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Abstract

Diffusion MRI (dMRI) is the unique technique to infer the microstructure of the white
matter in vivo and noninvasively, by modeling the diffusion of water molecules. En-
semble Average Propagator (EAP) and Orientation Distribution Function (ODF) are
two important Probability Density Functions (PDFs) which reflect the water diffu-
sion. Estimation and processing of EAP and ODF is the central problem in dMRI,
and is also the first step for tractography. Diffusion Tensor Imaging (DTI) is the
most widely used estimation method which assumes EAP as a Gaussian distribution
parameterized by a tensor. Riemannian framework for tensors has been proposed
successfully in tensor estimation and processing. However, since the Gaussian EAP
assumption is oversimplified, DTI can not reflect complex microstructure like fiber
crossing. High Angular Resolution Diffusion Imaging (HARDI) is a category of meth-
ods proposed to avoid the limitations of DTI. Most HARDI methods like Q-Ball Imag-
ing (QBI) need some assumptions and only can handle the data from single shell
(single b value), which are called as single shell HARDI (sHARDI) methods. How-
ever, with the development of scanners and acquisition methods, multiple shell data
becomes more and more practical and popular. This thesis focuses on the estimation
and processing methods in multiple shell HARDI (mHARDI) which can handle the
diffusion data from arbitrary sampling scheme.

There are many original contributions in this thesis.

� First, we develop the analytical Spherical Polar Fourier Imaging (SPFI), which
represents the signal using SPF basis and obtains EAP and its various features
including ODFs and some scalar indices like Generalized Fractional Anisotropy
(GFA) from analytical linear transforms. In the implementation of SPFI, we
present two ways for scale estimation and propose to consider the prior E(0) = 1
in estimation process.

� Second, a novel Analytical Fourier Transform in Spherical Coordinate (AFT-SC)
framework is proposed to incorporate many sHARDI and mHARDI methods,
explore their relation and devise new analytical EAP/ODF estimation methods.

� Third, we present some important criteria to compare different HARDI methods
and illustrate their advantages and limitations.

� Fourth, we propose a novel diffeomorphism invariant Riemannian framework
for ODF and EAP processing, which is a natural generalization of previous Rie-
mannian framework for tensors, and can be used for general PDF computing by
representing the square root of the PDF called wavefunction with orthonormal
basis. In this Riemannian framework, the exponential map, logarithmic map
and geodesic have closed forms, the weighted Riemannian mean and median

xiii



ACRONYMS

uniquely exist and can be estimated from an efficient gradient descent. Log-
Euclidean framework and Affine-Euclidean framework are developed for fast
data processing.

� Fifth, we theoretically and experimentally compare the Euclidean metric and
Riemannian metric for tensors, ODFs and EAPs.

� Finally, we propose the Geodesic Anisotropy (GA) to measure the anisotropy of
EAPs, Square Root Parameterized Estimation (SRPE) for nonnegative definite
ODF/EAP estimation, weighted Riemannian mean/median for ODF/EAP inter-
polation, smoothing, atlas estimation. The concept of reasonable mean value
interpolation is presented for interpolation of general PDF data.
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Resumé

L’IRM de diffusion est à ce jour la seule technique à même d’observer in vivo et de
façon non-invasive les structures fines de la matière blanche, en modélisant la diffu-
sion des molécules d’eau. Le propagateur moyen (EAP pour Ensemble average Prop-
agator en anglais) et la fonction de distribution d’orientation (ODF pour Orientation
Distribution Function en anglais) sont les deux fonctions de probabilités d’intérêt
pour caractériser la diffusion des molécules d’eau. Le problème central en IRM de
diffusion est la reconstruction et le traitement de ces fonctions (EAP et ODF); c’est
aussi le point de départ pour la tractographie des fibres de la matière blanche. Le
formalisme du tenseur de diffusion (DTI pour Diffusion Tensor Imaging en anglais)
est le modèle le plus couramment utilisé, et se base sur une hypothèse de diffusion
gaussienne. Il existe un cadre riemannien qui permet d’estimer et de traiter cor-
rectement les images de tenseur de diffusion. Cependant, l’hypothèse d’une diffusion
gaussienne est une simplification, qui ne permet pas de décrire les cas où la struc-
ture microscopique sous-jacente est complexe, tels que les croisements de faisceaux
de fibres. L’imagerie à haute résolution angulaire (HARDI pour High Angular Res-
olution Diffusion Imaging en anglais) est un ensemble de méthodes qui permettent
de contourner les limites du modèle tensoriel. La plupart des méthodes HARDI à ce
jour, telles que l’imagerie sphérique de l’espace de Fourier (QBI pour Q-Ball Imag-
ing en anglais) se basent sur des hypothèses réductrices, et prennent en compte
des acquisitions qui ne se font que sur une seule sphère dans l’espace de Fourier
(sHARDI pour single-shell HARDI en anglais), c’est-à-dire une seule valeur du coef-
ficient de pondération b. Cependant, avec le développement des scanners IRM et des
techniques d’acquisition, il devient plus facile d’acquérir des données sur plusieurs
sphères concentriques. Cette thèse porte sur les méthodes d’estimation et de traite-
ment de données sur plusieurs sphères (mHARDI pour multiple-shell HARDI en
anglais), et de façon générale sur les méthodes de reconstruction indépendantes du
schéma d’échantillonnage.

Cette thèse présente plusieurs contributions originales.

� En premier lieu, nous développons l’imagerie par transformée de Fourier en co-
ordonnées sphériques (SPFI pour Spherical Polar Fourier Imaging en anglais),
qui se base sur une représentation du signal dans une base de fonctions à par-
ties radiale et angulaire séparables (SPF basis pour Spherical Polar Fourier en
anglais). Nous obtenons, de façon analytique et par transformations linéaires,
l’EAP ainsi que ses caractéristiques importantes : l’ODF, et des indices scalaires
tels que l’anisotropie fractionnelle généralisée (GFA pour Generalized Frac-
tional Anisotropy en anglais). En ce qui concerne l’implémentation de SPFI,
nous présentons deux méthodes pour déterminer le facteur d’échelle, et nous
prenons en compte le fait que E(0) = 1 dans l’estimation.
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� En second lieu, nous présentons un nouveau cadre pour une transformée de
Fourier analytique en coordonnées sphériques (AFT-SC pour Analytical Fourier
Transform in Spherical Coordinate en anglais), ce qui permet de considérer
aussi bien les méthodes mHARDI que sHARDI, d’explorer les relations entre
ces méthodes, et de développer de nouvelles techniques d’estimation de l’EAP et
de l’ODF.

� Nous présentons en troisième lieu d’importants critères de comparaison des
différentes méthodes HARDI, ce qui permet de mettre en lumière leurs avan-
tages et leurs limites.

� Dans une quatrième partie, nous proposons un nouveau cadre riemannien in-
variant par difféomorphisme pour le traitement de l’EAP et de l’ODF. Ce cadre
est une généralisation de la méthode riemannienne précédemment appliquée
au tenseur de diffusion. Il peut être utilisé pour l’estimation d’une fonction de
probabilité représentée par sa racine carrée, appelée fonction d’onde, dans une
base de fonctions orthonormale. Dans ce cadre riemannien, les applications
exponentielle et logarithmique, ainsi que les géodésiques ont une forme analy-
tique. La moyenne riemannienne pondérée ainsi que la médiane existent et sont
uniques, et peuvent être calculées de façon efficace par descente de gradient.
Nous développons également un cadre log-euclidien et un cadre affine-euclidien
pour un traitement rapide des données.

� En cinquième partie, nous comparons, théoriquement et sur un plan
expérimental, les métriques euclidiennes et riemanniennes pour les tenseurs,
l’ODF et l’EAP.

� Finalement, nous proposons l’anisotropie géodésique (GA pour Geodesic
Anisotropy en anglais) pour mesurer l’anisotropie de l’EAP; une
paramétrisation par la racine carrée (SRPE pour Square-Root Parameter-
ized Estimation en anglais) pour l’estimation d’un EAP et d’une ODF positifs;
la médiane et la moyenne riemanniennes pondérées pour l’interpolation, le
lissage et la construction d’atlas basés sur l’ODF et de l’EAP. Nous introduisons
la notion de valeur moyenne raisonnable pour l’interpolation de fonction de
probabilités en général.
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CHAPTER 1

INTRODUCTION

CONTEXT

Diffusion Magnetic Resonance Imaging (dMRI) is a relatively recent MRI method,
introduced in the middle of the 80’s by [Bihan et al., 1986; Merboldt et al., 1985; Tay-
lor and Bushell, 1985]. The diffusion of water molecules in tissues is hindered by
many obstacles, such as macromolecules, fibers, membranes, etc. Thus the diffusion
of water molecules can be used as a probe to reveal microscopic details about tissue
microstructure. dMRI is a powerful and the unique technique to study the white
matter in vivo and noninvasively by modeling the water diffusion. There are many
research directions in dMRI, from the imaging technique for Diffusion Weighted Im-
ages (DWIs), to reconstruction of scalar/tensor/function valued images, to segmenta-
tion, registration, tractography and to clinical applications, etc. Please see Fig. 1.1.
In this thesis we are interested in the reconstruction and processing of the Ensem-
ble Average Propagator (EAP) and its various features like Orientation Distribution
Functions (ODFs).

Diffusion Tensor Imaging (DTI) is the most widely used reconstruction method
based on free diffusion assumption [Basser et al., 1994]. The EAP in DTI is assumed
to be Gaussian distribution parameterized by diffusion tensor D. Thus The EAP field
can be represented by a tensor field and visualized by ellipsoids. The Mean Diffusivity
(MD) and Fractional Anisotropy (FA) are two useful scalar measurements in clinical
studies [Pierpaoli and Basser, 1996]. The Riemannian framework for Gaussian distri-
bution has been successfully used in tensor estimation [Lenglet et al., 2006b; Fillard
et al., 2007], regularization [Pennec et al., 2006], segmentation [Lenglet et al., 2006a],
Principal Geodesic Analysis (PGA) [Fletcher et al., 2004], statistical test [Schwartz-
man, 2006], etc. In Odyssée/Athena group, Dr. Lenglet has made a great contribu-
tion on the Riemannian framework for tensors in DTI [Lenglet, 2006; Lenglet et al.,
2006a,b]. In CCM group, we has published many works on neuroscience applications
based on the scalar indices or brain network analysis in DTI model [Gong et al., 2005;
Lin et al., 2006; Yu et al., 2008; Shu et al., 2009; Li et al., 2009; Wang et al., 2011;
Li et al., 2012]. Although the Gaussian assumption for free diffusion is adequate for
voxels with isotropic diffusion or coherent single direction diffusion, it fails for vox-
els with more complicated microstructure, because the water diffusion in tissues is
generally the hindered diffusion. Tensor model in DTI cannot resolve complex fiber
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CHAP. 1: INTRODUCTION

Figure 1.1: Research contents in dMRI. In this thesis, we focus on the reconstruction and
processing of the EAP and its features like ODFs. Chapter 5 focuses on estimation of the EAP
and its features. Chapter 6 focuses on the Riemannian framework for processing of ODFs and
EAPs.

configurations like crossing, merging, kissing, etc. While it was reported that between
one third to two thirds of imaging voxels in the human brain contain have more than
one fiber orientation [Behrens et al., 2007].

High Angular Resolution Diffusion Imaging (HARDI) is a category of reconstruc-
tion methods proposed to avoid the Gaussian EAP assumption and resolve the com-
plex fiber configurations. In this thesis, we consider HARDI as all methods beyond
DTI, although HARDI was proposed initially as a mixture of tensor model [Tuch et al.,
2002]. HARDI methods can be separated into two classes, i.e. single shell HARDI
(sHARDI) and multiple shell HARDI (mHARDI). sHARDI methods like the most
famous one Q-Ball Imaging (QBI) [Tuch, 2004; Anderson, 2005; Hess et al., 2006;
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Figure 1.2: Sketch of the chapters and their relations in the thesis. The green stars are the
chapters in background part. The purple stars are the chapters in contribution part.

Descoteaux et al., 2007] only can handle the data with single b value (single shell),
because the data from different shell obtain different results. In Odyssée/Athena
group, Dr. Descoteaux did a great job in analytical QBI and other Spherical Harmonic
(SH) related sHARDI methods [Descoteaux, 2008; Descoteaux et al., 2007, 2008a].
mHARDI methods normally can work for both single shell data and multiple shell
data by considering a basis defined in R3, not SH basis in S2. Compared to sHARDI
methods, mHARDI methods need less assumptions and are model-free if complete
basis is used. In this thesis we focus on mHARDI methods for the estimation and
processing of EAP and its features.

ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS

This thesis is organized mainly in two parts, i.e. the background part and the
contribution part. In the background part, we give a quick review for the background
knowledge on dMRI, orthonormal polynomials and special functions, manifold, statis-
tics on manifold and statistical manifold, which are used in the contribution part. In
the contribution part, we list two main contributions. One is the analytical Spheri-
cal Polar Fourier Imaging (SPFI) and the Analytical Fourier Transform in Spherical
Coordinate (AFT-SC) framework in Chapter 5, which can be seen as a generalization
of Dr. Descoteaux’s work on analytical QBI from S2 to R3. The other one is the dif-
feomorphism invariant Riemannian framework for processing of ODFs and EAPs in
Chapter 6, which can be seen as a generalization of Dr. Lenglet’s work on DTI from
Gaussian distribution family to general non-Gaussian distribution family. We now
give an overview for each chapter in turn.

Part I: Background

The Background part describes some useful mathematical backgrounds required to
understand the technical contents in this thesis, and the basic concepts and knowl-
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edge of dMRI.

Chapter 2: This chapter covers the mathematical materials on orthogonal polyno-
mials and special functions, which are needed to understand Chapter 4 and 5. We
first introduce the basic concepts of the orthonormal functions and polynomials in
section 2.1 and 2.2. Then in section 2.3 Sturm-Liouville theory is introduced and dif-
fusion equation in one dimension space is solved in Example 2.3. Next in section 2.4
we review some basic concepts and results on polynomials, homogeneous polynomials
and homogeneous harmonic polynomials in Rd and Sd−1. The most important theo-
retical result is the Harmonic Decomposition Theorem 2.4 and its various corollaries,
which directly results in Theorem 4.1 on the equivalence of High Order Tensor (HOT)
basis, polynomial basis and SH basis in S2. Then some orthonormal basis and their
properties are introduced in section 2.5, including associate Legendre polynomial,
Spherical Hamonics (SHs), Bessel function and spherical Bessel function, Hermite
polynomial, associate Laguerre polynomial and hypergeometric function. Three im-
portant theorems about SHs, i.e. Funk-Hecke theorem 2.7, addition theorem 2.6 and
plane wave expansion 2.8, are listed in this section. Their relation can be found in
Appendix 5.7. This section also introduced Simple Harmonic Oscillator basis in 1D
space in Eq. (2.60), called SHO-1D basis, and Simple Harmonic Oscillator basis in 3D
space in Eq. (2.69), called as SHO-3D basis. We introduce the Gamma function and
some other useful integral formulae in section 2.6.

Chapter 3: This chapter covers the mathematical concepts and results on mani-
fold, statistics on manifold and statistical manifold. Section 3.1 reviews the three
layers of structural concepts of Riemannian manifold, i.e. the topological structure,
differentiable structure and the Riemannian structure. The geometry of high dimen-
sion sphere Sd−1 is well studied in Example 3.2 on topology, Example 3.5 on tangent
space, Example 3.7 on geodesic, Example 3.8 on exponential and logarithmic maps.
Riemannian framework on sphere including geodesic, exponential map and logarith-
mic map can be used to devise algorithms to process the data on sphere. Section 3.2
presents the statistical analysis on Riemannian manifold, including the definition,
existence and uniqueness of weighted Riemannian mean and median, PGA. Sec-
tion 3.3 presents the basic concepts on information geometry which considers the
probability family as a manifold called statistical manifold. The Fisher informa-
tion metric is the natural Riemannian metric in the statistical manifold. We list
two examples on the Riemannian framework for different probability family. Exam-
ple 3.10 is for the Gaussian distribution family which is used in DTI. Example 3.11 is
for the multinomial distribution family which is used in Riemannian framework for
ODFs [Goh et al., 2011] by considering the ODF represented by its histogram. Our
formulation in Chapter 6 is more general and efficient by considering the orthonormal
basis representation in continuous case.

Chapter 4: This chapter presents the fundamental concepts and knowledge of Mag-
netic Resonance Imaging (MRI) and diffusion MRI (dMRI), reviews the reconstruc-
tion methods including DTI, sHARDI and mHARDI, and reviews the previous studies
on metrics and processing frameworks for Probability Density Function (PDF) valued
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data. First, we describe the basic principles of MRI and dMRI in section 4.1, includ-
ing the dualities between k-space and x-space, between q-space and R-space. Next,
we review different reconstruction methods in dMRI, including DTI in section 4.2,
sHARDI methods and mHARDI methods in section 4.3. We list the advantages and
limitations for every method, especially the assumptions used in each method. See
Table 4.1 and Appendix 4.7 for the assumptions in QBI and exact QBI. We also pro-
pose two correct ways for ODF normalization in Appendix 4.6. Finally we review
the metrics and processing frameworks proposed for tensors (Gaussian EAPs) and
ODFs in section 4.4. To our knowledge, there is no work on the metric and processing
framework for EAPs so far, which will be addressed in Chapter 6.

Part II: Contributions

This part contains two main contributions in this thesis.

Chapter 5: This chapter proposes a novel analytical Spherical Polar Fourier Imag-
ing (SPFI) reconstruction for EAP and its various features. First, Dr. Assemlal’s
work on SPF basis, least square estimation with regularization, and numerical inner
product to estimate EAP and its features are presented in subsection 5.1.1. Sec-
ond, the analytical forms for EAP, two kinds of ODFs, three scalar indices including
Return-To-Origin probability (RTO), Mean Squared Displacement (MSD), general-
ized FA (GFA), are proposed in subsection 5.2.2. These analytical forms are linear
transforms. Note the GFA we proposed is for EAP in R3 which is the generalization
of FA for tensors and GFA for ODFs. Next, the implementation of SPFI is shown in
Table 5.1, which contains three independent steps. In the scale estimation step, we
propose two ways. One is based on the typical ADC, and the other one is based on
fitting Generalized HOT (GHOT) model. In the least square estimation part, we pro-
pose to consider the prior E(0) = 1 in estimation. The third step is the analytical linear
transforms demonstrated in subsection 5.2.2. Section 5.2.2 proposes an novel Ana-
lytical Fourier Transform in Spherical Coordinate (AFT-SC) framework to compare
and analyze different sHARDI and mHARDI methods in a unified framework. Many
HARDI methods can be explained in AFT-SC framework, such as QBI, Diffusion Ori-
entation Transform (DOT), Diffusion Propagator Imaging (DPI), Simple Harmonic
Oscillator Reconstruction and Estimation (SHORE) and SPFI. Moreover many new
methods can be proposed in AFT-SC for analytical ODF and EAP estimation. Please
see Table 5.2 for these analytical reconstruction methods and their possible variants.
For QBI in AFT-SC framework, we propose the EAP for QBI, and demonstrate the
EAP and ODF by Wedeen for QBI are actually impractical since they have large
modeling error. For SHORE, we propose the analytical forms for EAP, ODFs and
variant scalar indices. For DPI and DOT, we analyze their limitations and propose
several variants to avoid the limitations. AFT-SC framework makes the analytical
ODF and EAP estimation become an easy job. Then two questions arise naturally:
How to evaluate all these analytical methods? Which analytical method is better? In
section 5.3, we propose some criteria for theoretical comparisons. See Table 5.3 for
an overview. These sHARDI and mHARDI methods are compared in experiments by
synthetic data, phantom data and real data in section 5.4. The experimental results
validated the methods and our theoretical comparisons.

5



CHAP. 1: INTRODUCTION

Chapter 6: This chapter proposes a general state-of-the-art Riemannian frame-
work as a mathematical tool to process PDF data like ODF/EAP valued images, by
representing the square root of the PDF, called wavefunction based on quantum me-
chanics, as a linear combination of some orthonormal basis functions. The proposed
Riemannian framework is the natural extension of previous Riemannian framework
for tensors. In theoretical part in section 6.1, we deduce the Riemannian metric,
i.e. the Fisher information metric, for PDFs based on orthonormal basis represen-
tation and show the properties of the statistical manifold which is a convex subset
of a high dimension sphere. In this framework, the exponential map, logarithmic
map and geodesic have closed forms, and weighted Riemannian mean (Fréchet mean)
and weighted Riemannian median uniquely exist. Moreover, we present two efficient
frameworks, i.e. Affine-Euclidean framework and Log-Euclidean framework, for fast
processing of data in subsection 6.1.6, and generalize the Geodesic Anisotropy (GA)
form tensors to ODFs and EAPs in subsection 6.1.5, which is the Riemannian dis-
tance from the ODF/EAP to the nearest isotropic ODF/EAP and is closely related
to the Rényi entropy. It should be noted that our theoretical results can be used
for any probability density function (PDF) besides ODF/EAP under any orthonor-
mal basis representation. Furthermore we analyze theoretically the similarities and
differences between Riemannian frameworks for EAPs, ODFs and for tensors. We
analyzed theoretically and experimentally the similarities and differences between
Riemannian framework for tensors and for ODFs and EAPs, between Riemannian
metric and Euclidean metric. The proposed Riemannian metric is diffeomorphism in-
variant which is the natural extension of the previous affine-invariant metric for ten-
sors. Based on this Riemannian framework of PDFs, we demonstrate some potential
applications in section 6.2 via the Riemannian operations for ODF and EAP compu-
tation, such as anisotropy description via GA, nonnegative definite ODF/EAP estima-
tion, interpolation, filtering, Principle Geodesic Analysis (PGA) and atlas estimation.
In the interpolation part, we propose the concept of reasonable mean value interpo-
lation on general PDF data. The swelling effect on tensor interpolation is a specific
phenomenon of unreasonable mean value interpolation. In section 6.3, the proposed
Riemannian framework and its applications are validated in synthetic, phantom and
real data. The experiments demonstrate that the Riemannian framework is very
useful for ODF and EAP computing.

Part III: Conclusions

Chapter 7: This is the conclusion chapter which summarizes our contributions in
Chapter 5 and 6. It also summarizes the journey of my study for this thesis and
presents the potential perspectives.

Part IV: Appendices

Appendix A: This appendix describes the synthetic data generation and evaluation
of reconstruction methods in this thesis. The synthetic data is generated by mixture
of tensor model or mixture of Söderman cylinder model. The evaluation can be per-
formed by comparing the estimated ODFs/EAPs with ground truth ODFs/EAPs based
on mean squared error or fiber directions which are considered to be the maxima of
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ODF/EAP profiles. The maxima of ODF/EAP profiles are detected by a hybrid way
which combines the discrete mesh search and gradient ascent.

Appendix B: This appendix describes two real data set. One is the public phantom
data from LNAO used in fiber cup MICCAI 2009. The other one is the monkey data
from Xuanwu Hospital, Capital Medical University.

Appendix C: This appendix lists the publications from the author for this thesis.
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CHAPTER 2

ORTHOGONAL POLYNOMIALS AND
FUNCTIONS

“You don’t have to believe in God, but you should believe in The Book.”

– Paul Erdös
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

OVERVIEW

Special functions are some particular mathematical functions which have more or
less established names and notations due to their importance in mathematical anal-
ysis, functional analysis, physics, or other applications. An orthogonal polynomial
family is a set of polynomials which are orthogonal to each other under a certain inner
product. Classic orthogonal polynomials are some widely used special functions and
can be represented by hypergeometric functions based on Askey scheme [Askey and
Wilson, 1985]. Special functions and their properties are also widely used in HARDI.
For example, spherical harmonics and its properties have been deeply explored and
applied in QBI [Descoteaux et al., 2007; Aganj et al., 2010b], DOT [Özarslan et al.,
2006], etc.

This chapter gives a quick overview of some classic special functions and their
properties that are used in the thesis. Please refer some textbooks on Mathematical
Physics, functional analysis and partial differential equation and Fourier analysis
for more details on the contents of this chapter [Arfken et al., 2005; Conway, 1990;
Haberman, 1987; Byron and Fuller, 1992; Axler et al., 2001; Andrews et al., 1999].

Organization of this chapter:
First, orthogonal functions in piecewise continuous function space are introduced

in Section 2.1. Second, orthogonal polynomials are introduced based on Stone-
Weierstrass theorem and Gram-Schmidt orthogonalization in Section 2.2. Then
Sturm-Liouville theory on the connection between complete orthogonal function sys-
tem and second order ordinary differential equation is described in Section 2.3, which
provides another way to construct an orthonormal basis in addition to Gram-Schmidt
orthogonalization. Next, we list some basic theoretical results on decomposition of
polynomial space in Section 2.4. Then some important orthonormal bases and their
properties used in this thesis, i.e. Spherical Harmonics, Laguerre Polynomial and
Hermite Polynomial, Bessel function etc., are introduced from partial differential
equation and orthogonalization in Section 2.5. At last, some other special functions
and integral formulae used in the following chapters are listed in Section 2.6.

2.1 ORTHOGONAL FUNCTIONS

The function space of all piecewise continuous complex valued (C1) functions de-
fined in a given real interval [a, b] ⊂ R1 forms a vector space. There are many
possibilities to define such an inner product 〈·, ·〉 in the function space such that it
is a Hilbert space. Then the norm and metric introduced by the inner product are
given as ‖ f (x)‖ =

√
〈 f (x), f (x)〉 and d( f (x), g(x)) = ‖ f (x) − g(x)‖, where f (x) and g(x) are

any two functions in the function space. A normally used inner product is defined as
〈 f (x), g(x)〉 =

∫
f (x)g(x)dx, where g(x) means the conjugate of g(x). This inner product

introduces the well-known `2 norm and metric in the function space. A more general
and widely used inner product is in Eq. (2.1), where w(x) is a positive definite weight
function.

〈 f (x), g(x)〉 =

∫ b

a
f (x)g(x)w(x)dx (2.1)
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After an inner product is defined, many useful tools can be introduced based on it,
such as the norm (or called length) of one function, distance and angle between two
functions, etc.

Definition 2.1. Let f (x) and g(x) be two piecewise continuous C1 (1D complex val-
ued) functions. For one function, the length or norm of f (x) is defined as ‖ f (x)‖ =√
〈 f (x), f (x)〉. f (x) is said to be normalized if it has unit norm. For two functions,

f (x) and g(x) are said to be orthogonal if 〈 f (x), g(x)〉 = 0. The metric or distance is
introduced as d( f (x), g(x)) = ‖ f (x)− g(x)‖. The angle between f (x) and g(x) is defined as
arccos

(
〈 f (x),g(x)〉
‖ f (x)‖‖g(x)‖

)
.

When f (x) is orthogonal to g(x), the angle between these two functions is 90◦.
When f (x) is not orthogonal to g(x), f (x) can be separated into two parts, where one is
f (x) − 〈 f (x),g(x)〉

〈g(x),g(x)〉g(x) that is orthogonal to g(x), and the other one is 〈 f (x),g(x)〉
〈g(x),g(x)〉g(x) that has

angle of 0◦ with g(x). We can also normalize these two parts such that they have unit
norm. This process is called as Gram–Schmidt orthogonalization. Then these
two parts are just like two axes in Euclidean space R2 and we can represent f (x) with
two scalar coefficients along these two axes.

The above concepts are only for one or two functions. For a set of functions
{ fn(x)}|n∈J (maybe infinite) where J is the index set, the functions are called to be lin-
early independent if the equation

∑
n∈J cn fn(x) = 0 has only the trivial solution cn = 0,

∀n ∈ J. Otherwise, they are linearly dependent. A function set is an orthonormal
system if the functions all have unit norm and any two different functions are orthog-
onal, i.e. 〈 fn(x), fm(x)〉 = δnm. It is easy to check that the functions in an orthonormal
system are linearly independent. A linearly independent function set can be always
linearly transformed into an orthonormal system by the Gram–Schmidt process
performed in one dimension after another as we have described above in two dimen-
sion.

The linear span of a linearly independent function set { fn(x)}|n∈J defined as
Span{{ fn(x)}|n∈J} = {

∑
n∈J cn fn(x) | cn ∈ C} forms a vector space, which is homeomorphism

to the Euclidean space C|J| when J is a finite set1. Based on the definition of the linear
span, any function in this spanned space can be linearly represented by these func-
tions. Thus we say that the function set is complete in the space or the function set
is a basis of the space. A weaker and more formal definition of completeness is
given as follows.

Definition 2.2. A function set { fn(x)}n∈J is called to be complete in a function space
FS [Arfken et al., 2005; Courant and Hilbert, 1989], if ∀g(x) ∈ FS, ∃ c1, c2, ..., cN , such
that

lim
N→∞

‖g(x) −
N∑

n=1

cn fn(x)‖2 = lim
N→∞

∫ b

a

∣∣∣∣g(x) −
N∑

n=1

cn fn(x)
∣∣∣∣2w(x)dx = 0 (2.2)

Complete orthonormal system in FS is called as orthonormal basis of FS.

Example 2.1. A simple example of orthonormal basis is the well-known Fourier basis
{e−i2πnx}n=0,±1,··· for the functions defined in [0, 1].

1|J| means the number of members in J
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

The coefficients for the general orthonormal basis are called as generalized
Fourier coefficients and the partial summation

∑N
n=1 cn fn(x) is called as general-

ized Fourier series, which are analogical to the Fourier coefficients and Fourier
series.

As we have shown about, any orthonormal system is an orthonormal basis
for its linear span. However, for a given orthonormal system and given function
space, Eq. (2.2) is not easy to be verified. Eq. (2.2) based on Mean Squared Error
(MSE) means the generalized Fourier series

∑N
n=1 cn fn(x) converges in the mean to

g(x), where w(x) is like a probability density function. Convergence in the mean is
different from pointwise convergence. For example, when Fourier basis is used to
represent discontinuous function like square wave function, Gibbs phenomenon oc-
curs in the discontinuous points. That is understandable because we use continuous
basis functions to represent discontinuous function. In this case, Fourier series of
square wave function does not converge at the discontinuous points, while Eq. (2.2)
is still satisfied. However, in practice when MSE is used to evaluate the difference
between signals (functions), we can simply ignore the discontinuous points because
they have no contribution for MSE. In this thesis, we are interested in DWI signals
which can be seen as continuous function based on biological priors. So we assume
the functions studied in this thesis are continuous, not piecewise continuous. More-
over, like Fourier basis, general orthonormal basis satisfies the Bessel’s inequality,
i.e. 〈g(x), g(x)〉2 ≥

∑
n∈J c2

n , because ‖g(x) −
∑

n∈J cn fn(x)‖2 ≥ 0. The equality holds only
if Eq. (2.2) is satisfied. So in order to guarantee the coefficients {cn} exist, we need
to assume the norm of function g(x) ∈ FS is bounded. In other words, FS is square
integrable function space, denoted by L2([a, b],w(x)), where w(x) is the weight func-
tion, [a, b] is the real interval. Let L2(χ,w(x)) denote the space of square integrable
functions in domain χ and with weight function w(x). In the following parts of
the thesis, if not explicitly stated, we always assume the functions are con-
tinuous and in L2(χ,w(x)) with different w(x) and in different χ. Actually square
integrable condition is easy to be satisfied. For example, if g(x) is a bounded function
defined in a bounded space, its norm is always bounded.

The generalized Fourier coefficients for orthonormal basis { fn(x)} can be easily
obtained as cn = 〈g(x), fn(x)〉, which is the unique solution of the least square problem
{cn} = arg min

∫ b
a

∣∣∣∣g(x)−
∑∞

j=1 c j f j(x)
∣∣∣∣2w(x)dx. Then the generalized Fourier series is given

in Eq. (2.3), where ∼ means the approximation in the mean, and the approximation
becomes equality in every point if g(x) is continuous and square integrable.

g(x) ∼
∞∑

n=1

〈g(x), fn(x)〉 fn(x) (2.3)

In this case cn is only dependent on the basis function fn(x) and g(x), independent with
{ fm(x)}m,n.

2.2 ORTHOGONAL POLYNOMIALS

Compared to Trigonometric function in Fourier basis, polynomial is the another
kind of basic elementary function. Historically it has been proved useful in func-
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tion representation and approximation. A fundamental theorem on this topic is the
famous Stone-Weierstrass theorem.

Theorem 2.1 (Stone-Weierstrass theorem). Let g(x) be a continuous complex val-
ued function defined in [a, b]. for any given ε, there exists a polynomial p(x) defined in
[a, b], such that |g(x) − p(x)| < ε, ∀x ∈ [a, b].

In other words, the function defined on a closed and bounded interval can be uni-
formly approximated by polynomials to any degree of accuracy. Thus no matter
how complex the function g(x) is, we can always study its approximated polynomial
instead of study the function itself. Please note that the uniform convergence in
this theorem is stronger than convergence in the mean in last subsection. Although
the proof of Stone-Weierstrass theorem is a constructive proof based on Bernstein
polynomial, the proof only shows an asymptotic solution that there exists a Bern-
stein polynomial with a large enough order which can guarantee the absolute differ-
ence is less than the given tolerance ε. See [Byron and Fuller, 1992, chap. 5] for the
details of the proof. However, in practice we are more interested in the following two
questions.

� For a given order N, how to estimate polynomial pN(x) with the minimal MSE∫ b
a ‖g(x) − pN(x)‖2w(x)dx ?

� For a given MSE = ε, how to estimate pN(x) with the minimal order N ?

These two questions are like two faces of one coin. In order to answer them, we need
to better understand the polynomial space.

Let pn(x) denote the polynomial of order n and let PN denote the polynomial func-
tion space contains all polynomial with the order no more than N, i.e. PN = {pn(x) : n ≤
N}. An obvious basis of PN is the set of N + 1 monomials {xn}Nn=0, which is not orthonor-
mal system because 〈xn, xm〉 , δnm. For a given N, we can represent the polynomial as
pN(x) =

∑N
n=0 cnxn and minimize the cost function M(c) =

∫ b
a |g(x) −

∑N
n=0 cnxn|2w(x)dx,

where c = (c1, ..., cN)T . This is a least square problem. After letting ∂M(c)
∂cn

zero,
we have

∑N
n=0 cn〈xn, xm〉 = 〈g(x), xm〉. Then the unique solution is c = X−1g, where

g = (〈g(x), x0〉, ..., 〈g(x), xN〉)T , and Xnm = [〈xn, xm〉] is called as Hilbert matrix when
w(x) = 1. Hilbert matrix is known to have large condition number and is a classical
example for demonstrating round-off error difficulties. Another issue is that we need
to calculate the inverse of X, which means cn and cm are coupled together.

Historically, in order to solve these two issues, we can perform Gram–Schmidt
orthogonalization to {xn}Nn=0 and obtain the orthonormal system {un(x)}Nn=0. The orthog-
onalization is done for each dimension as follows.

u0(x)←
x0

‖x0‖
(2.4)

∀n > 0, un+1(x)← xn −

n∑
m=0

〈xn, um(x)〉, un+1(x)←
un+1(x)
‖un+1(x)‖

(2.5)

Then we can assume pN(x) =
∑N

n=0 cnun(x), and obtain the solution∑N
n=0 cm〈un(x), um(x)〉 = 〈g(x), um(x)〉 = cm. In this case we do not need to calculate

15



CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Table 2.1: Some classical orthogonal polynomials generated by Gram–Schmidt orthogonal-
ization of {xn} and second order ordinary differential equations.

Polynomial Legendre Pn(x) Hermite Hn(x) Laguerre Ln(x) Associated Laguerre Lαn (x)
interval [−1, 1] (−∞,∞) [0,∞) [0,∞)

w(x) 1 e−x2
e−x xαe−x

squared norm 〈Pn(x), Pn(x)〉 = 2
2n+1 〈Hn(x),Hn(x)〉 = 2n √πn! 〈Ln(x), Ln(x)〉 = 1 〈Lαn (x), Lαn (x)〉 =

(n+α)!
n!

p0(x) 1 − x2 1 x x
p1(x) −2x −2x 1 − x α + 1 − x

R(x) = e
∫ x p1(t)

p0(t) dt 1 − x2 e−x2
xe−x xα+1e−x

λ(n) n(n + 1) 2n n n

the inverse of the matrix since it is an identity matrix. cn is only dependent on
the basis function un(x) and g(x), as we have shown in the last section. Please
note for {xn}|Nn=0 that is just independent, the optimal cn is dependent on the whole
function set, not just un(x). Moreover, for two different order N1 and N2, the optimal
first min{N1,N2} coefficients are the same for orthonormal basis, but different for
non-orthonormal basis. Both orthonormal and non-orthogonal basis functions are
used in dMRI field. We will compare them in the following chapters .

Example 2.2 (Orthogonalization and Legendre Polynomials). For L2([−1, 1], 1) where
the function domain is [−1, 1] and weight function w(x) = 1, the obtained orthonormal
basis from {xn}Nn=0 is proportional to the famous Legendre polynomial {Pn(x)}which is
not normalized. The Legendre polynomial is actually the unique form of orthonormal
system for closed interval, because if [a, b] is not [−1, 1] we can always perform a linear
transform y = 2x−b−a

b−a such that the interval becomes [−1, 1].

If we choose another w(x) or consider a or b is infinity, Gram-Schmidt orthogonal-
ization will result in another polynomial family as an orthonormal basis. Table 2.1
lists some classical orthogonal polynomials used in this thesis, where Lαn (x) becomes
Ln(x) when α = 0. The normalized version of these polynomials are orthonormal basis
from Gram–Schmidt Orthogonalization.

2.3 STURM-LIOUVILLE THEORY

It is easy to test whether a given function set under the given weight function is or-
thonormal system or not. However, it is hard to verify whether the given function set
is complete based on the definition 2.2. Since independent function set can be always
orthogonalized to orthonormal system, historically Gram–Schmidt orthogonalization
becomes an important way to study orthogonal functions and Stone-Weierstrass the-
orem is a way to prove completeness. Another way is the Sturm-Liouville theory
for second order ordinary differential equations.

In this section, we are interested in the Sturm-Liouville equation in Eq. (2.6),
where p(x) > 0, w(x) > 0, and p(x), q(x), w(x) are continuous function defined in [a, b]
and determined by their physical meaning in different applications. The boundary
conditions are given as g(a), g(b), g′(a), g′(b) or their linear combination. The value
of λ is not specified in the equation. Finding the values of λ such that there exists a
non-trivial solution satisfying the boundary conditions is part of the problem called
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the Sturm-Liouville problem.

d
dx

[p(x)
dg(x)

dx
] + q(x)g(x) + λw(x)g(x) = 0, x ∈ (a, b) (2.6)

Many famous equations in physics are in this form or can be transformed into this
form through separation of variables.

Example 2.3 (Diffusion Equation in 1D). Diffusion equation (or called heat equa-
tion) in one dimension is

∂g
∂t

= D
∂2g
∂x2 , x ∈ (−∞,∞), t ∈ [0,∞) (2.7)

where D is the diffusion coefficient used to describe the rate of the diffusion. After
considering g(x, t) = X(x)T (t) in the technique of separation of variables, we have two
equations

X′′ + kX = 0, T ′ + kDT = 0

where k is the so called separation constant. Because we are interested in stale
solutions after large enough time, k should be positive, which means X′′ + kX = 0 is a
Sturm-Liouville equation. Then the solutions of above two equations are

X(x) = A(k) sin(
√

kx) + B(k) cos(
√

kx), T (t) = C(k)e−kDt

where A(k), B(k),C(k) are constants dependent on k and need to be set by considering
boundary conditions. Then the final solution is

g(x, t) = (A(k) sin(
√

kx) + B(k) cos(
√

kx))e−kDt (2.8)

Besides, any arbitrary summation of such g(x, t) with different k is still a solution
of diffusion equation. In the following, we will obtain the solution of the diffusion
equation under different boundary conditions.

� Consider the following boundary condition

g(a, t) = g(b, t) = 0, ∀t ≥ 0

which is the boundary condition for the diffusion in a given stick with length
b − a, then we have k = n2π2

(b−a)2 ≥ 0, n = 0, 1, 2 . . . for non-trivial solutions. Then the
final solution is

g(x, t) =

∞∑
n=1

An sin
(

nπ
b − a

(x − a)
)
e
− Dn2π2

(b−a)2
t

� Consider another boundary condition as

g(x, 0) = f (x), x ∈ (−∞,∞)

which is the boundary condition of random walk of a particle when f (x) is the
initialization probability in spatial space. In Eq. (2.8), we let k = 4π2ξ2 and
replace trigonometric functions with exponential functions. Then we have

g(x, t) = A(ξ)ei2πξxe−4π2ξ2Dt
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The integration over ξ is still a solution given as

g(x, t) =

∫ ∞

−∞

A(ξ)ei2πξxe−4π2ξ2Dtdξ

which is the inverse Fourier transform of A(ξ)e−4π2ξ2Dt. Then A(ξ) is the Fourier
transform of f (x), because

f (x) = g(x, 0) =

∫ ∞

−∞

A(ξ)ei2πξxdξ = F−1{A(ξ)}(x)

Thus considering

F−1{e−4π2ξ2Dt}(x) =
1

√
4πDt

e−
x2

4Dt

we have the final solution as the convolution of f (x) and F−1{e−4π2ξ2Dt}(x), i.e.

g(x, t) =

∫ ∞

−∞

1
√

4πDt
e−

(y−x)2
4Dt f (y)dy (2.9)

When f (x) = δ(x), we have the so called Green’s function as

g(x, t) =
1

√
4πDt

e−
x2

4Dt = N(x|0, 2Dt) (2.10)

which is the probability at spatial and temporal position (x, t) in Brownian mo-
tion. Its 2-order moment is

〈x2〉
def
=

∫ ∞

−∞

x2N(x|0, 2Dt)dx = 2Dt (2.11)

The classic polynomials described in the last section are proved to be the solutions
of some ordinary differential equations which are in the general form.

p0(x)g′′(x) + p1(x)g′(x) + p2(x)g(x) + λg(x) = 0 (2.12)

When p1(x) = p′0(x), this form can be written directly as equation Eq. (2.6). If

p1(x) , p′0(x), let R(x) = e
∫ x p1(t)

p0(t) dt and a multiplier R(x)
p0(x) can be performed to the gen-

eral form, then we have [R(x)g′(x)]′ +
R(x)p2(x)

p0(x) g(x) + λ R(x)
p0(x) g(x) = 0, which is exactly the

form in Eq. (2.6) with p(x) = R(x), q(x) =
R(x)p2(x)

p0(x) and w(x) =
R(x)
p0(x) . Table 2.1 lists p0(x),

p1(x), R(x), w(x) for the classic polynomials used in this thesis.

Formula Eq. (2.6) can be written as Lg(x) = λg(x), where L = − 1
w(x)

(
d
dx [p(x) d

dx ] +

q(x)
)

is a self-adjoint operator, because
∫ b

a

(
Lu(x)

)
u(x)dx =

∫ b
a u(x)

(
Lu(x)

)
dx, ∀u(x).

Thus Eq. (2.6) is actually to find the eigen-decomposition of the self-adjoint operator
L.

Sturm-Liouville problem is called regular if the boundary conditions are given as

α1g(a) + α2g′(a) = 0 (α2
1 + α2

2 > 0)

β1g(b) + β2g′(b) = 0 (β2
1 + β2

2 > 0)
(2.13)

Theorem 2.2 (Sturm-Liouville Theorem). Regular Sturm-Liouville problem has
the following theoretical results.
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� The eigenvalues of a self-adjoint operator are real and can be ordered such that
λ1 < λ2 < · · · < λn < · · · .

� The eigenfunctions of a self-adjoint operator is an orthogonal basis in function
space L2([a, b],w(x)).

The second result is another way to prove the completeness of the function set.
Please see [Arfken et al., 2005, chap. 10] for the proof of this theorem.

2.4 POLYNOMIALS IN Rd AND Sd−1

The polynomials and functions in previous sections are defined in one dimension
(1D). This section overviews some important concepts and results of functions and
polynomials in d dimensional Euclidean space Rd and their restrictions in sphere
Sd−1.

If { f1(x)} and { f2(y)} are orthonormal bases in L2([a1, b1],w1(x)) and L2([a2, b2],w2(y)),
obviously { f1(x) f2(y)} is a orthonormal basis in L2([a1, b1] × [a2, b2],w1(x)w2(y)) based
on the inner product defined in the product space. So most concepts in R1 can be
trivially generalized into Rd. Stone-Weierstrass theorem can be applied into Rd, i.e.
the continuous function defined on a closed and bounded interval of I ⊂ Rd can be
approximated uniformly by a d dimensional polynomial defined in I.

Let PN(Rd) denote the space of the polynomials with the order no more than N
in Rd. The monomial basis in PN(Rd) is {

∏d
j=1 xn j

j }|
∑d

j=1 n j<N . A polynomial pn(x) is
called to be homogeneous with order n if pn(tx) = tn pn(x). Based on the defini-
tion, homogeneous polynomial pn(x) is even when n is even, and is odd when n is
odd. ∀pm(x) ∈ PN(Rd), pm(x) can be separated uniquely such that pm(x) =

∑m
n=0 qn(x),

where qn(x) ∈ HPn(Rd), HPn(Rd) = Span{
∏d

j=1 xn j
j }|

∑d
j=1 n j=n is the space of homogeneous

polynomials with order n. The dimension of HPn(Rd), i.e. the number of monomials
in HPn(Rd), is

(
n+d−1

d−1

)
, because the index of the monomial in HPn(Rd) is determined

uniquely by choosing different d − 1 numbers from (0, 1, ..., n + d − 2).

Denote respectively the restrictions of PN(Rd) and HPn(Rd) in Sd−1 ⊂ Rd by
PN(Sd−1) and HPn(Sd−1). Considering the natural inner product in Sd−1 defined as
〈p(x), q(x)〉Sd−1 =

∫
Sd−1 p(x)q(x)dx, we have some interesting results.

Proposition 2.1. HPn(Sd−1) ⊂ HPn+2(Sd−1), ∀n ≥ 0. PN(Sd−1) =

HPN(Sd−1)
⊕
HPN−1(Sd−1), ∀N ≥ 1, where

⊕
means the direct sum of Hilbert spaces.

Proof. For any given polynomial pn(x) ∈ HPn(Rd), x ∈ Rd, obviously ‖x‖2 pn(x) ∈
HPn+2(Rd), which means HPn(Sd−1) ⊂ HPn+2(Sd−1), ∀n ≥ 0. Thus ∀pn(x) ∈ PN(Sd−1),
pn(x) = qn(x) + qn−1(x), where qn(x) ∈ HPn(Sd−1) ⊂ HPN(Sd−1) and qn−1(x) ∈
HPn−1(Sd−1) ⊂ HPN−1(Sd−1). ∀pN(x) ∈ HPN(Rd) and pN−1(x) ∈ HPN−1(Rd), we have
〈pN(x), pN−1(x)〉Sd−1 = 0, because one is odd and the other one is even. So HPN(Rd) and
HPN−1(Rd) are orthogonal. Then PN(Sd−1) = HPN(Sd−1)

⊕
HPN−1(Sd−1), ∀N ≥ 1. �
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Definition 2.3. A function g(x) is harmonic if ∆g(x) = 0, where x ∈ Rd and ∆
def
=∑d

j=1
∂2

∂x2
j

is the Laplace operator (aka Laplace-Beltrami operator). A polynomial

pn(x) is called as a harmonic polynomial if ∆pn(x) = 0,

Denote the space of homogeneous harmonic polynomials with order n by
Hn(Rd), and its restriction in Sd−1 as Hn(Sd−1). Harmonic polynomial plays an im-
portant role in polynomial theory. First, ∀pn(x) ∈ HPn(Rd), if ∆pn(x) , 0, then ∆pn(x) ∈
HPn−2(Rd). ∀pn−2(x) ∈ HPn−2(Rd), ∃ qn(x) ∈ HPn(Rd) such that ∆qn(x) = pn−2(x), which
means ∆ is a surjection from HPn(Rd) to HPn−2(Rd), and Hn(Rd) is the kernel. So
the dimension of Hn(Rd) is (

n + d − 1
d − 1

)
−

(
n + d − 3

d − 1

)
(2.14)

Second, Harmonic polynomials can be used to separate the homogeneous polynomial
space based on the following theorems.

Theorem 2.3 (Orthogonality of homogeneous harmonic polynomials). With
the definition of the natural inner product in Sd−1, Hn(Sd−1) ⊥ Hm(Sd−1), if n , m, where
⊥ means two spaces are orthogonal, i.e. ∀pn(x) ∈ Hn(Sd−1) and pm(x) ∈ Hm(Sd−1), we
have 〈pn(x), pm(x)〉 = 0.

Theorem 2.4 (Harmonic Decomposition Theorem). ∀pn(x) ∈ HPn(Rd), x ∈ Rd,
it can be uniquely separated in the form pn(x) =

∑[ n
2 ]

j=0 ‖x‖
2 jhn−2 j(x), where hn−2 j(x) ∈

Hn−2 j(Rd), and [ n
2 ] is the maximal integer no more than n

2 .

Theorem 2.3 shows the orthogonality of homogeneous harmonic polynomial spaces
with different orders, whose proof based on Green’s second identity can be found
in [Axler et al., 2001, chap. 5]. Theorem 2.4 shows that every multivariate polynomial
over a field can be decomposed as a finite sum of products of a radical polynomial and
a harmonic polynomial. Please refer [Axler et al., 2001, chap. 5] for the rigorous proof
of it. A straightforward result based on these two theorems is

Corollary 2.1. HPn(Sd−1) =
⊕[ n

2 ]
j=0Hn−2 j(Sd−1), where [ n

2 ] is the maximal integer no
more than n

2 .

Based on Proposition 2.1 and Corollary 2.1, we have Corollary 2.2. This corollary
shows that for every pn(x) ∈ PN(Rd), although pn(x) may be not harmonic there always
exists a harmonic polynomial qn(x) ∈

⊕N
j=0H j(Rd), such that pn(x) = qn(x), ∀x ∈ Sd−1.

Corollary 2.2. PN(Sd−1) =
⊕N

j=0H j(Sd−1).

Considering Stone-Weierstrass theorem in Theorem 2.1, we have

Corollary 2.3. L2(Sd−1, 1) = limN→∞PN(Sd−1) =
⊕∞

j=0H j(Sd−1).
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2.5 SOME ORTHONORMAL BASES AND THEIR PROPER-
TIES

In the previous sections, we have given an overview of some abstract concepts and
results of orthogonal function, Gram–Schmidt orthogonalization, Stone-Weierstrass
theorem, and Sturm-Liouville theory. Every specific polynomial (or function) has a
lot of useful properties which can be used in different applications. In this section, we
just list some properties of the polynomials and other special functions used in this
thesis.

2.5.1 Associated Legendre Polynomial

We have demonstrated Legendre polynomial {Pn(x)} from Gram-Schmidt orthogonal-
ization in Section 2.2. Associated Legendre polynomial {Pm

n (x)} is a generalized version
of {Pn(x)}. It is defined as

Pm
n (x) = (−1)m(1 − x2)

m
2

dm

dxm (Pn(x)) (2.15)

It satisfies the general Legendre equation in Eq. (2.16).

(1 − x2)g′′ − 2xg′ + (l(l + 1) −
m2

1 − x2 )g = 0 (2.16)

Pm
n (x) becomes the Legendre polynomial Pn(x) when m = 0. It satisfies the following

orthogonality. ∫ 1

−1
Pm

n (x)Pm
n′(x)dx =

2(n + m)!
(2n + 1)(n − m)!

δnn′ (2.17)

Please note that Pm
n (x) is defined in the same domain [−1, 1] and has the same

weight function w(x) = 1 as Pn(x). See Table 2.1. However Legendre polynomial {Pn(x)}
is the unique form from Gram-Schmidt orthogonalization. Associated Legendre poly-
nomials {Pm

n (x)} actually form a larger space than polynomial space. For example,
P1

1(x) = −(1 − x2)1/2 is not a polynomial, although normally we call Pm
n (x) as associated

Legendre polynomial. See the discussions in [Arfken et al., 2005, chap. 12] for more
details.

2.5.2 Spherical Harmonics

Laplace’s Equation in R3

In 3D space, the Laplace equation in spherical coordinate (R, θ, φ) is in Eq. (2.18),
where R ≥ 0, θ ∈ [0, π] and φ ∈ [0, 2π), and ∆b is the Laplace-Beltrami operator re-
stricted in S2.

∆g =
1

R2

∂

∂R

(
R2 ∂g
∂R

)
+

1
R2 ∆bg = 0 (2.18)

∆bg =
1

sin2 θ

∂2g
∂φ2 +

1
sin θ

∂

∂θ

(
sin θ

∂g
∂θ

)
(2.19)
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

By assuming g(R, θ, φ) = F(R)Θ(θ)Φ(φ), we have the following three equations based
on separation of variables, where m and λ are separation constants which need to be
determined for non-trivial solutions.

Φ′′ + m2Φ = 0 (2.20)

Θ′′ +
cos θ
sin θ

Θ′ + (λ −
m2

sin2 θ
)Θ = 0 (2.21)

R2F′′ + 2RF′ − λF = 0 (2.22)

From Eq. (2.20), Φ(φ) = C1eimφ+C2e−imφ, where C1 and C2 are constants. Because Φ(φ) =

Φ(φ+2π), m should be integer and Φ(φ) = Ceimφ. By letting x = cos θ, equation Eq. (2.21)
becomes

(1 − x2)
d2Θ

dx2 − 2x
dΘ

dx
+ (λ −

m2

1 − x2 )Θ = 0 (2.23)

This equation has bounded solution Pm
l (x) if λ = l(l + 1), l ≥ |m|, l and m are integers. So

equation Eq. (2.22) becomes

R2F′′ + 2RF′ − l(l + 1)F = 0 (2.24)

which has solutions F(R) = C1Rl + C2R−(l+1). Then without considering the constant,
the final independent solutions of the 3D Laplace equation are

RleimφPm
l (cos(θ)) and R−(l+1)eimφPm

l (cos(θ)), l ≥ 0, l ≥ |m| (2.25)

The second kind of solution is the irregular solution which is singular at the origin
point. Then the final general solution for Laplace’s equation is

g(R, θ, φ) =

∞∑
l=0

l∑
m=−l

(am
l Rl + bm

l R−(l+1))ym
l (θ, φ) (2.26)

Definition, Orthogonality, Completeness

Considering the natural inner product in S2 defined as 〈 f (θ, φ), g(θ, φ)〉S2 =∫ 2π
0

∫ π

0 f (θ, φ)g(θ, φ) sin(θ)dθdφ, the spherical part in Eq. (2.25), i.e. eimφPm
l (cos(θ)) is or-

thogonal but not normalized.

Definition 2.4. The Spherical Harmonics (SHs) are the normalized angular portion
of the solution to Laplace’s equation in spherical coordinates. Spherical Harmonics of
order l and degree m, denoted by ym

l (θ, φ), are defined as

ym
l (θ, φ) =

√
2l + 1

4π
(l − m)!
(l + m)!

eimφPm
l (cos θ) (2.27)

Real Spherical Harmonics, called also spherical harmonics for short in this thesis,
are defined as

Ym
l (θ, φ) =


√

2Re(y|m|l (θ, φ)) if −l ≤ m < 0
ym

l (θ, φ) if m = 0
√

2Im(ym
l (θ, φ)) if l ≥ m > 0

(2.28)

where Re(·) and Im(·) mean the real and imaginary parts.
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Order-0 term, l = 0
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4 Y4
4

Order-4 terms, l = 4

Figure 2.1: Symmetric real spherical harmonics up to order L = 4. The blue color in SHs
with l = 2, 4 means negative values.

Thus {ym
l (θ, φ)} is an orthonormal system in L2(S2, 1) by definition. It is also

complete because eimφ is complete in [0, 2π) and Pm
l (x) is complete in [−1, 1]. So

∀g(θ, φ) ∈ L2(S2, 1), it can be represented as the so called Laplace series in Eq. (2.29)

g(θ, φ) =

∞∑
l=0

l∑
m=−l

cm
l ym

l (θ, φ), where cm
l = 〈g(θ, φ), ym

l (θ, φ)〉S2 (2.29)

{Ym
l (θ, φ)} is an orthonormal basis in real valued functions in L2(S2, 1).

We have shown that Spherical Harmonics {ym
l } can be obtained from Laplace’s

equation. SHs can be also obtained from Gram-Schmidt orthogonalization, because
{ 1√

2π
e−inφ} and {Pn(x)} can be obtained respectively from the orthogonalization of mono-

mial basis in S1 and [−1, 1]. Please refer [Byron and Fuller, 1992, chap. 5] for the
derivation of SHs from Gram-Schmidt orthogonalization.

Based on the definition in Eq. (2.27) and P−m
l (x) = (−1)m (l−m)!

(l+m)! Pm
l (x), we have the

property
ym

l (θ, φ) = (−1)my−m
l (θ, φ) (2.30)

ym
l (π − θ, π + φ) =

{
ym

l (θ, φ) if l is even
−ym

l (θ, φ) if l is odd (2.31)

Since (π − θ, π + φ) is the antipodal point of (θ, φ), formula Eq. (2.31) means ym
l (θ, φ), as

well as Ym
l (θ, φ), is even function if l is even, and is odd function if l is odd. So {Ym

l (θ, φ)}
with even l, named as symmetric real Spherical Harmonics, are orthonormal ba-
sis of the space of all the antipodal symmetric spherical functions in L2(S2, 1). Fig. 2.1
shows the symmetric real spherical harmonics up to order 4. Symmetric real SH ba-
sis plays an important role in HARDI methods as shown in Chapter 4, and it is used
intensively throughout this thesis.

Based on the above analysis in Laplace’s equation, we have Eq. (2.32) which is
also applicable for Ym

l (θ, φ).

∆bym
l (θ, φ) =

1
sin2 θ

∂2ym
l (θ, φ)

∂φ2 +
1

sin θ
∂

∂θ

(
sin θ

∂ym
l (θ, φ)
∂θ

)
= −l(l + 1)ym

l (θ, φ) (2.32)
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Based on the definition of SHs, the two kinds of solutions in Laplace’s equation be-
come Rlym

l (θ, φ) which is called as regular solid Harmonic, and R−(l+1)ym
l (θ, φ) which

is called as irregular solid harmonic.

Theorem 2.5. The regular solid harmonic {Rlym
l (θ, φ)}lm=−l is a basis in Hl(R3). Spher-

ical harmonic {ym
l (θ, φ)}lm=−l is an orthonormal basis in Hl(S2).

Proof. ∀pl(R, θ, φ) ∈ HPl(R3), we have pl(R, θ, φ) = Rlql(θ, φ), where ql(θ, φ) = pl(1, θ, φ) ∈
HPl(S2). Then

∆pl(R, θ, φ) =
1

R2

∂

∂R

(
R2 ∂Rlql(θ, φ)

∂R

)
+

1
R2 ∆b

(
Rlql(θ, φ)

)
= Rl−2

(
l(l + 1)ql(θ, φ) + ∆bql(θ, φ)

)
Thus, ∆pl(R, θ, φ) = 0 is equivalent to ∆bql(θ, φ) = −l(l + 1)ql(θ, φ), which has the solution∑l

m=−l Cmym
l (θ, φ), where {Cm} is complex constants. So pl(R, θ, φ) =

∑l
m=−l CmRlym

l (θ, φ),
which means {Rlym

l (θ, φ)}lm=−l is a basis in Hl(R3). Restricting {Rlym
l (θ, φ)}lm=−l in S2,

{ym
l (θ, φ)}lm=−l is a basis in Hl(S2). It is an orthonormal basis because 〈ym

l , y
m′
l′ 〉 =

δll′δmm′ . �

The above theorem shows that

� The dimension ofHl(R3) is
∑l

m=−l 1 = 2l+1, which agrees with formula Eq. (2.14).

� Hl(S2) ⊥ Hl′(S2) if l , l′, which agrees with Theorem 2.3.

� For any polynomial p(R, θ, φ) ∈ PN(R3), we have p(1, θ, φ) =
∑N

l=0
∑l

m=−l cm
l ym

l (θ, φ).
No matter whether p(R, θ, φ) is harmonic or not, q(R, θ, φ) =

∑N
l=0

∑l
m=−l cm

l Rlym
l (θ, φ)

is always harmonic, which agrees with Corollary 2.2.

If we restrict the coefficients of monomials in polynomials to be real, {RlYm
l }

l
m=−l is

a basis in Hl(R3) and {Ym
l }

l
m=−l is an orthonormal basis in Hl(S2).

Addition Theorem

{Rn 1√
2π

e−inφ}n=0,±1,··· are independent solutions in polar coordinate (R, φ) of Laplace’s
equation in two dimension (2D) space. While {Rlym

l (θ, φ)}|m|≤l,l=0,1,··· are independent so-
lutions in spherical coordinate (R, θ, φ) of Laplace’s equation. In this sense, Spherical
Harmonic basis {ym

l (θ, φ)} can be seen as a generalization of Fourier basis { 1√
2π

e−inφ}

from L2(S1, 1) to L2(S2, 1).

Since Re(e−inφeinφ′) = Re(e−inφ)Re(einφ′) − Im(e−inφ)Im(einφ′), we have cos(n(φ′ − φ)) =

cos(nφ) cos(nφ′) + sin(nφ) sin(nφ′), which is the addition theorem in S1.

For SHs in S2, we have the following addition theorem.

Theorem 2.6 (Addition Theorem). Let u and v are two unit vectors in S2, then

Pl(uT v) =
4π

2l + 1

l∑
m=−l

ym
l (u)ym

l (v) (2.33)

Please refer the detailed proof in [Arfken et al., 2005, chap. 12].
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Product of Spherical Harmonics

Since {ym
l (θ, φ)} is an orthonormal basis in L2(S2, 1), ym

l ym′
l′ can be represented as 2∑∞

l=α
∑l
β=−α Wmm′β

ll′α yβα, where the coefficients Wmm′β
ll′α is

Wmm′β
ll′α =

∫ 2π

0

∫ π

0
ym

l ym′
l′ yβα sin θdθdφ =

√
(2l + 1)(2l′ + 1)(2a + 1)

4π

(
l l′ α

0 0 0

) (
l l′ α

m m′ β

)
(2.34)(

l l′ α
m m′ β

)
is the Wigner 3j-symbol, which is nonzero only if m + m′ + β = 0 and l, l′,

α satisfy triangular inequalities. Please refer [Arfken et al., 2005, chap. 12] for the
proof.

Based on the definition of real spherical harmonics in Eq. (2.28), the integration

Qmm′β
ll′α =

∫ 2π

0

∫ π

0
Ym

l Ym′
l′ Yβ

α sin θdθdφ (2.35)

is determined by Wmm′β
ll′α . For example, if m < 0, m′ < 0, β < 0, and β = m + m′, then

Qmm′β
ll′α =

(−1)β
√

2

∫
S2 ym

l ym′
l′ y−βα sin θdθdφ =

(−1)β
√

2
Wmm′(−β)

ll′α . Qmm′β
ll′α in other cases is omitted.

Funk-Hecke Theorem

The Funk-Hecke theorem was proposed by Funk and Hecke. It is applicable in high
dimensional sphere Sd−1, whose proof can be found in [Andrews et al., 1999, chap. 9].
In this thesis, we only use the 3D case of this theorem.

Theorem 2.7. Let g(t) be a continuous function in [−1, 1] and ym
l is the l order m degree

spherical harmonic, then for given unit vector u, we have∫
S2

g(uT v)ym
l (v)dv = λlym

l (u) (2.36)

λl = 2π
∫ 1

−1
Pl(t)g(t)dt (2.37)

where Pl(t) is the Legendre polynomial of order l.

A corollary based on this theorem is

Corollary 2.4. Let δ(t) be the Dirac delta function and ym
l is the l order m degree

spherical harmonic, then for given unit vector u, we have∫
S2
δ(vT u)ym

l (v)dv = 2πPl(0)ym
l (u) (2.38)

where Pl(0) is the Legendre polynomial of order l evaluated at 0.

Pl(0) =

 0 if l is odd

(−1)l/2 1 · 3 · 5 · · · (l − 1)
2 · 4 · 6 · · · l

= (−1)l/2 (l − 1)!!
l!!

if l is even
(2.39)

where n!! is defined as
∏[ n−1

2 ]
j=0 (n − 2 j) for n > 0 and 1 for n = 0,−1.

2If
∑∞

l=α
∑l
β=−α Wmm′β

ll′α yβα is used,
∑∞

l=α
∑l
β=−α Wmm′β

ll′α yβα =
∑∞

l=α
∑l
β=−α Wmm′β

ll′α (−1)βyβα.
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Since δ(t) is discontinuous at 0, the proof of this corollary is to define a sequence of
functions {δn(t)} such that ∀n, δn(t) is continuous, and limn→∞ δn(t) = δ(t). This sequence
can be chosen as { n√

π
e−n2t2} [Descoteaux et al., 2007]. If l is odd, Pl(0) = 0 because Pl(x)

is odd function for odd l. For even l, considering the recursive relation

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (2.40)

we have Pl+2(0)
Pl(0) = − l+1

l+2 and Pl(0) = (−1)l/2 (l−1)!!
l!! . Please note that based on the definition

of ym
l in Eq. (2.27) there is an equivalent solution for Pl(0) that

Pl(0) =

√
4π

2l + 1
y0

l (
π

2
, 0) (2.41)

2.5.3 Bessel Function and Spherical Bessel Function

Definition, Orthogonality

Bessel function of the first kind, denoted by Jα(x) and called as Bessel function
for short, is the solution of the Bessel’s differential equation:

x2g′′ + xg′ + (x2 − α2)g = 0 (2.42)

Normally α is used as integer or half of integer, although it can be chosen as real or
complex number. When α = n is integer, the Bessel function Jn(x) can be represented
as the following integrals as

Jn(x) =
1
π

∫ π

0
cos (nt − x sin t) dt, Jn(x) =

1
2π

∫ π

−π
e−i(nt−x sin t)dt (2.43)

The spherical Bessel function, denoted by jn(x), is defined as

jn(x) def
=

√
π

2x
Jn+1/2(x) (2.44)

There is an irregular spherical Bessel function

yn(x) def
= (−1)n+1

√
π

2x
J−n−1/2(x) (2.45)

which is singular at x = 0. If not explicitly stated, spherical Bessel function in this
thesis always means jn(x).

The Bessel equation in Eq. (2.42) can be transformed into the standard form
in Eq. (2.6). Then by analyzing the regular conditions, we have the orthogonality
of {Jα} as follows. ∫ ∞

0
xJα(bx)Jα(cx)dx =

1
b
δ(b − c), where α > −

1
2

(2.46)

Based on the definition of jn(x), we have the orthogonality for { jn(x)}∫ ∞

0
x2 jn(bx) jn(cx)dx =

π

2b2 δ(b − c), where n > −1 (2.47)
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Plane Wave Expansion Theorem

The well-known Helmholtz equation in Rd is in Eq. (2.48), which becomes the
Laplace’s equation when k = 0.

∆g(x) + k2g(x) = 0 (2.48)

On the one hand, a heuristic solution of this equation is

g(x) = eixT k (2.49)

where k can be any vector that satisfies ‖k‖2 = k2. This heuristic solution is called as
plane wave which satisfies Helmholtz equation for any dimension d.

On the other hand, in three dimension (3D) space, similarly with Laplace’s equa-
tion in Eq. (2.18) we can use separation of variables technique to solve Helmholtz
equation. Let g(R, θ, φ) = F(R)Θ(θ)Φ(φ), after some tedious derivations, we have the
following general solution.

g(R, θ, φ) =

∞∑
l=0

l∑
m=−l

(am
l jl(kR) + bm

l yl(kR))ym
l (θ, φ) (2.50)

So the heuristic solution can be represented in the form of Eq. (2.50). Considering
the second term yl(kR) is singular at R = 0, we have

eixT k =

∞∑
l=0

l∑
m=−l

am
l jl(‖k‖R)ym

l (θ, φ) (2.51)

am
l is dependent only on k and can be solved analytically, which results in the Plane

Wave Expansion theorem.

Theorem 2.8 (Plane Wave Expansion Theorem). Let x = Rxu and k = Rkv be two
3D vectors in R3, and u, v ∈ S2, we have

e±ixT k =

∞∑
l=0

l∑
m=−l

4π(±i)l jl(RxRk)ym
l (u)ym

l (v) (2.52)

The proof of this theorem is based on the Green’s function representation of the
general solution of Helmholtz equation. Please refer [Arfken et al., 2005, chap. 9]
for the details. Note that the real symmetric part of e±ixT k is cos(xT k) which can be
written as

cos(xT k) =

∞∑
l=0

l∑
m=−l

4π(−1)l/2 jl(RxRk)Ym
l (u)Ym

l (v) (2.53)

where
∑∞

l=0 means the summation of only even order l. It can be proved easily by the
Theorem 2.8, the definition of {Ym

l } in Eq. (2.28), and the property y−m
l (u) = (−1)mym

l (u).
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2.5.4 Hermite Polynomial

Physicists’ Hermite polynomials

There are two kinds of standard notations for Hermite polynomials. One is the
probabilists’ Hermite polynomial which defines the polynomial as Hen(x) =

(−1)ne
x2
2 dn

dxn e−
x2
2 . The other one is the physicists’ Hermite polynomials which de-

fines the polynomial as

Hn(x) = (−1)nex2 dn

dxn e−x2
(2.54)

They are closely related, because Hn(x) = 2n/2Hen(
√

2x). In this thesis, unless
otherwise specifically stated, we always use the physicists’ Hermite polynomials
in Eq. (2.54), which satisfies the equation H′′n (x) − 2xH′n(x) + 2nHn(x) = 0 and orthogo-
nality in Eq. (2.55). See Table 2.1.∫ ∞

−∞

Hn(x)Hm(x)e−x2
dx = 2n √πn!δnm (2.55)

Based on Sturm-Liouville theorem 2.2, {Hn(x)} is an orthogonal basis in
L2((−∞,∞), e−x2

).

Hermite Polynomial in Fourier Transform

Hermite polynomial can also be defined by the generating function in Eq. (2.56).

e−t2+2tx =

∞∑
n=0

Hn(x)
tn

n!
(2.56)

Considering the Fourier transform in R1 defined in Eq. (4.11) we have

F {e−t2+2tx− x2
2 }(ξ) =

√
2πet2−4πitξ− (2πξ)2

2

So

F {
∞∑

n=0

e−
x2
2 Hn(x)

tn

n!
} =
√

2π
∞∑

n=0

e−
(2πξ)2

2 Hn(2πξ)
(−it)n

n!

Thus e−
x2
2 Hn(x) is an eigenfunction of Fourier transform, i.e.

F {e−
x2
2 Hn(x)}(ξ) =

∫ ∞

−∞

e−
x2
2 Hn(x)e−2πixξdx =

√
2π(−i)ne−

(2πξ)2
2 Hn(2πξ) (2.57)

Hermite Polynomial in Schrödinger Equation

In quantum mechanics, the square root of the probability of finding a particle at a
certain time and position is called as wavefunction. Wavefunction is a complex
valued function and it satisfies the well-known Schrödinger equation.
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For single particle with a spherically symmetric potential energy V(‖x‖), the
time-independent Schrödinger equation is given as

(
−
~2

2m
∆ + V(‖x‖)

)
ψ(x) = Eψ(x) (2.58)

where ~ is the reduced Planck constant, m is the mass, and E is the energy.

Quantum Simple Harmonic Oscillator (SHO) problem is one of the few quantum-
mechanical systems for which an exact, analytical solution is known. The
Schrödinger equation for SHO problem in 1D called as SHO-1D, is

(
−
~2

2m
d2

dx2 +
1
2

mω2x2
)
ψ(x) = Eψ(x) (2.59)

where V(x) = 1
2 mω2x2 and ω is the angular frequency. The solution of this equation is

ψn(x) = 2−
n
2 (n!)−

1
2 (πζ)−

1
4 e−

x2
2ζ Hn(

x
√
ζ

) (2.60)

where ζ = ~
mω . The corresponding energy is E = ~ω(n + 1

2 ). {ψn(x)} is an orthonormal
basis in L2((−∞,∞), 1) for given ζ, called as SHO-1D basis.

