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XML probabiliste :
Un modéle de données pour le Web

Probabilistic XML: A Data Model for the Web

Pierre SENELLART

Résumé

Les données extraites du Web sont chargées d’incertitude : elles peuvent contenir des contradictions
ou résulter de processus par nature incertains comme l'intégration de données ou I'extraction
automatique d’informations. Dans cette these d’habilitation, je présente les modeles de données
XML probabilistes, la maniere dont ils peuvent étre utilisés pour représenter les données du Web, et
la complexité de différentes opérations de gestion de données sur ces modeles. Je donne un état de
Iart exhaustif du domaine, en insistant sur mes propres contributions. Je termine par un résumé de
mes futurs projets de recherche.

Abstract

Data extracted from the Web often come with uncertainty: they may contain contradictions or result
from inherently uncertain processes such as data integration or automatic information extraction. In
this habilitation thesis, I present probabilistic XML data models, how they can be used to represent
Web data, and the complexity of the different data management operations on these models. I
give an exhaustive survey of the state-of-the-art in this field, insisting on my own contributions. I
conclude with a summary of my research plans.

Mots clefs : données du Web, données probabilistes, World Wide Web, XML
KCYWOI‘C[S: Web data, probabilistic data, World Wide Web, XML



Cette these d’habilitation est rédigée en anglais. Les deux premiers chapitres disposent de deux
niveaux de lecture : (i) le cceur du texte, publié indépendamment (KIMELFELD et SENELLART 2012),
constitue une vue d’ensemble de I'état de I'art dans la gestion de données XML probabilistes, écrite
conjointement avec Benny KIMELFELD ; (ii) je détaille aux endroits appropriés (par des encadrés
«?" Contributions ») une partie de mes propres travaux de recherche, en relation avec les themes du
texte principal.Le troisieme chapitre présente un résumé de mes projets futurs de recherche.

This habilitation thesis is written in English. The first two chapters feature two layers of reading:
(i) the core text, independently published (Kimelfeld and Senellart 2012), provides a survey of the
state-of-the-art in probabilistic XML data management, jointly written with Benny Kimelfeld; (ii)
detail in relevant places (marked by highlighted “¢#" Contributions” boxes) part of my own research
works, in connection with the topics of the main text. The third chapter presents a summary of my
research plans.

Cette these est rédigée a I'aide du systéme de composition de documents IATEX, avec les polices
de caracteres Adobe Garamond Pro, Math Design, Myriad Pro et Bitstream Vera Sans Mono. Les
bandes dessinées introduisant chaque chapitre sont extraites de 7he Complete Peanuts, de Charles M.
ScHutrz, une collection publiée depuis 2004 par Fantagraphics Books. Ils sont reproduits ici en
vertu du droit de citation.

This thesis is written with the help of the typesetting system IXTEX, in the font families Adobe
Garamond Pro, Math Design, Myriad Pro, and Bitstream Vera Sans Mono. The comic strips that
introduce each chapter are from 7he Complete Peanuts, by Charles M. Schultz, a series published
since 2004 by Fantagraphics Books. They are reprinted here under fair use.
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Chapter 1

An Uncertain World

WHAT DO WE DO IF

WE COME ACRO55

A HALF-TRUTH?
&

TRUE...TRUE...
FALSE..TRUE...

Real-world data (say, from the World Wide Web) is often uncertain, because of the inherent
uncertainty of the data itself, or of data collection, integration, and management processes. We
explain in this chapter how probabilistic databases in general, and probabilistic XML in particular,
can be used to formally manage this uncertainty.

1.1 From Uncertain Data to Probabilistic Databases

Data managed by modern database applications are often uncertain. A few examples are the
following. When information from different sources is conflicting, inconsistent, or simply presented
in incompatible forms, the result of integrating these sources necessarily involves uncertainty as
to which fact is correct or which is the best mapping to a global schema. When data result from
automatic and imprecise tasks, such as information extraction, data mining, or computer vision, it
is commonly annotated by a score representing the confidence of the system in the correctness of
the data. When data are gathered from sensor networks, they come with the inherent imprecision
in the measurement of sensors. Even when data is generated by humans, they are not necessarily
certain: diagnostics of diseases stored in a hospital database are affected by the imprecision of human
judgment in addition to that of the diagnostics themselves. This ubiquity of uncertain data is all
the truer when one deals with the World Wide Web, which is a heterogeneous collection of data
that is constantly updated by individuals and automated processes.

Data uncertainty is often ignored, or modeled in a specific, per-application manner. This may
be an unsatisfying solution in the long run, especially when the uncertainty needs to be retained
throughout complex and potentially imprecise processing of the data. As an example, consider
sensor data being gathered in a database, mined to extract interesting patterns, annotated by human
experts, then integrated together with the result of other such analyses, independently made. Each
of these steps, from the initial collection to the final integration, should be aware of the uncertain
character of handled data; furthermore, each of these steps may even introduce further uncertainty.
The goal of uncertain data management is to provide a unifying framework and a unifying system
to handle the semantics of uncertainty, in the database itself. This goal is in line with the motivation
behind DBMSs themselves, which were proposed in the 1970s as a uniform solution to the problem
of managing data, while replacing previous systems that were tied to particular applications.
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Naturally, there are various ways to model uncertainty. Examples include representation of missing
information (from SQL NULLs to more elaborate models of incomplete dara (Imielinski and
Lipski 1984)), fuzzy logic and fuzzy sets (Galindo, Urrutia, and Piattini 2005), and the Dempster-
Shafer theory (Zadeh 1986). In this dissertation, we consider probabilistic models that represent
probability distributions over ordinary databases, and are based on the rich mathematical formalism
of probability theory: probabilities allow measuring the uncertainty. Of course, quite a few real-life
applications provide data that are probabilistic in nature. Examples include conditional random
fields (Lafferty, McCallum, and Pereira 2001) (used in information extraction), statistics-based
tasks involved in natural-language processing (Manning and Schutze 1999), or ranking mechanisms
based on Markov chain theory and probabilistic fixpoint approaches, such as PageRank (Brin and
Page 1998). But even when applications do not provide obvious probabilistic data, they often
provide confidence scores that can be mapped to probability values.

ng Contributions

In a series of work on graph mining, I have used PageRank-like approaches to extract meaning-
ful information from the Web graph or similar networks. In the following cases, the ranking
scores obtained are or can be interpreted as probabilities, making the result of the algorithms
a suitable dataset for probabilistic data management.

(Blondel, Gajardo, Heymans, Senellart, and Dooren 2004) We have generalized Kleinberg’s
HITS algorithm (Kleinberg 1999) to the comparison of nodes between two arbitrary
graphs. In particular, we have applied the approach to synonym discovery in a dictionary
graph (Senellart and Blondel 2008). The similarity scores can be interpreted as a
probability distribution for a node in one of the graphs to be the best match of one in
the second graph.

(Ollivier and Senellart 2007) We have introduced Green measures as a parameter-free tool
for finding related nodes in a graph, with application to finding pages similar to a given
page in Wikipedia. The Green measure centered at 7 can be thought of as the PageRank
measure modified by feeding constant mass on node 7 at each iteration step.

(Vazirgiannis, Drosos, Senellart, and Vlachou 2008) We have shown how to predict the evo-

lution of PageRank scores on the Web by using hidden Markov models.

(Galland, Abiteboul, Marian, and Senellart 2010) We have used a fixpoint computation ap-
proach to estimate the probability that a fact is true, when contradictory facts are stated
by various sources, of various trustworthiness. Trust is also estimated in the process.
This truth discovery technique has various applications, e.g., improving poll-based
predictions by simultaneously identifying users of high quality.

(Suchanek, Abiteboul, and Senellart 2011) We have builta pseudo-probabilistic model, turn-
ing first-order formulas into probabilistic fixpoint computations, to match two ontology
graphs. We thus obtain probabilities that one entity of the first ontology is equal to
another one in the second, or that a relation of the first ontology is a subrelation of
one in the second. Our approach is parameter-free, does not require any form of
supervision, and works at large scale.
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1.2 Representing and Querying Probabilistic Databases

A probabilistic database is, conceptually, a probability space over ordinary databases, each of which
is called a possible world (Dalvi and Suciu 2007a). In practice, such a probability space is obtained
by introducing uncertainty about the value (or existence) of individual data items. If there are many
such uncertain data items, then the number of possible worlds may be too large to manage or even
to store. However, applications usually make assumptions on the correlation among the uncertain
items (e.g., independence), and such assumptions typically allow for a substantially smaller (e.g.,
logarithmic-size) representation of the probability space. Hence, from a database point of view, the
goal is to provide a proper language and underlying data model to specify and represent probabilistic
databases in a compact manner (e.g., by building in the model assumptions of independence).

But a database is not just about storage. A central role of a database is to provide a clean, easy,
and general way of accessing its data (while abstracting away from the actual implementation).
In particular, a database supports a high-level language like SQL or XQuery. In the context of
probabilistic databases, the correspondent of querying is that of finding events and inferring their
probabilities. Hence, we would like the database not just to “store probabilities,” but to actually
understand their semantics and support inference tasks. The common realization of that (Dalvi
and Suciu 2007a; Kimelfeld, Kosharovsky, and Sagiv 2009; Nierman and Jagadish 2002; Hollander
and Keulen 2010) is to allow the user to phrase ordinary queries (of the kind she would pose to an
ordinary database), while the database associates each query answer with its computed probability
(i.e., the probability that the answer holds true in a random possible world).

