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Abstract

This thesis proposes to predict the sound emitted from low-speed fans and its scattered-
field by installation effects related to industrial applications. Both tonal and broadband
components of fan noise are investigated.
Methods existing in the literature contain assumptions and simplifications in order to deal

with fan noise problems in analytical manner, such as consideration of an observer located
in the far-field of the source. Firstly, the effect of far-field assumption in the tonal fan
noise formulation is addressed. Using artificial blade sources, a comparison between two
closed-form analytical solutions and a numerical technique is performed for validation in
free-field.
Secondly, the scattered field of the tonal fan noise is investigated using numerical and

analytical techniques. The acoustic field of a rotor operating in a finite duct is first in-
vestigated combining the closed-form analytical formulations with the Boundary Element
Method (BEM). Since BEM would be computationally demanding for high frequency ap-
plications, analytical scattering techniques are also introduced. Reflection and scattering of
sound waves by a large plane are first addressed replacing the plane with an image source.
Secondly, an exact analytical solution considering scattering of the tonal fan noise by a rigid
corner is derived.
Another point addressed in this thesis is the prediction of the broadband noise generated by

a low-speed axial fan operating in turbulent stream. Amiet’s theory of turbulence-interaction
noise for a stationary airfoil is considered. One of the key points proposed in this thesis
is an extension of Amiet’s method, allowing prediction of the acoustic field of the airfoil
in its geometrical near-field in a semi-analytical perspective. The extended formulation is
compared with Amiet’s classical solution and a reference solution obtained with numerical
integration involving no geometrical far-field assumption. Experiments are also performed
in anechoic chamber using an isolated airfoil located in grid generated turbulence. Another
assumption made in Amiet’s theory is the consideration of uniform flow impinging onto
the airfoil. However this assumption is not valid for most industrial applications. Different
methods exist in literature to deal with this problem. A new approach is proposed in order
to take the spanwise varying flow conditions into account. Including all the improvements,
the broadband acoustic responses of a stationary airfoil located in the developing region
of a jet and of a low-speed axial fan operating in a turbulent stream are investigated and
validated against measurements.
Finally, scattering of the sound generated by the considered airfoil and fan by bench-

mark obstacles is addressed numerically and analytically. Since BEM is not capable to
handle statistical source fields directly, an innovative approach obtained by re-formulating
the deterministic BEM method is employed. The final model is compared to the numerical,
analytical and experimental solutions for validation purposes.





Résumé

Cette thèse propose de prédire le bruit émis par des ventilateurs à basse vitesse et sa diffrac-
tion par des obstacles liés aux contraintes d’installation dans les applications industrielles.
Les composantes tonale et à large bande du bruit sont étudiées.
Les méthodes existant dans la littérature considèrent des hypothèses et des simplifications

afin de traiter le problème du bruit des ventilateurs de façon analytique, comme par exemple
l’approximation de champ lointain. Tout d’abord, l’hypothèse de champ lointain dans la
formulation du bruit tonal est relaxée. En utilisant des sources artificielles, une compara-
ison entre deux expressions analytiques et une simulation numérique est effectuée pour la
validation en champ libre.
Ensuite, la diffraction du bruit tonal est étudiée par des techniques numériques et analy-

tiques. Le champ acoustique d’un rotor fonctionnant dans un conduit fini est d’abord pris
comme exemple en combinant les formulations analytiques avec la méthode d’éléments de
frontière (BEM). Etant donné que cette dernière serait trop coûteuse en temps de calcul pour
des applications haute fréquence, des techniques analytiques pour le problème de diffraction
sont également présentées. La réflexion et la diffraction des ondes sonores par une plaque
infinie sont d’abord considérées en remplaçant la plaque par une source image. Ensuite, une
solution analytique exacte pour la diffraction du bruit tonal par un coin rigide est formulée.
Un autre point abordé dans cette thèse est la prévision du bruit à large bande produit

par un ventilateur axial à basse vitesse évoluant dans un écoulement turbulent. La théorie
d’Amiet pour le bruit d’interaction de turbulence sur un profil fixe est considérée. Nous
en proposons dans cette thèse une extension permettant de prédire le bruit du profil dans
son champ proche géométrique l’aide d’outils semi-analytiques. La nouvelle formulation est
comparée à solution classique d’Amiet et à une solution de référence obtenue par intégration
numérique sans hypothèse de champ lointain géométrique. Des expériences sont également
menées dans une soufflerie anéchoide où la turbulence est générée en amont du profil par
une grille. Une autre hypothèse du modèle d’Amiet concerne l’écoulement uniforme arrivant
sur le profil. Cette hypothèse n’est pas vérifiée dans la plupart des applications industrielles.
Différentes méthodes existent dans la littérature pour traiter ce problème. Nous proposons
une nouvelle approche pour prendre en compte des conditions d’écoulement variables en
envergure. En intégrant toutes ces améliorations, la réponse acoustique large bande d’un
profil fixe placé dans un jet turbulent et d’un ventilateur axial à basse vitesse placé dans un
écoulement turbulent est étudiée et validée par comparaison avec l’expérience.
Dans une dernière partie, la diffraction des ondes acoustiques générées par le profil et le

ventilateur par des obstacles est déterminée numériquement et analytiquement. Puisque la
méthode BEM n’est pas prévue pour résoudre directement le champ d’une source aléatoire,
une approche innovante obtenue par la reformulation de la méthode déterministe de BEM est
utilisée. Le modèle final est comparé aux solutions numériques, analytiques et expérimentales
pour la validation.
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Résumé vi

Acknowledgements viii

1. Introduction 1
1.1. Aeroacoustic Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Review of Fan Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Acoustic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Free-Field Tonal Fan Noise 7
2.1. Tonal Fan Noise: Fundamental Equation . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Far-Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2. Near-Field Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. The Continuous Array of Stationary Dipoles . . . . . . . . . . . . . . . . . . 14
2.3. Acoustic Free-Field Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Tonal Fan Noise Scattering 21
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Numerical Acoustic Scattering Techniques . . . . . . . . . . . . . . . . . . . 21
3.3. Boundary Element Method (BEM) . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1. BEM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2. Application to a benchmark ducted fan . . . . . . . . . . . . . . . . . 25

3.4. Reflection from an Infinite Plane . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5. Scattering by a Rigid Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1. Scattered-field of a monopole . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2. Scattered-field of a dipole . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3. Scattered-field of fan noise . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Free-Field Broadband Fan Noise 47
4.1. Generalization of the Semi-Analytical Model . . . . . . . . . . . . . . . . . . 48

4.1.1. Far-field formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2. Spanwise geometrical near-field correction . . . . . . . . . . . . . . . 55

4.2. Assumption Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1. Geometrical near-field effects . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2. Acoustic near-field effects . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3. Airfoil in Homogeneous Turbulence . . . . . . . . . . . . . . . . . . . . . . . 58



x Contents

4.4. Spanwise Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1. Classical strip theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2. Inverse strip theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3. Correlated-strips theory . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5. Acoustic Field of a Jet-Airfoil Test-Case . . . . . . . . . . . . . . . . . . . . 66
4.5.1. Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6. Implementation of Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.1. Linearized blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.2. Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.3. The Doppler effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7. Free-Field Broadband Noise of a Low-Speed Axial Fan . . . . . . . . . . . . 80
4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5. Broadband Fan Noise Scattering 85
5.1. Broadband Scattering - Stationary Airfoil . . . . . . . . . . . . . . . . . . . 85

5.1.1. Numerical broadband scattering techniques . . . . . . . . . . . . . . . 86
5.1.1.1. Boundary Element Method . . . . . . . . . . . . . . . . . . 86
5.1.1.2. Acoustic Transfer Vectors approach . . . . . . . . . . . . . . 87

5.1.2. Analytical scattering techniques . . . . . . . . . . . . . . . . . . . . . 91
5.1.2.1. Method of images . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2.2. Scattering by the edge of the screen . . . . . . . . . . . . . . 95

5.2. Scattered-Field of a Low-Speed Axial Fan . . . . . . . . . . . . . . . . . . . 96
5.2.1. Image fan model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2. Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Conclusions and Perspective 103
6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2. Future Work and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A. Derivation of the Acoustic Transfer Function 109

B. Derivation of the Spanwise Segmentation 117

C. Application of the Doppler Factor to Broadband Fan Noise 119
C.1. Application to Free-Field Problems . . . . . . . . . . . . . . . . . . . . . . . 119
C.2. Application to the Benchmark Problem . . . . . . . . . . . . . . . . . . . . . 120
C.3. Application to Scattered-Field Problems . . . . . . . . . . . . . . . . . . . . 120

D. Scattered-Field due to Broadband Noise Sources 125

E. Derivations of Spv, Svp and Svv 129

Bibliography 139

List of Tables 149

List of Figures 151



Chapter 1.

Introduction

Aerodynamic noise emitted from rotating machinery is a concern in several industrial appli-
cations in terms of comfort and regulations. In aeronautical industry, the sound generated by
aircraft propellers [53] and turbofans in engine nacelles [94] is a matter of interest. The sound
emitted from rotor blades of a helicopter is also investigated by many authors [43, 72, 119].
In the automotive industry it is a point of interest since the noise generated by the cooling
fan [91, 18] and its radiation towards the air-conditioning unit may be inconvenient for pas-
sengers. In the energy sector, the noise emitted from wind turbine blades [46] is a matter to
be dealt with for the comfort of inhabitants and regulated by certification where the noise
pollution is hindering their landside development. Also the low noise level emitted from
other domestic appliances [124, 61] is an important parameter demanded by the customer
hence the acoustic comfort becomes an important commercial asset. It is known that for
such rotating machinery applications, flow induced sound is not the only noise source [50].
Additional mechanisms due to vibration or installation effects also exist. This thesis only
focuses on fan noise in the aeroacoustical perspective.

1.1. Aeroacoustic Analogies

The attention paid on aeroacoustical problems is associated with the start of common usage
of jet engines in the 50s. Lighthill is known to be the pioneer of aeroacoustics [73]. He
reformulated the continuity and momentum equations in the non-homogeneous wave equa-
tion format, dealing with jet noise without the presence of solid boundaries [74]. The free
space Green’s function therefore can be used to solve Lighthill’s equation. His work on jet
noise only points out an equivalent quadrupole contribution. However, it is known that solid
boundaries reflect and diffract the sound generated by the volume quadrupole sources to
produce sources of other nature. Curle re-derived Lighthill’s equation considering stationary
solid boundaries [33]. His model contains both quadrupole and dipole sources where the
strengths depend on the turbulence stress tensor and the unsteady forces exerted on the sur-
face by the fluid, respectively. Finally Ffowcs Williams and Hawkings (FW-H) considered
moving surfaces with respect to the medium [40]. Their formulation contains all three types
of acoustic sources, quadrupoles, dipoles and monopoles. The sound components generated
by the dipoles and monopoles are called loading and thickness noise, respectively. Thickness
noise results from the displacement of the fluid and the advancing surfaces. The current
aeroacoustic derivations, including fan noise problems, are mostly based on these analogies.

Theoretically, aeroacoustic problems can be described by the compressible continuity and
momentum equations. They can therefore be solved using only CFD methodology. Several
studies performed using so called direct methodology [14, 89] to deal with aeroacoustic
problems including low-speed fan noise computations [29, 100]. However, a direct approach



2 Chapter 1. Introduction

requires a computational domain extending from source to observer and may become highly
computationally demanding.

A more common approach is to use a hybrid method where the sound generation and
the sound propagation are solved separately from each other [78]. Incompressible CFD
techniques can now be applied to identify and quantify the noise sources[128] including fan
noise problems [95, 15, 115]. Compared to the direct methodology, hybrid methods are
mostly used in industrial applications due to less demanding computational efforts. This
thesis employs hybrid approaches in order to compute the sound emitted by considered fans.

1.2. Review of Fan Noise Sources

As the most general statement, the FW-H analogy considers monopole, dipole and quadrupole
components of the noise radiated by a fan. It applies in particular to low to moderate Mach
number fan noise problems. However, it was shown that for the low-Mach number flows, the
quadrupole term becomes negligible [54]. Later, the monopole component is shown to be less
efficient compared to the dipole one in terms of acoustic radiation [92] for low-speed fan ap-
plications especially for thin blade design and significantly distributed flows. Therefore, only
the dipole component, due to aerodynamic forces acting on the blade surface, is considered
for most low-speed fan problems. Gutin was the first person who developed the first success-
ful theory of propeller noise [51]. He was also the first recognizing the dipole like radiation
pattern in the presence of a solid surface. He considered the force distribution on a disk
swept out by the propeller during the rotation. The theory was based on a uniform inflow.
The blade forces are therefore steady and the dipoles have constant absolute strength. This
type of noise, referred to as steady-loading noise, becomes significant when the peripheral
Mach number exceeds 0.7 [82]. However, in most of the applications the propellers and fans
are operated under non-uniform flow conditions. Especially for low tip Mach number fans,
due to the non-uniformity of the flow-field, Gutin’s model fails to predict the acoustic field
accurately [41].

Depending on the periodic or random aerodynamic forces applying on the blade surface,
the acoustic spectrum may consist of tones or humps. A chart of the forces applying on
the blade and their contribution on the acoustic spectrum is given in Figure 1.1 [30]. If the
force is periodic, the aerodynamic noise generated by the fan is a combination of discrete
frequencies, related to the number of blades and rotational speed, the blade passing frequency
(BPF) and its harmonics. Several studies addressed the tonal noise emitted by fans. Lowson
extended the model of Gutin and re-derived his analogy using model analytic results [77, 76].
The empirical theory was applied to helicopter main-rotor noise only considering the dipole
contribution. Farassat proposed a time domain solution for fan noise based on the derivations
of the FW-H and Kirchoff formulation [37]. The model, known as ”Formulation 1A”, was
applied to predict the noise generated by a helicopter rotor considering both dipole and
monopole sources. The monopole contribution becomes non-negligible for such applications
due to the high rotational speed and the significant blade thickness. Later, a simplified
model called ”Formulation 1B” was proposed by the same authors considering only the
dipole contribution [20]. Goldstein re-derived the FW-H equation in the frequency domain
and extended the model for the presence of an upstream stator [47]. However the model is
based on the geometrical and acoustical far-field assumptions. Therefore it is not able to
predict the acoustic field accurately in the near-field of a fan.
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Figure 1.1.: Fan noise source mechanisms [30]

The sound pressure field in the immediate neighborhood of the blades can reach levels
beyond the limits of linear acoustics. In such cases, applying a linear propagation method
can yield a substantial overprediction of the acoustic field. An alternative strategy was
proposed to deal with the near-field acoustic problems for rotors. For this, the near-field
acoustic field around the sound generating surfaces can be solved with the full compressible
CFD [81]. For rotors operating in ducts, the pressure field is evaluated at a given distance
from the fan blades, where its level has decreased to the linear regime, and is expanded on the
duct modes [94]. This method presents significant advantage in aeronautical turbomachinery
applications characterized by high Mach number and sound levels, however it suffers from
robustness issues in HVAC applications. The sound generated by the fan and its radiation
through an engine exhaust is also investigated solving Linearized Euler Equations (LEE) in
the near-field and combining it with the far-field FW-H solution for the acoustic propagation
[105]. Another asymptotic approach for large blade number applications was proposed [99]
in order to deal with the near-field terms. These approaches were found to be promising
but do not apply to the engineering fan noise problems due to the geometrical and blade
number limitations, respectively. Finally, Roger introduced a closed-form analytical solution
reconsidering the derivations of FW-H and Goldstein by introducing auxiliary functions [108].
The compact rotating source now takes the near-field terms into account in the definition of
these function.

Besides the periodic forces applying on blades, random forces also result from turbulence in
the flow and generate the broadband component of the sound spectrum. For example, vortex-
shedding downstream the trailing edge results in so called vortex-shedding noise. Several
empirical studies performed in order to predict that noise in the aeronautical community
[75, 62]. For centrifugal fans, vortex shedding noise is more likely in narrow band whereas,
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due to the spanwise varying relative velocity, the vortex shedding noise is broadband [50].
Random pressure fluctuations on blades result from turbulence within attached or separated
boundary layers. They produce what is called blade self-noise. Several approaches have
been proposed to address this problem, ranging from semi-empirical methods [16] to highly
accurate and CPU intensive transient CFD calculations [23]. Semi-analytical methods also
exist in the literature addressing self-noise problems [57, 119]. Finally due to turbulence
carried by the incoming flow, interaction with the blades generate turbulence-impingement
noise, also called leading-edge noise [96, 97, 19]. Most industrial applications involve a
fan operating downstream of obstacles which are responsible for installation effects, hence
the incoming flow is already disturbed. The primary attention is therefore given to the
turbulence-interaction noise in this thesis for the broadband noise prediction. Linking the
analytical turbulent spectra to the sound spectra, a direct relationship was proposed by
Homicz [56]. Amiet and co-workers [5, 8] proposed a theory assuming statistical turbulence
models combined with the application of Curle’s analogy for a distribution of point dipoles
[33] and derived semi-analytical Green’s functions for the acoustic response of an airfoil
subjected to incoming turbulence. Amiet’s theory is employed in the broadband framework
and is extended for the applicability for industrial purposes including near-field correction
and consideration of non-uniform flow conditions [64, 65, 67].

1.3. Acoustic Scattering

Another contribution of the installation effects is the scattering of the sound waves emitted
from the fan by surrounding surfaces. In free-field radiation problems, only the sound field
emitted by the source needs to be determined. However in scattering problems, besides the
free-field, the effect of reflected and scattered sound waves also needs to be determined [35].
Based on the free-field prediction methods, numerical or analytical scattering techniques
exist in literature [90, 101].

The most commonly used numerical approach for finding an approximate solution of the
Helmholtz partial differential equation and the associated boundary conditions is based on
the transformation of the mathematical problem into a set of approximating equations [35].
Finite Element Method (FEM) [36] and Boundary Element Method (BEM) [34] are the most
common approaches addressing acoustic scattering problems in a numerical perspective.
However, classical BEM and FEM solutions are restricted to problems where the source
is defined deterministically. In this thesis, dedicated to statistically defined random noise
sources, the deterministic BEM formulation is re-addressed.

Additionally, applicability of FEM and BEM is practically restricted to low-frequency
problems depending on the nature of the problem and on the available computer resources.
They would require a prohibitively large amount of computational effort and memory re-
sources to get an acceptable level of accuracy [35]. Other numerical methods can deal with
the acoustic scattering problem numerically at high frequencies such as statistical energy
acoustics [79, 80] and ray acoustics [93]. Recently, a time domain solution based on equiva-
lent source method also been used in scattering problems [71]. It is worth noting that solving
Helmholtz equation using BEM is based on a stationary medium assumption.

Further, exact analytical solutions for relatively simple geometries also exist in the liter-
ature. The presence of an infinite flat plate [103] or a semi-infinite plate [39] can be taken
into account analytically for scattering problems. MacDonald also proposed an analytical
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solution addressing acoustic scattering from a rigid corner [83]. In this thesis, his theory is
extended in order to be applied to compute the scattered field of a low-speed fan by a corner.

1.4. Structure of the Thesis

The scope of this thesis is mainly shared on the tonal and broadband components of low-
speed fan noise. One main concern is also the acoustic scattering of the noise generated by
the fan. Each component is then considered from a double point of view; the free-field and
the scattered-field. Since the scattering obstacles are mostly present in the very vicinity, the
far-field assumption is also examined and released.
In Chapter 2, the free-field tonal fan noise is investigated. Two closed-form exact analytical

approaches, one with far-field assumption and another one without, are introduced. A non-
closed form numerical method based on equivalent stationary sources is also addressed. A
free-field comparison of these methods is performed on a benchmark low-speed axial fan
equation to address the effect of the far-field approximation.
Chapter 3 contains the information on numerical and analytical acoustic scattering tech-

niques and their application to tonal fan noise. A numerical scattering technique already
in use in industry is introduced. Combining the model with two closed-form analytical ap-
proaches for low-speed tonal fan noise, the scattered acoustic field of a fan operating in
an open duct is computed. Analytical methods accounting for relatively simple scattering
obstacles, such as infinite plate or wedge, are also introduced in this chapter. A model of
acoustic scattering from an infinite corner and its application to tonal fan noise are proposed.
Chapter 4 deals with the free-field broadband noise emitted from a fan located in turbulent

stream. The theory employed in order to predict the broadband noise generated by fan blades
[8] is based on the one for a stationary airfoil [5]. Hence, the theory for the airfoil is first
applied in a benchmark problem with extensions for validation purposes. An intermediate
level of geometrical near-field correction is proposed to the theory. As a second step, the non-
uniform flow field that needs being introduced along the span of a rotating blade is taken into
account with a segmentation technique. A new technique considering correlation between
adjacent segments is proposed. Finally, the theory is implemented in the free-field acoustic
response of a low Mach number axial fan and validated against measurements performed in
anechoic chamber.
In Chapter 5, the acoustic scattering methods introduced in Chapter 3 are applied to the

broadband noise sources in both cases of a stationary airfoil and of a low-speed axial fan.
A benchmark scattering obstacle is first introduced to the stationary airfoil test-case. The
scattered field problem is dealt with the numerical method for deterministic sources. An
innovative method for the acoustic scattering of non-deterministic source field is proposed.
The model is validated against the measurements and the other analytical solutions detailed.
Finally, the scattered-field of the broadband fan noise is computed combining the analytical
and numerical methods.





Chapter 2.

Free-Field Tonal Fan Noise

This chapter addresses the derivation of the free-field tonal fan noise formulation. Two
closed-form analytical approaches are presented for rotating sources. Depending on the
position of the observer with respect to the source, the analytical solutions are named far-
and near-field formulations. If the source to observer distance, R, is much longer than the
acoustic wavelength at the frequency of interest, such as R/λ≫ 1, the observer is assumed
to be located in the acoustical far-field. If R is larger compared to the geometrical extent of
the source, such as the radius of the rotor, r′, making R/r′ ≫ 1, the observer is assumed to
be located in the geometrical far-field. Another method, based on using an equivalent array
of fixed sources rather than rotating ones is also investigated. Finally, all three models are
compared numerically for the acoustical free-field radiation of a low speed axial fan.

2.1. Tonal Fan Noise: Fundamental Equation

Acoustic disturbances are usually regarded as small amplitude perturbations in addition to
the ambient state [101]. The state of the acoustic radiation field is characterized by the
ambient variables, such as pressure, p0 and density, ρ0. The overall pressure and density
fields then obtained summing the disturbances to the ambient variables

p = p0 + p′ (2.1)

ρ = ρ0 + ρ′,

where the acoustic contributions are represented as p′ and ρ′. For isentropic flows where the
ratio ρ′/ρ0 is sufficiently small, the acoustic pressure fluctuations are related to the density
fluctuations with the following equation

p′ = c20ρ
′. (2.2)

For aeroacoustic problems, where the sound field is not influenced by any solid boundaries
in the flow, the density fluctuations can be computed with the inhomogeneous wave equation
formula using Lighthill’s analogy [73],

∂2ρ′

∂2τ
− c20∇2ρ′ =

∂2Tij
∂yi∂yj

. (2.3)

The term on the right hand side of the equation is Lighthill’s stress tensor equivalent to
distributed volume quadrupoles, defined as

Tij = ρuiuj + (p− c20ρ)δij − τij. (2.4)
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u is the velocity of the fluid. Indices i and j are representing the i−th and j−th component
of the related parameter, respectively. τij is the viscous stress tensor. Choosing ρ′ as the
acoustic variable is convenient for prediction of sound prediction by turbulence for example
[106]. For consistency of derivations, p′ is chosen as the acoustic variable.
The solution of Equation (2.3) can be expressed in terms of Green’s functions [47]

p′ =

∫
V (τ)

[
∂2G

∂yi∂yj
Tij(y, τ)

]
d3y. (2.5)

The square bracket is computed in the retarded time, τ = t− R/c0 where R = |x− y| is
the linear distance between the source and the observer. Since there is no solid boundaries
influencing the sound field to any appreciable extent, the free space Green’s function can be
employed [47]

G(y, τ |x, t) = 1

4πR
δ(τ − t+ R

c0
). (2.6)

In its initial form, Lighthill’s analogy considers a sound field not affected by the solid
boundaries present in the flow-field, hence its only important application is the jet noise
problems. However, it is known from the classical acoustics, that the sound generated by
the volume quadrupole sources are reflected and diffracted by solid boundaries [33]. Ffowcs
Williams and Hawkings introduced moving surfaces in Lighthill’s model [40].
Governing moving surfaces, the fundamental equation for the sound field then writes (see

the related reference [47] for further derivations)

p′ =

∫ T

−T

∫
V (τ)

∂2G

∂yi∂yj
Tij d

3y dτ

+

∫ T

−T

∫
S(τ)

∂G

∂yi
fi d

2y dτ

+

∫ T

−T

∫
S(τ)

ρ0Vn
∂G

∂τ
d2y dτ (2.7)

where T is a large but finite interval of time.
Equation (2.7) is an exact solution applied to any region V (τ) bounded by impermeable

surfaces S(τ). The first term in the right hand side of the equation denotes the volumetric
distribution of the quadrupole term, triggered by the stress tensor as shown above. The
second term is the dipole term generated by the unsteady forces, fi. Finally the third term
is the monopolar term resulting from the volume displacement of the fluid due to the surface
motion.
As seen in Equations (2.3) and (2.7), if one wants to compute the acoustic field of a source,

the flow-field has to be solved first in order to obtain the source terms, ρ0Vn, fi and Tij. A
convenient implementation of the method relies on unsteady CFD simulations to provide the
transient pressure field [69, 95], that is integrated to yield the source field such as unsteady
forces. Measurements can also provide the required source data [115].
For a low-speed fan application, it was shown that dipolar terms are dominant and

monopolar and quadrupolar terms shown to be negligible [54, 92]. Therefore the sound
field can be approximated via only the dipole contribution
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p′ ∼=
∫ T

−T

∫
S(τ)

∂G

∂yi
fi d

2y dτ. (2.8)

Because the presence of solid boundaries is already accounted for in the source terms,
the free-field Green’s function can be employed for the free-field acoustic propagation [47].
Introducing the free field Green’s function, Equation (2.8) becomes

p′ ∼= −
∂

∂xi

∫ T

−T

∫
S(τ)

1

4πR
δ(t− τ − R

c0
)fi d

2y dτ. (2.9)

The minus sign appears since ∂G/∂yi = −∂G/∂xi. The integral on the right hand side is
computed as ∫ T

−T

1

R
δ(t− τ − R

c0
)fi dτ =

[
fi

R|1− (R/R) ·M|

]
(2.10)

where the square brackets indicate that the quantity is evaluated at the retarded time. The
term in the denominator is the so called Doppler factor

D = 1− (R/R) ·M. (2.11)

Introducing the notation D, the acoustic pressure fluctuations finally become

p′ ∼= −
1

4π

∂

∂xi

∫
S(τ)

[
fi
R D

]
d2y. (2.12)

Equation (2.12) requires the integration of the distributed sources on the boundary surface,
S(τ) [41]. At this stage, it becomes convenient to assume that the extent of the source
domain is much smaller than the acoustic wavelength, l ≪ λ. Hence, the surface can be
represented as a point dipole whose strength is equal to the integration of the distributed
sources. In such a case, the source is said acoustically compact. If the source domain is
not acoustically compact, it can be decomposed as a sum of compact sources by dividing
the surface S(τ) in compact sub-domains [59]. The overall acoustic field is then obtained
with summing their contributions. For reader’s information, as the blade thickness is also
compact at the frequencies of interest, the difference of retarded times between the suction
and pressure sides is also neglected in the derivations [47]. The acoustic pressure generated
by a compact dipole source then becomes

p′(x, t) = − 1

4π

∂

∂xi

[
Fi
R D

]
(2.13)

with the point dipole strength given by

Fi(t) =

∫
S(τ)

fi dy
2. (2.14)

R and M now designate the coordinate and Mach number at the center of the surface
S(τ) where the dipole is assumed to be located. The space derivative yields

∂

∂xi

[
Fi
R D

]
= − Ri

c0R2D

∂

∂τ

(
Fi
D

)
− FiR

R3D
+

FiRi

R3D2

(
MiR−

M ·RRi

R

)
. (2.15)
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For the tonal noise generated by rotating machinery applications, the periodic motion of
the sources is considered [51]. It is therefore convenient to compute the acoustic field in the
Fourier domain [77, 41].

p′(x, ω) =
1

2π

∫ ∞

−∞
p′(x, t)e−iωt dt (2.16)

Taking the Fourier Transform of Equation (2.15) writes

p′(x, ω) =
1

8π2∫ ∞

−∞

[
Ri

c0R2D

∂

∂τ

(
Fi
D

)
+
FiR

R3D
− FiRi

R3D2

(
MiR−

M ·RRi

R

)]
e−iωt dt. (2.17)

Using the identity ∂t/∂τ = D, and integrating Equation (2.17) by parts, the acoustic
pressure generated by the rotating dipole then becomes

p′(x, ω) =
ik

8π2

∫ ∞

−∞

F ·R
R2

(
1 +

1

ikR

)
e−iω(τ+R/c0) dτ. (2.18)

It is worth to note that expression 2.18 is quite general and it does not introduce any
assumption on the periodicity of the forces nor trajectory of the dipole. Considering a
rotating point source, the fan and listener coordinates are specified in the coordinate system
illustrated in Figure 2.1. The dipole is rotating with a constant angular speed Ω. Introducing
β = Ωt+ φ′, coordinates read

x = (x sin θ cosφ, x sin θ sinφ, x cos θ)

y = (r′ cos β, r′ sin β, ζ3)

F = (−FD sin β + FR cos β, FD cos β + FR sin β,−FT )

where FR, FD and FT are the radial, drag and thrust forces acting on the blade, respectively.
Using R = x− y, the F ·R product in Equation (2.18) becomes

F ·R = −FDx sin θ sin(β − φ) + FR(x sin θ cos(β − φ)− r′) + FT (ζ − x cos θ). (2.19)

Equation (2.18) is a general solution for fan noise prediction. Once the source field is
determined, the acoustic field of the fan can be computed via such a formulation. However,
integration in the time domain is computationally demanding and requires a high resolution
of the flow field at the higher frequencies of interest [104].
Knowing the source, and hence the sound field, is periodic with angular frequency Ω,

the acoustic field of the fan can be computed only for the harmonics. Computation at the
harmonics will reduce the computation time when only the tonal components are needed.
The nth harmonic of the density fluctuations then becomes

p′n =
Ω

2π

∫ 2π/Ω

0

p′(x, t)e−inΩtdt. (2.20)
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Figure 2.1.: Source and listener coordinates

2.1.1. Far-Field Approximation

For some of the fan noise applications, the free-field acoustic field is needed to be computed
for the observers located in both geometrical and acoustical far-field of the fan. The far-field
assumption then allows making simplifications in the derivations. For large values of R,
Equation (2.15) approaches

∂

∂xi

[
Fi
R D

]
∼ − Ri

c0R2D

∂

∂τ

(
Fi
D

)
. (2.21)

Introducing Equation (2.21) into Equation (2.20) and considering the periodicity of the
function R with the period 2π/Ω, the acoustic field becomes

p′n ∼
Ω

8π2c0

∫ 2π/Ω

0

xj
x2D

∂

∂τ

(
Fi
D

)
e−inΩtdt. (2.22)

where the Rj/R
2 term is replaced with its asymptotic value xj/x

2. The new scalar product
is then equal to

F · x = −FD sin θ sin(β − φ) + FR sin θ cos(β − φ)− FT cos θ. (2.23)

Since the integrand in Equation 2.22 is evaluated at the retarded time τ , it is convenient
to change the integral variables from t to τ . Acoustic pressure perturbations then read

p′n ∼
Ω

8π2c0

xj
x2

∫ 2π/Ω

0

∂

∂τ

(
Fi
D

)
e−inΩ(τ+R/c0)dτ. (2.24)

Using the identities relating the Bessel function to the modulation of the frequency shift
due to the relative motion between the source and the observer,
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e−iZcosβ =
∞∑

m=−∞

(−i)mJm(Z)e−imβ (2.25)

− sin βe−iZ cosβ =
1

Z

∞∑
m=−∞

(−i)mJm(Z)e−imβ (2.26)

cos βe−iZ cosβ =
∞∑

m=−∞

(−i)m−1J ′
m(Z)e

−imβ (2.27)

the acoustic field of a rotating compact dipole becomes

p′n ∼
−ikn
4πx

e−iknx

∞∑
p=−∞

e−i(n−p)(φ−π/2)

[
J−n+p(−knr′ sin θ)

(
cos θF T

p −
n− p
knr′

FD
p

)
− iJ ′

−n+p(−knr′ sin θ) sin θFR
p

]
. (2.28)

Equation (2.28) is general and applies even if every blade is different from every other.
However, the low speed fans used usually consist of B identical and equally spaced blades.
The force acting on the s = 1 blade at time τ is the same as the force which acts at the time
τ + (2π/(ΩB)(s − 1)) on the blade which is displaced by angle 2π(s − 1)/(ΩB). Using the
identity,

B∑
s=1

ein2π(s−1)/B =

{
B for n = mB,

0 for n ̸= mB.
(2.29)

where m is an integer, the pressure fluctuations read [47],

p′nB ∼−
iBknB
4πx

e−iknBx

∞∑
p=−∞

e−i(nB−p)(φ−π/2)

[
J−nB+p(−knBr′ sin θ)

(
cos θF T

p −
nB − p
knBr′

FD
p

)
− iJ ′

−nB+p(−knBr′ sin θ)FR
p sin θ

]
(2.30)

where knB = nBΩ/c0 is the wave number of the nBth harmonic. Taking only the p = 0
contribution into account considers only the steady forces acting on the blades as addressed
in Gutin’s model [51]. Once again this is recognized as not being a significant contribution
for low-speed fans.

