggest using condition based maintenance (CBM) to reduce unavailability of

machines in manufacturing system. Different to conventional preventive main-

tenance, CBM makes scheduling for manufacturing dynamic, without predicted

moment of maintenance task. In order to solve flexible job shop scheduling prob-

lem with CBM, two stages are needed. Firstly, we use method for solving ordinary

flexible job shop scheduling (FJSP) to give a preschedule for manufacturing plan,

then when maintenance tasks needed we add them into the preschedule. For the

second stage of adding maintenance tasks, we propose an inserting algorithm,

which is demonstrated suitable for treating new arrival of jobs. In the section of

discussing uncertain processing of jobs, we observe that in different existing sched-

ule, it is important to analyze impact degree of processing time of operations.

3.1 Reducing unavailability of machines in FJSP

Unavailability of machines, is the preliminary kind of uncertainty in manufactur-

ing system. Flexible job shop, as a representative and popular manner of manu-
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facturing, attracts our attention to use it as our research objective. We suggest

using condition based maintenance (CBM), a category of preventive maintenance

(PM), to reduce unavailability of machines in flexible job shop. Our problem is

modeled as scheduling problem in flexible job shop with CBM. Application of

CBM makes manufacturing system scheduling dynamic. Because in CBM, main-

tenance task is determined by monitoring, we cannot predict the exact moment

when maintenance task is necessary. Occurring of breakdown of machines are

random in that condition. It is obvious that in most time of production, ma-

chines are available, under this circumstance, the problem is an ordinary flexible

job shop scheduling problem (FJSP). We solve ordinary FJSP to get a presched-

ule. When need of maintenance task emerges, we need to add them into the

preschedule. We propose an Inserting Algorithm (IA). Because of the originality

of the problem, there is no benchmark for us to demonstrate effectiveness of our

algorithm. Hence we concentrate on conventional FJSPPM. In order to solve

FJSPPM, firstly we attempt to find promising method for solving FJSP. Three

approaches, a hierarchical Genetic Algorithm, an integrated Genetic Algorithm,

and an integrated Ant Colony Optimization, are proposed. The best approach

among the three is adopted in solving FJSPPM. To illustrate effectiveness of IA,

we compare it with the simultaneous scheduling algorithm (SSA) in literature on

benchmark of FJSPPM.

3.1.1 Introduction and literature on FJSPPM

We have concluded the factors inducing uncertainties in manufacturing system.

Although manufacturing subject to less disturbance than the end stage in sup-

ply chain, such as demand, complexity of manufacturing system may increase

possibility of uncertainty occurring. Different manufacturers adopt distinct man-

ufacturing manners, which depend upon class of products, scale and capacity of

company, etc. Therefore, to do research on uncertainty in manufacturing system,

we should focus on a classic manufacturing manner. Job shop is a manufacturing

manner suitable for consumer market with attribution like species diversity and

small batch size. It is popular in manufacturing industry. Flexible job shop is

an extension of job shop, which is more flexible in producing diversified products

and making full use of machines.
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3.1.1.1 Flexible Job-shop Scheduling Problem (FJSP)

Flexible Job-shop Scheduling Problem (FJSP) extends job-shop scheduling prob-

lem (JSSP) with alternative machines routings, by assuming that a machine is

capable of performing more than one type of operation (Hussain & Joshi, 1998;

Najid et al., 2002; Nasr & Elsayed, 1990). That means for any given operation,

there is at least one machine capable of performing it. The first model is re-

ferred as job shop scheduling with alternative machine tool routings, which was

first addressed by Iwata et al. (1978). The same model was later addressed by

Brandimarte (1993) as flexible job shop scheduling problem (FJSP). Brucker &

Schlie (1990) first addressed FJSP by a polynomial algorithm, which was applied

with two jobs. FJSP can be considered as a generalization of JSSP and parallel

machines problem. It concludes two sections: assignment of available machines

to operations and sequence scheduling of all jobs.

There are two kinds of flexibility, total flexibility and partial flexibility. Both

of them are studied by Kacem et al. (2002a). They developed two new approaches:

the approach by localization and an evolutionary approach controlled by the as-

signment model. By hybridizing particle swarm optimization and simulated an-

nealing, Xia & Wu (2005) proposed a hybrid approach to solve the multi-objective

flexible job-shop scheduling problem, in which, the particle swarm optimization

is to deal with the assignment problem, and simulated annealing scheduling al-

gorithm for sequence scheduling.

To solve FJSP which includes two sub problems, both being NP-hard prob-

lems, there are two approaches: hierarchical approach and integrated approach.

The former one treats the assignment of machines and sequencing scheduling sep-

arately, while the latter one considers the two problems simultaneously. Brandi-

marte (1993), who was the first to use decomposition method in FJSP, applied

hierarchical approach, both sub problems are tackled by Tabu Search (TB). After

him, Kacem et al. (2002b); Saidi-Mehrabad & Fattahi (2007); Xia & Wu (2005),

etc., all use hierarchical approach to solve the problem, with different or the same

heuristic to solve the two sub problems. In contrast, there is less literature for

the integrated approach, Dauzère-Pérès & Paulli (1997) defined a neighborhood

structure for the problem where there was no distinction between the two sub

problems. Gambardella & Mastrolilli (1996) presented two neighborhood func-
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tions. Fattahi et al. (2007) compared the two approaches and concluded that

hierarchical approach have better performance than integrated algorithms.

3.1.1.2 Preventive Maintenance

Most literature working on job-shop scheduling problem (JSSP) does not con-

sider unavailability of machines. However, in most practical manufacturing en-

vironment, there are usually some sorts of uncertainty inducing unavailability of

machines, such as the unavailability of staff, operational errors of staff, machine

breakdown, and so on. The reasons of staff and others subjective aspects are

usually not considered as optimization section. Meanwhile, the objective aspects,

like the machines’ performances, are always focused in research. Machine’s per-

formance depends on its parameters, which cannot be changed or improved after

machine going out of the factory. In contrary, it decrease with time in its life-

time. Besides the final scrap, breakdown cannot be avoided, especially in term of

modern machine, which is always with a sophisticated structure. In most cases,

breakdown is caused by very small errors, imprecision between the two joint parts,

or attrition of some parts, etc. Therefore, ensuring machines performing in good

condition attracts many researchers and practitioners. Furthermore, preventive

maintenance (PM) is widely studied among them.

PM is obviously more effective than breakdown maintenance, which is a kind

of widely used maintenance before, for machines in small batch production, where

the interruption is not very severe. PM is also superior to the periodic mainte-

nance, in the aspect of avoiding over maintenance and insufficient maintenance.

PM is to avoid interruption by performing maintenance activity before breakdown

happens. It is expected that after maintenance, machine is restored to a good

working condition in a period, which may be fixed or unfixed. Correspondingly,

there are two kinds of PM, the one with fixed period and the one with unfixed

period. The former is for machines with fixed time to scrap, and the latter is ap-

propriate to the structured machines, which is more complex and without fixed

time to scrap. In fact, the processing condition or material difference may pro-

voke distinction of lifetime between the same kinds of parts. Thereby, the fixed

period of maintenance are actually unfixed, with an interval. In this case, it can

also be concluded in the unfixed period of maintenance.
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PM is an effective method to increase availability of machines. Another rea-

son for which PM is paid attention is its sharing resource directly with produc-

tion. Most studies concerning maintenance consider maintenance periods as con-

straints, i.e., maintenance is privileged to production (Liao et al., 2006). In fact,

the priority depends on concrete case. For example, when PM is not urgent, pro-

duction takes priority in order to maximize production, otherwise, maintenance

takes priority. When maintenance is urgent, if it does not carry out immedi-

ately, breakdown may occur, and then series of consequence may be provoked.

The significance of PM is to guarantee continuity of production. Therefore, rela-

tionship between PM and production must be treated well. Stochastic approach

is more appropriate to deal with conflict between maintenance and production.

However, there is little literature on stochastic approach. The related works

(Kaabi-Harrath, 2004; Xu et al., 2008) still favor maintenance to production. The

goal of PM is to maximize the availability of production system and to decrease

cost of unexpected failures. As it is opposite to the ultimate goal of maximizing

production, a trade-off between PM and production should be found to get the

maximum profitable point of production system.

3.1.1.3 Flexible Job-shop Scheduling Problem with Preventive Main-

tenance

There is not much research on JSSP considering maintenance activities. We

have referred several researchers working on JSSP integrated with preventive

maintenance (PM)(Gao et al., 2006; Lei, 2010a; Moradi et al., 2011; Wang &

Yu, 2010). Other similar works studies influence of maintenance activity in some

other production modes, like parallel machines (Berrichi et al., 2010; Liao et al.,

2006).

Two different scheduling horizons are investigated for the problem of schedul-

ing jobs on two parallel machines which are not continuously available for pro-

cessing, the long-term and short-term horizons (Liao et al., 2006). Maintenance

is considered as ε-almost periodic in a parallel machine scheduling problem (Xu

et al., 2008). Berrichi et al. (2010) proposed an integrated bi-objective model

for parallel machine problem using reliability models to take the maintenance

aspect into consideration. The intervals of maintenance and the sequence of pro-

duction are optimized in the model. A visual interactive simulation model was
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constructed to show how the state dependent rescheduling technology is used

(Eric Li & Shaw, 1998). A heuristic which relies only on predicted downstream

machine failure times has been refined to include job-shop state variable infor-

mation.

For FJSP with machine maintenance in consideration, a hybrid genetic algo-

rithm is proposed by Gao et al. (2006) to solve FJSP with non-fixed availability

constraints, which used partial representation method to represent only a part

of a solution candidate and leaves the rest part to be decided by the heuristic

method to strengthen the inheritability of the solution candidate. Moradi et al.

(2011) investigated integrated FJSP with preventive maintenance activities under

multi-objective optimization approaches, where four multi-objective optimization

methods are compared to find the Pareto-optimal solution.

3.1.1.4 Condition Based Maintenance

Despite PM has been studied in FJSP to increase availability of machines and

reliability of the entire production system, the maintenance activity interval is

mainly given as a constant or the maintenance must be executed in a predicted

interval. And the theoretic basis of the maintenance interval is not specified, that

is, PM is only an abstract activity.

The type of PM we use in FJSP is Condition Based Maintenance (CBM). In

the groundbreaking report of Neal et al. Neale et al. (1979), difference in main-

tenance strategies (e.g., breakdown, planned, etc.) were illustrated and CBM

was suggested. Since 1990s condition monitoring techniques has been increas-

ingly used to aid planning replacement Aven (1996) and preventive maintenance

Christer et al. (1997). CBM has become widely accepted as one of the drivers

to reduce maintenance costs and increase plant availability Al-Najjar (1991),

Bengtsson (2002). The main idea of CBM is executing maintenance activity in

the period of potential machine failure, in order to avoid malfunction of machines.

Malfunctions refer to the mechanical failures, which induce the machine break-

down, such as slipping clutch, jump file transmission, generation power does not

work, etc. Potential failure is the failure which has not happened yet, but may

happen in one moment in future. It is the hidden faults, which exist commonly.

The moment when the failure happen depends on the system itself. For detailed

introduction and application about CBM, can refer to Sethiya (2006).

76



3.1 Reducing unavailability of machines in FJSP

The theoretical basis of CBM is the P − F curve, which describes the deteri-

oration process of machine, shown in Figure 3.1.

Figure 3.1: P-F curve

In Figure 3.1, A: the moment when failure began;

P : the moment when hidden failure is detected;

F : the moment when malfunction occurs;

T : the interval of P − F , the process of the hidden failure developing to

malfunction.

To prevent malfunction, executing time of maintenance should be before the

point F and after P , to use maximally the effective lifetime. To find the right

moment to execute maintenance is the essence of CBM.

Advantage of CBM is that it transforms the state of maintenance from pas-

siveness to activeness. It gets rid of the disadvantage of the cyclic maintenance,

which may induce inadequate maintenance or over maintenance. CBM chooses

an appropriate time to perform maintenance to avoid breakdowns and reduce the

maintenance cost simultaneously. It is based on analysis of failure mechanism

of machines. The main obstacle of applying CBM is high cost of installation of

observer and detector for discovering potential failure of machines. In spite of the

costly installation, increase of reliability of machine is the most important motive

of application. CBM and the Reliability-Centered Maintenance are the primary

maintenance strategies in future.

As CBM is also a kind of PM, we note the problem as flexible job shop

scheduling problem with preventive maintenance (FJSPPM). The attribution of

real-time of CBM makes this kind of FJSPPM dynamic. We can conclude this

problem as dynamic FJSPPM (DFJSPPM). Liu et al. (2007) classified attempts
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to scheduling in presence of disruptions in manufacturing system into two groups.

One group with completely reactive job dispatching scheduling, and the second

group offers control strategies to aid the system recovery from disruptions with

consideration of an initial schedule. The main difference between the two groups

is that no schedule is generated in advance in the complete reactive scheduling,

but decisions are made on real time using priority dispatching rules. On the

other hand, the second group uses a predetermined schedule called preschedule or

predictive schedule to optimize a certain performance measure and is implemented

until some unforeseen disruption occurs in the system. DFJSPPM is different to

conventional FJSPPM, where PM is determined in a fixed period or at a fixed

moment. Before data of PM obtained by CBM, the problem is a classic FJSP. Job

shop carries on production according to a prescheule, result of solving FJSP. After

obtaining data of PM, we add PM into existing preschedule. At this moment,

we can reschedule it as solving a new FJSPPM if we just have a perfect moment

when all ongoing job operations are completed and PM task is not arriving.

However, if we cannot find the perfect moment, but just a processing period, we

cannot reschedule all jobs with new arriving PM tasks. In order to solve this real

time problem with disruption, we propose an inserting algorithm (IA). IA can

be considered as a reactive dispatching scheduling for adding PM into existing

preschedule, which is different to the two groups concluded by Liu et al. (2007).

We introduce IA in details in following section.

3.1.2 Mathematical modeling for FJSPPM

We study the situation that scheduling period of FJSP coincides with the P−F in-

terval T of CBM. That is, maintenance activity is executed within the scheduling

period. FJSP is already NP-hard problem. Added with maintenance execution,

the problem becomes more complicated.

Because DFJSPPM depends on concrete problem, the first step of solving

DFJSPPM is to specify the time windows of PM tasks. This step transfers the

problem into FJSPPM. In subsequent section we do comparative study with exist-

ing benchmark of FJSPPM in literature to demonstrate our proposed algorithm.

FJSPPM is described as follows: n jobs are to be scheduled on m machines.

Each job i represents a number of ni non-preemptable ordered operations. The

execution of each operation k of job i (noted as Oik) requires one machine selected
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from a set of available machines, called Aik, and occupy that machine tikj time

units until the operation is completed. There are Lj maintenance tasks which

has to be processed on machine j during the planning horizon. The maintenance

task corresponds to a predefined time window T , within which the starting time

of the maintenance task can be moved. We assume that:

(1) All the ni ordered operations of the ith job have to be processed;

(2) Activity of each operation Oik requires one machine selected from a set of

available machines, called Aik;

(3) Every machine processes only one activity (job operation or maintenance

task) at a time;

(4) Set-up and unloading time for operations are machine-independent and

are included in processing time of operation;

(5) Maintenance task is considered as a special job, duration of which is in-

cluded in makespan of jobs;

(6) Machine is restored to good working condition after maintenance.

(7) Jobs are processed before their due dates. Therefore, there is no penalty

of tardiness and storage cost. Production cost concerns only with processing cost.

Notations:

• Indices

i, h: index of jobs, i, h = 1, 2, · · · , n;

j: index of machines, j = 1, 2, · · · ,m;

k, g: index of operation sequence, k, g =1, 2,· · · , ni;

l: index of maintenance tasks, l = 1, 2, · · · ,Lj .

• Parameters n: total number of jobs;

m: total number of machines;

ni: total number of operations of Job i;

Lj : total number of maintenance tasks on Machine j;

Oik: the kth operation of Job i;

PM jl: lth potential maintenance on Machine j;

p: maximum number of maintenances needed on one machine;

Aik: set of available machines for Operation Oik;

tikj: processing time of Oik on Machine j;

CM j: unit processing cost on machine j;

pjl: duration of Maintenance task PM jl;
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[tEjl , tLjl ]: time window associated with maintenance, where tEjl is the

earliest starting time, and tLjl is the latest starting time of Maintenance task

PM jl

• Decision variables

xikj =

{

1, if Machine j is selected for Operation Oik,

0, otherwise;

cik: completion time of the Operation Oik;

yjl: completion time of Maintenance task PM jl.

Our model is given as follows:

min F1 = max(max
1≤i≤n

cini
, max
1≤j≤m

yjLj
) (3.1)

s.t.[(chg − cik − thgj)xhgjxikj ≥ 0] ∨ [(cik − chg − tikj)xhgjxikj ≥ 0],

∀(i, k), (h, g), j (3.2)

[(yjl − cik − pjl)xikj ≥ 0] ∨ [(cik − yjl − tikj)xikj ≥ 0], ∀(i, k), (j, l) (3.3)
∑

xikj = 1, j ∈ Aik, ∀i, k (3.4)

tEjl ≤ yjl ≤ tLjl, ∀l, j (3.5)

xikj ∈ 0, 1, ∀i, k, j (3.6)

cik ≥ 0, ∀i, k (3.7)

yjl ≥ 0, ∀j, l (3.8)

The objective function (3.1) is minimization of makespan of jobs and preven-

tive maintenances. Inequality (3.2) ensures no-overlapping constraints between

operations on the same machine. Inequality (3.3) ensures no-overlapping con-

straints between preventive maintenance tasks and operations on the same ma-

chine. Equation (3.4) states that only one machine should be selected from the

set of available machines for each operation. Inequality (3.5) states that the pre-

ventive maintenance tasks have to be executed within their time windows. (3.6)

is integer constraint of decision variable. (3.7) and (3.8) ensure the feasibility of

the two variables.

3.1.3 Solution approach for FJSPPM

We decompose FJSPPM into two stages, FJSP and adding PM. From litera-

ture of FJSP, we find that most studies focus on arrangement of machines using
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meta heuristic and decoding procedure for sequence scheduling. We would like

to compare this policy with the hierarchical method, which treat the two sub

problems directly and separately. Among the immense meta heuristics, we are

interested in GA and ACO, which are used frequently in literature. Both GA and

ACO are promising algorithms in permutation optimization. In our first stage of

solving FJSP, we use three different approaches, hierarchical genetic algorithm

(HGA), integrated genetic algorithm (IGA) and integrated ant colony optimiza-

tion (IACO). Although Fattahi et al. (2007) stated that hierarchical algorithm

is superior to integrated algorithm in solving FJSP, he just used Simulated An-

nealing (SA) and Tabu Search (TS) in searching structures. Their conclusions

may not be appropriate to other heuristics, like GA and ACO. We compare per-

formance of these three approaches and pick out the better one to be used in

following stage of solving FJSPPM.

Based on the approach to solve FJSP, PM activities are added to the program

through two different methods: simultaneous scheduling algorithm (SSA)(Gao

et al., 2006), inserting algorithm (IA).

We detail these approaches in following sections.

3.1.3.1 Hierarchical Genetic Algorithm for FJSP

Since Genetic Algorithm (GA) was introduced by Holland in 1975, it has been

proved powerful in optimization problem and has been used by many researchers

and scholars. As we mentioned in proceeding section, there are two difficult prob-

lems in FJSP: the allocation of operations on machines and operation sequence

scheduling. GA has been widely used for JSSP, also for FJSP. Hussain & Joshi

(1998) proposed a two pass GA for JSSP with alternative routing. In fact it is

also a hierarchical approach for FJSP, GA for the first sub problem and Non

Linear Programming (NLP) for the second sub problem. Jawahar et al. (1998)

proposed a GA-based heuristic algorithm for flexible manufacturing systems with

alternative routing, in which machines were selected randomly. Many researchers

proposed different hybrid GA to improve the performance of GA. Two differ-

ent chromosomes are used to represent the machine assignment and operation

sequence separately by Kim et al. (2003). Local search with two kinds of neigh-

borhood is hybridized with the genetic algorithm to enhance the search ability in

Gao et al. (2006).
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From literature about solving FJSP with GA, we find that much attention

is paid to the part of machine assignment, while sequence scheduling is rather

ignored, only with certain scheduling rules represented in decoding procedure.

