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Spécialité : Informatique

Université Paris-Sud
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Abstract

This Habilitation thesis outlines my research activities carried out as an Associate Professor at Université Paris-
Sud and Inria Saclay Île-de-France. During this period, from 2003 to early 2012, my work was – and still is – at
the interface between Knowledge Representation and Databases. I have mainly focused on ontology-based data
management using the Semantic Web data models promoted by W3C: the Resource Description Framework (RDF)
and the Web Ontology Language (OWL). In particular, my work has covered (i) the design, (ii) the optimization,
and (iii) the decentralization of ontology-based data management techniques in these data models. This thesis
briefly reports on the results obtained along these lines of research.
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Chapter 1

Introduction

Data management is a longstanding research topic in Knowledge Representation (KR), a prominent discipline of
Artificial Intelligence (AI), and – of course – in Databases (DB).

Till the end of the 20th century, there have been few interactions between these two research fields concerning
data management, essentially because they were addressing it from different perspectives. KR was investigat-
ing data management according to human cognitive schemes for the sake of intelligibility, e.g., using Conceptual
Graphs [CM08] or Description Logics [BCM+03], while DB was focusing on data management according to sim-
ple mathematical structures for the sake of efficiency, e.g., using the relational model [AHV95] or the eXtensible
Markup Language [AMR+12].

In the beginning of the 21st century, these ideological stances have changed with the new era of ontology-
based data management [Len11]. Roughly speaking, ontology-based data management brings data management
one step closer to end-users, especially to those that are not computer scientists or engineers. It basically revisits
the traditional architecture of database management systems by decoupling the models with which data is exposed
to end-users from the models with which data is stored. Notably, ontology-based data management advocates
the use of conceptual models from KR as human intelligible front-ends called ontologies [Gru09], relegating DB
models to back-end storage.

The World Wide Web Consortium (W3C) has greatly contributed to ontology-based data management by pro-
viding standards for handling data through ontologies, the two Semantic Web data models. The first standard,
the Resource Description Framework (RDF) [W3Ca], was introduced in 1998. It’s a graph data model coming
with a very simple ontology language, RDF Schema, strongly related to description logics. The second standard,
the Web Ontology Language (OWL) [W3Cd], was introduced in 2004. It’s actually a family of well-established
description logics with varying expressivity/complexity tradeoffs.

The advent of RDF and OWL has rapidly focused the attention of academia and industry on practical ontology-
based data management. The research community has undertaken this challenge at the highest level, leading to
pioneering and compelling contributions in top venues on Artificial Intelligence (e.g., AAAI, ECAI, IJCAI, and
KR), on Databases (e.g., ICDT/EDBT, ICDE, SIGMOD/PODS, and VLDB), and on the Web (e.g., ESWC, ISWC,
and WWW). Also, open-source and commercial software providers are releasing an ever-growing number of tools
allowing effective RDF and OWL data management (e.g., Jena, ORACLE 10/11g, OWLIM, Protégé, RDF-3X,
and Sesame).

Last but not least, large societies have promptly adhered to RDF and OWL data management (e.g., library
and information science, life science, and medicine), sustaining and begetting further efforts towards always more
convenient, efficient, and scalable ontology-based data management techniques.

This HDR thesis outlines my contributions to ontology-based data management using RDF and OWL. The
reported results were obtained from 2003 to early 2012, as an Associate professor at Université Paris-Sud (LRI,
UMR CNRS 8623, Artificial Intelligence and Inference Systems team) and Inria (Saclay – Île-de-France, GEMO
team 2003–2009, LEO team 2009–2012, and OAK team 2012–now). During this period, I have mainly investi-
gated the design, the optimization, and the decentralization of ontology-based data management techniques for
RDF and OWL. Each of these three lines of research has a dedicated Chapter in this thesis, summarizing a main
contribution as well as ongoing work with promising preliminary results. For each, I briefly report on the con-
text, motivations, and contributions of the study, before providing some intuitions and examples about the devised
techniques. More specifically, the thesis is organized as follows.
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Chapter 2 (Preliminaries). I introduce the basics of RDF and of the DL-lite family of description logics which
underlies the OWL dialect dedicated to the management of large datasets: OWL2 QL. I describe for each the
data model, query language, and prevalent techniques for the traditional data management tasks of consistency
checking and query answering.

Chapter 3 (Design). The main contribution I present is robust module-based data management in DL-lite.
Module-based data management amounts to handling data using an ontology – a module – that derives from that
of a preexisting ontology-based data management application. I summarize the results from [GR10, GR12], which
introduce the novel notion of robust module and show how to use it to enhance data integrity and to complement
the answers to queries in ontology-based data management applications.

The ongoing work I present next is the design of RDF query answering techniques that are robust to graph1

updates. I summarize the results from [GMR12b, GMR12a], which build on the prevalent saturation-based query
answering technique and on the alternative reformulation-based query answering technique. A saturation main-
tenance technique is designed for the former to limit the necessary re-computation efforts upon graph updates,
while the latter – de facto robust to updates – is extended to a larger fragment of RDF than those investigated in
the literature.

Chapter 4 (Optimization). The main contribution I present is view selection for efficient RDF query answer-
ing. It amounts to tuning an RDF data management system to users’ or applications’ needs modeled as a query
workload. The idea is to pre-compute and store the results for some automatically selected queries – the views –
in order to minimize a combination of query processing, view storage, and view maintenance upon update costs. I
summarize the results from [GKLM10b, GKLM10a, GKLM11a], which build on a state-of-the-art view selection
technique for the relational data model. In particular, the view selection technique devised for RDF supports both
saturation- and reformulation-based query answering, depending on how views are materialized.

The ongoing work I present next is a first step towards efficient query answering against XML documents
with RDF annotations. I summarize the results from [GKK+11a, GKK+12], which combine the XML and RDF
data models and query languages into a uniform XML-RDF hybrid setting for managing annotated documents.
In particular, we want to study to which extent query answering can be optimized by using at the same time the
structural XML constraints (expected tree shape of the documents) and the semantic RDF constraints (expected
ontological descriptions) expressed in queries.

Chapter 5 (Decentralization). The main contribution I present is peer-to-peer data management for RDF
and DL-lite. In such systems, every peer manages its ontology and data, and can also establish semantic cor-
respondences called mappings with peers having similar interests. This gives rise to a distributed data man-
agement system, in which it becomes possible to perform global data management tasks. I summarize the re-
sults from [AGR07, AAC+08, AGR09], which build on decentralized consequence finding in propositional logic
[ACG+05a, ACG+06, AG09]. Notably, these peer-to-peer systems are fully decentralized and scale to more than
a thousand peers.

The ongoing work I present next is a first step towards RDF data management in a cloud. A cloud is a place
where one rents virtual machines, disk space, and services (e.g., database access), and then pays as she uses
them. I summarize the results from [BGKM12], which investigate RDF query answering in the Amazon cloud
w.r.t. efficiency and monetary costs.

Chapter 6 (Conclusion and perspectives). Finally, I present my forthcoming work, which mostly corresponds
to challenges for enhancing the state-of-the-art data management techniques, or for enabling new valuable ontology-
based data management tasks.

1Graph is the RDF term for a knowledge base in AI or a database in DB.
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Chapter 2

Preliminaries

I recall here the basics of the Resource Description Framework (Section 2.1) and of the DL-lite family of Descrip-
tion Logics (Section 2.2). DL-lite is strongly related to data management in OWL, as it includes the DL-liteR
description logic, which underlies the OWL dialect dedicated to the management of large datasets: OWL2 QL. I
also give a brief overview of the expressivity shared by RDF and DL-lite, and by their respective query languages
(Section 2.3). This chapter compiles material published in [GMR12b, GMR12a, GR10, GR12].

2.1 The Resource Description Framework (RDF)

RDF [W3Ca] is a graph data models that has been recommended by W3C since 1998. It allows defining graphs
(Section 2.1.1) that can be queried with the SPARQL Protocol And RDF Query Language [W3Cc] (Section 2.1.2).
This language, SPARQL in short, has been recommended by W3C since 2008. The prevalent technique for
answering SPARQL queries against graphs is saturation-based query answering (Section 2.1.3).

2.1.1 Graphs

A graph is a set of triples of the form s p o . (the final dot preceded by a white space belongs to the normative
triple syntax). A triple states that its subject s has the corresponding property p, and the value of that property
is the object o. Given a set U of Uniform Resource Identifiers1 (URIs), a set L of literals (constants), and a set
B of blank nodes (unknown URIs or literals), such that U , B and L are pairwise disjoint, a triple is well-formed
whenever its subject belongs to U ∪ B, its property belongs to U , and its object belongs to U ∪ B ∪ L. In the
following, I only consider well-formed triples.

Blank nodes are essential features of RDF allowing the support of incomplete information. For instance, one
can use a blank node :b1 to state that the country of :b1 is France while the city of the same :b1 is Brest. Many
such blank nodes can co-exist within a graph, e.g., one may also state that the country of :b2 is Romania while the
city of :b2 is Timişoara; at the same time, the population of Timişoara can be said to be an unspecified constant
:b3.

Notations I use s, p, o and :b in triples (possibly with subscripts) as placeholders. That is, s stands for values
in U ∪ B, p stands for values in U , o represents values from U ∪ B ∪ L, and :b denotes values in B. Strings
between quotes as in “string” denote literals. Finally, the set of values (URIs, blank nodes, literals) of a graph G

is denoted Val(G).

Figure 2.1 shows how to use triples to describe resources; from now on, I use the name rdf for the normative
RDF namespace2 when writing the URIs of classes and properties comprised in the RDF standard.

1Uniform Resource Identifiers provide naming schemes for referring to resources using keys, in the usual database sense.
2A namespace is a URI used to group resources. When a namespace is given a name, a resource within that namespace can be simply

written name:resource. For instance, lri:iasi refers to the resource iasi within the namespace lri; it corresponds to the URI
http://www.lri.fr/iasi whenever the namespace http://www.lri.fr/ is named lri.
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Constructor Triple
Class assertion s rdf:type o .
Property assertion s p o .

Figure 2.1: RDF statements.

A more intuitive representation of a graph can be drawn from its triples. Every (distinct) subject or object
value is represented by a node labeled with this value. For each triple, there is a directed edge from the subject
node to the object node, which is labeled with the property value.

Example 1 (Running example) The two representations in Figure 2.2 are equivalent as they model the same
graph G. The namespaces for user-defined classes and properties were omitted for the sake of readability. This
graph describes the Digital Object Identifier3 doi1 that belongs to an unknown class, whose title (hasTitle) is
“Complexity of Answering Queries Using Materialized Views”, whose author (hasAuthor) is “Serge Abiteboul”
and which has an unknown contact author (hasContactA). This paper is in the proceedings of (inProceedingsOf)
an unknown resource whose name (hasName) is “PODS’98”. Lastly, the URI cikm2012 is a conference and the
property that associates names (hasName) has been created by “John Doe”.

G=

{doi1 rdf:type :b0 ., doi1 hasTitle “CAQUMV ” .,
doi1 hasAuthor “SA” ., doi1 hasContactA :b1 .,
doi1 inProceedingsOf :b2 ., :b2 hasName “PODS′98” .,
cikm2012 rdf:type conference .,
hasName createdBy “John Doe” .}

G = doi1

:b0

“CAQUMV ”

“SA”

:b1

:b2 “PODS ′98”

hasName “JohnDoe”

cikm2012 Conference

rdf:type

hasTitle

hasAuthor

hasContactA

inProceedingsOf
hasName

createdBy

rdf:type

Figure 2.2: Alternative graph representations.

A valuable feature of RDF is RDF Schema (RDFS) that allows enhancing the descriptions in RDF graphs.
An RDF Schema declares semantic constraints between the classes and the properties used in graphs. Figure 2.3
shows the allowed constraints and how to express them; from now on, I use the name rdfs for the normative RDFS
namespace when writing the URIs of classes and properties comprised in the RDFS standard.

Constructor Triple
Subclass constraint s rdfs:subClassOf o .
Subproperty constraint s rdfs:subPropertyOf o .
Domain typing constraint s rdfs:domain o .
Range typing constraint s rdfs:range o .

Figure 2.3: RDFS statements expressing semantic constraints between classes and properties.

Example 2 (Continued) Consider next to the above graph G, a schema stating that poster papers (posterCP)
together with the unknown class :b0 are subclasses of conference papers (confP), which are scientific papers
(paper). Moreover, titles (hasTitle), authors (hasAuthor), contact authors (hasContactA) – who are authors
– are used to describe papers. Papers are also described by the conferences (conference) in whose proceedings
(inProceedingsOf) they appear. Finally, names (hasName) describe conferences, and creators (createdBy)
describe resources. The extended graph G′ of G corresponding to this schema is depicted in Figure 2.4.

Entailment The W3C names RDF entailment the mechanism through which, based on the set of explicit triples
and some entailment rules (to be described shortly), implicit triples are derived. I denote by `iRDF immediate
entailment, i.e., the process of deriving new triples through a single application of an entailment rule. More
generally, a triple s p o . is entailed by a graph G, denoted G `RDF s p o . if and only if there is a sequence
of applications of immediate entailment rules that leads from G to s p o ., where at each step of the entailment
sequence, the triples previously entailed are also taken into account.

3http://www.doi.org
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G′=G ∪

{posterCP rdfs:subClassOf confP ., :b0 rdfs:subClassOf confP ., confP rdfs:subClassOf paper .,
hasTitle rdfs:domain paper ., hasTitle rdfs:range rdfs:Literal ., hasAuthor rdfs:domain paper .,
hasAuthor rdfs:range rdfs:Literal ., hasContactA rdfs:subPropertyOf hasAuthor .,
inProceedingsOf rdfs:domain confP ., inProceedingsOf rdfs:range conference .,
hasName rdfs:domain conference ., hasName rdfs:range rdfs:Literal ., createdBy rdfs:range rdfs:Literal .}

Figure 2.4: Extended graph for Example 2.

Graph saturation The immediate entailment rules allow defining the (finite) saturation (a.k.a. closure) of a
graph G, which is the graph, denoted G∞, defined as the fixpoint of:

• G0 = G

• Gα = Gα−1 ∪ {s p o . | Gα−1 `iRDF s p o .}

The saturation of a graph is unique (up to blank node renaming), and does not contain any implicit triples (they
have been made explicit by saturation). An obvious connection holds between the triples entailed by a graph G

and its saturation: G `RDF s p o . if and only if s p o . ∈ G∞. It is worth noticing that RDF entailment is part
of the RDF specification itself, and therefore the semantics of a graph is its saturation. From the RDF standard
perspective, any graph G is equivalent to, and models, its saturation G∞.

Immediate entailment rules I give here an overview of the different kinds of immediate entailment rules upon
which RDF entailment relies.

A first kind of rule generalizes triples using blank nodes. In the running example, doi1 rdf:type :b0 . entails
:b3 rdf:type :b0 . Indeed, if doi1 is an instance of :b0, then there exists an instance of :b0.

A second kind of rule derives entailed triples from the semantics of built-in classes and properties. E.g., RDF
provides rdfs:Class whose semantics is the set of all built-in and user-defined classes, with the striking effect that
rdfs:Class is an instance of itself. As a result, in the running example, doi1 rdf:type :b0 . entails that :b0 is a
class, i.e., :b0 rdf:type rdfs:Class .

Finally, the third kind of rule derives entailed triples from the constraints modeled in an RDF Schema. Some
rules derive entailed RDFS statements, through the transitivity of class and property inclusions, and from inher-
itance of domain and range typing. For example, in the running example, :b0 rdfs:subClassOf confP . and
confP rdfs:subClassOf paper . entail :b0 rdfs:subClassOf paper .; hasAuthor rdfs:domain paper . and
hasContactA rdfs:subPropertyOf hasAuthor . entail hasContactA rdfs:domain paper . Some other rules
derive entailed RDF statements, through the propagation values (URIs, blank nodes, and literals) from sub-classes
and sub-properties to their super-classes and super-properties, and from properties to classes typing their domains
and ranges. In the example, hasContactA rdfs:subPropertyOf hasAuthor . and doi1 hasContactA :b1 . entail
doi1 hasAuthor :b1 .; hasAuthor rdfs:domain paper . and doi1 hasAuthor :b1 . entail doi1 rdf:type paper .

Graph consistency Graphs can be inconsistent only if they use typed literals instead of literals. Roughly speak-
ing, RDF allows reusing pre-defined datatypes from XML Schema [W3Cf], a schema language for the XML tree
data model. While literal typing is an RDF refinement of practical importance, it only introduces a very simple and
specific form of inconsistency that is not of theoretical interest. Therefore, in this thesis, I only consider consistent
graphs.

2.1.2 Queries

I consider the well-known subset of SPARQL consisting of basic graph pattern (BGP) queries. A BGP is a set of
triple patterns, or triples in short. Each triple has a subject, property and object. Subjects and properties can be
URIs, blank nodes or variables; objects can also be literals.

A boolean BGP query is of the form ASK WHERE {t1, . . . , tα}, while a non-boolean BGP query is of the
form SELECT x̄ WHERE {t1, . . . , tα}, where {t1, . . . , tα} is a BGP; the variables x̄ in the head of the query are
called distinguished variables, and are a subset of the variables occurring in t1, . . . , tα.
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Notations Without loss of generality, in the following I will use the traditional conjunctive query notation
q(x̄):- t1, . . . , tα for both ASK and SELECT queries (for boolean queries, x̄ is empty). I use x, y, and z (pos-
sibly with subscripts) to denote variables in queries. I denote by VarBl(q) the set of variables and blank nodes
occurring in the query q.

Query evaluation Given a query q and a graph G, the evaluation of q against G is: q(G) = {x̄µ | µ : VarBl(q)→
Val(G) is a total assignment s.t. {t1, . . . , tα}µ ⊆ G}.

In the above, for any triple or set of triples O, I denote by Oµ the result of replacing every occurrence of a
variable or blank node e ∈ VarBl(q) in O by the value µ(e) ∈ Val(G). If q is boolean, the empty answer set
encodes false, while the non-empty answer set made of the empty tuple ∅µ = 〈〉 encodes true.

Observe that the normative evaluation treats the blank nodes in a query as non-distinguished variables. That
is, one could consider equivalently queries without blank nodes or queries without non-distinguished variables.

