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Abstract

With the widespread diffusion of XML as a format for representing data gen-
erated and exchanged over the Web, main query and update engines have been
designed and implemented in the last decade. A kind of engines that are playing a
crucial role in many applications are main-memory systems, which distinguish for
the fact that they are easy to manage and to integrate in a programming environ-
ment. On the other hand, main-memory systems have scalability issues, as they
load the entire document in main-memory before processing.

This Thesis presents an XML partitioning technique that allows main-memory
engines to process a class of XQuery expressions (queries and updates), that we
dub iterative, on arbitrarily large input documents. We provide a static analysis
technique to recognize these expressions. The static analysis is based on paths
extracted from the expression and does not need additional schema information.
We provide algorithms using path information for partitioning the input documents,
so that the query or update can be separately evaluated on each part in order
to compute the final result. These algorithms admit a streaming implementation,
whose effectiveness is experimentally validated.

Besides enabling scalability, our approach is also characterized by the fact that
it is easily implementable into a MapReduce framework, thus enabling parallel
query/update evaluation on the partitioned data.

Keywords : XML, XQuery, XQuery updates, Projection, Data Partitioning,
MapReduce.





Chapter 1

Résumé en Français
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1.1 introduction générale

L
a dernière décennie a vu la diffusion rapide des données semi-structurées et en
particulier le standard XML (eXtensible Markup Language) dans nombreux

applications qui s’appuient sur le web pour l’échange et le partage de données.
XML est un successeur de SGML, il a été rapidement adopté comme format naturel
pour représenter les données semi-structurées pour lesquelles le modèle relationnel
et le modèle objet ne sont pas appropriés. La grande flexibilité des données XML
a rendu ce format universel et a permis son utilisation pour échanger des données
entre des applications différentes sur le Web.

Afin de permettre la diffusion de XML, plusieurs outils ont été défini pour
la transformation, l’interrogation, la manipulation et la modélisation des données
XML. En particulier, le World Wide Web Consortium (W3C) a introduit XQuery
[W3S10] comme langage de requête et XQuery Update [Gro11a, Gro11b] pour met-
tre à jour des documents XML. Les deux langues ont été intensivement étudiées par
la communauté scientifique, en particulier dans un but d’optimisation de l’exécution
des requêtes et des mises à jour.

Une principale utilisation de XQuery est l’interrogation et la mise à jour des don-
nées XML qui sont simplement stockées dans des fichiers ou générées en streaming.
En général, dans ces contextes, toutes ces fonctionnalités complexes qui caractérisent
les DBMS traditionnels ne sont pas nécessaires. Le besoin principal dans ces con-
textes est la disponibilité d’un moteur de requête et mise à jour facile à installer
et à intégrer dans un environnement de programmation. Pour cette motivation,
de nombreux moteurs XQuery ont été mis au point pendant les dernières années,
comme Galax [gal], Saxon [sax], Qizx [qiz] et eXist [exi]. Ces systèmes sont générale-
ment conformes par rapport aux spécifications du W3C. Ils traitent les données en
mémoire centrale: les données sont d’abord entièrement chargé dans la mémoire
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centrale, puis traitées (interrogés ou mises à jour). Pour cette raison, ces systèmes
sont généralement classés comme de systèmes mémoire-centrale.

En citant Cong et al. [GCL12], les systèmes mémoire-centrale sont le meilleur
choix dans

. . . plusieurs domaines comme les sciences de la vie (par exemple, Bi-
ologie), l’astronomie, et même pour la gestion des documents XML typ-
iques correspondant aux fichiers Microsoft Office (étant donné que les
présentations PowerPoint, les fichiers Word et Excel sont actuellement
stockées au format XML). Dans tous ces domaines, la gestion des docu-
ments XML est centrée sur des fichiers et aucun système de gestion des
données XML traditionnels n’est mis en place.

En particulier dans les domaines tels que les sciences de la vie et de l’astronomie,
les documents XML ont une taille importante (plusieurs GBs), ce qui peut compro-
mettre la possibilité d’utiliser un moteur de mémoire-centrale pour le traitement des
requêtes.

Actuellement, les systèmes mémoire-centrale qui sont très flexibles et faciles à
installer et à utiliser, ne peuvent pas passer à l’échelle.

Une solution partielle pour ce problème est proposée. Cette solution est basée sur
la projection. La projection XML est une technique d’optimisation proposée dans le
but de surmonter les limitations des moteurs mémoire-centrale pour l’interrogation
des documents XML. Cette technique repose sur une observation simple selon laque-
lle les requêtes sont en général sélectives cad qu’elles ciblent seulement une sous-
partie des documents interrogés. L’idée consiste alors à identifier de manière statique
les parties nécessaires à l’évaluation des requêtes et à utiliser cette information pour
ne charger en mémoire centrale que les parties du document qui sont accédées par
la requête. La projection permet ainsi de traiter des documents volumineux même
sous des contraintes de mémoire importantes.

La projection a été utilisée pour la première fois dans [MS03] puis étendue
dans [BCCN06, KSS08] en prenant en compte le schéma du document interrogé.
L’utilisation des schémas permet de réduire la taille de la projection en exploitant la
possibilité d’inférer de manière précise les données nécessaires à l’évaluation d’une
requête. Dans les techniques de [BCCN06, KSS08], l’information inférée consiste
en l’ensemble des étiquettes des noeuds nécessaires à l’évaluation des requêtes. Cet
ensemble est appelé type-projecteur.

Les approches précédentes et basées sur la projection ne fournissent qu’une so-
lution partielle aux problèmes de scalabilité des systèmes mémoire-centrale, et les
documents d’entrées projetées pourraient encore dépasser la capacité de la mémoire
centrale. Cela peut être le cas lorsque (i) le fichier d’entrée est énorme, (ii) la
sélectivité de la requête est faible (elle a besoin d’une grande partie du document
d’entrée), ou (iii) cas d’évaluation d’un workload (par exemple, un ensemble de re-
quêtes qui doivent être évaluée sur le document d’entrée). Dans ce dernier cas, la
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taille de la projection globale peut dépasser la taille de la mémoire centrale. La
projection globale peut être inutile puisque tout le document en entrée peut être
nécessaire pour le workload.

Il est important de dire que les problèmes de scalabilité dépendent également du
type particulier de moteur qu’on veut utiliser, et sur les paramètres de la mémoire
interne. En fait, la plupart des systèmes mémoire-centrale sont implémentés en Java,
et leur scalabilité dépend de la quantité de mémoire centrale précisée en paramètre de
la JVM (Java Virtual Machine). Dans tous les cas, même pour les grandes quantités,
les problèmes de scalabilité de la projection standard sont toujours optimisés, la
taille de la projection de documents augmente lorsque la taille du document en
entrée augmente.

L’objectif principal de cette Thèse est de proposer une technique qui assure la
scalabilité pour les requêtes et les mise à jours indépendamment:

• du type du système mémoire-principal.

• de la quantité de mémoire centrale qui est valable.

• de l’utilisation du schéma d’informations de schéma.

À cette fin, dans cette Thèse, nous proposons une technique d’optimisation basée
sur le partitionnement des données XML. Cette technique repose sur l’observation
que, dans plusieurs cas pratiques, les requêtes XQuery et les mises à jour sélection-
nent d’abord une séquence de sous-arbres à l’aide d’une sous-requête (par exemple,
une expression XPath), puis évaluent des opérations sur cette séquence des sous-
arbres. Par exemple, en ce qui concerne les requêtes, 13 des 20 requêtes de XMark
Benchmark [SWK+02b] vérifient cette propriété et pour les mises à jour, 16 des 20
mises à jour qui ont été proposées dans [BBC+11, Sah11] sont itératives.

Dans le cas de requêtes, lorsque cette propriété est satisfaite par une requête
Q , le document d’entrée peut être divisé en un ensemble de parties {D1, . . . ,Dκ},
de sorte que l’évaluation Q(D) de la requête Q sur le document d’entrée D est
égale à la concaténation des évaluations Q(Di) de la requête Q sur les parties Di

du document d’entrée D .

Dans le cas des mises à jour, la même stratégie peut être adoptée, à la différence
que les mises à jour partielles U (Di) doivent être recombinées pour obtenir le docu-
ment mis à jour U (D). Alors que dans le cas de requêtes, une simple concaténation
des résultats partiels est suffisant. En particulier, nous utilisons la commande cat

pour fusionner ces résultats partiels afin de produire le résultat final. Pour les mises
à jour, et puisque nous utilisons des informations supplémentaires lors de la création
des partitions afin de s’assurer que les parties créées sont bien formées, des informa-
tions supplémentaires par rapport des balises supplémentaires sont nécessaires afin
de correctement re-combiner des parties mises à jour et éliminer ces balises pour
obtenir le résultat final U (D). Ces informations auxiliaires sont opportunément
mises en place pendant le partitionnement.
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Avec la scalabilité, notre technique de partitionnement peut être facilement adap-
tée dans un environnent MapReduce [DG08], ce qui permet l’interrogation et la mise
à jour parallèle des parties. Cette évaluation parallèle est possible puisque dans le
cas des requêtes et des mises à jour itératives, l’évaluation de chaque partie peut
se faire indépendamment de l’évaluation des autres parties. Par conséquent, cette
approche peut aisément transposée dans un environnement MapReduce qui joue un
rôle très important dans les plates-formes basée sur le cloud.

1.2 contributions

Cette Thèse propose une nouvelle technique de partitionnement basé sur l’évaluation
de requêtes XQuery et les mises à jour.

La première contribution de cette Thèse se concerne les requêtes. Dans ce con-
texte, les contributions principales sont les suivantes et sont également présentés
dans [Nic12]:

• Nous présentons d’abord une caractérisation formelle de la classe de requêtes
qui satisfont la propriété de division décrite ci-dessus: nous appelons ces re-
quêtes requêtes itératives. En s’appuyant sur cette caractérisation formelle,
nous développons une technique d’analyse statique qui extrait des chemins et
des informations sur les variables liées à la requête, et puis les analyse afin
de détecter statiquement comment le document d’entrée est navigué par la
requête. En se fondant sur les informations de chemin nous pouvons éviter
l’utilisation d’informations de schéma qui n’est pas toujours disponible.

• Nous présentons ensuite un algorithme de partitionnement qui exploite les
chemins extraites lors de l’analyse statique pour identifier la partition cor-
recte pour le document d’entrée. Nous présentons d’abord une spécification
d’algorithme basée sur la représentation DOM puis nous utilisons le parseur
SAX qui permet la possibilité d’effectuer le partitionnement en streaming, en
utilisant peu de mémoire. Pour améliorer encore les avantages de notre ap-
proche, nous combinons le partitionnement avec la projection standard, de
sorte que lors de la création de parties de document, les sous-arbres qui ne
sont pas nécessaires par la requête sont éliminées. L’utilisation de la projec-
tion standard n’est pas cruciale pour assurer la scalabilité, ce qui est notre
objectif principal puisque dans notre approche, la taille maximale de chaque
partie peut réglée par l’utilisateur. La projection contribue à réduire le coût
du partitionnement, car elle accélère l’exécution des requêtes sur la partition.

• Ensuite, nous présentons une évaluation expérimentale intensive qui confirme
que, lors que de l’utilisation de notre approche de partitionnement, des moteurs
mémoire centrale peuvent traiter des documents de taille arbitraire, au prix
d’un coût d’exécution légèrement supérieur à celui des approches de projection
qui n’utilisent pas de schéma. Nos expériences montrent également que le
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partitionnement permet la scalabilité pour les workloads, car dans ce cas le
document en entrée est divisé une fois pour toutes les requêtes (ou les mises a
jour) du workload.

La deuxième contribution de cette Thèse se concerne les mises à jour. Dans ce
contexte, les contributions principales sont les suivantes:

• Nous analysons d’abord les cas où l’évaluation des mises à jour peut être
correctement appliquée sur les partitions, puis nous fournissons une anal-
yse statique pour caractériser ces mises à jour, que nous appelons mises à

jour itératives. Cette caractérisation exige des restrictions sur les mécanismes
d’interrogation qui sont utilisés dans les expressions source et target des mises
à jour. Nous allons montrer que ces restrictions sont acceptables puisque une
large classe de mises à jour peut être traitée avec notre approche.

• Et puis, nous présentons une technique de partitionnement qui se distingue de
la technique des requêtes par les aspects suivants:

Premier aspect: la projection n’est pas utilisée, afin d’avoir une recombinaison
simple et efficace des mises à jour partielles. Ceci est également justifié par
le fait que le partitionnement est déjà suffisant pour générer suffisamment de
petites pièces (parties du document d’entrée). L’utilisation de la projection
exige un processus sophistiqué de la recombinaison (puisque les sous-arbres
élagués au cours de partitionnement doivent être reconnus) et de remettre dans
le résultat final du processus. Ce type d’opération a été fait par [BBC+11],
où l’utilisation des informations de schéma a été cruciale pour assurer une
formalisation claire et efficace.

Deuxième aspect: les chemins utilisés au cours de partitionnement sont dé-
duite en le mettant en compte la nature particulière de mises à jour. Ces
chemins sont utilisés pour assurer que les sous-arbres qui éventuellement été
sélectionnées par les chemins Target ne sont jamais divisés pendant le par-
titionnement. L’atomicité de ces sous-arbres est nécessaire pour assurer que
l’évaluation de la mise à jour peut être correctement répartir sur toutes les
parties d’entrée.

• Ensuite, nous présentons les résultats des tests étendus montrant l’efficacité
de notre technique. A la différence du cas des requêtes, la sur-coût du au
partitionnement n’est pas négligeable. Toutefois, les résultats de ces tests
montrent que notre objectif principal, la scalabilité est largement réalisée.

Concernant les résultats des tests, nous avons utilisé deux moteurs mémoire-
centrale principaux, Saxon [sax] et Qizx [qiz]. Notre choix est motivé par le fait
que Saxon est un système très populaire, qui se distingue pour son exhaustivité
dans la couverture de la plupart des normes du W3C pour le traitement XML (par
exemple, le schéma XML, XSLT, XQuery et les mises à jour). Différemment, Qizx
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est spécialisée dans la requête XQuery et la mise à jour, et soutient des techniques
sophistiquées pour optimiser le temps d’exécution et la consommation de mémoire.

La troisième contribution de cette Thèse montre est le fait que la technique
proposée est été facilement adapté pour être exécuté dans un cadre MapReduce
[DG08]. À cette fin, les notions principales de ce paradigme sont introduites puis
l’architecture de la mise en oeuvre de notre technique sur MapReduce est été illustrée
et discutée.

1.3 l’organisation du manuscrit

Ce manuscrit est composé de huit chapitres dont un chapitre de résumé en français,
et un autre chapitre introduction.

Les six autres chapitres sont organisés comme suit:

• Chapitre 3 Le chapitre préliminaire est consacré à la présentation des nota-
tions et des langages (XPath et XQuery [Gro03, W3S10]) de requêtes et de
mises à jour (XQuery update Facility [Gro11a]) utilisés tout au long de ce
manuscrit.

• Chapitre 4 Dans ce chapitre, nous examinons les principales caractéristiques
des deux approches principales proposées pour la projection XML. La première
approche [MS03] concerne les requêtes, et est basé sur l’extraction des chemins
de la requête et l’utilisation de ces chemins pour projeter le document en
entrée. La deuxième approche pour les requêtes a été proposé dans [BCCN06],
et exige des informations sur le schéma des données. Nous ne parlerons pas par
rapport a cette approche car cette thèse n’utilise pas le schéma des données, et,
pour le fragment XQuery que nous considérons, les performances de [BCCN06]
sont très proches à celle proposée dans [MS03] en termes de la réduction de la
taille des documents.

La deuxième technique que nous allons discuter concernant des mises à jour
[BBC+11, BCMS09a, BCMS09b],qui et est la seule technique de projection
existant pour les mises à jour. Elle est basé sur les informations de schéma
et sur l’inférence des types, plus une opération Merge qui, comme nous le
verrons, est nécessaire pour recombiner la mise à jour de la projection avec le
document original.

Dans ce chapitre, en plus d’illustrer comment la projection peut être utilisée
pour traiter une large classe de requêtes et mises à jour XML pour des docu-
ments de grande taille, nous allons montrer que ces techniques, même si elles
sont assez efficaces, ne passent pas à l’échelle. Ceci a motivé notre intérêt pour
des technique de partitionnement.
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Le chapitre est organisé comme suit. La section 4.1 introduit la projection
standard XML qui est proposée par [MS03] avec quelques définitions princi-
pales, l’algorithme analyse du chemin qui extrait l’ensemble des chemins de la
projection à partir d’une requête XQuery arbitraire. Ensuite, nous expliquons
l’algorithme de chargement dans la mémoire utilisé pour créer la projection.
La section 4.1.1 illustre les limitations de la technique de projection standard
XML en testant plusieurs requêtes sur des documents XMark et de base de
données DBLP. Dans la section 4.2, nous introduisons, à travers des exemples,
le concept de la technique de projection basee sur le typage et proposé par
[BBC+11]. Et puis, dans la section 4.2.1, nous illustrons les limitations de
cette technique dans la utilisant des mises à jour. Enfin, nous concluons ce
chapitre dans la section 4.3.

• Chapitre 5 Dans ce chapitre, nous avons présenté une nouvelle technique de
la projection de partitionnement de document d’entrée XML. Cette technique
se généralise des approches existantes et basées sur le chemin, et s’applique à
une large classe de requêtes.

L’approche proposée analyse une requête d’entrée et, si la requête est itérative,
l’approche va extraire tous les chemins pertinents et les utilise pour exécuter la
projection et le partitionnement sur le document d’entrée, et puis obtenir des
petites parties. Notre étude expérimentale assure que l’exécution de la requête
d’entrée sur chaque partie indépendamment et en combinant les résultats par-
tiels obtenus par ces parties, n’importe quel moteur mémoire-centrale existant
peut traiter une requête itérative sur des très grand documents d’entrée.

Ce chapitre contient trois parties principales. La première partie (les sec-
tions 5.1, 5.2, 5.3) présente notre technique d’analyse statique utilisée pour
caractériser des requêtes itératives, pour lesquels les données XML peuvent
être partitionnés pour l’évaluation de la requête. La deuxième partie (Section
5.5) présente notre algorithme de partitionnement. D’abord, une spécification
précise est formalisée en s’appuyant sur une représentation basée sur DOM
formalisation pour des arbres d’entrée. Et puis une version basée sur SAX
est fournie. Comme indiqué dans l’introduction, pour accentuer les avantages
de notre stratégie, la projection est utilisée pendant le partitionnement. La
troisième partie (les sections 5.6, 5.7) explique la mise en oeuvre des algo-
rithmes basés sur SAX parseur, et présente les résultats des tests obtenus à
partir d’expériences que nous avons menées en utilisant deux moteurs princi-
paux pour XQuery. Enfin, nous concluons ce chapitre dans la section 5.8.

• Chapitre 6 Dans ce chapitre, nous présentons une technique de partition-
nement pour les mises à jour XUF (XQuery Update Facility). Comme le cas
des requêtes, le partitionnement permettant le traitement des grands docu-
ments, et qui ne pouvait pas être mise à jour en utilisant des moteurs mémoire-
centrale existants comme [qiz, exi, bas], même en utilisant la technique de la
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projection standard basée sur la technique proposée dans [BBC+11].

Dans ce chapitre, nous caractérisons une classe des mises à jour, appelées mises
à jour itératives, pour lesquelles une évaluation basée sur le partitionnement
est possible : tout d’abord, les documents sont partitionnés en plusieurs parties
puis les parties sont mises à jour indépendamment, et enfin les parties mises
à jour sont fusionnées en utilisant une opération de fusion afin d’obtenir le
résultat final cad le document en entrée mis à jour.

Pour caractériser des mises à jour itératives, nous utilisons une analyse basée
sur des chemins. Les chemins extraits seront également utilisés pour le par-
titionnement. A la différence des requêtes, le partitionnement ne s’appuiera
pas sur la projection, les chemins sont utilisés pour s’assurer uniquement que
chaque partie contient tout ce qui est nécessaire pour chaque opération de mise
à jour. La projection n’est pas utilisée, afin d’éviter les opérations de fusion
complexes sur des parties mises à jour, opération nécessaires pour récupérer
les sous-arbres élagués lors de la construction du document global actualisé.
L’efficacité de l’approche proposée est démontrée par des expériences appro-
fondies comparant notre approche basée sur le partitionnement avec la projec-
tion proposé dans [BBC+11, MS03]. Il est important de dire que cette dernière
approche basée sur le type des données est la seule approche de projection pour
traiter les mises à jour XQuery.

Le chapitre est structuré comme suit. Dans la section 6.2, nous introduisons
quelques notations préliminaires sur le langage des mises à jour utilisées dans
cette approche, et puis nous présentons notre fonction d’extraction de chemins.
Dans ls section 6.3, nous décrivons formellement les mises à jour itératives. En-
suite, dans la section 6.4, nous présentons notre technique de partitionnement
pour les mises à jour itératives, et introduisons les définitions formelles et
les spécifications basés sur DOM du partitionnement et de la fusion. Dans
la section 6.5, nous fournissons les algorithmes (basés sur le streaming) de
partitionnement et de fusion utilisés pour exécuter notre scénario de parti-
tionnement pour les mises à jour. Le chapitre se termine avec les résultats des
tests dans la section 6.6 et quelques conclusions présentées dans la section 6.7.

• Chapitre 7 Avec la scalabilité, notre technique de partitionnement présentée
dans les chapitres précédents possède un autre avantage celui de pouvoir exé-
cuter les requêtes et les mises à jour en parallèle. Ceci est possible puisque
une large classe des requêtes et des mises à jour sont itératives et permettent
l’évaluation de celles ci sur chaque partie indépendamment de l’autre.

Dans ce chapitre, nous présentons les idées essentielles d’une mise en oeuvre
parallèle possible de notre technique de partitionnement à l’aide du mod-
èle de programmation MapReduce [DG08]. Nous tenons à souligner que
l’architecture que nous proposons est le résultat d’une collaboration avec Carlo
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Sartiani (professeur adjoint à l’Università Basilicate della, Italie) et Maurizio
Nole (étudiant du Master à l’Università Basilicate della, Italie).

Nous présentons d’abord les bases du paradigme MapReduce dans la section
7.1, puis nous montrons comment notre technique peut être mise en oeuvre
dans une plate-forme de MapReduce dans la section 7.2. Enfin, nous tirons
notre conclusion dans la section 7.3.

• Chapitre 8 Conclusion et perspectives: Dans ce chapitre, nous avons présenté
une nouvelle technique de partitionnement pour de document XML. Cette
technique généralise les approches existantes et basées sur le chemin, et
s’applique à une large classe de requêtes et mises à jour.

Une des particularités de notre approche est qu’elle n’utilise pas le schéma. Il
utilise les informations de chemin provenant de la requête / mise à jour afin
d’effectuer l’analyse statique nécessaire pour reconnaître la nature itérative de
la requête / mise à jour et utilise les informations de chemin pour effectuer
le partitionnement. Une autre particularité de cette approche est qu’elle peut
s’appuyer sur n’importe quel système mémoire-centrale, car aucune interven-
tion dans le mécanisme interne du système n’est nécessaire. Enfin, nous avons
vu que notre approche peut être mise en oeuvre dans une plate-forme par-
allèle comme MapReduce de manière aisée permettant ainsi à l’interrogation
et la mise à jour en parallèle. Pour les ensembles de documents de taille im-
portante, et pour de grands cluster de machines, cette utilisation permet de
réduire considérablement le temps comparé à une exécution sequentielle des
requêtes/mises à jour.

Il existe plusieurs perspectives. Tout d’abord, nous prévoyons d’étendre cette
approche aux autres fragments de XQuery en particulier à des requêtes con-
tenant des opérateurs d’agrégation (telles que le group-by). En plus, nous
prévoyons d’étendre cette technique dans le cas où les requêtes effectuent des
jointures. Dans ce cas, des tests effectués ont révélé que le temps d’exécution
peut être important en utilisant des systèmes mémoire-centrale. Pour perme-
ttre le partitionnement de la requête / mise à jour on doit redéfinir l’analyse
statique pour tenir compte des conditions de jointure et probablement recourir
à la réécriture des requêtes /mises à jour. À notre avis, dans ce scénario une
approche MapReduce pourrait aider à réduire le temps d’exécution.

Comme deuxième perspective, nous aimerions explorer les possibilités de ma-
nipulation des workloads constitués de requêtes et de mises à jour. Une fois
l’analyse de chemin effectuée pour caractériser la nature itérative du workload,
le partitionnement peut être effectué pour l’ensemble des requêtes et mises à
jour composant ce workload.

Enfin, nous prévoyons d’utiliser la plate-forme MapReduce pour la mise en
oeuvre de notre approche, en utilisant le schéma illustré dans le chapitre 7.
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En particulier, nous allons nous concentrer sur notre implémentation, pour
adapter notre code dans la plate-forme MapReduce. Dans ce contexte, nous
allons également nous concentrer sur les tests expérimentaux afin de définir
pour quel type de requête / mise à jour l’exécution de MapReduce est plus
rapide plus que l’exécution traditionnelle centralisée.
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T
he last decade has seen the rapid diffusion of the eXtensible Markup Language in
many application fields. XML is a successor of SGML, and was rapidly adopted

as a natural format for representing semi-structured data, whose structure can not
be easily modeled according to standard relational and object-oriented data models.
The great flexibility which is behind the XML data model made it a universal data
representation format, and allowed the use of XML as a convenient medium for
exchanging data between different Web applications.

To support the diffusion of XML, several tools for transforming, querying, manip-
ulating, and modeling XML data have been defined. In particular, the World Wide

Web Consortium (W3C) introduced XQuery [W3S10] as the standard query lan-
guage for XML data, and, more recently, XQuery Update Facility [Gro11a, Gro11b]
as an extension of XQuery to update XML documents. Since their introduction,
both languages have been intensively studied by the research community, in partic-
ular in directions aiming at optimizing query and update execution.

One of the main use of XQuery, is to query and update XML data that are sim-
ply stored in files or generated by a stream. Generally, in these contexts all those
complex functionalities characterizing traditional DBMSs are not needed. The main
need in these context is the availability of a query/update engine which is easy to
install and to integrate in a programming environment. With such motivation many
light-weight XQuery processors have been devised in recent years, like Galax [gal],
Saxon [sax], Qizx [qiz], and eXist [exi]. These systems usually provide full compli-
ance with respect to the W3C specifications, and process data in main memory fash-
ion: data are first entirely loaded in the main-memory and then processed (queried
or updated). For this reason, these systems are usually classified as main-memory

systems.

By quoting Cong and al. [GCL12], main-memory systems are the best choice in

. . . domains like Life sciences (e.g., Biology), Astronomy, and even for
the management of typical XML documents corresponding to Microsoft
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Office files (since powerpoint presentations, Word files, and Excel spread-
sheets are all currently stored as XML). In all these domains, the man-
agement of XML documents is file-system centric and no traditional
XML data management systems is yet in place (since non-expert users
often find these latter systems to be hard to use and maintain).

Especially in domains like Life science and Astronomy, XML documents are
likely to be huge (several GBs), which can jeopardize the possibility of using a
main-memory engine for query processing. In other words, main-memory systems,
while very flexible and easy to set-up and use, cannot scale up with document
size. A partial solution to this problem is offered by projection-based techniques
[BCCN06, KSS08, MS03] that allow one to prune out, at loading time, parts of the
data that are not necessary for the query or the workload being processed. For some
of the existing projection techniques, schema information in the form of DTDs or
XML Schema definition is needed [BCCN06, KSS08].

Projection-based approaches provide only a partial solution to the scalability
issues of main-memory systems, as the projected input documents may still exceed
the main-memory capacity. This may be the case when (i) the input file is huge, (ii)
the query selectivity is low and it needs a large part of the input, or (iii) a workload
(i.e., a set of queries) has to be evaluated on the document. In the last case, a single
global projection meeting the query needs of the whole workload is likely to exceed
the main-memory size, while running a query at a time, and projecting (and loading)
data for each run would result in a quite inefficient and still failure-prone process.
This due to that the global projection normally will be huge, and in the worst case
it will be contained the whole input document for satisfy all queries composed the
workload. Therefore, the standard projection still failure in case of processing a
query workload.

It is worth observing that scalability issues also depend on the particular kind
of engine one wants to use, and on internal memory settings. In fact, most of
main-memory system are implemented in Java, and their scalability depends on the
amount of main-memory given to the Java Virtual Machine. In any case, even for
large amounts, scalability problems of standard projection still persist, as the size
of document projection increases as the size of the input document increase.

The main objective of this Thesis is to offer a technique that ensures scalability
for both queries and updates independently of:

• the kind of main-memory system.

• the amount of available main-memory.

• the presence of schema information.

To this end, in this Thesis, we propose an optimization technique based on
data partitioning. This technique relies on the observation that, in many practical
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cases, XQuery queries and updates first select a sequence of subtrees by means of a
subquery (e.g, an XPath expression), and then iterate operations on this sequence
of subtrees. For instance, concerning queries, 13 out of 20 queries of the XMark
benchmark meet this property, while concerning updates, 16 out of 20 updates in
the benchmark adopted in [BBC+11, Sah11] are iterative.

In the case of queries, when this property is satisfied by a query Q , the input
document can be split into a collection of parts {D1, . . . ,Dκ}, so that the evaluation
Q(D) of the query Q over the document D turns out to be equal to the concatenation
of the evaluations Q(Di) of the query Q over the document parts Di.

For updates, the same strategy can be adopted, with the difference that partial
updates U (Di) have to be recombined so that the updated document U (D) can be
obtained. While in the case of queries a simple concatenation of partial result is
sufficient. In particular we use the command cat to combine these partial results
in order to produce the final one. For updates, and since we use additional tags
during the creation of the partitions in order to hold the well-formedness of the
created parts, auxiliary information about these additional tags is needed in order
to correctly re-combine updated parts and eliminate these tags to obtain the final
update result U (D). This auxiliary information is opportunely built up during
partitioning.

Besides scalability, our partitioning technique can be easily adapted to be
adopted in a MapReduce [DG08] framework, enabling parallel querying or updating
of parts composing a partition. This is due to the fact that iterative queries and
updates enjoy the property that evaluation on each part does not need information
coming from evaluation on another part. The possibility of an easy transposition
in a MapReduce framework plays an important role nowadays, given the currently
rapid and large diffusion of cloud-based platform based on this paradigm.

2.1 contributions

This Thesis proposes a novel technique for partitioning-based evaluation of XQuery
queries and updates.

The first contribution of this Thesis focuses on queries. In this context, main
contributions are the following ones, and are also reported in [Nic12]:

• We first present a formal characterization of the class of queries that enjoy the
above described splitting property: we dub these queries as iterative queries.
By relying on this formal characterization, we develop a static analysis tech-
nique that first extracts paths and information about bound variables from the
query, and then analyses them in order to statically detect how the document
is navigated by the query. Relying on path information allows us to avoid the
use of schema information, which is not always available.
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• We then present a partitioning algorithm that exploits the paths extracted
during the static analysis to identify the correct partitioning for the input
document. We first present DOM-based specification of the algorithm, and
then a SAX based on enabling the possibility of performing partitioning in a
streaming fashion, with a very limited memory footprint. To further improve
the benefits of our approach, we combine partitioning with standard projec-
tion, so that during the creation of document parts, sub-trees not needed by
the query are pruned out. The use of projection is not crucial to ensure scal-
ability, which is our main purpose, since our approach is so that the maximal
size of each part can be tuned by the user. Projection helps in reducing the
overhead of partitioning, since it speeds up query execution on the partition.

• Then, we present extensive experimental evaluation that corroborates that,
when using our partitioning approach, main-memory engines can process doc-
uments of arbitrary size, at the price of a modest overhead with respect to
schema-less projection techniques; our experiments also show that partition-
ing allows for a scalable management of workloads, as the input document is
partitioned once for all.

The second contribution of this Thesis concerns updates. In this context, main
contributions are the following ones:

• We first analyze cases in which update evaluation can be correctly done on
partitions, and then provide a static analysis to characterize such updates,
which we call iterative updates. This characterization requires restrictions on
the querying mechanisms that can be used in source and target expressions
of updates. We will show that these restrictions are mild, in the sense that a
wide class of updates can be dealt with our approach.

• We then present a partitioning technique which distinguishes from that of
queries for the following two aspects.

First, projection is not used, in order to have a simple and efficient re-
combination process of partial updates. This is also justified by the fact that
partitioning is already sufficient to generate small enough parts. The use of
projection would require a sophisticate re-combination process, since subtrees
pruned out during partitioning should be recognized and reported in the final
result of the process. This kind of operation has been done [BBC+11], where
the use of schema information was crucial to ensure a clear formalization and
efficiency.

Second, paths used during partitioning are inferred by keeping into account
the particular nature of updates. These paths are used in order to ensure that
subtrees eventually selected by target paths are never split during partitioning.
Atomicity of these subtrees is necessary to ensure that the update evaluation
can be correctly distributed over all the input parts.
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• Then, we present extensive test results showing the effectiveness of out tech-
nique. Differently from the case of queries, the overhead due to partitioning
is not negligible. However test results show that our main goal, scalability is
largely attained.

Concerning test results, we used two main-memory engines, Saxon [sax] and Qizx
[qiz]. Our choice is motivated as follows. Saxon is a very popular system, which
distinguishes for its exhaustiveness in covering most W3C standards for XML pro-
cessing (e.g., XML Schema, XSLT, XQuery queries and updates). Differently, Qizx
is specialized in XQuery query and update, and supports sophisticated techniques
to optimize both execution time and memory consumption.

As a third contribution, this Thesis shows that the proposed framework can be
easily adapted in order to be run in a MapReduce framework [DG08]. To this end,
main notions behind this paradigm are introduced first, and then the architecture
of the MapReduce implementation of our framework is illustrated and discussed.