Take the work of Kacem et al. (2002a) for example. They concentrated on ma-

chine assignment, which is obtained with an approach of localization (AL), with

chromosome representing machine assignment. The crossover and mutation pro-

cedures also contribute to changing machines. For sequence scheduling, starting

and ending time of operations are computed according to scheduling algorithm.

In HGA, two consecutive GA procedures are constructed for machine assign-

ment and sequence scheduling respectively. In the first GA, minimization of total

processing time and work load of machines are proposed as both objectives and

the fitness function. In the second GA, the sum of average of workload of ma-

chine and makespan works as fitness function while minimization of makespan is

objective, which is also the objective of the whole FJSP. To our knowledge, in

literature of JSSP, workload is considered as fitness function only when it plays

the role of objective. Although it is not new that fitness function is different

from objective function, it is interesting to test and verify effect of this attempt.

Flowchart of HGA is shown in Figure 3.2 .

GA-1: the first GA for machine assignment

The overall structure of GA-1 is described as follows:

(1) Encoding: genes of chromosome represents machine assignment of opera-

tions, with size (n, ni);

(2) Initial population: It is initialized that machine for each operation is ran-

domly selected from the set of available machines, Aij , to guarantee its feasibility.

Consider the example with four machines and four jobs, where each job requires

four operations (Gao et al., 2006). For the part of FJSP, the initialized chromo-

some is as in Table 3.1. It is a matrix with size (4, 4).

(3) Offspring generation: Crossover and mutation are to realize variety of pop-

ulation and to avoid local optimal solution. In crossover procedure, we use entire

row or column crossover, to keep feasibility of individuals. Firstly, randomly se-

lect two individuals as one pair of parents. Secondly, randomly select the manner

of crossover, either row crossover or column crossover. Finally, choose randomly
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Figure 3.2: Hierarchical Genetic Algorithm (HGA) for FJSP

Table 3.1: Machine assignment to operations
`

`
`

`
`

`
`

`
`

`
`

`
`

`̀

job
operation

1 2 3 4

1 4 3 3 1
2 2 4 1 4
3 3 1 2 1
4 2 4 4 3
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the cut position of row or column and carry on crossover to generate two new in-

dividuals. In mutation procedure, individual and its mutation position is selected

randomly and within the mutation probability. In order to ensure feasibility of

solutions, the mutated value is also in the set of available machines.

(4) Fitness evaluation: total processing time and workload of machine are

calculated for each chromosome in current generation. The two objectives are

weighted together as Fitness=w1·total processing time + w2· max(machine work-

load). We set w1 = w2 = 0.5.

(5) Selection: Individuals in parents join in competition with offspring in terms

of keeping good individuals. (2 ·N) individuals are generated until this step. N

(Population size) individuals are selected from (2 ·N) ones by selection method.

The two widely used methods of selection are roulette wheel and tournament.

In the work in literature, the two selection methods is chosen randomly, without

clear clarification of reasons. In our work, after comparing the effectiveness of

the two method through experiment, the better one is used finally. We mod-

ify the conventional tournament selection which is proposed by Goldberg et al.

(1992). In ordinary tournament, two individuals are chosen randomly from the

population, and then the fitter one in the two will be chosen if a random value r

is smaller than a probability value k, otherwise, the other one is chosen where k

is a parameter. Because in our work, (2 ·N) individuals join in the tournament,

which can guarantee the diversity of population, we need not to use the proba-

bility value k. We compare the effectiveness of the two selection methods in the

following section.

(6) Stop criteria: the program stops when fixed number of generation is

reached. The best chromosome, together with corresponding schedule, is out-

putted as results. Otherwise, the program iterates steps (3)-(5).

Test of comparing tournament and roulette wheel in GA-1

We take the example of J15M10 in Xia & Wu (2005) to compare the effectiveness

of the two selection methods. It is a FJSP with total flexibility, 15 jobs with

56 operations processed on 10 machines. We execute the program 10 times,

the results shown in Table 3.2. All our experiments are carried on a computer

with Intel(R) Core(TM) 2 CPU (2.66GHz; 2.67GHz), GA program is realized on
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Matlab R2008a. The parameters used in GA in our simulation are listed in Table

3.3. Following experiments of GA use the same parameters as well.

Table 3.2: Result of comparing tournament and roulette wheel in GA-1

best value mean value mean executing
time (cpu: second)

tournament 51 51.15 293.09
roulette wheel 75 81.15 814.02

Table 3.3: Parameters of GA
Parameters value
Population size (N) 2000
Generation (M) 200
Crossover probability (Pc) 0.9
Mutation probability (Pm) 0.1

We find that tournament is superior to roulette wheel both in fitness value

and executing time. Therefore, we use tournament as selection method in GA-1.

GA-2: the second GA for sequence scheduling

This part is exactly solving JSSP, based on the proceeding part of machine assign-

ment. GA for JSSP has been studied by many researchers (Dorndorf & Pesch,

1995; Park et al., 2003; Yamada & Nakano, 1997).

The structure of GA-2 is similar to GA-1, but with different chromosome

representation and different formats of genetic operators.

(1) Chromosome: since operations assigned to each machine have already

been fixed through GA-1, the order of them is the unique factor needing to be

decided. Because here only an initial sequence is needed. We adopt the widely

used priority rule to get a initial sequence scheduling. For the example in Table

3.1, an initial sequence of operations on each machine is the emergence position

of operations as shown in Table 3.4, with a rule of sequencing from top to bottom

in the table.

Chromosome exists as a matrix with size (m, 2r), where r represents the max-

imum number of operations assigned on one machine. The first half of the chro-

mosome, from column 1 to column r, represent index of job; the second half, from
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Table 3.4: Sequence scheduling

M1 3 2 1 3
M2 2 4 3
M3 3 1 1 4
M4 1 2 4 4 2

column (r + 1) to column 2r, represent index of operation of related job. Com-

bination of the two halves compose the total representation of operations. e.g.,

in the same row, the value of 1th column, i, with j at (r + 1)th column, represent

operation Oij. Chromosome representation of the sequence scheduling in Table

3.4 is represented as:
3 2 1 3 0 2 3 4 4 0
2 4 3 0 0 1 1 3 0 0
3 1 1 4 0 1 2 3 4 0
1 2 4 4 2 1 2 2 3 4

Population is initialized with random permutation of all operations on each

machine. To avoid infeasible solution, operations of the same job must obey

constraint of processing order.

(2) Crossover: Park et al. (2003) has applied different crossover procedures in

JSSP and demonstrated that different crossover is suitable to different problems,

depending upon the scale of problem. We adopt the same crossover procedure as

in GA-1. The difference is that column crossover is not suitable.

(3) Mutation: in order to keep diversity of solution, one point is selected

randomly and the value of which is changed with its neighbor.

(4) Fitness evaluation: makespan is the evaluation criteria for sequence schedul-

ing.

(5) Selection: We use tournament as selection method as it is demonstrated

promising in GA-1.

3.1.3.2 Integrated Genetic Algorithm for FJSP

Different to hierarchical approach, in which machine assignment and sequence

scheduling are treated separately, in integrated approach, the two sub problems

are integrated in one GA procedure. Flowchart of integrated approach of GA is

described in Figure 3.3.
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Figure 3.3: Integrated Genetic Algorithm (IGA) for FJSP

Chromosome is the same as that in GA-1 in section 3.1.3.1, keeping the same

approach of offspring generation. Objective is minimization of makespan, so fit-

ness value can also be makespan. Because makespan is the maximum makespan

among all jobs, it is obvious that the scheme with minimum makespan needs that

maximum workload on all machines is optimal as well. We have executed some ex-

periments with different fitness representations types, makespan, makespan with

mean workload of all machines, and makespan with maximum workload among

all machines. We find that using makespan + mean(workloads) as fitness value

is the best manner. The two selection methods, tournament and wheel roulette,

are also compared on experiments to select the better one. In decoding proce-

dure, scheduling algorithm is used to get sequence scheduling and then makespan

is computed. Operations on the same machine are sequenced according to the

position of occurrence. When the program stopped and the best chromosome

is obtained, the sequence scheduling of the best chromosome is calculated again

in the procedure of decoding. As sequence scheduling is essential for decoding

procedure to calculate makespan, we detail it as follows.

Sequence scheduling: Firstly, according to processing sequence to schedule all

operations of all jobs, e.g., the first operation of each job is firstly scheduled, and

then the second operation, and so on, until all operations are scheduled. For
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scheduling operations on the same machine, there are two traditional methods.

One is scheduling operations according to the sequence of number of jobs (Mes-

ghouni, 1999), e.g., in the example in Table 3.1, operations O21 and O41 are both

assigned to machine 2, O21 will be scheduled before O41. Decoding procedure is

described in Figure 3.4. The other one is giving a vector of priority of operations,

as a part of chromosome, and then sequencing operations on the basis of the

priority (Gao et al., 2006). In our work, we try to find a promising sequencing

method for operations on the same machine, on comparing the four scheduling

sequence methods: (a) order of number of jobs; (b) inverse order of number of

jobs; (c) random order; (d) order of available time of jobs. Performance of these

four methods is compared on two instances of FJSP next.

Figure 3.4: Decoding procedure

Test of comparing sequence scheduling methods

We take the example of J8M8 and J15M10 in Xia & Wu (2005) to compare the

efficiency of the four sequence scheduling methods, with results shown in Table

3.5 and Table 3.6.

From results in Table 3.5, we can see that scheduling sequence method (b)

is superior to the others. But in Table 3.6 sequence method (d) is the best.

That may be corresponding to size of problem. We can not arbitrarily define the

best sequence scheduling method, but it is obvious (b) and (d) perform relatively

better among the four. Therefore, we use order of available time of jobs as

scheduling sequence method for large scale problem, while for small scale problem

inverse order of jobs is preferred as sequence scheduling method.
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Table 3.5: Result of comparing scheduling sequence methods in integrated GA
on example J8M8

best value mean value mean executing
time (cpu: sec-
ond)

(a) order of number of jobs 15 15.4 229.63
(b) inverse order of number of jobs 14 14 260.61
(c) random order of jobs 14 15.3 578.55
(d) order of available time of jobs 15 15.2 567.32

Table 3.6: Result of comparing scheduling sequence methods in integrated GA
on example J15M10

best value mean value mean executing
time (cpu: sec-
ond)

(a) order of number of jobs 12 13.5 386.15
(b) inverse order of number of jobs 13 13.9 433.29
(c) random order of jobs 13 14.1 833.85
(d) order of available time of jobs 12 12.9 866.27

3.1.3.3 Integrated Ant Colony Optimization for FJSP

Ant Colony Optimization (ACO), also a population-based approach, was devel-

oped from the Ant Algorithm proposed to solve Travelling Salesman Problem

(TSP) firstly by Colorni et al. (1994). Later it is developed for various formats

(ACO, ant systems (AS), Max-Min ant system (MMAS), Ant Colony System,

ACS, Elitist ant system (EAS), Rank-Based Ant System (RBAS), and applied for

several NP-hard combinatorial optimization problems (Bullnheimer et al., 1999;

Dorigo & Gambardella, 1997; Gambardella & Dorigo, 1997; Stützlea & Hoosb,

2000).Colorni et al. (1992)was the first one to apply ACO to JSP. Various devel-

oped ACO were compared by Heinonen & Pettersson (2007) in JSP with different

visibility studies. They demonstrated that MMAS is superior to others. Hybrid

algorithms with ACO were developed to improve the solution quantity: ACO

combined with local search proposed by Heinonen & Pettersson (2007); ACO

combined with tabu search by Huang & Liao (2008). ACO was also applied for

FJSP (Girish & Jawahar, 2009; Ponnambalam et al., 2010; Rossi & Dini, 2007).

We use the approach of Ponnambalam et al. (2010), in which two pheromone
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trails are used for machine assignment and sequence scheduling separately.

Solution construction of IACO

In this approach, the two sub problems of FJSP are integrated. It is assumed

that the ant colony depose two kinds of pheromone, τ_mijk and τiji′j′, to control

the two sub problems, machine assignment and sequence scheduling separately.

(1) Machine assignment

Machine assignment is executed in the first stage. An ant choose machine k

for operation Oij with probability:

Pijk =
τ_mijk

α_m · ηijk
β_m

∑Aij

k=1 τ_mijk
α_m · ηijk

β_m
(3.9)

Where α_m and β_m are parameters to control weights of fitness of pheromone

and heuristic separately. ηijk represents the rule of choosing machines. ηijk =

1/Tijk. Tijk is the processing time of operation Oij on machine k. Aij is the set

of available machines for operation Oij.

(2) Sequence scheduling

Sequence scheduling is executed after machine assignment. Take an example

of 3 jobs and 3 machines. Machine assignment is obtained from the proceeding

stage: operations O13, O32, O33 and O23 are executed on machine 1; O11, O31 and

O22 will be executed on machine 2; O21 and O12 are executed on machine 3.

Set R includes the available jobs which wait to be executed, initially, R =

{O11, O21, O31}. Set Tabu represents the operations which have already been

scheduled, initially, Tabu = {∅}. The first operation is chosen from set R ran-

domly. Here, we pick up O11 for example. Simultaneously, update Set R and

Tabu: R = {O12, O21, O31}, Tabu = {O11}. The ant chooses next operation in

accordance with probability:

Piji′j′ =
τiji′j′

α · ηiji′j′
β

∑n
i=1

∑ni

j=1 τiji′j′
α · ηiji′j′

β
(3.10)

Where, α and β are two parameters to control the weights of fitness of pheromone

and heuristic separately. ηiji′j′ represents the rule of sequence scheduling. Differ-

ent rules in literature of FJSP can be used:
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• Shortest processing time (SPT), the operations with the shortest processing

time have higher priority;

• Longest processing time (LPT), the operations with the longest processing

time have higher priority;

• Most work remaining (MWR), the jobs with the Most work remaining have

higher priority;

• Length of unscheduled tasks in job (LTJ), the jobs with the most remaining

work than others have higher priority;

• Shortest starting time of operation (SST), the operations that can start

earlier than others have higher priority.

• First In First Out (FIFO), the jobs start earlier have higher priority. When

considering the flow time of jobs, this rule is suitable.

In the early days of our research work, we adopt the two popular methods,

SPT and MWR, as alternatives. Our experiments show that MWR outperforms

SPT. Therby we use MWR as scheduling rule.

Sequence scheduling procedure continues until all operations are scheduled,

that is A = {0}, and Tabu = {O11, O12, O13, O21, 022, O23, O31, O32, O33}. The

entire scheduling can be considered in a digraph shown in Figure 3.5.

Figure 3.5: Digraph of sequence scheduling in ACO

The starting and ending time are simultaneously scheduled, according to the

un-overlapping rule in the model in section 2.

(3) Feasible solution
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We get a feasible solution for our problem after the two proceeding stages,

including the machines used and processing sequence of all operations. A maxi-

mum iteration number is defined to terminate the program. Like the number of

ants, the number of iteration is also determined according to the size of problem.

Pheromone trail design of IACO

τ_mijk indicates the pheromone trail for representing desirability that operation

Oij choose Machine k to executing the processing. τiji′j′ represents the pheromone

trail for desirability that operation Oij executes after operation Oi′j′. All feasible

schemes are initialized to 0.1.

We use Max-Min ant system to update pheromone, which is demonstrated

to outperform other formats of ant system by Heinonen & Pettersson (2007).

That is, after one iteration, only the pheromone of the best ant in the iteration

is updated. Assume that the example in Figure 3.5 is the best ant in current

iteration. The pheromone trails will be updated as follows. All the pheromone

will decrease over time as evaporation. Simultaneously, the pheromone trails,

τ_m112,τ_m123, τ_m131, τ_m213,τ_m222, τ_m231, τ_m312, τ_m321, τ_m331,

will increase with ∆τ_m; the pheromone trails, τ2111,τ3121, τ1231, τ1312, τ2213,

τ3222, τ3332, τ2333, will increase by ∆τ .

Pheromone after current iteration tn will be updated:

τ_mijk(tn + 1) = ρ · τ_mijk(tn) (3.11)

τiji′j′(tn + 1) = ρ · τiji′j′(tn) (3.12)

For the pheromone of the best ant,

τ_mijk(tn + 1) = τ_mijk(tn + 1) + ∆τ_m (3.13)

τiji′j′(tn + 1) = τiji′j′(tn + 1) + ∆τ (3.14)

∆τ_m = ∆τ =
1

f(ibest)
(3.15)
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Where, ρ is evaporation rate, ranging in [0, 1]. f(ibest) is the makespan of

iteration best. Similar to iteration best, someone used global best. To avoid

premature convergence, iteration best is preferred.

The spirit of MMAS is to avoid stagnation of iteration on pheromone updating.

The value of pheromone is limited in a range [τmin, τmax]. The limits of the two

kinds of pheromone are determined as the same value as follows:

τmax =
1

1− ρ
· f(ibest) (3.16)

τmin =
τmax

y
(3.17)

Where y is a parameter defining the space between τmax and τmin. We can see

that their values change when new iteration best is obtained.

Parameters applied to ACO is shown in Table 3.7.

Table 3.7: Parameters of ACO
Parameter value
Number of ants (M_ant) 400
Generation (NC_max) 500
Space range parameter (y) 10
Pheromone evaporation rate (ρ ) 0.1
Control parameter of pheromone of operation (α) 1
Control parameter of heuristic of operation (β ) 2
Control parameter of pheromone of machine (α_m) 1
Control parameter of heuristic of machine (β_m ) 2
Strength of pheromone (Q) 10

3.1.3.4 Comparing effectiveness of the three approaches for FJSP

As mentioned in proceeding section that our method of solving FJSPPM is based

on the preschedule obtained from conventional model of FJSP, we would like to

find out the best one in the three approaches above. We test our methods on

three classic examples of FJSP in Xia & Wu (2005): J8M8, instance of partial

flexibility, 8 jobs with 27 operations processed on 8 machines; J10M10, instance

of total flexibility, 10 jobs with 30 operations processed on 10 machines; J15M10,

instance of total flexibility, 15 jobs with 56 operations processed on 10 machines.
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Original data of the three examples is in Table 3.8, Table 3.9 and Table 3.10

respectively, where symbol X indicates that the assignment is impossible. Results

of experiments on the three examples through executing the programme 10 times

are shown in Table 3.11. The best value of the three examples obtained from Xia

& Wu (2005) is also shown in Table 3.11, with ∗ for recognition. Gantt chart of

the optimal solution of the three examples is shown in Figure 3.6, Figure 3.7 and

Figure 3.8 respectively.

