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Résumé

L'utilisation des polymères in�uene une grande partie de notre vie quotidienne;

notre époque pourrait, sans exagération, être appelée l'âge des polymères [68℄.

L'impat du développement de la himie des polymères sur nos habitudes de onsom-

mation moderne a été important: la plupart des matériaux d'emballage est fait de

polymères solides [44℄. L'exemple le plus simple d'une moléule de polymère est une

longue haîne linéaire liant N unités élémentaires un peu à la manière d'un ollier

de perles [30, 71℄. Les matériaux d'emballage sont présents sous forme solide, le plus

souvent dans l'état vitreux ou semi-ristallin. Pour leur utilisation, il est important

de omprendre les propriétés visoélastiques des fondus de polymères [68, 71℄.

Les onstituants d'un polymère sont nommés monomères et ont une taille typique

de ∼ 0.5 nm. Dans le fondu de polymères les monomères remplissent le volume

quasiment dans son intégralité et ne présentent auun ordre à longue distane [11℄.

Lors du refroidissement, la struture de l'ensemble ne hange que légèrement, une

propriété qui est aussi onnue pour les liquides simples surfondus [17, 20℄. Les

monomères sont beauoup plus petits que le polymère qu'ils forment. La taille d'un

polymère se mesure, par exemple, par le rayon de gyration Rg [26, 39, 71℄. Celui-i

est aessible de manière expérimentale à partir de méthodes de di�ration de la

lumière ou de di�usion de neutrons [46℄ et varie de 10 nm à 100 nm [11℄. À plus

grandes éhelles les polymères présentent une struture auto-similaire e qui permet

de les traiter théoriquement omme des fratales [24, 68℄.

Dans un fondu de polymères les interations inter-moléulaires agissant sur un

polymère sont erantées par les polymères voisins. Cei est dû au fait que, en

moyenne, un polymère interagit ave

√
N autres haînes [24, 26, 68℄. Le fait que

les haînes puissent se pénétrer les unes les autres si massivement implique des

ontraintes topologiques [24, 26, 56℄. Le résultat de es enhevêtrements est une

visosité élevée en raison du fort ralentissement de la dynamique de la haîne [11℄.

À l'approhe de la température de transition vitreuse, T
g

[53, 61℄, les fondus de
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polymères subissent une augmentation remarquable de leur visosité de plusieurs

ordres de grandeur. Cette forte augmentation est observée pour tous les temps de

relaxation struturale et ei est un exemple aratéristique des liquides vitri�ables

polymériques et non-polymériques. [18, 27℄.

En omparaison de e hangement dramatique de dynamique, la struture du

fondu ne subit que très peu de hangements lors du refroidissement. Comprendre

l'origine des phenomènes intervenant dans la transition vitreuse reste l'un des plus

grands dé�s de la physique de la matière molle [7, 17, 25℄.

But de ette étude. Le but de ette étude est d'aquérir une ompréhension

approfondie des proessus qui sont impliqués dans e phénomène de transition vit-

reuse. Nous abordons e problème par une approhe numérique grâe aux simula-

tions sur ordinateur en utilisant un modèle générique �bead-spring� [48℄. Dans e

modèle les polymères sont modélisés par des haînes �exibles possédant un volume

exlu. La présente étude s'appuie sur des travaux antérieurs [4, 15, 22℄. Ii, nous

étudions en partiulier l'in�uene de la longueur de la haîne sur les propriétés dy-

namiques d'un fondu de polymères, eux-i étant prinipalement analysés dans le

adre méthodologique de la théorie de ouplage de mode [4, 22, 23, 37℄.

Nous utilisons un modèle de simulation très semblable au modèle de polymères

préédemment étudié, par Bennemann et al. [12�15℄, de manière systématique pour

le régime de surfusion. L'analyse a été e�etuée en relation ave les fontions de

di�usion ohérente et inohérente, les fontions de orrélation des modes de Rouse

et divers déplaements arré moyens (voir Réf. [11℄).

En parallèle, le modèle a également été utilisé pour étudier les �lms mines on-

�nés [11℄ ainsi que les �lms mines de polymères ave des surfaes libres (interfae

�lm/volume libre) [64, 65℄. L'in�uene de partiules de solvant dissoute dans le �lm

a également été étudiée [66℄. Le travail sur les �lms ave une interfae polymère/air

a été e�etué à une pression nulle p = 0 qui est le hoix le plus naturel pour des

simulation de surfaes libres. Nous employons prinipalement la même pression dans

nos simulations.

Nous étudions en partiulier les petites haînes (non enhevêtrées) omme sug-

géré par [69℄. C'est dans e domaine de longueur que la plus forte dépendane de T
g

en fontion de la longueur de haîne peut être observée. Cette analyse se onentre

essentiellement sur les fontions de di�usion résolues dans le temps et son autoor-

rélation temporelle en essayant d'atteindre des températures inférieures à e qu'il
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Figure 1: La densité ρ en fontion de la température T pour di�érentes longueurs

de haîne (à gauhe). La densité ρ en fontion de l'inverse de la longueur de haîne

1/N pour des températures T = 0.44, 0.50 (à droite). Insert: Un éart de ∆ρ̃ =
ρ(T2,N)/ρ(T1,N)

ρ(T2,N=4)/ρ(T1,N=4)
à partir de 1 indique une déviation de la proportion de

ρ(T2,N)
ρ(T1,N)

de

elle de

ρ(T2,N=4)
ρ(T1,N=4)

. Cet éart roît presque linéairement ave l'augmentation de N .

était possible d'avoir dans les travaux antérieurs [4, 15, 22℄. Nous étudions aussi la

fontion de relaxation de isaillement qui est expérimentalement pertinente, mais

di�ile à déterminer ave une statistique satisfaisante par simulation numérique

[52, 54, 75℄.

Pour être en mesure d'étudier des systèmes de taille importante nous devons faire

usage d'arhitetures informatiques parallèles. Nous avons déidé de travailler ave

le ode LAMMPS [49, 67℄.

Dans la première partie de notre travail, nous avons testé les paramètres pour un

système monodisperse de taille de haine N = 10 à la pression p = 1, où il était

possible de omparer ave des données de référenes [1�4℄. Puis nous avons hoisi

d'e�etuer une variation systématique de la longueur de haîne, ei à une plus basse

pression, p = 0, a�n que nos données puissent servir de référene pour des travaux

futurs sur des �lms ave une surfae libre.

Dans la suite de e résumé nous présentons les points importants de ette thèse

qui ommene par une introdution des méthodes de simulation. Dans ette in-

trodution nous préisons le modèle de simulation que nous utilisons ainsi que la

proédure pour générer des on�gurations au sein de la gamme de température de

2T
g

& T & T
g

.
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Figure 2: À gauhe: Figure prinipale: Fateur de struture statique pour N = 64

et T = 0.50, 0.44 en fontion du module de l'onde veteur q. Insert (a): fateur de

struture statique pour N = 64, 16, 4 et T = 0.50. Insert (b): fateur de struture

statique pour N = 64, 16, 4 et T = 0.44; les pointillés indiquent le fateur de struture

statique pour T = 0.50. À droite: Figure prinipale: La fontion de distribution

radiale pour les températures T = 0.50 et 0.44 (N = 64). Insert: zoom sur les

maxima.

Nous analysons la densité en fontion de la température pour di�érentes longueurs

de haîne. Le graphe à gauhe de la Fig. 1 montre la densité en fontion de la

longueur de haîne qui est analysée pour T = 0.44 et T = 0.50 (voir à droite de

la Fig. 1). On onstate que l'évolution de la densité peut être dérite par ρ(N) =

ρ∞
(
1 − onstT

N

)
.

Le fateur de struture statique S(q) [9, 21℄ est une fontion de la température

T et de la longueur de haîne (voir Fig. 2). Une signature de la dépendane de la

densité à la longueur de haîne est observée pour S(q). Nous alulons de la même

manière la fontion de distribution radiale [21℄ (voir Fig. 2).
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Figure 3: Figure prinipale: Distanes quadratiques moyennes intra-haîne pour N

= 64, 32, 16, 8, 4 en fontion de distane urviligne s pour T = 0.50. R2
s

s
est approhé

par la ligne pointillée omme dérit en Réf [79℄ pour déterminer la longueur de la

liaison e�ae b
e

qui se trouve être b
e

= 1, 304 pour T = 0.50. Insert: R2(s)/(sb2
e

) en

fontion de 1/(ρb3
e

√
s). La ligne noire en pointillés est donnée par f(x) = 1−c1

√
24
π3 x

[79℄. Ainsi, la onformité de

R2
s

s
pour N = 4, 8, 16, 32, 64 ave elle représente la

préision de l'ajustement.

Dans la partie suivante, nous analysons la longueur de liaison e�etive, omme

le suggère la Réf. [79℄. La Figure 3 montre l'analyse à T = 0.50. Il se trouve

que la longueur de la liaison e�etive diminue en fontion de T . Ce omportement

ontre-intuitif provient de la �exibilité du modèle employé qui n'est himiquement

pas réaliste.

Par la suite, la dynamique des systèmes est analysée dans le adre de la MCT,

théorie de ouplage de mode idéale [37℄. Le prinipe de superposition des temps

et des températures et le théorème de fatorisation � deux préditions de base de

la MCT � sont analysés pour toutes les longueurs de haîne (voir Fig. 4 où ette

proédure est dérite pour N = 64). En outre, l'analyse suggère un intervalle de

température approximatif où la MCT devrait être appliable.

Dans une étape ultérieure les exposants de �von Shweidler� b sont déterminés en

fontion de la longueur de haîne en ajustant les fontions de di�usion ohérente tel

que suggéré par la Réf. [11℄, selon l'équation suivante:

φq(t) = f c
q − h̃fit

q (t/t′σ)
b
+ h̃fit

q B̃fit
q (t/t′σ)

2b
(tσ ≤ t) . (1)
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Figure 4: À gauhe: La fontion de di�usion ohérente φq=6.9(t) pour N = 64

redimmensionnée en fontion du temps de relaxation α, (τq∗)
−1
, qui est déterminé

par φq=6.9(t = τq∗) = 0.1. À droite: Le théorème de fatorisation est testé pour

T = 0.44 et N = 64. Par dé�nition Rq(t
′′ = 5.12) = 1 et Rq(t

′ = 30.7)=0. Les

temps t′′ et t′ sont hoisis de telle sorte qu'ils se trouvent dans la région orrespondant

au plateau. Le théorème de fatorisation est validé: les ourbes pour des valeurs

di�érentes de q se superposent.

Ii f 

q représente le paramètre non-ergodique, t′σ le temps de relaxation α, et b

l'exposant de �von Shweidler�. Le paramètre h̃fit
q est donné par hqB où hq désigne

l'amplitude ritique et B est une onstante. Le paramètre B̃fit
q est donné par BBq

où Bq est dépendante de q.

En ajustant le temps de relaxation α, nous déterminons la température ritique

T


de la théorie MCT en fontion de la longueur de haîne N (voir Fig. 5). Il se

trouve que les valeurs obtenues pour T


peuvent être remises à l'éhelle en fontion

de l'inverse de la longueur de haîne e qui est représenté sur la Fig. 6.
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En outre, nous sommes en mesure de aluler la fontion de di�usion ohérente

ave une haute résolution a�n que la queue de la ourbe pour les grands temps,

spéi�ques aux polymères, devienne visible (voir bas de la Fig. 7).

Après l'analyse des fontions de di�usion, nous onsidérons la fontion de re-

laxation de isaillement [54℄ omme une quantité supplémentaire. En utilisant la

fontion de relaxation de isaillement, les systèmes onsidérés sont étudiés sur des

éhelles de longueur plus grandes. Nous avons onstaté que les proessus de relax-

ation polymériques, qui peuvent être dérits par la théorie de Rouse [26℄, ne sont

pas modi�és, mais déalés vers des temps plus importants en approhant la transi-

tion vitreuse. Un omportement similaire est également observé par l'analyse de la

fontion de di�usion pour les plus petites valeurs de q aessibles par la simulation

(voir bas de Fig. 7). Cette étude montre que les e�ets signi�atifs de la struture

polymère � qui montrent une signature en loi de puissane � ne deviennent visi-

bles que pour les plus petites valeurs q et les haînes les plus longues que nous avons

étudiées.

La mise à l'éhelle du déplaement quadratique moyen en fontion de la onstante

de di�usion montre un omportement d'éhelle analogue à la fontion de di�usion

ohérente en fontion du temps de relaxation α (voir Fig. 8). Pour la fontion de

relaxation de isaillement une mise à l'éhelle selon une seule de es quantités ne

onduit pas à un résultat omplètement satisfaisant.

Dans la dernière partie, nous entreprenons une étude sur les e�ets de taille �nie. À

ette �n, nous omparons deux tailles de système pour des polymères d'une longueur

de haîne N = 10. Cette omparaison porte sur la fontion du déplaement quadra-

tique moyen (voir Fig. 9). Ces fontions mesurées à partir de es deux systèmes sont

omparées pour des températures autour de la valeur de T


de la MCT idéale [15℄.

Il est intéressant de remarquer que pour la dynamique nous trouvons la plus grande

di�érene entre es deux tailles de système préisément pour la température T


. Ce

résultat suggère que la dynamique est modi�ée qualitativement à la température

ritique de ouplage de mode.
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Zusammenfassung

Die Verwendung von Polymeren durhdringt unser täglihes Leben so stark, dass

man unser Zeitalter, in Anlehnung an Epohenbegri�e wie z.B. �Steinzeit� oder

�Eisenzeit�, auh �Polymerzeit� nennen könnte [68℄. Der bedeutende Ein�uss der

Polymerhemie wird o�enbar, wenn man an den täglihen Einkauf im Supermarkt

denkt: Der Groÿteil der Verpakungsmaterialien besteht aus Polymeren [44℄.

Ein einfahes Modell eines Polymers ist eine lange lineare Kette, bestehend aus

N miteinander verbundenen elementaren Einheiten [30, 71℄. Die erwähnten Ver-

pakungsmaterialien liegen in fester Form vor; meist im glasartigen oder semikristalli-

nen Zustand. Bei ihrer Verarbeitung ist die Kenntnis der viskoelastishen Eigen-

shaften von Polymershmelzen unerlässlih [68, 71℄. In der Shmelze sind die inter-

molekularen Wehselwirkungen durh die benahbarten Polymere abgeshirmt, da

ein Polymer im Mittel mit

√
N anderen Polymeren wehselwirkt [24, 26, 68℄. Die

starke gegenseitige Durhdringung der Ketten führt zu topologishen Hindernissen

[24, 26, 56℄. Aufgrund dieser sog. Vershlaufungen weisen Polymershmelzen eine

hohe Viskosität auf, da die Dynamik der Ketten stark verlangsamt ist [11℄.

In der Nähe der Glasübergangstemperatur Tg [53, 61℄ zeigt die Viskosität von

Polymershmelzen einen dramtishen Anstieg um mehrere Gröÿenordnungen. Dieser

gewaltige Anstieg kann bei allen strukturellen Relaxationszeiten beobahtet werden

und ist eine spezi�she Eigenshaft aller glasbildenden Flüssigkeiten, sowohl poly-

merartiger als auh niht polymerartiger. [18, 27℄. Im Vergleih zu dieser drama-

tishen Änderung der Dynamik, ändert sih die Struktur der Shmelze kaum. Das

Verstehen des Glasübergangs auf mikrokopisher Ebene ist noh immer eine der

gröÿten Herausforderungen der Physik der weihen Materie [7, 17, 25℄.

Das Ziel dieser Arbeit ist es, ein tieferes Verständnis der Prozesse zu erlangen,

welhe den Glasübergang von unterkühlten Polymershmelzen begleiten. Zur Studie

werden Computersimulationen von generishen Kugel-Federmodellen [48℄ verwen-

det. Hierbei werden die Polymere als �exible Ketten modelliert, wobei auf früheren

xvii



Arbeiten aufgebaut wird [4, 15, 22℄. Dabei liegt der Fokus auf den dynamishen

Eigenshaften der Kette, welhe im Rahmen der idealen Modenkopplungstheorie

(MCT) untersuht werden [4, 22, 23, 37℄.

Es wird ein Modell verwendet, welhes ähnlih dem von Bennenmann et al. sys-

tematish im unterkühlten Bereih untersuhten Modell ist [12�15℄. Dieses wurde

anhand von inkohärenten und kohärenten Streufunktionen und Korrelationsfunktio-

nen der Rouse Moden untersuht. Des Weiteren wurden vershiedene Funktionen

des mittleren Vershiebungsquadrats betrahtet (vgl. z.B. [11℄ für eine Übersiht).

In der vorliegenden Arbeit werden speziell kurze (niht vershlaufte) Ketten un-

tersuht, wie dies durh Ref. [69℄ nahegelegt wird. In diesem Bereih ist die gröÿte

Abhängigkeit der Kettenlänge von T
g

zu erwarten. Der Fokus der Arbeit liegt auf

der Analyse von Streufunktionen. Hierbei wird der Versuh unternommen, diese

für tiefere Temperaturen zu untersuhen, als dies in früheren Arbeiten möglih war

[4, 15, 22℄. Im weiteren Verlauf der Arbeit wird die Sherrelaxationsfunktion un-

tersuht, die experimentell relevant, allerdings in Computersimulationen mit ausrei-

hender Statistik nur shwer zugänglih ist [52, 54, 75℄.

Um gröÿere Systeme als Vorgängerarbeiten untersuhen zu können, wird in dieser

Arbeit der LAMMPS Code verwendet [49, 67℄. Zu Beginn unserer Arbeit wurden

die verwendeten Parameter ausgiebig für ein �Bulk�-System mit N = 10 und Druk

p = 1 getestet, wobei es möglih war die Ergebnisse mit denen der Ref. [1�4℄ zu

vergleihen. Für die Untersuhung der oben erwähnten Gröÿen in Abhängigkeit von

der Kettenlänge wurde p = 0 verwendet. Dadurh können die erhaltenen Daten für

�Bulk�-Systeme bei zukünftigen Studien freier Ober�ähen als Referenz verwendet

werden.

Die statishen Eigenshaften der untersuhten Systeme werden anhand ihrer Dih-

te, des Kompressionsmoduls, des statishen Strukturfaktors und weiterer Gröÿen

analysiert. Hierbei zeigt die Dihte ein Verhalten, das mit der reziproken Ketten-

länge skaliert. Dies kann mit Kettenende�ekten plausibel gemaht werden [28℄.

Die e�ektive Bindungslänge [79℄ der Polymerketten wird als Funktion der Tem-

peratur untersuht. Die e�ektive Bindungslänge nimmt mit sinkender Temperatur

ab. Dieses Verhalten kann durh die Modellierung der Polymere als �exible Ketten

erklärt werden. Es wäre daher interessant, in der Zukunft hemish realistishere

Modelle (wie z.B. in [16℄) zu verwenden.

Die Dynamik wird im Rahmen der idealen MCT [37℄ analysiert: In Abhängigkeit

von der Kettenlänge wird das Temperaturintervall untersuht, in welhem das Zeit-
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Temperatur Superpositionsprinzip (TTSP) gültig ist. Ferner bestätigen sih die

Vorhersagen das Faktorisierungstheorems im β-Regime. Zusammenfassend sheint

das Faktorisierungstheorem noh gültig für Temperaturen zu sein, für welhe das

TTSP niht mehr erfüllt ist. Die kritishe Modenkopplungstemperatur wird als

Funktion der Kettenlänge bestimmt. Sie skaliert � wie die Dihte � mit der

reziproken Kettenlänge.

Für die untersuhten Systeme kann die kohärente Streufunktion sehr fein aufgelöst

werden, so dass das polymerspezi�she Langzeitverhalten beobahtet werden kann.

Diese Untersuhung wird durh die Analyse der Sherrelaxationsfunktion [54℄ erwei-

tert. Es zeigt sih, dass beim Abkühlen die Monomerrelaxationszeiten zunehmen.

Dadurh werden Relaxationsprozesse auf Längenskalen der Polymere zu späteren

Zeiten vershoben.

