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Résumé

L'utilisation des polymères in�uen
e une grande partie de notre vie quotidienne;

notre époque pourrait, sans exagération, être appelée l'âge des polymères [68℄.

L'impa
t du développement de la 
himie des polymères sur nos habitudes de 
onsom-

mation moderne a été important: la plupart des matériaux d'emballage est fait de

polymères solides [44℄. L'exemple le plus simple d'une molé
ule de polymère est une

longue 
haîne linéaire liant N unités élémentaires un peu à la manière d'un 
ollier

de perles [30, 71℄. Les matériaux d'emballage sont présents sous forme solide, le plus

souvent dans l'état vitreux ou semi-
ristallin. Pour leur utilisation, il est important

de 
omprendre les propriétés vis
oélastiques des fondus de polymères [68, 71℄.

Les 
onstituants d'un polymère sont nommés monomères et ont une taille typique

de ∼ 0.5 nm. Dans le fondu de polymères les monomères remplissent le volume

quasiment dans son intégralité et ne présentent au
un ordre à longue distan
e [11℄.

Lors du refroidissement, la stru
ture de l'ensemble ne 
hange que légèrement, une

propriété qui est aussi 
onnue pour les liquides simples surfondus [17, 20℄. Les

monomères sont beau
oup plus petits que le polymère qu'ils forment. La taille d'un

polymère se mesure, par exemple, par le rayon de gyration Rg [26, 39, 71℄. Celui-
i

est a

essible de manière expérimentale à partir de méthodes de di�ra
tion de la

lumière ou de di�usion de neutrons [46℄ et varie de 10 nm à 100 nm [11℄. À plus

grandes é
helles les polymères présentent une stru
ture auto-similaire 
e qui permet

de les traiter théoriquement 
omme des fra
tales [24, 68℄.

Dans un fondu de polymères les intera
tions inter-molé
ulaires agissant sur un

polymère sont e
rantées par les polymères voisins. Ce
i est dû au fait que, en

moyenne, un polymère interagit ave


√
N autres 
haînes [24, 26, 68℄. Le fait que

les 
haînes puissent se pénétrer les unes les autres si massivement implique des


ontraintes topologiques [24, 26, 56℄. Le résultat de 
es en
hevêtrements est une

vis
osité élevée en raison du fort ralentissement de la dynamique de la 
haîne [11℄.

À l'appro
he de la température de transition vitreuse, T
g

[53, 61℄, les fondus de
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polymères subissent une augmentation remarquable de leur vis
osité de plusieurs

ordres de grandeur. Cette forte augmentation est observée pour tous les temps de

relaxation stru
turale et 
e
i est un exemple 
ara
téristique des liquides vitri�ables

polymériques et non-polymériques. [18, 27℄.

En 
omparaison de 
e 
hangement dramatique de dynamique, la stru
ture du

fondu ne subit que très peu de 
hangements lors du refroidissement. Comprendre

l'origine des phenomènes intervenant dans la transition vitreuse reste l'un des plus

grands dé�s de la physique de la matière molle [7, 17, 25℄.

But de 
ette étude. Le but de 
ette étude est d'a
quérir une 
ompréhension

approfondie des pro
essus qui sont impliqués dans 
e phénomène de transition vit-

reuse. Nous abordons 
e problème par une appro
he numérique grâ
e aux simula-

tions sur ordinateur en utilisant un modèle générique �bead-spring� [48℄. Dans 
e

modèle les polymères sont modélisés par des 
haînes �exibles possédant un volume

ex
lu. La présente étude s'appuie sur des travaux antérieurs [4, 15, 22℄. I
i, nous

étudions en parti
ulier l'in�uen
e de la longueur de la 
haîne sur les propriétés dy-

namiques d'un fondu de polymères, 
eux-
i étant prin
ipalement analysés dans le


adre méthodologique de la théorie de 
ouplage de mode [4, 22, 23, 37℄.

Nous utilisons un modèle de simulation très semblable au modèle de polymères

pré
édemment étudié, par Bennemann et al. [12�15℄, de manière systématique pour

le régime de surfusion. L'analyse a été e�e
tuée en relation ave
 les fon
tions de

di�usion 
ohérente et in
ohérente, les fon
tions de 
orrélation des modes de Rouse

et divers dépla
ements 
arré moyens (voir Réf. [11℄).

En parallèle, le modèle a également été utilisé pour étudier les �lms min
es 
on-

�nés [11℄ ainsi que les �lms min
es de polymères ave
 des surfa
es libres (interfa
e

�lm/volume libre) [64, 65℄. L'in�uen
e de parti
ules de solvant dissoute dans le �lm

a également été étudiée [66℄. Le travail sur les �lms ave
 une interfa
e polymère/air

a été e�e
tué à une pression nulle p = 0 qui est le 
hoix le plus naturel pour des

simulation de surfa
es libres. Nous employons prin
ipalement la même pression dans

nos simulations.

Nous étudions en parti
ulier les petites 
haînes (non en
hevêtrées) 
omme sug-

géré par [69℄. C'est dans 
e domaine de longueur que la plus forte dépendan
e de T
g

en fon
tion de la longueur de 
haîne peut être observée. Cette analyse se 
on
entre

essentiellement sur les fon
tions de di�usion résolues dans le temps et son auto
or-

rélation temporelle en essayant d'atteindre des températures inférieures à 
e qu'il
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Figure 1: La densité ρ en fon
tion de la température T pour di�érentes longueurs

de 
haîne (à gau
he). La densité ρ en fon
tion de l'inverse de la longueur de 
haîne

1/N pour des températures T = 0.44, 0.50 (à droite). Insert: Un é
art de ∆ρ̃ =
ρ(T2,N)/ρ(T1,N)

ρ(T2,N=4)/ρ(T1,N=4)
à partir de 1 indique une déviation de la proportion de

ρ(T2,N)
ρ(T1,N)

de


elle de

ρ(T2,N=4)
ρ(T1,N=4)

. Cet é
art 
roît presque linéairement ave
 l'augmentation de N .

était possible d'avoir dans les travaux antérieurs [4, 15, 22℄. Nous étudions aussi la

fon
tion de relaxation de 
isaillement qui est expérimentalement pertinente, mais

di�
ile à déterminer ave
 une statistique satisfaisante par simulation numérique

[52, 54, 75℄.

Pour être en mesure d'étudier des systèmes de taille importante nous devons faire

usage d'ar
hite
tures informatiques parallèles. Nous avons dé
idé de travailler ave


le 
ode LAMMPS [49, 67℄.

Dans la première partie de notre travail, nous avons testé les paramètres pour un

système monodisperse de taille de 
haine N = 10 à la pression p = 1, où il était

possible de 
omparer ave
 des données de référen
es [1�4℄. Puis nous avons 
hoisi

d'e�e
tuer une variation systématique de la longueur de 
haîne, 
e
i à une plus basse

pression, p = 0, a�n que nos données puissent servir de référen
e pour des travaux

futurs sur des �lms ave
 une surfa
e libre.

Dans la suite de 
e résumé nous présentons les points importants de 
ette thèse

qui 
ommen
e par une introdu
tion des méthodes de simulation. Dans 
ette in-

trodu
tion nous pré
isons le modèle de simulation que nous utilisons ainsi que la

pro
édure pour générer des 
on�gurations au sein de la gamme de température de

2T
g

& T & T
g

.
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Figure 2: À gau
he: Figure prin
ipale: Fa
teur de stru
ture statique pour N = 64

et T = 0.50, 0.44 en fon
tion du module de l'onde ve
teur q. Insert (a): fa
teur de

stru
ture statique pour N = 64, 16, 4 et T = 0.50. Insert (b): fa
teur de stru
ture

statique pour N = 64, 16, 4 et T = 0.44; les pointillés indiquent le fa
teur de stru
ture

statique pour T = 0.50. À droite: Figure prin
ipale: La fon
tion de distribution

radiale pour les températures T = 0.50 et 0.44 (N = 64). Insert: zoom sur les

maxima.

Nous analysons la densité en fon
tion de la température pour di�érentes longueurs

de 
haîne. Le graphe à gau
he de la Fig. 1 montre la densité en fon
tion de la

longueur de 
haîne qui est analysée pour T = 0.44 et T = 0.50 (voir à droite de

la Fig. 1). On 
onstate que l'évolution de la densité peut être dé
rite par ρ(N) =

ρ∞
(
1 − 
onstT

N

)
.

Le fa
teur de stru
ture statique S(q) [9, 21℄ est une fon
tion de la température

T et de la longueur de 
haîne (voir Fig. 2). Une signature de la dépendan
e de la

densité à la longueur de 
haîne est observée pour S(q). Nous 
al
ulons de la même

manière la fon
tion de distribution radiale [21℄ (voir Fig. 2).
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Figure 3: Figure prin
ipale: Distan
es quadratiques moyennes intra-
haîne pour N

= 64, 32, 16, 8, 4 en fon
tion de distan
e 
urviligne s pour T = 0.50. R2
s

s
est appro
hé

par la ligne pointillée 
omme dé
rit en Réf [79℄ pour déterminer la longueur de la

liaison e�
a
e b
e

qui se trouve être b
e

= 1, 304 pour T = 0.50. Insert: R2(s)/(sb2
e

) en

fon
tion de 1/(ρb3
e

√
s). La ligne noire en pointillés est donnée par f(x) = 1−c1

√
24
π3 x

[79℄. Ainsi, la 
onformité de

R2
s

s
pour N = 4, 8, 16, 32, 64 ave
 elle représente la

pré
ision de l'ajustement.

Dans la partie suivante, nous analysons la longueur de liaison e�e
tive, 
omme

le suggère la Réf. [79℄. La Figure 3 montre l'analyse à T = 0.50. Il se trouve

que la longueur de la liaison e�e
tive diminue en fon
tion de T . Ce 
omportement


ontre-intuitif provient de la �exibilité du modèle employé qui n'est 
himiquement

pas réaliste.

Par la suite, la dynamique des systèmes est analysée dans le 
adre de la MCT,

théorie de 
ouplage de mode idéale [37℄. Le prin
ipe de superposition des temps

et des températures et le théorème de fa
torisation � deux prédi
tions de base de

la MCT � sont analysés pour toutes les longueurs de 
haîne (voir Fig. 4 où 
ette

pro
édure est dé
rite pour N = 64). En outre, l'analyse suggère un intervalle de

température approximatif où la MCT devrait être appli
able.

Dans une étape ultérieure les exposants de �von S
hweidler� b sont déterminés en

fon
tion de la longueur de 
haîne en ajustant les fon
tions de di�usion 
ohérente tel

que suggéré par la Réf. [11℄, selon l'équation suivante:

φq(t) = f c
q − h̃fit

q (t/t′σ)
b
+ h̃fit

q B̃fit
q (t/t′σ)

2b
(tσ ≤ t) . (1)

xi
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Figure 4: À gau
he: La fon
tion de di�usion 
ohérente φq=6.9(t) pour N = 64

redimmensionnée en fon
tion du temps de relaxation α, (τq∗)
−1
, qui est déterminé

par φq=6.9(t = τq∗) = 0.1. À droite: Le théorème de fa
torisation est testé pour

T = 0.44 et N = 64. Par dé�nition Rq(t
′′ = 5.12) = 1 et Rq(t

′ = 30.7)=0. Les

temps t′′ et t′ sont 
hoisis de telle sorte qu'ils se trouvent dans la région 
orrespondant

au plateau. Le théorème de fa
torisation est validé: les 
ourbes pour des valeurs

di�érentes de q se superposent.

I
i f 


q représente le paramètre non-ergodique, t′σ le temps de relaxation α, et b

l'exposant de �von S
hweidler�. Le paramètre h̃fit
q est donné par hqB où hq désigne

l'amplitude 
ritique et B est une 
onstante. Le paramètre B̃fit
q est donné par BBq

où Bq est dépendante de q.

En ajustant le temps de relaxation α, nous déterminons la température 
ritique

T



de la théorie MCT en fon
tion de la longueur de 
haîne N (voir Fig. 5). Il se

trouve que les valeurs obtenues pour T



peuvent être remises à l'é
helle en fon
tion

de l'inverse de la longueur de 
haîne 
e qui est représenté sur la Fig. 6.
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Figure 5: À gau
he: La fon
tion de di�usion 
ohérente φq=4,6.9,9.5,12.8(t) pour N = 64

et T = 0.44; ajustée par rapport à Eq. (1). À droite: N = 64: Le temps de

relaxation α pour T = 0.44, 0.45, 0.46, 0.47, 0.48 à q = 6.9. Le temps de relaxation
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) où A et T



sont les

paramètres d'ajustement.
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Figure 6: À gau
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en fon
tion de la longueur de 
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tion f(x) = Axα + B. À droite: T



en fon
tion de

l'inverse de la longueur de 
haîne. La ligne bleue représente un ajustement linéaire

donnée par f(x) = Ax + B.
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En outre, nous sommes en mesure de 
al
uler la fon
tion de di�usion 
ohérente

ave
 une haute résolution a�n que la queue de la 
ourbe pour les grands temps,

spé
i�ques aux polymères, devienne visible (voir bas de la Fig. 7).

Après l'analyse des fon
tions de di�usion, nous 
onsidérons la fon
tion de re-

laxation de 
isaillement [54℄ 
omme une quantité supplémentaire. En utilisant la

fon
tion de relaxation de 
isaillement, les systèmes 
onsidérés sont étudiés sur des

é
helles de longueur plus grandes. Nous avons 
onstaté que les pro
essus de relax-

ation polymériques, qui peuvent être dé
rits par la théorie de Rouse [26℄, ne sont

pas modi�és, mais dé
alés vers des temps plus importants en appro
hant la transi-

tion vitreuse. Un 
omportement similaire est également observé par l'analyse de la

fon
tion de di�usion pour les plus petites valeurs de q a

essibles par la simulation

(voir bas de Fig. 7). Cette étude montre que les e�ets signi�
atifs de la stru
ture

polymère � qui montrent une signature en loi de puissan
e � ne deviennent visi-

bles que pour les plus petites valeurs q et les 
haînes les plus longues que nous avons

étudiées.

La mise à l'é
helle du dépla
ement quadratique moyen en fon
tion de la 
onstante

de di�usion montre un 
omportement d'é
helle analogue à la fon
tion de di�usion


ohérente en fon
tion du temps de relaxation α (voir Fig. 8). Pour la fon
tion de

relaxation de 
isaillement une mise à l'é
helle selon une seule de 
es quantités ne


onduit pas à un résultat 
omplètement satisfaisant.

Dans la dernière partie, nous entreprenons une étude sur les e�ets de taille �nie. À


ette �n, nous 
omparons deux tailles de système pour des polymères d'une longueur

de 
haîne N = 10. Cette 
omparaison porte sur la fon
tion du dépla
ement quadra-

tique moyen (voir Fig. 9). Ces fon
tions mesurées à partir de 
es deux systèmes sont


omparées pour des températures autour de la valeur de T



de la MCT idéale [15℄.

Il est intéressant de remarquer que pour la dynamique nous trouvons la plus grande

di�éren
e entre 
es deux tailles de système pré
isément pour la température T



. Ce

résultat suggère que la dynamique est modi�ée qualitativement à la température


ritique de 
ouplage de mode.
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Zusammenfassung

Die Verwendung von Polymeren dur
hdringt unser tägli
hes Leben so stark, dass

man unser Zeitalter, in Anlehnung an Epo
henbegri�e wie z.B. �Steinzeit� oder

�Eisenzeit�, au
h �Polymerzeit� nennen könnte [68℄. Der bedeutende Ein�uss der

Polymer
hemie wird o�enbar, wenn man an den tägli
hen Einkauf im Supermarkt

denkt: Der Groÿteil der Verpa
kungsmaterialien besteht aus Polymeren [44℄.

Ein einfa
hes Modell eines Polymers ist eine lange lineare Kette, bestehend aus

N miteinander verbundenen elementaren Einheiten [30, 71℄. Die erwähnten Ver-

pa
kungsmaterialien liegen in fester Form vor; meist im glasartigen oder semikristalli-

nen Zustand. Bei ihrer Verarbeitung ist die Kenntnis der viskoelastis
hen Eigen-

s
haften von Polymers
hmelzen unerlässli
h [68, 71℄. In der S
hmelze sind die inter-

molekularen We
hselwirkungen dur
h die bena
hbarten Polymere abges
hirmt, da

ein Polymer im Mittel mit

√
N anderen Polymeren we
hselwirkt [24, 26, 68℄. Die

starke gegenseitige Dur
hdringung der Ketten führt zu topologis
hen Hindernissen

[24, 26, 56℄. Aufgrund dieser sog. Vers
hlaufungen weisen Polymers
hmelzen eine

hohe Viskosität auf, da die Dynamik der Ketten stark verlangsamt ist [11℄.

In der Nähe der Glasübergangstemperatur Tg [53, 61℄ zeigt die Viskosität von

Polymers
hmelzen einen dramtis
hen Anstieg um mehrere Gröÿenordnungen. Dieser

gewaltige Anstieg kann bei allen strukturellen Relaxationszeiten beoba
htet werden

und ist eine spezi�s
he Eigens
haft aller glasbildenden Flüssigkeiten, sowohl poly-

merartiger als au
h ni
ht polymerartiger. [18, 27℄. Im Verglei
h zu dieser drama-

tis
hen Änderung der Dynamik, ändert si
h die Struktur der S
hmelze kaum. Das

Verstehen des Glasübergangs auf mikrokopis
her Ebene ist no
h immer eine der

gröÿten Herausforderungen der Physik der wei
hen Materie [7, 17, 25℄.

Das Ziel dieser Arbeit ist es, ein tieferes Verständnis der Prozesse zu erlangen,

wel
he den Glasübergang von unterkühlten Polymers
hmelzen begleiten. Zur Studie

werden Computersimulationen von generis
hen Kugel-Federmodellen [48℄ verwen-

det. Hierbei werden die Polymere als �exible Ketten modelliert, wobei auf früheren
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Arbeiten aufgebaut wird [4, 15, 22℄. Dabei liegt der Fokus auf den dynamis
hen

Eigens
haften der Kette, wel
he im Rahmen der idealen Modenkopplungstheorie

(MCT) untersu
ht werden [4, 22, 23, 37℄.

Es wird ein Modell verwendet, wel
hes ähnli
h dem von Bennenmann et al. sys-

tematis
h im unterkühlten Berei
h untersu
hten Modell ist [12�15℄. Dieses wurde

anhand von inkohärenten und kohärenten Streufunktionen und Korrelationsfunktio-

nen der Rouse Moden untersu
ht. Des Weiteren wurden vers
hiedene Funktionen

des mittleren Vers
hiebungsquadrats betra
htet (vgl. z.B. [11℄ für eine Übersi
ht).

In der vorliegenden Arbeit werden speziell kurze (ni
ht vers
hlaufte) Ketten un-

tersu
ht, wie dies dur
h Ref. [69℄ nahegelegt wird. In diesem Berei
h ist die gröÿte

Abhängigkeit der Kettenlänge von T
g

zu erwarten. Der Fokus der Arbeit liegt auf

der Analyse von Streufunktionen. Hierbei wird der Versu
h unternommen, diese

für tiefere Temperaturen zu untersu
hen, als dies in früheren Arbeiten mögli
h war

[4, 15, 22℄. Im weiteren Verlauf der Arbeit wird die S
herrelaxationsfunktion un-

tersu
ht, die experimentell relevant, allerdings in Computersimulationen mit ausrei-


hender Statistik nur s
hwer zugängli
h ist [52, 54, 75℄.

Um gröÿere Systeme als Vorgängerarbeiten untersu
hen zu können, wird in dieser

Arbeit der LAMMPS Code verwendet [49, 67℄. Zu Beginn unserer Arbeit wurden

die verwendeten Parameter ausgiebig für ein �Bulk�-System mit N = 10 und Dru
k

p = 1 getestet, wobei es mögli
h war die Ergebnisse mit denen der Ref. [1�4℄ zu

verglei
hen. Für die Untersu
hung der oben erwähnten Gröÿen in Abhängigkeit von

der Kettenlänge wurde p = 0 verwendet. Dadur
h können die erhaltenen Daten für

�Bulk�-Systeme bei zukünftigen Studien freier Ober�ä
hen als Referenz verwendet

werden.

Die statis
hen Eigens
haften der untersu
hten Systeme werden anhand ihrer Di
h-

te, des Kompressionsmoduls, des statis
hen Strukturfaktors und weiterer Gröÿen

analysiert. Hierbei zeigt die Di
hte ein Verhalten, das mit der reziproken Ketten-

länge skaliert. Dies kann mit Kettenende�ekten plausibel gema
ht werden [28℄.

Die e�ektive Bindungslänge [79℄ der Polymerketten wird als Funktion der Tem-

peratur untersu
ht. Die e�ektive Bindungslänge nimmt mit sinkender Temperatur

ab. Dieses Verhalten kann dur
h die Modellierung der Polymere als �exible Ketten

erklärt werden. Es wäre daher interessant, in der Zukunft 
hemis
h realistis
here

Modelle (wie z.B. in [16℄) zu verwenden.

Die Dynamik wird im Rahmen der idealen MCT [37℄ analysiert: In Abhängigkeit

von der Kettenlänge wird das Temperaturintervall untersu
ht, in wel
hem das Zeit-
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Temperatur Superpositionsprinzip (TTSP) gültig ist. Ferner bestätigen si
h die

Vorhersagen das Faktorisierungstheorems im β-Regime. Zusammenfassend s
heint

das Faktorisierungstheorem no
h gültig für Temperaturen zu sein, für wel
he das

TTSP ni
ht mehr erfüllt ist. Die kritis
he Modenkopplungstemperatur wird als

Funktion der Kettenlänge bestimmt. Sie skaliert � wie die Di
hte � mit der

reziproken Kettenlänge.

Für die untersu
hten Systeme kann die kohärente Streufunktion sehr fein aufgelöst

werden, so dass das polymerspezi�s
he Langzeitverhalten beoba
htet werden kann.

Diese Untersu
hung wird dur
h die Analyse der S
herrelaxationsfunktion [54℄ erwei-

tert. Es zeigt si
h, dass beim Abkühlen die Monomerrelaxationszeiten zunehmen.

Dadur
h werden Relaxationsprozesse auf Längenskalen der Polymere zu späteren

Zeiten vers
hoben.

Im letzten Teil der Arbeit werden in einer Fallstudie die E�ekte der endli
hen Si-

mulationsbox auf die Dynamik untersu
ht (vgl. z.B. [45℄). Für zwei vers
hiedene

Boxgröÿen werden Unters
hiede in der Dynamik, gemessen dur
h die kohärente

Streufunktion und das mittlere Vers
hiebungsquadrat der Monomere, beoba
htet.