Table 3.8: Problem J8M8 with 27 operations (partial flexibility)

M1 M2 M3 M4 M5 M6 M7 M8

J1 O11 5 3 5 3 3 X 10 9
O12 10 X 5 8 3 9 9 6
O13 X 10 X 5 6 2 4 5

J2 O21 5 7 3 9 8 X 9 X
O22 X 8 5 2 6 7 10 9
O23 X 10 X 5 6 4 1 7
O24 10 8 9 6 4 7 X X

J3 O31 10 X X 7 6 5 2 4
O32 X 10 6 4 8 9 10 X
O33 1 4 5 6 X 10 X 7

J4 O41 3 1 6 5 9 7 8 4
O42 12 11 7 8 10 5 6 9
O43 4 6 2 10 3 9 5 7

J5 O51 3 6 7 8 9 X 10 X
O52 10 X 7 4 9 8 6 X
O53 X 9 8 7 4 2 7 X
O54 11 9 X 6 7 5 3 6

J6 O61 6 7 1 4 6 9 X 10
O62 11 X 9 9 9 7 6 4
O63 10 5 9 10 11 X 10 X

J7 O71 5 4 2 6 7 X 10 X
O72 X 9 X 9 11 9 10 5
O73 X 8 9 3 8 6 X 10

J8 O81 2 8 5 9 X 4 X 10
O82 7 4 7 8 9 X 10 X
O83 9 9 X 8 5 6 7 1
O84 9 X 3 7 1 5 8 X
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Table 3.9: Problem J10M10 with 30 operations (total flexibility))

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 O11 1 4 6 9 3 5 2 8 9 5
O12 4 1 1 3 4 8 10 4 11 4
O13 3 2 5 1 5 6 9 5 10 3

J2 O21 2 10 4 5 9 8 4 15 8 4
O22 4 8 7 1 9 6 1 10 7 1
O23 6 11 2 7 5 3 5 14 9 2

J3 O31 8 5 8 9 4 3 5 3 8 1
O32 9 3 6 1 2 6 4 1 7 2
O33 7 1 8 5 4 9 1 2 3 4

J4 O41 5 10 6 4 9 5 1 7 1 6
O42 4 2 3 8 7 4 6 9 8 4
O43 7 3 12 1 6 5 8 3 5 2

J5 O51 7 10 4 5 6 3 5 15 2 6
O52 5 6 3 9 8 2 8 6 1 7
O53 6 1 4 1 10 4 3 11 13 9

J6 O61 8 9 10 8 4 2 7 8 3 10
O62 7 3 12 5 4 3 6 9 2 15
O63 4 7 3 6 3 4 1 5 1 11

J7 O71 1 7 8 3 4 9 4 13 10 7
O72 3 8 1 2 3 6 11 2 13 3
O73 5 4 2 1 2 1 8 14 5 7

J8 O81 5 7 11 3 2 9 8 5 12 8
O82 8 3 10 7 5 13 4 6 8 4
O83 6 2 13 5 4 3 5 7 9 5

J9 O91 3 9 1 3 8 1 6 7 5 4
O92 4 6 2 5 7 3 1 9 6 7
O93 8 5 4 8 6 1 2 3 10 12

J10 O101 4 3 1 6 7 1 2 6 20 6
O102 3 1 8 1 9 4 1 4 17 15
O103 9 2 4 2 3 5 2 4 10 23
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3. FLEXIBLE JOB SHOP SCHEDULING PROBLEM UNDER
UNCERTAINTY ENVIRONMENT

Table 3.10: Problem J15M10 with 56 operations (total
flexibility)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 O11 1 4 6 9 3 5 2 8 9 4
O12 1 1 3 4 8 10 4 11 4 3
O13 2 5 1 5 6 9 5 10 3 2
O14 10 4 5 9 8 4 15 8 4 4

J2 O21 4 8 7 1 9 6 1 10 7 1
O22 6 11 2 7 5 3 5 14 9 2
O23 8 5 8 9 4 3 5 3 8 1
O24 9 3 6 1 2 6 4 1 7 2

J3 O31 7 1 8 5 4 9 1 2 3 4
O32 5 10 6 4 9 5 1 7 1 6
O33 4 2 3 8 7 4 6 9 8 4
O34 7 3 12 1 6 5 8 3 5 2

J4 O41 6 2 5 4 1 2 3 6 5 4
O42 8 5 7 4 1 2 36 5 8 5
O43 9 6 2 4 5 1 3 6 5 2
O44 11 4 5 6 2 7 5 4 2 1

J5 O51 6 9 2 3 5 8 7 4 1 2
O52 5 4 6 3 5 2 28 7 4 5
O53 6 2 4 3 6 5 2 4 7 9
O54 6 5 4 2 3 2 5 4 7 5

J6 O61 4 1 3 2 6 9 8 5 4 2
O62 1 3 6 5 4 7 5 4 6 5

J7 O71 1 4 2 5 3 6 9 8 5 4
O72 2 1 4 5 2 3 5 4 2 5

J8 O81 2 3 6 2 5 4 1 5 8 7
O82 4 5 6 2 3 5 4 1 2 5
O83 3 5 4 2 5 49 8 5 4 5
O84 1 2 36 5 2 3 6 4 11 2

J9 O91 6 3 2 22 44 11 10 23 5 1
O92 2 3 2 12 15 10 12 14 18 16
O93 20 17 12 5 9 6 4 7 5 6
O94 9 8 7 4 5 8 7 4 56 2

J10 O101 5 8 7 4 56 3 2 5 4 1
O102 2 5 6 9 8 5 4 2 5 4
O103 6 3 2 5 4 7 4 5 2 1
O104 3 2 5 6 5 8 7 4 5 2

J11 O111 1 2 3 6 5 2 1 4 2 1
Continued on next page
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3.1 Reducing unavailability of machines in FJSP

Table 3.10 – continued from previous page
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

O112 2 3 6 3 2 1 4 10 12 1
O113 3 6 2 5 8 4 6 3 2 5
O114 4 1 45 6 2 4 1 25 2 4

J12 O121 9 8 5 6 3 6 5 2 4 2
O122 5 8 9 5 4 75 63 6 5 21
O123 12 5 4 6 3 2 5 4 2 5
O124 8 7 9 5 6 3 2 5 8 4

J13 O131 4 2 5 6 8 5 6 4 6 2
O132 3 5 4 7 5 8 6 6 3 2
O133 5 4 5 8 5 4 6 5 4 2
O134 3 2 5 6 5 4 8 5 6 4

J14 O141 2 3 5 4 6 5 4 85 4 5
O142 6 2 4 5 8 6 5 4 2 6
O143 3 25 4 8 5 6 3 2 5 4
O144 8 5 6 4 2 3 6 8 5 4

J15 O151 2 5 6 8 5 6 3 2 5 4
O152 5 6 2 5 4 2 5 3 2 5
O153 4 5 2 3 5 2 8 4 7 5
O154 6 2 11 14 2 3 6 5 4 8

Table 3.11: Result of three approaches applied to three examples of FJSP

J8M8 J10M10 J15M10
HGA
best makespan 16 7 14
mean makespan 16.1 7.9 17.4
Mean executing time (cpu time: second) 433.03 481.35 917.50
IGA
best makespan 14 7 12
mean makespan 15.7 7.2 13.5
Mean executing time (cpu time: second) 250.91 251.56 386.15
IACO
best makespan 15 7 16
mean makespan 15.4 7.9 17.9
Mean executing time (cpu time: second) 290.99 344.86 694.19
best solution in literature (makespan) 15∗ 7∗ 12∗
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Figure 3.6: Gantt chart of best solution of J8M8
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Figure 3.7: Gantt chart of best solution of J10M10
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Figure 3.8: Gantt chart of best solution of J15M10
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3.1 Reducing unavailability of machines in FJSP

From the results of experiments above, we can find that IGA is superior to

the other two approaches in all the three examples. IGA can obtain the best

values as in literature. For the example of J8M8, we found a better result than

that in literature. HGA performs better than IACO in larger scale problem, but

worse in smaller problem in obtaining the best value. IGA needs less time than

the other two, followed by IACO, while HGA needs the least time.

3.1.3.5 Complete approach for FJSPPM

Based on the approach of solving FJSP, we add PM in the program. We use

two different approaches to solve FJSP with PM. One is Simultaneous Scheduling

Algorithm (SSA), the approach of Gao et al. (2006), where jobs and PM tasks are

scheduled simultaneously. The second is our new proposed Inserting Algorithm

(IA), to insert PM after all jobs have been scheduled. Both are based on the

same initialization of starting time of PM which is set at the latest moment of

time window. Flowchart of the two algorithms is shown in Figure 3.9.

Figure 3.9: Two algorithms of solving FJSPPM

Simultaneous Scheduling Algorithm (SSA)

Although SSA is already used by Gao et al. (2006), we would like to examine the

effectiveness of their algorithm. We propose another two methods to compare

with their algorithm.

(1) Algorithm of compacting PM at left in literature (Gao et al., 2006).
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3. FLEXIBLE JOB SHOP SCHEDULING PROBLEM UNDER
UNCERTAINTY ENVIRONMENT

Firstly, all PM tasks are initialized to start at the latest moment in time

windows. Then begin to schedule jobs. When one operation of a job meets a

PM, i.e., a collision occurs, compact the PM task to the left side as possible, and

then range the operation after PM. The procedure of compacting PM for treating

collision of PM and job is illustrated in Figure 3.10.

Figure 3.10: Compact PM to left when PM is initialized to latest moment

(2) Initializing starting time of PM at the latest moment in time windows and

compact PM to right side.

Based on the algorithm in literature, firstly we initialize PM tasks, but at

the earliest moment of their time window. When an operation meets a task of

PM, delay PM to right side and just after the operation. The activity of delay is

surely constrained in time window of PM. Illustration of this method of treating

collision of PM and job is shown in Figure 3.11.

Figure 3.11: Compact PM to right when PM is initialized to earliest moment

(3) Change machines for jobs when there are collisions with PM tasks.

Firstly initialize PM tasks, either at the latest or earliest moment in time win-

dow. In our example, we take the latest moment of time window. The difference

to the two algorithms above is the policy of treating collision of PM tasks and
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3.1 Reducing unavailability of machines in FJSP

jobs. Unlike the two methods above, in which operations still use the machine,

another policy of treating the collision of PM and job is to change machine of

processing the job. That is to say, PM remains where it is initialized, but job

choose another machine. Take the example in Figure 3.12. Operation Oij ar-

ranged on machine g meets a task of PM. We need not to move PM, but to find

another machine available, e.g. machine g′ for Oij.

Figure 3.12: Change machine to treat collision of PM and job

For choosing a new machine for a job having collision with PM task, we can

use different rules:

(a) Randomly choose a machine available;

(b) Choose the machine with the least processing time for the operation;

(c) Choose the machine with the earliest available moment. Machines’ avail-

able moments are the ending time of last operation at current moment;

(d) Take the machine with a least sum of processing time and idle time for

the operation. Idle time occurs when the job’s available moment is later than

available moment of machine.

The methods corresponding to the four rules are summarized as to choose

random machine, choose machine with minimum processing time, choose machine

with earliest available time, choose machine with least idle time, respectively. In

these 4 methods, we initialize the starting time of PM at the latest moment of

time window. The test of comparison of these 6 methods of SSA is executed on
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3. FLEXIBLE JOB SHOP SCHEDULING PROBLEM UNDER
UNCERTAINTY ENVIRONMENT

example J8M8, the same as testing example J8M8 in preceding section. IGA is

used, with the same parameters in preceding testing examples. Data of PM refer

to literature. We execute the programme of each method 10 times. Mean value

and best value of makespan are compared as well. Parameters are the same as

in preceding test of GA. The results are shown in Table 3.12, from which we

can see that initializing staring time of PM at the end of time windows is a good

choice. Moreover, we have tried to use IACO to find an optimal initialized starting

time of PM, the results are not good as the one used, neither. The performance

of methods of (b) and (d) with changing machines is better than methods of

moving PM used in literature. Therefore, in following tests, starting time of PM

initialized at the latest moment of time window, meanwhile we adopt the three

good performing methods as three different kinds of SSA: traditional method

in literature without changing machines; choose new machine with minimum

processing time; choose new machine with minimum sum of processing time and

idle time.

Table 3.12: Comparison of different methods of SSA

best value mean value
machines do not change
PM initialized starting at tE 19 19.3
PM initialized starting at tL 17 17.2
choose a new machine
(a) random machine 20 20.6
(b) machine with minimum processing time 17 17
(c) machine with earliest available time 18 18.5
(d) machine with minimum idle time 17 17

Inserting Algorithm (IA)

In IA, PM tasks are inserted into idle intervals of jobs after all of them have been

scheduled. We aim to make full use of the idle intervals, which always exist and

are unavoidable in scheduling. IA is described as follows:

(1) Find effective idle time intervals from left to right on the scheduling se-

quence of each machine, in the range of time windows of PM task.
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(2) If the maximal effective idle time interval cannot satisfy the duration time

of the PM task, perform PM task at the beginning of the maximal idle time

interval, and then delay all its posterior sequence of operations.

(3) For the preschedule where there is no useful idle time for inserting PM

tasks, insert it at the moment close to the latest moment of time window and

then push the following tasks.

Complete approach for FJSPPM

The two algorithms above must be combined with the approach for FJSP to

solve FJSP with PM. We propose to use the following combination: Integrated

GA with SSA; Integrated GA with IA; Integrated ACO with SSA. As we men-

tioned in section above, three different kinds of SSA can be used in it. Strictly,

there are seven different approaches in total. We compare and differentiate the 7

approaches in the section of experiments.

(1) IGA with SSA:

(1a) IGA with SSA1, without changing machine;

(1b) IGA with SSA2, choosing new machine with minimum processing time;

(1c) IGA with SSA3, choosing new machine with minimum sum of processing

and idle time.

(2) IGA with IA;

(3) IACO with SSA:

(3a) IACO with SSA1, without changing machine;

(3b) IACO with SSA2, choosing new machine with minimum processing time;

(3c) IACO with SSA3, choosing new machine with minimum sum of processing

and idle time.

3.1.4 Numerical experiments of FJSPPM

In order to test the effectiveness and efficiency of our proposed approaches, we

compare the seven approaches as described above on the examples in Gao et al.

(2006), in which part of FJSP are the examples of Xia & Wu (2005), the same

as testing examples of FJSP we used in preceding section. The three exam-

ples of FJSPPM are: J8M8PM, with one maintenance task on each machine;

J10M10PM, with one maintenance task on each machine; J15M10PM, with one

or two maintenance tasks on each machine. Data of PM tasks originates from
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(Gao et al., 2006), detailed in Table 3.13, Table 3.14 and Table 3.15 respectively.

Table 3.13: PM tasks in J8M8PM
PM11 PM21 PM31 PM41 PM51 PM61 PM71 PM81

Time Window tE
jl

5 6 10 9 3 8 4 7

tL
jl

10 9 15 17 10 16 14 13

Duration 4 3 5 3 3 5 3 4

Table 3.14: PM tasks in J10M10PM
PM11 PM21 PM31 PM41 PM51 PM61 PM71 PM81 PM91 PM101

Time Window tE
jl

2 2 1 2 3 2 2 3 2 3

tL
jl

4 7 6 5 7 6 5 7 5 6

Duration 2 1 1 2 1 2 2 3 2 3

Table 3.15: PM tasks in J15M10PM
PM11 PM21 PM31 PM32 PM41 PM51 PM61 PM71 PM81 PM82 PM91 PM101

Time Window tE
jl

2 3 1 5 3 2 1 3 1 7 2 3

tL
jl

5 7 3 11 10 8 6 7 5 11 5 8

Duration 1 1 1 2 3 2 1 1 1 1 1 1

Parameters are used as the same as the approaches for solving FJSP, in Table

3.3. Results of comparing the seven approaches on the three examples are shown

in Table 3.16. Solution obtained by hGA with SSA is in Gao et al. (2006). Gantt

charts of the best solutions we obtained are shown in Figure 3.13, Figure 3.14

and Figure 3.15 respectively.
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Figure 3.13: Gantt chart of best solution of J8M8PM
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3.1 Reducing unavailability of machines in FJSP

Table 3.16: Result of seven approaches applied on examples of FJSPPM

J8M8PM J10M10PM J15M10PM
(1) IGA with SSA
(1a) IGA with SSA1 (not
change machines)

makespan 17 8 12

executing time 541.10 556.31 915.72
(1b) IGA with SSA2 (choose
new machine with minimum
processing time)

makespan 17 9 14

executing time 1903.79 1981.43 2273.34
(1c) IGA with SSA3 (choose
new machine with minimum
sum of idle and processing
time)

makespan 17 9 12

executing time 1867.85 2105.32 3254.13
(2) IGA with IA makespan 18 9 13

executing time 251.91 252.56 387.15
(3) IACO with SSA
(3a) IACO with SSA1 (not
change machines)

makespan 18 9 18

executing time 400.15 513.22 942.36
(3b) IACO with SSA2 (choose
new machine with minimum
processing time)

makespan 18 8 16

executing time 931.60 1000.64 1188.34
(3c) IACO with SSA3 (choose
new machine with minimum
sum of idle and processing
time)

makespan 17 9 17

executing time 835.70 923.20 1318.75
hGA with SSA (best solution
in literature)

makespan 17∗ 8∗ 12∗
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Figure 3.14: Gantt chart of best solution of J10M10PM
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Figure 3.15: Gantt chart of best solution of J15M10PM
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3.1 Reducing unavailability of machines in FJSP

3.1.4.1 Results analysis

From results in Table 3.16, we can see that in most cases performance of IACO

is inferior to IGA, but IACO cost less executing time than IGA. Result obtained

with our approach is comparable with the best value obtained in literature. Our

proposed approaches, SSA2 and SSA3, generally perform better than SSA1 in

literature, especially combined with IACO. Moreover, it is obvious that our pro-

posed IA has a great advantage in executing speed. High executing speed may

bring significant convenience when the programm embedded with other manage-

ment software like ERP.

3.1.4.2 Discussions

In our work we suggest to use CBM as preventive maintenance to reduce un-

availability of machines. As we known, in most cases machines are available.

Because CBM is not with fixed period, we are uncertain about when to execute

maintenance task until detecting equipment send some results of maintenance.

Combining with P − F curve in Figure 3.1, we illustrate the situation of manu-

facturing.

Take example in Figure 3.16. Before we detected hidden failure (point P ),

we do not predict maintenance task in scheduling problem. We execute manu-

facturing according to a preschedule of classic FJSP. When arriving at point P ,

we have to consider adding maintenance tasks, and need a scheduling solution

of FJSPPM. Thereby, a real-time scheduling is needed for this dynamic environ-

ment. At this moment, if we apply Simultaneous Scheduling Algorithm (SSA) for

FJSPPM, we have to stop the ongoing task, like job i and job g in Figure 3.16,

and then to reschedule the resting tasks. Hence, for the next rescheduling stage,

we have to consider the stopped jobs additionally, which may increase complexity

of scheduling problem. However, if we apply Inserting Algorithm (IA) for adding

PM into the scheduled scheme for normal FJSP, we do not need to reschedule

FJSPPM. From section 3.1.4.1, we have demonstrated the good performance of

IA rather competitive with other approaches for FJSP. Even though the results

of IA for treating emerging maintenance task are not so good as that of SSA, IA

is obviously more suitable for FJSP with CBM. Compared to SSA, another ad-

vantage of IA is less modification to the original preschedule. Preschedule relates

much with facility planning of factory. Once facility is fixed, it should not be
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changed frequently. Operations can be delayed, but it is better to be processed

on the same machine. There is a problem of workpiece path planning, where

material handling is involved.

Figure 3.16: Disruption of maintenance arrives at an existing preschedule of FJSP

3.2 FJSP with dynamic arrival jobs

There is not much research about uncertain job arrivals in FJSP. Berkoune (2005),

who worked also in our research group, proposed two different methods of insert-

ing orders forecasted to existing jobs in FJSP. One is static method, in which

urgent jobs forecasted are inserted into empty intervals of machines. This is sim-

ilar to our Inserting Algorithm (IA) for PM, which was called strategy of real

demand in his thesis. For dynamic inserting algorithm, ordinary jobs are delayed

for guaranteeing due time of urgent jobs. This was a real time strategy. There

is some research on new job arrivals in other manufacturing modes, such as flow

shop, where arrival time of jobs is generated from discrete uniform distribution

in research of Sung & Kim (2002), with determined ranges. Similarly, dynamic

job arrivals are considered by Yao et al. (2011) in flow shop scheduling. The

stochastic time of job arrivals is considered in a known uniform distribution.

On the base of the work of Berkoune (2005), we consider the situation of

demand unpredictable, i.e., urgent jobs. When an urgent job arrives, it must

be added into actual scheduling scheme to ensure its due date. We propose two

methods to add urgent arrival jobs into ongoing scheduling scheme: one is insert-

ing algorithm like IA of maintenance in section 3.1.3.5; the other is rescheduling

resting operations of actual scheme and new jobs, which is similar to the dynamic

inserting method in (Berkoune, 2005). The difference is that in some case we do

not utilize the inserting algorithm, but a rescheduling.
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3.2 FJSP with dynamic arrival jobs

3.2.1 Inserting algorithm of new arrival job

Insertion of job is similar to that of maintenance, only with different constraint

of due date of jobs to that of time window of maintenance. Hence, we can apply

our Inserting Algorithm of maintenance to the problem of inserting urgent job

shop. Taking the instance in Figure 3.17, new job arrive at moment 9. Firstly,

we can schedule new job independently on the available machines, ensuring its

due date, like in Figure 3.18. And next we insert scheduling of new arrival job

into scheme of ongoing task. Like IA of maintenance in section 3.1.3.5, in case of

collision of old jobs and new jobs, we give priority to new arrival jobs and delay

operations of old jobs, shown in Figure 3.19. The difference to IA of maintenance

is that we need not to find idle time firstly, because scheduling new job at idle

time may not assure its due date.