Im letzten Teil der Arbeit werden in einer Fallstudie die E�ekte der endlihen Si-

mulationsbox auf die Dynamik untersuht (vgl. z.B. [45℄). Für zwei vershiedene

Boxgröÿen werden Untershiede in der Dynamik, gemessen durh die kohärente

Streufunktion und das mittlere Vershiebungsquadrat der Monomere, beobahtet.

Interessanterweise sind die Untershiede für die kritishe Modenkopplungstempera-

tur [15℄ am gröÿten. In einer zukünftigen Studie könnten diese Ergebnisse durh

die Untersuhung noh gröÿerer Systeme weiter untermauert werden. In diesem Fall

könnte man folgendes shlieÿen: Auh wenn bei der kritishen Modenkopplungstem-

peratur kein dynamisher Stillstand beobahtet werden kann, so ändert sih hier die

Dynamik doh qualitativ.
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Chapter 1

Introdution

The usage of polymers in�uenes a wide range of our everyday life so that our

age ould be, without exaggeration, termed the Polymer Age [68℄. The impat of

the development of polymer hemistry might beome quite apparent by onsidering

modern supermarket ulture: Most paking materials are made of polymer solids

[44℄. The simplest example of polymers are long linear hains of N linked elementary

units [30, 71℄. The mentioned pakaging materials are present in solid form, mostly

in the glassy or the semi-rystalline state. For the proessing it is important to

understand the visoelasti properties of polymer melts [68, 71℄.

The onstituents of a polymer are named monomers and have a typial size of

∼ 0.5 nm . In the melt they are densely paked and exhibit no long range order [11℄.

Upon ooling this overall struture hanges only slightly, a property whih is also

familiar from superooled simple liquids [17, 20℄. They are muh smaller than the

polymer that they form. The size of a polymer ould be measured, for example by

the radius of gyration Rg [26, 39, 71℄, whih is aessible in experiments by methods

of light or neutron sattering [46℄ and ranges from 10 nm to 100 nm [11℄.

On large length sales polymers exhibit a self-similar struture whih allows to

treat them theoretially as fratals [24, 68℄. In a polymer melt intermoleular in-

terations are sreened by neighboring polymers as a polymer interats, on average,

with

√
N other hains [24, 26, 68℄. The fat that the hains penetrate eah other so

massively results in topologial onstraints [24, 26, 56℄. The entanglements lead to

a high visosity due to the great slowing down of the hain dynamis [11℄.

On approahing the glass transition temperature T
g

[53, 61℄ polymer melts show a

remarkable inrease of their visosity by many orders of magnitude. This enormous

inrease is observed for all strutural relaxation times and is a typial feature of all

1



2

glass-forming liquids, polymeri and non-polymeri ones [18, 27℄.

In omparison to this dramati hange of the dynamis, the struture varies only

slightly. A mirosopi understanding of the glass transition remains one of the

biggest hallenges in ondensed matter physis [7, 17, 25℄.

Aim of this study. The aim of this study is to gain a deeper insight into the

proesses whih are involved in the phenomenon of glassy slowing down in super-

ooled polymer melts. We approah this problem by omputer simulation using a

generi bead-spring model [48℄ in whih polymers are modeled as �exible hains.

The present study builds upon previous work [4, 15, 22℄. Here we espeially fous

on the hain length dependene of the dynamial properties of the melt, whih are

mainly analysed in the framework of the ideal mode-oupling theory [4, 22, 23, 37℄.

We employ a simulation model very similar to the bead-spring polymer model

�rst studied systematially in the superooled regime by Bennemann et al. [12�15℄.

It was analysed in terms of the inoherent and oherent sattering funtions, Rouse

mode orrelation funtion, and various mean-square displaements (see e.g. [11℄ for

a review). In parallel, the model has also been employed to study thin on�ned �lms

[11℄ as well as supported and free standing thin polymer �lms [64, 65℄, and also the

in�uene of solvent partiles [66℄. The work on supported and free standing �lms

was performed at a pressure p = 0 whih is the more natural hoie when simulating

free surfaes. We mainly employ the same pressure in our simulation.

Thereby espeially small (nonentangled) hains are explored, as it is suggested

by [69℄ that in this range the largest dependene of the hain length of T
g

an

be expeted. This analysis mainly fouses on intermediate sattering funtions by

trying to ahieve lower temperatures than it was possible in previous works [4,

15, 22℄. As an additional quantity we study the shear relaxation funtion whih

is experimentally relevant, but di�ult to determine with satisfying statistis in

omputer simulations [52, 54, 75℄.

The previous works have been performed with home-written sequential MD odes.

To be able to study larger systems and to make use of today's parallel omputer

arhitetures, we deided to work with the LAMMPS ode [49, 67℄. In a �rst part

of our work, we tested our implementation of the parameters with the bulk system

N = 10 at p = 1 where it was possible to ompare with the data of Ref. [1�4℄. Then

we hose to perform a systemati hain length variation in the main part at a lower

pressure p = 0 so that our bulk data an serve as a referene for future work with
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free surfaes.

Outline. This work is organised as follows: In the seond hapter we desribe the

simulation methodology by shortly summarizing the used simulation tehnique and

the employed simulation model. The third hapter deals with the stati properties

of the studied systems. In the forth and �fth hapter we turn to the dynami

properties. In the forth hapter the dynamis is studied in the framework of the

ideal mode-oupling theory, whereas in the �fth hapter the dynamis is analysed

by employing the shear relaxation funtion. Additionally, we undertake a ase study

on the �nite size e�ets. The work �nishes with a summary.
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Chapter 2

Simulation

In this work we want to study the visoelasti properties of glass-forming polymer

melts. For this purpose we make use of omputer simulations. In this hapter we

want to answer the following questions: What is the appropriate simulation method

to investigate the properties of glass-forming polyer melts? Whih are the essential

ingredients of a omputer simulation?

2.1 Introdution

We want to use omputer simulations to generate mirosopi information of a

physial system [5, 31℄. Statistial mehanis provides us then with a tool to onvert

this mirosopi information into marosopi information of the studied system.

There are di�erent approahes to simulate polymers [11℄: the atomisti method

and the oarse-grained method. The oarse-grained method aptures the less de-

tails about the onsidered physial system. Atomisti models employ potentials for

interations between all atoms of the model. The form of these potentials (whih

aount for example for the bond length, bond angles, . . . ) is assumed and related

parameters are estimated by experiments and quantum hemial alulations: For

the expliit atom model the onstituents are the individual atoms of the system.

In the ase of the united atom model spherial sites omprising several atoms are

the onstituents. The oarse-grained method applies stronger approximations to the

onsidered physial system. Groups of atoms as for example monomers are modelled

by spherial interation sites and realisti potentials are replaed by even simpler

ones.

Although it is desirable to take into aount the most details possible about the

5
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system, the atomisti approah is often not feasible as it is too demanding in terms

of CPU time [11℄. Therefore we employ oarse-grained models in our work as this

provides the possibility to simulate systems whih are in a temperature region whih

is lose to the glass transition temperature [53℄. In addition, by reduing the number

of di�erent interations, we onentrate on generi features.

2.2 MD simulations

Our short summary about moleular dynamis simulation mainly follows [5, 31℄. An

MD simulation onsists of three steps:

Initialization First a on�guration is generated onsistent with the physial on-

ditions of the onsidered system. By the term �on�guration� we understand the

olletion of all data haraterizing unambiguously the mirosopi state of a physi-

al system. During this initialization proess positions and veloities of all partiles

are hosen suh that they are ompatible with the struture whih is to be simulated.

For example: If a system with exluded volume is simulated, distanes between ini-

tial partile positions must not be so small that the partiles penetrate eah other.

Our proedure will be explained in detail in setion 2.5.

Computation of fores Next omes the omputation of fores: When all partile

positions are known, fores have to be alulated. The interations between partiles

are desribed in terms of interation potentials [5, 31℄:

− ∂

∂ri
U(rM) = Fi . (2.1)

From all partile positions (denoted in Eq. (2.1) by rM
) together with the inter-

ation potential U the resulting fore Fi ating on partile i an be omputed. The

potentials of pairwise interations between partiles are assumed to be additive so

that the total sum of them gives the interation potential U . In this equation, ri

denotes the position of partile i; so the derivative of U(rM) with respet to the

partile's position gives the fore ating on it. Therefore the omputation of all

fores ating in the system is done by evaluating all derivatives with respet to all

partiles' positions.
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Integration of Newton's equations of motion In a third step, the time evo-

lution of the mirosopi state of the system is alulated. This means that the

positions and veloities of all partiles are evaluated. This is ahieved by integra-

tion of Newton's equations of motion:

Fi(t) = mi
d

2ri(t)

dt2
(2.2)

with mi being the mass of partile i.1

This integration is done by time disretization. The disrete time intervals are

alled integration time steps. As a result one an only aess information about the

position and veloity of a ertain partile for disrete points on the timeline. There

are various algorithms to do this (see setion 2.2.1). Eah entity of positions and

veloities of all partiles gives one on�guration.

The iteration of the last two steps represents the main ore of anMD simulation.

Following this sheme, after eah integration time step positions and veloities of

all partiles are omputed and a new on�guration is generated. A set of sequential

on�gurations forms a trajetory and provides information about the time evolution

of the mirosopi states of the onsidered system. The omputation of fores and

the integration of Newton's equation of motion are repeated until the trajetory

has reahed �su�ient� length. In other words, enough on�gurations are generated

so that the studied property of the system is measurable with su�ient statistis.

From a statistial point of view, we ould say: The subset of the phase spae probed

by the simulation is large enough to draw onlusions about the physial behavior

of the studied system [5℄.

Besides the underlying assumptions about the physial systems, whih are inor-

porated in an MD simulation (like the assumption that the potential is pairwise

additive), there are other soures of impreisions [5℄. After the fores are alulated,

partiles are moved during an integration time step aording to the fore ating on

them and their initial veloity. Yet, the fore hanges permanently while a partile

hanges its positions and / or other partiles hange their position and thereby the

interation potential is hanged. Therefore, an error will our and it will grow with

inreasing integration time step. So, the integration time step should be hosen

as small as possible. On the other hand, one is interested in generating sequential

1

We onsider only systems where all partiles have the same mass, so mi ≡ m for all partiles.
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on�gurations, whih over the phase spae as muh as possible. This means that

the on�gurations should not just di�er in tiny hanges of the partiles' positions

but rather partiles should travel longer distanes and thus sanning a larger part

of the phase spae. This is important, as every omputation of positions and fores

ost CPU time and this will eventually deide if a simulation is feasible or not. For

this reason one has to �nd a ompromise between these two demands to the size of

the integration time step.

The omputation of fores is the most time onsuming part, whih is neessary

to generate on�gurations [31℄. An e�etive way to redue the needed omputation

time is to onsider as little as possible interation partners in this omputation. The

interation potential is put together of pairwise additive potentials, and therefore

the single parts of the potential an be treated separately. The larger the distane

between partiles is, the smaller the interation between them. Thus, at some dis-

tane the interation between two partiles will be so small that it ould be negleted

ompared to interations exerted on them by loser partiles.

2

One exploits this fat

by introduing an arbitrary distane, whih is alled the ut-o� radius. Partiles

that are separated by a distane larger than the ut-o� radius do not interat with

eah other [5, 31℄. The bene�t of this is the following: When the fores ating on

a partile are omputed, partiles that are farer apart than the ut-o� radius do

not have to be onsidered. This saves a lot of omputational time as only a small

fration of all partiles has to be onsidered in the fore omputation.

2.2.1 Integration algorithms

As an example for an algorithm to integrate Newton's equation of motion we show

the Verlet algorithm [74℄. This algorithm is the most basi one (and often the best

one) [31℄:

We onsider the Taylor expansion of the oordinate of a partile for t+∆t, around

t,

r(t + ∆t) = r(t) +
1

1!
v(t)∆t +

1

2!

f(t)

m
∆t2 +

1

3!

...

r ∆t3 + O(∆t4) , (2.3)

2

This proedure is stritly speaking only possible if no long range interations are present. For

our model the long range interations beome negligible for distanes of r ≈ 2r
min

, where r
min

denotes the minimum of the Lennard-Jones potential.
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and similarly for t − ∆t, around t,

r(t − ∆t) = r(t) − 1

1!
v(t)∆t +

1

2!

f(t)

m
∆t2 − 1

3!

...

r ∆t3 + O(∆t4) . (2.4)

By summing up these equations (Eq. (2.3) and Eq. (2.4)) we get

r(t + ∆t) + r(t − ∆t) = 2r(t) +
f(t)

m
∆t2 + O(∆t4) , (2.5)

whih an be rewritten as

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) +
f(t)

m
∆t2 . (2.6)

As it an be seen in Eq. (2.6) the Verlet algorithm does not make use of the

veloities to update the positions of the system, and the integration error is only of

the 4th order in ∆t [31℄.

The veloity Verlet algorithm The veloity Verlet algorithm [72℄ is a variation

of the Verlet algorithm, whih uses veloities and positions evaluated for the same

time. As this algorithm is implemented in the simulation ode [49, 67℄ that we use

(see setion 2.5), we will desribe it here as an additional example for an integration

algorithm. Similar to the Verlet algorithm positions are omputed using a Taylor

expansion [31℄:

r(t + ∆t) = r(t) + v(t)∆t +
1

2

f(t)

m
∆t2 . (2.7)

The extension of the veloity Verlet algorithm is based on the use of veloities.

Veloities are updated by obeying the following sheme

v(t + ∆t) = v(t) +
f(t + ∆t) + f(t)

2m
∆t . (2.8)

We point to the fat that �rst positions and from these fores have to be evaluated,

before veloities an be omputed (f. Eq. (2.8)). It an be shown that the veloity

Verlet algorithm is equivalent to the Verlet algorithm [31℄.

2.3 Simulations in di�erent ensembles

By employing the simulation methods desribed so far we are able to simulate sys-

tems whose total energy E does not hange with time. The introdued algorithm,

whih is built upon Newton's equations of motion, onserves the total energy of the
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system. In the beginning of a simulation, we �x the number of partiles and the

volume of the system, that means we hoose a spei� simulation box geometry and

size. This implies that the thermodynami variables N, V, E are �xed and therefore

we generate on�gurations in the miro anonial (NVE) ensemble [5, 31℄. This

method generates trajetories with realisti dynamis, the only draw bak is, that

the integration time step has to be hosen so small that it is guaranteed that the

total energy does not hange due to numerial errors. Another reason why other en-

sembles than the NVE ensemble are employed is that one is interested in simulating

a system that mimis better the experimental situation.

In an experiment one usually ontrols temperature and external pressure as it

is normally the easiest way of setting up a system to ontrol these thermodynami-

al variables (T and p). Thermodynamial variables like temperature and pressure

whih do not sale with the system size are alled intensive variable � opposite to

extensive variables whih sale with the system size, like energy E, volume V , en-

tropy S, . . . . Controlling intensive variables an be easily ahieved by bringing the

system under onsideration in ontat with a muh larger system. For example, tem-

perature an be ontrolled by establishing thermal ontat between the onsidered

system and a muh larger system whih is alled a �heat bath� [70℄.

Motivated by these fats we should answer the following question: How an

this situation be realized in a simulation? Or more preisely: How an we ontrol

temperature T and pressure p in a simulation?

2.3.1 Thermostatting

Similarly to the experimental situation one ould simulate the onsidered system

being in ontat with a larger system. This ould be realized by simulating a large

system of whih the onsidered system is a subsystem. Eventually one would have

to take are about a lot of degrees of freedom whih in most ases is not feasible.

A way around this problem was proposed by Hoover [41℄: By extending previous

work from Andersen [6℄ and Nosé [62, 63℄ he ame up with following equations

[64, 73℄:

ṙi =
pi

mi
, (2.9)

ṗi = Fi − ξpi , (2.10)

ξ̇ =
1

Q

(∑

i

p2
i

mi
− 3Nk

B

T
ext

)
, (2.11)
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with T
ext

denoting the set external temperature.

Broadly speaking, in Hoover's approah all degrees of freedom of the heat bath

are taken into aount by just one degree of freedom. The heat bath aelerates or

slows down partiles depending on the mean kineti energy.

The main modi�ation of the Newtonian equations of motion is to introdue an

additional term in Eq. (2.10). The additional term −ξpi ats as a dissipative part

if ξ is positive, and aelerates partiles if ξ < 0. It hanges opposite to the mean

kineti energy: If the main kineti energy is high it dereases it (by slowing down

the partiles) and vie versa. The time evolution of ξ (Eq. (2.11)) is oupled to the

mean kineti energy with Q being the oupling onstant. Q sets the strength of

the ontat to the heat bath (Eq. (2.11)) and an also be regarded as the thermal

inertia of the system. As the value of the frition variable ξ is given by a di�erential

equation the thermostat ats smoothly on the whole system.

We employ this thermostat in prodution runs (see setion 2.5.3). There we

generate trajetories (see setion 2.2) within the NVT ensemble [5, 31℄. That means

that the number of partiles of the system N , the volume V and the temperature

T is �xed. N and V are �xed by hoosing an appropriate value for the number of

partiles and the simulation box size. T is set by using the Nosé-Hoover thermostat.

2.3.2 Barostatting

A barostat an be realized in a similar way as a thermostat. Here again the large

number of degrees of freedom of the larger system is taken into aount by just one

variable that ontrols the pressure evolution. The time evolution of this variable is

onneted to the di�erene between the urrent and the hosen value of the pressure

p. This is a similar approah as the one used for the Nosé-Hoover thermostat.

In the following we present the equations desribing this approah in the formula-

tion of Melhionna et al. [57℄. In this way the barostat is implemented in the soure
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ode [49, 67℄ that we use (see setion 2.5) [73℄:

ṙi =
pi

mi
+ η(ri −R

m

) , (2.12)

ṗi = Fi − (ξ + η)pi , (2.13)

ξ̇ =
1

Q

( ∑

i

p2
i

mi
− 3Nk

B

T
ext

)
, (2.14)

η̇ =
V

M
(p(t) − p

ext

) , (2.15)

V̇ = 3V η , (2.16)

where p(t) denotes the instant pressure and p
ext

the set external pressure. M3

ontrols the oupling of η to the pressure di�erene p(t) − p
ext

along with V .

By ontrasting this set of equations with the one of the Nosé-Hoover thermostat

we �nd the following di�erenes and similarities: The time evolution of the volume

is haraterized by Eq. (2.16): Depending on η the volume evolves, but the time

evolution of η itself depends on V and the di�erene of p and p
ext

. η an be positive

or negative and shows �utuations around 0 in analogy to ξ. So � as in the ase

of the Nosé-Hoover thermostat � we have a set of oupled di�erential equations

(Eq. (2.15) and Eq. (2.16)) whih govern the time evolution of the volume. The

equation (Eq. (2.14)) ontrolling the temperature dynamis of the system is left

unhanged. Equation (2.10) is hanged to Eq. (2.13) by adding the extra term ηpi.

The additional term in Eq. (2.12), η(ri − R
m

), where R
m

denotes the enter of

mass position, guarantees that the NpT ensemble is realized [73℄.

Applying this simulation sheme generates on�gurations within the NpT ensem-

ble as these thermodynamial variables are kept �xed [5, 31℄. We will employ this

method in equilibrating our system (see setion 2.5.2).

2.4 Simulation model

In this work, we study the behavior of glass-forming polymer melts lose to the glass

transition. So we have to employ a model whih features polymer properties and

shows a glass transition when ooled to low enough temperatures. We model the

hemial interations of these polymers by interations of spherial interation sites.

The interations are desribed by simpli�ed empirial potentials [11℄. A de�ned

3

The hoie of M depends on the ratio between the time sale for volume �utuations and the

time it takes for a sound wave to travel through the simulation box [73℄.
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number of these interation sites � we will refer to them in the following just as

beads � make up a hain whih models an individual polymer. These kind of models

are referred to as bead-spring models [48℄.

We use a bead-spring model for �exible hains. By �exible hains we understand

that hains are only hindered from bak folding by the exluded volume. This kind

of model is among of the most simplest models whih still aptures the basi features

of polymers: hain onnetivity and exluded volume [11℄.

In this model hain onnetivity is indued via a harmoni potential, whih is

e�etive between onseutive bonded monomers [65℄:

U
b

(l) =
1

2
k
b

(l − l0)
2 , (2.17)

where l0 = 0.967σ
LJ

spei�es the equilibrium bond length, k
b

= 1110 ǫ
LJ

σ2

LJ

is the fore

onstant and l denotes the distanes between two bonded monomers.