Interessanterweise sind die Unters
hiede für die kritis
he Modenkopplungstempera-

tur [15℄ am gröÿten. In einer zukünftigen Studie könnten diese Ergebnisse dur
h

die Untersu
hung no
h gröÿerer Systeme weiter untermauert werden. In diesem Fall

könnte man folgendes s
hlieÿen: Au
h wenn bei der kritis
hen Modenkopplungstem-

peratur kein dynamis
her Stillstand beoba
htet werden kann, so ändert si
h hier die

Dynamik do
h qualitativ.
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Chapter 1

Introdu
tion

The usage of polymers in�uen
es a wide range of our everyday life so that our

age 
ould be, without exaggeration, termed the Polymer Age [68℄. The impa
t of

the development of polymer 
hemistry might be
ome quite apparent by 
onsidering

modern supermarket 
ulture: Most pa
king materials are made of polymer solids

[44℄. The simplest example of polymers are long linear 
hains of N linked elementary

units [30, 71℄. The mentioned pa
kaging materials are present in solid form, mostly

in the glassy or the semi-
rystalline state. For the pro
essing it is important to

understand the vis
oelasti
 properties of polymer melts [68, 71℄.

The 
onstituents of a polymer are named monomers and have a typi
al size of

∼ 0.5 nm . In the melt they are densely pa
ked and exhibit no long range order [11℄.

Upon 
ooling this overall stru
ture 
hanges only slightly, a property whi
h is also

familiar from super
ooled simple liquids [17, 20℄. They are mu
h smaller than the

polymer that they form. The size of a polymer 
ould be measured, for example by

the radius of gyration Rg [26, 39, 71℄, whi
h is a

essible in experiments by methods

of light or neutron s
attering [46℄ and ranges from 10 nm to 100 nm [11℄.

On large length s
ales polymers exhibit a self-similar stru
ture whi
h allows to

treat them theoreti
ally as fra
tals [24, 68℄. In a polymer melt intermole
ular in-

tera
tions are s
reened by neighboring polymers as a polymer intera
ts, on average,

with

√
N other 
hains [24, 26, 68℄. The fa
t that the 
hains penetrate ea
h other so

massively results in topologi
al 
onstraints [24, 26, 56℄. The entanglements lead to

a high vis
osity due to the great slowing down of the 
hain dynami
s [11℄.

On approa
hing the glass transition temperature T
g

[53, 61℄ polymer melts show a

remarkable in
rease of their vis
osity by many orders of magnitude. This enormous

in
rease is observed for all stru
tural relaxation times and is a typi
al feature of all

1



2

glass-forming liquids, polymeri
 and non-polymeri
 ones [18, 27℄.

In 
omparison to this dramati
 
hange of the dynami
s, the stru
ture varies only

slightly. A mi
ros
opi
 understanding of the glass transition remains one of the

biggest 
hallenges in 
ondensed matter physi
s [7, 17, 25℄.

Aim of this study. The aim of this study is to gain a deeper insight into the

pro
esses whi
h are involved in the phenomenon of glassy slowing down in super-


ooled polymer melts. We approa
h this problem by 
omputer simulation using a

generi
 bead-spring model [48℄ in whi
h polymers are modeled as �exible 
hains.

The present study builds upon previous work [4, 15, 22℄. Here we espe
ially fo
us

on the 
hain length dependen
e of the dynami
al properties of the melt, whi
h are

mainly analysed in the framework of the ideal mode-
oupling theory [4, 22, 23, 37℄.

We employ a simulation model very similar to the bead-spring polymer model

�rst studied systemati
ally in the super
ooled regime by Bennemann et al. [12�15℄.

It was analysed in terms of the in
oherent and 
oherent s
attering fun
tions, Rouse

mode 
orrelation fun
tion, and various mean-square displa
ements (see e.g. [11℄ for

a review). In parallel, the model has also been employed to study thin 
on�ned �lms

[11℄ as well as supported and free standing thin polymer �lms [64, 65℄, and also the

in�uen
e of solvent parti
les [66℄. The work on supported and free standing �lms

was performed at a pressure p = 0 whi
h is the more natural 
hoi
e when simulating

free surfa
es. We mainly employ the same pressure in our simulation.

Thereby espe
ially small (nonentangled) 
hains are explored, as it is suggested

by [69℄ that in this range the largest dependen
e of the 
hain length of T
g


an

be expe
ted. This analysis mainly fo
uses on intermediate s
attering fun
tions by

trying to a
hieve lower temperatures than it was possible in previous works [4,

15, 22℄. As an additional quantity we study the shear relaxation fun
tion whi
h

is experimentally relevant, but di�
ult to determine with satisfying statisti
s in


omputer simulations [52, 54, 75℄.

The previous works have been performed with home-written sequential MD 
odes.

To be able to study larger systems and to make use of today's parallel 
omputer

ar
hite
tures, we de
ided to work with the LAMMPS 
ode [49, 67℄. In a �rst part

of our work, we tested our implementation of the parameters with the bulk system

N = 10 at p = 1 where it was possible to 
ompare with the data of Ref. [1�4℄. Then

we 
hose to perform a systemati
 
hain length variation in the main part at a lower

pressure p = 0 so that our bulk data 
an serve as a referen
e for future work with



3

free surfa
es.

Outline. This work is organised as follows: In the se
ond 
hapter we des
ribe the

simulation methodology by shortly summarizing the used simulation te
hnique and

the employed simulation model. The third 
hapter deals with the stati
 properties

of the studied systems. In the forth and �fth 
hapter we turn to the dynami


properties. In the forth 
hapter the dynami
s is studied in the framework of the

ideal mode-
oupling theory, whereas in the �fth 
hapter the dynami
s is analysed

by employing the shear relaxation fun
tion. Additionally, we undertake a 
ase study

on the �nite size e�e
ts. The work �nishes with a summary.
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Chapter 2

Simulation

In this work we want to study the vis
oelasti
 properties of glass-forming polymer

melts. For this purpose we make use of 
omputer simulations. In this 
hapter we

want to answer the following questions: What is the appropriate simulation method

to investigate the properties of glass-forming polyer melts? Whi
h are the essential

ingredients of a 
omputer simulation?

2.1 Introdu
tion

We want to use 
omputer simulations to generate mi
ros
opi
 information of a

physi
al system [5, 31℄. Statisti
al me
hani
s provides us then with a tool to 
onvert

this mi
ros
opi
 information into ma
ros
opi
 information of the studied system.

There are di�erent approa
hes to simulate polymers [11℄: the atomisti
 method

and the 
oarse-grained method. The 
oarse-grained method 
aptures the less de-

tails about the 
onsidered physi
al system. Atomisti
 models employ potentials for

intera
tions between all atoms of the model. The form of these potentials (whi
h

a

ount for example for the bond length, bond angles, . . . ) is assumed and related

parameters are estimated by experiments and quantum 
hemi
al 
al
ulations: For

the expli
it atom model the 
onstituents are the individual atoms of the system.

In the 
ase of the united atom model spheri
al sites 
omprising several atoms are

the 
onstituents. The 
oarse-grained method applies stronger approximations to the


onsidered physi
al system. Groups of atoms as for example monomers are modelled

by spheri
al intera
tion sites and realisti
 potentials are repla
ed by even simpler

ones.

Although it is desirable to take into a

ount the most details possible about the

5
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system, the atomisti
 approa
h is often not feasible as it is too demanding in terms

of CPU time [11℄. Therefore we employ 
oarse-grained models in our work as this

provides the possibility to simulate systems whi
h are in a temperature region whi
h

is 
lose to the glass transition temperature [53℄. In addition, by redu
ing the number

of di�erent intera
tions, we 
on
entrate on generi
 features.

2.2 MD simulations

Our short summary about mole
ular dynami
s simulation mainly follows [5, 31℄. An

MD simulation 
onsists of three steps:

Initialization First a 
on�guration is generated 
onsistent with the physi
al 
on-

ditions of the 
onsidered system. By the term �
on�guration� we understand the


olle
tion of all data 
hara
terizing unambiguously the mi
ros
opi
 state of a physi-


al system. During this initialization pro
ess positions and velo
ities of all parti
les

are 
hosen su
h that they are 
ompatible with the stru
ture whi
h is to be simulated.

For example: If a system with ex
luded volume is simulated, distan
es between ini-

tial parti
le positions must not be so small that the parti
les penetrate ea
h other.

Our pro
edure will be explained in detail in se
tion 2.5.

Computation of for
es Next 
omes the 
omputation of for
es: When all parti
le

positions are known, for
es have to be 
al
ulated. The intera
tions between parti
les

are des
ribed in terms of intera
tion potentials [5, 31℄:

− ∂

∂ri
U(rM) = Fi . (2.1)

From all parti
le positions (denoted in Eq. (2.1) by rM
) together with the inter-

a
tion potential U the resulting for
e Fi a
ting on parti
le i 
an be 
omputed. The

potentials of pairwise intera
tions between parti
les are assumed to be additive so

that the total sum of them gives the intera
tion potential U . In this equation, ri

denotes the position of parti
le i; so the derivative of U(rM) with respe
t to the

parti
le's position gives the for
e a
ting on it. Therefore the 
omputation of all

for
es a
ting in the system is done by evaluating all derivatives with respe
t to all

parti
les' positions.
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Integration of Newton's equations of motion In a third step, the time evo-

lution of the mi
ros
opi
 state of the system is 
al
ulated. This means that the

positions and velo
ities of all parti
les are evaluated. This is a
hieved by integra-

tion of Newton's equations of motion:

Fi(t) = mi
d

2ri(t)

dt2
(2.2)

with mi being the mass of parti
le i.1

This integration is done by time dis
retization. The dis
rete time intervals are


alled integration time steps. As a result one 
an only a

ess information about the

position and velo
ity of a 
ertain parti
le for dis
rete points on the timeline. There

are various algorithms to do this (see se
tion 2.2.1). Ea
h entity of positions and

velo
ities of all parti
les gives one 
on�guration.

The iteration of the last two steps represents the main 
ore of anMD simulation.

Following this s
heme, after ea
h integration time step positions and velo
ities of

all parti
les are 
omputed and a new 
on�guration is generated. A set of sequential


on�gurations forms a traje
tory and provides information about the time evolution

of the mi
ros
opi
 states of the 
onsidered system. The 
omputation of for
es and

the integration of Newton's equation of motion are repeated until the traje
tory

has rea
hed �su�
ient� length. In other words, enough 
on�gurations are generated

so that the studied property of the system is measurable with su�
ient statisti
s.

From a statisti
al point of view, we 
ould say: The subset of the phase spa
e probed

by the simulation is large enough to draw 
on
lusions about the physi
al behavior

of the studied system [5℄.

Besides the underlying assumptions about the physi
al systems, whi
h are in
or-

porated in an MD simulation (like the assumption that the potential is pairwise

additive), there are other sour
es of impre
isions [5℄. After the for
es are 
al
ulated,

parti
les are moved during an integration time step a

ording to the for
e a
ting on

them and their initial velo
ity. Yet, the for
e 
hanges permanently while a parti
le


hanges its positions and / or other parti
les 
hange their position and thereby the

intera
tion potential is 
hanged. Therefore, an error will o

ur and it will grow with

in
reasing integration time step. So, the integration time step should be 
hosen

as small as possible. On the other hand, one is interested in generating sequential

1

We 
onsider only systems where all parti
les have the same mass, so mi ≡ m for all parti
les.



8


on�gurations, whi
h 
over the phase spa
e as mu
h as possible. This means that

the 
on�gurations should not just di�er in tiny 
hanges of the parti
les' positions

but rather parti
les should travel longer distan
es and thus s
anning a larger part

of the phase spa
e. This is important, as every 
omputation of positions and for
es


ost CPU time and this will eventually de
ide if a simulation is feasible or not. For

this reason one has to �nd a 
ompromise between these two demands to the size of

the integration time step.

The 
omputation of for
es is the most time 
onsuming part, whi
h is ne
essary

to generate 
on�gurations [31℄. An e�e
tive way to redu
e the needed 
omputation

time is to 
onsider as little as possible intera
tion partners in this 
omputation. The

intera
tion potential is put together of pairwise additive potentials, and therefore

the single parts of the potential 
an be treated separately. The larger the distan
e

between parti
les is, the smaller the intera
tion between them. Thus, at some dis-

tan
e the intera
tion between two parti
les will be so small that it 
ould be negle
ted


ompared to intera
tions exerted on them by 
loser parti
les.

2

One exploits this fa
t

by introdu
ing an arbitrary distan
e, whi
h is 
alled the 
ut-o� radius. Parti
les

that are separated by a distan
e larger than the 
ut-o� radius do not intera
t with

ea
h other [5, 31℄. The bene�t of this is the following: When the for
es a
ting on

a parti
le are 
omputed, parti
les that are farer apart than the 
ut-o� radius do

not have to be 
onsidered. This saves a lot of 
omputational time as only a small

fra
tion of all parti
les has to be 
onsidered in the for
e 
omputation.

2.2.1 Integration algorithms

As an example for an algorithm to integrate Newton's equation of motion we show

the Verlet algorithm [74℄. This algorithm is the most basi
 one (and often the best

one) [31℄:

We 
onsider the Taylor expansion of the 
oordinate of a parti
le for t+∆t, around

t,

r(t + ∆t) = r(t) +
1

1!
v(t)∆t +

1

2!

f(t)

m
∆t2 +

1

3!

...

r ∆t3 + O(∆t4) , (2.3)

2

This pro
edure is stri
tly speaking only possible if no long range intera
tions are present. For

our model the long range intera
tions be
ome negligible for distan
es of r ≈ 2r
min

, where r
min

denotes the minimum of the Lennard-Jones potential.
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and similarly for t − ∆t, around t,

r(t − ∆t) = r(t) − 1

1!
v(t)∆t +

1

2!

f(t)

m
∆t2 − 1

3!

...

r ∆t3 + O(∆t4) . (2.4)

By summing up these equations (Eq. (2.3) and Eq. (2.4)) we get

r(t + ∆t) + r(t − ∆t) = 2r(t) +
f(t)

m
∆t2 + O(∆t4) , (2.5)

whi
h 
an be rewritten as

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) +
f(t)

m
∆t2 . (2.6)

As it 
an be seen in Eq. (2.6) the Verlet algorithm does not make use of the

velo
ities to update the positions of the system, and the integration error is only of

the 4th order in ∆t [31℄.

The velo
ity Verlet algorithm The velo
ity Verlet algorithm [72℄ is a variation

of the Verlet algorithm, whi
h uses velo
ities and positions evaluated for the same

time. As this algorithm is implemented in the simulation 
ode [49, 67℄ that we use

(see se
tion 2.5), we will des
ribe it here as an additional example for an integration

algorithm. Similar to the Verlet algorithm positions are 
omputed using a Taylor

expansion [31℄:

r(t + ∆t) = r(t) + v(t)∆t +
1

2

f(t)

m
∆t2 . (2.7)

The extension of the velo
ity Verlet algorithm is based on the use of velo
ities.

Velo
ities are updated by obeying the following s
heme

v(t + ∆t) = v(t) +
f(t + ∆t) + f(t)

2m
∆t . (2.8)

We point to the fa
t that �rst positions and from these for
es have to be evaluated,

before velo
ities 
an be 
omputed (
f. Eq. (2.8)). It 
an be shown that the velo
ity

Verlet algorithm is equivalent to the Verlet algorithm [31℄.

2.3 Simulations in di�erent ensembles

By employing the simulation methods des
ribed so far we are able to simulate sys-

tems whose total energy E does not 
hange with time. The introdu
ed algorithm,

whi
h is built upon Newton's equations of motion, 
onserves the total energy of the
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system. In the beginning of a simulation, we �x the number of parti
les and the

volume of the system, that means we 
hoose a spe
i�
 simulation box geometry and

size. This implies that the thermodynami
 variables N, V, E are �xed and therefore

we generate 
on�gurations in the mi
ro 
anoni
al (NVE) ensemble [5, 31℄. This

method generates traje
tories with realisti
 dynami
s, the only draw ba
k is, that

the integration time step has to be 
hosen so small that it is guaranteed that the

total energy does not 
hange due to numeri
al errors. Another reason why other en-

sembles than the NVE ensemble are employed is that one is interested in simulating

a system that mimi
s better the experimental situation.

In an experiment one usually 
ontrols temperature and external pressure as it

is normally the easiest way of setting up a system to 
ontrol these thermodynami-


al variables (T and p). Thermodynami
al variables like temperature and pressure

whi
h do not s
ale with the system size are 
alled intensive variable � opposite to

extensive variables whi
h s
ale with the system size, like energy E, volume V , en-

tropy S, . . . . Controlling intensive variables 
an be easily a
hieved by bringing the

system under 
onsideration in 
onta
t with a mu
h larger system. For example, tem-

perature 
an be 
ontrolled by establishing thermal 
onta
t between the 
onsidered

system and a mu
h larger system whi
h is 
alled a �heat bath� [70℄.

Motivated by these fa
ts we should answer the following question: How 
an

this situation be realized in a simulation? Or more pre
isely: How 
an we 
ontrol

temperature T and pressure p in a simulation?

2.3.1 Thermostatting

Similarly to the experimental situation one 
ould simulate the 
onsidered system

being in 
onta
t with a larger system. This 
ould be realized by simulating a large

system of whi
h the 
onsidered system is a subsystem. Eventually one would have

to take 
are about a lot of degrees of freedom whi
h in most 
ases is not feasible.

A way around this problem was proposed by Hoover [41℄: By extending previous

work from Andersen [6℄ and Nosé [62, 63℄ he 
ame up with following equations

[64, 73℄:

ṙi =
pi

mi
, (2.9)

ṗi = Fi − ξpi , (2.10)

ξ̇ =
1

Q

(∑

i

p2
i

mi
− 3Nk

B

T
ext

)
, (2.11)
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with T
ext

denoting the set external temperature.

Broadly speaking, in Hoover's approa
h all degrees of freedom of the heat bath

are taken into a

ount by just one degree of freedom. The heat bath a

elerates or

slows down parti
les depending on the mean kineti
 energy.

The main modi�
ation of the Newtonian equations of motion is to introdu
e an

additional term in Eq. (2.10). The additional term −ξpi a
ts as a dissipative part

if ξ is positive, and a

elerates parti
les if ξ < 0. It 
hanges opposite to the mean

kineti
 energy: If the main kineti
 energy is high it de
reases it (by slowing down

the parti
les) and vi
e versa. The time evolution of ξ (Eq. (2.11)) is 
oupled to the

mean kineti
 energy with Q being the 
oupling 
onstant. Q sets the strength of

the 
onta
t to the heat bath (Eq. (2.11)) and 
an also be regarded as the thermal

inertia of the system. As the value of the fri
tion variable ξ is given by a di�erential

equation the thermostat a
ts smoothly on the whole system.

We employ this thermostat in produ
tion runs (see se
tion 2.5.3). There we

generate traje
tories (see se
tion 2.2) within the NVT ensemble [5, 31℄. That means

that the number of parti
les of the system N , the volume V and the temperature

T is �xed. N and V are �xed by 
hoosing an appropriate value for the number of

parti
les and the simulation box size. T is set by using the Nosé-Hoover thermostat.

2.3.2 Barostatting

A barostat 
an be realized in a similar way as a thermostat. Here again the large

number of degrees of freedom of the larger system is taken into a

ount by just one

variable that 
ontrols the pressure evolution. The time evolution of this variable is


onne
ted to the di�eren
e between the 
urrent and the 
hosen value of the pressure

p. This is a similar approa
h as the one used for the Nosé-Hoover thermostat.

In the following we present the equations des
ribing this approa
h in the formula-

tion of Mel
hionna et al. [57℄. In this way the barostat is implemented in the sour
e
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ode [49, 67℄ that we use (see se
tion 2.5) [73℄:

ṙi =
pi

mi
+ η(ri −R


m

) , (2.12)

ṗi = Fi − (ξ + η)pi , (2.13)

ξ̇ =
1

Q

( ∑

i

p2
i

mi
− 3Nk

B

T
ext

)
, (2.14)

η̇ =
V

M
(p(t) − p

ext

) , (2.15)

V̇ = 3V η , (2.16)

where p(t) denotes the instant pressure and p
ext

the set external pressure. M3


ontrols the 
oupling of η to the pressure di�eren
e p(t) − p
ext

along with V .

By 
ontrasting this set of equations with the one of the Nosé-Hoover thermostat

we �nd the following di�eren
es and similarities: The time evolution of the volume

is 
hara
terized by Eq. (2.16): Depending on η the volume evolves, but the time

evolution of η itself depends on V and the di�eren
e of p and p
ext

. η 
an be positive

or negative and shows �u
tuations around 0 in analogy to ξ. So � as in the 
ase

of the Nosé-Hoover thermostat � we have a set of 
oupled di�erential equations

(Eq. (2.15) and Eq. (2.16)) whi
h govern the time evolution of the volume. The

equation (Eq. (2.14)) 
ontrolling the temperature dynami
s of the system is left

un
hanged. Equation (2.10) is 
hanged to Eq. (2.13) by adding the extra term ηpi.

The additional term in Eq. (2.12), η(ri − R

m

), where R

m

denotes the 
enter of

mass position, guarantees that the NpT ensemble is realized [73℄.

Applying this simulation s
heme generates 
on�gurations within the NpT ensem-

ble as these thermodynami
al variables are kept �xed [5, 31℄. We will employ this

method in equilibrating our system (see se
tion 2.5.2).

2.4 Simulation model

In this work, we study the behavior of glass-forming polymer melts 
lose to the glass

transition. So we have to employ a model whi
h features polymer properties and

shows a glass transition when 
ooled to low enough temperatures. We model the


hemi
al intera
tions of these polymers by intera
tions of spheri
al intera
tion sites.

The intera
tions are des
ribed by simpli�ed empiri
al potentials [11℄. A de�ned

3

The 
hoi
e of M depends on the ratio between the time s
ale for volume �u
tuations and the

time it takes for a sound wave to travel through the simulation box [73℄.
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number of these intera
tion sites � we will refer to them in the following just as

beads � make up a 
hain whi
h models an individual polymer. These kind of models

are referred to as bead-spring models [48℄.

We use a bead-spring model for �exible 
hains. By �exible 
hains we understand

that 
hains are only hindered from ba
k folding by the ex
luded volume. This kind

of model is among of the most simplest models whi
h still 
aptures the basi
 features

of polymers: 
hain 
onne
tivity and ex
luded volume [11℄.

In this model 
hain 
onne
tivity is indu
ed via a harmoni
 potential, whi
h is

e�e
tive between 
onse
utive bonded monomers [65℄:

U
b

(l) =
1

2
k
b

(l − l0)
2 , (2.17)

where l0 = 0.967σ
LJ

spe
i�es the equilibrium bond length, k
b

= 1110 ǫ
LJ

σ2

LJ

is the for
e


onstant and l denotes the distan
es between two bonded monomers.

