
Université Paris Diderot (Paris 7)

École doctorale : Sciences Mathématiques de
Paris Centre

DOCTORAT
Informatique

Une approche unifiante pour programmer
sûrement avec de la syntaxe du premier

ordre contenant des lieurs

english title:
Namely, Painless

A unifying approach to safe programming with
first-order syntax with binders

Nicolas Pouillard

Thèse dirigée par François Pottier

et soutenue le 13 Janvier 2012 devant le Jury composé de :

Président M. Roberto Di Cosmo
Rapporteurs M. Andrew Pitts

M. Dale Miller
Examinateurs M. Daniel Hirschkoff

M. Conor McBride
Directeur M. François Pottier

2

À mon papa...

4

Abstract

This dissertation describes a novel approach to safe meta-
programming. A meta-program is a program which pro-
cesses programs or similar data. Compilers and theo-
rem provers are prime examples of meta-programs which
could benefit from this approach. To this end, this work
focuses on the representation of names and binders in
data structures.
Programming errors are really easy to make with usual
techniques. We propose an abstract interface to names
and binders that rules out these errors. This interface
is implemented as a library in Agda. It allows defining
and manipulating term representations in nominal style.
Thanks to abstraction, other styles are supported as well:
the de Bruijn style, the combinations of these styles, and
more.
Whereas indexing the types of names and terms with
a natural number is a well-known technique to better
control de Bruijn indices, we index them with worlds.
Worlds are at the same time more precise and more ab-
stract than natural numbers. Via logical relations and
parametricity, we are able to demonstrate in what sense
our library is safe, and to obtain theorems for free about
world-polymorphic functions. For instance, we prove that
a world-polymorphic term transformation function must
commute with any renaming of the free variables. The
proof is entirely carried out in Agda.
The usability of our technique is shown on several ex-
amples including normalization by evaluation which is
known to be challenging. We show that our world-
indexed approach can express a wide range of data types
by embedding several definition languages from the liter-
ature.

5

Résumé

Cette thèse décrit une nouvelle approche pour la méta-
programmation sûre. Un méta-programme est un pro-
gramme qui manipule des programmes ou assimilés.
Les compilateurs et systèmes de preuves sont de bons
exemples de méta-programmes qui bénéficieraient de
cette approche. Dans ce but, ce travail se concentre sur la
représentation des noms et des lieurs dans les structures
de données.
Les erreurs de programmation étant courantes avec les
techniques usuelles, nous proposons une interface abs-
traite pour les noms et les lieurs qui élimine ces er-
reurs. Cette interface est implémentée sous forme d’une
bibliothèque en Agda. Elle permet de définir et manipu-
ler des représentations de termes dans le style nominal.
Grâce à l’abstraction, d’autres styles sont aussi dispo-
nibles : le style de De Bruijn, les combinaisons de ces
styles, et d’autres encore.
Nous indiçons les noms et les termes par des mondes.
Les mondes sont en même temps précis et abstraits. Via
les relations logiques et la paramétricité, nous pouvons
démontrer dans quel sens notre bibliothèque est sûre,
et obtenir des “théorèmes gratuits” à propos des fonc-
tions monde-polymorphiques. Ainsi une fonction monde-
polymorphique de transformation de termes doit commu-
ter avec n’importe quel renommage des variables libres.
La preuve est entièrement conduite en Agda.
Notre technique se montre utile sur plusieurs exemples,
dont la normalisation par évaluation qui est connue pour
être un défi. Nous montrons que notre approche indicée
par des mondes permet d’exprimer un large panel de type
de données grâce a des langages de définition embarqués.

6

Remerciements

Trois années de noms et de termes. Des liens puis des noms, des noms et
des indices, puis des indices seulement, puis finalement encore des noms.
Aujourd’hui j’écris ces remerciments et ce sont vos noms qui me viennent à
l’esprit.

Je porte mes remerciements tout d’abord à ma famille, mes parents, pour
m’avoir soutenu dans mes longues études. Merci aussi à mon épouse, Gaëlle,
qui m’a non seulement soutenu mais épaulé, écouté, poussé, aidé, ... Bref,
elle est aussi responsable de cet aboutissement.

Je tiens particulièrement à remercier mes relecteurs pour leur travail
remarquable. Leurs relectures de ce document m’ont permis de nombreuses
améliorations rendant le présent document plus accessible et plus complet.

Je remercie le LRDE qui m’a aiguillé vers la recherche, je remercie en
particulier Akim Demaille pour son cours de compilation qui m’a initié à la
conception de langages.

Je remercie d’avance tous ceux que je ne mentionne pas individuelle-
ment ici : membres de ma famille, camarades, collègues, ami(e)s, simples
connaissances. Vous qui justement lisez ces lignes, je vous en remercie.

Un grand merci à toute l’équipe Gallium de l’INRIA Rocquencourt et
tous les membres que j’y ai rencontrés. Cette équipe m’a accueilli jeune
ingénieur et m’a rendu jeune chercheur. Plus particulièrement je remercie :
Michel Mauny pour m’avoir accepté en stage mais aussi sur le contrat qui a
suivi ; j’y ai appris une foule d’anecdotes sur l’évolution des dialectes succes-
sifs de Caml ; grâce à lui et malgré lui j’ai appris à apprécier la programma-
tion paresseuse (sans jeux de mots) ce qui m’a ouvert de nouveaux horizons.
Puis c’est au tour de François Pottier, qui m’a accepté en thèse et m’a ha-
bilement guidé et soutenu pendant ces années. Il a su être disponible et à
l’écoute. Outre une montagne de connaissances scientifiques, j’ai appris de lui
l’art d’écrire des articles bien que j’ai encore beaucoup à apprendre à ce sujet.
Xavier Leroy pour son accueil et sa bienveillance quant à la bonne marche
de l’équipe ; Damien Doligez pour son intarissable culture et ses théories
sur tout ; Didier Rémy pour ses discussions sur les détails du fonctionne-
ment de TEX :) ; Alain Frisch pour m’avoir enseigné tellement de choses sur
OCaml et la programmation fonctionnelle en général pendant les mois du-
rant lesquels j’ai partagé son bureau ; Yann Régis-Gianas pour avoir tracé

7

8

une voie qu’il m’a suffit d’emprunter ; Berke Durak pour m’avoir accom-
pagné dans le développement d’ocamlbuild ; Benoit Razet pour toutes nos
discussions sur les automates et les structures de flots de données ; Gérard
Huet pour ses anecdotes variées qui m’ont beaucoup appris ; Jean-Baptiste
Tristan pour avoir participé et accueilli chez lui l’équipe des “jeunes” de Gal-
lium au concours ICFP ; Tous ceux qui ont participé aux concours ICFP ;
Arthur Charguéraud pour son secret de l’efficacité : les axiomes Coq et
notepad++ :) ; Zaynah Dargaye, Boris Yakobowski et Paolo Herms pour les
discussions et les bons moments passés avec eux ; Benôıt Montagu pour
m’avoir ouvert son bureau et avoir partagé des discussions fructueuses sur
nos thèses respectives ; Julien Cretin pour sa singularité mais aussi pour
tous les sujets sur lesquels nous pouvons discuter agréablement ; Alexandre
Pilkiewicz de m’avoir trâıné jusqu’au parcours sportif un certain nombres
de fois ; Jonathan Protzenko car grâce à lui le web évolue de jour en jour :) ;
Tahina Ramananandro pour nos discussions politiques et nos concours de
jeux de mots fumeux ; Dana Xu pour ses encouragements ; Gabriel Scherer
et Valentin Robert pour leurs nombreux commentaires sur des parties de ce
document.

À Luc Maranget pour les discussions nautiques et ses slogans devenus
cultes : “Les programmeurs veulent des types plus riches !”, “Les types exis-
tentiels existent-ils ?”, “Ils nous parlent seulement des types, où sont les
termes ?” ; Jean-Jacques Levy pour son talent à poser tout haut les ques-
tions auxquelles tout le monde pense.

J’ai une pensée aussi pour tous les “camarades de navette” avec qui j’ai
pu discuter pendant un des nombreux trajets entre Paris et Rocquencourt.

À Jean-Philippe Bernardy, pour avoir rendu la paramétricité accessible
et claire dans un cadre simple et élégant. Ses travaux ont amplement aidé
les miens en apportant l’outil de preuve adapté à ce problème.

Contents

1 Introduction 13

1.1 Programs and Programming Languages 14

1.2 Program syntax . 15

1.3 Typing . 17

1.4 Program representation, meta-programming 19

1.5 Names and local bindings . 23

1.6 Scoping . 25

1.7 Empowering our language . 28

2 The nominal approach 41

2.1 Introduction to the nominal approach 41

2.1.1 Warm-up: the bare nominal approach 41

2.1.2 Using well-formedness judgements 44

2.1.3 Well-scoped terms . 47

2.2 NomPa: A programming interface in nominal style 48

2.2.1 All we need to define nominal syntax 50

2.2.2 Building binders and names 51

2.2.3 World widening: Name weakening 53

2.2.4 Comparing and refining names 56

3 Programming on top of NomPa 59

3.1 Various examples . 59

3.1.1 Example: computing free variables 59

3.1.2 Example: working with environments 60

3.1.3 Example: Term comparison 62

3.2 Kits and Traversals . 63

3.2.1 Traversal Kits . 63

3.2.2 Coercing kit . 64

3.2.3 Renaming kits . 65

3.2.4 Substitution kit . 67

3.2.5 Other kits and combinators 68

3.2.6 Reusable traversal . 68

3.2.7 Reusing the traversal 69

9

10 CONTENTS

3.2.8 Building any λ-term 71

3.3 Towards elaborate uses of worlds 72

3.3.1 Data type of “one hole contexts” 72

3.3.2 Patterns a la ML . 73

3.3.3 Term and types: System F 73

3.4 Advanced example: normalization by evaluation 73

4 Behind the scene of the NomPa library 77

4.1 Implementation of NomPa 77

4.2 Soundness: logical relations and parametricity 80

4.2.1 Recap of the framework 80

4.2.2 An example: Boolean values represented by numbers . 85

4.3 Relations for NomPa . 87

4.3.1 Relations for NomPa types 88

4.3.2 NomPa values fit the relation 91

4.3.3 An example not fitting the relation 92

5 The de Bruijn approach 93

5.1 Introduction to de Bruijn indices 93

5.1.1 bare: The original approach 94

5.1.2 Maybe: The nested data type approach 94

5.1.3 The Fin approach . 95

5.2 An interface for de Bruijn indices 96

5.2.1 Singleton worlds! . 101

5.3 Examples and advanced operations 101

5.3.1 Some convenience functions 101

5.3.2 Building terms . 104

5.3.3 Computing free variables 104

5.3.4 Generic traversal . 105

5.3.5 Nameless term comparison 108

5.4 Logical Relations for de Bruijn indices 109

5.4.1 Relations for the de Bruijn world operations 109

5.4.2 De Bruijn functions fit the relation 110

5.4.3 On the strength of free theorems 111

5.4.4 Using logical relations and parametricity 114

6 Variations and Related Work 119

6.1 Dynamically stratified representations 120

6.1.1 Locally closed terms 121

6.1.2 Building terms . 122

6.1.3 Performances . 123

6.1.4 Non-structural recursion 124

6.1.5 Free atoms using openTm 125

6.1.6 Common parts of the internal representation 126

CONTENTS 11

6.1.7 Locally Nameless . 126
6.1.8 Locally Named . 128
6.1.9 When does this stratified technique pay off? 130

6.2 de Bruijn levels . 133
6.2.1 Term comparison . 133
6.2.2 Kits and traversals . 134
6.2.3 Derived functions . 136
6.2.4 New inclusion rules . 137
6.2.5 Addition and subtraction kits 137
6.2.6 Conversion with nominal terms 138

6.3 Links: Binders as World Relations 139
6.3.1 Terms and examples 140
6.3.2 Implementations . 141
6.3.3 Building links and terms 143
6.3.4 Kits and traversals . 144

6.4 Combining nominal and nameless styles 148
6.5 Nominal types . 151

6.5.1 FreshML & Fresh OCaml types 151
6.5.2 Cαml types . 159
6.5.3 Connection with Binders Unbound 163

6.6 Related work . 167

7 Conclusion 175
7.1 Contributions . 175
7.2 Future work . 176

Bibliography 177

List of Figures 183

Index 185

12 CONTENTS

Chapter 1

Introduction

Foreword

This document describes my work during these past three years
which has been done under the direction of François Pottier. This
work extends the research topic of safe meta-programming by pro-
viding a novel approach to the representation of programs with
names and binders. – Nicolas Pouillard

Safe meta-programming is a research topic which is part of the broader
topic of programming language design. One of the goals of the research in
programming language design is to provide programmers with better tools
allowing to produce correct software applications in a reasonable amount
of time. Since correct software applications (programs for short) are not
supposed to crash, language designs have to incorporate safety features to
detect programming errors as soon as possible. Modern language designs
often come with some static disciplines such as lexical scoping, strong typing
and the like. These static disciplines are used to reject the programs we do
not want to run.

A program may process various forms of data such as numbers, text,
spreadsheets, images, sound, and many more. Some programs process other
programs, they are called meta-programs. Meta-programs cover a wide class
of programs ranging from compilers, to static analyzers, code generators, etc.
Proof systems, proof assistants and theorem provers are also meta-programs
since propositions and proofs share the same kind of structure as programs.
Moreover since language designs come with static disciplines, we claim that
meta-programs should follow these disciplines when processing programs.
For instance if a program A written in a programming language P generates
a program B written in a programming language Q, we want A to follow the
static discipline of P, moreover we want B which does not exist yet to follow
the static discipline of Q.

This first chapter aims at introducing all the notions to understand

13

14 CHAPTER 1. INTRODUCTION

the research problem that we are focusing on. This chapter requires lit-
tle knowledge in the design of programming languages, but does require
some knowledge about computers, mathematics and programming. Hence
this introduction chapter can be safely skipped by readers accustomed with
the research topic.

1.1 Programs and Programming Languages

To introduce the notions of programs and programming languages, let us
start with an example of a simple program:

print "Hello! 2 times 21 is equal to " >>
print (show (2 * 21))

Most generally, programs are written to be executed on a computer.
Running a program often results in the execution of different tasks and
yields a final result. In our previous example the program is meant to print
on the screen: “Hello! 2 times 21 is equal to 42”. Printing on the
screen is done with the construct called print. This printing construct is
used twice. The two uses are sequenced using the construct >>, which
will perform the action on the left and then the action on the right. The
number 42 is computed from the arithmetic expression 2 * 21 which is then
turned into a printable form using the construct called show.

This program, such as any program, is written in a programming lan-
guage. Programming languages are described by a finite set of constructs,
rules explaining how the constructs can be used and rules giving the be-
havior of programs. In our further examples the programming language
contains constructs such as print, >>, show, *, character strings such
as "Hello! 2 times 21 is equal to ", numbers such as 2 and 21, and
parentheses. With these constructs our programming language is not much
better than a simple calculator.

This tiny introductory programming language is built to be a subset
of the Agda language. Agda [Norell, 2007] is a total functional program-
ming language, based on dependent type theory. Agda is used thoroughly
in this document. First it is used to introduce the research topic of meta-
programming. Second it is used to implement our solution to the problem.
Third it is used to formalize our system and show its soundness. Alas, ad-
vanced languages such as Agda are far from simple to completely describe.
The first set of programming constructs we introduce is roughly common
to most languages and is described simply in great detail. The second set
of constructs follows the development of functional programming languages
(such as Haskell, ML, or Lisp). They are described more quickly and
may require further reading about these topics. An excellent introduction

1.2. PROGRAM SYNTAX 15

to functional programming in Haskell is Graham Hutton’s “Programming
in Haskell” [Hutton, 2007]. Moreover the third set of constructs is specific
to dependently typed and total functional languages or even restricted to
Agda only. To fully grasp these constructs we recommend further reading
on these topics. In particular Ulf Norell’s [2007] PhD thesis on the theoret-
ical and practical development of Agda is recommended.

1.2 Program syntax

Examples The following program makes use of the four basic arithmetic
operators to compute the value 42. Operators are attributed with their usual
semantics, addition is + and multiplication is *. Subtraction and division
(´ and ÷) are restricted to natural numbers, meaning that they return 0

when going out of range.

(1 + 1) * (28 ´ 14 ÷ 2)

The following program illustrates character string literals and their con-
catenation with ++. This program prints “Hello world!” on the screen:

print ("Hello" ++ " " ++ "world!")

Our next program illustrates the use of show to turn a number into a
character string containing its decimal representation. This program prints
“show 1 renders as: 1” on the screen:

print ("show 1 renders as: " ++ show 1)

The following program illustrates the use of >> to sequence two actions
from left to right. This program prints “Print me first.” and then prints
“Then print me.” on the screen.

print "Print me first." >> print "Then print me."

We have lists in our programming language. The simplest list value is the
empty list, written []. The following program is a list with three elements,
namely "a", "bc" and "5":

["a" , "b" ++ "c" , show (2 + 3)]

We go from lists to trees by using the construct called node. The first
argument of node is the label of the node and the second is the list of
children of the node. The following program represents a six-node tree

16 CHAPTER 1. INTRODUCTION

depicted hereafter:

node "A"

[node "B" []

, node "C" [node "D" [] , node "E" []]

, node "F" []]

A

B C

D E

F

Syntax of our arithmetic calculator The syntax of a programming
language describes when a program has a valid “shape”. In particular it
does not check if the program has a valid “meaning”. For instance, the
program 1 + "Hello!" has a valid syntax but no valid meaning in our tiny
language.

Any non-empty sequence of digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) is a valid
literal number and a valid program as well. A valid literal character string is
a sequence of characters different from the double quote character (’"’) and
surrounded by two double quote characters (we avoid talking about escape
sequences because we do not need them here). If two programs p1 and p2 are
syntactically valid, then for any operator • among +, ´, *, ÷, ++, >> the
program p1 • p2 is syntactically valid. These operators are said to be infix ,
meaning that they appear between the two operands. If p is a syntactically
valid program, then print p, show p and (p) are syntactically valid. If p1,
p2, ..., pn are syntactically valid programs, then [p1 , p2 , . . . , pn]

is syntactically valid. Finally if p1 and p2 are syntactically valid programs
then node p1 p2 is syntactically valid.

Of course not every textual program is syntactically valid. Consider this
example: 3 + * 4. This program does not follow the rules we just described,
hence it is rejected as syntactically invalid.

Syntax also comprises some details about layout and comments. Spaces
and newlines are important to some extent. Spaces or parentheses have to
be used to separate the words in a program. However, as long as they are
separated, how many spaces or newlines are used to separate two words does
not matter. There is special support in the syntax to embed comments in
our programs. There are two syntaxes used in our language. A comment
can start with {- and stop with -} or can start with -- and stop at the

1.3. TYPING 17

end of line. Here is a syntactically valid program to illustrate layout and
comments:

print "Hello. . ." >> -- this prints Hello. . .
print {- extra spaces and comments are ok -} ". . . world!"

1.3 Typing

Typing captures, ahead of time, programs that may go wrong. Typing might
be seen as a vigilant companion giving advice on our programs. When typing
says that our program is ill-typed, then this is a program we may not want
to even try running. If the typing says our program is fine, then we know
for sure that the program will not crash.

Such a technology is to be applied systematically before running a pro-
gram. It is an affordable safety measure which massively helps program
development, maintenance, testing, and verification.

However, verifying that a program cannot crash without running it is a
difficult problem to say the least. In particular we want the typing part of our
system to always terminate, even if the given program does not terminate.
We not only want the typing to terminate but to answer if the program is
well-typed or not. If so we say that such a type system is decidable.

A type system is said to be sound if and only if every well-typed program
is a non-crashing program. We expect every well-designed type system to
be sound.

A type system is said to be complete if and only if every non-crashing
program is well-typed. The decidability constraint entails that a type system
will never be complete for non-trivial languages. For further reading on
the topic of type systems we recommend reading “Types and Programming
Languages” [Pierce, 2002] and “Advanced Topics in Types and Programming
Languages” [Pierce, 2005].

Typing our arithmetic language The first goal of type systems is to
prevent us from running programs that may crash. To do so, they define
types, an abstraction to classify pieces of data. By extension, types also
classify programs computing pieces of data. Types help to define a common
“contract” for producers and consumers of a piece of data. This kind of
“contracts” in on the shape of data. The more shapes are allowed by a
type, the weaker the type is. The strength of a type affects producers and
consumers in different ways. If a type is weak, it is easy for producers of
this type to be well-typed. If a type is strong, the producers have to meet
all the constraints imposed by the type. This is the opposite for consumers.
If a type is strong, the data has a known precise shape, and the consumer

18 CHAPTER 1. INTRODUCTION

has an easy job. If a type is weak, then the consumer has to consider all the
shapes that the data can take.

To illustrate the notion of typing, we equip our little programming lan-
guage with such a type discipline. Step by step we introduce new types and
how the constructs of our language are typed.

We have only a few types of values. We introduce the type N as the
type of numbers (0, 1, 2, . . .) and of programs computing numbers (such
as 2 * 21).

Given a type τ (such as N) and a program p (such as 6 * 7), we write p

has type τ to formally assert that the program p is of type τ . We call
these type assertions typing judgements. The following paragraphs define
the type system for our tiny language by giving a typing judgement for each
construct.

For each number n, n has type N. Given two programs p1 and p2, if both
have type N, then p1 + p2, p1 * p2, p1 ´ p2, and p1 ÷ p2 all have type
N as well. For instance with these rules one can formally assert: 6 * 7 has
type N.

Our second type of basic values is text values. To this end we introduce
the type String as the type of text values such as "Hello!" and of programs
computing text values such as "Hello " ++ show 42. More precisely for
each syntactically valid text value s, s has type String. If two programs p1
and p2 have type String then the program p1 ++ p2 has type String as
well. If a program p has type N then show p has type String.

It is now time to show an ill-typed program: "Hello!" ++ 42. While
this program is syntactically valid, it does not follow our typing rules. There
is indeed only one rule about the construct ++. This rule imposes programs
on each side of ++ to be of type String. While "Hello!" is of type String,
42 is not. The only rule that applies to 42 says that it is of type N. Since
String and N are different, this program is rejected as being ill-typed.

Our little programming language has list values. However there is no
single type for all lists. The type of a list depends on the type of its elements.
We require all the elements of a list to have the same type. Given any type A,
if p1, p2, ..., pn are programs of type A then [p1 , p2 , . . . , pn] is of
type List A. Thus there is no single type for lists, but for each type A

there is a type for lists where elements are of type A, namely List A. For
instance [1 , 2] has type List N, and [[1 , 2] , [3]] has
type List (List N).

Our next type is the type of trees. Like for lists, the type of trees is
parameterized by the type of its elements, namely the labels of nodes. For
each type A, Tree A is the type of trees with labels of type A. To build a
tree we use the construct node: given a type A, if p1 has type A and p2 has
type List (Tree A) then node p1 p2 has type Tree A.

The following program has type Tree String:

1.4. PROGRAM REPRESENTATION, META-PROGRAMMING 19

node "A" [node "B" [] , node "C" []]

This one has type Tree N:

node 1 [node 2 [] , node 3 []]

This one is ill-typed, though:

node 1 [node "B" [] , node "C" []]

Finally the type Interactive is used for programs interacting with
the environment. We currently introduced only two forms of interaction,
namely print and >>. Given a program p of type String, print p has
type Interactive. This interactive program computes an interactive value
which is meant to be triggered. Once the interactive value is triggered it
prints the value of the text p on the screen.

The second form of interaction enables to sequence two interactive values.
Given two programs p1 and p2 of type Interactive the program p1 >> p2
has type Interactive as well.

1.4 Program representation, meta-programming

When reading, writing, and editing programs we often work with the textual
form of programs. We write programs in text files and so their representation
is a sequence of characters in a file.

Machines do not directly accept this kind of program for execution.
Even languages very close to the hardware such as assembly languages are
not directly understood by the machine. Hence programs are processed
by other programs. These programs processing other programs are called
meta-programs and are described in greater detail in the following section.

Up to here our simple programming language can process numbers, text,
lists, trees and interactive values. What about programs? What is required
to process programs themselves? If a program is simply a text in a file then
our text value can represent programs. Here are two programs, the second
is the textual representation of the first:

2 * (10 + 11) {- this should compute 42 -}

"2 * (10 + 11) {- this should compute 42 -}"

This is common knowledge nowadays that the textual representation is
not adapted for any non-trivial processing. A first step called lexing gets
rid of the lexical issues of layout and comments. The lexing step turns

20 CHAPTER 1. INTRODUCTION

the program text to a list of words, called tokens. These tokens are often
annotated by a token class to distinguish numbers, operators, constructs. . .
Here is the same program as a simple list of tokens:

["2" , "*" , "(" , "10" , "+" , "11" , ")"]

This representation is still unworkable for non-trivial processing. In par-
ticular there is too little structure in a list to reflect the program structure.
To solve this issue, syntax trees have been introduced. Here is our same
program, graphically depicted as a tree:

*

num

2

+

num

10

num

11

We picked names for some constructs such as “num” for numbers, “text”
for text values, and “list” for lists. An exception is made for parentheses
which no longer add any useful information and hence are not represented
in the tree.

The process of translating text or tokens into a tree is called parsing .
We will not discuss it more.

These syntax trees are generally called Abstract Syntax Trees or AST for
short. Syntax trees are often said “abstract” because they no longer depend
on some details of the “concrete” syntax.

Happily we have enough constructs in our language to build trees. We
can hence show another representation of the same program as a tree built
in our language:

node "*"

[node "num" [node "2" []]

, node "+"

[node "num" [node "10" []]

, node "num" [node "11" []]]]

Representing programs of our language as values of our language itself
is good to have but not necessary. However we can expect a programming
language good at processing programs to be good at representing as many
programs as possible.

1.4. PROGRAM REPRESENTATION, META-PROGRAMMING 21

How to choose the tree representation for a programming lan-
guage? Here we made a simple choice: for each syntax rule we have a
corresponding tree node labeled by the construct and with as many children
as needed.

print "Hello! 2 times 21 is equal to " >>
print (show (2 * 21))

The syntax tree, graphically:

>>

print

text

Hello! 2 times 21 is equal to

print

show

*

num

2

num

21

The syntax tree as a program:
node ">>"
[node "print"

[node "text"

[node "Hello! 2 times 21 is equal to " []]]

, node "print"

[node "show"

[node "*"

[node "num" [node "2" []]

, node "num" [node "21" []]]]]]

22 CHAPTER 1. INTRODUCTION

An example to illustrate lists:
["a" , "b" ++ "c" , show (2 + 3)]

The syntax tree, graphically:

list

text

a

++

text

b

text

c

show

+

num

2

num

3

The syntax tree as a program:
node "list"

[node "text" [node "a" []]

, node "++"

[node "text" [node "b" []]

, node "text" [node "c" []]]

, node "show"

[node "+"

[node "num" [node "2" []]

, node "num" [node "3" []]]]]

1.5. NAMES AND LOCAL BINDINGS 23

An example to illustrate trees:
node "A" [node "B" [] , node "C" []]

The syntax tree, graphically:

node

text

A

list

node

text

B

list

node

text

C

list

The syntax tree as a program:
node "node"

[node "text" [node "A" []]

, node "list"

[node "node"

[node "text" [node "B" []] , node "list" []]

, node "node"

[node "text" [node "C" []]

, node "list" []]]]

Meta-programming The broad topic of “programs processing other pro-
grams” is called meta-programming. Sometimes meta-programming is given
narrower definitions, but we find this one to better account for the different
parts of the research field. Meta-programming comprises the generation,
analysis, transformation of programs or similar objects such as formulae
and proofs. Some programming languages are completely designed around
meta-programming to support run-time code generation (MetaML [Taha,
1999], ‘C [Engler et al., 1996]). Program translations and optimizations, as
done by compilers, are prime examples of meta-programming

1.5 Names and local bindings

Our programming language, while capable of arithmetic computations, in-
teractions, and program representation, lacks the concept of names. We

24 CHAPTER 1. INTRODUCTION

hence introduce a construct to give a name to part of a program and refer
to this part using the name. This enables an important goal of re-usability.
In a program we should avoid to repeat ourselves. Hence if two parts are the
same they may benefit from being written only once. Maybe more impor-
tantly, changes to this part of the software logic, during later evolution of
the code, only have to be done in one place instead of being duplicated. The
syntax of this new construct relies on three keywords let, = and in. If two
programs p1 and p2 are syntactically valid and x is a name then let x = p1
in p2 is syntactically valid. Moreover, names (such as x) are valid program
themselves. If we want to print the same text twice we can write:

let x = print "Hello!" in

x >> x

If we replace the occurrences of x by its definition (here print "Hello!")
we obtain a program with the same behavior:

print "Hello!" >> print "Hello!"

The gain brought by sharing is significant. To illustrate this fact, we
build an artificial example where each added let would double the size of
the program if we could not use let. Albeit artificial this example conveys
the fact that sharing makes a big difference. The following example has 54
syntax nodes while the expanded version has 220 syntax nodes (only 124 if
we reduce x0 to 0 first). Note also that the small computation done in x0
can be performed only once instead of 16 times.

let x0 = 42 ´ 2 * 21 in

let x1 = node x0 [] in

let x2 = node 1 [x1 , x1] in

let x3 = node 2 [x2 , x2] in

let x4 = node 3 [x3 , x3] in

node 4 [x4 , x4]

1.6. SCOPING 25

node 4

[node 3

[node 2

[node 1 [node 0 [] , node 0 []]

, node 1 [node 0 [] , node 0 []]]

, node 2

[node 1 [node 0 [] , node 0 []]

, node 1 [node 0 [] , node 0 []]]]

, node 3

[node 2

[node 1 [node 0 [] , node 0 []]

, node 1 [node 0 [] , node 0 []]]

, node 2

[node 1 [node 0 [] , node 0 []]

, node 1 [node 0 [] , node 0 []]]]]

1.6 Scoping

A crucial aspect of the let construct is the scope of the newly introduced
name. Given a name x and two programs p1 and p2, the program let x =

p1 in p2 defines x to be p1 in p2. Thus, this makes x available in p2. We say
that the scope of the name x is the program p2. We also say that x scopes
over p2.

What should we do when a program uses a name that has not been
defined? This is obviously an error and so should be detected as soon as
possible. Here is an example to illustrate this kind of errors:

print x >> -- x is not defined, hence this is an error

let x = x in -- x is not yet defined

print x -- here x is defined

One may wonder if the same name could be used more than once. The
scoping discipline we use allows this. In particular if one reuses a name
already defined to define something else the new definition hides the previous
one. Here is a correct program to illustrate the various scoping subtle cases:

26 CHAPTER 1. INTRODUCTION

let x = "1" in

print x >> -- this prints 1

let x = "2" in

print x >> -- this prints 2

print (let x = "3" in x) >> -- this prints 3

(let x = "4" in print x) >> -- this prints 4

print x >> -- this prints 2 again

let x = x ++ x in

print x >> -- this prints 22

let x = let x = "5" in x ++ x in

print x -- this prints 55

We now introduce some vocabulary about names. In the program let

x = p1 in p2, the name x is said to be bound . In particular it is bound in p2.
We call the name x in this position a binder . In the program print x, the
name x is said to be free. We also call it an occurrence of x.

Sometimes names are also called variables. We try to prefer the term
name over variable in this document. More precisely we use the term vari-
able to represent the construct which holds just a name. For instance the
program x + x contains two variables but only one name.

A program without any free names/variables is said to be closed. The
set of free names can be defined inductively as follows. The set of free names
of a variable x is the singleton set with the name x. The free names of an
operation such as print p or show p are the free names of p. The free
names of an operation such as p1 + p2 are the union of free names of p1
and of p2. Finally the free names of let x = p1 in p2 are the free names
of p2 minus x, union the free names of p1.

A name x is said to be fresh for a program p if the name x is not a
member of the free variables of p. For example the name y is fresh for the
program let y = 42 in x + y, but the name x is not.

Two programs p1 and p2 are said to be α-equivalent if they differ only
by a consistent renaming of the bound names. Note that this is not a
formal description of α-equivalence, but an informal definition appealing to
our intuition of “name irrelevance”. Defining this relation precisely is one
of the important part of this thesis. For instance the programs let x = 21

in x + x and let y = 21 in y + y are α-equivalent. The name of a variable
should not have any importance except being a tool to reference a position in
the program without ambiguities. α-equivalence is an equivalence relation.
This means that the relation is reflexive (every program is α-equivalent to
itself), symmetric (if p1 is α-equivalent to p2, then p2 is α-equivalent to p1),
and transitive (if p1 is α-equivalent to p2 and p2 is α-equivalent to p3 then p1
is α-equivalent to p3). The α-equivalence is also a congruence, meaning that
if p1 is α-equivalent to p2 then if we put the programs in the context C[]

to produce bigger programs then C[p1] is α-equivalent to C[p2].

1.6. SCOPING 27

Typing our let construct We have introduced local definitions and
variables and we now extend our typing discipline to these constructs. Like
we have done for the previous constructs, we give the typing informally
using a textual description. The program let x = p1 in p2 has type σ if
and only if p1 has some type τ and that p2 has type σ assuming that x has
type τ . To type a variable we use the assumptions we gathered so far. There
are several ways to precisely describe how to manage these assumptions, but
we do not detail them in this introduction.

Let us try to check the typing with an example. We check that the pro-
gram let x = 42 in let y = show x in print y has type Interactive.
To do so we first check that 42 has type N which is true, then we must check
that let y = show x in print y has type Interactive assuming that x

has type N. To do so we first check that show x has type String, which
given the rule for show amounts to check that x has type N, which is true by
assumption. We then check that print y has type Interactive assuming
that y has type String. Given the rule for print this amounts to check
that y has type String which is true by assumption.

Meta-programming and representation of variables How do we rep-
resent variables and the let construct? It is reasonable to start with
names being values of type String, each variable being a tree node that
we call var, and the let construct being a node with three subtrees. The
program let x = 6 in let y = x + 1 in x * y can thus be depicted as:

let

x num

6

let

y +

var

x

num

1

*

var

x

var

y

This first approach is the root of the nominal approach that we describe
in greater detail in chapter 2.

A different approach is to use de Bruijn indices [de Bruijn, 1972]. This
representation is said to be nameless because variables are no longer iden-
tified by a name but a notion of “distance” to the binding point. This
nameless approach solves part of the problem by providing a canonical rep-
resentation. However a major issue with this nameless representation is its

28 CHAPTER 1. INTRODUCTION

arithmetic flavor. Indeed properties about names and binders are turned
into arithmetic formulae. This second approach is covered in chapter 5.
Here is the same example using the de Bruijn style:

let

num

6

let

+

var

0

num

1

*

var

1

var

0

1.7 Empowering our language

Declarations and definitions We now fast-forward from our tiny subset
of Agda to Agda itself as we need it in the remainder of this document. We
start with declarations, which allow us to declare a symbol that can be used
globally. This generally differs from the let construct whose scope is local.
Moreover the declaration just specifies the type of the symbol. Subsequent
phrases have to define this declared symbol. The declarations make use of
the character : to separate the declared symbol from its type. The following
line is read “Dear Agda, let us declare hello-world of type Interactive”:

hello-world : Interactive

After the declaration must come the definition. The name of the defined
symbol is recalled and a program is given for its definition:

hello-world = print "Hello World!"

Functions We introduce a new sort of types, namely function types. If σ
and τ are types then σ → τ is a type as well. This type represents functions
whose domain is σ and co-domain is τ . Happily Agda functions are like
mathematical functions and no surprise whatsoever will trouble this. The
syntax for definitions enables the definitions of functions in a very simple
way: we just give a name to the argument before the equal sign. To apply a

1.7. EMPOWERING OUR LANGUAGE 29

user defined function f to an argument x, the syntax is the lightest syntax
possible: f x.

double : N → N
double n = n + n

-- This program prints: 42

prog1 : Interactive

prog1 = print (show (double 21))

The name n before the equal sign is a binder and scopes over the sub-
program found after the equal sign. The scoping works pretty much like
with the let construct. Here is another example:

hello : String → Interactive

hello s = print ("Hello " ++ s ++ "!")

-- This program prints: Hello Functional World!

prog2 : Interactive

prog2 = hello "Functional World"

In order to receive multiple arguments one simply has to make functions
return functions. Indeed the type N → (N → N) is the type of a function
taking a first number argument and returning a function taking a second
number argument to finally deliver its result number. This is a pattern
so common that we make the arrow type associate on right such that we
can write the type this way: N → N → N. The same shortcut goes for
function applications. Instead of writing (f x) y or worse (f(x))(y) we
simply make the application associate on left, thus we can write f x y.
Here is an example:

hello2 : String → N → Interactive

hello2 s n = print ("Hello " ++ s ++ " " ++ show n ++ "!")

-- This program prints: Hello World 42!

prog3 : Interactive

prog3 = hello2 "World" (2 * 21)

Data-types Among the types presented so far, N, List, Tree are user-
defined in Agda. The general mechanism used to define these types is called
inductive families. Inductive families generalize various forms of definition
mechanisms such as sum and product types, regular tree types, algebraic

30 CHAPTER 1. INTRODUCTION

data types, and GADT s (generalized algebraic data-types). To define an
inductive family, we need to declare its name and type, and declare as many
data constructors as we want. Each data constructor has a name and a type
as well. Let us study the definition for Bool, one of the simplest data type
possible:

data Bool : Set where

false : Bool

true : Bool

The first line declares Bool to have type Set. Indeed Set is a special
type which is the type of basic types. Agda treats types like other values of
the language. Then we define two data constructors called false and true.
These two constructors are the two only values of type Bool.

We now focus on the type of natural numbers, namely N:

data N : Set where

zero : N
suc : N → N

The first line declares N to have type Set. Then we define two data
constructors called zero and suc. The constructor zero is introduced as
a value of type N to represent the number 0. The constructor suc (for
successor) is introduced as a function from N to N which might seem like a
surprising beast. Two points are striking. First we are using the type N in
its own definition: this type is said to be recursive. The second point is to
declare a function without giving it a definition. Indeed suc has no other
definition, and thus giving it an argument does not trigger a computation.
For instance suc zero stays stuck like that and does not reduce further. The
language is built to take advantage of data constructors to define functions
by pattern matching .

Note that the same name can be used for different data constructors
of distinct data types. Agda makes use of type annotations to resolve
ambiguities.

To illustrate definitions made with pattern matching the following pro-
gram defines a function called not which negates a Boolean value:

not : Bool → Bool

not true = false

not false = true

This definition is made of two equations: one for each constructor of the
inspected argument. In the case for true we return false and in the case
for false we return true.