Monomers of di�erent hains and monomers whih belong to the same hain but

are not diretly bonded interat by a Lennard-Jones potential. This potential is

trunated and shifted by a onstant C = 0.02684ǫ
LJ

, so that, at the uto� r
ut

=

2.3σ
LJ

≈ 2r
min

4

, the potential vanishes ontinuously

U
LJ

(r) =





4ǫ

LJ

[(
σ
LJ

r

)12 −
(

σ
LJ

r

)6
]

+ C for r < r
ut

,

0 else.

(2.18)

For small r (r ≪ σ
LJ

) Eq. (2.18) shows a sharp inrease of its value and will

�nally diverge for r → 0. This divergene mimis the exluded volume.

Lennard Jones units In the following all quantities are given in Lennard-Jones

units [5, 11℄: distane is measured in units of σ
LJ

, temperatures in ǫ
LJ

/k
B

, and time

in τ
LJ

= (mσ2
LJ

/ǫ
LJ

)1/2
, where the Boltzmann onstant and the monomer mass are

given by k
B

= m = 1.

2.5 Set up of simulations

Using the �exible hain model desribed in setion 2.4 we simulate various systems

onsisting of di�erent hain lengths N (monomers per hain) and system sizes. Ad-

ditionally, we employ two di�erent pressure values: p = 0 and p = 1. We started

4

The minimum of the LJ potential is given by r
min

= 2
1

6 σ
LJ

.
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simulating systems for p = 1 and N = 10, as many data for this pressure and hain

length exist, espeially for low temperatures [4, 22℄. Thereby we tested our employed

simulation algorithm by omparing stati and dynamial data. Then we proeeded

to p = 0 where we set up di�erent hain lengths (see Table 2.1 for an overview of

the simulated systems and Table A.1 for the used simulation parameters).

To generate simulation data we employ the open-soure ode �Large-sale Atomi/

Moleular Massively Parallel Simulator� (LAMMPS ) [49, 67℄. This has two advan-

tages: Firstly, this ode is widely used for simulations of large systems and therefore

well tested. Seondly this ode is parallelized and hene well adapted for today's

omputer arhitetures.

The generation of simulation data � whih provide mirosopi information of

the simulated system � is divided into three steps: In the �rst step, the simulation

is set up whih means that basi onditions of the simulation are �xed: size of simu-

lation (number of objets whih are to be simulated; simulation box size; boundary

onditions (e.g. periodi boundary onditions); . . . ) and an initial on�guration of

the system is generated whih is in aordane with the physial onditions of the

onsidered system [5, 31℄ (see setion 2.5.1).

In a seond step the initial on�guration is equilibrated whih means that it is

transferred to a state of minimum free energy (see setion 2.5.2). This is done in

the NpT ensemble. Equilibrated on�gurations are ooled in a subsequent step to

lower temperatures in suh a way that the system is not trapped in loal minima of

the free energy. Afterwards the so obtained on�gurations are equilibrated again.

In a last step, equilibrated on�gurations produed during the last steps are used

as a starting on�guration from whih the atual prodution runs are started (see

setion 2.5.3).

In the ourse of our work we analyse mostly quantities whih are alulated in the

reiproal spae (e.g. oherent intermediate sattering funtions). Therefore a �xed

simulation box size will be onvenient for subsequent alulations. For the sake of

omparability with experiments a �xed pressure is desirable. These two requirements

an be ful�lled by the following implementation of the simulation proedure:

2.5.1 Initial on�guration

In the following we shortly summarize how an initial on�guration an be set up. In

the beginning, hains are generated as random walks with an angular bias without
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monomers / hain hains pressure

10 800 1

10 100 1

64 192 0

32 384 0

16 768 0

8 1536 0

4 3072 0

Table 2.1: Overview of simulated systems. Pressure is given in LJ-units. A harmoni

bond potential and ut-o� radius of r
ut

= 2.3σ
LJ

is used for every system.

exluded volume. These hains are randomly distributed in the simulation box.

Then a soft potential between the monomers is introdued and the monomers are

propagated with Langevin dynamis. The random distribution of the hains is

likely to generate overlap of some partiles. To avoid diverging fores, a fore-ap

parameter is introdued to limit the maximum possible fores. This amounts to a

modi�ed (soft) pair-potential with a linearly dereasing term for small distanes. In

addition, the veloities are resaled regularly to e�eiently dissipate energy oming

from strong initial overlap. Then, the soft potential is inreased little by little to

push still overlapping monomers apart from eah other until the real potential is

reahed. In the end, a on�guration is generated that an be used in a subsequent

equilibration run. We have to state that there is no exat proedure to generate an

initial on�guration. The generated on�guration has to be tested for possible loal

potential energy maxima. As a �rst test the bond length distribution an be heked.

Note that our proedure is quite similar to the one desribed by Auhl et al. [8℄. As

our hains are still rather short, no additional Monte Carlo moves are neessary to

aelerate equilibration, at least at high temperature. All on�gurations at lower

temperatures are derived by the proedure desribed in the following setion.

2.5.2 Equilibration run

The initial on�guration is then equilibrated. The pressure and the temperature are

set by using a barostat and thermostat as desribed in setion 2.3.2. During the

equilibration run the system has to be given the possibility to develop a volume whih
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Figure 2.1: Orientational orrelation funtion of the end-to-end vetor for N = 16

and T = 1, 0.5, 0.44, 0.43, 0.42, 0.41.

is in aordane with the applied pressure. This an be ahieved by propagating the

initial on�guration within the NpT-ensemble.

As a riterion for the level of equilibration we take the orientational orrelation

funtion of the end-to-end-vetor [26℄, φ
e

(t), of every polymer hain averaged over

all hains of the system

φ
e

(t) =
〈R

e

(t)R
e

(0)〉
〈R2

e

(0)〉 , (2.19)

where R
e

denotes the end-to-end vetor (see setion 3.5 ). When this averaged value

of the polymer melt is about 0.1 (φ
e

(t) . 0.1), we onsider the system is adequately

equilibrated (f. Fig. 2.1), as φ
e

(t) measures the slowest relaxation proess in terms

of the hains [58℄. (See Table A.2 and Table A.3 for a survey of the relaxation times.)

The initial on�guration is equilibrated at T = 1, as this temperature is high

ompared to the glass transition temperature T
g

, 1 & 2T
g

. In order to ool to

lower temperatures without having the system getting trapped in a loal free energy

minimum we gradually derease the temperature of the system so slowly that there

is enough time for it to relax on all length sales in terms of the polymer hains.

To this end, we follow a ooling protool whih onsists of two parts: In a �rst
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Figure 2.2: Shemati representation of the ooling proess. Blak lines indiate the

ooling and equilibration proedure. Blue arrows indiate subsequent prodution

runs.

part, the system is gradually ooled down towards a temperature of T = 0.50 (f.

Fig. 2.2). In the temperature interval of 0.5 6 T 6 1.0 we an gradually ool our

system without inurring the risk that it will get trapped in a loal free energy

minimum by hoosing a slow enough ooling rate [58℄. (Parts of the system whih

might not totally relax due to this shedule are given enough time to fully relax in

a subsequent equilibration run at onstant temperature.)

The ooling shedule is given by:

T (t) = T
start

− ΓT t (2.20)

with T
start

denoting the start temperature whih is set to 1 for all simulations and

ΓT the ooling rate. For all systems the ooling rate ΓT is given by ΓT = 10−5
.

In the temperature interval below T = 0.50 we employ a di�erent ooling shedule:

We take on�gurations from equilibrated systems and set up the next equilibration

run with a temperature that is instantaneously lowered by ∆T = 0.01. In a subse-

quent equilibration run the system is given enough time to relax on all length sales

in terms of the polymer hains

5

. When the riterion φ
e

(t) . 0.1 6

is ful�lled we

lower the temperature again and start the next equilibration run. By repeating this

proedure we are able to lower the temperature of the system step by step without

inurring the risk that it will get �nally trapped in a loal free energy minimum.

5

Due to the proedure we employ for temperatures T ≤ 0.5, the used ooling rates are in the

order of ΓT ∝ 10−8
or slower. These ooling rates are alulated by

∆T
∆t

as in Ref. [19℄. Compared

to the slowest ooling rate that is used in this referene, we use ooling rates that are at least two

orders of magnitude slower.

6

For hain lengths with N > 10, not the orientational orrelation funtion of the end-to-end-

vetor is onsidered but the orientational orrelation funtion of a subsegment of N = 10.
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2.5.3 Prodution run

A prodution run denotes a simulation run whih generates the data that we analyze

to broaden our knowledge about glass forming polymer melts. To set up a prodution

run we take an equilibrated on�guration (we take a on�guration from the end of

an equilibration run). Then - during a small preeding run - the simulation box size

is smoothly adapted to the determined average volume of the equilibration run from

whih the end on�guration was taken. This is ahieved by hanging the box length

in all dimensions slowly with time.

In LAMMPS [49, 67℄ this is ahieved by employing the �deform� ommand [50℄.

By using this ommand the box size of the taken on�guration (desribed above)

is ontinuatiously (every 10 (τ
LJ

)) hanged over a time interval of 5, 000 (τ
LJ

) so

that it will �nally reah the determined average volume. We have to employ this

proedure as the volume during an equilibration run slightly �utuates. Therefore

the volume of the used end on�guration an slightly di�er from the average volume

of the whole equilibration run.

When the average volume of the equilibration run is reahed the atual prodution

run is started. The on�gurations are propagated in the NVT ensemble where a

thermostat is used (f. setion 2.3.1).

We want the simulation algorithm to have as little in�uene as possible on the

results. For this reason we hoose the NVT ensemble for the prodution run. (In

the NVT ensemble we only employ a thermostat whih enables us to hoose a larger

integration time step ompared to an NVE ensemble simulation. In an NpT ensemble

simulation pressure and temperature are in�uened by the simulation algorithm.

Thus, the in�uene on the results within an NpT ensemble simulation is larger,

whih is not desirable.)



Chapter 3

Stati properties

In this hapter we analyze the stati properties of our model system. This will also

provide us with a foundation for a better understanding of the system's dynamis

later on. First we will disuss the density as a funtion of the hain length and then

we proeed with the bulk modulus and the high-frequeny shear modulus. There-

after we introdue the stati struture fator and the radial distribution funtion.

Finally we turn to polymer-spei� quantities where we introdue the end-to-end

vetor and investigate the hain onformation via the internal distanes along the

hain bakbone.

The systems that we are dealing with are glass-forming polymer melts. A polymer

melt an be de�ned as a dense polymer system without solvent moleules [26℄. The

spei�ation �glass-forming� points to the fat that these polymer melts will form

a glass when the temperature is su�iently dereased. Crystallization is e�etively

prevented by two properties [4℄: Firstly, the bond length l
0

and the minimum of

the Lennard-Jones potential r
min

slightly di�er, so l
0

is not ompatible with r
min

.

Seondly, we employ a totally �exible model. Theses two points result in loal

distortion of the regular arrangement whih impedes rystallization when the melt

is ooled from high temperatures. (However, the hoie of the Lennard-Jones and

the bond potential does not prelude rystallization [19, 59, 60℄).

The appliation of a totally �exible model limits the possible manners whih ould

lead to a glass transition. In our model the glass transition is only driven by the

temperature dependent loser paking of the monomers. In more realisti hemial

models the freezing of intramoleular modes provides an additional way (see e.g.

[16℄). This results in higher glass transition temperatures.

19
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monomers / hain N hains n monomers Nn pressure p

64 192 12288 0

32 384 12288 0

16 768 12288 0

8 1536 12288 0

4 3072 12288 0

Table 3.1: Overview of systems simulated with a pressure of p = 0.

3.1 Density

We set up systems with di�erent hain length N in order to analyse the in�uene

of the hain length on the strutural and dynamial properties of polymer melts.

These systems onsist of 12288 monomers and are simulated at a pressure of p = 0.

(As desribed in setion 2.5.2 during an NpT run a pressure of p = 0 is imposed

on the system using a barostat. After the equilibration the resulting volume of this

simulation is determined and used to set up a subsequent NVT simulation. )

More preisely, we simulated 5 di�erent hain lengths of N = 64, 32, 16, 8, 4. In

the beginning, we have equilibrated the systems for N = 64. Shorter N are generated

by utting these hains at T ≥ 0.5. For lower temperatures, the ooling protool

explained in setion 2.5.2 has been applied to eah hain length individually. These

systems also di�er in the total number of hains n, as the total number of monomers

is �xed. For an overview of these systems see Table 3.1.

An essential feature of polymer melts is their high density. In the following, we

will study how the density is onneted to the hain length. The density ρ is given

by

ρ =
N n

V
, (3.1)

where V denotes the volume of the simulation box.

Figure 3.1 shows the density of these systems as a funtion of temperature T .

The omparison of the densities for di�erent hain length at a �xed temperature

of T = 0.50 infers that the density inreases with hain length. An argument for

this observation an be found in the di�erent distanes between bonded monomers

and non-bonded monomers [28℄. The average distane between bonded monomers

is given by the equilibrium bond length l
0

= 0.967. In ontrast to this the average

distane between monomers, that are not bonded, is set by the minimum of the
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Figure 3.1: Main �gure: Density ρ as a funtion of temperature T for hain length

N = 64, 32, 16, 8, 4. (See Table A.4 for the numerial values.)

Lennard-Jones potential whih is given by r
min

= 21/6σ
LJ

. Therefore the volume

oupied by bonded monomers within a hain ompared to the volume that is o-

upied by the end monomers, the outermost monomers, di�er. See Fig. 3.2 for a

shemati representation of this hain end e�et.

Therefore � in a �rst approximation � the volume that a hain oupies an be

split into two ontributions. The volume oupied by the inner monomers and the

volume oupied by the end monomers. The end monomers oupy a larger volume

as they have only one binding partner in ontrast to the inner monomers. This an

be expressed by the following equations:

V
hain

= NV
inner

+ 2[V
end

− V
inner

] , (3.2)

V
hain

= NV
inner

[
1 +

2∆V
e

NV
inner

]
, (3.3)

with V
hain

denoting the volume oupied by a hain, V
inner

by an inner monomer,

V
end

by an end monomer and ∆V
e

the di�erene in their oupied volume. Obviously

the hain volume is just split up into the ontribution given by the inner and end

monomers.
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T ρ∞ onstT

0.50 1.014 0.137

0.44 1.032 0.126

Table 3.2: Values obtained by �tting the data of Fig. 3.3.

By inserting this into the equation for the density we get

ρ =
nN

V
=

nN

nV
hain

=
1

V
inner

[
1 + 2∆V

e

NV
inner

]
(3.4)

By approximating this equation by a Taylor expansion (for N ≫ 1 it follows that

2∆V
e

NV
inner

≪ 1) up to the �rst order we �nally get:

ρ ≈ ρ∞

(
1 − 2∆V

e

NV
inner

)
= ρ∞

(
1 − onst

N

)
, (3.5)

where we set

1
V
inner

= ρ∞ � whih gives the density of a polymer melt in the limit

of long hains � and onst = 2∆V
e

V
inner

. Following Eq. (3.5) the density of the polymer

melt in the limit of long hains is approximatively given by ρ ≈ ρ∞. With inreasing

hain length the density of a polymer melt will approah this limit. Equation (3.5)

states that the density sales with the reiproal hain length. This desribes quite

well the behavior observed in Fig. 3.1.

In Fig. 3.3 the density of the onsidered systems is shown for temperatures T =

0.50, 0.44 as a funtion of the reiproal hain length. The dependene on the

reiproal hain length 1/N of ρ an be desribed by Eq. (3.5). As the volume of the

onsidered systems dereases with dereasing temperature ρ∞ is learly temperature

dependent. By regarding ∆ρ̃ = ρ(T2,N)/ρ(T1,N)
ρ(T2,N=4)/ρ(T1,N=4)

(see inset of Fig. 3.3) we hek if

onst = 2∆V
e

V
inner

also shows a temperature dependene. As ∆ρ̃ grows linearly with the

reiproal hain length 1/N , it beomes obvious that the onst in Eq. (3.5) should

also be hosen temperature dependent.

The slightly smaller value of onstT=0.44 (f. Table 3.2) ompared to onstT=0.50

shows that with dereasing temperature the dependene of the density on the hain

length dereases. In other words the ratio of the volume between inner and end

monomers is less pronouned for higher densities.
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Figure 3.2: Shemati representation of the hain end e�et. Monomers that are

bonded within a hain are onneted by blak lines. For a better understanding the

ratio of the distanes between non-bonded and bonded monomers is exaggerated.

Transparent light blue irles mark the spae that is unaessible to monomers

that do not belong to the blue hain. In (a) the spae oupied by the bonded

monomer (denoted by 2) of the blue hain is marked by the blak dashed frame.

The de�nition of the assigned spae region to a monomer is inspired by the de�nition

of the Voronoi tessellation [10℄. Spae is assigned to a monomer by the following

proedure: First the perpendiular bisetors between a monomer and its nearest

neighbors are onstruted. Then these perpendiular bisetors are onneted so

that they form the blak dashed frames. (Thereby the perpendiular bisetors are

hosen that allow to assign the smallest spae region to the onsidered monomer. As

a onsequene, the formed blak dashed frame does not have to be a polygon with

six edges as it an be seen in (b)). In (b) the spae oupied by the end monomer

of the blue hain (denoted by 1) is marked by the blak dashed frame. The bonded

monomer within the hain oupies less spae than the end monomer.
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Figure 3.3: Main �gure: Density ρ as a funtion of the reiproal hain length 1/N

for temperatures T = 0.44, 0.50. The blak dashed lines indiate a �t using f(N) =

a(1 − b
N

) as suggested by Eq. (3.5). Due to the temperature dependene of the

density, a is hosen to be temperature dependent. The inset indiates that b should

also arry a temperature dependene. Inset: A deviation of ∆ρ̃ = ρ(T2,N)/ρ(T1,N)
ρ(T2,N=4)/ρ(T1,N=4)

from 1 indiates a deviation of the ratio of

ρ(T2,N)
ρ(T1,N)

from that of

ρ(T2,N=4)
ρ(T1,N=4)

. This

deviation nearly grows linearly with inreasing N . Thus the onst in Eq. (3.5)

should also be temperature dependent.
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3.2 Bulk modulus and high-frequeny shear modu-

lus

In this setion we shortly disuss the bulk modulus and the high-frequeny shear

modulus [21℄. We derive the bulk modulus from the isothermal ompressibility. The

isothermal ompressibility an be de�ned as [21℄

κ(T ) = − 1

V

dV

dp
. (3.6)

It haraterizes how the system's volume hanges when a uniform in�nitesimal pres-

sure is exerted onto it. The prefator

1
V

sets this hange in volume in relation to

the probed volume and the minus sign aounts for the fat that the ompressibility

should be positive. (As the volume of a system will derease when a pressure is

exerted onto it, dV will be negative.)

There is a onnetion between the ompressibility and the stati struture fator

(see setion 3.3) in the limit for q → 0. It an be shown that in the thermodynami

limit the ompressibility is given by [40℄

κ(T ) = lim
q→0

S(q, T )

k
B

Tρ
(3.7)

The inverse of the ompressibility is de�ned as the bulk modulus of the system,

K = 1
κ
. In Fig. 3.4 we show the bulk modulus for N = 64, 32, 16, 8, 4 as a funtion

of temperature T alulated as the reiproal value of ompressibility aording to

Eq. (3.7). The bulk modulus inreases with dereasing T , i.e., the melt beomes less

ompressible; it also inreases with inreasing N , in a good approximation as

K = K∞ − onst

N
, (3.8)

whih is expeted from Eq. (3.6) and the N dependene of ρ disussed before.