2.2 structure of the thesis

The Thesis is organized as follows:

• Chapter 2 Introduces XML and XQuery Update Facility and provides some
basic notions and definitions.

• Chapter 3 Presents standard projection techniques and shows limitations of
these ones in terms of scalability.

• Chapter 4 Presents our partitioning technique for XQuery queries, together
with experimental results.

• Chapter 5 Presents our partitioning technique for XQuery updates, together
with experimental results.

• Chapter 6 Illustrates how our partitioning techniques can ensure parallel
query and update evaluation by means of the MapReduce paradigm.

• Chapter 7 Discusses related works, conclusive remarks and directions for
future works.
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T
his chapter has two essential sections. In the first one, we present some basic
notions about XML data and its characteristics. In the second section, we

first introduce the XML query languages: XPath and XQuery, and then introduce
the update extensions provided by XQuery Update Facility language. All of these
languages are W3C standards [Gro03, Gro11a, W3S10].

3.1 XML

XML (eXtensible Markup Language) is among the most popular data formats for
representing data generated and exchanged by Web application. In particular, XML
is widely adopted to describe different kinds of data such as HTML (HyperText
Markup Language) data, relational and object database, multimedia files (audio,
video), and so on.

XML actually is a simplified form of SGML (Standard Generalized Markup
Language), and it is a W3C standard 1998 [BPMM08]. The syntax of XML data
is very similar to that of HTML. However, there are some deep differences between
both of them. The most important one is that HTML has predefined element tags
and attributes whose behavior is well specified, while XML does not. For instance,
in XML the user can adopt a <name> tag, while in HTML the user is obliged to use
predefined tags such as <body>, <head>, <title>, <p>, etc.

The possibility of using non-predefined tags makes XML data self-describing.
This, together with the possibility of free element nesting and mixed contents, make
XML an high flexible language for data representation.
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3.1.1 Textual Representation

According to the W3C, the basic component of an XML document is the element,
which consists of a piece of text enclosed by an open-tag and its corresponding
close-tag. The content of each XML element can be simple text value, a sequence of
elements, or a mixed sequence which includes the two previous forms (text values and
elements). Figure 3.1 represents a simple fragment of an XML document. It shows
that elements are denoted by markup tags. For example, the open-tag <name> and
the close-tag </name> represent an XML element, and the text value Jean Scott

included between both of them refers to the content of this XML element. Elements
with empty content are called empty elements, and have an abbreviated notation, as
indicated by the empty element <email/>. The element <note> contains a complex
sequence which includes elements such as <telephone> and text values. Elements
can be annotated with attributes that contain meta data about the element and its
contents. For example, the element <person> has a single attribute named gender

with a simple value M.

<person gender = "M">

<name> Jean Scott </name>

<age> 35 </age>

<email/>

<note> The personal phone of Jean is :

<telephone> 0033110203040 </telephone>

</note>

</person>

Figure 3.1: Textual representation of an XML fragment.

3.1.2 Well-Formedness of XML

According to the W3C, an XML document is considered as well-formed if the fol-
lowing constraints are met. We summarize below the main ones.

• An XML document must be contain at least one element.

• Only one element must be contain the whole XML document; this element is
called the root element.

• All element tags must be nested properly, and there is no overlap between
them.

• Tags in XML are case sensitive. This means that <Name>, <NAME> and <name>

are not the same.

• Attribute values must always be quoted.

Here, we have a list of non well-formed examples of XML elements:
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• <name>Jean Scott</lastName>

The open-tag and close-tag do not match.

• <person><age></person></age>

The element tags are not nested properly.

• <country> </couNtry>

Due to case sensitivity, open-tag and close-tag do not match.

• <person gender = M>

The attribute value misses quotes.

As already said, in this Thesis we focus on a schema-less approach, in the sense
that we do not rely on schema information. However we briefly introduce DTD
(Document Type Definition) which is a widely used schema language. This intro-
duction will help in understanding related works on updates [BBC+11] that make
use of schemas in the form of DTD.

In a nutshell, A DTD schema consists of a set of declarations used for describing
the structure of elements and attributes. The content of each element is described by
means of regular expressions. elements, attributes and another constructors are used
to describe the formal structure of the content for a well-formed XML document.
To this end, regular expressions are used.

DTD declarations have the following form:

<!ELEMENT element-name (element-content)>

where element-name represents the name of element tag in an XML document (such
as person, name, email, etc.) while element-content is either an empty content or
a regular expression over tags and text-symbols representing the structure form of
the element-content.

Each DTD starts with the declaration of the root element, and then it continues
with specification of other elements. A DTD for our (addressBook.xml) document
is described in Figure 3.2. In particular, the declaration says that its content has to
be a sequence of zero or more of elements tagged as person. The DTD also specifies
that content of each element person consists of two elements name and age, followed
by two optional telephone and email elements, and finally an essential note ele-
ment. The value #PCDATA is used to declare the text-content of each element node
in the document (addressBook.xml). This text-content consists of a sequence of
characters (string values) without interleaved XML element nodes. The declaration
for the person attribute says that two possible values are admitted, and that “M”
is the default one.

In many contexts, it is convenient to have a tree representation of an XML
documents. In many examples that we use in next chapters, we rely on tree rep-
resentation. Any XML document is actually tree shaped. The root corresponds to
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<!DOCTYPE addressbook[

<!ELEMENT addressbook (person *)>

<!ELEMENT person (name, age, telephone?, email?, note)>

<!ATTLIST person gender (M|F) "M">

<!ELEMENT name (#PCDATA | (firstname, lastname))>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT telephone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT note (#PCDATA | email | telephone)*>

]>

Figure 3.2: DTD of addressBook.xml XML document.

the root element, children of this elements correspond to sub-elements and textual
nodes, and so on. A tree representation of our addressBook element is given in
Figure 3.4.

In the next chapters, we will mainly focus on documents only containing ele-
ments. This is to simplify the formal treatment; our approaches easily extend to
attributes. As a consequence, figures will be simpler too, as only element nodes will
occur.

Figure 3.4 uses a graphical tree representation to describe the addressBook docu-
ment. In this Thesis, we will often rely on graphical tree representation to illustrate
our concepts.

3.2 Querying XML

This section introduces two XML query Languages: XPath and XQuery, both
W3C standards. An excellent overview about the XQuery language is presented in
[KCD+03], and another overview about XPath language is introduced by [Gro03].
A formal introduction to these languages is out of the scope of this Thesis. In this
section, we only focus on the basic structures of XPath expressions and XQuery
languages, and introduce them mainly by means of examples. Subsequent chapters
will then provide formal characterizations of the fragments of these languages we
will deal with.

3.2.1 XPath Language

XML Path Language (XPath) is one of the most popular languages used in XML
technologies. It provides support for navigating through XML trees in order to
select nodes satisfying some structural and value-based properties.

The main constructor in XPath language is the expression. Essentially, an XPath
expression consists of a sequence of steps separated by the symbol /. Each step
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<addressbook>

<person gender = "M">

<name> Jean Scott </name>

<age>35</age>

<email/>

<note>The personal phone of Jean is :

<telephone>+33110203040</telephone>

</note>

</person>

<person>

<name>

<firstname>Steven</firstname>

<lastname>Wesley</lastname>

</name>

<age>38</age>

<telephone>+33155209940</telephone>

<email>steven.wesley@ITcompany.com</email>

<note>

Work administrator, his mobile phone:

<telephone>+33811773700</telephone>

his email:<email>steven.boss@speedymail.com</email>

</note>

</person>

</addressbook>

Figure 3.3: A well-formed XML document.

consists of three parts; two mandatory parts are axis and node test, while an optional
part is predicate.

Informally, the three components of step are defined as follows:

1. an axis defines the relationship between the context node and the nodes se-
lected by the step.

2. a node test specifies the node type and the expanded-name of the selected
nodes.

3. zero or more predicates, which use arbitrary expressions to further refine the
set of selected nodes.

The evaluation of each step returns a sequence of nodes. The current node over
which a step is evaluated is called context node, and the value returned by an XPath
expression is the value returned by the last step of this expression.

For example, when the following step child::person is evaluated, the axis
child selects all children nodes of the context node. Then, among these nodes,
the condition person selects only children nodes corresponding to elements named
as person. It is very important to note that nodes are resulted according to the
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Figure 3.4: Tree representation of addressBook XML document.

document order. Also, it is important to note that XPath assumes that navigation
through a document always starts from what is called the document root, which can
be seen as a virtual node having as only child the document root element. The
document root is selected by the simple expression /, so for our previous address-
Book document /child::addressbook selects the root element addressbook, while
/child::addressbook/child::person select the sequence of all person elements.

The following brief description presents some of available axes in XPath (Figure
3.5 illustrates these navigating axes):

• self axis selects the context node itself.

• child axis selects all children of the context node.

• descendant axis selects all descendants (children, grandchildren, etc.) of the
context node.

• descendant-or-self axis selects all descendants of the context node and the
context node itself.

• parent axis selects the parent of the context node, which is either an element
node or the root node (or an empty sequence if the context node is the root
node).

• ancestor axis selects all ancestors (parent, grandparent, etc.) of the context
node, from its parent to the root node.

• ancestor-or-self axis selects all ancestors of the context node, from its
parent to the root, and the context node itself.

As said before, the second essential part used to compose an XPath step is the
node test, which has one of the following forms:
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• node(): selects nodes of any type.

• text(): selects text nodes.

• tag: selects only nodes that have the element-name tag. For example, the
element-name age in the step child::age, which selects only nodes corre-
sponding to elements named as age.

Figure 3.5: Navigational XPath axes.

In the following we give some examples of XPath expressions. The next query
selects all email elements that are children of person elements. This is performed by
using a specific path to be followed in order to select the requested email elements:

/child::addressbook/child::person/child::email

which can have the following abbreviated version (the child:: part is omitted)

/addressbook/person/email

Another abbreviation that is admitted is that allowing the use of //a instead of
/descendant-or-self::node()/child::a. So the following query selects all email
elements in the document addressBook.xml.

//email

XPath uses predicates in its query syntax to limit the extracted data from an
input XML document. The following predicate is used to select all person elements
that have an attribute gender with a value "M":

doc("addressbook.xml")//person[gender = "M"]
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3.2.2 XQuery Language

The XQuery language is a flexible and powerful query language for XML data.
XQuery language is built on XPath expressions, and can be used in several tasks,
such as:

• Extract information from an XML database to use in a Web service.

• Generate summary reports about data stored in an XML database.

• Search textual documents on the Web for relevant information.

• Transform XML data to XHTML to be published on the Web.

In all these contexts, XPath is not sufficient, as mechanisms to select tuples of
nodes, and build new ones are needed. The most used fragment of XQuery consists of
FLWR expressions. The name FLWR comes from the initial letters of the following
clauses:

• for-clauses first select a sequence of nodes, and then perform some query
operations on each node;

• let-clauses bind a sequence of nodes to a specific variable, which can be used
into another expression;

• where-clauses filter nodes depending on a boolean expression;

• returtn-clauses build values resulted by a query.

Most of these clauses are optional, except the return clause .This clause is
always attached with at least one for or let clause. In general, a FLWR expression
may contain many for/let clauses before the return clause.

The simplest FLWR expression containing a for clause has the following form:

for $x in Q1 return Q2

First of all, this query evaluates Q1, and then for each node in the resulting
sequence, it binds this node to the variable $x and evaluates Q2 accordingly. Note
that the evaluation of Q2 is performed according to the sequence order of Q1 result.
The final result is obtained by concatenating all Q2 results.

The following examples illustrate a query returns the sequence age element of
all person elements in the document addressBook.xml presented in Figure 3.3:

for $x in doc("addressbook.xml")//person

return $x/age

The following example uses a where clause to select exactly the same result of
the previously seen query doc("addressbook.xml")//person[gender = "M"]
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for $x in doc("addressbook.xml")//person

where $x/@gender = "M"

return $x

XQuery also provides if-then-else expressions. For instance, the above query
is equivalent to the following one using this kind of expressions:

for $x in doc("addressbook.xml")//person

return

if $x/@gender = "M" then $x else ()

where () denotes the empty sequence.

The following query produces two kinds of elements depending of the gender of
persons:

for $x in doc("addressbook.xml")//person

return

if $x/@gender = "M" then <m/> else <f/>

An example illustrating how multiple for/let clauses can be combined is the
following one:

let $x := doc("addressbook.xml") return

for $y in $x//person

let $w := $y/age

where $w > 35

return $y/note

In the above example, each for/let clause is evaluated in a scope determined
by previous clauses. The query above will return the following data:

<note>

Work administrator, his mobile phone:

<telephone>+33811773700</telephone>

and private email:<email>steven.boss@speedymail.com</email>

</note>

3.2.3 XQuery Update Facility

The XQuery language is provided with a powerful extension, called XQuery Update

Facility (XUF), for updating XML documents. The XUF language became a W3C
candidate recommendation in 2009, and was finalized as recommendation in 2011
[Gro11a]. Basic updating operations provided by XUF are the following ones:

1. delete one or several nodes.
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DeleteExpre ::= "delete" ("node" | "nodes") TargetExpr

RenameExpre ::= "rename" "node" TargetExpr "as" string-value

ReplaceExpr ::= "replace" ("value of node"|"node") TargetExpr

"with" SourceExpr

InsertExpre ::= "insert" ("node" | "nodes")

SourceExpr InsertExpreTargetChoise TargetExpr

InsertExprTargetChoice ::= "as" ("first"|"last") "into" | "after" | "before"

Figure 3.6: The W3C syntax of simple XQuery updates.

2. rename a name of an element node.

3. replace an existing node with a new node or several new nodes.

4. insert a node or several nodes into an existing node.

The syntax of the XUF language, according to the W3C recommendation, is
reported in Figure 3.6. In this syntax, the TargetExpr computes the target location
where the update operation is taking place, while the SourceExpr returns a new
fragment which will be inserted or replaced in the target location.

In Figure 3.7, we illustrate the main update mechanism by means of some ex-
amples. The input document D is reported in Figure 3.7-(a).
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Figure 3.7: Simple XQuery updates.

The result of the first simple update U1(D) on the input document D reported
in Figure 3.7-(a) is illustrated in Figure 3.7-(b). This update inserts an empty new
node <new/> after the last /a/b/c in D , by using the following expression:
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U1 = insert node <new/> after doc(D .xml)/child :: a/child :: b/child :: c[last()]

Figure 3.7-(c) illustrates the update result U2(D) of the document D produced
by a simple update U2. This update replaces the node (and its subtree) selected by
/a/b with another subtree selected by /a/d.

U2 = replace node doc(D .xml)/child :: a/child :: b

with doc(D .xml)/child :: a/child :: d

Figure 3.7-(d) illustrates the updated result U3(D) after evaluating the simple
update U3 on D , which replaces the text-value of the last c-node located after the
node selected by /a/b with a new value "tata", as follows:

U3 = replace value of node doc(D .xml)/child :: a/child :: b/child :: c[last()]

with ”tata”

Figure 3.7-(e) illustrates the updated result U4(D) produced by evaluating the
simple update U4 on the document D . This update renames the label-name of the
last f-child node as "new", as follows:

U4 = rename node doc(D .xml)/child :: a/child :: f [last()] as ”new”

The last update result U5(D) illustrated in Figure 3.7-(f) which deletes all sub-
trees rooted at g-node of f-nodes existed in the document D , as follows:

U5 = delete nodes doc(D .xml)/child :: a/child :: f/child :: g

A second form of XQuery updates relies on conditional or FLWR expressions.
For example, consider the following conditional update:

U6 = let $x := doc(D .xml)/child :: a/child :: d return

if $x/child :: g then

delete node $x

else

replace value of node $x with ”node”

This update deletes each child g-node of d-node if it exists, otherwise it replaces
the label-name of d-node with "node". The result of evaluating this update on the
document D is illustrated in Figure 3.8-(b).

Another example is used to apply a simple update rename during an iteration:

U7 = let $i := doc(D .xml) return

for $x in $i/child :: a/child :: f

where $x/child :: g

return rename node $x/child :: g as ”node”

This update navigates the whole document D and checks each /a/f subtree
whether it contains a child g-node, if it exists then the update will rename the
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Figure 3.8: Complex XQuery updates.

label-name of g-node with a new label node, otherwise no update will be performed
in D . The final update result U7(D) is illustrated in Figure 3.8-(c).

It is worth noticing that according the W3C semantics, some constraints must
be preserved during the update execution. For previous examples of simple/com-
plex update expressions, these constraints are held and described in the following
remarks.

Remark 1 In order to execute a simple insertion, the TargetExpr must be a single
node, otherwise if it is an empty sequence or contains a set of nodes, a run-time
error will rise and the insert update will not be performed.

Remark 2 In order to perform a simple deletion, the TargetExpr must be a single
expression to avoid getting a dynamic error during the execution.

Remark 3 In order to perform a simple replacement, the SourceExpr must be a
content sequence which is either an empty sequence, a set of element nodes or string
values. Otherwise a runtime error is risen.

Actually these constraints are orthogonal to our work, and we assume that our
update language satisfies these constraints.

3.3 conclusion

This chapter has provided a simple introduction to XML, the query language
XQuery and the update language XQU. The presented introduction is far from
being exhaustive. However, we have focused on a significant fragment covering
mechanisms used in practice. In this Thesis we focus on such fragment.
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A
s we said in the introduction, XML data projection is one of the most important
techniques used for reducing the memory consumption of main-memory XML

(query/update) engines. The main idea behind this technique is quite simple and
productive as well: given a query Q on an XML document t , instead of evaluating Q

on t , the query Q is evaluated on a smaller document t ′ obtained from t by pruning
out, at loading-time, all subtrees of t that are not necessary to evaluate Q . The
projection t ′ is often much smaller than the original t due to the high selectivity of
queries. This technique ensures a big improvement in terms of the execution memory
consumption, as it allows the main-memory engine to query large documents, and
also ensures gains in terms of querying time.

In this chapter, we discuss main features of two main approaches proposed for
XML projection. The first one [MS03] concerns queries, and is based on query
path extraction and on the use of extracted paths to project the input document.
Another approach for queries has been proposed in [BCCN06], and requires schema
information about data. We will not discuss it as this Thesis is in a schema-less
setting, and, for the XQuery fragment we consider, performances of [BCCN06] are
closed to that of [MS03] in terms of size reduction.

The second technique we will discuss concerns updates [BBC+11, BCMS09a,
BCMS09b], and is the only existing projection technique for updates. It is based on
schema information and on type inference, plus a novel Merge operation that, as we
will see, is needed to recombine the updated projection with the original document.

In this chapter, besides illustrating how projection can be used to process a wide
class of XML queries and updates on large XML documents, we will show that these
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techniques, even if quite effective, do not scale up with respect to document size.
This has motivated our investigation towards partitioning techniques.

The chapter is organized as follows. Section 4.1 introduces the XML standard
projection proposed by [MS03] and some principal definitions, the path analysis al-
gorithm which extracts the set of projection paths from an arbitrary XQuery query.
Then explain the loading algorithm used to create the projection. Section 4.1.1 illus-
trates the limitations of the XML standard projection technique by testing several
queries on XMark documents and DBLP database. In Section 4.2, we introduce,
through examples, the concept of the type-based projection technique proposed by
[BBC+11]. Then in Section 4.2.1, we illustrate the limitations of this technique with
updates. Finally, we draw our conclusion in Section 4.3.

4.1 path-based projection for queries

The path-based, and schema-less, approach for XML projection has been proposed
by Marian and Siméon in [MS03]. The main contribution of this work is a static
analysis algorithm used to extract paths from an XQuery query. Extracted paths
specify which parts of an input XML document are sufficient to execute the XQuery
query, and are used by a streaming algorithm to prune out parts of the document
that are not needed by the query.

To illustrate, consider the following query on XMark documents [SWK+02a]:

Q1 = for $b in /site/people/person[@id="person0"] return $b/address

By evaluating this query on the input XML document D illustrated in Figure 4.1,
we have that this query does not need to process all parts in the original document.
Actually, it only needs to process parts corresponding to the following projection
paths (we will see later the meaning of #):

P1 = /site/people/person/@id
P2 = /site/people/person/address#

The resulting document obtained by using these paths for projection is illustrated
in Figure 4.1.

In [MS03], a simple fragment of XPath [Dra02] is used to define the syntax of
the projection paths. Each projection path starts from the root and consists of a
simple path expression followed by an optional "#" flag. This optional flag is used
to indicate whether the descendant subtrees returned by the whole path expression
should be kept in the projected document. In Figure 4.1 it can be observed that
the whole subtree selected by the projection path P2 is kept in the projection.

The syntax of a simple path expression is defined by the following grammars:
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<site>

<regions>...</regions>

<people>

<person id="person0">

<name>Xiulin Poch</name>

<emailaddress>mailto:Poch@unizh.ch</emailaddress>

<phone>+0 (847) 37140499</phone>

<homepage>http://www.unizh.ch/ Poch</homepage>

<creditcard>1655 3174 7975 9805</creditcard>

<watches>

<watch open_auction="open_auction124"/>

</watches>

</person>

<person id="person1">

<name>Remco Sevcikova</name>

<emailaddress>mailto:Sevcikova@edu.sg</emailaddress>

<phone>+0 (628) 90891260</phone>

<address>

<street>69 Yaru St</street>

<city>Brunswick</city>

<country>United States</country>

<province>Maine</province>

<zipcode>23</zipcode>

</address>

<homepage>http://www.edu.sg/ Sevcikova</homepage>

</person>

...

</people>

...

</site>

Figure 4.1: A fragment of the input XMark document D .

SimplePath ::= Axis :: NT | SimplePath/Axis :: NT

Axis ::= child | self | descendant

| descendant-or-self | attribute

NT ::= node() | text()

As it can be seen, this technique assumes that XQuery queries use only downward
axes.

The path extraction algorithm proposed in [MS03] is able to extract a set of
projection paths from an arbitrary XQuery expression. We omit here details about
the rules, and in the sequel we focus on the projection algorithm using extracted
paths, as partitioning algorithms we will present share some mechanisms with this
one.

The projection algorithm processes the input in a SAX fashion [ver00]. In par-
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ticular, this projection algorithm works in a recursive way. It starts to parse the
original document D , and considers each node read from D as an independent event.
It uses the following specific SAX events during the process:

SAXEvent ::= OpeningTag (qName)

| Characters (String)

| ClosingTag (qName)

The OpeningTag (qName) event occurs when the opening tag of an element is
met; the tag value is represented by (qName). The Characters event occurs when
a text node is met during the parsing, and the text value is represented by String.
The ClosingTag (qName) event is dual and occurs when a closing tag is met.

When the SAX parser begins the processing operation, the loading algorithm
starts to check the correspondence between the current projection paths and the
OpeningTag token of the current node qName. If this qName matches the first
step of each projection path, this means that the loading algorithm should keep this
node in the projection D ′ which is normally smaller than the original document D .
Moreover, the algorithm in this case will check if the creation of D ′ needs to keep
the subtree of this current qName or not. If there is no match between the current
qName and the current projection paths, here the algorithm will skip this qName

together with all the ones that follow until the corresponding close-tag.

Figure 4.2 presents a simple XML example on which we will explain how the
loading algorithm works:

<a>

<g><b></b></g>

<b><c><f></f></c></b>

<d><e></e></d>

<b></b>

<c></c>

</a>

Figure 4.2: An XML document fragment.

In this example, the loading algorithm will use a certain set of projection paths
/a/b/c#, /a/d to create a projected fragment from the original one presented in
Figure 4.2. All operation steps of the loading algorithm are explained clearly in
Figure 4.3.

It is worth observing that the algorithm is not fully specified in [MS03], since
the focus is on the path-extraction algorithm. The description provided in [MS03]
is limited to some examples, and the way itself and descendant axes are dealt with
is not discussed in details. In the next chapters, we will formally specify both path-
extraction and projection mechanism. Experimental results we provide next have
been obtained by using our implementation which is presumably equivalent to that



4.1. path-based projection for queries 35

Figure 4.3: Loading algorithm of [MS03] for building a projection.

of [MS03]. In our implementation, we have followed principles outlined in [MS03]
in order to minimize as much as possible the size of projection. For instance, in
the presence of a projection path descendant :: a, the projection process prunes out
nodes not having a descendant labeled as a.

4.1.1 Limitations of Standard Projection for Queries

The path-based XML projection technique introduced in [MS03] is an effective tech-
nique: it allows main-memory systems to query large documents. Unfortunately,
as already said in the introduction, this technique still has limitation since for very
large documents and for queries needing a large part of the input for evaluation,
the projected document is likely to be too big to be loaded for querying by the
main-memory system.

In particular, the following kinds of XQuery queries are likely to need too large
projections.

• Queries performing the descendant navigation are likely to select large portions
of the input. For instance, for XMark data, some performed tests revealed that
for a simple query like //text, the projection takes around 65% of the original
document.

• Full-text queries need to query textual nodes of the input. As textual content
of an XML document can cover large portions of it, the needed projection is
likely to be large too. An example of such queries is the query N2 hereafter
discussed.

• Queries producing a document with the same content of the input, but with
different structure, actually need the whole document to be processed. Actu-
ally, even the structural reorganization concerns sub-parts of the document,
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Size of standard projection in (MB)

Query 1GB 2GB 3GB 4GB 5GB

Q1 15,1 26,2 39,3 52,5 66,5

Q2 36,4 62,8 94,3 125,9 159,4

Q3 36,4 62,8 94,3 125,9 159,4

Q4 44,2 76,5 115 153,6 194,5

Q5 5,2 8,9 13,3 17, 8 22,5

Q6 6,61 11,5 17,3 23,1 29,3

Q7 30,9 53,4 80,1 106,8 135,4

Q8 21,5 37,2 55,9 74,5 94,5

Q9 25,2 43,5 65,4 87,3 110,8

Q10 77,1 133,2 200,1 266,9 338,6

Q11 28,1 48,7 73,1 97,6 123,8

Q12 21,3 36,8 55,4 73,9 93,8

Q13 33,1 57,2 85,9 114,5 145,5

Q14 328,4 567,4 851,2 1,1GB 1,4GB

Q15 149,8 258,3 386,5 514,1 651,2

Q16 153,3 264,3 395,6 526,2 666,4

Q17 20,9 36 54,1 72,2 91,6

Q18 7 12,1 18,2 24,3 30,8

Q19 20,5 35,5 53,3 71,1 90,2

Q20 12,8 22,2 33,4 44,5 56,5

N1 543,5 938 1,37GB 1,83GB 2,32GB

N2 670,8 1,13GB 1,69GB 2,26GB 2,86GB

N3 527,6 910,6 1,33GB 1,78GB 2,25GB

Table 4.1: Size of projected documents.

projection is likely to be too large. An example of such queries is the query
N1 discussed in the sequel.

Query execution time

on the standard projection

Query Projection Saxon Qizx

size in (MB) in (sec) in (sec)

D1 313 - 194,11

D2 517 - 381,43

Table 4.2: Qizx and Saxon performances on projected DBLP document.

The above queries are likely to occur in practice and need large projections even
for not so big documents. However even quite selective queries, like the XMark
ones, can make projection fail when the input is quite large. Next we will show
experimental results reporting the size of projections obtained by means of the
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path-based technique, for each XMark queries and for documents with size ranging
from 1GB to 5GB. We will also show the same kind of test results for three new
XMark queries (N1, N2, and N3), also two queries (D1 and D2) to be evaluated
on a 800MB DBLP document [ver11]. These five new queries need to very large
projections. The syntax of these new queries is illustrated below.

N1 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//item

where $i/location/text() = ”UnitedStates”

return

<itemInfo name ="$i/name/text()">

<paymentWay>$i/payment/text()</paymentWay>

<shippingWay>$i/shipping/text()</shippingWay>

<moreInfo>$i/description</moreInfo>

<mailboxInfo>$i/mailbox</mailboxInfo>

</itemInfo>

N2 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//description

where contains(string(exactly-one($i)), "gold")
return $i/node()

N3 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//item

where empty($i/payment/text())

return

<item id="$i/@id" name="$i/name/text()" location="$i/location/text()">

{$i/description, $i/mailbox}

</item>

D1 = let $auction := doc(”dblp.xml”) return

for $a in $auction/dblp//author

return

<AuthorName> {$a/text()} </AuthorName>

D2 = let $auction := doc(”dblp.xml”) return

for $a in $auction/dblp/node()

return

<item>{$a/author, $a/title, $a/booktitle, $a/year}</item>

Test results about projection sizes are reported in Table 4.1 for what concern
XMark documents, while Table 4.1 reports data about tests on queries D1 and D2

on DBLP data.

By analyzing XMark test results we can observe the following.
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Saxon query execution time (sec)

on the standard projection

Query 1GB 2GB 3GB 4GB 5GB

Q1 3,7 5,8 7,9 11,4 12,9

Q2 7 11,5 - - -

Q3 7,5 12,5 - - -

Q4 8,3 14 19,7 - -

Q5 1,5 2,2 3,1 3,9 5,2

Q6 2,1 3,1 4,5 5,4 7,2

Q7 4,9 7,6 11,1 14,1 -

Q8 - - - - -

Q9 - - - - -

Q10 - - - - -

Q11 - - - - -

Q12 - - - - -

Q13 4,7 6,1 8,8 10,8 14,6

Q14 - - - - -

Q15 9,5 - - - -

Q16 10,3 - - - -

Q17 4,4 7,2 10 13,5 17,24

Q18 2 2,9 4,4 5,22 6,5

Q19 7,3 12,1 18 25,9 -

Q20 3,5 5,7 8,3 10,5 13,9

N1 - - - - -

N2 - - - - -

N3 - - - - -

Table 4.3: Saxon performance on projected documents.

• Queries Q1, Q5, Q6, Q13, Q17, Q18 and Q20 are very selective, and resulting
projection are likely to be processed by main-memory engines.

• Queries Q2, Q3, Q4, Q7, Q19 are less selective, and for systems like Saxon the
size of the projection is such that it can not be loaded in main-memory.

• For full-text XMark queries Q14, Q15, Q16, we have that the standard projec-
tion is not effective, and all projected documents generated for these queries
tend to be quite big.

• Concerning our queries N1, N2 and N3, these require very big parts (nodes and
text) of the input document to be evaluated. So projected documents have
size that can not be handled even by powerful systems like Qizx [qiz].

The above discussion is focused on projection sizes. In the next sections, we will
provide tests precisely illustrating where projection fails for the two engines Saxon
[sax] and Qizx [qiz].
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Qizx query execution time (sec)

on the standard projection

Query 1GB 2GB 3GB 4GB 5GB

Q1 8,1 12,8 18 24,3 30,6

Q2 13,9 23,7 35,4 48 60,4

Q3 13,9 24,9 39,4 50,6 65,6

Q4 14,5 38,9 38 51,4 113,6

Q5 2,9 6,1 11,4 18,4 27,9

Q6 3,4 7,9 15,3 25,1 39,3

Q7 10,5 16,5 25,8 33,8 43,3

Q8 11,4 19,8 29,2 39 48,4

Q9 13,9 22,9 33,4 45 57,2

Q10 88,2 150,7 225,8 298 374,1

Q11 32,6 65,9 117,8 178 266,2

Q12 30,8 59,3 106,1 163,5 233

Q13 11,9 19,6 28,5 38 48,5

Q14 126,3 229,2 - - -

Q15 48,6 84 128,7 203,4 229,4

Q16 49,8 96,9 131,8 180,7 233,1

Q17 10,5 17,4 26 34,1 43,2

Q18 3,1 5 7,2 9,9 11,9

Q19 13,1 22,1 37,9 46,1 57,3

Q20 7,3 11,9 17,3 27,3 29,2

N1 275,2 - - - -

N2 338,8 - - - -

N3 213,5 - - - -

Table 4.4: Qizx performance on projected documents.

Concerning DBLP data, we have that for the queries D1,D2 projections are quite
large, making querying impossible when the engine can not rely on large amounts of
main-memory. For systems like Saxon even if the allocated main-memory is large,
projected files are too big to be processed. We tried with 1GB for the Java Virtual
Machine memory, and for both queries projection failed to be processed.

Concerning Qizx, performed tests showed that projection worked for these
queries with 512MB for the JVM memory, but since projection takes 35% and 50%
of the input document, we strongly suspect that for bigger future versions of the
DBLP database projections are likely to exceeds memory capacity of Qizx.

4.2 type-based projection for updates

As already said, concerning updates the only existing projection technique is the
schema-based one proposed in [BBC+11] and extensively studied in Amine Baazizi
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Thesis [Baa12] and Marina Sahakyan Thesis [Sah11]. So, even if our proposed
approach is schema-less, we discuss here about this schema-based approach.

Schema information is used to perform a type inference operation that starts
from the input update and schema yields what is called a type-projector. Essentially,
this type-prjector consists of the set of types of nodes the update may need for its
evaluation. As we will illustrate next, the notion of type-projector which is adopted
is deeply different from that of queries proposed in [BCCN06]. Also, projection is
not sufficient for the framework to work since after having updated the projected
input we do not have yet global updated document. This is because, in particular,
subtrees pruned during projection are missing. This motivated the adoption of a
Merge operator allowing to merge in streaming the updated projection and the
original document, in order to produce the final updated document.

More in detail, for an update U and input document t typed by a DTD D the
framework works as follows:

1. a type-projector π is inferred from the update U and with respect to the input
DTD D.

2. a projection t ′ of t is built using a type-projector π.

3. the update U is evaluated over the projection t ′, yielding the partial updating
result U (t ′).

4. an algorithm called Merge is used; this algorithm parses in streaming and
synchronized fashion both the input t and the partial result U (t ′) in order to
produce the final result U (t). This is done for recovering all nodes pruned out
during the projection of t .

The main difference between these approaches is that the type-projector pro-
posed in [BCCN06] is composed by one level, while a 3-level components used to
build the type-projector proposed in [Baa12, BBC+11, Sah11].