1.7. EMPOWERING OUR LANGUAGE 31

We now go on a more interesting definition made with pattern matching.
The following program defines a function called triple which multiplies by
three its argument:

triple : N → N

-- 3 * 0 = 0

triple zero = zero

-- 3 * (1 + n) = 3 + 3 * n

triple (suc n) = suc (suc (suc (triple n)))

While this definition is longer than we could expect (triple n = 3 * n),
it has a pedagogical interest. This definition is made of two equations: one
for each constructor of the inspected argument. In the successor case the
function triple is used in the definition of triple itself! This function is
said to be recursive.

We can now reveal that all the operations on natural numbers we have
seen so far are actually defined within the language using recursive defini-
tions. Here are for instance the definitions for + and *. To express that we
want these operators to be infix, we declare + as + . Each indicates special
places where operands should go. Both functions + and * pattern-match
on their first argument:

+ : N → N → N
zero + n = n -- 0 + n = n

suc m + n = suc (m + n) -- (1 + m) + n = 1 + (m + n)

* : N → N → N
zero * n = zero -- 0 * n = 0

suc m * n = n + m * n -- (1 + m) * n = n + m * n

The notation we used for literal numbers such as 2 or 4 is actually strictly
equivalent to suc (suc zero) and suc (suc (suc (suc zero))) respectively.

We define a last operation on natural numbers, namely division by two.
We do not show the definition for ÷. Indeed, division by a known constant
is indeed much simpler to define recursively and illustrates subtler pattern
matching. The function is declared as /2 and hence has to be used either
prefix as /2 4 or postfix as 4 /2. You can notice how spaces are of prime
importance in Agda since they allow to freely choose meaningful names for
functions. The function /2 proceeds as follows. The two base cases for zero
and one are handled in the first two equations. The last equation deals with
all numbers strictly greater than one which makes a simple recursive call to

32 CHAPTER 1. INTRODUCTION

obtain our result:

/2 : N → N

-- 0 / 2 = 0

zero /2 = zero

-- 1 / 2 = 0

suc zero /2 = zero

-- (2 + n) / 2 = 1 + n / 2

suc (suc n) /2 = suc (n /2)

Polymorphism Sometimes functions do not need to know the nature of
parts of their arguments. This means that many types could be accept-
able for such functions. An extreme case is the identity function which
simply returns its argument. What type should we give it? N → N,
String → String, or List N → List N and the list goes on indefinitely.
The solution to this issue is called polymorphism. We generalize the type of
the function type to ∀{A} → A → A, which reads “for all type A a function
from A to A”. The polymorphic identity function (id) can thus be written:

id : ∀{A} → A → A

id x = x

-- The function id can be used at different types

prog4 : Interactive

prog4 = print (id "Hello " ++ show (id 42))

Lists We define two new data types that we assumed to be special so far,
namely List and Tree. The type for lists –such as the type N– is made of
two data constructors. A base constructor named [] and pronounced “nil”
represents the empty list. Another constructor named :: and pronounced
“cons” appends one element to the front of a list. The notation [n1 ,

n2 , . . .] is simply a shorthand for the less familiar n1 :: n2 . . . :: [].

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

Plenty of interesting functions can be defined recursively on lists. We

1.7. EMPOWERING OUR LANGUAGE 33

show one of them which while being simple can be insightful. The func-
tion length takes a list and returns its length as a natural number. The
function is defined with two equations: one for the empty list whose length
is zero, and one for any constructed list whose length is the successor of
the length of the tail of the list. In short this function replaces the lists
constructors by the constructors of natural numbers. This highlights the
fact that both types share the same structures. Natural numbers are lists of
meaningless elements and lists are natural numbers whose constructors are
annotated by elements. The function length is polymorphic. It takes a list,
forgets the elements to reveal the bare structure behind any list: a natural
number.

length : ∀{A} → List A → N
length [] = zero

length (x :: xs) = suc (length xs)

Let us remark that since we make no use of the name x in the second
equation for length we could have use the special wildcard pattern. The
wildcard pattern is noted and is used to replace a name to state that we
do not use this part of the value.

Another common function on lists is the function map. The function map

takes a function f from a type A to a type B, and also takes a list of
type List A on which it applies f on every element to build the result-
ing list of type List B. Since map takes a function as argument it is what we
call an higher-order function. Moreover, the function map is also recursive
and polymorphic. Here is the definition of map:

map : {A B : Set} → (A → B) → List A → List B

map f [] = []

map f (x :: xs) = f x :: map f xs

We now introduce an extension to pattern matching equations, namely
the with construct. This construct extends a pattern-matching-based defi-
nition with new columns. This construct is of great effect when combined
with dependent pattern-matching. However, we present it here on a simpler
example, the function to filter a lists. The function filter, takes a pred-
icate p and a list xs and keeps only the elements of xs which statisfy the
predicate p. The with construct is used here to select a branch according
to the result of the predicate:

34 CHAPTER 1. INTRODUCTION

filter : {A : Set} → (A → Bool) → List A → List A

filter p [] = []

filter p (x :: xs) with p x

filter p (x :: xs) | true = x :: filter p xs

filter p (x :: xs) | false = filter p xs

Moreover, an ellipsis ... can be used to elide a redundant equation
prefix. Hence we can write filter, this way:

filter : {A : Set} → (A → Bool) → List A → List A

filter p [] = []

filter p (x :: xs) with p x

... | true = x :: filter p xs

... | false = filter p xs

Trees and forests We continue with trees the exploration of our pre-
viously assumed basic types. Trees can be defined with a new data type.
This data type Tree has a single data constructor named node with two
arguments: the node label of type A and the children as a list of subtrees
(List (Tree A)).

data Tree (A : Set) : Set where

node : A → List (Tree A) → Tree A

Commonly we call forests the lists of trees. The name is suggestive and
the type is shorter to write. Its definition shows how types are treated such
as other values:

Forest : Set → Set

Forest A = List (Tree A)

Trees and forests are interdependent. They finally build a pair of mu-
tually recursive types. This is the occasion to define a pair of mutually
recursive functions. We define sumTree and sumForest which respectively
compute the sum of the labels in a tree of natural numbers and in a forest of
natural numbers. For Agda to accept these definitions, the two declarations
must come before the two definitions.

sumTree : Tree N → N

1.7. EMPOWERING OUR LANGUAGE 35

sumForest : Forest N → N

sumTree (node n forest) = n + sumForest forest

sumForest [] = 0

sumForest (tree :: forest) = sumTree tree + sumForest forest

Robust program representations So far we have seen three distinct
types to represent programs: text values (String), lists of tokens (List String),
and trees (Tree String). These three types are based on the type String

and thus they are loose representations. For instance the tokens can be
malformed tokens and the tree labels could be malformed as well. We could
introduce data types for tokens and tree labels which rule out the malformed
text values. However we can do even better. Here is a data type for our
tiny programming language of the beginning:

data Program : Set where

‘num : N → Program

‘text : String → Program

‘list : List Program → Program

‘node : Program → Program → Program

‘+ : Program → Program → Program

‘́ : Program → Program → Program

‘* : Program → Program → Program

‘÷ : Program → Program → Program

‘++ : Program → Program → Program

‘print : Program → Program

‘show : Program → Program

‘>> : Program → Program → Program

‘var : String → Program

‘let : String → Program → Program → Program

The type Program is a recursive type inducing a specialized tree struc-
ture. Each construct is modeled by a single data constructor which is named
with the corresponding label we have for trees plus an extra ‘ character. The
data constructor also specifies how many subtrees are expected and what
kind of subtree is expected. Here are two of our previous examples repre-
sented with our type Program:

prog4 : Program

prog4 = ‘* (‘num 2) (‘+ (‘num 10) (‘num 11))

36 CHAPTER 1. INTRODUCTION

prog5 : Program

prog5 = ‘>>
(‘print (‘text "Hello! 2 times 21 is equal to "))
(‘print (‘show (‘* (‘num 2) (‘num 21))))

Here are now a few programs that cannot be represented with the data
type Program. Indeed while all correct programs can be represented, this
simple data type already rules out plenty of wrong programs. Here is first
a list of syntactically wrong programs represented as texts:

["2 *" -- missing operand

, "(2" -- missing parenthesis

, "2 {- " -- non-closed comment

, "bla" -- unknown construct or variable

]

Here is now a list of still syntactically wrong programs represented as
trees:

[node "+" [p] -- missing operand

, node "+" [p1 , p2 , p3] -- extra operand

, node "bla" [] -- unknown construct

, node "var" [node "bla" []] -- unknown variable

]

Finally, there are still wrong programs accepted by all of our representa-
tions. Those are the ill-scoped programs and the ill-typed programs. Here
is a list of ill-scoped or ill-typed programs using the type Program:

[‘var "bla" -- unknown variable

, ‘+ (‘num 1) (‘text "Hello!") -- ill-typed

, ‘let "x" (‘var "x") (‘num 1) -- unknown variable

]

The rest of this document focuses on how to improve program represen-
tation to better account for the handling of variables in programs.

Declaring the last operations We have shown how various constructs
of our tiny programming language can be defined in Agda. We now quickly
declare the remaining constructs that can be Agda functions. Thus we
declare ´ , ÷ , show, ++ , print, and >> . While we give no definitions
for these functions the declarations describe both their syntax and their

1.7. EMPOWERING OUR LANGUAGE 37

typing very concisely:

´ : N → N → N
÷ : N → N → N

show : N → String

++ : String → String → String

print : String → Interactive

>> : Interactive → Interactive → Interactive

The core constructs from our tiny language that we do not define are
literals (numbers, texts, lists), variables and the let construct. However,
in order to use all these functions and constructors we introduced a fairly-
discrete construct, namely application. Since application is written as a
simple juxtaposition (using spaces or parentheses) we might forget it. In
our tree representation we use the label "app" for these application nodes.
We can now view the example program 2 * (10 + 11) as a tree where the
application nodes replace the special nodes of operations:

app

app

* num

2

app

app

+ num

10

num

11

Agda types In Agda, the usual function space is written A → B, while
the dependent function space is written (x : A) → B or ∀ (x : A) → B.
An implicit parameter, introduced via ∀{x : A} → B, can be omitted at a
call site if its value can be inferred from the context. There are shortcuts for
introducing multiple arguments at once or for omitting a type annotation,
as in ∀{A} {i j : A} x → e.

In Agda, Set (or Set0) is the type of small types such as N, List String,
and Maybe (Bool × N). Set1 is the type of Set, Set → Bool, N → Set,
and Set → Set.

There is no specific sort for propositions in Agda: everything is in Set `
for some `. The unit type is a record type with no fields named >. It also
represents the True proposition. The empty type is named ⊥ and is an

38 CHAPTER 1. INTRODUCTION

(inductive) data type with no constructors. It also represents the False

proposition. The negation ¬ A is defined as A → ⊥.

Lexical conventions We recall that Agda is strict about whitespace:
x≤y is an identifier, whereas x ≤ y is an application. This allows naming
a variable after its type (deprived of any whitespace). For example: x≤y
might be a variable of type x ≤ y, that is, a proof of x ≤ y.

Various notions of equality Advanced logics and proof systems exhibit
various forms of equality. The definitional equality is a first form of equality
which is deeply rooted in the computation rules of the programming lan-
guage itself, here, Agda. Two terms are definitionally equal if and only
if they can both reduce to a common term. In Agda, the reduction is a
combination of β-reductions, η-conversions, and application of the definition
equations.

Here are a few examples of definitionally equal terms. We informally
use = for this equality since this symbol is the one used for definitions.

(λ x → x) suc zero = suc zero

suc = λ x → suc x

zero + n = n

Here is an example of two terms which are not definitionally equal even
if this equality seems natural:

n + zero 6= n

Definitional equality is completely automatic and thus requires no help
from the user. However if we want to include some reasoning steps we can
use the propositional equality . The symbol used in Agda and further in this
document is ≡. To simplify matters, here is the definition of the proposi-
tional equality specialized to values of small types (Set0), namely ≡0 :

data ≡0 {A : Set0} (x : A) : A → Set0 where

refl : x ≡0 x

ı0 : {A : Set0} → A → A → Set0
x ı0 y = ¬(x ≡0 y)

We do not intend to explain the subtleties of such a definition. We only
mention that there is a single constructor for this type requiring both sides
to be same, hence definitionally equal.

1.7. EMPOWERING OUR LANGUAGE 39

-- This is definitionally true, hence immediately proven by refl

zero + n ≡ n

-- This is provable by a simple induction on n

∀ n → n + zero ≡ n

Sometimes, two functions f and g cannot be proved propositionally equal
but still produce the same output on every possible input. In this case, the
functions f and g are said to be equal pointwise. The symbol for point-
wise equality is $. Here is the definition of pointwise equality in Agda,
specialized to small types (Set0), non-dependent functions:

$0 : {A B : Set0} (f g : A → B) → Set0
f $0 g = ∀ x → f x ≡0 g x

To illustrate pointwise equality we define the function not2 which iterates
the function not two times.

not2 : Bool → Bool

not2 x = not (not x)

We then show that the function not2 is equal pointwise to the identity
function. Given the definitions for $0 and not2 this exactly amounts to
show: ∀ x → not (not x) ≡ x.

not2$id : not2 $0 id

not2$id true = refl -- true = not (not true) definitionally

not2$id false = refl -- false = not (not false) definitionally

Equalities are said to be either intensional or extensional. Let us use
sorting functions as an example to illustrate the difference. If we have two
different sorting functions each implementing one sorting algorithm such as
bubble sort and quick sort. The two functions are said to be extensionally
equal since they both return the same sorted list for any given list. However
bubble sort and quick sort are not intentionally equal. The intention is
actually opposite. When we write a quick sort function, we intentionally
want to make it different than bubble sort!

In Agda both the definitional and the propositional equalities are cur-
rently intensional. There is an ongoing will to make the propositional equal-
ity more extensional. While this sounds like a radical change, the proposi-
tional equality is actually already compatible with extensionality. Indeed,
there is no way to contradict extensionality with the current propositional
equality. In short there is no proof than quick sort is different from bubble
sort and thus making them provably equal introduce no contradiction.

40 CHAPTER 1. INTRODUCTION

The pointwise equality is by construction extensional and in section 4.2
we explain a generalized definition to relate functions which sends related
inputs to related outputs.

Full development online We use some definitions from Agda’s standard
library: natural numbers, booleans, lists, and applicative functors (pure
and f).

For the sake of conciseness, the code fragments presented in this docu-
ment are sometimes not perfectly self-contained. However, a complete Agda
development is available online [Pouillard, 2011a].

Outline This document is organized as follows.
The next three chapters delve into the nominal approach. We introduce

the nominal approach (chapter 2) and present our system: a safe program-
ming interface for the nominal style. We then present how to use it (chap-
ter 3), and what happens behind the scene to implement it and show its
safety (chapter 4).

The next chapter (5) covers a nameless approach known as “de Bruijn
indices”. We present how to seamlessly extend our system to this new
approach. This chapter covers the same aspects: the interface and its im-
plementation, its usage, its soundness.

The remaining chapter (6 discusses different variations and combinations
of these variations. At the same time this chapter covers the related work
and concludes.

Chapter 2

The nominal approach

This chapter is organized as follows. The first section informally introduces
and presents several techniques to represent data structures with bindings in
a nominal style. Section 2.2 describes our solution, an interface to program
with names and binders.

2.1 Introduction to the nominal approach

2.1.1 Warm-up: the bare nominal approach

The bare approach to abstract syntax with names and binders in nominal
style requires very little infrastructure to start with. Names and binders are
represented by so-called atoms. The set of atoms is countably infinite and
the only required operation is an equality test. Using natural numbers as a
concrete representation for atoms is a common and sensible choice.

-- A set of atoms (could be N)
Atom : Set

-- Atom is countably infinite; here are some atoms:

-- x,y,z... could be represented by 0,1,2...

x y z f g {-...-} : Atom

-- The equality test on atoms

==A : (x y : Atom) → Bool

Given the type Atom we can readily define algebraic data types for ab-
stract syntax with names and binders. Our running example is the untyped
λ-calculus defined below. The type TmA (Tm for “term” and A for “atom”) is
made of three data constructors. The constructor V is for variables and sim-
ply holds an atom. The constructor · is the function application construct
made of two subterms. The constructor ň takes an atom and a subterm

41

42 CHAPTER 2. THE NOMINAL APPROACH

in which this atom is considered bound. This means that the construct ň
is introducing a variable. On contrary the atom in the construct V is said
to be free. Indeed this atom is supposed to refer to a bound atom. The
constructor Let also takes an atom but two subterms. The atom is bound
in the second subterm only.

data TmA : Set where

V : (x : Atom) → TmA

· : (t u : TmA) → TmA

ň : (b : Atom) (t : TmA) → TmA

Let : (b : Atom) (t u : TmA) → TmA

It is striking that there is no formal distinction between the atoms that
represent binders and those that represent occurrences. Neither is there any
indication of the scope of the binders. This calls for improvement.

We consider it very important to highlight that atoms are used for two
distinct purposes whether they are in a binding position or a free position.
Starting from section 2.2, we embrace that distinction and provide distinct
types for these usages.

Here are two term examples, the identity function and the application
function:

-- λx. x

idTmA : TmA

idTmA = ň x (V x)

-- λf. λx. f x

apTmA : TmA

apTmA = ň f (ň x (V f · V x))

The strength of this approach resides in its simplicity. The representation
of terms closely follows the concrete syntax of the language. The main issue
is adequacy: there are multiple equivalent representations of the “same”
term.

Indeed the choice of atoms is fairly arbitrary. Two terms can represent
the same piece of syntax when they differ only by a consistent renaming of
bound names. In this situation two such terms are said to be α-equivalent.
Here are for example two α-equivalent terms:

tx : TmA

tx = ň x (V f · V x)
ty : TmA

ty = ň y (V f · V y)

2.1. INTRODUCTION TO THE NOMINAL APPROACH 43

The term tx is α-equivalent to ty since consistently renaming the bound
name x by y in the term tx yields the term ty. Respectively consistently
renaming y by x in ty yields tx. However α-equivalence can be subtle, let
us observe a third term tf which is not α-equivalent to neither tx nor ty:

tf : TmA

tf = ň f (V f · V f)

An inconsistent renaming of the bound name x by f in tx yields tf, while
a consistent renaming of the bound name f by x in tf does not yield tx.

We do not delve more into the details of α-equivalence yet. We focus
on the fact that the concrete naming of a term is a representation issue and
should not be relevant for the computation. In particular, good functions
should be independent of this representation issue. This property can be
stated as follows:

A function is well-behaved if, when applied to α-equivalent arguments, it
produces α-equivalent results.

To illustrate well-behaved functions we give a few examples. The fol-
lowing functions rmA (removes an atom from a list) and fv (lists the free
variables/atoms of a term) are well-behaved:

rmA : Atom → List Atom → List Atom

rmA [] = []

rmA x (y :: ys) =

if x ==A y then rmA x ys

else y :: rmA x ys

-- Since rmA behaves well, this holds:

test-rmA : rmA x [x] ≡ rmA y [y]

test-rmA = refl -- both reduces to []

fv : TmA → List Atom

fv (V x) = [x]

fv (t · u) = fv t ++ fv u

fv (ň x t) = rmA x (fv t)
fv (Let x t u) = fv t ++ rmA x (fv u)

-- Since fv behaves well, this holds:

test-fv : fv tx ≡ fv ty

test-fv = refl -- both reduces to [f]

44 CHAPTER 2. THE NOMINAL APPROACH

We now illustrate misbehaving functions with two examples. The func-
tion ba computes the list of bound atoms. The function cmp-ba takes two
terms and compare their bound variables if both are ň constructs.

ba : TmA → List Atom

ba (ň x t) = x :: ba t

ba (Let x t u) = x :: ba t :: ba u

ba (t · u) = ba t ++ ba u

ba (V) = []

[x]ı[y] : [x] ı [y]

[x]ı[y] = {! omitted !}

-- Since ba does not behave well:

test-ba : ba tx ı ba ty

test-ba = [x]ı[y]

cmp-ba : TmA → TmA → Bool

cmp-ba (ň x) (ň y) = x ==A y

cmp-ba = false

-- Since cmp-ba does not behave well:

test-cmp-ba : cmp-ba tx tx ı cmp-ba tx ty

test-cmp-ba () -- true ı false

In traditional informal developments, α-equivalence is identified with
equality. The upside is that every definition respects α-equivalence. Hence
functions automatically map α-equivalent inputs to α-equivalent outputs.
The downside is that building functions is more difficult. Indeed what were
misbehaving functions before, are not functions anymore when we identify
α-equivalence and equality. They are not functions simply because they
map equal inputs to different outputs.

One of the goals of our system is to guarantee that well-typed functions are
well-behaved. A function like cmp-ba is ill-typed in our system. A function
like ba is typed differently than the function fv, effectively disarming the
function ba.

2.1.2 Using well-formedness judgements

One way to define the scoping rules is to define a well-formedness judgement.
It can be done using a recursive predicate over the structure of terms. It is a
well-known technique used in the definition of type systems. The standard
presentation makes use of a set of inference rules where judgements are

2.1. INTRODUCTION TO THE NOMINAL APPROACH 45

made of an environment, a term and a type. The environment tracks the
type of each introduced variable. To specify scoping rules one follows the
same presentation but without the types. We directly focus on a formal
presentation in Agda since inference rules (and grammars) have a direct
translation into inductive types. First one defines the environments which
are nothing more than lists of atoms:

data Env : Set where

ε : Env

, : (Γ : Env) (x : Atom) → Env

Then comes the definition of the membership predicate. It states when
an atom is a member of some environment. This is done through two rules:
one applies when the atom is present at the first position of the environment,
and a second rule applies when is present in the tail of the environment. Here
is the definition in Agda where lines drawn with comments give constructors
a flavor of inference rules (a comment starts with -- and stops at the end
of line):

data ∈ x : (Γ : Env) → Set where

here : ∀ {Γ} → -------------

x ∈ (Γ , x)

there : ∀ {Γ y}
→ x ∈ Γ
→ -------------

x ∈ (Γ , y)

Finally one can state the scoping rules for the λ-calculus. The definition
boils down to using an environment to track bound atoms, using the mem-
bership predicate at variable occurrences and pushing the binders onto the
environment:

46 CHAPTER 2. THE NOMINAL APPROACH

data ` Γ : TmA → Set where

V : ∀ {x} → x ∈ Γ
→ ---------

Γ ` V x

· : ∀ {t u} → Γ ` t

→ Γ ` u

→ -----------

Γ ` t · u

ň : ∀ {t b} → Γ , b ` t

→ -----------

Γ ` ň b t

Let : ∀ {t u b} → Γ ` t

→ Γ , b ` u

→ ---------------

Γ ` Let b t u

We can now state that our example terms are well-scoped in the empty
environment. Thanks to implicit arguments and to the definition of the
membership predicate, the proof that a term is well-scoped is the term itself
in de Bruijn notation (zero is here and suc is there).

`id : ε ` idTmA

`id = ň (V here)

`ap : ε ` apTmA

`ap = ň (ň (V (there here) · V here))

The use of Agda implicit arguments keep these examples concise. The
curious reader who is unfamiliar with Agda might find interesting to look
at the same (second) example with all arguments made explicit:

`ap′ : ε ` apTmA

`ap′ = ň {ε} {ň x (V f · V x)} {f}
(ň {ε , f} {V f · V x} {x}

(V {ε , f , x} {f}
(there {f} {ε , f} {x}

(here {f} {ε})) ·
V {ε , f , x} {x}

(here {x} {ε , f})))

However this technique is not directly what we are looking for. Indeed

2.1. INTRODUCTION TO THE NOMINAL APPROACH 47

these scoping properties are explicitly stated on the side of each definition.
We are looking for something more integrated into the types. This would
enable well-formedness to be enforced in a more pervasive and automatic
manner. Happily this technique can be adapted to merge the scoping infor-
mation and the term.

2.1.3 Well-scoped terms

Merging terms and scoping rules is not a new technique and amounts to
removing the term index of the scoping predicate. The resulting term type
is indexed by an environment. This environment is extended at binders and
queried at variable occurrences:

data TmJ Γ : Set where

V : ∀ {x} → x ∈ Γ → TmJ Γ
· : TmJ Γ → TmJ Γ → TmJ Γ

ň : ∀ b → TmJ (Γ , b) → TmJ Γ
Let : ∀ b → TmJ Γ → TmJ (Γ , b) → TmJ Γ

One can define our two term examples in this style as well:

idTmJ : TmJ ε
idTmJ = ň x (V here)

apTmJ : TmJ ε
apTmJ = ň f (ň x (V (there here) · V here))

The function fv can easily be adapted to this style, while the function rmA

can be reused:

fv : ∀ {Γ} → TmJ Γ → List Atom

fv (V {x}) = [x]

fv (t · u) = fv t ++ fv u

fv (ň x t) = rmA x (fv t)
fv (Let x t u) = fv t ++ rmA x (fv u)

Alas the functions ba and cmp-ba are not rejected by this style. Their
types becomes:

ba : ∀ {Γ} → TmJ Γ → List Atom

cmp-ba : ∀ {Γ1 Γ2} → TmJ Γ1 → TmJ Γ2 → Bool

We have described the scoping rules but have not made much progress.
Indeed two different but α-equivalent terms can still distinguished. Worse,

48 CHAPTER 2. THE NOMINAL APPROACH

by introducing environments and membership proofs as explicit objects, we
have introduced new issues. Functions receiving terms now also receive or
know the environment in which these terms are scoped. This extra infor-
mation can be used by functions making them less agnostic to choices of
free variables. Here are two functions using the environment by pattern-
matching:

fast-fv : ∀ {Γ} → TmJ Γ → List Atom

fast-fv {ε} = [] -- for sure the term is closed

fast-fv t = fv t

env-length : Env → N
env-length ε = 0

env-length (Γ ,) = 1 + env-length Γ

env-length-TmJ : ∀ {Γ} → TmJ Γ → N
env-length-TmJ {Γ} = env-length Γ

If one consider the term as the only input of env-length-TmJ, then this
function does not behave well since the same term can be scoped in two
environments of different length. The issue is that Γ is a concrete input to
the functions like fv, ba, cmp-ba, fast-fv and env-length-TmJ.

In order to fix these issues we make use of abstract types and yet provide
an interface with precise types for a safe usage. Environments (the type Env)
are abstracted as so-called worlds. Atoms used in binding positions are
abstracted as so-called binders and cannot even be compared. Atoms in
free positions are glued together with the proof of their membership in the
environment and are called names. Finally a few extra operations allow to
deal with these abstract types in a safe way.

2.2 NomPa: A programming interface in nominal
style

Our approach is called NomPa and proposes a programming interface whose
types are abstract. This interface (Figure 2.1) admits a concrete implemen-
tation (section 4.1). Hiding this implementation keeps the programmer away
from the internal details and gives rise to interesting properties via para-
metricity.

While the complete interface is given in Figure 2.1, each ingredient of
the interface is presented in turn. First here are the building blocks needed
to define data types with names and binders in a nominal style.

2.2. NOMPA: A PROGRAMMING INTERFACE IN NOMINAL STYLE49

record NomPa : Set1 where

constructor mk

infixr 5 /
infix 3 ⊆
infix 2 #

field

-- minimal kit to define types

World : Set

Name : World → Set

Binder : Set

/ : Binder → World → World

-- An infinite set of binders

zeroB : Binder

sucB : Binder → Binder

-- Converting names and binders back and forth

nameB : ∀ {α} b → Name (b / α)
binderN : ∀ {α} → Name α → Binder

-- There is no name in the empty world

∅ : World

¬Name∅ : ¬ (Name ∅)

-- Names are comparable and exportable

==N : ∀ {α} (x y : Name α) → Bool

exportN : ∀ {α b} → Name (b / α) → Name (b / ∅)] Name α

-- The fresh-for relation

: Binder → World → Set

#∅ : ∀ b → b # ∅
suc# : ∀ {α b} → b # α → (sucB b) # (b / α)

-- inclusion between worlds

⊆ : World → World → Set

coerceN : ∀ {α β} → (α ⊆ β) → (Name α → Name β)
⊆-refl : Reflexive ⊆
⊆-trans : Transitive ⊆
⊆-∅ : ∀ {α} → ∅ ⊆ α
⊆-/ : ∀ {α β} b → α ⊆ β → (b / α) ⊆ (b / β)
⊆-# : ∀ {α b} → b # α → α ⊆ (b / α)

Figure 2.1: The NomPa interface

50 CHAPTER 2. THE NOMINAL APPROACH

2.2.1 All we need to define nominal syntax

To replace environments in the definition of well-scoped terms, we introduce
an abstract notion of worlds. Hence the interface starts by an abstract type
for worlds:

World : Set

We consider it very important to highlight that atoms are used for dis-
tinct purposes whether they are in a binding position or a free position. We
embrace that distinction and provide distinct types for these usages.

We first introduce a type for binders. Binders are atoms to be used
only in binding positions. While these binders are explicitly accessible in
terms it does not mean one can distinguish two α-equivalent terms by simply
looking at the binders. Indeed the interface does not provide any means to
distinguish two binders. Internally binders are really atoms but the interface
keeps them abstract:

Binder : Set

For atoms to be put in free position, we introduce a type called Name.
This type is indexed by a world in which the name is scoped. A name glues
together an atom and a proof of its membership in the world.

Name : World → Set

Worlds can be thought of as a set of atoms (names or binders) but will
be thought of as relations between names in section 4.3.

Now that we have binders and worlds, we can introduce a way to extend a
world with a binder. This is analogous to the constructor , of section 2.1.2
for extending an environment with an atom.

/ : Binder → World → World

At this point, we have all we need to build data types with names and
binders. The new definition of Tm is very close to the previous one. All we
have to do is to use / instead of , , rename Γ into α, and use Name instead
of an atom plus a membership proof:

data Tm α : Set where

V : Name α → Tm α
· : Tm α → Tm α → Tm α

ň : ∀ b → Tm (b / α) → Tm α
Let : ∀ b → Tm α → Tm (b / α) → Tm α

2.2. NOMPA: A PROGRAMMING INTERFACE IN NOMINAL STYLE51

Here binding constructs rely on dependent types, since the binder b

is used in the type of the subterm. In our previous work [Pouillard and
Pottier, 2010], we avoided dependent types on purpose to make the results
more widely usable. The non-dependent approach based on links can be
built on top of the one we are presenting here. A weak link [Pouillard and
Pottier, 2010] from α to β is represented by a binder b such that β is equal
to b / α. Hence we want to first study in detail the dependent approach
with its logical relation.

Here is a trivial example of a function that traverses a term and measures
its size. It is remarkable for its simplicity: name abstractions are traversed
without fuss. The code would be exactly the same in the bare nominal
approach of section 2.1.1. In particular this unaltered induction suggests
that the expressiveness with respect to the bare nominal approach is kept.
It is efficient: no renaming, substitution, or shifting is involved. Polymorphic
recursion is exploited: the call to size t in the ň (and Let) case is at some
inner world.

size : ∀ {α} → Tm α → N
size (V) = 1

size (t · u) = 1 + size t + size u

size (ň t) = 1 + size t

size (Let t u) = 1 + size t + size u

2.2.2 Building binders and names

In order to build terms, we need binders and names. Binders are introduced
in our system using two simple primitive operations called zeroB and sucB:

zeroB : Binder

sucB : Binder → Binder

We introduce a cheap convenience function to turn any natural number
into a binder:

B : N → Binder

zero B = zeroB

(suc n) B = sucB (n B)

In effect, binders are natural numbers with a limited interface. Here we
give only zero and successor but all of the operations on natural numbers
could be exposed as well. One key limitation, however, is that no information
must leak out of a binder. Hence no equality test over binders is provided.

52 CHAPTER 2. THE NOMINAL APPROACH

This is clarified when building the logical relation in section 4.3.

To build new names we provide a function, called nameB, to turn binders
into names. For completeness we introduce the converse function binderN.
However, this function, without any properties on it, is of very little use.

nameB : ∀ {α} b → Name (b / α)
binderN : ∀ {α} → Name α → Binder

While nameB can turn any binder into a name, it imposes the shape of
the world that the produced name inhabits. Indeed nameB b returns a
name in any world whose last introduced binder is b. We will soon see that
this is an important limitation and how to overcome it. For the moment,
we have enough blocks to define a representation of the identity function!

idTm : ∀ {α} → Tm α
idTm = ň x (V (nameB x))

where x = 0 B

Our second example is a representation of the λ-term for false (λx.λx.x).
We use the same binder twice on purpose to show a use of name shadowing.
To type check the variable occurrence of x, the world x / α is implicitly
given to nameB which returns a name in the world x / x / α. Then each
of the two “ň x” takes away one “x /” to leave the final term in α.

falseTm : ∀ {α} → Tm α
falseTm = ň x (ň x (V (nameB x)))

where x = 0 B

One however faces an issue when building a representation of the λ-term
for true (λx.λy.x). The näıve approach does not type-check:

-- this does not type-check

trueTm : ∀ {α} → Tm α
trueTm = ň x (ň y (V (nameB x)))

where x = 0 B

y = 1 B

While nameB x inhabits any world of the form x / β, the context expects
a name in the world y / x / α. We introduce means to move a name from
one world to another in section 2.2.3.

Closed terms The above well-typed terms (idTm and falseTm) have no
free variables. They are said to be closed. They both have the type:

2.2. NOMPA: A PROGRAMMING INTERFACE IN NOMINAL STYLE53

∀ {α} → Tm α. This world-polymorphic type reflects this closedness prop-
erty. If any world fits, the empty world (noted ∅) fits as well. So idTm

also has the type Tm ∅. Conversely, because the empty world is included in
all worlds, we will be able to move any term from the empty world to an
arbitrary world. In short Tm ∅ and ∀ {α} → Tm α are isomorphic types.

To allow exploiting the fact that any term in the empty world is closed,
we introduce ¬Name∅, which witnesses that there is no name in the empty
world:

∅ : World

¬Name∅ : ¬(Name ∅)

This last primitive operation is provided to secure the system against a
buggy notion of closed terms but not only! In various situations it enables
arguing that certain cases are impossible, like looking up a name in an empty
environment.

2.2.3 World widening: Name weakening

It is often necessary to widen the world which a name inhabits. One example
was the trueTm definition we tried earlier: to type-check it, we need to
widen the world of the name x. Widening a world causes a loss of static
information. For instance we have seen that a term in the empty world is
closed: if one widens its world, it is no longer statically known to be closed.
We call this operation weakening because it loses some static information.
The name “weakening” is also vastly used for the same purpose on typing
environments.

To account for the multiple ways in which we could widen a world we
introduce a type to represent the inclusion between two worlds. The type ⊆
is for witnesses of world inclusion. If a world α is included in a world β then
it is permitted to transport a name (and a term as well, as we shall see)
from α to β. The primitive operation coerceN takes an inclusion witness,
a name and it returns the same name at a wider world. We also introduce
an alias to coerceN called 〈-because -〉 which is useful to keep the code
separated from the typing/proof: the proof, which appears between the
angle brackets, can be safely skipped by the reader.

⊆ : World → World → Set

coerceN : ∀ {α β} → α ⊆ β → (Name α → Name β)

infix 0 〈-because -〉

54 CHAPTER 2. THE NOMINAL APPROACH

〈-because -〉 : ∀ {α β} → Name α → α ⊆ β → Name β
〈-because -〉 n pf = coerceN pf n

-- We can now write:

-- x 〈-because some proof -〉
-- Instead of the more noisy:

-- coerceN (some proof) x

World inclusion rules Rules for world inclusion are given in figure 2.1.
World inclusion is reflexive and transitive (⊆-refl and ⊆-trans). The
empty world is a least element for world inclusion (⊆-∅). For any binder b,
b / is covariant, meaning it preserves world inclusion (⊆-/).

Finally the rule ⊆-# states that a world α is included into b / α under
the condition that b is not a member of α. This condition is necessary to
ensure the soundness of our library. An interpretation of worlds as sets sug-
gests that this condition might be unnecessary. This shows the limitations
of this way of thinking. When we introduce logical relations in section 4.3,
we explain that interpreting worlds as relations provides a richer viewpoint
and explains why this condition is necessary. The following code snippet
demonstrates that without this condition one can write wrong programs:

wrong : Binder → Binder → Bool

wrong x y = nameB x ==N nameB y 〈-because wrongProof -〉
where postulate

wrongProof : y / ∅ ⊆ x / y / ∅

As this code snippet shows, in the absence of this condition it would be
permitted to compare names at different worlds and so to compare binders
and finally to make a distinction between two α-equivalent terms.

The fresh-for relation The last inclusion rule (⊆-#), uses a fresh-for
relation called # . We introduce two rules to produce witnesses of this
relation. The first rule tells that any binder is fresh for the empty world
(#∅). The second rule takes the “successor” of a fresh binder (suc#). This
successor-based way of building new fresh-for witnesses is both simple and
efficient. Indeed with these two rules, a binder is not only fresh-for a world
but strictly greater than any element of it, allowing for a constant time suc#
operation. These rules with their types can be found in figure 2.1 as well.

Emptiness of worlds The inclusion relation can express emptiness as
well. A world α is empty if it is included in the empty world. We use
this definition of emptiness as opposed to an intensional equality with the
empty world for two reasons. First ∅ ⊆ α is always true, hence the converse

2.2. NOMPA: A PROGRAMMING INTERFACE IN NOMINAL STYLE55

is enough. Second we introduce in section 5.2 another operator on worlds
called +1 for which ∅ +1 is empty but does not reduce to ∅.

With a backward reasoning, combining coerceN and ¬Name∅ turns any
contradiction on names into an inclusion problem, reusing any automation
done on inclusion proofs.