High frequeny shear modulus We omplete the disussion by onsidering the

high-frequeny shear modulus. This is espeially motivated as we will disuss later

(see setion 5.1) its dynami ounterpart � the shear relaxation funtion � in

greater detail. The high-frequeny shear modulus an be de�ned as G∞ = G(t = 0)

with G(t) being the shear relaxation funtion. The shear relaxation funtion is given

by [5, 9℄

G(t) =
1

k
B

TV

〈
σzx(t)σzx(0)

〉
, (3.9)
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Figure 3.4: Bulk modulus K(T ) as a funtion of temperature T for N =

64, 32, 16, 8, 4. (See Table A.5 for the numerial values.)

where σαβ denote the stress tensor with (α, β = x, y, z). The stress tensor is given

by [55℄

σαβ =

M∑

i=1

mvi,αvi,β − 1

2

M∑

i=1

(
ri,α

∂U(rM )

∂ri,β
+ ri,β

∂U(rM )

∂ri,α

)
, (3.10)

where the omponents of the position ri (the veloity vi) of monomer i (= 1, . . . , M)

are denoted by ri,α (vi,α), and total potential is denoted by U . Here, for onveniene,

the monomers of the system are labeled by just one index (i = 1, . . . , M = nN).

In Fig. 3.5 G∞ is depited for all onsidered hain lengths. In the investigated

temperature range G∞ shows an almost linear dependene on the temperature.

3.3 Stati struture fator

What are the basi ingredients that desribe the struture of our system? And

how an these basi ingredients be aptured in a onvenient way? One of these

basi ingredients are the density �utuations of the onsidered partiles (monomers,

hains) of the melt. By density �utuations we understand the deviation of the loal

density from the averaged density.

The stati struture fator [9, 21℄ an be seen as the mean square average of these

density �utuations. The stati struture fator is losely related, via a Fourier
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Figure 3.5: Shear modulus as a funtion of temperature T for N = 64, 32, 16, 8, 4.

(See Table A.6 for the numerial values.)

transform, to the pair orrelation funtion [9℄ whih orresponds to the radial dis-

tribution funtion for the systems that we study (f. setion 3.4). In this ontext we

want to mention that the �rst peak of the stati struture fator (see for example

Fig. 3.6) reveals informations about the ordering of monomers in shells around a

labeled monomer [4℄

In the following we introdue the stati struture fator in terms of density �u-

tuations. Here we follow Ref. [37℄ and speially [4, 22℄:

We onsider a polymer melt onsisting of n monodisperse hains of N monomers

in a volume V . For a wave vetor q, the oherent monomer density �utuations are

given by

ρa(q) =

n∑

i=1

eiq·ra
i (a = 1, . . . , N) , (3.11)

where ra
i denotes the position of the ath monomer in the ith hain [22℄. The sum

over all monomers of a hain yields the total monomer density �utuations

ρ
tot

(q) =
N∑

a=1

ρa(q) =
n∑

i=1

N∑

a=1

eiq·ra
i . (3.12)

In terms of the total monomer density �utuation the olletive struture fator of

the melt is then given by
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S(q) =
1

nN
〈ρ

tot

(q)∗ρ
tot

(q)〉 (3.13)

=
1

nN

〈 n∑

i,j=1

N∑

a,b=1

e−iq·ra
i eiq·r

b
j

〉
, (3.14)

with 〈·〉 denoting the anonial averaging. This equation shows the above mentioned

approah to the stati struture fator as the mean square average of the density

�utuations.

The olletive stati struture an be split into an intra-hain and an inter-hain

part [22℄ whih yields

S(q) = w(q) + ρh(q), (3.15)

here ρ = nN/V denotes the monomer density, w(q) the intra-hain ontribution and

ρh(q) the inter-hain ontribution

1

. These ontributions are given by

ρh(q) =
1

nN

N∑

a,b=1

〈 n∑

i6=j

e−iq·(ra
i −r

b
j)

〉
(3.16)

and

w(q) =
1

nN

N∑

a,b=1

〈 n∑

i=1

e−iq·(ra
i

−r
b
i )

〉
. (3.17)

w(q) is also named the �form fator� [22℄.

The main �gures of Fig. 3.6 and Fig. 3.7 show the stati struture fator S(q) for

two temperature T = 0.50, 0.44 and for hain lengths of N = 64 (Fig. 3.6) and N = 4

(Fig. 3.7). In this temperature interval all systems onsidered (N = 64, 32, 16, 8, 4

and pressure p = 0) have a struture that is typial of dense, disordered melts [4℄.

Additionally we show in Fig. 3.6 the form fator w(q), it shows no di�erenes upon

ooling for the depited temperature range.

The weak ompressibility of the melt is re�eted by the small value of S(q) in the

q → 0 limit. In this ontext we want to remind of Eq. (3.7)

κ(T ) = lim
q→0

S(q, T )

k
B

Tρ(T )
∝ lim

q→0
S(q, T ). (3.18)

1

Here h(q) denotes the Fourier transform of the site-averaged intermoleular pair orrelation

funtion [4, 40℄
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In this sense the stati struture fator is a ontinuation of the ompressibility to

�nite wave vetors [37℄.

For larger values of q, S(q) inreases toward the �rst peak whih is also the

maximum of S(q). The q-value for whih S(q) reahes its maximum will be denoted

by q
max

. For our model q
max

≃ 7.1 orresponds to the length sale of a monomer

diameter. This points to the fat that the main ontribution to S(q
max

) an be found

in the amorphous paking of monomers in the nearest-neighbor shell loated around

a monomer [4℄.

From Fig. 3.6 it an be inferred that upon ooling the struture of the system

stays essentially the same. Espeially no long-range strutural orrelations develop.

The only notieable di�erene is that due to the inreasing density the paking gets

tighter whih is re�eted by the inrease of S(q
max

) [4℄. To illustrate this point we

refer to the insets (a) and (b) of Fig. 3.6. These insets show that the �rst peak of S(q)

grows and shifts to larger q values upon ooling. The shift to larger q values indiates

the inrease of the density. This is also supported by the omparison of di�erent

hain lengths. In setion 3.1 we showed that the density of systems ompared at

the same temperature and pressure depends on the hain length. The longer the

hain length the higher the density. This is re�eted when we ompare the position

of q
max

for di�erent hain length (see for example the inset (a) of Fig. 3.6): With

inreasing hain length q
max

is shifted to higher values. By omparing this shift for

the depited hain lengths relatively to eah other we �nd again a signature that

the relative di�erenes of the density sale like the reiproal hain length. This

observation seems even to hold for the height of the peak of S(q
max

).

3.4 Radial distribution funtion

In the last setion we introdued the stati struture whih aptures the stati

properties of a many body system in reiproal spae. Here we turn to a quantity

that deodes the struture in real spae. This is provided by the pair distribution

funtion g(r) [21℄. It answers the question: Given that a partile sits in the origin

how large is then the probability to �nd another partile at plae r.

As the systems that we study are homogeneous and isotropi there is no speial

point or a speial diretion. Thus it is su�ient to onsider the radial pair distribu-

tion funtion g(r), often just referred to as the radial distribution funtion, whih

depends only on the modulus of r = |r| [18℄. It measures the probability to �nd a
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Figure 3.6: Main �gure: Stati struture fator S(q) and form fator w(q) for N = 64

and T = 0.50; 0.44 vs the modulus of the wave vetor q. The dash-dotted lines

indiate the q-interval for whih the insets are shown. It shows the region around

the �rst peak of the stati struture fator. Inset (a): Stati struture fator for

N = 64; 16; 4 and T = 0.50 for the indiated q-interval. Inset (b): Stati struture

fator for N = 64; 16; 4 and T = 0.44 for the indiated q-interval. The dash-dotted

lines indiate the stati struture fator for T = 0.50.
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whih the insets are shown. It shows the region around the seond peak of the stati

struture fator. Inset (a): Stati struture fator for N = 64; 16; 4 and T = 0.50

for the indiated q-interval. Inset (b): Stati struture fator for N = 64; 16; 4 and

T = 0.44 for the indiated q-interval. The dash-dotted lines indiate the stati

struture fator for T = 0.50.

dr

r

Figure 3.8: Shemati representation of the de�nition of the radial distribution

funtion. Inspired by Ref. [21℄.
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monomer at a distane r given there is a monomer in the origin. Figure 3.8 shows

a shemati representation of g(r). The radial distribution funtion for our systems

an then be de�ned by [9℄

ρg(r) =
1

nN

nN∑

i6=j

〈δ(r − rij)〉 , (3.19)

with rij = |rj − rj| denoting the distane between monomer i and j.

In this way the loal density at a distane r from the origin is given by ρg(r).

The prefator

1
nN

normalizes ρg(r) aording to the total number of partiles whih

is given by the number of hains n times the monomers per hain N .

As a result the average number of neighbors whih reside within a distane R

from a given monomer [9℄ is given by

G̃(R) = 4πρ

∫ R

0

dr r2g(r) . (3.20)

By disretizing this onept spherial shells of thikness dr are onsidered at

distane r from a labeled partile. The number of partiles found in suh a shell is

proportional to g(r) (f. Fig. 3.8).

The position of the �rst peak of g(r) re�ets the distane between bonded monomers

whih is ≈ l
0

. The subsequent steep slope of g(r) mirrors the sti� harmoni bond po-

tential that we employ. The probability that bonded monomers are separated from

eah farer than the average bond length l
0

is very small. Non-bonded monomers

annot get so lose to eah other, as this is impeded by the steep slope of the re-

pulsive part of the Lennard-Jones potential. The seond peak shows the ordering

of the monomers in shells around themselves. The subsequent osillation around 1

aounts for the shells formed around the �rst nearest-neighbor shell. For large r

g(r) �nally reahes a value of 1 whih demonstrates that there is no long-range order

in the polymer melts. This is equivalent to saying that g(r) for large r probes the

density of the system as the systems under onsideration do not exhibit long range

order.

The seond peak shows the biggest temperature dependene of g(r) (see the inset

of Fig. 3.9). The temperature dependene of the �rst peak is less pronouned. From

this observation we an extrat the following: Dereasing the temperature goes along

with inreasing density whih results in a tighter paking of the monomers. Due to

this tighter paking monomers are rearranged. This rearrangement in the �rst shell

among non-bonded monomers is more e�etive than for bonded hain monomers.
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Figure 3.9: Main �gure: For N = 64 the radial distribution funtion for the tem-

peratures of T = 0.50 and 0.44 are ompared. The blak dash-dotted lines indiate

r = 0.967 = l
0

and r = 1.09 around whih the seond peak ours. Inset: Zoom on

the �rst and seond peaks of g(r).

The impat of the hain length for totally �exible hains on the loal struture is

not large (see Fig. 3.10). By omparing g(r) for hain lengths of N = 64 and N = 4

we �nd that the only remarkable di�erenes are visible in the �rst and seond peak.

This e�et is aounted for by the di�erent relative ratio of end monomers. Two end

monomers will approah eah other not more losely than given by the Lennard-

Jones potential. This leads to an inversion of the height of the peaks. For N = 4

the �rst peak is lower than for N = 64, whereas for the seond peak the inverse

observation an be done. This aounts for the fat that ρg(r) is a probability whih

obeys:

∫
d

3r ρg(r) = onst (3.21)

The small shift of g(r) for N = 64 ompared to that of g(r) for N = 4 whih

ours for distanes larger than the monomer diameter seems to be explainable by

the slightly larger density of the system onsisting of hain length N = 64.
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and

r = 1.09 around whih the seond peak ours. Inset: Zoom on the �rst and seond

peaks of g(r). An inversion of the height of these peaks for N = 64 and N = 4,

when ompared with eah other, is observed.
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Figure 3.11: Shemati representation of the end-to-end vetor. The vetors r1
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denote the position of monomer 1 and 2. The bond vetor R1 denotes the bond

from monomer 1 to 2 (analogously R3 and R7). R
e

denotes the end-to-end vetor.

3.5 End-to-end vetor

The quantities disussed so far an also be de�ned for non-polymeri systems. Now

we turn to polymer spei� quantities. A entral quantity haraterizing polymers is

the end-to-end vetor R
e

of the hains [26, 39, 71℄. By onsidering the bond vetors

Ra = ra+1 − ra
(where we dropped the indies denoting the hain) between the ath

and (a + 1)th monomer of a hain the end-to-end vetor is given by (f. Fig. 3.11)

R
e

=

N−1∑

a=1

Ra . (3.22)

We onsider the squared value of the end-to-end vetor averaged over the whole

system

R2
e

=
〈
R2

e

〉
, (3.23)

where 〈·〉 denotes the anonial averaging.

In Fig. 3.12 we show in the inset the temperature dependene of R2
e

for hain

lengths N = 64, 32, 16, 8, 4. It an be seen that the absolute temperature dependene

is only visible for hain length N & 16 and that it inreases with inreasing hain

length. Thus we show in the main �gure of Fig. 3.12

R2
e

l2
0

N
as a funtion of N . By

doing so we relate the squared end-to-end vetor to the R2
e

= Nl2
0

of an ideal hain

[26℄ with bond length l
0

. In this way the relative temperature dependene beomes

obvious and the deviation from the behavior of an ideal hain. The reason for the

deviation from the behavior of an ideal hain an be found in the exluded volume
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Figure 3.12: Main �gure:

R2
e

l2
0

N
as a funtion of N for temperatures T = 1.00, 0.70, 0.50

and hain lengths of N = 64, 32, 16, 8, 4. Inset: Mean squared end-to-end distane

R2
e

as a funtion of N for T = 1.00, 0.70, 0.50.

of the monomers. This onstraint auses the hains to beome swollen ompared to

ideal hains. We will disuss this in more detail in the next setion.

The temperature dependene inreases with hain length. This seems to be plau-

sible as the main ontribution of the hange of the end-to-end distane as a funtion

of temperature is found in the density. A lower temperature results in a higher

density whih just means that the monomers are tighter paked. As this a�ets all

monomers of a hain the resulting e�et is more pronouned for longer hains.

3.6 Intra-hain distanes and e�etive bond length

In this setion we disuss the internal distanes of a hain. This is interesting to

study as it reveals information about the onformation of the hains. The internal

distanes are measured between monomers of one hain. This distane an be re-

lated then to the urvilinear length between the onsidered monomers. This shows

how monomer properties (e.g. the exluded volume) and system properties (e.g. the

density) in�uene hain properties.

The mean-square intra-hain distane

R2
s

s
measures the mean-square distane be-

tween hain monomers that are separated by s bonds [8℄ and is given by
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Figure 3.13: Mean-square intra-hain distane for N = 64, 32, 16, 8, 4 and T = 0.50

as a funtion of the urvilinear length s.
R2

1

1
is given by the squared equilibrium

bond length l2
0

= 0.935.

R2
s

s
=

〈R2
s

〉
s

=
1

sn

n∑

i=1

1

N − s

N−s∑

a=1

〈(ra+s
i − ra

i )
2〉 , (3.24)

where the positions of the monomers are denoted by ra
i . The subsript i = 1, . . . , n

denotes the hains and the supersript a = 1, . . . , N the monomer in the hain.

Equation (3.24) is evaluated for every mean-square intra-hain distane separately.

s takes eah value out of s = 1, . . . , N − 1 whih orresponds to the smallest intra-

hain distane between two monomers up to the end-to-end distane of the whole

hain for s = N − 1.

As the mean-square intra-hain distane inludes all intra-hain lengths it allows

to ompare systematially systems whih only di�er in the hain length of their

onstituting hains. Therefore it is an ideal quantity to ompare the systems under

onsideration from a statial point of view.

In Fig. 3.13 we show the mean-square intra-hain distane

R2
s

s
at temperature

T = 0.50 for di�erent hain lengths N = 64, 32, 16, 8, 4. We want to point to the

following observations: For s = 1 all urves start from a value that is given by the

squared equilibrium bond length, whih is given for our system by l2
0

= 0.935.

For an ideal hain [26℄ (without exluded volume) whih follows random walk

statistis,

R2
s

s
= onst = l2

0

for all s. The fat that

R2
s

s
in Fig. 3.13 is inreasing

indiates a swelling of the hain with respet to an ideal hain. An upper bound is
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set by the limit of a ompletely extended onformation. In this situation the real-

spae distane is idential to the urvilinear distane, thereby

R2
s

s
= l2

0

s. Our data is

not inreasing so strongly, and the urves are levelling o� for larger s. Our hains

are thus not sti�. For large urvilinear length,

R2
s

s
reahes an apparent plateau. For

N ≥ 16, a �nal derease of the urve is observed whih an be explained by a �nite

hain length e�et [79℄.

E�etive bond length The mean-square intra-hain distane for the hains de-

pited in Fig. 3.13 follows an underlying universal urve. This urve an be desribed

by [79℄

R2
s

(s)

s
= b2

e

[
1 − c1

(√
24

π3

1

ρb3
e

1√
s

)]
, (3.25)

with b
e

being the e�etive bond length (see below) and c1 a onstant whih is given

by c1 = 1.2 for a bead-spring model [79℄.

Wittmer and o-workers show that due to the inompressibility of the melt an

e�etive repulsion between hain segments emerges whih sales with 1/
√

s [79℄.

The e�etive repulsion gives rise to long range orrelations in polymer melts. They

argue that these long range orrelations ause a systemati swelling of short hain

segments. This swelling an be desribed by an e�etive bond length b
e

. We employ

equation Eq. (3.25), whih is taken from this work, as a one-parameter extrapolation

formula to determine the e�etive bond length b
e

of our system as a funtion of

temperature T .

We are aware of the fat that the studied hains here are omparatively smaller

than the hains they foussed on. Nevertheless it should be possible to determine the

temperature dependene of the e�etive bond length. In Eq. (3.25) the temperature

dependene is aounted for by the temperature dependent density and e�etive

bond length b
e

. The temperature dependene of the density is onferred to the

e�etive bond length.

In �gures 3.14 � 3.16 we show the result of our �tting proedure. We hoose a

�tting interval of s ∈ [3 : 30]. This hoie is motivated by the fat that in this

interval

R2
s

s
is omparatively well approximated by Eq. (3.25) in [79℄. See Fig. 3.17

for the values that we got by the �tting proedure. By plotting the values for the

e�etive bond length as a funtion of temperature T we observe that they do not

derease in a linear way.
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Figure 3.14: Main �gure: Mean-square intra-hain distane for N = 64, 32, 16, 8, 4

vs urvilinear distane s for T = 0.50. R2
s

s
is �tted using Eq. (3.25) to determine

the e�etive bond length b
e

whih is found to be b
e

= 1.304 for T = 0.50. The

�tting interval is set to s ∈ [3 : 30]. Inset: The inset shows R2(s)/(sb2
e

) as a funtion

of 1/(ρb3
e

√
s). The blak dotted line is given by f(x) = 1 − c1

√
24
π3 x. Thus the

aordane of

R2
s

s
for the N = 4, 8, 16, 32, 64 with it shows the auray of the �t.
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Figure 3.15: Mean-square intra-hain

distane for N = 64, 32, 16, 8, 4 vs

urvilinear distane s for T = 0.70. R2
s

s

is �tted Eq. (3.25) to determine the ef-

fetive bond length b
e

whih is found

to be b
e

= 1.312 for T = 0.70. The

�tting interval is set to s ∈ [3 : 30]. In-

set: The inset shows R2(s)/(sb2
e

) as a

funtion of 1/(ρb3
e

√
s). The blak dot-

ted line is given by f(x) = 1−c1

√
24
π3 x.

Thus the aordane of

R2
s

s
for the N =

4, 8, 16, 32, 64 with it shows the au-

ray of the �t.
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Figure 3.16: Mean-square intra-hain

distane for N = 64, 32, 16, 8, 4 vs

urvilinear distane s for T = 1.00. R2
s

s

is �tted Eq. (3.25) to determine the ef-

fetive bond length b
e

whih is found

to be b
e

= 1.331 for T = 1.00. The

�tting interval is set to s ∈ [3 : 30]. In-

set: The inset shows R2(s)/(sb2
e

) as a

funtion of 1/(ρb3
e

√
s). The blak dot-

ted line is given by f(x) = 1−c1

√
24
π3 x.

Thus the aordane of

R2
s

s
for the N =

4, 8, 16, 32, 64 with it shows the au-

ray of the �t.

In Fig. 3.18 we depit

R2
s

s
for a hain length of N = 64 and temperatures of

T = 0.50 and 0.44. For T = 0.44 we observe that the mean-square intra-hain

distane shows a behavior di�erent from the one desribed above. We suppose that

this is due to insu�ient statistis. This an be explained when one takes into

aount that

R2
s

s
is always alulated over a �nite number of phase spae states

given by simulation on�gurations. For this reason a behavior like the one found

in Fig. 3.18, just re�ets the fat, that the hains of the system were not given the

hane to explore a big enough region of the phase spae for the largest s [8℄.