Finally, another central task of a database is to provide high performance for the operations it
supports (e.g., query evaluation). This aspect is particularly challenging in the case of a probabilistic
database, due to the magnitude of the actual probability space that such a database can (compactly)
represent. As an example, for query evaluation (under the semantics mentioned in the previous
paragraph), the baseline way of computing the probabilities is through the enumeration of all
possible worlds, which is prohibitively intractable. Hence, we would like the operations to be
performed on the compact representation itself rather than on the possible worlds. From the
theoretical-complexity point of view, we require efficiency to be under the assumption that the
input consists of the database in its compact form; in particular, “polynomial-time” is in the size of
the compact representation, and not in that of the implied probability space. Not surprisingly, this
requirement leads very quickly to computational hardness (Dalvi and Suciu 2007a) (and sometimes
even hardness of approximation (Kimelfeld, Kosharovsky, and Sagiv 2009; Fagin, Kimelfeld, and
Kolaitis 2010)). However, as we discuss throughout the thesis, in the case of probabilistic XML
there are a few important settings where querying is tractable.

There is a rich literature on probabilistic relational databases (Widom 2005; Huang, Antova, Koch,
and Olteanu 2009; Cheng, Singh, and Prabhakar 2005; Jampani, Xu, Wu, Perez, Jermaine, and Haas
2008; Sen, Deshpande, and Getoor 2009; Dalvi, Ré, and Suciu 2009; Suciu, Olteanu, Ré, and Koch
2011). In contrast, here we discuss probabilistic XML models, which represent probabilistic spaces
over labeled trees. XML is naturally adapted to a number of applications where data is tree-like,
including Web data or natural language parsing, and we give next specific examples of applications
of probabilistic XML models. Later in this thesis (Section 2.5.3), we discuss the connection between
probabilistic relational models and probabilistic XML models.



Chapter 1 An Uncertain World

1.3 Probabilistic XML Applications

Following are concrete examples of applications or application areas where probabilistic XML is a
natural data model and, moreover, the need to guery probabilistic XML arises.

* XML data integration. Assume that a number of sources on the Web export XML informa-
tion in potentially different schemas. To represent the result of the integration, we need a way
to capture the uncertainty in the schema mappings, in deduplication, or in resolving con-
flicting information. This uncertainty can be characterized by probabilistic mappings (Fagin,
Kimelfeld, and Kolaitis 2010) and probabilistic data integration rules (Keulen, Keijzer, and
Alink 2005; Keulen and Keijzer 2009). The outcome of the integration process can naturally
be viewed as probabilistic XML (which is useful to query, update, and so on).

* Web information extraction. Extracting information from Web data means detecting, in a
Web page, instances of concepts, or relations between these instances, based on the content
or structure of these Web pages. A typical output is therefore a tree-like document, with
local annotations about extracted information. Current extraction techniques, whether they
are unsupervised or rely on training examples, are by nature imprecise, and several possible
annotations might be produced for the same part of the Web page, with confidence scores.
This is for instance the case with conditional random fields for XML (Jousse, Gilleron,
Tellier, and Tommasi 2006) that produce probabilistic labels for part of the original HTML
document; probabilistic XML is a natural way to represent that.

Contributions

In (Senellart, Mittal, Muschick, Gilleron, and Tommasi 2008), we have applied condi-
tional random fields for XML to discover the structure of deep Web response pages,
using the output of a domain-specific gazetteer to guide the machine learning approach.
The outcome is a wrapper assigning probabilities that part of a Web page is to be
annotated with a domain concept.

* Natural language parsing. Parsing natural language consists in building syntax trees out of
sentences. This is an uncertain operation, because of the complexity of the natural language,
and its inherent ambiguity. Indeed, some sentences like “I saw her duck” have several
possible syntax trees. A parser will typically rely on statistics gathered from corpora to assign
probabilities to the different possible parse trees of a sentence (Manning and Schutze 1999).
This probability space of parse trees can then be seen as probabilistic XML data (Cohen and
Kimelfeld 2010).

* Uncertainty in collaborative editing. Consider users collaborating to edit documentation
structured in sections, sections, paragraphs and so on, as in the online encyclopedia Wikipedia.
In an open environment, some of these contributions may be incorrect, or even spam and
vandalism. If we have some way to estimate the trustworthiness of a contributor, we can
represent each individual edit as an uncertain operation on a probabilistic XML document
that represents the integration of all previous edits (Abdessalem, Ba, and Senellart 2011).
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W Contributions

In (Abdessalem, Ba, and Senellart 2011), we have demonstrated a system that produces
probabilistic XML documents representing the uncertain view of a Wikipedia page
resulting of a series of uncertain edit operations. In (Ba, Abdessalem, and Senellart
2011), we have explained how this approach can be applied to the general setting of
uncertain version control systems, simulating version control operations (addition,
deletion, merge, etc.) by update operations on probabilistic XML data.

* Probabilistic summaries of XML corpora. Querying and mining a large corpus of XML
documents (e.g., the content of the DBLP bibliography) can be time-consuming. If we are
able to summarize this corpus as a compact probabilistic model (Abiteboul, Amsterdamer,
Deutch, Milo, and Senellart 2012), namely probabilistic XML, we can then use this model to
get (approximations of) the result of querying or mining operations on the original corpus.

W Contributions

In (Abiteboul, Amsterdamer, Deutch, Milo, and Senellart 2012), we have shown how to
assign optimal probabilities to tree automata describing the schema of an XML corpus,
without or with integrity constraints. Optimality is defined in terms of likelihood of
generation. As an application, we have demonstrated in (Abiteboul, Amsterdamer,
Milo, and Senellart 2012) an intelligent auto-completion editor for XML, that takes
into account a corpus of documents for suggesting the most likely completion of the

current document.

We now move to a formal presentation of probabilistic XML and a description of the main results
of the literature on managing probabilistic XML data.






Chapter 2

Probabilistic XML: Models and Complexity

1 HATE STUDYING YOU SHOULDNT 5AY BAD | | WHY? WHAT CAN A
TREES ! WHAT DO I THINGS ABOUT TREES TREE DO TO YOU ?
CARE ABOUT TREES? | | BOUT TReES

This chapter surveys the state of the art in probabilistic XML data management. It is organized
as follows. We first introduce basic concepts, mainly XML, probabilistic XML, p-documents,
and ProTDB as our main example of a concrete p-document model (Section 2.1). Next, we talk
about querying probabilistic documents in general, and within ProTDB in particular (Section 2.2).
We then review and discuss additional models (Section 2.3) and additional problems of interest
(Section 2.4). Finally, we discuss practical aspects of probabilistic XML systems (Section 2.5) and
conclude (Section 2.6).

As a complement to this chapter, we maintain an updated list of resources (especially, a hyperlinked
bibliography) pertaining to probabilistic XML, online at http://www.probabilistic-xml.org/.

2.1 Probabilistic XML

In this section, we describe the formal setting of this chapter, and in particular give the formal
definitions of our basic concepts: an (ordinary) XML document, a probabilistic XML space, and
the p-document representation of probabilistic XML.

2.1.1 XML Documents

We assume an infinite set X of labels, where a label in X can represent an XML tag, an XML attribute,
a textual value embedded within an XML element, or the value of an attribute. The assumption
that X is infinite is done for the sake of complexity analysis. An XML document (or just document
for short) is a (finite) directed and ordered tree, where each node has a label from X. The label of a
document node v is denoted by label(v). We denote by Dy, the (infinite) set of all documents.

As an example, the bottom part of Figure 2.1 shows a document 4. In this figure, as well as in
other figures, labels that represent textual values (e.g., “car financing”) are written in italic font, as
opposed to labels that represent tags (e.g., “title”), which are written in normal font. Note that
the direction of edges is not explicitly specified, and is assumed to be downward. Similarly, order
among siblings is assumed to be left-to-right.


http://www.probabilistic-xml.org/
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2.1.2 px-Spaces

A probabilistic XML space, abbreviated px-space, is a probability space over documents. Although
we will briefly discuss continuous px-spaces (Section 2.3.5), our focus is mainly on discrete px-spaces.
So, unless stated otherwise, we will implicitly assume that a px-space is discrete. Specifically, we
view a px-space as a pair = (D, p), where D is a finite or countably infinite set of documents,
and p : D — [0,1] is a probability function satistying > ;. p(d) = 1. The support of a px-space
X =(D,p) is the set of documents & € D, such that p(d) > 0. We say that the px-space X is finite
if Z has a finite support; otherwise, X' is infinite.

When there is no risk of ambiguity, we may abuse our notation and identify a px-space Z by the
random variable that gets a document chosen according to the distribution of &'. So, for example,
if  =(D,p) and d is a document, then Pr(Z" = d) (in words, the probability that X is equal ro d)
is p(d) if d € D, and 0 otherwise.

2.1.3 p-Documents

A px-space is encoded by means of a compact representation. Later in this chapter, we will discuss
the plethora of representation models proposed and studied in the literature. The basic notion
underlying most of those models is that of a p-document (Kimelfeld and Sagiv 2007; Abiteboul,
Kimelfeld, Sagiv, and Senellart 2009).

W Contributions

This formal model was introduced in (Kimelfeld and Sagiv 2007). In (Abiteboul, Kimelfeld,
Sagiv, and Senellart 2009), we have built on this to present a comprehensive view of existing
probabilistic XML models, and of their respective expressiveness and compactness, leveraging
results of (Kimelfeld and Sagiv 2007; Senellart and Abiteboul 2007).

Formally, a p-document is a tree & that is similar to an XML document, except that & has
a distinguished set of distributional nodes in addition to the ordinary nodes (that have labels from
). The ordinary nodes of & may belong to documents in the encoded px-space. Distributional
nodes, on the other hand, are used only for defining the probabilistic process that generates random
documents (but they do not actually occur in those documents). As an example, Figure 2.1 shows a
p-document &, where the distributional nodes are the ones represented by boxes with rounded
corners (and denoted by v;, v,, and so on). The words ind and mux inside those boxes will be
discussed later. Each distributional node specifies a probability distribution over subsets of its
children; later on, we will define several #ypes of distributional nodes (like ind and mux), where each
type defines the way these distributions are encoded. In the probabilistic process that generates a
random document, a distributional node randomly chooses a subset of its children according to
the distribution specified for that node. The root and leaves of a p-document are required to be
ordinary nodes.