The type projector adopted for queries in [BCCN06] is one-level, while the type-
projector proposed in [Baa12, BBC+11, Sah11] is 3-level. The main features of
using a 3-level type projector are the following ones. The first one is to optimize
(minimize) the size of projections. In particular, the 3-level type projector allows
to avoid keeping in the projection useless text nodes that would be kept with the
1-level type projector proposed in [BCCN06]. This feature enables an interesting
improvement in case of using documents contain large parts of textual content. The
second feature of using the 3-level type projector is that no rewriting of the update
is required. The third feature is that this type-projector is specifically designed to
deal with particular kinds of update expressions. This is done with the purpose to
facilitate the complexity of Merge process. The last feature is that this technique is
totally independent from XQuery engines.

More in detail, the 3-level type projector π proposed in [BBC+11] is composed
by the following three components {πno, πolb, πeb}, where:
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• the first component πno (node-only) is used to project only the nodes.

• the second component πolb (one-level-below) is used to project the nodes plus
their children.

• the third component πeb (everything-below) is used to project the nodes plus
all their descendants.

Next we are going to provide some examples to explain the mechanism of the
update 3-level type projection technique. After this we will discuss limitations in
terms of scalability.

Consider the following update u1 on the input document t illustrated in Fig-
ure 4.4 and the DTD D illustrated in Figure 4.5:

u1 = for $x in /doc/child :: a

where $x/child :: d return delete $x/child :: b

Suppose that the partial updated document u1(t ′) has been produced by updat-
ing t ′ which is the projection of the original document t . In order to produce the
final result u1(t), we parse, by using merge process, the original document t and
the partial updated document u1(t

′).

The type-based projector in [BCCN06] assumes that each node (like a,b,c, ...)
of the input document t is adorned with an identifier i inside square brackets, as
illustrated in Figure 4.4. Each node in t has an identifier i is next denoted by t@i.
The identifier i of each node in t carries on information about the node position in
t , according to document order.

In the projection t ′ of t , the identifier of a projected node is preserved, therefore
it may not reflect the new position of the node in t ′ (it is the case, for instance,
of the node t′@1.4 in Figure 4.4-(4)). In the partial updated document u1(t

′), new
identifiers are assigned to inserted or replaced nodes (see next examples).

Now the Merge process is presented. This process starts to parse (merging) both
t and u1(t

′), nothing special happens until the nodes (labeled a) t@1 and u1(t
′)@1

are met. Here, the two nodes checked by Merge are: the first child node t/@1.1

labeled b of t@1, and the first child node u1(t
′)@1.4 labeled d of u1(t ′)@1. In the

examined nodes, the child rank 4 of u1(t ′)@1.4 is strictly greater than the child rank
1 of t@1.1. Also, the label b belongs to the projector π, indicating that the node
t@1.1 has been projected in t ′. Thus, the node t@1.1 is not output (it has been
deleted by the update u1), the original document t is further parsed.

The next two nodes checked are: t@1.2 labeled c and u1(t
′)@1.4 labeled d. Once

again, the child rank 4 of u1(t ′)@1.4 is strictly greater than the child rank 2 of t@1.2,
however this time, the label c does not belong to the projector π (the node t@1.2

was not needed for the partial update and thus not projected in t ′) and thus the
node t@1.2 is output in the final result, the original document t is further parsed.
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for $x in /doc/a

where $x/d return delete $x/b

πno={doc, a, b, d}

πolb=πeb=∅

(1) The update u1 (2) The projector π1 for u1
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Figure 4.4: A simple example with type-based projection.

The process will continue merging t and u1(t
′) until both documents are fully

parsed. It is worth noting that positions of nodes in the original document play a
crucial role in the Merge process.

Dealing with insertion Consider the following update u2 over the same input
document t (see Figure 4.4-(3)) with respect to the same DTD D (see Figure 4.5):

u2 = for $x in /doc/child :: a

return insert as last <e>new<e/> into $x

Intuitively, the path corresponding to data needed for the update u2 is
/doc/child :: a and the types of nodes traversed by this path are π2={doc, a}. The
projection π2(t) of t as well as the partial update u2(π2(t)) are illustrated in Figure
4.6. Recall that node identifiers in π2(t) correspond to node identifiers in t, the same
holds for unchanged nodes in u2(π2(t)), and that new (inserted or replaced) nodes
in u2(π2(t)) are given new identifiers. In Figure 4.6, i and i

′ are new identifiers.

In the following, we will see how the Merge process parses both the original
document t and the partial update result u2(π2(t)) in order to produce the final
result u2(t). After parsing the root elements of both documents, the current two
nodes examined by Merge are: t@1.1 labeled b and the new node u2(π2(t))@i labeled
e. Here, the new identifier i does not carry any information about child rank of the
new node and even if the projector tells us that the node t@1.1 has been projected
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<!DOCTYPE doc[

<!ELEMENT doc (a*)>

<!ELEMENT a (b*,c*,d?)>

<!ELEMENT b (#PCDATA)>

<!ELEMENT c (#PCDATA)>

<!ELEMENT d ((f|g)*)>

<!ELEMENT f (#PCDATA)>

<!ELEMENT g (#PCDATA)>

]>

Figure 4.5: DTD of the XML document t illustrated in Figure 4.4.
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Figure 4.6: Dealing with insertion.

out, there is no way to decide whether it has to be output before the inserted node
or after. Recall here the assumption made for Merge: information about the update
u2 is not available.

In order to solve this problem, related to insertion, we modify the projector, to
take into account that for the update u2 the path /doc/child :: a is the target of
an insertion. The projector πu2 will have 2 components: the type doc of category
node-only and the type a of category one-level-below. Applying this new projector
to a document proceeds as follows: the nodes labeled by types of category node-only

are projected; the nodes labeled by types of category one-level-below are projected
together with each of their children. Descendants of these children are not projected,
unless other components of the projector require this projection.

Going back to our example u2, applying the projector πu2=(πno, πolb) with
πno={doc} and πolb={a} to the document t leads to the document πu2(t) described
in Figure 4.6 together with the partial update u2(πu2(t)). Since now the new nodes
are inserted inside the projection containing all their siblings, it is easy to check
that the documents t and u2(πu2(t)) can be merged in a valid, and simple way.

It is worth mentioning that our type projector avoids unnecessary node projec-
tion: the projection of all children of a one-level-below node is forced, but labels of
these children do not take part of the type projector.
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Figure 4.7: Dealing with string and mixed-contents.

Dealing with String and mixed-content In order to deal these cases, we will
modify the DTD D by redefining the rule for b as <!ELEMENT b (String|c)*> and
consider the following update u3:

u3 = for $x in /doc/child :: a

where $x/child :: b/() =′ foot′ return delete $x/child :: d

Intuitively, /doc/child :: a/child :: d and /doc/child :: a/child :: b/text() are the
paths corresponding to data needed for the update u3. The associated types are
π3={doc, a, b, String, d}. Let us consider the document t3 and its projection π3(t3)

both illustrated in Figure 4.7. Notice that projecting t3 with respect to π3 has the
side effect to concatenate the two Strings ’fo’ and ’ot’ and consequently, the node
u3(π3(t3))@1.4 labeled d is deleted when the update u3 is applied on the projected
document π3(t3). Recall the assumption that Merge is not supposed to change the
elements parsed in t3 and u3(π3(t3)), and has only access to the projector. Thus,
we cannot expect that merging the original document t3 and the partial updated
result u3(π3(t3)) will produce the final updated document.

The problem here is due to mixed-content nodes and solved by modifying the
projector in the same way as for insertion. The new projector πu3 generated for
the example will have 2 components: πno={doc, a, d} of category node-only and
πolb={b} of category one-level-below.

Dealing with element extraction Consider the DTD D and the following up-
date u4:

u4 = for $x in /doc/child :: a

return replace $x/child :: b with $x/child :: d

First, it is clear that replace updates have to be treated like insert with respect
to the target path $x/child :: b: replace is a delete followed by an insert. Second,
because the path /doc/child :: a/child :: d is meant to return the element copied at
the target node computed by /doc/child :: a/child :: b, the complete subtrees rooted
at nodes of type d have to be completely projected. For this update, we propose to
generate a projector πu4 composed of three sets of types:
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• πno={doc} of category (node-only).

• πolb={a} of category (one-level-below).

• πeveryb={d} of category (everything-below).

Now we will explain the behavior of the 3-level type projector with respect to the
category (everything-below): a node labeled by a type of this category is projected
together with its sub-forest. Indeed, applying the projector πu4 on the document
t of Figure 4.4-(3) produces almost the whole document with the exception of the
String ’oof’ which is pruned out.

Actually, the third component of the type projector ensures higher precision and
efficiency with respect to [BCCN06]. In particular, it allows avoiding to include the
types of the nodes in the subtree of a (everything-below) node in the type projector,
and accelerates the projection process it-self.

In Table 4.5, we provide the composition of the 3-level type projector for 20
XQuery updates proposed in Marina SAHAKYAN Thesis [Sah11].

4.2.1 Limitations of Update Type-based Projection

Despite the high precision of the 3-level type-projector approach, there are still
problems in terms of scalability. As for queries, this is due to the fact that as
the input size increases, projection increases as well, and when mechanisms already
discussed for queries are present in updates, projection can soon become too large
to be processed.

Differently from queries, currently there is no benchmark for updates that is
widely recognized by the research community. Fortunately, a rich set of updates
has been proposed in Marina Sahakyan Thesis [Sah11]; these updates use XMark
documents as inputs, and a part of them has been used in [BBC+11]. These updates
are below indicated:

U1. for $x in $doc/site/closed_auctions/closed_auction

where not ($x/annotation) return

insert node <annotation>Empty Annotation</annotation>

as last into $x

U2.for $x in $doc/site/people/person/address

where $x/country/text()="United States" return

(replace node $x with

<address>

<street>{$x/street/text()}</street>

<city>"NewYork"</city>

<country>"USA"</country>

<province>{$x/province/text()}</province>
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Update πno πolb πeb

U1 site, closed_auctions, annotation closed_auction ∅

U2 site, people, address person, country, street,

province, zipcode

∅

U3 site, regions, africa, asia, australia, eu-

rope, namerica, samerica, item

location ∅

U4 site, regions, africa, asia, australia, eu-

rope, namerica, samerica, item, mail-

box, mail

∅ ∅

U5 site, regions, africa, asia, australia,

europe, namerica, samerica, listitem,

bold, mailbox, mail, item, description,

text, open_auctions, open_auction,

closed_auctions, closed_auction, an-

notation, parlist

∅ ∅

U6 site, people, homepage, emailaddress person, name ∅

U7 site, people,emailaddress person, name, country address

U8 site, regions, australia ∅ ∅

U9 site, open_auctions, open_auction,

closed_auctions

closed_auction annotation

U10 site, open_auctions, open_auction privacy ∅

U11 site, open_auctions, bidder, initial open_auction, increase ∅

U12 site, regions, africa, asia, australia,

europe, namerica, samerica, mailbox,

mail

item, date ∅

U13 site, open_auctions,open_auction,

annotation, description, keyword,

bold

text, emph ∅

U14 site, regions, africa, asia, aus-

tralia, europe, namerica, samerica,

item, description, parlist, listitem,

mailbox, mail, closed_auctions,

closed_auction, annotation,

open_auctions, open_aucton, text,

emph

∅ ∅

U15 site, categories, category, listitem description parlist

U16 site, closed_auctions ∅ ∅

U17 site closed_auctions ∅

U18 site, categories, category, description,

parlist

listitem ∅

U19 site, categories, category, description parlist listitem

U20 site, open_auctions open_auction bidder, increase

Table 4.5: The composition of 3-level type projector for 20 updates used in [Sah11].
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<zipcode>{$x/zipcode/text()}</zipcode>

</address>)

U3.for $x in $doc/site/regions//item/location

where $x/text()="United States"

return (replace value of node $x with "USA")

U4.delete nodes $doc/site/regions//item/mailbox/mail

U5.for $x in $doc/site//text/bold return

rename node $x as "emph"

U6.for $x in $doc/site/people/person

where not($x/homepage)

return insert node

<homepage>www.{$x/name/text()}Page.com</homepage>

after $x/emailaddress

U7.for $x in $doc/site/people/person,

for $y in $doc/site/people/person

where $x/name = $y/name

and not ($y/address)

and $x/address/country=’Malaysia’

return insert node $x/address

after $y/emailaddress

U8. delete nodes $doc/site/regions/australia

U9. let $k := $doc/site/closed_auctions/closed_auction[last()]

for $b in $doc/site/open_auctions/open_auction[last()]

return replace node $k/annotation with $b/annotation

U10. for $x in $doc/site/open_auctions/open_auction

where ($x/privacy="Yes")

return delete node $x

U11. for $x in $doc/site/open_auctions/open_auction

where $x/bidder/increase < 20

return insert node

<bidder>

<date>08/17/2000</date>

<time>15:15:15</time>

<personref/>

<increase>1.50</increase>

</bidder>

after $x/initial
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U12. for $x in $doc/site/regions//item

where ($x/mailbox/mail/date/text()="07/04/1998")

return insert node <incategory/> before $x/mailbox

U13. for $x in $doc/site/open_auctions/open_auction/annotation/

description/text

where ($x/keyword/emph/text()="unique")

and ($x/bold)

return insert node <emph>newTexT</emph> before $x/bold

U14. for $x in $doc/site//text/emph

return delete node $x

U15. for $x in $doc/site/categories/category/description/parlist

where ($x/listitem/parlist) return

replace node $x with $x/listitem/parlist[1]

U16. for $x in $doc/site/closed_auctions

return delete node $x

U17. for $x in $doc/site/closed_auctions

return insert node

<closed_auction>

<seller/>

<buyer/>

<itemref/>

<price>39.58</price>

<date>02/15/1998</date>

<quantity>1</quantity>

<type>Regular_new</type>

<annotation/>

</closed_auction> as last into $x

U18. for $x in $doc/site/categories/category/description

/parlist/listitem

where ($x/parlist)

return replace node $x/parlist with <text>newText</text>

U19. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem[1]

U20. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem

Table 4.6 illustrates the dimension of projections (in MB) for each update and
for XMark documents whose size ranges from 1GB to 10GB and 15GB.
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Size of type projected documents in (MB)

for 20 different updates

Input Size U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
1GB 19.1 46.6 11.1 14 69.6 36.6 43.1 4 KB 311 5.2
2GB 33 80.5 19.2 24.2 120.2 63.2 74.4 4 KB 535.6 9.1
3GB 48.1 120.8 28.9 36.4 180.3 85.1 111.9 4 KB 861.5 13.7
4GB 64.2 161.2 38.7 48.7 240.4 126.5 148.9 4 KB 1.15 GB 18.3
5GB 81.4 204.4 49.1 61.8 305 160.4 188.9 4 KB 1.45 GB 23.2
6GB 96.1 241.3 58 73 360.3 189.4 222.9 4 KB 1.72 GB 27.4
7GB 112.9 283.5 68.2 85.8 423.2 222.6 262 4 KB 2.02 GB 32.2
8GB 128.1 321.7 77.3 97.3 480.1 252.6 297.3 4 KB 2.29 GB 36.5
9GB 144.4 362.8 87.3 109.8 541.2 284.8 335.2 4 KB 2.58 GB 41.2
10GB 163 409.7 98.6 124 610.8 321.7 378.6 4 KB 2.91 GB 46.5
15GB 233.3 650.1 586.6 177.6 874.5 583.2 578.5 4 KB 4.46 GB 66.8

Input Size U11 U12 U13 U14 U15 U16 U17 U18 U19 U20
1GB 57.2 68.7 59.2 69.3 16.1 4 KB 3.1 1.2 16.1 67.3
2GB 98.7 118.5 102.1 119.8 27.4 4 KB 5.4 2.1 27.3 116.1
3GB 148.1 177.9 161.1 179.7 45.4 4 KB 8.1 3.2 45.3 174.2
4GB 197.7 237.3 215.2 239.6 59.5 4 KB 10.8 4.3 59.3 232.6
5GB 250.4 301 272.8 304 75.8 4 KB 13.7 5.4 75.5 294.5
6GB 295.5 355.3 321.9 359 89.4 4 KB 16.1 6.4 89.2 347.5
7GB 347 417.3 378.5 421.8 104.7 4 KB 18.9 7.5 104.4 408
8GB 393.5 473.2 429.4 478.4 117.2 4 KB 21.5 8.4 116.8 462.7
9GB 443.5 533.5 483.4 539.3 134 4 KB 24.2 9.6 133.6 521.5
10GB 500.7 602.4 546.4 608.7 149 4 KB 27.3 10.7 148.5 588.6
15GB 716.8 861.9 780.4 871.5 226.2 4 KB 39.1 15.5 225.5 883.9

Table 4.6: Size reduction by type projection.

From test results about sizes of projections we can observe that used in many
cases projection have a relatively small size. However, for systems like Saxon, start-
ing from the 1GB document and for 512MB of main-memory for the JVM, several
updates can not be evaluated. Of course if we increase the JVM memory size, prob-
lems disappear for the 1GB document, but they re-appear after for bigger files. For
Saxon thinks get worst for bigger sizes: for the 5GB document projection allows to
execute only 6 out 20 updates (see Table 4.7).

For Qizx thinks are different. However, scalability is still not ensured as it can
be seen for the 15GB file: 12 our 20 updates could be executed (see Table 4.7).
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Update 1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB 15GB

U1
Saxon 7.671 13.125 31.594 - - - - - - - -
Qizx 5.988 10.345 14.955 20.119 25.340 29.401 34.454 38.072 42.009 47.176 59.665

U2
Saxon 21.604 - - - - - - - - - -
Qizx 45.356 84.15 93.026 120.582 151.153 - - - - - -

U3
Saxon 5.306 8.708 11.555 14.419 - - - - - - -
Qizx 12.146 20.422 23.925 31.028 38.522 44.336 52.067 58.042 70.074 78.367 -

U4
Saxon 7.294 12.215 29.801 - - - - - - - -
Qizx 13.781 20.744 26.778 34.861 44.135 52.545 60.968 67.108 78.656 89.855 99.554

U5
Saxon - - - - - - - - - - -
Qizx 68.363 108.233 119.798 156.766 197.669 225.574 275.608 320.105 367.504 416.487 -

U6
Saxon 16.196 - - - - - - - - - -
Qizx 45.768 65.636 78.783 102.380 129.314 - - - - - -

U7
Saxon 40.116 - - - - - - - - - -
Qizx 86.084 197.421 324.657 523.130 823.594 1139.02 - - - - -

U8
Saxon 0.289 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266
Qizx 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

U9
Saxon - - - - - - - - - - -
Qizx 226.217 - - - - - - - - - -

U10
Saxon 235.344 725.794 - - - - - - - - -
Qizx 4.123 7.155 12.230 14.051 17.545 20.112 22.620 24.711 26.460 31.196 -

Update 1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB 15GB

U11
Saxon - - - - - - - - - - -
Qizx 60.327 111.701 121.640 144.387 188.488 219.966 - - - - -

U12
Saxon - - - - - - - - - - -
Qizx 62.832 103.504 114.388 130.234 169.113 191.240 243.874 272.829 297.499 - -

U13
Saxon 8.849 14.267 - - - - - - - - -
Qizx 31.476 53.16 83.797 106.396 138.138 185.425 204.588 236.866 895.262 - -

U14
Saxon - - - - - - - - - - -
Qizx 60.584 77.854 108.855 141.928 187.238 213.861 254.537 297.178 343.826 - -

U15
Saxon 1.985 3.038 5.789 6.967 8.210 9.751 10.224 12.184 13.349 14.709 -
Qizx 8.937 15.317 20.692 25.828 31.911 39.015 45.543 51.416 60.944 65.165 76.25

U16
Saxon 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264
Qizx 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158

U17
Saxon 1.246 1.92 2.484 2.89 3.02 3.30 3.96 5.57 5.9 6.29 7.15
Qizx 1.607 3.188 5.665 6.967 7.682 8.617 9.552 10.590 11.384 12.489 13.22

U18
Saxon 0.522 0.751 4.184 4.89 5.902 6.01 6.85 7.65 7.70 8.5 9.34
Qizx 1.094 2.452 4.755 5.067 6.182 6.857 9.552 10.590 11.384 12.489 13.552

U19
Saxon 1.752 2.725 3.775 4.781 6.803 8.79 9.874 10.753 11.852 12.421 -
Qizx 7.183 12.26 18.013 22.143 26.669 30.883 35.554 39.566 44.272 48.684 52.45

U20
Saxon - - - - - - - - - - -
Qizx 67.878 113.731 129.587 173.089 222.251 287.289 332.112 376.297 437.769 483.709 -

Table 4.7: Qizx and Saxon performances for type-based projected documents.
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4.3 conclusion

In this chapter, we introduce the XML projection technique, which is one of the
most important technique used for reducing the memory consumption. Also, we
present two mains approaches proposed for XML projection technique for queries
and updates. As illustrated in this chapter, these techniques still fail in several cases,
for which the projected document is still quite big to be loaded in main memory.

As we have seen, limitations are sensible to the kind of used engine, and to the
amount of available main-memory allocated for the JVM. In the next chapters, we
propose our technique to solve overcome such limitations, we will choose a relatively
small size for the main-memory (512MB) to show that the approach behaves well in
this context, by allowing querying and updating documents of arbitrary sizes under
some conditions met by the query/update expression.
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T
his chapter includes three main parts. The first part (Section 5.1, 5.2, 5.3)
presents our static analysis technique used to characterize iterative queries,

for which XML data can be partitioned for query evaluation. The second part
(Section 5.5) presents our partitioning algorithm. First an high level specification is
formalized by relying on a DOM-based representation of input trees. Then a SAX
based version of the partitioning algorithm is provided. As said in the introduction,
to accentuate benefits of our strategy, projection is used while partitioning. The
third part (Section 5.6, 5.7) discusses about the implementation of the SAX-based
algorithms, and presents test results obtained from experiments we conducted by
using two main XQuery engines. Finally, we draw our conclusion in Section 5.8.
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Figure 5.1: Projecting-partitioning scenario for an input document D and a given
query Q and partitioning path PP .

5.1 preliminaries

5.1.1 Data Model

Following [BC09], we represent XML data by means of a store σ, which associates
to each node location (or identifier) l either an element node or a text node. For
simplicity we disregard attributes in the formal treatment, while they are considered
in the implementation.

When l is an element node, we have σ(l)=a[L] (also written l ← a[L]∈σ) where
a is the element tag and L=(l1, . . . , ln) is the ordered sequence of the child locations
for l. When l is a text node, we have σ(l)=text[s] (also written l← text[s]∈σ) where
the string s is the textual content of the l node.

An XML tree is a pair t=(σ, lt ), where lt is the root location of the tree. We
denote by dom(σ) the set of locations of a store (analogously dom(t) for a tree).
Given a location l∈dom(σ), σ@l denotes the subtree of σ rooted at l. Sometimes,
for simplicity, when t=(σ, lt ), we abusively use t instead of σ and, for instance, we
write l← a[L]∈t instead of l← a[L]∈σ, and similarly for an association of the form
l← text[s].

In the following, we provide formal definitions of σ and its components.



5.1. preliminaries 55

Definition 5.1.1 (Location Sequence L) A location sequence L is defined by the

following grammar:

L ::= () | l | L, L

where () is the empty sequence, l is a single location, and L, L denotes the concate-

nation of location sequences.

Definition 5.1.2 (XML Store σ) A store σ is a finite mapping

σ = {l1 ← α1, l2 ← α2, · · · , ln ← αn}

each αi can be either a text value text[s] where s is a string value referred to the

textual content of the node l; or a an element a[L] where L is a location sequence

(see Definition 5.1.1).

We use {L} to denote the set of locations in the sequence L. Also, We say that
L
′ is a projection of L, denoted by L

′ � L, if L′ is obtained from L, by erasing some
of its locations. Note that sequence projection preserves ordering.

For instance l1, l3 � l1, l2, l3, while l3, l1 6� l1, l2, l3 (ordering is not preserved).

In order to define XML partition, we need the following notion of XML projec-
tion.

Definition 5.1.3 (XML Projection) A tree t ′=(σ′, lt ′) is a projection of a tree

t=(σ, lt ), noted as t ′ � t , if lt ′=lt , and for each location l∈dom(σ′):

l← a[L′]∈σ′ implies (∃L. l← a[L]∈σ and L
′ � L)

Note that projection preserves tree roots, and it is used to define XML par-
tition. Figure 5.2 shows a simple XML tree, its associated store, and a possible
projection. In this figure, we have that the root location is lt=l1, and the set of
locations in the projection σ′ is dom(σ′)={l1, l2, l3, l5}, and dom(σ′)⊆dom(σ) where
dom(σ)={l1, l2, l3, l4, l5, l6}.

Definition 5.1.4 (XML Partition) A collection of trees {t1, . . . , tκ} is a parti-
tion of a tree t if, for each i=1 . . . κ, ti � t , and if for each location l∈dom(t), we

have:
l← text[s]∈t implies ∃ ti. l← text[s]∈ti or

l← a[L]∈t implies {L}=
⋃

l←a[Li]∈ti

{Li}

A tree ti of the partition is called a part. The two above properties say that each
text node has to belong to at least one part, and that element nodes are partitioned
in such a way that no child is left out.

Figure 5.3 contains two possible partitions of the document in Figure 5.2. As
a document can be partitioned in multiple ways, it is crucial to carefully design
the partitioning strategy, so that the query result equals to the concatenation of
query results on each part of the partition. We will see next how to choose the right
partition in terms of a path analysis on the query.
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l4 ← text[”go”]

l5 ← text[”co”]

l6 ← c[()]

An XML tree t The store t=(σ, l1)

a l1

b l2

”co” l5

b l3 σ′ =















l1 ← a[l2, l3]
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l5 ← text[”co”]

A projection t ′ of t The store t ′=(σ′, l1)

Figure 5.2: Representation of XML trees as stores and projection.
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Figure 5.3: Two possible partitions of the XML tree t of Figure 5.2.

5.1.2 Query Language

In this approach, we use the fragment of XQuery described by the grammar illus-
trated in Figure 5.4. This fragment comprises (for, let and return) clauses as
well as (if-then-else) statements, and allows the user to specify self , child , and
descendant-or-self XPath axes [BBC+10] (for simplicity, we will write dos instead
of descendant-or-self). The grammar uses a for tag symbols.

In the grammar illustrated in Figure 5.4: () refers to the empty sequence; Expr
is an XQuery expression; Q1,Q2 denotes the query concatenation; a[Q ] denotes an
element node with a label "a", where the content of this node is a query Q .

We say that a query Q is well-formed if and only if i) it does not contain free
variables (i.e., variables with no corresponding for/let binders), ii) no variable
name is used twice in for/let bindings, and iii) it starts navigating the document
by means of non-self step.

Condition (i) ensures that well-formed queries start navigating documents from
their root element. For instance, the query for y in x/Step return Q is not
well-formed because it starts the navigation from a variable x which does not rep-
resent the root element, while the query for y in /Step return Q is well-formed.
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Query Q ::= () {empty sequence}

| Expr {XQuery expression}

| a[Q ] {element node labeled by a}

| Q1,Q2 {concatenation}

| if (Q) then Q1 else Q2 {conditional expression}

| for x in Q1 return Q2 {iteration}

| let x := Q1 return Q2 {let-binding}

XQuery Expression Expr ::= x | x/Step | /Step

XPath Step Step ::= Axis :: NT

XPath Axis Axis ::= self | child | dos

Node Test NT ::= a | node() | text()

Figure 5.4: Query language grammar.

The restriction (ii) simplifies the analysis, and can be always obtained by renam-
ing. Condition (iii) excludes queries like for y in /self :: NT return Q , it is
assumed to simplify the formalization, and is non restrictive, as in most practical
cases queries start the navigation by means of either child or dos axis.

In this approach, we focus on queries issued on a single document. Indeed,
multiple document queries are likely to be not iterative, and their treatment goes
far beyond the scope of this approach. Also, we focus on for/let expressions using
element construction only on the right-hand side expression Q2, as happens in most
practical cases. For instance all XMark queries are of this form, provided that in
some queries let bindings are inlined. Inlining consists of replacing each use of
let-variables with the query they are bound to. For instance,

let x := b[/child :: a] return res[x , /dos :: d]

is rewritten into res[b[/child :: a], /dos :: d]. Of course, this rewriting preserves
query semantics.

The evaluation of a query Q on an input tree t=(σ, lt ), denoted by Q(t), yields
a pair (σQ , LQ), where the store σQ is a forest which extends the initial store σ with
the new elements built by Q , while LQ is the sequence of location nodes returned by
the query whose contents is described in σQ . In order to present a formal semantics
of this XQuery fragment, a concise and elegant formalization can be found in [BC09].

In order to define equivalence among query results, we also need the following
notions. Equivalence among two trees, denoted by t ∼= t ′, holds if and only if the two
rooted trees are isomorphic (they possibly differ only in terms of name of locations).
When σ and σ′ are forests and L=(l1, . . . , ln) and L

′=(l′1, . . . , l
′
n) are sequences of

locations, we write (σ, L) ∼= (σ′, L′) to state that, for i=1..n, we have σ@li ∼= σ′@l′i.
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1. E ((),Γ,m) = ()

2. E ((Q1,Q2),Γ,m) = E (Q1,Γ,m) ∪ E (Q2,Γ,m)

3. E (a[Q ],Γ,m) = {P{for y} | P{for y}∈Γ} ∪ E (Q ,Γ, 1)

4. E (x ,Γ, 0) = {P{for x} | P{for x}∈Γ}

5. E (x ,Γ, 1) = {P{for x}/dos :: node() | P{for x}∈Γ}

6. E (/P ,Γ, 0) = {/P}

7. E (/P ,Γ, 1) = {/P/dos :: node()}

8. E (x/P ,Γ, 0) = {P ′{for x}/P | P ′{for x}∈Γ}

9. E (x/P ,Γ, 1) = {P ′{for x}/P/dos :: node() | P ′{for x}∈Γ}

10. E (if Q then Q1 else Q2,Γ,m) = E (Q ,Γ, 0) ∪ E (Q1,Γ, 1) ∪ E (Q2,Γ, 1)

11. E (for x in Q1 return Q2,Γ,m) = Γ′ ∪ E (Q2,Γ ∪ Γ′,m)

where Γ′ = {P{for x} | P∈E (Q1,Γ, 0)}

12. E (let x := Q1 return Q2,Γ,m) = Γ′ ∪ E (Q2,Γ ∪ Γ′,m)

where Γ′ = E (Q1,Γ, 0)

13. E (P/@attr :: a,Γ,m) = E (P ,Γ,m)

Figure 5.5: Path extraction function.

Finally, when σ and σ′ have disjoint domains (no common location), we define the
concatenation (σ, L) · (σ′, L′) as the pair (σ ∪ σ′, (L, L′)), where L, L′ denotes the
concatenation of L and L

′.

5.2 path extraction

In our approach, paths are used for characterizing iterative queries, and for parti-
tioning and projecting an input document. Paths are extracted from a query by
using the path extraction function E () of Figure 5.5; this function resembles that
proposed in [BCCN06, MS03]. However, paths extracted according to E () carry a
richer information, as they also describe the relation with for-variables. Paths obey
the following grammar:

P ::= ε | /S | P/S S ::= Step | Step{for x}

where ε denotes the empty path.

For instance, when a path P ′{for x}/P ′′ has been extracted from Q , it captures
that a subquery of Q has the shape for x in Q1 return Q2 and (i) P ′ is extracted
from Q1 and selects possible bindings for x while (ii) P ′′ has been extracted fromQ2

in the context of the previous bindings or, in other words, x/P ′′ is extracted from
Q1.
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Variable information in paths is important to characterize iterative queries and to
identify partitioning paths (see Section 5.3), while it will be ignored for the purpose
of partitioning.

Our path extraction function E () is defined in Figure 5.5 by structural induction
on queries defined in Figure 5.4. This Function has the form E (Q ,Γ,m). The first
parameter is the query at issue. The second parameter is the environment Γ that
keeps track of bindings of the form {for x} or {let x} between query variables and
their corresponding paths. We use Γ because we always need to remember the set of
paths corresponding to given variables in queries of the form for x in Q1 return Q2

or let x := Q1 return Q2.

The third parameter used in E () rules is a boolean flag m to distinguish between
subqueries that generate fragments of the result of the outer query (m=1) and
subqueries that are only used for binding variables or filtering results (m=0). When
(m=1), the terminal rules 5, 7 and 9 extend extracted paths with a dos :: node()

step, so to capture all the nodes required by the query to build the result.

For queries of the form for x in Q1 return Q2 (rule 11 in Figure 5.5), the
function E () first extracts paths from Q1; these paths are, then, enriched with
information about variable bindings and added to the environment Γ, which is used
for the recursive extraction of paths from Q2. In particular Γ is used to associate the
right path to each free occurrence of the variable x in Q2 (rules 4 and 5 in Figure 5.5).
Rules of let expressions are similar, with the exception that they do not keep track
of information about let-variables (rule 12 in Figure 5.5). Information about let-
variables is not needed because we are only interested in information telling us that
there is an iteration performed by the query. Only for-variables are needed to this
end.