Thus not all possible hain onformations ould be realized whih results in the

undershoot of

R2
s

s
. The example for the urve at T = 0.44 where a lear drop an be

seen indiates that in this ase hain on�gurations with a ompressed onformation

are overrepresented.

But due to the property of the mean-square intra-hain distane to san the hains
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parameter extrapolation formula to determine the e�etive bond length b
e

for our

systems. Right: E�etive bond length b
e

as a funtion of temperature T . The e�e-

tive bond length does not derease as a linear funtion of T whih is indiated by

the blak dashed line.
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Figure 3.18: Mean-square intra-hain distane for N = 64 and temperature T =

0.50, 0.44. For T = 0.44 not enough simulation on�gurations are onsidered. The

blak dashed line indiates s = 20. Until this value R2
s

s
shows a �normal� behavior.

on all s it is still possible to estimate up to whih s the equilibration is su�ient.

This argument will beome stronger by referring to Fig. 3.18. It an be seen that

up to an mean-square intra-hain distane of around s ≈ 20, R2
s

s
for T = 0.50 and

T = 0.44 show a omparable behavior. For this reason we argue that the average
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taken over simulation on�gurations up to internal distane of this order for this

partiular system reprodue su�iently well an ensemble average. This is espeially

important when we approah lower temperatures. With dereasing temperatures

it will get harder to have enough on�gurations in order to realize the ensemble

average for all hain lengths. Due to the above onsideration the �nite number of

on�gurations will be still su�ient to realize the ensemble average for subsegments

of the hain.



Chapter 4

Dynamis: Mode-oupling theory

inspired analysis

4.1 Introdution

In this hapter we analyse the dynami properties of our system. Thereby we will

fous on oherent and inoherent intermediate sattering funtions, φq(t) and φs

q(t).

Other dynamial quantities, like the mean square displaement of all monomers g0(t)

or the shear relaxation funtion G(t), will be disussed in the next hapter.

The oherent intermediate sattering funtion φq(t)
1

an be de�ned by [11℄

φq(t) =
1

MS(q)

〈 M∑

i=1

M∑

j=1

e−iq·[ri(t)−rj(0)]
〉

, (4.2)

where M denotes the total number of monomers, ri(t) the position of monomer i of

the melt at time t and S(q) the stati struture fator. The stati struture fator

aounts for the normalization of φq(t = 0) = 1:

φq(t = 0) =
1

MS(q)

〈 M∑

i=1

M∑

j=1

e−iq·[ri(0)−rj(0)]
〉

=
1

MS(q)
MS(q) = 1 . (4.3)

It an be regarded as the dynami omplement to the stati struture fator. It

shows how density �utuations of the system are orrelated. These density �utua-

1

In the ontext of the mode-oupling theory [37℄ the oherent intermediate sattering funtion

is named density orrelator and de�ned in terms of the total monomer density �utuations, see

setion 3.3,

φq(t) =
1

MS(q)

〈
ρ
tot

(q, t)∗ρ
tot

(q, t = 0)
〉

. (4.1)

43
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tions are evaluated for a time di�erene ∆t = t−0 on a distint real spae wavelength

λ whih is given by the modulus of the onsidered wave vetor, |q| = q = 2π
λ
.

The inoherent intermediate sattering funtion φs

q(t) an be de�ned by [11℄

φs

q(t) =
1

M

〈 M∑

i=1

e−iq·[ri(t)−ri(0)]
〉

. (4.4)

The inoherent and oherent intermediate sattering funtions di�er in the fol-

lowing fat: The oherent sattering funtion relates the position of a monomer at

time t to the other monomers' position at time t = 0. In ontrast to that the ino-

herent sattering funtion only orrelates a monomer's position at time t = 0 to its

position at a di�erent time t.

In this sense φq(t) reveals more information about the system as the oherent

intermediate sattering funtion espeially probes the olletive dynamis of the

system. For large q-values q ≫ q∗, where q∗ denotes the �rst peak of the stati

struture fator S(q), φq(t) and φs

q(t) show a similar behavior. This is due to the

fat that for the probed small distanes the monomers � also in the ase of the

oherent intermediate sattering funtion � are only orrelated with themselves.

4.2 Ideal mode-oupling theory analysis

In the following part we analyse our system in the framework of the ideal mode-

oupling theory (MCT). Referene [11℄ suggests that this kind of analysis is appro-

priate for totally �exible models of polymer melts.

In the following paragraph we summarize the main aspets of the ideal MCT

whih are essential for our subsequent analysis. Our summary mainly follows [11℄

and referenes therein. For a more general introdution to MCT we refer to [37℄.

One of the key features of MCT [34�38℄ is the predition of an ideal glass transition

senario. By this is understood that density �utuation orrelations will �nally

relax for temperatures above the ritial temperature T


. Below T


these density

�utuations will not ompletely relax, but remain at some �nite value. These density

�utuation orrelations are desribed in terms of orrelation funtions like φq(t).

MCT proposes a dynamial equation for φq(t), whih is only determined by the

stati struture of the onsidered system.

2

Another key feature is that the time

2

In the ase of simple liquids the stati struture an be aptured only by S(q). In an extension

of the MCT to polymer systems [22℄, the stati struture of the system � due to the existene of
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evolution of φq(t) is oupled to that of all other produts of oherent intermediate

sattering funtions, like φk(t)φp(t), when k + p = q holds for the onsidered wave

vetors k,p and q.

In the ideal MCT the ideal glass transition senario is aptured mathematially

by a bifuration, whih ours at T


in the limit of t → ∞:

lim
t→∞

φq(t) =

{
0 for T > T



,

fq(T ) for T ≤ T


.

(4.5)

fq(T ) is named the non-ergodiity parameter. It gives the �nite value at whih φq(t)

remains for t → ∞ for T ≤ T


and states the fat that below T


φq(t) does not

ompletely relax anymore.

As MCT espeially deals with dynamis ourring for temperatures lose to T


,

a measure to desribe the `distane' to T


, the so-alled separation parameter, is

introdued by

σ = C
T


− T

T


. (4.6)

C is a onstant depending on the onsidered system.

Another important predition of MCT is that there is only one relevant time sale

in a glass-forming system whih is the mirosopi time sale t0. It is onneted to

the β relaxation time via

tσ =
t0

|σ|1/2a
(0 < a < 0.3953), (4.7)

and to the α relaxation time via

t′σ =
t0
|σ|γ , (4.8)

with γ = 1
2a

+ 1
2b

(γ > 1.765). The β relaxation time is the relevant time sale in the

β regime and the α relaxation time in the α regime. (For a qualitative impression

where this relaxation regimes our see Fig. 4.1.)

The parameters a and b (the von Shweidler exponent) are related to eah other

via the exponent parameter λ by [11℄

λ =
Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
(1/2 ≤ λ < 1) . (4.9)

We will ome bak to this relation, when we determine γ from b.

polymer hains the system exhibits a higher strutural omplexity � is aptured by S(q) and the

form fator w(q).
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Figure 4.1: Coherent intermediate sattering funtion φq=6.9(t) for N = 16 as a

funtion of time t. For T = 0.43 the approximated time intervals are indiated

where the MCT α- and β proesses our. The value 0.1 is marked by a horizontal

blak dashed line. This value is used to determine a relaxation time τ ∗
q .

Asymptoti formulae The following asymptoti expressions are only valid for

temperatures lose to T


, whih translates to small σ.

The intermediate time regime of the relaxation proess within whih φq(t) relaxes

to the plateau (φq(t) ≈ fq) and, for T > T


, relaxes from it is alled the β regime.

This regime an be more preisely de�ned by |fq −φq(t)| ≪ 1 [11℄. Within this time

regime MCT predits that φq(t) an be expanded for t ∼ tσ up to the �rst order by

φq(t) = f 

q + hq

√
|σ| g(t̂) , (4.10)

with hq the ritial amplitude and t̂ = t/tσ. Equation (4.10) an be rewritten using

the β orrelator Gβ(t) = g(t̂)
√

|σ| in the following form

φq(t) = f 

q + hqGβ(t) . (4.11)

Thereby it beomes obvious that the orretion to f 

q , namely hqGβ(t), splits into

two fators: hq only depends on q and the β orrelator Gβ(t) only depends on t and

σ. For this reason Eq. (4.11) is alled the fatorization theorem.

Mode-oupling theory predits that there is a temperature interval in whih inter-

mediate sattering funtion an be ollapsed onto eah other by resaling the time t
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aording to some relaxation time τ . The so resaled φq(t) are predited to ollapse

onto one temperature independent shape funtion φ̃q(·), whih is also referred to as

a master funtion [37℄. Mathematially this relation is expressed within the MCT

by

φq(t) = φ̃q(t/t
′
σ) (t ≥ tσ) . (4.12)

This relation is referred to as the time-temperature superposition priniple (TTSP).

Data analysis: proedure The �nal goal of this analysis is to determine mode-

oupling-theory quantities like T


, a, b, λ, γ as a funtion of the hain length N .

We perform this analysis in the following steps:

• First we hek in whih temperature interval the time-temperature superpo-

sition priniple (TTSP) is valid. This gives a �rst estimate within whih

temperature interval the ideal MCT applies [11℄. Additionally to that, it gives

us an estimation for the lower bound of the non-ergodiity parameter f 

q .

• In a seond step we hek if the fatorization theorem is also valid. This step

also serves as a rosshek.

• In a subsequent step we �t φq(t) by employing the von Shweidler law and its

leading order orretion Eq. (4.14) This is done for eah hain length for the

lowest temperature that still obeys the TTSP. By this hoie we an aess

the largest time interval possible for the �t. Therefore the �t results might

reah the highest possible preision. From these �ts we determine values for

the MCT quantities of b, f 

q .

• From the �tted b we alulate λ and a, and from a and b we alulate γ. The

alulated γ is then used to determine T


by �tting the α relaxation times for

di�erent temperatures in a temperature interval where the ideal MCT an be

applied.

4.2.1 Time-temperature superposition priniple

We start to determine the temperature interval within whih the ideal mode-oupling

theory should apply. This temperature interval an be found by testing the time-

temperature superposition priniple.

In the �gures 4.2 � 4.6 we show the result of the resaled oherent intermediate

sattering funtion for the hain lengths of N = 64, 32, 16, 8, 4.
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Figure 4.2: Coherent intermediate sattering funtion φq=6.9(t) for N = 64 resaled

aording to the α relaxation time (τq∗)
−1
, whih is determined by φq=6.9(t = τq∗) =
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Figure 4.3: Coherent intermediate sattering funtion φq=6.9(t) for N = 32 resaled

aording to the α relaxation time (τq∗)
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, whih is determined by φq=6.9(t = τq∗) =

0.1.
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Figure 4.6: Coherent intermediate sattering funtion φq=6.9(t) for N = 4 resaled

aording to the α relaxation time (τq∗)
−1
, whih is determined by φq=6.9(t = τq∗) =

0.1.

Proedure

To test the TTSP we proeed as follows: We start by onsidering φq(t) for q = 6.9 for

a distint hain length. We take q = 6.9 as for this value φq(t) shows a omparatively

high plateau value and therefore promises to give more preise results.

We illustrate our approah for the example of φq=6.9(t) for N = 64. For this

hain length we simulated in the NVT ensemble the following temperatures T =

0.50, 0.48, 0.47, 0.46, 0.45, 0.44. First we determine the time where φq(t) reahes a

value of 0.1 for every simulated temperature. This time is determined by a linear

interpolation between two data points whih are losest to 0.1. Next the φq(t)'s

are resaled aording to these determined times. These times are the longer the

lower the onsidered temperature is. (Compare Fig. 4.1 where a similar situation

for N = 16 is depited.) Due to the employed method to determine these relaxation

times and the limited amount of data points one needs to adjust the relaxation

times in order that φq(t) ollapses onto one master urve. This is done as long as

the following riteria are obeyed [32, 77℄

• the �nal relaxation proess should overlap for all temperatures lose to TMCT



,

• φq(t) for a temperature should not interset with φq(t) of a higher temperature,
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N = 64 N = 32 N = 16 N = 8 N = 4

lowest temperature T 0.44 0.44 0.43 0.42 0.40

lower bound for f 

q=6.9 0.775 0.78 0.79 0.80 0.805

Table 4.1: Results obtained by testing the time-temperature superposition priniple:

Lowest temperature T denotes the lowest temperature that still seems to ful�ll the

TTSP. Lower bound for f 

q=6.9 denotes a lower bound for f 

q=6.9 for eah distint

hain length N .

• the higher the temperature, the earlier φq(t) should leave the master urve.

Figure 4.2 shows the result of this proedure for the hain length N = 64. All

simulated temperatures seem to ful�ll the TTSP. Therefore the ideal MCT should

apply even for the lowest temperature showed, T = 0.44. The blak dashed line

indiates a lower bound for the non-ergodiity parameter, f 

q=6.9 ≥ 0.775.

In Fig. 4.3 we show the result for N = 32. Here the lowest simulated temperature

T = 0.42 (dash-dotted line) apparently violates the TTSP. The fat that φq(t) for

T = 0.42 ollapses in the �nal deay onto the other urves, but does not ollapse onto

the master urve for intermediate times an be taken as a sign that this temperature

does not ful�ll the TTSP. For T = 0.43 it is not so lear if the TTSP is still ful�lled

or not, as the di�erenes in the shape of its φq(t) and the master urve are rather

small. The lower bound for f 

q=6.9 ≥ 0.78, determined from the data for T > 0.43,

is indiated by a blak dashed line.

The outome of this proedure for N = 16, 8 and 4 is depited in �gures 4.4 �

4.6. For N = 16 the temperatures T = 0.42 and T = 0.41 violate the TTSP. From

T > 0.42 a lower bound for f 

q=6.9 ≥ 0.79 is determined. For N = 8 T = 0.41

and T = 0.40 violate the TTSP. From T > 0.41 a lower bound for f 

q=6.9 ≥ 0.80 is

determined. Finally, for N = 4 T = 0.39 and T = 0.38 violate the TTSP. From

T > 0.39 a lower bound for f 

q=6.9 ≥ 0.805 is determined.

In Table 4.1 we summarize our �rst results by testing the TTSP. For eah hain

length we determined the lowest temperature T for whih the assoiated oherent

intermediate sattering funtion still obeys the TTSP. We also give a lower bound

for f 

q=6.9.
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Figure 4.7: The fatorization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.44 for N = 64. By de�nition Rq(t
′′ = 5.12) = 1 and Rq(t

′ = 30.7)=0. The

times t′′ and t′ were hosen suh that they are within the plateau region. Thereby

it beomes visible that even for times t . t′′ and t & t′ the urves ollapse onto

eah other. The ordering of φq(t) before entering the β regime and when leaving it

is onserved. The urves follow some kind of `ordering rule' [11℄.
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Figure 4.8: The fatorization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.40 for N = 4. By de�nition Rq(t
′′ = 5.12) = 1 and Rq(t

′ = 30.7)=0. The

times t′′ and t′ were hosen suh that they are within the plateau region. Thereby

it beomes visible that even for times t . t′′ and t & t′ the urves ollapse onto

eah other. The ordering of φq(t) before entering the β regime and when leaving it

is onserved, exept for q = 15.

4.2.2 Fatorization theorem

The fatorization theorem (f. Eq. (4.11)) an be tested by �xing two times t′′ and

t′, with t′′ . tσ . t′, and evaluation of the following relation [11℄

Rq(t) =
φq(t) − φq(t

′)

φq(t′′) − φq(t′)
=

Gβ(t) − Gβ(t′)

Gβ(t′′) − Gβ(t′)
. (4.13)

As this test is easy to implement it was widely tested in simulations of fragile glass

formers [33, 47, 76, 78℄.

By de�nition Rq(t) does not dependent on q anymore. Therefore � in the β

regime � φq(t) for di�erent q values should ollapse onto eah other for one �xed

temperature. By this the MCT predition of the fatorization theorem an be

e�etively tested. In Fig. 4.7 this test is arried out for N = 64 and the lowest

temperature that still obeys the TTSP. It an be seen that φq(t) for di�erent q values

ollapse onto eah other on a time interval of about two deades. The ordering rule

[11℄ is valid, whih is a more signi�ant test, is also obeyed.

In Fig. 4.8 we show the similar test for a hain length of N = 4 and for the lowest
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Figure 4.9: The fatorization theorem is tested by applying Eq. (4.13) to φq(t) at

T = 0.38 for N = 4. By de�nition Rq(t
′′ = 20.48) = 1 and Rq(t

′ = 81.92)=0. The

times t′′ and t′ were hosen suh that they are within the plateau region. Thereby

it beomes visible that even for times t . t′′ and t & t′ the urves ollapse onto eah

other. The ordering of φq(t) before entering the β regime and when leaving is not

onserved.

temperature for whih the TTSP still holds. t′′ and t′ are �xed for the same times as

in the ase for N = 64 and T = 0.44. Here, as well as for N = 64, φq(t) for di�erent

q values ollapse onto eah other. The ordering rule is valid exept for q = 15.

In Fig. 4.9 we tested the fatorization theorem for N = 4 and a temperature that

is slightly below the value we determined for T


(see setion 4.2.4 ). The fatorization

theorem seems to be still valid but from our test it seems that the ordering rule is not

ful�lled anymore. The �utuations in the data shown in Fig. 4.9 an be explained

by insu�ient statistis.

4.2.3 Fit proedure

We proeed our analysis in the framework of the ideal mode-oupling theory by

determining b and f 

q=6.9 for eah hain length. Therefore we �t the late β proess,

whih overlaps with the early α proess of the oherent intermediate sattering

funtion [11℄. For this purpose we use the following formulation of the von Shweidler
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Figure 4.10: Coherent intermediate sattering funtion φq=6.9(t) for N = 16 and

T = 0.43; �tted aording to Eq. (4.14). Left border of the �t interval �xed at

t = 20 while the right border is varied: t = 350, 500, 2100. Red olor: right border

t = 350 and orresponding �t. Blue olor: right border t = 500 and orresponding

�t. Green olor: right border t = 2100 and orresponding �t.
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law and the �rst leading order orretions to it as proposed in [11℄

φq(t) = f c
q − h̃fit

q (t/t′σ)
b
+ h̃fit

q B̃fit
q (t/t′σ)

2b
(tσ ≤ t) . (4.14)

Here, f 

q denotes the non-ergodiity parameter, t′σ the α relaxation time, and b

the von Shweidler exponent. h̃fit
q is given by hqB, where hq denotes the ritial

amplitude and B is a onstant. B̃fit
q is given by BBq, where Bq is a q dependent

onstant.

For the �tting proedure we use φq(t) for the lowest temperature where the TTSP

is still ful�lled. We make this hoie, as for this temperature the ideal mode-oupling

theory should still hold. The lower the temperature, the longer the relaxation proess

exhibited by φq(t). Therefore, the time interval within whih Eq. (4.14) an be �tted

is the largest, whih should �nally result in an appropriate good �t result.

Before we start to �t our data aording to Eq. (4.14), we �rst determine the

appropriate �t interval. This is ruial, as it serves a some kind of �hidden� �t

parameter [11℄. In the subsequent part, we want to use one �t interval for all hain

lengths to avoid inonsistenies. This hoie is motivated by the following:

For φq(t) of all hain lengths and temperatures data is olleted at the same

times intervals. We are therefore restrited in the hoie of the �t interval to these

times intervals. The distanes between the times at whih the data is olleted

varies, as we use a logarithmi pattern to ollet data. Thus, the �t interval annot

easily be adapted for eah φq(t) so that it aptures the same part of the relaxation

proess. Additionally to this, the aessible temperatures of φq(t) for eah hain

length onsidered separately do not have to be neessarily in the same relative

distane to T


.

Consequently, the best hoie to make seems to use the same �t interval for all

hain lengths within whih φq(t) shows a similar relaxation behavior. To this end

we �t di�erent temperatures for eah hain length for whih φq(t) exhibits a similar

relaxation proess.