In some of the industrial applications, the rotor operates downstream of a stator or inlet
guide vanes. In presence of a stator upstream of the rotor, the periodicity of the forces Fα

on the reference rotor blade is 2π/(ΩV ) instead of 2π/Ω. Simply changing the index p by
pV , the nBth harmonic becomes
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p′nB ∼
iBknB
4πx

e−iknBx

∞∑
p=−∞

e−i(nB−pV )(φ−π/2)

[
J−nB+pV (−knBr′ sin θ)

(
cos θF T

pV −
nB − pV
knBr′

FD
pV

)
− iJ ′

−nB+pV (−knBr′ sin θ) sin θFR
pV

]
.

(2.31)

Expression (2.31) provides a closed form solution for the incident field in a numerical
acoustics context, provided the listener is placed in both geometrical and acoustical far-field.
Taking apart this limitation, the FW-H approach is very attractive, given the source field is
restricted to the blade surfaces [40, 41].
The theory mentioned above has been used in many industrial applications where the

observer position is located in both geometrical and acoustical far-field [53]. The common
denominator of the application cases is that they all consider acoustical free-field radiation.
However, for some of the industrial configurations where the observer is located in the
vicinity of the fan or acoustic scattering takes part due to installation effects [94, 105],
the acoustic quantities are required to be computed in the near-field of the fan. The far-
field assumption then becomes invalid. A complete closed-form exact analytical solution was
proposed by Roger without making the far-field assumption for the rotating machinery [108].
The derivations are described in the next section.

2.1.2. Near-Field Correction

Rewriting Equation (2.18) reads

p′(x, ω) =
ik

8π2

∫ ∞

−∞

(
−G2(τ)FDx sin θ+

G3(τ)FRx sin θ +G1(τ)(FT (ζ3 − x cos θ)− FRr′)
)
e−iωτ dτ (2.32)

where the auxiliary functions G1, G2 and G3 are defined as

G1(t) =
e−ikR

R2

(
1 +

1

ikR

)
G2(t) = sin(Ωt+ φ′ − φ) G1(t)

G3(t) = cos(Ωt+ φ′ − φ) G1(t) (2.33)

including the acoustical near-field contribution 1+1/(ikR). Due to its periodicity, the sound
field can be again expanded as a Fourier series

p′n =
iknΩ

8π2

∫ 2π/Ω

0

(
−G2(τ)FDx sin θ+

G3(τ)FRx sin θ +G1(FT (ζ3 − x cos θ)− FRr′)
)
e−inΩτ dτ. (2.34)

Since the sources have the same periodicity they can be represented as Fourier series
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Fα(τ) =
∞∑

p=−∞

F (α)
p eipΩτ (2.35)

where α = T,D,R is the thrust, drag and radial components of the source strength.

Combining Equations (2.34) and (2.35) leads to

∞∑
p=−∞

F (α)
p

∫ 2π/Ω

0

GN(τ)e
−i(n−p)Ωτ dτ =

2π

Ω

∞∑
p=−∞

F (α)
p G

(α)
n−p (2.36)

where GN
m is the mth Fourier component of the auxiliary Green’s functions GN (N=1,2,3).

Finally, the acoustic field becomes

p′n =
iknΩ

4π

∞∑
p=−∞

(
−G(2)

n−pF
D
p x sin θ+

G
(3)
n−pF

R
p x sin θ +G(1)(F T

p (ζ3 − x cos θ)− F (R)
p r′)

)
(2.37)

Using the same assumptions as in the previous section, the model can be applied for
instance to B equally spaced identical blades and the presence of a upstream stator with V
vanes as

p′nB =
iknBΩ

4π

∞∑
p=−∞

(
−G(2)

nB−pV F
D
pV x sin θ+

G
(3)
nB−pV F

R
pV x sin θ +G(1)(F T

pV (ζ3 − x cos θ)− F
(R)
pV r

′)
)
. (2.38)

Equation (2.31) and Equation (2.37) both contain one summation of a set of modes. How-
ever the near-field extension requires computation of the Fourier Transform of the auxiliary
Green’s function, additionally.

2.2. The Continuous Array of Stationary Dipoles

Another modeling strategy to simulate the rotation of the sources of fan tonal noise is using
circular distributions of phase-shifted dipoles. Instead of one single rotating dipole (see
Figure 2.2 (left)), infinite number of but fixed dipoles can be used to reproduce equivalently
the rotation (right). In this methodology, the rotation of the fan is provided by the phase
difference of the dipoles which is directly linked to their azimuthal position, βdipo [88]. Since
it represents a numerical integration of the source field, the integral resolution –the number
of dipoles here– required for an accurate representation also needs being determined.

Assuming the source is acoustically compact in radial direction, the area integral in Equa-
tion (2.12) vanishes. However, since the source will be represented by a continuous distribu-
tion of dipoles, the azimuthal variations of the dipole positions are kept with a radius equal
to r′.

The integral from 0 to 2π can now be replaced by the summation of the dipoles,
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βdipo

Figure 2.2.: Fan source modeling strategies; (left) single rotating dipole, (right) continuous
array of phase shifted dipoles.

∫ 2π

0

dφ′ =
∑
Ndipo

∫ βdipo+
2π

Ndipo

βdipo− 2π
Ndipo

dφ′ (2.39)

where Ndipo is the number of dipoles used. Since the dipole sources are compact in the
azimuthal direction, the azimuthal integral over φ′ is replaced by a summation of the variables
over βdipo. The strength of the phase shifted dipole is related to the initial dipole as

F (βdipo, t) = F

(
0, t− nβdipo

ω

)
. (2.40)

The source strength F (0, t) = |F |e−iωt, where |F | stands for the dipole amplitude. The
force strength of each dipole then becomes

F α
n,dipo =

∞∑
p=−∞

Fα
p e

i(n−p)βdipo . (2.41)

Using the same assumptions described above for a fan containing B equally distributed
blades, the source strength becomes

Fα
nB,dipo =

∞∑
p=−∞

Fα
p e

i(nB−p)βdipo . (2.42)

Similarly, the stator-rotor configuration can be implemented as

F α
nB,dipo =

∞∑
p=−∞

Fα
pV e

i(nB−pV )βdipo (2.43)

where V is the number of upstream stator vanes.
Introducing the source strength to the acoustic pressure formulation, the total acoustic

field of the continuous array of the circular oriented phase shifted dipoles finally becomes

p′nB =
B

Ndipo

∑
Ndipo

p′nB,dipo. (2.44)
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2.3. Acoustic Free-Field Validation

In order to make a comparison between the models described in preceding section, a bench-
mark axial fan is defined including artificial source strengths. The blade surface is consid-
ered as acoustically compact and represented as a point dipole. The fan has 3 uniformly
distributed blades. The fan rotates with a fixed angular speed equal to 1000 rpm with-
out the presence of an upstream stator. The blade loading frequency is then equal to
1000/60 = 16.33 Hz where the blade passing frequency is 50 Hz. The radius of the fan
is selected as 0.5 m making the tip Mach number, Mtip

∼= 0.3. Hence, the low-speed fan
condition is satisfied.

10
2

10
3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

f (Hz)

F
 (

N
)

10
2

10
3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

f (Hz)

F
 (

N
)

Figure 2.3.: Real (left) and imaginary (right) components of the artificial unsteady blade
forces; thrust (plain) and drag (dashed).

Figure 2.3 shows the real and imaginary components of the force strengths of the dipoles
at the blade loading harmonics. As mentioned above, since the radial force is known to be
negligible for axial fans, only the drag and thrust components are taken into account. Thrust
(plain) forces are considered higher than the drag (dashed) forces.
A first comparison is made in the acoustical far-field of the fan. The fan is assumed to

rotate on the xy plane with a rotation axis aligned with the z axis. Observers are located
where the non dimensionlized wavelength, robs/λ ≈ 3 satisfying the far-field condition.
Figure 2.4 shows the directivity at the first BPF on yz, xz and xy planes, respectively. The

plots are the acoustic pressure amplitude at the observer points. Dot symbols represent the
far-field solution obtained with Equation (2.31) where the plain curve represents the near-
field solution using Equation (2.37). Plus represent the circular array of phase shifted dipoles.
In four lines of the figure, 16, 32, 64 and 720 point dipoles are compared, respectively. It is
seen that a convergence is satisfied using 64 stationary point dipoles at all three directions
for the given configuration. It is also seen that solutions (2.31), (2.37) and (2.44) converge
in the far-field since the near-field terms (R2 decay) are negligible.
A second comparison is performed in the acoustical near-field of the fan. The same fan is

considered with observers located where the non dimensionlized wavelength is, robs/λ ≈ 0.3.
Directivities of pressure amplitude in the near-field of the benchmark fan are shown in

Figure 2.5. Dots, solid line and plus represent the far-field solution (2.31), near-field ex-
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Figure 2.4.: Free-field directivities of the low-speed axial fan in its far-field at 50 Hz, observers
located at robs/λ ≈ 3: Solution (2.31) (dot symbols), solution (2.37) (solid line)
and formulation (2.44) (cross symbols). 16, 32, 64 and 720 dipoles are used in
order to represent an equivalent fan source using formulation (2.44).
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Figure 2.5.: Free-field directivities of the low-speed axial fan in its near-field at 50 Hz, ob-
servers located at robs/λ ≈ 0.3: Solution (2.31) (dot symbols), solution (2.37)
(solid line) and formulation (2.44) (cross symbols). 16, 32, 64 and 720 dipoles
are used in order to represent an equivalent fan source using formulation (2.44).
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pression (2.37) and the dipole array formulation (2.44), respectively. A convergence is again
satisfied employing 64 fixed point dipoles in all given directions for the benchmark config-
uration. Solution (2.37) and solution (2.44) converge at the near-field of the fan. However,
for the current observer positions, a deviation is observed with the solution (2.31). The
difference between solution (2.31) and solution (2.37) addresses the effect of the near-field
terms detailed above.

2.4. Conclusion

In conclusion, solution (2.37) provides accurate prediction for the acoustic field of the fan
where the observer is located in its acoustical and geometrical near-field. It is more elegant
than formulation (2.44) since it is an exact solution and does not involve resolution issues,
such as the number of dipoles used in expression (2.44). However, formulation (2.44) is
a useful solution to predict the acoustic field of the fan for complex problems where it is
not possible to obtain an exact analytical closed-form solution. It will be used for sound-
scattering problems to define the equivalent fan tonal source in the following chapter.
Furthermore, solution (2.31) may be useful where the observer is located at the far-field

of the fan. Since it does not require the computation of the Fourier components of the
Green’s functions as in the near-field solution (2.37), it provides a faster prediction in terms
of computation time.
As a result, depending on the configuration of the problem, the tonal acoustic free-field

response of a low speed axial fan can be predicted by choosing a method described above.
These methodologies will be extended in order to compute the scattered field of the tonal
fan noise in the following chapter.





Chapter 3.

Tonal Fan Noise Scattering

This chapter deals with numerical and analytical acoustic scattering techniques and their
applications to low-speed fan noise. A numerical approach based on the solution of the
Helmholtz equation, called Boundary Element Method (BEM) is first introduced. The
scattered acoustic field of a ducted axial fan is computed using the closed-form fan noise
formulation combined with the BEM approach. Both far and near-field formulations are
investigated. The results are compared with experiments.
In a second step, two analytical methods are introduced for relatively simple scattering

geometries; an infinite plane and an infinite corner. Both methods are compared with the
numerical solutions based on the BEM approach, as an introduction to scattering by non-
axisymmetric surfaces.

3.1. Introduction

In most industrial applications, the acoustic waves generated by a fan are reflected and
scattered due to installation effects [94, 105]. The acoustic free-field condition assumption
then becomes invalid and the scattered acoustic field of the fan needs being taken into
account. Several methods have been proposed to deal with the scattered acoustic field
problems based on analytical, empirical and numerical models [35, 93, 79, 71].
As mentioned in the previous chapter, the acoustic free-field of a low-speed axial fan can

be predicted by exact closed-form analytical formulas [47, 108]. However, computing the
scattered-field of the sound emitted from a fan source in an exact analytical solution only
exists for a very limited number of acoustic problems, involving scattering structures with
simple geometrical shapes. Prediction of reflected and scattered acoustic waves emitted
from an axial fan by a large flat plate is one of the simple problems that could be solved
analytically [103]. Additionally, a low-speed axial fan operating in the vicinity of a rigid
corner is also addressed analytically using the Green’s function of a corner [83] and the
description in terms of a continuous array of stationary dipoles [88]. Possible applications
for this problem could be the scattering of the noise generated by a cooling unit located on
the top of a locomotive from the point of view of one side of the locomotive, or a small wind
turbine located on the top of a building and its scattered-field by the building itself. For
complex configurations approximate solutions of the Helmholtz equation can be obtained
using the associated boundary conditions with numerical techniques.

3.2. Numerical Acoustic Scattering Techniques

The most popular numerical approach dealing with engineering problems based on solution
of the partial differential equations is the Finite Element Method (FEM) [21]. In acoustical
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perspective, it is based on the solution of the Helmholtz equation in a domain with a set
of boundary conditions. A derivation of the FEM approach can be found in the related
references [58].

Even though it is the most common approach to deal with scattered acoustic fields, FEM
has some disadvantages [35, 36].

- Generally, the entire domain needs being discretized in FEM in order to solve the nu-
merical model [9], therefore it is restricted to bounded, so-called interior, acoustic domains.
Several schemes have been suggested to extend the FEM algorithm in order to solve exterior
acoustic problems, which contain unbounded acoustic domain. They are mainly based on
construction of an artificial surrounding surface and using impedance boundary conditions
[31], damping elements [13, 12] or infinite elements [3] on this surface.

- In principle, at least 10 elements per acoustic wavelength are required in order to obtain
an accurate prediction [35]. The required number of elements will increase as frequency
increases, since the acoustic wavelength decreases. Additionally, since FEM requires the
entire volumetric domain discretizated, the number of equations to be solved and the model
size will increase [9]. Therefore, larger domains and higher frequencies are more challenging
and they require a large amount of memory and computational sources for constructing and
solving the problem [35].

- Predictions of secondary field variables such as fluid velocities are obtained by a derivation
of the primary field variables, the acoustic pressure for example. The primary variables are
usually expressed in terms of polynomial expansions up to some order, hence the derived
variables are expressed only up to a lower order [35]. The prediction accuracy for derived
secondary variables is therefore smaller than the one for primary field variables [36].

3.3. Boundary Element Method (BEM)

In the field of linear acoustics, the Boundary Element Method (BEM) is an important alter-
native to the FEM [63]. BEM is based on the solution of the unknown boundary variables on
the bounding surface. The rest of the acoustic domain is then computed as a post-processing
step [9]. BEM can therefore handle problems with unbounded, so-called exterior, acoustic
domains easily. Additionally, since only the boundary surface of the acoustic domain is dis-
cretized into elements, the size of boundary element models is substantially smaller that that
of finite element models [63, 9]. Beside its benefit on solving unbounded problems, BEM has
additional advantages.

- Since only the boundary of the domain is considered, BEM significantly reduces the
mesh generation effort for the numerical domain [9]. However, construction of these mod-
els requires a considerable amount of computational effort, since the matrices in acoustic
boundary element models are fully populated and complex [35, 34].

- The secondary variables are derived from the boundary integral formulations in BEM.
Since an analytical expression is available for Green’s kernel function, the differentiation of
the boundary integral formulations involves no additional accuracy loss for the secondary
variables in comparison with the accuracy for the primary predictions [34].

In the benchmark configurations investigated in this chapter, the fan source is located in
unbounded acoustic domain in the presence of scattering obstacles. Since only the boundary
surface of the acoustic domain is discretized into elements for BEM, it is a more suitable
scattering technique for such configurations. Its benefit includes reducing the time spent for
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both mesh preparation and computation of the numerical problem, compared to the FEM
approach [63].
The Boundary Element Method follows a two-step procedure in which scattering surfaces

are interpreted as secondary sources [34]: In the first step, the boundary variables are deter-
mined. In the second step, using the boundary surface results of the first step, the acoustic
field variables are obtained from the boundary integral formulation.

3.3.1. BEM Theory

Depending on the boundary type of the fluid domain, the BEM model can be defined as
interior or exterior. BEM is capable of handling both acoustic problems. The benchmark
configurations addressed in this section are exterior acoustic problems, therefore only the
unbounded BEM definition is considered [59].
Exterior acoustic problems can be grouped in two sets, with a closed boundary surface

and with an open boundary surface. An exterior acoustic problem with an open boundary
surface maybe regarded as a special case of an exterior problem with a closed boundary
by considering both sides of the open boundary surface as two separate parts of a closed
boundary surface such as Ωa = Ω+

a ∪Ω−
a . The positive/negative sign of Ω corresponds to the

positive/negative orientation of the surface normal, n as shown in Figure 3.1.
For inhomogeneous acoustic problems, such as when non-zero external source distribution

F is applied –unsteady blade forces here–, the total acoustic pressure field ptot may be
regarded as the superposition of a so-called homogeneous (scattered) pressure field pscat and
an inhomogeneous (incident) free-field pressure pinc,

ptot = pinc + pscat. (3.1)

In a fluid domain V (see Figure 3.1), the steady-state acoustic pressure pinc due to a time-
harmonic external source distribution F at a location (x, y, z) at angular frequency ω = 2πf
is governed by the Helmholtz equation,

∇2pinc(ω, x, y, z) + k2pinc(ω, x, y, z) = −iρ0ωF (ω, x, y, z) (3.2)

where k = ω/c0 is the acoustic wave number. For the scattering problems including a fan
source, the incident pressure addresses the free-field solution of the fan noise, as defined in
Equations (2.31) and (2.37). The homogeneous pressure field pscat is defined as the solution
of the homogeneous Helmholtz equation

∇2pscat(ω, x, y, z) + k2pscat(ω, x, y, z) = 0. (3.3)

In order to obtain a unique solution of the pressure field in domain V , the boundary
conditions must be specified at any position of the boundary surfaces of the domain, such
as pressure, p, normal acoustic velocity, v, and normal impedance, Z. The parameters
must be specified at each position of the boundary surface of the domain. Decomposing
Ω+
a = Ω+

p ∪ Ω+
v ∪ Ω+

Z and Ω−
a = Ω−

p ∪ Ω−
v ∪ Ω−

Z , the boundary conditions for the imposed
pressure then read

p = p̄, on Ω+
p (3.4)

p = p̄, on Ω−
p . (3.5)
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n
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V + V −

rra

Ω∞

Figure 3.1.: Sketch of the BEM problem

Similarly, the boundary conditions for the imposed normal velocities and for the imposed
normal impedances are defined as

i

ρ0ω

∂p

∂n
= v̄n, on Ω+

v (3.6)

i

ρ0ω

∂p

∂n
= v̄n, on Ω−

v (3.7)

p =
iZ̄+

ρ0ω

∂p

∂n
, on Ω+

Z (3.8)

p =
iZ̄−

ρ0ω

∂p

∂n
, on Ω−

Z . (3.9)

The acoustic pressure field in the unbounded domain V must satisfy the Sommerfeld
radiation condition [35] for large values of r,

lim
|r|→∞

|r|
(
∂p

∂|r|
+ ikp

)
= 0. (3.10)

Since the incident pressure field pinc may be obtained via an analytic solution using the
source distribution F as a combination of acoustic point sources, as shown in Chapter 2, a
numerical solution is needed only for the homogenous subproblem. Equation (3.3) can be
solved using Green’s second identity,∫

V

(
φ∇2ψ − ψ∇2φ

)
dV =

∫
Ωs

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dΩ. (3.11)

Assuming thin boundary surfaces, the boundary integral equation becomes,

p(r⃗) =

∫
Ωa

(
(p+(r⃗a)− p−(r⃗a))

∂G(r⃗, r⃗a)

∂n
−G(r⃗, r⃗a)

(
∂p+(r⃗a)

∂n
− ∂p−(r⃗a)

∂n

))
dΩ(r⃗a). (3.12)

The single layer potential, σ(r⃗a), is the difference in normal pressure gradient between
both sides of the boundary surface Ωa
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σ(r⃗a) =
∂p+(r⃗a)

∂n
− ∂p−(r⃗a)

∂n
(3.13)

which can also be regarded as the monopole sources on the boundary surface. Similarly, the
double layer potential, µ(r⃗a), is the pressure difference between both sides of the boundary
surface

µ(r⃗a) = p(r⃗+a )− p(r⃗−a ) (3.14)

and represents a distribution of equivalent dipole sources on the boundary surface.
Combining Equations (3.12), (3.13) and (3.14), the boundary integral equation becomes

[34],

p(r⃗) =

∫
Ωa

(
µ(r⃗a)

∂G(r⃗, r⃗a)

∂n
− σ(r⃗a)G(r⃗, r⃗a)

)
dΩ(r⃗a). (3.15)

Formulation (3.15) is known as the indirect boundary integral equation [59]. The term ’in-
direct’ indicates that the boundary variables such as monopoles and dipoles on the boundary
surface do not represent any direct physical quantity of the acoustic pressure field.
As in the FEM approach [36], the boundary surfaces are discretized into small patches

called ’boundary elements’. Acoustical nodes are then located on the surface of elements.
The most common types of elements are known as triangular and quadrilateral element and
the nodes are located at the corners of each element. In the following problems considered
in this chapter, only the quadrilateral elements are used.
In each element, the distribution of the single and double layer potentials are approximated

in terms of a number of prescribed shape functions. The details of computing the shape
functions are not addressed in this thesis. The reader is referred to technical notes [34, 58]
for a detailed derivation of the BEM formulation and the geometrical quantities. Once the
single and double layer potentials are determined, the pressure field in the domain is obtained
using the boundary integral equation above.

3.3.2. Application to a benchmark ducted fan

Combining the tonal fan noise prediction methods mentioned in Chapter 2 and the Boundary
Element Method described above, the scattered acoustic field of a low-speed axial fan can
be computed. In order to make a comparison, a low-speed benchmark axial fan with B = 6
blades has been selected [69] in the scope of the IWT Project CAPRICORN. The fan is
operated downstream of 5 guide vanes. The rotational speed is fixed to N = 1600 rpm. The
tip and hub radii of the blades are selected as 0.2m and 0.05m, respectively. The tip Mach
number is then around 0.1, satisfying the low Mach number axial fan condition, M ≪ 1.
The Blade Passing Frequency (BPF) and Blade Loading Harmonics (BLH) for the current

configuration are then computed as

BPF =
NB

60
= 160 Hz (3.16)

BLH =
NV

60
= 133.33 Hz.

The Ffowcs Williams and Hawkings approach [40, 47, 108] detailed in Chapter 2 is very
useful, since the source field is restricted only to the blade surfaces. In order to define the
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Figure 3.2.: Flowchart of the application of the hybrid approach to the tonal fan noise
problem.

blade loading forces, an unsteady CFD simulation is required, such as Large Eddy Simulation
(LES) [104], Unsteady Reynolds Averaged Navier Stokes (URANS) [132] or Non-Linear
Harmonic (NLH) [126] models. Figure 3.2 shows the flowchart of the validation model. In
this validation problem NUMECA provided the CFD data for one single blade of an axial
fan which is calculated with an NLH model in frequency domain [69]. A snapshot of the
blade loading pressure amplitude at the 5th BPF is shown in Figure 3.3.

The LMS software Virtual Lab. and the solver Sysnoise are used in order to defined the
fan source case and solve the BEM problem [59]. Unsteady blade loadings provided are
imported in Virtual Lab. within the .CGNS format. A fan source set is created in an
external Virtual Lab. Analysis file where the effect of number of blades, guide vanes, radius
and the rotational speed are defined. For reader’s information, the fan source model used in
the Virtual Lab. is based on the rotating dipole formulation.

The imported unsteady pressure distribution on the blade surface is first integrated and
the entire blade is reduced to a point dipole. This assumption is only valid if the blade is
acoustically compact at the frequency of interest [41], BPF or higher harmonics in the tonal
fan noise case. If the compactness condition is not satisfied for the blade surface, the blade
surface can be split into spanwise (or chordwise) compact segments and separate fan sources
are then defined for each segment [108, 59]. Although applying segmentation multiplies
the computation time by the number of segments, it provides a better representation of the
blade geometry for the integration of the surface pressure and it is required in order to ensure
acoustic compactness. In the validation model, the blade is split into two spanwise segments
[69] so that the aspect ratio of segments is around 1. Figure 3.4 shows the integrated blade
loading harmonics for two segments. Plain and dashed represent drag and thrust forces
applied on the blade surface, respectively. The thin line stands for the segment close to
the tip of the fan. The ratio of the thrust and drag components is seen to be around two.
Using the given source strengths, the tonal fan noise formulation is then applied to both
segments. Both far-field and near-field fan noise models implemented in the solver are used
in the comparison [59].

Figure 3.5 shows pictures of the fan and the duct geometry imported in Virtual Lab.
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Figure 3.3.: Snapshot of the blade loading pressure amplitude at the 5th BPF.

The fan is located 0.2m downstream of the duct inlet. The two segmented fan sources
(yellow circles) can be seen in the duct. The acoustic scattering by the guide vanes is
neglected in computations. Due to the periodicity of the CFD problem, the flow field is
solved around single rotor blade in the NLH technique [126]. The 3-Dimensional duct model
is then obtained by revolving the nodes provided by the CFD mesh. The acoustic mesh is
then created using the resulted surfaces.

Due to the finite structure of the duct and the presence of the hub, it is not possible to use
exact analytical scattering techniques such as based on propagating duct modes [101, 125].
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Figure 3.4.: Integrated blade loading forces, thrust (dashed) and drag (plain) over fan blade
for two segments. Thick; segment close to the hub, thin; segment close to the
tip.
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Figure 3.5.: Numerical representation of the benchmark ducted fan validation case; (left)
duct and rotor, (right) distribution of upstream field points. (Snapshot taken
from Virtual Lab.).

It is therefore required to solve the problem numerically. Since the field points are located in
the unbounded fluid domain, BEM is a suitable method to compute the scattered acoustic
field for the current ducted fan configuration [35]. Hence, only the meshes of the duct
and hub surfaces are enough for the BEM model. The final acoustic mesh contains 27100
hexagonal acoustic elements. The size of elements close to the rotation plane is decreased in
order to keep the sufficient distance-element size ratio in order to prevent numerical errors
in the BEM formulation [34].
A first comparison is performed using the unsteady blade forces provided for the fan oper-

ating in the duct but assuming the fan is operating in free-field for the acoustic propagation.
Although it is not a realistic prediction of the noise generated by the fan, since the effect
of the duct was already taken into account in the aerodynamic computations, it is a good
exercise to compare the effect of the near-field terms up to the far-field of the fan. Figure 3.6
shows the distribution of the sound pressure level for both analytical approaches at a mi-
crophone array located upstream of the fan. The acoustic field is plotted in dBs. The array
consists of 441 microphones covering 1m× 1m area. The array is oriented symmetrically in
a lateral plane (yz-plane) starting from 0.25m upstream of the fan center (see Figure 3.5).
Both far-field solution (2.37) and near-field formulation (2.31) are compared with the selected
field point configuration. Since the unsteady pressure field on the rotor blades is triggered
by five upstream guide vanes, the 5th BPF becomes dominant [125]. Therefore the results at
the 5th harmonic, f = 800Hz, are focused on. It is seen that both methods provide similar
results, with only differences up to 1 dB at all the considered field point locations. The
near-field terms become negligible since field points are located somewhat in the far-field of
the fan where l/λ varies from 0.6 to 3.
In a second step, an exact comparison is performed using the same unsteady blade forces

provided for the fan operating in the duct but including the duct geometry in the acoustic
field computations. Figure 3.7 shows the distribution of the total sound pressure level on the
same microphone array for both simulations based on the far-field and near-field incident
pressure, respectively. Now, the difference between both predictions reaches 30 dB, proving
that the effect of the near-field terms in the scattered-field computations is essential.
Series experiments have been performed in Vrije Universiteit Brussel (VUB), for the same

ducted fan configuration [69]. The acoustic measurements are taken on the same microphone
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Figure 3.6.: Computed free-field response of the fan at 5th BPF at observers located at
l/λ = 0.6 to 3. Results obtained using (left) far-field formulation (2.31), (right)
near-field formulation (2.37).

array in the presence of the duct. Figure 3.8 (left) shows the measured sound pressure level
for the microphone array at the 5th BPF. The order of magnitude of the sound pressure
levels shows a fair agreement with the ones obtained with the near-field tonal fan noise
formulation combined with the BEM approach compared with the ones obtained with the
far-field ones.

