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Abstract

Diffusion MRI (dMRI) is the unique technique to infer the microstructure of the white
matter in vivo and noninvasively, by modeling the diffusion of water molecules. En-
semble Average Propagator (EAP) and Orientation Distribution Function (ODF) are
two important Probability Density Functions (PDFs) which reflect the water diffu-
sion. Estimation and processing of EAP and ODF is the central problem in dMRI,
and is also the first step for tractography. Diffusion Tensor Imaging (DTI) is the
most widely used estimation method which assumes EAP as a Gaussian distribution
parameterized by a tensor. Riemannian framework for tensors has been proposed
successfully in tensor estimation and processing. However, since the Gaussian EAP
assumption is oversimplified, DTI can not reflect complex microstructure like fiber
crossing. High Angular Resolution Diffusion Imaging (HARDI) is a category of meth-
ods proposed to avoid the limitations of DTI. Most HARDI methods like Q-Ball Imag-
ing (QBI) need some assumptions and only can handle the data from single shell
(single b value), which are called as single shell HARDI (sHARDI) methods. How-
ever, with the development of scanners and acquisition methods, multiple shell data
becomes more and more practical and popular. This thesis focuses on the estimation
and processing methods in multiple shell HARDI (mHARDI) which can handle the
diffusion data from arbitrary sampling scheme.
There are many original contributions in this thesis.

e First, we develop the analytical Spherical Polar Fourier Imaging (SPFI), which
represents the signal using SPF basis and obtains EAP and its various features
including ODF's and some scalar indices like Generalized Fractional Anisotropy
(GFA) from analytical linear transforms. In the implementation of SPFI, we
present two ways for scale estimation and propose to consider the prior £(0) = 1
in estimation process.

e Second, a novel Analytical Fourier Transform in Spherical Coordinate (AFT-SC)
framework is proposed to incorporate many sHARDI and mHARDI methods,
explore their relation and devise new analytical EAP/ODF estimation methods.

¢ Third, we present some important criteria to compare different HARDI methods
and illustrate their advantages and limitations.

e Fourth, we propose a novel diffeomorphism invariant Riemannian framework
for ODF and EAP processing, which is a natural generalization of previous Rie-
mannian framework for tensors, and can be used for general PDF computing by
representing the square root of the PDF called wavefunction with orthonormal
basis. In this Riemannian framework, the exponential map, logarithmic map
and geodesic have closed forms, the weighted Riemannian mean and median
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uniquely exist and can be estimated from an efficient gradient descent. Log-
Euclidean framework and Affine-Euclidean framework are developed for fast
data processing.

Fifth, we theoretically and experimentally compare the Euclidean metric and
Riemannian metric for tensors, ODFs and EAPs.

Finally, we propose the Geodesic Anisotropy (GA) to measure the anisotropy of
EAPs, Square Root Parameterized Estimation (SRPE) for nonnegative definite
ODF/EAP estimation, weighted Riemannian mean/median for ODF/EAP inter-
polation, smoothing, atlas estimation. The concept of reasonable mean value
interpolation is presented for interpolation of general PDF data.
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Resumé

L'IRM de diffusion est a ce jour la seule technique a méme d’observer in vivo et de
facon non-invasive les structures fines de la matiere blanche, en modélisant la diffu-
sion des molécules d’eau. Le propagateur moyen (EAP pour Ensemble average Prop-
agator en anglais) et la fonction de distribution d’orientation (ODF pour Orientation
Distribution Function en anglais) sont les deux fonctions de probabilités d’intérét
pour caractériser la diffusion des molécules d’eau. Le probleme central en IRM de
diffusion est la reconstruction et le traitement de ces fonctions (EAP et ODF); c’est
aussi le point de départ pour la tractographie des fibres de la matiere blanche. Le
formalisme du tenseur de diffusion (DTI pour Diffusion Tensor Imaging en anglais)
est le modele le plus couramment utilisé, et se base sur une hypotheése de diffusion
gaussienne. Il existe un cadre riemannien qui permet d’estimer et de traiter cor-
rectement les images de tenseur de diffusion. Cependant, 'hypothése d’une diffusion
gaussienne est une simplification, qui ne permet pas de décrire les cas ou la struc-
ture microscopique sous-jacente est complexe, tels que les croisements de faisceaux
de fibres. L'imagerie a haute résolution angulaire (HARDI pour High Angular Res-
olution Diffusion Imaging en anglais) est un ensemble de méthodes qui permettent
de contourner les limites du modeéle tensoriel. La plupart des méthodes HARDI a ce
jour, telles que I'imagerie sphérique de 1’espace de Fourier (QBI pour Q-Ball Imag-
ing en anglais) se basent sur des hypothéses réductrices, et prennent en compte
des acquisitions qui ne se font que sur une seule sphere dans 'espace de Fourier
(sHARDI pour single-shell HARDI en anglais), c’est-a-dire une seule valeur du coef-
ficient de pondération b. Cependant, avec le développement des scanners IRM et des
techniques d’acquisition, il devient plus facile d’acquérir des données sur plusieurs
spheres concentriques. Cette these porte sur les méthodes d’estimation et de traite-
ment de données sur plusieurs spheres (nHARDI pour multiple-shell HARDI en
anglais), et de facon générale sur les méthodes de reconstruction indépendantes du
schéma d’échantillonnage.

Cette these présente plusieurs contributions originales.

e En premier lieu, nous développons I'imagerie par transformée de Fourier en co-
ordonnées sphériques (SPFI pour Spherical Polar Fourier Imaging en anglais),
qui se base sur une représentation du signal dans une base de fonctions a par-
ties radiale et angulaire séparables (SPF basis pour Spherical Polar Fourier en
anglais). Nous obtenons, de facon analytique et par transformations linéaires,
IEAP ainsi que ses caractéristiques importantes : 'ODF, et des indices scalaires
tels que l'anisotropie fractionnelle généralisée (GFA pour Generalized Frac-
tional Anisotropy en anglais). En ce qui concerne I'implémentation de SPFI,
nous présentons deux méthodes pour déterminer le facteur d’échelle, et nous
prenons en compte le fait que E(0) = 1 dans I'estimation.
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¢ En second lieu, nous présentons un nouveau cadre pour une transformée de
Fourier analytique en coordonnées sphériques (AFT-SC pour Analytical Fourier
Transform in Spherical Coordinate en anglais), ce qui permet de considérer
aussi bien les méthodes mHARDI que sHARDI, d’explorer les relations entre
ces méthodes, et de développer de nouvelles techniques d’estimation de 'EAP et
de 'ODF.

¢ Nous présentons en troisieme lieu d’importants criteres de comparaison des
différentes méthodes HARDI, ce qui permet de mettre en lumiere leurs avan-
tages et leurs limites.

¢ Dans une quatriéme partie, nous proposons un nouveau cadre riemannien in-
variant par difféeomorphisme pour le traitement de 'EAP et de ’'ODF. Ce cadre
est une généralisation de la méthode riemannienne précédemment appliquée
au tenseur de diffusion. Il peut étre utilisé pour I'estimation d’'une fonction de
probabilité représentée par sa racine carrée, appelée fonction d’'onde, dans une
base de fonctions orthonormale. Dans ce cadre riemannien, les applications
exponentielle et logarithmique, ainsi que les géodésiques ont une forme analy-
tique. La moyenne riemannienne pondérée ainsi que la médiane existent et sont
uniques, et peuvent étre calculées de facon efficace par descente de gradient.
Nous développons également un cadre log-euclidien et un cadre affine-euclidien
pour un traitement rapide des données.

e En cinquiéeme partie, nous comparons, théoriquement et sur un plan
expérimental, les métriques euclidiennes et riemanniennes pour les tenseurs,
I’ODF et 'EAP.

e Finalement, nous proposons l’anisotropie géodésique (GA pour Geodesic
Anisotropy en anglais) pour mesurer Ilanisotropie de [I'EAP; une
paramétrisation par la racine carrée (SRPE pour Square-Root Parameter-
ized Estimation en anglais) pour l’estimation d'un EAP et d'une ODF positifs;
la médiane et la moyenne riemanniennes pondérées pour l'interpolation, le
lissage et la construction d’atlas basés sur 'ODF et de 'EAP. Nous introduisons
la notion de valeur moyenne raisonnable pour l'interpolation de fonction de
probabilités en général.
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CHAPTER 1

INTRODUCTION

CONTEXT

Diffusion Magnetic Resonance Imaging (dMRI) is a relatively recent MRI method,
introduced in the middle of the 80’s by [Bihan et al., 1986; Merboldt et al., 1985; Tay-
lor and Bushell, 1985]. The diffusion of water molecules in tissues is hindered by
many obstacles, such as macromolecules, fibers, membranes, etc. Thus the diffusion
of water molecules can be used as a probe to reveal microscopic details about tissue
microstructure. dMRI is a powerful and the unique technique to study the white
matter in vivo and noninvasively by modeling the water diffusion. There are many
research directions in dMRI, from the imaging technique for Diffusion Weighted Im-
ages (DWIs), to reconstruction of scalar/tensor/function valued images, to segmenta-
tion, registration, tractography and to clinical applications, etc. Please see Fig. 1.1.
In this thesis we are interested in the reconstruction and processing of the Ensem-
ble Average Propagator (EAP) and its various features like Orientation Distribution
Functions (ODFs).

Diffusion Tensor Imaging (DTI) is the most widely used reconstruction method
based on free diffusion assumption [Basser et al., 1994]. The EAP in DTI is assumed
to be Gaussian distribution parameterized by diffusion tensor D. Thus The EAP field
can be represented by a tensor field and visualized by ellipsoids. The Mean Diffusivity
(MD) and Fractional Anisotropy (FA) are two useful scalar measurements in clinical
studies [Pierpaoli and Basser, 1996]. The Riemannian framework for Gaussian distri-
bution has been successfully used in tensor estimation [Lenglet et al., 2006b; Fillard
et al., 2007], regularization [Pennec et al., 2006], segmentation [Lenglet et al., 2006al,
Principal Geodesic Analysis (PGA) [Fletcher et al., 2004], statistical test [Schwartz-
man, 2006], etc. In Odyssée/Athena group, Dr. Lenglet has made a great contribu-
tion on the Riemannian framework for tensors in DTI [Lenglet, 2006; Lenglet et al.,
2006a,b]. In CCM group, we has published many works on neuroscience applications
based on the scalar indices or brain network analysis in DTI model [Gong et al., 2005;
Lin et al., 2006; Yu et al., 2008; Shu et al., 2009; Li et al., 2009; Wang et al., 2011,
Li et al., 2012]. Although the Gaussian assumption for free diffusion is adequate for
voxels with isotropic diffusion or coherent single direction diffusion, it fails for vox-
els with more complicated microstructure, because the water diffusion in tissues is
generally the hindered diffusion. Tensor model in DTI cannot resolve complex fiber
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Figure 1.1: Research contents in dMRI. In this thesis, we focus on the reconstruction and
processing of the EAP and its features like ODFs. Chapter 5 focuses on estimation of the EAP

and its features. Chapter 6 focuses on the Riemannian framework for processing of ODF's and
EAPs.
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configurations like crossing, merging, kissing, etc. While it was reported that between
one third to two thirds of imaging voxels in the human brain contain have more than
one fiber orientation [Behrens et al., 2007].

High Angular Resolution Diffusion Imaging (HARDI) is a category of reconstruc-
tion methods proposed to avoid the Gaussian EAP assumption and resolve the com-
plex fiber configurations. In this thesis, we consider HARDI as all methods beyond
DTI, although HARDI was proposed initially as a mixture of tensor model [Tuch et al.,
2002]. HARDI methods can be separated into two classes, i.e. single shell HARDI
(sHARDI) and multiple shell HARDI (mHARDI). sHARDI methods like the most
famous one Q-Ball Imaging (QBI) [Tuch, 2004; Anderson, 2005; Hess et al., 2006;
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Figure 1.2: Sketch of the chapters and their relations in the thesis. The green stars are the
chapters in background part. The purple stars are the chapters in contribution part.
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Descoteaux et al., 2007] only can handle the data with single b value (single shell),
because the data from different shell obtain different results. In Odyssée/Athena
group, Dr. Descoteaux did a great job in analytical QBI and other Spherical Harmonic
(SH) related sHARDI methods [Descoteaux, 2008; Descoteaux et al., 2007, 2008al.
mHARDI methods normally can work for both single shell data and multiple shell
data by considering a basis defined in R?, not SH basis in S°. Compared to sHARDI
methods, mHARDI methods need less assumptions and are model-free if complete
basis is used. In this thesis we focus on mHARDI methods for the estimation and
processing of EAP and its features.

ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS _____

This thesis is organized mainly in two parts, i.e. the background part and the
contribution part. In the background part, we give a quick review for the background
knowledge on dMRI, orthonormal polynomials and special functions, manifold, statis-
tics on manifold and statistical manifold, which are used in the contribution part. In
the contribution part, we list two main contributions. One is the analytical Spheri-
cal Polar Fourier Imaging (SPFI) and the Analytical Fourier Transform in Spherical
Coordinate (AFT-SC) framework in Chapter 5, which can be seen as a generalization
of Dr. Descoteaux’s work on analytical QBI from S? to R?. The other one is the dif-
feomorphism invariant Riemannian framework for processing of ODFs and EAPs in
Chapter 6, which can be seen as a generalization of Dr. Lenglet’s work on DTI from
Gaussian distribution family to general non-Gaussian distribution family. We now
give an overview for each chapter in turn.

Part I: Background

The Background part describes some useful mathematical backgrounds required to
understand the technical contents in this thesis, and the basic concepts and knowl-

3
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edge of dMRI.

Chapter 2: This chapter covers the mathematical materials on orthogonal polyno-
mials and special functions, which are needed to understand Chapter 4 and 5. We
first introduce the basic concepts of the orthonormal functions and polynomials in
section 2.1 and 2.2. Then in section 2.3 Sturm-Liouville theory is introduced and dif-
fusion equation in one dimension space is solved in Example 2.3. Next in section 2.4
we review some basic concepts and results on polynomials, homogeneous polynomials
and homogeneous harmonic polynomials in R? and S¢"!. The most important theo-
retical result is the Harmonic Decomposition Theorem 2.4 and its various corollaries,
which directly results in Theorem 4.1 on the equivalence of High Order Tensor (HOT)
basis, polynomial basis and SH basis in S>. Then some orthonormal basis and their
properties are introduced in section 2.5, including associate Legendre polynomial,
Spherical Hamonics (SHs), Bessel function and spherical Bessel function, Hermite
polynomial, associate Laguerre polynomial and hypergeometric function. Three im-
portant theorems about SHs, i.e. Funk-Hecke theorem 2.7, addition theorem 2.6 and
plane wave expansion 2.8, are listed in this section. Their relation can be found in
Appendix 5.7. This section also introduced Simple Harmonic Oscillator basis in 1D
space in Eq. (2.60), called SHO-1D basis, and Simple Harmonic Oscillator basis in 3D
space in Eq. (2.69), called as SHO-3D basis. We introduce the Gamma function and
some other useful integral formulae in section 2.6.

Chapter 3: This chapter covers the mathematical concepts and results on mani-
fold, statistics on manifold and statistical manifold. Section 3.1 reviews the three
layers of structural concepts of Riemannian manifold, i.e. the topological structure,
differentiable structure and the Riemannian structure. The geometry of high dimen-
sion sphere S¢! is well studied in Example 3.2 on topology, Example 3.5 on tangent
space, Example 3.7 on geodesic, Example 3.8 on exponential and logarithmic maps.
Riemannian framework on sphere including geodesic, exponential map and logarith-
mic map can be used to devise algorithms to process the data on sphere. Section 3.2
presents the statistical analysis on Riemannian manifold, including the definition,
existence and uniqueness of weighted Riemannian mean and median, PGA. Sec-
tion 3.3 presents the basic concepts on information geometry which considers the
probability family as a manifold called statistical manifold. The Fisher informa-
tion metric is the natural Riemannian metric in the statistical manifold. We list
two examples on the Riemannian framework for different probability family. Exam-
ple 3.10 is for the Gaussian distribution family which is used in DTI. Example 3.11 is
for the multinomial distribution family which is used in Riemannian framework for
ODFs [Goh et al., 2011] by considering the ODF represented by its histogram. Our
formulation in Chapter 6 is more general and efficient by considering the orthonormal
basis representation in continuous case.

Chapter 4: This chapter presents the fundamental concepts and knowledge of Mag-
netic Resonance Imaging (MRI) and diffusion MRI (dMRI), reviews the reconstruc-
tion methods including DTI, sHARDI and mHARDI, and reviews the previous studies
on metrics and processing frameworks for Probability Density Function (PDF) valued
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data. First, we describe the basic principles of MRI and dMRI in section 4.1, includ-
ing the dualities between k-space and x-space, between g-space and R-space. Next,
we review different reconstruction methods in dMRI, including DTI in section 4.2,
sHARDI methods and mHARDI methods in section 4.3. We list the advantages and
limitations for every method, especially the assumptions used in each method. See
Table 4.1 and Appendix 4.7 for the assumptions in QBI and exact QBI. We also pro-
pose two correct ways for ODF normalization in Appendix 4.6. Finally we review
the metrics and processing frameworks proposed for tensors (Gaussian EAPs) and
ODFs in section 4.4. To our knowledge, there is no work on the metric and processing
framework for EAPs so far, which will be addressed in Chapter 6.

Part I1: Contributions

This part contains two main contributions in this thesis.

Chapter 5: This chapter proposes a novel analytical Spherical Polar Fourier Imag-
ing (SPFI) reconstruction for EAP and its various features. First, Dr. Assemlal’s
work on SPF basis, least square estimation with regularization, and numerical inner
product to estimate EAP and its features are presented in subsection 5.1.1. Sec-
ond, the analytical forms for EAP, two kinds of ODF's, three scalar indices including
Return-To-Origin probability (RTO), Mean Squared Displacement (MSD), general-
ized FA (GFA), are proposed in subsection 5.2.2. These analytical forms are linear
transforms. Note the GFA we proposed is for EAP in R? which is the generalization
of FA for tensors and GFA for ODFs. Next, the implementation of SPFI is shown in
Table 5.1, which contains three independent steps. In the scale estimation step, we
propose two ways. One is based on the typical ADC, and the other one is based on
fitting Generalized HOT (GHOT) model. In the least square estimation part, we pro-
pose to consider the prior £(0) = 1 in estimation. The third step is the analytical linear
transforms demonstrated in subsection 5.2.2. Section 5.2.2 proposes an novel Ana-
lytical Fourier Transform in Spherical Coordinate (AFT-SC) framework to compare
and analyze different sHARDI and mHARDI methods in a unified framework. Many
HARDI methods can be explained in AFT-SC framework, such as QBI, Diffusion Ori-
entation Transform (DOT), Diffusion Propagator Imaging (DPI), Simple Harmonic
Oscillator Reconstruction and Estimation (SHORE) and SPFI. Moreover many new
methods can be proposed in AFT-SC for analytical ODF and EAP estimation. Please
see Table 5.2 for these analytical reconstruction methods and their possible variants.
For QBI in AFT-SC framework, we propose the EAP for QBI, and demonstrate the
EAP and ODF by Wedeen for QBI are actually impractical since they have large
modeling error. For SHORE, we propose the analytical forms for EAP, ODFs and
variant scalar indices. For DPI and DOT, we analyze their limitations and propose
several variants to avoid the limitations. AFT-SC framework makes the analytical
ODF and EAP estimation become an easy job. Then two questions arise naturally:
How to evaluate all these analytical methods? Which analytical method is better? In
section 5.3, we propose some criteria for theoretical comparisons. See Table 5.3 for
an overview. These sHARDI and mHARDI methods are compared in experiments by
synthetic data, phantom data and real data in section 5.4. The experimental results
validated the methods and our theoretical comparisons.

5
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Chapter 6: This chapter proposes a general state-of-the-art Riemannian frame-
work as a mathematical tool to process PDF data like ODF/EAP valued images, by
representing the square root of the PDF, called wavefunction based on quantum me-
chanics, as a linear combination of some orthonormal basis functions. The proposed
Riemannian framework is the natural extension of previous Riemannian framework
for tensors. In theoretical part in section 6.1, we deduce the Riemannian metric,
i.e. the Fisher information metric, for PDFs based on orthonormal basis represen-
tation and show the properties of the statistical manifold which is a convex subset
of a high dimension sphere. In this framework, the exponential map, logarithmic
map and geodesic have closed forms, and weighted Riemannian mean (Fréchet mean)
and weighted Riemannian median uniquely exist. Moreover, we present two efficient
frameworks, i.e. Affine-Euclidean framework and Log-Euclidean framework, for fast
processing of data in subsection 6.1.6, and generalize the Geodesic Anisotropy (GA)
form tensors to ODFs and EAPs in subsection 6.1.5, which is the Riemannian dis-
tance from the ODF/EAP to the nearest isotropic ODF/EAP and is closely related
to the Rényi entropy. It should be noted that our theoretical results can be used
for any probability density function (PDF) besides ODF/EAP under any orthonor-
mal basis representation. Furthermore we analyze theoretically the similarities and
differences between Riemannian frameworks for EAPs, ODFs and for tensors. We
analyzed theoretically and experimentally the similarities and differences between
Riemannian framework for tensors and for ODFs and EAPs, between Riemannian
metric and Euclidean metric. The proposed Riemannian metric is diffeomorphism in-
variant which is the natural extension of the previous affine-invariant metric for ten-
sors. Based on this Riemannian framework of PDF's, we demonstrate some potential
applications in section 6.2 via the Riemannian operations for ODF and EAP compu-
tation, such as anisotropy description via GA, nonnegative definite ODF/EAP estima-
tion, interpolation, filtering, Principle Geodesic Analysis (PGA) and atlas estimation.
In the interpolation part, we propose the concept of reasonable mean value interpo-
lation on general PDF data. The swelling effect on tensor interpolation is a specific
phenomenon of unreasonable mean value interpolation. In section 6.3, the proposed
Riemannian framework and its applications are validated in synthetic, phantom and
real data. The experiments demonstrate that the Riemannian framework is very
useful for ODF and EAP computing.

Part ITI1: Conclusions

Chapter 7: This is the conclusion chapter which summarizes our contributions in
Chapter 5 and 6. It also summarizes the journey of my study for this thesis and
presents the potential perspectives.

Part IV: Appendices

Appendix A: This appendix describes the synthetic data generation and evaluation
of reconstruction methods in this thesis. The synthetic data is generated by mixture
of tensor model or mixture of Soderman cylinder model. The evaluation can be per-
formed by comparing the estimated ODFs/EAPs with ground truth ODFs/EAPs based
on mean squared error or fiber directions which are considered to be the maxima of
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ODF/EAP profiles. The maxima of ODF/EAP profiles are detected by a hybrid way
which combines the discrete mesh search and gradient ascent.

Appendix B: This appendix describes two real data set. One is the public phantom
data from LNAO used in fiber cup MICCAI 2009. The other one is the monkey data
from Xuanwu Hospital, Capital Medical University.

Appendix C: This appendix lists the publications from the author for this thesis.


http://lnao.lixium.fr/spip.php?rubrique35
http://www.xwhosp.com.cn/Sites/Site/News/Index/10000103.html
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

OVERVIEW

Special functions are some particular mathematical functions which have more or
less established names and notations due to their importance in mathematical anal-
ysis, functional analysis, physics, or other applications. An orthogonal polynomial
family is a set of polynomials which are orthogonal to each other under a certain inner
product. Classic orthogonal polynomials are some widely used special functions and
can be represented by hypergeometric functions based on Askey scheme [Askey and
Wilson, 1985]. Special functions and their properties are also widely used in HARDI.
For example, spherical harmonics and its properties have been deeply explored and
applied in QBI [Descoteaux et al., 2007; Aganj et al., 2010b], DOT [Ozarslan et al.,
2006], etc.

This chapter gives a quick overview of some classic special functions and their
properties that are used in the thesis. Please refer some textbooks on Mathematical
Physics, functional analysis and partial differential equation and Fourier analysis
for more details on the contents of this chapter [Arfken et al., 2005; Conway, 1990;
Haberman, 1987; Byron and Fuller, 1992; Axler et al., 2001; Andrews et al., 1999].

Organization of this chapter:

First, orthogonal functions in piecewise continuous function space are introduced
in Section 2.1. Second, orthogonal polynomials are introduced based on Stone-
Weierstrass theorem and Gram-Schmidt orthogonalization in Section 2.2. Then
Sturm-Liouville theory on the connection between complete orthogonal function sys-
tem and second order ordinary differential equation is described in Section 2.3, which
provides another way to construct an orthonormal basis in addition to Gram-Schmidt
orthogonalization. Next, we list some basic theoretical results on decomposition of
polynomial space in Section 2.4. Then some important orthonormal bases and their
properties used in this thesis, i.e. Spherical Harmonics, Laguerre Polynomial and
Hermite Polynomial, Bessel function etc., are introduced from partial differential
equation and orthogonalization in Section 2.5. At last, some other special functions
and integral formulae used in the following chapters are listed in Section 2.6.

2 1 ORTHOGONAL FUNCTIONS
[ ]

The function space of all piecewise continuous complex valued (C') functions de-
fined in a given real interval [a,b] ¢ R! forms a vector space. There are many
possibilities to define such an inner product (-, ) in the function space such that it
is a Hilbert space. Then the norm and metric introduced by the inner product are
given as [|f(x)ll = V(f(x), f(x)) and d(f(x), g(x)) = [If(x) — gx)ll, where f(x) and g(x) are
any two functions in the function space. A normally used inner product is defined as
(f(x), g(x)) = f f(x)g(x)dx, where g(x) means the conjugate of g(x). This inner product
introduces the well-known ¢, norm and metric in the function space. A more general
and widely used inner product is in Eq. (2.1), where w(x) is a positive definite weight
function.

b —
(f(x),8(x) = f J(0)gw(x)dx (2.1)
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After an inner product is defined, many useful tools can be introduced based on it,
such as the norm (or called length) of one function, distance and angle between two
functions, etc.

Definition 2.1. Let f(x) and g(x) be two piecewise continuous C' (1D complex val-
ued) functions. For one function, the length or norm of f(x) is defined as ||f(x)|| =
VX)), f(X)). f(x) is said to be normalized if it has unit norm. For two functions,
f(x) and g(x) are said to be orthogonal if {f(x),g(x)) = 0. The metric or distance is

introduced as d(f(x), g(x)) = ||f(x) — g(x)|l. The angle between f(x) and g(x) is defined as

(F(),8(x))
arccos ( TGOl )

When f(x) is orthogonal to g(x), the angle between these two functions is 90°.
When f(x) is not orthogonal to g(x), f(x) can be separated into two parts, where one is
f(x) - g 83?8‘;; g(x) that is orthogonal to g(x), and the other one is g Egggg; g(x) that has
angle of 0° with g(x). We can also normalize these two parts such that they have unit
norm. This process is called as Gram-Schmidt orthogonalization. Then these
two parts are just like two axes in Euclidean space R? and we can represent f(x) with

two scalar coefficients along these two axes.

The above concepts are only for one or two functions. For a set of functions
{f1(0)}lnes (maybe infinite) where J is the index set, the functions are called to be lin-
early independent if the equation },c; ¢, f,(x) = 0 has only the trivial solution ¢, = 0,
¥n € J. Otherwise, they are linearly dependent. A function set is an orthonormal
system if the functions all have unit norm and any two different functions are orthog-
onal, i.e. (f,(x), fin(x)) = 8.m. It is easy to check that the functions in an orthonormal
system are linearly independent. A linearly independent function set can be always
linearly transformed into an orthonormal system by the Gram—Schmidt process
performed in one dimension after another as we have described above in two dimen-
sion.

