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Résumé

Dans ce travail, nous présentons quelques exemples des effets du bruit sur la solution
d’une équation aux dérivées partielles (EDP) dans trois contextes différents. Nous exam-
inons d’abord deux équations aux dérivées partielles non linéaires dispersives, l’équation de
Schrödinger non linéaire et l’équation de Korteweg - de Vries. Nous allons analyser les effets
d’une condition initiale aléatoire sur certaines solutions spéciales, les solitons. Le deuxième
cas considéré est une EDP linéaire, l’équation d’onde, avec conditions initiales aléatoires.
Nous allons montrer qu’avec des conditions initiales aléatoires particulières c’est possible
de réduire considérablement les coûts de stockage des données et de calcul d’un algorithme
pour résoudre un problème inverse basé sur les mesures de la solution de cette équation au
bord du domaine. Enfin, le troisième exemple considéré est celui de l’équation de transport
linéaire avec un terme de dérive singulière. Nous allons montrer que l’ajout d’un terme de
bruit multiplicatif interdit l’explosion des solutions, et cela sous des hypothèses très faibles
pour lesquelles dans le cas déterministe on peut avoir l’explosion de la solution à temps fini.

Abstract

In this work we present examples of the effects of noise on the solution of a partial differential
equation (PDE) in three different settings. We will first consider random initial conditions
for two nonlinear dispersive PDEs, the nonlinear Schrödinger equation and the Korteweg -
de Vries equation, and analyze their effects on some special solutions, the soliton solutions.
The second case considered is a linear PDE, the wave equation, with random initial condi-
tions. We will show that special random initial conditions allow to substantially decrease
the computational and data storage costs of an algorithm to solve the inverse problem based
on the boundary measurements of the solution of this equation. Finally, the third example
considered is that of the linear transport equation with a singular drift term, where we will
show that the addition of a multiplicative noise term forbids the blow up of solutions, under
very weak hypothesis for which we have finite-time blow up of solutions in the deterministic
case.
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Chapter 1

Partial differential equations and

noise: introduction

This work examines some aspects regarding the effects of noise on partial differential equa-
tions (PDEs). This is an incredibly wide and extremely interesting field, where research is
very active in numerous different directions.

One of the interesting points of this topic is that it allows to combine the tools from both
classical and stochastic analysis.

The use of the word “noise” is inspired by the name of a widely used stochastic process,
referred to as white noise. However, we shall not restrain the analysis to this single case,
and we shall also consider examples of the effect of more general stochastic processes. With
a slight abuse of notation, even when using general stochastic processes we will sometimes
refer to them as noise. This is also justified by some applications, where the introduction of
a random component is used to model chaotic or uncontrollable phenomena, which may be
thought of as a form of “noise” in the data.

The word “noise” might convey a negative connotation, but we stress that in the contexts
we consider its presence is not necessarily only a source of problems or difficulties. Indeed,
we will have the opportunity to appreciate how in some applications, such as the imaging
problem considered in chapter 3, the presence of noise may have some incredibly positive
effects in terms of reduction of computational and data-storage costs for the algorithm.
Also, from a more theoretical point of view, it may help stabilize some PDEs, in the sense
that a stochastic partial differential equation (SPDE) can be well posed under more general
hypotheses than its deterministic counterpart. This is the very interesting phenomenon
known as regularization by noise, and we shall present an example of this in the last chapter.

A first consideration to make is that noise can be introduced in a PDE in two different
ways. First, it is possible to consider a deterministic PDE, but with some random initial
conditions. From the point of view of applications, this can serve to model the elaboration
of data in which some uncontrolled and unavoidable errors are present. However, in certain
cases the initial data can be intentionally chosen to contain some random perturbations,
as under specific assumptions this can improve the efficiency of an algorithm based on the
solution of the equation.

The second way to introduce noise in a PDE is to change the equation itself by the
addition of a random term, called noise term. This turns the PDE into a SPDE. Two main
classes of SPDEs can be distinguished, according to the nature of the noise term: SPDEs
with either additive or multiplicative noise. For additive SPDEs the noise term does not

9



10 CHAPTER 1. INTRODUCTION

depend on the unknown function, while the unknown does appear in the noise term in the
case of a multiplicative noise.

In this work we present examples of the effects of noise on the solution of a PDE in
three different settings. We will first consider random initial conditions for two nonlinear
dispersive PDEs, the nonlinear Schrödinger equation and the Korteweg - de Vries equation,
and analyze their effects on some special solutions, the soliton solutions. The second case
considered is a linear PDE, the wave equation, with random initial conditions. We will show
that special random initial conditions allow to substantially decrease the computational and
data storage costs of an algorithm to solve the inverse problem based on the boundary
measurements of the solution of this equation. Finally, the third example considered is that
of the linear transport equation with a singular drift term, where we will show that the
addition of a multiplicative noise term forbids the blow up of solutions, under very weak
hypothesis for which we have finite-time blow up of solutions in the deterministic case.

1.1 Noise and solitons: nonlinear partial differential equa-

tions with random initial conditions

In chapter 2, we consider the problem of wave propagation, which is modeled by nonlinear
dispersive equations, with noisy initial conditions. As observed, noise can also be introduced
directly into the equation, studying the propagation of waves according to stochastic non-
linear dispersive equations. But we will not detail this approach, and only briefly mention
some important analytical and numerical results in the introduction of the chapter.

Solutions of certain nonlinear dispersive equations present a remarkable behavior: they
can be decomposed in a radiative component and a soliton component. The amplitude of
the radiative component decays in time polynomially: this is due to the dispersive effect.
The soliton component instead is the effect of a delicate balance between the nonlinear and
dispersive effects, which generates one or more stable waves, called solitons. These waves
maintain a constant shape while propagating, and have constant amplitude and velocity.
In other words, they characterize the long time behavior of the solution. Even from such a
short introduction, the importance of solitons in applications should be clear. We shall focus
on the effects of noise on this special class of solutions, studying in particular their stability
with respect to noise perturbations of the initial condition and the possibility of creating
solitons from random initial conditions. This is done for two important equations, which are
analyzed and compared: the nonlinear Schrödinger (NLS) equation and the Korteweg - de
Vries (KdV) equation. Both equations have a central role in literature for historical reasons
and for their general character. Indeed, they are used in a wide range of very different
physical models, mentioned in the introduction of chapter 2. Here we only observe that a
main application of the nonlinear Schrödinger equation is the modelling of the propagation of
short light pulses in optical fibers, and the Korteweg - de Vries equation is used for example
to model the propagation of water waves in a channel, and is the first equation that has
been used to study the dynamic of solitons.

A first general result (theorem 2.2) shows that the study of soliton emergence from a
localized, bounded initial condition perturbed by a wide class of rapidly oscillating random
processes can be reduced to the study of a canonical system of stochastic differential equa-
tions (SDEs), formally corresponding to the white noise perturbation of the initial condition.
It should be stressed that the actual use of a white noise initial condition, sometimes present
in the physical literature, not only has little physical significance, but is also mathematically
incorrect if the approach is based on the inverse scattering transform method, which is often
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the case. We therefore had to address the problem using an initial condition with rapid, but
non infinitely rapid, oscillations, which has more physical relevance and for which a rigorous
mathematical approach is possible. Moreover, when the random perturbation is small it is
possible to use the above result combined with a perturbative approach to obtain quanti-
tative information on the stability of solitons with respect to random perturbations of the
initial condition. Perturbed solitons are characterized and described in different settings,
according to the kind of noise (real or complex) and the presence or not of a deterministic
background initial condition. All these results are contained in the preprint [Fe12a].

The chapter also includes a section of examples, where different interesting special cases
of random initial conditions are considered for the NLS equation, and no small-noise assump-
tion is made. Two main questions are addressed in this section. First, the question of the
possibility to create solitons from a purely random initial condition with compact support
is addressed. A positive result is obtained in the limit case of a real (or complex, but with
constant phase) white noise, and negative results are provided for different kinds of complex
noises, such as the symmetric complex white noise, a general complex jump process, and
even a constant-intensity complex noise. All these examples, as well as some of the proofs,
seem to hint to the fact that for the NLS equation with random initial condition, the changes
of phase of the noise destroy the possibility of creating (with positive probability) solitons
with a given speed. The proof of this intriguing fact remains however an open problem. The
second question concerns the probability distribution of the parameters of created solitons
(amplitude and speed) for random initial conditions with very long support [0, R], R → ∞.
Using a perturbative approach we show that for rapidly oscillating random initial conditions
this distribution is near to the distribution of the formal limit case of a white noise initial
condition. We will explain a method with which it is possible to obtain the probability
distribution. Explicit computations in the case of a rapidly oscillating Ornstein-Uhlenbeck
process show that the first order correction term is zero, and provide the second order cor-
rection term. Curiously, this correction term only affects the distribution of the amplitude
of created solitons. This method is then applied to random initial conditions given by more
general Markov processes, to show that also in this case the first order correction term is
zero. It is also possible to observe that if the process is not Gaussian, the second order term
does modify also the distribution of the speed of created solitons.

1.2 Imaging with noise: a linear partial differential equa-

tion with random initial conditions

In chapter 3 we analyze solutions of the wave equation with random initial conditions. This
problem arises from a practical application, an imaging problem, and provides the example
mentioned above of an application for which the presence of noise has a beneficial effect.

The imaging problem aims at locating localized perturbations in the propagation speed
of a medium (to which one typically has not direct access) from the measurements of waves
at the boundary of the medium. A typical sensor array imaging experiment consists in
two steps. The first step is the experimental data acquisition: a point source emits a
wave into the medium, the wave is reflected by the singularities in the propagation speed
of the medium and is recorded by an array of receivers. The second step is a numerical
processing of the recorded data: the recorded signals are time reversed and resent in a
numerical simulation into a model medium to locate the singularities in the propagation
speed. From a mathematical point of view, the first step is modeled by an operator F
mapping the perturbations to the recorded scattered waves. The second step is an inverse
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problem, consisting in inverting the operator F to find the perturbations from the recorded
data.

The classical approach to the imaging problem consists in performing a large number of
experiments sounding each time a different source. For each experiment, the signal recorded
at each receiver is stored and time reversed. This produces the data matrix. For each
experiment, the time reversed data are reemitted (numerically) into the model medium in a
new simulation, and the images obtained by each simulation are stacked. While this method
provides a very good “image” of the medium, it involves gathering, storing and processing
huge amounts of data. The approach in which all the sources are sounded simultaneously
in a single experiment is an alternative strategy, but to obtain an image of good quality
special care must be taken to ensure that cross-talk terms remain small. Various blending
type methods have been investigated in order to be able to exploit this simultaneous sources
approach, in particular in the context of seismic imaging. For example, in the case of classic
vibratory sources one can seek to design a family of relatively long signals encoded such
that the responses of each one of them can be identified at the receivers end and separated
(deblending step) before the numerical processing of the data.

In this chapter we present another approach, based on the use of simultaneous random
sources, which does not require the introduction of a deblending step. Two kinds of random
sources are analyzed, emitting either stationary random signals or randomly delayed pulses.
We describe the imaging functional to be used in the two cases and detail the scaling
assumptions needed to ensure the stability of the method and a good quality of the image
obtained.

We also present a detailed analysis of the behavior of the two imaging functionals when
trying to locate singular perturbations in the velocity of propagation and in the high fre-
quency regime. Three different kinds of perturbations (points, lines and surfaces) are con-
sidered to prove that the typical contrast seen in the image strongly depends on the type of
perturbation. We perform a detailed resolution and stability analysis. Quantitative results
show that point singularities are easily seen, and surface singularities are the hardest to
locate.

Finally, some possible applications of our approach with simultaneous random sources
are investigated and we elaborate on the fascinating fact that imaging with simultaneous
sources of the two types we have described gives a resolution that corresponds to the one
obtained in the classical setting, where the recordings of the responses at all of the receivers
are available for each experiment (corresponding each time to a new source emitting the
signal). Simple numerical results are shown to support this fact.

The results concerning the high frequency analysis of the imaging functional are contained
in the preprint [Fe12b]. The remaining sections, namely the description of the imaging
algorithm using the simultaneous random sources described, its statistical stability and the
results contained in the final section on applications and simulations are taken from the
joint work [DFGS12] with M. De Hoop, J. Garnier and K. Sølna published in Contemporary
Mathematics.

1.3 The stochastic linear transport equation: regulariza-

tion by noise.

The possibility that noise may prevent the emergence of singularities is an intriguing phe-
nomenon that is under investigation for several systems. A number of equations have been
studied with respect to this question, providing both positive and negative examples. In
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general, regularization effects are more easily achieved with a multiplicative noise term, so
that we shall restrict our analysis to this case.

In chapter 4 we provide a positive example showing that for the linear transport equa-
tion under very weak assumptions on the drift coefficient (we only require some degree of
integrability) and in the presence of a multiplicative noise term, some degree of regularity of
the initial condition is maintained. In particular, discontinuities cannot appear. This fact
follows from a representation formula which expresses the solution in terms of the initial
condition composed with a stochastic flow. In previous works [FF11, FF12a] we had ana-
lyzed the solution of the stochastic differential equation (SDE) that generates this flow and
proved some important regularity properties. In particular, the flow is α-Hölder continuous
for every α ∈ (0, 1), with probability one, and is differentiable in some weak sense. It follows
that the solution starting from a regular initial condition remains at least Hölder continuous,
so that no discontinuity can appear.

The description of the class of functions in which we look for solutions of the stochastic
transport equation is quite technical, and is given by definition 4.6. We call a solution in this
class a weakly differentiable solution. Existence of a weakly differentiable solution under our
weak integrability assumptions on the drift coefficient is proved in theorem 4.10 by showing
that the representation formula described above provides a solution. And by theorem 4.11
this fairly regular solution is also unique.

The results presented in this chapter are mainly contained in the preprint [FF12b], which
is a joint work with F. Flandoli. Some necessary technical results from the previous joint
works [FF11, FF12a] are also presented in appendix A.
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Chapter 2

Noise and solitons

A solution of a nonlinear dispersive equation modelling the propagation of waves may show
two components with a very distinct behavior. The radiation component is the one whose
amplitude decays in time as a power law due to dispersive effects, which refers to the fact
that the speed of the waves can vary according to frequency. For many nonlinear systems,
a delicate balance between the dispersive and nonlinear effects may occur, producing stable
waves. They are referred to as the soliton component of the solution (solitons, in short). Soli-
tons are stable, solitary waves with elastic interactions (the only effect of a collision between
two solitons is a phase shift). Stable refers to the fact that they propagate over arbitrarily
large distances with constant velocity and profile. The identification of the soliton compo-
nents is therefore essential to characterize the long-time behavior of the solution of the PDE.
Examples of exactly solvable models which can produce solitons are the Korteweg - de Vries
(KdV) equation, the nonlinear Schrödinger (NLS) equation and the sine -Gordon equation,
the Kadomtsev-Petviashvili equation, the Toda lattice equation, the Ishimori equation, the
Dym equation, etc.

Historically, solitons were first observed by John Scott Russell during the first half of
the 19th century [Ru1], [Ru2]. His observations dealt with stable water waves in a narrow
channel. A lot of research followed, until Diederik Korteweg and Gustav de Vries proposed
in 1895 what is now known as the KdV equation to model the propagation of waves in
shallow waters [KV1]. This model also explains mathematically the existence of stable
solitary waves. But it was only much later, in 1967, that a new technique allowing to find
analytical solutions of the KdV equation was discovered by Gardner, Greene, Kruskal and
Miura [GG67]. It is the inverse scattering transform (IST), which thanks to the successive
work of Lax [La68] allows to treat analytically many soliton-generating systems, including
the NLS equation.

Today, solitons still attract a lot of research which has potentially substantial applica-
tions in many fields. For example, in a fiber optic system one can exploit the solitons’
inherent stability to improve long-distance transmission and increase the performance of
optical telecommunications. Another broad domain in which soliton solutions appear is in
water waves propagation, for both surface and internal waves.

One important field of research regards the effects of noise on solitons. Noise can be
introduced in different ways, to account for different physical effects. For example, one can
add an additive or multiplicative noise term in the equation to model some random forcing or
external potential. Soliton dynamics for the KdV equation under random forcing, modeled
by the addition of an additive noise term in the equation, has been analyzed in [dBD07]
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16 CHAPTER 2. NOISE AND SOLITONS

while the case of solitons of the KdV equation with a potential given by a multiplicative noise
term is studied in [dBD09]. Numerical results for these two kinds of random perturbations
are presented in [SRC98] and [DP99]. Corresponding numerical and analytical results for
the random NLS equation are presented in [FKLT01, DdM02b].

Another way to introduce random perturbations using a deterministic equation is to use
random initial conditions. In this chapter we shall consider this approach and study how
the introduction of noise in the initial condition affects solitons. We focus on two examples
of nonlinear PDEs, the NLS and the KdV equations. They are completely integrable sys-
tems, widely employed in different fields to model nonlinear and dispersive effects in wave
propagation. The (one - dimensional) NLS equation

∂U

∂t
+

i

2

∂2U

∂x2
+ i|U |2U = 0 (2.0.1)

models in particular short pulse propagation in single -mode optical fibers (then, t is a
propagation distance and x is a time) [MN]. The electromagnetic wave propagating in the
fiber is the solution U(t, x), which is a complex function. The NLS equation is also used to
model the profile of the amplitude of wave groups for surface water waves: envelope solitons
in deep waters approximately solve this equation [Za68]. The NLS equation is also used in the
context of Bose -Einstein condensate theory, as the general time dependent Gross -Pitaevskii
equation producing the wavefunction of a single particle immersed in the Bose -Einstein
condensate reduces to the NLS equation is the absence of an external potential [PS].

The KdV equation
∂U

∂t
+ 6U

∂U

∂x
+

∂3U

∂x3
= 0 (2.0.2)

has been used since 1895 to model shallow water waves propagation [Wh], and recently it
has also found applications in many other physical contexts, such as plasma physics [ZK65],
internal waves (both in water and air) [AS], [Mi79], and many others [AC].

An effective method to deal with both equations is the Inverse Scattering Transform
(IST), a powerful tool to study solutions of completely integrable nonlinear equations, see
[APT]. In this framework, the problem is transformed into a linear system of differential
equations where the initial condition enters as a potential and soliton components corre-
spond to discrete eigenvalues. Our approach to both examples relies on this machinery.

The first result we obtain is that for the NLS and KdV equations the study of soliton
emergence from a localized, bounded initial condition perturbed by a wide class of rapidly
oscillating random processes can be reduced to the study of a canonical system of stochastic
differential equations (SDEs), formally corresponding to the white noise perturbation of the
initial condition [Fe12a]. The integrated covariance is the only parameter of the perturbation
process that influences the limit system of SDEs. This is the main result of section 2.1.