Answer set of a query The evaluation of q against G only uses G’s explicit triples, thus may lead to an incomplete
answer set. The (correct) answer set of q against G is obtained by the evaluation of q against G∞, denoted by q(G∞).

Example 3 (Continued) The following query asks for the authors of papers published in the proceedings of a
conference somehow related to PODS’98:

q(x):- y1 hasAuthor x ., y1 inProceedingsOf y2 ., y2 y3 “PODS′98” .

That query could be equivalently written into:

q(x):- :b0 hasAuthor x ., :b0 inProceedingsOf :b1 ., :b1 :b2 “PODS′98” .

The answer set of q against G′ is: q(G′∞) = {〈“SA”〉, 〈 :b1〉}. The answer “SA” results from the as-
signment µ = {y1 → doi1, x → “SA”, y2 → :b2, y3 → hasName}, while the answer :b1 results from
G′ `RDF doi1 hasAuthor :b1 . and the assignment µ = {y1 → doi1, x→ :b1, y2 → :b2, y3 → hasName}.

Note that evaluating q against G′ leads to the incomplete answer set q(G′) = {〈“SA”〉} ⊂ q(G′∞).

2.1.3 Query answering
The prevalent technique for answering queries is saturation-based query answering. It’s straightforward, since the
answer set of a query is computed exactly as it is formally defined. The saturation of the queried graph is computed
(using the entailment rules), so that the answer set of every query against the (original) graph is obtained by query
evaluation against the saturation. The advantage of this approach is that it is easy to implement. Its disadvantages
are that graph saturation needs time to be computed and space to store all the entailed triples; moreover, the
saturation must be somehow recomputed upon every graph update.

Saturation-based query answering using relational database management systems Graphs turn out to be a
special case of incomplete relational databases based on V-tables under the open-world assumption [IJ84, AHV95].
Such tables allow using variables in their tuples, and repeating a variable within a V-table allows expressing joins
on unknown values. An important result on V-table querying is that the standard relational evaluation (which sees
variables in V-tables as constants) computes the complete answer set of any conjunctive query [IJ84, AHV95].
From a practical viewpoint, this provides a possible way of answering BGP queries against graphs using standard
relational database management systems (RDBMSs, in short).

From the above observations, a graph G can be encoded into a (single) V-table Triple(s, p, o) storing the
triples of G as tuples, in which blank nodes become variables. Given a BGP query q(x̄):- s1 p1 o1 ., . . . , sn pn on .,
in which blank nodes have been equivalently replaced by fresh non-distinguished variables, the RDF evaluation
q(G) of q against G is obtained by the relational evaluation of the conjunctive queryQ(x̄):-

∧n
i=1 Triple(si, pi, oi)

against the aforementioned Triple table. Indeed, RDF and relational evaluations coincide with the above encod-
ing, as relational evaluation amounts to finding all the total assignments from the variables of the query to the
values (constants and variables) in the Triple table, so that the query becomes a subset of that Triple table.

It follows that evaluating Q(x̄):-
∧n
i=1 Triple(si, pi, oi) against the Triple table containing the saturation

of G, instead of G itself, computes the answer set of q against G. Hence, BGP queries against graphs can be
evaluated by a standard RDBMS.
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Example 4 (Continued) Provided that the saturation of the above graph G′ is encoded in a V-table Triple(s, p, o)
as described above, the answer set of the following BGP query:

q(x):- y1 hasAuthor x ., y1 inProceedingsOf y2 ., y2 y3 “PODS′98” .

against G′ (i.e., q(G′∞)) is the same as the result of evaluating the following relational conjunctive query against
the Triple table:

Q(x):- Triple(y1,hasAuthor, x) ∧ Triple(y1, inProceedingsOf, y2) ∧ Triple(y2, y3, “PODS
′98”).

2.2 The DL-lite family of Description Logics
The DL-lite family [CGL+07] of Descriptions Logics [BCM+03] allows defining knowledge bases (Section 2.2.1)
that can be queried with the well-known conjunctive queries (Section 2.2.2), a.k.a. select-project-join queries, from
the relational database theory [AHV95]. The prevalent techniques for consistency checking and query answering
is first order logic (FOL) reducibility, which reduces these tasks to the evaluation of FOL queries (Section 2.2.3).

2.2.1 Knowledge bases
Generally speaking, a DL knowledge base (KB) consists of a schema called a Tbox and its associated dataset
called an Abox. A Tbox T is defined upon a signature (a.k.a. vocabulary), denoted sig(T), which is the disjoint
union of a set of unary relations called atomic concepts and a set of binary relations called atomic roles. A Tbox
is a set of constraints called terminological axioms, typically inclusion constraints between complex concepts or
roles, i.e., unary or binary DL formulae built upon atomic relations using the constructors allowed in DL under
consideration. An Abox defined upon sig(T) is a set of facts called assertional axioms, relating DL formulae to
their instances. The legal KBs vary according to the DL used to express terminological and assertional axioms,
and to the restrictions imposed on those axioms.

In DL-lite, the concepts and roles that can be built from atomic concepts and atomic roles are of the following
form:

B → A | ∃R, C → B | ¬B, R→ P | P−, E → R | ¬R
whereA denotes an atomic concept, P an atomic role, and P− the inverse of P ;B denotes a basic concept (i.e., an
atomic conceptA or an unqualified existential quantification on a basic role ∃R) andR a basic role (i.e., an atomic
role P or its inverse P−); C denotes a general concept (i.e., a basic concept or its negation) and E a general role
(i.e., a basic role or its negation).

The (set) semantics of concepts and roles is given in terms of interpretations. An interpretation I = (∆I , .I)
consists of a nonempty interpretation domain ∆I and an interpretation function .I that assigns a subset of ∆I to
each atomic concept, and a binary relation over ∆I to each atomic role. The semantics of non-atomic concepts
and non-atomic roles is defined as follows:

• (P−)I = {(o2, o1) | (o1, o2) ∈ P I},

• (∃R)I = {o1 | ∃o2 (o1, o2) ∈ RI}, and

• (¬B)I = ∆I\BI and (¬R)I = ∆I ×∆I\RI .

The axioms allowed in a Tbox of DL-lite are concept inclusion constraints of the form B v C, role inclusion
constraints of the form R v E, and functionality constraints on roles of the form (funct R). Observe that negated
concepts or roles are only allowed on the right hand side of inclusion constraints, whereas only positive concepts or
roles occur on the left hand side of such constraints. Moreover, only basic roles occur in functionality constraints.

Inclusions of the form B1 v B2 or R1 v R2 are called positive inclusions (PIs), while inclusions of the
form B1 v ¬B2 or of the form R1 v ¬R2 are called negative inclusions (NIs). PIs allow expressing inclusion
dependencies, while NIs and functionalities allow expressing integrity constraints (ICs).

An interpretation I = (∆I , .I) is a model of an inclusion B v C (resp. R v E) if BI ⊆ CI (resp. RI ⊆ EI ).
It is a model of a functionality constraint (funct R) if the binary relation RI is a function, i.e., (o, o1) ∈ RI and
(o, o2) ∈ RI implies o1 = o2. I is a model of a Tbox if it is a model of all of its constraints. A Tbox is satisfiable
if it has a model. A Tbox T logically entails (a.k.a. implies) a constraint α, written T |= α, if every model of T is a
model of α. Finally, a Tbox T logically entails (a.k.a. implies) a Tbox T′, written T |= T′, if every model of T is a
model of T′; and two Tboxes T and T′ are logically equivalent, written T ≡ T′, iff T |= T′ and T′ |= T.
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1. Publication v ∃hasTitle, (funct hasTitle)

2. Publication v ∃hasDate, (funct hasDate)

3. Publication v ∃hasVenue, (funct hasVenue)

4. Publication v ∃hasAuthor

5. ∃hasTitle v Publication

6. ConfPaper v Publication, JournPaper v Publication, ConfPaper v ¬JournPaper

7. ShortPaper v ConfPaper, FullPaper v ConfPaper, FullPaper v ¬ShortPaper, Survey v JournPaper

Figure 2.5: A DL-lite Tbox T representing scientific publications.

Example 5 (Running example) Consider the Tbox T in Figure 2.5, representing domain knowledge about scien-
tific publications. Its signature sig(T) consists of the atomic concepts Publication, ConfPaper, ShortPaper,
FullPaper, JournPaper, Survey, and of the atomic roles hasTitle, hasDate, hasVenue, and hasAuthor.

The constraints in T state that any publication has a single title (1), a single date of publication (2), a single
venue (3), and at least one author (4). In addition, only publications have a title (5), papers in conference
proceedings or in journals (which are disjoint) are publications (6), short papers or full papers (which are disjoint)
are papers in conference proceedings, and surveys are journal papers (7).

The Tbox implies the constraint JournPaper v ∃hasAuthor, which means that a journal paper has at least
one author, as it contains JournPaper v Publication and Publication v ∃hasAuthor.

It also implies the constraint FullPaper v ¬Survey, which means that surveys and full papers are disjoint,
as it contains FullPaper v ConfPaper, ConfPaper v ¬JournPaper, and Survey v JournPaper.

An Abox consists of a finite set of membership assertions of the form A(a) and P (a, b), i.e., on atomic
concepts and on atomic roles, stating respectively that a is an instance of A and that the pair of constants (a, b)
is an instance of P . The interpretation function of an interpretation I = (∆I , .I) is extended to constants by
assigning to each constant a a distinct object aI ∈ ∆I , i.e., the so called unique name assumption holds. An
interpretation I is a model of the membership assertion A(a) (resp. P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I ). It
is a model of an Abox if it satisfies all of its assertions.
Example 6 (Continued) Consider the Abox in Figure 2.6, representing factual knowledge about scientific publi-
cations. It is expressed as relational tables and states in particular that:

• doi1 is the Digital Object Identifier4 (DOI) of the full paper entitled ”Complexity of Answering Queries
Using Materialized Views” and published in PODS’98 by Serge Abiteboul (”SA”) and Oliver M. Duschka
(”OD”),

• doi2 is the DOI of the survey entitled ”Answering queries using views: A survey” and published in VLDB
Journal in 2001 by Alon Y. Halevy (”AH”), and

• doi3 is the DOI of the journal paper entitled ”MiniCon: A scalable algorithm for answering queries using
views” and published in VLDB Journal in 2001 by Rachel Pottinger (”RP”) and Alon Y. Halevy (”AH”).

A KB K is a pair made of a Tbox T and an Abox A, denoted K = 〈T, A〉. An interpretation I is a model of
a KB K = 〈T, A〉 if it is a model of both T and A. A KB K is satisfiable, a.k.a. consistent, if it has at least one
model. Observe that Tboxes and Aboxes are always consistent. That is, a KB is inconsistent whenever there is
a contradiction between its Abox and Tbox. A KB K logically entails, a.k.a. implies, a constraint or assertion β,
written K |= β, if every model of K is a model of β.
Example 7 (Continued) Consider the consistent KB K = 〈T, A〉 associating the above Tbox and Abox for sci-
entific publications. It implies JournPaper(doi2) due to Survey v JournPaper in T and Survey(doi2) in A.
Adding FullPaper(doi2) to this KB would make it inconsistent, as K entails FullPaper v ¬Survey (cf. previ-
ous example) and Survey(doi2) is in A

Observe that any KB can be written equivalently as a FOL KB and a relational database following the open-
world assumption (OWA) [AHV95]. The correspondences for Tbox constraints are summarized in Figure 2.7 for
PIs, in Figure 2.8 for NIs, and in Figure 2.9 for functionalities. As for Abox assertions, they are simply FOL facts
(i.e., ground atoms) and instances for atomic concepts and roles.

4http://www.doi.org
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Publication

· · ·
hasTitle

doi1 ”CAQUMV”
doi2 ”AQUVAS”
doi3 ”MC : ASAAQUV”
· · · · · ·

hasDate

doi1 ”1998”
doi2 ”2001”
doi3 ”2001”
· · · · · ·

hasVenue

doi1 ”PODS”
doi2 ”VLDBJ”
doi3 ”VLDBJ”
· · · · · ·

hasAuthor

doi1 ”SA”
doi1 ”OD”
doi2 ”AH”
doi3 ”AH”
doi3 ”RP”
· · · · · ·

ConfPaper

· · ·
JournPaper

doi3
· · ·

ShortPaper

· · ·
FullPaper

doi1
· · ·

Survey

doi2
· · ·

Figure 2.6: A DL-lite Abox A for scientific publications.

DL notation FOL notation Relational notation (OWA)
A v A′ ∀x[A(x)⇒ A′(x)] A ⊆ A′
A v ∃P ∀x[A(x)⇒ ∃yP (x, y)] A ⊆ Π1(P )

A v ∃P− ∀x[A(x)⇒ ∃yP (y, x)] A ⊆ Π2(P )
∃P v A ∀x[∃yP (x, y)⇒ A(x)] Π1(P ) ⊆ A
∃P− v A ∀x[∃yP (y, x)⇒ A(x)] Π2(P ) ⊆ A
∃Q v ∃P ∀x[∃yQ(x, y)⇒ ∃zP (x, z)] Π1(Q) ⊆ Π1(P )

∃Q v ∃P− ∀x[∃yQ(x, y)⇒ ∃zP (z, x)] Π1(Q) ⊆ Π2(P )

∃Q− v ∃P ∀x[∃yQ(y, x)⇒ ∃zP (x, z)] Π2(Q) ⊆ Π1(P )

∃Q− v ∃P− ∀x[∃yQ(y, x)⇒ ∃zP (z, x)] Π2(Q) ⊆ Π2(P )

P v Q− or P− v Q ∀x, y[P (x, y)⇒ Q(y, x)] P ⊆ Π2,1(Q) or Π2,1(P ) ⊆ Q
P v Q or P− v Q− ∀x, y[P (x, y)⇒ Q(x, y)] P ⊆ Q or Π2,1(P ) ⊆ Π2,1(Q)

Figure 2.7: DL-lite PI axioms in FOL and relational notations. For the relational notation, which corresponds to
unary and binary inclusion dependencies, we assume that the first and second attributes of any atomic role are
named 1 and 2 respectively.

DL notation FOL notation Relational notation (OWA)
A v ¬A′ ∀x[A(x)⇒ ¬A′(x)] A ∩ A′ ⊆ ⊥
A v ¬∃P ∀x[A(x)⇒ ¬∃yP (x, y)] A ∩ Π1(P ) ⊆ ⊥
A v ¬∃P− ∀x[A(x)⇒ ¬∃yP (y, x)] A ∩ Π2(P ) ⊆ ⊥
∃P v ¬A ∀x[∃yP (x, y)⇒ ¬A(x)] A ∩ Π1(P ) ⊆ ⊥
∃P− v ¬A ∀x[∃yP (y, x)⇒ ¬A(x)] A ∩ Π2(P ) ⊆ ⊥
∃Q v ¬∃P ∀x[∃yQ(x, y)⇒ ¬∃zP (x, z)] Π1(Q) ∩ Π1(P ) ⊆ ⊥
∃Q v ¬∃P− ∀x[∃yQ(x, y)⇒ ¬∃zP (z, x)] Π1(Q) ∩ Π2(P ) ⊆ ⊥
∃Q− v ¬∃P ∀x[∃yQ(y, x)⇒ ¬∃zP (x, z)] Π2(Q) ∩ Π1(P ) ⊆ ⊥
∃Q− v ¬∃P− ∀x[Q(y, x)⇒ ¬∃zP (z, x)] Π2(Q) ∩ Π2(P ) ⊆ ⊥
P v ¬Q− or P− v ¬Q ∀x, y[P (x, y)⇒ ¬Q(y, x)] P ∩ Π2,1(Q) ⊆ ⊥ or Π2,1(P ) ∩Q ⊆ ⊥
P v ¬Q or P− v ¬Q− ∀x, y[P (x, y)⇒ ¬Q(x, y)] P ∩Q ⊆ ⊥ or Π2,1(P ) ∩ Π2,1(Q) ⊆ ⊥

Figure 2.8: DL-lite NI axioms in FOL and relational notations. For the relational notation, which corresponds to
exclusion/disjointness dependencies, we assume that the first and second attributes of any atomic role are named
1 and 2 respectively. We also assume that ⊥ the empty relation.

DL notation FOL notation Relational notation (OWA)
(funct P ) ∀x, y, z[P (x, y) ∧ P (x, z)⇒ y = z] P : 1→ 2

(funct P−) ∀x, y, z[P (y, x) ∧ P (z, x)⇒ y = z] P : 2→ 1

Figure 2.9: DL-lite functionality axioms in FOL and relational notations. For the relational notation, which
corresponds to functional dependencies, we assume that the first and second attributes of any atomic role are
named 1 and 2 respectively.

2.2.2 Queries
A FOL query q is of the form q(x̄):- φ(x̄) where φ(x̄) is a FOL formula, the free variables of which are only the
variables x̄, and the predicates of which are either atomic concepts or roles. The arity of a query is the number
of its free variables, e.g., 0 for a boolean query. When φ(x̄) is of the form ∃ȳ conj(x̄, ȳ) with conj(x̄, ȳ) a
conjunction of atoms, q is called a conjunctive query. Conjunctive queries, a.k.a. select-project-join queries, are
the core relational database queries.

