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Custom Operator Identification for High-level Synthesis

Abstract: It is increasingly common to see custom operators appear in various fields of
circuit design. Custom operators that can be implemented in special hardware units make
it possible to reduce code size, improve performance and reduce area. In this thesis, we
propose a custom operator based high-level synthesis design flow. The key issues involved
in the design flow are: automatic enumeration and selection of custom operators from a
given high-level application code and re-generation of the source code incorporating the
selected custom operators.
However, automatic enumerating all the subgraphs is computationally difficult problem.
In this thesis, we propose three enumeration algorithms for exact enumeration of subgraphs
under various constraints. Compared to a previously proposed well-known algorithm, the
proposed enumeration algorithms can achieve orders of magnitude speedup.
Selecting a most profitable subset from the enumerated subgraphs is also a time-consuming
job. In this thesis, we present three different selection heuristics targeting different objec-
tives. In addition, a branch-and-bound approach and a genetic algorithm are introduced
to select the minimal number of matches that fully cover the data flow graph of a given
application code. The greedy approaches are very efficient, but they may produce results
that are sub-optimal. While the exact algorithms guarantee the optimum of solutions, but
they fail to give solution in an affordable time in most situations. The proposed genetic
algorithm makes trade-off between the two. The runtime and the quality of solutions can
be controlled by some user-specified parameters.
During the code re-generation step, a graph isomorphism is required to group the struc-
turally and functionally equivalent subgraphs that can be implemented with the same
custom operator. An extended graph isomorphism algorithm that captures the charac-
teristics of data-flow graph is proposed to determine the similarity between graphs after
selection. Some specific problems existing in the graphs isomorphism check for data-flow
graph are depicted in this thesis. Corresponding solutions for those specific problems are
provided. To our knowledge, these were never mentioned in the previous literature.
We have developed and implemented a complete design flow for pattern based high-level
synthesis. Unlike the previously proposed approaches, our design flow is quite adaptable
and is independent of high-level synthesis tools (i.e., without modifying the scheduling
and binding algorithms in high-level synthesis tools). Experimental results show that our
approach achieves on average 19%, and up to 37% area reduction, compared to a tradi-
tional high-level synthesis. Meanwhile, the latency is reduced on average by 22%, and up
to 59%. Furthermore, on average 74% and up to 81% code size reduction can be achieved.
Keywords: custom operator, subgraph enumeration algorithm, subgraph selection al-
gorithm, code transformation, high-level synthesis
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Identification d’opérateurs spécifiques pour la synthèse de haut niveau

La complexité croissante des applications à intégrer a conduit à concevoir les circuits à
un haut niveau d’abstraction. A ce titre, par rapport à une synthèse classique de niveau
dit " transfert de registres " (RTL), la synthèse de haut niveau (HLS) permet d’envisager
une meilleure productivité. Par ailleurs, il est de plus en plus fréquent dans les différents
domaines de la conception de circuits de faire appel à des opérateurs spécifiques, opérateurs
qui permettent de réduire la taille du code, d’améliorer les performances ou de réduire la
surface d’un circuit. Dans cette thèse, nous proposons un flot de conception basé sur
l’identification d’opérateurs spécifiques pour la synthèse de haut niveau.

Synthèse de haut niveau

On constate depuis une vingtaine d’années que les applications à mettre en œuvre sont
de plus en plus complexes. Elever le niveau d’abstraction permet de réduire considérable-
ment le temps de conception. Aussi, la synthèse de haut niveau s’avère être de plus en
plus utilisée dans les flots de conception de systèmes électroniques De nombreux outils
commerciaux de synthèse de haut niveau ont été proposés par plusieurs fournisseurs. On
trouve par exemple Autopilote, CatapultC, CTOS, Cynthesizer, SynphonyC et Cyber-
Workbench. En outre, beaucoup d’outils de synthèse de haut niveau ont également été
proposés par des universitaires (par exemple, Legup, GAUT, Trident et SPARK).

La synthèse de haut niveau, parfois appelée synthèse comportementale, est un proces-
sus de conception automatisée permettant de transformer des spécifications (par exemple,
décrite en C, C + + ou SystemC) en des spécifications de bas niveau (transfert de reg-
istre) qui implémentent le comportement spécifié tout en satisfaisant les contraintes de
conception. Les outils HLS acceptent des spécifications de haut niveau comme entrée.
En général, la plupart des outils actuels de HLS commerciaux utilisent le langage C en
entrée. Nous pouvons également trouver des outils HLS utilisant les langages tels Blue-
Spec, Esterel and MATLAB. En plus des spécifications de haut niveau, une bibliothèque
de ressources contenant les informations détaillées sur les composants matériels ainsi que
les contraintes de conception spécifiques sont fournies à l’outil HLS. A partir de ces points
d’entrées, l’outil HLS effectue les tâches suivantes et produit en sortie une description de
matérielle qui permet d’implémenter la spécification:

"Front End " de compilation: Les spécifications sont analysés et traduites en représen-
tations intermédiaires. Plusieurs transformations préliminaires ou des optimisations de
code, telles que l’élimination de " code mort ", l’élimination de fausses dépendances de
données, l’équilibrage de branches, la propagation de constantes, des transformations de
boucles, et l’élimination de sous-expressions communes sont réalisées au plus tôt de cette
étape. Après ces optimisations, les spécifications sont transformées en une représentation
intermédiaire appropriée. Afin de capturer à la fois les dépendances de données et les
dépendances de contrôle entre les opérations de la spécification, les représentations inter-
médiaires (IR) qui conservent les informations présentées dans la spécification d’entrée
sont utilisées. Le graphe de flot de contrôle et de données (CDFG) est considéré comme
l’une des plus populaires IR. Le CDFG est un graphe orienté dans lequel un nœud peut
être soit une opération soit un bloc de base. Les arcs dans un CDFG représentent le
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transfert d’une valeur ou une commande d’un nœud à un autre. A l’intérieur de chaque
nœud, un graphe flot de données est utilisé pour capturer les dépendances de données
entre opérations. En outre, les dépendances de données entre les blocs de base peuvent
être exprimées à l’aide des graphes de tâches hiérarchiques.

Allocation: Ce processus détermine les types de composants matériels nécessaires pour
la mise en œuvre du matériel ainsi que leur quantité. Les composants matériels peuvent
être des unités fonctionnelles pour les opérations, des registres pour stocker des valeurs,
des bus et des multiplexeurs pour interconnections.

Ordonnancement: L’ordonnancement est le processus qui attribue des cycles d’horloge
ou des pas de temps aux opérations afin que les contraintes temporelles soient satisfaites.
Chaque opération est ordonnancée en fonction des dépendances de données et de contrôle
entre opérations. Il existe plusieurs algorithmes d’ordonnancement: dès que possible (AS-
AP), le plus tard possible (ALAP), l’ordonnancement par liste, force dirigée et la program-
mation linéaire entière. L’ordonnancement et l’allocation des ressources sont générale-
ment interdépendants. L’ordonnancement est effectué par rapport à des contraintes de
ressources (celles qui sont affectées à l’étape d’allocation), tandis que l’allocation des
ressources peut être améliorée si les opérations qui peuvent être exécutées en parallèle sont
connus à l’avance (ces informations peuvent être obtenues à partir de l’ordonnancement).

Projection: Le processus de projection affecte les unités fonctionnelles aux opéra-
tions afin de pouvoir les exécuter, des registres pour stocker des valeurs qui circulent à
travers les bus / multiplexeurs qui eux implémentent les transferts de données / con-
trôle. L’algorithme de projection décide de quelle unité fonctionnelle doit être utilisée
pour effectuer une opération spécifique quand il y a plus d’une unité fonctionnelle capable
d’exécuter l’opération au cycle en question. Les opérations et les données de durée de vie
mutuellement exclusives peuvent partager le même composant matériel.

Génération de code: À la fin du processus de synthèse, la génération de code permet
de produire une description de niveau RTL, qui inclus un chemin de données et une
unité de commande. Le chemin de données se réfère aux unités fonctionnelles tels que
des additionneurs, des multiplieurs, des unités arithmétiques et logiques (UAL) etc., des
unités de mémorisation tels que des mémoires et des registres ainsi que les composants de
communication/interconnexion tels que les bus et les multiplexeurs. L’unité de commande
est une machine à états finis (FSM) qui génère des signaux de commande et contrôle du
flot de données.

Opérateurs spécifiques

Il est fréquent de faire usage d’opérateurs spécifiques dans divers domaines de la con-
ception de circuits. A titre d’exemple, l’usage d’opérateurs spécifiques permet de faire
des compromis entre flexibilité et efficacité avec les processeurs extensibles. Un opérateur
spécifique est composé d’un ensemble d’opérations de base (par exemple, des opérations
arithmétiques de base telles que les additions, soustractions et multiplications). Une unité
fonctionnelle spécifique implémente un opérateur spécifique.

Le premier avantage apporté par l’utilisation d’opérateurs spécifiques est la réduction
importante du code source. En règle générale, l’opérateur spécifique encapsule plusieurs
opérations de base et les assemble en un seul opérateur plus complexe. Ainsi, la taille du
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code source peut être réduite, et le niveau de granularité du code source est augmenté. Les
outils de synthèse de haut niveau peuvent alors produire des solutions plus rapidement
avec le code réduit.

Avec les opérateurs spécifiques, des améliorations en terme de performances peuvent
être obtenues. Les opérateurs spécifiques améliorent les performances de quatre façons
possibles. Tout d’abord, les opérations de base à l’intérieur de l’opérateur spécifique sont
chaînées selon les dépendances de données (chaînage d’opération). Deuxièmement, les
opérations de base sans dépendance des données peuvent être parallélisées. Troisième-
ment, certaines techniques d’optimisation peuvent être appliquées pour réduire le chemin
critique. Enfin, la mise en œuvre matérielle d’un opérateur spécifique est généralement
plus rapide (chemin critique) que si on utilise des opérateurs de base (par exemple, le
temps de latence d’une multiplication-accumulation (MAC) est inférieur à la somme de la
latence d’un multiplieur et de la latence d’un additionneur).

En outre, les opérateurs spécifiques peuvent conduire à des gains en surface à travers
les deux aspects suivants. Tout d’abord, en général, les flots de données internes d’un
opérateur spécifique sont exempts de multiplexeurs. Deuxièmement, la mise en œuvre
matérielle d’un opérateur spécifique conduit à une surface plus faible (par exemple, la
surface d’un MAC est inférieure à la somme de la surface d’un multiplieur et la sur-
face d’un additionneur). Il est à noter cependant que, en utilisant les opérateurs spéci-
fiques, on peut parfois aboutir à un partage moins efficace des ressources: on trouve en
effet plus d’instances d’opérations élémentaires dans un graphe d’origine que d’instances
d’opérations spécifiques dans un graphe réduit.

Nous proposons un flot de conception tirant partie d’opérateurs spécifiques en amont de
la synthèse de haut niveau et permettant de transformer le code source en lui incorporant
des opérateurs spécifiques, afin d’améliorer les résultats des outils de synthèse de haut
niveau. Contrairement aux approches précédentes de la littérature qui nécessitent de
modifier les algorithmes d’ordonnancement et d’allocation des outils de synthèse de haut
niveau, notre flot de conception est totalement indépendant de ces outils. Notre flot
de conception peut ainsi être adapté à de nombreux outils de synthèse de haut niveau
commerciaux.

Le flot de conception est composé de quatre étapes principales. Le point de départ est
le code source de haut niveau (langage C par exemple). Dans la première étape, le code
source est transformé en un graphe de flot de contrôle et de données (CDFG) en utilisant
un compilateur open source GECOS. Ensuite, les sous-graphes possibles sont identifiés
par un algorithme d’énumération à partir des graphes DFG (graphe flot de données)
qui correspondent chacun à un bloc de base du CDFG. Puis un sous-ensemble des sous-
graphes identifiés est sélectionné en fonction de différentes stratégies (nombre minimum
d’opérateurs spécifiques, taille minimum de code, etc.). Enfin, le code source d’origine est
transformé en un nouveau code source en intégrant les sous-graphes sélectionnés (les sous-
graphes sélectionnés seront mis en œuvre en tant qu’opérateurs spécifiques). Le nouveau
code source faisant appel aux opérateurs spécifiques est alors fourni en entrée de l’outil de
synthèse de haut niveau ciblé.

Représentation intermédiaire: La spécification comportementale d’entrée de la syn-
thèse de haut niveau est généralement composée d’une liste de déclarations séquentielles.



viii

Les déclarations peuvent être des expressions de type opération, des structures condi-
tionnelles et des boucles. Pour exprimer les dépendances de données dans la description
d’entrée, le graphe flot de données est un bon candidat. Comme le graphe flot de données
ne contient que des dépendances de données explicites, on peut faire appel à un graphe
de flot de contrôle pour exprimer le contrôle d’une spécification d’entrée. Afin d’exprimer
ces deux informations à la fois, les graphes de flot de données et de contrôle sont souvent
utilisés et constituent une bonne représentation intermédiaire pour la synthèse de haut
niveau.

Énumération de sous-graphes: L’efficacité de l’énumération de sous-graphes est
meilleure si l’identification multiple d’un même sous-graphe peut être évitée. La plu-
part des travaux antérieurs conduisent à identifier plusieurs fois un même sous-graphe. Le
temps d’exécution est alors inutilement augmenté. Dans cette thèse, nous présentons une
approche efficace qui évite les identifications multiples de sous-graphes par une technique
de suppression de nœuds lors de l’énumération des sous-graphes sous contrainte de taille.
Dans cette thèse, nous présentons également un algorithme très flexible pour l’énumération
exacte des sous-graphes sous contrainte d’entrées/sorties. L’algorithme est basé sur notre
algorithme d’énumération sous contrainte de taille. L’algorithme peut être spécialisé pour
générer tous les sous-graphes possibles ou seulement les sous-graphes connectés. Dan-
s cette thèse, nous proposons également un nouvel algorithme pour l’énumération de
sous-graphes sous contrainte d’entrées/sorties. Notre algorithme permet de résoudre le
problème de manière efficace en profitant de la propriété topologique d’un graphe flot de
données (DFG).

Sélection de sous-graphes: Diverses stratégies peuvent être utilisées pour guider la
sélection sous-graphes. Dans cette thèse, nous nous concentrons sur trois stratégies dif-
férentes. Tout d’abord, la taille du code peut être un objectif d’optimisation important.
En conception de systèmes embarqués, seule une petite quantité de mémoire est en général
disponible pour stocker les instructions. Dans le contexte de la synthèse de haut niveau, la
sélection du plus petit ensemble de sous-graphes conduit au code le plus compact. L’espace
de conception est ainsi réduit, l’outil de synthèse de haut niveau peut alors produire des
résultats en moins de temps. Ensuite, la fréquence d’occurrences d’un motif renseigne
sur le partage possible des ressources. Une méthode de sélection basée sur la fréquence
d’occurrences de motifs est présentée (basée sur le nombre d’instances de motifs). Enfin,
la sélection de sous-graphes peut conduire à augmenter la longueur des chemins critiques.
Ainsi, une sélection de sous-graphes qui prend en compte le surcoût en terme de latence
est très important. Une méthode de sélection basée sur le chemin critique est également
proposée dans cette thèse.

Les algorithmes de résolution exacte sont fortement consommateurs en temp-
s d’exécution et échouent généralement à donner un résultat en raison d’un temps
d’exécution trop long ou d’un débordement mémoire. Par exemple, un algorithme de type
" branch-and-bound " requiert 20 secondes pour trouver le nombre minimum d’instances
de motifs qui recouvrent entièrement le graphe d’un produit de vecteurs lorsque le graphe
correspondant est un " petit graphe " qui contient seulement 8 nœuds. Lorsqu’on aug-
mente la taille des vecteurs, cet algorithme exact ne parvient pas à produire de résultats en
moins d’une heure lorsque le graphe contient 12 nœuds. Aussi, une approche heuristique
efficace est nécessaire. Dans cette thèse, trois algorithmes de type heuristique visant des
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objectifs différents sont représentés. Bien que l’algorithme exact est grand consommateur
en temps comparé aux algorithmes heuristiques ou algorithmes gloutons, nous présentons
cependant aussi un algorithme " branch-and-bound " pour connaitre le nombre minimum
d’instances de motifs dans un but de comparaison.

Le problème de sélection de motifs peut être transformé en un problème de couver-
ture. Le problème de couverture est un problème d’optimisation combinatoire classique,
problème pour lequel les algorithmes génétiques sont bien adaptés, en particulier lorsque
le problème est un problème NP-complet. Par conséquent, nous avons également essayé
d’appliquer un algorithme génétique pour résoudre le problème de sélection de motifs dans
cette thèse.

Transformation de code: Après l’obtention d’un ensemble de sous-graphes produits
par l’étape d’énumération de sous-graphes, l’étape de sélection sous-graphes nous délivre
un ensemble des sous-graphes sélectionnés. Il est nécessaire de déterminer si deux
sous-graphes sélectionnés peuvent être exécutés par une même unité fonctionnelle spé-
cifique (cela se fait en pratique avant la sélection). Cette tâche peut être considérée
comme un problème d’isomorphisme de graphes. Nous avons développé un algorithme
d’isomorphisme de graphes. Notre algorithme est en fait une extension de l’algorithme
d’isomorphisme de graphes VF2. Nous avons étendu l’algorithme VF2 en analysant cer-
taines caractéristiques du graphe flot de données. L’algorithme VF2 trouve la correspon-
dance entre deux graphes en comparant graduellement des paires de nœuds. En général,
les correspondances partielles sont étendues à des correspondances partielles plus grandes
en ajoutant une paire de nœuds voisins compatibles. Une paire de nœud est dite com-
patible uniquement lorsque les deux nœuds satisfont un ensemble de règles de faisabilité.
L’ensemble des règles de faisabilité permet de réduire efficacement l’espace de recherche.
Nous avons amélioré l’algorithme VF2 en ajoutant une vérification de cardinalité sur les
sommets, les arêtes et le nœud de départ afin de rejeter rapidement des graphes différents.
De plus, l’algorithme propose résout le problème causé par les opérations non commuta-
tives.

Après avoir réalisé la projection des sous-graphes fonctionnellement équivalents sur des
opérateurs spécifiques identiques, l’ensemble des nœuds à l’intérieur d’un sous-graphe est
remplacé par un super nœud. Le super nœud correspond donc au sous-graphe sélectionné.
Afin de ne pas perdre la sémantique du code d’origine, les super nœuds contiennent toutes
les informations correspondant aux sous-graphes remplacés. phase de régénération de code
a pour rôle de traduire correctement ce super nœud en code équivalent.

Une fois les sous-graphes remplacés par des super nœuds, un pragma spécifique
peut être inclus dans le nouveau code source généré pour chaque opérateur spécifique.
L’opérateur est alors présenté comme une fonction. Avec ce pragma spécifique, les outils
de synthèse de haut niveau (par exemple, CatapultC (Mentor Graphics)) ordonnancera et
projettera les opérateurs spécifiques exactement comme ils le font pour les opérateurs de
base. Pour l’outil de synthèse de haut niveau toutes les fonctions non-inlinées sont consid-
érées comme des opérateurs spécifiques par défaut (le pragma n’est donc pas nécessaire).

Contributions:

Dans cette thèse, nous développons un flot de synthèse de haut niveau basé sur
l’utilisation d’opérateurs spécifiques. Les points clés de ce flot de conception sont les



x

suivants: énumération automatique et sélection des opérateurs spécifiques à partir d’une
application spécifiée à haut niveau, et régénération d’un code source intégrant les opéra-
teurs spécifiques sélectionnés. Cette thèse apporte les contributions suivantes:

Énumération de sous-graphes: Comme le nombre de sous-graphes dans un DFG est
une fonction exponentielle du nombre de nœuds du DFG, l’énumération de sous-graphes
est un problème difficile. Par exemple, dans un DFG provenant du benchmark de spéci-
fication GSM qui comporte 490 nœuds, le nombre de sous-graphes possibles vaut 341.641
lorsque les contraintes d’entrées et de sorties (E/S) sont 4 et 2 (au plus) respectivemen-
t. Lorsque les contraintes d’E/S sont 6/2, le nombre de sous-graphes passe à 1.454.539.
Nous présentons trois algorithmes évolutifs d’énumération de sous-graphes qui permettent
d’énumérer tous les sous-graphes de manière très efficace sous des contraintes de concep-
tion différentes. Pour énumérer les sous-graphes sous contrainte de taille, nous proposons
un nouvel algorithme qui permet d’éviter les identifications multiples de sous-graphes.
Sur la base de l’algorithme proposé sous contrainte de taille, un algorithme étendu qui
vise à énumérer tous les sous-graphes possibles ou seulement sous-graphes connectés est
ensuite présenté. En outre, nous présentons un algorithme au temps de calcul polynomi-
al qui consiste en une amélioration d’un algorithme de référence pour énumérer tous les
sous-graphes possibles, à savoir les sous-graphes disjoints et les sous-graphes connectés.
Les expériences montrent que nos algorithmes permettent de gagner jusqu’à 2 décades en
terme de temps de calcul par rapport à l’algorithme de référence.

Sélection de sous-graphes: La sélection d’un sous-ensemble de l’ensemble des sous-
graphes générés par l’énumération de sous-graphes est également un problème coûteux en
temps. Notre objectif est donc de proposer des algorithmes efficaces en temps. Trois ap-
proches heuristiques différentes de sélection de sous-graphes visant des objectifs différents
sont présentées et une comparaison de ces algorithmes est faite dans la partie expéri-
ences. En outre, nous présentons un algorithme exact ainsi qu’un algorithme génétique
pour la sélection d’un nombre minimum d’instances de motifs qui couvrent le graphe de
l’application. L’algorithme génétique proposé est un compromis entre l’approche glou-
tonne et l’approche exacte. En d’autres termes, il réalise un compromis entre le temps
d’exécution de la sélection et la qualité des résultats de la sélection.

Transformation de code: Nous avons étendu un algorithme existant d’isomorphisme
de graphes afin de rejeter rapidement des graphes différents en tirant partie de certaines
caractéristiques des graphes flots de données. Certains problèmes spécifiques que pose la
vérification d’isomorphisme de graphes et de sous-graphes sont d’abord exposés. À notre
connaissance, les problèmes mentionnés n’ont jamais été considérés dans la littérature.
Les solutions correspondantes pour répondre aux problèmes soulevés sont fournies dans
cette thèse. En outre, une présentation du code généré utilisant les opérateurs spécifiques
est également faite.

Flot de conception automatisé: un flot de conception automatisé et adaptable basé
sur l’utilisation d’opérateurs spécifiques pour la synthèse de haut niveau a ainsi pu être
mis en œuvre. Les résultats pour un ensemble d’applications de référence montrent que
la solution proposée permet d’obtenir une réduction significative la taille du code, une
réduction de la surface et une diminution de la latence du circuit généré.
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Chapter 1

Introduction

The rapid growing size and complexity of the applications to be implemented has led to

performing designing at a higher-level abstraction. Compared to register-transfer level

(RTL) synthesis, high-level synthesis (HLS) may achieve better productivity. In recent

years, it is increasingly common to see custom operators, which make it possible to reduce

code size, improve performance and reduce area, appear in various fields of circuit design.

In this thesis, we develop a custom operator based high-level synthesis flow in benefit of

the advantages of custom operators.

First of all, we give a brief introduction on high-level synthesis. Then, we discuss the

advantages achieved by using custom operators. Next, we present the proposed custom

operator based high-level synthesis flow. Finally, the contributions and organizations of

this thesis are presented.

1.1 High-Level Synthesis

In the past decades, the applications to be implemented are becoming more and more

complex. As raising the design abstraction level allows to reduce the design time sub-

stantially, the use of high-level synthesis [McFarland 1988] has been increased in the elec-

tronic design automation (EDA) community. Many commercial high-level synthesis tools

have been proposed by several vendors. Autopilot[Zhang 2008, Cong 2006], CatapultC

[Bollaert 2008], CtoS [Bailey 2010, Cadence ], Cynthesizer [Meredith 2008], Synphony-

C [Synopsys , Kathail 2002] and CyberWorkbench [Kazutoshi 2008, Wakabayashi 2006]

are only some of the existing high-level synthesis tools. In addition, plen-

ty of academic high-level synthesis tools have also been introduced in recent

years (e.g., Legup[Canis 2011], GAUT[Coussy 2008], Trident[Tripp 2007, Tri 2005] and
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SPARK[Gupta 2003, Gupta 2004]).