¬Name : ∀ {α} → α ⊆ ∅ → ¬(Name α)
¬Name α⊆∅ = ¬Name∅ ◦ coerceN α⊆∅

Eliminating absurd names We introduce convenient eliminators for ab-
surd names which instead of going to the empty type, goes to any type of
our choice:

Name-elim : ∀ {A : Set} {α} → α ⊆ ∅ → Name α → A

Name-elim pf x with ¬Name pf x

... | ()

Name∅-elim : {A : Set} → Name ∅ → A

Name∅-elim = Name-elim ⊆-refl

Relational reasoning Sometimes one has to build complex inclusion wit-
nesses. While inference would be of great effect here and is currently kept
as future work, we propose a modest syntactic tool to build them, namely
the ⊆-Reasoning module. It gives access to the transitivity rule ⊆-trans
in a style which focuses more on the intermediate states of the reasoning
rather than on the steps. The syntax is a list of worlds interspersed with
inclusion witnesses, with a � after the last world. We soon present an ex-
ample of its use with the function trueTm. The code for ⊆-Reasoning is
given below for reference and can be safely skipped.

module ⊆-Reasoning where

infix 2 �

infixr 2 ⊆〈 〉

⊆〈 〉 : ∀ α {β γ} → α ⊆ β → β ⊆ γ → α ⊆ γ
⊆〈 〉 = ⊆-trans

� : ∀ α → α ⊆ α
� = ⊆-refl

56 CHAPTER 2. THE NOMINAL APPROACH

Building any term We can now finally build all nominal terms (up to
α-equivalence). In section 3.2.8 we precisely show how to build all λ-terms
by converting nominal λ-terms from section 2.1.1 to the type Tm. Moreover
we show an encoding for nominal types in section 6.5. In the meantime
we focus on the term trueTm. The two fresh-for rules above are the strict
minimum for usability. More rules could be safely added but we focus on the
minimal set of required rules here. The logical relation (section 4.2) serves
as a criterion to judge what can or cannot be added. Having only these two
rules imposes a particular style. A variable occurrence crosses only binders
with a lower value to reach its own binder. This does not hinder much
the expressiveness but requires to freshen some binders if one cannot prove
they are fresh-for a given world. As stated previously removing this minor
restriction would require adding more rules to the fresh-for and inclusion
relations. One can finally build the term trueTm:

trueTm : ∀ {α} → Tm α
trueTm {α} = ň x (ň y (V xN))
where x = 0 B

y = 1 B

xN = nameB x 〈-because x / ∅ ⊆〈 ⊆-# (suc# (x #∅)) 〉
y / x / ∅ ⊆〈 ⊆-/ y (⊆-/ x ⊆-∅) 〉
y / x / α � -〉

The proof required to “move x in the correct world” is involved in com-
parison with the simplicity of the example. By choosing the empty world
instead of world polymorphism we could cut in half the proof. To build
larger examples, we build specialized building functions that requires only
to specify the distance to the binding site [Pouillard, 2011a].

2.2.4 Comparing and refining names

While two binders cannot be compared, our interface allows comparing two
names that inhabit a common world. This may seem contradictory, since
one can turn binders into names. In fact, binder comparison cannot be
implemented in terms of name comparison because two arbitrary binders
can be turned only into names in distinct worlds.

==N : ∀ {α} (x y : Name α) → Bool

While world inclusion gives a means to weaken the type of a name, we
also need a means to strengthen the type of a name by refining its world.
Assume a name x is known to be in the scope of a binder b: x is in the
world b / α. The function exportN tests whether x is equal to b; if so, x
is refined to the world b / ∅ (which only b inhabits), otherwise it is refined

2.2. NOMPA: A PROGRAMMING INTERFACE IN NOMINAL STYLE57

to α. In short given a name of type Name (b / α), the function exportN

returns the same name with a refined type telling whether the name stands
on the b side or on the α side.

exportN : ∀ {b α} → Name (b / α) → Name (b / ∅)] Name α
exportN = maybe inj2 (inj1 (nameB)) ◦′ exportN?

Actually the primitive operation in the interface is the function exportN?

which returns a result of type Maybe (Name α). The function exportN is
then built on top of exportN?.

-- A →? B is the type of partial functions from A to B

A →? B = A → Maybe B

exportN? : ∀ {b α} → Name (b / α) →? Name α

On top of exportN? we also build a convenient eliminator for names
which is simply the elimination of the result of exportN?.

exportWith : ∀ {b α A} → A → (Name α → A) → Name (b / α) → A

exportWith v f = maybe f v ◦′ exportN?

58 CHAPTER 2. THE NOMINAL APPROACH

Chapter 3

Programming on top of
NomPa

3.1 Various examples

3.1.1 Example: computing free variables

We now have enough tools to present a more interesting example, namely a
function that constructs a list of the free variables of a term. At variables
and applications, the code is straightforward. At a name abstraction, one
easily collects the free variables of the body via a recursive call. However,
this yields a list of names that inhabit the inner world of the abstraction—a
value of type List (Name (b / α)). This list cannot be directly returned,
and this is fortunate, since doing so would let the bound name leak out of its
scope! We define an auxiliary function, rm, which removes all occurrences of
a binder b in a list of names and at the same time performs type refinement
in the style of exportN/exportN?.

rm : ∀ {α} b → List (Name (b / α)) → List (Name α)
rm b [] = []

rm b (x :: xs) with exportN x -- b is implicit

... {- bound: x≡b -} | inj1 = rm b xs

... {- free: xıb -} | inj2 x′ = x′ :: rm b xs

fv : ∀ {α} → Tm α → List (Name α)
fv (V x) = [x]

fv (fct · arg) = fv fct ++ fv arg

fv (ň b t) = rm b (fv t)
fv (Let b t u) = fv t ++ rm b (fv u)

The function rm applies exportN to every name x in the list and builds

59

60 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

a list of only those x’s that successfully export to the world α. It exhibits a
typical way of using exportN to perform a name comparison together with
a type refinement. This idiom is recurrent in the programs that we have
written.

3.1.2 Example: working with environments

Here is another example, where we introduce the use of an environment.

occurs : ∀ {α} → Name α → Tm α → Bool

occurs x0 = occ (λ y → x0 ==N y)
where

OccEnv : World → Set

OccEnv α = Name α → Bool

extend : ∀ {α b} → OccEnv α → OccEnv (b / α)
extend = exportWith false

occ : ∀ {α} → OccEnv α → Tm α → Bool

occ Γ (V x) = Γ x

occ Γ (t · u) = occ Γ t ∨ occ Γ u

occ Γ (ň t) = occ (extend Γ) t

occ Γ (Let t u) = occ Γ t ∨ occ (extend Γ) u

The function occurs tests whether the name x0 occurs free in a term.
An environment Γ is carried down, augmented when a binder is crossed, and
looked up at variable occurrences. Here, this environment is represented as
a function of type Name α → Bool. Although this is a simple and elegant
representation, others exist. For instance, we could represent the environ-
ment as a list of binders: the code for this variant is online [Pouillard, 2011a];
see also below.

The definition of extend states that, in order to look up x in the envi-
ronment extend Γ, one must first compare x and b and, only if they differ,
one must look up x in Γ. If x and b are equal, then this occurrence of x is
not free, so occ Γ (V x) must return false. This is concisely implemented
by using the function exportWith built on top of exportN (Again thanks to
the precise typing using worlds, b is passed as an implicit argument to the
function extend and exportWith).

We claim that this code is standard and uncluttered. There is no hidden
cost: no renaming is involved. Admittedly, neither functions nor lists are
the most efficient representation of environments. It would be nice to be
able to implement environments using, say, balanced binary search trees,
while preserving well-typedness. We leave this issue to future study.

The type system forces us to use names in a sound way. For instance, in
the definition of occ, forgetting to extend the environment when crossing a

3.1. VARIOUS EXAMPLES 61

binder (that is, writing Γ instead of extend Γ) would cause a type error.
In the definition of extend, attempting to check whether x occurs in Γ
without first comparing x and b would cause a type error. Remember that
in this nominal implementation scheme it is permitted for newer bindings
to shadow earlier ones; our type discipline guarantees that the code works
also in that case.

As suggested previously, one may wish to represent environments as an
explicit data structure (an association list keyed by binders) rather than as
an opaque object (a lookup function).

data DataEnv (A : Set) : (α β : World) → Set where

ε : ∀ {β} → DataEnv A β β
, 7→ : ∀ {α β} (Γ : DataEnv A α β) b (x : A)

→ DataEnv A (b / α) β

lookup : ∀ {A α β} → DataEnv A α β → Name α → Name β] A

lookup ε = inj1
lookup (Γ , 7→ v) = exportWith (inj2 v) (lookup Γ)

The type DataEnv A α β is the type of an environment, or environment
fragment, where α is called the inner world, where β is called the outer world,
and every name in the environment is associated with a datum of type A.
The inner world is the world where all the binders of the environment are in
scope. The outer world is the world where none of the binders are in scope.
The expression lookup Γ x looks up the name x in the environment Γ.
The name x must make sense in the scope of Γ, that is, x must inhabit the
world α. If x is found among the bindings, then the information associated
with x can be returned. If x is not found among the bindings, then x is
returned, with a more precise type: indeed, since x is not among the names
introduced by Γ, it must make sense outside Γ, that is, in the world β.

We illustrate the use of DataEnv with an alternative definition of the
function fv (here the payload type parameter A is instantiated with the unit
type >). This variant avoids the need to take the bound atoms off the list by
not inserting them in the first place. At variables, we use lookup to check
whether the name is free or bound. If the name is free, we return it as a
singleton list (using []). If it is bound, we ignore it and return an empty list.
At every other node, we simply carry out a recursive traversal. Whenever
a name abstraction is entered, the current environment Γ is extended with
the bound name b.

62 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

fv’ : ∀ {α β} → DataEnv > α β → Tm α → List (Name β)
fv’ Γ (V x) = [[] , const []]′ (lookup Γ x)
fv’ Γ (t · u) = fv’ Γ t ++ fv’ Γ u

fv’ Γ (ň b t) = fv’ (Γ , b 7→) t

fv’ Γ (Let b t u) = fv’ Γ t ++ fv’ (Γ , b 7→) u

fv : ∀ {α} → Tm α → List (Name α)
fv = fv’ ε

3.1.3 Example: Term comparison

Our next example focuses on comparison of terms. We first define |Cmp|,
where |Cmp| F is the type of functions comparing F-structures. In our case
the index type Ix is the type of worlds: World.

|Cmp| : ∀ {Ix} (F : Ix → Set) (i j : Ix) → Set

|Cmp| F i j = F i → F j → Bool

To compare two terms we carry down an environment, telling how to
compare two names. At name occurrences we ask our environment, at ap-
plication nodes we carry down our environment, and we need to extend the
environment at name-abstractions. We extend the environment with the
function extendNameCmp which receives a name comparator f for worlds α1

and α2, a name x1 in b1 / α1, and a name x2 in b2 / α2. Then, the func-
tion extendNameCmp exports both names x1 and x2 simultaneously: when
the two exports succeed we can use the comparator f, when both fail we
learn that x1 is b1 and that x2 is b2 we hence return true, when one succeeds
and the other fails we return false:

extendNameCmp : ∀ {α1 α2 b1 b2} → |Cmp| Name α1 α2
→ |Cmp| Name (b1 / α1) (b2 / α2)

extendNameCmp f x1 x2
with exportN? x1 | exportN? x2

... | just x1
′ | just x2

′ = f x1
′ x2

′

... | nothing | nothing = true

... | | = false

cmpTm : ∀ {α1 α2} (Γ : |Cmp| Name α1 α2) → Tm α1 → Tm α2 → Bool

3.2. KITS AND TRAVERSALS 63

cmpTm Γ (V x1) (V x2) = Γ x1 x2
cmpTm Γ (t1 · u1) (t2 · u2) = cmpTm Γ t1 t2 ∧ cmpTm Γ u1 u2
cmpTm Γ (ň t1) (ň t2) = cmpTm (extendNameCmp Γ) t1 t2
cmpTm Γ (Let b1 t1 u1) (Let b2 t2 u2)
= cmpTm Γ t1 t2 ∧ cmpTm (extendNameCmp Γ) u1 u2

cmpTm = false

Notice that the code above does not need to compare neither names nor
binders from the first term with those from the second term. Two bound
names are said to be equal when they are bound at the same time. Bound
names are said to be compared positionally. This also explains why we do
not need a function to compare binders. Notice also that the function cmpTm

has to accept two terms in different worlds to carry the recursion successfully.
In the end we can give the function ==N as an initial environment yielding
an homogeneous comparison on terms, which coincides with α-equivalence:

==Tm : ∀ {α} → Tm α → Tm α → Bool

==Tm = cmpTm ==N

In this final setting bound names are compared positionally and free
names are compared for equality.

3.2 Kits and Traversals

We have seen that working with worlds requires explicitly moving names
from world to world using operations like coerceN and exportN?. These
operations quickly become necessary at the level of user-defined types like
our type Tm. More generally any operation on names would benefit from
being lifted to user-defined types.

From our experimentations with this library we outline two points. First,
in most of the operations on terms we present, only the binding structure is
relevant. The code for the traversal can hence be written only once. Second,
the parts specific to each operation can be made reusable to work not only
with the generic traversal but with custom traversals as well.

To share code and separate concerns we introduce some infrastructure.
While abstract this infrastructure is then concretely applied to our example
type Tm.

3.2.1 Traversal Kits

We first introduce the notion of traversal kits, which encompasses: a type
of environment Env α β to be carried down in the traversal going from
the world α to β; a function trName to apply the environment at names;
a function trBinder for binders; and finally a function extEnv to push

64 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

an environment under a binder. For more flexibility the result type Res

of trName is a parameter as well, we shall see its use later on in this section.
We build traversal kits for: coercing (applying a world inclusion witness),
exporting, applying general effectful functions over names, freshening, and
combinations of these.

record TrKit (Env : (α β : World) → Set)
(Res : World → Set) : Set where

constructor mk

field

trName : ∀ {α β} → Env α β → Name α → Res β
trBinder : ∀ {α β} → Env α β → Binder → Binder

extEnv : ∀ {α β} b (∆ : Env α β)
→ Env (b / α) (trBinder ∆ b / β)

3.2.2 Coercing kit

Our first kit, called coerceKit, is simple and to the point. The “environ-
ment” type is ⊆ . The result type is simply Name. The operation to call
at names is coerceN. The action at binders is the identity, meaning that
this kit does not perform any renaming or freshening. Finally the inclusion
rule ⊆-/ fits the job of extEnv.

coerceKit : TrKit ⊆ Name

coerceKit = mk coerceN (const id) ⊆-/

To illustrate the usage of coerceKit, we use it to lift coerceN from
names to terms. In this situation the reuse is negligible, but this code serves
a pedagogical purpose.

module CoerceTmWithCoerceKit where

open TrKit coerceKit

coeTm : ∀ {α β} → α ⊆ β → Tm α → Tm β
coeTm ∆ (V x) = V (trName ∆ x)
coeTm ∆ (t · u) = coeTm ∆ t · coeTm ∆ u

coeTm ∆ (ň b t) = ň (trBinder ∆ b) (coeTm (extEnv b ∆) t)
coeTm ∆ (Let b t u) = Let (trBinder ∆ b) (coeTm ∆ t)

(coeTm (extEnv b ∆) u)

The function coeTm takes an inclusion witness and an input term. The
inclusion witness is carried down the traversal, used at names with the func-
tion trName (equal to coerceN in the coerceKit) and extended at abstrac-

3.2. KITS AND TRAVERSALS 65

tions with the function extEnv (equal to ⊆- in the coerceKit). The func-
tion trBinder is used to choose the binders of the output term which are the
ones from the input in the coerceKit. This traversal is actually independent
of the kit we use.

Our next kit requires the concept of name supplies. A name supply for
the world α is just a pair of a binder called seed and a proof that seed is
fresh for α:

record Supply α : Set where

constructor ,

field

seedB : Binder

seed# : seedB # α

We also introduce two helpers called zeros and sucs. zeros is the initial
name supply and the function sucs increments both the seed and the fresh-
for proof:

zeros : Supply ∅
zeros = 0 B , 0 B #∅

sucs : ∀ {α} → (s : Supply α) → Supply (Supply.seedb s / α)
sucs (seedB , seed#) = sucB seedB , suc# seed#

3.2.3 Renaming kits

Our second kit, the “renaming kit”, is more involved and shows how to
apply any function over names on the binding structure. To avoid captures
we have to freshen the binders in the result and the system indeed imposes
that we do so. We first define the record type SubstEnv α β. This record
type holds: a function trName to apply at names and a name supply for β:

record SubstEnv (Res : World → Set) α β : Set where

constructor ,

field

trName : Name α → Res β
supply : Supply β

open Supply supply public

-- each binder is translated to a fresh binder

trBinder : Binder → Binder

trBinder = seedB

66 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

trName :

trName′ :

Name α Name β

Name (b / α) Name (/ β)

exportWith coerceN

Figure 3.1: Lifiting trName

The so-called renameKit is then defined by providing trName, trBinder
and extEnv. This last one is the most involved part of the kit and depicted
in figure 3.1. The function trName is lifted using exportWith. The lifted
function trName takes a name, if this name is bound then the seedB is
returned, otherwise this name (exported) is given to trName to produce a
name which is then imported back using coerceN. This call to coerceN is
valid only because seedB is known to be fresh for the output world. Here
again SubstEnv is parameterized by the result type of trName for greater
flexibility:

RenameEnv : (α β : World) → Set

RenameEnv = SubstEnv Name

renameKit : TrKit RenameEnv Name

renameKit = mk trName trBinder extEnv

where

open SubstEnv

extEnv : ∀ {α β} b (∆ : RenameEnv α β)
→ RenameEnv (b / α) (/ β)

extEnv (trName , (seedB , seed#β))
= (trName′ , (sucs (seedB , seed#β)))

where

trName′ = exportWith

(nameB seedB) -- bound

(coerceN (⊆-# seed#β) ◦ trName) -- free

Our renaming kit works for any total function over names. However,
to lift the function exportN? from names to terms, we need to deal with
partial functions as well. We can actually build another renaming kit pa-
rameterized over a notion of effectful computation, namely an applicative
functor. An applicative functor [McBride and Paterson, 2008] is halfway

3.2. KITS AND TRAVERSALS 67

between a functor and a monad. Like a monad, an applicative functor has
a unit called pure. The function pure allows to embed any pure value as
a potentially effectful one. The second operation, called f , is an effectful
application, taking an effectful function and argument and resulting in an
effectful result. Here is how we can use applicative functors to apply an
effectful function to a list:

module MapA {E} (E-app : Applicative E) where

open Applicative E-app

mapA : {A B : Set} → (A → E B) → List A → E (List B)
mapA [] = pure []

mapA f (x :: xs) = pure :: f f x f mapA f xs

To build a more general renaming kit, we reuse the type SubstEnv but
make use of the flexibility on the result type to plug in the effect type E (the
applicative functor). The code for renameAKit is similar to renameKit, so
we omit it here and provide only its type:

RenameAEnv : (E : Set → Set) (α β : World) → Set

RenameAEnv E = SubstEnv (E ◦ Name)

renameAKit : ∀ {E} → Applicative E →
TrKit (RenameAEnv E) (E ◦ Name)

renameAKit = {! code similar to renameKit omitted !}

3.2.4 Substitution kit

We reuse our SubstEnv once more to generalize in another direction the
renaming kit to the so-called substKit which helps build substitution func-
tions. Substitution functions are built for a structure F (like our type Tm),
provided there is a way of injecting names to F-structures and of coercing
an F-structure from one world to another. Here again we choose another
result type for SubstEnv, namely F .

-- Index-respecting functions

F |7→| G = ∀ {i} → F i → G i

-- The type for ‘coerce’ on an F-structure

Coerce F = ∀ {α β} → α ⊆ β → F α → F β

substKit : ∀ {F}

68 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

(V : Name |7→| F)
(coerceF : Coerce F)

→ TrKit (SubstEnv F) F

substKit = {! code similar to renameKit omitted !}

3.2.5 Other kits and combinators

We can also build others kits and combinators [Pouillard, 2011a]. For in-
stance ◦-Kit can compose two kits by pairing the two environments and
composing their operations. Another combinator, starKit, takes a kit k

on environments of type Env and builds a kit working on Star Env (the
reflexive and transitive closure operator in Agda). Finally with mapKit one
can pre-compose and post-compose a function with a kit to get a new kit.
This last one is given below:

mapKit : ∀ {Env F G} (f : Name |7→| Name) (g : F |7→| G)
→ TrKit Env F → TrKit Env G

mapKit f g kit = mk (λ ∆ → g ◦ trName ∆ ◦ f) trBinder extEnv

where open TrKit kit

3.2.6 Reusable traversal

Putting all these kits to work is a matter of writing a traversal function
working for any kit and any effect. It is essentially a map function where the
free names are transformed by a user-supplied function. More precisely the
function trTm traverses the term, carrying an environment. It uses trName at
variable occurrences without putting back the constructor V. In every other
case, it just rebuilds the same structure using the corresponding constructor
and the operations of our applicative functor. To carry the environment
under bindings extEnv is used:

3.2. KITS AND TRAVERSALS 69

module TraverseTm {E} (E-app : Applicative E)
{Env} (trKit : TrKit Env (E ◦ Tm)) where

open Applicative E-app

open TrKit trKit

trTm : ∀ {α β} → Env α β → Tm α → E (Tm β)
trTm ∆ (V x) = trName ∆ x

trTm ∆ (t · u) = pure · f trTm ∆ t f trTm ∆ u

trTm ∆ (ň b t) = pure (ň) f trTm (extEnv b ∆) t

trTm ∆ (Let b t u) = pure (Let) f trTm ∆ t

f trTm (extEnv b ∆) u

3.2.7 Reusing the traversal

We can now collect the fruit of our work, by combining the traversal and a
few kits. For the sake of simplicity we directly do so on the type Tm, but
in our development [Pouillard, 2011a] we further abstract over Tm (as F)
and trTm by defining a sequence of parameterized modules.

open TraverseTm

-- Like ‘trTm’ but restores the constructor ‘V’.

-- The result type of ‘trKit’ is refined.

trTm′ : ∀ {E} (E-app : Applicative E)
{Env} (trKit : TrKit Env (E ◦ Name))
{α β} → Env α β → Tm α → E (Tm β)

trTm′ E-app trKit

= trTm E-app (mapKit id (Applicative. <$> E-app V) trKit)

While coerceN can be lifted to terms using a renaming function, this
would impose freshening. Using trTm′ with the coerceKit yields a more
efficient implementation.

-- The identity on types froms an applicative functor

id-app : Applicative id

id-app = {! definition omitted !}

coerceTm : ∀ {α β} → α ⊆ β → Tm α → Tm β
coerceTm = trTm′ id-app coerceKit

Building the renaming function amounts to use one of our renaming kits

70 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

and to pick one applicative functor:

renameTmA : ∀ {E} → Applicative E →
∀ {α β} → Supply β → (Name α → E (Name β))

→ (Tm α → E (Tm β))
renameTmA E-app s f = trTm′ E-app (renameAKit E-app) (f , s)

renameTm : ∀ {α β} → Supply β → (Name α → Name β)
→ (Tm α → Tm β)

renameTm s f = trTm′ id-app renameKit (f , s)

renameTm? : ∀ {α β} → Supply β → (Name α →? Name β)
→ (Tm α →? Tm β)

renameTm? = renameTmA Maybe.applicative

Exporting is built by lifting the function exportN? using the func-
tion renameTm?:

exportTm? : ∀ {b α} → Supply α → Tm (b / α) →? Tm α
exportTm? s = renameTm? s exportN?

Another special case of renameTm? is the so-called closeTm?. This
function takes a term in any world and checks if the term is closed. If so,
the same term is returned in the empty world. Otherwise the function fails
by returning nothing:

closeTm? : ∀ {α} → Tm α →? Tm ∅
closeTm? = renameTm? (0 B , (0 B)#∅) (const nothing)

Building capture avoiding substitution amounts to use the substitution
kit with the constructor V and the function coerceTm as arguments:

substTm : ∀ {α β} → Supply β → (Name α → Tm β) → Tm α → Tm β
substTm (s , s#) f = trTm id-app (substKit V coerceTm) (f , s , s#)

To illustrate the use of substTm, here is a simple function β-red which
performs a β-reduction when a β-redex appears at the root of the term. The
function exportWith a V associate a to b and x to V x when x ı b:

β-red : ∀ {α} → Supply α → Tm α → Tm α
β-red s (ň b f · a) = substTm s (exportWith a V) f

β-red t = t

3.2. KITS AND TRAVERSALS 71

3.2.8 Building any λ-term

A way to illustrate that every λ-term can be encoded using our type Tm is to
define a conversion function from another type for λ-terms to the type Tm.
We do so by choosing the type TmA from section 2.1.1 as the source language.

The process is very close to the combination of a specific renaming kit
and traversal function. The kit is specific since the source names are of
type Atom and not Name. The traversal function is specific since the source
and target types are not the same and we picked the identity functor for
simplicity.

First, we introduce the environment type which holds a mapping from
free atoms to free names and a name supply:

module Conv-TmA→Tm where

record Env α : Set where

constructor ,

field

trAtom : Atom → Name α
supply : Supply α

open Supply supply public

open Env

We then define how an environment is extended. It works similarly to
the one for the renaming kit:

extEnv : ∀ {α} → Atom → (∆ : Env α) → Env (seedB ∆ / α)
extEnv bA ∆ = trN , sucs (supply ∆)
where trN = λ xA → if bA ==A xA

then nameB (seedB ∆)
else coerceN (⊆-# (seed# ∆)) (trAtom ∆ xA)

The following function conv is then straightforward, calling trAtom on
atoms at the variable case and using extEnv when crossing a binding. This
function conv is simpler than the traversal function seen previously since we
avoided the use of effectful computations, however the applicative version
works as well. The function conv can then be used if we can associate all
atoms to names and have the corresponding name supply.

conv : ∀ {α} → Env α → TmA → Tm α
conv ∆ (V x) = V (trAtom ∆ x)
conv ∆ (ň b t) = ň (conv (extEnv b ∆) t)
conv ∆ (t · u) = conv ∆ t · conv ∆ u

conv ∆ (Let b t u) = Let (conv ∆ t) (conv (extEnv b ∆) u)

72 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

To convert closed terms we need an empty environment. However the
type TmA does not ensure closedness. Hence the conversion is partial. To
build this partial conversion we define it in two steps. The first step uses the
function conv with an empty environment. This empty environment maps
any atom to the name 0 N, the name supply hence starts at 1 N. As the
second step we use the function closeTm? which strengthens the type of
the input term if it is closed and fails otherwise.

emptyEnv : Env (0 B / ∅)
emptyEnv = const (0 N) , sucs zeros

conv∅? : TmA →? Tm ∅
conv∅? = closeTm? ◦ conv emptyEnv

3.3 Towards elaborate uses of worlds

3.3.1 Data type of “one hole contexts”

The type Tm is just one basic example of an algebraic data type that involves
names and binders. As a more challenging example, consider a type C of
one-hole contexts associated with Tm. The type C is indexed with two worlds,
which respectively play the role of an outer world and an inner world. The
idea is, plugging a term of type Tm β into the hole of a context of type C α β
produces a term of type Tm α. The definition of the type C is as follows:

data C α : World → Set where

Hole : C α α
· 1 : ∀ {β} → C α β → Tm α → C α β
· 2 : ∀ {β} → Tm α → C α β → C α β

ň : ∀ {β} b → C (b / α) β → C α β
Let1 : ∀ {β} b → C α β

→ Tm (b / α) → C α β
Let2 : ∀ {β} b → Tm α

→ C (b / α) β → C α β

Contexts bind names: the hole can appear under one or several binders.
This is why, in general, a context has distinct outer and inner worlds. A
context contains a list of binders that “connects” the outer and inner worlds:
these binders are carried by the constructors ň.

A context and a term can be paired to produce a term-in-context:

CTm : World → Set

CTm α = ∃[β](C α β × Tm β)

3.4. ADVANCED EXAMPLE: NORMALIZATION BY EVALUATION73

It is straightforward to define a function plug from CTm α to Tm α, which
accepts a pair of a context and a term and plugs the latter into the former.
Conversely, one can define a family of focusing functions (∀{α} → Tm α →
CTm α), which split a term into a pair of a context and a term. There are
several such functions, according to where one wishes to focus.

3.3.2 Patterns a la ML

As another instance of this idea, if one wished to extend our object language
with ML-style patterns, one would index the type Pat of patterns with an
outer world and an inner world, and one would use elaborate abstractions
of the form ∃[β](Pat α β × Tm β).

3.3.3 Term and types: System F

We use Girard-Reynold’s System F as an object language to illustrate
how representations of object-level types can be indexed by worlds as well.
Object-level terms are now indexed by two worlds: one for type names and
one for term names.

module SysF where

infixr 5 ⇒
data Ty α : Set where

V : (x : Name α) → Ty α
⇒ : (σ τ : Ty α) → Ty α

‘∀‘ : ∀ b (τ : Ty (b / α)) → Ty α

data Tm α γ : Set where

V : ∀ (x : Name α) → Tm α γ
· : ∀ (t u : Tm α γ) → Tm α γ

ň : ∀ b (τ : Ty γ)
(t : Tm (b / α) γ) → Tm α γ

·τ : ∀ (t : Tm α γ) (τ : Ty γ) → Tm α γ
Λ : ∀ b (t : Tm α (b / γ)) → Tm α γ

3.4 Advanced example: normalization by evalua-
tion

As an advanced example, we show how to express a normalization by evalu-
ation algorithm in our system. This algorithm has been previously used as
a benchmark by several researchers [Shinwell et al., 2003, Pitts, 2006, Licata
and Harper, 2009, Cave and Pientka, 2012]. The challenge lies in the way

74 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

the algorithm mixes computational functions, name abstractions, and fresh
name generation.

The object language of interest is again the pure λ-calculus. The al-
gorithm exploits two different representations of object-level terms, which
are respectively known as syntactic and semantic representations. Because
these representations differ only in their treatment of name abstractions,
they can be given a common definition, which is parameterized over the
representation of abstractions:

module M (Abs : (World → Set) → World → Set) where

data T α : Set where

V : Name α → T α
ň : Abs T α → T α
· : T α → T α → T α

The parameter Abs has kind (World → Set) → (World → Set): it is
an indexed-type transformer.

In order to obtain the syntactic representation, we instantiate Abs with
the nominal abstractions that we have used everywhere so far: an abstraction
is a package of a binder and of a term that inhabits the inner world. This
yields the type Term of syntactic terms.

SynAbsN : (World → Set) → World → Set

SynAbsN F α = ∃[b](F (b / α))

open M SynAbsN renaming (T to Term)

In order to obtain the semantic representation, we instantiate Abs with
a different notion of abstraction, in the style of higher-order abstract syn-
tax: an abstraction is a computational function, which substitutes a term
for the bound name of the abstraction. This yields the type Sem of seman-
tic terms. The type Sem is not an inductive data type; fortunately, with
the --no-positivity-check flag, Agda accepts this type definition, at the
cost of breaking strong normalization (to minimize the risks we isolated this
kind of example to separate modules where this flag is activated).

SemAbs : (World → Set) → World → Set

SemAbs F α = ∀ {β} → α ⊆ β → F β → F β

open M SemAbs renaming (T to Sem)

It is important to note that our semantic name abstractions involve
bounded polymorphism in a world: we define SemAbs F α as ∀{β} →
α ⊆ β → F β → F β, as opposed to the more näıve F α → F α. This

3.4. ADVANCED EXAMPLE: NORMALIZATION BY EVALUATION75

provides a more accurate and more flexible description of the behavior of
substitution. Indeed, when instantiating an abstraction t with some term u,
it makes perfect sense for u to inhabit a larger world than t, that is, for u

to refer to certain names that are fresh for t. The result of the substitution
then inhabits the same world as u: that is, it potentially refers to these fresh
names, in addition to all of the names that occurred free in the abstraction t.

The types SemAbs (and Sem), are covariant with respect to the parame-
ter α, which would not be the case with the näıve definition. In other words,
it is possible to define a coerce operation for semantic terms:

coerceSem : ∀ {α β} → α ⊆ β → Sem α → Sem β
coerceSem pf (V a) = V (coerceN pf a)
coerceSem pf (ň f) = ň (λ pf′ v → f (⊆-trans pf pf′) v)
coerceSem pf (t · u) = coerceSem pf t · coerceSem pf u

At a semantic abstraction, no recursive call is performed, because the
body of the abstraction is opaque: it is a computational function. Instead,
we exploit the transitivity of world inclusion and build a new semantic ab-
straction that inhabits the desired world.

The normalization by evaluation algorithm makes use of environments.
Here, environments are functions from names to semantic terms. The func-
tion , 7→ shows how to extend such an environment:

EvalEnv : (α β : World) → Set

EvalEnv α β = Name α → Sem β
-- α is the inner world

-- β is the outer world

, 7→ : ∀ {α β} (Γ : EvalEnv α β) b → Sem β → EvalEnv (b / α) β
, 7→ Γ b v = exportWith v Γ

-- meaning: b 7→ v

-- x 7→ Γ x

To a name, of type Name α an environment, of type EvalEnv α β asso-
ciates a semantic term that lies outside the scope of the environment that is,
a semantic term of type Sem β. The type EvalEnv α β is, again, covariant
in its second world, as witnessed by the following coercion function:

coerceEnv : ∀{α β1 β2}→ β1 ⊆ β2 → EvalEnv α β1 → EvalEnv α β2
coerceEnv pf Γ = coerceSem pf ◦ Γ

The first part of the normalization by evaluation algorithm is a func-
tion eval that evaluates a syntactic term within an environment to produce
a semantic term. When evaluating a λ-abstraction, we build a semantic ab-

76 CHAPTER 3. PROGRAMMING ON TOP OF NOMPA

straction, which encapsulates a recursive call to eval. The bounded poly-
morphism required by the definition of semantic abstractions forces us to
coerce the environment Γ via coerceEnv.

eval : ∀ {α β} → EvalEnv α β → Term α → Sem β
eval Γ (ň (a , t))
= ň (λ pf v → eval (coerceEnv pf Γ , a 7→ v) t)

eval Γ (V x) = Γ x

eval Γ (t · u) = app (eval Γ t) (eval Γ u) where

app : ∀ {α} → Sem α → Sem α → Sem α
app (ň f) v = f ⊆-refl v

app n v = n · v

The second part of the algorithm reifies a semantic term back into a
syntactic term. When reifying a semantic abstraction, we build a syntactic
abstraction. This requires generating a fresh name, and leads us to param-
eterizing reify with a supply of fresh names.

reify : ∀ {α} → Supply α → Sem α → Term α
reify s (V a) = V a

reify s (n · v) = reify s n · reify s v

reify (sB , s#) (ň f) =

ň (sB , reify (sucs (sB , s#)) (f (⊆-# s#) (V (nameB sB))))

The constructor V has type Name α → Sem α hence is a valid initial en-
vironment of type EvalEnv α α. Evaluation under this initial environment,
followed with reification, yields a normalization algorithm. This algorithm
works with open terms: its argument, as well as its result, are terms in
an arbitrary world α. However this function needs a name supply for the
world α. The name supply can be incrementally constructed with zeros

and sucs. In particular we can normalize closed terms by giving zeros:

nf : ∀ {α} → Supply α → Term α → Term α
nf supply = reify supply ◦ eval V

Here is an example of the normalization of a term:

idT : Term ∅
idT = ň (0 B , V (0 N))

test-nf : nf zeros ((idT · (idT · idT)) · idT) ≡ idT

test-nf = refl

Chapter 4

Behind the scene of the
NomPa library

4.1 Implementation of NomPa

The implementation of our interface is not surprising. Most of the code is
types or proofs. Notice that this section details the internals of our library
and that none of these definitions are meant to be known or used by the
library client.

Worlds come first and are represented by lists of booleans. Such a list
means that n is in the world if and only if the nth value of the list is true.
Formally the meaning of a world is defined by the membership predicate
below. The choice of a list of booleans to represent a world was guided
by two facts. First, the operations are structural: this eases the type-level
computation and the proof goes through in particular in combination with
de Bruijn indices as we details in section 5.2. Second, the elements are kept
in order and (modulo trailing occurrences of false) two equivalent sets are
represented the same way.

World : Set

World = List Bool

∅ : World

∅ = []

∈ : N → World → Set

∈ [] = ⊥
zero ∈ (false ::) = ⊥
zero ∈ (true ::) = >
suc n ∈ (:: xs) = n ∈ xs

77

78 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

Worlds are meant to be computationally irrelevant. Meaning that none
of the functions of this implementation make use of the worlds to compute
the results. Hence, programs have an equivalent dynamic semantics when
worlds are erased. While worlds are indeed used in membership, inclusion,
and fresh-for proofs, these proofs are meant to be erased as well. Finally
we want this erasing for three reasons: first for performances in the context
of an optimizing compiler, second to have a separation between the “type
system” and the running program, third to gain interesting theorems for
free through the parametricity of world polymorphic functions (section 4.2).

Then binders are represented by natural numbers. The operator /
defines how to extend a world with a binder. Given a binder n and a
world α, n / α updates the world α with the value true at index n.

Binder : Set

Binder = N

zeroB : Binder

zeroB = zero

sucB : Binder → Binder

sucB = suc

/ : Binder → World → World

zero / [] = true :: []

suc n / [] = false :: n / []

zero / (:: α) = true :: α
suc n / (b :: α) = b :: n / α

infixr 5 /

The semantics of (y / α) is to add y to the set α. Precisely the semantics
is described by the following lemma:

/-sem : ∀ α x y → (x ∈ y / α) ≡ (if x ==N y then > else x ∈ α)

Names are simply represented by a pair of a binder (a number) and a
proof that this binder belongs to the indexing world. In Agda we use a
record:

4.1. IMPLEMENTATION OF NOMPA 79

record Name α : Set where

constructor ,

field

binderN : Binder

b∈α : binderN ∈ α
infixr 4 ,

open Name public

To produce a name, nameB simply packs the given binder and a proof
which is always constructible in this simple case:

nameB : ∀ {α} b → Name (b / α)
nameB b = b , {! proof omitted !}

The equality test ==N and the exporting function exportN? both simply
compare the internal representation of names and binders.

==N : ∀ {α} (x y : Name α) → Bool

==N (x ,) (y ,) = x ==N y

exportN? : ∀ {b α} → Name (b / α) →? Name α
exportN? {b} {α} (x , pf) =

if x ==N b then nothing

else just (x , {! proof omitted !})

World inclusion is modeled as set-theoretic inclusion (membership preser-
vation). This membership preservation proof is used by coerceN to build the
expected proof. All the inclusion rules (see figure 2.1) are computationally
irrelevant and their implementations are omitted here.

infix 2 ⊆
⊆ : (α β : World) → Set

α ⊆ β = ∀ x → x ∈ α → x ∈ β

coerceN : ∀ {α β} → α ⊆ β → Name α → Name β
coerceN α⊆β (b , b∈α) = b , α⊆β b b∈α

The remaining part is the fresh-for relation (#). To cope with the
proof of suc#, we give two characterizations of this relation. One is a set
of syntactic rules (omitted here) and the other is semantic. These presenta-
tions are equivalent [Pouillard, 2011a]. For pragmatic reasons the fresh-for
relation is stronger than the non-membership relation (that is, x # α im-
plies x /∈ α but the converse is false). The definition requires binder the be
strictly greater that any binder in the world. This allows to build the suc#

80 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

primitive rule (omitted here) without inspecting the world. Not inspecting
the worlds at run-time is necessary since we want to erase worlds.