The linear span of a linearly independent function set {f,(x)}l,c; defined as
Span{{ f,,(X)}nes} = {Xnes cnfn(x) | cn € C} forms a vector space, which is homeomorphism
to the Euclidean space CV! when J is a finite set!. Based on the definition of the linear
span, any function in this spanned space can be linearly represented by these func-
tions. Thus we say that the function set is complete in the space or the function set
is a basis of the space. A weaker and more formal definition of completeness is
given as follows.

Definition 2.2. A function set {f,(x)},cs is called to be complete in a function space
FS [Arfken et al., 2005; Courant and Hilbert, 1989], if Vg(x) € FS, A ¢y, ¢a, ..., cn, Such
that

N b N 2
. _ 2 1 _ _
lim flg(x) Z} eafu@IP = Jim f &) Zl enfu)| W)dx = 0 2.2)
Complete orthonormal system in FS is called as orthonormal basis of FS.

Example 2.1. A simple example of orthonormal basis is the well-known Fourier basis
{e"'z””x}n:o,i 1. for the functions defined in [0, 1].

11J| means the number of members in J
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

The coefficients for the general orthonormal basis are called as generalized
Fourier coefficients and the partial summation quv:] cnfn(x) is called as general-
ized Fourier series, which are analogical to the Fourier coefficients and Fourier
series.

As we have shown about, any orthonormal system is an orthonormal basis
for its linear span. However, for a given orthonormal system and given function
space, Eq. (2.2) is not easy to be verified. Eq. (2.2) based on Mean Squared Error
(MSE) means the generalized Fourier series Z,,N: | cnfu(x) converges in the mean to
g(x), where w(x) is like a probability density function. Convergence in the mean is
different from pointwise convergence. For example, when Fourier basis is used to
represent discontinuous function like square wave function, Gibbs phenomenon oc-
curs in the discontinuous points. That is understandable because we use continuous
basis functions to represent discontinuous function. In this case, Fourier series of
square wave function does not converge at the discontinuous points, while Eq. (2.2)
is still satisfied. However, in practice when MSE is used to evaluate the difference
between signals (functions), we can simply ignore the discontinuous points because
they have no contribution for MSE. In this thesis, we are interested in DWI signals
which can be seen as continuous function based on biological priors. So we assume
the functions studied in this thesis are continuous, not piecewise continuous. More-
over, like Fourier basis, general orthonormal basis satisfies the Bessel’s inequality,
ie. (g(x),g(x0)? = Y,y , because |lg(x) — Yues cnfr(X)I> = 0. The equality holds only
if Eq. (2.2) is satisfied. So in order to guarantee the coefficients {c,} exist, we need
to assume the norm of function g(x) € FS is bounded. In other words, FS is square
integrable function space, denoted by L’([a, 5], w(x)), where w(x) is the weight func-
tion, [a, b] is the real interval. Let L(y, w(x)) denote the space of square integrable
functions in domain y and with weight function w(x). In the following parts of
the thesis, if not explicitly stated, we always assume the functions are con-
tinuous and in L*(y, w(x)) with different w(x) and in different y. Actually square
integrable condition is easy to be satisfied. For example, if g(x) is a bounded function
defined in a bounded space, its norm is always bounded.

The generalized Fourier coefficients for orthonormal basis {f,(x)} can be easily

obtained as ¢, = (g(x), f,(x)), which is the unique solution of the least square problem
2

{c,} = argmin fa b |g(x) - Z;‘;l cj fj(x)’ w(x)dx. Then the generalized Fourier series is given

in Eq. (2.3), where ~ means the approximation in the mean, and the approximation
becomes equality in every point if g(x) is continuous and square integrable.

800 ~ D (), o)) fulx) 2.3)

n=1

In this case ¢, is only dependent on the basis function f,(x) and g(x), independent with

{ (O mzn-

2 2 ORTHOGONAL POLYNOMIALS
°

Compared to Trigonometric function in Fourier basis, polynomial is the another
kind of basic elementary function. Historically it has been proved useful in func-
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tion representation and approximation. A fundamental theorem on this topic is the
famous Stone-Weierstrass theorem.

Theorem 2.1 (Stone-Weierstrass theorem). Let g(x) be a continuous complex val-
ued function defined in [a, b]. for any given e, there exists a polynomial p(x) defined in
[a,b], such that |g(x) — p(x)| < € Yx € [a, b].

In other words, the function defined on a closed and bounded interval can be uni-
formly approximated by polynomials to any degree of accuracy. Thus no matter
how complex the function g(x) is, we can always study its approximated polynomial
instead of study the function itself. Please note that the uniform convergence in
this theorem is stronger than convergence in the mean in last subsection. Although
the proof of Stone-Weierstrass theorem is a constructive proof based on Bernstein
polynomial, the proof only shows an asymptotic solution that there exists a Bern-
stein polynomial with a large enough order which can guarantee the absolute differ-
ence is less than the given tolerance €. See [Byron and Fuller, 1992, chap. 5] for the
details of the proof. However, in practice we are more interested in the following two
questions.

e For a given order N, how to estimate polynomial py(x) with the minimal MSE
b
[ 11g®) = prIPw(x)dx ?

e For a given MSE = ¢, how to estimate py(x) with the minimal order N ?

These two questions are like two faces of one coin. In order to answer them, we need
to better understand the polynomial space.

Let p,(x) denote the polynomial of order n and let £y denote the polynomial func-
tion space contains all polynomial with the order no more than N, i.e. Py = {p,(x) : n <
N}. An obvious basis of Py is the set of N + 1 monomials {x”}nNzo, which is not orthonor-
mal system because (x", x"') # 6,,. For a given N, we can represent the polynomial as
pn(x) = nN:O ¢, x" and minimize the cost function M(e) = fa b lg(x) — nN:() X Pw(x)dx,

where ¢ = (ci,....,cy)’. This is a least square problem. After letting 61(;4_6(”0) Zero,

we have qu\]:o cn(x", XMy = (g(x), x™). Then the unique solution is ¢ = X 'g, where
g = ((g(x), X, ... (g(x), "N, and X,,, = [(x",x™)] is called as Hilbert matrix when
w(x) = 1. Hilbert matrix is known to have large condition number and is a classical
example for demonstrating round-off error difficulties. Another issue is that we need
to calculate the inverse of X, which means ¢, and c¢,, are coupled together.

Historically, in order to solve these two issues, we can perform Gram—Schmidt
orthogonalization to {x”}nNzo and obtain the orthonormal system {un(x)}ilvzo. The orthog-
onalization is done for each dimension as follows.

0

up(x) « — (2.4)
0D iy
>0, ()« ¥ = Y ()t () (2.5)
= llety+1 (Xl
Then we can assume py(x) = ZnNzo cuuy(x), and obtain the solution

ZnN=0 (%), up (%)) = (g(x), u(x)) = cp. In this case we do not need to calculate
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Table 2.1: Some classical orthogonal polynomials generated by Gram—Schmidt orthogonal-
ization of {x"} and second order ordinary differential equations.

Polynomial Legendre P,(x) Hermite H,,(x) Laguerre L,(x) | Associated Laguerre LJ(x)
interval [-1,1] (—c0, 00) [0, o0) [0, 00)

w(x) 1 e e x%e ¥

squared norm | (P,(x), P,(x)) = ﬁ (Hu(x), Hy(x)) = 2" \an! | (Ly(x), Ly(x)) = 1 (L (x), Ly(x)) = %
Po(x) -2 1 X X
p1(x) -2x -2x 1-x a+1l-x

R(x) = e o 1- % e xe™* x*Hlems
A(n) nn+1) 2n n n

the inverse of the matrix since it is an identity matrix. ¢, is only dependent on
the basis function u,(x) and g(x), as we have shown in the last section. Please
note for {x"}|nN:0 that is just independent, the optimal ¢, is dependent on the whole
function set, not just u,(x). Moreover, for two different order N; and N,, the optimal
first min{N;, N>} coefficients are the same for orthonormal basis, but different for
non-orthonormal basis. Both orthonormal and non-orthogonal basis functions are
used in dMRI field. We will compare them in the following chapters .

Example 2.2 (Orthogonalization and Legendre Polynomials). For L*([-1,1], 1) where
the function domain is [—1, 1] and weight function w(x) = 1, the obtained orthonormal
basis from {x"}fl’zo is proportional to the famous Legendre polynomial {P,(x)} which is
not normalized. The Legendre polynomial is actually the unique form of orthonormal
system for closed interval, because if [a, b] is not [—1, 1] we can always perform a linear

transform y = sz‘ _ba‘” such that the interval becomes [-1, 1].

If we choose another w(x) or consider a or b is infinity, Gram-Schmidt orthogonal-
ization will result in another polynomial family as an orthonormal basis. Table 2.1
lists some classical orthogonal polynomials used in this thesis, where L{(x) becomes
L,(x) when «@ = 0. The normalized version of these polynomials are orthonormal basis
from Gram—Schmidt Orthogonalization.

2 3 STURM-LIOUVILLE THEORY
°

It is easy to test whether a given function set under the given weight function is or-
thonormal system or not. However, it is hard to verify whether the given function set
is complete based on the definition 2.2. Since independent function set can be always
orthogonalized to orthonormal system, historically Gram—Schmidt orthogonalization
becomes an important way to study orthogonal functions and Stone-Weierstrass the-
orem is a way to prove completeness. Another way is the Sturm-Liouville theory
for second order ordinary differential equations.

In this section, we are interested in the Sturm-Liouville equation in Eq. (2.6),
where p(x) > 0, w(x) > 0, and p(x), g(x), w(x) are continuous function defined in [a, b]
and determined by their physical meaning in different applications. The boundary
conditions are given as g(a), g(b), g'(a), g’(b) or their linear combination. The value
of 1 is not specified in the equation. Finding the values of A such that there exists a
non-trivial solution satisfying the boundary conditions is part of the problem called
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the Sturm-Liouville problem.

dg(x)
dx

d
TP 1+ q(x0)g(x) + w(x)g(x) =0, x € (a,b) (2.6)

Many famous equations in physics are in this form or can be transformed into this
form through separation of variables.

Example 2.3 (Diffusion Equation in 1D). Diffusion equation (or called heat equa-
tion) in one dimension is

2
9 _poe
ot Ox?

where D is the diffusion coefficient used to describe the rate of the diffusion. After

considering g(x,t) = X(x)T(¢) in the technique of separation of variables, we have two
equations

X € (—00,0),1 € [0, 0) 2.7

X'"+kX=0, T +kDT =0

where k is the so called separation constant. Because we are interested in stale
solutions after large enough time, k should be positive, which means X" + kX = 0is a
Sturm-Liouville equation. Then the solutions of above two equations are

X(x) = A(k) sin( Vkx) + Bk) cos( Vkx), T(t) = C(k)e *"

where A(k), B(k), C(k) are constants dependent on k and need to be set by considering
boundary conditions. Then the final solution is

g(x, 1) = (Ak) sin( Vkx) + B(k) cos( Vkx))e <! (2.8)

Besides, any arbitrary summation of such g(x,t) with different k is still a solution
of diffusion equation. In the following, we will obtain the solution of the diffusion
equation under different boundary conditions.

e Consider the following boundary condition
gla,t) = g(b,t)=0, Vt>0

which is the boundary condition for the diffusion in a given stick with length

b — a, then we have k = (Zi’zz >0,n=0,1,2... for non-trivial solutions. Then the
final solution is

Dna?

g(x, 1) = Z A, sin( nn (x - a))e_ a2
n=1

b-a
e Consider another boundary condition as
8(x,0) = f(x), x € (—00,00)
which is the boundary condition of random walk of a particle when f(x) is the
initialization probability in spatial space. In Eq. (2.8), we let k = 47°&? and

replace trigonometric functions with exponential functions. Then we have

g(.X, t) — A(§)€i2ﬂ§x€_4”2§2Dt
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

The integration over £ is still a solution given as

g(x, t) — f A(g)elaﬂ'fxe—“ﬂzsztdf

(o9

which is the inverse Fourier transform of A(f)e“‘”zsz’. Then A(€) is the Fourier
transform of f(x), because

f(x) = g(x,0) = f AE)e?™ de = 7 HA@)) ()

—00

Thus considering

1 —ap2e? 1 _2
FHe P (x) = i D
we have the final solution as the convolution of f(x) and F~{e "¢ Diy(x), i.e.
< 1 _o-n?
s = [ = o 2.9)
When f(x) = 6(x), we have the so called Green’s function as
g, 1) = nDte—iﬁ/ = N(x0,2Dr) (2.10)

which is the probability at spatial and temporal position (x,t) in Brownian mo-
tion. Its 2-order moment is

(2 f N0, 2D0dx = 2D (2.11)

o0

The classic polynomials described in the last section are proved to be the solutions
of some ordinary differential equations which are in the general form.

po()g” (%) + p1(x)g’ (x) + pa(x)g(x) + Ag(x) = 0 (2.12)

When pi(x) = p{(x), this form can be written directly as equation Eq. (2.6). If
X ()

p1(x) # py(x), let R(x) = ef o and a multiplier [% can be performed to the gen-

eral form, then we have [R(x)g’(x)]" + % gx)+ 4 ,I;i)(()cx)) g(x) = 0, which is exactly the

form in Eq. (2.6) with p(x) = R(x), g(x) = % and w(x) = [1;(();)). Table 2.1 lists po(x),

p1(x), R(x), w(x) for the classic polynomials used in this thesis.

Formula Eq. (2.6) can be written as Lg(x) = Ag(x), where £ = —#x)(%[p(x)%] +

q(x)) is a self-adjoint operator, because fa b (Lu(x)u(x)dx = fa b u(x)(Lu(x))dx, Yu(x).
Thus Eq. (2.6) is actually to find the eigen-decomposition of the self-adjoint operator
L.

Sturm-Liouville problem is called regular if the boundary conditions are given as
@1g(a) + @28’ (@) =0 (a7 +a3 > 0)
Big(b) +B2g' () =0 (B} + 33 > 0)

Theorem 2.2 (Sturm-Liouville Theorem). Regular Sturm-Liouville problem has
the following theoretical results.

(2.13)
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o The eigenvalues of a self-adjoint operator are real and can be ordered such that
Al <A< <A<

e The eigenfunctions of a self-adjoint operator is an orthogonal basis in function
space L?([a, b], w(x)).

The second result is another way to prove the completeness of the function set.
Please see [Arfken et al., 2005, chap. 10] for the proof of this theorem.

2 4 POLYNOMIALS IN R¢ AND §¢-!

The polynomials and functions in previous sections are defined in one dimension
(1D). This section overviews some important concepts and results of functions and
polynomials in ¢ dimensional Euclidean space R? and their restrictions in sphere
Sd*l .

If {fi(x)} and {f>(y)} are orthonormal bases in L*([a;, b1], wi(x)) and L*([a2, b>], w2(¥)),
obviously {fi(x)f2(y)} is a orthonormal basis in L*([a,b] X [a2, b2], w1 (x)wa(y)) based
on the inner product defined in the product space. So most concepts in R' can be
trivially generalized into R?. Stone-Weierstrass theorem can be applied into R, i.e.
the continuous function defined on a closed and bounded interval of I ¢ RY can be
approximated uniformly by a d dimensional polynomial defined in I.

Let Py(RY) denote the space of the polynomials with the order no more than N
in R?. The monomial basis in PyRY) is {[T¢ 1 X }|Zd nj<N- A polynomial p,(x) is

called to be homogeneous with order n if p,(ix) = t”pn(x) Based on the defini-
tion, homogeneous polynomial p,(x) is even when n is even, and is odd when # is
odd. Yp.(x) € Pn(RY), pn(x) can be separated uniquely such that p,(x) = X", g.(),
where ¢,(x) € HP,(R?), HP,(RY) = Span{ Hd | x |Z,z is the space of homogeneous

polynomials with order n. The dimension of 7{? (R%), i.e. the number of monomials

in HP,(RY), is (”:f_’]l), because the index of the monomial in HP,(RY) is determined

uniquely by choosing different d — 1 numbers from (0, 1,....,n + d — 2).

nj=n

Denote respectively the restrictions of Py(RY) and HP,[RY) in S*!' < R? by
Pn(E") and HP,(S*"). Considering the natural inner product in §°! defined as
(p(x), g(x))ga-1 = fsd | p(x)g(x)dx, we have some interesting results.

Proposition 2.1. HP,(ST) < HP(STYH, VYn = 0. Pyl =
HPN(EST) P HPy-1(STY), YN > 1, where (P means the direct sum of Hilbert spaces.

Proof. For any given polynomial p,(x) € HP,(R?), x € R?, obviously |x|’>p.(x) €
HP,,»(R?Y), which means HP,(S9!) ¢ HP,2(S4"1), Vn > 0. Thus Vp,(x) € Py(S4),
Pn®) = &) + gu-1(®), where g,x) € HP,(STH c HPN(ES!) and g,1(x) €
HP,_1(S4) ¢ HPN_1(S4Y). Vpyx) € HPyRY) and py_1(x) € HPy_1(RY), we have
(pN(®), pv-1(x))sa-1 = 0, because one is odd and the other one is even. So HPy(RY) and
HPN-1(R?) are orthogonal. Then Py(S9~") = HPy(S4™) P HPN-1(ST1), YN > 1. O
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Definition 2.3. A function g(x) is harmonic if Ag(x) = 0, where x € R? and A aef

27:1 % is the Laplace operator (aka Laplace-Beltrami operator). A polynomial
=1 82

pn(®) is called as a harmonic polynomial if Ap,(x) =0,

Denote the space of homogeneous harmonic polynomials with order n by
H,(R%), and its restriction in S¢! as 7,(S*"). Harmonic polynomial plays an im-
portant role in polynomial theory. First, ¥p,(x) € HP,(RY), if Ap,(x) # 0, then Ap,(x) €
HP,—2(RY). Vppo(x) € HP2(RY), T g,(x) € HP,(R?) such that Ag,(x) = pn_r(x), which
means A is a surjection from HP,[RY) to HP,_»(R?Y), and H,(RY) is the kernel. So

the dimension of H,(R?) is
(n+d—1)_(n+d—3) 2.14)
d-1 d-1

Second, Harmonic polynomials can be used to separate the homogeneous polynomial
space based on the following theorems.

Theorem 2.3 (Orthogonality of homogeneous harmonic polynomials). With
the definition of the natural inner product in S, H,(S4™ ") L H,,(S?), if n # m, where
1 means two spaces are orthogonal, i.e. Yp,(x) € H,(S*™") and pn(x) € Hu (S, we
have (p,(x), pu(x)) = 0.

Theorem 2.4 (Harmonic Decomposition Theorem). Vp,(x) € HP,(R?), x € RY,
; ; - (2] :

it can be uniquely separated in the form p,(x) = Zjiollxllthn_z i(®x), where hy,_»j(x) €
H,_» j(Rd), and [5] is the maximal integer no more than 3.

Theorem 2.3 shows the orthogonality of homogeneous harmonic polynomial spaces
with different orders, whose proof based on Green’s second identity can be found
in [Axler et al., 2001, chap. 5]. Theorem 2.4 shows that every multivariate polynomial
over a field can be decomposed as a finite sum of products of a radical polynomial and
a harmonic polynomial. Please refer [Axler et al., 2001, chap. 5] for the rigorous proof
of it. A straightforward result based on these two theorems is

[ﬂ

Corollary 2.1. HP,(S? ") = @ji]o Hy—2j(S9™"), where [%] is the maximal integer no

more than 3.

Based on Proposition 2.1 and Corollary 2.1, we have Corollary 2.2. This corollary
shows that for every p,(x) € Py(R?), although p,(x) may be not harmonic there always
exists a harmonic polynomial g,(x) € @I/VZO H;(RY), such that p,(x) = g,(x), ¥x € S,

Corollary 2.2. Py(S4 1) = @jio H; (ST,

Considering Stone-Weierstrass theorem in Theorem 2.1, we have

Corollary 2.3. L2(S% !, 1) = limy_e Py(S* ) = EB;';O H;(ST).
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2 5 SOME ORTHONORMAL BASES AND THEIR PROPER-
° TIES

In the previous sections, we have given an overview of some abstract concepts and
results of orthogonal function, Gram—Schmidt orthogonalization, Stone-Weierstrass
theorem, and Sturm-Liouville theory. Every specific polynomial (or function) has a
lot of useful properties which can be used in different applications. In this section, we
just list some properties of the polynomials and other special functions used in this
thesis.

2.5.1 Associated Legendre Polynomial

We have demonstrated Legendre polynomial {P,(x)} from Gram-Schmidt orthogonal-
ization in Section 2.2. Associated Legendre polynomial {P)'(x)} is a generalized version
of {P,(x)}. It is defined as

m dm
P = (=1)"(1 = X T —(Pa() (2.15)
It satisfies the general Legendre equation in Eq. (2.16).
2

1-x2

A -x>g" —2xg’ + I+ 1) - )g =0 (2.16)
P(x) becomes the Legendre polynomial P,(x) when m = 0. It satisfies the following
orthogonality.

2(n + m)!

@ D= m @A

1
f P (x)P},(x)dx =
-1

Please note that P'(x) is defined in the same domain [-1, 1] and has the same
weight function w(x) = 1 as P,(x). See Table 2.1. However Legendre polynomial {P,(x)}
is the unique form from Gram-Schmidt orthogonalization. Associated Legendre poly-
nomials {P}'(x)} actually form a larger space than polynomial space. For example,
Pi(x) = =(1 - x»)!/? is not a polynomial, although normally we call P'(x) as associated
Legendre polynomial. See the discussions in [Arfken et al., 2005, chap. 12] for more
details.

2.5.2 Spherical Harmonics
Laplace’s Equation in R?

In 3D space, the Laplace equation in spherical coordinate (R,0,¢) is in Eq. (2.18),
where R > 0, 6 € [0,7] and ¢ € [0,27), and A, is the Laplace-Beltrami operator re-
stricted in S°.

18, ,9g, 1
Ag = = (RP25) 4 — g =0 (2.18)

1 d%¢ 1 4

_ . 0g
20082 | —57l5n05,) (2.19)

Apg =
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By assuming g(R,0,¢) = F(R)O(H)D(¢), we have the following three equations based
on separation of variables, where m and A are separation constants which need to be
determined for non-trivial solutions.

O +m*d =0 (2.20)

cos 2
Q" O +(1- ®=0 2.21
* sin @ * ( Sil‘l2 0) ( )
R’F” +2RF' — AF =0 (2.22)

From Eq. (2.20), ®(¢) = C1e™?+Cre” "¢, where C| and C, are constants. Because ®(¢) =
®(¢p+2n), m should be integer and ®(¢) = Ce™?. By letting x = cos 6, equation Eq. (2.21)

becomes ) )

d-0 doe m

1-x)— —2x— +(A-

( x)dx2 xdx+( 1 —x2

This equation has bounded solution P}"(x) if 4 = [(I+ 1), [ > |m|, l and m are integers. So
equation Eq. (2.22) becomes

=0 (2.23)

R*F" +2RF' = I(l+ 1)F =0 (2.24)

which has solutions F(R) = C,R' + C,R™"*D, Then without considering the constant,
the final independent solutions of the 3D Laplace equation are

R'e™ P'(cos(d)) and R D™ Pl'(cos(6)), 120,12 |m] (2.25)

The second kind of solution is the irregular solution which is singular at the origin
point. Then the final general solution for Laplace’s equation is

00 l

gR0,8)= D" > (@R + bR D)y6, 9) (2.26)

1=0 m=-1

Definition, Orthogonality, Completeness

Considering the natural inner product in S’ defined as (f(6,9),8(6.0)x =
02” 5 f(6.4)8(6.4) sin(6)d6dg, the spherical part in Eq. (2.25), i.e. ¢™?P(cos(9)) is or-
thogonal but not normalized.

Definition 2.4. The Spherical Harmonics (SHs) are the normalized angular portion
of the solution to Laplace’s equation in spherical coordinates. Spherical Harmonics of
order | and degree m, denoted by y/'(6, ¢), are defined as

~ /2z+1(1—m)! i o
W'O.0) = | T ?P"(cos ) (2.27)

Real Spherical Harmonics, called also spherical harmonics for short in this thesis,
are defined as

V2Re(y/"(6,4)) if —I<m <0
Y/'(0,0) = Y6, ) if m=0 (2.28)
\/zlm(y}”(& @) if l=2m>0

where Re(:) and Im(-) mean the real and imaginary parts.
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Figure 2.1: Symmetric real spherical harmonics up to order L = 4. The blue color in SHs
with [ = 2,4 means negative values.

Thus {y(0,¢)} is an orthonormal system in L*(S% 1) by definition. It is also
complete because ¢ is complete in [0,27) and Pl'(x) is complete in [-1,1]. So
Vg(0, ¢) € L*(S%, 1), it can be represented as the so called Laplace series in Eq. (2.29)

) )
260,9)= > > /V"©0.¢4), where c' = (g(6,),)]"(0,#)x (2.29)

1=0 m=—1
{Y]"(6, ¢)} is an orthonormal basis in real valued functions in L2(S%, 1).
We have shown that Spherical Harmonics {y/"} can be obtained from Laplace’s

equation. SHs can be also obtained from Gram-Schmidt orthogonalization, because
{‘/#Zfﬂe"‘”‘f’ } and {P,(x)} can be obtained respectively from the orthogonalization of mono-

mial basis in S! and [-1,1]. Please refer [Byron and Fuller, 1992, chap. 5] for the
derivation of SHs from Gram-Schmidt orthogonalization.

Based on the definition in Eq. (2.27) and P;"(x) = (-1)" Eﬁ;;’z;;P;”(x), we have the
property

¥'(©,¢) = (=1)"y;"(6, ¢) (2.30)

m y"O,¢) if liseven
y(m=0,m+¢)= { —ly;"(e, ¢) if lisodd

Since (7 — 6,7 + ¢) is the antipodal point of (¢, ¢), formula Eq. (2.31) means y}'(6, ¢), as
well as Y7"(6, ¢), is even function if / is even, and is odd function if / is odd. So {¥]"(6, ¢)}
with even /, named as symmetric real Spherical Harmonics, are orthonormal ba-
sis of the space of all the antipodal symmetric spherical functions in L%(S2, 1). Fig. 2.1
shows the symmetric real spherical harmonics up to order 4. Symmetric real SH ba-
sis plays an important role in HARDI methods as shown in Chapter 4, and it is used
intensively throughout this thesis.

(2.31)

Based on the above analysis in Laplace’s equation, we have Eq. (2.32) which is
also applicable for Y]"(6, ¢).
1 0.4 1 %ﬁéwﬁw

—(sing——"—) = —i(1 + 1)y}"@ 2.32
sin?g  0¢? HSTY Y o0 ) (I+ D)y (6,¢) (2.32)

Apy[' (0, ¢) =
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Based on the definition of SHs, the two kinds of solutions in Laplace’s equation be-
come R'y"(9, ¢) which is called as regular solid Harmonic, and R~**Yy"(6, ¢) which
is called as irregular solid harmonic.

Theorem 2.5. The regular solid harmonic {R'y}(6,¢)}! _ , is a basis in H(R?). Spher-
ical harmonic {y}"(6, ¢)}fn __, is an orthonormal basis in H(S?).

Proof. ¥pi(R,6,¢) € HP(R?), we have p/(R,6,¢) = R'q/(6,¢), where q(6,¢) = pi(1,6,¢) €
HP(S?). Then

e ) g

= R72(I0 + 16, 9) + Api(6. 9))

Thus, Api(R, 0, ¢) = 0 is equivalent to A,q,(0, #) = —I(l + 1)q:(0, ¢), which has the solution
an——z mY]'(0, ¢), where {C,} is complex constants. So pi(R,6,¢) = an__l A CRDR
which means {R'y/"(0,¢)} __, is a basis in H(R?). Restricting {R'y)"(6, ¢)}m——1 in S?,
@, )Y, __, is a basis in 7—(1(82). It is an orthonormal basis because (y',y1) =
51[’6mm’- O

Api(R,0,¢) =

The above theorem shows that

e The dimension of H;(R3) is Zﬁn:_l 1 = 21+ 1, which agrees with formula Eq. (2.14).
o H)(S?) L Hy(S?)if 1 # I, which agrees with Theorem 2.3.

e For any polynomial p(R,6,¢) € Py(R>), we have p(1,6,¢) = Zfi 0 3! me—t €]V (6, B).
No matter whether p(R, 6, ¢) is harmonic or not, g(R, 6, ¢) = Zfi 0 > - ;"Rl "0, P)
is always harmonic, which agrees with Corollary 2.2.