Given an interpretation I = (∆I , .I), the semantics qI of a boolean query q is defined as true if [φ(∅)]I = true,
and false otherwise, while the semantics qI of a query q of arity n ≥ 1 is the relation of arity n defined on ∆I

as follows: qI = {ē ∈ (∆I)n | [φ(ē)]I = true}. An interpretation that evaluates a boolean query to true,
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NI Corresponding unsat query
A v ¬A′ orA′ v ¬A ∃x[A(x) ∧ A′(x)]
A v ¬∃P or ∃P v ¬A ∃x, y[A(x) ∧ P (x, y)]

A v ¬∃P− or ∃P− v ¬A ∃x, y[A(x) ∧ P (y, x)]
∃Q v ¬∃P or ∃P v ¬∃Q ∃x, y, z[Q(x, y) ∧ P (x, z)]

∃Q v ¬∃P− or ∃P− v ¬∃Q ∃x, y, z[Q(x, y) ∧ P (z, x)]

∃Q− v ¬∃P or ∃P v ¬∃Q− ∃x, y, z[Q(y, x) ∧ P (x, z)]

∃Q− v ¬∃P− ∃x, y, z[Q(y, x) ∧ P (z, x)]

P v ¬Q− orQ− v ¬P or P− v ¬Q orQ v P− ∃x, y[P (x, y) ∧Q(y, x)]

P v ¬Q orQ v ¬P or P− v ¬Q− orQ− v ¬P− ∃x, y[P (x, y) ∧Q(x, y)]

Figure 2.10: From NI axioms to unsat queries.

respectively a non-boolean query to a non empty set, is a model of that query.
Let q be a query against a KB K = 〈T, A〉. If q is non-boolean, the answer set of q against K is defined as:

ans(q,K) = {t̄ ∈ Cn | K |= q(t̄)} where C is the set of constants appearing in the KB, q(t̄) is the closed formula
obtained by replacing in the query definition the free variables in x̄ by the constants in t̄, and K |= q(t̄) means
as usual that every model of K is a model of q(t̄). If q is boolean, the answer set of q against K is by convention
either {true} or {false}: ans(q,K) = {true} if and only if K |= q(), i.e., every model of K is a model of q().
This corresponds to the so-called certain answers semantics requiring that an answer to a query, given a set of
constraints (expressed here as a Tbox), to be an answer in all the models satisfying the constraints.

Example 8 (Continued) Consider the following query against the above KB K asking for the doi’s of jour-
nal paper and their authors: q(x, y):- JournalPaper(x) ∧ hasAuthor(x, y). Its answer set is: ans(q,K) =
{(doi2, ”AH”), (doi3, ”AH”), (doi3, ”RP”)}.

2.2.3 Consistency checking and query answering

The DL-Lite family [CGL+07] has been designed so that data management is FOL-reducible. This property allows
reducing a data management task over a KB 〈T, A〉 to the evaluation against A only of a FOL query computed using
T only.

The main idea of FOL-reducibility is to be able to perform a data management task in two separate steps: a
first reasoning step that produces the FOL query and a second step which evaluates this query in a pure relational
fashion. Indeed, FOL queries can be processed by SQL engines, thus taking advantage of well-established query
optimization strategies supported by standard relational database management systems.

In fact, FOL-reducibility of data management holds in DL-lite only if we forbid functionality constraints on
roles involved in right-hand sides of role inclusion constraints5. E.g., in Figure 2.5, having hasContactAuthor v
hasAuthor and (funct hasContactAuthor) in T is legal, while having hasContactAuthor v hasAuthor and
(funct hasAuthor) would be illegal. In the following, we only consider DL-lite Tboxes and KBs in which this
restriction holds. Note that, as shown in [CGL+07], if we do not impose the above restriction on DL-lite, instance
checking (a particular case of query answering) is P -complete in data complexity, rulling out FOL-reducibility of
query answering since data complexity of answering a FOL query is in AC0 ⊂ P [Var82, AHV95].

Consistency checking It has been shown in [CGL+07] that given a Tbox T, it is always possible to construct a
FOL query qunsat such that ans(qunsat , A) = {true}6 iff the KB 〈T, A〉 is inconsistent, for any Abox A associated
with T. [CGL+07] provides the Consistent(K) algorithm to check the consistency of a KB K based on this result.

Building the qunsat query relies on the computation of the IC-closure of T, i.e., the set of the integrity con-
straints (NI or functionality constraints) that are implied by T: each constraint in the IC-closure is transformed
into a conjunctive boolean query looking for counter-examples to it ; qunsat is the union of these unsat queries.
The transformation of the integrity constraints into unsat queries corresponds in fact to their negation and is
summarized in Figure 2.10 for NIs and in Figure 2.11 for functionalities.

Example 9 (Continued) The unsat query corresponding to the negation of the NI JournPaper v ¬ConfPaper
is q():- ∃x JournPaper(x) ∧ ConfPaper(x).

5This corresponds to the dialect DL-liteA of DL-lite.
6By a slight abuse of notation, I denote hereinafter the answer set ans(q, 〈∅, A〉) of a query q against a KB 〈∅, A〉 by ans(q, A), which

corresponds exactly to the standard relational evaluation of q against the relational database A.
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Functionality Corresponding unsat query
(funct P ) ∃x, y, z[P (x, y) ∧ P (x, z) ∧ y 6= z)]

(funct P−) ∃x, y, z[P (y, x) ∧ P (z, x) ∧ y 6= z)]

Figure 2.11: From functionality axioms to unsat queries.

RDF(S) statement DL-lite statement Note
s rdfs:subClassOf o . s v o s, o are classes/atomic concepts
s rdfs:subPropertyOf o . s v o s, o are properties/atomic roles
s rdfs:domain o . ∃s v o s is a property / an atomic role

o is a class / an atomic concept
s rdfs:range o . ∃s− v o s is a property / an atomic role

o is a class / an atomic concept
s rdf:type o . o(s) o is a class / an atomic concept
s p o . p(s, o) p is a property / an atomic role

Figure 2.12: Correspondences between RDF graphs and DL-lite KBs. Blank nodes are not allowed and assertions
cannot refer to classes or properties.

Reformulation-based query answering It has been shown in [CGL+07] that given a Tbox T and for any query
q built upon atomic concepts and roles of T, it is always possible to construct a FOL query qref called its perfect
reformulation, such that ans(q, 〈T, A〉) = ans(qref , A) for any Abox A associated with T. [CGL+07] provides the
PerfectRef(q, T) algorithm which computes the perfect reformulation qref of q using – PIs of – T only (i.e., inde-
pendently of A), which is a union of conjunctive queries built upon atomic concepts and roles of T.
Example 10 (Continued) Consider the previous query asking for the doi’s of journal paper and their authors:
q(x, y):- JournalPaper(x) ∧ hasAuthor(x, y). It’s reformulation computed by PerfectRef is the union query:
q(x, y):- JournalPaper(x) ∧ hasAuthor(x, y) ∪ q(x, y):- Survey(x) ∧ hasAuthor(x, y).

2.3 RDF meets DL-lite
RDF and DL-lite on the one hand, and SPARQL and the relational conjunctive queries for DL-lite on the other
hand, share some expressivity. I recall here the correspondences between these data models (Section 2.3.1) and
between their query languages (Section 2.3.2).

2.3.1 Correspondence between RDF and DL-lite: the DL fragment of RDF
RDF can be used to model some DL KBs, actually some DL-lite KBs and, conversely, DL-lite can be used to
model some RDF graphs.

Figure 2.12 exhibits the exact correspondence between RDF graphs and DL-lite KBs, provided some restric-
tion have been made on the RDF model:

1. Blank nodes are disallowed, ruling out the possibility to express complex incomplete information, in par-
ticular about unknown classes or properties. This RDF feature does not translate into DLs which, as
FOL languages, does not permit the (existential) quantification on concepts and roles. For instance, the
RDF graph {posterCP rdfs:subClassOf confP ., doi rdf:type posterCP .} translates into the DL-lite KB
〈{posterCP v confP}, {posterCP(doi)}〉, while { :b rdfs:subClassOf confP ., doi rdf:type :b .} does
not translate, as it would correspond to the non-well-formed KB ∃x〈{x v confP}, {x(doi)}〉.

2. Values in assertions cannot be classes or properties, ruling out the possibility to talk about them. This RDF
feature also does not translate into DLs which, as FOL languages, make a distinction between relations and
constants. For instance, the graph {doi1 hasAuthor ”SA” .,hasAuthor sameAs writtenBy .} does not
translate into a DL-lite KB, as such a KB cannot model that hasAuthor is – at the same time – both a
relation and a constant.

3. RDF entailment is limited to RDFS entailment only, i.e., the entailment rules dedicated to RDF Schema
given in Figures 2.13–2.16.

This fragment of RDF, that allows modeling DL-lite KBs, is widely known as the DL fragment of RDF.
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Triple Entailed triple (`iRDF )
s rdfs:subClassOf o . s rdfs:subClassOf s .
s rdfs:subClassOf o . o rdfs:subClassOf o .
s rdfs:subPropertyOf o . s rdfs:subPropertyOf s .
s rdfs:subPropertyOf o . o rdfs:subPropertyOf o .
s rdfs:domain o . s rdfs:subPropertyOf s .
s rdfs:domain o . o rdfs:subClassOf o .
s rdfs:domain rdfs:Literal . s rdfs:subPropertyOf s .
s rdfs:range o . s rdfs:subPropertyOf s .
s rdfs:range o . o rdfs:subClassOf o .
s rdfs:range rdfs:Literal . s rdfs:subPropertyOf s .

Figure 2.13: RDFS entailment from a single RDFS statement.

Triple Entailed triple (`iRDF )
s rdf:type o . o rdfs:subClassOf o .
s p o . p rdfs:subPropertyOf p .

Figure 2.14: RDFS entailment from a single RDF statement.

Triples Entailed triple (`iRDF )
s rdfs:subClassOf o ., o rdfs:subClassOf o1 . s rdfs:subClassOf o1 .
s rdfs:subPropertyOf o ., o rdfs:subPropertyOf o1 . s rdfs:subPropertyOf o1 .
s rdfs:domain o ., o rdfs:subClassOf o1 . s rdfs:domain o1 .
s rdfs:range o ., o rdfs:subClassOf o1 . s rdfs:range o1 .
s rdfs:domain o ., s1 rdfs:subPropertyOf s . s1 rdfs:domain o .
s rdfs:range o ., s1 rdfs:subPropertyOf s . s1 rdfs:range o .

Figure 2.15: RDFS entailment from two RDFS statements.

Triples Entailed triple (`iRDF )
s1 rdfs:subClassOf s2 ., s rdf:type s1 . s rdf:type s2 .
p1 rdfs:subPropertyOf p2 ., s p1 o . s p2 o .
p rdfs:domain s ., s1 p o1 . s1 rdf:type s .
p rdfs:range s ., s1 p o1 . o1 rdf:type s .

Figure 2.16: RDFS entailment from combining RDFS and RDF statements.

SPARQL (BGP) triple pattern Relational conjunctive query atom Note
s rdf:type o . o(s) o is a class / an atomic concept
s p o . p(s, o) p is a property / an atomic role

Figure 2.17: Correspondences between conjunctive queries and SPARQL (BGP) queries.

2.3.2 Correspondence between SPARQL and relational conjunctive queries for DL-lite
Relational conjunctive queries for DL-lite turn out to be a subset of SPARQL queries, actually of BGP queries.
Figure 2.17 exhibits the exact correspondence between these query languages.

The language of relational conjunctive queries for DL-lite is strictly less expressive than the BGP queries,
which allows, in addition, to use variables in place of classes and properties, in order to express unspecified
relations. For instance, the query q(x):- y1 hasAuthor x ., y1 inProceedingsOf y2 ., y2 y3 ”PODS′98” . has
no counterpart in the language of relational conjunctive queries, as it would correspond to the non-well-formed
query: q(x):- hasAuthor(y1, x), inProceedingsOf(y1, y2), y3(y2, ”PODS

′98”).

16



Chapter 3

Design

The main contribution I present is the design of robust module-based data management techniques for DL-lite
(Section 3.1). Module-based data management amounts to handling data using an ontology – a module – that
derives from that of a preexisting well-established ontology-based data management system. The novel notion of
robust module basically allows enhancing data integrity and complementing the answers to queries in ontology-
based data management systems.

The ongoing work I present next is the design of query answering techniques for RDF that are robust to graph
updates (Section 3.2). Saturation-based query answering and the alternative technique called reformulation-based
query answering are revisited: a saturation maintenance technique is designed for the former to limit the re-
saturation effort upon graph updates, while the latter – de facto robust to updates – is extended to a larger fragment
of RDF than those investigated in the literature.

3.1 Robust module-based data management in DL-lite
Context Since 2010, I have been working with Marie-Christine Rousset (PR, Univ. Grenoble) on robust module-
based data management in DL-lite.

Our preliminary results were published in the proceedings of Journées Bases de Données Avancées (BDA)
in 2010 [GR10] ; all our results obtained so far were published in IEEE Transactions on Knowledge and Data
Engineering (TKDE) in 2012 [GR12].

Motivations In many application domains (e.g., medicine or biology), comprehensive ontologies resulting from
collaborative initiatives are made available. For instance, SNOMED is an ontology containing more than 400.000
concept names covering various areas such as anatomy, diseases, medication, and even geographic locations. Such
well-established ontologies are often associated with reliable data that have been carefully collected, cleansed,
and verified, thus providing reference ontology-based data management systems (DMSs) in different application
domains.

A good practice is therefore to build on the efforts made to design reference DMSs whenever we have to
develop our own DMS with specific needs. A way to do this is to extract from the reference DMS the piece of
ontology relevant to our application needs, possibly to personalize it with extra-constraints w.r.t. our application
under construction, and then to manage our own dataset using the resulting ontology.

For instance, the MyCF DMS (MyCorporisFabrica, www.mycorporisfabrica.org, [PBJ+09]) has been built by
hand from the FMA DMS (Foundational Model of Anatomy, sig.biostr.washington.edu/projects/fm). The extrac-
tion step has focused on particular parts of the human body (e.g., hand, foot, and knee), while the personalization
step has enriched the descriptions of these parts with both 3D geometrical and bio-mechanical information. No-
tably, careful attention was paid so that MyCF still conforms with FMA at the end of the manual process.

Contributions In [GR10, GR12], we revisit the reuse of a reference DMS in order to build a new DMS with
specific needs. We go one step further by not only considering the design of a module-based DMS (i.e., how to
extract a module from an ontology): we also study how a module-based DMS can benefit from the reference DMS
throughout its life-cycle. More specifically, our main contributions are:
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1. We provide novel properties of robustness for modules in order to enhance data integrity and to complement
the answers to queries. From a module robust to consistency checking, for any data update in a module-
based DMS, we show how to query the reference DMS for checking whether the local update does not
bring any inconsistency with the data and the constraints of the reference DMS. From a module robust to
query answering, for any query asked to a module-based DMS, we show how to query the reference DMS
for obtaining additional answers by also exploiting the data stored in the reference DMS. In addition, we
provide a polynomial time algorithm for extracting robust modules from ontologies.

2. We define sufficient conditions for safe module personalization, that are natural from a practical viewpoint,
under which we show that global consistency checking and global query answering are preserved. In addi-
tion, we provide a polynomial time algorithm for checking whether a module personalization is safe.

3. We devise optimizations for on-demand or upon update global consistency checking: in both case, we have
characterized the exact subset of relevant integrity constraints to be checked for deciding global consistency.

4. We propose optimizations for practical module-based data management: we have defined minimal modules
and how to compute them in polynomial time. Such modules are desirable, since non-minimality induces
useless extra-computation in well-established DMSs (e.g., QuOnto1).

In the following, I give some intuitions on and I exemplify our key notions of module (Section 3.1.1), of
robustness to consistency checking (Section 3.1.2) and of robustness to query answering (Section 3.1.3).

3.1.1 Module
Recent work in description logics (DLs) [BCM+03] provides different solutions to achieve a reuse of a reference
DMS. All these solutions consist in extracting a module from an existing Tbox such that all the constraints con-
cerning the signature of interest (i.e., concepts and roles) for the application under construction are captured in
the module [SPS09]. Existing definitions of modules in the literature basically resort to the notion of (deductive)
conservative extension of a Tbox or of uniform interpolant of a Tbox, a.k.a. forgetting about non-interesting re-
lations of a Tbox. [GLW06] formalizes those two notions for Tboxes and discusses their connection. Up to now,
conservative extension has been considered for defining a module as a subset of a Tbox. In contrast, forgetting has
been considered for defining a module as only logically implied by a Tbox (by definition forgetting cannot lead to
a subset of a Tbox in the general case). Both kinds of modules have been investigated in various DLs, e.g., DL-lite
[KPS+09, WWTP08], EL [KWW09a, KLWW08, KWW09b], and ALC [CHKS07, KLWW08, WWT+09].

Our definition of module extends and encompasses the existing definitions. In contrast with [GLW06, CHKS07,
KLWW08, KPS+09], we do not impose modules of a Tbox to be subsets of it. In contrast with [WWTP08,
KWW09a, KWW09b, WWT+09], we do not impose the signature of modules to be restricted to the relations
(i.e., concepts and roles) of interest. In fact, as we will see later on, the aforementioned the robustness properties
for a module may enforce the signature of modules to contain relations from the reference Tbox that are not rela-
tions of interest (but that are logically related to them). We therefore simply require that a module captures some
constraints of the Tbox only, including all the (implied) constraints built only upon the relations of interest.

Example 11 (Running example) Consider a DL-lite reference DMS for scientific publications in Figure 3.1,
whose KB has been introduced in Section 2.2.

Suppose that we have to develop a DMS about scientific publications. If we are interested in managing journal
papers and their authors only, we can extract a module from T w.r.t. the signature Γ made of the relations of interest
JournPaper and hasAuthor.

Let T′ and T′′ be the following Tboxes: T′ = {JournPaper v ∃hasAuthor} and T′′ = {Publication v
∃hasAuthor,∃hasTitle v Publication, ConfPaper v Publication, JournPaper v Publication,
ShortPaper v ConfPaper, FullPaper v ConfPaper, Survey v JournPaper}.

T′ and T′′ are both modules of T w.r.t. Γ. Notably, they contain or entail JournPaper v ∃hasAuthor,
the only constraint built upon Γ only that is implied by T (it is implied by JournPaper v Publication and
Publication v ∃hasAuthor in T). T′ is not of subset of T, it is actually the result of forgetting the non-
interesting relations in T ; T′′ is a subset of T.

Observe that a module of a Tbox w.r.t. a given signature of interest may not be unique.

1http://www.dis.uniroma1.it/quonto/
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T:

1. Publication v ∃hasTitle, (funct hasTitle)

2. Publication v ∃hasDate, (funct hasDate)

3. Publication v ∃hasVenue, (funct hasVenue)

4. Publication v ∃hasAuthor

5. ∃hasTitle v Publication

6. ConfPaper v Publication, JournPaper v Publication, ConfPaper v ¬JournPaper

7. ShortPaper v ConfPaper, FullPaper v ConfPaper, FullPaper v ¬ShortPaper, Survey v JournPaper

A:
Publication

· · ·
hasTitle

doi1 ”CAQUMV”
doi2 ”AQUVAS”
doi3 ”MC : ASAAQUV”
· · · · · ·

hasDate

doi1 ”1998”
doi2 ”2001”
doi3 ”2001”
· · · · · ·

hasVenue

doi1 ”PODS”
doi2 ”VLDBJ”
doi3 ”VLDBJ”
· · · · · ·

hasAuthor

doi1 ”SA”
doi1 ”OD”
doi2 ”AH”
doi3 ”AH”
doi3 ”RP”
· · · · · ·

ConfPaper

· · ·
JournPaper

doi3
· · ·

ShortPaper

· · ·
FullPaper

doi1
· · ·

Survey

doi2
· · ·

Figure 3.1: A reference DMS K = 〈T, A〉 for scientific publications.