In order to compare all three estimations, the directivity at l/λ ≈ 1.2 upstream of the
fan center is plotted in Figure 3.8 (right). The far-field solution (2.31) (dashed) is found to
underpredict the acoustic field by 30 dB. The far-field consideration is not an accurate as-
sumption for the current model since the near-field terms in the scattered-field computations
are not negligible anymore. In contrast, the difference between the measurements (dots) and
the near-field fan formulation (2.37) combined with BEM (plain) is less than 5 dB for the
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Figure 3.7.: Computed total acoustic field of the ducted fan at 5th BPF at observers located
at l/λ = 0.6 to 3. Results obtained using (left) far-field formulation (2.31),
(right) near-field formulation (2.37) combined with BEM.
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Figure 3.8.: Measured acoustic field of the ducted fan at 5th BPF at observers located at
l/λ = 0.6 to 3 (left). Directivity at l/λ ≈ 1.2 far-field solution (2.31) (dashed),
near-field formulation (2.37) (plain), and measurements (symbols).

given observer locations. The near-field formulation combined with the BEM approach is
therefore a useful tool to predict the scattered acoustic field of a low-speed axial fan.

Since BEM approach is based on the boundary integral equation, it can be applicable to
complex geometries. It is also useful for both bounded and unbounded domains. However,
BEM is a suitable model for low frequency problems [35]. At higher frequencies of interest,
the number of boundary elements increases dramatically in the order of 10 elements per
wavelength [34]. It is then not useful to employ BEM for such applications. For high
frequency problems where the scattering geometry is relatively simple, analytical solutions
can be useful since the wavelength is much smaller compared to the size of the scattering
obstacle.

Therefore, at high frequencies and for simple geometries such as an infinite plane [103],
semi-infinite plane [39] or finite wedges [101], exact analytical scattering solutions can be
useful to predict the scattered acoustic field.

3.4. Reflection from an Infinite Plane

The most basic scattering concept is the reflection of acoustic waves by idealized rigid, planar
and infinite extent surfaces such as plain walls. Only simple considerations are needed to
take a large plane into account when the wavelength λ is much smaller than the length of
the scattering obstacle, λ≪ l.

The common concept is to replace the original boundary-value problem of source-wall
configuration by the primary source plus the additional image source but without the wall.
The image source is the mirror image of the primary source in all respects [101]. The concept
is called the method of images. As seen in Figure 3.9, if the wall corresponds to the plane
z = 0 and the original source is located at (x, y, h), the image source must be located at
(x, y,−h). If a dipole source force strength is (Fx, Fy, Fz), the image source must have
(Fx, Fy,−Fz) components. This theory can be applied to various types of sources such as
monopole, dipole and arrays typical of a fan. The mirror symmetry of the boundary-value
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Figure 3.9.: Sketches of the method of images for monopole, dipole and fan noise sources

problem of the original and image sources without the wall doubles the incident pressure
on the wall surface and requires the normal component of the acoustic velocity to vanish in
the wall plane. The boundary condition appropriate to the original problem is then satisfied
with the no wall problem.
As a test case, an axial fan operating parallel to a large rigid flat plate is considered.

This problem can be dealt with two methods, the numerical approach described in the
Section 3.3 and the exact analytical solution using an image fan. An open rotor, without
any upstream stator vanes, with 10 equally spaced blades is selected. The rotational speed
is chosen as 3000rpm. The fan radius and the distance of the rotation plane to the wall
are fixed to r = 0.1 and z = 0.2m, respectively. The tip Mach number is then around 0.1,
satisfying the low Mach number fan condition. The artificial source strengths defined in
Section 2.3 are used for the test case with the same amplitude but with a change in the
frequencies, since the blade loading harmonic frequency for the current configuration is now
N/60 = 50 Hz (see Figure 3.10). The wavelength at the first BPF, f = 500 Hz, is then equal
to λ = c0/f = 0.68m.

The size of the flat plate is selected as 3.5λ × 3.5λ in order to minimize the effect of the
scattering from the free edges. The size of the plate is also limited since the element size used
in the BEM model must be at most 1/10 of the acoustic wavelength [35]. 3600 quadrilateral
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Figure 3.10.: Thrust (plain) and drag (dashed) forces applying on the fan source; real (left)
and imaginary (right).
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Figure 3.11.: Directivities at ∼= 1.5λ at f = 500 Hz; (left) free-field for primary (plain)
and the image fan (dash dot), and (right) scattered field: formulation (2.37)
combined with BEM (symbols) and image model (plain).

acoustic boundary elements are used in order to represent the finite plate in Virtual Lab..
Using a larger plate with more acoustic elements would provide a closer approach to the
image model but would require higher computational resources to handle large matrices.
Figure 3.11 (left) shows the acoustic free fields of the primary (plain) and the image

fans (dash dot) r ∼= 1.5λ above the primary fan for the first BPF. The near-field formula-
tion (2.37) is used for the consistency of the comparison. It is seen that the acoustic field
of two sources alike symmetric since the image source is the mirrored original source. The
amplitude obtained from the image source is also slightly lower than the original one, since
the propagation distance to the observer is higher. The comparison of the analytical and
numerical scattered-field approaches is seen in Figure 3.11 (right). Symbols represent the
near-field fan noise formulation (2.37) combined with the BEM model computed in Virtual
Lab. [59]. The continuous line represents the near-field tonal fan noise formulation combined
with the image model, summing the primary and image sources. A very good agreement is
observed between the analytical and numerical approaches. It is also seen that the effect of
the free edges is negligible, and the infinite plate assumption can be made for the current
plate at the given frequency.
The acoustic field of the fan operating in the vicinity of a large rigid flat plate is shown

to be predicted accurately with an exact analytical solution, replacing the numerical mesh
with an image fan. However, the image method can be applied to a very limited number of
scattering applications. For relatively more complex geometries, other analytical methods
have to be considered.

3.5. Scattering by a Rigid Corner

The solution of the diffraction of sound waves by a rigid wedge is a more complex problem
to deal with compared to the reflection by a large flat plate. An exact analytical solution
is possible using the image sources for limited wedge angles, ϕ. When the wedge index,
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ϕ = π/3
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Figure 3.12.: Sketch of the ϕ = π/3 wedge with 5 image sources.

vϕ = π/ϕ, is an integer and for angles making vϕ > 1/2, it is possible to replace the wedge
with 2vϕ − 1 image sources [101].
Figure 3.12 shows a sketch of the wedge with the angle ϕ = π/3. The walls can then be

changed with 2 · π/ϕ− 1 = 5 image sources. The total acoustic pressure is now equal to the
summation of the original and the 5 image sources.
A comparison is performed with a monopole located inside a wedge whose apex angle is

ϕ = π/3. Table 3.5 shows the positions of the primary source and the image monopoles. ϕ
and ϕs represent the wedge angle and the source angle, respectively. rs is the distance to the
wedge center. For a monopole, the source and image monopoles have the same phase as seen
in Figure 3.9. However, for a dipole source, an additional column for the phase is needed to
be included since the orientation of the dipole is required to be taken into account.
Acoustic wave scattering by a rigid wedge is solved with both the image principle and

the BEM approach using LMS software Virtual Lab. In the BEM model, the wedge is
represented with an acoustic mesh containing 7200 acoustic elements. The field points are
located on a circle which is defined from the wedge center with a radius of 3λ, at f = 1000 Hz.
The source is located at rs = 1.5λ and ϕs = π/8. The monopole strength is selected as
qs = 0.01 + i0.01kg/s2 .
Figure 3.13 shows the directivity of the acoustic field of a point monopole scattered by a

ϕ = π/3 wedge. The primary and image sources are sketched as plain and dashed circles,
respectively. The plain and symbols represent the BEM model and the image model, respec-
tively. A fair agreement is observed when comparing analytical and numerical directivity

Table 3.1.: Position of the Source and Image monopoles

Name Radius Angle Strength
Primary rs ϕs qs
Image1 rs 2ϕ− ϕs qs
Image2 rs 2ϕ+ ϕs qs
Image3 rs 4ϕ− ϕs qs
Image4 rs 4ϕ+ ϕs qs
Image5 rs 2π − ϕs qs
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Figure 3.13.: Directivity of a monopole located nearby a ϕ = π/3 wedge at f = 1000 Hz;
source located at rs = 1.5λ and ϕs = π/8, with observer radius of 3λ.

predictions. The differences up to 2 dB between both methods are attributed to effects of
the free-edges for the finite wedge geometry considered in the BEM model. The test shows
that the source-wedge problem can be easily handled with the image source model. However
the image method is limited with certain wedge angles. For the corner case, the wedge index
is not an integer, vϕ = π/(3 · π/2) = 2/3. Therefore, the image method is not applicable
anymore.
Another analytical approach proposed here is to treat the scattering problem as a boundary-

value problem. A Green’s function is derived for the Helmholtz equation with the proper
boundary conditions. The derivation must satisfy the rigid-wall boundary condition on the
wedge surface and Sommerfeld radiation condition at large distances from the source. The
Green’s function of the Helmholtz equation around a wedge has been derived first by Mac-
Donald [83]. Spherical coordinates are used in the derivation. As seen in Figure 3.14, the
source and observer coordinates are (rs, ϕs, θs) and (ro, ϕo, θo), respectively. Initial Macdon-
ald’s formulation assumed that the source is located in the mid-plane of the rigid wedge,
making θs = π/2.
The Green’s function of a wedge with an apex angle ϕ is

G(rs, ro) =
2π

ϕ

∞∑
k=0

∞∑
m=0

ε2m
′
(2m′ + 4k + 1)e(m

′+2k+ 1
2
) 1
2
πir

− 1
2

o r
− 1

2
s Jm′+2k+ 1

2
(κr<)

Km′+2k+ 1
2
(iκr>) cos(kπ)

Π(m′ + k − 1/2)

Π(k)Π(−1/2)
P−m′

m′+2k(µ) cos(
mπϕo
ϕ

) cos(
mπϕs
ϕ

)

(3.17)

where ε is 1 for m = 0 and 2 for m > 1 [101]. 0 < ϕ < 2π and m′ = mπ/ϕ. P−m′

m′+2k stands for
the general Legendre functions. Jν is the Bessel function of the first kind and of order ν. Kν

is the modified Bessel function. Corresponding expressions with r> and r< interchange with
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Figure 3.14.: Sketch of the wedge, source and observer positions defined in spherical
coordinates

the definition of the source and observer positions, r> = max(rs, ro) and r< = min(rs, ro).
κ is equal to 2π/λ.
Mel’nik and Podlipenko [84] also proposed an expression for the scattering by a wedge

with soft walls for arbitrary source locations, as

G(rs, ro) =
iκ

ϕ

∞∑
m=1

sin(m′ϕs) sin(m
′ϕo)

∞∑
n=0

(2(n+m′) + 1)
Γ(n+ 2m′ + 1)

Γ(n+ 1)

P−m′

m′+n(cosθs)P
−m′

m′+n(cosθo)jm′+n(κr<)h
(1)
m′+n(κr>) (3.18)

where jν and h
(1)
ν are the spherical Bessel and Hankel functions of the first kind and of order

ν, respectively. The spherical functions are related to the cylindrical Bessel, Jν , and Hankel,
Hν , functions via

jm′+n(κr<) =

√
π

2κr<
Jm′+n+1/2(κr<) (3.19)

h
(1)
m′+n(κr>) =

√
π

2κr>
H

(1)
m′+n+1/2(κr>). (3.20)

The definition of the Green’s function according to MacDonald starts from a free-field
radiation expressed as ei(ωt−kR)/R which does not involve the factor 4π in the denomina-
tor. This and a different choice of the convention for the Fourier transform in Mel’nik and
Podlipenko’s model explains the complex conjugate and the different amplitude between two
approaches. It must be noted that the Hankel function of the first kind ensures outgoing
waves if the time dependence is assumed as e−iωt [129].
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Formulation (3.18) considers the scattered field by soft boundary surfaces whereas formu-
lation (3.17) is derived for the hard boundary surfaces. Hence, the Green’s function satisfying
the condition of normal derivatives at the boundaries relevant for a wedge with rigid walls,
is obtained by changing the sine functions for cosines as in Equation (3.17).
Combining both derivations, the Green’s function of a rigid wedge for arbitrary source

and observer positions then becomes

G(rs, ro) =
−πi

4ϕ
√
rsro

∞∑
m=0

ε cos(m′ϕs) cos(m
′ϕo)

∞∑
k=0

(2m′ + 4k + 1)
Γ(2m′ + 2k + 1)

Γ(2k + 1)

P−m′

m′+2k(cos θs)P
−m′

m′+2k(cos θo)Jm′+2k+1/2(κr<)H
(1)
m′+2k+1/2(κr>).

(3.21)

The geometrical expansion of the Legendre function Pm′

m′+k(cos θ) [1]

P−m′

m′+2k(cos θ) =
21−m

′
(sin θ)−m

′

√
πΓ(1/2−m′)

∞∑
n=0

Γ(n+ 1/2−m′)Γ(2k + n+ 1)

Γ(n+ 1)Γ(2k + n+m′ + 3/2)
sin[(2n+1+k)θ] (3.22)

is used for the computations.
Formulation (3.21) is a general solution for acoustic diffraction by a wedge. Replacing the

wedge angle ϕ with 3π/2 gives the specific case of a corner. Equation (3.21) then becomes

G(rs, ro) =
−i

6
√
rsro

∞∑
m=0

ε cos(2mϕs/3) cos(2mϕo/3)
∞∑
k=0

(4m/3 + 4k + 1)
Γ(4m/3 + 2k + 1)

Γ(2k + 1)

P
−2m/3
2m/3+2k(cos θs)P

−2m/3
2m/3+2k(cos θo)J2m/3+2k+1/2(κr<)H

(1)
2m/3+2k+1/2(κr>).

(3.23)

with

P
−2m/3
2m/3+2k(cos θ) =

21−2m/3(sin θ)−2m/3

√
πΓ(1/2− 2m/3)

∞∑
n=0

Γ(n+ 1/2− 2m/3)Γ(2k + n+ 1)

Γ(n+ 1)Γ(2k + n+m′ + 3/2)
sin[(2n+ 1 + k)θ]. (3.24)

In the implementations of Equation (3.23), a number of terms included in the series must
be decided. It is observed that the series converge easily for any observer positions but for
the ones where lim |rs − ro| → 0. The multiplication of the Bessel and Hankel functions does
not converge for the observer radii close to the source radius. This was avoided using a first
order interpolation between two observer locations |rs − ro| = ϵ, where ϵ is an arbitrarily
small number.
Equation (3.23) is the exact solution for the acoustic waves scattered by a sharp rigid

corner. It was also shown by Crighton, that the rigid corner theory remains unchanged if
the corner is smoothed out over any distance that is small compared to the wavelength at
the frequency of interest [32]. Formulation (3.23) will then be used to predict the scattered
acoustic field of sources located near a rigid corner. For simplicity, a point monopole located
on a corner will be investigated first. The theory will then be extended to a point dipole
and finally it will be applied to a source representative of a fan.
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3.5.1. Scattered-field of a monopole

Once the Green’s function is derived for a particular geometry, the acoustic field can then
be computed for harmonic sources. The acoustic field of a point monopole located next to a
rigid corner is investigated first, knowing that the total acoustic field of a monopole is equal
to

p(ω, r) = G(rs, ro)q(ω) (3.25)

where q(ω) is the source strength of the point monopole.
In order to compute the scattered acoustic field, a point monopole is located (1.5λ, π/2, π/16)

with respect to the origin of the rigid corner. The frequency is selected as f = 10 kHz. Fig-
ure 3.15 shows instantaneous snapshots of the real part of the Green’s function for arbitrary
source strength. The motion of the wave patterns is obtained by the multiplication with
the factor e−iωt. Different plots refer to different propagation times. The illuminated and
shadow zones can be seen clearly in the figure, the intermediate grey standing for the zero
fluctuation. In particular, sound extinction is found here along an oblique direction, due to
interference between the direct and scattered fields.
A second test is performed in order to check the accuracy of the analytical method. As

mentioned above, the BEM theory is able to handle scattered field problems for unbounded
domains. The same monopole-corner problem can therefore be solved with the BEM ap-
proach. A similar source-corner configuration is used. However, since BEM requires at least
10 elements per wavelength, in order to solve the problem in a reasonable time, the com-
putations are performed at lower frequencies. Two frequencies are then tested, 500 Hz and
1 kHz. The harmonic monopole source is located at (0.75λ, π/2, π/16) at f = 500 Hz with
a strength of q(ω) = (0.01 + i0.01)kg/s2.
In order to minimize the effects of the free edges, a corner is built by associating two

7λ× 7λ flat plates at f = 500 Hz in the BEM model. Total number of acoustic elements is
then equal to 7200. The size of the quadrilateral elements, l ≈ 0.06λ, is satisfying the BEM
criteria mentioned above [34].
Figure 3.16 shows the directivities of the monopole-corner configurations at both frequen-

cies. The radius of the field point mesh is selected as 3λ at f = 1 kHz. The sound pressure
levels are plotted in dBs. Analytical and BEM results are represented as lines and symbols,
respectively. A very good agreement is observed at both frequencies. The difference for all
the directions is less than 1 dB. It may be related to the scattering of the waves from the
free edges of the acoustic mesh.
It appears that the scattered field of a point monopole by a rigid infinite corner can be

computed accurately with the analytical model. Multiple monopoles can be summed up if
needed. However, for a point dipole, a specific development is more appropriate, derived in
the following section.

3.5.2. Scattered-field of a dipole

The theory can be extended to a point dipole using the same Green’s function defined above.
The radiation field of a point dipole is related to the gradient of the Green’s function with
respect to the source coordinates:

p(ω, r) = ∇G(rs, ro) · F(ω), (3.26)
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Figure 3.15.: Snapshots of the contour plots of the real part of the Green’s function of a
monopole nearby a rigid corner at f = 10 kHz. The monopole is located at
(1.5λ, π/2, π/16).

where F(ω) is the source strength of the point dipole.
The gradient of the Green’s function defined by Equation (3.21) is

∇G(rs, ro) =
[
∂

∂rs
ers +

1

rs

∂

∂ϕs
eϕs +

1

rs sin θs

∂

∂θs
eθs

]
G(rs, ro). (3.27)

The first component on the right hand side, ∂G(rs, ro)/∂rs is

∂G(rs, ro)

∂rs
=

πi

4ϕ
√
ro

∞∑
m=0

ε cos(m′ϕs) cos(m
′ϕo)

∞∑
k=0

(2m′ + 4k + 1)

P−m′

m′+2k(cos θs)P
−m′

m′+2k(cos θo)
∂

∂rs

(
−1
√
rs
Jm′+2k+1/2(κr<)H

(1)
m′+2k+1(κr>)

)
.

(3.28)

Since the gradient is taken at the source position, two different expansions result depending
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Figure 3.16.: Scattered-field directivity of a monopole by a rigid corner; analytical solution
(line) and BEM results (symbols) at f = 500 Hz (left) and f = 1 kHz (right) for
monopole position (0.75λ, π/2, π/16) and observer distance 1.5λ at f = 500 Hz.

on the observer locations. For observer positions rs < ro, the last term on the RHS of the
equation reads,

∂

∂rs

(
−1
√
rs
Jm′+2k+1/2(κrs)H

(1)
m′+2k+1(κro)

)
= H

(1)
m′+2k+1/2(κro)

−1
2
√
rs[

−1
rs
Jm′+2k+1/2(κrs) + κ

[
Jm′+2k−1/2(κrs)− Jm′+2k+3/2(κrs)

]]
. (3.29)

At other observer locations, where rs > ro the derivative reads

∂

∂rs

(
−1
√
rs
Jm′+2k+1/2(κro)H

(1)
m′+2k+1(κrs)

)
= Jm′+2k+1/2(κro)

−1
√
rs[

−1
rs
H

(1)
m′+2k+1/2(κrs) + κ

[
i csc[(m′ + 2k + 1/2)π](A1 − A2)

]]
(3.30)

where A1 and A2 are defined as

A1 = e−(m′+2k+1)π
(
Jm′+2k−1/2(κrs)− Jm′+2k+3/2(κrs)

)
(3.31)

A2 = J−m′−2k−3/2(κrs)− J−m′−2k+1/2(κrs).

Taking the derivative in the ϕs direction, the second component of Equation (3.27) writes



40 Chapter 3. Tonal Fan Noise Scattering

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

y / λ

z 
/ λ

 

 

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

y / λ

z 
/ λ

 

 

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

y / λ

z 
/ λ

 

 

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

y / λ

z 
/ λ

 

 

Figure 3.17.: Snapshots of the acoustic potential of a dipole nearby a rigid corner at f =
10 kHz. The dipole is located at (1.5λ, π/2, π/16).

∂G(rs, ro)

∂ϕs
=
−πi

4ϕ
√
rsro
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m=0

ε (−2m′) sin(m′ϕs) cos(m
′ϕo)
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−m′

m′+2k(cos θo)Jm′+2k+1/2(κr<)H
(1)
m′+2k+1(κr>). (3.32)

Finally, the ∂/∂θs component of Equation (3.27) becomes

∂G(rs, ro)

∂θs
=
−πi

4ϕ
√
rsro
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m=0

ε cos(m′ϕs) cos(m
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∂
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(
P−m′

m′+2k(cos θs)
)

(3.33)

where the derivative of the trigonometric Legendre function writes
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Figure 3.18.: Scattered-field directivity of a dipole by a rigid corner; analytical solution (line)
and BEM results (symbols) at f = 500 Hz (left) and f = 1 kHz (right) for
dipole position (0.75λ, π/2, π/16) perpendicular to ϕ = 0 plane and observer
distance 1.5λ at f = 500 Hz.

∂

∂θs

(
P−m′

m′+2k(cos θs)
)
=

21−m
′
(sin θs)

−m′

√
πΓ(1/2−m′)

(3.34)

∞∑
n=0

Γ(k + 1/2−m′)Γ(k + n+ 1)

Γ(k + 1)Γ(k + n+m′ + 3/2)

(
cot θs + (2n+ k + 1) cos[(2n+ 1 + k)θs]

)
.

Combining Equations (3.27) to (3.33), the scattered-field of a dipole by a rigid wedge for
arbitrary positions of the source can be obtained. Replacing the wedge angle ϕ with 3π/2
gives again the specific case of a corner. A test is performed using a point dipole located
(1.5λ, π/2, π/16) with respect to the origin of the rigid corner at f = 10 kHz. The dipole is
perpendicular to ϕ = 0 plane. A typical plot in the θ = π/2 plane for the real part of the
acoustic potential for a point dipole is seen in Figure 3.17. The dipole-like behavior and the
shadow zones are clearly seen in the figure.

In order to check the accuracy of the predictions, the analytical solution is again compared
to the numerical model. The comparison is performed as in the monopole case applying the
same geometrical parameters in the BEM model. The monopole is just replaced with the
perpendicular dipole. The force strength of the dipole is selected as Fz(ω) = (0.01+0.01i)N.

Figure 3.18 shows the corresponding directivity patterns at two frequencies, f = 500Hz
and f = 1kHz. A good agreement is again observed in comparison with the analytical
and numerical solutions. The directivity lobes are captured accurately even for a relatively
complex directivity. At both frequencies, the difference between the analytical and numerical
results is less than 1 dB.

Now validated for a single dipole, the theory can be extended to a fan source introducing
the modal structure of tonal fan noise.
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Figure 3.19.: A possible application of the scattered field of tonal fan noise by a rigid corner
(left), cooling unit located at the roof of a locomotive [131]. Sketch of the
fan-corner configuration, fan operating parallel to the xy-plane (right).

3.5.3. Scattered-field of fan noise

The methods addressing the free-field tonal fan noise mentioned in Chapter 2 are based
on the formalism of a rotating dipole which leads to closed form expressions [40, 47, 108].
Introducing the gradient of the Green’s function defined above instead of the free-field one,
it is not possible anymore to find a closed-form solution expression for the scattered acoustic
field of a fan operating next to a rigid corner. However, in order to simulate the rotation
of fan source, a circular distribution of phase shifted dipoles can be used as derived in
Section 3.5.2.
Introducing Equation (3.26) into Equation (2.44), the total acoustic pressure field of the

fan scattered by a rigid corner reads

p(ω, r) =
∑
Ndipo

∇G(rs(β), ro) · F (ω, β). (3.35)

Since the Green’s function of a rigid corner is extended for arbitrary positions of the source
with respect to the wedge origin, it can be used for any point dipole of the circular array.
Equation (3.35) is a general solution for a fan operating in the vicinity of a rigid corner. It

can therefore be used for different fan-corner configurations. One of the possible application
areas is the cooling units of locomotives in parking position (see Figure 3.19 (left)). The
noise generated by the cooling unit located on the top of the locomotive and scattered by the
corner of the body may result in annoyance for the passengers waiting on the platform. In
view of the dimensions and wavelength of interest, the complimentary corner and the front
and back ends of the locomotive can be ignored for a first assessment.
The problem is first simplified to a fan operating parallel to a flat surface. Neglecting the

scattering by the installation effects such as the presence of any inlet or outlet duct, only
the scattering by the corner of the locomotive is addressed. Figure 3.19 (right) shows the
sketch of the problem. Only one side of the locomotive is considered for the illustration.
For the benchmark validation case, the artificial low-speed axial fan sources defined in the

Section 3.4 are used. The blades are assumed acoustically compact and reduced to point
dipoles. The equivalence with a circular array of stationary dipoles is used instead of the
rotating dipole formulation [88, 70].
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Figure 3.20.: Free-field directivity of tonal fan noise at f = 500 Hz at r = 1.5λ in the yz-
plane; near-field formulation (2.37) and expression (2.44). The fan center is
located at (0.75λ, π/12, π/2).

Since the analytical scattered-field model is based on the circular oriented phase shifted
dipoles rather than the rotating dipole model, a first test is performed in free-field to deter-
mine the number of point dipoles needed for an accurate prediction. Figure 3.20 shows the
comparison in free field at the first BPF, f = 500 Hz. The observer and source positions
are defined with respect to the origin of the corner for consistency, however the scattering
effects of the corner are not taken into account. The observers are located at 1.5λ away from
the origin of the corner in the yz-plane. The radius of the fan, the distance between the
rotation center and the center of the blade surface, is selected as 0.33λ. The center of the
fan is located at (0.75λ, π/12, π/2). The continuous line represents the field of the array of
128 phase shifted dipoles whereas symbols represent the near-field formulation (2.37). It is
seen that using 128 phase shifted dipoles can capture the sound radiation accurately, hence
they are used in the following analytical tests.

Once the number of dipoles in the array is determined, Equation (3.35) can be employed
to predict the scattered field of the fan-corner configuration. Two fan source distributions
are tested for the validation of the analytical model [70]. The first one (test1) contains only
the thrust force component, whereas the second one (test2) contains both drag and thrust
force components as in the industrial axial fans in use [108]. The orientation of fans and
observers is the same as defined in the free-field comparison. The problem is also dealt with
the numerical approach. The same acoustic BEM mesh and field points are used as in the
dipole test case for the BEM formulation.

The scattered-field directivities are seen at the first BPF in Figure 3.21. The left and right
plots show the scattered field of the first and the second source distributions where lines and
symbols represent the numerical and analytical results, respectively. A very good agreement
is found in both cases. The difference is again less than 1 dB. It is also seen that adding the
drag component to the fan source results in higher acoustic pressure levels in the shadow
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Figure 3.21.: Scattered-field directivity of a fan operating parallel to the xy-plane of a rigid
corner; analytical solution (line) and BEM results (symbols) for test1 (left) and
test2 (right). The fan center is located at (0.75λ, π/2, π/12) with a radius of
0.33λ. Observers are in the yz-plane with a radius of 3λ, at the first BPF,
f = 500 Hz.

zone.

Another configuration is encountered with the small wind turbines installed on the roof of
a building (see Figure 3.22 (left)). Now the rotation axis is perpendicular to the xy-plane.
A sketch of the problem is shown in Figure 3.22 (right). The problem can be dealt with the
model described above only considering a new orientation of the fan.

The same benchmark fan source distributions, one with only thrust and one with trust
and drag forces, are again selected for the comparison. However, the rotation center is now
located at (0.75λ, π/2, π/12) and the fan is operating parallel to the xz-plane. Figure 3.23
shows the directivity patterns. The left and right plots show the first and second tests,
respectively. The line and symbols again represent the analytical and BEM predictions,
respectively. A very good agreement is again observed. It is seen that adding the drag forces
affects the acoustic field around the rotation plane. The effect of the drag forces are up to
20 dB for the given observer locations. It is also seen that for the first test, the dipole-like
directivity is captured accurately with the analytical model.

Finally, the analytical model proposed to compute the scattered field of tonal fan noise
operating close to a rigid corner is validated against numerical simulations in all tested
configurations. As a result, extending the Green’s function for arbitrary source positions
and combining its gradient with the dipole array model, the scattered field of a low-speed
axial fan by a rigid corner is captured accurately. For high frequency problems, where the
numerical methods are computationally demanding, the analytical solution can be useful
irrespective of any mesh resolution issues.
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Figure 3.22.: Possible application of the scattered field of tonal fan noise by the rigid corner
(left), small wind turbine operating on the roof of a building, photo taken
at 17th AIAA/CEAS Aeroacoustics Conference, Portland. Sketch of the fan-
corner configuration, fan operating parallel to the xz-plane (right).

3.6. Conclusion

The scattering of the tonal noise generated by a low-speed axial fan has been investigated
numerically and analytically. Good agreement is observed in all benchmark validation cases.
The effect of near-field terms in the description of the incident field of primary sources is
found crucial if the scattering is due to surfaces that are very close to the sources.

On one hand, the numerical approach can be applied to more complex geometries for
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Figure 3.23.: Scattered-field directivity of a fan operating parallel to the xz-plane by the rigid
corner: analytical model (line) and BEM results (symbols) for test1 (left) and
test2 (right). The fan center is located at (0.75λ, π/2, π/12) with radius 0.33λ.
Observers are on the yz-plane with 3λ radius, for the first BPF, f = 500 Hz
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bounded and unbounded domains. On the other hand, where the numerical methods are
computationally demanding, analytical methods can be useful, for relatively simple config-
urations.
An analytical method combined with non-closed form fan source formalism is proposed

in order to compute the scattered acoustic field of a fan by a rigid corner. A very good
agreement is obtained in comparison with the numerical solution for different applications.
Only the tonal component of fan noise was addressed in this Chapter. Following chapters

will address the broadband noise generated by low-speed axial fans and its scattered field.



Chapter 4.