Figure 3.17: Ongoing scheduling scheme before new job arrival

Figure 3.18: Scheduling independently for new arrival job
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Figure 3.19: Inserting algorithm of new arrival job

3.2.2 Rescheduling resting operations with new arrival jobs

For the same instance in Figure 3.17. We try to reschedule resting operation

from the moment of new job arriving. It should be concerned that ongoing

tasks can not be interrupted once they start, like O33 in the instance. Therefore,

resting operations in the example when new job arrives are O13 and O23. We

thus reschedule them together with new arrival job to find an optimal solution,

displayed in Figure 3.20.

Figure 3.20: Rescheduling resting operations with new arrival job

Because of the limitation of time of research, we could not demonstrate and

compare these two methods through numerical examples. Because the similarity

with the work of Berkoune (2005), we can refer to his thesis for detailed illustra-

tion of the methods for treating added jobs.
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3.3 Impact of uncertain processing time of jobs to

FJSP

Like dynamic arrival time of jobs in job shop scheduling, uncertain processing

time is fewly studied in literature. Discrete processing times are generated from

the discrete uniform distribution by Sung & Kim (2002). Fuzzy processing time

considered in JSSP is analyzed by Lei (2010a) and that considered in FJSP is

treated by Lei (2010b). Triangular fuzzy numbers are used to represent fuzzy pro-

cessing time. In the research of using variable neighborhood search for dynamic

job shop scheduling of Zandieh & Adibi (2010), job arrivals are Poisson distribu-

tion, mean time between failure (MTBF) and the mean time to repair (MTTR) of

machines also follow exponential distribution. Simulation is executed in Artificial

Neural Network.

Different to discussions of representation of uncertain processing time in job

shop scheduling in literature, we discuss the impact of uncertain processing time

to job shop scheduling.

Although at present uncertain processing time is paid much attention on dy-

namic scheduling, it is not clearly declared in literature how is its impact to

scheduling if it is treated statistic. We would like to give some discussions on

impact of uncertain processing time to job shop scheduling.

We use the example in Figure 3.17. If O11 cost 5 time units, which is more

than expected ordinary value 4, it will affect the following operations of the same

job 1, O12 and O13, and consequently operations on the same machine, O22. With

the same analogy, O12 and O13 may influence operations on the same machine of

them, and O22 may delay its following operation of the same job. In the example

of Figure 3.17, because of idle time on machine M2 is just exactly 1 unit time,

only O22 is influenced and should be delayed 1 time unit. It has no influence on

overall scheduling makespan. The impact of more processing time on scheduling

is shown in Figure 3.21.

Similarly, if O11 costs 3 time units, which is less than ordinary value 4, it may

also influence its related operations, like the operations of the same job, O12 and

O13, and the operations on the same machine, O22. In the example, it will only

affect O22, but does not influence overall makespan of scheduling. The scheduling

impacted by this changed processing time is shown in Figure 3.22.
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Figure 3.21: Impact of more processing time on job shop scheduling

Figure 3.22: Impact of less processing time on job shop scheduling
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According to analysis above, we can find that not every operation’s uncertain

processing time disturbs the overall scheduling. Moreover, if uncertain processing

time does influence makespan of overall scheduling, impact degree is still uncer-

tain. If the influence is small, we can ignore it. We note the operation which

impacts much the overall scheduling as key operation. For the key operation,

we can pay more attention to forecast its processing time. Take the scheduling

scheme of Figure 3.6 as an example. In order to find the key operation, we in-

crease the processing time of each operation to see how is the impact to overall

makespan of scheduling.

Impact of increasing processing time of each operation in Figure 3.6 on makespan

is shown in Figure 3.23 and Figure 3.24, corresponds to increase of 1 and 2 time

units respectively. From the results, we can find that operations O22, O23, O24,

O33, O42, O43, O51, O52, O53, O54, O61, O62, O63, O71, O81, O82, O83, and O84

are key operations. It is not hard to observe that the key operations we found

are just the ones after which there is no empty space until the next operations

on the same machine. Moreover, for some operations, like O72, when the real

processing time increases 1 time units, it doest not impact the overall schedule,

but while it increases 2 time units, it does. Hence we can give some floating

range to these operations. For O72, its floating range is [0, 1], which is exactly

the empty space between it and its next operation O83. We call this float free

float. Furthermore, for the operations like O11, when it increases 1 time unit,

it does not delay the overall schedule, but it will delay its next operation O12,

we call these operations with a total float. The floating range of O11 is [0, 3].

The concept of floating comes from the critical path method (CBM), which is a

project modeling technique developed in the late 1950s by Kelley Jr & Walker

(1959).

Similarly, we can also find key operations for other scheduling schemes. For

instance, for the same instance of FJSP, J8M8, in addition to the scheduling

scheme in Figure 3.6, there are several different optional solutions, like that in

Figure 3.25, Figure 3.26, and Figure 3.27. All these three optional solutions

achieve the same minimum value of makespan, 14. Since the empty intervals

between operations in scheduling scheme play the role of redundance of processing

time, which is a slack for tolerating uncertain processing time, the scheme with

more empty intervals (except the empty interval at the beginning of schedule on
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Figure 3.23: Impact of increasing processing time with 1 time unit to J8M8

Figure 3.24: Impact of increasing processing time with 2 time units to J8M8
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3.3 Impact of uncertain processing time of jobs to FJSP

machines) is preferred. For the four different schemes of J8M8 in Figure 3.6,

Figure 3.25, Figure 3.26 and Figure 3.27, the number of empty intervals (time

units) is 26, 18, 18 and 22 respectively. Therefore, from the point of view of

minimization of makespan and redundance of processing time, the scheme in

Figure 3.6 is the best solution for J8M8.
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Figure 3.25: Optional solution 1 for J8M8
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Figure 3.26: Optional solution 2 for J8M8

Because the key operations have much impact on makespan of overall schedul-

ing, prediction and assurance of their processing time on the related machines

should be paid more attention that that operations. Precise forecasting of pro-

cessing time of the key operations is needed if we adopt the scheduling scheme in

Figure 3.6. This concept reduces the workload of forecasting and makes contri-

bution to management of jobs’ uncertain processing time.
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Figure 3.27: Optional solution 3 for J8M8

3.4 Conclusions

In our study of uncertainty in manufacturing system, we concentrate on the flex-

ible job scheduling problem (FJSP). In order to ensure availability of machines,

we add condition based maintenance (CBM), a kind of preventive maintenance

(PM), into scheduling problem. CBM is on a theoretic base of P − F curve, and

can make full use of resources, machines for processing job, materials and staff

to maintain machines.

The procedure to sort out FJSP with CBM conclude two parts, getting

scheduling scheme for ordinary FJSP as a preschedule and add PM tasks into

existing schedule. For the first part, to get optimal result of the problem, the

minimum makespan of jobs and maintenances, firstly we propose to find the

best solution for FJSP through comparing hierarchical approach and integrated

approach. Three different approaches are proposed: Integrated Genetic Algo-

rithm (IGA), Hierarchical Genetic Algorithm (HGA) and Integrated Ant Colony

Optimization (IACO). Different to conclusions of some researchers, stating that

hierarchical approach is superior to integrated approach, we find that IGA is the

best among the three. We get promising results for benchmark of FJSP. For

an instance of FJSP, we gain better result than that in literature. For the sec-

ond part, we propose an Inserting Algorithm (IA) and improve the Simultaneous

Scheduling Algorithm (SSA) in literature with different heuristics. We discover

that our two proposed SSA, for treating collision of job and PM, the one with

choosing new machine with minimum processing time (SSA2) and the other one

with choosing new machine with a minimum sum of processing time and idle time
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3.4 Conclusions

(SSA3) perform well. Combining the approach for FJSP and the four different

algorithms to add PM tasks to scheduling procedure of job shop, we apply seven

different approaches: IGA with three different kinds of SSA, IGA with IA and

IACO with the three different kinds of SSA. Numerical experiments demonstrate

effectiveness of our proposed algorithms. Our proposed IA performs much better

in executing speed. With IA, we try to use the empty internal between jobs. It

is a module independent from the module of getting solution for FJSP. We can

change easily either of them to improve the solution. Unfortunately, it is a little

inferior to SSA in terms of objective value. Furthermore, IGA with SSA in litera-

ture without changing machines when job meets PM (SSA1) and IGA with SSA3

perform a little better than other combinations. The results are comparable with

that in literature.

In addition to research on reducing unavailability of machines in flexible job

shop, we discuss algorithms for treating new arrival of jobs as well. We observe

that IA used in FJSPPM is also suitable to solve this problem. Another fea-

sible strategy is rescheduling all jobs when new jobs arrive. The third part in

this chapter is studying impact of uncertain processing time on flexible job shop

scheduling. The necessity of treating uncertain processing time is declared. On

the basis of experiments, we come to believe that not all operations in a cer-

tain scheduling scheme will impact makespan. It is important to search the key

operations having severe impact on overall schedule. Furthermore, we find that

empty intervals among operations in scheduling play the role of redundance for

tolerating uncertain processing time. If utilization rate of machines is considered,

it is necessary to trade off it with the concept of redundance.
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Chapter 4

Distribution problem under

uncertain environment

After having discussed uncertainty in demand and manufacturing system in prece-

dent chapters, in this chapter we would like to introduce our research about uncer-

tainty in distribution problem. Transportation is the preliminary part in distri-

bution. Uncertainty in transportation is mainly induced by external factors, as it

contacts with outside world. With respect to allocation of staff and management

of transport system, vehicle routing gets more attention. Vehicle routing problem

is a hot research topic in last several decades. It refers to two problems, scheduling

problem of routes for distribution and decision of number of vehicles. In our work,

we concentrate on Vehicle Routing Problem with Pickup and Delivery (VRPPD),

with uncertain partnership of suppliers and demanders, i.e., unpaired VRPPD,

which is a promising strategy to treat uncertainty of clients in transport.

4.1 Uncertainty of clients in distribution

Ultimate objective of supply chain is to satisfy request of clients, which is com-

pleted by distribution, the direct stage contacting with consumer market. Unfor-

tunately, there are some uncertain factors which make the execution procedure

not coincide with our plan. Although Mason-Jones & Towill (1998) illustrated

that improving reliability in the four main segments in supply chain, demand

side, manufacturing process, supplier side, and control system, may shrink the

Uncertain Circle, as the procedure with direct relation to customers, accurate de-
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livery is specially needed to be guaranteed. Uncertainty of distribution time has

been studied a lot in previous research of practitioners and scholars. Ray et al.

(2005) considered uncertain delivery time in tailored supply chain decision mak-

ing, but randomness of distribution time is actually ignored. Xiang et al. (2008)

proposed to re-optimize schedule when new events occur. Alfa (1987) examined

the traveling salesman problem (TSP) with time-varying (but not stochastic)

travel time. Like demand quantity, the most widely used approach for treating

uncertainty of delivery time is based on representation of probability distribution

for it (Fu, 2002). Normal distribution is used widely, as its simple representation,

with a mean value and a standard deviation, and popular suitability for stochas-

tic events. Stochastic travel time was studied by Laporte et al. (1992). Scenario

analysis of variant travel time applied by Huisman et al. (2004). The dynamic

VRP considering online requests and uncertain travel times was solved with ex-

act method by Chen & Xu (2006); Yang et al. (2004), heuristic by Fleischmann

et al. (2004); Regan et al. (1996), with metaheuristic by Gendreau et al. (1996);

Haghani & Jung (2005).

Uncertain distribution time in practice is generally caused by external interfer-

ence, like change of situation of routes, vehicles’ unexpected emergence, drivers’s

faults, influence of other clients, etc. The three main aspects inducing uncertainty

in distribution are: uncertainty in vehicles, uncertainty of routes, and uncertainty

of clients. It is obvious that availability of vehicle is problem of hardware, which

can be obtained through inspection before utilization. Uncertainty of routes refers

to situation of route like congestion, traffic accidents and so forth, which can nei-

ther be changed or improved by individual efforts. Uncertainty of clients mainly

refers to quantity or delivery time of requests changed and cancelation of demand.

We center on uncertainty of clients as its impact can be reduced if there are some

good response measures. For example, when we are informed just at the moment

before arriving clients that their requests are canceled, how to treat the products

already prepared for the original clients with demand changed? We find that the

model of unpaired VRPPD (vehicle routing problem with pickup and delivery) is

a good respond measure to uncertainty in clients. We give explanations in section

4.3.1.2.
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4.2 Vehicle routing problem

In order to analyze distribution procedure, we decompose it in details. The di-

agram of subdivision of distribution is shown in Figure 4.1. We can see that

Figure 4.1: Distribution procedure

transportation procedure plays an important role in distribution, as handling

part in loading and unloading is more certain than transportation. Thanks to de-

veloped technique of conservation and equipment handling, quantity and quality

of goods in distribution procedure can be guaranteed. Unavoidably, there may

be some errors caused by drivers or handling workers. Overall, compared to de-

livery time, uncertainty of quantity and quality in distribution procedure is much

less. Thereby, quantity and quality of goods are little considered in optimiza-

tion problem of distribution. Similarly, our work also focuses on delivery time.

Delivery time consists of handling time and transportation time. Handling time

is rather easy to calculate and it accounts a relatively small proportion in the

whole delivery time. Therefore, transportation time is the key factor. Moreover,

besides quantity and quality of demand, delivery time is another part in demand

contents. However, in practice, we cannot always serve clients one by one. There

are always some other constraints, like utility of resources, consideration of dis-

tribution cost, etc. Therefore, we would like a delivery planning which can satisfy

delivery time of clients meanwhile with reasonable cost. For this kind of problem,

there are two kinds of models, Traveling Salesman Problem (TSP) and Vehicle

Routing Problem (VRP).

TSP seeks an optimal route for a salesman to run through a group of cities to

finish his sales project within minimum time, i.e., shortest distance for a Hamil-

tonian cycle. The original mathematical formula of TSP was firstly studied by

Karl Menger (1931) and the name is introduced by Hassler Whiteney (1934). A

detailed treatment of the connection between Menger and Whitney as well as the

growth in the study of TSP can be found in the paper of Schrijver (2005). VRP
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is factually an extension of TSP, with several salesman, but the groups of cities

are not determined in advance. Moreover, assumption of infinite capacity in TSP

are relaxed with capacity constraint of vehicle. In order to keep generality of

problem, we focus on VRP.

In some literature, VRP is also called Vehicle Routing and Scheduling Problem

(VRSP) (Desrosiers et al., 1986; Solomon, 1987), or Vehicle Scheduling Problem

(VSP)(Foster & Ryan, 1976; Waters, 1989). VRP is an NP-hard problem in

combinatorial optimization. It is extension of TSP, which is proved to be NP-

hard by Johnson & Garey (1979). It was firstly proposed by Dantzig & Ramser

(1959). In VRP, it seeks to service a number of clients with a fleet of vehicles.

The objective is to satisfy demands of all clients under constraints of capacity of

vehicles, limit of routes, etc. Meanwhile in most cases it aims to achieve objective

of minimizing number of vehicle and least time-consuming.

4.2.1 Practical application of VRP

According to Gregory (2010), studying VRP is useful for several reasons:

i. It is a difficult real-world problem in which planners are still relatively weak.

ii. There are existing benchmarks for which we can assess the performance of

planners against existing techniques.

iii. Technological developments that have made VRP solvers effective could

also improve the performance of planners.

Many practical problems can be modeled as VRP, like collection of house-

hold waste, school bus problem, gasoline delivery trucks, mail service system,

goods distribution, etc. VRP plays an important role in logistic and distribution

problem. Huge research has been contributed on it since it was proposed.

Casco et al. (1988) reported that solving a model of VRP with combining de-

liveries and pickups has led to industry wide savings in distribution costs upwards

of $160 million a year. Wen et al. (2010) considered a real-life dynamic multi-

period and multi-objective routing problem encountered by a large distributor

operating in Sweden. They proposed a three-phase heuristic embedded within

a rolling horizon scheme. Their results were compared with the solutions pro-

duced by the platform of company. The comparison showed that their method

improved upon those solutions in terms of travel time, customer waiting and daily

workload balance, with gains of 0.2%, 24% and 35%, respectively. Garaix et al.

122



4.2 Vehicle routing problem

(2010) considered a multigraph for alternative routes for vehicle routing problem.

Computational experiments on realistic data issued from an On-Demand Trans-

portation system in the French Doubs Central area underline the cost savings

brought by the proposed methods, with a gap varied between 6% and 25%.

Since it is an effect model for optimization in distribution problem, we have

great interest to focus on it.

4.2.2 Classic model of VRP

Although there are different forms of VRP, the base is still the classic model.

4.2.2.1 Definition of classic VRP

According to definition of Laporte (1992b), VRP is described as follows:

Let G = (V, A) be a graph where V = 1...n is a set of vertices representing

cities with the depot located at vertex 1, and A is the set of arcs. Every arc

(i, j), i 6= j is associated a non-negative distance matrix C = (cij). In some

contexts, cij can be interpreted as travel cost or as travel time. When C is

symmetrical, it is often convenient to replace A by a set E of undirected edges.

In addition, assume there are m available vehicles based at the depot, where

mL < m < mU . When mL = mU , m is said to be fixed. When mL = 1 and

mU = n − 1, m is said to be free. When m is not fixed, it often makes sense to

associate a fixed cost f on the use of a vehicle. The VRP consists of designing a

set of least-cost vehicle routes in such a way that:

i. each city in V \{1} is visited exactly once by exactly one vehicle;

ii. all vehicle routes start and end at the depot;

iii. some side constraints are satisfied.

VRP can then be formulated as follows:

Let xij(i 6= j) be a binary variable equal to 1 if and only if arc (i, j) of A

appears in the optimal solution.

Minimize
∑

i =j

cijxij (4.1)

Subject to:
∑

i

xij = 1, ∀i ∈ V, (4.2)
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∑

j

xij = 1, ∀j ∈ V, (4.3)

∑

i,j∈S

xij <= |S| − v(S) (S ⊆ V \{1}; |S| >= 2) (4.4)

xij ∈ 0, 1, ∀i, j ∈ E, i 6= j (4.5)

In the formulation, 4.1, 4.2, 4.3 and 4.5 define a modified assignment problem

(i.e. assignments on the main diagonal are prohibited). Constraint 4.4 are subtour

elimination constraints: v(S) is an appropriate lower bound on the number of

vehicles required to visit all vertices of S in the optimal solution.

4.2.2.2 Solution approach for classic VRP

There is considerable research contributed to development of algorithm for VRP

and its various versions. We review some algorithms, both in exact algorithms

and heuristics.

Following the survey of Laporte & Nobert (1987), exact algorithms for the

classic VRP can be classified into three broad categories: (i). direct tree search

methods; (ii). dynamic programming; (iii). integer linear programming. For each

category, there are different concrete approaches. Branch-and-bound was a widely

used and efficient approach. Christofides et al. (1981) use branch-and-bound

scheme successfully solved VRPs ranging from 10 to 25 vertices; Laporte et al.

(1986) use it to solve a VRP with 260 vertices. Meanwhile, the nearest neighbour

algorithm, insertion algorithms and tour improvement procedures developed for

VRP: tabu search heuristic was applied by Laporte (1992a) for TSP, which is then

found also suitable for VRP Gendreau et al. (1994). Later, attention were paid

increasingly on developed version of VRP. We discuss it in following sections.

4.2.3 Classification and extension of VRP

There are various versions of VRP developed. We pick out the ones researched

considerably to review in details.