Example 1 Consider the following query Q :

Q = for $x in /child :: a/child :: b

return if ($x/child :: c) then $x/text() else ()

This query is from the form (for x in Q1 return Q2) where:

Q1 = /child :: a/child :: b

Q2 = if ($x/child :: c) then $x/text() else ()

By using our extraction function E (Q) defined in Figure 5.5, we have that:

Rules .6.8 E (Q1,Γ, 1) = {/child :: a, /child :: a/child :: b{for x}}

Rule .10 E (Q2,Γ,m) = E ($x/child :: c,Γ, 0) ∪ E ($x/text(),Γ, 1) ∪ E ((),Γ, 1)

= {/child :: a/child :: b{for x}/child :: c/dos :: node()} ∪

{/child :: a/child :: b{for x}/child :: text()} ∪ ()

= {/child :: a, /child :: a/child :: b{for x},

/child :: a/child :: b{for x}/child :: c/dos :: node()}

Rule .11 E (Q ,Γ,m) = {/child :: a, /child :: a/child :: b{for x},

/child :: a/child :: b{for x}/child :: c/dos :: node()}
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So the final set of extracted paths of this query is {P1, P2, P3}, with

P1 = /child :: a

P2 = /child :: a/child :: b{for x}

P3 = /child :: a/child :: b{for x}/child :: c/dos :: node()

Example 2 Consider the following query Q :

Q = for $x in /child :: a

for $y in $x/child :: b

return ($y/child :: d , $y/child :: e)

The set of extracted paths of this query is {P1, P2, P3, P4}, with

P1 = /child :: a{for x}

P2 = /child :: a{for x}/child :: b{for y}

P3 = /child :: a{for x}/child :: b{for y}/child :: d/dos :: node()

P4 = /child :: a{for x}/child :: b{for y}/child :: e/dos :: node()

�

Paths extracted from a query express properties of the query data needs. In
Examples 1, 2 we have that all nodes that are either selected by the paths or
traversed in order to reach a node selected by a path, form a sound projection for
both query examples. By sound projection we mean a projection of the input tree
that preserves query results.

We will see later that these projections can be obtained quite efficiently by
opportunely matching extracted paths against nodes of the input documents, visited
in a streaming fashion by means of a SAX parser.

In our work we assume the following. For queries of the form
for x in Q1 return Q2, and similarly in case of let expression, we suppose that
the subquery Q1 does not use concatenation. For example, the following query is
not allowed:

Q = for $x in (/child :: a/child :: b, /child :: a/child :: b) return $x

We omitted this case from our study because we have two identical paths ex-
tracted from the query Q (see below E (Q)), associated with the same binding vari-
able x and coming from different subexpressions. This could make formalizations
quite cumbersome, as information about the provenance of extracted path should
be gathered during extraction.

E (Q) = {/child :: a/child :: b{for x}, /child :: a/child :: c{for x}}

Actually, for the purpose of partitioning (and projection) variable information
in extracted paths is not needed. Partitioning (and projection) will use extracted
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paths once variable information has been eliminated. For instance, rather than
(/child :: a{for x}/child :: b{for y}) the path (/child :: a/child :: b) is used.

Variable bindings are erased by means of the function ErVar(P) (illustrated in
Definition 5.2.1) which indicates the path obtained from P by removing {for −}
occurrences. Hereafter, for simplicity, we will often abbreviate E (Q , ∅, 1) with E (Q).

Definition 5.2.1 (ErVar (P)) Given a well-formed query Q and its set of extracted

paths P ∈ E (Q), the function ErVar(P) removes all {for −} occurrences in P if

they exist. By induction on the structure of P , the syntax of ErVar(P) is defined

as follows:
ErVar(ε) = ε

ErVar(/Step/P) = /Step/ErVar(P)

ErVar(/Step{for x}/P) = /Step/ErVar(P)

where ε denotes the empty path (we assume /P/ε = /P).

5.3 iterative queries and partitioning paths

Our approach is based on the idea of partitioning an input document t into a
collection of documents {t1, . . . , tκ} and projecting each ti according to Q , so that
Q(t) ∼= (Q(t ′1), . . . ,Q(t ′κ)), where t ′i is the projection of ti. The input document is
partitioned according to a partitioning path P , which is opportunely chosen among
the paths extracted from Q . Indeed, paths extracted from Q are also used to
project each partition ti. In order to guarantee the correctness of query evaluation,
this approach can be applied only when Q first selects a sequence of nodes S, and
then iterates over the nodes in S by exploring their corresponding subtrees. Queries
satisfying this requirement are called iterative and are quite common in practice.
The query of Example 1 is iterative. It selects the sequence S of nodes specified by
the subquery /child :: a/child :: b. Then for each node in S, it evaluates the if-sub
query. As a concrete example, 13 out of the 20 XMark queries are iterative: namely,
queries from Q1 to Q6, and Q14 to Q20 are iterative. These queries are given in
Section A.1 of Appendix A.

For an iterative query over a document t , there may be more than one path
that could be used for partitioning t . We first characterize this set of candidate
partitioning paths and then show how to pick the best one. In the definition below,
we say that the path P∈E (Q) is maximal if no other path in E (Q) contains P as
a prefix.

Definition 5.3.1 (Candidate Partitioning Paths) Given a well-formed query

Q , a candidate partitioning path for Q is a path ErVar(P) with P∈E (Q) such that:

(i) P is of the form P0{for x}.

(ii) P does not use text node test.

(iii) for each maximal path P ′∈E (Q), P ′=P/P ′′.
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The set of all candidate partitioning paths for Q , is hereafter denoted by

Candidate(Q).

Condition (i) states that each candidate path is used for iterating inside the
query Q . Condition (ii) rules out candidate paths that would iterate on text nodes
(like in the query for x in /dos :: text() return Q ′) because we want to ensure that
partitioning is performed on a sequence of element nodes rather than a sequence of
text nodes. The technical reason is that projection of text nodes which are sibling
produces a text node (the concatenation of the text nodes) rather than a sequence of
text nodes. Although this restriction can be relaxed, we give priority to presenting
the core of the partitioning method here. Condition (iii) is the most important one:
the restriction on maximal paths is needed since otherwise the minimal common
prefix of E (Q) paths would be a candidate.

As an example, for the query and extracted paths in Example 1, we have that
ErVar(P1)=/child :: a and ErVar (P2)=/child :: a/child :: b are candidate paths.

As another example, for the query and extracted paths presented in Example
2, the ErVar(P1) and ErVar(P2) are candidate paths, while ErVar(P3) is not a
candidate, as the prefix relation does not hold with respect to the path P4. Figure 5.6
illustrates the process of finding the candidate paths of Example 2.

Figure 5.6: Scenario of finding candidate paths of Example 2.

Note that if we alter the query in Example 2 by considering the following new
returned clause return ($x/child :: d , $y/child :: e):

Q = for $x in /child :: a

for $y in $x/child :: b

return ($x/child :: d , $y/child :: e)

then the only candidate is P1, while the path P2 cannot be safely used for parti-
tioning the input due to $x/child :: d in the return clause.

Also, if we change the query in Example 2 as follows (note that the path selecting
nodes for the second iteration starts from the document root):
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Q = for $x in /child :: a/child :: b

for $y in /child :: a/child :: b

return ($x/child :: d , $y/child :: e)

then we have no candidates, because due to the presence of different variables $x and
$y variables in extracted paths, condition (iii) of Definition 5.3.1 does not hold for
any paths. This query is not recognized as an iterative query (there is no candidate
path). In fact, the kind of partitioning we want to adopt can not be used for this
query as it performs two iterations .

Definition 5.3.2 (Iterative Queries) A well-formed query Q is iterative if and

only if Candidate(Q) 6= ∅.

If the query Q is iterative, then the sequence of nodes selected by a candidate
path in a document t , can be partitioned in order to split query evaluation.

Definition 5.3.3 (Partitioning Path) Given an iterative query Q , we say that

the path P is the partitioning path for Q if and only if P is the candidate partitioning

path of Q having maximum length.

In the following, a partitioning path will be denoted PP . Going back to the
query of Example 1, we have PP=/child :: a/child :: b.

Another example, is about the query of the Example 2, we have that :

Candidate(Q) = {/child :: a, /child :: a/child :: b}

and PP=/child :: a/child :: b because it has maximum length comparing with the
other candidate path /child :: a.

Several cases of XMark queries are recognized as iterative queries, some of these
queries and their partitioning paths are reported in Figure 5.7.

Picking up the longest candidate as partitioning path minimizes the size of trees
belonging to the sequence selected by the path, hence maximizing the likelihood
that each part yielded by partitioning fits in the available main-memory.

5.4 projection

A particular feature of our approach is that while performing partitioning, projection
is performed too, in a single pass on the input document t : the projected partition
{t ′1, t

′
2, . . . , t

′
κ} is directly obtained from t, hence avoiding scanning the document

twice and storing intermediate results on persistent storage.

In this section, we will formalize the projection process, which will be then
plugged in the definition of the partitioning algorithm. As already said, projection
is made in terms of paths extracted from a query, once {for x} occurrences have
been eliminated.
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Query Partitioning Path PP

Q1 /child :: site/child :: people/child :: person

Q2 /child :: site/child :: open_auctions/child :: open_auction

Q5 /child :: site/child :: closed_auctions/child :: closed_auction

Q13 /child :: site/child :: regions/child :: australia/child :: item

Q14 /child :: site/dos :: item

/child :: site/child :: closed_auctions/child :: closed_auction/child :: annotation

Q15 /child :: description/child :: parlist/child :: listitem/child :: parlist

/child :: listitem/child :: text/child :: emph/child :: keyword

Q16 /child :: site/child :: closed_auctions/child :: closed_auction

Q17 /child :: site/child :: people/child :: person

Q18 /child :: site/child :: open_auctions/child :: open_auction

Q19 /child :: site/child :: regions/dos :: item

Q20 /child :: site/child :: people/child :: person

Figure 5.7: Partitioning paths of some iterative XMark queries.

In the definition below, we will formalize our query projector, and present some
examples which explain how the projection process works.

Definition 5.4.1 (Query projector) Given a well-formed query Q , we define the

projector τ of Q as the set τ={ErVar(P) | P∈E (Q)}.

Projecting an XML document t according to a set of paths τ is a recursive
process and works as follows. According to the document order, each node is visited
and compared against the current set of paths to check whether the node matches
the first step of each extracted path.The example below illustrates how projection
works.

Example 3 Consider the tree t in Figure 5.2 and assume to project it according
to the path /child :: a/dos :: c. Before matching the first node (actually the root
element node) against the path, we perform a level alignment transformation over
the path itself, by replacing the first step /child :: a with /self :: a, thus obtaining
/self :: a/dos :: c.We can, then, check that the l1 node matches the first step. As
a side result of this phase, the path is rewritten into the residual path /dos :: c,
in order to prepare the matching against the nodes of the next tree level. Then,
before analyzing the l2 node, a new alignment operation is performed. This time,
due to the presence of the recursive step /dos :: c, two paths are produced: /self :: c

and /self :: node()/dos :: c. These two paths are then compared with l2, which
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Figure 5.8: Path /child :: a/dos :: c transformations.

actually matches the head self :: node() axes of the second path, which is then
rewritten into its residual /dos :: c. Path alignment then works as before and
produces /self :: c and /self :: node()/dos :: c for the node l5; in this case no path is
matched. The next node considered is l6, still matched against the paths /self :: c

and /self :: node()/dos :: c. Now we have a matching with /self :: c, and the node
is added to the projection. This entails that the ancestors l2 and l1 are included in
the projection as well. The process then goes on in a similar way with other nodes,
which will not be included in the projection due to no matching with compared
paths. Figure 5.8 illustrates the process above in details.

�

Before illustrating the projecting-partitioning process, we need a few preliminary
definitions and notions. Hereafter a match for a path is called a terminal match,
while an ancestor of a match is called a non-terminal match.

For instance, for the input tree in Figure 5.9, and the path P = /dos :: c, terminal
matches are nodes l3, l10, l15 and l17, while non-terminal matches are ancestors of
these nodes, i.e. l1, l2, l9 and l13.
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a l1

b l2

c l3

d l4 e l5

f l6

d l7

”gogo” l8

b l9

c l10

e l11

d l12

f l13

g l14 c l15

”tata” l16

c l17

d l18 h l19

An input XML document t

a l1

b l2

c l3

d l4 e l5

b l9

c l10

e l11

f l13

c l15

”tata” l16

c l17

d l18 h l19

a l1
1

b l1
2

c l1
3

d l1
4 e l1

5

b l1
9

c l1
10

e l1
11

a l2
1

f l2
13

c l2
15 c l2

17

d l2
18 h l2

19

Projected document t ′ Projected part t ′1 Projected part t ′2

Figure 5.9: Partition plus projection.

Given a tree t=(σ, lt ) and a path P , we find terminal and non-terminal matches
of P by means of an iterative procedure that visits the tree t in a top-down manner,
and matches each node to a set of paths obtained from P by means of two rewriting
operations.

A first rewriting aims at aligning paths each time a deeper level is visited. For
instance, in the previous example the root node is compared to the set of paths
{/self :: c, /self :: node()/dos :: c}, obtained by the alignment of P=/dos :: c. The
path /self :: node()/dos :: c is an unfolding of the original one, and is needed to
match c nodes at deeper levels in subsequent steps of the process.

Projector alignment is performed by the function Down(τ), which aligns all
paths in a set τ , according to the following definition.

Definition 5.4.2 (Path Alignment) The alignment Down(τ) of a projector τ is

defined as
⋃

P∈τDown(P) where:

1. Down(/child :: NT/P) = {/self :: NT/P}
2. Down(/dos :: NT/P) = {/self :: NT/P , /self :: node()/dos :: NT/P}
3. Down(ε) = {ε}

Paths obtained by alignment all start with a self step, which a terminal or
non-terminal node has to necessarily match. After alignment, resulting paths may
contain consecutive steps using the self axis (in particular, if the path already
contained a self step before alignment). We assume that a path extracted from
a query does not contain the self axis in the first step. This assumption is not
restrictive as in practice the first step always perform a downward navigation. If
consecutive self steps like in /self :: b/self :: c occur in an aligned path, then the
path is discarded from the process as it has empty semantics. Non-contradictory
consecutive self steps (like /self :: b/self :: node()) are collapsed in a single self
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step (like /self :: b) by means of a simple rewriting. These simple rewritings are
routinely made after each alignment operation; obtained paths are then considered
for matching with the current node, as discussed shortly.

We discuss now the second rewriting function. In the search of matches for a
path P in a tree t , given a node whose tag or text value is α∈{a, text[s]}, and the
corresponding set of aligned paths is τ (obtained from P), the residuation function
Res(α; τ) returns a path set τ ′ and a value MATCH∈{ok_t, ok_nt, fail}. The path
set τ ′ will be recursively matched against children of the node after an alignment
operation, while MATCH specifies whether the current node is a terminal match,
a possible non-terminal match, or neither a terminal nor a non-terminal node. A
possible non-terminal match is finally confirmed as such when one of its descendants
happens to be deemed as a terminal match in subsequent steps.

Deriving the value MATCH produced by residuation relies on the following bi-
nary (commutative and associative) function ⊎, shown in Table 5.1, where the sym-
bol − indicates any value.

MATCH1 MATCH2 MATCH1 ⊎MATCH2

ok_t − ok_t

ok_nt fail ok_nt

ok_nt ok_nt ok_nt

fail fail fail

Table 5.1: The function ⊎.

Definition 5.4.3 (Path Residuation) The residual of a path P is defined by dis-

tinguishing the following cases (recall that α ∈ {a, text[s]}):

Res(a ; /self :: NT ) = <ε ; ok_t> if NT∈{a,node()}

Res(a ; /self :: NT/P) = </P ; ok_nt> if P 6= ε and NT∈{a,node()}

Res(text[s] ; /self :: NT ) = <ε ; ok_t> if NT∈{text(),node()}

Res(α ; /P) = <ε ; fail> otherwise

The residual of a path set τ={P1,P2, · · · ,Pn} is then defined as follows:

Res(α ; τ)=<
⋃n

i=1{P
′

i };
⊎n

i=1MATCHi> with Res(α;Pi)=<P
′

i ;MATCHi>

As illustrated shortly, residuation is always applied after an alignment opera-
tion, and produces paths that are immediately aligned when descending to a new
level of the tree. That said, going back to our observation concerning the handling
of consecutive self steps, note that since each path extracted from a query never
starts with a self step, and since multiple and consecutive self steps are eventually
collapsed (otherwise the path is discarded) after alignment, residuation always takes
as input paths starting with a self step, followed by a non-self step, and eventually
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produces new paths by simply discarding the initial (matched) self step. This ex-
plains why the definition of alignment (Definition 5.4.2) does not include a case for
a first self -step.

To illustrate how the just presented rewriting functions are used to select ter-
minal and non-terminal matches of a path, consider again the input tree in Figure
5.9, and the path P=/dos :: c. Terminal and non-terminal matches of this path are
determined as illustrated next, where for each node we indicate the corresponding
aligned and residuated paths. We focus on the first 8 nodes, according to document
order, as Table 5.2 illustrates.

node α alignment residuation

l1 a τ1=Down({P}) Res(a; τ1)=<τ2; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ2={/dos :: c}

l2 b τ3 = Down(τ2) Res(b; τ3)=<τ4; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ4={/dos :: c}

l3 c τ5=Down(τ4) Res(c; τ5)=<τ6; ok_t>

={/self :: c, /self :: node()/dos :: c} with τ6={/dos :: c}

. . .

l6 f τ7=Down(τ6) Res(f ; τ7)=<τ8; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ8={/dos :: c}

l7 d τ9=Down(τ8) Res(d; τ9)=<τ10; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ10={/dos :: c}

l8 text[gogo] τ11=Down(τ10) Res(text[gogo]; τ11)=<ε; fail>

={/self :: c, /self :: node()/dos :: c} with τ10={/dos :: c}

Table 5.2: Rewriting functions Down(τ) and Res(α; τ).

According to the residuation above indicated, l1 and l2 are deemed as non-
terminal matches since both nodes have a descendant node l3 being a terminal
match. Observe that a terminal match is selected when a single-step path in the
current set of aligned paths is matched by the current node: this means that the
last step of the initial path is successfully matched. Concerning nodes l6 and l7,
they have no descendant that residuation deems as a terminal match, hence these
nodes are not deemed as non-terminal matches.

Algorithm 1 presents the code of the Projection algorithm. It takes as input a
store σ, a current location l, and a projector τ . It outputs a pair (σ′,Size) where σ′

is the projection of the tree rooted at l (σ@l) with respect to the projector τ . The
value Size is the size of the projected document and will be used when combining
partitioning and projection.

This algorithm uses Down(τ) and Res(α; τ) for alignment and residual rewriting.
These both function are at the core of our technique. In order to compute Size, the
algorithm uses the function length(x ) (see Example 4) returning the length of the
string of x (which can be either an element tag or a content of a textual node). Note
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Algorithm 1: Projection

Input: A store σ, a location l∈dom(σ), a projector τ ;

Output: A store σ′, an integer Size;

1 begin

/* Case 1. σ(l) = text[s] */

2 if Res(text[s]; τ) = <−; fail> then

3 σ′:= ∅; Size:= 0

4 else

5 σ′:= {l← text[s]}; Size:= length(s)

/* Case 2. σ(l) = a[L] */

6 <τ ′;MATCH>:= Res(a; τ);

7 if MATCH = fail then

8 σ′:= ∅; Size:= 0

9 else if MATCH = ok_nt and L = () then

10 σ′:= {l← a[()]};

11 else

12 let L = (l1, l2, · · · , ln)
13 for i = 1...n do

14 (σi, Sizei):= Projection(σ; li; Down(τ ′))

15 π:= {li∈L | σi 6= ∅}
16 if (MATCH = ok_t) or (MATCH = ok_nt and π 6= ∅) then

17 σ′:= {l← a[L|π]} ∪
⋃n

i=1σi; Size = 2.length(a) +
∑n

i=1Sizei

18 else

19 σ′:= ∅; Size:= 0

20 return (σ′, Size)

that the size of an element includes the size of both the start and end tag.

Example 4 Consider the tree t = <a><b>coco</b></a>. We have that:

length(<a>) = 1

length(</a>) = 1

length("coco") = 4

length(<b>"coco"</b>) = 1+ 4+ 1 = 6

length(t) = 1 + 6 + 1 = 8

�

Also, in the algorithm the notation L|π indicates the location sequence obtained
from L by retaining only locations in the set π, and preserving the sequence ordering
(we have L|π � L).

Algorithm 1 consists of two main cases. When the current node location l con-
tains a text node, if residuation does not fail, then for at least one path in the
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projector the last step matches the node l (recall that only the final step in a path
can use the text node condition).

When the current location, instead, contains an element node, then a more
complex analysis is necessary. If residuation fails, then the empty store is output. If
the current node is an intermediate match for the current projector, and the node
has no child, then the node is added to the projection; this is necessary because this
node can be later on matched as a terminal node after residuation of the projector,
during the recursive process. For instance, consider a projector including /a/b/self ::

node() and a tree where the root a has an empty b element as child. Otherwise,
projection is recursively propagated on child nodes. Then, if the current element
node is a terminal match for the projector, this node is added to the projection
together with its projected subtrees; if the current element matches an intermediate
step of a path in the projector, then the node will be added to the projection if at
least one of its descendant will match a final step in the projector. If none of the
above conditions holds, the empty projection is output.

Differently from [MS03] we provide here a formal specification of the projection
algorithm. Also, the algorithm described is DOM-oriented. We present it just to
provide a clear and formal specification. In Section 5.6 we will provide some detail
about our SAX-based streaming implementation, which has a negligible memory
footprint.

Lemma 5.4.4 Let Q be a well-formed query, τ its associated projector and t=(σ, lt )

a tree. Assuming that Projection(σ; l; Down(τ))=(σ ′;Size) we have:

(i) Q(t) ∼= Q(t ′) where t ′=(σ′, lt), and

(ii) Size=size(t ′)

5.5 The partitioning algorithm

The partitioning algorithm takes as input an XML document D , an iterative query
Q , and a threshold value maxSize . Through the static analysis technique described
in the previous sections, the algorithm extracts the set of projection paths τ and the
partitioning path set PP . These two sets of paths τ and PP drive the projection-
partitioning process, as the following example illustrates.

Example 5 Consider the query Q below and the XML document of Figure 5.9.

Q = for x in /dos :: c return (x/child :: d, x/child :: e)

According to previous definitions, this query is iterative with partitioning path PP =

/dos :: c. Also, the set of extracted paths τ is (for-variables are erased):

τ = {/dos :: c, /dos :: c/child :: d/dos :: node(), /dos :: c/child :: e/dos :: node()}

Through τ we can prune out all nodes of the document that are not touched dur-
ing query evaluation, and create after that the projected parts t ′1 and t ′2, containing
the fragments that are sufficient for correctly evaluating Q .
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This means that the store σ′ should contain only the following locations
{l1, l2, l3, l4, l5, l9, l10, l11, l13, l15, l16, l17, l18, l19} and neglect the others.

σ′ =



































l1 ← a[l2, l9, l13], l2 ← b[l3],

l3 ← c[l4, l5], l4 ← d[()],

l5 ← e[()], l9 ← b[l10],

l10 ← c[l11], l11 ← e[()],

l13 ← f [l15, l17], l15 ← c[l16],

l16 ← text[′′tata′′], l17 ← c[l18, l19],

l18 ← d[()], l19 ← h[()]

If, just to illustrate, we assume that the above projection cannot be processed,
then partitioning is needed. According to Definition 5.3.3, the partitioning of the
input tree in Figure 5.9 is made according to the partitioning path in PP={/dos ::

c}. The tree is traversed top-down according to document order and the first part
is determined as follows. During the visit of the tree, non-terminal and terminal
matches of the partitioning path are added to the part. Whenever a terminal match
of PP is met, its subtree is projected according to our projection (see Algorithm 1),
in order to limit as much as possible the number of created parts.

Just after a projected sub-tree of a PP terminal match has been added to the
part, a check is made in order to verify whether the current size of the part has ex-
ceeded a given threshold maxSize . In the current example, we consider maxSize=12,
which is exceeded when the subtree rooted at the second PP terminal match is added
to the part. Recall that each time an element is added to a part, the current size
is incremented by twice the length of the element tag (both starting and ending
tags have to be taken into account), while each time a text node is added to the
part the current size is incremented by the length of the text content of the node.
This causes the creation of a second part. With maxSize=12 we finally have the
two parts indicated in Figure 5.9. Note that nodes that are neither non-terminal
nor terminal matches of the partitioning path are pruned out during partitioning.
These nodes can be safely pruned out because they are useless to the evaluation of
the query Q . This is because PP is a prefix of each path in τ (extracted from the
query, Definition 5.3.1), and that a node is needed by Q if it is (an ancestor of) a
match of a path in τ (for the same reasons, in Figure 5.9, note that since subtrees
rooted at terminal matches of PP are projected according to τ ; for instance, the
node l16 is not in the second part).

Note that ancestors of PP nodes may belong to more than one part, in particular
this is the case for the document root node. At the same time, we need to create
a store with unique locations, so we endow each li with an identifier j indicating
that li belongs to the part j of the partition. The partition will be represented by
a single store σP.1 This store σP will contain two parts using the following indexed

1While the definition of partitions rely on multiple trees (stores), we opt here for a single global

store to easy the specification of the algorithms. As we will see, each single tree of the partition

can be recovered straightforwardly.
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locations:

dom(σP) = {l11, l12, l13, l14, l15, l19, l110, l111, l21, l213, l215, l217, l218, l219}

�

Besides path alignment and residuation, the threshold value maxSize plays a
key role in the whole partitioning process. The choice of maxSize depends on many
factors, such as the input document, the query being processed, the specific query
processor being used, the hardware configuration and the available main memory,
the programming language used for implementing the query processor, the memory
management technique adopted, and the operating system running on the hard-
ware. maxSize, therefore, can be determined only through a trial-and-error process
depending on the overall configuration, and cannot be formally predicted.

Note that if maxSize is too large, it can happen that one or more parts are
too large to be loaded in main memory, hence undermining the whole approach.
Surprisingly enough, as we will see later, our experimental evaluation showed that
the actual value of maxSize does not influence either partitioning time or the total
querying time on the partition.

5.5.1 The Algorithm

Algorithm 2 provides a formal presentation of our partitioning scheme. It is a
recursive algorithm and takes as input a 5-tuple <l; τ ;PP ; cSize; pId ;> representing
the current state of the recursive process: namely, this tuple indicates that the
current node to be matched against the current aligned partitioning path-set PP

and projector τ is l, that the current size of the part under construction is cSize, and
that the current number of created parts is pId . Of course, the algorithm is initially
invoked with cSize=0 and pId=1, while the location l is the root of the input XML
tree t = (σ, l). Also, PP is Down({PPQ}), the alignment of the initial partitioning
path for the iterative query Q to execute, while τ is Down(τQ), the alignment of
the projector τQ of the query Q (see Definition 5.4.1) . The store σ is assumed to
be a global parameter.

In the algorithm, the function PartLabel (σ; pId ) produces a new store obtained
from σ by renaming each location l to lpId . We will use PartLabel−1(σ′) to undo
the renaming in the store σ′.

The algorithm distinguishes among three main cases. In the first case (lines
3-10), the current node is an element node being a terminal match for the initial
partitioning path PP . In this case, our projection algorithm is called to compute the
projection of the subtree rooted at this node together with its size. If no projection
algorithm is available, Projection(σ; l; τ ′) just returns the input subtree and its size.
Then (lines 7-10) the algorithm adds the resulting subtree to the current part, and
checks whether the size of the projected subtree plus the current size does not exceed
the maximal size: if the check is positive, then the current size is incremented with
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Algorithm 2: Partition

Input: A location l∈dom(σ), a partitioning path-set PP , a projector τ , a part size

cSize, a part number pId ;

Output: A store σP, a part size cSize ′ , part number pId ′ ;

1 begin

2 let σ(l) = a[L]

/* Case 1. l is a PP target node */

3 if Res(a;PP) = <−; ok_t> then

4 τ ′:= Res(a; τ);

5 (σ′, Size):= Projection(σ; l; Down(τ ′)); /* projection always keeps

node l in σ′ */

6 σP:= PartLabel (σ′; pId);

7 if cSize + Size ≤ maxSize then

8 cSize ′:= cSize + Size; pId ′:= pId

9 else

10 cSize ′:= 0; pId ′:= pId + 1

/* Case 2. l is not a PP target node */

11 if Res(a;PP) = <PP ′; ok_nt> then

12 pIdfirst:= pId ; σtemp:= ∅;

13 cSizetemp:= cSize + 2.length(a);

14 τ ′:= Res(a; τ);

15 let L = (l1, l2, · · · , ln);
16 for i = 1...n do

17 (σP
i ; cSizetemp; pId):= PartProj (li,Down(PP ′),Down(τ ′), cSizetemp, pId);

18 σtemp:= σtemp ∪ σP
i ;

19 if σtemp = ∅ then

20 cSize ′:= cSize

/* no descendant of the current node l is added in the

partition */

21 else

22 cSize ′:= cSizetemp;

/* Max-Pid returns the biggest part number used in the store

*/

23 pId last:= Max-Pid(σtemp);

24 D:= dom(σtemp);

25 σP:= σP ∪ σtemp;

26 for p = pIdfirst...pId last do

27 σP:= σP ∪ {(lp←a[rename−extr(L, p,D)])}

28 pId ′:= pId ;

/* Case 3. l does not match PP */

29 else if Res(a; τ) = <−; fail> then

30 σP:= ∅; cSize ′:= cSize; pId ′:= pId

31 return (σP, cSize ′,pId ′)



74 Chapter 5. Partitioning and Projecting XML Documents

the projection size Size, otherwise the current size is reset to 0 and a new (empty)
part is created (this empty part will be filled in subsequent steps of the processing).

In the second case (lines 11-28), the current l node is a possible non-terminal
match for the partitioning path PP . A temporary current size variable cSizetemp

registers the current size plus twice the length of the current tag (both start and
ending tags have to be taken into account). By considering cSizetemp as the current
size, the computation recursively goes on for each child li of the l node (lines 16-20).
For each li partitioning is made according to paths obtained by alignment of paths
resulted by residuation (line 17), and the resulting parts are kept in a temporary
store σtemp. Also, partitioning for each child node li is made according to the
current size and partition number produced by the partition process for the child
li−1.

Once partitioning for all children is done, the resulting store σtemp is checked for

emptiness (line 19). If the store is empty, then the current node l is not deemed as a
non-terminal match as it has no descendant being a terminal match. Hence, the node
does not contribute to the current part (it is pruned out), and the output current
size is set to the input current size; note that in this case the input part identifier
pId is unchanged. Otherwise (lines 21-27), the current partition and size have to
be updated. The output current size is set to cSizetemp (line 22), registering the
current size of the current part or, eventually, the last part created while processing
children li. After this (lines 23-25), the current partition σP is enriched with σtemp

and (lines 26-27) with elements for the current location l indexed by all new part
numbers pId j’s produced while processing li’s subtrees (recall that for a child li more
than one part could be created). In this case l has to be indexed accordingly. To this
end, the algorithm uses a function rename−extr(L, p,D) which takes as input the
sequence L of children locations, a part identifier p, and the domain D=dom(σP )

of the created sub-partition. The role of the function rename−extr(L, p,D) is to
extract the sub-sequence of L used to create the part p in σP , and to adorn with p

each location in this sub-sequence. Formally, we have:

rename−extr(L, p,D) =















() if L = ()

lpi , rename−extr(L′, p,D) if L = li, L
′ and lpi∈D

rename−extr(L′, p,D) if L = li, L
′ and lpi /∈D

For instance, if the current node of the case is l → a[l1, l2, l3] and for subtrees
rooted at l1, l2 data are put in part 3, while for the subtree rooted at l3 data are
put/split in two parts 4, 5, then the renaming extraction produces l31, l

3
2 and l43 and

l53.

Finally, the third case (lines 29-30) applies when the current node does not match
the partitioning path, hence the algorithm produces an empty part, and preserves
the current part size and number.
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a l1

b l2

c l8 c l9

b l3

c l10

”coco” l21

d l11 c l12

f l4

d l13 d l14

”gogo” l22

b l5

g l15 c l16

”tata” l23

f l6

d l17 e l18

g l7

b l19

c l24

f l20

d l25

Figure 5.10: An input XML tree t .

5.5.2 Dealing with a Workload

A nice property of our projecting-partitioning system is that it can deal with a
workload formed by queries Q1, . . . ,Qn in a natural way. To this end, it suffices to
consider a global projector τ = ∪n1τi and set of partitioning paths PP = ∪n1{ PP i}

where τi and PP i are, respectively, the projector and the partitioning path of Qi.

This follows from the fact that our system is already specified to deal with a
set PP (recall that Down() produces set of paths in the presence of dos axis). So,
with PP = ∪n1{ PP i} the partition is made in terms of nodes matching at least one
of the paths PP i’s, and the corresponding subtrees are projected by means of the
global projector τ keeping into account the data needs of the whole workload.

To illustrate the effectiveness of our projecting-partitioning algorithm with work-
load (described above). Example 6 explains, in details, how to deal with a workload
formed by two iterative updates.

Example 6 Consider the following iterative queries on the XML document t illus-
trated in Figure 5.10:

Q1 = for $x in /child :: a/child :: b return $x/child :: c

Q2 = for $y in /child :: a/child :: f return $y/child :: d

Since that we have two independent queries, two different stores (σ1, σ2) will
be created to specify a projection for each query during the process. According to
Definition 5.4.1 and by using the function E () to extract paths from Q1 and Q2, we
have the following distinct projectors:

τ1 = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c/dos :: node()}

τ2 = {/child :: a, /child :: a/child :: f, /child :: a/child :: f/child :: d/dos :: node()}

Depending on the above described projectors, two projected trees t
′

Q1
and t

′

Q2

can be created by using path information in the projectors, along the lines of stan-
dard path-based projection [MS03]. As it can be seen, each projected tree contains
element nodes that are sufficient to evaluate its query, as illustrated in Figure 5.11.
Both sets of dom(t

′

Q1
),dom(t

′

Q2
) will contain only the following locations :

dom(t
′

Q1
) = {l1, l2, l3, l5, l8, l9, l10, l12, l16, l21, l23}

dom(t
′

Q2
) = {l1, l4, l6, l13, l14, l17, l22}
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a l1

b l2

c l8 c l9

b l3

c l10

”coco” l21

c l12

b l5

c l16

”tata” l23

a l1

f l4

d l13 d l14

”gogo” l22

f l6

d l17

Standard projected t
′

Q1
Standard projected t

′

Q2

Figure 5.11: Standard projections t
′

Q1
, t

′

Q2
XML trees created from the input t .