Free-Field Broadband Fan Noise

Previous chapters dealt with the tonal noise generated by low-speed axial fans and its scat-
tering by obstacles. In case of presence of periodic forces acting on blades, due to upstream
guide vanes for example, the noise is generated at the blade passing frequency and harmon-
ics [47, 125]. Besides periodic forces, there may be additional non-periodic forces acting on
the blade surface due to turbulence associated with installation effects or blade geometry
[86]. Since the source field is random, acoustic response of the fan results in a broadband
spectrum rather than a discrete one. A brief scheme about the broadband fan noise source
mechanisms was given in Figure 1.1. Only the turbulence interaction noise is addressed in
this chapter.

Several approaches, ranging from semi-empirical methods [16] to highly accurate and CPU
intensive transient CFD calculations [23, 127] have been proposed to address this problem.
Curle [33] extended the pioneering theory of Lighthill [73] on turbulence noise for applications
with the presence of solid and stationary surfaces in the flow. Using experimental [114] or
computational source field [25], the acoustic field radiated by equivalent dipoles on the surface
can then be predicted [128].

Amiet’s theory is a well known approach to compute the broadband acoustic field of a
stationary airfoil located in turbulent stream [5]. It is a semi-analytical approach to predict
the sound level. It is also a hybrid approach and requires the definition of the source-field
based on numerical or experimental resolution of the flow disturbances. Although it is widely
used in literature [118, 19, 38], Amiet’s theory includes some limitations and assumptions in
order to deal with the problem in an analytical perspective.

First, the airfoil is simplified to a flat-plate, hence effects of shape, camber and thickness
are neglected. The effect of complex shapes of a blade is investigated considering spanwise
splitting and parallelogram profiles, for Contra-Rotating Open Rotor applications for exam-
ple [110]. Other investigations addressing the camber and thickness effects are also found in
literature [112, 87].

A second assumption made is on the distance of the observer to the airfoil with respect to
the acoustic wavelength at the frequency of interest and spanwise and chordwise extents of
the corresponding airfoil. The former, as mentioned in Chapter 2, is dealing with the acoustic
near-field effects. In the derivations of Amiet [5], the observer is assumed to be located in
the acoustic far-field of the airfoil so that an analytical solution can be obtained. Other two
assumptions concern the geometrical near-field of the airfoil. For free-field prediction, where
the observer is located far away from the airfoil compared to its span-length, cord-length or
the wavelength at the frequency of interest, these approximations are assumed to be valid.
However, for free-field predictions where the observer is located close to the airfoil for the
given parameters or for scattering problems where the obstacle is located in the near-field of
the fan, even if the microphone is located in the far-field, the far-field assumption becomes
invalid. This chapter addresses an intermediate level of near-field extension to the theory
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Figure 4.1.: Sketch of the skewed gust impinging to the linearized airfoil.

[64].
Another assumption is that the flow impinging into the airfoil is uniform in the spanwise

direction. However, in many industrial applications such as axial fans or helicopter rotors,
the airfoil or the blade is subjected to spanwise varying flow conditions. The application
of the theory to spanwise varying flow conditions is also investigated in this chapter using
different techniques [38, 26, 65].
The last extension of the theory is introducing the rotating motion. Using the far-field

approximation of stationary airfoils [5], the rotating motion is taken into account by Paterson
and Amiet [98] in order to apply the theory to helicopter blades.

4.1. Generalization of the Semi-Analytical Model

In order to predict the acoustic field of the turbulence-interaction noise, a stationary airfoil
of span 2d and chord c = 2b is considered in a turbulent stream. Figure 4.1 shows a sketch
of an airfoil swept by a single skewed gust. The mean velocity of the turbulent fluid flow
is U . The origin of the coordinates is at the center of the airfoil. The x -axis is in the
streamwise direction. The y and z -axes are aligned with the spanwise and the crosswise
directions, respectively. The wavenumbers kx and ky represent chordwise and spanwise
Fourier components of the frozen turbulence. As mentioned above, the airfoil is assumed
with zero thickness within the scope of a linearized theory, hence the crosswise component
of the turbulence kz is not considered.
The acoustic response of an airfoil subjected to incoming turbulence involves the radiation

of distributed dipoles on the airfoil surface. The source and observer coordinates are defined
as (x, y, z) and (x0, y0), respectively as seen in Figure 4.2.
In presence of a fluid flow in the acoustic radiation field, acoustic waves are affected by

convection. Since the airfoil is located in a turbulent stream, the convection needs being
taken into account for the turbulence-interaction noise prediction. The propagation distance
between the source and the observer is not the linear distance but a corrected distance
including the convection effects. Figure 4.3 shows the relation between the convection and
the corrected distance term. The source and the observer coordinates are again represented
with, x and x0, respectively. The linear distance between the source and the observer is
equal to R = |x−x0|. However, due to the convective flow with the velocity, U , the observer
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Figure 4.2.: Sketch of the source and observer positions for the flat-plate airfoil planform.

receives the waves which would be received at x′ if there was no convective fluid flow [107].
The distance between x′ and x is where the sound waves propagated with the convective
flow, |x−x′| = U(tr− te). tr and te are the reception and emission times of the sound waves,
respectively. The difference ∆t = tr − te is then the time passed during the sound waves
travel from x0 to x′, ∆t = σ/c0. c0 is the speed of sound. The effect of convection then
applies to |x− x′| as

|x− x′| = U(tr − te) = U
σ

c0
=Mσ. (4.1)

The corrected distance with respect to the source for a convective flow on x-direction is
then ((x− x0)−Mσ, y − y0, z).
The amplitude of the source-observer distance is thus equal to

σ = (σ0 −M(x− x0))/β2 (4.2)

with

σ0 =
√
(x− x0)2 + β2(y − y0)2 + β2z2. (4.3)

β is the compressibility factor, β =
√
1−M2.

The acoustic pressure generated by each point dipole located on the linearized airfoil is
defined as [33, 42]

p(x, y, z, ω;x0, y0) =
iωx · F (x0, y0) eiωt

4πc0σ2
0

e−iωσ/c0

(
1 +

1

ikσ0

)
. (4.4)

F eiωt is the force strength of the dipole. The strength of the wall-normal dipole, or so
called the lift component, is obtained from the distribution of the pressure jump across the
airfoil [97]. Since the airfoil is assumed to be linearized, the x · F (x0, y0)eiωt term can be
replaced with zq(x0, y0) e

iωt, where q is the lift component of the dipole strength.
The term (ikσ0)

−1 on the right hand side of Equation (4.4) stands for the acoustic near-
field contribution. As mentioned in Chapter 2, this term becomes significant where the
observer is close to the source compared to the wavelength at the frequency of interest. At
larger values of the source-observer distances, it becomes negligible [64].
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Figure 4.3.: Effect of the convection

The total acoustic pressure field of the airfoil is obtained by integrating the dipole sources
on the airfoil surface

p(x, y, z, ω;x0, y0) =

∫ d

−d

∫ c/2

−c/2

iωzq(x0, y0) e
iωt

4πc0σ2
0

e−iωσ/c0

(
1 +

1

ikσ0

)
dx0dy0. (4.5)

Since turbulence is a random process rather than deterministic [55], it is necessary to
work with statistic quantities such as the cross-Power Spectral Density (PSD) rather than
deterministic quantities such as the time history of the pressure jump at a source point [5].
The PSD of the sound field at the observer position is obtained by multiplying the acoustic
pressure by its complex conjugate, as

Spp(x, y, z, ω;x0, y0) =

d∫∫
−d

c/2∫∫
−c/2

(
ωz

4πc0

)2
1

σ2
0 σ

′2
0

Sqq(ω; x0, x
′
0)e

−iω(σ−σ′)/c0

(
1 +

1

ikσ0

)(
1 +

1

ikσ′
0

)∗

dx0dx
′
0dy0dy

′
0. (4.6)

The superscript ∗ represents the complex conjugate of the operator. The term Sqq is the
cross-PSD of the pressure jump at two points on the airfoil surface. It is linked to the
incoming gust with the transfer function, g(x0, kx, ky) [5, 6, 7]. Considering a convective
sinusoidal gust of the form

wg = w0e
−i[kx(x0−Ut)+kyy0] (4.7)

the pressure jump on the airfoil can be written as

q(x0, y0, t) = ∆P (x0, y0, t) = 2πρ0Uw0g(x0, kx, ky)e
−i[kx(x0−Ut)+kyy0]. (4.8)

Accounting for all wavenumber components of the impinging turbulence, the pressure
difference becomes
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∆P (x0, y0, t) = 2πρ0U

∞∫∫
−∞

ˆ̂w(kx, ky)g(x0, kx, ky)e
−i[kx(x0−Ut)+kyy0] dkxdky. (4.9)

In order to change to the frequency domain from the time domain, the Fourier transform
of the pressure difference is applied as

∆P̂ (x0, y0, ω) =

1

2π

∫ ∞

−∞
2πρ0U

∞∫∫
−∞

ˆ̂w(kx, ky)g(x0, kx, ky)e
−i[kx(x0−Ut)+kyy0]e−iωt dkxdkydt. (4.10)

Grouping the time dependent parameters, the time integral is reduced by products of the
Dirac delta function ∫ ∞

−∞
ei(kxU−ω)tdt =

2π

U
δ(kxU − ω). (4.11)

Equation (4.10) can then be re-written introducing the particular chordwise wave number,
Kx = ω/U as

q̂(x0, y0, ω) = ∆P̂ (x0, y0, ω) = 2πρ0

∫ ∞

−∞

ˆ̂w(Kx, ky)g(x0, Kx, ky)e
−ikyy0 dky. (4.12)

Multiplying the source strength with its complex conjugate, the Sqq(ω;x0, x
′
0) term of

Equation (4.6) writes

Sqq(x0, x
′
0, ω) = (2πρ0)

2

∞∫∫
−∞

ˆ̂w(Kx, ky) ˆ̂w
∗(Kx, ky)g(x0, Kx, ky)g

∗(x′0, Kx, k
′
y)e

−i(kyy0−k′yy′0) dkydk
′
y. (4.13)

The only non-deterministic quantity in Equation (4.13) is ˆ̂w. However, due to the statis-
tical orthogonality of the wave vectors it can be shown that [11]

ˆ̂w(Kx, ky) ˆ̂w
∗(Kx, k

′
y) = Uδ(ky − k′y)Φww(Kx, ky). (4.14)

where Φww(Kx, ky) is the two-dimensional turbulence energy spectrum.
Introducing Equation (4.14) into Equation (4.13), the final cross-PSD becomes

Sqq(x0, x
′
0, ω) = (2πρ0)

2

∫ ∞

−∞
Φww(Kx, ky)g(x0, Kx, ky)g

∗(x′0, Kx, ky)e
−iky(y0−y′0) dky. (4.15)

Once the cross-PSD of the pressure jump on the airfoil is derived, the final PSD for the
acoustic field of an airfoil in a turbulent stream is then predicted introducing Equation (4.15)
into Equation (4.6)
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Spp(x, y, z, ω;x0, y0) =

d∫∫
−d

c/2∫∫
−c/2

(
ρωz

2c0

)2
U

σ2
0 σ

′2
0

e−iω(σ−σ′)/c0

(
1 +

1

ikσ0

)(
1 +

1

ikσ′
0

)∗

∫ ∞

−∞
Φww(Kx, ky)g(x0, Kx, ky)g

∗(x′0, Kx, ky)e
−iky(y0−y′0) dky dx0dx

′
0dy0dy

′
0. (4.16)

Equation (4.16) is the general solution to predict the acoustic free-field of an airfoil located
in a turbulent stream. It applies to geometrical and acoustic near-field of the airfoil, since
no assumptions is made on the position of the observer till that point. However, it contains
a 5-dimensional integral for which it is difficult to find an exact analytical solution. On the
other hand, it is possible to handle the multi-dimensional integral with numerical methods,
such as Monte Carlo integration [60, 17, 25].
As mentioned in Chapter 2, it is possible to make assumptions depending on the observer

positions. A first assumption is putting the observer in the acoustic far-field of the airfoil,
σ ≫ λ. Compared to tonal fan noise, broadband noise mostly deals with higher frequencies
[96], resulting in smaller wavelengths. It is therefore a valid assumption to consider the
observer in acoustic far-field in the high frequency range. The general expression (4.16) can
then be re-written as

Spp(x, y, z, ω; x0, y0) =

d∫∫
−d

c/2∫∫
−c/2

(
ρωz

2c0

)2
U

σ2
0 σ

′2
0

e−iω(σ−σ′)/c0

∫ ∞

−∞
Φww(Kx, ky)g(x0, Kx, ky)g

∗(x′0, Kx, ky)e
−iky(y0−y′0) dky dx0dx

′
0dy0dy

′
0. (4.17)

Formulation (4.17) is based on the acoustic far-field assumption but it does not include
any geometrical consideration involving the observer position and extent of the airfoil.

4.1.1. Far-field formulation

In order to deal with the 5-dimensional integral in Equation (4.17) analytically, additional
assumptions need being considered. First, the observer can be assumed to be located far
away from the airfoil compared to its span-length, σ ≫ d, considering a large aspect ratio
airfoil, 2d ≫ c. The corrected distance term, σ can then be simplified to obtain a possible
analytical solution at the far-field. In Equation (4.17), the distance term appears both at
the denominator and in the exponential. The one in the denominator defines the 1/σ decay
for the amplitude modulation and z/σ for the directivity of the corresponding dipole. The
one in the exponential accounts approximately for the phase lags between dipoles distributed
over an acoustically non-compact airfoil.
For large values of σ, assuming (y − y0) ≈ y and (x− x0) ≈ x is reasonable. The σ0 term

in the denominator can then be simplified to

σ0 ≈ σf =
√
x2 + β2(y2 + z2). (4.18)

Since the new definition of σ is now independent from the source positions, x0 and y0, it can
be taken out of the spanwise and chordwise integrals. Furthermore, a different procedure
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is applied for the one in the phase term in order to obtain a simpler analytical solution
for formulation (4.17). Starting from Equation (4.2), the corrected distance term can be
extended as

σ =
(
σ0 −M(x− x0)

)
/β2

=
√

(x− x0)2 + β2((y − y0)2 + z2)/β2 −M(x− x0)/β2

=
√
x2 − 2xx0 + x20 + β2(y2 − 2yy0 + y20 + z2)/β2 −M(x− x0)/β2.

(4.19)

Neglecting the second-order terms of x0 and y0, and adding the negligible (xx0+β
2yy0)

2/σ4
0

term in the square root the corrected distance term in the phase definition reads

σ ≈
√
x2 − 2xx0 + x20 + β2(y2 − 2yy0 + y20 + z2)/β2 −M(x− x0)/β2

≈σf
β2

(
1− xx0 + βyy0

σ2
f

)
−M(x− x0)/β2

≈σf −M(x− x0)
β2

− xx0 + β2yy0
β2σf

. (4.20)

The final approximation of the σ term does not include any integration terms in the square
root. It is therefore possible to look for an analytical solution. Introducing definitions (4.18)
and (4.20) into Equation (4.17), the PSD reads

Spp(x, y, z, ω; x0, y0) =

(
ρωz

2c0

)2
U

σ2
f σ

′2
f

∫ ∞

−∞
Φww(Kx, ky)

d∫∫
−d

e
−i
(

ωy
c0σf

+ky

)
(y0−y′0)dy0dy

′
0

c/2∫∫
−c/2

e
−i

ω(x−Mσf )

c0β
2σf g(x0, Kx, ky)g

∗(x′0, Kx, ky) dx0dx
′
0dky. (4.21)

As seen in Equation (4.21) integrals do not include any terms involving both the spanwise
and chordwise positions of the dipoles, such as σ or σ0 after simplifications. The spanwise
and chordwise integrals are then separated and can be solved independently.
The chordwise integral results as

∫ c/2

−c/2
g(x0, Kx, ky)e

−i
ω(Mσf−x)

c0β
2σf dx0 =

c

2
L(x,Kx, ky). (4.22)

where L(x,Kx, ky) is the aeroacoustic transfer function linking the impinging gust to the
acoustic field of the airfoil [5, 6]. (see Appendix A for further derivations)
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Secondly, the spanwise integral reads

∫ d

−d
e
−i
(

ωy
c0σf

+ky

)
y0
dy0 = 2d

sin[(Ky − ky)d]
(Ky − ky)d

. (4.23)

where the term sin[(Ky − ky)d]/[(Ky − ky)d] is so called the sine cardinal function with
Ky = ωy/(c0σf ).
Introducing Equations (4.22) and (4.23) into Equation (4.21), the PSD of the airfoil in its

geometrical far-field becomes [5]

Spp(x, y, z, ω) =

(
ωρ0z

c0σ2
f

)2

U

∫ ∞

−∞

sin2 [d (Ky − ky)]
(Ky − ky)2

|L(x,Kx, ky)|2Φww(Kx, ky) dky. (4.24)

Besides the ones mentioned above, another assumption often made in the derivation of the
transfer function, g, is considering an arbitrary large aspect ratio, equivalent to an infinite
spanwise extent of the airfoil [2]. However at higher frequencies it should not be necessary
to make even the large aspect ratio assumption due to the small length scales. As the
wavelength of an incident gust decreases, the loading on the airfoil concentrates around the
leading edge. The tip then affects a negligible spanwise region of the airfoil [5].
The 5-dimensional integral in Equation (4.17) is now reduced to a 1-dimensional integral.

However, Equation (4.24) can be put in a more simplified form, since when the semi-span-
length increases the square of the sine cardinal function tends to a delta function,

lim
d→∞

(
sin2[(Ky − ky)d]
[(Ky − ky)d]2

)
=
π

d
δ(Ky − ky). (4.25)

It means that for high values of the span-length, the spanwise wave number ky is replaced
with the particular one, Ky, including the ones in the turbulence spectrum and in the
acoustic transfer function. The physical explanation is that the observer only hears the
gust producing acoustic wavefronts perpendicular to the line joining the source and the
observer. The propagation angle of the sound wave is determined by the trace-velocity
of the gust along the leading edge of the airfoil. For any fixed spanwise wave number,
if the chordwise one is made large enough, the intersection point of the airfoil with the
gust moves supersonically relative to the fluid, similar to the two-dimensional gust problem
[5]. Using the similarity rules defined by Graham [49], for MKx ≫ ky the airfoil response
function becomes independent of ky. Therefore if the value of MKxd is large, both Φww

and L become nearly independent of ky, allowing them to be taken outside the integral in
Equation (4.24). Replacing the spanwise integral with the particular value of the Ky, the
PSD for the large-span airfoils then becomes

Spp(x, y, z, ω) =

(
ωρ0z

c0σ2
f

)2

Ud Φww(Kx, Ky) |L(x,Kx, Ky)|2. (4.26)

In many industrial applications such as the scattering of the acoustic waves generated by
the fan blades in a duct, the acoustic pressure (or velocity) used for the scattering computa-
tion has to be specified at a short distance from the considered blade – referred to as spanwise
geometrical near-field. The far-field assumption becomes invalid for such configurations [64].
This motivated the derivation of a more accurate solution.



4.1. Generalization of the Semi-Analytical Model 55

4.1.2. Spanwise geometrical near-field correction

In the case of large-span airfoils and for observer distances similar to the spanwise extent,
supposing that (x− x0)2 ≃ x2 can be still quite reasonable while (y − y0)2 ≃ y2 may be-
come questionable. An intermediate level of approximation in the spanwise near-field to
Equation (4.2) is therefore introduced with

σk ≃
√
x2 + β2 (y − y0)2 + β2z2 . (4.27)

Using the spanwise near-field approximation in the denominator of Equation (4.21) and
the same first-order approximation of the phase variation [5] as detailed above, the spanwise
integral (4.23) now becomes

∫ d

−d

1

σ2
k

e
−i
(

ωy
c0σf

+ky

)
y0
dy0 = K(x, y, z,Ky, ky). (4.28)

Since the new variable σk is a function of y0, the modified function K is now expressed as
a combination of exponential integrals, E1 [1] (See Appendix E for further derivations)

K(x, y, z,Ky, ky) =
i ei (Ky+ky)y

2
√
x2 + z2{

e−(Ky+ky)
√
x2+z2 E1

[
−(Ky + ky)

√
x2 + z2 − i (Ky + ky)(d− y)

]
− e−(Ky+ky)

√
x2+z2 E1

[
−(Ky + ky)

√
x2 + z2 − i (Ky + ky)(−d− y)

]
− e(Ky+ky)

√
x2+z2 E1

[
(Ky + ky)

√
x2 + z2 − i (Ky + ky)(d− y)

]
+ e(Ky+ky)

√
x2+z2 E1

[
(Ky + ky)

√
x2 + z2 − i (Ky + ky)(−d− y)

]}
. (4.29)

Combining the new spanwise integration (4.28) and the chordwise integration (4.22) the
incident PSD becomes [64]

Spp(x, y, z, ω) =

(
ωρ0z

2c0

)2

U

∫ ∞

−∞
|K(x, y, z,Ky, ky)|2 |L(x,Kx, ky)|2Φww(Kx, ky) dky

(4.30)
which differs from Amiet’s classical solution by the modified function K.
Equation (4.30) contains a one-dimensional integral as in the far-field formulation (4.24).

It therefore requires the same order of computational effort as the far-field solution.
In order to integrate the expression (4.16) analytically different methods are now proposed.

However, they all include acoustic and geometrical simplifications. Equation (4.16) can also
be integrated numerically using Monte Carlo integration method without any assumptions
about the observer position [64]. The Monte Carlo integration method will not be detailed in
this thesis for the sake of conciseness. The reader is referred to the related reference [25] for
more details. The numerical integration will provide the reference solution for the acoustic
response of the airfoil. Furthermore, it allows the verification of the different implementations
of near-field hypotheses independently, as illustrated below.
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Figure 4.4.: Sound pressure level predicted above the airfoil using Amiet’s far-field solution
(4.24) (solid line), the geometrical spanwise near-field formulation (4.30) (dash-
dotted line) and the direct numerical integration of formulation (4.16) without
any geometrical assumption (dashed line)

4.2. Assumption Assessment

The semi-analytical methods described above are compared with analytical and numerical
integration techniques in geometrical and acoustic near-field of the stationary airfoil.

4.2.1. Geometrical near-field effects

A numerical test is first performed in order to compare the results provided by the far-
field expression (4.24), the spanwise near-field expression (4.30) and the direct numerical
integration of formulation (4.21). The sound spectrum emitted by an airfoil subjected to
homogeneous turbulence, at various distances z on the line (x, y) = (0, 0) is calculated. A
von Karman spectrum model [55] is selected for the turbulent energy spectrum

Φww(kx, ky) =
4

9π

ū2

k2e

k̂2x + k̂2y

(1 + k̂2x + k̂2y)
7/3

(4.31)

where

ke =

√
π

Λ

Γ(5/6)

Γ(1/3)
. (4.32)

The turbulence spectrum is modeled using the square root of the r.m.s of the streamwise
fluctuations ū2, and the streamwise integral length scale of the turbulence, Λ. An incoming
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velocity U = 13.2 m/s, a turbulence intensity TI = 0.2, and a turbulent length scale
Λ = 0.005 m are chosen as representative of the experiment described in Section 4.5.2 [27].
The airfoil chord is c = 0.041 m, and a large aspect ratio airfoil is assumed by using a span
2d = 40 c [24].
Figure 4.4 shows the variation of the sound power level at a frequency of 2000 Hz (kc = 1.5

and kd = 30.3) with z. Solid, dash-dots and dashed lines represent the results obtained
with solution (4.24), the geometrical spanwise near-field formulation (4.30) and the direct
numerical integration of formulation (4.16) without any geometrical assumption, respectively.
The results show that all formulations converge for z/d > 2, pointing out the limit of
application of the far-field formulation (4.24) not taking into account the geometrical near-
field effects. The use of the general formulation (4.16) exhibits a first deviation from the
far-field approximation at z/d = 2 corresponding to the size of the spanwise extent of the
airfoil. Between those two points, the evolution of the sound power spectrum is linear
(in logarithmic scale) with respect to the observer distance. The new spanwise near-field
expression (4.30) shows a good agrement with the reference solution and highly improves
the Amiet’s far-field solution (4.24). The second deviation around z/d = 0.08 between
formulations (4.16) and (4.30) corresponds to the chord size of the airfoil. It is seen that
the first order approximation in the phase variation of the dipoles provides a reasonable
approximation.

4.2.2. Acoustic near-field effects
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Figure 4.5.: Sound pressure level predicted above the airfoil using Amiet’s far-field solution
(4.24) (solid line), the geometrical spanwise near-field formulation (4.30) (dash-
dotted line), the direct numerical integration of formulation (4.16) without any
geometrical assumption (dashed line) and the acoustic near-field terms (symbols-
line)
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The results presented in previous section are not taking acoustic near-field effects into
account, which become significant when the distance z is smaller than the acoustic wave-
length. The test used in previous section is considered to evaluate the influence of the
acoustic near-field terms.
Figure 4.5 introduces results obtained using Amiet’s theory at different observer distances

from the airfoil including acoustic near-field terms (symbols line). The deviation is appearing,
as expected, at a distance comparable to the acoustic wavelength, λ. The difference observed
using acoustic near-field terms on formulation (4.16) is around 6 − 7 dB for the considered
configuration. It should be noted that, the match between results obtained with formulation
(4.30) and formulation (4.16) including acoustic near-field terms at lower z/λ values is a
coincidence. The former deviates from the reference solution (4.16) neglecting the chordwise
position of dipoles on the airfoil surface whereas the latter takes that into account including
the 1/σ2 decay due to the acoustic near-field. Finally, it should be noticed that, at the
particular frequency selected for the test (f = 2000 Hz), avoiding the use of acoustic near-
field terms in the computation can be acceptable while at lower frequencies, the deviations
could increase dramatically as mentioned in tonal fan noise applications.

4.3. Airfoil in Homogeneous Turbulence

Experiments have been conducted for comparing the measured sound pressure levels with
broadband noise predictions in free-field. A thin (relative thickness less than 3%) and slightly
cambered optimized airfoil is mounted downstream of a wind tunnel in the anechoic chamber
of the Ecole Centrale Lyon (ECL) (see Figure 4.24) [112]. The dimensions of the room are
6m × 5m × 4m, and walls, floor and ceiling are covered with acoustic absorbing material.
The cut-off frequency of the room is 100 Hz. Sound measurements are taken with Bruel &
Kjaer microphones.

Figure 4.6.: Experimental setup showing the airfoil mock-up mounted vertically and the wind
tunnel nozzle in the anechoic chamber of ECL.

The isolated airfoil has 2.3c span with c = 0.013 m. The open end nozzle of the wind
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tunnel is rectangular with an outlet size 2.3c × 1.2c. The airfoil is placed vertically at zero
angle of attack with respect to the mean camber line at leading edge. The flow Mach number
is M ∼= 0.09. In order to create isotropic and homogeneous turbulence impinging onto the
airfoil, a square grid is placed upstream of the nozzle [44]. The turbulence generated by
the grid-nozzle system at the impingement line has a turbulence rate of 5% and an integral
length scale Λ of 0.009 m [112].
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Figure 4.7.: Acoustic spectra at observer locations 4/3, 2, 8/3 and 10/3d above the airfoil,
measurements (black line), solution (4.24) (dashed line) and solution (4.30) (red
line)

Figure 4.7 shows a comparison of the acoustic spectra emitted by the airfoil for observer
positions at 4/3, 2, 8/3 and 10/3d above the airfoil on the (x, y) = (0, 0) line. Measurements,
solution (4.24) and solution (4.30) are represented as black, dashed and red lines, respectively.
A good agrement is seen between the measurements and solutions (4.24) and (4.30) in the
frequency range of 400 − 10000 Hz where the differences between two spectra is less than
5 dB. A possible explanation of the discrepancies between solutions (4.24) and (4.30) and the
measurements at low frequencies can be related to anisotropic character of the corresponding
energetic turbulent scales which is missing in von Karman model [102]. Additionally, the
formulation (4.4) neglects the acoustic near-field effects, which may contribute to the sound
field at this listener position at the lowest frequencies. On the other hand, the humps and
dips in the spectral shape due to the non-compactness of the airfoil are well captured at the
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higher frequencies. The reason that the humps and dips being not clear for the measurements
at z = 4/3 might be due to the scattering of the acoustic waves by the end plates supporting
the airfoil.

As seen in Figure 4.7, solutions (4.24) and (4.30) converge at the higher z/d ratios as previ-
ously shown in the Figure 4.4. However, at the observer located in the spanwise geometrical
near-field of the airfoil (z/d=4/3 here), solution (4.30) provides better agreement with the
measurements compared to solution (4.24). The improvement between the two solutions is
around 2 dB.

The new near-field expression (4.30) is then attractive for geometrical near-field computa-
tion due to its accuracy. Including its facility of implementation and robustness, compared
to direct integration which requires higher computational time to obtain a similar accuracy
[64] it will then be used in the following sections.

In the experiment described above the airfoil is subjected to homogeneous incoming flow
in the spanwise direction. However, this may not be the case for the industrial applications.
The effect of spanwise variation of the flow field in the acoustic field is therefore investigated
in the next section.

4.4. Spanwise Segmentation

The theory introduced in Section 4.1 considers homogeneous incoming flow field in order
to predict the acoustic response of an airfoil. However, most of the industrial applications
and the experiment described in Section 4.5 involve non-uniform flow field in the spanwise
direction. An approach based on splitting the airfoil into short strips has been applied to im-
plement the spanwise varying incoming flow conditions [24, 38]. Three different segmentation
methods are presented in this section as seen in Figure 4.8.

Figure 4.8.: Sketch of segmentation methods, a) Strip theory, b) Inverse strip theory, c)
Correlated strips theory
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4.4.1. Classical strip theory

The basic spanwise segmentation theory consists in splitting the airfoil into spanwise strips
and assume homogeneous flow conditions for each individual strip. The sum of the span-
lengths of all strips is equal to the one of the initial large aspect ratio airfoil. The total
observed acoustic PSD is then obtained by summing the contributions from the different
strips [117, 38], as represented symbolically in Figure 4.8.

A segmentation test is applied to the large aspect ratio airfoil, d = 20c, defined in Sec-
tion 4.2 [27]. The observer is located at (0, 0, 10c). The z/d = 0.5 ratio stays in the geomet-
rical near-field of the considered airfoil. Further, since it does not contain a limitation in
the spanwise extent of the airfoil the spanwise geometrical near-field solution (4.30) is more
suitable rather than the far-field solutions (4.24) and (4.26).

In a first step, identical properties are applied to each segment and compared to the predic-
tion obtained using the entire large aspect ratio airfoil encountering homogeneous conditions.
Differences between the two approaches are meant to highlight numerical deficiencies in the
segmentation method. Figure 4.9 shows the total acoustic spectra of the segmented and
the complete airfoil subjected to the uniform flow conditions as defined in Section 4.2. The
solid line represents the large aspect ratio airfoil. The dashed lines represent the summation
of 4, 16 and 64 uniform strips. It is seen that increasing the number of strips results in
lower spectral level at low frequencies and some damping of the high-frequency humps [24].
However, the influence at low frequencies is higher than the one at high frequencies. In this
technique, short strips are uncorrelated and are not able to capture the spanwise correlation
associated with large hydrodynamic wavelengths at low frequencies [65], hence the classical
strip theory underpredicts the acoustic pressure of the airfoil. Adjacent strips can not be
considered as uncorrelated allow spanwise wave number [25]. The effect of large wave lengths
are then needs being taken into account [26, 67].