If we restrict the coefficients of monomials in polynomials to be real, {R'Y l’"}in is

a basis in H;(R3) and Y] ’”} is an orthonormal basis in H;(S?).

=1
n=-1

Addition Theorem

{R”‘/Lz?e"’”‘ﬁ}n:o,il,.. are independent solutions in polar coordinate (R, ¢) of Laplace’s

equation in two dimension (2D) space. While {R’y;"(e, &) }imi<ti=0.1 - are independent so-
lutions in spherical coordinate (R, 8, ¢) of Laplace’s equation. In this sense, Spherical
Harmonic basis {y/"(6, )} can be seen as a generalization of Fourier basis { \/#Tne"'”‘ﬁ}

from L2(S', 1) to L2(S%, 1).

Since Re(e ™¢™) = Re(e ™)Re(e?’) — Im(e~")Im(e™?), we have cos(n(¢’ — ¢)) =
cos(ng) cos(ng’) + sin(ne) sin(ng’), which is the addition theorem in S'.

For SHs in S?, we have the following addition theorem.

Theorem 2.6 (Addition Theorem). Let u and v are two unit vectors in S?, then

Pi(u"v) = Z W @)y ) (2.33)

Please refer the detailed proof in [Arfken et al., 2005, chap. 12].
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Product of Spherical Harmonics

Since {y"(6,¢)} is an orthonormal basis in L*(S%, 1), y/"y?" can be represented as ?

Y. 2;3:—05 W, s )/8 where the coefficients WZf’"'B

21 ’ ’
A o’ B RI+ DR+ 1DRa+1) ' a\(l I «
Wira f f iy Ve sin 6d0dg = \/ in 0 0o of\m m B

(2.34)
( ,; ,ln g) is the Wigner 3j-symbol, which is nonzero only if m + m’ + 8 = 0 and [, /',

a satisfy triangular inequalities. Please refer [Arfken et al., 2005, chap. 12] for the
proof.

Based on the definition of real spherical harmonics in Eq. (2.28), the integration
2 ,
onP = f f Yy Y8 sin 6dode (2.35)

is determined by Wl';f'zﬁ For example, if m < 0, m’ < 0,8 < 0, and 8 = m + m’, then

‘B _ (=1 1
o B % Jeo iy 'y singdedg = & )ﬁWl'l'f:':( -+ Q;’;,mﬁ in other cases is omitted.

Funk-Hecke Theorem

The Funk-Hecke theorem was proposed by Funk and Hecke. It is applicable in high
dimensional sphere S?~!, whose proof can be found in [Andrews et al., 1999, chap. 9].
In this thesis, we only use the 3D case of this theorem.

Theorem 2.7. Let g(1) be a continuous function in [~1,1] and y}" is the | order m degree
spherical harmonic, then for given unit vector u, we have

f g vy ()dv = 1) (w) (2.36)
SZ

1
A =2n f Pi(t)g(t)dr (2.37)
-1

where P((t) is the Legendre polynomial of order 1.

A corollary based on this theorem is

Corollary 2.4. Let 6(t) be the Dirac delta function and y[' is the | order m degree
spherical harmonic, then for given unit vector u, we have

f s’ u)y/'(v)dv = 27P;(0)y;"(u) (2.38)
where P)(0) is the Legendre polynomial of order [ evaluated at 0.
0 if lisodd
Pi(0) :{ (_1)1/21 226(1—1 1 — 1),/2(1 l”).. if 1is even (2.39)
where n!! is defined as H (n 2j)forn>0and 1forn=0,-1.

) 1
20F 32, X WAV s used, X, Th, Wi = v vl W1
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Since §(¢) is discontinuous at 0, the proof of this corollary is to define a sequence of
functions {6,(¢)} such that V¥n, 6,(¢) is continuous, and lim,_, 6,(¢) = 6(¢). This sequence
can be chosen as {%e‘"ztz} [Descoteaux et al., 2007]. If / is odd, P;(0) = 0 because P;(x)

is odd function for odd /. For even /, considering the recursive relation
(n+ P, (x) = 2n+ DxPy(x) — nP,_1(x) (2.40)

we have PIL%(()? = -1 and Py(0) = (-1)" 2% Please note that based on the definition

of y" in Eq. (2.27) there is an equivalent solution for P;(0) that

45
20+ 1

P(0) = y?(% 0) (2.41)

2.5.3 Bessel Function and Spherical Bessel Function
Definition, Orthogonality

Bessel function of the first kind, denoted by J,(x) and called as Bessel function
for short, is the solution of the Bessel’s differential equation:

g +xg + (> -aP)g=0 (2.42)

Normally « is used as integer or half of integer, although it can be chosen as real or
complex number. When a = rn is integer, the Bessel function J,(x) can be represented
as the following integrals as

1 (™ 1~ . .
Ju(x) = — f cos(nt — xsint)dt, J,(x) = —f e~ in=xsinD) g (2.43)
m Jo 2n J_x

The spherical Bessel function, denoted by j,(x), is defined as

Jn() & \/2£Jn+1/2(x) (2.44)
X

There is an irregular spherical Bessel function

def n+1 4

yu(x) = (=1 2xf—n—1/2(x) (2.45)

which is singular at x = 0. If not explicitly stated, spherical Bessel function in this
thesis always means j,(x).

The Bessel equation in Eq. (2.42) can be transformed into the standard form
in Eq. (2.6). Then by analyzing the regular conditions, we have the orthogonality
of {J,} as follows.

f xJ o (bx)J o (cx)dx = %6(19 -¢), wherea > —% (2.46)
0

Based on the definition of j,(x), we have the orthogonality for {;,(x)}

T

e 6(b-c), wheren> —1 (2.47)

f ) X% Ju(bx) ju(cx)dx =
0
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Plane Wave Expansion Theorem

The well-known Helmholtz equation in R’ is in Eq. (2.48), which becomes the
Laplace’s equation when k = 0.

Ag(x) + k*g(x) =0 (2.48)

On the one hand, a heuristic solution of this equation is
g(x) = >k (2.49)

where E can be any vector that satisfies ||k||> = k>. This heuristic solution is called as
plane wave which satisfies Helmholtz equation for any dimension d.

On the other hand, in three dimension (3D) space, similarly with Laplace’s equa-
tion in Eq. (2.18) we can use separation of variables technique to solve Helmholtz
equation. Let g(R,0,¢) = F(R)®(0)D(¢), after some tedious derivations, we have the
following general solution.

) [
2R, 0,0) = > > (@' jukR) + b}'yi(kR)y{' (6, ¢) (2.50)
l

=0 m=—

So the heuristic solution can be represented in the form of Eq. (2.50). Considering
the second term y;(kR) is singular at R = 0, we have

00 /
R =33 aljiIEIRY](6, 9) (2.51)

=0 m=-1

a" is dependent only on k and can be solved analytically, which results in the Plane
Wave Expansion theorem.

Theorem 2.8 (Plane Wave Expansion Theorem). Let x = Ryu and k = R,v be two
3D vectors in R?, and u, v € S?, we have

(o)

i
R =N N Anei) ji(ReRR)Y @)Y} () (2.52)
=0 m=—1

The proof of this theorem is based on the Green’s function representation of the
general solution of Helmholtz equation. Please refer [Arfken et al., 2005, chap. 9]
for the details. Note that the real symmetric part of e*®'k ig cos(xT k) which can be
written as

[Se]

l
cos(x’ k) = Z Z 4(=1)" ji(ReRp) Y (@) Y] (0) (2.53)

=0 m=-1

where }°) means the summation of only even order /. It can be proved easily by the

Theorem 2.8, the definition of {¥}"} in Eq. (2.28), and the property y;”'(u) = (-=1)"y/"(u).
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

2.5.4 Hermite Polynomial
Physicists’ Hermite polynomials

There are two kinds of standard notations for Hermite polynomials. One is the
probablllsts Hermite polynomial which defines the polynomial as He,(x) =

(-1)%ex "—e g . The other one is the physicists’ Hermite polynomials which de-
dx

fines the polynom1a1 as
Hy(x) = (=1)"e" jne‘xz (2.54)

They are closely related, because H,(x) = 2"2He,(V2x). In this thesis, unless
otherwise specifically stated, we always use the physicists’ Hermite polynomials
in Eq. (2.54), which satisfies the equation H)/(x) — 2xH,(x) + 2nH,(x) = 0 and orthogo-
nality in Eq. (2.55). See Table 2.1.

f Hy(x)Hpp(x)e™ dx = 2" Van!6,m (2.55)

Based on Sturm-Liouville theorem 2.2, ({H,(x)} is an orthogonal basis in
Lz((_oos OO)’ e_x“)'

Hermite Polynomial in Fourier Transform

Hermite polynomial can also be defined by the generating function in Eq. (2.56).
IETPTE "
DY H,(2)— (2.56)
n=0

Considering the Fourier transform in R! defined in Eq. (4.11) we have

- - 2 _m
J{ 2 4+2tx (é:) \/_el —4rité

So

[0

o _en? (=in)"
F e 2H(x) \/E;Oe P H,(2m8)

n=0

2
Thus e~ H,(x) is an eigenfunction of Fourier transform, i.e.

9{5%11”@)}(6): f ¢ Hy(x)e 2 dx = Var(=iy'e 5" H(27r§) (2.57)

Hermite Polynomial in Schrodinger Equation

In quantum mechanics, the square root of the probability of finding a particle at a
certain time and position is called as wavefunction. Wavefunction is a complex
valued function and it satisfies the well-known Schrodinger equation.
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For single particle with a spherically symmetric potential energy V(|lx|)), the
time-independent Schrodinger equation is given as

2

h
(= 52+ Vi) y(@) = Ey() (2.58)
m

where 7 is the reduced Planck constant, m is the mass, and E is the energy.

Quantum Simple Harmonic Oscillator (SHO) problem is one of the few quantum-
mechanical systems for which an exact, analytical solution is known. The
Schréodinger equation for SHO problem in 1D called as SHO-1D, is

ot lmw x )w(x) = Ey(x) (2.59)

2

where V(x) = %mw x*> and w is the angular frequency. The solution of this equation is

n 1 1 _ a2 X
Yn(x) =272(n)"2(nd) " %e ¥ Hy(—) (2.60)
\4
where ¢ = X, The corresponding energy is E = hw(n + 2) {¥n(x)} is an orthonormal

basis in Lz((—oo 00), 1) for given ¢, called as SHO-1D basis.

2.5.5 Associated Laguerre Polynomial
Orthogonality and Completeness

Associated Laguerre polynomial L!(x) satisfies the following differential equation.
xg" () +(@+1-x)g (x)+ng(x)=0 (2.61)

For given a, {L;/(x)}," | is an orthogonal basis in L2([0, 00), x*¢™). It satisfies the follow-
ing orthogonality:

e r 1
f e L)L (x)dx = %5% (2.62)
0 .

where I'(x) is the Gamma function, which can be seen in section 2.6.1. L(x) has the
explicit form as

[0(x) = Z( 1)!(’:1+ ‘;)], (2.63)

L%(x) becomes the Laguerre polynomial L,(x) when @ = 0. Please note (’”‘J’) has real
number n + @ in it. In this thesis, the binomial symbol is defined as binomial series

(2.64)

(a)_ aa-1)a-2)@a—-k+1) @)
k| k(k —1)(k—2)---1 B k!

where k is an integer number and « is arbitrary.
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

Relation with Hermite Polynomial

Compared to {LJ(x)} that is a basis in L2([0, ), x% ), {H,(x)} is a basis in
L2((=0c0, 00),e*"). When @ = _2, we have the following relation:

Hou(x) = (=1)"2%"n!L, %(xz) (2.65)
Hope1(x) = (—1)"22"+‘n!xL,% (x%) (2.66)

Relation with Monomials

Since {L{(x)} is a basis, monomials can be represented by linear combination of {L{(x)}.

n _ - in+a @
X' =n! ;O(—l)f(n i j)Lj (x) (2.67)

Laguerre Polynomial in Schrédinger Equation

Historically in quantum mechanics, associated Laguerre polynomial L?(x) occurs nor-
mally as the radial part of the solutions of Schrédinger equation in 3D space. The
spherical harmonic y/" occurs in spherical part of the solution. A classic example is to
determine the atomic orbitals of hydrogen-like ions in 3D space.

In Eq. (2.58) the Schrédinger equation for SHO problem in R? called as SHO-3D,

is given as
2

1
(- 2"’—A + ~maw’ x| )y (x) = Ey(x) (2.68)
m 2

The solution [Arfken et al., 2005, pp. 847] based on separation of variables in (R, 0, ¢)
is

2 -2 17 % 12 x PRty

ViR 0.9) = [43/2 Th+12+ 3/2)] Frrexe| =5z | L7 )y ©¢ (269
where / = . The energy elgenvalue is E = hw(2n + 2) Please note that the notation
n used here 1s shown as 2 2 in [Arfken et al., 2005, pp. 847]. The normalization factor
which makes the unit norm of i, is determined based on Eq. (2.62).

Actually it is easy to verify that for given [ the radial part are a set of orthonormal
basis in L([0, ), ¢°). Since the spherical part {y"} also forms an orthonormal basis in
L%(S?, 1), the function set {/,;.(R, 6, $)} is an orthonormal basis in L*(R>, 1) for given ¢,
called as SHO-3D basis.

2.5.6 Confluent Hypergeometric Function
Kummer’s Function

In mathematics, the ordinary hypergeometric function 7 (a, b;c; x) is a special
function represented by the hypergeometric series. It can represent many other spe-
cial functions as specific or limiting cases.
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In this thesis, we are more interested in confluent Hypergeometric Function
1F1(a; c; x), which satisfies the Kummer’s equation.

xg”" +(c-x)g —ag=0 (2.70)

This equation has two independent solutions. We are only interested in the one called
as Kummer’s function and given by the following form:

o ay!
def a
Fi(a;c;x) = E_O o (2.71)

where a® € [T(a+ j) = a(a+1)---(@+n~-1). {Fi(a; ¢; x) is a limit of 2y (@, bi ¢; ), i.e.
limy_o 2F1(a, b; c; x/b) = 1 F1(a; c; x).

1F1(a; c; x) can be used to many functions. For example,

e’ = 1Fi(a;a;x) (2.72)

n

LY = (n:;a)lFl(—n;oz+ 1;x) (2.73)

Generalized Hypergeometric Function

The generalized Hypergeometric function is defined as

def > (@) - (a)¥ x/

11F11’l(a],'~‘ ’an;b]’--- ,bm;_x) = 2 (bl)(])(bm)(])ﬁ (274)
Jj=

2 6 OTHER SPECIAL FUNCTIONS AND USEFUL EQUA-
° TIONS

2.6.1 Gamma Function

The gamma function is defined as

I € f e dt (2.75)
0
It satisfies the following properties:
1
Fx+1) =aT0), T(G)= \r (2.76)
So if n is a positive integer number, we have
I'n+ 1) =nl'(n) =n! (2.77)
n—1
7] Zony) 2r(n . :
)y def Py 22(5);:22F(§+1) if niseven 9.78
" g(n 7 n‘ﬁ%l"(% +1) if nisodd (2.78)
The lower incomplete Gamma function is defined as:
v(s, X) def f e s (2.79)
0
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CHAP. 2: ORTHOGONAL POLYNOMIALS AND FUNCTIONS

2.6.2 Some Useful Integral Formulae

Laguerre polynomial L}(x) and other useful special functions plays an important role
throughout this thesis. Thus we list some useful integral formulae in this section.
Please refer [Gradshteyn and Ryzhik, 2007] for these integral formulae. The page
number after each equation shows where to find it in [Gradshteyn and Ryzhik, 2007].

00 | g
f X" exp(—Bx")dx = ( r:l+1) B>0,m>0,n>0)7° I[pp.337] (2.80)
0 n'IB n
© v B, 2 —v—1 g—v-n—1 -z ay2
f e L ()T, (xy)dx = 277137 N B — a)'ye BL)(———) [pp. 8121 (2.81)
0 4B(a - B)
* ) BTO5v+05u+05)  pu+v+1 B?
- v = v =7
fo Hexplax)hpndy = o e+ ' 2 TR 282
(> -1,5s>0) [pp. 706]
0 r D(s—1)"
f exp(—stt* Ly (1)dt = @tntDis—-1) (@>-1,5s>0) [pp.809] (2.83)
0 nlsatn+l
00 n 1\ = 1)rm
f exp(-by)Lindx = (“ o )% (b>0) [pp. 809] (2.84)
0 mzo bn—m+
L I'®O)Ir)l'(a->b)
b—1
Fi(a;c;—t)dt = 0<b . 821 2.85
fo £ Fia; e =nde T@Tc—b) (0O<b<a) Ipp.821] (2.85)
~ TG +5+5) 1
f T (ax)dx = 2Ha™H ———— (v-l<pu<z,a>0) [pp.676] (2.86)
0 rg+s-5 2

2 7 SUMMARY
[ ]

This chapter made a quick tutorial for some special functions and polynomials
which play important role in many applications including diffusion MRI. Please note
that these special functions and polynomials all have exhaustive useful properties,
and we just showed only those properties used in this thesis. Please refer some text-
books for more properties.

We now summarize the important and useful mathematical properties of specific
polynomials and functions which will be used in the following chapters.

3 [Gradshteyn and Ryzhik, 2007] refers m > 0, however, we have tested the equation also holds when
m = 0.
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1. Sturm-Liouville theorem 2.2 and Stone-Weierstrass theorem 2.1 are very
useful to prove the completeness and orthogonality of given function set.

2. Harmonic Decomposition theorem 2.4 is useful to study different function
spaces in R? parameterized by different models.

3. Real spherical harmonic basis {]"} with even order /, i.e. symmetric real
SH basis, is a useful orthonormal basis to represent antipodal symmetric
spherical functions in dMRI. There are already exhaustive papers on Q-ball
Imaging related methods which use SH basis to represent diffusion signal or
other functions in dMRI.

4. Plane wave expansion theorem 2.8 is the most crucial theorem in this thesis,
which will be used exhaustively in the following chapters to solve Fourier
transform analytically.

5. Funk-Hecke theorem 2.7, addition theorem 2.6, the relation between
Laplace-Beltrami operator and SHs in Eq. (2.32) are useful to derive analytic
forms related with spherical harmonics.

6. Hermite polynomial {H,(x)} and Laguerre polynomial {L?} are orthogonal
bases respectively in L7((—co, o), e’xz) and L*([0, ), x*¢~). They will be used to
represent Gaussian-like functions in the following chapters.

7. Some important integral formulae listed in this chapter are useful to derive
analytic forms of integrations.

Spherical Harmonic basis has becomes a natural and common tool in single shell
HARDI (sHARDI) method [Frank, 2002; Hess et al., 2006; Anderson, 2005; Ozarslan
et al., 2006; Descoteaux et al., 2007; Tournier et al., 2007; Canales-Rodriguez et al.,
2009; Aganj et al., 2010b; Tristan-Vega et al., 2009; Tristan-Vega et al., 2010]. Many
papers converged to use SH basis to represent diffusion signals in S? and estimate
the ODFs. In this thesis, one of the results is to generalize the sHARDI methods to
multiple shell HARDI (mHARDI) methods, by considering not only SH basis in S? but
also an additional basis in radial part. We now on the way to describe how to devise
an appropriate basis in 3D q-space and analytically estimate the ODFs and EAPs
from diffusion signals.
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MANIFOLD

“Geometry, which is the only science that it hath pleased God hitherto to bestow on
mankind.”
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OVERVIEW

Riemannian manifold was developed in the nineteenth century. It is very useful
to analyze data in non-linear space. When analyzing and processing real data with
given coordinates, sometimes addition and subtraction between two data points or
multiplication with a negative value have no physical meaning. For example, when
processing matrices in Sym;, multiplying a 3 x 3 positive definite matrices with a
negative value will obtain a symmetric matrix that is no longer in Sym;. In this case,
manifold based methods which consider the intrinsic properties of data space can be
appropriate candidates of mathematical tools for data processing.

This chapter overviews some basic concepts about Riemannian manifold, statis-
tics on manifold and statistical manifold which are the background knowledge of the
Chapter 6 on the Riemannian framework for ODFs and EAPs. Please note that the
subjects described in this chapter contain a lot of materials, while we only list some
self-contained contents which will be used in the following Chapter 6. Please refer
some textbooks [Boothby, 1986; Do Carmo, 1992; Spivak, 1999; Amari, 1985; Amari
and Nagaoka, 2000] for more details of the contents.

Organization of this chapter:

First, some basic concepts on three layers of Riemannian manifold, i.e. topological
structure, differentiable structure and Riemannian metric, are introduced in Sec-
tion 3.1. We also give some examples on the geometry of high dimensional sphere
to demonstrate the concepts. Second, in a computation point of view, Section 3.2
shows the definition, estimation, existence and uniqueness of weighted Riemannian
mean and median, and demonstrate Principal Geodesic Analysis (PGA) method to
find the principal components in manifold. At last, statistical manifold and Fisher
information metric are introduced in Section 3.3, where we also provide two exam-
ples of statistical manifolds, which are the multivariate Gaussian distribution and
multinomial distribution families.

3 1 RIEMANNIAN MANIFOLD
[ }

Riemannian manifold has three layers of structural concepts. The first one, which
is defined for continuity and convergence, is the topological structure for topological
manifold. The second one is the differentiable structure for differentiable manifold,
which generalizes the differentiability from Euclidean space. The third layer for Rie-
mannian manifold defines the Riemannian metric in infinitesimal neighborhood.

3.1.1 Topological Manifold

Definition 3.1. A topological space (X,7) is a set X together with a topology T (a
collection of subsets of X) which satisfies:

(i) The empty set @ and X are in 7.
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(it) Arbitrary union of elements of 7 isin 7.

(iit) Finite intersection of elements of T is in T .

A topological space (X, 7") is a set of points with a collection of well defined subsets.
(X,7) is usually denoted by X for short. Elements in topology 7~ are called as open
sets of X. Topology 7~ can be generated from a topological basis.

Definition 3.2. A topological basis on a set X is a collection B of subsets of X satis-
fying:

(i) Yx € X, 3B € B, such that x € B.
(ii) Let B;,B, € B, Vx € By N By, AB3 € B, such that x € Bs.

Example 3.1. In Euclidean space R", the standard basis is the open ball B(x,r) =
(X € R" : |lx' — x|| < r}, which generates the open sets as the unions of open balls in the
topology called standard topology.

The open balls in R” defined based on the distance ||x' — x|| can be generalized to
general topological space.

Definition 3.3 (Metric Space). A metric space is a set X with a binary function
d: XxX — Rcalled distance function which satisfies the following items Vx,y,z € X.

(1) d(x,y) >0, d(x,y) = 0if and only if x = y.
(i) d(x,y) = d(y, x).

(ii1) d(x,2) < d(x,y) +d(y,z)

If there exists such a distance function d in X, the topology induced from d is the
collection of all open balls defined as B(x,r) = {x’ € X : d(x,x’) < r}. For every two
points x,y € X with such induced topology, there exist at least two disjoint open sets
U and V such that x € U, y € V. For example, U = B(x,r), V = B(y,r) and r = %d(x,y).
Note that this separation property, called as Hausdorff, is not satisfied in general
topological space.

Definition 3.4. A topological space X is called Hausdorff if for any two different
point x,y € X there exist two open sets U and V such that UV =@ and xe U, y e V.
X is called connected if there is no such pair of two open sets which satisfy UV = @
and X=UUV.

The above concepts are for single set X. It is useful to consider the relation be-
tween two topological spaces, which brings the concept of function.

Definition 3.5. A function (aka map) f : X — Y is a relation between two topological
spaces X and M such that for any element x € X, there exists only one element f(x) € M.
It is a bijection if Vy € Y, f~'(y) € X exists and is unique. It is continuous if for each
open set U C Y, the inverse image f~'(U) c X is also open.
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It can be seen that the above definition of continuity is a generalization of the well-
known e-6 definition for the function between two Euclidean spaces. The function can
be used to define topological equivalence between two topological spaces. When
two topological spaces are equivalent, all their elements and open sets are related by
a continuous bijection, called homeomorphism.

Definition 3.6. A function f : X - Y is a homeomorphism between two topological
spaces X and Y, if f is a bijection and both f and f~' are continuous. If there is a
homeomorphism between X and Y, we call X is homeomorphic to Y.

Since Euclidean space is well studied, it would be useful to generalize concepts
from Euclidean space to topological space by locally relating the topological space to
an Euclidean space via a homeomorphism.

Definition 3.7 (Topological Manifold). A d dimensional topological manifold X
is a Hausdorff space with a countable basis such that every point x has a neighbor-
hood U € X homeomorphic to an open set py(U) € R?, where the local homeomorphism
oy 1 U e X - ¢y(U) € RY is called a coordinate chart on U. If ¢y (U) is an open set
of half plane RY = {x = (x1,--- ,x,)T € R? : x, > 0}, then X is a topological manifold
with boundary.

Based on the definition, topological manifold X is covered by | J,.x U. The cover
together with the charts, i.e. |,cx(U, ¢v), is called an atlas of X.

Example 3.2 (Topology of Sphere). The sphere S” is a subset of R>. The topology
of S? is the subspace topology of R>, i.e. a set U(\S? is called to be open in S?* if
U c R? is open in R®. A small enough local neighborhood of S* is a surface patch
can be represented as two parameters, which means the dimension of S is 2 and the
neighborhood is homeomorphic to a neighborhood of R>. For i = 1,2,3, consider the
hemispheres U} = {(x1,x2,x3) € S* : x; > 0}, U7 = {(x1,x2,x3) € §? : x; < 0. These 6
hemispheres are open sets of S. Then the 6 homeomorphisms e Ur CS — (U7 C R?
can be simply chosen as ¢ (x1,x2,x3) = (X1, , X1, X1, -+ , X3). These 6 hemispheres
and corresponding homeomorphisms form an atlas in S*. Note that the neighborhood
can be even much bigger. For example the neighborhood can be U = S* — {(0,0,1)} =
{(x1,x2,x3) € S? & (x1,x2,x3) # (0,0,1)}, and the homeomorphism can be chosen as the
stereographic projection. However we can not find a global coordinate chart from
S? to R? because they are is not homeomorphic. The analysis here can be used in d — 1
dimensional sphere S¢7!.

Example 3.3 (Topology of the Space of Positive Definite Matrices). Sym] is a topo-
logical manifold which is locally homeomorphic to the space of 3 X 3 symmetric matrix
Syms. The space of 3 x 3 symmetric matrix with non-negative eigenvalues is a topolog-
ical manifold with boundary. The boundary contains all matrices with non-negative
eigenvalues and at least one zero eigenvalues. The coordinate chart for these two spaces
can be chosen as the identity map to Syms.
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Figure 3.1: Sketch map for local coordinate charts and transition map.

3.1.2 Differentiable Manifold
Differentiable Structure and Definition

For two charts ¢y and ¥y with overlapping domains U and V, the transition func-
tion
Yy ogy : euUNV)CRY - yy(UNV)cRY (3.1)

is a homeomorphism from a subset of R? to another subset of R?. yyog;! is continuous
based on the definition. Please see Fig. 3.1 for the sketch map of local coordinate
charts and transition map.