Next, we describe the px-space (D, p) defined by a p-document & by specifying a sampling
process that generates a random document. Note that such a process well defines the px-space (D, p)
as follows: D consists of all the documents that can be produced in this process, and p() (where
d € D) is the probability that & is obtained in this process.

The random document is generated by the p-document &2 in two steps. First, each distributional
node of & randomly chooses a subset of its children. Note that the choices of different nodes are
not necessarily probabilistically independent. All the unchosen children and their descendants (even
descendants that have been chosen by their own parents) are deleted. The second step removes all
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Figure 2.1: A p-document & in PrxmLtind:mux} (top) and a sample document & of & (bottom)

the distributional nodes. If an ordinary node # remains, but its parent is removed, then the new
parent of « is the lowest ordinary node » of 22, such that v is a proper ancestor of #. Note that two
different applications of the first step may result in the same random document generated (and for
further discussion on that, see (Kimelfeld and Sagiv 2007)).

A Concrete Model: ProTDB

We now construct a concrete model of p-documents, namely, the ProTDB model (Nierman and
Jagadish 2002). For that, we define two types of distributional nodes. Recall that when defining a
type of distributional nodes, we need to specify the encoding and meaning of the random process
in which a distributional node of that type selects children. In Section 2.3, we will define additional
types of distributional nodes (hence, additional concrete models).

A ProTDB document has two types of distributional nodes.

* ind: A distributional node v of type ind specifies for each child w, the probability of choosing w.
This choice is independent of the other choices of children, of either v or other distributional
nodes in the p-document.

* mux: A distributional node v of type mux chooses at most one child w (that is, different
children are mutually exclusive, hence the name mux) with a specified probability for w. We
require the sum of probabilities along the children of » to be at most 1; the complement of
this sum of probabilities is the probability that » chooses none of its children.

Example 1. 7he top part of Figure 2.1 shows a ProTDB p-document 2. The type of each distributional
node is written in the corresponding box. For instance, node v, is a distributional node of type mux;
as shown by the numbers on its outgoing edges, v, chooses its left child and right child with probability
0.1 and 0.9, respectively. Note that the mux node v, chooses none of its children with probability 0.1
(=1-0.4—0.5). Finally, observe that the ind node vy makes independent choices about its two children;
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Jfor example, it chooses just the left child with probability 0.8 x (1 —0.4), both children with probability
0.8 x 0.4, and no children at all with probability (1 —0.8) x (1 —0.4).

In the bottom, Figure 2.1 shows a sample document d of 2. Let us now compute the probability of
d. For d to be produced, the following independent events should take place:

* v, chooses its right child. This event occurs with probability 0.9.
* v, chooses its left child. This event occurs with probability 0.5.
* v chooses both of its children. This event occurs with probability 0.8 x 0.4 = 0.32.
* vy chooses its right child. This event occurs with probability 0.5.
Hence, the probability of d is given by
Pr(# =d)=0.9x0.5x%x0.32%0.5=0.072.

We follow the conventional notation (Abiteboul, Kimelfeld, Sagiv, and Senellart 2009) that, given
k types type,, type,, ..., type,, of distributional nodes (such as ind, mux, and the types that we define
among type;, type,, ..., type,. Hence, under this notation ProTDB is the model PrxmL{indmux}
(and for the p-document 2 of Figure 2.1 we have 2 € PiXMLINS™X}) - Observe that PrxmLindmuxt
strictly contains PrxmLUnd | pexmLIMd and PrxMLE (which is the set Dy, of ordinary documents).

2.2 Query Evaluation

In this section, we discuss a central aspect in the management of probabilistic XML—query
evaluation. In general, a query Q maps a document 4 to a value Q(d) in some domain dom,,; that
is, a query is a function Q : Dy, — dom,. As an example, in the case of a Boolean query, domy is
the set {true, false}; in that case we may write 4 |= Q instead of Q(d) = true (and & [~ Q instead
of Q(d) = false). In the case of an aggregate query, dom,, is usually the set Q of rational numbers.
Later on, we discuss additional types of queries.

A px-space 2" and a query Q naturally define a probability distribution over dom,, where the
probability of a value a € dom,, is given by Pr(Q(Z’) = 2). We usually follow the conventional
semantics (Dalvi and Suciu 2007a) that, when evaluating Q over &', the output represents that
distribution. For example, if Q is a Boolean query, then the goal is to compute the number

Pr(2 Q).

2.2.1 Query Languages

We now describe the languages of queries that capture the focus of this chapter: tree-pattern queries,
monadic second-order queries, and aggregate queries.

Tree-Pattern Queries

Tree-pattern queries (a.k.a. rwig queries (Bruno, Koudas, and Srivastava 2002; Amer-Yahia, Cho,
Lakshmanan, and Srivastava 2001)), or just tree patterns for short, correspond to the navigational
fragment of XPath restricted to child and descendant edges. Specifically, a tree pattern is a Boolean
query that is represented by a tree ¢ with child and descendant edges. In our figures, child and
descendant edges are depicted by single and double lines, respectively. Each node of the tree # is
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Figure 2.2: Tree patterns

labeled with either a label of X or with the special wildcard symbol x (and we assume that x ¢ X).
A match of a tree pattern ¢ in a document d is a mapping u from the nodes of 7 to those of 4,
such that ¢ maps root to root, child edges to edges, and descendant edges to paths (with at least
one edge); furthermore, u preserves labels of ¥, that is, for a node v of ¢, if label(v) ;é * then
label(v) = label(u(v)). Note that a tree pattern ignores the order among siblings in a document.
(Queries that take sibling order into account will be discussed in the next section.)

Example 2. Four tree patterns, t,,. .., t;, are shown in Figure 2.2. Child and descendant edges are rep-
resented by single and double lines, respectively. As in documents (and p-documents), edges are implicitly
directed top down. As specific examples, let us consider the patterns t, and t;. The pattern t, says that
some message in the document has a topic descendant (where this topic can be that of the message or of
a descendant message) with a child finance. The pattern t4 is the same, except that it also requires the
message to have a time child, and the time child to have a child (any child, as indicated by x) of its own.

Tree patterns are often used not just as Boolean queries, but also as queries that produce tuples of
nodes (or tuples of labels). Informally speaking, these tuples are obtained by projecting the matches
to a selected sequence of nodes of the tree pattern. For the sake of simplicity, here we restrict the
discussion to the Boolean case. It is important to note, though, that under the standard notion of
query evaluation for such queries’ (Dalvi and Suciu 2007a), evaluating a non-Boolean tree pattern
reduces in polynomial time to evaluating a Boolean one (Kimelfeld, Kosharovsky, and Sagiv 2009).

Monadic Second-Order Tree Logic (MSO)

A language that is far more expressive than tree patterns is that of Monadic Second-Order tree logic
(MSO). A query in MSO is a Boolean formula over the document nodes. The vocabulary includes
two binary relations over nodes x and y: “x is the parent of y,” denoted E(x,y), and “x is a following
sibling of y,” denoted y < x. For each label A € %, the vocabulary includes also the unary relation
“A is the label of x,” denoted A(x). The formula is in first-order logic, extended with quantification
over set variables. This quantification allows, among other things, to express conditions on the set of
all ancestors or descendants of a node, or on that of all nodes following a given node in document
order. For a more formal definition the reader is referred to the vast literature on MSO for trees
(e.g., Neven and Schwentick (Neven and Schwentick 2002)).

Example 3. For illustration, the following MSO query says that there is a message with two descendants

"Under this notion, the output consists of every possible result tuple 7 and its marginal probability Pr(Z € Q(X)).

II
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that are consecutive sibling messages on the topic finance.

3x, 1, 7, [ message(x) N message(y, ) N\ message(y, )
A descendant(x, y,) \ descendant(x,y,) N next-sibling(y,,y,)

A finance-topic(y, ) N finance-topic(y, )]
In the formula above, descendant(x,y) is phrased in MSO as follows.

YS[S(x) A VZDZZ(S(ZI) NE(z,2)) = S(2,)) = S()]

Similarly, next-sibling(y, ,y,) is given by y, < y, A—=3z[y, <z <y,]. Finally, finance-ropic(y) is phrased
in MSO as follows.
dz, w[E(y,2) N E(z,w) A topic(z) A finance(w)]

MSO queries are closely related to the notion of a (bottom-up) nondeterministic tree automaton
(NTA). Specifically, every MSO query can be translated into an NTA, such that the documents that
satisfy the MSO query are precisely those that are accepted by the NTA; conversely, every NTA can
be similarly translated into an MSO query (Neven and Schwentick 2002; Doner 1970; Thatcher
and Wright 1968).

Join Queries

Both tree patterns and MSO queries can be extended by adding value joins that test whether two
nodes (for tree patterns), or two first-order variables (for MSO), have the same label. Value joins
are fairly commonly used in XPath?; for instance, they allow us to dereference identifiers used as
foreign keys.

Example 4. 7he following query in MSO extended with the same-label predicate tests whether two
messages that are descendant of each other have the same topic:

dxy, %9, %3, 91, 90503 [ message(x; ) N message(y, ) N descendant(x,,y,)
N E(x),%,) A topic(x,) N E(xy,x3)
NE(y1,02) N topic(y;) N E(y3,3)
A same-label(x5,y3)]

Aggregate Queries

In this chapter, an aggregate function is a function & that takes as input a set V' of document nodes,
and returns as output a numerical (rational) number a(V') € Q. Some of the aggregate functions we
consider, like sum, need to assume that the label of a node is a number; to accommodate that, we fix
a function num over the document nodes, such that num(») = label(v) if label(») is a number, and
otherwise, we arbitrarily determine num(v) = 0. Specifically, we will discuss the following aggregate
functions.