For industrial applications, in which the flow is not uniform in the spanwise direction
[117, 116], using the classical strip theory will lead to a poor prediction with a high number
of strips. In order to take the effect of the large wavelengths into account a modified strip
theory based on the subtraction of two large-span airfoils was proposed [26]. It is called the
inverse strip theory.

4.4.2. Inverse strip theory

The inverse strip theory described below was proposed by Christiophe [26, 28]. According
to this theory, the acoustic field of a small strip is computed via the subtraction of the
contributions of two airfoils of large aspect ratio, the span-length difference of which is
equal to the span-length of the strip (see Figure 4.8 (b)). The two contributions then allow
including the effects of large hydrodynamic wavelengths.

A similar test is performed for the same generic large aspect ratio airfoil using 64 spanwise
segments. The observer is kept at the same spanwise geometrical near-field position at
(0, 0, 10c). Figure 4.10 shows the acoustic PSD of the original and segmented airfoils using
the same incoming flow profiles as in the classical strip theory. The solid line represents
the spectrum of the entire large aspect ratio airfoil. The dashed line and symbols represent
the segmented airfoils using classical strip theory and inverse strip theory, respectively. The
inverse strip theory minimizes the errors due to the segmentation at all frequencies. The small
difference between the entire and segmented airfoils is now due to the effect of the different
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Figure 4.9.: Acoustic PSD of a large aspect ratio airfoil (solid line) and segmented with the
strip theory (dashed line) using 4, 16 and 64 strips. d = 20c and observer at
(0, 0, 10c).

radiation angles of the dipoles appearing during the subtraction of airfoils. However, the
inverse strip theory has been validated elsewhere for observers located in the geometrical
far-field where the effect of the directivity of the dipoles is negligible [24]. For far-field
predictions, all dipoles are assumed to have the same radiation directivity [25], knowing
that the corrected distance value is independent of the position of the dipole in the far-field
expression (4.24).

Additionally, since the inverse strip theory is based on subtraction of two large aspect ratio
airfoils, Equation (4.26) can be used to compute the PSD of short strips when the observer
is located in the geometrical far-field [25]. Hence, a faster solution could be obtained for
industrial problems, including spanwise varying impinging flow conditions.

The drawback of the inverse strip theory is that the effect of the directivities of the point
dipoles may become significant for observer locations in the near-field. It therefore depends
on observer position. Additionally, inverse strip theory simply doubles the computation
time since each strip needs being computed twice, first for a large strip and secondly for
the truncated one. For free-field problems, the computation time is not an issue whereas
for scattered-field computations detailed in the following chapter, the computation time is
already a challenge. Independently of observer location, a new segmentation method taking
the cross-correlation of the acoustic fields of different strips into account is then proposed.

4.4.3. Correlated-strips theory

Another approach to minimize the aforementioned underprediction of the classical strip
theory is to take into account the cross-correlations of the radiated acoustic fields from
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Figure 4.10.: Acoustic PSD of a large aspect ratio airfoil (plain), 64 segments with the strip
theory (dotted line) and 64 segments with inverse strip theory (dots); d = 20c
and observer at (0, 0, 10c)

different strips [65] (see sketch 4.8 (c)). Applying spanwise segmentation to Equation (4.30)
leads to the summation of both the auto- and cross-correlations of the acoustic responses of
the n strips (see Appendix B for further derivations)

Spp,total =
∑
n

Spnpn =

{
Sp1p1+Sp1p2 + · · ·+ Sp1pn+

Sp2p1+Sp2p2 + · · ·
...

. . .
...

Spnp1+ · · · + Spnpn

}
. (4.33)

Only summing the auto-correlations of the acoustic PSD of strips, the diagonal terms in
Equation (4.33), results in as the classical strip theory defined in Section 4.4.1. Hence, the
underprediction can be explained by not taking the cross-correlation terms into account. As
mentioned above, the adjacent strips are correlated when the spanwise wave number is low
enough [25]. If one wants to consider the correlation between different strips the partially
non-homogeneous turbulence field needs being dealt with.
The drawback of this theory is that no analytic definition of partially non-homogeneous

turbulence exists to compute the off-diagonal terms in Equation (4.33) to author’s knowledge.
The proposed approach is to apply a correction in the expansion for homogeneous turbulence.
A method on modeling partially non-homogeneous quantities using homogeneous ones ex-

ists in literature [22, 52]. It was proposed to construct the initial conditions for a numerical
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Figure 4.11.: Linear Lebesgue functions [52]

solution of a wall-bounded flow. These conditions were constructed in an intermediate space
between physical space and spectral space, so called – quasi-spectral space [22]. The cross-
correlation of the turbulence quantities at two points in the partial non-homogeneous flow
field is then modeled using a first-order linear correction of the correlation in the homoge-
neous turbulent field.
The auto- and cross-correlation terms at the right hand side of Equation (4.33) require the

definition of the turbulence spectrum Φww which is the Fourier transform of the correlation
of the upwash velocity at two different points, Rww(x0, x

′
0, y0, y

′
0) =< w(x0, y0)w(x

′
0, y

′
0) >

for example. The given correlation function is defined in a 2-dimensional physical space.
Assuming the homogeneity is being questioned on the y-component, its transform in the
quasi-spectral space can be represented as R̂ww(Kx, y0, y

′
0). Applying a first-order correction,

the partially non-homogeneous transformation can be linked to the homogeneous one with
[22]

R̂ww(Kx, y0, y
′
0) = R̂H

ww(Kx, y0, y
′
0) · Ly0(y′0) (4.34)

where the superscript H stands for the homogenous turbulence field. L is the first-order
correction term.
In order to model the correction term a shape function is used. Linear Lebesgue coefficients

were proposed first [22]. Figure 4.11 shows the variation of the linear coefficients with respect
to the positions of the sampling points in the physical space. The model was first proposed
for wall-bounded turbulent flows, where the parameters m0 and n0 represent the walls. Since
there is no flow on the wall, the coefficients approach zero at m0 and n0. For points y0 and y

′
0

close to each other, the statistics is close to homogeneity (L goes to 1), ensuring a consisting
auto-correlation. Using a linear relation between the remaining positions, the distribution
of the coefficients becomes as seen in the figure. It is worth to note that, any other shape
functions could be used instead, at the price of inclosed complexity.
However, first-order shape functions do not ensure the fundamental equality of the sym-

metry condition [52]

R̂ww(Kx, y0, y
′
0) = R̂ww(Kx, y

′
0, y0). (4.35)

A second model was developed in order to enforce this condition [22]. It was based on
the position of the sampling point with respect to the most distant wall surface. The model
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Figure 4.12.: The difference of the acoustic PSD spectra; d = 20c airfoil minus summation
of 64 strips. Strip theory (dotted line), inverse strips theory (dashed line) and
correlated strips theory (solid line) at (0, 0, 10c).

was named Information by the First Most Distant Point (IFMDP). All the cross-correlation
coefficients were then modeled depending on the positions of the sampling points. The
partial non-homogeneous turbulence field is modeled using the flow properties taken from
the point farthest from the wall as reference.

The theory proposed in [22] was dealing with a wall bounded turbulent flow, an assump-
tion of zero flow at solid boundaries can then be taken as a physically accepted boundary
condition. This is not in the present case of interaction of an airfoil with a flow, since there is
no wall bounding the airfoil in the spanwise direction. So that, the flow velocity can not be
assumed to be zero at the tips of the airfoil. However, a new correction coefficient is defined
through the ratio of the impinging mean-flow profiles of the strips instead of the positions
in the physical space. Similar to the IFMDP, where the most distant point from the wall
has the higher velocity, the ratio of the lower velocity to the higher velocity will now give
the new coefficient [65, 67], as.

Ly0(y
′
0) =

min(U(y0), U(y
′
0))

max(U(y0), U(y′0))
. (4.36)

For the auto-correlation of the velocity field, the coefficient is again equal to 1. Further-
more, the partially non-homogeneous turbulent field is now modeled using the strip subjected
to the higher incoming flow velocity as reference.

The initial test is repeated for the d = 20c airfoil using 64 spanwise strips. The observer
is located in the spanwise geometrical near-field of the airfoil, (0, 0, 10c). The same identical
flow properties are applied to all strips. Therefore the coefficient L becomes U/U = 1. Fig-
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ure 4.12 shows the difference of the predicted spectra between the actual large aspect ratio
airfoil and the segmented one. The dotted line represents the difference with the segmented
airfoil using classical strip theory. As mentioned above, the difference is due to the assump-
tion of uncorrelated strips. Although the prediction is improved in the inverse strip theory
(dashed line), the effect of the large wavelengths is included imperfectly. There is still a small
error. On the other hand, the summation of acoustic PSD obtained employing correlated
strips (solid line) provides exactly the same results as the actual airfoil, independently of
observer position.

Finally, the spanwise varying flow conditions can be taken into account with different
segmentation methods. For the free-field acoustic response of an airfoil located in a turbulent
stream, the far-field acoustic PSD can be computed based on the classical strip theory for
few segments. When the number of segments increases, using the inverse strip theory is at
least required for reliable far-field predictions. On the other hand, using the correlated-strips
theory provides corrected acoustic spectra irrespective of the observer positions. Because the
inverse strip theory doubles the computation time, the correlated-strips theory will be more
efficient especially for computing scattered-fields.

The theories proposed above are used below in a jet-airfoil configuration for validation
[120, 28].

4.5. Acoustic Field of a Jet-Airfoil Test-Case

The experiment defined in Section 4.3 includes a stationary airfoil located in a grid generated
turbulent field. The impinging turbulent stream was then homogenous and isotropic, hence
no spanwise segmentation had been applied. A second set of experiments has also been
performed using a jet-airfoil configuration. The airfoil is placed in the developing region of
the jet aligned with a diameter, so that the flow profile varies significantly in the spanwise
direction [25]. Uniform impinging flow is not a valid assumption anymore. Applying spanwise
segmentation is now required for the non-uniform flow.

4.5.1. Numerical setup

The jet-airfoil configuration consists in a NACA 0012 airfoil with chord c = 0.041 m and
8.78 c span, placed in the transitional region of a turbulent jet. The jet nozzle is circular with
an outlet diameter D = c [27]. The airfoil is placed at zero angle of attack with its leading
edge located at 6 c from the nozzle outlet plane as seen in Figure 5.1. The jet exhaust speed
is equal to 13.2 m/s. The Mach number M ∼= 0.04 results in a Reynolds number based on
the chord Rec = 36, 000. Due to the low Mach number considered, an incompressible LES
computation is used to resolve the most energetic content of the flow with the commercial
finite volume solver Fluent Rev. 6.3. The mesh contains 2.8 M cells, inlet conditions in
the nozzle were imposed and tuned to reproduce the experimental conditions. The cut-off
frequency of the computation was estimated at 1 kHz, based on the Power Spectral Density
of the streamwise velocity at a location of half a chord upstream the airfoil [25]. Further
information on the numerical computation can be found in the related references.

Two hybrid approaches, separating the computation of the sources of sound from the
sound propagation itself, are applied in order to compute the acoustic field of the airfoil. The
first one is a numerical method using directly the pressure distribution on the airfoil surface
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Figure 4.13.: Sketch of the experimental jet-airfoil test case, (left) Front view, (right) Side
view

obtained from the unsteady CFD [33, 27]. The second one is a semi-analytical method [5, 64]
employing an analytical turbulence model using the flow velocity profile impinging to the
airfoil obtained from the same CFD [27].
Both prediction methods, namely Curle’s deterministic analogy using formulation (4.4)

and formulation (4.30) based on Amiet’s theory, are tested on the jet-airfoil case in absence
of additional scattering surfaces.
In Curle’s deterministic analogy, F eiωt of Equation (4.4) is obtained through an integration

of the unsteady pressure field on the airfoil surface. The airfoil is then reduced to a point
dipole. This assumption is only valid if the airfoil is acoustically compact at the frequencies
of interest.
An advantage of this numerical method is that the acoustic pressure field can be computed

in a deterministic manner, where the amplitude and phase information of the acoustic pres-
sure are known, since the source field is already defined deterministically. This will be related
to the acoustic scattering computations detailed in Chapter 5. However, this methodology
is limited with the resolution of the numerical mesh of the flow-field computation since in
order to predict the acoustic source field at higher frequencies, very fine numerical mesh is
required [27].
The necessary input information for both methods is extracted from a numerical compu-

tation available in literature [25, 24], on the same test-case geometry. In case of Curle’s
analogy, the wall-pressure distribution on the complete airfoil is extracted during an ac-
quisition time of t′ = 70, non-dimensionalized with the jet velocity and the airfoil chord,
and a sampling frequency of 100 kHz. The wall-pressure distribution is then integrated
over the airfoil surface in order to provide the source strength of the corresponding dipole
in formulation (4.4) [66]. Due to the use of an incompressible computation to obtain the
acoustic sources, the methodology is valid till the sources remain compact (size of the source
region << emitted wavelength). The actual limit of use is around 2.8 kHz based on the jet
impacting area. In case of formulation (4.30), the power spectrum of the upwash velocity
component Φww is modelled using a classical von Karman spectrum [55] modified to be
consistent with the rapid distortion theory described in [25] in order to take into account
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Figure 4.14.: Impinging flow profiles exported at 1c upstream of the airfoil: incoming flow
velocity (plain), turbulence intensity (dashed) and turbulent length scale (dots)

the non-negligible thickness of the NACA 0012 airfoil. The expansion reads

Φww(kx, ky) =
9

36π

ū2

k2e

k̂2x + k̂2y

(1 + k̂2x + k̂2y)
19/6

. (4.37)

This expression is similar to formulation (4.31), but includes a correction of high fre-
quency energy spectrum. The necessary numerical inputs required for the model, namely
the streamwise velocity, the turbulence intensity and the integral turbulence length scale,
are extracted from the numerical computation upstream of the airfoil.
The incoming turbulent flow profiles obtained from the CFD simulation, extracted 1 c

upstream of the leading edge, are seen in the Figure 4.14. The plain, dashed and dots
represent the flow velocity, turbulent intensity and length scale, respectively. The veloc-
ity is non-dimensionalized with the jet outlet velocity. The turbulent length scale is non-
dimensionalized with the chord length. Since the airfoil is located in the development region
of the jet and the span-length/jet diameter ratio is large, the impinging flow is strongly
non-uniform in the spanwise direction. The center of the airfoil is exposed to the highest
impinging flow velocity since it is affected by the core of the jet-flow.
Figure 4.15 shows the comparison of acoustic predictions made with the three segmen-

tation methods using spanwise varying incoming flow conditions obtained from the CFD
simulation of Figure 4.14. The observer is located 5 c above the airfoil on the (x = 0, y = 0)
line. The airfoil is split into 8 spanwise strips each having the equal span-lengths. The
von Karman spectrum defined in Equation (4.31) is employed. The dash-dots spectrum is
obtained using the classical strip theory. It is lower than the other two spectra at low fre-
quencies. Additionally, at higher frequencies dips are damped. The difference between the
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Figure 4.15.: Predicted sound spectra with the segmentation methods for d = 8.78c. Flow
properties given in Figure 4.14 with von Karman spectrum. Observer located
at (0, 0, 5c) for classical strip (dash-dots), inverse strip (dashed) and correlated-
strips (plain) theories.

results obtained with the classical strip and inverse strip theories (dashed) is about 7 dB
at frequencies below 5000 Hz, pointing the effect of the large hydrodynamic wavelengths
mentioned above. Using correlated strips (plain) with the correction coefficients defined in
expression (4.36) also considers the effect of large wavelengths. The difference between the
spectra corresponding to the inverse strip and correlated-strips theories is less than 2 dB
over the entire frequency range. It is concluded that both methods improve the acoustic
prediction with respect to the classical strip theory.

4.5.2. Experimental setup

Experiments have been conducted for comparison of the measured sound power levels with
the broadband noise predictions in free-field. The jet and the airfoil are placed in the anechoic
room of the von Karman Institute for Fluid Dynamics (see Sketch 4.16). The dimensions of
the room are 4 m×3 m×4 m, and walls, floor and ceiling are covered with acoustic absorbing
material. The diameter of the nozzle outlet is equal to D = 0.041 m. A 10 bar compressor
supplies flow to the settling chamber by the ejectors. In order to prevent swirl, the airflow
enters into the nozzle pipe through a honeycomb. The low-turbulence airflow supplied with a
high contraction ratio induces laminar boundary-layer at the outlet of the nozzle [120]. The
velocity of the jet is adjusted by the static pressure measurement in the stagnation chamber
with a water manometer. The velocity is then obtained from the Bernoulli equation using
the pressure difference read in the manometer [102].
The cut-off frequency of the room is 350 Hz. Sound measurements are taken with Bruel

& Kjaer microphones using a high-pass filter of 100 Hz and a low-pass filter of 12 kHz. The
sampling frequency is 219 Hz and measurements are acquired in series of 0.1 s duration.
A first set of measurements is under-taken in order to select the observer position for the
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Figure 4.16.: Sketch of the jet in the anechoic chamber

comparisons. The microphone must be out of the incoming jet-flow in order to avoid pseudo
sound in the measurements [107]. It is also important that the microphone does not disturb
the incoming jet-flow. Additionally, the microphone must be far away from the walls of the
room in order to minimize the scattering effects even if the walls are covered with absorbing
materials. Since it is known that the free-field acoustic pressure of a dipole source decays like
1/R in the far-field [101], R being the linear distance from source to observer, different sets of
measurements are taken at 5, 10, 15, 20 and 25c away from the airfoil on the (x = 0, y = 0)
line.

Figure 4.17 (left) shows the acoustic PSD of the airfoil at various observer positions. The
jet outlet velocity is fixed at 13.2m/s. The point, diamond, square, upper and lower triangles
represent the different observer positions given above, respectively. It is seen that all the
measurements collapse at −10 dB corresponding to the background noise in the anechoic
chamber. The measurements are taken in 5 sets. For each set, the Welch’s algorithm is used
in MATLAB environment in order to obtaine averaged spectra [130]. Hanning windowing
is used with 50% overlapping. The 5 sets are then averaged in order to obtain the final
spectrum.

The figure on the right side shows the spectra scaled by the distance z, taking z = 25c as
reference. It is seen that above 200 Hz, the 1/R decay is satisfied for all microphone locations
in the acoustic free-field. The disagreement at the lower frequencies is due to the effect of the
near-field terms which include a decay like 1/R2 [101]. However, these frequencies are already
lower than the cut-off frequency of the chamber. Again data do not collapse above 4 kHz
due to contamination by the background noise. At these frequencies, the sound measured
by the microphone should not be considered in the comparisons. It is therefore decided to
select the location (0, 0, 5c) for both free and scattered-field measurements.
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Figure 4.17.: Acoustic measurements of the jet-airfoil mock-up: (left) observer at z = 5 c
(point), 10 c (diamond). 15 c (square), 20 c (upper triangle) and 25 c (lower
triangle). (right) spectra scaled to z = 25 c.

Once the flow field is solved and the observer position is defined, the acoustic response of
the airfoil located in a turbulent stream can be computed. Integrating the unsteady pressure
distribution on the airfoil obtained from the CFD solution provides the wall-normal -or so
called lift- force of the source dipole. The LMS software Virtual Lab. is used to compute
the compact dipole source [59] using Curle’s Analogy, defined in Equation (4.4). The source
strength is first imported in a data file to Virtual Lab. in frequency domain. The acoustic
pressure field of the harmonic dipole source at the field point is then computed. In order
to be consistent with the assumptions of following sections, the effect of the convection is
neglected in the acoustic propagation. This is justified because the maximum Mach number
of the impinging flow is Mmax = 0.03.

The comparison of the acoustic field emitted by the airfoil for an observer located at 5c =
0.55 d above the airfoil, as obtained from the measurements, a deterministic solution based
on Curle’s analogy and the solution (4.30) are compared in Figure 4.18. The deterministic
hybrid method (thin blue line) provides a reasonable sound prediction up to 1 kHz compared
to the experiments (black dots). The limit frequency is the cut-off frequency of the CFD
simulation. The effect of the CFD mesh on the cut-off frequency was shown in the related
reference [25]. Using a finer mesh would provide a better agreement at higher frequencies,
however it will then dramatically increase the required computation time.

On the other hand, solution (4.30) with 8 spanwise segments and with the inverse strip
theory is also used to handle the problem analytically (solid red line). The flow field de-
tailed in Figure 4.14 is used. Combining the spanwise geometrical near-field formulation
with spanwise segmentation provides a fair agrement with the measurements over the entire
frequency range. The differences between the two spectra is less than 5 dB.

As a result, the analytical solution is shown to be applicable at any frequency, independent
from the mesh resolution. The effect of the spanwise varying incoming flow condition can
also be taken into account with spanwise segmentation. Experiments defined in Sections 4.3
and 4.5.2 finally show that Amiet’s theory captures turbulence-interaction noise accurately
at the price of some modifications for stationary airfoils. The theory will be now extended
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Figure 4.18.: Sound pressure spectra measured (black dots), calculated by Amiet’s theory
with spanwise segmentation (red solid line) and Curle’s deterministic analogy
(blue thin line) at (0,0,5c).

in order to deal with rotating blades.

4.6. Implementation of Rotation

The theory mentioned above has been applied to stationary airfoils with relatively simple
geometries such as the optimized airfoil and the NACA 0012. However, implementing the
theory to industrial rotating machinery requires additional steps. Essentially a blade is split
into short strips, and each strip is interpolated by a flat plate of zero thickness.

Figure 4.19.: A sketch of segmentation and linearization of a blade.
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4.6.1. Linearized blades

Besides its advantage to take spanwise varying flow conditions into account, applying seg-
mentation also provides a better representation of the actual blade geometry in terms of
directivities since the blade is converted to a set of linearized strips. Figure 4.19 shows a
sketch of the segmentation and linearization process from the point cloud of an actual in-
dustrial blade geometry. The blade is divided into four linearized strips for representation.
Since the sources are dominant around the leading edge [96] in turbulence-interaction noise
problems, it is kept as a reference line. All strips have now different pitch angles with re-
spect to the rotation plane. Knowing that the tangential velocity increases with the radius
for a fixed rotational speed, Ut = Ωr, the position and orientation of the strips result in a
different impinging flow speed. Figure 4.20 shows the velocity triangles for two strips. Red
lines represents the linearized blade strip.

The impinging velocity onto the blade strip is then obtained from the vectorial summation
of the tangential velocity and the axial velocity Uz [114].

4.6.2. Coordinate transformation

As in the tonal fan noise computations detailed in Chapter 2, the observer position is de-
fined in a fixed reference frame with respect to the rotation plane and rotation axis by the
coordinates {X,Y, Z}, as seen in Figure 4.21. In order to predict the acoustic field of a blade
strip using Equation (4.30), it is required to define the origin in a reference frame attached
to the blade strip, as mentioned in the isolated airfoil theory in Section 4.1. The associated
coordinates are {x, y, z} shown in Figure 4.21. Therefore, a coordinate transformation is re-
quired from {X,Y, Z} to {x, y, z} taking the geometry of the blade into account. Figure 4.21
shows the steps of the coordinate transformation including sweep, pitch and twist angles.
It is similar to the one defined in [114] for self-noise investigation, except for the origin on
the blade surface. In the self-noise prediction the origin is located at the mid-point of the
trailing edge whereas for turbulence-interaction noise prediction the origin is assumed to be
at the center of the blade [6, 5].

A first transformation in Figure 4.21 is applied from the fixed coordinate system at the

Uz Uz

Ωr1 Ωr2

V1 V2

β1 β2

Figure 4.20.: Velocity triangles for the impinging flow
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Figure 4.21.: Coordinate transformation steps

rotation center {X,Y, Z} to the one at the center of the blade strip [114] {U, V,W} keeping
the origin fixed as U

V
W

 =M(XY Z → UVW )

XY
Z

 (4.38)

where

M(XY Z → UVW ) =

 cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 1

 . (4.39)

The transformation on the azimuthal angle Ψ has been performed, keeping the rotation
axis fixed Z = W . Further, using the definition of angle ζ, a second transformation is
performed on the blade strip from {U, V,W} to {u, v, w}. The origin is now shifted from the
center of rotation to the center of the blade strip.uv

w

 =M(UVW → uvw)

U
V
W

 (4.40)

where
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M(UVW → uvw) =

 cos(ζ) sin(ζ) 0
− sin(ζ) cos(ζ) 0

0 0 1

 . (4.41)

Then, using the definition of the pitch angle β, the new coordinate system {m,n, p}
becomes mn

p

 =M(uvw → mnp)

uv
w

 (4.42)

where the transformation matrix is defined as

M(uvw → mnp) =

0 − cos(β) − sin(β)
1 0 0
0 − sin(β) cos(β)

 . (4.43)

The minus sign appears since the streamwise component is defined from the center to the
trailing edge of the blade strip. Finally, taking the twist angle ξ into account, the coordinate
system {x, y, z} can be obtained from {m,n, p} byxy

z

 =M(mnp→ xyz)

mn
p

 (4.44)

where the final transformation matrix is defined as

M(mnp→ xyz) =

1 0 0
0 cos(ξ) sin(ξ)
0 − sin(ξ) cos(ξ)

 . (4.45)

The position of the observer with respect to the blade strip which fits to the coordinates
defined in Section 4.1 then readsxy

z

 =M(UVW → xyz)

−r0
0

+M(XY Z → xyz)

XY
Z

 . (4.46)

The transformation matrices are defined as

M(XY Z → xyz) =M(XY Z → UVW ) M(UVW → uvw)

M(uvw → mnp) M(mnp→ xyz)

M(UVW → xyz) =M(UVW → uvw) M(uvw → mnp) M(mnp→ xyz). (4.47)
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Figure 4.22.: Sketch of the rotation strategy, blades in local tangential motion

4.6.3. The Doppler effect

The turbulence-interaction noise theory for an isolated airfoil [5] has been extended [96]
for low Mach number rotor blades. The steady airfoil model has been applied to each
blade strip assimilating the circular motion to the locally tangential translation motion (See
Figure 4.22). This is acceptable only at sound frequencies much higher than the rotational
frequency, ω >> Ω [96] for low tip Mach number fans, M ≪ 1. The strips on the rotor
blades are again assumed to be linearized in order to apply the theory described above.

Due to the relative motion between the source and the observer, the emitted frequency
ωe from the blade strip and the observed frequency ωo are not equal. The frequency shift is
known as the Doppler correction factor.

The frequency heard by the observer is equal to the rate of change in the phase definition
Θ of the pressure field [4] as

ωo =

(
∂

∂t
+ c0M · ∇

)
Θ (4.48)

where M is the Mach number of the relative motion between the source and the observer.
Θ is defined as

Θ = ωe

(
t+

Mx− xx0 − σ
c0β2

+
xx0 + yy0β

2

c0β2σ

)
. (4.49)

Introducing another geometrical far-field assumption in order to simplify the derivation,
the blade strip is assumed as a point source by neglecting the terms containing x0 and y0.
The following approximation can be made
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Θ ≈ ωe

(
t+

Mx

c0β2
+

σ

c0β2

)
. (4.50)

The observed frequency is then related to the emitted frequency with

ωo
ωe

= 1 +
Mt · ÔS

1−Mr · ÔS
(4.51)

where Mt and Mr are the tangential and relative Mach numbers, respectively. ÔS is the
unit vector from the observer to the source [114].

Mt = −Mt sinψ i+Mt cosψ j (4.52)

Mr = −Mt sinψ i+Mt cosψ j−Mzk
−→
OS = (x− xs) i+ (y − ys) j+ (z − zs) k

ÔS =
x− xs
|
−→
OS|

i+
y − ys
|
−→
OS|

j+
z − zs
|
−→
OS|

k.

Representing the blade strip as a point source which rotates around the z−axis with a
radius r (See Figure C.2), the observer-source vector components become

X

Y

Z

r
R0

Uz

θ

ϕ

ψ

observer

Figure 4.23.: Sketch of the source and the observer for an axial fan.
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x− xs = R0 cosϕ sin θ − r cosψ (4.53)

y − ys = R0 sinϕ− r sinψ

z − zs = R0 cosϕ cos θ −Mz |
−→
OS|.

For an observer located at any point in the xyz−coordinate system, the magnitude of the

coordinate vector
−→
OS becomes

|
−→
OS| = R0

1−M2
z(

−Mz cos θ cosϕ+
√

(M2
z cos

2 θ cos2 ϕ+ 1−M2
z ) + (1−M2

z ) ((Υ− r/R0)2 −Υ2)
)
.

(4.54)

where Υ = cosϕ sin θ cosψ + sinϕ sinψ.
Taking the convection in the axial direction and the azimuthal motion into account, the

unit vector reads

ÔS =
R0 cosϕ sin θ − r cosψ

|
−→
OS|

i+
R0 sinϕ− r sinψ

|
−→
OS|

j +

(
R0 cosϕ cos θ

|
−→
OS|

−Mz

)
k. (4.55)

Combining Equations (4.51), (4.54) and (4.55), the relation between observed and emitted
frequencies becomes

ωe
ωo

= 1 +
Mt(cosϕ sin θ sinψ − sinϕ cosψ)√

(M2
z cos

2 ϕ cos2 θ + 1−M2
z ) + (1−M2

z ) ((Υ− r/R0)2 −Υ2)
. (4.56)

It is seen that, the definition of ÔS is a function of the radius of the fan. For an observer
located in the far-field, r/R0 → 0, the new formulation converges to the one in the far-field
as defined in the related reference [114]

ωe
ωo

= 1 +
Mt(cosϕ sin θ sinψ − sinϕ cosψ)√

(1−M2
z cos

2 ϕ sin2 θ)
. (4.57)

The relation between observed and emitted frequencies is then a function of the observer
position, the axial and the tangential Mach numbers.
The relative motion between the source and the observer and its effect on the acoustic field

can also be dealt with considering a fixed source and a moving observer [96]. The acoustic
pressure at the moving observer is related to the one for the stationary observer by

pm(t) = pf
(
ωo
ωe
t

)
. (4.58)

Superscripts f and m represents fixed and moving observers, respectively. The acoustic
PSD at the observed then reads (See Appendix C for further derivations.)
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Figure 4.24.: Sketch of the experimental axial fan-wind tunnel setup (left), photo taken in
the anechoic chamber (right). The microphone is at 3 rtip downstream and
2.5 rtip away from the rotation axis.

Sppm(ωo) =
ωe
ωo
Sppf (ωe). (4.59)

The rotation is then accounted through an azimuthal averaging including the change of
coordinates and the Doppler factor [4].