Monomers of di�erent 
hains and monomers whi
h belong to the same 
hain but

are not dire
tly bonded intera
t by a Lennard-Jones potential. This potential is

trun
ated and shifted by a 
onstant C = 0.02684ǫ
LJ

, so that, at the 
uto� r

ut

=

2.3σ
LJ

≈ 2r
min

4

, the potential vanishes 
ontinuously

U
LJ

(r) =





4ǫ

LJ

[(
σ
LJ

r

)12 −
(

σ
LJ

r

)6
]

+ C for r < r

ut

,

0 else.

(2.18)

For small r (r ≪ σ
LJ

) Eq. (2.18) shows a sharp in
rease of its value and will

�nally diverge for r → 0. This divergen
e mimi
s the ex
luded volume.

Lennard Jones units In the following all quantities are given in Lennard-Jones

units [5, 11℄: distan
e is measured in units of σ
LJ

, temperatures in ǫ
LJ

/k
B

, and time

in τ
LJ

= (mσ2
LJ

/ǫ
LJ

)1/2
, where the Boltzmann 
onstant and the monomer mass are

given by k
B

= m = 1.

2.5 Set up of simulations

Using the �exible 
hain model des
ribed in se
tion 2.4 we simulate various systems


onsisting of di�erent 
hain lengths N (monomers per 
hain) and system sizes. Ad-

ditionally, we employ two di�erent pressure values: p = 0 and p = 1. We started

4

The minimum of the LJ potential is given by r
min

= 2
1

6 σ
LJ

.
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simulating systems for p = 1 and N = 10, as many data for this pressure and 
hain

length exist, espe
ially for low temperatures [4, 22℄. Thereby we tested our employed

simulation algorithm by 
omparing stati
 and dynami
al data. Then we pro
eeded

to p = 0 where we set up di�erent 
hain lengths (see Table 2.1 for an overview of

the simulated systems and Table A.1 for the used simulation parameters).

To generate simulation data we employ the open-sour
e 
ode �Large-s
ale Atomi
/

Mole
ular Massively Parallel Simulator� (LAMMPS ) [49, 67℄. This has two advan-

tages: Firstly, this 
ode is widely used for simulations of large systems and therefore

well tested. Se
ondly this 
ode is parallelized and hen
e well adapted for today's


omputer ar
hite
tures.

The generation of simulation data � whi
h provide mi
ros
opi
 information of

the simulated system � is divided into three steps: In the �rst step, the simulation

is set up whi
h means that basi
 
onditions of the simulation are �xed: size of simu-

lation (number of obje
ts whi
h are to be simulated; simulation box size; boundary


onditions (e.g. periodi
 boundary 
onditions); . . . ) and an initial 
on�guration of

the system is generated whi
h is in a

ordan
e with the physi
al 
onditions of the


onsidered system [5, 31℄ (see se
tion 2.5.1).

In a se
ond step the initial 
on�guration is equilibrated whi
h means that it is

transferred to a state of minimum free energy (see se
tion 2.5.2). This is done in

the NpT ensemble. Equilibrated 
on�gurations are 
ooled in a subsequent step to

lower temperatures in su
h a way that the system is not trapped in lo
al minima of

the free energy. Afterwards the so obtained 
on�gurations are equilibrated again.

In a last step, equilibrated 
on�gurations produ
ed during the last steps are used

as a starting 
on�guration from whi
h the a
tual produ
tion runs are started (see

se
tion 2.5.3).

In the 
ourse of our work we analyse mostly quantities whi
h are 
al
ulated in the

re
ipro
al spa
e (e.g. 
oherent intermediate s
attering fun
tions). Therefore a �xed

simulation box size will be 
onvenient for subsequent 
al
ulations. For the sake of


omparability with experiments a �xed pressure is desirable. These two requirements


an be ful�lled by the following implementation of the simulation pro
edure:

2.5.1 Initial 
on�guration

In the following we shortly summarize how an initial 
on�guration 
an be set up. In

the beginning, 
hains are generated as random walks with an angular bias without
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monomers / 
hain 
hains pressure

10 800 1

10 100 1

64 192 0

32 384 0

16 768 0

8 1536 0

4 3072 0

Table 2.1: Overview of simulated systems. Pressure is given in LJ-units. A harmoni


bond potential and 
ut-o� radius of r

ut

= 2.3σ
LJ

is used for every system.

ex
luded volume. These 
hains are randomly distributed in the simulation box.

Then a soft potential between the monomers is introdu
ed and the monomers are

propagated with Langevin dynami
s. The random distribution of the 
hains is

likely to generate overlap of some parti
les. To avoid diverging for
es, a for
e-
ap

parameter is introdu
ed to limit the maximum possible for
es. This amounts to a

modi�ed (soft) pair-potential with a linearly de
reasing term for small distan
es. In

addition, the velo
ities are res
aled regularly to e�e
iently dissipate energy 
oming

from strong initial overlap. Then, the soft potential is in
reased little by little to

push still overlapping monomers apart from ea
h other until the real potential is

rea
hed. In the end, a 
on�guration is generated that 
an be used in a subsequent

equilibration run. We have to state that there is no exa
t pro
edure to generate an

initial 
on�guration. The generated 
on�guration has to be tested for possible lo
al

potential energy maxima. As a �rst test the bond length distribution 
an be 
he
ked.

Note that our pro
edure is quite similar to the one des
ribed by Auhl et al. [8℄. As

our 
hains are still rather short, no additional Monte Carlo moves are ne
essary to

a

elerate equilibration, at least at high temperature. All 
on�gurations at lower

temperatures are derived by the pro
edure des
ribed in the following se
tion.

2.5.2 Equilibration run

The initial 
on�guration is then equilibrated. The pressure and the temperature are

set by using a barostat and thermostat as des
ribed in se
tion 2.3.2. During the

equilibration run the system has to be given the possibility to develop a volume whi
h
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Figure 2.1: Orientational 
orrelation fun
tion of the end-to-end ve
tor for N = 16

and T = 1, 0.5, 0.44, 0.43, 0.42, 0.41.

is in a

ordan
e with the applied pressure. This 
an be a
hieved by propagating the

initial 
on�guration within the NpT-ensemble.

As a 
riterion for the level of equilibration we take the orientational 
orrelation

fun
tion of the end-to-end-ve
tor [26℄, φ
e

(t), of every polymer 
hain averaged over

all 
hains of the system

φ
e

(t) =
〈R

e

(t)R
e

(0)〉
〈R2

e

(0)〉 , (2.19)

where R
e

denotes the end-to-end ve
tor (see se
tion 3.5 ). When this averaged value

of the polymer melt is about 0.1 (φ
e

(t) . 0.1), we 
onsider the system is adequately

equilibrated (
f. Fig. 2.1), as φ
e

(t) measures the slowest relaxation pro
ess in terms

of the 
hains [58℄. (See Table A.2 and Table A.3 for a survey of the relaxation times.)

The initial 
on�guration is equilibrated at T = 1, as this temperature is high


ompared to the glass transition temperature T
g

, 1 & 2T
g

. In order to 
ool to

lower temperatures without having the system getting trapped in a lo
al free energy

minimum we gradually de
rease the temperature of the system so slowly that there

is enough time for it to relax on all length s
ales in terms of the polymer 
hains.

To this end, we follow a 
ooling proto
ol whi
h 
onsists of two parts: In a �rst
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Figure 2.2: S
hemati
 representation of the 
ooling pro
ess. Bla
k lines indi
ate the


ooling and equilibration pro
edure. Blue arrows indi
ate subsequent produ
tion

runs.

part, the system is gradually 
ooled down towards a temperature of T = 0.50 (
f.

Fig. 2.2). In the temperature interval of 0.5 6 T 6 1.0 we 
an gradually 
ool our

system without in
urring the risk that it will get trapped in a lo
al free energy

minimum by 
hoosing a slow enough 
ooling rate [58℄. (Parts of the system whi
h

might not totally relax due to this s
hedule are given enough time to fully relax in

a subsequent equilibration run at 
onstant temperature.)

The 
ooling s
hedule is given by:

T (t) = T
start

− ΓT t (2.20)

with T
start

denoting the start temperature whi
h is set to 1 for all simulations and

ΓT the 
ooling rate. For all systems the 
ooling rate ΓT is given by ΓT = 10−5
.

In the temperature interval below T = 0.50 we employ a di�erent 
ooling s
hedule:

We take 
on�gurations from equilibrated systems and set up the next equilibration

run with a temperature that is instantaneously lowered by ∆T = 0.01. In a subse-

quent equilibration run the system is given enough time to relax on all length s
ales

in terms of the polymer 
hains

5

. When the 
riterion φ
e

(t) . 0.1 6

is ful�lled we

lower the temperature again and start the next equilibration run. By repeating this

pro
edure we are able to lower the temperature of the system step by step without

in
urring the risk that it will get �nally trapped in a lo
al free energy minimum.

5

Due to the pro
edure we employ for temperatures T ≤ 0.5, the used 
ooling rates are in the

order of ΓT ∝ 10−8
or slower. These 
ooling rates are 
al
ulated by

∆T
∆t

as in Ref. [19℄. Compared

to the slowest 
ooling rate that is used in this referen
e, we use 
ooling rates that are at least two

orders of magnitude slower.

6

For 
hain lengths with N > 10, not the orientational 
orrelation fun
tion of the end-to-end-

ve
tor is 
onsidered but the orientational 
orrelation fun
tion of a subsegment of N = 10.
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2.5.3 Produ
tion run

A produ
tion run denotes a simulation run whi
h generates the data that we analyze

to broaden our knowledge about glass forming polymer melts. To set up a produ
tion

run we take an equilibrated 
on�guration (we take a 
on�guration from the end of

an equilibration run). Then - during a small pre
eding run - the simulation box size

is smoothly adapted to the determined average volume of the equilibration run from

whi
h the end 
on�guration was taken. This is a
hieved by 
hanging the box length

in all dimensions slowly with time.

In LAMMPS [49, 67℄ this is a
hieved by employing the �deform� 
ommand [50℄.

By using this 
ommand the box size of the taken 
on�guration (des
ribed above)

is 
ontinuatiously (every 10 (τ
LJ

)) 
hanged over a time interval of 5, 000 (τ
LJ

) so

that it will �nally rea
h the determined average volume. We have to employ this

pro
edure as the volume during an equilibration run slightly �u
tuates. Therefore

the volume of the used end 
on�guration 
an slightly di�er from the average volume

of the whole equilibration run.

When the average volume of the equilibration run is rea
hed the a
tual produ
tion

run is started. The 
on�gurations are propagated in the NVT ensemble where a

thermostat is used (
f. se
tion 2.3.1).

We want the simulation algorithm to have as little in�uen
e as possible on the

results. For this reason we 
hoose the NVT ensemble for the produ
tion run. (In

the NVT ensemble we only employ a thermostat whi
h enables us to 
hoose a larger

integration time step 
ompared to an NVE ensemble simulation. In an NpT ensemble

simulation pressure and temperature are in�uen
ed by the simulation algorithm.

Thus, the in�uen
e on the results within an NpT ensemble simulation is larger,

whi
h is not desirable.)



Chapter 3

Stati
 properties

In this 
hapter we analyze the stati
 properties of our model system. This will also

provide us with a foundation for a better understanding of the system's dynami
s

later on. First we will dis
uss the density as a fun
tion of the 
hain length and then

we pro
eed with the bulk modulus and the high-frequen
y shear modulus. There-

after we introdu
e the stati
 stru
ture fa
tor and the radial distribution fun
tion.

Finally we turn to polymer-spe
i�
 quantities where we introdu
e the end-to-end

ve
tor and investigate the 
hain 
onformation via the internal distan
es along the


hain ba
kbone.

The systems that we are dealing with are glass-forming polymer melts. A polymer

melt 
an be de�ned as a dense polymer system without solvent mole
ules [26℄. The

spe
i�
ation �glass-forming� points to the fa
t that these polymer melts will form

a glass when the temperature is su�
iently de
reased. Crystallization is e�e
tively

prevented by two properties [4℄: Firstly, the bond length l
0

and the minimum of

the Lennard-Jones potential r
min

slightly di�er, so l
0

is not 
ompatible with r
min

.

Se
ondly, we employ a totally �exible model. Theses two points result in lo
al

distortion of the regular arrangement whi
h impedes 
rystallization when the melt

is 
ooled from high temperatures. (However, the 
hoi
e of the Lennard-Jones and

the bond potential does not pre
lude 
rystallization [19, 59, 60℄).

The appli
ation of a totally �exible model limits the possible manners whi
h 
ould

lead to a glass transition. In our model the glass transition is only driven by the

temperature dependent 
loser pa
king of the monomers. In more realisti
 
hemi
al

models the freezing of intramole
ular modes provides an additional way (see e.g.

[16℄). This results in higher glass transition temperatures.

19
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monomers / 
hain N 
hains n monomers Nn pressure p

64 192 12288 0

32 384 12288 0

16 768 12288 0

8 1536 12288 0

4 3072 12288 0

Table 3.1: Overview of systems simulated with a pressure of p = 0.

3.1 Density

We set up systems with di�erent 
hain length N in order to analyse the in�uen
e

of the 
hain length on the stru
tural and dynami
al properties of polymer melts.

These systems 
onsist of 12288 monomers and are simulated at a pressure of p = 0.

(As des
ribed in se
tion 2.5.2 during an NpT run a pressure of p = 0 is imposed

on the system using a barostat. After the equilibration the resulting volume of this

simulation is determined and used to set up a subsequent NVT simulation. )

More pre
isely, we simulated 5 di�erent 
hain lengths of N = 64, 32, 16, 8, 4. In

the beginning, we have equilibrated the systems for N = 64. Shorter N are generated

by 
utting these 
hains at T ≥ 0.5. For lower temperatures, the 
ooling proto
ol

explained in se
tion 2.5.2 has been applied to ea
h 
hain length individually. These

systems also di�er in the total number of 
hains n, as the total number of monomers

is �xed. For an overview of these systems see Table 3.1.

An essential feature of polymer melts is their high density. In the following, we

will study how the density is 
onne
ted to the 
hain length. The density ρ is given

by

ρ =
N n

V
, (3.1)

where V denotes the volume of the simulation box.

Figure 3.1 shows the density of these systems as a fun
tion of temperature T .

The 
omparison of the densities for di�erent 
hain length at a �xed temperature

of T = 0.50 infers that the density in
reases with 
hain length. An argument for

this observation 
an be found in the di�erent distan
es between bonded monomers

and non-bonded monomers [28℄. The average distan
e between bonded monomers

is given by the equilibrium bond length l
0

= 0.967. In 
ontrast to this the average

distan
e between monomers, that are not bonded, is set by the minimum of the
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Figure 3.1: Main �gure: Density ρ as a fun
tion of temperature T for 
hain length

N = 64, 32, 16, 8, 4. (See Table A.4 for the numeri
al values.)

Lennard-Jones potential whi
h is given by r
min

= 21/6σ
LJ

. Therefore the volume

o

upied by bonded monomers within a 
hain 
ompared to the volume that is o
-


upied by the end monomers, the outermost monomers, di�er. See Fig. 3.2 for a

s
hemati
 representation of this 
hain end e�e
t.

Therefore � in a �rst approximation � the volume that a 
hain o

upies 
an be

split into two 
ontributions. The volume o

upied by the inner monomers and the

volume o

upied by the end monomers. The end monomers o

upy a larger volume

as they have only one binding partner in 
ontrast to the inner monomers. This 
an

be expressed by the following equations:

V

hain

= NV
inner

+ 2[V
end

− V
inner

] , (3.2)

V

hain

= NV
inner

[
1 +

2∆V
e

NV
inner

]
, (3.3)

with V

hain

denoting the volume o

upied by a 
hain, V
inner

by an inner monomer,

V
end

by an end monomer and ∆V
e

the di�eren
e in their o

upied volume. Obviously

the 
hain volume is just split up into the 
ontribution given by the inner and end

monomers.
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T ρ∞ 
onstT

0.50 1.014 0.137

0.44 1.032 0.126

Table 3.2: Values obtained by �tting the data of Fig. 3.3.

By inserting this into the equation for the density we get

ρ =
nN

V
=

nN

nV

hain

=
1

V
inner

[
1 + 2∆V

e

NV
inner

]
(3.4)

By approximating this equation by a Taylor expansion (for N ≫ 1 it follows that

2∆V
e

NV
inner

≪ 1) up to the �rst order we �nally get:

ρ ≈ ρ∞

(
1 − 2∆V

e

NV
inner

)
= ρ∞

(
1 − 
onst

N

)
, (3.5)

where we set

1
V
inner

= ρ∞ � whi
h gives the density of a polymer melt in the limit

of long 
hains � and 
onst = 2∆V
e

V
inner

. Following Eq. (3.5) the density of the polymer

melt in the limit of long 
hains is approximatively given by ρ ≈ ρ∞. With in
reasing


hain length the density of a polymer melt will approa
h this limit. Equation (3.5)

states that the density s
ales with the re
ipro
al 
hain length. This des
ribes quite

well the behavior observed in Fig. 3.1.

In Fig. 3.3 the density of the 
onsidered systems is shown for temperatures T =

0.50, 0.44 as a fun
tion of the re
ipro
al 
hain length. The dependen
e on the

re
ipro
al 
hain length 1/N of ρ 
an be des
ribed by Eq. (3.5). As the volume of the


onsidered systems de
reases with de
reasing temperature ρ∞ is 
learly temperature

dependent. By regarding ∆ρ̃ = ρ(T2,N)/ρ(T1,N)
ρ(T2,N=4)/ρ(T1,N=4)

(see inset of Fig. 3.3) we 
he
k if


onst = 2∆V
e

V
inner

also shows a temperature dependen
e. As ∆ρ̃ grows linearly with the

re
ipro
al 
hain length 1/N , it be
omes obvious that the 
onst in Eq. (3.5) should

also be 
hosen temperature dependent.

The slightly smaller value of 
onstT=0.44 (
f. Table 3.2) 
ompared to 
onstT=0.50

shows that with de
reasing temperature the dependen
e of the density on the 
hain

length de
reases. In other words the ratio of the volume between inner and end

monomers is less pronoun
ed for higher densities.
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Figure 3.2: S
hemati
 representation of the 
hain end e�e
t. Monomers that are

bonded within a 
hain are 
onne
ted by bla
k lines. For a better understanding the

ratio of the distan
es between non-bonded and bonded monomers is exaggerated.

Transparent light blue 
ir
les mark the spa
e that is una

essible to monomers

that do not belong to the blue 
hain. In (a) the spa
e o

upied by the bonded

monomer (denoted by 2) of the blue 
hain is marked by the bla
k dashed frame.

The de�nition of the assigned spa
e region to a monomer is inspired by the de�nition

of the Voronoi tessellation [10℄. Spa
e is assigned to a monomer by the following

pro
edure: First the perpendi
ular bise
tors between a monomer and its nearest

neighbors are 
onstru
ted. Then these perpendi
ular bise
tors are 
onne
ted so

that they form the bla
k dashed frames. (Thereby the perpendi
ular bise
tors are


hosen that allow to assign the smallest spa
e region to the 
onsidered monomer. As

a 
onsequen
e, the formed bla
k dashed frame does not have to be a polygon with

six edges as it 
an be seen in (b)). In (b) the spa
e o

upied by the end monomer

of the blue 
hain (denoted by 1) is marked by the bla
k dashed frame. The bonded

monomer within the 
hain o

upies less spa
e than the end monomer.
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Figure 3.3: Main �gure: Density ρ as a fun
tion of the re
ipro
al 
hain length 1/N

for temperatures T = 0.44, 0.50. The bla
k dashed lines indi
ate a �t using f(N) =

a(1 − b
N

) as suggested by Eq. (3.5). Due to the temperature dependen
e of the

density, a is 
hosen to be temperature dependent. The inset indi
ates that b should

also 
arry a temperature dependen
e. Inset: A deviation of ∆ρ̃ = ρ(T2,N)/ρ(T1,N)
ρ(T2,N=4)/ρ(T1,N=4)

from 1 indi
ates a deviation of the ratio of

ρ(T2,N)
ρ(T1,N)

from that of

ρ(T2,N=4)
ρ(T1,N=4)

. This

deviation nearly grows linearly with in
reasing N . Thus the 
onst in Eq. (3.5)

should also be temperature dependent.
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3.2 Bulk modulus and high-frequen
y shear modu-

lus

In this se
tion we shortly dis
uss the bulk modulus and the high-frequen
y shear

modulus [21℄. We derive the bulk modulus from the isothermal 
ompressibility. The

isothermal 
ompressibility 
an be de�ned as [21℄

κ(T ) = − 1

V

dV

dp
. (3.6)

It 
hara
terizes how the system's volume 
hanges when a uniform in�nitesimal pres-

sure is exerted onto it. The prefa
tor

1
V

sets this 
hange in volume in relation to

the probed volume and the minus sign a

ounts for the fa
t that the 
ompressibility

should be positive. (As the volume of a system will de
rease when a pressure is

exerted onto it, dV will be negative.)

There is a 
onne
tion between the 
ompressibility and the stati
 stru
ture fa
tor

(see se
tion 3.3) in the limit for q → 0. It 
an be shown that in the thermodynami


limit the 
ompressibility is given by [40℄

κ(T ) = lim
q→0

S(q, T )

k
B

Tρ
(3.7)

The inverse of the 
ompressibility is de�ned as the bulk modulus of the system,

K = 1
κ
. In Fig. 3.4 we show the bulk modulus for N = 64, 32, 16, 8, 4 as a fun
tion

of temperature T 
al
ulated as the re
ipro
al value of 
ompressibility a

ording to

Eq. (3.7). The bulk modulus in
reases with de
reasing T , i.e., the melt be
omes less


ompressible; it also in
reases with in
reasing N , in a good approximation as

K = K∞ − 
onst

N
, (3.8)

whi
h is expe
ted from Eq. (3.6) and the N dependen
e of ρ dis
ussed before.

High frequen
y shear modulus We 
omplete the dis
ussion by 
onsidering the

high-frequen
y shear modulus. This is espe
ially motivated as we will dis
uss later

(see se
tion 5.1) its dynami
 
ounterpart � the shear relaxation fun
tion � in

greater detail. The high-frequen
y shear modulus 
an be de�ned as G∞ = G(t = 0)

with G(t) being the shear relaxation fun
tion. The shear relaxation fun
tion is given

by [5, 9℄

G(t) =
1

k
B

TV

〈
σzx(t)σzx(0)

〉
, (3.9)
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Figure 3.4: Bulk modulus K(T ) as a fun
tion of temperature T for N =

64, 32, 16, 8, 4. (See Table A.5 for the numeri
al values.)

where σαβ denote the stress tensor with (α, β = x, y, z). The stress tensor is given

by [55℄

σαβ =

M∑

i=1

mvi,αvi,β − 1

2

M∑

i=1

(
ri,α

∂U(rM )

∂ri,β
+ ri,β

∂U(rM )

∂ri,α

)
, (3.10)

where the 
omponents of the position ri (the velo
ity vi) of monomer i (= 1, . . . , M)

are denoted by ri,α (vi,α), and total potential is denoted by U . Here, for 
onvenien
e,

the monomers of the system are labeled by just one index (i = 1, . . . , M = nN).