124



4.2 Vehicle routing problem

4.2.3.1 Capacitated VRP (CVRP)

Different to classic VRP, routes in CVRP is defined as a least cost simple cycle

of graph G passing through depot and such that the total demand of the vertices

visited does not exceed the vehicle capacity. The most promising exact algorithm

for solving CVRP is branch-and-cut (Baldacci et al., 2004; Fukasawa et al., 2006;

Lysgaard et al., 2004). Traced back to the work of Wren & Carr (1971) and Wren

& Holliday (1972), we find that sweep algorithm has been applied in CVRP so

early. The method is commonly attributed to Gillett & Miller (1974) who gave

it its name.

4.2.3.2 VRP with Time Windows (VRPTW)

VRPTW is an extension of VRP with constraints of time windows. In VRPTW,

besides constraints in VRP, constraint of time window must be satisfied. There

are two kinds of time windows: hard time window and soft time window. The

former request vehicles arriving in time windows, vehicles must wait when arriving

earlier and refused when arriving later; in the latter one, time windows do not

need to be satisfied strictly, but there is punishment for vehicles arriving beyond

time windows.

Solomon (1987) stated that approximation methods seem to offer the most

promise for practical size problems and different heuristic performs well in differ-

ent environment. Various researchers have investigated the VRPTW using exact

and approximation techniques. The work of Kohl (1995) is one of the most effi-

cient exact methods for the VRPTW; it succeeded in solving various 100-customer

size instances. However, no algorithm has been developed to date that can solve

to optimality all VRPTW with 100 customers or more (Ombuki et al., 2006).

Research on combinatorial optimization based on metaheuristics has gained

popularity especially. Metaheuristics, such as genetic algorithms (GA) (Potvin

& Bengio, 1996; Zhu, 2000), evolution strategies (Homberger et al., 1999; Tan

et al., 2006), simulated annealing (Chiang & Russell, 1996; Czech & Czarnas,

2002), tabu search (Cordeau et al., 2001; Gendreau et al., 1994). Since Solomon

(2003) constructed benchmark for VRPTW, there has been increasing research

on heuristic approach focusing one VRPTW to find better solutions (Ombuki

et al., 2006). Surveys can refer to (Braysy & Gendreau, 2005; Cordeau et al.,

2005; Gendreau et al., 2008).
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4.2.3.3 VRP with Pick-Up and Delivery (VRPPD)

Problems that need to be solved in real-life situations are usually much more

complicated than the classic VRP, like variation in the type of request. The

versions of VRP discussed in previous sections, type of demand of clients are all

identical, to sell goods to clients or to collect goods from them. There are some

cases where the clients have two different kinds of requests, pickup or delivery or

both. This kind of problem is named VRPPD.

According to definition of Parragh et al. (2008), Vehicle Routing Problems

with Pickups and Deliveries (VRPPD) refer to problems where goods are trans-

ported between pickup and delivery locations. Delivering merchandizes from sup-

pliers to determined demanders is obviously categorized to paired type VRPPD,

which is also called static VRPPD by Parragh et al. (2008). The first attempt

to generalize the Pickup and Delivery Problem (PDP) in unified notation was

proposed in (Savelsbergh & Sol, 1995), covering all possible versions of the PDP,

including the dial-a-ride problem (DARP) (Zidi et al., 2010). There has been lots

of research on VRPPD (Desaulniers et al., 2002; Dumas et al., 1991; Mitrovic-

Minic, 1998). Like other optimization problems, there are exact methods, heuris-

tics and metaheuristics developed for solution approach. Exact method was used

in early years, mainly concluding branch and cut algorithm (Ruland & Rodin,

1997) and column generation (Dumas et al., 1991). The early work of pickup and

delivery constraints was considered in TSP (Kalantari et al., 1985). Heuristics are

always proposed to combine with exact method for optimization (Lu & Dessouky,

2006; Xu et al., 2003). Metaheuristics become attractive in recent years: Genetic

Algorithm in (Jung & Haghani, 2000); parallel tabu search in (Caricato et al.,

2003); Simulated Annealing in (Bent & Hentenryck, 2006); neighborhood search

in (Ropke & Pisinger, 2006). From conclusion of Parragh et al. (2008), recent

new best results have been presented by Ropke & Pisinger (2006) and Bent &

Hentenryck (2006).

4.2.3.4 VRP with Stochastic Demand (VRPSD)

While the classic view of VRP is static and deterministic, in many practical

problem there are significant constraints which make the problem dynamic and

stochastic.

126



4.2 Vehicle routing problem

In VRPSD, demands of customer are stochastic variables ξi, i = 1, ..., n in-

dependently distributed with known distributions. The actual demand of each

customer is only known when the vehicle arrives at the customer’s location. It

is also assumed that ξi does not exceed the capacity of vehicle (Bianchi et al.,

2004). There are some other naming styles for VRPSD. It is called probabilistic

vehicle routing problem (PVRP) by Bertsimas et al. (1991) and cyclic heuristic

was introduced to solve it. It was illustrated in examples performing better than

re-optimization heuristic. Yang et al. (2000) named it stochastic vehicle rout-

ing problem (SVRP) and proposed two heuristic algorithms. Metaheuristic was

demonstrated outperforming cyclic heuristic in paper of Bianchi et al. (2004). As

demand is uncertain, vehicle’s capacity may be unsatisfactory, re-stock strategy

appears to be promising (Bertsimas et al., 1991; Yang et al., 2000). Re-stock

strategy allows vehicles to return to depot and then continue visiting rest clients.

When to return is an added decision variable.

4.2.3.5 Other types of VRP

For other types of VRP, we introduce them briefly. The VRP where the length of

any route may not exceed a prescribed bound L is referred to as DVRP Laporte

(1992b). VRP with due times (VRPDT) pursuits best service time, in which

the lower bounds of time windows are relaxed (Kang et al., 2008). In VRP with

multi use of vehicles (VRPM), the same vehicle can be assigned to several routes

during a giving planning period (Taillard et al., 1996). FSVRP refers to fleet size

and mix vehicle VRP, where the fleet size if fixed and vehicles may have different

capacities (Gang, 2010). Multi Depot VRP (MDVRP) add the assignment of

customers to depots (Lim & Wang, 2005). Split Delivery VRP (SDVRP) is a

relaxation of the classic VRP where it is allowed that the same customer be

served by different vehicles if it reduces overall costs (Archetti et al., 2006). Even

there are many kinds of variants combining some of the types we discussed above,

like Capacitated VRP with Time Windows (CVRPTW), Multi Depot VRP with

Time Windows (MDVRPTW), etc.. In fact, almost all research on VRP is CVRP,

like in the definition of both VRPTW and VRPPD of Desrochers et al. (1987),

capacity constraint is always considered. VRPTW studied by Alvarenga et al.

(2007) considered also capacity constraint.
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4.3 Unpaired Vehicle Routing Problem with Pickup

and Delivery

In the classic VRPPD, requests of pickup and delivery are paired, unpaired

VRPPD is a subclass of VRPPD, where units of goods picked up can be de-

livered to any location of delivery. Moreover, the relationship of clients is not

restricted in one-to-one mapping. Goods picked up from one location may serve

several requests of delivery. Obviously this kind of partnership is more flexible,

but increasing complexity of the problem. Paired VRPPD is suitable for modeling

determinate delivering problem, like that of courier company, where merchandize

is delivered from an origin to a certain destination. For delivery problem within

a supply chain, in which all companies cooperate with a common objective of

satisfying demands of clients, origins and destinations for demands are not allo-

cated into pairs in advance. This is exactly unpaired VRPPD in which we are

interested. The characteristic of unpaired VRPPD is that: the relationship of

pick-up and delivery is not fixed and the goods picked up at one node of pick-up

can be used to supply several clients with deliver demand.

With respect to paired VRPPD, unpaired type receives less attention. Un-

paired TSP with pickup and delivery (TSPPD) (Anily & Bramel, 1999; Hernández-

Pérez & Salazar-González, 2004) is also studied more than unpaired VRPPD.

Rather less research focus on VRPPD, Dror et al. (1998) proposed a mixed in-

teger programming formulation for the redistribution of self-service electric cars,

and Lagrangian relaxation methodology applied to solve it. To our knowledge,

there has not been metaheuristic approach for solving unpaired VRPPD. In our

work, we use grouping genetic algorithm (GGA), which was introduced by Falke-

nauer (1998) and has been demonstrated able to find high quality solution in the

work of Pankratz (2005), which works on a paired VRPPD. Although our problem

is different, we modify GA procedure to make it adaptable to our problem.

In following sections, firstly we explain the motivation or studying unpaired

VRPPD, and then give a detailed problem description and mathematic formula-

tion, after that introduce our algorithm for solving the model, at last the algo-

rithm is applied on numerical experiments.
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4.3.1 Motivation of studying unpaired VRPPD

Besides its adaptation to practical problem and our aim to fulfill the gap of

research, there are two other motivations. One is that studying unpaired VRPPD

is extension of our previous work on treating demand uncertainty in supply chain

in chapter 2. The other one is to cope with uncertainty of clients.

4.3.1.1 Model of unpaired VRPPD for distribution stage in supply

chain

In chapter 2, through strategy of postponement, we have obtained optimal solu-

tion of allocation of merchandizes, in regular period and postponed period. As

merchandizes are considered with large quantity, they can be delivered directly

from supplier to demander with special line transportation. Unavoidably, there

are always some rest goods, which cannot just fully fill the vehicle, i.e., demand is

inferior to capacity of vehicle. In order to make full use of capacity of vehicle, we

would like search an optimal solution for scheduling vehicles’ routing. Unpaired

VRPPD is suitable for modeling our problem with the aim of spending mini-

mum costs in transportation. It helps to integrate resources of transportation,

including vehicles, drivers and time.

4.3.1.2 Coping with uncertainty of clients

As we mentioned in section 4.1, there are three general kinds of uncertain cases

in clients. Emergency request may happen in the case where clients would like

more than the quantity that they have reserved. In this case, supplier is not

obligatory to accept this potential order. However what the supplier expected is

that there are excess goods and then the added demand can be satisfied. Another

normal kind of uncertainty is cancelation or reduction of demand, which probably

happens occasionally although it disobeys contract of business. We consider the

case where these two kinds of uncertainty happen simultaneously. It is better

that the quantity requested emergently does not exceed reduced quantity. For a

normal VRP scheduling scheme, the quantity of goods does not change when the

vehicle departures from the node of pick-up. Thereby when demand of a client

of delivery increases, the added quantity cannot be satisfied or it is satisfied at

the cost of decreasing supply to other clients. While for the client with decreased
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demand in another routing, there will be surplus of goods which bring a wastage

of resource.

Example:

Figure 4.2 is a normal VRP scheduling scheme for distribution, while Figure 4.3

is the model of unpaired VRPPD. The capacity of vehicle is assumed to be 15.

When demand of clients changes, e.g., demand of client 4 increases, from original

quantity 1 to a new quantity 2, it cannot be satisfied in the normal scheduling

scheme. And the reduction of demand of client 9 in routing of vehicle 2 will bring

a surplus of goods after the procedure of distribution. However, if we adopt the

unpaired VRPPD model, the surplus caused by reduction of client 9 can be just

used for the increasement of client 4. This is a great advantage of the unpaired

VRPPD model in coping with uncertainty of clients. It is obvious to observe that

another advantage of the unpaired VRPPD is the integration of resources, where

only one vehicle is needed.

Figure 4.2: Normal VRP scheduling scheme
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Figure 4.3: Unpaired VRPPD model

4.3.2 Description of mathematic model

4.3.2.1 Model of distribution problem

We try to solve distribution problem in supply chain, which is execution stage and

extension of approach of treating uncertain demand in supply chain management

in chapter 2, described briefly as follows: The problem focuses on integrating

merchandizes and then allocating them to demanders. Through strategy of post-

ponement, we have obtained optimal solution of allocation of merchandizes, in

regular period and postponed period. Merchandizes in the problem are assumed

with a large quantity. Take one numeric result of our preceding research in chapter

1 for example: in sub system warehouse-distributor, allocation of merchandizes

is as in Figure 4.4. Sub figure 4.4(a) indicates allocations in regular period. In

regular period, demands are satisfied by inventory; Sub figure 4.4(b) indicates

allocations in postponement period, where demand is satisfied at a delayed date,

by new products. D1 to D6 are distributors, as the aspect of demanders. W1,

W2 and W3 are warehouses, as the aspect of suppliers. D1, D3, D5 and D6 are

supplied by W1; D2 and D4 are supplied by W2; D3 is supplied by W3.
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(b) Allocation in postponement period

Figure 4.4: Original allocation of delivering merchandizes

As merchandizes are considered with large quantity, for each pair of partners

with relationship of demand-supply in the two periods, merchandizes can be

delivered directly from supplier to demander with special line transportation.

Unavoidably, there are always some cases with rest goods, which cannot fill the

vehicle exactly fully, i.e., demand is inferior to capacity of vehicle. In order to

make full use of capacity of vehicle, integrating resources of transportation, we

would like to spend minimum resources to deliver the resting goods. We model

this distribution problem as unpaired VRPPD we described above. Allocation of

delivery in Figure 4.4 can be transferred in Figure 4.5. We have allocated suppliers

for each demander in original schedule. In order to optimize the solution, we can

change the relationship of suppliers and demanders, i.e., demanders can be served

by any supplier. This is a procedure of re-allocation of demand. It is obvious

that constraints of capacity of suppliers should be considered. We can assemble

merchandizes from different warehouses and then distribute to demanders. The

nodes of warehouses and distributors make up the network. Visit of vehicles at

each node of warehouse is to pick up merchandizes, while that of distributors is to

deliver merchandizes. Each vehicle can only departure from and return to node

of warehouses. Corresponding to the model of VRPPD, we can see that in our

problem, distributors play the role of clients, while warehouses play the role of

both clients and depots.
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(a) Allocation in regular period
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Figure 4.5: Unpaired VRPPD model for distribution problem

4.3.2.2 Formulation for unpaired VRPPD

Denote set of warehouses as W , set of distributors as D, hence set of clients

C = W
⋃

D, set of depots P ⊇ W . Set of vehicle is also noted as V . Variable

Qik denotes the resting goods on vehicle k after it has served customer Ci. qik is

representation of quantity of customer Ci served by vehicle k. qik ≥ 0 represents

collecting activity at customer of warehouse by vehicle k, while qik ≤ 0 repre-

sents delivery activity. After visiting warehouse, the quantity of goods on vehicle

increases; while after visiting distributors, goods on vehicle decreases.

In order to simplify computation, we assume that:

i. All available vehicles are with the same capacity;

ii. Traveling of vehicle with the same unit cost w1;

iii. All vehicles have the same utilization cost w2.

The problem can be modeled mathematically as follows:

Objective function:

min
∑

k∈V

Tk · w1 +
∑

k∈V

w2 (4.6)

Physical constraints:

∑

j∈C

∑

k∈V

xijk = 1, ∀i ∈ D (4.7)
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∑

i∈C

∑

p∈P

xpik = 1, ∀k ∈ V (4.8)

∑

j∈C

∑

k∈V

xijk ≥ 1, ∀i ∈W (4.9)

∑

i∈C

xipk = 1, ∀p ∈ P, ∀k ∈ V, (4.10)

Constraint 4.7 states that each customer of warehouse must be assigned exactly

to one vehicle and visited only once. Constraint 4.8 indicates that each route of

vehicle departures from only one depot and only once, from this we can obtain

that each customer of distributor, who also serves as depot, are visited at least

once, which is represented in Constraint 4.9. Constraint 4.10 ensures each route

of vehicle returns a depot chosen.

Constraint of capacity of vehicle:

When xijk = 1,

yik + qjk = yjk, ∀j ∈W, qjk ≥ 0; ∀j ∈ D, qjk ≤ 0,
∑

k∈V

qjk = qj (4.11)

∑

i∈C

∑

j∈C

qikxijk ≤ q, ∀k ∈ V (4.12)

Constraint of workload of vehicle:

Tk < wl, ∀k ∈ V (4.13)

Constraint 4.13 origins from consideration of driver’s legal working time. This

constraint of time can be transformed to constraint of travel distance in calcula-

tion procedure.

Constraint of integer:

xijk ∈ {0, 1}, i, j ∈ C, k ∈ V (4.14)

Notations:

Ci: customer i, where i = 1, 2, . . . , N .

N : number of client, including both warehouses and distributors.
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P : number of depot, including only distributors.

qi: demand of customer Ci.

qjk: quantity of goods at node j served by vehicle k.

q: capacity of vehicle.

Rk: vehicle route k, k = 1, 2, . . . , U .

Tk: travel time of vehicle k, k = 1, 2, . . . , U .

U : total number of vehicles used.

V : set of vehicles used, {k = 1, 2, . . . , U}.

wl: workload constraint of vehicle.

w1: unit cost of transportation.

w2: unit cost of punishment for arriving earlier beyond time windows.

xijk: decision variable to indicate vehicle k visits node j after having served

node i.

yjk: capacity of vehicle k after having served client j.

4.3.3 Solution algorithm

Procedure of GGA applied to solve our problem is described in this section.

Encoding method

Each chromosome represents a solution for the problem, including clusters of all

clients, with a fleet of vehicles. Each vehicle relates to a cluster with a group

of clients. The length of chromosome, i.e., the number of genes, is variable and

depends on the number of vehicles needed by a given solution. Figure 4.6 shows

an encoding form for an example with 13 clients, in which there are 5 warehouses

(nodes 1− 5) and 8 distributors (nodes 6− 13). 3 vehicles are used.

Figure 4.6: Encoding form for chromosome

Different to the chromosome representation style in the work of Pankratz

(2005), we include the routing part of solution in the chromosome. For initializa-

tion of population, to keep feasibility of individuals, choose the first client with

demand of pickups, in the set of warehouses, the following clients can be randomly
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selected, but the physical constraints, workload constraints and constraints of ca-

pacity of vehicles indicated above must be satisfied.

Crossover

Our crossover method is based on order crossover (OX) and the general group-

oriented crossover scheme presented by Falkenauer (1998). The crossover proce-

dure is illustrated in Figure 4.7, in five steps:

(1) Specify a crossover section by randomly selecting two cross points in each

parent;

(2) Replace the clusters in the same place in the first parent as the cross point

in the second parent with cross section of the second parent.

(3) Nodes in other places in the first parent may duplicate with the new

parts. In this case, remove the duplicated nodes originally belonging to the

second parent.

(4) When some clients may not be assigned to any cluster, reinsert them into

the newly generated individual, applying an insertion heuristic. This may require

adding a new vehicle if necessary, to assure feasibility of offspring.

(5) Generate the second offspring by repeating steps (2) − (4) with reserved

roles of parents.

Mutation

The group-oriented mutation operator in Pankraz (2005) is applied: firstly select

a cluster in an individual and then remove it from the solution, finally reinsert

the removed clients into the individual by insertion heuristic, which is the same

with that in crossover procedure, new vehicle added when necessary.

Selection

Select N (population size) best individuals from the mating pool of all the parents

and offsprings, with a roulette wheel method. Fitness function is the objective

function of cost of individual.
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4.3 Unpaired Vehicle Routing Problem with Pickup and Delivery

Figure 4.7: Crossover procedure
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Insertion heuristic

Different to the work of Pankratz (2005), we do not insert a node to a cluster

with minimum cost, but to insert it to a randomly selected cluster. On one

hand, because pickup and delivery request are not paired, under the constraint of

vehicle’s capacity and workload, it is always more difficult to get a feasible solution

than that of the paired requests in classic PDP. On the other hand, random

choice of vehicle for clients will keep variety of solution, to prevent premature

convergence of GGA. In order to keep feasibility of solutions, we propose a special

insertion heuristic for our problem with three steps:

(1). Repair the modified cluster in offspring. As we delete the duplicated

clients with that in the original section, the cluster may become unfeasible. Take

the offspring in Figure 4.7, where the first cluster of offspring 1 has been modified.

As each route must begin with a pickup request. Client 9 cannot be the first

node in a cluster, with delivery request. Therefore, we should repair it to keep

feasibility of individual.

(2). Add the unassigned nodes into existing feasible cluster, in which there

exist some clusters with rest workload. We can add some nodes into it to make

full use of resource of vehicle, which also contributes to minimizing number of

vehicles used.