The high-level synthesis, sometimes referred to behavior synthesis, is an automated

design process of transforming untimed or partially timed specifications (e.g., C, C++

or SystemC) to low-level cycle-accurate register-transfer level specifications that imple-

ments the specified behavior while satisfying the design constraints. Fig. 1.1 shows an

overview of high synthesis flow. The HLS tools accept high-level specifications as inputs.

In general, most of current commercial HLS tools take C-based specification as design

entry [Cong 2011a]. We can also find some HLS tools using other input languages such

as BlueSpec [BlueSpec ], Esterel[Edwards 2002] and MATLAB[Malay 2001]. In addition

to the high-level specifications, the resource library containing the detail information of

hardware components and specific design constraints are provided to HLS tool at the be-

ginning [Coussy 2009]. With the provided inputs, the HLS tool carries out the following

tasks and produces a hardware description language that implements the specification:

• Compilation Front End: The specifications are parsed into intermediate repre-

sentations. Several preliminary transformations or code optimizations [Muchnick 1997,

Gupta 2004] such as dead-code elimination, false data dependency elimination, branch

balancing, constant propagation, loop transformations, speculative code motion and com-

mon subexpression elimination are performed at the earlier stage of this step [Coussy 2009].

After the optimizations, the specifications are transformed to an appropriate intermediate

representation. In order to capture both the data dependencies and control dependencies

between the operations in the specifications, different intermediate representations (IR)

that retain all the information presented in the input specification are used. Control data

flow graph (CDFG) is considered as one of the most popular IR. The CDFG is a directed

graph in which a node can be either an operation or a basic block. The directed edges in

a CDFG represent the transfer of a value or control from one node to another. Inside each

node, a data flow graph is used to capture the data dependencies between operations.

In addition, the data dependencies between basic blocks can be captured by using the

hierarchical task graphs (HTGs) representation proposed in [Gupta 2003, Gupta 2004].

• Allocation: This process determines the types of hardware components and the

number for each type to be included in the hardware implementation. The hardware

components refer to the function units (such as adders, multipliers) for operations, the

registers for storing values, the buses and the multiplexors for interconnections between
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operators.

• Scheduling: Scheduling is the process of assigning operations to clock cycles or time

steps so that the design constraints are satisfied. Each operation is scheduled according to

the data dependencies and control dependencies between the operations. There are several

commonly preferred scheduling algorithms: as soon as possible (ASAP) scheduling, as late

as possible (ALSP) scheduling, list scheduling, force directed scheduling and integer linear

programming formulation. The scheduling and resource allocation are usually interdepen-

dent. Scheduling is performed with respect to the resources constraints that are assigned

in the allocation step, while the resource allocation can be improved if the operations that

can be executed parallel are known in advance (these information can be obtained from

scheduling) [McFarland 1988].

• Binding: The binding process assigns the function units to perform operations,

registers to store values that pass across cycles and buses/multiplexors to realize the

data/control transfers. The binding algorithm decides which function unit should be used

to perform a specific operation when there are more than one functional units capable of

executing the operation. The operations and the values with mutually exclusive lifetime

can share the same hardware component.

• Code Transformation: At the end, the code transformation produces a RTL imple-

mentation including a data path and a control unit. The data path refers to function

units such as adders, multipliers and arithmetic logic units (ALUs), storage units such as

memories and registers, and connectivity components such as buses and multiplexors. The

control unit is a finite state machine (FSM) that generates control signals and controls

the data flow into the data logic path.

1.2 Custom Operators

Nowadays, it is common to find custom operators in various fields of circuit design. As an

example, custom operator is a vital component to make trade-offs between flexibility and

efficiency in extensible processors [Gonzalez 2000]. A custom operator is composed of a

cluster of basic operations (e.g., primitive arithmetic operations such as add, subtract and

multiply). A custom function unit is the hardwired implementation of a custom operator.
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Figure 1.1: High-level synthesis flow

The first benefit brought by using custom operators is the significant compactness of

the source code. Generally, the custom operator encapsulates several basic operations

and compacts them into one complex operator. Thus, the size of the source code can

be reduced and the granularity level of the source code is increased. Consequently, the

high-level synthesis tools may give solutions in a shorter time with the compacted code.

With custom operators, considerable performance improvement can be achieved. The

custom operators improve performance through four possible ways. First, the basic op-

erations inside the custom operator are automatically chained according to the data de-

pendencies (operation chaining). Second, the basic operations without data dependencies

between each other may be parallelized (parallelization). Third, some optimization tech-

niques can be applied to reduce the critical path of custom operators (Fig. 1.2 shows an

example of reducing the critical path of a selected custom operator. Let assume each ad-

dition takes 1 clock cycle to execute. The custom operator in Fig. 1.2 (a) requires 3 clock

cycles to execute, while the custom operator with reduced critical path in Fig. 1.2 (b)

only takes 2 clock cycles to execute. The critical path is reduced by imposing parallelism

between the two sequential additions). Finally, the dedicated hardware implementation

of a custom operator is usually faster than the basic operators (e.g., the latency of a
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Figure 1.2: (a) A selected custom operator (b) A custom operator with reduced critical
path

multiply-accumulate (MAC) is less than the sum of the latency of a multiplier and the

latency of an adder [Yadav 1999]).

Moreover, the custom operators can reduce the area through the following two aspects.

First, in general, the internal data flows of a custom operator are free of multiplexors

[Cong 2008, Cong 2010, Cong 2011b]. Second, the dedicated hardware implementation of

a custom operator leads to less area cost (e.g., the area of a MAC is less than the sum

of the area of a multiplier and the area of an adder [Yadav 1999]). It is noteworthy that,

using custom operators may lead to less resource sharing: more basic operations are found

in a graph compared to custom operations.

1.3 An Overview of the Design Flow

With the benefits of using custom operators in circuit designs, we propose an automat-

ed custom operator based pre-synthesis design flow to transform the source code by in-

corporating custom operators, such that better synthesis results can be obtained with

high-level synthesis tools. Fig. 1.3 illustrates our proposed framework of the custom op-

erator based pre-synthesis design flow. Unlike the previous frameworks in the literature

that require to modify the scheduling and binding algorithms of high-level synthesis tools

[Cong 2008, Cong 2010, Cong 2011b], our design flow is fully independent of high-level

synthesis tools. The design flow can be adapted to many commercial high-level synthesis

tools.

The design flow consists of four major steps. The starting point is the high-level
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Figure 1.3: Custom operator Identification for high-level synthesis

source code (C language). In the first step, the source code is translated to a control

data flow graph (CDFG) using an open source compiler GECOS [GECOS ]. A CDFG is a

graph that represents the data dependencies between a number of basic blocks. Next, the

potential subgraphs are identified by the subgraph enumeration algorithm from the DFG

corresponding to a basic block of the CDFG. Then a subset of the identified subgraphs are

selected according to different strategies (minimum number of custom operators, minimum

code size etc.). Finally, the original source code is transformed to a new source code

by incorporating the selected subgraphs (the selected subgraphs will be implemented as

custom operators). The new source code with custom operators is then provided as input

for high-level synthesis tool. More straightforwardly, a summary of our approach with a

simple example to custom operator based high-level synthesis design flow is shown in Fig.

1.4. In the figure, a piece of C code is provided as input. It is transformed to a DFG

by GECOS. All the subgraphs (connected subgraphs) in the DFG are enumerated. After

subgraph enumeration, two subgraphs are selected (we assume M1 and M2 are selected).

Based on the graph with selected subgraphs, a piece of new source code is generated. The

new source code is then provided as input to the high-level synthesis tool.
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/* a, b, c, d are inputs */
/* z is an output */
void test(int a,int b,int 
c,int d){
    int x,y,z;
    x = a + b;
    y = c + d;
    z = x * y;
 }

+ +GECOS

Front-end +
+ + +

+

M1 M2

Subgraph
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#pragma map_to_operator 

addMultiply
void addMultiply(int in1, int 
in2, int in3, int * out1){
  *out1 =(in1 + in2)*in3;
}

/* a, b, c, d are inputs*/
/* z is an output */
void test(int a,int b,int c,int d){
    int y,z;    
    y = c + d;
    z = addMultiply(a,b,y);
 }

Code

TransformationHigh-level Synthesis 

tool

RTL VHDL 
/Verilog M2

M1

+
+

Figure 1.4: Summary of our approach to custom operator based high-level synthesis flow

1.4 Contributions of this Thesis

In this thesis, we develop a new custom operator (pattern) based high-level synthesis

design flow. The key issues involved in the design flow are : automatic enumeration

and selection of custom operators from a given high-level application and regeneration of

source code incorporating the selected custom operators. This thesis makes the following

contributions:

• Subgraph Enumeration: As the number of subgraphs in a DFG is exponential to the

number of nodes of the DFG, subgraph enumeration is a computationally difficult problem.

For example, in a DFG from a real world benchmark GSM that has 490 nodes, the number

of subgraphs can be 341641 when input and output constraints (I/O constraints) are 4 and

2. When the I/O constraints are relaxed to 6/2, the number of subgraphs is augmented to

1454539. We present three scalable subgraph enumeration algorithms which can enumer-
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ate all the subgraphs very efficiently under various design constraints. To enumerate all

feasible subgraphs under size constraint, we propose a new algorithm that avoids multiple

identifications of any subgraph. Based on the proposed size constrained subgraph enu-

meration algorithm, an extended algorithm that aims to enumerate all feasible subgraphs

or only connected subgraphs is then presented. In addition, we present a polynomial-time

algorithm that improves the previously proposed well-known algorithm [Pozzi 2006] for

enumerating all feasible subgraphs including disjoint subgraphs and connected subgraphs.

Experiments show that our algorithms can achieve orders of magnitude speedup over the

well-known algorithm[Pozzi 2006].

• Subgraph Selection: Selecting a subset from the set of subgraphs generated by sub-

graph enumeration is also time costly, so our goal is to propose algorithms that are time

efficient. Three different heuristic subgraph selection approaches targeting to differen-

t objectives are depicted and a complete comparison of them is shown in experiments.

Furthermore, we present an exact algorithm and a genetic algorithm for selecting mini-

mal number of matches to cover the data-flow graph of given application program. The

proposed genetic algorithm makes trade-off between the greedy approach and the exact

approach. In other words, it makes trade-off between the run-time of selection and the

quality of selection results.

• Code Transformation: we extend an existing graph isomorphism algorithm to quickly

reject dissimilar graphs by using some characteristics of data-flow graph. Some specific

problems involved in the graph isomorphism check and subgraph isomorphism are first

exposed. To our knowledge, the aforementioned problems were never considered in previ-

ous literature. The corresponding solution for the exposed problems are provided in this

thesis. Moreover, a brief introduction to the code representation for custom operator in

the generated code is also given.

• The Design Flow: an automated and adaptable custom operator-based pre-synthesis

design flow is presented; results for a set of benchmarks show that significant code size

reduction, area reduction and speedup can be achieved by our proposed design flow.
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1.5 Organization of this Thesis

The rest of the thesis is organized as follows. The thesis starts with a survey of related

work (Chapter 2). In chapter 2, for the sake of clarity, the intermediate representation of

code used in the design flow and some important definitions are introduced. As the design

flow involves three major problems: subgraph enumeration, subgraph selection and graph

isomorphism, we then review the three problems respectively.

In chapter 3, the problem formulation of the subgraph enumeration is depicted. Par-

ticularly, the proof that gives a tighter upper bound of valid subgraphs under input and

output constraints is presented. To efficiently solve the problem under various design

constraints, three enumeration algorithms are presented in detail.

We formally formulate the subgraph selection problem and present some algorithms

for this problem in chapter 4: three heuristics targeting different objectives, an exact

algorithm and a genetic algorithm that select the minimal number of matches resulting in

the most compacting code size.

After that, an extended graph isomorphism algorithm used to check the functional

equivalence between subgraphs is introduced in chapter 5. In the same chapter, some

specific problems like non-commutative problem and symmetrical problem residing in the

isomorphism check are discussed and corresponding solutions are also provided.

Chapter 6 evaluates the efficiency of the proposed algorithms and the quality of results

of the whole design flow. Finally, conclusions and future works are presented in chapter

7.





Chapter 2

Related Work

In this chapter, to clarify, we first present the intermediate representation used in our

design flow. As there are three major problems involved in the proposed design flow, we

begin the survey from the subgraph enumeration problem, which enumerates all feasible

subgraphs under various constraints. Then, we review the subgraph selection problem,

which try to select a subset of most profitable subgraphs in terms of different motivations.

Finally, we survey the graph isomorphism problem, which aims to find the functional

equivalence between subgraphs. In the survey of related works, we mainly focus on the

algorithms dedicated to hardware design.

2.1 Intermediate Representation

The behavioral specification to high-level synthesis is usually composed of a sequential list

of statements. The statements could be operation expressions, conditional constructs and

loop constructs. To capture the data-flow dependencies in the input description, data-flow

graph is a good candidate for designers. As the data-flow graph only contains the explicit

data dependencies, we could use control flow graph to capture the control flow through the

input description. In order to capture the both information in design description, control

data-flow graphs are a well known and good intermediate representation for high-level

synthesis. In this section different intermediate representations for high-level synthesis are

presented. The definition, semantics and an example of construction for DFG, CFG and

CDFG are shown respectively.



12 Chapter 2. Related Work

1:  x = a + b;

2:  y = a / c;

3:  z = x + d;

4:  v = y d;

5:  u = v + z;

+ /

+

+

-

a b c d

(a) (b)

u

Figure 2.1: (a) Fragment of C code without condition or loop (b) Corresponding data flow
graph

2.1.1 Data-Flow Graph

2.1.1.1 Definition

A data-flow graph (DFG) is a directed acyclic graph (DAG) which represents data depen-

dencies between a number of operations. It is a graph G = (V, E), where the vertex set

V = {v1, ..., vn} represents primitive operations and the edge set E = {e1, ..., em} ∈ V ×V

represents the data-flow dependencies.

2.1.1.2 Semantics

A node receives data generated by its predecessor nodes and produces new data needed by

its successors. The operation of the node is performed on the data of the incoming edges

only when all the incoming data are ready. The resulting data is then put on the outgoing

edges. Therefore, the execution order of the operations in the graph is thus constrained

by the partial ordering of the nodes as defined by the directed edges. It is clear that data-

flows through the graph and each time data encounters a node, an operation is performed

on it.

Operation nodes can be primitive arithmetic operations, like +, −, ∗, ++, or Boolean

like >, <, or can be more complex custom operations. The timing constraints imposed

by data dependencies can be denoted as follows: Let T = {ti; i = 0, 1, .., n − 1} be the

execution start times of the operations and D = {di; i = 0, 1, .., n − 1} be the execution
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1: x = a + b;

2: y = a - b;

3: if( x > 20)

4: m = x * c;

6: m = y / c;

7: w = m * m;

5: else

BB1

BB2

BB3

BB4

BB5

(a) (b)

+ -

*

*

/

a b c

>

Figure 2.2: (a) Fragment of C code with condition (b) Corresponding data flow graph
(with loss of consistency)

delays of each operations. Assume that an operation l reads the result of its predecessor k,

then the operation l can start execution only after the predecessor k has finished execution.

This can be expressed as:

tl ≥ tk + dk,∀k, l : (vk, vl) ∈ E (2.1)

2.1.1.3 Examples

Any algorithmic behavioral description of a system consists of ordered operations. To

demonstrate the data-flow graph construction, the fragment of C description in Fig.2.1(a)

is used as an example. To simplify the construction, we use the segment of C code without

condition or loop in it. The example of a data-flow graph for the fragment of C description

is given in Fig.2.1(b). Operations in the data-flow graph are denoted by circular nodes

with the operator sign within. The input nodes are represented by squares.

The segment of C code listed in Fig.2.2(a) has condition in it. The corresponding

data flow graph for the above fragment of C description is given in Fig.2.2(b). Obviously,

the control information is lost during the construction of data flow graph according to

the definition of data flow graph. As shown in Fig.2.2(b), the node labeled with ">"

has no input or output edge. Consequently, when we regenerate the new description code
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from the incrementally refined DFG which has passed through various stages of a high-level

synthesis system, the new generated description code is not functionally consistent with the

original source code. Thus, to support conditional constructs, loops and procedure calls,

we may use control flow graph directly, besides CFG. The authors [van Eijndhoven 1992]

has proposed a new form of data flow graph which moves conditional constructs into the

data flow graph.

2.1.2 Control-Flow Graph

2.1.2.1 Definition

A control-flow graph represents the control dependencies among basic blocks ( A basic

block is a sequence of statements from the input description with no conditionals or

loops between them). It is a graph G = (V,E), where V = {v1, ..., vn} is the set of

basic blocks which are treated as different sequences of statements in the design and

E = {e1, ..., em} ∈ V × V is the set of directed edges which represents the control flow

between basic blocks.

2.1.2.2 Semantic

As we know, during the execution of program, each time the condition operation is exe-

cuted, the control flow partitions into two control flows, one for the evaluation with value

of true, the other for the evaluation value of false. As the program be executed contin-

ually, the control flows merge into a single control flow at the end of the conditional or

loop construct [Gupta 2004]. Hence, in control flow graph, node can be identified as an

operation node, branch node or merge node.

Operation node is a basic block which contains a sequence of operations and has one

incoming edge and one outgoing edge, having no conditional check in them and having

only a default output true path.

Branch node has two or more outgoing edges and one incoming edge, signifying the

point at which a condition causes the control flow to branch into multiple control paths.

Obviously, it also determines the control flow passes through which outgoing edges.

Merge node that has two or more incoming edges and one outgoing edge is opposite
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1:  x = a + b;

2:  y = a / c;

3:  z = x + d;

4:  v = y d;

5:  u = v + z;

BB1

Figure 2.3: C code without condition or loop and its corresponding CFG

to the branch node. In general, branch and merge nodes are used to model algorithmic

constructs like if...then...else, case, and loop constructs like while...do, for...do. A feedback

edge between the branch and merge nodes can represent the loop construct [de Jong 1991].

The last basic block in the design, which does not have any output control flow, is called

as end node. The first basic block in the design, which does not have any input control

flow, is called as first node [Gupta 2004].

2.1.2.3 Example

As shown in Fig.2.3, the sequential operations in the fragment C code without condition

or loop are aggregated into one basic block that represents these sequential operations.

To understand more about CFG, we use the fragment of C code with condition 2.4(a) to

construct the CFG. Fig.2.4(b) shows the control flow graph of the source code depicted in

Fig.2.4(a). Each basic block aggregates a sequence of operations in the source code with

no control flow between them (shown by shaded boxes in Fig. 2.4(a)). The arrow between

basic blocks denotes the control flow as shown in the corresponding control flow graph

in Fig.2.4 (b). The basic blocks are labeled from BB1 to BB5. A diamond represents a

Boolean conditional check or a fork in control flow with a true path and a false path.

2.1.3 Control Data-Flow Graph

Data flow graph and control flow graph captures only explicit data dependencies and data-

flow in the input description respectively. To represent the both information in the input

description, we use control data-flow graphs. CDFG has been considered as one of the
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BB1

BB2

BB3 BB4

BB5

(a) (b)

1: x = a + b;

2: y = a - b;

3: z = x + y;

4: if( x > 20)

5: m = z * c;

7: m = z / c;

8: w = m * m;

6: else

BB1

BB2

BB3

BB4

BB5
7

Figure 2.4: (a) Fragment of C code (b) Corresponding control flow graph

most popular intermediate representation for high level synthesis.

The control data-flow graph is a graph G = (V,E), where V = {v1, ..., vn} is the set of

basic blocks which are composed of a list of statements and E = {e1, ..., em} ∈ V ×V is the

set of directed edges which represents the control flow between basic blocks. Inside each

basic block, a data-flow graph is used to represent the data-flow dependencies between

the operations. A directed edge connecting the basic blocks represents a condition of

statements such as if/case or loop constructs.

To model the CDFG construction, we use previous piece of c code (Fig.2.5(a)). The

corresponding CDFG is shown in Figure 2.5(b). In the example, each basic block has

a data-flow graph which represent a list of operations. The only entry of the data-flow

graph is through the first operation and the only exit is the last instruction. The dash line

represents the control flows between blocks. The real line denotes the data dependencies

between operations.

2.2 Definitions

In this section, for the sake of clarity, we first give some important definitions that are

utilized throughout the thesis. Then several notations that are used for calculation are

introduced.

Formally, a match is defined as, for a directed acyclic graph G = (V, E), a sub-graph
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1: x = a + b;

2: y = a - b;

3: z = x + y;

4: if( x > 20)

5: m = z * c;

7: m = z / c;

8: w = m * m;

6: else

BB1

BB2

BB3

BB4

BB5
7

(a) (b)

Figure 2.5: (a) Fragment of C code (b) Corresponding control data-flow graph
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+

\

+

\
+

Figure 2.6: A pattern with its matches

M = (Vm, Em) of graph G, where Vm ⊆ V and Em ⊆ E 1. A pattern or a template is an

induced graph of isomorphic subgraphs. A pattern or a template is a graph representation

of a custom operator. In other words, a match is an instance of a pattern or a template.

As an example, in Fig. 2.6, P1 is a pattern and M1 and M2 are two matches of P1. The

term custom instruction is a code representation of a custom operator.

The input node set of a match (subgraph) M is denoted as IN(G,M). An input node

is a node in G but not in M that has at least one edge entering the match M . Similarly,

we use OUT (G,M) to denote the output node set of M . An output node is a node in M

that has at least one edge exiting the match M and connecting to a node in G but not in

1we will use the term match to represent subgraph alternatively in this thesis
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M .

Given a DFG G(V,E) and a node u, some subsets can be defined according to their

relationships with u.

1. Immediate predecessors of u : IPred(G,u) = {v|v ∈ V, (v, u) ∈ E} .

2. Immediate successors of u : ISucc(G,u) = {v|v ∈ V, (u, v) ∈ E} .

3. All predecessors of u : Pred(G,u) = {v ∈ Pred(G, v)|v ∈ IPred(G,u)}.

4. All successors of u : Succ(G,u) = {v ∈ Succ(G, v)|v ∈ ISucc(G,u)}.

5. Disconnected nodes of u: Disc(G,u) = G− (Pred(G, u)− Succ(G,u) − u).

Similarly, given a graph G(V,E) and a subgraph (match) M ⊆ G, some subsets can

also be defined according to their relationships with M .

1. Immediate predecessors of the subgraph M : IPred(G,M) = ∪u∈MIPred(G,u)−M .

2. Immediate successors of the subgraph M : ISucc(G,M) = ∪u∈MISucc(G,u) −M .

3. All predecessors of the subgraph M : Pred(G,M) = ∪u∈MPred(G,u) −M .

4. All successors of the subgraph M : Succ(G,M) = ∪u∈MSucc(G,u) −M .

5. Disconnected nodes of the subgraph M : Disc(G,M) = {u|u ∈ V,∀v ∈ M , there is

neither a path from u to v or from v to u}.

2.3 Related Work on Subgraph Enumeration

As the key issues involved in our design flow are subgraph enumeration, subgraph selec-

tion and code transformation (see Fig. 2.7), we present the related works for subgraph

enumeration, subgraph selection and graph isomorphism (graph isomorphism algorithm is

used during code transformation to identify the functionally equivalent subgraphs) respec-

tively. A lot of related researches on subgraph enumeration, subgraph selection and graph

isomorphism have been done in recent years. The survey is restricted to algorithms that

can take into account constraints related to hardware design. In this section, we start
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Figure 2.7: Custom operator based high-level synthesis flow

our review from subgraph enumeration and then discuss subgraph selection and graph

isomorphism in the following sections.

Subgraph enumeration is the process to enumerate all the subgraphs that satisfy certain

design constraints from a given application graph. It is a computationally difficult problem.

