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Résumé

L’utilisation des polymeéres influence une grande partie de notre vie quotidienne;
notre époque pourrait, sans exagération, étre appelée I’age des polyméres [68].
L’impact du développement de la chimie des polyméres sur nos habitudes de consom-
mation moderne a été important: la plupart des matériaux d’emballage est fait de
polymeéres solides [44]. L’exemple le plus simple d’une molécule de polymére est une
longue chaine linéaire liant N unités élémentaires un peu a la maniére d’un collier
de perles [30, 71]. Les matériaux d’emballage sont présents sous forme solide, le plus
souvent, dans 1’état vitreux ou semi-cristallin. Pour leur utilisation, il est important
de comprendre les propriétés viscoélastiques des fondus de polymeéres [68, 71].

Les constituants d’un polymére sont nommés monomeéres et ont une taille typique
de ~ 0.5 nm. Dans le fondu de polyméres les monoméres remplissent le volume
quasiment dans son intégralité et ne présentent aucun ordre a longue distance [11].
Lors du refroidissement, la structure de I'ensemble ne change que légérement, une
propriété qui est aussi connue pour les liquides simples surfondus [17, 20|. Les
monomeéres sont beaucoup plus petits que le polymeére qu’ils forment. La taille d'un
polymeére se mesure, par exemple, par le rayon de gyration R, [26, 39, 71]. Celui-ci
est accessible de maniére expérimentale a partir de méthodes de diffraction de la
lumiére ou de diffusion de neutrons [46] et varie de 10 nm & 100 nm [11]. A plus
grandes échelles les polymeéres présentent une structure auto-similaire ce qui permet
de les traiter théoriquement comme des fractales [24, 68].

Dans un fondu de polymeéres les interactions inter-moléculaires agissant sur un
polymeére sont ecrantées par les polymeéres voisins. Ceci est di au fait que, en
moyenne, un polymére interagit avec v/N autres chaines [24, 26, 68|. Le fait que
les chaines puissent se pénétrer les unes les autres si massivement implique des
contraintes topologiques |24, 26, 56]. Le résultat de ces enchevétrements est une

viscosité élevée en raison du fort ralentissement de la dynamique de la chaine [11].

A Papproche de la température de transition vitreuse, T, |53, 61], les fondus de
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polymeéres subissent une augmentation remarquable de leur viscosité de plusieurs
ordres de grandeur. Cette forte augmentation est observée pour tous les temps de
relaxation structurale et ceci est un exemple caractéristique des liquides vitrifiables
polymeériques et non-polymeériques. [18, 27|.

En comparaison de ce changement dramatique de dynamique, la structure du
fondu ne subit que trés peu de changements lors du refroidissement. Comprendre
I'origine des phenomeénes intervenant dans la transition vitreuse reste I'un des plus

grands défis de la physique de la matiére molle |7, 17, 25].

But de cette étude. Le but de cette étude est d’acquérir une compréhension
approfondie des processus qui sont impliqués dans ce phénoméne de transition vit-
reuse. Nous abordons ce probléme par une approche numérique grace aux simula-
tions sur ordinateur en utilisant un modéle générique “bead-spring” [48]. Dans ce
modele les polymeéres sont modélisés par des chaines flexibles possédant un volume
exclu. La présente étude s’appuie sur des travaux antérieurs [4, 15, 22]. Ici, nous
étudions en particulier 'influence de la longueur de la chaine sur les propriétés dy-
namiques d’'un fondu de polyméres, ceux-ci étant principalement analysés dans le
cadre méthodologique de la théorie de couplage de mode [4, 22, 23, 37|.

Nous utilisons un modéle de simulation trés semblable au modéle de polyméres
précédemment étudié, par Bennemann et al. [12-15], de maniére systématique pour
le régime de surfusion. L’analyse a été effectuée en relation avec les fonctions de
diffusion cohérente et incohérente, les fonctions de corrélation des modes de Rouse
et divers déplacements carré moyens (voir Reéf. [11]).

En paralléle, le modéle a également été utilisé pour étudier les films minces con-
finés [11] ainsi que les films minces de polyméres avec des surfaces libres (interface
film /volume libre) [64, 65]. L’'influence de particules de solvant dissoute dans le film
a également été étudiée [66]. Le travail sur les films avec une interface polymére/air
a été effectué a une pression nulle p = 0 qui est le choix le plus naturel pour des
simulation de surfaces libres. Nous employons principalement la méme pression dans
nos simulations.

Nous étudions en particulier les petites chaines (non enchevétrées) comme sug-
géré par [69]. C’est dans ce domaine de longueur que la plus forte dépendance de T}
en fonction de la longueur de chaine peut étre observée. Cette analyse se concentre
essentiellement sur les fonctions de diffusion résolues dans le temps et son autocor-

rélation temporelle en essayant d’atteindre des températures inférieures a ce qu’il
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Figure 1: La densité p en fonction de la température 7" pour différentes longueurs
de chaine (& gauche). La densité p en fonction de I'inverse de la longueur de chaine

1/N pour des températures 7' = 0.44,0.50 (& droite). Insert: Un écart de Ap =

p(7€2 (]TVQ’:JB;Z Eg%): 5 & partir de 1 indique une déviation de la proportion de oT2.N) - g

p(TlvN)
celle de %. Cet écart croit presque linéairement avec 'augmentation de N.

était possible d’avoir dans les travaux antérieurs |4, 15, 22]. Nous étudions aussi la
fonction de relaxation de cisaillement qui est expérimentalement pertinente, mais
difficile a déterminer avec une statistique satisfaisante par simulation numeérique
[52, 54, 75].

Pour étre en mesure d’étudier des systémes de taille importante nous devons faire
usage d’architectures informatiques paralléles. Nous avons décidé de travailler avec
le code LAMMPS [49, 67].

Dans la premiére partie de notre travail, nous avons testé les paramétres pour un
systéeme monodisperse de taille de chaine N = 10 a la pression p = 1, ou il était
possible de comparer avec des données de références [1-4|. Puis nous avons choisi
d’effectuer une variation systématique de la longueur de chaine, ceci & une plus basse
pression, p = 0, afin que nos données puissent servir de référence pour des travaux
futurs sur des films avec une surface libre.

Dans la suite de ce résumé nous présentons les points importants de cette thése
qui commence par une introduction des méthodes de simulation. Dans cette in-
troduction nous précisons le modeéle de simulation que nous utilisons ainsi que la
procédure pour générer des configurations au sein de la gamme de température de
2T, 2 T 2 T

X
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Figure 2: A gauche: Figure principale: Facteur de structure statique pour N = 64
et T'= 0.50,0.44 en fonction du module de I'onde vecteur q. Insert (a): facteur de
structure statique pour N = 64,16,4 et 7' = 0.50. Insert (b): facteur de structure
statique pour N = 64, 16,4 et T" = 0.44; les pointillés indiquent le facteur de structure
statique pour 7 = 0.50. A droite: Figure principale: La fonction de distribution
radiale pour les températures T = 0.50 et 0.44 (N = 64). Insert: zoom sur les

maxima.

Nous analysons la densité en fonction de la température pour différentes longueurs
de chaine. Le graphe a gauche de la Fig. 1 montre la densité en fonction de la
longueur de chaine qui est analysée pour 7' = 0.44 et T = 0.50 (voir a droite de

la Fig. 1). On constate que I’évolution de la densité peut étre décrite par p(N) =
poo(1 = ).

Le facteur de structure statique S(q) [9, 21] est une fonction de la température
T et de la longueur de chaine (voir Fig. 2). Une signature de la dépendance de la
densité a la longueur de chaine est observée pour S(gq). Nous calculons de la méme

maniére la fonction de distribution radiale [21] (voir Fig. 2).
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3 x
[79]. Ainsi, la conformité de R?g pour N = 4,8,16,32,64 avec elle représente la

précision de ’ajustement.

Dans la partie suivante, nous analysons la longueur de liaison effective, comme
le suggére la Réf. [79]. La Figure 3 montre l'analyse & 7' = 0.50. Il se trouve
que la longueur de la liaison effective diminue en fonction de 7. Ce comportement
contre-intuitif provient de la flexibilité du modéle employé qui n’est chimiquement
pas réaliste.

Par la suite, la dynamique des systémes est analysée dans le cadre de la MCT,
théorie de couplage de mode idéale [37|. Le principe de superposition des temps
et des températures et le théoréme de factorisation — deux prédictions de base de
la MCT — sont analysés pour toutes les longueurs de chaine (voir Fig. 4 ou cette
procédure est décrite pour N = 64). En outre, 'analyse suggére un intervalle de
température approximatif ot la MCT devrait étre applicable.

Dans une étape ultérieure les exposants de “von Schweidler” b sont déterminés en
fonction de la longueur de chaine en ajustant les fonctions de diffusion cohérente tel

que suggéré par la Réf. [11], selon ’équation suivante:

Gg(t) = fS = R (¢/6)" + BB (1)) (1, <t). (1)

X1
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différentes de g se superposent.

Ici fy représente le parameétre non-ergodique, t; le temps de relaxation «, et b
I'exposant de “von Schweidler”. Le paramétre E{qit est donné par h,B ou h, désigne
I’amplitude critique et B est une constante. Le paramétre éqﬁt est donné par BB,
ou B, est dépendante de g.

En ajustant le temps de relaxation «, nous déterminons la température critique
T, de la théorie MCT en fonction de la longueur de chaine N (voir Fig. 5). Il se
trouve que les valeurs obtenues pour 7. peuvent étre remises a 1’échelle en fonction

de l'inverse de la longueur de chaine ce qui est représenté sur la Fig. 6.
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En outre, nous sommes en mesure de calculer la fonction de diffusion cohérente
avec une haute résolution afin que la queue de la courbe pour les grands temps,
spécifiques aux polymeéres, devienne visible (voir bas de la Fig. 7).

Apreés l'analyse des fonctions de diffusion, nous considérons la fonction de re-
laxation de cisaillement [54] comme une quantité supplémentaire. En utilisant la
fonction de relaxation de cisaillement, les systémes considérés sont étudiés sur des
échelles de longueur plus grandes. Nous avons constaté que les processus de relax-
ation polymériques, qui peuvent étre décrits par la théorie de Rouse [26], ne sont
pas modifiés, mais décalés vers des temps plus importants en approchant la transi-
tion vitreuse. Un comportement similaire est également observé par ’analyse de la
fonction de diffusion pour les plus petites valeurs de ¢ accessibles par la simulation
(voir bas de Fig. 7). Cette étude montre que les effets significatifs de la structure
polymére — qui montrent une signature en loi de puissance — ne deviennent visi-
bles que pour les plus petites valeurs g et les chaines les plus longues que nous avons
étudiées.

La mise a ’échelle du déplacement quadratique moyen en fonction de la constante
de diffusion montre un comportement d’échelle analogue a la fonction de diffusion
cohérente en fonction du temps de relaxation « (voir Fig. 8). Pour la fonction de
relaxation de cisaillement une mise a 1’échelle selon une seule de ces quantités ne
conduit pas a un résultat complétement satisfaisant.

Dans la derniére partie, nous entreprenons une étude sur les effets de taille finie. A
cette fin, nous comparons deux tailles de systéme pour des polymeéres d’une longueur
de chaine N = 10. Cette comparaison porte sur la fonction du déplacement quadra-
tique moyen (voir Fig. 9). Ces fonctions mesurées a partir de ces deux systémes sont
comparées pour des températures autour de la valeur de T, de la MCT idéale [15].
Il est intéressant de remarquer que pour la dynamique nous trouvons la plus grande
différence entre ces deux tailles de systéme précisément pour la température 7. Ce
résultat suggére que la dynamique est modifiée qualitativement & la température

critique de couplage de mode.
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carré moyen go(t) pour 7' = 1.00,0.50, 0.47,0.46, 0.45, 0.44 (de gauche a droite). go(t)
pour le systéme M = 8000 est représenté par la courbe rouge et go(t) pour M = 1000
par la courbe bleue. Le plus petit systéme montre une dynamique plus lente. go(%)
pour T' = 0.45 est représenté en pointillés. Cette température correspond a la
température critique de la théorie de couplage de mode idéale. [15]. A droite: Le
rapport entre le déplacement quadratique moyen pour les deux tailles de systéme
différent A*go(t) = iﬁjﬁiim est représenté pour 7' = 0.50,0.47,0.46,0.45,0.44. Les

lignes horizontales donnent la valeur de Agg(t) au maximum du premier pic pour
T = 0.45 (rouge), T' = 0.46 (bleu) et 7' = 0.44 (noir).
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Zusammenfassung

Die Verwendung von Polymeren durchdringt unser tégliches Leben so stark, dass
man unser Zeitalter, in Anlehnung an Epochenbegriffe wie z.B. “Steinzeit” oder
“Eisenzeit”, auch “Polymerzeit” nennen konnte [68]. Der bedeutende Einfluss der
Polymerchemie wird offenbar, wenn man an den téglichen Einkauf im Supermarkt

denkt: Der Grofteil der Verpackungsmaterialien besteht aus Polymeren [44].

Ein einfaches Modell eines Polymers ist eine lange lineare Kette, bestehend aus
N miteinander verbundenen elementaren Einheiten |30, 71|. Die erwéhnten Ver-
packungsmaterialien liegen in fester Form vor; meist im glasartigen oder semikristalli-
nen Zustand. Bei ihrer Verarbeitung ist die Kenntnis der viskoelastischen Eigen-
schaften von Polymerschmelzen unerlésslich [68, 71]. In der Schmelze sind die inter-
molekularen Wechselwirkungen durch die benachbarten Polymere abgeschirmt, da
ein Polymer im Mittel mit v/N anderen Polymeren wechselwirkt [24, 26, 68]. Die
starke gegenseitige Durchdringung der Ketten fiihrt zu topologischen Hindernissen
[24, 26, 56]. Aufgrund dieser sog. Verschlaufungen weisen Polymerschmelzen eine

hohe Viskositét auf, da die Dynamik der Ketten stark verlangsamt ist [11].
In der Nihe der Glasiibergangstemperatur T, [53, 61| zeigt die Viskositdt von

Polymerschmelzen einen dramtischen Anstieg um mehrere Grofenordnungen. Dieser
gewaltige Anstieg kann bei allen strukturellen Relaxationszeiten beobachtet werden
und ist eine spezifische Eigenschaft aller glasbildenden Fliissigkeiten, sowohl poly-
merartiger als auch nicht polymerartiger. |18, 27|. Im Vergleich zu dieser drama-
tischen Anderung der Dynamik, #ndert sich die Struktur der Schmelze kaum. Das
Verstehen des Glasiibergangs auf mikrokopischer Ebene ist noch immer eine der
grofsten Herausforderungen der Physik der weichen Materie [7, 17, 25].

Das Ziel dieser Arbeit ist es, ein tieferes Verstdndnis der Prozesse zu erlangen,
welche den Glasiibergang von unterkiihlten Polymerschmelzen begleiten. Zur Studie
werden Computersimulationen von generischen Kugel-Federmodellen [48] verwen-

det. Hierbei werden die Polymere als flexible Ketten modelliert, wobei auf friitheren
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Arbeiten aufgebaut wird [4, 15, 22|. Dabei liegt der Fokus auf den dynamischen
Eigenschaften der Kette, welche im Rahmen der idealen Modenkopplungstheorie
(MCT) untersucht werden [4, 22, 23, 37|.

Es wird ein Modell verwendet, welches d&hnlich dem von Bennenmann et al. sys-
tematisch im unterkiihlten Bereich untersuchten Modell ist [12-15|. Dieses wurde
anhand von inkohérenten und kohérenten Streufunktionen und Korrelationsfunktio-
nen der Rouse Moden untersucht. Des Weiteren wurden verschiedene Funktionen
des mittleren Verschiebungsquadrats betrachtet (vgl. z.B. [11] fiir eine Ubersicht).

In der vorliegenden Arbeit werden speziell kurze (nicht verschlaufte) Ketten un-
tersucht, wie dies durch Ref. [69] nahegelegt wird. In diesem Bereich ist die grofste
Abhéngigkeit der Kettenldnge von 7, zu erwarten. Der Fokus der Arbeit liegt auf
der Analyse von Streufunktionen. Hierbei wird der Versuch unternommen, diese
fiir tiefere Temperaturen zu untersuchen, als dies in fritheren Arbeiten mdoglich war
[4, 15, 22]. Im weiteren Verlauf der Arbeit wird die Scherrelaxationsfunktion un-
tersucht, die experimentell relevant, allerdings in Computersimulationen mit ausrei-
chender Statistik nur schwer zugénglich ist [52, 54, 75].

Um grofere Systeme als Vorgidngerarbeiten untersuchen zu kénnen, wird in dieser
Arbeit der LAMMPS Code verwendet |49, 67]. Zu Beginn unserer Arbeit wurden
die verwendeten Parameter ausgiebig fiir ein “Bulk”-System mit N = 10 und Druck
p = 1 getestet, wobei es moglich war die Ergebnisse mit denen der Ref. [1-4] zu
vergleichen. Fiir die Untersuchung der oben erwidhnten Grofsen in Abhéngigkeit von
der Kettenlinge wurde p = 0 verwendet. Dadurch kénnen die erhaltenen Daten fiir
“Bulk™Systeme bei zukiinftigen Studien freier Oberflichen als Referenz verwendet
werden.

Die statischen Eigenschaften der untersuchten Systeme werden anhand ihrer Dich-
te, des Kompressionsmoduls, des statischen Strukturfaktors und weiterer Grofsen
analysiert. Hierbei zeigt die Dichte ein Verhalten, das mit der reziproken Ketten-
lange skaliert. Dies kann mit Kettenendeffekten plausibel gemacht werden [28].

Die effektive Bindungsldnge [79] der Polymerketten wird als Funktion der Tem-
peratur untersucht. Die effektive Bindungslinge nimmt mit sinkender Temperatur
ab. Dieses Verhalten kann durch die Modellierung der Polymere als flexible Ketten
erklart werden. Es wéire daher interessant, in der Zukunft chemisch realistischere
Modelle (wie z.B. in [16]) zu verwenden.

Die Dynamik wird im Rahmen der idealen MCT [37] analysiert: In Abh#ngigkeit

von der Kettenlinge wird das Temperaturintervall untersucht, in welchem das Zeit-
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Temperatur Superpositionsprinzip (TTSP) giiltig ist. Ferner bestétigen sich die
Vorhersagen das Faktorisierungstheorems im (3-Regime. Zusammenfassend scheint
das Faktorisierungstheorem noch giiltig fiir Temperaturen zu sein, fiir welche das
TTSP nicht mehr erfiillt ist. Die kritische Modenkopplungstemperatur wird als
Funktion der Kettenldnge bestimmt. Sie skaliert — wie die Dichte — mit der
reziproken Kettenldnge.

Fiir die untersuchten Systeme kann die kohérente Streufunktion sehr fein aufgelost
werden, so dass das polymerspezifische Langzeitverhalten beobachtet werden kann.
Diese Untersuchung wird durch die Analyse der Scherrelaxationsfunktion [54] erwei-
tert. Es zeigt sich, dass beim Abkiihlen die Monomerrelaxationszeiten zunehmen.
Dadurch werden Relaxationsprozesse auf Lingenskalen der Polymere zu spéiteren
Zeiten verschoben.