If, just to illustrate, we assume that trees whose size is bigger than 12 cannot be
loaded for query processing (we assume that the size is in terms of characters) then
we have that Q1 cannot be evaluated on the projection t

′

Q1
illustrated in Figure 5.11.

Here, we need partitioning for query evaluation. According to Definition 5.3.3, we
have that the partitioning path for Q1 is PP=/child :: a/child :: b. A safe choice
for the threshold value is maxSize = 10.

a l1
1

b l1
2

c l1
8 c l1

9

b l1
3

c l1
10

”coco” l1
21

a l2
1

b l2
3

c l2
12

b l2
5

c l2
16

”tata” l2
23

a l1

f l4

d l13 d l14

”gogo” l22

f l6

d l17

Projected part t1
′

Q1
Projected part t2

′

Q1
Standard projection t

′

Q2

Figure 5.12: Partitioning scenario on t for a given iterative query Q1.

Figure 5.12 shows the two parts created by partitioning (and projection). In
particular, the new store σP

Q1
contains the following indexed locations:

dom(σP
Q1

) = {l11, l12, l18, l19, l13, l110, l121, l21, l23, l212, l25, l216, l223}

After finishing the partitioning process (described above), we can evaluate Q1

on the two parts and obtain the final result by simply concatenating the two partial
results in the obvious order.

Now, suppose that we want to evaluate a workload W = {Q1, Q2} on the same
XML tree t presented in Figure 5.10. By using standard projection, [MS03] propose
to consider a global projection for evaluating all queries. So we need to create a
global projection of t by considering the global projector τW={τ1, τ2}, as illustrated
in Figure 5.13:

τW = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c/dos :: node(),

/child :: a, /child :: a/child :: f, /child :: a/child :: f/child :: d/dos :: node()}

According to previous assumptions, we have once again that the global projection
does not fit in the memory. Fortunately, our technique adapts gracefully to the case
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a l1

b l2

c l8 c l9

b l3
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”coco” l21
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”gogo” l22

b l5

c l16
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Figure 5.13: Global projection t ′ for the workload (Q1,Q2).

of a workload, and this allows us to overcome the problem, as follows. We use the
following set of partitioning paths ∪n1{ PP i} extracted from Qi, for i = 1, 2. In
particular, PPW={PP1, PP2} where

PP1 = /child :: a/child :: b

PP2 = /child :: a/child :: f

Figure 5.14 illustrates the global partitioning which is capable to satisfy the
query needs of the entire workload.

a l1
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b l1
2

c l1
8 c l1

9

b l1
3

c l1
10

”coco” l1
21

a l2
1

b l2
3

c l2
12

f l2
4

d l2
13 d l2

14

”gogo” l2
22

a l3
1

b l3
5

c l3
16

”tata” l3
23

f l3
6

d l3
17

Projected part t
′

1 Projected part t
′

2 Projected part t
′

3

Figure 5.14: Partitioning scenario on the global projection t ′ of workload (Q1,Q2).

�

In the above examples, we have that each single created pat has a size which is
less than maxSize. According to our partitioning algorithm, this is not always the
case: it may happen a part creation ends as soon as its size exceeds the threshold.

Soundness of partitioning is stated by the following theorem, using the notation
Parti(σ

P) to indicate the i-th part σi in the partition σP: formally σi = {li ←

a[L] | li ← a[L] ∈ σP}.

Theorem 5.5.1 (Soundness of Partition and Projection) Let maxSize be a

size threshold value, let Q1, . . . ,Qm be well-formed queries with their resp. projector

τj and partitioning path PPj . Let t=(σ, lt ) be an XML tree. Then:

Assuming

• τ= ∪m1 τj,

• PP= ∪m1 {PP j} and
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• Part(lt ;Down(τ);Down(PP); 0; 1) = (σP; cSize; pId).

we have:

Qj(t) ∼= Qj(t1) · . . . ·Qj(tpId )

where ti=PartLabel−1(Parti(σ
P )).

5.6 streaming implementation

We implemented our partitioning algorithm in a streaming fashion on top of a SAX
parser [ver00]. In our implementation, we considered the following SAX events:

SAXEvent := startDocument called at the start of the input document

| startElement(qName) called at the open-tag of the current qName

| endElement(qName) called at the close-tag of the current qName

| Characters(String) called to process the text-contents

of the current qName

In our SAX implementation of partitioning we used four main stack-based data
structures (see lines 3-5 of Algorithm 3).

These stacks are used to record the current status of the algorithm when an open-
tag is met, so that the status can be recovered when the corresponding close-tag is
met.

• The first stack stacktag is used to record open tag-name of the node qName

being processed, the result of the residuation of Res(qName;PP), the modal-
ity value (which is either part or proj, it will be explained later), a boolean
flag isStored , which is set to true only when the open-tag has been written in
the current part.

• The second stack stackτ is used to record all alignment results of the projector
path-set.

• The third stack stackpp records alignment results of the partitioning path-set.

The implementation also tracks some global values in the following variables:

• cSize, the size of the current part.

• pId , the current number of created parts.

• τ , the projector.

• PP , the partitioning path set.

• Size, the size of the XML subtree nodes rooted at the node matching PP .
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By using this status information, we can split the projection-partitioning al-
gorithm in two distinct procedures, which are executed when startElement and
endElement are invoked, respectively.

Before starting the processing, our algorithm takes the following inputs (see
Algorithm 3):

• the input XML document t .

• the set of extracted paths τ and the set of partitioning path PP extracted
from an iterative query Q .

• the threshold integer value maxSize.

and it is initially invoked with cSize=0 and pId=1 (line 2 of Algorithm 3). Also,
all data structures needed to perform the partitioning stacktag , stackτ and stackpp

will be initialized.

Algorithm 3: Projection/Partition-Init-DataStructure

Input: An input XML document t , a pre-defined integer value maxSize; a set of

paths τ extracted from a given query Q , a partitioning path PP ;

Output: Initialize global variables cSize, pId , and three stack-based data structures

stacktag, stackτ and stackpp ;

1 begin

2 cSize:= 0; pId := 1

3 stacktag:= ()

4 stackτ := ()

5 stackpp := ()

Algorithm 4: SAX-startDocument

Input: A projector τ , a partitioning path PP , a flag Modality ;

Output: Side effect on τ , PP and Modality ;

1 begin

2 τ := Down(τ)

3 PP := Down(PP)

4 Modality := part

Both startElement and endElement algorithms work in two possible modalities,
the partitioning modality (part) and the projection modality (proj). The first one
concerns the case that the current node is either a (possible) non-terminal match
or a terminal match of a partitioning path in PP . Under this modality the algo-
rithms implement the specification reported in the DOM-based Algorithm 2). The
second possible modality captures the case where the current node belongs to a
subtree rooted at terminal node of a partitioning path. Under this modality, the
two algorithms implement the projection as given by Algorithm 1.



80 Chapter 5. Partitioning and Projecting XML Documents

Algorithm 5: SAX-characters

Input: A string value str, current part size cSize

Output: Side effect on the current part size cSize

1 begin

2 MATCH:= Res(str; τ)

3 if MATCH 6=fail then

4 cSize:= cSize + length(str)

5 writeOutput(str)

In startDocument event (Algorithm 4), the algorithm performs the first align-
ment Down(τ) of the projector τ and the first alignment of the partitioning path PP

(see lines 2-4), then it initializes the Modality flag with part, which is the starting
modality of our algorithm; projection starts when a target path of a partitioning
path is met.

In startElement (see Algorithm 6), we put most of the logic of the DOM-based
specification partitioning and projection algorithms (Algorithms 1 and 2): indeed,
all partitioning and projection decisions are based on information that is available
when an open tag is met. Concerning the partitioning modality (lines 2-26), we
put here the updates of Size and cSize, as well as the residuation and alignment
of the current partitioning path PP (line 3), but we defer partitioning decisions
to endElement calls. Concerning the projection modality (lines 27-49), we put
here residuation of the current projector τ (line 28), the resulting case analysis to
decide whether the current node has to be projected, and alignment of the path-set
projector to the next level.

In endElement (see Algorithm 7), we first perform a pop operation on the stack
stackτ (line 2) and obtain information stored in the following variables (lines 3-5):
MATCH is the current match value, currModality is the current working modality,
and currStoredCase is the current storing status of the current qName into the
output. If currStoredCase = false then the algorithm simply terminates the close-
tag corresponds to the open-tag not stored in the partitioning.

If information got from the stack tell us that we are in the partitioning modality
and the current storing case currStoredCase=true, then we make the following
case analysis on the MATCH information relative to the current close-tag, and got
from the stacktag (lines 6-30).

In the case the current closing-tag is for a non-terminal match of partitioning
paths (MATCH=ok_nt) (lines 7-10), we increase the current part size cSize with
length(qName); write the current qName into the current part; and finally pop the
top element of stackpp .

If the current closing-tag is for a terminal match of a partitioning path
(MATCH=ok_t) (lines 11-30) then a projection phase comes to its end. So we
change the Modality flag to part (line 12); compare the current part size cSize plus
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Algorithm 6: SAX-startElement
Input: Open-tag qName, a part number pId , a part size cSize;
Output: Side effect on cSize and Size, Modality , τ and PP ;

1 begin

/* qName is in the partitioning modality case */

2 if Modality=part then

3 MATCH:= Res(qName;PP)
4 switch MATCH do

5 case ok_nt
/* Case 1. qName is non-terminal PP node */

6 stacktag.add(qName, ok_nt, part, false)
7 τ := stackτ .add(Down(τ))
8 PP := stackpp .add(Down(PP))

9 case ok_t
/* Case 2. qName is a terminal PP node */

10 for i=[0..(stacktag.size− 1)] do

11 ancestTrNode_tagname:= stacktag(i).get(0)
12 ancestTrNode_isStored:= stacktag(i).get(3)
13 if ancestTrNode_isStored=false then

14 stacktag(i).set(3):= true
15 writeOutput(ancestTrNode_tagname)
16 cSize:= cSize + length(ancestTrNode_tagname)

17 else if ancestTrNode_isStored=true then

18 SkipElement_stacktag(i)

19 stacktag.add(qName, ok_t, part, true)
20 τ := stackτ .add(Down(τ))
21 PP := stackpp .add(Down(PP))
22 cSize:= cSize + length(qName)
23 writeOutput(qName)
24 Modality := proj

25 case fail
/* Case 3. qName does not match PP */

26 stacktag.add(qName, fail, part, false)

/* qName is in the projection modality */

27 else if Modality=proj then

28 MATCHτ := Res(qName; τ)
29 switch MATCH do

30 case ok_nt
/* Case 1. qName is non-terminal τ node */

31 stacktag.add(qName, ok_nt, proj, false)
32 τ := stackτ .add(Down(τ))
33 Size:= Size + length(qName)

34 case ok_t
/* Case 2. qName is terminal τ node */

35 for i=[0..(stacktag.size− 1)] do

36 ancestTrNode_tagname:= stacktag(i).get(0)
37 ancestTrNode_isStored:= stacktag(i).get(3)
38 if ancestTrNode_isStored=false then

/* Switch flag isStored to true value to write the current

element stack into the current part t
′

pId
*/

39 stacktag(i).set(3):= true
40 writeOutput(ancestTrNode_tagname)
41 cSize:= cSize + length(ancestTrNode_tagname)

42 else if ancestTrNode_isStored=true then

43 SkipElement_stacktag(i)

44 stacktag.add(qName, ok_t, proj, true)
45 τ := stackτ .add(Down(τ))
46 Size:= Size + length(qName)
47 writeOutput(qName)

48 case fail
/* Case 3. qName does not match τ */

49 stacktag.add(qName, fail, proj, false)
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Algorithm 7: SAX-endElement

Input: Close-tag qName, part size cSize, projection size Size, part number pId ;

Output: Side effect on cSize, pId , τ , PP Modality ;

1 begin

/* Pop the top element from stacktag and keep match, currModality,

currStoredCase values */

2 τ := stackτ .pop

3 MATCH:= stacktag.pop(stacktag(top).get(1))

4 currModality:= stacktag.pop(stacktag(top).get(2))

5 currStoredCase:= stacktag.pop(stacktag(top).get(3))

6 if currModality=part and currStoredCase=true then

7 if MATCH=ok_nt then

8 cSize:= cSize + length(qName)

9 writeOutput(qName)

10 PP := stackpp .pop

11 else if MATCH=ok_t then

12 Modality := part

13 if cSize + Size ≤ maxSize then

14 cSize:= cSize + Size

15 writeOutput(qName)

16 else

/* Close current part t
′

pId */

17 writeOutput(qName)

18 for i=[(stacktag.size− 1)..0] do

19 currTagName:= stacktag(i).get(0)

20 currStored:= stacktag(i).get(3)

21 if currStored=true then

22 writeOutput(currTagName)

23 cSize:= 0; pId := pId + 1

/* Create new part t
′

pId */

24 for i=[0..(stacktag.size− 1)] do

25 currTagName:= stacktag(i).get(0)

26 currStored:= stacktag(i).get(3)

27 if currStored=true then

28 writeOutput(currTagName)

29 cSize:= cSize + length(qName)

30 PP := stackpp .pop

31 else if currModality=proj and currStoredCase=true then

32 if MATCH=ok_nt then

33 cSize:= cSize + length(qName)

34 writeOutput(qName)

35 else if MATCH=ok_t then

36 cSize:= cSize + length(qName)

37 writeOutput(qName)
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the projected subtree size Size with the maximal part size allowed maxSize (line
13), and create a new part if the size the current part has exceeded maxSize. The
creation of a new part requires one to iterate on the stack stacktag , close all the
open tags (lines 17-22); in this case the algorithm also resets cSize to 0 and increase
the part number pId by 1 (line 23); then reopen the same tags in reversal order in
the new part and increase cSize with the length of each tag length(currTagName)

for each reopened tag (lines 24-28). At the end of both cases, we increase the cur-
rent part size with length(qName) (line 29), then we pop the top element from the
stackpp (line 30).

Going back to the case analysis on the modality got from the stack at the
beginning of the algorithm, the remaining case is that of the projection modality.
If currStoredCase=false nothing happens. Otherwise, if currStoredCase=true

then we make a case analysis on the MATCH value (lines 31-37).

In the case of the current closing-tag being a non-terminal match for the projector
path-set (MATCH=ok_nt), we increase the current size cSize with the length of
close-tag qName length(qName), and write it into the current part (lines 32-34).

If the current closing-tag is a terminal match τ (MATCH=ok_t), we increase
the current size cSize with the length of this close-tag length(qName), and write it
into the current part (lines 35-37).

In Characters event (see Algorithm 5), we only increase the current part size
cSize with the length of the text-content str of the current node qName and write
it into the current part.

To illustrate how the streaming projection-partitioning algorithms works, we will
use the following example.

Example 7 Consider the following iterative query Q :

Q = for $x in /child :: doc/child :: a/child :: b return $x/child :: c

and the input XML document t reported in Figure 5.15 where we assume
maxSize=12, and we have the following partitioning path PP and the following
projector τ :

PP = {/child :: doc/child :: a/child :: b}
τ = {/child :: doc, /child :: doc/child :: a, /child :: doc/child :: a/child :: b,

/child :: doc/child :: a/child :: b/child :: c}

For our example, the processing starts with Down(τ), Down(PP) and in par-
titioning modality. When the open tag <doc> (see Figure 5.16) is met, the algo-
rithm performs a residuation on this tag and current partitioning path-set. We have
MATCH=ok_nt meaning that the current qName is a possible non-terminal match
for the partitioning path-set (but it is not a target node). In this case, the algorithm
adds the record [doc,ok_nt,part,false] at the top of stacktag. The same process
repeats for the next open-tag <a> which is non-terminal node for the partitioning
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Input document t Projected Part t ′1 Projected Part t ′2
<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

<doc>

<a>

<b>

<c></c>

</b></a>

</doc>

Figure 5.15: An input document t and its projected parts t ′1, t
′
2.

path-set. So the record [a,ok_nt,part,false] is added at the top of stacktag (see
Figure 5.17).

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[doc,ok_nt,part,false]

PP = {/child :: a/child :: b}
τ = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c}

Figure 5.16: Projection-partitioning processing: the current open-tag is <doc>.

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[a,ok_nt,part,false]

[doc,ok_nt,part,false]

PP = {/child :: b}
τ = {/child :: b, /child :: b/child :: c}

Figure 5.17: Projection-partitioning processing: the current open-tag is <a>.

The next event is for the open-tag <b> which residuation deems as a PP terminal
node. Here the algorithm visits the whole stack stacktag to write all ancestors open-
tag relative to non-terminal matches and whose isStored value is false into the
current part t ′1. For each written open-tag the corresponding isStored value is set
to true, and the whole record is kept into stacktag . Also, the size of each stored
open-tag is added to the current size cSize. Then we write the current open tag <b>

into the current part t ′1 and add the following [b,ok_t,part,true] at the top of
stacktag. We then perform a new path alignment on both partitioning and projector
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path-sets and put them in the corresponding stacks. Finally, we set Modality=proj

to indicate that a projection phase begins for the subtree rooted at the current <b>
node. Figure 5.18 illustrates some effects of previous steps.

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[b,okt,part,true]

[a,ok_nt,part,true]

[doc,ok_nt,part,true]

PP = {−} ; cSize = 3
τ = {/child :: c}

Figure 5.18: Projection-partitioning processing: the current open-tag is <b>.

The algorithm then goes to current qName which is <c> and deemed by
residuation as a terminal τ node. Here the algorithm will keep the record
[c,ok_t,proj,true] at the top of stacktag ; write the current tag into the current
part t ′1; performs Down(τ) and keep the result in stackτ ; increase the projection
size Size with the length(c). Effects are illustrated in Figure 5.19.

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[c,okt,proj,true]

[b,okt,part,true]

[a,ok_nt,part,true]

[doc,ok_nt,part,true]

PP = {−} ; cSize = 4
τ = {−}

Figure 5.19: Projection-partitioning processing: the current open-tag is <c>.

Now we have the close-tag </c>. Here the algorithm performs the following
tasks: pop the top element of stacktag and keep [c,okt,proj,true] in the fol-
lowing variables currTag,MATCH, currModality, currStoredCase values; pop the
top element of stackτ . Then the algorithm checks values for currModality and
currStoredCase. In the current case, we have proj and true. The process is in
projection modality so it increases the current part size cSize with length(</c>),
and writes the close-tag </c> into the current part t ′1. Effects are illustrated in
Figure 5.20.

Then the process goes to the next qName which is </b>. the algorithm
pops the top element of stacktag. Here we have a close-tag of a PP target node
(MATCH=ok_t, currModality=part and currStoredCase=true). In this case the
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Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[b,okt,part,true]

[a,ok_nt,part,true]

[doc,ok_nt,part,true]

PP = {−} ; cSize = 5
τ = {/child :: c}

Figure 5.20: Projection-partitioning processing: the current close-tag is </c>.

algorithm will perform the following tasks: increase the current part size cSize with
length(qName); pop the top element of stackpp ; put Modality=part to declare that
the parsing of the current target node subtree is finished. Then the algorithm checks
whether the current size cSize plus the projection size Size exceed the maximal size
maxSize ; this is not the case (current size is 6), so the algorithm add Size to the
current cSize, and write the current close-tag </b> into the current part t ′1, then go
to the next qName </a>. Effects are illustrated in Figure 5.21.

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[a,ok_nt,part,true]

[doc,ok_nt,part,true]

PP = {/child :: b} ; cSize = 6
τ = {/child :: b, /child :: b/child :: c}

Figure 5.21: Projection-partitioning processing: the current close-tag is </b>.

Now we have qName </a> and [a,ok_nt,part,true] the top element
of stacktag . Here we have a non-terminal PP node (MATCH=ok_nt and
currModality=part), so the algorithm will increase cSize with length(qName);
write it in the current part t ′1; and finally pop the top element from stackpp , and
then goes to the next node (see Figure 5.22).

The process parses an open tag <a> and repeats the same previous treatment. It
pushes [a,ok_nt,part,false] on the stacktag, then goes to the next node, whose
qName is <f> which does not match PP . Here the algorithm prunes out this qName

and does not write it into the current part t ′1, also no path alignments will be done.
It only keeps the following values [f,fail,part,false] at the top of stacktag, and
the current size cSize does not increase. The algorithm continues in the same way for
the next node <c>, performs the same previous treatment and prune it out. The only
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Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[doc,ok_nt,part,true]

PP = {/child :: a/child :: b} ; cSize = 7
τ = {/child :: a/child :: b, /child :: a/child :: b/child :: c}

Figure 5.22: Projection-partitioning processing: the current close-tag is </a>.

thing that the algorithm will do is to add the following record [c,fail,part,false]

at the top of stacktag. Effects are illustrated in Figure 5.23.

Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[c,fail,part,false]

[f,fail,part,false]

[a,ok_nt,part,false]

[doc,ok_nt,part,true]

PP = {/child :: b}
τ = {/child :: b, /child :: b/child :: c}

Figure 5.23: Projection-partitioning processing for parsing the subtree <a><f><c>.

As illustrated in Figure 5.24, for the following nodes </c></f></a>, the algo-
rithm just delete their information from stacktag and ignore writing them in the
current part t ′1, because their relative open-tags did not match PP (their σ value is
false).

The process continues in the same way for the nodes <a><b><c>to</c> until
reading the close-tag of the target node </b>, here the algorithm checks if the current
size cSize plus the projection size Size is more than the maximal size maxSize=12.
In our case this check is positive, so the algorithm here close all open tags stacktag ,
in backward order, in the current part t ′1, reset cSize to the value 0, and increase
pId with 1 to become 2 in our example. Then the algorithm starts a new part t ′2,
flushes open-tags in stacktag in the new part, according to document order. Effects
are shown in Figure 5.25).

Next steps of the process are similar. The process ends up with two different
projected parts t ′1 and t ′2, each one contains only nodes that are sufficient to evaluate
Q , as illustrated in Figure 5.26.

�
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Input document Projected Part stacktag
t t ′1 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><b>

<c>co</c>

</b></a>

</doc>

[doc,ok_nt,part,true]

PP = {/child :: a/child :: b}
τ = {/child :: a/child :: b, /child :: a/child :: b/child :: c}

Figure 5.24: Projection-partitioning processing for parsing the following close-tags
</c></f></a>.

Input document Projected Part Projected Part stacktag
t t ′1 t ′2 [qName,MATCH,Modality ,isStored ]

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b>

<c></c>

</b></a>

<a><b>

<c>to</c>

</b></a>

</doc>

<doc>

<a>

[a,ok_nt,part,false]

[doc,ok_nt,part,true]

PP = {/child :: b} ; cSize = 14 ≥ maxSize

τ = {/child :: b, /child :: b/child :: c}

Figure 5.25: Parsing the subtree <a><b><c>to</c></b></a>, and create a new pro-
jected part t ′2.

After generating the projected parts, we evaluate our iterative query Q on each
part t

′

i ’s to obtain the results Q(t
′

i )’s, and we use a simple concatenation to merge
all partial results, to produce the final result Q(t), where: Q(t)=Q(t ′1).Q(t ′2).

5.7 experimental evaluation

In the previous sections, we described a novel XML data partitioning scheme that,
given a query Q and an input document t , partitions t in a set of fragments
{t1, . . . , tκ} so that Q(t) is equivalent to the concatenation of Q(t1), . . . , Q(tκ).
When this partitioning scheme is applicable, it can improve the scalability of exist-
ing main-memory engines, as it allows the system to process one part at time.

In this section we present an experimental evaluation of the proposed approach.
We will first show that the proposed algorithm significantly improves the scalability
of a popular main-memory query engine. Then, we will show that partitioning,
when combined with a projection algorithm, introduces little overhead with respect
to the projection algorithm. Finally, we will experimentally analyze the relation
between the overall performance of the system and the actual value of maxSize (the
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Input document t Projected Part t ′1 Projected Part t ′2
<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b><c>to</c></b></a>

<a><f><d>go</d></f></a>

<a><b><c></c></b></a>

</doc>

<doc>

<a><b><c></c></b></a>

<a><f><c></c></f></a>

<a><b>

<c>to</c>

</b></a>

</doc>

<doc>

<a><f><d>go</d></f></a>

<a>

<b>

<c></c>

</b></a>

</doc>

Figure 5.26: Final projected parts t ′1, t
′
2 produced by projection+partitioning algo-

rithm.

maximum part size).

5.7.1 Experimental Setup

We implemented our partitioning algorithm, as well as a standard path-based pro-
jection algorithm, in Java 6 and tested their behavior on the XMark benchmark
[SWK+02a]. In particular, we evaluated our system on XMark documents by rely-
ing on two widely used XQuery engines, Saxon [sax] and Qizx [qiz]. While Saxon is
an engine supporting all main W3C standards for XML manipulation and schema
validation, Qizx is specialized on querying and updating, and offers powerful op-
timization techniques. However, we will see that even with the use of standard
path-based projection, these systems do not scale up in terms of document size
(other powerful systems like BaseX [bas] have quite similar performances). Our test
results show that our technique overcome this limitation for iterative queries, as it
allows these engines to scale up to arbitrary document sizes.

All experiments were performed on a 2.53 Ghz Intel Core 2 Duo machine (4 GB
main memory) running Mac OSX 10.6.8. All XML documents were loaded on an
external USB2 7200 rpm 1 TB disk unit.

To avoid the perturbations introduced by system activity, we ran each experi-
ment ten times, discarded the best and the worst performance, and computed the
average of the remaining results.

5.7.2 Tests Results

We used documents whose size ranges from 1GB to 5GB for Saxon and from 1GB to
9GB for Qizx. Concerning the threshold value maxSize , we set (∼ 25MB) for Saxon,
and (∼ 95.36 MB) for Qizx. These differences in terms of memory and part sizes
are due to differences of performance between the two engines in terms of memory
management. For both Saxon and Qizx we allocated 512MBs for main memory of
the Java Virtual Machine.

Concerning queries, we considered XMark queries Q1−Q5, Q10, Q14−Q20, (see
Section A.1 of Appendix A) which form the iterative core of XMark [SWK+02a].
Also, we wrote the following three new XMark queries (N1, N2 and N3):
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N1 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//item

where $i/location/text() = ”UnitedStates”

return

<itemInfo name ="$i/name/text()">

<paymentWay>$i/payment/text()</paymentWay>

<shippingWay>$i/shipping/text()</shippingWay>

<moreInfo>$i/description</moreInfo>

<mailboxInfo>$i/mailbox</mailboxInfo>

</itemInfo>

N2 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//description

where contains(string(exactly-one($i)), "gold")
return $i/node()

N3 = let $auction := doc(”xmark.xml”) return

for $i in $auction/site//item

where empty($i/payment/text())

return

<item id="$i/@id" name="$i/name/text()" location="$i/location/text()">

{$i/description, $i/mailbox}

</item>

and two queries (D1,D2) to be evaluated on a 800MB DBLP document [ver11]:

D1 = let $auction := doc(”dblp.xml”) return

for $a in $auction/dblp//author

return

<AuthorName> {$a/text()} </AuthorName>

D2 = let $auction := doc(”dblp.xml”) return

for $a in $auction/dblp/node()

return

<item>{$a/author, $a/title, $a/booktitle, $a/year}</item>

5.7.3 Experiments

In our first experiment we evaluate and compare scalability of both Saxon and
Qizx. We consider a 1GB document and a 5GB document for Saxon, and 2GB
and 9GB for Qizx test. For each document and for each query, we compare total
execution time obtained with only projection with that obtained with partitioning
(and projection). Total execution time includes the overall time required by the
system to partition and/or project the input document, to evaluate the input query
on the projection/partition, and (in the case of partitioning) to concatenate the final
results.
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Figure 5.27: Projection vs partitioning+projection - with input document 1GB -
using Saxon.

We first comment on results obtained by using Saxon. When projection only is
used, this system starts showing limitations even for a 1GB document, for which
queries Q10 and Q14 could not be executed due to memory failure. As shown in Fig-
ure 5.27, our partitioning technique enables execution of all XMark iterative queries,
with no overhead (absence of overhead is due to the combination of projection and
partitioning).

As illustrated in Figure 5.28, for the 5GB document, improvements of our par-
titioning technique are substantial: 8 queries could not be executed with only pro-
jection, while all queries are executed by means of partitioning.

Figure 5.29 reports execution times obtained with Saxon and partitioning, for
all considered document size. As shown by the figure, our technique scales up and
has a linear behavior.

input in GB 1 2 3 4 5

proj in GB 593.92 MB 0.98 1.48 1.97 2.50

Table 5.3: Global projections size.

Concerning Saxon, we also compared projection vs partitioning for a workload
comprising all XMark iterative queries. Actually we performed this experiment
by using a global projection, containing all paths extracted from XMark iterative
queries, and starting from 1GB until 5GB. By using only projection, already for a
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Figure 5.28: Projection vs partitioning+projection - with input document 5GB -
using Saxon.

Figure 5.29: Scalability of the partitioning approach - using Saxon.

1GB document we could not run the workload as the projected document was too
large for Saxon. Table 5.3 illustrates the size of these global projected documents.
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Fortunately, by using our partitioning technique, we were able to run the workload
for each size, as illustrated in Figure 5.30. Again, the technique features a linear
behavior.

Figure 5.30: Scalability of the partitioning approach: workload - using Saxon.

Figure 5.31: Projection vs partitioning - with input document 2GB - using Qizx.
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Figure 5.32: Scalability of the partitioning approach: workload - using Qizx.

Concerning Qizx, we performed the same kind of experiments. As already said,
Qizx is specialized on querying and updating, and this has permitted the adoption
of efficient document representation in main-memory. For a 2GB document, Qizx
does not exhibit any limitation with the use of projection. As can be seen in Figure
5.31, again no overhead is exhibited by our partitioning technique.

For the 9GB document, things are different, see Figure 5.33. Five queries could
not be executed with the sole use of projection. Instead, our partitioning technique
enabled the processing of all queries.

Results about scalability by using Qizx are reported in Figure 5.39. Again test
results show that our technique scales up with a linear behavior.

Concerning Qizx and scalability on the workload of XMark iterative queries,
results are reported in Figure 5.32. As the figure illustrates, partitioning scales up
without problems and still in a linear fashion. We repeated this experiment by using
projection only; however, we got no experimental results, as, even in the case of the
1GB document, the projected documents were too big to be handled by the query
engine.

5.7.4 Experiments on Queries {N1, N2, N3}, and {D1, D2}

In the previous chapter, we presented queries N1, N2 and N3 as examples of queries
requiring large projections of XMark documents. With the same aim, we also pre-
sented queries D1 and D2 over DBLP data.
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Figure 5.33: Projection vs partitioning - with input document 9GB - using Qizx.

Figure 5.34: Scalability of the partitioning approach - using Saxon.

Actually, we evaluate our partitioning/projection technique on the queries
N1, N2 and N3. We consider a 1GB document until 5GB document for Saxon
test. As illustrated in Figure 5.34, our partitioning technique enables executions of
these three queries with no overhead. It is worth noticing that these queries could
not be executed with only projection due to their large projected documents. As
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Figure 5.35: Projection vs partitioning - with input document 1GB - using Qizx.

Figure 5.36: Projection vs partitioning - with input document 2GB - using Qizx.

shown by the figure, our technique scales up and has a linear behavior.

We repeat the same kind of previous experiments for our queries N1, N2, N3 with
Qizx. As illustrated in Figure 5.35, for a 1GB document Qizx does not exhibit any
limitation with the use of only projection, but query evaluation with partitioning
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resulted much faster. This can be explained by the fact that handling a big pro-
jection entails some overhead which disappears when handling small parts. For the
2GB document, the three queries could not be executed with the sole use of projec-
tion (see Figure 5.36). Instead, our technique enabled the processing of these three
queries. Tests results on scalability from 1GB to 5GB are illustrated in Figure 5.37.
The linear behavior previously observed is confirmed once again.

We then performed experiments on queries D1 and D2 on a 800MB DBPL
document, by using on Saxon and Qizx, Table 5.4 reports the results for both queries
by using projection only, and by using our partitioning/projection technique. In this
cases Qizx was able to process both queries with only projection, but Saxons failed.
With partitioning, Saxon was able to execute both queries.

Figure 5.37: Scalability of the partitioning approach - using Qizx.

Performance of the partitioning

approach on DBLP database

Query Total Time (sec) Total Time (sec)

with Saxon with Qizx

D1 249.23 208.47

D2 409.62 358.17

Table 5.4: Qizx and Saxon performances with the partitioning approach - on DBLP
database.
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In our final experiment we investigate the relationship between maxSize and
the processing time, i.e., the impact of different values of maxSize on the overall
performance of our approach. To this end, we evaluate all the queries in the iterative
core on the 4GB document and vary maxSize from 100000000 bytes to 700000000
bytes (∼ 668 MB). This kind of tests is quite time consuming, so we focused on
Qizx, but we expect similar results for Saxon (by considering smaller part sizes).

The results are shown in Figure 5.38. Surprisingly enough, we can observe that
the value of maxSize has no significant impact on the overall performance. This
could seem counter-intuitive, as bigger values of maxSize should decrease the total
number of bytes written to disk. Actually this test reveals that our technique can
be used even in contexts of high limitations concerning available memory. For such
a context, small maxSize values can be used without compromising performance.

5.7.5 Summing Up

To summarize, our experiments show that existing main-memory engines do not
scale with respect to document size. It is worth observing that this remains true even
for bigger sizes of the main-memory of the Java Virtual Machine. Bigger memory
would only imply a shift of the maximal document size that can be handled.

Instead, our experiments prove that the partitioning approach scales beautifully
and is only slightly slower than the projection approach. To make experiments
feasible in a reasonable time we considered 5GB and 9GB as the maximal size of
documents. However, since the maxSize can be tuned to fit in the available main
memory, we have that partitioning scales for arbitrary sizes.
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We also discovered that the actual value of maxSize has no significant impact on
the overall performance; this suggests that maxSize can be tuned by looking only
at available main-memory.