In Fig. 3.5 G∞ is depi
ted for all 
onsidered 
hain lengths. In the investigated

temperature range G∞ shows an almost linear dependen
e on the temperature.

3.3 Stati
 stru
ture fa
tor

What are the basi
 ingredients that des
ribe the stru
ture of our system? And

how 
an these basi
 ingredients be 
aptured in a 
onvenient way? One of these

basi
 ingredients are the density �u
tuations of the 
onsidered parti
les (monomers,


hains) of the melt. By density �u
tuations we understand the deviation of the lo
al

density from the averaged density.

The stati
 stru
ture fa
tor [9, 21℄ 
an be seen as the mean square average of these

density �u
tuations. The stati
 stru
ture fa
tor is 
losely related, via a Fourier
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(See Table A.6 for the numeri
al values.)

transform, to the pair 
orrelation fun
tion [9℄ whi
h 
orresponds to the radial dis-

tribution fun
tion for the systems that we study (
f. se
tion 3.4). In this 
ontext we

want to mention that the �rst peak of the stati
 stru
ture fa
tor (see for example

Fig. 3.6) reveals informations about the ordering of monomers in shells around a

labeled monomer [4℄

In the following we introdu
e the stati
 stru
ture fa
tor in terms of density �u
-

tuations. Here we follow Ref. [37℄ and spe
ially [4, 22℄:

We 
onsider a polymer melt 
onsisting of n monodisperse 
hains of N monomers

in a volume V . For a wave ve
tor q, the 
oherent monomer density �u
tuations are

given by

ρa(q) =

n∑

i=1

eiq·ra
i (a = 1, . . . , N) , (3.11)

where ra
i denotes the position of the ath monomer in the ith 
hain [22℄. The sum

over all monomers of a 
hain yields the total monomer density �u
tuations

ρ
tot

(q) =
N∑

a=1

ρa(q) =
n∑

i=1

N∑

a=1

eiq·ra
i . (3.12)

In terms of the total monomer density �u
tuation the 
olle
tive stru
ture fa
tor of

the melt is then given by
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S(q) =
1

nN
〈ρ

tot

(q)∗ρ
tot

(q)〉 (3.13)

=
1

nN

〈 n∑

i,j=1

N∑

a,b=1

e−iq·ra
i eiq·r

b
j

〉
, (3.14)

with 〈·〉 denoting the 
anoni
al averaging. This equation shows the above mentioned

approa
h to the stati
 stru
ture fa
tor as the mean square average of the density

�u
tuations.

The 
olle
tive stati
 stru
ture 
an be split into an intra-
hain and an inter-
hain

part [22℄ whi
h yields

S(q) = w(q) + ρh(q), (3.15)

here ρ = nN/V denotes the monomer density, w(q) the intra-
hain 
ontribution and

ρh(q) the inter-
hain 
ontribution

1

. These 
ontributions are given by

ρh(q) =
1

nN

N∑

a,b=1

〈 n∑

i6=j

e−iq·(ra
i −r

b
j)

〉
(3.16)

and

w(q) =
1

nN

N∑

a,b=1

〈 n∑

i=1

e−iq·(ra
i

−r
b
i )

〉
. (3.17)

w(q) is also named the �form fa
tor� [22℄.

The main �gures of Fig. 3.6 and Fig. 3.7 show the stati
 stru
ture fa
tor S(q) for

two temperature T = 0.50, 0.44 and for 
hain lengths of N = 64 (Fig. 3.6) and N = 4

(Fig. 3.7). In this temperature interval all systems 
onsidered (N = 64, 32, 16, 8, 4

and pressure p = 0) have a stru
ture that is typi
al of dense, disordered melts [4℄.

Additionally we show in Fig. 3.6 the form fa
tor w(q), it shows no di�eren
es upon


ooling for the depi
ted temperature range.

The weak 
ompressibility of the melt is re�e
ted by the small value of S(q) in the

q → 0 limit. In this 
ontext we want to remind of Eq. (3.7)

κ(T ) = lim
q→0

S(q, T )

k
B

Tρ(T )
∝ lim

q→0
S(q, T ). (3.18)

1

Here h(q) denotes the Fourier transform of the site-averaged intermole
ular pair 
orrelation

fun
tion [4, 40℄
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In this sense the stati
 stru
ture fa
tor is a 
ontinuation of the 
ompressibility to

�nite wave ve
tors [37℄.

For larger values of q, S(q) in
reases toward the �rst peak whi
h is also the

maximum of S(q). The q-value for whi
h S(q) rea
hes its maximum will be denoted

by q
max

. For our model q
max

≃ 7.1 
orresponds to the length s
ale of a monomer

diameter. This points to the fa
t that the main 
ontribution to S(q
max

) 
an be found

in the amorphous pa
king of monomers in the nearest-neighbor shell lo
ated around

a monomer [4℄.

From Fig. 3.6 it 
an be inferred that upon 
ooling the stru
ture of the system

stays essentially the same. Espe
ially no long-range stru
tural 
orrelations develop.

The only noti
eable di�eren
e is that due to the in
reasing density the pa
king gets

tighter whi
h is re�e
ted by the in
rease of S(q
max

) [4℄. To illustrate this point we

refer to the insets (a) and (b) of Fig. 3.6. These insets show that the �rst peak of S(q)

grows and shifts to larger q values upon 
ooling. The shift to larger q values indi
ates

the in
rease of the density. This is also supported by the 
omparison of di�erent


hain lengths. In se
tion 3.1 we showed that the density of systems 
ompared at

the same temperature and pressure depends on the 
hain length. The longer the


hain length the higher the density. This is re�e
ted when we 
ompare the position

of q
max

for di�erent 
hain length (see for example the inset (a) of Fig. 3.6): With

in
reasing 
hain length q
max

is shifted to higher values. By 
omparing this shift for

the depi
ted 
hain lengths relatively to ea
h other we �nd again a signature that

the relative di�eren
es of the density s
ale like the re
ipro
al 
hain length. This

observation seems even to hold for the height of the peak of S(q
max

).

3.4 Radial distribution fun
tion

In the last se
tion we introdu
ed the stati
 stru
ture whi
h 
aptures the stati


properties of a many body system in re
ipro
al spa
e. Here we turn to a quantity

that de
odes the stru
ture in real spa
e. This is provided by the pair distribution

fun
tion g(r) [21℄. It answers the question: Given that a parti
le sits in the origin

how large is then the probability to �nd another parti
le at pla
e r.

As the systems that we study are homogeneous and isotropi
 there is no spe
ial

point or a spe
ial dire
tion. Thus it is su�
ient to 
onsider the radial pair distribu-

tion fun
tion g(r), often just referred to as the radial distribution fun
tion, whi
h

depends only on the modulus of r = |r| [18℄. It measures the probability to �nd a
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Figure 3.6: Main �gure: Stati
 stru
ture fa
tor S(q) and form fa
tor w(q) for N = 64

and T = 0.50; 0.44 vs the modulus of the wave ve
tor q. The dash-dotted lines

indi
ate the q-interval for whi
h the insets are shown. It shows the region around

the �rst peak of the stati
 stru
ture fa
tor. Inset (a): Stati
 stru
ture fa
tor for

N = 64; 16; 4 and T = 0.50 for the indi
ated q-interval. Inset (b): Stati
 stru
ture

fa
tor for N = 64; 16; 4 and T = 0.44 for the indi
ated q-interval. The dash-dotted

lines indi
ate the stati
 stru
ture fa
tor for T = 0.50.
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Figure 3.7: Main �gure: Stati
 stru
ture fa
tor for N = 4 and T = 0.50; 0.44 vs

the modulus of the wave ve
tor q. The dash-dotted lines indi
ate the q-interval for

whi
h the insets are shown. It shows the region around the se
ond peak of the stati


stru
ture fa
tor. Inset (a): Stati
 stru
ture fa
tor for N = 64; 16; 4 and T = 0.50

for the indi
ated q-interval. Inset (b): Stati
 stru
ture fa
tor for N = 64; 16; 4 and

T = 0.44 for the indi
ated q-interval. The dash-dotted lines indi
ate the stati


stru
ture fa
tor for T = 0.50.

dr

r

Figure 3.8: S
hemati
 representation of the de�nition of the radial distribution

fun
tion. Inspired by Ref. [21℄.
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monomer at a distan
e r given there is a monomer in the origin. Figure 3.8 shows

a s
hemati
 representation of g(r). The radial distribution fun
tion for our systems


an then be de�ned by [9℄

ρg(r) =
1

nN

nN∑

i6=j

〈δ(r − rij)〉 , (3.19)

with rij = |rj − rj| denoting the distan
e between monomer i and j.

In this way the lo
al density at a distan
e r from the origin is given by ρg(r).

The prefa
tor

1
nN

normalizes ρg(r) a

ording to the total number of parti
les whi
h

is given by the number of 
hains n times the monomers per 
hain N .

As a result the average number of neighbors whi
h reside within a distan
e R

from a given monomer [9℄ is given by

G̃(R) = 4πρ

∫ R

0

dr r2g(r) . (3.20)

By dis
retizing this 
on
ept spheri
al shells of thi
kness dr are 
onsidered at

distan
e r from a labeled parti
le. The number of parti
les found in su
h a shell is

proportional to g(r) (
f. Fig. 3.8).

The position of the �rst peak of g(r) re�e
ts the distan
e between bonded monomers

whi
h is ≈ l
0

. The subsequent steep slope of g(r) mirrors the sti� harmoni
 bond po-

tential that we employ. The probability that bonded monomers are separated from

ea
h farer than the average bond length l
0

is very small. Non-bonded monomers


annot get so 
lose to ea
h other, as this is impeded by the steep slope of the re-

pulsive part of the Lennard-Jones potential. The se
ond peak shows the ordering

of the monomers in shells around themselves. The subsequent os
illation around 1

a

ounts for the shells formed around the �rst nearest-neighbor shell. For large r

g(r) �nally rea
hes a value of 1 whi
h demonstrates that there is no long-range order

in the polymer melts. This is equivalent to saying that g(r) for large r probes the

density of the system as the systems under 
onsideration do not exhibit long range

order.

The se
ond peak shows the biggest temperature dependen
e of g(r) (see the inset

of Fig. 3.9). The temperature dependen
e of the �rst peak is less pronoun
ed. From

this observation we 
an extra
t the following: De
reasing the temperature goes along

with in
reasing density whi
h results in a tighter pa
king of the monomers. Due to

this tighter pa
king monomers are rearranged. This rearrangement in the �rst shell

among non-bonded monomers is more e�e
tive than for bonded 
hain monomers.
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Figure 3.9: Main �gure: For N = 64 the radial distribution fun
tion for the tem-

peratures of T = 0.50 and 0.44 are 
ompared. The bla
k dash-dotted lines indi
ate

r = 0.967 = l
0

and r = 1.09 around whi
h the se
ond peak o

urs. Inset: Zoom on

the �rst and se
ond peaks of g(r).

The impa
t of the 
hain length for totally �exible 
hains on the lo
al stru
ture is

not large (see Fig. 3.10). By 
omparing g(r) for 
hain lengths of N = 64 and N = 4

we �nd that the only remarkable di�eren
es are visible in the �rst and se
ond peak.

This e�e
t is a

ounted for by the di�erent relative ratio of end monomers. Two end

monomers will approa
h ea
h other not more 
losely than given by the Lennard-

Jones potential. This leads to an inversion of the height of the peaks. For N = 4

the �rst peak is lower than for N = 64, whereas for the se
ond peak the inverse

observation 
an be done. This a

ounts for the fa
t that ρg(r) is a probability whi
h

obeys:

∫
d

3r ρg(r) = 
onst (3.21)

The small shift of g(r) for N = 64 
ompared to that of g(r) for N = 4 whi
h

o

urs for distan
es larger than the monomer diameter seems to be explainable by

the slightly larger density of the system 
onsisting of 
hain length N = 64.
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Figure 3.10: Main �gure: For T = 0.44 the radial distribution fun
tion for N = 64

and N = 4 are 
ompared. The bla
k dash-dotted lines indi
ate r = 0.967 = l
0

and

r = 1.09 around whi
h the se
ond peak o

urs. Inset: Zoom on the �rst and se
ond

peaks of g(r). An inversion of the height of these peaks for N = 64 and N = 4,

when 
ompared with ea
h other, is observed.
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Figure 3.11: S
hemati
 representation of the end-to-end ve
tor. The ve
tors r1
, r2

denote the position of monomer 1 and 2. The bond ve
tor R1 denotes the bond

from monomer 1 to 2 (analogously R3 and R7). R
e

denotes the end-to-end ve
tor.

3.5 End-to-end ve
tor

The quantities dis
ussed so far 
an also be de�ned for non-polymeri
 systems. Now

we turn to polymer spe
i�
 quantities. A 
entral quantity 
hara
terizing polymers is

the end-to-end ve
tor R
e

of the 
hains [26, 39, 71℄. By 
onsidering the bond ve
tors

Ra = ra+1 − ra
(where we dropped the indi
es denoting the 
hain) between the ath

and (a + 1)th monomer of a 
hain the end-to-end ve
tor is given by (
f. Fig. 3.11)

R
e

=

N−1∑

a=1

Ra . (3.22)

We 
onsider the squared value of the end-to-end ve
tor averaged over the whole

system

R2
e

=
〈
R2

e

〉
, (3.23)

where 〈·〉 denotes the 
anoni
al averaging.

In Fig. 3.12 we show in the inset the temperature dependen
e of R2
e

for 
hain

lengths N = 64, 32, 16, 8, 4. It 
an be seen that the absolute temperature dependen
e

is only visible for 
hain length N & 16 and that it in
reases with in
reasing 
hain

length. Thus we show in the main �gure of Fig. 3.12

R2
e

l2
0

N
as a fun
tion of N . By

doing so we relate the squared end-to-end ve
tor to the R2
e

= Nl2
0

of an ideal 
hain

[26℄ with bond length l
0

. In this way the relative temperature dependen
e be
omes

obvious and the deviation from the behavior of an ideal 
hain. The reason for the

deviation from the behavior of an ideal 
hain 
an be found in the ex
luded volume
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Figure 3.12: Main �gure:

R2
e

l2
0

N
as a fun
tion of N for temperatures T = 1.00, 0.70, 0.50

and 
hain lengths of N = 64, 32, 16, 8, 4. Inset: Mean squared end-to-end distan
e

R2
e

as a fun
tion of N for T = 1.00, 0.70, 0.50.

of the monomers. This 
onstraint 
auses the 
hains to be
ome swollen 
ompared to

ideal 
hains. We will dis
uss this in more detail in the next se
tion.

The temperature dependen
e in
reases with 
hain length. This seems to be plau-

sible as the main 
ontribution of the 
hange of the end-to-end distan
e as a fun
tion

of temperature is found in the density. A lower temperature results in a higher

density whi
h just means that the monomers are tighter pa
ked. As this a�e
ts all

monomers of a 
hain the resulting e�e
t is more pronoun
ed for longer 
hains.

3.6 Intra-
hain distan
es and e�e
tive bond length

In this se
tion we dis
uss the internal distan
es of a 
hain. This is interesting to

study as it reveals information about the 
onformation of the 
hains. The internal

distan
es are measured between monomers of one 
hain. This distan
e 
an be re-

lated then to the 
urvilinear length between the 
onsidered monomers. This shows

how monomer properties (e.g. the ex
luded volume) and system properties (e.g. the

density) in�uen
e 
hain properties.

The mean-square intra-
hain distan
e

R2
s

s
measures the mean-square distan
e be-

tween 
hain monomers that are separated by s bonds [8℄ and is given by
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Figure 3.13: Mean-square intra-
hain distan
e for N = 64, 32, 16, 8, 4 and T = 0.50

as a fun
tion of the 
urvilinear length s.
R2

1

1
is given by the squared equilibrium

bond length l2
0

= 0.935.

R2
s

s
=

〈R2
s

〉
s

=
1

sn

n∑

i=1

1

N − s

N−s∑

a=1

〈(ra+s
i − ra

i )
2〉 , (3.24)

where the positions of the monomers are denoted by ra
i . The subs
ript i = 1, . . . , n

denotes the 
hains and the supers
ript a = 1, . . . , N the monomer in the 
hain.

Equation (3.24) is evaluated for every mean-square intra-
hain distan
e separately.

s takes ea
h value out of s = 1, . . . , N − 1 whi
h 
orresponds to the smallest intra-


hain distan
e between two monomers up to the end-to-end distan
e of the whole


hain for s = N − 1.

As the mean-square intra-
hain distan
e in
ludes all intra-
hain lengths it allows

to 
ompare systemati
ally systems whi
h only di�er in the 
hain length of their


onstituting 
hains. Therefore it is an ideal quantity to 
ompare the systems under


onsideration from a stati
al point of view.

In Fig. 3.13 we show the mean-square intra-
hain distan
e

R2
s

s
at temperature

T = 0.50 for di�erent 
hain lengths N = 64, 32, 16, 8, 4. We want to point to the

following observations: For s = 1 all 
urves start from a value that is given by the

squared equilibrium bond length, whi
h is given for our system by l2
0

= 0.935.

For an ideal 
hain [26℄ (without ex
luded volume) whi
h follows random walk

statisti
s,

R2
s

s
= 
onst = l2

0

for all s. The fa
t that

R2
s

s
in Fig. 3.13 is in
reasing

indi
ates a swelling of the 
hain with respe
t to an ideal 
hain. An upper bound is
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set by the limit of a 
ompletely extended 
onformation. In this situation the real-

spa
e distan
e is identi
al to the 
urvilinear distan
e, thereby

R2
s

s
= l2

0

s. Our data is

not in
reasing so strongly, and the 
urves are levelling o� for larger s. Our 
hains

are thus not sti�. For large 
urvilinear length,

R2
s

s
rea
hes an apparent plateau. For

N ≥ 16, a �nal de
rease of the 
urve is observed whi
h 
an be explained by a �nite


hain length e�e
t [79℄.

E�e
tive bond length The mean-square intra-
hain distan
e for the 
hains de-

pi
ted in Fig. 3.13 follows an underlying universal 
urve. This 
urve 
an be des
ribed

by [79℄

R2
s

(s)

s
= b2

e

[
1 − c1

(√
24

π3

1

ρb3
e

1√
s

)]
, (3.25)

with b
e

being the e�e
tive bond length (see below) and c1 a 
onstant whi
h is given

by c1 = 1.2 for a bead-spring model [79℄.

Wittmer and 
o-workers show that due to the in
ompressibility of the melt an

e�e
tive repulsion between 
hain segments emerges whi
h s
ales with 1/
√

s [79℄.

The e�e
tive repulsion gives rise to long range 
orrelations in polymer melts. They

argue that these long range 
orrelations 
ause a systemati
 swelling of short 
hain

segments. This swelling 
an be des
ribed by an e�e
tive bond length b
e

. We employ

equation Eq. (3.25), whi
h is taken from this work, as a one-parameter extrapolation

formula to determine the e�e
tive bond length b
e

of our system as a fun
tion of

temperature T .

We are aware of the fa
t that the studied 
hains here are 
omparatively smaller

than the 
hains they fo
ussed on. Nevertheless it should be possible to determine the

temperature dependen
e of the e�e
tive bond length. In Eq. (3.25) the temperature

dependen
e is a

ounted for by the temperature dependent density and e�e
tive

bond length b
e

. The temperature dependen
e of the density is 
onferred to the

e�e
tive bond length.

In �gures 3.14 � 3.16 we show the result of our �tting pro
edure. We 
hoose a

�tting interval of s ∈ [3 : 30]. This 
hoi
e is motivated by the fa
t that in this

interval

R2
s

s
is 
omparatively well approximated by Eq. (3.25) in [79℄. See Fig. 3.17

for the values that we got by the �tting pro
edure. By plotting the values for the

e�e
tive bond length as a fun
tion of temperature T we observe that they do not

de
rease in a linear way.
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Figure 3.14: Main �gure: Mean-square intra-
hain distan
e for N = 64, 32, 16, 8, 4

vs 
urvilinear distan
e s for T = 0.50. R2
s

s
is �tted using Eq. (3.25) to determine

the e�e
tive bond length b
e

whi
h is found to be b
e

= 1.304 for T = 0.50. The

�tting interval is set to s ∈ [3 : 30]. Inset: The inset shows R2(s)/(sb2
e

) as a fun
tion

of 1/(ρb3
e

√
s). The bla
k dotted line is given by f(x) = 1 − c1

√
24
π3 x. Thus the

a

ordan
e of

R2
s

s
for the N = 4, 8, 16, 32, 64 with it shows the a

ura
y of the �t.
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Figure 3.15: Mean-square intra-
hain

distan
e for N = 64, 32, 16, 8, 4 vs


urvilinear distan
e s for T = 0.70. R2
s

s

is �tted Eq. (3.25) to determine the ef-

fe
tive bond length b
e

whi
h is found

to be b
e

= 1.312 for T = 0.70. The

�tting interval is set to s ∈ [3 : 30]. In-

set: The inset shows R2(s)/(sb2
e

) as a

fun
tion of 1/(ρb3
e

√
s). The bla
k dot-

ted line is given by f(x) = 1−c1

√
24
π3 x.

Thus the a

ordan
e of

R2
s

s
for the N =

4, 8, 16, 32, 64 with it shows the a

u-

ra
y of the �t.
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Figure 3.16: Mean-square intra-
hain

distan
e for N = 64, 32, 16, 8, 4 vs


urvilinear distan
e s for T = 1.00. R2
s

s

is �tted Eq. (3.25) to determine the ef-

fe
tive bond length b
e

whi
h is found

to be b
e

= 1.331 for T = 1.00. The

�tting interval is set to s ∈ [3 : 30]. In-

set: The inset shows R2(s)/(sb2
e

) as a

fun
tion of 1/(ρb3
e

√
s). The bla
k dot-

ted line is given by f(x) = 1−c1

√
24
π3 x.

Thus the a

ordan
e of

R2
s

s
for the N =

4, 8, 16, 32, 64 with it shows the a

u-

ra
y of the �t.