Im letzten Teil der Arbeit werden in einer Fallstudie die Effekte der endlichen Si-
mulationsbox auf die Dynamik untersucht (vgl. z.B. [45]). Fiir zwei verschiedene
Boxgrofen werden Unterschiede in der Dynamik, gemessen durch die koh#rente
Streufunktion und das mittlere Verschiebungsquadrat der Monomere, beobachtet.
Interessanterweise sind die Unterschiede fiir die kritische Modenkopplungstempera-
tur [15] am groften. In einer zukiinftigen Studie konnten diese Ergebnisse durch
die Untersuchung noch groferer Systeme weiter untermauert werden. In diesem Fall
konnte man folgendes schliefen: Auch wenn bei der kritischen Modenkopplungstem-
peratur kein dynamischer Stillstand beobachtet werden kann, so dndert sich hier die

Dynamik doch qualitativ.
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Chapter 1
Introduction

The usage of polymers influences a wide range of our everyday life so that our
age could be, without exaggeration, termed the Polymer Age [68]. The impact of
the development of polymer chemistry might become quite apparent by considering
modern supermarket culture: Most packing materials are made of polymer solids
[44]. The simplest example of polymers are long linear chains of N linked elementary
units [30, 71|. The mentioned packaging materials are present in solid form, mostly
in the glassy or the semi-crystalline state. For the processing it is important to
understand the viscoelastic properties of polymer melts |68, 71|.

The constituents of a polymer are named monomers and have a typical size of
~ 0.5 nm . In the melt they are densely packed and exhibit no long range order [11].
Upon cooling this overall structure changes only slightly, a property which is also
familiar from supercooled simple liquids [17, 20]. They are much smaller than the
polymer that they form. The size of a polymer could be measured, for example by
the radius of gyration R, |26, 39, 71|, which is accessible in experiments by methods
of light or neutron scattering [46] and ranges from 10 nm to 100 nm [11].

On large length scales polymers exhibit a self-similar structure which allows to
treat them theoretically as fractals [24, 68]. In a polymer melt intermolecular in-
teractions are screened by neighboring polymers as a polymer interacts, on average,
with v/N other chains [24, 26, 68|. The fact that the chains penetrate each other so
massively results in topological constraints [24, 26, 56|. The entanglements lead to
a high viscosity due to the great slowing down of the chain dynamics [11].

On approaching the glass transition temperature Ty [53, 61| polymer melts show a
remarkable increase of their viscosity by many orders of magnitude. This enormous

increase is observed for all structural relaxation times and is a typical feature of all
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glass-forming liquids, polymeric and non-polymeric ones [18, 27].
In comparison to this dramatic change of the dynamics, the structure varies only
slightly. A microscopic understanding of the glass transition remains one of the

biggest challenges in condensed matter physics |7, 17, 25].

Aim of this study. The aim of this study is to gain a deeper insight into the
processes which are involved in the phenomenon of glassy slowing down in super-
cooled polymer melts. We approach this problem by computer simulation using a
generic bead-spring model [48] in which polymers are modeled as flexible chains.
The present study builds upon previous work [4, 15, 22]. Here we especially focus
on the chain length dependence of the dynamical properties of the melt, which are
mainly analysed in the framework of the ideal mode-coupling theory [4, 22, 23, 37].

We employ a simulation model very similar to the bead-spring polymer model
first studied systematically in the supercooled regime by Bennemann et al. [12-15].
It was analysed in terms of the incoherent and coherent scattering functions, Rouse
mode correlation function, and various mean-square displacements (see e.g. [11] for
a review). In parallel, the model has also been employed to study thin confined films
[11] as well as supported and free standing thin polymer films [64, 65|, and also the
influence of solvent particles [66]. The work on supported and free standing films
was performed at a pressure p = 0 which is the more natural choice when simulating
free surfaces. We mainly employ the same pressure in our simulation.

Thereby especially small (nonentangled) chains are explored, as it is suggested
by [69] that in this range the largest dependence of the chain length of 7, can
be expected. This analysis mainly focuses on intermediate scattering functions by
trying to achieve lower temperatures than it was possible in previous works |4,
15, 22]. As an additional quantity we study the shear relaxation function which
is experimentally relevant, but difficult to determine with satisfying statistics in
computer simulations [52, 54, 75].

The previous works have been performed with home-written sequential MD codes.
To be able to study larger systems and to make use of today’s parallel computer
architectures, we decided to work with the LAMMPS code [49, 67|. In a first part
of our work, we tested our implementation of the parameters with the bulk system
N =10 at p = 1 where it was possible to compare with the data of Ref. [I-4]. Then
we chose to perform a systematic chain length variation in the main part at a lower

pressure p = 0 so that our bulk data can serve as a reference for future work with



free surfaces.

Outline. This work is organised as follows: In the second chapter we describe the
simulation methodology by shortly summarizing the used simulation technique and
the employed simulation model. The third chapter deals with the static properties
of the studied systems. In the forth and fifth chapter we turn to the dynamic
properties. In the forth chapter the dynamics is studied in the framework of the
ideal mode-coupling theory, whereas in the fifth chapter the dynamics is analysed
by employing the shear relaxation function. Additionally, we undertake a case study

on the finite size effects. The work finishes with a summary.






Chapter 2
Simulation

In this work we want to study the viscoelastic properties of glass-forming polymer
melts. For this purpose we make use of computer simulations. In this chapter we
want to answer the following questions: What is the appropriate simulation method
to investigate the properties of glass-forming polyer melts? Which are the essential

ingredients of a computer simulation?

2.1 Introduction

We want to use computer simulations to generate microscopic information of a
physical system |5, 31|. Statistical mechanics provides us then with a tool to convert
this microscopic information into macroscopic information of the studied system.

There are different approaches to simulate polymers [11]|: the atomistic method
and the coarse-grained method. The coarse-grained method captures the less de-
tails about the considered physical system. Atomistic models employ potentials for
interactions between all atoms of the model. The form of these potentials (which
account for example for the bond length, bond angles, ...) is assumed and related
parameters are estimated by experiments and quantum chemical calculations: For
the explicit atom model the constituents are the individual atoms of the system.
In the case of the united atom model spherical sites comprising several atoms are
the constituents. The coarse-grained method applies stronger approximations to the
considered physical system. Groups of atoms as for example monomers are modelled
by spherical interaction sites and realistic potentials are replaced by even simpler
ones.

Although it is desirable to take into account the most details possible about the



system, the atomistic approach is often not feasible as it is too demanding in terms
of CPU time [11]|. Therefore we employ coarse-grained models in our work as this
provides the possibility to simulate systems which are in a temperature region which
is close to the glass transition temperature [53|. In addition, by reducing the number

of different interactions, we concentrate on generic features.

2.2 MD simulations

Our short summary about molecular dynamics simulation mainly follows [5, 31]. An

MD simulation consists of three steps:

Initialization First a configuration is generated consistent with the physical con-
ditions of the considered system. By the term “configuration” we understand the
collection of all data characterizing unambiguously the microscopic state of a physi-
cal system. During this initialization process positions and velocities of all particles
are chosen such that they are compatible with the structure which is to be simulated.
For example: If a system with excluded volume is simulated, distances between ini-
tial particle positions must not be so small that the particles penetrate each other.

Our procedure will be explained in detail in section 2.5.

Computation of forces Next comes the computation of forces: When all particle
positions are known, forces have to be calculated. The interactions between particles

are described in terms of interaction potentials [5, 31]:

0
8I'Z‘

UrM)=F;. (2.1)

From all particle positions (denoted in Eq. (2.1) by r™) together with the inter-
action potential U the resulting force F; acting on particle ¢ can be computed. The
potentials of pairwise interactions between particles are assumed to be additive so
that the total sum of them gives the interaction potential U. In this equation, r;
denotes the position of particle i; so the derivative of U(r™) with respect to the
particle’s position gives the force acting on it. Therefore the computation of all
forces acting in the system is done by evaluating all derivatives with respect to all

particles’ positions.



Integration of Newton’s equations of motion In a third step, the time evo-
lution of the microscopic state of the system is calculated. This means that the
positions and velocities of all particles are evaluated. This is achieved by integra-

tion of Newton’s equations of motion:

dZI'Z' (t)
dt?

Fi(t) = m; (2.2)

with m; being the mass of particle 7.!

This integration is done by time discretization. The discrete time intervals are
called integration time steps. As a result one can only access information about the
position and velocity of a certain particle for discrete points on the timeline. There
are various algorithms to do this (see section 2.2.1). Each entity of positions and

velocities of all particles gives one configuration.

The iteration of the last two steps represents the main core of an MD simulation.
Following this scheme, after each integration time step positions and velocities of
all particles are computed and a new configuration is generated. A set of sequential
configurations forms a trajectory and provides information about the time evolution
of the microscopic states of the considered system. The computation of forces and
the integration of Newton’s equation of motion are repeated until the trajectory
has reached “sufficient” length. In other words, enough configurations are generated
so that the studied property of the system is measurable with sufficient statistics.
From a statistical point of view, we could say: The subset of the phase space probed
by the simulation is large enough to draw conclusions about the physical behavior
of the studied system [5].

Besides the underlying assumptions about the physical systems, which are incor-
porated in an MD simulation (like the assumption that the potential is pairwise
additive), there are other sources of imprecisions [5]. After the forces are calculated,
particles are moved during an integration time step according to the force acting on
them and their initial velocity. Yet, the force changes permanently while a particle
changes its positions and / or other particles change their position and thereby the
interaction potential is changed. Therefore, an error will occur and it will grow with
increasing integration time step. So, the integration time step should be chosen

as small as possible. On the other hand, one is interested in generating sequential

'We consider only systems where all particles have the same mass, so m; = m for all particles.



configurations, which cover the phase space as much as possible. This means that
the configurations should not just differ in tiny changes of the particles’ positions
but rather particles should travel longer distances and thus scanning a larger part
of the phase space. This is important, as every computation of positions and forces
cost CPU time and this will eventually decide if a simulation is feasible or not. For
this reason one has to find a compromise between these two demands to the size of

the integration time step.

The computation of forces is the most time consuming part, which is necessary
to generate configurations [31]. An effective way to reduce the needed computation
time is to consider as little as possible interaction partners in this computation. The
interaction potential is put together of pairwise additive potentials, and therefore
the single parts of the potential can be treated separately. The larger the distance
between particles is, the smaller the interaction between them. Thus, at some dis-
tance the interaction between two particles will be so small that it could be neglected
compared to interactions exerted on them by closer particles.? One exploits this fact
by introducing an arbitrary distance, which is called the cut-off radius. Particles
that are separated by a distance larger than the cut-off radius do not interact with
each other |5, 31]. The benefit of this is the following: When the forces acting on
a particle are computed, particles that are farer apart than the cut-off radius do
not have to be considered. This saves a lot of computational time as only a small

fraction of all particles has to be considered in the force computation.

2.2.1 Integration algorithms

As an example for an algorithm to integrate Newton’s equation of motion we show
the Verlet algorithm [74]. This algorithm is the most basic one (and often the best
one) [31]:

We consider the Taylor expansion of the coordinate of a particle for ¢+ At, around
t,

r(t+ At) =r(t) + %v(t)At 1 %%)Aﬂ + %'f'AtS +O(AtY (2.3)

2This procedure is strictly speaking only possible if no long range interactions are present. For
our model the long range interactions become negligible for distances of r &~ 2ry;,, where ryi,

denotes the minimum of the Lennard-Jones potential.



and similarly for ¢ — At, around t,

ot - At) = r(t) — ~oar+ LAz L

e 3 4
. S SEAS O . (24)

By summing up these equations (Eq. (2.3) and Eq. (2.4)) we get
t
r(t+ At) +r(t — At) = 2r(t) + %)Aﬂ + O(AtY) (2.5)

which can be rewritten as

r(t+ At) = 2r(t) — r(t — At) + %)Aﬂ : (2.6)

As it can be seen in Eq. (2.6) the Verlet algorithm does not make use of the
velocities to update the positions of the system, and the integration error is only of
the 4th order in At [31].

The velocity Verlet algorithm The velocity Verlet algorithm [72] is a variation
of the Verlet algorithm, which uses velocities and positions evaluated for the same
time. As this algorithm is implemented in the simulation code [49, 67| that we use
(see section 2.5), we will describe it here as an additional example for an integration
algorithm. Similar to the Verlet algorithm positions are computed using a Taylor

expansion [31]:

r(t+ At) = r(t) + v(t)At + %@Aﬂ : (2.7)

m
The extension of the velocity Verlet algorithm is based on the use of velocities.

Velocities are updated by obeying the following scheme

flt+ At + f(t)
2m

v(t+ At) = v(t) + At . (2.8)

We point to the fact that first positions and from these forces have to be evaluated,
before velocities can be computed (cf. Eq. (2.8)). It can be shown that the velocity
Verlet algorithm is equivalent to the Verlet algorithm [31].

2.3 Simulations in different ensembles

By employing the simulation methods described so far we are able to simulate sys-
tems whose total energy F does not change with time. The introduced algorithm,

which is built upon Newton’s equations of motion, conserves the total energy of the
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system. In the beginning of a simulation, we fix the number of particles and the
volume of the system, that means we choose a specific simulation box geometry and
size. This implies that the thermodynamic variables N, V, E are fixed and therefore
we generate configurations in the micro canonical (NVE) ensemble [5, 31]. This
method generates trajectories with realistic dynamics, the only draw back is, that
the integration time step has to be chosen so small that it is guaranteed that the
total energy does not change due to numerical errors. Another reason why other en-
sembles than the NVE ensemble are employed is that one is interested in simulating
a system that mimics better the experimental situation.

In an experiment one usually controls temperature and external pressure as it
is normally the easiest way of setting up a system to control these thermodynami-
cal variables (T and p). Thermodynamical variables like temperature and pressure
which do not scale with the system size are called intensive variable — opposite to
extensive variables which scale with the system size, like energy E, volume V', en-
tropy S, .... Controlling intensive variables can be easily achieved by bringing the
system under consideration in contact with a much larger system. For example, tem-
perature can be controlled by establishing thermal contact between the considered
system and a much larger system which is called a “heat bath” [70].

Motivated by these facts we should answer the following question: How can
this situation be realized in a simulation? Or more precisely: How can we control

temperature T" and pressure p in a simulation?

2.3.1 Thermostatting

Similarly to the experimental situation one could simulate the considered system
being in contact with a larger system. This could be realized by simulating a large
system of which the considered system is a subsystem. Eventually one would have
to take care about a lot of degrees of freedom which in most cases is not feasible.

A way around this problem was proposed by Hoover [41]: By extending previous
work from Andersen [6] and Nosé |62, 63] he came up with following equations
|64, 73]

P o= P ’ (2.9)
pi = F,—¢&pi, (2.10)
¢ = (XX -svmr) . (2.11)
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with T,y denoting the set external temperature.

Broadly speaking, in Hoover’s approach all degrees of freedom of the heat bath
are taken into account by just one degree of freedom. The heat bath accelerates or

slows down particles depending on the mean kinetic energy.

The main modification of the Newtonian equations of motion is to introduce an
additional term in Eq. (2.10). The additional term —{p; acts as a dissipative part
if £ is positive, and accelerates particles if & < 0. It changes opposite to the mean
kinetic energy: If the main kinetic energy is high it decreases it (by slowing down
the particles) and vice versa. The time evolution of £ (Eq. (2.11)) is coupled to the
mean kinetic energy with () being the coupling constant. () sets the strength of
the contact to the heat bath (Eq. (2.11)) and can also be regarded as the thermal
inertia of the system. As the value of the friction variable ¢ is given by a differential

equation the thermostat acts smoothly on the whole system.

We employ this thermostat in production runs (see section 2.5.3). There we
generate trajectories (see section 2.2) within the NVT ensemble |5, 31|. That means
that the number of particles of the system N, the volume V and the temperature
T is fixed. N and V are fixed by choosing an appropriate value for the number of

particles and the simulation box size. T' is set by using the Nosé-Hoover thermostat.

2.3.2 Barostatting

A barostat can be realized in a similar way as a thermostat. Here again the large
number of degrees of freedom of the larger system is taken into account by just one
variable that controls the pressure evolution. The time evolution of this variable is
connected to the difference between the current and the chosen value of the pressure

p. This is a similar approach as the one used for the Nosé-Hoover thermostat.

In the following we present the equations describing this approach in the formula-

tion of Melchionna et al. [57]. In this way the barostat is implemented in the source
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code [49, 67| that we use (see section 2.5) [73]:

r, = % +n(r; — Rem) (2.12)
pi = Fi—(+n)pi, (2.13)

: 1 p;

£ = @@: e = 3Nk T, ) (2.14)

_ 1%

n = M(p(t) _pext) ; (215)
Vo= 3Vp, (2.16)

where p(t) denotes the instant pressure and pe the set external pressure. M?3
controls the coupling of 7 to the pressure difference p(t) — pey; along with V.

By contrasting this set of equations with the one of the Nosé-Hoover thermostat
we find the following differences and similarities: The time evolution of the volume
is characterized by Eq. (2.16): Depending on 7 the volume evolves, but the time
evolution of 7 itself depends on V' and the difference of p and pey;. 1 can be positive
or negative and shows fluctuations around 0 in analogy to £. So — as in the case
of the Nosé-Hoover thermostat — we have a set of coupled differential equations
(Eq. (2.15) and Eq. (2.16)) which govern the time evolution of the volume. The
equation (Eq. (2.14)) controlling the temperature dynamics of the system is left
unchanged. Equation (2.10) is changed to Eq. (2.13) by adding the extra term np;.
The additional term in Eq. (2.12), n(r; — Rem), where Ry, denotes the center of
mass position, guarantees that the NpT ensemble is realized [73].

Applying this simulation scheme generates configurations within the NpT ensem-
ble as these thermodynamical variables are kept fixed [5, 31]. We will employ this

method in equilibrating our system (see section 2.5.2).

2.4 Simulation model

In this work, we study the behavior of glass-forming polymer melts close to the glass
transition. So we have to employ a model which features polymer properties and
shows a glass transition when cooled to low enough temperatures. We model the
chemical interactions of these polymers by interactions of spherical interaction sites.

The interactions are described by simplified empirical potentials [11]. A defined

3The choice of M depends on the ratio between the time scale for volume fluctuations and the

time it takes for a sound wave to travel through the simulation box [73].
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number of these interaction sites — we will refer to them in the following just as
beads — make up a chain which models an individual polymer. These kind of models
are referred to as bead-spring models [48].

We use a bead-spring model for flexible chains. By flexible chains we understand
that chains are only hindered from back folding by the excluded volume. This kind
of model is among of the most simplest models which still captures the basic features
of polymers: chain connectivity and excluded volume [11].