The hoie of the temperatures for eah hain length is made due to the following:

We assume that T


depends on the hain length, whih seems likely when we onsider

our �ndings from the test of the TTSP. Furthermore, we assume that for all hain

lengths the lowest temperature for whih φq(t) still obeys the TTSP is at least at

similar relative distane to T


. Consequently, we assume that φq(t) for these lowest

temperatures exhibit a similar relaxation proess for eah hain length. Therefore

using the lowest temperature for whih the TTSP is still valid for eah hain length
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Figure 4.11: Coherent intermediate sattering funtion φq=6.9(t) for N = 16; �tted

aording to Eq. (4.14). Right border of the �t interval �xed at t = 500 while the left

border is varied: t = 10, 15, 20, 30. Red olor: left border t = 10 and orresponding

�t. Green olor: left border t = 15 and orresponding �t. Blue olor: left border

t = 20 and orresponding �t. Light blue olor: left border t = 30 and orresponding

�t.

separately, should lead to a omparable auray in the �t result. As above stated

�tting the lowest temperature allows to use the largest �t range.

For these reasons we �nally deide to hoose one �t interval whih we use for

the �t of φq(t) for all hain lengths. By this approah we hope to minimize the

systemati error or at least that the systemati error that we make is of omparable

size for all hain lengths.

Determination of the �t interval

In the following, we use φq=6.9(t) for N = 16 and T = 0.43 to determine an ap-

propriate �t interval when applying the von Shweidler �t (Eq. (4.14)). We hoose

N = 16, as it represents the intermediate hain length.

In Fig. 4.10 we �x the left border (small times) of the �t interval at t = 20 and

vary the right border by using t = 350, 500, 2100. This hoie is motivated by the

demand that the �t interval should over a large part of the late β relaxation. We

then selet the �t interval by the requirement that the �t should desribe φq=6.9(t)
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�t interval [10, 500] [15, 500] [20, 500] [30, 500] [20, 2100] [20, 350]

f  �t

q

0.800690 0.799937 0.801079 0.798482 0.804714 0.813493

t
′
�t

σ 1.73638 1.73835 1.73368 1.78833 1.71399 1.92642

b�t 0.600357 0.604114 0.598863 0.610147 0.578552 0.517702

B�t

q 0.00600064 0.00599139 0.00601125 0.00603533 0.00583008 0.00190140

h�t

q 0.0154884 0.0152056 0.0156019 0.0149752 0.0170899 0.0232808

Table 4.2: Values obtained by �tting φq=6.9(t) aording to Eq. (4.14) for N = 16

and T = 0.43 using di�erent �t intervals (f. Fig. 4.11).

averaged [20, 500] standard deviation

f  �t

q

0.80098 0.801079 0.0020671

t
′
�t

σ 1.7421 1.73368 0.024678

b�t 0.59841 0.598863 0.010664

B�t

q 0.0059737 0.00601125 7.3313 × 10−5

h�t

q 0.015672 0.0156019 7.4191 × 10−4

Table 4.3: Values obtained by �tting φq=6.9(t) aording to Eq. (4.14) for N = 16

and T = 0.43 using [20, 500] as �t interval ompared to the average value. This aver-

age is alulated for the obtained values using the �t intervals of [10, 500], [15, 500],

[20, 500], [30, 500] and [20, 2100]. For this average the standard deviation is indi-

ated.

for the largest possible range, espeially outside the �t interval. This requirement

seems to be best met, when the right right border is set to t = 500.

We then proeed to vary the left border using t = 10, 15, 20, 30, while keeping

the right one �xed (t = 500, see Fig. 4.11). The variation of the left border (in the

range that we probe) seems to result in a less pronouned in�uene on the �t than

the variation of the right border.

In Table 4.2 we present the values that we obtained by �tting φq(t) of N = 16 for

a temperature of T = 0.43 by using Eq. (4.14). As the values obtained by hoosing

t
left

= 20 and t
rigth

= 350 as �t interval di�er strongly ompared to the other values

we exluded them from now on. This strong deviation an be explained as follows:

This hoie of the �t interval neglets a big part of the α relaxation. Therefore the

�t is omparatively less desriptive ompared to the other �ts.

The mean value and the standard deviation of the obtained values for the other
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�t intervals are given in Table 4.3. From this table it an inferred that the values by

�tting within the border of t
left

= 20 and t
right

= 500 are omparable to the mean

values obtained from di�erent �ts and within the standard deviation.

We studied this in�uene as it is done for N = 16 and T = 0.43 for the other

hain length (N = 4, 8, 32, 64 for the lowest temperature that still obeys the TTSP)

and we �nd omparable results meaning that the variation of di�erent values for b�t

obtained for di�erent �t intervals is omparable. But due to the restrition of the

hoie of the �t interval � as already mentioned above � it seems learer to �x

the �t interval. Therefore we �x the �t interval to t
left

= 20 and t
right

= 500 for the

following �ts.

Fit

Now we �t � using the determined �t interval � aording to Eq. (4.14) φq(t) for

all onsidered hain lengths N = 64, 32, 16, 8, 4 where we use the lowest temperature

for whih φq=6.9(t) still ful�lls the TTSP.

In Fig. 4.12 we show the result for N = 16 and T = 0.43. We start to �t φq=6.9(t)

aording to Eq. (4.14) where all �ve parameters f  �t

q

, t
′
�t

σ , b�t, B�t

q , h�t

q are treated

as �t parameters. Thereafter we determine the rossover-time t
o

by the ondition

φq=6.9(to) = f 

q=6.9 [11℄. By using this relation we are then able to determine f 

q

for the other onsidered q-values of 4, 9.5, 12.8. In a last step, we then �t φq(t) for

q = 4, 9.5, 12.8 by setting b�t, t
′
�t

σ to the values obtained from the �t for q = 6.9 and

f  �t

q

to the values obtained by using φq=a(to) = f 

q=a. Thus, only B�t

q and h�t

q are

�tted.

As an additional test, we �tted the inoherent intermediate sattering funtion. In

Fig. 4.13 the inoherent intermediate sattering funtion for N = 16 and T = 0.43 is

�tted aording to Eq. (4.14) where we used for b�t, t
′
�t

σ and t
o

the values determined

by the �t of φq=6.9(t). As in these �ts only two free �t parameters are employed,

they show how omparatively well this �t proedure works.

In the �gures Fig. 4.15 � Fig. 4.17 we show the results from the �t proedure for

the other hain lengths. In Table 4.4 we give an overview of the values obtained

by �tting φq=6.9(t) for eah hain length for the lowest temperature for whih the

TTSP still holds aording to Eq. (4.14).
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Figure 4.12: Coherent intermediate sattering funtion φq=4,6.9,9.5,12.8(t), for N = 16

and T = 0.43; �tted aording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.73368, b =

0.598863 and the orresponding f 

q (f 

q=4 = 0.5019, f 

q=9.5 = 0.4297, f 

q=12.8 = 0.3672)

are set. The rossover-time t
o

= 1.6475 and the �t interval are marked by vertial

blak lines.

N = 64 N = 32 N = 16 N = 8 N = 4

f  �t

q

0.789512 0.790253 0.801079 0.811316 0.819615

t′σ 1.84349 1.69287 1.73368 1.75646 1.76730

b�t 0.595253 0.616997 0.598863 0.571892 0.546314

B�t

q 0.006146 0.007276 0.006011 0.005662 0.000279

h�t

q 0.018284 0.018166 0.015602 0.016771 0.014499

t
o

1.8510 1.7508 1.6475 1.3325 1.6268

Table 4.4: Values obtained for f  �t

q

, t′σ, b
�t, B�t

q , h�t

q by �tting φq=6.9(t) for eah hain

length aording to Eq. (4.14). For eah hain length the lowest temperature whih

still obeys the TTSP is used (N = 64 : T = 0.44, N = 32 : T = 0.44, N = 16 :

T = 0.43, N = 8 : T = 0.42, N = 4 : T = 0.40). For all �ts we used the �t interval

t
left border

= 20 and t
right border

= 500. Additionally the rossover-times t
o

are given

whih are determined by φq=6.9(to) = f 

q=6.9.
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Figure 4.13: Inoherent intermediate sattering funtion φs

q=4,6.9,9.5,12.8(t) for N = 16

and T = 0.43; �tted aording to Eq. (4.14). t′σ = 1.73368, b = 0.598863 and the

orresponding f 

q (f 

q=4 = 0.8915, f 

q=6.9 = 0.7167, f 

q=9.5 = 0.5414, f 

q=12.8 = 0.3433)

are set. The ross over time t
o

= 1.6475 and the �t interval are marked by vertial

blak lines.
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Figure 4.14: Coherent intermediate sattering funtion φq=4,6.9,9.5,12.8(t) for N = 64

and T = 0.44; �tted aording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.84349, b =

0.595253 and the orresponding f 

q (f 

q=4 = 0.5014, f 

q=9.5 = 0.4201, f 

q=12.8 = 0.3528)

are set. The rossover-time t
o

= 1.851 and the �t interval are marked by vertial

blak lines.
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Figure 4.15: Coherent intermediate sattering funtion φq=4,6.9,9.5,12.8(t) for N = 32

and T = 0.44; �tted aording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.69287, b =

0.616997 and the orresponding f 

q (f 

q=4 = 0.4966, f 

q=9.5 = 0.4157, f 

q=12.8 = 0.3500)

are set. The rossover-time t
o

= 1.7508 and the �t interval are marked by vertial

blak lines.
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Figure 4.16: Coherent intermediate sattering funtion φq=4,6.9,9.5,12.8(t) for N = 8

and T = 0.42; �tted aording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.75646, b =

0.571892 and the orresponding f 

q (f 

q=4 = 0.4906, f 

q=9.5 = 0.4327, f 

q=12.8 = 0.3773)

are set. The rossover-time t
o

= 1.3325 and the �t interval are marked by vertial

blak lines.
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Figure 4.17: Coherent intermediate sattering funtion φq=4,6.9,9.5,12.8(t) for N = 4;

�tted aording to Eq. (4.14). For q = 4, 9.5, 12.8, t′σ = 1.7673, b = 0.546314 and

the orresponding f 

q (f 
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q=9.5 = 0.4258, f 

q=12.8 = 0.3732) are set. The

rossover-time t
o

= 1.6268 and the �t interval are marked by vertial blak lines.
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N = 64 N = 32 N = 16 N = 8 N = 4

b�t 0.595253 0.616997 0.598863 0.571892 0.546314

a 0.315065 0.320868 0.316044 0.308580 0.301164

λ 0.727482 0.714315 0.725292 0.741670 0.757234

γ 2.4270 2.3686 2.4170 2.4946 2.5754

Table 4.5: b�t obtained by �tting by �tting φq=6.9(t) for eah hain length aording

to Eq. (4.14). For eah hain length the lowest temperature whih still obeys the

TTSP is used (N = 64 : T = 0.44, N = 43 : T = 0.44, N = 16 : T = 0.43, N = 8 :

T = 0.42, N = 4 : T = 0.40). The values of λ and a are obtained by exploiting the

relation given in Eq. (4.15). γ is alulated by inserting b�t and a in Eq. (4.16).

4.2.4 Analysis of T


In this paragraph we determine the ritial temperature de�ned within the frame-

work of the mode-oupling as a funtion of the hain length. We proeed as follows:

First we use b�t determined for eah hain length to alulate λ and a. To this end,

we exploit the relation between a, b and λ [11℄ given by

λ =
Γ(1 − a)2

Γ(1 − 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
(1/2 ≤ λ < 1) . (4.15)

The alulated a and the determined b�t enables us then to alulate γ [11℄ by using

γ =
1

2a
+

1

2b
(γ > 1.765) . (4.16)

Using this so obtained γ enables us to determine T


by �tting the α relaxation times

within the temperature range where the TTSP holds.

During our simulation proedure we ontinuously (in ∆T = 0.01 steps) ooled

down the onsidered system in the NpT ensemble (see setion 2.5.2 ). Due to �nite

simulation resoures we did not simulate for eah temperature a trajetory also in

the NVT ensemble. In order to inrease the quality of the �t that we undertake to

determine T


, we added a few data points from NpT simulation runs. (We added

following relaxation times τq∗ determined for φq=6.9(t), whih are obtained in the NpT

ensemble: N = 32: T = 0.46; N = 16: T = 0.45, 0.46; N = 8: T = 0.43, 0.45, 0.46;

N = 4: T = 0.41, 0.42, 0.43.) These trajetories are also equilibrated, but simulated

in the NpT ensemble. This proedure was justi�ed by omparing φq=6.9(t) alulated

within the NpT and NVT ensemble for temperatures where both data are aessible.
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Figure 4.18: N = 64: α-relaxation times for T = 0.44, 0.45, 0.46, 0.47, 0.48 at q =

6.9. γ alulated from b�t and a using Eq. (4.16). The α relaxation times for φq=6.9(t)

(determined by the proedure desribed in setion 4.2.1) are �tted aording to

f(x) = A(x − T


) where A and T


are �t parameters.

The minor di�erenes, whih were notied between φq=6.9(t) alulated within the

NpT and NVT ensembles, seem to appear due to the poorer statistis we have for

the NpT data. The in�uene on the determined relaxation time is small and does

not in�uene the auray of the �t.

Finally we determine T


by �tting the α relaxation time using following relation

[11℄

t′σ =
t0
|σ|γ , (4.17)

whih we use in the following form

(t′σ)−
1

γ = a(T − T


) . (4.18)

In this way we are able to �t (t′σ)−
1

γ
by using a linear �t.

In Fig. 4.18 we depit the �t result for N = 64, where we use a �t range of

T = 0.44− 0.48. Figure 4.19 shows the �t result for N = 32. In the ase of N = 32

we use two di�erent �t intervals, as it is not lear to whih temperature the TTSP

is still obeyed (f. setion 4.2.1). The values for T


whih are obtained are then

averaged. Figures 4.20 - 4.22 show the �t results for hain length N = 16, 8, 4.

In Table 4.6 an overview over the so determined values for T


is given.
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q = 6.9.
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N = 32: α-relaxation times for

T = 0.42, 0.43, 0.44, 0.45, 0.46 at

q = 6.9. In ontrast to the left �gure a

di�erent lower bound for the �t interval

is used (T = 0.43).

Figure 4.19: γ alulated from b�t and a using Eq. (4.16). The α relaxation times for

φq=6.9(t) (determined by the proedure desribed in setion 4.2.1) are �tted aording

to f(x) = A(x − T


) where A and T


are �t parameters.

N = 64 N = 32 N = 16 N = 8 N = 4

T


0.417 0.415 0.409 0.401 0.382

Table 4.6: T


obtained by �tting orresponding α relaxation times aording to

Eq. (4.18).

4.2.5 Chain length dependene of T


, b, a, γ and λ

After we determined T


and other mode-oupling theory related quantities like a, b, γ

and λ we ask the question if these quantities also show some hain length dependeny

that an be treated like in the ase of the density ρ (f. setion 3.1).

We start with T


: In a �rst step we plot T


as a funtion of the hain length. As

this plot seems to follow a power law we �t aording to f(x) = Axα + B. From

this �t we get for the exponent α a value lose to minus unity: α = −1.02583 (see

Fig. 4.23). For this reason it seems to be appropriate to linearize T


by plotting it

as a funtion of the reiproal hain length 1/N , whih is shown in Fig. 4.24. This

funtional dependene of T


on 1/N � whih is similar to the 1/N-dependene of

the density ρ (f. setion 3.1) � seems to be explainable also by hain end e�ets.

The fat that T


an be linearized as a funtion of 1/N rises the question if
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Figure 4.20: N = 16: α-relaxation times for T = 0.41, 0.42, 0.43, 0.44, 0.45, 0.46 at

q = 6.9. The α relaxation times for φq=6.9(t) (determined by the proedure desribed

in setion 4.2.1) are �tted aording to f(x) = A(x − T


) where A and T


are �t

parameters. The �t interval is denoted by blak vertial lines.
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Figure 4.21: N = 8: α-relaxation times for T = 0.40, 0.41, 0.42, 0.43, 0.44 at q =

6.9. The α relaxation times for φq=6.9(t) (determined by the proedure desribed
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Figure 4.22: N = 4: α-relaxation times for T = 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44

at q = 6.9. The α relaxation times for φq=6.9(t) (determined by the proedure

desribed in setion 4.2.1) are �tted aording to f(x) = A(x− T
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Figure 4.23: T


as a funtion of the hain length N . The error bar for N = 32

indiates the error due to the usage of di�erent �t intervals to obtain T


by �tting

the α relaxation time. The blue line indiates a �t aording to f(x) = Axα + B.

Values obtained by �tting: A = −0.151402 B = 0.418476 α = −1.02583
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T
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Figure 4.25: b as a funtion of the reiproal value of the square root of the hain

length 1/
√

N . The blue line denotes a linear �t given by f(x) = Ax + B with

A = −0.21982, B = 0.653877.
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the other MCT related quantities like b, a, γ and λ do also show suh a behavior.

Consequently we proeed with b: Here it is not so obvious whether or not there is

a simple underlying saling law aording to whih the hain length dependene of

b an be resaled to obtain a linear behavior of the resulting plot. By omparing

the numerial values for b�t one �nds that there is a trend (see Table 4.5): Starting

with the hain length of N = 4 the values for b�t inrease with growing hain length

exept for the longest hain length of N = 64. The reason why espeially the longest

hain length shows a deviation from this trend is not lear. We will ome bak to

this point later on.

We then try to linearize b by resaling the dependene on N while negleting

the value for N = 64. We �nd that this is possible by resaling with

1√
N
. By

proeeding in the same way for the other MCT related quantities a, γ and λ we �nd

the same saling behavior. Whih means that the N dependene of these quantities

an omparatively well linearized by resaling with

1√
N
.

Why does N = 64 deviate from the trend? The question of why b�t for

N = 64 deviates from the trend showed by the other hain lengths is not lear

so far. A possible explanation ould be given by the fat that the hain length of

N = 64 approahes the value for whih entanglement e�ets are expeted for this

kind of model [43℄. Another point whih should be mentioned is the in�uene of the

employed �t interval when �tting aording to Eq. (4.14). As already mentioned

the �t results depend also on this hidden �t parameter. This e�et ould be for

some hain length more pronouned than for others depending on whih amount of

the late β relaxation is aptured by the �t. However, it is rather ompliated to

determine the absolute in�uene of the employed �t interval.

Although there is some unertainty for the b�t values, the hain length dependene

of b�t seems to be quite robust and show a non monotoni behavior. Longer hain

lengths have to be studied to hek if b�t ontinues to derease or settle.

4.3 Analysis of the q-dependene of the α relaxation

time

In the last setion we exploited the time-temperature superposition priniple to

determine the range of the ideal mode-oupling theory. Therefore we use the ri-
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N . The blue line denotes a linear �t given by f(x) = Ax + B with
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length 1/
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N . The blue line denotes a linear �t given by f(x) = Ax + B with

A = 0.645285, B = 2.25736.

N = 64 N = 32 N = 16 N = 8 N = 4

analyzed T 0.44 0.44 0.43 0.42 0.40

T


0.417 0.415 0.409 0.401 0.382

T − T


0.023 0.025 0.021 0.019 0.018

Table 4.7: Analyzed T orresponds to the temperatures from whih the relaxation

times are determined and depited in Fig. 4.29 (bottom). These temperatures are

ontrasted with T


, the ritial temperature of the ideal MCT, whih are determined

in setion 4.2.4). T − T


gives the relative distane of analyzed T to T


.

terion φq=6.9(t)(τq∗) = 0.1 to de�ne relaxation time τq∗ . In this paragraph, we use

the same threshold , namely 0.1, to determine relaxation times τq=q′ for a q vetor

range of q′ = 1 − 8 by using the riterion φq=q′(t)(τq=q′) = 0.1. Tehnially we

proeed as before: First we alulate the oherent intermediate sattering funtion,

and then we determine τq=q′ by linear interpolation of φq=q′(t) between values lose

to 0.1. This proedure is arried out for all hain lengths for the temperatures of

T = 1.00,T = 0.50 and T − T


≈ 0.02 (see Fig. 4.29).

By omparing the result for the di�erent temperatures we observe:

• For T = 1 the longest relaxation times are present for a q range from 3 � 5.