Spp(X, Y, Z, ωo) =
B

2π

∫ 2π

0

ωe
ωo

Sψpp(x, y, z, ωe)dψ. (4.60)

ψ = Ω t represents the current position of the blade strip as shown in Figure 4.21.
Equation (4.60) is the general solution of the broadband noise emitted by rotating blades

accounting the Doppler factor. However, for low-speed fan applications, the Doppler factor
has been shown to be negligible [88]. (See Appendix C for the effect of the Doppler factor
on the tested configurations.) The rotation effect is finally obtained through a simplified
azimuthal averaging as

Spp(X, Y, Z, ω) ≈
B

2π

∫ 2π

0

Sψpp(x, y, z, ω)dψ. (4.61)

Formulations (4.60) and 4.61 assume that there is no blade-to-blade correlation and that
each fan blade acts independently of the other. This assumption is valid at high frequencies
where the same gust is not cut by the succeeding blades [8]. Hence, the number of blades
appears as a multiplication factor only. Therefore, doubling B increases the acoustic PSD
by 10 log10(2) = 3 dB if the fan is assumed to be subjected to the same flow-field.
The one-dimensional integral in Equations (4.60) and (4.61) can be solved using classical

numerical methods such as trapezoidal or other Newton-Cotes techniques [118]. However,
using Newton-Cotes techniques will result in additional asymmetry in the near-field of the
fan, since each azimuthal position of the strips is weighted by different coefficients. Therefore,
the trapezoidal method is used in the same order with the Newton-Cotes technique without
introducing any additional asymmetry.
The theory for turbulence-interaction noise of a stationary airfoil detailed above is finally

implemented to a low-Mach number rotating machinery problem. Equation (4.61) will now
be used to predict the free-field of a low-Mach number axial fan.
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Figure 4.25.: Free-field measurements of the axial fan, operating with (red) and without
(black) the turbulent jet-flow at 3 rtip downstream and 2.5 rtip away from the
rotation axis.

4.7. Free-Field Broadband Noise of a Low-Speed Axial Fan

In order to measure the acoustic free-field of a fan, a set of experiments is performed in
the anechoic chamber at ECL. A low-speed axial cooling fan for home applications is used.
Figure 4.24 shows the experimental axial fan-wind tunnel setup.
The rotor consists of 3 uniformly distributed blades and rotates at 1200 rpm. The Blade

Passing Frequency (BPF) is then equal to 60 Hz. The tip radius of the blades, rtip = 0.22 m
makes the tip Mach number around 0.08. The microphone is located at 3 rtip away from
the rotation center and 2.5 rtip from the rotation axis. Since the theory described above
is related to turbulence-interaction noise, the rotor must be operated in the presence of an
upstream turbulent flow. This is achieved by putting the rotor at the exit of a nozzle where
the flow is disturbed by an upstream grid (see Figure 4.24) [112]. The rotation plane is
located 3 rtip downstream of the nozzle exit. The jet core velocity is fixed to 15 m/s, making
jet Mach number equal to 0.04.
Figure 4.25 shows the measured acoustic spectra of the rotor noise in free-field with and

without the incoming turbulent flow, represented as red and black lines, respectively. In
the absence of turbulence, the tonal component of the fan noise is dominant in the whole
frequency range. The tone around 100 Hz and harmonics are generated by the electric
motor of the fan. In contrast, operating the fan in the upstream turbulent flow makes the
broadband component dominant and only the first three harmonics of BPF emerge. It is
also observed from the shift of the BPFs that the incoming flow results in a 100 rpm increase
in the rotational speed of the fan, which is also taken into account in the numerical model.
The tonal noise of the fan is increased from 51 dB to 69 dB and from 42 dB to 68 dB for
the first and second harmonics, respectively. This change in the discrete frequency noise of
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Figure 4.26.: Turbulent spectra (left), measured (solid) and theoretical (dotted) and normal-
ized flow parameters (right), mean velocity (plain), turbulent intensity (dash
dot) and turbulent length scale (dashed)

the fan is not addressed in this chapter.

Since the difference of the broadband spectrum is well significant, the noise generated by
the fan can then be considered essentially turbulence-interaction noise. Hence the model
described above can be applied to predict the acoustic field.

The semi-analytical model requires the description of the incoming flow-field numerically
or experimentally. In the stationary airfoil configuration detailed in Section 4.5.2, the flow-
field was solved numerically. In the current application, the impinging flow-field is directly
measured. The rotor is removed and the turbulent flow field at the location of the rotation
plane is measured using a hot-wire anemometry. The measurements are taken on the hor-
izontal line starting from the center of the jet axis till the length of the tip radius of the
fan. Once the turbulent spectrum is measured at a given location, using the measured mean
flow speed and the turbulent intensity values, the turbulent length scale is then obtained by
fitting the von Karman model defined in Equation (4.31) to the measurement [109]. Fig-
ure 4.26 (left) shows the measured velocity spectra (plain) at the equivalent center of the
strips and the superimposed von Karman spectra (dotted). The slope of the spectra fits
with the −5/3 power law showing that the turbulent flow can be locally assumed isotropic
and homogeneous [102], at least for the sake of the present evaluation of acoustic response
of the fan. The plots are shifted from each other by steps of 10 dB for clarity.

All the turbulent flow parameters are shown in Figure 4.26 (right) as functions of the radial
position of the probe. The mean flow and the turbulent length scales are non-dimensionalized
with the jet outlet velocity and the tip radius of the fan, respectively. The decay of the mean
flow at the higher values shows that the blade tip is embedded in the shear layer of the jet.
The probe is out of the jet flow at the highest values of the horizontal position since the
radius of the nozzle is equal to 83% of the one of the rotor. Considering the position of the
rotor with respect to the jet-flow, the turbulent flow impinging is not only due to the grid
turbulence but also due to the mixing layer.

Once the flow-field is known, extracting the required parameters, U , urms and Λ, the
acoustic response of the low-speed axial fan can be obtained using Equation (4.61).
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Figure 4.27.: Free-field spectra of the axial fan at 3 radii away from the rotation center and
2.5 radii away from the rotation axis, measurements (red) and using strips
(dashed), inverse strips (dash-dots) and correlated strips theory (symbols).

Figure 4.27 shows the measured and computed free-field spectra of the fan at 3 radii away
from the rotation center. The blade is split into 4 spanwise segments and the von Karman
model spectrum is selected for the numerical simulations. The red line represents the mea-
sured spectrum. The dashed line, dash dots and symbols correspond to the model described
above using classical strip, inverse strip and correlated-strips theories, respectively [67, 68].
The 5 dB difference between the dashed and symbols addresses the already pointed effect of
large hydrodynamic wavelengths. A good agreement is observed with the measurements and
the numerical model using classical strip theory at frequencies above 3 kHz. Furthermore,
taking the effect of the large wavelengths into account firstly and of the spanwise correlation
secondly improves the solution at lower frequencies compared to the classical strip theory.
For frequencies higher than 400 Hz, the difference between the measurements and the model
is not more than 3 dB. The disagreement at the lowest frequencies can be due to additional
sound sources such as stall [122], separation on the blade or the anisotropic behavior of the
turbulence developing away from the center of the mixing layer.

As a result, the acoustic free-field response of a low-Mach number axial fan due to im-
pinging turbulent flow can be computed using the semi-analytical method described above.
Hence, it is a useful tool to compute the acoustic field of a fan combined with experimental
or numerical description of the incoming flow-field.

4.8. Conclusion

It has been shown that, based on a minimum knowledge of the flow-field the acoustic response
of a stationary airfoil and of a low-speed axial fan can be computed in a semi-analytical man-
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ner. The proposed method has been extended in order to apply to industrial applications.
Considering the observer position with respect to the airfoil span-length, an intermediate

level of correction is proposed. The extended formulation provides a more accurate informa-
tion about the acoustic field. The new formulation is validated against numerical simulations
and measurements.
The spanwise varying flow conditions are taken into account with different segmentation

techniques. A new technique taking the correlation of adjacent spanwise strips into account
has been proposed. Compared to the existing literature, the new method improves the
predictions. It is also more efficient in terms of computation time.
Finally, the analytical method has been implemented to a benchmark low-speed fan ap-

plication. A good agreement has been satisfied in the comparison with the measurements.
It is concluded that turbulence-interaction noise generated by a low-speed axial fan can be
predicted accurately in the free-field. However, the free-field conditions are far from what
is encountered in industrial applications, hence the scattered acoustic field by surrounding
surfaces needs being considered. The following chapter will address that point in the context
of broadband fan noise.





Chapter 5.

Broadband Fan Noise Scattering

This chapter deals with the broadband noise scattered by an obstacle analytically and ex-
perimentally. The application of the scattering techniques to turbulence-interaction noise is
focused on.
The scattered-field of discrete-frequency fan noise was addressed in Chapter 3 analytically

and experimentally, where the source field was defined in a deterministic manner. However,
due to the statistical characterization of turbulence, the numerical method mentioned cannot
be applied directly. Hence, the classical solution is re-formulated for the broadband scattering
problem in this chapter.
The scattered-field of the turbulence-interaction noise modeled in Chapter 4 is first in-

vestigated for the stationary airfoil application. The experiment described in Section 4.5.2
involves an airfoil placed in the development region of a turbulent jet. Prediction of the
acoustic free-field of the airfoil was addressed by the approaches described in the corre-
sponding chapter. Acoustic scattering techniques detailed earlier are now employed first for
the jet-airfoil test-case in presence of a benchmark scattering obstacle. The model is later
implemented to the low-Mach number axial fan described in Section 4.7.

5.1. Broadband Scattering - Stationary Airfoil

The stationary airfoil located in the transitional region of a turbulent jet described in Sec-
tion 4.5 is considered as the broadband noise source. In order to compute its scattered
field, a flat screen is introduced in the existing jet-airfoil installation. The usage of a simple
benchmark obstacle also provides simplicity to deal with the scattering problem analytically.
Figure 5.1 shows a sketch of the test-case and the screen located in the anechoic chamber.
The screen is 15c in width and the airfoil is located facing the middle of it on the horizontal

axis. However, due to the supports of the screen, it covers 5c downstream the airfoil and
15c in the upstream direction on the vertical axis, with a total height of 20c. In order to
observe the effect of the scattered acoustic waves clearly, the screen should be placed close to
the airfoil. Therefore a distance of 5c has been selected staying in its spanwise geometrical
near-field, at z/d ≈ 1.14. According to the assumptions of the model detailed in Section 4.1,
the screen is located in the acoustic far field for most frequencies considered in this case.
Additionally, the screen is located away from the turbulent region of the jet in order not to
disturb the incoming flow. Hence, the same source data could be used without repeating the
CFD simulations.
Experiments have been conducted for comparison of the sound pressure levels with the

broadband noise predictions in free-field and including scattering effects. The facility de-
scribed in Section 4.5.2 is used with the same flow conditions [120, 27]. Figure 5.2 shows
the measured free-field (black) and scattered acoustic field (red) of the configuration as seen
in sketch 5.1. The thin line represents the background noise. At frequencies higher than



86 Chapter 5. Broadband Fan Noise Scattering

15c

   5c
2

0
c

  
 6

c

   5
c

  1
5
c

  8.78c

a) b)

0.44c

c
c

   5c

Figure 5.1.: Sketch of the experimental jet-airfoil test-case including the scattering screen,
a) Front view, b) Side view

6 kHz, the sound measured by the microphone is disturbed by the background noise and
should not be considered in the comparisons. The interference fringes due to the scattering
obstacle result in a wave-like spectrum with respect to the free-field one. The effect of the
obstacle is less than 5 dB at the frequencies of interest.
Using the methods detailed in Chapters 3, the acoustic scattering could be handled with

numerical and analytical methods. The numerical methods are investigated first.

5.1.1. Numerical broadband scattering techniques

In order to compute the scattered field of deterministic sources, BEM is a useful tool es-
pecially when the fluid domain is unbounded [34]. Therefore the same method as used for
tonal fan noise can be employed for the current problem using the deterministic source field
obtained from the unsteady CFD simulation. It is worth noting that in the BEM formula-
tion the fluid is assumed at rest. The effect of convection is not taken into account in the
scattering problems. In the applications described in this chapter, the Mach number does
not exceed 0.08. Therefore neglecting the convection effects is reasonable.

5.1.1.1. Boundary Element Method

It was shown in Equation 3.1 that in order to compute the total pressure field of a source,
that field is first decomposed into incident and scattered contributions. Using the deter-
ministic source described in Section 4.5.2 [25], the incident field pressure pi can be obtained
from Equation (4.4) [33]. The scattered pressure ps is then computed using the Indirect
Boundary Element Method, where the rigid Neumann boundary conditions are imposed on
the scattering surface [35].
Figure 5.3 shows the incident (thick) and scattered (thin) acoustic fields of the jet-airfoil

and flat screen test-case. Both computations are performed in LMS software Virtual Lab.
[59], using the harmonic source strength provided from the CFD simulation [27]. The airfoil
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Figure 5.2.: Sound pressure spectra measured in free-field (black dots), with the screen (red
dots) and the background noise (thin line) at (0, 0, 5c) with the screen parallel
to the airfoil at z = 5c.

is reduced to a point dipole assuming it is acoustically compact at the frequencies of interest.
The difference between both computed spectra addressing scattered-field effects is less than
5 dB.
However, since the broadband noise model described in Section 4.1 is based on a statistical

description of the source field [102], rather than a deterministic one, the BEM formulation
employed is not capable to handle this problem directly. The deterministic BEM problem
[34, 63] is therefore re-formulated.

5.1.1.2. Acoustic Transfer Vectors approach

In the proposed approach, the acoustic pressure field is first decomposed into incident and
scattered components as showed in Equation 3.1. The total PSD then becomes

Spp = Spipi + Spips + Spspi + Spsps (5.1)

where the first term on the right hand side of the equation is the free-field response of
the airfoil which can be solved with Equations (4.24), (4.30) and (4.26) depending on the
problem addressed. Remaining terms are solved by the BEM methodology [34]. In this
BEM framework, an Acoustic Transfer Vector (ATV) formulation [45] is employed to relate
the acoustic pressure at a listener point to the wall-normal velocity of the elements that
discretize the surface of the scattering body

ps(ω) = {ATV(ω)} · {vns(ω)}. (5.2)
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Figure 5.3.: Acoustic pressure spectra computed with the Curle’s analogy for free-field
(black) and Curle’s analogy combined with BEM (thin red line) at (0, 0, 5c).

{ATV(ω)} is the Acoustic Transfer Vector obtained by solving the BEM problem with
unit normal velocities on the acoustic mesh. In order to satisfy the rigid Neumann boundary
condition on the acoustic mesh [35], the velocities {vns(ω)} in Equation (5.2) are the opposite
projection of the incident velocity, vns = −vni

.

The incident velocity term, vni
, is computed from the gradient of the incident pressure

defined in Equation (4.5)

vni
(x, ω) =

i

ρ0ω

∂p(x, ω)

∂n
. (5.3)

In order to be consistent in between the assumptions, the same acoustic far-field approxi-
mation is made in the derivations of vni

. Therefore it applies to the position of the scattering
surface next to the source, as for the listener position.

Combining Equations (5.1) to (5.3), the total acoustic PSD becomes [123]

Spp = Spp,i − Spv ·ATVT −ATV∗ · Svp +ATV∗ · Svv ·ATVT (5.4)

where Spv and Svp are the cross-power spectra of the incident velocity evaluated over the
acoustic mesh and the incident acoustic pressure at the listener point. The Svv is the auto
and cross-power spectra of the incident velocities over the acoustic mesh. The {ATV(ω)}
is now a matrix composed of the Acoustic Transfer Vectors for each listener point. The
superscripts T and ∗ stand for the matrix transpose and the complex conjugate operator,
respectively. A detailed derivation of Equation (5.4) is given in Appendix E.

Since Equation (5.4) is represented with the incident acoustic field variables, using the
derivation of the incident acoustical velocity detailed in Appendix E, the cross-correlation
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Figure 5.4.: Acoustic PSD computed with Amiet’s formulation in free-field (black) and
Amiet’s formulation combined with ATV technique (symbols line) at (0, 0, 5c).

terms of the velocity and pressure fields and the auto- and cross-correlation of the incident
velocity field can be computed.

In order to compute the ATVs, the BEM model of the problem is first defined in LMS
software Virtual Lab. considering the frequencies of interest. Once the mesh quality, 10
elements per wavelength as a rule of thumb [35], is satisfied, the Acoustic Transfer Vector
Analysis case is solved in Virtual Lab. for the pre-defined observer points. The case file
is then imported to Sysnoise and the ATVs are exported at the frequency of interest. It
can be seen that ATVs are functions of the properties of the propagation medium (such as
density or speed of sound), acoustic mesh, field point and the frequency of interest. They
are independent of the source position. Hence, the same ATVs can be used for different
source positions in the same geometrical problem.

Once the auto- and cross correlation matrices defined in Equation (5.4) are computed and
the ATVs are exported, the scattered acoustic field due to turbulence-interaction noise can
be predicted. Figure 5.4 shows the application of the theory described above to the current
jet-airfoil configuration in presence of the flat plate. The source field detailed in Section 4.5
is again used including 8 spanwise strips obtained with inverse strip theory. The spanwise
geometrical near-field correction is also considered in the model. The line and symbols
represent the free and scattered fields of the broadband noise generated by the interaction of
the turbulent jet flow and the stationary airfoil obtained via the the semi-analytical model
combined with the ATV analogy of BEM framework, respectively. Similar to the ones
showed in Figures 5.2 and 5.3, the total spectrum oscillates around the one in free-field
conditions with differences less than 5 dB.

It is shown that the scattered field of the broadband noise generated by the jet-airfoil test-
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Figure 5.5.: Sound pressure spectrum computed with the ATV model (thick) using 8 seg-
ments, Curle’s deterministic analogy combined with BEM (thin blue line) com-
pared with the measurements (dots) at (0,0,5c).

case can be dealt with numerical scattering techniques using the deterministic and statistical
definitions of the source field. Figure 5.5 shows the comparison of the numerical methods and
the measurements. The thick and thin lines represent the semi-analytical model combined
with the ATV theory and Curle’s approach combined with the classical BEM approach,
respectively. Black dots represent the measurements performed in the anechoic chamber.
Both numerical methods capture the interference fringes due to scattering at frequencies
between 100 Hz and 7500 Hz. Higher frequencies are disturbed by the background noise.
Both methods provide a good agreement up to 1 kHz, where the difference is less than
5 dB. However, Curle’s method combined with the BEM methodology fails at frequencies
more than 1 kHz, as in Figure 4.18. Since the scattered-field computations are based on
the ones in the free-field, the deviation again starts from the cut-off frequency of the CFD
[27]. However, the ATV method combined with the semi-analytical model provides a good
agreement in the entire frequency range of interest. Since it does not depend on the mesh
resolution, the semi-analytical model is a useful tool for computing scattered fields.

Finally, Figure 5.6 shows the difference between the scattered-field and free-field spectra
shown in Figure 5.5 and 4.18. The solid line, symbols and dashed line represent the de-
terministic BEM method, ATV approach and measurements, respectively. Both numerical
models are able to handle the effects of the scattering screen. Both amplitude and fringes
are captured accurately compared with measurements.

It is concluded that the effects of the scattering obstacle can be computed using numerical
techniques. Since the numerical methods are based on BEM formulation, using deterministic
or statistical source definitions, the acoustic scattering including complex geometries can be
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Figure 5.6.: Ratio of the total acoustic PSD to the incident one, Curle’s formulation with
indirect BEM (solid line), Amiet’s analogy with ATV (symbols) and experiments
(dashed line).

addressed.
Furthermore, since the scattering obstacle is a flat screen, the analytical scattering methods

defined in Chapter 3, can also be employed.

5.1.2. Analytical scattering techniques

Relatively simple scattering problems can be dealt with analytical methods including some
simplifications [101]. Since the scattering obstacle considered here is a finite flat screen, the
methods described in Chapter 3 are able to handle the problem at high frequencies. First,
the image model is applied to the same configuration.

5.1.2.1. Method of images

At higher frequencies, where the wavelength is much smaller than the width and height of
the scattering screen, the screen can be assumed infinite. It can therefore be replaced by
an image source. The deterministic source is obtained directly from the unsteady pressure
fluctuations on the airfoil surface extracted from the CFD simulation. Assuming the airfoil
is acoustically compact, both the primary and image sources become point dipoles. The
image dipole has then the same source strength but with the opposite phase.
In the semi-analytical approach mentioned in Section 4.1, the image source becomes an

image airfoil, which is represented as spanwise and chordwise distributed dipoles. The total
acoustic field is then equal to the summation of the primary and image sources, p = ppr+pim.
Subscripts pr and im indicates the primary and the image sources, respectively. Introducing
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Figure 5.7.: Sound pressure spectrum computed with the image method (solid line) and ATV
model (circles) using 8 segments at (0,0,5c).

the contribution of the image source, the far-field acoustic pressure defined in Equation (4.4)
becomes

p(x, y, z, ω;x0, y0) =
iωxo · F (x0,pr, y0,pr) eiωt

4πc0σ2
pr

e−iωσpr/c0+

iωxim · F (x0,im, y0,im)ei(ωt+π)

4πc0σ2
im

e−iωσim/c0 (5.5)

The phase shift for the image source is considered in the exponential term, eiπ = −1. One
can then show that the total PSD including the contribution of the image source becomes
similar to the Equation (5.1)

Spp = Spprppr + Spprpim + Spimppr + Spimpim (5.6)

Introducing the definition of the acoustic field in Equation (5.5) into Equation (5.6), the
total PSD reads
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For an observer located on the scattering plane, where zim = −zpr and σim = σpr, all four
components of the equation are equal. Hence, the total PSD is equal four times the incident
one of the primary source, Spp = 4Spprppr . The total acoustic pressure then becomes twice
the incident one, with a total velocity equal to zero on the boundary surface.
Assuming that the flat screen is infinite and replacing it with a phase shifted airfoil sym-

metrical to it, the contribution of the flat scattering screen described above can now be
computed with the infinite plane approximation. The same configuration described in Sec-
tion 4.5 is employed using 8 spanwise segments for both auto- and cross-PSD of the primary
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Figure 5.8.: Sketches of the experimental set-ups: parallel plate (left) and 45o rotated plate
(right).

and image airfoils. Inverse strip theory is used in order to take the large hydrodynamic
wavelengths into account.

Figure 5.7 shows the acoustic pressure spectra computed with the ATV theory and the
image method. The image method approach converges to the numerical solution at fre-
quencies beyond 700 Hz. It can therefore be used to compute the scattered field at higher
frequencies, where the number of elements required in BEM increases dramatically [35]. The
difference between spectra below 700 Hz is due to the effects of the scattered acoustic waves
by the edges of the screen. Since the BEM model accounts for the exact size of the scattering
obstacle, it is able to consider the effect of the free edges [34]. However, the image model
assumes the plate is infinite and neglects this effect [101]. For the values making ℓ/λ < 0.6,
ℓ being the distance to the closest edge, the free edge effects are significant and needed being
taken into account.
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Figure 5.9.: Ratio of the scattered sound pressure spectrum to the free-field one, image model
(solid line), ATV model (circles) and experiments (dashed line), (a) parallel
plate, (b) 45 degrees rotated plate.
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In the comparison addressed above and the application given in Section 4.5, the scattering
screen is located parallel to the airfoil. In order to check the consistency of the derivations
of the ATV method and image model, the screen is rotated and shifted arbitrarily. A
non-parallel airfoil-screen configuration is considered. The experiments addressed above are
repeated. The screen is rotated 45 degrees on its vertical axis. Due to the supports of the
screen in the experiments and the jet nozzle, the screen is shifted in the spanwise direction.
Figure 5.8 shows the sketches of the tested arrangements.

Since the field point-acoustic mesh orientation has changed, the acoustic transfer vectors
used for the parallel configuration cannot be used for the rotated one. ATVs are then
re-computed and re-exported. For the image model, the position of the image airfoil is
reconsidered for the new position of the scattering screen. Since the screen is rotated by
α = 45 degrees, the image airfoil is rotated by 2α = 90 degrees. The spanwise axis of the
image airfoil is now located perpendicular to the one of the primary airfoil.

Figure 5.9 shows the ratio of the scattered acoustic PSD to the free-field one in logarithmic
scale for parallel (left) and 45 degrees rotated screen (right). Solid line, circles and dashed
line represent the image model, ATV model and the measurements, respectively. The effect
of the screen is captured accurately by the ATV model in both configurations. It can be
seen that the image model converges to the ATV model at frequencies higher than 700 Hz.
The difference is due to the free edge effects as pointed above. It can be said that the ATV
model is robust with arbitrary positions of the scattered obstacle. It is also seen that the
scattered-field of the finite plate can be computed using the image source approach where
the source-edge distance ℓ/λ > 0.6 in both configurations.

On one hand, the image model is ideal and neglects the effects of the waves scattered by
the free edges of the flat screen. On the other hand, the ATV method takes the effects of the
free edges into account. Since it is based on BEM, it can be applied to complex geometries.
For the current configuration, the scattered field by the finite screen can also be handled with
first-order corrections using a semi-infinite plate approximation [39] or the Green’s function
of a corner described in Section 3.5.

5.1.2.2. Scattering by the edge of the screen

The analytical model mentioned in Section 5.1.2.1 is based on assuming the flat screen is
infinite, hence the effect of the free edges are neglected. Taking the position of the observer
with respect to the source and scattering screen into account, the closest edge of the finite
screen must be included in the modelling for a better physical consistency. In this section
the edge is considered that of a finite corner. Note that, due to the orientation, the effect
of thickness becomes negligible for the considered observer position. The infinite plane
assumption then applies at other three edges. Only the airfoil parallel to the scattering
screen is considered. Using the deterministic source given above and representing the airfoil
as a point dipole, Equation (3.27) can then be employed. Figure 5.10 shows the scattered
spectra for the current configuration using the deterministic Curle’s analogy with the source
field [27] obtained with the image model (thick) and the analytical corner model (thin). The
difference is now due to the effect of the scattered waves by the closest edge. It is seen that
both methods converge above 700 Hz. The frequency limit is again due to the relation of
the distance of the edge with the wavelength at the frequency of interest.

The effect of waves scattered by the assumed corner is seen in Figure 5.11. Red thick and
blue thin lines represent the ratio of the scattered spectra to the incident one for the corner
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Figure 5.10.: Acoustic PSD computed with the deterministic source terms, using Curle’s
analogy with image model (thick), using the Green’s function of a corner (thin)
at (0,0,5c).

and image models. The measured ratio is plotted with dashed line. Both analytical models
are able to capture the effects of the scattering screen at higher frequencies. The effect of
the finite extent of the scattering screen, the first deep in the experimental spectrum, is only
captured with the corner approximation. However, as seen in Figure 5.9, the effect of the
free edges can be accurately captured with the numerical methods such as the BEM and the
ATV theory. Hence, the analytical solutions are more suitable for high frequency scattered
field problems containing simple scattering obstacles in the acoustic field. It is worth noting
that in the case using the half-plane Green’s function would lead to similar results.
The broadband scattered field of a stationary airfoil due to turbulence-interaction is now

predicted with several methods. The analytical and numerical models are next implemented
for rotating machinery for low-Mach number applications.

5.2. Scattered-Field of a Low-Speed Axial Fan

The derivation of the semi-analytical method and its implementation to the low-speed fan
noise free-field given in Section 4.6 is now modified to include the effect of a scattering
obstacle.
The theory described above is implemented in numerical and experimental validation cases.

The former assumes an ideal case where there is no fan-induced main flow and the model
fan is placed parallel to a finite scattering plate. The ATV results are then compared to the
analytical results assuming the plate is infinite. On the other hand, the latter compares the
semi-analytical method combined with scattered-field theory to the measurements.
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Figure 5.11.: Ratio of scattered to free-field acoustic PSD, image model (thick), Green’s
function of a corner (thin) and experiments (dashed line).

5.2.1. Image fan model

In order to prove the ability to predict the scattered-field of a low-speed axial fan, a flat plate
is introduced parallel to the rotation plane of a model fan. The parallel orientation of the fan
and the plate maximizes the observed scattered acoustic field due to the dipolar nature of
the leading-edge noise sources [5, 33]. A 7.5rtip×7.5rtip plate is used in the comparison. The
observer is located 1.5 tip radius from the fan on the rotation axis. The plate is mounted at
the same distance parallel to the rotation plane but on the other side of the fan with respect
to the observer (see the sketch in Figure 5.12).

A primary theoretical comparison is performed considering a benchmark low-speed axial
fan with 4 blades. The rotational speed of the fan is selected as, Ω = 3000 rpm. The tip and
hub radii are 0.14 and 0.06 m, respectively. The axial flow velocity, Uz, is selected as zero.
The blade is split into 4 spanwise segments and all segments are linearized to rectangular
plates (as seen in Figure 4.19). The chord length of the blade segments are constant along the
span. The Mach number of the segments varies from 0.08 to 0.15. Turbulence intensity and
length scale are assumed constant in the spanwise direction. They are selected as 20% and
0.005 m, respectively. For this benchmark problem, the spanwise variation of the incoming
flow is only taken into account with the impinging velocity. The velocity is computed as
a function of the radius and pitch angle of the blade segment [114]. For the azimuthal
integration in Equation (4.61), an 8−point trapezoidal method is chosen.

Figure 5.12 shows the comparison of the free (solid line) and scattered-field (symbols)
spectra of the low-speed axial fan calculated with the ATV model. The free-field spectrum
is smoother and the effect of interference fringes due to scattering results in a wavelike
envelope.
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Figure 5.12.: Sketch of the axial fan problem (left) and free (solid line) and scattered-field
(circles) spectra of the fan computed with the ATV theory (right) at (0, 0, 1.5r).

The contribution of the flat scattering screen can also be calculated with the image model
by replacing the screen by a phase-shifted fan symmetrical to the screen. However, this case
is ideal and neglects the effects of the sound waves scattered by the free edges of the finite
screen. Figure 5.13 shows the comparison of both methods applied to the scattering problem.
Both the image (solid line) and ATV (symbols) methods capture the same interference fringes
at frequencies above 800 Hz. However, the ATV model captures one additional deep at low
frequencies, which can be addressed as the scattering of the large waves from the free edges.
This exercise is a cross-validation of the numerical and analytical scattering techniques. The
ATV theory now will be applied to the experimental test-case of the low-speed axial fan
defined in Section 4.7.
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Figure 5.13.: Sketch of the image model (left), scattered-field spectra (right), ATV theory
(circles) and image model (solid line) at (0, 0, 1.5r).



5.3. Conclusions 99

Figure 5.14.: Experimental axial fan-scattering screen configuration in the anechoic chamber.

5.2.2. Experimental validation

The low-speed axial cooling fan described in Section 5.1.1.2 is now operated in the vicinity
of a flat plate. Figure 5.14 shows the experimental set-up in the anechoic chamber.

In order to compute the effect of a benchmark scattering obstacle, a 1m × 1m plexiglass
flat plate is placed 1.5 rtip away from the rotation axis perpendicular to the rotation plane
(see Figure 4.24). On the one hand, the plate is located in the geometrical near-field of the
rotor. On the other hand, the selected distance of the plate should be far enough for not
disturbing the incoming flow. The center of the plate is located 0.03 m upstream and 0.1 m
below the rotation center. Figure 5.15 shows measured free and scattered-field spectra of the
benchmark fan. The difference between spectra is less than 3 dB at frequencies considered.