In this model chain connectivity is induced via a harmonic potential, which is
effective between consecutive bonded monomers [65]:

Usll) = kol — o) (2.17)

where [y = 0.9670y,5 specifies the equilibrium bond length, k), = 1110%‘; is the force
constant and [ denotes the distances between two bonded monomers.

Monomers of different chains and monomers which belong to the same chain but
are not directly bonded interact by a Lennard-Jones potential. This potential is
truncated and shifted by a constant C' = 0.02684¢y,5, so that, at the cutoff r.; =

2.3015 ~ 2rmin®, the potential vanishes continuously

T

dery [(”LJ)12 — (%)6} +C for r < rew

ULi(r) = (2.18)

0 else.

For small r (r < ory) Eq. (2.18) shows a sharp increase of its value and will

finally diverge for » — 0. This divergence mimics the excluded volume.

Lennard Jones units In the following all quantities are given in Lennard-Jones
units [5, 11]: distance is measured in units of oypj, temperatures in €y,;/kg, and time
1/2

in 71,; = (moi;/eL;)"?, where the Boltzmann constant and the monomer mass are

given by kg =m = 1.

2.5 Set up of simulations

Using the flexible chain model described in section 2.4 we simulate various systems
consisting of different chain lengths N (monomers per chain) and system sizes. Ad-

ditionally, we employ two different pressure values: p = 0 and p = 1. We started

4The minimum of the LJ potential is given by rmin = 2501.7.
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simulating systems for p = 1 and N = 10, as many data for this pressure and chain
length exist, especially for low temperatures |4, 22|. Thereby we tested our employed
simulation algorithm by comparing static and dynamical data. Then we proceeded
to p = 0 where we set up different chain lengths (see Table 2.1 for an overview of
the simulated systems and Table A.1 for the used simulation parameters).

To generate simulation data we employ the open-source code “Large-scale Atomic/
Molecular Massively Parallel Simulator” (LAMMPS ) [49, 67]. This has two advan-
tages: Firstly, this code is widely used for simulations of large systems and therefore
well tested. Secondly this code is parallelized and hence well adapted for today’s
computer architectures.

The generation of simulation data — which provide microscopic information of
the simulated system — is divided into three steps: In the first step, the simulation
is set up which means that basic conditions of the simulation are fixed: size of simu-
lation (number of objects which are to be simulated; simulation box size; boundary
conditions (e.g. periodic boundary conditions); ...) and an initial configuration of
the system is generated which is in accordance with the physical conditions of the
considered system [5, 31| (see section 2.5.1).

In a second step the initial configuration is equilibrated which means that it is
transferred to a state of minimum free energy (see section 2.5.2). This is done in
the NpT ensemble. Equilibrated configurations are cooled in a subsequent step to
lower temperatures in such a way that the system is not trapped in local minima of
the free energy. Afterwards the so obtained configurations are equilibrated again.

In a last step, equilibrated configurations produced during the last steps are used
as a starting configuration from which the actual production runs are started (see
section 2.5.3).

In the course of our work we analyse mostly quantities which are calculated in the
reciprocal space (e.g. coherent intermediate scattering functions). Therefore a fixed
simulation box size will be convenient for subsequent calculations. For the sake of
comparability with experiments a fixed pressure is desirable. These two requirements

can be fulfilled by the following implementation of the simulation procedure:

2.5.1 Initial configuration

In the following we shortly summarize how an initial configuration can be set up. In

the beginning, chains are generated as random walks with an angular bias without
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monomers / chain chains pressure

10 800 1
10 100 1
64 192 0
32 384 0
16 768 0

1536 0

3072 0

Table 2.1: Overview of simulated systems. Pressure is given in LJ-units. A harmonic

bond potential and cut-off radius of r.,; = 2.301; is used for every system.

excluded volume. These chains are randomly distributed in the simulation box.
Then a soft potential between the monomers is introduced and the monomers are
propagated with Langevin dynamics. The random distribution of the chains is
likely to generate overlap of some particles. To avoid diverging forces, a force-cap
parameter is introduced to limit the maximum possible forces. This amounts to a
modified (soft) pair-potential with a linearly decreasing term for small distances. In
addition, the velocities are rescaled regularly to effeciently dissipate energy coming
from strong initial overlap. Then, the soft potential is increased little by little to
push still overlapping monomers apart from each other until the real potential is
reached. In the end, a configuration is generated that can be used in a subsequent
equilibration run. We have to state that there is no exact procedure to generate an
initial configuration. The generated configuration has to be tested for possible local
potential energy maxima. As a first test the bond length distribution can be checked.
Note that our procedure is quite similar to the one described by Auhl et al. [8]. As
our chains are still rather short, no additional Monte Carlo moves are necessary to
accelerate equilibration, at least at high temperature. All configurations at lower

temperatures are derived by the procedure described in the following section.

2.5.2 Equilibration run

The initial configuration is then equilibrated. The pressure and the temperature are
set by using a barostat and thermostat as described in section 2.3.2. During the

equilibration run the system has to be given the possibility to develop a volume which
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Figure 2.1: Orientational correlation function of the end-to-end vector for N = 16
and T'=1,0.5,0.44,0.43,0.42,0.41.

is in accordance with the applied pressure. This can be achieved by propagating the
initial configuration within the NpT-ensemble.

As a criterion for the level of equilibration we take the orientational correlation
function of the end-to-end-vector [26], ¢.(t), of every polymer chain averaged over
all chains of the system
(Re(t)Re(0))

*0 ="y

(2.19)

where R, denotes the end-to-end vector (see section 3.5 ). When this averaged value
of the polymer melt is about 0.1 (¢(t) < 0.1), we consider the system is adequately
equilibrated (cf. Fig. 2.1), as ¢e(t) measures the slowest relaxation process in terms

of the chains [58]. (See Table A.2 and Table A.3 for a survey of the relaxation times.)

The initial configuration is equilibrated at T = 1, as this temperature is high
compared to the glass transition temperature Ty, 1 2 27,. In order to cool to
lower temperatures without having the system getting trapped in a local free energy
minimum we gradually decrease the temperature of the system so slowly that there
is enough time for it to relax on all length scales in terms of the polymer chains.

To this end, we follow a cooling protocol which consists of two parts: In a first
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Figure 2.2: Schematic representation of the cooling process. Black lines indicate the
cooling and equilibration procedure. Blue arrows indicate subsequent production

runs.

part, the system is gradually cooled down towards a temperature of 7' = 0.50 (cf.
Fig. 2.2). In the temperature interval of 0.5 < 7" < 1.0 we can gradually cool our
system without incurring the risk that it will get trapped in a local free energy
minimum by choosing a slow enough cooling rate [58]. (Parts of the system which
might not totally relax due to this schedule are given enough time to fully relax in
a subsequent equilibration run at constant temperature.)

The cooling schedule is given by:
T(t) - Tstart - FTt (220)

with Ty, denoting the start temperature which is set to 1 for all simulations and
I'r the cooling rate. For all systems the cooling rate 'y is given by 'y = 1072,

In the temperature interval below 7" = 0.50 we employ a different cooling schedule:
We take configurations from equilibrated systems and set up the next equilibration
run with a temperature that is instantaneously lowered by AT = 0.01. In a subse-
quent equilibration run the system is given enough time to relax on all length scales
in terms of the polymer chains . When the criterion ¢e(¢) < 0.1 6 is fulfilled we
lower the temperature again and start the next equilibration run. By repeating this
procedure we are able to lower the temperature of the system step by step without

incurring the risk that it will get finally trapped in a local free energy minimum.

5Due to the procedure we employ for temperatures T' < 0.5, the used cooling rates are in the
order of I'r o 1078 or slower. These cooling rates are calculated by % as in Ref. [19]. Compared
to the slowest cooling rate that is used in this reference, we use cooling rates that are at least two

orders of magnitude slower.
6For chain lengths with N > 10, not the orientational correlation function of the end-to-end-

vector is considered but the orientational correlation function of a subsegment of N = 10.
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2.5.3 Production run

A production run denotes a simulation run which generates the data that we analyze
to broaden our knowledge about glass forming polymer melts. To set up a production
run we take an equilibrated configuration (we take a configuration from the end of
an equilibration run). Then - during a small preceding run - the simulation box size
is smoothly adapted to the determined average volume of the equilibration run from
which the end configuration was taken. This is achieved by changing the box length
in all dimensions slowly with time.

In LAMMPS [49, 67| this is achieved by employing the “deform” command [50].
By using this command the box size of the taken configuration (described above)
is continuatiously (every 10 (71;)) changed over a time interval of 5,000 (7;) so
that it will finally reach the determined average volume. We have to employ this
procedure as the volume during an equilibration run slightly fluctuates. Therefore
the volume of the used end configuration can slightly differ from the average volume
of the whole equilibration run.

When the average volume of the equilibration run is reached the actual production
run is started. The configurations are propagated in the NVT ensemble where a
thermostat is used (cf. section 2.3.1).

We want the simulation algorithm to have as little influence as possible on the
results. For this reason we choose the NVT ensemble for the production run. (In
the NVT ensemble we only employ a thermostat which enables us to choose a larger
integration time step compared to an NVE ensemble simulation. In an NpT ensemble
simulation pressure and temperature are influenced by the simulation algorithm.
Thus, the influence on the results within an NpT ensemble simulation is larger,

which is not desirable.)



Chapter 3
Static properties

In this chapter we analyze the static properties of our model system. This will also
provide us with a foundation for a better understanding of the system’s dynamics
later on. First we will discuss the density as a function of the chain length and then
we proceed with the bulk modulus and the high-frequency shear modulus. There-
after we introduce the static structure factor and the radial distribution function.
Finally we turn to polymer-specific quantities where we introduce the end-to-end
vector and investigate the chain conformation via the internal distances along the

chain backbone.

The systems that we are dealing with are glass-forming polymer melts. A polymer
melt can be defined as a dense polymer system without solvent molecules [26]. The
specification “glass-forming” points to the fact that these polymer melts will form
a glass when the temperature is sufficiently decreased. Crystallization is effectively
prevented by two properties [4]: Firstly, the bond length [y and the minimum of
the Lennard-Jones potential r;, slightly differ, so [y is not compatible with r;,.
Secondly, we employ a totally flexible model. Theses two points result in local
distortion of the regular arrangement which impedes crystallization when the melt
is cooled from high temperatures. (However, the choice of the Lennard-Jones and

the bond potential does not preclude crystallization |19, 59, 60]).

The application of a totally flexible model limits the possible manners which could
lead to a glass transition. In our model the glass transition is only driven by the
temperature dependent closer packing of the monomers. In more realistic chemical
models the freezing of intramolecular modes provides an additional way (see e.g.

[16]). This results in higher glass transition temperatures.

19
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monomers / chain N | chains n | monomers Nn | pressure p
64 192 12288 0
32 384 12288 0
16 768 12288 0
1536 12288 0
3072 12288 0

Table 3.1: Overview of systems simulated with a pressure of p = 0.

3.1 Density

We set up systems with different chain length N in order to analyse the influence
of the chain length on the structural and dynamical properties of polymer melts.
These systems consist of 12288 monomers and are simulated at a pressure of p = 0.
(As described in section 2.5.2 during an NpT run a pressure of p = 0 is imposed
on the system using a barostat. After the equilibration the resulting volume of this
simulation is determined and used to set up a subsequent NVT simulation. )

More precisely, we simulated 5 different chain lengths of N = 64,32,16,8,4. In
the beginning, we have equilibrated the systems for N = 64. Shorter N are generated
by cutting these chains at 7" > 0.5. For lower temperatures, the cooling protocol
explained in section 2.5.2 has been applied to each chain length individually. These
systems also differ in the total number of chains n, as the total number of monomers
is fixed. For an overview of these systems see Table 3.1.

An essential feature of polymer melts is their high density. In the following, we
will study how the density is connected to the chain length. The density p is given

by
_Nn
p—V’

where V' denotes the volume of the simulation box.

(3.1)

Figure 3.1 shows the density of these systems as a function of temperature 7.
The comparison of the densities for different chain length at a fixed temperature
of T' = 0.50 infers that the density increases with chain length. An argument for
this observation can be found in the different distances between bonded monomers
and non-bonded monomers [28]. The average distance between bonded monomers
is given by the equilibrium bond length [, = 0.967. In contrast to this the average

distance between monomers, that are not bonded, is set by the minimum of the



21

1.04 T T T T T T T T
i ®
1.03 ®

1.02

1.01 | e ' |
o

p(T)

0.99 r §

B wWo
ol|rowoNA

w
[e¢]

0.98

Z2z2z2z2Z

0.97

o
w
o

04 042 044 046 048 05

Figure 3.1: Main figure: Density p as a function of temperature 7' for chain length
N =64,32,16,8,4. (See Table A.4 for the numerical values.)

Lennard-Jones potential which is given by ry;, = 21/65, ;. Therefore the volume
occupied by bonded monomers within a chain compared to the volume that is oc-
cupied by the end monomers, the outermost monomers, differ. See Fig. 3.2 for a

schematic representation of this chain end effect.

Therefore — in a first approximation — the volume that a chain occupies can be
split into two contributions. The volume occupied by the inner monomers and the
volume occupied by the end monomers. The end monomers occupy a larger volume
as they have only one binding partner in contrast to the inner monomers. This can

be expressed by the following equations:

‘/cha.in - N‘/inner + 2[‘/end - ‘/inner] ) (32)
2AV,

VVchain - N‘/inner [1 + N‘/inner] 5 (33)

with Vipain denoting the volume occupied by a chain, Vip,er by an inner monomer,
Vena by an end monomer and AV, the difference in their occupied volume. Obviously
the chain volume is just split up into the contribution given by the inner and end

monomers.
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T Poo  constp

0.50 1.014 0.137
0.44 1.032 0.126

Table 3.2: Values obtained by fitting the data of Fig. 3.3.

By inserting this into the equation for the density we get

N N 1
kAR (3.4)

- 2AV,
V n‘/chain ‘/inner |:]~ Wnneer]

p:

By approximating this equation by a Taylor expansion (for N > 1 it follows that
28Ve . < 1) up to the first order we finally get:

N‘/inner
2AV, const
~ po(1— ) - (1 - ) 3.5
p poo( Ny) =P N (3.5)
where we set ——— = p,, — which gives the density of a polymer melt in the limit

‘/inner

2AVe
‘/inner

melt in the limit of long chains is approximatively given by p ~ p.. With increasing

of long chains — and const = . Following Eq. (3.5) the density of the polymer
chain length the density of a polymer melt will approach this limit. Equation (3.5)
states that the density scales with the reciprocal chain length. This describes quite
well the behavior observed in Fig. 3.1.

In Fig. 3.3 the density of the considered systems is shown for temperatures T" =
0.50,0.44 as a function of the reciprocal chain length. The dependence on the
reciprocal chain length 1/N of p can be described by Eq. (3.5). As the volume of the

considered systems decreases with decreasing temperature p is clearly temperature

p(T2,N)/p(T1,N)
p(T2,N=4)/p(T1,N=4)

also shows a temperature dependence. As Ap grows linearly with the

dependent. By regarding Ap =
2AVe

‘/inner

(see inset of Fig. 3.3) we check if
const =
reciprocal chain length 1/N, it becomes obvious that the const in Eq. (3.5) should
also be chosen temperature dependent.

The slightly smaller value of constr_g44 (cf. Table 3.2) compared to constr—g 50
shows that with decreasing temperature the dependence of the density on the chain
length decreases. In other words the ratio of the volume between inner and end

monomers is less pronounced for higher densities.
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Figure 3.2: Schematic representation of the chain end effect. Monomers that are
bonded within a chain are connected by black lines. For a better understanding the
ratio of the distances between non-bonded and bonded monomers is exaggerated.
Transparent light blue circles mark the space that is unaccessible to monomers
that do not belong to the blue chain. In (a) the space occupied by the bonded
monomer (denoted by 2) of the blue chain is marked by the black dashed frame.
The definition of the assigned space region to a monomer is inspired by the definition
of the Voronoi tessellation [10]. Space is assigned to a monomer by the following
procedure: First the perpendicular bisectors between a monomer and its nearest
neighbors are constructed. Then these perpendicular bisectors are connected so
that they form the black dashed frames. (Thereby the perpendicular bisectors are
chosen that allow to assign the smallest space region to the considered monomer. As
a consequence, the formed black dashed frame does not have to be a polygon with
six edges as it can be seen in (b)). In (b) the space occupied by the end monomer
of the blue chain (denoted by 1) is marked by the black dashed frame. The bonded

monomer within the chain occupies less space than the end monomer.

(b)
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Figure 3.3: Main figure: Density p as a function of the reciprocal chain length 1/N
for temperatures 7' = 0.44, 0.50. The black dashed lines indicate a fit using f(N) =
a(l — %) as suggested by Eq. (3.5). Due to the temperature dependence of the
density, a is chosen to be temperature dependent. The inset indicates that b should
also carry a temperature dependence. Inset: A deviation of Ap = p(T2.N)/p(T1.V)

p(T2,N=4)/p(T1,N=4)
p(T2,N)

from 1 indicates a deviation of the ratio of TN from that of %. This

deviation nearly grows linearly with increasing N. Thus the const in Eq. (3.5)

should also be temperature dependent.
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3.2 Bulk modulus and high-frequency shear modu-

lus

In this section we shortly discuss the bulk modulus and the high-frequency shear
modulus [21]. We derive the bulk modulus from the isothermal compressibility. The

isothermal compressibility can be defined as [21]

1dV

k(T) = Vap (3.6)
It characterizes how the system’s volume changes when a uniform infinitesimal pres-
sure is exerted onto it. The prefactor % sets this change in volume in relation to
the probed volume and the minus sign accounts for the fact that the compressibility
should be positive. (As the volume of a system will decrease when a pressure is

exerted onto it, dV' will be negative.)
There is a connection between the compressibility and the static structure factor
(see section 3.3) in the limit for ¢ — 0. It can be shown that in the thermodynamic

limit the compressibility is given by [40]

. S(q,T)

The inverse of the compressibility is defined as the bulk modulus of the system,
K = % In Fig. 3.4 we show the bulk modulus for N = 64,32, 16, 8,4 as a function

of temperature 7" calculated as the reciprocal value of compressibility according to

(3.7)

Eq. (3.7). The bulk modulus increases with decreasing 7', i.e., the melt becomes less
compressible; it also increases with increasing N, in a good approximation as
const

N
which is expected from Eq. (3.6) and the N dependence of p discussed before.

K=Ky — (3.8)

High frequency shear modulus We complete the discussion by considering the
high-frequency shear modulus. This is especially motivated as we will discuss later
(see section 5.1) its dynamic counterpart — the shear relaxation function — in
greater detail. The high-frequency shear modulus can be defined as G, = G(t = 0)
with G(t) being the shear relaxation function. The shear relaxation function is given
by [5, 9]

Glt) = kB;V@w(t)%(o» , (3.9)
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Figure 3.4: Bulk modulus K(7T) as a function of temperature 7' for N =
64,32,16,8,4. (See Table A.5 for the numerical values.)

where 0,4 denote the stress tensor with (o, 3 = x,y, z). The stress tensor is given
by [53]

M M
1 oU (r ) oU (r™)
Oap = ; muv; oVig — 5 ZZI (TWTW + ri’ﬁTw s (310)
where the components of the position r; (the velocity v;) of monomeri (= 1,..., M)

are denoted by r; . (v; ), and total potential is denoted by U. Here, for convenience,
the monomers of the system are labeled by just one index (i =1,..., M = nN).
In Fig. 3.5 G is depicted for all considered chain lengths. In the investigated

temperature range G, shows an almost linear dependence on the temperature.