« Count: count(V)Z V.

« Count distinct: countd(V) = |{label() | » € V}|; that is, countd(V/) is the number of distinct
labels that occur in V, regardless of the multiplicity of these labels.

*The first version of the XPath language only supports a limited form of value joins, but this restriction is lifted in the
latest version.
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e Sum: sum(V) = D ey hum(v).

* Average: avg(V) = sum(V)/|V]; if V is empty, then avg(V') is undefined.
* Min/max: min(V) = min, ¢y, num(v), max(V) = max, ¢y, num(v).

An aggregate query applies an aggregate function to the set of nodes that is selected by another
query (of a different type). Specifically, here we consider aggregate queries that we write as @ o t[w],
where a is an aggregate function, # is a tree pattern, and w is a node of z. The evaluation of @ o #[w]
over a document 4 results in the number a(V'), where V' is the set of nodes v of 4, such that there
exists a match u of ¢ in & with u(w) = v; that is:

aot[w](d) = a({v| 4(w) = v for some match u of z in 4})

Example 5. Consider the tree pattern t, of Figure 2.2, and let w be the wildcard (denoted ) node.
When applied to the document d of Figure 2.1, the query counto t,[w] returns 3, which is the number
of nodes with a “topic” parent. In contrast, countdot,[w](d) is 2, which is the number of distinct ropics
(i.e., distinct labels of nodes with a “topic” parent) in d.

As another example, consider the tree pattern ty of Figure 2.2 and, again, let w be the wildcard node.
The query min o t;[w] returns the earliest time of a message that has a descendant message on the ropic
finance; hence, mino t,[w](d) = “18526".

2.2.2 Complexity for ProTDB

Nierman and Jagadish (2002) studied the evaluation of (non-Boolean) tree patterns without projec-
tion, and showed computability in polynomial time. Although projection leads to hardness in the
relational probabilistic model (Dalvi and Suciu 2007a), Kimelfeld, Kosharovsky, and Sagiv (2009)
showed that tree patterns with projection, and in particular Boolean tree patterns, can be evaluated
in polynomial time in ProTDB (Kimelfeld, Kosharovsky, and Sagiv 2009). Cohen, Kimelfeld, and
Sagiv (2009b) extended this result to MSO queries. The main reason behind this tractability is that
it is possible to evaluate queries directly over a ProTDB tree in a bottom-up manner, making use of
the locality of both the p-document and the query. This can be done using dynamic programming
for tree patterns (Kimelfeld and Sagiv 2007), and through the computation of a product automaton
of the query and the p-document in the MSO case (Benedikt, Kharlamov, Olteanu, and Senellart
2010).

/" Contributions

We observe in (Benedikt, Kharlamov, Olteanu, and Senellart 2010) that ProTDB p-documents,
and extensions thereof, are simple cases of probabilistic tree automata, that can be combined
with the tree automaton of a query to compute the probability of this query.

Theorem 6 (Cohen, Kimelfeld, and Sagiv 2009b). Ler Q be an MSO query (e.g., a tree pattern).
The problem “compute Pr(P |= Q) given P € PrXMLIN™X i iy polynomial time.

Observe that Theorem 6 is phrased in terms of data complexity (Vardi 1982), which means that the
query is held fixed. As mentioned in (Kimelfeld, Kosharovsky, and Sagiv 2009), the evaluation of tree
patterns becomes intractable if the query is given as part of the input. Actually, it was shown (Cohen,
Kimelfeld, and Sagiv 2009b; Kimelfeld, Kosharovsky, and Sagiv 2009) that over ProTDB the
evaluation of tree patterns, and even MSO queries, is fixed-parameter tractable (abbr. FPT) (Downey
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and Fellows 1999), which means that only the coeflicients (rather than the degree) of the polynomial
depend on the query? (hence, FPT is stronger than “polynomial data complexity”). Nevertheless,
while for tree patterns this dependence is “merely” exponential, for general MSO queries this
dependence is not any elementary function (unless P = NP), since that is already the case when the
p-document is ordinary (deterministic) (Meyer 1975; Frick and Grohe 2004).

Tractability (in terms of data complexity) is lost when tree patterns are extended with (value)
joins (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2010). This is not surprising, for the
following reason. Tree patterns with joins over trees can simulate Conjunctive Queries (CQs)
over relations. Moreover, tree patterns with joins over PIXMLUI"} can simulate CQs over “tuple-
independent” probabilistic relations (Dalvi and Suciu 2007a). But the evaluation of CQs over
tuple-independent probabilistic databases can be intractable even for very simple (and small)
CQs (Dalvi and Suciu 2007a). Interestingly, it has been shown that adding any (single) join to
any tree pattern results in a query that is intractable, unless that query is equivalent to a join-free
pattern (Kharlamov, Nutt, and Senellart 2011).

W Contributions

In our works on probabilistic XML, we have payed special attention to join queries, that are
often used in practice. The hardness of queries with joins is a simple observation (Abiteboul,
Chan, Kharlamov, Nutt, and Senellart 2010), as already noted, but the interesting part of the
following theorem is the dichotomy, obtained in (Kharlamov, Nutt, and Senellart 2011), of
a much simpler nature than in the relational case (Dalvi and Suciu 2007b). However, the
dichotomy result is only known for queries with single joins at the moment, extension to

queries with arbitrarily many joins is open.

Theorem 7 (Kharlamov, Nutt, and Senellart 2011). If Q is a tree pattern with a single join predicate,
then one of the following holds.

1. Q is equivalent to a tree pattern (hence, can be evaluated in polynomial time).
2. The problem “compute Pr(P |= Q) given P € PXMLINS™XE > i 4D fay

Recall that #P is the class of functions that count the number of accepting paths of the input of
an NP machine (Valiant 1979); this class is highly intractable, since using an oracle to a #P-hard
function one can solve in polynomial time every problem in the polynomial hierarchy (Toda and
Ogiwara 1992).

Next, we discuss aggregate queries. Cohen, Kimelfeld, and Sagiv (2009a) showed that for the
aggregate functions count, min, and max, the evaluation of the corresponding aggregate queries is in
polynomial time for PrXMLIM™} (That result of Cohen, Kimelfeld, and Sagiv (2009a) is actually
for a significantly broader class of queries, which they refer to as “constraints.”) Note that, for these
specific functions, the number of possible results (numbers) ¢ is polynomial in the size of the input
p-documents; hence the evaluation of an aggregate query Q reduces (in polynomial time) to the

evaluation of Pr(Q(2?) =¢).

Theorem 8 (Cohen, Kimelfeld, and Sagiv 2009a). Ler Q be the aggregate query a o t{w]. If a is
either count, min or max, then the problem ‘compute Pr(Q(P) = q) given P & PrxMLINS™X 4,4
q € Q7 is in polynomial time.

3For a formal definition of FPT the reader is referred to Flum and Grohe’s book (Flum and Grohe 2006).
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Figure 2.3: A continuous p-document 2’ in PrXMLI“®} with Pr(e;) = 0.1, Pr(e,) = 0.5, Pr(e;) =
0.8, Pr(€4) = 04

Note that an immediate consequence of Theorem 8 is that we can evaluate, in polynomial time,
Boolean queries like counto z[w] > ¢ (i.e., where equality is replaced with a different comparison
operator). Unfortunately, this result does not extend to the aggregate functions countd, sum and
avg.

Contributions

We have obtained in (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2010) a comprehensive
characterization of the complexity of aggregate queries over ProTDB (and more complex
models), building on the work of (Cohen, Kimelfeld, and Sagiv 2009a).

Theorem 9 (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2010; Cohen, Kimelfeld, and
Sagiv 2009a). For each & among countd, sum and avg there is an aggregate query Q = a o t{w], such
that the problem “determine whether Pr(Q(P) = q) > 0 given P & PrXMLIN™X 454 5 € Q” is
NP-complete.

A particularly interesting fact that is shown by Theorems 8 and 9 is that there is an inherent
difference between the complexity of count and countd when it comes to query evaluation over
PrxMLtind:muxt,

2.3 Additional p-Documents and Extensions

We now discuss additional representation systems for probabilistic XML. Some of these systems are
p-document models with additional kinds of distributional nodes, and other systems are extensions
of the p-document concept. We discuss the expressive power of these representation systems, and
the complexity of query answering.

2.3.1 Long-distance dependencies

The mux and ind distributional nodes encode /oca/ dependencies between nodes, in the sense that
the presence of a node in the document depends just on the presence of its parent and (in the case
of mux) its siblings. However, it is often desired to represent long-distance dependencies to capture
correlations among nodes of arbitrary locations in the document tree. Towards that, we introduce
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new kinds of distributional nodes. Assume a finite set {, ...e,} of independent Boolean random
variables (called Boolean events), and a probability Pr(¢;) for each of these ¢;. We define two new
kinds of distributional nodes:

* cie (Abiteboul and Senellart 2006; Abiteboul, Kimelfeld, Sagiv, and Senellart 2009): A
distributional node v of type cie specifies for each child w of v a conjunction of independent
events e, or their negation —e, (e.g., &, A —es A gg).

Contributions

(Abiteboul and Senellart 2006) was our first work on probabilistic XML. We compared
this model to a simple one, based on ind nodes, highlighting the expressiveness and
compactness of the former. This was inspired by the use of c-tables (Imielinski and
Lipski 1984) for representing incomplete data, probabilistic versions of which were
independently proposed by Green and Tannen (2006).

¢ fie (Kharlamov, Nutt, and Senellart 2010): A distributional node v of type fie specifies for
each child w of v an arbitrary propositional formula on the ¢;s (e.g., e, V (5 A —e;)).