In section 2.2 we study this limit system to obtain quantitative information on the
stability of solitons with respect to small random perturbations in different settings: one
can consider real or complex random perturbations (for NLS), with or without a background
deterministic initial condition (for KdV).

Finally, in the last section we collect a few examples of different random initial conditions
for the nonlinear Schrödinger equation and present the different techniques needed to treat
them. We can describe different effects on the soliton generation according to the nature of
the random process used as initial condition. For rapidly oscillating real processes we study
the threshold of the length of the support of the initial condition needed to create the first
soliton and show that it is almost surely finite. For other examples with complex initial
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conditions we can show that the probability of creating solitons with any given velocity
is zero. We then turn our attention to the density of the distribution of the velocity and
amplitude of solitons created by complex random initial conditions. A formula for the limit
case of rapid oscillations has been recently obtained [KM08]; we will explicit the computation
needed to obtain this formula and the correction terms for fast, but not infinitely rapid,
oscillations, in the practical example of a Ornstein-Uhlenbeck process and detail the scheme
to apply for a general class of rapidly oscillating Markov processes.

Notation

We introduce some general notation used throughout the chapter. Further specific notation
used only in a single passage are introduced when needed.

If z ∈ C is a complex number, we denote �[z] its real part and �[z] its imaginary part. z∗

denotes the complex conjugate of z. In particular, ζ is used to denote the complex number
which will be associated to each soliton; we shall write it as ζ = ξ + iη.

For a vector x ∈ R
d or x ∈ C

d, we will write xT to denote the transposed vector and
x = (x1, x2, ...) to indicate its coordinates. The vectors e1 = (1, 0, ...), e2 = (0, 1, ...) always
refer to the elements of the canonical basis of Rd (or C

d). We will use Br(x) to denote the
ball of radius r centered in x. We will use | · | to denote either the absolute value or the norm
in R

d or C
d. For norms defined on other spaces, and in particular on functional spaces, we

will use � · �.
We will use subscripts to denote the dependence of constants on the parameters of the

problem, as in CR.
For functional spaces, we use the notation X(A;B), where X denotes the regularity of the

functions, A indicates the domain and B the space in which the functions take values. For
example, C0 denotes a space of continuous functions, C1 a space of continuously differentiable
functions, Lp the space of p-integrable functions and W l,k is used to denote Sobolev spaces.
Finally, f � g denotes the convolution product between f and g.

2.1 Rapidly oscillating random perturbations

We consider in this section the case of initial conditions perturbed with a rapidly oscillating
random process. We prove that for both the NLS and KdV equations the behavior of the
soliton components of the solution actually shows very little dependence on the kind of
perturbation, the limit behavior being controlled by a canonical system of SDEs where the
only parameter of the original perturbation playing a role is its integrated covariance.

Explicit computations are presented in the case of a square (box-like) initial condition
perturbed with a zero mean, stationary, rapidly oscillating process νε(x) := ν(x/ε2):

U0(x) =
�
q +

σ

ε
νε
�

[0,R](x) , (2.1.1)

but they can be extended to the case of perturbation of a more general initial condition
defined by a bounded, compactly supported function q(x). The rapidly oscillating fluctua-
tions of the initial condition can model the high-frequency additive noise of the light source
generating the pulse in nonlinear fiber optics, for instance.

We will show in subsection 2.1.2 that for rapidly oscillating processes (small values of ε)
the limit system governing the stability of the soliton components reads as a set of SDEs
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and it is formally equivalent to the system where the initial condition contains a white noise
(Ẇ ) perturbation

U0(x) =
�
q +

√
2ασẆx

�
[0,R](x) , (2.1.2)

where α is the integrated covariance of the process ν. This shows that to study the soliton
components in the limit of rapid oscillations, the only required parameter of the statis-
tics of ν is its integrated covariance. Notice however that we cannot directly use a white
noise to perturb the initial condition, as the IST requires some integrability conditions on
the initial condition (for example, U0 ∈ L1 for NLS), which are not satisfied by a white noise.

2.1.1 The Inverse Scattering Transform method

The essential technical instrument we will use to deal with the two nonlinear evolution equa-
tions we analyze is the inverse scattering transform. This method is a non-linear analogue of
the Fourier transform, which can be used to solve many linear partial differential equations.
The basic principle is the same, and with both methods the calculation of the solution of
the initial value problem proceeds in three steps, as follows:

1. the forward problem: the initial conditions in the original “physical” variables are
transformed into some spectral coefficients. For the Fourier transform they are simply
the Fourier coefficients, while for the IST they are called scattering data. These
scattering data characterize a spectral problem in which the initial conditions play
the role of a potential. The Jost coefficients (a, b) together with the set of the discrete
eigenvalues (ζn) of the spectral problem and the associated norming constants ρn
compose the set of scattering data.

2. time dependence: the Fourier coefficients or the scattering data evolve according to
simple, explicitly solvable ordinary differential equations. It is easy to obtain their
value at any future time.

3. the inverse problem: the evolved solution in the original variables is recovered from the
evolved solution in the transformed variables. This is done using the inverse Fourier
transform or solving the Gelfand-Levitan-Marchenko equation (for the IST).

Figure 2.1: The IST method.
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The direct transform (direct scattering problem) consists in the analysis of the spectrum
of an associated operator L, where the initial condition U0 enters as a potential. The explicit
form of the operator L(U0) for NLS and KdV together with its domain are given below. L
is known as the first operator of the Lax pair. From the eigenvalues and corresponding
eigenfuctions of the operator L one can construct the Jost coefficients a(ζ, t) and b(ζ, t) at
t = 0. The essential point is that the scattering data, which is to say the Jost coefficients
together with the discrete spectrum and the norming constants associated to each discrete
eigenvalue, contain enough information to completely characterize the function U . Moreover,
the evolution of the Jost coefficients is very simple: it is governed by the second operator
of the Lax pair, M , which is a linear differential operator. Finally, the inverse transform
consist in the reconstruction of the solution U(t, x) from the scattering data at time t. This
is done by solving an integro-differential equation known as the Gelfand-Levitan-Marchenko
equation. The principle of this method is schematically illustrated in figure 2.1.

The IST is a very efficient method to solve the initial value problem for many nonlinear
evolution equations, but it can be used for other purposes too. For example, one can
construct special solutions by posing an elementary solution in the transformed variables
and applying the inverse transformed to obtain the corresponding solution in the original
variables. Or, and this is how we will use it, one can study the Jost coefficients to see
if a special solution, namely a soliton, will appear from a given initial condition. This
approach is particularly convenient as solitons have very easy representations in terms of
the scattering data: they correspond the discrete eigenvalues, which can be found as the
zeros of the function a in the upper complex half-plane. The continuous spectrum, which
for KdV and NLS is the real line, corresponds instead to the radiative component of the
solution.

IST for NLS

Let us now apply the IST machinery to our first example, the NLS equation. To obtain the
scattering data, the Zakharov-Shabat spectral problem (ZSSP) is introduced

�
∂ψ1

∂x = i U0(x)ψ2 − iζ ψ1

∂ψ2

∂x = i U∗
0 (x)ψ1 + iζ ψ2

, (2.1.3)

where ψn are the components of a vector eigenfunction Ψ and ζ ∈ C is the spectral parameter.
This system is given by the operator

L(U0) = i

�
1 0
0 −1

�
∂x +

�
0 U0

−U∗
0 0

�

acting on H
1(R) = {Ψ |ψi ∈ L2(R), ∂xψi ∈ L2(R) , i = 1, 2}. When U0 = 0, it is easy to see

that the continuous part of the spectrum is composed by the whole real line. The eigenspace
associated to the eigenvalue ζ ∈ R has dimension 2 and the functions

Ψ ∼
�
1
0

�
e−iζx , Φ ∼

�
0
1

�
eiζx

define a basis of this space. In this case, the discrete spectrum of L(0) is empty, because the
nontrivial solutions of ∂xf = iζf are not in L2(R).

For any localized initial condition U0, the continuous spectrum remains unchanged, and
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for ζ ∈ R the solutions Ψ, �Ψ, Φ, �Φ defined by the boundary conditions

Ψ ∼
�
1
0

�
e−iζx �Ψ ∼

�
0
1

�
eiζx , x → −∞ (2.1.4)

Φ ∼
�
0
1

�
eiζx �Φ ∼

�
1
0

�
e−iζx, x → +∞ (2.1.5)

produce two sets {Ψ, �Ψ} and {Φ, �Φ} of linearly independent solutions. These functions are
related through the system

�
Ψ
�Ψ

�
=

�
b(ζ) a(ζ)

�a(ζ) �b(ζ)

��
Φ
�Φ

�
, (2.1.6)

where ζ ∈ R and a(ζ), b(ζ) are the Jost coefficients (at time zero). They satisfy |a|2+|b|2 = 1.
The functions Ψ and Φ are called Jost functions. If U0 ∈ L1(R), the function a(ζ) can be
continuously extended to the upper complex half-plane in a unique way, and the extended
function is analytical for �[ζ] > 0 (this extension is analytical if we require some additional
fast-decay conditions on the initial condition, such as exponential decay), see [APT, Lemma
2.1]. Then, one can show that the extension of the Jost coefficient a(ζ) to the upper complex
half-plane can only have a finite number of simple zeros. If ζn is a zero of a, then Ψ and
Φ are linearly dependent, so that there exists a coefficient ρn for which Ψ = ρn Φ. The
eigenfunction corresponding to this spectral value is bounded and decays exponentially, so
that ζn turns out to be an element of the discrete spectrum.

The scattering data evolve according to very easy and uncoupled equations:

∂ta(ζ, t) = 0 , ∂tb(ζ, t) = −4iζ2b(ζ, t) , ∂tρn(t) = −4iζ2nρn(t) ,

and the discrete spectrum (ζn)n=1...N does not evolve.
The NLS equation presents an infinite number of quantities that are conserved (as soon

as they are well defined) during the evolution [MNPZ]. We shall present here two of them
which are of special physical interest.

Mass: The mass of a wave is defined as N =
�
R
|U |2 dx. It can be obtained from the scattering

data using the formula

N =
�

n

4ηn − 1

π

�

R

ln
�
|a(ζ)|2

�
dζ ,

where ηn is the imaginary part of a discrete eigenvalue ζn. From this expression one sees
how the total mass easily decomposes into the sum of two contributions, one coming
from the soliton components of the solution, Ns =

�
n 4ηn, the other (the integral

over the continuous spectrum, Nr) carried by the radiative part of the solution.

Energy: The energy (which is also twice the Hamiltonian) of a wave is given by the formula
E =

�
R
|∂xU |2 − |U |4 dx. It can be obtained from the scattering data as follows:

E =
�

n

8i

3

�
(ζ∗n)

3 − (ζn)
3
�
− 4

π

�

R

ζ2 ln
�
|a(ζ)|2

�
dζ .

Also the total energy decomposes into the sum of two contributions. Each soliton
contributes with an energy of (8i)/3∗

�
(ζ∗n)

3− (ζn)
3
�
= 16ηn(ξ

2
n−η2n/3). The radiative
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part of the solution provides an energy of −4/π
�
R
ζ2 ln

�
|a(ζ)|2

�
dζ.

Each discrete eigenvalue ζ = ξ + iη, η > 0 corresponds to a soliton component of the
solution. A pure soliton solution of the NLS equation has the form

U(t, x) = 2iη
exp

�
− 2iξ(x− x0)− 4i(ξ2 − η2)t

�

cosh
�
2η(x− x0 + 4ξt)

� . (2.1.7)

The amplitude of the soliton only depends on the imaginary part of the discrete eigenvalue
associated, and is given by 2η. The mass of the soliton is 4η, according to the above
definition. The speed of the soliton is determined by the real part of the eigenvalue, and is
given by 4ξ. The energy of the soliton depends on both the real and imaginary part of the
eigenvalue:

Es = 16η
�
ξ2 − 1

3
η2
�
.

The pure soliton solution (2.1.7) is associated to the eigenvalue ξ + iη and the scattering
data

a(ζ, t) =
ζ − ζn

ζ − ζ∗n
, b(ζ, t) = 0 ,

ρ(t) =
η

ξ + iη
exp

�
− 2i(ξ + iη + π/4)− 4i(ξ + iη)2t

�
.

IST for KdV

Let us now consider the KdV equation. If we assume some integrability of the initial condi-
tion, namely

U0 ∈ P1 :=
�
f : R → R

���
� ∞

−∞

�
1 + |x|

���f(x)
�� dx < ∞

�
, (2.1.8)

it is possible to introduce a direct scattering problem associated to the KdV equation [AC],
which is given by the first operator of the Lax pair acting on H2(R) =

�
f ∈ L2(R) | ∂2

xf ∈
L2(R)

�
, and reads

∂2ϕ

∂x2
+ (U0 + ζ2)ϕ = 0 . (2.1.9)

The continuous part of the spectrum of equation (2.1.9) is again the real axis. For ζ ∈ R,
there are two convenient complete sets of bounded functions associated to equation (2.1.9),
defined by their asymptotic behavior:

φ ∼ e−iζx �φ ∼ eiζx , for x → −∞
ψ ∼ eiζx �ψ ∼ e−iζx , for x → +∞ .

It follows from the above definitions that

φ(x, ζ) = �φ(x,−ζ) , ψ(x, ζ) = �ψ(x,−ζ)

and �
φ
�φ

�
=

�
b(ζ) a(ζ)

�a(ζ) �b(ζ)

��
ψ
�ψ

�
,
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where ζ ∈ R and a(ζ), b(ζ) are the Jost coefficients (at time zero). They satisfy |a|2−|b|2 = 1.
The function a can be continuously extended to an analytical (for �[ζ > 0]) function in the
upper complex half-plane, where it has only a finite number of simple zeros located on the
imaginary axis ζ = iη, see [AC, Lemma 2.2.2]. Just as for the NLS equation, these zeros
turn out to be the eigenvalues of the discrete spectrum, which correspond to the soliton
components of the solution. The scattering data evolve according to the uncoupled system

∂ta(ζ, t) = 0 , ∂tb(ζ, t) = 8iζ3b(ζ, t) , ∂tρn(t) = 8iζ3nρn(t) ,

and the discrete spectrum (ζn = iηn)n=1...N does not evolve.
Also the KdV equation has an infinite number of conserved quantities. The first two of

them are called the mass and energy of the solution and are defined below, [Ga01].

Mass: The mass of a wave is defined as N =
�
R
U dx. It can be obtained from the scattering

data using the formula

N =
�

n

4ηn − 1

π

�

R

ln
�
|a(ζ)|2

�
dζ ,

where ηn is the imaginary part of a discrete eigenvalue ζn. Each soliton component
of the solution contributes with a mass of 4ηn, while the term given by the integral
over the continuous spectrum in the above equation represents the contribution to the
total mass due to the radiative part of the solution.

Energy: The energy is given by E =
�
R
U2 dx, and it can be obtained from the scattering data

using the formula

E =
�

n

16

3
η3n +

4

π

�

R

ζ2 ln
�
|a(ζ)|2

�
dζ .

The total energy decomposes into the sum of two terms, one taking into account the
contribution of each soliton component (16η3n/3), the other accounting for the energy
of the radiative part of the solution (the integral over the continuous spectrum).

Each discrete eigenvalue ζ = iη, η > 0, corresponds to a soliton component of the
solution. A pure soliton solution is given by

U(t, x) = 2η2 sech2
�
η(x− x(t))

�
, (2.1.10)

where x(t) = x0 + 4η2t is the center of the soliton. As one can see from this equation, the
amplitude 2η2 and speed 4η2 of the solitons of the KdV equation are linked. The mass of a
soliton is N = 4η and its energy E = 16η3/3. The soliton solution (2.1.10) is associated to
the eigenvalue iηn and the scattering data

a(ζ, t) =
ζ − iη

ζ + iη
, b(ζ, t) = 0 , ρ(t) = 2ηe2ηx0e8η

3t .

2.1.2 Limit of rapidly oscillating processes

This subsection contains a rigorous justification for the use of the IST. We have already
remarked that to be able to apply the IST the initial condition U0 needs to satisfy some
integrability condition, L1 for NLS and (2.1.8) for KdV. These hypotheses are satisfied by
initial conditions of the form (2.1.1) for any ε > 0 if ν is bounded. Our objective is to
show that the IST applied to these random initial conditions gives a problem that reads as a
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canonical system of SDEs in the limit ε → 0. Thanks to the convergence result of Theorem
2.2 below, this limit system can be used to study the behavior of rapidly oscillating initial
conditions (0 < ε � 1), as we shall do in the following sections. We stress that our interest
is in the study of rapidly oscillating initial conditions, which are physically more relevant
than the limit case of infinitely rapid oscillations and for which the IST can be applied in a
rigorous way. We make the following assumptions (standard in the diffusion approximation
theory, [FGPS]) on the process ν:

Hypothesis 2.1. Let ν(x) be a real, homogeneous, ergodic, centered, bounded, Markov
stochastic process, with finite integrated covariance

�∞
0

E[ν(0)ν(x)] dx = α < ∞ and with
generator Lν satisfying the Freedholm alternative.

Set
Uε
0 (x) :=

�
q +

σ

ε
ν(x/ε2)

�
[0,R](x) (2.1.11)

and remark that for x ∈ [0, R]

� x

0

Uε
0 (y) dy

ε→0−→
� x

0

U0(y) dy = qx+
√
2ασWx

in the space of continuous functions C0
�
[0, R];R

�
, in distribution, see [FGPS]. For every

ε > 0, we apply the first step of the IST to the NLS and KdV equations with the initial
condition Uε

0 , to obtain the associated spectral problem. Then we will investigate the passage
to the limit of this problem. We point out that this passage to the limit is quite delicate: if
it is relatively easy to obtain a pointwise (in ζ) convergence of the spectral data, to obtain
fine results for the limit case and for situations near the limit case (0 < ε � 1), a much
stronger convergence will be needed.

NLS: pointwise convergence

We consider the ZSSP system associated to the NLS equation: our goal is to identify the
points of the upper complex half-plane, ζ ∈ C

+, for which there exists a solution Ψ of the
first order system (2.1.3) for x ∈ [0, R], satisfying the boundary conditions

Ψ(0) =

�
1
0

�
and ψ1(R) = 0

derived from the exponential decay conditions (2.1.4). These particular values of ζ are the
discrete eigenvalues of the ZSSP and correspond to the soliton components of the solution.
The strategy employed is to consider the flow Ψ(x, ζ), x ∈ [0, R], ζ ∈ C

+, solution of (2.1.3)
with initial condition

Ψ(0) =

�
1
0

�
, (2.1.12)

and look for the values of ζ for which the final condition is satisfied.
For a fixed value of ζ, we consider the solution Ψε of the ZSSP obtained from the

application of the first step of the IST method:




∂ψε
1

∂x = −iζ ψε
1 + i Uε

0 (x)ψ
ε
2

∂ψε
2

∂x = i
�
Uε
0 (x)

�∗
ψε
1 + iζ ψε

2

, (2.1.13)
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with initial condition

Ψε(0) =

�
1
0

�
.