3.3 Static structure factor

What are the basic ingredients that describe the structure of our system? And
how can these basic ingredients be captured in a convenient way? One of these
basic ingredients are the density fluctuations of the considered particles (monomers,
chains) of the melt. By density fluctuations we understand the deviation of the local
density from the averaged density.

The static structure factor |9, 21] can be seen as the mean square average of these

density fluctuations. The static structure factor is closely related, via a Fourier
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Figure 3.5: Shear modulus as a function of temperature 7" for N = 64, 32, 16, 8, 4.

(See Table A.6 for the numerical values.)

transform, to the pair correlation function [9] which corresponds to the radial dis-
tribution function for the systems that we study (cf. section 3.4). In this context we
want to mention that the first peak of the static structure factor (see for example
Fig. 3.6) reveals informations about the ordering of monomers in shells around a
labeled monomer [4]

In the following we introduce the static structure factor in terms of density fluc-

tuations. Here we follow Ref. |37] and specially [4, 22|

We consider a polymer melt consisting of n monodisperse chains of N monomers
in a volume V. For a wave vector q, the coherent monomer density fluctuations are

given by

palq) =Y €9 (a=1,...,N), (3.11)
=1

where r¢ denotes the position of the ath monomer in the ith chain [22]. The sum

over all monomers of a chain yields the total monomer density fluctuations

prov(Q) =D palq) =) Y eI (3.12)

i=1 a=1
In terms of the total monomer density fluctuation the collective structure factor of

the melt is then given by
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St0) = (@) ps(a) (3.13)

:ni<zze T gl > (3.14)

1,j=1 a,b=1

with (-) denoting the canonical averaging. This equation shows the above mentioned
approach to the static structure factor as the mean square average of the density
fluctuations.

The collective static structure can be split into an intra-chain and an inter-chain
part [22| which yields

S(q) = w(q) + ph(q), (3.15)

here p = nN/V denotes the monomer density, w(q) the intra-chain contribution and

ph(q) the inter-chain contribution®. These contributions are given by

ph(q) = % i <ieiq'(r7r3)> (3.16)

ab=1  i#j

and

w(q) = <Ze (rf > (3.17)

w(q) is also named the “form factor” [22].

The main figures of Fig. 3.6 and Fig. 3.7 show the static structure factor S(q) for
two temperature 7' = 0.50, 0.44 and for chain lengths of N = 64 (Fig. 3.6) and N =4
(Fig. 3.7). In this temperature interval all systems considered (N = 64,32, 16,8, 4
and pressure p = 0) have a structure that is typical of dense, disordered melts [4].
Additionally we show in Fig. 3.6 the form factor w(q), it shows no differences upon
cooling for the depicted temperature range.

The weak compressibility of the melt is reflected by the small value of S(q) in the
¢ — 0 limit. In this context we want to remind of Eq. (3.7)

o S T)
K(T) = élil(l) i (D) x élir(lj S(q,T). (3.18)

'Here h(q) denotes the Fourier transform of the site-averaged intermolecular pair correlation
function [4, 40]
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In this sense the static structure factor is a continuation of the compressibility to
finite wave vectors [37].

For larger values of ¢, S(q) increases toward the first peak which is also the
maximum of S(g). The g-value for which S(g) reaches its maximum will be denoted
bY Gmax. For our model gna, >~ 7.1 corresponds to the length scale of a monomer
diameter. This points to the fact that the main contribution to S(gmax) can be found
in the amorphous packing of monomers in the nearest-neighbor shell located around
a monomer [4].

From Fig. 3.6 it can be inferred that upon cooling the structure of the system
stays essentially the same. Especially no long-range structural correlations develop.
The only noticeable difference is that due to the increasing density the packing gets
tighter which is reflected by the increase of S(gmax) [4]- To illustrate this point we
refer to the insets (a) and (b) of Fig. 3.6. These insets show that the first peak of S(q)
grows and shifts to larger ¢ values upon cooling. The shift to larger ¢ values indicates
the increase of the density. This is also supported by the comparison of different
chain lengths. In section 3.1 we showed that the density of systems compared at
the same temperature and pressure depends on the chain length. The longer the
chain length the higher the density. This is reflected when we compare the position
of qumax for different chain length (see for example the inset (a) of Fig. 3.6): With
increasing chain length ¢, is shifted to higher values. By comparing this shift for
the depicted chain lengths relatively to each other we find again a signature that
the relative differences of the density scale like the reciprocal chain length. This

observation seems even to hold for the height of the peak of S(gmax)-

3.4 Radial distribution function

In the last section we introduced the static structure which captures the static
properties of a many body system in reciprocal space. Here we turn to a quantity
that decodes the structure in real space. This is provided by the pair distribution
function g(r) [21]. It answers the question: Given that a particle sits in the origin
how large is then the probability to find another particle at place r.

As the systems that we study are homogeneous and isotropic there is no special
point or a special direction. Thus it is sufficient to consider the radial pair distribu-
tion function g(r), often just referred to as the radial distribution function, which

depends only on the modulus of » = |r| [18]. It measures the probability to find a
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Figure 3.6: Main figure: Static structure factor S(q) and form factor w(q) for N = 64
and 7" = 0.50;0.44 vs the modulus of the wave vector q. The dash-dotted lines
indicate the g-interval for which the insets are shown. It shows the region around
the first peak of the static structure factor. Inset (a): Static structure factor for
N = 64;16;4 and T = 0.50 for the indicated g-interval. Inset (b): Static structure
factor for N = 64;16;4 and T = 0.44 for the indicated g-interval. The dash-dotted

lines indicate the static structure factor for 7" = 0.50.
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Figure 3.7: Main figure: Static structure factor for N = 4 and 7' = 0.50;0.44 vs

the modulus of the wave vector q. The dash-dotted lines indicate the g-interval for

which the insets are shown. It shows the region around the second peak of the static
structure factor. Inset (a): Static structure factor for N = 64;16;4 and 7' = 0.50
for the indicated g-interval. Inset (b): Static structure factor for N = 64;16;4 and

T = 0.44 for the indicated g-interval.

structure factor for 7" = 0.50.

The dash-dotted lines indicate the static

Figure 3.8: Schematic representation of the definition of the radial distribution

function. Inspired by Ref. [21].
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monomer at a distance r given there is a monomer in the origin. Figure 3.8 shows
a schematic representation of g(r). The radial distribution function for our systems
can then be defined by [9]

niN

palr) = == (60— 1) (3.19)
i#]

with r;; = |r; — r;| denoting the distance between monomer i and j.

In this way the local density at a distance r from the origin is given by pg(r).
The prefactor - normalizes pg(r) according to the total number of particles which
is given by the number of chains n times the monomers per chain N.

As a result the average number of neighbors which reside within a distance R

from a given monomer [9] is given by

G(R) = 47rp/0 dr r2g(r) . (3.20)

By discretizing this concept spherical shells of thickness dr are considered at
distance r from a labeled particle. The number of particles found in such a shell is
proportional to g(r) (cf. Fig. 3.8).

The position of the first peak of g(r) reflects the distance between bonded monomers
which is &~ [5. The subsequent steep slope of g(r) mirrors the stiff harmonic bond po-
tential that we employ. The probability that bonded monomers are separated from
each farer than the average bond length [y is very small. Non-bonded monomers
cannot get so close to each other, as this is impeded by the steep slope of the re-
pulsive part of the Lennard-Jones potential. The second peak shows the ordering
of the monomers in shells around themselves. The subsequent oscillation around 1
accounts for the shells formed around the first nearest-neighbor shell. For large r
g(r) finally reaches a value of 1 which demonstrates that there is no long-range order
in the polymer melts. This is equivalent to saying that g(r) for large r probes the
density of the system as the systems under consideration do not exhibit long range
order.

The second peak shows the biggest temperature dependence of g(r) (see the inset
of Fig. 3.9). The temperature dependence of the first peak is less pronounced. From
this observation we can extract the following: Decreasing the temperature goes along
with increasing density which results in a tighter packing of the monomers. Due to
this tighter packing monomers are rearranged. This rearrangement in the first shell

among non-bonded monomers is more effective than for bonded chain monomers.
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Figure 3.9: Main figure: For N = 64 the radial distribution function for the tem-
peratures of 7' = 0.50 and 0.44 are compared. The black dash-dotted lines indicate
r =0.967 = [, and r = 1.09 around which the second peak occurs. Inset: Zoom on

the first and second peaks of g(r).

The impact of the chain length for totally flexible chains on the local structure is
not large (see Fig. 3.10). By comparing g(r) for chain lengths of N = 64 and N = 4
we find that the only remarkable differences are visible in the first and second peak.
This effect is accounted for by the different relative ratio of end monomers. Two end
monomers will approach each other not more closely than given by the Lennard-
Jones potential. This leads to an inversion of the height of the peaks. For N =4
the first peak is lower than for N = 64, whereas for the second peak the inverse
observation can be done. This accounts for the fact that pg(r) is a probability which

obeys:

/d37" pg(r) = const (3.21)

The small shift of g(r) for N = 64 compared to that of g(r) for N = 4 which
occurs for distances larger than the monomer diameter seems to be explainable by

the slightly larger density of the system consisting of chain length N = 64.
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Figure 3.10: Main figure: For 7" = 0.44 the radial distribution function for N = 64
and N = 4 are compared. The black dash-dotted lines indicate r = 0.967 = [y and
r = 1.09 around which the second peak occurs. Inset: Zoom on the first and second
peaks of g(r). An inversion of the height of these peaks for N = 64 and N = 4,

when compared with each other, is observed.
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Figure 3.11: Schematic representation of the end-to-end vector. The vectors r!, r?

denote the position of monomer 1 and 2. The bond vector R; denotes the bond

from monomer 1 to 2 (analogously Rz and R;). R, denotes the end-to-end vector.

3.5 End-to-end vector

The quantities discussed so far can also be defined for non-polymeric systems. Now
we turn to polymer specific quantities. A central quantity characterizing polymers is
the end-to-end vector R, of the chains [26, 39, 71]. By considering the bond vectors
R, = r*"! — r® (where we dropped the indices denoting the chain) between the ath

and (a + 1)th monomer of a chain the end-to-end vector is given by (cf. Fig. 3.11)

N—-1
R.=> R,. (3.22)

a=1

We consider the squared value of the end-to-end vector averaged over the whole

system

R? = <R§> , (3.23)

where (-) denotes the canonical averaging.

In Fig. 3.12 we show in the inset the temperature dependence of R? for chain
lengths N = 64, 32,16, 8, 4. It can be seen that the absolute temperature dependence
is only visible for chain length N 2 16 and that it increases with increasing chain

lifs
ZN

doing so we relate the squared end-to-end vector to the R? = NI2 of an ideal chain

length. Thus we show in the main figure of Fig. 3.12 as a function of N. By
[26] with bond length [y. In this way the relative temperature dependence becomes
obvious and the deviation from the behavior of an ideal chain. The reason for the

deviation from the behavior of an ideal chain can be found in the excluded volume
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Figure 3.12: Main figure: Z%EN as a function of N for temperatures 7" = 1.00,0.70, 0.50
0
and chain lengths of N = 64,32, 16, 8,4. Inset: Mean squared end-to-end distance

R? as a function of N for T = 1.00, 0.70, 0.50.

of the monomers. This constraint causes the chains to become swollen compared to

ideal chains. We will discuss this in more detail in the next section.

The temperature dependence increases with chain length. This seems to be plau-
sible as the main contribution of the change of the end-to-end distance as a function
of temperature is found in the density. A lower temperature results in a higher
density which just means that the monomers are tighter packed. As this affects all

monomers of a chain the resulting effect is more pronounced for longer chains.

3.6 Intra-chain distances and effective bond length

In this section we discuss the internal distances of a chain. This is interesting to
study as it reveals information about the conformation of the chains. The internal
distances are measured between monomers of one chain. This distance can be re-
lated then to the curvilinear length between the considered monomers. This shows
how monomer properties (e.g. the excluded volume) and system properties (e.g. the

density) influence chain properties.

. . . R2 .
The mean-square intra-chain distance —* measures the mean-square distance be-

tween chain monomers that are separated by s bonds [8] and is given by
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Figure 3.13: Mean-square intra-chain distance for N = 64, 32,16,8,4 and 7' = 0.50

as a function of the curvilinear length s. RT% is given by the squared equilibrium
bond length 12 = 0.935.

B_@®)_ L5 L Sy 320

s sn 4= N —s i v '
where the positions of the monomers are denoted by r{. The subscript « =1,...,n
denotes the chains and the superscript @ = 1,..., N the monomer in the chain.

Equation (3.24) is evaluated for every mean-square intra-chain distance separately.
s takes each value out of s = 1,..., N — 1 which corresponds to the smallest intra-
chain distance between two monomers up to the end-to-end distance of the whole
chain for s = N — 1.

As the mean-square intra-chain distance includes all intra-chain lengths it allows
to compare systematically systems which only differ in the chain length of their
constituting chains. Therefore it is an ideal quantity to compare the systems under
consideration from a statical point of view.

In Fig. 3.13 we show the mean-square intra-chain distance R?g at temperature
T = 0.50 for different chain lengths N = 64,32,16,8,4. We want to point to the
following observations: For s = 1 all curves start from a value that is given by the
squared equilibrium bond length, which is given for our system by 12 = 0.935.

For an ideal chain [26] (without excluded volume) which follows random walk
statistics, RTE = const = [ for all s. The fact that 3 in Fig. 3.13 is increasing

indicates a swelling of the chain with respect to an 1deal chain. An upper bound is
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set by the limit of a completely extended conformation. In this situation the real-
space distance is identical to the curvilinear distance, thereby RTE = [2s. Our data is
not increasing so strongly, and the curves are levelling off for larger s. Our chains

are thus not stiff. For large curvilinear length, R?g reaches an apparent plateau. For
N > 16, a final decrease of the curve is observed which can be explained by a finite

chain length effect [79].

Effective bond length The mean-square intra-chain distance for the chains de-

picted in Fig. 3.13 follows an underlying universal curve. This curve can be described

by [79]
st(s) 1 _Cl<\/%p_2§%ﬂ | (3.25)

with b, being the effective bond length (see below) and ¢; a constant which is given

by ¢; = 1.2 for a bead-spring model [79].

Wittmer and co-workers show that due to the incompressibility of the melt an
effective repulsion between chain segments emerges which scales with 1/4/s [79)].
The effective repulsion gives rise to long range correlations in polymer melts. They
argue that these long range correlations cause a systematic swelling of short chain
segments. This swelling can be described by an effective bond length b,. We employ
equation Eq. (3.25), which is taken from this work, as a one-parameter extrapolation
formula to determine the effective bond length b, of our system as a function of

temperature 7.

We are aware of the fact that the studied chains here are comparatively smaller
than the chains they focussed on. Nevertheless it should be possible to determine the
temperature dependence of the effective bond length. In Eq. (3.25) the temperature
dependence is accounted for by the temperature dependent density and effective
bond length b.. The temperature dependence of the density is conferred to the
effective bond length.

In figures 3.14 — 3.16 we show the result of our fitting procedure. We choose a

fitting interval of s € [3 : 30]. This choice is motivated by the fact that in this

interval % is comparatively well approximated by Eq. (3.25) in [79]. See Fig. 3.17

for the values that we got by the fitting procedure. By plotting the values for the
effective bond length as a function of temperature 7' we observe that they do not

decrease in a linear way.
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Figure 3.14: Main figure: Mean-square intra-chain distance for N = 64,32, 16,8,4
vs curvilinear distance s for 7" = 0.50. RTE is fitted using Eq. (3.25) to determine
the effective bond length b, which is found to be b, = 1.304 for T = 0.50. The
fitting interval is set to s € [3 : 30]. Inset: The inset shows R?(s)/(sb?) as a function
of 1/(pb2+/s). The black dotted line is given by f(z) = 1 — cl\/frzé x. Thus the

accordance of R?g for the N = 4,8,16,32, 64 with it shows the accuracy of the fit.
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curvilinear distance s for T' = 0.70. R?g
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Figure 3.16: Mean-square intra-chain
distance for N = 64,32,16,8,4 vs
curvilinear distance s for 7" = 1.00. Ré
is fitted Eq. (3.25) to determine the ef-
fective bond length b, which is found
to be b, = 1.331 for T" = 1.00. The
fitting interval is set to s € [3 : 30]. In-
set: The inset shows R?*(s)/(sb?) as a
function of 1/(pb3+\/s). The black dot-
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ted line is given by f(r) = 1—c1,/ % 2.

Thus the accordance of R?g for the N =

4,8,16, 32,64 with it shows the accu-
racy of the fit.

In Fig. 3.18 we depict R?g for a chain length of N = 64 and temperatures of
T = 0.50 and 0.44. For T" = 0.44 we observe that the mean-square intra-chain
distance shows a behavior different from the one described above. We suppose that
this is due to insufficient statistics. This can be explained when one takes into
account that R?g is always calculated over a finite number of phase space states
given by simulation configurations. For this reason a behavior like the one found
in Fig. 3.18, just reflects the fact, that the chains of the system were not given the
chance to explore a big enough region of the phase space for the largest s [8].

Thus not all possible chain conformations could be realized which results in the
undershoot of R?g. The example for the curve at T' = 0.44 where a clear drop can be
seen indicates that in this case chain configurations with a compressed conformation
are overrepresented.

But due to the property of the mean-square intra-chain distance to scan the chains
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Figure 3.17: Left: Values determined for b, by fitting R?g for temperature 7' =
1.00,0.70,050 (see figures 3.14 — 3.16). We use equation Eq. (3.25) as a one-
parameter extrapolation formula to determine the effective bond length b, for our
systems. Right: Effective bond length b, as a function of temperature 7. The effec-

tive bond length does not decrease as a linear function of 7" which is indicated by
the black dashed line.
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Figure 3.18: Mean-square intra-chain distance for N = 64 and temperature 7' =
0.50,0.44. For T" = 0.44 not enough simulation configurations are considered. The

black dashed line indicates s = 20. Until this value R?g shows a “normal” behavior.

on all s it is still possible to estimate up to which s the equilibration is sufficient.
This argument will become stronger by referring to Fig. 3.18. It can be seen that
up to an mean-square intra-chain distance of around s & 20, R?g for T' = 0.50 and
T = 0.44 show a comparable behavior. For this reason we argue that the average
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taken over simulation configurations up to internal distance of this order for this
particular system reproduce sufficiently well an ensemble average. This is especially
important when we approach lower temperatures. With decreasing temperatures
it will get harder to have enough configurations in order to realize the ensemble
average for all chain lengths. Due to the above consideration the finite number of
configurations will be still sufficient to realize the ensemble average for subsegments

of the chain.