Contributions

We have introduced this model in (Kharlamov, Nutt, and Senellart 2010) to obtain
a fully tractable model for updates, at the cost of query efhiciency. The full power of
propositional formulas as annotations of nodes is needed for some applications, such
as uncertain version control (Ba, Abdessalem, and Senellart 2011).

Recall from Section 2.1 that, to define the semantics of a type of distributional node, we need to
specify how a random subset of children is chosen by a node of that type. For cie and fie, the speci-
fication is as follows. At the beginning of the process, we draw a random truth assignment 7 to the
events ¢y,...,e,, independently of one another and according to the probabilities Pr(e, ), ..., Pr(e,).
Then, each distributional node selects the children that are annotated by a formula that evaluates to
true under 7. (We then proceed to the second step, as described in Section 2.1.)

Example 10. An example p-document ' of XML is shown in Figure 2.3. Disregard for now
the leaf nodes under “time” nodes (these nodes contain continuous distributions thar will be discussed
in Section 2.3.5). The p-document P’ is somewhat similar to P of Figure 2.1: there is uncertainty
in the title of the first message, in its topic, and in the existence of the two follow-up messages, which
are independent of each other. However, there is also a_fundamental difference. The topic of the first
Jollow-up is correlated with that of the original message: either both are set to “automotive” or both are
set to “finance.” This reflects what a topic extraction system might do, if it has a global view of the whole
discussion.

We now look at the relative expressiveness and succinctness of p-documents defined with ind,
mux, cie, and fie distributional nodes. In terms of expressiveness, PrxMLindmux} pexp tciel and
PrxML!f} are all able to represent all finite probability distributions over documents and are therefore
equivalent (Abiteboul, Kimelfeld, Sagiv, and Senellart 2009) (as already noted, this is not the case
for PrxmLINd} prxmLimud and, obviously, PrxMLY). However, in terms of succinctness the picture
is different: while there is a polynomial-time transformation of a PIXMLIN™™X} p_document into an
equivalent PrXMLI®} p-document, the converse is not true (Kimelfeld, Kosharovsky, and Sagiv 2008).
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Similarly, PrXMLI®} is a subset of PrXML{} | but a transformation from PrxML{e} into PrxmLice}
entails an inevitable exponential blowup (Kharlamov, Nutt, and Senellart 2010).

The families PrXMLIY® and (a fortiori) PrxMLIfe} are thus exponentially more succinct than
ProTDB. However, this succinctness comes at a cost: query evaluation is now intractable. More
precisely, every (Boolean) tree-pattern query is #P-hard over PrXMLIY} (and PrxMLI}), except for
some trivial cases (Kimelfeld, Kosharovsky, and Sagiv 2008; Kimelfeld, Kosharovsky, and Sagiv
2009). The situation in PrXMLI®} is essentially the same as that in PrxMLI}, although a few specific
types of queries are tractable over PrXML{9®} and yet intractable over PrXMLfe}: projection-free tree
patterns with joins (Senellart and Abiteboul 2007), and expected values for some types of aggregate
queries (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2010, 2011).

(gf Contributions

Intractability of PrxMLIfe} is a simple consequence (Kharlamov, Nutt, and Senellart 2010)
of the results of (Toda and Ogiwara 1992). Tractable subcases for PrXMLIY®} are of special
interest. In (Senellart and Abiteboul 2007), we have showed tractability of an even larger query
languages, locally monotone queries, when projections are forbidden. In other terms, this just
means that collecting the provenance (Green, Karvounarakis, and Tannen 2007) of a query is
easy, evaluating it is hard. Expected values of simple aggregate queries are tractable (Abiteboul,
Chan, Kharlamov, Nutt, and Senellart 2010, 2011) because two sum operators (or one sum
and one integral) commute.

The intractability of querying p-documents with long-distance dependencies discussed above
concerns the computation of the exact probability of a query. It makes sense to look also at approxi-
mation algorithms (Kimelfeld, Kosharovsky, and Sagiv 2009). The simplest way to approximate
query probability is by Monte-Carlo sampling: pick a random document, evaluate the query, and
iterate. The approximated probability will then be the ratio of draws for which the probability
evaluated to true. This approach yields a polynomial-time algorithm for obtaining an additive ap-
proximation of the query probability; that is, a number that is guaranteed, with high confidence, to
be in the interval [p—¢;p+¢] around the exact probability p. Using other means (Karp, Luby, and
Madras 1989), in the case of tree patterns over PrXMLI! it is also possible to obtain a (polynomial-
time) multiplicative approximation (i.e., a number in the interval [(1 —¢)p, (14 ¢)p]) (Kimelfeld,
Kosharovsky, and Sagiv 2009).

2.3.2 Conditional models

As mentioned earlier, a central drawback in the ProTDB model (i.e., PrXMLINd™u) and some
other models proposed in the literature (e.g., (Hung, Getoor, and Subrahmanian 2003)) is the
assumption of probabilistic independence among probabilistic choices; in turn, this assumption
is the key reason for the tractability of query evaluation (Kimelfeld and Sagiv 2007). However,
even simple additional information about the database may give rise to intricate correlations. As
a simple example, consider again the p-document in Figure 1. Even if we do not know the exact
structure of the messages (hence, we use probabilistic rather than deterministic XML), it is likely
that we know the total number of messages, and precisely (with no uncertainty involved). This new
detail introduces dependency among the children of 3, since now a random world cannot have too
many (or too few) messages altogether. A more intricate statement can be the fact that at least 90%
of the messages with the topic automotive have one or more automotive follow-ups; note that this
statement implies correlation between the distributional nodes », and v;.

To incorporate such additional information, Cohen, Kimelfeld, and Sagiv (2009a) suggested
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to specify comstraints in addition to the p-document. They presented a language for specifying
constrains that may involve aggregate functions (e.g., “the total number of messages is 392,” and “at
least 80% of the messages have follow-ups”).* Formally, a Probabilistic XML Database (PXDB) is a
pair (2,6 ), where & is a p-document and % is a set of constrainss. The px-space that is defined
by a PXDB (£, 6) is the sub-space of & conditioned on the satisfaction of each constraint of
%6 (in other words, we restrict the px-space to the possible worlds that satisfy 6, and normalize
the probabilities). Cohen et al. gave polynomial-time algorithms for various central tasks, such as
sampling and querying, where their queries are tree patterns with some aggregate functions (that
include count, and min/max).’ Similar tractability results have been shown for the case where both
constraints and queries are phrased in MSO (Cohen, Kimelfeld, and Sagiv 2009b).

2.3.3 Recursive Markov chains

In principle, p-documents provide means of representing arbitrary finite px-spaces. Some applica-
tions, however, require the ability to represent infinite sets of possible worlds. Consider again the
example document of Figure 2.1; all such documents describing email discussions conform to the
following schema, given as a DTD:

discussion: (messagex)
message: (title, time, topic?, follow-ups?)
follow-ups: (messagex)

There are infinitely many documents conforming to this DTD, of arbitrarily large depth and
width. In order to represent a discussion in which the number of messages and the structure of
the discussion itself is fully uncertain, we need to be able to model, in a concise manner, infinite
px-spaces.

The formalism of recursive Markov chains (Etessami and Yannakakis 2009) is used for describing
recursive probabilistic processes. Alternatives are described using a Markov chain, where each node
in the chain can be a call to another (or the same) chain. This formalism naturally lends itself to
the representation of potentially infinite px-spaces, as shown by Benedikt, Kharlamov, Olteanu,
and Senellart (2010). That work studies the tractability of MSO queries over px-spaces represented
by recursive Markov chains (and restrictions thereof). In particular, recursive Markov chains that
are hierarchical (i.e., when there are no cycles in the call graph) are tractable if we assume that all
arithmetic operations have unit cost.® Hierarchical Markov chains can be seen as a generalization of
p-documents defined with directed acyclic graphs instead of trees, a model introduced in (Cohen,
Kimelfeld, and Sagiv 2009b; Benedikt, Kharlamov, Olteanu, and Senellart 2010). If we further
restrict recursive Markov chains so that no Markov chain is called at two different positions (they
are thus tree-like), we obtain a fully tractable model that generalizes PrXMLI™*nd} (and even more
succinct models, e.g., PrXML &P} (Kimelfeld, Kosharovsky, and Sagiv 2008)).

4For the precise specification of this language, see (Cohen, Kimelfeld, and Sagiv 2009a).

5This language allows for nesting of queries, and the reader is referred to (Cohen, Kimelfeld, and Sagiv 2009a) for the
exact details.

*Without this assumption, we lose tractability because the exact probability of a query may require exponentially
many bits in the size of the representation.
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Contributions

In (Benedikt, Kharlamov, Olteanu, and Senellart 2010) we have shown how to describe
infinite sets of possible worlds, and explained which tractability results carried over to these
infinite models. Tree automata techniques, as well as the results of (Etessami and Yannakakis
2009), were used to show tractability of MSO over subclasses of recursive Markov chains.

2.3.4 SCFGs

A Context-Free Grammar (CFG) specifies a process of producing parse trees for strings in a non-
deterministic manner; indeed, a specific string may have multiple (even infinitely many) parse
trees, since multiple production rules can be specified for a nonterminal. A stochastic (or proba-
bilistic) Context-Free Grammar (SCFG) is similar to a CFG, except that the rules are augmented
with probabilities; that is, the production of a nonterminal becomes a probabilistic, rather than a
nondeterministic, process.

When given a string, an SCFG implies a probability space over the possible parse trees of the
string (where the probability of a parse tree corresponds to the confidence of the SCFG in that
tree). Since this space comprises of labeled trees, we can view it as a (possibly infinite) px-space,
on which we can evaluate XML queries (e.g., “find each noun phrase that forms an object for the
verb Jikes”). Cohen and Kimelfeld (Cohen and Kimelfeld 2010) studied the problem of evaluating
a tree-pattern query over the px-space that is represented by an SCFG and a string. In particular,
they showed that this task is tractable for the class of weakly linear SCFGs (that generalizes popular
normal forms like linear SCFGs, and Chomsky or Greibach normal forms). It follows from known
results (Etessami and Yannakakis 2009) that, in the general case, query probabilities do not have a
polynomial-size bit representation, and can even be irrational.