The number of subgraphs in the DFG of a given application could be 2n, where n is the

number of nodes in the DFG [Jozwiak 2010]. Since the number of subgraphs is exponential

with respect to the size of the DFG, efficient approaches to the subgraph enumeration

problem are necessary. In order to reduce the complexity of the enumeration, several

constraints are added as pruning criteria. Here, we survey the subgraph enumeration

problem by classifying the previous works according to the specified constraints on the

enumerated subgraphs.

Tree Sharped Subgraphs As the type of subgraphs enumerated directly relates to

the enumeration problem complexity[Jozwiak 2010], some previous researches only focus

on enumerating tree-shaped subgraphs [Liem 1994a, Shu 1996]. Considering only tree-

shaped subgraphs can radically reduce the complexity [Yu 2008]. In [Aho 1989], a poly-

nomial time dynamic programming method is applied to cover the DFG with the minimal

number of tree-shaped subgraphs. However, enumerating only tree-shaped subgraphs may
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lead to limited improvements on performance or other aspects. Compared to tree-shaped

subgraphs, more internal data flows involved in net-shaped subgraphs results in saving

more multiplexors [Cong 2008].

Multiple Inputs Single Outputs (MISO) In the context of extensible processors

[Gonzalez 2000], the number of inputs and the number of outputs (I/O) are constrained

due to the number of ports to the register files. In the scenario of high-level synthesis, the

I/O constraints are considered as user-specified design constraints. The I/O constraints

are important pruning criterias when performing subgraph enumeration. The tighter

the I/O constraints are, the less number of subgraphs considered. In other words, the

enumeration can be done in a shorter time if restricting the I/O constraints to lower

values. Early works try to enumerate single output subgraphs can be found in [Alippi 1999,

Pozzi 2002, Cong 2004, Galuzzi 2007b]. A subgraph with multiple inputs and only one

output subgraphs is called MISO subgraph. The approach in [Cong 2004] enumerates

all the K-MISO subgraphs with dynamic programming, where K is the input constraint.

Another approach in [Galuzzi 2007b] iteratively considers the MISO subgraphs from the

MISO subgraphs of maximal size under a specified input constraint. These approaches

are efficient only when the input constraint is low. Relaxing the input constraint can lead

to exponential computation.

Theoretically, the number of MISO subgraphs in a given DFG is exponential with

respect to the size of the DFG [Galuzzi 2007a]. Thus, other works [Alippi 1999, Pozzi 2002]

further restrict the subgraphs enumerated. These works only consider the MISO subgraphs

of maximal size, which is called MAXMISO. The authors of [Alippi 1999] formally proved

an important property of MAXMISOs: MAXMISOs of a given DFG cannot partially

overlap. In [Pozzi 2002], the authors presented an efficient algorithm that can exhaustively

enumerate MAXMISOs from a given DFG in linear complexity in terms of the number

of nodes in the DFG. The algorithm generates all MAXMISO starting from a selected

output node and iteratively grows the subgraphs by adding predecessors until a forbidden

node is encountered (the nodes that represent memory operations like load/write). As the

MAXMISO cannot overlap, each node is considered only once. Thus, a linear complexity

of this algorithm is guaranteed.

Multiple Inputs Multiple Outputs (MIMO) Recent studies try to enumerate

subgraphs with multiple inputs and multiple outputs. Generally, a subgraph could be it-
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eratively formed by absorbing a node or nodes to a previously identified smaller subgraph.

Enumerating all possible subgraphs under input and output (I/O) constraints is a compu-

tationally difficult problem, because the number of possible subgraphs grows exponentially

with the size of the application graph [Galuzzi 2011]. Enumerating all possible subgraphs

under I/O constraints refers to I/O constrained enumeration in the past literature. In this

thesis, we roughly classify the previous approaches for I/O constrained enumeration into

two groups: heuristic approaches and exact approaches.

Heuristic techniques for MIMO subgraph enumeration try to identify some promis-

ing subgraphs while discarding some less promising ones. In general, heuristic techniques

only produce a subset of the candidate subgraphs. Authors of [Kastner 2002] assemble

the subgraphs along the most frequently occurring edges direction. To avoid exponential

blow-up, each time a bigger subgraphs is enumerated, it is collapsed into a super node.

The method proposed in [Clark 2003] grows subgraphs based on previously generated s-

maller subgraphs by evaluating neighbor nodes with a defined cost function that calculates

both performance gains and penalties in terms of input or output constraint violation. In

[Wolinski 2007] the subgraph searching algorithm assembles subgraphs incrementally by

adding neighbor nodes to existing subgraphs corresponding to non-isomorphic subgraphs

formed in the previous iteration. A smart filtering is used to discard less "useful" sub-

graphs in this algorithm. Compared with the exhaustive subgraph enumeration, heuristic

techniques may achieve a linear time in terms of computational time. However, the heuris-

tic techniques cannot guarantee to produce a globally optimal set of subgraphs.

Exact enumeration approaches for MIMO subgraph enumeration offer us a chance to

obtain a better result. The authors [Chen 2007] are the first ones that prove the exhaustive

enumeration of subgraphs is inherently polynomial. A polynomial time subgraph enumer-

ation algorithm is proposed in [Bonzini 2007]. However, the work in [Reddington 2009]

pointed out that the polynomial time subgraph enumeration algorithm can miss enumer-

ating up to 25% of subgraphs. Thus, the claimed polynomial time enumeration algorithm

cannot provide an exact enumeration. Several other techniques have been proposed for an

exhaustive enumeration of subgraphs under I/O constraints, such as dynamic program-

ming [Arnold 2001], integer linear programming [Lee 2002, Atasu 2005] and constraint

programming [Martin 2009a]. These methods are efficient for relative small applications

graphs. Unfortunately, they are quite time-consuming when the application graphs be-
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Figure 2.8: A DFG and its corresponding binary search tree

come large.

Authors of [Atasu 2003] presented an exhaustive algorithm based on a binary decision

tree under convexity 2 and I/O constraints. The algorithm first assign each node a unique

number according to the topological order. The subgraphs are formed by adding nodes

with bigger value to smaller subgraphs. The search space can be pruned by using the

monotonicity of outputs in data-flow graph. The algorithm Pozzi et al [Pozzi 2006] further

improved this algorithm by adding a pruning criterion based on the number of permanent

inputs. Fig. 2.8 shows an example of DFG and its corresponding binary search tree

using the algorithm [Atasu 2003] when the output constraint OUTmax = 1 and there is

no input constraint. There are 5 nodes in the application graph. Each node is assigned

with a number with respect to the topological order. The search tree is a binary tree of

nodes representing possible subgraphs building by a recursive search function based on

topological order: the 1-branch and 0-branch of each level represent addition or not of

the node i. Once the node is included or not in the subgraph, we can include or not the

following node in accordance with topological order. Addition of a 0-branch for a node

signifies the same node as its parent node.

Theoretically, there are 2n possible subgraphs in a graph. For example, there are 25

possible subgraphs in the above subgraph. However, the design space is radically reduced

by taking the I/O constraint and convexity into account. According to the monotonicity

of the number of outputs, if inclusion of a node violates the output constraint [Pozzi 2006],

2convexity constraint guarantees feasible scheduling of a custom operator, the definition of convexity
is given in section 3.1
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the inclusion of a later node in the topological order cannot overcome the output constraint

violation. Similarly, once the convexity constraint is violated, adding any node that ap-

pears later in the topological order cannot resolve the violation. As a consequence, if the

constraints are violated when including a node, the sub-tree originating from that node

will not be searched. For example in 2.8, the subgraph {1,2} satisfies the I/O constraints,

while adding node 3 to the subgraph {1,2} results in a subgraph that violates the output

constraint (OUTmax = 1). Thus, the sub-tree originating from the node 3 will not be

considered. In Fig. 2.8 the gray dotted arrays represent the pruned search space. We can

observe that among the 32 possible subgraphs, the algorithm considered only 19.

Yu et al. [Yu 2004b] build only connected subgraphs by enumerating upward cones and

downward cones. However, in this algorithm, a subgraphs could be considered more than

once. Additional redundancy checking is required. The additional redundancy checking

may tremendously increase the runtime. Yu et al. [Yu 2007] proposed an algorithm target-

ing to enumerate disjoint subgraphs. According to the algorithm, the disjoint subgraphs

are formed by merging the connected subgraphs. The connected subgraphs are provided

by their previous algorithm [Yu 2004b]. However, the experiments in [Chen 2007] show

that the algorithm proposed in [Pozzi 2006] has a better performance than the algorith-

m proposed in [Yu 2004b] when enumerating only connected subgraphs. As the disjoint

subgraphs enumeration algorithm [Yu 2007] enumerates all disjoint subgraphs by com-

bining the connected subgraphs generated by the algorithm [Yu 2004b], the algorithm

[Pozzi 2006] should also has a better performance than the algorithm [Yu 2007]. Another

algorithm is proposed in [Chen 2007]. The algorithm enumerates both connected feasible

subgraphs and disjoint feasible subgraphs. The algorithm uses a grading method to select

the next node to be included. The algorithm [Chen 2007] is comparable to the algorithm

[Pozzi 2006] when enumerating all subgraphs including connected subgraphs and disjoin-

t subgraphs. A recent research [Reddington 2011] formally proved that the algorithm

[Pozzi 2006] is of polynomial complexity.

Maximal Multiple Inputs Multiple Outputs (MaxMIMO) In recent years, enu-

merating the maximal MIMO subgraphs has drawn a wide interest from researchers who

work on the application-specific instruction-set extension processors (ASIPs). Pothineni

et al. [Pothineni 2007] were the first ones to propose an algorithm for MaxMIMO enu-

meration. The proposed algorithm is based on an incompatibility graph. However, the
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algorithm only generates connected MaxMIMOs. In [Verma 2007], the MaxMIMOs enu-

meration problem is reformulated as a maximal clique enumeration problem after grouping

equivalence nodes and building cluster graph. Atasu et al. [Atasu 2008] proved that the

number of MaxMIMOs is bounded by 2|VI |, where VI is the set of invalid nodes in the DFG.

A top-down manner algorithm proposed in [Li 2009] solves the MaxMIMOs enumeration

problem efficiently by a division operation on the DFG.

The above mentioned techniques solve the problem either in a bottom-up manner or a

top-down manner. The bottom-up manner may reduce the size of the DFG by clustering

equivalence nodes. The top-down manner can reduce the size of the DFG by breaking the

DFG into smaller graphs. In order to take advantage of both bottom-up manner and top-

down manner, we propose an efficient algorithm [Xiao 2011] that enumerates MaxMIMOs

in a sandwich manner, a combination of the bottom-up manner and the top-down manner.

In [Xiao 2011], we also give a tighter upper bound on the number of the MCSs within a

given DFG.

Connected or Disjoint Subgraphs A computation subgraph can be a connected

subgraph or a disjoint subgraph. To reduce the high computational complexity, some

authors look only for the connected subgraphs [Arnold 2001, Baleani 2002, Cong 2004,

Yu 2004b, Clark 2005]. Those approaches for enumerating only connected subgraph-

s achieve lower complexity by sacrificing the optimality. As we known, imposing the

parallelism is one of the major benefits using custom operators. Compared with connect-

ed subgraph, the disjoint subgraph can exploit more parallelism when implemented as

hardware function unit (custom operator). Therefore, most of recent researches mainly

focus on enumerating all subgraphs including connected subgraphs and disjoint subgraphs

[Atasu 2003, Pozzi 2006, Galuzzi 2006, Chen 2007, Ahn 2011].

Size Constrained Enumeration Unlike the previously mentioned approaches, some

approaches restrict the size of the enumerated subgraphs [Choi 1999, Guo 2003]. This

class of approaches enumerates all the subgraphs, whose number of operations (nodes) is

less than the maximal number of nodes. In the context of ASIPs, the I/O constraints

are hard constraints due to the micro-architecture. However, in the scenario of high-level

synthesis, the I/O constraints can be viewed as soft constraints.

J.Cong et al [Cong 2008, Cong 2010, Cong 2011b] has proposed a subgraph enumer-
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ation algorithm that enumerates all the subgraphs with respect to user-defined edit dis-

tance (edit distance represents the minimal sequence of edit operations that transform

one subgraph to the other subgraph, it is used to measure the similarity of subgraphs)

and frequency limit (frequency refers to the number of occurrences of a subgraph in the

application graph). Because some profitable subgraphs may be discarded at early stage,

applying frequency limit and user-defined edit distance constraint at the enumeration stage

may prevent from achieving a better solution. Similar to other previous algorithms, this

algorithm also has to use a extra duplication checking to exclude the redundant subgraphs.

2.4 Related Work on Subgraph/Pattern Selection

The subgraph enumeration generates every subgraph satisfying the design constraints from

a given application. After the subgraph enumeration step, the subgraph selection step is

performed in our design flow (see Fig. 2.7). Subgraph selection is the process that selects

the most profitable subset of subgraphs from the set of subgraphs enumerated in the

subgraph enumeration step. When hardware design is targeted, the subgraph candidates

are selected either due to the high frequency of occurrences (to make use of resource

sharing) in the application or due to their high performance compared to other subgraphs

(i.e., hardware components) or due to significant area reduction. Therefore, developing

a good subgraph selection method is quite vital for highest gain in performance or area

for the application. Many works were proposed for selecting subgraphs with different

strategies (minimal number of custom operators, minimal code size, etc.). In the following

survey, we organize the survey on subgraph selection according to the objectives.

Minimal Number of Matches Selection The objective of minimal number of

matches selection is to select a minimal subset of subgraphs to cover the application graph.

Selecting a minimal number of matches can lead to a most compacted code. With the

compacted code, the high-level synthesis tools produce a design solution in a shorter time

compared to the initial code without incorporating custom operators. Examples of select-

ing minimal number of matches can be found in [Biswas 2003, Biswas 2005, Clark 2006].

In [Clark 2006], an exact algorithm converts the minimal number of matches selection

problem to a unate covering problem. However, this algorithm is tractable only when the

set of candidates is very small.



26 Chapter 2. Related Work

Frequency of Occurrences Based Selection Reuse is an important fac-

tor that should be considered during the selection step [Guo 2003, Kavvadias 2005,

Kavvadias 2006, Lam 2009]. This is especially true when the strategy is resource con-

strained scheduling in high-level synthesis. In general case, small patterns have higher

frequency of occurrences compared to large patterns. Extremely, the one node patterns

are more likely to be chosen (selecting one node patterns brings no change). To avoid this,

the authors [Guo 2003] introduced the following objective function to balance the size of

selected patterns and the frequency of occurrences of selected patterns.

g(P ) = w1.2 ∗ s = w ∗ s ∗ w0.2; (2.2)

where w represents the size (number of nodes) of the pattern P , s represents the

number of instances of the pattern P in the application graph. The extra w0.2 factor gives

the bigger pattern more weight when carrying out the selection.

Critical Path Based Selection Inappropriate selection may give rise to the de-

lay overhead. Several interesting approaches aiming to select subgraphs along the

longest path through the application graph to minimize the delay have been proposed

[Liao 1995, Liao 1998, Clark 2003, Cong 2008]. J.Cong et al [Cong 2008] prefer to select

the subgraphs which are flatter. A flatter subgraph imposes more parallelism than a less

flat one. Although this approach can reduce the latency overhead compared to the pattern

selection approaches without considering the impact on the critical path, the experiments

in [Cong 2008] reveals that increase of the latency still can not be avoided in many cases

compared to synthesis without custom operators (see Fig. 4.5).

Overlap Two subgraphs may have the same nodes in common. Some prior work-

s attempt to select overlapping subgraphs to achieve maximum performance speedup

[Aletà 2004, Cong 2004]. Allowing overlapping may sometimes improve the resulting exe-

cution time, while unnecessarily increase the power consumption and make the code regen-

eration intractable. Thus, most approaches for subgraph selection select non-overlapping

set of subgraphs to cover the application graph [Guo 2003, Pozzi 2006, Li 2010]. In this

thesis, we disallow overlapping between all selected subgraphs. As an instance, in Fig.

2.6, if the match M1 is selected, then the match M2 will not be considered. To reject

overlapping subgraphs quickly, a conflict graph is built before the selection. The conflict
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Figure 2.9: A conflict graph

graph consists of nodes and edges, where the nodes represent the subgraphs. The edges

are added between nodes if two nodes have overlapping. During the selection, each time

a subgraph is selected, the nodes connected to the node (corresponding to the selected

subgraph) are removed from the conflict graph. Assume the subgraph (node) 5 is selected

in Fig. 2.9, the nodes representing the subgraphs 1,3,4,7 will be deleted from the conflict

graph, i.e., they can not be selected anymore.

Sequence of Enumeration and Selection Most of the prior works perform the

subgraph enumeration and selection in two consecutive steps [Atasu 2003, Cong 2004,

Galuzzi 2006]. Some other works combine the enumeration and selection into one

step: the enumerated subgraphs are automatically selected [Clark 2003, Atasu 2005]. In

[Clark 2003], the authors starts generating subgraphs from a seed node and use a guide

function to rank the data-flow edges to be added. The edges are ranked according to

three categories: criticality, latency and area. As the edges on the critical path are more

likely to provide application performance by shrinking the application graph, those edges

have high scores. The performance gain is usually obtained by combining two opera-

tions. The combined two operations can be executed in fewer cycles than they do in-

dividually. A latency point is used to estimate the performance gain by the equation:

(old latency/new latency) ∗ 10. Similarly, an area point is applied to estimate the area

cost by the equation: (old area/new area) ∗ 10.

Various approaches are proposed to give an optimal solution. This group of approach-

es use either integer linear programming (ILP) [Yu 2004a, Atasu 2005, Galuzzi 2006,

Atasu 2007] or constraint programming [Martin 2009b] or branch-and-bound [Clark 2006,

Dinh 2008]. ILP based approaches convert each candidate as a boolean variable. The
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constraints like area budget are expressed with an equivalent linear equations. The se-

lection objective is represented by a linear objective function. The ILP solver optimize

the objective function and gives the optimal solution. A novel method was presented

in [Martin 2009b], the authors try to solve the selection problem by using constraint

programming. The selection of patterns is carried out with two respective scheduling s-

trategies: time-constrained scheduling or resource constrained scheduling. This method

assumes that all nodes are not able to be covered by more than one match. Similar to inte-

ger linear programming methods, the method using constraint programming also requires

an appropriate modeling of the selection problem including the variable and its domain,

constraints and the objective function. The difference is that the variables modeled by

constraint programming are not required to only be integer or boolean value. Thus, the

equations representing the constraints in constraint programming are not necessarily to

be linear ones. Branch-and-bound based methods usually first generate a greedy solution.

The generated greedy solution is set as the lower bound to prevent the exploration of sub-

optimal branches. Despite the optimality can be guaranteed by this group of techniques,

the scalability becomes unsure when the size of the problem is increased.

As subgraph selection is a computationally complex problem. Finding exact solutions

for subgraph selection becomes intractable and unaffordable when the application graph is

large. Thus, instead of exact approaches, efficient heuristic approaches are required. Sev-

eral heuristic methods were proposed in the literatures. Authors of [Kastner 2002] select

the subgraphs having higher frequency of occurrence by assembling the subgraphs along

the most frequently occurring edges direction. In [Guo 2003], a pattern (induced graph

of isomorphic subgraphs) selection algorithm based on a conflict graph has been proposed

to cover the graph with a minimum number of patterns. The algorithm uses an objective

function to select the subgraphs under a prerequisite that all selected subgraphs cannot be

overlapped. In the method [Bozorgzadeh 2002], the selection is guided by scheduling such

that the more critical subgraphs are selected due to higher priority. The previously men-

tioned algorithms select subgraphs in the context of extensible processors. The selection

algorithm proposed in [Cong 2008, Cong 2011b] is the only selection algorithm delicated

to custom operator based high-level synthesis. However, the algorithm may select a set of

custom operators that result in latency overhead.
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2.5 Related Work on (Sub)Graph Isomorphism

In some scenario, it is assumed that the patterns are already provided from the pattern

library, i.e., it means the components that can be used are known (given by the designer)

and their corresponding subgraphs are set in the pattern library. In this case, the task is to

find the occurrences of each pattern from the library and select for example the most fre-

quent patterns to cover the application graph. Finding the occurrences of each pattern in

a application graph can be viewed as subgraph isomorphism problem (pattern matching).

In our design flow, the patterns are automatically extracted from the application graph

by comparing the enumerated subgraphs (pattern generation). A pattern is formed to

represent a group of structurally equivalent subgraphs. To detect the structure similarity

between subgraphs, a graph isomorphism algorithm should be applied. As graph isomor-

phism problem is a subset of subgraph isomorphism problem, the algorithm targeting at

subgraph isomorphism problem can be used to solve graph isomorphism automatically.

We survey the related work on both subgraph isomorphism and graph isomorphism.

The subgraph isomorphism problem has been applied to many applications. For in-

stance, in the area of robot visions, it is used to recognize 3D objects by isomorphically

matching with their canonical models in a computer model base [Wong 1992]; in the area

of electronics, it is applied to extract sub-circuits from large circuit [Ling 1996]. The first

algorithm for subgraph isomorphism has been proposed by Ullman in [Ullmann 1976]. In

pattern matching, it assumes the existence of a pattern library and finds the frequency

of occurrences of each pattern in application graph by subgraph isomorphism algorithm

[Rao 1992, Liem 1994b, Clark 2003]. Larossa et al [Larrosa 2002] solved the subgraph i-

somorphism problem for graph pattern matching using constraint satisfaction. Authors

of [Wolinski 2007] presented a constraint programming based subgraph isomorphism algo-

rithm named Jacop [Kuchcinski 2003] to get the frequency of occurrence of each generated

pattern. Jacop solves subgraph isomorphism problem on top of constraint programming

environment.

In pattern generation, graph isomorphism algorithm is frequently used to compare the

enumerated subgraphs. Kastner et al [Kastner 2002] checked whether a newly enumerated

subgraph is isomorphic to previously generated patterns using an extension algorithm of

Gemini [Ebeling 1983]. The extended algorithm [Kastner 2002] can possibly decrease the
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Figure 2.10: (a) Two graphs G1 and G2, (b) a partial mapping solution, (c) the corre-
sponding graphic state, (d) the only full mapping solution

number of iterations by using the invariant properties of a graph to create a better initial

coloring. Another application of Gemini can be found in [Guo 2003].

Subgraph isomorphism problem is a well-known NP-complete problem [Garey 1990].

Incorporating subgraph isomorphism algorithm (or graph isomorphism algorithm) into

subgraph/pattern selection greatly increases the complexity. Thus, an efficient (sub)graph

isomorphism is essential for the performance of the complete design flow. In this thesis,

we present an extended subgraph isomorphism algorithm that is able to solve both the

subgraph isomorphism problem and the graph isomorphism problem efficiently by captur-

ing the characteristics of data-flow graph. The proposed algorithm is based on the widely
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applied algorithm [P. Cordella 2004]. The algorithm [P. Cordella 2004] introduces the S-

tate Space Representation (SSR) to describe a graph match process. SSR maintains the

partial mapping and is grown by adding compatible nodes pairs. To reduce the number

of search space explored, a set of feasibility rules is used to detect as early as possible the

following incompatible states. In Fig. 2.10 (a), two graphs to be compared are given. A

partial mapping between the two graphs and corresponding graphic state are presented

in Fig. 2.10 (b) and (c) (Si represents the partial state and M(Si) represents the partial

mapping). The corresponding state to the partial mapping is transited to the final state

by adding two node pairs {(4, e), (5, d)} (see Fig. 2.10 (d)). We can note that some ad-

ditional checks for the number of nodes, the number of edges and the number of starting

nodes can be added to further quickly reject dissimilar elements.

2.6 Summary

In this chapter, we introduced the intermediate representation that is used as input of

subgraph enumeration. After that, we presented some important definitions and notations

utilized throughout the thesis. Then, we reviewed the subgraph enumeration problem, the

subgraph selection problem and the (sub)graph isomorphism problem respectively.

