Layered Depth Images for Multi-View Coding

Vincent Jantet

ENS-Cachan, Antenne de Bretagne, Campus de Ker Lann, 35170 Bruz – France

INRIA Rennes, Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes – France

Ph.D. Thesis defense. Rennes. 2012

Collaboration with IRISA, INSA and Brittany Region in Futurim@ge project

Applicative context

Functionalities 3DTV: Depth feeling by stereo-vision simulation FVV: Live viewpoint selection

3DTV

FVV

3D video processing scheme

Each choice has an impact on following steps

Thesis objectives

SoA: Rendering-optimized representations

- Multi-View Videos
- Plenoptic Function (Light Ray)
- Microfacet Billboarding

[DTM96] [AB91] [YSK⁺02]

Multi-View Video

Plenoptic Function

Microfacet Billboarding

Advantages

• . . .

Photo-realistic rendering

Limitations

Huge amount of data

Vincent Jantet (ENS-Cachan - FR) Layered Depth Images for Multi-View Coding

SoA: Transmission-optimized representations

- 2D plus depth video (2D+Z)
- Layered Depth Image (LDI)
- Billboard Cloud
- Polygon Mesh

[ISO07] [SGHS98] [DDSD03]

• . . .

Vincent Jantet (ENS-Cachan – FR) Layered Depth Images for Multi-View Coding Ph.D

Contributions

7 / 43

Table of contents

- View synthesis (JPF)
- 2 Layered Depth Image (LDI)
- 3 LDI-based multi-view compression
- 4 Conclusions

Table of contents

View synthesis (JPF)

- Projection algorithm
- Joint Projection Filling (JPF)
- Rendering results

2 Layered Depth Image (LDI)

3 LDI-based multi-view compression

4 Conclusions

View synthesis: Classical Warping algorithm

Reference view

View synthesis methods use projection algorithm (warping)

Virtual View Vincent Jantet (ENS-Cachan – FR) Layer

Layered Depth Images for Multi-View Coding

View Synthesis: Warping common artifacts

Disocclusions: Occluded areas which become visible Cracks: Small holes due to sampling Ghosting: Boundaries pixels with mixed foreground/background color

Disocclusions

Cracks

Ghosting

1 Forward Warping: Lose pixels connectivity

2 Filtering: Fills Cracks and avoids Ghosting

12 / 43

3 Backward Warping: Retrieves color from reference view

4 Depth Inpainting: Fills disocclusions with mixed FG/BG depth

5 Depth-aided Inpainting: Fills disocclusions with mixed FG/BG texture

Limitations Forward Warping: Lose connectivity Depth Inpainting: Can not retrieve structure

Texture Inpainting: May fill BG with FB texture

Errors are amplified along the process

Need for an accurate virtual depth map synthesizing method

Introducing a new Joint Projection Filling method

Forward Proj.

Dir. inpaint.

JPF: Joint Projection Filling [Jantet et al., 3D Research]

BackGround pixels are projected before ForeGround pixels

JPF: For rectified views

JPF: For rectified views

JPF: For rectified views

JPF Generalized: For non rectified views

 $P^{q'}$: the last pixel projected on row q'_{V}

$$egin{cases} q'_x \leq P^{q'}_x + 1 & ext{No artifact} \ q'_x > P^{q'}_x + 1 & ext{Disocclusion} \end{cases}$$

JPF: Results

Forward Proj.

Navier-Strokes

Directional inpaint.

JPF Proj.

JPF method well synthesize sharp boundaries and thin fingers

JPF: Conclusion

Advantages

- One-step projection, without post-processing
- Handles cracks and disocclusions during the projection
- Fills disocclusions with background
- Preserves geometrical structures

Limitations

- Hard to implement on GPU
- Introduce stretching artifacts if used for texture projection

Should be used as a part of a full view synthesis method

View Synthesis: Proposed scheme

View Synthesis rendering results

Inconsistent virtual depth map \Rightarrow Texture artifacts JPF synthesize correct depth map which helps DAI

¹Navier-Strokes's inpainting [BBS01]