(3). Add vehicles for unassigned request if necessary. When there are no more

clusters into which we can add nodes, we have to add new vehicles.

4.3.4 Experiment of numerical example

The solution approach, GGA, described in section 4.3.3 has been implemented in

Matlab R2008, and ran on a computer with Intel(R) Core(TM) 2 CPU (2.66GHz

2.67GHz). The parameters used in GA in our experiments are: Population size

(N) = 100; Generation (M) = 200; Crossover probability (Pc) = 0.9; Mutation

probability (Pm) = 0.1. We use an example of 1-PDTSP in (Hernández-Pérez

& Salazar-González, 2004), similar to the TSPPD instances used in (Mosheiov,

1994). They generated coordinates in [−500, 500] × [−500, 500], each one cor-

responding to the location of a customer with a random demand in [−10, 10].

Compared to problem description in section 4.3.2, we have other parameters

in unpaired VRPPD. We add workload wl = 3000; unit cost of transportation
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w1 = 10; Cost of utilization of each vehicle w2 = 2000. Through several tests, we

get our best solution shown as Figure 4.8.
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400
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Figure 4.8: Solution for an example with 30 clients

The objective function of our problem is the entire cost, including transporta-

tion cost and utilization cost of vehicles, which is different to that in TSPPD in

(Hernández-Pérez & Salazar-González, 2004). They have obtained approximate

solution for the same example with objective of min travel distance. The results

of using two heuristics are 6439 and 6403. In the solution we obtained, there are

3 vehicles used, with a whole cost as 75851, travel distance is 7285. We have

added 882 compared to their result, caused by increase of routes. In TSPPD,

there is only one route, but in ours there are 3. We can observe that the increase

is reasonable.

4.4 Conclusions

In this chapter, the unpaired Vehicle Routing Problem with pickup and deliv-

ery (VRPPD) is modeled for distribution problem in supply system obtained

in Chapter 2. It is a promising measure for treating uncertainty in clients in

distribution.
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Our work is a tentative research on using metaheuristic to solve unpaired

VRPPD, which is a innovative method application. We use Group Genetic Algo-

rithm (GGA) as a preliminary. Different to classic GA, each gene in GGA repre-

sents a group of objects instead of a single object. Each chromosome is a feasible

solution for the problem. Besides constraints of general ones in VRPPD, there is

one more that making vehicles empty at the end of routes. Our crossover proce-

dure is based on order crossover (OX) and the general group-oriented crossover

scheme presented in literature. An insertion heuristic is also used in crossover

procedure, but different to that for paired VRPPD. An numerical example is ap-

plied to demonstrate efficiency of our approach. Result of experiment show the

feasibility of our algorithm. As the originality of the example, no comparative

work can be executed. For future research, we will apply another metaheuritic,

Artificial Bee Colony (ABC), on our problem and compare efficiency of the two

approaches through more examples.
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Chapter 5

Uncertainty of demand and yield in

bi-level newsboy problem

In previous chapters, we have discussed uncertainty in different stages in sup-

ply chain, uncertainty of demand in Chapter 2, uncertainty in manufacturing in

Chapter 3, and uncertainty in distribution in Chapter 4. In this chapter, we take

into account two kinds of uncertainty simultaneously in bi-level newsboy problem,

which is a miniature of supply chain. In bi-level newsboy problem, newsboy is

considered together with his supplier. The two sides are with a good cooperation

relationship with each other. Research of bi-level newsboy problem is critical and

fundamental to the research of supply chain management. Unknown need of mar-

ket is considered as the most important factor causing difficulty of solving the

newsboy problem. In our research, besides uncertain need, we consider uncertain

supply as well, i.e., yield of the manufacturer, uncertainty of which is caused

mainly by uncertain qualification ratio of products. In this double uncertain en-

vironment, deciding the appropriate ordering quantity becomes more complicated

than that in classic newsboy problem. We adopt two popular algorithms to solve

this kind of newsboy problem, the Bayesian approach and fuzzy hybrid intelligent

algorithm.
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5.1 Introduction of uncertainty in newsboy prob-

lem

The classic newsboy problem intends to observe an optimal ordering policy in a

dynamic market with stochastic demand. It is also called the newsvendor prob-

lem. The typical problem is characterized by fixed price and uncertain demand

for a perishable product. Noting inventory level as q, thereby demand quantity

exceeding q will be lost, while unsold copies will be worthless. The mathematical

problem appears to date from (Edgeworth, 1888) where the central limit theorem

was used to determine the optimal cash reserves to satisfy random withdrawals

from depositors (Gallego, 1995).

Profit function in the standard newsboy problem is as follows:

π = E[p ·min(q, D)]− c · q (5.1)

where D is a random variable for representing demand, with probability dis-

tribution F ; each unit is sold with price p and purchased with price c; E is

the expectation operator. The solution to the optimal stocking quantity of the

newsvendor which maximizes expected profit is:

q = F−1(
p− c

p
) (5.2)

where F−1 denotes the inverse cumulative distribution function of D.

A lot of research, such as inventory management, is based on the model of the

newsboy problem. It has deserved unabated attentions since it emerged. Most of

recent study focuses on extension and generalization of the classic model. Bi-level

newsboy problem is a new branch of extension. It bring the ideal of SCM into

newsboy problem, i.e., from the overall profit of the whole supply chain, rather

than only one point as in classic newsboy problem.

Uncertain demand and restricted inventory capacity make it difficult to derive

optimal solutions in newsboy problem. Although uncertainty is an intuitive at-

tribution and the most important factor in newsboy problem, in the considerable

literature, there is no systematic research on uncertainty. In order to replenish

this gap, we concentrate on studying uncertainty in newsboy problem.
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In our work, we consider two kinds of uncertainty in bi-level newsboy prob-

lem, that of demand and that of yield. Most literature of newsboy problem is

around uncertainty of demand. Moreover, demand is mostly modeled stochastic

over a period (Gallego, 1995), with determinate type of probability distribution,

like normal distribution, which is the most widely used. For treating with un-

certainty of demand, two-stage ordering decision is demonstrated better than

Quick Response decision model (Liu, 2006). Besides, compound distribution in

demand forecasting is widely used in recent work. As accurate forecasting is hard

and costly, usage of statistic method, like time-series forecasting method, mixed

with demand information updating is developing, e.g., the Bayesian approach,

or with multi-stage policy. There are some widely used probability distribution

to describe the stochastic and statistic characteristic of demand: such as normal

distribution, uniform distribution, Poisson distribution, etc. However, in some

situation, we cannot get a definitive distribution of demand. Type of distribution

is unknown, or parameters of the distribution are unknown. The parameters may

be stochastic, for instance, also following a usual distribution function, distinct

or not to the original distribution type (Kamath & Pakkala, 2002).

Uncertainty of yield is rather less studied than that of demand. Uncertainty

of yield comes mainly from supplier or manufacturer, due to uncertainty in man-

ufacturing process, imperfect inspection, defective of products, the deterioration

in transportation or in storage, etc. Such kinds of uncertainty in yield are al-

ways random and have negative effects to enterprize. Especially in the case of

Quick Response policy, the negative influence is evident. Khouja (1999) synthe-

sized the research about random yield in newsboy problem. Defective units or

available production capacity is considered as random variable (Ciarallo et al.,

1994; Jain & Silver, 1995), but with known probability (Ehrhardt & Taube, 1987;

Karlin, 1958). Diversification was recommended to cope with the supplier with

random yield (Parlar & Wang, 1993). But to some small-scale wholesalers, they

cannot diversify suppliers, which will reduce the profit from volume discount. In

recent study on newsboy problem, there is not much focusing on random yield.

The Gardener Problem is designated to cover the random yield by Abdel-Malek

et al. (2008). Their developed methodologies are applicable to general probability

distribution functions. Supply yield is modeled using a uniform distribution con-

sidering both the minimum ordering guarantee and the maximum yield (Tiwari

143



5. UNCERTAINTY OF DEMAND AND YIELD IN BI-LEVEL
NEWSBOY PROBLEM

et al., 2011). In the review of Yano & Lee (1995), three important issues relating

random yields are: the modeling of costs impacted by presence of random yields;

the modeling of yield uncertainty; measures of performance. There have been

enormous effects on the modeling of uncertain yields. However, they are limited

to certain application cases. Commonly observed yield distribution is needed but

difficult to derive.

For the problem with the two sorts of uncertainty, there is rather little study.

The effects of demand uncertainty and yield uncertainty are investigated by Wang

(2009) in the environment of decentralized supply chain. It indicated that higher

uncertainty leads to smaller optimal production and ordering quantities of man-

ufacturer and distributor. Gavirneni et al. (1998) present several well-performing

heuristics for solving the periodic inventory problem with random yield and de-

mand. The myopic heuristics proposed are still the best method available for

solving the joint random yield problem. However, some computational investi-

gations reveal that the performance of the heuristics may become quite poor if

service levels are high and exceed those values for which results are reported in

the original study (Inderfurth & Transchel, 2007). Tiwari et al. (2011) considered

using two stage ordering policy and demand forecast update to derive an opti-

mal ordering quantity, but the unreliable yield percentage is assumed a uniform

distribution and considered both a minimum ordering guarantee and maximum

yield.

Although uncertain timing of yields is suggested to be considered in some

researches (Yano & Lee, 1995), we can consider yield quantity in a certain period

to simplify the question with uncertain timing. This transformation makes the

uncertain timing to be included in the problem of uncertain quantity. Effect of

delayed time caused by distribution is discussed in our future work, uncertain dis-

tribution. Thereby, in our research, we consider the yield quantity in determined

time intervals to avoid effects of timing.

We assume that uncertain yield is mainly caused by defective, which is clas-

sified into two kinds. One kind is due to fabrication, and the other one due to

transportation. Supplier is considered responsible to the transportation. Hence,

these two kinds of defective both affect directly the profit of supplier. Inspec-

tion is not executed before transportation, although it is recommended by some

researchers. Because immediate inspection is not appropriate to all cases, e.g.,
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repetition of inspection may be costly and may cause some damages; there may

be only one inspection procedure, which is just executed when products arrive.

5.2 Mathematical model for bi-level newsboy prob-

lem with uncertain demand and supply

In the classic newsboy problem, the newsboy’s expected profit is considered as

the objective function, but the profit of supplier is not taken into account. This

decentralized planning is not good to the supply chain integration. In practice,

supplier and newsboy always need to make some contracts on price to obtain an

optimal policy for both sides, called the win-win strategy. This cooperation is

necessary for a long-term business. Although there are probably several news-

boys around a supplier and there is even competition among them, we assume

the situation more cooperate than competitive. We apply the newsboy model for

general supply chain in manufacturing industry, with manufacturer as the role

of supplier while wholesaler as newsboy. The simplified model with one manu-

facturer and one wholesaler is used in our work, where both sides are affected

by uncertain demand and yield. For manufacturer, he needs an optimal initial

production quantity to prepare for production, such as labors, materials and so

on. For the wholesaler, optimal ordering quantity needs to be decided, to make

maximal profit or minimal loss. However, for preliminary research, we focus on

the problem with only one layer of demand-supply. The problem becomes too

complicated if there are too many unknown variables. Therefore, we assume that

the initial production capacity of manufacturer is given. We concentrate on the

problem of deciding the optimal ordering quantity of wholesaler.

Although defective products are always returned to manufacturer to change

for good ones, there is timing effect for the newsboy then to the manufacturer.

As mentioned in the former section that the timing effect can be transformed into

quantity effect in a determined planning period. We consider uncertain quantities

for demand and yield.

We assume that:

1) For the model with several wholesalers, each wholesaler in the model is

allocated a definitive fraction of yields from the manufacturer. So for the model
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with only one wholesaler, the yield is just equal to the quantity delivered to

wholesaler from manufacturer.

2) Sale period is known in advance, the model is defined in the sale period.

3) Production capacity of manufacturer, i.e., the initial production quantity

T is given.

4) Unit production cost, wholesale price, retail price and salvage value are all

known in advance.

We study the integrated supply chain with one product, facing both uncertain

demand and uncertain yield.

Notations:

c-unit production cost;

Q-ordering quantity;

q-realized quantity of wholesaler received from manufacturer, i.e. q = min(y, Q);

r-unit retail price to consumer;

T -initial production quantity;

u-product qualification ratio;

v-unit lost value after salvage;

w-unit wholesale price to wholesaler;

x-realized demand;

y-realized yield, y = T · u.

If realized demand exceeds realized yield, i.e., x ≥ y, supply chain loses the

opportunity to make a profit on x − y units of products. If x < y, supply chain

salvages y− x units of products at a unit salvage value and the unit lost value is

v.

The objective of the newsboy problem is to determine the optimal ordering

quantity of wholesaler to maximize profit (Liu et al., 2006; Nahmias, 2005) or

to minimize loss or cost (Abdel-Malek et al., 2008; Boulaksil et al., 2009; Tiwari

et al., 2011). For the integrated supply chain, similarly, we utilize minimization

model to determine the optimal ordering quantity of wholesaler. For our problem

with given initial production capacity, potential loss of wholesaler is represented

as equation 5.3:

f(q, x) =

{

(x− q) · (r − w) when q < x

(q − x) · v when q ≥ x
(5.3)
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where q = min(y, Q).

Potential loss of manufacturer is represented as:

f(Q, x) =

{

(y −Q) · c when Q < y

(Q− y) · (w − c) when Q ≥ y
(5.4)

Combining the two parts, we get potential loss of the whole supply chain as

equation 5.5:

f(Q, x, y) =



















(y −Q) · c + (x−Q) · (r − w) when Q < y and Q ≤ x

(y −Q) · c + (Q− x) · v when x < Q < y

(Q− y) · (w − c) + (x− y) · (r − w) when Q ≥ y and x ≥ y

(Q− y) · (w − c) + (y − x) · v when x < y ≤ Q

(5.5)

As y = T · u, where u is a random variable, we get the formulas as equation 5.6:

f(Q, x, u) =



















(T · u−Q) · c + (x−Q) · (r − w) when Q < T · u and Q ≤ x

(T · u−Q) · c + (Q− x) · v when x < Q < T · u

(Q− T · u) · (w − c) + (x− y) · (r − w) when Q ≥ T · u and x ≥ T · u

(Q− T · u) · (w − c) + (T · u− x) · v when x < T · u ≤ Q

(5.6)

The optimal decision model of the whole supply chain can be described as equa-

tion 5.7:

min E[f(Q, x, u)] (5.7)

s.t. Q > 0, Q is integer.

We use two methods to describe the uncertainty of the two variables, stochas-

tic and fuzziness. When there is enough historical data from which we can get the

probability distribution of yield and demand, we can use stochastic, otherwise,

we can only get an interval from estimation of experts, then fuzziness is more

appropriate. For the stochastic representation, we consider double uncertainty

of the two variables and utilize Bayesian approach to specify uncertainty. Ac-

cordingly, we propose a hybrid intelligent algorithm for the case with two fuzzy

variables.
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5.3 Bayesian approach for representing double un-

certainty of stochastic variables

As mentioned in previous section, unknown demand and yield are estimated by

specialists. They are estimated primarily according to the knowledge to the

industry and experiences of specialists. Unavoidably, there are some discrepancies

to the practical condition. In immense literature, Bayesian approach is used

recently to update prior distribution.

5.3.1 Description of Bayesian approach

The rule of Bayesian approach is as follows: Given prior distribution of a random

variable, θj , is P (θj), supplemental information according to new investigations

is ek. Conditional distribution (degree of likelihood) of ek is P (ek|θj). Hence

distribution of θj , under the condition of given information of ek, i.e. the post

distribution P (θj |ek), is represented with Bayes formula:

P (θj | ek) =
P (θj) · P (ek | θj)

n
∑

j=1

P (θj) · P (ek | θj)
(5.8)

It is intuitive that the Bayesian formula is appropriate to discrete distribution.

For continuous distribution, it is also paid enormous attention (Choi et al., 2006;

Kamath & Pakkala, 2002; Yelland, 2010).

5.3.2 Modeling of stochastic demand and yield

Demand is assumed stochastic with PDF (probability density function) g(x) and

CDF (cumulative distribution function) G(x) defined over the continuous inter-

val [0,∞). F (x) is differential, invertible and strictly increasing over I. Before

the sale season begins, the capacity of production is determined, with quantity

T . Yield y is random and proportional to T , i.e. y = T · u, where u is stochas-

tic product qualification ratio, independent of T . The CDF , G(u), and PDF ,

g(u), of u are in a space ∧. G(u) is assumed differential, invertible and strictly

increasing over ∧ (Wang, 2009).
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5.3.2.1 Product qualification ratio

In some research, the substandard products can be sorted out in time during the

production process (Chan et al., 2003; Chiu, 2006). In our work, we assume that

inspection executes after the batch production. In the case where distribution of

defective products can be obtained from historical data, the uncertainty of defec-

tive rate can be represented with stochastic variable. The usually used families

of distribution, such as normal distribution, uniform distribution, Poisson dis-

tribution, Gamma distribution, etc, are considered to represent the probability

distribution of uncertain demand. We utilize normal distribution in our work. As

we known, normal distribution (also called Gaussian distribution) is often used

as a first approximation to describe the real-valued random variables that tend

to cluster around a single mean value. It is considered the most prominent prob-

ability distribution in statistics. There are several reasons: Firstly, the normal

distribution is analytically tractable, that is, a large number of results involving

this distribution can be derived in explicit form; Secondly, the normal distribution

arises as the outcome of the central limit theorem, which states that under mild

conditions the sum of a large number of random variables is distributed approx-

imately normally; Thirdly, the “bell” shape of the normal distribution makes it a

convenient choice for modeling a large variety of random variables encountered

in practice.

Moreover, the normal distribution is a good representation even in the case

of lack of historical data. We assume that the product qualification ratio follows

a normal distribution with a mean µu and a variance σ2
u: u ∼ fN(µu, σ

2
u).

5.3.2.2 Uncertain demand

Different combination of demand and product qualification ratio distribution are

used in literature. There are some commonly used combinations of demand and

product qualification ratio distribution: {uniform, uniform} (Gavirneni et al.,

1998; Tiwari et al., 2011; Wang, 2009); {gamma, uniform} (Boulaksil et al., 2009).

In the work of Tiwari et al. (2011), some propositions obtained from the model of

uniform distribution are also supported by extensive numerical experiments for

normal and lognormal distribution.

For preliminary study, we can use the form {normal, normal} to explain the

calculation process.
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Similar to the product qualification ratio, demand follows a normal distribu-

tion with a mean µx and a variance σ2
x: x ∼ fN(µx, σ

2
x).

5.3.3 Bayesian approach to represent double uncertainty of

variables

As the distribution assumed in previous sections, the prior distribution is ob-

tained according to historical data and experience of experts. We consider the

parameters of the distribution described above, the mean and variance of normal

distribution, µu, σ2
u and µx, σ2

x, which are for uncertain product qualification ratio

and demand respectively, are also uncertain. We call the uncertainty of param-

eters as the second-level uncertainty. We adopt Bayesian approach to represent

the entire uncertainty of variables.

The core spirit of Bayesian approach is information updating. Through infor-

mation updating, we get the posterior distribution of uncertain variable. There

are mainly two kinds of information updating: the direct information updating

with new data and the indirect information updating.

5.3.3.1 Direct information updating

Direct information updating is the case where new data can be obtained to modify

directly the prior distribution of uncertain variable.

Take the defective ratio for example. We can get the distribution of defective

ratio according to the prior distribution which is obtained from historical data.

From the pre-production or trial production, we can executive random sampling

inspection. According to this information of inspection, the prior distribution can

be modified and updated. The demand information can be updated similarly.

When the sale data of pre-seasonal products collected from the market is close

to seasonal product, we can use this data to update the distribution by Bayesian

approach.

Example:

A retailer orders electronic components from a supplier of radio. According to

historical experiences, the probability distribution of variety of qualification ratio

is as shown in the third row of Table 5.1. Now before the new ordering, there
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is information that the qualification ratio rises. Taking a random sampling of

10, from the finished products, it is founded that there is no defective product.

Therefore, according to this information, update the probability distribution of

product qualification ratio of the factory.