2.5.5 Associated Laguerre Polynomial

Orthogonality and Completeness

Associated Laguerre polynomial Lαn (x) satisfies the following differential equation.

xg′′(x) + (α + 1 − x)g′(x) + ng(x) = 0 (2.61)

For given α, {Lαn (x)}∞n=1 is an orthogonal basis in L2([0,∞), xαe−x). It satisfies the follow-
ing orthogonality: ∫ ∞

0
xαe−xLαn (x)Lαm(x)dx =

Γ(n + α + 1)
n!

δnm (2.62)

where Γ(x) is the Gamma function, which can be seen in section 2.6.1. Lαn (x) has the
explicit form as

Lαn (x) =

n∑
j=0

(−1) j
(
n + α

n − j

)
x j

j!
(2.63)

Lαn (x) becomes the Laguerre polynomial Ln(x) when α = 0. Please note
(
n+α
n− j

)
has real

number n + α in it. In this thesis, the binomial symbol is defined as binomial series

(
a
k

)
=

a(a − 1)(a − 2) · · · (a − k + 1)
k(k − 1)(k − 2) · · · 1

=

∏k−1
j=0(a − j)

k!
(2.64)

where k is an integer number and a is arbitrary.
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Relation with Hermite Polynomial

Compared to {Lαn (x)} that is a basis in L2([0,∞), xαe−x), {Hn(x)} is a basis in
L2((−∞,∞), e−x2

). When α = ± 1
2 , we have the following relation:

H2n(x) = (−1)n22nn!L
− 1

2
n (x2) (2.65)

H2n+1(x) = (−1)n22n+1n!xL
1
2
n (x2) (2.66)

Relation with Monomials

Since {Lαn (x)} is a basis, monomials can be represented by linear combination of {Lαn (x)}.

xn = n!
n∑

j=0

(−1) j
(
n + α

n − j

)
Lαj (x) (2.67)

Laguerre Polynomial in Schrödinger Equation

Historically in quantum mechanics, associated Laguerre polynomial Lαn (x) occurs nor-
mally as the radial part of the solutions of Schrödinger equation in 3D space. The
spherical harmonic ym

l occurs in spherical part of the solution. A classic example is to
determine the atomic orbitals of hydrogen-like ions in 3D space.

In Eq. (2.58) the Schrödinger equation for SHO problem in R3 called as SHO-3D,
is given as (

−
~2

2m
∆ +

1
2

mω2‖x‖2
)
ψ(x) = Eψ(x) (2.68)

The solution [Arfken et al., 2005, pp. 847] based on separation of variables in (R, θ, φ)
is

ψnlm(R, θ, φ) =

[
2
ζ3/2

(n − l/2)!
Γ(n + l/2 + 3/2)

]1/2

(
x2

ζ
)l/2 exp

(
−

x2

2ζ

)
Ll+1/2

n−l/2(
x2

ζ
)ym

l (θ, φ) (2.69)

where ζ = ~
mω . The energy eigenvalue is E = ~ω(2n + 3

2 ). Please note that the notation
n used here is shown as n−1

2 in [Arfken et al., 2005, pp. 847]. The normalization factor
which makes the unit norm of ψnlm is determined based on Eq. (2.62).

Actually it is easy to verify that for given l the radial part are a set of orthonormal
basis in L2([0,∞), q2). Since the spherical part {ym

l } also forms an orthonormal basis in
L2(S2, 1), the function set {ψnlm(R, θ, φ)} is an orthonormal basis in L2(R3, 1) for given ζ,
called as SHO-3D basis.

2.5.6 Confluent Hypergeometric Function

Kummer’s Function

In mathematics, the ordinary hypergeometric function 2F1(a, b; c; x) is a special
function represented by the hypergeometric series. It can represent many other spe-
cial functions as specific or limiting cases.
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In this thesis, we are more interested in confluent Hypergeometric Function
1F1(a; c; x), which satisfies the Kummer’s equation.

xg′′ + (c − x)g′ − ag = 0 (2.70)

This equation has two independent solutions. We are only interested in the one called
as Kummer’s function and given by the following form:

1F1(a; c; x) def
=

∞∑
n=0

a(n)xn

b(n)n!
(2.71)

where a(n) def
=

∏n−1
j=0(a + j) = a(a + 1) · · · (a + n − 1). 1F1(a; c; x) is a limit of 2F1(a, b; c; x), i.e.

limb→∞ 2F1(a, b; c; x/b) = 1F1(a; c; x).

1F1(a; c; x) can be used to many functions. For example,

ex = 1F1(a; a; x) (2.72)

Lαn =

(
n + α

n

)
1F1(−n;α + 1; x) (2.73)

Generalized Hypergeometric Function

The generalized Hypergeometric function is defined as

nFm(a1, · · · , an; b1, · · · , bm; x) def
=

∞∑
j=0

(a1)( j) · · · (an)( j)

(b1)( j) · · · (bm)( j)

x j

j!
(2.74)

2.6 OTHER SPECIAL FUNCTIONS AND USEFUL EQUA-
TIONS

2.6.1 Gamma Function

The gamma function is defined as

Γ(x) def
=

∫ ∞

0
e−ttx−1dt (2.75)

It satisfies the following properties:

Γ(x + 1) = xΓ(x), Γ(
1
2

) =
√
π (2.76)

So if n is a positive integer number, we have

Γ(n + 1) = nΓ(n) = n! (2.77)

n!! def
=

[ n−1
2 ]∏

j=0

(n − 2 j) =

{
2

n
2 ( n

2 )! = 2
n
2 Γ( n

2 + 1) if n is even
π−

1
2 2

n+1
2 Γ( n

2 + 1) if n is odd
(2.78)

The lower incomplete Gamma function is defined as:

γ(s, x) def
=

∫ x

0
ts−1e−tdt (2.79)
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2.6.2 Some Useful Integral Formulae

Laguerre polynomial Lαn (x) and other useful special functions plays an important role
throughout this thesis. Thus we list some useful integral formulae in this section.
Please refer [Gradshteyn and Ryzhik, 2007] for these integral formulae. The page
number after each equation shows where to find it in [Gradshteyn and Ryzhik, 2007].

∫ ∞

0
xm exp(−βxn)dx =

Γ( m+1
n )

nβ
m+1

n

(β > 0,m ≥ 0, n > 0)3 [pp. 337] (2.80)

∫ ∞

0
xv+1e−βx2

Lv
n(αx2)Jv(xy)dx = 2−v−1β−v−n−1(β − α)nyve−

y2
4β Lv

n(
αy2

4β(α − β)
) [pp. 812] (2.81)

∫ ∞

0
xµ exp(−αx2)Jν(βx)dx =

βνΓ(0.5ν + 0.5µ + 0.5)
2ν+1α0.5(µ+ν+1)Γ(ν + 1) 1F1(

µ + ν + 1
2

; ν + 1;−
β2

4α
)

(α > −1, s > 0) [pp. 706]

(2.82)

∫ ∞

0
exp(−st)tαLαn (t)dt =

Γ(α + n + 1)(s − 1)n

n!sα+n+1 (α > −1, s > 0) [pp. 809] (2.83)

∫ ∞

0
exp(−bx)La

n(t)dx =

n∑
m=0

(
a + m + 1

m

)
(b − 1)n−m

bn−m+1 (b > 0) [pp. 809] (2.84)

∫ ∞

0
tb−1

1F1(a; c;−t)dt =
Γ(b)Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(0 < b < a) [pp. 821] (2.85)

∫ ∞

0
xµJv(ax)dx = 2µa−µ−1 Γ( 1

2 + v
2 +

µ
2 )

Γ( 1
2 + v

2 −
µ
2 )

(−v − 1 < µ <
1
2
, a > 0) [pp. 676] (2.86)

2.7 SUMMARY

This chapter made a quick tutorial for some special functions and polynomials
which play important role in many applications including diffusion MRI. Please note
that these special functions and polynomials all have exhaustive useful properties,
and we just showed only those properties used in this thesis. Please refer some text-
books for more properties.

We now summarize the important and useful mathematical properties of specific
polynomials and functions which will be used in the following chapters.

3 [Gradshteyn and Ryzhik, 2007] refers m > 0, however, we have tested the equation also holds when
m = 0.
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1. Sturm-Liouville theorem 2.2 and Stone-Weierstrass theorem 2.1 are very
useful to prove the completeness and orthogonality of given function set.

2. Harmonic Decomposition theorem 2.4 is useful to study different function
spaces in R3 parameterized by different models.

3. Real spherical harmonic basis {Ym
l } with even order l, i.e. symmetric real

SH basis, is a useful orthonormal basis to represent antipodal symmetric
spherical functions in dMRI. There are already exhaustive papers on Q-ball
Imaging related methods which use SH basis to represent diffusion signal or
other functions in dMRI.

4. Plane wave expansion theorem 2.8 is the most crucial theorem in this thesis,
which will be used exhaustively in the following chapters to solve Fourier
transform analytically.

5. Funk-Hecke theorem 2.7, addition theorem 2.6, the relation between
Laplace-Beltrami operator and SHs in Eq. (2.32) are useful to derive analytic
forms related with spherical harmonics.

6. Hermite polynomial {Hn(x)} and Laguerre polynomial {Lαn } are orthogonal
bases respectively in L2((−∞,∞), e−x2

) and L2([0,∞), xαe−x). They will be used to
represent Gaussian-like functions in the following chapters.

7. Some important integral formulae listed in this chapter are useful to derive
analytic forms of integrations.

Spherical Harmonic basis has becomes a natural and common tool in single shell
HARDI (sHARDI) method [Frank, 2002; Hess et al., 2006; Anderson, 2005; Özarslan
et al., 2006; Descoteaux et al., 2007; Tournier et al., 2007; Canales-Rodrıguez et al.,
2009; Aganj et al., 2010b; Tristán-Vega et al., 2009; Tristán-Vega et al., 2010]. Many
papers converged to use SH basis to represent diffusion signals in S2 and estimate
the ODFs. In this thesis, one of the results is to generalize the sHARDI methods to
multiple shell HARDI (mHARDI) methods, by considering not only SH basis in S2 but
also an additional basis in radial part. We now on the way to describe how to devise
an appropriate basis in 3D q-space and analytically estimate the ODFs and EAPs
from diffusion signals.
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CHAPTER 3

MANIFOLD, STATISTICS ON
MANIFOLD AND STATISTICAL
MANIFOLD

“Geometry, which is the only science that it hath pleased God hitherto to bestow on
mankind.”

– Thomas Hobbes
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CHAP. 3: MANIFOLD, STATISTICS ON MANIFOLD AND STATISTICAL MANIFOLD

OVERVIEW

Riemannian manifold was developed in the nineteenth century. It is very useful
to analyze data in non-linear space. When analyzing and processing real data with
given coordinates, sometimes addition and subtraction between two data points or
multiplication with a negative value have no physical meaning. For example, when
processing matrices in S ym+

3 , multiplying a 3 × 3 positive definite matrices with a
negative value will obtain a symmetric matrix that is no longer in S ym+

3 . In this case,
manifold based methods which consider the intrinsic properties of data space can be
appropriate candidates of mathematical tools for data processing.

This chapter overviews some basic concepts about Riemannian manifold, statis-
tics on manifold and statistical manifold which are the background knowledge of the
Chapter 6 on the Riemannian framework for ODFs and EAPs. Please note that the
subjects described in this chapter contain a lot of materials, while we only list some
self-contained contents which will be used in the following Chapter 6. Please refer
some textbooks [Boothby, 1986; Do Carmo, 1992; Spivak, 1999; Amari, 1985; Amari
and Nagaoka, 2000] for more details of the contents.

Organization of this chapter:
First, some basic concepts on three layers of Riemannian manifold, i.e. topological

structure, differentiable structure and Riemannian metric, are introduced in Sec-
tion 3.1. We also give some examples on the geometry of high dimensional sphere
to demonstrate the concepts. Second, in a computation point of view, Section 3.2
shows the definition, estimation, existence and uniqueness of weighted Riemannian
mean and median, and demonstrate Principal Geodesic Analysis (PGA) method to
find the principal components in manifold. At last, statistical manifold and Fisher
information metric are introduced in Section 3.3, where we also provide two exam-
ples of statistical manifolds, which are the multivariate Gaussian distribution and
multinomial distribution families.

3.1 RIEMANNIAN MANIFOLD

Riemannian manifold has three layers of structural concepts. The first one, which
is defined for continuity and convergence, is the topological structure for topological
manifold. The second one is the differentiable structure for differentiable manifold,
which generalizes the differentiability from Euclidean space. The third layer for Rie-
mannian manifold defines the Riemannian metric in infinitesimal neighborhood.

3.1.1 Topological Manifold

Definition 3.1. A topological space (X,T ) is a set X together with a topology T (a
collection of subsets of X) which satisfies:

(i) The empty set ∅ and X are in T .
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(ii) Arbitrary union of elements of T is in T .

(iii) Finite intersection of elements of T is in T .

A topological space (X,T ) is a set of points with a collection of well defined subsets.
(X,T ) is usually denoted by X for short. Elements in topology T are called as open
sets of X. Topology T can be generated from a topological basis.

Definition 3.2. A topological basis on a set X is a collection B of subsets of X satis-
fying:

(i) ∀x ∈ X, ∃B ∈ B, such that x ∈ B.

(ii) Let B1, B2 ∈ B, ∀x ∈ B1 ∩ B2, ∃B3 ∈ B, such that x ∈ B3.

Example 3.1. In Euclidean space Rn, the standard basis is the open ball B(x, r) =

{x′ ∈ Rn : ‖x′ − x‖ < r}, which generates the open sets as the unions of open balls in the
topology called standard topology.

The open balls in Rn defined based on the distance ‖x′ − x‖ can be generalized to
general topological space.

Definition 3.3 (Metric Space). A metric space is a set X with a binary function
d : X×X → R called distance function which satisfies the following items ∀x, y, z ∈ X.

(i) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x).

(iii) d(x, z) ≤ d(x, y) + d(y, z)

If there exists such a distance function d in X, the topology induced from d is the
collection of all open balls defined as B(x, r) = {x′ ∈ X : d(x, x′) < r}. For every two
points x, y ∈ X with such induced topology, there exist at least two disjoint open sets
U and V such that x ∈ U, y ∈ V. For example, U = B(x, r), V = B(y, r) and r = 1

2 d(x, y).
Note that this separation property, called as Hausdorff, is not satisfied in general
topological space.

Definition 3.4. A topological space X is called Hausdorff if for any two different
point x, y ∈ X there exist two open sets U and V such that U

⋂
V = ∅ and x ∈ U, y ∈ V.

X is called connected if there is no such pair of two open sets which satisfy U
⋂

V = ∅

and X = U
⋃

V.

The above concepts are for single set X. It is useful to consider the relation be-
tween two topological spaces, which brings the concept of function.

Definition 3.5. A function (aka map) f : X → Y is a relation between two topological
spaces X and Y such that for any element x ∈ X, there exists only one element f (x) ∈ Y.
It is a bijection if ∀y ∈ Y, f −1(y) ∈ X exists and is unique. It is continuous if for each
open set U ⊂ Y, the inverse image f −1(U) ⊂ X is also open.
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It can be seen that the above definition of continuity is a generalization of the well-
known ε−δ definition for the function between two Euclidean spaces. The function can
be used to define topological equivalence between two topological spaces. When
two topological spaces are equivalent, all their elements and open sets are related by
a continuous bijection, called homeomorphism.

Definition 3.6. A function f : X → Y is a homeomorphism between two topological
spaces X and Y, if f is a bijection and both f and f −1 are continuous. If there is a
homeomorphism between X and Y, we call X is homeomorphic to Y.

Since Euclidean space is well studied, it would be useful to generalize concepts
from Euclidean space to topological space by locally relating the topological space to
an Euclidean space via a homeomorphism.

Definition 3.7 (Topological Manifold). A d dimensional topological manifold X
is a Hausdorff space with a countable basis such that every point x has a neighbor-
hood U ∈ X homeomorphic to an open set ϕU(U) ∈ Rd, where the local homeomorphism
ϕU : U ∈ X → ϕU(U) ∈ Rd is called a coordinate chart on U. If ϕU(U) is an open set
of half plane Rd

+ = {x = (x1, · · · , xn)T ∈ Rd : xn ≥ 0}, then X is a topological manifold
with boundary.

Based on the definition, topological manifold X is covered by
⋃

x∈XU. The cover
together with the charts, i.e.

⋃
x∈X(U, ϕU), is called an atlas of X.

Example 3.2 (Topology of Sphere). The sphere S2 is a subset of R3. The topology
of S2 is the subspace topology of R3, i.e. a set U

⋂
S2 is called to be open in S2 if

U ⊂ R3 is open in R3. A small enough local neighborhood of S2 is a surface patch
can be represented as two parameters, which means the dimension of S2 is 2 and the
neighborhood is homeomorphic to a neighborhood of R2. For i = 1, 2, 3, consider the
hemispheres U+

i = {(x1, x2, x3) ∈ S2 : xi > 0}, U−i = {(x1, x2, x3) ∈ S2 : xi < 0}. These 6
hemispheres are open sets of S2. Then the 6 homeomorphisms ϕ±i : U±i ⊂ S→ ϕ(U±i ) ⊂ R2

can be simply chosen as ϕ±i (x1, x2, x3) 7→ (x1, · · · , xi−1, xi+1, · · · , x3). These 6 hemispheres
and corresponding homeomorphisms form an atlas in S2. Note that the neighborhood
can be even much bigger. For example the neighborhood can be U = S2 − {(0, 0, 1)} =

{(x1, x2, x3) ∈ S2 : (x1, x2, x3) , (0, 0, 1)}, and the homeomorphism can be chosen as the
stereographic projection. However we can not find a global coordinate chart from
S2 to R2 because they are is not homeomorphic. The analysis here can be used in d − 1
dimensional sphere Sd−1.

Example 3.3 (Topology of the Space of Positive Definite Matrices). S ym+
3 is a topo-

logical manifold which is locally homeomorphic to the space of 3× 3 symmetric matrix
S ym3. The space of 3 × 3 symmetric matrix with non-negative eigenvalues is a topolog-
ical manifold with boundary. The boundary contains all matrices with non-negative
eigenvalues and at least one zero eigenvalues. The coordinate chart for these two spaces
can be chosen as the identity map to S ym3.
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Figure 3.1: Sketch map for local coordinate charts and transition map.

3.1.2 Differentiable Manifold

Differentiable Structure and Definition

For two charts ϕU and ψV with overlapping domains U and V, the transition func-
tion

ψV ◦ ϕ
−1
U : ϕU(U ∩ V) ⊂ Rd → ψV (U ∩ V) ⊂ Rd (3.1)

is a homeomorphism from a subset of Rd to another subset of Rd. ψV ◦ϕ
−1
U is continuous

based on the definition. Please see Fig. 3.1 for the sketch map of local coordinate
charts and transition map.

In order to perform calculus in X, we need this transition function is not only
continuous but also differentiable. The transition function ψV ◦ ϕ

−1
U is called Ck dif-

ferentiable, or Ck for short, if its partial derivatives are all k times differentiable.
An atlas is Ck if all possible transition functions in it are Ck. A topological manifold
can have many atlases. For two atlases A1 and A2 of a manifold, their combination
is still an atlas. However, if A1 and A2 are Ck differentiable, their combination may
be not Ck differentiable. If their combination is still Ck differentiable, these atlases
are called to be compatible. The maximal Ck atlas, also called differentiable
structure, is the atlas which contains all compatible Ck atlases. The maximal atlas
is proved to be unique.

Definition 3.8 (Differentiable Manifold). A Ck differentiable manifold is a
topological manifold equipped with the maximal Ck atlas.
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Example 3.4 (Sphere as a Differentiable Manifold). Recall the atlas of S2 which con-
tains 6 hemispheres shown in Example 3.2. It is easy to verify that these atlases are
compatible and there exists a maximal atlas which contains all of them.

Normally when we talk about differentiable manifold, we mean the Ck differen-
tiable manifold with k ≥ 1. In the following text, unless specifically stated otherwise,
the term “differentiable manifold” always means a Ck differentiable manifold with
k ≥ 1.

The transition map has been used to define the differentiability of coordinate
maps. It can also be used to define the differentiability of a general function between
two manifolds.

Definition 3.9 (Diffeomorphism). For differentiable manifold X and Y with dimen-
sion d1 and d2, a function f : X → Y is differentiable if for every two charts
ϕU : U ⊂ X → ϕU(U) ∈ Rd1 and ψV : V ⊂ Y → ϕV (V) ∈ Rd2 , the function
ψV ◦ f ◦ ϕ−1

U : ϕU(U) ∈ Rd1 → ϕV (V) ∈ Rd2 is differentiable. f : X → Y is a diffeo-
morphism if f is a differentiable homeomorphism.

Note that when f : X → Y is a diffeomorphism, based on inverse function the-
orem these two manifolds have the same dimension, i.e. d1 = d2. Homeomorphism
is the topological equivalence between topological spaces X and Y. While diffeomor-
phism is the equivalence between differentiable manifolds.

When Y = R1 is a Euclidean space, f : X → R1 is a scalar function defined in X,
which is essential to introduce tangent vector and tangent space.

Tangent Vector and Tangent Space

In Euclidean space Rd, let γ : [−ε, ε] → Rd be a smooth curve passing across p ∈
Rd with γ(0) = p ∈ Rd. In the coordinate x = (x1, x2, · · · , xd)T ∈ Rd, γ(t) = x(t) =

(x1(t), x2(t), · · · , xd(t))T , t ∈ [−ε, ε]. Then v = γ′(0) = (x′1(0), x′2(0), · · · , x′d(0))T ∈ Rd. Let
f : Rd → R1 be a differentiable scalar function defined in a neighborhood of p. Then
the directional derivative of f along v is d( f◦γ)

dt |t=0 =
∑d

i=1
∂ f
∂xi
|x=p

dxi
dt |t=0 =

∑d
i=1(vi

∂
∂xi

) f .
So the tangent vector v can be seen as an operator on the differentiable functions.
This concept can be generalized into differentiable manifold.

Definition 3.10 (Tangent Vector and Tangent Space). Let γ : [−ε, ε] → X with
γ(0) = p ∈ X be a differentiable curve cross p in a differentiable manifold X. Let f be
any differentiable function defined in a neighborhood of p. Then the tangent vector
to the curve γ(t) at t = 0 is given by the operator γ′(0) that maps function f to its
directional derivative, i.e.

γ′(0) f =
d f ◦ γ

dt

∣∣∣∣
t=0

(3.2)

The space of all tangent vectors in a given point p ∈ X is called tangent space and
indicated by TpX.

Let (U, ϕ) be local coordinate system around p, then f (p) = f (ϕ(p)) =

f (x1, x2, · · · , xd), x = ϕ(p) = (x1, x2, · · · , xd)T ∈ Rd. Then ϕ ◦ γ : [−ε, ε] ∈ R1 →

ϕ(γ([−ε, ε])
⋂

U) ∈ Rd is a curve in Rd, which is the image of the overlap between
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γ([−ε, ε]) and U. Thus denote ϕ(γ(t)) = x(t) = (x1(t), x2(t), · · · , xd(t))T ∈ Rd, t ∈ [−ε, ε], then
the directional derivative of f can be represented as

γ′(0) f =
d
dt

( f ◦ γ)
∣∣∣∣
t=0

=
d
dt

f (x1(t), x2(t), · · · , xd(t))
∣∣∣∣
t=0

=

d∑
i=1

dxi(t)
dt

∣∣∣∣
t=0

∂ f
∂xi

∣∣∣∣x(t)=ϕ(p)
= (

d∑
i=1

x′i(0)
∂

∂xi

∣∣∣∣x(t)=ϕ(p)
) f

So the vector γ′(0) can be represented in coordinate chart ϕ by

γ′(0) =

d∑
i=1

x′i(0)
∂

∂xi

∣∣∣∣
p

(3.3)

Eq. (3.3) shows the tangent vector at p depends only on the derivative γ′(0) in a
given coordinate chart. It can be proved that the tangent space TpX with the usual
operations of functions forms a vector space with the same dimension d as X, and a
given coordinate ϕ induces a basis { ∂∂xi

}di=1 in TpX.

TpX =

{ d∑
i=1

ci
∂

∂xi

∣∣∣∣
p

: (c1, c2, · · · , cd)T ∈ Rd
}

(3.4)

Example 3.5 (Tangent Space of Sphere). Let p ∈ Sd−1 and γ : [−ε, ε] → Sd−1 with
γ(0) = p. Let f (γ(t)) = ‖γ(t)‖2 = 1 be a function restricted in γ(t) which is a constant
since γ(t) ∈ Sd−1, ∀t ∈ [−ε, ε]. Choose a coordinate such that p = (p1, · · · , pd)T and γ(t) =

(x1(t), · · · , xd(t))T . Then ∂ f
∂xi
|p = 2γ(0) = 2p, and 0 =

∂ f (γ(t))
∂t =

∑d
i=1 x′i(0) ∂ f

∂xi
|p = 2

∑d
i=1 x′i(0)pi.

So the tangent space TpS
d−1 is

TpS
d−1 =

{
v = (v1, v2, · · · , vd)T ∈ Rd : vT p = 0

}
(3.5)

The inverse of the coordinate chart, i.e. ϕ−1, is a diffeomorphism which actually
maps the local basis system { ∂∂xi

}di=1 from Tx(0)R
d to TpX. This can be generalized into

differentiable function between two manifolds.

Definition 3.11. Let ϕ : X → Y be a differentiable function between two differentiable
manifolds X and Y. For a given point p ∈ X, the pushforward map of ϕ (aka deriva-
tive of ϕ) is a linear map from the TpX to Tϕ(p)Y, i.e. ϕ∗|p : TpX → Tϕ(p)Y. The pullback
map of ϕ is a linear map from Tϕ(p)Y to TpX, i.e. ϕ∗|p : Tϕ(p)Y → TpX.

In other words, ∀X ∈ TpX and differentiable function f : Y → R1, we have f ◦ ϕ is a
differentiable function defined in X. Then (ϕ∗X)p ∈ Tϕ(p)Y is defined as (ϕ∗X)( f ) = X( f ◦
ϕ). ∀Y ∈ Tϕ(p)Y and differentiable function g : X → R1, we have g◦ϕ−1 is a differentiable
function defined in Y. Then (ϕ∗Y)ϕ(p) ∈ TpX is defined as (ϕ∗Y)(g) = Y(g ◦ ϕ−1).

3.1.3 Riemannian Manifold

Riemannian Metric

A distance function used to distinguish two different points in a manifold is essential
for manifold statistics and devising algorithms.
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Let γ : [a, b] → Rd be a differentiable curve in Euclidean space Rd. Then γ′(t0) for
any given t0 ∈ [a, b] is the velocity of the curve at t = t0, and the length of the curve is
given as

L(γ) =

∫ b

a
‖γ′(t)‖dt

The line segment connecting two points p, q ∈ Rd is proved to have the minimal length
among all such differentiable curves γ(t) with γ(a) = p and γ(b) = q. The length of the
line segment is normally used as the distance between p and q.

For γ : [a, b] → X as a differentiable curve in a general differentiable manifold X,
we have shown in last subsection that γ′(t0) is a tangent vector in the tangent space
Tγ(t0)X. Thus we need to define the length of the curve γ(t) in a general differentiable
manifold, which needs to equip a norm induced by an inner product in Tγ(t).

Definition 3.12 (Riemannian Metric and Riemannian Manifold). Let X be a
differentiable manifold. A Riemannian metric on X is defined as an inner product
(a symmetric, bilinear, positive definite form) in the tangent space TpX, i.e.

gp = 〈·, ·〉p : TpX × TpX → R
1, p ∈ X (3.6)

such that with respect to the coordinate ϕ : U ∈ X → Rd, ϕ(p) = (x1, x2, · · · , xd) ∈ ϕ(U), the
function gi j(x1, x2, · · · , xd) def

= 〈 ∂∂xi
, ∂
∂x j
〉p is differentiable in U. Riemannian manifold

(X, g), or written as (X, 〈·, ·〉), is a differentiable manifold X together with a Riemannian
metric g or 〈·, ·〉.

Recall that for a given coordinate ϕ : U ∈ X → Rd, ϕ(p) = (x1, x2, · · · , xd) ∈ ϕ(U),
{ ∂∂xi
}di=1 forms a basis in TpX, which defines an d × d positive definite matrix G = [gi j]

with the elements gi j. The matrix G is the local representation of Riemannian metric
under coordinate ϕ. Thus for two tangent vectors X =

∑d
i=1 Xi

∂
∂xi

and Y =
∑d

i=1 Yi
∂
∂xi

,
their inner product is

〈X,Y〉p = 〈

d∑
i=1

Xi
∂

∂xi
,

d∑
i=1

Yi
∂

∂xi
〉p = xTGy (3.7)

where x = (X1, X2, · · · , Xd)T and y = (Y1,Y2, · · · ,Yd)T are the local representations of X
and Y under ϕ. Please note that for given X, Y and metric gp, different coordinates
will obtain different representations of the basis { ∂∂xi

}di=1, x, y and G. But the inner
product 〈X,Y〉p = xTGy remains the same.

With the Riemannian metric, the norm of tangent vector X =
∑d

i=1 Xi
∂
∂xi

is

‖X‖p
def
=

√
〈X, X〉p =

√
xTGx (3.8)

For the last two layers, we have shown homeomorphism and diffeomorphism as
the equivalence respectively between two topological manifolds and differentiable
manifolds. With the additional Riemannian metric in the third layer, the equiva-
lence between two Riemannian manifolds is called as isometry which means in the
sense of preserving lengths of curves in addition to diffeomorphism.
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Definition 3.13. Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) be two Riemannian manifolds. Let f :
X → Y be a diffeomorphism. Then f is called as an isometry if 〈u,v〉X = 〈 f∗u, f∗v〉Y,
∀u,v ∈ TpX, p ∈ X. If the metric in 〈·, ·〉Y is defined such that diffeomorphism f becomes
an isometry, we call the metric 〈·, ·〉Y is induced by (X, 〈·, ·〉X) and f : X → Y.

Please note that the term “metric” in “Riemannian metric” is different from “met-
ric” in “metric space” in Definition 3.3. The “metric” here is a metric tensor which
describes an inner product in the tangent space of one point. While the “metric” in
Definition 3.3 is a distance function defined for any two points, which is the geodesic
distance shown as follows.

Geodesic

With the Riemannian metric, the length of a differentiable curve γ : [a, b] → X in
Riemannian manifold X is given as

L(γ) =

∫ b

a
‖γ′(t)‖γ(t)dt =

∫ b

a

√
〈γ′(t), γ′(t)〉γ(t)dt (3.9)

Note the length is independent with the chosen coordinate system, since the inner
product ‖γ′(t)‖γ(t) =

√
〈γ′(t), γ′(t)〉γ(t) is independent of chosen coordinate.

Definition 3.14 (Geodesic). The geodesic distance between two points p, q in a
Riemannian manifold X is the infimum of the length among all differentiable curves
γ : [a, b]→ X with γ(a) = p, γ(b) = q, i.e.

d(p, q) = inf{L(γ) : γ(t) is continuous and piecewise differentiable, γ(a) = p, γ(b) = q}
(3.10)

A geodesic between p and q is a piecewise differentiable curve with the minimal length
d(p, q).

Please note three things. First, we relax the constraint such that the curves may
not be differentiable in some discrete points, because the discrete points have no
contribution in the integral. Second, the geodesic may not exist, which means the
infimum of length can not be reached by a curve. Third, if a geodesic exists, there
may be more than one geodesic between two points.

It can be proved that the distance defined in Eq. (3.10) satisfies the conditions
for distance function listed in Definition 3.3. So with the Definition 3.14 of geodesic
distance and Definition 3.3 of the metric space, the Riemannian manifold becomes a
metric space if any two points have a geodesic.

The geodesic can be obtained by minimizing the length functional in Eq. (3.9),
which is a Euler-Lagrange equation and can be solved by standard calculus of
variations technique [Spivak, 1999, chap. 9]. Then we obtain the geodesic equa-
tion as

d2xk

dt2 +

d∑
i, j=1

Γk
i j(γ(t))

dxi

dt
dx j

dt
= 0 (3.11)
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Figure 3.2: Tangent space TpS
2, exponential map Expp(v), geodesic Expp(tv) and cut locus p

for p ∈ S2.

where xi(t) is the i-th component of γ(t) under a given coordinate, i.e. γ(t) =

(x1(t), x2(t), · · · , xd(t))T . Γk
i j is the Christoffel symbol defined as

Γk
i j =

1
2

d∑
m=1

gkm
(∂g jm

∂xi
+
∂gim

∂x j
−
∂gi j

∂xm

)
(3.12)

where {g jm} is the components of G−1 that is the inverse of the metric tensor matrix G.

Example 3.6 (Geodesic in Euclidean Space). In Rd, gi j = δi j and G is identity matrix.
So Γk

i j = 0. Then d2 xk
dt2 = 0. So γ(t) is the straight line segment connecting two points.

Example 3.7 (Geodesic in Sphere [Spivak, 1999, chap. 9]). As we have shown that
the tangent space TpS

d−1 for a given point p is an d − 1 dimensional Euclidean space.
See Fig 3.2. So the Riemannian metric for Tp is naturally chosen as the Euclidean
metric gi j = δi j. For given two points p, q ∈ Sd−1, they are two vectors in Rd starting
from the original point. Let E2 be the plane spanned by these two vectors, and let
C = E2 ⋂

Sd−1 be the great circle (equator) through these two points. Then consider
an isometry f : Sd−1 → Sd−1 defined as the reflection through the plane E2. Then if γ
is the geodesic between p and q, I(γ) is also the geodesic between them, which means
γ = I(γ) 1. In other words, γ ⊂ C = E2 ⋂

Sd−1. So the geodesic between two points
in Sd−1 is a part of the great circle which is smaller than semi-circle. For two points
which are not antipodal, there exists only one great circle C = E2 ⋂

Sd−1 cross these
two points. Then the geodesic is the smaller arc of the great circle connecting these
two points, which is unique. For two antipodal points, there exist infinite great circles
C = E2 ⋂

Sd−1. Then there are infinite geodesics which are semi-circle connecting these
two points.

Proposition 3.1. If γ(t) : [a, b] → X is a geodesic between two points p = γ(a) and
q = γ(b) in Riemannian manifold (X, 〈·, ·〉X), then ‖γ′(t)‖γ(t) = ‖γ′(a)‖γ(a) = ‖γ′(b)‖γ(b) is a
constant for t ∈ [a, b]. So

∫ b
a ‖γ

′(t)‖γ(t)dt = (b − a)‖γ′(a)‖γ(a).

1Here we assume p and q are close enough in a neighborhood such that there exists a unique geodesic
between them. See the Proposition 3.2 for the existence of such neighborhood in a general Riemannian
manifold.

44



Note that the proof of the above proposition is based on affine connection in
Riemannian manifold. Geodesic can be defined as a 1-dimensional auto-parallel
curve based on affine connection, which is a more formal definition used in many
textbooks and can also result in the geodesic equation in Eq. (3.11). However, in
order to make the text more understandable, we are trying to avoid the technical
concepts which are not used in the following chapters, e.g. affine connection. Thus
please refer some textbooks like [Do Carmo, 1992, chap. 3] for affine connection and
the proof of the above proposition.

Exponential Map and Logarithmic Map

Based on the existence and uniqueness of the solution of ordinary partial equations,
the solution of Eq. (3.11) uniquely exists in a sufficiently small neighborhood when
the initial point γ(a) = p and initial velocity γ′(a) = v are given. This essentially
defines a map from the tangent vector γ′(a) = v ∈ TpX to γ(b) = q. This map is
formally called as the exponential map shown as follows.

Based on the geodesic equation in Eq. (3.11), let t′ = λt, λ > 0, then we will obtain
the same geodesic with scaled parameterization and domain.

Corollary 3.1 (Homogeneity of Geodesics). If the geodesic γ(t) determined
by Eq. (3.11) and conditions γ(a) = p and γ′(a) = v uniquely exists in [−ε, ε], we de-
note the geodesic by γ(t; p,v), t ∈ [−ε, ε]. Then the geodesic γ(t; p, λv), λ > 0 uniquely
exists in [− ελ ,

ε
λ ] and γ(t; p, λv) = γ(λt; p,v) with t ∈ [− ελ ,

ε
λ ].

This corollary shows that it is possible for a geodesic to increase its interval of def-
inition by decreasing the velocity v, or vice-versa, which means the definition domain
can be always scaled to [−1, 1] by scaling the velocity v.

Definition 3.15 (Exponential Map). Let X be a Riemannian manifold, p ∈ X and
v ∈ TpX. Then there exists in a local neighborhood [−ε, ε] a curve γ(t; p,v) such that
γ(0) = p, γ′(0) = v. Assume γ(t) exits for t ∈ [0, 1], then γ(t; p,v) becomes the geodesic
between γ(0) and γ(1), and the exponential map is defined as

Expp(v) = γ(1; p,v) (3.13)

Based on the homogeneity of geodesics in Corollary 3.1 and the definition of expo-
nential map, we have

γ(t; p,v) = γ(1; p, tv) = Expp(tv) (3.14)

which shows that Expp(tv) as a geodesic locally exists in a sufficiently small interval
[−ε, ε], ∀v ∈ TpX.

Definition 3.16 (Completeness). X is called geodesically complete, if ∀p ∈ X, the
exponential map Expp(v) is defined ∀v ∈ TpX. In other words, for any given p ∈ X,
v ∈ TpX, the curve γ(t) = Expp(tv) exists ∀t ∈ R1.

If the manifold is not geodesically complete, each point can have a cut locus which
can be defined in the manifold or in tangent space.
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Definition 3.17 (Cut Locus). For p ∈ X, the cut locus of p in the tangent space is
defined as the set of all vectors v ∈ TpX such that γ(t; p; v) = Expp(tv) is a geodesic for
t ∈ [0, 1] and is not the curve with minimal length for t ∈ [0, 1+ε), ∀ε > 0. The cut locus
of p in the manifold is defined as the image of the cut locus in TpX, which is the set
of points in the manifold where the geodesics starting at p stop being minimizing.

Proposition 3.2. Expp is a local diffeomorphism from open ball B(0,R) ⊂ TpX to
Expp(B(0,R)) ⊂ X. The intersection of the cut locus of p in TpX and B(0,R) is empty.

Proof. Expp is a function from a subset of TpX to a subset of X. Thus its pushforward
map is Expp∗(v) =

dExpp(tv)
dt |t=0 =

dγ(t;p,v,)
dt |t=0 = v, which means Expp∗ is an identity map

in TpX. So based on inverse function theorem, there exists an open ball B(0,R) ⊂ TpX

such that Expp : B(0,R) ⊂ TpX → Expp(B(0,R)) ⊂ X is a diffeomorphism. ∀v ∈ B(0,R),
Expp(tv) with t ∈ [0, 1] is a geodesic, which means it has not reached the cut locus of p
based on the Definition 3.17. �

The above proposition shows that the maximal radius for such open ball B(0,R)
which makes Expp as a diffeomorphism is dependent on the cut locus. The open ball
B(0,R) is in TpX. Denote its image Expp(B(0,R)), a geodesically open ball in X, by
BX(p,R) = {x ∈ X : d(p, x) < R}. Since exponential map is a local diffeomorphism, its
inverse is well defined locally and is called as the logarithmic map.

Definition 3.18 (Logarithmic Map). For two points p, q ∈ X, if there exits v ∈ TpX

such that Expp(v) = q, the logarithmic map is defined as

Logp(q) = v (3.15)

Based on the definitions of exponential map and logarithmic map, we have

Logp(Expp(v)) = v, Expp(Logp(q)) = q (3.16)

The geodesic γ(t) connecting p and q such that γ(0) = p and γ(1) = q, if it exists, is

γ(t) = Expp(tLogp(q)), t ∈ [0, 1] (3.17)

Example 3.8 (Exponential Map and Logarithmic Map in Sphere). We have shown
in Example 3.7 the Riemannian metric in Sd−1 is δi j, and the geodesic γ between two
points p, q ∈ Sd−1 is in the great circle C ⊂ E2 where E2 is the 2 dimensional plane
spanned by p, q and original point. Let v = Logp(q) ∈ TpS

d−1, then p, q and v are all in
E2, because γ ⊂ E2. Since v⊥p, v

‖v‖ and p form an orthonormal basis in E2. So γ(t) can
be represented as

γ(t) = a(t)p + b(t)
v
‖v‖

, t ∈ [0, 1] (3.18)

Considering 1 = ‖γ(t)‖2 = a2(t) + b2(t), γ(0) = p, we can set a(t) = cos(h(t)) and b(t) =

sin(h(t)), then
γ(t) = cos(h(t))p + sin(h(t))

v
‖v‖

, where h(0) = 0

Then considering ‖γ′(t)‖ = ‖γ′(0)‖ = ‖v‖ based on Proposition 3.1, we have

‖v‖ = ‖γ′(t)‖ =
∥∥∥∥ − sin(h(t))h′(t)p + cos(h(t))h′(t)

v
‖v‖

∥∥∥∥ = |h′(t)|
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Considering h(0) = 0, we have h(t) = ‖v‖t. Then the geodesic is

γ(t) = cos(‖v‖t)p + sin(‖v‖t) v
‖v‖

, t ∈ [0, 1] (3.19)

The exponential map is

Expp(v) = γ(1) = cos(‖v‖)p + sin(‖v‖) v
‖v‖

(3.20)

Please note that the geodesic distance
∫ 1

0 γ(t)dt = ‖v‖ is the distance of the arc, also
the angle ϕ between the vector p and γ(1) = q because the radius of Sd−1 is 1. The
logarithmic map is the inverse of exponential map, so it is

Logp(q) =
q − p cosϕ
‖q − p cosϕ‖

ϕ, where ϕ = arccos(pT q) (3.21)

Based on the Definition 3.17, the cut locus at p in S2 is its antipodal point −p, and the
cut locus at p in TpS

d−1 is the circle with radius of π. Expp maps all vectors in TpS
d−1

with norm 2πn to p, where n is any non-negative integer. Note that Sd−1 is geodesically
complete based on Definition 3.16. The maximal radius of the local open ball B(p,R)
in Proposition 3.2, which makes Expp be a diffeomorphism, is R = π. See Fig. 3.2 for
the specific case of S2.

3.2 STATISTICS ON RIEMANNIAN MANIFOLD

Compared to the materials in the last section which can be found in exhaustive
textbooks, statistics on Riemannian manifold is a recent emerging area. There are
indeed some monographs which focus on theoretical statistics in some special man-
ifolds [Chikuse, 2003; Mardia and Jupp, 2000]. However in the view of medical im-
age analysis applications in this thesis, we are interested in statistical computing on
manifold valued data. Most materials for this specific topic are distributed in some
papers or theses in last several decades [Kendall, 1990; Karcher, 1977; Pennec, 2006;
Fletcher, 2004]. Thus we only list here some theoretical results used in Chapter 6,
which have been also used in computer vision [Li et al., 2008; Subbarao and Meer,
2009], statistical shape analysis [Dryden and Mardia, 1998], medical image analy-
sis [Fletcher et al., 2009; Pennec, 2006; Cheng et al., 2009b,a, 2011a], etc.

For statistical computing on manifold valued data, there are two ways, i.e. extrin-
sic way and intrinsic way. In extrinsic way, the manifold X is embedded into a higher
dimensional Euclidean space Rd. This embedding always exists based on Whitney
embedding theorem. Thus statistical computing can be performed in Euclidean
space, then the final results in Euclidean space are projected back to the manifold X.
Extrinsic way is dependent on the chosen coordinate and maps. While intrinsic way
is independent on chosen coordinate, which is shown in this section.

With the tools described in last section, we can perform integral in Riemannian
manifold X. The length of a geodesic is the integral along the geodesic which is a
1-dimensional auto-parallel submanifold. It is possible to perform integral in high
dimension, where the measure, or called the infinitesimal volume element, is defined
as dV =

√
| det(G)|dx 2.

2It needs more technical materials which I am trying to avoid in this thesis.
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This measure can be used to define distributions in manifold X such that they
have the PDF pX(x) ≥ 0,

∫
X

pX(x)dV = 1. Then it is possible to calculate some statis-
tical quantities, to compare measurements, to perform hypothesis test, etc [Kendall,
1990; Karcher, 1977; Pennec, 2006; Fletcher, 2004].

With a distribution pX(x) defined in a Riemannian manifold X, the expectation of
function f (x), denoted by EX[ f (x)], is

EX[ f (x)] =

∫
X

f (x)pX(x)dV =

∫
X

f (x)pX(x)
√
| det(G)|dx (3.22)

In discrete case with n samples {x(i) ∈ X}ni=1, pX(x)
√
| det(G)|dx is given by weight

vector w = (w1,w2, · · · ,wn)T and wi is the probability for x(i), wi ≥ 0,
∑n

i=1 wi = 1. Then
for the function f defined in the samples given by a vector f = ( f1, f2, · · · , fn)T , its
expectation is

E{x(i)∈X}ni=1
[f ] =

n∑
i=1

wi fi = wT f (3.23)

In practice, normally we do not know the probability pX(x) in the manifold X,
What we obtain is a limited number of random samples {x(i) ∈ X} and the measured
values of function f (x) at these samples. How to estimate the probability density
function pX(x) in Riemannian manifold from random samples is another topic [Pel-
letier, 2005], which is much difficult in practice especially when only limited number
of samples obtained in a high dimensional manifold. In this thesis, we only consider
the expectation given in the discrete case in Eq. (3.23), where the weight w is nor-
mally pre-fixed.

3.2.1 Riemannian Mean and Variance

For x ∈ X and n samples {x(i) ∈ X}, consider the variance function

σ2(x) def
=

n∑
i=1

wid(x,x(i))2 (3.24)

where d(x,x(i)) is the geodesic distance from x to x(i), and w = (w1,w2, · · · ,wn)T is the
weight vector.

Definition 3.19 (Weighted Riemannian Mean [Fréchet, 1948; Buss and Fillmore,
2001; Karcher, 1977; Kendall, 1990]). The weighted Riemannian mean (or called
Fréchet mean, or Karcher mean) is defined as the minimizer of the variance function
σ2(x), denoted by µw.

µw
def
= arg min

x∈X
σ2(x) = arg min

x∈X

n∑
i=1

wid(x,x(i))2 (3.25)

When wi = 1
n , µw is called as the Riemannian mean, denoted by µ, and σ2 def

= σ2(µ) is
called the variance.
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In Euclidean space, the minimization in Eq. (3.25) has global solution µw =∑n
i=1 wix(i) which is the weighted Euclidean mean. However in a general Riemannian

manifold, weighted Riemannian mean may not exist (unreachable), or may have more
than one solutions which obtain the global minimum of variance function.

In [Karcher, 1977], Karcher considered also the local minima when the variance
function is not convex and has multiple local minima. The local minima of the vari-
ance function are called as Riemannian centers of mass. In this thesis, we just
simply call the local minima as weighted Riemannian means. [Karcher, 1977;
Kendall, 1990] gave some sufficient conditions for the existence and uniqueness of
the global minima of variance function based on the concept of regular geodesic ball.

Definition 3.20 (Regular Geodesic Ball [Karcher, 1977; Kendall, 1990]). The open
ball BX(p,R) in Riemannian manifold X is called a regular geodesic ball if

(i) HR < 1
2π, where H2 is the supremum of sectional curvatures in BX(p,R), or zero if

the supremum is negative.

(ii) the cut locus of p does not meet BX(p,R).

The local open ball which makes Expp as a diffeomorphism has been discussed in
Proposition 3.2. The regular geodesic ball is such a local open ball which also satisfies
HR < 1

2π.

Note that [Kendall, 1990] also proved an important property of regular geodesic
ball.

Proposition 3.3. Let BX(p,R) be a regular geodesic ball in Riemannian manifold X
as the Definition 3.20, and x, y ∈ BX(p,R). Then x, y are connected by one and only one
geodesic within BX(p,R).

This proposition shows that for any point x in a regular geodesic ball BX(p,R), the
cut locus of x does not meet BX(p,R). So (ii) in Definition 3.20 can also be replaced by
“(ii) the cut locus of q does not meet BX(p,R) for at least one q ∈ BX(p,R)”.

Theorem 3.1 (Existence and Uniqueness of Riemannian Mean). Based on the anal-
ysis of regular geodesic ball, Kendall [Kendall, 1990] and Karcher [Karcher, 1977]
proved the following sufficient conditions for the existence and uniqueness of Rieman-
nian mean in continuous case.

� [Kendall, 1990] shows that if the support of pX(x) is contained in a regular
geodesic ball BX(p,R), then there exists one and only one Riemannian center of
mass x ∈ BX(p,R).

� [Karcher, 1977] shows that if the support of pX(x) is contained in regular
geodesic ball BX(p,R) and BX(p, 2R) is also a regular geodesic ball, then the vari-
ance function σ2(x) is a convex function with respect to x and has a global min-
ima in BX(p,R).

Note that these two results can be also used in discrete case by considering pX(x)
as discrete probability distribution defined in points {x(i) ∈ X}ni=1. So if all samples
are in a regular geodesic ball BX(x,R), the Riemannian mean defined in Eq. (3.25)
uniquely exists.
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These two results are applicable to general Riemannian manifold. For S d−1, the
curvature is the constant 1, which means for any p ∈ Sd−1, BSd−1(p,R) is a regular
geodesic ball if R < π

2 . Based on Proposition 3.3, if all samples {x(i)}ni=1 are all in a hemi-
spheres, the Riemannian mean µw uniquely exists. Note that Theorem 1 in [Buss
and Fillmore, 2001] also proved this result for Sd−1 based on the analysis specific to
Sd−1. [Buss and Fillmore, 2001] also proved some other interesting results.

Theorem 3.2 ( [Buss and Fillmore, 2001, theorem 7]). Suppose {x(i) ∈ Sd−1}ni=1 are n
points in a hemisphere of Sd−1, and that it is not the case that n = 2 with x(1) and
x(2) antipodal. Then the convex hull C of {x(i)}ni=1

3 exists and is equal to the set of
weighted Riemannian mean µw generated by all possible w,

∑n
i=1 wi = 1, wi ≥ 0.

To find the local minima of the variance function σ2(x), we can perform gradient
descent method [Pennec et al., 2006]. The gradient of σ2(x) is

∇σ2(x) = −2
n∑

i=1

wiLogx(x(i)) (3.26)

Then the gradient descent iteration is given as

µk+1
w = Expµk

w
(−

1
2
τk∇σ

2(x)) = Expµk
w

(
τk

n∑
i=1

wiLogµk
w

(x(i))
)

(3.27)

where µk
w is the estimated µw in k-th iteration and τk is the step size.

Note that like the standard gradient descent in Euclidean space normally we need
to choose an appropriate initialization µ0

w and choose τk as a sufficiently small value
for convergence. While in Sd−1, [Buss and Fillmore, 2001] has proved that a con-
stant τk = 1 is sufficient for convergence of this gradient descent method. [Buss and
Fillmore, 2001] also proposed to use the normalized Euclidean mean

∑n
i=1 wi xi

‖
∑n

i=1 wi xi‖
as the

initialization for fast convergence.

3.2.2 Principal Geodesic Analysis

In Euclidean space, after mean is obtained, Principal Component Analysis (PCA) can
be used to transform data into principal subspace spanned by some principal com-
ponents. PCA minimizes the projection of data to the subspace. PGA was proposed
to generalize the PCA from Euclidean space to Riemannian manifold [Fletcher et al.,
2004]. After obtaining the Riemannian mean µ, PGA projects all points {x(i) ∈ X}ni=1
onto the tangent space TµX, and calculate the covariance matrix as

Σ =
1

n − 1

n∑
i=1

Logµ(x(i))Logµ(x(i))T (3.28)

Then like PCA a set of eigenvectors with large eigenvalues can be obtained by eigen-
decomposition of this covariance matrix. For the eigenvector v with eigenvalue λ, the
principal component is Expµ(αv), where α ∈ R1. α is normally chosen in [−3

√
λ, 3
√
λ],

which can be used to demonstrate the variance in that component [Fletcher et al.,
3Set C is the convex hull of a set D if C is the unique smallest convex set containing D.

50



2004; Fletcher, 2004]. So essentially PCA is performed in the tangent space TµX
and then the principal subspace in TµX is mapped to manifold X by exponential map
Expµ. PGA has been successfully used in shape analysis [Fletcher et al., 2004], tensor
processing [Fletcher and Joshi, 2007].

3.2.3 Riemannian Median

Definition 3.21 (Weighted Riemannian Median). Weighted Riemannian median
is defined as the minimizer of the weighted sum of distance [Fletcher et al., 2009].

mw
def
= arg min

x∈X
σ1(x) = arg min

x∈X

n∑
i=1

wid(x,x(i)) (3.29)

where w is the weight vector with
∑n

i=1 wi = 1, wi ≥ 0. When wi = 1
n , it is called the

Riemannian median, denoted by m.

When X is a Euclidean space, the minimization of σ1(x) has global minimum
which is the median in Euclidean space. When X is a general Riemannian man-
ifold, the minimization may have no solution or may have many solutions as lo-
cal minima. [Fletcher et al., 2009] proposed a sufficient condition for the existence
and uniqueness of such minimization, based on the results on the convex analysis
in [Karcher, 1977].

Theorem 3.3 ([Fletcher et al., 2009]). In a Riemannian manifold X, the weighted
Riemannian median mw uniquely exists if diam(U) · H < π

2 , where the diameter of
U = {x(i)}ni=1, denoted by diam(U), is the maximal distance between any two points in
{x(i) ∈ X}ni=1, H =

√
∆ if the sectional curvatures of X are positive and bounded by ∆ > 0,

and H = 0 if the sectional curvatures are non-positive.

Note that based on the triangle inequality and Proposition 3.3, if all points U =

{x(i)}ni=1 are contained in a regular geodesic ball BX(p,R), the diameter diam(U) < 2R.
So if BX(p,2R) is still a regular geodesic ball, then diam(U) · H < 2R · H < π

2 when H > 0
for positive sectional curvatures. Thus we have another sufficient condition which
derives Theorem 3.3.

Theorem 3.4. In a Riemannian manifold X, the weighted Riemannian median mw
uniquely exists if all points U = {x(i)}ni=1 are contained in a regular geodesic ball BX(p,R)
such that BX(p, 2R) is still a regular geodesic ball.

In order to find the weighted Riemannian median, we can still use the gradient
descent. The gradient of σ1(x) is

∇σ1(x) = −

n∑
i=1

wiLogx(x(i))
d(x,x(i))

(3.30)

Because the gradient has no definition when x = x(i), we need to require x , x(i). Then
the gradient descent, which is iteratively re-weighted least square method, is
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given as

vk
mw =

n∑
i=1

wi/d(mk
w,x(i))∑n

j=1 w j/d(mk
w,x( j))

Logmw(x(i)) (3.31)

mk+1
w = Expk

mw

(
τkvk

mw

)
(3.32)

where mk
w is the estimated mw in k-th iteration, τk is the step size. Like the gradient

ascent method for µw, normally we need a good initialization m0
w and a good τk in

each step. [Fletcher et al., 2009] proved a result for τk for convergence.

Theorem 3.5 ([Fletcher et al., 2009]). If the sectional curvatures of X are nonnegative
and bounded by ∆ > 0 and diam(U) ·

√
∆ < π

2 , then the gradient descent converges for
τk ∈ [0, 2].

Riemannian median has been proved to be more robust than Riemannian mean
and is more appropriate for atlas estimation in medical image analysis, computer
vision, etc [Fletcher et al., 2009].

3.2.4 Riemannian Lp Mean

Recently [Afsari, 2011] proposed a general result on existence and uniqueness of Rie-
mannian Lp mean (center of mass). Consider the function σp(x) as

σp(x) =

{ ∫
X

d(x, y)p pX(y)dV if 1 ≤ p < ∞
arg maxy∈supp(pX ) d(x, y) if p = ∞

(3.33)

where supp(pX) is the closure of the support of the probability pX . The local minima
of σp(x) are called Riemannian Lp mean, which is Riemannian mean when p = 2 and
Riemannian median when p = 1.

[Afsari, 2011] proved a upper bound of R such that the Riemannian Lp mean
uniquely exists in regular geodesic ball BX(p,R). First we introduce the concept of
injectivity radius. The injectivity radius at p ∈ X is the largest radius for which
the exponential map at p is a diffeomorphism. The injectivity radius of Riemannian
manifold X is the infimum of the injectivity radii at all points.

Theorem 3.6 ([Afsari, 2011]). In a complete Riemannian manifold X with sectional
curvatures upper bound of ∆ and the injective radius of injX, define

R∆,p
def
=

{ 1
2 min{injX, π

2H } if 1 ≤ p < 2
1
2 min{injX, πH } if 2 ≤ p ≤ ∞

(3.34)

where H is
√

∆ if ∆ ≥ 0, 0 if ∆ < 0. Then if supp(pX) ⊂ BX(p,R) ⊂ X, the Riemannian Lp

mean uniquely exists in except some degenerate cases and lies in BX(p,R), if R < R∆,p.

The above theorem on Riemannian Lp mean in [Afsari, 2011] agrees with The-
orem 3.1 [Karcher, 1977; Kendall, 1990] when p = 2 and agrees with Theorem 3.4
which can derive Theorem 3.3 [Fletcher et al., 2009] when p = 1.

52



3.3 STATISTICAL MANIFOLD

In last two sections, we have reviewed the basic concepts of Riemannian mani-
fold and some important theoretical results on how to perform statistical computing
on manifold valued data. This section shows the basic theory on how to endow a so-
phisticated Riemannian manifold structure to a parametric family of distributions, so
that we can perform statistical computing on the data which are distributions from
the parametric family.

It starts in the original Mahalanobis distance in 1936 [Mahalanobis, 1936] to
endow a geometric structure in a parametric distribution family and define the dis-
tance between different parameterized distributions. The pioneer work in [Rao, 1945]
generalizes the Mahalanobis distance and opens a new field called Information
Geometry, which has many applications in quantum mechanics [Wootters, 1981;
Braunstein and Caves, 1994; Brody and Hughston, 1998], computer vision [Srivas-
tava et al., 2007; Maybank, 2004], machine learning [Lebanon, 2006; Lafferty and
Lebanon, 2006], etc. In this section, we will review some basic useful concepts in
Information Geometry theory. Please refer [Amari, 1985; Amari and Nagaoka, 2000]
for more formal details.

3.3.1 Basic Concepts in Information Geometry

Parametric Family (PF)

Let Pr(χ) be the space of all probabilities defined in a field χ, i.e.

Pr(χ) =

{
p(x) :

∫
χ

p(x)dx = 1, p(x) ≥ 0
}

(3.35)

Parametric Family (PF), aka statistical model, is a family of parametric distribu-
tions on the field χ in Eq. (3.36), where c is a K dimensional parameter vector in
Parametric Space (PS), denoted by PS ⊂ RK [Rao, 1945; Amari and Nagaoka, 2000].
Thus PF ⊂ Pr(χ).

PF =

{
p(x|c) :

∫
χ

p(x|c)dx = 1, p(x|c) ≥ 0, c ∈ PS ⊂ RK
}

(3.36)

Statistical manifold

Let’s consider the following mapping as

ϕ : PS ⊂ RK → ϕ(PS ) = PF ⊂ Pr(χ), ϕ : c 7→ p(x|c) (3.37)

Obviously ϕ is not a surjective to Pr(χ), because there exist some probabilities in Pr(χ)
which can not be represented by parameterized model in Eq. (3.36). Normally we
require ϕ is a injective such that the model in Eq. (3.36) is identifiable. Otherwise
there exist c(1) and c(2) such that p(x|c(1)) = p(x|c(2)), ∀x ∈ χ.
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So we assume ϕ is a bijective from PS ⊂ RK to PF ⊂ Pr(χ). We also assume p(x|c)
is differentiable with respect to c, which means ϕ is differentiable. Then ϕ becomes
a diffeomorphism. Thus we can identify parametric distribution p(x|c) in the family
PF as points c ∈ PS . Next we assume PS is a differentiable manifold embedded
in RK . Then PF with distributions as elements is a differentiable manifold, called
statistical manifold, which is diffeomorphic to PS . The parameter vector c is called
the coordinate.

Please note that all assumptions we made here are very weak, which can be sat-
isfied by most parametric family used in practice.

Example 3.9. Consider the Gaussian distribution in 1D, i.e. N(x|µ, σ). Thus c =

(µ, σ)T , PS = {(µ, σ)T ∈ R2 : µ ∈ (−∞,∞), σ ∈ (0,∞)} which is a differentiable mani-
fold in R2. N(x|c) is differentiable with respect to c.

Fisher information metric as the Riemannian metric

Based on Section 3.1.2, the tangent space in PS is generated by local basis
{ ∂∂ci
}i=1,...,K . [Rao, 1945] considered {∂ log p(x|c)

∂ci
}i=1,...,K as the local basis on the tan-

gent space at p(x|c) which is isomorphic to the tangent space of PS . The vector
u =

∑K
i=1 ui

∂
∂ci

corresponds to the vector u(x) =
∑

i=1 ui
∂ log p(x|c)

∂ci
with the same coordi-

nate [Amari, 1985, chap. 2]. Thus we identify these two tangent vector and denote
them by u, and we also identify the two tangent spaces and denote them by Tc. The
expectation of the random variable u =

∑
i=1 ui

∂ log p(x|c)
∂ci

is 0 because

Eχ

(
∂ log p(x|c)

∂ci

)
=

∫
χ

∂p(x|c)
∂ci

dx =
∂

∂ci

∫
χ

p(x|c)dx = 0 (3.38)

where we assume the integration over x and differentiation with respect to c can be
freely rearranged.

As we have shown in Section 3.1.3, Riemannian manifold is a differentiable man-
ifold equipped with a Riemannian metric g in its tangent space. For the statistical
manifold PF, there exist many possible inner products to make it a Riemannian man-
ifold. The Fisher information matrix with its (i, j)-th entry in Eq. (3.39) naturally
defines a positive definite inner product, i.e. a Riemannian metric called the Fisher
information metric.

gi j(c) def
= Eχ

(
∂ log p(x|c)

∂ci

∂ log p(x|c)
∂c j

)
=

∫
χ

∂ log p(x|c)
∂ci

∂ log p(x|c)
∂c j

p(x|c)dx (3.39)

= 4
∫
χ

∂
√

p(x|c)
∂ci

∂
√

p(x|c)
∂c j

dx (3.40)

It is easy to see this metric has another equivalent form in Eq. (3.41) when the order
of differentiation and integration can be changed.

gi j(c) = −Eχ

(
∂2

∂ci∂c j
log p(x|c)

)
= −

∫
χ

∂2 log p(x|c)
∂ci∂c j

p(x|c)dx (3.41)

The above three formulae Eq. (3.39) Eq. (3.40) Eq. (3.41) are normally used to calcu-
late gi j from p(x|c).
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For given two tangent vectors represented by the basis as v =
∑K

i=1 vi
∂ log p(x|c)

∂ci
and

u =
∑K

j=1 u j
∂ log p(x|c)

∂c j
, the inner product is given as

〈v,u〉c = Eχ(u,v) =
∑

i j

viu jgi j(c) (3.42)

Note Eχ(u,v) = Cov(u,v) is the covariance of v and u because Eχ(u) = Eχ(v) = 0.

Geodesic, exponential map and logarithmic map

Since we have constructed the statistical manifold and equip it with the Fisher in-
formation metric, the concepts and results in Section 3.1.3 can be used in statistical
manifold.

The length of the tangent vector v ∈ Tc is ‖v‖ =
√
〈v,v〉. Then the length of the

curve γ : [a, b] → PS is L(γ) =
∫ b

a ‖γ
′(t)‖dt, where γ′(t) is a tangent vector in Tγ(t).

For given two points (distributions) in the statistical manifold, the curve connecting
them with the minimal length is the geodesic. A given point (distribution) c with a
given tangent vector v determines the unique geodesic γ(t) with γ(0) = c and γ′(0) = v.
The exponential map and logarithmic map are diffeomorphisms defined in a local
star-shaped subset U ∈ Tc. The boundary of U, if it exists, is the cut locus in tangent
space.

The geodesic, exponential map and logarithmic map can be used as a framework
for statistical computing on distributions from a parametric family.

3.3.2 Examples on Gaussian Distribution and Multinomial Distribu-
tion Families

We have shown in Example 3.9 that the parametric family of Gaussian distributions
in 1D can be seen as a statistical manifold. Here we show another example for the
statistical manifold of Gaussian distributions in K dimension. Please refer [Atkinson
and Mitchell, 1981; Skovgaard, 1984] for the proofs and more details on the geometry
for Gaussian distribution family.

Example 3.10 (Gaussian Distribution Family in K Dimension). Multi-variant Gaus-
sian distribution family in K dimension is given as

PF =

{
N(x|µ,Σ) =

1
(2π)K/2|Σ|1/2

exp
(
−

1
2

(x − µ)T Σ−1(x − µ)
)

: µ ∈ RK , Σ ∈ S ym+
K

}
(3.43)

We consider PF for fixed Σ and fixed µ respectively.

Considering PF =
{
N(x|µ,Σ) : µ ∈ RK , Σ = Σ0

}
, then gi j = Σ−1

0 (i, j) based on Eq. (3.41)
which is a constant. So let y = Σ

−1/2
0 x, y is in Euclidean space with gi j = δi j. Thus the

geodesic, exponential map, logarithmic map of PF are induced from Euclidean space
by the transform x = Σ

1/2
0 y. For two Gaussian PDFs with the different mean vectors

µ1 and µ2 but the same covariance matrix Σ0, the geodesic distance is the well-known
Mahalanobis distance [Atkinson and Mitchell, 1981]

d(N(x|µ1,Σ),N(x|µ2,Σ)) =

√
(µ1 − µ2)T Σ−1(µ1 − µ2) (3.44)

55



CHAP. 3: MANIFOLD, STATISTICS ON MANIFOLD AND STATISTICAL MANIFOLD

Thus the geodesic distance in information geometry is a generalization of Mahalanobis
distance that is only for Gaussian distributions with the same covariance.

Now for fixed µ0, we consider

PF =

{
N(x|µ0,Σ) : Σ ∈ S ym+

K

}
Note that N(x|µ,Σ) is defined ∀x ∈ RK , the space PF is invariant under shift y = x + µ0.
So the PF can be written as

PF =

{
N(x|Σ) =

1
(2π)K/2|Σ|1/2

exp
(
−

1
2

xT Σ−1x
)

: Σ ∈ S ym+
K

}
(3.45)

where µ0 = 0. S ym+
K is open convex cone embedded in K × K symmetric matrix space

S ymK which is isomorphic to Euclidean space RK2 . Matrix exponential function is a
diffeomorphism between S ymK and S ym+

K . The tangent space of a given Σ ∈ S ym+
K , i.e.

TΣ(S ym+
K), is S ymK . For given two symmetric matrices A, B ∈ S ymK , the inner product

in S ymK is naturally defined as Trace(AB). Based on directional derivative analysis
of matrix function, the inner product in TΣ(S ym+

K) is [Atkinson and Mitchell, 1981;
Skovgaard, 1984]

〈A, B〉Σ =
1
2

Trace(Σ−1AΣ−1B), A, B ∈ TΣ(S ym+
K) (3.46)

The geodesic γ(t) with γ(0) = Σ and γ′(0) = A ∈ TΣ(S ym+
K) is given as

γ(t) = Σ
1
2 log(Σ−

1
2 AtΣ−

1
2 )Σ

1
2 , t ∈ [0, 1] (3.47)

The exponential map is

ExpΣ(A) = γ(1) = Σ
1
2 exp(Σ−

1
2 AΣ−

1
2 )Σ

1
2 , A ∈ S ym3 (3.48)

The logarithmic is

LogΣ(Λ) = Σ
1
2 log(Σ−

1
2 ΛΣ−

1
2 )Σ

1
2 , Λ ∈ S ym+

3 (3.49)

For two Gaussian PDFs with the same mean vector µ but different covariance ma-
trices Σ1 and Σ2, the geodesic distance is [Atkinson and Mitchell, 1981; Skovgaard,
1984]

d(N(x|µ,Σ1),N(x|µ,Σ2)) =

√√√
1
2

K∑
i=1

log2(λi) (3.50)

where λi is the eigenvalues of Σ−1
1 Σ2. For an affine transform A : χ→ χ, Ax = y, we have

d(N(y|µ,Σ1),N(y|µ,Σ1)) = d(N(x|Aµ, AΣ1AT ),N(x|Aµ, AΣ2AT )) (3.51)
= d(N(x|µ,Σ1),N(x|µ,Σ1)) (3.52)

which means the distance is affine-invariant. The affine-invariant distance has been
successfully used in tensor processing [Pennec et al., 2006; Moakher, 2005; Batchelor
et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi, 2007].
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Example 3.11 (Multinomial Distribution Family). Let’s consider the multinomial dis-
tribution family given in Eq. (3.53).

PF =

{
p(x|p) =

K∑
i=1

piδ(x = i) : p ∈ RK , pi ≥ 0,
K∑

i=1

pi = 1,
}

(3.53)

The PS is the probability simplex defined by

PS =

{
p = (p1, p2, · · · , pK)T ∈ RK :

K∑
i=1

pi = 1, pi ≥ 0
}

(3.54)

If K = 3, PS is the equilateral triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). The
tangent space of every point is the plane Tc = {v ∈ RK :

∑K
i=1 vi = 0}. Please see the left

side of Fig. 3.3. Although it is possible to calculate the metric and geodesic based on
the formulation in Eq. (3.53), it is convenient to consider the new coordinates under
square root parametrization, where ci =

√
pi. Then the PF is Eq. (3.55)

PF =

{
p(x|c) =

K∑
i=1

c2
i δ(x = i) : c ∈ RK , ci ≥ 0,

K∑
i=1

c2
i = 1,

}
(3.55)

The new PS is the positive orthant of the unit sphere SK−1, i.e.

PS =

{
c = (c1, c2, · · · , cK)T ∈ S2 : ci ≥ 0

}
(3.56)

The new tangent space at c is Tc = {v ∈ RK :
∑K

i=1 vici = 0} based on Example 3.5. Based
on Eq. (3.40), the Fisher information metric is

gi j(c) = 4
K∑

i=1

∂
√

p(x|c)
∂ci

∂
√

p(x|c)
∂c j

= 4δi j (3.57)

It can be proved that the geodesic distance between p(x|c) and p(x|c′) is twice of the
geodesic on SK−1, i.e. d(p(x|c), p(x|c′)) = 2 arccos(cT c′). Please see the right side of
Fig. 3.3. The square root parametrization for multinomial distribution was explored
early in [Wootters, 1981] and in example 2.4 of [Amari, 1985], and was applied in
different domains in [Srivastava et al., 2007; Lebanon, 2006; Goh et al., 2011]. Please
note the difference between our description and example 2.4 of [Amari, 1985]. [Amari,
1985] considered the new coordinates as ci = 2

√
pi, which results in PS as a sphere

with radius 2, i.e. 2S2, and gi j(c) = δi j. However the geodesic does not change under
different parametrizations.

Normally a constant multiplication on metric can be ignored in the statistical com-
puting on manifold valued data. Thus we can assume gi j = δi j after the transform
ci =

√
pi. Then based on Example 3.5, 3.7, 3.8, we show two parameter spaces under

p and c representations in Fig. 3.3. In the right side of Fig. 3.3, two points c, c′, the
geodesic, and the tangent vector vc = Logc(c′) are shown in tangent space Tc. The left
side of the figure shows the two corresponding points p, p′, the geodesic and tangent
vector p′ − p for the representation with p.

57



CHAP. 3: MANIFOLD, STATISTICS ON MANIFOLD AND STATISTICAL MANIFOLD

Figure 3.3: Statistical manifold for multinomial distribution in 3D. From left to right: pa-
rameter space PS represented by {pi} in Eq. (3.54); PS represented by {ci} in Eq. (3.56). The
tangent vector, exponential map and geodesic distance are also shown respectively in the
tangent space Tp and Tc.