Now, [FGPS, Theorem 6.1] states that the process Ψε converges in distribution in C0([0, R];C2)
to the process Ψ solution of

�
dψ1 =

�
(−iζ − ασ2)ψ1 + iq ψ2

�
dx+ i

√
2ασψ2 dWx

dψ2 =
�
i q ψ1 + (iζ − ασ2)ψ2

�
dx+ i

√
2ασψ1 dWx

(2.1.14)

with initial condition (2.1.12), which can be rewritten in Stratonovich form as

dΨ = i

�
−ζ q
q ζ

�
Ψdx+ i

√
2ασ

�
0 1
1 0

�
Ψ ◦ dWx . (2.1.15)

For NLS we can also consider perturbations produced by a complex process: let ν1, ν2
be two independent copies of the process ν and set �ν := ν1+ iν2. One can define Uε

0 using �ν
instead of ν; proceeding as above, from the IST one obtains again the system (2.1.13), and
from [FGPS, Theorem 6.1] one gets that in this case the limit process is the solution of

dΨ= i

�
−ζ q
q ζ

�
Ψdx+ i

√
2ασ

�
0 1
1 0

�
Ψ ◦ dW (1)

x −
√
2ασ

�
0 1
−1 0

�
Ψ ◦ dW (2)

x , (2.1.16)

where the W (i) are two independent Wiener processes, with the same initial condition
(2.1.12).

KdV: pointwise convergence

We apply the same strategy to the KdV equation: the goal is to obtain the values of ζ ∈ C
+

for which there exists a solution ϕ of

ϕε
xx + (Uε

0 + ζ2)ϕε = 0 (2.1.17)

with the boundary conditions

ϕε(0) = 1 , ϕε
x(0) = −iζ , ϕε

x(R)− iζϕε(R) = 0 .

These conditions correspond to imposing exponential decay of the solution at infinity. Set-
ting Φ := (ϕ, ϕx)

T this equation can be transformed into

dΦε =

�
0 1

−Uε
0 − ζ2 0

�
Φεdx (2.1.18)

with boundary conditions

Φε(0) =

�
1

−iζ

�
, φε

2(R)− iζφε
1(R) = 0 .

We consider the flow Φε(x, ζ), x ∈ [0, R], ζ ∈ C
+, defined by the above equation with only

the initial condition, and look for the values of ζ such that the final condition is satisfied.
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Again by [FGPS, Theorem 6.1], Φε converges in distribution to the solution of

dΦ =

�
0 1

−q − ζ2 0

�
Φdx+

√
2ασ

�
0 0
1 0

�
ΦdWx (2.1.19)

which, in terms of the function ϕ, can be rewritten as

dϕx = −(q + ζ2)ϕ dx+
√
2ασϕ dWx . (2.1.20)

The initial condition is

Φ(0) =

�
1

−iζ

�
, or equivalently ϕ(0) = 1 , ϕx(0) = −iζ . (2.1.21)

Remark that in the last two differential equations above the Stratonovich and Itô stochastic
integrals coincide.

Convergence as C1 functions

The convergence obtained above is only for a (finite number of) fixed ζ and σ, but we can do
much better. Indeed, in the next section we will need to differentiate the limit process with
respect to the parameters (ζ, σ), so that we look for a convergence in C0

�
[0, R]; C1(R3)

�
. This

is the main result of this section; the exact formulation is given in the following theorem.
We will focus on the problem of finding the values of ζ for which the limit flows Ψ and Φ
match the final conditions in section 2.2.

Theorem 2.2. Assume hypothesis 2.1 and define Uε
0 as in (2.1.11). Let Ψε := (ψε

1, ψ
ε
2)

T be
the solution of (2.1.13) with initial condition (2.1.12) and Ψ the solution of (2.1.15) with the
same initial condition. Let also ϕε be the solution of (2.1.17) with initial condition (2.1.21)
and ϕ be the solution of (2.1.20) with the same initial condition. Considering these as
functions of the space variable x and the parameters ξ, η, σ, we have in the limit of ε → 0 that
Ψε(x, ξ, η, σ) → Ψ(x, ξ, η, σ) weakly in C0

�
[0, R]; C1(R3;C2)

�
and ϕε(x, ξ, η, σ) → ϕ(x, ξ, η, σ)

weakly in C0
�
[0, R]; C1(R3;R)

�
.

To prove this theorem we need a standard tightness criteria, provided by the two following
lemmas [Me]. We will use D

�
[0, R];E

�
to denote the space of CadLag processes defined for

x ∈ [0, R] and with values in the space E. The first lemma is due to Aldous, [Al78].

Lemma 2.3. Let (E, d) be a metric space, and Xε a process with paths in D
�
[0, R];E

�
. If

for every x in a dense subset of [0, R] the family
�
Xε(x)

�
ε∈(0,1]

is tight in E and Xε satisfy

the Aldous property:

A : For any κ > 0,λ > 0, there exists δ > 0 such that

lim sup
ε→0

sup
τ<R

sup
0<θ<δ∧(R−τ)

P
�
�Xε(τ + θ)−Xε(τ)� > λ

�
< κ ,

where τ is a stopping time;

then the family
�
Xε

�
ε∈(0,1]

is tight in D
�
[0, R];E

�
.

If H is a Hilbert space and Hn a subspace of H, we shall use πHn
to denote the projection

of H onto Hn. Also, dH is used to denote the distance on H introduced by the inner product.
The proof of this lemma can be found in [Me84].
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Lemma 2.4. Let H be a Hilbert space and Hn be an increasing sequence of finite-dimensio-
nal subspaces of H such that, for any h ∈ H, limn→∞ πHn

h = h. Let (Zε)ε∈(0,1] be a family
of H-valued random variables. Then, the family (Zε)ε∈(0,1] is tight if and only if for any
κ > 0 and λ > 0, there exist ρκ and a subspace Hκ,λ such that

sup
ε∈(0,1]

P
�
�Zε� ≥ ρκ

�
≤ κ and sup

ε∈(0,1]

P
�
dH(Zε,Hκ,λ) > λ

�
≤ κ . (2.1.22)

Proof of Theorem 2.2. To unify notation, we shall use Xε to denote both Ψε and Φε. There-
fore, Xε is the solution of what we shall call the approximated system, which is either system
(2.1.13) or (2.1.18), with ε > 0.

Since propositions 2.14 and 2.21 ensure that the limit equations for Ψ and Φ have a
unique solution which is C0

�
[0, R]; C1(R3)

�
, it suffices to prove convergence in the space of

CadLag processes D
�
[0, R]; C1(R3)

�
. We will do so in three steps.

Steps 1 contains a technical result needed for the application in step 2 of lemma 2.4,
namely the proof of the bound (2.1.23).

In step 2, using lemma 2.4, we will show that for every fixed x the sequences
�
Ψε(x)

�
ε

and�
Φε(x)

�
ε
, denoted

�
Xε(x)

�
ε

in the following, are tight in the Hilbert space H := W 3,2(G).
Note that, by Sobolev imbedding, H �→ C1(G). Here, G is an open, bounded subset of R3,
the space of parameters. For simplicity we take G = (−N,N)3 for some real positive constant
N ; a justification of the fact that it is not restrictive to assume that the set of parameters
G is bounded is given below in the proof of proposition 2.14, where the convergences we are
proving here will be used.

In the last step we will use lemma 2.3, where we take E to be the Hilbert space
H. This will provide the desired convergence of the family of processes (Xε)ε∈(0,1] in
D
�
[0, R]; C1(R3)

�
.

Since Xε is the solution of a linear differential equation with coefficients smooth in the
parameters µ = (ξ, η,σ), from the explicit formula for the solution we get that Xε(x, µ) is
smooth in the parameters. We will soon use its derivatives in the parameters: the vector
of Xε and its first derivatives in µ still satisfy a linear system of ODEs whose coefficients
depend linearly on the parameters and on the process ν(x/ε2), and the same result holds
adding higher order derivatives.

Step 1 (A preliminary estimate). The key point to show that
�
Xε(x, µ)

�
µ∈G

is tight in

H = W 3,2(G) for every x ∈ [0, R] is the proof of the bound

lim sup
ε→0

E

���Xε(x, ·)
��
W 6,2(G)

�
≤ C < ∞ (2.1.23)

uniformly in x ∈ [0, R]. This is the content of this step.

Define Y ε as the vector process of Xε and all of its derivatives in the parameters µ =
(ξ, η,σ) up to order 6. As remarked above, this process is the solution of a linear system of
ODEs with coefficients (the matrices M1 and M2) linear in the parameters:

d

dx
Y ε = M1Y

ε +
1

ε
ν(x/ε2)M2Y

ε .

Since G is bounded, we only need to check that the second moment of Y ε(x, µ) is uniformly
bounded with respect to ε ∈ (0, 1], µ ∈ G and x ∈ [0, R]. Actually, we aim at a stronger
result, which we will need later. We are going to show that (recall that Y0 = Y ε

0 is deter-
ministic since both Ψε(0), Φε(0) and their derivatives in zero are defined by the equation
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for x ≤ 0, which is deterministic, and the boundary condition at x → −∞)

E

�
sup

x∈[0,R]

��Y ε(x)
��2
�
≤ CR

�
1 +

��Y (0)
��2
�
< ∞ . (2.1.24)

Following [FGPS, Section 6.3.5], we show this bound with the perturbed test function
method. Let Lε be the infinitesimal generator of the process Y ε and L the infinitesimal
generator of the process Y obtained from the process X solution of the limit system (2.1.15)
or (2.1.19). Let m ∈ N be such that Y ε(x) ∈ C

m and let K be a compact subset of R

containing the image of the bounded process ν. For every y ∈ C
m and z ∈ K, Lε has the

form

Lεg(y, z) =
1

ε2
Lνg(y, z) +

z

ε

�
M2y

�T∇yg(y, z) +
�
M1y

�T∇yg(y, z) ,

where Lν is the infinitesimal generator of the process ν, as defined in hypothesis 2.1. Let
f be the identity function on C

m and fε(y, z) = y + εf1(y, z) be the associated perturbed

function, which is solution of the Poisson equation Lνf1(y, z) = −z
�
M2y

�T∇yf(y). In this
equation, y plays the role of a frozen parameter, so that f1 has linear growth in y, uniformly
in z, and the same holds for

Lεfε(y, z) = z
�
M2y

�T∇yf1(y, z) + ε
�
M1y

�T∇yf1(y, z) .

Since

Y ε(x) = Y ε(0)− ε
�
f1
�
Y ε(x), νε(x)

�
− f1

�
Y ε(0), νε(0)

��

+

� x

0

Lεfε
�
Y ε(x�), νε(x�)

�
dx� +Mε

x ,

where Mε
x is a vector valued martingale, we get the bound

sup
x∈[0,R]

��Y ε(x)
�� ≤

��Y ε(0)
��+ εC

�
1 + sup

x∈[0,R]

��Y ε(x)
��
�

+ C

� R

0

1 + sup
x�∈[0,x]

��Y ε(x�)
�� dx+ C sup

x∈[0,R]

��Mε
x

�� .

For ε ≤ 1
2C , applying Gronwall’s inequality and renaming constants we get

sup
x∈[0,R]

��Y ε(x)
�� ≤ CR

�
1 +

��Y ε(0)
��+ sup

x∈[0,R]

��Mε
x

��
�
. (2.1.25)

The quadratic variation of the martingale is given by

�Mε�x =

� x

0

gε
�
Y ε(x�), νε(x�)

�
dx� ,

where

gε(y, z) =
�
Lεfε2 − 2fεLεfε

�
(y, z) =

�
Lνf

2
1 − 2f1Lνf1

�
(y, z)

+ 2εz
��
M2y

�T
f1(y, z)−

�
M2y

�T �
(∇yf1)

T f1
�
(y, z)

�

+ 2ε2
��
M1y

�T
f1(y, z)−

�
M1y

�T �
(∇yf1)

T f1
�
(y, z)

�
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has quadratic growth in y uniformly in z ∈ K. Therefore, by Doob’s inequality,

E

�
sup

x∈[0,R]

��Mε
x

��2
�
≤ C E

��
Mε

�
R

�
≤ C

� R

0

1 + E
���Y ε(x)

��2� dx .

Substituting into the expected value of the square of (2.1.25) and using again Gronwall’s
inequality, we get (2.1.24), which gives (2.1.23).

Step 2 (Tightness of Xε(x)). In this step we show how to obtain the tightness of the
family

�
Xε(x, µ)

�
µ∈G

from (2.1.23) using lemma 2.4. Indeed, from this bound the first part
of condition (2.1.22) follows by the Markov inequality if we take ρκ = C/κ. This bound
also provides information on the regularity of Xε(x), which can be used to prove the second
part of condition (2.1.22) as follows. By the Sobolev imbedding W 6,2(G) �→ C4(G) the
bound (2.1.23) implies that Xε ∈ C4(G). An appropriate sequence of subspaces (Hn)n is
constructed in the appendix in lemma 2.48, and lemma 2.49 states that for any function
g ∈ C4(G) there exists an arbitrarily good approximation gn belonging to some Hn. The
control on the distance between g and the subspace Hn only depends on the norm �g�C4 , so
that by (2.1.23) the approximation is uniform in ε. This provides the second part of condition
(2.1.22). Finally, corollary 2.50 provides the last hypothesis of lemma 2.4, namely that for
the sequence of subspaces Hn constructed in lemma 2.48, for any h ∈ H, limn→∞ πHn

h = h.
Then, lemma 2.4 gives that for every x, the family

�
Xε(x, µ)

�
µ∈G

is tight in H = W 3,2(G).

Step 3 (Tightness of Xε). Thanks to lemma 2.3, the tightness of the family of processes
Xε in D

�
[0, R];H

�
follows if we show that the Aldous property [A] holds. Since G is bounded,

we can prove the Aldous property showing that

lim
δ→0

lim sup
ε→0

sup
µ∈G

sup
τ≤R

sup
0<θ<δ

E

���Y ε(τ + θ, µ)− Y ε(τ, µ)
��2
�
= 0 , (2.1.26)

where Y ε is the vector process having as components Xε and its derivatives in µ up to the
third order only. We prove the above limit using again the perturbed test function method.
With the notations introduced above, we have

��Y ε(τ + θ)− Y ε(τ)
��2≤C

���Mε
τ+θ −Mε

τ

���
2

+ C

� τ+θ

τ

���Lεfε
�
Y ε(x), νε(x)

����
2

dx

+ Cε
�
1 + sup

x∈[τ,τ+θ]

��Y ε(x)
��2
�

≤C
���Mε

τ+θ −Mε
τ

���
2

+ C

� τ+θ

τ

���Lεfε
�
Y ε, νε

�
− Lf(Y ε)

���
2

dx

+ C

� τ+θ

τ

��Lf(Y ε)
��2dx+ Cε

�
1 + sup

x∈[τ,τ+θ]

��Y ε(x)
��2
�
.

We have that

E

���Mε
τ+θ −Mε

τ

��2
�
= E

��
Mε

τ+θ

�2 −
�
Mε

τ

�2�
= E

� � τ+θ

τ

d�Mε�x
�
.

Since
��Lεfε(y, z)− Lf(y)

�� ≤ εC(1 + |y|) and |Lf(y)| ≤ C|y|, for θ ≤ δ

E

���Y ε(τ + θ)− Y ε(τ)
��2
�
≤ CR (δ + ε)

�
1 + E

�
sup

x∈[0,R]

��Y ε(x)
��2
��

.
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The right-hand side is independent of τ and we can use estimate (2.1.24) to bound it uni-
formly in ε and µ. Therefore, (2.1.26) follows and the proof of Theorem 2.2 is complete.

Remark 2.5. Using the notion of pseudo-generators, as introduced in [EK, Section 7.4], it
is possible to relax the conditions imposed on the driving process ν(x) assuming that it is
just a mixing process instead of Markov.

2.2 Stability of solitons

This section is devoted to the study of the stability of solitons with respect to rapidly os-
cillating random perturbations of the initial condition. Our results state that solitons of
both the NLS and KdV equation are stable under perturbations of the initial condition.
Moreover, for small-amplitude random perturbations, we provide an easy way to compute
first order correction terms for the parameters characterizing the solitons. However, if for
both equations solitons are stable, a few interesting differences must be pointed out. For
example, for NLS there is a thresholding effect for the creation of solitons from noise, so
that unless the integral of the deterministic initial condition exceeds a certain threshold,
the addition of a small random perturbation cannot generate a soliton. On the other hand,
for KdV even a very small random initial condition can produce a soliton. Moreover, we
will see that in the presence of a random perturbation KdV solitons are perturbed in both
amplitude and velocity, while unless the perturbation is complex the velocity of NLS solitons
is not substantially affected.

Thanks to the results of the previous section, we know that for rapidly oscillating initial
conditions both the NLS and KdV systems can be investigated using the limit equations
(2.1.15) and (2.1.20), which formally correspond to a real or complex white noise perturba-
tion on the initial condition.

For NLS we have seen that every soliton is identified by a complex number ζ = ξ + iη
such that the flow Ψ(x, ζ) solution of (2.1.15) with initial condition (2.1.12) satisfies also a
given final condition. The real and imaginary parts of ζ define the velocity and amplitude
of the soliton, respectively. For KdV, solitons are identified by an imaginary number ζ = iη,
defining both the velocity and amplitude of the soliton, which are related.

We start analyzing the NLS equation, and leave KdV to the second part of this section.
For each of the two equations we start by reporting, in subsections 2.2.1 and 2.2.4, some
classical results on the background deterministic solution. Then we analyze how this solu-
tion is modified by the introduction of a real, small-amplitude, rapidly oscillating random
perturbation of the initial condition. This is done in subsections 2.2.2 and 2.2.5. For NLS
we can also consider the case of perturbations of the initial condition given by rapidly os-
cillating complex processes; the stability of solitons in this case is investigated in subsection
2.2.3. We deal with the limit cases of “quiescent” solitons for NLS and KdV in corollary
2.10, remark 2.18 and proposition 2.20. Finally, for KdV one can also consider the case of
a perturbation of the zero initial condition: this is done in subsection 2.2.6.