5.8 conclusion

In this chapter we presented a novel projection-partitioning technique for XML
document. This technique generalizes existing path-based approaches, and applies
to a large class of queries.

The proposed approach analyzes an input query and, if the query is iterative,
extracts all the relevant paths and uses them to project and partition the input
document. As shown in our experimental evaluation, by executing the input query
on each part and combining the partial results, existing main-memory query engines
can process an iterative query on very large input documents.

As each part can be queried independently by a distinct instance of the query en-
gine, we are currently investigating potential applications of the proposed approach
to cloud computing environments.
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Figure 5.39: Scalability of the partitioning approach - using Qizx.
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I
n this chapter, we present a partitioning technique for XQuery Update Facility
(XUF). As for queries, partitioning enables the treatment of large documents,

that could not be updated by using existing main-memory engines [qiz, exi, bas],
even by using the existing projection-based technique [BBC+11].

In this chapter, we characterize a class of updates, called iterative updates, for
which a partitioning-based evaluation is possible: first documents are partitioned,
then parts are updated independently, and finally updated parts are merged by
using a fusion operation in order to obtain the final updated document.

To recognize iterative updates we rely again on a path-based analysis. Extracted
paths will be also used for partitioning. Differently from queries, partitioning will not
rely on projection, and paths will be used to ensure that each part contains all that
is needed for each single update operation. Projection is not used in order to avoid
complex merge operations on updated parts, in order to recover pruned subtrees
when constructing the global updated document. Effectiveness of the proposed ap-
proach is shown by means of extensive experiments comparing our partitioning-based
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Figure 6.1: Partitioning update scenario.

approach with the projection-based one proposed in [BBC+11, MS03]. It is worth
mentioning that this last one is type-based, and is the only available projection-
based approach for updates.

The chapter is structured as follows. In Section 6.2, we introduce a few prelim-
inary notations about the update query language used in this approach, then we
provide our path extraction function. In Section 6.3, we formally describe iterative

updates. Next, in Section 6.4, we present our partitioning technique for iterative
updates, all formal definitions and DOM-based specifications of both partitioning
and fusion. In Section 6.5 we provide all streaming algorithms (partitioning and
fusion) used to perform our partitioning update scenario. The chapter ends with
test results in Section 6.6 and some conclusive remarks in Section 6.7.

6.1 Overview

In order to simplify the presentation and the formal treatment of our static analysis,
we focus on a particular class of simple XUF updates, SXUF for short. In a nutshell,
restrictions posed on the XUF fragment are the following ones. Only downward
XPath axes self , child and dos are allowed. Concerning update operations, source
and target expressions use a simple class of queries. These restrictions are mild
enough to capture a wide class of updates used in practice. More details will follow.
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The main steps of our partitioning scenario for an SXUF update U and an input
XML document t are the following ones:

❏ Path Extraction: We extract paths τ and target paths τap from an SXUF
update U .

❏ Static analysis: We use the sets of extracted paths τ, τap to check whether
the update U is iterative or not.

❏ Partitioning and Updating: If U is iterative, we use the partitioning tech-
nique to create several parts t1, t2, · · · , tκ. As for queries, partitioning is so
that each ti is a well-formed XML document. For optimization purposes, by
using information coming from target paths in U , the partitioning process also
flags those parts that do not need to be updated as they contain no target
node. We then update each part that needs to, and obtain the documents
t ′1, t

′
2, · · · , t

′
κ, where either t ′i = U (ti) or t ′i = ti (if this part is not to be up-

dated) for i = 1 . . . κ. For simplicity, in the formal treatment made in the
sequel we assume that each part is to be updated, while we will come back to
this assumption in Section 6.5, when discussing implementation issues.

❏ Fusion: After producing the updated parts, we use a fusion operation � to
concatenate them. During the fusion process, each U (ti) is processed in a
streaming fashion, one at a time.

Figure 6.1 illustrates the whole mechanism of our partitioning update scenario.

It is worth noticing that one of the contributions of this approach is to provide
streaming algorithms for performing partitioning and fusion. As already anticipated,
the partitioning process is able to flag parts that do not need to be updated, thus
saving time when updating only parts that need to.

6.2 preliminaries

6.2.1 Simple XQuery Update Facilities (SXUF)

The grammar of SXUF is illustrated in Figure 6.2. This language comprises for,
let and return clauses as well as if-then-else conditional statement. Also, SXUF
contains all elementary XUF update expressions (delete, insert, rename and replace).

The main restrictions behind SXUF are the following ones:

• All query paths P and target paths Ptg used in the syntax of SXUF language
obey the same grammars illustrated in Section 5.2 of Chapter 5, which we
recall below:
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Target Path Ptg ::= /P | x/P
Simple Query Qs ::= () | b | /P | x/P

| <a>Qs</a> | Qs,Qs

Target Position Pos ::= as first into | as last into

| before | after
Node Case N ::= node | nodes

Updates U ::= delete N Ptg {deletion}

| rename N Ptg as a {a is text-value}

| replace N Ptg with Qs {replacement}

| insert N Qs Pos Ptg {insertion}

| U ,U {sequence}

| if Q then U else U {conditional}

| for x in Q return U {iteration}

| let x := Q return U {let-binding}

Figure 6.2: Syntax of SXUF.

P ::= /Step | P/Step

Step ::= Axis :: NT

Axis ::= self | child | dos

NT ::= a | node() | text()

• Simple query expressions Qs, used as source expression for in replace/insert,
are only allowed to use element and sequence construction, plus path naviga-
tion to select nodes in the input document.

• Query expressions Q used in for/let and conditional updates can be any
query expression allowed by the query grammar presented in Figure 5.4 of
Chapter 5.

As already said, restrictions behind SXUF have the purpose of ensuring a smooth
formal characterization of iterative updates. At the same time, SXUF is expressive
enough to cover most of needs in practical scenario.

For instance, several update expressions used in W3C XQuery Update Facilities
1.0 [Gro11b] strictly respect the syntax of the SXUF language, while other updates
use function calls, conditions and arithmetic operations that are not supported by
our simple grammar. However, as we will illustrate, our approach can be easily
extended to deal with these mechanisms by means of simple query rewriting. As
another example, all update expressions used in [BBC+11] and in Marina Sahakyan’s
Thesis [Sah11] are SXUF updates. The syntax of these update expressions are
illustrated in Section A.3 of Appendix A.

Examples of SXUF expressions are below illustrated:
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U1 = delete nodes $doc/child :: a/child :: f

U2 = insert node <n/> as first into $doc/child :: a/child :: b

U3 = rename node $doc/child :: a/child :: f as ”new”

U4 = for $x in $doc/child :: a/child :: b

return insert node <m>”toto”</m> after $x

The following expressions are not SXUF updates:

U5 = insert node < new/ > after

$doc/child :: a/child :: f [last()]

U6 = for $x in $doc/child :: a/child :: f return

replace value of node $x/d with $x ∗ 100

In U5, the target Ptg makes use of the last() function not allowed by SXUF,
while in U6 the source expression contains an arithmetical expression $x∗100, again
not allowed by SXUF. However, these two updates can be easily rewritten into the
following ones.

U ′5 = for $x in $doc/child :: a/child :: f

return insert node < new/ > after $x

U ′6 = for $x in $doc/child :: a/child :: f return

replace value of node $x/d with $x

The rewriting is such that the iterative check and partitioning can be made in
terms of the rewritten update, while the original one is used for update evaluation on
the obtained partition. These simple rewritings can be easily lifted to the general
case, thus enabling the application of our technique to a wide class of updates
occurring in practice.

6.3 iterative updates

As already indicated, our update scenario is based on the idea of partitioning an
input document D for an update U into a collection of parts {D1,D2, · · · ,Dκ}, such
that the final update result U (D) on the document D equals to the concatenation
of all partial update results on each part Di produced by our partitioning strategy.
This concatenation is performed by using a fusion operator �, so that:

U (D) ∼= U (D1) � U (D2) � · · ·� U (Dκ) (6.1)
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Essentially, the fusion operator concatenates updated parts, by taking care of
considering only once nodes replicated in multiple parts by partitioning. We will give
later on details about formalization of its semantics and streaming implementation.

In order to apply partitioning, we have to be sure that a partitioning for the
input can be done so that Equation 6.1 can hold. This needs to be decided statically,
before activating the partitioning scenario. If an update meets this property (*) it
is called iterative.

Before providing a static analysis to recognize iterative updates, we see through
some examples why our partitioning update scenario can be used in some cases of
updates, while it is impossible to apply it in the other cases.

In the following, we are going to present three different kinds of updates: for
the first one (e.g., U8 and U9) any kind of partition works; for the second kind of
updates (e.g., U10), only some partitions are good; for the last one (e.g., U11 and
U12), no partition works.

We start the discussion with the first class. Figure 6.3 illustrates the XML
document t used as input for the following updates U8 and U9 used in examples.
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Figure 6.3: An XML document t and a possible partition.

U8 = delete nodes /child :: a/child :: f/child :: g

U9 = for $x in /child :: a/child :: f/child :: g

return insert node <n/> after $x

The first update U8 deletes g-nodes selected by the target path /child :: a/child ::

f/child :: g. By evaluating U8 on the input t , we get the update result U8(t) which
is reported in Figure 6.4.

Suppose that for the update U8, we consider the possible partition t1, t2 illus-
trated in Figure 6.3.

In order to ensure the possibility of distributing the update U8 on the partition
t1 and t2, the update result U8(t) must be equal to the concatenation of all partial
update results U8(ti)’s produced by evaluating U8 on each part ti. Actually this is
the case as illustrated in Figure 6.4.
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Another partition is illustrated in Figure 6.5 that also works with U8. Figure 6.6
illustrates the equivalence between the updated result U8(t) and the concatenation
of partial update results U8(t

′
1) � U8(t

′
2). Actually, the update U8 is such that its

execution can be spread over any possible partition.
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Figure 6.6: Equivalence between U8(t) and U8(t
′
1) � U8(t

′
2).

Now, let us consider the update U9 which inserts an empty new node <n/>

after each g-node (child of /child :: a/child :: f) in the same document t . By
evaluating U9 on t and on its partition t1 ,t2 proposed in Figure 6.3, we have that
the updated result U9(t) and the concatenation of the partial results U9(t1)�U9(t2)

are equivalent, as Figure 6.7 illustrates.

Also for the other partition (t ′1, t
′
2) proposed in Figure 6.5 for the same input

document t , Equation 6.1 holds for the update U9.

The update U8 meets the property (*) that ensures that each modification per-
formed by the update only depends on the current target node. The same property
is met by update U9.

The following update U10 which uses the input document t reported in Fig-
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ure 6.8, illustrates that for some updates, one should be more careful in choosing
a partition of the input document. This update inserts a new empty node <n/> as
last into the target path Ptg=/child :: a/child :: f , as follows:

U10 = for $x in /child :: a/child :: f

return insert node <n/> as last into $x

This update is similar to the two previous ones in that each modification is
focused on the current target node, but, differently, each update operation needs that
the sub-tree rooted at the current target node has not been split during partitioning.
This is because of the as last into clause. If the subtree is split, say, in two parts,
then the <n/> would be inserted twice for a target node. This is illustrated in the
sequel.
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Figure 6.8: An XML document D and two different kinds of partition.

By evaluating the update U10 on the input document D and the partition D1,
D2 as Figure 6.9 illustrates, we observe that the update result U10(D) and the
concatenation of partial update results U10(D1)�U10(D2) are equivalent, and thus
we can say that this partition works with the update U10.

Instead if we use the other partition D ′1, D
′
2 (illustrated in Figure 6.8), we have

that U10(D) and the concatenation U10(D
′
1) � U10(D

′
2) are not equivalent, as il-

lustrated in Figure 6.10. This is because the update U10 inserts a new node n as
last of each subtree rooted at f-node on the document D and its parts D ′1 and D ′2.
This means that we will have two nodes n in the first subtree rooted at f of the
concatenation result D ′1 � D ′2.

The next examples illustrate the third kind of updates previously discussed, and
for which no partition works.
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Figure 6.9: Equivalence between U10(D) and U10(D1) � U10(D2).
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Consider the following update U11 on the input document t (illustrated in Fig-
ure 6.3) which replaces a target node c with a set of nodes labeled by g:

U11 = replace node /child :: a/child :: b/child :: c with

/child :: a/child :: f/child :: g

and let us evaluate this update on both partitions t1, t2 (illustrated in Figure 6.3)
and t ′1, t

′
2 (illustrated in Figure 6.5) for the input document t .

Observe that the above update performs two main operations: it navigates
through the whole document in order to evaluate the source expression Qs=/child ::

a/child :: f/child :: g, and use the obtained result to update target nodes found by
evaluation of the target expression Ptg=/child :: a/child :: b/child :: c. This entails
that distributing the update on any partition, would prevent the source expression
from correctly building its result. This in turns prevents Equation 6.1 from holding,
as exemplified next.
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Figure 6.11: Non-equivalent case between U11(t) and U11(t1) � U11(t2).

Figure 6.11 illustrates that the update result U11(t) and the concatenation of
partial update results U11(t1)�U11(t2) are not equivalent. The same happens if we
use the other partition t ′1, t

′
2, as Figure 6.12 illustrates, and any other partition.
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Consider now the update U12, evaluated on the input document t and its pro-
posed parts t1 and t2, illustrated in Figure 6.3. This update inserts the set of
subtrees /child :: a/child :: f/child :: g as last into the only b-node. As for the
previous update, the source expression needs the whole input tree for its evaluation.
Then, partitioning can not be applied, as illustrated in Figure 6.13.

U12 = for $x in /child :: a/child :: b

return insert node /child :: a/child :: f/child :: g as last into $x

Concerning U12, note that a slight variation would make partitioning applicable:

U ′12 = for $x in /child :: a/child :: b

return insert node $x/child :: c as last into $x

Now the source expression $x/child :: c needs the current sub-tree selected by
the outer iteration, and this makes partitioning applicable.
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Figure 6.13: Non-equivalent case between U12(t) and U12(t1) � U12(t2).

From previous examples, we can conclude that in order to guarantee the real-
ization of Equation 6.1 for a given update U , our partitioning update scenario can
be applied only when the update U performs many times the same operation on
different subtrees, and each subtree contains all the information for the operation.
Previous examples also illustrate that these subtree should be not split by parti-
tioning (see update U10). Updates satisfying this requirement are called iterative

updates.

Informally, iterative updates are those ones described by the SXUF grammars
and such that:
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• if the update is elementary, then its target expression is a simple update ex-
pression, while its source expression Qs does not use XPath expressions (only
element, sequence and text node construction are allowed).

• otherwise, the update first selects a sequence of nodes, and then perform
update operations inside each subtree rooted at one of these nodes.

In order to formally characterize iterative updates and to performs data par-
titioning for them, we need to extract paths P and target paths Ptg from these
updates, and then we need to analyze these paths. To this end, we define the func-
tion Epath(U ) for extracting path, and the function Etarget(U ) to extract target
paths from an update U . Both functions are defined along the same lines of the ex-
traction function for queries, defined in Figure 5.5 of Chapter 5. The two functions
are defined in Figure 6.14.

Example 8 Consider the following update U13 and the same XML document t

illustrated in Figure 6.3.

U13 = for $x in /child :: a/child :: f

return rename node $x/child :: g as ”n”

By using the path extraction functions Epath(U13) and Etarget(U13) illustrated
in Figure 6.14, we show that the set of extracted paths is τ={P1,P2,P3}, and the
set of target paths τap={P3}, where

P1 = /child :: a

P2 = /child :: a/child :: f{for x}

P3 = /child :: a/child :: f{for x}/child :: g/dos :: node()

�

As for queries, the variable information is not useful to perform the partition.
Hence and in the rest of this chapter, we will rely on extracted paths once variable
information has been eliminated. In Example 8, we will use the path (/child ::

a/child :: f) rather than (/child :: a/child :: f{for x}). We will do this by means
of the function ErVar(P) (already defined in Definition 5.2.1 of Chapter 5).

We are now ready to provide a formal characterization of iterative updates.

Definition 6.3.1 (Iterative Update) Iterative updates are defined according the

following case analysis.

• if U is an elementary update, then it is iterative if and only if one of the

following holds.
1. U = delete N Ptg

2. U = rename N Ptg as a

3. U = replace N Ptg with Qs

4. U = insert N Qs Pos Ptg
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Epath(U ,Γ,m) τ

Epath(() ,Γ,m) = ()

Epath((Qs1,Qs2) ,Γ,m) = Epath(Qs1 ,Γ,m) ∪ Epath(Qs2 ,Γ,m)

Epath(<a>Qs</a> ,Γ,m) = Epath(Qs ,Γ, 1)

Epath(/P ,Γ, 0) = {/P}

Epath(/P ,Γ, 1) = {/P/dos :: node()}

Epath(x/P ,Γ, 0) = {P ′{for x}/P |P ′{for x}∈Γ}

Epath(x/P ,Γ, 1) = {P ′{for x}/P/dos :: node() |P ′{for x}∈Γ}

Epath(delete N Ptg ,Γ, 1) = Epath(Ptg ,Γ, 1)

Epath(rename N Ptg as a ,Γ, 1) = Epath(Ptg ,Γ, 1)

Epath(replace N Ptg with Qs ,Γ, 1) = Epath(Ptg ,Γ, 1) ∪ Epath(Qs ,Γ, 1)

Epath(insert N Qs Pos Ptg ,Γ, 1) = Epath(Qs ,Γ, 1) ∪ Epath(Ptg ,Γ, 1)

Epath((U1,U2) ,Γ,m) = Epath(U1 ,Γ,m) ∪ Epath(U2 ,Γ,m)

Epath(if Q then U1 else U2 ,Γ,m) = E (Q ,Γ, 0) ∪ Epath(U1 ,Γ, 1) ∪ Epath(U2 ,Γ, 1)

Epath(for x in Q return U ,Γ,m) = Γ′ ∪ Epath(U ,Γ ∪ Γ′,m)

where Γ′={P{for x}|P∈E (Q ,Γ, 0)}

Epath(let x := Q return U ,Γ,m) = Γ′ ∪ Epath(U ,Γ ∪ Γ′,m)

where Γ′=E (Q ,Γ, 0)

Etarget(U ,Γ,m) τap

Etarget(() ,Γ,m) = ()

Etarget((Qs1,Qs2) ,Γ,m) = ()

Etarget(<a>Qs</a> ,Γ,m) = ()

Etarget(/P ,Γ, 0) = {/P}

Etarget(/P ,Γ, 1) = {/P/dos :: node()}

Etarget(x/P ,Γ, 0) = {P ′{for x}/P |P ′{for x}∈Γ}

Etarget(x/P ,Γ, 1) = {P ′{for x}/P/dos :: node() |P ′{for x}∈Γ}

Etarget(delete N Ptg ,Γ, 1) = Etarget(Ptg ,Γ, 1)

Etarget(rename N Ptg as a ,Γ, 1) = Etarget(Ptg ,Γ, 1)

Etarget(replace N Ptg with Qs ,Γ, 1) = Etarget(Ptg ,Γ, 1)

Etarget(insert N Qs Pos Ptg ,Γ, 1) = Etarget(Ptg ,Γ, 1)

Etarget((U1,U2) ,Γ,m) = Etarget(U1 ,Γ,m) ∪ Etarget(U2 ,Γ,m)

Etarget(if Q then U1 else U2 ,Γ,m) = Etarget(U1,Γ ∪ Γ′, 1) ∪ Etarget(U2,Γ ∪ Γ′, 1)

where Γ′={P |P∈E (Q ,Γ, 0)}

Etarget(for x in Q return U ,Γ,m) = Etarget(U ,Γ ∪ Γ′, 1)

where Γ′={P{for x}|P∈E (Q ,Γ, 0)}

Etarget(let x := Q return U ,Γ,m) = Etarget(U ,Γ ∪ Γ′, 1)

where Γ′=E (Q ,Γ, 0)

Figure 6.14: Path extraction function for updates.
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• if U is either a let-update or a for-update expression, then it is iterative if and

only if it satisfies the properties required by Definition 5.3.2 in Chapter 5 by

considering Epath(U ) as the set of extracted paths.

• If U=U1,U2, · · · ,Un, then it is iterative if each Ui is.

In the above definition, the first case has been already motivated by means of
examples. The second case relies on Definition 5.3.2 which presents iterative queries.
It is worth noticing that when this case applies, the iterative update U may contain
elementary update sub-expressions not meeting properties 1-4, as in the following
examples.

Example 9 Consider the following update U :

U = for $x in /child :: a/child :: b

return insert nodes $x/child :: f/child :: g as last into $x

According to Definition 6.3.1, we have that the inner insert-update is not iter-
ative, but the whole update is. As we will see, partitioning will be made in such a
way that a subtree selected by the partitioning path /child :: a/child :: b is never
split into two distinct parts. This ensures the possibility of correctly distribute the
update evaluation on subtrees selected by the partitioning path.

�

Still concerning the second case, it is worth noticing that let-updates are iter-
ative only if the let binding does not use paths. For instance, the following update
is not iterative.

U = let $x := /child :: a/child :: b return

if $x/child :: c then

delete node $x

This is because the let binding performs a global visit of the document before
evaluating the inner update. For reasons already explained, this global visit prevents
any possible partitioning based evaluation.

Instead, the following update is iterative:

U = let $x := <c/> return

for $y in /child :: a/child :: b return

insert $x after $y

Also note that in the second item of the definition of iterative updates, if-
expressions are not considered. Actually these expressions may occur as inner sub-
expressions of iterative updates, like in the following variant of the above example.
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U = let $x := <c/> return

for $y in /child :: a/child :: b return

if $y/child :: d then insert $x after $y

The reason why if-expressions have been excluded as top-level expressions, is
that in the general case the query defining the if-condition may require a global
visit of the input document, and as already seen this makes partitioning impossible.

The third item of the characterization of iterative updates captures sequence
updates. Partitioning can be applied for such updates, if it can be applied for each
single update. This is quite intuitive. Shortly an example will be discussed.

As seen in previous examples, the crucial issue while partitioning for updates
is to avoid splitting some particular subtrees. In order to specify a partitioning
algorithm, we need to know how to recognize such subtrees. To this end, we use the
set of target paths in the case the update is iterative according to conditions 1-4,
or the partitioning path (Definition 5.3.3) otherwise. We call such a path atomic,
since subtrees they point to cannot be split. Since an update can be a sequence of
different updates, actually partitioning has to consider a set of atomic paths during
the construction of a partition. The following example illustrates this.

Example 10 Consider the following update U and the input XML document t

illustrated in Figure 6.3:

U = (for $x in /child :: a/child :: b return delete node $x ),

(for $x in /child :: a/child :: f return rename node $x as ”n” )

Here, the set of atomic paths of U , denoted AP(U ), is {P1,P2} with

P1 = /child :: a/child :: b

P2 = /child :: a/child :: f

�

From the above discussion the following atomic-paths extraction definition fol-
lows. It faithfully reflects the characterization of iterative updates. We denote with
AP(U ) the set of atomic paths of the iterative update U .

Definition 6.3.2 (Atomic Paths) Assume U is an iterative update.

• If one of the following holds

1. U = delete N Ptg

2. U = rename N Ptg as a

3. U = replace N Ptg with Qs

4. U = insert N Qs Pos Ptg

then AP(U ) = {Ptg}
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• if U is either a let-update or a for-update expression, AP(U ) = {PP} where

PP is the partitioning path of U according to Definition 5.3.3.

• If U=U1,U2, . . . ,Un, then

AP(u) =

n
⋃

i=1

AP(Ui)

Note that the above two definitions directly give conditions to deal with a work-
load of n iterative updates U1,U2, . . . ,Un. In this case the entire workload is iter-
ative, and atomic paths can be extracted just as indicated above for the sequence
case.

6.4 partitioning for iterative updates

As already said in the introduction, our partitioning technique for updates does
not perform projection. The main motivation for this is to avoid complex merge
operations (like the ones used in [BBC+11]) for recovering subtrees pruned out by
projection. Actually, this is not a limitation since partitioning alone is already
sufficient to ensure that each part is small enough to be processed by any main-
memory XQuery engine. This is because, as for queries, the size of each part can be
controlled by stopping its generation as soon as its size exceeds the threshold value
maxSize . This value can be fixed along the same principles indicated for queries in
the previous chapter, in particular by keeping into account main-memory features
of the particular given used engine.

Our partitioning algorithm takes as input an XML document D , an iterative
update U and a threshold maxSize value. Through the static analysis technique
described in the previous sections, our technique extracts the set of atomic paths
τap = AP(U ) from the iterative U . These paths guide the partitioning process so
that, a said before, subtrees they select are not split.

To illustrate how the partitioning algorithm works, let us consider the input
document t in Figure 6.15 and the following iterative update U :

U = for $x in /child :: a/child :: f return

insert node <n/ > as last into $x

for which we have AP(U )=/child :: a/child :: f . Let us assume that maxSize=8.

During partitioning, similarly to the case of queries, and for the same reasons,
both path alignment and residuation are performed on atomics paths.

We start the partitioning process from the root element l1 (see in Figure 6.15)
which is a Pap non-terminal node. Here a path alignment Down(Pap) is performed,
the current size cSize is increased with the length of the current node 2.length(a)

and the current l1 is added to the first part t1. The next node considered is l2.
In this case, the current node is a terminal Pap node. In this case we perform the
following steps:
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Figure 6.15: An XML document t and its parts t1, t2, t3.

• we parse the whole subtree of the current node and write it in the current
part; while doing this we also calculate the size Size of this subtree.

• we increase cSize with the length of the current node, and Size.

• we add l2 (with its subtree l3) to the current part t1.

The process goes on in a similar way with l4 and l5. After having parsed the
second one, the current size happens to exceed the maxSize . This implies that the
current part has to be ended and a new one has to be started. To this end, the
algorithm resets cSize ′ to 0 value, increases the number of parts pId ′ with 1, and
creates new part tpId ′ (we have pId ′=2).

Then, the process goes to the next location l6 which does not match Pap, and
continues the parsing following locations of its subtree l7, l8, l9, and stop this parsing
at the location l10, due to the fact that the current size of the part exceeds maxSize .
So the algorithm will close the current part, and create another part which will
contain the rest of the input document locations {l10, l11, l12}. The process ends up
with three different parts as illustrated in Figure 6.15.

As for queries (Chapter 5), we adopt a unique store for the partitioning resulted
by our algorithm. Again, some nodes may belong to more than one part; this
happens for the root node in particular. The resulting partitioning store contains
three different parts formed by the following indexed locations:

dom(σP) = {l11, l12, l13, l14, l15, l21, l26, l27, l28, l29, l31, l36, l310, l311, l312}

We now provide a formal presentation of our partitioning algorithm and its
auxiliary functions.

6.4.1 Partitioning Algorithm

Algorithm 9 provides a formal presentation of the partitioning process.
This algorithm is recursive and takes as inputs the following 5-tuples
<l;Pap; cSize; pId ;ListpId> representing the current state of the recursive process.
Namely, this tuple indicates that the current node to be matched against the current
target path Pap is l; that the current size of the part whose creation is in progress is



6.4. partitioning for iterative updates 117

Algorithm 8: Parse

Input: A store σ, a location l∈dom(σ);

Output: A store σ′, an integer Size;

1 begin

2 if σ(l) = text[s] then

3 σ′:= {l← text[s]}; Size:= length(s)

4 if σ(l) = a[()] then

5 σ′:= {l← a[()]}; Size:= 2.length(a)

6 else

7 let L = (l1, l2, · · · , ln)
8 for i = 1...n do

9 (σi, Sizei):= Parse(σ; li)

10 σ′:= {l← a[L]} ∪
⋃n

i=1σi;

11 Size = 2.length(a) +
∑n

i=1Sizei

12 return (σ′, Size)

cSize; that the current number of created parts is pId ; and finally that the current
indexed list ListpId included parts pId ’s. Of course, the algorithm is initially invoked
with cSize=0 and pId=1, while the location l is the root of the input XML docu-
ment (σ, l), and Pap is the set of atomic paths extracted from the iterative update
U according to Definition 6.3.2.

In this algorithm, we still use the function PartLabel (σ; pId ) which produces a
new store obtained from σ by renaming each location l to lpId .

The algorithm distinguishes two main cases.

• In the first case (lines 3-11) the current node is a terminal match for the atomic
paths. In this case, the function Parse(σ; l) parses the subtree rooted at the
current node and results the corresponding store σ′ plus the size of the subtree
Size (line 4). The function Parse(σ; l) is illustrated in details in Algorithm 8,
it performs a simple parse of the tree and updates the tree size each time a
new node is encountered. After this parsing, the resulting subtree store σ′ is
labeled by means of PartLabel (σ′; pId). Then (lines 6-11), the algorithm adds
the resulting subtree to the current part, and checks whether the Size size of
the subtree plus the current size cSize exceeds the maximal size maxSize : If
the check is negative, then current size cSize is increased with Size, otherwise
the current size cSize is reset to 0, a new (empty) part is created, and the
current pId is increased with 1.

In this case, in order to optimize the time consumed for updating parts, the
algorithm uses an integer list ListpId (lines 9-10) which contains a list of iden-
tifiers pId of the parts that needs to be updated. In this case we have a node
which is a possible target node of the updates, so the current part is added to
the list.
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Algorithm 9: Partition

Input: A location l∈dom(σ), a set of atomic paths Pap, a part size cSize, a part

number pId , an empty list of part pId ’s ListpId ;

Output: A store σP, a part size cSize ′, part number pId ′, list of pId ’s ListpId
′ ;

1 begin

2 let σ(l) = a[L]

/* Case 1. the current l is a Pap terminal node */

3 if Res(a;Pap) = <−; ok_t> then

4 (σ′, Size):= Parse(σ; l)

5 σP:= PartLabel (σ′; pId)

6 if cSize + Size ≤ maxSize then

7 cSize ′:= cSize + Size; pId ′:= pId

8 else

9 if pId ′ /∈ ListpId then

10 ListpId
′:= ListpId , pId ′ /* Current closed part will be

updated */

11 cSize ′:= 0; pId ′:= pId + 1

/* Case 2. the current l is a Pap non-terminal node or does not

match Pap */

12 else

13 pIdfirst:= pId ; σP:= ∅;
14 let L = (l1, l2, · · · , ln)
15 for i = 1...n do

16 (σP
i ; cSize; pId ;ListpId ):= Partition(li;Down(Pap); cSize; pId ;ListpId );

17 σP:= σP ∪ σP
i ;

18 pId last:= Max-Pid(σP); D:= dom(σP);

/* Max-Pid() returns the biggest part number used in the store

*/

19 for p = pIdfirst...pId last do

20 σP:= σP ∪ {(lp←a[rename−extr(L, p,D)])}

21 cSize ′:= cSize + 2.length(a)

22 if cSize ′ ≤ maxSize then

23 pId ′:= pId

24 else

25 cSize ′:= 0; pId ′:= pId + 1

26 return (σP, cSize ′, pId ′, ListpId
′)

• In the second case (lines 12-25), the current node l either is a possible non-
terminal match of atomic paths, or does not match them. In both cases, the
computation recursively goes on for each child li of the l node, after having
aligned atomic paths to the new tree level (line 15). After this partitioning
proceeds in a way which is similar to that of the partitioning algorithm for
queries (Algorithm 2). When the recursive calls on children of li has termi-
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nated, and the partitioning store updated (lines 18-20), the current part size
is updated and the check for eventually creating a new part is made (lines
21-25).

Going back to the iterative update U used in our previous example, thanks to
the use of the ListpId list, at the end of the partitioning process we know that the
second part does not need to be updated because it does not contain any target
node. Figure 6.16 illustrates the input three and updated parts.
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Figure 6.16: Partitioning update scenario on the input document t and its parts,
for a given iterative update U .

In the following section, we will present our fusion operation and its formal
definitions, then we will provide details about the streaming implementation of our
partitioning and fusion algorithms.

6.4.2 Fusion Operation

As illustrated before, the last step in our partitioning update scenario is the fusion
operation. The main idea behind this operation is to concatenate all partial up-
date results U (Di)’s in a streaming way, to produce the final update result U (D).
The parts Di’s are already created by the partitioning algorithm 9, and the partial
updated results U (Di)’s are performed by using a particular XQuery engine.

The fusion operation takes as input the set of updated parts U (Di) and returns
U (D). A particular issue in the fusion process concerns the presence of repeated
locations is distinct parts. For our example, repeated locations are:

l11, l21, l31, l26, l36 ∈ dom(σP)

The fusion process has to be carefully specified in order to ensure that these locations
are re-collapsed to a unique location, as illustrated in Figure 6.17. In this figure,
the final update result U (t1) � t2 � U (t3) contains only one root element l1 and l6,
while the repeated nodes appeared in distinct parts will be eliminated.

The fusion operation � is defined via the following definitions.

Definition 6.4.1 (ErIndex (lji)) Given an indexed location lji, the function

ErIndex (lji) removes the index j from lji:

ErIndex (lji) = li
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Figure 6.17: Fusion scenario on distinct (updated and non-updated) parts.

Definition 6.4.2 (Fusion of locations F (li, C)) Given a collection of trees C =

{t1, t2, · · · , tκ}, we have

F (li, C) = li ← a[L]

with

L = ErIndex (Li) · ErIndex (Li+1) · . . . · ErIndex (Lm)

and lji ← a[Lj] ∈ tj for j = i . . . m, and for some i and m with 1 ≤ i ≤ m ≤ κ.

Definition 6.4.3 (Fusion �) The collection of trees C = {t1, t2, · · · , tκ} repre-

sents the set of parts created by partitioning the input tree t = (σt , l) for an iterative

update. For each tree tj = (σj, lj) the root node lj is the same for all parts in C, but

with different index j.
The updated parts are noted as t

′

1, t
′

2, · · · , t
′

κ. The fusion operation � concatenates

all trees t
′

1, t
′

2, · · · , t
′

κ to produce the final update result of the input tree t , as follows:

t
′

1 � t
′

2 � · · ·� t
′

κ = (σ′, l)

where σ′ = {
⋃

li∈σt
F (li, C)} ∪ {l← a[ErIndex (L)] | ∃ i . l⊥ ← a[L] ∈ ti}

Above, locations l⊥ are those newly created by the update.