3.4 SUMMARY

In this chapter, we made an overview of basic concepts and results of Rieman-
nian manifold, statistical computing on manifold and statistical manifold, which are
background knowledge for Chapter 6. We also gave some examples for better under-
standing the materials.

We now summarize the important and useful materials listed in this chapter
which will be used in the Chapter 6.

1. The basic notions of Riemannian geometry described in Section 3.1 will be
implicitly used in Chapter 6.

2. Weighted Riemannian mean and median described in Section 3.2 will be
used in statistical computing on Gaussian distributions and non-Gaussian dis-
tributions in Chapter 6. The existence and uniqueness of weighted Rieman-
nian mean and median are essential for the analysis in Chapter 6.

3. Example 3.10 on Gaussian distributions lists theoretical results on previ-
ous Riemannian framework for tensors (Gaussian distributions) [Atkin-
son and Mitchell, 1981; Skovgaard, 1984; Moakher, 2005; Pennec et al., 2006;
Moakher, 2005; Batchelor et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi,
2007]. Chapter 6 will generalize the Riemannian framework from Gaussian
distributions to general distributions which are not necessary to be Gaussian.

4. The geometry of high dimensional sphere Sd−1 is well studied in Exam-
ple 3.2 on topology, Example 3.5 on tangent space, Example 3.7 on geodesic,
Example 3.8 on exponential and logarithmic maps. Riemannian framework on
sphere including geodesic, exponential map and logarithmic map can be used to
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devise algorithms to process the data on sphere. For example, in [Cheng et al.,
2009b] we proposed to use mean shift on sphere to analyze functional MRI data.

5. Example 3.11 showed the statistical manifold of multinomial distribu-
tion, which is essential for our Riemannian framework on ODFs and EAPs
in Chapter 6. [Goh et al., 2011] directly used the results of multinomial distri-
bution family by considering the ODF represented by its histogram. Our formu-
lation in [Cheng et al., 2009a, 2011a] is quite different. We consider the PDFs
(both ODFs and EAPs) whose square roots are represented by linear combina-
tion of orthonormal basis functions. Please see Chapter 6 for more details and
comparisons.
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CHAPTER 4

DIFFUSION MRI

“If I have seen further it is by standing on ye sholders of Giants.”

– Isaac Newton
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OVERVIEW

During the last several decades, the principles of diffusion Magnetic Resonance
Imaging (dMRI) have been largely developed, which makes dMRI become the unique
noninvasive technique to study white matter and fibers in human brain. This chap-
ter covers the basic principles of dMRI on diffusion phenomenon, MRI measure-
ments, the concepts of Ensemble Average Propagator (EAP) and Orientation Dis-
tribution Function (ODF), and some state-of-the-art reconstruction methods which
estimate EAPs/ODFs and infer some other meaningful information from measured
dMRI signals. Since EAP and ODF are essentially Probability Density Functions
(PDFs) which describe the water diffusion, we also review some works on metric se-
lection for processing distribution valued data. This introductory chapter is inspired
from [Johansen-Berg and Behrens, 2009; Huettel et al., 2009; Tuch, 2002; Le Bihan
et al., 2003; Lenglet, 2006; Hagmann et al., 2006; Descoteaux, 2008; Ghosh, 2011;
Assemlal et al., 2011]. It contains the background knowledge and motivations of the
Chapter 5 and 6,

Organization of this chapter:
We first introduce some basic concepts of diffusion process in subsection 4.1.1, Mag-

netic Resonance Imaging (MRI) and the duality between k-space and x-space in sub-
section 4.1.2. Then the PGSE sequence, Stejskal-Tanner equation, the duality be-
tween q-space and R-space and EAP are introduced in subsection 4.1.3. Section 4.2
gives a review on Diffusion Tensor Imaging (DTI). Section 4.3 lists the start-of-the-
art reconstruction methods for ODFs and EAPs in High Angular Resolution Diffusion
Imaging. Section 4.4 describes the possible metric and processing framework for ten-
sors, ODFs and EAPs.

4.1 BASIC OF DIFFUSION MRI

Diffusion Magnetic Resonance Imaging (dMRI) is a widely used in-vivo imaging
technique to explore the information of neural micro-structure by probing the diffu-
sion of water molecules. So far it is still the unique non-invasive method to reveal the
micro-geometry of nervous tissues noninvasively and to explore the neural connec-
tome in living human subjects. The diffusion of water molecules is constrained by the
surrounding structures including nerves, cells and surrounding tissue. For example,
qualitatively water molecules diffuse fast along fibers and slowly across fibers. Thus
measuring the diffusion process quantitatively is crucial to understanding the neural
micro-structure and fiber directions.

4.1.1 Diffusion Process, Free Diffusion and Gaussian Propagator

A drop of colored fluorescent dye placed in a glass of water will spread out in the
glass. The color becomes less intense and finally the glass is filled with a solution of
uniform color. This phenomenon, called as the Brownian motion, can be described by
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Fick’s first law [Fick, 1855], which states that the net particle flux J is proportional
to the spatial gradient of the particle concentration C, i.e.

J = −D
∂

∂x
C

where D is the diffusion coefficient. Then consider the continuity equation, the net
influx equals the increase in the concentrate, i.e. − ∂

∂x J = ∂
∂tC, then we have

∂

∂t
C = D

∂2

∂x2 C (4.1)

This is the diffusion equation in 1D space. The solution of this equation with the
boundary condition C(x, 0) = δ(x − x0) is

C(x, t) =
1

√
4πtD

e−
(x−x0)2

4Dt = N(x|x0, 2tD) (4.2)

where N(x|x0, 2tD) is the Gaussian distribution with mean x0 and variance 2Dt. The
derivation of this solution can be found in Example 2.3 in details. The free diffusion
in 3D space can be described by diffusion tensor D which is a 3× 3 symmetric positive
definite matrix.

J = −D∇C, −∇ · J =
∂

∂t
C

Then the solution with the boundary condition C(x, 0) = δ(x − x0) is

C(x, t) =
1√

(4πt)3|D|
e−

(x−x0)T D−1(x−x0)
2t = N(x0|0, 2tD) (4.3)

Note that Dr. Einstein also obtained the solution by considering the diffusion dis-
placement Probability Density Function (PDF) or called diffusion propagator P(R, t)
of the particle [Einstein, 1956].

P(R, t) =
1√

(4πt)3|D|
e−

RT D−1R
2t = N(R|0, 2tD) (4.4)

Then the Mean Squared Displacement (MSD) is

〈RRT 〉 = 2tD (4.5)

Note that the above equations are for free diffusion. However the water diffusion
in biological tissues may be hindered by biological cells and other environment sur-
rounding tissues. See Fig. 4.1. So far we still do not know the diffusion propagator in
complex environment because it depends on the complex boundary conditions which
are hard to be quantified.

4.1.2 Magnetic Resonance Imaging (MRI), k-space and x-space

The principles of Magnetic Resonance Imaging (MRI) are based on spin which is the
rotation of a particle around some axis. Spin is a fundamental quantum characteristic
of elementary particles like protons, electrons. Some nuclei have the property to align
with a magnetic field B0 if their mass number, i.e. the summation number of protons
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Figure 4.1: The water diffusion in biological tissues may be hindered by biological cells and
other environment surrounding tissues. The figure is from [Johansen-Berg and Behrens,
2009].

and neutrons, is odd. Essentially their spin aligned along B0. Without the external
stimulus by magnetic field B0, the macroscopic magnetization M = 0. In MRI, the
particles considered are hydrogen nucleus because human body is largely composed
of water molecules. Each water molecule has two hydrogen nuclei or protons. When
a person is inside the magnetic field B0 of the scanner, the average magnetic moment
of many protons becomes aligned with the direction of the field B0, which is assumed
as the z-axis by convection Meanwhile, the magnetization vector of spins precesses
around B0 with an angular frequency known as the Larmor frequency, i.e.

ω0 = γB0

where γ is the gyromagnetic ratio dependent in the particle. Then the net magne-
tization satisfies

dM
dt

= γM × B0 (4.6)

When a Radio-Frequency (RF) is applied to the spins with the resonance frequency,
the energy of RF is absorbed by the spins with low energy configuration and changes
them into high energy configuration. Then the spins change their alignments. After
RF is turned off, the spins begin to recover the alignment with B0, and finally return
to the thermal equilibrium with low energy configuration. This is called as the re-
laxation phase. Normally 90◦ and 180◦ RFs are used, which change the direction of
spin with 90◦ or 180◦. Assume the magnetization M = Mx + My + Mz, then M(t) in the
relaxation phase satisfies the famous Bloch equation as follows1.

dM
dt

= γM × B −
1

T1
(Mz −M0) −

1
T2

(My + Mx) (4.7)

where B is the magnetic field, M0 is the original M when relaxation phase starts, T1
and T2 are relaxation time for Mz in z-axis and Mx, My in x-y plane. The equation
characterizes the relaxation process.

Add a gradient field G(t) = Gx(t)ex + Gy(t)ey + Gz(t)ez into the static field B0 = B0ez,
then the total magnetic field is

B(t) = B0ez + Gx(t)ex + Gy(t)ey + Gz(t)ez

1http://en.wikipedia.org/wiki/Bloch equations
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Denote Mxy(x, y, z, t) = Mx + iMy, based on the Bloch equation, we have

Mxy(x, y, z, t) = Mxy(x, y, z, 0)e−t/T2e−iγB0te−iγ
∫ t

0 (Gx(τ)ex+Gy(τ)ey+Gz(τ)ez)dτ

The magnetic resonance signal s(t) is the spatial summation of Mxy(x, y, z, t) [Huettel
et al., 2009], i.e.

s(t) =

∫
x

∫
y

∫
z
Mxy(x, y, z, 0)e−t/T2e−iω0te−iγ

∫ t
0 (Gx(τ)ex+Gy(τ)ey+Gz(τ)ez)dτdxdydz

In practice, we do not need to consider e−iω0t because modern MRI scanners demodu-
late the detected signal with the resonance frequency ω0. The term e−t/T2 is indepen-
dent of the spatial position x. By ignoring these two terms, we have

s(t) =

∫
x

∫
y

∫
z
Mxy(x, y, z, 0)e−iγ

∫ t
0 (Gx(τ)ex+Gy(τ)ey+Gz(τ)ez)dτdxdydz

For slice z0 with thickness 4z, we consider

M(x, y, z0) =

∫ z0+ 4z
2

z0−
4z
2

Mxy(x, y, z, 0)dz

The magnetization M(x, y, z0) describes the tissue property at position (x, y, z0) in x-
space. Then we have

s(t) =

∫
x

∫
y

Mz0(x, y)e−iγ
∫ t

0 Gx(τ)ex+Gy(τ)eydτdxdy (4.8)

Define k vector as

k = (kx, ky)T , kx =
γ

2π

∫ t

0
Gx(τ)dτ, ky =

γ

2π

∫ t

0
Gy(τ)dτ (4.9)

Then the magnetic resonance signal s(kx, ky, z) in k-space is related with net magnetic
M(x, y, z) with a two dimension (2D) Fourier transform, i.e.

s(kx, ky, z) =

∫
x

∫
y

M(x, y, z)e−2πi(kx(t)x+ky(t)y)dxdy = F2D{M(x, y, z)}(kx, ky, z) (4.10)

where F2D{·} denotes the Fourier transform in 2D space.

There are several common conventions for defining the Fourier transform2. Dif-
ferent convention obtains different formulae in form, although theoretically they are
equivalent. In dMRI domain, different papers use different conventions, which some-
times makes readers confused. Throughout this thesis, we use the convention of
Fourier transform defined as

f̂ (ξ) = F { f (x)}(ξ) def
=

∫ ∞

−∞

f (x)e−2πixξdx (4.11)

In this convention, the inverse Fourier transform is

f (x) = F−1{ f̂ (ξ)}(x) =

∫ ∞

−∞

f̂ (ξ)e2πixξdξ (4.12)

2http://en.wikipedia.org/wiki/Fourier transform
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Figure 4.2: Pulsed Gradient Spin-Echo (PGSE) sequence introduced by Stejskal and Tan-
ner [Stejskal and Tanner, 1965]. δ is the duration of the diffusion gradient pulses and ∆ is
the time between two diffusion gradient pulses.

4.1.3 Diffusion Weighted Imaging (DWI), q-space and R-space

Diffusion Gradient Sequence

The classical diffusion gradient sequence used in dMRI is the Pulsed Gradient Spin-
Echo (PGSE) sequence proposed by Stejskal and Tanner [Stejskal and Tanner, 1965].
See Fig. 4.2 for the sketch map of this sequence. PGSE sequence has two gradient
pulses G(t) with duration time δ. The 90◦ RF pulse, translates the spins into the
transverse plane, i.e. x-y plane, considering the B0 is along z-axis. Then the spins
precess around B0 with the resonance frequency ω0. Due to local magnetic field inho-
mogeneities, some spins slow down and some spins speed up.3 After time ∆ between
two pulses, the 180◦ RF pulse refocuses the phase of spins so that slower spins lead
ahead and the fast ones trail behind. The spin echo process occurs when the spins
recover their net magnetization.

Note that the PGSE sequence uses rectangular gradient lobes. There are also
other kinds of gradient lobes commonly used in dMRI [Bernstein et al., 2004, chap.
9].

Free Diffusion, Stejskal-Tanner Equation

If there is spin displacement as a result of Brownian motion, we can add the diffusion
term in Bloch equation in 4.7.

dM
dt

= γM × B −
1

T1
(Mz −M0) −

1
T2

(My + Mx) + ∇ · D∇(M −M0) (4.13)

where D is the diffusion tensor used in Diffusion Tensor Imaging in subsection 4.2.
To eliminate the dependence of spin density, we need at least two measurements

3http://en.wikipedia.org/wiki/Spin echo

66

http://en.wikipedia.org/wiki/Spin_echo


of Diffusion Weighted Imaging (DWI) signals, i.e. S (b) with the diffusion weighting
factor b in Eq. (4.14) introduced by Dr. Lebihan in [LeBihan et al., 1986], and S (0)
with b = 0 which is the baseline signal without any gradient.

b = γ2δ2(∆ −
δ

3
)‖G‖2 (4.14)

In the b value in Eq. (4.14), γ is the proton gyromagnetic ratio, G = ‖G‖u is the
diffusion sensitizing gradient pulse.

τ = ∆ −
1
3
δ (4.15)

is normally used to describe the effective diffusion time [Bihan et al., 1986; Basser
et al., 1994]. The b value is dependent on the sequence, and it is different in different
kinds of lobes in diffusion sequence [Bernstein et al., 2004, chap. 9]. The signal
intensity at each voxel in DWI is dependent on both surrounding structures and given
weighted magnetic gradient [Bihan et al., 1986]. See Fig. 4.3 for the DWI images S (b)
with different b values and different gradient directions u. It can be seen that the
DWI images are very noise, especially for large b values.

With the PGSE sequence described above, the diffusion weighted signal attenu-
ation E(b) =

S (b)
S (0) is given by Stejskal-Tanner equation [Stejskal and Tanner, 1965]

E(b) =
S (b)
S (0)

= exp(−bD) (4.16)

where D is known as the Apparent Diffusion Coefficient (ADC) which reflects the
property of surrounding tissues. Note that in general case ADC D is also dependent
on G in a complex way, however free diffusion assumes D is only dependent on the
direction of G, i.e. u = G

‖G‖ .

The early works in dMRI reported that the ADC D is dependent on gradient direc-
tion u and used two or three DWI images in different directions to detect the proper-
ties of tissues [Moseley et al., 1990; Douek et al., 1991]. Then Dr. Basser introduced
diffusion tensor [Basser et al., 1994] to represent ADC as

D(u) = uT Du (4.17)

D is called as the diffusion tensor, which is a 3×3 symmetric positive definite matrix
independent of u. This method is called as Diffusion Tensor Imaging (DTI), which is
the most common method nowadays in dMRI field. See Section 4.2 for more materials
in DTI.

Narrow Pulse Condition, q-space, Ensemble Average Propagator

Based on free diffusion assumption, Stejskal-Tanner equation reveals the underly-
ing ADC value (or diffusion tensor) from the measured diffusion signal attenuation.
However, the diffusion of water molecules is hindered by surrounding tissues, espe-
cially in white matter. See Fig. 4.1 for the hindered diffusion. In a general diffusion
process, the Gaussian propagator assumption is not satisfied.

For each voxel in x-space, let ρ(R0) denote the spin density at initial time t = 0
and P(R∆|R0) denote the probability that the spin moves from R0 at t = 0 to R∆ at
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Figure 4.3: DWI images for different b-values and gradients. The data is from one of the
subjects in the real monkey dataset described in Appendix B.2.

b = 0s/mm2

b = 1500s/mm2 b = 1500s/mm2 b = 3000s/mm2

u = (−0.204, 0.515, 0.833)T u = (0.198, 0.515, 0.834)T u = (−0.204, 0.515, 0.833)T

t = ∆. Then the diffusion signal attenuation E(G,∆, δ) =
S (G,∆,δ)

S (0) can be represented
as [Stejskal and Tanner, 1965; Callaghan, 1991]

E(G,∆, δ) =

∫
R3
ρ(R0)

∫
R3

P(R∆|R0) exp
(
iγ(R∆ − R0)T

(∫ δ

0
G(t)dt

))
dR∆dR0 (4.18)

where γ is gyromagnetic ratio, S (0) is the baseline DWI signal without diffusion gra-
dient, S (G,∆, δ) is the DWI signal with imaging parameters (G,∆, δ). Under narrow
pulse condition, i.e. the duration time δ is much smaller than the separation time
between two pluses ∆, G(t) is a constant G during δ. Then we introduce q vector as

q = qu = (2π)−1γ

∫ δ

0
G(t)dt = (2π)−1γδG (4.19)

which can be seen as a vector in q-space. We also define the Ensemble Average Prop-
agator (EAP) as

P(R) =

∫
R3
ρ(R0)P(R0 + R|R0)dR0, R = R∆ − R0 (4.20)

where R = Rr is the displacement vector in R-space. u and r are unit vectors. Then
the signal attenuation can be written as the inverse Fourier transform of EAP P(R),
i.e.

E(q) =

∫
R3

P(R) exp
(
2πiqT R

)
dR = F−1

3D {P(R)}(q) (4.21)
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Figure 4.4: 3D x-space and 3D R-space. EAPs in different regions in brain reflect different
micro-structures with isotropic diffusion, single fiber and crossing fibers. The image is taken
from [Descoteaux, 2008] with the original figures adapted from [Hagmann et al., 2006] and
the brain museum (www.brainmuseum.org/Specimens).

So based on the narrow pulse assumption, the diffusion process at each voxel is
fully described by the so called EAP P(R) which is the average displacement proba-
bility in 3D R-space. Then the diffusion weighting factor can be represented by q,
i.e.

b = γ2δ2(∆ −
δ

3
)‖G‖2 = 4π2τq2 (4.22)

where τ = ∆ − 1
3δ is the effective diffusion time [Bihan et al., 1986; Basser et al.,

1994]. In the following part of this thesis, E(q) (or written as E(b)) is also called as
diffusion signal if no confusion in context. EAPs in different regions in brain reflect
the different micro-structures and reveal fiber directions. Please see Fig. 4.4, which
also demonstrates the diffusion data is in six dimensional space. The acquisition of
dMRI data is performed in a 6D space, i.e. 3D k-space and 3D q-space. Then the DWI
data S (q) is the Fourier transform of k-space signal, and the EAP is another Fourier
transform of E(q). Thus there are two dualities in dMRI, i.e. k-space and x-space,
q-space and R-space.

Note that P(R) is related with E(q) by a Fourier transform only when narrow pulse
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assumption is satisfied. However in practice, this assumption is not always satisfied.
Several works [Mair et al., 2002; Bar-Shir et al., 2008] showed that even when this
assumption does not hold, the Fourier relation can be still used to obtain good results.
In this thesis we always assume this assumption holds and use this Fourier relation
to obtain analytical formulae in Chapter 5 and 6.

Note that P(R) is assumed to be antipodally symmetric (or called radially symmet-
ric), i.e. P(R) = P(−R), because asymmetrical diffusion propagator violates the princi-
ple of microscopic detailed balance. Because of P(R) = P(−R), we have E(q) = E(−q).
Since E(q) = E(−q), Eq. (4.21) can be written as

E(q) = E(−q) =

∫
R3

P(R) exp(−2πiqT R)dR = F {P(R)}(q) =

∫
R3

P(R) cos(2πqT R)dR (4.23)

Then the EAP is the Fourier transform of signal, i.e.

P(R) = F {E(q)}(R) =

∫
R3

E(q) exp(−2πiqT R)dq =

∫
R3

E(q) cos(2πqT R)dq (4.24)

Both Eq. (4.21), Eq. (4.23) and Eq. (4.24) are commonly used in papers. Because of
the antipodal symmetry of E(q), the DWI samples in q-space can be performed only
in a half space, e.g. {q ∈ R3 : (0, 0, 1)q = qz ≥ 0}.

Historically, people first measured ADC values from two DWI images based
on Eq. (4.16), then tensor image from at least 7 DWI images in DTI [Basser et al.,
1994] in Section 4.2, and finally 3D images of the full PDF-valued images from more
DWI images in High Angular Resolution Imaging (HARDI) in Section 4.3. All these
kinds of images (scalar-valued, tensor-valued, or PDF-valued) estimated from DWIs
let us understand better and better the microstructure of biological tissues.

In dMRI field, there are many research subareas as shown in Fig. 1.1. In this
thesis we are interested in reconstruction methods which estimate scalar, tensor,
PDF-valued images from DWI images, and the metric used to process pre-estimated
PDF-valued data. So in the following sections of this chapter, we will review some
reconstruction models and metrics for PDF-valued data. Different reconstruction
model/method normally uses different sampling scheme in q-space. Please see
Fig. 4.5 on several kinds of sampling schemes used in reconstruction models/methods.

4.2 DIFFUSION TENSOR IMAGING (DTI)

Dr. Basser proposed to model the ADC as a quadratic form parameterized by the
diffusion tensor D in Eq. (4.17) [Basser et al., 1994]. Then the Stejskal-Tanner equa-
tion becomes

E(b) =
S (b)
S (0)

= exp(−buT Du) (4.25)

The diffusion tensor D ∈ S ym+
3 is independent of b value and gradient direction u,

where S ym+
3 is the space of 3 × 3 symmetric positive definite matrix. D can be eigen-

decomposed into three positive eigenvalues and corresponding eigenvectors, which
is useful to define some scalar indices containing biological meaning. See subsec-
tion 4.2.2.

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 = λ1v1vT
1 + λ2v2vT

2 + λ3v3vT
3 (4.26)
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(a) sampling in DTI (b) sampling in DSI (c) single shell sampling (d) sparse sampling

Figure 4.5: Several kinds of sampling in q-space. The black dot in q = (0, 0, 0)T is the baseline
image without diffusion gradient. Note that although we showed sampling in R3, normally
only samples in a half space is used, e.g. (0, 0, 1)q = qz ≥ 0. (a) sampling used in DTI, normally
less than 20 DWI images are used; (b) dense Cartesian sampling used in DSI. Note in practice
the Cartesian samples inside a given Ball are used; (c) single shell sampling used in sHARDI
methods, e.g. QBI, DOT etc; (d) sparse sampling used in mHARDI methods, e.g. DPI, SHORE,
SPFI. Note although normally multiple shell sampling is used, any sampling scheme can be
used in mHARDI methods.

The free diffusion in coherent fibers can be represented by Gaussian propagator pa-
rameterized by diffusion tensors. See Fig. 4.6 for the sketch map of tensor represen-
tation and free diffusion along fibers.

In general diffusion process, the EAP P(R) is not a Gaussian distribution, espe-
cially in the area with crossing fibers. In free diffusion, P(R) is Gaussian distribu-
tion parameterized by the diffusion tensor D, which is the Fourier transform of E(q)
in Eq. (4.25), i.e.

P(R) = F {exp(−4π2τqT Dq)} = N(R|2τD) =
1√

(4πτ)3|D|
exp

(
−RT D−1R

4τ

)
(4.27)

The covariance matrix of the EAP is Σ = 2τD. Please see Appendix 5.8 for the deriva-
tion.

4.2.1 Tensor Estimation

For given measured diffusion signal samples {E(bi)}
Ns
i=1, rewrite Eq. (4.25) as

− ln E(bi) = biuT
i Dui = BT

i φ(D)

where
φ(D) = (Dxx,Dxy,Dxz,Dyy,Dyz,Dzz)T

Bi = bi(ux
i ux

i , 2ux
i uy

i , 2ux
i uz

i , u
y
i uy

i , 2uy
i uz

i , u
z
i u

z
i )

T , ui = (ux
i , u

y
i , u

z
i )

T

Then the solution of least square estimation is

φ(D) = (BT B)−1BT Y (4.28)

where

B =


BT

1
...

BT
Ns

 =


b1ux

1ux
1 2b1ux

1uy
1 2b1ux

1uz
1 b1uy

1uy
1 2b1uy

1uz
1 b1uz

1uz
1

...
...

...
...

...
...

bNs u
x
Ns

ux
Ns

2bNs u
x
Ns

uy
Ns

2bNs u
x
Ns

uz
Ns

bNs u
y
Ns

uy
Ns

2bNs u
y
Ns

uz
Ns

bNs u
z
Ns

uz
Ns


Ns×6

, Y =


− ln E(b1)

...

− ln E(bNs )


Ns×1
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H2O Brownian motion Eigen decomposition Ellipsoidal visualization
along the fibers of the DT of the DT
[Poupon, 1999]

Figure 4.6: Diffusion tensor representation from [Descoteaux, 2008].

Diffusion tensor D can be estimated from measured samples of diffusion sig-
nal {E(bi)} through the above simple least square method or weighted least square
method [Basser et al., 1994], or more complex methods which consider positive def-
inite constraint or Rician noise [Tschumperlé and Deriche, 2003; Chefd’hotel et al.,
2004; Koay et al., 2006; Fillard et al., 2007].

Note that although many works estimate tensor D from single shell data, i.e. the
data with single b value, based on Eq. (4.25) the tensor estimation is actually inde-
pendent of the sampling in q-space. Once more than six DWI images and one baseline
image without diffusion are measured, the tensor D can be estimated from various
methods. However, the different sampling has different estimation quality. If single
shell data is used, the optimal b value was reported to range in (700, 1500)s/mm2 [Jones
et al., 1999; Alexander and Barker, 2005], and normally about twenty DWI images
are used in DTI in clinical study. Please see Fig. 4.5(a) for the sketch map of the
sampling scheme normally used in DTI.

4.2.2 Scalar Indices of Tensor

Some useful scalar indices can be obtained from tensor D. The most important two
indices are Fractional Anisotropy (FA) and Mean Diffusivity (MD) [Pierpaoli and
Basser, 1996] defined as

FA =

√
3||D − 1

3 Trace(D)I||
√

2||D||
=

√
3
2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(4.29)

MD =
1
3

Trace(D) =
λ1 + λ2 + λ3

3
(4.30)

where we assume the eigen-decomposition is D = λ1v1vT
1 +λ2v2vT

2 +λ3v3vT
3 , λ1 ≥ λ2 ≥ λ3,

and λ̄ =
λ1+λ2+λ3

3 . MD and FA have been used in many clinical applications [Mori, 2007;
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Figure 4.7: Tensor field and the scalar maps estimated from the monkey data with b =

1500s/mm2 described in Appendix B.

tensor field FA map MD map RGB map

GA map LA map PA map SA map

Johansen-Berg and Behrens, 2009]. For example, MD is known to be useful in stroke
study. [Westin et al., 2002] proposed the linear, planar and spherical anisotropies
which describe the elongated, oblate and spherical shape configurations of tensors.

LA =
λ1 − λ2

λ1 + λ2 + λ3
, PA =

2(λ2 − λ3)
λ1 + λ2 + λ3

, SA =
3λ3

λ1 + λ2 + λ3
(4.31)

These indices can be obtained from the eigenvalues of D. The eigenvectors of D are
also very useful. The first eigenvector corresponding to the largest eigenvalue can be
used as the estimated fiber direction. It can also be encoded in Red-Blue-Green (RGB)
map to describe the fiber directions. The tensor D itself can be visualized by a ellip-
soid, then the tensor field becomes ellipsoid field. Please refer Fig. 4.7 for the tensor
field and various scalar maps estimated from the monkey data with b = 1500s/mm2

described in Appendix B, where the Geodesic Anisotropy (GA) is introduced in the
Riemannian framework for tensors in subsection 4.4.1.

Summary of Advantages and Limitations:

4 DTI only needs more than 6 diffusion weighted images and one baseline image.
Normally around 20 DWIs are used in DTI model. See Fig. 4.5

4 DTI provides some useful scalar indices like FA and MD which have many ap-
plications in clinical studies.

4 The Gaussian propagator is adequate to model the areas with isotropic diffusion
or single dominant direction of diffusion.

8 Gaussian assumption is not appropriate in whole brain. DTI model can not
represent complex fiber configuration like fiber crossing.
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4.3 HIGH ANGULAR RESOLUTION DIFFUSION IMAGING
(HARDI)

The term High Angular Resolution Diffusion Imaging (HARDI) was first proposed
by Tuch [Tuch et al., 1999, 2002], where a finer angular resolution sampling scheme
than conventional DTI sampling scheme was considered. The original HARDI term
in [Tuch et al., 1999, 2002] means single shell sampling (only one b value). See
Fig. 4.5(c). However the mixture of tensor model in [Tuch et al., 1999, 2002] actually
can be also used in Cartesian sampling in Fig. 4.5(b) and sparse sampling (multiple
b values) in Fig. 4.5(d). With the development of MRI scanner, the acquisition time
is reduced, which makes multiple shell data more practical and maybe available in
clinical study in the near future. Some research works proposed to estimate Orien-
tation Distribution Functions or EAPs in multiple shell sampling [Liu et al., 2004;
Assemlal et al., 2009a; Özarslan et al., 2009; Descoteaux et al., 2010]. Thus in this
thesis, the term HARDI methods include all modeling methods beyond DTI. The
HARDI methods which only can be used in single shell data are called as sHARDI
methods. The HARDI methods which can be used in multiple shell data are called as
mHARDI methods.

4.3.1 Generalization of Diffusion Tensor Imaging

Since DTI has been successfully used in clinical study since 1990s, although it is
based on Gaussian propagator, a straightforward idea is to generalize the tensor
model in DTI to non-Gaussian case. There are several ways to perform this general-
ization, including mixture of tensor model [Tuch et al., 2002; Hosey et al., 2005; Assaf
et al., 2004], Generalized DTI [Liu et al., 2004], High Order Tensor (HOT) [Özarslan
and Mareci, 2003].

Mixture of Tensor Model

Mixture of tensor model is a natural generalization of tensor model, where the signal
is assumed to be a mixture of signals generated from tensors {Di}

K
i=1.

E(b) =

K∑
i

wi exp(−buT Diu) (4.32)

Based on some biological priors, the number of tensors is normally less than 3, typ-
ically K = 2. Unlike tensor model this model can not be solved by least square.
People normally use gradient descent method (typically the Levenberg-Marquardt
minimization) [Tuch et al., 2002] to find a local minimum of the cost function in

min
{wi,Di}

Ns∑
j=1

E j −

K∑
i

wi exp(−b juT
j Diu j)


2

(4.33)

which is unstable and the result is sensitive to the initial point. Note that for single
shell data, the isotropic part of Di, i.e. Trace(Di)

3 , and wi are undistinguishable [Kreher
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et al., 2005], because the above cost function for single shell data can be written as

min
{wi,Di}

Ns∑
j=1

E j −

K∑
i

wi exp
(
−b

Trace(Di)
3

)
exp

(
−buT

j

(
Di −

Trace(Di)
3

I
)

u j

)
2

Thus if we choose the new weights and tensors as {wi exp
(
−b Trace(Di)

3

)
} and {Di−

Trace(Di)
3 I},

then the cost function has the same minimal value as the cost function with the
weights and tensors {wi}, {Di}. Thus normally some constraints on tensors are con-
sidered in this model. For example, the two minimal eigenvalues λ2 and λ3 in Di can
be chosen as the same value. Tensors {Di} can be chosen as one isotropic tensor and
other anisotropic tensor with λ2 = λ3 = 0, which is the ball and stick model [Hosey
et al., 2005]. CHARMED model [Assaf et al., 2004] proposed to consider {Di} as a
hindered diffusion part which is close to Gaussian diffusion and a restricted diffusion
part which is non-Gaussian diffusion.

Mixture of tensor model is widely used to generate synthetic data for evaluation
due to many quantities have closed forms in this model. Please see Appendix 5.8 for
the closed forms, and see Appendix A for synthetic data generation using mixture of
tensor model.

Summary of Advantages and Limitations:

4 It is a natural extension of DTI model from Gaussian case to mixture of Gaus-
sian case. It can detect the crossing fibers, compared to DTI.

4 It provides closed forms for the EAP many useful features of the EAP, which
makes it widely used in synthetic data generation. See Appendix 5.8 and Ap-
pendix A.

8 The model selection for number of tensors is an open problem and seems to
be set arbitrarily, although some papers [Behrens et al., 2007] proposed some
possible ways.

8 The minimization process depends on the initial point and it takes a long time.

8 The radial decay of the mixture of tensor model is close to, but NOT, the Gaus-
sian function. Consider the number of tensors is K = 2 in Fig. 4.8, along a given
direction one component decays fast and the other one decays slowly. For large
b value, the component with slow decay dominates the signal.

Generalized DTI (GDTI)

In Generalized Diffusion Tensor Imaging (GDTI) model [Liu et al., 2003, 2004], the
signal is represented as

E(q) = exp

 L∑
l=2

ilD(l)
i1i2...il

b(l)
i1i2...il


= exp

 L∑
l=2

(2πi)l
(
∆ −

l − 1
l + 1

δ

)
D(l)

i1i2...il
qi1qi2 · · · qil

 (4.34)
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where
b(l)

i1i2...il
= γlGi1Gi2 · · ·Gilδ

l
(
∆ −

l − 1
l + 1

δ

)
is the generalized b value, and we use the Einstein summation convention, i.e.
D(l)

i1i2...il
qi1qi2 · · · qil means

∑3
i1=1

∑3
i2=1 · · ·

∑3
il=1 D(l)

i1i2...il
qi1qi2 · · · qil . When L = 2, GDTI be-

comes the DTI model in Eq. (4.25). The generalized diffusion coefficients D(l)
i1i2...il

can
be estimated by the least square fitting the samples of ln E(q). Since E(q), P(R) are
related by Fourier transform and P(R) is a PDF, E(q) can be seen as the characteristic
function of P(R) [Liu et al., 2004]. The characteristic function can be represented by
the cumulants Q(l)

i1i2...il
:

E(q) = exp

 L∑
l=0

(−2πi)l

l!
Q(l)

i1i2...il
qi1 · · · qil

 (4.35)

Thus we have the relation between the cumulants and diffusion coefficients as

Q(l)
i1i2...il

= (−1)ll!D(l)
i1i2...il

(
∆ −

l − 1
l + 1

δ

)
(4.36)

Then based on the property of probabilists’ Hermite polynomial Hen(x), we have the
closed form for the EAP as the famous Gram-Charlier A series [Liu et al., 2004]

P(R) = N(R|Q(2)
i1i2

)

1 +

L∑
l=3

Q(l)
i1i2...il

l!
He(l)

i1i2...il
(R)

 (4.37)

where

N(R|Q(l)
i1i2

) =
1

2πQ(2)
i1i2

exp

− RT R
2Q(2)

i1i2


is the Gaussian distribution with zero mean and covariance Q(2)

i1i2
, and He(l)

i1i2...il
(R) is

the l-order probabilists’ Hermite polynomial defined as

He(l)
i1i2...il

(R) = (−1)l exp
(
−

RT R
2

) (
∂

∂Ri1

∂

∂Ri2
· · ·

∂

∂Ril

)
exp

(
RT R

2

)
= Hen1(Rx)Hen2(Rx)Hen3(Rz) (4.38)

where n j =
∑l

k=1 δ(ik = j).

Summary of Advantages and Limitations:

4 GDTI is model-free. It uses a 3D basis to model the ADC such that it works for
multiple shell sampling in Fig. 4.5(d).

4 It provides closed form EAP estimation.

4 It estimates the cumulants of EAP, which can be a set of useful scalar indices of
EAP.

8 It models the ADC using the polynomial basis, which is not orthogonal. It’s well
known that the basis matrix has large condition number when using high order
polynomial basis to fit the function.
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8 Although theoretically the ADC can be modeled as infinite terms, in prac-
tice a truncated order L is needed in Eq. (4.34). However, it was proved
in [Marcinkiewicz, 1939] that the Gaussian distribution is the only distribu-
tion which has a finite number of non-zero cumulants. Thus a truncation order
L only results in a reasonable PDF if the EAP is Gaussian and L = 2 in this case.
For other cases, the estimated EAP and cumulants are theoretically problem-
atic. Moreover, estimation of the PDF from its cumulants is known to be very
problematic [Blinnikov and Moessner, 1998; Ghosh et al., 2010].

High Order Tensor Model, ADC Based Model

High Order Tensor (HOT) model [Özarslan and Mareci, 2003; Özarslan et al., 2005]
assumes the diffusion signal is represented as

E(q) = exp(−4π2τq2D(u)), (4.39)

Sometimes HOT is also called as GDTI in papers, however we call it HOT to distin-
guish HOT in [Özarslan and Mareci, 2003; Özarslan et al., 2005] and GDTI in [Liu
et al., 2003, 2004]. In HOT model, the ADC is independent of radial part q, and is
represented as the homogeneous polynomial of u with order L, i.e.

D(u) =

3∑
i1=1

3∑
i2=1

· · ·

3∑
iL=1

Di1i2...iLui1ui2 · · · uiL =
∑

n1+n2+n3=L

Dn1n2n3un1
1 un2

2 un3
3 (4.40)

where u = (u1, u2, u3)T ∈ S2, L is even because D(u) = −D(u) when L is odd and negative
diffusion coefficients are non-physical. {un1

1 un2
2 un3

3 }n1+n2+n3=L is the homogeneous poly-
nomial basis restricted in S2, which is also called the High Order Tensor (HOT)
basis in dMRI domain. See Section 2.4 for the homogeneous polynomial basis. When
L = 2, HOT model is just the DTI model in Eq. (4.25), which means HOT is a kind of
generalization of DTI model.

Note in HOT, the diffusion signal decays as a mono-exponential function, which
is called as mono-exponential decay assumption. With this assumption, if we
know E(q0u) with radius q0 > 0 in one direction, we know all signal E(qu) in the same
direction, i.e.

E(qu) = E(q0u)q2/q2
0 (4.41)

Compared to GDTI which is model-free method, HOT is model-based. Mono-
exponential decay assumption is not satisfied in real decay of signal [Kuchel et al.,
1997], but can be an good approximation of the signal, especially when the b value
is around 1500s/mm2 [Özarslan et al., 2006]. This assumption will be used later to
derive the analytical formulae in Diffusion Orientation Transform (DOT) [Özarslan
et al., 2006] and exact Q-Ball Imaging (QBI) [Canales-Rodrıguez et al., 2009; Aganj
et al., 2010b; Tristán-Vega et al., 2010].

Historically people used both High Order Tensor basis [Özarslan and Mareci,
2003; Özarslan et al., 2005] and Spherical Harmonic (SH) basis [Frank, 2002; De-
scoteaux et al., 2006] to estimate ADC from measured signal. See Section 2.5.2 for
the SH basis. The following theorem shows the equivalence of these two bases, whose
proof mainly detailed in Chapter 2.
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Theorem 4.1. The following three bases form the same function space in S2.

� HOT basis, i.e. homogeneous polynomial basis restricted in S2,
{
un1

1 un2
2 un3

3

}
n1+n2+n3=L

with even order L.

� Polynomial basis restricted in S2 with the order no more than L,{
un1

1 un2
2 un3

3

}
0≤l=n1+n2+n3≤L

with even l and L.

� SH basis with even order no more than L, i.e.
{
Ym

l (u)
}
0≤l≤L

, where Ym
l is the real

symmetric spherical harmonic basis defined in Eq. (2.28).

Proof. This proof is based on Proposition 2.1, Corollary 2.1 and Theorem 2.5. With
even order L, Proposition 2.1 demonstrates the polynomial basis restricted in S2 with
the order no more than L forms the same space with the homogeneous polynomial
basis, i.e. HOT basis, with order L. With even order L, Corollary 2.1 and Theorem 2.5
demonstrate HOT basis with even L and SH basis with even order no more than L
form the same space. �

HOT model uses single shell data in Fig. 4.5(c), which is a kind of sHARDI method.
Normally the coefficients of HOT basis or SH basis are estimated via simple least
square method. Since ADC D(u) is non-negative definite, some methods estimate
these coefficients by considering the non-negativity constraint [Barmpoutis et al.,
2007, 2009; Ghosh et al., 2008a, 2009; Qi et al., 2010]. The estimated coefficients of
ADC can be used in classification of the isotropic diffusion and anisotropic diffusion in
single direction and multiple directions [Frank, 2002; Chen et al., 2004, 2005]. Some
scalar indices like trace and variance can be defined by the ADC profile D(u) [Özarslan
et al., 2005].

Based on Theorem 4.1, the SH basis with L ≤ 2 forms the same space as the HOT
basis with L = 2, which is the function space represented by quadratic form uT Du.
This quadratic form has only one maximum which can not represent more than one
fiber directions, which is the main limitation in DTI model. So in HARDI literatures,
the maximal order of SH basis or the order of HOT basis must be higher than 4.
Normally 4 or 6 is used in practice.

HOT model [Özarslan and Mareci, 2003; Özarslan et al., 2005] represents ADC
using HOT basis. However ADC modeling like HOT method has its intrinsic and fatal
limitation, i.e. both the maxima and the minima of ADC profile D(u) are inconsistent
with the fiber directions when L > 2 [von dem Hagen and Henkelman, 2002]. Only
when L = 2, HOT model reduces to DTI model, then the minima of D(u) = uT Du
are the maxima of EAP profile P(R0r) for any given R0 which are consistent with
fiber directions. For HOT model with order than L > 2, the maxima and minima
of D(u) correspond with fiber directions with a more complex way, which is still not
known in dMRI if we do not perform Fourier transform to obtain EAP numerically or
analytically [Özarslan et al., 2006], or perform spherical deconvolution by assuming
a fiber model [Weldeselassie et al., 2010; Jiao et al., 2011]. Spherical Deconvolution
method will be discussed in subsection 4.3.6. Fig. 4.8 demonstrates the ADC D(u) for
the synthetic data generated from mixture of tensor model with crossing angle of 90◦.
It shows that
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ADC b = 1500s/mm2 ADC b = 3000s/mm2 ODF by Tuch Φt(r) ODF by Wedeen Φw(r)

EAP profile with R = 10µm R = 15µm R = 20µm

Figure 4.8: Fiber directions and ADC profiles with different b values, two kinds of ODFs,
EAP profiles with different radius R. The data was generated from mixture of tensor model
with two tensors which have the eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s and crossing angle of
90◦. We set τ = 1

4π2 such that b = q2. The long sticks with blue color along x-axis and y-axis are
the fiber directions, i.e. the eigenvectors with the largest eigenvalues. The short sticks with
yellow color are the detected maxima of the spherical functions. Note there is a coincidence
that the minima of ADC agree with the fiber directions in the case of experiment. However,
in general case the minima and maxima of ADC have a complex relation with fiber directions.

� the maxima of ADC do not agree with fiber directions.

� even in this simple mixture of tensor model, the ADC D is actually dependent
on b value, i.e. the mono-exponential decay assumption is violated. For the data
with different b values, the ADC is determined by D = − 1

b ln E(q), which means
D is dependent on b if E(q) =

∑K
i=1 exp(−buT Diu).

� there is a coincidence that the minima of ADC agree with the fiber directions in
this specific case of mixture of tensor model with 90◦. However, in general case
the minima and maxima of ADC have a complex relation with fiber directions.

Summary of Advantages and Limitations:

4 ADC modeling methods like HOT [Özarslan and Mareci, 2003; Özarslan et al.,
2005] generalizes the DTI model and avoids the Gaussian propagator assump-
tion in DTI.

4 The estimated ADC can be used to define some scalar indices [Frank, 2002;
Chen et al., 2004, 2005; Özarslan et al., 2005] for classification of different dif-
fusion in the surrounding tissue in voxels.
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4 HOT model normally needs single shell sampling with around 60 DWI samples.
See Fig. 4.5(c).

8 For the data from different b values, HOT model obtains different ADC, which
means HOT can not be used in multiple shell sampling.

8 The maxima and minima of ADC do not agree with fiber directions when HOT
basis or SH basis is used with order L ≥ 4. When L = 2 the minima of ADC can
be used as the fiber directions in DTI model.

8 Compared to GDTI which is model-free, HOT assumes mono-exponential decay
of E(q) which is not satisfied in real diffusion. Even in synthetic data from
mixture of tensor model, the mono-exponential decay is violated.

4.3.2 Diffusion Spectrum Imaging (DSI)

Because EAP P(R) is related with measured diffusion signal E(q) in Fourier trans-
form in Eq. (4.24) when narrow pulse assumption δ � ∆ is satisfied, a straightfor-
ward idea is to estimate P(R) using fast Fourier transform from exhaustive signal
samples [Callaghan, 1991; Tuch, 2002; Wedeen et al., 2000, 2005]. This technique is
called as Diffusion Spectrum Imaging (DSI).

In practice, only limited number of samples are obtained and δ � ∆ is not always
satisfied. [Wedeen et al., 2005] used 515 DWI images in a Cartesian sampling lattice
in q-space and the signal in q-space was premultiplied by a Hanning window to ob-
tain smooth attenuation of the signal at high q values. See Fig. 4.5(b) for the sketch
map of the Cartesian sampling. Please note that in practice the Cartesian samples
inside a given ball, not a given cube, are used. Then the samples inside the cube and
outside the ball can be obtained by extrapolation. Thus interpolation and extrapola-
tion are normally performed on given signal samples {E(qi)} before numerical Fourier
transform. In [Wedeen et al., 2005], δ is close to ∆ which violates the narrow pulse as-
sumption. But the results in [Wedeen et al., 2005] are still exciting and show clearly
some crossing fibers, which means that even though the narrow pulse assumption is
violated, the Fourier transform can still obtain meaningful EAPs.

[Wedeen et al., 2000, 2005] visualized the EAP profile, or called iso-surface of
EAP, which is the EAP with given radius R0, i.e.

P(R0r) = P(Rr)|R=R0 (4.42)

The maxima of EAP profile were used to describe fiber directions later in many
HARDI works [Özarslan et al., 2006, 2009; Assemlal et al., 2009a; Descoteaux et al.,
2010]. See Fig. 4.8 for the EAP profile with different radius R. The larger the ra-
dius R, the sharper the EAP profile is. However, EAP profile with large R has more
estimation error. Thus normally R = 15µm is used in EAP profile to detect the fiber
directions [Özarslan et al., 2006; Descoteaux et al., 2010].

[Wedeen et al., 2000, 2005] also proposed another important feature of EAP, i.e.
the Orientation Distribution Function (ODF), defined as

Φw(r) def
=

∫ ∞

0
P(R)R2dR (4.43)
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Figure 4.9: EAP in 3D R-space, and its two features, i.e. EAP profile (or called iso-surface of
EAP) and ODF. The figure is from [Hagmann et al., 2006].

It is called as ODF by Wedeen, denoted by Φw(r). Φw(r) is the marginal distribution
of EAP P(R), so the integration of Φw(r) over S2 is naturally 1, which means it does
not need artificial normalization factor Z. [Wedeen et al., 2000, 2005] proposed to first
estimate EAP via numerical Fourier transform, then estimate the ODF in Eq. (4.43)
by numerical integration. Historically there are several kinds of ODFs which can be
seen in the following of this section. Like the EAP profile, the maxima of ODFs are
also normally assumed to be the directions of underlying fibers. Please see Fig. 4.9
and Fig. 4.8 for EAP in 3D space and its two features, i.e. EAP profile and ODF.

Summary of Advantages and Limitations:

4 Compared to DTI, DSI is a model-free method which avoids Gaussian assump-
tion.

8 DSI needs a dense Cartesian sampling in q-space with many DWI images and
a very large range of b value which takes a long time and makes it impractical
for normal scanner. For example, [Wedeen et al., 2005] used more than 500 DWI
images and b value up to 17000s/mm2.

8 DSI uses numerical Fourier transform and an artificial interpolation and ex-
trapolation step, which makes the final results have much numerical error.
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4.3.3 Hybrid Diffusion Imaging (HYDI)

Hybrid Diffusion Imaging (HYDI) proposes to measure data in q-space with multiple
shell sampling [Wu and Alexander, 2007; Wu et al., 2008]. See Fig. 4.5(d) for the
sketch map of such sparse sampling. The HYDI data in the shell with low b values
can be modeled by DTI. The HYDI data in the shell with high b values can be modeled
by Q-Ball Imaging and other sHARDI methods. The whole HYDI data set can be used
in DSI after re-griding data from multiple shell to Cartesian lattice.

HYDI in [Wu and Alexander, 2007; Wu et al., 2008] proposed two useful scalar
features of EAP, i.e. the Return-To-Origin probability (RTO) and the Mean Squared
Displacement (MSD). RTO denoted by Po is the EAP value when R = 0, i.e.

Po = P(R)|R=0 = P(0) =

∫
R3

E(q)dq (4.44)

RTO is the probability of water molecules that minimally diffuse within the diffu-
sion time ∆. RTO map can be used in tissue segmentation and some other applica-
tions [Wu and Alexander, 2007]. MSD is the variance of the EAP, i.e.

MS D =

∫
R3

P(R)RT RdR (4.45)

[Wu and Alexander, 2007; Wu et al., 2008] estimate these two scalar indices using
numerical integration. [Wu et al., 2008] also demonstrated that the ODF by Tuch
Φt(r) in Eq. (4.47) is proportional to the integration of E(q) in the orthogonal plane

Πr = {qu : uT r = 0} (4.46)

It is an important relation between the ODF by Tuch in R-space and the signal E(q)
in q-space, and it is used in exact QBI to estimate ODFs analytically in [Canales-
Rodrıguez et al., 2009; Aganj et al., 2010b; Tristán-Vega et al., 2009; Tristán-Vega
et al., 2010]. See the following subsection 4.3.4 for more details on QBI and ODFs.

Summary of Advantages and Limitations:

4 The first contribution of HYDI is the idea of multiple shell sampling in q-space.

4 HYDI proposed some useful scalar indices.

4 HYDI proposed the plane integration of E(q) to estimate the ODF by Tuch. How-
ever a numerical way was used to estimate the plane integration in HYDI.

8 HYDI proposed to use QBI for the data with high b values. However, for the
data in different shells QBI obtains different results, which makes the results
inconsistent.

8 HYDI tried to use different models for the data with different b values, i.e. DTI
for data with low b values, QBI for data with high b values and DSI for whole
data set. However, different models/methods may obtain different results which
are hard to be explained.
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8 DSI is used in the whole data set after a re-griding of data from multiple shell
sampling to Cartesian sampling, which brings much numerical error.

8 The estimation of scalar indices also suffers from the numerical error introduced
by ad hoc interpolation.

4.3.4 Q-Ball Imaging (QBI)

Q-Ball Imaging (QBI) is the most widely used HARDI method. DSI needs a dense
Cartesian sampling with a large range of b value, which makes it impractical [Wedeen
et al., 2000, 2005]. QBI was proposed to estimate the several kinds of ODFs, not
EAP, from single shell sampling demonstrated in Fig. 4.5(c), rather than Cartesian
sampling inside a given ball used in DSI in 4.5(b).

Original Q-Ball Imaging

QBI was first proposed by Dr. Tuch in [Tuch, 2002, 2004] in a numerical way and then
was improved by an analytical way based on Spherical Harmonic basis in [Anderson,
2005; Hess et al., 2006; Descoteaux et al., 2007].

Instead of estimation of EAP, Dr. Tuch proposed to estimate a kind of ODF defined
as

Φt(r) def
=

1
Z

∫ ∞

0
P(Rr)dR (4.47)

where Z is the normalization factor which makes
∫
S2 Φt(r)dr = 1. This ODF is called

as ODF by Tuch and denoted by Φt(r). Note Φt(r) is different from the ODF Φw(r)
defined in Eq. (4.43). Φw(r) is the marginal PDF of EAP which does not need artificial
normalization factor, however, Φt(r) needs the normalization factor Z to make it as a
PDF.

In DSI, Φw(r) is estimated from pre-estimated EAP via a numerical integration.
Dr. Tuch proposed to estimate Φt(r) directly from samples of E(q) in single shell data
based on Funk-Radon Transform (FRT). See Fig. 4.5(c) for the sketch map of single
shell sampling. For single shell data with b = 4π2τq2

0, the FRT of E(q) [Tuch, 2004] in
direction r is the circle integration in the orthogonal plane, i.e.

FRT{E(q0u)}(r) =

∫
Πr

E(qu)δ(q − q0)qdqdu = q0

∫
u∈S2

E(q0u)δ(uT r)du (4.48)

where Πr is defined in Eq. (4.46).

FRT{E(q0u)}(r′) = q0

∫
u∈S2

E(q0u)δ(uT r′)du

= q0

∫
u∈S2

(∫
R3

P(R) exp(−2iπRq0uT r)dR
)
δ(uT r′)du

= q0

∫
R3

P(R)
(∫
S2

exp(−2iπRq0uT r)δ(uT r′)du
)

︸                                      ︷︷                                      ︸
K(r,r′)

dR (4.49)
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Without loss of generality, we assume r′ = (0, 0, 1)T is the z-axis, and u =

(sin θ cos φ, sin θ sin φ, cos θ)T , R = R(sin θr cos φr, sin θr sin φr, cos θr)T = (Rx,Ry,Rz)T in Carte-
sian coordinate. Then the kernel K(r, r′) can be solved as

K(r, r′) =

∫ π

0

∫ 2π

0
δ(cos θ) exp

(
−2iπq0

(
Rx sin θ cos φ + Ry sin θ sin φ + Rz cos θ

))
sin θdφdθ

=

∫ 1

−1
δ(t) exp (−2πiq0Rzt)

∫ 2π

0
exp

(
−2πiq0

(
Rx

√
1 − t2 cos φ + Ry

√
1 − t2 sin φ

))
dφdt

(4.50)

=

∫ 2π

0
exp

(
−2πiq0(Rx cos φ + Ry sin φ)

)
dφ (4.51)

=

∫ 2π

0
exp(2πiq0R sin θr sin φ)dφ (4.52)

= 2πJ0(2πq0R sin θr) = 2πJ0
(
2πq0R

√
1 − (rT r′)2

)
(4.53)

After setting t = cos θ, we have Eq. (4.50). Considering the property of delta func-
tion, i.e.

∫ 1
−1 δ(t) f (t)dt = f (0), we have Eq. (4.51). Using the summation property of

cosine function, we obtain Eq. (4.52). Considering the Bessel integral in Eq. (2.43),
we have the final kernel function in Eq. (4.53), where J0(·) is the Bessel function of
the first kind with order 0. See Section 2.5.3 for more information on Bessel function.
Put Eq. (4.53) into Eq. (4.49) and use the cylinder coordinate R = (rR, φR, zR)T where
z-axis is along r′, then the FRT of E(q0u) is

FRT{E(q0u)}(r′) = 2πq0

∫
R3

P(R)J0
(
2πq0R

√
1 − (rT r′)2

)
dR

= 2πq0

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
P(rR, φR, zR)J0(2πq0rR)rRdrRdθRdzR (4.54)

However based on the definition of the ODF in Eq. (4.47), the ODF can be written as

Φt(r′) =
1

2Z

∫ ∞

−∞

P(rR, φR, zR)dzR

=
1

2Z

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
P(rR, φR, zR)δ(rR)δ(φR)rRdrRdθRdzR (4.55)

Comparing Eq. (4.55) and Eq. (4.54), the estimation of Φt(r) through FRT is inspirit
to approximate the delta function using Bessel function a

2 J0(ax). As q0 increases,
2πq0J0(2πq0rR) will be more close to delta function which will increase the accuracy
of this approximation, because the lobes of J0 become more concentrated around
origin point. However, the signal has smaller values for larger q0 which results in
low Signal-to-Noise Ratio (SNR). Thus there is a trade-off for q0 between approxima-
tion accuracy and SNR. Normally QBI works suggest the data with b values around
3000s/mm2 [Tuch, 2004; Descoteaux et al., 2007].

Dr. Tuch proposed to estimate the circle integration in FRT using numerical in-
tegration [Tuch, 2004]. The points in the circle in the orthogonal plane need to be
interpolated by sampling points in its neighborhood through spherical radial basis
function. Then the summation of these points in the circle was used to approximate
the circle integration. The numerical QBI was later replaced by analytical QBI based
on the representation of E(q) using SH basis. There were several groups which inde-
pendently proposed the same analytical QBI using SHs. [Anderson, 2005] obtained
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the analytical solution by considering the rotation property of SHs. [Hess et al., 2006]
used addition theorem and rotation property of SHs, and considered Tikhonov reg-
ularization in least square estimation. [Descoteaux et al., 2007] applied 3D Funk-
Hecke theorem to find the analytical solution of FRT. [Descoteaux et al., 2007] also
proposed a simple and useful Laplace-Beltrami regularization scheme in least square
estimation, which was shown to outperform the simple Tikhonov regularization and
later became very popular for general least square estimation of spherical functions
in HARDI domain. See the addition theorem and Funk-Hecke theorem, and their
relation with plane wave expansion theorem in Section 2.5.2 and Appendix 5.7.

Analytical QBI represents the signal E(q) as SH basis, i.e.

E(q0u) =

L∑
l=0

l∑
m=−l

clmYm
l (u) (4.56)

where Ym
l (u) is the symmetric real spherical harmonic with order l and degree m. See

Section 2.5.2 for more information on SHs. The coefficients {clm} are normally esti-
mated from signal samples by minimizing a least square cost function with Laplace-
Beltrami regularization in Eq. (4.59) [Descoteaux et al., 2007].

‖BMc − E‖2 + cT Λc (4.57)

where c = (c00, · · · , cLL)T is the coefficient vector with (L + 1)(L + 2)/2 elements, E =

(E1, · · · , ENs)
T is the signal vector with Ns samples, BM is the Ns × (L + 1)(L + 2)/2 basis

matrix generated by SHs, and Λ is the diagonal matrix with elements Λlm = λl2(l+1)2.
cT Λc is the Laplace-Beltrami regularization term, because based on Eq. (2.32), we
have

λ‖∆bE(q)‖2 = λ

∫
S2

L∑
l=0

l∑
m=−l

(
clm∆bYm

l (u)
) L∑

l′=0

l′∑
m′=−l′

(
cl′m′∆bYm′

l′ (u)
)

du

= λ

L∑
l=0

l∑
m=−l

l2(l + 1)2c2
lm = cT Λc (4.58)

where ∆b is the Laplace-Beltrami operator defined in Eq. (2.19). The least square
problem has the closed form solution as

c = (BT
M BM + Λ)−1BT

ME (4.59)

Based on Funk-Hecke theorem 2.7 or Corollary 2.4, the estimated ODF from FRT of
E(q) can be analytically obtained from the estimated {clm} in Eq. (4.60).

Φ̃t(r) =
1
Z

FRT{E(q0u)}(r) =
1
Z

L∑
l=0

l∑
m=−l

2πPl(0)clmYm
l (u) (4.60)

where Pl(0) is the Legendre polynomial of order l evaluated at 0.

Note in practice the ODF by Tuch Φt(r) in Eq. (4.47) is much smooth. The peaks of
the ODF are only a little higher than the baseline values. Dr. Tuch proposed a min-
max normalization method for visualization of Φt(r) to enhance the peaks of ODFs.
Min-max normalization is a linear scaling to transform the ODF values into [0, 1], and
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it has been a commonly used way to visualize Φt(r) in literature. However, the min-
max normalization also enhances the peaks of the ODFs in the area with isotropic
diffusion. Throughout this thesis in order to better compare ODFs and EAPs, we
visualize Φt(r) using its real values without min-max normalization, except for the
visualization of the phantom data in Appendix B which is known to be more isotropic
than clinical data.

Dr. Tuch also proposed a useful scalar index, named Generalized Fractional
Anisotropy (FA), to describe the anisotropy of the ODFs, which can be seen as a gen-
eralization of previous FA in DTI model.

GFA{Φt(r)} def
=

√√
N

∑N
i=1(Φt(ri) − 〈Φt(r)〉)2

(n − 1)
∑N

i=1 Φt(ri)2
(4.61)

where 〈Φt(r)〉 is the mean of Φt(r). If the ODF is represented by SH basis with coeffi-
cients {clm}, the GFA can be represented by

GFA{Φt(r)} =
‖Φt(r) − 〈Φt(r)〉‖

‖Φt(r)‖
=

√√
1 −

c2
00∑L

l=0
∑l

m=−l c2
lm

(4.62)

because of the orthogonality of SHs.

Summary of Advantages and Limitations:

4 Analytical QBI is now the most widely used HARDI method, because it only
needs single shell data to estimate the ODF whose maxima demonstrate the
fiber directions, and it is very easy to be implemented.

4 Compared to ADC based modeling like HOT method, the maxima of ODFs agree
with the fiber directions.

4 GFA was proposed in QBI, and it is now a standard index to describe the
anisotropy of spherical function in HARDI.

8 FRT has the intrinsic blurring effect due to the Bessel function as we have
discussed. Thus the estimated ODF from FRT has intrinsic modeling error.

8 The estimated ODF by Tuch from FRT is much smooth so that it needs artificial
sharping techniques to obtain better results. That is because of two reasons.

(a) The ODF by Tuch Φt(r) defined in Eq. (4.47) is not a good choice, because
the ODF by Wedeen Φw(r) defined in Eq. (4.43) is theoretically more sharper
than Φt(r).

(b) The estimation via FRT has intrinsic blurring effect which obtains smooth
ODFs.

The sharping techniques include the min-max normalization for visualization,
and the spherical deconvolution technique to estimate the so-called fiber Orien-
tation Distribution Function (fODF). See Section 4.3.6 for spherical deconvolu-
tion and the difference between fODF and diffusion ODF.
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8 Many papers in HARDI refer QBI as a model-free method because it represents
spherical signal using SHs which forms an orthonormal basis in S2. However,
QBI actually assumes the radial part of E(q) as a delta function which is unreal-
istic. The burring effect from FRT is the direct consequence from this assump-
tion of radial decay. So we consider QBI as a model-based method with strong
assumption of radial decay of signal.

8 QBI can not be used in multiple shell data, because the data from different b
values obtain different ODFs from FRT. Note [Khachaturian et al., 2007] pro-
posed a method to generalize QBI from single shell data to the data sampled in
two shells with both low b value and high b value. Two coefficient sets are esti-
mated from the two single shell data set respectively. Then in each dimension
of the coefficient vector an ad hoc process is used to choose the maximal coeffi-
cient. The fused coefficient vector is set as the final result. The ad hoc method
to combine data from different b values seems inconvincible.

Exact Q-Ball Imaging

The ODF by Tuch is approximated by circle integration in original QBI, which has
intrinsic limitations as we have discussed above. Exact QBI was proposed by several
groups independently [Wu et al., 2008; Canales-Rodrıguez et al., 2009; Aganj et al.,
2010b; Tristán-Vega et al., 2009; Tristán-Vega et al., 2010] to estimate ODFs through
a plane integration, not a circle integration.

Based on the famous projection-slice theorem in Fourier transform4, the pro-
jection of P(Rr) along direction r, i.e. the radial integration, equals to the integration
of E(q) in the orthogonal plane Πr. This can be seen easily from the following propo-
sition.

Proposition 4.1. Let f (q) be a symmetric function defined in R3 and F3D{ f (q)}(R) =

f̂ (R), then ∫ ∞

0
f̂ (Rr)dR =

1
2

∫
Πr

f (q)dq =
1
2

∫
R3

f (q)δ(qT r)dq (4.63)

where Πr is the plane orthogonal to r defined in Eq. (4.46).

Proof. Since f (q) = f (−q), we have f̂ (R) = f̂ (−R) based on the definition of Fourier
transform. Then∫ ∞

0
f̂ (Rr)dR =

1
2

∫ ∞

−∞

f̂ (Rr)dR =
1
2

∫ ∞

−∞

(∫
R3

f (q) exp(−2πiqT R)dq
)

dR

=
1
2

∫
R3

f (q)
(∫ ∞

−∞

exp(−2πiRqT r)dR
)

dq

=
1
2

∫
R3

f (q)δ(qT r)dq =
1
2

∫
Πr

f (q)dq

�

4http://en.wikipedia.org/wiki/Projection-slice theorem
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Thus we have the following corollary which is a straightforward result of the
above proposition and has been used to estimate both ODF by Tuch and ODF by
Wedeen [Wu et al., 2008; Canales-Rodrıguez et al., 2009; Aganj et al., 2010b; Tristán-
Vega et al., 2009; Tristán-Vega et al., 2010; Cheng et al., 2010a].

Corollary 4.1. The ODF by Tuch Φt(r) and ODF by Wedeen Φw(r) can be written as
the plane integration of in the plane Πr which is orthogonal to r, i.e.

Φt(r) =
1
Z

∫
Πr

E(q)dq, Φw(r) =
1

4π
−

1
8π2

∫
Πr

1
q

∆bE(q)dq (4.64)

Proof. Considering Proposition 4.1, F {E(q)}(R) = P(R) and F {∆E(q)} = −4π2R2P(R),
where ∆ is the Laplace operator, we have

Φt(r) =
1
Z

∫
Πr

E(q)dq, Φw(r) = −
1

8π2

∫
Πr

∆E(q)dq (4.65)

The Laplace operator in 3D can be separated as

∆ =
1
q2

∂

∂q

(
q2 ∂

∂q

)
+

1
q2 ∆b, ∆b =

1
sin2 θ

∂2

∂φ2 +
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
where ∆b is the Laplace-Beltrami operator in S2. Then

Φw(r) = −
1

8π2

∫
Πr

1
q2

∂

∂q

(
q2 ∂E(q)

∂q

)
dq︸                                 ︷︷                                 ︸

I

−
1

8π2

∫
Πr

1
q

∆bE(q)dq (4.66)

I = −
1

8π2

∫ 2π

0

∫ ∞

0

1
q
∂

∂q

(
q2 ∂E(q)

∂q

)
dqdφ = −

1
8π2

∫ 2π

0

(
E(qu) + q

∂E(qu)
∂q

) ∣∣∣∣∣∣∞
0

dφ =
1

4π

Note in above formula, we use the prior of E(q) that for given direction u, E(0u) = 1,
limq→∞ E(qu) = 0 and the assumption of limq→∞ q∂E(qu)

∂q = 0. �

Note the assumption of limq→∞ q∂E(qu)
∂q = 0 used in the above corollary is satisfied

in DTI model, mixture of tensor model and SPFI and SHORE discussed later.

[Wu et al., 2008] noticed the projection-slice theorem and used it to estimate Φt(r)
in a numerical way based on interpolation of E(q) from multiple shell data. [Canales-
Rodrıguez et al., 2009] estimated Φt(r) based on the plane integration corollary and
mono-exponential decay assumption which has been introduced in subsection 4.3.1.
Under the mono-exponential decay assumption in Eq. (4.39), the Φt(r) in Eq. (4.64)
can be rewritten as

Φt(r) =
1
Z

∫
S2

(∫ ∞

0
exp(−4π2τq2D(u))qdq

)
δ(uT r)du

=
1

8π2τZ

∫
S2

1
D(u)

δ(uT r)du = −
q0

2Z

∫
S2

1
ln E(q0u)

δ(uT r)du (4.67)

Thus Φt(r) can be estimated from FRT of a function − 1
ln E(q0u) of single shell data E(q0u)

with q = q0.
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Φw(r) has been proposed in DSI by Wedeen [Wedeen et al., 2005], where it was es-
timated from numerical radial integration of a pre-estimated EAP from DSI. [Aganj
et al., 2009, 2010b] proved the above corollary for the estimation of Φw(r). [Aganj
et al., 2009, 2010b] also proved that if E(q) follows the mon-exponential decay as-
sumption, we have

Φw(r) =
1

4π
+

1
16π2

∫
S2

∆b ln (− ln E(q0u)) δ(uT r)du (4.68)

By representing ln (− ln E(q0u)) =
∑L

l=0
∑l

m=−l clmYm
l (u), and considering ∆bYm

l (u) = −l(l +

1)Ym
l (u) in Eq. (2.32) and Corollary 2.4, we have

Φw(r) =
1

4π
−

1
8π

l(l + 1)Pl(0)clmYm
l (u)

The coefficients {clm} can be estimated through a least square fitting from the samples
of ln (− ln E(q0u)). Note based on the above formula the first coefficient is c00 = 1√

4π
,

then the integration of the estimated ODF is
∫
S2 c00Y0

0 (u)du = 1. Thus the estimated
Φw(r) is naturally normalized, which agrees with the definition.

Dr. Tristán-Vega also proposed two ways to estimate Φw(r) from single shell data
E(q0u) in [Tristán-Vega et al., 2009; Tristán-Vega et al., 2010].

� [Tristán-Vega et al., 2009] noticed that two ODFs can be considered as a plane
integration of E(q) as shown in Eq. (4.65). Since QBI by Tuch has been success-
fully used in HARDI domain to approximate Φt(r) using FRT of E(q), [Tristán-
Vega et al., 2009] estimated Φw(r) using the FRT of − 1

8π2 ∆E(q) with a specific
assumption to solve the first integration term I in Eq. (4.66). This estimator
has its intrinsic limitation from FRT because it assumes radial decay is a delta
function such that the plane integration can be replaced by circle integration.
The estimated ODF needs an artificial normalization, although Φw(r) is natu-
rally normalized by definition. Our experiments demonstrated that the estima-
tor in [Tristán-Vega et al., 2009] works well when q is small as shown in the
paper. However, it obtains noisy results with many negative values when q is
large, e.g. b = 3000s/mm2. This modeling error is actually introduced by assump-
tion of delta function in radial decay, which will be revisited and explained in
subsection 5.2.2.

� [Tristán-Vega et al., 2010] claimed that it proposed an estimator of Φw(r) with
mono-exponential decay assumption only in a local sense around the single shell
with q = q0, not the whole plane Φr as proposed in [Aganj et al., 2010b]. It re-
placed the plane integration of 1

q∆bE(q) in Eq. (4.1) as an integration in the
disk with the given radius q0, while it keeps the first term 1

4π . Based on the
so called Stokes’ theorem, the disk integration is solved by circle integration
after estimation of a vector field in the circle. However, based on our analy-
sis in Appendix 4.7, the disk integration is actually solved based on the mono-
exponential decay assumption inside the disk, not just around the boundary of
the disk. Moreover the Stokes’ theorem in [Tristán-Vega et al., 2010] is equiv-
alent to separation disk integration into the radial integration and circular in-
tegration used in other papers [Canales-Rodrıguez et al., 2009; Aganj et al.,
2010b; Cheng et al., 2010a].
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Besides the two ODFs Φt(r) and Φw(r), [Canales-Rodrıguez et al., 2009] proposed
a general form of ODF as

Φk(r) def
=

1
Z

∫ ∞

0
P(R)RkdR (4.69)

where Z is the normalization factor which makes
∫
S2 Φk(r)dr = 1. Then Φ0(r) is Φt(r)

when k = 0, and Φ2(r) is Φw(r) when k = 2. Like Φ0(r), Φk needs a normalization
factor Z to make it a PDF. Only when k = 2, Φk(r) = Φw(r) is naturally a PDF without
artificial normalization factor, i.e. Z = 1.

Note the EAP profile P(Rr) normally has better angular resolution when R is
larger, which can be seen from the synthetic data experiment in Fig. 4.8. Theoret-
ically, k = 1 means the same weight is considered for EAP profile P(Rr) with large R
and small R. While k > 1 gives more weight for P(Rr) with large R, which means the
Φk(r) is sharper when k is larger. However, EAP profile P(Rr) with large R value has
more estimation error. Thus normally only the ODFs with k = 0 and k = 2 are con-
sidered, and the ODF for other k are not used in literature. The experiments showed
that although Φw(r) is sharper than Φt(r) with better angular resolution, Φt(r) is more
robust than Φw(r) [Aganj et al., 2010b; Tristán-Vega et al., 2010; Cheng et al., 2010a].