For simplicity of exposition, in this section we choose the value of the integrated cova-
riance of the process ν to be α = 1/2.
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2.2.1 NLS solitons – deterministic background solution

Let U0(x) = q [0,R](x). Burzlaff proved in [Bu88] that in this case the number of solitons
generated is the integer part of 1/2+qR/π (see also the relevant discussion and generalization
of [Ki89]). They remark how physical intuition suggests that the first soliton created when
increasing R corresponds to ζ = 0. This solution is obtained for qR = π/2 and contains
a single “soliton” with zero amplitude that they called quiescent soliton. In this case, the
velocity of this soliton is also zero. Remark that the quiescent soliton is not a physical
soliton, since both its mass and energy are zero. But from a mathematical point of view it
could be considered as a soliton, in the sense that it is a bounded solution of the spectral
problem corresponding to a zero of the Jost coefficient a. We will also observe that this
evanescent soliton is an interesting structure even from a physical point of view, since an
infinitesimal random perturbation is sufficient to create (with positive probability) a “true”
soliton with positive amplitude.

For values of qR just over the critical threshold of 1/2, the created soliton has zero
velocity and nonzero amplitude 2η which can be computed explicitly solving (2.1.3) for pure
imaginary values of ζ.

In the first part of this subsection we report some computations relative to this case,
as the results and explicit formulas will be used below. We then conclude providing the
sketch of an analytical proof of the claimed fact that generated solitons correspond to purely
imaginary values of ζ.

For purely imaginary values of ζ = iη, from the decaying condition at −∞ one obtains
the initial condition

Ψ(0) =

�
1
0

�
eηx

���
x=0

=

�
1
0

�
. (2.2.1)

The system (2.1.3) for x ∈ [0, R] reads

�
∂ψ1

∂x = iq ψ2 − iζ ψ1

∂ψ2

∂x = iq ψ1 + iζ ψ2

and Ψ = (ψ1,ψ2) is a solution of the initial value problem for ζ �= iq if (ζ is imaginary pure)

ψ1(x) = − iζ�
q2 + ζ2

sin
��

q2 + ζ2 x
�
+ cos

��
q2 + ζ2 x

�
;

ψ2(x) = i
q�

q2 + ζ2
sin

��
q2 + ζ2 x

�
. (2.2.2)

To be a soliton solution, Ψ needs to satisfy also the decaying condition at +∞, which is to
say ψ1(R) = 0. The condition can be rewritten for ζ �= 0 as

f(ζ) = tan(
�

q2 + ζ2R) + i

�
q2 + ζ2

ζ
= 0 . (2.2.3)

Since a(ζ) = ψ1(R, ζ)eiζR, the function f(ζ) is linked to the first Jost coefficient a(ζ) by the
relation

f(ζ) = ia(ζ)
e−iζR

ζ

�
q2 + ζ2

cos
��

q2 + ζ2R
� ,

from which we see that the zeros of f coincide with those of a, except for ζ = iq. However,
for ζ = iq it is possible to compute explicitly the solution of (2.2.1) satisfying the initial
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conditions, which is given by

Ψ(x) =

�
1 + x
ix

�
.

Since this function cannot satisfy the final conditions, no soliton can be created for this
particular value of ζ.

Now, plotting on the (ξ, η) - plane the level lines of the real and imaginary parts of f at
level zero, one can already see that the first soliton component of the solution corresponds
to an imaginary value of ζ. This fact can be proved in an analytic way as follows.

Proposition 2.6. When increasing R or q, new solitons are created at the threshold
qR = (2n+ 1)π/2, n ∈ N with zero velocity.

Proof. We have seen that, except for ζ = iq, the zeros of f coincide with those of a. We
also know that the function a(ξ, η, R) is analytic in the domain R × (0,∞) × (0,∞) and
continuous in R× [0,∞)× (0,∞). We use the argument principle to study how the number
of zeros in the upper half of the complex plane evolves when increasing R. For any fixed R
we proceed as in [DP08], taking a loop C in the complex ζ-plane composed of the (lower)
real axis C− and the infinite semi-arc in the upper half plane. Then, the number of zeros of
a(ξ, η, R) in the domain defined by the boundary C is given by

N(R) =
1

2π

�

C

1

a

∂a

∂ζ
dζ .

Since for |ζ| � 1 we have that a(ζ, R) = 1+O(1/ζ), the integral over the upper part of the
loop is zero. With the change of variables a(ζ, R) = ρ(ζ, R) exp

�
iα(ζ, R)

�
, the number of

zeros can be rewritten as

N(R) =
1

2π

�

C−

∂α

∂ζ
dζ . (2.2.4)

If a new soliton is created at a given R, N(R) must have a jump at that point. This is to
say that

∂Rα(ζ, R) =
�
ρ(ζ, R)

�−1�
�
b(ζ, R)U0(R)e2iζR−iα(ζR)

�
(2.2.5)

must be singular. This expression for the derivative of α can be obtained using an invariant
imbedding approach in the following way. In the invariant imbedding approach, the width
R of the support of the initial condition is considered as a new dynamical variable. For an
initial condition compactly supported on [0, R], from the ZSSP system (2.1.3), the decay
conditions (2.1.4) and (2.1.5), and the relation (2.1.6), one can obtain boundary conditions
for Ψ at 0 and R, which are given by (2.2.1) and

Ψ(R) = a(ζ, R)

�
1
0

�
e−iζR + b(ζ, R)

�
0
1

�
eiζR.

From this equation one obtains a formula for a(ζ, R)

a(ζ, R) = ψ1(R)eiζR ,

and a similar formula for b. Taking the derivative in R of this formula and using the relation
a = ρeiα, one gets (2.2.5).

We return to consider equation (2.2.5). Unless the function ρ(ζ, R) has at least one zero
on the real axis, C− can be analytically deformed into the real axis ζ = ξ. Then the right
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hand side of (2.2.5) becomes a continuous, finite function of ξ and the integral (2.2.4) is
given by [α(∞) − α(−∞)], which is zero due to the asymptotic behavior of a for large ζ
and the normalization condition |a|2 + |b|2 = 1. This means that the necessary condition
for the number of solitons to change at R is the existence of at least one real solution of the
equation a(ξ, 0, R) = 0. It is easy to see that this condition is also sufficient.

We have obtained that the number N(R) of zeros changes at R if and only if a(ξ, 0, R) = 0
admits a solution. But zeros of a and f coincide, and since in equation (2.2.3) for real values
of ζ = ξ �= 0 the tangent is real and the second term is purely imaginary and non zero,
solutions of f(ξ, 0, R) = 0 can only be found at ξ = 0.

Explicit computations easily show that ζ = 0 corresponds to a soliton solution only for
R = (2n+ 1)π/2q, n ∈ N. Computing explicitly the derivative of a(ζ) at ζ = 0 we get

∂ζa(ζ) = eiζR
��

2
ζR�
q2 + ζ2

− i
q2

�
q2 + ζ2

3

�
sin

��
q2 + ζ2 R

�

+ iR
q2

q2 + ζ2
cos

��
q2 + ζ2 R

��

∂ζa(ζ)
���
ζ=0

= − i
1

q
sin(qR) + iR cos(qR) ,

so that for Rq = (2n + 1)π/2 the derivative is equal to (−1)n+1i/q and is never zero.
Therefore, when increasing R new solitons are generated one at a time and the eigenvalues
ζn identifying them are immediately pushed towards the interior of the domain C

+. [Ka79]
showed that “a(ζ) = 0 imply a�(ζ) �= 0” holds for all values of ζ; from this fact it follows that
zeros in the interior of the domain are always simple. Considering the complex conjugate
Ψ∗, which is a solution whenever Ψ is, one obtains that zeros not laying on the imaginary
axis always come in pairs ±ξ + iη. But since zeros move continuously (as R grows) in the
upper complex plane, cannot coalesce and cannot leave the imaginary axis (ξ = 0) unless
they form a pair, we get that they must remain on the imaginary axis.

From the proof above we obtain a correspondence between zeros of the Jost coefficient
a(ζ, R) in the complex upper half-plane and on the real line: as the support R of the initial
condition grows, the appearance of a new zero of a on the real line corresponds to the creation
or destruction of a zero in the complex upper half-plane. Since for a zero initial condition
(R = 0) no soliton is created (there are no zeros in the complex upper half-plane), we can
interpret this result as a correspondence between the presence of solitons in the solution of
the NLS equation and zeros of the Jost coefficient a on the real line. More precisely,

Proposition 2.7. For a fixed R, the presence of solitons in the solution of the NLS equation
with initial condition U0 having support on [0, R] imply the presence of zeros of the function
a(ξ, x), (ξ, x) ∈ R× [0, R]. Also, the presence of one zero of a(ξ, x) on R× [0, R] implies the
presence of one soliton.

Remark 2.8. Remark that the correspondence result of proposition 2.7 also holds for non
flat initial conditions, U0(x) = ν(x) [0,R](x). In particular, ν can be taken to be a stochastic
process.

2.2.2 NLS solitons – small-intensity real noise

In this subsection we consider the example of an initial condition composed of a square
function perturbed with a small, real white noise (Ẇ ). First, we use a perturbative approach
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to study the effects of the perturbation on solitons (proposition 2.9). Then, in the last part
of this subsection, we study the effect of this perturbation on quiescent solitons (corollary
2.10).

We have here U0(x) = (q+σẆx) [0,R](x). The initial condition is (2.2.1) and the system
(2.1.3) for x ∈ [0, R] reads

�
dψ1 = i

�
q ψ2 − ζ ψ1

�
dx+ iσ ψ2 ◦ dWx

dψ2 = i
�
q ψ1 + ζ ψ2

�
dx+ iσ ψ1 ◦ dWx

. (2.2.6)

Proposition 2.9. For qR > π
2 and in the limit of a small real white noise type stochastic

perturbation of the initial condition, the amplitude η of the soliton component of the solution
is perturbed at first order by a small, zero-mean, Gaussian random variable. If the complex
number identifying un unperturbed soliton (corresponding to σ = 0 in the initial condition)
is ζ0 = iη0, the perturbed soliton will correspond to a complex number ζ = iη, where η can
be written as η = η0 + ση1 + o(σ), with

η1 =
q sin(c0R)WR +

� R

0
2η0q

c0
sin

�
c0(R− y)

�
sin(c0y)dWy

2
�
q2

c20
+Rη0

�
sin

�
c0R

�
−R

η2
0

c0
cos

�
c0R

� , (2.2.7)

and c0 :=
�

q2 − η20. The velocity of the soliton remains unchanged.

Corollary 2.10. When q = (2n + 1)π/2R for some n ∈ N, in the deterministic case we
have the creation of what we called a quiescent soliton. Also in this case, the stochastic
perturbation can modify, at first order, only the amplitude of the soliton. As a result, the
quiescent soliton is destroyed with probability 1/2 and a true soliton with positive amplitude
η > 0 is created with probability 1/2.

Remark 2.11. With the same proofs, one can show that these results also hold for a
purely imaginary (deterministic) initial condition perturbed by a purely imaginary, small
white noise. And a simple phase shift [Ki89] allows to extend this result to any complex
initial condition U0(x) = q ∗ [0,R](x), q ∈ C perturbed with a white noise with the same
constant phase of q.

Remark 2.12. With the same proofs, it is possible to show that solitons are stable with
respect to small random perturbations under more general hypothesis. In particular, we
only need the smallness assumption on the perturbing process, which does not need to be
rapidly oscillating. For example, substituting the white noise with a general process Qx in
corollary 2.10 above one obtains the same result: ∂ση = q

� R

0
Qx dx, so that a true soliton

is created whenever the integral is positive.
Indeed, another possible and equivalent approach for rapidly oscillating processes would

be to work with the original process νε for the IST and carry out the scaling limit only at
this stage.

Remark 2.13. When creating a new soliton from a quiescent soliton, in the limit of a
rapidly oscillating perturbation of the initial condition both the mass end energy conversion
efficiency is very poor: the mass of the created soliton is 4η = 4σqWR, while the input
mass

�
R
|U0|2 dx for the white noise is infinite; the energy captured by the created soliton is

Es = −16η3/3, while the input energy is infinite.
On the contrary, when the (small) perturbation used is given by a smooth process,

the mass conversion efficiency is very good, since the mass of the created soliton 4η =



34 CHAPTER 2. NOISE AND SOLITONS

4σq
� R

0
Qx dx is of order σ, while the input mass is of order σ2. For the energy, the conversion

efficiency remains poor, since the energy of the created soliton Es = −16η3/3 is (negative
and) of order σ3, while the input energy

� R

0
σ2q2|∂xQ| − σ4q4|Q|4 dx is (positive and) of

order σ2.
Recall however that the creation of a new soliton is not a sure event.

The following proposition provides results that we will need in the following on the
uniqueness and regularity of solutions.

Proposition 2.14. The system of SDEs (2.2.6) defines a stochastic flow Ψ
(ζ,σ)
x = (ψ1, ψ2)

T

of C1-diffeomorphisms, which is C1 also in the parameters ξ, η, σ.

Proof of Proposition 2.14. Write the SDE in Itô and vector form:

dΨ = i

�
−ζ + iσ2 q

q ζ + iσ2

�
Ψdx+ iσ

�
0 1
1 0

�
ΨdWx . (2.2.8)

The coefficients of the SDE are independent of x and Lipschitz continuous in Ψ for every ζ
and σ. Therefore, the existence of a unique solution to the SDE, which defines a stochastic
flow of homeomorphisms Ψ(ζ,σ)(x), is a classical fact (see for example [Ku84]). Following
the notation of [Ku], we define the local characteristic of the SDE as (α, β, x), where

α(ζ, ζ �, σ, σ�, x) := −σσ�
�
0 1
1 0

�
,

β(ζ, σ, x) :=

�
−ζ q
q ζ

�
.

Fix any n ∈ N, define the set Gn := {(ξ, η, σ)
�� |ξ| < n, 0 < η < n, 0 < σ < n} and

consider the SDE only with parameters in Gn. Then, both α and β are uniformly bounded
and, together with their first derivatives, are Lipschitz continuous in the parameters. This
means that the coefficients satisfy condition (A.5)1,0 of [Ku, Chapter 4.6]. It follows from
[Ku, Theorem 4.6.4] that Ψ(ζ,σ)(x) is C1 in the parameters almost surely on Gn. Let Ωn be
the set of ω ∈ Ω such that Ψ(ζ,σ)(x) ∈ C1(Gn), which is a set of full measure. Since n is
arbitrary, Ψ(ζ,σ)(x) is actually C1

�
R×R+ ×R+

�
for every ω ∈ ∩nΩn, which is still a set of

full measure. This proves the last statement of the proposition.
Since [Ku, Theorem 4.6.5] states that Ψ(ζ,σ)(x) is actually a stochastic flow of C1-

diffeomorphisms, the proof is complete.

Proof of Proposition 2.9. Looking at the flow at point R we can define a complex-valued
function of Ψ(R) as F (ξ, η, σ) := ψ

(ζ,σ)
1 (R). We look for the set of values of (ξ, η, σ) cor-

responding to zeros of the function F : they are the parameters (ζ = ξ + iη) defining the
soliton components of the solution of the problem perturbed with a noise of amplitude σ.
We claim that a small stochastic perturbation has only the effect of a small variation in the
value of ζ = ξ + iη with respect to the value ζ0 = iη0 of the corresponding soliton in the
deterministic case. We will prove this using the implicit function theorem: for any fixed
and sufficiently small σ, F (ξ, η, σ) has a unique zero in some open set containing the point
(0, η0, 0). The following lemma ensures that the most important hypothesis of the implicit
function theorem is satisfied.

Lemma 2.15. Let F (ξ, η, σ) be the function defined above. Then, whenever ζ0 = iη0 is the
discrete eigenvalue corresponding to a soliton component of the solution of the deterministic
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problem, the determinant of the Jacobian matrix

J :=

�
∂ξ �(F ) ∂η �(F )
∂ξ �(F ) ∂η �(F )

�

at point (0, η0, 0) is not zero.

Proof of Lemma 2.15. For σ = 0 the system (2.2.6) becomes deterministic and the solution
is given by (2.2.2). Then, setting c :=

�
q2 − ζ2,

i ∂ξψ1(ξ, η, 0) = ∂ηψ1(ξ, η, 0) =

�
q2

c3
− iR

ζ

c

�
sin

�
cR

�
+R

ζ2

c2
cos

�
cR

�

so that
i ∂ξF (0, η0, 0) = ∂ηF (0, η0, 0) .

We are left to verify that

0 �= det J (0, η0, 0) =
�
∂ξ �(F )∂η �(F )− ∂η �(F )∂ξ �(F )

�
(0, η0, 0)

=
�
�
�
∂ξ F

�
�
�
∂η F

�
−�

�
∂η F

�
�
�
∂ξ F

��
(0, η0, 0)

=
��

�(∂ξ F )
�2

+
�
�(∂ξ F )

�2�
(0, η0, 0)

or equivalently

∂ξF (0, η0, 0) = −i

�
q2

c30
+R

η0
c0

�
sin

�
c0R

�
+ iR

η20
c20

cos
�
c0R

�
�= 0 , (2.2.9)

where c0 =
�

q2 − η20 . Observe that condition (2.2.3) implies that η0 ≤ q; c0 is therefore
real. Indeed, for η0 > q, c0 would be imaginary pure and the function f of equation (2.2.3)
would become the sum of two imaginary pure terms of the same sign, so that it cannot be
zero. In equation (2.2.9) the coefficient of the sinus is the sum of two non zero terms of the
same sign, so that to ensure the condition we need to check that

tan(c0R) =
Rη20c0

q +Rη0c20
(2.2.10)

does not holds for η0 solution of (2.2.3). The compatibility condition between (2.2.3) and
(2.2.10) is

− c0
η0

=
Rη20c0

q +Rη0c20

or equivalently
�
q +Rη0c

2
0 +Rη30

�
c0 = 0 ,

which cannot be verified (recall that η0 �= q, so that c0 �= 0). The lemma is proved.