Chapter 4

Dynamics: Mode-coupling theory

inspired analysis

4.1 Introduction

In this chapter we analyse the dynamic properties of our system. Thereby we will
focus on coherent and incoherent intermediate scattering functions, ¢,(t) and ¢ (t).
Other dynamical quantities, like the mean square displacement of all monomers go(%)
or the shear relaxation function G(t), will be discussed in the next chapter.

The coherent intermediate scattering function ¢,(t) * can be defined by [11]

Pyt ek OF) (4.2)

=1 j5=1

where M denotes the total number of monomers, r;(¢) the position of monomer i of
the melt at time ¢ and S(q) the static structure factor. The static structure factor

accounts for the normalization of qbq(t =0)=1

1
MS(q)MS(q) =1.

q-[r;(0)—r;(0)] > —

Pt = (4.3)

=1 j5=1
It can be regarded as the dynamic complement to the static structure factor. It

shows how density fluctuations of the system are correlated. These density fluctua-

'In the context of the mode-coupling theory [37] the coherent intermediate scattering function
is named density correlator and defined in terms of the total monomer density fluctuations, see

section 3.3, .
Pq(t) = m<ptot(q7 ) peot(a,t = 0)) . (4.1)

43
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tions are evaluated for a time difference At = ¢t—0 on a distinct real space wavelength

A which is given by the modulus of the considered wave vector, |q| = ¢ = 27”

The incoherent intermediate scattering function ¢(¢) can be defined by [11]

M
g(t) = %< 3 e aln o)y (4.4)
=1

The incoherent and coherent intermediate scattering functions differ in the fol-
lowing fact: The coherent scattering function relates the position of a monomer at
time ¢t to the other monomers’ position at time ¢ = 0. In contrast to that the inco-
herent scattering function only correlates a monomer’s position at time ¢t = 0 to its
position at a different time t.

In this sense ¢,(t) reveals more information about the system as the coherent
intermediate scattering function especially probes the collective dynamics of the
system. For large ¢-values ¢ > ¢*, where ¢* denotes the first peak of the static
structure factor S(q), ¢q(t) and ¢}(t) show a similar behavior. This is due to the
fact that for the probed small distances the monomers — also in the case of the

coherent intermediate scattering function — are only correlated with themselves.

4.2 Ideal mode-coupling theory analysis

In the following part we analyse our system in the framework of the ideal mode-
coupling theory (MCT). Reference [11] suggests that this kind of analysis is appro-
priate for totally flexible models of polymer melts.

In the following paragraph we summarize the main aspects of the ideal MCT
which are essential for our subsequent analysis. Our summary mainly follows [11]
and references therein. For a more general introduction to MCT we refer to |37].

One of the key features of MCT [34-38] is the prediction of an ideal glass transition
scenario. By this is understood that density fluctuation correlations will finally
relax for temperatures above the critical temperature 7T.. Below 7. these density
fluctuations will not completely relax, but remain at some finite value. These density
fluctuation correlations are described in terms of correlation functions like ¢4(t).
MCT proposes a dynamical equation for ¢,(¢), which is only determined by the

2

static structure of the considered system.” Another key feature is that the time

2In the case of simple liquids the static structure can be captured only by S(g). In an extension

of the MCT to polymer systems [22], the static structure of the system — due to the existence of
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evolution of ¢,(t) is coupled to that of all other products of coherent intermediate
scattering functions, like ¢y (t)¢,(t), when k + p = q holds for the considered wave
vectors k, p and q.

In the ideal MCT the ideal glass transition scenario is captured mathematically

by a bifurcation, which occurs at 7, in the limit of ¢ — oo:

lim ¢,(t) =

t—o0

(4.5)

0 for T'> T,
fo(T) for T <T..

f4(T') is named the non-ergodicity parameter. It gives the finite value at which ¢,(t)
remains for ¢ — oo for 7' < T, and states the fact that below T; ¢,(t) does not
completely relax anymore.

As MCT especially deals with dynamics occurring for temperatures close to T¢,
a measure to describe the ‘distance’ to T, the so-called separation parameter, is

introduced by

T.—T
T.
(' is a constant depending on the considered system.

o=C (4.6)

Another important prediction of MCT is that there is only one relevant time scale
in a glass-forming system which is the microscopic time scale ty. It is connected to

the [ relaxation time via

to

ta’ = HT (0 <a< 03953), (47)
0— a
and to the a relaxation time via
to
t = —\U|“’ , (4.8)

withy = 5-+2 (v > 1.765). The 3 relaxation time is the relevant time scale in the
[ regime and the « relaxation time in the a regime. (For a qualitative impression
where this relaxation regimes occur see Fig. 4.1.)

The parameters a and b (the von Schweidler exponent) are related to each other

via the exponent parameter A by [11]

I(1-a)? T(1+b)?
V=i S Tarm (W2SA<. (4.9)

We will come back to this relation, when we determine v from b.

polymer chains the system exhibits a higher structural complexity — is captured by S(¢) and the

form factor w(q).
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Figure 4.1: Coherent intermediate scattering function ¢,—¢9(t) for N = 16 as a
function of time ¢t. For T" = 0.43 the approximated time intervals are indicated
where the MCT a- and 3 processes occur. The value 0.1 is marked by a horizontal

black dashed line. This value is used to determine a relaxation time T;.

Asymptotic formulae The following asymptotic expressions are only valid for
temperatures close to 7., which translates to small o.

The intermediate time regime of the relaxation process within which ¢, () relaxes
to the plateau (¢,(t) ~ f,) and, for T > T¢, relaxes from it is called the 3 regime.
This regime can be more precisely defined by | f, — ¢,(¢)| < 1 [11]. Within this time
regime MCT predicts that ¢,(t) can be expanded for ¢ ~ ¢, up to the first order by

¢q(t) = ch + hy o g(f) ) (4.10)

with h, the critical amplitude and ¢ = t/t,. Equation (4.10) can be rewritten using
the 3 correlator G(t) = g(t)/|o]| in the following form

6a(t) = £+ hyGalt) (4.11)

Thereby it becomes obvious that the correction to f, namely h,G3(t), splits into
two factors: h, only depends on ¢ and the [ correlator G4(t) only depends on ¢ and
o. For this reason Eq. (4.11) is called the factorization theorem.

Mode-coupling theory predicts that there is a temperature interval in which inter-

mediate scattering function can be collapsed onto each other by rescaling the time ¢
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according to some relaxation time 7. The so rescaled ¢,(t) are predicted to collapse
onto one temperature independent shape function aq(~), which is also referred to as
a master function [37]. Mathematically this relation is expressed within the MCT
by

Oqlt) = Sy(t/t,)  (t21,). (4.12)

This relation is referred to as the time-temperature superposition principle (TTSP).

Data analysis: procedure The final goal of this analysis is to determine mode-
coupling-theory quantities like T, a, b, A,y as a function of the chain length N.

We perform this analysis in the following steps:

e First we check in which temperature interval the time-temperature superpo-
sition principle (TTSP) is valid. This gives a first estimate within which
temperature interval the ideal MCT applies [11]. Additionally to that, it gives

us an estimation for the lower bound of the non-ergodicity parameter f;.

e In a second step we check if the factorization theorem is also valid. This step

also serves as a crosscheck.

e In a subsequent step we fit ¢,(¢) by employing the von Schweidler law and its
leading order correction Eq. (4.14) This is done for each chain length for the
lowest temperature that still obeys the TTSP. By this choice we can access
the largest time interval possible for the fit. Therefore the fit results might
reach the highest possible precision. From these fits we determine values for
the MCT quantities of b, f;.

e From the fitted b we calculate A and a, and from a and b we calculate . The
calculated 7 is then used to determine 7; by fitting the a relaxation times for
different temperatures in a temperature interval where the ideal MCT can be

applied.

4.2.1 Time-temperature superposition principle

We start to determine the temperature interval within which the ideal mode-coupling
theory should apply. This temperature interval can be found by testing the time-
temperature superposition principle.

In the figures 4.2 — 4.6 we show the result of the rescaled coherent intermediate
scattering function for the chain lengths of N = 64,32, 16, 8, 4.
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Figure 4.2: Coherent intermediate scattering function ¢,—¢9(t) for N = 64 rescaled

according to the a relaxation time (7,-)~!, which is determined by @,—g.o(t = 74+) =
0.1.
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Figure 4.3: Coherent intermediate scattering function ¢,—¢9(t) for N = 32 rescaled

according to the a relaxation time (7,-)~!, which is determined by @,—g.9(t = 74+) =
0.1.
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Figure 4.4: Coherent intermediate scattering function ¢,—¢9(t) for N = 16 rescaled

according to the a relaxation time (7,-)~!, which is determined by @,—g.o(t = 74+) =
0.1.
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Figure 4.5: Coherent intermediate scattering function ¢,—¢¢(t) for N = 8 rescaled
according to the a relaxation time (7,-)~!, which is determined by @,—g.9(t = 74+) =
0.1.
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Figure 4.6: Coherent intermediate scattering function ¢,—¢¢(t) for N = 4 rescaled
according to the a relaxation time (7,+)™!, which is determined by ¢,—g.o(t = 74+) =
0.1.

Procedure

To test the TTSP we proceed as follows: We start by considering ¢, (t) for ¢ = 6.9 for
a distinct chain length. We take ¢ = 6.9 as for this value ¢,(t) shows a comparatively
high plateau value and therefore promises to give more precise results.

We illustrate our approach for the example of ¢,_69(t) for N = 64. For this
chain length we simulated in the NVT ensemble the following temperatures 17" =
0.50,0.48,0.47,0.46,0.45,0.44. First we determine the time where ¢,(t) reaches a
value of 0.1 for every simulated temperature. This time is determined by a linear
interpolation between two data points which are closest to 0.1. Next the ¢,(t)’s
are rescaled according to these determined times. These times are the longer the
lower the considered temperature is. (Compare Fig. 4.1 where a similar situation
for N = 16 is depicted.) Due to the employed method to determine these relaxation
times and the limited amount of data points one needs to adjust the relaxation
times in order that ¢,(t) collapses onto one master curve. This is done as long as

the following criteria are obeyed [32, 77]

e the final relaxation process should overlap for all temperatures close to 71T,

e ¢,(t) for a temperature should not intersect with ¢,(¢) of a higher temperature,



ol

| N=64|N=32|N=16| N=8|N=4

0.44
0.775

0.44
0.78

0.43
0.79

0.42
0.80

0.40
0.805

lowest temperature T’

lower bound for f7_ g4

Table 4.1: Results obtained by testing the time-temperature superposition principle:
Lowest temperature 1" denotes the lowest temperature that still seems to fulfill the
TTSP. Lower bound for fi_ ¢4 denotes a lower bound for fi_g4 for each distinct
chain length N.

e the higher the temperature, the earlier ¢,(¢) should leave the master curve.

Figure 4.2 shows the result of this procedure for the chain length N = 64. All
simulated temperatures seem to fulfill the T'TSP. Therefore the ideal MCT should
apply even for the lowest temperature showed, 7" = 0.44. The black dashed line

indicates a lower bound for the non-ergodicity parameter, f;_sq > 0.775.

In Fig. 4.3 we show the result for V = 32. Here the lowest simulated temperature
T = 0.42 (dash-dotted line) apparently violates the TTSP. The fact that ¢,(t) for
T = 0.42 collapses in the final decay onto the other curves, but does not collapse onto
the master curve for intermediate times can be taken as a sign that this temperature
does not fulfill the TTSP. For T" = 0.43 it is not so clear if the TTSP is still fulfilled
or not, as the differences in the shape of its ¢,(¢) and the master curve are rather
small. The lower bound for f;_s4 > 0.78, determined from the data for 7" > 0.43,
is indicated by a black dashed line.

The outcome of this procedure for N = 16,8 and 4 is depicted in figures 4.4 —
4.6. For N = 16 the temperatures 7' = 0.42 and 7" = 0.41 violate the TTSP. From
T > 0.42 a lower bound for f;_s4 > 0.79 is determined. For N = 8 T" = 0.41
and T' = 0.40 violate the TTSP. From 7" > 0.41 a lower bound for fi_¢q > 0.80 is
determined. Finally, for N = 4 T = 0.39 and T" = 0.38 violate the T'TSP. From

T > 0.39 a lower bound for f;_s4 > 0.805 is determined.

In Table 4.1 we summarize our first results by testing the T'T'SP. For each chain
length we determined the lowest temperature 7" for which the associated coherent

intermediate scattering function still obeys the TTSP. We also give a lower bound

for qu=6.9 .
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Figure 4.7: The factorization theorem is tested by applying Eq. (4.13) to ¢,(t) at
T = 0.44 for N = 64. By definition R,(t" = 5.12) = 1 and R,(t' = 30.7)=0. The
times t” and ¢’ were chosen such that they are within the plateau region. Thereby
it becomes visible that even for times ¢t < ¢ and t 2 t' the curves collapse onto
each other. The ordering of ¢,(t) before entering the 3 regime and when leaving it

is conserved. The curves follow some kind of ‘ordering rule’ [11].
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Figure 4.8: The factorization theorem is tested by applying Eq. (4.13) to ¢,(t) at
T = 0.40 for N = 4. By definition R, (t" = 5.12) = 1 and R,(¢' = 30.7)=0. The
times t” and ¢’ were chosen such that they are within the plateau region. Thereby
it becomes visible that even for times ¢ < ¢’ and ¢ = t' the curves collapse onto
each other. The ordering of ¢,(t) before entering the 3 regime and when leaving it

is conserved, except for ¢ = 15.

4.2.2 Factorization theorem

The factorization theorem (cf. Eq. (4.11)) can be tested by fixing two times ¢ and
t', with t” <t, < t', and evaluation of the following relation [11]
o) = alt) _ Gult) — Galt)
o) = 04()  Galt) = G(t)
As this test is easy to implement it was widely tested in simulations of fragile glass
formers |33, 47, 76, 78|.
By definition R,(t) does not dependent on ¢ anymore. Therefore — in the g

R,(t) (4.13)

regime — ¢,(t) for different ¢ values should collapse onto each other for one fixed
temperature. By this the MCT prediction of the factorization theorem can be
effectively tested. In Fig. 4.7 this test is carried out for N = 64 and the lowest
temperature that still obeys the TTSP. It can be seen that ¢,(t) for different ¢ values
collapse onto each other on a time interval of about two decades. The ordering rule
[11] is valid, which is a more significant test, is also obeyed.

In Fig. 4.8 we show the similar test for a chain length of N = 4 and for the lowest
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Figure 4.9: The factorization theorem is tested by applying Eq. (4.13) to ¢,(t) at
T = 0.38 for N = 4. By definition R,(t" = 20.48) = 1 and R, (¢’ = 81.92)=0. The
times t” and ¢’ were chosen such that they are within the plateau region. Thereby
it becomes visible that even for times ¢ < ¢” and ¢ 2 t' the curves collapse onto each
other. The ordering of ¢,(t) before entering the § regime and when leaving is not

conserved.

temperature for which the TTSP still holds. t” and ¢’ are fixed for the same times as
in the case for N = 64 and 7" = 0.44. Here, as well as for N = 64, ¢,(t) for different

q values collapse onto each other. The ordering rule is valid except for ¢ = 15.

In Fig. 4.9 we tested the factorization theorem for N = 4 and a temperature that
is slightly below the value we determined for T, (see section 4.2.4 ). The factorization
theorem seems to be still valid but from our test it seems that the ordering rule is not
fulfilled anymore. The fluctuations in the data shown in Fig. 4.9 can be explained

by insufficient statistics.

4.2.3 Fit procedure

We proceed our analysis in the framework of the ideal mode-coupling theory by

C

determining b and f_ 44 for each chain length. Therefore we fit the late 3 process,

q
which overlaps with the early « process of the coherent intermediate scattering

function [11]. For this purpose we use the following formulation of the von Schweidler
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Figure 4.10: Coherent intermediate scattering function ¢,—¢9(t) for N = 16 and
T = 0.43; fitted according to Eq. (4.14). Left border of the fit interval fixed at
t = 20 while the right border is varied: ¢ = 350, 500,2100. Red color: right border
t = 350 and corresponding fit. Blue color: right border ¢ = 500 and corresponding
fit. Green color: right border ¢ = 2100 and corresponding fit.
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law and the first leading order corrections to it as proposed in [11]
Gg(t) = fC— 1 (¢/t0)" + REBE (1/8)* (1, < 1) (4.14)

Here, f; denotes the non-ergodicity parameter, t/ the « relaxation time, and b
the von Schweidler exponent. Egt is given by h,B, where h, denotes the critical
amplitude and B is a constant. égt is given by BB,, where B, is a ¢ dependent
constant.

For the fitting procedure we use ¢,(t) for the lowest temperature where the TTSP
is still fulfilled. We make this choice, as for this temperature the ideal mode-coupling
theory should still hold. The lower the temperature, the longer the relaxation process
exhibited by ¢4(t). Therefore, the time interval within which Eq. (4.14) can be fitted
is the largest, which should finally result in an appropriate good fit result.

Before we start to fit our data according to Eq. (4.14), we first determine the
appropriate fit interval. This is crucial, as it serves a some kind of “hidden” fit
parameter [11]. In the subsequent part, we want to use one fit interval for all chain
lengths to avoid inconsistencies. This choice is motivated by the following:

For ¢,(t) of all chain lengths and temperatures data is collected at the same
times intervals. We are therefore restricted in the choice of the fit interval to these
times intervals. The distances between the times at which the data is collected
varies, as we use a logarithmic pattern to collect data. Thus, the fit interval cannot
easily be adapted for each ¢,(t) so that it captures the same part of the relaxation
process. Additionally to this, the accessible temperatures of ¢,(t) for each chain
length considered separately do not have to be necessarily in the same relative
distance to 1.

Consequently, the best choice to make seems to use the same fit interval for all
chain lengths within which ¢,(¢) shows a similar relaxation behavior. To this end
we fit different temperatures for each chain length for which ¢, () exhibits a similar
relaxation process.

The choice of the temperatures for each chain length is made due to the following:
We assume that 7, depends on the chain length, which seems likely when we consider
our findings from the test of the TTSP. Furthermore, we assume that for all chain
lengths the lowest temperature for which ¢,(t) still obeys the TTSP is at least at
similar relative distance to 7. Consequently, we assume that ¢,(t) for these lowest
temperatures exhibit a similar relaxation process for each chain length. Therefore

using the lowest temperature for which the T'TSP is still valid for each chain length
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Figure 4.11: Coherent intermediate scattering function ¢,—¢o(t) for N = 16; fitted
according to Eq. (4.14). Right border of the fit interval fixed at ¢ = 500 while the left
border is varied: ¢ = 10, 15,20, 30. Red color: left border t = 10 and corresponding
fit. Green color: left border ¢ = 15 and corresponding fit. Blue color: left border

t = 20 and corresponding fit. Light blue color: left border ¢ = 30 and corresponding
fit.

separately, should lead to a comparable accuracy in the fit result. As above stated
fitting the lowest temperature allows to use the largest fit range.