The ODFs Φt in Eq. (4.47) and Φk in Eq. (4.69) need a normalization factor Z to
make them as PDFs in S2. Many papers in HARDI set Z =

∑
j=1 Φk(r j) such that the

summation of ODF over some given direction samples {r j}
Ns
j=1 in S2 is 1 [Tuch, 2004;

Khachaturian et al., 2007], which is actually problematic in theory and may bring
some errors in some situations. See Appendix 4.6 for the reason and two correct ODF
normalization ways.

Note like the original QBI, the exact QBI methods based on mono-exponential de-
cay assumption can not work for multiple shell data. [Aganj et al., 2010b] proposed
to generalize the mono-exponential decay assumption to multi-exponential decay as-
sumption, i.e.

E(q) =

K∑
i=1

wi exp(−4π2τq2Di(u)) =

K∑
i=1

wiEi(u)b, Ei(u) = exp(−Di(u)) (4.70)

{Ei(u)} and {wi} can be estimated by numerical optimization such as trust region algo-
rithm. An analytical solution exists when K = 2, the data were obtained from three b
values, and 0, b1, b2, b3 is an arithmetic progress.

Summary of Advantages and Limitations:

4 The linear analytical solution is fast and easy to be implemented.

4 Compared to the delta function assumption of radial decay of E(qu) used in orig-
inal QBI, exact QBI considers mono-exponential decay of E(qu) to obtain an-
alytical results, which becomes more and more popular in sHARDI methods.
Mono-exponential decay assumption seems better than delta function assump-
tion. It at least satisfies the prior E(0) = 1 and can be seen as ADC modeling
which is a kind of generalization of DTI. See Table 4.1 for the summary of dif-
ferent estimators in original QBI under delta function decay assumption and
exact QBI under mono-exponential decay assumption.
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4 Φw(r) has better angular resolution than Φt(r) normally used in original QBI,
although normally Φt(r) is more robust to noise. Φw(r) normally does not need
the artificial normalization, sharpening technique like min-max normalization
or spherical deconvolution. That is the main reason why Φw(r) is now more
popular than Φt(r) in sHARDI methods.

8 Although mono-exponential decay assumption is better than delta function as-
sumption, it is still a strong and unrealistic assumption of radial decay. Even
the signal generalized by a simple mixture of tensor model does not follow this
assumption as shown in Fig. 4.8.

8 Exact QBI is a kind of sHARDI method. It obtains different results for the
data from different shells. [Aganj et al., 2010b] proposed an extension of the
model based on multi-exponential decay assumption. However it is impractical
for general multiple shell sampling which needs a numerical optimization to
estimate each mono-exponential part. An analytical solution only exists when
two multi-exponential parts are considered for the data sampled from three b
values which are arithmetic progress.

4.3.5 Diffusion Orientation Transform (DOT)

Diffusion Orientation Transform (DOT) was proposed by Dr. Özarslan in [Özarslan
et al., 2006] to estimate the EAP profile P(Rr) from single shell data under the mono-
exponential decay assumption in Eq. (4.39). Thus it can be seen as an estimator of
EAP in exact QBI methods. Consider the plane wave equation in Eq. (4.71)

cos(2πqT R) = 4π
∞∑

l=0

l∑
m=−l

(−1)l/2 jl(2πqR)Ym
l (u)Ym

l (r) (4.71)

where jl(·) is the l order spherical Bessel function described in Section 2.5.3. See Theo-
rem 2.8 and Eq. (2.53) for the plane wave equation. Then the EAP can be represented
as

P(Rr) =

∞∑
l=0

l∑
m=−l

(∫
S2

Ym
l (u)Il(R,u)du

)
Ym

l (r) (4.72)

Il(R,u) = 4π(−1)l/2
∫ ∞

0
E(q) jl(2πqR)q2dq =

RlΓ(0.5l + 1.5)1F1(0.5l + 1.5, l + 1.5,− R2

4τD(u) )

(−1)l/22l+1π0.5(D(u)τ)0.5l+1.5Γ(l + 1.5)
(4.73)

For fixed R = R0 and given direction samples {u j}, samples {Il(R0,u j)} can be calculated
analytically via Eq. (4.73) from the samples of ADC {D(u j)}. Then a least square
fitting can be used to obtain the coefficients of P(R0r) under SH basis from {Il(R0,u j)}.

[Özarslan et al., 2006] validated the mono-exponential decay assumption through
synthetic data generated from cylinder model [Söderman and Jönsson, 1995]. It
showed that signal decay can be approximated well as a mono-exponential function
around b = 1500s/mm2. For the b value large than 3000s/mm2, the mono-exponential
decay assumption is not well satisfied, and the data with large b value has low SNR.
Thus 1500s/mm2 seems to be the optimal b value for DOT.

Note like original QBI and exact QBI, DOT can not handle multiple shell data,
because the data in different shell obtains different EAP profile. [Özarslan et al.,
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Φt(r) Φw(r) P(R)
original QBI [Tuch, 2004] [Tristán-Vega et al., 2009] subsection 5.2.2
δ(q − q0) [Descoteaux et al., 2007] subsection 5.2.2

exact QBI [Canales-Rodrıguez et al., 2009] [Aganj et al., 2010b] DOT
E(q) = exp(−4π2τD(u)) [Tristán-Vega et al., 2010][Özarslan et al., 2006]

SPFI [Assemlal et al., 2009a; Cheng et al., 2010a] [Cheng et al., 2010b]
proposition 5.3 proposition 5.4 proposition 5.2

SHORE proposition 5.7 proposition 5.6
[Özarslan et al., 2009]

Table 4.1: HARDI methods with different assumptions for estimation of ODFs and EAP.
Original QBI and exact QBI are sHARDI methods. They need respectively delta function
assumption and mono-exponential decay assumption for signal decay. DOT can be seen as a
kind of exact QBI method, because it is an estimator of EAP from single shell data based on
mono-exponential decay. SPFI and SHORE consider radial basis for the radial decay. They
are model-free.

2006] proposed to extend the mono-exponential model to multi-exponential model as
shown in Eq. (4.70). It fits the multi-exponential function in each direction u which
needs many samples along u. Thus the multi-exponential assumption is impractical
and so far to our knowledge there is no work to implement the multi-exponential
version of DOT in real data.

DOT will be revisited in subsection 5.2.2, and theoretically and experimentally
compared with other HARDI methods.

Summary of Advantages and Limitations:

4 The linear analytical solution is fast and easy to be implemented.

4 Compared to other ADC based methods like HOT model, DOT estimates the
EAP profile with given radius R0 from single shell data. The maxima of EAP
profile normally can be used as the fiber directions. See Fig. 4.8.

4 It works well with typical value b = 1500s/mm2 compared to typical b value
3000s/mm2 in original QBI.

8 DOT can not handle multiple shell data. The data from different shells obtain
inconsistent results. The extension to multi-exponential model is impractical.

8 In DOT, there is no full representation for EAP P(Rr) in R3. The results from
DOT are the coefficients of the EAP profile P(R0r) with the given radius R0 under
SH basis. Even if one EAP profile P(R1r) is estimated, the estimation process
needs to be performed again for EAP profile P(R2r) with different radius R2.

4.3.6 Spherical Deconvolution (SD)

Spherical Deconvolution (SD) methods generalize the mixture model from discrete
case to continuous case. In previous mixture of tensor model, E(q) is assumed to
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be generated from K tensors in Eq. (4.32). [Tournier et al., 2004, 2007] proposed to
consider the continuous mixture model as

E(qu) =

∫
S2

Φ f (r)R(rT u)dr (4.74)

where Φ f (r) is called as the fiber ODF (fODF) which needs to be estimated and R(rT u)
is the typical signal generated from one fiber. The spherical deconvolution is a model-
based method because it assumes the typical signal R(rT u) and linear combination
in the convolution. Mixture of tensor model is suffering from the model selection of
the number of tensors and local minima of cost function. However, SD can be solved
analytically by considering the Funk-Hecke theorem and representing the E(qu) and
R(rT u) using SHs [Descoteaux et al., 2008a]. The continuous weighting function Φ f (r)
avoids the limitation of mixture of tensor model in discrete case.

Note the SD method can be also used in some EAP features generated from signal.
For example, consider Φt estimated from FRT, then based on the linearity of FRT we
have

Φt(r) = FRT{E(qu)} =

∫
S2

Φ f (w)FRT{R(wT u)}dw =

∫
S2

Φ f (w)ΦR
t (rT w)dw (4.75)

Thus, if we use FRT to estimate Φt(r), the SD performed on E(qu) is equivalent with
SD performed on estimated Φt(r) [Descoteaux et al., 2008a]. Since Φt(r) estimated
from FRT is normally very smooth. SD becomes a good option to obtain the sharpened
fiber ODF Φ f (r).

Compared to fiber ODF Φ f (r), the ODFs Φt, Φw and Φk defined as the radial inte-
gration of EAP is normally called as the diffusion ODFs. Note that throughout this
thesis, ODF means the diffusion ODF unless otherwise specified, because we only
consider the estimation of diffusion ODFs, and once we assume a kernel model for
single fiber, fiber ODF can be estimated from diffusion ODF easily.

The SD method also can be used as a general continuous weighting method in a
specific manifold. Then many methods can be seen as some kinds of SD methods [Jian
and Vemuri, 2007; Jian et al., 2007].

Summary of Advantages and Limitations:

4 SD obtains more sharper ODFs, which is useful in fiber tracking. Note the
diffusion ODFs sometime merge their maxima if two fiber directions are close.
The sharpened ODFs obtained by SD sometimes can separate these merged
maxima.

4 Normally SD on sphere can be solved analytically using SH basis. However, it
is not easy to do SD in a general manifold [Jian and Vemuri, 2007].

8 SD is a model-based method. How to choose the kernel based on some priors is
an open question.

8 Although compared to diffusion ODFs, fiber ODFs from SD can obtain more
maxima, we still do not know if added maxima are because of real fiber direc-
tions or noise. Even in the area with isotropic diffusion, SD can make sharper
ODFs, which is unrealistic.
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4.3.7 Diffusion Propagator Imaging (DPI)

Diffusion Propagator Imaging (DPI) was proposed to model the signal E(q) as the
solution of Laplace’s equation [Descoteaux et al., 2009, 2010]. Note the original de-
scription of DPI in [Descoteaux et al., 2009] has some problems due to the integration
of Bessel function, thus we use the formulation in [Descoteaux et al., 2010]. In DPI,
the signal is assumed to be

E(qu) =

L∑
l=0

l∑
m=−l

(
clm

ql+1 + dlmql
)

Ym
l (u) (4.76)

Then the EAP is estimated from incomplete 3D integration inside the ball with a
given radius qmax, because the complete integration in R3 does not converge.

P(R0r) ≈
1
Z

∫ qmax

0

∫
S2

E(qu)q2 exp
(
−2πiqR0uT r

)
dqdu =

1
Z

L∑
l=0

l∑
m=−l

(p0l(R0)clm + p1l(R0)dlm) Ym
l (r)

(4.77)

p0l(R0) =
(−1)l/2

R3/2
0

2lRl−1/2
0 πl−1

(2l − 1)!!
−

Jl−1/2(2πqmaxR0)

ql−1/2
max


p1l(R0) = (−1)l/2ql+3/2

max R−3/2
0 Jl+3/2(2πqmaxR0)

where (n − 1)!! = (n − 1) · (n − 3) · · · 3 · 1, Jn(x) is the Bessel function of order n, Z is
the normalization factor to make

∫
R3 P(R)dR = 1, qmax is the maximum q value used

in DPI acquisition. See subsection 2.5.3 for Bessel function and its properties. The
coefficients {clm} and {dlm} can be calculated from DWI samples via a standard least
square estimation.

After obtaining the coefficients, DPI also proposed several EAP features an-
alytically from incomplete radial integration, such as two ODFs in Eq. (4.78)
and Eq. (4.79), and RTO in Eq. (4.80).

Φt(r) =
1
Z

∫ Rmax

0
P(Rr)dR =

1
Z

L∑
l=0

l∑
m=−l

(−1)l/2 (t0lclm − t1lclm + t2ldlm) Ym
l (r) (4.78)

t0l =
2lπl−1

(2l − 1)!!

(
Rl−1

max

l − 1

)
, t1l =

π(l + 1)!!
2ql−1

max(l/2 + 1)!
, t2l =

(−1)l/2q2
max(l − 1)!!

2l/2+2(2π)3/2(l/2 + 1)!

Φw(r) =
1
Z

∫ Rmax

0
P(Rr)R2dR =

1
Z

L∑
l=0

l∑
m=−l

(−1)l/2 (m0lclm − m1lclm + m2ldlm) Ym
l (r) (4.79)

m0l =
2lπl−1

(2l − 1)!!

(
Rl+1

max

l + 1

)
, m1l =

(l − 1)!!
2πql+1

max2l/2(l/2 − 1)!
, m2l =

(l + 1)!!
2π2l/2(l/2)!

Po =

∫ qmax

0

∫
S2

E(q)q2dqdu = q2
max

(
c00 + d00

2qmax

3

)
√
π (4.80)
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Summary of Advantages and Limitations:

4 DPI can be seen as a generalization of QBI method to handle multiple shell
data, although this generalization has many problems which will be revisited
in subsection 5.2.2.

8 DPI is a model-based method, because it assumes ∆E(q) = 0.

8 Compared to DOT based on the mono-exponential decay assumption, the nor-
malization factor Z is needed because the integration of E(q) is incomplete. In
DOT, the estimated EAP is naturally normalized, because the mono-exponential
decay assumption in DOT satisfies E(0) = 1 =

∫
R3 P(R)dR.

8 The ODFs are obtained from incomplete radial integration of the pre-estimated
EAP. Thus the estimated ODFs suffer from two incomplete integrations, one for
EAP estimation, the other one for ODF estimation.

8 The introduction of qmax makes all estimated EAP and its features are function
of qmax. We still do not know how to choose qmax generally. Although we can set
it as the maximal q values of the acquired DWI data, it is actually not a good
choice. See subsection 5.3.1 for the discussion of the problems brought by qmax.

8 The DPI model does not satisfy some priors of signal E(q) which brings intrinsic
modeling errors. It also can not represent an isotropic Gaussian signal. Please
see subsection 5.2.2 and 5.3.1 for more details.

4.3.8 Simple Harmonic Oscillator Reconstruction and Estimation
(SHORE)

Simple Harmonic Oscillator Reconstruction and Estimation (SHORE) was proposed
by Dr. Özarslan in [Özarslan et al., 2008] for 1D signal and in [Özarslan et al., 2009]
for 3D signal.

SHO-1D Basis

[Özarslan et al., 2008] proposed to represent diffusion signal E(q) in 1D as

E(q) =

N−1∑
n=0

anψn(x)(q, u), where ψn(q, u) = in(2nn!)−1/2e−2π2q2u2
Hn(2πuq) (4.81)

where Hn(x) is the n order physicists’ Hermite polynomial, and u is a characteristic
length which scales the decay of the basis. Please refer subsection 2.5.4 for physicists’
Hermite polynomial and its properties. The scale u was proposed to be estimated
from the first few samples of E(q), and the coefficients {an} can estimated from signal
samples via a standard least square fitting. As we assume E(q) is symmetric, only
even order n is used. Note {ψn(q, u)} is an orthogonal basis, while the basis is not
normalized to unit norm. We may consider the normalized version given in Eq. (2.60)
which is the solution of 1D quantum mechanical harmonic oscillator problem, and is
called as Simple Harmonic Oscillator in 1D (SHO-1D) basis in this thesis.
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Based on the property of Hermite polynomial in Eq. (2.57), the EAP in 1D that is
the Fourier transform of E(q) can be analytically obtained as

P(x) =

N−1∑
n=0

(−i)n

√
2πu

anψn(x, (2πu)−1) (4.82)

Then RTO is simply P(0), and the m-th order moment of EAP can be given by

〈xm〉 =

∫ ∞

−∞

xmP(x)dx = um
N−1∑

k=0,2,...

(k + m − 1)!!
k!

N−k−1∑
l=0,2,...

(−1)l/2

√
2k−l(k + l)!

(l/2)!
ak+l (4.83)

Note that GDTI considers product of probabilists’ Hermite polynomials in 3D space,
while the SHO-1D basis uses physicists’ Hermite polynomials in 1D space. It is pos-
sible to consider the product of SHO-1D basis as a 3D basis, called SHO-1D3 basis in
Definition 5.2. Please refer Theorem 5.2 for the equivalence between SHO-1D3 basis
and SHO-3D basis which will be introduced in next subsection.

Summary of Advantages and Limitations:

4 Since SHO-1D basis is complete, SHORE method in 1D is model-free.

4 The linear analytical solutions for EAP and its features are very fast and easy
to be implemented.

4 The Gaussian-Hermite function considers the priors of signal which is a Gaus-
sian like signal.

8 Since the diffusion signal in real data is in 3D space, SHO-1D basis can not
handle 3D signals.

SHO-3D Basis

[Özarslan et al., 2009] proposed to represent diffusion signal E(q) in 3D as

E(q) =

Nmax∑
N=0

∑
l+2 j=N+2

j≥1,l≥0

l∑
m=−l

A jlmψ jlm(q, u) (4.84)

ψ jlm(q, u) = i−l
√

4π
(
2π2u2q2

)l/2
exp

(
−2π2u2q2

)
Ll+1/2

j−1

(
2π2u2q2

)
Ym

l (u) (4.85)

Note that [Özarslan et al., 2009] referred that the function set {ψ jlm} in Eq. (4.85)
is an orthogonal basis. However, one can verify that these functions are not orthog-
onal, that is because the wrong scale is used in exp(·). The solution of 3D quantum
mechanical harmonic oscillator problem has the form in Eq. (2.69), which is called
as the Simple Harmonic Oscillator in 3D (SHO-3D) basis. Actually this basis has
been already used in the computation of the molecular electron orbitals and molecu-
lar docking [Ritchie and Kemp, 2000; Huzinaga, 1965], which we will discuss later.
The SHO-3D basis is equivalent with the product of SHO-1D basis in 3D space. See
Theorem 5.2.
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[Özarslan et al., 2009] claimed that the EAP can be represented by the same form
in Eq. (4.85) although it did not give the explicit formula. We will give the analytical
formula based on the SHO-3D basis in Eq. (2.69). The orientation-dependent radial
moments, i.e. the ODFs in Eq. (4.69), is given as

Φk+2(r) =

∫ ∞

0
P(Rr)Rk+2 =

∑
jlm

A jlmYm
l (r)uk 2k/2Γ( j + (l + k + 1)/2)

π( j − 1)!
(4.86)

Note that we did not verify the above formula for ODFs, because we think there
may be some problems in the basis in [Özarslan et al., 2009]. The ODFs in SHORE-
3D method will be revisited in subsection 5.2.2 using the corrected SHO-3D basis
in Eq. (2.69). See Table 4.1 for an overview.

Summary of Advantages and Limitations:

4 SHORE is model-free, since the SHO-1D basis and SHO-3D basis are both com-
plete basis in their domains.

4 The linear analytical solutions are very fast.

8 Some formulae have some problems. For example, the proposed formula for
SHO-3D basis in Eq. (4.85) is not orthogonal basis, which conflicts with the
claim that SHO-3D basis are orthogonal. It can be easily improved by using
the correct orthonormal basis in Eq. (2.69). We will revisit this topic in subsec-
tion 5.2.2.

4.3.9 Spherical Polar Fourier Imaging (SPFI)

Spherical Polar Fourier Imaging (SPFI) was first proposed by Dr. Assemlal in [As-
semlal et al., 2008, 2009a], where the diffusion signal E(q) is represented by Spher-
ical Polar Fourier (SPF) basis. SPF basis is a 3D orthonormal basis with SHs in
spherical part and Gaussian–Laguerre functions in radial part. This basis is moti-
vated by SHO-3D basis used in the computation of the molecular electron orbitals
and molecular docking [Ritchie and Kemp, 2000; Huzinaga, 1965]. However SPF ba-
sis is different from the SHO-3D basis. We will compare SPF basis and SHO basis
theoretically and experimentally in Chapter 5.

After we estimate the coefficients of diffusion signal under SPF basis, EAP and its
various features, e.g. ODFs, RTO, can be obtained in a numerical way from an inner
proposed by Dr. Assemlal [Assemlal et al., 2008, 2009a], which will be described in
details in subsection 5.1.1. In Chapter 5, we propose an analytical way to obtain the
EAP and its various features from the pre-estimated SPF coefficients [Cheng et al.,
2010b,a]. We also propose some improvements in the estimation of the coefficients of
SPF basis. See Table 4.1 and Table 5.1 for an overview.
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4.4 METRICS AND FRAMEWORKS TO PROCESS PDF-
VALUED DATA

As we have demonstrated in subsection 4.1.2 and 4.1.3, the data in dMRI field is
in 6D space. In every voxel x, there is an EAP P(R) defined R3. The whole EAP field
is P(R,x) in 6D space, which is different from the conventional MRI data in 3D space.
Thus we need to study how to process such a PDF field.

4.4.1 Metrics and Frameworks for Tensor Computing

Euclidean Metric

Under the assumption of Gaussian propagator, the EAP field becomes the tensor field.
Since the tensor space is a convex set in symmetric matrix space, we can define the
distance between two tensors as the distance between two symmetric matrices, i.e.
the Euclidean distance between 6D vectors.

dEuc(D1,D2) = ‖D1 − D2‖ =

√
Trace

(
(D1 − D2)T (D1 − D2)

)
(4.87)

In this case, the Euclidean metric in R6 is used. The Euclidean distance is rotational
invariant. Based on this distance, the mean of K tensors is

D =
1
K

K∑
i=1

Di (4.88)

J-divergence

The Kullback-Leibler (KL) divergence between two Gaussian propagators is

dKL(D1,D2) =

∫
R3

N(R|2τD1) ln
N(R|2τD1)
N(R|2τD2)

dR =
1
2

(
ln
|D2|

|D1|
Trace

(
D−1

2 D1
)
− 3

)
(4.89)

It is affine invariant, i.e. dKL(AT D1A, AT D2A) = dKL(D1,D2), ∀|A| , 0. Since the KL
divergence is not symmetric, we can use its symmetric version called J-divergence
and its square root distance as [Wang and Vemuri, 2005]:

dJ(D1,D2) =

√
1
2

(dKL(D1,D2) + dKL(D2,D1)) =
1
2

√
Trace

(
D−1

1 D2 + D−1
2 D1

)
− 6 (4.90)

J-divergence is also affine invariant, because KL divergence is affine invariant. Al-
though J-divergence is symmetric, it does not satisfy the triangle inequality, which
means it is a divergence, not a distance. [Wang and Vemuri, 2005] showed that the
mean of tensors {Di}

K
i=1, i.e. the minimizer of

∑K
i=1 dJ(D,Di)2, is

D = B−
1
2

(
B

1
2 AB

1
2

) 1
2

B−
1
2 (4.91)

where

A =

K∑
i=1

Di, B =

K∑
i=1

D−1
i
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Riemannian Metric and Log-Euclidean Metric

The Riemannian metric for Gaussian distribution family has been proposed in
1980s [Atkinson and Mitchell, 1981; Skovgaard, 1984] based on Rao’s seminal work
on information geometry [Rao, 1945]. However, the Riemannian metric was only
known in dMRI domain after 2005, until a number of works [Pennec et al., 2006;
Moakher, 2005; Batchelor et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi, 2007]
which introduced Riemannian metric in dMRI. The Riemannian metric can be intro-
duced based on the analysis of Gaussian distribution family in Eq. (4.92) [Lenglet
et al., 2006b] where Σ = 2τD, or based on the analysis of affine invariance [Pennec
et al., 2006; Fletcher and Joshi, 2007; Fletcher, 2004; Moakher, 2005].{

N(R|Σ) =
1

(2π)3/2|Σ|1/2
exp

(
−

1
2

RT Σ−1R
)

: Σ ∈ S ym+
3

}
(4.92)

The Riemannian distance between two tensors is

dRie(D1,D2) =

√√√
1
2

3∑
i=1

(ln λi)2 (4.93)

where {λi}
3
i=1 are the eigenvalues of matrix5 D−1

1 D2. This Riemannian distance is affine
invariant. Please see Example 3.10 for more details on the Riemannian metric of
Gaussian distribution family. For a set of tensors {Di}

K
i=1, the Riemannian mean has

no closed form. It needs a gradient descent method to find a local minimum of the
following cost function.

min
D

dRie (D,Di)2 (4.94)

Note the cost function is convex and the Riemannian mean of tensors uniquely exist
because the sectional curvature in tensor space is non-positive definite. See Theo-
rem 3.1. Thus the estimated local minimum is also the global minimum.

The Log-Euclidean metric for tensors is defined based on the isometry of tensor
space and symmetric matrix space [Arsigny et al., 2006; Fillard et al., 2007]. The
matrix logarithm can be seen as the isometry, then the distance between tensors is
defined by the distance between their logarithms, i.e.

dLogEuc (D1,D2) = ‖ ln D1 − ln D2‖ =

√
Trace

(
(ln D1 − ln D2)T (ln D1 − ln D2)

)
(4.95)

Then the Log-Euclidean mean of tensors is

D =

K∑
i=1

ln Di (4.96)

Log-Euclidean distance is different from Riemannian distance, but in practice, these
two distances for tensors in human brain are qualitatively/visually similar. Thus Log-
Euclidean distance can be seen as an approximation of Riemannian distance. When
computing the Riemannian mean, it is fast and convenient to set the initialization
point as the Log-Euclidean mean.

5Some papers use D−1
2 D1 or D−

1
2

1 D2D−
1
2

1 here. All these descriptions are OK, because it can be proved
that the final results are the same.
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The Geodesic Anisotropy (GA) of a tensor D is defined as the geodesic distance
between D and its nearest isotropic tensor [Fletcher, 2004; Batchelor et al., 2005], i.e.

GA(D) = dRie(D, |D|
1
3 I) = dRie(|D|−

1
3 D, I) =

√√√ 3∑
i=1

(
ln λi −

1
3

ln(λ1λ2λ3)
)2

(4.97)

The Riemannian framework and Log-Euclidean framework of tensors can be used
in DTI or other domains like computer vision [Li et al., 2008]. In dMRI, these two
frameworks can be used in tensor estimation [Lenglet et al., 2006b; Fillard et al.,
2007], regularization [Pennec et al., 2006], segmentation [Lenglet et al., 2006a], Prin-
cipal Component Analysis (PGA) [Fletcher et al., 2004], statistical test [Schwartz-
man, 2006], etc.

4.4.2 Metrics and Frameworks for ODF and EAP Computing

Since DTI model based on Gaussian assumption has its intrinsic limitations, we do
not assume Gaussian propagator in HARDI. The ODF and EAP are PDFs respec-
tively defined in S2 and R3. Historically there are several choices proposed for the
distance between ODFs. [Tuch, 2004] used KL divergence to measure the differ-
ence of ODFs, which is calculated from ODF samples. [Descoteaux and Deriche,
2009; Wassermann et al., 2008] considered the Euclidean distance between ODFs
in ODF segmentation, which can be represented by coefficients of SH basis. Assume
Φ(r) =

∑L
l=0

∑l
m=−l clmYm

l (r) and Φ′(r) =
∑L

l=0
∑l

m=−l c′lmYm
l (r), then the Euclidean distance

between them is

‖Φ(r) − Φ′(r)‖ =

√√√∫
S2

∑
lm

(clm − c′lm)Ym
l (r)

2

dr =

√√√ L∑
l=0

l∑
m=−l

(clm − c′lm)2 (4.98)

[McGraw et al., 2006] proposed to represent the ODF as a mixture of Von
Mises–Fisher distributions.

Φ(r) =

K∑
i=1

wiM(r|µi, κi), M(r|µi, κi) =
κi

2π(eκi − e−κi)
exp

(
κiµ

T
i r

)
(4.99)

The parameters {
(
wi,µi, κi

)
}Ki=1 need to be estimated through minimizing a nonlinear

least square cost function. Since The Von Mises-Fisher distribution M(r|µ, κ) is not
symmetric, both M(r|µ, κ) and M(r| − µ, κ) need to be considered in the cost function.
The barrier functions for the positive {wi} and {κi} are also needed in the cost function.
Moreover, the model selection for parameter K needs to be set manually. Thus the
estimation of the parameters are complex and unstable. After the parameters are
obtained, since Von Mises-Fisher distribution has been well studied in information
geometry, the distance between ODFs can be defined as the Riemannian distance in
the mixture of Von Mises-Fisher distributions. Thus the Riemannian distance for
ODFs is model-based and can not be used for general ODFs. To our knowledge, this
is the first work for the Riemannian framework for ODFs, although it has many
limitations.
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[Goh et al., 2009a, 2011] and our previous work [Cheng et al., 2009a] proposed a
model-free intrinsic Riemannian framework for ODFs based on square root parame-
terization. [Goh et al., 2009a, 2011] considered the continuous ODF as its histogram,
and directly applied the Riemannian framework for multinomial distribution family
to ODFs. However, our work considered the orthonormal basis representation, which
is essentially more general and efficient than the formulation of histogram. Actually
the histogram formulation in [Goh et al., 2009a, 2011] can be seen as a specific case
of our basis representation formulation when the piecewise constant basis is consid-
ered. Moreover, our formulation can be used to EAPs by considering a 3D basis, e.g.
SPF basis. While the histogram formulation is hard to be used in EAPs since EAP
is defined in unbounded R3. To our knowledge, our previous work in [Cheng et al.,
2011a] is the first work for the Riemannian framework on general EAPs, which is a
natural generalization of previous Riemannian framework on Gaussian EAPs in DTI.
Please refer Chapter 6 for more details and comparisons.

4.5 SUMMARY

We have presented some basic concepts and background knowledge of MRI and
dMRI for Chapter 5 and 6. We have reviewed some state-of-the-art reconstruction
methods to estimate tensors, ODFs, EAPs, and other meaningful features from the
measured diffusion signals, and have reviewed some metrics and frameworks used to
process tensor/ODF/EAP valued images. Since DTI has its intrinsic limitations due
to the Gaussian assumption, in this thesis we focus on ODF and EAP estimation and
processing in HARDI methods. HARDI methods can be categorized into two classes:
single shell HARDI (sHARDI) methods and multiple shell HARDI (mHARDI) meth-
ods. sHARDI methods like QBI cannot be used in multiple shell or sparse sampled
data. These sHARDI methods always need some assumptions in radial decay which
cannot be assumed in a local sense. See Table 4.1 and Appendix 4.7. We also pro-
posed the correct way for ODF normalization. See Appendix 4.6, which is useful for
the Riemannian framework of ODFs. If a complete 3D basis is used, mHARDI meth-
ods are indeed model-free, and they naturally combine the benefits of the high SNR
of the data with the low b values and high angular resolution of the data at high
b values. mHARDI methods are trade-off between a DSI acquisition and a single
shell acquisition used in sHARDI methods. With hardware improvements of current
scanners, mHARDI acquisitions will become more and more practical and popular.
In CCM group, we mainly focus on neuroscience applications based on the scalar in-
dices or brain network analysis in DTI model [Gong et al., 2005; Lin et al., 2006; Yu
et al., 2008; Shu et al., 2009; Li et al., 2009; Wang et al., 2011; Li et al., 2012]. In
Odyssée/Athena group, DTI and the Riemannian framework for tensors have been
well studied by Dr. Lenglet [Lenglet, 2006; Lenglet et al., 2006a,b], and QBI and its
related methods have been well studied by Dr. Descoteaux [Descoteaux, 2008; De-
scoteaux et al., 2007, 2008a]. In this thesis, we focus on mHARDI reconstruction and
process. Analytical SPFI in Chapter 5 can be seen as a generalization of analytical
QBI by Dr. Descoteaux and others, and the Riemannian framework for ODFs and
EAPs in Chapter 6 is a generalization of the Riemannian framework for tensors by
Dr. Lenglet and others. The scalar indices developed in mHARDI methods in Chap-
ter 5 and 6 can be used as biomarkers in neuroscience applications, and the proposed
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EAP/ODF estimations can improve the fiber tracking results for brain network anal-
ysis.

4.6 APPENDIX A: ODF NORMALIZATION

An important issue for ODFs is that the estimated ODF by Tuch Φt(r) and Φk(r)
in Eq. (4.69) need to be normalized so that the integration in S2 is 1 [Tuch, 2004;
Descoteaux et al., 2007]. Please note that the normalization is NOT to let the sum-
mation of ODF samples at given evenly distributed directions {r j}

Ns
j=1 be 1, because

1 =

∫
S2

Φk(r)dr '
Ns∑
j=1

Φk(r j)S j ,
∑

j

Φk(r j)

where S j is the area element for the histogram bins. Since the Ns samples are evenly
distributed in S2, {S j} are close to a constant, i.e.

S j '
4π
Ns
, 1 ≤ j ≤ Ns

and the ODF should be normalized such that

Ns∑
j=1

Φk(r j) =
Ns

4π

So the normalization factor is

Z =
4π
Ns

Ns∑
j=1

Φk(r j) (4.100)

Then the integration of new normalized ODF is∫
S2

1
Z

Φt(r)dr '

 Ns

4π
∑Ns

j=1 Φk(r j)

 Ns∑
j=1

Φk(r j)S j ' 1

This is the discrete normalization. Note that in many papers Z =
∑Ns

j=1 Φk(r j) which
only misses a constant factor 4π

Ns
. Thus normally this inappropriate normalization

does not affect the final results based on the shape of ODFs. But the Riemannian
framework in Chapter 6 needs the ODF/EAP correctly normalized. Otherwise the
ODF/EAP is not a PDF.

We suggest ODF normalization in continuous domain which is better and inde-
pendent of samples. When the estimated ODF is represented by SH basis, we have

Φk(r) =
∑
lm

clmYm
l (r), 1 =

∫
S2

Φk(r)dr = c00
√

4π

So the coefficient for Y0
0 should be normalized such that

c00 =
1
√

4π
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which means the normalization factor is

Z =
√

4πc00 (4.101)

Note the original ODF by Wedeen Φw(r) is naturally normalized in its estimation
by exact QBI [Canales-Rodrıguez et al., 2009; Aganj et al., 2010b; Tristán-Vega et al.,
2010], or by SPFI in Chapter 5, [Cheng et al., 2011c], and Square Root Parameterized
Estimation (SRPE) in Chapter 6. Thus no extra normalization is needed for Φw(r) for
these estimation methods. However the estimation methods in [Descoteaux et al.,
2010; Tristán-Vega et al., 2009] for Φw(r) need an artificial normalization due to the
incomplete integration.

4.7 APPENDIX B: IS MONO-EXPONENTIAL DECAY AS-
SUMPTION ONLY NEEDED LOCALLY FOR SINGLE

SHELL DATA?

As we have shown in Corollary 4.1 that the two kinds of ODFs Φt(r) and Φw(r)
can be represented as the plane integration of E(q) and − 1

8π2
1
q∆bE(q). To estimate

the ODFs and EAPs from single shell data, historically there are two popular as-
sumptions for signal decay E(qu), i.e. delta function decay assumption in original
QBI [Tuch, 2004; Anderson, 2005; Hess et al., 2006; Descoteaux et al., 2007] and
mono-exponential decay assumption in exact QBI [Wu et al., 2008; Canales-Rodrıguez
et al., 2009; Aganj et al., 2010b; Tristán-Vega et al., 2009; Tristán-Vega et al., 2010].
Compared to the delta function decay assumption, mono-exponential decay assump-
tion seems better and becomes more and more popular in HARDI domain.

[Tristán-Vega et al., 2010] claimed that Φt(r) and Φw(r) can be estimated from
single shell data with the mono-exponential assumption in a local sense in an envi-
ronment of shell q = q0. However, we think for single shell data the radial assumption
is needed in whole plane, not in a local sense, such that the plane integration can be
solved. Please see the following analysis in details. Note [Tristán-Vega et al., 2010]
proposed the estimators for both Φt(r) and Φw(r). Our analysis for Φw(r) is given as
follows which can be also used in the estimator of Φt(r).

Formulation based on Stokes’ theorem in [Tristán-Vega et al., 2010]. The
idea in [Tristán-Vega et al., 2010] is to replace the plane integration in Eq. (4.64)
with the integration inside the disk with the given radius q0, denoted by Πr,q0 , i.e.

Φw(r) =
1

4π
−

1
8π2

∫
Πr

∆bE(q)
q

dq '
1

4π
−

1
8π2

∫
Πr,q0

∆bE(q)
q

dq

Note in [Tristán-Vega et al., 2010] the second term is approximated by the disk inte-
gration, while the first term is 1

4π which is still plane integration. Then considering
the Stokes’ theorem, the disk integration of E(q, π2 , υ) equals the circle integration of

some specific function F̃φυ (q, π2 , υ), i.e.

Φw(r) '
1

4π
−

1
8π2

∫
Πr,q0

∆bE(q)
q

dq =
1

4π
−

1
8π2

∫ 2π

0
F̃φυ (q0,

π

2
, υ)q0dυ (4.102)
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where F̃φυ (q, ξ, υ) is given in Eq.(C.2) in [Tristán-Vega et al., 2010].

F̃φυ (q, ξ, υ) =
−1

8π2q

∫ q

0

1
u

∆̃bE(u, ξ, υ)du '
−1

8π2q

∫ q

0

∆b exp(−4π2τu2D̃(q0, ξ, υ))
u

du (C.2)

Note Ẽ(u, ξ, υ) is the assumed signal which was said to follow mono-exponential decay
in a local environment of q0, i.e. the Eq. (C.1) in [Tristán-Vega et al., 2010].

Ẽ(q, ξ, υ)|q'q0 ' exp(−4π2τq2D̃(q0, ξ, υ)) (C.1)

However, the integration in Eq. (C.2) actually assumes E(q, ξ, υ) is mono-exponential
decay in [0, q0], not in a local sense in Eq. (C.1). To approximate the plane integration
with disk integration, it also assumes E(q, ξ, υ) = 0 when q > q0.

Formulation based on standard radial integration and spherical integra-
tion. Actually the Stokes’ theorem used in the paper is just two integrals (radial
integral and spherical integral), which is in spirit the same with other papers on
plane integration [Canales-Rodrıguez et al., 2009; Aganj et al., 2010b; Cheng et al.,
2010a].

Φw(r) '
1

4π
+
−1
8π2

"
Πr,q0

1
q2 ∆bE(q)dq

=
1

4π
+
−1
8π2

∫ q0

0

∫ 2π

0

1
q2 ∆̃bE(q,

π

2
, υ)qdυdq

=
1

4π
+

∫ 2π

0

(
−1
8π2

∫ q0

0

1
q

∆̃bE(q,
π

2
, υ)dq

)
︸                               ︷︷                               ︸

q0F̃φυ (q0,
π
2 ,υ)

dυ (4.103)

Compared the above formula to Eq. (C.2) and Eq. (4.102), the function F̃φυ (q0,
π
2 , υ)

obtained by Stokes’ theorem is actually the radial integration of E(q). So the so called
Stokes’ theorem is indeed not necessary to be mentioned and we can get exactly the
same results without this theorem, just using the standard way to separate the plane
integration into radial integration and spherical integration.

Counterexample. Actually we can give some counterexamples where the signal
follows the mono-exponential decay only in a local sense. For a Gaussian propagator
parameterized by tensor D, i.e. P(R) = N(R|2τD), the ODF Φw is

Φw(r) =
1

4π
√
|D|

1
(rT D−1r)3/2

See Appendix 5.8 for the derivations. This is for plan integral. For the disk integral,
we can still get the analytical formula, denoted by Φw(r, q0), which is a analytical
function of q0. Then if we have lots of DWI samples, the estimation result proposed
in [Tristán-Vega et al., 2010] will approximate to Φw(r, q0), because the data follows
mono-exponential decay.
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Let’s assume the tensor D above does not change during [q0/2,∞], and changes
arbitrarily in [0, q0/2]. For example,

D(q) =

 D0 if q ∈ [q0/2,∞)
2q
q0

D0 + (1 − 2q
q0

)Diso if q ∈ [0, q0/2)
Diso =

1
3

Trace(D)I

where I is the identity matrix. It definitely satisfies the assumption of mono-
exponential decay around q0. In this case D(q0) = D0, D(0) = Diso, D(q) is continuous
in [0,∞). Let Φ′w(r, q0) denote the ground truth for disk integration in this case, which
obviously does not equal to Φw(r, q0) in Gaussian case. Now if we have lots of DWIs
without noise, does the estimated ODF Φ̃′w(r) tend to the ground truth Φ′w(r, q0)? If the
assumption is correct, the answer will be yes. However, the answer is NO. Because
in this non-Gaussian case E(q) around q0 is the same as E(q) in Gaussian case, Φ̃′w(r)
will be Φ̃′w(r, q0) = Φw(r, q0) from the proposed method in [Tristán-Vega et al., 2010],
however in the non-Gaussian case Φ′w(r, q0) , Φw(r, q0).

Explanation of Results. As we have shown above, the assumption used
in [Tristán-Vega et al., 2010] is actually that E(q) follows the mono-exponential decay
inside the disk with radius q0 and E(q) = 0 outside the disk. Note the results of disk
integration in [Tristán-Vega et al., 2010] slightly outperformed the plane integration
in [Aganj et al., 2010b]. If there is no noise, E(q) = 0 for q > q0 brings modeling error.
However in practice the estimated E(q) from limited number of DWIs with noise may
be more noisy in the area with higher q value, thus forcing E(q) = 0 when q > q0
may increase the robustness of the estimation. However, the final results from disk
integration are dependent on the noise level and the q0 value. If q0 is small, the es-
timated ODF may be much smooth due to the incomplete integration. If the SNR is
high enough, the modeling error of forcing E(q) = 0 outside the disk may have more
effect than the gained robustness.

105



CHAP. 4: DIFFUSION MRI

106



Part II

Contributions

107





CHAPTER 5

ANALYTICAL SPHERICAL POLAR
FOURIER IMAGING

“Fourier is a mathematical poem.”

– William Thomson

“I have tried to avoid long numerical computations. . . ”

– David Hilbert
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OVERVIEW

Based on the analysis in section 4.3, the sHARDI methods like QBI, exact QBI
and DOT always make strong assumptions in radial part of the diffusion signal, and
represent the signal or a specific function of the signal in S2 by symmetric real spheri-
cal harmonic (SH) basis. In most published works, QBI was referred as an model-free
method, however QBI assumes a delta function decay of the signal. Exact QBI and
DOT assume mono-exponential decay which can not be assumed only in a local sense
as discussed in Appendix 4.7. The assumptions on radial decay conflicts with ex-
perimental MR signal, e.g. the radial decay of diffusion signal from erythrocytes in
Fig. 5.1(a). For the data in different shell, sHARDI methods obtain different results,
which means they difficultly handle multiple shell data. In order to avoid the strong
assumption in such kind of method, we may use 3D basis with both radial basis and
spherical basis to represent signals. In this chapter, we introduce such a method us-
ing 3D basis, named Spherical Polar Fourier Imaging (SPFI). SPFI represents the
signal with Spherical Polar Fourier (SPF) basis and obtains analytically EAP and its
various features like ODFs. Our work shows that it is easy to find an analytical ODF
and EAP estimation method, and we propose some possible estimation methods in
this chapter. To elucidate the relation, similarities and differences between methods,
we propose a general Analytical Fourier Transform in Spherical Coordinate (AFT-
SC) framework to incorporate sHARDI and mHARDI methods. We also propose some
criteria for evaluating different basis in different method.

Organization of this chapter:
First, the previous works by Dr. Assemlal on SPFI were reviewed in subsec-

tion 5.1.1, which includes the SPF basis, the least square estimation with regulariza-
tion, the numerical SPFI to obtain EAP and its features. Second, the analytical forms
for EAP, two kinds of ODFs and three scalar indices are given in subsection 5.2.2.
Proposition 5.1 proposed the analytical form of Fourier dual SPF basis (dSPF) which
is the Fourier transform of SPF basis. Proposition 5.2 shows that EAP is represented
under dSPF basis with the same coefficients of signal under SPF basis. Proposi-
tion 5.3 and 5.4 give the analytical form for two kinds of ODFs. Some implementa-
tion issues are discussed in section 5.1.3 which includes three independent steps in
Table 5.1. Two ways for scale estimation are proposed based on the typical ADC value
and fitting the GHOT model in Theorem 5.1. The prior E(0) = 1 is proposed to be con-
sidered in estimation, which improves largely the estimation results. Proposition 5.5
shows the effect of diffusion time τ for the final results. In section 5.2.2, we propose
a general framework, named Analytical Fourier Transform in Spherical Coordinate
(AFT-SC), which incorporates most widely used sHARDI and mHARDI methods, i.e.
QBI, exact QBI, DOT, DPI, SHORE and SPFI. See Table 5.2. For QBI, we propose
another novel derivation of ODF in analytical QBI. We also propose the EAP in QBI
and demonstrate why EAP and ODF by Wedeen in QBI model are impractical. For
DOT, exact QBI and DPI, we proposed several variants to avoid their limitations.
For SHORE, we propose the correct form of SHO-3D basis and the analytical forms
of EAP and ODFs in proposition 5.6 and 5.7. Section 5.3 proposes some criteria for
theoretically comparing different basis in different method. These criteria include
completeness, representability, separation of spherical and radial parts, orthogonal-
ity. See Table 5.3. More comparisons between SHO-3D basis and SPF basis are given
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in Lemma 5.2, Theorem 5.2 and 5.3. The sHARDI and mHARDI methods are vali-
dated and compared by synthetic data, phantom data and real data in section 5.4.

5.1 ANALYTICAL SPHERICAL POLAR FOURIER IMAGING
(SPFI)

5.1.1 Assemlal’s work: Spherical Polar Fourier Basis, Least Square
Estimation, numerical SPFI

Spherical Polar Fourier Basis

Spherical Polar Fourier Imaging (SPFI) was first proposed by Dr. Assemlal in [As-
semlal et al., 2008, 2009a; Assemlal, 2010]. It represents the diffusion signal E(q)
with Spherical Polar Fourier basis denoted by BSPF

nlm (q|ζ) in Eq. (5.1), where Ym
l (u) is

the symmetric real SHs with even order l, degree m, Gn(q|ζ) is the Gaussian–Laguerre
function defined in Eq. (5.2), and ζ is the scale parameter.

E(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmBSPF
nlm (q|ζ) BSPF

nlm (q|ζ) = Gn(q|ζ)Ym
l (u) (5.1)

Gn(q|ζ) = κn(ζ) exp
(
−

q2

2ζ

)
L1/2

n (
q2

ζ
) κn(ζ) =

[
2
ζ3/2

n!
Γ(n + 3/2)

]1/2

(5.2)

For a given ζ, {Gn(q|ζ)} forms an orthonormal basis in L2([0,∞), q2), i.e.∫ ∞

0
Gn(q|ζ)Gn′(q|ζ)q2dq = δnn′ (5.3)

because κn(ζ)L1/2
n ( q2

ζ ) is an orthonormal basis in L2([0,∞), q2e−
q2
ζ ). Thus the SPF basis

function set {Gn(q|ζ)Ym
l (u)} forms an orthonormal basis in L2(R3, 1). So E(q) can be

always represented well by SPF basis with large enough N and L. If an appropriate
ζ is chosen, N can be chosen as a small integer. An inappropriate ζ needs a large N to
represent E(q). ζ needs to be set by experience or estimated from data. How to set ζ
will be discussed in Section 5.1.3. Fig. 5.1(b) shows the first several basis functions
{Gn(q|ζ)} when an empirical value of ζ = 714.29mm−2 is used. The low order basis
functions exhibit Gaussian attenuation behavior, and the higher order basis functions
capture oscillating components of the diffusion signal. Fig. 5.1(b) demonstrates the
radial basis is appropriate to represent the diffusion signal decay which is a Gaussian
like function shown in Fig. 5.1(a).

The SPF basis BSPF
nlm (q|ζ) in Eq. (5.1) is actually the SHO-3D basis in Eq. (2.69)

when l = 0 in radial part. The representation of E(q) using SPF basis and SHO-3D
basis will be theoretically analyzed in Section 5.3.

Compared to SHs normally used in QBI and other sHARDI methods, SPF basis
is a orthonormal basis in whole R3 by considering radial basis Gn(q), which avoids
strong assumptions in radial decay of E(q). That is the main merit of representing
E(q) using SPF basis.
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(a) Diffusion signal decay curves for water in
suspensions of human erythrocytes as a func-
tion of q value at different hematocrit [Kuchel
et al., 1997].

(b) The radial parts of several SPF basis func-
tions with scale parameter ζ = 714.29mm−2.

Figure 5.1: Comparison of an experimental plot of MR signal decay (a) and the radial part
of SPF basis (b).

Least Square Estimation with Regularization

Because SPF basis is a 3D orthonormal basis, if we know the continuous representa-
tion of E(q) in whole q-space, then the coefficients {anlm} will be

anlm = 〈E(q), BSPF
nlm (q|ζ)〉 =

∫
R3

E(q)Gn(q|ζ)Ym
l (u)dq

which is the solution of the following continuous least square estimation problem:

min
{anlm}

∫
R3

(
E(q) −

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)

)2

dq (5.4)

If we know exhaustive number of samples of E(q), this inner product can be approxi-
mated by numerical integration. Then the approximated signal will be

Ẽ(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u) (5.5)

Then the approximation error, i.e. MSE,
∫
R3

(
E(q)− Ẽ(q)

)2
dq will converge to zero as N

and L increase. So N and L should be as large as possible.

However in practice we do not know the continuous representation of E(q), and we
do not have exhaustive number of samples. Our goal is to estimate {anlm} from limited
number, say Ns, of samples {Ei}

Ns
i=1. The samples {Ei} are normally contaminated by Ri-

cian noise and other acquisition noise, which makes the estimation more difficult. In
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practice we consider the following classical discrete least square minimization prob-
lem with given N and L:

min
{anlm}

Ns∑
i=1

(
Ei −

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(qi|ζ)Ym
l (ui)

)2

The above problem can be written in matrix formulation. Denote the coefficient vector
by A = (a000, · · · , aNLL)T , the signal sample vector by E = (E1, · · · , ENs)

T , the basis
matrix by MS PF in Eq. (5.6) which is a Ns by (N + 1)(L + 1)(L + 2)/2 matrix.

MS PF =


G0(q1|ζ)Y0

0 (u1) · · · GN(q1|ζ)YL
L (u1)

...
. . .

...

G0(qNs |ζ)Y0
0 (uNs) · · · GN(qNs |ζ)YL

L (uNs)


Ns×(N+1)(L+1)(L+2)/2

(5.6)

Then the solution of the discrete least square minimization is

A = (MT
S PF MS PF)−1MT

S PFE

This kind of least square has been already used extensively in sHARDI meth-
ods [Alexander et al., 2002; Frank, 2002; Özarslan and Mareci, 2003].

Since the DWI data are quite noisy especially at high b values, it is better to add a
regularization term in least square estimation. Laplace-Beltrami regularization has
been successfully used in QBI which shows significant improvement than no regu-
larization and simple Tikhonov regularization [Descoteaux et al., 2007]. It has been
reported that Laplace-Beltrami regularization is also very useful in other methods
on spherical data [Descoteaux et al., 2006; Prckovska et al., 2008; Tristán-Vega et al.,
2010]. Thus Dr. Assemlal propose a similar regularization term as AT ΛA, where Λ

is a (N + 1)(L + 1)(L + 2)/2 by (N + 1)(L + 1)(L + 2)/2 diagonal matrix with the diagonal
element as Λnlm = λll2(l + 1)2 + λnn2(n + 1)2.

Λ =


Λ000 · · · 0
...

. . .
...

0 · · · ΛNLL

 , Λnlm = λll2(l + 1)2 + λnn2(n + 1)2 (5.7)

The regularization has two parts wighted by λl and λn. The spherical part λll2(l + 1)2

is just the Laplace-Beltrami regularization in spherical basis {Ym
l (u)}, which penalizes

high frequency of spherical basis. The radial part λmn2(n + 1)2 penalizes high order of
radial basis which is analogous to Laplace-Beltrami regularization in spherical part.

Thus the final cost function in least square estimation with regularization is

min
{anlm}

Ns∑
i=1

(
Ei−

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(qi|ζ)Ym
l (ui)

)2

+

N∑
n=0

L∑
l=0

l∑
m=−l

a2
nlmΛnlm = min

A
‖E−MS PFA‖2+AT ΛA

(5.8)
Then the solution is

A = (MT
S PF MS PF + Λ)−1MT

S PFE (5.9)

Dr. Assemlal showed in [Assemlal et al., 2009a] that diffusion signal E(q) can be
reconstructed well by the least square estimation with the only first several SPF
basis functions if appropriate ζ, λl and λn are set.
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Dr. Assemlal also proposed another nonlinear robust estimation which considers
the Rician noise [Assemlal et al., 2009a]. In this chapter, we are only interested in the
least square method with regularization, because least square method is also used in
QBI [Anderson, 2005; Hess et al., 2006; Descoteaux et al., 2007], exact QBI [Canales-
Rodrıguez et al., 2009; Aganj et al., 2010b; Tristán-Vega et al., 2009; Tristán-Vega
et al., 2010], DOT [Özarslan et al., 2006] and DPI [Descoteaux et al., 2009, 2010].
It will be a fair comparison in experimental part if all methods use the least square
estimation. Moreover, we suggest that the Rician correction can be performed directly
on the DWI data as a pre-processing step [Descoteaux et al., 2008b; Tristán-Vega and
Aja-Fernández, 2010].

Numerical SPFI

After the coefficient A is estimated, we have a continuous representation of the signal
in Eq. (5.5). However, since the diffusion signal E(q) in q-space does not explicitly
shows much meaningful biological information on surrounding tissues, we need to
extract EAP or its feature from E(q).

Dr. Assemlal proposed an inner product method to estimate various EAP fea-
tures [Assemlal et al., 2009a; Assemlal, 2010]. He represented the EAP feature G(k)
in a general form as the inner product between EAP P(R) and a given Hk(R), where
k ∈ M and the domainM can be R1, S2 or R3.

G(k) =

∫
R3

P(R)Hk(R)dR (5.10)

various EAP features can be represented in this form. For example, the ODF by Tuch
can be represented as

Φt(k) =

∫ ∞

0
P(Rk)dR =

∫
R3

P(Rr)δ(1 − kT r)dR

Thus Hk(R) = δ(1− kr) for Φt(k). The Fourier transform of the kernel Hk(R) in R-space
is hk(q) in q-space. If we can calculate the SPF coefficients {hk

nlm} of hk(q), then based
on the property of Fourier transform and the orthonormality of SPF basis, we have

G(k) =

∫
R3

P(R)Hk(R)dR =

∫
R3

E(q)hk(q)dq =

∞∑
n=0

∞∑
l=0

l∑
m=−l

anlmhk
nlm (5.11)

Note the summation is up to infinity, because normally the kernel with delta func-
tions cannot be represented by finite SPF basis. However, if E(q) is represented by
SPF with N and L, the summation is up to N and L based on the orthonormality of
SPF basis. The whole process of this inner product method can be summarized in
Fig. 5.2.

Since the coefficients {hk
nlm} need to be calculated for each k ∈ M, this method is

time consuming. For k ∈ S2 or R3, Dr. Assemlal proposed to calculate the coefficients in
one direction, e.g. z-axis, then the coefficients in other directions can be analytically
calculated from the coefficients this fixed direction based on the rotation property
of spherical harmonics [Assemlal et al., 2009a]. This implementation significantly
accelerates the estimation process.
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Figure 5.2: Overview of the inner product method for the computation of an EAP feature
G(k), where iFFT means inverse Fast Fourier Transform, which can also be solved analytically
in some kinds of kernels [Assemlal et al., 2009a; Assemlal, 2010]. This figure is from the slides
by Dr. Assemlal for his thesis defense.

In order to calculate the coefficients hk
nlm of the kernel hk(q) in a fixed direction, [As-

semlal et al., 2009a] proposed to use numerical integration, while [Assemlal, 2010]
analytically found the coefficients of some kinds of kernels, e.g. RTO, exact ODF by
Tuch Φt(r), ODF by Tuch using FRT. However these formulae of the analytical ker-
nels in [Assemlal, 2010] have some problems which makes the final EAP features are
incorrect. Please see the following subsection for the details.

This inner product method proposed by Dr. Assemlal has the following drawbacks.

� For the EAP P(R), this method does not give a continuous mathematical formula
to represent P(R) in R-space. The coefficients of the EAP profile P(R0r) with
fixed R = R0 and fixed direction r = k still need to be calculated in numerical
integration. After we estimated EAP profile P(R0r), for another radius R = R1,
the coefficients of the EAP profile P(R1r) need to be calculated again via the
numerical integration.

� For ODFs, the analytical results of exact ODF by Tuch Φt(r) and the original
ODF by Tuch using FRT in [Assemlal, 2010] are problematic, and [Assemlal,
2010] did not give the analytical result for ODF by Wedeen Φw(r). Actually the
kernel hk(q) of Φw(r) is so complex that Φw(r) can not be represented as an simple
inner product as

∫
R3 E(q)hk(q)dq. See the following subsection for details.

� In general, the kernel hk(q) is not easy to be analytically obtained from Hk(R),
which is the main reason why some important analytical formulae of hk(q) and
its SPF coefficients are wrong in [Assemlal, 2010].

5.1.2 Analytical Spherical Polar Fourier Imaging

After the SPF coefficients {anlm} for E(q) are estimated, the next step is to estimate the
EAP and its features from the pre-estimated {anlm}. Dr. Assemlal proposed a good least
square method in the estimation of SPF coefficients, and an inner product method in
the estimation of the EAP and its features, where the coefficients for kernels need to
be calculated numerically.

In this subsection, we propose the analytical results of the EAP and its features
from pre-estimated SPF coefficients.
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Fourier dual SPF (dSPF) basis and Analytical Form of EAP profile

Theoretically, since E(q) is fully represented by {anlm} and is related with P(R) by
Fourier transform, the EAP P(R) and its various features are still fully determined
by {anlm}. We proved that there are some linear, analytical transforms to obtain the
EAP P(R) and its various features from the pre-estimated {anlm}. Our method is close
in spirit to the methods in DOT [Özarslan et al., 2006] and DPI [Descoteaux et al.,
2009]. Adding a strong assumption (in DOT) or choosing a good representation of
E(q) (in DPI, SHORE and SPFI) will dramatically simplify the Fourier transform
in Eq. (4.24). By considering the plane wave equation in Eq. (5.12), which is Eq. (2.53)
with q vector and R vector,

cos(2πqT R) = 4π
∞∑

l=0

l∑
m=−l

(−1)l/2 jl(2πqR)Ym
l (u)Ym

l (r), (5.12)

we first propose analytically the Fourier dual SPF (dSPF) basis which is the Fourier
transform of SPF basis.

Proposition 5.1 (Fourier dual SPF basis). The Fourier transform of BSPF
nlm (q|ζ),

named as Fourier dual Spherical Polar Fourier (dSPF) basis, is BdSPF
nlm (R|ζ) =

Fnl(R|ζ)Ym
l (r), i.e.

BdSPF
nlm (R|ζ) def

= F {Gn(q|ζ)Ym
l (u)} = Fnl(R|ζ)Ym

l (r), R = Rr (5.13)

where

Fnl(R|ζ) =
ζ0.5l+1.5πl+1.5Rlκn(ζ)

(−1)l/2Γ(l + 1.5)

n∑
i=0

(
n + 0.5
n − i

)
(−1)i

i!
20.5l+i+1.5Γ(0.5l+i+1.5)1F1(

2i + l + 3
2

; l+
3
2

;−2π2R2ζ)

(5.14)
The dSPF basis is an orthonormal basis in real symmetric function subspace in
L2(R3, 1).

The proof can be found in Appendix 5.6. Although the radial part of dSPF basis
Fnl(R|ζ) looks complex, it also has a Gaussian-like decay as the radial part of SPF
basis. Please see Fig. 5.3 for Fnl(R|ζ) with typical scale ζ = 714.29mm−2. Based on the
above proposition, the EAP is represented by dSPF basis with the same coefficients
{anlm}.

Proposition 5.2 (Analytical EAP represented by dSPF basis). If E(q) is repre-
sented by SPF basis as E(q) =

∑N
n=0

∑L
l=0

∑l
m=−l anlmGn(q|ζ)Ym

l (u), then the EAP P(R) is
analytically obtained by dSPF basis as

P(R) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmFnl(R|ζ)Ym
l (r), R = Rr (5.15)

where Fnl(R|ζ) is in Eq. (5.14).
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(a) n = 0, 1, 2, 8, l = 0 (b) n = 0, 1, 2, 8, l = 2

Figure 5.3: The radial parts of several dSPF basis functions with scale parameter ζ =

714.29mm−2.

Proof. This proposition is a straightforward result of Proposition 5.1, because

F {E(q)} = F {
N∑

n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)}

=

N∑
n=0

L∑
l=0

l∑
m=−l

anlmF {Gn(q|ζ)Ym
l (u)}

=

N∑
n=0

L∑
l=0

l∑
m=−l

anlmFnl(R|ζ)Ym
l (r)

�

Thus we have a continuous representation of P(R) represented by dSPF basis with
the coefficients {anlm}. The EAP profile P(R0r) with radius R0 can be represented as

P(R0r) =

L∑
l=0

l∑
m=−l

( N∑
n=0

anlmFnl(R0|ζ)
)
Ym

l (r) (5.16)

which is represented analytically by SHs with the coefficient in Eq. (5.17), denoted
by cP

lm(R0).

cP
lm(R0) =

N∑
n=0

anlmFnl(R0|ζ) (5.17)

Now we obtain the linear transform from {anlm} to {clm} for EAP profile P(R0r) with
given radius R = R0, which could be implemented as an matrix multiplication. Please
note the following important differences between SPFI and DOT. Here our transfor-
mation is independent with the data, since fnl(R0) is just dependent on ζ and R0. Once
we give a radius R0 and the basis scale ζ, we have the transform. While in DOT,
the transform is dependent on the ADC value of data. Similarly with the appendix
in [Özarslan et al., 2006], here the confluent hypergeometric function 1F1 could also
be analytically separated into some more simple terms. However in practice we im-
plemented 1F1 in C++ with some scientific library, e.g. GSL1 or std::tr12. If the scale

1http://www.gnu.org/software/gsl/
2http://en.wikipedia.org/wiki/C++ Technical Report 1
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parameter ζ is set as the same value, the transform matrix just needs to be calculated
only once for all voxels. While in DOT, the transform that contains 1F1 needs to be
calculated in each voxel. In SPFI, P(R0r) and P(R1r) with different radii R0 and R1
shares the same coefficients {anlm}, thus we just need to estimate {anlm} once for differ-
ent EAP profile with different radius. While in DOT, even if we have estimated the
EAP profile P(R0r), we need to perform the estimation again for another EAP profile
P(R1r) with another radius R1.

An important similarity with DOT is that if we just choose N = 0 in radial part, our
transform will be the DOT, which could be seen from Eq. (5.17) and Eq. (5.14). That
is understandable because the order 0 of the radial basis follows mono-exponential
decay used in DOT. However, in SPFI we should use N ≥ 1 to describe anisotropic
decay, because the SPF basis with N = 0 in Eq. (5.1) only can represent isotropic
EAP. We will explain it in two aspects later in estimation of φw(r) in the following
subsection and the estimation of {anlm} with E(0) = 1 consideration in Section 5.1.3.

Analytical Forms of Orientation Distribution Functions

In this subsection we would like to deduce the elegant analytical solutions for these
two kinds of ODFs from the estimated SPF coefficients {anlm}. It has been shown in
subsection 4.3.4 that the radial integral of P(Rr) along direction r in R-space is equiva-
lent to the integration in the plane Πr in q-space which is orthogonal to r [Aganj et al.,
2010b; Tristán-Vega et al., 2010; Canales-Rodrıguez et al., 2009]. See Proposition 4.1
and Eq. (4.64), where ∆b is the Laplace-Beltrami operator.

We also give the results of the integration in a given disk Πr,C with the radius C.
In Eq. (4.64), the integration Φt(r) gives the same weight for E(q) with large q and for
E(q) with small q. However, if we have the data with several b values, the error of
estimated signal Ẽ(q) will be small if q is between these b values and will be large if
q is larger than all b values. Thus if an approximate C is given, the disk integrations
Φt(r,C) and Φw(r,C) may have better angular resolution than plane integrations Φt(r)
and Φw(r) [Tristán-Vega et al., 2010].

The following two propositions give two kinds of estimations by plane integration
and disk integration respectively for Φt(r) and Φw(r). Their proofs are in Appendix 5.6.

Proposition 5.3 (Analytical Φt(r) represented by SH basis). If E(q) is represented
by SPF basis as E(q) =

∑N
n=0

∑L
l=0

∑l
m=−l anlmGn(q|ζ)Ym

l (u), then the ODF by Tuch Φt(r) is
analytically obtained by SH basis as

Φt(r) =

L∑
l=0

l∑
m=−l

cΦt
lmYm

l (r), cΦt
lm =

N∑
n=0

n∑
i=0

κn(ζ)
(
i − 0.5

i

)
(−1)n−iPl(0)anlm (5.18)

The disk integration with radius C for Φt(r) is analytically given as

Φt(r,C) =

L∑
l=0

l∑
m=−l

cΦt
lm(C)Ym

l (r), cΦt
lm(C) =

N∑
n=0

n∑
i=0

κn(ζ)
(
n + 0.5
n − i

)
(−2)i

i!
γ(i + 1, 0.5C2/ζ)Pl(0)anlm

(5.19)
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Proposition 5.4 (Analytical Φw(r) represented by SH basis). If E(q) is repre-
sented by SPF basis as E(q) =

∑N
n=0

∑L
l=0

∑l
m=−l anlmGn(q|ζ)Ym

l (u), then the ODF by Wedeen
Φw(r) is analytically obtained by SH basis as

Φw(r) =

L∑
l=0

l∑
m=−l

cΦw
lm Ym

l (r), cΦw
lm =

1
√

4π
δ00

lm−
1

8π

N∑
n=1

n∑
i=1

(−1)iκn(ζ)
(
n + 0.5
n − i

)
2i

i
Pl(0)(−l)(l+1)anlm

(5.20)
The disk integration with radius C for Φw(r) is analytically given as

Φw(r,C) =

L∑
l=0

l∑
m=−l

cΦw
lm (C)Ym

l (r) (5.21)

cΦw
lm (C) =

1
√

4π
δ00

lm −
1

8π

N∑
n=1

n∑
i=1

(−1)iκn(ζ)
(
n + 0.5
n − i

)
2i

i!
γ(i, 0.5C2/ζ)Pl(0)(−l)(l + 1)anlm

Now we have two estimators for Φw(r). One is the integration in the whole plane,
which is similar with [Aganj et al., 2010b], and the other one is the integration in
a given disk, which is similar with [Tristán-Vega et al., 2010]. However, the mono-
exponential decay model was assumed during the disk in [Tristán-Vega et al., 2010]
as discussed in Appendix 4.7, and in the whole plane in [Aganj et al., 2010b], so that
the radial integration can be estimated from single shell data in the circle with radius
q = q0. While our method does not need any assumption on the data and it can handle
the data in different shells thanks to the radial basis in SPF basis.

Moreover please note three important points in the formulae above.

� First, we obtain the exponential integral E1(x) in the derivation process, but it
is negligible. While in [Tristán-Vega et al., 2010], it is indispensable.

� Second, Eq. (5.21) and Eq. (5.20) tell us that at least order 1 of Gn(q|ζ) is needed
to represent an anisotropic ODF. That is true because if we just use the radial
basis of order zero, i.e. n = 0, it is easily seen that the estimated signal is just an
isotropic one, which means the estimated ODF is isotropic. Thus we need to use
at least n = 1 to obtain a reasonable results, which explains why we need to set
N ≥ 1. In order to estimate the coefficients well, it is better to use the data from
more than one shell, although our methods can be performed in single shell
data. This will be revisited later.

� Third, for single shell data, the radius C can be naturally chosen as the q0 value
of the sampled shell [Tristán-Vega et al., 2010]. However, in multiple shell data,
how to choose an approximate C for Φw(r,C) and Φt(r,C) is still unknown and out
of the scope of this thesis. Since the improvement of Φw(r,C) in [Tristán-Vega
et al., 2010] over Φw(r) in [Aganj et al., 2010b] is very subtle [Tristán-Vega et al.,
2010], in this thesis we just consider the Φw(r) and Φt(r), not Φw(r,C), Φt(r,C).

Analytical Forms of Scalar Indices

Return-To-Origin (RTO) probability. In SFPI, we can easily estimate Return-
To-Origin (RTO) probability from Eq. (5.1), or by setting R0 = 0 in Eq. (5.16). These
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two ways are equivalent. Considering Eq. (2.83) [Gradshteyn and Ryzhik, 2007] and∫
S2 Ym

l (u)du =
√

4πδ00
lm, we have

Po =

∫
R3

E(q)dq =

∫
R3

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)q2dqdu

=

N∑
n=0

L∑
l=0

l∑
m=−l

anlm

{∫ ∞

0
Gn(q|ζ)q2dq

}{∫
S2

Ym
l (u)du

}

=
√

8π
N∑

n=0

(−1)nκn(ζ)ζ1.5 Γ(n + 1.5)
n!

an00

= 4
√
πζ

3
4

N∑
n=0

(−1)n

√
Γ(n + 1.5)

n!
an00 (5.22)

Note if we set R0 = 0 in Eq. (5.16), we obtain the EAP profile Fnl(0|ζ)Ym
l (u) which is a

spherical function represented by SH basis. However, it is easy to verify that

Fnl(0|ζ) = 0, if l > 0

which means this EAP profile at R = 0 is an isotropic spherical function whose value
is the same in Eq. (5.22).