We return to the proof of proposition 2.9. Since the previous lemma guarantees that the
Jacobian matrix J of the derivatives of F with respect to ξ and η is invertible, we can apply
the implicit function theorem at point (ξ, η, σ) = (0, η0, 0). Fix ζ = iη0. By proposition
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2.14, the flow defined by the system (2.2.6) is C1 in the parameters, so that its derivative in
σ coincides with the first term of the Taylor expansion, which we will denote Ψ(1). It is a
solution of

dΨ(1) =

�
η0 iq
iq −η0

�
Ψ(1) dx+ i

�
0 1
1 0

�
Ψ(0) dWx . (2.2.11)

Here, Ψ(0) denotes the solution of the deterministic problem (σ = 0). Let M be the matrix
appearing in the drift term of the above equation; the solution can be computed explicitly,
and it is given by

Ψ(1)(x) = i

� x

0

exp
�
M(x− y)

��0 1
1 0

�
Ψ(0)(y) dWy ,

where
�
exp

�
M(x− y)

�
Ψ(0)(y)

�
1
= i

q

c0
cos

�
c0(x− y)

�
sin(c0y) + 2i

η0q

c20
sin

�
c0(x− y)

�
sin(c0y)

+ i
q

c0
sin

�
c0(x− y)

�
cos(c0y)

= i
q

c0
sin(c0x) + 2i

η0q

c20
sin

�
c0(x− y)

�
sin(c0y) .

It follows that

∂σ F (0, η0, 0) = i

� R

0

�
exp

�
M(R− y)

�
Ψ(0)

y

�
1
dWy .

Observe that ∂ξ F (0, η0, 0) is imaginary pure and, symmetrically, ∂η F (0, η0, 0) is real. Set

α := ∂η F (0, η0, 0) =
�q2
c30

+R
η0
c0

�
sin

�
c0R

�
−R

η20
c20

cos
�
c0R

�
.

We can write

J−1 =

�
0 − 1

α
1
α

0

�

and from the formula

v :=

�
∂σξ
∂ση

�
(σ = 0) = −J−1

�
�
�
∂σF

�

�
�
∂σF

�
�

(0, η0, 0)

we get that ∂ση is given by (2.2.7) and ∂σξ = 0.

Proof of Corollary 2.10. In the case of a quiescent soliton lemma 2.15 still holds. Indeed we
have now c0 = q and qR = (2n+ 1)π/2, so that equation (2.2.9) becomes

∂ξF (0, 0, 0) = −i

�
q2

c30
+R

ζ0

c0

�
sin

�
c0R

�
+ iR

ζ20
c20

cos
�
c0R

�
= ∓i

1

q
�= 0

and the determinant of the Jacobian is not zero. One has then α = ±1/q and

∂σ F (0, 0, 0) = −
� R

0

sin(qR) dWy = ∓WR ,
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which is real. Therefore,

v :=

�
∂σξ
∂ση

�
(σ = 0) = −

�
0 ∓q
±q 0

��
∓WR

0

�
=

�
0

qWR

�
.

A true soliton is created whenever WR > 0.

2.2.3 NLS solitons – small-intensity complex noise

The limit case of a small-amplitude complex white noise is very similar to the case of the
real white noise treated above. Take U0(x) = (q+σẆx) [0,R](x) where Wx = W

(1)
x + iW

(2)
x

is a complex Wiener process. We have

Proposition 2.16. For qR > π
2 and in the limit of a small complex white noise type

stochastic perturbation of the initial condition, the parameters ξ, η defining the velocity and
amplitude of each soliton are perturbed at first order by small, zero-mean, independent Gaus-
sian random variables, which are given by

∂σξ = −
q sin(c0R)W

(2)
R +

� R

0
2η0q

c20
sin

�
c0(R− y)

�
sin(c0y)dW

(2)
y

2
�
q2

c20
+Rη0

�
sin

�
c0R

�
−R

η2
0

c0
cos

�
c0R

� ,

∂ση =
q sin(c0R)W

(1)
R +

� R

0
2η0q

c20
sin

�
c0(R− y)

�
sin(c0y)dW

(1)
y

2
�
q2

c20
+Rη0

�
sin

�
c0R

�
−R

η2
0

c0
cos

�
c0R

� ,

where c0 :=
�
q2 − η20, and η0 is the parameter defining the amplitude of the soliton of the

unperturbed system.

Proof. This proof is similar to the one of proposition 2.9. An analogous of proposition 2.14
holds in this setting, and lemma 2.15 remains unchanged (note that in lemma 2.15 we work
on the deterministic equation). From equation (2.2.11) onward one has just to remember
that W is now complex.

Remark 2.17. In this case, since we used a noise with a symmetric law, the first order
perturbations of the velocity and amplitude of the soliton have the same law and are indepen-
dent. We could have taken a non symmetric complex noise to perturb the initial condition:
�ν = ν1 + iν2, where ν1 and ν2 have different distributions. In this case, the perturbations
of the velocity and amplitude of the soliton would still be independent, but not sharing the
same law.

Remark 2.18. Quiescent solitons are perturbed in both amplitude and speed, leading to
the possible creation of true solitons with nonzero velocity. The same result holds when
perturbing the initial data with more general complex processes.

2.2.4 KdV solitons – deterministic background solution

In [Mu78], Murray obtained a C∞ solution for the KdV equation with a deterministic “box-
shaped” initial condition U0 = q∗ [−R,R](x). He showed that in this case the Jost coefficient
a extends to an analytic function in the upper part of the ζ-plane. Only in the case of positive
values of q, the Jost coefficient a has a finite number of zeros on the imaginary axis ζ = iη
for 0 < η ≤ √

q.
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We report some explicit computations on our similar deterministic case, as these results
will be used below, and study some properties of the soliton components of the solution.
First, let us construct explicitly the solution of the deterministic equation, which we call ϕ0.
We assume that the initial condition of the NLS equation is given by U0 = q ∗ [0,R](x) for
some q > 0. Due to [AC, Lemma 2.2.2], we can assume that ζ = iη; we need to solve

ϕxx =

�
η2ϕ x < 0, x > R

(−q + η2)ϕ x ∈ [0, R]
. (2.2.12)

For η = 0 the only integrable solution is ϕ ≡ 0. Soliton components corresponding to η > 0
must satisfy

ϕ = c1e
ηx x < 0 , (2.2.13)

ϕ = c2e
−ηx x > R . (2.2.14)

For x ∈ [0, R] one can rewrite the problem as

�
∂xϕ = �ϕ
∂x �ϕ = (−q + η2)ϕ

.

Note that for η ≥ √
q the solution of (2.2.12) is monotone, so that it cannot be a Jost

function corresponding to a soliton (which has to be integrable). We therefore look for
solutions corresponding to 0 < η <

√
q. Set c =

�
q − η2. Due to (2.2.13) and (2.2.14), we

only need to solve (2.2.12) for x ∈ [0, R]. From (2.2.12) and the initial conditions

ϕ0(0) = c1 , ∂x ϕ0(0) = ηc1

derived from (2.2.13), we get

ϕ0(x) = αeicx + βe−icx , α =
c1
2

�
1− i

η

c

�
, β =

c1
2

�
1 + i

η

c

�
,

which is to say

ϕ0(x) = c1 cosh(icx)− ic1
η

c
sinh(icx) = c1

�
cos(cx) +

η

c
sin(cx)

�
. (2.2.15)

We can set the global constant c1 equal to 1. Matching this solution with the final condition
(2.2.14) �

ϕ(R) = cos(cR) + η
c sin(cR) = c2e

−ηR

∂xϕ(R) = −c sin(cR) + η cos(cR) = −ηc2e
−ηR

,

we obtain an equation for η:
�

q sin(R
�

q − η2) = 2c2η
�
q − η2e−Rη

q cos(R
�

q − η2) = c2(q − 2η2)e−Rη
.

For η =
�
q/2, the only possible solution is such that R

�
q − η2 = π/2 + kπ, which means

that √
q R = (2k + 1)π/

√
2 . (2.2.16)
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All other solutions can be found solving

f(η) := tan(R
�
q − η2)− 2η

�
q − η2

q − 2η2
= 0 (2.2.17)

for η ∈ [0,
√
q)\{

�
q/2}. The existence and the number of solutions for the above equation

depend on the quantity R
√
q. Consider some fixed value of R. As it is shown below, for small

values of q a first soliton is created with η(1) ∼ 0. As q increases, the value of η(1) increases
too and tends to

�
q/2 as q tends to π2/(2R2). We have already found the solution for this

specific value of q (k = 0 in equation (2.2.16)). For q larger than π2/(2R2), η(1) continues
to grow. A second solution appears (η(2) = 0) when q = π2/R2. A third solution appears

at q = (2π/R
�2

; the values of η(i) (corresponding to the ith soliton created) continuously
increase as q grows, but remain ordered: η(i) < η(j) for i > j. Therefore, the number of
solitons created is N =

�
R
√
q/π

�
+ 1, where �·� denotes the integer part.

A few examples of f(η) are plotted in figure 2.2. We have taken R = 1 and different
values of q. The first critical points (when new solitons are created) correspond here to
q(2) = π2 ∼ 9.87, q(3) = 4π2 ∼ 39.48, q(4) = 9π2 ∼ 88.83, q(5) = 16π2. The almost-vertical
line appearing near η =

�
q/2 for q = 44 reflects the fact that we are near the critical points

of (2.2.16): from (2.2.16) for k = 1 we have q = 9π2/2 ∼ 44.41.

Let us take a closer look at the case q → 0. We assume q = q0 ε and look for the first
terms of the expansion of η in ε: η = η0 + η1ε+ η2ε

2 +O(ε3). For finite values of R, by the
above considerations on the threshold effect, the first term of the expansion must be zero.
Indeed, if we consider the expansion in ε of the function f defined by (2.2.17) we obtain

(ord. 0) f(η) = tan(R
�
−η20) +

�
−η20
η0

+O(ε) ,

and the order-zero term cannot be made equal to zero. We have therefore: η = η1ε+O(ε2).
Looking at equation (2.2.17) at first order

(ord. 1) f(η) =

�
Rq0 − 2η1

� √
ε√
q0

+O(ε3/2) = 0

we obtain η1 = Rq0
2 . Pushing the expansion further, one can obtain the following order

coefficients. At order two we have:

(ord. 2) f(η) = −
�

4

24
R3 q20 + 2η2

�
ε3/2√
q0

+O(ε5/2) .

One has then

η =
Rq0
2

ε− R3 q20
12

ε2 +O(ε3) , (2.2.18)

showing that in the limit ε → 0, η is of the same order of q.

2.2.5 KdV solitons – small-amplitude random perturbation with

q > 0

We now add some random perturbation to this “box-shaped” initial profile. Let U0 =
(q + σẆx) [0,R](x) be the initial condition of the KdV equation, where W is a standard
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Figure 2.2: Plot of the function f(η) for different values of the amplitude q of the
initial condition. Each zero of f(η) correspond to a soliton component of the solution
identified by the complex number iη.
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Wiener process and Ẇ is a white noise. Since solitons correspond to zeros of the complex
extension of a, which in turn must be located on the imaginary axis, we look for bounded
solutions of equation (2.1.9) for ζ = iη, η ∈ R. The first main result is contained in the
following proposition.

Proposition 2.19. In the limit of a small white noise type stochastic perturbation of the
initial condition, the parameter η defining the velocity and amplitude of a generated soliton
is perturbed at first order by a small, zero mean, Gaussian random variable. If η0 is the
parameter corresponding to the unperturbed soliton, we can write the parameter identifying
the perturbed soliton as η = η0 + ση1 + o(σ), where

η1 =

� R

0
ϕ0(R− x)ϕ0(x) dWx

cos(c0R)
�
2 + η0R− η3

0R

c20

�
+ sin(c0R)

�
3η0+2η2

0R

c0
+

η3
0

c30

� . (2.2.19)

Here, ϕ0 is the deterministic solution of (2.2.12), given by

ϕ0(x) = cos(c0x) +
η0
c0

sin(c0x)

for c0 :=
�
q2 − η20.

In certain cases, the stochastic perturbation can result in the creation of a new soliton.
As for the NLS equation, since we are considering the limit of very small perturbations, this
happens only for specific “critical” values of q (and R). The result is presented in the next
proposition, which deals with the case of perturbations of a deterministic quiescent soliton.

Proposition 2.20. If we are at a critical point, which is to say
√
q R = nπ for n ∈ N,

n > 0, a small amplitude white noise type stochastic perturbation of the potential may
create a new small-amplitude soliton. The condition for the creation of a new soliton is that
the zero-mean, Gaussian random variable given by the last term of equation (2.2.24) below
is positive.

Before we start the proof of the above propositions, we shall remark that an analog of
proposition 2.14 holds in this setting, and it provides the uniqueness and regularity results
for the solution. The result reads

Proposition 2.21. The stochastic differential equation (2.2.20) below defines a stochastic

flow Φ(η,σ)(x) =
�
ϕ(x), �ϕ(x)

�T
of C1-diffeomorphisms, which is C1 also in the parameters

η,σ.

Proof of Proposition 2.19. We need to solve
�

dϕ = �ϕ dx

d�ϕ = (−q + η2)ϕ dx+ σϕ ◦ dWx

(2.2.20)

for x ∈ [0, R] with initial conditions ϕ(0) = 1, �ϕ(0) = η. As we did for the NLS equation,
we look at the flow provided by proposition 2.21 and define a function of the flow at the
point x = R as F (η,σ) := �ϕ(R)+ηϕ(R). F remains a function of the two parameters (η,σ).
To prove proposition 2.19 we use the implicit function theorem to show that F (η,σ) has a
unique zero in some open set containing (η0, 0), the point corresponding to the deterministic
solution. The following lemma ensures that the hypothesis of the implicit function theorem
are satisfied.
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Lemma 2.22. Let F (η, σ) be the function defined above. Then, for all η0 corresponding to
a soliton component of the solution of the deterministic problem, ∂ηF (η0, 0) �= 0.

Proof of Lemma 2.22. For η = η0 and σ = 0 we have that ϕ = ϕ0 and (recall that c0 =�
q − η20)

∂ηϕ (R) = sin(c0R)
�1 + η0R

c0
+

η20
c30

�
− Rη20

c20
cos(c0R) ,

∂η �ϕ (R) = cos(c0R)
�
1 +Rη0

�
+

η0
c0

sin(c0R)
�
1 + η0R

�
=

�
1 + η0R

�
ϕ0(R) .

Since

∂ηF = ∂η �ϕ+ ϕ+ η∂ηϕ ,

∂ηF (η0, 0) = cos(c0R)
�
2 + η0R− η30R

c20

�
+ sin(c0R)

�3η0 + 2η20R

c0
+

η30
c30

�
.

The coefficient of the sinus is strictly positive (the coefficient of the cosinus has instead at
least one zero for η0 ∈ [0,

√
q], since it is positive for η0 = 0 and negative for η0 → √

q).
Therefore, we only need to verify that the following equation

g(R, q, η0) := tan(c0R) +
2 + η0R− η3

0R

c20

3η0+2η2
0R

c0
+

η3
0

c30

= 0 (2.2.21)

is not satisfied, knowing that η0 is a value corresponding to a soliton solution of the deter-
ministic equation. As we have seen, we can either have η0 =

�
q/2 if condition (2.2.16) is

satisfied, or else η0 is given as the solution of equation (2.2.17) in (0,
√
q)\{

�
q/2}.

In the first case we have that c0 =
�
q/2, so that condition (2.2.16) implies that cos(c0R) = 0

and sin(c0R) = ±1. Therefore, ∂ηF �= 0.
Consider now the second case. We look for points η ∈ (0,

√
q)\{

�
q/2} such that f(η) =

g(η) = 0. If such a point exists, then

2ηc

q − 2η2
= −2 + ηR− η3R

c2

3η+2η2R
c

+ η3

c3

,

which also reads
2η

q − 2η2
= − (2 + ηR)c2 − η3R

(3η + 2η2R)c2 + η3

or equivalently

(2η2 + 2η3R)(q − η2) + 2η4(1 + ηR) + (2 + ηR)(q − η2)q − η3Rq

(q − 2η2)[(3η + 2η2R)(q − η2) + η3]
= 0 . (2.2.22)

For η <
�
q/2 the denominator is positive and the numerator

(2η2 + 2η3R)(q − η2) + 2η4(1 + ηR) + (2 + ηR)(q − η2)q − η3Rq > ηR(q − η2)− η3Rq > 0 ,

so that the fraction on the left hand side of (2.2.22) is positive and cannot be zero. For
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�
q/2 < η <

√
q the denominator is negative and the numerator is larger than 2η5R−η3Rq =

η3R(η2 − q) > 0, so that the fraction (2.2.22) is negative and cannot be zero. The lemma is
proved.

We return to the proof of proposition 2.19. Since the above lemma guarantees that
∂ηF (η0, 0) �= 0, we can apply the implicit function theorem. We have (at η0)

�
d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = (−q + η20)∂σϕ dx−
�
ϕ+ σ∂σϕ

�
◦ dWx

.

By proposition 2.21 the flow Φ
(η,σ)
x is C1 in the parameters, so that its derivative in σ at

σ = 0 coincide with the first term of the Taylor expansion, which is the solution of
�

d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = (−q + η20)∂σϕ dx− ϕ0 dWx

.

In matricial notation,

d

�
∂σϕ
∂σ �ϕ

�
= dΦ =

�
0 1

−c2 0

�
Φdx−

�
0

ϕ0 dWx

�
,

with

M =

�
0 1

−c2 0

�
, eMx =

�
cos(cx) 1

c sin(cx)
−c sin(cx) cos(cx)

�
.

The solution is given by

Φ(x) = Φ(0)−
� x

0

eM(x−y)

�
0

ϕ0(y) dWy

�
.

We have

∂σϕ(x) = −1

c

� x

0

sin
�
c(x− y)

��
cos(cy) +

η

c
sin(cy)

�
dWy ,

∂σ �ϕ(x) = −
� x

0

cos
�
c(x− y)

��
cos(cy) +

η

c
sin(cy)

�
dWy .

Therefore,

∂σF (η0, 0) = ∂σ �ϕ(R) + η0 ∂σϕ(R) = −
� R

0

ϕ0(R− x)ϕ0(x) dWx

and we obtain, at first order, the perturbation of the value of the parameter η defining the
velocity and amplitude of the soliton: for every (q,R, η0),

∂ση(σ) = −∂σF

∂ηF
(η0, 0)

=

� R

0

�
cos

�
c0(R− x)

�
+ η0

c0
sin

�
c0(R− x)

���
cos(c0x) +

η0

c0
sin(c0x)

�
dWx

cos(c0R)
�
2 + η0R− η3

0R

c20

�
+ sin(c0R)

�
3η0+2η2

0R
c0

+
η3
0

c30

� .
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The proposition is proved.

We now turn to the case of quiescent solitons, where a small random perturbation of
the initial condition may result in the creation of a new soliton. The result was stated in
proposition 2.20, which we shall now prove.

Proof of Proposition 2.20. The deterministic background solution is (c =
�
q − η2)

ϕ0 = cos(cx) +
η

c
sin(cx) . (2.2.23)

We have U0 = q + σẆx; we want to apply the implicit function theorem to the function
F (η, σ) defined above, at the point (0, 0). At this point

∂ηϕ(R) =
1√
q
sin(

√
q R) = 0 ,

∂η �ϕ(R) = cos(
√
q R) = ±1 .