Figure 5.16 next shows the difference between the scattered and incident-field spectra
in terms of dBs. The red line and the symbols stand for the measurements and the the-
ory described in Section 5.1.1.2, respectively. Correlated-strips theory is employed with 4
spanwise strips. The interference fringes due to the presence of the scattering screen are
captured using the model described above combined with the ATV approach at frequencies
above 400 Hz. The difference with the measurements is less than 1 dB at these frequencies.
The disagreement at the lowest frequencies may be due to the scattering of other source
mechanisms [122] as mentioned in Chapter 4.

5.3. Conclusions

Predicting the broadband noise emitted by low-Mach number axial fans in a turbulent stream
is an essential issue for applications such as cooling fans or wind turbines. Amiet’s theory
provides an interesting approach to deal with this problem, and has been used by a number
of works in the literature, especially for configurations where the free-field assumptions are
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reasonable. In cases where the installation effects are significant in the vicinity of the fan,
the scattering of the generated broadband noise has been considered in this Chapter.

First a numerical methods has been employed. The scattered acoustic field of a stationary
airfoil by a finite plate has been computed with the indirect BEM method using a determin-
istic source field. In order to compute the scattered acoustic field using analytical turbulence
models, a method based on the ATV approach, obtained by means of a commercial BEM
solver, has been proposed.

Addressing the effects of the free-edges of a finite plate, the analytical scattering tech-
niques have been compared to numerical and experimental results. Following a first order
consideration, the scattering from the edge of the plate has been obtained with the Green’s
function of a corner, for the airfoil-screen configuration.

The combined model including the semi-analytical solution and the ATV theory has been
compared with the analytical solutions and experiments performed in an anechoic chamber.
A good agreement has been found between all models. It has been shown that the semi-
analytical method provides better results at higher frequencies where Curle’s method is
limited due to the cut-off frequency of the CFD mesh as shown in Chapter 4.

The scattered acoustic field of an industrial low-speed axial cooling fan operating in a
turbulent stream has been also investigated. A benchmark problem has been first solved
for an axial fan operating parallel to a flat plate. The ATV model for a fan has been first
compared with the analytical solution. Interference fringes have been very well captured
with the ATV model.

Finally, a good agreement has been observed in comparison with experimental data gath-
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Figure 5.15.: Free (black) and scattered-field (red) spectra measured for the low-speed axial
fan at 3 rtip downstream and 2.5 rtip away from the rotation axis. The flat
plate is placed 1.5 rtip away from the rotation axis.
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Figure 5.16.: Difference between the scattered-field and free-field acoustic spectra, ATV the-
ory (symbols) and measurements (solid line).

ered in the anechoic room. The effect of the broadband scattering has been captured at the
frequencies of interest using the ATV approach. Since the ATV model can be applied to
arbitrary scattering geometries, it has been proved to be a useful tool for realistic scattering
problems where the source field is random.





Chapter 6.

Conclusions and Perspective

This thesis proposed to compute the aerodynamic noise generated by low-speed fans in pres-
ence of surrounding surfaces. Both numerical and analytical acoustic scattering techniques
and their applications to low-speed fan noise have been investigated.

6.1. Conclusions

Closed-form exact analytical solutions existing in literature involve some simplifications in
order to solve the propagation problem in an analytical manner. One assumption is con-
sideration of an observer located in acoustic and geometrical far-field. This may be a valid
assumption when the free-field propagation takes place and the observer-source distance is
greater than the acoustic wavelength and geometrical extent of the source. However, most
of industrial applications involve a fan operating in presence of surrounding surfaces, such
as ducts or cooling units. Acoustic quantities then need being computed in the near-field.
This thesis investigates near-field effects for different applications.
First, tonal fan noise has been investigated. Employing both near and far-field closed-form

analytical solutions, free-field response of a benchmark open rotor has been computed. Ad-
ditionally, another methodology considering circular array of phase shifted stationary dipoles
has been introduced. After the number of stationary dipoles representing the equivalent fan
source has been determined by an iterative procedure, the acoustic response of the fan has
been computed. Since the dipole array approach includes the acoustic near-field terms in the
dipole radiation and handles the geometrical near-field with the summation of the dipoles, it
provides the reference solution. A very good agreement has been obtained with the closed-
form analytical near-field solution. It has been concluded that for free-field tonal fan noise
applications, the near-field solution provides accurate prediction of acoustic field when the
source-observer distance is comparable to the wavelength at the frequency of interest.
Secondly, the scattered-field of tonal fan noise has been investigated numerically. The

closed-form analytical solutions mentioned above have been combined with BEM formulation
using commercial solvers. A low-speed axial fan operating in a finite duct downstream of a
stator has been investigated. Employing the unsteady blade loading harmonics, the scattered
acoustic field has been computed using two analytical approaches combined with BEM. A
good agrement has been observed in comparison with the measurements and the near-field
formulation. Near-field terms have been shown to be significant if the scattering surface is
located in the immediate neighborhood of the source.
However, the BEM formulation is known to be a more suitable method for low frequency

problems in terms of computational efficiency. For high frequency problems, the number
of elements required for an accurate prediction increases dramatically. For relatively sim-
ple scattering problems such as configurations involving a flat plate or a corner, analytical
methods can be useful at higher frequencies. The reflection and scattering of sound waves
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emitted from an axial fan by a flat plate has been computed using an image fan symmetrical
to the scattering surface. A very good agreement has been observed in comparison with the
BEM solution containing a large flat plate. A more complex problem is computing the tonal
fan noise scattered by a corner in an analytical perspective. In this thesis, an analytical
approach based on solution of the Helmholtz equation for exact boundary conditions for a
corner has been considered. The solution has been re-formulated for arbitrary source posi-
tions and extended for fan noise applications combined with the phase shifted dipole array
approach. A very good agreement has been satisfied in comparison with the BEM solution
at the frequency of interest.

One key point addressed in this thesis is the prediction of broadband noise generated
by first a stationary airfoil and second a low-speed axial fan. Several source mechanisms
exist resulting broadband noise due to their random characteristics. This thesis focuses
on turbulence-interaction noise. Amiet’s theory provides an interesting semi-analytical ap-
proach to the turbulence-interaction problem for stationary airfoils and rotor blades. It is a
hybrid method considering homogeneous turbulence acting on the airfoil. However, due to
the simplifications in the analytical model, the solution is limited with assumptions. One of
them is consideration of an observer located in far-field. As mentioned above, the far-field
assumption might be significant for acoustic problems when the observer or scattering sur-
faces are located in the near-field. The effect of far-field approximation has been investigated
using an exact numerical integration of the theory as reference. An intermediate level of cor-
rection accounting for observers located in the geometrical near-field of the airfoil has been
proposed. The new solution has highly improved the Amiet’s model where the observer-
source distance is comparable to the span-length of the airfoil. In the numerical validation
test case, the spanwise geometrical near-field formulation has provided a correction to the
far-field solution up to 10 dB.

Another assumption in Amiet’s theory is the turbulent flow impinging onto the airfoil is
considered as uniform. However, in most of the industrial applications and the experimental
jet-airfoil configuration detailed, the flow is varying in the spanwise direction. An approach
already in use in literature is splitting the airfoil into short strips in the spanwise direction
and assuming homogeneous flow properties for each strips, called classical strip theory. The
overall sound is obtained then summing the sound emitted from each strips. The tests have
showed that with the increasing number of strips, the overall spectrum underpredicts the
reference one. This has been addressed as the effect of large hydrodynamic wavelengths
due to the lack of correlation between strips. Another method existing in the literature is
the inverse strip theory, considering the reconstruction of the strip from a subtraction of
truncated airfoil from a large span airfoil. Hence, it is capable of taking the large wavelength
effects into account in far-field. In the geometrical near-field, due to the different directivities
of the dipoles appearing during substraction, the overall spectrum does not match exactly
with the reference solution but it highly improves the solution compared to the classical strip
theory. Further, it doubles the computation time since each strip needs being calculated
using two large-span airfoils. A new segmentation method has been proposed in this thesis
considering the cross-correlation of the adjacent strips. For the author’s knowledge, there
is not an exact solution for partially non-homogeneous turbulent field. However, it can be
modeled employing homogeneous turbulent models using a method proposed in literature.
A first order correction has been proposed using a shape function. Compared to the classical
strip theory, the new method has improved the solution due to the cross-correlation of
strips. Further, it has been found being computationally less demanding than the inverse
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strip theory since each strip is computed once and only the cross-correlation is introduced.

Combining the extension of Amiet’s theory and the segmentation techniques, the acoustic
response of a NACA0012 airfoil located in the developing region of a jet has been computed.
The flow field was obtained through an LES solution existing in the literature. Using the
incoming flow profile from the LES solution and employing a von Karman spectrum modified
with rapid distortion theory, the spectrum has been obtained with the semi-analytical model.
Besides, using the unsteady pressure distribution on the airfoil surface directly, the acoustic
pressure at the observer has also been computed with Curle’s analogy. A good agreement
has been satisfied compared to the measurements performed in the anechoic chamber. The
Curle’s analogy has been found to be able to predict the acoustic field at frequencies up to
the cut-off frequency of the CFD whereas Amiet’s model is able to predict over the entire
frequency range. Later, the theory proposed for stationary airfoils has been implemented
for rotor blades applying an azimuthal averaging. Acoustic free-field of a fan with a tip
Mach number around 0.08 operated in turbulent stream has been computed with the model.
A good agreement has been satisfied with the measurements and the model using classical
strip theory at frequencies higher than 3 kHz. The effect of large wavelengths have also
been introduced using different segmentation methods. The predictions are improved and a
better agreement has been obtained at frequencies higher than 400 Hz.

Another key point of this thesis is the prediction of the scattering of the broadband
noise. A deterministic numerical scattering method and analytical approaches have been
detailed in the chapter considering the scattered-field of the tonal fan noise. However, due
to the statistical characterization of the turbulent spectrum employed in the semi-analytical
model, the deterministic BEM solution can not be used directly. In order to deal with the
scattered field of random sound sources, the BEM solution has been re-formulated. The
Acoustic Transfer Vector (ATV) approach which links the acoustic incident velocity on the
scattering surface to the incident acoustic pressure at the observer point has been employed.
The semi-analytical solution has been re-derived in order to compute the acoustic velocity
contribution. ATVs have been obtained by solving the BEM problem partially in Virtual
Lab. and exported from Sysnoise. Combining the derivations with the ATVs exported,
scattered field of the turbulence-interaction noise of the stationary airfoil by a flat screen has
been computed. Similar to the free-field computations, the deterministic Curle’s analogy
has been combined with the classical BEM formulation in order to deal with the same
problem using the unsteady pressure distribution on the airfoil surface directly. A very
good agreement has been satisfied capturing the interference fringes due to the scattering
using both deterministic and non-deterministic scattering methods. Since the scattered-
field derivations are based on the ones in free-field, the deterministic method is limited
with the cut-off frequency of the CFD. However, the semi-analytical method combined with
the ATV approach predicts the scattered-field spectrum accurately over the entire frequency
range. The convenience of the ATV methodology has also been compared with measurements
considering an arbitrary orientation of the scattering surface.

The analytical scattering methods applied to the tonal fan noise have also been employed
for the scattering of broadband noise. The same stationary airfoil problem has been dealt
with the image method using both deterministic and semi-analytical approaches. A very
good agreement has been obtained at higher frequencies compared with measurements. Due
to the waves scattered by the free-edges of the finite scattering surface, the analytical solution
deviates from the measurements and numerical solution at low frequencies. The effect of the
closest edge has also been examined by treating the scattering problem as a corner. A better
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agreement has been observed compared to the image method. The scattering techniques
for broadband noise are finally applied to low-Mach number axial fans operating in the
vicinity of a scattering screen. A benchmark test is first performed considering a low-speed
axial fan operating parallel to a scattering screen. Due to simplicity of the problem, the
screen has been replaced with an image fan. The results obtained with the image method
are converged to the ones obtained with the ATV model. Finally, a flat screen has been
introduced to the acoustic radiation field of the low-speed axial fan in the experimental
setup. An agreement has been obtained in the comparison with the semi-analytical model
combined with the ATV approach and the measurements performed at frequencies higher
than 400 Hz. Both alignment and magnitude of interference fringes are captured accurately.
The analytical solutions have been shown to be applicable also for broadband scattering
problems for relatively simple scattering obstacles. However, since the ATV approach is
based on BEM, it is also applicable for more complex geometries.

6.2. Future Work and Perspectives

Both tonal and broadband components of low-speed fan noise have been investigated. Sat-
isfying results are obtained in both free and scattered acoustic field in the comparison with
numerical, analytical and experimental methods. Further improvements can be made on the
following sections,

- The free-field radiation of turbulence-interaction noise takes convection of the acoustic
waves with the fluid flow into account. However, in the scattered field computations, the
effect of convection of the scattered waves is neglected. Introducing the uniform flow to the
BEM formulation [10] and exporting the ATVs later, the convected waves can be taken into
account. For the investigated configurations the Mach number is less than 0.1 hence the
effect of convection is negligible. For higher Mach number applications, the convective effect
of fluid flow in acoustic propagation needs being considered.

- The effect of the Doppler factor has been shown to be negligible for the broadband noise
emitted from low-speed fans [88]. It can be easily considered for free-field computations.
However, due to the cross-correlation at the two different acoustic points, it is not possible
to take the Doppler effect into account in the current scattered-field formulation. Using
further numerical models, accounting the Doppler effect will result a more elegant solution
for the scattered-field problems.

- In the correlated-strips theory, the cross-correlation of segments has been taken into
account using a shape function, depending on the impinging flow velocity only. The first
order correction using shape functions improves the solution compared to the classical strips
theory. However, using additional empirical methodology, the shape function, hence the
total sound spectrum can be improved.

- Implementation of the ATV theory to the broadband airfoil and fan noise has been
proposed. Only the turbulence-interaction noise has been investigated in this thesis. How-
ever, other broadband source mechanisms, such as self-noise [6], can also be combined with
the ATV approach. The sound emitted by an airfoil or a fan due to the self-noise and its
scattered-field by an obstacle can be computed.

- The exact-analytical solution addressing the scattered-field of the noise emitted from
a monopole by a rigid corner has been extended for a dipole. The extended dipole-corner
solution has been later combined with the continuous array of phase shifted dipoles approach
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to obtain equivalent of a fan source operating next to the corner. Further derivations can
address the scattered-field of a quadrupole by the corner. Such formulation can be em-
ployed in the scattered-field of sound field generated by wakes next to the flap side-edge in
aeronautical applications [70].





Appendix A.

Derivation of the Acoustic Transfer Function

As mentioned in Chapter 4, the airfoil is considered as a linearized flat plate with zero
thickness and camber. The plate is located on z = 0 plane with zero angle of attack. In
the derivations, the origin is considered on the leading edge of the airfoil, hence the plate
is located on 0 ≤ x ≤ 2b on the streamwise direction, b being the half-chord length of the
airfoil [5]. The flow speed impinging to the airfoil is represented as U with the corresponding
Mach number, M for the speed of sound equal to c0. Using these definitions, the linearized
wave equation for the velocity potential ϕ is
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The differentiation D/Dt on the streamwise direction reads
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where β =
√
1−M2 is the compressibility factor. The Fourier domain velocity potential ϕ

can be defined as

ϕ(x, t) = φ(x) eiωt eikM/β2

e−ikyy (A.4)

for the further derivations. k is the wave number defined as k = ω/c0. Introducing the
definition of the velocity potential, one can show the terms on the right hand side of the
Equation (A.3) as
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Using the terms in Equation (A.5) and without considering the exponential terms, formu-
lation (A.3) can be simplified to
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In order to non-dimensionalize the problem, the geometrical parameters are divided by the
semi chord length, b. Introducing the compressibility factor, the non-dimensional geometrical
parameters writes
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The non-dimensional form of Equation (A.6) is
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Introducing the definition of the chordwise wavenumber defined in Chapter 4, kx = ω/U ,
the wave number k results as k =Mkx. Non-dimensionalizing the wave numbers as k̄i = bki,
Equation (A.8) reads
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Defining the new parameters, µ = Mk̄x/β
2 and κ2 = µ2 − k̄2y/β2, Equation (A.9) can be

written in the form of a Helmholtz equation as
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The velocity potential for an incident velocity perturbation

w = w0 ei(ωt−kxx−kyy) (A.11)

must be zero upstream the airfoil

φ(x, t) = 0, x ≤ 0, z = 0. (A.12)
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Hence, after non-dimensonalizing with the half chord-length

φ(x̄, t) = 0, x̄ ≤ 0, z = 0. (A.13)

Additionally, the normal velocity is equal to zero on the plate
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(x) = −w, 0 < x < 2b, z = 0. (A.14)

which can be written in the non-dimensional form using the definition of the velocity potential
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Finally, according to the Kutta condition [85] the pressure difference between the suction
and the pressure side is equal to zero for the streamwise position above the trailing edge.
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= 0, x ≥ 2b. (A.16)

Using the definition of the velocity potential and the definition of the differentiation, the
non-dimensional form of the equation becomes

0 =
Dϕ

Dz
, x ≥ 2b.

=
∂ϕ

∂t
+ U

∂ϕ

∂x

=i ω φeiωteikM/β2

e−ikyy + Ueiωte−ikyy

(
∂φ

∂x
+

ikM

β2
eikM/β2

φ

)
=i(kx +

kM

β2
)φ+

∂

∂x
φ

=i(kx +
kxM

2

β2
)φ+

∂

∂x̄
φ

=ib

(
kx +

kxM
2

β2

)
φ+

∂

∂x̄
φ

=

(
i
k̄x
β2

+
∂

∂x̄

)
φ. (A.17)

Combining the Equations (A.10), (A.13), (A.15) and (A.17), the solution set of the poten-
tial field can be computed. However, the solution differs with the sign of κ2. For the values
of the spanwise wave number k̄y < k̄xM/β2, the equation becomes hyperbolic and the gust
is said to be supercritical. Supercritical gusts are known to be radiate efficiently [113].
For other values of the spanwise wave number making k̄y > k̄xM/β2 the equation behaves

elliptically. The gust is then said subcritical and is less efficient in terms of acoustic radiation
[113]. However if the span is finite, subcritical gusts need being taken into account. Since
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the supercritical gusts are dominant compared to the subcritical gusts in terms of acoustic
radiation, only the supercritical gusts are considered in the derivations.
A solution for the hyperbolic function (A.10) can be written as

φ0(x̄) = α eγx̄−i
√
κ2+γ2z̄. (A.18)

Constants α and γ are computed using the boundary condition defined in Equation (A.15)
as

−w0b

β
e−ikxx̄/β2

=
∂φ0

∂z̄
(x̄)

−w0b

β
e−ikxx̄/β2

=αeγx̄
∂

∂z̄
ei
√
κ2+γ2z̄

−w0b

β
e−ikxx̄/β2

=αeγx̄(−i
√
κ2 + γ2)ei

√
κ2+γ2z̄ (A.19)

with

e−ikxx̄/β2

=α eγx̄, z̄ = 0

−w0b

β
=− iα

√
κ2 + γ2. (A.20)

Replacing the definition of κ, one can obtain the parameters as

α =− w0b√
k̄2x + k̄2y

γ =− i
k̄x
β2
. (A.21)

Introducing the definitions above, the solution of the velocity potential becomes

φ0(x̄) = − w0b√
k̄2x + k̄2y

e−(ik̄xx̄+
√
k̄2x+k̄

2
y z̄)/β

2

. (A.22)

The boundary condition defined in Equation (A.15) is now satisfied. In order to satisfy
the first boundary condition defined in Equation (A.13), the corrected potential φ1 = φ0+φc

is must be computed. Replacing the parameter φ in Equations (A.10) and (A.13) and since
the derivative of the correction potential φc in the streamwise direction is equal to zero for
the values x̄ > 0, the problem can be re-written as the Schwarzchild statement [121]

∂2φ

∂X2
+
∂2φ

∂Y 2
+ κ2φ =0

φ(X) =f(X), X ≥ 0

∂φ

∂Y
(X) =0, X < 0. (A.23)
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with the solution for X < 0 and Z = 0 given as

φ(X, 0) =
1

π

∫ ∞

0

G(X, ξ, 0)f(ξ) dξ. (A.24)

The function G is defined as

G(X, ξ, 0) =

√
−X
ξ

e−iκ(ξ−X)

ξ −X
. (A.25)

Converting the problem set to the Schwarzschild problem, one can obtain

φc(x̄) = − 1

π

∫ ∞

0

√
x̄

ξ

e−iκ(ξ+x̄)

ξ + x̄
φ0(−ξ, 0) dξ

=
w0b

π
√
k̄2x + k̄2y

e−iκx̄

∫ ∞

0

√
x̄

ξ

e−iξ(κ−k̄x/β2)

ξ + x̄
dξ (A.26)

Knowing that the integral on the right hand side of the equation reads [48]∫ ∞

0

√
A

ξ

e−iBξ

ξ + A
dξ = πeiBX

(
1− eiπ/4√

π

∫ BX

0

e−it√
(t)

dt

)
, (A.27)

Equation (A.28) can be computed as

φc(x̄) =
w0b√
k̄2x + k̄2y

e−ik̄xx̄/β2

(
1− (1 + i)

∫ (κ−k̄x/β2)

0

e−it

√
2πt

dt

)
. (A.28)

The integral can be converted to the Fresnel integrals E(x) = C(x) + iS(x) defined as

E(x) =

∫ x

0

eit√
2πt

dt. (A.29)

using the transformation

(1− i)E(x) = (1 + i)E∗(−x) (A.30)

where the superscript ∗ represents the complex conjugate operator. Introducing the Fresnel
integrals, the Equation (A.28) results

φc(x̄) =
w0b√
k̄2x + k̄2y

e−ik̄xx̄/β2 (
1− (1− i)E

[
(−κ+ k̄x/β

2)x̄
])
. (A.31)

The corrected velocity field is then obtained via adding Equation (A.31) to (A.22) as

φ1(x̄) = − w0b√
k̄2x + k̄2y

e−ik̄xx̄/β2

(1− i)E
[
(−κ+ k̄x/β

2)x̄
]
. (A.32)

Introducing the formulation (A.32) into Equation (A.4), the velocity potential in dimen-
sional form then reads
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ϕ(x) = − w0√
k2x + k2y

ei(Ukxt−kxx−kyy)(1− i)E
[x
b
(−κ+ k̄x/β

2)
]
. (A.33)

Since the velocity potential is linked to the surface pressure as

p(x, y, 0, t) = −ρ0
Dϕ

Dt
(A.34)

where the particular differentiation defined in Equation A.2. Hence the surface pressure is
computed via

p(x, y, 0, t) = −ρ0
(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
. (A.35)

The derivations of the velocity potential defined in expression (A.33) appearing in the
Equation (A.35) are computed as

∂ϕ

∂t
=− w0√

k2x + k2y
e−i(kxx+kyy)(1− i)E

[x
b
(−κ+ k̄x/β

2)
] ∂
∂t

(
∂ϕ

∂t
eiUkxt

)
=− w0√

k2x + k2y
(1− i)E

[x
b
(−κ+ k̄x/β

2)
]
iUkxe

i(Ukxt−kxx−kyy) (A.36)

and

∂ϕ

∂x
=− w0√

k2x + k2y
(1− i)ei(Ukxt−kyy)

∂

∂x

(
e−ikxxE

[x
b
(−κ+ k̄x/β

2)
])

=− w0√
k2x + k2y

(1− i)ei(Ukxt−kyy)
[
(−ikx)e−ikxxE

[x
b
(−κ+ k̄x/β

2)
]
+

e−ikxx
∂

∂x

(
E
[x
b
(−κ+ k̄x/β

2)
]) ]

. (A.37)

It is seen that multiplying the first term in the brackets of Equation (A.37) with U as
defined in expression (A.35) results in minus the right Equation (A.36). Hence the surface
pressure is computed only using the second part of the expression (A.37)

p(x, y, 0, t) = ρ0
w0√
k2x + k2y

ei(Ukxt−kxx−kyy)U(1− i)
∂

∂x

(
E
[x
b
(−κ+ k̄x/β

2)
])
. (A.38)

The derivation of the Fresnel integral is now obtained employing the Leibniz rule [1]

∂

∂α

∫ b(α)

a(α)

f(x, a)dx =
db(α)

dα
f(b(α, α))− da(α)

dα
f(a(α, α)) +

∫ b(α)

a(α)

∂

∂α
f(x, a)dx. (A.39)

Finally, the surface pressure results as

p(x, y, 0, t) = ρ0w0U
e−iπ/4√

π(β2κ+ kxb)x/b
ei(Ukxt−(kx+(κ−kx/β2)/b)x−kyy). (A.40)
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The pressure jump on the profile can be written as

∆P (x, 0, t) = 2πρ0U w0 g(x, kx, ky)e
iωt (A.41)

where P (x, 0, t) is linked to the surface pressure p(x, y, 0, t) via

p(x, y, 0, t) = P (x, 0, t)e−ikyy. (A.42)

Since the thickness and the camber is infinitely small, the pressure jump on the profile is
assumed to be twice the pressure fluctuations on one face of the profile. Combining the last
three formulations above, one can obtain the relation between the transfer function g and
the surface pressure as p as

g(x, kx, ky) =
p(x, y, 0, t)e−i(ωt−kyy)

πρ0Uw0

. (A.43)

The transfer function g can now be computed with this equation. The origin of the
coordinate axis is defined on the leading edge where the streamwise position of the profile is
located between 0 < x̄ < 2. However, for the derivations defined in Chapter 4 the origin is
located at the center of the airfoil, making −1 < x̄ < 1. Hence, changing x̄ with x̄− 1, the
transfer function can be computed as

g(x̄, kx, ky) =
e−iπ/4

π
√
π(k̄x + β2κ)(x̄+ 1)

e−i(κ−k̄xM2/β2)(x̄+1). (A.44)

For readers infirmation, the backscattering component from the trailing edge [111] in the
derivations of the transfer function is not considered since high frequencies are addressed
[96].

The aeroacoustic transfer function L(x, kx, ky) is then obtained via the chordwise integra-
tion

L(x, kx, ky) =
∫ 1

−1

g(ξ, kx, ky) e
−ikxM(M−x/σ0)ξ/β2

dξ (A.45)

where ξ is the chordwise position of the dipole on the surface. Introducing the definition of
g into Equation (A.45)

L(x, kx, ky) =
1− i

π
√
k̄x + β2κ∫ 1

−1

frac1
√
2π(x̄0 + 1)e−i[(κ−M2k̄x/β2)(x̄0+1)]e−iµx̄0(M−x/σ0)dx̄ (A.46)

with µ = k̄xM/β2. The subscript zero, x0, indicates the dipole position. The integral is then
solved as
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L(x, kx, ky) =
1− i

π
√
k̄x + β2κ

∫ 2

0

1√
2π(x̄0)

e−i[(κ−M2k̄x/β2)x̄0]e−iµ(x̄0−1)(M−x/σ0)dx̄0

=
(1− i)eiµ(M−x/σ0)

π
√
k̄x + β2κ

∫ 2

0

e−ix̄0Θ1√
2πx̄0
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eiΘ2

π

√
2

k̄x + β2κ

∫ 2

0

e−ix̄0Θ1√
2πx̄0

dx̄0 (A.47)

where the new parameters are Θ1 = κ − µx/σ0 and Θ2 = µ(M − x/σ0) − π/4. Using the
definition of Fresnel integrals, the last term on the right hand side becomes∫ 2

0

e−ix̄0Θ1√
2πx̄0

dx̄0 =
E∗(2Θ1)√

Θ1

. (A.48)

Hence, the aeroacoustic transfer function finally reads

L(x, kx, ky) =
1

π

√
2

(k̄x + β2κ)Θ1

E∗(2Θ1)e
iΘ2 . (A.49)

Following a similar procedure, the second transfer function L′(x, kx, ky) appearing in the
scattered field derivations in Chapter 5 can be integrated as

L′(x, kx, ky) =

∫ 1

−1

g(x̄0, kx, ky)e
−iµx̄0(M−x/σ0)dx̄0 x̄0
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 (A.50)

and finally

L′(x, kx, ky) =
eiΘ2

π

√
2

k̄x + β2κ

[
ie−2iΘ1

√
πΘ1

−
(
1 +

i

2Θ1

)
E∗(2Θ1)√

Θ1

]
. (A.51)



Appendix B.

Derivation of the Spanwise Segmentation

Using the definition of acoustic pressure radiated from the point dipoles given in Equa-
tion (4.4) and integrating explicitly the distribution of dipoles over the airfoil surface the
acoustic PSD is calculated as

Spp(x, y, z, ω) = (
ωz

4πc0
)2∫

d1

∫
d2

∫
b1

∫
b2

∫ ∞

−∞
(2πρ0)

2g∗(x1, Kx, ky)g
∗(x2, Kx, ky)UΦww(Kx, ky)

1

σ2
y1

1

σ2
y2

e
−i( ωy

c0σ0
+ky)y1e

−iω
x1

c0β
2 (M− x

σ0
)
e
i( ωy

c0σ0
+ky)y2e

iω
x2

c0β
2 (M− x

σ0
)
dkydx2dx1dy2dy1. (B.1)

where σyn =
√
x2 + β2(y − yn)2 + β2z2 and σ0 =

√
x2 + β2y2 + β2z2 defined in Equa-

tion (4.27). Using such an intermediate far-field assumption allows the chordwise integrals
to be solved analytically [5]

Ln(x,Kx, ky) =

∫
b

g∗(xn, Kx, ky)e
−iω xn

c0β
2 (M− x

σ0
)
dxn. (B.2)

Introducing Equation (B.2) into Equation (B.1), the PSD becomes

Spp(x, y, z, ω) = (
ρ0ωz

2c0
)2
∫ ∞

−∞

∫
d1

1

σ2
y1

e
−i( ωy

c0σ0
+ky)y1L∗

1(x,Kx, ky)dy1 (B.3)∫
d2

1

σ2
y2

e
i( ωy

c0σ0
+ky)y2L2(x,Kx, ky)dy2 UΦww(Kx, ky)dky

The acoustic transfer function L is a function of incoming flow velocity U as defined in
Equation (A.49) and since the incoming flow velocity varies in the spanwise direction, L is
kept in the spanwise integrals.