In the following chapters, we will detail each problem involved in the design flow and

present the proposed algorithms.
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Subgraph Enumeration

In this chapter, we first give the problem formulation for subgraph enumeration. In de-

tail, the constraints used to restrict the enumerated subgraphs are introduced. We then

present an efficient size constrained subgraph enumeration algorithm. The algorithm runs

efficiently by avoiding multiple identifications of any subgraph. Based on the size con-

strained subgraph enumeration algorithm, we propose a enumeration algorithm for enu-

merating subgraphs under I/O constraints. The algorithm is quite flexible and can be

tuned to enumerate all feasible subgraphs or only connected subgraphs. Furthermore, a

new algorithm that overcomes the drawbacks of a previously proposed well-known algo-

rithm is also presented.

3.1 Problem Formulation

In this section, we show a generic formulation for the subgraph enumeration problem. In

the problem formulation, some notations introduced in section 2.2 are utilized.

Problem 1 (subgraph enumeration): Given a DFG G = (V,E), enumerate every sub-

graph M that satisfies the following constraints.

• Convexity: M is convex (hard constraint);

• Connectivity: M is connected or M is disjoint ;

• Size: the number of nodes in M ;

• |IN(G,M)| ≤ INmax ;

• |OUT(G,M)| ≤ OUTmax ; and

• M contains no invalid operation (hard constraint)

where |IN(G,M)| represents the number of inputs and |OUT(G,M)| represents the number
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Figure 3.1: An example of data-flow graph

of outputs.

A subgraph M is said to be convex if there exists no path from a node u ∈ M to

another node v ∈ M , which involves a node w /∈ M . As we know, a subgraph that

can be implemented as a hardware function unit should be convex, otherwise it cannot

be executed atomically. For example, in Fig. 3.1, the subgraph {1, 3, 4, 7} is a convex

subgraph, while the subgraph {1, 4, 7} is not.

A subgraph could be connected or disjoint. If there exists at least one path (directed

or undirected) between any pair of nodes in the custom instruction, we say that the

subgraph is connected. Otherwise, it is a disjoint subgraph. In Fig. 3.1, the subgraph

{1, 3, 4} is a connected subgraph, while the subgraph {4, 5} is a disjoint subgraph.

The maximum number of input and output operands of the subgraph is treated as a

user-specified design constraints.

The invalid operations such as load/store are not considered as parts of subgraph.

Each DFG G(V,E) has a number of inputs and outputs from and to some nodes

(V +) in other basic blocks. V + is connected to the nodes in G forming a new graph

G+ = {V ∪ V +, E}. As an example, the node Ex in Fig.3.1 belongs to V +. In the past

literature [Chen 2007], the authors first proved that the number of valid subgraphs is

polynomial in the number of nodes of the DFG: |S| ≤ (|V +|)INmax(|V |)OUTmax when

enumerating subgraphs under the I/O constraints, where S is the set of valid subgraphs,

INmax and OUTmax are the maximum number of inputs and the maximum number of
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outputs respectively. As exclusion of invalid nodes in a subgraph is another important

hard constraint for subgraph enumeration, a tighter upper bound exists if we take the

number of invalid nodes into consideration.

Lemma 3.1.1 Given a DFG G, associated G+, input constraint INmax, output constraint

OUTmax and the number of invalid nodes |Vin|, if S is the set of valid patterns, then

|S| ≤ (|V +|)INmax(|V | − |Vin|)
OUTmax

Proof With the Lemma 6 proved in [Chen 2007], we know that a valid pattern is unique-

ly determined by its input node set and output node set. Thus, we choose input nodes

and output nodes to get a pattern. First, we choose a number of nodes from G as out-

put nodes. As invalid nodes can not be part of a valid pattern, we have no more than

(|V |− |Vin|)
OUTmax choices. To choose a number of nodes from G+, we have no more than

(|V +|)INmax choices. In total, we have no more than (|V +|)INmax(|V | − |Vin|)
OUTmax

combinations of input nodes and output nodes. Therefore, we have no more than

(|V +|)INmax(|V | − |Vin|)
OUTmax valid patterns in G.

As mentioned in the problem formulation, the convexity and exclusion of invalid nodes

are hard constraints. All the other constraints can be viewed as user-specified constraints.

In the following section, we introduce several algorithms that enumerate the subgraphs

satisfying not only the hard constraint but also some of the user-specified constraints.

3.2 An Algorithm for Size Constrained Enumeration

The efficiency of the subgraph enumeration is strongly dependent on whether multiple

identifications of a subgraph can be avoided. Most of previous work identify the sub-

graphs multiple times [Yu 2004b, Cong 2008, Pothineni 2007, Li 2009]. The runtime is

unnecessarily increased. In this section, we present an efficient approach that avoids mul-

tiple identifications of any subgraph by a clever node deletion technique for enumerating

subgraphs under size constraint.

In the general case, a larger subgraph could be iteratively generated by absorbing

a node to a previously identified smaller subgraph. For example, a (k+1)-subgraph is
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Algorithm 1 Subgraph Enumeration Algorithm
Input: Graph G
Output: CS - a complete set of enumerated subgraphs
1: Procedure SubgraphEnumeration()
2: R = ∅;// R is used to record the deleted nodes
3: for each node n ∈ G do
4: M = {n};
5: CS = CS ∪M ;
6: call DepthFirstEnumeration(M,R);
7: R = R ∪ n;
8: end for
9: Procedure DepthFirstEnumeration(M,R)

10: for each neighbor node n of M and n /∈ R do
11: if SizeCheck(M) && ConvexityCheck(M,n) then
12: M ′ = M ∪ {n};
13: CS = CS ∪M ′;
14: call DepthFirstEnumeration(M ′, R);
15: R = R ∪ n;
16: end if
17: end for

formed by adding a neighbor node to a k-subgraph (for convenience, we call a subgraph a

k-subgraph if the number of its nodes is k). However, a larger subgraph may be identified

multiple times during the enumeration. Considering the DFG in the left of the Fig. 3.2,

the subgraph {1, 2, 3} could be generated from the subgraph {1, 2} by adding the node 3

or from the subgraph {1, 3} by adding the node 2. Thus, the subgraph {1, 2, 3} could be

identified twice. In this case, duplication check is required.

In order to avoid multiple identifications, the basic idea is to enumerate all the subgraph

in a depth-first way and delete the previously considered node in each iteration. For

example, we first enumerate all the subgraphs that contain the node 1 (see Fig.3.2). Next,

we delete the node 1 (i.e., {1} in 3.2) before the enumeration of the subgraphs that

contain the node 2, the node 3 or the node 4. Similarly, in the process of enumeration

of all the subgraphs that contain the subgraph {1}, we first enumerate all the subgraphs

that contain the subgraph {1} and the node 2. Then, the node 2 should be deleted before

the enumeration of the subgraphs that contain the subgraph {1} and the node 3. In such

way, all the subgraphs can be completely enumerated and no multiple identifications of any

subgraph are performed. Fig.3.2 demonstrates the complete process of enumerating all the

subgraphs from a simple DFG. 1. Thus, at the end of the enumeration process, there are

1the non-convex subgraphs {1,2,4} and {1,3,4} are pruned away by the convexity check
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Figure 3.2: The subgraph enumeration process for a simple DFG

4 1-subgraphs ({1},{2},{3},{4}), 4 2-subgraphs ({1,2},{1,3},{2,4},{3,4}), 2 3-subgraphs

({1,2,3},{2,3,4}) and 1 4-subgraph ({1,2,3,4}).

The pseudo code of the algorithm is shown in Algorithm 1. Every time a subgraph is

generated, it is checked under size constraint and convexity constraint (line 11, algorithm

1). It is worthy note that the algorithm can also tuned to generate disjoint subgraphs

(replace line 10 in algorithm 1 by returning not only neighbor nodes but also disjoint

nodes).

3.3 An Extended Algorithm for I/O Constrained Enumera-

tion

In this section, we present a very flexible algorithm for exact enumeration of subgraphs

under I/O constraints. The algorithm is based on our proposed size constrained enumer-

ation algorithm . The algorithm can be tuned to generate all possible subgraphs or only

connected subgraphs.

3.3.1 Overview

The subgraph enumeration algorithm we propose is depicted in Algorithm 2. It is a depth

first searching algorithm by a recursive process. Our algorithm accepts directed acyclic

graph as input and generates all possible subgraphs or only connected subgraphs. The

algorithm traverses the nodes in the application graph. The results of the algorithm are
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Algorithm 2 Pseudo code for the extended algorithm
Input: Graph G
Output: CS - a complete set of enumerated subgraphs
1:

2: R = ∅ // R is used to record the deleted nodes
3: for each node n ∈ G do
4: M = {n};
5: CS = CS ∪M ;
6: call DepthFirstEnumeration(M,R);
7: R = R ∪ n;
8: end for
9:

10: Procedure DepthFirstEnumeration(M,R)
11: for each node n ∈ NodeFilter(M) do
12: M ′ = M ∪ n;
13: if !permanentOutputCheck(M ′) then
14: return;
15: end if
16: if !permanentInputCheck(M ′) then
17: return;
18: end if
19: if !inputCheck(M ′)||!outputCheck(M ′) then
20: ResolveIOV iolation(M ′, R);
21: else
22: CS = CS ∪M ′;
23: DepthFirstEnumeration(M ′, R);
24: end if
25: R = R ∪ n ∪ Pred(G,n)orR = R ∪ n Succ(G,n)orR = R ∪ n;
26: end for

stored in a subgraph set.

First, 1-subgraphs are generated by single nodes of the input graph (line 4, Algorithm

2). An i-subgraph is built from an i-1 subgraph by including one of the nodes returned by

the function NodeFilter (line 11, Algorithm 2). The algorithm checks the number of per-

manent outputs (PerOutput(G, M)) of subgraph M and the number of permanent inputs

of M (PerInput(G,M)) (lines 13,16, Algorithm 2). The permanent outputs of a subgraph

M are the nodes in M which have an ongoing edge exiting M and are connected to either:

1) a node in V + (external nodes) or 2) an invalid node or 3) a removed node. The perma-

nent inputs of a subgraph M are the nodes which have an ongoing edge entering into M

and belong to either: 1) V + (external nodes) or 2) invalid nodes or 3) removed nodes. Con-

sidering the subgraph M = {1, 3} in Fig.3.2, node 2 is a permanent input of M (node 2 is

a removed node for M {1,3}), and node 1 is a permanent output of M (node 1 is connected
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an external node). As the permanent inputs and at least one successor of each permanent

output have been excluded from M , it is always |IN(G,M)| ≥ |PerInput(G,M)| and

|OUT (G,M)| ≥ |PerOutput(G,M)|. In other words, if the number of permanent outputs

of M or the number of permanent inputs of M is bigger than the output constraint or

the input constraint, the output violation or the input violation cannot be resolved. In

any of the two cases, the algorithm stops further searching for the subgraphs involving the

current subgraph.

If the number of permanent outputs and the number of permanent inputs is smaller

than the outputs constraint and the inputs constraint, the subgraph should be checked

for violation of input/output constraints (line 19, Algorithm 2). If there is no violation

of the I/O constraints, the subgraph is added to the subgraph set (line 22, Algorithm 2).

Otherwise, a function aiming to find possible nodes to reduce the number of inputs or the

number of outputs is called (line 20, Algorithm 2). In order to avoid multiple identification

of each subgraph, each time the newly added node is deleted for the following iterations.

3.3.2 Convexity

In order to avoid generating non-convex subgraph, a filtering function is utilized in our

algorithm. Algorithm 3 presents the pseudo-code of the function NodeFilter. Non-convex

subgraphs are automatically ruled out by the function. In other words, each derived

subgraph that is generated by absorbing one of the nodes returned by NodeFilter is a

convex subgraph. Therefore, the convexity check can be omitted in our algorithm. We

formulize this in Lemma 3.3.1.

Lemma 3.3.1 Given a convex DFG G, a convex subgraph M(Vm, Em) : M ∈ G, if a

node u ∈ NodeFilter(M), then the derived subgraph M ′ = M ∪ u is a convex subgraph.

Proof In the first case, u ∈ IPred(G,M), Succ(G,u) ∩ IPred(G,M) = ∅ and M is

convex. Let assume M ′ is a non-convex subgraph. Then, there exists at least one path

from u to another node v ∈ M , which involves a node w /∈ M ′ and w has an ongoing

edge entering into M . Thus, w is a successor of u and an input of M . Obliviously, it

contradicts with Succ(G,u) ∩ IPred(G,M) = ∅. In the second case, u ∈ ISucc(G,M),

Pred(G,u) ∩ ISucc(G,M) = ∅ and M is convex. Similarly, we can also prove it by
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Algorithm 3 Pseudo code for the NodeFilter function
Input: M - the Match
Output: FNS - Filtered Node Set
1: Procedure NodeFilter(M)
2: FNS = ∅;
3: for each node n ∈ IPred(G,M) do
4: if Succ(G,n) ∩ IPred(G,M) == ∅ then
5: FNS = FNS ∪ n;
6: end if
7: end for
8: for each node n ∈ ISucc(G,M) do
9: if Pred(G,n) ∩ ISucc(G,M) == ∅ then

10: FNS = FNS ∪ n;
11: end if
12: end for
13: if !CONNECTED_MATCHES_ONLY then
14: if |OUT (G,M)| < OUTmax then
15: FNS = FNS ∪Disc(G,M);
16: end if
17: end if
18: return FNS;

contradiction. In the third case, u ∈ Disc(G,M) and M is convex. According to the

definition of disconnected nodes of a subgraph, we know that there is neither a path from

u to w or from w to u, where w ∈ M . Therefore, the derived M ′ is convex.

As an example in Fig.3.1, the NodeFilter function returns {7} ∪ {1} ∪ {2, 4, 5, 8, 9} for

the subgraph {3, 6} ({7} ⊆ IPred(G, {3, 6}), {1} ⊆ ISucc(G, {3, 6}) and {2, 4, 5, 8, 9} ⊆

Disc(G, {3, 6})). The derived subgraphs {3, 6, 7}, {3, 6, 1},... , {3, 6, 9} are convex

In addition, the NodeFilter function can be used to generate all possible subgraphs

or only connected subgraphs (line 13-17, Algorithm 3). To enumerate only connected

subgraphs, the function returns only connected nodes (IPred(G,M) and ISucc(G,M))

of the current subgraph. To enumerate all possible subgraphs, the disconnected nodes of

the current subgraphs are also returned by the function.

Furthermore, we have observed that, given a subgraph M , if |OUT (G,M)| = OUTmax,

the subgraph M ′ = M ∪ u, where u ∈ Disc(G,M), is an output constraint violated sub-

graph that cannot be resolved in most cases (only few of them can be resolved, especially in

a big DFG). Considering the subgraph {3, 6} in Fig. 3.1, let assume the output constraint

is 1. As |OUT (G, 3, 6)| = OUTmax, for the subgraph M ′ = M ∪ u, where u ∈ Disc(G, {3,
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6}) = {2, 4, 5, 8, 9}, |OUT (G,M ′)| > OUTmax. Only the derived subgraph {3, 6, 4} can

be resolved by adding the node 1 (|OUT (G, {3, 6, 4, 1})| = OUTmax). That means if

we can prune the mentioned most cases, the search spaces can be reduced radically. In

the function, we use a strategy: the disconnected nodes are returned only when |OUT

(G,M)| < OUTmax. This strategy is safe: if the output constraint violated subgraph M ′

can be resolved and M ′′ is the valid subgraph obtained through the resolving of M ′, there

must be a node that is a successor of M and a successor of the disconnected node. Thus,

M ′′ can be also obtained by continuously adding connected nodes to M . For example, the

subgraph M ′′ : {3, 6, 4, 1} can be obtained by adding node the 1 to M : {3, 6} and adding

the node 4 to {3, 6, 1}.

3.3.3 I/O Constraints

When the current subgraph violates the I/O constraints, we use a function to determine if

a larger subgraph that satisfies the I/O constraints could be derived by adding nodes (see

Fig.3.3). We utilize a similar approach as described in [Chen 2007]. We represent the nodes

between a node n and a subgraph M by Btw(n,M) = {v|v ∈ (Succ(G,n)∩Pred(G,M))

or v ∈ (Pred(G,n)∩Succ(G,M))}. For example, Btw(5, {0, 1, 2}) = {3, 4} in Fig. 3.3(a)

and Btw(0, {3, 4, 5}) = {1, 2} in Fig. 3.3(b).

If the output constraint is violated for the current subgraph M , we find out all the

nodes that could possibly reduce the number of outputs (we call them as output resolving

nodes). An output resolving node can only come from Succ(G,M). It has exactly two

immediate predecessors in M or Succ(G,M), meanwhile, it is a successor of at least

((|OUT (G,M)| − |PerOutput(G,M)|)/(|OUTmax| − |PerOutput(G,M)|)) output nodes.

Once an output resolving node is found, the node and the nodes between it and M are

added. Assuming OUTmax = 1, fig. 3.3(a) shows an example of resolving an output

violation by adding {5} and {3,4} to M , where {5} is an output resolving node and {3,4}

are the nodes between the node 5 and the subgraph M .

Similarly, we define the input resolving node n as a node that could possibly reduce

the number of inputs of the current subgraph M by adding n and the nodes between n

and M to M . An input resolving node can only come from Pred(G,M). It has no input

or a sibling in M or Pred(G,M). For example, assuming INmax = 2 in Fig. 3.3(b), node
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Algorithm 4 Pseudo code for the ResolveIOV iolation function
Input: M - the subgraph
1: Procedure ResolveIOV iolation(M,R)
2: if !outputCheck(M) then
3: ORN = all the possible output resolving nodes;
4: resolve_nodes = {v|v ∈ ORN,∀u ∈ ORN, v /∈ Succ(G,u)};
5: end if
6: if !inputCheck(M) then
7: IRN = all the possible input resolving nodes;
8: resolve_nodes = {v|v ∈ IRN,∀u ∈ IRN, v /∈ Pred(G,u)};
9: end if

10: for each node n ∈ resolve_nodes do
11: M ′ = M ∪ {n} ∪Btw(n,M);
12: if !PermanentOutputCheck(M ′) then
13: return;
14: end if
15: if !PermanentInputCheck(M ′) then
16: return;
17: end if
18: if InputCheck(M ′)&&OutputCheck(M ′) then
19: MS = MS ∪M ′;
20: DepthFirstEnumeration(M ′, R);
21: else
22: ResolveInputV iolation(M ′, R);
23: end if
24: R = R ∪ n ∪ Pred(G,n)orR = R ∪ n Succ(G,n)orR = R ∪ n;
25: end for

1 and node 2 are the resolving nodes for M , i.e., the input violation can be resolved by

adding {1,2} to M .

In order to resolve I/O violation, we may add not only one node to the current

subgraph, but also the nodes between the resolving node and the subgraph. Lemma

3.3.1 guarantees all the subgraphs are convex when we only add one node to the current

subgraph. In this case, we could easily extend lemma 3.3.1, such that all the subgraphs

are still convex when more than one nodes are added (this is formulized in lemma 3.3.2).

Lemma 3.3.2 Given a convex DFG G (V,E), a convex subgraph M(Vm, Em) : M ∈ G,

a node u ∈ V but u /∈ Vm, if M1 = {M ∪ u ∪Btw(u,M)}, the following condition holds

M1 is convex.
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Figure 3.3: Resolve I/O constraints violation

Proof Let assume M1 is non-convex. As M is convex, there must exist a path from a

node a ∈ u ∪ Btw(u,M) to a node b ∈ M , which involves a node w /∈ M1. Obviously,

w ∈ Btw(u,M). As we know Btw(u,M) ⊆ M1, then w ∈ M1. Thus, a contradiction is

reached. So M1 is convex.

During the process of resolving the I/O constraint violation, more than one node could

be possibly absorbed to the current subgraph. In this case, we could delete the current

resolving node in the following procedures, such that all the subgraphs are still identified

only once .

3.3.4 Data Structures and Calculations

During the process of subgraph enumeration, a lot of calculations have to be frequently

performed. Thus, data-structures and calculations that are time efficient are required. As

bit vectors are ideal for performing operations (e.g., union, intersection) on sets, we use

bit vectors to store subgraphs and other subsets of the DFG. As Pred(G,P), Succ(G,P),

IN(G,P) and OUT(G,P) are intensively used in the algorithm, we present the calculation of

them. The calculation of Pred(G,u) and Succ(G,u) is simple and can be done recursively.
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Thus, in this thesis, we do not present it.

Calculation of Pred(G,M ′), Succ(G,M ′), Disc(G,M ′), OUT (G,M ′) and IN(G,M ′)

in DepthFirstEnumeration function: In function DepthFirstEnumeration, the predeces-

sors, successors, disconnected nodes, the outputs and inputs are calculated in each itera-

tion. Each time a new subgraph M ′ is generated by adding a node u to the subgraph M ,

the corresponding subsets should be updated. Formulas 3.1 - 3.5 lists all the calculations

required in the DepthFirstEnumeration function.

Pred(G,M ′)=



































Pred(G,M)− {u} if u ∈ Pred(G,M)

Pred(G,M) ∪ Pred(G,u)−M if u ∈ Succ(G,M)

Pred(G,M) ∪ Pred(G, u) if u ∈ Disc(G,M)



































(3.1)

Succ(G,M ′)=



































Succ(G,M) ∪ Succ(G,u)−M if u ∈ Pred(G,M)

Succ(G,M)− {u} if u ∈ Succ(G,M)

Succ(G,M) ∪ Succ(G,u) if u ∈ Disc(G,M)



































(3.2)

Disc(G,M ′) = G− Pred(G,M ′)− Succ(G,M ′)−M ′ (3.3)

OUT (G,M ′)=



















































OUT (G,M) ∪ {u} if u ∈ Pred(G,M), ISucc(G,u)(M ′

OUT (G,M) if u ∈ Pred(G,M), ISucc(G,u)⊆M ′

{u} ∪{v|v∈OUT (G,M), ISucc(G,u)(M ′} if u ∈ Succ(G,M)

OUT (G,M) ∪ {u} if u /∈ Dis(G,M)



















































(3.4)

IN(G,M ′)=



































IN(G,M) ∪ IPred(G,u)− {u} if u ∈ Pred(G,M)

IN(G,M) ∪ IPred(G,u)−M ′ if u ∈ Succ(G,M)

IN(G,M) ∪ IPred(G,u) if u ∈ Disc(G,M)



































(3.5)

Calculation of Pred(G,M ′), Succ(G,M ′), Disc(G,M ′), OUT (G,M ′) and IN(G,M ′)

in ResolveIOViolation function: To resolve the I/O violation, more than one node could

be added to the subgraph M . The set of added nodes includes a resolving node u and
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the nodes Btw(u,M). According to the definition of resolving node, it can only belong

to Pred(G,M) or Succ(G,M). The Disc(G,M ′) remains unchanged. The calculations

carried out in ResolveIOViolation funtion are dipicted in formulars 3.6 -3.9.

Pred(G,M ′)=



















Pred(G,M)− {u} − {Btw(u,M)} if u ∈ Pred(G,M)

Pred(G,M) ∪ Pred(G,u)−M if u ∈ Succ(G,M)



















(3.6)

Succ(G,M ′)=



















Succ(G,M) ∪ Succ(G,u)−M if u ∈ Pred(G,M)

Succ(G,M)− {u} − {Btw(u,M)} if u ∈ Succ(G,M)



















(3.7)

OUT (G,M ′)=



















OUT (G,M) ∪{v|v∈{u} ∪ Btw(u,M), ISucc(G,u)(M ′} if u ∈ Pred(G,M)

{v|v∈{u} ∪ Btw(u,M) ∪OUT (G,M), ISucc(G,u)(M ′} if u ∈ Succ(G,M)



















(3.8)

IN(G,M ′)=



















IN(G,M) ∪
⋃

v∈{u}∪Btw(u,M) IPred(G,U)− P ′ if u ∈ Pred(G,M)

IN(G,M) ∪
⋃

v∈{u}∪Btw(u,M) IPred(G,U)− P ′ if u ∈ Succ(G,M)



















(3.9)

3.4 A Topology Based Algorithm for I/O Constrained Enu-

meration

In this section, we propose a new efficient algorithm for the automatic enumeration of

all subgraphs under I/O constraint. Our algorithm solves the problem very efficiently

by taking advantage of the topological property of data flow graph (DFG) as well as

overcoming the drawbacks of the previously proposed algorithm.