Therefore

∂ηF (0, 0) = ∂η �ϕ+ ϕ+ η ∂ηϕ = 2 cos(
√
q R) = ±2 ,

and the implicit function theorem is applicable. We also have (again at η = 0)
�

d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = −q ∂σϕ dx−
�
ϕ+ σ∂σϕ

�
◦ dWx

.

As seen above, the solution of the above system coincides at σ = 0 with the solution of
�

d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = −q ∂σϕ dx− ϕ0 dWx

,

which is given by (here, c =
√
q)

∂σϕ(x) = − 1√
q

� x

0

sin
�√

q(x− y)
�
cos(

√
q y) dWy ,

∂σ �ϕ(x) = −
� x

0

cos
�√

q(x− y)
�
cos(

√
q y) dWy .

We have therefore

∂σF (0, 0) = −
� R

0

cos
�√

q (R− x)
�
cos(

√
q x) dWx ,

and since cos(
√
q R) = ±1

v : = ∂ση(σ) = −∂σF

∂ηF
(0, 0) =

� R

0
cos

�√
q (R− y)

�
cos(

√
q y) dWy

2 cos(
√
q R)

=
1

2

� R

0

cos2(
√
qx) dWx . (2.2.24)
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In this case, a new small-amplitude soliton, corresponding to η = σv, is created whenever
v > 0.

2.2.6 KdV solitons – small-amplitude random perturbations with

q=0

We analyze now the case in which the initial condition is the pure stochastic perturbation:
contrarily to the NLS equation, even this small initial condition can generate a soliton. In
this setting there is no (non trivial) solution in the deterministic case. This case is obtained
at the critical point

√
q R = 0, where the first quiescent soliton is created. We consider

in the next proposition the limit case of a rapidly oscillating perturbation. The case of a
more general, smooth perturbation is discussed in remark 2.24. Remark 2.25 below discuss
the energy and mass conversion efficiency for the creation of a new soliton using a random
perturbation.

Proposition 2.23. For q = 0, a small-amplitude (σ � 1) stochastic perturbation of the
potential may create a new small-amplitude soliton. For a white noise type perturbation
σẆx, a new soliton is created if WR > 0 (which is an event of probability 1/2). The created
soliton corresponds to the value η = σWR.

Proof. Retain the notation introduced in the previous subsection, namely �ϕ = ∂xϕ. We want
to use again the implicit function theorem. Taking the limit of the deterministic solution
(2.2.23) as q → 0 we get

ϕ = 1 , and �ϕ = 0 .

We have

∂ηF (0, 0) = ∂η �ϕ+ ϕ+ η ∂ηϕ = 1

and (η = 0) �
dϕ = �ϕ dx

d�ϕ = −σ ϕ ◦ dWx

,

�
d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = −
�
ϕ+ σ∂σϕ

�
◦ dWx

.

Therefore,

∂σF (0, 0) = ∂σ �ϕ+ η ∂σϕ = −
� R

0

ϕ dWx = −WR .

It follows that

∂ση(σ) = −∂σF

∂ηF
(0, 0) = WR ,

and a single soliton corresponding to η = σWR is generated whenever WR > 0, which means
with probability 1/2.
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Remark 2.24. The result of proposition 2.23 holds with more general processes: if, instead
of a white noise, we take U0(x) = σQx in (2.2.12), where Qx is a generic stochastic process,
we have (at η = 0)

�
d∂σϕ = ∂σ �ϕ dx

d∂σ �ϕ = −Qx

�
ϕ+ σ ∂σϕ

�
dx

,

∂σF (0, 0) = ∂σ �ϕ+ η ∂σϕ = −
� R

0

Qx dx

and

∂ση(σ) = −∂σF

∂ηF
(0, 0) =

� R

0

Qx dx .

In this case, a single soliton is created whenever the noise introduced has positive mean, and
it corresponds to η = σ

� R

0
Qx dx.

Remark 2.25. Recall that the mass of a soliton of the KdV equation is Nη = 4η. Here, we
have introduced a perturbation of mass NU0

= σ
�
R
Qx dx = η. We see therefore that the

soliton created has a larger mass that the initial perturbation, implying that the radiative
part (going in the direction opposite to the one of the soliton) has absorbed a total mass of
3η.

The energy conversion efficiency from a small noise source to a soliton is very poor, since
the input energy is of order σ2 (EU0

= σ2
�
R
Q2

x dx), while the energy of the created soliton
is only Eη = 16

3 η3 ∼ σ3, for a smooth source. For a white noise source, the input energy is
infinite, while the energy of the created soliton is finite.

2.2.7 Perturbation of NLS and KdV solitons: similarities and dif-

ferences

We have shown that for both NLS and KdV, solitons are stable with respect to small random
perturbations of the initial condition. We have also seen how small random perturbations
affect solitons, and here a few differences between the two models appear. For NLS there is a
thresholding effect for the creation of solitons, so that a pure random initial condition of very
small amplitude cannot produce solitons. Studying the perturbation of a real box-like initial
condition whose integral is sufficiently large to create at least one soliton, we showed how
the effect strongly depends on the nature of the perturbation: if the random perturbation is
aligned (has the same phase) to the deterministic initial condition (in the case studied this
means that the random perturbation is real), the amplitude of solitons is indeed modified,
but their velocity remains unaffected. On the contrary, for a complex random perturbation
both the amplitude and velocity of solitons are modified.

KdV is a real equation, so that only real random perturbations can be used. However,
unlike for NLS solitons, the amplitude and velocity of solitons are related, and both of them
are affected by random perturbations. For KdV we can also consider the case of a purely
random initial condition of small amplitude. In this case, and for very general random initial
conditions, there is a positive and explicitly computable probability, which depends on the
kind of noise used, to create a new soliton.

The mass conversion efficiency is also different. For NLS, using a real white noise per-
turbation of a “critical” initial condition, it is possible to transform a quiescent soliton into a
real soliton with finite mass, but the mass introduced with the perturbation is infinite. For
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KdV, the mass of the created soliton is 4 times the mass introduced by the perturbation
(which is finite).

2.3 Examples

In this section we present some explicit examples of the influence of random initial conditions
on soliton components of the solution of the NLS equation. We first consider the question of
the probability of creating a soliton from noises with a compact support [0, R]. The picture
is not simple, as the answer strongly depends on the kind of noise used. For example, for
real initial conditions and in the limit of rapid oscillations, the threshold R̄ of the length
of the support of the initial condition necessary to create the first quiescent soliton with
zero speed is almost surely finite (the quiescent soliton was defined at the beginning of
subsection 2.2.1). A characterization of the distribution of this random threshold in given
in proposition 2.26. The same result holds for complex initial conditions with a constant
phase. For random initial conditions with varying phase the answer is different. We will
show that for a symmetric, complex initial condition, and in the limit of rapid oscillations,
no soliton can be generated. This suggests that a constant phase of the initial condition is
a crucial element to obtain a positive probability of creating a soliton with a given velocity.
The proof of this remains an open problem, but we present a somewhat complementary
case to the fix phase initial condition to support this claim: in the third example we study
we take a complex random initial condition with constant amplitude. Here, only the phase
changes, and still the probability of creating a soliton with any given speed is zero. Another
negative example follows, where the initial condition is given by a complex jump process.

From all these negative examples one may get the impression that using random initial
conditions it is actually very difficult to create new solitons, but this is not the case. Even
if for some complex random initial conditions the probability of creating a soliton with a
given speed is zero, this does not imply that no soliton can be created since the distribution
of the speed and amplitude of created solitons can have an absolutely continuous part with
respect to the Lebesgue measure. This leads us to our second topic: the analysis of the
continuous part of the distribution of the speed and amplitude of created solitons in the
presence of random initial conditions. In the limit of a random initial condition with a very
long support, R → ∞, the density of this distribution, called density of states (DOS), can
be computed explicitly in the limit of rapidly oscillating processes, as it was done, formally,
in [KM08]. To find the DOS they use the Lyapunov exponent of the ZSSP and apply a
generalized Thouless formula. One of the reasons why this result is only formal is that
for a white noise initial condition the IST, which is the preliminary step for all successive
manipulations, cannot be applied. To solve this problem, and because in applications one is
often faced with such initial conditions, we shall consider processes that are rapidly, but not
infinitely rapidly, oscillating, and express the DOS using a power series expansion around
the limit case. We will show how to obtain the DOS for the limit case of infinitely rapid
oscillations in a rigorous way (the expression we obtain is in accordance with the formal
result cited above), and provide the following order correction term for fast oscillations. We
investigate this problem performing explicit computations in the case of an initial condition
given by a fast oscillating, complex Ornstein-Uhlenbeck process and detail the scheme to
use for a wide class of rapidly oscillating bounded Markov processes. We will show that in
both cases the first order term of the expansion is zero, and obtain an explicit expression
for the second order correction for the Ornstein-Uhlenbeck process. In the general case of a
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bounded Markov process the explicit formula for the second order term of the DOS is very
complicated, but we will discuss and present qualitatively the result in a few special settings
where simplifications occur.

2.3.1 Creation of solitons from a rapidly oscillating real noise

We analyze here the case of a purely random, real initial condition for the NLS equation.
Given the random process providing the initial condition, the presence of a soliton component
in the solution depends on the length R of the support of the process. We show how to
obtain the threshold for the creation of the first soliton with zero speed, in the case of a
rapidly oscillating initial condition. The precise result is stated in the following proposition.

Proposition 2.26. Let the initial condition ν(x) of the NLS equation be given by a real,
rapidly oscillating process, with support on [0, R] and satisfying hypothesis 2.1. Then, the
distribution of the threshold R̄ at which the first (quiescent) soliton with zero initial velocity
appears is given by the distribution of the hitting time for a one-dimensional Bessel process
starting from zero, of the threshold π/2.

Remark 2.27. With the same proof, one can show that this result also holds for an initial
condition given by a purely imaginary, rapidly oscillating process. And a simple phase shift
[Ki89] allows to extend this result to any complex, rapidly oscillating initial condition, with
constant phase.

The case of a real, positive (deterministic) box-like initial condition has been first studied
in [Ma73] and has been extended to the case of a general, real, positive initial condition in
[Bu88]. Some of these results (the threshold effect for the creation of new solitons, the
identification of the number of created solitons, etc.) have been discussed and illustrated in
subsection 2.2.1. The extension to real, positive, stochastic potentials is also discussed in
[DP08].

The first preliminary step of the proof of proposition 2.26 will be used also in the discus-
sion of the following examples. We shall therefore present it in the more general framework
of a possibly complex initial condition in the next paragraph. This step relies on the result
of proposition 2.7, providing a correspondence between the existence of solitons and zeros
of the function a(ξ, x), (ξ, x) ∈ R × [0, R]. The function a(ξ, x) is the Jost coefficient a(ζ)
of a ZSSP problem with the same potential, but supported only on [0, x], instead than on
[0, R], and evaluated on the real line ζ = ξ.

The actual core of the proof of the proposition is left to the last part of this subsection.

Limit equations for rapidly oscillating initial conditions

As shown in subsection 2.1.2, to obtain information on the behavior of the soliton component
of the solution for rapidly oscillating initial conditions we just have to study the canonical
system (2.1.16) �

dψ1 = −iζψ1dx+ iDψ2 ◦ dWx

dψ2 = iζψ2dx+ iDψ1 ◦ dW ∗
x

. (2.3.1)

Here, D =
√
2α is a constant depending on the integrated covariance α of the process

ν(x). For real values of the spectral parameter ζ, there are two sets of linearly independent
solutions defined by the asymptotic behaviors given by (2.1.4 - 2.1.5) and related through
the system (2.1.6). Recall that the initial condition was supposed to have compact support
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contained in the interval x ∈ [0, R]; we therefore obtain the boundary conditions

ψ1(0) = 1 , ψ2(0) = 0

and

Ψ(R) = a(ζ)�Φ(R) + b(ζ)Φ(R) = a(ζ)

�
1
0

�
eiζR + b(ζ)

�
0
1

�
e−iζR .

To look for the threshold R̄ we have to consider the length R of the support of the
initial condition ν as a new dynamical variable, which means that we shall use again the
invariant imbedding approach introduced in the proof of proposition 2.6. As we have seen
in the previous sections, the analysis of the Jost coefficients a, b, the discrete spectrum
(ζn)n=1...N and some norming constants (ρn)n=1...N , provides exhaustive information about
spectral properties of the Zakharov-Shabat eigenvalue problem (ZSSP) and therefore on the
presence of solitons. However, it turns out that a lot of information can be obtained in
an easier way by the analysis of the dynamics of a single complex variable, the reflection
coefficient rR(ζ) given by the ratio b(ζ)/a(ζ) on the real axis ζ = ξ. This can be understood
in the following way. Consider the function r(x) = ψ2(x)/ψ1(x). From the ZSSP system
(2.3.1) we obtain the evolution equation for r(x):

dr(x) = 2iξr(x) dx− iDr2(x) ◦ dWx + iD ◦ dW ∗
x . (2.3.2)

From the boundary conditions for Ψ we obtain boundary conditions for r, namely r(0) = 0
and r(R) = rRe

2iξR. Then, we see that the reflection coefficient can be obtained from the
solution of the complex Riccati equation (2.3.2) with initial condition r(0) = 0, evaluated at
x = R. From the proof of proposition 2.6 we also obtain that the condition for the generation
of the first soliton when the length of the support of the initial condition is R̄ is that the
Jost coefficient a must have a zero on the real line, a(ξ, 0, R̄) = 0, which corresponds to a
singularity (blow up) of the solution r(x) at x = R̄. The value of ξ for which r(R̄) blows up
provides the speed of the soliton created at the threshold R̄. From this, one can obtain the
distribution of the (random) threshold R̄ for the creation of the first soliton. Moreover, the
absence of singularities in [0, R] implies the absence of soliton components in the solution of
the NLS equation.

To better understand the evolution of the solution of (2.3.2) we introduce the change of
variables r(x) = cotg

�
θ(x)/2

�
eiϕ(x). With some algebraic manipulations

dr(x) = 2iξr(x) dx− iDr2(x) ◦ dWx + iD ◦ dW ∗
x

= − dθ(x)

2 sin2
�
θ(x)/2

�eiϕ(x) + i cotg
�
θ(x)/2

�
eiϕ(x) dϕ(x) ,

dr(x)

r(x)
= 2iξ dx− iD r(x) ◦ dWx + i

D

r(x)
◦ dW ∗

x

= − dθ(x)

2 sin
�
θ(x)/2

�
cos

�
θ(x)/2

� + i dϕ(x) ,

we get to the system of SDEs
�

dθ(x) = −2D�
�
eiϕ(x) ◦ dWx

�

dϕ(x) = 2ξ dx− 2Dcotg
�
θ(x)

�
�
�
eiϕ(x) ◦ dWx

� , (2.3.3)

for θ ∈ [0,π] and ϕ ∈ R. One always starts from θ = π, corresponding to r = 0. θ = 0
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corresponds to a singularity for r and therefore to the creation of a soliton.

Real white noise: threshold for a still soliton creation

We shall now work in the setting presented in the previous paragraph and prove proposition
2.26.

Proof of Proposition 2.26. From the proof of proposition 2.6 we see that the new soliton
created at the threshold R̄ is a quiescent soliton, which was defined in subsection 2.2.1. We
can therefore set ζ = 0 in equation (2.3.1), and obtain

�
dψ1 = iψ2 ◦ dWx

dψ2 = iψ1 ◦ dWx

.

The evolution equation for the variable r(x) := ψ2(x)/ψ1(x) now reads

dr(x) = i
�
− r2(x) + 1

�
◦ dWx .

Using again the change of variables r(x) = cotg
�
θ(x/2)

�
eiϕ(x) we get

�
dθ(x) = −2 sin

�
ϕ(x)

�
◦ dWx

dϕ(x) = −2 cotg
�
θ(x)

�
cos

�
ϕ(x)

�
◦ dWx

, (2.3.4)

for θ ∈ [0,π] and ϕ ∈ [0, 2π]. We can look at the above system as governing the motion
(if x plays the role of a time variable) of a “particle” on a finite box. The initial condition
(ψ1(0) = 1, ψ2(0) = 0) is r(0) = 0, corresponding to θ(0) = π, and the only finite solutions
adhering to this initial condition have phase ϕ = ±π/2. The value of ϕ(0) must be chosen
such that θ ≤ π, which formally means that dθ(0) < 0. The phase retains its value for
θ ∈ (0,π), and may change its value every time the “particle” is reflected at θ = 0 or θ = π:
each time the new value of ϕ must be chose such that 0 ≤ θ ≤ π. The boundary conditions
in ϕ are periodic. The process γ(x) =

�
π − θ(x)

�
is therefore a reflected Wiener process,

γ = 2|W |, starting from 0. We are interested in the hitting time for γ of the threshold π,
which corresponds to θ = 0. In turn, this corresponds to the threshold R̄ of the length of
the support of the initial condition of the NLS equation necessary to create the first still,
quiescent soliton. Since almost surely the one-dimensional Wiener process W reaches the
points ±π/2 in a finite time, R̄ is almost surely finite, and the distribution of the creation
time R̄ can then be obtained as the hitting time of the threshold π/2 for the Bessel process
γ.

Remark 2.28. When the initial condition U(x) is real, and only when it is real, it is possible
to obtain an explicit formula for the solution Ψ of the ZSSP system for ζ = 0. This is given
by [Ki89]

ψ1(x) = eiS(x)

�
i

� x

0

U(y)e2iS(y)dy + 1

�

ψ2(x) = eiS(x) − ψ1 ,

where

S(x) =

� x

0

U(y) dy .
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The solution Ψ defined above satisfies the initial condition (2.1.12) and for S(R) = ±π/2
it also matches the final condition ψ1(R) = 0, which means that a new quiescent soliton is
created. This confirms the result of proposition 2.26. Unfortunately, when U is complex-
valued it is not possible to find a closed form expression for the solution Ψ and then the
strategy used in the proof of proposition 2.26 is the only possible one.

2.3.2 Complex white noise: no soliton creation

We study here the case where the initial condition is give by a complex process, in the limit
of rapid oscillations. As proved in section 2.1, what we have to study is the ZSSP system
with the potential given by a complex white noise. We will show that in this limit almost
surely no soliton is created. The precise result is the following.