In order to perform calculus in X, we need this transition function is not only
continuous but also differentiable. The transition function yy o ¢! is called C* dif-
ferentiable, or C* for short, if its partial derivatives are all k times differentiable.
An atlas is Ct if all possible transition functions in it are C*. A topological manifold
can have many atlases. For two atlases A; and A, of a manifold, their combination
is still an atlas. However, if A; and A, are C* differentiable, their combination may
be not C* differentiable. If their combination is still C* differentiable, these atlases
are called to be compatible. The maximal C* atlas, also called differentiable
structure, is the atlas which contains all compatible C* atlases. The maximal atlas
is proved to be unique.

Definition 3.8 (Differentiable Manifold). A C* differentiable manifold is a
topological manifold equipped with the maximal C* atlas.
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Example 3.4 (Sphere as a Differentiable Manifold). Recall the atlas of S*> which con-
tains 6 hemispheres shown in Example 3.2. It is easy to verify that these atlases are
compatible and there exists a maximal atlas which contains all of them.

Normally when we talk about differentiable manifold, we mean the C* differen-
tiable manifold with £ > 1. In the following text, unless specifically stated otherwise,
the term “differentiable manifold” always means a C* differentiable manifold with
k>1.

The transition map has been used to define the differentiability of coordinate
maps. It can also be used to define the differentiability of a general function between
two manifolds.

Definition 3.9 (Diffeomorphism). For differentiable manifold X and Y with dimen-
ston dy and dr, a function f : X — Y is differentiable if for every two charts
v U c X - ouU) e R"mand yy : V ¢ Y — oy(V) € R%, the function
Yv o fogy t ouU) € RM - oy(V) € R® is differentiable. f : X — VY is a diffeo-
morphism if f is a differentiable homeomorphism.

Note that when f : X — VY is a diffeomorphism, based on inverse function the-
orem these two manifolds have the same dimension, i.e. d; = d,. Homeomorphism
is the topological equivalence between topological spaces X and Y. While diffeomor-
phism is the equivalence between differentiable manifolds.

When Y = R! is a Euclidean space, f : X — R! is a scalar function defined in X,
which is essential to introduce tangent vector and tangent space.

Tangent Vector and Tangent Space

In Euclidean space R?, let y : [-€,eé] — R? be a smooth curve passing across p €
R¢ with y(0) = p € R% In the coordinate x = (x1,x2,---,x:)7 € RY, y(1) = x(t) =
10, 22(8), -, xa(D)”, t € [~€,€l. Then v = y'(0) = (x}(0), x50, -+, x,0)" € R% Let
f : R? = R! be a differentiable scalar function defined in a neighborhood of p. Then
the directional derivative of f along v is L2 V)It_ =y, j,’jf le=p dx’lt 0=, Vig -
So the tangent vector v can be seen as an operator on the dlfferentlable functions.

This concept can be generalized into differentiable manifold.

Definition 3.10 (Tangent Vector and Tangent Space). Let vy : [-€,€] —» X with
v(0) = p € X be a differentiable curve cross p in a differentiable manifold X. Let f be
any differentiable function defined in a neighborhood of p. Then the tangent vector
to the curve vy(t) at t = 0 is given by the operator v'(0) that maps function f to its
directional derivative, i.e.

df 4

o (3.2)

YO f =

The space of all tangent vectors in a given poznt p € X is called tangent space and
indicated by T,X.

Let (U,¢) be local coordinate system around p, then f(p) = f(e(p) =
[ x,x2), ® = @(p) = (x1,x2,---,x)7 € RY. Then goy : [-e¢€] € R —
o(y([-€,e) N U) € R? is a curve in RY, which is the image of the overlap between
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y([—€, €]) and U. Thus denote @(y(r)) = x(t) = (x1(1), x2(1), - , x4(£))T € RY, t € [—¢, €], then
the directional derivative of f can be represented as

d
YO = S o = S a0, o)

dxl(f) of _
Z I= Oaxl x(1)=¢(p) (Z i© )(9x, x ()= sa(p))f
So the vector y’(0) can be represented in coordinate chart ¢ by
d
Y = Zx (0)—] (3.3)

Eq. (3.3) shows the tangent vector at p depends only on the derivative y’(0) in a
given coordinate chart. It can be proved that the tangent space 7,X with the usual
operations of functions forms a vector space with the same dimension 4 as X, and a
given coordinate ¢ induces a basis {aix[}f: ,In TpX.

d
0
TpX = {ch(’)_x, L (c1,02,0 0 scq) € Rd} (3.4)

Example 3.5 (Tangent Space of Sphere). Let p € S and y : [-€,¢] — S with
y(0) = p. Let f(y(?)) = |ly(®)|*> = 1 be a function restricted in y(t) which is a constant
since y(r) € 47!, Vr e [- €. e] Choose a coordinate such that p (pl, - pa)t and y(@) =
(x1(0), -+, xa (). Then 3L|, = 2y(0) = 2p, and 0 = LD = 3¢ ()5, =2 3L, X(0)p:
So the tangent space T, -1 i

T,8" = {v = (i, va,-,v) €R: 0T p = 0} (3.5)

The inverse of the coordinate chart, i.e. ¢~!, is a diffeomorphism which actually
maps the local basis system {8%}?:1 from Ty()R? to T,X. This can be generalized into
differentiable function between two manifolds.

Definition 3.11. Let ¢ : X — Y be a differentiable function between two differentiable
manifolds X and Y. For a given point p € X, the pushforward map of ¢ (aka deriva-
tive of ) is a linear map from the T, X to Ty, Y, i.e. p.lp : T,X = TynY. The pullback
map of ¢ is a linear map from Ty,)Y to TpX, i.e. ¢*|, : TynY — TpX.

In other words, VX € T,X and differentiable function f : ¥ — R!, we have foypisa
differentiable function defined in X. Then (¢.X), € Ty»Y is defined as (¢.X)(f) = X(fo

®). VY € Ty, Y and differentiable function g : X — R!, we have gop! is a differentiable
function defined in Y. Then (¢*Y),) € T,X is defined as (¢*Y)(g) = Y(go ¢™1).

3.1.3 Riemannian Manifold
Riemannian Metric

A distance function used to distinguish two different points in a manifold is essential
for manifold statistics and devising algorithms.
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Let y : [a,b] — R? be a differentiable curve in Euclidean space R¢. Then v'(t) for
any given fj € [a, b] is the velocity of the curve at r = 7y, and the length of the curve is
given as

b
L(y) = f Iy’ ()lldz

The line segment connecting two points p, g € R¢ is proved to have the minimal length
among all such differentiable curves y(r) with y(a) = p and y(b) = q. The length of the
line segment is normally used as the distance between p and 4.

For y : [a,b] — X as a differentiable curve in a general differentiable manifold X,
we have shown in last subsection that y/(7)) is a tangent vector in the tangent space
T,i)X. Thus we need to define the length of the curve y(7) in a general differentiable
manifold, which needs to equip a norm induced by an inner product in 7.

Definition 3.12 (Riemannian Metric and Riemannian Manifold). Let X be a
differentiable manifold. A Riemannian metric on X is defined as an inner product
(a symmetric, bilinear, positive definite form) in the tangent space T,X, i.e.

g = T XXT,X >R, peX (3.6)

such that with respect to the coordinate 0:UeX - RY o(p) = (x1,x2,+ ,xq) € @(U), the

function g;j(x1, X2, , Xq) def (L I ax )p is differentiable in U. Riemannian manifold

(X, ), or written as (X, {-,)), isa dtfferentiable manifold X together with a Riemannian
metric g or {-,-).

Recall that for a given coordinate ¢ : U € X — R%, o(p) = (x1,x2,---,xq) € @(U),
{a%}f:l forms a basis in 7),X, which defines an d x d positive definite matrix G = [g;;]
with the elements g;;. The matrix G is the local representation of Riemannian metric
under coordinate ¢. Thus for two tangent vectors X = Zd Xioe ‘9 and Y = Z

lax ’
their inner product is

X.Y), = <Zx Z Yi— Gy (3.7)
where x = (X1, X>,--- ,X,)" andy = (Y},Ys,---,Yy)! are the local representations of X

and Y under ¢. Please note that for given X, Y and metric g,, different coordinates
will obtain different representations of the basis { (;1 } , X,y and G. But the inner

product (X, Y), = # Gy remains the same.

With the Riemannian metric, the norm of tangent vector X = Z X,(W is

X1, € J¢X, X), = VaTGx (3.8)

For the last two layers, we have shown homeomorphism and diffeomorphism as
the equivalence respectively between two topological manifolds and differentiable
manifolds. With the additional Riemannian metric in the third layer, the equiva-
lence between two Riemannian manifolds is called as isometry which means in the
sense of preserving lengths of curves in addition to diffeomorphism.
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Definition 3.13. Let (X, (-, -)x) and (Y, <, )y) be two Riemannian manifolds. Let f :
X — Y be a diffeomorphism. Then f is called as an isometry if (u,v)x = (f.u, f.U)y,
VYu,v e T,X, p € X. If the metricin (-,-)y is defined such that diffeomorphism f becomes
an isometry, we call the metric {-,-)y is induced by (X,{-,-)x)and f: X - Y.

Please note that the term “metric” in “Riemannian metric” is different from “met-
ric” in “metric space” in Definition 3.3. The “metric” here is a metric tensor which
describes an inner product in the tangent space of one point. While the “metric” in
Definition 3.3 is a distance function defined for any two points, which is the geodesic
distance shown as follows.

Geodesic

With the Riemannian metric, the length of a differentiable curve y : [a¢,h] —» X in
Riemannian manifold X is given as

b b
LGy) = f I Oll o = f N (3.9)

Note the length is independent with the chosen coordinate system, since the inner

product [y’ (Dllyq) = (¥’ ),y (1)) is independent of chosen coordinate.

Definition 3.14 (Geodesic). The geodesic distance between two points p, q in a
Riemannian manifold X is the infimum of the length among all differentiable curves
v : [a,b] - X with y(a) = p, v(b) = g, i.e.

d(p,q) = inf{L(y) : y(¢) is continuous and piecewise differentiable, y(a) = p,y(b) = g}
(3.10)
A geodesic between p and q is a piecewise differentiable curve with the minimal length

d(p,q).

Please note three things. First, we relax the constraint such that the curves may
not be differentiable in some discrete points, because the discrete points have no
contribution in the integral. Second, the geodesic may not exist, which means the
infimum of length can not be reached by a curve. Third, if a geodesic exists, there
may be more than one geodesic between two points.

It can be proved that the distance defined in Eq. (3.10) satisfies the conditions
for distance function listed in Definition 3.3. So with the Definition 3.14 of geodesic
distance and Definition 3.3 of the metric space, the Riemannian manifold becomes a
metric space if any two points have a geodesic.

The geodesic can be obtained by minimizing the length functional in Eq. (3.9),
which is a Euler-Lagrange equation and can be solved by standard calculus of
variations technique [Spivak, 1999, chap. 9]. Then we obtain the geodesic equa-

tion as
d?xy dx;dx

d
— UZ_] Lo ))EE =0 (3.11D)
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Figure 3.2: Tangent space T,S?, exponential map Exp,(v), geodesic Expy(rv) and cut locus p
for p € S%.

where x;(r) is the i-th component of y(f) under a given coordinate, i.e. y(r) =
(x1(®), x2(2), - -+, xq()T. rfj is the Christoffel symbol defined as

z : ag m ag' agi'
km Zoym im J
2 ax, 8)6]‘ axm) ( )

where {g/"} is the components of G~! that is the inverse of the metric tensor matrix G.

Example 3.6 (Geodesic in Euclidean Space). In R?, g; ;= 6;j and G is identity matrix.

So Ffj =0. Then dd’ﬁ" = 0. So y(?) is the straight line segment connecting two points.
Example 3.7 (Geodesic in Sphere [Spivak, 1999, chap. 9]). As we have shown that
the tangent space T,S"! for a given point p is an d — 1 dimensional Euclidean space.
See Fig 3.2. So the Riemannian metric for T, is naturally chosen as the Euclidean
metric g;j = 6;j. For given two points p,q € S4-1, they are two vectors in RY starting
from the original point. Let E* be the plane spanned by these two vectors, and let
C = E*NSY"! be the great circle (equator) through these two points. Then consider
an isometry f : 471 — S defined as the reflection through the plane E*>. Then if vy
is the geodesic between p and q, I(y) is also the geodesic between them, which means
y = I(y) '. In other words, y ¢ C = E*(NS%!. So the geodesic between two points
in S* is a part of the great circle which is smaller than semi-circle. For two points
which are not antipodal, there exists only one great circle C = E>(S* ! cross these
two points. Then the geodesic is the smaller arc of the great circle connecting these
two points, which is unique. For two antipodal points, there exist infinite great circles
C = E>N\S* . Then there are infinite geodesics which are semi-circle connecting these
two points.

Proposition 3.1. If y(r) : [a,b] — X is a geodesic between two points p = y(a) and
g = y(b) in Riemannian mgnifold (X, ¢ )x), then 1Y Dllywy = 1Y @llyw) = 1Y D)llyw) ts a
constant for t € [a,b]. So [’ Iy (D)llymdt = (b= @)Y (@)lly)-

1Here we assume p and q are close enough in a neighborhood such that there exists a unique geodesic
between them. See the Proposition 3.2 for the existence of such neighborhood in a general Riemannian
manifold.
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Note that the proof of the above proposition is based on affine connection in
Riemannian manifold. Geodesic can be defined as a 1-dimensional auto-parallel
curve based on affine connection, which is a more formal definition used in many
textbooks and can also result in the geodesic equation in Eq. (3.11). However, in
order to make the text more understandable, we are trying to avoid the technical
concepts which are not used in the following chapters, e.g. affine connection. Thus
please refer some textbooks like [Do Carmo, 1992, chap. 3] for affine connection and
the proof of the above proposition.

Exponential Map and Logarithmic Map

Based on the existence and uniqueness of the solution of ordinary partial equations,
the solution of Eq. (3.11) uniquely exists in a sufficiently small neighborhood when
the initial point y(a¢) = p and initial velocity y’(a) = v are given. This essentially
defines a map from the tangent vector y'(a) = v € T,X to y(b) = q. This map is
formally called as the exponential map shown as follows.

Based on the geodesic equation in Eq. (3.11), let # = Az, 2 > 0, then we will obtain
the same geodesic with scaled parameterization and domain.

Corollary 3.1 (Homogeneity of Geodesics). If the geodesic y(t) determined
by Eq. (3.11) and conditions y(a) = p and y'(a) = v uniquely exists in [—e¢, €], we de-
note the geodesic by y(t, p,v), t € [—¢€,€]. Then the geodesic y(t; p, Av), A > 0 uniquely

exists in [-4, {1 and y(t; p, Av) = y(At; p,v) with t € [-%, 1.

This corollary shows that it is possible for a geodesic to increase its interval of def-
inition by decreasing the velocity v, or vice-versa, which means the definition domain
can be always scaled to [-1, 1] by scaling the velocity v.

Definition 3.15 (Exponential Map). Let X be a Riemannian manifold, p € X and
v € T,X. Then there exists in a local neighborhood [—e€, €] a curve y(t; p,v) such that
v(0) = p, ¥ (0) = v. Assume (1) exits for t € [0,1], then y(t;, p,v) becomes the geodesic
between y(0) and y(1), and the exponential map is defined as

Exp,(v) = y(1; p,v) (3.13)

Based on the homogeneity of geodesics in Corollary 3.1 and the definition of expo-
nential map, we have
¥(t; p,v) = y(1; p, tv) = Expp(tv) (3.14)

which shows that Exp,(tv) as a geodesic locally exists in a sufficiently small interval
[-€, €], Vo e T, X.

Definition 3.16 (Completeness). X is called geodesically complete, if Vp € X, the
exponential map Exp,(v) is defined Yv € T,X. In other words, for any given p € X,
v € T, X, the curve y(t) = Exp,(tv) exists Vt € RL.

If the manifold is not geodesically complete, each point can have a cut locus which
can be defined in the manifold or in tangent space.
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Definition 3.17 (Cut Locus). For p € X, the cut locus of p in the tangent space is
defined as the set of all vectors v € T,X such that y(t; p;v) = Exp,(tv) is a geodesic for
t € [0, 1] and is not the curve with minimal length for t € [0, 1+¢), Ye > 0. The cut locus
of p in the manifold is defined as the image of the cut locus in T,X, which is the set
of points in the manifold where the geodesics starting at p stop being minimizing.

Proposition 3.2. Exp, is a local diffeomorphism from open ball B(0,R) c T,X to
Exp,(B(0,R)) C X. The intersection of the cut locus of p in T,X and B(0,R) is empty.

Proof. Exp, is a function from a subset of 7,X to a subset of X. Thus its pushforward
map is Exp,.(v) = dEfo(w) lizo = 2EL2)) o = v, which means Exp,. is an identity map
in T,X. So based on inverse function theorem, there exists an open ball B(0,R) c T,X
such that Exp, : B(O,R) c T,X — Exp,(B(0,R)) c X is a diffeomorphism. Vv € B(0,R),
Expp(tv) with ¢ € [0, 1] is a geodesic, which means it has not reached the cut locus of p

based on the Definition 3.17. O

The above proposition shows that the maximal radius for such open ball B(0,R)
which makes Exp, as a diffeomorphism is dependent on the cut locus. The open ball
B(0,R) is in T,X. Denote its image Exp,(B(0,R)), a geodesically open ball in X, by
Bx(p,R) = {x € X : d(p,x) < R}. Since exponential map is a local diffeomorphism, its
inverse is well defined locally and is called as the logarithmic map.

Definition 3.18 (Logarithmic Map). For two points p,q € X, if there exits v € T,X
such that Exp,(v) = g, the logarithmic map is defined as

Logp(q) =v (3.15)

Based on the definitions of exponential map and logarithmic map, we have
Log,(Expy(v)) =v, Exp,(Logy(q) =q (3.16)
The geodesic y(¢) connecting p and ¢ such that y(0) = p and y(1) = g, if it exists, is
y() = Exp,(tLogy(q)), t€0,1] (3.17)

Example 3.8 (Exponential Map and Logarithmic Map in Sphere). We have shown
in Example 3.7 the Riemannian metric in S%! is ¢; j» and the geodesic y between two
points p,q € S ! is in the great circle C ¢ E> where E? is the 2 dimensional plane
spanned by p,q and original point. Let v = Log,(q) € TPS‘H, then p, g and v are all in
E?, because y C E*. Since vLlp, iy and p form an orthonormal basis in E*. So y(1) can
be represented as

v
lloll’
Considering 1 = |y®I* = a*(t) + b*(1), ¥(0) = p, we can set a(t) = cos(h(r)) and b(r) =
sin(h(1)), then

v(®) = a(t)p + b(1) te[0,1] (3.18)

[ 4
lloll”

Then considering |ly’ @) = Iy’ (0)|| = ||v]| based on Proposition 3.1, we have

y(t) = cos(h()p + sin(h(t)) where h(0) = 0

Ioll = @l = || = sincho) @p + costhinm @ = W @)
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Considering h(0) = 0, we have h(r) = ||v||t. Then the geodesic is

v

¥(1) = cos(llvll)p + sin(|[v]|r) TR [0,1] (3.19)
The exponential map is
) v
Exp,(v) = y(1) = cos(|lvlhp + sm(llvll)m (3.20)

Please note that the geodesic distance fol v(H)dr = |[v|| is the distance of the arc, also
the angle ¢ between the vector p and y(1) = g because the radius of S* ' is 1. The
logarithmic map is the inverse of exponential map, so it is

q— pCOSgD
llg — pcos ¢l

Based on the Definition 3.17, the cut locus at p in S? is its antipodal point —p, and the
cut locus at p in TPS"‘1 is the circle with radius of n. Exp, maps all vectors in T,,Sd‘1
with norm 2xn to p, where n is any non-negative integer. Note that S?~! is geodesically
complete based on Definition 3.16. The maximal radius of the local open ball B(p,R)
in Proposition 3.2, which makes Exp, be a diffeomorphism, is R = n. See Fig. 3.2 for
the specific case of S2.

Log,(q) = ¢, where ¢ = arccos(p! q) (3.21)

3 2 STATISTICS ON RIEMANNIAN MANIFOLD
[ ]

Compared to the materials in the last section which can be found in exhaustive
textbooks, statistics on Riemannian manifold is a recent emerging area. There are
indeed some monographs which focus on theoretical statistics in some special man-
ifolds [Chikuse, 2003; Mardia and Jupp, 2000]. However in the view of medical im-
age analysis applications in this thesis, we are interested in statistical computing on
manifold valued data. Most materials for this specific topic are distributed in some
papers or theses in last several decades [Kendall, 1990; Karcher, 1977; Pennec, 2006;
Fletcher, 2004]. Thus we only list here some theoretical results used in Chapter 6,
which have been also used in computer vision [Li et al., 2008; Subbarao and Meer,
2009], statistical shape analysis [Dryden and Mardia, 1998], medical image analy-
sis [Fletcher et al., 2009; Pennec, 2006; Cheng et al., 2009b,a, 2011a], etc.

For statistical computing on manifold valued data, there are two ways, i.e. extrin-
sic way and intrinsic way. In extrinsic way, the manifold X is embedded into a higher
dimensional Euclidean space R?. This embedding always exists based on Whitney
embedding theorem. Thus statistical computing can be performed in Euclidean
space, then the final results in Euclidean space are projected back to the manifold X.
Extrinsic way is dependent on the chosen coordinate and maps. While intrinsic way
is independent on chosen coordinate, which is shown in this section.

With the tools described in last section, we can perform integral in Riemannian
manifold X. The length of a geodesic is the integral along the geodesic which is a
1-dimensional auto-parallel submanifold. It is possible to perform integral in high
dimension, where the measure, or called the infinitesimal volume element, is defined

as dV = [det(G)|dx 2.

%It needs more technical materials which I am trying to avoid in this thesis.
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This measure can be used to define distributions in manifold X such that they
have the PDF px(x) > 0, fX px(@®)dV = 1. Then it is possible to calculate some statis-
tical quantities, to compare measurements, to perform hypothesis test, etc [Kendall,
1990; Karcher, 1977; Pennec, 2006; Fletcher, 2004].

With a distribution px(x) defined in a Riemannian manifold X, the expectation of
function f(x), denoted by Ex[f(x)], is

Exlf@)] = fx F@)px @)V = fx F@)px@) V[ deGldw (3.22)

In discrete case with n samples {x € X}, px(®)V[det(G)|dx is given by weight
vector w = (wi,wa, - ,w,)" and w; is the probability for #©, w; > 0, 3%, w; = 1. Then
for the function f defined in the samples given by a vector f = (fi, /.-, fu)!, its
expectation is

Ewocxy If1= ) wifi = w'f (3.23)
i=1

In practice, normally we do not know the probability px(x) in the manifold X,
What we obtain is a limited number of random samples {x? € X} and the measured
values of function f(x) at these samples. How to estimate the probability density
function px(x) in Riemannian manifold from random samples is another topic [Pel-
letier, 2005], which is much difficult in practice especially when only limited number
of samples obtained in a high dimensional manifold. In this thesis, we only consider
the expectation given in the discrete case in Eq. (3.23), where the weight w is nor-
mally pre-fixed.

3.2.1 Riemannian Mean and Variance

For x € X and n samples {x € X}, consider the variance function
o) & Z wid(x, x7)? (3.24)
i=1

where d(x,x?) is the geodesic distance from x to x, and w = (wi, w2, - ,w,)! is the
weight vector.

Definition 3.19 (Weighted Riemannian Mean [Fréchet, 1948; Buss and Fillmore,
2001; Karcher, 1977; Kendall, 1990]). The weighted Riemannian mean (or called
Fréchet mean, or Karcher mean) is defined as the minimizer of the variance function
a?(x), denoted by w,,

n

[T & arg min o (x) = arg min Z wid(x,x)? (3.25)
xeX xeX T4

When w; = %, w,, is called as the Riemannian mean, denoted by n, and o def a’(n) is
called the variance.
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In Euclidean space, the minimization in Eq. (3.25) has global solution m,, =
> wix® which is the weighted Euclidean mean. However in a general Riemannian
manifold, weighted Riemannian mean may not exist (unreachable), or may have more
than one solutions which obtain the global minimum of variance function.

In [Karcher, 1977], Karcher considered also the local minima when the variance
function is not convex and has multiple local minima. The local minima of the vari-
ance function are called as Riemannian centers of mass. In this thesis, we just
simply call the local minima as weighted Riemannian means. [Karcher, 1977;
Kendall, 1990] gave some sufficient conditions for the existence and uniqueness of
the global minima of variance function based on the concept of regular geodesic ball.

Definition 3.20 (Regular Geodesic Ball [Karcher, 1977; Kendall, 1990]). The open
ball Bx(p,R) in Riemannian manifold X is called a regular geodesic ball if

(i) HR < %n, where H? is the supremum of sectional curvatures in Bx(p,R), or zero if
the supremum is negative.

(it) the cut locus of p does not meet Bx(p,R).

The local open ball which makes Exp, as a diffeomorphism has been discussed in
Proposition 3.2. The regular geodesic ball is such a local open ball which also satisfies
HR < ir.

2

Note that [Kendall, 1990] also proved an important property of regular geodesic
ball.

Proposition 3.3. Let Bx(p,R) be a regular geodesic ball in Riemannian manifold X
as the Definition 3.20, and x,y € Bx(r). Then x, y are connected by one and only one
geodesic within Bx(p,R).

This proposition shows that for any point x in a regular geodesic ball Bx(p, R), the
cut locus of x does not meet Bx(p,R). So (ii) in Definition 3.20 can also be replaced by
“(@i1) the cut locus of ¢ does not meet Bx(p, R) for at least one g € Bx(p,R)”.

Theorem 3.1 (Existence and Uniqueness of Riemannian Mean). Based on the anal-
ysis of regular geodesic ball, Kendall [Kendall, 1990] and Karcher [Karcher, 1977]
proved the following sufficient conditions for the existence and uniqueness of Rieman-
nian mean in continuous case.

e [Kendall, 1990] shows that if the support of px(x) is contained in a regular
geodesic ball Bx(p,R), then there exists one and only one Riemannian center of
mass x € Bx(p, R).

o [Karcher, 1977] shows that if the support of px(x) is contained in regular
geodesic ball Bx(p,R) and Bx(p,2R) is also a regular geodesic ball, then the vari-
ance function o*(x) is a convex function with respect to x and has a global min-
ima in Bx(p,R).

Note that these two results can be also used in discrete case by considering px(x)
as discrete probability distribution defined in points {x® e X ¥ ,- So if all samples
are in a regular geodesic ball Bx(x, R), the Riemannian mean defined in Eq. (3.25)
uniquely exists.
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These two results are applicable to general Riemannian manifold. For S%!, the
curvature is the constant 1, which means for any p € S%!, Bs1(p,R) is a regular
geodesic ball if R < . Based on Proposition 3.3, if all samples {x(‘)} are all in a hemi-
spheres, the Riemannian mean u,, uniquely exists. Note that Theorem 1 in [Buss
and Fillmore, 2001] also proved this result for S¢~! based on the analysis specific to
S-!, [Buss and Fillmore, 2001] also proved some other interesting results.

Theorem 3.2 ( [Buss and Fillmore, 2001, theorem 71). Suppose {x) € S*'}"  are n
points in a hemisphere of S"!, and that it is not the case that n = 2 with x(l) and
x? antipodal. Then the convex hull C of {x)" ? exists and is equal to the set of
weighted Riemannian mean w,, generated by all possible w, 3! w; =1, w; > 0.

To find the local minima of the variance function o2(x), we can perform gradient
descent method [Pennec et al., 2006]. The gradient of o%(x) is

Vol (@) = -2 ) wiLogx(x") (3.26)
i=1

Then the gradient descent iteration is given as

1 - ,
u]{;I = Expulkv(—zrkVO'Z(x)) = Expys, (Tk Z wiLogyx (x(’))) (3.27)
i=1

where u’,j, is the estimated m,, in k-th iteration and 7 is the step size.