3.4.1 Motivation

It is noteworthy that the well-known algorithm proposed in [Atasu 2003] starts with a

topological sort on G: nodes of G are ordered such that if G contains an edge (u, v) then

u appears after v in the ordering. Fig. 3.4 shows a topologically sorted graph. Then,

the algorithms enumerate all possible subgraphs based on an implicit binary decision tree

which is built according to the topological ordering. By applying the topological property
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Figure 3.4: A topologically sorted data-flow graph

of G, the search space can be reduced radically. An improved algorithm [Pozzi 2006] of

[Atasu 2003] further limits the search space by the permanent-input check. As an example

in Fig.3.4, the subgraph {4,8} is obtained by adding the node 8 to the subgraph {4}. After

inclusion of the node 8, the input node 7 becomes a permanent input (7 is smaller than

the biggest number in the subgraph {4,8}). Furthermore, the external node connected to

node 8 is also a permanent input. Thus, the number of permanent inputs for the subgraph

{4,8} is 2. So, the subgraphs whose permanent inputs exceed the input constraint will not

be considered. Therefore, the search space is further pruned.

However, we have observed that the search space still could be reduced in the following

situations.

1. Given a convex subgraph M, the subgraph M ′ = M ∪ u, where u ∈ (Pred(G,M) −

IPred(G,M)), M’ must be a non-convex subgraph. For example, the subgraph

{2} is a convex subgraph in Fig. 3.4, while the subgraphs {2,8},{2,9},{2,10} are

non-convex subgraphs.

2. Given a convex subgraph M, if |OUT (G,M)| = OUTmax, the subgraph M ′ = M∪u,

where u ∈ Disc(G,M), then |OUT (G,M ′)| > OUTmax. In Fig. 3.4, the subgraph

{0,3} has 2 outputs. Let assume the output constraint is 2. Obviously, the output

constraint is violated for the subgraphs {0,3,5}, {0,3,6},{0,3,9} .

As the algorithms [Atasu 2003, Pozzi 2006] generate subgraphs based on an implicit

binary search tree, they cannot prune the above mentioned search space. Therefore, we

propose a novel subgraph generation algorithm that preserves all the advantages of the
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Algorithm 5 Pseudo code for the topology based subgraph enumeration algorithm
Input: Graph G
Output: MS - Subgraph Set (global variable)
1: Procedure TopologyBasedIdentification()
2: TopologicalSort(G);
3: ONPS = FindAllOneNodeMatches(G);
4: MS = MS ∪ONPS;
5: for each subgraph P ∈ ONPS do
6: RecursiveMatchGeneration(M);
7: end for
8:

9: Procedure RecursiveMatchGeneration(M)
10: for each node n ∈ NodeFilter′(M) do
11: M ′ = M ∪ {n};
12: M ′.SetOrder(n);//set the order of the new subgraph as n
13: if !outputCheck(M ′) then
14: return;
15: end if
16: if !permanentInputCheck(M ′) then
17: return;
18: end if
19: if inputCheck(M ′) then
20: MS = MS ∪M ′;
21: end if
22: RecursiveMatchGeneration(M ′);
23: end for

algorithms [Atasu 2003, Pozzi 2006], meanwhile, the search space could be further pruned

tangibly.

3.4.2 Overview

The subgraph enumeration algorithm we propose is depicted in Algorithm 5. It is a depth

first searching algorithm by a recursive process. Our algorithm accepts directed acyclic

graph as input and generates all possible subgraphs. The results of the algorithm are

stored in a subgraph set.

The order of a node indicates the number assigned for the node by topological sort.

Similarly, the order of a subgraph represents the maximum number among the nodes

of the subgraph. For example, in Fig. 3.4, the order of the subgraph {0,3} is 3. Our

algorithm starts with a topological sort on G (line 2, Algorithm 5): if G contains an edge

(u, v) then u has a higher order than v (u > v). Fig. 3.4 shows a topological sorted graph.
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In the algorithm, each subgraph has a tag that indicates the order of the subgraph (line

12, Algorithm 5). The node with smaller order than the order of the subgraph will not

be added to the subgraph, such that the subgraph enumeration algorithm generates all

the subgraphs respecting topological ordering (this implies that the node to be added to

the subgraph either belongs to the predecessor nodes or the disconnected nodes of the

subgraph). The algorithm traverses the sorted nodes in the application graph. First,

1-subgraphs are generated (line 3, Algorithm 5). Each generated one node subgraph

has an order that is equal to the order of the only node. An (i+1)-subgraph is built

from an i-subgraph by including one of the nodes returned from the NodeFilter’ function

(line 10, Algorithm 5). The order of each node returned by NodeFilter’ is higher than

the order of the i-subgraph. If the output constraint has already been violated for the

i-subgraph, the algorithm stops searching (i+1) - subgraphs based on the i-subgraph:

adding nodes that appear later in the topological ordering cannot reduce the number

of outputs of the i-subgraph. For example, let assume the output constraint is 1, then

the subgraph {0,3} (see Fig. 3.4) violates the output constraint, the violation cannot

be resolved by adding nodes with higher order. This has been formulized into Lemma 3.4.1.

Lemma 3.4.1 (Monotonicity of the Number of Outputs) : Let M1 and M2 be two disjunct

subgraphs of G such that for every node u1 ∈ M1 and every node u2 ∈ M2, u1 < u2. Then,

OUT (G,M1 +M2) ≥ OUT (G,M1).

Proof The proof to this lemma is straightforward and can be found in [Pozzi 2006].

The algorithm checks the number of permanent inputs (PerInput(G,M)) of subgraph

M (line 16, Algorithm 5). If the number of permanent inputs of the current subgraph

violates the input constraint, then the algorithm stops further searching for the subgraphs

involving the current subgraph: the input violation cannot be resolved by further adding

the nodes that appear later in the topological ordering. The permanent inputs of a sub-

graph M are the nodes which have an ongoing edge entering into M and either: 1) belong

to V + (external nodes) or invalid nodes or 2) have lower order than the order of the cur-

rent subgraph. Considering the subgraph {4,8} in Fig. 3.4, node 7 is a permanent input



3.4. A Topology Based Algorithm for I/O Constrained Enumeration 49

Algorithm 6 Pseudo code for the NodeFilter′ function
Input: M - the Match
Output: FNS - Filtered Node Set
1: Procedure NodeFilter(M)
2: FNS = ∅;
3: for each node n ∈ InInput(G,M) do
4: if Succ(G,n) ∩ IN(G,M) == ∅ then
5: FNS = FNS ∪ n;
6: end if
7: end for
8: if |OUT (G,M)| < OUTmax then
9: FNS = FNS ∪ {v|v ∈ Disc(G,M), v > M.GetOrder()};

10: end if
11: return FNS;

of the subgraph {4,8}, and external node Ex is also a permanent input of the subgraph

{4,8}. Let further assume INmax = 2, as the number of permanent inputs of {4,8} is 2,

the violation cannot be resolved anymore.

3.4.3 Search Space Pruning and Convexity

Algorithm 6 lists the pseudo-code of the function NodeFilter’. Due to this function, the

search space is reduced radically. We define the internal inputs (InInput(G,M) = {u|u ∈

V, u /∈ M,v ∈ M, (u, v) ∈ E, u > M.getOrder()}) of a subgraph M as the nodes that

have higher order than the order of M , belong to V but not in M and have at least

an edge entering into M . For example, in Fig. 3.4, node 10 is an internal input of the

subgraph {4,8}. Obviously, IN(G,M) = InInput(G,M) ∪ PerInut(G,M). With the

function, the algorithm only considers subgraph M ′ = M ∪ u, where u ∈ InInput(G,M)

and Succ(G,u)∩ IN(G,M) = ∅ instead of considering subgraph M ′′ = M ∪u, where u ∈

Pred(G,M) (lines 3-7, Algorithm 6). Furthermore, the function prevents the algorithm

from considering subgraph M ′ = M ∪ u, where u ∈ Disc(G,M), when |OUT (G,M)| =

OUTmax (lines 8-10, Algorithm 6): adding a disconnected node to the current subgraph

M increases the number of outputs.

In addition, non-convex subgraphs are automatically ruled out by NodeFilter’

function. In other words, each derived subgraph that is generated by absorbing one of

the nodes returned by NodeFilter’ is a convex subgraph. Therefore, the convexity check

can be omitted in our algorithm. We formulize this in Lemma 3.4.2.
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Lemma 3.4.2 Given a convex DFG G, a convex subgraph M (Vm, Em) : M ⊆ G, if a

node u ∈ NodeFilter′(M), then the derived subgraph M ′ = M ∪ u is a convex subgraph.

Proof In the first case, u ∈ InInput(G,M), Succ(G,u) ∩ IN(G,M) = ∅ and M is

convex. Let assume M ′ is a non-convex subgraph. Then, there exists at least one

path from u to another node v ∈ M , which involves a node w /∈ M ′ and w has

an ongoing edge entering into M . Thus, w is a successor of u and an input of M .

Obliviously, it contradicts with Succ(G,u) ∩ IN(G,M) = ∅. In the second case,

u ∈ {v|v ∈ Disc(G,M), v > M.getOrder()} and M is convex. According to the definition

of disconnected nodes of a subgraph, we know that there is neither a path from u to w or

from w to u, where w ∈ M . Therefore, the derived M ′ is convex.

For example, in Fig. 3.4, the NodeFilter’ function returns {5, 6} ∪ {3, 4, 7} for the

subgraph {2} ({5, 6} ⊆ InInput(G, {2}) and {3, 4, 7} ⊆ Disc(G, {2})). The derived

subgraphs {2,3},{2,4},{2,7} are convex. For the subgraph {4,8}, node set {9} is returned

by the function. The derived subgraph {4,8,9} is convex.

3.4.4 Data Structure and Calculations

The calculations of the subsets of the DFG involved in the algorithm are presented in this

section. According to the definition of Disc(G,M), we know that Disc(G,M) = G−M−

Pred(G,M) − Succ(G,M). We also know that the order of each node of Succ(G,M) is

lower than the order of the subgraph M and the order of each node of the subgraph M is

lower than or equal to the order of the subgraph M . Therefore, {v|v ∈ Disc(G,M), v >

M.getOrder()} = {v|v ∈ G−Pred(G,P ), v > P.getOrder()}. So, we can use Pred(G,M)

instead of Disc(G,M) to calculate the set {v|v ∈ Disc(G,M), v > M.getOrder()}.

Calculation of Pred(G,M ′), PerInput(G,M ′), Output(G,M ′), InInput(G,M ′) and

IN(G,M ′): Assuming a new subgraph M ′ is obtained by adding a node u to an old

subgraph M . The permanent inputs, internal inputs, inputs and outputs are changed

after adding the node to the old subgraph M . Thus, the calculation for these is necessary.
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Our algorithm computes these by analyzing the old I/O nodes as well as the node u (see

formulas (3.10)-(3.14)).

Pred(G,M ′)=



















Pred(G,M)− {u} if u ∈ Pred(G,M)

Pred(G,M) ∪ Pred(G,u) if u /∈ Pred(G,M)



















(3.10)

OUT (G,M ′)=



































OUT (G,M) ∪ {u} if u ∈ Pred(G,M), ISucc(G+, u)(M ′

OUT (G,M) if u ∈ Pred(G,M), ISucc(G+, u)⊆M ′

OUT (G,M) ∪ {u} if u /∈ Pred(G,M)



































(3.11)

PerInput(G,M ′)={v|v∈InInput(G,M),v<u} ∪PerInput(G,M) (3.12)

InInput(G,M ′) = {v|v ∈ InInput(G,M), v > u} ∪ IPred(G,u) (3.13)

IN(G,M ′) = PerInput(G,M ′) ∪ InInput(G,M ′) (3.14)

Fig. 3.5 shows the search space for the generation of all feasible subgraphs involving

node 1 in Fig. 3.4. To make clear the presentation, we assume the input and output

constraints are not imposed. Firstly, the nodes to be added to the subgraph {1} are

returned. According to the NodeFilter’ function, only node of the set {4,5}∪ {2,3,6} can

be added to the subgraph {1}({4, 5} ⊆ InInput(G, {1}) and {2, 3, 6} ⊆ Disc(G, 1)). As

the algorithm produces new subgraphs by extending previous subgraph with one node

each time, the search space is split into 5 branches - {1,2},{1,3},{1,4},{1,5},{1,6}. Based

on the subgraph {1,6}, the filtering function returns an empty set: InInput(G, {1, 6}) = ∅

and {v|v ∈ G − Pred(G, {1, 6}), v > {1, 6}.getOrder()} = ∅. Thus, the algorithm stops

the searching for the subgraphs involving the subgraph {1,6}. For the subgraph {1,5},

nodes from {6} ∪ {9} will be added to it respectively.
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Figure 3.5: Illustration of the search tree for the generation of all feasible subgraphs
involving node 1 in Fig. 3.4

3.4.5 Complexity Analysis

In order to give the worst-case bound of the proposed algorithm, we transform the pseudo

code in Algorithm 5 and Algorithm 6 to a equivalent pseudo code with visible upper bound

(see Algorithm 7). We first move the filter function into the recursive function. According

to the algorithm, only immediate predecessor or disconnected node can be added to the

current subgraph M (lines 6, 23, Algorithm 7). Adding an immediate predecessor to M

may create some permanent inputs (line 11, Algorithm 7). If the immediate predecessor

has at least one successor that is not in M , then a new output is created. Adding a

disconnected node to M must create a new output and may create some permanent inputs

(lines 25, 26, Algorithm 7).

In Algorithm 7, each iteration has three recursive calls (lines 14,17,27, Algorithm 7).

Each recursive call is activated only after the increase of outputs or permanent inputs.

As the |OUT(G,M)| ≤ OUTmax and |PerInput(G,M)| ≤ INmax, the maximal depth of

the recursive search is OUTmax + INmax. The while loop executes at most |G| times.

Thus, the number of iterations should be no more than |G|. Assume the union operation

and intersection operation can be proceeded in O(1) time, the complexity of the algorithm

is therefore O(|G|INmax+OUTmax). A recent research proves that the time complexity of

the algorithm proposed in [Pozzi 2006] is also O(|G|INmax+OUTmax) [Reddington 2011].
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The algorithm [Pozzi 2006] and our algorithm are the only two existing algorithms with

polynomial time complexity in terms of I/O constraints.

3.4.6 Further Improvement

To reduce search space, the algorithm presented in section 3.4.2 only stops the current

searching when the output constraint is violated or the number of permanent inputs ex-

ceeds the input constraint. Similar to the approach presented in subsection 3.3.3, when

the current subgraph violates the inputs constraint, we use a function called ResolveIn-

putViolation() (see Algorithm 8) to determine if a larger subgraph that satisfies the inputs

constraint could be derived by adding nodes (thus, we add a calling to the function Re-

solveInputViolation() in Algorithm 5 when the input constraint is violated).

Calculation of Pred(G,M ′), Succ(G,M ′), Disc(G,M ′) and OUT (G,M ′), and

IN(G,M ′) in ResolveInputViolation function: In function ResolveInputViolation, a new

subgraph M ′ is obtained by adding a resolving node u and Btw(u,M) to a previous sub-

graph M . The calculation for subsets of M ′ is different from the above calculations (see

formulas (3.15),(3.16)). As u is a resolving node, it can only belong to Pred(G,M).

Pred(G,M ′) = Pred(G,M)− {u} − Btw(u,M) (3.15)

OUT (G,M ′) = OUT (G,M) ∪ {v|v∈{u} ∪ Btw(u,M), ISucc(G+, u) (M ′} (3.16)

3.5 Summary

In this chapter, we presented the various subgraph enumeration algorithms that enumerate

subgraphs under different design constraints. We first detailed the size constrained sub-

graph enumeration algorithm. The algorithm is very scalable in benefit of avoiding multi-

ple identifications of any subgraph. After that, an I/O constrained subgraph enumeration

algorithm that is based on and extends the size constrained algorithm was introduced.

The algorithm can be tuned to generate all valid subgraphs or only connected subgraphs.

Finally, we also presented a new I/O constrained subgraph enumeration algorithm. The
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algorithm solves the problem efficiently by taking advantage of the topology property of

data-flow graphs when the number of I/O is considered as design constraint.
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Algorithm 7 The equivalent pseudo code with visible upper bound for the pseudo code
presented in Algorithm 5 and Algorithm 6
Input: G - the Graph
Output: MS - Match Set (global variable)
1: Procedure RecursiveMatchGeneration(M)
2: n = M.GetOrder();
3: while (n < |G|&&|OUT (G,M)| ≤ OUTmax&&|PerInput(G,M)| ≤ INmax) do
4: n = n+ 1;
5: M ′ = M ∪ {n};
6: if n ∈ InInput(G,M) then//n is an immediate predecessor of M
7: if Succ(G,n) ∩ IN(G,M) 6= ∅ then
8: break;
9: end if

10: MS = MS ∪M ′;
11: PerInput(G,M ′) = PerInput(G,M) ∪ {v|v ∈ InInput(G,M), v < n};
12: if ISucc(G,n) ( M then // not all direct successors are in M
13: OUT (G,M ′) = OUT (G,M) ∪ n;
14: RecursiveMatchGeneration(M ′);
15: end if
16: if |PerInput(G,M ′)| > |PerInput(G,M)| then
17: RecursiveMatchGeneration(M ′);
18: end if
19: end if
20: if n ∈ Pred(G,M) then //n is a predecessor of M
21: break;
22: end if
23: if (|OUT (G,M)| < OUTmax then //n is a disconnected node of M
24: MS = MS ∪M ′;
25: OUT (G,M ′) = OUT (G,M) ∪ n;
26: PerInput(G,M ′) = PerInput(G,M) ∪ {v|v ∈ InInput(G,M), v < n};
27: RecursiveMatchGeneration(M ′);
28: end if
29: M = M ′;
30: end while
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Algorithm 8 Pseudo code for the ResolveInputV iolation function
Input: M - the subgraph
1: Procedure ResolveInputV iolation(M)
2: IRN = all the possible input resolving nodes;
3: resolve_nodes = {v|v ∈ IRN,∀u ∈ IRN, v /∈ Pred(G,u)};
4: for each node n ∈ resolve_nodes do
5: M ′ = M ∪ n ∪Btw(n,M);
6: M ′.SetOrder(n);
7: if OutputCheck(M ′) then
8: return;
9: end if

10: if !permanentInputCheck(M ′) then
11: return;
12: end if
13: if inputCheck(M ′) then
14: MS = MS ∪M ′;
15: RecursiveMatchGeneration(M ′);
16: else
17: ResolveInputV iolation(M ′);
18: end if
19: end for



Chapter 4

Subgraph Selection Algorithms

So far, we get a set of subgraphs produced by the subgraph enumeration algorithms.

The task now is to select a subset of the enumerated subgraphs in terms of different

objectives. In this section, three heuristic approaches targeting to different objectives are

first introduced. Then, an exact algorithm and a genetic algorithm for minimal number

of matches selection are presented.

4.1 Problem Formulation

Various strategies can be used to guide the subgraph selection. In this section, we focus

on three different strategies. First, code size can be one important optimization goal.

In embedded design and processor design, only a small amount of on-chip memory is

available to store the instructions. In the context of high-level synthesis, selecting a

smallest set of subgraphs results in the most compacted code. Design space is reduced,

so the high-level synthesis tool may produce results in shorter time. Next, the frequency

of occurrences of a pattern indicate the possible resource sharing. In this paper, a

pattern selection approach based on the frequency of occurrences of patterns is presented

(the number of instances of patterns). Finally, selecting some subgraphs may increase

the length of critical paths. So, subgraph selection that takes into account the laten-

cy overhead is very important. A critical path based selection is introduced in this section.

Problem 2 (subgraph/pattern selection): Given a DFG G = (V,E) and a set of sub-

graphs/patterns identified by the enumeration step, select a subset of subgraphs in terms

of the strategy such that every node in G is covered and the following constraints are

satisfied.
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Figure 4.1: Overlapping between subgraphs
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Figure 4.2: Cyclic subgraphs

• Non-overlapping;

• Acyclicity

Overlapping Constraint: Two subgraphs may have the same nodes in common. Allowing

overlap may sometimes improve the resulting execution time, while unnecessarily increase

the power consumption and makes the code regeneration intractable. In this thesis, we

disallow overlap between any subgraph. For example, if M1 is selected then M2 cannot

be selected in Fig. 4.1.

Acyclicity Constraint: A cycle could be generated, if two subgraphs provide data for

each other. In such case, a deadlock is occurred between the two subgraphs. In Fig. 4.2,

subgraphs M1 and M2 are cyclic subgraphs. A cycle exists between the two subgraphs.

Prior to the detail introduction of the three algorithms, the common constraints (over-

lapping, acyclicity) should be considered.

Overlapping: Every time a match (M) or a pattern (P) is considered as a selection
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candidate, we check wether overlapping is occurred between the candidate and the already

covered nodes (C).

M ∩ C = ∅ (4.1)

It should be noted that the overlapping check is slightly different if the candidate is a

pattern (see formula 4.2). Here, we check every match of the pattern candidate. Please

note that it is possible to build a conflict graph to quickly remove overlapped subgraphs

during the selection process (see section 2.4).

M ∩ C = ∅,∀M ∈ P (4.2)

Acyclicity: To ensure there is no cycle between the selected matches and the current

candidate (M), a cycle check should be performed. If the current candidate satisfies the

following statement, then no cycle exists between it and the other selected matches.

Succ(G,M) ∩ Pred(G,M) = ∅ (4.3)

If the candidate is selected and passes the overlapping check and acyclicity check, it is

collapsed into a super node.

4.2 Heuristic Algorithms

As exact solution algorithm is time-consuming and usually fails to give the result due to

too long runtime or memory overflow. For example, a branch-and bound algorithm (see

section 4.3) takes 20 seconds to find a minimal number of matches that completely cover

the application graph of the benchmark DOTPRODUCT (4× 4). The application graph

of DOTPRODUCT (4 × 4) is a small graph that contains only 8 nodes. However, the

exact algorithm fails to produce results in one hour for the benchmark DOTPRODCUT

(6 × 6) that contains 12 nodes. Thus, an efficient heuristic approach is required. In this

subsection, three heuristic algorithms targeting to different objectives are shown.
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Figure 4.3: Select the subgraph with less overlapping

4.2.1 Minimal Number of Matches Selection

As we know, the number of selected matches (subgraphs) is directly related to the code

size. Hence, selecting the minimal number of matches from a given data-flow graph can

be an interesting strategy at the selection step.

In the approach, a priority value is given to every match. We always first select the

matches with highest priority. The algorithm first calculates the priority of each match.

The priority is calculated according to the following formula.

Fi = N +E + α ∗ 1/O(Mi) (4.4)

where N is the number of nodes in match Mi to favorite large size matches, E is the number

of internal edges of match Mi (as we know, the internal data flows are free of multiplexors,

the value E can be used to roughly evaluate the save of multiplexors), and O(Mi) is the

number of other matches that overlap with Mi and α is a parameter that represents the

weight of overlapping. The intuition behind the using of 1/O(Mi) is to select the match

that overlaps with less other matches when overlapping is disallowed such that we may

have more possibilities to get a better solution. For example, assume the parameter α is 2

and the maximum size of all candidate matches is 3 in Fig. 4.3 (only connected matches

are considered). We thus have 5 1-subgraphs, 4 2-subgraphs and 4 3-subgraphs. Selecting

M2 results in the selection of the set of subgraphs {M2, {4}, {5}}. Selecting M1 leads to

the selection of a smaller set of subgraphs {M1,{1,2}}. We prefer the match M1 to the

match M2 since M1 has less overlapping (FM1 = 3+2+ 2 ∗ 1/8 > FM2 = 3+ 2+ 2 ∗ 1/9).
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Figure 4.4: Select the pattern with more nodes

4.2.2 Frequency of Occurrences Based Pattern Selection

Other than the preceding selection approach that accepts the set of subgraphs generated

by the subgraph enumeration step as input, a set of patterns should be provided to this

pattern based selection strategy as input. The set of patterns is generally collected using

a graph isomorphism algorithm. Given two subgraphs a and b, if a is isomorphic to b, a

pattern p is created, and the subgraphs a and b are recorded in the pattern p.