Proposition 2.29. Let the initial condition U0(x) of the NLS equation be given by a com-
plex, rapidly oscillating process, with support on [0, R], of the form U0(x) = ν1(x) + iν2(x),
where νn, n = 1, 2 are two independent and identically distributed real processes satisfying
hypothesis 2.1. Then, for any fixed R > 0 and in the limit of fast oscillations, the probability
that the solution of the NLS equation contains a soliton component is zero.

We shall use the approach presented in the previous subsection, and prove the following
equivalent reformulation of proposition 2.29.

Proposition 2.30. For any R > 0, consider the discrete spectrum of the ZSSP system
(2.3.1) with a complex symmetric white noise as potential. Then, almost surely the discrete
spectrum is empty.

Proof. We start our analysis from the system (2.3.3), where now Wx = W
(1)
x + iW

(2)
x is a

complex Wiener process. We will work on the first equation of this system to show that
θ(x) > 0 for every x ∈ [0, R] almost surely. This fact implies that the function r solution
of the Riccati equation (2.3.2) does not blow up, the function a(ξ, 0, x) is never zero for
(ξ, x) ∈ R × [0, R], and the Jost function a(ζ) cannot have a zero in the upper half of the
complex plane. Therefore, the discrete spectrum of the ZSSP system is empty and no soliton
is generated.

The difficult part is to show that θ(x) > 0 for every x ∈ [0, R] almost surely. The idea of
the proof relies on the fact that the behavior of θ(x) is similar to the behavior of a Bessel
process of dimension 2 (which almost surely never reaches zero), at least near zero. This is
because the first equation in (2.3.3) is very similar to a Bessel equation since

�Wx :=

� x

0

cos
�
ϕ(x)

�
dW (1)

x +

� x

0

sin
�
ϕ(x)

�
dW (2)

x (2.3.5)

is still a Wiener process by Lévy characterization theorem, and near zero cotg(x) ∼ x−1.
With this notation, and rewriting (2.3.3) in Itô form, we have

dθ(x) = d�Wx +
1

2
cotg

�
θ(x)

�
dx . (2.3.6)

Some preliminary steps are needed before we can obtain the announced Bessel equation. We
shall start by showing that strong uniqueness holds for equation (2.3.6). To do so, define
the new process Y (x) := cos

�
θ(x)

�
, which is a solution of

dY (x) = − cos
�
θ(x)

�
dx− sin

�
θ(x)

�
d�Wx = −Y (x) dx−

�
1− Y 2

x d�Wx. (2.3.7)
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Since θ ∈ [0,π], uniqueness for Y (x) implies uniqueness for θ(x). The drift of the above
equation is Lipschitz continuous. As for the diffusion coefficient, that we will now call σ, we
have that

��σ(x)− σ(y)
��2 =

���1− x2 −
�

1− y2
��2 ≤ 2− y2 − x2 ≤

��y2 − x2
�� ≤ 2|y − x|

for all x, y such that |x|, |y| ≤ 1 (observe that Y (x) ∈ [−1, 1]). Then, strong uniqueness for
equation (2.3.7) follows from [RY, theorem 3.5, chapter IX].

Return now to consider the formulation of equation (2.3.6); we have to prove that for
every fixed ξ ∈ R and R > 0, almost surely θ(x) > 0 for all x ∈ [0, R], which we do by
showing that P (τ0(θ) ≤ R) = 0, where

τ0(θ) = inf{x ≥ 0
�� θ(x) = 0} .

More generally, we set
τy(θ) = inf{x ≥ 0

�� θ(x) = y} .
Remark that τ0(θ) > R implies the non-explosion of r(x) and therefore that no soliton can
be created with speed ξ almost surely.

Recall that the initial condition for the process θ(x) was θ(0) = π. Therefore, θ(x) must
reach π/2 before reaching zero. Using the strong Markov property we get

P
�
τ0(θ) ≤ R

�� θ(0) = π
�
≤ P

�
τ0(θ) ≤ R

�� θ(0) = π/2
�
.

Remark also that the density of the process θ is symmetric with respect to π/2, so that

P
�
τ0(θ) ≤ R

�� θ(0) = π/2
�
≤ P

��
τ0(θ) ≤ R

�
∪
�
τπ(θ) ≤ R

� �� θ(0) = π/2
�

= P
�
τ0(�θ) ≤ R

�� θ(0) = π/2
�

≤ P
�
τ0(�θ) ≤ R

�� θ(0) = π/4
�
,

where �θ is a solution of (2.3.6) reflected in π/2 and taking values in the interval [0,π/2]. We
have to show that

P
�
τ0(�θ) ≤ R

�� θ(0) = π/4
�
= 0 . (2.3.8)

From now on, we will work with this reflected process. Therefore, to ease notation, we will
drop the conditioning on θ(0) = π/4. This restriction to a process with values in [0,π/2] is
very useful because the function

f(x) =
1

2

� 1
x
− cotg(x)

�

is bounded on (0,π/2]. Since limx→0 f(x) = 0, we can extend this function to the domain
[0,π/2] by continuity. We have f � ≥ 0 and f(π/2) = 1/π, from which we obtain that f takes
values in [0, 1/π]. It follows that for every fixed R,

exp
�1
2

� R

0

f2
��θ(x)

�
dx

�
≤ exp

� R

2π2

�
< ∞ ,

which is the Novikov condition implying that the process

Z(x) = exp

�� x

0

f
��θ(y)

�
d�Wy −

1

2

� x

0

f2
��θ(y)

�
dy

�
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is a martingale on [0, R]. Girsanov theorem states that Bx = �Wx −
� x

0
f
��θ(y)

�
dy is a

Wiener process under a new probability measure Q absolutely continue with respect to the
restriction of P to the natural filtration of the original Wiener process FW

x . Before we
proceed and apply Girsanov theorem, we must introduce some additional stopping times.
We stress that they all refer to the reflected process �θ starting from π/4. For n ≥ 1 set

σ1 = inf{x > 0 | �θ = π/2} ;
σ2n = inf{x > σ2n−1 | �θ = π/4} ;

σ2n+1 = inf{x > σ2n | �θ = π/2} .

Thanks to the strong Markov property of the process θ, we can work on each random interval
[σk,σk+1] independently. To fix the ideas, we shall consider the interval [0,σ1]; on any other
interval [σ2n,σ2n+1] we may proceed in the same way. Restricted to this interval, the process
�θ solves (2.3.6), and does not feel the effect of the reflection imposed in π/2. On this interval,
it is also solution of the Bessel equation

dγ =
1

2γ
dx+ dBx (2.3.9)

under the probability measure Q introduced above. This solution is a two dimensional Bessel
process, which never reaches the origin. This means that Q(γ = 0) = 0, or equivalently
Q(τ0(γ) < R) = 0. However, �θ is a solution of the Bessel equation only on the interval
[0,σ1], and only on this interval we can apply Girsanov theorem. Therefore, we can only
use that Q is absolutely continues with respect to P on FW

σ1
. But this is enough to obtain

P
�
τ0(�θ) < σ1

�
= Q

�
τ0(γ) < σ1

�
= 0 .

This means that almost surely the process �θ starting from π/4 reaches π/2 before 0. But
then it must pass again through π/4 before getting to zero: by definition �θ cannot reach
zero on the interval [σ1,σ2], so that we have also

P
�
τ0(�θ) < σ2

�
= 0 .

Repeating this construction using the strong Markov property and the Girsanov theorem on
each interval [σ2n,σ2n+1] we finally get to

∀n , P
�
τ0(�θ) < σn

�
= 0 .

We only have to show that there exists an n such that

P
�
σn > R

�
= 1 . (2.3.10)

Clearly, P (σ1 > 0) > 0, which is to say that there exists an ε > 0 such that P (σ1 > ε) > ε.
Using the independence of the increments (σn+1 − σn), we get that

P
� R/ε�

n=0

�
σn+1 − σn

�
> R

�
≥

R/ε�

n=0

P
�
σn+1 − σn > ε

�
= εR/ε > 0
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and

P
� K�

n=0

�
σn+1 − σn

�
< ε

�
=

K�

n=0

P
�
σn+1 − σn < ε

�
= (1− ε)K

K→∞−→ 0 .

Combining this two results we get (2.3.10), which completes the proof.

2.3.3 Complex noise of constant intensity: no soliton creation for

fixed ξ

We have studied above the behavior of a real (or complex, but with constant phase) initial
condition. We consider now the somewhat complementary case of an initial condition given
by a complex stochastic process with constant intensity.

Let the initial condition of the NLS equation be given by U0(x) = q eiν(x) [0,R](x) for
some real, continuous martingale ν(x) with bounded quadratic variation (�ν� ≤ C) and
independent increments. We shall assume for simplicity that |U0(x)| = q = 1. Remark that
this process is in L1; the IST machinery can therefore be applied to obtain the ZSSP (2.1.3).
With this initial condition we have

Proposition 2.31. Consider the NLS equation with the initial condition U0 described above.
Then, for any fixed ξ, the probability of creating a soliton with the prescribed speed (ξ) is
zero.

Proof. We shall use the approach presented in the first paragraph of subsection 2.3.1. For
real values of ζ = ξ, define the function r(x) = ψ2(x)/ψ1(x), which solves for x ∈ [0, R]

dr(x) = 2iξr(x)− iU0(x)r
2(x) + iU∗

0 (x) = 2iξr(x)− ieiν(x)r2(x) + ie−iν(x) .

Using again the change of variables r(x) = cotg
�
θ(x)/2

�
eiϕ(x), the system of SDEs (2.3.3)

becomes




dθ(x)

dx
= −2�

�
ei
�
ν(x)+ϕ(x)

��
= −2 sin

�
ν(x) + ϕ(x)

�

dϕ(x)

dx
= 2ξ − 2cotg

�
θ(x)

�
�
�
ei
�
ν(x)+ϕ(x)

��
= 2ξ − 2cotg

�
θ(x)

�
cos

�
ν(x) + ϕ(x)

� .

(2.3.11)
To simplify notation, we will use dθ(x)/dx = θ̇(x). From Itô formula we obtain

dθ̇(x) = −2 cos
�
ν(x) + ϕ(x)

�
dν(x)− 4 ξ cos

�
ν(x) + ϕ(x)

�
dx

+ 4 cotg
�
θ(x)

��
1− sin2

�
ν(x) + ϕ(x)

��
dx

= −2 cos
�
ν(x) + ϕ(x)

�
dν(x)− 4 ξ cos

�
ν(x) + ϕ(x)

�
dx

+ 4 cotg
�
θ(x)

�
dx− cotg

�
θ(x)

�
θ̇(x) dx ,

and multiplying by θ(x)

θ(x) dθ̇(x) + θ̇2(x) = 4 dx− 2 θ(x) cos
�
ν(x) + ϕ(x)

�
dν(x)− 4 ξ θ(x) cos

�
ν(x) + ϕ(x)

�
dx

− θ(x)
� 1

θ(x)
− cotg

�
θ(x)

���
4− θ̇2(x)

�
dx .
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Rename the last term above −R(x) dx and integrate twice:

θ(x) θ̇(x) = θ(0) θ̇(0) + 4x− 2

� x

0

θ(y) cos
�
ν(y) + ϕ(y)

�
dν(y)

− 4 ξ

� x

0

θ(y) cos
�
ν(y) + ϕ(y)

�
dy −

� x

0

R(y) dy ,

θ2(x) = θ2(0) + 2x θ(0) θ̇(0) + 4x2 − 4

� x

0

� y

0

θ(z) cos
�
ν(z) + ϕ(z)

�
dν(z) dy

− 8ξ

� x

0

� y

0

θ(z) cos
�
ν(z) + ϕ(z)

�
dz dy − 2

� x

0

� y

0

R(z) dz dy .

We claim that almost surely θ(x) > 0, ∀x ∈ [0, R]. Proving this claim completes the proof
of the proposition. We prove below an equivalent statement.

Claim 2.32. The event A =
�
ω | ∃x ∈ [0, R], θ(x) = 0

�
is negligible.

Proof. Recall that θ(0) = π. We will show that, for ε small enough, if θ ever reaches the
level ε, it experiences a positive acceleration so strong that it is rejected far from the origin
before reaching zero.

For any ε > 0, define the stopping time

τ0 := inf
�
x ≥ 0

��� θ(x) = ε , θ̇(x) ≤ 0
�
.

Set ε1/4 = δ and define a second stopping time as

τ1 := σ1 ∧ σ2 , (2.3.12)

where

σ1 = inf
�
x ≥ τ0

��� θ(x) > 24δ4
�
,

σ2 = inf

�
x ≥ τ0

���
����
� x

τ0

θ(y) cos
�
ν(y) + ϕ(y)

�
dν(y)

���� > δ5
�
.

Note that for x ∈ [τ0, τ1 ∧R]

−4

� x

τ0

� y

τ0

θ(z) cos
�
ν(z) + ϕ(z)

�
dν(z) dy ≥ −4δ5x ;

−8 ξ

� x

τ0

� y

τ0

θ(z) cos(ν(z) + ϕ(z)
�
dz dy ≥ −26δ4 ξ x2.

Also, for θ ≤ π/4,
�
1/θ − cotg(θ)

�
≤ 4/π − 1 ≤ 1/2. Therefore, if

ε ≤ π/26 (2.3.13)



56 CHAPTER 2. NOISE AND SOLITONS

for x ∈ [τ0, τ1 ∧R] we have that θ(x) ≤ π/4 and

−2

� x

τ0

� y

τ0

R(z) dz dy = −2

� x

τ0

� y

τ0

θ(z)

�
1

θ(z)
− cotg

�
θ(z)

�� �
4− θ̇(z)2

�
dz dy

≥ −2 · 24ε · 1
2
· 4 · x

2

2
= −25δ4 x2.

Summing up all these results, we have obtained that if ε ≤ π/26

θ2(x) ≥ δ8 + 2x δ4 θ̇(τ0) + 4x2 − 4δ5x− 26δ4 ξ x2 − 25δ4 x2 . (2.3.14)

We look at the right hand side above as an equation of degree 2 in x: ax2 + bx + c. The
coefficients are:

a = 4− 25δ4
�
2ξ + 1) , b = 2δ4θ̇(τ0)− 4δ5 , c = δ8 .

We would like to show that on an almost sure event

a > 0 ;

∆ = b2 − 4ac < 0 ; (2.3.15)

τ1 ≥ τ0 − b/a .

The first two inequalities prove that the right hand side of (2.3.14) is strictly positive. The
bound (2.3.14) then implies that θ(x) > 0 for x ∈ [τ0, τ1 ∧R]. We will see below that a > 3,
and since b < −4δ5 the last inequality can also be used to ensure that we only have to repeat
the present construction (find a new τ �0 > τ1 and so on) a finite number of time to account
for the behavior of θ(x) over the entire range [0, R]. If for every iteration (2.3.15) hold on a
set of full measure, the intersection of such events is still of full measure and is contained in
the complement of A.

Unfortunately, the above set of inequalities do not hold on an almost sure event. However,
on the “dangerous” event where they do not hold, we are able to perform some explicit
estimates on θ using directly the evolution equation (2.3.11). These estimates show that
also on this event θ cannot reach zero almost surely, which proves that A is negligible.

Remark that, unlike the set A, the above inequalities as well as the stopping times depend
on δ. We are therefore free to chose a convenient value of δ. Let us start by assuming that
δ < 2ξ−1 and δ < 2−2 (which is a slightly stronger condition than (2.3.13)). It is then easy
to see that a > 0. Actually, what one obtains is that a > 4− 3/8 > 3. We turn now to the
last inequality of (2.3.15). We have that

−b = 2δ4
��θ̇(τ0)

��+ 4δ5 ≤ 4δ4(1 + δ) < 5δ4

and
−b

a
≤ 2δ4 =: x̄ . (2.3.16)
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The probability that the last inequality of (2.3.15) holds can be computed as follows.

P

�
τ1 < τ0 −

b

a

�
≤ P (τ1 < τ0 + x̄) ≤P

�
sup

x∈[τ0,τ0+x̄]

����
� x

τ0

θ(y) cos
�
ν(y) + ϕ(y)

�
dν(y)

���� > δ5

�

+ P

�
sup

x∈[τ0,τ0+x̄]

θ(x) > 24δ4

�
.

Let us first find an estimate for the second term on the right hand side. Since by the first
equation in (2.3.11) we have that

��θ̇(x)
�� ≤ 2,

sup
x∈[τ0,τ0+x̄]

θ(x) ≤ θ(τ0) + 2x̄ = 5δ4. (2.3.17)

We can now use this bound and Doob’s inequality to get

P

�
sup

x∈[τ0,τ0+x̄]

����
� x

τ0

θ(y) cos
�
ν(y) + ϕ(y)

�
dν(y)

���� > δ5

�
≤ 1

δ10

� τ0+x̄

τ0

θ2(y) d�ν�y

≤ 52δ8 x̄ C

δ10
= 50Cδ2, (2.3.18)

where the constant C is the bound on the quadratic variation �ν� of the process ν assumed
in the hypothesis stated at the beginning of this subsection. Therefore,

P

�
τ1 ≥ τ0 −

b

a

�
≥ 1− 50Cδ2

δ→0−→ 1 . (2.3.19)

We still have to work on the second inequality of (2.3.15). We have

∆/4δ8 = θ̇2(τ0) + 4δ2 − 4δθ̇(τ0)− 4 + 25δ4(2ξ + 1) . (2.3.20)

This is not negative in general. Therefore, we consider the right hand side of (2.3.20) as an
equation of degree 2 in the variable t = θ̇(τ0). Recall that by definition θ̇(τ0) ≤ 0, so that
we are interested only in the behavior of this equation for t ≤ 0. Since for t = 0 (2.3.20)
is negative, we look for the smaller of the two zeros of the equation, t̄, which can be found
solving this new equation of degree 2 as follows.

∆/4 = 4δ2 − 4δ2 + 4− 25δ4(2ξ + 1) ;

t̄ = 2δ −
�
4− 25δ4(2ξ + 1) . (2.3.21)

If θ̇(τ0) ∈ (t̄, 0], then (2.3.20) is negative and we have obtained the second inequality in
(2.3.15). We are left with one last case to study, θ̇(τ0) ∈ [−2, t̄], in particular as δ goes to
zero.

Observe that t̄ is increasing as a function of δ and converges to −2 as δ → 0. From
the explicit formula (2.3.21) we get that the amplitude of the interval of “dangerous” initial
velocities, [−2, t̄ (δ)], is of order δ. From the first equation of (2.3.11) we see that this
corresponds to sin

�
ν(x) + ϕ(x)

�
taking values in an interval of the same order around +1,

so that the length of the corresponding interval of “dangerous” values of
�
ν(x) + ϕ(x)

�
is of

order δ
1
2 :

ν(x) + ϕ(x) =
π

2
+O(δ

1
2 ) . (2.3.22)
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From (2.3.16) we obtain that we are working on an interval of x of order δ4. Assuming that
the process ν varies on a scale of order 1, on the interval of interest its variation is of order
δ4. Also, cos

�
ν(x) + ϕ(x)

�
= O(δ

1
2 ), cotg(θ) ∼ θ−1 for θ → 0 and θ = δ4, so that

cotg
�
θ(x)

�
cos

�
ν(x) + ϕ(x)

�
∼ O(δ−

7
2 ) .