In Fig. 3.18 we depi
t

R2
s

s
for a 
hain length of N = 64 and temperatures of

T = 0.50 and 0.44. For T = 0.44 we observe that the mean-square intra-
hain

distan
e shows a behavior di�erent from the one des
ribed above. We suppose that

this is due to insu�
ient statisti
s. This 
an be explained when one takes into

a

ount that

R2
s

s
is always 
al
ulated over a �nite number of phase spa
e states

given by simulation 
on�gurations. For this reason a behavior like the one found

in Fig. 3.18, just re�e
ts the fa
t, that the 
hains of the system were not given the


han
e to explore a big enough region of the phase spa
e for the largest s [8℄.

Thus not all possible 
hain 
onformations 
ould be realized whi
h results in the

undershoot of

R2
s

s
. The example for the 
urve at T = 0.44 where a 
lear drop 
an be

seen indi
ates that in this 
ase 
hain 
on�gurations with a 
ompressed 
onformation

are overrepresented.

But due to the property of the mean-square intra-
hain distan
e to s
an the 
hains
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Figure 3.17: Left: Values determined for b
e

by �tting

R2
s

s
for temperature T =

1.00, 0.70, 050 (see �gures 3.14 � 3.16). We use equation Eq. (3.25) as a one-

parameter extrapolation formula to determine the e�e
tive bond length b
e

for our

systems. Right: E�e
tive bond length b
e

as a fun
tion of temperature T . The e�e
-

tive bond length does not de
rease as a linear fun
tion of T whi
h is indi
ated by

the bla
k dashed line.
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Figure 3.18: Mean-square intra-
hain distan
e for N = 64 and temperature T =

0.50, 0.44. For T = 0.44 not enough simulation 
on�gurations are 
onsidered. The

bla
k dashed line indi
ates s = 20. Until this value R2
s

s
shows a �normal� behavior.

on all s it is still possible to estimate up to whi
h s the equilibration is su�
ient.

This argument will be
ome stronger by referring to Fig. 3.18. It 
an be seen that

up to an mean-square intra-
hain distan
e of around s ≈ 20, R2
s

s
for T = 0.50 and

T = 0.44 show a 
omparable behavior. For this reason we argue that the average
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taken over simulation 
on�gurations up to internal distan
e of this order for this

parti
ular system reprodu
e su�
iently well an ensemble average. This is espe
ially

important when we approa
h lower temperatures. With de
reasing temperatures

it will get harder to have enough 
on�gurations in order to realize the ensemble

average for all 
hain lengths. Due to the above 
onsideration the �nite number of


on�gurations will be still su�
ient to realize the ensemble average for subsegments

of the 
hain.



Chapter 4

Dynami
s: Mode-
oupling theory

inspired analysis

4.1 Introdu
tion

In this 
hapter we analyse the dynami
 properties of our system. Thereby we will

fo
us on 
oherent and in
oherent intermediate s
attering fun
tions, φq(t) and φs

q(t).

Other dynami
al quantities, like the mean square displa
ement of all monomers g0(t)

or the shear relaxation fun
tion G(t), will be dis
ussed in the next 
hapter.

The 
oherent intermediate s
attering fun
tion φq(t)
1


an be de�ned by [11℄

φq(t) =
1

MS(q)

〈 M∑

i=1

M∑

j=1

e−iq·[ri(t)−rj(0)]
〉

, (4.2)

where M denotes the total number of monomers, ri(t) the position of monomer i of

the melt at time t and S(q) the stati
 stru
ture fa
tor. The stati
 stru
ture fa
tor

a

ounts for the normalization of φq(t = 0) = 1:

φq(t = 0) =
1

MS(q)

〈 M∑

i=1

M∑

j=1

e−iq·[ri(0)−rj(0)]
〉

=
1

MS(q)
MS(q) = 1 . (4.3)

It 
an be regarded as the dynami
 
omplement to the stati
 stru
ture fa
tor. It

shows how density �u
tuations of the system are 
orrelated. These density �u
tua-

1

In the 
ontext of the mode-
oupling theory [37℄ the 
oherent intermediate s
attering fun
tion

is named density 
orrelator and de�ned in terms of the total monomer density �u
tuations, see

se
tion 3.3,

φq(t) =
1

MS(q)

〈
ρ
tot

(q, t)∗ρ
tot

(q, t = 0)
〉

. (4.1)

43
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tions are evaluated for a time di�eren
e ∆t = t−0 on a distin
t real spa
e wavelength

λ whi
h is given by the modulus of the 
onsidered wave ve
tor, |q| = q = 2π
λ
.

The in
oherent intermediate s
attering fun
tion φs

q(t) 
an be de�ned by [11℄

φs

q(t) =
1

M

〈 M∑

i=1

e−iq·[ri(t)−ri(0)]
〉

. (4.4)

The in
oherent and 
oherent intermediate s
attering fun
tions di�er in the fol-

lowing fa
t: The 
oherent s
attering fun
tion relates the position of a monomer at

time t to the other monomers' position at time t = 0. In 
ontrast to that the in
o-

herent s
attering fun
tion only 
orrelates a monomer's position at time t = 0 to its

position at a di�erent time t.

In this sense φq(t) reveals more information about the system as the 
oherent

intermediate s
attering fun
tion espe
ially probes the 
olle
tive dynami
s of the

system. For large q-values q ≫ q∗, where q∗ denotes the �rst peak of the stati


stru
ture fa
tor S(q), φq(t) and φs

q(t) show a similar behavior. This is due to the

fa
t that for the probed small distan
es the monomers � also in the 
ase of the


oherent intermediate s
attering fun
tion � are only 
orrelated with themselves.

4.2 Ideal mode-
oupling theory analysis

In the following part we analyse our system in the framework of the ideal mode-


oupling theory (MCT). Referen
e [11℄ suggests that this kind of analysis is appro-

priate for totally �exible models of polymer melts.

In the following paragraph we summarize the main aspe
ts of the ideal MCT

whi
h are essential for our subsequent analysis. Our summary mainly follows [11℄

and referen
es therein. For a more general introdu
tion to MCT we refer to [37℄.

One of the key features of MCT [34�38℄ is the predi
tion of an ideal glass transition

s
enario. By this is understood that density �u
tuation 
orrelations will �nally

relax for temperatures above the 
riti
al temperature T



. Below T



these density

�u
tuations will not 
ompletely relax, but remain at some �nite value. These density

�u
tuation 
orrelations are des
ribed in terms of 
orrelation fun
tions like φq(t).

MCT proposes a dynami
al equation for φq(t), whi
h is only determined by the

stati
 stru
ture of the 
onsidered system.

2

Another key feature is that the time

2

In the 
ase of simple liquids the stati
 stru
ture 
an be 
aptured only by S(q). In an extension

of the MCT to polymer systems [22℄, the stati
 stru
ture of the system � due to the existen
e of
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evolution of φq(t) is 
oupled to that of all other produ
ts of 
oherent intermediate

s
attering fun
tions, like φk(t)φp(t), when k + p = q holds for the 
onsidered wave

ve
tors k,p and q.

In the ideal MCT the ideal glass transition s
enario is 
aptured mathemati
ally

by a bifur
ation, whi
h o

urs at T



in the limit of t → ∞:

lim
t→∞

φq(t) =

{
0 for T > T




,

fq(T ) for T ≤ T



.

(4.5)

fq(T ) is named the non-ergodi
ity parameter. It gives the �nite value at whi
h φq(t)

remains for t → ∞ for T ≤ T



and states the fa
t that below T



φq(t) does not


ompletely relax anymore.

As MCT espe
ially deals with dynami
s o

urring for temperatures 
lose to T



,

a measure to des
ribe the `distan
e' to T



, the so-
alled separation parameter, is

introdu
ed by

σ = C
T



− T

T



. (4.6)

C is a 
onstant depending on the 
onsidered system.

Another important predi
tion of MCT is that there is only one relevant time s
ale

in a glass-forming system whi
h is the mi
ros
opi
 time s
ale t0. It is 
onne
ted to

the β relaxation time via

tσ =
t0

|σ|1/2a
(0 < a < 0.3953), (4.7)

and to the α relaxation time via

t′σ =
t0
|σ|γ , (4.8)

with γ = 1
2a

+ 1
2b

(γ > 1.765). The β relaxation time is the relevant time s
ale in the

β regime and the α relaxation time in the α regime. (For a qualitative impression

where this relaxation regimes o

ur see Fig. 4.1.)

The parameters a and b (the von S
hweidler exponent) are related to ea
h other

via the exponent parameter λ by [11℄

λ =
Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
(1/2 ≤ λ < 1) . (4.9)

We will 
ome ba
k to this relation, when we determine γ from b.

polymer 
hains the system exhibits a higher stru
tural 
omplexity � is 
aptured by S(q) and the

form fa
tor w(q).
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Figure 4.1: Coherent intermediate s
attering fun
tion φq=6.9(t) for N = 16 as a

fun
tion of time t. For T = 0.43 the approximated time intervals are indi
ated

where the MCT α- and β pro
esses o

ur. The value 0.1 is marked by a horizontal

bla
k dashed line. This value is used to determine a relaxation time τ ∗
q .

Asymptoti
 formulae The following asymptoti
 expressions are only valid for

temperatures 
lose to T



, whi
h translates to small σ.

The intermediate time regime of the relaxation pro
ess within whi
h φq(t) relaxes

to the plateau (φq(t) ≈ fq) and, for T > T



, relaxes from it is 
alled the β regime.

This regime 
an be more pre
isely de�ned by |fq −φq(t)| ≪ 1 [11℄. Within this time

regime MCT predi
ts that φq(t) 
an be expanded for t ∼ tσ up to the �rst order by

φq(t) = f 


q + hq

√
|σ| g(t̂) , (4.10)

with hq the 
riti
al amplitude and t̂ = t/tσ. Equation (4.10) 
an be rewritten using

the β 
orrelator Gβ(t) = g(t̂)
√

|σ| in the following form

φq(t) = f 


q + hqGβ(t) . (4.11)

Thereby it be
omes obvious that the 
orre
tion to f 


q , namely hqGβ(t), splits into

two fa
tors: hq only depends on q and the β 
orrelator Gβ(t) only depends on t and

σ. For this reason Eq. (4.11) is 
alled the fa
torization theorem.

Mode-
oupling theory predi
ts that there is a temperature interval in whi
h inter-

mediate s
attering fun
tion 
an be 
ollapsed onto ea
h other by res
aling the time t
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a

ording to some relaxation time τ . The so res
aled φq(t) are predi
ted to 
ollapse

onto one temperature independent shape fun
tion φ̃q(·), whi
h is also referred to as

a master fun
tion [37℄. Mathemati
ally this relation is expressed within the MCT

by

φq(t) = φ̃q(t/t
′
σ) (t ≥ tσ) . (4.12)

This relation is referred to as the time-temperature superposition prin
iple (TTSP).

Data analysis: pro
edure The �nal goal of this analysis is to determine mode-


oupling-theory quantities like T



, a, b, λ, γ as a fun
tion of the 
hain length N .

We perform this analysis in the following steps:

• First we 
he
k in whi
h temperature interval the time-temperature superpo-

sition prin
iple (TTSP) is valid. This gives a �rst estimate within whi
h

temperature interval the ideal MCT applies [11℄. Additionally to that, it gives

us an estimation for the lower bound of the non-ergodi
ity parameter f 


q .

• In a se
ond step we 
he
k if the fa
torization theorem is also valid. This step

also serves as a 
ross
he
k.

• In a subsequent step we �t φq(t) by employing the von S
hweidler law and its

leading order 
orre
tion Eq. (4.14) This is done for ea
h 
hain length for the

lowest temperature that still obeys the TTSP. By this 
hoi
e we 
an a

ess

the largest time interval possible for the �t. Therefore the �t results might

rea
h the highest possible pre
ision. From these �ts we determine values for

the MCT quantities of b, f 


q .

• From the �tted b we 
al
ulate λ and a, and from a and b we 
al
ulate γ. The


al
ulated γ is then used to determine T



by �tting the α relaxation times for

di�erent temperatures in a temperature interval where the ideal MCT 
an be

applied.

4.2.1 Time-temperature superposition prin
iple

We start to determine the temperature interval within whi
h the ideal mode-
oupling

theory should apply. This temperature interval 
an be found by testing the time-

temperature superposition prin
iple.

In the �gures 4.2 � 4.6 we show the result of the res
aled 
oherent intermediate

s
attering fun
tion for the 
hain lengths of N = 64, 32, 16, 8, 4.
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Figure 4.2: Coherent intermediate s
attering fun
tion φq=6.9(t) for N = 64 res
aled

a

ording to the α relaxation time (τq∗)
−1
, whi
h is determined by φq=6.9(t = τq∗) =

0.1.
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Figure 4.3: Coherent intermediate s
attering fun
tion φq=6.9(t) for N = 32 res
aled

a

ording to the α relaxation time (τq∗)
−1
, whi
h is determined by φq=6.9(t = τq∗) =

0.1.
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a
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, whi
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Figure 4.5: Coherent intermediate s
attering fun
tion φq=6.9(t) for N = 8 res
aled

a

ording to the α relaxation time (τq∗)
−1
, whi
h is determined by φq=6.9(t = τq∗) =

0.1.
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attering fun
tion φq=6.9(t) for N = 4 res
aled

a

ording to the α relaxation time (τq∗)
−1
, whi
h is determined by φq=6.9(t = τq∗) =

0.1.

Pro
edure

To test the TTSP we pro
eed as follows: We start by 
onsidering φq(t) for q = 6.9 for

a distin
t 
hain length. We take q = 6.9 as for this value φq(t) shows a 
omparatively

high plateau value and therefore promises to give more pre
ise results.

We illustrate our approa
h for the example of φq=6.9(t) for N = 64. For this


hain length we simulated in the NVT ensemble the following temperatures T =

0.50, 0.48, 0.47, 0.46, 0.45, 0.44. First we determine the time where φq(t) rea
hes a

value of 0.1 for every simulated temperature. This time is determined by a linear

interpolation between two data points whi
h are 
losest to 0.1. Next the φq(t)'s

are res
aled a

ording to these determined times. These times are the longer the

lower the 
onsidered temperature is. (Compare Fig. 4.1 where a similar situation

for N = 16 is depi
ted.) Due to the employed method to determine these relaxation

times and the limited amount of data points one needs to adjust the relaxation

times in order that φq(t) 
ollapses onto one master 
urve. This is done as long as

the following 
riteria are obeyed [32, 77℄

• the �nal relaxation pro
ess should overlap for all temperatures 
lose to TMCT




,

• φq(t) for a temperature should not interse
t with φq(t) of a higher temperature,
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N = 64 N = 32 N = 16 N = 8 N = 4

lowest temperature T 0.44 0.44 0.43 0.42 0.40

lower bound for f 


q=6.9 0.775 0.78 0.79 0.80 0.805

Table 4.1: Results obtained by testing the time-temperature superposition prin
iple:

Lowest temperature T denotes the lowest temperature that still seems to ful�ll the

TTSP. Lower bound for f 


q=6.9 denotes a lower bound for f 


q=6.9 for ea
h distin
t


hain length N .

• the higher the temperature, the earlier φq(t) should leave the master 
urve.

Figure 4.2 shows the result of this pro
edure for the 
hain length N = 64. All

simulated temperatures seem to ful�ll the TTSP. Therefore the ideal MCT should

apply even for the lowest temperature showed, T = 0.44. The bla
k dashed line

indi
ates a lower bound for the non-ergodi
ity parameter, f 


q=6.9 ≥ 0.775.

In Fig. 4.3 we show the result for N = 32. Here the lowest simulated temperature

T = 0.42 (dash-dotted line) apparently violates the TTSP. The fa
t that φq(t) for

T = 0.42 
ollapses in the �nal de
ay onto the other 
urves, but does not 
ollapse onto

the master 
urve for intermediate times 
an be taken as a sign that this temperature

does not ful�ll the TTSP. For T = 0.43 it is not so 
lear if the TTSP is still ful�lled

or not, as the di�eren
es in the shape of its φq(t) and the master 
urve are rather

small. The lower bound for f 


q=6.9 ≥ 0.78, determined from the data for T > 0.43,

is indi
ated by a bla
k dashed line.

The out
ome of this pro
edure for N = 16, 8 and 4 is depi
ted in �gures 4.4 �

4.6. For N = 16 the temperatures T = 0.42 and T = 0.41 violate the TTSP. From

T > 0.42 a lower bound for f 


q=6.9 ≥ 0.79 is determined. For N = 8 T = 0.41

and T = 0.40 violate the TTSP. From T > 0.41 a lower bound for f 


q=6.9 ≥ 0.80 is

determined. Finally, for N = 4 T = 0.39 and T = 0.38 violate the TTSP. From

T > 0.39 a lower bound for f 


q=6.9 ≥ 0.805 is determined.

In Table 4.1 we summarize our �rst results by testing the TTSP. For ea
h 
hain

length we determined the lowest temperature T for whi
h the asso
iated 
oherent

intermediate s
attering fun
tion still obeys the TTSP. We also give a lower bound

for f 


q=6.9.
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Figure 4.7: The fa
torization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.44 for N = 64. By de�nition Rq(t
′′ = 5.12) = 1 and Rq(t

′ = 30.7)=0. The

times t′′ and t′ were 
hosen su
h that they are within the plateau region. Thereby

it be
omes visible that even for times t . t′′ and t & t′ the 
urves 
ollapse onto

ea
h other. The ordering of φq(t) before entering the β regime and when leaving it

is 
onserved. The 
urves follow some kind of `ordering rule' [11℄.
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Figure 4.8: The fa
torization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.40 for N = 4. By de�nition Rq(t
′′ = 5.12) = 1 and Rq(t

′ = 30.7)=0. The

times t′′ and t′ were 
hosen su
h that they are within the plateau region. Thereby

it be
omes visible that even for times t . t′′ and t & t′ the 
urves 
ollapse onto

ea
h other. The ordering of φq(t) before entering the β regime and when leaving it

is 
onserved, ex
ept for q = 15.

4.2.2 Fa
torization theorem

The fa
torization theorem (
f. Eq. (4.11)) 
an be tested by �xing two times t′′ and

t′, with t′′ . tσ . t′, and evaluation of the following relation [11℄

Rq(t) =
φq(t) − φq(t

′)

φq(t′′) − φq(t′)
=

Gβ(t) − Gβ(t′)

Gβ(t′′) − Gβ(t′)
. (4.13)

As this test is easy to implement it was widely tested in simulations of fragile glass

formers [33, 47, 76, 78℄.

By de�nition Rq(t) does not dependent on q anymore. Therefore � in the β

regime � φq(t) for di�erent q values should 
ollapse onto ea
h other for one �xed

temperature. By this the MCT predi
tion of the fa
torization theorem 
an be

e�e
tively tested. In Fig. 4.7 this test is 
arried out for N = 64 and the lowest

temperature that still obeys the TTSP. It 
an be seen that φq(t) for di�erent q values


ollapse onto ea
h other on a time interval of about two de
ades. The ordering rule

[11℄ is valid, whi
h is a more signi�
ant test, is also obeyed.

In Fig. 4.8 we show the similar test for a 
hain length of N = 4 and for the lowest
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Figure 4.9: The fa
torization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.38 for N = 4. By de�nition Rq(t
′′ = 20.48) = 1 and Rq(t

′ = 81.92)=0. The

times t′′ and t′ were 
hosen su
h that they are within the plateau region. Thereby

it be
omes visible that even for times t . t′′ and t & t′ the 
urves 
ollapse onto ea
h

other. The ordering of φq(t) before entering the β regime and when leaving is not


onserved.

temperature for whi
h the TTSP still holds. t′′ and t′ are �xed for the same times as

in the 
ase for N = 64 and T = 0.44. Here, as well as for N = 64, φq(t) for di�erent

q values 
ollapse onto ea
h other. The ordering rule is valid ex
ept for q = 15.

In Fig. 4.9 we tested the fa
torization theorem for N = 4 and a temperature that

is slightly below the value we determined for T



(see se
tion 4.2.4 ). The fa
torization

theorem seems to be still valid but from our test it seems that the ordering rule is not

ful�lled anymore. The �u
tuations in the data shown in Fig. 4.9 
an be explained

by insu�
ient statisti
s.

4.2.3 Fit pro
edure

We pro
eed our analysis in the framework of the ideal mode-
oupling theory by

determining b and f 


q=6.9 for ea
h 
hain length. Therefore we �t the late β pro
ess,

whi
h overlaps with the early α pro
ess of the 
oherent intermediate s
attering

fun
tion [11℄. For this purpose we use the following formulation of the von S
hweidler
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law and the �rst leading order 
orre
tions to it as proposed in [11℄

φq(t) = f c
q − h̃fit

q (t/t′σ)
b
+ h̃fit

q B̃fit
q (t/t′σ)

2b
(tσ ≤ t) . (4.14)

Here, f 


q denotes the non-ergodi
ity parameter, t′σ the α relaxation time, and b

the von S
hweidler exponent. h̃fit
q is given by hqB, where hq denotes the 
riti
al

amplitude and B is a 
onstant. B̃fit
q is given by BBq, where Bq is a q dependent


onstant.

For the �tting pro
edure we use φq(t) for the lowest temperature where the TTSP

is still ful�lled. We make this 
hoi
e, as for this temperature the ideal mode-
oupling

theory should still hold. The lower the temperature, the longer the relaxation pro
ess

exhibited by φq(t). Therefore, the time interval within whi
h Eq. (4.14) 
an be �tted

is the largest, whi
h should �nally result in an appropriate good �t result.

Before we start to �t our data a

ording to Eq. (4.14), we �rst determine the

appropriate �t interval. This is 
ru
ial, as it serves a some kind of �hidden� �t

parameter [11℄. In the subsequent part, we want to use one �t interval for all 
hain

lengths to avoid in
onsisten
ies. This 
hoi
e is motivated by the following:

For φq(t) of all 
hain lengths and temperatures data is 
olle
ted at the same

times intervals. We are therefore restri
ted in the 
hoi
e of the �t interval to these

times intervals. The distan
es between the times at whi
h the data is 
olle
ted

varies, as we use a logarithmi
 pattern to 
olle
t data. Thus, the �t interval 
annot

easily be adapted for ea
h φq(t) so that it 
aptures the same part of the relaxation

pro
ess. Additionally to this, the a

essible temperatures of φq(t) for ea
h 
hain

length 
onsidered separately do not have to be ne
essarily in the same relative

distan
e to T



.

Consequently, the best 
hoi
e to make seems to use the same �t interval for all


hain lengths within whi
h φq(t) shows a similar relaxation behavior. To this end

we �t di�erent temperatures for ea
h 
hain length for whi
h φq(t) exhibits a similar

relaxation pro
ess.