Espeially for N > 8 a broad peak region for this q interval an be observed.
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• For T = 0.5 all relaxation times inrease ompared to T = 1 but partiularly

for 3 < q < 5 and for q values around the peak of the stati struture fator

∼ S(q∗) (f. setion 3.3 ).

• For T − T


≈ 0.02 all relaxation times further inrease. As in the ase of

T = 0.5 espeially for q values in the region of 3 < q < 5 and q ∼ q∗ the

inrease is very pronouned. As for the various N di�erent relative distanes

to T


are probed, we are able to observe how the relaxation times hange

in the approah of T


. The temperatures from whih the relaxation times are

determined for T−T


≈ 0.02 are summarized in Table 4.7. These temperatures

orrespond to the lowest temperatures for whih the TTSP is still ful�lled (f.

setion 4.2.1).

Thereby it an be observed that the height of the peak around q∗ is mainly

in�uened by the distane to T


. The height of the peak in the q range of

3 < q < 5 is in�uened by the relative distane to T


, but also depends on

the hain length. This last point an be inferred by the omparison of the

relaxation times for N = 8 and N = 16. Although the temperature for whih

the relaxation times for N = 8 are determined is loser to T


ompared to

N = 16 � whih is re�eted by a larger value at the peak position at q ∼ q∗

� the relaxation times for 3 < q < 5 are omparable.
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Chapter 5

Dynamis: Shear relaxation funtion

and ase study on �nite-size e�ets

In this hapter we extend the disussion on the dynamis by onsidering two addi-

tional quantities whih are the mean square displaement and the shear relaxation

funtion [54℄. By this extension we obtain a broader piture about the dynamis of

our system, and we will also fous more on polymer e�ets.

Furthermore we arry out a ase study on the e�ets of the �nite simulation box

size on the dynamis of a polymer system. This analysis onentrates on observable

di�erenes in dynami orrelation funtions as a funtion of the temperature.

5.1 Shear relaxation funtion

In the previous hapter we foused on the intermediate sattering funtions φq(t)

to study the dynamis of the system under onsideration. φq(t) reveals information

about the system in terms of density �utuations for one spei� wavelength. Here

we want to proeed in another way where we explore the ooperative visoelasti

properties of the system. To this end, we study the linear response of the system

to an in�nitesimal shear in the q → 0 limit, i.e., we onsider the shear relaxation

funtion G(t). This quantity an be introdued as the autoorrelation funtion of

the mirosopi stress σαβ , whih is given by [55℄

σαβ =
M∑

i=1

mvi,αvi,β − 1

2

M∑

i=1

(
ri,α

∂U(rM )

∂ri,β

+ ri,β
∂U(rM )

∂ri,α

)
, (5.1)

where the omponents of the position ri (the veloity vi) of monomer i (= 1, . . . , M)

are denoted by ri,α (vi,α), and total potential is denoted by U .
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In terms of the mirosopi stress, σzx, the shear relaxation funtion [5, 9℄ is given

by

G(t) =
1

k
B

TV

〈
σzx(t)σzx(0)

〉
=

1

TV

〈
σzx(t)σzx(0)

〉
, (5.2)

with T denoting the temperature and V the volume.

By this de�nition it an be understood that G(t) an be employed as a measure

to probe the visoelasti properties of the whole system. The mirosopi stress

σzx takes the whole system into aount.

1

In the systems under onsideration the

internal stress of the system is aused by the thermal movement of the monomers

relative to one another. These movements ause loal stresses whih relax with time.

This relaxation proess is probed by the stress autoorrelation funtion, the shear

relaxation funtion G(t).

The analysis of the shear relaxation funtion is ompared with the analysis of the

mean square displaement. The mean square displaement (MSD) of all monomers

(g0) [11℄ an be de�ned by

g0(t) =
1

M

M∑

i=1

〈[
ri(t) − ri(0)

]2〉
, (5.4)

where M denotes the total number of monomers and ri the position of monomer i.

Additionally the mean square displaement of the enter of mass of eah hain (g3)

[11℄ an be de�ned as

g3(t) =
1

n

n∑

i=1

〈[
Ri(t) − Ri(0)

]2〉
, (5.5)

where n denotes the total number of hains and Ri the position of the enter of

mass of hain i.

By this omparison we explore the onnetion between the olletive behavior of

the studied system � probed by G(t) � and properties that haraterize the system

in an inoherent way � g0.

We start our disussion with the hain length N = 64. In Fig. 5.1 we ontrast

g0(t) and G(t). To put this disussion in relation to φq(t), on whih we foused in

the last hapter, we add φq(t). In order to improve the omparability among these

quantities we also show φq(t) with both axes logarithmially saled.

1

By a Green-Kubo relation the shear relaxation funtion G(t) is related to the shear visosity
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Figure 5.1: N = 64: Top: Shear relaxation funtion G(t) versus time t; Center:

Mean square displaement for all monomers g0(t) versus time t; Below: Coherent

intermediate sattering funtion φq=6.9(t) versus time t. The blak vertial dotted

line marks t = 1. The blak dashed line indiates the rossover time t
o

, determined

in setion 4.2.3. The red vertial line denotes the start of the polymer regime for a

temperature of T = 0.44 de�ned by G(t) = ρk
B

T (see text for details). The olored

horizontal lines (top) indiate the value of ρk
B

T for T = 1, 0.5, 0.44.
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The time interval an be naturally divided into four main regimes

2

:

• For very small times t the monomers move freely and follow a ballisti motion.

For this reason the motion of the monomers shown in the MSD follow a power

law ∝ t2 whih seems to be observable. We write �seems� as this time regime

stops as soon as the monomers �feel� their nearest neighbors, so the purely

ballisti motion is only to a little extent visible. Rather, the ballisti regime

already overlaps for small times t with the subsequent regime whih starts

when interation between the monomers begin to determine the dynamis.

Due to these interations the monomers slow down whih is observable by

the fat that the slope of the MSD beomes weaker. In the shear relaxation

funtion G(t) the interations with nearest neighbors results in the osillations

for times t . 1. Referene [54℄ suggests that these osillations are due to

interplay between the inertia of the monomer mass and the harmoni bond

potential beause they are absent in a Brownian dynamis simulation. A

possible test of this idea within the framework of our MD simulation (with

inertia) ould employ a separation of the bond and non-bonded part. We then

expet that the bonded ontributions auses the osillations in G(t), whereas

the non-bonded part relaxes without osillations.

• For intermediate times � that means for times larger than 1 and smaller

than the monomer relaxation time τ0
3

� the monomers are, for low enough

temperatures, temporarily trapped by their neighboring monomers. (All the

mode-oupling related analyses done in the last hapter took plae in this time

regime.) The idea that monomers are trapped by the surrounding monomers

gives rise to the �age e�et� of the mode-oupling theory [37℄. For a spei�

time window the dynamis of the monomers beomes partially or almost totally

arrested. This time window is visible by the fat that the slope of the MSD

is lose to zero. As an be seen in Fig. 5.1 there is no lear signature of

the �age e�et� anymore for high temperatures, i.e.,T > 0.5. In the shear

η [5℄:

η =

∫
∞

0

dt G(t) . (5.3)

2

Atually all onsidered quantities are given as a funtion of time di�erenes : All three studied

funtions are autoorrelation funtions, whih probe the system under onsideration in terms of

time di�erenes between two spei� times.

3τ0 an be de�ned by g0(τ0) = 1 [11℄.
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relaxation funtion and in the oherent intermediate sattering funtion φq(t)

this trapping is observable by a protrated derease of the orrelation.

• By means of the Rouse theory [26℄ we de�ne the next time regime whih starts

as soon as the shear relaxation funtion G(t) has reahed the value of ρk
B

T .

This value sets the starting point of the Rouse theory. The shear relaxation

an be expressed as the sum over all Rouse modes whih relax exponentially

with time given by cp(t) = e−tp2/τ
R

with τ
R

denoting the Rouse time [26℄ and p

the onsidered Rouse mode. The Rouse time an be related to the reiproal

monomer frition oe�eient w by τ
R

∼ N2w−1
, where N denotes the number

of monomers in the hain. This leads to [75℄

G(t) = k
B

Tρ
N

∑N−1
p=1 c2

p(t) = k
B

Tρ
N

∑N−1
p=1 e−2tp2/τ

R

τ0≪t≪τ
R−−−−−→

N≫1

∫ ∞
0

dp e−2tp2/τ
R ∼ 1√

wt
. (5.6)

For times on the order of the Rouse time all modes aept the one for p = 1

are assumed to have already relaxed. Therefore the long time limit is aptured

by an exponential ut o�

G(t) ∼ e−t/τ
R . (5.7)

Equations 5.6 and 5.7 an be ombined to following approximation for the

shear relaxation funtion [68℄

G(t) ∼ 1√
t
e−t/τ

R . (5.8)

The MSD shows for this time regime a transition to the sub-di�usive regime.

In this regime the MSD follows a power law whih is given by ∝ t0.5
for the

hain length N = 64.4 This power law behavior an also be observed in the

shear relaxation funtion G(t). Here it is given by t−0.5
for N = 64.

• When the MSD reahes a value whih orresponds to the mean-square end-to-

end vetor R2
e

the dynamis starts to beome purely di�usive and the MSD is

∝ t. This time regime is only depited for the highest temperatures. In this

time regime the shear relaxation funtion is desribed by a �nal exponential

deay whih is not observable in our data. The reason for this is the missing

statistis.

4

For the shorter hain lengths under onsideration e�etive power laws for the sub-di�usive

regime an be found, e.g., for N = 10 a power law dependene of t0.63
is observed [22℄.
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Globally it an be said that the lower the temperature, the more extended the

intermediate time regime. This means that lowering the temperature results in a

slowing down of the monomer dynamis whih seems to leave the dynamis ourring

in subsequent regimes unhanged. The starting point of subsequent regimes is only

shifted to later times.

N=64 In the upper plot of Fig. 5.1 the starting point of the �polymer regime� is

marked for T = 0.44 by a vertial red line (orresponding to the olor in whih G(t)

is depited for this temperature). By the term �polymer regime� we understand

times t for whih G(t) < ρk
B

T . A dotted blak vertial line indiates the starting

point of the �monomer regime� where the rossover time t
o

(f. setion 4.2.3) is

indiated by a dashed blak line. The term �monomer regime� refers to times for

whih it holds 1 . t < t
polymer

, where t
polymer

is given by G(t
polymer

) = ρk
B

T . The

horizontal lines indiate the value of ρk
B

T for T = 1.00, 0.50, 0.44. The plot in the

middle of Fig. 5.1 shows the orresponding g0(t). Here, as well as in the lower plot

(φq(t)) the just disussed time regimes are marked similarly. Additionally g0(t) = 1

and φq=6.9(t)(t) = 0.1 are marked.

Figure 5.1 shows that ompared to g0(t) it is very demanding to obtain similar

statistis for G(t).

N=16 As in the disussion of N = 64 the mentioned time regimes are marked by

horizontal lines (see Fig. 5.2). The values for ρk
B

T are marked for T = 1, 0.5, 0.43.

Here T = 0.43 is hosen as it is the lowest temperature (for N = 16) for whih

the time temperature-superposition priniple is still ful�lled (f. setion 4.2). Con-

trasting G(t) with g0(t) and φq(t) results in a similar omparison as for N = 64.

In ontrast to N = 64 we have for N = 16 aess to lower temperatures with re-

spet to T


. This extension of the temperature window to lower temperatures seems

not to unveil additional e�ets. As stated above a lower temperature most promi-

nently results in a prolongation of the monomer relaxation regime, whih shifts the

starting of the subsequent regimes to later times. G(t) (and φq(t)) show for temper-

atures below T = 0.43 an inrease in the plateau value. Additionally g0(t) = 1 and

φq=6.9(t)(t) = 0.1 are marked.

In ontrast to N = 64 the shear relaxation funtion for N = 16 shows no lear

signature of a power law (for N = 4 no power law an be observed, neither). For

smaller hain length τ
R

is omparatively small as τ
R

∝ N2w−1
. Therefore with
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Figure 5.2: N = 16: Top: Shear relaxation funtion G(t) versus time t; Center:

Mean square displaement for all monomers g0(t) versus time t; Bottom: Coherent

intermediate sattering funtion φq=6.9(t) versus time t. The blak vertial dotted

line marks t = 1. The blak dashed line indiates the rossover time t
o

, determined

in setion 4.2.3. The light blue vertial line denotes the start of the polymer regime

for a temperature of T = 0.43 (see text for details). The olored horizontal lines

(top) indiate the value of ρk
B

T for T = 1, 0.5, 0.43.
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dereasing hain length the power law regime is blurred by the exponential ut o�

(f. Eq. (5.8)).

N=4 In Fig. 5.3 we show the orresponding results for hain length N = 4. The

results obtained an be interpreted in a similar way as above. Here for T = 0.40 the

start of the �polymer regime� is marked. T = 0.40 is the lowest temperatures that

still ful�lls the time-temperature superposition priniple for N = 4. The values for

ρk
B

T are marked for T = 1, 0.5, 0.40. For N = 4 we also have aess to temperatures

that are below the T


of the ideal mode-oupling theory. Additionally g0(t) = 1 and

φq=6.9(t)(t) = 0.1 are marked.

5.2 Polymer e�ets

In this setion we shortly point to some aspets about polymer e�ets. The ompar-

ison above between the MSD and shear relaxation funtion revealed several similar-

ities between these two orrelation funtions whih are not seen to the same extent

in the oherent sattering funtion φq=6.9(t). This ould be beause q ≈ 6.9 probes

loal density �utuations, and not the dynamis in the limit q → 0, as the MSD or

G(t) do. In this limit, and for times longer than the α-relaxation time, one would

expet polymer e�ets to determine the dynamis of the melt [26, 68℄. Therefore we

disuss φq(t) for lower q values, down to the smallest q value aessible in our simu-

lation whih is given by q
min

= 2π
l
box

, where l
box

denotes the length of the simulation

box.

Figure 5.4 ompares the shear relaxation funtion G(t) with φq=q
min

(t). For

N = 64, q
min

is given by q ≈ 0.27.5 We learly observe that for small times φq=q
min

(t)

also shows osillations like the shear relaxation funtion. But for φq(t) these osilla-

tions are related to damped sound waves (preursor of the hydrodynami Brillouin

spetrum [9℄). They are fully developed for φq=q
min

(t) for t ∼ t
o

so that the non-

ergodiity parameter f 

q annot be read o�, ontrary to larger wave vetors or to

G(t).

These osillations blur the beginning of the β-relaxation at low T . However, a

further interesting feature beomes visible for φq(t) . 10−2
: At these late times, an

5

As we equilibrate our systems at onstant pressure and �x in a subsequent prodution run

the simulation box size to the average volume from the equilibration run the box length slightly

dereases with dereasing temperature. Therefore q
min

is only given by a value lose to q ≈ 0.27.
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Figure 5.3: N = 4: Top: Shear relaxation funtion G(t) versus time t; Center:

Mean square displaement for all monomers g0(t) versus time t; Bottom: Coherent

intermediate sattering funtion φq=6.9(t) versus time t. The blak vertial dotted

line marks t = 1. The blak dashed line indiates the rossover time t
o

, determined

in setion 4.2.3. The magenta vertial line denotes the start of the polymer regime

for a temperature of T = 0.40 (see text for details). The olored horizontal lines

(top) indiate the value of ρk
B

T for T = 1, 0.5, 0.40.
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apparent power t−0.5
shows up for all T .

In Fig. 5.5 we show that suh a power law behavior is only observable for the

lowest q values, q . 3q
min

. For q values above this value the signature of this power

law is not well pronouned so that it annot be observed anymore. The lower plot of

Fig. 5.5 shows that the power law behavior is also restrited to hain lengths that are

lose to the entanglement length (it is barely visible for N = 16) [43℄. Tentatively,

we attribute this (apparent) power law to a polymer e�et. That suh e�ets ould

also determine φq(t) is suggested by the dynami Random Phase Approximation [29℄

whih expresses the time dependene of φq(t) fully in terms of the dynami polymer

form fator F (q, t). In Laplae spae this relation reads

φ̂q(z) =
ŵ(q, z)/w(q)

1 + w(q)
S(0)

[1 − zŵ(q, z)/w(q)]
, (5.9)

where z denotes the onjugate Laplae variable of t and S(0) is zero wave vetor

limit of S(q) (f. setion 3.3 for a de�nition of S and w). It would be interesting to

apply Eq. (5.9) quantitatively to the simulation data to test whether it an aount

for the apparent power law t−0.5
.

5.3 Time-temperature superposition of the shear re-

laxation funtion

In setion 4.2.1 we showed that the intermediate sattering funtion an be resaled

aording to the α relaxation time τq∗ . Here we investigate if suh a resaling is

also possible for the shear relaxation funtion. The upper plot of Fig. 5.6 shows

that the MSD g0(t) an be well resaled aording to the di�usion onstant D (this

result is known see e.g. [37℄ and referenes therein). D is determined from the long

time evolution of the MSD g3(t) of the enter of mass of the hains by employing

g3(t) ∝ 6Dt. As G(t) has similarities with both the intermediate sattering funtion

and g0(t) (f. setion 5.1), it is a priori not lear whether G(t) ould be resaled by

τq∗ or by D. Therefore, we test both possibilities after normalizing G(t) by ρk
B

T .

(This normalization is suggested by polymer theory [26℄.)

The enter plot of Fig. 5.6 shows G(t) resaled aording to the di�usion onstant

D. For intermediate times (10−5 . t . 10−3
) this resaling does not work well. For

times t & 10−3
we annot validate the quality of the saling due to the noise of the

data.
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Figure 5.4: N = 64: Top: Shear relaxation funtion G(t) versus time t; a behavior

∝ 1√
t
e−t/τ

R
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T for T = 1, 0.5, 0.44. Bottom: φq=q
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In the lower plot of Fig. 5.6 G(t) is resaled aording to the α relaxation time τq∗ .

Here, for temperatures T . 0.5, the resaling works well for (resaled) times t . 0.5

and T < 0.7. For times t & 0.5 the data ollapse is omparable in quality to that of

the middle �gure, provided T < 0.7. In summary, the present data suggest that the

TTSP of G(t) is better ful�lled with τq∗ than with D. However, this issue ertainly

requires further investigation to arrive at a de�nitive onlusion. The statistis in

the polymer regime should be improved. There ould be the interesting situation

that the �monomer regime� an be resaled with τq∗ , whereas the polymer regime is

resaled with D ∼ τ−1
R

, as expeted from polymer theory.

5.4 Case study on �nite size e�ets

In this setion we ompare the e�et of the �nite simulation box size on the dynamis

of a polymer system. Thereto we onsider two systems that are simulated at a

pressure p = 1 with hains of hain length N = 10, and onsisting of M = 1000 and

M = 8000 monomers.

6

It is known that so-alled �nite size e�ets ould a�et the dynamis of olloidal

systems. The explanation an be summarized by the following argument: Due to

the �nite box size only a �nite number of possible relaxation modes are aessible.

For this reason smaller system sizes might exhibit a slower dynamial relation (see

e.g. [45℄).

We study the in�uene of the di�erent simulation box sizes by means of the

oherent intermediate sattering funtion φq(t) and by the mean square displaement

of all monomers g0(t).

Coherent intermediate sattering funtion In Figs. 5.7 and 5.8 the obtained

results for φq(t) for q = 4, 6.9, 9.5, 12.8 are shown. As an overall observation we an

state that the smaller system exhibits a slower relaxation for the depited tempera-

tures below T = 1. For T = 1 no di�erenes in the relaxation of φq(t) are notieable.

For lower temperatures the di�erenes in the relaxation proess exhibited by φq(t)

seem to beome more pronouned on ooling and reah a maximum at T ≈ 0.45.

In Table 5.1 we display the thermodynamial data of the studied systems. The

values for the density and the pressure for both system sizes is in good aordane.