2.3.5 Continuous distributions

So far, all probabilistic XML models we have considered represent discrete probability distributions,
where the uncertainty is either in the structure of the document or in the choice of a value from
a finite collection of options. But some sources of uncertainty, such as the imprecision in sensor
measurements, are essentially continuous. So, following (Abiteboul, Chan, Kharlamov, Nutt, and
Senellart 2010, 2011) we introduce the possibility of labeling leaves of p-documents with not only
constant values, but continuous probability distributions of values (as usual, represented in some
compact manner). For example, we might say that a given leaf represents a uniform distribution
between two constants.

Example 11. Consider again the p-document P’ of Figure 2.3. Two of the ‘time” nodes have for leaf
a continuous distribution. The first one, U(18000,19000) represents a uniform distribution in the
interval [ 180005 19000], which is adapted to the case when nothing else is known about the timestamp,

perbaps because of a coarse granularity in the way the message metadata was displayed. The second
distribution, N(35400,100) is @ Gaussian centered around 35400 and with a standard deviation of
100. Such a timestamp might arise from a known imprecision in the date of the computer system that
produced the timestamp. One can check that the document d of Figure 2.1 is one of the possible worlds
represented by P’ (but of course, it has a zero probability due to the continuous distributions).

serve that we cannot use our current formalism of a px-space to define the semantics of a
Ob that t t fi 1 f to define th tics of
p-document with continuous values, since our px-space is discrete, and in particular, is defined by
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means of a probability of each possible world. Nevertheless, px-spaces can be properly extended to
a continuous version by constructing a o-algebra of sets of possible worlds, and define a probability
measure over this o-algebra, as done by Abiteboul, Chan, Kharlamov, Nutt, and Senellart (2011).
When this is done, we can investigate the complexity of query evaluation, as usual. Tree patterns are
not of much interest in this case, because if a query node is matched against a node with continuous
distribution, the probability of this match is usually zero. But of course, aggregate queries make
sense. As shown by Abiteboul, Chan, Kharlamov, Nutt, and Senellart (2011), the tractability of
aggregate queries with functions such as count, min, or max extends from (discrete) ProTDB to
the continuous case, as long as the class of probability distributions present in the p-document
can be efficiently convoluted, summed, integrated, and multiplied. This is for instance the case of
distributions defined by piecewise polynomials, a generalization of uniform distributions.

W Contributions

One of the motivations of (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2010, 2011)
was to provide a formal semantics for continuous probabilistic (tree) models and for querying
them. The fact that they essentially do not introduce any complexity outside of the need
of (symbolically or numerically) evaluating basic operations on continuous distributions,
basically means that all existing query evaluation techniques can be used. Tractability critically
relies on the independence of these distributions; it is not trivial to extend the model to
capture dependent distributions, e.g., those obtained by updating the tree using, basic update
operations that rely on locator queries (see next).

2.4 Other Problems of Interest

In the previous sections, we discussed the task of query evaluation over different models of proba-
bilistic XML. Here, we discuss additional tasks. Specifically, we address updating and typing, which
are classical XML operations. We also discuss compression (the problem of finding a representation
of a smaller size), and top-k querying (retrieving the most probable answers to a tree-pattern or a
keyword-search query). Finally, we briefly list additional tasks that are mostly left as future research.

2.4.1 Updates
In update languages like XUpdate or the XQuery Update Facility, the specification of update oper-

ations entails locator queries that indicate, as XPath or XQuery expressions, the locations where
data are to be inserted, modified, or deleted. An elementary probabilistic update operation can
thus be defined as consisting of a locator query, a specification of the operation to be performed at
matched locations (e.g., a tree to be inserted), and a probability that the update should be performed
(provided that the locator query matches). Such an operation has been studied by Abiteboul,
Kimelfeld, Sagiv, and Senellart (2009). The semantics of updates is defined as for queries: the result
of an update on a probabilistic database should be a representation of a probabilistic space obtained
from the original probabilistic space by applying the update on every possible world. Again, we
want to avoid the exponential enumeration of possible worlds and perform the update directly on
the original probabilistic document. Updates are of particular interest since they can be seen as a
fundamental mechanism for constructing a probabilistic XML document: a sequence of uncertain
update operations applied to a deterministic XML document (Abdessalem, Ba, and Senellart 2011).

Limiting our study to ProTDB and models with long-distance dependencies, we observe the
following tradeoff on update tractability (Kharlamov, Nutt, and Senellart 2010), in terms of data
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complexity:

* The result of an update operation is computable in polynomial time over ProTDB for a
restricted set of non-branching tree pattern queries (specifically, those without descendant
edges or those whose locator query returns the node at the bottom of the tree pattern).

* In general, computing the result of an update operation over ProTDB is intractable.

* The result of an update operation is computable in polynomial time over the family PrxmL{"e},
for updates defined by tree-pattern queries with joins.

The reason for the tractability of updates in PrxML"e} (while querying operations are hard) is that
updates do not entail computation of probabilities; we just manipulate event formulas without
computing their probabilities.

Updating probabilistic XML documents highlights the following issue in models different from
ProTDB and PrxMLI"}: the model may lack the property of being a strong representation sys-
tem (Imielinski and Lipski 1984) for the query language used in locator queries; this means that
it is impossible to represent the output of a query (or the result of an update based on this query
language) in the model. This is the case for ProTDB extended with continuous value distributions,
and the language of aggregate tree-pattern queries (or even tree-pattern queries with inequalities).
To be able to apply updates on such probabilistic models, the challenge is to define generalizations
of these models (and of the corresponding querying techniques) that are strong representation
systems.

W Contributions

As already noted, we have carried out extensive research on updating probabilistic XML
documents (Senellart and Abiteboul 2007; Abiteboul, Kimelfeld, Sagiv, and Senellart 2009;
Kharlamov, Nutt, and Senellart 2010) and on applications thereof (Abdessalem, Ba, and
Senellart 2011; Ba, Abdessalem, and Senellart 2011). This aspect, fundamental for many
applications (data warehousing, evolving p-documents, uncertain updates applied to deter-
ministic databases, etc.), has been neglected in many other works on probabilistic databases.
The best-studied probabilistic relational models, for instance, tuple-independent and block-
independent-disjoint databases (Dalvi and Suciu 2007a), are not strong representation systems
for simple conjunctive queries, due to their inability to represent complex correlations. In
contrast, ProTDB, a very simple probabilistic XML model, is a strong representation system
for arbitrary locally monotone queries (Abiteboul, Kimelfeld, Sagiv, and Senellart 2009).

2.4.2 Typing

Typing an XML document, that is, testing whether the document is valid against a schema defined
in some schema language (e.g., DTD), is another fundamental data-management problem in XML.
Similarly to Boolean querying, typing a probabilistic XML document should return a probability,
namely, the probability that a random document is valid. As shown by Cohen, Kimelfeld, and Sagiv
(2009b), when the schema can be defined by a deterministic bottom-up tree automaton (which is
the case for DTDs, disregarding for now keys and foreign keys), computing the probability that a
ProTDB p-document is valid is in polynomial time in the size of both the p-document and the
schema. Essentially, this computation is done by running the automaton over the p-document,
maintaining on the way some data structures that allow us to compute the probability that a node
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has type g given the corresponding probabilities of its children. This result can be generalized in a
number of ways. First, tractability extends to computing the probability of a fixed query (say, a
tree pattern) in the probabilistic space that is restricted to only those worlds that are valid against
a schema (Cohen, Kimelfeld, and Sagiv 2009b). Second, the data model can be generalized to
recursive Markov chains, and we basically have tractability in the same classes of recursive Markov
chains where MSO query answering is tractable (Benedikt, Kharlamov, Olteanu, and Senellart
2010). Third, adding constraints (such as keys and foreign keys) renders typing intractable, though
it is still tractable to test whether the probability of being valid against a schema with constraints is
exactly one (Cohen, Kimelfeld, and Sagiv 2009b).

2.4.3 Compression

A fundamental advantage of using probabilistic XML models, such as ProTDB, is their potential
compactness in representing probabilistic spaces. Depending on the application, obtaining such a
compact model might not be straightforward. The direct translation of a set of possible worlds with
probabilities into a PrXMLI™>ind} document, for instance, simply enumerates all possible worlds as
children of a mux node and has the same size as the original space. The compression or simplification
problem (Keulen, Keijzer, and Alink 2005) is to obtain, given a probabilistic XML document,
another more compact document that defines the same px-space.

In ProTDB, a basic operation that can be used to simplify a p-document is to push distributional
nodes down the tree whenever possible, merging ordinary nodes in the process (Veldman, Keijzer,
and Keulen 2009). Another direction is to apply regular XML compression techniques (Buneman,
Grohe, and Koch 2003) to compress the probabilistic tree into a probabilistic DAG while retaining
querying tractability (assuming unit-cost arithmetics), as discussed in Section 2.3.3. Veldman,
Keijzer, and Keulen (2009) explored the combination of probabilistic XML simplification techniques
with ordinary XML compression, demonstrating gain in the size of the representation.

2.4.4 Top-k Queries

Chang, Yu, and Qin (2009) studied the problem of finding, in a probabilistic XML document,
the fop-k query answers, that is, the # answers with the highest probabilities (where 4 is a specified
natural number). Their model of probabilistic XML is ProTDB, and as queries they considered
projection-free path patterns. Another type of a top- query arises in keyword search. Information
retrieval by keyword search on probabilistic XML has been studied by Li, Liu, Zhou, and Wang
(2011). Specifically, they perform keyword search in the ProTDB model by adopting the notion of
Smallest Lower Common Ancestor (SLCA) (Xu and Papakonstantinou 2005), which defines when an
XML node constitutes an answer for a keyword-search query. More particularly, the problem they
explore is that of finding the # nodes with the highest probabilities of being SLCAs in a random

world.