The 
hoi
e of the temperatures for ea
h 
hain length is made due to the following:

We assume that T



depends on the 
hain length, whi
h seems likely when we 
onsider

our �ndings from the test of the TTSP. Furthermore, we assume that for all 
hain

lengths the lowest temperature for whi
h φq(t) still obeys the TTSP is at least at

similar relative distan
e to T



. Consequently, we assume that φq(t) for these lowest

temperatures exhibit a similar relaxation pro
ess for ea
h 
hain length. Therefore

using the lowest temperature for whi
h the TTSP is still valid for ea
h 
hain length
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Figure 4.11: Coherent intermediate s
attering fun
tion φq=6.9(t) for N = 16; �tted

a

ording to Eq. (4.14). Right border of the �t interval �xed at t = 500 while the left

border is varied: t = 10, 15, 20, 30. Red 
olor: left border t = 10 and 
orresponding

�t. Green 
olor: left border t = 15 and 
orresponding �t. Blue 
olor: left border

t = 20 and 
orresponding �t. Light blue 
olor: left border t = 30 and 
orresponding

�t.

separately, should lead to a 
omparable a

ura
y in the �t result. As above stated

�tting the lowest temperature allows to use the largest �t range.

For these reasons we �nally de
ide to 
hoose one �t interval whi
h we use for

the �t of φq(t) for all 
hain lengths. By this approa
h we hope to minimize the

systemati
 error or at least that the systemati
 error that we make is of 
omparable

size for all 
hain lengths.

Determination of the �t interval

In the following, we use φq=6.9(t) for N = 16 and T = 0.43 to determine an ap-

propriate �t interval when applying the von S
hweidler �t (Eq. (4.14)). We 
hoose

N = 16, as it represents the intermediate 
hain length.

In Fig. 4.10 we �x the left border (small times) of the �t interval at t = 20 and

vary the right border by using t = 350, 500, 2100. This 
hoi
e is motivated by the

demand that the �t interval should 
over a large part of the late β relaxation. We

then sele
t the �t interval by the requirement that the �t should des
ribe φq=6.9(t)
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�t interval [10, 500] [15, 500] [20, 500] [30, 500] [20, 2100] [20, 350]

f 
 �t

q

0.800690 0.799937 0.801079 0.798482 0.804714 0.813493

t
′
�t

σ 1.73638 1.73835 1.73368 1.78833 1.71399 1.92642

b�t 0.600357 0.604114 0.598863 0.610147 0.578552 0.517702

B�t

q 0.00600064 0.00599139 0.00601125 0.00603533 0.00583008 0.00190140

h�t

q 0.0154884 0.0152056 0.0156019 0.0149752 0.0170899 0.0232808

Table 4.2: Values obtained by �tting φq=6.9(t) a

ording to Eq. (4.14) for N = 16

and T = 0.43 using di�erent �t intervals (
f. Fig. 4.11).

averaged [20, 500] standard deviation

f 
 �t

q

0.80098 0.801079 0.0020671

t
′
�t

σ 1.7421 1.73368 0.024678

b�t 0.59841 0.598863 0.010664

B�t

q 0.0059737 0.00601125 7.3313 × 10−5

h�t

q 0.015672 0.0156019 7.4191 × 10−4

Table 4.3: Values obtained by �tting φq=6.9(t) a

ording to Eq. (4.14) for N = 16

and T = 0.43 using [20, 500] as �t interval 
ompared to the average value. This aver-

age is 
al
ulated for the obtained values using the �t intervals of [10, 500], [15, 500],

[20, 500], [30, 500] and [20, 2100]. For this average the standard deviation is indi-


ated.

for the largest possible range, espe
ially outside the �t interval. This requirement

seems to be best met, when the right right border is set to t = 500.

We then pro
eed to vary the left border using t = 10, 15, 20, 30, while keeping

the right one �xed (t = 500, see Fig. 4.11). The variation of the left border (in the

range that we probe) seems to result in a less pronoun
ed in�uen
e on the �t than

the variation of the right border.

In Table 4.2 we present the values that we obtained by �tting φq(t) of N = 16 for

a temperature of T = 0.43 by using Eq. (4.14). As the values obtained by 
hoosing

t
left

= 20 and t
rigth

= 350 as �t interval di�er strongly 
ompared to the other values

we ex
luded them from now on. This strong deviation 
an be explained as follows:

This 
hoi
e of the �t interval negle
ts a big part of the α relaxation. Therefore the

�t is 
omparatively less des
riptive 
ompared to the other �ts.

The mean value and the standard deviation of the obtained values for the other
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�t intervals are given in Table 4.3. From this table it 
an inferred that the values by

�tting within the border of t
left

= 20 and t
right

= 500 are 
omparable to the mean

values obtained from di�erent �ts and within the standard deviation.

We studied this in�uen
e as it is done for N = 16 and T = 0.43 for the other


hain length (N = 4, 8, 32, 64 for the lowest temperature that still obeys the TTSP)

and we �nd 
omparable results meaning that the variation of di�erent values for b�t

obtained for di�erent �t intervals is 
omparable. But due to the restri
tion of the


hoi
e of the �t interval � as already mentioned above � it seems 
learer to �x

the �t interval. Therefore we �x the �t interval to t
left

= 20 and t
right

= 500 for the

following �ts.

Fit

Now we �t � using the determined �t interval � a

ording to Eq. (4.14) φq(t) for

all 
onsidered 
hain lengths N = 64, 32, 16, 8, 4 where we use the lowest temperature

for whi
h φq=6.9(t) still ful�lls the TTSP.

In Fig. 4.12 we show the result for N = 16 and T = 0.43. We start to �t φq=6.9(t)

a

ording to Eq. (4.14) where all �ve parameters f 
 �t

q

, t
′
�t

σ , b�t, B�t

q , h�t

q are treated

as �t parameters. Thereafter we determine the 
rossover-time t

o

by the 
ondition

φq=6.9(t
o) = f 


q=6.9 [11℄. By using this relation we are then able to determine f 


q

for the other 
onsidered q-values of 4, 9.5, 12.8. In a last step, we then �t φq(t) for

q = 4, 9.5, 12.8 by setting b�t, t
′
�t

σ to the values obtained from the �t for q = 6.9 and

f 
 �t

q

to the values obtained by using φq=a(t
o) = f 


q=a. Thus, only B�t

q and h�t

q are

�tted.

As an additional test, we �tted the in
oherent intermediate s
attering fun
tion. In

Fig. 4.13 the in
oherent intermediate s
attering fun
tion for N = 16 and T = 0.43 is

�tted a

ording to Eq. (4.14) where we used for b�t, t
′
�t

σ and t

o

the values determined

by the �t of φq=6.9(t). As in these �ts only two free �t parameters are employed,

they show how 
omparatively well this �t pro
edure works.

In the �gures Fig. 4.15 � Fig. 4.17 we show the results from the �t pro
edure for

the other 
hain lengths. In Table 4.4 we give an overview of the values obtained

by �tting φq=6.9(t) for ea
h 
hain length for the lowest temperature for whi
h the

TTSP still holds a

ording to Eq. (4.14).
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Figure 4.12: Coherent intermediate s
attering fun
tion φq=4,6.9,9.5,12.8(t), for N = 16

and T = 0.43; �tted a

ording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.73368, b =

0.598863 and the 
orresponding f 


q (f 


q=4 = 0.5019, f 


q=9.5 = 0.4297, f 


q=12.8 = 0.3672)

are set. The 
rossover-time t

o

= 1.6475 and the �t interval are marked by verti
al

bla
k lines.

N = 64 N = 32 N = 16 N = 8 N = 4

f 
 �t

q

0.789512 0.790253 0.801079 0.811316 0.819615

t′σ 1.84349 1.69287 1.73368 1.75646 1.76730

b�t 0.595253 0.616997 0.598863 0.571892 0.546314

B�t

q 0.006146 0.007276 0.006011 0.005662 0.000279

h�t

q 0.018284 0.018166 0.015602 0.016771 0.014499

t

o

1.8510 1.7508 1.6475 1.3325 1.6268

Table 4.4: Values obtained for f 
 �t

q

, t′σ, b
�t, B�t

q , h�t

q by �tting φq=6.9(t) for ea
h 
hain

length a

ording to Eq. (4.14). For ea
h 
hain length the lowest temperature whi
h

still obeys the TTSP is used (N = 64 : T = 0.44, N = 32 : T = 0.44, N = 16 :

T = 0.43, N = 8 : T = 0.42, N = 4 : T = 0.40). For all �ts we used the �t interval

t
left border

= 20 and t
right border

= 500. Additionally the 
rossover-times t

o

are given

whi
h are determined by φq=6.9(t
o) = f 


q=6.9.
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Figure 4.13: In
oherent intermediate s
attering fun
tion φs

q=4,6.9,9.5,12.8(t) for N = 16

and T = 0.43; �tted a

ording to Eq. (4.14). t′σ = 1.73368, b = 0.598863 and the


orresponding f 


q (f 


q=4 = 0.8915, f 


q=6.9 = 0.7167, f 


q=9.5 = 0.5414, f 


q=12.8 = 0.3433)

are set. The 
ross over time t

o

= 1.6475 and the �t interval are marked by verti
al

bla
k lines.
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Figure 4.14: Coherent intermediate s
attering fun
tion φq=4,6.9,9.5,12.8(t) for N = 64

and T = 0.44; �tted a

ording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.84349, b =

0.595253 and the 
orresponding f 


q (f 


q=4 = 0.5014, f 


q=9.5 = 0.4201, f 


q=12.8 = 0.3528)

are set. The 
rossover-time t

o

= 1.851 and the �t interval are marked by verti
al

bla
k lines.
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Figure 4.15: Coherent intermediate s
attering fun
tion φq=4,6.9,9.5,12.8(t) for N = 32

and T = 0.44; �tted a

ording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.69287, b =

0.616997 and the 
orresponding f 


q (f 


q=4 = 0.4966, f 


q=9.5 = 0.4157, f 


q=12.8 = 0.3500)

are set. The 
rossover-time t

o

= 1.7508 and the �t interval are marked by verti
al

bla
k lines.
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Figure 4.16: Coherent intermediate s
attering fun
tion φq=4,6.9,9.5,12.8(t) for N = 8

and T = 0.42; �tted a

ording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.75646, b =

0.571892 and the 
orresponding f 


q (f 


q=4 = 0.4906, f 


q=9.5 = 0.4327, f 


q=12.8 = 0.3773)

are set. The 
rossover-time t

o

= 1.3325 and the �t interval are marked by verti
al

bla
k lines.
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Figure 4.17: Coherent intermediate s
attering fun
tion φq=4,6.9,9.5,12.8(t) for N = 4;

�tted a

ording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.7673, b = 0.546314 and

the 
orresponding f 


q (f 


q=4 = 0.4781, f 


q=9.5 = 0.4258, f 


q=12.8 = 0.3732) are set. The


rossover-time t

o

= 1.6268 and the �t interval are marked by verti
al bla
k lines.
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N = 64 N = 32 N = 16 N = 8 N = 4

b�t 0.595253 0.616997 0.598863 0.571892 0.546314

a 0.315065 0.320868 0.316044 0.308580 0.301164

λ 0.727482 0.714315 0.725292 0.741670 0.757234

γ 2.4270 2.3686 2.4170 2.4946 2.5754

Table 4.5: b�t obtained by �tting by �tting φq=6.9(t) for ea
h 
hain length a

ording

to Eq. (4.14). For ea
h 
hain length the lowest temperature whi
h still obeys the

TTSP is used (N = 64 : T = 0.44, N = 43 : T = 0.44, N = 16 : T = 0.43, N = 8 :

T = 0.42, N = 4 : T = 0.40). The values of λ and a are obtained by exploiting the

relation given in Eq. (4.15). γ is 
al
ulated by inserting b�t and a in Eq. (4.16).

4.2.4 Analysis of T



In this paragraph we determine the 
riti
al temperature de�ned within the frame-

work of the mode-
oupling as a fun
tion of the 
hain length. We pro
eed as follows:

First we use b�t determined for ea
h 
hain length to 
al
ulate λ and a. To this end,

we exploit the relation between a, b and λ [11℄ given by

λ =
Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
(1/2 ≤ λ < 1) . (4.15)

The 
al
ulated a and the determined b�t enables us then to 
al
ulate γ [11℄ by using

γ =
1

2a
+

1

2b
(γ > 1.765) . (4.16)

Using this so obtained γ enables us to determine T



by �tting the α relaxation times

within the temperature range where the TTSP holds.

During our simulation pro
edure we 
ontinuously (in ∆T = 0.01 steps) 
ooled

down the 
onsidered system in the NpT ensemble (see se
tion 2.5.2 ). Due to �nite

simulation resour
es we did not simulate for ea
h temperature a traje
tory also in

the NVT ensemble. In order to in
rease the quality of the �t that we undertake to

determine T



, we added a few data points from NpT simulation runs. (We added

following relaxation times τq∗ determined for φq=6.9(t), whi
h are obtained in the NpT

ensemble: N = 32: T = 0.46; N = 16: T = 0.45, 0.46; N = 8: T = 0.43, 0.45, 0.46;

N = 4: T = 0.41, 0.42, 0.43.) These traje
tories are also equilibrated, but simulated

in the NpT ensemble. This pro
edure was justi�ed by 
omparing φq=6.9(t) 
al
ulated

within the NpT and NVT ensemble for temperatures where both data are a

essible.
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Figure 4.18: N = 64: α-relaxation times for T = 0.44, 0.45, 0.46, 0.47, 0.48 at q =

6.9. γ 
al
ulated from b�t and a using Eq. (4.16). The α relaxation times for φq=6.9(t)

(determined by the pro
edure des
ribed in se
tion 4.2.1) are �tted a

ording to

f(x) = A(x − T



) where A and T



are �t parameters.

The minor di�eren
es, whi
h were noti
ed between φq=6.9(t) 
al
ulated within the

NpT and NVT ensembles, seem to appear due to the poorer statisti
s we have for

the NpT data. The in�uen
e on the determined relaxation time is small and does

not in�uen
e the a

ura
y of the �t.

Finally we determine T



by �tting the α relaxation time using following relation

[11℄

t′σ =
t0
|σ|γ , (4.17)

whi
h we use in the following form

(t′σ)−
1

γ = a(T − T



) . (4.18)

In this way we are able to �t (t′σ)−
1

γ
by using a linear �t.

In Fig. 4.18 we depi
t the �t result for N = 64, where we use a �t range of

T = 0.44− 0.48. Figure 4.19 shows the �t result for N = 32. In the 
ase of N = 32

we use two di�erent �t intervals, as it is not 
lear to whi
h temperature the TTSP

is still obeyed (
f. se
tion 4.2.1). The values for T



whi
h are obtained are then

averaged. Figures 4.20 - 4.22 show the �t results for 
hain length N = 16, 8, 4.

In Table 4.6 an overview over the so determined values for T



is given.
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N = 32: α-relaxation times for

T = 0.42, 0.43, 0.44, 0.45, 0.46 at

q = 6.9. In 
ontrast to the left �gure a

di�erent lower bound for the �t interval

is used (T = 0.43).

Figure 4.19: γ 
al
ulated from b�t and a using Eq. (4.16). The α relaxation times for

φq=6.9(t) (determined by the pro
edure des
ribed in se
tion 4.2.1) are �tted a

ording

to f(x) = A(x − T



) where A and T



are �t parameters.

N = 64 N = 32 N = 16 N = 8 N = 4

T



0.417 0.415 0.409 0.401 0.382

Table 4.6: T



obtained by �tting 
orresponding α relaxation times a

ording to

Eq. (4.18).

4.2.5 Chain length dependen
e of T



, b, a, γ and λ

After we determined T



and other mode-
oupling theory related quantities like a, b, γ

and λ we ask the question if these quantities also show some 
hain length dependen
y

that 
an be treated like in the 
ase of the density ρ (
f. se
tion 3.1).

We start with T



: In a �rst step we plot T



as a fun
tion of the 
hain length. As

this plot seems to follow a power law we �t a

ording to f(x) = Axα + B. From

this �t we get for the exponent α a value 
lose to minus unity: α = −1.02583 (see

Fig. 4.23). For this reason it seems to be appropriate to linearize T



by plotting it

as a fun
tion of the re
ipro
al 
hain length 1/N , whi
h is shown in Fig. 4.24. This

fun
tional dependen
e of T



on 1/N � whi
h is similar to the 1/N-dependen
e of

the density ρ (
f. se
tion 3.1) � seems to be explainable also by 
hain end e�e
ts.

The fa
t that T




an be linearized as a fun
tion of 1/N rises the question if
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Figure 4.20: N = 16: α-relaxation times for T = 0.41, 0.42, 0.43, 0.44, 0.45, 0.46 at

q = 6.9. The α relaxation times for φq=6.9(t) (determined by the pro
edure des
ribed

in se
tion 4.2.1) are �tted a

ording to f(x) = A(x − T



) where A and T



are �t

parameters. The �t interval is denoted by bla
k verti
al lines.
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Figure 4.21: N = 8: α-relaxation times for T = 0.40, 0.41, 0.42, 0.43, 0.44 at q =

6.9. The α relaxation times for φq=6.9(t) (determined by the pro
edure des
ribed

in se
tion 4.2.1) are �tted a

ording to f(x) = A(x − T



) where A and T



are �t

parameters. The �t interval is denoted by bla
k verti
al lines.
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Figure 4.22: N = 4: α-relaxation times for T = 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44

at q = 6.9. The α relaxation times for φq=6.9(t) (determined by the pro
edure

des
ribed in se
tion 4.2.1) are �tted a

ording to f(x) = A(x− T



) where A and T



are �t parameters. The �t interval is denoted by bla
k verti
al lines.
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Figure 4.23: T



as a fun
tion of the 
hain length N . The error bar for N = 32

indi
ates the error due to the usage of di�erent �t intervals to obtain T



by �tting

the α relaxation time. The blue line indi
ates a �t a

ording to f(x) = Axα + B.

Values obtained by �tting: A = −0.151402 B = 0.418476 α = −1.02583
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71

the other MCT related quantities like b, a, γ and λ do also show su
h a behavior.

Consequently we pro
eed with b: Here it is not so obvious whether or not there is

a simple underlying s
aling law a

ording to whi
h the 
hain length dependen
e of

b 
an be res
aled to obtain a linear behavior of the resulting plot. By 
omparing

the numeri
al values for b�t one �nds that there is a trend (see Table 4.5): Starting

with the 
hain length of N = 4 the values for b�t in
rease with growing 
hain length

ex
ept for the longest 
hain length of N = 64. The reason why espe
ially the longest


hain length shows a deviation from this trend is not 
lear. We will 
ome ba
k to

this point later on.

We then try to linearize b by res
aling the dependen
e on N while negle
ting

the value for N = 64. We �nd that this is possible by res
aling with

1√
N
. By

pro
eeding in the same way for the other MCT related quantities a, γ and λ we �nd

the same s
aling behavior. Whi
h means that the N dependen
e of these quantities


an 
omparatively well linearized by res
aling with

1√
N
.

Why does N = 64 deviate from the trend? The question of why b�t for

N = 64 deviates from the trend showed by the other 
hain lengths is not 
lear

so far. A possible explanation 
ould be given by the fa
t that the 
hain length of

N = 64 approa
hes the value for whi
h entanglement e�e
ts are expe
ted for this

kind of model [43℄. Another point whi
h should be mentioned is the in�uen
e of the

employed �t interval when �tting a

ording to Eq. (4.14). As already mentioned

the �t results depend also on this hidden �t parameter. This e�e
t 
ould be for

some 
hain length more pronoun
ed than for others depending on whi
h amount of

the late β relaxation is 
aptured by the �t. However, it is rather 
ompli
ated to

determine the absolute in�uen
e of the employed �t interval.

Although there is some un
ertainty for the b�t values, the 
hain length dependen
e

of b�t seems to be quite robust and show a non monotoni
 behavior. Longer 
hain

lengths have to be studied to 
he
k if b�t 
ontinues to de
rease or settle.

4.3 Analysis of the q-dependen
e of the α relaxation

time

In the last se
tion we exploited the time-temperature superposition prin
iple to

determine the range of the ideal mode-
oupling theory. Therefore we use the 
ri-
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ipro
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A = 0.133498, B = 0.691897.

 0.295

 0.3

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

1/8
1/4

1/2

a 
(1

/N
1/

2 )

1/N1/2

fit

Figure 4.27: a as a fun
tion of the re
ipro
al value of the square root of the 
hain

length 1/
√

N . The blue line denotes a linear �t given by f(x) = Ax + B with

A = −0.061391, B = 0.331314.



73

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

1/8
1/4

1/2

γ 
(1

/N
1/

2 )

1/N1/2

fit

Figure 4.28: γ as a fun
tion of the re
ipro
al value of the square root of the 
hain

length 1/
√

N . The blue line denotes a linear �t given by f(x) = Ax + B with

A = 0.645285, B = 2.25736.

N = 64 N = 32 N = 16 N = 8 N = 4

analyzed T 0.44 0.44 0.43 0.42 0.40

T



0.417 0.415 0.409 0.401 0.382

T − T



0.023 0.025 0.021 0.019 0.018

Table 4.7: Analyzed T 
orresponds to the temperatures from whi
h the relaxation

times are determined and depi
ted in Fig. 4.29 (bottom). These temperatures are


ontrasted with T



, the 
riti
al temperature of the ideal MCT, whi
h are determined

in se
tion 4.2.4). T − T



gives the relative distan
e of analyzed T to T



.

terion φq=6.9(t)(τq∗) = 0.1 to de�ne relaxation time τq∗ . In this paragraph, we use

the same threshold , namely 0.1, to determine relaxation times τq=q′ for a q ve
tor

range of q′ = 1 − 8 by using the 
riterion φq=q′(t)(τq=q′) = 0.1. Te
hni
ally we

pro
eed as before: First we 
al
ulate the 
oherent intermediate s
attering fun
tion,

and then we determine τq=q′ by linear interpolation of φq=q′(t) between values 
lose

to 0.1. This pro
edure is 
arried out for all 
hain lengths for the temperatures of

T = 1.00,T = 0.50 and T − T



≈ 0.02 (see Fig. 4.29).

By 
omparing the result for the di�erent temperatures we observe:

• For T = 1 the longest relaxation times are present for a q range from 3 � 5.

Espe
ially for N > 8 a broad peak region for this q interval 
an be observed.
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ture fa
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• For T = 0.5 all relaxation times in
rease 
ompared to T = 1 but parti
ularly

for 3 < q < 5 and for q values around the peak of the stati
 stru
ture fa
tor

∼ S(q∗) (
f. se
tion 3.3 ).

• For T − T



≈ 0.02 all relaxation times further in
rease. As in the 
ase of

T = 0.5 espe
ially for q values in the region of 3 < q < 5 and q ∼ q∗ the

in
rease is very pronoun
ed. As for the various N di�erent relative distan
es

to T



are probed, we are able to observe how the relaxation times 
hange

in the approa
h of T



. The temperatures from whi
h the relaxation times are

determined for T−T



≈ 0.02 are summarized in Table 4.7. These temperatures


orrespond to the lowest temperatures for whi
h the TTSP is still ful�lled (
f.

se
tion 4.2.1).