For these reasons we finally decide to choose one fit interval which we use for
the fit of ¢,(¢) for all chain lengths. By this approach we hope to minimize the
systematic error or at least that the systematic error that we make is of comparable

size for all chain lengths.

Determination of the fit interval

In the following, we use ¢,—9(t) for N = 16 and 7" = 0.43 to determine an ap-
propriate fit interval when applying the von Schweidler fit (Eq. (4.14)). We choose
N =16, as it represents the intermediate chain length.

In Fig. 4.10 we fix the left border (small times) of the fit interval at ¢ = 20 and
vary the right border by using ¢ = 350, 500, 2100. This choice is motivated by the
demand that the fit interval should cover a large part of the late ( relaxation. We
then select the fit interval by the requirement that the fit should describe ¢,—¢9(%)
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fit interval | [10,500] | [15,500] | [20,500] | [30,500] | [20,2100] | [20,350]
fefi 0.800690 | 0.799937 | 0.801079 | 0.798482 | 0.804714 | 0.813493
/6t 1.73638 1.73835 | 1.73368 | 1.78833 | 1.71399 | 1.92642
pit 0.600357 | 0.604114 | 0.598863 | 0.610147 | 0.578552 | 0.517702
Bt 0.00600064 | 0.00599139 | 0.00601125 | 0.00603533 | 0.00583008 | 0.00190140
Bt 0.0154884 | 0.0152056 | 0.0156019 | 0.0149752 | 0.0170899 | 0.0232808

Table 4.2: Values obtained by fitting ¢,—¢9(t) according to Eq. (4.14) for N = 16
and 7' = 0.43 using different fit intervals (cf. Fig. 4.11).

averaged | [20,500] standard deviation
Is fit 1°0.80098 0.801079 0.0020671
et | 1.7421 1.73368 0.024678
bht 0.59841 0.598863 0.010664
Bgt 0.0059737 | 0.00601125 | 7.3313 x 107°
hgt 0.015672 | 0.0156019 | 7.4191 x 1074

Table 4.3: Values obtained by fitting ¢,—¢o(t) according to Eq. (4.14) for N = 16
and T' = 0.43 using [20, 500] as fit interval compared to the average value. This aver-
age is calculated for the obtained values using the fit intervals of [10, 500], [15, 500],
[20, 500], [30,500] and [20,2100]. For this average the standard deviation is indi-

cated.

for the largest possible range, especially outside the fit interval. This requirement
seems to be best met, when the right right border is set to ¢ = 500.

We then proceed to vary the left border using ¢ = 10,15, 20, 30, while keeping
the right one fixed (¢ = 500, see Fig. 4.11). The variation of the left border (in the
range that we probe) seems to result in a less pronounced influence on the fit than
the variation of the right border.

In Table 4.2 we present the values that we obtained by fitting ¢,(¢) of N = 16 for
a temperature of T'= 0.43 by using Eq. (4.14). As the values obtained by choosing
tiery = 20 and tgn = 350 as fit interval differ strongly compared to the other values
we excluded them from now on. This strong deviation can be explained as follows:
This choice of the fit interval neglects a big part of the a relaxation. Therefore the
fit is comparatively less descriptive compared to the other fits.

The mean value and the standard deviation of the obtained values for the other
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fit intervals are given in Table 4.3. From this table it can inferred that the values by
fitting within the border of iy = 20 and £ = 500 are comparable to the mean

values obtained from different fits and within the standard deviation.

We studied this influence as it is done for N = 16 and T" = 0.43 for the other
chain length (N = 4,8, 32,64 for the lowest temperature that still obeys the TTSP)
and we find comparable results meaning that the variation of different values for bfi*
obtained for different fit intervals is comparable. But due to the restriction of the
choice of the fit interval — as already mentioned above — it seems clearer to fix
the fit interval. Therefore we fix the fit interval to ties = 20 and #,n, = 500 for the

following fits.

Fit

Now we fit — using the determined fit interval — according to Eq. (4.14) ¢,(t) for
all considered chain lengths N = 64,32, 16, 8,4 where we use the lowest temperature
for which ¢,—69(t) still fulfills the TTSP.

In Fig. 4.12 we show the result for N = 16 and 7" = 0.43. We start to fit ¢,—¢.9(?)
according to Eq. (4.14) where all five parameters f¢ fit ft pfit Bt bl are treated
as fit parameters. Thereafter we determine the crossover-time t., by the condition
Pg=6.9(tco) = figo [11]. By using this relation we are then able to determine f
for the other considered g-values of 4,9.5,12.8. In a last step, we then fit ¢,(¢) for
q = 4,9.5,12.8 by setting bfit, £t to the values obtained from the fit for ¢ = 6.9 and
JE™ to the values obtained by using ¢y—q(teo) = fi_,- Thus, only BJ* and Al are

fitted.

As an additional test, we fitted the incoherent intermediate scattering function. In
Fig. 4.13 the incoherent intermediate scattering function for N = 16 and 7" = 0.43 is
fitted according to Eq. (4.14) where we used for b5, £ * and t., the values determined
by the fit of ¢,—69(f). As in these fits only two free fit parameters are employed,

they show how comparatively well this fit procedure works.

In the figures Fig. 4.15 — Fig. 4.17 we show the results from the fit procedure for
the other chain lengths. In Table 4.4 we give an overview of the values obtained
by fitting ¢,—¢9(t) for each chain length for the lowest temperature for which the
TTSP still holds according to Eq. (4.14).
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and T = 0.43; fitted according to Eq. (4.14). For ¢ = 4,9.5,12.8, t/ = 1.73368, b =
0.598863 and the corresponding f7 (fi_, = 0.5019, fo_q 5 = 0.4297, f7_,5 s = 0.3672)
are set. The crossover-time t., = 1.6475 and the fit interval are marked by vertical

black lines.

N=64 [ N=32 | N=16 | N=38 N =4

Iq it 10.789512 | 0.790253 | 0.801079 | 0.811316 | 0.819615
t 1.84349 | 1.69287 | 1.73368 | 1.75646 | 1.76730

bt 0.595253 | 0.616997 | 0.598863 | 0.571892 | 0.546314
Bgt 0.006146 | 0.007276 | 0.006011 | 0.005662 | 0.000279
hgt 0.018284 | 0.018166 | 0.015602 | 0.016771 | 0.014499

teo 1.8510 1.7508 1.6475 1.3325 1.6268

Table 4.4: Values obtained for f¢ % ¢/ b5 BS Rl by fitting ¢—e.9(t) for each chain
length according to Eq. (4.14). For each chain length the lowest temperature which
still obeys the TTSP is used (N =64 : T'=0.44, N =32: T =044, N = 16 :
T=043, N=8:T =042, N =4: T = 0.40). For all fits we used the fit interval
tieft border = 20 and tright border = 500. Additionally the crossover-times t., are given

which are determined by ¢,—6.9(tco) = 6.9"
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Figure 4.13: Incoherent intermediate scattering function ¢}_, 6995 125(t) for N = 16
and T = 0.43; fitted according to Eq. (4.14). ¢/ = 1.73368, b = 0.598863 and the
corresponding ff (fi—, = 0.8915, fi_so = 0.7167, fi_q5 = 0.5414, f¢_1, 5 = 0.3433)
are set. The cross over time ., = 1.6475 and the fit interval are marked by vertical

black lines.
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Figure 4.14: Coherent intermediate scattering function ¢,—46.9.95125(t) for N = 64
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0.595253 and the corresponding f7 (fi_, = 0.5014, f&_q 5 = 0.4201, f7_, s = 0.3528)
are set. The crossover-time t., = 1.851 and the fit interval are marked by vertical
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Figure 4.15: Coherent intermediate scattering function ¢,—46.9.95125(t) for N = 32
and 7' = 0.44; fitted according to Eq. (4.14). For ¢ = 4,9.5,12.8, t/ = 1.69287, b =
0.616997 and the corresponding f (fi_, = 0.4966, fs_q5 = 0.4157, f7_,5 s = 0.3500)
are set. The crossover-time t., = 1.7508 and the fit interval are marked by vertical

black lines.
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Figure 4.17: Coherent intermediate scattering function ¢,—46.995125(t) for N = 4;
fitted according to Eq. (4.14). For ¢ = 4,9.5,12.8, ¢/ = 1.7673, b = 0.546314 and
the corresponding f¢ (fi_, = 0.4781, f<_g 5 = 0.4258, f7_15 s = 0.3732) are set. The

crossover-time t., = 1.6268 and the fit interval are marked by vertical black lines.
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N=64 | N=32 |[N=16 | N =8 N =4
bt | 0.595253 | 0.616997 | 0.598863 | 0.571892 | 0.546314
a | 0.315065 | 0.320868 | 0.316044 | 0.308580 | 0.301164

0.727482 | 0.714315 | 0.725292 | 0.741670 | 0.757234
v | 2.4270 2.3686 2.4170 2.4946 2.5754

Table 4.5: bfit obtained by fitting by fitting ¢,—¢.¢(t) for each chain length according
to Eq. (4.14). For each chain length the lowest temperature which still obeys the
TTSP isused (N =64: T=044, N=43: T =044, N=16: T =043, N =8 :
T =042, N =4: T =0.40). The values of A and a are obtained by exploiting the
relation given in Eq. (4.15). 7 is calculated by inserting b and a in Eq. (4.16).

4.2.4 Analysis of T,

In this paragraph we determine the critical temperature defined within the frame-
work of the mode-coupling as a function of the chain length. We proceed as follows:

bﬁt

First we use determined for each chain length to calculate A and a. To this end,

we exploit the relation between a,b and A [11] given by

[(1—a)?
(1 —2a)

I'(1+b)?

A: pu—
T(1+ 2b)

(1/2<r<1). (4.15)

The calculated a and the determined b enables us then to calculate v [11] by using

1 1
1=t

5ty (1> 1765).

(4.16)

Using this so obtained v enables us to determine 7, by fitting the o relaxation times
within the temperature range where the TTSP holds.

During our simulation procedure we continuously (in AT = 0.01 steps) cooled
down the considered system in the NpT ensemble (see section 2.5.2 ). Due to finite
simulation resources we did not simulate for each temperature a trajectory also in
the NVT ensemble. In order to increase the quality of the fit that we undertake to
determine T, we added a few data points from NpT simulation runs. (We added
following relaxation times 7,+ determined for ¢,_¢ o(¢), which are obtained in the NpT
ensemble: N = 32: T'=0.46; N = 16: T = 0.45,0.46; N = 8: T = 0.43,0.45, 0.46;
N =4: T =0.41,0.42,0.43.) These trajectories are also equilibrated, but simulated
in the NpT ensemble. This procedure was justified by comparing ¢, ¢() calculated

within the NpT and NVT ensemble for temperatures where both data are accessible.
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Figure 4.18: N = 64: a-relaxation times for 7" = 0.44,0.45,0.46,0.47,0.48 at ¢ =
6.9. 7 calculated from b and a using Eq. (4.16). The « relaxation times for ¢,—¢.o()
(determined by the procedure described in section 4.2.1) are fitted according to
f(z) = A(x — T;) where A and T, are fit parameters.

The minor differences, which were noticed between ¢,_go(t) calculated within the
NpT and NVT ensembles, seem to appear due to the poorer statistics we have for
the NpT data. The influence on the determined relaxation time is small and does
not influence the accuracy of the fit.

Finally we determine T, by fitting the o relaxation time using following relation
[11]

Lo
t = — 4.17
= (.17
which we use in the following form
)7 =alT—T). (4.18)

In this way we are able to fit (t;)f% by using a linear fit.

In Fig. 4.18 we depict the fit result for N = 64, where we use a fit range of
T = 0.44 — 0.48. Figure 4.19 shows the fit result for N = 32. In the case of N = 32
we use two different fit intervals, as it is not clear to which temperature the TTSP
is still obeyed (cf. section 4.2.1). The values for 7, which are obtained are then
averaged. Figures 4.20 - 4.22 show the fit results for chain length N = 16, 8, 4.

In Table 4.6 an overview over the so determined values for T, is given.
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different lower bound for the fit interval
is used (7" = 0.43).

Figure 4.19: v calculated from b and a using Eq. (4.16). The « relaxation times for
Gg—6.9(t) (determined by the procedure described in section 4.2.1) are fitted according
to f(x) = A(x — T.) where A and T, are fit parameters.

|| N=64|N=32|N=16| N=8|N=4]

E

0417 | 0415 |0.409 | 0401 |0.382 |

Table 4.6: T. obtained by fitting corresponding « relaxation times according to
Eq. (4.18).

4.2.5 Chain length dependence of T, b, a, v and A

After we determined 7T, and other mode-coupling theory related quantities like a, b,
and A we ask the question if these quantities also show some chain length dependency
that can be treated like in the case of the density p (cf. section 3.1).

We start with T,: In a first step we plot 7T, as a function of the chain length. As
this plot seems to follow a power law we fit according to f(x) = Ax* + B. From
this fit we get for the exponent a a value close to minus unity: o = —1.02583 (see
Fig. 4.23). For this reason it seems to be appropriate to linearize T, by plotting it
as a function of the reciprocal chain length 1/N, which is shown in Fig. 4.24. This
functional dependence of T, on 1/N — which is similar to the 1/N-dependence of
the density p (cf. section 3.1) — seems to be explainable also by chain end effects.

The fact that 7, can be linearized as a function of 1/N rises the question if
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Figure 4.20: N = 16: a-relaxation times for 7' = 0.41,0.42,0.43,0.44,0.45,0.46 at
¢ = 6.9. The « relaxation times for ¢,—¢ o(t) (determined by the procedure described
in section 4.2.1) are fitted according to f(x) = A(x — T.) where A and T, are fit

parameters. The fit interval is denoted by black vertical lines.
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Figure 4.21: N = 8: a-relaxation times for 7" = 0.40,0.41,0.42,0.43,0.44 at ¢ =
6.9. The « relaxation times for ¢,—¢9(t) (determined by the procedure described
in section 4.2.1) are fitted according to f(x) = A(x — T.) where A and T, are fit

parameters. The fit interval is denoted by black vertical lines.
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at ¢ = 6.9. The «a relaxation times for ¢,—¢9(f) (determined by the procedure
described in section 4.2.1) are fitted according to f(z) = A(x — T;) where A and T,

are fit parameters. The fit interval is denoted by black vertical lines.
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Figure 4.23: T, as a function of the chain length N. The error bar for N = 32
indicates the error due to the usage of different fit intervals to obtain 7. by fitting
the « relaxation time. The blue line indicates a fit according to f(z) = Az® + B.
Values obtained by fitting: A = —0.151402 B = 0.418476 o = —1.02583
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Figure 4.24: T, as a function of the reciprocal chain length 1/N. The error bar
for N = 32 indicates the error due to the usage of different fit intervals to obtain
T, by fitting the a relaxation time. The blue line denotes a linear fit given by
f(z) = Az + B with A = —0.146914, B = 0.418765.
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Figure 4.25: b as a function of the reciprocal value of the square root of the chain
length 1/4/N. The blue line denotes a linear fit given by f(z) = Az + B with
A= —-0.21982, B = 0.653877.
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the other MCT related quantities like b, a, v and A do also show such a behavior.
Consequently we proceed with b: Here it is not so obvious whether or not there is
a simple underlying scaling law according to which the chain length dependence of
b can be rescaled to obtain a linear behavior of the resulting plot. By comparing
the numerical values for b one finds that there is a trend (see Table 4.5): Starting
with the chain length of N = 4 the values for b increase with growing chain length
except for the longest chain length of N = 64. The reason why especially the longest
chain length shows a deviation from this trend is not clear. We will come back to
this point later on.

We then try to linearize b by rescaling the dependence on N while neglecting
the value for N = 64. We find that this is possible by rescaling with \/—% By
proceeding in the same way for the other MCT related quantities a,y and A we find
the same scaling behavior. Which means that the N dependence of these quantities

can comparatively well linearized by rescaling with \/—%

Why does N = 64 deviate from the trend? The question of why bf* for
N = 64 deviates from the trend showed by the other chain lengths is not clear
so far. A possible explanation could be given by the fact that the chain length of
N = 64 approaches the value for which entanglement effects are expected for this
kind of model [43]. Another point which should be mentioned is the influence of the
employed fit interval when fitting according to Eq. (4.14). As already mentioned
the fit results depend also on this hidden fit parameter. This effect could be for
some chain length more pronounced than for others depending on which amount of
the late ( relaxation is captured by the fit. However, it is rather complicated to
determine the absolute influence of the employed fit interval.

Although there is some uncertainty for the bt values, the chain length dependence
of bfi* seems to be quite robust and show a non monotonic behavior. Longer chain

lengths have to be studied to check if b continues to decrease or settle.

4.3 Analysis of the g-dependence of the a relaxation
time

In the last section we exploited the time-temperature superposition principle to

determine the range of the ideal mode-coupling theory. Therefore we use the cri-
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Figure 4.27: a as a function of the reciprocal value of the square root of the chain
length 1/v/N. The blue line denotes a linear fit given by f(z) = Az + B with
A =-0.061391, B = 0.331314.
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N=64 | N=32|N=16| N=8 | N=4
analyzed T' | 0.44 0.44 0.43 0.42 0.40
T 0.417 0.415 0.409 0.401 | 0.382
T -1 0.023 0.025 0.021 0.019 | 0.018

Table 4.7: Analyzed T corresponds to the temperatures from which the relaxation
times are determined and depicted in Fig. 4.29 (bottom). These temperatures are
contrasted with T, the critical temperature of the ideal MCT, which are determined

in section 4.2.4). T' — T, gives the relative distance of analyzed T to Tt.

terion ¢,—¢.o(t)(7,+) = 0.1 to define relaxation time 7,«. In this paragraph, we use
the same threshold , namely 0.1, to determine relaxation times 7,—y for a g vector
range of ¢’ = 1 — 8 by using the criterion ¢,y (t)(7,=¢) = 0.1. Technically we
proceed as before: First we calculate the coherent intermediate scattering function,
and then we determine 7,_, by linear interpolation of ¢,_, () between values close
to 0.1. This procedure is carried out for all chain lengths for the temperatures of
T =1.00,7 =0.50 and T — T, ~ 0.02 (see Fig. 4.29).

By comparing the result for the different temperatures we observe:

e For T' = 1 the longest relaxation times are present for a ¢ range from 3 — 5.

Especially for N > 8 a broad peak region for this ¢ interval can be observed.
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e For T'= 0.5 all relaxation times increase compared to 7" = 1 but particularly
for 3 < ¢ < 5 and for ¢ values around the peak of the static structure factor
~ 5(q*) (cf. section 3.3 ).

e For T' — T, ~ 0.02 all relaxation times further increase. As in the case of
T = 0.5 especially for ¢ values in the region of 3 < ¢ < 5 and ¢ ~ ¢* the
increase is very pronounced. As for the various N different relative distances
to T, are probed, we are able to observe how the relaxation times change
in the approach of T.. The temperatures from which the relaxation times are
determined for T'—T; ~ 0.02 are summarized in Table 4.7. These temperatures
correspond to the lowest temperatures for which the TTSP is still fulfilled (cf.
section 4.2.1).