2.4.5 Open Problems

We now discuss important open problems around management operations on probabilistic XML.
Despite the existence of techniques for compressing ProTDB documents (Veldman, Keijzer, and
Keulen 2009), we lack a good understanding on when compression is possible and whether it is
possible to obtain an optimal representation (with respect to compactness) of a px-space, in ProTDB
and other models. A fundamental problem related to this one concerns eguivalence of probabilistic
XML documents: decide whether two representations define the same px-space (Keulen, Keijzer,
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and Alink 2005). As shown in (Senellart 2007), this problem admits a randomized polynomial-time
decision procedure for PrXMLI} when p-documents are shallow. This gives some hope of obtaining,
in practice, a more systematic procedure for minimizing the size of a p-document. Nevertheless,
the exact complexities of the equivalence problem, of testing optimality, and of minimization itself,
remain open problems.

WV Contributions

Probabilistic XML was motivated in my PhD thesis (Senellart 2007) by data warehousing
applied to understanding the deep Web. Equivalence of p-documents is of critical importance
to reduce the size of the probabilistic database, that would otherwise grow (sometimes
unnecessarily) exponentially with the number of updates.

Compressing a discrete px-space into a compact p-document is somewhat akin to the problem of
XML schema inference from XML data (Bex, Neven, and Vansummeren 2007): in both cases, the
goal is to obtain a compact model of a set of documents. There are two differences, however. First,
an XML schema represents a set of XML documents, while a p-document represents a probabilistic
distribution thereof. Second, it is assumed that XML schema inference generalizes the observation
of the example documents and that some documents valid against the schema are not present in the
original collection, while compression preserves the px-space. Relaxing this last assumption leads to
the problem of probabilistic schema inference, that is, learning a probabilistic model, with potential
generalization, for a corpus of XML documents. A first work in this direction is by Abiteboul et
al. (Abiteboul, Amsterdamer, Deutch, Milo, and Senellart 2012), where the skeleton of the schema
is given, and probabilities are learned to optimize the likelihood of the corpus. Adapting XML
schema inference techniques to directly generate probabilistic models would allow us to generalize
any collection of XML documents as a probabilistic XML document.

The focus of most of the literature on probabilistic XML is on modeling and querying, while only
little exploration has been done on other aspects of probabilistic XML management. One of the
important aspects that deserve further exploration is that of mining, namely, discovering important
patterns and trends (e.g., frequent items, correlations, summaries of data values, etc.) in probabilistic
XML documents. Kharlamov and Senellart (Kharlamov and Senellart 2011) discuss how some
mining tasks can be answered using techniques of probabilistic XML querying. Nevertheless, it is
to be explored whether other techniques (e.g., based on ordinary frequent itemset discovery) can
provide more effective mining.

Contributions

The algorithms we provide in (Kharlamov and Senellart 2011) for mining tasks, though quite
naive, show that some mining problems over probabilistic XML models (say, ProTDB) are at
least tractable.

2.5 Practical Aspects

In this section, we discuss some practical aspects of probabilistic XML management. We first
consider system architecture and indexing, and then elaborate on practical challenges that remain
to be addressed towards developing a full-fledged database-management system for probabilistic
XML. To the best of our knowledge, up to now only prototypical systems have been developed.
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2.5.1 System Architecture

The first question is that of the general architecture of a probabilistic XML system: should it be (2)
built on top of a probabilistic relational database system, (4) based on a query-evaluation engine
for ordinary XML, or (¢) engineered from scratch to easily accommodate the existing algorithmic
approaches for probabilistic XML? We overview these three approaches, pointing to preliminary
work, and noting advantages and shortcomings of each.

Over a Probabilistic Relational Engine

Much effort has been put on building efficient systems for managing probabilistic relational data.
These systems include Trio (Widom 2005), MayBMS (Huang, Antova, Koch, and Olteanu 2009)
and its query evaluator SPROUT (Olteanu, Huang, and Koch 2009). In turn, these systems are
usually built on top of an ordinary relational database engine. Leveraging these efforts to the
probabilistic XML case makes sense, and basically amounts to encoding probabilistic XML data into
probabilistic tables, and tree-pattern queries into conjunctive queries. This direction is explored by
Hollander and van Keulen (Hollander and Keulen 2010) with Trio, where feasibility is demonstrated
for different kinds of XML-to-relation encodings. However, the relational queries that result from
those encodings are of a specific form (e.g., inequalities are used to encode descendant queries). It
turns out that typical relational optimizations are not always available for the resulting queries.

On top of an XML Query Engine

Alternatively, it is possible to rely on native XML database systems (such as eXist” or Mon-
etDB/XQuery®) to evaluate queries over probabilistic XML documents, delegating components
such as indexing of document structure and query optimization to the underlying XML database
engine. It requires either modifying the internals of the XML query evaluation engine to deal with
probabilities, or being able to rewrite queries over probabilistic XML documents as queries over
ordinary documents. The latter approach is demonstrated by Senellart and Souihli (2011); there,
tree-pattern queries with joins over p-documents of PrXMLI“®} are rewritten into XQuery queries
that retrieve each query match, along with a propositional formula that represents the probability
of the match. All XML processing is therefore handed out to the XQuery query engine, and the

problem is reduced to probability evaluation of propositional formulas.

Contributions

(Senellart and Souihli 2011) demonstrated the performance of approximation algorithms for
answering queries over probabilistic XML documents. In an extension still in progress, we
show that relying on an external XML query engine allows to obtain excellent efficiency in
probabilistic query evaluation and to focus on the hard part of the problem, evaluating the

probability of the lineage of a query.

Independent Implementation

The previous two architectures do not make use of the specificities of probabilistic XML, and
in particular, of the techniques that have been developed for querying probabilistic XML. An
alternative is thus to design a probabilistic XML system around one or more of these techniques

7http://exist.sourceforge.net/
®http://monetdb.project.cwi.nl/monetdb/XQuery/
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(e.g., bottom-up dynamic programming (Kimelfeld and Sagiv 2007)), and thereby utilize the known
algorithms at query time (Kimelfeld, Kosharovsky, and Sagiv 2008). The downside of this approach
is that these techniques are main-memory intensive. Furthermore, the implemented system is
typically applicable to only a limited probabilistic model?, and to a limited class of queries™.

2.5.2 Indexing

We now consider indexing as a mean of enhancing the efficiency of query evaluation over probabilistic
XML. When a probabilistic XML system is implemented on top of an XML database system, we
can rely on this system to properly index the tree structure and content. Still remains the issue of
providing efficient access to the probabilistic annotations.

The PEPX system (Li, Shao, and Chen 2006) proposes to index ProTDB documents in the
following manner: instead of storing with each child of a mux or ind node the probability of being
selected by its parent, store the marginal probability that the child exists. Coupled with indexing of
the tree structure, it allows much more efficient processing of simple queries, since a single access
suffices to retrieve the probability of a node, and accessing all ancestors of this node is not required.
This approach has also been taken by Li, Wang, Xin, Zhang, and Qiu (2009) who adapted the
TwigStack algorithm (Bruno, Koudas, and Srivastava 2002) to the evaluation of projection-free
patterns in a ProTDB document.

We believe probabilistic XML indexing can be leveraged beyond this, though. An interesting
direction would be to combine structure-based indexing with probability-based indexing. Such an
approach has the potential of enhancing the efficiency of finding the most probable answers (Chang,
Yu, and Qin 2009) or answers with a probability above a specified threshold (Kimelfeld and Sagiv
2007).

2.5.3 Remaining Challenges

We now highlight some of the challenges that remain towards implementing a full-fledged system
for managing probabilistic XML.

We first discuss the choice of method for query evaluation. Depending on the data model in
use, and depending on the query language, we have a variety of techniques, exact or approximate:
bottom-up algorithm in the absence of long-distance correlations (Kimelfeld and Sagiv 2007), naive
enumeration of all possible worlds, Monte-Carlo sampling, relative approximation (Kimelfeld,
Kosharovsky, and Sagiv 2008), and so on. Each of these has specific particularities in terms of the
range of query and data it can be applied to, its evaluation cost, and its approximation guarantee.
Hence, it is likely that some methods are suitable in some cases and other methods are suitable in
others. A good system should have a wealth of evaluation techniques and algorithms, and should
be able to make proper decisions on which technique to use for providing a quick and accurate
result. For example, the system may be given precision boundaries, and it should then select the
most efficient approximation that guarantees these boundaries. Alternatively, given a time budget,
a system should be able to select an exact or approximation technique (as precise as possible) for
performing query evaluation within that budget. This process can be carried out at the level of the

?(Kimelfeld, Kosharovsky, and Sagiv 2008) supports just ProTDB documents, though it should be possible to use a
similar bottom-up approach for hierarchical Markov chains (Benedikt, Kharlamov, Olteanu, and Senellart 2010) and to
support continuous distributions (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2011).

°(Kimelfeld, Kosharovsky, and Sagiv 2008) supports just tree patterns, but it should also be possible to extend it to
MSO by combining the algorithm of (Cohen, Kimelfeld, and Sagiv 2009b) and a toolkit such as Mona (Henriksen,

Jensen, Jrgensen, Klarlund, Paige, Rauhe, and Sandholm 1995) for converting queries into tree automata.
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whole query, or at the level of each sub-query. For instance, in some cases, it may be beneficial to
combine probabilities that are computed (for different parts of the query and/or the document) by
deploying different techniques. This suggests relying on cost-based, optimizer-like, query planning
where each implementation of a (sub-)query evaluation is associated with an estimated cost, of both
time and approximation. First steps are highlighted in (Souihli 2011).