Thereby it 
an be observed that the height of the peak around q∗ is mainly

in�uen
ed by the distan
e to T



. The height of the peak in the q range of

3 < q < 5 is in�uen
ed by the relative distan
e to T



, but also depends on

the 
hain length. This last point 
an be inferred by the 
omparison of the

relaxation times for N = 8 and N = 16. Although the temperature for whi
h

the relaxation times for N = 8 are determined is 
loser to T




ompared to

N = 16 � whi
h is re�e
ted by a larger value at the peak position at q ∼ q∗

� the relaxation times for 3 < q < 5 are 
omparable.
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Chapter 5

Dynami
s: Shear relaxation fun
tion

and 
ase study on �nite-size e�e
ts

In this 
hapter we extend the dis
ussion on the dynami
s by 
onsidering two addi-

tional quantities whi
h are the mean square displa
ement and the shear relaxation

fun
tion [54℄. By this extension we obtain a broader pi
ture about the dynami
s of

our system, and we will also fo
us more on polymer e�e
ts.

Furthermore we 
arry out a 
ase study on the e�e
ts of the �nite simulation box

size on the dynami
s of a polymer system. This analysis 
on
entrates on observable

di�eren
es in dynami
 
orrelation fun
tions as a fun
tion of the temperature.

5.1 Shear relaxation fun
tion

In the previous 
hapter we fo
used on the intermediate s
attering fun
tions φq(t)

to study the dynami
s of the system under 
onsideration. φq(t) reveals information

about the system in terms of density �u
tuations for one spe
i�
 wavelength. Here

we want to pro
eed in another way where we explore the 
ooperative vis
oelasti


properties of the system. To this end, we study the linear response of the system

to an in�nitesimal shear in the q → 0 limit, i.e., we 
onsider the shear relaxation

fun
tion G(t). This quantity 
an be introdu
ed as the auto
orrelation fun
tion of

the mi
ros
opi
 stress σαβ , whi
h is given by [55℄

σαβ =
M∑

i=1

mvi,αvi,β − 1

2

M∑

i=1

(
ri,α

∂U(rM )

∂ri,β

+ ri,β
∂U(rM )

∂ri,α

)
, (5.1)

where the 
omponents of the position ri (the velo
ity vi) of monomer i (= 1, . . . , M)

are denoted by ri,α (vi,α), and total potential is denoted by U .
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In terms of the mi
ros
opi
 stress, σzx, the shear relaxation fun
tion [5, 9℄ is given

by

G(t) =
1

k
B

TV

〈
σzx(t)σzx(0)

〉
=

1

TV

〈
σzx(t)σzx(0)

〉
, (5.2)

with T denoting the temperature and V the volume.

By this de�nition it 
an be understood that G(t) 
an be employed as a measure

to probe the vis
oelasti
 properties of the whole system. The mi
ros
opi
 stress

σzx takes the whole system into a

ount.

1

In the systems under 
onsideration the

internal stress of the system is 
aused by the thermal movement of the monomers

relative to one another. These movements 
ause lo
al stresses whi
h relax with time.

This relaxation pro
ess is probed by the stress auto
orrelation fun
tion, the shear

relaxation fun
tion G(t).

The analysis of the shear relaxation fun
tion is 
ompared with the analysis of the

mean square displa
ement. The mean square displa
ement (MSD) of all monomers

(g0) [11℄ 
an be de�ned by

g0(t) =
1

M

M∑

i=1

〈[
ri(t) − ri(0)

]2〉
, (5.4)

where M denotes the total number of monomers and ri the position of monomer i.

Additionally the mean square displa
ement of the 
enter of mass of ea
h 
hain (g3)

[11℄ 
an be de�ned as

g3(t) =
1

n

n∑

i=1

〈[
Ri(t) − Ri(0)

]2〉
, (5.5)

where n denotes the total number of 
hains and Ri the position of the 
enter of

mass of 
hain i.

By this 
omparison we explore the 
onne
tion between the 
olle
tive behavior of

the studied system � probed by G(t) � and properties that 
hara
terize the system

in an in
oherent way � g0.

We start our dis
ussion with the 
hain length N = 64. In Fig. 5.1 we 
ontrast

g0(t) and G(t). To put this dis
ussion in relation to φq(t), on whi
h we fo
used in

the last 
hapter, we add φq(t). In order to improve the 
omparability among these

quantities we also show φq(t) with both axes logarithmi
ally s
aled.

1

By a Green-Kubo relation the shear relaxation fun
tion G(t) is related to the shear vis
osity
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Figure 5.1: N = 64: Top: Shear relaxation fun
tion G(t) versus time t; Center:

Mean square displa
ement for all monomers g0(t) versus time t; Below: Coherent

intermediate s
attering fun
tion φq=6.9(t) versus time t. The bla
k verti
al dotted

line marks t = 1. The bla
k dashed line indi
ates the 
rossover time t

o

, determined

in se
tion 4.2.3. The red verti
al line denotes the start of the polymer regime for a

temperature of T = 0.44 de�ned by G(t) = ρk
B

T (see text for details). The 
olored

horizontal lines (top) indi
ate the value of ρk
B

T for T = 1, 0.5, 0.44.
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The time interval 
an be naturally divided into four main regimes

2

:

• For very small times t the monomers move freely and follow a ballisti
 motion.

For this reason the motion of the monomers shown in the MSD follow a power

law ∝ t2 whi
h seems to be observable. We write �seems� as this time regime

stops as soon as the monomers �feel� their nearest neighbors, so the purely

ballisti
 motion is only to a little extent visible. Rather, the ballisti
 regime

already overlaps for small times t with the subsequent regime whi
h starts

when intera
tion between the monomers begin to determine the dynami
s.

Due to these intera
tions the monomers slow down whi
h is observable by

the fa
t that the slope of the MSD be
omes weaker. In the shear relaxation

fun
tion G(t) the intera
tions with nearest neighbors results in the os
illations

for times t . 1. Referen
e [54℄ suggests that these os
illations are due to

interplay between the inertia of the monomer mass and the harmoni
 bond

potential be
ause they are absent in a Brownian dynami
s simulation. A

possible test of this idea within the framework of our MD simulation (with

inertia) 
ould employ a separation of the bond and non-bonded part. We then

expe
t that the bonded 
ontributions 
auses the os
illations in G(t), whereas

the non-bonded part relaxes without os
illations.

• For intermediate times � that means for times larger than 1 and smaller

than the monomer relaxation time τ0
3

� the monomers are, for low enough

temperatures, temporarily trapped by their neighboring monomers. (All the

mode-
oupling related analyses done in the last 
hapter took pla
e in this time

regime.) The idea that monomers are trapped by the surrounding monomers

gives rise to the �
age e�e
t� of the mode-
oupling theory [37℄. For a spe
i�


time window the dynami
s of the monomers be
omes partially or almost totally

arrested. This time window is visible by the fa
t that the slope of the MSD

is 
lose to zero. As 
an be seen in Fig. 5.1 there is no 
lear signature of

the �
age e�e
t� anymore for high temperatures, i.e.,T > 0.5. In the shear

η [5℄:

η =

∫
∞

0

dt G(t) . (5.3)

2

A
tually all 
onsidered quantities are given as a fun
tion of time di�eren
es : All three studied

fun
tions are auto
orrelation fun
tions, whi
h probe the system under 
onsideration in terms of

time di�eren
es between two spe
i�
 times.

3τ0 
an be de�ned by g0(τ0) = 1 [11℄.
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relaxation fun
tion and in the 
oherent intermediate s
attering fun
tion φq(t)

this trapping is observable by a protra
ted de
rease of the 
orrelation.

• By means of the Rouse theory [26℄ we de�ne the next time regime whi
h starts

as soon as the shear relaxation fun
tion G(t) has rea
hed the value of ρk
B

T .

This value sets the starting point of the Rouse theory. The shear relaxation


an be expressed as the sum over all Rouse modes whi
h relax exponentially

with time given by cp(t) = e−tp2/τ
R

with τ
R

denoting the Rouse time [26℄ and p

the 
onsidered Rouse mode. The Rouse time 
an be related to the re
ipro
al

monomer fri
tion 
oe�e
ient w by τ
R

∼ N2w−1
, where N denotes the number

of monomers in the 
hain. This leads to [75℄

G(t) = k
B

Tρ
N

∑N−1
p=1 c2

p(t) = k
B

Tρ
N

∑N−1
p=1 e−2tp2/τ

R

τ0≪t≪τ
R−−−−−→

N≫1

∫ ∞
0

dp e−2tp2/τ
R ∼ 1√

wt
. (5.6)

For times on the order of the Rouse time all modes a

ept the one for p = 1

are assumed to have already relaxed. Therefore the long time limit is 
aptured

by an exponential 
ut o�

G(t) ∼ e−t/τ
R . (5.7)

Equations 5.6 and 5.7 
an be 
ombined to following approximation for the

shear relaxation fun
tion [68℄

G(t) ∼ 1√
t
e−t/τ

R . (5.8)

The MSD shows for this time regime a transition to the sub-di�usive regime.

In this regime the MSD follows a power law whi
h is given by ∝ t0.5
for the


hain length N = 64.4 This power law behavior 
an also be observed in the

shear relaxation fun
tion G(t). Here it is given by t−0.5
for N = 64.

• When the MSD rea
hes a value whi
h 
orresponds to the mean-square end-to-

end ve
tor R2
e

the dynami
s starts to be
ome purely di�usive and the MSD is

∝ t. This time regime is only depi
ted for the highest temperatures. In this

time regime the shear relaxation fun
tion is des
ribed by a �nal exponential

de
ay whi
h is not observable in our data. The reason for this is the missing

statisti
s.

4

For the shorter 
hain lengths under 
onsideration e�e
tive power laws for the sub-di�usive

regime 
an be found, e.g., for N = 10 a power law dependen
e of t0.63
is observed [22℄.
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Globally it 
an be said that the lower the temperature, the more extended the

intermediate time regime. This means that lowering the temperature results in a

slowing down of the monomer dynami
s whi
h seems to leave the dynami
s o

urring

in subsequent regimes un
hanged. The starting point of subsequent regimes is only

shifted to later times.

N=64 In the upper plot of Fig. 5.1 the starting point of the �polymer regime� is

marked for T = 0.44 by a verti
al red line (
orresponding to the 
olor in whi
h G(t)

is depi
ted for this temperature). By the term �polymer regime� we understand

times t for whi
h G(t) < ρk
B

T . A dotted bla
k verti
al line indi
ates the starting

point of the �monomer regime� where the 
rossover time t

o

(
f. se
tion 4.2.3) is

indi
ated by a dashed bla
k line. The term �monomer regime� refers to times for

whi
h it holds 1 . t < t
polymer

, where t
polymer

is given by G(t
polymer

) = ρk
B

T . The

horizontal lines indi
ate the value of ρk
B

T for T = 1.00, 0.50, 0.44. The plot in the

middle of Fig. 5.1 shows the 
orresponding g0(t). Here, as well as in the lower plot

(φq(t)) the just dis
ussed time regimes are marked similarly. Additionally g0(t) = 1

and φq=6.9(t)(t) = 0.1 are marked.

Figure 5.1 shows that 
ompared to g0(t) it is very demanding to obtain similar

statisti
s for G(t).

N=16 As in the dis
ussion of N = 64 the mentioned time regimes are marked by

horizontal lines (see Fig. 5.2). The values for ρk
B

T are marked for T = 1, 0.5, 0.43.

Here T = 0.43 is 
hosen as it is the lowest temperature (for N = 16) for whi
h

the time temperature-superposition prin
iple is still ful�lled (
f. se
tion 4.2). Con-

trasting G(t) with g0(t) and φq(t) results in a similar 
omparison as for N = 64.

In 
ontrast to N = 64 we have for N = 16 a

ess to lower temperatures with re-

spe
t to T



. This extension of the temperature window to lower temperatures seems

not to unveil additional e�e
ts. As stated above a lower temperature most promi-

nently results in a prolongation of the monomer relaxation regime, whi
h shifts the

starting of the subsequent regimes to later times. G(t) (and φq(t)) show for temper-

atures below T = 0.43 an in
rease in the plateau value. Additionally g0(t) = 1 and

φq=6.9(t)(t) = 0.1 are marked.

In 
ontrast to N = 64 the shear relaxation fun
tion for N = 16 shows no 
lear

signature of a power law (for N = 4 no power law 
an be observed, neither). For

smaller 
hain length τ
R

is 
omparatively small as τ
R

∝ N2w−1
. Therefore with
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Figure 5.2: N = 16: Top: Shear relaxation fun
tion G(t) versus time t; Center:

Mean square displa
ement for all monomers g0(t) versus time t; Bottom: Coherent

intermediate s
attering fun
tion φq=6.9(t) versus time t. The bla
k verti
al dotted

line marks t = 1. The bla
k dashed line indi
ates the 
rossover time t

o

, determined

in se
tion 4.2.3. The light blue verti
al line denotes the start of the polymer regime

for a temperature of T = 0.43 (see text for details). The 
olored horizontal lines

(top) indi
ate the value of ρk
B

T for T = 1, 0.5, 0.43.
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de
reasing 
hain length the power law regime is blurred by the exponential 
ut o�

(
f. Eq. (5.8)).

N=4 In Fig. 5.3 we show the 
orresponding results for 
hain length N = 4. The

results obtained 
an be interpreted in a similar way as above. Here for T = 0.40 the

start of the �polymer regime� is marked. T = 0.40 is the lowest temperatures that

still ful�lls the time-temperature superposition prin
iple for N = 4. The values for

ρk
B

T are marked for T = 1, 0.5, 0.40. For N = 4 we also have a

ess to temperatures

that are below the T



of the ideal mode-
oupling theory. Additionally g0(t) = 1 and

φq=6.9(t)(t) = 0.1 are marked.

5.2 Polymer e�e
ts

In this se
tion we shortly point to some aspe
ts about polymer e�e
ts. The 
ompar-

ison above between the MSD and shear relaxation fun
tion revealed several similar-

ities between these two 
orrelation fun
tions whi
h are not seen to the same extent

in the 
oherent s
attering fun
tion φq=6.9(t). This 
ould be be
ause q ≈ 6.9 probes

lo
al density �u
tuations, and not the dynami
s in the limit q → 0, as the MSD or

G(t) do. In this limit, and for times longer than the α-relaxation time, one would

expe
t polymer e�e
ts to determine the dynami
s of the melt [26, 68℄. Therefore we

dis
uss φq(t) for lower q values, down to the smallest q value a

essible in our simu-

lation whi
h is given by q
min

= 2π
l
box

, where l
box

denotes the length of the simulation

box.

Figure 5.4 
ompares the shear relaxation fun
tion G(t) with φq=q
min

(t). For

N = 64, q
min

is given by q ≈ 0.27.5 We 
learly observe that for small times φq=q
min

(t)

also shows os
illations like the shear relaxation fun
tion. But for φq(t) these os
illa-

tions are related to damped sound waves (pre
ursor of the hydrodynami
 Brillouin

spe
trum [9℄). They are fully developed for φq=q
min

(t) for t ∼ t

o

so that the non-

ergodi
ity parameter f 


q 
annot be read o�, 
ontrary to larger wave ve
tors or to

G(t).

These os
illations blur the beginning of the β-relaxation at low T . However, a

further interesting feature be
omes visible for φq(t) . 10−2
: At these late times, an

5

As we equilibrate our systems at 
onstant pressure and �x in a subsequent produ
tion run

the simulation box size to the average volume from the equilibration run the box length slightly

de
reases with de
reasing temperature. Therefore q
min

is only given by a value 
lose to q ≈ 0.27.



85

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103 104 105
G

(t
)

t

tco

ρkBT

N= 4

T=1.00
T=0.70
T=0.50
T=0.40
T=0.39
T=0.38
T=0.37

10-4

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103 104 105

g 0
(t

)

t

N=  4

t2

tco
t

Re
2

T=1.00
T=0.70
T=0.50
T=0.40
T=0.39
T=0.38
T=0.37

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105

Φ
q=

6.
9(

t)

t

tco

N =  4

T = 0.50
T = 0.40
T = 0.39
T = 0.38

Figure 5.3: N = 4: Top: Shear relaxation fun
tion G(t) versus time t; Center:

Mean square displa
ement for all monomers g0(t) versus time t; Bottom: Coherent

intermediate s
attering fun
tion φq=6.9(t) versus time t. The bla
k verti
al dotted

line marks t = 1. The bla
k dashed line indi
ates the 
rossover time t

o

, determined

in se
tion 4.2.3. The magenta verti
al line denotes the start of the polymer regime

for a temperature of T = 0.40 (see text for details). The 
olored horizontal lines

(top) indi
ate the value of ρk
B

T for T = 1, 0.5, 0.40.



86

apparent power t−0.5
shows up for all T .

In Fig. 5.5 we show that su
h a power law behavior is only observable for the

lowest q values, q . 3q
min

. For q values above this value the signature of this power

law is not well pronoun
ed so that it 
annot be observed anymore. The lower plot of

Fig. 5.5 shows that the power law behavior is also restri
ted to 
hain lengths that are


lose to the entanglement length (it is barely visible for N = 16) [43℄. Tentatively,

we attribute this (apparent) power law to a polymer e�e
t. That su
h e�e
ts 
ould

also determine φq(t) is suggested by the dynami
 Random Phase Approximation [29℄

whi
h expresses the time dependen
e of φq(t) fully in terms of the dynami
 polymer

form fa
tor F (q, t). In Lapla
e spa
e this relation reads

φ̂q(z) =
ŵ(q, z)/w(q)

1 + w(q)
S(0)

[1 − zŵ(q, z)/w(q)]
, (5.9)

where z denotes the 
onjugate Lapla
e variable of t and S(0) is zero wave ve
tor

limit of S(q) (
f. se
tion 3.3 for a de�nition of S and w). It would be interesting to

apply Eq. (5.9) quantitatively to the simulation data to test whether it 
an a

ount

for the apparent power law t−0.5
.

5.3 Time-temperature superposition of the shear re-

laxation fun
tion

In se
tion 4.2.1 we showed that the intermediate s
attering fun
tion 
an be res
aled

a

ording to the α relaxation time τq∗ . Here we investigate if su
h a res
aling is

also possible for the shear relaxation fun
tion. The upper plot of Fig. 5.6 shows

that the MSD g0(t) 
an be well res
aled a

ording to the di�usion 
onstant D (this

result is known see e.g. [37℄ and referen
es therein). D is determined from the long

time evolution of the MSD g3(t) of the 
enter of mass of the 
hains by employing

g3(t) ∝ 6Dt. As G(t) has similarities with both the intermediate s
attering fun
tion

and g0(t) (
f. se
tion 5.1), it is a priori not 
lear whether G(t) 
ould be res
aled by

τq∗ or by D. Therefore, we test both possibilities after normalizing G(t) by ρk
B

T .

(This normalization is suggested by polymer theory [26℄.)

The 
enter plot of Fig. 5.6 shows G(t) res
aled a

ording to the di�usion 
onstant

D. For intermediate times (10−5 . t . 10−3
) this res
aling does not work well. For

times t & 10−3
we 
annot validate the quality of the s
aling due to the noise of the

data.
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Figure 5.4: N = 64: Top: Shear relaxation fun
tion G(t) versus time t; a behavior

∝ 1√
t
e−t/τ

R

is indi
ated by bla
k dashed lines. The 
olored horizontal lines indi
ate

the value of ρk
B

T for T = 1, 0.5, 0.44. Bottom: φq=q
min

(t) versus time t for T =

0.44, 0.45, 0.46, 0.48, 0.50, 0.70, 1.00. A behavior ∝ t−0.5
is indi
ated by bla
k dashed

lines.



88

10-3

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

Φ
q(

t)

t

N = 64

T = 0.70

t-0.5

tco

q ≈ 0.27
q ≈ 0.55
q ≈ 0.82
q ≈ 1.09
q ≈ 1.64
q ≈ 2.19

10-3

10-2

10-1

100

10-2 10-1 100 101 102 103 104 105 106

Φ
q(

t)

t

T = 0.50

q ≈ 0.27

t-0.5N = 64
N = 16
N =   4

Figure 5.5: Top: For N = 64 and T = 0.70 φq(t) is shown for q =

0.27, 0.55, 0.82, 1.09, 1.64, 2.19. A power law ∝ t−0.5
is indi
ated by bla
k dashed

lines. Bottom: φq=q
min

(t) for N = 64 (bla
k), N = 16 (dark blue) and N = 4 (light

blue) for a temperature of T = 0.50. For N = 64 and N = 16 a power law ∝ t−0.5

is indi
ated by red dashed lines.
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Figure 5.6: N = 64: Top: g0(t) res
aled a

ording to the di�usion 
onstant D.

Center: G(t) res
aled a

ording to the di�usion 
onstant D. Bottom: G(t) res
aled

a

ording to the α relaxation time τq∗ determined φq=6.9(τq∗) = 0.1.
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In the lower plot of Fig. 5.6 G(t) is res
aled a

ording to the α relaxation time τq∗ .

Here, for temperatures T . 0.5, the res
aling works well for (res
aled) times t . 0.5

and T < 0.7. For times t & 0.5 the data 
ollapse is 
omparable in quality to that of

the middle �gure, provided T < 0.7. In summary, the present data suggest that the

TTSP of G(t) is better ful�lled with τq∗ than with D. However, this issue 
ertainly

requires further investigation to arrive at a de�nitive 
on
lusion. The statisti
s in

the polymer regime should be improved. There 
ould be the interesting situation

that the �monomer regime� 
an be res
aled with τq∗ , whereas the polymer regime is

res
aled with D ∼ τ−1
R

, as expe
ted from polymer theory.

5.4 Case study on �nite size e�e
ts

In this se
tion we 
ompare the e�e
t of the �nite simulation box size on the dynami
s

of a polymer system. Thereto we 
onsider two systems that are simulated at a

pressure p = 1 with 
hains of 
hain length N = 10, and 
onsisting of M = 1000 and

M = 8000 monomers.

6

It is known that so-
alled �nite size e�e
ts 
ould a�e
t the dynami
s of 
olloidal

systems. The explanation 
an be summarized by the following argument: Due to

the �nite box size only a �nite number of possible relaxation modes are a

essible.

For this reason smaller system sizes might exhibit a slower dynami
al relation (see

e.g. [45℄).

We study the in�uen
e of the di�erent simulation box sizes by means of the


oherent intermediate s
attering fun
tion φq(t) and by the mean square displa
ement

of all monomers g0(t).