: Binder → World → Set

x # α = ∀ y → y ∈ α → x > y

4.2 Soundness: logical relations and parametricity

Since our library is written in a type-safe language, one may wonder what
soundness properties are to be proved. Moreover our names are indexed
by worlds and hold membership proofs. The functions over names are given
precise types and have been shown to be type-safe. The property that “well-
typed programs do not go wrong” comes for free, but does not satisfy us.
Indeed we have explained that certain operations (such as comparing two
binders) must not be provided to programmers; the logical relation explains
why this is the case.

To show that our library respects a model of good behavior with re-
spect to names and binders, we build a model based on logical relations
indexed/directed by types. This technique [Bernardy et al., 2010] is inde-
pendent of this work and enables to define a notion of program equivalence.
We use this technique to capture good behavior of functions involving names
and binders. Using this technique, the set of specific definitions is kept to
a minimum of one per introduced type (World, Name, and ⊆). One proof
per value introduced has to be done, which keeps the development modular
and forward-compatible to the addition of more features.

This section is organized as follows. First we recall the basics of logical
relations and parametricity. Then we give a toy example to practice a bit.
Then relations for worlds, names, and world inclusions are given. Finally we
make use of the construction to obtain free theorems [Wadler, 1989] about
world-polymorphic functions over the type Tm.

4.2.1 Recap of the framework

A relation is said to be type-directed when it is recursively defined on the
structure of types. Let R be such a type-directed relation, and let τ be a
type. Then,Rτ is a relation on values of type τ , namelyRτ : τ → τ → Set.
Recall that Set is also the type of propositions in Agda.

A type-directed relation is called “logical” when the case for functions
is defined extensionally. Here “extensionally” means that two functions are
related when they produce related results out of related arguments. Let Ar
be a relation for the arguments and Br a relation for results. Two functions f1
and f2 are related if and only if for every pair of arguments (x1, x2) related

4.2. SOUNDNESS: LOGICAL RELATIONS AND PARAMETRICITY 81

by Ar, the results f1 x1 and f2 x2 are related by Br. This definition can be
given in Agda as well:

RelatedFunctions Ar Br f1 f2 =

∀ {x1 x2} → Ar x1 x2
→ Br (f1 x1) (f2 x2)

We say that a program or a value fits a logical relation when it is related
to itself by the relation indexed by its type. We say that a logical relation
is universal if every well-typed program fits the logical relation. This notion
of universality was originally coined by John Reynolds as the “Abstraction
Theorem” [Reynolds, 1983]. We call the “Agda logical relation” the one de-
fined by Bernardy et al. [2010] for a PTS (pure type system) and naturally
extended as suggested to other features of Agda. While no complete mech-
anized proof has been done for this we consider the Agda logical relation
as universal.

To simplify matters, the definitions shown here are not universe-poly-
morphic. The reader can find universe-polymorphic definitions in our com-
plete Agda development [Pouillard, 2011a].

To formally define a logical relation indexed by types, a common tech-
nique is to first inductively define the structure of types. This is known as
a “universe of codes” U. Then one defines a function called El from codes
to types. Finally one defines by induction a function called J K from codes
to relations on elements of type described by the given code. In Agda
the function J K has the following type: (τ : U) → El τ → El τ → Set.
Because of quantification and dependent-types, types contain variables, and
a good deal of complexity is added to this scheme, so we opt for a lighter
scheme. We do not define U, El, and J K.

Instead, for each type constructor κ, we define a relation JκK (this is
the name of the relation, since there are no spaces). For the function type
constructor the RelatedFunctions definition above is a good start. Actu-
ally this is a fine definition for non-dependent functions. The dependent
version of RelatedFunctions, called JΠK here, passes the relation argu-
ment Ar x1 x2 called xr to the relation for results Br. In short the relation
for results now depends on the relation for arguments. Here is the definition
in Agda:

JΠK Ar Br f1 f2 = ∀ {x1 x2} (xr : Ar x1 x2)
→ Br xr (f1 x1) (f2 x2)

Note that this definition generalizes the case of non-dependent functions
and universal quantifications as well. For non-dependent functions we sim-
ply provide a relation for results which ignores its first argument (equivalent
to RelatedFunctions and noted J→K from now on). For universal quan-

82 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

tifications, since the arguments are types, all we need is a relation for types
(members of Set0) themselves. Following our convention we call this rela-
tion JSet0K. The relation JSet0K A1 A2 is the set of relations between A1
and A2:

JSet0K : Set0 → Set0 → Set1
JSet0K A1 A2 = A1 → A2 → Set0

For reference, full definitions for core type theory are given in figure 4.1.
As we said, we do not define the function J K. However we want a notation
close to what this function would provide. To this end, instead of writing
J τ K for a given type expression τ , we write τ where we replaced each
constructor κ by JκK, each non dependent arrow by J→K, each dependent
arrow (x : A) → B by 〈 xr : J A K 〉J→K J B K. By convention we sub-
script the names by r. Applications are translated to applications. Because
of dependent types, this translation has to be extended to all terms but we
do not do it here. Finally here are a few examples of the manual use of the
function J K:

-- What we would like to write but cannot:

J N → N → Bool K =

-- What we write instead:

JNK J→K JNK J→K JBoolK =

-- What this means:

λ f1 f2 →
∀ {x1 x2} (xr : JNK x1 x2)
{y1 y2} (yr : JNK y1 y2)

→ JBoolK (f1 x1 y1) (f2 x2 y2)

J (A : Set0) → A → A K =

JΠK JSet0K (λ Ar → Ar J→K Ar) =

λ f1 f2 →
∀ {A1 A2} (Ar : A1 → A2 → Set0)
{x1 x2} (xr : Ar x1 x2)

→ Ar (f1 A1 x1) (f2 A2 x2)

-- Using the notation instead of JΠK:
J (A : Set0) → List A K =

〈 Ar : JSet0K 〉J→K JListK Ar =

λ l1 l2 →
∀ {A1 A2} (Ar : A1 → A2 → Set0)
→ JListK Ar (l1 A1) (l2 A2)

We now have the definition of the Agda logical relation for the core

4.2. SOUNDNESS: LOGICAL RELATIONS AND PARAMETRICITY 83

JSet0K : ∀ (A1 A2 : Set0) → Set1
JSet0K A1 A2 = A1 → A2 → Set0

JSet1K : ∀ (A1 A2 : Set1) → Set2
JSet1K A1 A2 = A1 → A2 → Set1

J→K : ∀ {A1 A2 B1 B2} → JSet0K A1 A2 → JSet0K B1 B2
→ JSet0K (A1 → B1) (A2 → B2)

Ar J→K Br = λ f1 f2 → ∀ {x1 x2} → Ar x1 x2 → Br (f1 x1) (f2 x2)

infixr 0 J→K

JΠK : ∀ {A1 A2} (Ar : JSet0K A1 A2)
{B1 B2} (Br : (Ar J→K JSet0K) B1 B2)

→ ((x : A1) → B1 x) → ((x : A2) → B2 x) → Set1
JΠK Ar Br = λ f1 f2 → ∀ {x1 x2} (xr : Ar x1 x2) → Br xr (f1 x1) (f2 x2)

syntax JΠK Ar (λ xr → f) = 〈 xr : Ar 〉J→K f

J∀K : ∀ {A1 A2} (Ar : JSet0K A1 A2)
{B1 B2} (Br : (JSet0K J→K JSet0K) B1 B2)

→ JSet1K ({x : A1} → B1 x) ({x : A2} → B2 x)
J∀K Ar Br = λ f1 f2 → ∀ {x1 x2} (xr : Ar x1 x2) → Br xr (f1 {x1}) (f2 {x2})

syntax J∀K Ar (λ xr → f) = ∀〈 xr : Ar 〉J→K f

Figure 4.1: Logical relations for core types

84 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

data J⊥K : JSet0K ⊥ ⊥ where -- no constructors

data JBoolK : JSet0K Bool Bool where

JtrueK : JBoolK true true

JfalseK : JBoolK false false

data JNK : JSet0K N N where

JzeroK : JNK zero zero

JsucK : (JNK J→K JNK) suc suc

data J] K {A1 A2 B1 B2} (Ar : JSet0K A1 A2)
(Br : JSet0K B1 B2) :

A1] B1 → A2] B2 → Set0 where

Jinj1K : (Ar J→K Ar J] K Br) inj1 inj1
Jinj2K : (Br J→K Ar J] K Br) inj2 inj2

Figure 4.2: Logical relations for data types

type theory part. It extends nicely to inductive data types and records.
The process is as follows: for each constructor κ of type τ , declare a new
constructor JκK whose type is J τ K κ κ. This process applies to type con-
structors and data constructors of data types, and type constructors and
fields of record types. For reference, the logical relations for the data types
we use in this development are in figure 4.2.

Parametricity results: “Theorems For Free” We have explained how
Agda’s logical relation is defined (J K) on various types. We can now more
precisely explain how to use the “Abstraction theorem” associated to Agda
terms.

For every well-typed term M at type τ , the theorem J τ K M M is provable.

In Type Theory (such as Agda and Coq) the specification language is
the same as the programming language, which helps a lot. The theorem
statement: J τ K M M is a valid type in Agda and a proof of it is a term of
this type.

We warmly recommend the reader to study [Bernardy et al., 2010] to
get a more in-depth understanding on the subject. We still try to give some
insight on the “Abstraction Theorem”. We write Γ ` M : τ for a typing
judgement on Agda terms. In such a judgement, Γ is a typing environment
holding previously defined terms and data types. While we explained how J K

4.2. SOUNDNESS: LOGICAL RELATIONS AND PARAMETRICITY 85

is defined on types, it extends nicely on terms which is actually necessary in
Agda since terms and types cohabit. The meta-function J K is also defined
on environments by translating each binding of the environment.

Γ ` M : τ ⇒ J Γ K ` J M K : J τ K M M

This theorem reads like, for all term M, well-typed under environment Γ
at type τ , the term J M K is well-typed under environment J Γ K at type
J τ K M M. If we read the type J τ K M M as a proposition then the term J M K
is its proof.

Hence, every well-typed term give rise to a free-theorem thanks to para-
metricity. However interesting results arose only when using polymorphism.
In our setting polymorphism comes at two places. First, by making the
types of our interface abstract we force the client to be polymorphic with
respect to these types. Second, when the client write a world-polymorphic
function this give rise to even more powerful parametricity results. In sec-
tion 5.4.3 we give a more detailed account to various function types and
their respective strength.

4.2.2 An example: Boolean values represented by numbers

We wish to explain how logical relations can help explain in what sense
the interface to an abstract type is safe. To do so we introduce a tiny
example about booleans represented using natural numbers. We want 0
to represent false and any other number to represent true. Therefore
the boolean disjunction can be implemented using addition. We show that
logical relations help build a model, ensure that a given implementation
respects this model, and finally show that a client that uses only the interface
also respect the model.

Note however that this is a toy example in several ways. There are no
polymorphic functions in the interface, so no interesting free theorems are
to be expected. While we could prove safety by defining a representation
predicate in unary style, the logical relations approach is different. It re-
lies on comparing concrete data as opposed to mapping to abstract data.
The unary style would allow for a simpler construction, however this over-
simplifies the problem here and would be no longer useful for proving our
library.

Our tiny implementation of booleans using natural numbers is given
below. It contains a type B that we want to keep abstract. It contains
obvious definitions for true, false, and the disjunction ∨ . It intentionally
has a dubious function is42?. Given that 42 and 41 both represent a truth
value, the function is42? returns different results. This dubious function
breaks our still informal expectations from such a module.

86 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

B : Set

B = N

false : B

false = 0

true : B

true = 1

∨ : B → B → B

m ∨ n = m + n

is42? : B → B

is42? 42 = true

is42? = false

The next step is to define our expectations. To do so, we give a binary
relation which tells when two B values have the same meaning. We do so
with an (inductive) data type named JBK which states that 0 is related only
with itself, and that any two non zero numbers are related, formalizing the
intuition that two non zero numbers mean the same thing:

data JBK : B → B → Set where

JfalseK : JBK 0 0

JtrueK : ∀ {m n} → JBK (suc m) (suc n)

When plugged into the machinery of logical relations this single defini-
tion suffices to define a complete model of well-typed programs. However,
the plumbing requires some care. While the Agda logical relation is univer-
sal, we have no such guarantee about the Agda logical relation where the
relation for B is no longer JNK but JBK. Fortunately changing the relation at
a given type (B here) can be done safely. All we have to do is to consider
programs abstracted away from B and its operations: true, false and ∨ .
This can be done either through a mechanism for abstract types, or by re-
quiring the client to be a function taking the implementation for B and its
operations as argument.

However, to use JBK as the relation for B, we have to show that the
definitions which make use of the representation of B actually fit the relation.
Since JtrueK and JfalseK are obvious witnesses for true and false, only ∨
and is42? are left to be proved. Each time the goal to prove is systematic:
wrap the type with J·K on each constructor and put the name of the function
twice to state we want it to be related to itself. Here is the definition
for J∨K :

4.3. RELATIONS FOR NOMPA 87

J∨ K : (JBK J→K JBK J→K JBK) ∨ ∨

The type of J∨K means that given inputs related in the model, the
results are related in the model as well. Once unfolded the type looks like:

J∨ K : ∀ {x1 x2} (xr : JBK x1 x2)
{y1 y2} (yr : JBK y1 y2)

→ JBK (x1 ∨ y1) (x2 ∨ y2)

The fact that input arguments come as implicit arguments greatly short-
ens definitions. Now, thanks to the inductive definition of + , pattern-
matching on the first relation suffices to reduce the goal, and allows this
nice-looking definition of J∨K where we see the usual lazy definition of the
left biased disjunction:

JfalseK J∨ K x = x

JtrueK J∨ K = JtrueK

Let us now consider a proof for the function is42?. Fortunately there
is no such proof since this function gladly breaks the intended abstrac-
tion. Instead we simply prove its negation by exhibiting that given two
related inputs (42 and 27) we get non related outputs (since is42? 42 = 1

and is42? 27 = 0).

¬ Jis42?K : ¬((JBK J→K JBK) is42? is42?)
¬ Jis42?K Jis42?K with Jis42?K {42} {27} JtrueK
... | () -- absurd

Note that is42? is rejected by our model with no considerations about
the other exported functions. Here we have a means to build 42 by using ∨
and true. However with another implementation of ∨ there would be no
way to produce 42 and so no way to expose the wrong behavior of is42?

using the interface. This would enable some proof techniques to actually
show that no harm can be done given the limited interface and implementa-
tion. Such a proof would break down when extending the interface. In the
end, using a model provides a better forward compatibility than syntactic
proof techniques and enables proofs to be done in a modular way.

4.3 Relations for NomPa

For NomPa, we apply the same process as with booleans. We define our
expectations, by defining relations for introduced abstract types (worlds,
binders, names, fresh-for and inclusions). Finally we prove that each value

88 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

and/or function exported fits the relation.

4.3.1 Relations for NomPa types

For reference the definitions are given in figure 4.3. We now describe them
in turn.

While the types and the worlds define the programs we accept as valid,
logical relations define when two programs have the same “meaning”. For
instance, valid names are those which belong to their worlds, names with
the same meaning are those related by the relation between their worlds.
What matters is not just the fact that two worlds α1 and α2 are related,
what matters is how they are related, because this dictates when a name
in α1 and a name in α2 are related. Thus we define JWorldK α1 α2 to be
a set of relations between Name α1 and Name α2 (we note αr a relation of
type JWorldK α1 α2).

Which relations should be part of this set? The more relations are part
of it, the more power this gives to parametricity results. . . However, in or-
der for the equality test on names to inhabit the logical relation, we must
restrict JWorldK α1 α2 to contain only relations that preserve equality in
both directions, that is, only functional and injective relations:

Preserve-≡ R =

∀ x1 y1 x2 y2 → R x1 x2 → R y1 y2
→ x1 ≡ y1 ↔ x2 ≡ y2

The relation JNameK is parameterized by a relation over worlds. Given
two worlds α1 and α2, and a relation αr between them (the world αr has
type JWorldK α1 α2), then a name x1 in α1 is related to a name x2 in α2 if
and only if they are related by αr: αr x1 x2. In short, the relation between
names is completely defined by the relation between their worlds.

The relation JBinderK between two binders is both simple and meaning-
ful. It is simple since it is the full relation, meaning that any two binders are
related by JBinderK. It is meaningful since it recalls us that one binder is not
better than another one. For instance when comparing object-level terms
as we do in section 3.1.3, the functions cmpTm and ==Tm never compare
binders.

This definition is meaningful for a second reason that appears when one
looks at the free-theorems associated with functions that expect binders.
For instance, a well-typed function f of type Binder → Binder → Bool

can only be a constant function!

4.3. RELATIONS FOR NOMPA 89

-- JfK is the parametricity theorem of f

JfK : (JBinderK J→K JBinderK J→K JBoolK) f f

-- f-const is a corollary of JfK.
-- f-const shows that f is a constant function.

f-const : ∀ x1 x2 y1 y2 → f x1 y1 ≡ f x2 y2
f-const x1 x2 y1 y2 with JfK {x1} {x2} {y1} {y2}
... | JtrueK = refl

... | JfalseK = refl

This proves that there must be no way to distinguish two binders!

For the J⊆K relation, we exploit the fact there is only one way to use
an inclusion witness, namely coerceN. Thus, for the purpose of building
the “model”, we identify inclusions with their use in coerceN. That is, two
witnesses α1 ⊆ β1 and α2 ⊆ β2 are related if and only if coerceN α1 ⊆ β1
and coerceN α2 ⊆ β2 are related (see figure 4.3). Another way to look at it
is from the perspective of relation inclusion. A relation R1 is included in a
relation R2 if and only if all pairs related by R1 are related by R2 as well.
Because the function coerceN behaves such as the identity function, these
two definitions coincide. If we expand the definitions for JNameK and J→K ,
we find that α1 ⊆ β1 and α2 ⊆ β2 are related if and only if the relation αr
is included in the relation βr:

J⊆K αr βr α1⊆β1 α2⊆β2
= ∀ {x1 x2} → (x1 , x2) ∈ αr

→ (coerceN α1⊆β1 x1 , coerceN α2⊆β2 x2) ∈ βr

We now have to define operations on worlds that fit the logical relation.

The case for J∅K is trivial and uniquely defined. There is only one relation
between empty sets: the empty relation.

J∅K : JWorldK ∅ ∅

We give below a set-theoretic definition of J/K . Our definition is not
based on sets but equivalent to this. This new relation is shown to preserve
the equalities.

J/K : (JBinderK J→K JWorldK J→K JWorldK) / /
-- not proper Agda

br J/K αr
def
= { (b1, b2) } ∪ { (x, y) | (x, y) ∈ αr ∧ x ı b1 ∧ y ı b2 }

90 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

Preserve-≡ : {A B : Set0} (R : A → B → Set0) → Set0
Preserve-≡ R =

∀ x1 y1 x2 y2 → R x1 x2 → R y1 y2
→ x1 ≡ y1 ↔ x2 ≡ y2

-- JWorldK : JSet1K World World

record JWorldK (α1 α2 : World) : Set1 where

constructor ,

field

R : Name α1 → Name α2 → Set

R-pres-≡ : Preserve-≡ R

JNameK : (JWorldK J→K JSet0K) Name Name

-- : ∀ {α1 α2} → JWorldK α1 α2 → Name α1 → Name α2 → Set

JNameK (R ,) x1 x2 = R x1 x2

JBinderK : JSet0K Binder Binder

-- : Binder → Binder → Set

JBinderK = >

J#K : (JBinderK J→K JWorldK J→K JSet0K) # #

-- : ∀ {b1 b2} → JBinderK b1 b2 → ∀ {α1 α2} → JWorldK α1 α2
-- → b1 # α1 → b2 # α2 → Set

J#K = >

J⊆K : (JWorldK J→K JWorldK J→K JSet0K)
⊆ ⊆

-- : ∀ {α1 α2} → JWorldK α1 α2 →
-- ∀ {β1 β2} → JWorldK β1 β2 →
-- α1 ⊆ β1 → α2 ⊆ β2 → Set

J⊆K αr βr α1⊆β1 α2⊆β2
= (JNameK αr J→K JNameK βr) (coerceN α1⊆β1) (coerceN α2⊆β2)

Figure 4.3: Relations for NomPa types

4.3. RELATIONS FOR NOMPA 91

Here is a small drawing of the effect of J/K on relations between names:

•0 • 0

•1 • 1

•2 • 2

•3 • 3

αr

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

〈4,2〉J/K αr

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

〈4,4〉J/K 〈4,2〉J/K αr

4.3.2 NomPa values fit the relation

We now give a short overview of the proofs needed to show that our functions
fit the relation. Formally, for each primitive operation p which has type τ in
our interface, we have to exhibit a definition JpK which has type J τ K p p.
All the proof can be found in our Agda development [Pouillard, 2011a].
Thanks to the definition of JBinderK, zeroB and sucB, any function that
returns a binder immediately fit the relation. The same reasoning holds
for #∅ and suc# that immediately fit the relation. Thanks to the definition
of J/K , JnameBK holds by definition. Since J¬Name∅K receives names in
the empty world, it trivially holds. For instance here is the type signature
for JnameBK:

JnameBK : (∀〈 αr : JWorldK 〉J→K
〈 br : JBinderK 〉J→K
JNameK (br J/K αr)

) nameB nameB

-- : ∀ {α1 α2} (αr : JWorldK α1 α2)
-- {b1 b2} (br : JBinderK b1 b2)
-- → JNameK (br J/K αr) (nameB {α1} b1) (nameB {α2} b2)

For J==NK , once unfolded, the statement tells that the equality test
commutes with a renaming. This means that the result of the equality
test does not change when its inputs are consistently renamed. The proof
for J==NK is done in two parts. First, we have to relate the boolean valued
function ==N to the fact it decides equality on names. Second, we make
full use of the equality preservation property.

92 CHAPTER 4. BEHIND THE SCENE OF THE NOMPA LIBRARY

J==NK : (∀〈 αr : JWorldK 〉J→K
JNameK αr J→K
JNameK αr J→K
JBoolK

) ==N ==N

-- : ∀ {α1 α2} (αr : JWorldK α1 α2)
-- {x1 x2} (xr : JNameK αr x1 x2)
-- {y1 y2} (yr : JNameK αr y1 y2)
-- → JBoolK (x1 ==N y1) (x2 ==N y2)

The proof that exportN? is in the relation relies on two points. First, the
success (returning just or nothing) of (exportN? {b} x) depends only on
the equality between (nameB b) and x. Second, the worlds related by (br J/K αr)
can always be split into two groups, those being related by (br J/K J∅K) and
those related by αr. Said differently there is no link between the two parts.

Thanks to the definition of J⊆K , the proof that coerceN fits the relation
is a simple application of the hypotheses. Then the real job is to show that
all the inclusion rules fit the relation. This means that they all behave as
the identity function. In the end all the logical relation proofs associated
with all our primitive operations and rules are formally proved in our Agda
development [Pouillard, 2011a].

4.3.3 An example not fitting the relation

For instance consider the introduction of this function to compare two
names:

<=N : ∀ {α} → Name α → Name α → Bool

(m ,) <=N (n ,) = N. <= m n

This function is accepted by Agda type-checking rules but does not meet
our property that well-behaved functions should map α-equivalent inputs to
α-equivalent outputs.

¬ J<=NK : ¬((∀〈 αr : JWorldK 〉J→K
JNameK αr J→K
JNameK αr J→K JBoolK) <=N <=N)

¬ J<=NK J<=K = ¬ JBoolK-true-false (J<=K ? {0 , } {1 , } ?

{1 , } {0 , } ?)
-- parts (‘?’) of the proofs are omitted for conciseness

Chapter 5

The de Bruijn approach

So far, we only considered a nominal representation. This is not the only
way to deal with names and binders. We now focus on a different kind of
representation, namely de Bruijn indices [de Bruijn, 1972]. This represen-
tation is said to be nameless because binders are no longer identified by an
atom but by a notion of “distance” to the binding point.

This nameless approach solves part of the problem of representing binders
by providing a canonical representation. More precisely binding occurrences
are no longer named (we now use λ. instead of λx.). Bound variables are
represented by the “distance” to the binding λ. This distance is the number
(starting from 0) of enclosing λs to cross in order to reach the binding λ.

This approach to a safer way to program with de Bruijn indices is de-
scribed in our previous paper called “Nameless, Painless” [Pouillard, 2011b].
The library specialized to de Bruijn indices is called NaPa for Nameless
Painless. However we here stick to the general approach.

This chapter is organized as follows. The first section introduces de
Bruijn indices through successive variations found in the literature. The
second section 5.2, extends our programming interface in order to support
de Bruijn indices. Also, the implementation is extended and not replaced.
Section 5.3 explains how to use the interface to write functions on a de Bruijn
representation of programs. In section 5.4 we extend the logical relation to
support the de Bruijn style and we show how to exploit these properties on
concrete examples.

5.1 Introduction to de Bruijn indices

Various techniques have been discovered to build a nameless representation.
We have chosen a few of them which gradually set up the stage.

93

94 CHAPTER 5. THE DE BRUIJN APPROACH

5.1.1 bare: The original approach

We call this one bare, because it relies solely on natural numbers. To make
things more concrete here is an example of its use when defining our usual
type for terms:

data TmB : Set where

V : (x : N) → TmB

· : (t u : TmB) → TmB

ň : (t : TmB) → TmB

Let : (t u : TmB) → TmB

From the point of view of the binding structure, it is striking that no
difference appears between the constructors of the data type. It is completely
up to the programmer to manage the scoping difference introduced by ň
and Let. This is even more worrying in the Let case since we have no clue
of difference between the arguments.

Here is an example using this representation to build the λ-term for
function application, namely λf.λx.f x.

appTmB : TmB

appTmB = ň (ň (V 1 · V 0))

The main advantages of this approach are its simplicity and its expres-
siveness. The expressiveness is maximal since no restriction is put on the
usage of variables.

5.1.2 Maybe: The nested data type approach

The nested data type approach [Bellegarde and Hook, 1994, Bird and Pater-
son, 1999, Altenkirch and Reus, 1999] is a first step towards better properties
about the binding structure of terms. Let us start with the definition of our
type for terms with this approach:

data TmM (A : Set) : Set where

V : (x : A) → TmM A

· : (t u : TmM A) → TmM A

ň : (t : TmM (Maybe A)) → TmM A

Let : (t : TmM A) (u : TmM (Maybe A)) → TmM A

There are three points to look at. The type TmM is parameterized by
another type called A, so we can look at it as a kind of container. Note
also that the variable case V does not hold a value of type N but a value of
type A. Last but not least the ň case holds a term whose parameter is not

5.1. INTRODUCTION TO DE BRUIJN INDICES 95

simply a value of type A but a value of type Maybe A.

This last point makes the type TmM a nested data type, also called a non-
regular type. This has the consequence of requiring polymorphic recursion
to write recursive functions on such a type.

To understand why this is an adequate representation of λ-terms one
has to look a bit more at the meaning of Maybe. If types are seen as sets,
then Maybe takes a set and returns a set with one extra element. So each
time we cross a ň, there is one extra element in the set of allowed variables,
exactly capturing the fact that we are introducing a variable.

To see the difference with the previous approach, here is the λ-term for
function application again:

appTmM : TmM ⊥
appTmM = ň (ň (V (just nothing) · V nothing))

Note the use of the empty type ⊥ to state the closedness of the appTmM

term. Stating this kind of properties was impossible to do with the previous
approach, without resorting to logical properties on the side.

5.1.3 The Fin approach

Another approach already described and used in [Altenkirch, 1993, McBride
and McKinna, 2004] is to index everything (terms for example) by a bound.
This bound is the maximum number of distinct free variables allowed in the
value. This rule is enforced in two parts: variables have to be strictly lower
than their bound, and the bound is incremented by one when crossing a
name abstraction (a λ-abstraction for instance, called ň here).

The type Fin n is used for variables and represents natural numbers
strictly lower than n. The name Fin n comes from the fact that it defines
finite sets of size n. We call this approach Fin for its use of this type. The
definition found in Agda’s standard library is the following:

data Fin : N → Set where

zero : {n : N} → Fin (suc n)
suc : {n : N} (i : Fin n) → Fin (suc n)

Given this type Fin, one can define the term data type using this ap-
proach:

data Tmf n : Set where

V : (x : Fin n) → Tmf n

· : (t u : Tmf n) → Tmf n

ň : (t : Tmf (suc n)) → Tmf n

Let : (t : Tmf n) (u : Tmf (suc n)) → Tmf n

96 CHAPTER 5. THE DE BRUIJN APPROACH

As the previous approach, this representation helps enforce some well-
formedness properties, for instance Tmf 0 is the type of closed λ-terms.

Here is the λ-term for application in this approach:

appTmf : Tmf 0

appTmf = ň (ň (V (suc zero) · V zero))

We can easily draw a link with the Maybe approach. Indeed, the type
Fin (suc n) has exactly one more element than the type Fin n. However,
these approaches are not equivalent for at least two reasons. The Maybe ap-
proach can accept any type to represent variables. This makes the structure
more like a container and this can be particularly helpful to define the sub-
stitution as the composition of mapTm : ∀{A B} → (A → B) → Tm A →
Tm B and joinTm : ∀{A} → Tm (Tm A) → Tm A as in [Bellegarde and Hook,
1994, Bird and Paterson, 1999, Altenkirch and Reus, 1999]. The Fin ap-
proach has advantages as well: the representation is concrete and simpler
since closer to the bare approach. However this apparent simplicity comes
at a cost: we will see that its concrete representation is one root of the
problem.

5.2 An interface for de Bruijn indices

In order to effectively program with de Bruijn indices we wanted to have a
dedicated programming interface. This is indeed in contrast with our previ-
ous work [Pouillard and Pottier, 2010] where we had two implementations
– nominal and de Bruijn – of a common interface.

We now claim that we need specialized operations to better support
nominal and de Bruijn styles. Happily the work done for nominal nicely
scales to de Bruijn indices by adding new primitive operations on worlds,
names, and world inclusions.

Following the development that we have done for the nominal repre-
sentation, we index names and terms by worlds. Everything we have built
so far remains valid (and useful). The types and definitions for World, ∅,
Name, ==N , ¬Name∅, ⊆ , coerceN, ⊆-refl, ⊆-trans and ⊆-∅ are directly
re-used.

While binders (Binder, / , zeroB, sucB...) do not need to be exposed in
order to follow a de Bruijn presentation, we use them in the implementation
of de Bruijn primitive operations.

To understand what definitions we need to add to deal with de Bruijn
indices, we identify two characteristics of a binding construct such as λ.
With de Bruijn indices two things occur at λ-abstractions: 0 is introduced
as a new binder, and all the previous binders are incremented by one.

5.2. AN INTERFACE FOR DE BRUIJN INDICES 97

The key feature of this approach is to change how binders are referenced
in a particular subterm. Our explicit notion of world can be used to express
this change. We extend our notion of worlds with an operator +1 (formally
defined on page 98). Since worlds can be thought of as sets, the operator +1

has an informal set-theoretic definition of adding one to each element of the
set. Postponing a formal definition, here is the declaration:

+1 : World → World

With this single extension of world operations (+1), we can build name
abstractions in the style of de Bruijn indices. Here is our type TmD revised
to follow de Bruijn indices:

data TmD α : Set where

V : Name α → TmD α
· : TmD α → TmD α → TmD α

ň : TmD (0 B / (α +1)) → TmD α
Let : TmD α → TmD (0 B / (α +1)) → TmD α

The only change between Tm and TmD is in the binding constructs. Instead
of holding a binder b that is bound in the subterm, 0 B is bound in the
subterm and all the previous binders are moved by one. Because this world
operation is idiomatic, it deserves its own notation:

↑1 : World → World

α ↑1 = 0 B / (α +1)

We call the operation ↑1 shifting by one. Note that ↑1 conveniently
hides the underlying usage of binders. The type TmD now reads like:

data TmD α : Set where

V : Name α → TmD α
· : TmD α → TmD α → TmD α

ň : TmD (α ↑1) → TmD α
Let : TmD α → TmD (α ↑1) → TmD α

We get back the nested data type approach described in section 5.1.2 if
one replaces World by Set, Name by the identity, and ↑1 by Maybe. The same
connection can be done with the Fin approach described in section 5.1.3 if
one replaces World by N, Name by Fin, and ↑1 by suc.

98 CHAPTER 5. THE DE BRUIJN APPROACH

Our internal representation for worlds (section 4.1) using lists of boolean
values is chosen to make +1 easy to define and to work with:

+1 : World → World

α +1 = false :: α

We defined ↑1 on top of the primitive operators +1 and / . Unfold-
ing ↑1 and / shows the true nature of ↑1:

↑1-is-true:: : ∀ {α} → α ↑1 ≡ true :: α
↑1-is-true:: = refl

-- Since α ↑1 equals zero / false :: α
-- which reduces to true :: α

These one-step definitions +1 and ↑1 are extended to any number to
produce +W and ↑ of type World → N → World. The world α +W k

is α +1. . .+1 (+1 iterated k times) and the world α ↑ k is α ↑1. . . ↑1 (↑1
iterated k times).

To the best of our knowledge, making the distinction between two forms
of shifting operations for worlds (namely +1 and ↑1) has never been inves-
tigated in the context of representing names and binders. As we see later
in detail in section 5.4.3, this distinction is important and omitting it leads
to less accurate types. Less accurate types led us to a broken definition of
shifting in our first work on the subject [Pouillard and Pottier, 2010] as we
detail in section 5.4.3.

`-bound and `-free names: In a context where we are working under `
binders, we call `-bound, a name bound somewhere in the scope of ` binders.
We call `-free, a name that is free for all ` binders. In other words, a de
Bruijn index is `-bound if it is strictly less than `; it is `-free otherwise.

zeroN: Since binders are not needed in the de Bruijn presentation, names
are constructed directly. To start with, the simplest name is zeroN. The
name zeroN represents zero and inhabits any world shifted by one. While
this is a primitive operation from a de Bruijn point of view, it can be defined
in terms of our nominal interface:

zeroN : ∀ {α} → Name (α ↑1)
zeroN = nameB (0 B)

The signatures of the core primitive operations on names are given in
figure 5.1. One can add any constant to a name in any world with addN. As-

5.2. AN INTERFACE FOR DE BRUIJN INDICES 99

addN : ∀ {α} k → Name α
→ Name (α +W k)

subtractN : ∀ {α} k → Name (α +W k)
→ Name α

cmpN : ∀ {α} ` → Name (α ↑ `)
→ Name (∅ ↑ `)] Name (α +W `)

syntax addN k x = x +N k

syntax subtractN k x = x ´N k

syntax cmpN ` x = x <N `

Figure 5.1: Core operations on names

Name (∅ +W k)

Name ∅ ⊥

Name α

Name (α +W k)

Name (α ↑ k)

Name (∅ ↑ k) Fin k

coerceN

¬Name∅

coerceN ∅ ⊆ α

addN k subtractN k

coerceN cmpN (if ≥k)

cmpN (if <k)coerceN

Figure 5.2: Operations on names

100 CHAPTER 5. THE DE BRUIJN APPROACH

⊆-∅+1 : ∅ +1 ⊆ ∅

⊆-↑1-↑1 : ∀{α β}→ α ⊆ β ↔ α ↑1 ⊆ β ↑1

⊆-+1-+1 : ∀{α β}→ α ⊆ β ↔ α +1 ⊆ β +1

⊆-+1-↑1 : ∀{α}→ α +1 ⊆ α ↑1

Figure 5.3: New rules for world inclusion

suming worlds are erased at run-time, by parametricity the resulting world
of addN clearly shows that this function does exactly its addition job. One
can do the opposite operation with subtractN. Thanks to its precise type
this function is total and the inverse of addN.

Given any world α, a name in the world α ↑ ` is either strictly lower
than ` (and so also lives in ∅ ↑ `), or greater or equal to ` (thus also lives
in α +W `). This is exactly what the function cmpN ` is about. Given a
name x, cmpN ` x returns a disjoint sum of names which can be read in two
parts. It first gives which side of the disjoint sum it stands, and second it
gives a refined version of the input name x.

Figure 5.2 depicts the different types of names we have and how our op-
erations relates them. Starting from the bottom, names with worlds of the
form ∅ ↑ k are definitely k-bound. Their value is completely known. The
two arrows state the type isomorphism between Name (∅ ↑ k) and Fin k.
Above we have names that may be bound or free (Name (α ↑ k)). A dy-
namic test (cmpN) can tell whether such a name is k-bound or not. Above
we have names that are known to be greater than k (Name (α +W k)). They
are k-free names. Above we have free names (Name α). On the top we have
impossible names since they are said to belong to an empty world. From
them we can derive everything.

These primitive operations are enough to show an isomorphism be-
tween Fin n and Name (∅ ↑ n). From this, every program involving Fin

can be translated into our system. This means that our system does not
restrict the programmer more than the Fin approach. However as soon
as one uses finer types than Name (∅ ↑ n), then fewer “wrong programs”
type-check and more properties hold as we see in section 5.4.3.

We extend the inclusion relation with a set of new rules given in fig-
ure 5.3. The ⊆-∅+1 rule states that ∅ +1 is empty. Inclusion is preserved
both ways by the contexts ↑1 and +1. Finally +1 can be weakened to ↑1.
This accounts for the fact that α ↑1 means {0} ∪ (α +1) and so is a proper
superset of α +1. This set of rules is implemented according to the defini-
tion of inclusion, namely ∀ x → x ∈ α → x ∈ β. On top of these base

5.3. EXAMPLES AND ADVANCED OPERATIONS 101

rules, we derive others that we omit here (some are used in the code).