Mean Squared Displacement (MSD). Mean Squared Displacement (MSD) de-
fined in Eq. (4.45) [Wu and Alexander, 2007] is used to describe the average
diffusivity. Since E(q) and P(R) are related by Fourier transform in Eq. (4.24),
− 1

4π2 ∆E(q) and R2P(R) are also related by Fourier transform. By considering E(q) =∑
nlm anlmGn(q|ζ)Ym

l (u) we have

MS D =

∫
R3

P(R)R2dR = −
1

4π2 ∆E(q)
∣∣∣∣q=0

= −
1

4π2

(1
q
∂2(qE(q))

∂q2 +
1
q2∇bE(q)

)∣∣∣∣q=0
(5.23)

= −
1

4π2

(∑
nlm

anlm
(2
q

G′n(q|ζ)Ym
l (u) + G′′n (q|ζ)Ym

l (u) +
1
q2 Gn(q|ζ)(−l)(l + 1)Ym

l (u)
))∣∣∣∣q=0

(5.24)

= −
1

4π2

(∑
nlm

(3 +
1
2

(−l)(l + 1))anlmG′′n (q|ζ)Ym
l (u)

)∣∣∣∣q=0
(5.25)

'
3

8π2.5

N∑
n=0

an00
κn(ζ)
ζ

(2L3/2
n−1(0) + L1/2

n (0)) (5.26)

From Eq. (5.23) to Eq. (5.24), we use the properties of SH, ∇bYm
l (u) = (−l)(l + 1)Ym

l (u).
From Eq. (5.24) to Eq. (5.25), we consider E(0) = 1, G′n(0|ζ) = 0 and keep performing the
L’Hôpital’s rule. Please note that in Eq. (5.25) we actually obtain a spherical function
for q = 0,∀u ∈ S2, while MSD is just a scalar value. If the SPF basis represents E(q)
without numerical error, the spherical function should be isotropic with the same
value for u ∈ S2. However, our experiments showed that this spherical function is not
always isotropic in practice, probably because the proposed MSD estimator uses the
second derivative which is not very stable with the estimation error of {anlm}. So we
use the mean of the spherical function as an approximation of MSD, which is shown
in Eq. (5.26), where we denote L3/2

−1 (0) = 0.
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Generalized Fractional Anisotropy (GFA) for EAPs. In dMRI, the data in each
voxel is normally a coefficient vector which has some complex biological meaning. It
is useful to extract some scalar measurements from the complex coefficient vectors.
In clinical study, various brain pathologies may be best detected by measuring the
diffusion anisotropy. In DTI, the Fractional Anisotropic (FA) of tensor D is defined as

√
3||D − 1

3 Trace(D)I||
√

2||D||

where I is the identity matrix. FA is actually normalized `2 distance between the
given tensor D and the nearest isotropic tensor 1

3 Trace(D)I. In QBI [Tuch, 2004],
FA was generalized from tensor to ODF. For a given ODF φ(u) GFA is defined as
std(φ(u))
rms(φ(u)) [Tuch, 2004]. In discrete case, it is given in Eq. (4.61). If we use SH to
represent φ(u), i.e. φ(u) =

∑L
l=0

∑l
m=−l clmYm

l (u), then the GFA is√√
1 −

c2
00∑L

l=0
∑l

m=−l c2
lm

which is actually still the normalized `2 distance between the given ODF φ(u) and
the nearest isotropic ODF c00Y0

0 (u). Please note that the GFA for ODFs actually
could be directly used for any function defined in S2. For example, GFA can be used
for EAP profiles [Cheng et al., 2010b]. Thus we call it as GFA for spherical func-
tions. However, to our knowledge so far there is no counterpart for EAPs which are
functions in R3. Although we can calculate GFA for given EAP profile with radius
R0, this kind of GFA can not describe the anisotropy in whole R-space. Moreover, it
is not unique for a given EAP, because different radius R0 has different GFA. Here
we proposed GFA for EAPs, which is defined as the normalized `2 distance between
the given EAP P(R) to the nearest isotropic EAP. In general case, the EAP P(R) is
isotropic if and only if P(R) = F(R)Y0

0 (r), where F(R) can be any nonnegative definite
function. Thus for any general EAP P(R), its nearest EAP is

Piso(Rr) =

(∫
S2

P(Rr)Y0
0 (r)dr

)
Y0

0 (r) =
1

4π

∫
S2

P(Rr)dr

which is the solution of minimization

min
F(R)
‖P(R) − F(R)Y0

0 (u)‖2

Note that the integration of Piso(Rr) is one and Piso(Rr) ≥ 0 because P(Rr) ≥ 0. So
Piso(Rr) is indeed an EAP. Then the GFA for EAP P(R) is defined as

GFA =

√√√√
1 −

∥∥∥∥(∫S2 P(Rr)Y0
0 (r)dr

)
Y0

0 (r)
∥∥∥∥2

‖P(R)‖2
(5.27)

where ‖ · ‖ is the standard `2 norm in L2(R3, 1). The GFA for EAPs is naturally
normalized in [0, 1]. Mathematically all isotropic tensors/ODFs/EAPs form a linear
space (rigorously a convex space because of some biological constraints), the GFA
for tensors/ODFs/EAPs is defined as the normalized projection distance. Please note
that this concept of GFA for EAPs can have different implementation in different
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HARDI methods. That is because in different HARDI method the representation of
the nearest isotropic EAP is different. In SPFI, for any given EAP represented as
P(R) =

∑N
n=0

∑L
l=0

∑l
m=−l anlmBdSPF

nlm (R), its nearest isotropic EAP is

N∑
n=0

an00BdSPF
n00 (R)

So in SPFI the GFA for EAPs is defined as the normalized `2 distance as

GFA =

√√
1 −

∑N
n=0 a2

n00∑N
n=0

∑L
l=0

∑l
m=−l a2

nlm

(5.28)

5.1.3 Implementation Issues

Three Steps

The implementation of SPFI includes three steps, where we have demonstrated above
the analytical forms for the third step.

1. The first step is to estimate the scale parameter ζ in the SPF basis used in the
following steps.

2. The second step is to estimate SPF coefficients {anlm} from the signal samples
{E(qi)}. These coefficients are also the coefficients of EAP P(R) under dSPF basis.
This is the estimation step with estimation error.

3. The third step is the linear analytical transforms proposed above from {anlm} to
{clm} of EAP profile and ODFs, and to scalar indices, which is actually indepen-
dent of the first two steps. The whole estimation error is just from the first two
steps, since the third step is analytical and compact.

Note it is possible to incorporate the first two steps into one step which estimates both
{anlm} and ζ simultaneously from the signal samples {E(qi)}. However we separate it
into two steps, which has good efficiency and property.

Estimation of Scale Parameter

The SPF basis {BSPF
nlm (q|ζ)} forms an orthonormal basis in the real symmetric function

subspace in L2(R3, 1). If N and L are large enough, we can use SPF to represent
the signal with any given representation MSE, no matter how the ζ is. However,
for a given representation MSE, an appropriate ζ can let N and L be chosen as small
numbers as possible. In practice, the N and L can not be chosen as very large numbers
due to the limited number of signal samples with noise. Thus the scale parameter ζ
is crucial for estimation results. There are several possible ways to set ζ.

� [Assemlal et al., 2008, 2009a] proposed an experimental strategy for ζ, which
is dependent on the radial truncation order N. However, we think the scale
parameter should be an intrinsic property of the signal which is just dependent
on the signal, not on the basis order.
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� [Assemlal et al., 2009b; Assemlal, 2010] considered to set ζ based on the esti-
mated ADC, which we also considered in [Cheng et al., 2010a,b]. Consider an
isotropic Gaussian signal as E(q) = exp(−4π2τq2D). Then if we set

ζ =
1

8π2τD
(5.29)

E(q) = exp(− q2

2ζ ) ∝ G0(q|ζ), then we can use only the first basis BSPF
000 (q|ζ) =

G0(q|ζ)Y0
0 (u) to represent it. So the idea is to fit the signal with an isotropic

tensor model, then set ζ based on the ADC D. Note this setting is not optimal,
because it minimizes the following cost function

min
ζ
‖E(q) − a000G0(q|ζ)Y0

0 (u)‖2 = min
ζ

∫
R3

(
E(q) − exp(−

q2

2ζ
)
)2

dq (5.30)

where a000Y0
0 (u) = 1 because E(0) = 1. However if E(q) can be represented without

error by

E(q) =

N∗∑
n=0

L∗∑
l=0

l∑
m=−l

a∗nlmGn(q|ζ∗)Ym
l (u) (5.31)

and an00 , 0 for at least one n > 0, then the solution of Eq. (5.30) is not ζ∗. That
is because we do not consider infinite terms in Eq. (5.30).

� We proposed in [Cheng et al., 2010a,b] to set the scale ζ as an typical ADC in
brain, i.e.

D0 = 0.7 × 10−3mm2/s, ζ =
1

8π2τD0
(5.32)

Then if τ = 1
4π2 = 0.02533s the typical scale ζ is

ζ =
1

8π2τD0
= 714.29mm−2 (5.33)

which has been used in Fig. 5.1(b) and will be used in Chapter 6. If ζ is set
by Eq. (5.32), every voxel shares the same scale and the same basis set, which
is more efficient and makes Riemannian framework in Chapter 6 computable.

� Another possible solution is to minimize the following cost function with respect
to both anlm and ζ for chosen N and L.

min
{anlm},ζ

∥∥∥∥∥∥∥E(q) −
N∑

n=0

L∑
l=0

l∑
m=−l

anlmGnlm(q|ζ)Ym
l (u)

∥∥∥∥∥∥∥
2

(5.34)

This is to incorporate the first step into the second step. The cost function can
be minimized via an iterative process.

1. Set an initialization for ζ, which can be set from a typical D0 or from the
fitting of the isotropic tensor model.

2. Loop the iteration process until convergence. When ζ is fixed, the coeffi-
cients of {anlm} are analytically represented by matrix multiplication. When
{anlm} are fixed, ζ can be updated by a classical gradient descent method.
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The final solution of ζ is not guaranteed to be the global minimum, and even
the global minimum of above minimization is still not guaranteed to be the true
value ζ∗ unless N∗ in Eq. (5.31) is less than N. Moreover, the estimation is time
consuming since the iterative process needs to be performed in each voxel.

In order to estimate the scale value, we first define the Spherical Polar Non-
Polynomial (SPNP) basis and Generalized High Order Tensor (GHOT) model.

Definition 5.1 (Spherical Polar Non-Polynomial Basis and Generalized High
Order Tensor Model). Spherical Polar Non-Polynomial (SPNP) basis is defined as

BSPNP
nlm (q|ζ) = exp

(
−

q2

2ζ

) (
q2

ζ

)n

Ym
l (u) (5.35)

Generalized High Order Tensor (GHOT) model is defined as

E(q) = exp

− N∑
n=1

L∑
l=0

l∑
m=−l

bnlm

(
q2

ζ

)n

Ym
l (u)

 (5.36)

where {Ym
l (u)} are the real symmetric SHs, ζ is the scale parameter. For given diffusion

time τ, the pseudo-ADC of GHOT model denoted by Dp is defined as the coefficient of
4π2τq2, i.e.

Dp =
b100

8π5/2τζ
(5.37)

Please note the following things for SPNP basis and GHOT model.

� {BSPNP
nlm (q|ζ)} is a basis of the symmetric real function subspace in L2(R3, 1), be-

cause
{
exp

(
−

q2

2ζ

) (
q2

ζ

)n}
is a basis in L2([0,∞), q2) and {Ym

l (u)} is an orthonormal

basis in symmetric real function subspace of L2(S2, 1). Thus for any given E(q),
the representation error converges to zero as N and L increase.

� For given N, the function space spanned by polynomial basis {q2n}0≤n≤N restricted
in [0,∞) is the same space spanned by {L1/2

n ( q2

ζ )}0≤n≤N , ∀ζ. Thus for given N and
L, the SPNP basis set {BSPNP

nlm (q|ζ)}0≤n≤N,0≤l≤L forms the same space as the SPF
basis set {BSPF

nlm (q|ζ)}0≤n≤N,0≤l≤L.

� In GHOT model, the index n start from 1, because the prior E(0) = 1 means
b0lm = 0 if n starts from 0. When N = 1, GHOT becomes the HOT model with
tensor order L, because the space spanned by HOT basis with order L is the
same space spanned by SHs with orders no more than L. See Theorem 4.1.
When N = 1 and L = 2, GHOT model is the DTI model.

� In GHOT model, the ADC is represented by the basis
{(

q2

ζ

)n
Ym

l (u)
}

that is a basis

of L2(R3, 1). Thus GHOT representation is model-free, which can represent any
E(q) ∈ L2(R3, 1). The pseudo-ADC is the isotropic quadratic part of ADC.

� Actually the scale parameter ζ can be put into {bnlm} in both SPNP basis and
GHOT model. ζ is only set for reducing the numerical error when estimating
the coefficients of polynomial basis. For the estimation of the coefficients from
DWI samples, the scale ζ is set as 0.5q2

max in practice, where qmax is the maximal
q value of the measured E(q).
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With the definition of GHOT model, we have the following theorem which is useful
to set the scale parameter ζ in SPF basis. See Appendix 5.6 for the proof.

Theorem 5.1 (Set the scale in SPF basis via GHOT model). When using SPF
basis to fit the diffusion signal attenuation represented by GHOT model as E(q) =

exp
(
−

∑∞
n=1

∑∞
l=0

∑l
m=−l bnlm

(
q2

ζ1

)n
Ym

l (u)
)
, if b100 > 0, the optimal scale parameter ζ of SPF

basis for any given L and large enough N is

ζ =
ζ1
√
π

b100
=

1
8π2τDp

(5.38)

In other words, define the representation MSE for any given L and N as

MS ENL(ζ) =

∥∥∥∥∥∥∥E(q) −
N∑

n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)

∥∥∥∥∥∥∥
2

=

∫
R3

E(q) −
N∑

n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)


2

dq

(5.39)
then the limit

lim
N→∞

MS ENL(ζ) (5.40)

obtains its global minimal value when ζ =
ζ1
√
π

b100
.

Note the global optimal value in above theorem is for infinite radial terms. That
is what we want as discussed above on the limitations of other solutions. Based on
this theorem, we can first fit the signal samples using GHOT model with ζ1 = 0.5q2

max
in practice, then set ζ based on the first coefficient b100. Note although

ζ =
ζ1
√
π

b100
=

0.5q2
max
√
π

b100

ζ is actually independent of ζ1, because ζ1 is used to reduce the condition number of
the basis matrix for large N and b100

ζ1
is the real coefficient for the basis q2Y0

0 (u). Like
HOT model the estimated coefficients {bnlm} in GHOT model are dependent on order
N and L in Eq. (5.36). The estimated ADC is sensitive to the order N and L. However
we do not need to estimate ADC well, what we need is only b100 for scale ζ in SPF
basis. Fitting GHOT model can be formalized to a least square problem as

min
b
‖ ln E + Mb‖2 (5.41)

where ln is element-wise logorithmic operator performed in E, M is the basis matrix
generated from basis

{(
q2

ζ1

)n
Ym

l (u)
}
, and b = (b100, · · · , bNLL)T . Thus

b = (MT M)−1MT ln E (5.42)

Note the setting of ζ based on GHOT model fitting is in spirit an ADC modeling,
which is a generalization of previous setting based on isotropic tensor fitting. If signal
samples are obtained from multiple shells and in each shell the samples are evenly
distributed in S2, then the scale ζ by the least square fitting in Eq. (5.41) with N and
L is equivalent with the least square fitting with N′ = N and L′ = 0, which is just the
isotropic Gaussian function fitting in Eq. (5.30) when N = 1. That is because based on
the orthogonality of SH basis, the columns of basis matrix M are orthonormal to each
other. So the isotropic Gaussian function fitting is a specific case of the GHOT model
fitting.
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Least Square Estimation with the prior E(0) = 1

The estimation of {anlm} is done in the second step, which has several choices. [Assem-
lal et al., 2009a] proposed two methods to estimate {anlm}, a linear least square fitting
with regularization in the radial and spherical parts, and a non-linear variational
optimization process, which considers the Rician noise and spatial information. We
suggest that the Rician noise removal could be performed directly on the DWI data
as a pre-processing step [Tristán-Vega and Aja-Fernández, 2010; Descoteaux et al.,
2008b], although in our experiments, in order to perform fair comparisons of meth-
ods we did not perform any Rician noise removal. In this chapter we choose the least
square method in the second step which is known to be faster. Note even in such a
simple least square estimation, there is an important issue which needs to be consid-
ered carefully.

In order to reduce the estimation error in this step, we need to consider the prior
of E(0) = 1 in the estimation. When E(q) is represented by SPF basis in Eq. (5.1), we
have

E(0) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(0)Ym
l (u) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmκn(ζ)Ym
l (u) (5.43)

Note that E(0) in the above formula is a spherical function, not a scalar value. That
means the function under SPF representation is not continuous when q = 0, unless
we add some constraints in {anlm} such that E(0u) is an isotropic spherical function.
Moreover normally when we have Ns DWI images, the basis matrix in Eq. (5.6) is gen-
erated from these Ns samples, then the solution of least square problem in Eq. (5.8)
has no guarantee that the estimated signal satisfies the prior E(0) = 1.

In our previous studies [Cheng et al., 2010a,b, 2011b,c; Caruyer et al., 2011; Mer-
let et al., 2011], we considered an artificial sampled shell at q = 0, such that the least
square problem in Eq. (5.8) becomes

min
A
‖E − MS PFA‖2 + w2‖E(0) − M(0)

S PFA‖2 + AT ΛA

where E(0) is an artificial data vector (1, 1, · · · , 1)T with dimension N(0)
s . M(0)

S PF is gener-

ated in Eq. (5.6) from N(0)
s directions {u j}

N(0)
s

j=1 and q = 0, w is a weight between the term
with real DWI samples and artificial samples in the shell with q = 0. Then the new
least square problem is equivalent with

min
A
‖E′ − M′S PFA‖2 + AT ΛA, E′ =

(
E

wE(0)

)
,M′S PF =

(
MS PF

wM(0)
S PF

)
(5.44)

Then the final solution is

A = (M′TS PF M′S PF + Λ)−1M′TS PFE′

In practice, we choose {u j}
N(0)

s
j=1 as 81 evenly distributed vertices of a tessellated icosa-

hedron in a hemisphere. Normally w = 1 works well in most cases. If the number of
DWI data are large and SNR is very low, w needs to be increased. In practice, w ∈ [1, 5]
works well. Note w can not be too large, otherwise the condition number of M′B will
be large.
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Here we propose a new way to consider the constraint E(0) = 1. Based
on Eq. (5.43), E(0) = 1 means

N∑
n=0

anlmGn(0) =
√

4πδ0
l , 0 ≤ l ≤ L,−l ≤ m ≤ l (5.45)

which are (L + 1)(L + 1)/2 equations that should be satisfied by (N + 1)(L + 1)(L + 1)/2
unknowns {anlm}. If N = 0, A can be solved by Eq. (5.45) such that

a000 =

√
4π

G0(0)
, a0lm = 0,∀0 ≤ l ≤ L,−l ≤ m ≤ l

So the estimated signal is

Ẽ(q) =

√
4π

G0(0)
G0(q)Y0

0 (u) =
G0(q)
G0(0)

which represents only the isotropic signal. It is another explanation why we need
N ≥ 1.

In order to satisfy Eq. (5.45), we can consider {a0lm}l≤L are dependent on
{anlm}0<n≤N,l≤L, i.e.

a0lm =
1

G0(0)

√4πδ0
l −

N∑
n=1

anlmGn(0)

 , 0 ≤ l ≤ L,−l ≤ m ≤ l (5.46)

Then we have

N∑
n=1

L∑
l=0

l∑
m=−l

anlmYm
l (u)

(
Gn(q) −

Gn(0)
G0(0)

G0(q)
)

= E(q) −
G0(q)
G0(0)

(5.47)

So the least square solution of A′ = (a100, · · · , aNLL)T is

A′ = (M′TS PF M′S PF + Λ′)−1M′TS PFE′ (5.48)

where

M′S PF =


(
G1(q1|ζ) − G1(0|ζ)

G0(0|ζ)G0(q1|ζ)
)

Y0
0 (u1) · · ·

(
GN(q1|ζ) − GN (0|ζ)

G0(0|ζ) G0(q1|ζ)
)

YL
L (u1)

...
. . .

...(
G1(qNs |ζ) − G1(0|ζ)

G0(0|ζ)G0(qNs |ζ)
)

Y0
0 (uNs) · · ·

(
GN(qNs |ζ) − GN (0|ζ)

G0(0|ζ) G0(qNs |ζ)
)

YL
L (uNs)


(5.49)

E′ =


E(q1) − G0(q1)

G0(0)
...

E(qNS ) − G0(qNs )
G0(0)

 , Λ′ =


Λ′100 · · · 0
...

. . .
...

0 · · · Λ′NLL

 , Λ′nlm = λll2(l+1)2 +λnn2(n+1)2 (5.50)

Note that here we use the regularization proposed by Dr. Assemlal shown in sub-
section 5.1.1. Compared to the original least square method in Eq. (5.9), the reg-
ularization here is only considered for the coefficients {anlm}0<n≤N . Please note that
although we can set any set of (L + 1)(L + 2)/2 coefficients dependent on the other
coefficients, we choose {anlm}0<n≤N,l≤L because we would like to keep the high order
coefficients with large regularization Λnlm in estimation. Note that E(q) − G0(q)

G0(0) =
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E(q) − exp(− q2

2ζ ) is the signal removed the approximated isotropic Gaussian part, and(
Gn(q) − Gn(0)

G0(0)G0(q)
)

Ym
l (u) is the basis Gn(q)Ym

l (u) removed the isotropic Gaussian part.
After we obtain A′, another part of coefficients

A0 = (a000, · · · , a0LL)T

can be calculated from Eq. (5.46). Then the final coefficient vector which naturally
satisfies E(0) = 1 is

A =

(
A0
A′

)
(5.51)

Please refer Table 5.1 for the whole estimation process in analytical SPFI, which
includes three steps.

1. The first step is to estimate scale parameter ζ by two ways. One is based on the
typical value from typical ADC in brain, and the other one is based on fitting
the signal with the GHOT model.

2. The second step is the least square estimation of coefficient A by considering
the prior E(0) = 1 and the radial and spherical regularizations.

3. The third step is to analytically obtain EAP and its various features from the
estimated A.

Note these three steps are actually independent of each other. So other methods
are possible to be considered in scale estimation and A estimation. For example,
we have proposed to use `1 norm minimization to estimate the coefficient A in the
second step [Cheng et al., 2011c], which can be seen as the compressive sensing EAP
reconstruction.

In the first step, if we set the scale parameter based on typical ADC value,
then the scale ζ is shared in each voxel. In this case the basis matrix M′S PF and
(M′TS PF M′S PF + Λ′)−1 in Eq. (5.48) only need to be calculated once for all voxels. The
analytical linear transforms in the third step also only need to be calculated once for
all voxels. Thus the whole estimation process is very fast. Moreover, if the shared
scale ζ is used, the following operations on EAP field can be performed only on coef-
ficient vector A, which is needed in Riemannian framework in Chapter 6. Otherwise
we need to consider the effect of basis in the operation of EAP field, which is normally
complex and time consuming. However, using adaptive scale in different voxel can
obtain better estimation results. When using adaptive scale, the basis matrix is dif-
ferent for different voxel, so is the linear transform in the third step. Thus it takes
more time using adaptive scale. But it is still very fast, if least square method is
used. The consideration of E(0) = 1 makes a set of coefficients {a0lm}l≤L out of the esti-
mation process, which accelerates the method. Moreover, it is possible to accelerate
the method by reusing the pre-calculated basis matrix with close scale. Although the
scale is different for different voxel when we set scale by fitting the GHOT model, a
good estimation of scale normally obtains smooth scale map with a small range. Then
the range can be separated into small partitions, and the voxels with the scale values
inside the same partition can be considered approximately to share the same scale
and same basis matrix.
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Table 5.1: SPFI via least square estimation with scale estimation and E(0) consideration.

Input:
V : X x Y x Z x Ns diffusion weighted MRI volume
Exyz : Ns x 1 diffusion weighted signal vector at voxel (x, y, z)
N, L : the order of Gaussian-Laguerre function and the order of SH basis
in SPF basis, N ≥ 1, L ≥ 4
λn, λl: regularization weights in radial and spherical parts
N′, L′ : the order of polynomial basis and order of SH basis in GHOT
model, N′ ≥ 1, L′ ≥ 0

Output:
Axyz : NA = (N +1)(L+1)(L+2)/2 dimensional coefficient vector of E(q) under
SPF basis at voxel (x, y, z)
EAP and its features: P(R), P(R0r), Φt(r), Φw(r), Po, MS D, GFA

1. Scale ζ Estimation based on typical value or GHOT model:
a) based on typical value: ζ = 1

8π2τD0
, D0 = 0.7 × 10−3mm2/s

b) M: basis matrix generated from basis
{(

q2

0.5q2
max

)n
Ym

l (u)
}

b = (MT M)−1MT ln E, b = (b100, · · · , bN′L′L′)T is the coefficient vector

ζ =
0.5q2

max
√
π

b100

2. Least Square Estimation of coefficient vector A:
M′S PF= Eq. (5.49): Ns x NA′ matrix from SPF basis, NA′ = N(L + 1)(L + 2)/2

E′ =


E(q1) − G0(q1)

G0(0)
...

E(qNS ) − G0(qNs )
G0(0)

 : Ns x 1 dimensional data vector, Gn(q) = Eq. (5.2)

Λ′ =


Λ′100 · · · 0
...

. . .
...

0 · · · Λ′NLL

: NA′ x NA′regularization matrix
Λ′nlm = λll2(l + 1)2 + λnn2(n + 1)2

A′ = (M′TS PF M′S PF + Λ′)−1M′TS PFE′

A0 = (a000, · · · , a0LL)T , a0lm = 1
G0(0)

(√
4πδ0

l −
∑N

n=1 anlmGn(0)
)

A =

(
A0
A′

)
3. Analytical Calculation of EAP and its features from A:

P(Rr) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmFnl(R)Ym
l (r), Fnl(R) = Eq. (5.14)

P(R0r) =

L∑
l=0

l∑
m=−l

cP
lm(R0)Ym

l (r), cP
lm(R0) =

N∑
n=0

anlmFnl(R0)

Φt(r) =

L∑
l=0

l∑
m=−l

cΦt
lmYm

l (r), cΦt
lm = Eq. (5.18), Φw(r) =

L∑
l=0

l∑
m=−l

cΦw
lm Ym

l (r), cΦw
lm = Eq. (5.20)

Po = Eq. (5.22), GFA = Eq. (5.28), MS D = Eq. (5.26)
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The effect of the diffusion time τ

Diffusion time τ is used to determine q values from b values. Normally when we have
a data set, only b values and gradients are known. The diffusion time τ is not stated in
most of time unless the people who acquired the data tell us additionally. Fortunately
many methods do not need diffusion time, e.g. DTI, QBI, etc. However, in SPFI we
use the q values explicitly which are calculated based on b = 4π2τq2. Then how SPFI
works for the data without knowing the diffusion time τ? For example, the public
phantom data used in Fiber Cup in MICCAI 2009 described in Appendix B [Fillard
et al., 2011; Poupon et al., 2008] did not report the diffusion time τ. We may assume a
diffusion time τ1 and estimate the EAP and its features under the assumption τ = τ1.
Thus it is necessary to study how the estimated results change when τ changes and
discuss how we set τ in SPFI. For different diffusion time τ the estimated EAP and
its features from SPFI satisfy the following proposition whose proof can be found in
Appendix 5.6.

Proposition 5.5 (Invariance for different diffusion time τ). For a given data set
with known b values and gradients {u j}

Ns
j=1 and unknown diffusion time τ, if ζ is set

in Eq. (5.38) by fitting GHOT model, then the estimated Φt(r), Φt(r,C), Φw(r), Φw(r,C),
RTO, MSD, GFA are invariant for different diffusion time τ. If we denote the EAP
estimated from τ by P(Rr, τ), then

P(Rr, τ2) =

(
τ1

τ2

)3/2

P(
√
τ1

τ2
Rr, τ1) (5.52)

Note that the proof of this proposition is independent of the least square estima-
tion of {anlm}. For other estimation of {anlm}, this proposition also holds. The proposition
shows the axis of estimated EAP is scaled due to the change of τ. Since the ODFs are
defined as the normalized radial integration of EAP, they are invariant for different
τ. Based on the definition of RTO, MSE, GFA, they are also scale invariant. This is
analogous to DTI, where the tensor D, ODFs and scalar indices are all independent
of τ, while the EAP in DTI is P(R) = N(R|2τD) which is scaled by τ. See Appendix 5.8.
In DTI, Eq. (5.52) also holds, i.e.

N(R|2τ2D) =

(
τ1

τ2

)3/2

N(
√
τ1

τ2
R|2τ1D)

Note if we set ζ in SPFI based on isotropic tensor model or based on a typical ADC
D0 as we have discussed, this proposition also holds, because in these cases τζ are
constant in the estimation.

Thus although we use q values explicitly in SPFI, it was proved that SPFI only
needs b values and gradients to obtain the EAP and its features. The shape of the
estimated EAP profile (NOT EAP profile itself) is independent of the diffusion time.
Other EAP features are invariant to the change of τ. In practice, if we do not know τ,
we can set it as τ = 1

4π2 = 0.02533s such that b = q2. Throughout this thesis, we always
set τ = 0.02533s in experiments because we do not know the exact τ of data sets.
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Parameter Selection in Practice

In this subsection, we would like to discuss how to choose the parameters in the
estimation process shown in Table 5.1. The practical process includes three parts.

� Determine N′, L′ in GHOT model based on pseudo-ADC map for scale
estimation. In the first step, if the scale parameter ζ is set by fitting the GHOT
model with order N′ and L′, then ζ is dependent on N′ and L′ due to the limited
number of samples in discrete least square estimation. Note that the fitting of
GHOT model is very fast because the basis matrix in GHOT model is shared
in each voxel. Thus in practice for real data, we can perform scale estimation
several times efficiently with different N′, L′. Then we obtain a set of pseudo-
ADC maps for different N′ and L′, where there is a pseudo-ADC value in each
voxel. A good scale estimation should obtain smooth pseudo-ADC map with
good quality. Thus we can set N′, L′ by checking the quality of pseudo-ADC
map. Normally N′ = 1, L′ = 4 works in most cases. If the samples are obtained
from multiple shells and evenly distributed in each shell, then we can set L′ = 0.
However, N′ should be as large as possible if the pseudo-ADC map has good
quality. For a large number of DWI data with high SNR, N′, L′ can be increased.

� Determine N, L, λn, λl in SPF coefficient estimation based on GFA, MSD
and RTO maps. In the second step, if least square estimation is used, the
estimation is fast, although different voxel may use different scale. Thus we
can perform the estimation several times with different N and L. Then a set of
GFA, MSD and RTO maps can be obtained from a set of possible N and L. Again,
a good coefficient A estimation means a good quality of these scalar index map.
Thus we can determine an appropriate pair of N and L by checking the quality of
these scalar maps. In practice, if least square estimation is used for coefficient
A estimation, N can be 1, 2 and L can be 4, 6. Normally (N, L) = (1, 4) works in
most cases, especially when scale ζ is estimated well. However, N, L should be
as large as possible if the scalar maps keep good quality as N, L increase. λn

and λl are dependent on sampling scheme, noise level, selection order N, L, and
the scale ζ. So there is no general optimal values for λl and λn. Based on our
experiments λn = λl = 10−8 can be used in most cases, even for low SNR=10. For
SNR higher than 10, λn and λl can be decreased.

� Determine radius R0 for EAP profiles based on GFA for spherical func-
tions. In the third step, another parameter R0 is needed for EAP profile P(R0r).
Since the third step for EAP profiles is just an analytical linear transform in-
dependent of the first two steps, the process is very fast in this step. So we can
perform this transform several times with different radius R0. For each P(R0r),
GFA for spherical functions, i.e. GFA for ODFs proposed in [Tuch, 2004], can
be calculated for P(R0r). Note that since P(R0r) is analytically represented by
SH basis, its GFA can be analytically obtained by Eq. (4.62), which is very fast.
Again, an appropriate R0 results in a GFA map with good quality. Thus we can
set R0 by checking the quality of GFA map for P(R0r).

5.2 ANALYTICAL FOURIER TRANSFORM IN SPHERICAL
COORDINATE (AFT-SC)
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In this section, we would like to theoretically compare different sHARDI methods
including QBI, exact QBI, DOT and mHARDI methods including SPFI, SHORE and
DPI in the same framework. The three sHARDI methods have some intrinsic model-
ing errors or need some unrealistic assumptions as we have discussed in Section 4.3.
Moreover they have difficulty to deal with signals from different shells. Note we will
discuss exact QBI in DOT, because they use the same model, i.e. mono-exponential
assumption, as discussed in Section 4.3. See Table 4.1. The three mHARDI methods
all represent diffusion signal with some basis functions in spherical coordinate and
use plane wave expansion to analytically solve the Fourier transform. To our knowl-
edge, there is no theoretical analysis and practical comparison among these sHARDI
and mHARDI methods. In this section, we propose the Analytical Fourier Transform
in Spherical Coordinate (AFT-SC) framework and analyze these methods and their
possible variants in this framework.

5.2.1 AFT-SC Framework

The central idea in QBI, exact QBI, DOT, DPI, SPFI and SHORE is to fit the E(q)
with some function sets and find the analytical relation between signal E(q) and EAP
P(R) or ODFs Φk(r). Here we present them in the same framework, named AFT-SC.
Assume E(q) can be represented in Eq. (5.53) as a linear combination of functions
{Bk(qu)}, where the basis function Bk(qu) = Rk(q)Qk(u) separates radial part and spher-
ical part.

E(q) =

K∑
k=0

akBk(qu) =

K∑
k=1

akRk(q)Qk(u) (5.53)

By considering the well known plane wave formula in Eq. (5.12), P(R) can be rep-
resented by dual basis {Dk(R)} with the same coefficients {ak}, and Dk(R) could be
separated into radial integration Fkl(R) and spherical integration Tklm(r) in Eq. (5.55).

P(R) = 4π
∫
R3

K∑
k=0

akRk(q)Qk(u)
∞∑

l=0

l∑
m=−l

(−1)l/2 jl(2πqR)Ym
l (u)Ym

l (r)dq

=

K∑
k=0

ak

∞∑
l=0

l∑
m=−l

(
4π(−1)l/2

∫ ∞

0
Rk(q) jl(2πqR)q2dq

) ({∫
S2

Qk(u)Ym
l (u)du

}
Ym

l (r)
)

=

K∑
k=0

akDk(R) =

K∑
k=0

∞∑
l=0

l∑
m=−l

akFkl(R)Tklm(r) (5.54)

Fkl(R) = 4π(−1)l/2
∫ ∞

0
Rk(q) jl(2πqR)q2dq Tklm(r) =

{∫
S2

Qk(u)Ym
l (u)du

}
Ym

l (r) (5.55)

Thus there is an analytical EAP estimation once Fkl(R) and Tklm(r) have closed forms.
Since SH is the orthonormal basis which has been widely used in many domains
such as dMRI and graphics and E(q) and P(R) are both antipodally symmetric, it is
reasonable to choose Qk(u) as the real Spherical Harmonic with even l [Descoteaux
et al., 2007], which is denoted by Ym

l (u) and defined in Eq. (2.28). Then we have
Tklm(r) = Ym

l (r), because
∫
S2 Ym′

l′ (q)Ym
l (u) = δmm′

ll′ . Then different methods can be obtained
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Table 5.2: Several kinds of methods in Analytical Fourier Transforms in Spherical Coordi-
nate (AFT-SC) framework.

method Rk(q) Qk(u) Fkl(R) = 4π(−i)l
∫ ∞

0 Rk(q) jl(2πqR)q2dq Tklm(r)

QBI R(q) = δ(q − q0) Ym
l (u) Fl(R) = 4π(−1)l/2 jl(2πq0R)q2

0 Ym
l (r)

SHORE Rnl(q) = Gnl(q|ζ) Ym
l (u) Fnl(R|ζ) = (−1)nGnl(R| 1

4π2ζ
) Ym

l (r)
SPFI Rn(q) = Gn(q|ζ) Ym

l (u) Eq. (5.14) Ym
l (r)

DPI0
R0l(q) = ( q

√
ζ
)l

Ym
l (u)

F0l = (−1)l/2ql+1.5
max ζ

−0.5lR−1.5Jl+1.5(2πqmaxR)
Ym

l (r)
R1l(q) = ( q

√
ζ
)−l−1 F1l = (−1)l/2R−1.5ζ0.5l+0.5( (πR)l−0.5

Γ(l+0.5) −
Jl−0.5(2πqmaxR)

ql−0.5
max

)

DPI1 Rl(q) = ( q2

ζ )l/2 exp(− q2

2ζ ) Ym
l (u) Fl(R) = 2l+1.5ζ0.5l+1.5πl+1.5Rl exp(−2ζπ2R2) Ym

l (r)

DOT1 Rn(q) = ( q
√
ζ
)2n Ym

l (u) q2n+l+3
max πl+1.5RlΓ(1.5+0.5l+n)1F2(1.5+0.5l+n;1.5+l,2.5+0.5l+n;−π2qmaxR)

(−1)l/2ζnΓ(1.5+l)Γ(2.5+0.5l+n) Ym
l (r)

DOT2 Rn(q) = ( q2

ζ )n exp(− q2

2ζ ) Ym
l (u) 2n+0.5l+1.5ζ0.5l+1.5πl+1.5RlΓ(n+0.5l+1.5)1F1(n+0.5l+1.5,l+1.5,−2ζπ2R2)

(−1)l/2Γ(l+1.5)
Ym

l (r)(SPNP)

by choosing different radial functions. See table 5.2 for an overview and we will
introduce them one by one in the following.

Note that similarly with SPFI, in AFT-SC framework E(0) is still a spherical func-
tion, i.e.

E(0) =

K∑
k=1

akRk(0)Qk(u)

Thus we also need to consider the prior E(0) = 1 in estimation. Otherwise, there is no
guarantee that the estimated E(q) satisfies this prior.

5.2.2 HARDI methods in AFT-SC framework

QBI

As we discussed in subsection 4.3.4, the signal in QBI [Tuch, 2004; Descoteaux et al.,
2007; Assemlal et al., 2009a; Hess et al., 2006] is assumed as

E(qu) =

L∑
l=0

l∑
m=−l

almδ(q − q0)Ym
l (u)

where q = q0 is the q value for the given shell. The analytical form of ODF could
be obtained from several ways [Descoteaux et al., 2007; Assemlal et al., 2009a; Hess
et al., 2006]. In AFT-SC,

Fkl(R) = 4π(−1)l/2
∫ ∞

0
δ(q − q0) jl(2πqR)q2dq = 4π(−1)l/2 jl(2πq0R)q2

0 (5.56)

So the EAP in QBI can be obtained as

P(R) =

L∑
l=0

l∑
m=−l

alm4π(−1)l/2 jl(2πq0R)q2
0Ym

l (r) (5.57)
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Then the ODF by Tuch Φt(r) in QBI is

Φt(r) =
1
Z

∫ ∞

0
P(Rr)dR =

2q0

Z

L∑
l=0

l∑
m=−l

alm(−1)l/2Ym
l (r)

∫ ∞

0
jl(x)dx

=

√
πq0

Z

L∑
l=0

l∑
m=−l

alm
(−1)l/2Γ(l/2 + 1/2)

Γ(l/2 + 1)
Ym

l (r)

=
q0

Z

L∑
l=0

l∑
m=−l

alm2πPl(0)Ym
l (r) (5.58)

In the above derivations, we consider∫ ∞

0
jl(x)dx =

√
πΓ(0.5l + 0.5)
2Γ(0.5l + 1)

= (−1)l/2π

2
Pl(0)

based on the definition of jl(x) in Eq. (2.44), the property of Bessel function
in Eq. (2.86), and Pl(0) in Eq. (2.39).

The ODF formula is the same as the one in [Descoteaux et al., 2007; Assemlal
et al., 2009a; Hess et al., 2006], but the derivation is more simple and straightfor-
ward. Compared to the addition theorem and Funk-Hecke theorem used in [De-
scoteaux et al., 2007; Assemlal et al., 2009a; Hess et al., 2006], we use plane wave
theorem to prove the solution of Φt(r). The plane wave theorem seems to be more
fundamental. As proved in Theorem 5.4 and Theorem 5.5 in Appendix 5.7, Funk-
Hecke theorem 2.7 and addition theorem 2.6 are equivalent, and they can be proved
by plane wave expansion theorem 2.8.

Compared to previous works [Descoteaux et al., 2007; Assemlal et al., 2009a; Hess
et al., 2006], in AFT-SC we can obtain the new form for the EAP in Eq. (5.57) as
well as ODF in QBI in Eq. (5.58). To our knowledge, the EAP formula has not been
proposed before in QBI. However, the EAP in QBI seems useless, because it has many
negative values when b is large. That can be seen from the mean of spherical function
P(Rr), i.e. ∫

S2
P(Rr)dr = a00q2

0(4π)3/2 j0(2πq0R)

Note normally a00 is positive, because it is related with the mean of E(q0u). Fig. 5.4
shows that as q value increases j0(2πqR) has more and more negative values in R-axis,
especially for the large R values.

One may think that we can obtain Φw(r) from the EAP in Eq. (5.57), i.e.

Φw(r) =

∫ ∞

0
P(Rr)R2dR =

1
2π2q0

L∑
l=0

l∑
m=−l

alm(−1)l/2Ym
l (r)

∫ ∞

0
jl(x)x2dx (5.59)

However the integration
∫ ∞

0 jl(x)x2dx does not converge, which means any estimator
of Φw(r) based on delta function assumption fails. Note the estimator in [Tristán-Vega
et al., 2009] works for low b value, probably because it adds additional assumption.
For large b value, the estimator in [Tristán-Vega et al., 2009] fails with many negative
values in practice.
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bR) under different b values. We choose τ such that b = q2. It can be seen
that as b increases j0(2π

√
bR) has more negative values in R-axis.

SHORE

We have introduced SHORE method for signals both in 1D and in 3D cases in sub-
section 4.3.8. The SHO-1D basis in Eq. (2.60) can not handle the signal in real data
in 3D case. As we has discussed, the functions defined in Eq. (4.85) are not orthogo-
nal because of a small mistake in the exponential part in Eq. (4.85) [Özarslan et al.,
2009]. So in this subsection we would like to study only the corrected SHO-3D basis
in Eq. (2.69).

SHO-3D Basis. SHORE represents E(q) as a linear combination of SHO-3D ba-
sis in Eq. (5.60). SHO-3D basis is denoted by {BSHO3

nlm }, which is the solution of 3D
quantum mechanical harmonic oscillator problem [Özarslan et al., 2009] as shown in
subsection 2.5.5.

E(q) =

N∑
n=0

2n∑
l=0

l∑
m=−l

anlmBSHO3
nlm (q|ζ), BSHO3

nlm (q|ζ) = Gnl(q|ζ)Ym
l (u) (5.60)

Gnl(q|ζ) = κnl(ζ)(
q2

ζ
)l/2 exp

(
−

q2

2ζ

)
Ll+1/2

n−l/2(
q2

ζ
) κnl(ζ) =

[
2
ζ3/2

(n − l/2)!
Γ(n + l/2 + 3/2)

]1/2

(5.61)

The radial part of SHO-3D basis with the scale ζ is shown in Gnl(q|ζ) Eq. (5.61), where
Lαn (x) is the generalized Laguerre polynomial [Ritchie and Kemp, 2000; Huzinaga,
1965; Özarslan et al., 2009]. Please note the difference between the N in Eq. (5.60)
and Nmax in Eq. (4.84) [Özarslan et al., 2009]. Nmax in Eq. (4.84) denotes the order of
polynomial in radial part which is 2N in our notation. Actually this basis has been
already used in the computation of the molecular electron orbitals and molecular
docking [Ritchie and Kemp, 2000; Huzinaga, 1965; Assemlal et al., 2009a], where
n − l/2 is replaced by n − l. Here we use n − l/2 such that the order of polynomial term
in BSHO3

nlm is 2(n − l/2 + 2 · l/2) = 2n, and the maximal order of polynomial term is 2N.
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Note that Gn0(q|ζ) in Eq. (5.61) is just the radial function Gn(q|ζ) in Eq. (5.2). Thus
SHO-3D basis {BSHO3

nlm (q|ζ) = Gnl(q|ζ)Ym
l (u)} and SPF basis {BSPF

nlm (q|ζ) = Gn(q|ζ)Ym
l (u)} are

very similar. However their Fourier dual basis are quite different. See proposition 5.6
for the Fourier dual basis of SHO-3D basis.

EAP and its features. Like SPFI, the following propositions demonstrate that in
SHORE EAP and its features can be analytically calculated from the pre-estimated
coefficients {anlm}.

Proposition 5.6 (EAP in SHORE). The Fourier dual basis of SHO-3D basis
BSHO3

nlm (q|ζ) is (−1)nBSHO3
nlm (R| 1

4π2ζ
), i.e.

F3D{Gnl(q|ζ)Ym
l (u)}(R) = (−1)nGnl(R|

1
4π2ζ

)Ym
l (r) (5.62)

If the signal is represented by SHO-3D basis in Eq. (5.60), the EAP is analytically
obtained as

P(R) =

N∑
n=0

2n∑
l=0

l∑
m=−l

anlm(−1)nGnl(R|
1

4π2ζ
)Ym

l (r) (5.63)

where Gnl is defined in Eq. (5.61).

Proof. Based on Eq. (5.61), the radial integration in Eq. (5.55) is

Fnl(R) = 4π(−1)l/2
∫ ∞

0
Gnl(q|ζ) jl(2πqR)q2dq

= 4π(−1)l/2κnl(ζ)
∫ ∞

0
(
q2

ζ
)l/2 exp

(
−

q2

2ζ

)
Ll+1/2

n−l/2(
q2

ζ
) jl(2πqR)q2dq

= 4π(−1)l/2
(

2(n − l/2)!
Γ(n + l/2 + 3/2)

)1/2

ζ−l/2−3/4 1

2
√

R

∫ ∞

0
ql+ 2

3 e−
q2
ζ Ll+1/2

n−l/2(
q2

ζ
)Jl+ 1

2
(2πRq)dq

Considering the property of Laguerre polynomial in Eq. (2.81) [Gradshteyn and
Ryzhik, 2007], we have

Fnl(R) = (−1)nGnl(R|
1

4π2ζ
)

Considering the spherical part Ym
l (r), the Fourier dual SHO-3D basis is given

in Eq. (5.62). Then considering the linearity of Fourier transform, the EAP can be
represented by the dual basis in Eq. (5.63). �

Proposition 5.7 (ODFs in SHORE). If the signal is represented by SHO-3D basis
in Eq. (5.60), the ODF Φk(r) defined in Eq. (4.69) is analytically obtained as

Φk(r) =
1
Z

2N∑
l=0

l∑
m=−l

clmYm
l (r) (5.64)

clm = (4π2ζ)−
k+1

2

N∑
n=l/2

n−l/2∑
j=0

anlm
(−1)n+ j

j!

(
n + l/2 + 1/2

n − l/2 − j

)
2

k+l−1
2 + jΓ(

k + l − 1
2

+ j) (5.65)
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Proof. Based on Proposition 5.6, the EAP can be represented in Eq. (5.63). Then the
ODF can be written as

Φk(r) =
1
Z

∫ ∞

0
P(Rr)RkdR =

1
Z

N∑
n=0

2n∑
l=0

l∑
m=−l

(−1)nanlmYm
l (r)

(∫ ∞

0
Gnl(R|

1
4π2ζ

)RkdR
)

︸                         ︷︷                         ︸
Inlk

(5.66)

=
1
Z

2N∑
l=0

l∑
m=−l

Ym
l (r)

 N∑
n=l/2

(−1)nanlmInlk

︸                  ︷︷                  ︸
clm

(5.67)

where

Inlk =

∫ ∞

0
Rk(4π2ζR2)l/2e−2π2ζR2

Ll+1/2
n−l/2(4π2ζR2)dR

= (4π2ζ)−
k+1

2
1
2

∫ ∞

0
e−

x
2 x

k+l−1
2 Ll+1/2

n−l/2(x)dx

= (4π2ζ)−
k+1

2
1
2

∫ ∞

0
e−

x
2 x

k+l−1
2

n−l/2∑
j=0

(−1) j
(
n + l/2 + 1/2

n − l/2 − j

)
x j

j!
dx

= (4π2ζ)−
k+1

2

n−l/2∑
j=0

(−1) j

j!

(
n + l/2 + 1/2

n − l/2 − j

)
2

k+l−1
2 + jΓ(

k + l − 1
2

+ j)

where we use the property of Laguerre polynomial in Eq. (2.63) and the definition of
Gamma function. Then put Inlk back to Eq. (5.67), which proves Eq. (5.64). �

Eq. (5.64) shows the SH coefficients {clm} of ODFs can be obtained by a linear
transform of {anlm}. For Φw(r), i.e. k = 2, the normalization factor is Z = 1 in Eq. (5.64).

Similarly with SPFI, the scalar indices RTO, MSD and GFA can be also calculated
from the pre-estimated {anlm}. It is easy to see that the formula for GFA is given as

GFA =

√√
1 −

∑N
n=0 a2

n00∑N
n=0

∑2n
l=0

∑l
m=−l a2

nlm

(5.68)

The other two indices can be also obtained easily.

Least Square Estimation with E(0) = 1 consideration. Similarly with SPFI,
SHORE can consider E(0) = 1 in the estimation process. E(0) = 1 means

E(0) =

N∑
n=0

2n∑
l=0

l∑
m=−l

anlmGnl(0)Ym
l (u) = 1 =

√
4πY0

0 (u)

Because Gnl(0) = 0, ∀l > 0, we have

N∑
n=0

an00Gn0(0) =
√

4π
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It is just one equation, compared to a set of equations in Eq. (5.45). Then we can
assume a000 is dependent on other coefficients, i.e.

a000 =
1

G00(0)

√4π −
N∑

n=1

an00Gn0(0)

 (5.69)

N∑
n=1

2n∑
l=0

l∑
m=−l

anlm

Gnl(q) −
Gn0(0)δ0

l

G00(0)
G00(q)

 Ym
l (u) = E(q) −

G00(q)
G00(0)

(5.70)

Then the coefficients {anlm}n>0 can be estimated from a least square method, and the
final coefficient vector is the combination of these two parts. The whole process is
similar with the process of SPFI in Table 5.1.

SPFI

SPFI also belongs to the AFT-SC framework, because it represents E(q) using SPF
basis in Eq. (5.1) and EAP P(R) using dSPF basis in Eq. (5.15). As we have shown
above, SPF basis and SHO-3D basis are very similar, while their Fourier dual bases
are quite different. We will discuss the differences and similarities between SPF and
SHO-3D basis in details in the Section 5.3.

DPI0 and DPI1

DPI in [Descoteaux et al., 2010], called DPI0 here, assumes the signal E(q) is the
solution of 3D Laplace equation, i.e.

E(q) =

1∑
n=0

L∑
l=0

l∑
m=−l

cnlmRnl(q)Ym
l (u) (5.71)

R0l(q) = (
q
√
ζ

)l, R1l(q) = (
q
√
ζ

)−l−1 (5.72)

Please note that here we introduce the scale parameter ζ in DPI0 motivated by
SHORE and SPFI. It is the same as the original DPI in [Descoteaux et al., 2009,
2010] if ζ = 1. If ζ , 1, it is equivalent with the original one but more numerically
stable when an appropriate ζ is chosen. For the original DPI, one need to choose care-
fully the unit for numerical stability in least square estimation as suggested in [De-
scoteaux et al., 2010]. Here we can choose a scale ζ so that q/

√
ζ is independent with

unit. Experimentally we choose ζ = 0.5q2
max for good numerical stability, where qmax is

the maximum q value for DWI signals. In DPI0, the radial integration Fnl(R|ζ) can not
be analytically solved, and [Descoteaux et al., 2010] introduced qmax and approximate
Fnl(R|ζ) using the integration from 0 to qmax, which can be seen as follows.

F0l = (−1)l/2ql+1.5
max ζ

−0.5lR−1.5Jl+1.5(2πqmaxR) (5.73)

F1l = (−1)l/2R−1.5ζ0.5l+0.5(
(πR)l−0.5

Γ(l + 0.5)
−

Jl−0.5(2πqmaxR)
ql−0.5

max
) (5.74)

Note that in DPI0 the estimated signal in Eq. (5.71) does not satisfy the prior
E(0) = 1. Actually, when q tends to zero, the irregular term R1l(q) tends to infinity,
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which means E(0) has no definition in DPI0. Moreover, DPI0 considers polynomial
decay in radial part, which does not satisfy the prior of Gaussian-like decay. Thus
we propose DPI1 which only uses regular terms in DPI0 and considers Gaussian-like
decay, i.e.

E(q) =

L∑
l=0

l∑
m=−l

clmRl(q)Ym
l (u), Rl(q) = (

q
√
ζ

)l exp
(
−

q2

2ζ

)
(5.75)

Note that the basis in DPI1 ( q
√
ζ
)l exp

(
−

q2

2ζ

)
Ym

l (u) is proportional to SHO-3D basis

Gnl(q)Ym
l (u) with n = l

2 . Thus the radial integration of DPI1 basis can be solved by
considering the result for radial integration of SHO-3D basis. Since SHO-3D basis
is complete and DPI1 basis is just a part of SHO-3D basis, the basis in DPI1 is not
complete. We will discuss it later.

DOT0 (exact QBI), DOT1 and DOT2 (SPNP)

The original DOT, called DOT0 here, assumes E(q) follows mono-exponential de-
cay [Özarslan et al., 2006], i.e.

E(q) = exp(−4π2τq2D(u))

Actually DOT0 cannot be contained in AFT-SC framework because E(q) in DOT0 can-
not be separated into radial part and spherical part Eq. (5.53). [Özarslan et al.,
2006] analytically solved the radial integration in Eq. (5.76) for the given samples
{E(qi)}. Then the inner product between Il(R,u) and Ym

l (u) in the spherical integra-
tion Eq. (5.77) was solved numerically using least square fitting for the samples
{Il(R,ui)} obtained in Eq. (5.76).

Il(R,u) = 4π(−1)l/2
∫ ∞

0
E(q) jl(2πqR)q2dq =

RlΓ(0.5l + 1.5)1F1(0.5l + 1.5, l + 1.5,− R2

4τD(u) )

(−1)l/22l+1π0.5(D(u)τ)0.5l+1.5Γ(l + 1.5)
(5.76)

P(R) =

{∫
S2

Il(R,u)Ym
l (u)du

}
Ym

l (r) (5.77)

Please note there is no full representation for E(q) and P(R), because one needs to
re-estimate P(R) in different R. Note that the mono-exponential decay model in DOT0
can be used to analytically estimate the ODF by Wedeen Φw(r). See subsection 4.3.4.

Although DOT0 is not contained in AFT-SC, it is still possible to explain DOT0 in
AFT-SC framework. We can represent

D(u) =
∑
lm

bm
l Ym

l (u) (5.78)

and expand the signal as

E(q) = exp(−4π2τq2D(u)) =

∞∑
n=0

(−4π2τq2)n

n!
(
∑
lm

bm
l Ym

l (u))n =
∑
nlm

anlmq2nYm
l (u)

where anlm can be analytically obtained from bm
l by expanding the product of two SHs

in terms of SHs itself based on the integration in Eq. (2.35). We call the modified rep-
resentation of DOT as DOT1, which separates spherical part and radial part. DOT1 is
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equivalent with DOT0 if {bm
l } is estimated from DWI samples and {anlm} is calculated

from {bm
l }. But alternatively we can fit the signal directly with the representation

E(q) =
∑

nlm anlm( q2

ζ )nYm
l (u), where ζ is the fixed scale parameter. In this case DOT1 is

not DOT any more and more similar with DPI. It does not assume mono-exponential
decay and works for multiple shell data. Similarly with DPI there is no analyti-
cal form for radial integration. Thus we introduce qmax for the integration from 0
to qmax [Gradshteyn and Ryzhik, 2007]. See table 5.2, where 1F2 is the generalized
hypergeometric function.

Note that when the ADC is represented in Eq. (5.78), the signal is represented in
GHOT model in Eq. (5.36) with N = 1. Thus we have another expansion of E(q) in
DOT as

E(q) = exp(−4π2τq2D(u)) = exp(−4π2τb0
0Y0

0 q2) exp

 ∑
lm,l,0

4π2τq2bm
l Ym

l (u)


= exp

(
−

q2

2ζ

)  ∞∑
n=0

(−4π2τq2)n

n!
(
∑

lm,l,0

bm
l Ym

l (u))n


= exp

(
−

q2

2ζ

)∑
nlm

anlm

(
q2

ζ

)n

Ym
l (u)

where ζ = 1
8π5/2τb0

0
. Now we represent E(q) in SPNP model in Eq. (5.35), which sepa-

rates spherical part and radial part and can be called as DOT2. DOT2 is equivalent
with DOT0 if {bm

l } is estimated from DWI samples and {anlm} is calculated from {bm
l }.

In this sense, DOT2 (SPNP) model is a generalization of HOT model in DOT. Also we
can fit the signal directly using SPNP basis.

5.3 THEORETICAL COMPARISONS

Based on AFT-SC framework, it seems to be an easy job to deduce an analytical
EAP reconstruction and we can have many analytical EAP estimation including the
listed methods in Table 5.2. Then which one is better? We propose some criteria for
evaluation.

5.3.1 Some Criteria for Evaluation

Completeness. In AFT-SC, E(q) is represented by a linear combination of some ba-
sis functions {Bi(q)} in Eq. (5.53). {Bi(q)} is complete if it can represent any symmetric
square integrable E(q) in 3D space. Completeness means more samples we have,
better reconstruction we get. If all DWI samples are known in whole q space, the
samples will be fitted without any modeling error.

QBI assumes E(q) exists only on the sphere S2, which means the radial decay is
a delta function. DOT0 and exact QBI assume mono-exponential decay. So QBI and
DOT0 are not complete in R3. SHO-3D basis is complete because it is a combination
of the eigenfunctions in several Sturm-Liouville equations when solving the SHO-3D
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equation in Eq. (2.68). SPF basis is complete because {Ym
l (u)} is complete in S2 and

L1/2
n (x) is complete in [0,∞) with the weight x1/2 exp(−x).

DPI0 is not complete because not every function satisfies Laplace’s equation.
Based on Weierstrass theorem the continuous E(q) in the ball with a given radius
can be uniformly approximated by a polynomial function, i.e.

E(q) =
∑
i jk

ai jkqi
xq j

yqk
z

Because E(q) is symmetric, i + j + k is even, say 2n. Then by representing every
monomial via spherical coordinate, we have

E(q) =
∑
nlm

anlm(
q
√
ζ

)2nYm
l (u)

which means the basis in DOT1 is complete for E(q) inside a ball. However for both
DPI and DOT1, since only finite terms are used, the represented E(q) tends to ∞ as
q increases. It contradicts with the fact that E(q) tends to 0 when q increases, which
means DPI0 and DOT1 have intrinsic modeling error in the region with large q. So
the qmax is needed for an incomplete integration instead of the complete integration.
However, if qmax is chosen as the maximal q values of DWI signals like [Descoteaux
et al., 2010], the estimated EAPs are less anisotropic because of incomplete integra-
tion, which means DPI0 and DOT1 cannot work well with DWIs with only small b
values. If qmax is chosen as a large value, the estimated EAPs are likely noisy because
of the modeling error in the area with large q value.

Representability. We know three priors (P1, P2 and P3) of the diffusion signal
E(q).

� P1: E(0) = 1 because
∫
R3 P(R)dR = 1.

� P2: E(q) tends to 0 when q tends to ∞.

� P3: E(q) radially decays like (but NOT) a Gaussian function.

Please note that the estimated P(R) is globally affected by E(q) in whole q space
because Fourier Transform is a global transform. So even though one method can
fit the given samples of the DWI well, it does not mean the estimated EAP is good.
For the signal fitting in existing works, the given samples have been well considered
in the estimation process. The results will be better if the model can also consider
these priors. The model which satisfies these priors has good results, even if it is not
complete, e.g. mixture of tensor model.

QBI satisfies none of the priors. In practice we find the EAP profile in QBI has
many negative values especially when b > 1500s/mm2 and R > 10µm, and the EAP
profile in QBI is very smooth if b or R is small. See Fig. 5.4 for the reason, which
is because delta function decay assumption in QBI is lack of representability. DOT0
automatically considers the first two priors, while it assumes mono-exponential de-
cay. SHORE and SPFI consider the second and third in their model. For E(0) = 1,
SHORE, SPFI and DOT1 can consider the prior E(0) = 1 into estimation process as
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demonstrated in subsection 5.1.3. While DPI cannot consider E(0) = 1 in estimation
because E(0) does not exist in DPI model due to the irregular term in its radial basis.
Moreover, in DPI as well as DOT1 E(q) tends to∞ when q increases due to the regular
term in its radial basis, and infinite radial terms are needed if one uses polynomials
to approximate a Gauss-like decay. So even though DPI may fit the given DWI signals
well as shown in [Descoteaux et al., 2010], the estimated EAP is problematic. Moti-
vated by SHORE and SPFI, we can avoid the problem by adding exponential term
into the basis function of DPI and DOT1 and ignoring irregular terms in DPI. Then
we have two new methods, DPI1 where

E(q) =
∑
lm

alm(
q2

ζ
)l/2 exp(−

q2

2ζ
)Ym

l (u)

and DOT2 using SPNP basis in Eq. (5.35), where

E(q) =
∑
nlm

anlm(
q2

ζ
)n exp(−

q2

2ζ
)Ym

l (u)

Similarly with SHORE and SPFI, they both satisfy all three priors. DOT2 is equiva-
lent with SPFI because after Gram-Schmidt orthonormalization in radial part, DOT2
(SPNP) will become SPFI. See Lemma 5.2. Thus DOT2 is complete. While DPI1 is
not, because DPI1 now assumes E(q) is a harmonic polynomial multiplied by a Gaus-
sian, or because the basis in DPI1 is a part of SHO-3D basis. DOT2 and DPI1 both
have analytical EAP forms based on the previous derivations for SPFI and SHORE
and we do not need qmax any more. See table 5.2 for the analytical formulae.

Separation information between spherical and radial parts. Please note the
important difference between the basis functions in SHORE, SPFI and DPI0. DPI0 is
lack of representability partially because it coupled radial information and spherical
information together. For example DPI0 cannot represent an isotropic Gaussian func-
tion, because isotropic function forces l = 0 in SHs in spherical part, then in radial
part R00 = 1 and R10 = ( q

√
ζ
)−1 which contradicts with Gaussian-like function. In SPFI

the radial part and spherical part are completely separated, which allows one chooses
higher order in spherical part but low order in radial part. While in SHORE, n−l/2 ≥ 0
is forced in Eq. (5.60), which means for a given l in spherical part, the corresponding
order of power in radial part is 2n ≥ l. In SPFI, the minimal order for anisotropy
diffusion is N = 1, L = 4, which means it contains SH of order 0, 2, 4 and power 0, 2 in
radial part. In SHORE, the minimal order is N = 2 (Nmax = 4 in Eq. (4.84) [Özarslan
et al., 2009]), which means it contains SH of order 0, 2, 4 and power 0, 2, 4 in radial
part. Besides it was proved in theorem 5.3 that the function space spanned by SHO-
3D basis {GnlYm

l }n≤N with order n ≤ N is a subspace of the space spanned by SPF basis
{Gn0Ym

l }n≤N,l≤2N with radial order n ≤ N and spherical order l ≤ 2N. Thus if order N
is enough to represent the signal in SHORE, radial order N and spherical order 2N
is also enough for representation in SPF basis. However if limited samples with low
SNR are given for estimating the coefficients, a truncated basis is needed to avoid
overfitting. Then SHO-3D basis with higher power order in radial part may have
some overfitting effects, and the effect will be enhanced when larger N (6 or 8) is
used. Please see the subsection 5.3.2 for more theoretical comparisons.
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Orthogonality and stability. In approximation theory, complete orthonormal ba-
sis is preferred because monomial basis is known to have poor numerical stability and
the coefficients under orthonormal basis are independent with the basis order chosen
in Least Square approximation if all samples are known. For example, if exhaustive
samples of diffusion signal are known in a single shell, the coefficients of SH basis
are independent with the chosen order in least square fitting, while the coefficients of
HOT basis is dependent on the chosen order [Özarslan and Mareci, 2003], although
these two bases are both complete in S2. The bases in DOT1, DOT2 and DPI0, DPI0
are not orthogonal. SHORE and SPFI use orthonormal bases in R3 while QBI and
DOT0 use orthonormal bases only in S2. When orthonormal basis {Bk(q)} is used to
represent E(q), its Fourier dual basis {Dk(R)} that represents P(R) is still orthonormal
because of the Parseval’s theorem.

Single shell and multiple shells. These mHARDI methods can work for multiple
shell data. However, when only single shell data are given, these methods are un-
stable in general. Let’s take SPFI as an example. In SPFI, for a given q0, the ratio
between two basis functions

Gn(q0)Ym
l (u)

Gn′(q0)Ym
l (u)

is a constant independent with u, which means these two basis functions with same l
and m but different n are undistinguishable for single shell data. When least square
is used to estimate the coefficients, the basis matrix is rank deficient with very large
conditional number. To solve this problem, we can consider the constraint E(0) = 1.
In SPFI, we have shown that when considering this constraint, {a0lm}l≤L is dependent
on {anlm}0<n≤N,l≤L and only the basis function set {Gn(q)Ym

l (u)}0<n≤N,l≤L is used in esti-
mation. So SPFI is stable for single shell data if N = 1 with only {G0(q)Ym

l }l≤L used
in estimation. If N ≥ 2, it needs to add some regularization to make the estimation
stable. However SHORE is not stable for single shell data, because the constraint
E(0) = 1 only means a000 is redundant, and we can not separate the basis Gnl(u)Ym

l (u)
and Gn′lYm

l (u). DPI0 can not consider the constraint E(0) = 1, so it is unstable. It is
possible to add some regularization in SHORE and DPI0 such that the estimation re-
sults are meaningful. The same analysis can be performed in DPI1, DOT1 and DOT2.
DPI1 works with single shell data without regularization because its radial part is
fully coherent with spherical part. DOT1 and DOT2 need some regularization for sin-
gle shell data, because E(0) = 1 makes only one basis redundant in estimation like
SHORE.

Summary. SHORE and SPFI use 3D complete orthonormal basis and have the best
representability. SHORE requires higher orders in radial part than SPFI which com-
pletely separate the information between spherical and radial part. SPFI is well
appropriate for both single and multiple shell data, while SHORE and DPI0 need
some regularization to obtain stable results from single shell data. QBI and DPI0 are
lack of representability, because of the delta function decay assumption in QBI and
regular and irregular monomials in radial basis of DPI0. DPI0 works only for the data
with large b values due to the effect of qmax. Please see Table 5.3 for more information.
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Table 5.3: Some criteria for evaluating methods. P1, P2 and P3 are three priors. Note that
although some mHARDI methods are unstable for single shell data, it is possible to add some
regularization to obtain meaningful results.

method Rk(q) Qk(u)Completeness P1 P2 P3 orthogonal single shell Separation
QBI R(q) = δ(q − q0) Ym

l (u) in S2 No No No in S2 Yes Yes
SHORE Rnl(q) = Gnl(q|ζ) Ym

l (u) Yes YesYesYes Yes No No
SPFI Rn(q) = Gn(q|ζ) Ym

l (u) Yes YesYesYes Yes Yes, if N = 1 Yes

DPI0
R0l(q) = ( q

√
ζ
)l

Ym
l (u) No No No No No No No

R1l(q) = ( q
√
ζ
)−l−1

DPI1 Rl(q) = ( q2

ζ )l/2 exp(− q2

2ζ )Ym
l (u) No YesYesYes No Yes No

DOT1 Rn(q) = ( q2

ζ )n Ym
l (u) in a ball Yes No No No No Yes

DOT2 Rn(q) = ( q2

ζ )n exp(− q2

2ζ ) Ym
l (u) Yes YesYesYes No No Yes(SPNP)

DOT0 — — in S2 YesYes No in S2 Yes Yes

5.3.2 More Comparisons between SPF basis and SHO basis

In this subsection, we would like to analyze theoretically more similarities and dif-
ferences between SPF basis, SHO-1D basis and SHO-3D basis. See the following
analysis.

Polynomial basis and SHO basis

First SHO-1D basis is equivalent with the Gaussian polynomial basis in 1D.

Lemma 5.1. For any given integer N, SHO-1D basis in Eq. (2.60) with 0 ≤ n ≤ N

and the Gaussian polynomial basis function set {e−
q2
2ζ ( q
√
ζ
)n}n≤N forms the same function

space.

Proof. It is straightforward because {qn}n≤N and {Hn( x√
ζ
)}n≤N are two bases of polyno-

mial space PN(R1). �

Definition 5.2 (SHO-1D basis and product of SHO-1D basis in 3D). SHO-1D
basis is defined in Eq. (2.60) and denoted by BSHO1

n (x). The product of SHO-1D basis
in 3D space with variable q = (qx, qy, qz)T is called as the product of SHO-1D basis in
3D space (SHO-1D3) basis and defined as

BSHO1
n1n2n3

(q|ζ) def
= BSHO1

n1
(qx|ζ)BSHO1

n1
(qy|ζ)BSHO1

n1
(qz|ζ)

= 2−
n1+n2+n3

2 (n1!n2!n3!)−
1
2 (πζ)−

3
4 e
‖x‖2
2ζ Hn1

(
qx
√
ζ

)
Hn2

(
qy
√
ζ

)
Hn3

(
qz
√
ζ

)
(5.79)

where we only consider the even order n1 + n2 + n3 = n, because E(q) is symmetric.

Then based on the above definition and lemma, the SHO-1D3 basis is also equiv-
alent with Gaussian polynomial basis in 3D.
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Definition 5.3 (Spherical Polar Polynomial basis and Generalized DTI
model). Spherical Polar Polynomial (SPP) basis is defined as

BSPP
nlm (q|ζ) = exp

(
−

q2

2ζ

) (
q2

ζ

)n

Ym
l (u), n ≥ l/2 (5.80)

where n is integer and n ≥ l/2. GDTI model is defined as

E(q) = exp

− N∑
n=2

∑
n1+n2+n3=n

Dn1n2n3

(
qx
√
ζ

)n1
(

qy
√
ζ

)n2
(

qz
√
ζ

)n3
 (5.81)

which has been used in GDTI in [Liu et al., 2003, 2004]. Note that n starts from 2 in
GDTI, because E(0) = 1 means D000 = 0.

Theorem 5.2. For any given integer N, the following three bases are equivalent, i.e.
they form the same function space.

� SHO-1D3 basis {BSHO1
n1n2n3

(q|ζ)}n1+n2+n3=n≤2N defined in Eq. (5.79) with even order 0 ≤
n ≤ 2N.

� SPP basis {BSPP
nlm (q|ζ)}n≤N defined in Eq. (5.80) with order 0 ≤ n ≤ N.

� SHO-3D basis {BSHO3
nlm (q)}n≤N defined in Eq. (5.60) with order 0 ≤ n ≤ N.

Proof. Because of Eq. (2.63) and Eq. (2.67),
{(

q2

ζ

)n−l/2
}

n≤N
and

{
Ll+1/2

n−l/2

(
q2

ζ

)}
n≤N

are

equivalent. Thus SPP basis {BSPP
nlm (q|ζ)}n≤N and SHO-3D basis {BSHO3

nlm (q)}n≤N are equiv-
alent. Thus we only need to prove SHO-1D3 basis is equivalent with SPP basis.

Because of Lemma 5.1, SHO-1D3 basis {BSHO1
n1n2n3

(q|ζ)}n1+n2+n3=n≤2N is equivalent with
Gaussian polynomial basis {BGP

n1n2n3
(q|ζ)}n1+n2+n3=n≤2N , where BGP

n1n2n3
(q|ζ) is defined as

BGP
n1n2n3

(q|ζ) = exp
(
−

q2

2ζ

) (
qx
√
ζ

)n1
(

qy
√
ζ

)n2
(

qz
√
ζ

)n3

(5.82)

Then based on the harmonic decomposition theorem 2.4 and Theorem 2.5, BGP
n1n2n3

(q|ζ)
can be separated as

BGP
n1n2n3

(q|ζ) =

n
2∑

j=0

(
q2

ζ

) j n−2 j∑
m=−(n−2 j)

a jm

(
q2

ζ

)n/2− j

Ym
n/2− j(u) =

n∑
l=0

l∑
m=−l

alm

(
q2

ζ

)n/2

Ym
l (u)

where n = n1 + n2 + n3 is even. Thus Gaussian polynomial basis
{BGP

n1n2n3
(q|ζ)}n1+n2+n3=n≤2N is equivalent with SPP basis {BSPP

nlm (q|ζ)}n≤N . Then SHO-1D3
basis {BSHO1

n1n2n3
(q|ζ)}n1+n2+n3=n≤2N is also equivalent with SPP basis {BSPP

nlm (q|ζ)}n≤N . �

The above theorem shows that SHO-3D basis and the triple product of SHO-1D
basis are equivalent. That means the methods which fit exhaustive signal samples
using these two bases will obtain theoretically the same results, although numerically
the results are slightly different. Note that GDTI [Liu et al., 2004] represents EAP
using the products of probabilists’ Hermite polynomials in Eq. (4.37), and SHO-1D3
represents EAP using products of Physicists’ Hermite polynomials. Thus GDTI and
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SHORE are theoretically equivalent. However, the estimation of diffusion coefficients
in GDTI in Eq. (4.34) is based on fitting ln E(q), which may bring more numerical
error than fitting E(q) directly. That is because E(q) ≤ 1 and E(q) decays as q increase,
which makes the logarithm operation emphasize more the samples of E(q) for large q
value. However, E(q) for large q value has lower SNR. Thus SHORE and SPFI based
on fitting E(q) are better than GDTI based on fitting ln E(q). Moreover, the closed form
in GDTI is based on the estimation of cumulants, which is theoretically problematic
due to the truncation [Marcinkiewicz, 1939]. Last, the estimation of the PDF from its
cumulants is known to be very problematic [Blinnikov and Moessner, 1998; Ghosh
et al., 2010].