W Contributions

We are currently conducting extensive experiments (not yet published). These experiments
show that such an optimizer is indeed capable of choosing an appropriate evaluation strat-
egy for a given lineage formula, and that the optimal strategy (enumeration of possible
worlds, Monte Carlo sampling, fancy algorithm for approximating DNF formulas, inclusion—
exclusion principle, etc.) varies dramatically from query to query.

There is also a need for a deeper understanding of the connection between probabilistic XML
and probabilistic relational data. This is obviously critical if one is to implement a probabilistic
XML system on top of a probabilistic relational database. It is important in other architectures
as well, for identifying techniques in the relational setting that carry over to the XML setting.
This is not so straightforward. It is of course easy to encode trees into relations or relations into
trees, but in both cases the encoding has special shapes: relations encoding trees are tree-like (with
treewidth (Robertson and Seymour 1984) one) and relations encoded as trees are shallow and
have repetitive structure. Typical query languages are different, too: tree-pattern queries or MSO
on one side, conjunctive queries or the relational algebra on the other. When trees are encoded
into relations, tree-pattern queries become a particular kind of conjunctive queries, involving
hierarchically structured self joins, a class for which it is not always possible to obtain efficient
query plans over arbitrary databases (Suciu, Olteanu, Ré, and Koch 2011). Some results from the
probabilistic XML setting (such as the bottom-up evaluation algorithm for ProTDB) have no clear
counterpart in the relational world, and vice versa. A unifying view of both models would help
towards building systems for managing both probabilistic relational and XML data.

The last challenge we highlight is that of optimizing query evaluation by reusing computed answers
of previous queries. This can be seen as a case of query answering using views, a problem that has been
extensively studied in the deterministic XML setting (Xu and Ozsoyoglu 2005; Cautis, Deutsch,
and Onose 2008; Afrati, Chirkova, Gergatsoulis, Kimelfeld, Pavlaki, and Sagiv 2009). There is
little known on whether and how (materialized) views can be used for query answering in the
probabilistic XML setting, though Cautis and Kharlamov (2011) give a preliminary study of the
problem in the setting of ProTDB, showing that the major challenge is not retrieving query answers,
but computing their probabilities.

2.6 Conclusion

We reviewed the literature on probabilistic XML models, that are essentially representation systems
for compactly encoding probability distributions over labeled trees. A variety of such representation
systems have been proposed, and each provides a different trade-off between expressiveness and
compactness on the one hand, and management complexity on the other hand. Specifically,
ProTDB (Nierman and Jagadish 2002) and some of its extensions (e.g., ProTDB augmented with
constraints or continuous distributions, and tree-like Markov chains) feature polynomial-time
querying for a rich query language (MSO, or aggregate queries defined by tree-patterns). In contrast,
query evaluation is intractable in other models such as PrxMLI"e} (that allows for correlation among
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arbitrary sets of nodes) or arbitrary recursive Markov chains (that can represent spaces of unbounded
tree height or tree width).

We mentioned various open problems throughout this chapter. Two of these deserve particular
emphasis. First, the connection to probabilistic relational models needs better understanding, from
both the theoretical viewpoint (e.g., what makes tree-pattern queries over ProTDB tractable, when
they are encoded into relations?) and the practical viewpoint (e.g., can we build on a system such as
Trio (Widom 2005) or MayBMS (Huang, Antova, Koch, and Olteanu 2009) to effectively manage
probabilistic XML data?). Second, further effort should be made to realize and demonstrate the ideal
of using probabilistic XML databases, or probabilistic databases in general, to answer data needs
of applications (rather than devising per-application solutions). We discussed some of the wide
range of candidate applications in the introduction. We believe that the research of recent years,
which is highly driven by the notable popularity of probabilistic databases in the database-research
community, constitutes a significant progress towards this ideal, by significantly improving our
understanding of probabilistic (XML) databases, by developing a plethora of algorithmic techniques,
and by building prototype implementations thereof.
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Chapter 3

Reconciling Web Data Models with the Actual Web

Y0U SAID THERE WAS A < BUT WE DIDN'T ! ) BOY. Y{0U JUST CAN'T
BILLION-TO-ONE CHANCE ! L |
AT OB Mz DI w LOST! BELIEVE ANYONE ANY MORE!

My existing research so far has focused on two aspects of Web data management (Abiteboul,
Manolescu, Rousset, Rigaux, and Senellart 2012): models of uncertain Web data (with probabilistic
XML) and methods for extracting meaningful content from the World Wide Web. These two
research topics have been mostly disconnected. The main item on my research agenda is to reconcile
them, and to show that existing formal models for Web data (probabilistic databases in particular)
are natural and effective tools for representing and managing the results of Web mining tasks. We
distinguish two general areas: concrete applications of probabilistic database techniques to Web
data management problems, and improving the collection of Web content using formal models.

3.1 Probabilistic Databases: A Tool for Web Data

Probabilistic Databases vs. Ad-Hoc Management of Uncertainty for Data Warehousing. The main
motivation for using probabilistic databases is to rely on a proper tool for managing uncertainty
in complex processes, without having to select at each step the most likely result, but keeping
all candidates and formally estimating their likelihood throughout the process. The effectiveness
of probabilistic databases at this task has surprisingly never been demonstrated, however. We
plan to formally assess the difference in quality that can be obtained in data warehousing tasks,
comparing a probabilistic database approach to ad-hoc management of uncertainty. This is in
the spirit of (Detwiler, Gatterbauer, Louie, Suciu, and Tarczy-Hornoch 2009) that looked at the
effectiveness of formal uncertainty management techniques in ranking query results in scientific
databases. The authors of this work have shown that such methods are indeed useful for practical
applications (in this case, discovering functions of proteins), though probabilistic rankings do not
necessarily outperform more ad-hoc scoring techniques.

Deriving Probabilistic XML Documents from Existing XML Corpora. XML corpora are concrete
collections of XML documents. Probabilistic XML is a model of probability distributions over
XML documents. By inferring the best probabilistic model of an XML corpus, we can apply
probabilistic XML querying techniques directly on this model for a variety of statistics gathering,
data visualization, and software testing applications.
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Contributions

The case when the structure of the model is known, and probabilities are missing, has
been dealt with in (Abiteboul, Amsterdamer, Deutch, Milo, and Senellart 2012; Abiteboul,
Amsterdamer, Milo, and Senellart 2012).

Managing Uncertainty in Version Control using Probabilistic Database Techniques. Wikipedia
can be seen as a version control system, in which each revision is uncertain and depends on
the trustworthiness of the contributor. This uncertainty can naturally be represented as probabilistic,
and the tree-like structure of articles lends itself to modeling with probabilistic XML. Version
control operations (merging, updates, conflict resolution) can now be translated into operations on
probabilistic XML documents.

Contributions

§ Preliminary steps are in (Abdessalem, Ba, and Senellart 2011; Ba, Abdessalem, and Senellart
2011).

Probabilistic Models for the Wisdom of the Crowd  Crowd data sourcing (Deutch and Milo 2012)
relies on the critical assumption that, although individuals are reliable, and the information they
provide may be uncertain, the crowd as a whole is reliable. Probabilistic models are ideal for
modeling this uncertainty: information about a given data item that individuals were polled about
can for instance be represented as a normal distribution, whose mean and standard deviation are
derived from the answers to the poll. Problems of determining the trust in some information, or of
which question to ask to which individual to raise our confidence in it, can then be formalized as
probabilistic data management questions.

3.2 Formal Models to Improve Web Content Collection

Database Theory and Static Analysis to the Rescue of Deep Web Content Acquisition. Accessing
the deep Web, Web databases hidden behind Web forms, is a daunting task. Forms have to be
semantically analyzed, result pages have to be wrapped, and queries have to be rewritten using only
relevant Web sources. We plan to tackle this practical problem using tools from database theory
and static analysis. For instance, the literature on query answering under access limitations can
serve to rewrite and optimize queries over deep Web sources, and analysis of JavaScript validation
code attached to Web pages can help inferring constraints on form schemas.
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W Contributions

On the database theory side, we have shown in (Senellart and Gottlob 2008; Gottlob and
Senellart 2010) how to determine the optimal translation between two different representa-
tions of the same information, such as two different deep Web sources. Practical applications
of this framework are still open, though. We have characterized in (Benedikt, Gottlob, and
Senellart 2011) the complexity of determining whether a Web form is relevant to a particular
query. Applications to query optimization over the deep Web are work in progress.

On the static analysis side, we have demonstrated in (Benedikt, Furche, Savvides, and Senellart
2012) a basic system that extracts simple constraints outside of JavaScript code. Though much
remains to be done, results are very promising (100% precision in the identified constraints;
reasonable recall of around 60%).

Application-Aware Web Crawling. Current-day Web crawlers are unaware of the kind of Web
applications they are currently crawling: they process in the same way wikis, blogs, news sites, or
statically edited content. This is not optimal, however: on a wiki, it is useless to follow editing
links; on a blog, all articles can usually be collected by accessing (for instance) the monthly archives;
etc. By formalizing the notion of Web application as a hierarchy (individual Web sites, their
content management systems, their general category, etc.), we can provide Web crawlers with better
guidelines. These descriptions of Web applications and guidelines can be specified by hand, or
automatically learned based on the relevance of the discovered Web pages.

Contributions

My PhD student Faheem has started working on intelligent content acquisition in (Faheem
2012). One particular type of Web content where we can have intelligent crawling is Web
feeds, that indicate dynamic changes to a Web page. We have explained in (Oita and Senellart
2010) how they can be used for that purpose, and in (Oita and Senellart 2011) we have
surveyed the more general problem of determining when a Web page has changed.
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