Soundness of our partitioning scenario is stated below, for the general case of an
update workload.

Theorem 6.4.4 (Soundness of Partition and Fusion) Let maxSize be a size

threshold value, let U1, . . . ,Um be well-formed iterative updates with their respecting

atomic path sets Papj
. Let t=(σ, lt ) be an XML tree. Then:

Assuming

• Pap= ∪
m
1 {Papj

} and

• Partition(lt ;Down(Pap); 0; 1; pId ) = (σP; cSize; pId).

we have:

Uj(t) ∼= Uj(t1) � . . . � Uj(tpId )

where ti=PartLabel−1(σP
i ; pId).

In the following section, we will provide a streaming representation of our par-
titioning and fusion algorithms.
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6.5 streaming implementation

Previous formalizations of partitioning and fusion algorithms are not amenable to
handle big files, as they are DOM-oriented: they assume that the whole input stores
are available. As already said, this DOM-based formulation is presented to give a
formal specification of the algorithm.

To handle arbitrary large files, we implemented previous partitioning and fusion
algorithms in a streaming fashion on top of a SAX parser [ver00]. In our implemen-
tation, we consider the SAX events already considered for the case of queries (see
Chapter 5):

SAXEvent := startDocument

| startElement(qName)

| endElement(qName)

| Characters(String)

Our SAX implementations has two essential tasks: the first one is to perform the
partitioning (see Section 6.5.1), and the second one is to apply the fusion operation
over the updated partitioning (see Section 6.5.2).

6.5.1 Partitioning

The SAX implementation of partitioning is similar to that for queries (Section 5.6
of Chapter 4). It uses two main stack-based data structures. These stacks are used
to record the current status of the algorithm when an open-tag is met, so that the
status can be recovered when the corresponding close-tag is met. The first stack
stacktag is used to record open-tag name of the current node being processed qName,
the result of the residuation of Res(qName; τap), an identifier tagId of the current
open-tag node qName. The second stack stackτap is used to record all alignment
results Down(τap) of the atomic paths τap.

Also, the partitioning algorithm uses and maintains two text-files during the
processing: the first one Fileart which contains all artificial tags and their tagId ’s.
These artificial tags are those ones created during partitioning to preserve the well-
formedness of generated parts, but that do not belong to the original files. These
tags are closed and reopened when the creation of a part ends, and when the creation
of the following part begins. The second text file FilepId contains identifiers (natural
numbers) corresponding to parts that need to be updated. As already said, filter
partitioning only parts mentioned in this file will be updated, thus saving processing
time as some parts will be not processed.

The implementation also records some values in the following global variables:

• cSize the current size (nodes and text-values) of the current part.

• pId the current number of created parts.

• tagId the current identifier node.
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• τap the set of atomic paths.

• containsAtomicNode the number of terminal τap nodes in the current part.

Algorithm 10: Partition-Init-DataStructures

Input: An input XML document t , a pre-defined integer value maxSize, a set of

atomic paths τap extracted from a given update U ;

Output: Initialize flag containsAtomicNode, stacks stacktag and stackτap
, text files

Fileart and FilepId ;

1 begin

2 cSize:= 0; pId := 1; tagId := 0; containsAtomicNode:= 0

3 stacktag:= ()

4 stackτap
:= ()

5 create Fileart
6 create FilepId

Algorithm 11: SAX-startDocument

Input: A set of atomic paths τap;

Output: Side effect on τap and Modality ;

1 begin

2 τap:= Down(τap)

3 Modality := part

Algorithm 12: SAX-characters

Input: A string-value str, current part size cSize;

Output: Side effect on the current part size cSize;

1 begin

2 writeOutput(str)

3 cSize:= cSize + length(str)

Algorithm 13: SAX-endDocument

Input: Flag containsAtomicNode, part number pId ;

Output: Side effect on the text-file FilepId ;

1 begin

2 if containsAtomicNode=1 then

/* Set the current part tpId to be updated */

3 writeF ilepId(tpId ::to-be-updated)

By using this status information, we can split the partitioning algorithm in two
distinct parts, which are executed when startElement and endElement are invoked,
respectively.
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Algorithm 14: SAX-startElement

Input: Open-tag qName, part number pId , part size cSize, node id tagId ;

Output: Side effect on cSize, tagId , τap and containsAtomicNode;

1 begin

2 MATCH:= Res(qName; τap)

3 cSize:= cSize + length(qName)

4 tagId := tagId + 1

5 if Modality=part then

6 switch MATCH do

7 case ok_nt

/* qName is a non-terminal match τap */

8 stacktag.add(qName,MATCH, tagId , part)

9 stackτap
.add(Down(τap))

10 τap:= stackτap
.peek

11 case ok_t

/* qName is a terminal match τap */

12 stacktag.add(qName,MATCH, tagId , part)

13 stackτap
.add(Down(τap))

14 τap:= stackτap
.top()

15 containsAtomicNode:= 1

16 Modality := parse

17 case fail

/* qName does not match τap */

18 stacktag.add(qName,MATCH, tagId , part)

19 writeNodeAttribute(qName, tagId)

20 else if Modality=parse then

21 stacktag.add(qName,−,−, parse)
22 writeOutput(qName)

Before starting the processing, our partitioning algorithm takes the following
inputs (see Algorithm 10):

• the input XML document t .

• the set of atomic paths τap extracted from the iterative updates (recall that
the case of a workload is considered too).

• the threshold integer value maxSize for the part sizes.

and it is initially invoked with cSize=0, tagId=0 and pId=1 (line 2 of Algorithm
10). Also, all data structures needed to perform the partitioning stacktag , stackτap ,
Fileart and FilepId will be defined (lines 3-6 of Algorithm 10).

During partitioning we associate a unique identifier tagId with each element
we put in the partition. This identifier is needed in order to distinguish among
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Algorithm 15: SAX-endElement
Input: Close-tag qName, part number pId , part size cSize

Output: Side effect on cSize, pId , τap and containsAtomicNode

1 begin

2 MATCH:= stacktag.pop(stacktag(top).get(1))

3 currTagId:= stacktag.pop(stacktag(top).get(2))

4 currModality:= stacktag.pop(stacktag(top).get(3))

5 if currModality=part then

6 Size:= length(qName)

7 switch MATCH do

8 case ok_nt

9 τap:= stackτap
.pop

10 case ok_t

11 τap:= stackτap
.pop

12 Modality := part

13 if cSize + Size ≤ maxSize then

14 cSize:= cSize + Size

15 writeOutput(qName)

16 else

/* Close current part tpId */

17 for i=[(stacktag.size− 1)...0] do

18 currTagName:= stacktag(i).get(0)

19 currTagId:= stacktag(i).get(2)

20 writeOutput(currTagName)

21 writeF ileart(currTagName | currTagId | pId | close)

22 if containsAtomicNode=1 then

/* Set the current part tpId to be updated */

23 writeF ilepId(tpId ::to-be-updated)

24 containsAtomicNode:= 0

/* Reset cSize to 0 value and increase pId with 1 */

25 cSize:= 0; pId := pId + 1

/* Create new part tpId */

26 for i=[0..(stacktag.size− 1)] do

27 currTagName:= stacktag(i).get(0)

28 currTagId:= stacktag(i).get(2)

29 writeNodeAttribute(currTagName, currTagId)

30 writeF ileart(currTagName|currTagId|pId |open)
31 cSize:= cSize + length(currTagName)

32 cSize:= cSize + length(qName)

33 writeOutput(qName)

34 else if currModality=parse then

35 cSize:= cSize + length(qName)

36 writeOutput(qName)
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original and artificial tags, and will be erased during fusion. This identifiers is a
positive integer, whose value starts from 1 and which is incremented each time a
new open-tag is met. Later on we will illustrate details of this aspect.

In startDocument event (see Algorithm 11), the algorithm performs the first
alignment Down(τap) (line 2) and initializes the modality flag Modality with part

value (line 3). We will explain the functionality of this flag later.

Both startElement and endElement algorithms work in two possible modalities,
the partitioning modality (part) and the parsing modality (parse). The first one
concerns the case that the algorithm is in the search of a terminal-match for Pap

and the terminal match is either not-found or the the current node is one. Under
this modality the two algorithms implement the specification reported in the DOM-
based Algorithm 9). The second possible modality is for the case that the current
node is inside a subtree rooted at a terminal Pap node. Under this modality, the two
algorithms implement the specification given in the parsing DOM-based Algorithm
8; under this modality, the a new part can not be created; the entire subtree has to
be added to the current part.

In startElement event (see Algorithm 14), we put most of the logic of the
DOM-based specification partitioning and parsing algorithms (Algorithms 8 and 9).
Actually, all partitioning decisions are based on information that are available when
an open-tag is met. Also, we put the updates of cSize, tagId and the residuation of
the atomic paths set Res(qName; τap) (lines 2-4), but we defer partitioning decision
to endElement calls.

Concerning the partitioning modality (lines 5-20) and if the MATCH value is
either ok_nt or ok_t, we put the current status (qName, MATCH, tagId , part) of
the algorithm into the stacktag , we also perform a path alignment of the current τap
and put the result into the stackτap (lines 7-10 and 11-16). In addition to these tasks,
and in case of MATCH=ok_t we do the following: we set containsAtomicNode to
1 to indicate that the current part contains a terminal τap node (line 15) and as
such it has to be updated; finally we set the Modality flag with parse value during
the ok_t matching case (line 16), as for the following subtree no new part has to
be created. If MATCH value is fail, we only keep the current information (qName,
fail, tagId , part) into the stacktag (line 18). Finally we write the current open-tag
qName into the current part. Note that in the partitioning modality, we add a new
attribute tId which contains the current tagId value for each open-tag qName (line
20).

Concerning the parsing modality (lines 21-23), we only keep the following infor-
mation of the current qName (qName, -, -, parse) into the stacktag (line 22), and
write open-tag qName into the current part (line 23). Note that we do not consider
a tagId for each qName manipulated in the parsing modality.

In endElement (see Algorithm 15), we first perform a pop operation on the
stacktag and keep the information in the following variables: MATCH is the cur-
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rent match value; currTagId is the current tag identifier; and currModality is the
current working modality (lines 2-4). This pop operation permit to recover status
information at the moment the corresponding open-tag was met.

If the information got from the stacktag tell us that we have a part current
modality (line 5), we calculate the length of the current qName and keep it in
Size variable (line 6), then we make the following case analysis on the MATCH

information relative with the current close-tag qName, and got from the stacktag
(lines 5-34). While if the information tell us that we have a parse current modality
(line 35), we only increase the current size cSize with the length(qName) (line 36),
and then write the current close-tag qName in the current part (line 37).

If the current close-tag is for a non-terminal Pap node (lines 8-9), we pop the top
element of the stackτap . While If the current close-tag is for a terminal Pap node
(lines 10-12), we pop the top element of the stackτap , and change the Modality flag
to part (line 12).

Since the parsing of the atomic subtree has ended, we compare the current size
part with the maximal part size allowed maxSize (line 13). If the creation of a new
part has to be done, then we iterate on the stack stacktag, close all the open tags
(lines 17-21), and keep these closed-tags with their information tag-name, tagId ,
pId and tag-case which is either open or close into the text file Fileart. Then we
check if the current close part will be updated or not. To this end, we check if the
containsAtomicNode value equals 1 (line 22), we keep the current part name (tpId ::
to-be-update) into another text file FilepId (line 23), and reset containsAtomicNode

value to 0 (line 24). Then the algorithm resets cSize to 0 and increases the part
number pId by 1 (line 25). After that the new part is created, by reopening all
tags kept into the stacktag into the new created part, in reversal order (lines 26-
30). During this process, we add respective records [tag-name,tagId ,pId ,tag-case
open] into the text file Fileart (line 30), and increase cSize with the length of each
re-opened tag length(currTagName) (line 31). At the end, we increase the current
part size with length(qName) (line 32), and finally we write the current close-tag
qName in the current part (line 33).

In Characters event (see Algorithm 12), we only write the text-content str of
the current qName into the current part tpId (line 2), then add the length of str to
the current part size cSize (line 3).

In endDocument (see Algorithm 13), we need to verify if the last created part tpId
will be updated or not, we do this by checking the value of flag containsAtomicNode .
If it equals 1, this means that the current part will be updated, otherwise it is
considered as non-updated part, and as we did before, we keep the checking result
into the FilepId .

To illustrate how the streaming partitioning algorithm works, we will use the
following iterative update.

Example 11 Consider the following iterative update U :
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U = for $x in /child :: a/child :: b/child :: f

return rename node $x as ”n”

and the input XML document t illustrated in Figure 6.18. This update renames
each child f-node of the b-node as "n". We have τap=/child :: a/child :: b/child :: f

and assume maxSize = 9.

Input document t Part t1 Part t2 Part t3

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4">

<f tId="5">

<c>go</c>

</f></b>

</a>

<a tId="1">

<b tId="4">

<f tId="6">

<g>to</g>

</f>

</b>

</a>

<a tId="1">

<c tId="7">

<f tId="8">

<d></d>

</f>

</c>

</a>

Figure 6.18: An input document t and its created parts t1, t2, t3.

The partitioning process starts when the document is opened; at this moment
atomic paths are aligned, and modality is set to partitioning. Then the root element
<a> is met. Algorithm 14 performs a residuation Res(a; τap); increases the current
size cSize with the length of the current node length(qName); increases the tag
identifier tagId with 1. Since we are in partitioning modality, the algorithm checks
the MATCH value, which is in our case ok_nt. This means that we have a possible
non-terminal τap node, so we add the following values [a,ok_nt,1,part] at the top
of the stacktag, perform a path alignment Down(τap) and add it to the top of the
stackτap , and finally write the open-tag of the current qName with the current tagId
as attribute (we write <a tId="1">) into the current part (line 8 of Algorithm 14).
Then the process goes to the next node (see Figure 6.19).

Input document Part stacktag
t t1 [qName,MATCH, tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d>

<c></c>

</d>

<b><f>

<c>go</c>

</f></b>

</a>

[a,ok_nt,1,part]

τap = {/child :: a/child :: b/child :: f}
cSize = 1

Figure 6.19: Partitioning scenario: the current open-tag is <a>.

The next event is for an open-tag <d> which does not match the current set of
atomic paths, so we only increase cSize with the length of the tag and tagId with
1, add the following information [d,fail,2,part] at the top of the stacktag, and
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write the current open-tag with the respective tagId attribute (<d tId="2">) into
the current part. We repeat the same treatment with the following open-tag <c>

which does not match τap as well, and add the tuple [c,fail,3,part] at the top
of the stacktag, and write this node with its tagId attribute <c tId="3"> into the
current part (see Figure 6.20).

Input document Part stacktag
t t1 [qName,MATCH, tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b><f>

<c>go</c>

</f></b>

</a>

[c,fail,3,part]

[d,fail,2,part]

[a,ok_nt,1,part]

τap = {/child :: b/child :: f}
cSize = 3

Figure 6.20: Partitioning scenario: parsing the open-tags <d><c>.

Now we have the close-tag </c>. Here the algorithm performs the following
tasks: pop the top element of the stacktag and keep the pop values in the following
variables MATCH, currTagId and currModality. Then the algorithm checks the
currModality value which is part in the current case, so the process will update
Size, then add it to the current part size cSize, which now equals to 5 and does not
exceed the maxSize . So we finally write the current close-tag in the current part.
We repeat the same process with the close-tag </d>, as illustrated in Figure 6.21

Input document Part stacktag
t t1 [qName,MATCH, tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b><f>

<c>go</c>

</f></b>

</a>

[a,ok_nt,1,part]

τap = {/child :: b/child :: f}
cSize = 5

Figure 6.21: Partitioning scenario: parsing the close-tags </c></d>.

The process continues in the same scenario for the next open-tag <b> which is a
non-terminal match for atomic paths; the current cSize and tagId are increased; a
path alignment Down(τap) is performed and the new τap is added to the stackτap ;
also, the following record [b,ok_nt,4,part] is added at the top of the stacktag; and
finally the current open-tag with its tId attribute is written into the current part
file.
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Then the process goes to the next node <f> which is a terminal Pap node. The
current cSize and tagId are increased. Then, we perform the following tasks: we
add the current information [f,ok_t,5,part] at the top of the stacktag ; we perform
a path alignment Down(τap) and push the new τap on the stackτap ; we increase the
containsAtomicNode by 1 and change the partitioning modality to the parsing one
Modality=parse, to start the parsing of the subtree rooted at our current terminal
match of atomic paths. Then we write the current open-tag with its tId attribute on
the current part. Note that in the parsing modality, we only keep the tag-name and
the current modality parse for each open-tag encountered in the current subtree.
So for the following open tag <c> we add records of the form [c,-,-,parse] in the
stack. The tag size is added to the current part size cSize , and write the encountered
open- tag into the current part. Figure 6.22 illustrates all tasks performed above.

Input document Part stacktag
t t1 [qName,MATCH, tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go< /c >< /f >
<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><f tId="5">

<c>go< /c >
</f></b>

</a>

[c,-,-,parse]

[f,okt,5,part]

[b,ok_nt,4,part]

[a,ok_nt,1,part]

τap = {−}
cSize = 10

Figure 6.22: Partitioning scenario: parsing the subtree <b><f><c>go.

Now we have the current event is for the close-tag </c>. We are in parsing
modality. Here Algorithm 15 recovers information from the stacktag, and verifies
that the corresponding open-tag does not match atomic paths. So it increases the
current size cSize with the length of the current close-tag </c>, and writes the
close-tag into the current part. The next close-tag </f> occurs still in a parsing
modality. The algorithm performs the following tasks: it recovers information from
the stacktag and realizes that the tag is relative to a terminal match of atomic paths.
So it pops path information from stackτap , then changes the Modality flag to part

mode; then it checks whether the current part size cSize plus the Size value exceeds
maxSize or not. It is positive in the current case, so we will close all the open tags,
and keep the information status [tag-name,tagId,1,close] of these new closed-
tags into the Fileart. Then we reset cSize to 0 and increase the part number pId by
1, then reopen the same tags in reversal order in the new created part, increase cSize
with the length of each new open-tag length(currTagName), and keep them with
their information [tag-name,tagId,1,open] into the Fileart. Finally we increase
the current part size with length(qName), then we write it in the new created part
t2. Figure 6.23 shows us all previous tasks.

The process continues parsing the subtree starting from the previous open-tag
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Input document Part Part stacktag
t t1 t2 [qName,MATCH,

tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><f tId="5">

<c>go</c>

</f></b>

</a>

<a tId="1">

<b tId="4">

<f>

<g>to</g>

</f>

</b>

</a>

[b,ok_nt,4,part]

[a,ok_nt,1,part]

τap = {/child :: f}
cSize = 14 ≥ maxSize

F ileart F ilepId
[b,4,1,close]

[a,1,1,close]

[a,1,2,open]

[b,4,2,open]

t1::to-be-updated

Figure 6.23: Partitioning scenario: parsing close-tags </c></f>, and create a new
part t2

<b> and arrives to the current <f> which is again a terminal node for atomic paths.
Then the current cSize and tagId will be updated. Then the same treatment with
terminal nodes illustrated before will be repeated: we add the current information of
this node [f,ok_nt,6,part] at the top of the stacktag; a path alignment on atomic
paths is performed and the new set is added to the stackτap ; the containsAtomicNode

is set to 1; and then the flag Modality is changed to parse, to start the parsing of
the subtree rooted at the current terminal match for atomic paths; finally we write
the current tagId tag into the current part t2.

Since the current modality is parse, we parse the subtree rooted at the cur-
rent terminal match, and copy it to the current part, as done before. In particu-
lar, this subtree contains the following fragment <g>to, so the information status
[g,-,-,parse] is put into stacktag. Then the process goes to the next close-tag
node </g>. Figure 6.24 illustrates the effect of these steps.

Both close-tags </g> and </f> will be written in the current part t2 by calling
endElement event, because the checking of exceeding the maximal size maxSize is
still negative (cSize=8). While when we arrive to the close-tag </b>, the checking
size will be positive. So we will close the current part t2 as we did before by creating
a new close-tag </a>, and add its information status [a,1,2,close] to the Fileart.
We check then the updating status for the closed part which is to-be-updated part,
and keep the result t2::to-be-updated into the FilepId ; finally create a new part
t3 which starts with a new open-tag <a tId="1">. Then the process goes for the
next node <b>. Figure 6.25 illustrates all previous tasks.

For the rest of the document, the process goes according the lines of previously
illustrated steps, and ends up with three different parts. Only parts t1, t2 will be
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Input document Part Part stacktag
t t1 t2 [qName,MATCH,

tagId ,Modality ]

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to< /g >< /f >
</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><f tId="5">

<c>go</c>

</f></b>

</a>

<a tId="1">

<b tId="4">

<f tId="6">

<g>to< /g >
</f>

</b>

</a>

[g,-,-,parse]

[f,okt,6,part]

[b,ok_nt,4,part]

[a,ok_nt,1,part]

τap = {−}
cSize = 6

F ileart F ilepId
[b,4,1,close]

[a,1,1,close]

[a,1,2,open]

[b,4,2,open]

t1::to-be-updated

Figure 6.24: Partitioning scenario: parsing open-tags <f><g>to

Input document Part Part Part
t t1 t2 t3

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><f tId="5">

<c>go</c>

</f></b>

</a>

<a tId="1">

<b tId="4">

<f tId="6">

<g>to</g>

</f>

</b>

</a>

<a tId="1">

<b>

<f>

<d></d>

</f>

</b>

</a>

τap = {/child :: b/child :: f}
cSize = 10 ≥ maxSize

stacktag F ileart F ilepId
[qName,MATCH, tagId ,Modality ]

[a,ok_nt,1,part]

[b,4,1,close]

[a,1,1,close]

[a,1,2,open]

[b,4,2,open]

[a,1,2,close]

[a,1,3,open]

t2::to-be-updated

t1::to-be-updated

Figure 6.25: Parsing close-tags </g></f></b>, and create a new part t3.

flagged as parts that will be updated. The third one will be not flagged, because it
does not contain any terminal Pap node, as illustrated in Figure 6.26.

�

After generating three parts t1, t2 and t3, and updating the parts t1 and t2, the
next step is to concatenate the two updated parts with the non-updated third one
t3. To this end, we rely on the fusion algorithm which is illustrated next.
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Input document t Part t1 Part t2 Part t3

<a>

<d><c></c></d>

<b>

<f><c>go</c></f>

<f><g>to</g></f>

</b>

<c><f><d></d></f></c>

</a>

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><f tId="5">

<c>go</c>

</f></b>

</a>

<a tId="1">

<b tId="4">

<f tId="6">

<g>to</g>

</f>

</b>

</a>

<a>

<c tId="7">

<f tId="8">

<d></d>

</f>

</c>

</a>

Figure 6.26: Final parts t1, t2, t3 produced by the partitioning technique.

6.5.2 Fusion

This section presents the SAX algorithms for the fusion process. The fusion algo-
rithm takes as input the following values:

• the number of created parts pId ;

• the text file Fileart which is already created during the partitioning process,
and contains all information about artificial open/close tags.

Since the parts will be parsed sequentially, one after the other, a dynamic SAX
parser is initialized for parsing each created (updated/non-updated) part alone.
When the parsing of the current part is finished, the dynamic parser automatically
goes to the next part to start the parsing process (see Algorithm 16).

Once the file Fileart is available, the fusion process has to perform very sim-
ple operations. Essentially, for each open/close-tag, using the Fileart file to check
whether the current tag has to be put to the resulting document. Again, two essen-
tial SAX event handlers are used, one for the event startElement (see Algorithm
17), and one for the event endElement (see Algorithm 18).

In order to accelerate lookup operation on Fileart, we first load all its content
and store it into an array we call arrayart. During this process, each line in Fileart
is split, by using the delimiter "|" into four different values (tagName, tagId, partId,

tagCase), and added i to the arrayart. Once created this array will be not changed,
and will be only used for lookup operations.

Also we use the stacksync to synchronize the writing of open/close tags of the
current tag in the final result. In particular, we push in this stack the current
open-tag with its tagId attribute when the startElement event occurs (see Algo-
rithm 17), and pop the top element of this stack when endElement event occurs (see
Algorithm 18).

In startElement event, Algorithm 17 first checks whether the current tag con-
tains an attribute tId:

• if the check is positive, the algorithm will keep the tId value in the currTagId

variable, otherwise put the value 0 in this variable (lines 2-5). Next, the
algorithm verifies whether the current tag is will be put in the output tree
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Algorithm 16: Fusion-mainProgram

Input: A text file Fileart, a number of parts pId

Output: Create the final update result tfinal
1 begin

2 openFile(Fileart) /* Open the text-file Fileart */

3 strLine:= ReadTextF ile(Fileart) /* Open Fileart and read it

line-by-line */

4 while (Fileart) is not finished do

5 split(strLine, ”|”) /* Split current string line by using the

delimiter "|", and keep the 4 different values obtained from

this line into stackart */

6 arrayart.add(tagName, tagId, partId, tagCase)

7 closeF ile(Fileart) /* Close the text-file Fileart */

/* Initialize a dynamic SAX parser for each Part */

8 for i=[1..pId ] do

9 StartParser(ti) /* Start parsing the current part ti */

10 currPId:= i /* Keep the index i of the current part ti */

11 return (tfinal)

Algorithm 17: Fusion-startElement

Input: open-tag qName, arrayart, stacksync
Output: Side effect on arrayart and stacksync

1 begin

2 if qName.containAttribute(tId) then

3 currTagId:= getTagIdAttribute(qName)

4 else

5 currTagId:= 0

/* Check all open-tags in arrayart */

6 for i=[0..(arrayart.size− 1)] do

7 tempTagName:= arrayart(i).get(0)

8 tempTagId:= arrayart(i).get(1)

9 tempPId:= arrayart(i).get(2)

10 tempCase:= arrayart(i).get(3)

11 if qName=tempTagName and currTagId=tempTagId and

currPId=tempPId and tempCase=”open” then

12 Skip(qName) /* Do not write the current open-tag qName into

tfinal */

13 break

14 else

15 writeOutput(qName) /* Write the current open-tag qName into

tfinal */

16 stacksync.add(qName, currTagId)
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Algorithm 18: Fusion-endElement

Input: close-tag qName, arrayart, stacksync
Output: Side effect on arrayart and stacksync

1 begin

/* Pop the top element from stacksync and keep (tagname, tagid)

values */

2 tagname:= stacksync.pop[top].get(0)

3 tagid:= stacksync.pop[top].get(1)

/* Compare the current close-tag qName with the content of arrayart
*/

4 for i=[0..(arrayart.size− 1)] do

5 tempTagName:= arrayart(i).get(0)

6 tempTagId:= arrayart(i).get(1)

7 tempCase:= arrayart(i).get(3)

8 if qName=tempTagName and qName=tagname and

tagid=tempTagId and tempCase=”close” then

9 Skip(qName) /* Do not write the current close-tag qName

into tfinal */

10 arrayart.remove(i)

11 break;

12 else

13 writeOutput(qName) /* Write the current close-tag qName into

tfinal */

tfinal or not. To this end, it verifies whether arrayart contains a line matching
the current tag and the current Id attribute, and whose tagCase is ’open’
(line 11). If the check is positive, this means that the current open-tag is
insignificant and we do not write into the output tree tfinal, so it is dropped
(lines 12-13).

• if the check is negative (line 15), the algorithm simply writes the open-tag
to the output tree tfinal (in this case either the node has been added by the
update, or it is a node belonging to a subtree selected by an atomic path).

In all the above cases, the algorithm add the tuple (qName, tId) into stacksync (line
16).

In the endElement event, the Algorithm 18 performs similar steps as above, with
the difference that at the beginning the top of the stacksync is popped. The popped
ID attribute is used for checking whether the current close-tag should be written
into the output tree tfinal or not (lines 4-13).

Going back to our example, we see now how the fusion operation works to
concatenate three generated parts U (t1), U (t2) and t3 which are illustrated in Fig-
ure 6.27. Note that t3 is not updated because it does not contains any terminal Pap

node.
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U (t1) U (t2) non-updated t3 U (t1) � U (t2) � t3

<a tId="1">

<d tId="2">

<c tId="3"></c>

</d>

<b tId="4"><n tId="5">

<c>go</c>

</n></b>

</a>

<a tId="1">

<b tId="4">

<n tId="6">

<g>to</g>

</n>

</b>

</a>

<a>

<c tId="7">

<f tId="8">

<d></d>

</f>

</c>

</a>

<a>

<d><c></c></d>

<b>

<n><c>go</c></n>

<n><g>to</g></n>

</b>

<c><f><d></d></f></c>

</a>

Figure 6.27: Updated parts U (t1),U (t2), non-updated t3, and the fusion final result.

The fusion process starts parsing the first part, and read the first open-tag <a

tId="1">. By checking this tag, we show that this one is significant tag, so we keep
it in the output tree tfinal. The pair (a, 1) is pushed into the stacksync. The process
goes on in a similar way for the following open-tags <d tId="2"> and <c tId="3">,
and pairs (d, 2) and (c, 3) are pushed into the stacksync.

When the process arrives to the closed-tag </c>, the algorithm pops the top
element from stacksync which is (c,3). Then, by also considering the retrieved ID
attribute and arrayart, it checks whether the current tag is needed to write into the
output tree tfinal or not. This is not the case, so it writes </c> in tfinal. The same
happens for </d> .

The fusion process continues in the same scenario for the rest of the current
part t1, and write the following fragment <b><n><c>go</c></n> into the final result
tfinal. When the process arrives to the close-tag </b>, here we have that the current
tag is insignificant close-tag, so the algorithm does not write it. This happens for the
following </a> as well. At this moment, the parsing of the current part finishes, and
the process goes to the updated second part, and then the third non-updated part,
in a similar way. The process ends up with the final updated result U (t1)�U (t2)�t3

as illustrated in Figure 6.27.

6.6 experimental evaluation

In the previous sections, we presented our XML data partitioning scheme that,
given an iterative update U and an input document D , partitions D in a set of parts
{D1, . . . ,Dκ} so that U (D) is equivalent to the concatenation of U (D1)�. . .�U (Dκ),
where � is our fusion operation. When this partitioning scheme is applicable, it can
improve the scalability of existing main-memory engines, as it allows the system to
process one part per time.

In this section we present an experimental evaluation of the partitioning update
technique. We will first show that the proposed algorithm significantly improves
the scalability of a popular main-memory query engine (particularly Saxon and
Qizx Query engines). Then, we will show that partitioning, when combined with a
fusion algorithm. Finally, we will experimentally analyze the relation between the
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overall performance of the system and the actual value of maxSize (the maximum
part size).

6.6.1 Experimental Setup

We implemented our partitioning algorithm, as well as our fusion algorithm, in Java
6 and tested their behavior on the XMark benchmark [SWK+02a]. In particular, we
evaluated our system on XMark documents by relying on two widely used XQuery
engines, Saxon [sax] and Qizx [qiz]. Saxon is an engine supporting all main W3C
standards for XML manipulation and schema validation, while Qizx is specialized on
querying and updating, and offers powerful optimization techniques. However, we
will see that even with the use of standard path-based projection, these systems do
not scale up in terms of document size (other powerful systems like BaseX [bas] have
quite similar performances). Our test results show that our technique overcome this
limitation for iterative updates, as it allows these engines to scale up to arbitrary
document sizes.

All experiments were performed on a 2.53 Ghz Intel Core 2 Duo machine (4GB
main memory) running Mac OSX 10.6.8. All XML documents were loaded on an
external USB2 7200 rpm 1 TB disk unit.

To avoid the perturbations introduced by system activity, we ran each experi-
ment ten times, discarded the best and the worst performance, and computed the
average of the remaining times.

6.6.2 Tests Results

We used documents whose size ranges from 1GB to 5GB for Saxon and from 1GB
to 15GB for Qizx. Concerning the threshold value maxSize , we set (∼ 25MB) for
Saxon, and (∼ 95.36 MB) for Qizx. These differences in terms of memory and
part sizes are due differences of performances between the two engines in terms of
memory management. For both Saxon and Qizx we allocated 512MBs for main
memory of the Java Virtual Machine.

Concerning updates, we used the following updates proposed by the PhD thesis
of Marina Sahakyan [Sah11], which form the iterative core of XMark [SWK+02a]:

U1. for $x in $doc/site/closed_auctions/closed_auction

where not ($x/annotation) return

insert node <annotation>Empty Annotation</annotation>

as last into $x

U3. for $x in $doc/site/regions//item/location

where $x/text()="United States"

return (replace value of node $x with "USA")

U4. delete nodes $doc/site/regions//item/mailbox/mail
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U5. for $x in $doc/site//text/bold return

rename node $x as "emph"

U8. delete nodes $doc/site/regions/australia

U10. for $x in $doc/site/open_auctions/open_auction

where ($x/privacy="Yes")

return delete node $x

U11. for $x in $doc/site/open_auctions/open_auction

where $x/bidder/increase < 20

return insert node

<bidder>

<date>08/17/2000</date>

<time>15:15:15</time>

<personref/>

<increase>1.50</increase>

</bidder>

after $x/initial

U12. for $x in $doc/site/regions//item

where ($x/mailbox/mail/date/text()="07/04/1998")

return insert node <incategory/> before $x/mailbox

U13. for $x in $doc/site/open_auctions/open_auction/annotation/description/text

where ($x/keyword/emph/text()="unique") and ($x/bold)

return insert node <emph>newTexT</emph> before $x/bold

U14. for $x in $doc/site//text/emph

return delete node $x

U16. for $x in $doc/site/closed_auctions

return delete node $x

U17. for $x in $doc/site/closed_auctions

return insert node

<closed_auction>

<seller/>

<buyer/>

<itemref/>

<price>39.58</price>

<date>02/15/1998</date>

<quantity>1</quantity>

<type>Regular_new</type>

<annotation/>

</closed_auction> as last into $x
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U18. for $x in $doc/site/categories/category/description/parlist/listitem

where ($x/parlist) return

replace node $x/parlist with <text>newText</text>

6.6.3 Experiments

In our first experiment we evaluate and compare scalability of Saxon. We consider a
1GB document and a 5GB document for Saxon test. For each document and for each
update, we compare total execution time obtained with only standard projection
with that obtained from the partitioning+fusion approach. Total execution time
includes the overall time required by the system to partition the input document,
to evaluate the input update on the parts, and to concatenate the partial results to
produce the final result.