Non-polynomial basis and SPF basis

Lemma 5.2. For any given integer N and even integer L, SPF basis {BSPF
nlm (q|ζ)}n≤N,l≤L

defined in Eq. (5.1) and SPNP basis {BSPNP
nlm (q|ζ)}n≤N,l≤L defined in Eq. (5.35) are equiv-

alent, i.e. they form the same function space.

Proof. It is straightforward, because the space spanned by
{
L1/2

n

(
q2

ζ

)}
n≤N

is the same

space spanned by
{(

q2

ζ

)n}
n≤N

. �

The space spanned by SHO-3D basis and SPF basis and the MSE

Based on Theorem 5.2, SHO-3D basis is essentially the SPP basis in Eq. (5.80). While
Lemma 5.2 shows that SPF basis is essentially the SPNP basis in Eq. (5.35). Com-
pared to SPP basis, SPNP basis has some non-polynomial term with n < l/2, which
is essentially the difference between SHO-3D basis and SPF basis. This difference
brings the following theorem.

Theorem 5.3. For any given integer N, if we denote the space spanned by SPF basis
{BSPF

nlm (q|ζ)}n≤N,l≤2N as Span{BSPF
nlm (q|ζ)}n≤N,l≤2N , the space spanned by SHO-3D basis as

Span{BSHO3
nlm (q|ζ)}n≤N , then we have

Span{BSHO3
nlm (q|ζ)}n≤N ⊂ Span{BSPF

nlm (q|ζ)}n≤N,l≤2N (5.83)

For any finite N′, we have

Span{BSHO3
nlm (q|ζ)}n≤N′ + Span{BSPF

nlm (q|ζ)}n≤N,l≤2N (5.84)

Proof. Based on the definition of SHO-3D basis in 5.60, Gnl(q) is a Gaussian polyno-
mial function with polynomial order 2n. Thus Gnl(q) can be represented as

Gnl(q|ζ) = exp
(
−

q2

2ζ

) n∑
j=0

a jlL
1/2
j (q|ζ)
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where a jl is constant which can be obtained based on Eq. (2.63) and Eq. (2.67). Then
the SHO-3D basis BSHO3

nlm (q|ζ) can be written as

BSHO3
nlm (q|ζ) = Gnl(q)Ym

l (u) = exp
(
−

q2

2ζ

) n∑
j=0

a jlL
1/2
j (q|ζ)Ym

l (u)

=

n∑
j=0

a jl

κn(ζ)
BSPF

jlm (q|ζ)

It proves Eq. (5.83).

The basis set {BSPF
nlm (q|ζ)}n≤N,l≤2N can be separated into two parts, i.e.

{BSPF
nlm (q|ζ)}n<l/2≤N , {BSPF

nlm (q|ζ)}l/2≤n≤N

BSPF
nlm (q|ζ) with n ≥ l/2 can be represented by SPP basis {BS PP

jlm (q|ζ)} j≤n. Then based
on Theorem 5.2, BSPF

nlm (q|ζ) with n ≥ l/2 can be represented by SHO-3D basis
{BS HO3

jlm (q|ζ)} j≤n. For the SPF basis {BSPF
nlm }n<l/2, let’s assume that it can be represented

by SHO-3D basis with finite order N′, i.e.

BSPF
nlm (q) =

N′∑
j=0

a jBSHO3
jlm (q), n < l/2

Note that the summation is only over j because of the orthogonality of SH basis. Be-
cause of the equivalence of SPF basis and SPNP basis in Lemma 5.2 and the equiva-
lence of SHO-3D basis and SPP basis in Theorem 5.2, we have

BSPNP
n′lm (q) =

n′∑
n=0

bnBSPF
nlm (q), BSHO3

jlm (q) =

j∑
j′=0

c j′BSPP
j′lm (q)

Then SPNP can be represented linearly by SPP basis with finite N′ as

BSPNP
n′lm (q) =

n′∑
n=0

N′∑
j=0

j∑
j′=0

bna jc j′BSPP
j′lm (q)

This is equivalent with that xn′ can be represented by basis {x j′} j′>l with finite order
N′. However, for fixed l and n′ < l, that is not true. So with any finite order N′, SHO-3D
basis {BSHO3

nlm (q|ζ)}n≤N′ can not represent BSPF
nlm (q|ζ) with n < l/2, which proves Eq. (5.84).

�

This theorem shows that when we use SHO-3D basis {BSHO3
nlm (q|ζ)}n≤N and SPF ba-

sis {BSPF
nlm (q|ζ)}n≤N,l≤2N to represent signal, SPF basis obtain lower representation MSE,

i.e. ‖E(q) −
∑N

n=0
∑2N

l=0
∑l

m=−l anlmBSPF
nlm (q|ζ)‖2 ≤ ‖E(q) −

∑N
n=0

∑2n
l=0

∑l
m=−l anlmBSHO3

nlm (q|ζ)‖2.
However, please note that SPF has more number of basis functions because it also
contains non-polynomial terms. Please note that the non-polynomial terms is im-
portant in HARDI model. For example, HOT model used in DOT and exact QBI is
essentially a non-polynomial model, where the ADC is represented by low order in
radial part, but high order in spherical part. SPFI can be seen as a generalization of
HOT model, because SPF basis is equivalent with SPNP basis which is used in DOT2.

Please note the difference when representing GDTI model and GHOT model via
SPF basis and SHO-3D basis.
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� For GDTI model, the signal E(q) is

E(q) = exp

− N∑
n=2

∑
n1+n2+n3=n

Dn1n2n3

(
qx
√
ζ1

)n1
(

qy
√
ζ1

)n2
(

qz
√
ζ1

)n3


= exp
(
−

q2

2ζ

)
exp

 1
2ζ

q2 −

N∑
n=2

∑
n1+n2+n3=n

Dn1n2n3

(
qx
√
ζ1

)n1
(

qy
√
ζ1

)n2
(

qz
√
ζ1

)n3


where the scale ζ is the well chosen to be close to the optimal one based on
the coefficient of q2, i.e. ζ =

ζ1
2(D200+D020+D002) . Its truncated Taylor expansion with

maximal order N denoted by EN(q) is given as

EN(q) = exp
(
−

q2

2ζ

) N∑
n=0

∑
n1+n2+n3=n

dn1n2n3qn1
x qn2

y qn3
z

which contains the main energy of E(q). In the above formula, EN(q) is rep-
resented by SHO-1D3 basis, thus it is in the space Span{BSHO3

nlm (q|ζ)}n≤N ⊂

Span{BSPF
nlm (q|ζ)}n≤N,l≤2N . So the representation MSE of E(q) by SHO-3D basis and

SPF basis are similar for GDTI model, although SPF basis still has less MSE
due to the residual part E(q) − EN(q). Based on the linearity of the basis repre-
sentation, the MSE when representing the mixture of GDTI model by SHO-3D
basis and SPF basis are also similar. As a special case, the MSE when repre-
senting mixture of tensor model by these two bases are also similar, although
SPF basis still have less MSE.

� For GHOT model, the signal E(q) is

E(q) = exp

− N∑
n=1

L∑
l=0

l∑
m=−l

bnlm

(
q2

ζ

)n

Ym
l (u)


= exp

(
−

q2

2ζ

)
exp

 1
2ζ

q2 −

N∑
n=1

L∑
l=0

l∑
m=−l

bnlm

(
q2

ζ

)n

Ym
l (u)


where the scale ζ is the well chosen to be close to the optimal one based on
the coefficient of q2, i.e. ζ =

ζ1
√
π

b100
. Its truncated Taylor expansion with maximal

radial order N and spherical order L denoted by ENL(q) is given as

ENL(q) = exp
(
−

q2

2ζ

) N∑
n=0

L∑
l=0

l∑
m=−l

q2nYm
l (u)

ENL(q) is represented by SPNP basis, thus it is in the space
Span{BSPF

nlm (q|ζ)}n≤N,l≤L. While ENL(q) can not be represented by SHO-3D
basis with any finite order N′. So the representation MSE of E(q) by SHO-3D
basis and SPF basis are quite different for GHOT model, and SPF basis still
has less MSE based on Theorem 5.3. Based on the linearity of the basis
representation, the MSE when representing the mixture of GDTI model by
SHO-3D basis and SPF basis are also quite different. As a special case, the
MSE when representing mixture of HOT model by these two bases are also
different, and SPF basis still have less MSE.
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Based on the above analysis, it is unfair for SPF basis if the synthetic data is gener-
ated by mixture of tensor model, while it is unfair for SHO-3D basis if the synthetic
data is generated by mixture of HOT model. The mixture of tensor model essentially
assumes the signal is in space spanned by SHO-1D3 (SPP and SHO-3D) basis, which
is a subset of the space spanned by SPNP (SPF) basis. Thus in the following experi-
ments, we prefer Söderman cylinder model described in Appendix A [Özarslan et al.,
2006; Söderman and Jönsson, 1995], which do not assume the space spanned by SPP
(SHO-1D3 and SHO-3D) basis or the space spanned by SPNP (SPF) basis.

5.4 EXPERIMENTAL COMPARISONS

Although we have proposed several variants of DOT and DPI, we only compare
QBI, exact QBI, DOT0 (orignal DOT), DPI0 (original DPI), SPFI and SHORE in
experiments, because they are widely used in dMRI domain. Theoretically, exact
QBI and DOT can be seen as the ODF and EAP estimation from the same mono-
exponential decay model, which has been discussed in subsection 5.2.2. Please note
that SHORE uses quadratic programming with nonnegative constraints to estimate
the coefficients [Özarslan et al., 2009]. Actually, all these six methods can use convex
optimization with constraints for a better reconstruction. However, to perform a fair
comparison, we implement SHORE and SPFI via least square with regularization λl

in spherical part and λn in radial part and the scale ζ is set by fitting the signal to
the GHOT model with order N′ and L′. Least square with Laplace-Beltrami regular-
ization is used for QBI, DOT and DPI [Descoteaux et al., 2007; Özarslan et al., 2006;
Descoteaux et al., 2010].

5.4.1 Synthetic data

Noise-free experiment

We generate synthetic data using Söderman cylinder model described in Ap-
pendix A [Özarslan et al., 2006; Söderman and Jönsson, 1995]. The parameters are
set as the same in [Özarslan et al., 2006]: length L = 5mm, radius ρ = 5µm, free diffu-
sion coefficient D0 = 2.02 × 10−3mm2/s, ∆/δ = 20.8/2.4ms. DWI data were generated in
3 shells with b value 500/1500/3000s/mm2, 60 evenly distributed samples per shell.

In the noise free experiment, the data was generated from two fibers crossing with
90◦ along x-axis and y-axis. The ground truth signal in x-y plane was visualized in
Fig. 5.5, which also showed the reconstructed signals in the six methods. Note that
the reconstructed signals in exact QBI and DOT are the same because they are both
based on mono-exponential decay assumption. L = 8 and λl = 10−9 were set for QBI,
exact QBI, DOT and DPI, L = 8, N = 4 and λl = λn = 10−9 for SPFI and SHORE. The
scale parameters ζ in SPFI and SHORE were set by fitting the GHOT model with
N′ = 1 and L′ = 4. For DOT and exact QBI, the signal samples on single shell of
b = 1500s/mm2 suggested in [Özarslan et al., 2006] were used to extrapolate the sig-
nal in other positions based on mono-exponential decay assumption. The single shell
samples were also used to estimate the coefficients for QBI. Please note in QBI, the
signal inside and outside the q-ball was forced to zero as we have discussed. Three
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Figure 5.5: Fitting synthetic noise-free signal by six methods. The left side shows the ground
truth signal and the reconstructed signals from six methods in x-y plane, where exact QBI
and DOT are in the same extrapolate model for diffusion signal. Please note the origin point
in DPI is singular, so we set it as the mean of the 4 points in its neighborhood. The right side
shows the signal values along two lines (Line1 and Line2).

shell samples were used in DPI, SPFI and SHORE. We also plotted the values along
given two lines where Line1 is along y-axis and Line2 has 45◦ azimuth. Along Line1,
the value curves obtained from SPFI and SHORE are much closer to the ground truth
and better than DOT. Along Line2, SPFI, SHORE and DOT obtained very similar re-
sults with the ground truth. DPI gave the worst results where the estimated signal
tends to infinity as q increases, the origin point is singular, and the signal near the
origin has unacceptable very large absolute values. As we have discussed, the recon-
structed signal from DPI is a polynomial along each direction, not a Gaussian-like
decay. In details, the regular term in the basis function in DPI makes the signal
tend to infinity as q increases, and the irregular term makes a singular point when
q = 0. QBI only considers the signal in the q-ball and does not extrapolate signal
in q-space, which is inappropriate for EAP estimation since Fourier transform is a
global transform.

Experiment with Rician noise

The performance on detecting fiber directions of the six methods was compared with
the synthetic data corrupted by Rician noise. The noise was added for 1000 tri-
als with SNR=10. EAP profiles at 15µm were estimated from DOT, DPI, SPFI and
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SHORE, and two kinds of ODFs Φt and Φw were estimated from QBI [Descoteaux
et al., 2007], exact QBI [Aganj et al., 2010b], SPFI and SHORE. Note that we did not
compare EAPs from QBI, because EAP in QBI has many negative values especially
when R > 10µm as we have discussed in subsection 5.2.2. The maxima of EAP profiles
or ODFs were detected as described in Appendix A. The successful ratio to detect
two maxima was recorded. The mean difference of angle (MDA) was calculated from
the successful trials. An truncated basis is needed for the data corrupted by noise to
avoid overfitting. For DOT, QBI, exact QBI and DPI we set L = 4 and λl = 0.006 sug-
gested in [Descoteaux et al., 2007]. For SPFI, we set L = 4, N = 1 and λl = λn = 1e − 8
in practice. For SHORE, please note that N = 3 (Nmax = 6 in [Özarslan et al., 2009])
used in [Özarslan et al., 2009] does not work well when SNR= 10. Thus we set N = 2
(Nmax = 4) and λl = λn = 1e − 8 for SHORE similarly with SPFI. The scale parameter ζ
in SPFI and SHORE was set by fitting the GHOT model with N′ = 1 and L′ = 4.

Fig. 5.6 shows the results of EAP profiles, where (A) and (B) are the success ratio
and MDA of the EAP profiles from SPFI, SHORE and DPI using 3 shells, (C) and
(D) are EAP results from SPFI, SHORE, DPI and DOT using only single shell at
b = 1500s/mm2. We use the shell at b = 1500s/mm2 because the data at 3000s/mm2 has
relatively lower SNR and 1500 was suggested for DOT in [Özarslan et al., 2006]. It
is clear in Fig. 5.6 that SPFI has best results among mHARDI methods using 3 shell
data, while it has similar results with SHORE in single shell data. SPFI and SHORE
obtain better results even for single shell data than other methods. DOT is better
than DPI in single shell data, probably because DPI is unstable in single shell data
and qmax calculated from b = 1500 is relatively small considering the maximal b value
8000 was used in [Descoteaux et al., 2010]. Note that SPFI and SHORE obtain better
results using 3 shell data than using only single shell data.

Fig. 5.7 shows the results of two kinds of ODFs, where (A) and (B) are the suc-
cess ratio and MDA of the ODFs from SPFI and SHORE using 3 shells, (C) and
(D) are for ODFs from SPFI, SHORE, QBI and exact QBI using only single shell at
b = 1500s/mm2. (A) and (B) showed that with 3 shell data Φw estimated from SHORE
has higher success ratio for large crossing angle and lower success ratio for small
crossing angle than Φw estimated from SPFI. For SPFI, Φw has better angular resolu-
tion than Φt, i.e. higher success ratio for small crossing angle, while Φt is more robust
to noise for large crossing angle. The results of SPFI agree with the results of Φt from
QBI and Φw from exact QBI (C,D) using single shell data [Tristán-Vega et al., 2010].
However an interesting phenomenon is that for SHORE, Φw has lower success ratio
for small crossing angle and higher success ratio for large crossing angle than Φt.
Φw estimated from SHORE has lowest MDA than others. For the ODFs from single
shell data in (C) and (D), Φt estimated from SPFI has the lowest MDA, and highest
success ratio for large crossing angle. However, for small crossing angle Φt from SPFI
only has higher success ratio than Φt from QBI. Φw from SPFI has overall highest
MDA and lowest success ratio for large crossing angle. Φt and Φw from SHORE have
similar results of both success ratio and MDA.

Comparing the results of EAP profiles in Fig. 5.6 and the results of ODFs in
Fig. 5.7, the EAP profile estimated from SPFI using 3 shell data has the best re-
sults. The EAP profiles from SPFI and SHORE using single shell data has the second
best results. Overall the EAP profiles have better results than ODFs, which agrees
previous study on the comparison between Φt from QBI and EAP profile from DOT
in [Prckovska et al., 2008].
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Figure 5.6: Evaluation of EAP estimation methods by synthetic data with Rician noise. A, B:
success ratio and MDA respectively for the EAP profiles estimated from SPFI, SHORE and
DPI using the data from three shells; C, D: success ratio and MDA respectively for the EAP
profiles estimated from SPFI, SHORE, DPI and DOT using in single shell with b = 1500;

5.4.2 Phantom data

The six methods were performed on the public phantom data with 3 shells
(500/1500/2000s/mm2) which was used in Fiber Cup in MICCAI 2009 [Poupon et al.,
2008; Fillard et al., 2011]. This data is now a standard test data for evaluating both
estimation methods and fiber tracking algorithms. The ground truth of fiber direc-
tions was shown in Fig. B.1. Note we set the unknown diffusion time τ = 1

4π2 for
calculating q values from b values. Please see Appendix B for more details and chal-
lenges on this data.

In our previous studies [Cheng et al., 2010a,b], we set the scale ζ based on typical
ADC value, and estimated the EAP profiles at 15µm with small regularization λl and
λn. In this subsection, we would like to compare the robustness of different methods
without regularization. For QBI, exact QBI, DOT and DPI, we set L = 4 and λl = 0.
We set L = 4, N = 1 for SPFI, L = 4, N = 2 for SHORE, λl = λn = 0 for both SPFI
and SHORE. Note that as we have analyzed in subsection 5.3.1, SPFI can work with
single shell data without any regularization, while SHORE and DPI do not work for
single shell data if no regularization. Thus for single shell data we considered a little
regularization with λn = λl = 10−9 for SHORE, λl = 10−8 for DPI, and we still use
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Figure 5.7: Evaluation of ODF estimation methods by synthetic data with Rician noise. A, B:
success ratio and MDA respectively for two kinds of ODFs estimated from SPFI, SHORE and
DPI using the data from three shells; C, D: success ratio and MDA respectively for two kinds
of ODFs estimated from SPFI, SHORE, DPI and DOT using in single shell with b = 1500;

λn = λl = 0 for SPFI because it is stable for single shell data when N = 1 as we have
analyzed.

Fig. 5.8 shows the effect of scale parameter set by two ways in SPFI and SHORE.
One is to set ζ as the typical scale based on the typical ADC in Eq. (5.32). The other
one is to set adaptive ζ by fitting DWI signal with GHOT model with N′ = 1, L′ = 4, i.e.
HOT model. The left part of Fig. 5.8 is the whole field of view of the estimated EAP
profiles based on the adaptive scale ζ from GHOT model fitting. Two regions A and B
are enlarged for visualization in the following figures on this data set. The right part
of Fig. 5.8 shows the comparison of the EAP fields under two scale selection methods.
For the typical scale set by typical ADC D0 = 0.7×10−3mm2/s, SPFI works well at 15µm
and 17µm, which has been shown in [Cheng et al., 2010b]. For the radius 25µm, the
results of SPFI are very noisy. While SHORE works for both radii 17µm and 25µm,
although the results are not so good. When using adaptive scale, the EAP profiles
from SPFI at 25µm are largely improved and have better quality than EAP profiles
from SHORE which seem to remain the estimation quality as the case of typical scale.
The pseudo-ADC map obtained by adaptive scale estimation has pseudo-ADC values
around 1.6× 10−3mm2/s which is about twice of the typical ADC D0. That is the reason
why these two scale selection obtains different results. Normally EAPs are estimated
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Figure 5.8: Comparison on the scale selection by two ways in phantom data. Left part:
whole field of view of the EAP profiles with R0 = 25µm estimated based on adaptive scale,
where two regions are used in are enlarged for visualization in the following figures on this
data set. Right part: the EAP profiles in region B estimated by SPFI and SHORE with two
scale selection ways.

around 15µm and EAPs at R0 > 20µm are likely noisy [Cheng et al., 2010b; Özarslan
et al., 2006]. However, please note that the phantom data has very low anisotropy so
that we need to perform min-max normalization for visualization. Thus we believe
for this data it is reasonable that EAP profile is less anisotropic around 15µm and
a larger radius is needed. Moreover, in the whole field of view for EAPs at 25µm in
Fig. 5.8 the crossing areas are obvious and other areas are also very clean. So in the
following results on this data in this chapter, we always use the adaptive scale by
fitting the GHOT model and estimate the EAP profiles at radius R0 = 25µm.

Fig. 5.9 shows the results of EAP profiles estimated from 3 shell data by SPFI,
SHORE, DPI respectively and the results from single shell data by SPFI, SHORE,
DPI and DOT. It is clear to see from Fig. 5.9 that for mHARDI methods, e.g. SPFI,
SHORE and DPI, multiple shell data obtains better results than single shell data.
The results from the single shell data with b = 1500s/mm2 is better than the results
from the data with b = 2000s/mm2. That is understandable. The data with higher b
value has better angular resolution but lower SNR, while the data with lower b value
has worse angular resolution but higher SNR. Thus mHARDI methods with multiple
shell data which combines both merits obtain better results. The EAP profiles esti-
mated by DPI from single shell data have many negative values which are removed
in visualization. DPI for single shell data has the worst among all methods for sin-
gle shell data, probably because its basis matrix has very large condition number for
single shell data. For 3 shell data, the EAP profiles by DPI are very smooth, probably
because the incomplete integration introduced by qmax which is small in this data.
SPFI used in 3 shell data obtains the best results in both regions. SPFI and DOT in
single shell data with b = 1500s/mm2 obtain the second best results. It is interesting
to see that for single shell data with b = 1500s/mm2, SPFI has similar but slightly
more noisy results with DOT.

Fig. 5.10 shows the results of two kinds of ODFs estimated by SPFI, SHORE, QBI
and exact QBI from single shell and three shell data. For three shell data, Φw es-
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Figure 5.9: EAP profiles estimated by SPFI, SHORE, DPI and DOT from phantom data in
single shell and three shells.

SPFI SHORE DPI SPFI SHORE DPI

three shell data, b=650,1500,3000 s/mm2 single shell data, b=1500 s/mm2

SPFI SHORE DPI DOT DOT

single shell data, b=2000 s/mm2 b=1500 s/mm2 b=2000 s/mm2

timated by SPFI seems sharper but slightly more noisy than Φw by SHORE, which
agrees with the ODF results of synthetic experiment in Fig. 5.7(A). For single shell
data with b = 1500s/mm2, Φw estimated by SPFI and exact QBI are similar and they
are slightly sharper but more noisy than Φw estimated by SHORE. An interesting
thing is the ODF by Tuch Φt estimated by SPFI, SHORE and QBI from single shell
data are much similar. That is because the estimated Φt from these three methods
in this data are much smooth and the difference between them are slightly visible
before min-max normalization. However, min-max normalization enhanced the di-
rections and discarded these small difference of shape. For single shell data with
b = 2000s/mm2, Φw by all methods are too noisy. Φt by three methods are very similar.

Compared to ODFs, the EAPs estimate by SPFI from 3 shell data and EAPs esti-
mated by SPFI and DOT from single shell data with b = 1500s/mm2 seem to be more
clean and sharper. This agrees with the previous results in synthetic data. Note that
SHORE did not obtain good results in both single shell data and 3 shell data as it did
in synthetic experiments. That is probably because we use a larger radius R0 = 25µm
and the SNR is higher than the SNR in synthetic experiments.

5.4.3 Real Monkey data

These six methods were also performed in a real monkey data with three shells
(b = 500, 1500, 3000s/mm2). Each shell has the same thirty evenly distributed sam-
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SPFI SHORE SPFI SHORE

ODF by Wedeen Φw(r), 3 shell data ODF by Tuch Φt(r), 3 shell data
SPFI SHORE exact QBI SPFI SHORE QBI

ODF by Wedeen Φw(r), b=1500 s/mm2 ODF by Tuch Φt(r), b=1500 s/mm2

SPFI SHORE exact QBI SPFI SHORE QBI

ODF by Wedeen Φw(r), b=2000 s/mm2 ODF by Tuch Φt(r), b=2000 s/mm2

Figure 5.10: Two kinds of ODFs estimated by SPFI, SHORE, QBI and exact QBI from phan-
tom data in single shell and three shells.

ples. Please refer Appendix B for more details on this data set. In our previous
studies [Cheng et al., 2010a,b], we set the scale ζ based on typical ADC value, and
estimated EAPs/ODFs with small regularization. In this subsection, we would like
to demonstrate the parameter selection based on scalar maps, and compare different
methods without regularization. The same parameters were used in methods in this
data as the parameters in phantom data.

Fig. 5.11 shows the parameter selection process. The pseudo-ADC map with
(N′, L′) = (1, 4) ranges from 5.6 × 10−6 to about 1.4 × 10−3mm2/s which is twice of the
typical ADC. The pseudo-ADC map with (N′, L′) = (2, 4) ranges from −1.1 × 10−3 to
about 3.3 × 10−3mm2/s which is five times of the typical ADC. Note that the pseudo-
ADC map with (N′, L′) = (2, 4) has large range with negative values, which is not
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Figure 5.11: Scalar maps for parameter selection in real data. The first column includes the
pseudo-ADC map under (N′, L′) = (1, 4) and (N′, L′) = (2, 4). (N′, L′) = (1, 4) is used to generate
the scalar maps in the second and third columns because of its better quality. The second
column includes the GFA maps under (N, L) = (1, 4) and (N, L) = (2, 4). The third column
includes the MSD map and RTO map under (N, L) = (1, 4). (N, L) = (1, 4) is used in EAP/ODF
estimation and scalar map estimation in the third column because of its better quality.

pseudo-ADC, (N′, L′) = (1, 4) GFA, (N, L) = (1, 4) MSD, (N, L) = (1, 4)

pseudo-ADC, (N′, L′) = (2, 4) GFA, (N, L) = (2, 4) RTO, (N, L) = (1, 4)

appropriate. Pseudo-ADC map with (N, L) = (1, 4) has better quality with normal
range in brain. Thus we fix (N′, L′) = (1, 4) to obtain scale ζ for this data. It can be
seen that the pseudo-ADC map has similar contrast with ADC map (i.e. MD map) in
tensor model in Fig. 4.7. The Cerebrospinal fluid (CSF) has high pseudo-ADC value.
In GFA maps, the anisotropic areas have high intensity, which means it is indeed the
generalized version of previous FA for tensors and GFA for ODFs. The CSF areas
have high intensity in MSD map and low intensity in RTO map. That is because CSF
areas have high diffusivity although the anisotropy of these regions is low. The GFA
map with (N, L) = (1, 4) has better contrast and is smoother than the GFA map with
(N, L) = (2, 4). Thus we fix (N, L) = (1, 4) for the estimation of ODF/EAP fields and other
scalar maps. See the whole filed of view of the estimated ODFs and EAP profiles at
15µm in Fig. 5.12, where a square region is marked in EAP field and is enlarged for
visualization of ODF and EAP results in Fig. 5.13, 5.14 and 5.15. Comparing the esti-
mated EAP field and two kinds of ODF field shown in Fig. 5.12, an obvious advantage
for EAP profile and ODF by Wedeen Φw over the ODF by Tuch Φt is that we do not
do artificial min-max normalization for EAP profile and Φw because they are sharp
enough compared to Φt. Moreover, the estimated EAP profile and Φw are isotropic
in grey matter areas and anisotropic in white matter areas. If we perform min-max
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Figure 5.12: Whole field of view of the estimated EAP profiles at 15µm and two kinds of
ODFs with (N′, L′) = (1, 4), (N, L) = (1, 4) in real data. The glyphs of EAP profiles and ODFs
are colored by the GFA for spherical functions which is also used to set the background color.
The square region marked in EAP field is enlarged for visualization of ODF/EAP glyphs in
the Fig. 5.13, 5.14, and 5.15.

EAP profile ODF by Wedeen Φw ODF by Tuch Φt

Figure 5.13: EAP profiles in real data estimated from SHORE and SPFI under different
order and different scale selection. GFA for spherical functions is used to set the color of
glyphs and the background.

normalization, the grey matter areas become more anisotropic which may bring some
errors in the following tractography.

Fig. 5.13 shows the EAP profiles by SPFI and SHORE with the scale ζ set by
two ways, i.e. the typical scale and the adaptive scale by fitting GHOT model with
(N′, L′) = (1, 4). When (N, L) = (1, 4) is used in SPFI, the EAP profiles with adap-
tive scale are sharper in the marked square area than the results based on typical
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Figure 5.14: EAP profiles at 15µm estimated by SPFI, SHORE, DPI and DOT from real data
in single shell and three shells. GFA for spherical functions is used to set the color of glyphs
and the background.

SPFI SHORE DPI

3 shell data, b = 500, 1500, 3000s/mm2

SPFI SHORE DPI DOT

single shell data, b = 1500s/mm2

SPFI SHORE DPI DOT

single shell data, b = 3000s/mm2

scale. However, when minimal order N = 2 needed for anisotropic diffusion is used
in SHORE, the results from adaptive scale seem to be worse than the results from
typical scale. See the marked square region. An interesting thing is that the results
from SPFI with (N, L) = (2, 4) and adaptive scale are very similar with the results
from SHORE with N = 2 and adaptive scale. The results from SPFI with (N, L) = (2, 4)
and typical scale are similar with the results from SHORE with N = 2 and typical
scale. This phenomenon can be explained by Theorem 5.3. However, the results from
SPFI with (N, L) = (1, 4) and adaptive scale are better than the results from SHORE
with N = 2 and adaptive scale. The results in this figure showed that in some cases,
we need to use low order in radial part compared to the high order in spherical part.
While SHORE forces n > l/2, which may bring some overfitting effect. SPFI com-
pletely separates the radial part and spherical part, which gives more freedom to
select different orders in two parts. Note that since adaptive scale is well estimated
when low order N = 1 is used, low order in radial part may be enough for a good
estimation in this data.

Fig. 5.14 shows the EAP profiles at 15µm estimated from both multiple shell data
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Figure 5.15: Two kinds of ODFs estimated by SPFI, SHORE, QBI and exact QBI from mon-
key data in single shell and three shells.

SPFI SHORE SPFI SHORE

ODF by Wedeen Φw(r), 3 shell data ODF by Tuch Φt(r), 3 shell data
SPFI SHORE exact QBI SPFI SHORE QBI

ODF by Wedeen Φw(r), b=1500 s/mm2 ODF by Tuch Φt(r), b=1500 s/mm2

SPFI SHORE exact QBI SPFI SHORE QBI

ODF by Wedeen Φw(r), b=3000 s/mm2 ODF by Tuch Φt(r), b=3000 s/mm2

and single shell data using SPFI, SHORE, DPI and DOT. With three shell data, SPFI
obtains the best results, while SHORE has a little overfitting. The advantage of SPFI
over SHORE is just to use lower order in radial part, because SPFI with (N, L) = (2, 4)
obtains similar results by SHORE with N = 2 as we have discussed above. EAPs in
DPI are also less anisotropic, because we did not do min-max normalization like [De-
scoteaux et al., 2010] and the maximal b value for qmax used here is 3000, while 8000 is
used in [Descoteaux et al., 2010]. For single shell data, in all methods the results from
data with b = 1500 are better than the results from data with b = 2000. Once again
b = 1500s/mm2 seems the optimal b value for estimation on single shell data [Özarslan
et al., 2006]. DPI fails in single shell data probably due to its unstablility in single
shell data. SPFI and SHORE obtain similar results in single shell data, and their
results are more sharper than DOT, which agrees with the synthetic experiment in
Fig. 5.6(C).

Fig. 5.15 shows the ODFs Φw and Φt estimated by SPFI, SHORE, QBI and exact
QBI from both three shell data and single shell data. Both ODFs by SPFI and SHORE
from three shell data seem to be very similar. For single shell data, Φw by SHORE
is more robust to noise than Φw by SPFI and exact QBI, because it obtains cleaner
isotropic glyphs in grey matter areas, especially when b = 3000s/mm2. This agrees
with the results of synthetic experiment in Fig. 5.7. However, for single shell data, Φt

estimated by SPFI is more robust and anisotropic than Φt estimated by SHORE and
QBI, which also agrees with the experiment in 5.7.

Comparing the estimated EAP profiles and two kinds of ODFs, the EAP profiles
generally have better angular resolution. EAP profile estimated by SPFI with three
shell data is the best one, and the EAP profile estimated by SPFI and SHORE from
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single shell data with b = 1500s/mm2 are the second results. EAP profiles by DOT
takes the third position.

5.5 SUMMARY

In this chapter, based on the SPF basis and least square estimation proposed
by Dr. Assemlal, we have proposed the analytical Spherical Polar Fourier Imaging
(SPFI), which analytically estimates EAP, ODFs, MSD, GFA, RTO by representing
signal with SPF basis. The implementation of SPFI includes three steps, i.e. scale
estimation, SPF coefficients estimation, analytical linear transforms for EAP and its
various features. See Table 5.1 for the process. In scale estimation, we proposed two
ways. One is to set scale ζ based on typical ADC value in Eq. (5.32). The other one
is to fit the signal with GHOT model and set scale parameter by the pseudo-ADC in
GHOT model, which was proved in Theorem 5.1 to be the optimal scale for infinite
radial terms. In least square estimation of SPF coefficients, we proposed to consider
the prior E(0) = 1 to improve the estimation results. In analytical linear transforms
for EAP and its features, we proposed in proposition 5.1 the closed form of Fourier
dual SPF (dSPF) basis that is the Fourier transform of SPF basis. Then EAP can
be represented by dSPF basis with the same coefficients of signal under SPF basis
as shown in proposition 5.2. Proposition 5.3 and 5.4 proved that two kinds of ODFs
Φt and Φw can be analytically represented by SH basis with the coefficients obtained
from linear transforms of the pre-estimated SPF coefficients. The effect of diffusion
time and parameter selection were also discussed in subsection 5.1.3.

Our derivation of EAP is based on plane wave expansion in Eq. (5.12) which seems
more fundamental than addition theorem and Funk-Hecke theorem used in analyti-
cal QBI derivation. See the relation of these three theorems in Appendix 5.7.

The SPF basis can be seen as a generalization of SH basis from S2 to R3 by con-
sidering radial basis. In this sense, SPFI can be seen as a generalization of QBI
or DOT. Actually our work showed that it is an easy job for analytical ODF and
EAP estimation. We proposed a general framework named Analytical Fourier Trans-
form in Spherical Coordinate (AFT-SC) to incorporate and compare most widely used
sHARDI and mHARDI methods, e.g. QBI, exact QBI, DOT, DPI, SHORE, SPFI. In
this framework, we also proposed several variants of DPI and DOT which are ana-
lytical ODF/EAP estimation methods and can be seen as bridges to demonstrate the
relation of various methods. Please refer Table 5.2 for methods in AFT-SC frame-
work. QBI can be explained in AFT-SC framework by considering radial decay as
a delta function. We derived the closed form for EAP in QBI and analyzed why it
obtains many negative values for large b value. We also explained why the estima-
tion of Φw in QBI fails. SHORE is similar with SPFI. We derived the closed form for
EAP and ODFs, GFA for SHORE. For DPI and DOT, we theoretically analyzed their
limitations and proposed several variants to avoid the limitations. Those variants
also serve as bridges to demonstrate the relations between different methods. For
example DOT2 uses SPNP basis which is proved to be equivalent with SPF basis in
Lemma 5.2.

In order to evaluate the different basis function used in different methods, we pro-
posed several criteria for evaluation. Please refer Table 5.3 in details. A good basis
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should be orthonormal such that it is model-free, and it also should satisfy the listed
three priors. A good fitting of the given DWI samples is just a necessary condition,
not a sufficient condition for a good EAP/ODF estimation. DPI has bad performance
partially due to that it uses the basis that does not satisfy the priors, and the in-
troduction of qmax for incomplete integration is another big problem. SPF basis and
SHO-3D basis are better than other bases in these criteria except the separation of
spherical and radial parts. SHO-3D basis partially separates these two parts since
it forces higher order in radial part than spherical part, while SPF basis separate
them completely. Separating these two parts can let us give different orders in dif-
ferent part. Normally low order is needed in radial part, but high order is needed in
spherical part. We also analyzed the instability of mHARDI methods in single shell
data. DPI and SHORE are unstable which need regularization to obtain meaningful
results from single shell data. However, SPFI with order N = 1 is stable in single
shell data which can work without any regularization.

Since SHO-3D basis and SPF basis are similar, we theoretically compared these
two bases. Essentially, SHO-3D basis uses Gaussian polynomial basis in radial part,
while SPF basis considers Gaussian non-polynomial basis in radial part. Their rela-
tion can be seen in Theorem 5.3. SPF basis completely separates the spherical part
and radial part, such that we can give low order in radial part and obtain robust
results, which has been validated in experiments.

We now summarize the contributions of this chapter.

1. Based on the previous work on SPF basis and least square estimation by Dr.
Assemlal, we proposed analytical SPFI. Please refer Table 5.1 for the method
which includes three independent steps. The main contribution is the analytical
linear transforms in the third step.

(a) In the first step, we proposed two ways form scale parameter estima-
tion. The first way is to set scale ζ based on the typical ADC value D0
in Eq. (5.32). The second way is to set scale by fitting the GHOT model,
which was proved to be optimal for infinite radial terms in Theorem 5.1.
In the first way, the scale is shared in every voxel, which largely acceler-
ates the whole estimation process. Then the following operations on the
estimated EAP field can be performed on coefficients because EAPs in dif-
ferent voxels are represented by the same dSPF basis. In the second way,
the scale is adaptive in each voxel, which normally obtains better estima-
tion results. However, the estimation process takes more time because the
basis matrix is different in each voxel, and the following operations on EAP
filed need to consider the basis.

(b) In the second step for SPF coefficients estimation, we proposed to consider
E(0) = 1 in the estimation process. It has several advantages. First, it im-
proves largely the results because the estimated signal satisfies the prior
E(0) = 1. Second, it makes mHARDI methods more stable for single shell
data, because it reduces the number of unknown variables in estimation.
Third, since it reduces the number of variables, it accelerates the estima-
tion process.

(c) The third step is the analytical linear transforms for EAP and ODFs in
proposition 5.2, 5.3 and 5.3. In proposition 5.1, we proposed the ana-
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lytic form of Fourier dual SPF (dSPF) basis which is the Fourier trans-
form of SPF basis. dSPF basis is proved to be an orthonormal basis. The
three scalar indices, RTO, MSD, GFA are given in Eq. (5.22), Eq. (5.26)
and Eq. (5.28). Note that the GFA in Eq. (5.27) is for EAPs defined in
R3, which is the generalization of GFA for ODFs and EAP profiles defined
in S2 and FA for tensors defined in S ym+

3 . With SPF basis representation,
Eq. (5.27) can be analytically written as Eq. (5.28). Compared to numerical
SPFI in [Assemlal et al., 2009a; Assemlal, 2010], the proposed analytical
linear transforms avoid the numerical errors.

(d) We analyzed parameter selection by scalar maps in subsection 5.1.3 and
the effect of diffusion time in proposition 5.5.

2. We proposed Analytical Fourier Transform in Spherical Coordinate (AFT-SC)
framework, which incorporates most widely used sHARDI and mHARDI meth-
ods and demonstrates well their relations. Based on AFT-SC framework, an an-
alytical ODF and EAP estimation seems to be a very easy job. We demonstrated
some variants of methods which can be used as the analytical estimations and
avoid the limitations of the original methods. See Table 5.2 for the methods in
AFT-SC framework.

(a) QBI considers delta function as its radial basis. We derived the EAP in
QBI, and discussed why EAP in QBI and Φw in QBI are both impracti-
cal. We derived the analytical QBI for Φt in a new way based on plane
wave expansion. This is different from previous derivations of analytical
QBI based on the addition theorem and Funk-Hecke theorem. Plane wave
expansion can derive the other two theorems which are proved to be equiv-
alent. See Appendix 5.7. Thus plane wave expansion theorem seems to be
more fundamental than the other two theorems.

(b) We derived correct form for SHORE, which uses SHO-3D basis. We gave
the analytical solution for EAP, ODFs, and other indices in SHORE. We
also showed how to consider E(0) = 1 in SHROE.

(c) DPI considers regular and irregular polynomial terms as its radial basis.
The regular terms make the estimated signal tends to infinity as q in-
creases and irregular terms make original point singular. We proposed
DPI1 to avoid the limitations in DPI. The basis in DPI1 is a specific part of
SHO-3D basis.

(d) DOT can not be used in multiple shell data. We proposed DOT1 and DOT2
to generalize the original DOT for multiple shell data. DOT2 uses SPNP
basis which is proved to be equivalent with SPF basis in Lemma 5.2. Thus
SPFI can be seen as a generalization of DOT.

3. We proposed several criteria for evaluation of different basis in different meth-
ods. See Table 5.3.

(a) The basis should be complete such that the method is model-free.

(b) The basis is better to be orthogonal. There are several advantages for esti-
mation with orthogonal basis.

(c) The basis should satisfy the three priors of E(q) in estimation, i.e. the prior
E(0) = 1, E(q) tends to zero as q increase, and the radial decay of E(q) is like
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(but NOT) a Gaussian function. DPI does not satisfy these priors because
of the regular and irregular polynomial terms, which is the main reason
why DPI fails in experiments. Another reason is the qmax for incomplete
integration. The limitations of DPI can be avoided by removing irregular
terms and considering the product of the regular terms and Gaussian func-
tion, which results in DPI1. The basis of DPI1 is a subset of SHO-3D basis.
In this sense, SHORE can be seen a generalization of DPI.

(d) The bases in mHARDI methods are generally unstable for single shell data
so that the regularization is always needed. However, SPF basis is stable
for single shell data by considering E(0) = 1 and N = 1, which works without
any regularization.

(e) The basis is better to separate completely the radial part and spherical
part, such that we can give different order in different part. SHO-3D basis
forces n ≥ l/2 which may result in overfitting. SPF basis separate these two
parts completely.

4. We theoretically compared the difference between SHO-3D basis and SPF basis.
Theorem 5.2 shows the equivalence between SHO-3D basis, SHO-1D3 basis and
SPP basis. Lemma 5.2 shows the equivalence between SPF basis and SPNP
basis. Essentially SHO-3D basis is the Gaussian polynomial basis, while SPF
basis is the Gaussian non-polynomial basis. SPF basis contains two parts of
basis. One is the polynomial part and the other one is non-polynomial part.
Theorem 5.3 demonstrates that the function space spanned by SHO-3D basis
with order N is a subset of the function space spanned by SPF basis with order
(N, 2N). The space spanned by SPF basis can not be represented by SHO-3D
basis with any finite order.

5. The experiments showed that EAP profile generally has better performance
than ODFs, and the proposed scale estimation largely improves the results of
SPFI. For multiple shell data, SPFI obtains better EAP estimation than others.
For single shell data, SPFI, SHORE and DOT with b = 1500s/mm2 have better
EAP estimation than others. The experiment also demonstrated that the bet-
ter performance of SPFI over SHORE is probably because SPFI can give lower
order in radial part to avoid overfitting.

5.6 APPENDIX A: PROOFS ON ANALYTICAL SPFI

Proof of Proposition 5.1 on analytical form of dSPF basis. Based on the plane
wave equation in Eq. (5.12)

BdSPF
nlm (R|ζ) def

= F {Gn(q|ζ)Ym
l (u)}(R) =

∫
R3

Gn(q|ζ)Ym
l (u) cos(2πiqT R)dq

= 4π
∫

Gn(q|ζ)Ym
l (u)

 ∞∑
l′=0

l′∑
m′=−l′

(−1)l′/2 jl′(2πqR)Ym′
l′ (u)Ym′

l′ (r)

 dq

= 4π(−1)l/2
{∫ ∞

0
jl(2πqR)Gn(q|ζ)q2dq

}
︸                               ︷︷                               ︸

Iln(R)

Ym
l (r) (5.85)
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where we use the orthonormal property of SHs, i.e.
∫
S2 Ym

l (u)Ym′
l′ (u)du = δll′δmm′ , and

define Iln(R) =
∫ ∞

0 jl(2πqR)Gn(q|ζ)q2dq. Considering Eq. (2.63) in Eq. (5.2), i.e.

L1/2
n (x) =

n∑
i=0

linxi, lin = (−1)i
(
n + 0.5
n − i

)
1
i!

we have

Iln(R) =
κn(ζ)ζ1.25

2
√

R

n∑
i=0

lin

∫ ∞

0
x2i+1.5Jl+0.5(2πR

√
ζx) exp(−0.5x2)dx (5.86)

Then consider the property of Bessel function in Eq. (2.82) [Gradshteyn and Ryzhik,
2007]. In Eq. (5.86) α = 0.5, β = 2πR

√
ζ, ν = l + 0.5, µ = 2i + 1.5, then we have

Iln(R) =
κn(ζ)ζ0.5l+1.5πl+0.5Rl

Γ(l + 1.5)

n∑
i=0

lin20.5l+i−0.5Γ(0.5l + i + 1.5)1F1(
2i + l + 3

2
; l +

3
2

;−2π2R2ζ)

Put it into Eq. (5.85), we proved Eq. (5.13).

Because of the orthogonality of SPF basis and Parseval’s theorem, we have

δn′l′m′
nlm = 〈BSPF

nlm (q), BSPF
n′l′m′(q)〉 = 〈BdSPF

nlm (R), BdSPF
n′l′m′ (q)〉

Thus {BdSPF
nlm (R)} is an orthonormal function set. ∀ f (R) ∈ L2(R3, 1), f̂ (q) = F { f (R)}(q) is

also in L2(R3, 1). So the MSE for given N and L is∥∥∥∥∥∥∥ f (R) −
N∑

n=0

L∑
l=0

l∑
m=−l

〈
f (R), BdSPF

nlm (R)
〉

BdSPF
nlm (R)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥ f̂ (q) −
N∑

n=0

L∑
l=0

l∑
m=−l

〈
f̂ (q), BSPF

nlm (q)
〉

BSPF
nlm (q)

∥∥∥∥∥∥∥
2

which means the MSE converges to zero as N and L increase, because SPF is or-
thonormal basis. So dSPF basis is also an orthonormal basis in L2(R3, 1). �

Proof of Proposition 5.3 on analytical form of Φt(r). Put Eq. (5.1) into Eq. (4.64),
we can easily obtain the solution.

Φt(r) =
1
Z

∫
Πr

N∑
n=0

L∑
l=0

l∑
m=−l

anlmGn(q|ζ)Ym
l (u)qdqdu

=
1
Z

N∑
n=0

L∑
l=0

l∑
m=−l

anlm

(∫
S2

Ym
l (u)δ(rT u)du

) (∫ ∞

0
Gn(q|ζ)qdq

)

=
1
Z

N∑
n=0

L∑
l=0

l∑
m=−l

anlm
(
2πPl(0)Ym

l (r)
) (κn(ζ)ζ

2

∫ ∞

0
exp(−

x
2

)L1/2
n (x)dx

)
(5.87)

=
2πζ
Z

L∑
l=0

l∑
m=−l

 N∑
n=0

n∑
i=0

κn(ζ)
(
i − 0.5

i

)
(−1)n−iPl(0)anlm

 Ym
l (r) (5.88)

where Pl(0) is the Legendre polynomial of order l at 0. We obtain Eq. (5.87)
because SH is the eigenfunction of the FRT in Corollary 2.4 [Descoteaux et al.,
2007]. From Eq. (5.87) to Eq. (5.88), we use the property of Laguerre polynomial
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in Eq. (2.84) [Gradshteyn and Ryzhik, 2007]. Thus here we have a linear transforma-
tion from the coefficients anlm of E(q) to the coefficients cΦt

lm in Eq. (5.18). Please note
that the Dr. Assemlal in [Assemlal, 2010, pp. 122] gave a solution for Φt(r). However,
the integrand there was wrong because of wrong volume element. Here we give the
right analytical formulae.

Note that Φt(r) can also be proved by the integration of P(Rr), i.e.

Φt(r) =
1
Z

(∫ ∞

0
Fnl(R|ζ)dR

)
Ym

l (r)

Considering Eq. (5.14) and Eq. (2.85), we can obtain the same cΦt
lm in Eq. (5.18).

Considering Eq. (2.80), the lower incomplete gamma function in Eq. (2.79), and

L1/2
n (x) =

n∑
i=0

linxi, lin = (−1)i
(
n + 0.5
n − i

)
1
i!

we have

Φt(r,C) =
2πζ
Z

N∑
n=0

L∑
l=0

l∑
m=−l

anlm
(
Pl(0)Ym

l (r)
) κn(ζ)

2

∫ C2/ζ

0
exp(−

x
2

)L1/2
n (x)dx

 (5.89)

=
2πζ
Z

L∑
l=0

l∑
m=−l

 N∑
n=0

n∑
i=0

κn(ζ)
(
n + 0.5
n − i

)
(−2)i

i!
γ(i + 1, 0.5C2/ζ)Pl(0)anlm

 Ym
l (r)

Thus we have the coefficients cΦt
lm(C) under SH basis in Eq. (5.19).

Note although Eq. (5.18) and Eq. (5.19) seem to be different, it can be verified that

Φt(r) = lim
C→∞

Φt(r,C), cΦt
lm = lim

C→∞
cΦt

lm(C)

�

Proof of Proposition 5.4 on analytical form of Φw(r). Similarly, put Eq. (5.1)
into Eq. (4.64), then we can obtain the analytical expression for Φw(r).

Φw(r) =
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

anlm

(∫ 2π

0
∆bYm

l (u)δ(rT u)du
) (∫ ∞

0

Gn(q|ζ)
q

dq
)

However, we can not solve it just like what we did for Φt(r), because the division
by q introduces a pole. It is a little hard to find the analytical solution for Φw(r),
and [Assemlal, 2010; Assemlal et al., 2009a] did not give any solution for that. We
solve this problem by considering E(0) = 1, which is a true fact for any DWI data.
That means, for our basis, the following identity holds for all u ∈ S2.

1 = E(0) =
∑
nlm

anlmGn(0)Ym
l (u) =

∑
nlm

anlmκn(ζ)Ym
l (u) = 1, ∀u ∈ S2 (5.90)
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Also keep in mind that a constant addition inside ∆b does not change the final result.
First we consider the integral inside a given disk Πr,C whose radius is C, instead of in
the whole plane in Eq. (4.64), then we have

Φw(r,C) =
1

4π
−

1
8π2

∫
Πr,C

∆b(E(q) − E(0))
q

dqdu

=
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

anlm

(∫
S2

∆b

(∫ C

0

Gn(q|ζ) −Gn(0|ζ)
q

dq
)

Ym
l (u)δ(rT u)

)
du

=
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

anlmκn(ζ)
(∫
S2

∆bIn(C)Ym
l (r)δ(rT u)du

)
(5.91)

Now there is no pole! For In(C) we have

In(C) =

∫ C

0

Gn(q|ζ) −Gn(0|ζ)
κn(ζ)q

dq

=
1
2

∫ C2/ζ

0

exp(−x/2) − 1
x

+

n∑
i=1

linxi−1 exp(−
x
2

)

 dx

= 0.5(−γ − E1(0.5C2/ζ) − log(0.5C2/ζ))︸                                             ︷︷                                             ︸
I1(C)

+ 0.5
n∑

i=1

lin2iγ(i, 0.5C2/ζ)︸                         ︷︷                         ︸
I2
n (C)

(5.92)

where γ ' 0.5772 is the Euler–Mascheroni constant, E1(x) =
∫ ∞

x
exp(−t)

t dt is the expo-
nential integral. Although there are two parts in In(C), and I1(C) is independent of
n and it tends to infinity as C increase, it actually has no contribution for Φw(r,C),
because ∑

nlm

anlmκn(ζ)Ym
l (u)I1(C) = I1(C)

is a constant inside ∆b. Then considering Ym
l (u) is the eigenfunction of FRT and ∆b,

we have the analytical result for Φw(r,C) in Eq. (5.93).

Φw(r,C) =
1

4π
−

1
8π

N∑
n=1

L∑
l=0

l∑
m=−l

anlmκn(ζ)
n∑

i=1

lin2iγ(i, 0.5C2/ζ)Pl(0)(−l)(l + 1)Ym
l (r) (5.93)

Considering Y0
0 (u) = 1√

4π
, we have the coefficients cΦw

lm (C) in Eq. (5.21). Let C tends to
infinity and consider limC→∞ γ(i, 0.5C2/ξ) = (i − 1)!, then we have

Φw(r) = lim
C→∞

Φw(r,C), cΦw
lm = lim

C→∞
cΦw

lm (C)

and coefficients cΦw
lm are shown in Eq. (5.20). �
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Proof of Theorem 5.1 on scale selection for SPF basis. Rewrite E(q) as

E(q) = exp
(
−

b100

ζ1
q2Y0

0

)
exp

−
∞∑

nlm
(n,l,m),(1,0,0)

bnlm

(
q2

ζ1

)n

Ym
l (u)


= exp

(
−

b100q2

2ζ1
√
π

) ∞∑
k=0

1
k!

−
∞∑

nlm
(n,l,m),(1,0,0)

bnlm

(
q2

ζ1

)n

Ym
l (u)


k

(5.94)

= exp
(
−

q2

2ζ∗

) 1 +

∞∑
nlm

(n,l,m),(1,0,0)

cnlm

(
q2

ζ∗

)n

Ym
l (u)

 (5.95)

In Eq. (5.94), we use Y0
0 (u) = 1

2
√
π

and exp(x) =
∑∞

k=0
xk

k! . In Eq. (5.95), we set ζ∗ =
ζ1
√
π

b100
,

and put scale ζ1 into the coefficients. Note when we set ζ = ζ∗ as the scale parameter in
SPF basis, the first term, which is a Gaussian function and normally has the largest
energy in DWI signal, is presented by the first SPF basis. If ζ , ζ∗, we need infinite
radial terms to represent the Gaussian function exp(− q2

2ζ∗
), which results in the leak

of energy. See the following analysis.

Let c000 = 1 and c100 = 0, then Eq. (5.95) is separated into three parts E1(q), E2(q)
and E3(q).

E(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

cnlmBSPNP
nlm (q|ζ∗)︸                               ︷︷                               ︸

E1(q)

+

∞∑
nlm

n>N, and l≤L

cnlmBSPNP
nlm (q|ζ∗)

︸                              ︷︷                              ︸
E2(q)

+

∞∑
nlm
l>L

cnlmBSPNP
nlm (q|ζ∗)

︸                   ︷︷                   ︸
E3(q)

(5.96)
Note E3 is orthogonal to E1, E2 and {BSPF

nlm (q|ζ)}l≤L, because the orthogonality of SHs.
Thus

MS ENL(ζ) = ‖E3(q)‖2 +

L∑
l=0

l∑
m=−l

∞∑
n=N+1

〈E1(q) + E2(q), BSPF
nlm (q|ζ)〉2

= ‖E3(q)‖2 +

L∑
l=0

l∑
m=−l

∞∑
n=N+1

(
〈E1(q), BSPF

nlm (q|ζ)〉2 + 〈E2(q), BSPF
nlm (q|ζ)〉2

+ 2〈E1(q), BSPF
nlm (q|ζ)〉〈E2(q), BSPF

nlm (q|ζ)〉
)

where ‖E3(q)‖2 is independent of ζ, and

〈E1(q), BSPF
nlm (q|ζ)〉 =

N∑
n1=0

cn1lm〈BSPNP
n1lm (q|ζ∗), BSPF

nlm (q|ζ)〉

〈E2(q), BSPF
nlm (q|ζ)〉 =

∞∑
n2=N+1

cn2lm〈BSPNP
n2lm (q|ζ∗), BSPF

nlm (q|ζ)〉

Note because ‖E(q)‖2 is finite, we have

lim
N→∞

L∑
l=0

l∑
m=−l

∞∑
n=N+1

〈E2(q), BSPF
nlm (q|ζ)〉2 < lim

N→∞
‖E2(q)‖2 = 0
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So we have

lim
N→∞

MS ENL(ζ) = ‖E3(q)‖2 +

L∑
l=0

l∑
m=−l

∞∑
n=N+1

〈E1(q), BSPF
nlm (q|ζ)〉2 (5.97)

If ζ = ζ∗, the linear independent SPNP basis set
{
BSPNP

nlm (q|ζ∗)
}
0≤n≤N,0≤|m|≤L

and the

SPF basis set {BSPF
nlm (q|ζ)}0≤n≤N,0≤|m|≤L are two bases of the same function space. That

means
L∑

l=0

l∑
m=−l

∞∑
n=N+1

〈E1(q), BSPF
nlm (q|ζ)〉2

= 0 if ζ = ζ∗

> 0 if ζ , ζ∗

It is positive if ζ , ζ∗, because exp
(
−

q2

2ζ∗

)
can be separated as

exp
(
−

q2

2ζ∗

)
= exp

(
−

q2

2ζ

)
exp

(
q2 ζ∗ − ζ

2ζζ∗

)
= exp

(
−

q2

2ζ

) ∞∑
n=0

(
ζ∗ − ζ

2ζζ∗

)n

q2n

which makes E1 be represented by infinite SPF basis {BSPF(q|ζ)}. Then consider-
ing Eq. (5.97), we have

lim
N→∞

MS ENL(ζ) ≥ lim
N→∞

MS ENL(ζ∗) = ‖E3(q)‖2

which proves the theorem. �

Proof of Proposition 5.5 on the invariance of diffusion time τ. Since we only
know b values and gradients {u j}

Ns
j=1, we need to rewrite Eq. (5.36) with respect to

b values, i.e.

E(qu) = exp

− N∑
n=1

L∑
l=0

l∑
m=−l

bnlm

(
b

4π2τζ1

)n

Ym
l (u)

 (5.98)

Then the solution under a certain estimation for b = (b100, · · · , bNLL)T will obtain the
coefficient of bY0

0 (u) as
b100

4π2τζ1

Note that no matter which estimation is used, the estimated coefficient is only depen-
dent on DWI samples {E(q j)}

Ns
j=1, b values {b j}

Ns
j=1 and gradients {u}Ns

j=1, which means

T =
b100
√
πτζ1

is theoretically invariant under changes of τ and ζ1. However, an inappropriate ζ1
may result in a large condition number of the basis matrix. So T is theoretically
invariant but numerically changes if an inappropriate unit of b and a very large N
are used, which is the reason why we set ζ1 = 0.5q2

max such that b
4π2τζ1

∈ (0, 2) and we
have a good numerical accuracy.

The scale parameter ζ calculated by b100 is

ζ =
ζ1
√
π

b100
=

1
Tτ

(5.99)
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Now we rewrite the SPF expansion in Eq. (5.1) as

E(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmκn(ζ) exp
(
−

b
8π2τζ

)
L1/2

n

(
b

4π2τζ

)
Ym

l (u)

=

N∑
n=0

L∑
l=0

l∑
m=−l

anlmκn(ζ) exp
(
−

b
8π2T

)
L1/2

n

(
b

4π2T

)
Ym

l (u)

So no matter which estimation method is used, anlmκn(ζ) is invariant under the change
of τ. Or anlmζ

− 3
4 is invariant, considering the definition of κn(ζ) in Eq. (5.2). Then

based on Eq. (5.18), Eq. (5.19), Eq. (5.20), Eq. (5.21), the estimated ODFs Φt(r),
Φt(r,C), Φw(r), Φw(r,C) are invariant to the change of τ. Based on Eq. (5.22), Eq. (5.26)
and Eq. (5.28), RTO, MSD and GFA are also invariant.

For EAP, based on the definition of Fnl(R) in Eq. (5.14), we have

Fnl(R|ζ) =

τ−1.5πl+1.5
(

R√
τ

)l
κn(ζ)

T 0.5l+1.5(−1)l/2Γ(l + 1.5)

n∑
i=0

(
n + 0.5
n − i

)
(−1)i

i!
20.5l+i+1.5

Γ(0.5l + i + 1.5)1F1(
2i + l + 3

2
; l +

3
2

;−
2π2

T

(
R
√
τ

)2

)

Considering ζ = 1
Tτ and anlmκn(ζ) are invariant, we have

P(Rr, τ2) =

N∑
n=0

L∑
l=0

l∑
m=−l

anlmFnl(R|ζ)Ym
l (r) =

(
τ1

τ2

)3/2

P(
√
τ1

τ2
Rr, τ1) (5.100)

where P(Rr, τ1) and P(Rr, τ2) are the EAPs estimation from τ1 and τ2 respectively. So
the axis of EAP will be scaled when τ changes. �

5.7 APPENDIX B: PROOFS ON THE RELATION OF THREE
THEOREMS ON SPHERICAL HARMONICS

Theorem 5.4. Funk-Hecke theorem 2.7 and addition theorem 2.6 are equivalent.

Proof. The proof has two parts.

1. From Funk-Hecke theorem 2.7 to addition theorem 2.6. Let g(uT v) = Pl(uT v).
For a given v, Pl(uT v) is a spherical function of u. So Pl(uT v) can be written in
Laplace series as

Pl(uT v) =

∞∑
l′=0

l′∑
m=−l′

cm
l′ y

m
l′ (u) cm

l′ =

∫
S2

Pl(uT v)ym
l′ (u)du

Based on Funk-Hecke theorem 2.7, we have

cm
l′ =

∫
S2

Pl(uT v)ym
l′ (u)du = 2πym

l′ (v)
∫ 1

−1
Pl(t)Pl′(t)dt =

4π
2l + 1

ym
l′ (v)δll′

So Pl(uT v) =
∑l

m=−l
4π

2l+1 ym
l (v)ym

l (u), which is the addition theorem 2.6.
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2. From addition theorem 2.6 to Funk-Hecke theorem 2.7. ∀u,v ∈ S2 and g(t) ∈
L2([−1, 1], 1), we have

g(uT v) =

∞∑
l′=0

cl′Pl′(uT v) cl′ =
2l′ + 1

2

∫ 1

−1
g(t)Pl′(t)dt

Based on addition theorem 2.6, we have

g(uT v) = 2π
∞∑

l′=0

l′∑
m′=−l′

( ∫ 1

−1
g(t)Pl′(t)dt

)
ym′

l′ (u)ym′
l′ (v)

After performing inner product with ym
l (v) in two sides of above equation, we

have ∫
S2

g(uT v)ym
l (v)dv =

(
2π

∫ 1

−1
g(t)Pl(t)dt

)
ym

l (u)

which is the Funk-Hecke theorem in (2.36).

�

Theorem 5.5. Funk-Hecke theorm 2.7 and addition theorem 2.6 can be proved by
plane wave expansion theorem 2.8.

Proof. Because the equivalence between Funk-Hecke theorm 2.7 and addition the-
orem 2.6, we only need to prove addition theorem 2.6 from plane wave expansion
theorem 2.8, which is as follows.

In Eq. (2.52), let x = (R, θ, φ) and k = (1, θ, φ), then integrate (θ, φ) over S2, we have

e±iR =

∞∑
l=0

l∑
m=−l

(±i)l jl(R) =

∞∑
l=0

(±i)l(2l + 1) jl(R) (5.101)

In Section 2.5.3, we have already shown that the plane wave eixT k is a solution of
Helmholtz equation in Eq. (2.48), and the general solution is given in Eq. (2.50). If
x = (R, θ, φ) and k = (k, 0, 0), then xT k = Rk cos(θ) which is independent of φ. If we
assume the general form of the solution that is independent of φ as g(x) = F(R)Θ(θ),
then after some derivation based on separation of variables, we obtain the general
solution independent of φ as

g(R, θ) =

∞∑
l=0

l∑
m=−l

(am
l jl(kR) + bm

l yl(kR))Pl(cos(θ))

Then bm
l = 0 since yl(Rk) is singular at R = 0, and we have

eiRk cos(θ) =

∞∑
l=0

al jl(kR)Pl(cos(θ))

Let k = 1, θ = 0 (or θ = π), and consider Pl(0) = 1, Pl(−x) = (−l)lPl(x), ∀l, we have

e±iR =

∞∑
l=0

(±1)lal jl(R) (5.102)
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Comparing Eq. (5.102) with Eq. (5.101), we have al = 2l + 1 and

e±iR cos(θ) =

∞∑
l=0

(±i)l(2l + 1) jl(R)Pl(cos(θ)) (5.103)

For two 3D vectors x = Rxu and k = Rkv, where u and v ∈ S2, we have

e±ixT k = e±iRxRkuT v =

∞∑
l=0

(±i)l(2l + 1) jl(RxRk)Pl(uT v) (5.104)

Since Pl(uT v) is a spherical function of v and u, we can set it as

Pl(uT v) =
∑
l1,m1

∑
l2,m2

cm1m2
ll1l2

ym1
l1

(u)ym2
l2

(v)

where
∑

l1,m1

def
=

∑∞
l1=0

∑l1
m1=−l1

. Then by combining the above two formulae and compar-
ing them with Eq. (2.52), we have the equation∑

l,m

4π(±i)l jl(RxRk)ym
l (u)ym

l (v) =

∞∑
l′=0

∑
l1,m1

∑
l2,m2

(±i)l′(2l′ + 1) jl′(RxRk)cm1m2
l′l1l2

ym1
l1

(u)ym2
l2

(v)

Then by performing inner products with ym1
l1

(v) and ym2
l2

(u) in both sides, we have

4π(±i)l jl(RxRk)δmm1
ll1

δmm2
ll2

=

∞∑
l′=0

(±i)l′(2l′ + 1) jl′(RxRk)cm1m2
l′l1l2

The above equality holds ∀ RxRk. So we have

cm1m2
ll1l2

= δmm1
ll1

δmm2
ll2

4π
2l + 1

then

Pl(uT v) =
4π

2l + 1

l∑
m=−l

ym
l (u)ym

l (v)

which proves the addition theorem 2.6. �

5.8 APPENDIX C: EXACT EAP AND ITS FEATURES IN MIX-
TURE OF TENSOR MODEL

In this Appendix, we would like to deduce the exact EAP and its features in Mix-
ture of Tensor Model where the diffusion signal attenuation is given in Eq. (4.32),
i.e.

E(q) =

K∑
i=1

wi exp(−4π2τq2uT Diu) =

K∑
i=1

wi exp(−4π2τqT Diq) (5.105)

where
∑K

i=1 wi = 1, wi ≥ 0. The EAP and its features for free diffusion is a specific case
when wi = δi1, because Fourier transform is linear. Thus we can first deduce the EAP
and its features in tensor model where E(q) = exp(−4π2τq2Dq), then easily generate it
to mixture of tensor model.
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EAP: The EAP P(R) is the Fourier transform of E(q) in Eq. (4.24). Considering
F {exp(−ax2)} =

√
π
a exp(−π

2

a ξ
2) and D =

∑3
i=1 λivivT

i , where {λi} and {vi} are eigenvalues
and eigenvectors, we have

P(R) = F3D{exp(−4π2τqT Dq)}

= F3D
{
exp

(
−4π2τ(λ1q2

1 + λ2q2
2 + λ3q2

3)
)}

(5.106)

= F3D
{
exp

(
−4π2τλ1q2

1

)
exp

(
−4π2τλ2q2

2

)
exp

(
−4π2τλ3q2

3

)}
= F1D

{
exp

(
−4π2τλ1q2

1

)}
F1D

{
exp

(
−4π2τλ2q2

2

)}
F1D

{
exp

(
−4π2τλ3q2

3

)}
(5.107)

=
1

√
4πτλ1

exp
− R2

1

4τλ1

 1
√

4πτλ2
exp

− R2
2

4τλ2

 1
√

4πτλ3
exp

− R2
3

4τλ3


=

1√
(4πτ)3λ1λ2λ3

exp

− 1
4τ

R2
1

λ1
+

R2
2

λ2
+

R2
3

λ3


=

1√
(4πτ)3|D|

exp
(
−RT D−1R

4τ

)
= N(R|2τD) (5.108)

In Eq. (5.106) we set qi = qT vi. In Eq. (5.107) we set Ri = RT vi, and separate 3D
Fourier transform into three 1D Fourier transforms, by considering {vi} is an or-
thonormal basis in R3. In Eq. (5.108) we use D−1 =

∑3
i=1 λ

−1
i vvT and |D| = λ1λ2λ3.

Then P(R) for mixture tensor model is

P(R) =

K∑
i=1

wiN(R|2τDi) =

K∑
i=1

wi√
(4πτ)3|Di|

exp
−RT D−1

i R
4τ

 (5.109)

Return-To-Origin (RTO) Probability: It is straightforward that the RTO value
for mixture of tensor model is

Po = P(0) =

K∑
i=1

wi√
(4πτ)3|Di|

(5.110)

Mean-Squared Displacement (MSD): The covariance matrix of the EAP for mix-
ture of tensor model is

ER3(RRT ) =

K∑
i=1

wi

∫
R3

RRT N(R|2τDi)dR =

K∑
i=1

2wiτDi

So the MSD value for mixture of tensor model is

MS D =

∫
R3

P(R)RT RdR = Trace
(
ER3(RRT )

)
=

K∑
i=1

2wiτTrace(Di) (5.111)
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ODFs: Considering Eq. (2.80), the ODF Φk(r) defined in Eq. (4.69) is

Φk(r) =
1
Z

∫ ∞

0

K∑
i=1

wiN(R|2τD)RkdR

=
1
Z

K∑
i=1

wi
1√

(4πτ)3|Di|

∫ ∞

0
exp

−R2 rT D−1
i r

4τ

 RkdR

=
1

2
√

(4πτ)3Z

K∑
i=1

wi|Di|
− 1

2

 4τ
rT D−1

i r

 k+1
2

Γ(
k + 1

2
)

=
2k−3τ

k−2
2 Γ( k+1

2 )

Zπ
3
2

K∑
i=1

wi

|Di|
1
2
(
rT D−1

i r
) k+1

2

(5.112)

=


1

4π
∑K

i=1
wi

|Di |
1
2 (rT D−1

i r)
3
2

if k = 2

1
Z
∑K

i=1
wi

|Di |
1
2 (rT D−1

i r)
k+1

2
if k , 2

(5.113)

Note the normalization factor in Eq. (5.113) when k , 2 is different from Z
in Eq. (5.112). The Z factor is set such that the integration of ODF is 1. In prac-
tice it can be set in a discrete way or in a continuous way. See Appendix 4.6.

For tensor model, Eq. (5.113) can be more simple as

Φk(r) =


1

4π|D|
1
2

1

(rT D−1r)
3
2

if k = 2

1
Z

1

(rT D−1r)
k+1

2
if k , 2

(5.114)

Please note that because of Eq. (5.114), some papers, e.g. [Descoteaux, 2008, pp.
142], consider the ODF by Tuch Φt(r) in mixture of tensor model is

Φt(r) =

K∑
i=1

wi

Z
1(

rT D−1
i r

) 1
2

which is actually wrong. Note this is not a linear relation, because different term
with Di may have different Zi. The above formula is correct only if every Gaussian
term has the same tensor, i.e. Di = D, ∀i.
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CHAPTER 6

RIEMANNIAN FRAMEWORK FOR
ODFS AND EAPS

“We lay down a fundamental principle of generalization by abstraction: ‘The existence of analo-
gies between central features of various theories implies the existence of a general theory which
underlies the particular theories and unifies them with respect to those central features....’ ”

– E. H. Moore
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OVERVIEW

Fisher information metric has been constructed for probability distribution fam-
ily in Information Geometry theory and it has been successfully applied for tensor
computing in DTI on tensor estimation, filtering, registration, statistical analysis,
etc. However, to our knowledge, existing works in HARDI mainly focus on ODF/EAP
estimation, and there are only a few works on how to process the estimated ODF
data [McGraw et al., 2006; Goh et al., 2009a, 2011] and no work for EAP data pro-
cessing so far. Please see Section 4.4 for related works on the metrics for ODFs and
EAPs. In this chapter, we propose a general state-of-the-art Riemannian framework
as a mathematical tool to process PDF valued data, e.g. ODFs and EAPs, by repre-
senting the square root of the PDF, called wavefunction based on quantum mechan-
ics, as a linear combination of some orthonormal basis functions. This formulation
avoids the Gaussian assumption in the DTI. The proposed Riemannian framework is
the natural extension of previous Riemannian framework for tensors.