Note that like the standard gradient descent in Euclidean space normally we need
to choose an appropriate initialization nl, and choose 7; as a sufficiently small value
for convergence. While in $¢°!, [Buss and Fillmore, 2001] has proved that a con-
stant 7, = 1 is sufficient for convergence of this gradient descent method. [Buss and

Fillmore, 2001] also proposed to use the normalized Euclidean mean Iél’ll : ’” as the
i=1 Wiki

initialization for fast convergence.

3.2.2 Principal Geodesic Analysis

In Euclidean space, after mean is obtained, Principal Component Analysis (PCA) can
be used to transform data into principal subspace spanned by some principal com-
ponents. PCA minimizes the projection of data to the subspace. PGA was proposed
to generalize the PCA from Euclidean space to Riemannian manifold [Fletcher et al.,
2004]. After obtaining the Riemannian mean pu, PGA projects all points {x ¢ X Y
onto the tangent space 7,X, and calculate the covariance matrix as

1 Y i i
P 21 Logu@x™)Logu(x™)" (3.28)

Then like PCA a set of eigenvectors with large eigenvalues can be obtained by eigen-
decomposition of this covariance matrix. For the eigenvector v with eigenvalue A, the
principal component is Expy(av), where @ € R!. @ is normally chosen in [-3 Va,3 V1],
which can be used to demonstrate the variance in that component [Fletcher et al.,

3Set C is the convex hull of a set D if C is the unique smallest convex set containing D.

50



2004; Fletcher, 2004]. So essentially PCA is performed in the tangent space 7,X
and then the principal subspace in 7,X is mapped to manifold X by exponential map
Expy. PGA has been successfully used in shape analysis [Fletcher et al., 2004], tensor
processing [Fletcher and Joshi, 2007].

3.2.3 Riemannian Median

Definition 3.21 (Weighted Riemannian Median). Weighted Riemannian median
is defined as the minimizer of the weighted sum of distance [Fletcher et al., 2009].

n
my, def arg min o (&) = arg min Z wid (2, x9) (3.29)
xeX xeX T4

where w is the weight vector with 3! w; = 1, w; > 0. When w; = %, it is called the
Riemannian median, denoted by m.

When X is a Euclidean space, the minimization of ¢!(x) has global minimum
which is the median in Euclidean space. When X is a general Riemannian man-
ifold, the minimization may have no solution or may have many solutions as lo-
cal minima. [Fletcher et al., 2009] proposed a sufficient condition for the existence
and uniqueness of such minimization, based on the results on the convex analysis
in [Karcher, 1977].

Theorem 3.3 ([Fletcher et al., 2009]). In a Riemannian manifold X, the weighted
Riemannian median my, uniquely exists if diam(U) - H < 3, where the diameter of
U = {9}, denoted by diam(U), is the maximal distance between any two points in
{0 e XY , H = VA if the sectional curvatures of X are positive and bounded by A > 0,

and H = 0 if the sectional curvatures are non-positive.

Note that based on the triangle inequality and Proposition 3.3, if all points U =
{x(")}f:1 are contained in a regular geodesic ball Byx(p, R), the diameter diam(U) < 2R.
So if Bx(y2r) is still a regular geodesic ball, then diam(U)-H < 2R-H < 5 when H > 0
for positive sectional curvatures. Thus we have another sufficient condition which

derives Theorem 3.3.

Theorem 3.4. In a Riemannian manifold X, the weighted Riemannian median my,
uniquely exists if all points U = {x(")};’= | are contained in a regular geodesic ball Bx(p,R)
such that Bx(p,2R) is still a regular geodesic ball.

In order to find the weighted Riemannian median, we can still use the gradient
descent. The gradient of o' (x) is

n

L) = =\ ViLogz (@)
Vol(x) = ; i =) (3.30)

Because the gradient has no definition when x = ), we need to require x # £). Then
the gradient descent, which is iteratively re-weighted least square method, is
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given as

n

. k400
k Z Wt/d(mw’ X )

U = -
i=1 Z?:I W]/d(mllfv’x(]))

- Logm,, @) (3.31)
mit = Expl,‘nw(rkvl,‘nw) (3.32)

where m¥, is the estimated m,, in k-th iteration, 7; is the step size. Like the gradient
ascent method for w,, normally we need a good initialization m{, and a good 7; in
each step. [Fletcher et al., 2009] proved a result for 7; for convergence.

Theorem 3.5 ([Fletcher et al., 2009]). Ifthe sectional curvatures of X are nonnegative
and bounded by A > 0 and diam(U) - VA < 5, then the gradient descent converges for
Tk € [O, 2].

Riemannian median has been proved to be more robust than Riemannian mean
and is more appropriate for atlas estimation in medical image analysis, computer
vision, etc [Fletcher et al., 2009].

3.2.4 Riemannian [’ Mean

Recently [Afsari, 2011] proposed a general result on existence and uniqueness of Rie-
mannian L? mean (center of mass). Consider the function o?(x) as

[ 4@, 3" px(y)dV if 1<p<oco

. (3.33)
arg max csupp(py) 4@, y) if p=o0

oP(x) = {
where supp(px) is the closure of the support of the probability px. The local minima

of oP(x) are called Riemannian L” mean, which is Riemannian mean when p = 2 and
Riemannian median when p = 1.

[Afsari, 2011] proved a upper bound of R such that the Riemannian L” mean
uniquely exists in regular geodesic ball Bx(p,R). First we introduce the concept of
injectivity radius. The injectivity radius at p € X is the largest radius for which
the exponential map at p is a diffeomorphism. The injectivity radius of Riemannian
manifold X is the infimum of the injectivity radii at all points.

Theorem 3.6 ([Afsari, 2011]). In a complete Riemannian manifold X with sectional
curvatures upper bound of A and the injective radius of injX, define

l . . . L .
Ra.p déf{ 7 minfingX, o} if 1< p<2 (3.34)

smin{injX, £} if 2<p<oo

where His VAif A >0, 0if A < 0. Then if supp(px) C Bx(p,R) C X, the Riemannian L?
mean uniquely exists in except some degenerate cases and lies in Bx(p,R), if R < Ra ).

The above theorem on Riemannian L” mean in [Afsari, 2011] agrees with The-
orem 3.1 [Karcher, 1977; Kendall, 1990] when p = 2 and agrees with Theorem 3.4
which can derive Theorem 3.3 [Fletcher et al., 2009] when p = 1.
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3 3 STATISTICAL MANIFOLD
[ }

In last two sections, we have reviewed the basic concepts of Riemannian mani-
fold and some important theoretical results on how to perform statistical computing
on manifold valued data. This section shows the basic theory on how to endow a so-
phisticated Riemannian manifold structure to a parametric family of distributions, so
that we can perform statistical computing on the data which are distributions from
the parametric family.

It starts in the original Mahalanobis distance in 1936 [Mahalanobis, 1936] to
endow a geometric structure in a parametric distribution family and define the dis-
tance between different parameterized distributions. The pioneer work in [Rao, 1945]
generalizes the Mahalanobis distance and opens a new field called Information
Geometry, which has many applications in quantum mechanics [Wootters, 1981;
Braunstein and Caves, 1994; Brody and Hughston, 1998], computer vision [Srivas-
tava et al., 2007; Maybank, 2004], machine learning [Lebanon, 2006; Lafferty and
Lebanon, 2006], etc. In this section, we will review some basic useful concepts in
Information Geometry theory. Please refer [Amari, 1985; Amari and Nagaoka, 2000]
for more formal details.

3.3.1 Basic Concepts in Information Geometry
Parametric Family (PF)

Let Pr(y) be the space of all probabilities defined in a field y, i.e.

Pr(y) = {P(x) : fp(x)dx =1, px) > 0} (3.35)
%

Parametric Family (PF), aka statistical model, is a family of parametric distribu-
tions on the field y in Eq. (3.36), where ¢ is a K dimensional parameter vector in
Parametric Space (PS), denoted by PS c RX [Rao, 1945; Amari and Nagaoka, 2000].
Thus PF c Pr(y).

PF = {p(xlc) : f plxle)dx = 1, p(xle) >0, c € PS C RK} (3.36)
x

Statistical manifold

Let’s consider the following mapping as
¢ : PS cRK = o(PS) = PF cPr(y), ¢:cw pxlc) (3.37)

Obviously ¢ is not a surjective to Pr(y), because there exist some probabilities in Pr(y)
which can not be represented by parameterized model in Eq. (3.36). Normally we
require ¢ is a injective such that the model in Eq. (3.36) is identifiable. Otherwise
there exist ¢! and ¢® such that p(xle") = p(xle®), Vx € .
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So we assume ¢ is a bijective from PS c RX to PF c Pr(y). We also assume p(x|c)
is differentiable with respect to ¢, which means ¢ is differentiable. Then ¢ becomes
a diffeomorphism. Thus we can identify parametric distribution p(x|c) in the family
PF as points ¢ € PS. Next we assume PS is a differentiable manifold embedded
in RX. Then PF with distributions as elements is a differentiable manifold, called
statistical manifold, which is diffeomorphic to PS. The parameter vector ¢ is called
the coordinate.

Please note that all assumptions we made here are very weak, which can be sat-
isfied by most parametric family used in practice.

Example 3.9. Consider the Gaussian distribution in 1D, i.e. N(xlu,o). Thus ¢ =
(w, ), PS = {(u,0)T € R? : u € (—o0,00),0 € (0,00)} which is a differentiable mani-
fold in R2. N(x|e) is differentiable with respect to c.

Fisher information metric as the Riemannian metric

Based on Section 3.1.2, the tangent space in PS is generated by local basis
gent ;E)ace at p(xle) which is isomorphic to the tangent space of PS. The vector
u = Z,-Ii i ”ia% corresponds to the vector u(x) = ;. uim%a_,;w with the same coordi-
nate [Amari, 1985, chap. 2]. Thus we identify these two tangent vector and denote
them by u, and we also identify the two tangent spaces and denote them by 7,.. The

) . a1 .
expectation of the random variable u = };_, ui%(xlc) is 0 because

dlogpxle)\ _ (dpxle) 8 _
Ex( )_L dx = 7 fxp(xlc)dx—O (3.38)

ac,- aci

where we assume the integration over x and differentiation with respect to e can be
freely rearranged.

As we have shown in Section 3.1.3, Riemannian manifold is a differentiable man-
ifold equipped with a Riemannian metric g in its tangent space. For the statistical
manifold PF, there exist many possible inner products to make it a Riemannian man-
ifold. The Fisher information matrix with its (i, j)-th entry in Eq. (3.39) naturally
defines a positive definite inner product, i.e. a Riemannian metric called the Fisher
information metric.

4(©) def Ex(alogap(xlc) 0 logap(xlc)) _ fﬁlog p(xle) dlog p(xlc)p(xlc)dx (3.39)
Ci CJ' % aci aCj
4 f d+/ple) 8 +/p(xle) i (3.40)
x (9cl- 8Cj

It is easy to see this metric has another equivalent form in Eq. (3.41) when the order
of differentiation and integration can be changed.

9? 8% log p(xle)
ii(e) = —E 1 xle)| = - | —=—"“p(x|e)dx 41
gij(e) X(aciacj og p( |C)) fx dcidc; pxle) (3.41)

The above three formulae Eq. (3.39) Eq. (3.40) Eq. (3.41) are normally used to calcu-
late g;; from p(x|e).
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For given two tangent vectors represented by the basis as v = l’i 1 vim‘)ga—’cfi(’clc) and
u= Zf: LU jmoga—f;x'c), the inner product is given as
(v,u)e = E,(u,v) = Z viu;gij(e) (3.42)

ij

Note E,(u,v) = Cov(u,v) is the covariance of v and u because E,(u) = E,(v) = 0.

Geodesic, exponential map and logarithmic map

Since we have constructed the statistical manifold and equip it with the Fisher in-
formation metric, the concepts and results in Section 3.1.3 can be used in statistical
manifold.

The length of the tangent vector v € T, is ||v|| = V(v,v). Then the length of the
curve vy : [a,b] — PS is L(y) = fa b Ily’(0)lldz, where y'(¢) is a tangent vector in T, .
For given two points (distributions) in the statistical manifold, the curve connecting
them with the minimal length is the geodesic. A given point (distribution) ¢ with a
given tangent vector v determines the unique geodesic y(r) with y(0) = e and y’(0) = v.
The exponential map and logarithmic map are diffeomorphisms defined in a local
star-shaped subset U € T,. The boundary of U, if it exists, is the cut locus in tangent
space.

The geodesic, exponential map and logarithmic map can be used as a framework
for statistical computing on distributions from a parametric family.

3.3.2 Examples on Gaussian Distribution and Multinomial Distribu-
tion Families

We have shown in Example 3.9 that the parametric family of Gaussian distributions
in 1D can be seen as a statistical manifold. Here we show another example for the
statistical manifold of Gaussian distributions in K dimension. Please refer [Atkinson
and Mitchell, 1981; Skovgaard, 1984] for the proofs and more details on the geometry
for Gaussian distribution family.

Example 3.10 (Gaussian Distribution Family in K Dimension). Multi-variant Gaus-
sian distribution family in K dimension is given as

_ _ 1 ! Ts-1 : K ,
PF = {N(x|,u,2) = W exXp (—E(x —,Lt) z (x —,L[)) M E R 5 e S}/I?’l;} (343)

We consider PF for fixed T and fixed u respectively.
Considering PF = {N(xly, Y):ueRK ¥ = ZO}, then g;; = Zal(i, J) based on Eq. (3.41)

which is a constant. So lety = 251/2x, y is in Euclidean space with g;j = 6;j. Thus the
geodesic, exponential map, logarithmic map of PF are induced from Euclidean space
by the transform x = 2(1)/ %y. For two Gaussian PDFs with the different mean vectors

ui and o but the same covariance matrix Xy, the geodesic distance is the well-known
Mahalanobis distance [Atkinson and Mitchell, 1981]

d(N(xlu1, %), N(xlpo, X)) = \/(,Ul — )2y — o) (3.44)
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Thus the geodesic distance in information geometry is a generalization of Mahalanobis
distance that is only for Gaussian distributions with the same covariance.

Nouw for fixed uo, we consider
PF = {N(xl,uo,Z) : Ye Sym}}

Note that N(x|u,X) is defined Vx € RX, the space PF is invariant under shift y = x + u.
So the PF can be written as

PF = {N(le) = —leZ‘lx) : Xe€ Sym}}} (3.45)

1

— X

QnKPIE[12 p( 2
where g = 0. Symy, is open convex cone embedded in K x K symmetric matrix space
Symg which is isomorphic to Euclidean space RK’. Matrix exponential function is a
diffeomorpﬁism between S ymg and Symy. The tangent space of a given Z € Symy, Le.
Ts(Symy), is Symg. For given two symmetric matrices A, B € Sym, the inner product
in Symg is naturally defined as Trace(AB). Based on directional derivative analysis

of matrix function, the inner product in Tx(Symy) is [Atkinson and Mitchell, 1981;
Skovgaard, 1984]

1
(A, B)s = 3 Trace(Z'AZ™'B), A, B e Tx(Symj}) (3.46)

The geodesic y(t) with y(0) = X and y'(0) = A € Tx(Sym},) is given as

y(f) = 2 log(R 2 A )22, re[0,1] (3.47)
The exponential map is
Exps(A) = y(1) = 2 exp(S2AS )22, A € Syms (3.48)
The logarithmic is
Logs(A) = X7 log(E I AL )X, A€ Sym! (3.49)

For two Gaussian PDFs with the same mean vector u but different covariance ma-
trices X and X,, the geodesic distance is [Atkinson and Mitchell, 1981; Skovgaard,

1984]
K
(N, 1), i, £2)) = 4| 5 ) log*(4i) (3.50)
i=1

where A; is the eigenvalues of ZIIEZ. For an affine transform A : y — vy, Ax =y, we have

| =

AN, 21), Nylu, £1)) = d(N@lAp, AZ1AT), N(xlAp, ASAT)) (3.51)
= d(N(x|u, Z1), N(x|u, X1)) (3.52)

which means the distance is affine-invariant. The affine-invariant distance has been
successfully used in tensor processing [Pennec et al., 2006; Moakher, 2005; Batchelor
et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi, 2007].
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Example 3.11 (Multinomial Distribution Family). Let’s consider the multinomial dis-
tribution family given in Eq. (3.53).

K K
PF = {p(x[p) =Y pd(x=i): peRX, p;>0, ) pi= 1,} (3.53)
i=1 i=1

The PS is the probability simplex defined by

K
PS={p=<p1,pz,---,pK)TeRK:Zp,:l, pizo} (3.54)
i=1

If K = 3, PS is the equilateral triangle with vertices (1,0,0), (0,1,0) and (0,0,1). The
tangent space of every point is the plane T, = {v € RX : l’i Vi = 0}. Please see the left
side of Fig. 3.3. Although it is possible to calculate the metric and geodesic based on
the formulation in Eq. (3.53), it is convenient to consider the new coordinates under
square root parametrization, where c; = /p;. Then the PF is Eq. (3.55)

K

K
PF = {p(xlc) =) fox=i): eeR¥, ¢;20, Y = 1,} (3.55)
i=1

i=1

The new PS is the positive orthant of the unit sphere S, i.e.
PS = {c =(c1,¢a, - ,cx) €% ¢ > O} (3.56)

The new tangent space at ¢ is T, = {v € RX : Z,-Ii | vici = 0} based on Example 3.5. Based
on Eq. (3.40), the Fisher information metric is

K
gier =432 ‘/gflc) ONPLe) _ s, (3.57)

P aCj

It can be proved that the geodesic distance between p(xlc) and p(xle’) is twice of the
geodesic on SX7!, i.e. d(p(xle), p(xle’)) = 2arccos(e’¢’). Please see the right side of
Fig. 3.3. The square root parametrization for multinomial distribution was explored
early in [Wootters, 1981] and in example 2.4 of [Amari, 1985], and was applied in
different domains in [Srivastava et al., 2007; Lebanon, 2006; Goh et al., 2011]. Please
note the difference between our description and example 2.4 of [Amari, 1985]. [Amari,
1985] considered the new coordinates as c¢; = 2+/p;, which results in PS as a sphere
with radius 2, i.e. 2S% and g; j(e) = 6;j. However the geodesic does not change under
different parametrizations.

Normally a constant multiplication on metric can be ignored in the statistical com-
puting on manifold valued data. Thus we can assume g;; = 6;; after the transform
ci = \/pi. Then based on Example 3.5, 3.7, 3.8, we show two parameter spaces under
p and e representations in Fig. 3.3. In the right side of Fig. 3.3, two points ¢, ¢/, the
geodesic, and the tangent vector v, = Loge(e’) are shown in tangent space Te. The left
side of the figure shows the two corresponding points p, p’, the geodesic and tangent
vector p’ — p for the representation with p.
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C3

1 D2
V1 1 C1

Figure 3.3: Statistical manifold for multinomial distribution in 3D. From left to right: pa-
rameter space PS represented by {p;} in Eq. (3.54); PS represented by {c;} in Eq. (3.56). The
tangent vector, exponential map and geodesic distance are also shown respectively in the
tangent space T, and 7.

3 4 SUMMARY
[ ]

In this chapter, we made an overview of basic concepts and results of Rieman-
nian manifold, statistical computing on manifold and statistical manifold, which are
background knowledge for Chapter 6. We also gave some examples for better under-
standing the materials.

We now summarize the important and useful materials listed in this chapter
which will be used in the Chapter 6.

1. The basic notions of Riemannian geometry described in Section 3.1 will be
implicitly used in Chapter 6.

2. Weighted Riemannian mean and median described in Section 3.2 will be
used in statistical computing on Gaussian distributions and non-Gaussian dis-
tributions in Chapter 6. The existence and uniqueness of weighted Rieman-
nian mean and median are essential for the analysis in Chapter 6.

3. Example 3.10 on Gaussian distributions lists theoretical results on previ-
ous Riemannian framework for tensors (Gaussian distributions) [Atkin-
son and Mitchell, 1981; Skovgaard, 1984; Moakher, 2005; Pennec et al., 2006;
Moakher, 2005; Batchelor et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi,
2007]. Chapter 6 will generalize the Riemannian framework from Gaussian
distributions to general distributions which are not necessary to be Gaussian.

4. The geometry of high dimensional sphere S9! is well studied in Exam-
ple 3.2 on topology, Example 3.5 on tangent space, Example 3.7 on geodesic,
Example 3.8 on exponential and logarithmic maps. Riemannian framework on
sphere including geodesic, exponential map and logarithmic map can be used to
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devise algorithms to process the data on sphere. For example, in [Cheng et al.,
2009b] we proposed to use mean shift on sphere to analyze functional MRI data.

. Example 3.11 showed the statistical manifold of multinomial distribu-
tion, which is essential for our Riemannian framework on ODFs and EAPs
in Chapter 6. [Goh et al., 2011] directly used the results of multinomial distri-
bution family by considering the ODF represented by its histogram. Our formu-
lation in [Cheng et al., 2009a, 2011a] is quite different. We consider the PDFs
(both ODF's and EAPs) whose square roots are represented by linear combina-
tion of orthonormal basis functions. Please see Chapter 6 for more details and
comparisons.
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CHAPTER 4

DIFFUSION MRI

“If I have seen further it is by standing on ye sholders of Giants.”

— Isaac Newton
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CHAP. 4: DIFFUSION MRI

OVERVIEW

During the last several decades, the principles of diffusion Magnetic Resonance
Imaging (AMRI) have been largely developed, which makes dMRI become the unique
noninvasive technique to study white matter and fibers in human brain. This chap-
ter covers the basic principles of dMRI on diffusion phenomenon, MRI measure-
ments, the concepts of Ensemble Average Propagator (EAP) and Orientation Dis-
tribution Function (ODF), and some state-of-the-art reconstruction methods which
estimate EAPs/ODFs and infer some other meaningful information from measured
dMRI signals. Since EAP and ODF are essentially Probability Density Functions
(PDFs) which describe the water diffusion, we also review some works on metric se-
lection for processing distribution valued data. This introductory chapter is inspired
from [Johansen-Berg and Behrens, 2009; Huettel et al., 2009; Tuch, 2002; Le Bihan
et al., 2003; Lenglet, 2006; Hagmann et al., 2006; Descoteaux, 2008; Ghosh, 2011;
Assemlal et al., 2011]. It contains the background knowledge and motivations of the
Chapter 5 and 6,

Organization of this chapter:

We first introduce some basic concepts of diffusion process in subsection 4.1.1, Mag-
netic Resonance Imaging (MRI) and the duality between k-space and x-space in sub-
section 4.1.2. Then the PGSE sequence, Stejskal-Tanner equation, the duality be-
tween (-space and R-space and EAP are introduced in subsection 4.1.3. Section 4.2
gives a review on Diffusion Tensor Imaging (DTI). Section 4.3 lists the start-of-the-
art reconstruction methods for ODFs and EAPs in High Angular Resolution Diffusion
Imaging. Section 4.4 describes the possible metric and processing framework for ten-
sors, ODFs and EAPs.

4 1 BASIC OF DIFFUSION MRI
[ J

Diffusion Magnetic Resonance Imaging (dMRI) is a widely used in-vivo imaging
technique to explore the information of neural micro-structure by probing the diffu-
sion of water molecules. So far it is still the unique non-invasive method to reveal the
micro-geometry of nervous tissues noninvasively and to explore the neural connec-
tome in living human subjects. The diffusion of water molecules is constrained by the
surrounding structures including nerves, cells and surrounding tissue. For example,
qualitatively water molecules diffuse fast along fibers and slowly across fibers. Thus
measuring the diffusion process quantitatively is crucial to understanding the neural
micro-structure and fiber directions.

4.1.1 Diffusion Process, Free Diffusion and Gaussian Propagator

A drop of colored fluorescent dye placed in a glass of water will spread out in the
glass. The color becomes less intense and finally the glass is filled with a solution of
uniform color. This phenomenon, called as the Brownian motion, can be described by
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Fick’s first law [Fick, 1855], which states that the net particle flux J is proportional
to the spatial gradient of the particle concentration C, i.e.

0

= _D—
J Ox

C
where D is the diffusion coefficient. Then consider the continuity equation, the net
influx equals the increase in the concentrate, i.e. _a%J = %C, then we have

0 9?

—C=D— 4.1

atC ax2c (4.1)
This is the diffusion equation in 1D space. The solution of this equation with the

boundary condition C(x, 0) = 6(x — xp) is

1 x-x0)2
Clx, 1) = We-(4n9) — N(xlxo, 21D) (4.2)
T

where N(x|xo,2:D) is the Gaussian distribution with mean x;, and variance 2Dt. The
derivation of this solution can be found in Example 2.3 in details. The free diffusion
in 3D space can be described by diffusion tensor D which is a 3 x 3 symmetric positive

definite matrix.

J=-DVC, -V.J= ﬁC
ot

Then the solution with the boundary condition C(x,0) = 6(x — x) is

_ @20 D x-x)

C(x,t) = ;e 2 = N(x9|0, 21D) (4.3)

V(@nt)*D|

Note that Dr. Einstein also obtained the solution by considering the diffusion dis-
placement Probability Density Function (PDF) or called diffusion propagator P(R,1)
of the particle [Einstein, 1956].

Tp-1R

1
PR,f) = —— ¢ "2 = N(R|0, 2(D) (4.4)

V(@nt)*D|

Then the Mean Squared Displacement (MSD) is

(RRTY = 21D (4.5)

Note that the above equations are for free diffusion. However the water diffusion
in biological tissues may be hindered by biological cells and other environment sur-
rounding tissues. See Fig. 4.1. So far we still do not know the diffusion propagator in
complex environment because it depends on the complex boundary conditions which
are hard to be quantified.

4.1.2 Magnetic Resonance Imaging (MRI), k-space and x-space

The principles of Magnetic Resonance Imaging (MRI) are based on spin which is the
rotation of a particle around some axis. Spin is a fundamental quantum characteristic
of elementary particles like protons, electrons. Some nuclei have the property to align
with a magnetic field By if their mass number, i.e. the summation number of protons
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Figure 4.1: The water diffusion in biological tissues may be hindered by biological cells and
other environment surrounding tissues. The figure is from [Johansen-Berg and Behrens,
2009].

and neutrons, is odd. Essentially their spin aligned along By,. Without the external
stimulus by magnetic field B;, the macroscopic magnetization M = 0. In MRI, the
particles considered are hydrogen nucleus because human body is largely composed
of water molecules. Each water molecule has two hydrogen nuclei or protons. When
a person is inside the magnetic field By of the scanner, the average magnetic moment
of many protons becomes aligned with the direction of the field By, which is assumed
as the z-axis by convection Meanwhile, the magnetization vector of spins precesses
around B with an angular frequency known as the Larmor frequency, i.e.

wo =¥Bo

where vy is the gyromagnetic ratio dependent in the particle. Then the net magne-

tization satisfies M
E = ’yM X BO (46)

When a Radio-Frequency (RF) is applied to the spins with the resonance frequency,
the energy of RF is absorbed by the spins with low energy configuration and changes
them into high energy configuration. Then the spins change their alignments. After
RF is turned off, the spins begin to recover the alignment with By, and finally return
to the thermal equilibrium with low energy configuration. This is called as the re-
laxation phase. Normally 90° and 180° RFs are used, which change the direction of
spin with 90° or 180°. Assume the magnetization M = M, + M, + M., then M(7) in the
relaxation phase satisfies the famous Bloch equation as follows'.

% = yM xB — Til(MZ—MO)— Tiz(My+Mx) 4.7
where B is the magnetic field, My is the original M when relaxation phase starts, T
and 7, are relaxation time for M; in z-axis and M,, M, in x-y plane. The equation
characterizes the relaxation process.