Figure 6.28: Projection vs partitioning - with input document 1GB - using Saxon.

Concerning results obtained by using Saxon. When projection only is used, this
system starts showing limitations even for a 1GB document, for which updates U5,
U11, U12 and U14 could not be executed due to memory failure. As shown in Figure
6.28. While our partitioning technique enables execution of all iterative updates.
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Figure 6.29: Projection vs partitioning - with input document 5GB - using Saxon.

Figure 6.30: Projection vs partitioning - with input document 1GB - using Qizx.

As illustrated in Figure 6.29, for the 5GB document, improvements of our par-
titioning technique are substantial: 9 updates could not be executed with only
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Figure 6.31: Projection vs partitioning - with input document 5GB - using Qizx.

Figure 6.32: Projection vs partitioning - with input document 10GB - using Qizx.

projection, while all updates are executed by means of partitioning.

Figure 6.34 reports execution times obtained with Saxon and partitioning, for
all considered documents size. As shown by the figure, our technique scales up and
has a linear behavior.
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Figure 6.33: Projection vs partitioning - with input document 15GB - using Qizx.

Concerning Qizx, we consider 1GB, 5GB, 10GB and 15GB documents. For the
1GB input document (see Figure 6.30) and for the 5GB document (see Figure 6.31),
all 13 iterative updates could be executed with the sole use of projection.

For the 10GB input document (see Figure 6.32), the standard projection tech-
nique starts showing limitations, and the updates U10, U11, U12, U13 and U14
could not be executed due to memory failure. As shown in Figure 6.32. While our
partitioning technique enabled to process all 13 iterative updates.

Also for the 15GB input document (see Figure 6.33). Seven updates could not
be executed with the sole use of projection. Instead, our partitioning technique
enabled the processing of all 13 iterative updates.

Figure 6.35 reports execution times obtained with Qizx and partitioning, for all
considered documents size. As shown by this figure, our technique scales up and
has a linear behavior.

6.6.4 Summing Up

To summarize, our experiments prove that the partitioning approach scales beau-
tifully and is only slightly slower than the projection approach with updates. To
make experiments feasible in a reasonable time we considered 5GB for Saxon and
15GB for Qizx as the maximal size of documents. However, since the maxSize can
be tuned to fit in the available main memory, we have that partitioning scales for
arbitrary sizes.
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Figure 6.34: Scalability of the partitioning+update+fusion approach - using Saxon.
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6.7 conclusion

In this chapter, we presented out partitioning based technique for XML updates.
As we have seen, the techniques differs from that for queries in many aspect. First
of all in what concern the characterization of iterative updates, and secondly in
the partitioning and fusion algorithms. Some preliminary results on experimental
evaluation, showed that the technique succeeds in its main purpose: overcoming
scalability limitations of main memory systems. We believe that similar experi-
mental results could be obtained by using other engines, like the BaseX [bas] for
instance, whose performances are close to that of Qizx. As future works we plan to
perform more extensive tests, and to improve efficiency of the fusion algorithm in
order to reduce the overhead in terms of time.

Another interesting future direction would be to combine projection with par-
titioning. This would require deep changes in the fusion algorithm, but probably
permit to further lower the time overhead.
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Figure 6.35: Scalability of the partitioning+update+fusion approach - using Qizx.
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B
esides ensuring scalability, our partitioning technique illustrated in previous
chapters also has the advantage that it naturally paves the way to parallel

processing. This is a consequence of the fact that iterative queries and updates are
such that evaluation on a part does not depend on evaluation on another part. As
a consequence, parts in a partition can be queried/updated in parallel.

In this chapter, we discuss the main lines of a possible parallel implementation of
our partitioning technique by means of the MapReduce programming model [DG08].
We would like to outline that the architecture we propose is the results of a collabo-
ration with Carlo Sartiani (Assistant Professor at Università della Basilicata, Italy)
and Maurizio Nole (Master student at Università della Basilicata, Italy).

We first introduce the basics of the MapReduce paradigm in Section 7.1, and
then illustrate how our technique can be implemented into a MapReduce platform
in Section 7.2. Finally, we draw our conclusion in Section 7.3.

7.1 MapReduce

When the first computers were adopted, programs were executed in a sequential
manner and by means of a unique processor. Parallelism was introduced after in or-
der to improve performances of some particular tasks, by executing them in parallel
on several processors and on different chunks of data. These processors run either
on a single computer or on multiple computers via a network. In order to aid pro-
gramming in this context, parallel programming paradigms have been introduced.
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In order to build a parallel program, we need to specify a set of tasks that can
be executed concurrently over the same input data, or create several parts of input
data on which our tasks are concurrently executed. A typical scenario that is more
and more recurring in the context of large data collection generated over the Web,
is that where the data collection is split into several parts and some predefined
tasks are executed on these parts in parallel. To this end, we have several parallel
implementation techniques. The most popular one is called Master/Worker.

Typically the Master initializes the parallel process, splits it into sub-tasks and
assigns one of them to each Worker. Once the Worker has terminated it return
results to the Master, which will opportunely combine them with other Worker

results.

The MapReduce paradigm is based on these principles, and is currently adopted
in many contexts where queries have to be executed on large amount of data, and the
size of these data is such that a sequential evaluation would require an unacceptable
amount of time.

Following [DG08], MapReduce is a parallel framework for processing or dis-
tributing large data sets, which often uses a large number of computers (nodes),
either referred to a cluster, if these nodes are located in the same local network and
use similar hardware, or a grid, if the nodes are shared across distributed systems,
and use different hardware. MapReduce has been first introduced and adopted by
Google [DG08].

MapReduce is successfully used in a wide range of applications including: dis-
tributed pattern-based searching, distributed sort, web access log states, inverted
index construction, document clustering, machine learning [CKL+07], and statistical
machine translation. Moreover, this framework has been adapted to several com-
puting environments like multi-core systems [RRP+07], desktop grids [TMC+10],
dynamic cloud environments [MTT10] and mobile environments [DKG+10].

MapReduce libraries have been written in many programming languages. The
most popular free implementation is Apache Hadoop [had]. The Apache Hadoop
offers a framework that allows to perform the distributed processing of large data
sets across clusters of computers using the MapReduce model. It is designed to scale
up from single servers to thousands of machines, each offering local computation and
storage. One of the main functionalities it provides is high robustness. The library
itself is designed to detect and handle failures at the application layer. Each time a
task is detected to have failed, it is restarted on another processing unit. In order
to ensure high robustness, Hadoop requires that each task stores results on the
distributed file system (HDFS), so that in the case of a single task fails, only its
results have to be regenerated, and there is no need to restart all the tasks. Hadoop
requires the Java Runtime Environment JRE 1.6 or higher.
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7.1.1 Logical View

The main goal of the MapReduce paradigm is to provide a model that can be
easily adopted by programmers, even if they have no experience with parallel and
distributed programming. The possibility of rapid development of parallel programs
has been one the main reasons of the success of this paradigm.

The main idea behind MapReduce is to avoid the user to deal with operations
that routinely occurs in parallel management of large data repositories. To define
a MapReduce job, the programmer has to specify two functions, the Map function
and the Reduce function. These functions are assumed to work on a data model
consisting of collections of (key, value) pairs. The key component is generally a scalar
value, while the value component can also be a complex value like a record coming
from a relational database, a textual document (an XML document in particular),
or some other complex value.

The semantics of Map and Reduce functions is described below.

• The function Map, written by the user, takes one pair of the input dataset
(k1, v1), and returns a list of pairs list(k2, v2). The Map function is applied
in parallel to every pair in the input dataset. This will produce a list of pairs
for each call.

Map (k1, v1) → list(k2, v2)

• The MapReduce framework collects all pairs with the same key from all lists
and groups them together, thus creating one group for each one of the different
generated keys.

• The function Reduce which is written by the user and applied in parallel to
each group, accepts the intermediate key ki and the set of values vi for that
key. It merges together these values to form a possibly smaller set of values.
The intermediate values are supplied to the Reduce function via an iterator.
This allows the user to handle lists of values that are too big to fit in memory.

Reduce (k2, list(v2)) → list(v3)

The following example explains the mechanism of both Map and Reduce func-
tions. One of the typical problems for which MapReduce can be successfully adopted
is that of counting the number of occurrences of each word in large collection of doc-
uments. The Map and Reduce function the programmer has to specify can be as
follows:

Example 12 Consider the following Map and Reduce functions:

map(String key, String value):

// key: document name

// value: document contents
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for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

�

Once these two functions have been specified, their execution happens as follows.
The MapReduce framework automatically splits the input key-value collection into
several splits (whose size is generally from 16MB to 64MB). Then a number of Map
and Reduce Workers are started on several processing units. The framework assigns
a split to each Map workers. In the above example, each Map Worker produces a
list of key-value pairs, where for each pair the key is a word encountered in one of
the documents, and the value is simply 1, to indicate that one occurrence of the
word has been encountered.

Outputs of Map workers are processed by the framework so that key-value pairs
that Mappers (Map Workers) have produced are partitioned in such a way that all
pairs sharing the same key are in the same part. Then the framework assigns a
number of such parts to each Reduce Worker.

In the above example, each Reduce worker is guaranteed to have all occurrences
of a given word. Once these occurrences are counter, the results is made persistent
on the file system. The final result is the concatenation of all Reduce results.

As the example illustrates, operations like initial partitioning of the key-value
collections is done by the framework, as well as grouping operations before passing
Mappers results to Reducers. This is of particular importance for rapid and safe
development of parallel intensive data processing tasks, as the programmer has to
concentrate on the pure logic of query he/she needs to execute.

7.1.2 Execution Overview

To explain the execution model in more detail we rely on [DG08]. Figure 7.1 il-
lustrates the overall flow of a MapReduce job in the implementation proposed in
[DG08]. When the user program calls the MapReduce functions, the following se-
quence of actions occurs. Note that the numbered labels in Figure 7.1 correspond
to the numbers in the list below.

• The MapReduce library in the user program first shreds the input documents
into m pieces of typically 16 megabytes to 64 megabytes (MB) per piece. Then
it starts up many copies of the program on a cluster of machines.
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Figure 7.1: Execution overview.

• Only one part of the program is considered as Master. While the rest are
Workers that are assigned work by the Master. There are m Map tasks and r

Reduce tasks to assign. The Master picks inactive Workers and assigns each
one a Map task or a Reduce task.

• A Worker who is assigned a Map task reads the contents of the correspond-
ing input shard. It parses key/value pairs out of the input data and passes
each pair to the user-defined Map function. The intermediate key/value pairs
produced by the Map function are buffered in memory.

• Periodically, the buffered pairs are written to local disk, partitioned into r

regions by the partitioning function. The locations of these buffered pairs on
the local disk are passed back to the Master, who is responsible for forwarding
these locations to the reduce Workers.

• When a Reduce Worker is notified by the Master about these locations, it
uses remote procedure calls to read the buffered data from the local disks of
the Map Workers. When a Reduce Worker has read all intermediate data,
it sorts it by the intermediate keys so that all occurrences of the same key
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are grouped together. If the amount of intermediate data is too large to fit in
memory, an external sort is used.

• The reduce Worker iterates over the sorted intermediate data and for each
unique intermediate key encountered, it passes the key and the corresponding
set of intermediate values to the user’s Reduce function. The output of the
Reduce function is appended to a final output file for this reduce partition.

• When all Map tasks and Reduce tasks have been completed, the Master wakes
up the user program. At this point, the MapReduce call in the user program
returns back to the user code.

After successful completion, the output of the MapReduce execution is available
in the r output files. Typically, users do not need to combine these r output files
into one file, they often pass these files as input to another MapReduce call, or use
them from another distributed application that is able to deal with input that is
partitioned into multiple files.

7.2 parallel evaluation of iterative queries and

updates via MapReduce

As said before a MapReduce platform can be realized by means of several machines
on which the Apache Hadoop open library runs. Hadoop makes all MapReduce
functionalities available, and is widely used. So we will refer to it in illustrating how
our approach can be transposed into a MapReduce framework.

We first focus on XML partitioning for queries. As seen in Chapter 4, projection
can be profitably combined with partitioning so as to lower time overhead in the
global query execution. Some features of our technique pose some constraints on
the possible resulting MapReduce architecture. We still assume that one document
is processed.

First of all, partitioning must be executed by the Master (recall the schema
given in Figure 7.1) since this operation can not be performed in parallel. As soon
as parts are generated, parallel evaluation can be started. In order to accelerate
part generation, its better to decouple projection from partitioning.

The resulting execution schema is illustrated in Figure 7.1. The illustrated
schema is of the kind Master-Map. This a particular modality under which MapRe-
duce can work according to Hadoop, and is characterized by the fact that only a
Master and Map Workers are adopted. In the figure, the local file system is where
the input and output queries are stored, and is distinguished from the distributed
Hadoop file system (HDFS) which is used to store input, output and intermediary
data of a MapReduce job.

As already said, the Master takes the input document and performs the par-
titioning (without performing projection). As soon as a part is generated, a file
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Figure 7.2: Graphical representation of the Master-Map schema.

partition N.xml is stored via HDFS (N indicates the number of the part, and is
assumed to start from 0). Another file which is maintained by the Master is Part-
Number.txt which contains, for each part in the partition, the number of the part
and corresponding HDFS URI; this information is needed by a Map Worker in order
to recover and process a part.

Actually, the PartNumber.txt file contains the key-value collection which is
passed to the MapReduce job. As anticipated, the job only activates Map workers.

Rather than formally specifying the Map function, we describe the tasks it per-
forms. It receives as input a number of pairs (part-number, part-URI) coming from
the PartNumber.txt file. For each such pair, then Map worker retrieves the XML
file corresponding to the part-number, and executes the projection algorithm on it
(in a SAX fashion). The projected part is stored locally in order to avoid the over-
head implied by HDFS. The Map worker then makes a call to a query engine locally
installed, in order to execute the query on the locally stored projected part. The
query engine can be any existing query engine, e.g., Saxon or Qizx. Once the query
result is available, it is communicated to the output-collector of the Map worker.
This collector writes the result on the HDFS support. If the result is relative to the
part PartitionJ.xml, then the file including the results is stored into a file Output-J.
Once all Map Workers have terminated Output-I.xml files are available on HDFS
for being concatenated.
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An alternative schema could be of the kind Master-Map-Reduce, where Map
Workers perform projections, and Reduce Workers deals with query evaluation on
each projected part. This schema seems to ensure an higher parallelism degree, but
actually has the drawback that each projected file in order to be passed to a Reduce
Worker has to be stored on the HDFS. This operation can be much slower than
writing the projection on the local file system of the Map Worker. In particular, this
is due to the fact that HDFS handle duplicated versions of stored files, distributed
on several nodes connected via the network.

We believe that, when compared to the centralized framework presented in pre-
vious chapters, the above Master-Map schema could improve execution time for very
large documents especially in those cases where the query performs time consum-
ing operations on each part. Otherwise, the overhead implied by the MapReduce
framework could entail higher total execution time.

Concerning updates, a possible schema is totally similar to the above described
Master-Map schema. With the difference that Map Workers are activated only to
update those parts that really need to. Besides partitioning, also fusion operation
should be executed in a sequential fashion.

7.3 conclusive remarks

In this short chapter we have described possible schemes of a MapReduce imple-
mentation of our-partitioning based frameworks. The main purpose of the chapter
was to highlight another strength of our approach, that is the possibility of parallel
query and update evaluation by relying on the MapReduce model.
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8.1 related works

The main aim of our technique is to allow main-memory systems to scale up with
respect to document size when querying and updating XML data. We have already
commented on main traditional projection based approaches [BBC+11, BCCN06,
BCMS09a, BCMS09b, MS03], and seen that these techniques have limitations in
terms of scalability. On the positive side, these techniques do not pose restrictions
on queries and updates. Differently, we have focused on a fragment of XQuery
query and update languages, and proposed a partitioning based techniques that
enable main-memory engines to scales up.

Concerning queries, techniques for partitioning XML documents have already
been explored. Our technique resembles that of [BLS09] where an horizontal parti-
tioning technique has been proposed in order to ensure parallel execution of single
XPath queries. The partitioning technique proposed in this work can be performed
on the main-memory representation of the XML document. As a consequence, very
large XML documents cannot be managed. In [KÖD10], a vertical partitioning
technique has been proposed still with the aim of parallel and distributed execution
of XPath queries. The technique can handle very large documents, but requires the
use of schema information on the input document. Both techniques proposed in
[BLS09, KÖD10] require strong interventions inside a query engine. A recent work
[GCL12] proposes new efficient algorithms for the distributed evaluation of XPath
queries. This work uses horizontal-vertical partitioning, and assumes data have been
statically partitioned according to existing techniques.

Differently from the above mentioned works, we address a wide class of XQuery
queries, we do not require schema information, and we are able to deal with a
workload executed on very large documents. Also, our technique does not require
to modify the internal components of a query engine.

Concerning updates, to the best of our knowledge, we are not aware of any
exiting partitioning-based techniques. Techniques exist in order to optimize memory



154 Chapter 8. Related Works and Conclusion

consumptions. The type-based projection technique has already been discussed and
performed tests have illustrated improvements of our approach. Another effective
technique that can be used to ensure scalability when updating XML files with
main-memory engines has been presented in [CGM11]. This technique allows to
apply updates in a streaming fashion, so to minimize the memory usage. In most
cases the technique has high scalability abilities. At the same time, differently from
our approach, this technique requires interventions into query-engine, in order to
recover the list of update operations to apply, and apply them in streaming to the
input. Also, in the case that a workload of distinct updates has to be applied to
a document, this technique requires parsing the input document as many times as
the number of updates. In our case, if the workload is iterative, we can perform a
unique partitioning, then evaluate the workload on the partition, and finally perform
a unique fusion operation.

8.2 conclusive remarks and future directions

In this Thesis, we presented a novel partitioning technique for XML document. This
technique generalizes existing path-based approaches, and applies to a large class of
queries and updates.

A distinctive feature of our approach is that it is schema-less. It uses path infor-
mation coming from the query/update in order to perform the static analysis needed
to recognize the iterative nature of the query/update, and use path information to
perform partitioning. Another distinctive feature, is that the approach can be easily
plugged on any main-memory system, as no intervention in the internal machinery
of the system is required. Finally, we have seen that our approach is amenable to an
easy transposition in a MapReduce like processing framework, thus allowing parallel
querying and updating of parts in the partition. For huge document sets, and in
the presence of a reasonable big cluster of machines, this could entail consistent
time reduction with respect to the sequential approach we proposed here (parts are
queried/updated sequentially).

We see several possible future directions. First of all, we would like to extend
the approach to larger fragments of XQuery, and in particular to queries performing
group-by operations and aggregations. Also, we would like to extend the technique in
the case where queries performs joins. Especially in this second case, some performed
tests have revealed that execution time can be huge with the use of main-memory
system. To enable partitioning query/update evaluation would need to be split in
several subtasks, some of which use partitioning. Then partial results of each task
should be recombined. In our opinion, in this scenario a MapReduce approach could
help in reducing execution time.

As a second future work, we would like to explore possibilities of handling work-
loads formed by both queries and updates. Once the path analysis is available to
recognize the iterative nature of the workload, and to perform partitioning, this last
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one could be performed once and reused many times, until the workload changes.
An advantage would also come to the reduction of fusion operations, which would
become useless as long as the workload is stable.

Finally, we plan to further investigate MapReduce implementations of our ap-
proach, along the lines of schemes illustrated in Chapter 7. In particular, we will
focus on implementation issues, and in adapting our code to the MapReduce frame-
work. In this context, we will also focus on experimental tests in order to realize for
which kind of queries/updates a MapReduce execution is faster than a traditional
centralized execution.





Appendix A

XQuery Expressions and XQuery

Updates

A.1 XMark Queries proposed in [SWK+02a]

• Return the name of the person with ID person0.

Q1 = for $b in doc("xmark.xml")/site/people/person[@id="person0"]

return $b/name/text()

• Return the initial increases of all open auctions.

Q2 = for $b in doc("xmark.xml")/site/open_auctions/open_auction

return

<increase>

{$b/bidder[1]/increase/text()}

</increase>

• Return the IDs of all open auctions whose current increase is at least twice as
high as the initial increase.

Q3 = for $b in doc("xmark.xml")/site/open_auctions/open_auction

where

zero-or-one($b/bidder[1]/increase/text()) * 2 <=

$b/bidder[last()]/increase/text()

return

<increase

first="{$b/bidder[1]/increase/text()}"

last="{$b/bidder[last()]/increase/text()}"/>

• List the reserves of those open auctions where a certain person issued a bid
before another person.

Q4 = for $b in doc("xmark.xml")/site/open_auctions/open_auction

where

some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2

return <history>{$b/reserve/text()}</history>
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• How many sold items cost more than 40?

Q5 = let $auction := doc("xmark.xml") return

count(

for $i in $auction/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

• How many items are listed on all continents?

Q6 = for $b in doc("xmark.xml")//site/regions

return count($b//item)

• List all persons according to their interest; use French markup in the result.

Q10 = let $auction := doc("xmark.xml") return

for $i in

distinct-values($auction/site/people/person/profile/

interest/@category)

let $p :=

for $t in $auction/site/people/person

where $t/profile/interest/@category = $i

return

<personne>

<statistiques>

<sexe>{$t/profile/gender/text()}</sexe>

<age>{$t/profile/age/text()}</age>

<education>{$t/profile/education/text()}</education>

<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>

<coordonnees>

<nom>{$t/name/text()}</nom>

<rue>{$t/address/street/text()}</rue>

<ville>{$t/address/city/text()}</ville>

<pays>{$t/address/country/text()}</pays>

<reseau>

<courrier>{$t/emailaddress/text()}</courrier>

<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>

return

<categorie>{<id>{$i}</id>, $p}</categorie>
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• List the names of items registered in Australia along with their descriptions.

Q13 = for $i in doc("xmark.xml")/site/regions/australia/item

return

<item name="{$i/name/text()}">{$i/description}</item>

• Return the names of all items whose description contains the word ‘gold’.

Q14 = for $i in doc("auction.xml")/site//item

where

contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

• Print the keywords in emphasis in annotations of closed auctions.

Q15 = for $a in

doc("auction.xml")/site/closed_auctions/closed_auction/

annotation/

description/

parlist/

listitem/

parlist/

listitem/

text/

emph/

keyword/

text()

return <text>{$a}</text>

• Return the IDs of those auctions that have one or more keywords in emphasis.

Q16 = for $a in doc("xmark.xml")/site/closed_auctions/closed_auction

where

not(

empty(

$a/annotation/description/parlist/listitem/parlist/

listitem/

text/

emph/

keyword/

text()

)

)

return

<person id="{$a/seller/@person}"/>
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• Which persons don’t have a homepage?

Q17 = for $p in doc("xmark.xml")/site/people/person

where empty($p/homepage/text())

return <person name="{$p/name/text()}"/>

• Convert the currency of the reserve of all open auctions to another currency.

declare namespace local = "http://www.foobar.org";

declare function local:convert($v as xs:decimal?) as xs:decimal?

{ 2.20371 * $v (: convert Dfl to Euro :)

};

Q18 = let $auction := doc("auction.xml") return

for $i in $auction/site/open_auctions/open_auction

return local:convert(zero-or-one($i/reserve))

• Give an alphabetically ordered list of all items along with their location.

Q19 = for $b in doc("auction.xml")/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location)ascending empty greatest

return

<item name="{$k}">

{$b/location/text()}

</item>

• Group customers by their income and output the cardinality of each group.

Q20 = let $auction := doc("auction.xml") return

<result>

<preferred>

{count(

$auction/site/people/person/profile[@income >= 100000]

)}

</preferred>

<standard>

{

count(

$auction/site/people/person/

profile[@income < 100000 and @income >= 30000]

)

}

</standard>
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<challenge>

{count($auction/site/people/person/profile[@income < 30000])}

</challenge>

<na>

{

count(

for $p in $auction/site/people/person

where empty($p/profile/@income)

return $p

)

}

</na>

</result>

A.2 Update Expressions used in [BBC+11]

U1. Insert a new node <annotation>Empty Annotation</annotation> as last of
each closed_auction node.

for $x in $doc/site/closed_auctions/closed_auction

where not ($x/annotation)

return insert node

<annotation>Empty Annotation</annotation>

as last into $x

U2. Replace address of each element which its country is United States with
another address.

for $x in $doc/site/people/person/address

where

$x/country/text()="United States"

return

(replace node $x with

<address>

<street>{$x/street/text()}</street>

<city>"NewYork"</city>

<country>"USA"</country>

<province>{$x/province/text()}</province>

<zipcode>{$x/zipcode/text()}</zipcode>

</address>

)

U3. Replace each United States location with the value USA.

for $x in $doc/site/regions//item/location
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where $x/text()="United States"

return (replace value of node $x with "USA")

U4. Delete all subtrees rooted at mail from each item node.

delete nodes $doc/site/regions//item/mailbox/mail

U5. Rename each bold node with emph.

for $x in $doc/site//text/bold

return rename node $x as "emph"

U6. Insert new homepage node for each person which does not have a homepage.

for $x in $doc/site/people/person

where not($x/homepage)

return insert node

<homepage>

www.{$x/name/text()}Page.com

</homepage> after $x/emailaddress

U7. Insert ....

for $x in $doc/site/people/person,

for $y in $doc/site/people/person

where $x/name = $y/name

and not ($y/address) and $x/country="Malaysia"

return insert node $x/address

after $y/emailaddress

A.3 XQuery Update expressions in [Sah11]

U1. for $x in $doc/site/closed_auctions/closed_auction

where not ($x/annotation) return

insert node <annotation>Empty Annotation</annotation>

as last into $x

U2.for $x in $doc/site/people/person/address

where $x/country/text()="United States" return

(replace node $x with

<address>

<street>{$x/street/text()}</street>

<city>"NewYork"</city>

<country>"USA"</country>

<province>{$x/province/text()}</province>

<zipcode>{$x/zipcode/text()}</zipcode>

</address>)
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U3.for $x in $doc/site/regions//item/location

where $x/text()="United States"

return (replace value of node $x with "USA")

U4.delete nodes $doc/site/regions//item/mailbox/mail

U5.for $x in $doc/site//text/bold return

rename node $x as "emph"

U6.for $x in $doc/site/people/person

where not($x/homepage)

return insert node

<homepage>www.{$x/name/text()}Page.com</homepage>

after $x/emailaddress

U7.for $x in $doc/site/people/person,

for $y in $doc/site/people/person

where $x/name = $y/name

and not ($y/address)

and $x/address/country=’Malaysia’

return insert node $x/address

after $y/emailaddress

U8. delete nodes $doc/site/regions/australia

U9. let $k := $doc/site/closed_auctions/closed_auction[last()]

for $b in $doc/site/open_auctions/open_auction[last()]

return replace node $k/annotation with $b/annotation

U10. for $x in $doc/site/open_auctions/open_auction

where ($x/privacy="Yes")

return delete node $x

U11. for $x in $doc/site/open_auctions/open_auction

where $x/bidder/increase < 20

return insert node

<bidder>

<date>08/17/2000</date>

<time>15:15:15</time>

<personref/>

<increase>1.50</increase>

</bidder>

after $x/initial
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U12. for $x in $doc/site/regions//item

where ($x/mailbox/mail/date/text()="07/04/1998")

return insert node <incategory/> before $x/mailbox

U13. for $x in $doc/site/open_auctions/open_auction/annotation/

description/text

where ($x/keyword/emph/text()="unique")

and ($x/bold)

return insert node <emph>newTexT</emph> before $x/bold

U14. for $x in $doc/site//text/emph

return delete node $x

U15. for $x in $doc/site/categories/category/description/parlist

where ($x/listitem/parlist) return

replace node $x with $x/listitem/parlist[1]

U16. for $x in $doc/site/closed_auctions

return delete node $x

U17. for $x in $doc/site/closed_auctions

return insert node

<closed_auction>

<seller/>

<buyer/>

<itemref/>

<price>39.58</price>

<date>02/15/1998</date>

<quantity>1</quantity>

<type>Regular_new</type>

<annotation/>

</closed_auction> as last into $x

U18. for $x in $doc/site/categories/category/description

/parlist/listitem

where ($x/parlist)

return replace node $x/parlist with <text>newText</text>

U19. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem[1]

U20. for $x in $doc/site/categories/category/description/parlist/listitem

return replace node $x with $x/parlist/listitem
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A.4 XQuery Update Facilities 1.0 Use Cases

1- Add a new user (with no rating) to the users.xml view.

insert nodes

<user_tuple>

<userid>U07</userid>

<name>Annabel Lee</name>

</user_tuple>

into doc("users.xml")/users

2- Enter a bid for user Annabel Lee on February 1st, 1999 for 60 dollars on item
1001.

let $uid :=

doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1001</itemno>

<bid>60</bid>

<bid_date>1999-02-01</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

3- Insert a new bid for Annabel Lee on item 1002, adding 10% to the best bid
received so far for this item.

let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

let $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1002]/bid)

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1002</itemno>

<bid>{$topbid*1.1}</bid>

<bid_date>1999-02-01</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

4- Set Annabel Lee’s rating to B.

let $user := doc("users.xml")/users/user_tuple[name="Annabel Lee"]

return

if ($user/rating)



166 Appendix A. XQuery Expressions and XQuery Updates

then replace value of node $user/rating with "B"

else insert node <rating>B</rating> into $user

5- Place a bid for Annabel Lee on item 1007, adding 10% to the best bid received
so far on that item, but only if the bid amount does not exceed a given limit. The
first query illustrates the desired behavior if the limit is exceeded.

let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

let $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1007]/bid)

where $topbid*1.1 <= 200

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1007</itemno>

<bid>{$topbid*1.1}</bid>

<bid_date>1999-02-01</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

6- Place a bid for Annabel Lee on item 1007, adding 10% to the best bid received
so far on that item, but only if the bid amount does not exceed 500. This illustrates
the behavior when the resulting value is within the limit.

let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

let $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1007]/bid)

where $topbid*1.1 <= 500

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1007</itemno>

<bid>{$topbid*1.1}</bid>

<bid_date>1999-02-01</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

7- Erase user Dee Linquent and the corresponding associated items and bids.

let $user := doc("users.xml")/users/user_tuple[name="Dee Linquent"]

let $items := doc("items.xml")/items/item_tuple[offered_by=$user/userid]

let $bids := doc("bids.xml")/bids/bid_tuple[userid=$user/userid]

return (

delete nodes $user,

delete nodes $items,
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delete nodes $bids

)

8- Erase user Dee Linquent and the corresponding associated items and bids.

let $user := doc("users.xml")/users/user_tuple[name="Dee Linquent"]

let $items := doc("items.xml")/items/item_tuple[offered_by=$user/userid]

let $bids := doc("bids.xml")/bids/bid_tuple[userid=$user/userid]

return

delete nodes $user, $items, $bids

9- Add the element <comment>This is a bargain !</comment> as the last child of
the <item> element describing item 1002.

insert nodes

<comment>This is a bargain !</comment>

as last into doc("items.xml")/items/item_tuple[itemno=1002]

10- Place a bid for Annabel Lee on item 1010, which does not exist in "items.xml".
In this query, we assume that a referential integrity constraint in the underlying
database system requires that no bid can be placed on an item unless it exists in
the database.

let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1010</itemno>

<bid>60</bid>

<bid_date>2006-04-23</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

11- Add a bid for Annabel Lee on item 1002, at a price 5 dollars below the current
highest bid. A trigger in the underlying database ensures that a bid cannot be made
at a lower price than the highest bid made so far on that item.

let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/userid

let $topbid := max(doc("bids.xml")//bid_tuple[itemno=1002]/bid)

return

insert nodes

<bid_tuple>

<userid>{data($uid)}</userid>

<itemno>1002</itemno>

<bid>{$topbid - 5.00}</bid>
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<bid_date>2006-04-23</bid_date>

</bid_tuple>

into doc("bids.xml")/bids

12- Delete all parts in "part-tree.xml".

delete nodes doc("part-tree.xml")//part

13- Delete all parts belonging to a car in "part-tree.xml", leaving the car itself.

delete nodes doc("part-tree.xml")//part[@name="car"]//part

14- Delete all parts belonging to a car in "part-list.xml", leaving the car itself.

for $pt in doc("part-tree.xml")//part[@name="car"]//part,

$pl in doc("part-list.xml")//part

where $pt/@partid eq $pl/@partid

return

delete nodes $pl

15- Add a radio to the car in "part-tree.xml", using a part number that hasn’t been
taken.

let $next := max(doc("part-tree.xml")//@partid) + 1

return

insert nodes <part partid="{$next}" name="radio"/>

into

doc("part-tree.xml")//part[@partid=0 and @name="car"]

16- The head office has adopted a new numbering scheme. In "part-tree.xml", add
1000 to all part numbers for cars, 2000 to all part numbers for skateboards, and
3000 to all part numbers for canoes.

for $keyword at $i in ("car", "skateboard", "canoe"),

$parent in doc("part-tree.xml")//part[@name=$keyword]

let $descendants := $parent//part

for $p in ($parent, $descendants)

return

replace value of node $p/@partid with $i*1000+$p/@partid
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