6

The same model is employed as for the systems studied before.
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T = 0.44 T = 0.45 T = 0.46 T = 0.47 T = 0.50 T = 1.00

ρ(M = 1000) 1.0447 1.0434 1.0406 1.0374 1.0290 0.90970

ρ(M = 8000) 1.0450 1.0425 1.0397 1.0372 1.0291 0.90965

p(M = 1000) 0.969928 1.00963 1.03397 1.01163 0.987964 0.997480

p(M = 8000) 0.992614 1.00205 0.998268 1.00165 0.999094 0.999208

Table 5.1: Density ρ and pressure p as a funtion of temperature T for the

system sizes of M = 1000 and M = 8000. Values are given for T =

1.00, 0.50, 0.47, 0.46, 0.45, 0.44. (For hain length N = 10 and pressure p = 1.)

The small disrepanies in the density and the pressure appears to be too weak to

explain the di�erent relaxation behavior of the two system sizes.

To ompare the emerging di�erenes shown by φq(t) for di�erent q values in more

detail we depit in Fig. 5.9 in the main �gure the di�erene of the relaxation time

for eah q value. Using the relaxation time τq � de�ned as in the previous hap-

ter by φq(τq) = 0.1 � we alulate the absolute di�erene of the relaxation times

∆τq(T ) by τq,M=1000(T )− τq,M=8000(T ), whih is evaluated for eah temperature and

q value separately. We observe that ∆τq(T ) inreases by lowering the tempera-

ture and reahes, for q = 4 and 6.9 a maximum value at T = 0.45. The inset of

Fig. 5.9 shows the normalized di�erene of the relaxation times whih is de�ned

by ∆∗τq(T ) = (τq,M=1000(T ) − τq,M=8000(T ))/τq,M=8000(T ). We normalized by the

relaxation time of the larger system, as the sampling of the larger system is loser to

the thermodynamial limit. This depition shows a lear maximum for all studied

q values at the temperature of T = 0.45.

Mean square displaement We then proeed to the mean square displaement

of all monomers and analyse if the di�erene in the strutural relaxation, observed

by φq(t), is also notieable by this quantity. Additionally, the MSD probes the

system on larger length sales.

In Fig. 5.10 the MSD of the two onsidered systems is shown for the tempera-

tures of T = 1, 0.50, 0.47, 0.46, 0.45, 0.44. The evolution of the MSD shows for all

temperatures for times t > 10 disrepanies between the two system sizes. For the

lower temperatures, T ≤ 0.5, these disrepanies beome already obvious for times

t ≈ 1. The di�erenes are most pronouned for the temperatures of T = 0.46 and

T = 0.45, for whih they reah, as in the ase of the φq(t), a maximum.
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Figure 5.7: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a hain length of N = 10. Coherent intermedi-

ate sattering funtion φq(t) is depited for q = 4, 6.9 for temperatures T =

1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). φq(t) for the system size M =

8000 is depited in red and φq(t) for M = 1000 in blue. The smaller system shows a

slower strutural relaxation. φq(t) for T = 0.45 is depited with dashed lines. This

temperature orresponds to the ritial temperature of the ideal mode-oupling the-

ory [15℄. The di�erenes in the strutural relaxation showed by the two system sizes

inrease with dereasing temperature. The value 0.1 is marked by a horizontal blak

dashed line. This value is used to determine a relaxation time τq by φq(τq) = 0.1.
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Figure 5.8: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a hain length of N = 10. Coherent interme-

diate sattering funtion φq(t) is depited for q = 9.5, 12.8 for temperatures

T = 1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). φq(t) for the system size

M = 8000 is depited in red and φq(t) for M = 1000 in blue. The smaller system

shows a slower strutural relaxation. φq(t) for T = 0.45 is depited with dashed

lines. This temperature orresponds to the ritial temperature of the ideal mode-

oupling theory [15℄. The di�erenes in the strutural relaxation showed by the two

system sizes inrease with dereasing temperature. The value 0.1 is marked by a

horizontal blak dashed line. This value is used to determine a relaxation time τq

by φq(τq) = 0.1.
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Figure 5.9: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a hain length of N = 10. Main �gure: Depited is

the di�erene (∆τq) between the relaxation times (determined by φq(τq) = 0.1)

evaluated for M = 1000 and M = 8000 and q = 4, 6.9, 9.5, 12.8 as a funtion

of temperature T . Inset: Depited is the normalized di�erene (∆∗τq) between

the relaxation times (determined by φq(τq) = 0.1) evaluated for M = 1000 and

M = 8000 and q = 4, 6.9, 9.5, 12.8 as a funtion of temperature T . It is normalized by

the relaxation time of the larger system (M = 8000) for eah onsidered temperature

and q value.
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Figure 5.10: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a hain length of N = 10. Mean square displaement

g0(t) for T = 1.00, 0.50, 0.47, 0.46, 0.45, 0.44 (from left to right). g0(t) for the system

size M = 8000 is depited in red and g0(t) for M = 1000 in blue. The smaller

system shows a slower dynamis. g0(t) for T = 0.45 is depited with dashed lines.

This temperature orresponds to the ritial temperature of the ideal mode-oupling

theory [15℄.
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Figure 5.11 shows the di�erenes of the MSD normalized by the MSD of the

larger system ∆g0(t) =
g0,M=8000(t)−g0,M=1000(t)

g0,M=8000(t)
. At t = 2.567 ∆g0(t) shows for all

depited temperatures a small peak. The reason for this ourring peak might be

found in the sound wave propagation whih ouples to other modes at larger q and

gives rise to an eho for these q values [42℄. For the smaller system sound waves

need lesser time to travel through the whole system. Therefore the e�et on density

�utuations aused by sound waves in the two system ould be di�erent and �nally

result in a di�erent evolution of the MSD in a time interval where this e�et is most

pronouned.

Espeially we want to point to the observation that the MSD for T = 0.46, 0.45

shows a non monotoni behavior after this �rst peak, whereas the temperatures

T = 0.50, 0.47 show only weak osillations. The lowest temperature T = 0.44 also

shows a non monotoni behavior, but only to a small extent when ompared to the

temperatures of T = 0.46, 0.45. In Fig. 5.12 we show another possible analysis of

the di�erene observed in the MSD. Here the ratio of the MSD of the larger system

ompared to that of the smaller one is shown: ∆∗g0(t) =
g0,M=8000(t)

g0,M=1000(t)
. (The two

onsidered ratios are related to eah other by ∆g0(t) = 1 − (∆∗g0(t))
−1
.)

By this representation the di�erent evolution of the �MSD ratio� for di�erent

temperatures beomes more obvious. For T = 0.45 we observe after the �rst peak a

strong inrease whih then seems to saturate for times t > 104
. A similar behavior

is seen for T = 0.46 but less pronouned where the saturation begins earlier.

7

The MSD for all system and temperatures is evaluated using the same sampling sheme for

times t . 200. Therefore the position of the peak appears at the same time. A more detailed time

sampling might show smaller deviations in the position of the peak for di�erent temperatures.
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Figure 5.11: Comparison between two system sizes (M = 1000 and M = 8000)

at pressure of p = 1 and a hain length of N = 10. The relative di�erene of

the mean square displaement ∆g0(t) =
g0,M=8000(t)−g0,M=1000(t)

g0,M=8000(t)
is depited for T =

0.50, 0.47, 0.46, 0.45, 0.44. The horizontal lines give the value of ∆g0(t) at the peak

position for T = 0.45 (red), T = 0.46 (blue) and T = 0.44 (blak).
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Figure 5.12: Comparison between two system sizes (M = 1000 and M = 8000) at

pressure of p = 1 and a hain length of N = 10. The ratio of the mean square
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g0,M=8000(t)

g0,M=1000(t)
is depited for T = 0.50, 0.47, 0.46, 0.45, 0.44.

The horizontal lines give the value of ∆g0(t) at the peak position for T = 0.45 (red),

T = 0.46 (blue) and T = 0.44 (blak).
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Chapter 6

Summary and Outlook

By performing moleular dynamis simulation of a generi bead spring model we

studied the struture, the onformational and strutural relaxation, and the vis-

oelasti properties of glass-forming polymer melts. This study was mainly foussed

on dynami quantities as they reveal the most prominent features of these polymer

melts: the protrated strutural relaxation preeding the glass transition tempera-

ture. For the employed model we studied the in�uene of the hain length of the

polymers on the dynamial and the stati properties. The dynamis were mainly

analyzed in the framework of the ideal mode-oupling theory [37℄.

Our work is the logial ontinuation and extension of two previous theses per-

formed in the group. The work by M. Aihele studied bulk systems of short hains

N = 10 at p = 1.0 [1, 4, 22℄. That work performed almost ten years ago was re-

strited to systems of 1000 − 1200 partiles. The seond work is the thesis of S.

Peter [64�66℄ who used the same model to study the superooled dynamis in thin

�lms. As a referene, some bulk systems with N = 64 were studied at p = 0.

In the present work, we go beyond the previous work by using larger systems

of 12288 partiles and by studying systematially the hain length dependene of

the superooled dynamis using N = 4, 8, 16, 32, 64. The inreased omputer power

makes it possible to equilibrate the systems down to the MCT ritial temperature

and for small hains even below. In the following, we summarize the main results

and point out possible extensions of this work.

• We started with the analysis of the stati properties. We investigated how

the density evolves as a funtion of the hain length and temperature (see

�gures 3.1 and 3.3). Thereby we found that the evolution an be desribed as

a funtion of the reiproal hain length. A signature of this feature was also
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observed in the stati struture fator (f. �gures 3.6 and 3.7). It would be

interesting if this observed behavior is still present for longer hains espeially

on ooling.

• We investigated how the e�etive bond length [79℄ evolves as a funtion of

the temperature (f. �gures 3.14 � 3.16). We found that the e�etive bond

length dereases on ooling the temperature. This ounter-intuitive feature

arises from the full �exibility of the employed model whih is hemially not

realisti. Therefore it would be interesting to ontinue the study by onsidering

hemially more realisti models (like in [16℄).

• The dynamis were studied in the framework of the ideal mode-oupling the-

ory (MCT) [11, 37℄. A �rst step was the examination of the temperature

interval within whih the time-temperature superposition priniple (TTSP) is

ful�lled as a funtion of the hain length (f. �gures 4.2 � 4.6). This was

ontrasted with the fatorization theorem whih was veri�ed in the β regime

(f. �gures 4.7 � 4.9). In summary the saling in the β regime is possible even

for temperatures for whih the TTSP does not hold anymore.

• Thereafter we determined the ritial temperature T


of the ideal MCT as a

funtion of the hain length (f. �gures 4.18 � 4.22). A hain length depen-

dene of T


whih an be resaled by 1/N was found (see �gures 4.23 and 4.24).

This is in ontrast to the von Shweidler exponent b for whih an e�etive sal-

ing behavior with 1/
√

N was found for N < 64 (see Fig. 4.25). Future work

ould fous on longer hain lengths. Does b ontinue to derease for N > 64

or does it onverge to a onstant value?

• The q-dependene of the α relaxation time was evaluated for a high and a

medium temperature and lose to T


(see Fig. 4.29). It was observed that for

the temperatures lose to T


the relaxation proesses on the monomer level

� as predited by ideal MCT � are most pronouned. However, for higher

temperatures relaxation proesses on larger length sales are more pronouned.

• In omparison to the previous work, we onsider as an additional quantity the

shear relaxation funtion, and we are able to alulate the oherent interme-

diate sattering funtion with high resolution so that a long time tail, spei�

to polymers, beomes visible (f. �gures 5.1 � 5.4). By employing the shear

relaxation funtion [54℄ the onsidered systems were studied on larger length
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sales. It was found that upon ooling the monomer relaxation times inrease

whih shifts the relaxation on length sales omparable to the polymer size to

longer times. A similar behavior was observed also by analyzing the interme-

diate sattering funtion for the smallest q values aessible in the simulation

(see Fig. 5.4). This study showed that signi�ant polymer e�ets � whih

show a power law signature � beome visible only for the smallest q values

and the longest hains studied (f. Fig. 5.5). This deserves a more detailed

theoretial analysis.

• By resaling the mean square displaement aording to the di�usion onstant

an analogous saling behavior as for the intermediate sattering funtion by

resaling aording to the α relaxation time was found (f. Fig. 5.6). For the

shear relaxation funtion a saling aording to only one of these quantities

does not lead to a ompletely satisfying result.

• In the last part we undertook a ase study on �nite size e�ets. To this end we

ompared two system sizes of a polymer system with a hain length N = 10.

This omparison foussed on the oherent intermediate sattering funtion

(f. �gures 5.7 and 5.8) and the mean square displaement (f. Fig. 5.10).

These funtions measured for both systems were ompared to eah other for

temperatures around T


of the ideal MCT (f. oherent intermediate sattering

funtion: Fig. 5.9; MSD: �gures 5.11 and 5.12). Thereby it was observed

that interestingly for T


the most pronouned di�erenes in the dynamis of

these two system sizes were found. It is not lear how these �ndings an be

interpreted. In the future the �ndings should be omplemented by studying

an even larger system. By this it would be possible to hek how the observed

di�erenes in the dynamis evolve with the system size. If our �ndings are

on�rmed, one ould onlude that although at the ritial temperature of the

ideal MCT not a total dynamial arrest is observed, the dynamis seem to

hange qualitatively.
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Appendix A

Tables

In the following tables we summarize the simulation parameters (A.1) and report

the numerial values of the relaxation times (A.2 and A.3), the density (A.4), the

bulk modulus (A.5) and the shear modulus (A.6).

integration time step NVT: Tdamp NPT: Tdamp NPT: Pdamp

0.005 0.1 10 75

Table A.1: Simulation parameters used for the systems with p = 0 and N =

64, 32, 16, 8, 4. The Tdamp / Pdamp parameter spei�es how rapidly the tempera-

ture / pressure is relaxed [51℄. For the systems with p = 1 the same parameter set

is used. The used parameters are hosen suh that they ful�ll the riteria desribed

in Ref. [73℄.

103



104

T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 4.44089 × 106

0.37 949525

0.38 246795

0.39 2.13892 × 106 85233.6

0.40 658706 33161.2

0.41 2.34229 × 106 246692

0.42 1.03979 × 106 108388

0.43 2.59966 × 106 434806

0.44 9.47817 × 106 1.30924 × 106 215894 32340.9 3664.05

0.45 4.84449 × 106 666717

0.46 2.47327 × 106

0.48 1.08361 × 106

0.50 647803 117530 23717.6 4601.86 782.66

0.70 50587.2 10718.7 2260.14 516.646 111.357

1.00 12074.2 2549.07 596.687 141.315 32.7051

Table A.2: Survey of relaxation times: For the systems with a pressure of p = 0

the relaxation time τ
relax

is given. τ
relax

orreponds to the time interval in whih

the orientational orrelation funtion of the end-to-end-vetor, φ
e

(t), has relaxed to

0.1: φ
e

(τ
relax

) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.
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T N = 10 n = 800 N = 10 n = 100

0.43 5.60663 × 106

0.44 1.6253 × 106 1.72823 × 106

0.45 638440 868551

0.46 278558 339260

0.47 155734

0.48 84613.6

0.50 34311.6 34500.5

1.00 346.12 351.418

Table A.3: Survey of relaxation times: For the systems with a pressure of p = 1

the relaxation time τ
relax

is given. τ
relax

orreponds to the time interval in whih

the orientational orrelation funtion of the end-to-end-vetor, φ
e

(t), has relaxed to

0.1: φ
e

(τ
relax

) = 0.1. The relaxation times are determined from a run in the NVT

ensemble.

T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 1.02580

0.37 1.02230

0.38 1.01931

0.39 1.03149 1.01615

0.40 1.02818 1.01267

0.41 1.03311 1.02522

0.42 1.03396 1.02997 1.02191

0.43 1.03096 1.02688

0.44 1.02985 1.02789 1.02390 1.01576 0.99941

0.45 1.02688 1.02486

0.46 1.02391

0.48 1.01792

0.50 1.01193 1.00980 1.00550 0.99684 0.97947

0.70 0.95462 0.95192 0.94657 0.93570 0.91358

1.00 0.87456 0.87084 0.86313 0.84746 0.81472

Table A.4: Density ρ as a funtion of the temperature T for N=64,32,16,8,4.
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T N = 64 N = 32 N = 16 N = 8 N = 4

0.36 37.4746

0.37 38.0425

0.38 36.3333

0.39 38.0227 35.3873

0.40 37.5067 34.1172

0.41 37.4682 36.3409

0.42 37.5582 36.9232 35.2078

0.43 36.6071 36.1268

0.44 36.4644 35.8789 35.0838 33.7902 31.0700

0.45 35.6703 35.1631

0.46 34.9340

0.48 33.5773

0.50 32.3471 31.9424 31.0951 29.7592 27.0134

0.70 22.6267 22.2413 21.4544 20.0960 17.5000

1.00 13.3534 12.9897 12.2217 10.8711 8.45599

Table A.5: Bulk modulus K(T ) as a funtion of the temperature T for

N=64,32,16,8,4.
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T N = 64 N = 32 N = 16 N = 8 N = 4

0.38 79.8422

0.39 93.2129 77.9908

0.40 88.7825 79.1402

0.41 92.5351 89.2449

0.42 94.6029 92.2997 87.6220

0.43 94.0628 91.9207

0.44 94.6634 93.6428 91.5402 86.7888 77.3178

0.45 94.8497 93.6448

0.46 94.5608

0.48 93.6125

0.50 92.8976 91.6347 89.1075 84.5495 74.9590

0.70 85.6090 84.5181 82.0420 77.0911 67.7084

1.00 76.4073 75.1542 72.5174 67.5512 57.8094

Table A.6: Shear modulus G∞(T ) as a funtion of the temperature T for

N=64,32,16,8,4.
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Propriétés visoélastiques des fondus de polymères vitri�ables

Thèse soutenue par Stephan Frey le 29 juin 2012 (Université de Strasbourg)

Résumé À l'approhe de la transition vitreuse les fondus de polymères montrent une

augmentation importante de la visosité de plusieurs ordres de grandeur. Le but de ette

étude est d'aquérir une ompréhension plus profonde des propriétés visoélastiques des

fondus de polymères vitri�ables. Les polymères sont modélisés omme des haînes �exi-

bles en utilisant un modèle de bille-ressort. Nous étudions des polymères ave di�érentes

longueurs de haîne pour lesquels nous analysons les propriétés statiques et dynamiques

pour une gamme de température prohe de la température de transition vitreuse. Les pro-

priétés dynamiques sont analysées dans le adre de la théorie de ouplage de mode idéale.

Nous onstatons que la température ritique de ouplage de mode varie ave l'inverse de la

longueur de haîne. Cette loi d'éhelle se retrouve également pour les propriétés statiques.

En étudiant la fontion de relaxation de isaillement, nous onstatons que les proessus

de relaxation polymériques, qui peuvent être dérits par la théorie de Rouse, ne sont pas

modi�és, mais déalés vers des temps plus importants en approhant la transition vitreuse.

Dans ette gamme de température la relaxation monomérique est prolongée de plusieurs

ordres de grandeur. De plus, nous analysons les e�ets de taille �nie sur la dynamique

du fondu de polymère près de la transition vitreuse, et nos résultats suggèrent que la

dynamique est modi�ée qualitativement à la température ritique de ouplage de mode.

Summary Polymer melts show a remarkable inrease of their visosity by many orders

of magnitude on approahing the glass transition. The aim of this study is to gain a deeper

insight into the visoelasti properties of glass forming polymer melts. The polymers are

modeled as �exible hains using a bead-spring model. We investigate polymers with di�er-

ent hain lengths for whih we analyze the stati and dynami properties for a temperature

range lose to the glass transition temperature. The dynami properties are analyzed in

the framework of the ideal mode-oupling theory. We �nd that the ritial temperature of

the ideal mode-oupling theory sales with the reiproal hain length. This saling is also

found for the stati properties. By studying the shear relaxation funtion we �nd that the

polymer relaxation proesses, whih an be desribed by the Rouse theory, are not altered

but shifted to later times in the approah of the glass transition. In this temperature range

the monomer relaxation is protrated by many orders of magnitude. Additionally, we an-

alyze �nite size e�ets on the dynamis of polymer melts lose to the glass transition. Our

�ndings of this ase study suggest that the dynamis hange qualitatively at the ritial

temperature of the ideal mode-oupling theory.

Keywords: Glass-forming polymer melts, moleular dynamis simulation, mode-oupling

theory, Rouse theory, shear relaxation funtion, visoelastiity, bead-spring model