T′: JournPaper v ∃hasAuthor A′: JournPaper

doi1
· · ·

hasAuthor

doi1 ”SA”
doi1 ”OD”
· · · · · ·

Figure 3.2: A module-based DMS defined by the Tbox T′ and the Abox A′.

3.1.2 Robustness to consistency checking for global consistency checking
Robustness to consistency checking allows a module-based DMS deciding whether its data conforms to the whole
reference system (ontology and data). Indeed, a module-based DMS can be locally consistent while, at the same
time, its data may contradict these of the reference DMS. Detecting this kind of inconsistency, called a global
inconsistency, is important since it indicates that local data contradicting the reference DMS is probably erroneous.

The basic idea is therefore to use the whole reference DMS (Tbox and Abox) as extra-constraints to be satisfied
by a module-based DMS. Of course, we do not want to import the whole reference DMS into our own DMS in
order to do this. Instead, we extend the notion of module so that global consistency checking can be performed on
demand or upon update: We ensure that the module captures the (possibly implied) constraints from the reference
Tbox that are required to detect inconsistency related to the relations of interest, i.e., the integrity constraints
involving at least a relation of interest. Then, at global consistency checking time, these constraints are verified
against the distributed Abox consisting of the Abox of the module-based DMS plus that of the reference DMS.
This amounts to building and evaluating a particular conjunctive query involving the two DMSs, which looks for
the existence of a counter-example to any of these constraints. From a practical viewpoint, this is achieved by a
slight modification of the Consistent algorithm [CGL+07] (cf. Section 2.2.3).
Example 12 (Continued) Suppose that one chooses the previous module T′ to build its own module-based DMS
for scientific publications. Now, suppose that the person in charge of populating the module-based DMS stores
doi1 in the local JournPaper table, and its authors ”SA” and ”OD” in the local hasAuthor table, as illustrated
in Figure 3.2.

It is easy to see that though the module-based DMS is consistent, it is inconsistent together with the reference
DMS: doi1 is a journal paper in the local DMS, while it is a (full) conference paper in the reference DMS. This
violates a constraint of the reference Tbox ([6.] in T).

Making the module T′ robust to consistency checking requires adding integrity constraints for detecting incon-
sistency related to the relation of interest JournPaper and hasAuthor. From now on, I denote by Rref a relation
R from a reference Tbox that is not of interest for the module under consideration. It follows from [GR10, GR12]
that an extension of T′ that is robust to consistency checking is: {JournPaper v ∃hasAuthor, JournPaper v
¬ConfPaperref , JournPaper v ¬FullPaperref , JournPaper v ¬ShortPaperref , Surveyref v JournPaper}.
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Note that these constraints bring relations into the module that are not of interest w.r.t. the application needs. With
such a module, at global consistency checking time, the query to evaluate against the DMSs, which looks for a
possible counter-example to any of these constraints, is: qunsat():- [∃x (JournPaper(x)∨ JournPaperref(x))∧
FullPaperref(x)] ∨ · · · where the distributed evaluation is reflected in the names of the relations (remind that
R denotes a local relation, while Rref denotes the corresponding relation in the reference DMS). Here, the first
disjunct in qunsat() looks for a possible counter-example to JournPaper v ¬FullPaperref . The above qunsat()
exhibits a global inconsistency due to doi1 belonging to the local JournPaper table of the module-based DMS
and to the FullPaperref table of the reference DMS.

3.1.3 Robustness to query answering for global query answering
Robustness to query answering allows a module-based system complementing its answers to queries with the help
of the reference DMS. This is particularly useful when the module-based DMS provides no or too few answers.

The basic idea is therefore to use the data of the reference DMS when queries are asked to the module-based
DMS. Again, we do not want to import the whole reference DMS into our own DMS in order to do this. Instead,
we extend the notion of module so that global query answering can be performed: We ensure that the module
captures the constraints in the reference Tbox that are required to answer any query built upon the relations of
interest, i.e., all the constraints that allow specializing the atoms of such queries. Then, at global query answering
time, these constraints are used to identify the relevant data for a given query within the distributed Abox consisting
of the Abox of the module-based DMS plus that of the reference DMS. From a practical viewpoint, this is achieved
by a slight modification of the PerfectRef algorithm [CGL+07] (cf. Section 2.2.3).

Example 13 (Continued) Consider the conjunctive query Q(x):- JournPaper(x)∧hasAuthor(x, ”AH”) ask-
ing for the journal papers written by Alon Y. Halevy.

Making T′ robust to query answering requires adding inclusion constraints which allows exhibiting implicit
tuples for the relation of interest JournPaper and hasAuthor. It follows from [GR10, GR12] that an extension
of T′ that is robust to query answering is: {JournPaper v ∃hasAuthor, Publicationref v ∃hasTitleref ,
Publicationref v ∃hasAuthor,∃hasTitleref v Publicationref , ConfPaperref v Publicationref ,
JournPaper v Publicationref , ShortPaperref v ConfPaperref , FullPaperref v ConfPaperref ,
Surveyref v JournPaper}. Again, such constraints bring relations into the module that are not of interest
w.r.t. the application needs. With such a module, at global query answering time, the query to evaluate against the
two DMSs is the perfect reformulationQ(x):- [(JournPaper(x)∨JournPaperref(x))∧(hasAuthor(x, ”AH”)∨
hasAuthorref(x, ”AH”))]∨ [Surveyref(x)∧ (hasAuthor(x, ”AH”)∨ hasAuthorref(x, ”AH”))]∨ · · · which
models all the ways to obtain answers from the distributed Aboxes. Here, the second disjunct in Q(x) results from
the inclusion constraint Surveyref v JournPaper. In particular, Q(x) finds doi2 and doi3 as global answers,
due to the presence in the reference DMS of: doi2 in the Surveyref table, (doi2, ”AH”) in the hasAuthorref

table; doi3 in the JournPaperref table, and (doi3, ”AH”) in the hasAuthorref table.
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3.2 Towards SPARQL query answering robust to RDF graph updates
Context Since 2011, I have been working with Ioana Manolescu (DR, Inria Saclay–Île-de-France) and Alexan-
dra Roatiş (PhD student, Univ. Paris-Sud, co-advised by Ioana and me) on query answering robust to graph
updates.

Our preliminary results were published in the proceedings of the Congrès francophone Reconnaissances des
Formes et Intelligence Artificielle (RFIA) [GMR12b] and of the International World Wide Web Conference
(WWW) [GMR12a] in 2012; all our results obtained so far have been submitted to the ACM Conference on
Information and Knowledge Management (CIKM) in 2012.

Motivations Saturation-based query answering is the prevalent technique for answering SPARQL queries against
a graph (cf. Section 2.1.3). It consists in pre-computing the saturation of the graph, i.e., materializing all its entailed
triples, so that answers are then obtained by evaluating the queries against the saturation. While this technique
typically leads to fast query run-time, saturation requires time to be pre-computed, space to be stored, and must
be somehow recomputed upon graph updates. Yet, saturation-based query answering robust to graph updates has
not received much attention in the literature [BK03, BKO+11].

An alternative technique for answering queries against a graph is reformulation-based query answering. It
consists in reformulating every query w.r.t. the queried graph into a reformulated query, which, evaluated against
the (non-saturated) graph, yields the exact answer set. The point is that query reformulation is made at query
run-time, i.e., w.r.t. the current state of the graph, making it de facto robust to graph updates. Reformulating
queries takes typically little time at query run-time, however reformulated queries are often more complex (thus
more costly) to evaluate than the original ones.

While saturation-based query answering takes into account the whole RDF and SPARQL recommendations,
reformulation-based query answering is still confined to fragments of them. So far, it has been studied for the DL
fragment of RDF (cf. Section 2.3.1) and the relational conjunctive queries [AGR07, CGL+07, GOP11], and slight
extension thereof [AGP09, GKLM11a, KMK08, UvHSB11], which consider the extension of the DL fragment
where values can be both relations (classes/properties) and constants (blank nodes are however still disallowed),
and BGP queries [KMK08, UvHSB11, GKLM11a] or SPARQL queries [AGP09].

Contributions In [GMR12b, GMR12a], we revisit the state-of-the-art saturation- and reformulation-based query
answering techniques in the light of graph updates. We carry our investigations in our DataBase (DB) fragment
of RDF, which extends the aforementioned ones notably with the support of incomplete information (i.e., blank
nodes), and for the BGP queries.

Our main contributions are the design and comparison of saturation- and reformulation-based query answering
techniques robust to graph updates:

1. For saturation-based query answering, we prove the correctness of a novel saturation maintenance technique
allowing to limit the re-saturation effort upon graph updates: it yields the same graph as re-saturating from
scratch.

2. For reformulation-based query answering, we first extends the state-of-the-art query reformulation algo-
rithms to the DB fragment of RDF by adding the appropriate new reformulation rules, then we show how to
evaluate the reformulated queries. The subtle point is that the correctness of the technique requires to eval-
uate the reformulated query in a non-standard fashion, as using the normative SPARQL evaluation would
lead to unsound answer sets.

3. We compare our two techniques on well-established benchmarks (Barton2, DBLP3, and DBpedia4).

Importantly, both techniques have been carefully devised to be deployed on top of any RDF-tuned or off-the-shelf
relational database management system (RDBMS), e.g., [AMMH07, NW10, WKB08], PostgreSQL5, MySQL6,
Oracle7, DB28,etc.

2http://simile.mit.edu/wiki/Dataset:_Barton
3http://thedatahub.org/dataset/fu-berlin-dblp
4http://wiki.dbpedia.org/Downloads37
5http://www.postgresql.org
6http://www.mysql.com
7http://www.oracle.com
8http://www-01.ibm.com/software/data/db2
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In the following, I first introduce our DB fragment of RDF (Section 3.2.1), and then I give some intuitions on
and I exemplify our saturation-based query answering technique with saturation maintenance (Section 3.2.2) and
our reformulation-based query answering technique (Section 3.2.3).

3.2.1 The database fragment of RDF
We define the database (DB) fragment of RDF by restricting entailment (cf. Section 2.1) to RDFS entailment,
i.e., to the entailment rules dedicated to RDF Schema shown in Figures 2.13–2.16 (page 16); not restricting
graphs in any way, in other words, any triple that the RDF recommendation allows is also allowed in the DB
fragment. We call a graph belonging to our DB fragment a database. The name of this fragment follows from the
fact that both saturation- and reformulation-based query answering can be devised on top of any off-the-shelf or
RDF-tuned RDBMS.

From now on, we focus on saturation- and reformulation-based query answering for instance-level queries,
i.e., queries to be answered against the RDF statements of a (saturated) database only (i.e., against facts, not against
RDFS statements modeling schema constraints). Observe that such queries are the standard database queries and
the most common knowledge representation queries. To answer such queries, it suffices to consider the entailment
rules in Figure 2.16 (page 16) [GMR12b, GMR12a].

3.2.2 Saturation-based query answering
Our first technique is based on the multiset saturation of a database, in which triples appear as many times as they
can be derived.

This multiset saturation is the crux of our saturation maintenance upon graph updates. For insertion – adding
triples to the database – and deletion – removing triples from the database –, our multiset saturation is maintained
as follows: inserting a triple already in the database, or deleting a triple that is not in the database, does not affect
the current multiset saturation; otherwise, inserting (deleting) a given triple also adds to (removes from) the current
multiset saturation any RDF statement whose derivation uses this given triple.

Queries are then evaluated using this particular saturation to obtained their answers. To do so, the multiset
saturation can be compactly represented as the usual saturation, i.e., a set of triples, in which every triple is tagged
with (i) a boolean indicating whether it is either in the database or only entailed by the database and (ii) an
integer indicating how many times it appears in the multiset saturation. Importantly, from a practical viewpoint,
this compact representation allows delegating saturation-based query answering to any RDBMS: it can be stored
in a Triple table (cf. Section 2.1.3) with two extra-columns, so as to answer queries using relational evaluation.
Example 14 (Saturation maintenance) Consider again the RDF running example in Section 2.1. Let the graph
G′ be our database db. Its multiset saturation is shown, using its compact representation, in Figure 3.3, before
and after deleting the RDFS statement :b1 rdfs:subClassOf confP .; only the RDF statements are shown.

An occurrence of doi1 rdf:type confP . has been deleted because :b1 rdfs:subClassOf confP .,
doi1 rdf:type :b0 . `RDF doi1 rdf:type confP .

An occurrence of doi1 rdf:type paper . has been deleted because of the above deletion and the fact that
confP rdfs:subClassOf paper ., doi1 rdf:type confP . `RDF doi1 rdf:type paper .

It is worth noticing here that although removing the RDFS statement :b1 rdfs:subClassOf confP . changes
the multiset saturation, it does not change the saturation. Indeed, the triples that have been removed still have
derivations producing them, e.g.,

• inProceedingsOf rdfs:domain confP .,doi1 inProceedingsOf :b2 . `RDF doi1 rdf:type confP .

• hasTitle rdfs:domain paper ., doi1 hasTitle “CAQUMV ” . `RDF doi1 rdf:type paper .

3.2.3 Reformulation-based query answering
Our second technique is based on reformulating queries w.r.t. a database, so that their answer sets are obtained by
evaluating their reformulations against the (non-saturated) database.

In our case, a query reformulation is a union of BGP queries built from the exhaustive applications of 13
reformulation rules. Each rule produces a new BGP query from a preexisting BGP query (the original one or
an already produced one) either by binding a variable to class or property values found in the database, or by
specializing a triple atom using an RDFS statement in the database.
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Triple Explicit Times
doi1 rdf:type :b0 . true 1
doi1 hasTitle “CAQUMV ” . true 1
doi1 hasAuthor “SA” . true 1
doi1 hasContactA :b1 . true 1
doi1 inProceedingsOf :b2 . true 1
:b2 hasName “PODS′98” . true 1

cikm2012 rdf:type conference . true 1
hasName createdBy “John Doe” . true 1
:b2 rdf:type conference . false 2

doi1 rdf:type confP . false 2
doi1 rdf:type paper . false 5
doi1 hasAuthor :b1 . false 1

Triple Explicit Times
doi1 rdf:type :b0 . true 1
doi1 hasTitle “CAQUMV ” . true 1
doi1 hasAuthor “SA” . true 1
doi1 hasContactA :b1 . true 1
doi1 inProceedingsOf :b2 . true 1
:b2 hasName “PODS′98” . true 1

cikm2012 rdf:type conference . true 1
hasName createdBy “John Doe” . true 1
:b2 rdf:type conference . false 2

doi1 rdf:type confP . false 1
doi1 rdf:type paper . false 4
doi1 hasAuthor :b1 . false 1

Figure 3.3: Multiset saturation before (left) and after (right) deleting the triple :b1 rdfs:subClassOf confP .

Query reformulation Reformulation rule
1 q(x, y):- x rdf:type y . original query
2 ∪ q(x, confP):- x rdf:type confP . from 1 by binding y to the class confP
3 ∪ q(x, posterCP):- x rdf:type posterCP . from 1 by binding y to the class posterCP
4 ∪ q(x, :b0):- x rdf:type :b0 . from 1 by binding y to the class :b0
5 ∪ q(x, paper):- x rdf:type paper . from 1 by binding y to the class paper
6 ∪ q(x, conference):- x rdf:type conference . from 1 by binding y to the class conference
7 ∪ q(x, confP):- x rdf:type posterCP . from 2 since posterCP rdfs:subClassOf confP .
8 ∪ q(x, confP):- x rdf:type :b0 . from 2 since :b0 rdfs:subClassOf confP .
9 ∪ q(x, confP):- x inProceedingsOf z . from 2 since inProceedingsOf rdfs:domain confP .

10 ∪ q(x, paper):- x rdf:type confP . from 5 since confP rdfs:subClassOf paper .
11 ∪ q(x, paper):- x hasTitle z . from 5 since hasTitle rdfs:domain paper .
12 ∪ q(x, paper):- x hasAuthor z . from 5 since hasAuthor rdfs:domain paper .
13 ∪ q(x, conference):- z inProceedingsOf x . from 6 since inProceedingsOf rdfs:range conference .
14 ∪ q(x, conference):- x hasName z . from 6 since hasName rdfs:domain conference .
15 ∪ q(x, paper):- x rdf:type posterCP . from 10 since posterCP rdfs:subClassOf confP .
16 ∪ q(x, paper):- x rdf:type :b0 . from 10 since :b0 rdfs:subClassOf confP .
17 ∪ q(x, paper):- x inProceedingsOf z . from 10 since inProceedingsOf rdfs:domain confP .
18 ∪ q(x, paper):- x hasContactA z . from 12 since hasContactA rdfs:subPropertyOf hasAuthor .

Figure 3.4: Reformulation of q(x, y):- x rdf:type y . w.r.t. the database db.

However, in the DB fragment of RDF, query reformulation may bring into reformulated queries some blank
nodes from the database, assuming that the reformulations refer precisely to these particular blank nodes in the
database. The point is that the SPARQL/BGP query evaluation treats blank nodes as non-distinguished variables
(cf. Section 2.1.2). As a result, evaluating our reformulations with the normative evaluation leads to unsound
answer sets. The crux of our technique is therefore a non-standard evaluation of a query against a database, which
treats blank nodes as constants. Importantly, from a practical viewpoint, the non-standard query evaluation of
our reformulation-based query answering technique can be delegated to any RDBMS by storing the database in
a Triple table (cf. Section 2.1.3), since non-standard and relational evaluations coincide when blank nodes are
considered constants.

Example 15 (Query reformulation and non-standard evaluation) Consider again the RDF running example
in Section 2.1. Let the graph G′ be our database db.