Thereby it can be observed that the height of the peak around ¢* is mainly
influenced by the distance to T.. The height of the peak in the ¢ range of
3 < q < 5 is influenced by the relative distance to T, but also depends on
the chain length. This last point can be inferred by the comparison of the
relaxation times for N = 8 and N = 16. Although the temperature for which
the relaxation times for N = 8 are determined is closer to T, compared to
N = 16 — which is reflected by a larger value at the peak position at ¢ ~ ¢*

— the relaxation times for 3 < ¢ < 5 are comparable.
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Chapter 5

Dynamics: Shear relaxation function

and case study on finite-size effects

In this chapter we extend the discussion on the dynamics by considering two addi-
tional quantities which are the mean square displacement and the shear relaxation
function [54]. By this extension we obtain a broader picture about the dynamics of
our system, and we will also focus more on polymer effects.

Furthermore we carry out a case study on the effects of the finite simulation box
size on the dynamics of a polymer system. This analysis concentrates on observable

differences in dynamic correlation functions as a function of the temperature.

5.1 Shear relaxation function

In the previous chapter we focused on the intermediate scattering functions ¢, (t)
to study the dynamics of the system under consideration. ¢,(t) reveals information
about the system in terms of density fluctuations for one specific wavelength. Here
we want to proceed in another way where we explore the cooperative viscoelastic
properties of the system. To this end, we study the linear response of the system
to an infinitesimal shear in the ¢ — 0 limit, i.e., we consider the shear relaxation
function G(t). This quantity can be introduced as the autocorrelation function of

the microscopic stress 0,4, which is given by [55]

M M
1 oU (r M) oU (r M)
ap = iaVif — 5 o= tTTig—F— |, 5.1
=D =5 3 (ra gD g 51
where the components of the position r; (the velocity v;) of monomeri (=1,..., M)

are denoted by 7;, (vi4), and total potential is denoted by U.
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In terms of the microscopic stress, o,,, the shear relaxation function [5, 9] is given
by

1 1

G(t) = kBTV<Uz$(t)Uz$(O)> = W<0z$(t)az$(0)> , (5.2)

with 7" denoting the temperature and V' the volume.

By this definition it can be understood that G(t) can be employed as a measure
to probe the viscoelastic properties of the whole system. The microscopic stress
0., takes the whole system into account.! In the systems under consideration the
internal stress of the system is caused by the thermal movement of the monomers
relative to one another. These movements cause local stresses which relax with time.
This relaxation process is probed by the stress autocorrelation function, the shear
relaxation function G(t).

The analysis of the shear relaxation function is compared with the analysis of the
mean square displacement. The mean square displacement (MSD) of all monomers
(g0) |11] can be defined by

ao(t) = = 3 ([t - r0)] ). (54

M
i=1

where M denotes the total number of monomers and r; the position of monomer <.

Additionally the mean square displacement of the center of mass of each chain (gs)

[11] can be defined as

o) =+ 3 (R0 - R(0)] ). (55)
i=1
where n denotes the total number of chains and R,; the position of the center of
mass of chain 7.

By this comparison we explore the connection between the collective behavior of
the studied system — probed by G(t) — and properties that characterize the system
in an incoherent way — ¢o.

We start our discussion with the chain length N = 64. In Fig. 5.1 we contrast
go(t) and G(t). To put this discussion in relation to ¢,(¢), on which we focused in
the last chapter, we add ¢,(t). In order to improve the comparability among these

quantities we also show ¢,(t) with both axes logarithmically scaled.

!By a Green-Kubo relation the shear relaxation function G(t) is related to the shear viscosity
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Figure 5.1: N = 64: Top: Shear relaxation function G(¢) versus time ¢; Center:
Mean square displacement for all monomers go(¢) versus time ¢; Below: Coherent
intermediate scattering function ¢,—¢o(t) versus time ¢. The black vertical dotted
line marks ¢ = 1. The black dashed line indicates the crossover time t.,, determined
in section 4.2.3. The red vertical line denotes the start of the polymer regime for a
temperature of 7' = 0.44 defined by G(t) = pkpT (see text for details). The colored
horizontal lines (top) indicate the value of pkgT for T'=1,0.5,0.44.
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The time interval can be naturally divided into four main regimes?:

e For very small times ¢ the monomers move freely and follow a ballistic motion.

For this reason the motion of the monomers shown in the MSD follow a power
law o< t? which seems to be observable. We write “seems” as this time regime
stops as soon as the monomers “feel” their nearest neighbors, so the purely
ballistic motion is only to a little extent visible. Rather, the ballistic regime
already overlaps for small times ¢ with the subsequent regime which starts
when interaction between the monomers begin to determine the dynamics.
Due to these interactions the monomers slow down which is observable by
the fact that the slope of the MSD becomes weaker. In the shear relaxation
function G(t) the interactions with nearest neighbors results in the oscillations
for times ¢ < 1. Reference [54] suggests that these oscillations are due to
interplay between the inertia of the monomer mass and the harmonic bond
potential because they are absent in a Brownian dynamics simulation. A
possible test of this idea within the framework of our MD simulation (with
inertia) could employ a separation of the bond and non-bonded part. We then
expect that the bonded contributions causes the oscillations in G(t), whereas

the non-bonded part relaxes without oscillations.

For intermediate times — that means for times larger than 1 and smaller

3 — the monomers are, for low enough

than the monomer relaxation time 7,
temperatures, temporarily trapped by their neighboring monomers. (All the
mode-coupling related analyses done in the last chapter took place in this time
regime.) The idea that monomers are trapped by the surrounding monomers
gives rise to the “cage effect” of the mode-coupling theory [37|. For a specific
time window the dynamics of the monomers becomes partially or almost totally
arrested. This time window is visible by the fact that the slope of the MSD
is close to zero. As can be seen in Fig. 5.1 there is no clear signature of

the “cage effect” anymore for high temperatures, i.e., 77 > 0.5. In the shear

n [5]:

":/o dt G(1) . (5.3)

2 Actually all considered quantities are given as a function of time differences : All three studied

functions are autocorrelation functions, which probe the system under consideration in terms of

time differences between two specific times.
310 can be defined by go(7o) = 1 [11].
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relaxation function and in the coherent intermediate scattering function ¢,(t)

this trapping is observable by a protracted decrease of the correlation.

e By means of the Rouse theory [26] we define the next time regime which starts
as soon as the shear relaxation function G(t) has reached the value of pkpT.
This value sets the starting point of the Rouse theory. The shear relaxation
can be expressed as the sum over all Rouse modes which relax exponentially
with time given by ¢,(t) = e~"/™ with 7 denoting the Rouse time [26] and p
the considered Rouse mode. The Rouse time can be related to the reciprocal

1

monomer friction coeffiecient w by 7 ~ N?w ™!, where N denotes the number

of monomers in the chain. This leads to [75]

N-1 N—1 _ 92
G(t) =52 3,0 ) = "5 30,0, e 2w/
To <KLt TR 0 —otp2 1
N>1 Jo dp e~ (5.6)

For times on the order of the Rouse time all modes accept the one for p = 1
are assumed to have already relaxed. Therefore the long time limit is captured

by an exponential cut off
G(t) ~e V™ (5.7)

Equations 5.6 and 5.7 can be combined to following approximation for the

shear relaxation function [68|

G(t) ~ % e tm (5.8)

The MSD shows for this time regime a transition to the sub-diffusive regime.
In this regime the MSD follows a power law which is given by oc t°% for the
chain length N = 64.* This power law behavior can also be observed in the

shear relaxation function G(¢). Here it is given by ¢~%° for N = 64.

e When the MSD reaches a value which corresponds to the mean-square end-to-
end vector R? the dynamics starts to become purely diffusive and the MSD is
o t. This time regime is only depicted for the highest temperatures. In this
time regime the shear relaxation function is described by a final exponential
decay which is not observable in our data. The reason for this is the missing

statistics.

“For the shorter chain lengths under consideration effective power laws for the sub-diffusive

regime can be found, e.g., for N = 10 a power law dependence of t>-%3 is observed [22].
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Globally it can be said that the lower the temperature, the more extended the
intermediate time regime. This means that lowering the temperature results in a
slowing down of the monomer dynamics which seems to leave the dynamics occurring
in subsequent regimes unchanged. The starting point of subsequent regimes is only

shifted to later times.

N=64 In the upper plot of Fig. 5.1 the starting point of the “polymer regime” is
marked for 7" = 0.44 by a vertical red line (corresponding to the color in which G()
is depicted for this temperature). By the term “polymer regime” we understand
times ¢ for which G(t) < pkgT. A dotted black vertical line indicates the starting
point of the “monomer regime” where the crossover time ¢, (cf. section 4.2.3) is
indicated by a dashed black line. The term “monomer regime” refers to times for
which it holds 1 <t < tpolymer, Where tpoiymer 1S given by G(tpoiymer) = pksT. The
horizontal lines indicate the value of pkgT for T' = 1.00,0.50,0.44. The plot in the
middle of Fig. 5.1 shows the corresponding go(t). Here, as well as in the lower plot
(¢4(t)) the just discussed time regimes are marked similarly. Additionally go(t) = 1
and ¢g—69(t)(t) = 0.1 are marked.

Figure 5.1 shows that compared to go(t) it is very demanding to obtain similar
statistics for G(t).

N=16 As in the discussion of N = 64 the mentioned time regimes are marked by
horizontal lines (see Fig. 5.2). The values for pkgT are marked for 7' = 1,0.5,0.43.
Here T' = 0.43 is chosen as it is the lowest temperature (for N = 16) for which
the time temperature-superposition principle is still fulfilled (cf. section 4.2). Con-
trasting G(t) with go(¢) and ¢,(¢) results in a similar comparison as for N = 64.
In contrast to N = 64 we have for N = 16 access to lower temperatures with re-
spect to T,. This extension of the temperature window to lower temperatures seems
not to unveil additional effects. As stated above a lower temperature most promi-
nently results in a prolongation of the monomer relaxation regime, which shifts the
starting of the subsequent regimes to later times. G(¢) (and ¢,(t)) show for temper-
atures below 7" = 0.43 an increase in the plateau value. Additionally go(t) = 1 and
Gg=6.9(t)(t) = 0.1 are marked.

In contrast to N = 64 the shear relaxation function for NV = 16 shows no clear
signature of a power law (for N = 4 no power law can be observed, neither). For

smaller chain length 7R is comparatively small as 7 o< N2w~!. Therefore with
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Figure 5.2: N = 16: Top: Shear relaxation function G(t) versus time ¢; Center:
Mean square displacement for all monomers go(t) versus time ¢; Bottom: Coherent
intermediate scattering function ¢,_¢9(¢) versus time ¢. The black vertical dotted
line marks ¢ = 1. The black dashed line indicates the crossover time t.,, determined
in section 4.2.3. The light blue vertical line denotes the start of the polymer regime
for a temperature of 7' = 0.43 (see text for details). The colored horizontal lines
(top) indicate the value of pkgT for T' = 1,0.5,0.43.
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decreasing chain length the power law regime is blurred by the exponential cut off
(cf. Eq. (5.8)).

N=4 In Fig. 5.3 we show the corresponding results for chain length N = 4. The
results obtained can be interpreted in a similar way as above. Here for T" = 0.40 the
start of the “polymer regime” is marked. 7" = 0.40 is the lowest temperatures that
still fulfills the time-temperature superposition principle for N = 4. The values for
pkgT" are marked for 7' = 1,0.5,0.40. For N = 4 we also have access to temperatures
that are below the T, of the ideal mode-coupling theory. Additionally go(f) = 1 and
Gg=6.9(t)(t) = 0.1 are marked.

5.2 Polymer effects

In this section we shortly point to some aspects about polymer effects. The compar-
ison above between the MSD and shear relaxation function revealed several similar-
ities between these two correlation functions which are not seen to the same extent
in the coherent scattering function ¢,—¢9(¢). This could be because g ~ 6.9 probes
local density fluctuations, and not the dynamics in the limit ¢ — 0, as the MSD or
G(t) do. In this limit, and for times longer than the a-relaxation time, one would
expect polymer effects to determine the dynamics of the melt |26, 68]. Therefore we
discuss ¢,(t) for lower ¢ values, down to the smallest ¢ value accessible in our simu-
lation which is given by g, = liﬁ, where [0, denotes the length of the simulation
box.

Figure 5.4 compares the shear relaxation function G(t) with ¢,—, . (¢). For
N = 64, iy is given by ¢ & 0.27.° We clearly observe that for small times ¢,—,, . (¢)
also shows oscillations like the shear relaxation function. But for ¢, () these oscilla-
tions are related to damped sound waves (precursor of the hydrodynamic Brillouin
spectrum [9]). They are fully developed for ¢,—, . (t) for t ~ t., so that the non-
ergodicity parameter f; cannot be read off, contrary to larger wave vectors or to
G(t).

These oscillations blur the beginning of the (-relaxation at low 7. However, a

further interesting feature becomes visible for ¢,(t) < 1072: At these late times, an

5As we equilibrate our systems at constant pressure and fix in a subsequent production run
the simulation box size to the average volume from the equilibration run the box length slightly

decreases with decreasing temperature. Therefore g, is only given by a value close to g ~ 0.27.
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Figure 5.3: N = 4: Top: Shear relaxation function G(t) versus time ¢; Center:
Mean square displacement for all monomers go(t) versus time ¢; Bottom: Coherent
intermediate scattering function ¢,_¢9(¢) versus time ¢. The black vertical dotted
line marks ¢ = 1. The black dashed line indicates the crossover time t.,, determined
in section 4.2.3. The magenta vertical line denotes the start of the polymer regime
for a temperature of 7' = 0.40 (see text for details). The colored horizontal lines
(top) indicate the value of pkgT for T' = 1, 0.5, 0.40.
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apparent power ¢t~ shows up for all 7.

In Fig. 5.5 we show that such a power law behavior is only observable for the
lowest g values, ¢ < 3qmin. For ¢ values above this value the signature of this power
law is not well pronounced so that it cannot be observed anymore. The lower plot of
Fig. 5.5 shows that the power law behavior is also restricted to chain lengths that are
close to the entanglement length (it is barely visible for N = 16) [43|. Tentatively,
we attribute this (apparent) power law to a polymer effect. That such effects could
also determine ¢,(t) is suggested by the dynamic Random Phase Approximation 29|
which expresses the time dependence of ¢,(t) fully in terms of the dynamic polymer

form factor F'(¢q,t). In Laplace space this relation reads

5 ) — w(g, z)/w(q) 5 g
7 1+ 81— zi(g, 2)/w(q)] )

where z denotes the conjugate Laplace variable of ¢ and S(0) is zero wave vector

limit of S(q) (cf. section 3.3 for a definition of S and w). It would be interesting to
apply Eq. (5.9) quantitatively to the simulation data to test whether it can account

for the apparent power law ¢,

5.3 Time-temperature superposition of the shear re-

laxation function

In section 4.2.1 we showed that the intermediate scattering function can be rescaled
according to the a relaxation time 7,«. Here we investigate if such a rescaling is
also possible for the shear relaxation function. The upper plot of Fig. 5.6 shows
that the MSD g¢o(t) can be well rescaled according to the diffusion constant D (this
result is known see e.g. [37] and references therein). D is determined from the long
time evolution of the MSD g3(¢) of the center of mass of the chains by employing
g3(t) o< 6Dt. As G(t) has similarities with both the intermediate scattering function
and go(t) (cf. section 5.1), it is a priori not clear whether G(¢) could be rescaled by
7, or by D. Therefore, we test both possibilities after normalizing G(t) by pkgT.
(This normalization is suggested by polymer theory [26].)

The center plot of Fig. 5.6 shows G/(t) rescaled according to the diffusion constant
D. For intermediate times (107> < ¢ < 107?) this rescaling does not work well. For
times ¢ > 1073 we cannot validate the quality of the scaling due to the noise of the
data.
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In the lower plot of Fig. 5.6 G(t) is rescaled according to the a relaxation time 7.
Here, for temperatures 7' < 0.5, the rescaling works well for (rescaled) times ¢ < 0.5
and 7" < 0.7. For times t 2 0.5 the data collapse is comparable in quality to that of
the middle figure, provided 7' < 0.7. In summary, the present data suggest that the
TTSP of G(t) is better fulfilled with 7.~ than with D. However, this issue certainly
requires further investigation to arrive at a definitive conclusion. The statistics in
the polymer regime should be improved. There could be the interesting situation
that the “monomer regime” can be rescaled with 7+, whereas the polymer regime is

rescaled with D ~ 1 ! as expected from polymer theory.

5.4 Case study on finite size effects

In this section we compare the effect of the finite simulation box size on the dynamics
of a polymer system. Thereto we consider two systems that are simulated at a
pressure p = 1 with chains of chain length N = 10, and consisting of M = 1000 and
M = 8000 monomers.°

It is known that so-called finite size effects could affect the dynamics of colloidal
systems. The explanation can be summarized by the following argument: Due to
the finite box size only a finite number of possible relaxation modes are accessible.
For this reason smaller system sizes might exhibit a slower dynamical relation (see
e.g. [45]).

We study the influence of the different simulation box sizes by means of the
coherent intermediate scattering function ¢,(¢) and by the mean square displacement

of all monomers go(?).

Coherent intermediate scattering function In Figs. 5.7 and 5.8 the obtained
results for ¢,(t) for ¢ = 4,6.9,9.5,12.8 are shown. As an overall observation we can
state that the smaller system exhibits a slower relaxation for the depicted tempera-
tures below 7" = 1. For T' = 1 no differences in the relaxation of ¢, () are noticeable.
For lower temperatures the differences in the relaxation process exhibited by ¢,(t)
seem to become more pronounced on cooling and reach a maximum at 7" ~ 0.45.
In Table 5.1 we display the thermodynamical data of the studied systems. The

values for the density and the pressure for both system sizes is in good accordance.

6The same model is employed as for the systems studied before.
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T=044|T=045|T =046 | T =047 | T =0.50 | T'=1.00

1.0447 1.0434 1.0406 1.0374 1.0290 | 0.90970
1.0450 1.0425 1.0397 1.0372 1.0291 | 0.90965

)
)

000) | 0.969928 | 1.00963 | 1.03397 | 1.01163 | 0.987964 | 0.997480
) | 0.992614 | 1.00205 | 0.998268 | 1.00165 | 0.999094 | 0.999208

Table 5.1: Density p and pressure p as a function of temperature 7' for the
system sizes of M = 1000 and M = 8000. Values are given for T =
1.00,0.50,0.47,0.46, 0.45,0.44. (For chain length N = 10 and pressure p = 1.)

The small discrepancies in the density and the pressure appears to be too weak to
explain the different relaxation behavior of the two system sizes.