Selecting a minimum set of distinct patterns may result in less area cost in high-

level synthesis taking component reuse into account. In this sense, the pattern with

higher frequency of occurrences seems to be more interesting. Generally, smaller patterns

have higher frequency of occurrences. Nevertheless, small patterns may not lead to good

performance improvement or obvious area reduction. In the extreme case, if only 1-

subgraphs are selected, there is no change at all to the source code. The authors [Guo 2003]

have proposed an interesting objective function. Inspired by it, we propose a more efficient

objective function (formula 4.5) to balance the weight of the size and the weight of the

frequency.

Fi = N ∗ |M |+ α ∗N ; (4.5)

where N is the size of the pattern, and |M | is the number of matches of the pattern.

An extra weight is given to the size. The weight is controlled by the parameter α. For

example, assuming the parameter α is 0.3, we prefer to select PA than PB in Fig. 4.4

(FPA
= 3 ∗ 3 + 0.3 ∗ 3 > FPB

= 1 ∗ 9 + 0.3 ∗ 1).
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4.2.3 Critical Path Based Match Selection

The previous two approaches do not carefully consider the performance overhead. Al-

though the work in [Cong 2008, Cong 2010] tried to use a measurement to select flat

patterns to make use as much as possible of parallelism, results show that the length of

the critical path of the DFG is still increased in many applications. Using the example

in Fig. 4.5, we assume the multiplication takes 2 cycles to execute, the addition takes 1

cycle to execute and the maximum size of the matches/patterns is 2. Then, the length of

the critical path of the original DFG is 4 cycles (Fig. 4.5 (a)). If the matches M1 and

M2 are selected, let further assume each match takes 2.7 cycles. The length of the critical

path is augmented to 7.4 (2 + 2.7 + 2.7) cycles after selection (Fig. 4.5).

Therefore, we propose a critical paths based match selection approach that can not

only avoid the increase of the length of the critical paths but also give performance im-

provement. As the matches that appear on the critical paths are more likely to provide

performance improvement by shrinking the height of the application graph, we initially

rank every match in terms of the number of its nodes occurring on the critical paths (see

formula 4.6).

Fi = |M ∩ CP |; (4.6)

where M is the set of nodes in the match, CP represents the set of nodes on critical

paths. As an example in Fig. 4.5, the matches {1,2} and {2,4} have a higher rank

than the matches {1,3} and {2,5} (F{1,2} = 2, F{2,4} = 2, F{1,3} = 1, F{2,5} = 1). After

ranking every match candidate, we evaluate the opportunity of every match. The matches

that may increase the length of the critical path are not selected. Considering the same

example in Fig. 4.5, the match {2,4} is not selected due to the increase of the length of

the critical path. Instead, the match {1,2} along with the one node matches {3},{4} and

{5} are selected by our proposed approach (if only connected subgraphs are considered).

Let assume the delay of the match {1,2} is 1.4 cycles, the length of the critical path after

the selection is then 3.4 cycles (2 + 1.4).

As the three proposed approaches are all heuristic algorithms and the main difference

is the given objective function, we use a common pseudo-code to describe them (see
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Figure 4.5: (a) The original data-flow graph (b) A selection that results in the increase of
the length of the critical path

Algorithm 9 Subgraph/Pattern Selection Algorithm

Input: CS - the complete set of enumerated candidates (subgraphs/patterns); F (i) -
objective function

Output: SS - a subset of selected candidates
1: sort CS in descending order according to F (i);
2: while CS 6= ∅ do
3: M = the highest prioritized candidate in CS;
4: if Overlapping(M,SS) and Cycle(M,SS) then
5: if IncreaseCriticalPath(M) then
6: SS = SS ∪M ;
7: end if
8: end if
9: CS = CS −M ;

10: end while

Algorithm 9).

4.3 An Exact Algorithm for Minimal Number of Matches

Selection

Although the exact algorithm is time-consuming compared to heuristic algorithms or

greedy algorithms, we still present a branch-and-bound algorithm to find minimal number

of matches for the purpose of completeness and comparison.



64 Chapter 4. Subgraph Selection Algorithms

4.3.1 Set Covering Problem

First of all, it is necessary to introduce the definition of the set covering problem. Then,

we show that finding the minimal number of matches from a given data-flow graph is a

specific case of the set covering problem.

Set Covering Problem (SCP): Given an m-row, n-column, zero-one matrix (aij), each

column of the matrix is associated with a cost ck, the set covering problem is to find a

subset of the columns that covers each row of the matrix at minimal cost. Following is

the integer linear programming formulation of the SCP:

Minimize

n∑

j=1

cjxj (4.7)

Subject to

n∑

j=1

aijxj ≥ 1, i = 1, · · ·,m (4.8)

xi ∈ 0, 1, j = 1, · · ·, n (4.9)

The variable xj equals 1 if the column j is selected in the solution, and 0 otherwise.

The equation 4.8 ensures that each row is covered by at least one column. When all the

cost coefficients cj are equal, the problem is then a particular case of SCP. It is called

unicost set covering problem.

According to the definition of the set covering problem, we can easily transform the

minimal number of matches selection problem to the unicost set covering problem. A

simple scheme for the transformation follows :

1. Each node of the graph corresponds to a row in the matrix.

2. Each match corresponds to a column in the matrix.

3. All the matches have the same cost (cj=1).

As SCP is a classical and well studied problem in computer science, plenty of ap-

proaches such as integer linear programming[Liao 1997], heuristic method[Caprara 1999]

and ant colony optimization[Ren 2010] trying to solve it efficiently have been proposed. In
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this thesis, we present a typical branch-and-bound approach that gives exact solution for

SCP and a genetic algorithm that gives near-optimal solution for SCP. Please note that

the value of each column (match) can be typically link with the power consumption, area

cost or performance speedup. If the selection target is not reducing the code size, then

the match selection problem can be transformed to the general SCP.

4.3.2 A Branch-and-Bound Algorithm

In this subsection, a typical branch-and-bound algorithm for covering the application

graph with minimal number of matches is presented. Similar branch-and-bound algorithms

targeting different objectives can be found in [Clark 2006, Dinh 2008]. The algorithm

produces the optimal solution by using branch-and-bound manner. The pseudo code for

the exact algorithm is shown in Algorithm 10.

Similarly to the heuristic algorithm, the inputs to the exact algorithm are the DFG

and a list of matches. The list of matches is sorted in order of decreasing size (line 2,

Algorithm 10). Each candidate match can be selected or be passed (lines 3-4, Algorithm

10). For each candidate match currently considered, it is deleted from current match list

(line 7, Algorithm 10). If it is selected, we add it to the selected list (line 9, Algorithm 10).

When the DFG is fully covered by the selected matches so far (line 10, Algorithm 10), we

record the better solution from the current solution and the best solution so far (line 16,

Algorithm 10). Then, we update the match list (line 16, Algorithm 10). A comparison

is used to estimate whether the best solution based on current partial solution is better

than the best solution so far (line 17, Algorithm 10). The best solution so far is the lower

bound (current_best). The calculation, |C|+(G−C)/|M1|, gives the best solution based

on the current partial solution. The first portion of the calculation (|C|) is the number

of matches selected so far. The rest portion ((G − C)/|M1|) gives the least of number of

matches that have to be used to cover the uncovered nodes (G− C). |M1| is the number

of nodes covered by the "best" match among the left matches from the match list. If the

best solution based on the current partial solution is worse than the best solution so far,

all the solutions based on the current partial solution are not necessary to be explored

(line 18, Algorithm 10).
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Algorithm 10 The pseudo code for the exact algorithm selecting minimal number of
matches
Input: G - the DFG; M - the set of all matches; Pi - the priority of the match Mi;
Output: C - the list of selected matches
1: Procedure Select(G,M)
2: Calculate Pi for each match;
3: Sort M in descending order in terms of Pi;
4: Branch(M1, true,M,C);
5: Branch(M1, false,M,C);
6:

7: Procedure Branch(S, selected,M,C)
8: M = M − S;
9: if selected == true then

10: C = C ∪ S;
11: if C == G then // if all the nodes are covered
12: if |C| < current_best then
13: current_best = |C|;
14: return;
15: end if
16: end if
17: Update M by deleting the matches overlapping with the match s;
18: if (|C|+ (G− C)/|M1|) > current_best then
19: return;
20: end if
21: end if
22: Branch(M1, true,M,C);
23: Branch(M1, false,M,C);

4.4 A Genetic Algorithm for Minimal Number of Matches

Selection

The idea of genetic algorithm (GA) was first introduced by Holland [Holland 1975] in the

1970s. Genetic algorithms have been widely applied to various fields including engineering,

chemistry, physics, transportation, and so on. Genetic algorithms are nature-inspired

optimization algorithms inspired from the genetic inheritance in the evolutionary process

of nature world. In general, a genetic algorithm tries to evolve the solutions generation

by generation through inheriting the good characteristics from highly adapted ancestors,

while the less adapted ancestors will be eliminated and replaced by the newly generated

descendant. Genetic algorithms use probabilistic search that aims at locating globally

optimal solution. The most common processes taken in genetic algorithms are presented

as follows.
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1. Generate an initial population;

2. Evaluate the fitness of each individual in the population;

3. Repeat

select the best-fit individuals from the population;

produce children through crossover or mutation on selected individuals;

evaluate the fitness of the children;

replace some least-fit or all of the ancestors by the children;

4. Until (max number of generations or a satisfactory solution has been found)

As described in the previous section, the pattern selection problem can be transformed

into the set covering problem. The set covering problem is a typical combinatorial opti-

mization problem, while the genetic algorithm is one of the best algorithms for solving

combinatorial optimization problem, especially when the problem is NP-complete problem.

Therefore, we try to apply the genetic algorithm to solve the pattern selection problem in

this section.

4.4.1 Encoding

The first step for any GA is to find an appropriate representation of each solution (in-

dividual, chromosome). Intuitively, we use a n-bit binary representation as the solution

structure. Each bit in the representation is associated with a subgraph (matches, gene).

A value of 1 for the ith bit implies the subgraph i is selected in the solution. For con-

venience, we use the index i to represent the subgraph i in this section. Each subgraph

is assigned a unique index either randomly or according a specific sorting order (for ex-

ample, in minimal number of matches selection problem, we sort the subgraphs according

to descending order of the size of subgraph). The binary representation of a solution for

pattern selection problem is illustrated in Fig. 4.6. This solution represents the selection

of subgraphs 1,3,5,6,7.
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1 0 1 0 1 1 1 0

1 2 3 4 5 6 7 8

a solution

subgraph

Figure 4.6: Binary representation of a solution

Algorithm 11 A randomized greedy heuristic method for generating initial population
Input: G - graph; S - subgraphs; N - the number of solutions;
Output: P - initial population
1: Procedure Heursitic_Initlialize_Population(G,S,N)
2: L = {s ∈ S : es > γ ×maxs∈S|s|} //generate a candidate list
3: while (n <= N) do //the number of solutions to be generated
4: I = Generate_A_Solution(L,S);
5: P = P ∪ I;
6: end while
7:

8: Procedure Generate_A_Solution(L,S)
9: while (|L| > 1&&(|I| < |G|) do

10: r = Randomly_Select_A_Subgraph(L); //randomly select a subgraph from the
candidate list

11: I[r] = 1;
12: L = L− r;
13: L = L−{s ∈ L : s∩ r 6= ∅}; //delete the subgraphs overlapping with the subgraph
14: end while
15: C = M − L; //a complement list
16: while |I| < |G| do //until a feasible solution is generated
17: r = Randomly_Select_A_Subgraph(C);
18: I[r] = 1;
19: C = C − r;
20: C = C−{s ∈ C : s∩r 6= ∅}; //delete the subgraphs overlapping with the subgraph
21: end while
22: return I;

4.4.2 Generating the Initial Solution

Traditionally, in order to generate a diversity of initial solutions, all the initial solutions

are randomly generated. However, an initial population with higher quality may speed-

up the convergence and reduce the generations required to obtain near-optimal solutions.

Thus, we use a randomized greedy heuristic method to generate some high quality solu-

tions. Meanwhile, to keep the diversity of initial population, the rest initial solutions are

randomly generated. The method used to generate some high quality initial solutions is

presented in Algorithm 11.

A candidate list containing some promising subgraphs is created in the method (line
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2, Algorithm 11). We use the following ratio to roughly evaluate the importance of each

subgraph.

es = |s|/cs (4.10)

Where cs is the cost of the subgraph s, |s| is the number of nodes covered by the subgraph

s. In the case of minimal matches selection problem, as the cost of each subgraph is equal

to 1, es = |s| . Thus, the promising subgraphs are the subgraphs whose size is equal to or

bigger than the value γ ×maxs∈S |s| . Based on the created candidate list, subgraphs are

randomly selected (line 10, Algorithm 11) until the candidate list is empty or the graph

is covered (line 9, Algorithm 11). As overlapping is disallowed, the subgraphs overlapping

with the selected subgraph are deleted from the candidate list (line 13, Algorithm 11). If

the solution so far cannot cover the graph, a random selection from the complement list

is repeated until a feasible solution is generated (line 15-20, Algorithm 11).

4.4.3 Fitness Function

In the natural world, the individual that has a higher fitness to environment will have

a better chance to survive and propagate. A fitness function, related to the objective

function, is used to evaluate the quality of solutions. Formally, the fitness function for

pattern selection is presented as follows:

fi =
n∑

j=1

cj · sij (4.11)

Where cj is the cost of the jth subgraph (column), sij presents the value of jth bit

in the binary representation of the solution si. In the case of minimal number of matches

selection, cj is always 1. Certainly, cj can be associated to area cost or power consumption

or delay according to the selection objectives. Clearly, a solution that has a higher fitness

has less total cost.

4.4.4 Selection

During each generation, a proportion of the existing population is selected to reproduce

(crossover) new solutions such that a new fitter population can be generated. In the
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Algorithm 12 Pseudo code for the tournament selection
Input: T - the size of tournament; P - the existing population;
Output: P1, P2 - the selected parent;
1: Procedure tournamentselection(T, P )
2: S1 = Draw_Solutions(T, P ); //draw T solutions from existing population
3: S2 = Draw_Solutions(T, P );
4: P1 = Select_A_Fittest_Solution(S1); //select the fittest solution
5: P2 = Select_A_Fittest_Solution(S2);

selection, fitter solutions are more likely to be selected to reproduce new solutions. Gener-

ally, proportionate selection and tournament selection are two widely used methods. The

proportionate selection method proportionally selects the fitter solutions according to the

probability rate of the fitness of each solution. As the calculation of probability rate for

each solution may be very time-consuming, we prefer to use tournament selection. The

tournament selection method is also a fitness-based selection. The method first creates

two pools, each of which contains T solutions randomly drawn from the existing popula-

tion. The fittest solution in the two pools is selected to produce new solutions. Obviously,

the chance of selecting less fitness solutions can be decreased by increasing T . Algorithm

12 illustrates the pseudo code of the tournament selection.

4.4.5 Reproducing

To produce new solutions, two main genetic operators (crossover and mutation) are gener-

ally considered. In the following subsections, the two operators are introduced in details.

4.4.5.1 Crossover Operator

With crossover operator, the good characteristics (subgraph, bit, gene) of parents can be

inherited by children. The most common crossover operators including one-point crossover

operator and two-point crossover operator randomly choose a point or two points on par-

ents’ strings (solutions) and exchange segments of the parents’ strings to produce children.

An example of two points crossover operator is shown in Fig. 4.7.

To better inherit the good characteristics from parents, a guided fusion crossover op-

erator inspired by [15] is utilized. Unlike one-point and two-point crossover operator, the

fusion crossover operator only produces one child. It enables the parent solution to con-
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Algorithm 13 The pseudo code for fusion operator
Input: G - graph; P1 - the first parent solution; P2 - the second parent solution;
Output: C - the child solution
1: Procedure Fussion_Crossover(G,P1, P2)
2: while (i <= N) do //the number of solutions to be generated
3: if P1[i] == P2[i] then // the bits are identical in parents
4: t = P1[i] = P2[i];
5: else
6: p = Random_Generator(0, 1);
7: if (0 ≤ p ≤ fp1/(fp1 + fp2)) then
8: t = P1[i]; //copy the bit in the first parent
9: else

10: t = P2[i]; //copy the bit in the second parent
11: end if
12: end if
13: if t == 1&&Si∩C == ∅ then //the subgraph i does not overlap other subgraphs

in C
14: C[i] = 1;// the subgraph i is selected
15: else
16: C[i] = 0;
17: end if
18: i++;
19: end while
20: if |C| < |G| then// some nodes are not covered
21: for n ∈ {G− C} do// for each uncovered node
22: set = Get_Covering_Subgraphs(n); // get the subgraphs that cover node n
23: j = Select_A_Graph(set);// select a subgraph
24: C[j] = 1;
25: end for
26: end if

tribute the bit level rather than segment level. Each bit (subgraph) in the child solution

is created by copying the corresponding bit from one or other parent with a random num-

ber generator [0,1]. Let fp1 and fp2 be the finesses of the parents p1 and p2 respectively.

The operator creates bit by bit to form a child solution. The bits which are identical in

parents are copied to the child solution. Otherwise, if the random number is between [0,

fp1/(fp1 + fp2) ], then the bit in p1 is copied to the child solution. If the random number

is between ( fp2/(fp1 + fp2),1], the bit in p2 is copied to the child solution. The pseudo

code for fusion operator is illustrated in Algorithm 13.

However, like other crossover operators, the fusion crossover operator may also result

in infeasible solutions (some subgraphs overlap with other subgraphs or some nodes are not

covered). Here we propose a guided operation to maintain the feasibility of the solutions.
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Figure 4.7: Two point crossover operator

To prevent the selected subgraph overlapping with other subgraphs in the solution, we

add an additional check (lines 13-16, Algorithm 13). Once overlapping is disallowed, some

nodes may not be covered. For each uncovered node, we first get a set of subgraphs

that cover the node (line 22, Algorithm 13). Among the set of subgraphs, we select the

subgraph i that does not overlap with the selected subgraphs in the solution C and has

the highest following ratio (line 23, Algorithm 13):

|Si|/ci (4.12)

Where ci is the cost of the subgraph i, and Si is the number of nodes in the subgraph i.

A crossover rate ε is used to determine the number of new solutions generated by crossover

operator. Assume the size of population is 100, ε = 90%, as the fusion operator can only

produce one child each time, then 90=100*90% pairs of parents have to be selected to

produce 90 new solutions.

4.4.5.2 Mutation Operator

In order to keep the variety of solutions, a mutation operator is applied to introduce new

search space. The mutation operator generally flips the chosen bit in the solution. An

example of mutation operator is shown in Fig. 4.8. The bits are chosen according to

a user-defined mutation rate δ . For example, assume there are 10 bits in a solution,

δ = 0.2, then two (0.2 ∗ 10) randomly chosen bits should be selected to invert. Similar

to the crossover operator, the mutation operator may also result in infeasible solutions.

We can use the methods utilized in the fusion crossover operator to make the solutions

feasible.
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Figure 4.8: An example of mutation operator

4.4.6 Replacement

A new population is formed by using the steady-state replacement method that always

keep the best solutions of the previous population and replaces the less fit solutions by the

newly generated solutions (the crossover rate determines the number of less fit solutions

that should be replaced). However, the genetic algorithms have a tendency to converge.

When the population converges to a set of homogeneous solutions, the solutions may fall

into local optimum. In order to escape from local optimum and keep the diversity of

the population, a random immigrant mechanism can be used. The mechanism replaces

a fraction of less fit solutions in the population by randomly generated solutions (the

replacement rate β indicates the fraction of less fit solutions).

4.5 Summary

In this chapter, we introduced three different heuristics for subgraph/pattern selection.

The first method targeting to select minimal number of matches that cover the whole

DFG prefers to choose the bigger subgraphs with less overlapping. The second heuristic

is based on the reuse of a pattern, in other word, a pattern with higher frequency of

occurrences has a higher possibility to be selected. The third one takes into account the

length of the critical path when a subgraph is selected.

For the purpose of comparison and completeness, a branch-and-bound algorithm for

minimal number of matches selection is also proposed. However, the exact algorithm is

time-consuming and the heuristics may stay sub-optimal. Thus, we presented a genetic

algorithm that makes trade-off between efficiency and the quality of the results. Please

note that, the genetic algorithm is flexible and can be applied to different selection targets

(modification on the fitness function is enough).
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Code Transformation

After obtaining a set of subgraphs produced by the subgraph enumeration step, until this

point, we now have a set of selected subgraphs (matches) produced by the subgraph selec-

tion step. It is required to identify whether two selected subgraphs can be implemented

with the same custom function unit (this is done before selection for pattern based se-

lection). This task can be viewed as a graph isomorphism problem. In our design, we

developed a graph isomorphism algorithm. Our algorithm is an extension of the graph

isomorphism algorithm VF2 [P. Cordella 2004].

After the isomorphism check, the selected subgraphs are collapsed into super nodes.

Based on the collapsed graph, a piece of functionally equivalent new source code is gener-

ated. The code representation of a custom operator is also presented in this chapter.

5.1 A Graph Isomorphism Algorithm

In some cases, it is assumed that the available pattern library are already provided. Thus,

a subgraph isomorphism algorithm is required to discover the occurrences of each pattern.

Then, a selection is carried out according to for example the frequency of occurrences

of the available patterns. However, in our design flow, the patterns are automatically

extracted from the DFG of applications by performing graph isomorphism check among

subgraphs: given two enumerated subgraphs G1 and G2, if G1 is isomorphic to G2, then

a pattern P is created, and G1 and G2 are recorded in P as instances. Therefore, in this

section, we only describe the graph isomorphism algorithm.

We extend the VF2 algorithm [P. Cordella 2004] by capturing some characteristics of

data flow graph. The VF2 algorithm finds the mapping between the two input graphs by

incrementally comparing the node pairs. Generally, the partial mappings are expanded to
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Algorithm 14 A Graph Isomorphism Algorithm
Input: G1(V1, E1), G2(V2, E2) - the two graphs;
Output: M - the mappings between the two graphs
1: Procedure IsomorphismCheck(G1, G2)
2: if (|V1|! = |V2|)||(|E1|! = |E2|) then
3: return ;
4: end if
5: LN1 = all the starting nodes of G1;
6: LN2 = all the starting nodes of G2;
7: if |LN1|! = |LN2| then
8: return ;
9: end if

10: call Match(LN1, LN2);
11:

12: Procedure Match(N1, N2)
13: Compute the set P (N1, N2) of the node pairs candidate from N1 and N2;
14: for each pair p(n1, n2) ∈ P (N1, N2)&& n1 and n2 were not considered do
15: if NodeEquivalenceCheck(n1, n2) then
16: M = M ∪ {(n1, n2)};
17: call Match(ISucc(G1, n1), ISucc(G2, n2));
18: end if
19: end for

new bigger partial mappings by adding a compatible neighbor node pair. A node pair is

said to be compatible only when the two nodes satisfy a set of feasibility rules. The set of

feasibility rules can efficiently prune the search space. The VF2 algorithm that can verify

both graph isomorphism and subgraph isomorphism has been used in many application

domains due to its efficiency. We further improve the algorithm by adding vertex, edge

and starting node cardinality check to quickly rejects dissimilar graphs. Furthermore,

the extended algorithm addresses the problem caused by non-commutative operations. In

addition, the extended algorithm handles the redundant mappings when it is used as a

subgraph isomorphism algorithm.

Algorithm 14 presents the overview of the proposed algorithm. The algorithm takes

the two graphs G1 = (V1, E1) and G2 = (V2, E2) as input. The algorithm extends the

partial mappings from top to down. It first performs the edge and vertex cardinality

check. Then all the starting nodes of the two graphs are enumerated. A starting node is a

node without any predecessors in the DFG. The starting node cardinality is also checked

to early reject dissimilar graphs. Initially, the node pairs from the two set of starting

nodes are computed. Starting from a starting node pair, the equivalence of the two nodes
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Figure 5.1: DFG from the JPEG benchmark

in the pair is evaluated. If the two nodes have the same label (the same operation) and

the set of feasibility rules [P. Cordella 2004] is respected, the pair is added to the partial

mapping forming a new partial mapping. A recursive process is called to perform the

same computation for the successors of the two equivalent nodes.