The reformulation of the query q(x, y):- x rdf:type y . w.r.t. db, asking for all resources and the classes to
which they belong, is shown in Figure 3.4.

Its normative evaluation against db yields erroneous answers. For instance, 〈cikm2012, confP〉 is an erro-
neous answer resulting from the evaluation against db of the 8th BGP query q(x, confP):- x rdf:type :b0 ., with
the assignment µ = {x→ cikm2012, :b0 → conference}.

The issue here is that, when q(x, confP):- x rdf:type :b0 . is produced from :b0 rdfs:subClassOf confP . ∈
db and the 2nd BGP query q(x, confP):- x rdf:type confP ., the goal is to find conference paper values for x from
the subclass :b0 of confP. However, under the normative query evaluation, :b0 is treated as a non-distinguished
variable, thus the produced query returns every class instance stored in db as a conference paper, while under the
non-standard query evaluation it only returns the instances for the class :b0 stored in db.

In fact, the answer set of q against db is: {〈doi1, :b0〉, 〈cikm2012, conference〉, 〈doi1, confP〉, 〈doi1,paper〉,
〈 :b2, conference〉}.

23



24



Chapter 4

Optimization

The main contribution I present is view selection for efficient SPARQL query answering (Section 4.1). It amounts
to tuning an RDF data management system to users or applications’ needs modeled as a query workload. The idea
is to pre-compute and store the results for some queries automatically selected – the views – in order to minimize
a combination of query processing, view storage, and view maintenance upon update costs.

The ongoing work I present next is a first step towards efficient query answering against XML documents with
RDF annotations (Section 4.2). We propose to combine the XML and RDF data models and languages into a
uniform XML-RDF hybrid setting for managing annotated documents. In particular, we want to study to which
extent query answering can be optimized by using at the same time the structural XML constraints (expected
tree shape of the documents) and the semantic RDF constraints (expected ontological descriptions) expressed in
queries.

4.1 View selection in RDF
Context I have been working on view selection in RDF with Ioana Manolescu (DR Inria Saclay–Île-de-France)
and Konstantinos Karanasos (PhD student, Inria, co-advised by Ioana and me) since 2009, and also with Julien
Leblay (PhD student, Univ. Paris-Sud, co-advised by Ioana and me) since 2010.

Our preliminary results were published in the proceedings of the Journées Bases de données Avancées (BDA)
[GKLM10b] in 2010; all our results obtained so far have been published in the journal Proceedings of the VLDB
endowment (PVLDB) [GKLM11a] in 2011. The RDFViewS prototype1 implementing our results was demon-
strated at the International Conference on Information and Knowledge Management (CIKM) [GKLM10a] in 2010
and at Journées Bases de données Avancées (BDA) [GKLM11b] in 2011.

Motivations A basic requirement of any data management system is to provide efficient query processing. For
instance, well-established query answering optimizations resort to indexes and materialized views [RG03].

Indexes are precomputed data structures that allow traversing data efficiently. For example, the B-Tree indexing
commonly used in relational database management systems allows traversing data in logarithmic time. The use of
indexes for efficient SPARQL query processing on RDF graphs has received significant attention in the literature
[AMMH07, NW08, SGK+08, WKB08, NW09].

Materialized views are queries whose answer sets have been precomputed and stored, so as to be efficiently
accessed. [Hal01]. A first option for answering queries using materialized view is query rewriting. In this case,
given a query and some views, the goal is to rewrite this query into an equivalent (or maximally contained) one
that refers to these views only. The answer set of the original query is then obtained efficiently by evaluating the
rewritten query against the materialized views. Query rewriting for SPARQL query answering has not received
much attention yet. However, some of my results [AGR09, AGR10], obtained in the setting of Description Logics,
directly transfer to the DL fragment of RDF and the relational conjunctive queries of SPARQL (cf. Section 2.3.1).
Another option for answering queries using materialized view is view selection. The idea is to tune query process-
ing w.r.t. users or applications’ needs modeled by a query workload. In this case, the goal is to pre-compute from
the workload the views to materialize together with the query rewritings, in order to minimize a combination of

1http://tripleo.saclay.inria.fr/rdfvs
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rewriting processing, view storage, and view maintenance upon update costs. At query run-time, the answer sets
of workload queries are efficiently obtained by evaluating the corresponding rewritings against the materialized
views. View selection for SPARQL query evaluation, i.e., without taking into account RDF entailment, has been
investigated in [CL10, CRL10] to speed up the processing of some workload queries.

Contributions In [GKLM10b, GKLM10a, GKLM11b, GKLM11a], we revisit the view selection approach of
[TS97, TLS01] for the relational model and the conjunctive queries/views, in the light of the RDF data model
and the SPARQL query language. Notably, we devise a view selection technique for SPARQL query answering,
i.e., taking into account RDF entailment, to speed up the processing of all workload queries. More specifically,
our main contributions are:

1. We investigate the view selection problem for the so-called plain RDF (i.e., no RDF entailment) and the
BGP queries of SPARQL. In particular, adopting the elegant framework of [TS97, TLS01], this problem is
formalized as a search problem in a space of states, modeling some views to materialize and the rewritings
of the whole query workload w.r.t. these views.

2. We then extend our view selection technique to RDFS entailment, by considering the two options of graph
saturation and query reformulation. It turns out that our technique requires no special adaptation if applied
to a saturated graph; for query reformulation, we focus on the DL fragment of RDF and propose an algo-
rithm for either pre-reformulation of the query workload or post-reformulation of the views selected for
materialization.

3. We also consider heuristic search strategies, since the complexity of complete search is extremely high. In
particular, existing strategies for relational view selection [TS97, TLS01] grow out of memory and fail to
produce a solution when the size of the query workload increases. Since triple atoms of BGP queries are
short (just three attributes), BGP queries typically have many atoms, making this scale problem in RDF
particularly acute. We propose a set of new strategies and heuristics which greatly improve the scalability
of the search.

4. We experimentally demonstrate the effectiveness and the efficiency of the above techniques through thor-
ough extensive experiments.

In the following, I give some intuition on and I exemplify our view selection technique for plain RDF (Section
4.1.1) and how RDFS entailment can be incorporated into it (Section 4.1.2).

4.1.1 View selection for plain RDF and BGP queries
As mentioned above, we model our view selection problem as a search problem in a space of states.

A state S is a pair 〈V,R〉, where V models a set of candidate views for materialization, and R is a set of
rewritings in terms of V only for the given input BGP query workload Q. A state has a cost estimation cε(S) that
corresponds to a combination of rewriting processing, view storage, and view maintenance upon update costs. The
point here is that the cost estimation is computed according to the (non-saturated) graph from which views have
to be materialized. Our view selection problem is therefore to find within the space of all possible states w.r.t. a
given workload Q, a state S whose cost is less than or equal to that of any other state S′.

In fact, we proceed as follows. We define the initial state for a query workload Q as the trivial state in which
every workload query is a candidate view and every candidate rewriting is a view. Then, we define a set of
4 transitions that allows building from this initial state other ones, and so on, so as to explore/generate all the
possible sets of candidate views/rewritings. The idea of these transitions is to transfer constraints expressed in
views into rewritings, in order to exhibit some commonalities between these views: when two views become
equivalent, they can be fused.

Example 16 (Search space exploration with our 4 transitions) Consider the query workload Q made of the
single query q1(x, z):- x hasPainted ”SN” ., x isParentOf y ., y hasPainted z ., asking for painters that have
painted “Starry Night” and having a child that is also a painter, as well as the paintings of their children.

The initial state for this workload is: S0 = 〈{v1 = q1}, {r1 = v1}〉
Applying a View Break on S0 may lead to a state S1 = 〈{v2, v3}, {r1(x, z):- v2(x, y) ∧ v3(x, y, z)}〉 with

v2(x, y):- x hasPainted ”SN” ., x isParentOf y . and v3(x, y, z):- x isParentOf y ., y hasPainted z . The idea
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here is that the view v1 that has been broken, by moving from S0 to S1, is simulated in the rewriting of q1 in S1 by
joining v2 and v3.

Applying now a Selection Cut on S1 may lead to a state S2 = 〈{v3, v4}, {r1(x, z):- v4(x, y, ”SN”) ∧
v3(x, y, z)}〉 with v4(x, y, w):- x hasPainted w ., x isParentOf y . The idea here is that the constant ”SN”
that has been removed from v2, by moving from S1 to S2, is pushed to the rewriting of q1 in S2 by enforcing the
selection of ”SN” for the w variable of v4.

Applying now a Join Cut on S2 may lead to a state S3 = 〈{v4, v5, v6}, {r1(x, z):- v4(x, y, ”SN”)∧v5(x, y)∧
v6(y, z)}〉 with v5(x, y):- x isParentOf y . and v6(y, z):- y hasPainted z . The idea here is that the join on y
that has been removed from v3, by moving from S2 to S3, is pushed to the rewriting of q1 in S3.

Applying now a Join Cut on S3 may lead to a state S4 = 〈{v5, v6, v7, v8}, {r1(x, z):- v7(x, ”SN”)∧v8(x, y)∧
v5(x, y) ∧ v6(y, z)}〉 with v7(x,w):- x hasPainted w . and v8(x, y):- x isParentOf y . The idea here is that the
join on x that has been removed from v4, by moving from S3 to S4, is pushed to the rewriting of q1 in S4.

Applying now a View Fusion on S4 may lead to a state S5 = 〈{v6, v7, v9}, {r1(x, z):- v7(x, ”SN”)∧v9(x, y)∧
v6(y, z)}〉 with v9(x, y):- x isParentOf y .

Applying now a View Fusion on S5 may lead to a state S6 = 〈{v9, v10}, {r1(x, z):- v10(x, ”SN”)∧v9(x, y)∧
v10(y, z)}〉 with v10(x, z):- x hasPainted z .

4.1.2 View selection for RDF and BGP queries
I now discuss possible ways to take RDF entailment into account in our view selection technique.

Graph saturation. We reduce the problem of view selection with RDF entailment to that of view selection for
plain RDF. The idea is to saturate, prior to the search, the graph w.r.t. which views have to be materialized, so that
the cost estimations of states account for the explicit and entailed triples. While this solution is simple, it requires
to saturate the whole graph w.r.t. which views have to be materialized, thus may overgrow some space constraints.

Workload-reformulation. We also reduce the problem of view selection with RDF entailment to that of view
selection for plain RDF. However, we consider the DL fragment of RDF (cf. Section 2.3.1), i.e., RDFS entailment
only. The idea is to reformulate the query workload prior to the search, leaving unchanged the graph w.r.t. which
views have to be materialized. Here, query reformulation is achieved by a preliminary query reformulation tech-
nique of that presented in Section 3.2. – Of course, our more recent algorithm in Section 3.2 could now lift our view
selection technique to the DB fragment of RDF and BGP queries. – The subtle point here is that the rewriting lan-
guage has to be extended to that of union of BGP queries; given a set of queries Q = {q1, . . . , qn}, and assuming
that q1

i , . . . , q
ni
i are the reformulations of qi, the initial state is now S0 = 〈V0, R0〉 with V0 =

⋃n
i=1{q1

i , . . . , q
ni
i }

and R0 =
⋃n
i=1{ri = q1

i ∪ · · · ∪ q
ni
i }. While this solution is also quite simple, the size of the reformulated

workload may overgrow the size for which view selection can scale, as the size of the workload is a very sensitive
parameter in the size of the search space. So, from a practical viewpoint, the bigger the workload, the smaller the
search space effectively investigated in a reasonable amount of time.

View-reformulation To prevent the cons of the two above solutions (i.e., a large saturated graph or a large
query workload), the idea is to perform view selection for a non-reformulated workload and a non-saturated
graph. Once a best state has been found, we reformulate the views selected for building the query rewritings, so as
to obtain the right view materialization against the non-saturated graph. However, the technique is not so simple,
since the correctness of view selection imposes that the cost estimations of states must not reflect a combination
of rewriting processing, view storage, and view maintenance upon update costs w.r.t. the views of states, but
w.r.t. their reformulations.

Example 17 (View selection techniques) Let us consider the workload query q(x1, x2):-
x1 rdf:type picture ., x1 isLocatIn x2 . to be optimized for a graph whose schema is: S =
{painting rdfs:subClassOf picture ., isExpIn rdfs:subPropertyOf isLocatIn .}.

Our cost estimation framework counts the exact number of triples in the graph that match the two query atoms
q1(x1):- x1 rdf:type picture . and q2(x1, x2):- x1 isLocatIn x2 . as well as the triples matching three relaxed
atom queries, obtained by removing the constants from q1 and q2: q3(x1, x2):- x1 rdf:type x2 ., q4(x1, x2):-
x1 x2 picture ., and q5(x1, x2, x3):- x1 x2 x3 . That way, we obtain the exact cardinalities of atoms that may
occur in views during the search. Observe that relaxed atoms are produced during the search by some state
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q1 q1(x1):- x1 rdf:type picture .
∪ q1(x1):- x1 rdf:type painting .

q4 q4(x1, x2):- x1 x2 picture .
∪ q4(x1, isLocatIn):- x1 isLocatIn picture .
∪ q4(x1, isExpIn):- x1 isExpIn picture .
∪ q4(x1, rdf:type):- x1 rdf:type picture .
∪ q4(x1, isLocatIn):- x1 isExpIn picture .
∪ q4(x1, rdf:type):- x1 rdf:type painting .

Table 4.1: Sample atom query reformulations for post-reasoning.

transitions (selection cuts and join cuts). These cardinalities are the basic ingredient to estimate the costs of
states, i.e., combinations of rewriting processing, view storage, and view maintenance upon update costs.

With view selection based on graph saturation, we first compute the above cardinalities from the saturated
graph, then we perform the search for a best state. Assume that for the above query q above, there is a unique best
state S = 〈V,R〉 resulting from the initial one by a join cut followed by a selection cut, with:

• V = {v4(x1, x3):- x1 rdf:type x3 ., v3(x1, x2):- x1 isLocatIn x2 .}

• R = {r1(x1, x2):- v4(x1,picture) ∧ v3(x1, x2)

With view selection based on workload pre-reformulation, we first compute the above cardinalities from the
non-saturated graph, then we perform the search with the initial state S0 = 〈V0, R0〉 where:

• V0 = {
v1

1(x1, x2):- x1 rdf:type picture ., x1 isLocatIn x2 ., v
2
1(x1, x2):- x1 rdf:type painting ., x1 isLocatIn x2 .,

v3
1(x1, x2):- x1 rdf:type picture ., x1 isExpIn x2 ., v

4
1(x1, x2):- x1 rdf:type painting ., x1 isExpIn x2 .}

• R0 = {r1(x1, x2):-
⋃4
i=1 v

i
1(x1, x2)}

Observe that for a same workload, the solutions of view selection based on graph saturation or workload pre-
reformulation may differ, as reformulation introduces values that may not be in the original workload.

With view selection based on workload post-reformulation, we first compute the above cardinalities from the
reformulation of the above atom queries, so that their evaluation against the non-saturated graph provides the
correct numbers. Table 4.1 illustrates the obtained reformulations for q1 and q4. Then, we perform the search
for a best state which returns the same solution as view selection based on graph saturation. However, after the
search has finished, this technique must reformulate the selected views to get the correct materialization. Here,
instead of materializing the selected views v4 and v3, we materialize their reformulations:

• For v4: v1
4(x1, x3):- x1 rdf:type x3 . ∪ v2

4(x1,painting):- x1 rdf:type painting .
∪ v3

4(x1,picture):- x1 rdf:type picture . ∪ v4
4(x1,picture):- x1 rdf:type painting .

• For v3: v1
3(x1, x2):- x1 isLocatIn x2 . ∪ v2

3(x1, x2):- x1 isExpIn x2 .
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4.2 Towards efficient querying of XML documents with RDF annotations

Context Since 2011, I have been working with Ioana Manolescu (DR Inria Saclay–Île-de-France), Konstantinos
Karanasos (PhD student, Inria, co-advised by Ioana and me), Julien Leblay (PhD student, Univ. Paris-Sud, co-
advised by Ioana and me), Yannis Katsis (Postdoc, Inria), and Stamatis Zampetakis (Master student, co-advised
by Ioana and me) on managing XML documents with RDF annotations.

Our preliminary results on defining a hybrid XML-RDF data model and query language for annotated docu-
ments were published in the proceedings of the Journées Bases de données Avancées (BDA) [GKK+11b] and of
the Very Large Data Search (VLDS) Workshop [GKK+11a] in 2011. A journal version of these results will be
published in the french journal Ingénierie des Systèmes d’Information (ISI) [GKK+12] in 2012. All the results
obtained so far on this topic will be submitted to a special issue of the VLDB Journal in 2012.

Motivations XML has been widely adopted to represent Web data. Indeed, a plethora of XML documents can
be found on the Web, modeling tree databases, XHTML pages, RSS feeds, SVG images or animations, ODF
documents (e.g., Word- or Excel-like), etc. Exploiting this mass of freely available documents has become a
challenge in the industry for economic watch, strategic intelligence or journalism; in politics for geopolitical or
diplomatic strategies; in security for police or military surveillance. The key for using such documents is to
annotate them using ontologies, so that they can be categorized, classified, and easily retrieved w.r.t. relevant
criteria.

The Semantic Web standards RDF and OWL provides a general normative way for annotating Web resources
by assigning them URIs, so as to give them ontological descriptions. However, annotating at the level of XML
documents is not fine-grained enough in many applications, which require annotating within documents. How-
ever, when the documents to annotate are XHTML pages, one can use of RDFa [W3Cb], a W3C standard that
allows annotating any part of XHTML pages with RDF descriptions ; when the documents to annotate are ODF
documents, one can use of the ODF 1.2 standard by OASIS2 that allows annotating office documents with some
restricted RDF descriptions.

Contributions In [GKK+11b, GKK+11a, GKK+12], we revisit the ideas developed within the WebContent
project3 [AAC+08], a 2006-2009 ANR “Réseau National de Technologies Logicielles” project in which I have
participated, whose goal was to integrate (in a somewhat ad hoc fashion) off-the-shelf technologies from the
partners in order to manage XML documents with RDF annotations. Our main contributions are the design
of a clear and clean formal setting for representing and querying annotated documents, as well as some query
answering optimizations:

1. We define an XML-RDF hybrid framework, called XR, for managing XML documents with fine-grained
RDF annotations. In particular, we allow putting any RDF description on any piece (a.k.a. node) of an XML
document. Hence, we can have RDF annotations within tree databases, RSS feeds, XHTML pages, ODF
documents, etc. Observe that this setting encompasses that of the RDFa standard by W3C or of the ODF 1.2
standard by OASIS.