-- ⊆-↑1→↑1 is derivable

⊆-↑1→↑1 : ∀{α β}→ α ⊆ β → α ↑1 ⊆ β ↑1
⊆-↑1→↑1 = ⊆-/ 0

5.2.1 Singleton worlds!

We said that our worlds denote finite subsets of N and are more precise than
in the Fin approach. Actually they can be as precise as we wish, since any
subset of N can be described by our operations on worlds (∅, +1, and ↑1).
In particular they can be singleton worlds. From singleton worlds we build
singleton types for names:

Worlds : N → World

Worlds n = ∅ ↑1 +W n

Names : N → Set

Names = Name ◦ Worlds

Ns : ∀ n → Names n
Ns n = zeroN +N n

Singleton worlds not only exist, they are also preserved by our two up-
dating operations, namely adds and subtracts.

adds : ∀ {n} k → Names n → Names (k +N n)
adds {n} k x = addN k x

〈-because ⊆-assoc-+ ⊆-refl n k -〉

subtracts : ∀ {n} k → Names (k +N n) → Names n

subtracts {n} k x = subtractN k x

〈-because ⊆-assoc-+′ ⊆-refl n k -〉

5.3 Examples and advanced operations

5.3.1 Some convenience functions

Here are a few functions built on top of the interface (without using the
concrete representation of names). sucN is addN 1 and sucN↑ is a variant that
includes a coercion from α +1 to α ↑1. The function N turns a number n

102 CHAPTER 5. THE DE BRUIJN APPROACH

into a name that inhabits any world with at least n + 1 consecutive binders.

sucN : ∀ {α} → Name α → Name (α +1)
sucN = addN 1

sucN↑ : ∀ {α} → Name α → Name (α ↑1)
sucN↑ = coerceN ⊆-+1↑1 ◦ sucN

N : ∀ {α} n → Name (α ↑ suc n)
N {α} n = zeroN +N n

〈-because α ↑1 +W n ⊆〈 ⊆-+-↑ n 〉
α ↑1 ↑ n ⊆〈 ⊆-exch-↑-↑ 1 n 〉
α ↑ suc n � -〉

where open ⊆-Reasoning

The function subtractN?, similarly to the function cmp tells whether a
given name is `-bound or `-free. In case the name is free, an “exported”
version of it is returned. This function forms the base case of “exporting”
functions such as subtractTmD? explained later on page 107. The func-
tion predN? is a simple specialization of subtractN?.

subtractN? : ∀ {α} ` → Name (α ↑ `)
→? Name α

subtractN? ` x

with x <N `
... | inj1 = nothing

... | inj2 x′ = just (x′ ´N `)

predN? : ∀ {α} → Name (α ↑1) →? Name α
predN? = subtractN? 1

On top of subtractN? we also build a convenient eliminator for names
which is simply the elimination of the result of subtractN?.

subtractWithN : ∀ {α A} ` → A → (Name α → A)
→ Name (α ↑ `) → A

subtractWithN v f = maybe f v ◦′ subtractN?

The function shiftName ` k pf shifts its argument by k if this name is
`-free, otherwise it leaves the `-bound name untouched. This function makes
use of cmpN and coerces the outputs to the required type. It also perform a

5.3. EXAMPLES AND ADVANCED OPERATIONS 103

coercion on the fly, giving extra flexibility for free.

shiftName : ∀ {α β} ` k → (α +W k) ⊆ β
→ Name (α ↑ `)
→ Name (β ↑ `)

shiftName ` k pf x

with x <N `
... | inj1 x′ = x′ 〈-because pf1 -〉 -- `-bound
... | inj2 x′ = x′ +N k 〈-because pf2 -〉 -- `-free
where

pf1 = ⊆-cong-↑ ⊆-∅ `
pf2 = ⊆-trans (⊆-exch-+-+ ⊆-refl ` k)

(⊆-ctx-+↑ pf `)

The function protect↑ shifts a name transformer. Let f be a function
from names to names. The function protect↑ ` f is a version of f that
is applicable under ` binders. That is, if f has type Name α → Name β
then protect↑ ` f has type Name (α ↑ `) → Name (β ↑ `). Let x be a
name under ` binders. When x is `-bound, it is left untouched by protect↑.
When x is `-free, we can subtract ` to x, give it to f, and then add ` to get
the result.

protect↑ : ∀ {α β} `
→ (Name α → Name β)
→ (Name (α ↑ `) → Name (β ↑ `))

protect↑ ` f x

with x <N `
... | inj1 x′ = x′

〈-because ⊆-cong-↑ ⊆-∅ ` -〉
... | inj2 x′ = f (x′ ´N `) +N `

〈-because ⊆-+-↑ ` -〉

By combining protect↑ and addN one obtains an alternative implemen-
tation of shiftName called shiftName′. However shiftName is more efficient
since it avoids to subtracting ` to add it back after adding k.

shiftName′ : ∀ {α β} ` k → (α +W k) ⊆ β
→ Name (α ↑ `) → Name (β ↑ `)

shiftName′ ` k pf = protect↑ (coerceN pf ◦ addN k) `

104 CHAPTER 5. THE DE BRUIJN APPROACH

5.3.2 Building terms

Building terms with our de Bruijn style library is as easy as building them
in a plain de Bruijn index representation. The structure is exactly the same,
and the variables are made of numbers (of type N) using N. Below we define
representations of the identity function as idTmD, the application operator
as appTmD, and the composition function as compTmD:

idTmD : ∀ {α} → TmD α
idTmD = ň(V (0 N))

appTmD : ∀ {α} → TmD α
appTmD = ň(ň(V (1 N) · V (0 N)))

compTmD : ∀ {α} → TmD α
compTmD = ň(ň(ň(V (2 N)) · (V (1 N) · V (0 N))))

5.3.3 Computing free variables

Our first example of functions over terms computes a list of the free variables
in the input term. The function fvD below, while straightforward, has the
subtle cases of binding constructs (ň here). In these cases we have to remove
the bound name from the list of free variables produced by the recursive
call. In this nameless representation this amounts to removing occurrences
of 0 and subtracting 1 to other name occurrences. This is done by the
function rm0 which calls predN? on each element of the list and merges the
results. Note that forgetting to remove the bound variable results in a type
error. In the same vein the typing of fvD ensures that all returned variables
do appear free in the given term.

rm0 : ∀ {α} → List (Name (α ↑1))
→ List (Name α)

rm0 [] = []

rm0 (x :: xs) with predN? x

... | just x’ = x’ :: rm0 xs

... | nothing = rm0 xs

5.3. EXAMPLES AND ADVANCED OPERATIONS 105

fvD : ∀ {α} → TmD α → List (Name α)
fvD (V x) = [x]

fvD (fct · arg) = fvD fct ++ fvD arg

fvD (ň t) = rm0 (fvD t)
fvD (Let t u) = fvD t ++ rm0 (fvD u)

5.3.4 Generic traversal

As with the nominal approach (3.2) we build a generic traversal function
to avoid code duplication among various operation on terms. However in
this nameless style the matter is simplified. The information to carry down
during the traversal can be summarized by a single natural number, namely
the ` parameter that we have already used. This parameter records how
many binders have been entered.

module TraverseTmD

{E} (E-app : Applicative E)
{α β} (trName : ∀ ` → Name (α ↑ `)

→ E (TmD (β ↑ `)))
where

open Applicative E-app

tr : ∀ ` → TmD (α ↑ `) → E (TmD (β ↑ `))
tr ` (V x) = trName ` x

tr ` (t · u) = pure · f tr ` t f tr ` u

tr ` (ň t) = pure ň f tr (suc `) t

tr ` (Let t u) = pure Let f tr ` t f tr (suc `) u

trTmD : TmD α → E (TmD β)
trTmD = tr 0

Like in section 3.2 we made a special case for variable occurrences: trName
is not wrapped with the constructor V. Mapping names to terms yields
capture-avoiding substitution almost for free. However, in the meantime we
build trTmD′ which maps names to names. It does so by applying pure V to
the name-to-name function:

106 CHAPTER 5. THE DE BRUIJN APPROACH

open TraverseTmD

trTmD′ :

∀ {E} (E-app : Applicative E) {α β}
(trName : ∀ ` → Name (α ↑ `)

→ E (Name (β ↑ `)))
→ TmD α → E (TmD β)

trTmD′ E-app trName

= trTmD E-app (λ ` x → pure V f trName ` x)
where open Applicative E-app

Renaming functions: In many functions over terms the handling of vari-
ables shares a common part. Given a variable under ` binders, we test if the
variable is `-bound. If so we leave it untouched, otherwise we subtract ` and
go on a specific processing after which we add ` again to the free variables of
the result. The traversal function is augmented by this processing of bound
variables to build renameTmDA:

-- Like protect↑ but generalized to Applicative functors

protect↑A = {! omitted !}

renameTmDA : ∀ {E} (E-app : Applicative E)
{α β} (θ : Name α → E (Name β))

→ TmD α → E (TmD β)
renameTmDA E-app θ

= trTmD′ E-app (protect↑A E-app θ)

Then by picking either the identity functor (id-app), or the Maybe one
we build two functions (a total and a partial one) to perform any renaming,
namely renameTmD and renameTmD?:

renameTmD : ∀ {α β} → (Name α → Name β)
→ TmD α → TmD β

renameTmD = trTmD′ id-app ◦ protect↑
-- or

-- renameTmD = renameTmDA id-app

renameTmD? : ∀ {α β} → (Name α →? Name β)
→ TmD α →? TmD β

renameTmD? = renameTmDA Maybe.applicative

5.3. EXAMPLES AND ADVANCED OPERATIONS 107

Lifting name functions: Any operation on names can now be lifted to
terms. The function addTmD lifts the function addN from names to terms. It
takes a number k and a term and adds k to all the free variables:

addTmD : ∀ {α} k → TmD α → TmD (α +W k)
addTmD = renameTmD ◦ addN

The functions subtractTmD and subtractTmD? respectively lift the func-
tions subtractN and subtractN? from names to terms. They enable to
subtract a number k to all the free variables of a term:
subtractTmD : ∀ {α} k → TmD (α +W k) → TmD α
subtractTmD = renameTmD ◦ subtractN

subtractTmD? : ∀ {α} ` → TmD (α ↑ `) →? TmD α
subtractTmD? = renameTmD? ◦ subtractN?

While coerceN can be lifted to terms in the same way, we can by-pass
the protect↑ dynamic tests and directly “protect” the inclusion witness
with an appropriate inclusion rule. Put differently there are two ways to go
from a proof pf of α ⊆ β to (Name (α ↑ `) → Name (β ↑ `)): one is to
protect the result of coerce (protect↑ ◦ coerceN pf) and the other is to
coerce with protected inclusion witness (coerceN ◦ ⊆-cong-↑ pf):

coerceTmD : ∀ {α β} → α ⊆ β → TmD α → TmD β
coerceTmD pf = trTmD′ id-app (coerceN ◦ ⊆-cong-↑ pf)
-- or less efficiently:

-- coerceTmD = renameTmD ◦ coerceN

Lifting addN to terms can be done more efficiently as well. Indeed addTmD

internally uses renameTmD which uses protect↑. Here the dynamic test
performed by protect↑ is necessary. However when the name is `-free we
subtract ` and add it back after adding k. The function shiftName avoids
this extra computation, hence the following shiftTmD:

shiftTmD : ∀ {α β} k → (α +W k) ⊆ β → TmD α → TmD β
shiftTmD k p = trTmD′ id-app (λ ` → shiftName ` k p)
-- or less efficiently:

-- shiftTmD k pf = renameTmD (coerceN pf ◦ addN k)

The function closeTmD? is built like in nominal style (section 3.2):

closeTmD? : ∀ {α} → TmD α →? TmD ∅
closeTmD? = renameTmD? (const nothing) -- any free var leads to a failure

108 CHAPTER 5. THE DE BRUIJN APPROACH

Capture avoiding substitution To implement capture avoiding substi-
tution for the type TmD, all we need is a specific function trName for trTmD.
Here substitutions are represented as functions from names to terms. The
function substVarTmD handles the case for variables. This function is very
close to protect↑ but extended to functions returning terms.

substVarTmD : ∀ {α β} → (Name α → TmD β) →
∀ ` → Name (α ↑ `) → TmD (β ↑ `)

substVarTmD f ` x

with x <N `
... | inj1 x′ = V (x′ 〈-because ⊆-cong-↑ ⊆-∅ ` -〉)
... | inj2 x′ = shiftTmD ` (⊆-+-↑ `) (f (x′ ´N `))

The main function substTmD instantiates trTmD with the identity ap-
plicative functor and substVarTmD:

substTmD : ∀ {α β} → (Name α → TmD β)
→ (TmD α → TmD β)

substTmD = trTmD id-app ◦ substVarTmD

As an illustration, the function β-redD performs a β-reduction at the
root of the term using the function substTmD:

β-redD : ∀ {α} → TmD α → TmD α
β-redD (ň fct · arg) = substTmD (subtractWithN 1 arg V) fct

β-redD t = t

5.3.5 Nameless term comparison

We show that all the subtle work is done at the level of names in a separate
and reusable function called cmpName↑. This function takes a function that
compares two free names and builds one that compares two names under `
bindings. It does so by comparing both of them to `. If they are both bound
they can be safely compared using ==N since they now are of the same type.
If they are both free, they can be compared using the function received as
argument. Otherwise they are different.

cmpName↑ : ∀ {α β} ` → |Cmp| Name α β
→ |Cmp| Name (α ↑ `) (β ↑ `)

cmpName↑ ` Γ x y with x <N ` | y <N `
... | inj1 x′ | inj1 y′ = x′ ==N y′

... | inj2 x′ | inj2 y′ = Γ (x′ ´N `) (y′ ´N `)

... | | = false

5.4. LOGICAL RELATIONS FOR DE BRUIJN INDICES 109

The function cmpTmD structurally compares two terms in a simple way,
only keeping track of the number of traversed binders and calling cmpName↑
at variables:

cmpTmD : ∀ {α β} → |Cmp| Name α β → |Cmp| TmD α β
cmpTmD {α} {β} Γ = go 0 where

go : ∀ ` → |Cmp| TmD (α ↑ `) (β ↑ `)
go ` (V x) (V y) = cmpName↑ ` Γ x y

go ` (t · u) (v · w) = go ` t v ∧ go ` u w

go ` (ň t) (ň u) = go (suc `) t u

go ` (Let t u) (Let v w) = go ` t v ∧ go (suc `) u w

go = false

By instantiating the name comparator Γ by the homogeneous name com-
parison function ==N we get an equality test on nameless terms. While
this function works on open terms, they are requested to inhabit a common
world.

==TmD : ∀ {α} → |Cmp| TmD α α
==TmD = cmpTmD ==N

However in the particular case of comparing terms in a common world,
we can define a simpler and a little faster equality test on terms. To do so
we exploit the fact that the name abstraction is canonical and thus the term
comparison is kept homogeneous during the whole comparison. In particular
the function cmpName↑ is not used.

eqTmD : ∀ {α} → |Cmp| TmD α α
eqTmD (V x) (V y) = x ==N y

eqTmD (t · u) (v · w) = eqTmD t v ∧ eqTmD u w

eqTmD (ň t) (ň u) = eqTmD t u

eqTmD (Let t u) (Let v w) = eqTmD t v ∧ eqTmD u w

eqTmD = false

5.4 Logical Relations for de Bruijn indices

5.4.1 Relations for the de Bruijn world operations

We now have to define how our operation on worlds fits the logical relation.
Figure 5.4 depicts how the operators J+1K and J↑1K apply to the graph of
a relation.

110 CHAPTER 5. THE DE BRUIJN APPROACH

•0 • 0

•1 • 1

•2 • 2

•3 • 3

αr

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

αr J+1K

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

αr J↑1K

Figure 5.4: Shifting versus adding example

J+1K : (JWorldK J→K JWorldK) +1 +1

αr J+1K def
= { (x+1, y+1) | (x, y) ∈ αr } -- not proper Agda

J↑1K : (JWorldK J→K JWorldK) ↑1 ↑1
J↑1K αr = JzeroBK J/K (αr J+1K)

5.4.2 De Bruijn functions fit the relation

We now give a short overview of the proofs needed to show that our functions
fit the relation. Thanks to the definition of J+1K, addN 1 and subtractN 1

fit the relation. These two are later extended to addN k and subtractN k

by an induction on k. Here are for instance the type signatures for JaddNK
and JcmpNK:

JaddNK : (∀〈 αr : JWorldK 〉J→K
〈 kr : JNK 〉J→K
JNameK αr J→K
JNameK (αr J+WK kr)) addN addN

JcmpNK : (∀〈 αr : JWorldK 〉J→K
〈 kr : JNK 〉J→K
JNameK (αr J↑K kr) J→K
JNameK (J∅K J↑K kr) J] K
JNameK (αr J+WK kr)

) cmpN cmpN

The definition of cmpN is not a simple induction on its first argument.
It calls <= (which does an induction) and returns a Boolean value. Based
on this Boolean value, the function cmpN returns either inj1 or inj2 (the
constructors of]) with the same name (with a different proof). To
prove JcmpNK we show the equivalence with a simpler inductive function
and show that this simpler function is in the relation. Thanks to the ex-

5.4. LOGICAL RELATIONS FOR DE BRUIJN INDICES 111

•0 • 0

•1 • 1

•2 • 2

J∅K J↑K 3r

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

•5 • 5

•6 • 6

αr J↑K 3r

•0 • 0

•1 • 1

•2 • 2

•3 • 3

•4 • 4

•5 • 5

•6 • 6

αr J+K 3r

•0 • 0

•1 • 1

•2 • 2

•3 • 3

αr

Figure 5.5: Various term types: from concrete to abstract

tensionality of the logical relation, no additional axiom is required to show
that cmpN fits the relation.

We have shown that the new inclusion rules (Figure 5.3) fit the relation.

5.4.3 On the strength of free theorems

Every well-typed term comes with a free theorem (section 4.2.1). However
depending on the type of the term the strength of the theorem varies a
lot. For instance at type N the theorem only tell that the term is equal
to itself. At type N → Bool the theorem says no more than the function
is deterministic. At type ∀{A : Set} → A → A it says that the function
behaves as the identity function, which is much stronger. We now give a few
elements of what can affect the strength of free theorems in our context. We
continue to use our type TmD to represent some data structures with names
and binders but it could be any other. Moreover we focus on functions from
terms to terms, where the input and the output worlds are the same. We
discuss the strength of the abstraction level of the input or output term
of such a function. From this perspective figure 5.5 depicts the relation
corresponding to these types.

Various term types The weakest type we can give to a function taking
a term with names and binders is ∀{`} → TmD (∅ ↑ `) → A term re-

112 CHAPTER 5. THE DE BRUIJN APPROACH

ceived by such a function can have a statically unknown number of distinct
free variables, but we know that these variables are comprised in the inter-
val [0 .. `-1]. The free theorem of ∀{`} → TmD (∅ ↑ `) → TmD (∅ ↑ `)
says no more than “the function is deterministic” because the logical rela-
tion JTmDK (∅ ↑ `) is the identity. We also know because of typing that the
resulting term cannot have `-free occurrences.

The type Tm (α ↑ `) is more abstract than TmD (∅ ↑ `), an unknown
world is used instead of the empty world. However this type still shows a
known amount of bindings. Then, a function of type ∀{α `} → TmD (α ↑ `)
→ TmD (α ↑ `) has a stronger free theorem than the previous one. It says
that the function commutes with a renaming of the variables in the world α
(section 5.4.4). This is a common type to deal with open terms under a
partial environment:

some-op : ∀{α `} → (Fin ` → Info) → TmD (α ↑ `) → TmD (α ↑ `)
some-op Γ t = {! omitted !}

The most abstract type for terms makes no assumptions on their free
variables. This can be done by quantifying by an arbitrary world. The
free theorem associated with the type ∀ {α} → TmD α → TmD α is then
stronger and says that the function commutes with any renaming of the free
variables. This particular type is studied in detail in section 5.4.4.

Extra arguments Note that adding extra arguments to a function can
drastically affect the strength of its free theorem. An extreme example is the
type ∀{α} → (α ≡ ∅) → TmD α → TmD α, which is ruined by its α ≡ ∅
argument. This argument makes the type equivalent to TmD ∅ → TmD ∅
which has a trivial free-theorem. While the above example is extreme, this is
an important point to watch out for when adding extra arguments to a func-
tion. Another example is the type ∀{α β} → TmD α → TmD β → TmD β
versus ∀{α β} → (Name α → Name β → Bool) → TmD α → TmD β →
TmD β. The first one cannot compare the free variables of the two given
terms while the second can apply a user-supplied function to do so.

Shifting versus adding Last but not least using +W instead of ↑ sig-
nificantly improves the strength of the associated free theorem. Consider
the function protectedAdd:

protectedAdd : ∀ {α} ` k → Name (α ↑ `)
→ Name (α +W k ↑ `)

protectedAdd ` k = protect↑ ` (addN k)

The following diagram depicts the graph behind the function protectedAdd ` k:

5.4. LOGICAL RELATIONS FOR DE BRUIJN INDICES 113

•0 • 0

•1 • 1

•2 • 2

•...
• ...

•`́ 1 • `́ 1

•`

•1+`

•2+` • k+`

•...
• 1+k+`

• 2+k+`

• ...

Consider now a weaker type, namely:

protectedAdd↑ : ∀ {α} ` k → Name (α ↑ `)
→ Name (α ↑ k ↑ `)

protectedAdd↑ ` k = protect↑ ` (addN↑ k)

We depict the graph behind the function protectedAdd↑. The graph
is actually the same than the graph for the function protectedAdd. We
extend the set of nodes to match the codomain stated by the type.

•0 • 0

•1 • 1

•2 • 2

•...
• ...

•`́ 1 • `́ 1

•` •
•1+` •
•2+` • k+`

•...
• 1+k+`

• 2+k+`

• ...

We simply replaced the occurrence of +W by ↑ . The consequences of
this change are disastrous: this type allows more behaviors for its functions.
Indeed the addN k function can be given the latter type (but not the former)
when using the appropriate inclusion witness to exploit the commutativity
of ↑ :

114 CHAPTER 5. THE DE BRUIJN APPROACH

unprotectedAdd : ∀ {α} k ` → Name (α ↑ `)
→ Name (α ↑ k ↑ `)

unprotectedAdd k `
= coerceN (⊆-exch-↑-↑′ ` k) ◦ addN↑ k

-- this is ok since (α ↑ k) ↑ ` ≡ (α ↑ `) ↑ k

-- whereas (α +W k) ↑ ` ı (α ↑ `) +W k

•0 • 0

•1 • ...

•2 • k

•...
• 1+k

•`́ 1 • 2+k

•` • ...

•1+` • k+`́ 1

•2+` • k+`

•...
• 1+k+`

• 2+k+`

• ...

In our previous work [Pouillard and Pottier, 2010] we had a function
called shiftName which was incorrectly defined with the unprotectedAdd

behavior. Indeed the correct expected behavior is the one of protectedAdd↑.
In this paper we had only the ↑ operation, and thus we missed the finer
type we can give to protectedAdd. It took us a long time to discover this
mistake, since we thought that our logical relation argument was enough.
The logical relations proofs were indeed correct, the free-theorem were also
correct but were not always “saying” what we expected. In summary we
want to highlight that all the logical relations results have to be taken with
great care. A weaker function type than expected can ruin the intended
informal properties.

5.4.4 Using logical relations and parametricity

To formally show that a world-polymorphic function f of type ∀ {α} →
TmD α → TmD α commutes with a renaming of the free variables, we proceed
as follows. First we recall the natural definition of logical relation on the
type TmD. Second we present the type Ren of renamings as injective functions.
Third renaming is shown equivalent to being related at the type TmD. Finally
we prove our commutation lemma by using the free-theorem associated to
the function f.

The logical relation for the type TmD is mechanical. It states that two
terms are related if they have the same structure and related free variables:

5.4. LOGICAL RELATIONS FOR DE BRUIJN INDICES 115

data JTmDK {α1 α2} (αr : JWorldK α1 α2) :

TmD α1 → TmD α2 → Set where

JVK : ∀ {x1 x2} (xr : JNameK αr x1 x2)
→ JTmDK αr (V x1) (V x2)

J · K : ∀ {t1 t2 u1 u2}
(tr : JTmDK αr t1 t2)
(ur : JTmDK αr u1 u2)

→ JTmDK αr (t1 · u1) (t2 · u2)
JňK : ∀ {t1 t2} (tr : JTmDK (αr J↑1K) t1 t2)

→ JTmDK αr (ň t1) (ň t2)
JLetK : ∀ {t1 t2 u1 u2}

(tr : JTmDK αr t1 t2)
(ur : JTmDK (αr J↑1K) u1 u2)

→ JTmDK αr (Let t1 u1) (Let t2 u2)

In the following, we choose a “renaming” to be an injective function Φ
of names to names. The type of a renaming that maps names in the world α
to names in the world β is Ren α β. Note that there is a slight difference
between a renaming from α to β (Ren α β) and the worlds α and β being
“related” (JWorldK α β. On renamings, we define three functions 〈 〉N, 〈 〉W
and 〈 〉Tm which respectively turn a renaming into a function of names to
names, into a relation between worlds, and into a function of terms to terms.

Ren : (α1 α2 : World) → Set

Ren α1 α2 = Injection (Nm α1) (Nm α2)
-- * Injection From To is the set of the injective functions

-- from the setoid From to the setoid To.

-- * Nm α is the setoid on Name α

〈 〉N : ∀ {α β} → Ren α β → (α →N β)
〈 Φ 〉N = {! omitted !} -- Projects out the function over names

〈 〉W : ∀ {α β} → Ren α β → JWorldK α β
〈 〉W {α} {β} Φ = R , R-pres-≡

where R : Name α → Name β → Set

R x y = 〈 Φ 〉N x ≡ y

R-pres-≡ : Preserve-≡ R
R-pres-≡ = {! omitted !}

〈 〉Tm : ∀ {α β} → Ren α β → (TmD α → TmD β)
〈 Φ 〉Tm = renameTmD 〈 Φ 〉N

We now observe that given a renaming Φ, it is equivalent for two terms t1
and t2 to be related by JTmDK 〈 Φ 〉W and for t2 to be equal to t1 renamed

116 CHAPTER 5. THE DE BRUIJN APPROACH

with Φ. Put differently at the type Tm the relation coincides with the α-
equivalence (using the identity renaming for Φ).

Rename : ∀ {α β} → Ren α β → TmD α → TmD β → Set

Rename Φ t1 t2 = 〈 Φ 〉Tm t1 ≡ t2

JTmDK⇔Rename : ∀ {α β} (Φ : Ren α β) → JTmDK 〈 Φ 〉W ⇔ Rename Φ

5.4. LOGICAL RELATIONS FOR DE BRUIJN INDICES 117

Finally given a function f and a proof fr that f is in the logical relation,
we can show that any renaming Φ commutes with the function f. To prove
this we apply our JTmDK⇔rename lemma in both directions and use fr with
the renaming Φ lifted as a JWorldK.

-- Pointwise equality

f $ g = ∀ x → f x ≡ g x

ren-comm : (f : ∀ {α} → TmD α → TmD α)
(fr : (∀〈 αr : JWorldK 〉J→K JTmDK αr J→K JTmDK αr) f f)
{α β : World} (Φ : Ren α β)
→ 〈 Φ 〉Tm ◦ f $ f ◦ 〈 Φ 〉Tm

ren-comm f fr Φ t

= JTmDK⇒Rename Φ (fr 〈 Φ 〉W (Rename⇒JTmDK Φ ≡.refl))

118 CHAPTER 5. THE DE BRUIJN APPROACH

Chapter 6

Variations and Related Work

This chapter covers various experimentations and connects our approach to
more existing work. While some of the connections are not fully developed,
they show the path to a complete connection and still give some insight.

The chapter is structured as follows. The first section explores the use
of atoms as a separate kind of global names. In this section we explain the
construction of Locally Nameless and Locally Named libraries where the
type for global names is Atom and the type for local names is our type Name.
We discuss the limitations of these approaches as programming interfaces,
but underline the complementary role they can have when combined with
our library.

In section 6.2 we describe another nameless approach from N.G. de
Bruijn [de Bruijn, 1972] that is now called “de Bruijn levels”. We show
how our existing library accommodates this style with only the addition of
two inclusion rules.

In section 6.3 we describe a common interface for binders called links.
This interface revives the presentation of our previous work [Pouillard and
Pottier, 2010]. We show how the “unifying” part of this link-based approach
can be integrated in our library. This approach enables greater code re-use
without sacrificing much of the flexibility of our approach.

In section 6.4 we briefly explore how different approaches can be com-
bined in order to be used at the same time. To illustrate this we combine
nominal and de Bruijn indices in the same data type. This could allow for
instance to convert a subterm to de Bruijn indices in order to apply a given
algorithm.

In section 6.5 we cover a series of description languages used to describe
“nominal types”. We show how the use of our explicit worlds can cope with
pretty much everything these languages can describe. To do so we explain
how each construct of these description languages can be expressed with
worlds.

Section 6.6 discusses some more related work. We focus on relatively

119

120 CHAPTER 6. VARIATIONS AND RELATED WORK

recent work with which we have not yet drawn a concrete connection so far.

6.1 Dynamically stratified representations

Well known techniques such as Locally Nameless [Charguéraud, 2011, Ay-
demir et al., 2008], or Locally Named [Pollack et al., 2011, Sato and Pollack,
2010] can be qualified as “dynamically stratified representations”. Indeed
these techniques use a double representation of variables, one for local vari-
ables, and one for global variables. The idea is to use local variables as the
internal representation of the binding structure and to provide operations to
switch back and forth from local to global variables. Name abstractions are
introduced with the close operation. Given a subterm t and a global name X,
a name abstraction is built by picking a local name x and replacing X by x

in t, to form the body of the newly created name abstraction. Conversely,
to open a name abstraction, one gives a global name X and an abstraction
to be opened. The abstraction is internally made of a local name x and a
subterm t. The opening operation returns t where X replaces x.

The main purpose of this double representation is to hide the handling
of local names to the client and to let the client use only global names. To
be sure to never encounter a local name, we want our terms to be locally
closed , meaning without any free local variables. This property guarantees
that starting from a locally closed term and properly opening abstractions,
we never reach a local variable. Hence we only deal with global variables
and avoid the hard work implied by local names and their abstractions.

While the representation for local names distinguishes Locally Nameless
and Locally Named techniques, both use a nominal approach to represent
global names. Hence we reuse atoms from section 2.1.1 and package them
up as a little module. These atoms form our set of global names. This
tiny module contains a type for atoms Atom, an equality test ==A , and an
injective function from natural numbers to atoms:

module Data.Atom where

abstract

Atom : Set

Atom = N

==A : (x y : Atom) → Bool

==A = ==N

A : N → Atom
A = id

Since our library supports both de Bruijn indices and the nominal style,

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 121

the type Name can be used to represent local names. Our type for names is
indexed by a world, hence internally, terms are indexed as well. However the
manipulated terms being locally closed, the world is always the empty world
in the end. Hence we happen to reach a local name, this name inhabits the
empty world. Thanks to the function Name∅-elim (based on ¬Name∅), we
know that such a case is impossible.

6.1.1 Locally closed terms

To illustrate these techniques and how we can use our library to develop these
techniques, we use a type for terms like we have done so far. However we do
not define the type TmA yet (which is not the type TmA from section 2.1.1):
instead, we assume the following types and data constructors.

-- The type for terms

TmA : Set

-- The type for name-abstractions,

-- abstracting one name over one term

-- example: [x]t

AbsTm : Set

-- Constructor for ‘‘global’’ variables

VA : (x : Atom) → TmA

-- Constructor for ‘‘local’’ variables

VN : (x : Name ∅) → TmA

-- Constructor for λ-abstractions
ň : (abs : AbsTm) → TmA

-- Function application

· : (t u : TmA) → TmA

-- Local definition

-- example: ‘‘let x = t in u’’ ⇒ Let t [x]u

Let : (t : TmA) → (abs : AbsTm) → TmA

In order to deal with the type AbsTm, the two functions openTm and
closeTm are given to eliminate and introduce values of type AbsTm.

closeTm : Atom → TmA → AbsTm

openTm : Atom → AbsTm → TmA

122 CHAPTER 6. VARIATIONS AND RELATED WORK

Generally when writing the function openTm, it is no more difficult to
plug a term than it is to plug an atom. This is especially true since the
plugged term is locally closed, since no capture can happen. Hence we
prefer to define the function openSubstTm for each implementation and de-
fine openTm generically.

openSubstTm : TmA → AbsTm → TmA

openTm : Atom → AbsTm → TmA

openTm = openSubstTm ◦ VA

6.1.2 Building terms

To build terms easily one can build smart constructors hiding the underlying
use of closeTm. Hence we introduce two functions ň′ and let′ to build λ-
abstractions and local definitions in a more natural way. In particular in
the case of let′ this is the occasion to put the arguments in the expected
order:

ň′ : Atom → TmA → TmA

ň′ x t = ň (closeTm x t)

let′ : Atom → TmA → TmA → TmA

let′ x t u = Let t (closeTm x u)

We can now build various terms quite easily:

idT : TmA

idT = ň′ x (VA x)
where x = 0 A

falseT : TmA

falseT = ň′ x (ň′ x (VA x))
where x = 0 A

trueT : TmA

trueT = ň′ x (ň′ y (VA x))
where x = 0 A

y = 1 A

apT : TmA

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 123

apT = ň′ x (ň′ y (VA x · VA y))
where x = 0 A

y = 1 A

ΩT : TmA

ΩT = let′ δ (ň′ x (VA x · VA x))
(VA δ · VA δ)

where δ = 0 A

x = 1 A

Opening and closing operations need to deal with local variables. How-
ever any other operation could be built with only openTm and closeTm, hence
without any knowledge of the local variables. Using openTm and closeTm

also has three main limitations: convenience, performance and non-structural
recursion. Since all of them apply on most functions over terms we take a
concrete example with a function size which tries to count the number of
constructors in a term:

size : TmA → N
size (VA) = 1

size (fct · arg) = 1 + size fct + size arg

size (ň abs) = 1 + size (openTm (0 A) abs)
size (Let t abs) = 1 + size t + size (openTm (0 A) abs)
size (VN x) = Name∅-elim x

Convenience While closeTm can be hidden with smart constructors, openTm
has to be explicitly used, which hinders pattern-matching. Indeed, without
view-patterns (see [Wadler, 1987] for the seminal work on view patterns),
pattern-matching has to be stopped at abstractions, in order to call openTm.
The deeper the pattern, the worse the trouble. Moreover in this presenta-
tion we have to provide a global name to open the abstraction, which often
requires an atom supply to give different atoms each time. In the size func-
tion we constantly open abstractions with the atom 0 A which is acceptable
only because we do not care about the identity of variables in this example.

6.1.3 Performances

From a performance point of view openTm and closeTm require to traverse
the whole subterm. They thus increase the asymptotic complexity of most
algorithms. For a term of size n the asymptotic complexity of openTm

and closeTm is naturally between O(n) and O(n*log(n)). To our knowl-
edge the complexity cannot be reduced much without losing properties such

124 CHAPTER 6. VARIATIONS AND RELATED WORK

as persistence. In Cαml [Pottier, 2006] the opening operation lazily per-
forms the required substitution. We describe Cαml and connect it to our
work in section 6.5.2. For traditional algorithms the cost of opening (and
closing) is amortized but the presence of delayed substitutions makes the
worst-case complexity exponential.

Let us look at how performance degrades on some algorithms. For in-
stance an algorithm on a term that is simple enough to not involve the
binding structure and that usually has a linear complexity, has a quadratic
complexity when using openTm and closeTm. Algorithms to extract some
information such as the size of a term (our function size) or the presence
of some constructs in a term are of this kind. Algorithms to transform some
non-binding constructs such as constant-folding, control-flow rewriting, as-
sertions insertion or suppression, etc. are of this kind as well. Even some
algorithms operating on the binding structure would benefit from avoid-
ing openTm and closeTm. Here are for instance two functions in nomi-
nal style to transform back and forth, local let bindings into applied λ-
abstractions. With our library no run-time cost is incurred and these two
operations work in linear time:

module ň⇒Let where

〈〈 〉〉 : ∀ {α} → Tm α → Tm α
〈〈 ň b t · u 〉〉 = Let b 〈〈 u 〉〉 〈〈 t 〉〉
〈〈 V x 〉〉 = V x

〈〈 t · u 〉〉 = 〈〈 t 〉〉 · 〈〈 u 〉〉
〈〈 ň b t 〉〉 = ň b 〈〈 t 〉〉
〈〈 Let b t u 〉〉 = Let b 〈〈 t 〉〉 〈〈 u 〉〉

module Let⇒ň where

〈〈 〉〉 : ∀ {α} → Tm α → Tm α
〈〈 Let b t u 〉〉 = ň b 〈〈 u 〉〉 · 〈〈 t 〉〉
〈〈 V x 〉〉 = V x

〈〈 t · u 〉〉 = 〈〈 t 〉〉 · 〈〈 u 〉〉
〈〈 ň b t 〉〉 = ň b 〈〈 t 〉〉

6.1.4 Non-structural recursion

The third main limitation of these approaches – at least from the point of
view of a total language such as Agda – is that openTm hinders structural
recursion. Structural recursion is a syntactic criterion requiring to make
recursive calls only on syntactic subterms of the input. Indeed if t is a
subterm of a term u, openTm s t is not a subterm of u, preventing any
recursive call. Of course we can claim for a better support for this kind of
recursion, since openTm preserves the size of its input.

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 125

Our size function does not escape the rule and Agda’s termination
checker complains by coloring in red two offending recursive calls. In order
to workaround this limitation, we give a new parameter to size called fuel

of type N, on which occurs the structural recursion. When we hit 0 we have
not enough gas to proceed and return a dummy value. If given enough fuel
the function behaves correctly. Generally it suffices to pick an upper bound
for the fuel parameter. Here a good upper bound would be the size of the
term...

-- ‘‘fuel-extended’’ to pass the termination checker

size : (fuel : N) → TmA → N
size (suc n) (VA) = 1

size (suc n) (fct · arg) = 1 + size n fct + size n arg

size (suc n) (ň abs) = 1 + size n (openTm (0 A) abs)
size (suc n) (Let t abs) = 1 + size n t + size n (openTm (0 A) abs)
size (suc n) (VN x) = Name∅-elim x

size 0 = 0 -- dummy

6.1.5 Free atoms using openTm

A more interesting example is to compute the list of free variables, more
precisely of free atoms. In order to define it independently of the represen-
tation of local name abstractions, we use openTm. Since the identity of atoms
matters here, we take an atom supply as an argument to open abstractions
with atoms that are fresh for the current context. Indeed there is no need to
thread the atom supply here since we remove the atom afterward. A fuel

argument is added to pass the termination checker. These two parameters
would benefit from being hidden as a monad, at least for conveniently using
and combining these functions. The function fa uses the function rmA which
was defined in section 2.1.1.

module FreeAtoms where

fa : (fuel atomSupply : N) → TmA → List Atom

fa (suc n) (VN x) = Name∅-elim x

fa (suc n) (VA x) = [x]

fa (suc n) s (fct · arg) = fa n s fct ++ fa n s arg

fa (suc n) s (ň abs)
= rmA (s A) (fa n (1 + s) (openTm (s A) abs))

fa (suc n) s (Let t abs)
= fa n s t ++

rmA (s A) (fa n (1 + s) (openTm (s A) abs))
fa 0 = [] -- dummy

126 CHAPTER 6. VARIATIONS AND RELATED WORK

6.1.6 Common parts of the internal representation

The type TmA is for locally closed terms. This type is based on a more general
type for terms with potential free local names. This type is called PreTm

and is indexed by a world. The only implementation specific part is the
representation of name abstractions. The type AbsPreTm represents a name
abstraction and can be implemented in various ways.