Fig. 5.1 shows part of a DFG from the the JPEG benchmark. We use this simple but

realistic example to show the isomorphism checking process. Given the two enumerated

subgraphs {1,2,3} and {11,12,13} in the DFG, a set of starting nodes of them are obtained

respectively: {1,2} and {11,12}. The node pairs between the two sets of starting nodes

are then computed: {(1,11),(2,12)}. Assuming the node pair (1,11) is considered, the two

nodes have the same label and have the same number of immediate successors. Thus, an

initial partial mapping {(1,11)} is created. The partial mapping is then grown toward the

immediate successors of the node 1 and the immediate successors of the node 11. At this

point, a bigger partial mapping {(1,11),(3,13)} is obtained. As the node 3 and the node

13 have no immediate successors in the subgraph {1,2,3} and the subgraph {11,12,13},

the algorithm turns back to the other leading node pair (2,12). The leading node pair

is compatible and can be added to the partial mapping. Finally, an entire mapping

{(1,11),(2,12),(3,13)} is obtained. Therefore, the subgraph {1,2,3} is isomorphic to the

subgraph {11,12,13}. In other words, the two subgraphs could be implemented with the

same custom operator.

Different from the general graph isomorphism check, non-commutative operations in

the graphs should be carefully considered. Commutativity states that changing the order

of the operands of an operation does not change the result. For example, a ∗ b = b ∗ a.
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Figure 5.2: Two graphs with a non-commutative operation

However, for the graphs that contain the non-commutative operations like substraction or

division, different orders of the operands may affect the result of the graph isomorphism

checking. Fig 5.2 illustrates an example of two graphs with a non-commutative operation.

Obviously, the graph M1 is not isomorphic to the graph M2 (M1 is not functionally

equivalent to M2). Yet, with a general graph isomorphism checking, M1 is functionally

equivalent to M2. To cope with this case, we simply assign the first edge that holds the

first operand (minuend or dividend) a value "0", on the contrary, the second edge that

holds the second operand (subtrahend or divisor) is assigned a value "1". Moreover, the

values of the incoming edges of non-commutative operations should be checked when graph

isomorphism checking is performed.

It is noteworthy that the graph edit distance used to represent the similarity

of subgraphs [Cong 2008, Cong 2010] can also be measured by partial match of the

graph isomorphism algorithm. In addition, the proposed graph isomorphism algo-

rithm is able to solve subgraph isomorphism problems as it is based on the VF2

algorithm (a minor modifications required). When it is used to detect the occur-

rences of a pattern in a given DFG as a subgraph isomorphism algorithm, a redun-

dancy check should be performed to guarantee the correctness. Considering the ex-

ample in Fig. 5.3, without a redundancy check the pattern PA has 4 occurrences

({(a,4),(b,6),(c,7)},{(a,4),(b,7),(c,6)},{(a,5),(b,8),(c,9)},{(a,5),(b,9),(b,8)}), however, the

correct number of occurrences should be 2. In fact, the matches {(a,4),(b,6),(c,7)} and

{(a,4),(b,7),(c,6)} refer to the same occurrence. This is caused by the symmetry of the

pattern. Thus, if a pattern is symmetrical or partial symmetrical, a redundancy check

should be performed.
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5.2 Code Representation of Custom Operator

After mapping functionally equivalent subgraphs to an identical custom operator and

selecting a subset of subgraphs, the nodes inside a selected subgraph will be replaced by

a new super node. The super node represents the selected subgraph. To correctly replace

the selected subgraphs and to maintain the program semantics, the super nodes should be

placed in a right manner. As an example, the subgraph {1,2,3} in Fig. 5.1 will be replaced

with a super node. First, the three nodes are removed along with the edges among them

(edges: 1->3 and 2->3). Then, a super node is placed. The incoming edges of the node

1 and the node 2 are reconnected to the super node. The edges 3->4, 3->5, 2->8 are

reconnected to the super node as outgoing edges. This replacement processing is repeated

for every selected subgraphs.

In order to not loose the semantics of the original code, the super nodes contain all the

information of the corresponding replaced subgraphs. In the phase of code regeneration,

the information inside the super nodes is traversed and is appropriately translated to code.

Once the selected subgraphs are replaced, in the generated new source code, a specific

pragma may be included in front of each custom operator to indicate the occurrence of

a custom operator for high-level synthesis tools. The content of the custom operator is

presented as a function. With the specific pragma, the high-level synthesis tools (e.g.,

CatapultC (Mentor Graphics) [Graphic ]) will schedule and bind the custom operators as

they do for the other basic operators. For the high-level synthesis tool CtoS (Cadence)

[Cadence ], all the non-inlined functions are considered as custom operators by default
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Figure 5.4: The code representation for a custom operator

(the pragma is not required). Fig. 5.4 shows an example of the code format for a custom

operator.

5.3 An Example of Using the Complete Design Flow

Fig. 5.5 shows a simple example of using the complete design flow. A piece of C code

including control flow is provided as input to the proposed design flow. The C code is first

parsed to CDFG by GECOS front-end. Then, the subgraph enumeration algorithm tries

to enumerate all the subgraphs from, for example, the basic block BB1 (in this example,

we enumerate connected subgraphs without other constraints). We now have a set of

subgraphs. Next, a subset of subgraphs is selected during the subgraph selection step (here,

the biggest subgraph M1 is selected). After the selection, a collapsed DFG is generated.

Based on the CDFG and the collapsed DFG, a new piece of C code incorporating the

selected subgraph is generated. Finally, the new piece of C code will be provided to the

HLS tool as input.

5.4 Summary

In this chapter, a (sub)graph isomorphism algorithm based on the VF2 algorithm was

presented. The VF2 algorithm is extended by checking some additional information of

data-flow graph such that dissimilar graphs can be rejected quickly. Moreover, some

specific problems existing in the (sub)graph isomorphism check for data-flow graphs were
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exposed and corresponding solutions were given. We then briefly described the phase of

code regeneration. The code representation of custom operator was also introduced.
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/* a, b, c, d are inputs */
/* w is an output */
void test(int a,int b,int c, int d){
    int x,y,z,m,w;
    x = a + b;
    y = c + d;
    z = x - y;
    if(x>20)
       m = z * c;
    else
       m = z / c;
     w = m * m;
 }
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#pragma map_to_operator pattern_1

void pattern_1(int in_1, int in_2, 
int in_3, int in_4 int * out_1){
  *out_1 = (in_1 + in_2)-(in_3+in_4);
}

/* a, b, c, d are inputs*/
/* w is an output */
void test(int a,int b,int c, int d){
    int x,y,z,m,n,w;
    z = pattern_1(a,b,c,d);
    if(x>20)
       m = z * c;
    else
       m = z / c;
     w = m * m;
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Figure 5.5: An simple example of using the design flow



Chapter 6

Experiments and Results

In this chapter, we present the runtime performance of the proposed subgraph enumer-

ation algorithms and the quality of results achieved by the proposed subgraph selection

algorithms respectively. We first evaluate the efficiency of the size constrained subgraph

enumeration algorithm with a set of real-life benchmark programs. With the same bench-

marks, our two proposed I/O constrained subgraph enumeration algorithms are compared

to an efficient well-know algorithm[Pozzi 2006]. Based on the experimental results, we

detail the runtime improvement and search space reduction achieved over the previous

algorithm.
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Figure 6.1: Custom operator based high-level synthesis flow

To test the quality of results achieved by the three proposed subgraph selection algo-
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rithms, the regenerated source codes and the original source codes are provided as inputs

of a high-level synthesis tool. The quality of results are measured in terms of the area

cost and the latency. In addition, we compare the proposed genetic algorithm with the

proposed heuristic algorithm for minimal number of matches selection.

To recall, Fig. 6.1 shows the detailed framework of the proposed design flow. In chap-

ter 2, we presented the intermediate representation used in our design flow. The GECOS

is used to parse the application code to a CDFG. We presented algorithms for enumerating

subgraphs under various constraints in chapter 3. Then, the selection methods are de-

scribed in chapter 4. Finally, the code transformation and an extended graph isomorphism

algorithm are shown in chapter 5.

6.1 Experimental Setup

All the experiments were carried out on a PC with a P9400 processor running at 2.4 GHz.

A set of real-life benchmark programs were selected. These benchmarks were compiled to

CDFGs by a generic compilation platform GECOS developed in Cairn team [GECOS ].

The high-level synthesis tool CtoS (Cadence) is used to evaluate the custom operator

based pre-synthesis. We use the built-in file tutorial.lbr of CtoS as the technology library,

and the clock frequency is 50 MHz.

6.2 Runtime of the Enumeration Algorithms

We have carried out extensive experiments to evaluate the performance of the subgraph

enumeration algorithms. In order to evaluate the performance of our subgraph enumer-

ation algorithms, we obtained the DFGs from the benchmarks in MediaBench [Lee 1997]

and MiBench[Guthaus 2001]. Table 6.1 describes the DFGs used in our experiments. In

the table, the size refers to the number of nodes. The tightness of each DFG is indicated

by |E|/|V |, where |E| is the number of edges connected valid nodes and |V | is the number

of valid nodes in the DFG. In the experiments of enumerating all feasible subgraphs, we

choose one computation-intensive basic block’s DFG from each benchmark. In the exper-

iments of enumerating only connected subgraphs, we choose the biggest region in each

basic block. A region is a connected graph that is either a disjoint subgraph of a basic
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Table 6.1: Characteristics of the benchmarks for the evaluation of enumeration algorithms

Benchmark Domain BB Size Region’s Size |E|/|V|

Blowfish Security 362 {361,1} 0.98

EPIC Security 37 {33,2,1,1} 0.64

GSM Telecommunication 490 {479,10,1} 0.87

JPEG Consumer 187 {185,2} 1.02

DES3 Security 94 {94} 0.93
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Figure 6.2: The shape profile of the benchmarks

block’s DFG or is generated by dividing the DFG with invalid nodes. For example, with

the benchmark Blowfish, the chosen basic block is made of 362 nodes. Two regions are

included in this basic block: one with 361 nodes and one with 1 node. Fig. 6.2 shows

the shape profile of each benchmark. The percentage of the nodes connected to different

number of edges is calculated. As an example, with the benchmark EPIC, the nodes

connected to 3 edges account for 40% over all the nodes in the DFG of EPIC.

In this section, we evaluate the proposed enumeration algorithms in terms of runtime.

First, the runtime of the size constrained enumeration is presented. Then, the performance

of the proposed two I/O constrained enumeration algorithms and the comparison between

them are shown in subsection 6.2.2. The time unit of runtime is second.
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Figure 6.3: The runtime performance of the size constrained enumeration algorithm when
enumerating connected subgraphs

6.2.1 Runtime of the Size Constrained Enumeration Algorithm

Our enumeration algorithm enumerates all the subgraphs in a incremental way. Accord-

ingly, the size of the subgraphs is treated as a user defined option. Fig. 6.3 shows the

runtime performance of the proposed subgraph enumeration algorithm under different

sizes of connected subgraphs. It can be seen that our algorithm can completely enumer-

ate the subgraphs within one second for all the benchmarks when the maximum size of

subgraphs is set to 8. We can also observe that the runtime is increased with the relax-

ing of the size of the subgraphs. However, enumerating subgraphs from the larger DFG

may require less time compared to smaller DFGs. For example, the enumeration runtime

on the benchmark JPEG which has only 185 valid nodes is higher than the enumeration

runtime on the benchmark of GSM which has 479 valid nodes. The topology of the DFGs

impacts the runtime of our enumeration algorithm most. The valid nodes in the DFG

of JPEG are tightly connected, while the valid nodes in the DFG of GSM are dispersed

(see the column |E|/|V | in Table 6.1). Thus, under the same size constraint, the number

of subgraphs in the DFG of JPEG is more than the number of subgraphs in the DFG of

GSM. Due to the same reason, the increase of runtime for the benchmark JPEG tends to

exponential. Table 6.2 shows the number of patterns (P) and the number of subgraphs

(S) enumerated under the size constraint. We can see that the number of subgraphs in

the DFG of JPEG is 26758 when the maximum size of subgraphs is set to 8, while the

number of subgraphs in the DFG of GSM is only 2118.
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Table 6.2: Number of connected subgraphs and patterns under the size constraint

Benchmark P S P S P S P S P S P S

BLOWFISH 36 944 73 1924 139 3781 245 6730 394 10697 580 15290

EPIC 26 80 40 132 54 208 67 304 79 396 88 459

GSM 23 799 36 1094 53 1415 71 1708 88 1947 101 2118

JPEG 94 435 249 839 635 1811 1705 4254 4475 10512 15732 26758

DES3 42 189 88 380 162 568 271 934 419 1462 612 2203

Size Constraint 3 4 5 6 7 8

The proposed size constrained subgraph enumeration algorithm can also be tuned to

generate all feasible subgraphs including connected subgraphs and disjoint subgraphs. As

the number of all feasible subgraphs in a DFG can be exponential, enumerating all feasible

subgraphs under size constraint becomes very time-consuming. In the experiments, we

found that the enumeration is unaffordable even for the smallest benchmark EPIC when

the size constraint is set to 6.

6.2.2 Runtime of the I/O Constrained Enumeration Algorithms

The connectivity is one of the design constraints that should be considered when we per-

form enumerating subgraphs. Thus, in the experiments, we evaluate the I/O constrained

enumeration algorithms for enumerating all feasible subgraphs and enumerating only con-

nected subgraphs respectively.

6.2.2.1 All Feasible Subgraphs Enumeration

The authors of [Chen 2007] have shown with experiments that the well-known algorithm

[Pozzi 2006] (denoted as a) is faster than the algorithm [Yu 2004b] in most situations

when enumerating connected valid subgraphs. Since the algorithm [Yu 2007] targeting

disjoint subgraphs is based on the algorithm [Yu 2004b], the algorithm a should be also

faster than it when enumerating disjoint valid subgraphs. Furthermore, the algorithm a

has comparable performance to the algorithm [Chen 2007]. Therefore, we compare our

instruction enumeration algorithms with the algorithm a. The flexible algorithm presented

in section 3.4 is denoted as b and the topology based enumeration algorithm that we
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previously presented in section 3.5 is denoted as c.

Table 6.3 shows the performance of the algorithms in enumerating all feasible sub-

graphs under different I/O constraints. For different input and output constraints, the

three algorithms produce the same subgraphs. The first column shows the number of nodes

for each tested benchmarks. The column I/O indicate the maximum number of inputs and

the maximum number of outputs that we set as constraints. In this table, the number of

identified subgraphs is recorded in the column feasible matches. The search space of the

three algorithms is the total number of subgraphs they considered. The columns runtime

x represent the runtime of the proposed algorithms.

The results show that the number of enumerated subgraphs increases with the size

of the DFGs of the benchmarks. This is not surprising: in general, bigger DFGs enable

more combinations of nodes. We also noticed that the number of enumerated subgraphs

increases rapidly with the relaxation of I/O constraints. The Lemma 3.1.1 presented in

section 3.1 is well supported by this observation.
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Figure 6.4: Runtime speedup achieved by the algorithm b over the algorithm a for enu-
merating all feasible subgraphs

According to the experimental results, our algorithms have a significant better perfor-

mance (see Fig. 6.4 and Fig. 6.5). Based on the experiments, we can see that the larger

DFG it is, the more significant speedup our algorithms achieve over the algorithm a. It

can be observed that for the very small benchmark EPIC, our algorithm c achieves the

speedup ranging from 5 to 10 times over the algorithm a. For the medium DFG JPEG,

the speedup achieved by our algorithm is more significant, ranging from 32 to 80. For

the large DFG GSM, our algorithm c is orders of magnitude faster than the algorithm a
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Table 6.3: Comparison of the subgraph enumeration algorithms - all feasible subgraphs
(a: the algorithm proposed in [Pozzi 2006], b: our algorithm presented in section 3.3, c:
our algorithm based on topology presented in section 3.4)

Benchmark
(size)

I/O feasible
match-
es

search s-
pace a

search s-
pace b

search
space
c

runtime
a

runtime
b

runtime
c

4/1 1647 1248639 3173 2051 4.26 0.057 0.024

Blowfish 6/1 5477 2163001 12209 7580 7.758 0.14 0.044

(362) 3/2 29891 5178645 62302 46780 16.61 0.465 0.203

4/2 62397 9672021 108300 81449 31.02 0.903 0.349

6/2 193154 34075910 357771 232719 106.8 2.753 1.301

4/1 76 1321 99 140 0.005 0.001 0.001

EPIC 6/1 78 1327 99 142 0.006 0.001 0.001

Collapse 3/2 137 18205 1557 1897 0.059 0.008 0.007

(37) 4/2 885 24994 2869 2990 0.085 0.016 0.01

6/2 2343 29057 4257 4369 0.125 0.023 0.013

4/1 1972 576377 2790 2847 2.289 0.062 0.018

GSM 6/1 4926 974419 6354 6154 3.704 0.094 0.034

(490) 3/2 106633 68906481 375733 320013 269.9 3.599 1.519

4/2 341641 141329786 793307 669502 559.8 7.242 3.916

6/2 1454539 / 2719019 2306023 / 32.4 13.69

4/1 633 76909 1083 973 0.273 0.023 0.007

JPEG 6/1 1305 123097 1963 1789 0.42 0.034 0.013

(187) 3/2 9182 3901494 40793 38022 12.71 0.3 0.158

4/2 31871 6618871 75830 74647 21.9 0.703 0.312

6/2 123187 16459941 217206 211381 54.34 2.153 1.078

4/1 628 113853 1232 993 0.391 0.021 0.008

DES3 6/1 2790 513502 5528 3686 1.746 0.053 0.022

(94) 3/2 3393 608054 10218 8979 2.019 0.06 0.038

4/2 9837 1495275 22443 19665 5.037 0.161 0.082

6/2 47139 6275022 101185 78423 21.76 0.897 0.345
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merating all feasible subgraphs
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Figure 6.6: Search space per feasible subgraph for the benchmark DES3 under different
I/O constraints

in all situations. We can also see that our algorithm c has better performance than the

algorithm b.

The speedup achieved by our algorithms is directly due to the reduction in the search

space as well as the convexity of the subgraphs guaranteed by the construction of the

subgraphs. Fig. 6.6 shows the search space per feasible subgraphs of the algorithm a, the

algorithm b and the algorithm c for benchmark DES3 under different I/O constraints. We

note that the algorithm b has successfully reduced the search space ranging from 60 to

93 times over the algorithm a. The algorithm c has further reduced the search space by

68 to 139 times over the algorithm a. At the I/O constraint such as (6,1), the reduction

factor achieved by c over a is 139 (513502/3686), i.e. the best one, this is why in fig. 6.5

we can also observe the higher runtime speedup for DES3.
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The reduction of the search space achieved by the algorithm c over the algorithm a

can be mainly attributed to three parts: 1) non-convex subgraphs are filtered away in

an earlier stage, 2) due to a specific sequence of growing subgraphs, a large number of

output constraint violated subgraphs are not considered and 3) only few of input violated

subgraphs are considered by using the function that aims to finding resolving nodes when

inputs constraint is violated. Compared with the algorithm b, the algorithm c can reduce

more the search space by constructing subgraphs in a topology order such that only a

small number of output constraint violated subgraphs are considered.
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Figure 6.8: Runtime speedup achieved by the algorithm c over the algorithm a for enu-
merating connected subgraphs

6.2.2.2 Connected Subgraphs Enumeration

As the algorithm [Pozzi 2006] (the algorithm a) is faster than the only algorithm

[Yu 2004b] dedicated to enumerate connected subgraphs, we only compare our algorithms

with the algorithm a) in the experiments. In order to filter away disjoint subgraphs, we
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the benchmark DES3 using the algorithm c

add a connectivity check step to algorithms a and c after a feasible subgraph is obtained

1.

Table 6.4 compares our algorithms with the algorithm a. The speedup of our algorithm

b over the algorithm a in enumerating connected feasible subgraphs is far more significant

than that in Fig.6.4 (compare Fig.6.4 and Fig. 6.7). This is reasonable: the algorithm b

only considers connected subgraphs, on the contrary, the algorithm a considers connected

subgraphs and disjoint subgraphs. We also see that the algorithm b outperforms the

algorithm c in most situations (Fig. 6.7 and Fig. 6.8). Similar to the algorithm a, the

algorithm c considers connected subgraphs and disjoint subgraphs and performs additional

1In the algorithm b, the NodeFilter function can be used to generate all feasible subgraphs or only
connected subgraphs (see algorithm 3 in section 3.3.2)
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Table 6.4: Comparison of the subgraph enumeration algorithms - connected subgraphs (a:
the algorithm proposed in [Pozzi 2006], b: our algorithm presented in section 3.3, c: our
algorithm based on topology presented in section 3.4)

Benchmark
(size)

I/O feasible
match-
es

search s-
pace a

search s-
pace b

search
space
c

runtime
a

runtime
b

runtime
c

4/1 1646 1209950 3084 2055 4.589 0.056 0.038

Blowfish 6/1 5476 2157792 11933 7579 7.58 0.124 0.173

(361) 3/2 1016 4771198 2000 46321 26.42 0.037 0.303

4/2 2148 9268081 4568 80279 51.769 0.057 0.691

6/2 8488 31937667 20196 231910 104.5 0.16 3.106

4/1 71 1051 96 135 0.005 0.001 0.001

EPIC 6/1 73 1057 142 137 0.006 0.001 0.002

Collapse 3/2 77 14185 137 1601 0.042 0.001 0.009

(33) 4/2 113 18427 242 2662 0.079 0.002 0.014

6/2 137 21760 311 4023 0.104 0.002 0.025

4/1 1911 550552 2719 2767 1.877 0.065 0.039

GSM 6/1 4831 921762 5991 6055 3.821 0.091 0.095

(479) 3/2 1333 57143751 2062 303162 224.5 0.041 1.822

4/2 2071 130897602 3183 632323 435.7 0.062 4.348

6/2 5483 / 7176 2173815 / 0.095 11.373

4/1 630 75395 992 971 0.279 0.018 0.018

JPEG 6/1 1302 119458 1878 1787 0.417 0.029 0.035

(185) 3/2 526 3612205 966 37230 9.849 0.025 0.21

4/2 897 6495394 1960 72991 21.45 0.031 0.567

6/2 3024 16061030 5887 205946 51.33 0.067 1.844

4/1 628 113853 1232 993 0.396 0.018 0.024

DES3 6/1 2790 513502 5528 3686 1.81 0.047 0.075

(94) 3/2 398 608054 735 8979 2.347 0.018 0.071

4/2 842 1495275 1749 19665 5.121 0.021 0.159

6/2 3558 6275022 7007 78423 22.81 0.064 0.859
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connectivity check to filter away disjoint subgraphs. Fig. 6.9 and Fig. 6.10 compare

the time used for connectivity check and the time used for subgraph enumeration using

the algorithm a and the algorithm c respectively. It can be seen that the connectivity

check time accounts for less 10% of the total runtime when using the algorithm a. The

connectivity check time is half of the total runtime when using the algorithm c.

6.3 Evaluation of the Selection Approaches

To evaluate the quality of the subgraph selection approaches, a set of real-life bench-

mark programs which are rich in arithmetic/logical operators is used in our limited study.

As our design flow focuses on identifying subgraphs inside each basic block, we choose

computation-intensive functions as benchmarks in our experiments. Those benchmarks

are featured with various sizes ranging from tens to hundreds of valid nodes and different

shapes of the DFGs. Table 6.5 describes the characteristics of the benchmarks used in our

experiments. The function dotProduct computes the product of two 50-coefficient vectors.

The function imdct performs the inverse modified discrete cosine transform for MP3 audio

encoding. The function idct computes a 8-point one dimensional inverse discrete cosine

transform. The function invert_matrix computes the inverse of 4x4 matrices. The func-

tion fft is actually a 2-nested loop function used to compute both real and imaginary parts

of a n point fast Fourier transform. The function arf implements a 8-point autoregressive

filter. The function iir computes a 8-tap infinite impulse response filter. In the latter

subsections, we evaluate the proposed design flow in terms of area reduction, performance

(latency of the critical path) improvement and code size reduction. The runtime perfor-

mance of subgraph enumeration step for the benchmarks in table 6.5 under size constraint

is shown in Annex A.