Add a gradient field G(¢) = G.(He, + G,(1)e, + G (1)e; into the static field By = Bge,
then the total magnetic field is

B(t) = Boe, + G(t)e, + Gy(t)e, + G (e,

Thttp://en.wikipedia.org/wiki/Bloch_equations
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Denote M, (x,y, z,t) = M, + iM,, based on the Bloch equation, we have
Mxy(x, y, 2, t) = Mxy(X, y’ Zs O)e_t/Tze_inOte_[y j(‘;(GX(T)eX-'—Gy(T)e’V*—GZ(T)ez)dT

The magnetic resonance signal s(7) is the spatial summation of M,,(x,y,z,t) [Huettel
et al., 2009], i.e.

S(t) = fffoy(x,y’ Z, O)e_t/Tze_iwote_iYfot(GX(T>eX+G«"(T)e>’+GZ(T)eZ)dexdde
xJy Jz

In practice, we do not need to consider ¢=“' because modern MRI scanners demodu-
late the detected signal with the resonance frequency wo. The term ¢~/ is indepen-
dent of the spatial position x. By ignoring these two terms, we have

s([) = fffoy(x,y, z, O)e_iyfo’(GX(T)ex+Gy(T)ey+GZ(T)eZ)dexdde
xJy Jz

For slice zp with thickness Az, we consider

Zo+%
M(xvyvz()):f e Mxy(x>y’Za0)dZ

0—%

The magnetization M(x,y,zo) describes the tissue property at position (x,y,zo) in x-
space. Then we have

s(t) = f f M, (x, e b Gx(mextGy(meydrq,qy, (4.8)
x Jy
Define k vector as
y (" y (!
k = (kJC7 ky)Ta kx = _f G}C(T)dT, k = _f Gy(T)dT (4.9)
27T 0 271' 0

Then the magnetic resonance signal s(k,, ky, z) in k-space is related with net magnetic
M(x, y,z) with a two dimension (2D) Fourier transform, i.e.

s(ky, ky,z) = f f M(x, y, z)e RO ONq xdy = Fpp{M(x, y, 2)}(ky, ky, 2) (4.10)
xJy

where .%,p{-} denotes the Fourier transform in 2D space.

There are several common conventions for defining the Fourier transform?. Dif-
ferent convention obtains different formulae in form, although theoretically they are
equivalent. In dMRI domain, different papers use different conventions, which some-
times makes readers confused. Throughout this thesis, we use the convention of
Fourier transform defined as

f@& = Zlreone & f FemiEdx (4.11)

In this convention, the inverse Fourier transform is

o) = Z @I = f fePmicas (4.12)

2http://en.wikipedia.org/wiki/Fourier_transform
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Figure 4.2: Pulsed Gradient Spin-Echo (PGSE) sequence introduced by Stejskal and Tan-
ner [Stejskal and Tanner, 1965]. ¢ is the duration of the diffusion gradient pulses and A is
the time between two diffusion gradient pulses.
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4.1.3 Diffusion Weighted Imaging (DWI), q-space and R-space
Diffusion Gradient Sequence

The classical diffusion gradient sequence used in dMRI is the Pulsed Gradient Spin-
Echo (PGSE) sequence proposed by Stejskal and Tanner [Stejskal and Tanner, 1965].
See Fig. 4.2 for the sketch map of this sequence. PGSE sequence has two gradient
pulses G(#) with duration time §. The 90° RF pulse, translates the spins into the
transverse plane, i.e. x-y plane, considering the By is along z-axis. Then the spins
precess around By with the resonance frequency wy. Due to local magnetic field inho-
mogeneities, some spins slow down and some spins speed up.® After time A between
two pulses, the 180° RF pulse refocuses the phase of spins so that slower spins lead
ahead and the fast ones trail behind. The spin echo process occurs when the spins
recover their net magnetization.

Note that the PGSE sequence uses rectangular gradient lobes. There are also
other kinds of gradient lobes commonly used in dMRI [Bernstein et al., 2004, chap.
9].

Free Diffusion, Stejskal-Tanner Equation

If there is spin displacement as a result of Brownian motion, we can add the diffusion
term in Bloch equation in 4.7.
dM 1 1
— =YyMXB - —M; -Mpy) - —M, + M,) + V-DV(M - M) (4.13)
dr T, T,
where D is the diffusion tensor used in Diffusion Tensor Imaging in subsection 4.2.
To eliminate the dependence of spin density, we need at least two measurements

3http://en.wikipedia.org/wiki/Spin_echo
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of Diffusion Weighted Imaging (DWI) signals, i.e. S(b) with the diffusion weighting
factor b in Eq. (4.14) introduced by Dr. Lebihan in [LeBihan et al., 1986], and S (0)
with b = 0 which is the baseline signal without any gradient.

1)
b =y*6*(A - §>||G||2 (4.14)

In the b value in Eq. (4.14), y is the proton gyromagnetic ratio, G = ||G|lu is the
diffusion sensitizing gradient pulse.

T=A- %6 (4.15)
is normally used to describe the effective diffusion time [Bihan et al., 1986; Basser
et al., 1994]. The b value is dependent on the sequence, and it is different in different
kinds of lobes in diffusion sequence [Bernstein et al., 2004, chap. 9]. The signal
intensity at each voxel in DWI is dependent on both surrounding structures and given
weighted magnetic gradient [Bihan et al., 1986]. See Fig. 4.3 for the DWI images S (b)
with different b values and different gradient directions u. It can be seen that the
DWI images are very noise, especially for large b values.

With the PGSE sequence described above, the diffusion weighted signal attenu-

ation E(b) = % is given by Stejskal-Tanner equation [Stejskal and Tanner, 1965]

S (D)
E(b)=—— = -bD 4.16
(b) S(0) exp(—bD) ( )
where D is known as the Apparent Diffusion Coefficient (ADC) which reflects the
property of surrounding tissues. Note that in general case ADC D is also dependent
on G in a complex way, however free diffusion assumes D is only dependent on the
direction of G, i.e. u = ﬁ

The early works in dMRI reported that the ADC D is dependent on gradient direc-
tion u and used two or three DWI images in different directions to detect the proper-
ties of tissues [Moseley et al., 1990; Douek et al., 1991]. Then Dr. Basser introduced
diffusion tensor [Basser et al., 1994] to represent ADC as

D(u) = u’Du 4.17)

D is called as the diffusion tensor, which is a 3x3 symmetric positive definite matrix
independent of u. This method is called as Diffusion Tensor Imaging (DTI), which is
the most common method nowadays in dMRI field. See Section 4.2 for more materials
in DTI.

Narrow Pulse Condition, -space, Ensemble Average Propagator

Based on free diffusion assumption, Stejskal-Tanner equation reveals the underly-
ing ADC value (or diffusion tensor) from the measured diffusion signal attenuation.
However, the diffusion of water molecules is hindered by surrounding tissues, espe-
cially in white matter. See Fig. 4.1 for the hindered diffusion. In a general diffusion
process, the Gaussian propagator assumption is not satisfied.

For each voxel in x-space, let p(Rj) denote the spin density at initial time ¢ = 0
and P(RA|Rp) denote the probability that the spin moves from Ry at + = 0 to R, at
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Figure 4.3: DWI images for different b-values and gradients. The data is from one of the
subjects in the real monkey dataset described in Appendix B.2.

b = 1500s/mm?> b = 1500s/mm?> b = 3000s/mm?>
u = (-0.204,0.515,0.833)7 u = (0.198,0.515,0.834)T u = (-0.204,0.515,0.833)7

t = A. Then the diffusion signal attenuation E(G,A,§) = S(S(’@)"S) can be represented

as [Stejskal and Tanner, 1965; Callaghan, 1991]

0
E(G,A,$) = f p(Ro) f P(RA|R0)exp(iy(RA—R0)T ( f G(t)dt))dRAdRo (4.18)
R3 R3 0

where vy is gyromagnetic ratio, S (0) is the baseline DWI signal without diffusion gra-
dient, S(G, A, ) is the DWI signal with imaging parameters (G, A, §). Under narrow
pulse condition, i.e. the duration time § is much smaller than the separation time
between two pluses A, G(¢) is a constant G during 6. Then we introduce q vector as

0
q=qu=_2n"y f G()dt = 2n)"'y6G (4.19)
0

which can be seen as a vector in q-space. We also define the Ensemble Average Prop-
agator (EAP) as

P(R) = f P(Rp)P(Rp + RIRp)dRy, R =Ry —-Ry (4.20)
R3

where R = Rr is the displacement vector in R-space. u and r are unit vectors. Then
the signal attenuation can be written as the inverse Fourier transform of EAP P(R),
i.e.
E(q) = f P(R)exp (2riq"R) dR = Z3, (P(R)}(q) (4.21)
R3
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Figure 4.4: 3D x-space and 3D R-space. EAPs in different regions in brain reflect different
micro-structures with isotropic diffusion, single fiber and crossing fibers. The image is taken
from [Descoteaux, 2008] with the original figures adapted from [Hagmann et al., 2006] and
the brain museum (www.brainmuseum.org/Specimens).

So based on the narrow pulse assumption, the diffusion process at each voxel is
fully described by the so called EAP P(R) which is the average displacement proba-
bility in 3D R-space. Then the diffusion weighting factor can be represented by q,
i.e.

0
b=y"0" (A= DIGI = 4r’7q” (4.22)

where 7 = A - %(5 is the effective diffusion time [Bihan et al., 1986; Basser et al.,
1994]. In the following part of this thesis, E(q) (or written as E(b)) is also called as
diffusion signal if no confusion in context. EAPs in different regions in brain reflect
the different micro-structures and reveal fiber directions. Please see Fig. 4.4, which
also demonstrates the diffusion data is in six dimensional space. The acquisition of
dMRI data is performed in a 6D space, i.e. 3D k-space and 3D g-space. Then the DWI
data S(q) is the Fourier transform of k-space signal, and the EAP is another Fourier
transform of E(q). Thus there are two dualities in dMRI, i.e. k-space and x-space,
g-space and R-space.

Note that P(R) is related with E(q) by a Fourier transform only when narrow pulse
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assumption is satisfied. However in practice, this assumption is not always satisfied.
Several works [Mair et al., 2002; Bar-Shir et al., 2008] showed that even when this
assumption does not hold, the Fourier relation can be still used to obtain good results.
In this thesis we always assume this assumption holds and use this Fourier relation
to obtain analytical formulae in Chapter 5 and 6.

Note that P(R) is assumed to be antipodally symmetric (or called radially symmet-
ric), i.e. P(R) = P(-R), because asymmetrical diffusion propagator violates the princi-
ple of microscopic detailed balance. Because of P(R) = P(-R), we have E(q) = E(—q).
Since E(q) = E(—q), Eq. (4.21) can be written as

E(q) = E(-q) = f P(R) exp(-27iq" R)dR = .Z{P(R)}(q) = f P(R) cos2rq"R)dR  (4.23)
R3 R3
Then the EAP is the Fourier transform of signal, i.e.
P(R) = F{E(@}R) = f E(q) exp(-27iq" R)dq = f E(q) cos(2rq” R)dgq (4.24)
R3 R3

Both Eq. (4.21), Eq. (4.23) and Eq. (4.24) are commonly used in papers. Because of
the antipodal symmetry of E(q), the DWI samples in q-space can be performed only
in a half space, e.g. {q € R*: (0,0, 1)q = ¢g. > 0}.

Historically, people first measured ADC values from two DWI images based
on Eq. (4.16), then tensor image from at least 7 DWI images in DTI [Basser et al.,
1994] in Section 4.2, and finally 3D images of the full PDF-valued images from more
DWI images in High Angular Resolution Imaging (HARDI) in Section 4.3. All these
kinds of images (scalar-valued, tensor-valued, or PDF-valued) estimated from DWIs
let us understand better and better the microstructure of biological tissues.

In dMRI field, there are many research subareas as shown in Fig. 1.1. In this
thesis we are interested in reconstruction methods which estimate scalar, tensor,
PDF-valued images from DWI images, and the metric used to process pre-estimated
PDF-valued data. So in the following sections of this chapter, we will review some
reconstruction models and metrics for PDF-valued data. Different reconstruction
model/method normally uses different sampling scheme in g-space. Please see
Fig. 4.5 on several kinds of sampling schemes used in reconstruction models/methods.

4 2 DIFFUSION TENSOR IMAGING (DTI)
[ J

Dr. Basser proposed to model the ADC as a quadratic form parameterized by the
diffusion tensor D in Eq. (4.17) [Basser et al., 1994]. Then the Stejskal-Tanner equa-
tion becomes

E(b) = 5®) _ exp(—bu’ Du) (4.25)

S(0)
The diffusion tensor D € Sym; is independent of b value and gradient direction u,
where Sym;] is the space of 3 x 3 symmetric positive definite matrix. D can be eigen-
decomposed into three positive eigenvalues and corresponding eigenvectors, which
is useful to define some scalar indices containing biological meaning. See subsec-

tion 4.2.2.

Dy ny Dy,
D= ny Dyy Dyz = /llvlv]T + /12020; + /131)31)‘%w (426)
Dy, Dyz D,
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(a) sampling in DTI (b) sampling in DSI (c) single shell sampling (d) sparse sampling

Figure 4.5: Several kinds of sampling in gq-space. The black dot in q = (0,0,0) is the baseline
image without diffusion gradient. Note that although we showed sampling in R?, normally
only samples in a half space is used, e.g. (0,0, 1)q = ¢; > 0. (a) sampling used in DTI, normally
less than 20 DWI images are used; (b) dense Cartesian sampling used in DSI. Note in practice
the Cartesian samples inside a given Ball are used; (c) single shell sampling used in sHARDI
methods, e.g. QBI, DOT etc; (d) sparse sampling used in mHARDI methods, e.g. DPI, SHORE,
SPFI. Note although normally multiple shell sampling is used, any sampling scheme can be
used in mHARDI methods.

The free diffusion in coherent fibers can be represented by Gaussian propagator pa-
rameterized by diffusion tensors. See Fig. 4.6 for the sketch map of tensor represen-
tation and free diffusion along fibers.

In general diffusion process, the EAP P(R) is not a Gaussian distribution, espe-
cially in the area with crossing fibers. In free diffusion, P(R) is Gaussian distribu-
tion parameterized by the diffusion tensor D, which is the Fourier transform of E(q)
in Eq. (4.25), i.e.

(4.27)

_RTN-1
PR) = ﬁ{exp(—4n2TqTDq)} = N(R]27D) = R'D R)

1
J@nt)3D| eXp( 4t

The covariance matrix of the EAP is X = 27D. Please see Appendix 5.8 for the deriva-
tion.

4.2.1 Tensor Estimation

For given measured diffusion signal samples {E(b,-)}?i‘l, rewrite Eq. (4.25) as
—In E(b;) = bju! Du; = B] ¢(D)
where
¢(D) = (Dxx, ny’ sz, Dyy, Dyza Dzz)T
B; = bi(ufuf,2ufuly, 2uius, ufuf, 2ul¥uf, uf.uf)T, u; = (u7, uf, uf)T
Then the solution of least square estimation is
(D) = (B'B)"'BTY (4.28)

where

BT budu} 2byuu, 2byujis byuu 2byu i by —InE(b))
B=| : |- : : : : : : . Y= :
Nyx6 Ngx1

B!, y ~InEby,)

XX X X 4,2 Yoy Y 2 Z 2
sz”N.\.”N,\. 2va“N.;”Nx 2bNrMN5-uN; bquNquNx 2b1\;x1,tquNT bMuquNT
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H,0 Brownian motion Eigen decomposition Ellipsoidal visualization
along the fibers of the DT of the DT
[Poupon, 1999]

Figure 4.6: Diffusion tensor representation from [Descoteaux, 2008].

Diffusion tensor D can be estimated from measured samples of diffusion sig-
nal {E(b;)} through the above simple least square method or weighted least square
method [Basser et al., 1994], or more complex methods which consider positive def-
inite constraint or Rician noise [Tschumperlé and Deriche, 2003; Chefd’hotel et al.,
2004; Koay et al., 2006; Fillard et al., 2007].

Note that although many works estimate tensor D from single shell data, i.e. the
data with single b value, based on Eq. (4.25) the tensor estimation is actually inde-
pendent of the sampling in g-space. Once more than six DWI images and one baseline
image without diffusion are measured, the tensor D can be estimated from various
methods. However, the different sampling has different estimation quality. If single
shell data is used, the optimal b value was reported to range in (700, 1500)s/mm? [Jones
et al., 1999; Alexander and Barker, 2005], and normally about twenty DWI images
are used in DTI in clinical study. Please see Fig. 4.5(a) for the sketch map of the
sampling scheme normally used in DTI.

4.2.2 Scalar Indices of Tensor

Some useful scalar indices can be obtained from tensor D. The most important two
indices are Fractional Anisotropy (FA) and Mean Diffusivity (MD) [Pierpaoli and
Basser, 1996] defined as

pa = V3ID - 3 Trace®)I| _ \ﬁ \/ul — D%+ (= D2+ (A3 = VP (4.29)
V2| 2 B+ 4+
1
MD = 3 Trace() = “-2250 (4.30)

where we assume the eigen-decomposition is D = 1;v,v] + ;0,0 + 30305, 41 > 1, > 43,
and A = w MD and FA have been used in many clinical applications [Mori, 2007;
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Figure 4.7: Tensor field and the scalar maps estimated from the monkey data with » =
1500s/mm? described in Appendix B.

Johansen-Berg and Behrens, 2009]. For example, MD is known to be useful in stroke
study. [Westin et al., 2002] proposed the linear, planar and spherical anisotropies
which describe the elongated, oblate and spherical shape configurations of tensors.

A -2 A - 20— ) 303

LA:—’ - 5 . 5 . 5 > = 0
Al + A2 + A3 A+ + A3 A1+ A+ A3

(4.31)
These indices can be obtained from the eigenvalues of D. The eigenvectors of D are
also very useful. The first eigenvector corresponding to the largest eigenvalue can be
used as the estimated fiber direction. It can also be encoded in Red-Blue-Green (RGB)
map to describe the fiber directions. The tensor D itself can be visualized by a ellip-
soid, then the tensor field becomes ellipsoid field. Please refer Fig. 4.7 for the tensor
field and various scalar maps estimated from the monkey data with b = 1500s/mm?>
described in Appendix B, where the Geodesic Anisotropy (GA) is introduced in the
Riemannian framework for tensors in subsection 4.4.1.

Summary of Advantages and Limitations:

v DTI only needs more than 6 diffusion weighted images and one baseline image.
Normally around 20 DWIs are used in DTI model. See Fig. 4.5

v DTI provides some useful scalar indices like FA and MD which have many ap-
plications in clinical studies.

v The Gaussian propagator is adequate to model the areas with isotropic diffusion
or single dominant direction of diffusion.

X Gaussian assumption is not appropriate in whole brain. DTI model can not
represent complex fiber configuration like fiber crossing.
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4 3 HIGH ANGULAR RESOLUTION DIFFUSION IMAGING
° (HARDI)

The term High Angular Resolution Diffusion Imaging (HARDI) was first proposed
by Tuch [Tuch et al., 1999, 2002], where a finer angular resolution sampling scheme
than conventional DTI sampling scheme was considered. The original HARDI term
in [Tuch et al., 1999, 2002] means single shell sampling (only one b value). See
Fig. 4.5(c). However the mixture of tensor model in [Tuch et al., 1999, 2002] actually
can be also used in Cartesian sampling in Fig. 4.5(b) and sparse sampling (multiple
b values) in Fig. 4.5(d). With the development of MRI scanner, the acquisition time
is reduced, which makes multiple shell data more practical and maybe available in
clinical study in the near future. Some research works proposed to estimate Orien-
tation Distribution Functions or EAPs in multiple shell sampling [Liu et al., 2004;
Assemlal et al., 2009a; Ozarslan et al., 2009; Descoteaux et al., 2010]. Thus in this
thesis, the term HARDI methods include all modeling methods beyond DTI. The
HARDI methods which only can be used in single shell data are called as sHARDI
methods. The HARDI methods which can be used in multiple shell data are called as
mHARDI methods.

4.3.1 Generalization of Diffusion Tensor Imaging

Since DTI has been successfully used in clinical study since 1990s, although it is
based on Gaussian propagator, a straightforward idea is to generalize the tensor
model in DTT to non-Gaussian case. There are several ways to perform this general-
ization, including mixture of tensor model [Tuch et al., 2002; Hosey et al., 2005; Assaf
et al., 2004], Generalized DTI [Liu et al., 2004], High Order Tensor (HOT) [Ozarslan
and Mareci, 2003].

Mixture of Tensor Model

Mixture of tensor model is a natural generalization of tensor model, where the signal
is assumed to be a mixture of signals generated from tensors {D,-}l.’i I

K
E(b) = " wiexp(~bu' Dyu) (4.32)

Based on some biological priors, the number of tensors is normally less than 3, typ-
ically K = 2. Unlike tensor model this model can not be solved by least square.
People normally use gradient descent method (typically the Levenberg-Marquardt
minimization) [Tuch et al., 2002] to find a local minimum of the cost function in

N, K 2
. T
{VIVI}_E} JZ:; E;- Z Wi exp(—bjuj Dju)) (4.33)
which is unstable and the result is sensitive to the initial point. Note that for single
shell data, the isotropic part of D;, i.e. T“%(D"), and w; are undistinguishable [Kreher
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et al., 2005], because the above cost function for single shell data can be written as

2
T D; T D;
{mm Z Z w;e ( rac;( )) exp (—buJT. (Di - %()I) uj)

Thus if we choose the new weights and tensors as {w; exp (—b@)} and {Di—wl},

then the cost function has the same minimal value as the cost function with the
weights and tensors {w;}, {D;}. Thus normally some constraints on tensors are con-
sidered in this model. For example, the two minimal eigenvalues A, and A3 in D; can
be chosen as the same value. Tensors {D;} can be chosen as one isotropic tensor and
other anisotropic tensor with 1, = A3 = 0, which is the ball and stick model [Hosey
et al., 2005]. CHARMED model [Assaf et al., 2004] proposed to consider {D;} as a
hindered diffusion part which is close to Gaussian diffusion and a restricted diffusion
part which is non-Gaussian diffusion.

Mixture of tensor model is widely used to generate synthetic data for evaluation
due to many quantities have closed forms in this model. Please see Appendix 5.8 for
the closed forms, and see Appendix A for synthetic data generation using mixture of
tensor model.

Summary of Advantages and Limitations:

v It is a natural extension of DTI model from Gaussian case to mixture of Gaus-
sian case. It can detect the crossing fibers, compared to DTI.

v It provides closed forms for the EAP many useful features of the EAP, which
makes it widely used in synthetic data generation. See Appendix 5.8 and Ap-
pendix A.

X The model selection for number of tensors is an open problem and seems to
be set arbitrarily, although some papers [Behrens et al., 2007] proposed some
possible ways.

X The minimization process depends on the initial point and it takes a long time.

X The radial decay of the mixture of tensor model is close to, but NOT, the Gaus-
sian function. Consider the number of tensors is K = 2 in Fig. 4.8, along a given
direction one component decays fast and the other one decays slowly. For large
b value, the component with slow decay dominates the signal.

Generalized DTI (GDTI)

In Generalized Diffusion Tensor Imaging (GDTI) model [Liu et al., 2003, 2004], the
signal is represented as

ipd D
E(Q)—GXP[Z Dlllz iy

L
_ -1
= exp [Z(Zm)l (A - mé) fo)lz 9 i - --qi] (4.34)

=2
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where

-1

) 1 /

biliz.uil =vYG;,Gi, - G0 (A — m(;)

is the generalized b value, and we use the Einstein summation convention, i.e.
l I

Dfl)lz llqllqlz ¢, means 23 1212 1’ Zz, 1 51)12 z,qthzz i When L = 2’ GDTI be-

comes the DTI model in Eq. (4.25). The generalized diffusion coefficients Dgf). . can

12...1,
be estimated by the least square fitting the samples of In E(q). Since E(q), P%R]) are
related by Fourier transform and P(R) is a PDF, E(q) can be seen as the characteristic
function of P(R) [Liu et al., 2004]. The characteristic function can be represented by

the cumulants Ql(f)lz

@ _exp[z( 2 0" g --qf,] (4.35)

Thus we have the relation between the cumulants and diffusion coefficients as

. (A - l—a) (4.36)

0] Inn®
=(-D'I'D;
Qi =D [+1

1.0 i1ip..

Then based on the property of probabilists’ Hermite polynomial He,(x), we have the
closed form for the EAP as the famous Gram-Charlier A series [Liu et al., 2004]

L (l)
P(R) = N(R|fojz){1+lz; fia- He [Z(R)} (4.37)
where
_R’R
NRIQ ) =
%) (2) (2)
i1ip Q

)

is the Gaussian distribution with zero mean and covariance Qf l) , and Hef?lz (R) is
the l-order probabilists’ Hermite polynomial defined as

R’R a 0 0 R’R
U] —(—1\ _ e ——
He - I(R) =D exp( 2 )(aRil aRiz aRi/)exp( 2 )
= Henl(Rx)Henz(Rx)Hem (R;) (4.38)

where n; = Zk 1 0Cik = )).

Summary of Advantages and Limitations:

v GDTI is model-free. It uses a 3D basis to model the ADC such that it works for
multiple shell sampling in Fig. 4.5(d).

v It provides closed form EAP estimation.

v It estimates the cumulants of EAP, which can be a set of useful scalar indices of
EAP.

X It models the ADC using the polynomial basis, which is not orthogonal. It’s well
known that the basis matrix has large condition number when using high order
polynomial basis to fit the function.
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X Although theoretically the ADC can be modeled as infinite terms, in prac-
tice a truncated order L is needed in Eq. (4.34). However, it was proved
in [Marcinkiewicz, 1939] that the Gaussian distribution is the only distribu-
tion which has a finite number of non-zero cumulants. Thus a truncation order
L only results in a reasonable PDF if the EAP is Gaussian and L = 2 in this case.
For other cases, the estimated EAP and cumulants are theoretically problem-
atic. Moreover, estimation of the PDF from its cumulants is known to be very
problematic [Blinnikov and Moessner, 1998; Ghosh et al., 2010].

High Order Tensor Model, ADC Based Model

High Order Tensor (HOT) model [Ozarslan and Mareci, 2003; Ozarslan et al., 2005]
assumes the diffusion signal is represented as

E(q) = exp(—47r2Tq2D(u)), (4.39)

Sometimes HOT is also called as GDTI in papers, however we call it HOT to distin-
guish HOT in [Ozarslan and Mareci, 2003; Ozarslan et al., 2005] and GDTTI in [Liu
et al., 2003, 2004]. In HOT model, the ADC is independent of radial part ¢, and is
represented as the homogeneous polynomial of u with order L, i.e.

D(u) = ZZ ZDlllz Ap Ui Uiy * e U = Z Dn1n2n3 ?l u? m (4.40)

i1=1i= ir=1 ny+ny+n3=L

where u = (4, uz, u3)’ € S%, L is even because D(u) = —D(u) when L is odd and negative
diffusion coefficients are non-physical. {u"‘ ugz 3 Yny+my+ny=1 18 the homogeneous poly-
nomial basis restricted in S?, which is also called the High Order Tensor (HOT)
basis in dMRI domain. See Section 2.4 for the homogeneous polynomial basis. When
L =2, HOT model is just the DTI model in Eq. (4.25), which means HOT is a kind of

generalization of DTI model.

Note in HOT, the diffusion signal decays as a mono-exponential function, which
is called as mono-exponential decay assumption. With this assumption, if we
know E(gou) with radius g > 0 in one direction, we know all signal E(gu) in the same
direction, i.e.

E(qu) = E(gou)?/% (4.41)

Compared to GDTI which is model-free method, HOT is model-based. Mono-
exponential decay assumption is not satisfied in real decay of signal [Kuchel et al.,
1997], but can be an good approximation of the signal, especially when the » value
is around 1500s/mm? [Ozarslan et al., 2006]. This assumption will be used later to
derive the analytical formulae in Diffusion Orientation Transform (DOT) [Ozarslan
et al., 2006] and exact Q-Ball Imaging (QBI) [Canales-Rodriguez et al., 2009; Aganj
et al., 2010b; Tristan-Vega et al., 2010].