Table 5.1: Calculation of posterior distribution with direct information updating

Qualification ratio 0.95 0.90 0.85 0.80
defective ratio θj 0.05 0.10 0.15 0.20
Prior distribution P (θj) 0.1 0.4 0.4 0.1
Likelihood P (e0|θj) 0.599 0.349 0.197 0.107
P (θj) · P (e0|θj) 0.0599 0.1359 0.0788 0.0107
Posterior distribution P (θj|e0) 0.207 0.483 0.273 0.037

Under the conditional probability, the probability of the event (e0) that there

is 0 defective product in the sample of 10 obeys the binomial approximation. The

likelihood can be calculated according to equation 5.9:

P (e0|θj) = C10
0p0

j (1− pj)
10 (j = 1, 2, . . . , 4) (5.9)

where, pj = P (θj).

The fourth row in Table 5.1 is the results of the formula above. Then we can

calculate the posterior distribution according to Bayesian Formula mentioned in

section 5.3.1, the results as in the final row of Table 5.1.

5.3.3.2 Indirect information updating

Different to direct information updating, in the case of indirect information up-

dating, the newly collected data does not work directly on the prior distribution.

Indirect information is more complex and universal than direct information up-

dating. Thereby, we focus on the indirect information updating.

Assuming that parameters of normal distribution, both the mean µu and vari-

ance θ2
u are random variables, with normal distribution N(µ1, τ

2
1 ) and N(µ2, τ

2
2 ),

respectively, called the prior distribution of µu and θ2
u.

In section 5.3.2, the normal distribution of product qualification ratio is de-

noted with fN (µu, θ
2
u). We call it the conditional distribution of u, based on

certain mean µu and variance θ2
u. The prior distribution of product qualification
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ratio with uncertain mean and variance is represented as f(u):

f(u) =

∫ ∞

0

∫ ∞

0

g(u) · f(µu)f(σ2
u)d(µu)d(σ2

u)

=

∫ ∞

0

∫ ∞

0

fN(u|µu, σ
2
u) · fN (µu|µ1, τ

2
1 ) · fN(σ2

u|µ2, τ
2
2 )d(µu)d(σ2

u) = N(µ1 + µ2, τ
2
1 + τ 2

2 )

(5.10)

We use the newly collected value of û, which can be obtained by a dynamic

simulation of market, time-series forecasting method, or observed directly from

the pre-seasonal market.

The posterior distributions of µu represented as

f̂(µu) =
g(û) · f(µu)

f(û)
(5.11)

where g(û) and f(û) can be derived from the conditional distribution and prior

distribution with û.

Finally, the posterior distribution of product qualification ratio u is updated:

f̂(u) =

∫ ∞

−∞

g(u) · f̂(µu)d(µu) (5.12)

Besides the {normal, normal} combination distribution for the uncertain parame-

ters, we can also use other types of distribution. E.g., inverse-gamma distribution

is applied for the uncertain variance in (Choi et al., 2006). The exponential dis-

tribution, gamma distribution, and Poisson distribution, are widely used as well.

Some combination types may be complicated. It is hard to get an explicit ex-

pression for the posterior distribution. After information is updated, posterior

distribution may keep the same kind of distribution as the prior one, just with

the parameters changed, this case called conjugate distribution. The calcula-

tion is rather simple. Sometimes, after the information is updated, the type of

distribution also changes, with an unusual distribution type, or even sometimes

impossible to get the probability density function.

To facilitate calculation, the conjugate distribution is adopted in our work.

We assume that after information updating, the posterior distribution of product

qualification ratio is still a normal distribution.

Similarly, for probability distribution of demand with uncertain parameters,
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the second level of uncertainty, i.e. the uncertain parameters, we calculate the

prior distribution h(x) and posterior distribution ĥ(x), which are conjugate dis-

tributions.

5.3.4 Model of describing the problem with stochastic vari-

ables

Different from the model of (Wang, 2009), we consider the potential loss of both

wholesaler and manufacturer. Since we focus on the decision variable, ordering

quantity of wholesaler, Q, with the mathematical model of demand and product

qualification ratio, the expected loss is expressed as a function of Q:

P (Q) = E[f(Q, x, u)]

=

∫ Q/T

0

(

∫ uT

0

[(w − c)(Q− uT ) + v(uT − x)]f(x)dx+

∫ ∞

uT

[(w − c)(Q− uT ) + (r − w)(x− uT )]f(x)dx)g(u)du+

∫ ∞

Q/T

(

∫ Q

0

[c(uT −Q) + v(Q− x)]f(x)dx+

∫ ∞

Q

[c(uT −Q) + (r − w)(x−Q)]f(x)dx)g(u)du

(5.13)

Strictly, the expected value of the potential loss of the supply chain expressed

as the formula above is based on the theory as follows:

If the integrand f(x) satisfies the condition that integral
∫ ∞

−∞
xf(x)dx is ab-

solutely convergent, the expected value of x can be calculated by:

E[x] =

∫ ∞

−∞

xf(x)dx (5.14)

In another word, the integrand in equation above should satisfy the convergent

condition. We assume that the integrands satisfy the condition. However, it is

difficult to calculate the exact condition which parameters should satisfy. We

keep the hypotheses to continue subsequent computation.

For this kind of problem, the best approach is using mathematical formulas

to calculate directly the decision variable if it is in appropriate condition. Hence,
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firstly, we validate attribution of the function, convexity, differentiability and so

on.

Taking the first derivative of equation 5.13 w.r.t. Q, we get:

dP (Q)

dQ
=(w − c)(F (∞)− F (0))

∫ Q/T

0

g(u)du+

[(c− v)(F (∞)− F (0))− (r − w)(F (∞)− F (Q))]

∫ ∞

Q/T

g(u)du

(5.15)

Generally, the usually used CDF types of demand (referring to the plots of the cdf

of simulated demand in (Mostard et al., 2005)), Normal, Lognormal and uniform

distribution, are all with F (∞) = 1, and F (0) = 0. Therefore, we simplify the

equation above to:

dP (Q)

dQ
= (w−c)

∫ Q/T

0

g(u)du+[(c−v)−(r−w)(1−F (Q))]

∫ ∞

Q/T

g(u)du (5.16)

The second derivative of equation 5.13 w.r.t Q is:

dP 2(Q)

dQ2
= (2w + v − r)

1

T
g(

Q

T
) (5.17)

If dP 2(Q)
dQ2 < 0, P (Q) is concave, otherwise P (Q) is convex. Hence, we have to

discuss the relation of the four parameters of price, c, w, v, r.

There is no definitive data for the relationship of the four kinds of price.

It differs in case of different merchandize, industry, country, etc. The general

principle is: for the products with low price or difficult to manage, the difference

between wholesale price and retail price is rather lager than those with higher

price. This makes variety of retail enterprize roughly have the same profit level.

On average, the profit margin of merchandize is about 30%. We get some data

from the internet. For example, from a survey of a Chinese teacher in July 2008,

the retail price of vegetable in Hangzhou (a city in the east of China, close to

Shanghai) is almost twice of the wholesale price. This difference is mainly caused

by the inconvenient distribution channel of China. In the developed country, the

difference of retail and wholesale price must be less than that in the developing

country. We can easily estimate the price difference of merchandize in other

industry with a higher price and longer life. Hence, we can infer that the average
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price difference may be at the level of 30%, i.e. w = r · 70%.

Therefore, we can obtain: dP 2(Q)
dQ2 > 0, P (Q) is convex.

dP (0)

dQ
= [(c− v)− (r − w)(1− F (Q))]

∫ ∞

0

g(u)du (5.18)

dP (∞)

dQ
= (w − c)

∫ ∞

0

g(u)du (5.19)

It is easily found that dP (∞)
dQ

> 0, as it is obvious that w > c and
∫ ∞

0
g(u)du > 0.

Proposition 5.1 Under the condition where dP (0)
dQ

< 0, there exists a unique and

finite Q∗ ∈ (0,∞) that minimize P (Q),

Proof It is already proven that P (Q) is convex and second-order derivative. If

the first derivative of P (Q), the minimum value of P (Q) must exit and is unique.

We denote a = 1− F (Q), since 0 < F (Q) < 1, we get 0 < a < 1.

5.3.4.1 Discussion of relationship among different parameters of price

We discuss the relationship of each pair of two adjacent price parameters sepa-

rately, i.e., the two kinds of price are in adjacent stages in supply chain. Before

the discussion, we introduce some concepts used widely in price decision.

List price: is the price given before discounts, before rebates are subtracted

and taxes added.

Net price: is the price after all discounts and rebates are subtracted from

the list price.

In our work, to facilitate computation, we do not consider discounts. i.e., the

price is independent of ordering quantity.

Retail price = Wholesale price× (1 + markup percent).

Gross margin percent = markup/retail price.

Generally, the “margin” that we talk about is gross margin. Wholesaler and

retailers usually have much more margin than manufacturer.

1) Manufacturing cost c and wholesale price w. As we know, generally, for

manufacturer, 1 ∼ 3% is low profit ratio; 3 ∼ 5% is middle profit ratio; 5 ∼ 8%

is high profit ratio; and above 10% is profiteering (sudden huge profit). Some

other industries may have higher profit ratio than this, such as garment typically

between 10 ∼ 15%, drugs with average 15%, etc. Of course, there are some
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special industries that can earn much more than others, for example, the grand

brand of luxury, jewelry, car, watch, etc. And also, the data differs in different

country and region. In order to get universal data, we concentrate on consumer

staples. Therefore, for general industry, e.g., drugs, electrical products, food, we

give the price relationship separately, which is shown in Table 5.2. In order to

give an intuitive example, we take drug for example. For drugs, c = w · 85%.

2) Wholesale price and retail price. Although there are usually some median

distributors between wholesalers and retailers, we consider the case where retailers

order merchandizes from wholesalers directly. There is a traditional formula for

retailers to determine retail price: retail price = wholesale price × 2. i.e., the

gross margin percent is 50%. Because there are usually discounts promotions and

some other reasons for decrease price, finally, the realized price may be less than

initial one. Some quick searching turns up a couple of results indicating that

typical retail markup is 40%, while for wholesale, average 30% margin on goods.

Most grocery stores work on around 30% profit margin on their selling cost. For

drugs, w = r · 85%, for other industries, refer to Table 5.2.

3) Retail price and salvage value. Salvage value (also named as residual value)

is surely connected to the current market value of products. We can calculate

it by multiplying current market value by Salvage Value Percentage. Salvage

value percentage has large difference for distinct products. There is still not

definitive value. Even for the same product, Salvage Value Percentage varies

in different companies. For example, Salvage value percentage for fresh fruits

and vegetables is 0, while for electronic equipment is about 10 ∼ 20%. The

salvage value of unsold merchandize is kind of different from the salvage value

of depreciation products. In some degrees, the salvage value of unsold products

is higher than that of depreciation products, for example, at the point of scrap

value, the materials of unsold products which junk dealer can make use of are

more valued than that of depreciation products. Moreover, in flea market, the

unsold products can get better price than depreciation products. In addition, the

unsold products can be resold in the discount season after the sale season. In

that case, they can be resold with a price much higher than the salvage value.

For example, some garments are resold with 30%, 50% or some other percentage

in the next year in the discount season. There is no document indicating the
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general partition of unsold products, either being resold or recycled. For drugs,

the salvage value is typically 20 ∼ 30%, i.e., v = r · 25%.

Table 5.2: Price relationship for different industries ∗

Drug Garment Electrical product
c− w c = w ∗ 85% c = w ∗ 80% c = w ∗ 70%
w − r w = r ∗ 85% w = r ∗ 50% w = r ∗ 70%
r − v v = r ∗ 25% v = r ∗ 10% v = r ∗ 20%

∗ result above is from drug statistic data from Internet.

5.3.4.2 Computation based on our hypothesis

With the estimation of relationship of prices in drug industry described above, we

represent the other three kinds of price, v, c, w with r as: c = 0.72r; w = 0.85r;

v = 0.25r. Therefore, equation 5.18 becomes:

dP (0)

dQ
= (0.47r − 0.15r · a)

∫ ∞

0

g(u)du (5.20)

Since 0 < a < 1, it is obvious that dP (0)
dQ

> 0.

Unfortunately, the results are not as what we expected. Hence, we find that

in the situation of our assumption, we cannot use the traditional method for

calculating the extremum of function to calculate the optimal ordering quantity

of wholesaler. However, in the situation opposite to our assumption, we can get

the expected results dP (0)
dQ

< 0, where c− v < (r − w) · a.

Under the condition c− v < (r − w) · a, we can obtain Proposition5.1.

Denote k = (c− v)− (r − w) · a, k < 0.

Set dP (Q)
dQ

= 0, we get:

(w − c)[G(
Q∗

T
)−G(0)] = −k[G(∞)−G(

Q∗

T
)] (5.21)

Similar to F (∞) and F (0), we define G(∞) = 1, G(0) = 0. Then,

G(
Q∗

T
) = −k/(w − c− k) (5.22)

where

k = (c− v)− (r − w) · a, k < 0 (5.23)
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F (Q∗) > (r − w)/(c− v) (5.24)

∵ w − c > 0 and k < 0

∴ − k
w−c−k

∈ (0, 1)

i.e. G(Q∗

T
) ∈ (0, 1), so, there exist an unique Q∗ to make dP (Q)

dQ
= 0, which is

represented in equation 5.22.

In order to calculate the optimal initial production capacity T ∗, from equation

5.22, it is found that the distribution of demand F (x) and distribution of yield

loss G(u) are needed. The two probability distributions can use the results of

Bayesian approach, which completely represent double uncertainty of the two

variables.

5.3.4.3 Discussion

In fact, when equation 5.23 is not satisfied, we substitute the original distribution

of uncertain demand and qualification ratio to calculate the expression of expected

loss, E[f(Q, x, u)]. We have tried both the normal distribution and continuous

uniform distribution. Unfortunately, we cannot get the explicit expression for

function of the expected loss. i.e., we cannot use the exact algorithm to derive

the optimal ordering quantity. Therefore, we obtain the result:

Only under the condition, where c − v < (r − w) · a, 0 < a < 1, we can

use the exact mathematical method to calculate the optimal ordering quantity of

wholesaler.

For the case where the assumption does not hold, we can use simulation

approach to calculate the optimal ordering quantity of wholesaler, which is illus-

trated in the following section.

5.4 Uncertainty represented with fuzzy variable

In previous section, uncertain demand and product qualification ratio are both

represented with random variable with distributions of known type. Nevertheless,

it is founded that using Bayesian approach to forecast demand or qualification

ratio is rather costly. Sometimes there are even lots of constricts in computation

for its application. In addition, in most practical cases, there is not enough or

reliable historical data, product qualification ratio can only depends on the rough

158



5.4 Uncertainty represented with fuzzy variable

range estimated by some specialists. Therefore, we prefer to represent uncertain

variables with fuzziness, which is studied a lot recently.

To deal with the decision problem with fuzzy information, the fuzzy set theory

proposed by Zadeh (1965) and the credibility theory proposed by (Liu, 2006) are

widely used.

5.4.1 Credibility theory

Zadeh (1978) proposed possibility theory as extension of his fuzzy set theory and

fuzzy logic. There are two measures including possibility and necessary measure.

As we know, a fuzzy event may fail even though its possibility achieves 1, and

hold even though its necessity is 0 (Ji & Shao, 2006). However, in the credibility

theory proposed by Liu (2006), the fuzzy event must hold if its credibility is 1

and fail if its credibility is 0.

Credibility theory proposed by Liu (2006) is a new branch of mathematics for

studying the behavior of fuzzy phenomena. Since we use it for the calculation in

later section, we introduce it briefly here.

5.4.1.1 Credibility measure and credibility space

From the credibility theory of Liu (2006), the possibility measure is the credibility

measure, rather than probability measure. It is on the basis of the following five

axioms.

Let Θ be a nonempty set, and let P (Θ) be the power set of Θ (i.e., all subsets

of Θ). Each element in P (Θ) is called an event.

1) Cr{Θ} = 1.

2) Cr is increasing, i.e., Cr{A} ≤ Cr{B} whenever A ⊂ B.

3) Cr is self-dual, i.e., Cr{A}+ Cr{Ac} = 1 for any A ∈ P (Θ).

4) Cr{UiAi} ∧ 0.5 = supiCr{Ai} for any {Ai} with Cr{Ai} ≤ 0.5.

5) Let Θk be nonempty sets on which Crk satisfies the first four axioms, k =

1, 2, . . . , n, respectively, and let Θ = Θ1×Θ2×. . .Θn. Then: Cr{(θ1, θ2, . . . θn)} =

Cr1{θ1} ∧ Cr2{θ2} ∧ . . . ∧ Crn{θn} , for each (θ1, θ2, . . . θn) ∈ Θ.
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5.4.1.2 Fuzzy simulation

Fuzzy simulation, developed by (Liu, 1998, 1999; Liu & Liu, 2002), was defined

as a technique for conducting sampling experiments on models of fuzzy systems.

Numerous numerical experiments showed that fuzzy simulation indeed works well

for handling fuzzy systems (Liu, 2006).

Liu (2006) introduced the technique of simulation for computing credibility,

finding critical values, and calculating expected value. Some researchers have

applied this technology to numerical examples to analyze its effectiveness (Ji &

Shao, 2006; Shao & Ji, 2006).

Let ξ be a fuzzy variable with membership function µ(u). According to the

credibility theory of Liu (2006), the possibility, necessity, credibility measure of

the fuzzy event ξ ≥ r can be represented respectively by:

Pos{ξ ≥ r} = supu≥rµ(u) (5.25)

Nec{ξ ≥ r} = 1− supu<rµ(u) (5.26)

Cr{ξ ≥ r} =
1

2
[Pos{ξ ≥}+ Nec{ξ ≥ r}] (5.27)

We introduce the application of expected value, which is used in subsequent

section.

Suppose that f is a function and ξ = (ξ1, ξ2, . . . , ξn) is a fuzzy vector with

membership function µ. Randomly generate uk from the ε-level set of ξ for

k = 1, 2, . . . , N . Then for any number r ≥ 0, the credibility value Cr{f(ξ) ≥ r}

and Cr{f(ξ) ≤ r} for any number r < 0 may be estimated by using the samples.

After that, we may employ simulation to calculate the integral,

E[f(ξ)] =

∫ +∞

0

Cr{f(ξ) ≥ r}dr −

∫ 0

−∞

Cr{f(ξ) ≤ r}dr (5.28)

Applying the equation of definition of credibility here, for any number r ≥ 0,

Cr{f(ξ) ≥ r} can be estimated by equation 5.29:

Cr{f(ξ) ≥ r} =
1

2
[ max
k=1,2,...,N

{µk|f(ξ, uk) ≥ r}+ 1− max
k=1,2,...,N

{µk|f(ξ, uk) < r}]

(5.29)
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For any number r < 0, Cr{f(ξ) < r} can be estimated by equation 5.30:

Cr{f(ξ) < r} =
1

2
[ max
k=1,2,...,N

{µk|f(ξ, uk) ≤ r}+ 1− max
k=1,2,...,N

{µk|f(ξ, uk) > r}]

(5.30)

5.4.2 Solutions with fuzzy variables

For the model of equation 5.6 described in section 5.2, different from the repre-

sentation with stochastic variables, the two variables, uncertain demand x and

product qualification ratio u are both fuzzy numbers. To facilitate calculation, we

consider both of them represented with triangular fuzzy numbers. Optimal order-

ing quantity Q is still the decision variable. Objective function is minimization

of potential loss of the whole supply chain.

To solve the model with fuzzy variables, we combine genetic algorithm with

fuzzy simulation to get a hybrid intelligent algorithm. The programs are as

follows:

Step 1 For wholesalers, initialize the chromosome population of the first gen-

eration Q = (Q1, Q2, . . . , Qp) and validate the feasibility of chromosome, where,

p is the population number.

Step 2 For every chromosome Qj(j = 1, 2, . . . , p), apply the fuzzy simulation

to calculate the related profit E(fj), i.e. the fitness of every chromosome.

Step 3 According to fitness of chromosomes, we select them with the roulette

wheel, and then apply the operations of cross and mutation to get a new gener-

ation.

Step 4 Repeat step 2 to step 3, and break out until the generation number

G is achieved.