²Daribo's Depth Aided Inpainting [DP10]

³Full-Z Depth Aided Inpainting[Jantet et al., 2011a] (inspired from Daribo)

Vincent Jantet (ENS-Cachan – FR) Layered Depth Images for Multi-View Coding

Conclusions on Virtual view synthesis

From a single input video + depth:

JPF: Synthesize virtual depth map

DAI: Recreate missing texture

Realistic synthesized video, but:

- Introduces temporal flickering
- Incoherence between two synthesized views

From multi-view + depth:

Could retrieve real disocclusions textures \Rightarrow Introducing LDI

Table of contents

View synthesis (JPF)

2 Layered Depth Image (LDI)

- Definition
- Classical LDI construction
- Incremental-LDI construction (I-LDI)
- Object-based classification (O-LDI)

Conclusions

LDI: Layered Depth Image

Set of pixels, from a reference viewpoint, organized in layers

Advantages

Disocclusion: Could be filled by **real** texture Camera freedom: Virtual camera can move inside a large area Compactness: Eliminate some correlated pixels and reduce data size

23 / 43

LDI: Classical construction scheme

[SGHS98]

Every input views are warped onto a reference viewpoint, and then merged together

Merging policy Eliminates duplicated

pixels

Classical LDI limitations

Redundancies

- Many pixels in many layers, partially empty
- Scattered pixels distribution

Introducing Incremental LDI construction

Compression artifacts

- Large depth discontinuities
- Motion in multi-layer
- Boundaries in multi-layer
- Uneasily compressed

Introducing Object-based LDI representation

Scattered distribution

Compressed depth map

I-LDI: Incremental-LDI construction [Jantet et al., 3DTV]

Iterate for each input view

- Use current I-LDI to synthesize one acquired viewpoint
- Compare with captured view to compute disocclusion texture
- Insert back textures into the I-LDI

I-LDI: Incremental-LDI construction [Jantet et al., 3DTV]

Iterate for each input view

- Use current I-LDI to synthesize one acquired viewpoint
- Compare with captured view to compute disocclusion texture
- Insert back textures into the I-LDI

I-LDI: Incremental-LDI construction [Jantet et al., 3DTV]

Iterate for each input view

- Use current I-LDI to synthesize one acquired viewpoint
- Compare with captured view to compute disocclusion texture
- Insert back textures into the I-LDI

I-LDI vs LDI Comparison.

LDI frames: many pixels in many layers, with scattered distribution

I-LDI frames: less pixels and less layers with compact distribution

Vincent Jantet (ENS-Cachan – FR) Layered Depth Images for Multi-View Coding Ph.D. defense, 2012

Classical LDI limitations

Compression artifacts

- Large depth discontinuities
- Motion in multi-layer
- Boundaries in multi-layer
- Uneasily compressed

Introducing Object-based LDI

Compressed depth map

Synthesized virtual view

Depth compression artifacts

O-LDI: Object-based LDI

Organizes pixels into layers to enhance depth continuity

Method based on a region growing algorithm

Region R initialized with pixels where Z_{FG} and Z_{BG} are already defined For each pixel q outside R:

- Extrapolate Z_{FG} and Z_{BG}
- Classify q

O-LDI: Classification Initializing

O-LDI: Classification Processing

O-LDI: Classification Results

O-LDI: Background inpainting

Background inpainting

Principe

Exemplar-based inpainting from Criminisi [CPT03]

- Robust and time-consuming method
- Preserves texture and structure

O-LDI: Fast mesh-based rendering

Object-based LDI

Continuous layers can be rendered as meshes Foreground mesh is partially transparent Meshes rendering

O-LDI: Rendering results

Disocclusions

Fast SoA inpainting

O-LDI rendering

Online inpainting limitations

Fast inpainting, introduces:

- Artifacts
- Stretching
- Temporal flickering

O-LDI advantages

Robust offline inpainting

- Time coherent rendering
- Multi-view coherent rendering

O-LDI Conclusions

O-LDI Advantages

- Static background along time
- Compatible with fast mesh-based rendering
- Depth continuity improves rendering quality
- Remove unnecessary boundaries \Rightarrow Should improve compression