2. To query uniformly our annotated documents, we define a query language, called XRQ, integrating the
Tree-Pattern Queries (TPQs) [AYCLS01] of the standard XML query language XQuery [W3Ce], and the
BGP queries of SPARQL. Hence, we allow querying annotated documents w.r.t. both their structure (with
tree-shape constraints) and their semantics (with ontological constraints).

3. We also investigate how such an uniform XML-RDF setting can be used for optimizing query answering
against annotated documents, by pushing some information from XML to RDF, or RDF to XML, during
query processing.

In the following, I give some intuitions on and I exemplify first our XR data model and XRQ query language
for annotated documents (Section 4.2.1), then some optimizations under investigations for XRQ query answering
against XR documents (Section 4.2.2).

2http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
3http://www.webcontent.fr
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Alice created :b1 ., :b1 rdf:type Comment ., :b1 comments #306 ., :b1 date “2012−01−05” .
:b1 hasText “InvalidProof” ., Alice worksWith #106 .,worksWith rdfs:subPropertyOf knows .,

(Alice knows #106 ., )#106 seeAlso #204 .,#309 refersTo #103 .

doc#100

dblp#101

inproceedings#102

. . .

article#103

journal#104

“ACM Comm.”#105

author#106

“Bob”#107

year#108

“1997”#109

. . .

doc#200

html#201

head#202

. . .

body#203

. . . div#204

“About Bob”#205

. . .

doc#300

Paper#301

Meta#302

Abstract#303

“. . . ”#304

. . . . . .Section#305

Theorem#306

“. . . ”#307

. . . . . .

References#308

Entry#309

Title#310

“. . . ”#311

Author#312

“Bob”#313

. . .

Figure 4.1: Sample XR instance.

4.2.1 The XR data model and XRQ query language
The XR data model combines the XML and RDF data models in order to represent annotated documents. An
XR instance comprises an XML and an RDF sub-instances. A specific URI is assigned to each node of the XML
sub-instance, so that the RDF sub-instance can describe any part of an XML document in the XML sub-instance.
The semantics of an XR instance, is that of the XML one plus that of the RDF one (i.e., its saturation).

The XRQ query language allows writing queries against annotated documents modeled in an XR instance.
An XRQ query is made of a head and a body. The body, like an XR instance, is a made of two parts: a set of
TPQs expressing structural tree constraints (e.g., child or descendant relationships), and a BGP query (i.e., a set
of triple patterns) expressing the ontological constraints. Tree and triple patterns may contains variables, joins are
expressed by reusing variables in multiple places of a query. In particular, joins can be expressed between tree and
triple patterns. The head of an XRQ query is a set of variables appearing in the body and possibly constants. For
answering such queries, tree patterns are answered against the XML sub-instance and triple patterns are answered
against the RDF sub-instance, producing a set of variable bindings. The answers of a XRQ query corresponds to
the tuples obtained by applying the bindings satisfying the body of the query to the query’s head.
Example 18 (XR instance and XRQ query) Consider the XR instance depicted in Figure 4.1, which consists of
XML documents and their RDF annotations. The upper part shows the triples of the RDF sub-instance, while
the XML sub-instance in the lower part shows node-labeled unranked ordered trees (i.e., XML documents). Node
labels represent element (or attribute) tag names and edges stand for parent-child relationships. The XML sub-
instance contains 3 documents, the first one is a database about DBLP bibliographical data, the second one is an
XHTML homepage, and the third one is a research paper written in an open document format. Observe that every
document has been assigned a URI, denoted by #number in the root doc#number of the documents, as well as
every node of every document, denoted by #number in the node tags tag#number of the documents. The RDF
sub-instance specifies that Alice has created a comment on a Theorem of the research paper. This comment comes
with a date and a text. The paper Alice has annotated refers to the journal paper in DBLP whose URI is #103.
Alice knows the author of this article. This can be inferred, through RDF entailment (e.g., using saturation), from
the fact that she works with him, and that working with someone is a subproperty of knowing someone. Finally,
additional information (seeAlso) on this author can be found on a particular location, identified by the URI #204,
of the XHTML page.

Consider now the XRQ query depicted on Figure 4.2. The upper part of the body shows the BGP sub-query,
while the lower part show the XQuery sub-query made of TPQs. Single edges are parent/child relationships;
double edges are descendant relationships. A node has a uri, a val (i.e., the concatenation of the values of its
descendants), and a cont (i.e., the subtree it is the root of). This query looks for an author of a 1997 journal paper
in the DBLP database doc#100, with a piece of XHTML page describing her, and a paper of whom is referenced in
the research paper doc#300, such that this author is known by someone that has created a comment on a theorem
of this research paper. It returns the creator of the comment, the XHTML description of the cited author, and the
text of the commented theorem.
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q(x1, x2, x3):-

y1 seeAlso y2 ., x1 knows y1 ., x1 created y2 ., y2 comments y3 .

doc(#100)

dblp

article

year
val=”1997”

author
y1: uri
y4: val

html

div
y2: uri
x2: cont

doc(#300)

Paper

Theorem
y3: uri
x3: val

References

Author
y4: val

Figure 4.2: Sample XRQ query.

4.2.2 Optimization for XRQ query answering against XR documents
To answer XRQ queries against an XR instance, we are investigating three strategies.

1. The first option is to answer in parallel the XQuery sub-query of the XRQ query against the XML sub-
instance and the BGP sub-query of the XRQ query against the RDF sub-instance, before joining the obtained
variable bindings.

2. The second option is to answer the XQuery sub-query of the XRQ query against the XML sub-instance, and
then to iterate on the obtained variable bindings to push them into the BGP sub-query of the XRQ query.
This results into a union of more specific BGP queries to be evaluated against the RDF sub-instance.

3. The third option is to answer the BGP sub-query of the XRQ query against the RDF sub-instance, and then
to iterate on the obtained variable bindings to push them into the XQuery sub-query of the XRQ query. This
results into a union of more specific XQuery queries to be evaluated against the XML sub-instance.

The choice of using one of these strategies is guided by a cost estimation function which, based on statistics
collected from the XR instance, is able to estimate the number of variables bindings returned by the two subqueries
of an XR query. If none of them is very selective, i.e., returns few variable bindings, the first strategy is a safe
choice as the price to pay for joining the subqueries’ results may be compensated by the parallel processing of the
two subqueries. Otherwise, the other options may be used to evaluate first the most selective query, so as to push
its few variables bindings to the other sub-query, making a small union of more selective queries whose processing
is expected to traverse much less of the sub-instance.

Example 19 (Optimization strategies for XRQ query processing) Consider the above examples of an XR in-
stance and an XRQ sub-query.

With the first query processing strategy, answering in parallel the XQuery and BGP subqueries yields respec-
tively the variable bindings {y1 = #106, y4 = ”Bob”, y2 = #204, x2 = ” · · · ”, y3 = #306, x3 = ” · · · ”} and
{y1 = #106, y2 = #204, x1 = Alice, y2 = :b1, y3 = #306}. Joining these results on the shared variables
yields the variable bindings of the whole XRQ query {x1 = Alice, x2 = ” · · · ”, x3 = ” · · · ”, y1 = #106, y2 =
#204, y3 = #306, y4 = ”Bob”}, out of which the query answers are projected.

With the second query processing strategy, the XQuery sub-query is answered first and yields a single set of
variable bindings: {y1 = #106, y4 = ”Bob”, y2 = #204, x2 = ” · · · ”, y3 = #306, x3 = ” · · · ”}. This set is
then used to bind the corresponding variables of the BGP sub-query, leading to the new more selective BGP query
q(x1, ” · · · ”, ” · · · ”):- #106 seeAlso #204 ., x1 knows #106 ., x1 created #204 .,#204 comments #306 .
whose answers are these of the XRQ query.

With the third query processing strategy, the BGP sub-query is answered first and yields a single set of variable
bindings: {y1 = #106, y2 = #204, x1 = Alice, y2 = :b1, y3 = #306}. This set is then used to bind the
corresponding variables of the XQuery sub-query, leading to the following more selective XQuery query, whose
answers are these of the XRQ query.
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q(Alice, x2, x3):-

doc(#100)

dblp

article

year
Val=”1997”

author
uri=#106
y4: val

html

div
uri=#204
x2: cont

doc(#300)

Paper

Theorem
uri=#306
x3: val

References

Author
y4: val
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Chapter 5

Decentralization

The main contribution I present is peer-to-peer data management for RDF and DL-lite (Section 5.1). In such
systems, every peer manages its own ontology and data, and can establish semantic correspondences called map-
pings with peers having similar interests. This gives rises to a fully distributed data management system, in which
it becomes possible to perform global data management tasks. The idea is to decentralize state-of-the art data
management algorithms, by resorting to decentralized consequence finding in a distributed propositional theory.

The ongoing work I present next is a very first step towards RDF data management in a cloud (Section 5.2).
A cloud is a place where one can rent virtual machines, disk space, and services (e.g., database access), and then
pay as she uses them. The focus is on SPARQL query answering against RDF graphs in the Amazon cloud, in the
light of efficiency and monetary costs.

5.1 P2P Systems for propositional logic, RDF and DL-lite
This work comprises two seemingly unrelated research studies on peer-to-peer inference systems for propositional
logic (Section 5.1.1) and on peer-to-peer data management systems for RDF and DL-lite (Section 5.1.2). In fact,
they are tightly connected as the latter builds on the former.

5.1.1 P2P inference systems for propositional logic
Context I have worked on peer-to-peer inference systems in propositional logic from 2003 to 2009 with Serge
Abiteboul (DR Inria Saclay–Île-de-France), Philippe Chatalic (MCF, Univ. Paris-Sud), Marie-Christine Rousset
(PR, Univ. Grenoble), Laurent Simon (MCF, Univ. Paris-Sud), Philippe Adjiman (former PhD student, Univ.
Paris-Sud, co-advised by Marie-Christine and me), and Nada Abdallah (former PhD student, Inria, co-advised by
Serge and me).

Our preliminary milestone results were published in the proceedings of the Journées Nationales sur la résolution
Pratique de Problèmes NP-Complets (JNPC) [ACG+04b] and of the European Conference on Artificial Intel-
ligence (ECAI) [ACG+04a] in 2004, of the International Joint Conference on Artificial Intelligence (IJCAI)
[ACG+05a] in 2005, of the Journées Bases de Données Avancées (BDA) [AG08b] and of Journées Francophones
de Programation par contraintes (JFPC) [AG08a] in 2008. Completed results were published in Journal on Artifi-
cial Intelligence Research (JAIR) [ACG+06] in 2006, and AI Communications (AICOM) [AG09] in 2009.

Motivations P2P systems emerged in the beginning of the 21th century from the very practical applications of
file sharing over the Internet. They provide a flexible and scalable architecture in which every peer is autonomous,
i.e., it manages its own files, and can query other peers it knows to get files whenever a requested file is not stored
locally. That way, given a file request made to a peer, this peer can gradually solicit others to traverse the system
and hopefully find the requested file.

Adapting this vision to AI allows envisioning fully decentralized inference systems where peers have their
own knowledge and collaborate with others to reason about the global knowledge, seen as the virtual union of
the individual knowledge of the peers. This contrasts with the traditional centralized inference systems [RN10]
and their seemingly decentralized optimizations, e.g., using partition-based reasoning [AM00, AM01], that where
under investigations when P2P systems arose.
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Contributions In [ACG+04b, ACG+04a, ACG+05a, ACG+06, AG08b, AG08a, AG09], we introduce the
propositional P2P inference systems (P2PISs) in which we investigate the standard task of consequence find-
ing and for which we introduce non-standard task of conservative extension checking of a peer. Consequence
finding is a core reasoning task in AI, as many other tasks build on it, e.g., common sense reasoning, diagnosis, or
knowledge compilation [Mar00]. Conservative extension checking, which is strongly related to the notion of for-
getting, becomes central in P2PISs as it allows peers to complement their knowledge about their own application
domain or area of expertise.

More specifically, our contributions are:

1. We define a propositional P2PIS as a distributed clausal theory1 of propositional logic (PL), in which each
peer manages is own local clausal theory in terms of its own variables (a.k.a. alphabet), plus some mappings
that are clauses involving literals from at least a remote peer. These remote literals define the remote peers
with which the peer can communicate.

2. We provide the first fully decentralized consequence finding algorithm, called DECA, for these P2PISs.
Given an input clause in terms of the variables of a single peer, DECA computes clausal consequences of
the P2PIS plus this input clause, including all the strongest ones following from the input clause. DECA is
based on the Resolution principle [Rob65, CR73] and basically uses remote literals to propagate deduction
(a.k.a. derivations) gradually within the P2PIS. The space, time, and communicational complexity of DECA
have also been analyzed.

3. We provide the SOMEWHERE P2P platform that implements DECA. SOMEWHERE has been used to study
experimentally the scalability of DECA, which has been demonstrated up to a thousand peers. The SOME-
WHERE prototype is currently entirely reengineered (thanks to an Inria grant “Action de Développement
Technologique”), so as to make it available to the research community in late 2012.

4. We exhibit the importance of the notion of (non-)conservative extension in the setting of P2PISs: a peer
basically extends its theory (using mappings) with the rest of the P2PIS (the peer theories and mappings),
so that it can also use their knowledge when performing reasoning tasks; a well-known result is that the
extension of a theory is not necessarily conservative. Hence, when a peer extends its theory by establishing
mappings, a P2PIS may provide knowledge that the peer itself does not know, while this extra knowledge
is in terms of its own alphabet, thus about its own application domain or area of expertise. We therefore
provide a conservative extension checking algorithm for the peers of our P2PISs, called CECA, so that any
of them can answer the question: What do the P2PIS say in my name (using my alphabet only), that I do
not already now?

In the following, I first introduce our propositional P2PISs (Section 5.1.1.1), and then I give some intuitions on
and I exemplify our decentralized consequence finding technique (Section 5.1.1.2) and our conservative extension
checking technique (Section 5.1.1.3).

5.1.1.1 P2PISs

We define a P2PIS S = {Pi}i=1..n as a set of peers, where the index imodels the identifier of the peer Pi (e.g., its
IP address).

A peer Pi manages some knowledge modeled by a clausal theory of PL, T (Pi), and a set of mappings with
some other peers, M(Pi). The theory of Pi is a set of reduced clauses (they are either the empty clause �
equivalent to false, true, or clauses without redundant literals) in terms of the proper alphabet of Pi. Such an
alphabet is made of propositional variables. The peer alphabets being disjoint, I use here the peer identifier i to
note Ai the variable A of the peer Pi. The mappings in which Pi is involved are stored locally inM(Pi), i.e., a
mapping is stored in every peer involved in that mapping. A mapping is a reduced clause, the literals of which use
variables from Pi and also from some other peers. That is, a mapping with n literals may involve up to n peers.

The (distributed) theory modeled by a P2PIS S is the union of the theories and mappings of its peers. Its
semantics that of a standard (centralized) theory of PL.

1A clause is a disjunction of literals, i.e., variables or their negation. A clausal theory is a set of clauses modeling their conjunction, i.e., a
theory is a PL formula in the so-called conjunctive normal form.
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Figure 5.1: Sample P2PIS (left) and decentralized derivation for the input clause HS2 ∨ Prim2 (right)

Example 20 (Propositional P2PIS) Figure 5.1 (left) depicts a P2PIS made of the peers P1, P2, and P3. The
theories of the peers are the nodes labeled with their names and the mappings between these peers are labeling
the edges that link their theories. Each peer advertises a private course center by describing its courses, learners,
teachers, and cooperations with the other centers.

• P1 states that the first center has (i) courses (C1) that are language courses (L1), math courses (M1), or
computer science courses (CS1), (ii) learners (LN1) that are researchers (Res1) or students in primary
school (Prim1), and (iii) teachers (T1) that are graduates (Grad1).

• P2 states that the second center has (i) courses (C2) that are physics courses (P2) or chemistry courses
(CH2), (ii) learners (LN2) that are researchers (Res2) or students (ST2) in primary school (Prim2), in
secondary school (Sec2), in high school (HS2), or even in university (Univ2), and (iii) teachers (T2) that
are faculties (Fac2).

• Finally, P3 states that the third center has (i) courses (C3) that are language courses (L3), math courses
(M3), or computer science courses (CS3), (ii) learners (LN3) that are students in university (Univ3), and
(iii) teachers (T3) that are graduates (Grad3), PhD students (PhDS3), or faculties (Fac3) who are math
faculties (MFac3).

The three centers cooperate according to the following policies that are modeled by mappings.

• The first center provides courses to students from the second center: it provides language courses (L1)
to researchers (Res2), computer science courses (CS1) to university students (Univ2), and math courses
(M1) to student in secondary school (Sec2).

• The second center solicits teachers from the third center: its university students (Univ2) are taught by
PhD students (PhDS3), its researchers (Res2) are taught by faculties (Fac3), and its students in primary
school (Prim2) are taught by graduates (Grad3) or PhD students (PhDS3).
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• Finally, teachers from the third center do, or do not, teach some courses for the first center: math faculties
(MFac3) do not teach language courses (L1), PhD students (PhDS3) teach computer science courses
(CS1), and graduates (Grad3) teach language courses (L1) or math courses (M1).

5.1.1.2 Consequence finding

Our consequence finding problem is the following: Given an input clause in terms of the variables of a single peer,
we want to computes clausal consequences (a.k.a. implicates) of the P2PIS plus this input clause, including all the
strongest ones following necessarily from this input clause (a.k.a. the proper prime implicates of the input clause).

The idea of our decentralized technique implemented in DECA is to decentralize deductions (a.k.a. deriva-
tions) based on (full) resolution or linear resolution, which provide a solution to our consequence finding problem
in the centralized setting [MR72, Ino91, Ino92, Mar00].

More specifically, when a peer is solicited with an input clause, this peer derives locally, using standard
centralized deductions, all the implicates following from this clause and its own knowledge (i.e., its theory and
mappings). Then, for each such implicate having some remote literals, the peer builds other implicates by exhaus-
tively replacing the remote literals by the implicates following from them. Of course, these ones are obtained by
soliciting remote peers, which may in turn solicit others, and so on.