To compare the emerging differences shown by ¢,(t) for different ¢ values in more
detail we depict in Fig. 5.9 in the main figure the difference of the relaxation time
for each ¢ value. Using the relaxation time 7, — defined as in the previous chap-
ter by ¢4(7,) = 0.1 — we calculate the absolute difference of the relaxation times
AT,(T) by 74 m=1000(T") — T4 0mr=s8000(1"), which is evaluated for each temperature and
q value separately. We observe that A7, (7") increases by lowering the tempera-
ture and reaches, for ¢ = 4 and 6.9 a maximum value at 7" = 0.45. The inset of
Fig. 5.9 shows the normalized difference of the relaxation times which is defined
by A*1,(T) = (14.m=1000(T") — Tg.mr=s000(T"))/Ty.0r=s000(1"). We normalized by the
relaxation time of the larger system, as the sampling of the larger system is closer to
the thermodynamical limit. This depiction shows a clear maximum for all studied

q values at the temperature of 7" = 0.45.

Mean square displacement We then proceed to the mean square displacement
of all monomers and analyse if the difference in the structural relaxation, observed
by ¢4(t), is also noticeable by this quantity. Additionally, the MSD probes the
system on larger length scales.

In Fig. 5.10 the MSD of the two considered systems is shown for the tempera-
tures of T' = 1,0.50,0.47,0.46, 0.45,0.44. The evolution of the MSD shows for all
temperatures for times ¢t > 10 discrepancies between the two system sizes. For the
lower temperatures, 7' < 0.5, these discrepancies become already obvious for times
t ~ 1. The differences are most pronounced for the temperatures of 7' = 0.46 and

T = 0.45, for which they reach, as in the case of the ¢,(f), a maximum.
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Figure 5.7: Comparison between two system sizes (M = 1000 and M = 8000)
at pressure of p = 1 and a chain length of N = 10. Coherent intermedi-
ate scattering function ¢,(t) is depicted for ¢ = 4,6.9 for temperatures 7" =
1.00,0.50,0.47,0.46, 0.45,0.44 (from left to right). ¢,(t) for the system size M =
8000 is depicted in red and ¢,(t) for M = 1000 in blue. The smaller system shows a
slower structural relaxation. ¢,(t) for 7' = 0.45 is depicted with dashed lines. This
temperature corresponds to the critical temperature of the ideal mode-coupling the-
ory [15]. The differences in the structural relaxation showed by the two system sizes
increase with decreasing temperature. The value 0.1 is marked by a horizontal black

dashed line. This value is used to determine a relaxation time 7, by ¢,(7,) = 0.1.
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Figure 5.8: Comparison between two system sizes (M = 1000 and M = 8000)
at pressure of p = 1 and a chain length of N = 10. Coherent interme-
diate scattering function ¢,(t) is depicted for ¢ = 9.5,12.8 for temperatures
T = 1.00,0.50,0.47,0.46,0.45,0.44 (from left to right). ¢,(¢) for the system size
M = 8000 is depicted in red and ¢,(t) for M = 1000 in blue. The smaller system
shows a slower structural relaxation. ¢,(t) for 7" = 0.45 is depicted with dashed
lines. This temperature corresponds to the critical temperature of the ideal mode-
coupling theory [15|. The differences in the structural relaxation showed by the two
system sizes increase with decreasing temperature. The value 0.1 is marked by a

horizontal black dashed line. This value is used to determine a relaxation time 7,
by ¢4(1,) = 0.1.
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Figure 5.9: Comparison between two system sizes (M = 1000 and M = 8000)
at pressure of p = 1 and a chain length of N = 10. Main figure: Depicted is
the difference (A7,) between the relaxation times (determined by ¢,(7;,) = 0.1)
evaluated for M = 1000 and M = 8000 and ¢ = 4,6.9,9.5,12.8 as a function
of temperature 7. Inset: Depicted is the normalized difference (A*7,) between
the relaxation times (determined by ¢,(7,) = 0.1) evaluated for M = 1000 and
M = 8000 and ¢ = 4,6.9,9.5,12.8 as a function of temperature 7T'. It is normalized by
the relaxation time of the larger system (M = 8000) for each considered temperature

and ¢ value.
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Figure 5.10: Comparison between two system sizes (M = 1000 and M = 8000)
at pressure of p = 1 and a chain length of N = 10. Mean square displacement
go(t) for T'=1.00,0.50,0.47,0.46, 0.45, 0.44 (from left to right). go(¢) for the system
size M = 8000 is depicted in red and go(t) for M = 1000 in blue. The smaller
system shows a slower dynamics. go(t) for T = 0.45 is depicted with dashed lines.

This temperature corresponds to the critical temperature of the ideal mode-coupling
theory [15].
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Figure 5.11 shows the differences of the MSD normalized by the MSD of the
larger system Agg(t) = go.n=so00 () =g0.r=1000(8) - Ap 4 = 2 567 Ago(t) shows for all

90, M=s000 (t)

depicted temperatures a small peak. The reason for this occurring peak might be
found in the sound wave propagation which couples to other modes at larger ¢ and
gives rise to an echo for these ¢ values [42]. For the smaller system sound waves
need lesser time to travel through the whole system. Therefore the effect on density
fluctuations caused by sound waves in the two system could be different and finally
result in a different evolution of the MSD in a time interval where this effect is most
pronounced.

Especially we want to point to the observation that the MSD for T = 0.46, 0.45
shows a non monotonic behavior after this first peak, whereas the temperatures
T = 0.50,0.47 show only weak oscillations. The lowest temperature 7' = 0.44 also
shows a non monotonic behavior, but only to a small extent when compared to the
temperatures of T = 0.46,0.45. In Fig. 5.12 we show another possible analysis of
the difference observed in the MSD. Here the ratio of the MSD of the larger system
compared to that of the smaller one is shown: A*gg(t) = %' (The two
considered ratios are related to each other by Agg(t) =1 — (A*go(t))~1.)

By this representation the different evolution of the “MSD ratio” for different
temperatures becomes more obvious. For T = 0.45 we observe after the first peak a
strong increase which then seems to saturate for times ¢t > 10*. A similar behavior

is seen for 7" = 0.46 but less pronounced where the saturation begins earlier.

"The MSD for all system and temperatures is evaluated using the same sampling scheme for
times ¢ < 200. Therefore the position of the peak appears at the same time. A more detailed time

sampling might show smaller deviations in the position of the peak for different temperatures.
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Figure 5.11: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a chain length of N = 10. The relative difference of
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position for "= 0.45 (red), T'= 0.46 (blue) and 7" = 0.44 (black).
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The horizontal lines give the value of Agy(t) at the peak position for 7" = 0.45 (red),
T = 0.46 (blue) and 7" = 0.44 (black).
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Chapter 6
Summary and Outlook

By performing molecular dynamics simulation of a generic bead spring model we
studied the structure, the conformational and structural relaxation, and the vis-
coelastic properties of glass-forming polymer melts. This study was mainly focussed
on dynamic quantities as they reveal the most prominent features of these polymer
melts: the protracted structural relaxation preceding the glass transition tempera-
ture. For the employed model we studied the influence of the chain length of the
polymers on the dynamical and the static properties. The dynamics were mainly
analyzed in the framework of the ideal mode-coupling theory [37].

Our work is the logical continuation and extension of two previous theses per-
formed in the group. The work by M. Aichele studied bulk systems of short chains
N =10 at p = 1.0 |1, 4, 22]. That work performed almost ten years ago was re-
stricted to systems of 1000 — 1200 particles. The second work is the thesis of S.
Peter [64-66] who used the same model to study the supercooled dynamics in thin
films. As a reference, some bulk systems with N = 64 were studied at p = 0.

In the present work, we go beyond the previous work by using larger systems
of 12288 particles and by studying systematically the chain length dependence of
the supercooled dynamics using N = 4, 8,16, 32,64. The increased computer power
makes it possible to equilibrate the systems down to the MCT critical temperature
and for small chains even below. In the following, we summarize the main results

and point out possible extensions of this work.

e We started with the analysis of the static properties. We investigated how
the density evolves as a function of the chain length and temperature (see
figures 3.1 and 3.3). Thereby we found that the evolution can be described as

a function of the reciprocal chain length. A signature of this feature was also
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observed in the static structure factor (cf. figures 3.6 and 3.7). It would be
interesting if this observed behavior is still present for longer chains especially

on cooling.

We investigated how the effective bond length [79] evolves as a function of
the temperature (cf. figures 3.14 — 3.16). We found that the effective bond
length decreases on cooling the temperature. This counter-intuitive feature
arises from the full flexibility of the employed model which is chemically not
realistic. Therefore it would be interesting to continue the study by considering

chemically more realistic models (like in [16]).

The dynamics were studied in the framework of the ideal mode-coupling the-
ory (MCT) [11, 37]. A first step was the examination of the temperature
interval within which the time-temperature superposition principle (TTSP) is
fulfilled as a function of the chain length (cf. figures 4.2 — 4.6). This was
contrasted with the factorization theorem which was verified in the 3 regime
(cf. figures 4.7 — 4.9). In summary the scaling in the 3 regime is possible even

for temperatures for which the TTSP does not hold anymore.

Thereafter we determined the critical temperature 7. of the ideal MCT as a
function of the chain length (cf. figures 4.18 — 4.22). A chain length depen-
dence of T which can be rescaled by 1/N was found (see figures 4.23 and 4.24).
This is in contrast to the von Schweidler exponent b for which an effective scal-
ing behavior with 1/v/N was found for N < 64 (see Fig. 4.25). Future work
could focus on longer chain lengths. Does b continue to decrease for N > 64

or does it converge to a constant value?

The g-dependence of the o relaxation time was evaluated for a high and a
medium temperature and close to Ti. (see Fig. 4.29). It was observed that for
the temperatures close to 7. the relaxation processes on the monomer level
— as predicted by ideal MCT — are most pronounced. However, for higher

temperatures relaxation processes on larger length scales are more pronounced.

In comparison to the previous work, we consider as an additional quantity the
shear relaxation function, and we are able to calculate the coherent interme-
diate scattering function with high resolution so that a long time tail, specific
to polymers, becomes visible (cf. figures 5.1 — 5.4). By employing the shear

relaxation function [54| the considered systems were studied on larger length
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scales. It was found that upon cooling the monomer relaxation times increase
which shifts the relaxation on length scales comparable to the polymer size to
longer times. A similar behavior was observed also by analyzing the interme-
diate scattering function for the smallest ¢ values accessible in the simulation
(see Fig. 5.4). This study showed that significant polymer effects — which
show a power law signature — become visible only for the smallest ¢ values
and the longest chains studied (cf. Fig. 5.5). This deserves a more detailed

theoretical analysis.

By rescaling the mean square displacement according to the diffusion constant
an analogous scaling behavior as for the intermediate scattering function by
rescaling according to the a relaxation time was found (cf. Fig. 5.6). For the
shear relaxation function a scaling according to only one of these quantities

does not lead to a completely satisfying result.

In the last part we undertook a case study on finite size effects. To this end we
compared two system sizes of a polymer system with a chain length N = 10.
This comparison focussed on the coherent intermediate scattering function
(cf. figures 5.7 and 5.8) and the mean square displacement (cf. Fig. 5.10).
These functions measured for both systems were compared to each other for
temperatures around 7 of the ideal MCT (cf. coherent intermediate scattering
function: Fig. 5.9; MSD: figures 5.11 and 5.12). Thereby it was observed
that interestingly for 7. the most pronounced differences in the dynamics of
these two system sizes were found. It is not clear how these findings can be
interpreted. In the future the findings should be complemented by studying
an even larger system. By this it would be possible to check how the observed
differences in the dynamics evolve with the system size. If our findings are
confirmed, one could conclude that although at the critical temperature of the
ideal MCT not a total dynamical arrest is observed, the dynamics seem to

change qualitatively.
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Appendix A

Tables

In the following tables we summarize the simulation parameters (A.1) and report
the numerical values of the relaxation times (A.2 and A.3), the density (A.4), the
bulk modulus (A.5) and the shear modulus (A.6).

| integration time step | NVT: Tdamp | NPT: Tdamp || NPT: Pdamp |

| 0.005 | 0.1 | 10 | 75 |

Table A.1: Simulation parameters used for the systems with p = 0 and N =
64,32,16,8,4. The Tdamp / Pdamp parameter specifies how rapidly the tempera-
ture / pressure is relaxed |51]. For the systems with p = 1 the same parameter set
is used. The used parameters are chosen such that they fulfill the criteria described
in Ref. [73].
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T N =64 N =32 N =16 N =8 N =4
0.36 4.44089 x 10°
0.37 949525
0.38 246795
0.39 2.13892 x 10° 85233.6
0.40 658706 33161.2
0.41 2.34229 x 10° 246692
0.42 1.03979 x 10° 108388
0.43 2.59966 x 10° 434806
0.44 | 9.47817 x 10° | 1.30924 x 10° 215894 32340.9 3664.05
0.45 | 4.84449 x 10° 666717
0.46 | 2.47327 x 10°
0.48 | 1.08361 x 10°
0.50 647803 117530 23717.6 4601.86 782.66
0.70 50587.2 10718.7 2260.14 516.646 111.357
1.00 12074.2 2549.07 596.687 141.315 32.7051

Table A.2: Survey of relaxation times: For the systems with a pressure of p = 0

the relaxation time Tyeax 1S giVeN. Tielax correponds to the time interval in which

the orientational correlation function of the end-to-end-vector, ¢.(t), has relaxed to

0.1: ¢e(Trelax) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.




T | N=10n=800| N =10n =100
0.43 5.60663 x 10°
0.44 1.6253 x 10° 1.72823 x 10°
0.45 638440 868551
0.46 278558 339260
0.47 155734
0.48 84613.6
0.50 34311.6 34500.5
1.00 346.12 351.418
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Table A.3: Survey of relaxation times: For the systems with a pressure of p = 1

the relaxation time Tyeax 1S giVen. Tpeax correponds to the time interval in which

the orientational correlation function of the end-to-end-vector, ¢.(t), has relaxed to

0.1: ¢e(Trelax) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.

T |N=64| N=32|N=16| N=8 | N=4
0.36 1.02580
0.37 1.02230
0.38 1.01931
0.39 1.03149 | 1.01615
0.40 1.02818 | 1.01267
0.41 1.03311 | 1.02522
0.42 1.03396 | 1.02997 | 1.02191
0.43 1.03096 | 1.02688
0.44 | 1.02985 | 1.02789 | 1.02390 | 1.01576 | 0.99941
0.45 | 1.02688 | 1.02486
0.46 | 1.02391
0.48 | 1.01792
0.50 | 1.01193 | 1.00980 | 1.00550 | 0.99684 | 0.97947
0.70 | 0.95462 | 0.95192 | 0.94657 | 0.93570 | 0.91358
1.00 | 0.87456 | 0.87084 | 0.86313 | 0.84746 | 0.81472

Table A.4: Density p as a function of the temperature T for N—64,32,16,8,4.
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T |N=64| N=32|N=16| N=8 | N=4

0.36 37.4746
0.37 38.0425
0.38 36.3333
0.39 38.0227 | 35.3873
0.40 37.5067 | 34.1172
0.41 37.4682 | 36.3409

0.42 37.5582 | 36.9232 | 35.2078

0.43 36.6071 | 36.1268

0.44 | 36.4644 | 35.8789 | 35.0838 | 33.7902 | 31.0700
0.45 | 35.6703 | 35.1631
0.46 | 34.9340
0.48 | 33.5773
0.50 | 32.3471 | 31.9424 | 31.0951 | 29.7592 | 27.0134
0.70 | 22.6267 | 22.2413 | 21.4544 | 20.0960 | 17.5000
1.00 | 13.3534 | 12.9897 | 12.2217 | 10.8711 | 8.45599

Table A.5: Bulk modulus K(7) as a function of the temperature 7 for
N=64,32,16,8 4.



T

N =4

0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.48
0.50
0.70
1.00

94.6634
94.8497
94.5608
93.6125
92.8976
85.6090
76.4073

94.6029
94.0628
93.6428
93.6448

91.6347
84.5181
75.1542

92.5351
92.2997
91.9207
91.5402

89.1075
82.0420
72.5174

93.2129
88.7825
89.2449
87.6220

86.7888

84.5495
77.0911
67.5512

79.8422
77.9908
79.1402

77.3178

74.9590
67.7084
57.8094

Table A.6: Shear
N=64,32,16,8,4.

modulus
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Go(T) as a function of the temperature 7' for
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Propriétés viscoélastiques des fondus de polymeéres vitrifiables
Theése soutenue par Stephan Frey le 29 juin 2012 (Université de Strasbourg)

Résumé A l'approche de la transition vitreuse les fondus de polyméres montrent une
augmentation importante de la viscosité de plusieurs ordres de grandeur. Le but de cette
étude est d’acquérir une compréhension plus profonde des propriétés viscoélastiques des
fondus de polymeéres vitrifiables. Les polyméres sont modélisés comme des chaines flexi-
bles en utilisant un modeéle de bille-ressort. Nous étudions des polymeéres avec différentes
longueurs de chaine pour lesquels nous analysons les propriétés statiques et dynamiques
pour une gamme de température proche de la température de transition vitreuse. Les pro-
priétés dynamiques sont analysées dans le cadre de la théorie de couplage de mode idéale.
Nous constatons que la température critique de couplage de mode varie avec 'inverse de la
longueur de chaine. Cette loi d’échelle se retrouve également pour les propriétés statiques.
En étudiant la fonction de relaxation de cisaillement, nous constatons que les processus
de relaxation polymeériques, qui peuvent étre décrits par la théorie de Rouse, ne sont pas
modifiés, mais décalés vers des temps plus importants en approchant la transition vitreuse.
Dans cette gamme de température la relaxation monomérique est prolongée de plusieurs
ordres de grandeur. De plus, nous analysons les effets de taille finie sur la dynamique
du fondu de polymeére prés de la transition vitreuse, et nos résultats suggérent que la
dynamique est modifiée qualitativement & la température critique de couplage de mode.

Summary Polymer melts show a remarkable increase of their viscosity by many orders
of magnitude on approaching the glass transition. The aim of this study is to gain a deeper
insight into the viscoelastic properties of glass forming polymer melts. The polymers are
modeled as flexible chains using a bead-spring model. We investigate polymers with differ-
ent chain lengths for which we analyze the static and dynamic properties for a temperature
range close to the glass transition temperature. The dynamic properties are analyzed in
the framework of the ideal mode-coupling theory. We find that the critical temperature of
the ideal mode-coupling theory scales with the reciprocal chain length. This scaling is also
found for the static properties. By studying the shear relaxation function we find that the
polymer relaxation processes, which can be described by the Rouse theory, are not altered
but shifted to later times in the approach of the glass transition. In this temperature range
the monomer relaxation is protracted by many orders of magnitude. Additionally, we an-
alyze finite size effects on the dynamics of polymer melts close to the glass transition. Our
findings of this case study suggest that the dynamics change qualitatively at the critical
temperature of the ideal mode-coupling theory.

Keywords: Glass-forming polymer melts, molecular dynamics simulation, mode-coupling
theory, Rouse theory, shear relaxation function, viscoelasticity, bead-spring model