Step 5 Compare the fitness in the last generation, select the chromosome Q

with the largest fitness value, which is exactly the best value obtained for the

solution of ordering quantity of wholesaler.

In step 2, to calculate the fitness value E(fj), fuzzy simulation is used for the

fuzzy variable’s expected value. We refer to the fuzzy simulation of Liu (2002,

2003), which are used and illustrated by Ji & Shao (2006) and Shao & Ji (2006).

The two papers applied fuzzy variable to address uncertain demand. Different

from them, we have two different fuzzy variables, uncertain demand and uncertain

product qualification ratio.

161



5. UNCERTAINTY OF DEMAND AND YIELD IN BI-LEVEL
NEWSBOY PROBLEM

For our model with two fuzzy variables, the fuzzy simulation procedure de-

scribed as follows:

1) For chromosome Qj , set its fitness E(fj) = 0, j = 1, 2, . . . , p;

2) Generate uniformly xm from the range of fuzzy need x to make its pos-

sibility Pos{xm} ≥ ε (where ε is a small enough number), and denote vm =

Pos(xm)(m = 1, 2, . . . , M); M is simulation generation number which corre-

sponds to the intervals of demand variables; similarly generate uniformly ul from

the range of fuzzy product qualification ratio u to make its possibility Pos{ul} ≥ ε

(where ε is a small enough number), denote vl = Pos(ul)(l = 1, 2, . . . , M).

µm = xm ∧ ul;

3) Set a = min1≤m,l≤M{f(xm, ul, Qj)}, b = max1≤m,l≤M{f(xm, ul, Qj)};

4) Generate uniformly rn(n = 1, 2, . . . , N) from [a, b], where N is a constant

to subdivide the intervals;

5) If rn ≥ 0, compute the credibility

Cr{f(xm, ul, Qj) ≥ r} = 1
2
(max1≤m,l≤M{µm|f(xm, ul, Qj) ≥ r}+min1≤m,l≤M{1−

µm|f(xm, ul, Qj) < r})

and set E(fj)← E(fj) + Cr{f(xm, ul, Qj) ≥ r};

if rn < 0, the credibility

Cr{f(xm, ul, Qj) < r} = 1/2(max1≤m,l≤M{µm|f(xm, ul, Qj) < r}+min1≤m,l≤M{1−

µm|f(xm, ul, Qj) ≥ r})

and set E(fj)← E(fj)− Cr{f(xm, ul, Qj) < r};

6) Set E(fj)← max(a, 0) + min(b, 0) + E(fj) · (b− a)/N .

5.4.3 Operations of genetic algorithm

In previous section, we have mentioned that we used genetic algorithm combined

with fuzzy simulation to solve the problem. We explain the explicit operations of

genetic algorithm.

1) Encoding of chromosome. We apply real value coding for chromosome.

For this study, genes in chromosome represent directly demand quantity and

qualification ratio.

2) Selection of chromosome. Since in this work, we keep the number of indi-

viduals in mating pool fixed as the population number, we adopt roulette wheel

as selection method, which is good at choosing good performing individuals for

generating offsprings.
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3) Crossover of chromosome. We apply the Golden Selection method. Set

Golden coefficient as θ. Select two chromosomes of wholesaler Qk and Ql to

execute crossover operation, then the newly generated chromosomes are:

Qm = θ ·Qk + (1− θ) ·Ql

Qn = θ ·Ql + (1− θ) ·Qk

4) Mutation of chromosome. We use the constraints of upper and lower bounds

to guarantee the feasibility of chromosome. Execute mutation operation for chro-

mosome Qm. Set the upper and lower bounds of demand for wholesaler is ξmax

and ξmin respectively. To guarantee the feasibility of variables, which need to be

scattered in the interval between upper and lower bounds, mutation procedure is

executed as follows:

Qn = ξmax + ξmin −Qm

5.5 Numerical examples

The instance we apply is similar to that in Shao & Ji (2006). As the originality

of the problem, there is no benchmark. Hence we initialize the data we need to

complete the examples. Demand of market is considered as a fuzzy triangular

variable D = [310, 350, 380] (cases), fuzzy product qualification ratio with trian-

gular variable R = [0.9, 0.95, 1.0]. The other parameters are as follows: c = 28e,

r = 40e, v = 10e, w = 34e, T = 400 (cases).

As the parameters of prices do not satisfy the condition of applying Bayesian

approach in section 5.3.2, we apply fuzzy simulation method to solve it. Through

application on the examples, we demonstrate the effectiveness of fuzzy simulation

method. We use Matlab R2007b to program, performed on a personal computer

configured with Intel Core 2 CPU 2.13 GHz.

Initial generation population is 100; generation number is 200; with 200 ran-

dom number in fuzzy simulation.

Results of computation show that the best value of ordering quantity of whole-

saler is 345 cases, with the expected potential loss is almost 1114e. The conver-

gence curve is as shown in Figure 5.1.

Because the result of fuzzy simulation is random, the final result of potential

loss is not constant. We execute the program 100 times to investigate the dif-

ference. Results are shown in Figure 5.2. we can see that the optimal ordering
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Figure 5.1: Results of computation with GA

quantity does not change much while potential loss varies between 1100 and 1200.

The averages are 345.2 and 1126.7 separately.

Next, we change the prices to analyze their impacts to our results. When

one parameter changes, the other parameters keep the default value given above.

For all of the following experiments, we execute the program 100 times to get an

average value of the optimal ordering quantity and potential loss.

1) Change wholesale price w.

Keeping the other parameters as default value, when wholesale price decreases,

wholesaler’s profit will increase, but manufacturer’s profit will decrease. There-

fore, we do not know the change of the summation of potential loss of the two.

That is, we cannot obtain directly the relationship between potential loss and

wholesale price. Results of experiments are shown in Figure 5.3 and Table 5.3.

We test 9 different wholesale prices, from 30 to 38. With each value of wholesale

price, we execute the program to the optimal ordering quantity and potential

loss. From the results, we can see that optimal ordering quantity value changes

little between 345 and 346, potential loss between 1100 and 1140. Both of them

do not change much. Moreover, the overall trend of potential loss is smaller with

increase of wholesale price; on the contrary, ordering quantity is larger.

2) Change retail price r. From the formula of our model, we can see that

potential loss is proportional to retail price. When other parameters keep constant

and retail price decreases, the potential loss will decrease. When retail price
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Figure 5.2: Results of executing 100 times
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Figure 5.3: Change with different wholesale price
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Table 5.3: Results of optimal ordering quantity and potential loss with different
wholesale price

Wholesale price Potential loss Ordering quantity
30 1138.8 345.3
31 1135.6 345.3
32 1104.1 345.7
33 1131.2 345.2
34 1092.6 345.8
35 1112.8 345.4
36 1091.1 345.6
37 1083.2 345.8
38 1060.2 346.0

increases, the potential loss will increase. But we do not know the change of

ordering quantity in advance. The results or experiments of increasing r from

38 to 46 are shown in Figure 5.4 and Table 5.4, from which we can observe that

potential loss increases with increasement of retail price. Like that in experiment

1, the trend of potential loss is contrary to that of ordering quantity.
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Figure 5.4: Change with different retail price

3) Narrow the range of variation of demand D. It means the variance of

fuzzy demand is smaller than the original one used in precedent experiment.

We test with different values of fuzzy number D: D1 = [290350380], D2 =

[300350380], D3 = [310350360] , D4 = [310350370], D5 = [310350380], D6 =

[310350390], D7 = [310350400], with unit being cases. We expect that the optimal
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5.5 Numerical examples

Table 5.4: Results of optimal ordering quantity and potential loss with different
retail price

Retail price Potential loss Ordering quantity
38 1104.5 345.3
39 1101.7 345.5
40 1094.2 345.7
41 1126.8 345.2
42 1101.4 345.6
43 1099.9 345.9
44 1109.5 345.8
45 1118.1 345.8
46 1164.6 345.4

ordering quantity will increase with larger range of demand. Result of simulation

illustrated in Figure 5.5 and Table 5.5. From the results, we can find that when

the range increases, the optimal ordering quantity also increases, which coincides

with our expectation. The trend of potential loss is also contrary to that of

optimal ordering quantity.
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Figure 5.5: Comparison with different fuzzy demand

4) Change the fuzzy qualification ratio of product R. From the formula of our

model, although we cannot find out the relationship of the results with qualifi-

cation ratio of products, we can infer that when other parameters keep constant

and qualification ratio increases, potential loss of manufacturer will grow because

of excess production. We test with different values of R: R1 = [0.88, 0.95, 1],

R2 = [0.89, 0.95, 1], R3 = [0.90, 0.94, 1] , R4 = [0.9, 0.95, 1], R5 = [0.91, 0.95, 1],
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Table 5.5: Results of optimal ordering quantity and potential loss with different
fuzzy demand

Fuzzy demand Potential loss Ordering quantity
D1=[290 350 380] 1447.7 335.2
D2=[300 350 380] 1289.1 340.2
D3=[310 350 360] 1355.4 335.1
D4=[310 350 370] 1245.7 340.1
D5=[310 350 380] 1106.9 345.5
D6=[310 350 390] 927.8 351.3
D7=[310 350 400] 801.7 356.0

R6 = [0.92, 0.95, 1], R7 = [0.93, 0.95, 1]. Results of experiments are shown in Fig-

ure 5.6 and Table 5.6. From the results, we obtain that potential loss increase with

increase of qualification ratio, which is consistent with our speculation. Similar to

precedent experiments, when potential loss increases, optimal ordering quantity

decreases.

R1 R2 R3 R4 R5 R6 R7
345

346

347

348

op
tim

al
 o

rd
er

in
g 

qu
an

tit
y

fuzzy qulification ratio

800

1000

1200

1400

po
te

nt
ia

l l
os

s

Figure 5.6: Comparison with different qualification ratio

Discussions

We achieve the objective of obtaining optimal ordering quantity. Under the sit-

uation where parameters, T , w, r, c, v, and fuzzy variables, D, R, are given, we

can calculate the decision variable effectively.
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5.6 Conclusions

Table 5.6: Results of optimal ordering quantity and potential loss with different
qualification ratio

Qualification ratio Potential loss Ordering quantity
R1=[0.88 0.95 1] 829.7 347.1
R2=[0.89 0.95 1] 935.9 346.9
R3=[0.9 0.94 1] 1121.3 345.2
R4=[0.9 0.95 1] 1108.8 345.5
R5=[0.91 0.95 1] 1184.8 345.2
R6=[0.92 0.95 1] 1240.5 345.1
R7=[0.93 0.95 1] 1301.2 345.1

From the initial test and all the following experiments above, it is easy to

find that the potential loss and optimal ordering quantity are contrary. This

coincides with the phenomenon in practice that we need large inventory to obtain

good profit and small loss. We expect to obtain less loss and small ordering

quantity. Unfortunately, this is impossible. Therefore, a trade-off value is needed.

Among the four factors, fuzzy demand influences most the final results, both the

potential loss and optimal ordering quantity; followed by fuzzy qualification ratio

and retail price; the factor with minimum impact is wholesale price. Therefore,

the estimation of demand of market is especially important. The two prices are

the factors the decision maker can control; an optimal price policy should be

negotiated. The optimal trade-off value is at the point of intersection: the rough

values are: w = 36.8, r = 40.6, D = [310350380], R = [0.89, 0.94, 1], the other

parameters are still default. We get again the optimal quantity with 345 cases.

The potential loss decreases to 997.2. It seems that the parameters we used here

are reasonable. However, we do not consider the relationship between demand

and retail price. For further research, we can consider it in problem model.

5.6 Conclusions

In this chapter, we illustrate the procedure of using two different methods to

solve the bi-level newsboy problem with uncertain demand and uncertain product

qualification ratio. We have demonstrated that Bayesian approach is suitable for

representing double uncertainty of variables. Actually, we can say that Bayesian

approach is also a kind of forecasting method. It is obvious that it costs more
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than normal forecasting since it needs information updating. If the potential

cost-saving is larger than forecasting cost, we can consider adopting the Bayesian

approach; otherwise, we should use directly the prior information. From the

research of Lee (2008), there is a threshold value of forecast.

Application of hybrid genetic algorithm with fuzzy simulation in numerical

examples demonstrates the effectiveness of this method. We have found the rela-

tionship between the different parameters and objective function. Furthermore,

we observe that the objective function of potential loss of this bi-level newsboy

problem is not completely consistent with decision making in reality. From this

point, objective function of maximization of profit is more intuitive. Therefore,

we suggest using maximization of profit as objective function.

For future research, we can consider the newsboy problem under situation

where there is competition among several newsboys. Then the uncertain product

qualification ratio may result from competition. Combination of the two represen-

tations of uncertainty, the stochastic and fuzzy method, will also be interesting.
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Conclusions and Perspectives

Our work is surrounding uncertainty in supply chain management (SCM). Un-

certainty is ignored in conventional SCM, which is not suitable for practical situ-

ation. We center on this research to give a systematic research about uncertainty

in SCM and attempt to propose a reference for research in this domain.

In any stage in supply chain, there exist uncertainty which may impact per-

formance of activity in supply chain. We focus on uncertainty in three primary

stages in supply chain, uncertainty in demand, uncertainty in manufacturing and

uncertainty in distribution. For these different kinds of uncertainty, we analyze

each of them in detail, their influence, cause, and measure to deal with them when

they occur in crete problems. Furthermore, we tried to test performance of our

approaches proposed through numerical examples. Research of uncertainty in the

three different stages is actually not strictly parallel as they are not independent.

Certainly distinct sorts of uncertainty are probably independent, e.g., only uncer-

tainty in demand needs to be considered when we focus on analysis of marketing.

However, they may interact each other in the case of overall consideration of sup-

ply chain, where they should be considered simultaneously and even interaction

analysis needed. This point of view is confirmed in the last chapter of this thesis

where uncertainty of both demand and supply is taken into account in bi-level

newsboy problem. This part is also an attempt of treating uncertainty in concrete

supply chain management problem, in which uncertainty in treated concretely,

with particular approach to represent uncertainty of decision variables.

In addition to concrete approaches to cope with uncertainty of variables in

decision problem, for treating uncertainty in the three main stages in supply

chain, we proposed different strategies. For uncertainty in demand, we suggested

a postponement strategy to obtain optimal allocation of supply quantity to each

supplier in the chain. This prove to be a flexible strategy in allocation of goods to
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demanders to satisfy demand. Through experiments, we found that this strategy

is also suitable to optimization for normal supply problem. Treating uncertainty

in distribution can be regarded as an extension work for executing this strategy.

Distribution, as the execution stage of supply, is not easy to control as it contacts

much with external world outside of supply chain, such as route condition which

we mentioned in fourth chapter of this thesis. The preliminary part in distribu-

tion is transportation, in which uncertainty occurs mainly due to uncertainty of

clients’ request. There are also some other factors causing uncertainty in trans-

port, but we cannot take into account every aspect. We find that in the model

of unpaired vehicle routing problem with pickups and deliveries (VRPPD), dis-

advantage caused by uncertainty of clients’ request can be mitigated. For solving

the problem, we apply a grouping genetic algorithm (GGA). To our knowledge,

this is the first attempt of using metaheuristic to solve unpaired VRPPD. We are

very honored to replace this research gap in solving unpaired VRPPD. Obviously,

improved algorithm can be endeavored in future research.

For manufacturing, we concentrate on flexible job shop as it is an appropriate

mode for demand of modern consumer market. To cope with unavailability of

machines, which is the main uncertainty in manufacturing system, we suggest

applying condition based maintenance (CBM). CBM is a category of preventive

maintenance (PM), with monitoring as data basis. The scheduling problem in this

mode of manufacturing system is modeled as FJSSPM (flexible job shop schedul-

ing problem with preventive maintenance). The dynamic attribute of CBM makes

the problem suitable for normal period of manufacturing and maintenance execu-

tion period as well. Firstly, we obtain a preschedule through solving normal FJSP

(flexible job shop scheduling problem). When maintenance is needed, insertion

algorithm is applied to add maintenance tasks. Different algorithms are proposed

to solve the problem. We obtain a better result than that in literature with our

proposed integrated genetic algorithm (IGA) on an experiment of benchmark in

FJSP. Performance of other algorithms is also tested. Results of experiments

showed that we have obtained effective approach for solving the problem.

The concrete problems we focused on, e.g., FJSPPM and unpaired VRPPD,

are NP hard problems. The method we used most to solve the problem is genetic

algorithm. As a widely used metaheuristic, it performs well while solving our

problems. In solving FJSPPM, it is found better performing than ant colony
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optimization (ACO). Recently the growing trend is combining GA with other

methods in solving optimization problem. In next research period, we will at-

tempt to improve the approach as well.

Limitation of our research exist unavoidably. As originality of some of our

problems, when we use the benchmark we have to change or add some param-

eters to complete the problem. This makes the problem unique, therefore, we

can not compare our result with others. We hope that there are some other re-

searchers interested in our problematic experiment and then we can compare the

performance of our approaches.

For future research, we would like to endeavor in the domain of applying our

strategy and particularly of treating uncertain variables in some projects of real

problems. We hope this theoretical research can contribute to the practical prob-

lems in supply chain management. Furthermore, for the problem of calculating

supply cost in applying strategy of postponement, the objective function can be

improved, other factors can be taken into account; even multi objective model

could be considered. For research of uncertainty in distribution, change of clients’

requests can be quantified into the problem, and benchmark for experiments is

needed.
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Le management de la chaîne logistique sous contraintes de diponibilité et
d’incertitude

Résumé: Le management de la chaîne logistique concerne un large éventail d’activités.
Nombreuses ceux qui ont un caractère incertain apportant souvent des conséqunces
inattendues. Malgré cela, l’incertitude est fréquemment non considérée dans la gestion
de la chaîne logistique traditionnelle. En plus de l’incertitude, l’indisponibilité des
ressources augmentera la complexité du problème. En prenant en compte les contraintes
d’incertitude et de disponibilité, nous étudions le management de la chaîne logistique
selon différents aspects. Cette thèse représente une tentative de recherche afin d’aborder
ce problème d’une façon systématique et complète et nous espérons que notre travail
contriburera aux futurs travaux de recherche et sera utile aux gestionnaires de la chaîne
logistique. Nous nous concentrons sur trois sources classiques de l’incertitude; celle de
la demande, cell de la fabrication et celle liée à la distribution. Pour chaque source
d’incertitude, nous analysons ses causes et ses impacts sur les performances de la chaîne
logistique. L’incertitude est spécifiée dans des problème classiques concrets et des
approches sont proposées pour les résoudre. Nous nous somme également focalisés sur
le problème bi-niveau du vendeur des journaux qui représente une chaîne logistique
miniature, concerné par une double incertitude. Les méthodes utilisées offrent une bonne
démonstration du traitement des variables incertaines dans les problèmes de décision.

Mots-clefs: Incertitude, Management de la chaîne logistique, Demande, Ordonnance-
ment de job shop, tournées de véhiules, Problème bi-niveau de vendeurs des journaux,
Métaheuristique.

Supply chain management under availability & uncertainty constraints

Abstract: Supply chain management involves a wide range of activities. Among most
of them, uncertainty exists inherently and always brings some consequence not expected.
However, uncertainty is not considered much in conventional supply chain management.
In the case when availability of resources is not as what we expect, complexity of sup-
ply chain management increases. Taking constraints of uncertainty and availability into
account, we aim to discuss supply chain management from different aspects. This thesis
is an attempt of systematic and complete research from this point and we would like to
offer some references to researchers and managers in supply chain.
We focus on three classic sources of uncertainty: demand, manufacturing and distribu-
tion. For each source of uncertainty, we analyze its cause and impact to performance
of supply chain. Uncertainty is specified into concrete classic problem and approach
proposed to solve it. Furthermore, bi-level newsboy problem as a miniature of supply
chain, is focused under double uncertain environment. Treating uncertain variables is
actually a treatment on operational level. The methods used offer good demonstration
in treating uncertain variables in decision problems.

Keywords: Uncertainty, Supply chain management, Demand, Job shop scheduling,
Vehicle routing, Bi-level newsboy problem, Metaheuristic.
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