We have shown that returning all the locally derived implicates together with those built from them by so-
liciting remote peers provides a correct solution to our decentralized consequence finding problem. Notably, the
termination and correctness of the technique rely on the use of an history memorizing the input clauses of the
successive peer sollicitations that now lead to soliciting another peer. These clauses hold in the P2PIS when the
peer is solicited, though they are not in the P2PIS knowledge: this extra knowledge is that of the current derivation.
The solicited peer then uses this history to detect possible cyclic deductions (when the input clause is already in
the history) and to reason locally in order to complement its own knowledge with that of the current derivation.

Example 21 (DECA in action) Figure 5.1 (right) shows a particular DECA derivation in the P2PIS of Figure
5.1 (left). In this derivation, the history is denoted hist.

The derivation is initiated by soliciting P2 with the input clause HS2 ∨ Prim2 and an empty history (since
it is the initial solicitation). This is represented on top of Figure 5.1 (right), by the edge labeled with this input
clause and empty history that reaches the top node labeled with P2. The other label of this edge is a particular
answer to this solicitation, the implicate HS2 ∨ Sec2 ∨ PhDS3, which is computed as follows.

Upon the above solicitation, P2 derives locally the implicate HS2 ∨ Grad3 ∨ PhDS3 from its theory and
mappings, the input clause, and the history. This is denoted by T (P2) ∪ M(P2) ∪ hist `HS2∨Prim2

LR HS2 ∨
Grad3 ∨ PhDS3.

Since two remote literals from P3 are involved in this implicate, P3 receives two solicitations for obtaining the
implicates following from these literals. This is depicted by the two edges going from the top node labeled with P2

to two distinct nodes labeled with P3. Again, each edge is labeled with (i) the input of the solicitation (the input
clause and the current history) and (ii) an answer to the solicitation, i.e., one of the requested implicates.

In this particular case, P2 receives from P3, Sec2 as an implicate following from the remote literal Grad3

and PhD3 as an implicate of itself. Observe that the computation of these two implicates have in turn solicited
other peers. From these two implicates and HS2 ∨Grad3 ∨ PhDS3, P2 builds and returns the implicate HS2 ∨
Sec2 ∨ PhDS3.

Finally, it is worth noticing that the whole derivation illustrates the role of the history w.r.t. completeness and
termination of the technique: the empty clause cannot be derived without the use of the history (actually L1) in
the node at the bottom of the figure; the history is used to detect/avoid a cyclic derivation (see the dashed arrow).

5.1.1.3 (Non-)Conservative extension checking

Our (non-)conservative extension checking problem amounts to exhibits the witnesses to non-conservative exten-
sion of a given peer. These witnesses are characterized by the prime implicates of the P2PIS in terms of the peer’s
alphabet only, that necessarily follows from a mapping of this peer, without being consequences of the peer alone.

The idea of the technique implemented in CECA is to rely on a variant of DECA, which compute implicates of
the P2PIS in terms of the peer’s alphabet only, including all the prime ones that follow from a mapping of this peer.
Witnesses to non-conservative extension are then exhibited among these implicates, by removing the implicates
that are not consequences of the theory of the peer. This is done by a usual centralized refutation mechanism.
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Example 22 (CECA in action) Consider again the P2PIS in Figure 5.1 (left).
As for P1, CECA gets ¬L1 from DECA, as an implicate following from the mapping ¬L1 ∨ RES2. ¬L1

is actually derived from {¬L1 ∨ Res2,¬Res2 ∨ Fac3,¬Fac3 ∨MFac3,¬MFac3 ∨ ¬L1}. Moreover, ¬L1 is
not a consequence of T (P1), thus ¬L1 is a witness to non-conservative extension of P1. As a result, the P2PIS
says that there is no language courses provided by P1. Note that this extra knowledge is incomparable (w.r.t. the
consequence relation |=) with that of T (P1).

As for P1, CECA gets ¬ST2∨Sec2∨HS2∨Univ2 from DECA, as an implicate following from the mapping
¬Prim2 ∨Grad3 ∨ PhDS3. ¬ST2 ∨ Sec2 ∨HS2 ∨Univ2 is actually derived from {¬ST2 ∨ Prim2 ∨ Sec2 ∨
HS2∨Univ2,¬Prim2∨Grad3∨PhDS3,¬Grad3∨L1∨M1,¬L1∨Res2,¬Res2∨Fac3,¬Fac3∨MFac3,
¬MFac3 ∨ ¬L1,¬M1 ∨ Sec2,¬PhDS3 ∨ CS1, ¬CS1 ∨ Univ2}. Moreover, ¬ST2 ∨ Sec2 ∨HS2 ∨ Univ2 is
not a consequence of T (P2), thus ¬ST2 ∨Sec2 ∨HS2 ∨Univ2 is a witness to non-conservative extension of P2.
As a result, the P2PIS says that the students of P2 are in secondary schools, high schools, or universities. Note
that this extra knowledge is refines (w.r.t. the consequence relation |=) that of T (P2).

The P2PIS is a conservative extension of P3, as there is no witness to non-conservative extension of P3.

5.1.2 P2P data management systems for RDF and DL-lite
Context I have worked on P2P systems from 2004 to 2010 with Serge Abiteboul (DR Inria Saclay–Île-de-
France), Philippe Chatalic (MCF, Univ. Paris-Sud), Ioana Manolescu (DR Inria Saclay–Île-de-France), Marie-
Christine Rousset (PR, Univ. Grenoble), Laurent Simon (MCF, Univ. Paris-Sud), Philippe Adjiman (former PhD
student, Univ. Paris-Sud, co-advised by Marie-Christine and me), and Nada Abdallah (former PhD student, Inria,
co-advised by Serge and me).

Preliminary milestone results on decentralized data management were published in the proceedings of the
workshop Information Integration on the Web (IIWeb) [GR03a] in 2003 and the workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR) [ACG+05b]. Completed milestone results were published in IEEE
Intelligent Systems (IEEE IS) [GR03b] in 2003, Journal on Artificial Intelligence Research (JAIR) [ACG+06] in
2006, Journal On Data Semantics (JODS) [AGR07] in 2007, in the journal Proceedings of the VLDB endowment
(PVLDB) [AAC+08] in 2008, and in the proceedings of International Joint Conference on Artificial Intelligence
(IJCAI) [AGR09] in 2009 and of the Congrès francophone Reconnaissance des Formes et Intelligence Artificielle
(RFIA) [AGR10].

Motivations The emergence of P2P file sharing systems over the Internet, in the beginning of the 21th century,
has also attracted the attention of the DB community. The first peer-to-peer data management systems (PDMSs)
were proposed for the relational data model [HIST03, TIM+03]. In such systems, each peer manages its own
database and can also establish mappings with some peers whose application domains overlap. Mappings are
inclusions between a conjunctive query against one peer and a conjunctive query against another peer. In this
rather simple setting however, answering a query from the whole system is undecidable, except under severe
topological constraints w.r.t. real applications (acyclic mappings) [HIST03, TIM+03], or by using non-standard
semantics (epistemic semantics) [FKLZ04, CGLR04].

Contributions In [GR03a, GR03b, ACG+05b, ACG+06, AGR07, AAC+08, AGR09, AGR10], we design
PDMSs for the Semantic Web data models. Based on the rather negative results obtained in the setting of re-
lational PDMSs (see above), we focus on simple ontology languages. We choose them so as to compile PDMSs
into our propositional P2PISs (cf. Section 5.1.1) and then reduce (part of) data management tasks to consequence
finding. In particular, our SOMERDFS PDMS [AGR07] has been used in the WebContent project2 [AAC+08],
a 2006-2009 ANR “Réseau National de Technologies Logicielles” project in which I have participated, whose
goal was to integrate off-the-shelf technologies from the partners in order to manage XML documents with RDF
annotations in a decentralized fashion.

More specifically, our contributions are:

1. We define the SOMEOWL, SOMERDFS, and SOMEDL-LITE PDMSs, whose data models are the CLU
description logic3, RDF, and DL-lite respectively. Each peer manages its own ontology and data, and
can establish mappings with peers having overlapping interests. In particular, mappings are ontological
constraints involving relations (i.e., concepts and roles, or classes and properties) from several peers.

2http://www.webcontent.fr
3The CLU description logic is a fragment of the OWL-DL dialect of OWL1.

37

http://www.webcontent.fr


P1’s graph P2’s graph
P1:Sculptor rdfs:subClassOf P1:Artist . P2:Painting rdfs:subClassOf P2:Work .
P1:Painter rdfs:subClassOf P1:Artist . P2:Sculpture rdfs:subClassOf P2:Work .
P1:creates rdfs:domain P1:Artist . P2:Music rdfs:subClassOf P2:Work .
P1:creates rdfs:range P1:Artifact . P2:refersTo rdfs:domain P2:Work .
P1:paints rdfs:subPropertyOf P1:creates . P2:refersTo rdfs:range P2:Period .
P1:sculpts rdfs:subPropertyOf P1:creates .
P1:sculpts rdfs:domain P1:Sculptor .
P1:paints rdfs:domain P1:Painter .
P1:belongsTo rdfs:domain P1:Artifact .
P1:belongsTo rdfs:range P1:Movement .
Picasso P1:paints Les−demoiselles−d−Avignon . Le−dejeuner−des−canotiers rdf:type P2:Painting .
Picasso P1:sculpts La−femme−au−chapeau . Les−demoiselles−d−Avignon P2:refersTo Cubism .
Les−demoiselles−d−Avignon P1:belongsTo Picasso−pink . The−statue−of−David rdf:type P2:Sculpture .
La−femme−au−chapeau P1:belongsTo Modern−art . Nutcracker rdf:type P2:Music .
P1:paints rdfs:range P2:Painting . P1:paints rdfs:range P2:Painting .
P1:sculpts rdfs:range P2:Sculpture . P1:sculpts rdfs:range P2:Sculpture .
P1:Artifact rdfs:subClassOf P2:Work . P1:Artifact rdfs:subClassOf P2:Work .
P1:belongsTo rdfs:subPropertyOf P2:refersTo . P1:belongsTo rdfs:subPropertyOf P2:refersTo .

Figure 5.2: Sample SOMERDFS PDMS. Within a peer’s graph, RDFS statements are given first, then RDF
statements, and finally the mappings.

2. We define how these PDMSs can be built on top of our propositional P2PISs, by encoding the ontology
and mappings of each peer into the corresponding propositional theory and mappings. A decentralized data
management technique, e.g., for consistency checking or query answering, then amounts to write a central-
ized data management technique with the appropriate calls to DECA when remote information is needed.
In particular, we provide query answering techniques for our SOMEOWL, SOMERDFS, and SOMEDL-
LITE PDMSs, and a consistency checking technique for our SOMEDL-LITE PDMS. In addition, for the
SOMEDL-LITE PDMS, we also provide query answering and consistency checking techniques based on
query rewriting, when peers access data through conjunctive views.

In the following, I first introduce the SOMERDFS PDMSs (Section 5.1.2.1), and then I give some intuitions
and exemplify how query answering is performed in these PDMSs (Section 5.1.2.2).

5.1.2.1 SOMERDFS

We define a SOMERDFS PDMS S = {Pi}i=1..n as a set of peers, where the index i models the identifier of the
peer Pi (e.g., its IP address or namespace).

A peers Pi manages some knowledge modeled by graph G(Pi) belonging to the DL fragment of RDF (cf. Sec-
tion 2.3). In particular, this graph uses the own classes and properties of Pi. I denote the relation r of Pi (i.e., a
class or property) by Pi:r. The mappings in which a peer in which Pi is involved are stored locally inM(Pi),
i.e., a mapping is stored in every peer involved in that mapping. A mapping is an RDFS statements involving the
vocabulary of two peers.

The (distributed) graph modeled a SOMERDFS S is the union of the graphs and mappings of its peers. Its
semantics is that of a graph belonging to the DL fragment of RDF.

Example 23 (A SOMERDFS PDMS about Art) Consider the SOMERDFS PDMS in Figure 5.2, which is made
of two peers P1 and P2.

The ontological knowledge of P1 is about artists (some of them being sculptors and/or painters), artifacts
artists have created, and the artistic movements the artifacts belong to. Some artist creations are distinguished
according to whether their creators are sculptors or painters. P1 actually stores that Picasso has painted “Les
demoiselles d’Avignon” which belongs to the Picasso’s pink movement, and has sculpted “La femme au chapeau”
which belongs to the Modern art movement.

The ontological knowledge of P2 is about works (some of them being paintings, sculptures or musics) and the
artistic period they refer to. P2 stores that “Le déjeuner des canotiers” is a painting and that “Les demoiselles
d’Avignon” refers to the Cubism artistic period. It also stores that “The statue of David” is a sculpture and that
“Nutcracker” is a music.

In order to collaborate, P1 and P2 have established several mappings: the artifacts that are painted according
to P1 are painting according to P2; the artifacts that are sculpted according to P1 are sculpture according to P2;
an artifact for P1 is a work for P2; and an artifact that belongs to a movement according to P1 is a work that
refers to a period according to P2.
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Figure 5.3: Graphical representation of the SOMERDFS PDMS of Figure 5.2

Figure 5.3 provides a graphical representation of the decentralized ontology of this PDMS, consisting of the
ontology of the peers (their RDFS statements) and of their mappings.

5.1.2.2 Query answering in SOMERDFS

The query language of SOMERDFS is the fragment of SPARQL corresponding to the relational conjunctive
queries (cf. Section 2.3).

The query answering technique used in SOMERDFS is based on query reformulation. Given a query against
the graph of a peer, this query is first reformulated according to the whole PDMS, then its reformulation is eval-
uated in a distributed fashion against the relevant peers. The reformulation step amounts to reformulating the
query’s triples in parallel, i.e., their reformulations are independent, so that the reformulation of the whole query
is the union of all possible queries obtained by replacing the original query’s triples by one of their reformulations.
The evaluation step then consists in evaluating this union, by contacting the appropriate peers. Observe that in the
considered query language (relational conjunctive queries), triples are of the form s rdf:type Pi:c . or of the form
s Pi:p o ., that is we always know the relevants remote peers to contact at query evaluation time.

The reformulation of the original query’s triples is the crux of the technique as they must be reformulated
according to the graph modeled by the whole PDMS. This step is achieved by building SOMERDFS peers on top
of SOMEWHERE peers. In fact, the underlying SOMEWHERE peer manages a propositional encoding of the RDFS
statements (ontological ones and mapping ones). The propositional encoding function enc used in SOMERDFS
is the following: enc(s rdfs:subClassOf o .) = {¬sd ∨ od,¬sr ∨ or}, enc(s rdfs:subPropertyOf o .) =
{¬sp ∨ op}, enc(s rdfs:domain o .) = {¬sp ∨ od}, and enc(s rdfs:range o .) = {¬sp ∨ or}. The propositional
variables are annotated with p, d, and r, which respectively encode that a variable represents a property, a class
that may type the domain of a property, and a class that may type the range of a property. With this encoding,
the correctness of our query answering technique has been shown when the reformulations of the original query’s
triples are computed as follows. The reformulation of triple s rdf:type Pi:c . is encoded in two parallel DECA
calls: DeCA(¬Pi:cd) and DeCA(¬Pi:cr). The results to the first call are decoded as follows: if ¬Pj :c′d ∈
DeCA(¬Pi:cd) then the corresponding reformulation is s rdf:type Pj :c′ .; if ¬Pj :p′p ∈ DeCA(¬Pi:cd) then
the corresponding reformulation is sPj :p′p y .with y a fresh non-distinguished variable. Observe in the latter case
that s becomes a subject of the reformulated triple because the call to DECA looks for classes that may type the
domain of a property. Similarly, the results to the second call are decoded as follows: if¬Pj :c′r ∈ DeCA(¬Pi:cr)
then the corresponding reformulation is s rdf:type Pj :c′ .; if ¬Pj :p′p ∈ DeCA(¬Pi:cr) then the corresponding
reformulation is y Pj :p′p s . with y a fresh non-distinguished variable. Otherwise, the reformulation of a triple
s Pi:p o . is encoded in a single DECA call: DeCA(¬Pi:pp). The results to this call is decoded as follows: if
¬Pj :p′p ∈ DeCA(¬Pi:pp) then the corresponding reformulation is s Pj :p′ o .
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P1’s theory and mappings P2’s theory and mappings

¬P1:Sculptord ∨ P1:Artistd ¬P2:Paintingd ∨ P2:Workd

¬P1:Sculptorr ∨ P1:Artistr ¬P2:Paintingr ∨ P2:Workr

¬P1:Painterd ∨ P1:Artistd ¬P2:Sculptured ∨ P2:Workd

¬P1:Painterr ∨ P1:Artistr ¬P2:Sculpturer ∨ P2:Workr

¬P1:createsp ∨ P1:Artistd ¬P2:Musicd ∨ P2:Workd

¬P1:createsp ∨ P1:Artifactr ¬P2:Musicr ∨ P2:Workr

¬P1:paintsp ∨ P1:createsp ¬P2:refersTop ∨ P2:Workd

¬P1:sculptsp ∨ P1:createsp ¬P2:refersTop ∨ P2:Periodr

¬P1:sculptsp ∨ P1:Sculptord

¬P1:paintsp ∨ P1:Painterd

¬P1:belongsTop ∨ P1:Artifactd

¬P1:belongsTop ∨ P1:Movementr

¬P1:paintsp ∨ P2:Paintingr ¬P1:paintsp ∨ P2:Paintingr

¬P1:sculptsp ∨ P2:Sculpturer ¬P1:sculptsp ∨ P2:Sculpturer

¬P1:Artifactd ∨ P2:Workd ¬P1:Artifactd ∨ P2:Workd

¬P1:Artifactr ∨ P2:Workr ¬P1:Artifactr ∨ P2:Workr

¬P1:belongsTop ∨ P2:refersTop ¬P1:belongsTop ∨ P2:refersTop

Figure 5.4: Propositional encoding of the SOMERDFS peers from Figure 5.2.

Example 24 (Decentralized query answering) Figure 5.4 shows the propositional encoding of the SOMERDFS
peers from Figure 5.2.