AbsPreTm : World → Set

data PreTm α : Set where

VN : (x : Name α) → PreTm α
VA : (x : Atom) → PreTm α
· : (t u : PreTm α) → PreTm α

ň : (t : AbsPreTm α) → PreTm α
Let : (t : PreTm α) (u : AbsPreTm α) → PreTm α

AbsPreTm = {! implementation specific !}

Once the types PreTm and AbsPreTm are defined, defining the locally
closed variants amounts to choose the empty world.

-- Locally closed terms

TmA : Set

TmA = PreTm ∅

-- Locally closed abstracted terms

AbsTm : Set

AbsTm = AbsPreTm ∅

6.1.7 Locally Nameless

We can now focus on specific details of local variables. We start with Locally
Nameless [Charguéraud, 2011, Aydemir et al., 2008]. To do so we only have
to choose the representation of name abstractions. We make use of the
type SynAbsD defined in Figure 6.1:

AbsPreTm = SynAbsD PreTm

Substituting definitions for AbsPreTm and SynAbsD in the definition of PreTm
yields the type TmD with an extra constructor for atoms:

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 127

SynAbsN F α = ∃[b](F (b / α))
SynAbsD F α = F (α ↑1)

∼= ∃[β](α ↪→D β × F β)
SynAbsL F b α = F (sucB b) (b / α)
SemAbs F α = ∀ {β} → α ⊆ β → F β → F β
SemAbs+W F α = ∀ {β} k → (α +W k) ⊆ β → F β → F β
SynAbsN# F α = ∃[b](b # α × F (b / α))

∼= ∃[β](α ↪→N β × F β)

Figure 6.1: Various forms of name abstraction

-- Once AbsPreTm and SynAbsD are expanded:

data PreTm α : Set where

VN : (x : Name α) → PreTm α
VA : (x : Atom) → PreTm α
· : (t u : PreTm α) → PreTm α

ň : (t : PreTm (α ↑1)) → PreTm α
Let : (t : PreTm α) (u : PreTm (α ↑1)) → PreTm α

We then define a module TraversePreTm (code omitted) like in sec-
tion 5.3.4 to generically derive various operations including the coercion
operation, and the substitution operation:

-- These two functions are derived from TraversePreTm

coercePreTm : ∀ {α β} → α ⊆ β → PreTm α → PreTm β
substPreTm : ∀ {α β} → (Name α → PreTm β)

→ PreTm α → PreTm β

We can finally define openSubstTm and closeTm. The function openSubstTm

is a simple use of substitution on terms using the function substPreTm. The
argument to substPreTm replaces 0 by t using the function exportWith:

openSubstTm : TmA → AbsTm → TmA

openSubstTm t = substPreTm (exportWith t (Name-elim ∅+1⊆∅))

The function closeTm is essentially the combination of a coercion from
the empty world to the world ∅ ↑1 and a replace operation of an atom by
a name referring to the newly introduced binder at the root. To make this
replacing operation we simply carry on a name which we initialize with 0 N

and increment when going down under the abstractions with sucN↑. While
we could have fused these operations we did not for the clarity of the code.

128 CHAPTER 6. VARIATIONS AND RELATED WORK

closeTm : Atom → TmA → AbsTm

closeTm a t = ! (0 N) (coerce∅PreTm t) where

-- ‘‘! y t’’ replaces ‘‘a’’ by ‘‘y’’ in ‘‘t’’

! : ∀ {α} → Name α → PreTm α → PreTm α
! y (VA x) = if x ==A a then VN y else VA x

! y (VN x) = VN x

! y (t · u) = ! y t · ! y u

! y (ň t) = ň (! (sucN↑ y) t)
! y (Let t u) = Let (! y t) (! (sucN↑ y) u)

6.1.8 Locally Named

Local names bindings can be changed from de Bruijn indices to a nominal
style by updating AbsPreTm. We use SynAbsN from section 3.4 and Fig-
ure 6.1:

AbsPreTm = SynAbsN PreTm

The resulting type PreTm is similar to the type Term from section 3.4 and
to the type TmA from section 2.1.1. However, name-abstractions are packed
into pairs and there is an extra constructor for atoms.

As usual we define a traversal function along the lines of section 3.2 with
an extra argument to deal with the constructor VA:

TraversePreTm.tr :

∀ {E} (E-app : Applicative E)
{Env} (trKit : TrKit Env (E ◦ PreTm))

(trAtm : ∀ {α β} → Env α β → Atom → E (PreTm β))
{α β} → Env α β → PreTm α → E (PreTm β)

From this traversal we obtain various operations including substitution:

substPreTm : ∀ {α β} → Supply β → (Name α → PreTm β)
→ PreTm α → PreTm β

From the function substPreTm we quickly get the function openSubstTm:

openSubstTm : TmA → AbsTm → TmA

openSubstTm t (, u)
= substPreTm (0 s) (exportWith t Name∅-elim) u

The function closeTm is a bit more challenging. We define a new traver-
sal kit called renameKit+⊆ on a new environment type SubstEnv+⊆. This

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 129

environment type packages a renaming environment and an inclusion wit-
ness to maintain the fact that we freshened the output term and hence can
import anything from the root output world.

record SubstEnv+⊆ Res β0 α β : Set where

constructor ,

field

ren : SubstEnv Res α β
pf : β0 ⊆ β

open SubstEnv ren public

This traversal kit behaves such as the renaming kit (renameKit) on
page 65:

renameKit+⊆ : ∀ β0 → TrKit (SubstEnv+⊆ Name β0) Name

renameKit+⊆ β0 = mk trName trBinder extEnv

where

Env = SubstEnv+⊆ Name β0
open SubstEnv+⊆
extEnv : ∀ {α β} b (∆ : Env α β) → Env (b / α) (seedB ∆ / β)
extEnv b (ren , pf) =

(TrKit.extEnv renameKit b ren ,

⊆-trans pf (SubstEnv.seed⊆ ren))

Finally closeTm is defined using the traversal function TraversePreTm.tr,
the kit renameKit+⊆, and the special behavior on atoms defined in the local
function trAtm:

closeTm : Atom → TmA → AbsTm

closeTm a t = 0 B , tr (renameEnvs 1 , ⊆-refl) t where

β0 =

trAtm : ∀ {α β} → SubstEnv+⊆ Name β0 α β → Atom → PreTm β
trAtm ∆ a′ = if a ==A a′

then VN (coerceN (SubstEnv+⊆.pf ∆) (0 N))
else VA a′

kit = mapKit id VN (renameKit+⊆ β0)
tr = TraversePreTm.tr id-app kit trAtm

While we have a construction for Locally Named terms, this is not yet
exactly the approach described by Sato and Pollak [Pollack et al., 2011, Sato
and Pollack, 2010]. Indeed we have not yet integrated the height function
which yields a different function to close terms. This means that we do not

130 CHAPTER 6. VARIATIONS AND RELATED WORK

get the nice properties either, for instance our Locally Named representation
is not canonical. However the canonical representation is less crucial in
our setting since our interface prevents from observing these representation
details.

6.1.9 When does this stratified technique pay off?

So far we described these “dynamically stratified representations”, explained
how we build them on top of our library, and explained the limitations of an
exclusive usage of open/close functions. We claim that this technique can
be of great effect when the static discipline of our library becomes too heavy.
Contrary to most of the Locally Nameless implementations we argue that
the name-abstraction should not be an abstract type. In particular with
our library, no safety is lost by keeping name-abstraction concrete since we
have precise worlds. Moreover, as we have shown, adding atoms to represent
external names is the only change we have to make beforehand to our data
type to support this technique.

Generalizing from atoms to arbitrary constants We advise users of
our library to have a case for constants in their representation of terms for
instance. These “constants” could be numbers, atoms, or a type parameter
to be chosen afterward. We illustrate with two situations how this can be
used effectively.

In the first situation, the client builds a function f which requires an extra
environment argument to work on open terms. In the second situation the
client is only able to define a function f-c for closed terms. One can often
reduce the first situation to the second if we have an environment for the
empty world. In these situations we end up with a function working only
on closed terms. However if we pick the type of constants to be atoms, we
have a function f-lc working on locally closed terms.

-- Terms parameterized by constants

Tm : Set → World → Set

-- We suppose that producing an initial environment

-- for arbitrary worlds is difficult.

Env : World → World → Set

6.1. DYNAMICALLY STRATIFIED REPRESENTATIONS 131

-- We suppose the environment for empty worlds

-- to be easy to produce.

ε : Env ∅ ∅

-- Situation 1: A function on open terms

f : ∀ {α β Cst} → Env α β → Tm Cst α → Tm Cst β

-- Situation 2: Like f but works on closed terms

f-c : ∀ {Cst} → Tm Cst ∅ → Tm Cst ∅
f-c = f ε

-- Locally closed terms

LCTm = Tm Atom ∅

-- Like f but on locally closed terms

f-lc : LCTm → LCTm

f-lc = f-c

As we can see with the definitions of f-c and f-lc not much happened.
In this example we are indeed supposing that nothing is done on constants
and that this is correct to treat them parametrically. In this case what has
been done is simply to tell the user of the function to convert all the free
variables into atoms before calling the function.

We can spare the conversion to the user and do it ourselves. To do so,
we show that given enough traversal functions on terms the two following
types are equivalent:

∀ {Cst} → Tm Cst ∅ → Tm Cst ∅
∼=
∀ {α Cst} → Tm Cst α → Tm Cst α

We focus on the non-immediate direction, that is going from the first
type to the second. In this situation we can even define this transformation
as a higher-order function. Here we do not use atoms but keep names, and
we preserve the original constants as well. We call the function f with the
type Name α] Cst for constants, where Cst is the type of original constants
and α is the world of free variables. Once the constants are preserved using
the bindTm function, the free variables are turned into constants as well
using the function substTm. Then the function f operates on the locally
closed term. This yields a locally closed term as well that we coerce to
the world α. Finally we restore the original constants and free variables
using the function bindTm and the eliminator of sums: [,]. The following
function transform is in a parameterized module M such that it only depends

132 CHAPTER 6. VARIATIONS AND RELATED WORK

on our library:

-- Hides the environment argument of a given function

-- over terms.

module M

(Tm : Set → World → Set)
(cst : ∀ {α Cst} → Cst → Tm Cst α)
(var : ∀ {α Cst} → Name α → Tm Cst α)
(substTm : ∀ {α Cst} → (Name α → Tm Cst ∅)

→ Tm Cst α → Tm Cst ∅)
(bindTm : ∀ {α A B} → (A → Tm B α) → Tm A α → Tm B α)
(coerce∅Tm : ∀ {α Cst} → Tm Cst ∅ → Tm Cst α)
(f : ∀ {Cst} → Tm Cst ∅ → Tm Cst ∅)
where

transform : ∀ {α Cst} → Tm Cst α → Tm Cst α
transform

= bindTm [cst , var] -- untag constants and variables

◦ coerce∅Tm -- closed terms inhabit any world

◦ f -- operate on locally closed terms

◦ substTm (cst ◦ inj2) -- tag variables as constants by 2

◦ bindTm (cst ◦ inj1) -- tag original constants by 1

We can see open and close functions like a way to move the border
between the bound names and free names. When we do not call the open
function and directly go under a name abstraction, it is as if we implicitly
moved the border. This implicit move is one of the main sources of bugs
in programs dealing with names and binders. In our system the border is
reflected in the types using the worlds. Hence this distinction incurs no cost
at run-time and still prevents mistakes caused by confusing bound and free
names.

We have shown how to build dynamically stratified representations on
top of our library. We have reused our technique to represent binders and
local names, but used an atom type for global names. We have built both
a Locally Nameless implementation and a basic Locally Named implemen-
tation including the traditional open and close functions. These techniques
have shown their advantages as a tool for meta-theory, to reason about pro-
gramming languages. We have shown the limitations that we think these
techniques have for programming. We think these techniques are akin to
dynamic typing. Indeed the tagging of names as local or global helps write
functions without considering the free variables of the input. We have then
shown how we can recover this benefit by having terms parameterized by
constants. As soon as constants are handled parametrically we can trans-
form any function over closed terms to a function on open terms. However

6.2. DE BRUIJN LEVELS 133

we recognize these dynamically stratified approaches may be simpler to use
than our approach and still provide more safety than the bare approaches.

6.2 de Bruijn levels

Let us briefly mention another representation called “de Bruijn levels”.
This is another nameless representation different from de Bruijn indices.
λ-abstractions are implicitly labeled starting at 0 from the root, and vari-
able occurrences simply refer to these labels. De Bruijn levels are actually
very close to a nominal presentation since every reference to a given binder
is represented identically. However, binders are not freely chosen, as in nom-
inal style, but dictated by the position of the term starting from the root.
We can accommodate this style by indexing terms by the next available
binder:

data TmL s α : Set where

V : Name α → TmL s α
· : (t u : TmL s α) → TmL s α

ň : TmL (sucB s) (s / α) → TmL s α
Let : TmL s α → TmL (sucB s) (s / α) → TmL s α

The type TmL is a variant of our type Tm which is not only indexed by
a world but by a binder s as well. This binder s tells how far we are from
“the root”. This binder is carried down by a constructor such as · . At
a λ-abstraction, the binder index is used and becomes bound in the sub-
term; moreover, the index is incremented in the subterm. Most functions
work as in nominal style: for instance, the function fv requires no funda-
mental changes. The extra cost is this new index appearing in the types of
terms. The benefit is that given an initial binder index, the representation
is canonical.

6.2.1 Term comparison

Comparing terms in de Bruijn level style is no different than in nominal
style. A name-comparator is carried down and extended with the same
function extendNameCmp. In the end, the resulting function makes no re-
striction on the seeds of the input terms. This emphasises again that our
comparison function makes no attempt to compare binders between the two
arguments. Bound variable are compared positionally. Here is the signature
for the function cmpTmL:

cmpTmL : ∀ {α β s1 s2} → |Cmp| Name α β
→ (TmL s1 α → TmL s2 β → Bool)

134 CHAPTER 6. VARIATIONS AND RELATED WORK

However one may want to exploit the canonical structure of our repre-
sentation for terms. We have already done so for de Bruijn indices with
the function eqTmD in section 5.3.5. When both terms starts with the same
binder index and world, then their types stays in synch. When reaching
variable occurrences the equality test on names can be applied [Pouillard,
2011a].

==TmL : ∀ {α s} → TmL s α → TmL s α → Bool

V x1 ==TmL V x2 = x1 ==N x2
(t1 · u1) ==TmL (t2 · u2) = t1 ==TmL t2 ∧ u1 ==TmL u2
ň t1 ==TmL ň t2 = t1 ==TmL t2
Let t1 u1 ==TmL Let t2 u2 = t1 ==TmL t2 ∧ u1 ==TmL u2

==TmL = false

De Bruijn level operations are similar to nominal operations. A first
difference is that binding constructs do not have to hold a binder since the
binder is fixed by the index. This gives a nameless flavor to this presentation
but our typed presentation shows where the binders have gone: in the types.

To illustrate how binders moved out of the terms we can look at snippets
of functions with all the arguments made explicit:

fN : ∀ {α} → Tm α → . . .
fN {α} (ň b t) = . . .

fL : ∀ {b α} → TmL b α → . . .
fL {b} {α} (ň t) = . . .

The first snippet is in nominal style and the binder b is found in the
term. The second snippet uses de Bruijn levels and the binder b comes as
a separate (implicit) argument. In the end we have the same data in both
snippets. We can see this as a good news, as it helps recover the information
lost by this nameless representation.

For instance functions such as fv and coerceTm require almost no change
to be adapted from nominal to de Bruijn levels.

6.2.2 Kits and traversals

We develop kits and traversals in a way similar to section 3.2. Since our
terms are now indexed by a binder as well, environments are indexed by two
worlds and two binders.

EnvTypeL : Set1
EnvTypeL = (s1 s2 : Binder) (α β : World) → Set

6.2. DE BRUIJN LEVELS 135

Kits are made of only two functions trNameL and extEnvL. There is no
need for an equivalent of the function trBinder since binders now appear
in indices and can thus be controlled through the environment type.

TrNameL : (Env : EnvTypeL) (Res : Binder → World → Set) → Set

TrNameL Env Res = ∀ {s1 s2 α β} → Env s1 s2 α β
→ Name α → Res s2 β

ExtEnvL : (Env : EnvTypeL) → Set

ExtEnvL Env =

∀ {s1 s2 α β} → Env s1 s2 α β
→ Env (sucB s1) (sucB s2) (s1 / α) (s2 / β)

record TrKitL (Env : EnvTypeL)
(Res : Binder → World → Set) : Set where

constructor mk

field

trNameL : TrNameL Env Res

extEnvL : ExtEnvL Env

We have several traversal functions making use of a kit. We give only
the most general of them. As in section 3.2 we abstract over an applicative
functor, and the kit’s result type is a term. This one suffices to derive all
the functions presented in the following:

module TraverseATmL

{E} (E-app : Applicative E)
{EnvL} (kitL : TrKitL EnvL (λ s α → E (TmL s α)))

where

open Applicative E-app

open TrKitL kitL

trTmL : ∀ {α β s1 s2} → EnvL s1 s2 α β → TmL s1 α → E (TmL s2 β)
trTmL ∆ (V x) = trNameL ∆ x

trTmL ∆ (t · u) = pure · f trTmL ∆ t f trTmL ∆ u

trTmL ∆ (ň t) = pure ň f trTmL (extEnvL ∆) t

trTmL ∆ (Let t u) = pure Let f trTmL ∆ t f trTmL (extEnvL ∆) u

The equivalent of SubstEnv is called SubstEnvL. This one does not
require a Supply field, a fresh-for proof suffices. The RenameEnvL is a spe-
cialization to functions returning names.

136 CHAPTER 6. VARIATIONS AND RELATED WORK

record SubstEnvL Res (s1 s2 : Binder) (α β : World) : Set where

constructor ,

field

trNameL : Name α → Res s2 β
s2#β : s2 # β

RenameEnvL = SubstEnvL (const Name)

renameKitL : TrKitL RenameEnvL (const Name)

6.2.3 Derived functions

Along the lines of section 3.2, the kit renameKitL is extended to a kit
renameAKitL which supports an effectful application. Like before, from these
kits we derive several functions. Functions like renameTmL, renameTmLA,
renameTmL?, closeTmL, and substTmL are built like their analog from sec-
tion 3.2. The name supply argument is now just a fresh-for proof since the
seed appears in the index. Here are the type signatures for these functions:

renameTmL : ∀ {α β s1 s2} → s2 # β → (Name α → Name β)
→ TmL s1 α → TmL s2 β

renameTmLA : ∀ {E} (E-app : Applicative E)
{α β s1 s2} → s2 # β → (Name α → E (Name β))

→ TmL s1 α → E (TmL s2 β)

renameTmL? : ∀ {α β s1 s2} → s2 # β → (Name α →? Name β)
→ TmL s1 α →? (TmL s2 β)

closeTmL? : ∀ {s α} → TmL s α →? TmL s ∅

substTmL : ∀ {α β s s2} → s2 # β → (Name α → TmL s2 β)
→ (TmL s α → TmL s2 β)

We then lift addition and subtraction from names to terms using the
function renameTmL. The resulting functions get interesting types. In par-
ticular the input seed is disconnected from the input seed and this these
functions enables to re-level the terms:

6.2. DE BRUIJN LEVELS 137

protectedAddTmL : ∀ {α s1 s2} k → s2 # (α +W k)
→ TmL s1 α → TmL s2 (α +W k)

protectedAddTmL k pf = renameTmL pf (addN k)

protectedSubtractTmL : ∀ {α s1 s2} k → s2 # α
→ TmL s1 (α +W k) → TmL s2 α

protectedSubtractTmL k pf = renameTmL pf (subtractN k)

6.2.4 New inclusion rules

In order to tightly integrate de Bruijn levels, and more generally to mix
nominal binders and +1 on worlds, we introduce two new inclusion rules.
These two rules state that +1 distributes over / :

⊆-dist-+1-/ : ∀ {α b} → (b / α) +1 ⊆ (sucB b) / (α +1)
⊆-dist-/-+1 : ∀ {α b} → (sucB b) / (α +1) ⊆ (b / α) +1

We generalize these two primitive rules to not only 1 but any constant:

⊆-dist-+-/ : ∀{α b} k → (b / α) +W k ⊆ (b +B k) / (α +W k)
⊆-dist-+-/ zero = ⊆-refl
⊆-dist-+-/ (suc n) = ⊆-trans (⊆-cong-+1 (⊆-dist-+-/ n))

(⊆-dist-+1-/)

⊆-dist-/-+ : ∀{α b} k → (b +B k) / (α +W k) ⊆ (b / α) +W k

⊆-dist-/-+ zero = ⊆-refl
⊆-dist-/-+ (suc n) = ⊆-trans (⊆-dist-/-+1)

(⊆-cong-+1 (⊆-dist-/-+ n))

6.2.5 Addition and subtraction kits

The add kit (AddL.kit) enables to add a constant to all the names and
binders of a given traversable term. The environment of this kit is made
of two proofs, one on worlds the other on binders. This environment could
hence be removed by an optimizing compiler. Once compiled the resulting
function is not hindered by the safe handling of names and binders.

module AddL k where

EnvL : EnvTypeL

EnvL b1 b2 α β = (α +W k) ⊆ β
× (b1 +B k) ≡ b2

138 CHAPTER 6. VARIATIONS AND RELATED WORK

trNameL : TrNameL EnvL (const Name)
trNameL (pf ,) = coerceN pf ◦ addN k

kitL : TrKitL EnvL (const Name)
kitL = mk trNameL {! proof omitted !}

We then briefly mention a generalization of the previous kit which allows
not only addition but subtraction as well. This kit works similarly and we
just show the environment type and the signature of the function on terms:

AddSubtractEnvL s1 s2 α β = (s1 +B k1) ≡ (s2 +B k2)
× (α +W k1) ⊆ (β +W k2)

addSubtractTmL : ∀ k1 k2
{α β s1 s2} → (s1 +B k1) ≡ (s2 +B k2)

→ (α +W k1) ⊆ (β +W k2)
→ TmL s1 α → TmL s2 β

From this general operation addSubtractTmL we derive several opera-
tions. We can coerce terms, add a constant, subtract a constant, change the
seed index of a closed term, and combinations of those.

coerceTmL : ∀ {s α β} → α ⊆ β → TmL s α → TmL s β
addTmL : ∀ {α s} k → TmL s α → TmL (s +B k) (α +W k)
subtractTmL : ∀ {α s} k → TmL (s +B k) (α +W k) → TmL s α
rerootTmL : ∀ {α} k1 k2 → TmL (k1

B) ∅ → TmL (k2
B) α

6.2.6 Conversion with nominal terms

Converting de Bruijn level terms to nominal could not be simpler. The
code [Pouillard, 2011a] is a simple recursive copy where Agda can even
infer the binders to choose to build the nominal terms. When converting, we
are simply moving a static information to a dynamic place. When reaching
a binding construct the binder is known to be the index of the term. This
binder also a valid binder to be used to build the resulting binding construct
in nominal style. Here is the conversion function we obtain:

module TmL⇒TmN where

〈〈 〉〉 : ∀ {α s} → TmL s α → TmN α
〈〈 V x 〉〉 = V x

〈〈 ň t 〉〉 = ň 〈〈 t 〉〉
〈〈 t · u 〉〉 = 〈〈 t 〉〉 · 〈〈 u 〉〉
〈〈 Let t u 〉〉 = ň 〈〈 u 〉〉 · 〈〈 t 〉〉

6.3. LINKS: BINDERS AS WORLD RELATIONS 139

The conversion from nominal to de Bruijn levels is a bit more compli-
cated. Indeed nominal bound variables have to be renamed to follow the
discipline of levels. We implement this function by first writing a traverse
function from nominal terms to de Bruijn level terms. Then we make use of
the renaming kit with little changes. Here are the functions we obtain:

renameTmL⇒TmN : ∀ {α β s} → s # β → (Name α → Name β)
→ (TmN α → TmL s β)

renameTmL⇒TmN = {! code omitted !}

convTmN∅⇒TmL : ∀ {s β} → s # β → TmN ∅ → TmL s β
convTmN∅⇒TmL s#β = renameTmL⇒TmN s#β Name∅-elim

convTmN∅⇒TmL∅ : ∀ s → TmN ∅ → TmL s ∅
convTmN∅⇒TmL∅ s = convTmN∅⇒TmL (s #∅)

Conclusion We have shown how de Bruijn levels can be implemented
using our library. Our types are now indexed by a world and a binder. This
binder is a seed for a binder supply. This seed is to be used for the binder
of the next binding construct. For the subterms of binding constructs we
increment the seed and extend the world in a nominal style using / . We
have shown how close this style was from the nominal style and have derived
operations on terms by applying techniques developed for the nominal style.
This style also reuses tools we built for de Bruijn indices such as additions
on worlds and names (+W and +N). The extra index can be cumbersome
to track, but can also help, as in the equality test on terms. We took
advantage of the representation to build a faster equality test and a faster
addition function.

6.3 Links: Binders as World Relations

So far with our library, name-abstraction induced a particular form of world
for the subterm. In nominal style, we use / and in de Bruijn indices
style we use ↑1. These forms of worlds induce the use of dependent types
in nominal style and computation on types in de Bruijn indices style. In
nominal style, dependent types occur since binders appear in worlds. In
de Bruijn computation on the level of worlds (hence types) occur with the
use of arbitrary shifts and additions on worlds α +W k and α ↑ `. In our
work of 2010 [Pouillard and Pottier, 2010], the interface relies only on world-
polymorphism and since world are erased it avoids dependent types. After
our work of 2010 we put aside the idea of links and have developed the

140 CHAPTER 6. VARIATIONS AND RELATED WORK

interface presented so far using dependent types leading to a more precise
and concrete interface.

In this section we come back to a link based interface. We start by
describing an interface for binding-links or simply links. A link is a type
parameterized by two worlds which supports the following three operations:
weaken, strengthen?, and nameOf. The first parameter of the link is called
the outer world and the second the inner world. A link can be seen as a
binder b plus a relation between the inner and the outer world. The outer
world describes the binders before the introduction of b and the inner world
describes the binders after its introduction. The first operation moves a
name from the outer world to the inner world, it is a weakening. The second
operation tries to move a name from the inner world to the outer world but
may fail if we try to move the name being bound by the binding-link. The
third operation reveals the name being bound, which belongs to the inner
world. In Agda we have the following record:

record Link (↪→ : (α β : World) → Set) : Set where

constructor mk

field

weaken : ∀ {α β} → α ↪→ β → Name α → Name β
strengthen? : ∀ {α β} → α ↪→ β → Name β →? Name α
nameOf : ∀ {α β} → α ↪→ β → Name β

6.3.1 Terms and examples

Using links, one can define data types, like our type Tm for terms. As
usual the interesting cases are the binding constructs. In particular in the
construct Let we see how the use of inner and outer worlds control the
defined scopes.

data Tm α : Set where

V : (x : Name α) → Tm α
· : (t u : Tm α) → Tm α

ň : ∀ {β} (` : α ↪→ β) (t : Tm β) → Tm α
Let : ∀ {β} (` : α ↪→ β) (t : Tm α) (u : Tm β) → Tm α

Using only the function strengthen? one can build our usual func-
tions fv and rm to compute the list of free variables and remove a name
from a list of names:

6.3. LINKS: BINDERS AS WORLD RELATIONS 141

rm : ∀ {α β} → α ↪→ β → List (Name β) → List (Name α)
rm [] = []

rm ` (x :: xs) with strengthen? ` x

... | nothing = rm ` xs

... | just x′ = x′ :: rm ` xs

fv : ∀ {α} → Tm α → List (Name α)
fv (V x) = [x]

fv (t · u) = fv t ++ fv u

fv (ň ` t) = rm ` (fv t)
fv (Let ` t u) = fv t ++ rm ` (fv u)

We now define a comparator for terms. It follows precisely what we have
done before and here again only the function strengthen? is necessary:

extCmpName : ∀ {α β α′ β′} → |Cmp| Name α β → α ↪→ α′ → β ↪→ β′

→ |Cmp| Name α′ β′

extCmpName f `1 `2 x1 x2
with strengthen? `1 x1 | strengthen? `2 x2
... | just x1

′ | just x2
′ = f x1

′ x2
′

... | nothing | nothing = true

... | | = false

cmpTm : ∀ {α β} → |Cmp| Name α β → |Cmp| Tm α β
cmpTm f (V x) (V x′) = f x x′

cmpTm f (t · u) (t′ · u′) = cmpTm f t t′ ∧ cmpTm f u u′

cmpTm f (ň ` t) (ň `′ t′) = cmpTm (extCmpName f ` `′) t t′

cmpTm f (Let ` t u) (Let `′ t′ u′) = cmpTm f t t′

∧ cmpTm (extCmpName f ` `′) u u′

cmpTm = false

==Tm : ∀ {α} → |Cmp| Tm α α
==Tm = cmpTm ==N

6.3.2 Implementations

An appealing definition for nominal links would to pair a binder b and a
proof that β is equal to b / α this is called a weak link in [Pouillard and
Pottier, 2010]. However to support the weakening operation a fresh-for proof
is required. Hence a nominal link is made of a binder b, a proof that b # α,
and a proof that β is equal to b / α, this is called a strong link in [Pouillard
and Pottier, 2010]. Our implementation reuses the type Supply which al-
ready packages a binder plus a fresh-for proof. Our nominal implementation

142 CHAPTER 6. VARIATIONS AND RELATED WORK

is straightforward. The weakening operation uses a coercion. The strength-
ening operation boils down to our function exportN?. The operation nameOf

returns the underlying binder converted to a name. In Agda we have the
following module:

module Nom where

record ↪→ α β : Set where

constructor ,

field

supply : Supply α
open Supply supply

field

β-def : β ≡ seedB / α

weaken : ∀ {α β} → α ↪→ β → Name α → Name β
weaken (supply , ≡.refl) = coerceN (Supply.seed⊆ supply)

strengthen? : ∀ {α β} → α ↪→ β → Name β →? Name α
strengthen? (, ≡.refl) = exportN?

nameOf : ∀ {α β} → α ↪→ β → Name β
nameOf ((seedB ,) , ≡.refl) = nameB seedB

nomLinks : Link ↪→
nomLinks = mk weaken strengthen? nameOf

We now do the same with de Bruijn indices. A link in de Bruijn style
is just a proof that the inner world β is equal to the outer world α shifted
by one. The weakening is the successor function and the strengthening the
predecessor function. The function nameOf returns 0:

6.3. LINKS: BINDERS AS WORLD RELATIONS 143

module DeBruijn where

↪→ : (α β : World) → Set

α ↪→ β = β ≡ (α ↑1)

weaken : ∀ {α β} → α ↪→ β → Name α → Name β
weaken ≡.refl = sucN↑

strengthen? : ∀ {α β} → α ↪→ β → Name β →? Name α
strengthen? ≡.refl = predN?

nameOf : ∀ {α β} → α ↪→ β → Name β
nameOf ≡.refl = zeroN

deBruijnLinks : Link ↪→
deBruijnLinks = mk weaken strengthen? nameOf

6.3.3 Building links and terms

In order to build terms we need to introduce more operations, though. In-
deed we have no initial links to use. To this end we introduce a simple inter-
face to build links. This interface provides two operations: init and next.
More precisely these operations work on links where the inner world is made
existential. Here is our interface in Agda:

record FreshLink { ↪→ } (link : Link ↪→) : Set where

constructor mk

open Link link

Fresh : World → Set

Fresh α = ∃[β](α ↪→ β)

field

-- An infinite ‘‘chain’’ of binding-links

init : Fresh ∅
next : ∀ {α} (x : Fresh α) → Fresh (proj1 x)

As we see in the type of the operation next, the links are chained.
Let fresh be a value of type Fresh α. The outer world of next fresh

is the inner world of fresh. Here is our straightforward nominal implemen-
tation of the FreshLink interface based on operations on name supplies:

144 CHAPTER 6. VARIATIONS AND RELATED WORK

module NomFresh where

init : Fresh ∅
init = , 0 s , ≡.refl

next : ∀ {α} (x : Fresh α) → Fresh (proj1 x)
next (. , s , ≡.refl) = , sucs s , ≡.refl

nomFreshLinks : FreshLink nomLinks

nomFreshLinks = mk init next

The de Bruijn implementation is so trivial that Agda infers most of the
definition by unification:

module DeBruijnFresh where

init : Fresh ∅
init = , ≡.refl

next : ∀ {α} (x : Fresh α) → Fresh (proj1 x)
next = , ≡.refl

deBruijnFreshLinks : FreshLink deBruijnLinks

deBruijnFreshLinks = mk init next

Building terms is a matter of allocating binding-links and weakening
names such that they are in the expected world. To illustrate the construc-
tion of terms here are two examples:

idTm : Tm ∅
idTm = ň x xTm

where x = proj2 init

xTm = V (nameOf x)

apTm : Tm ∅
apTm = ň x (ň y (xTm · yTm))
where x = proj2 init

y = proj2 (next init)
xTm = V (weaken y (nameOf x))
yTm = V (nameOf y)

6.3.4 Kits and traversals

We now leverage our technique to build kits and traversals. Adapting the
work that we did in the nominal style is mostly straightforward. Kits are

6.3. LINKS: BINDERS AS WORLD RELATIONS 145

made of a function to operate on names and a function to operate on links.
To operate on a link the function commEnv, given a link and an environment,
returns both a new link and a new environment. The type Comm is the
most difficult part of these traversals and is already described in our 2010
work [Pouillard and Pottier, 2010]:

Comm : (: (α β : World) → Set) → Set

Comm = ∀ {α β γ} → (α ↪→ β × α γ)
→ ∃[δ](γ ↪→ δ × β δ)

A traversal kit is then made of a function trName and a function commEnv.
As before the kit is parameterized over the type of environments Env and
the type of results Res.

record TrKit (Env : (α β : World) → Set)
(Res : World → Set) : Set where

constructor mk

field

trName : ∀ {α β} → Env α β → Name α → Res β
commEnv : Comm Env

We now build the renaming kit. Again the solution is close to the nominal
one even if it works for de Bruijn style links as well. Here the supply is of
type Fresh. The function importFun takes two links and lifts a function over
names in outer worlds α and β to a function over names in inner worlds γ
and δ. The function importFun then form the core part of the commutation
function for renaming environments. As with nominal kits the environment
is a mapping of names from the input world to the output world. This
mapping freshens the bound variables and uses a name supply to do so.

importFun : ∀ {α β γ δ} → α ↪→ γ
→ β ↪→ δ
→ (Name α → Name β)
→ (Name γ → Name δ)

importFun `1 `2 f x

with strengthen? `1 x

... | nothing = nameOf `2

... | just x′ = weaken `2 (f x′)

RenameEnv : (α β : World) → Set

146 CHAPTER 6. VARIATIONS AND RELATED WORK

RenameEnv α β = Fresh β × (Name α → Name β)

renameKit : TrKit RenameEnv Name

renameKit = mk proj2 comm

where

comm : Comm RenameEnv

comm (x , (, y) , f)
= , y , next (, y) , importFun x y f

We now define the traversal function for our particular type for terms.
As usual the environment is carried down the recursive function. The func-
tion trName is called at variables. The function commEnv is used at name-
abstractions. Given the link found in the name-abstraction and the current
environment, the function commEnv returns both a new link to close the re-
sulting name-abstraction and a new environment to continue the traversal
on subterms in scope of the name-abstraction:

module Tr {Env : (α β : World) → Set}
(trKit : TrKit Env Tm)

where

open TrKit trKit

tr : ∀ {α β} → Env α β → Tm α → Tm β
tr Γ (V x) = trName Γ x

tr Γ (t · u) = tr Γ t · tr Γ u

tr Γ (ň ` t) with commEnv (` , Γ)
... | , `′ , Γ′ = ň `′ (tr Γ′ t)
tr Γ (Let ` t u) with commEnv (` , Γ)
... | , `′ , Γ′ = Let `′ (tr Γ t) (tr Γ′ u)

We put our traversal function at work by using the renaming kit to build
a renaming function. Since our renaming kit is producing names and our
traversal function expecting a kit which produces terms we have to lift it.
The function kitVar is a kit transformer applying the constructor V to the
result of the input function trName. Then the function renameTm gives the
kit and the initial arguments to the traversal function.

kitVar : ∀ {Env} → TrKit Env Name → TrKit Env Tm

kitVar (mk trName commEnv) = mk (λ Γ → V ◦ trName Γ) commEnv

renameTm : ∀ {α β} → Fresh β → (Name α → Name β)
→ Tm α → Tm β

renameTm fr f = Tr.tr (kitVar renameKit) (fr , f)

6.3. LINKS: BINDERS AS WORLD RELATIONS 147

With the function renameTm we can lift the function weaken from names
to terms. In this function the input link serves both as the initial weakening
function for free names and as a name supply for the freshening purposes.
Here is the function weakenTm:

weakenTm : ∀ {α β} → α ↪→ β → Tm α → Tm β
weakenTm ` t = renameTm (next (, `)) (weaken `) t

Our last application is a capture avoiding substitution function. To
simplify matters we build a substitution kit specialized for our term type.
The only important difference with the renaming kit is the use of the func-
tion weakenTm instead of weaken. The kit is then given to our traversal
function to produce the function substTm. We then specialize our substitu-
tion function to replace a name/link by a closed term in a term with just
this free variable. Finally we write the function β-red which reduces the
β-redex on the root of the term if there is one.