Historically people used both High Order Tensor basis [Ozarslan and Mareci,
2003; Ozarslan et al., 2005] and Spherical Harmonic (SH) basis [Frank, 2002; De-
scoteaux et al., 2006] to estimate ADC from measured signal. See Section 2.5.2 for
the SH basis. The following theorem shows the equivalence of these two bases, whose
proof mainly detailed in Chapter 2.
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Theorem 4.1. The following three bases form the same function space in S°.

e HOT basis, i.e. homogeneous polynomial basis restricted in S, {u’ll lu;2u§3} N
ny+ny+nz=

with even order L.

e Polynomial basis restricted in S> with the order no more than L,

{u'”u"zu’13 with even l and L.

7273 }Osl:n1+nz+n3sL

e SH basis with even order no more than L, i.e. {Y;“(u)}o<l<L,
symmetric spherical harmonic basis defined in Eq. (2.28).

where Y is the real

Proof. This proof is based on Proposition 2.1, Corollary 2.1 and Theorem 2.5. With
even order L, Proposition 2.1 demonstrates the polynomial basis restricted in S with
the order no more than L forms the same space with the homogeneous polynomial
basis, i.e. HOT basis, with order L. With even order L, Corollary 2.1 and Theorem 2.5
demonstrate HOT basis with even L and SH basis with even order no more than L
form the same space. O

HOT model uses single shell data in Fig. 4.5(c), which is a kind of sHARDI method.
Normally the coefficients of HOT basis or SH basis are estimated via simple least
square method. Since ADC D(u) is non-negative definite, some methods estimate
these coefficients by considering the non-negativity constraint [Barmpoutis et al.,
2007, 2009; Ghosh et al., 2008a, 2009; Qi et al., 2010]. The estimated coefficients of
ADC can be used in classification of the isotropic diffusion and anisotropic diffusion in
single direction and multiple directions [Frank, 2002; Chen et al., 2004, 2005]. Some
scalar indices like trace and variance can be defined by the ADC profile D(u) [Ozarslan
et al., 2005].

Based on Theorem 4.1, the SH basis with L < 2 forms the same space as the HOT
basis with L = 2, which is the function space represented by quadratic form u’Du.
This quadratic form has only one maximum which can not represent more than one
fiber directions, which is the main limitation in DTI model. So in HARDI literatures,
the maximal order of SH basis or the order of HOT basis must be higher than 4.
Normally 4 or 6 is used in practice.

HOT model [Ozarslan and Mareci, 2003; Ozarslan et al., 2005] represents ADC
using HOT basis. However ADC modeling like HOT method has its intrinsic and fatal
limitation, i.e. both the maxima and the minima of ADC profile D(u) are inconsistent
with the fiber directions when L > 2 [von dem Hagen and Henkelman, 2002]. Only
when L = 2, HOT model reduces to DTI model, then the minima of D(u) = u/Du
are the maxima of EAP profile P(Ror) for any given Ry which are consistent with
fiber directions. For HOT model with order than L > 2, the maxima and minima
of D(u) correspond with fiber directions with a more complex way, which is still not
known in dMRI if we do not perform Fourier transform to obtain EAP numerically or
analytically [Ozarslan et al., 2006], or perform spherical deconvolution by assuming
a fiber model [Weldeselassie et al., 2010; Jiao et al., 2011]. Spherical Deconvolution
method will be discussed in subsection 4.3.6. Fig. 4.8 demonstrates the ADC D(u) for
the synthetic data generated from mixture of tensor model with crossing angle of 90°.
It shows that
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ADC b = 1500s/mm? ADC b = 3000s/mm?> ODF by Tuch ®,(r) ODF by Wedeen ®,,(r)
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EAP profile with R = 10um R = 15um R =20um

Figure 4.8: Fiber directions and ADC profiles with different » values, two kinds of ODFs,
EAP profiles with different radius R. The data was generated from mixture of tensor model
with two tensors which have the eigenvalues [1.7,0.3,0.3] x 103 mm?/s and crossing angle of
90°. We set 7 = # such that b = ¢*>. The long sticks with blue color along x-axis and y-axis are
the fiber directions, i.e. the eigenvectors with the largest eigenvalues. The short sticks with
yellow color are the detected maxima of the spherical functions. Note there is a coincidence
that the minima of ADC agree with the fiber directions in the case of experiment. However,
in general case the minima and maxima of ADC have a complex relation with fiber directions.

¢ the maxima of ADC do not agree with fiber directions.

e even in this simple mixture of tensor model, the ADC D is actually dependent
on b value, i.e. the mono-exponential decay assumption is violated. For the data
with different b values, the ADC is determined by D = —ll, In E(q), which means
D is dependent on b if E(q) = 3.X | exp(~bu’ D;u).

e there is a coincidence that the minima of ADC agree with the fiber directions in
this specific case of mixture of tensor model with 90°. However, in general case
the minima and maxima of ADC have a complex relation with fiber directions.

Summary of Advantages and Limitations:

v ADC modeling methods like HOT [Ozarslan and Mareci, 2003; Ozarslan et al.,
2005] generalizes the DTI model and avoids the Gaussian propagator assump-
tion in DTI.

v The estimated ADC can be used to define some scalar indices [Frank, 2002;
Chen et al., 2004, 2005; Ozarslan et al., 2005] for classification of different dif-
fusion in the surrounding tissue in voxels.
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v HOT model normally needs single shell sampling with around 60 DWI samples.
See Fig. 4.5(c).

X For the data from different b values, HOT model obtains different ADC, which
means HOT can not be used in multiple shell sampling.

X The maxima and minima of ADC do not agree with fiber directions when HOT
basis or SH basis is used with order L > 4. When L = 2 the minima of ADC can
be used as the fiber directions in DTI model.

X Compared to GDTI which is model-free, HOT assumes mono-exponential decay
of E(q) which is not satisfied in real diffusion. Even in synthetic data from
mixture of tensor model, the mono-exponential decay is violated.

4.3.2 Diffusion Spectrum Imaging (DSI)

Because EAP P(R) is related with measured diffusion signal E(q) in Fourier trans-
form in Eq. (4.24) when narrow pulse assumption § < A is satisfied, a straightfor-
ward idea is to estimate P(R) using fast Fourier transform from exhaustive signal
samples [Callaghan, 1991; Tuch, 2002; Wedeen et al., 2000, 2005]. This technique is
called as Diffusion Spectrum Imaging (DSI).

In practice, only limited number of samples are obtained and § < A is not always
satisfied. [Wedeen et al., 2005] used 515 DWI images in a Cartesian sampling lattice
in g-space and the signal in g-space was premultiplied by a Hanning window to ob-
tain smooth attenuation of the signal at high q values. See Fig. 4.5(b) for the sketch
map of the Cartesian sampling. Please note that in practice the Cartesian samples
inside a given ball, not a given cube, are used. Then the samples inside the cube and
outside the ball can be obtained by extrapolation. Thus interpolation and extrapola-
tion are normally performed on given signal samples {E(q;)} before numerical Fourier
transform. In [Wedeen et al., 2005], ¢ is close to A which violates the narrow pulse as-
sumption. But the results in [Wedeen et al., 2005] are still exciting and show clearly
some crossing fibers, which means that even though the narrow pulse assumption is
violated, the Fourier transform can still obtain meaningful EAPs.

[Wedeen et al., 2000, 2005] visualized the EAP profile, or called iso-surface of
EAP, which is the EAP with given radius Ry, i.e.

P(Ror) = P(Rr)|r=g, (4.42)

The maxima of EAP profile were used to describe fiber directions later in many
HARDI works [Ozarslan et al., 2006, 2009; Assemlal et al., 2009a; Descoteaux et al.,
2010]. See Fig. 4.8 for the EAP profile with different radius R. The larger the ra-
dius R, the sharper the EAP profile is. However, EAP profile with large R has more
estimation error. Thus normally R = 15um is used in EAP profile to detect the fiber
directions [Ozarslan et al., 2006; Descoteaux et al., 2010].

[Wedeen et al., 2000, 2005] also proposed another important feature of EAP, i.e.
the Orientation Distribution Function (ODF), defined as

@, (r) & f " P(R)R2dR (4.43)
0
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Figure 4.9: EAP in 3D R-space, and its two features, i.e. EAP profile (or called iso-surface of
EAP) and ODF. The figure is from [Hagmann et al., 2006].

It is called as ODF by Wedeen, denoted by ®,,(r). ®@,,(r) is the marginal distribution
of EAP P(R), so the integration of ®,,(r) over S? is naturally 1, which means it does
not need artificial normalization factor Z. [Wedeen et al., 2000, 2005] proposed to first
estimate EAP via numerical Fourier transform, then estimate the ODF in Eq. (4.43)
by numerical integration. Historically there are several kinds of ODF's which can be
seen in the following of this section. Like the EAP profile, the maxima of ODFs are
also normally assumed to be the directions of underlying fibers. Please see Fig. 4.9
and Fig. 4.8 for EAP in 3D space and its two features, i.e. EAP profile and ODF.

Summary of Advantages and Limitations:

v Compared to DTI, DSI is a model-free method which avoids Gaussian assump-
tion.

X DSI needs a dense Cartesian sampling in q-space with many DWI images and
a very large range of b value which takes a long time and makes it impractical
for normal scanner. For example, [Wedeen et al., 2005] used more than 500 DWI
images and b value up to 17000s/mm?>.

X DSI uses numerical Fourier transform and an artificial interpolation and ex-
trapolation step, which makes the final results have much numerical error.
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4.3.3 Hybrid Diffusion Imaging (HYDI)

Hybrid Diffusion Imaging (HYDI) proposes to measure data in q-space with multiple
shell sampling [Wu and Alexander, 2007; Wu et al., 2008]. See Fig. 4.5(d) for the
sketch map of such sparse sampling. The HYDI data in the shell with low b values
can be modeled by DTI. The HYDI data in the shell with high b values can be modeled
by Q-Ball Imaging and other sHARDI methods. The whole HYDI data set can be used
in DSI after re-griding data from multiple shell to Cartesian lattice.

HYDI in [Wu and Alexander, 2007; Wu et al., 2008] proposed two useful scalar
features of EAP, i.e. the Return-To-Origin probability (RTO) and the Mean Squared
Displacement (MSD). RTO denoted by Po is the EAP value when R = 0, i.e.

Po = PR)lx-o = P(0) = f E(@)dq (4.44)
R3

RTO is the probability of water molecules that minimally diffuse within the diffu-
sion time A. RTO map can be used in tissue segmentation and some other applica-
tions [Wu and Alexander, 2007]. MSD is the variance of the EAP, i.e.

MSD = f P(R)R'RdR (4.45)
R3

[Wu and Alexander, 2007; Wu et al., 2008] estimate these two scalar indices using
numerical integration. [Wu et al., 2008] also demonstrated that the ODF by Tuch
®,(r) in Eq. (4.47) is proportional to the integration of E£(q) in the orthogonal plane

[, ={qu: u'r=0} (4.46)

It is an important relation between the ODF by Tuch in R-space and the signal E(q)
in g-space, and it is used in exact QBI to estimate ODFs analytically in [Canales-
Rodriguez et al., 2009; Aganj et al., 2010b; Tristan-Vega et al., 2009; Tristan-Vega
et al., 2010]. See the following subsection 4.3.4 for more details on QBI and ODFs.

Summary of Advantages and Limitations:

v The first contribution of HYDI is the idea of multiple shell sampling in gq-space.
v HYDI proposed some useful scalar indices.

v HYDI proposed the plane integration of E(q) to estimate the ODF by Tuch. How-
ever a numerical way was used to estimate the plane integration in HYDI.

X HYDI proposed to use QBI for the data with high » values. However, for the
data in different shells QBI obtains different results, which makes the results
inconsistent.

X HYDI tried to use different models for the data with different b values, i.e. DTI
for data with low b values, QBI for data with high b values and DSI for whole
data set. However, different models/methods may obtain different results which
are hard to be explained.
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X DSI is used in the whole data set after a re-griding of data from multiple shell
sampling to Cartesian sampling, which brings much numerical error.

X The estimation of scalar indices also suffers from the numerical error introduced
by ad hoc interpolation.

4.3.4 Q-Ball Imaging (QBI)

Q-Ball Imaging (QBI) is the most widely used HARDI method. DSI needs a dense
Cartesian sampling with a large range of b value, which makes it impractical [Wedeen
et al., 2000, 2005]. QBI was proposed to estimate the several kinds of ODFs, not
EAP, from single shell sampling demonstrated in Fig. 4.5(c), rather than Cartesian
sampling inside a given ball used in DSI in 4.5(b).

Original Q-Ball Imaging

QBI was first proposed by Dr. Tuch in [Tuch, 2002, 2004] in a numerical way and then
was improved by an analytical way based on Spherical Harmonic basis in [Anderson,
2005; Hess et al., 2006; Descoteaux et al., 2007].

Instead of estimation of EAP, Dr. Tuch proposed to estimate a kind of ODF defined
as

@,(r) < % fo " P(Rr)dR (4.47)

where Z is the normalization factor which makes fsz ®;(r)dr = 1. This ODF is called
as ODF by Tuch and denoted by ®;(r). Note ®,;(r) is different from the ODF ®,,(r)
defined in Eq. (4.43). ®,,(r) is the marginal PDF of EAP which does not need artificial
normalization factor, however, ®@,(r) needs the normalization factor Z to make it as a
PDF.

In DSI, ®,,(r) is estimated from pre-estimated EAP via a numerical integration.
Dr. Tuch proposed to estimate ®,(r) directly from samples of E(q) in single shell data
based on Funk-Radon Transform (FRT). See Fig. 4.5(c) for the sketch map of single
shell sampling. For single shell data with b = 47%7¢?, the FRT of E(q) [Tuch, 2004] in
direction r is the circle integration in the orthogonal plane, i.e.

FRT{E(gow)}(r) = f E(qu)é(q — qo)gdgdu = go f X E(gow)(u’ r)du (4.48)

I, ues

where I, is defined in Eq. (4.46).

FRT{E(qow)}(r") = qo f

ues

E(gow)s(u’r’)du
2

= qo f ( f P(R) exp(—szqouTr)dR) su’r’)du
ues? \JR3

90 f P(R) ( f exp(—2i7qu0uTr)6(uTr’)du) dR (4.49)
R3 N

K(r,x’)

83



CHAP. 4: DIFFUSION MRI

Without loss of generality, we assume r’ = (0,0,1)" is the z-axis, and u =
(sin @ cos ¢, sin @ sin ¢, cos 6", R = R(sin 6; cos @r, sin G sin ¢y, cos )7 = (R,, Ry, RZ)T in Carte-
sian coordinate. Then the kernel K(r,r’) can be solved as

T 21
K(r,r') = f f o(cos 8) exp (—2izrqo (Rx sin@cos ¢ + Ry sin@sin ¢ + R, cos 9)) sin 8d¢do
0 Jo

1 27
= f 8(r) exp (—2miqoR. 1) f exp (—27riq0 (R)C 1 —#>cos¢p+ Ry V1 -1 sin ¢)) dedt
-1 0

(4.50)
21
= f exp (—2m’q0(Rx cos ¢ + R sin ¢)) d¢ (4.51)
0
21
= f exp(2mtigoR sin 6y sin ¢)d¢ (4.52)
0
= 27Jo(2nqoR sin ;) = 21Jo (2nqoR N1 — (x1')2) (4.53)

After setting r = cosf, we have Eq. (4.50). Considering the property of delta func-
tion, i.e. f_ 11 6 f()dt = f(0), we have Eq. (4.51). Using the summation property of
cosine function, we obtain Eq. (4.52). Considering the Bessel integral in Eq. (2.43),
we have the final kernel function in Eq. (4.53), where Jy() is the Bessel function of
the first kind with order 0. See Section 2.5.3 for more information on Bessel function.
Put Eq. (4.53) into Eq. (4.49) and use the cylinder coordinate R = (rg, ¢r, zr)’ Where
z-axis is along r’, then the FRT of E(ggu) is

FRT{E(qow)}(r") = 2rqq f P(R)Jo (2mqoR V1 - (7 1)?) dR
R3

00 21 00
= 2nqo f f f P(rr, $Rr, zr)Jo(2nqorr)rrdrrdOrdzr (4.54)
—o0 JO 0

However based on the definition of the ODF in Eq. (4.47), the ODF can be written as

, 1
O,(r') = if P(rr, ¢Rr, zr)dzR

1 00 2 )
Y f f f P(rRr, ¢r, ZR)O(rR)0(PR)rrdrrdOrdzr (4.55)

Comparing Eq. (4.55) and Eq. (4.54), the estimation of ®,(r) through FRT is inspirit
to approximate the delta function using Bessel function 5Jo(ax). As qo increases,
2rqoJo(2rgorr) will be more close to delta function which will increase the accuracy
of this approximation, because the lobes of Jy become more concentrated around
origin point. However, the signal has smaller values for larger go which results in
low Signal-to-Noise Ratio (SNR). Thus there is a trade-off for ¢y between approxima-
tion accuracy and SNR. Normally QBI works suggest the data with b values around
3000s/mm? [Tuch, 2004; Descoteaux et al., 2007].

Dr. Tuch proposed to estimate the circle integration in FRT using numerical in-
tegration [Tuch, 2004]. The points in the circle in the orthogonal plane need to be
interpolated by sampling points in its neighborhood through spherical radial basis
function. Then the summation of these points in the circle was used to approximate
the circle integration. The numerical QBI was later replaced by analytical QBI based
on the representation of E(q) using SH basis. There were several groups which inde-
pendently proposed the same analytical QBI using SHs. [Anderson, 2005] obtained
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the analytical solution by considering the rotation property of SHs. [Hess et al., 2006]
used addition theorem and rotation property of SHs, and considered Tikhonov reg-
ularization in least square estimation. [Descoteaux et al., 2007] applied 3D Funk-
Hecke theorem to find the analytical solution of FRT. [Descoteaux et al., 2007] also
proposed a simple and useful Laplace-Beltrami regularization scheme in least square
estimation, which was shown to outperform the simple Tikhonov regularization and
later became very popular for general least square estimation of spherical functions
in HARDI domain. See the addition theorem and Funk-Hecke theorem, and their
relation with plane wave expansion theorem in Section 2.5.2 and Appendix 5.7.

Analytical QBI represents the signal E(q) as SH basis, i.e.

L 1
E(gow) = > " cim¥;'() (4.56)

=0 m=-1

where Y}"(u) is the symmetric real spherical harmonic with order / and degree m. See
Section 2.5.2 for more information on SHs. The coefficients {c;,,} are normally esti-
mated from signal samples by minimizing a least square cost function with Laplace-
Beltrami regularization in Eq. (4.59) [Descoteaux et al., 2007].

IBye — E|*> + e Ac (4.57)
where ¢ = (co, - ,crr) is the coefficient vector with (L + 1)(L + 2)/2 elements, E =
(E1,--+,En,)T is the signal vector with N, samples, By, is the Ny x (L + 1)(L + 2)/2 basis

matrix generated by SHs, and A is the diagonal matrix with elements A, = A>(I+1)2.
¢’ Ac is the Laplace-Beltrami regularization term, because based on Eq. (2.32), we
have

AAE@)I = f Z Z Cimdy Y] (w) Z Z (crmApY;" (w)) du

=0 m=-1 r=0m'=-r

=21 Z Z P+ 122 =¢' (4.58)

=0 m=-1

where A, is the Laplace-Beltrami operator defined in Eq. (2.19). The least square
problem has the closed form solution as

c=(BY,By+AN)"'BLE (4.59)

Based on Funk-Hecke theorem 2.7 or Corollary 2.4, the estimated ODF from FRT of
E(q) can be analytically obtained from the estimated {c;,} in Eq. (4.60).

/(1) = —FRT{E(qow (r) = Z Z 27P(0)cin Y} (w) (4.60)

Zi3
where P;(0) is the Legendre polynomial of order / evaluated at 0.

Note in practice the ODF by Tuch ®,(r) in Eq. (4.47) is much smooth. The peaks of
the ODF are only a little higher than the baseline values. Dr. Tuch proposed a min-
max normalization method for visualization of ®,(r) to enhance the peaks of ODFs.
Min-max normalization is a linear scaling to transform the ODF values into [0, 1], and
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it has been a commonly used way to visualize ®,(r) in literature. However, the min-
max normalization also enhances the peaks of the ODF's in the area with isotropic
diffusion. Throughout this thesis in order to better compare ODFs and EAPs, we
visualize ®,(r) using its real values without min-max normalization, except for the
visualization of the phantom data in Appendix B which is known to be more isotropic
than clinical data.

Dr. Tuch also proposed a useful scalar index, named Generalized Fractional
Anisotropy (FA), to describe the anisotropy of the ODF's, which can be seen as a gen-
eralization of previous FA in DTI model.

(4.61)

N NE >
GFA(®,(r)} £ JN Zfﬂ(q’t(rg (®y(r)))
(n = 1) X;5; Ou(r)?

where (®,(r)) is the mean of ®,(r). If the ODF is represented by SH basis with coeffi-
cients {c;,}, the GFA can be represented by

GFA{®(r)}

_ 1) = (Do)l _ Jl %0 (4.62)

10l CYE YL e

because of the orthogonality of SHs.

Summary of Advantages and Limitations:

v Analytical QBI is now the most widely used HARDI method, because it only
needs single shell data to estimate the ODF whose maxima demonstrate the
fiber directions, and it is very easy to be implemented.

v Compared to ADC based modeling like HOT method, the maxima of ODF's agree
with the fiber directions.

v GFA was proposed in QBI, and it is now a standard index to describe the
anisotropy of spherical function in HARDI.

X FRT has the intrinsic blurring effect due to the Bessel function as we have
discussed. Thus the estimated ODF from FRT has intrinsic modeling error.

X The estimated ODF by Tuch from FRT is much smooth so that it needs artificial
sharping techniques to obtain better results. That is because of two reasons.

(a) The ODF by Tuch @,(r) defined in Eq. (4.47) is not a good choice, because
the ODF by Wedeen @,,(r) defined in Eq. (4.43) is theoretically more sharper
than @,(r).

(b) The estimation via FRT has intrinsic blurring effect which obtains smooth
ODFs.

The sharping techniques include the min-max normalization for visualization,
and the spherical deconvolution technique to estimate the so-called fiber Orien-
tation Distribution Function (fODF). See Section 4.3.6 for spherical deconvolu-
tion and the difference between fODF and diffusion ODF.
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X Many papers in HARDI refer QBI as a model-free method because it represents
spherical signal using SHs which forms an orthonormal basis in S?>. However,
QBI actually assumes the radial part of E(q) as a delta function which is unreal-
istic. The burring effect from FRT is the direct consequence from this assump-
tion of radial decay. So we consider QBI as a model-based method with strong
assumption of radial decay of signal.

X QBI can not be used in multiple shell data, because the data from different b
values obtain different ODF's from FRT. Note [Khachaturian et al., 2007] pro-
posed a method to generalize QBI from single shell data to the data sampled in
two shells with both low b value and high b value. Two coefficient sets are esti-
mated from the two single shell data set respectively. Then in each dimension
of the coefficient vector an ad hoc process is used to choose the maximal coeffi-
cient. The fused coefficient vector is set as the final result. The ad hoc method
to combine data from different » values seems inconvincible.

Exact Q-Ball Imaging

The ODF by Tuch is approximated by circle integration in original QBI, which has
intrinsic limitations as we have discussed above. Exact QBI was proposed by several
groups independently [Wu et al., 2008; Canales-Rodriguez et al., 2009; Aganj et al.,
2010b; Tristan-Vega et al., 2009; Tristan-Vega et al., 2010] to estimate ODF's through
a plane integration, not a circle integration.

Based on the famous projection-slice theorem in Fourier transform*, the pro-
jection of P(Rr) along direction r, i.e. the radial integration, equals to the integration
of E(q) in the orthogonal plane II,.. This can be seen easily from the following propo-
sition.

Proposition 4.1. Let f(q) be a symmetric function defined in R> and Z3p{f(q)}(R) =
f(R), then

A 1 1
f f(Rr)dR = = f f(q@dq = = f f(@s(q"r)dq (4.63)
0 2 Jn, 2 Jrs

where 11, is the plane orthogonal to r defined in Eq. (4.46).

Proof. Since f(q) = f(—q), we have f(R) = f(-R) based on the definition of Fourier
transform. Then

f N f(Rr)dR = ! f ) f(Rr)dR = 1 f " ( f f(q) exp(—2m’qTR)dq) dR
0 2 —o0 2 —oo \JUR3

= % f (@ ( f ) exp(—znquTr)dR) dq
R3 —0

1 1
=5 f f(@d(q’r)dq = 3 f Sf(q@)dq
R3 I,

4http://en.wikipedia.org/wiki/Projection-slice_theorem
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Thus we have the following corollary which is a straightforward result of the
above proposition and has been used to estimate both ODF by Tuch and ODF by
Wedeen [Wu et al., 2008; Canales-Rodriguez et al., 2009; Aganj et al., 2010b; Tristan-
Vega et al., 2009; Tristan-Vega et al., 2010; Cheng et al., 2010a].

Corollary 4.1. The ODF by Tuch ®,(r) and ODF by Wedeen ®,,(r) can be written as
the plane integration of in the plane 11, which is orthogonal tor, i.e.

1 1 1
P(r) = - fn E(q)dq, @,(r)= E_ &2 ) 5AbE(q)dq (4.64)

Proof. Considering Proposition 4.1, .Z{E(q)}(R) = P(R) and .Z{AE(q)} = —47°R>*P(R),
where A is the Laplace operator, we have

1 1
0= fn E(adg, @,00=- fn AE(q)dq (4.65)

The Laplace operator in 3D can be separated as

0* 1 (9(, (9)

A= —(q —) + lAb, Ab = ! 96_9

—_——— + —_———
sin2g 02 singag\"
where A, is the Laplace-Beltrami operator in S>. Then

1 10,,0Eq, 1 (1
Pulr) = 8ﬂ2f 26q(£] dq )dq 82 n,thE(q)dq (4.66)

1

LA ) 28E(q) 1 AE(qu)\|”
= dgd¢ = —— E —
87r2 f qaq aq )49 SHZJ; ( (W +q dq )

0

dop = —
¢47r

Note in above formula, we use the prior of E(q) that for given direction u, E(Ou) = 1,
limy—,e E(qu) = 0 and the assumption of limy_ ¢ E(q“) =0. -

OE(qu) _

Note the assumption of lim;—. ¢ 9 0 used in the above corollary is satisfied
in DTI model, mixture of tensor model and SPFI and SHORE discussed later.

[Wu et al., 2008] noticed the projection-slice theorem and used it to estimate ®;(r)
in a numerical way based on interpolation of E(q) from multiple shell data. [Canales-
Rodriguez et al., 2009] estimated @,(r) based on the plane integration corollary and
mono-exponential decay assumption which has been introduced in subsection 4.3.1.
Under the mono-exponential decay assumption in Eq. (4.39), the ®,(r) in Eq. (4.64)
can be rewritten as

®,(r) = % fs 2 ( fo ) exp(—47r2‘rq2D(u))qdq) s’ r)du

1 1 40 1 T
- — d _ d 4.67
87217 fsz D(u )6(“ ndu =27 | mEgow’™ Pt (4.67)

Thus ®,(r) can be estimated from FRT of a function —
with ¢ = qo.