Consider the query q(x):- x rdf:type P2:Work . asking for all the works to P2. Answering this query triggers
two calls to DECA

• DeCA(¬P2:Workd) = {¬P2:Workd,¬P2:Paintingd,¬P2:Sculptured,¬P2:Musicd,¬P2:refersTop,
¬P1:Artifactd,¬P1:belongsTop}

• DeCA(¬P2:Workr) = {¬P2:Workr,¬P2:Paintingr,¬P2:Sculpturer,¬P2:Musicr,¬P1:Artifactr,
¬P1:createsp,¬P1:paintsp,¬P1:sculptsp}

from which we obtain the reformulation
Q(x) = q1(x):- x rdf:type P2:Work .∪q2(x):- x rdf:type P2:Painting .∪q3(x):- x rdf:type P2:Sculpture .∪
q4(x):- x rdf:type P2:Music . ∪ q5(x):- x P2:refersTo y . ∪ q6(x):- x rdf:type P1:Artifact . ∪
q7(x):- x P1:belongsTo y . ∪ q8(x):- y P1:creates x . ∪ q9(x):- y P1:paints x . ∪ q10(x):- y P1:sculpts x .

The distributed evaluation of this reformulation is:
Q(S) = ∅︸︷︷︸

q1(S)

∪{Le-dejeuner-des-canotiers}︸ ︷︷ ︸
q2(S)

∪{The-statue-of-David}︸ ︷︷ ︸
q3(S)

∪{Nutcracker}︸ ︷︷ ︸
q4(S)

∪{Les-demoiselles-d-Avignon}︸ ︷︷ ︸
q5(S)

∪ ∅︸︷︷︸
q6(S)

∪{Les-demoiselles-d-Avignon,La-femme-au-chapeau}︸ ︷︷ ︸
q7(S)

∪ ∅︸︷︷︸
q8(S)

∪{Les-demoiselles-d-Avignon}︸ ︷︷ ︸
q9(S)

∪{La-femme-au-chapeau}︸ ︷︷ ︸
q10(S)

.

Consider now the query q(x, y):- x rdf:type P2:Painting ., x P2:refersTo y . asking P2 for paintings and the
periods they refer to. Answering this query triggers three calls to DECA

• DeCA(¬P2:Paintingd) = {¬P2:Paintingd}

• DeCA(¬P2:Paintingr) = {¬P2:Paintingr,¬P1:paintsp}

• DeCA(¬P2:refersTop) = {¬P2:refersTop,¬P1:belongsTop}

from which we obtain the reformulation
Q(x, y) = q1(x, y):- x rdf:type P2:Painting ., x P2:refersTo y . ∪ q2(x, y):- x rdf:type P2:Painting .,
xP1:belongsTo y .∪q3(x, y):- z P1:paints x ., xP2:refersTo y .∪q4(x, y):- z P1:paints x ., xP1:belongsTo y .

The distributed evaluation of this reformulation is:
Q(S) = ∅︸︷︷︸

q1(S)

∪ ∅︸︷︷︸
q2(S)

∪{(Les-demoiselles-d-Avignon,Cubism)}︸ ︷︷ ︸
q3(S)

∪{(Les-demoiselles-d-Avignon,Picasso-pink)}︸ ︷︷ ︸
q4(S)

.
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5.2 Towards cloud-based RDF data management

Context Since 2011, I have been working on RDF cloud-based data management with Ioana Manolescu (DR In-
ria, Saclay–Île-de-France), Andrés Aranda Andújar (Engineer, Inria), Francesca Bugiotti (PhD student, Università
Roma Tré), and Zoi Kaoudi (Postdoc, Inria).

Our preliminary results on devising an RDF data management architecture within the Amazon cloud were
published in the proceedings of the workshop on Data analytics in the Cloud (DanaC) [BGKM12] in 2012.

Motivations The advent of cloud computing environments has rapidly gained the interest of the data manage-
ment community, as they offer quasi-unbounded resource allocation, elastic scaling up and down of the resources
according to the demand, and reliable execution (tasks started in the cloud will complete even after a possible
failure). Still, clouds do not provide many facilities for developing and deploying applications: they only provide
very low-level building blocks like virtual machines, disk space, and some services (simple database access or job
queues, etc.).

Contributions In [BGKM12], we devise an RDF data management system within the Amazon Web Services
cloud infrastructure (a.k.a. AWS). This preliminary study aims at understanding the building blocks for developing
applications that a well-established cloud provides, and also at identifying the missing ones w.r.t. efficient data
management systems. Our contributions are:

1. We provide the AMADA system, designed within AWS, for evaluating BGP queries against a collection of
graphs (i.e., we do not consider entailment here).

2. We propose several indexes to quickly identify the relevant graphs when evaluating a given BGP query. We
also provide preliminary experiments for query evaluation in AMADA w.r.t. efficiency and monetary costs.

In the following, I first introduce the AMADA’s architecture (Section 5.2.1), then I give some intuitions on and
exemplify how query evaluation has been optimized (Section 5.2.2).

5.2.1 The AMADA RDF data management system for the Amazon cloud

The design of AMADA was guided by the following objectives. First, we aimed to leverage AWS resources by
scaling up to large data volumes. Second, we aimed at efficiency, in particular for the graph storage and querying
operations. We quantify this efficiency by the response time provided by the cloud-hosted application. Our third
objective is to minimize cloud resource usage, or, in classical distributed databases terms, the total work required
for our operations. This is all the more important since, in a cloud, total work translates into monetary costs.

AMADA stores graphs and indexes in a distributed fashion within AWS. Graphs are stored within the dis-
tributed file system S3, which is the AWS store for (very) large data. S3 records the address of every stored
graphs within its internal catalog, assigning to each graph an internal URI, based on which it can be retrieved.
Furthermore, we build graph indexes within SimpleDB, a simple database system supporting SQL-style queries
based on a key-value model. Observe that while SimpleDB generalizes relational databases by supporting het-
erogeneous tuple and multi-valued attributes, it is more restricted in that it only supports single-relation queries
(that is, no joins). We have designed several indexing strategies differing in the choice of index keys, and in their
level of detail, i.e., whether they point to specific graphs, or to very fine-grained data items within the graphs.
The code which actually processes queries runs on virtual machines within the Amazon Elastic Compute Cloud
(EC2). Finally, in order to synchronize the distributed components of our application, we use Amazon Simple
Queue Service (SQS), an AWS queue service providing asynchronous message-based communication.

Figure 5.5 gives an in-depth view of AMADA’s architecture. A graph submitted to the front-end module is
stored as a file in S3, whose URI is sent to an indexing module running on an EC2 instance. This module retrieves
the corresponding graph from S3 and builds an index that is stored in SimpleDB. A query submitted to the front-
end module is sent to a query processor module, based on RDF-3X [NW08], running on an EC2 instance. This
module performs a look-up to the indexes in SimpleDB so as to find out the relevant graphs for processing the
query, and evaluates the query against them. Results are written in a file stored in S3, whose URI is sent to the
front-end module, so that it retrieves the query results from S3 and returns them.
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Figure 5.5: AMADA’s architecture.

database domain+

item+

attribute+

value

attr. name
item name

domain name

Figure 5.6: Structure of a SimpleDB database.

Scalability, parallelism and fault-tolerance AMADA exploits the elastic scaling of AWS by increasing and de-
creasing the number of EC2 instances running each module. The synchronization through the SQS message
queues among modules supports inter-machine parallelism, whereas intra-machine parallelism is supported by
multi-threading our code. AMADA also benefits from the fault-tolerance which AWS provides by periodically
monitoring the queues. If an instance crashes while loading a graph or processing the query, AWS notices that the
instance has not released the SQS message which had caused the work to start. In this case, another EC2 instance
will take over the job.

5.2.2 Graph indexing in AMADA

An important feature of AMADA is graph indexing within SimpleDB. A description of SimpleDB’s organization
(outlined in Figure 5.6) is helpful to understand the available options for the index. SimpleDB data is organized
in domains. Each domain is a collection of items identified by their names. In turn, each item has one or more
attributes; an attribute has a name, and one or several values. An attribute value may be empty (denoted ε).
Different items within a SimpleDB domain may have different attribute names.

The SimpleDB API provides a get(D,k) operation retrieving all items in the domain D having the name k, and
a put to set values of attributes: put(D,k,(a,v)+) inserts the attributes (a,v)+ into an item named k in domain D.
Beyond the API, SimpleDB also provides a SQL-like higher-level language, e.g., one can use the query select *
from mydomain where Year > ‘1955’ to retrieve the items matching the condition. However, a query cannot span
multiple domains, thus joins or unions have to be coded outside SimpleDB.

Conceptually, an indexing strategy I is a function extracting quadruplets of the form (domain name, item
name, attribute name, attribute value) from an input graph G. Indexing G according to I, then, amounts to (i) com-
puting the quadruplets in I(G) and (ii) adding these quadruplets to SimpleDB, using appropriate (batched, some-
times conditional) put operations. Let G be a graph whose URI is UG and s1 p1 o1 . be a triple in G. Let s, p
and o be three distinct tokens representing subjects, properties and respectively objects. The simplest indexing
strategy called ATT (for attribute-based) uses a set of subject domains named sd1, sd2, . . .; initially there is only
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Graph for articles
inria:article1 inria:hasAuthor inria:bar .
inria:bar inria:hasName ”Bar” .
inria:bar inria:hasNationality ”American” .

Graph for books
inria:book1 inria:hasAuthor inria:foo .
inria:book1 inria:hasContactInfo :uid1 .
inria:book2 inria:hasAuthor :uid1 .
inria:foo inria:hasName ”Foo” .
inria:foo inria:hasNationality ”French” .
inria:foo inria:hasTel ” + 3312345678” .
:uid1 inria:hasRole ”Professor” .
:uid1 inria:hasTel ” + 3312345679” .

Graph for labs
labInria:lab1 labInria:hasLocation labInria:location .
labInria:lab1 labInria:hasName ”ResearchLab” .
labInria:location labInria:hasGPS ”48.710715, 2.17545” .

subject domain
item key (attr. name, attr. value)
articles (S, inria:article1), (S, inria:bar)
books (S, inria:book1), (S, inria:foo),

(S, :uid1), (S, inria:book1)
labs (S, labInria:lab1), (S, labInria:location)

property domain
item key (attr. name, attr. value)
articles (P, inria:hasAuthor), (P, inria:hasName), (P, in-

ria:hasNationality)
books (P, inria:hasAuthor), (P, inria:hasContactInfo),

(P, inria:hasRole)(P, inria:hasTel), (P, in-
ria:hasNationality), (P, inria:hasRole)

labs (P, labInria:hasLocation), (P, labInria:hasName),
(P, labInria:hasGPS)

object domain
item key (attr. name, attr. value)
articles (O, inria:bar), (O, “Bar”), (O, “American”)
books (O, inria:foo), (O, “Foo”), (O, “+33 12345678”),

(O, “French”), (O, “+33 1234879”), (O, “Profes-
sor”)

labs (O, labInria:location), (O, “ResearchLabs”),
(O, “48.710715,2.17545”)

attribute-subset domain
item key (attr. name, attr. value)
S‖inria:article1 (articles, ε)
S‖inria:bar (articles, ε)
S‖inria:book1 (books, ε)
S‖inria:book2 (books, ε)
S‖inria:foo (books, ε)
S‖inria: :uid1 (books, ε)
S‖labinria:lab1 (labs, ε)
S‖labInria:location (labs, ε)
P‖inria:hasAuthor (articles, ε), (books, ε)
P‖inria:hasName (articles, ε), (books, ε)
P‖inria:hasNationality (articles, ε), (books, ε)
P‖inria:hasTel (books, ε)
P‖inria:hasRole (books, ε)
P‖inria:hasContactInfo (books, ε)
P‖labInria:hasName (labs, ε)
P‖labinria:hasLocation (labs, ε)
P‖inria:hasLocation (labs, ε)
P‖labInria:hasGPS (labs, ε)
O‖inria:bar (articles, ε)
O‖“Bar” (articles, ε)
O‖“American” (articles, ε)
... ...
O‖“48.710715,2.17545” (labs, ε)
SP‖inria:article1‖inria:hasAuthor (articles, ε)
SP‖inria:bar‖inria:hasName (articles, ε)
SP‖inria:bar‖inria:hasNationality (articles, ε)
... ...
SP‖labInria:lab1‖labInria:hasName (labs, ε)
PO‖inria:hasName‖“Bar” (articles, ε)
PO‖inria:hasNationality‖“American” (articles, ε)
PO‖inria:hasAuthor‖inria:Bar (articles,ε)
... ...
PO‖labInria:hasGPS‖“48.710715,2.17545”(labs, ε)
SO‖inria:article1‖inria:Bar (articles, ε)
SO‖inria:bar‖“Bar” (articles, ε)
SO‖inria:bar‖“American” (articles, ε)
... ...
SO‖labInria:location‖“48.710715,2.17545”(labs, ε)
SPO‖inria:bar‖inria:hasName‖“Bar” (articles, ε)
... ...

Figure 5.7: Sample collection of graphs (left) and their ATT (center) and ATS (right) indexing.

sd1 and as the index overgrows it, we split over multiple domains. Similarly, ATT uses, property domains named
pd1, pd2, . . . and object domains named od1, od2, . . . For s1 p1 o1 ., ATT builds: (sdi, UG, s, s1), (pdj , UG, p, p1)
and (odk, UG, o, o1), where: sdi, pdj and odk are the domains where we currently insert respectively new subject,
property, and object index entries. Based on an ATT index, the URIs of the graphs featuring the constant and
URI values appearing in a query can be extracted from SimpleDB. Another indexing strategy is ATS (for attribute
subset). It uses a single default domain which is split as the index grows. From s1 p1 o1 ., ATS builds 7 item
names: ss1, pp1, oo1, sps1p1, sos1o1, pop1o1 and spos1p1o1. Each such item has a single attribute whose name
is UG, and whose value is ε. Strategy ATS builds a larger index, in exchange for less get calls required to identify
the relevant graphs to a given query.

Example 25 (Query evaluation in AMADA) Consider the collection of graphs shown in Figure 5.7 together with
the corresponding ATT and ATS indexing.

Using the ATT index, the evaluation of the query q(x):- x inria:hasAuthor ”Foo” ., x inria:hasContactInfo y .
first performs the SimpleDB look-up queries:

• q1: SELECT itemName() FROM pd1 WHERE P = inria:hasAuthor;

• q2: SELECT itemName() FROM od1 WHERE O = "Foo";

• q3: SELECT itemName() FROM pd1 WHERE P = inria:hasContactInfo;

AMADA then intersects the results of q1 and q2 to ensure that the inria:hasAuthor property and the ‘‘Foo’’
value occur in the same graph. The result is then unioned with the result of q3 to obtain the graphs on which
the BGP query will be evaluated. Indeed, SPARQL semantics allows matches for this query to span over multiple
graphs, i.e., query results are defined against a global “merged” graph.

Based on the ATS index, the evaluation of the same query first performs the SimpleDB look-up queries:

• q1: GetAttributes(d1, PO‖inria:hasAuthor‖"Foo")

• q2: GetAttributes(d1, P‖inria:hasContactInfo)

AMADA then intersects the results of q1 and q2 to obtain the graphs against which the query will be evaluated.
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Chapter 6

Perspectives

In the next years, I will continue the ongoing work presented in this HDR thesis on RDF query answering robust
to updates (cf. Section 3.2), on managing XML documents with RDF annotations (cf. Section 4.2), and on RDF
data management in clouds (cf. Section 5.2). In addition, I will work on the following topics.

6.1 Multidimensional analysis of RDF graphs
I am currently working on the multidimensional analysis of RDF graph with Dario Colazzo (MCF, Univ. Paris-
Sud), Ioana Manolescu (DR, Inria Saclay–Île-de-France), and Alexandra Roatiş (PhD student, Univ. Paris-Sud,
co-advised by Dario, Ioana, and me).

Multidimensional analysis of data allows focusing on data according to some criteria of interest, possibly at
several levels of granularity. Its killer application is Business Intelligence, which accounts for the performances
of public or private organizations w.r.t. strategic criteria, so as to enlighten their decision makers. So far, multidi-
mensional data analysis techniques have been confined to the relational data model, as almost all business data is
relational. However, with the advent of Open Data and the worldwide project1 of making such data available on
the Web in RDF, I have obtained a three years grant for investigating multidimensional analysis of RDF graphs.
This research is funded by Région Paris–Île-de-France2 and the Pôle d’Excellence Digiteo3.

Starting from the well-established multidimensional analysis techniques for relational data, we are currently
devising their RDF counterparts, taking into account the essential RDF features of implicit information (through
entailment), incomplete information (through blank nodes), etc.

6.2 Practical algorithms for ontology-based data management
I will work on practical algorithms for ontology-based data management with Jean-François Baget (CR, Inria
Sophia-Antipolis Méditerranée), Meghyn Bienvenu (CR, CNRS), Marie-Laure Mugnier (PR, Univ. Montpellier),
and Marie-Christine Rousset (PR, Univ. Grenoble).

Ontology-based data management is a quite young area of study, and despite important recent advances, in-
cluding the identification of interesting tractable ontology languages (e.g., DL-lite), much work remains to be
done in designing scalable ontology-based data management algorithms. Also, in real-world applications involv-
ing dynamic data, it is very likely that inconsistencies arise, rendering standard querying algorithms useless (as
everything is entailed from a contradiction). Appropriate techniques for dealing with inconsistent data are thus
crucial to the successful use of ontology-based data management in practice, yet have been little explored so far.

Scalable query answering and handling inconsistencies in lightweight Description Logics is at the core of
the PAGODA project that has been accepted by the Agence Nationale pour la Recherche4 in 2012. Also, De-
spoina Trivela (PhD student, NTUA, Greece) will join Meghyn and me to work on these topics for a six months
ERASMUS study period5, starting in november 2012.

1The linked data project: http://linkeddata.org
2http://www.dimlsc.fr
3http://www.digiteo.fr
4http://www.agence-nationale-recherche.fr/
5http://ec.europa.eu/education/lifelong-learning-programme/doc80_en.htm
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sur la résolution Pratique de Problèmes NP-Complets (JNPC), 2004.
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Simon. Somewhere in the semantic web. In International Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR), 2005.

[ACG+06] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and Laurent
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