The parameter Sn(x, y, z; yn) = 1/(σ2
yn)e

i( ωy
c0σ0

+ky)yn is defined in order to simplify the
notation. The acoustic PSD then writes

Spp(x, y, z, ω) = (
ρ0ωz

2c0
)2
∫ ∞

−∞

∫
d1

S1(x, y, z; y1)L∗
1(x,Kx, ky)dy1 (B.4)∫

d2

S2(x, y, z; y2)L2(x,Kx, ky)dy2 UΦww(Kx, ky)dky

Since the integral limits can be distributed using (for −a < b < a)
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∫ a

−a
f(x)dx =

∫ b

−a
f(x)dx+

∫ a

b

f(x)dx, (B.5)

the spanwise segmentation is performed for the acoustic PSD as

Spp(x, y, z, ω) = (
ρ0ωz

2c0
)2
∫ ∞

−∞(∫ d1

−d
S1(y1)

∗L∗
1(x,Kx, ky)dy1 + . . .+

∫ d

dn

S1(y1)
∗L∗
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)
(∫ d1

−d
S2(y2)L2(x,Kx, ky)dy2 + . . .+

∫ d

dn

S2(y2)L2(x,Kx, ky)dy2

)
(B.6)

UΦww(Kx, ky)dky

for −d < d1 < ... < dn < d. Solving the spanwise integrals and defining the new parameter
Pn =

∫ dn
dn−1

Sn · Lndyn,

Spp(x, y, z, ω) =(
ρ0ωz

2c0
)2 (B.7)(∫ ∞

−∞
P ∗
1P1(UΦww)1,1dky + · · ·+

∫ ∞

−∞
P ∗
1Pn(UΦww)1,ndky+∫ ∞

−∞
P ∗
2P1(UΦww)2,1dky + · · ·

...
. . .

...∫ ∞

−∞
P ∗
nP1(UΦww)n,1dky + · · ·+

∫ ∞

−∞
P ∗
nPn(UΦww)n,ndky

)
(B.8)

the total PSD becomes equal to the summation of the auto- and cross-correlation of the
strips.
The applications including spanwise segmentation in the literature [27, 38, 118] consider

strips with distinct centers. The initial gust-airfoil interaction problem is then changed.
Since the observer hears the gust perpendicular to the line joining the source to the observer
[5] this may lead deviation from the original problem. In the segmentation procedure detailed
above, the observer position is kept the same for the initial large aspect ratio airfoil and small
strips. Only the spanwise integration limits are change on each strips. The initial gust-airfoil
problem is then preserved.



Appendix C.

Application of the Doppler Factor to Broadband
Fan Noise

C.1. Application to Free-Field Problems

The relative motion between the source and observer can be dealt with for moving sources and
stationary observer or stationary source and moving observer due to the reciprocity property
[101]. The latter is considered for the simplicity of derivations [96]. The relation between
the acoustic pressure at the moving observer and the fixed one was shown in Equation (4.58)
as pm(t) = pf (αt). Superscripts m and f represent the moving and the fixed observers,
respectively. The ratio of emitted and observed frequencies, α = ωo/ωe is used for the
derivations. Knowing that the acoustic PSD at a fixed observer is the Fourier transform of
the auto-correlation function of the acoustic pressure

Sppf (ωo) =
1

2π

∫ ∞

−∞
Rppf (τ)e−iωoτdτ (C.1)

where the auto-correlation function at the fixed observer is defined as

Rppf (τ) =
1

2T

∫ T

−T
pf (t)pf (t+ τ)dt. (C.2)

Similarly, at the moving observer case, the autocorrelation function reads

Rppm(τ) =
1

2T

∫ T

−T
pm(t)pm(t+ τ)dt, (C.3)

Using the transformation between pf and pm defined in Equation (4.58), the auto-correlation
function of the moving observer can be represented with the fixed ones

Rppm(τ) =
1

2T

∫ T

−T
pf (αt)pf (α(t+ τ))dt. (C.4)

Applying the change of the integration parameter the correlation function at the moving
observer becomes

Rppm(τ) =
1

2αT

∫ αT

−αT
pf (t)pf (t+ ατ))dt. (C.5)

Finally the relation between correlation functions at fixed and moving observers is obtained
as

Rppm(τ) = Rppf (ατ). (C.6)
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Taking the Fourier transform of the Rppm, the acoustic PSD computed at the moving
observer then becomes

Sppm(ωo) =
1

2π

∫ ∞

−∞
Rppm(τ)e−iωoτdτ,

=
1

2π

∫ ∞

−∞
Rppf (ατ)e−iωoτdτ,

=
1

α2π

∫ ∞

−∞
Rppf (τ)e−iωoτ/αdτ,

=
1

α
Sppf

(ωo
α

)
. (C.7)

Introducing the definition of α, the acoustic PSD at the moving observer becomes

Sppm(ωo) =
ωe
ωo
Sppf (ωe). (C.8)

C.2. Application to the Benchmark Problem

Equation 4.60 is used in order to compute the broadband noise generated by rotating blades.
It includes the Doppler frequency shift. However, for the implementation of the scattering
methods addressed in Chapter 5, it is not possible to take the frequency shift into account.
Therefore its effect on the benchmark fan is investigated. It was shown in [88], for a low-speed
axial fan, the observed frequency converges to the emitted frequency

lim
M→0

(
ωe
ωo

)
→ 1 (C.9)

hence the Doppler factor becomes negligible.
A test is performed using the low-speed axial fan described in Section 4.7 in order to

address the effect of the Doppler shift. The observers are located at 5 radii away from the
fan center. Three observer positions are tested θ = π/8, π/4, 0. The far-field equation (4.26)
is employed for the test-case using inverse strip theory with 4 segments.
Figure C.1 shows the sound spectra at three observer positions located in the far field

of the fan. The spectra are shifted 10 dB from each other for clarity. The plain line and
symbols represent the spectra with and without the Doppler effect. The difference of the
spectra due to the Doppler effect is less than 1 dB, since the maximum Mach number is less
than 0.08. Therefore, the Doppler effect is shown to be negligible for the low-speed axial fan
of interest.

C.3. Application to Scattered-Field Problems

The free-field computations are based on the transformation of the auto-correlation func-
tion only, however in the scattered-field problems, the cross-correlation of the observer and
acoustic mesh points is also a point of interest. One of the parameters appearing in the final
Doppler factor formulation is the geometrical orientation of the acoustic point (field point
and acoustic mesh) with respect to the moving source. Since the positions of any field point
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Figure C.1.: Acoustic PSD spectra of the low-Mach number axial fan at θ = π/8, π/4, 0,
(plain) with and (symbols) without the Doppler effect.

and acoustic mesh points are different, two different factors appear in the derivations for the
cross-correlation terms. Using the transformation between fixed and moving observers, the
acoustic pressures read pm1 (t) = pf1(α1t) and pm2 (t) = pf2(α2t) for two acoustic points. Re-
minding α1 ̸= α2 unless they are not located at the same position in space, (see Figure C.2).
Equation (C.4) then becomes

Rppm(τ) =
1

2T

∫ T

−T
P f
1 (α1t)P

f
2 (α2(t+ τ))dt. (C.10)

Unlike Equation (C.5), the correlation term Rppm(τ) can not be represented as a function
of Rppf (τ), α1 and α2.
The problem faced is the implementation of the turbulence spectrum for the scattered-field

computations. The Doppler factor is the ratio of the emitted and the observed frequencies
resulting from the relative motion between the source and the observer. Since there is
no relative motion between the observer and the acoustic mesh (unless the mesh is not
moving with the source), a fixed observed frequency applies for both field and acoustic
points. Fixing the observed frequency simplifies the computation and application of the
ATV theory, however due to the different positions of acoustic and field point elements,

ωo,1 = ωo,2
ωe,1
α1

=
ωe,2
α2

α1 ̸= α2

ωe,1 ̸= ωe,2 (C.11)
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Figure C.2.: Sketch of the source, observer and the acoustic mesh for the broadband scat-
tering problem.

the emitted frequency from the source is not unique. The semi-analytical method employed
in Sections 4.6 and 5.2 is based on the statistical definition of the source field. For turbulence-
interaction noise model, the source field is Fourier transform of the surface pressure jump of
the airfoil [5],

∆PT (x, y, t) = 2πρ0U

∫ ∫ ∞

−∞

̂̂wR(kx, ky)g(x, kx, ky)ei(kyy−kxUt)dkxdky (C.12)

∆P̂T (x, y, ω) = ρ0U

∫ ∫ ∞

−∞

̂̂wR(kx, ky)g(x, kx, ky)eikyy ∫ ∞

∞
e−i(ω+Ukx)tdtdkxdky. (C.13)

The time integral in the transformation tends to a delta function,∫ ∞

∞
ei(−ω−Ukx)tdt→ 2πδ(ω + Ukx) (C.14)

meaning that only one particular chordwise turbulence wave number yields in the pressure
jump. The particular wave number is Kx = ω/U .
The scattered-field problem is solved by means of auto- and cross-correlation of the acoustic

quantities at the observer and acoustic mesh points. Introducing the relative motion between
the source and the acoustic point, the observed frequency becomes different than the emitted
one. Considering that the acoustic and scattering obstacle are located in a fixed position in
space, the observed frequency becomes unique for all the acoustic points. Hence, as shown
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in Equation (C.11), at different acoustic points in the space, different emitted frequencies
apply. In the cross-correlation term of two acoustic mesh points on the scattering surface for
example, two different chordwise turbulence wave numbers then apply, Kx,1 and Kx,2 where
Kx,1 ̸= Kx,2. Since the turbulent spectrum is related with,

E[ ̂̂wR(Kx,1, ky)
̂̂w∗

R(Kx,2, k
′
y)] =

R

π
δ(ky − k′y)δ(Kx,1 −Kx,2)Φww(Kx, ky) (C.15)

if Kx,1 ̸= Kx,2, due to the statistical orthogonality of the wave vectors, the expected value of
the auto-correlation of the source term is zero. Hence, the contribution of the Doppler factor
cannot be taken into account with the current formulation. Nevertheless, it was shown above
that the Doppler effect is assumed to be negligible for the low-speed axial fan tested [88].
It is therefore not taken into account for the scattered field problems. The aforementioned
issue would be a concern for high-speed applications.





Appendix D.

Scattered-Field due to Broadband Noise Sources

The time history of the acoustic pressure at the field point is first decomposed to incident
pressure pi and the scattered pressure ps as

p(t) = pi(t) + ps(t). (D.1)

The PSD of the acoustic pressure at the observer point is obtained via the Fourier trans-
form of the auto-correlation matrix

Spp =

∫ ∞

−∞
Rpp(τ) e−iωτ dτ (D.2)

where the auto-correlation matrix is given as

Rpp(τ) = lim
T0→∞

1

2T0

∫ T0

−T0
p(t) pT (t+ τ) dt. (D.3)

Introducing Equation (D.1) into Equation (D.3), the auto-correlation term of the scat-
tered acoustic field can be represented as the auto-and cross correlation of the incident and
scattered acoustic fields as

Rpp(τ) = Rpp(τ) +Rpipi(τ) +Rpips(τ) +Rpspi(τ) +Rpsps(τ). (D.4)

The correlation terms are then [123]

Rpipi(τ) = lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
i (t+ τ) dt

Rpips(τ) = lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
s (t+ τ) dt

Rpspi(τ) = lim
T0→∞

1

2T0

∫ T0

−T0
ps(t) p

T
i (t+ τ) dt

Rpsps(τ) = lim
T0→∞

1

2T0

∫ T0

−T0
ps(t) p

T
s (t+ τ) dt. (D.5)

As defined in Equation (D.2), the Fourier transform of the autocorrelation matrix of the
scattered acoustic field decomposed as,

Spp(ω) = Spipi + Spips + Spspi + Spsps. (D.6)

with
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Spipi =

∫ ∞

−∞
Rpipi(τ) e

−iωτ dτ

Spips =

∫ ∞

−∞
Rpips(τ) e

−iωτ dτ

Spspi =

∫ ∞

−∞
Rpspi(τ) e

−iωτ dτ

Spsps =

∫ ∞

−∞
Rpsps(τ) e

−iωτ dτ. (D.7)

The term Spipi term is the free-field acoustic PSD of the source which can be computed
using the Equations defined in Chapter 4. The terms containing the subscript s, appearing
due to the effects of the scattering obstacle, need being computed in order to obtain the
PSD of the scattered acoustic field. Introducing Equation (D.5) into Equation (D.8) the
PSD reads [123]

Spipi =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
i (t+ τ)dt e−iωτ dτ

Spips =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
s (t+ τ)dt e−iωτ dτ

Spspi =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
ps(t) p

T
i (t+ τ)dt e−iωτ dτ

Spsps =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
ps(t) p

T
s (t+ τ)dt e−iωτ dτ. (D.8)

In order to compute the scattered acoustic pressure ps(t) the ATV analogy in the BEM
framework is used as [45],

ps(t) =

∫ ∞

−∞
ATV (τ)vn(t− τ) dτ. (D.9)

where vn is the acoustical normal velocity at the position of the boundary element. Since
the obstacle is assumed to be solid, the Neumann boundary conditions are satisfied on the
boundary element [35]. The zero acoustic velocity normal to the element is obtained

vi(τ) + vn(τ) = 0. (D.10)

where the incident acoustic velocity is obtained via the gradient of the incident pressure
field. Combining Equations (D.9) and (D.10), the scattered pressure is then linked to the
acoustic incident velocity,

ps(t) = −
∫ ∞

−∞
ATV (τ)vi(t− τ) dτ. (D.11)

Introducing Equation (D.11) into Equation (D.8), the auto and cross-correlation PSD
becomes [123]
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Spipi =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
i (t+ τ) dt e−iωτ dτ

Spips =−
∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0

(∫ ∞

−∞
vTi (t+ τ − τ2)ATV T (τ2) dτ2

)
pi(t)dt e

−iωτ dτ

Spspi =−
∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0

(∫ ∞

−∞
ATV (τ1)vi(t− τ1) dτ1

)
pTi (t+ τ) dt e−iωτ dτ

Spsps =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0

(∫ ∞

−∞
ATV (τ1)vi(t− τ1) dτ1

)
(∫ ∞

−∞
vTi (t+ τ − τ2)ATV T (τ2)dτ2

)
dt e−iωτ dτ. (D.12)

Changing the integration parameters t′ = t− τ1, Equation (D.12) yields

Spipi =

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
pi(t) p

T
i (t+ τ) dt e−iωτ dτ

Spips = −
∫ ∞

−∞

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
pi(t

′)vTi (t
′ + τ − τ2) dt′ATV T (τ2) e−iωτ dτ dτ2

Spspi = −
∫ ∞

−∞
ATV (τ1)

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
vi(t

′)pTi (t
′ + τ + τ1) dt

′ e−iωτ dτ dτ1

Spsps =

∫ ∞

−∞

∫ ∞

−∞
ATV (τ1)

∫ ∞

−∞
lim
T0→∞

1

2T0

∫ T0

−T0
vi(t

′)vTi (t
′ + τ + τ1 − τ2) dt′...

ATV T (τ2) e−iωτ dτ dτ1 dτ2. (D.13)

Introducing the definition of the auto- and cross-correlation terms of incident pressure and
velocity, similar to the ones defined in Equation (D.5) into Equation (D.13) writes

Spipi =

∫ ∞

−∞
Rpipi(τ) e−iωτ dτ

Spips = −
∫ ∞

−∞

∫ ∞

−∞
Rpivi(t+ τ − τ2) ATV T (τ2) e−iωτ dτ dτ2

Spspi = −
∫ ∞

−∞
ATV (τ1)

∫ ∞

−∞
Rvipi(t+ τ + τ1) e−iωτ dτ dτ1

Spsps =

∫ ∞

−∞

∫ ∞

−∞
ATV (τ1)

∫ ∞

−∞
Rvivi(t+ τ + τ1 − τ2) ATV T (τ2)

e−iωτ dτ dτ1 dτ2. (D.14)

Similar to e−iωτ = eiωτ1 e−iω(τ+τ1), decomposing the exponential term,
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Spipi =

∫ ∞

−∞
Rpipi(τ) e−iωτ dτ

Spips = −
∫ ∞

−∞
Rpivi(tpv) e

−iωtpv dtpv

∫ ∞

−∞
ATV T (τ2) e−iωτ2 dτ2

Spspi = −
∫ ∞

−∞
ATV (τ1)e

iωτ1 dτ1

∫ ∞

−∞
Rvipi(tvp) e−iωtvp dtvp

Spsps =

∫ ∞

−∞
ATV (τ1)e

iωτ1 dτ1

∫ ∞

−∞
Rvivi(tvv) e

−iωtvv dtvv∫ ∞

−∞
ATV T (τ2) e−iωτ2 dτ dτ2. (D.15)

with

tpv = t+ τ − τ2
tvp = t+ τ + τ1

tvv = t+ τ + τ1 − τ2. (D.16)

The final auto and cross-correlation terms of the PSD then become

Spipi = Spipi(ω)

Spips = −Spivi(ω)ATV T (ω) (D.17)

Spspi = −ATV ∗(ω)Svipi(ω)

Spsps = ATV ∗(ω)Svivi(ω)ATV
T (ω). (D.18)

The total PSD defined in Equation (D.6) finally becomes [123]

Spp(ω) =Spipi(ω)

− Spivi(ω)ATV T (ω)− ATV ∗(ω)Svipi(ω) + ATV ∗(ω)Svivi(ω)ATV
T (ω). (D.19)



Appendix E.

Derivations of Spv, Svp and Svv

In order to obtain the scattered field matrices Spv, Svp and Svv, one needs to derive
incident velocity at the acoustic mesh point. The relation between the incident velocity and
the incident pressure was given in Equation (5.3). Using the acoustical far-field definition of
the acoustic pressure of a dipole,

p(x, y, z, ω; x1, y1) ≈
iωz

4πc0σ2
k

(F eiωt)e
iω(

M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

(E.1)

where σf and σk are defined as

σf =
√
x2 + β2(y2 + z2)

σk =
√
x2 + β2(y − y1)2 + β2z2

where the subscript 1 represents the position of the point dipole on the airfoil surface.

The gradient of the incident pressure in cartesian coordinates is needed. Starting from
the streamwise component,

∂p

∂x
=

iω

4πc0
(F eiωt)

∂

∂x

(
z

σ2
k

e
iω(

M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

)
. (E.2)

The derivation of the exponential term reads

∂

∂x
(e

iω(
M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)
) = e

iω(
M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

iω

(
M

c0β2
− x

c0β2σf
+ x1

(
1

c0β2σf
− x2

c0β2σ3
f

)
+ y1

(
−xy
c0σ3

f

))
. (E.3)

Grouping the terms in the parenthesis with respect to x1 and y1,

M

c0β2
− x

c0β2σf
+ x1(

1

c0β2σf
− x2

c0β2σ3
f

) + y1(
−xy
c0σ3

f

) = B1x +B2xx1 +B3xy1 (E.4)

with
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B1x =
M

c0β2
− x

c0β2σf

B2x =
1

c0β2σf
− x2

c0β2σ3
f

B3x =
−xy
c0σ3

f

. (E.5)

The derivative in Equation (E.2) results

∂

∂x

zeiω(
M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

x2 + β2(y − y1)2 + β2z2

 =
e
iω(

M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

(x2 + β2(y − y1)2 + β2z2)2(
iωzB1xx

2 + iωzB2xx1x
2 + iωzB3xy1x

2+

iωzB1xβ
2(y − y1)2 + iωzB2xx1β

2(y − y1)2 + iωzB3xy1β
2(y − y1)2+

iωzB1xβ
2z2 + iωzB2xx1β

2z2 + iωzB3xy1β
2z2 − 2xz

)
. (E.6)

Grouping Equation (E.6) with respect to the spanwise position of the dipole on the airfoil
surface reads

∂

∂x

zeiω(
M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

x2 + β2(y − y1)2 + β2z2

 =

A
(
iωzB1xx

2 + iωzB3xy1x
2 + iωzB1xβ

2(y − y1)2+
iωzB3xy1β

2(y − y1)2 + iωzB1xβ
2z2 + iωzB3xy1β

2z2 − 2xz
)
+

A
(
iωzB2xx

2 + iωzB2xβ
2(y − y1)2 + iωzB2xβ

2z2
)
x1 (E.7)

with

A =
e
iω(

M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

(x2 + β2(y − y1)2 + β2z2)2
. (E.8)

Terms in the parenthesis are named as Cx and Dx for simplicity in the further derivations.

Cx(y1) =iωzB1xx
2 + iωzB3xy1x

2 + iωzB1xβ
2(y − y1)2+

iωzB3xy1β
2(y − y1)2 + iωzB1xβ

2z2 + iωzB3xy1β
2z2 − 2xz

Dx(y1) =iωzB2xx
2 + iωzB2xβ

2(y − y1)2 + iωzB2xβ
2z2 (E.9)

Combining the definitions of the new parameters, Equation (E.2) can now be simplified
as
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∂

∂x

zeiω(
M(x−x1)−σf

c0β
2 +

xx1+β2yy1
c0β

2σf
)

x2 + β2(y − y1)2 + β2z2

 = A · Cx(y1) + A ·Dx(y1)x1 (E.10)

Introducing the spanwise and chordwise integrals, the streamwise derivative of the Equa-
tion (4.16) becomes,

∂Ṗ

∂x
= e

iω(
Mx−σf

c0β
2 )
∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
Cx(y1)dy1∫ b

−b
e
−iω( M

c0β
2−

x
c0β

2σf
)x1
g(x1)dx1+

e
iω(

Mx−σf

c0β
2 )
∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
Dx(y1)dy1∫ b

−b
e
−iω( M

c0β
2−

x
c0β

2σf
)x1
g(x1)x1dx1 (E.11)

The term Ṗ is the part of the acoustic pressure containing the corresponding parameters
for the derivations. The remaining terms will be introduced later.

Replacing the chordwise integrals with the acoustic transfer functions described in Ap-
pendix A, Equation (E.11) becomes

∂Ṗ

∂x
= e

iω(
Mx−σf

c0β
2 )
∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
Cx(y1)L dy1+

e
iω(

Mx−σf

c0β
2 )
∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
Dx(y1)L′ dy1 (E.12)

Grouping Cx(y1) and Dx(y1) on the spanwise position of the dipoles on the airfoil, y1, as

Cx(y1) =(iωzB1xx
2 + iωzB1xβ

2y2 + iωzβ2z2 − 2xz)+

y1(iωzB3xx
2 − 2iωB1xβ

2y + iωzB3xβ
2z2 + iωzB3xβ

2z2)+

y21(iωzB1xβ
2 − 2iωzB3xβ

2y)+

y31(iωzB3xβ
2)

Dx(y1) =(iωzB2xx
2 + iωzB2xβ

2y2 + iωzB2xβ
2z2)+

y1(−2iωB2xβ
2y)+

y21(iωzβ
2B2x). (E.13)

Decomposing Cx(y1) = C0x+C1xy1 +C2xy
2
1 +C3y

3
1 and Dx(y1) = D0x+D1xy1 +D2xy

2
1 as

defined above, Equation (E.11) becomes
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∂Ṗ

∂x
= e

iω(
Mx−σf

c0β
2 )
(∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
C0xL dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
C1xy1L dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
C2xy

2
1L dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
C3xy

3
1L dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
D0xL′ dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
D1xy1L′ dy1+∫ d

−d

e
iω

yy1
c0σf

(x2 + β2(y − y1)2 + β2z2)2
D2xy

2
1L′ dy1

)
(E.14)

Introducing the spanwise wave numbers, ky, the integral on the spanwise position of the
dipoles become

I0 =

∫ d

−d
e
i( ωy

c0σf
+ky)y1 1

(x2 + β2(y1 − y)2 + β2z2)2
dy1

I1 =

∫ d

−d
e
i( ωy

c0σf
+ky)y1 y1

(x2 + β2(y1 − y)2 + β2z2)2
dy1

I2 =

∫ d

−d
e
i( ωy

c0σf
+ky)y1 y21

(x2 + β2(y1 − y)2 + β2z2)2
dy1

I3 =

∫ d

−d
e
i( ωy

c0σf
+ky)y1 y31

(x2 + β2(y1 − y)2 + β2z2)2
dy1

(E.15)

Repeating the derivations for y and z components, one can obtain the parameters

Cy(y1) =(iωzB1yσ
2
f − 2zβ2y)+

y1(iωzB3yσ
2
f − 2iωB2yβ

2y + 2zβ2)+

y21(iωzB1yβ
2)− 2iωzB3yβ

2y)+

y31(iωzB3yβ
2)

Dy(y1) =(iωzB2yσ
2
f )+

y1(−2iωB2yβ
2y)+

y21(iωzβ
2B2y). (E.16)
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Cz(y1) =(σ2
f + iωzB1zσ

2
f − 2β2z2)+

y1(iωzB3zσ
2
f − 2β2y2iωB1zβ

2y)+

y21(β
2 + iωzB1zβ

2 − 2ziωB3zβ
2y)+

y31(iωzB3zβ
2)

Dz(y1) =(iωzB2zσ
2
f )+

y1(−2iωB2zβ
2y)+

y21(iωB2zβ
2). (E.17)

The normal velocity is then computed with the incident acoustic velocity components

vx ∝
∂Ṗ

∂x

∝ e
iω(

Mx−σf

c0β
2 )

((C0xL+D0xL′)I0 + (C1xL+D1xL′)I1 + (C2xL+D2xL′)I2 + C3xLI3) (E.18)

vy ∝
∂Ṗ

∂y

∝ e
iω(

Mx−σf

c0β
2 )

((C0yL+D0yL′)I0 + (C1yL+D1yL′)I1 + (C2yL+D2yL′)I2 + C3yLI3) (E.19)

vz ∝
∂Ṗ

∂z

∝ e
iω(

Mx−σf

c0β
2 )

((C0zL+D0zL′)I0 + (C1zL+D1zL′)I1 + (C2zL+D2zL′)I2 + C3zLI3) . (E.20)

The relation between the incident acoustical velocity and the dipole positions is derived
above. The definition of the derivation of the acoustic transfer functions are given in Ap-
pendix A. The only remaining term is then the computation of the spanwise integrals. As
mentioned in Section 4.1.2, the spanwise position of the dipole is introduced for the geomet-
rical near-field correction. The integration is then different from the one defined in reference
[5].

The spanwise integral I0 defined above can be first simplified as

I0 = A

∫ d−y

−d−y
eiBy1

1

((y1)2 + C)2
dy1 (E.21)

where
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A =
e
i( ωy

c0σf
+ky)y

β4

B =
ωy

c0σf
+ ky

C =
x2

β2
+ z2. (E.22)

Introducing the Exponential integrals E1 [1]

E1(µ) =

∫ ∞

µ

e−t

t
dt, (| arg µ| < π). (E.23)

the integral I0 results

I0 =
A

4C3/2

2
√
CeiBxx

x2 + C
+

Ai

4C3/2

[
(B
√
C)(e−B

√
CE1(−B

√
C − iBx) + eB

√
CE1(B

√
C − iBx))+

(e−B
√
CE1(−B

√
C − iBx)− eB

√
CE1(B

√
C − iBx))

]
. (E.24)

If the limits of the integration (E.21) have opposite signs, a removable singularity around
0 appears. In order to remove the singularity around 0, the integral is calculated as for
opposite sign integrals in the neighborhood of 0, decomposing the integration interval as

∫ d

−d

eix

a2 + x2
dx ≡

∫ 0−

−d

eix

a2 + x2
dx+

∫ d

0+

eix

a2 + x2
dx. (E.25)

The arbitrarily small number is selected as 0+ = 10−10 for the computations detailed in the
related chapter.
The second spanwise integral I1 using the same A,B and C parameters is computed as

I1 =yI0+

AB

4
√
C

(
e−B

√
CEi(B

√
C + iBx)− eB

√
CEi(−B

√
C + iBx)− 2

√
CeiBx

B(x2 + C)

)
(E.26)

which can be converted to introducing the definition of I0,

I1 = yI0 −
AeiBx

2(x2 + C)
− AB

4
√
C

(
e−B

√
CE1(−B

√
C − iBx)− eB

√
CE1(B

√
C − iBx)

)
.

(E.27)

Similarly, I2 and I3 results,
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Figure E.1.: Real (left) and imaginary (right) components of the spanwise integral I0
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I3 =
A
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The Exponential integral used in the computation of spanwise integrals can be obtained
with a series expansion [1]

E1(µ) = −γ − lnµ−
∞∑
n=1

(−1)nµn

nn!
, (| arg µ| < π). (E.30)

where γ = 0.5772156649 is Euler’s constant. The computation of the Exponential integral
is performed with the MATLAB routine, ’expint’. However, for large values of µ the series
expansion could be replaced with the asymptotic approach. Hence, the asymptotic definition
of the Exponential integral is used for the larger values of µ [1]. The limit between series
and asymptotic approaches is selected for the values around µ = 20 in the computations.

E1µ ∼
(
1− 1

µ
+

1(1 + 1)

µ2
− 1(1 + 1)(1 + 2)

µ3
+ ...

)
(| arg µ| < 3π

2
). (E.31)

Since the terms including the exponential integral terms are in the form of eaE1(−a− ix)
and eaE1(a− ix)
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1

a− ix
− 1
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+ ...

)
(E.32)

neglecting second and higher order terms in the parenthesis, one can show that

e−aE1(−a− ix)− eaE1(a− ix) ≈ −2a eix

a2 + x2
. (E.33)

Similarly, e−aE1(−a− ix) + eaE1(a− ix) becomes

e−aE1(−a− ix) + eaE1(a− ix) ≈ 2i
eixx

a2 + x2
. (E.34)

Introducing the asymptotic expressions (E.33) and (E.34) into Equations (E.24), (E.27),
(E.28) and (E.29), one can show that the asymptotic results of spanwise integrals

I0 ≈−
AieiBx

2BC(x2 + C)

I1 ≈ yI0

I2 ≈−
AieiBx

2B(x2 + C)

(
2y(I1 − yI0) + y2I0

)
= y2I20C

I3 ≈−
AixeiBx

B(x2 + C)

(
3y(I2 − y(I1 − yI0)) + 3y2(I1 − yI0) + y3I0

)
= 2xyI2(3I0C + 1) (E.35)
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Figure E.1 shows the result of the spanwise integral with respect to different ky values.
Since the observer located on the y = 0 line, the parallel gust, ky = 0 reaches its highest
value. It is seen that both models converge for the higher values of |ky| where as for the lower
values, the asymptotic approach deviates from the series one. Since the series expansion is
accurate for the lower values and asymptotic approach is faster to converge for the higher
values, both methods are combined in order to obtain a more accurate and faster solution.
Finally, introducing the spanwise integrals, the aeroacoustic transfer function and the

source terms, one can obtain the scattered field matrices required for Equation (5.4).
Once all matrices are derived, a primary test is performed for the far-field knowing that

the acoustic pressure converges to acoustic velocity with p = ρc0v. Since the convection is
taken into account for the derivation of the acoustical velocity, the ratio becomes

lim
z→∞

Spp

Svv
≈ (βρc0)

2 (E.36)

A test is performed using the flow profiles defined in Section 4.5.2 at f = 1 kHz. As
seen in the Figure E.2, the ratio between the incident acoustic pressure PSD converges to
the auto-correlation of the acoustic velocity PSD at the far-field of the airfoil. Hence, the
acoustic velocity derivations are validated in the far-field.
The matrices derived are then used for the scattered field of the broadband noise for the

jet-airfoil mock-up and the low speed axial fan located in a turbulent stream in Chapter 5.
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