Organization of this chapter:
In Section 6.1, we present the general formulation of the Riemannian framework

for parametric family based on square root parametrization and orthonormal basis
representation in Section 6.1.1. The closed forms of the geodesic distance, exponen-
tial map and logarithmic map are presented in Section 6.1.2. We demonstrate how
to choose an appropriate basis for ODFs and EAPs in Section 6.1.3, analyze theo-
retically the properties of the statistical manifold which is a convex subset of a high
dimensional unit sphere in Section 6.1.4, and prove the existence and uniqueness of
weighted Riemannian mean and median in the manifold in Section 6.1.7. geodesic
anisotropy (GA), Rényi entropy, and Log-Euclidean framework, Affine-Euclidean
framework are also proposed in Section 6.1.5 and Section 6.1.6. The Riemannian
metric is proved to be diffeomorphism invariant in Section 6.1.8, and is compared
with Euclidean metric in Section 6.1.9. Section 6.2.1 proposes to estimate wavefunc-
tion from pre-estimated ODFs/EAPs, and Section 6.2.1 proposes a novel nonnegative
definite ODF and EAP estimation method, named as Square Root Parameterized Es-
timation (SRPE). Section 6.2 also lists some potential applications. e.g. nonnegative
definite ODF/EAP estimation, interpolation, PGA, filtering, atlas estimation. The
experimental results in Section 6.3 validates the proposed frameworks.

6.1 GENERAL RIEMANNIAN FRAMEWORK BASED ON
SQUARE ROOT PARAMETRIZATION AND ORTHONOR-

MAL BASIS REPRESENTATION

In this section, we introduce a general Riemannian framework for arbitrary PDFs
whose square root, called wavefunction, can be represented by arbitrary orthonor-
mal basis, and we apply it to ODFs/EAPs in dMRI.

177



CHAP. 6: RIEMANNIAN FRAMEWORK FOR ODFS AND EAPS

6.1.1 Parametric Family, Wavefunction

In quantum mechanics, the square root of the probability of finding the subject
at a certain time and position is called as wavefunction. Analogously, we call the
square root of the PDF p(x) defined in χ as the wavefunction denoted by ψ(x), i.e.
ψ(x) =

√
p(x). Let {Bi(x)}∞i=1 be a given orthonormal basis in L2(χ, 1) which can sparsely

represent ψ(x), then ψ(x) can be represented by finite linear combination of {Bi(x)}, i.e.

ψ(x|c) =
√

p(x) =

K∑
i=1

ciBi(x)

Please note that the assumption here is very weak, because in practice we always
can choose a large enough K to represent ψ(x). The Parametric Family (PF) is given
in Eq. (6.1), where PFK means PF with the K parameters. All PDFs will be contained
in PFK if K is large enough thanks to the orthonormal basis representation.

PFK =

{
p(x|c) = ψ(x|c)2 :

ψ(x|c) =
∑K

i=1 ciBi(x) ≥ 0,∫
p(x|c)dx =

∑K
i=1 c2

i = 1

}
(6.1)

PFK in Eq. (6.1) shows that the Parameter Space (PS) denoted by PS k is a subset of
SK−1.

PS K =

{
c : ‖c‖ =

K∑
i=1

c2
i = 1,

K∑
i=1

ciBi(x) ≥ 0, ∀x ∈ χ
}

(6.2)

Normally we need to choose a good basis to sparsely represent continuous function
ψ(x) so that K can be as small as possible.

If {Ai}
K
i=1 are K given disjoint subsets with the areas of {S i} in χ and

⋃K
i=1 Ai = χ, we

have the orthonormal basis defined by {Ai} in Eq. (6.3), where δ(x ∈ Ai) is 1 if x ∈ Ai

and 0 otherwise. This basis is called as the piecewise constant basis.{
Bi(x) =

1
√

S i
δ(x ∈ Ai)

}
(6.3)

Then if we assume the PDF p(x) is piecewise constant in each Ai, i.e.

p(x) =

K∑
i=1

pi
1
S i
δ(x ∈ Ai) (6.4)

then PFK represented by this basis is given in Eq. (6.5), where pi = c2
i and

PFK =

{
p(x|c) = ψ(x|c)2 :

ψ(x|c) =
∑K

i=1 ci
1√
S i
δ(x ∈ Ai),

ci ≥ 0,
∑K

i=1 c2
i = 1

}
(6.5)

Eq. (6.5) is equivalent to the multinomial distribution family shown in Eq. (3.55).

Although PFK and PS K in Eq. (6.1) are similar with the multinomial distribution
in Eq. (3.55), there exist some important differences.

1. We consider p(x) as a continuous PDF in Eq. (6.1), while multinomial distri-
bution is a discrete PDF in Eq. (3.55) (or piecewise constant in the continuous
space χ in Eq. (6.5)).
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2. Our formulation is more general, because the multinomial distribution can be
seen as the specific case of our formulation when the orthonormal basis is chosen
as the piecewise constant basis in Eq. (6.3).

PS K in Eq. (6.2) is in a high dimensional space for large K, so it is impossible to
visualize it. Fig. 3.3 shows the statistical manifold of multinomial distribution family
PS 3 ⊂ R

3, where p(x) can be represented by three piecewise constant orthonormal
basis functions, i.e. p(x) =

∑3
i=1 pi

1
S i
δ(x ∈ Ai). The left side of Fig. 3.3 shows the PS 3

parameterized by {pi}, which is an equilateral triangle with vertices (1, 0, 0), (0, 1, 0)
and (0, 0, 1), and the right side shows the PS 3 parameterized by {ci} which is the posi-
tive orthant of S2. In order to better understand the material in this chapter, we put
Fig. 3.3 into Fig. 6.1(A) and (B).

Please note that [Goh et al., 2009a, 2011] directly used the results of multino-
mial distribution in Section 3.3.2 for ODFs, while we consider a different orthonor-
mal basis representation in Eq. (6.1). If we define {Ai}

K
i=1 as K disjoint subsets of S2,

then Eq. (6.5) is the PF formulation for ODFs used in [Goh et al., 2009a, 2011], which
used the histogram (multinomial distribution shown in Example 3.11) with many
samples to approximate continuous ODFs. Fig. 3.3 (or Fig. 6.1(A,B)) is the simplified
case K = 3 for PFK . Thus we have shown here that our formulation is more general
than [Goh et al., 2009a, 2011].

6.1.2 Riemannian Metric, Exponential Map and Logarithmic Map

Based on PFK in Eq. (6.1) and the definition in Eq. (3.40), we have the Fisher infor-
mation metric as

gi j(c) = 4
∫
χ

∂i
√

p(x|c)
∂ci

∂ j
√

p(x|c)
∂c j

dx

= 4
∫
χ

∂i
(∑K

m=1 cmBm(x)
)

∂ci

∂ j
(∑K

m=1 cmBm(x)
)

∂c j
dx

= 4
∫
χ

Bi(x)B j(x)dx = 4δi j (6.6)

which is the same as the metric of multinomial distributions in Eq. (3.57). The
constant 4 in the metric can be ignored because a constant proportion change on
metric does not affect the final results of the computational methods based on met-
ric. Thus we can set gi j = δi j. Then PS K is a subset of the unit sphere SK−1 and
the Fisher information metric is the Euclidean metric induced from RK by the con-
straint on SK−1. The geodesic connecting two points p(x|c) and p(x|c′) is p(x|c(t)) where
c(t) is in the great circle connecting c and c′ in SK−1, based on Example 3.7 on the
geodesic of sphere. Then the geodesic distance is the angle between c and c′, i.e.
arccos(cT c′) = arccos(

∫
χ
ψ(x|c)ψ(x|c′)dx), where

∫
χ
ψ(x|c)ψ(x|c′)dx is the so called Bhat-

tacharyya coefficient [Bhattacharyya, 1943] that describes the amount of overlap
between two distributions. Let vc denote the tangent vector at c towards c′, then
the geodesic, exponential map, logarithmic map all have closed forms based on the
geometry of sphere shown in Example 3.5, 3.7, 3.8. See Fig. 3.3 for the sketch map of
PS 3.

Geodesic: γ(t) : p(x|c(t)), where c(t) = Expc(tLogc(c′)) (6.7)
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Figure 6.1: Parameter space PS K , its properties, and comparisons between Riemannian met-
ric and Euclidean metric. (A) and (B): PS 3 represented by {pi} and {ci}; (C): properties of
PS K ; (D) and (F): isolines of Riemannian metric for given red point; (E) and (G): isolines of
Euclidean metric for given red point; (H): geodesics of Riemannian metric (RMM, red) and
Euclidean metric (EUM, blue) for given two green points.

Exp: Expc(vc) = c′ = c cosϕ +
vc
‖vc‖

sinϕ, where ϕ = ‖vc‖ (6.8)

Log: Logc(c′) = vc =
c′ − c cosϕ
‖c′ − c cosϕ‖

ϕ, where ϕ = arccos(cT c′) (6.9)

In Eq. (6.1), we do not assume a specific orthonormal basis {Bi(x)}∞i=1. For a given
function, it may be represented by two orthonormal basis. We have the following
theorem for different basis.

Theorem 6.1 (Invariance Under Different Basis). For different orthonormal ba-
sis, the geodesic γ(t) in Eq. (6.7) is invariant and the exponential map in Eq. (6.8) and
logarithmic map in Eq. (6.9) are invariant under a change of basis matrix.

Proof. Let’s assume there is another orthonormal basis {Wα(x)}∞α=1 in χ and the wave-
function we focus can be represented as ψ(x|b) =

∑N
α=1 bαWα(x) as well as ψ(x|c) =∑K

i=1 ciBi(x). Also assume Bi(x) =
∑N
α=1 Mi

αWα(x), where M = [Mi
α]N×K is the change of

basis orthogonal matrix. Then we have

b = Mc, δi j =

∫
χ

Bi(x)B j(x)dx =

N∑
α=1

Mi
αM j

α
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So MT M = IK×K , where IK×K is the K × K identity matrix. For the given two PDFs p(x)
and p′(x), they have two kinds of coordinates, i.e. c and c′, b and b′. Then we obtain

bT b’ = cT MT Mc′ = cT c′

The geodesic distance does not change under the different bases, i.e. d(p(x), p′(x)) =

arccos(
∫
χ

√
p(x)p′(x)dx) = arccos(cT c′) = arccos(bT b′). Considering vb = Mvc which is

a tangent vector at b towards b′, for the coordinate of b we have the new forms for
geodesic, exponential map and logarithmic map as

Geodesic: γ(t) : p(x|b(t)), where b(t) = Expb(tLogb(b′))

Exp: Expb(vb) = Mc cosϕ +
Mvc
‖Mvc‖

sinϕ = Mc′ = b′, where ϕ = ‖vb‖ = ‖vc‖

Log: Logb(b′) =
Mc′ − Mc cosϕ
‖Mc′ − Mc cosϕ‖

ϕ = Mvc = vb, where ϕ = arccos(bT b′) = arccos(cT c′)

�

So different orthonormal basis obtain equivalent Riemannian framework. The
final results of the following Riemannian operations are numerically similar and the-
oretically the same if the representation error is negligible, i.e. ψ(x) is in both spaces
spanned by these two bases. That is why here we consider the general formulation
using orthonormal basis in Eq. (6.1), instead of the specific formulation using piece-
wise constant basis in [Goh et al., 2009a, 2011].

6.1.3 Orthonormal Basis Chosen for ODFs and EAPs

As we have shown, different orthonormal basis obtains equivalent Riemannian
framework. However choosing a good orthonormal basis to sparsely represent
ODFs/EAPs can largely reduce the approximation error and accelerate the following
Riemannian operations.

For ODFs defined in the unite sphere of R-space, i.e. χ = S2, we choose
the orthonormal basis as the Spherical Harmonics (SHs) which has been used
in many works on ODF estimation [Tuch, 2004; Hess et al., 2006; Descoteaux
et al., 2007; Canales-Rodrıguez et al., 2009; Aganj et al., 2010b; Tristán-Vega et al.,
2010]. Eq. (2.27) is the complex SH of order l and degree m. We use its real version
with even order in Eq. (2.28) for real antipodally symmetric ODFs/EAPs.

For EAPs defined in R-space, i.e. χ = R3, we have chosen the orthonormal basis
as Fourier dual Spherical Polar Fourier (dSPF) basis in Chapter 5 and [Cheng et al.,
2011c]. SPFI actually provides two orthonormal bases, i.e. SPF basis denoted by {Bnlm}

and dSPF basis denoted by {Dnlm} [Assemlal et al., 2009a; Cheng et al., 2010a,b; Mer-
let et al., 2011]. Recall the notation q = qu in q-space and R = Rr in R-space. These two
bases are related by Fourier transform in Eq. (6.13), where L1/2

n (·) is generalized La-
guerre polynomial shown in Eq. (2.63), 1F1(·; ·; ·) is confluent hypergeometric function
shown in Eq. (2.71), Γ(·) is the Gamma function shown in 2.75, and ζ is the given scale
value. If EAP P(R) in R-space is represented by one basis, DWI signal E(q) in q-space
is analytically represented by the other basis. In this chapter, we choose SPF basis
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for P(R) in Eq. (6.10) because it is convenient for nonnegative definite EAP/ODF esti-
mation, which will be discussed later in 6.2.1 in details. In Eq. (6.10), the coordinate
is c = (c000, ..., cNLL)T . Another feasible option is to use Simple Harmonic Oscillator
(SHO) basis [Özarslan et al., 2009; Cheng et al., 2011b].

P(Rr) = (ψ(Rr))2 =

( N∑
n=0

L∑
l=0

l∑
m=−l

cnlmBnlm(R)
)2

(6.10)

Bnlm(R) = Rn(R)Ym
l (r) (6.11)

Rn(R) = κn(ζ) exp
(
−

R2

2ζ

)
L1/2

n (
R2

ζ
), κn(ζ) =

[
2
ζ3/2

n!
Γ(n + 3/2)

]1/2

(6.12)

Dnlm(q) =

∫
R3

Bnlm(R)e−iqT RdR = Fnl(q)Ym
l (u) (6.13)

Fnl(q) =
ζ0.5l+1.5πl+1.5qlκn(ζ)

Γ(l + 1.5)

n∑
i=0

(
n + 0.5
n − i

)
(−1)i+l/2

i!
20.5l+i+1.5

Γ(0.5l + i + 1.5)1F1(
2i + l + 3

2
; l +

3
2

;−2π2q2ζ) (6.14)

Please note that piecewise constant basis used in [Goh et al., 2009a, 2011] is not
appropriate since it needs many samples to represent ODFs/EAPs that are not piece-
wise constant. It is also worth mentioning that [Goh et al., 2009a, 2011] do not con-
sider the area {S i} for spherical bins. [Goh et al., 2009a, 2011] use samples of the
wavefunction {ψi =

ci√
S i
}, not the coefficient {ci} in Eq. (6.5). However for two PDFs

p(1)(x) and p(2)(x), we have

d(p(1)(x), p(2)(x)) = arccos(
∫
χ

ψ(1)(x)ψ(2)(x)dx) ' arccos(
∑

i

ψ(1)
i ψ(2)

i S i) , arccos(
∑

i

ψ(1)
i ψ(2)

i )

So the formulation in [Goh et al., 2009a, 2011] needs a dense uniform sampling on
χ.

� The sampling needs to be dense enough such that the integration can be ap-
proximated by a weighted summation.

� The sampling needs to be uniform with the same area S i for each bin, such
that the weights are the same and the constant weight can be ignored in the
Riemannian framework.

The dense uniform sampling may be possible for ODFs, but impossible for EAPs de-
fined in unbounded R3. Compared to [Goh et al., 2009a, 2011], we do not need a
specific sampling because when ψ(1)(x) and ψ(2)(x) can be represented by linear com-
bination of some orthonormal basis with coefficient c(1) and c(2), we have

d(p(1)(x), p(2)(x)) = arccos(
∫
χ

ψ(1)(x)ψ(2)(x)dx) = arccos(
∑

i

c(1)
i c(2)

i )

For ODFs, [Goh et al., 2009a, 2011] use 162 discrete evenly distributed samples to
represent the ODF, which is still a tradeoff between computational overhead and
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accuracy. We use SH basis with order 4, 6 or 8 (15, 28 or 45 coefficients) which was
shown to be enough for ODF representation [Descoteaux et al., 2007]. For EAPs, [Goh
et al., 2009a, 2011] may need thousands of bins in R3 to approximate EAPs, while
SPF, dSPF or SHO bases only need dozens of coefficients to represent EAPs. Besides
orthonormal basis representation has been widely used in dMRI community, our for-
mulation using orthonormal basis can take advantage of previous works like QBI,
SPFI and SHORE.

6.1.4 Properties of Parameter Space

Based on PFK in Eq. (6.1), the Parameter Space PS k is a subset of SK−1. If we choose
the specific piecewise constant basis defined from disjoint subsets, PS K in Eq. (6.5)
is the positive orthant of the unit sphere SK−1 as discussed in Section 6.1.1. Here we
explore the properties of general PS K in Eq. (6.1) without assuming a specific basis.

Property-1: PS K is closed. Eq. (6.1) shows the boundary of PS K is {c |
∑K

i=1 c2
i = 1,

∃C ⊂ χ, s.t. ∀x ∈ C,
∑K

i=1 ciBi(x) = 0, ∀x < C,
∑K

i=1 ciBi(x) > 0}. Therefore, PS K is closed
by definition. Please note that the boundary of PS K in coordinate c is dependent on
the chosen basis.

Property-2: PS K is a geodesically convex subset of sphere SK−1. For given c,
c′ ∈ PS K , let c(t) be the geodesic between them, t ∈ [0, 1]. Then ∀t ∈ [0, 1], ∃λ ∈ [0, 1],
s.t. c(t) =

λc+(1−λ)c′
‖λc+(1−λ)c′‖ , because c(t) is on the great circle (geodesic) and λc + (1 − λ)c′ is

on the chord between c and c′. So we have

p(x|c(t)) =

K∑
i=1

ci(t)B(x) =
λ
√

p(x|c) + (1 − λ)p(x|c′)
‖λc + (1 − λ)c′‖

≥ 0

which means PS K is geodesically convex.

Property-3: PS K is contained in a convex cone with angle 90◦. ∀c, c′ ∈ PS K ,
we have ∫

χ

√
p(x|c)

√
p(x|c′)dx =

K∑
i=1

cic′i = cos(∠(c, c′)) ∈ [0, 1]

where ∠(c, c′) is the angle between c and c′. That means the angle between any two
points in PS K is no more than 90o. See Fig. 6.1(C).

Property-4: If χ is bounded and p(x) < 1,∀x ∈ χ, the projection of any c ∈ PS K

on the coordinate u of the uniform PDF should be more than 1√
|χ|

, i.e. cT u >

1√
|χ|

, where |χ| =
∫
χ

dx is the volume of χ. If χ is bounded, the uniform PDF denoted

by U(x) is 1
|χ|

, and
√

U(x) = 1√
|χ|

=
∑K

i=1 uiBi(x), then ∀c ∈ PS K , if p(x) < 1, we have

cT u = cos(c,u) =

∫
χ

√
p(x|c)

1√
|χ|

dx >
1√
|χ|

∫
χ

p(x|c)dx =
1√
|χ|

That means the projection of c on u should be more than 1√
|χ|

if p(x) < 1. See

Fig. 6.1(C). Please note that although
∫
χ

p(x)dx = 1, p(x) may be more than 1 in some
areas since p(x) is a continuous PDF defined in χ.

Please note two differences between ODFs and EAPs for Property-4.
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� The first one is about the uniform distribution. For ODFs, χ = S2 is a bounded
space and |χ| = 4π. The uniform distribution in PS is U(r) = 1

4π , which is
also the unique isotropic ODF. When SH basis is used, the coordinate u =

(1, 0, ..., 0)T , considering Y0
0 (r) = 1√

4π
. For EAPs, χ = R3 is a unbounded space.

Thus the uniform distribution U(R) actually does not exist. Of course we can
choose a support big enough to define U(R) only in the support, However this
kind of uniform distribution is much far from normal EAPs in brain.

� The second difference is about the probability values. Normally the typical
ODFs are always less than 1. So the projection of c on u is less than 1√

4π
. How-

ever, EAPs are normally much larger than 1 in the area R < 30µm that we focus,
because the diffusion time τ is very small.

6.1.5 Geodesic Anisotropy, Rényi Entropy

Geodesic Anisotropy (GA) 1 [Batchelor et al., 2005; Fletcher, 2004] based on Rieman-
nian metric for tensors is an alternative anisotropy measurement to the well known
Fractional Anisotropy (FA). GA for tensors is defined as the Riemannian distance
from the given tensor to its nearest isotropic tensor [Fletcher, 2004; Batchelor et al.,
2005]. Please note that the isotropic tensor is not unique because every tensor whose
eigenvalues are the same is isotropic. Analogously we define GA for ODFs/EAPs as
the Riemannian distance from the given ODF/EAP with the coordinate c to its near-
est isotropic ODF/EAP with the coordinate sc, i.e. GA(c) = arccos(cT sc). Please note
an important difference between ODFs and EAPs. The isotropic ODF is the uniform
ODF uniquely defined by ψ(r) = 1

4π and it has the coordinate sc = u = (1, 0, ..., 0)T under
SH basis. cos(GA(c)) = cT u is the projection of c onto u in above Property-4. However,
the uniform EAP has no definition, and the isotropic EAP is not unique because P(Rr)
is isotropic if P(Rr) = F(R), ∀r ∈ S2. The following theoretical result can be used to
obtain analytic closed form of the isotropic EAP.

Theorem 6.2 (Wavefunction of the Nearest Isotropic EAP). For any EAP P(R) =

ψ(R)2, its nearest isotropic EAP is Piso(R) = (ψS iso(R))2, where ψS iso(R) is the normalized
version of the isotropic part of ψ(R), i.e.

ψS iso(R) =
ψLiso(R)
‖ψLiso(R)‖

, ψLiso(R) =

( ∫
S2
ψ(R)Y0

0 (r)dr
)
Y0

0 (r) (6.15)

and ‖ψLiso(R)‖ =

√∫
R3 ψLiso(R)2dR is the standard `2 norm in function space L2(R3, 1).

See Appendix 6.5 for the proof which is independent of the basis. When SPF
basis is used, the isotropic part of the coordinate of P(R|{cnlm}) has analytical form as
{cnlmδ

00
lm}, then the nearest EAP has the coordinate as

sc,nlm =
cnlmδ

00
lm√∑N

n=0 c2
n00

(6.16)

1We call GA as Geometric Anisotropy in [Cheng et al., 2009a]. Here we follow the original name
in [Batchelor et al., 2005; Fletcher, 2004].
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GA for EAPs is the Riemannian counterpart of GFA for EAPs defined based on Eu-
clidean distance in Eq. (5.27). Please note that GA based on SPF basis is rotational
invariant, because of the rotation property of Spherical Harmonics.

Rényi entropy with order 1
2 is defined as [A. Rényi, 1960]

H 1
2
(c) = 2 log

(∫
χ

√
p(x|c)dx

)
(6.17)

If χ is bounded, the uniform distribution exists and it is U(x) = 1
|χ|

, we have

H 1
2
(c) = log(|χ|(cT u)2) = 2 log(cos(GA(c))) + log(|χ|) (6.18)

For ODFs, H 1
2
(c) = log(4π(cT u)2) ∈ (0, log(4π)], because normally cT u > 1√

4π
as we have

discussed in Property-4 in Section 6.1.4. However, the experiment in our previous
paper [Cheng et al., 2009a] showed that the Rényi entropy for ODFs do not have good
contrast, which actually demonstrates again that ODFs we focus in practice are only
in a small space inside general PDF function space shown in 3.35. For EAPs, the
uniform EAP has no definition, but by substituting Eq. (6.10) into the definition of
H 1

2
in Eq. (6.17) and considering the result in Eq. (5.22) or directly Eq. (2.83), we can

still obtain the analytical closed form as

H 1
2
(c) = 2 log

( ∫
R3

N∑
n=0

L∑
l=0

l∑
m=−l

cnlmRn(R)Ym
l (r)dR

)

= 2 log
(
4
√
πζ

3
4

N∑
n=0

(−1)n

√
Γ(n + 1.5)

n!
cn00

)
(6.19)

However this analytical form has nothing related with GA, and H 1
2

for EAPs is always
negative in practice because P(R|c) is much more than 1. For example, let’s consider
Gaussian distribution in R1, i.e. N(0, σ). Its Rényi entropy is

H 1
2

= 2 log
( ∫ ∞

−∞

√
N(x|0, σ)dx

)
= 2 log

(
2

3
4π

1
4
√
σ

)
Thus if σ < 2

−3
2 π

−1
2 , H 1

2
< 0.

So considering the drawbacks of Rényi entropy, it seems that GA is more useful
than Rényi entropy for both ODFs and EAPs.

6.1.6 Log-Euclidean Framework and Affine-Euclidean Framework

Log-Euclidean framework for tensors is proposed to work in Euclidean space by
projecting every tensor onto the tangent space of a fixed isotropic tensor (identity
matrix) using logarithmic map [Arsigny et al., 2006]. It is an approximation of the
Riemannian framework for tensors. Analogously, we can fix an isotropic ODF/EAP
with coordinate s and project all ODFs/EAPs onto its tangent space using a given
diffeomorphism, i.e.

F : PS K ⊂ S
K−1 → F(PS K) ⊂ Ts
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Then the metric, exponential map and logarithmic map for PS can be induced from
the Euclidean space by F, so that we can work in an Euclidean space, which will ap-
proximate the above Riemannian framework. Recall in Section 3.1 the pushforward
and pullback maps denoted by F∗ and F∗ respectively, then

Distance : dPS K (p(·|c), p(·|c′)) = dEuc(F(c), F(c′)) = ‖F(c) − F(c′)‖ (6.20)

Geodesic : Expc(tvc) = F−1(F(c) + tF∗vc), t ∈ [0, 1] (6.21)

Exp : Expc(vc) = c′ = F−1(F(c) + F∗vc) (6.22)

Log : Logc(c′) = vc = F∗(F(c′) − F(c)) (6.23)

If F(c) = Logs(c), then we have the Log-Euclidean framework like the one for
tensors. If F(c) = c

cT s − s, we have the Affine-Euclidean framework, which is very
popular in Statistical Shape Analysis [Dryden and Mardia, 1998; Fletcher, 2004]. See
Fig. 6.1(C) for a sketch map.

For ODFs, {slm = δ00
lm} represents the unique isotropic ODF when SH is used. For

EAPs, we choose {snlm = δ000
nlm} since it represents a typical isotropic Gaussian distri-

bution based on Eq. (6.10). Thus the Log-Euclidean framework and Affine-Euclidean
framework can be obtained analytically based on SH and SPF basis representation
for ODFs and EAPs.

6.1.7 Weighted Mean, Weighted Median and Principal Geodesic
Analysis (PGA)

Given N PDFs {p(x|c(i))}Ni=1 with the coordinates {c(i)}Ni=1 in PS K and the weight vector
w = (w1,w2, ...,wN)T with

∑N
i=1 wi = 1, wi ∈ [0, 1], the weighted Riemannian mean

(Fréchet mean) µw is defined as the minimizer of the weighted sum of squared
distances [Fréchet, 1948; Buss and Fillmore, 2001; Karcher, 1977; Kendall, 1990;
Batchelor et al., 2005; Pennec et al., 2006; Lenglet et al., 2006b; Fletcher, 2004; Cheng
et al., 2009a]. The weighted Riemannian median mw is defined as the minimizer
of the weighted sum of distances [Fletcher et al., 2009; Cheng et al., 2010c]. They
are generalized versions of Euclidean mean and median. Please see Eq. (6.24) or see
Section 3.2 for more details. Riemannian median was shown to be more robust than
Riemannian mean, which makes it more appropriate for atlas estimation [Fletcher
et al., 2009].

µw
def
= arg min

c∈PS K

N∑
i=1

wid(c, c(i))2 mw
def
= arg min

c∈PS K

N∑
i=1

wid(c, c(i)) (6.24)

For Log-Euclidean and Affine-Euclidean frameworks, the mean has closed form as

µw = F−1( N∑
i=1

wiF(c(i))
)

(6.25)

The following theorems show the existence, uniqueness of weighted Riemannian
mean and median and show that the probability values of weighted mean and me-
dian are not less than the N PDFs used in the mean and median estimation. Please
see Appendix 6.6 for the proofs.
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Algorithm 6.1: Weighted Riemannian Mean
Input: c(1), ..., c(N) ∈ PS K , w = (w1, ...,wN)T

Output: the Weighted Mean µw.
begin

initialization: µw ←
∑N

i=1 wic(i)

‖
∑N

i=1 wic(i)‖
; // normalized Euclidean mean

repeat
vµw ←

∑N
i=1 wiLogµw(c(i)) ;

µw ← Expµw(vµw) ; // step size is 1

until ‖vµw
‖ > ε;

end

Theorem 6.3 (Existence and Uniqueness of Riemannian mean and median).
Weighted Riemannian mean and weighted Riemannian median uniquely exist in PS K ,
and they can be efficiently estimated from Algorithm 6.1 and Algorithm 6.2.

Theorem 6.4 (Reasonable Riemannian mean and median of PDFs). Weighted
Riemannian mean p(x|µw) and median p(x|mw) in Eq. (6.24) satisfies p(x|µw) ≥
min{p(x|c(i))}Ni=1 and p(x|mw) ≥ min{p(x|c(i))}Ni=1, ∀x ∈ χ.

Please note that the weighted Riemannian mean/median may be greater than the
PDFs in some measurable set of χ. See Lemma 6.3 in Appendix 6.6 for the theoretical
analysis on the maximum of the projection. Let’s take PF in 3D space in Eq. (3.53)
as an example, the Riemannian mean of two discrete PDFs p(1) = ( 1

2 ,
1
2 , 0)T and p(2) =

( 1
2 , 0,

1
2 )T is ( 2

3 ,
1
6 ,

1
6 )T , while the Euclidean mean is ( 1

2 ,
1
4 ,

1
4 )T . See Fig. 6.1(A,B,H) for

the sketch map. Riemannian mean considers the probability vector as a whole unity,
while Euclidean mean considers the each dimension independently.

We think the Riemannian mean is more reasonable. Let’s imagine we are guess-
ing the color of a ball which may be red, yellow or blue. p = (p1, p2, p3)T is the prob-
ability for the three colors. Two consultants gave us two different forecasts p(1) and
p(2). These two consultants reach agreement on red which is more trustable, but they
have very different opinions on yellow and blue. Considering the error of forecast
may be larger in the other two colors, it is reasonable to give more weighting to red
color. Another example in Example 3.10 is that the mean Gaussian PDF of two 1D
Gaussian PDFs with different expectations and the same variance as N(−1, 1) and
N(1, 1) is N(0, 1) based on Mahalanobis distance [Atkinson and Mitchell, 1981], which
has larger probability value around origin point. This is different from the Gaus-
sian distributions with the same expectation but different covariances. See Theo-
rem 6.6 in Section 6.2.2 on tensor interpolation for the details. Furthermore the
experiments in [Mio et al., 2005; Read, 1999] also showed larger values in weighted
mean of PDFs are reasonable, although [Mio et al., 2005] considered a different com-
putational framework in information geometry theory and [Read, 1999] proposed a
total different method from information geometry theory.

Principal Geodesic Analysis (PGA) was proposed to generalize the PCA from Eu-
clidean space to Riemannian manifold [Fletcher et al., 2004]. After obtaining the
Riemannian mean µ, PGA can find some principal components by performing eigen-
decomposition of covariance matrix in tangent space. See Section 3.2.2 for the details
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Algorithm 6.2: Weighted Riemannian Median
Input: c(1), ..., c(N) ∈ PS K , w = (w1, ...,wN)T

Output: the Weighted Median mw.
begin

initialization: mw ←
∑N

i=1 wic(i)

‖
∑N

i=1 wic(i)‖
; // normalized Euclidean mean

repeat
vmw ←

∑N
i=1

wi/d(mw,c(i))∑N
j=1 w j/d(mw,c( j))

Logmw(c(i)) ;

mw ← Expmw(vmw) ; // step size is 1

until ‖vmw‖ > ε;
end

on PGA. PGA has been used for shape analysis [Fletcher et al., 2004], tensor pro-
cessing [Fletcher and Joshi, 2007] and ODF processing [Goh et al., 2009a, 2011].
However, [Goh et al., 2009a, 2011] performed PGA in a high dimensional space based
on piecewise constant basis. By considering a better basis like SH or SPF basis, PGA
can be done efficiently in a low dimensional space and obtain the same final results
as we have shown in Theorem 6.1.

6.1.8 Diffeomorphism Invariance

The Riemannian metric for tensors is affine-invariant. The proposed Riemannian
metric and the metric for tensors are both Fisher information metric, so it is possible
to explore the connection between them.

Theorem 6.5 (Diffeomorphism Invariant Metric). Fisher information metric is
diffeomorphism invariant by definition.

Proof. Let px(x|c) denote a PDF on domain χ, h : χ 7→ χ is a diffeomorphism. py(y|c) is
the PDF under h, i.e. y = h(x). Then

py(y) = |∇h−1(y)|px(h−1(y))

By considering dy = |∇h(y)|dx, we have

gi j =

∫
χ

∂
√

py(y|c)
∂ci

∂
√

py(y|c)
∂c j

dy =

∫
χ

∂
√

px(x|c)
∂ci

∂
√

px(x|c)
∂c j

dx

which proves the metric gi j is diffeomorphism invariant. The Riemannian distance
between any given two PDFs px(x|c) and px(x|c′) is also diffeomorphism invariant.

d(py(y|c), py(y|c′)) = arccos(
∫
χ

√
py(y|c)py(y|c′)dy)

= arccos(
∫
χ

√
px(x|c)px(x|c′)dx) = d(px(x|c), px(x|c′))

�
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This proof does not need any orthonormal basis representation. If (px(x|c) =

(
∑

i ciBi(x))2 and {Bi(x)} is an orthonormal basis set, then based on change of variable
it can be proved that {

√
|∇h−1(y)|Bi(h−1(y))} is another orthonormal basis set, and py(y)

can be presented under the new basis with the same coefficients c as px(x). Then the
distance between two distributions is invariant because the coefficients are invariant.
Diffeomorphism invariance may be useful in registration between PDF data.

Moreover, if px(x|Σ) is constrained as a Gaussian distribution parameterized by
tensor Σ, py(y|Σ) is still a Gaussian distribution if and only if h is an affine transform,
i.e. h(x) = Ax, A is a nonsingular matrix. So the proposed diffeomorphism invariant
metric reduces to previous Affine-invariant metric if constraining the PDFs as Gaus-
sian distributions. In this sense, the proposed diffeomorphism invariant metric for
ODFs/EAPs is indeed a natural extension of previous affine-invariant metric for
tensors.

It will be interesting to see the Riemannian distance between Gaussian distribu-
tions under the proposed metric. For two Gaussian distributions N(x|Σ1) and N(x|Σ2)
where x ∈ Rd, the affine-invariant distance is 1√

2
‖ log(Σ−1

1 Σ2)‖. See Example 3.10 for
details. The diffeomorphism invariant distance is

d(N(x|Σ1),N(x|Σ2)) = arccos(
∫
Rd

√
N(x|Σ1)N(x|Σ2)dx)

= arccos
|2(Σ−1

1 + Σ−1
2 )−1|

1
2

|Σ1|
1
4 |Σ2|

1
4

(6.26)

Please note that the distributions on the geodesic between N(x|Σ1) and N(x|Σ2) are
no longer Gaussian, which is different from the affine-invariant framework. See the
interpolation in 1 dimension in Section 6.3.1.

6.1.9 Theoretical Comparison Between Riemannian Metric and Eu-
clidean Metric

Since ODF and EAP are both PDFs, the convex combination of PDFs are still a PDF.
That means the Euclidean metric could be used for ODFs and EAPs, which is analo-
gous to the Euclidean metric for tensors. The Euclidean distance between two distri-
butions p(x) and p′(x) is √∫

χ

(p(x) − p′(x))2dx

Then the Euclidean mean is given as wp(x) + w′p(x), where w and w′ are weights.
More efficiently, we can represent ODF and EAP directly by a linear combination of
orthonormal basis [Descoteaux et al., 2007; Aganj et al., 2010b; Cheng et al., 2010a,b;
Merlet et al., 2011], then the Euclidean framework can be constructed on the coeffi-
cients, which has been used in ODF estimation, interpolation, segmentation, regis-
tration etc. [Descoteaux et al., 2008a; Wassermann et al., 2008; Lenglet et al., 2009],
just like Euclidean framework for tensors. Based on Euclidean metric, the original
PCA can be used directly to analyze ODF/EAP field, instead of PGA based on Rie-
mannian metric. Then what is the difference between the Euclidean framework and
Riemannian framework for ODFs and EAPs?
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First, we have proved that the proposed Riemannian metric is diffeomorphism
invariant, it is easy to show in the same way that Euclidean metric is not. Second we
give a visual comparison based on the example in 3D case in Eq. (6.5). In this case,
the PS 3 is demonstrated as an equilateral triangle in Fig. 6.1(A) by coordinate p, as
well as the positive orthant of S2 by coordinate c. The uniform distribution U(x|u)
could be represented by p = ( 1

3 ,
1
3 ,

1
3 ) in Fig. 6.1(A) and c = ( 1√

3
, 1√

3
, 1√

3
) in Fig. 6.1(B),

where c is the coordinate in Riemannian framework. For any given point p0(x), we
calculate the distances between p0(x) and other points in this triangle and display the
isolines of distances in Fig. 6.1(D,F) using Riemannian metric and in Fig. 6.1(E,G)
using Euclidean metric. We conclude that the isolines based on Riemannian metric
more consider the boundary of PS k, while the isolines based on Euclidean metric do
not. For ODFs, the uniform distribution, i.e. the red point in Fig. 6.1(D,E), is the same
as the isotropic distribution. So the isolines of distances in Fig. 6.1(D) are actually
isolines of the GA for ODFs. The isolines in Fig. 6.1(E) are the isolines of generalized
FA for ODFs [Tuch, 2004]. For EAPs, that is not true because the uniform distribution
is not the isotropic EAP as we discussed above. For any given points p(x) and p′(x), the
geodesics based on Riemannian metric and Euclidean metric are shown in Fig. 6.1(H).
We conclude that if these two points are close to the uniform distribution, then two
geodesics from Riemannian metric and Euclidean metric will be close.

6.2 APPLICATIONS

6.2.1 Riemannian Coordinate Estimation and Nonnegative Definite
EAP/ODF estimation

In Section 6.1, we always assume the Riemannian coordinate c for ODFs and EAPs
is already known. However, existing works only focus on ODF/EAP estimation and
there is no work on how to estimate the wavefunction. Here we propose the following
two methods to estimate the wavefunction represented by orthonormal basis.

Wavefunction estimation from given ODFs/EAPs

Assume we obtain the precomputed ODF or EAP denoted by p(x) from some meth-
ods, e.g. SPFI in Chapter 5 [Cheng et al., 2010a,b] or `1-SPFI in [Cheng et al., 2011c].
Then we have the continuous expression of wavefunction, ψ(x) =

√
p(x), and the coef-

ficients {ci} are the inner products between ψ(x) and {Bi(x)}. What we do is to estimate
the inner products by numerical integration. Discrete samples are generated for the
numerical integration such that the numerical integration of

∫
χ

Bi(x)B j(x)dx is close
to δi j i.e.

δi j =

∫
χ

Bi(x)B j(x)dx '
∑

k

Bi(xk)B j(xk)S k

where S k is the area (or volume) element for sample xk. Our previous works on Rie-
mannian framework [Cheng et al., 2009a, 2011a] considered least square fitting with
the generated samples, which is equivalent to numerical inner product if we have
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exhaustive samples and incorporate the area element into the least square. In the
following we will given some specific details for ODFs and EAPs.

For ODFs, the sampling gradients {r j} are chosen from icosahedral tessellation
with order 2 (or 3) in hemisphere, considering ODF is antipodally symmetric. We
use SH basis with order 8 in practice to represent wavefunctions. An important is-
sue for ODFs is that the estimated ODF by Tuch Φt(r) needs to be normalized so
that the integration in S2 is 1 [Tuch, 2004; Descoteaux et al., 2007]. Please note
that the normalization is NOT to let the summation of ODF samples be 1. See Ap-
pendix 4.6 for the reason and the correct ODF normalization. Because many works in
HARDI represent ODF using SHs, we use continuous ODF normalization shown in
Appendix 4.6. If we can ensure that the estimated ODF is correctly normalized and
the estimated ODF is nonnegative, the estimated coefficient c from the least square
fitting automatically satisfy ‖c‖ = 1, because

δl′m′
lm =

∫
Ym

l (r)Ym′
l′ (r) '

∑
j

Ym
l (r j)Ym′

l′ (r j)S j

and

1 =

∫
S2
ψ(r)2dr =

∫
S2

(
∑
lm

clmYm
l (r))2dr '

∑
lm

∑
l′m′

clmcl′m′
∑

j

Ym
l (r j)Ym′

l′ (r j)S j = ‖c‖

Numerically ‖c‖ is in [0.99, 1.01] in practice.

For EAPs, the inner product between ψ(R) and SPF basis are approximated by
numerical integration within [0, 50]µm in spherical coordinate system. We use SPF
basis with N = 4 and L = 8 in Eq. (6.11) in practice to represent wavefunctions.

Please note some important issues for EAPs. First, although any EAP estima-
tion can be used to estimate the EAP, we need to choose the methods which can
ensure that the integration of the EAP is 1, i.e. E(0) = 1. Here we use SPFI in Chap-
ter 5 [Cheng et al., 2010b,a] which considers E(0) = 1 into estimation process. Second,
we need to choose an appropriate scale ζ in SPF basis such that the basis can repre-
sent the EAP with as limited coefficients as possible. We propose to set ζ based on
the typical isotropic Gaussian distribution

N(R|2τD0) =
1√

(4πτD0)3
exp(−

R2

4τD0
)

with typical diffusivity (variance) in human brain as

D0 = 0.7 × 10−3mm/s2

� In Chapter 5 [Cheng et al., 2010a,b, 2011c], we use SPF basis to represent E(q)
and set ζ by two ways. One is based on the typical ADC D0, i.e. ζ = 1

8π2τD0
,

such that SPF basis can sparsely represent E(q) = exp(−4π2τq2D0) only using
B000(q) = R0(q)Y0

0 (u). The other one is based on fitting the signal with GHOT
model in Eq. (5.36).

� In [Merlet et al., 2011], we use SPF basis to represent P(R) and set ζ such that
N(R|2τD0) can be sparsely represented by only B000(R) = R0(R)Y0

0 (r), i.e. ζ = 2τD0.
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� In this chapter, we use SPF basis to represent
√

P(R) and we set ζ such that
√

N(R|2τD0) ∝ exp(− R2

8τD0
) can be sparsely represented by only B000(R), i.e.

ζ = 4τD0 (6.27)

Note that different scale ζ means different orthonormal basis set {Rn(R|ζ)Ym
l (r)}.

Actually we can adaptively set ζ for different voxels when estimating
ODFs/EAPs in the subsection 6.2.1. We can adaptively estimate the isotropic
tensor with ADC Diso from signal {Ei}

Ns
i=1 in each voxel, which can be done by a

standard least square estimation in DTI. Then we adaptively set ζ = 4τDiso. The
isotropic EAP N(R|2τDiso) may better approximate the signal samples than the
EAP N(R|2τD0) provided by D0. In this way ζ is adaptively set for each voxel.
However, if we want to work on the estimated coefficients for the following op-
erations on EAP field, we need to force each voxel to share the scale ζ such that
the EAP in every voxel is represented by the same basis. If different ζ is used in
different voxel, the Fisher information metric in Eq. (6.6) will no longer be 4δi j.

Please note that the results in the Riemannian framework are robust to the param-
eter ζ, because different ζ results in different orthonormal basis sets and we have
proved that the final results of the Riemannian framework are invariant under dif-
ferent orthonormal basis, if the wavefunction can be represented by both basis sets.
However, for an inappropriate ζ, we may need a large number of basis functions to
represent the wavefunction, which is inefficient for the following Riemannian opera-
tions.

Please note that compared to [Goh et al., 2009a, 2011] which directly uses the
Ns samples of wavefunction, our method needs an extra numerical inner product (or
least square fitting) to obtain the coefficients of the wavefunction. However, the addi-
tional computation load can be ignored compared to the computational time it saves
in the following Riemannian operation working in lower dimensional space. More-
over, the histogram formulation in [Goh et al., 2009a, 2011] cannot be generalized
to EAPs using these Ns multiple shell samples, because these samples contained in
different bins have different areas, while [Goh et al., 2009a, 2011] implicitly assumes
the same area for the bins as discussed in 6.1.3.

The drawback of our method is that the wavefunction estimation is totally based
on the precomputed ODFs/EAPs, which is also a drawback of [Goh et al., 2009a,
2011] If the estimated ODFs/EAPs have some negative values, the square root of
these negative values do not exist. In practice, normally ODF values estimated from
QBI (or exact QBI) and SPFI are positive in most of time. However, the EAP values
estimated from SPFI always has some negative values for large R. In practice, we
need to force the negative values as 0 for ODF/EAP samples.

Square Root Parameterized Estimation (SRPE): a nonnegative definite
EAP/ODF estimation method

We propose a novel Square Root Parameterized Estimation (SRPE) method to esti-
mate the wavefunction ψ(R|c) of EAP directly from the DWI signals. When ψ(R) is
estimated, the EAP P(R) is given as ψ(R)2 in Eq. (6.10) which is nonnegative definite
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in R3. Because ODF is defined as the radial integration of EAP, the ODF is also non-
negative definite. Thus any wavefunction estimation method like the proposed SRPE
is also a nonnegative definite ODF and EAP estimation method. Please note that
standard QBI and SPFI in Chapter 5 and [Cheng et al., 2011c] do not consider non-
negative properties of ODF and EAP [Descoteaux et al., 2007; Cheng et al., 2010b].
Some existing works add nonnegative constraint in some discrete samples in S2 for
ODFs [Goh et al., 2009b] or in R3 for EAPs [Özarslan et al., 2009]. However, the
discrete constraint only can ensure the ODF/EAP is nonnegative at the given sam-
ples, while the ODF/EAP may be negative in other samples. Since the ODF is smooth
enough and S2 is bounded [Goh et al., 2009b], in practice the estimated ODF is non-
negative when adding nonnegative constraint in a small number of discrete samples.
However, it is impractical for EAPs to add the constraint in exhaustive samples in
unbounded R3. SRPE naturally ensures ODF and EAP are nonnegative in whole S2

and R3.

SRPE maximizes the posteriori probability in Eq. (6.28), where {Ei}
Ns
i=1 is the given

DWI signal samples for given q values {qi}
Ns
i=1, L({Ei}|ψ(R|c)) is the likelihood prob-

ability function, L({Ei}|ψ(R|c)) =
∏Ns

i=1L(Ei|ψ(R|c)) and p1(ψ(R|c)) is the prior for the
wavefunction.

c = arg max
c

p(ψ(R|c)|{Ei})

= arg max
c

lnL({Ei}|ψ(R|c)) + ln p1(ψ(R|c))

= arg max
c

Ns∑
i=1

lnL(Ei|ψ(R|c)) + ln p1(ψ(R|c)) (6.28)

Please note that for given c, the expected signal E(q|c) can be analytically obtained
from Fourier transform. See next paragraph for more details. Thus L(Ei|ψ(R|c)) =

L(Ei|E(qi|c)) is a measurement of the similarity between Ei and E(qi|c). If we consider
L(Ei|E(qi|c)) as a Gaussian distribution, i.e.

lnL(Ei|E(qi|c)) = −(E(qi|c) − Ei)2

which results in a least square cost function. It is also possible to consider the
L(Ei|E(qi|c)) as Rician distribution as [Assemlal et al., 2009a] did in SPFI. In this
chapter we just consider L(Ei|E(qi|c)) as a Gaussian distribution to demonstrate our
method, because the comparison between different likelihood functions is not our fo-
cus in this chapter. The prior p1(ψ(R|c)) can be considered as a regularization. We
consider the prior used in SPFI in Chapter 5 that ψ(R|c) is smooth both in radial and
spherical part [Assemlal et al., 2009a; Cheng et al., 2010a,b].

p1(ψ(R|c)) = exp(−cT Λc)

where Λ is diagonal matrix with two parts of regularization weights

Λnlm = λnn2(n + 1)2 + λll2(l + 1)2

Thus the SRPE method reduces to the minimization problem

c = arg min
c

M(c) = arg min
c

1
2

Ns∑
i=1

(E(qi|c) − Ei)2 +
1
2

cT Λc (6.29)
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Eq. (6.29) is similar with the least square estimation in SPFI [Assemlal et al., 2009a;
Cheng et al., 2010a,b], where E(q) is assumed to be represented linearly by SPF basis
and the minimization can be done through matrix multiplication. But in Eq. (6.29)
E(q|c) is determined by c in a quadratic way, not linearly.

We now show how to obtain E(q|c) from given c in details. Let ψ(R|c) =∑N
n=0

∑L
l=0

∑l
m=−l cnlmBnlm(R), then P(R) = ψ(R)2 in Eq. (6.10) which is parameterized

by its square root, and the expected signal E(q) determined by ψ(R) is expressed
in Eq. (6.30).

E(q|c) =

∫
R3

( N∑
n=0

L∑
l=0

l∑
m=−l

cnlmBnlm(R)
)2

e−i2πqT RdR (6.30)

Consider the plane wave equation in Eq. (6.31) shown in Theorem 2.8 and Ap-
pendix 5.7,

e±2πiq·R = 4π
∞∑
α=0

α∑
β=−α

(±i)α jα(2πqR)Yβ
α(u)Yβ

α(r), (6.31)

where jα(x) is the α-th order spherical Bessel function, then we have

E(q|c) =
∑
nlm

∑
n′l′m′

∑
αβ

4π(−1)
α
2 cnlmcn′l′m′ Inn′α(q)Qmm′β

ll′α Yβ
α(u) = cT K(q|ζ)c (6.32)

Kn′l′m′
nlm (q|ζ) =

2L∑
α=0

α∑
β=−α

4π(−1)
α
2 Inn′α(q)Qmm′β

ll′α Yβ
α(u) (6.33)

where the integration in R3 in Eq. (6.30) can be separated into radial integration
in Eq. (6.34) and spherical integration in Eq. (6.35).

Inn′α(q) =

∫ ∞

0
Rn(R)Rn′(R) jα(2πqR)R2dR (6.34)

Qmm′β
ll′α =

∫
S2

Ym
l (r)Ym′

l′ (r)Yβ
α(r)dr (6.35)

Both the radial integration and the spherical integration are independent of data and
can be analytically obtained.

The spherical integration Qmm′β
ll′α in Eq. (6.35) is the integration of three real SHs,

which has been shown in Eq. (2.35) in Section 2.5.2. It can be computed from Wmm′β
ll′α

in Eq. (2.34) which is the integration of product of three complex SHs. Please refer
Section 2.5.2 for more details. Please note that in Eq. (6.32),

∑
αβ means

∑2L
α=0

∑α
β=−α,

because if α > 2L, α > 2L ≥ l + l′ violates the triangle inequality and Qmm′β
ll′α = 0.

The radial integration in Eq. (6.34) can be also analytically solved. Put Eq. (6.12)
into Eq. (6.34), then we obtain Eq. (6.36), where Jα+0.5(x) =

√
2x
π jα(x) is the Bessel

function of the first kind.

Inn′α(q) = κn(ζ)κn′(ζ)
ζ1.25

2
√

q

∫ ∞

0
x1.5 exp(−x2)L0.5

n (x2)L0.5
n′ (x2)Jα+0.5(2πqx

√
ζ)dx (6.36)

Similarly with our previous works on SPFI in [Cheng et al., 2010a,b], we consider
L0.5

n (x) =
∑n

i=0 linxi, lin = (−1)i
(
n+0.5
n−i

)
1
i! shown in Eq. (2.63), then

L0.5
n (x2)L0.5

n′ (x2) =

n+n′∑
i=0

hi
nn′ x

2i, where hi
nn′ =

min(n,i)∑
j=0

l j
nli− j

n′ δ(i − j ≤ n′) (6.37)
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Then the radial integration becomes

Inn′α(q) = κn(ζ)κn′(ζ)
ζ1.25

2
√

q

n+n′∑
i=0

hi
nn′

∫ ∞

0
x2i+1.5 exp(−x2)Jα+0.5(2πqx

√
ζ)dx (6.38)

Based on the property of Bessel function given in Eq. (2.82) [Gradshteyn and Ryzhik,
2007], we have the final result as

Inn′α(q) = κn(ζ)κn′(ζ)
ζ0.5α+1.5πα+0.5qα

4Γ(α + 1.5)

n+n′∑
i=0

hi
nn′Γ(

1
2
α + i +

3
2

)1F1(
2i + α + 3

2
;α +

3
2

;−π2q2ζ)

(6.39)

The final quadratic relation E(q|c) = cT K(q|ζ)c is quite compact, where the kernel
K(q|ζ) is a N(L + 1)(L + 2)/2 dimensional symmetric matrix for each fixed q and ζ, and
K(q|ζ) is independent of data E(q).

Let’s back to the question in Section 6.1.3 why we choose SPF basis {Bnlm} instead
of dSPF basis in R-space to represent EAP. That is because it is easy to obtain the
analytic form of the radial integration in Eq. (6.34) from SPF basis. If we use dSPF
basis {Dnlm} to represent EAP like our previous work in Chapter 5, [Cheng et al.,
2011c] and [Cheng et al., 2011a], the analytic form is hard to deduce, although a
numerical integration is also possible.

For the minimization of M(c) in Eq. (6.29), we can first set the initial c(0) as
(1, 0, ..., 0)T , which is a typical isotropic Gaussian as we discussed above, then perform
gradient descent on PS . For a given c, let v be a tangent vector in the tangent space
of c and c(t) is the geodesic determined by c and v. Then c(0) = c, v =

dc(t)
dt |t=0, and

dM(c(t))
dt |t=0 = 〈∇M(c),v〉c based on the definition of directional derivative on manifold in

Section 3.1.2. On the other hand, because vT c = 0, we have

dM(c(t))
dt

∣∣∣∣
t=0

= (
∂M(c)
∂c

)T dc(t)
dt

∣∣∣∣
t=0

=

(
∂M(c)
∂c

−

(
cT ∂M(c)

∂c

)
c
)T

v

Thus we have the gradient of M(c) in Eq. (6.40), where ∂M(c)
∂c is given in Eq. (6.41).

∇M(c) =
∂M(c)
∂c

−

(
cT ∂M(c)

∂c

)
c (6.40)

∂M(c)
∂c

=

Ns∑
i=1

2
(
cT K(qi|ζ)c − Ei

)
K(qi|ζ)c + Λc (6.41)

The gradient descent method is given in Eq. (6.42), where c(k) means c in k-th step,
and dt is the step size estimated from standard line search method. See Algorithm 6.3
for the details, where dt0 = 0.1 experimentally, considering c is in the unit sphere.

c(k+1) = Expc(k)(−dt
∇M(c(k))
‖∇M(c(k))‖

), if ‖∇M(c(k))‖ > ε1 (6.42)

After we obtain c from DWI samples {Ei}, the EAP P(R) = (ψ(R))2 =

(
∑

nlm cnlmBnlm(R))2 is nonnegative definite in R3, and the integration of P(R) in R3 is
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Algorithm 6.3: Wavefunction Estimation
Input: DWI samples {Ei}.
Output: Coefficient c of ψ(R|c).
begin

initialization: c(0) = (1, 0, ..., 0)T , k = 0 ; // typical isotropic
Gaussian
repeat

calculate v = ∇M(c(k)) in Eq. (6.40) ;
if ‖v‖ < ε1 then break;
choose step size dt ∈ (0, dt0] via line search;
c(k+1) = Expc(k)(−dt v

‖v‖ );
k ← k + 1;

until M(c(k−1))−M(c(k))
M(c(k−1)) < ε2;

end

naturally one because c is in PS . For given radius R0, the EAP profile which normally
is used to detect fiber directions is given as

P(R0r) =
∑
nlm

∑
n′l′m′

cnlmcn′l′m′Rn(R0)Rn′(R0)Ym
l (r)Ym′

l′ (r) (6.43)

It also can be linearly represented by SHs.

P(R0r) =

2L∑
α=0

α∑
β=−α

(∑
nlm

∑
n′l′m′

cnlmcn′l′m′Rn(R0)Rn′(R0)Qmm′β
nn′α

)
Yβ
α(r) (6.44)

The two kinds of ODFs Φt(r) and Φw(r) are also nonnegative definite in S2 since they
are radial integration of P(R). Φt(r) and Φw(r) can be analytically obtained from wave-
function. For ODF by Tuch Φt(r), we have

Φt(r) =
1
Z

∫ ∞

0
(
∑
nlm

cnlmBnlm(R))2dR

=
1
Z

∑
nlm

∑
n′l′m′

( ∫ ∞

0
Rn(R)Rn′(R)dR

)
︸                      ︷︷                      ︸

I(0)
nn′

cnlmcn′l′m′Ym
l (r)Ym′

l′ (r) (6.45)

I(0)
nn′ =

∫ ∞

0
Rn(R)Rn′(R)dR

= κn(ζ)κn′(ζ)
√
ζ

2

∫ ∞

0
exp(−x)

n+n′∑
i=0

hi
nn′ x

i−0.5dx (6.46)

= κn(ζ)κn′(ζ)
√
ζ

2

n+n′∑
i=0

hi
nn′Γ(i +

1
2

) (6.47)

In Eq. (6.46), we use L0.5
n (x)L0.5

n′ (x) =
∑n+n′

i=0 hi
nn′ x

i in Eq. (6.37). Then put Eq. (6.47)
into Eq. (6.45), we have

Φt(r) =

√
ζ

2Z

∑
nlm

∑
n′l′m′

κn(ζ)κn′(ζ)cnlmcn′l′m′Ym
l (r)Ym′

l′ (r)
n+n′∑
i=0

hi
nn′Γ(i +

1
2

) (6.48)
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Φt(r) now is represented by products of SHs. It is also possible to represent φt(r)
linearly by SHs.

Φt(r) =

√
ζ

2Z

2L∑
α=0

α∑
β=−α

(∑
nlm

∑
n′l′m′

κn(ζ)κn′(ζ)cnlmcn′l′m′Q
mm′β
ll′α

n+n′∑
i=0

hi
nn′Γ(i +

1
2

)
)
Yβ
α(r) (6.49)

For ODF by Wedeen Φw(r), we have

Φw(r) =

∫ ∞

0
(
∑
nlm

cnlmBnlm(R))2R2dR

=
∑
nlm

∑
n′l′m′

( ∫ ∞

0
Rn(R)Rn′(R)R2dR

)
cnlmcn′l′m′Ym

l (r)Ym′
l′ (r) (6.50)

=
∑
nlm

∑
l′m′

cnlmcnl′m′Ym
l (r)Ym′

l′ (r) (6.51)

=

2L∑
α=0

α∑
β=−α

(∑
nlm

∑
l′m′

cnlmcnl′m′Q
mm′β
ll′α

)
Yβ
α(r) (6.52)

From Eq. (6.50) to Eq. (6.51), we use the orthogonality of radial part basis, i.e.∫ ∞
0 Rn(R)Rn′(R)R2dR = δnn′ . From Eq. (6.51), it is clear that

∫
S2 Φw(r)dr =

∑
nlm c2

nlm = 1,
considering orthogonality of SHs. So the proposed estimator of Φw(r) is indeed the
marginal EAP.

In the proposed method, we choose ζ = 4τD0 as we discussed above, which makes
typical isotropic P(R) and E(q) are represented only by B000(R) and D000(q) respectively.
Please note that sometimes for real data we do not know the diffusion time τ, and
only {bi} values and gradients {ui} are known. Thus we cannot calculate accurately
{qi} from {bi}.

Considering b = 4π2τq2, Eq. (6.39) can be represented by b as

Inn′α(b) = κn(ζ)κn′(ζ)
ζ0.5α+1.5π0.5b0.5α

2α+2τ0.5αΓ(α + 1.5)

n+n′∑
i=0

hi
nn′Γ(

1
2
α + i +

3
2

)1F1(
2i + α + 3

2
;α +

3
2

;−
bζ
4τ

)

Considering b = 4π2τq2 and κn(ζ) in Eq. (6.12), if we set ζ = 4τD0 as discussed in
Section 6.2.1, Eq. (6.39) can be represented by b in Eq. (6.53).

Inn′α(b) =

[
n!n′!

Γ(n + 3/2)Γ(n′ + 3/2)

]1/2 D0.5α
0 π0.5b0.5α

2Γ(α + 1.5)
n+n′∑
i=0

hi
nn′Γ(

1
2
α + i +

3
2

)1F1(
2i + α + 3

2
;α +

3
2

;−bD0) (6.53)

It is clear to see that Inn′α(b) only depends on D0 and is independent with τ when
ζ = 4τD0. Based on the above analysis, Inn′α(q) in Eq. (6.34) only depends on D0 if we
choose ζ = 4τD0, so different τ obtains the same c when D0 is fixed. But different
τ will give different scale ζ in R-axis for P(R) in Eq. (6.10). Two kinds of ODFs are
invariant for different τ based on Eq. (6.49) and Eq. (6.52). Thus if we do not know τ

for real data, we always assume 4π2τ = 1, i.e. τ = 0.02533s, which is also used in the
following experiments.
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We have proposed a method to estimate wavefunction for EAPs. However it is
impossible to estimate the wavefunction for ODFs directly from DWI signals, if we
do not add some assumptions on E(q). That is because different E(q) may obtain the
same ODF, which means we cannot represent E(q) using wavefunction of ODFs as
what we did for EAPs in Eq. (6.32). Of course we can make some assumptions on
E(q) such that there is one to one map between E(q) and ODF. In details, Φt(r) in QBI
uniquely determines signal shell DWI signal [Descoteaux et al., 2007] by Funk-Radon
transform. Φw(r) in exact QBI uniquely determines the SH coefficients with L ≥ 2
of signal shell DWI signal by assuming mono-exponential decay on E(q) [Canales-
Rodrıguez et al., 2009; Aganj et al., 2010b]. However we prefer model-free method
without assumptions. So we suggest to first estimate the nonnegative definite ODF
using the proposed SRPE method, then estimate the wavefunction of ODF from pre-
computed ODFs using numerical integration (or least square fitting) shown in Sec-
tion 6.2.1.

6.2.2 ODF/EAP Interpolation

Like Riemannian framework for tensors, a straightforward application of weighted
Riemannian mean is ODF/EAP interpolation, which is an important step in fiber
tracking and registration. On a regular lattice in Rd, the interpolated scalar valued
function f (s) at spatial position s is normally a linear combination of Ns samples in
its neighborhood, i.e.

f (s) =
∑

i

wi(s) f (s(i))

The weighting function {wi(s)} are normally determined by the spatial distance be-
tween s(i) and s, and

wi(s( j)) = δ
j
i

such that f (s(i)) is invariant under interpolation operation. Moreover, the weighting
functions are normally positive and normalized such that

∑
i wi(s) = 1 and the linear

combination is weighted mean. This kind of interpolation is called as mean value
interpolation. When { f (si)} are samples of manifold valued function, the weighted
mean is

f (s) = arg min
f

Ns∑
i=1

wi(s)d( f (s(i)), f )2

which has no closed form and needs to be solved using Algorithm 6.1. Borrowing from
the notation in [Buss and Fillmore, 2001], we denote the weighted Riemannian mean
by ∑̃Ns

i=1
wi(s) f (s(i)) def

= w1(s) f (s(1)) ⊕ w2(s) f (s(2)) ⊕ · · · ⊕ wN(s) f (s(Ns))

While weighted Euclidean mean is
∑N

i=1 wi(s) f (si) = w1(s) f (s(1)) + · · · + wN(s) f (s(Ns)).

In this chapter, we just demonstrate a simple Lagrange interpolation which is
normally used in MRI data processing. In 1 dimension (1D) case, wi(s) =

∏Ns
j=1, j,i

s−s( j)

s(i)−s( j) ,
where Ns samples are used in s-axis. If Ns = 2, f (s) = t f (s(1)) ⊕ (1 − t) f (s(2))
is the weighted mean, where t = s−s(1)

s(2)−s(1) . When t changes in [0, 1], f (s) shows
the geodesic connecting f (s(1)) and f (s(2)), which has the analytical closed form as
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f (s) = Exp f (s(1))(tLog f (s(1))( f (s(2)))). There is no closed form for Ns > 2 in 1D or in high di-
mension. It is straightforward to generalize interpolation from 1D to high dimension.
For example, f (s) in 2 dimension where s = (s1, s2)T is shown in Eq. (6.54).

f (s) =
∑̃Ns1

i=1

∑̃Ns2

j=1
w(1)

i (s1)w(2)
j (s2) f (s(i, j))|s(i, j)=(s(i)

1 ,s
( j)
2 )T (6.54)

w(1)
i (s1) =

Ns1∏
l=1,l,i

s1 − s(l)
1

s(i)
1 − s(l)

1

, w(2)
j (s2) =

Ns2∏
m=1,m, j

s2 − s(m)
2

s( j)
2 − s(m)

2

(6.55)

Lagrange interpolation is a polynomial interpolation method whose weighting func-
tions are normally not normalized. When 2 samples are used in each dimension, it
reduces to linear interpolation which is a kind of mean value interpolation with
normalized weighting functions. Linear interpolation is closely related to geodesics
and was used to compare different metric for tensors [Pennec et al., 2006].

An important issue on linear interpolation which is concerned in dMRI field is the
so called swelling effect. In linear interpolation of tensors with Euclidean metric,
the interpolated tensors sometimes have larger determinant than the fixed tensors in
endpoints. This phenomenon is called as swelling effect [Pennec et al., 2006]. How-
ever, to our knowledge there is no definition of swelling effect for general PDF valued
data interpolation so far. [Goh et al., 2011] discussed the swelling effect for ODF in-
terpolation via Shannon entropy which is 1

2 ln((2πe)3|Σ|) for Gaussian distribution
N(R|Σ), and concluded the swelling effect occurs in both Riemannian and Euclidean
interpolation of ODFs. However we think the increase of Shannon entropy may be
necessary for PDF data interpolation in some cases. For example, when interpolating
two discrete PDFs p(1) = (1, 0, 0)T and p(2) = (0, 1, 0)T which have the Shannon entropy
of zero, it is reasonable that the interpolated mean PDF is p = ( 1

2 ,
1
2 , 0)T which is the

common result from both Riemannian and Euclidean interpolation in PDF space and
has larger Shannon entropy than p(1) and p(2). See Fig. 6.1(A,B,H) for the sketch
map. When interpolating two Gaussian EAPs with the same tensor shape but dif-
ferent directions, the interpolated Gaussian distributions from Riemannian tensor
interpolation in tensor space have the same Shannon entropy but no crossing glyph,
while the interpolated EAPs from both Riemannian and Euclidean interpolation have
larger entropy but crossing glyphs, which is more reasonable.

In this chapter we propose the definition of reasonable mean value interpola-
tion of the spatial interpolation on PDF valued function p(s,x). The so called swelling
effect for tensor interpolation can be considered as a specific phenomenon in unrea-
sonable mean value interpolation of Gaussian PDFs. Generally a PDF field can
be considered as a PDF valued function defined in spatial space as well as a scalar
function defined in both spatial and probability space, i.e. p(s,x) : Rd × χ → R, where
Rd is the d dimensional spatial space and χ is the measure space for PDFs which is S2

for ODFs and R3 for EAPs. ps(x) def
= p(s,x) is the PDF defined at spatial position s.

Definition 6.1. For a PDF valued function p(s,x), a mean value interpolation based
on Ns samples {ps(i)(x)}Ns

i=1 at position {s(i)}
Ns
i=1 is reasonable if the interpolated PDF

ps(x) at position s satisfies

ps(x) ≥ min{ps(i)(x)}Ni=1, ∀x ∈ χ (6.56)
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It is straightforward that the mean value interpolation of scalar valued func-
tion f (s) is reasonable because

∑Ns
i=1 wi(s) f (s(i)) ≥ min{ f (s(i))}Ns

i=1 when
∑

i wi(s) = 1 and
wi ≥ 0. For the Euclidean interpolation on Gaussian distribution parameterized
by tensors Ns(R|Σ), Σ =

∑Ns
i=1 wiΣi where {Σi}

Ns
i=1 are covariance tensors of given sam-

ples {Ns(i)(R|Σi)}
Ns
i=1. The return-to-origin probability (RTO) [Wu and Alexander, 2007;

Cheng et al., 2010b] is

Po = N(0|Σ) =
1√

(2π)3|Σ|

where Σ = 2τD. Thus the larger determinant of the tensor Σ (or D) is, the smaller
RTO of EAP. When swelling effect occurs, |Σ| > max{|Σi|}

Ns
i=1 [Pennec et al., 2006], which

means Ns(0|Σ) < min{Ns(i)(0|Σi)}
Ns
i=1. So Euclidean interpolation on tensors is unreason-

able. It is actually interpolation on matrices, not EAPs. On the other hand, if the
mean value interpolation is reasonable, i.e. Ns(R|Σ) ≥ min{Ns(i)(R|Σi)}

Ns
i=1, ∀R ∈ R3, then

there is no swelling effect. So swelling effect is actually a specific phenomenon of
unreasonable mean value interpolation of Gaussian PDF field. For Riemannian
interpolation on tensors, Riemannian and Euclidean interpolation on general EAPs,
we have the theorem 6.6 whose proof is given in Appendix 6.6.

Theorem 6.6 (Reasonable Interpolations). Riemannian and Euclidean mean
value interpolations on general EAPs/ODFs are both reasonable. Riemannian mean
value interpolation on tensors is reasonable, and more precisely

max{Ns(i)(R|Σi)}
Ns
i=1 ≥ Ns(R|Σ) ≥ min{Ns(i)(R|Σi)}

Ns
i=1, ∀R ∈ R3 (6.57)

Please note two important differences between tensor based interpolation and
interpolation on EAP space.

� EAP mean value interpolation with Euclidean metric is totally different from
tensor interpolation with Euclidean metric. For given Gaussian distributions
{Ns(i)(R|Σi)}

Ns
i=1, the interpolated EAP is P(R) =

∑Ns
i=1 wiNs(i)(R|Σi) which is no longer

Gaussian.

� EAP mean value interpolation with Riemannian metric may have larger prob-
ability values than EAPs in the endpoints, which is reasonable as discussed
in Section 6.1.7. However, EAP mean value interpolation with Euclidean met-
ric always obtain the EAPs whose probability values are between the values of
EAPs in endpoints. The EAPs from Riemannian interpolation on tensors, called
tensor-EAPs, also always have the probability values between the EAPs in the
endpoints.