SubstEnv : (α β : World) → Set

SubstEnv α β = Fresh β × (Name α → Tm β)

substKit : TrKit SubstEnv Tm

substKit = mk proj2 comm

where

importFunTm : ∀ {α β γ δ} → α ↪→ γ
→ β ↪→ δ
→ (Name α → Tm β)
→ (Name γ → Tm δ)

importFunTm `1 `2 f x

with strengthen? `1 x

... | nothing = V (nameOf `2)

... | just x′ = renameTm (next (, `2)) (weaken `2) (f x′)

comm : Comm SubstEnv

comm (x , (, y) , f)
= (, y , (next (, y) , importFunTm x y f))

substTm : ∀ {α β} → Fresh β → (Name α → Tm β) → Tm α → Tm β
substTm fr f = Tr.tr substKit (fr , f)

[:=] : ∀ {α} → Tm α → ∅ ↪→ α → Tm ∅ → Tm ∅

148 CHAPTER 6. VARIATIONS AND RELATED WORK

t [x := u] = substTm init (strengthenWith u V x) t

β-red : Tm ∅ → Tm ∅
β-red (ň ` t · u) = t [` := u]

β-red t = t

Conclusion By instantiating links to be either nominal links or de Bruijn
links we obtain the corresponding implementation of the β-reduction of λ-
terms. In contrast to our previous work [Pouillard and Pottier, 2010] we
simplified the presentation to only retain one kind of binding-link. To reuse
the terminology of [Pouillard and Pottier, 2010] we keep only the strong
links. We think the purpose of this binding-link abstraction is to be more
focused on a clean and simple interface than a comprehensive and precise
interface. Indeed precision has been achieved in our library through binders,
world operations, world inclusions, and operations on names. The binding-
link abstraction hides details about the representation. While a nominal
binder can shadow the previous one, a link, thanks to the fresh-for proof,
cannot. While a de Bruijn binder is canonical, a link is not. While we
can perform arithmetic with de Bruijn indices in our library, with links
we cannot. Yet terms with binding-links can be equipped with kits and
traversals. In short the paradigm is still very expressive but less flexible.

6.4 Combining nominal and nameless styles

The support for de Bruijn indices and de Bruijn levels, has been introduced
by only adding new items to the interface. Neither the interface, the imple-
mentation nor the logical relation need to be altered, only extended.

Here we present one of the multiple combinations that could be made.
We have two constructors for λ-abstraction, one in nominal style and one in
de Bruijn indices style. Right after, we show the function fv which produces
no surprises.

data Tm α : Set where

V : (x : Name α) → Tm α
ňN : ∀ b (t : Tm (b / α)) → Tm α
ňD : (t : Tm (α ↑1)) → Tm α
· : (t u : Tm α) → Tm α

6.4. COMBINING NOMINAL AND NAMELESS STYLES 149

fv : ∀ {α} → Tm α → List (Name α)
fv (V x) = [x]

fv (fct · arg) = fv fct ++ fv arg

fv (ňN b t) = rm b (fv t)
fv (ňD t) = rm0 (fv t)

We now show two variants of a term which combines those two styles
of bindings. One thing to notice is that even if a name is introduced in a
nominal style, one has to shift it to cross de Bruijn style binder. The first
variant binds the first name in nominal style and the second name in the
de Bruijn style. To reach the nominal binder from the inside sucN↑ is used.
The second variant binds the first name in de Bruijn style and the second in
nominal style. To cross the nominal binder, the de Bruijn occurrence needs
to be coerced showing that two worlds are included:

apTm1 : ∀ {α} → Tm α
apTm1 = ňN x (ňD (V (sucN↑ (nameB x)) · V (0 N)))
where x = 42 B

apTm2 : Tm ∅
apTm2 = ňD (ňN x (V (coerceN pf (0 N)) · V (nameB x)))
where x = 42 B

pf = {! proof omitted !}

An attractive feature of this combined style would be to partially convert
to de Bruijn indices. Once converted, the canonical structure can be used.
Since the conversion to de Bruijn indices requires to maintain a mapping
from nominal names to de Bruijn indices we build a more general renaming
function. Our renaming function (called ren) is similar to renameTmD (sec-
tion 5.3.4) but accepts nominal bindings as well. It is similar to renameTm

(section 3.2) but does not require a name supply argument to build the result
term. This function ren hence both converts to de Bruijn indices and applies
the supplied function on free variables. To build the function ren, the user-
supplied function on names must be adapted to cross name-abstractions.
We reuse the function protect↑1 from section 5.3.4 which is adapted when
both the source and target abstractions are de Bruijn indices. We build a
variant of the function protect↑1 called protect/↑1 which works when the
source abstraction is nominal and the target abstraction is de Bruijn.

150 CHAPTER 6. VARIATIONS AND RELATED WORK

protect/↑1 : ∀ {α β b} → (Name α → Name β)
→ (Name (b / α) → Name (β ↑1))

protect/↑1 f = exportWith (0 N) (sucN↑ ◦ f)
-- protect/↑1 f b = 0

-- protect/↑1 f x = 1 + f x

ren : ∀ {α β} → (Name α → Name β) → Tm α → Tm β
ren f (ňN b t) = ňD (ren (protect/↑1 f) t)
ren f (V x) = V (f x)
ren f (ňD t) = ňD (ren (protect↑1 f) t)
ren f (t · u) = ren f t · ren f u

Using this renaming function we build a simple normalization function
which just supplies the identity function as the renaming:

norm : ∀ {α} → Tm α → Tm α
norm = ren id

Using this combined approach one may loose the convenience of nominal
bindings. To recover this convenience, we build a function called openTm

such as in section 6.1. The function openTm takes a name supply s and
an open de Bruijn term t. The function renames the de Bruijn index zero
to the first name of the name supply. We then define a simple function
called nomview which converts the toplevel λ-abstraction from de Bruijn
to nominal. This function nomview enables to look at the terms as though
there were only nominal λ-abstractions. However using nomview and openTm

incurs the limitations we discussed in section 6.1, namely convenience, per-
formance, and non-structural recursion.

openTm : ∀ {α} (s : Supply α) → Tm (α ↑1) → Tm (seedB s / α)
openTm {α} (b , b#) = ren f where

f : Name (α ↑1) → Name (b / α)
f = exportWith (nameB) (coerceN (⊆-# b#) ◦ predN)

nomview : ∀ {α} → Supply α → Tm α → Tm α
nomview s (ňD t) = ňN (openTm s t)
nomview t = t

A tantalizing change would be to include new constructors to represent
the open and close operations internally. This would enable a lazy opening
and closing for terms. For instance we could try to add these data construc-
tors:

6.5. NOMINAL TYPES 151

Close : ∀ {α} b → Tm (b / α) → Tm (α ↑1)
Open : ∀ {α b} → b # α → Tm (α ↑1) → Tm (b / α)

However, we did not go very far with these constructors. Pattern-
matching on these is already limited given the indices of the result type
are not invertible. Using explicit type equalities helps to go a bit further
but not much:

Close : ∀ {α β} (eq : β ≡ α ↑1) b → Tm (b / α) → Tm β
Open : ∀ {α β b} (eq : β ≡ b / α) → b # α → Tm (α ↑1) → Tm β

We have explored one particular combination, namely combining nom-
inal and de Bruijn indices styles. We have shown how to build terms, but
also how to get a canonical form using de Bruijn indices. We have also
shown how to convert one de Bruijn binding to a nominal one. Exploring
other combinations is left as a topic for further research. This may include
combinations with de Bruijn levels, higher-order representations (such as
our normalization by evaluation function in section 3.4), nominal binders
with fresh-for proofs to maintain distinct binders, etc.

6.5 Nominal types

In this section we successively describe various specification languages to
describe languages. More concretely a specification language enables to
write type definitions and their binding structure. In section 6.5.1, we de-
scribe nominal signatures as used in FreshML-Lite [Shinwell et al., 2003].
We first describe signatures with a single sort of atoms and then general-
ize to multiple sorts. We then focus on languages with pattern types such
as FreshML and Fresh OCaml in section 6.5.1, Cαml in section 6.5.2
and Binders Unbound in section 6.5.3.

6.5.1 FreshML & Fresh OCaml types

FreshML [Shinwell et al., 2003] is a programming language, designed by
Mark R. Shinwell, Andrew M. Pitts and Murdoch J. Gabbay. The language
is designed to make programming with binders simple. The language is an
ML-like language augmented with types and language constructs to deal
with names and binders. The language has a conventional call-by-value op-
erational semantics and a type system preventing to break name abstraction.
This means that two α-equivalent terms cannot be distinguished within the
language. The language offers an adequate encoding of nominal terms (to be
described shortly) and guarantees that the identity of a bound name cannot
be observed. However, it does not prevent a newly generated atom from
escaping its scope.

152 CHAPTER 6. VARIATIONS AND RELATED WORK

Fresh OCaml [Shinwell and Pitts, 2005] is an extension of the OCaml
[Leroy et al., 2005] language. This language extension enriches OCaml with
a primitive type for names and one type construction for name abstractions.
From a language design point of view, Fresh OCaml brings the features
of FreshML to OCaml.

FreshML-Lite is a light version of FreshML without pattern types
and restricted to a single sort of atoms. Indeed FreshML and Fresh
OCaml have a simple notion of pattern types that we do not treat here. Pat-
tern types are covered in section 6.5.2 and 6.5.3 about Cαml and Binders
Unbound. About multiple sorts we show how to handle those and then go
back to a single sort to simplify matters.

Nominal terms are the values described by nominal signatures. Here
is the definition of a nominal signature as of Definition 2.1 of “Nominal
Unification” [Urban et al., 2004]:

“A nominal signature is specified by: a set of sorts of atoms (typical
symbol ν); a disjoint set of sorts of data (typical symbol δ); and a set
of function symbols (typical symbol f), each of which has an arity of the
form τ → δ. Here τ ranges over (compound) sorts given by the grammar
τ ::= ν | δ | 1 | τ × τ | <ν>τ . Sorts of the form <ν>τ classify terms
that are binding abstractions of atoms of sort ν over terms of sort τ . We
will explain the syntax and properties of such terms in a moment.”

Our goal now is to show how we can describe any nominal signature us-
ing our library. We could expect sorts of atoms, sorts of data and compound
sorts to be translated directly as types in Agda, and thus to have type Set

(no index). However this would be incompatible with our technique which
indices names (atoms) and terms by worlds. We call expression types what
corresponds to the compound sorts in nominal signatures. The term expres-
sion takes all its sense when combined with pattern types that we will see
later. In Agda we call the type of expression types E.

Nominal signatures on one atom sort We now describe the interface
to build and combine expression types and nominal signatures. For sim-
plicity we assume that only one sort of atom is used, that we call ν. The
first component is called νe and corresponds to atoms of sort ν. The second
component is called 1e and corresponds to the unit expression type. We can
take the product of two expression types with ×e . Finally the expression
type <ν>e τ classifies the terms that are name-abstractions of atoms of
sort ν over terms of type expression τ . Note that since we constrained the
interface to a single sort of atoms, name-abstraction expects only one argu-
ment, the expression type. To declare a function symbol we introduce 7→e

which takes two expression types and returns an Agda type (i.e. Set). In
Agda we have the following declarations for the interface:

6.5. NOMINAL TYPES 153

module MonoSortedNominalSignature where

E : Set1
νe : E
1e : E
×e : E → E → E
<ν>e : E → E
7→e : E → E → Set

-- Non-essential but used in a later example

Liste : E → E

We now give an example of the use of this interface to build a nominal
signature. We use Agda’s data type definitions to handle the introduction of
data sorts, function symbols, and the handling of recursion. This example
describes a fragment of ML. We recall as a comment how this nominal
signature was originally written [Urban et al., 2004].

{- A Nominal Signature:

Example 2.2 from ‘‘Nominal Unification’’

sort of atoms: vid

sort of data: exp

function symbols:

vr : vid → exp

app : exp × exp → exp

lam : <vid>exp → exp

lv : exp × <vid>exp → exp

lf : <vid>((<vid>exp) × exp) → exp

-}

module NominalSignatureExample where

open MonoSortedNominalSignature

data Exp : E where

vr : νe 7→e Exp

app : Exp ×e Exp 7→e Exp

lam : <ν>e Exp 7→e Exp

lv : Exp ×e <ν>e Exp 7→e Exp

lf : <ν>e((<ν>e Exp) ×e Exp) 7→e Exp

As we can see, the definition of a nominal signature can be easily done
within our system. The resulting Exp type is fully usable. As an example
we give the definition of the function fv.

154 CHAPTER 6. VARIATIONS AND RELATED WORK

fv : Exp 7→e Liste νe

fv (vr x) = [x]

fv (app (t , u)) = fv t ++ fv u

fv (lam (b , t)) = rm b (fv t)
fv (lv (t , b , u)) = fv t ++ rm b (fv u)
fv (lf (bf , (b , t) , u)) = rm bf (rm b (fv t) ++ fv u)

This function fv already reveals parts of the definitions for our nominal
signature combinators that we now present in detail. We have not much
other options than using Name as the definition for νe. This forces E to
be World → Set. This last definition can also be read as “expression types
are the world-indexed types” which should come as no surprise as it captures
the very intuition behind our system. The unit type expression (1e) ignores
the world index and yields Agda’s unit type. The product of expression
types (×e) distributes the world to the subcomponents. Name abstraction
pairs a binder and a sub-expression type whose world is properly extended.
Finally, the combinator to declare a function symbol (7→e) distributes to
the underlying arrow type but also quantifies over the world. Here are the
definitions in Agda.

module MonoSortedNominalSignature where

E : Set1
E = World → Set

νe : E
νe = Name

1e : E
1e = > -- > is Agda’s unit type

×e : E → E → E
(E1 ×e E2) α = E1 α ×e E2 α

<ν>e : E → E
(<ν>e E) α = ∃[b](E (b / α))

7→e : E → E → Set

E1 7→e E2 = ∀ {α} → E1 α → E2 α

One might want to unfold the type of a few symbols we defined. Modulo
currying, the symbols Exp, vr, lam and fv correspond to Tm, V, ň and fv

from section 2.2:

6.5. NOMINAL TYPES 155

Exp : World → Set

vr : ∀ {α} → Name α → Exp α
lam : ∀ {α} → ∃[b] Exp (b / α) → Exp α
fv : ∀ {α} → Exp α → List (Name α)

Multi-sorted nominal signatures We now enrich our expression types
with multiple sorts of atoms. We call Sort the type of atom sorts. This
type Sort is actually part of the definition of a nominal signature and
thus is not part of the interface. Actually, the interface is parameterized
over the type for atom sorts. We rename the νe as Namee in this ver-
sion. Namee associates an E to each value of Sort. The unit, list and
product for expression types are now derived from the more general com-
binators Neutrale, Neutral1e, Neutral2e, etc. These combinators respec-
tively lift any type Set, Set → Set, Set → Set → Set to E, E → E,
E → E → E, etc. The expression type < ν >e τ classifies the terms that
are name-abstractions of atoms of sort ν over terms of type expression τ .
We keep the other combinators unchanged. In Agda we have the following
declarations for the interface:

module MultiSortedNominalSignature

(Sort : Set) (== : (x y : Sort) → Bool) where

E : Sort → Set1
Namee : Sort → E
< >e : Sort → E → E
7→e : E → E → Set

Neutrale : Set → E
Neutral1e : (Set → Set) → (E → E)
Neutral2e : (Set → Set → Set) → (E → E → E)

1e : E
1e = Neutrale >

Liste : E → E
Liste = Neutral1e List

×e : E → E → E
×e = Neutral2e ×

To illustrate this new interface and the use of multiple sorts we present
a simple signature for System F where type variables are distinguished from
term variables. Notice that apart from the boring definition for == our

156 CHAPTER 6. VARIATIONS AND RELATED WORK

embedded language for signatures is lightweight.

module NominalSignatureExample where

data Sort : Set where

vtm vty : Sort

== : (x y : Sort) → Bool

vtm == vtm = true

vty == vty = true

vtm == vty = false

vty == vtm = false

open MultiSortedNominalSignature nomPa Sort ==

data Ty : E where

var : Namee vty 7→e Ty

arr : Ty ×e Ty 7→e Ty

all : < vty >e Ty 7→e Ty

data Tm : E where

vr : Namee vtm 7→e Tm

app : Tm ×e Tm 7→e Tm

lam : Ty ×e < vtm >e Tm 7→e Tm

App : Tm ×e Ty 7→e Tm

Lam : < vty >e Tm 7→e Tm

We show that computing the free type variables in both types and terms
can be programmed without any extra difficulty. Here the type system not
only prevents from leaking bound names but also prevents from mixing the
two sorts of variables.

fvtyTy : Ty 7→e Liste (Namee vty)
fvtyTy (var x) = [x]

fvtyTy (arr (σ , τ)) = fvtyTy σ ++ fvtyTy τ
fvtyTy (all (b , τ)) = rm b (fvtyTy τ)

6.5. NOMINAL TYPES 157

fvtyTm : Tm 7→e Liste (Namee vty)
fvtyTm (vr x) = []

-- [x] would not type-check

fvtyTm (app (t , u)) = fvtyTm t ++ fvtyTm u

fvtyTm (lam (τ , b , t)) = fvtyTy τ ++ fvtyTm t

-- rm b . . . would not type-check

fvtyTm (App (t , τ)) = fvtyTm t ++ fvtyTy τ
fvtyTm (Lam (b , t)) = rm b (fvtyTm t)

We can now turn to the implementation of the multi-sorted interface.
Expression types are no longer indexed by a single world but by a collec-
tion of worlds. This collection of worlds is itself indexed by atom sorts, and
represented by a function from sorts to worlds. The combinator Namee is
the type Name in the world given by looking up the world associated to the
sort ν. The combinator < >e needs to update the collection of worlds at the
given atom sort. To do so we define the function [:=] to do this update.
The combinators Neutrale, Neutral1e, and Neutral2e are distributing the
index to the subcomponents. Since λ A → Ix → A is an applicative func-
tor (often called Reader) for all index types Ix, the neutral combinators
correspond to pure, liftA, and liftA2 of this applicative functor. Here is
the Agda implementation.

module MultiSortedNominalSignature

(Sort : Set) (== : (x y : Sort) → Bool) where

E : Set1
E = (Sort → World) → Set

Namee : Sort → E
Namee ν Γ = Name (Γ ν)

[:=] : (Sort → World) → Sort → World → (Sort → World)
(Γ [ν := α]) ν′ = if ν == ν′ then α else Γ ν′

< >e : Sort → E → E
(< ν >e E) Γ = ∃[b](E (Γ [ν := b / Γ ν]))

158 CHAPTER 6. VARIATIONS AND RELATED WORK

Neutrale : Set → E
Neutrale A = A

Neutral1e : (Set → Set) → (E → E)
Neutral1e F E Γ = F (E Γ)

Neutral2e : (Set → Set → Set) → (E → E → E)
Neutral2e Op E1 E2 Γ = Op (E1 Γ) (E2 Γ)

1e : E
1e = Neutrale >

Liste : E → E
Liste = Neutral1e List

×e : E → E → E
×e = Neutral2e ×

FreshML types In addition to nominal signatures, FreshML and Fresh
OCaml support function types in their signatures. This can be taken into
account by adding an arrow combinator. We introduce it in two flavors:

→e : E → E → E
(E1 →e E2) α = E1 α → E2 α

⇒e : E → E → E
(E1 ⇒e E2) α = ∀ {β} → α ⊆ β → (E1 →e E2) β

⇒-to-→ : ∀ {E1 E2} → (E1 ⇒e E2) 7→e (E1 →e E2)
⇒-to-→ f = f ⊆-refl

We introduced the latter when defining a normalization by evaluation
algorithm in section 3.4. Moreover the latter version is generally more useful
than the former since it can be “imported” by merging the given inclusion
witness. Here is how to coerce such a function:

Coe : E → Set

Coe E = ∀ {α β} → α ⊆ β → E α → E β

coerce-⇒e : ∀ {E1 E2} → Coe (E1 ⇒e E2)
coerce-⇒e pf f = f ◦ ⊆-trans pf

6.5. NOMINAL TYPES 159

6.5.2 Cαml types

Cαml [Pottier, 2006] is both a tool and a language to describe data type with
a binding structure. Cαml has been developed by François Pottier. The tool
takes data type definitions in a file and produces an OCaml [Leroy et al.,
2005] module with OCaml data types and generated boiler plate code.

The data types language of Cαml extends ML algebraic data types that
we find in OCaml with annotations to describe the scoping rules. More
precisely, Cαml types extends nominal signatures with a notion of pattern
types.

Cαml data types are of two kinds: expression and pattern types. The
expression kind is made to be used for, well, expression-like types. For in-
stance our type Tm belongs to this kind, but type-expressions, statements,
processes, etc. are expression types. We reuse the terminology of the previ-
ous section and call E the type of expression types. As before we reuse the
following primitive expression types: Namee, 7→e , Neutrale, Neutral1e,
Neutral2e. We reuse also the following derived expression types: 1e, Liste,
×e . In order for Cαml to derive functions about these data types, func-

tions are not allowed to appear in signatures. Name-abstractions are made
of a pattern type and surrounded by < >. Pattern types are called P and
also support various combinators to be described shortly.

-- A pattern type

P : Set1

-- Name abstraction

< > : P → E

Pattern types appear when we start a name-abstraction. Like expression
types, pattern types are closed under products, and have the arrow 7→p

to declare a data constructor (function symbol). In addition, patterns can
be binders, or expression types with inner and outer annotations. Since
pattern types embed expression types, base types can be lifted to patterns
as well. Here are the signatures of the various forms of pattern types:

160 CHAPTER 6. VARIATIONS AND RELATED WORK

module CαmlTypes where

open MonoSortedNominalSignature public

Binderp : P
×p : P → P → P
7→p : P → P → Set

Outerp : E → P
Innerp : E → P

Neutralp : Set → P
Neutralp = Outerp ◦ Neutrale

-- which is identical to

-- Innerp ◦ Neutralp

-- List of patterns as special data type

-- since we could not reuse List here.

data Listp (P : P) : P where

[] : 1p 7→p Listp P

:: : P ×p Listp P 7→p Listp P

To appear in pattern types, expression types are qualified as either outer
or inner , and thus are respectively in-scope and out-of-scope of the surround-
ing abstraction. The disposition of binders and embedded expressions does
not matter for Cαml. The outer expressions are not affected by any binder
of the pattern. Similarly all the inner expressions of a pattern are put in
scope of all the binders introduced by the pattern.

Example To illustrate the use of expression and pattern types, we define
our term type in the Cαml style and call it Exp. The lam case is made
of a name-abstraction holding a pattern product with one binder and one
inner term. The let case is more interesting and makes use of the Outerp

combinator to hold the first subterm out of the scope of the binder. As
with nominal signatures we are using a data declaration to take care of
introducing the constructors and dealing with the recursive nature of the
type:

data Exp : E where

var : Namee 7→e Exp

app : Exp ×e Exp 7→e Exp

lam : < Binderp ×p Innerp Exp > 7→e Exp

let′ : < Binderp ×p Outerp Exp ×p Innerp Exp > 7→e Exp

6.5. NOMINAL TYPES 161

We continue our illustration of Cαml’s expressiveness with local blocks
of local definitions. To achieve this we simply reuse the declaration for let′

and wrap the binding with Listp:

let? : < Listp (Binderp ×p Outerp Exp) ×p Innerp Exp > 7→e Exp

To go from non-recursive blocks to recursive ones, a single step is re-
quired. Replacing Outerp by the Innerp annotation suffices to make all the
bound names accessible to the right hand part of this construct.

rec : < Listp (Binderp ×p Innerp Exp) ×p Innerp Exp > 7→e Exp

We finally add some pattern-matching facilities to our small language.
To do so, we introduce a pattern type named Pat. This type supports
wildcard patterns, single binders, and pairs of patterns:

data Pat : P where

wildcard : 1p 7→p Pat

binder : Binderp 7→p Pat

pair : Pat ×p Pat 7→p Pat

Once we have patterns, we package them as branches. A branch holds a
pattern, an optional guard, and a term associated with the pattern:

Branch : E
Branch = < Pat ×p Innerp (Maybee Exp) ×p Innerp Exp >

The type Exp is then extended with a new match construct, which holds
a scrutiny term and a list of branches:

match : Exp ×e Liste Branch 7→e Exp

In our Agda development we show how to modularly define a free-
variables function. To do so we define a combinator to compute the free
variables for each form of expression types and pattern types. For pattern
types we need no less than three actions to collect the inner free variables,
the outer free variables, and to remove pattern binders from a list of free
variables. Then at name-abstractions, free variables is the union of outer
free variables and inner ones minus those bound by the pattern. In the end,
one can build an fv function on terms whose body is made of combinators
and exactly follow the definition of terms.

162 CHAPTER 6. VARIATIONS AND RELATED WORK

Behind the scenes We now turn to the definitions needed to make these
combinators work with our library. We focus on a single sort of atoms since
we have shown how we can support multiple sorts. Expression types are not
changed and directly reused from section 6.5.1.

The Cαml change to expression types is the name-abstraction. However,
before discussing the name-abstraction combinator, we need to cover pat-
tern types. Pattern types are indexed by no less than two worlds, and an
operator on worlds. Let P be a pattern type, let α and β be worlds, let Op

be an operator on worlds (World → World), then P α β Op is a fully ap-
plied pattern type of type Set. The world α plays the role of the outer
world, meaning before binders introduced by the pattern. The world β is
the inner world, meaning after all the binders introduced by the pattern.
Thus, the worlds α and β are outer and inner worlds with respect to the
complete pattern found between name-abstraction brackets (< >). These
two worlds α and β are respectively used by Outerp and Innerp to pick the
world of the expression type. Then the operator explains what the given
pattern type changes to a world. If the pattern does not bind anything (as
is the case of Outerp and Innerp), then the operator is equal to the identity.
Since a binder pattern binds one binder, the operator is equal to the corre-
sponding binder insertion: b / Pattern products distribute α and β to
subcomponents. Subcomponents world operation get composed into a single
operation to index the product. Finally the abstraction brackets package an
operation and a fully applied pattern type whose outer world is the current
world, the inner world is computed by applying Op to the current world.
Here are the definitions in Agda:

P : Set1
P = (α β : World) (Op : World → World) → Set

Binderp : P
Binderp Op = ∃[b](Op ≡ / b)

Outerp : E → P
Outerp E α Op = E α × Op ≡ id

Innerp : E → P
Innerp E β Op = E β × Op ≡ id

data ×p (P1 P2 : P) : P where

, : ∀ {Op1 Op2 α β}
→ P1 α β Op1
→ P2 α β Op2
→ (P1 ×p P2) α β (Op2 ◦ Op1)

6.5. NOMINAL TYPES 163

< > : P → E
< P > α = ∃[Op](P α (Op α) Op)

7→p : P → P → Set

7→p P1 P2 = ∀ {α β Op} → P1 α β Op → P2 α β Op

In the end, the world operation index of a pattern type could be replaced
by a list of binders. However this abstract presentation enables more flexible
uses. For instance here is the de Bruijn version of the combinator Binderp:

BinderDp : P
BinderDp Op = Op ≡ ↑1

This de Bruijn combinator is useful in two ways. First one can imagine
mixing Binderp and BinderDp as we have done in section 6.4. A second op-
tion would be to easily change the implementation from nominal to de Bruijn
by just updating a single definition. This also shows that both nominal and
de Bruijn are expressive enough to cover Cαml data types.

A remark on linearity We can remark a subtle difference between Cαml’s
semantics for pattern types and the semantics provided by our definitions.
In Cαml if two binders in a same pattern are equal there is no shadowing.
Such a pattern could be for instance: λ (x , x) → In our setting there
is shadowing and thus the order of binders in a pattern is relevant. This
order is well-defined and specified on the combinator for products. In a pat-
tern product, all the binders on the left comes before all the binders on the
right. Thus those on the right can shadow those on the left. We actually
recommend to deal with linearity before going to a well-scoped representa-
tion. If non-linear patterns have to be accepted, we recommend to turn the
subsequent occurrences into free names and thus keep a linear pattern.

Conclusion In this section we explained how our embedded language to
describe nominal signatures can scale to Cαml signatures. This shows that
all types that can be defined in Cαml can also be defined in our system.
However Cαml also provides generated code to perform usual operations
on data structures with names and binders. We do not address this part
here but several generic programming techniques could be applied in our
situation as well.

6.5.3 Connection with Binders Unbound

Stephanie Weirich, Brent Yorgey, and Tim Sheard develop a library called
Binders Unbound [Weirich et al., 2011]. This library is written in Haskell
and provides type level combinators to express data structures with binders.

164 CHAPTER 6. VARIATIONS AND RELATED WORK

Then through a mechanism of “data generic programming”, usual functions
are generically provided for any combination of types. The main feature of
Binders Unbound is to get all of these operations for free right after the
type definition. It enables rapid prototyping where we directly focus on the
code that matters to our program. The safety features are similar to those
in FreshML, Fresh OCaml, and Cαml. Name abstraction cannot be vio-
lated but names can escape their scope. However by providing many generic
operations the number of bugs the programmer can introduce is reduced. Of
course nothing prevents from combining both generic programming and a
safer approach were names do not escape their scope. To achieve their goal
of generic programming, an embedded language of combinators to define
types is developed.

The language of combinators is modeled after expression and pattern
types. Given our definitions of section 6.5.1 and section 6.5.2, we can adapt
to the new combinators concisely. We focus on a single sort of atoms since
we have shown how we can support multiple sorts. The first difference is the
combinator Bind P E which combines a pattern type P and an expression
type E. The binders in P scope over the expression type E. This is equivalent
to < P ×p Innerp E > in Cαml, but the combinator < > is not part of
Binders Unbound. The combinator Embed enables to embed an expression
type into a pattern type. The combinator Embed is equivalent to Outerp

from Cαml. The real new combinators are Rebind and Rec. Rebind P1 P2
is a pattern type which binds both P1 and P2 like P1 ×p P2 does. However,
binders of P1 also scope over the expressions embedded in P2. Rec P is a
pattern types where binders of P not only scope externally but scope over
expressions embedded in P. As in Cαml, functions cannot be used in data
types.

We give definitions for Bind, Embed, Rebind and Rec using our defini-
tions for Cαml. The second world index (β) of pattern types is not used
in Binders Unbound but would enable to combine them with Cαml com-
binators.

Bind : P → E → E
Bind P E α = ∃[Op](P α (Op α) Op × E (Op α))

-- ∼= < P ×p Innerp P E > α

Embed : E → P
Embed = Outerp

6.5. NOMINAL TYPES 165

data Rebind (P1 P2 : P) : P where

, : ∀ {Op1 Op2 α β}
→ P1 α β Op1
→ P2 (Op1 α) β Op2
→ Rebind P1 P2 α β (Op2 ◦ Op1)

Rec : P → P
Rec P α β Op = P (Op α) β Op

Open/close based interface We have shown how the types provided
by the library Binders Unbound can be expressed within our system.
What about the operations? Their library generically provides the usual
operations such as computing free variables, comparing two terms up to α-
equivalence, substitutions and performing a renaming. However in order to
let the user program the remaining specific operations, the library had to
commit to a particular implementation or interface to program with binders.
They chose to provide an interface with a default implementation using
Locally Nameless [Charguéraud, 2011, Aydemir et al., 2008]. We discussed
at length in section 6.1 the limitations of an interface based on open and
close (here called unbind and bind respectively). In particular when the type
of abstractions is kept abstract the convenience is reduced when pattern
matching, performance is hurt due to unwanted traversals, and structural
recursion is no longer possible.

Telescopes Here is an example of the usefulness of the combinator Rebind,
namely telescopes. Telescopes are widely used in dependently typed pro-
gramming languages. A telescope is a sequence of typed bindings. Let Γ
be a meta-variable for such a telescope defined as (A : Set) (x : A). Tele-
scopes can be used to represent an environment in a typing judgement as
in Γ ` x : A. They can be used to represent a sequence of arguments types
as in Γ → A. They can also be used to represent a sequence of typed ar-
guments as in λ Γ → x. While all these construction could be made by
nesting Bind, this would tie the telescope to a particular usage. If we want
the telescope to be a value on its own, its needs to be a pattern type. Hence
the use of Rebind instead of Bind.

To illustrate Rebind and telescopes here are two mutually defined data
types. The type Exp represents expressions in a small dependently typed
language where types and expressions are fused in the same syntactic class.
Expressions have variables, dependent function types, λ-abstractions, func-
tion applications, and a sort called set. The type Tele represents nested
sequences of bindings associated with an expression, namely telescopes:

166 CHAPTER 6. VARIATIONS AND RELATED WORK

mutual

data Exp : E where

V : Namee 7→e Exp

Π : Bind Tele Exp 7→e Exp

ň : Bind Tele Exp 7→e Exp

· : Exp ×e Liste Exp 7→e Exp

set : 1e 7→e Exp

data Tele : P where

[] : 1p 7→p Tele

:: : Rebind (Binderp ×p Embed Exp) Tele 7→p Tele

We show how to compute the free variables for expressions, lists of ex-
pressions, and telescopes. To do so we have to lift the function rm to tele-
scopes as well:

mutual

fv : Exp 7→e Liste Namee

fv (V x) = [x]

fv (Π (bind Γ t)) = fvTele Γ ++ rmTele Γ (fv t)
fv (ň (bind Γ t)) = fvTele Γ ++ rmTele Γ (fv t)
fv (· (t , us)) = fv t ++ fvL us

fv (set) = []

fvL : Liste Exp 7→e Liste Namee

fvL [] = []

fvL (t :: ts) = fv t ++ fvL ts

fvTele : ∀ {α β Op} → Tele α β Op → List (Name α)
fvTele ([]) = []

fvTele (:: ((binder b , embed τ) , Γ)) = fv τ ++ rm b (fvTele Γ)

rmTele : ∀ {α β Op} → Tele α β Op

→ List (Name (Op α)) → List (Name α)
rmTele ([] (neutral)) = id

rmTele (:: ((binder b , embed) , Γ)) = rm b ◦ rmTele Γ

Conclusion In this section on nominal types we have shown the expres-
siveness of our system to define various families of data types. Through
a lightweight embedded language we can support nominal signatures with
multiple sorts and pattern types as in FreshML, Cαml and Binders Un-
bound. Hence worlds are at lest as expressive as these languages. Using our

6.6. RELATED WORK 167

embedded language to define data types is kept very light since the resulting
data types are not much different from those written directly. However the
expressiveness of worlds is also a weakness. Indeed generic programming as
done in Binders Unbound is greatly simplified by having a language of
combinators instead of our flexible use of worlds. To this end we advocate
to have both flexible worlds with a mechanized notion of α-equivalence and
combinators to get generic programming. We have not studied enough how
to integrate data type generic programming since there are plenty of ways
to build universes in Agda and meta-programming tools are promising but
still too young.

6.6 Related work

The difficulty of programming with, or reasoning about, names, binders, and
α-equivalence has been known for a long time. It has recently received a lot
of attention, due in part to the PoplMark challenge [Aydemir et al., 2005].
Despite this attention, the problem is still largely unsolved: according to
Guillemette and Monnier, for instance, “none of the existing representations
of bindings is suitable” [Guillemette and Monnier, 2008].

In the following, we review several systems that are intended to facilitate
the manipulation of names and binders. This review is not exhaustive: we
focus on relatively recent related work.

In particular we have already covered nominal systems such as FreshML
[Shinwell et al., 2003], Fresh OCaml [Shinwell and Pitts, 2005], Cαml [Pot-
tier, 2006]; de Bruijn indices [de Bruijn, 1972]; systems based on well-scoped
de Bruijn indices [Altenkirch, 1993, McBride and McKinna, 2004, Bellegarde
and Hook, 1994, Bird and Paterson, 1999, Altenkirch and Reus, 1999]; dy-
namically stratified representations such as Locally Nameless [Charguéraud,
2011, Aydemir et al., 2008] and Locally Named [Pollack et al., 2011, Sato
and Pollack, 2010]; and Binders Unbound [Weirich et al., 2011] which is
internally based on Locally Nameless.

FreshML and Pure FreshML Pure FreshML [Pottier, 2007] is built
on top of FreshML. The semantics of FreshML dictates that pattern
matching against a name abstraction silently replaces the bound atom with
a fresh atom. FreshML guarantees that “name abstractions cannot be
broken”. However, FreshML is unsafe: it is possible for a name to escape
its scope. Put another way, FreshML is impure: name generation is an
observable side effect.

Pure FreshML imposes additional static proof obligations, which ensure
that freshly created atoms do not escape their scope, and correspond to
Pitts’ freshness condition for binders [2006]. Because these proof obligations
are expressed in a specialized logic, they can be discharged automatically.

168 CHAPTER 6. VARIATIONS AND RELATED WORK

Because it is safe, Pure FreshML can be implemented either using atoms
(such as the original FreshML) or using de Bruijn indices. This is an
implementation choice, which the programmer need not know about.

In contrast with Pure FreshML, the approach proposed in the present
work does require certain runtime checks: the operation exportTm fails if its
argument contains a free name that cannot be exported. We claim that often
those checks are required and thus would be discharged by Pure FreshML
only with equivalent checks. However in some cases, some invariants of the
code would make these checks redundant. Pure FreshML might able to
show that we can export without any check.

In Pure FreshML, name abstraction is a primitive notion, and the fact
that deconstructing an abstraction automatically freshens the bound atom is
used to guarantee that all terms effectively live in a single world. In our work,
in contrast, name abstraction is explained in terms of more basic notions,
and it is possible to deconstruct a name abstraction without substituting a
fresh name for the bound name. This leads to a finer-grained understanding
of binding, and, in some cases, to greater runtime efficiency.

Nominal System T Pitts’ Nominal System T [2010] follows the tradition
of FreshML and guarantees that name abstractions cannot be violated. In
order to ensure that names do not escape their scope, Pitts uses a dynamic
technique: the ν construct, which can be applied to any term, turns every
name occurrence that is about to escape its scope into a harmless “anony-
mous name”, known as anon (or new). One potential advantage of this
approach is that the application of ν to a term can be lazily evaluated,
whereas our exportTm operation requires eagerly traversing the entire term.

We can emulate this behavior in our system by adding a special value
to the type for names to represent anon. We experimented with this op-
tion in our development [Pouillard, 2011a] by defining a type Name? α
as Maybe (Name α) and anon as nothing. Most operations can be eas-
ily lifted. In particular exportN? gets the type Name? (b / α) → Name? α
and so becomes “total”. Then, exporting terms gets the type Tm (b / α) →
Tm α. However there is no direct equivalent for ¬Name∅, since the empty
world is indeed inhabited by anon. Instead we have that only anon inhabits
the empty world.

One may wonder if the use of the Maybe type could be avoided? Indeed
we tried another option in our development [Pouillard, 2011a] where the
type Name? α is equal to Name (α ↑1) and anon is equal to zeroN. We also
lifted most of the operations from Name to Name?. We also gain “total”
functions to export names and terms which would allow for a lazy exporting
at the price of delaying “errors”.

6.6. RELATED WORK 169

A separate “data layer” Some systems are said to have a “data layer”
separated from the “computation layer” for types. The data layer is gen-
erally a LF signature of a Logical Framework [Harper et al., 1993] (LF for
short). This generally means that data types are only defined in the data
layer. In the data layer there is an arrow type for functions but it should not
be confused with computational functions that we expect from a program-
ming language. A type constructor from the data layer can then be injected
in the computation layer. The injection from the data to computation layer
is a place where these systems differ. The data and computation layers
being separated, this implies that we cannot mix first-class computational
functions and data types.