TEow E( 5 of single shell data E(gou)
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®,,(r) has been proposed in DSI by Wedeen [Wedeen et al., 2005], where it was es-
timated from numerical radial integration of a pre-estimated EAP from DSI. [Aganj
et al., 2009, 2010b] proved the above corollary for the estimation of ®,(r). [Aganj
et al., 2009, 2010b] also proved that if E(q) follows the mon-exponential decay as-
sumption, we have

1 1
Dy(r) = — + —— f Ay In (= In E(gow)) 5(u” r)du (4.68)
dr 1612 Js2

By representing In (- In E(gou)) = Z;L: 0 an__, cmY}"(w), and considering ApY]"(w) = —I(l +

DY]"(w) in Eq. (2.32) and Corollary 2.4, we have

1 1
D(r) = 1 = i+ DPO)cimY, /()

The coefficients {c;,} can be estimated through a least square fitting from the samples

of In(—1n E(gou)). Note based on the above formula the first coefficient is coy = BVrL

then the integration of the estimated ODF is fs2 cong(u)du = 1. Thus the estimated
®,,(r) is naturally normalized, which agrees with the definition.

Dr. Tristan-Vega also proposed two ways to estimate ®,,(r) from single shell data
E(gou) in [Tristan-Vega et al., 2009; Tristan-Vega et al., 2010].

e [Tristan-Vega et al., 2009] noticed that two ODF's can be considered as a plane
integration of E(q) as shown in Eq. (4.65). Since QBI by Tuch has been success-
fully used in HARDI domain to approximate ®,(r) using FRT of E(q), [Tristan-
Vega et al., 2009] estimated @,,(r) using the FRT of —#AE(q) with a specific
assumption to solve the first integration term 7 in Eq. (4.66). This estimator
has its intrinsic limitation from FRT because it assumes radial decay is a delta
function such that the plane integration can be replaced by circle integration.
The estimated ODF needs an artificial normalization, although ®,(r) is natu-
rally normalized by definition. Our experiments demonstrated that the estima-
tor in [Tristan-Vega et al., 2009] works well when ¢ is small as shown in the
paper. However, it obtains noisy results with many negative values when ¢ is
large, e.g. b = 3000s/mm?. This modeling error is actually introduced by assump-
tion of delta function in radial decay, which will be revisited and explained in
subsection 5.2.2.

e [Tristan-Vega et al., 2010] claimed that it proposed an estimator of @,,(r) with
mono-exponential decay assumption only in a local sense around the single shell
with ¢ = qo, not the whole plane ®, as proposed in [Aganj et al., 2010b]. It re-

placed the plane integration of éAbE(q) in Eq. (4.1) as an integration in the
disk with the given radius ¢y, while it keeps the first term ﬁ. Based on the
so called Stokes’ theorem, the disk integration is solved by circle integration
after estimation of a vector field in the circle. However, based on our analy-
sis in Appendix 4.7, the disk integration is actually solved based on the mono-
exponential decay assumption inside the disk, not just around the boundary of
the disk. Moreover the Stokes’ theorem in [Tristan-Vega et al., 2010] is equiv-
alent to separation disk integration into the radial integration and circular in-
tegration used in other papers [Canales-Rodriguez et al., 2009; Aganj et al.,

2010b; Cheng et al., 2010al].
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Besides the two ODFs @,(r) and ®,,(r), [Canales-Rodriguez et al., 2009] proposed
a general form of ODF as
1 (o6}
Dy(r) & ~ f P(R)R*dR (4.69)
0
where Z is the normalization factor which makes sz @i (r)dr = 1. Then ®y(r) is D,(r)
when k = 0, and ®,(r) is ®,(r) when k = 2. Like ®y(r), ®; needs a normalization
factor Z to make it a PDF. Only when k = 2, O (r) = ®,,(r) is naturally a PDF without
artificial normalization factor, i.e. Z = 1.

Note the EAP profile P(Rr) normally has better angular resolution when R is
larger, which can be seen from the synthetic data experiment in Fig. 4.8. Theoret-
ically, kK = 1 means the same weight is considered for EAP profile P(Rr) with large R
and small R. While k& > 1 gives more weight for P(Rr) with large R, which means the
®,(r) is sharper when k is larger. However, EAP profile P(Rr) with large R value has
more estimation error. Thus normally only the ODFs with £ = 0 and k& = 2 are con-
sidered, and the ODF for other k are not used in literature. The experiments showed
that although ®@,,(r) is sharper than ®,(r) with better angular resolution, ®@,(r) is more
robust than ®,,(r) [Aganj et al., 2010b; Tristan-Vega et al., 2010; Cheng et al., 2010a].

The ODFs @, in Eq. (4.47) and ®; in Eq. (4.69) need a normalization factor Z to

make them as PDFs in S>. Many papers in HARDI set Z = ) j=1 @i(r;) such that the
summation of ODF over some given direction samples {r j}j.V; , In S? is 1 [Tuch, 2004;
Khachaturian et al., 2007], which is actually problematic in theory and may bring
some errors in some situations. See Appendix 4.6 for the reason and two correct ODF

normalization ways.

Note like the original QBI, the exact QBI methods based on mono-exponential de-
cay assumption can not work for multiple shell data. [Aganj et al., 2010b] proposed
to generalize the mono-exponential decay assumption to multi-exponential decay as-
sumption, i.e.

K K
E(@) = ) wiexp(~4r'rg’ Diw) = " wiEiw)’,  Ei(w) = exp(~Di(w)) (4.70)
i=1 i=1

{E;(w)} and {w;} can be estimated by numerical optimization such as trust region algo-
rithm. An analytical solution exists when K = 2, the data were obtained from three b
values, and 0, b1, b, b3 is an arithmetic progress.

Summary of Advantages and Limitations:

v The linear analytical solution is fast and easy to be implemented.

v Compared to the delta function assumption of radial decay of E(qu) used in orig-
inal QBI, exact QBI considers mono-exponential decay of E(qu) to obtain an-
alytical results, which becomes more and more popular in sHARDI methods.
Mono-exponential decay assumption seems better than delta function assump-
tion. It at least satisfies the prior E(0) = 1 and can be seen as ADC modeling
which is a kind of generalization of DTI. See Table 4.1 for the summary of dif-
ferent estimators in original QBI under delta function decay assumption and
exact QBI under mono-exponential decay assumption.
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v ©,(r) has better angular resolution than ®,(r) normally used in original QBI,
although normally ®,(r) is more robust to noise. ®,,(r) normally does not need
the artificial normalization, sharpening technique like min-max normalization
or spherical deconvolution. That is the main reason why ®,,(r) is now more
popular than ®,(r) in sHARDI methods.

X Although mono-exponential decay assumption is better than delta function as-
sumption, it is still a strong and unrealistic assumption of radial decay. Even
the signal generalized by a simple mixture of tensor model does not follow this
assumption as shown in Fig. 4.8.

X Exact QBI is a kind of sHARDI method. It obtains different results for the
data from different shells. [Aganj et al., 2010b] proposed an extension of the
model based on multi-exponential decay assumption. However it is impractical
for general multiple shell sampling which needs a numerical optimization to
estimate each mono-exponential part. An analytical solution only exists when
two multi-exponential parts are considered for the data sampled from three b
values which are arithmetic progress.

4.3.5 Diffusion Orientation Transform (DOT)

Diffusion Orientation Transform (DOT) was proposed by Dr. Ozarslan in [Ozarslan
et al., 2006] to estimate the EAP profile P(Rr) from single shell data under the mono-
exponential decay assumption in Eq. (4.39). Thus it can be seen as an estimator of
EAP in exact QBI methods. Consider the plane wave equation in Eq. (4.71)

/

cos(2nq’R) = 47TZ Z (=12 j,2ngR) Y} ()Y (r) (4.71)
=0 m=-1

where j;(-) is the [ order spherical Bessel function described in Section 2.5.3. See Theo-
rem 2.8 and Eq. (2.53) for the plane wave equation. Then the EAP can be represented

as
00 l
PR =" " ( fS YR, u)du) Y/ (r) (4.72)
l

=0 m=—
RIT(0.50+ 1.5) F1(0.51+ 15,1+ 1.5, -8 =)
(_1)l/221+17z-0.5(D(u)T)O.SlH.Sr(l + 1.5)
(4.73)
For fixed R = Ry and given direction samples {«;}, samples {I;(Ro,u;)} can be calculated
analytically via Eq. (4.73) from the samples of ADC {D(u;)}. Then a least square
fitting can be used to obtain the coefficients of P(Ror) under SH basis from {/;(Ry, u;)}.

I(R,u) = 4rn(~1)""? fo ) E(q)ji(2nqR)q*dq =

[Ozarslan et al., 2006] validated the mono-exponential decay assumption through
synthetic data generated from cylinder model [S6derman and Joénsson, 1995]. It
showed that signal decay can be approximated well as a mono-exponential function
around b = 1500s/mm?. For the b value large than 3000s/mm?, the mono-exponential
decay assumption is not well satisfied, and the data with large b value has low SNR.
Thus 1500s/mm?* seems to be the optimal » value for DOT.

Note like original QBI and exact QBI, DOT can not handle multjple shell data,
because the data in different shell obtains different EAP profile. [Ozarslan et al.,
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@,(r) O, (r) P(R)
original QBI [Tuch, 2004] [Tristan-Vega et al., 2009] .
6(q — qo) [Descoteaux et al., 2007] subsection 5.2.2 subsection 5.2.2
exact QBI [Aganj et al., 2010b] DOT
Canales-Rod t al., 2009 ? ..
E(q) = exp(—47r2‘rD(u))[ anales-todnguez et al, ][Tristén-Vega et al., 2010][Ozarslan et al., 2006]
SPFI [Assemlal et al., 2009a; Cheng et al., 2010a] [Cheng et al., 2010b]
proposition 5.3 proposition 5.4 proposition 5.2
ition 5.7 roposition 5.6
SHORE Propostu prop
[Ozarslan et al., 2009]

Table 4.1: HARDI methods with different assumptions for estimation of ODFs and EAP.
Original QBI and exact QBI are sHARDI methods. They need respectively delta function
assumption and mono-exponential decay assumption for signal decay. DOT can be seen as a
kind of exact QBI method, because it is an estimator of EAP from single shell data based on
mono-exponential decay. SPFI and SHORE consider radial basis for the radial decay. They
are model-free.

2006] proposed to extend the mono-exponential model to multi-exponential model as
shown in Eq. (4.70). It fits the multi-exponential function in each direction u which
needs many samples along u. Thus the multi-exponential assumption is impractical
and so far to our knowledge there is no work to implement the multi-exponential
version of DOT in real data.

DOT will be revisited in subsection 5.2.2, and theoretically and experimentally
compared with other HARDI methods.

Summary of Advantages and Limitations:

v The linear analytical solution is fast and easy to be implemented.

v Compared to other ADC based methods like HOT model, DOT estimates the
EAP profile with given radius R, from single shell data. The maxima of EAP
profile normally can be used as the fiber directions. See Fig. 4.8.

v It works well with typical value b = 1500s/mm> compared to typical b value
3000s/mm? in original QBI.

X DOT can not handle multiple shell data. The data from different shells obtain
inconsistent results. The extension to multi-exponential model is impractical.

X In DOT, there is no full representation for EAP P(Rr) in R3. The results from
DOT are the coefficients of the EAP profile P(Ror) with the given radius Ry under
SH basis. Even if one EAP profile P(R r) is estimated, the estimation process
needs to be performed again for EAP profile P(R,r) with different radius R;.

4.3.6 Spherical Deconvolution (SD)

Spherical Deconvolution (SD) methods generalize the mixture model from discrete
case to continuous case. In previous mixture of tensor model, E(q) is assumed to
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be generated from K tensors in Eq. (4.32). [Tournier et al., 2004, 2007] proposed to
consider the continuous mixture model as

E(qu) = f @ ¢(r)R(r" wydr (4.74)
S2

where @ (r) is called as the fiber ODF (fODF) which needs to be estimated and R(r"u)
is the typical signal generated from one fiber. The spherical deconvolution is a model-
based method because it assumes the typical signal R(r’u) and linear combination
in the convolution. Mixture of tensor model is suffering from the model selection of
the number of tensors and local minima of cost function. However, SD can be solved
analytically by considering the Funk-Hecke theorem and representing the E(qu) and
R(r"u) using SHs [Descoteaux et al., 2008a]. The continuous weighting function ® (1)
avoids the limitation of mixture of tensor model in discrete case.

Note the SD method can be also used in some EAP features generated from signal.
For example, consider @, estimated from FRT, then based on the linearity of FRT we
have

®,(r) = FRT{E(qu)} = f @ ;(w)FRT{R(w" w)}dw = f O (w) DX (r" w)dw (4.75)
S2 S2

Thus, if we use FRT to estimate ®,(r), the SD performed on E(qu) is equivalent with
SD performed on estimated ®,(r) [Descoteaux et al., 2008a]. Since ®,(r) estimated
from FRT is normally very smooth. SD becomes a good option to obtain the sharpened
fiber ODF @ (r).

Compared to fiber ODF ®((r), the ODFs ®,, ®,, and ®; defined as the radial inte-
gration of EAP is normally called as the diffusion ODF's. Note that throughout this
thesis, ODF means the diffusion ODF unless otherwise specified, because we only
consider the estimation of diffusion ODF's, and once we assume a kernel model for
single fiber, fiber ODF can be estimated from diffusion ODF easily.

The SD method also can be used as a general continuous weighting method in a
specific manifold. Then many methods can be seen as some kinds of SD methods [Jian
and Vemuri, 2007; Jian et al., 2007].

Summary of Advantages and Limitations:

v SD obtains more sharper ODFs, which is useful in fiber tracking. Note the
diffusion ODFs sometime merge their maxima if two fiber directions are close.
The sharpened ODF's obtained by SD sometimes can separate these merged
maxima.

v Normally SD on sphere can be solved analytically using SH basis. However, it
is not easy to do SD in a general manifold [Jian and Vemuri, 2007].

X SD is a model-based method. How to choose the kernel based on some priors is
an open question.

X Although compared to diffusion ODFs, fiber ODFs from SD can obtain more
maxima, we still do not know if added maxima are because of real fiber direc-
tions or noise. Even in the area with isotropic diffusion, SD can make sharper
ODPF's, which is unrealistic.
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4.3.7 Diffusion Propagator Imaging (DPI)

Diffusion Propagator Imaging (DPI) was proposed to model the signal E(q) as the
solution of Laplace’s equation [Descoteaux et al., 2009, 2010]. Note the original de-
scription of DPI in [Descoteaux et al., 2009] has some problems due to the integration
of Bessel function, thus we use the formulation in [Descoteaux et al., 2010]. In DPI,
the signal is assumed to be

E(qu) = Z Z ( 2+ ding ) Y/ (u) (4.76)
1=0 m=-1

Then the EAP is estimated from incomplete 3D integration inside the ball with a
given radius ¢,.., because the complete integration in R? does not converge.

inax L
Prony = 5 [ [ Elquig? exp (~2righou”s) dgan = 2> S utEo)cn + pulRoxdn) VI
=0 m=-1
4.77)

-1/2 |-
(Ry) = ~1)/2 (2'R, Pnl! _ Ji12Q2ngmaxRo)
Port0) = =3 | "= nn 172

0

Cbnax

pu(Ro) = (=1)'2¢H32R 3/2Jl+3/2(27T¢]maxRo)

where (n - D!' = (n-1)-(n—-3)---3-1, J,(x) is the Bessel function of order n, Z is
the normalization factor to make fR3 P(R)AR = 1, gyax is the maximum ¢ value used
in DPI acquisition. See subsection 2.5.3 for Bessel function and its properties. The
coefficients {c;,,} and {d;,} can be calculated from DWI samples via a standard least
square estimation.

After obtaining the coefficients, DPI also proposed several EAP features an-
alytically from incomplete radial integration, such as two ODFs in Eq. (4.78)
and Eq. (4.79), and RTO in Eq. (4.80).

1 Rinax 1 L
O,r) = f PRr)AR = — 3 Z( ' (t01Cum = t1Cum + tudin) Y{'(0)  (4.78)
Z 0 l 0 m=-1[
oo 2 Rfmlx O O o Vi P Ul DL
T @ C T ) T 22312 + 1)
1 Rinax 1 L !
O,(r) = - f PRORYAR = = > 3" (=1) (moicim — mucin + modip) Y'(x)  (4.79)
Z Jo Z =0 m=—1
ol -1 Ri;:alx (- (I+nn
my = — , my = ————
o= Q- nn YT o 2ran - T 22(1)2)!
‘max 2
Po = f f i E(Q)q°dqdu = g, (Coo + doo q; ax) Vr (4.80)
0 S
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Summary of Advantages and Limitations:

v DPI can be seen as a generalization of QBI method to handle multiple shell
data, although this generalization has many problems which will be revisited
in subsection 5.2.2.

X DPI is a model-based method, because it assumes AE(q) = 0.

X Compared to DOT based on the mono-exponential decay assumption, the nor-
malization factor Z is needed because the integration of E(q) is incomplete. In
DOT, the estimated EAP is naturally normalized, because the mono-exponential
decay assumption in DOT satisfies E(0) =1 = &3 P(R)dR.

X The ODF's are obtained from incomplete radial integration of the pre-estimated
EAP. Thus the estimated ODFs suffer from two incomplete integrations, one for
EAP estimation, the other one for ODF estimation.

X The introduction of g,,,, makes all estimated EAP and its features are function
of gnax. We still do not know how to choose g,,,. generally. Although we can set
it as the maximal ¢ values of the acquired DWI data, it is actually not a good
choice. See subsection 5.3.1 for the discussion of the problems brought by ¢,

X The DPI model does not satisfy some priors of signal E(q) which brings intrinsic
modeling errors. It also can not represent an isotropic Gaussian signal. Please
see subsection 5.2.2 and 5.3.1 for more details.

4.3.8 Simple Harmonic Oscillator Reconstruction and Estimation
(SHORE)

Simple Harmonic Oscillator Reconstruction and Estimation (SHORE) was proposed
by Dr. Ozarslan in [Ozarslan et al., 2008] for 1D signal and in [Ozarslan et al., 2009]
for 3D signal.

SHO-1D Basis

[Ozarslan et al., 2008] proposed to represent diffusion signal E(g) in 1D as

N_
E@) = awn(x)(q,u), where y,(g,u)=i"(2"n!) 227 {,2nuq) (4.81)

n=

—_

where H,(x) is the n order physicists’ Hermite polynomial, and u is a characteristic
length which scales the decay of the basis. Please refer subsection 2.5.4 for physicists’
Hermite polynomial and its properties. The scale u was proposed to be estimated
from the first few samples of E(g), and the coefficients {a,} can estimated from signal
samples via a standard least square fitting. As we assume E(g) is symmetric, only
even order n is used. Note {,,(¢,u)} is an orthogonal basis, while the basis is not
normalized to unit norm. We may consider the normalized version given in Eq. (2.60)
which is the solution of 1D quantum mechanical harmonic oscillator problem, and is
called as Simple Harmonic Oscillator in 1D (SHO-1D) basis in this thesis.
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Based on the property of Hermite polynomial in Eq. (2.57), the EAP in 1D that is
the Fourier transform of E(g) can be analytically obtained as

Im:%@m

-1
=0 V2nu

ann(x, 2mu)™") (4.82)

Then RTO is simply P(0), and the m-th order moment of EAP can be given by

N-1 N—k-1
°° k+m—1)! N2k + D))
<xm> — f me(x)dX —_— Z % Z (—])1/2#61@_1 (483)
- k=0,2,... : 1=0,2,... :

Note that GDTI considers product of probabilists’ Hermite polynomials in 3D space,
while the SHO-1D basis uses physicists’ Hermite polynomials in 1D space. It is pos-
sible to consider the product of SHO-1D basis as a 3D basis, called SHO-1D3 basis in
Definition 5.2. Please refer Theorem 5.2 for the equivalence between SHO-1D3 basis
and SHO-3D basis which will be introduced in next subsection.

Summary of Advantages and Limitations:

v Since SHO-1D basis is complete, SHORE method in 1D is model-free.

v The linear analytical solutions for EAP and its features are very fast and easy
to be implemented.

v The Gaussian-Hermite function considers the priors of signal which is a Gaus-
sian like signal.

X Since the diffusion signal in real data is in 3D space, SHO-1D basis can not
handle 3D signals.

SHO-3D Basis

[Ozarslan et al., 2009] proposed to represent diffusion signal E(g) in 3D as

Nma)c [

E@=)" > > Ajmljim(q,0) (4.84)

N=0 [+2j=N+2 m=-I|
J=1120

W jim(q, u) = i ar (271'21/{26]2)1/2 exp (—2n2u2q2) Li.tll/ 2 (Zﬂzuzqz) Y/ (u) (4.85)

Note that [Ozarslan et al., 2009] referred that the function set {i jim} in Eq. (4.85)

is an orthogonal basis. However, one can verify that these functions are not orthog-

onal, that is because the wrong scale is used in exp(-). The solution of 3D quantum

mechanical harmonic oscillator problem has the form in Eq. (2.69), which is called

as the Simple Harmonic Oscillator in 3D (SHO-3D) basis. Actually this basis has

been already used in the computation of the molecular electron orbitals and molecu-

lar docking [Ritchie and Kemp, 2000; Huzinaga, 1965], which we will discuss later.

The SHO-3D basis is equivalent with the product of SHO-1D basis in 3D space. See
Theorem 5.2.
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[Ozarslan et al., 2009] claimed that the EAP can be represented by the same form
in Eq. (4.85) although it did not give the explicit formula. We will give the analytical
formula based on the SHO-3D basis in Eq. (2.69). The orientation-dependent radial
moments, i.e. the ODFs in Eq. (4.69), is given as

)Mkzk/2r(j+ (I +k+1)/2)

=T (4.86)

Vo) = [ PROR? = 3 AP
0

Jjlm

Note that we did not verify the above formula for ODFs, because we think there
may be some problems in the basis in [Ozarslan et al., 2009]. The ODF's in SHORE-
3D method will be revisited in subsection 5.2.2 using the corrected SHO-3D basis
in Eq. (2.69). See Table 4.1 for an overview.

Summary of Advantages and Limitations:

v SHORE is model-free, since the SHO-1D basis and SHO-3D basis are both com-
plete basis in their domains.

v The linear analytical solutions are very fast.

X Some formulae have some problems. For example, the proposed formula for
SHO-3D basis in Eq. (4.85) is not orthogonal basis, which conflicts with the
claim that SHO-3D basis are orthogonal. It can be easily improved by using
the correct orthonormal basis in Eq. (2.69). We will revisit this topic in subsec-
tion 5.2.2.

4.3.9 Spherical Polar Fourier Imaging (SPFI)

Spherical Polar Fourier Imaging (SPFI) was first proposed by Dr. Assemlal in [As-
semlal et al., 2008, 2009a], where the diffusion signal E(q) is represented by Spher-
ical Polar Fourier (SPF) basis. SPF basis is a 3D orthonormal basis with SHs in
spherical part and Gaussian—Laguerre functions in radial part. This basis is moti-
vated by SHO-3D basis used in the computation of the molecular electron orbitals
and molecular docking [Ritchie and Kemp, 2000; Huzinaga, 1965]. However SPF ba-
sis is different from the SHO-3D basis. We will compare SPF basis and SHO basis
theoretically and experimentally in Chapter 5.

After we estimate the coefficients of diffusion signal under SPF basis, EAP and its
various features, e.g. ODFs, RTO, can be obtained in a numerical way from an inner
proposed by Dr. Assemlal [Assemlal et al., 2008, 2009a], which will be described in
details in subsection 5.1.1. In Chapter 5, we propose an analytical way to obtain the
EAP and its various features from the pre-estimated SPF coefficients [Cheng et al.,
2010b,a]. We also propose some improvements in the estimation of the coefficients of
SPF basis. See Table 4.1 and Table 5.1 for an overview.
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4 4 METRICS AND FRAMEWORKS TO PROCESS PDF-
° VALUED DATA

As we have demonstrated in subsection 4.1.2 and 4.1.3, the data in dMRI field is
in 6D space. In every voxel x, there is an EAP P(R) defined R*. The whole EAP field
is P(R,x) in 6D space, which is different from the conventional MRI data in 3D space.
Thus we need to study how to process such a PDF field.

4.4.1 Metrics and Frameworks for Tensor Computing
Euclidean Metric

Under the assumption of Gaussian propagator, the EAP field becomes the tensor field.
Since the tensor space is a convex set in symmetric matrix space, we can define the
distance between two tensors as the distance between two symmetric matrices, i.e.
the Euclidean distance between 6D vectors.

diuc(D1, D7) = [[D; - Dy = \/Trace (D1 = D)T (D — Dy)) (4.87)

In this case, the Euclidean metric in R° is used. The Euclidean distance is rotational
invariant. Based on this distance, the mean of K tensors is

1 K

D=L
K 4
i=1

D, (4.88)

J-divergence

The Kullback-Leibler (KL) divergence between two Gaussian propagators is

NR]2tDy) 1 ( Dy B
N(R|27D2)dR_2(ln Trace (D;'D: ) 3) (4.89)

dKL(DlaDZ):f NR|27D{)1In
R3 |D1|

It is affine invariant, i.e. dx.(ATD1A,ATD>A) = dgi (D1, D), V|A] # 0. Since the KL
divergence is not symmetric, we can use its symmetric version called J-divergence
and its square root distance as [Wang and Vemuri, 2005]:

1 1
dy(Dy,Dy) = \/5 (dg1(D1,D2) + di1 (D2, D) = 5 \/Trace (D7'D,+D;'Dy) -6 (4.90)

J-divergence is also affine invariant, because KL divergence is affine invariant. Al-
though J-divergence is symmetric, it does not satisfy the triangle inequality, which
means it is a divergence, not a distance. [Wang and Vemuri, 2005] showed that the
mean of tensors {D;}X , i.e. the minimizer of 3,5, d,(D,D;)?, is

1
D=B? (B%AB%)2 B (4.91)

where



Riemannian Metric and Log-Euclidean Metric

The Riemannian metric for Gaussian distribution family has been proposed in
1980s [Atkinson and Mitchell, 1981; Skovgaard, 1984] based on Rao’s seminal work
on information geometry [Rao, 1945]. However, the Riemannian metric was only
known in dMRI domain after 2005, until a number of works [Pennec et al., 2006;
Moakher, 2005; Batchelor et al., 2005; Lenglet et al., 2006b; Fletcher and Joshi, 2007]
which introduced Riemannian metric in dMRI. The Riemannian metric can be intro-
duced based on the analysis of Gaussian distribution family in Eq. (4.92) [Lenglet
et al., 2006b] where X = 27D, or based on the analysis of affine invariance [Pennec
et al., 2006; Fletcher and Joshi, 2007; Fletcher, 2004; Moakher, 2005].

{N(RIZ) = exp (—%RTZ_]R) : Xe Symgr} (4.92)

1
@ P72

The Riemannian distance between two tensors is

dRic(D1,D2) =

| =

3
Z (In A;)? (4.93)
i=1

where {/1,-}13’:1 are the eigenvalues of matrix® DIIDZ. This Riemannian distance is affine
invariant. Please see Example 3.10 for more details on the Riemannian metric of
Gaussian distribution family. For a set of tensors {D;};.,, the Riemannian mean has
no closed form. It needs a gradient descent method to find a local minimum of the
following cost function.

min dgie (D, D,)’ (4.94)

Note the cost function is convex and the Riemannian mean of tensors uniquely exist
because the sectional curvature in tensor space is non-positive definite. See Theo-
rem 3.1. Thus the estimated local minimum is also the global minimum.

The Log-Euclidean metric for tensors is defined based on the isometry of tensor
space and symmetric matrix space [Arsigny et al., 2006; Fillard et al., 2007]. The
matrix logarithm can be seen as the isometry, then the distance between tensors is
defined by the distance between their logarithmes, i.e.

dLogEuc (D], Dz) = || In D1 —1In D2|| = \/Trace ((ln D1 —1In Dz)T(ln D] —1In Dz)) (495)

Then the Log-Euclidean mean of tensors is
K

D= InD; (4.96)
i=1

Log-Euclidean distance is different from Riemannian distance, but in practice, these
two distances for tensors in human brain are qualitatively/visually similar. Thus Log-
Euclidean distance can be seen as an approximation of Riemannian distance. When
computing the Riemannian mean, i