6.2.3 ODF/EAP filtering

Another straightforward application of Riemannian metric is the filtering in
ODF/EAP field, which can improve the ODF/EAP estimation by considering the in-
formation in a spatial neighborhood. Since weighted mean/median could be calcu-
lated efficiently, it is possible to develop some filtering algorithms on ODF/EAP field.
Actually all filtering algorithms in [Pennec et al., 2006; Fillard et al., 2007] for ten-
sor field can be generalized into ODF/EAP field. For example, [Goh et al., 2009a,
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2011] proposed anisotropic filtering for ODF field. Here we just demonstrate a sim-
ple Gaussian smoothing method since it is widely used in MRI field and does not need
an iterative process. In this method the filtered EAP ps(x|c) in each position s is the
weighted mean ps(x|µw) or median ps(x|mw) of the ODFs/EAPs in a given neighbor-
hood {ps(x|c(i))}i∈N(s), where N(s) is in the spatial neighborhood of s. The weighting
functions wi(s(i)) can be chosen as spatial Gaussian kernel exp(− d(s,s(i))

σs
) in traditional

Gaussian filtering, or Gaussian kernel exp(−d(s,s(i))
σs

d(ps(x|c),ps(i) (x|c(i))
σc

) dependent on both
spatial distance and ODF/EAP distance in bilateral filtering [Tomasi and Man-
duchi, 1998], where σs and σc are standard deviation in spatial and PDF domain and
need to be chosen by users.

6.2.4 ODF/EAP Atlas Estimation

The weighted Riemannian mean and median can be used in atlas estimation. The
measure of robustness of an estimator is the breakdown point which is the fraction
of the data that can be completely corrupted without affecting the boundedness of the
estimator. Compared with the mean, the median whose breakdown point is larger is a
much more robust estimator which was shown in [Fletcher et al., 2009]. This property
makes the median more appropriate than the mean in atlas estimation.

6.3 EXPERIMENTS

In this section, we validate the Riemannian framework and its applications in
synthetic data, phantom data and real monkey data.

6.3.1 Synthetic Data

Demonstration for Diffeomorphism Invariance

We have proved in Section 6.1.8 that the proposed Riemannian metric for ODFs/EAPs
is diffeomorphism invariant. In this section we give an example to demonstrate this
property via an affine transform. See Fig. 6.2. Mixture of tensor model

P(R) = w1N(R|2τD1) + w2N(R|2τD2)

was used to generate the synthetic data. See Appendix A. D1 and D2 have the same
eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s but different directions. Based on this model, we
can analytically obtain many samples of ODFs by Wedeen [Wedeen et al., 2005] and
EAPs. Then the SH coefficients and SPF coefficients for the wavefunctions of ODFs
and EAPs can be obtained via numerical inner product with L = 8, N = 4. Please
note that we did not estimate ODF/EAP from limited number of DWI signal samples
with noise because we would like to avoid the estimation error which is not our focus
in this experiment. We compute the Riemannian distance and Euclidean distances
between the EAP/ODF in the center where w1 = 1, w2 = 0 and the EAPs/ODFs in other
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Figure 6.2: (A,C): original EAP profiles colored by Euclidean and Riemannian distances;
(B,D): transformed EAP profiles colored by Euclidean and Riemannian distances; (E,G): orig-
inal ODF colored by Euclidean and Riemannian distances; (F,H): transformed ODF colored
by Euclidean and Riemannian distances.

voxels where w1 = w2 = 0.5. Afterwards a given affine transform A was performed on
the mixture model, i.e.

(A ◦ P)(R) = w1N(R|2τAT D1A) + w2N(R|2τAT D2A)

With this transformed model, we again estimated the Riemannian coordinates for
ODFs and EAPs via numerical inner product, calculated the distance maps and vi-
sualized glyphs colored by distances. In Fig. 6.2, (A,C) are the original EAP profiles
at 15µm colored by Euclidean distance and Riemannian distance respectively, and
(E,G) are the original ODF fields colored by Euclidean and Riemannian distance.
The transformed EAPs are shown in Fig. 6.2(B,D) and transformed ODFs in (F,H).
The distance maps were used to color the glyphs and were set as the background. It
is clear that the Riemannian distance is invariant under the transform. As we know,
the Riemannian distance between two Gaussian distributions is invariant under an
affine transformation, while Euclidean distance is not. However, Riemannian frame-
work for tensors does not work for non-Gaussian distributions, e.g. mixture of Gaus-
sian model. This experiment demonstrates that Riemannian metric for EAPs and
ODFs is diffeomorphism invariant, which is a natural extension of affine-invariant
metric for tensors, while Euclidean metric is not.

Nonnegative ODF and EAP estimation via SRPE

In practice we found that the ODFs estimated by many HARDI methods normally
have only a small number of negative values close to zero when the SNR is very low,
however even with high SNR, the negative values are serious for the estimated EAPs
especially for large radius R. Thus we focus on EAP estimation in this subsection.
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Figure 6.3: A1: ground truth EAP and estimated EAPs from two methods, where the EAP by
SPFI has negative values in the blue square. The long thin sticks and short thick sticks are
the ground truth directions and the detected maxima respectively. A2, A3: NMSE in noise
free experiment for two tensor configurations T1, T2. B1, B2, B3: success ratio, MDA and the
mean of NMSE in the experiments with S NR = 10, 30.

The synthetic data were generated from mixture of tensor model [Descoteaux
et al., 2007] where two tensors cross with a given angle in [45◦, 90◦]. Three shells
(b=500,1500,3000 s/mm2) were used, 60 samples per shell. EAP profiles with radius
R0 = 15µm were estimated by SPFI and SRPE. The Normalized Mean Square Error
(NMSE) between the ground truth EAP profile P(R0r) and the estimated EAP profile
P̃(R0r) is defined in Eq. (A.8). In the noise-free experiment, the signal was generated
from two tensor configurations with eigenvalues T1 = (1.7, 0.3, 0.3) × 10−3mm2/s and
T2 = (0.9, 0.3, 0.3) × 10−3mm2/s. We set N = 2, L = 4, λl = λn = 0 and considered both
typical scale and adaptive scale for SPFI and SRPE . Fig. 6.3(A2,A3) recorded the
NMSE when two maxima were detected. SRPE generally obtains lower NMSE and
has better angular resolution than SPFI. The adaptive scale obtains lower NMSE in
two methods when T2 is used, which is because the ADC in tensor T1 is much close to
the typical D0, while the ADC in T2 is not. Note that when T2 is used, the NMSE ob-
tained from SRPE with typical scale is just slightly higher than the NMSE obtained
from SRPE with adaptive scale, which means the typical scale is acceptable in SRPE.
Fig. 6.3(A1) shows the ground truth EAP and the estimated EAPs by two methods
when T1 and crossing angle of 55◦ are used. SRPE has better angular resolution and
avoids the negative values around the original point in the EAP by SPFI. Note that
the EAP profile estimated by SPFI in (A1) has more than 20% negative values showed
in the blue square, although only 1% points are negative and have absolute values
larger than one tenth of the maximal value of the EAP profile. In the experiment
with Rician noise, T1 and adaptive scale were used. We set λl = λn = 10−8 for SPFI
suggested in [Cheng et al., 2010b]. Since the coefficient c in SRPE has different range
(‖c‖ = 1) from coefficients in SPFI, in order to perform a fair comparison, we still set
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λl = λn = 0 for SRPE without any regularization. The estimation was performed for
1000 trials with S NR = 10, 30, where the success ratio was recored when two maxima
were detected, the Mean Difference of Angle (MDA) was calculated in the successful
trials, and the mean of NMSE was calculated over all trials. See Fig. 6.3(B1,B2,B3).
It is clear that SRPE generally has higher success ratio, lower MDA and lower NMSE
than SPFI.

Interpolation and PGA

We demonstrate the Lagrange interpolation of ODFs/EAPs in 1D and 2D field, and
compare the results from Riemannian metric and Euclidean metric.

Fig. 6.4 shows the 1D interpolated ODFs and EAP profiles at 15µm from given two
Gaussian distributions parameterized by different configurations of tensors. We have
two ways to interpolate ODFs/EAPs between Gaussian distributions.

1. The first way is to first interpolate tensors between these two tensors in
endpoints with Riemannian metric or Euclidean metric, then obtain the
ODFs/EAPs analytically from the interpolated tensors based on the analyti-
cal solution of Gaussian distribution. We call them tensor-ODFs and tensor-
EAPs.

2. The second way is to generate the ODFs/EAPs analytically from two fixed ten-
sors, then interpolate ODFs/EAPs using the weighted mean of ODFs/EAPs with
Euclidean, Riemannian and Log-Euclidean metrics respectively.

The coefficients of SH basis and SPF basis were estimated with L = 8 for ODFs and
L = 8, N = 4 for EAPs. The first column in Fig. 6.4 shows the results between one
isotropic Gaussian with eigenvalues of [0.4, 0.4, 0.4] × 10−3mm2/s and one anisotropic
Gaussian with the eigenvalues of [1.7, 0.3, 0.3] × 10−3mm2/s. The ODFs/EAPs from
Euclidean and Riemannian interpolations are similar with the interpolated tensor-
ODFs/EAPs from Euclidean and Riemannian interpolations respectively. The second
and third columns give the results from two anisotropic Gaussian distributions with
the eigenvalues of [1.7, 0.3, 0.3]× 10−3mm2/s, [0.6, 0.2, 0.2]× 10−3mm2/s and with angular
difference of 45◦, 90◦. Fig. 6.5 also shows EAP glyphs at 15µm and the change of RTO
values for the interpolation of two Gaussian distributions which have the eigenvalues
of [1.7, 0.3, 0.3] × 10−3mm2/s, [1.2, 0.3, 0.3] × 10−3mm2/s and crossing angle of 90◦.

In 2D case, ODFs/EAPs were interpolated from 4 given ODFs/EAPs in 4 corners
in Fig. 6.6. Tensor model with eigenvalues of [0.6, 0.2, 0.2] × 10−3mm2/s was used to
generate ODFs and EAPs in top right and bottom left voxels. The same eigenvalues
were used in mixture of two tensors to generate the ODF and EAP in top left voxel.
The ODF and EAP in the bottom right voxel were generated from the tensor with
eigenvalues of [1.7, 0.3, 0.3]×10−3mm2/s. Fig. 6.6 visualizes the interpolated ODFs and
EAP profiles at 15µm from Riemannian and Euclidean interpolations. The glyphs
were colored by GA values which were also set as the background grey intensity.
Fig. 6.6 also shows the first two principal components (PCs) from PGA for the ODF
and EAP fields from Riemannian interpolation, and the first two PCs from original
PCA for the results from Euclidean interpolation.

204



Figure 6.4: Three configurations of tensors in endpoints were used in 1D interpolations of
tensors/ODFs/EAPs with different metrics. Tensors and tensor-ODFs/EAPs were colored by
GA of tensors, and ODF/EAP glyphs were colored by GA of ODFs/EAPs.

It can be seen in Fig. 6.4 that tensor-ODFs/EAPs cannot generate crossing glyphs,
while ODF/EAP interpolation can. It is interesting that the first column in Fig. 6.4
shows that the tensor-EAPs from Riemannian interpolation of tensors are similar
with EAPs from Riemannian interpolation of EAPs, and tensor-EAPs from Euclidean
interpolation are similar with EAPs from Euclidean interpolation. However, please
note the interpolated tensor-EAPs are still Gaussian, while the interpolated EAPs
are no longer Gaussian. Fig. 6.5 shows the change of RTO probability in 1D in-
terpolation. The swelling effect occurs in tensor-EAPs from Euclidean interpolation
which is unreasonable. EAPs from Riemannian and Log-Euclidean interpolations ob-
tain larger RTO than the EAPs in endpoints, which is possible as we have shown in
Section 6.1.7 and 6.2.2. Although EAPs from Riemannian and Log-Euclidean inter-
polations are very similar when R = 15µm, they are slightly different for RTO values.
EAPs from Euclidean interpolation and tensor-EAPs from Riemannian interpolation
on tensors have similar RTO values, although EAP interpolation has crossing glyphs
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Figure 6.5: The interpolation results and the change of RTO probability for 1D interpolation
of two Gaussian EAPs.

when R = 15µm, which is totally different from tensor-EAPs. In the top left area
of Fig. 6.6, the EAP interpolation with Euclidean metric gives some unreasonable
glyphs with many local maxima, while Riemannian metric gives more reasonable
results. The PCs of EAPs from Riemannian interpolation show clearly the 3 types
of EAPs in 4 corners, while the PCs of EAPs from Euclidean interpolation miss the
EAP type in the top left voxel. Euclidean and Riemannian interpolation give simi-
lar results for ODF interpolation. PCA and PGA also give similar results for ODFs.
Fig. 6.4, 6.5 and 6.6 demonstrate the three important phenomena.

� First, the ODF interpolation results with Riemannian and Euclidean metrics
have only a little difference, while the EAP interpolation results with two met-
rics are quite different.

� Second, ODF/EAP and tensor-ODF/EAP interpolation with Euclidean metric
give more weighting for the distribution with large values than the interpolation
with Riemannian metric. The phenomenon is more evident in tensor-EAP and
EAP interpolation.

� Third, ODFs/EAPs from Riemannian interpolation are very similar with
ODFs/EAPs from Log-Euclidean interpolation. Although We did not show the
results from Affine-Euclidean interpolation, it is also very similar with Rieman-
nian interpolation.

We would like to explain why the Riemannian metric and Euclidean metric give
more different results for EAPs than for ODFs. Please remind the previous dis-
cussions in Section 6.1.9 that if two points are near the uniform distribution, the
geodesics of Riemannian metric and Euclidean metric will be close. For ODFs, the
uniform distribution is also the isotropic ODF. The ODFs in gray matter and CSF
are normally close to isotropic ODF. Moreover we find in practice that even in white
matter the two kinds of ODFs with or without solid angle defined in [Tuch, 2004; De-
scoteaux et al., 2007] and [Wedeen et al., 2005; Aganj et al., 2010b] are also very close
to the isotropic ODF. If we use SH to represent ψ(r), r ∈ S 2 for ODFs, the isotropic

206



Figure 6.6: Comparison between Riemannian and Euclidean metrics in 2D ODF/EAP inter-
polation. Comparison between PGA and PCA in 2D ODF/EAP field. PGA and PCA were used
in the ODF/EAP results from Riemannian and Euclidean interpolations respectively. GA was
used to color the glyphs and was set in the background.
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ODF is (1, 0, ..., 0)T , i.e. c1 = 1. For a given ODF with the coefficients c, c1 is the
projection onto isotropic ODF, which is more than 1√

4π
theoretically as shown in Sec-

tion 6.1.4. However experimentally c1 from a typical tensor in our brain is always
close to 1, normally more than 0.95. That means the ODFs we focus in human brain
are actually always in a small space around the uniform distribution, compared to
the large function space in Eq. (6.1). However, that is different for EAPs because the
EAPs we study are far from the uniform distribution as we have discussed in Sec-
tion 6.1.4. This can explain why significant difference occurs between two metrics in
interpolation of tensors and EAPs, but only a little difference in ODF interpolation.

Filtering

In this subsection, we would like to compare different metrics in Gaussian filtering.
Section 6.2.3 shows some potential filtering methods in ODF/EAP field. The weight-
ing functions in the given neighborhood N(s) at spatial position s may be dependent
on both spatial distance and PDF distance in bilateral filtering. However, it is diffi-
cult to set σc for PDF distance in a fair comparison, because different metrics have
different range of distances. Thus we just compare different metrics in traditional
Gaussian filtering where the weighting functions are only dependent on spatial dis-
tance and the same σs can be used in all metrics.

The ground truth signals at b = 1500s/mm2 were generated from a tensor field
where tensors in two regions have the same eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s but
orthogonal principal directions. The signals were corrupted by Rician noise with
S NR = 5, where S NR is defined as 1

σ and σ is the deviation of complex Gaussian
noise [Descoteaux et al., 2007]. Then the single shell noise corrupted signals were
used to estimate tensors, ODFs and EAP profiles at R = 15µm. The tensors were
estimated via standard least square fitting [Basser et al., 1994], and the ODFs/EAPs
were estimated from the proposed SRPE in 6.2.1 with L = 4, N = 2, λl = λn = 0. Please
note two issues.

� First, we just used limited samples and did not add any regularization in
ODF/EAP estimation because we would like to obtain noisy estimation results
for filtering experiments.

� Second, the noisy results in raw estimation come from estimation error of lim-
ited samples and Rician noise, not the Gaussian noise in tangent space used
in [Pennec et al., 2006; Fillard et al., 2007; Goh et al., 2011] which cannot be
found in practical estimation.

The noisy tensor, ODF and EAP fields were listed in the first row of Fig. 6.7. Then
Riemannian median, Riemannian mean and Euclidean mean were used in spatial
Gaussian filtering, where the common spatial deviation was chosen as σs = 0.8.

All three metrics work well inside the regions, and the differences are mainly in
the boundary of these two regions. Compared to Riemannian median and mean, the
Euclidean mean filtering on tensor field obtain swelling glyphs with less anisotropy
around the boundary, which agrees the results in [Pennec et al., 2006; Fillard et al.,
2007]. As we discussed above in 6.2.2, the swelling of tensors means decrease of
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Figure 6.7: Filtering on tensor, ODF and EAP fields. The first row is the noisy glyphs of
raw estimation. The following three rows are filtering results based on Riemannian median,
Riemannian mean and Euclidean mean respectively. The glyphs were colored by directions.

probability values. It agrees that the Euclidean mean filtering on EAP field obtains
smaller glyphs around the boundary. Euclidean mean filtering on EAP field also
gives more interchange for the two regions, and the glyphs around the boundary have
more obvious crossing, which decrease the anisotropy. Riemannian median filtering
gives the least interchange for the two regions which preserve the discontinuity. The
Euclidean mean and Riemannian mean obtain similar results in ODF field, which
agrees the discussion above on interpolation.

Robustness of Riemannian Median

In this subsection, we would like to compare the robustness of different estimators,
i.e. Riemannian median, mean and Euclidean mean. With the data generation shown
in last experiment, we generate tensor, ODF and EAP data with 10 samples from ten-
sor model with eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s and S NR = 5 at b = 1500s/mm2.
Then some outliers with different directions were also generated from the same ten-
sor model with S NR = 5 but different direction at b = 1500s/mm2. The first row in
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Figure 6.8: Test the robustness of Riemannian median, Riemannian mean and Euclidean
mean. First row: 5 of the data from raw estimation. Second row: 5 of outliers. From the
third to the fifth row: estimated results from Riemannian median, Riemannian mean and
Euclidean mean. Sixth row: the number of outliers in 10 samples.

Fig. 6.8 shows the 5 samples of tensors, ODFs and EAPs. The second row shows 5
of the outliers. Then Riemannian median, Riemannian mean and Euclidean mean
were estimated from the 10 samples, some of which were replaced by outliers. The
results from three estimators were shown from the third to fifth rows in Fig. 6.8,
and the number of outliers were listed in the last row. We can see that the Rie-
mannian median is more robust than Riemannian mean and Euclidean mean, which
agrees [Fletcher et al., 2009].

6.3.2 Phantom Data

We performed the proposed SRPE method and Gaussian filtering in a public phantom
data (http://lnao.lixium.fr/spip.php?rubrique79). See Appendix B.1 for the details of
the data information and preprocessing.

Nonnegative Definite ODF/EAP Estimation

We first obtained the mean DWI data from two repetitions. Then we estimated ODFs
and EAPs from the proposed SRPE and SPFI in our previous work [Cheng et al.,
2010a,b]. It is possible to consider adaptive scale in SRPE for better estimation,
however it will bring troubles in the following Riemannian operations on EAP field
because the coefficients in different voxels are under different basis set. Thus we first
estimate the mean diffusivity of all voxels in white matter, which is about D = 1.6 ×
10−3mm2/s. Then we use this mean diffusivity value to set the scale 4τD = 1.6211×10−4

in SRPE and the scale ( 1
8π2τD = 312.5) in SPFI for all voxels. We set L = 4, N = 1 for

both SRPE and SPFI, and λl = λn = 0 in order to evaluate the robustness to noise.
Fig. 6.9 shows in the first row the ground truth of fiber directions and the estimated
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Figure 6.9: Phantom data results. Comparison between SRPE and SPFI. Comparison be-
tween different metric in filtering of ODF/EAP field. The reference DWI data without diffu-
sion gradient (b = 0) was set as the background in all subfigures. First row: the estimated
EAP and ODF glyphs. Second row: the results from two methods in two enlarged regions.
Third row: Gaussian filtering results of EAP and ODF fields, where RMM means Riemannian
metric and EUM means Euclidean metric. The glyphs in all subfigures were colored by the
GFA values of the spherical functions, i.e. EAP profiles and ODFs.

ground truth of fibers EAP field at 15 µm ODF field

EAPs at 15 µm EAPs at 25 µm ODFs EAPs at 15 µm EAPs at 25 µm ODFs

proposed SRPE SPFI in Chapter 5, D = 1.6 × 10−3

RMM median RMM mean EUM mean RMM median RMM mean EUM mean

filtering in EAP field (15 µm) filtering in ODF field

EAP field at 15 µm and ODF field. The reference DWI data without diffusion gradient
(b = 0) was set as the background color. Since the anisotropy of the phantom data is
much low compared to the normal human brains [Fillard et al., 2011], we performed
min-max normalization in visualization of all glyphs. The second row visualizes the
results by SRPE and SPFI in two enlarged regions. Please note that normally people
only visualize the EAPs at 15 µm, because a large R value results in noisy results with
many peaks [Özarslan et al., 2006; Cheng et al., 2010b]. However, we found that the
proposed SRPE works well even with a large R value. Compared to SPFI which has
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very different results for R = 15µm and R = 25µm, SRPE is not very sensitive to R. See
the second row for the glyphs of EAPs at 25 µm. It is probably because SRPE naturally
considers the nonnegative definite constraint. Note that in Chapter 5, we consider
adaptive scale to improve the results, while here we consider the nonnegative definite
constraint to improve the results.

ODF/EAP Filtering

We then perform Gaussian filtering on the estimated EAP field at 15 µm and ODF
field with three different strategies, i.e. Riemannian median, Riemannian mean and
Euclidean mean. The standard deviation of spatial Gaussian kernel was set as 0.8
of the voxel size. Fig. 6.9 shows the smoothed EAP and ODF fields using different
strategies. It can be seen that all filtering methods can obtain clearer results com-
pared to the raw estimation both for ODFs and EAPs. For EAPs, Riemannian mean
and Euclidean mean obtain similar results where the boundary of the light areas with
fibers are more contaminated by glyphs in the dark areas, compared to the result by
Riemannian median. See the regions marked in red. For ODFs, Riemannian mean
and Euclidean mean obtain visually the same results, which agrees with previous
discussions and results in synthetic data. The Riemannian median has better results
than Riemannian and Euclidean mean. This experiment shows that Riemannian me-
dian is more appropriate in ODF/EAP filtering which can preserve the discontinuity
of different regions.

6.3.3 Real Monkey Data

Finally we apply the proposed Riemannian framework methods to a real monkey
data. Please refer Appendix B.2 for the data description and preprocessing.

Nonnegative Definite ODF/EAP Estimation

For the first subject of the data, We first estimated the EAPs and ODFs from the
DWI data using the proposed SRPE method. In practice, we set L = 4, N = 2 and
we found the results in SRPE almost do not change when λl and λn range in [0, 1e −
6], which agrees the results in the above phantom data. So we set λl = λn = 0.
The first row of Fig. 6.10 shows the estimated EAP and ODF fields, as well as the
GA map calculated from the EAP field. Similarly with FA for tensors and GFA for
ODFs, the GA map for EAPs has large values in white matter and low values in grey
matter and Cerebrospinal fluid (CSF). It may be useful in clinical study. Then we
compared the results from SRPE to the results from SPFI in [Cheng et al., 2010a,b].
L = 4, N = 2 and λl = 5e − 9, λn = 1e − 9 were set in SPFI which were also used
in [Cheng et al., 2010a,b]. Note that we set scale parameter in SPFI shared in each
voxel based on the typical ADC D0 in Eq. (5.32). Fig. 6.10 lists in the second row
the estimated EAP fields at 15µm and 25µm and ODF fields in an enlarged region.
Both SRPE and SPFI obtain anisotropic glyphs in white matter and isotropic glyphs
in grey matter and CSF. So they normally do not need an min-max normalization
like QBI [Tuch, 2004; Descoteaux et al., 2007] to artificially make anisotropic glyphs.
Please note that artificial normalization on glyphs will obtain noisy glyphs in the
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Figure 6.10: Monkey data results. First row: estimated EAP, ODF fields and GA map from
the first subject. Second row: estimated EAPs and ODFs from two methods in a enlarged
region. Third row: original EAP and ODF atlases from 5 subjects via three ways. Fourth
row: re-estimated EAP and ODF atlases from 4 original subjects and 1 noisy subject. RMM
means Riemannian metric and EUM means Euclidean metric. The glyphs in all subfigures
were colored by the GFA values of the spherical functions, i.e. EAP profiles and ODFs.

EAP field at 15 µm ODF field GA of EAPs

EAPs at 15 µm EAPs at 25 µm ODFs EAPs at 15 µm EAPs at 25 µm ODFs

proposed SRPE SPFI in Chapter 5, scale is set by typical ADC
RMM median RMM mean EUM mean RMM median RMM mean EUM mean

original EAP atlas from five subjects original ODF atlas from five subjects

re-estimated EAP atlas with two noisy subjects re-estimated ODF atlas with one noisy subject

area with isotropic diffusion like grey matter and CSF, which brings some troubles in
the following tractography. Compared to the noisy EAP glyphs at 25µm in SPFI, the
results in SRPE are much cleaner and the CSF area remains isotropic. It is probably
because we naturally add the nonnegative constrain.

Atlas Estimation

Registration is crucial in atlas estimation. Since so far there is no common regis-
tration method for ODF/EAP data and it is also not our focus here, we just perform
a naive way to align the ODF/EAP data using FSL. All DWIs from 5 subjects were
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aligned via affine registration to a template made by non-diffusion weighted images.
The affine transform was used to re-orientate the gradients for each subject via Finite
Strain method [Alexander et al., 2001]. Then we estimated EAPs and ODFs for all
five subjects respectively, and calculate the ODF/EAP atlas from the five estimated
ODF/EAP fields. The original EAP and ODF atlases are obtained as the Riemannian
median, Riemannian mean and Euclidean mean of five EAP and ODF fields, which
are shown in the third row of Fig. 6.10. Then we would like to test the robustness of
the atlases using different metrics. Rician noise was added with S NR = 10 to the DWI
data of two subjects, and the noise corrupted ODF/EAP field was re-estimated. The
ODF/EAP atlas from three metrics were also re-estimated from the two noisy fields
and the other three original ODF/EAP fields. The fourth row of Fig. 6.10 shows that
the re-estimated ODF/EAP atlas from three metrics. Riemannian median results in
the best atlases similar with the original atlas for both ODFs and EAPs, which val-
idated its robustness. While Riemannian mean and Euclidean mean obtained noisy
ODF/EAP atlases. Please note that for ODFs, Riemannian mean and Euclidean mean
obtain very similar results. For EAPs, the atlases from Riemannian mean and Eu-
clidean mean are slightly different in the data set.

6.4 SUMMARY

In this chapter, we proposed an intrinsic diffeomorphism invariant Riemannian
framework as a mathematical tool for both ODFs and EAPs processing in dMRI,
which is a natural extension of previous affine invariant Riemannian framework for
tensors. It is based on orthonormal basis representation of the wavefunction. We
almost generalized all concepts in the Riemannian framework from tensors to ODFs
and EAPs, such as Geodesic Anisotropy (GA), Log-Euclidean framework, affine in-
variance, swelling effect, etc. Based on this Riemannian framework, we proposed
some potential applications, such as nonnegative ODF/EAP estimation via SRPE,
ODF/EAP interpolation, filtering, atlas estimation. It can also be used in other ap-
plications, not just limited to the applications we have demonstrated in this chapter.
Like the Riemannian framework for tensors, the Riemannian framework for ODFs
and EAPs is a set of the general mathematical tools which can be used for design of
general algorithms.

Compared to the mixture model formulation of Riemannian framework in [Mc-
Graw et al., 2006], our formulation is model-free and needs very weak assumption
that the wavefunction of the ODF/EAP we focus is contained in the linear span of
chosen basis. Compared to the histogram formulation in [Goh et al., 2009a, 2011],
our formulation considers orthonormal basis representation which is more efficient
for the following Riemannian operations, because we work in the space of limited
number of coefficients which has low dimension compared to the histogram. The
analysis on piecewise constant basis in Section 6.1.1 and Theorem 6.1 demonstrate
that the formulation in [Goh et al., 2009a, 2011] can be seen as a specific case of our
formulation when the orthonormal basis is chosen as the piecewise constant basis.
As we have shown in this chapter as well as chapter 5 and [Cheng et al., 2011c], the
EAPs and ODFs we study in human brains are only in a small space, compared to the
general PDF function space shown in 3.35. We have some priors that the DWI signals
and ODFs/EAPs are smooth enough such that they can be sparsely represented by
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some orthonormal bases.

We now summarize the contributions of this chapter.

1. We proposed the intrinsic model-free Riemannian framework based on wave-
function representation by orthonormal basis. This Riemannian framework can
be used in arbitrary PDFs under arbitrary orthonormal basis representation.
Theorem 6.1 shows that the Riemannian framework under different orthonor-
mal basis representation obtains theoretically the same and numerically similar
final results. In dMRI, this Riemannian framework avoids Gaussian assump-
tion in DTI and can be used to process both ODF and EAP data.

2. In this framework, the geodesic, exponential map and logarithmic map have
closed forms. We proposed four properties of the parameter space PS , and no-
ticed the similarities and differences between the space of EAPs and the space
of ODFs.

3. The weighted Riemannian mean and median were proved to uniquely exist in
the parameter space PS and can be estimated efficiently by gradient descent
method.

4. Two efficient frameworks, Affine-Euclidean framework and Log-Euclidean
framework, are proposed to approximate the original Riemannian framework
and fast process data.

5. We generalize Geodesic Anisotropy from tensors to general ODFs/EAPs, which
is defined as the geodesic distance from the given ODF/EAP to its nearest
ODF/EAP. Theorem 6.2 showed that GA can be calculated analytically from the
given Riemannian coordinate. We also showed how to calculate Rényi entropy
from given wavefunction. However, Rényi entropy seems less useful for ODFs
and EAPs based on the experiments in [Cheng et al., 2009a] and the analysis in
Section 6.1.5.

6. We proposed a nonnegative definite ODF/EAP estimation called Square Root
Parameterized Estimation (SRPE), which can guarantee the estimated ODFs
and EAPs are nonnegative definite in their domains, i.e. S2 for ODFs and R3 for
EAPs. While the previous methods [Goh et al., 2009b; Özarslan et al., 2009] only
add nonnegative constraint in some given samples. The experiments showed
that SRPE works well even in large R value, compared to SPFI in Chapter 5.
However, compared to SPFI, SRPE has no closed form solution, which needs a
gradient descent method. Compared to `1-SPFI [Cheng et al., 2011c], the cost
function in SRPE is not convex, which means the solution of SRPE is a local
minimum. But, when we choose the typical isotropic EAP as the initialization,
the estimated local minimum from SRPE normally gives a good result. It once
again demonstrates that the EAPs we study in practice are in a small space
inside the general probability space.

7. We theoretically analyzed the property of weighted Riemannian mean and me-
dian. We proved in Theorem 6.4 that the probability value of the weighted
mean/median PDF is not less than the probability value of at least one sam-
pled PDF (ODF, EAP, or Gaussian distribution in DTI) which is used to gener-
ate the weighted mean/median. This property directly generalize the so called
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swelling effect to unreasonable mean value interpolation for general PDFs like
ODFs and EAPs. For Gaussian distributions parameterized by tensors, The-
orem 6.6 shows the probability value of the weighted mean/median Gaussian
distribution is between the minimal value and maximal value of the sampled
Gaussian distributions which are used to generate the weighted mean/median.

8. We analyzed theoretically and experimentally the differences between Rieman-
nian framework for tensors and for ODFs and EAPs, the differences between
Riemannian metric and Euclidean metric. The Riemannian metric and Eu-
clidean metric seem to obtain similar results for ODFs, but different results for
tensors and EAPs.

9. We proposed to use Riemannian median in ODF/EAP atlas estimation. The
experiments showed that the Riemannian median is more robust than Rieman-
nian mean and Euclidean mean.

10. The filtering experiments demonstrated that the Riemannian median is more
appropriate in filtering.

6.5 APPENDIX A: PROOF ON THE WAVEFUNCTION OF THE
NEAREST ISOTROPIC EAP

Proof of Theorem 6.2 on the Wavefunction of the Nearest Isotropic EAP.
The wavefunction of an isotropic EAP can be represented as

ψiso(Rr) = F(R)Y0
0 (r), where F(R) ≥ 0,∀R ≥ 0.

It is in the linear function space
∫
S2 ψ(R)Ym

l (r)dr = 0, ∀l > 0, denoted by Liso. Please see
Fig. 6.11 for the sketch map. It is also in the nonnegative half-plane

∫
R3 ψ(R)dR ≥ 0,

denoted by P+. Let S P denote the high dimensional sphere
∫
R3 ψ(R)2dR = 1. Then the

space of the wavefunctions of isotropic EAPs, denoted by Piso, is

Piso = P+ ∩ Liso ∩ S P

For any wavefunction ψ(R), its projection onto Liso, denoted by ψLiso(R), is

ψLiso(R) =

( ∫
S2
ψ(R)Y0

0 (r)dr
)
Y0

0 (r)

The normalized version of ψLiso(R) is ψS iso(R) =
ψLiso (R)
‖ψLiso (R)‖ . Since ψ(R) ≥ 0 and Y0

0 = 1√
4π
>

0, we have ψS iso(R) ∈ Piso. The Riemannian distance, i.e. the length of the arc, between
ψ(R) and ψS iso(R) is

darc(ψ(R), ψS iso(R)) = arccos(
∫
R3
ψ(R)ψS iso(R)dR)

and the distance of the chord between two wavefunctions is

dchord(ψ(R), ψS iso(R)) = ‖ψ(R) − ψS iso(R)‖ =
√

2 − 2 cos(darc(ψ(R), ψS iso(R)))
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which is a monotonic function of darc(ψ(R), ψS iso(R)). For any isotropic wavefunction
ψ′(R) ∈ Piso and ψ′(R) , ψS iso(R), because of triangle inequality we have

‖ψ′(R) − ψLiso(R)‖ > 1 − ‖ψLiso(R)‖ = ‖ψS iso(R) − ψLiso(R)‖

Then

dchord(ψ′(R), ψ(R))2 = ‖ψ′(R) − ψLiso(R)‖2 + ‖ψ(R) − ψLiso(R)‖2

> ‖ψS iso(R) − ψLiso(R)‖2 + ‖ψ(R) − ψLiso(R)‖2

= dchord(ψS iso(R), ψ(R))2

So darc(ψ′(R), ψ(R)) > darc(ψS iso(R), ψ(R)). �

Figure 6.11: Sketch map for the wavefunction of the nearest EAP.

6.6 APPENDIX B: PROOFS ON WEIGHTED RIEMANNIAN
MEAN AND MEDIAN

Proof of Theorem 6.3. Theorem 3.2 [Buss and Fillmore, 2001] proved that the
weighted Riemannian mean on a hemisphere exists uniquely if at least one point
in the interior of the hemisphere, which also can be proved directly based on The-
orem 3.1. [Buss and Fillmore, 2001] also proposed Algorithm 6.1 to estimate the
weighted mean. So the weighted Riemannian mean uniquely exists in our parameter
space because PS K is contained in a convex cone with angle 90o as we have shown in
Section 6.1.4. Please note normally for gradient descent method, we need to choose a
step size γk in each step k for convergence. However based on the theoretical results
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in [Buss and Fillmore, 2001], γk = 1 ensures the convergence of Algorithm 6.1. Nor-
malized Euclidean mean is chosen as the initialization, which makes the methods
converge fast.

Because PS K is a convex set in SK−1 and contained in a convex cone with angle 90o,
the sectional curvature of the PS K is 1 and diam(U) < π

2 . So Theorem 3.3 with ∆ = 1
proves the uniqueness and existence of Riemannian median. [Fletcher et al., 2009]
used a gradient descent method to calculate the Riemannian median as listed in Algo-
rithm 6.2. Theorem 3.5 [Fletcher et al., 2009] also proved that the step size γk ∈ [0, 2]
can ensure convergence when sectional curvatures of the manifold are nonnegative
and diam(U) ·

√
∆ < π

2 . Thus γk = 1 is fixed in in Algorithm 6.2. Normalized Euclidean
mean is chosen as the initialization for acceleration, considering Euclidean mean is
an approximation of Riemannian median. In practice, Algorithm 6.1 and 6.2 converge
in about 10 steps, if the normalized Euclidean mean is set as the initialization. �

Lemma 6.1. If the Riemannian distance function in Eq. (6.24) is convex, the following
two statements are equivalent:

(a) µw (or mw) is the weighted Riemannian mean (or median) estimated from {c(i)}Ni=1
and w;

(b) 0 is the weighted Euclidean mean (or median) estimated from {Logµw(c(i))}Ni=1 (or
{Logmw(c(i))}Ni=1) and w in Euclidean space.

Proof. Consider the following two distance function

fRie(c) =

N∑
i=1

wid(c, c(i))2, fEuc(t) =

N∑
i=1

wi‖Logµw(c(i)) − t‖2

When d(c, c(i)) is convex with respect to c, µw uniquely exists such that ∇c fRie(µw) =

−2
∑N

i=1 wiLogµw(c(i)) = 0, which is equivalent to ∇t fEuc(0) = −2
∑N

i=1 wiLogµw(c(i)) = 0.
The same proof can be used in Riemannian median. Thus (a) and (b) are equivalent.

�

Lemma 6.2. For given N points {c(i)}Ni=1 in PS K in Eq. (6.2) and weighting vector w,
weighted Riemannian mean µw and median mw defined in Eq. (6.24) are contained
in the convex hull C of {c(i)}Ni=1, where C is the intersection of all the hemispheres that
contain {c(i)}Ni=1 and is equivalent to the set of all weighted Riemannian mean with all
possible w.

Proof. Theorem 7 in [Buss and Fillmore, 2001] proved that the convex hull C of {c(i)}Ni=1
is equivalent to the set of all weighted Riemannian mean with all possible w. Thus
C contains µw. We would like to prove that C also contains mw. By projecting {c(i)}Ni=1
onto the tangent space of mw denoted by Tmw . Let C′ denote the convex hull which
contains all {Logµw(c(i))}Ni=1 in Tmw . Please note C′ is not the image of C. If mw is not
in C, there exists a hemisphere H with mw in its boundary which does not contain
any c(i). Then the closed half-plane in Tmw with the image of the boundary of H as its
boundary contains 0 in its boundary while it does not contain any Logµw(c(i)). That
means 0 is not in the convex hull of {Logµw(c(i))}Ni=1. Then let t0 be the projection
of 0 onto the convex hull. It is clear that ‖t0 − Logµw(c(i))‖ < ‖0 − Logµw(c(i))‖, for
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i ∈ {1, 2, ...,N}, which contradicts with the result in Lemma 6.1 that 0 is the weighted
Euclidean median which minimizes the function

∑N
i=1 ‖t − Logmw(c(i))‖. �

Lemma 6.3. Let b be any given vector in RK . Let b⊥ denote the plane bT c = 0, and b+

denote the half-plane bT c > 0. For any given geometrically convex hull C ⊂ SK−1 ∩ b+,
the function f (c) = bT c is strictly concave in C. For any given geodesic Carc ∈ C, let c∗
be the projection of b onto the great circle S1 which contains Carc, where the arc from
b to c∗ is orthogonal to the great circle at c∗. Then f (c) takes its maximum at c∗ if
c∗ ∈ Carc, or at one of the endpoints of Carc if c∗ < Carc.

Proof. Let c(1)
arc and c(2)

arc be two endpoints of Carc. The geodesic Carc can be represented
as

c(t) = c(1) cos(t) + v sin(t) where v =
Logc(1)

arc
(c(2)

arc)

‖Logc(1)
arc

(c(2)
arc)‖

, t ∈ [0, ‖Logc(1)
arc

(c(2)
arc)‖]

Thus we have

f (c(t)) = bT c(1) cos(t) + bT v sin(t)
∂ f (c(t))
∂t

= bT c(1) cos(t +
π

2
) + bT v sin(t +

π

2
)

∂2 f (c(t))
∂t2 = −bT c(1) cos(t) − bT v sin(t) = −bT c(t) < 0

Note ∂2 f (c(t))
∂t2 = −bT c(t) < 0 because Carc ⊂ S

K−1 ∩ b+. That means f (c(t)) is strictly
concave in Carc. Since Carc is any given geodesic in C, f (c(t)) is strictly concave in C.
Assume f (c(t)) has the maximum at c∗ = c(t∗) in the great circle S1 that contains Carc,
then

∂ f (c(t))
∂t

|t=t∗ = bT c(1) cos(t∗ +
π

2
) + bT v sin(t∗ +

π

2
) = 0

So c(t∗ + π
2 ) is orthogonal to b. Then c(t∗ + π

2 ) is orthogonal to the plane determined
by b and c(t∗). Let varc

c∗ be the tangent vector for S1 at c(t∗) and let vb
c∗ be the tangent

vector for the arc from b to c∗ at c(t∗). Then c(t + π
2 ) is parallel to varc

c∗ and orthogonal
to vb

c∗ . So c∗ is the projection of b onto the submanifold S1. Then the maximum value
is at c∗ if c∗ ∈ Carc, or at one of the endpoints of Carc if c∗ < Carc since f (c) is concave in
Carc. �

Proof of Theorem 6.4. Let C be the intersection of all the hemispheres that contain
{c(i)}Ni=1. Then µw and mw are in C based on Lemma 6.2. For any given x ∈ χ,√

p(x|c(i)) =
∑

j

c(i)
j B j(x) = bT c(i) ≥ 0, where b = (B1(x), ..., BK(x))T

Thus C is in the closed half-plane bT c ≥ 0, i.e. b+
∪ b⊥. Then based on Lemma 6.3,√

p(x|c) = bT c is strictly concave with respect to c in C ∩b+, and
√

p(x|c) = 0 in C ∩b⊥,
which means

√
p(x|c) = bT c ≥ min{

√
p(x|c(i))}Ni=1. So p(x|µw) ≥ min{p(x|c(i))}Ni=1, and

p(x|mw) ≥ min{p(x|c(i))}Ni=1. �
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Proof of Theorem 6.6. Riemannian mean value interpolation on general
EAPs/ODFs is reasonable, which is straightforward based on Theorem 6.4. Eu-
clidean mean value interpolation on general EAPs/ODFs is also reasonable because
ps(x|c) =

∑
i wi ps(i)(x|c(i)) ≥ min{ps(i)(x)}Ni=1.

We will prove the result for Riemannian mean value interpolation for given Gaus-
sian EAPs {Ns(i)(R|Σi)}

Ns
i=1 and weighting vector w, where N(R|Σ) is the Gaussian distri-

bution with zero mean and covariance Σ = 2τD in Eq. (4.27). Let C be the geodesically
convex hull of {Σi}

Ns
i=1, then µw ∈ C. Let Σ0 ∈ C and Σ(t) be a geodesic, Σ(0) = Σ0, then

ln N(R|Σ(t)) = −
3
2

ln(2π) −
1
2

ln |Σ(t)| −
1
2

RT Σ(t)−1R

and
∂ ln N(R|Σ(t))

∂t
= −

1
2

Trace(Σ(t)−1Σ(t)′) +
1
2

Trace(Σ(t)−1RRT Σ(t)−1Σ(t)′)

Considering the inner product 〈A, B〉Σ(t) = Trace(Σ(t)−1AΣ(t)−1B) shown in Eq. (3.46), we
have

∇Σ ln N(R|Σ) = −
1
2

Σ +
1
2

RRT

and
∇2

Σ ln N(R|Σ) = −
1
2

I

which is negative definite. So ln N(R|Σ) is concave in S ym+
3 . So the minima of ln N(R|Σ)

in C are in the boundary. That is

N(R|µw) ≥ min{N(R|c(i))}Ni=1

We also have
N(R|µw) ≤ max{N(R|c(i))}Ni=1

because the global maximum satisfying ∇Σ ln N(R|Σ) = 0 is obtained when Σ = RRT

that is in the boundary of S ym+
3 , not in C. �
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CHAPTER 7

CONCLUSION

“Every end is just a new beginning. ”

Contributions

In this thesis, after introduction of some background knowledge on dMRI and neces-
sary mathematical materials, we have first proposed the analytical solution for EAP,
ODFs and several scalar indices in SPFI. SPFI considers complete 3D basis with SH
basis in spherical part and Gaussian-Laguerre function in radial part, which can be
seen as a generalization of QBI with only SH basis in spherical part. Then we pro-
posed a novel AFT-SC framework to incorporate and compare sHARDI and mHARDI
methods. We proposed some useful criteria for evaluating different basis functions in
different methods. Next, we proposed an intrinsic diffeomorphism invariant Rieman-
nian framework for both ODF and EAP computing in dMRI, which is a natural ex-
tension of previous Riemannian framework for tensors. The Riemannian framework
was implemented for ODFs using SH basis and was implemented for EAPs using SPF
basis. We generalized previous Log-Euclidean framework, GA from tensors to ODFs
and EAPs. We also proposed several possible applications based on the Riemannian
framework. In the interpolation of ODF/EAP field, we proposed the definition of rea-
sonable mean value interpolation of general PDF data, which is a generalization of
previous concept of swelling effect when interpolating tensor data.

Throughout the thesis, we have enumerated our major contributions at the end of
chapters. In summary, the important and original contributions of the thesis are:

1. Analytical linear transforms for EAP, ODFs, GFA, MSD, RTO, from the esti-
mated SPF coefficients of the signal. This is the main contribution we have
done for SPFI.

(a) Proposition 5.1 and 5.2 demonstrated that when the signal is represented
by SPF basis, the EAP can be analytically represented by the same coef-
ficients under dSPF basis. dSPF basis was proved to be an orthonormal
basis.

(b) Proposition 5.3 and 5.4 showed that when the signal is represented by SPF
basis, the two kinds of ODFs can be analytically represented by SH basis
and the coefficients of SH basis can be obtained from a linear transform.
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(c) Subsection 5.1.2 proposed the analytical form for RTO, MSD and GFA. The
proposed GFA for EAPs is defined as the normalized `2 norm from the EAP
to its nearest EAP, which is a generalization of previous FA for tensors and
GFA for spherical functions like ODFs and EAP profiles.

2. Implementation of SPFI with scalar estimation and consideration of the prior
E(0) = 1.

(a) An appropriate scale is needed in SPF basis in estimation. We proposed
two ways for scale estimation. One is to set scale based on the typical ADC,
which makes every voxel share the same scale. It makes the following
operations on estimated EAP field more computable. The other one is to
set scale by fitting the GHOT model, which was proved in Theorem 5.1 to
be the optimal if the signal is represented by GHOT model. It has better
performance in EAP/ODF estimation, but the following operations on the
estimated EAP field need to consider the basis effect because different voxel
use different basis with different scale.

(b) We proposed to consider E(0) = 1 in the estimation, which can largely im-
prove the estimation results. It removes some coefficients in estimation
because they are dependent on other coefficients. Thus it can accelerate
the estimation.

(c) The least square estimation can be seen in Table 5.1.

(d) We analyzed the effect of diffusion time τ in proposition 5.5. The estimated
ODFs and scalar indices are independent of τ, and the estimated EAP is
scaled by τ.

(e) We proposed parameter selection via the scalar maps in subsection 5.1.3.

3. We proposed the general AFT-SC framework for analytical ODF and EAP esti-
mation.

(a) Many existing methods can be seen as a method in AFT-SC framework by
considering different basis in spherical part or radial part. We demonstrate
it is possible and easy to propose a number of analytical ODF and EAP
estimation methods in AFT-SC framework. See Table 5.2.

(b) With AFT-SC framework, EAP can be derived in QBI. We proposed a new
way for analytical Φt(r) estimation in QBI, which is based on plane wave
expansion theorem. We theoretically analyzed why EAP and Φw(r) are im-
practical in QBI model. In Appendix 5.7, we demonstrated the relation
between plane wave expansion theorem and the previous theorems used in
analytical QBI derivation, i.e. addition theorem and Funk-Hecke theorem.

(c) In Proposition 5.6 and 5.7 we proposed analytical forms for EAP and ODFs
in SHORE.

(d) We theoretically analyzed the limitations of DPI and DOT, and proposed
several possible variants to overcome the limitations. These variants also
can be seen as bridges between methods. For example, DPI1 uses a part
of SHO-3D basis, and DOT2 uses the SPNP basis which is proved to be
equivalent with SPF basis.
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4. Since we have shown that with AFT-SC framework we can propose as many
bases as we want for analytical ODF and EAP estimation, we would like to
know which basis is the best one. Thus we theoretically and experimentally
compared many existing HARDI methods in AFT-SC framework, including QBI,
exact QBI, DOT, DPI, SHORE, SPFI and several DPI and DOT variants. We
proposed some criteria for theoretical comparisons. See Table 5.3.

(a) We proposed three priors for evaluating the basis functions. The basis is
better to have a Gaussian term such that it satisfies these priors.

(b) The basis function set used in HARDI methods is better to be an orthonor-
mal and complete basis.

(c) mHARDI methods are unstable in single shell data. Thus a little regular-
ization is needed for mHARDI methods applied in single shell data. Only
SPFI with N = 1 in radial part is stable in single shell data, which works
without regularization.

(d) The basis is better to separate spherical part and radial part, such that we
can give different order in different part. The experiments showed that it is
better to give lower order in radial part if limited number of noisy samples
are given.

(e) We theoretically analyzed the SHO-3D, SHO-1D3, SPNP, SPP, and SPF
basis.

5. We proposed a diffeomorphism invariant Riemannian framework for ODF and
EAP processing based on the wavefunction representation by orthonormal ba-
sis.

(a) The proposed Riemannian framework can be used in arbitrary PDFs under
arbitrary orthonormal basis representation. This framework was proved to
be invariant under different basis in Theorem 6.1.

(b) The Riemannian metric was proved to be diffeomorphism invariant. When
constraining PDFs as Gaussian distributions, the proposed Riemannian
metric becomes affine-invariant metric, which means the proposed diffeo-
morphism invariant metric is a natural generalization of previous affine-
invariant metric.

(c) The geodesic, exponential map and logarithmic map have closed form.
(d) We proposed several properties of the parameter space PS and discussed

the similarities and differences between ODF space and EAP space.
(e) The weighted Riemannian mean and median were proved to uniquely exist

in the manifold, and they can be estimated efficiently via a gradient descent
method.

(f) We generalized the previous Log-Euclidean framework from tensors to
ODFs and EAPs, which was demonstrated in experiments as an approx-
imation of original Riemannian framework. We also proposed the Affine-
Euclidean framework.

(g) We generalized the GA from tensors to ODFs/EAPs, which is the Rie-
mannian distance from the given ODF/EAP to its nearest ODF/EAP. GA
for tensors/ODFs/EAPs is the Riemannian counterpart of GFA for ten-
sors/ODFs/EAPs. We proposed the closed form of GA under SPF basis.
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(h) We proposed a novel Square Root Parameterized Estimation (SRPE) for
nonnegative definite ODF and EAP estimation and wavefuntion estima-
tion. SRPE can guarantee the estimated ODFs and EAPs are nonnegative
definite in their domains, i.e. S2 for ODFs and R3 for EAPs.

(i) We analyzed the property of the weighted Riemannian mean and median
in Theorem 6.4. The probability value of the weighted mean/median PDF
is not less than the probability value of at least one sampled PDF. This
general property is applicable in Gaussian distributions in DTI, and gen-
eral ODFs and EAPs in HARDI. We defined the concept of reasonable mean
value interpolation on general PDFs. The swelling effect when interpolat-
ing tensor field can be seen as specific case of unreasonable mean value
interpolation of Gaussian distributions.

(j) We theoretically and experimentally analyzed the similarities and differ-
ences between Riemannian frameworks for tensors and for ODFs and
EAPs, between Riemannian metric and Euclidean metric. Riemannian
metric and Euclidean metric seem to obtain similar results for ODFs, but
different results for tensors and EAPs. That is because the ODFs in human
brain are all contained in a small subset in the general PDF space, which
can be seen from that the first SH coefficient of wavefunction of ODF is
experimentally in [0.95, 1].

(k) The experiments showed that Riemannian median is more robust and ob-
tains better performance in smoothing and atlas estimation than Rieman-
nian mean and Euclidean mean.

Perspectives

During my study for this thesis, I first proposed the Riemannian framework for ODFs
in [Cheng et al., 2009a, 2010c] based on my previous work in mean shift functional
detection in fMRI [Cheng et al., 2009b]. Since the Riemannian framework can be
used in arbitrary PDFs under arbitrary orthonormal basis, I was looking for a good
orthonormal basis in R3 for EAPs. Fortunately, I met Dr. Assemlal in MICCAI 2009,
who introduced me his work on SPF basis. I was very happy that the basis was
just there when I was looking for it. However, when I tried to implement the SPFI
described in [Assemlal et al., 2009a], I found the numerical inner product has many
limitations. Then I proposed analytical ODF and EAP estimation in [Cheng et al.,
2010b,a], where I set the scale using the typical ADC and I introduced the artificial
shell for the prior E(0) = 1. Next, I proposed the Riemannian framework for EAPs
in [Cheng et al., 2011a] by applying the SPF basis in the Riemannian framework.
Based on my experiences in SPFI, I found there exist many basis functions which can
be used in analytical ODF and EAP estimation. Thus I proposed AFT-SC framework
and some criteria in [Cheng et al., 2011b] to incorporate these basis and find their
relations, limitations and advantages. Since I have two bases in SPFI, i.e. SPF basis
and dSPF basis, I applied the duality of these two bases in compressive sensing EAP
estimation [Cheng et al., 2011c; Merlet et al., 2011], which largely accelerate the
estimation by avoiding the numerical Fourier transform. I also collaborate with my
colleague Dr. Caruyer for the sampling scheme used in mHARDI methods [Caruyer
et al., 2011].

226



Figure 7.1: Sparsity of diffusion signal under SPF basis representation. The signal is gener-
ated by mixture of tensor model with [λ1, λ2, λ3] = [1.7, 0.3, 0.3] × 10−3mm2/s and crossing angle
of 90◦. It shows the coefficients of each basis with N = 4, L = 8. The glyph is the EAP profile
at 15µm.

Although SPFI can be used in single shell data with 30 gradients, it has better
performance in multiple shell data with about 100 gradients. Although most data
only has single b value, I believe the data with multiple b value will be more practical
and popular as the development of scanners and acquisition methods. Compressive
sensing (CS) technique can be used to reduce the number of measurements. Although
we did not list the CS related methods in the thesis, we have already had some early
results on CS EAP estimation in [Cheng et al., 2011c; Merlet et al., 2011], where
we have shown the sparsity of the diffusion signal and EAP under SPF and dSPF
bases, the difference between CS EAP estimation and CS ODF estimation, and the
advantages of `1-SPFI over `2-SPFI . See Fig. 7.1 for the sparse representation of the
diffusion signal generated by mixture of tensor model with [λ1, λ2, λ3] = [1.7, 0.3, 0.3] ×
10−3mm2/s and crossing angle of 90◦. We will continue working on this topic.

sHARDI methods normally need the samples evenly distributed in S2. mHARDI
methods give more freedom for sampling scheme. We now agree multiple shell sam-
pling has better reconstruction than single shell sampling. However we still do not
know what is a good multiple shell sampling scheme. SPFI can be used to evaluation
different sampling scheme [Assemlal et al., 2009b; Caruyer et al., 2011]. Although
during this thesis we used the same evenly distributed samples for each shell, our
work in [Caruyer et al., 2011] showed that it is better to consider interlaced sam-
pling for different shells. So far different sampling schemes are evaluated based on
synthetic experiments and SPFI reconstruction. However, there is still no theoretical
result on what is the best sampling scheme under a certain condition.

SHO-1D basis has been used to characterize the compartment size distribution
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and apparent axon diameters in [Özarslan et al., 2011, 2012]. It is possible to es-
timate the axon diameters based on SPF basis or SHO-3D basis for signals in 3D
space.

In the Riemannian framework for EAPs, we used SPF basis or dSPF basis to rep-
resent the wavefunctions, where we needed to set the scale for the basis. It showed
that the adaptive scale based on fitting GHOT model has better reconstruction re-
sults. However, different scale for different voxel means different basis is used in
different voxel, which brings troubles in the following Riemannian operations. Thus
a new Riemannian framework which considers different scale is needed for EAPs. A
possible way is to represent the basis with different scale using the basis with the
same scale, then the methods in Chapter 6 can be used.

The Riemannian metric is diffeomorphism invariant, which may be useful in reg-
istration of PDF valued images. Thus registration of ODF/EAP images using Rie-
mannian metric can be another possible topic [Du et al., 2011].

Segmentation with Riemannian metric is also a topic [Descoteaux and Deriche,
2009]. We can test the differences between Riemannian metric and Euclidean metric
on tensor/ODF/EAP segmentation.

Since the EAP and ODF fields estimated by SPFI and SRPE have good quality,
we can test existing tractography methods in the estimated EAP and ODF field [De-
scoteaux et al., 2008a], or we can propose some new tractography methods.

In clinical part, CCM group has performed anatomical network analysis through
DTI tractography to study different neuroscience problems [Li et al., 2009, 2012;
Wang et al., 2011]. We believe the ODF/EAP estimation proposed in this thesis can be
used to generate better anatomical network through ODF/EAP tractography for neu-
roscience study. For a long term perspective, based on the advanced ODF/EAP esti-
mation methods, we would like to devise novel registration and tractography methods
and other related methods to analyze the complex anatomical information in human
brain.
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APPENDIX A

SYNTHETIC DATA GENERATION
AND EVALUATION OF ESTIMATION
METHODS

Mixture of tensor model and mixture of cylinder model. In order to evaluate
the performance of the ODF and EAP estimation methods in dMRI domain, we need
to apply these methods to some synthetic data sets with known ground truths. In this
thesis, we generate synthetic diffusion data E(q) from the mixture of a given model,
i.e.

E(q) =

K∑
k=1

wiE(i)(q) (A.1)

where
∑K

k=1 wi = 1, wi ≥ 0 and E(i)(q) is the diffusion signal of the i-th fiber, K is the
number of fibers. Based on some biological priors, K = 1, 2, 3 for at most 3 fibers in
one voxel, and normally K = 2 is used to generate the data for crossing fibers. In this
thesis, each term of this mixture model, i.e. E(i)(q), is generated from the following
two models.

� Tensor model with the assumption of free diffusion, where the signal for each
fiber direction E(i)(q) is assumed to be represented by a tensor Di, i.e.

E(i)(q) = exp(−4π2τq2uT Diu) (A.2)

See subsection 4.3.1 and Appendix 5.8 for more details on the mixture of tensor
model. In this model, we choose τ = 1

4π2 = 0.02533s such that b = q2.

� Söderman cylinder model with the assumption of restricted diffusion inside a
cylinder. Based on [Söderman and Jönsson, 1995] the signal for each fiber E(i)(q)
is represented as

E(i)(q) =

∞∑
n=0

∞∑
k=1

∞∑
m=0

2Knmρ
2(2πqρ)4 sin2(2ν)γ2

km[
(nπρ/L)2 − (2πqρ cos ν)2]2

×
[1 − (−1)n cos(2πqL cos ν)][J′m(2πqρ sin ν)]2

L2
[
γ2

km − (2πqρ sin ν)2
]2

(γ2
km − m2)

× exp

− (γkm

ρ

)2

+

(nπ
L

)2
 D0∆

 (A.3)
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where Jm is the m-th order Bessel function, γkm is the k-th solution of equation
J′m(γ) = 0 with the convention γ10 = 0, and Knm = δ0

nδ
0
m + 2[(1 − δ0

n) + (1 − δ0
m)], ν

is the angle between the cylinder direction and the applied diffusion gradient
u. In this thesis, we fix the parameters as the same as [Özarslan et al., 2006],
i.e. cylinder length L = 5mm, radius ρ = 5µm, free diffusion coefficient D0 =

2.02 × 10−3mm2/s, ∆/δ = 20.8/2.4ms, and the diffusion time τ = ∆ − 1
3δ, b = 4π2τq2.

Mixture of tensor model is widely used to generate synthetic data for evaluation
in dMRI domain, because it has a clear relation with tensor model in DTI and the
EAP and its features all have closed form. See Appendix 5.8. The isotropic signal is
generated from this model with K = 1 and D = DoI, where

D0 = 0.7 × 10−3mm2/s (A.4)

is a typical ADC value in human brain, and I is the identity matrix. The signal for
crossing fibers is normally generated with K = 2, w1 = w2 = 0.5, and Di is chosen as a
typical anisotropic tensor with eigenvalues [λ1, λ2, λ3] = [1.7, 0.3, 0.3] × 10−3mm2/s.

Although many papers use mixture of tensor in synthetic data experiments, this
model actually favors the methods which assume mixture of Gaussian propagator
implicitly. For example, when comparing mixture of tensor method in subsection 4.3.1
with other methods like QBI, it is biased to generate synthetic data using mixture of
tensor model.

Compared to the mixture of tensor model, mixture of Söderman cylinder model
does not assume Gaussian prior for single fiber, which makes the evaluation more fair.
However, there are no closed forms for EAP and ODFs in this model, which means the
ground truths of EAP and ODFs are needed to be calculated from numerical Fourier
transform and numerical integration. Thus it takes more time when using Söderman
cylinder model. Fortunately the ground truths of fiber directions are always known
in this model, which can be used for evaluation.

Signal-to-Noise Ratio. The evaluation process can be done with noise or without
noise. Normally the noise is assumed to be Rician noise in DWI data. After we
generate the ground truth signal E(q) from the mixture of tensor model or mixture
of Söderman cylinder model described above, Signal-to-Noise Ratio (SNR) is defined
as the ratio of maximal signal intensity of E(0) = 1 to the standard deviation σ of
complex Gaussian noise, i.e.

SNR =
1
σ

(A.5)

Then the Rician noise corrupted signal is

Ẽ(q) =

√
(E(q) + s1)2 + s2 (A.6)

where s1 and s2 are random number generated from Gaussian distribution N(0|σ2).
Note that since E(qu) decays as q increase and E(0) = 1, the real SNR, i.e. E(q)

σ de-
creases as q increase. See Fig. 4.3 for DWIs with different q values.
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Evaluation of estimation results. There are two ways to evaluate the difference
between the estimated EAPs/ODFs and the ground truths. One is to compare the
local maxima of ODF/EAP profiles with the real fiber directions used to generate the
DWI data. See Fig. 4.8 for the fiber directions and the local maxima of ODF/EAP
profiles. The other one is to compare the estimated ODF/EAP values with the true
values.

In the first way, assume the true fiber directions are {di}
K
i=1, and the detected direc-

tions with local maximal values of ODF/EAP profiles are {ui}
N
i=1. How to detect max-

ima from spherical functions, e.g. ODF/EAP profiles, will be discussed later. There
are two possibilities between these two direction sets, i.e. N = K and N , K. In this
thesis, we think that N , K means a unsuccessful estimation, and N = K means a suc-
cessful estimation. If we perform the estimation Nt times from the signal corrupted
by the Rician noise, and there are N1 successful estimation, then the success ratio
is defined as the frequency of successful estimation, i.e. N1

Nt
.

In a successful experiment with true fiber directions {di}
K
i=1 and detected directions

{ui}
K
i=1 for local maximal values, we need to reorder {ui}

K
i=1 such that ui is the nearest

direction from di in {ui}
K
i=1. Then the Difference of Angle (DA) can be calculated as

DA =
1
K

K∑
i=1

arccos(dT
i ui) (A.7)

In noise-free experiments, DA is enough for evaluation. In experiments with Rician
noise and total Nt times, the Mean Difference of Angle (MDA) is defined as the mean
of DA over only the N1 successful estimations.

Note that some papers do not consider the success ratio. After obtaining the true
directions {di}

K
i=1 and the estimated directions {ui}

N
i=1, K nearest directions {u ji}

K
i=1 to

{di}
K
i=1 are extracted from {ui}

N
i=1, where u ji is the nearest direction to di in {ui}

N
i=1. Then

DA and MDA are calculated based on the extracted K directions. This evaluation
process is actually biased. It favors the estimation methods which can detect more
directions. For example, the estimated EAP profile with N = 10 maxima has lower
DA and MDA with higher probability than the estimated EAP profile with the same
number of maxima, say N = 2, as the ground truth of EAP profile.

The second way for evaluation is to compare the estimated ODF/EAP values with
the true values. The estimated ODFs and EAP profiles are spherical functions. Thus
we define the Normalized Mean Squared Error (NMSE) for EAP profile as

NMSE =

√√√√∫
S2

(
P̃(R0r) − P(R0r)

)2
dr∫

S2 P(R0r)2dr
(A.8)

NMSE for ODFs can be defined in the same way. The integration in S2 can be approx-
imated by numerical integration using a summation of the values at a given direction
set. NMSE was used in the evaluation of `1-SPFI [Cheng et al., 2011c].

Note that some papers define NMSE as

NMS E =

√√√∑
j

(
Ẽ(q j) − E(q j)

)2∑
j E(q j)2
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where {q j} are the given DWI samples in q-space. Actually this definition of NMSE is
biased, because our goal is to reconstruct DWI signal in whole q-space to estimate the
ODFs or EAP profiles, not to fit the given samples. The above definition of NMSE can
be used as a cost function in estimation. But it is not enough for evaluation, because
the Fourier transform is a global transform, and fitting the given samples well does
not mean a good estimation as we have discussed in subsection 5.3.1. Actually, NMSE
represented by E(q) should be defined as

NMS E =

√√√√∫
R3

(
Ẽ(q) − E(q)

)2
dq∫

R3 E(q)2dq
(A.9)

Please note the above integration is over whole q space, not just in the limited given
DWI samples. Thus Eq. (A.9) is impractical, and Eq. (A.8) is preferred.

Maxima detection of spherical functions. The maxima of ODFs and EAP pro-
files are normally used as fiber directions. How to detect the maxima from these
spherical functions with good accuracy and efficiency are very important for evalua-
tion of estimation methods and for the fiber tracking.

Many papers detect the maxima of spherical function through a discrete mesh
search [Özarslan et al., 2006; Descoteaux, 2008]. With a given mesh in a hemisphere,
e.g. a set of evenly distributed vertices from a tessellated icosahedron, the local max-
ima are detected from the values at these vertices. However this method does not
search the maxima in continuous S2, and the minimal angle between adjacent ver-
tices is the resolution of this method. Thus normally the detected maxima need to be
refined by a finer mesh, which is time consuming.

Because of the equivalence between polynomial basis, homogeneous polynomial
basis and SH basis shown in Theorem 4.1, we can represent these spherical function
using homogeneous polynomial basis, i.e. HOT basis. Then the maxima detection
becomes the problem of finding the solution of polynomial equations. One may think
it will be better to find the analytical solution directly from the coefficients under
the given basis. Unfortunately even in 1D space, the polynomial equation with order
more than 5 has no analytical form of solution1. Thus numerical optimization is
necessarily needed in maxima detection. For the spherical function represented by
HOT basis or SH basis with order no more than 4, the maxima detection was proved to
be an 1D search problem by using the analytical forms of solution for the polynomial
with order no more than 4 [Aganj et al., 2010a]. [Ghosh et al., 2008b, 2011; Ghosh,
2011] proposed to analytically break the possible regions for extrema and find them
numerically. It actually solves much harder problem than maxima detection, since
it finds all extrema. Moreover some useful scalar indices can be derived from the
detected extrema.

In this thesis, we use a hybrid way to find the maxima, which is very fast. The
process is as follows.

1. First, we perform a mesh search on the spherical function to find some local
maxima, by using a coarse mesh, e.g. 321 directions in a hemisphere from an
icosahedral tessellation.

1http://en.wikipedia.org/wiki/Polynomial#Solving polynomial equations
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2. Second, perform a threshold to remove the local maxima whose values are less
than a half of the maximal value among these 321 values.

3. Third, set the remaining maxima as initialization points, and perform gradient
ascent method to update the maxima in continuous space. When the spherical
function is represented by SH basis, the derivatives of the function with respect
to θ and φ are obtained by the derivatives of SH basis.

∂

∂θ
ym

l (θ, φ) =


m

tan θym
l (θ, φ) + e−iφ

√
Γ(1+l−m)Γ(2+l+m)

Γ(l−m)Γ(1+l+m) y1+m
l (θ, φ) if m , l

l
tan θym

l (θ, φ) if m = l
(A.10)

∂

∂φ
ym

l (θ, φ) = imym
l (θ, φ) (A.11)

The above formulae are derivatives of complex SH basis, which directly result
in the derivations of the symmetric real SH basis based on Definition 2.4.
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APPENDIX B

REAL DATA SETS

In this thesis, we use the following two real data sets.

� Public phantom data from LNAO.

� Monkey data from Xuanwu Hospital, Capital Medical University.

We express our great gratitudes towards the people who provide us the data sets.

B.1 PUBLIC PHANTOM DATA

Source: The public phantom data from LNAO has different configurations of
fibers and was used to evaluate fiber tracking algorithms in Fiber Cup of MICCAI
2009 [Poupon et al., 2008; Fillard et al., 2011].

Data Descriptions: It has two data sets with spatial resolution of 3mm and 6mm,
which can be downloaded from http://lnao.lixium.fr/spip.php?article112. We choose
the data set with spatial resolution of 3mm, which was also used by 9 works among
10 candidates in Fiber Cup [Fillard et al., 2011]. The data set with the 3mm isotropic
acquisition has three slices, three b values, b = 650/1500/2000s/mm2, with repetition
time TR=5s and TE=77/94/102ms. In each b value, the data has two repetitions of one
image without diffusion sensitization and 64 diffusion weighted images with 64 uni-
formly distributed gradient directions. Other parameters: field of view FOV=19.2cm,
matrix 64×64, slice thickness TH=3mm. The diffusion time τ is unknown for this data,
so we set it as τ = 1

4π2 such that b = q2. The relation of estimation results and different
τ can be seen in the analysis in Proposition 5.5 and subsection 6.2.1 The ground truth
of fiber directions can be seen in Fig. B.1. Please refer [Fillard et al., 2011] for more
parameters about this data and refer [Poupon et al., 2008] for the technique used to
generate the data.

Preprocessing: Throughout this thesis, we calculate the mean of DWI images from
twice acquisitions in each fixed b value and direction. Thus we obtain 64 DWI images
for each b value, total 192 DWI images for three b values b = 650/1500/2000s/mm2. No
further preprocessing was performed.
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Figure B.1: The ground truth of fiber directions in phantom data.

Challenges: This phantom data has two main challenges for reconstruction meth-
ods and the following fiber tracking algorithms.

� First, the maximal b value of this data is 2000s/mm2, while many methods may
need higher b values. However we think it is an advantage if a reconstruction
method can detect the fiber directions well only using small b values. Note that
for real data, larger b value means lower SNR. It is still impractical for clinical
study to obtain data with b value larger than 3000s/mm2.

� Second, this phantom data is known to be more isotropic than real human data.
The estimated ODFs, EAP profiles in many papers were performed min-max
normalization for visualization. Otherwise, the anisotropy is not very clear in
visualization.

B.2 REAL MONKEY DATA

Source: The real monkey data is obtained with the help of Dr. Wen Qin and Prof.
Chunshui Yu from Xuanwu Hospital, Capital Medical University, and Dr. Yonghui Li
from CCM, LIAMA, CASIA. Many thanks for providing us the data.
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Data Descriptions: The data was acquired from 3T Siemens MR scanner using a
twice-refocused spin echo (TRSE) sequence, where TE/TR/matrix=120ms/6000ms/128×
128. The data has five subjects with three b values, b = 500/1500/3000s/mm2, the same
30 diffusion gradients in each b value. Note that we do not know exact diffusion time
τ for this data, so we set it as τ = 1

4π2 such that b = q2.

Preprocessing: We preformed eddy current correction on all DWI images using
FSL (http://www.fmrib.ox.ac.uk/fsl/).
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Assemlal, H.-E., D. Tschumperlé, and L. Brun: 2009b, ‘Evaluation of q-Space Sam-
pling Strategies for the Diffusion Magnetic Resonance Imaging’. In: Medical Image
Computing and Computer Assisted Intervention (MICCAI). 123, 227

Atkinson, C. and A. Mitchell: 1981, ‘Rao’s distance measure’. Sankhyā: The Indian
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