In the case of a simply typed LF, we can map the data layer signatures to
nominal signatures (section 6.5.1). To do so, we build an injection called d e
from LF types to atom sorts. Usually this means an atom sort per data sort.
Then the translation called J K of the signature is straightforward. The arrow
case J S -> T K is translated to < d S e >e J T K. Finally for each data
type δ, a data constructor is added for variables. This constructor has type:
Vδ : Namee d δ e 7→e δ. This translation can be used as an intuition of
what it means to lift a type from the data layer to the computation layer and
also as an initial step to support LF signatures in our system. In particular
Licata and Harper follow a similar translation but using a single constructor
for variables shared among the complete signature. Here is an example:

{- LF signature for System F:

Ty : type.

arr : Ty -> Ty -> Ty.

all : (Ty -> Ty) -> Ty.

Tm : type.

app : Tm -> Tm -> Tm.

lam : Ty -> (Tm -> Tm) -> Tm.

App : Tm -> Ty -> Tm.

Lam : (Ty -> Tm) -> Tm.

-}

Only two type expressions appear on the left of an arrow. The injec-
tion d e is thus defined as follow:

d Ty e = vty

d Tm e = vtm

Applying the previously mentioned translation we obtain the following
data types:

170 CHAPTER 6. VARIATIONS AND RELATED WORK

data Ty : E where

VTy : Namee vty 7→e Ty

arr : Ty ×e Ty 7→e Ty

all : < vty >e Ty 7→e Ty

data Tm : E where

VTm : Namee vtm 7→e Tm

app : Tm ×e Tm 7→e Tm

lam : Ty ×e < vtm >e Tm 7→e Tm

App : Tm ×e Ty 7→e Tm

Lam : < vty >e Tm 7→e Tm

Elphin, Delphin, Beluga, Belugaµ Elphin [Schürmann et al., 2005],
Delphin [Poswolsky and Schürmann, 2008, 2009], and Beluga [Pientka, 2008]
are closely related to one another in several ways. They aim at building
programming languages where data types are built from LF types and terms.

Elphin only has a limited way to include types from the data layer in
the computation layer. Both Delphin and Beluga have contexts but their
handling is different. Delphin deals with a “current context” while Beluga
has explicit contexts. Delphin allows incremental changes of the current
context using ν whereas Beluga combines contexts and LF objects at the
frontier of data and computation.

Belugaµ [Cave and Pientka, 2012] extends Beluga with richer computa-
tional types. In Belugaµ we can define data types in the computation layer
as well. These data types can be recursive and indexed by LF objects of the
data layer. While substitution comes for free at the data layer, substitution
has to be user defined on data types from the computation layer. We think
more connections between our system and Belugaµ are to be found. We also
notice their use of our system to prove properties of their language in Coq
proof assistant. They used a simplified version of our 2010 paper [Pouillard
and Pottier, 2010] which corresponds to the simplifications we have made in
section 6.3.

At the data level, Elphin, Delphin, Beluga provide substitution and
higher-order matching as primitive operations. This ambitious approach
can eliminate some boilerplate code, at the cost of a complex meta-theory.
By contrast, the meta-theory of our proposal is very simple, as it only ex-
tends an existing logical relations argument with a few new primitive types
and operations. We argue that some of the boilerplate can still be eliminated
via generic programming as this is done by Licata and Harper but also in
Binders Unbound.

6.6. RELATED WORK 171

Licata and Harper’s system Licata and Harper [2009] aim to provide
substitution for free when possible; and they expose the use of well-scoped
de Bruijn indices to the programmer, whereas we offer a choice between
nominal and de Bruijn-based representation techniques.

This said, there are numerous similarities between the two systems. Both
keep track of the context, or world, within which each name makes sense.
Both offer flexible ways of parameterizing or quantifying types over worlds.
Both offer ways of moving data from one world to another: Licata and
Harper’s weakening and strengthening respectively correspond to our im-
port (coerce) and export operations. Both systems support first-class com-
putational functions. Not all functions can be imported or exported, but
some can: for instance, in both systems, the example of normalization by
evaluation (section 3.4), which requires importing a function into a larger
world, is made type-correct by planning ahead and making this function
polymorphic with respect to an arbitrary world extension.

Distinctions One traditionally distinguishes several broad approaches to
the problem of names and binders, which employ seemingly different tools,
namely: atoms and atom abstractions; well-scoped de Bruijn indices; higher-
order abstract syntax. We believe that this distinction can be superficial. In
fact, our work presents strong connections with all three schools of thought.
Perhaps more important are the following questions:

Can α-equivalent terms be distinguished? Except for bare de Bruijn
indices and plain nominal terms all the systems we have presented prevent
α-equivalent terms to be distinguished. These systems offer an adequate
encoding of “nominal” terms and guarantees that the identity of a bound
name cannot be observed.

What hygiene properties are enforced by the system? The base
hygiene property is prevent from α-equivalent terms to be distinguished.
We now focus on more hygiene properties. In FreshML, Fresh OCaml,
Cαml, Locally Nameless, Locally Named, and Binders Unbound gener-
ating names is an observable effect. Said differently functions can turn α-
equivalent inputs into not α-equivalent outputs. Nominal System T repairs
this problem by dynamically detecting an atom that attempts to escape and
by turning it into a harmless “anonymous atom”. Systems based on well-
scoped de Bruijn indices enforce the invariant that every name is within
range, that is, every name refers to some binding site. However, this alone
does not imply that indices are correctly adjusted where needed, or that
comparisons between names are allowed only when they make sense. In sys-
tems based on higher-order abstract syntax, and in Pure FreshML, name
manipulation is hygienic by design: this is built in the syntax and semantics

172 CHAPTER 6. VARIATIONS AND RELATED WORK

of the programming language.

In the present document, hygiene is built in at a very low level. We
provide a small number of abstract types, such as Binder and Name, to-
gether with a small number of operations. These operations are restricted
on purpose: for instance, comparing two binders for equality is disallowed;
comparing two names for equality is permitted only if they inhabit a com-
mon world. Through logical relations and parametricity, we are able to
explore the consequences of these restrictions and to find out which hy-
giene properties can be expected of a well-typed program. In particular,
we guarantee that two α-equivalent terms cannot be distinguished and that
functions turn α-equivalent inputs into α-equivalent outputs. These results
hold because our definition of α-equivalence is the logical relation, and that
every well-typed program inhabits this relation. Moreover, our definition
of α-equivalence corresponds to the “standard” notion of α-equivalence, at
least for all nominal signatures like the type Tm.

Is there a type for names that can be freely used in types? The
answer to this question is positive for most “first order” systems we have
studied: de Bruijn indices, well-scoped de Bruijn indices, Locally Name-
less, Locally Named, FreshML, Fresh OCaml, Cαml, Pure FreshML,
Nominal System T , Binders Unbound, and in the present work.

In systems based on LF and higher-order abstract syntax the type for
names is not freely used. Instead, names inhabit all types issued from the
data layer.

Does the system have different data and computation layers? El-
phin, Delphin, Beluga, Belugaµ clearly have two different layers. Since Cαml
does not support function while OCaml does we conclude that Cαml has
two different layers as well. In de Bruijn indices, well-scoped de Bruijn in-
dices, Locally Nameless, Locally Named, FreshML, Fresh OCaml, Pure
FreshML, Nominal System T , Binders Unbound and the present work
there is no separation. However very few systems handle the mix of compu-
tational functions and data types with binders. Systems based on a gener-
ator or generic programming such as most Locally Nameless and Locally
Named implementations, Cαml, and Binders Unbound disallow types
with computational functions. In Pure FreshML, there is no support for
first class functions at all. In de Bruijn indices, well-scoped de Bruijn in-
dices, FreshML and Fresh OCaml data and computation can be mixed
since little operations are generically provided. However in FreshML and
Fresh OCaml the swap operation is generically provided and supports
functions. In Licata and Harper’s work [2009] data and computation can be
mixed. However they are both part of a “universe” which is then interpreted
into computation types of the host language.

6.6. RELATED WORK 173

Is there a set of types where substitution can be defined? If so what
are the restrictions? Some systems let the user program substitution
functions. Some systems try to provide them for free either at all types or
have restrictions. When a system has a specific “data layer” for types, the
goal is to have substitution for free on these types once injected into the
computation layer.

In Elphin, Delphin, and Beluga, substitution for data types comes for free
but the data layer is restricted and cannot embed computational functions.

In Belugaµ there is substitution has to be defined for data types in the
computation layer and comes for free on the data layer.

In FreshML, Fresh OCaml, Nominal System T , Pure FreshML this
is up to the user to program substitution functions. In Cαml (systems
based on nominal signatures), Locally Nameless, Locally Named program-
mers have to define substitution functions but generators may be provided
for usual cases. In Binders Unbound, substitution is generically provided
for a family of types not including functions. In Licata and Harper’s work
their is a generic definition for the substitution which is conditioned by
criterion on the type.

In our system, substitution has to be programmed by the user and no
particular set of types is prescribed for this task. Then as we have shown
earlier a wide range of signatures can be embedded in our systems and
generic programming could be applied on those.

How does the system keep track of the context or world in which a
name makes sense? In Pure FreshML and in Nominal System T , there
is effectively just one world, within which every name makes sense; static or
dynamic checks guarantee that no confusion can arise. In Elphin, Delphin, or
in Licata and Harper’s system, the meaning of types is relative to a “current
context”, and a number of modalities are provided to discard the current
context, extend it with one new name, etc. In Beluga and Belugaµ, contexts
are explicit: a data layer type, once annotated with a context, becomes a
computation layer type. In the present work, worlds are explicit, and are
built into algebraic data type definitions by the programmer. There is no
notion of a “current world”: multiple worlds can co-exist, and mechanisms
are offered for transporting names (or whole data structures) from one world
to another.

None of de Bruijn indices, Locally Nameless, Locally Named, FreshML,
Fresh OCaml, Cαml, or Binders Unbound keep track of the context in
which a name makes sense.

Which high-level operations are involved in the semantics of the
programming language? The semantics of the “nominal” systems (such
as FreshML, Fresh OCaml, Cαml, Pure FreshML, Nominal System T)

174 CHAPTER 6. VARIATIONS AND RELATED WORK

involves renaming. In Locally Nameless, Locally Named, and Binders Un-
bound the open/close operations are costly and necessary to use to go
under binders. The semantics of Elphin, Delphin, Beluga, and Belugaµ in-
volve higher-order matching. In the present work, as well as in Licata and
Harper’s work, no costly operations are built into the semantics; high-level
operations, such as our import and export operations, are programmed ex-
plicitly or obtained via generic programming.

Moving across representations It is arguably desirable to be able to of-
fer several choices of representation within a single system, and to be able to
migrate from one representation to another. Our system supports multiple
representation styles, and combinations thereof (section 6.4). Furthermore,
our implementation of normalization by evaluation (section 3.4) illustrates
how to move back and forth between “syntactic” name abstractions and
“semantic” name abstractions in the style of higher-order abstract syntax.

Robert Atkey and co-authors [Atkey, 2009, Atkey et al., 2009] investigate
how to move back and forth between higher-order abstract syntax and de
Bruijn indices. The translation out of higher-order abstract syntax produces
well-scoped de Bruijn indices, but the proof of this fact is meta-theoretic.
Atkey uses Kripke logical relations to argue that the current world at the
time of application of a certain function must be larger than the world at
the time of construction of this function. This seems somewhat related
with our use of bounded polymorphism in the definition of semantic name
abstractions (section 3.4). An exact connection remains to be investigated.

Chapter 7

Conclusion

7.1 Contributions

Our contributions are practical and fundamental. On the practical side, we
have built a library (in Agda) for programming with names and binders.
The library comprises a safe programming interface and a sound implemen-
tation, which has been mechanically proved against a strong specification.
The interface supports different styles for binders: nominal, de Bruijn in-
dices, de Bruijn levels, and combinations of them.

Our interface is not only safe but expressive as well. Explicit worlds
enable both multiple kinds of variables and precise control over the scoping
rules. Name abstraction is not a primitive type nor an abstract type but
concretely built out of more atomic types. While expressive and safe, the
system is economical on the number of introduced types.

On a fundamental side, we re-use the logical relations defined for Agda
in [Bernardy et al., 2010], and build a logical relation argument which pro-
vides a strong specification of α-equivalence by building a unified model.
This is the very same model that is used for all styles: nominal, de Bruijn
indices, de Bruijn levels and the combinations. The framework of logical
relations provides a systematic way of defining α-equivalence on complex
data types. Moreover free-theorems arise for world-polymorphic functions
defined by the user, yielding interesting properties about user code for free.

This work also establishes numerous connections between various sys-
tems of the three schools of thought (nominal, de Bruijn, HOAS). We built
our library with a “nominal” insight and lightly integrated de Bruijn indices
based on well-scoped de Bruijn indices approach. We then built a normaliza-
tion by evaluation algorithm which shows how “syntactic” and “semantic”
abstraction can be combined.

This unified approach does not stop here. De Bruijn levels, Locally
Nameless, Locally Named, and combinations of them can be safely built
on top of our abstract interface and programmed precisely. Through the

175

176 CHAPTER 7. CONCLUSION

use of generic traversals and traversal kits, we can share most of the usual
definitions we have on terms.

Moreover our types are very flexible, as shown by the embedding of
nominal signatures, Cαml types, and Binders Unbound types. Not only
flexible, our types automatically come with a definition for α-equivalence
which is guaranteed to be preserved by the well-typed programs using our
interface.

7.2 Future work

As future work we would like to make our library lighter to use. To do so
we would like to infer most of the inclusion witnesses needed to move from
a world to another.

While hand-written generic traversals already avoid code duplication, we
would like to generically define this traversal for a fixed universe of types.

Studying how this system could support the presence of side-effects
would be an interesting direction as well. This could be done either by
considering a language design with our features and side effects or by study-
ing how our types compose with particular effects as monads.

Finally we would like to explore how convenient this technique is, to
not only program but reason about programs. Since the library is based on
abstract types, this would require exporting properties about the functions
of the interface. We can notice that this direction is promising since a
simplified version of our approach has been successfully used by Cave and
Pientka to prove properties of Belugaµ.

We would also like to better study the connection with systems based on
LF and higher-order abstract syntax. A direction could be to combine the
universe from Licata and Harper but using our library instead of well-scoped
de Bruijn indices.

We also need to deal with a proper extraction of our library. We want
to erase: worlds, membership proofs, world inclusion witnesses, etc. A
real implementation should rely on machine integers; and useless traversal
functions (like coerceTm) should be optimized away.

We focused on names and binders to guarantee that the binding structure
of well-scoped terms is preserved by well-typed programs. However safe and
expressive meta-programming requires that not only scopes but types are
preserved. We worked on initial ideas in this direction but we left this to
future work.

Bibliography

Thorsten Altenkirch. A formalization of the strong normalization proof for
System F in LEGO. In J.F. Groote M. Bezem, editor, Typed Lambda
Calculi and Applications, LNCS 664, pages 13 – 28, 1993. URL http:

//www.cs.nott.ac.uk/~txa/publ/tlca93.pdf.

Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda
terms using generalized inductive types. In Computer Science Logic, vol-
ume 1683 of Lecture Notes in Computer Science, pages 453–468. Springer,
1999. URL http://www.cs.nott.ac.uk/~txa/publ/csl99.pdf.

Robert Atkey. Syntax for free: representing syntax with binding using para-
metricity. In International Conference on Typed Lambda Calculi and Ap-
plications (TLCA), volume 5608 of Lecture Notes in Computer Science,
pages 35–49. Springer, July 2009.

Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding domain-
specific languages. In Haskell symposium, pages 37–48, September 2009.
URL http://personal.cis.strath.ac.uk/~raa/unembedding.pdf.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack,
and Stephanie Weirich. Engineering formal metatheory. In ACM Sym-
posium on Principles of Programming Languages (POPL), pages 3–15,
January 2008. URL http://www.cis.upenn.edu/~bcpierce/papers/

binders.pdf.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Wash-
burn, Stephanie Weirich, and Steve Zdancewic. Mechanized metathe-
ory for the masses: The PoplMark challenge. In International Con-
ference on Theorem Proving in Higher-Order Logics (TPHOLs), vol-
ume 3603 of Lecture Notes in Computer Science, pages 50–65. Springer,
August 2005. URL http://research.microsoft.com/en-us/people/

dimitris/poplmark.pdf.

Françoise Bellegarde and James Hook. Substitution: A formal methods case
study using monads and transformations. Sci. Comput. Program., 23(2-3):
287–311, 1994. doi: http://dx.doi.org/10.1016/0167-6423(94)00022-0.

177

http://www.cs.nott.ac.uk/~txa/publ/tlca93.pdf
http://www.cs.nott.ac.uk/~txa/publ/tlca93.pdf
http://www.cs.nott.ac.uk/~txa/publ/csl99.pdf
http://personal.cis.strath.ac.uk/~raa/unembedding.pdf
http://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
http://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
http://research.microsoft.com/en-us/people/dimitris/poplmark.pdf
http://research.microsoft.com/en-us/people/dimitris/poplmark.pdf

178 BIBLIOGRAPHY

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametric-
ity and dependent types. In Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP ’10, pages
345–356, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3.
doi: http://doi.acm.org/10.1145/1863543.1863592. URL http://doi.

acm.org/10.1145/1863543.1863592.

Richard Bird and Ross Paterson. de Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–91, January 1999. URL
http://dx.doi.org/10.1017/S0956796899003366.

Andrew Cave and Brigitte Pientka. Programming with binders and indexed
data-types. In ACM Symposium on Principles of Programming Languages
(POPL), pages 413–424, January 2012. URL http://www.cs.mcgill.

ca/~bpientka/papers/recursive-types.pdf.

Arthur Charguéraud. The locally nameless representation. Journal of Au-
tomated Reasoning, pages 1–46, 2011. ISSN 0168-7433. URL http://

www.chargueraud.org/research/2009/ln/main.pdf. 10.1007/s10817-
011-9225-2.

Nicolaas G. de Bruijn. Lambda-calculus notation with nameless dummies: a
tool for automatic formula manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381–392, 1972.

Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘c: a lan-
guage for high-level, efficient, and machine-independent dynamic code
generation. In Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’96, pages 131–
144, New York, NY, USA, 1996. ACM. ISBN 0-89791-769-3. doi:
http://doi.acm.org/10.1145/237721.237765. URL http://doi.acm.org/

10.1145/237721.237765.

Louis-Julien Guillemette and Stefan Monnier. A type-preserving compiler
in Haskell. In ACM International Conference on Functional Program-
ming (ICFP), pages 75–86, September 2008. URL http://www-etud.

iro.umontreal.ca/~guillelj/icfp08.pdf.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, pages 194–204, 1993.

Graham Hutton. Programming in Haskell. Cambridge University Press,
January 2007.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rmy, and Jrme
Vouillon. The Objective Caml system, October 2005. URL http://caml.

inria.fr/.

http://doi.acm.org/10.1145/1863543.1863592
http://doi.acm.org/10.1145/1863543.1863592
http://dx.doi.org/10.1017/S0956796899003366
http://www.cs.mcgill.ca/~bpientka/papers/recursive-types.pdf
http://www.cs.mcgill.ca/~bpientka/papers/recursive-types.pdf
http://www.chargueraud.org/research/2009/ln/main.pdf
http://www.chargueraud.org/research/2009/ln/main.pdf
http://doi.acm.org/10.1145/237721.237765
http://doi.acm.org/10.1145/237721.237765
http://www-etud.iro.umontreal.ca/~guillelj/icfp08.pdf
http://www-etud.iro.umontreal.ca/~guillelj/icfp08.pdf
http://caml.inria.fr/
http://caml.inria.fr/

BIBLIOGRAPHY 179

Daniel R. Licata and Robert Harper. A universe of binding and computation.
In ACM International Conference on Functional Programming (ICFP),
pages 123–134, September 2009. URL http://www.cs.cmu.edu/~drl/

pubs/lh09unibind/lh09unibind.pdf.

Conor McBride and James McKinna. The view from the left. J. Funct.
Program., 14:69–111, January 2004. ISSN 0956-7968. doi: 10.1017/
S0956796803004829. URL http://www.cs.ru.nl/~james/RESEARCH/

view-final2004.pdf.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, 2008.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

Brigitte Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In ACM Sympo-
sium on Principles of Programming Languages (POPL), pages 371–382,
January 2008. URL http://www.cs.mcgill.ca/~bpientka/papers/

hoasfun-short.pdf.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Benjamin C. Pierce, editor. Advanced Topics in Types and Programming
Languages. MIT Press, 2005.

Andrew M. Pitts. Alpha-structural recursion and induction. Journal of
the ACM, 53:459–506, 2006. URL http://www.cl.cam.ac.uk/~amp12/

papers/alpsri/alpsri.pdf.

Andrew M. Pitts. Nominal System T . In ACM Symposium on Principles
of Programming Languages (POPL), pages 159–170, January 2010. URL
http://www.cl.cam.ac.uk/~amp12/papers/nomst/nomst-popl.pdf.

Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. A canon-
ical locally named representation of binding. pages 1–23, May
2011. URL http://homepages.inf.ed.ac.uk/rpollack/export/

PollackSatoRicciottiJAR.pdf.

Adam Poswolsky and Carsten Schürmann. Practical programming with
higher-order encodings and dependent types. In European Symposium
on Programming (ESOP), volume 4960 of Lecture Notes in Computer
Science, pages 93–107. Springer, March 2008. URL http://cs-www.cs.

yale.edu/homes/poswolsk/papers/delphinESOP08.pdf.

http://www.cs.cmu.edu/~drl/pubs/lh09unibind/lh09unibind.pdf
http://www.cs.cmu.edu/~drl/pubs/lh09unibind/lh09unibind.pdf
http://www.cs.ru.nl/~james/RESEARCH/view-final2004.pdf
http://www.cs.ru.nl/~james/RESEARCH/view-final2004.pdf
http://www.cs.mcgill.ca/~bpientka/papers/hoasfun-short.pdf
http://www.cs.mcgill.ca/~bpientka/papers/hoasfun-short.pdf
http://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf
http://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf
http://www.cl.cam.ac.uk/~amp12/papers/nomst/nomst-popl.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/PollackSatoRicciottiJAR.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/PollackSatoRicciottiJAR.pdf
http://cs-www.cs.yale.edu/homes/poswolsk/papers/delphinESOP08.pdf
http://cs-www.cs.yale.edu/homes/poswolsk/papers/delphinESOP08.pdf

180 BIBLIOGRAPHY

Adam Poswolsky and Carsten Schürmann. System description: Delphin
– A functional programming language for deductive systems. Electronic
Notes in Theoretical Computer Science, 228:113–120, 2009. URL http:

//www.itu.dk/~carsten/papers/lfmtp-08.pdf.

François Pottier. An overview of Cαml. In ACM Workshop on ML, vol-
ume 148 of Electronic Notes in Theoretical Computer Science, pages 27–
52, March 2006. URL http://gallium.inria.fr/~fpottier/publis/

fpottier-alphacaml.pdf.

François Pottier. Static name control for FreshML. In IEEE
Symposium on Logic in Computer Science (LICS), pages 356–365,
July 2007. URL http://gallium.inria.fr/~fpottier/publis/

fpottier-pure-freshml.pdf.

Nicolas Pouillard. Nompa (Agda code), 2011a. http://tiny.

nicolaspouillard.fr/NomPa.agda.

Nicolas Pouillard. Nameless, painless. In Proceedings of the 16th
ACM SIGPLAN international conference on Functional programming,
ICFP ’11, pages 320–332. ACM, September 2011b. URL http://

nicolaspouillard.fr/publis/nameless-painless.pdf.

Nicolas Pouillard and François Pottier. A fresh look at pro-
gramming with names and binders. In Proceedings of the 15th
ACM SIGPLAN international conference on Functional programming,
ICFP ’10, pages 217–228, New York, NY, USA, September 2010.
ACM. ISBN 978-1-60558-794-3. doi: http://doi.acm.org/10.1145/
1863543.1863575. URL http://gallium.inria.fr/~fpottier/publis/

pouillard-pottier-fresh-look.pdf.

John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983. URL
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf.

Masahiko Sato and Randy Pollack. External and internal syntax of the
lambda-calculus. J. Symb. Comput., 45(5):598–616, 2010. URL http:

//homepages.inf.ed.ac.uk/rpollack/export/SatoPollack09.pdf.

Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus:
Functional programming with higher-order encodings. In International
Conference on Typed Lambda Calculi and Applications (TLCA), volume
3461 of Lecture Notes in Computer Science, pages 339–353. Springer, April
2005. URL http://www.itu.dk/~carsten/papers/nabla.pdf.

Mark R. Shinwell and Andrew M. Pitts. Fresh Objective Caml user manual.
Technical Report 621, University of Cambridge, February 2005. URL
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-621.pdf.

http://www.itu.dk/~carsten/papers/lfmtp-08.pdf
http://www.itu.dk/~carsten/papers/lfmtp-08.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-alphacaml.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-alphacaml.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-pure-freshml.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-pure-freshml.pdf
http://tiny.nicolaspouillard.fr/NomPa.agda
http://tiny.nicolaspouillard.fr/NomPa.agda
http://nicolaspouillard.fr/publis/nameless-painless.pdf
http://nicolaspouillard.fr/publis/nameless-painless.pdf
http://gallium.inria.fr/~fpottier/publis/pouillard-pottier-fresh-look.pdf
http://gallium.inria.fr/~fpottier/publis/pouillard-pottier-fresh-look.pdf
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollack09.pdf
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollack09.pdf
http://www.itu.dk/~carsten/papers/nabla.pdf
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-621.pdf

BIBLIOGRAPHY 181

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
Programming with binders made simple. In ACM International Confer-
ence on Functional Programming (ICFP), pages 263–274, August 2003.
URL http://www.cl.cam.ac.uk/~amp12/papers/frepbm/frepbm.pdf.

Walid Taha. Multi-stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute, November 1999. URL http://www.

cs.rice.edu/~taha/publications/thesis/thesis.pdf.

Christian Urban, Andrew Pitts, and Murdoch Gabbay. Nominal uni-
fication. Theoretical Computer Science, 323:473–497, 2004. URL
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

D14EB8679102796E01FBD20257BB5F34?doi=10.1.1.3.7275&rep=

rep1&type=pdf.

Philip Wadler. Views: a way for pattern matching to cohabit with data ab-
straction. In ACM Symposium on Principles of Programming Languages
(POPL), POPL ’87, pages 307–313, New York, NY, USA, 1987. ACM.
ISBN 0-89791-215-2. doi: http://doi.acm.org/10.1145/41625.41653. URL
http://doi.acm.org/10.1145/41625.41653.

Philip Wadler. Theorems for free! In Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA), pages 347–
359, September 1989. URL http://homepages.inf.ed.ac.uk/wadler/

papers/free/free.ps.gz.

Stephanie Weirich, Brent Yorgey, and Tim Sheard. Binders un-
bound. In Proceedings of the 16th ACM SIGPLAN international con-
ference on Functional programming, ICFP ’11, pages 333–345. ACM,
September 2011. URL http://www.cis.upenn.edu/~byorgey/papers/

binders-unbound.pdf.

http://www.cl.cam.ac.uk/~amp12/papers/frepbm/frepbm.pdf
http://www.cs.rice.edu/~taha/publications/thesis/thesis.pdf
http://www.cs.rice.edu/~taha/publications/thesis/thesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D14EB8679102796E01FBD20257BB5F34?doi=10.1.1.3.7275&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D14EB8679102796E01FBD20257BB5F34?doi=10.1.1.3.7275&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D14EB8679102796E01FBD20257BB5F34?doi=10.1.1.3.7275&rep=rep1&type=pdf
http://doi.acm.org/10.1145/41625.41653
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://www.cis.upenn.edu/~byorgey/papers/binders-unbound.pdf
http://www.cis.upenn.edu/~byorgey/papers/binders-unbound.pdf

182 BIBLIOGRAPHY

List of Figures

2.1 The NomPa interface . 49

3.1 Lifiting trName . 66

4.1 Logical relations for core types 83
4.2 Logical relations for data types 84
4.3 Relations for NomPa types 90

5.1 Core operations on names . 99
5.2 Operations on names . 99
5.3 New rules for world inclusion 100
5.4 Shifting versus adding example 110
5.5 Various term types: from concrete to abstract 111

6.1 Various forms of name abstraction 127

183

184 LIST OF FIGURES

Index

α-equivalent, 26

Abstract Syntax Trees, 20
algebraic data types, 30
assuming, 27
AST, 20

binder, 26
binding-links, 140
bound, 26

Code
β-redD, 108
β-red, 70, 147
⊥, 37
◦-Kit, 68
∅, 55, 96
≡, 38
d e, 169
N, 30
P, 159
¬Name∅, 53, 55, 96
¬ A, 38
νe, 152, 154
⊆-∅+1, 100
⊆-∅, 54, 96
⊆-Reasoning, 55
⊆-#, 54
⊆-/, 54
⊆-dist-+-/, 137
⊆-dist-+1-/, 137
⊆-dist-/-+1, 137
⊆-dist-/-+, 137
⊆-refl, 54, 96
⊆-trans, 54, 55, 96
>, 37
1e, 152, 154

AbsPreTm, 126, 128
AbsTm, 121
AddL.kit, 137
Atom, 41, 120
BinderDp, 163
Binderp, 163
Binder, 50, 96
Bind, 164
Bool, 30
B, 85
Coerce, 67
Comm, 145
DataEnv, 61
DeBruijn, 142
Exp, 153, 154, 160, 165
Fin, 95, 100
FreshLink, 143
Fresh, 143
Innerp, 162
Let, 42, 140
Link, 140
List, 32
Namee, 157
Name, 50, 96
Neutral1e, 155, 157
Neutral2e, 155, 157
Neutrale, 155, 157
NomFresh, 143
Nom, 142
Outerp, 160, 162
Pat, 73, 161
PreTm, 126
Preserve-≡, 88
Program, 35
Rebind, 164
Rec, 164

185

186 INDEX

RelatedFunctions, 81
RenameEnvL, 135
SemAbs, 74, 75
Sem, 74
Set0, 37
Set1, 37
Sort, 155
SubstEnv+⊆, 128
SubstEnvL, 135
SubstEnv, 65, 66
Supply, 65
SynAbsD, 126
SynAbsN, 74, 128
Tele, 165
TmA, 41, 121
TmD, 97
TmL⇒TmN, 138
TmL, 133
TmM, 94
Tm, 50, 140
TraversePreTm, 127
Tree, 34
V, 41, 94
World, 96
· , 41, 133
÷ , 36
≡0 , 38
⊆ , 53, 96
×e , 152, 154
↑1, 97, 98
↑ , 98
* , 31
++ , 36
+1, 55, 97
+ , 31
+W , 98
, 7→ , 75
/2, 31
#∅, 54
, 54, 79
$0 , 39
〈-because -〉, 53
J→K , 81
J⊆K , 89, 92

J↑1K, 109
J+1K, 109
J/K , 89, 91
J∨K , 86
J==NK , 91
7→e , 152, 154
7→p , 159
´ , 36
f , 40, 67
/ , 50, 78, 96
∨ , 85
|7→| , 67
>> , 36
N, 101
:: , 32
[:=], 157
== , 155
==A , 120
==N , 63, 79, 96, 108
==Tm , 88
$, 39
〈 〉N, 115
〈 〉Tm, 115
〈 〉W, 115
JΠK, 81
J∅K, 89
J¬Name∅K, 91
JBK, 86
JBinderK, 88
JNameK, 88
JSet0K, 82
JTmDK⇔rename, 117
JTmDK, 114
J K, 81
JaddNK, 110
JcmpNK, 110
JfalseK, 86
JnameBK, 91
JtrueK, 86
E, 154
�, 55
|Cmp|, 62
<ν>e , 152
< >e , 157

INDEX 187

< >, 159, 164
addTmD, 107
addTmL, 138
addN, 98
adds, 101
appTmD, 104
appTmM, 95
ba, 44, 47
binderN, 52
closeTm?, 70
closeTmD?, 107
closeTmL, 136
closeTm, 121, 127, 129
cmp-ba, 44, 47
cmpName↑, 108
cmpTmD, 109
cmpTmL, 133
cmpTm, 63, 88
cmpN, 100
coeTm, 64
coerceEnv, 76
coerceKit, 64
coerceTmL, 138
coerceTm, 70
coerceN, 53, 55, 79, 96
commEnv, 145
compTmD, 104
convTmN∅ ⇒TmL∅, 139
convTmN∅ ⇒TmL, 139
conv, 71
env-length-TmJ, 48
eval, 75
exportWith, 60
exportN?, 57, 79
exportN, 56
extEnv, 63, 71
extendNameCmp, 62
extend, 60
falseTm, 52
false, 30, 85
fast-fv, 48
fa, 125
filter, 33
fvD, 104

fv, 43, 44, 47, 61, 133, 140, 148,
153, 154

idTmD, 104
idTm, 52
id, 32
importFun, 145
init, 143
is42?, 85
kitVar, 146
lam, 154, 160
length, 33
let′, 122, 161
lookup, 61
mapKit, 68
map, 33
match, 161
nameOf, 140
nameB, 52, 79
next, 143
node, 34
nomview, 150
not, 30
occurs, 60
occ, 60
openSubstTm, 122, 127, 128
openTm, 121, 150
plug, 73
predN?, 102
print, 36
protect↑A, 106
protect↑, 103
protect/↑1, 149
protectedAdd↑, 113
protectedAdd, 112
pure, 40, 67
reify, 76
renameAKitL, 136
renameAKit, 67
renameKit+⊆, 128
renameKit, 66
renameTm?, 70
renameTmD?, 106
renameTmDA, 106
renameTmD, 106

188 INDEX

renameTmL⇒TmN, 139
renameTmL?, 136
renameTmLA, 136
renameTmL, 136
renameTm, 146
ren, 149
rerootTmL, 138
rm0, 104
rmA, 43
rm, 59, 140
seed, 65
set, 165
shiftName′, 103
shiftName, 102
shiftTmD, 107
show, 36
size, 51, 123, 125
starKit, 68
strengthen?, 140
substKit, 67
substPreTm, 128
substTmD, 108
substTmL, 136
substTm, 70, 147
substVarTmD, 108
subtractTmD?, 107
subtractTmD, 107
subtractTmL, 138
subtractN?, 102
subtractN, 100
subtracts, 101
suc#, 54, 79
sucB, 51, 96
sucN↑, 101
sucN, 101
sucs, 65
suc, 30
sumForest, 34
sumTree, 34
tf, 43
tx, 43
ty, 43
trAtom, 71
trBinder, 63

trName, 63, 65, 145
trTm′, 69
trTmD′, 105
trTm, 68
triple, 31
trueTm, 53, 55, 56
true, 30, 85
unprotectedAdd, 113
vr, 154
weakenTm, 147
weaken, 140
zeroB, 51, 96
zeroN, 98
zeros, 65
zero, 30
[], 32
ň′, 122
ň, 41, 94, 95

complete, 17
context, 26

data constructors, 30
definitional equality, 38
definitionally equal, 38

equal pointwise, 39
expression types, 152

free, 26
fresh, 26

GADT, 30

has type, 18
higher-order, 33

inductive families, 29
infix, 16
inner, 159, 160

Keyword
..., 34
Set, 37
with, 33

lexing, 19

INDEX 189

links, 140
locally closed, 120
Locally Named, 120
Locally Nameless, 120, 126

mutually recursive, 34

name, 26
nominal, 27
nominal signatures, 152
Nominal terms, 152

occurrence, 26
outer, 159, 160

parsing, 20
pattern, 151
pattern type, 159
pattern types, 152
pattern matching, 30
pattern types, 152, 159
pointwise equality, 40
polymorphism, 32
propositional equality, 38

recursive, 30
regular tree types, 29

sequenced, 14
sound, 17
sum and product types, 29

tail, 33
token class, 20
tokens, 20
traversal kit, 63
types, 17
typing judgements, 18

variable, 26

wildcard, 33

	Introduction
	Programs and Programming Languages
	Program syntax
	Typing
	Program representation, meta-programming
	Names and local bindings
	Scoping
	Empowering our language

	The nominal approach
	Introduction to the nominal approach
	Warm-up: the bare nominal approach
	Using well-formedness judgements
	Well-scoped terms

	NomPa: A programming interface in nominal style
	All we need to define nominal syntax
	Building binders and names
	World widening: Name weakening
	Comparing and refining names

	Programming on top of NomPa
	Various examples
	Example: computing free variables
	Example: working with environments
	Example: Term comparison

	Kits and Traversals
	Traversal Kits
	Coercing kit
	Renaming kits
	Substitution kit
	Other kits and combinators
	Reusable traversal
	Reusing the traversal
	Building any -term

	Towards elaborate uses of worlds
	Data type of ``one hole contexts''
	Patterns a la ML
	Term and types: System F

	Advanced example: normalization by evaluation

	Behind the scene of the NomPa library
	Implementation of NomPa
	Soundness: logical relations and parametricity
	Recap of the framework
	An example: Boolean values represented by numbers

	Relations for NomPa
	Relations for NomPa types
	NomPa values fit the relation
	An example not fitting the relation

	The de Bruijn approach
	Introduction to de Bruijn indices
	bare: The original approach
	Maybe: The nested data type approach
	The Fin approach

	An interface for de Bruijn indices
	Singleton worlds!

	Examples and advanced operations
	Some convenience functions
	Building terms
	Computing free variables
	Generic traversal
	Nameless term comparison

	Logical Relations for de Bruijn indices
	Relations for the de Bruijn world operations
	De Bruijn functions fit the relation
	On the strength of free theorems
	Using logical relations and parametricity

	Variations and Related Work
	Dynamically stratified representations
	Locally closed terms
	Building terms
	Performances
	Non-structural recursion
	Free atoms using openTm
	Common parts of the internal representation
	Locally Nameless
	Locally Named
	When does this stratified technique pay off?

	de Bruijn levels
	Term comparison
	Kits and traversals
	Derived functions
	New inclusion rules
	Addition and subtraction kits
	Conversion with nominal terms

	Links: Binders as World Relations
	Terms and examples
	Implementations
	Building links and terms
	Kits and traversals

	Combining nominal and nameless styles
	Nominal types
	FreshML & Fresh OCaml types
	C ml types
	Connection with Binders Unbound

	Related work

	Conclusion
	Contributions
	Future work

	Bibliography
	List of Figures
	Index