6.3.1 Area and Performance Evaluation

6.3.1.1 Results of Connected Subgraphs under Size Constraint

For comparison, the original code and the new code generated by the custom operator

based pre-synthesis flow are provided to the CtoS high-level synthesis tool as inputs re-

spectively. Table 6.6 shows the quality of the results obtained by our proposed design
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Table 6.5: Characteristics of the benchmarks for the evaluation of selection results

Benchmark BB Size Valid Nodes

dotProduct (50× 50) 303 100

imdct 1290 297

idct 130 55

invert_matrix 533 148

fft 340 72

arf 84 28

iir 525 176

flow (only connected subgraphs are considered) compared to the traditional flow without

custom operator based pre-synthesis. As the runtime of enumerating all feasible subgraphs

under size constraint is unaffordable (see section 6.2.1), the results of all feasible subgraphs

under size constraint are not presented in this section.

In the table 6.6, the critical paths based match selection algorithm, the frequency of

occurrence based pattern selection algorithm and the minimal matches selection algorithm

presented in section 4.2 are denoted as CS, PS, MS respectively. The second column and

the third column record the number of patterns and the number of matches (subgraph-

s) enumerated. The symbols X_P, X_M, X_Area and X_Per represent the number of

selected patterns, the number of selected matches, the area reduction rate and the perfor-

mance improvement rate achieved by each selection algorithm respectively (the maximum

number of nodes of the subgraphs is set to 6 in the experiments).

To summarize, the PS algorithm achieves the best area reduction among the three

proposed algorithms (on average 19.1%, and up to 37.1% area reduction over the tra-

ditional high-level synthesis flow). The CS algorithm always leads to positive and the

best performance improvement rate, on the contrary, the other two algorithms may have

negative performance improvement rate. This is mainly owing to the careful evaluation

of the length of the critical paths carried out by the algorithm CS, whereas sometimes

with PS and MS algorithms a selection results in a critical path increase (see the example

in Fig. 4.5). With the CS algorithm, on average 22.3% and up to 59.4% performance

improvement can be obtained.

From the results, we can see that both the area reduction rate and the performance
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Table 6.6: Area Reduction and Performance Improvement with Connected Subgraphs
(maximum size of subgraphs is 6)

Benchmark PatternsMatchesCS_PCS_MCS_AreaCS_PerPS_PPS_MPS_AreaPS_PerMS_PMS_MMS_Area MS_Per

dotProduct 33 1568 3 57 5.5% 59.4% 2 19 6.7% 5.1% 3 17 6% -1.3%

imdct 195 2979 9 163 41.6% 18.1% 7 99 33.9% -33.8% 10 99 38% -17%

idct 3101 3716 13 16 30.8% 12.2% 13 21 37.1% -35% 11 9 25% 8%

invert_matrix 539 30473 15 46 6.3% 18.9% 10 35 7.1% -3.9% 18 31 7.1% -5.2%

fft 65 248 7 19 10% 10.6% 7 19 10% 10.6% 7 19 10% 10.6%

arf 80 500 4 8 5.0% 27.8% 2 12 16.6% 16.7% 4 6 5.3% 9.0%

iir 118 998 13 75 3.0% 8.9% 6 72 22.1% -11.0% 11 68 1.0% -13.4%

Average 14.6% 22.3% 19.1% -7.0% 13.3% -1%

improvement rate vary with the benchmarks. For example, with the CS algorithm, we

can achieve 41.6% area reduction for the benchmark imdct, while the area reduction rate

is only 5.5% for the benchmark dotProduct. To explain the difference, we studied the

shape of the DFGs of the two benchmarks. The DFG of dotProduct is a tree-shaped

graph. The DFG of imdct is a net-shaped graph. Generally, net-shaped graphs have

higher density of internal data flows. As the internal data flows may roughly indicate the

number of multiplexors, extracting custom operators from the net-shaped DFG which has

more internal data flows may save a large number of multiplexors.

The results also show difference on performance improvement for the benchmarks. As

an example, with the CS algorithm, the performance improvement rate reaches 59.4% for

the benchmark dotProduct. Yet, the performance improvement rate reaches only 12.2%

for the benchmark idct. This observation is supported by the following analysis. Most

of the selected subgraphs from the DFG of the benchmark dotProduct are composed

of associative operations. As shown in Fig. 1.2, the length of the critical path can be

reduced due to the associativity attribute of operations. Therefore, most of the selected

subgraphs are optimized with the critical path reduction technique (In the design flow,

this optimization is performed by CtoS that invokes RTL synthesis tool). Nevertheless,

the selected subgraphs of the benchmark idct have few opportunities to be optimized in

such a way.

6.3.1.2 Results of Connected Subgraphs under I/O Constraints

As previously discussed, the number of inputs and the number of outputs can be user

defined constraints. In this subsection, we evaluate the area and performance of the
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Table 6.7: Area Reduction and Performance Improvement with Connected Subgraphs
under I/O Constraints (6/2)

Benchmark PatternsMatchesCS_PCS_MCS_AreaCS_PerPS_PPS_MPS_AreaPS_PerMS_PMS_MMS_Area MS_Per

dotProduct 20 963 2 60 4.3% 57.7% 1 25 6.1% -29.2% 5 33 5.7% 3.2%

imdct 131 2191 9 154 42.9% 7.3% 8 126 32.9% -14.1% 12 108 39.2% -24.8%

idct 116 367 12 20 26.1% 4.4% 13 20 30.4% 2.1% 11 18 30.7% -3.8%

invert_matrix 293 1647 17 43 8.0% 6.1% 9 59 7.2% -16.9% 16 39 7.1% -16.2%

fft 46 214 7 24 8.2% 6.8% 7 24 9.1% 7.4% 8 23 9.0% 6.8%

arf 29 206 4 10 4.4% 19.2% 2 12 5.2% -6.5% 5 8 4.7% -17.3%

iir 38 480 7 74 2.1% 9.0% 6 72 18.4% -12.3% 6 72 1.0% -12.0%

Average 13.7% 15.8% 15.6% -9.9% 13.9% -9.2%

obtained results when the subgraphs are connected and are respected to I/O constraints.

Table 6.7 shows the area reduction and performance improvement achieved when the I/O

is set to 6/2.

During the experiments, we noticed that the quality of the results obtained when the

subgraphs are connected and are respected to I/O constraints is similar to the quality of the

results obtained when the subgraphs are connected and are respected to size constraint.

Precisely, the quality of the results of the connected subgraphs with I/O constraints is

slightly lower than that of the connected subgraphs with size constraints. To explorer the

difference, we looked at the enumerated subgraphs and patterns. We further noticed that

a larger set of candidates (matches and patterns) is obtained when the maximum size of

enumerated subgraphs is set to 6 than when the maximum I/O of enumerated subgraphs

is set to 6/2. The larger set of candidates may offer more opportunities to achieve a better

solution.

6.3.1.3 Results of All Feasible Subgraphs under I/O Constraints

Compared to connected subgraphs, disjoint subgraphs enable more parallelism. In the

experiments, we first evaluate the results of all feasible subgraphs with I/O constraints.

Then, we compare the results of all feasible subgraphs with the results of connected sub-

graphs. Table 6.8 shows the result of all feasible subgraphs under I/O constraints (I/O is

set to 6/2).

Comparing the results in the Table 6.7 with the results in the Table 6.8, an interesting

phenomenon can be observed. The performance of the results in Table 6.8 is better than

the results in the Table 6.7, while the area is quite similar. We have carefully examined
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Table 6.8: Area Reduction and Performance Improvement with All Feasible Subgraphs
under I/O Constraints (6/2)

Benchmark PatternsMatchesCS_PCS_MCS_AreaCS_PerPS_PPS_MPS_AreaPS_PerMS_PMS_MMS_Area MS_Per

dotProduct 27 9294 2 35 4.1% 57.7% 1 25 6.1% -29.2% 5 30 4.8% 17.2%

imdct 96 93273 7 225 37.8% 10.4% 5 189 30.3% -17.1% 6 162 30% -6.6%

idct 222 2217 13 15 25.1% 4.8% 9 17 25.8% 12% 11 13 34.9% -2.5%

invert_matrix 682 59217 17 43 8.0% 14.2% 15 38 6.1% 20.1% 14 29 2.1% 22.2%

fft 84 6310 15 29 15.4% 14.7% 10 40 14.1% 1.2% 8 19 16.5% -7.3%

arf 50 1049 4 7 4.5% 19.2% 2 12 3.3% -2.6% 2 6 5.5% -9.0%

iir 93 31434 15 58 9.0% 15.8% 7 103 25.7% -4.9% 10 52 8.1% -1.0%

Average 14.8% 19.5% 15.9% -2.9% 14.6% 4.5%
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Figure 6.11: Code size reduction rate achieved by the three selection approaches (maxi-
mum size of subgraphs is 6)

the shape of the selected subgraphs that are disjoint or connected. The selected disjoint

subgraphs are usually the subgraphs which have more nodes in parallel than the connected

subgraphs. Thus, the critical path may be further reduced through the parallelism of the

operation nodes in the selected subgraphs.

6.3.2 Code Size Reduction

To show the code size improvement achieved by the proposed algorithms, we define the

improvement of the code size of the generated functionally equivalent code over the code
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size of the original source code as follows.

imp = ((|G| − |G′|)/|G|) ∗ 100% (6.1)

where |G| represents the number of operations in the original source code, |G′| repre-

sents the number of operations in the generated code that collapses the selected subgraphs.

Fig. 6.11 shows the code size improvement obtained using the proposed three selection

algorithms when the maximum size of connected subgraphs is set to 6. Based on the

results, the minimal number of matches selection produces the most compacted code in

most situations. This is reasonable: it is because the minimal number of matches selection

algorithm prefers to select bigger subgraphs, whereas the other two algorithms may select

smaller subgraphs with the consideration of frequency of occurrence or criticality. The

code size reduction achieved by the minimal number of matches selection algorithm is

very significant. As an example, for the benchmark dotProduct, the reduction rate is up

to 81%. On average, a reduction rate of 74% can be archived.

With the compacted code, HLS tool should be able to produce a design solution in

a shorter time. Unfortunately, with CtoS, we are not able to measure the exact time

reduction achieved by the compacted code (Ctos also performs the synthesis of custom

operators during the high-level synthesis of the compacted code, thus, we cannot measure

the time for the high-level synthesis of compacted code). However, the code size reduction

may at least proportionally reflect the time reduction.

6.3.3 Comparison of the MS Algorithm and the Genetic Algorithm

As MS algorithm is targeted to produce the most compacted code, we evaluate the MS

algorithm by comparing with the proposed Genetic algorithm in terms of code size re-

duction. The exact algorithm can not produce solutions in most situations (it takes more

than one hour to give a solution), we only use the genetic algorithm to evaluate the MS

algorithm. In our experiments, a best set of parameters was chosen for the genetic algo-

rithm according to extensive tests. The population size was set to 500 for all the tests.

Each time the genetic algorithm is terminated when 20 generations has produced. The

detail of the set of parameters is given in the Table 6.9.
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Table 6.9: A set of parameters chosen for the genetic algorithm

Parameter Description Value

N the size of population 500

G the number of generations 20

T the size of the tournament 20

γ the composition of initial solutions 80%

ε crossover rate 95%

δ mutation rate 1/number of genes

β replacement rate 10%
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Figure 6.12: Code size reduction rate achieved by the MS algorithm and the Genetic
algorithm (maximum size of subgraphs is 6)

Fig. 6.12 depicts the code size reduction rate achieved by the MS algorithm and the

genetic algorithm when the maximum size of subgraphs is set to 6. It can be seen that the

results generated by the MS algorithm are close to the results generated by the genetic

algorithm in all the tests. Fig. 6.13 shows the runtime required for the MS algorithm and

the genetic algorithm. We notice that the MS algorithm is more efficient than the genetic

algorithm. The experiments tell us that the proposed MS algorithm can produce fast a

good result. However, the genetic algorithm can still be interesting due to its flexibility.

Actually the cost function of the genetic algorithm can be easily tuned to target other

objectives (area or power consumption for example).
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Figure 6.13: Runtime of the MS algorithm and the Genetic algorithm (maximum size of
subgraphs is 6)

6.4 Discussion and Summary

In this chapter, all the proposed enumeration algorithms and selection algorithms were

evaluated and analyzed. We first evaluated the size constrained subgraph enumeration

algorithm. For all the benchmarks, the algorithm can completely enumerate all the sub-

graphs within one second. The experimental results confirmed the efficiency of the algo-

rithm. We have examined the influences of different factors of the DFGs. The examination

tells us that the size of DFGs is not the only factor that affects the enumeration algorith-

m. The topology of the DFGs sometimes plays a more important role in influencing the

enumeration. In detail, the algorithm requires much more time to enumerate subgraphs

from a tighter connected DFG. Furthermore, a tighter connected DFG may have more

connected subgraphs compared to a loosely connected DFG.

We then carried out extensive experiments to test the efficiency of the two proposed

I/O constrained subgraph enumeration algorithms (the one based on the size constrained

subgraph enumeration algorithm and the topology based I/O constrained subgraph enu-

meration algorithm). We compared our algorithms to an efficient and well-known algorith-

m. The experiments were designed to two catalogues: enumerating all feasible subgraphs

under I/O constraints and enumerating only connected feasible subgraphs under I/O con-

straints. In the experiments of enumerating all feasible subgraphs, the topology based I/O

constrained subgraph enumeration algorithm outperforms all the other two algorithms in

all situations. While in the experiments of enumerating only connected subgraphs, the one

based on the size constrained subgraph enumeration algorithm has the best performance

in most cases. We have done some analysis of the difference in performance. The analysis

reveals that the runtime difference is mainly due to the size of the search space explored
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and connectivity check that is included or not in the strategy.

The subgraph/pattern selection algorithms directly decide the quality of the final re-

sults. First, we evaluated the results obtained by the three proposed selection algorithms.

From the results (area, performance and code size), the PS algorithm can generally achieve

better area reduction compared with the other two algorithms, the MS algorithm lead to

the most compacted code in most situations and the CS algorithm can always result in

positive performance improvement. The performances are very different. The performance

improvement achieved by the CS algorithm is always positive. However, the other two

selection algorithms may result in performance overhead. An interesting point is found

in our study, for different benchmarks the performances improvement achieved are quite

different. We have carefully looked at the selected subgraphs from each benchmark. The

study shows that some benchmarks enable a great chance to optimize the critical path by

the critical path reduction of the selected subgraphs based on the associativity attribute

of operations. Conversely, the other benchmarks offer few opportunities to optimize the

critical path of selected subgraphs. We also compared the results obtained when the con-

straints set to subgraphs are different. We learned that the results of the subgraph under

the I/O constraints and the results of the subgraph under size constraint are similar on

both area and performance. Nevertheless, the results of the all feasible subgraphs and

the results of the connected subgraphs are quite different on performance. This gives us

an important information that selecting all feasible subgraphs can increase performance

by enabling more parallelism. In section 6.3.3, we observed that the MS algorithm is

quite runtime efficient (the runtime is less than one second mostly, see Fig. 6.13). As

the PS algorithm and the CS algorithm are also heuristic methods and the only difference

compared to the MS algorithm is the guide function used, the two algorithms have sim-

ilar runtime performance as the MS algorithm. Thus, the proposed heuristic algorithms

provide a solution in a short time.

In addition, we tested the heuristic algorithm, the genetic algorithm and the exact al-

gorithm for selecting minimal number of matches. Based on the experiments, the following

conclusion can be drawn. The exact algorithm guarantees the optimum of the solution,

but most of the time it fails to produce a solution in a reasonable time. It is the reason

why in this chapter we did not report experimental results about the exact algorithm for

minimal number of matches selection that we presented in section 4.3. The greedy algo-
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rithm provides result in a shorter time, however, the result may be sub-optimal. Overall,

the genetic algorithm makes trade-off between greedy algorithm and the exact algorithm

and can be easily tuned to target other subgraph selection objectives like area or power

consumption.





Chapter 7

Conclusions

In this chapter, a summary of this thesis is presented in section 7.1. We then discuss the

future work in section 7.2.

7.1 Conclusion

Custom operators are of great interest in various fields of circuit design. Custom operators

that combine several primitive operations into one single operator may lead to high code

compaction, performance improvement and area reduction. However, automatical using

custom operators in high-level synthesis is still an emerging research.

This thesis presented a custom operator based high-level synthesis design flow. Our

design flow involves compiler front end transformation, subgraph enumeration, subgraph

selection and code transformation. Given a high-level specification such as C or C++,

an open source compiler infrastructure named GECOS is used to transform the high-

level specification to an intermediate representation. The intermediate representation

used in the design flow is CDFG which captures both the data-dependencies and control

dependencies of an application code. The generated CDFG is then passed to the subgraph

enumeration step as input. The subgraph enumeration step exhaustively enumerate all

the possible subgraphs from the DFGs in the CDFG. After the subgraph enumeration,

the most profitable subset of the set of enumerated subgraphs is selected. Next, a new

functionally equivalent specification that incorporates the selected subgraphs is generated.

Finally, the new specification is provided as input for the high-level synthesis tool.

The main challenges faced in developing the design flow are how to efficiently enumerate

subgraphs from the given CDFG and select the most profitable subset of the enumerated

subgraphs. To address the subgraph enumeration problem, we produced three algorithms
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for enumerating subgraphs under different constraints. The size of the custom operator

(subgraph) can be a design constraint. The subgraphs are incrementally enumerated. Yet,

the duplication enumeration is occurred very often. Pruning the duplicated subgraphs is

very time-consuming. Therefore, we developed a very efficient size constrained subgraph

enumeration algorithm, which can avoid multiple identification of any subgraph by apply-

ing a clever node deletion. The experiments demonstrate that the algorithm is capable to

deal with large data-flow graphs with hundreds of nodes within one second.

The number of inputs and the number of outputs can also be a user-specified design

constraint. In this case, the I/O constraints should be considered. To inherit the ad-

vantages achieved by the size constrained algorithm, we extend it by utilizing the I/O

constraints as pruning criterias. This algorithm can be tuned to generate only connect-

ed subgraphs or all possible subgraphs. We shows with experiments that it outperforms

the state-of-the-art algorithms when enumerating only connected subgraphs, as it can be

adapted to enumerate connected subgraphs without considering disjoint subgraphs and

multiple identifications of any subgraphs.

Based on the study of existing work, we find that the well-known algorithm

[Atasu 2003, Pozzi 2006] for enumerating all MIMO subgraphs can be still improved. The

well-known algorithm iteratively enumerates subgraphs in a binary search way. How-

ever, the specific search sequence prevent the algorithm from avoiding visiting a large

number of non-convex subgraphs or output constraint violated subgraphs. Therefore, we

produce an efficient algorithm that breaks the binary search and still takes advantage of

topological properties of data-flow graph. We also analyzed the time complexity of the

proposed algorithm. To our knowledge, it is one of the two algorithms (the other one is

[Atasu 2003, Pozzi 2006]) for exhaustive enumeration MIMO subgraphs with polynomial

time complexity. Furthermore, the algorithm is very easy to implement.

Given the set of enumerated subgraphs, a subset of it is selected according to different

objectives. As the set of enumerated subgraphs are usually very big, sometimes consisting

of millions of subgraphs, exact approach are not affordable in terms of time. Hence, in

this thesis, three heuristic methods targeting different objectives are presented. The first

heuristic aims at compacting the original source code most. In other words, it tries to cover

the application graph with minimal number of subgraphs. During the process of selection

the heuristic method always select the subgraphs with big size and less overlapping. As
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overlapping is disallowed in our design, selecting a subgraph with more overlapping results

in the deletion of the large number of overlapped subgraphs such that less opportunities

left to achieve a better result.

Reuse of resources is an important point when performing circuit design. A heuristic

selects the most frequently occurred patterns is depicted in this thesis. The heuristic

uses an objective function to rank the candidate patterns. The objective function is well

designed to balance the size of the selected patterns and the frequency of occurrences of

the selected patterns.

However, inappropriate selection can easily result in performance overhead. To handle

the performance overhead, we develop a heuristic method that carefully considers the

length of critical paths. The heuristic prefers to select the subgraphs along the critical

paths. In addition, the subgraphs that may increase the length of critical path are never

considered.

Although the subgraph selection is a computational difficult problem, for the purpose

of completeness, we also presented a typical branch-and-bound algorithm for producing

an optimal solution for the minimal number of matches selection. Note that the exact

algorithm can also be applied to subgraph selection problems with other objectives. As

a compromise between the proposed heuristics and exact methods, a genetic algorithm is

developed. The genetic algorithm provides us a trade-off between runtime and quality of

solution. This algorithm can also be tuned to target other subgraph selection objectives.

7.2 Future Work

There are still many works that can be done for the custom operator based high-level

synthesis flow. To summarize these, we list the future work as following:

• In our experiments, we evaluated the quality of the generated code using the high-

level synthesis tool CtoS. As different high-level synthesis tools may produce different

results with the same inputs, therefore, it is interesting to use other high-level synthesis

tools to evaluate the quality of the code generated by our design flow. We expect for

example to use CatapultC from mentor graphics, but due to licence issues, we are not able

to use it yet.
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• Currently, our subgraph enumeration is only performed on data-flow graphs corre-

sponding to the basic blocks. Considering the subgraphs across basic blocks may provide

a more global view and introduce more opportunities for optimizations. As a consequence,

a better result may be achieved in terms of reuses.

• In the thesis, we carry out the selection step considering the area cost and the

performance. Power consumption has attracted much attention in recent years. However,

the power consumption is not taken into consideration when selecting the subgraphs in

this thesis. What is the impact on power consumption of using custom operators and how

to estimate and model the energy consumption during the subgraph selection remains an

open question. However, it should be said that the heuristic based selection algorithm and

the genetic algorithm can be easily tuned to take power consumption into account owing

to the objective function.



Appendix A

Runtime of the Subgraph

Enumeration Step

A.1 The runtime performance of the subgraph enumeration

step under size constraint
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Custom Operator Identification for High-level Synthesis

Abstract: It is increasingly common to see custom operators appear in various fields of
circuit design. Custom operators that can be implemented in special hardware units make
it possible to reduce code size, improve performance and reduce area. In this thesis, we
propose a design flow based on custom operator identification for high-level synthesis. The
key issues involved in the design flow are: automatic enumeration and selection of custom
operators from a given high-level application code and re-generation of the source code
incorporating the selected custom operators. Unlike the previously proposed approaches,
our design flow is quite adaptable and is independent of high-level synthesis tools (i.e.,
without modifying the scheduling and binding algorithms in high-level synthesis tools).
Experimental results show that our approach achieves on average 19%, and up to 37%
area reduction, compared to a traditional high-level synthesis. Meanwhile, the latency is
reduced on average by 22%, and up to 59%. Furthermore, on average 74% and up to 81%
code size reduction can be achieved.

Identification d’opérateurs spécifiques pour la synthèse de haut niveau

Resumé : Il est de plus en plus fréquent de faire appel à des opérateurs spécifiques en
conception de circuits. Les opérateurs spécifiques peuvent être mis en œuvre par des unités
matérielles dédiées, en vue de réduire la taille du code, d’améliorer les performances et de
réduire la surface du circuit. Dans cette thèse, nous proposons un flot de conception basé
sur l’identification d’opérateurs spécifiques pour la synthèse de haut niveau. Les points
clés de ce flot de conception sont l’énumération automatique et la sélection des opérateurs
spécifiques à partir d’un code de l’application de haut niveau et la re-génération du code
source intégrant les opérateurs spécifiques sélectionnés. Contrairement aux approches
proposées précédemment, notre flot de conception est adaptable et est indépendant des
outils de synthèse de haut niveau (il ne nécessite pas d’intervenir sur les algorithmes
d’ordonnancement et de projection des outils de synthèse de haut niveau). Les résultats
expérimentaux montrent que notre approche permet de réduire la surface du circuit de
19% en moyenne, et jusqu’à 37% dans certains cas, par rapport à une synthèse de haut
niveau traditionnelle. La latence du circuit est réduite en moyenne de 22%, et atteint
jusqu’à 59%. De plus, la taille du code est réduite de 74% en moyenne.