Coherent intermediate s
attering fun
tion In Figs. 5.7 and 5.8 the obtained

results for φq(t) for q = 4, 6.9, 9.5, 12.8 are shown. As an overall observation we 
an

state that the smaller system exhibits a slower relaxation for the depi
ted tempera-

tures below T = 1. For T = 1 no di�eren
es in the relaxation of φq(t) are noti
eable.

For lower temperatures the di�eren
es in the relaxation pro
ess exhibited by φq(t)

seem to be
ome more pronoun
ed on 
ooling and rea
h a maximum at T ≈ 0.45.

In Table 5.1 we display the thermodynami
al data of the studied systems. The

values for the density and the pressure for both system sizes is in good a

ordan
e.

6

The same model is employed as for the systems studied before.
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T = 0.44 T = 0.45 T = 0.46 T = 0.47 T = 0.50 T = 1.00

ρ(M = 1000) 1.0447 1.0434 1.0406 1.0374 1.0290 0.90970

ρ(M = 8000) 1.0450 1.0425 1.0397 1.0372 1.0291 0.90965

p(M = 1000) 0.969928 1.00963 1.03397 1.01163 0.987964 0.997480

p(M = 8000) 0.992614 1.00205 0.998268 1.00165 0.999094 0.999208

Table 5.1: Density ρ and pressure p as a fun
tion of temperature T for the

system sizes of M = 1000 and M = 8000. Values are given for T =

1.00, 0.50, 0.47, 0.46, 0.45, 0.44. (For 
hain length N = 10 and pressure p = 1.)

The small dis
repan
ies in the density and the pressure appears to be too weak to

explain the di�erent relaxation behavior of the two system sizes.

To 
ompare the emerging di�eren
es shown by φq(t) for di�erent q values in more

detail we depi
t in Fig. 5.9 in the main �gure the di�eren
e of the relaxation time

for ea
h q value. Using the relaxation time τq � de�ned as in the previous 
hap-

ter by φq(τq) = 0.1 � we 
al
ulate the absolute di�eren
e of the relaxation times

∆τq(T ) by τq,M=1000(T )− τq,M=8000(T ), whi
h is evaluated for ea
h temperature and

q value separately. We observe that ∆τq(T ) in
reases by lowering the tempera-

ture and rea
hes, for q = 4 and 6.9 a maximum value at T = 0.45. The inset of

Fig. 5.9 shows the normalized di�eren
e of the relaxation times whi
h is de�ned

by ∆∗τq(T ) = (τq,M=1000(T ) − τq,M=8000(T ))/τq,M=8000(T ). We normalized by the

relaxation time of the larger system, as the sampling of the larger system is 
loser to

the thermodynami
al limit. This depi
tion shows a 
lear maximum for all studied

q values at the temperature of T = 0.45.

Mean square displa
ement We then pro
eed to the mean square displa
ement

of all monomers and analyse if the di�eren
e in the stru
tural relaxation, observed

by φq(t), is also noti
eable by this quantity. Additionally, the MSD probes the

system on larger length s
ales.

In Fig. 5.10 the MSD of the two 
onsidered systems is shown for the tempera-

tures of T = 1, 0.50, 0.47, 0.46, 0.45, 0.44. The evolution of the MSD shows for all

temperatures for times t > 10 dis
repan
ies between the two system sizes. For the

lower temperatures, T ≤ 0.5, these dis
repan
ies be
ome already obvious for times

t ≈ 1. The di�eren
es are most pronoun
ed for the temperatures of T = 0.46 and

T = 0.45, for whi
h they rea
h, as in the 
ase of the φq(t), a maximum.
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Figure 5.7: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a 
hain length of N = 10. Coherent intermedi-

ate s
attering fun
tion φq(t) is depi
ted for q = 4, 6.9 for temperatures T =

1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). φq(t) for the system size M =

8000 is depi
ted in red and φq(t) for M = 1000 in blue. The smaller system shows a

slower stru
tural relaxation. φq(t) for T = 0.45 is depi
ted with dashed lines. This

temperature 
orresponds to the 
riti
al temperature of the ideal mode-
oupling the-

ory [15℄. The di�eren
es in the stru
tural relaxation showed by the two system sizes

in
rease with de
reasing temperature. The value 0.1 is marked by a horizontal bla
k

dashed line. This value is used to determine a relaxation time τq by φq(τq) = 0.1.
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Figure 5.8: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a 
hain length of N = 10. Coherent interme-

diate s
attering fun
tion φq(t) is depi
ted for q = 9.5, 12.8 for temperatures

T = 1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). φq(t) for the system size

M = 8000 is depi
ted in red and φq(t) for M = 1000 in blue. The smaller system

shows a slower stru
tural relaxation. φq(t) for T = 0.45 is depi
ted with dashed

lines. This temperature 
orresponds to the 
riti
al temperature of the ideal mode-


oupling theory [15℄. The di�eren
es in the stru
tural relaxation showed by the two

system sizes in
rease with de
reasing temperature. The value 0.1 is marked by a

horizontal bla
k dashed line. This value is used to determine a relaxation time τq

by φq(τq) = 0.1.
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Figure 5.9: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a 
hain length of N = 10. Main �gure: Depi
ted is

the di�eren
e (∆τq) between the relaxation times (determined by φq(τq) = 0.1)

evaluated for M = 1000 and M = 8000 and q = 4, 6.9, 9.5, 12.8 as a fun
tion

of temperature T . Inset: Depi
ted is the normalized di�eren
e (∆∗τq) between

the relaxation times (determined by φq(τq) = 0.1) evaluated for M = 1000 and

M = 8000 and q = 4, 6.9, 9.5, 12.8 as a fun
tion of temperature T . It is normalized by

the relaxation time of the larger system (M = 8000) for ea
h 
onsidered temperature

and q value.
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Figure 5.10: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a 
hain length of N = 10. Mean square displa
ement

g0(t) for T = 1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). g0(t) for the system

size M = 8000 is depi
ted in red and g0(t) for M = 1000 in blue. The smaller

system shows a slower dynami
s. g0(t) for T = 0.45 is depi
ted with dashed lines.

This temperature 
orresponds to the 
riti
al temperature of the ideal mode-
oupling

theory [15℄.
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Figure 5.11 shows the di�eren
es of the MSD normalized by the MSD of the

larger system ∆g0(t) =
g0,M=8000(t)−g0,M=1000(t)

g0,M=8000(t)
. At t = 2.567 ∆g0(t) shows for all

depi
ted temperatures a small peak. The reason for this o

urring peak might be

found in the sound wave propagation whi
h 
ouples to other modes at larger q and

gives rise to an e
ho for these q values [42℄. For the smaller system sound waves

need lesser time to travel through the whole system. Therefore the e�e
t on density

�u
tuations 
aused by sound waves in the two system 
ould be di�erent and �nally

result in a di�erent evolution of the MSD in a time interval where this e�e
t is most

pronoun
ed.

Espe
ially we want to point to the observation that the MSD for T = 0.46, 0.45

shows a non monotoni
 behavior after this �rst peak, whereas the temperatures

T = 0.50, 0.47 show only weak os
illations. The lowest temperature T = 0.44 also

shows a non monotoni
 behavior, but only to a small extent when 
ompared to the

temperatures of T = 0.46, 0.45. In Fig. 5.12 we show another possible analysis of

the di�eren
e observed in the MSD. Here the ratio of the MSD of the larger system


ompared to that of the smaller one is shown: ∆∗g0(t) =
g0,M=8000(t)

g0,M=1000(t)
. (The two


onsidered ratios are related to ea
h other by ∆g0(t) = 1 − (∆∗g0(t))
−1
.)

By this representation the di�erent evolution of the �MSD ratio� for di�erent

temperatures be
omes more obvious. For T = 0.45 we observe after the �rst peak a

strong in
rease whi
h then seems to saturate for times t > 104
. A similar behavior

is seen for T = 0.46 but less pronoun
ed where the saturation begins earlier.

7

The MSD for all system and temperatures is evaluated using the same sampling s
heme for

times t . 200. Therefore the position of the peak appears at the same time. A more detailed time

sampling might show smaller deviations in the position of the peak for di�erent temperatures.
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Figure 5.11: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a 
hain length of N = 10. The relative di�eren
e of

the mean square displa
ement ∆g0(t) =
g0,M=8000(t)−g0,M=1000(t)

g0,M=8000(t)
is depi
ted for T =

0.50, 0.47, 0.46, 0.45, 0.44. The horizontal lines give the value of ∆g0(t) at the peak

position for T = 0.45 (red), T = 0.46 (blue) and T = 0.44 (bla
k).
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Figure 5.12: Comparison between two system sizes (M = 1000 and M = 8000) at

pressure of p = 1 and a 
hain length of N = 10. The ratio of the mean square

displa
ement ∆∗g0(t) =
g0,M=8000(t)

g0,M=1000(t)
is depi
ted for T = 0.50, 0.47, 0.46, 0.45, 0.44.

The horizontal lines give the value of ∆g0(t) at the peak position for T = 0.45 (red),

T = 0.46 (blue) and T = 0.44 (bla
k).
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Chapter 6

Summary and Outlook

By performing mole
ular dynami
s simulation of a generi
 bead spring model we

studied the stru
ture, the 
onformational and stru
tural relaxation, and the vis-


oelasti
 properties of glass-forming polymer melts. This study was mainly fo
ussed

on dynami
 quantities as they reveal the most prominent features of these polymer

melts: the protra
ted stru
tural relaxation pre
eding the glass transition tempera-

ture. For the employed model we studied the in�uen
e of the 
hain length of the

polymers on the dynami
al and the stati
 properties. The dynami
s were mainly

analyzed in the framework of the ideal mode-
oupling theory [37℄.

Our work is the logi
al 
ontinuation and extension of two previous theses per-

formed in the group. The work by M. Ai
hele studied bulk systems of short 
hains

N = 10 at p = 1.0 [1, 4, 22℄. That work performed almost ten years ago was re-

stri
ted to systems of 1000 − 1200 parti
les. The se
ond work is the thesis of S.

Peter [64�66℄ who used the same model to study the super
ooled dynami
s in thin

�lms. As a referen
e, some bulk systems with N = 64 were studied at p = 0.

In the present work, we go beyond the previous work by using larger systems

of 12288 parti
les and by studying systemati
ally the 
hain length dependen
e of

the super
ooled dynami
s using N = 4, 8, 16, 32, 64. The in
reased 
omputer power

makes it possible to equilibrate the systems down to the MCT 
riti
al temperature

and for small 
hains even below. In the following, we summarize the main results

and point out possible extensions of this work.

• We started with the analysis of the stati
 properties. We investigated how

the density evolves as a fun
tion of the 
hain length and temperature (see

�gures 3.1 and 3.3). Thereby we found that the evolution 
an be des
ribed as

a fun
tion of the re
ipro
al 
hain length. A signature of this feature was also
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observed in the stati
 stru
ture fa
tor (
f. �gures 3.6 and 3.7). It would be

interesting if this observed behavior is still present for longer 
hains espe
ially

on 
ooling.

• We investigated how the e�e
tive bond length [79℄ evolves as a fun
tion of

the temperature (
f. �gures 3.14 � 3.16). We found that the e�e
tive bond

length de
reases on 
ooling the temperature. This 
ounter-intuitive feature

arises from the full �exibility of the employed model whi
h is 
hemi
ally not

realisti
. Therefore it would be interesting to 
ontinue the study by 
onsidering


hemi
ally more realisti
 models (like in [16℄).

• The dynami
s were studied in the framework of the ideal mode-
oupling the-

ory (MCT) [11, 37℄. A �rst step was the examination of the temperature

interval within whi
h the time-temperature superposition prin
iple (TTSP) is

ful�lled as a fun
tion of the 
hain length (
f. �gures 4.2 � 4.6). This was


ontrasted with the fa
torization theorem whi
h was veri�ed in the β regime

(
f. �gures 4.7 � 4.9). In summary the s
aling in the β regime is possible even

for temperatures for whi
h the TTSP does not hold anymore.

• Thereafter we determined the 
riti
al temperature T



of the ideal MCT as a

fun
tion of the 
hain length (
f. �gures 4.18 � 4.22). A 
hain length depen-

den
e of T



whi
h 
an be res
aled by 1/N was found (see �gures 4.23 and 4.24).

This is in 
ontrast to the von S
hweidler exponent b for whi
h an e�e
tive s
al-

ing behavior with 1/
√

N was found for N < 64 (see Fig. 4.25). Future work


ould fo
us on longer 
hain lengths. Does b 
ontinue to de
rease for N > 64

or does it 
onverge to a 
onstant value?

• The q-dependen
e of the α relaxation time was evaluated for a high and a

medium temperature and 
lose to T



(see Fig. 4.29). It was observed that for

the temperatures 
lose to T



the relaxation pro
esses on the monomer level

� as predi
ted by ideal MCT � are most pronoun
ed. However, for higher

temperatures relaxation pro
esses on larger length s
ales are more pronoun
ed.

• In 
omparison to the previous work, we 
onsider as an additional quantity the

shear relaxation fun
tion, and we are able to 
al
ulate the 
oherent interme-

diate s
attering fun
tion with high resolution so that a long time tail, spe
i�


to polymers, be
omes visible (
f. �gures 5.1 � 5.4). By employing the shear

relaxation fun
tion [54℄ the 
onsidered systems were studied on larger length



101

s
ales. It was found that upon 
ooling the monomer relaxation times in
rease

whi
h shifts the relaxation on length s
ales 
omparable to the polymer size to

longer times. A similar behavior was observed also by analyzing the interme-

diate s
attering fun
tion for the smallest q values a

essible in the simulation

(see Fig. 5.4). This study showed that signi�
ant polymer e�e
ts � whi
h

show a power law signature � be
ome visible only for the smallest q values

and the longest 
hains studied (
f. Fig. 5.5). This deserves a more detailed

theoreti
al analysis.

• By res
aling the mean square displa
ement a

ording to the di�usion 
onstant

an analogous s
aling behavior as for the intermediate s
attering fun
tion by

res
aling a

ording to the α relaxation time was found (
f. Fig. 5.6). For the

shear relaxation fun
tion a s
aling a

ording to only one of these quantities

does not lead to a 
ompletely satisfying result.

• In the last part we undertook a 
ase study on �nite size e�e
ts. To this end we


ompared two system sizes of a polymer system with a 
hain length N = 10.

This 
omparison fo
ussed on the 
oherent intermediate s
attering fun
tion

(
f. �gures 5.7 and 5.8) and the mean square displa
ement (
f. Fig. 5.10).

These fun
tions measured for both systems were 
ompared to ea
h other for

temperatures around T



of the ideal MCT (
f. 
oherent intermediate s
attering

fun
tion: Fig. 5.9; MSD: �gures 5.11 and 5.12). Thereby it was observed

that interestingly for T



the most pronoun
ed di�eren
es in the dynami
s of

these two system sizes were found. It is not 
lear how these �ndings 
an be

interpreted. In the future the �ndings should be 
omplemented by studying

an even larger system. By this it would be possible to 
he
k how the observed

di�eren
es in the dynami
s evolve with the system size. If our �ndings are


on�rmed, one 
ould 
on
lude that although at the 
riti
al temperature of the

ideal MCT not a total dynami
al arrest is observed, the dynami
s seem to


hange qualitatively.
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Appendix A

Tables

In the following tables we summarize the simulation parameters (A.1) and report

the numeri
al values of the relaxation times (A.2 and A.3), the density (A.4), the

bulk modulus (A.5) and the shear modulus (A.6).

integration time step NVT: Tdamp NPT: Tdamp NPT: Pdamp

0.005 0.1 10 75

Table A.1: Simulation parameters used for the systems with p = 0 and N =

64, 32, 16, 8, 4. The Tdamp / Pdamp parameter spe
i�es how rapidly the tempera-

ture / pressure is relaxed [51℄. For the systems with p = 1 the same parameter set

is used. The used parameters are 
hosen su
h that they ful�ll the 
riteria des
ribed

in Ref. [73℄.
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T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 4.44089 × 106

0.37 949525

0.38 246795

0.39 2.13892 × 106 85233.6

0.40 658706 33161.2

0.41 2.34229 × 106 246692

0.42 1.03979 × 106 108388

0.43 2.59966 × 106 434806

0.44 9.47817 × 106 1.30924 × 106 215894 32340.9 3664.05

0.45 4.84449 × 106 666717

0.46 2.47327 × 106

0.48 1.08361 × 106

0.50 647803 117530 23717.6 4601.86 782.66

0.70 50587.2 10718.7 2260.14 516.646 111.357

1.00 12074.2 2549.07 596.687 141.315 32.7051

Table A.2: Survey of relaxation times: For the systems with a pressure of p = 0

the relaxation time τ
relax

is given. τ
relax


orreponds to the time interval in whi
h

the orientational 
orrelation fun
tion of the end-to-end-ve
tor, φ
e

(t), has relaxed to

0.1: φ
e

(τ
relax

) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.
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T N = 10 n = 800 N = 10 n = 100

0.43 5.60663 × 106

0.44 1.6253 × 106 1.72823 × 106

0.45 638440 868551

0.46 278558 339260

0.47 155734

0.48 84613.6

0.50 34311.6 34500.5

1.00 346.12 351.418

Table A.3: Survey of relaxation times: For the systems with a pressure of p = 1

the relaxation time τ
relax

is given. τ
relax


orreponds to the time interval in whi
h

the orientational 
orrelation fun
tion of the end-to-end-ve
tor, φ
e

(t), has relaxed to

0.1: φ
e

(τ
relax

) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.

T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 1.02580

0.37 1.02230

0.38 1.01931

0.39 1.03149 1.01615

0.40 1.02818 1.01267

0.41 1.03311 1.02522

0.42 1.03396 1.02997 1.02191

0.43 1.03096 1.02688

0.44 1.02985 1.02789 1.02390 1.01576 0.99941

0.45 1.02688 1.02486

0.46 1.02391

0.48 1.01792

0.50 1.01193 1.00980 1.00550 0.99684 0.97947

0.70 0.95462 0.95192 0.94657 0.93570 0.91358

1.00 0.87456 0.87084 0.86313 0.84746 0.81472

Table A.4: Density ρ as a fun
tion of the temperature T for N=64,32,16,8,4.
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T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 37.4746

0.37 38.0425

0.38 36.3333

0.39 38.0227 35.3873

0.40 37.5067 34.1172

0.41 37.4682 36.3409

0.42 37.5582 36.9232 35.2078

0.43 36.6071 36.1268

0.44 36.4644 35.8789 35.0838 33.7902 31.0700

0.45 35.6703 35.1631

0.46 34.9340

0.48 33.5773

0.50 32.3471 31.9424 31.0951 29.7592 27.0134

0.70 22.6267 22.2413 21.4544 20.0960 17.5000

1.00 13.3534 12.9897 12.2217 10.8711 8.45599

Table A.5: Bulk modulus K(T ) as a fun
tion of the temperature T for

N=64,32,16,8,4.
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T N = 64 N = 32 N = 16 N = 8 N = 4

0.38 79.8422

0.39 93.2129 77.9908

0.40 88.7825 79.1402

0.41 92.5351 89.2449

0.42 94.6029 92.2997 87.6220

0.43 94.0628 91.9207

0.44 94.6634 93.6428 91.5402 86.7888 77.3178

0.45 94.8497 93.6448

0.46 94.5608

0.48 93.6125

0.50 92.8976 91.6347 89.1075 84.5495 74.9590

0.70 85.6090 84.5181 82.0420 77.0911 67.7084

1.00 76.4073 75.1542 72.5174 67.5512 57.8094

Table A.6: Shear modulus G∞(T ) as a fun
tion of the temperature T for

N=64,32,16,8,4.
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Propriétés vis
oélastiques des fondus de polymères vitri�ables

Thèse soutenue par Stephan Frey le 29 juin 2012 (Université de Strasbourg)

Résumé À l'appro
he de la transition vitreuse les fondus de polymères montrent une

augmentation importante de la vis
osité de plusieurs ordres de grandeur. Le but de 
ette

étude est d'a
quérir une 
ompréhension plus profonde des propriétés vis
oélastiques des

fondus de polymères vitri�ables. Les polymères sont modélisés 
omme des 
haînes �exi-

bles en utilisant un modèle de bille-ressort. Nous étudions des polymères ave
 di�érentes

longueurs de 
haîne pour lesquels nous analysons les propriétés statiques et dynamiques

pour une gamme de température pro
he de la température de transition vitreuse. Les pro-

priétés dynamiques sont analysées dans le 
adre de la théorie de 
ouplage de mode idéale.

Nous 
onstatons que la température 
ritique de 
ouplage de mode varie ave
 l'inverse de la

longueur de 
haîne. Cette loi d'é
helle se retrouve également pour les propriétés statiques.

En étudiant la fon
tion de relaxation de 
isaillement, nous 
onstatons que les pro
essus

de relaxation polymériques, qui peuvent être dé
rits par la théorie de Rouse, ne sont pas

modi�és, mais dé
alés vers des temps plus importants en appro
hant la transition vitreuse.

Dans 
ette gamme de température la relaxation monomérique est prolongée de plusieurs

ordres de grandeur. De plus, nous analysons les e�ets de taille �nie sur la dynamique

du fondu de polymère près de la transition vitreuse, et nos résultats suggèrent que la

dynamique est modi�ée qualitativement à la température 
ritique de 
ouplage de mode.

Summary Polymer melts show a remarkable in
rease of their vis
osity by many orders

of magnitude on approa
hing the glass transition. The aim of this study is to gain a deeper

insight into the vis
oelasti
 properties of glass forming polymer melts. The polymers are

modeled as �exible 
hains using a bead-spring model. We investigate polymers with di�er-

ent 
hain lengths for whi
h we analyze the stati
 and dynami
 properties for a temperature

range 
lose to the glass transition temperature. The dynami
 properties are analyzed in

the framework of the ideal mode-
oupling theory. We �nd that the 
riti
al temperature of

the ideal mode-
oupling theory s
ales with the re
ipro
al 
hain length. This s
aling is also

found for the stati
 properties. By studying the shear relaxation fun
tion we �nd that the

polymer relaxation pro
esses, whi
h 
an be des
ribed by the Rouse theory, are not altered

but shifted to later times in the approa
h of the glass transition. In this temperature range

the monomer relaxation is protra
ted by many orders of magnitude. Additionally, we an-

alyze �nite size e�e
ts on the dynami
s of polymer melts 
lose to the glass transition. Our

�ndings of this 
ase study suggest that the dynami
s 
hange qualitatively at the 
riti
al

temperature of the ideal mode-
oupling theory.

Keywords: Glass-forming polymer melts, mole
ular dynami
s simulation, mode-
oupling

theory, Rouse theory, shear relaxation fun
tion, vis
oelasti
ity, bead-spring model