O-LDI Limitations

No backward compatibility with 2D decoding scheme

1 View synthesis (JPF)

- 2 Layered Depth Image (LDI)
- 3 LDI-based multi-view compression

4 Conclusions

MVD and LDI compression schemes

"Breakdancing" multi-view video

Table of contents

- 1 View synthesis (JPF)
- 2 Layered Depth Image (LDI)
 - 3 LDI-based multi-view compression
- 4 Conclusions

View synthesizing conclusions

JPF: Joint Projection Filling method

Projection with occlusion-compatible pixel scanning order

- Handles cracks
- Fills disocclusions with background
- Preserves geometrical structures

Virtual View Synthesis method with Full-Z Depth Aided Inpainting

First synthesizes virtual zMap to help synthesizing virtual view

- Preserves sharp boundaries
- Realistic disocclusions filling

Intermediate representation conclusions

I-LDI: Incremental Layered Depth Image

Iterative LDI construction to avoid layers correlations

- Less layers
- Less pixels
- Compact distribution

O-LDI: Object-based Layered Depth Image

Pixels reorganisation to enhance depth continuity

- Static background
- No depth discontinuities \Rightarrow No compression artifacts
- Compatible mesh-based rendering

Handle depth map inconsistencies

Non realistic depth maps drive down rendering quality

Improve temporal coherence

During LDI construction During views projection During Depth Aided Inpainting

Use more efficient compression scheme

Consider MPEG 3D-HEVC Explore dedicated Depth Map Compression schemes

Publications

[Bosc et al., 2010] Bosc, E., Jantet, V., Morin, L., Pressigout, M., & Guillemot, C. (2010).
Vidéo 3d: quel débit pour la profondeur? In *CORESA*.
[Bosc et al., 2011] Bosc, E., Jantet, V., Pressigout, M., Morin, L., & Guillemot, C. (2011).
Bit-rate allocation for multi-view video plus depth data. In *3DTV*.
[Jantet et al., 2011a] Jantet, V., Guillemot,

[Jantet et al., 2011a] Jantet, V., Guillemot, C., & Morin, L. (2011a).
Joint projection filling method for occlusion handling in depth-image-based rendering. *3D Research*, 2, 1–13.

[Jantet et al., 2011b] Jantet, V., Guillemot, C., & Morin, L. (2011b). Object-based layered depth images for improved virtual view synthesis in rate-constrained context. In ICIP.

[Jantet et al., 2009] Jantet, V., Morin, L., & Guillemot, C. (2009). Incremental-Idi for multi-view coding. In *3DTV*.

[Jantet et al., 2010] Jantet, V., Morin, L., & Guillemot, C. (2010). Génération, compression et rendu de Idi. In *CORESA*.

[Sourimant et al., 2009] Sourimant, G., Colleu, T., Jantet, V., & Morin, L. (2009). Recalage gps / sig / video, et synthèse de textures de bâtiments. In CORESA.

[Sourimant et al., 2011] Sourimant, G., Colleu, T., Jantet, V., Morin, L., & Bouatouch, K. (2011).
Toward automatic gis–video initial registration.
Annals of Telecommunications, 67, 1–13.

Vincent Jantet (ENS-Cachan – FR) Layered Depth Images for Multi-View Coding Ph.D. defense, 2012 44 / 43

Multi-View Coding scheme (MVC)

Predictions:

- Temporal
- Spatial
- Inter-Views

Method

Inter-view prediction with motion vectors

Limitations

- Only 25% size reduction for each additional view
- Motion vectors maladjusted to geometrical correlations

Multi-View Coding scheme (MVC)

Predictions:

- Temporal
- Spatial
- Inter-Views

Predictions:

- Temporal
- Spatial
- Inter-Layers

Multi-View Coding scheme (MVC)

Method

First layer helps to predict others layers

Advantages

- No geometric distortions
- Removes inter-layers correlations
- Static BG layer

Predictions:

- Temporal
- Spatial
- Inter-Layers

"Ballet" Multi-View Video dataset