It follows that the variation of ϕ is of order δ
1
2 . Therefore, on a sufficiently small scale

δ � 1, we can consider the process ν as approximately constant, the variation of ϕ being of
a lower order.

Let us now look at the evolution of these quantities. Remark that since θ̇ < 0, as x grows
θ decreases, at least a small interval. Then, setting the new starting point just after τ0, δ
decreases.

Let as assume by contradiction that θ does reach zero with positive probability. Consider
any fixed δ. We place ourselves at x = τ0(δ). The only possibility is that θ̇ always remains in
the “dangerous” interval [−2, t̄(δ)]. We have already observed that this interval of dangerous
velocities shrinks to −2 as δ → 0, and this will provide the contradiction. We shall consider
two cases.

If θ̇(τ0) > −2 then necessarily ν + ϕ �= π/2. If ν + ϕ > π/2 the cosinus is negative and
by the equations (2.3.11) we get that ϕ̇ > 0. If δ is small enough, this implies that ν + ϕ is
increasing, the sinus is decreasing and θ̇ is increasing. Symmetrically, if ν + ϕ < π/2 for δ

small enough, ϕ̇ < 0 and again θ̇ is increasing. But since we must have θ̇(τ0) < t̄ → −2 as
δ → 0, we have a contradiction.

The only possibility left is therefore that there exists a positive value δ0 such that for all
choices of initial levels δ ≤ δ0, one finds that θ̇(τ0) = −2. But this means that on such an
interval ν + ϕ ≡ π/2 must be constant, so that necessarily ν = π/2− ϕ and

dν(x) = −2ξ . (2.3.23)

At τ0(δ0) we have θ = δ40 , and θ̇ = −2 must remain fix until θ reaches zero. Therefore,
equation (2.3.23) must hold on the interval x ∈ [τ0(δ0), τ0(δ0) + δ40/2]. But the event of ν
having constant derivative on an interval of positive length is negligible due to the assumption
of independent increments.

The contradiction found proves that for δ sufficiently small, even if the initial velocity
θ̇(τ0) is in the “dangerous” interval [−2, t̄(δ)], θ does not reach zero almost surely. If θ̇(τ0)
is not in this interval, then we have proved that the three inequalities (2.3.15) hold, which
proves that also in this case θ does not reach zero. Combining these two results, we finally
get that the event A is negligible.

2.3.4 Complex telegraph noise: no soliton creation for fixed ξ

We consider now the case where the initial condition U0(x) of the NLS equation is given
by a jump process on the complex plane. We will show that the probability of creating a
soliton with any prescribed velocity is zero.

Proposition 2.33. Let the initial condition U0(x) of the NLS equation be given by a jump
process supported on [0, R], whose jumping times have a Poisson distribution of parameter
λ. We assume that the amplitudes of the jumps are independent and identically distributed
random variables admitting a density law on C. Then, for any R > 0 and ξ ∈ R, almost
surely no soliton is created with speed ξ.
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Proof. Let {τn}n≥1 be the sequence of jump points of U0(x) and set τ0 = 0; it is sufficient
to prove the result on any fixed interval In := [τn, τn+1 ∧R], n ≥ 0.

Note that on In, U0(x) = ρn e
iγn is constant. We will first deal with the case of still

solitons, ξ = 0. We shall use again the approach described in the first paragraph of subsection
2.3.1. In our setting, the equivalent of equation (2.3.3) reads





dθ(x)

dx
= −2ρn sin

�
ϕ(x) + γn

�

dϕ(x)

dx
= −2ρncotg

�
θ(x)

�
cos

�
ϕ(x) + γn

� . (2.3.24)

We have that

d

dx
sin

�
θ(x)

�
cos

�
ϕ(x) + γn

�
=− 2ρn cos

�
θ(x)

�
sin

�
ϕ(x) + γn

�
cos

�
ϕ(x) + γn

�

+ 2ρn sin
�
θ(x)

�
sin

�
ϕ(x) + γn

�
cotg

�
θ(x)

�
cos

�
ϕ(x) + γn

�

is identically zero. Therefore, sin
�
θ(x)

�
cos

�
ϕ(x) + γn

�
is constant on In. This implies that

θ(x) can reach zero only if ϕ(τn) + γn = π
2 . But this is a negligible event due to the density

assumption on the law of the jumps of ν(x), so that the proposition is proved in the case
ξ = 0.

Assume now that ξ is fixed and different form zero. Equation (2.3.3) becomes




dθ(x)

dx
= −2ρn sin

�
ϕ(x) + γn

�

dϕ(x)

dx
= 2ξ − 2ρncotg

�
θ(x)

�
cos

�
ϕ(x) + γn

�

and we have that

d

dx
sin

�
θ(x)

�
cos

�
ϕ(x) + γn

�
= −2ξρn sin

�
θ(x)

�
sin

�
ϕ(x) + γn

�
= −2ξ

d

dx

�
cos

�
θ(x)

��
.

Therefore,

sin
�
θ(x)

�
cos

�
ϕ(x) + γn

�
+ 2ζ cos

�
θ(x) = sin

�
θ(τn)

�
cos

�
ϕ(τn) + γn

�
+ 2ξ cos

�
θ(τn)

�

and θ(x) can reach zero only if

2ξ =
sin

�
θ(τn)

�

1− cos
�
θ(τn)

� cos
�
ϕ(τn) + γn

�
,

which is to say

ξ =
cotg

�
θ(τn/2)

�

2
cos

�
ϕ(τn) + γn

�
. (2.3.25)

But this is again a negligible event due to the density assumption on the law of the jumps
of U0(x). The proof is complete.

2.3.5 Density of states – Ornstein-Uhlenbeck process

In this subsection we study of the density of the distribution (density of states, or DOS)
ρ(η, ξ) on the upper complex half-plane ζ = ξ+iη, η ≥ 0 of the eigenvalues for the ZSSP with
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a rapidly oscillating random potential. This corresponds to the distribution of the velocity
and amplitude of solitons of the NLS equation with random initial conditions. Given an
initial condition with support on [0, R], the DOS is defined as the average density of the
eigenvalues of the ZSSP system par unit length of R. It is given by the limit

ρ(ζ) = lim
R→∞

1

R
E

� N�

n=1

δ
�
ζ − ζn(R)

��
,

where
�
ζn(R)

�
n=1...N

are the discrete eigenvalues of the ZSSP system when the initial con-
dition is supported on [0, R] and δ is the Dirac delta function. Remark that in this case
we have to work with initial conditions which in the limit have support on the half-line
R+ = {x ∈ R |x ≥ 0}. This is an essential difference with respect to the examples consid-
ered above, since now we first take the limit in R, and only then we take the limit in ε to
account for rapidly oscillating initial conditions.

Explicit computations are developed for an initial condition given by a (rescaled and
time accelerated) complex Ornstein-Uhlenbeck (OU) process, which can be seen as an ap-
proximation of a complex white noise. The case of an initial condition given by more general
rapidly oscillating random process is considered in the next subsection. The main result is
given by the following theorem. Recall that the hyperbolic cotangent function is given by
coth(x) = 1/ tanh(x) and the hyperbolic cosecant by csch(x) = 1/ sinh(x).

Theorem 2.34. When the initial condition is given by a rapidly oscillating Ornstein-
Uhlenbeck process, the DOS ρ(η, ξ) of the ZSSP associated to the NLS equation is smooth,
and can be written as a power series expansion around the limit case of infinitely rapid
oscillations. If ε is the parameter controlling the rapidity of oscillations, we have

ρ(η, ξ) = ρ0(η) + ε2ρ2(η) + o(ε2) ,

where

ρ0(η) =
1

4π

η coth
�
η/2

�
− 2

sinh2
�
η/2

� (2.3.26)

is the DOS corresponding to the limit case, the first order term is zero, and the second order
term is given by

ρ2(η) =
1

4π2

�η2 + 8

η2
csch2

�
η/2

�
− η2 − 8

2η
csch2

�
η/2

�
coth

�
η/2

�
+

16

η3

�
coth

�
η/2

�
− 1

��
.

(2.3.27)

Remark 2.35. Using the formula presented in subsection 2.1.1 it is possible to compute
the order of magnitude of the mass and energy introduced by the rapidly oscillating initial
condition U(x/ε2)/ε. For any fixed R, the input mass is of order ε−2

N =
1

ε2

� R

0

��U(x/ε2)
��2 dx � Rε−2

and the input energy is of order ε−6

E =

� R

0

1

ε2

��∂xU(x/ε2)
��2 − 1

ε4

��U(x/ε2)
��4 dx � Rε−6 .
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Figure 2.3: Plot of the DOS ρ0(η) at order zero (limit case of infinitely fast oscil-
lations).

Remark 2.36. Using a rapidly oscillating complex OU process as initial condition for the
NLS equation, the distribution of created solitons is uniform with respect to their speed
(both in the limit case, and considering second order corrections). This result should not
appear too surprising, since we can see from remark 2.35 that the input energy is much
larger than the input mass.

Remark 2.37. In figure 2.4 is plotted the second order term ρ2(η) of the DOS. From
the picture one can easily see that this second order term gives small-amplitude solitons a
higher probability of being generated. This means that, comparing different fast-oscillating
OU initial conditions, the slower the oscillations are, the easier it is to create solitons with
very small amplitudes.

The proof of theorem 2.34 fills the rest of this subsection, and is divided into several steps.
First, we present the general technique, for which we need the ergodicity result provided
by propositions 2.38. Using this results we can obtain the DOS through the study of the
Lyapunov exponent of the ZSSP system (recall that the initial condition has an infinite
support) and a generalized Thouless formula. This is shown in lemma 2.41. Then, what is
needed to complete the computations is just the invariant probability of some the variables

(U,
→
γ ), which will be introduced below. This invariant probability is obtained by solving

a Fokker-Planck equation. However, the solution of the Fokker-Planck equation requires
extensive computations, so that before performing them we shall present and explain the
general scheme we want to apply.

The initial condition we consider for the example presented in this subsection is given by
a (rescaled and time accelerated) complex Ornstein-Uhlenbeck (OU) process: U0 = U1+iU2.
Here, U1, U2 are two independent real Ornstein-Uhlenbeck processes:

Ui(x) = Ui(0)e
−x +

√
2e−x

� x

0

ey dW (i)
y .

We will need to use the infinitesimal operator of the OU process, which is given by

LU = −u1∂u1
− u2∂u2

+ ∂2
u1

+ ∂2
u2

.
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Figure 2.4: Plot of the second order correction term ρ2(η) of the DOS.

Its adjoint is
L∗
Uf = ∂u1

�
u1f

�
+ ∂u2

�
u2f

�
+
�
∂2
u1

+ ∂2
u2

�
f . (2.3.28)

To ease notation, in the sequel we will drop the subscript for the initial condition U0.

An ergodicity result

To prove the next proposition we need to reformulate the ZSSP using linear algebra nota-
tions, and using R as base field. For the next few pages we will therefore use the embedding
C �→ R

2 for all complex variables. This means for example that we will consider Ψ as
a vector of R

4 instead of C
2, transforming ψ1 = �1 + i�1 into the vector (�1,�1) and

ψ2 = �2 + i�2 into the vector (�2,�2). With this notation, the ZSSP system can then be
rewritten as

∂xΨ = A(U)Ψ ,

where

A(U) = i




η ξ −U2 −U1

ξ η U1 −U2

U2 −U1 −η ξ
U1 U2 ξ −η


 .

We shall also introduce polar coordinates in R
4 to rewrite Ψ = ρ

→
γ , where ρ = |Ψ| =�

|ψ1|2 + |ψ2|2
�1/2 ∈ R and

→
γ=




�1/|Ψ|
�1/|Ψ|
�2/|Ψ|
�2/|Ψ|




is a unitary vector in R
4. We can now prove the following proposition

Proposition 2.38. With the notation introduced above, the vector
�
U,

→
γ
�

is ergodic.

Proof. To prove the ergodicity of the vector
� →
γ , U

�
we shall proceed as in [KA83], where

ergodicity of linear systems of the kind of the ZSSP systems is studied in detail. By (2.1.3)
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we obtain the evolution equations for ρ

ρ(x) = ρ(0) exp

�� x

0

q
�
U(y),

→
γ (y)

�
dy

�

and for
→
γ

∂x
→
γ= h

�
U(x),

→
γ (x)

�
, (2.3.29)

where, using matricial notations, q : R2 × R
4 → R is defined by

q
�
U,

→
γ
�
=

→
γ TA(U)

→
γ (2.3.30)

and h : R2 × R
4 → R

4 is defined by

h
�
U,

→
γ
�
=

�
A(U)− q

�
U,

→
γ
�
Id

� →
γ .

Here,
→
γ T denotes the transposed of the vector

→
γ . By identifying

→
γ and −

→
γ , the evolution

equation (2.3.29) can be viewed as an equation on the projective space P = P
3(R). Remark

that this evolution equation is independent of ρ. We have that the infinitesimal operator
of the OU process LU is elliptic, U is an ergodic process and the matrix function A(·) is

analytical. The couple (U,
→
γ ) is a degenerate diffusion process with generator

L = LU + h ∂→
γ
.

To prove the ergodicity of (U,
→
γ ) we have to show that the Lie algebra generated by

the operator
�
h(u, ·), u ∈ R

2
�
(s), s ∈ P has dimension 3. In other words, we have to show

that, starting from any point s0 ∈ P and using suitable values u(n), n = 1...N , of the
variable u ∈ R

2, it is possible to reach any point s1 ∈ P following the evolution prescribed
by s �→ h(u(n), s) in a finite number N of steps.

Remark that for any fixed u ∈ R
2, h(u, ·) is a vector field on P, namely the projection of

the linear vector field A(u)x, x ∈ R
4\{0} onto P. We see that it is enough to show that the

Lie algebra generated by A(u), u ∈ R
2 has dimension 4. To do so, we shall decompose A(u)

into a sum four matrices Σk, k = 1...4. Recall that we have u = (u1, u2) ∈ R
2, and since we

are using the embedding C �→ R
2, ζ = (ξ, η) ∈ R

2.

A(u) =
�
u1Σ1 + u2Σ2 + ηΣ3 + ξΣ4

�
,

where

Σ1 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 , Σ2 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 ,

Σ3 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , Σ4 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 .

The idea of this decomposition comes from the analysis of this problem on the complex
field C, which however cannot be implemented rigorously since we have to introduce the
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projective space P. The above matrices are obtained from the Pauli matrices σj , j = 1...3,
using the matrix notation for complex numbers

i =

�
0 −1
1 0

�

and the correspondences Σ1 = iσ1, Σ2 = −iσ2, Σ3 = σ3 and Σ4 = −iσ3. The computations
presented from now on could be performed using this notation from linear algebra on the
complex field C, but we prefer to show them using the same notation used in the first part
of the proof, namely working on the real field R.

Remark that changing u our direct action is only on the first two matrices Σ1 and Σ2. If
we take u(1) such that u(1)

1 � 1 and u
(1)
2 = 0, we have that A(u(1)) � Σ1. If instead we take

u(2) such that u
(2)
1 = 0 and u

(2)
2 � 1, we get A(u(2)) � Σ2. Also, explicit an computation

shows that A(u(1))A(u(2)) � Σ1Σ2 = −Σ4 and
�
Σ4

�2
= −I, where I is the identity matrix

in R
4×4. This shows that by choosing suitable values of u we can get arbitrarily good

approximations of the four matrices Σ1, Σ2, −Σ4 and −I, which are linearly independent
and generate a subspace of R

4×4 of dimension 4. Then, the projection on P produces a
vector field h(u, ·) generating a Lie algebra of dimension 3, which proves that the vector

(U,
→
γ ) is ergodic, [KA83].

Corollary 2.39. By Hörmander’s theorem, the operator L is hypoelliptic, so that the in-

variant probability measure associated to the vector
�
U,

→
γ

�
admits a smooth density with

respect to the Lebesgue measure.

In view of this result, in the following we will allow ourselves to confound the invariant

probability measure of (U,
→
γ ) with its density, calling both of them P (u, s), where u ∈ R

2

and s ∈ R
4 is a unitary vector.

Computing the DOS

Given the ergodicity of the couple
�
U,

→
γ

�
, we can use [KA83, theorem 4.1] to obtain the

following result

Proposition 2.40. The Lyapunov exponent of the ZSSP system is given by

κ(η, ξ) =

�
q(u, s) dP (u, s) , (2.3.31)

where u ∈ R
2, s ∈ R

4 is a unitary vector, q(u, s) = sTA(u)s is defined by (2.3.30) and

P (u, s) is the invariant probability measure of the couple
�
U,

→
γ
�
.

Once the Lyapunov exponent κ(η, ξ) is known, one can recover the DOS through a
generalized Thouless formula, as shown in [KM08].

Lemma 2.41. The density ρ(η, ξ) of the distribution of the eigenvalues of the ZSSP system
with potential given by a complex Ornstein-Uhlenbeck process is given by

ρ(η, ξ) =
1

2π

�
∂2

∂η2
+

∂2

∂ξ2

�
κ(η, ξ) . (2.3.32)
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Combining the results of proposition 2.40 and lemma 2.41 we obtain an easy way to
compute the DOS. The only missing element is the invariant probability P , whose density
can be found solving

L∗P (U, γ) = 0 , (2.3.33)

where
L∗P = L∗

UP − ∂→
γ

�
hP

�
.

It turns out that the computations to solve equation (2.3.31) are somewhat easier if we
introduce some new variables. To do so, we shall momentarily leave the “real” notation
introduced in the previous paragraph for the proof of proposition 2.38 and return to use

the notation of complex variables Ψ ∈ C
2, U ∈ C. We shall also consider

→
γ∈ C

2 to be a

unitary vector, which we will write as
→
γ= (γ1, γ2). We can now define the two real variables

w ∈ (−∞,∞), ϕ ∈ [0, 2π) as
ψ1/ψ2 = ew+iϕ .

We also set v = tanh(w), so that v ∈ (−1, 1), and define θ ∈ [0, 2π) to be the argument of
ψ1/ψ

∗
2 .

The change of variables γ ↔ (v,ϕ, θ) can be described as follows. Remark that for any
γ such that γ1 �= 0 and γ2 �= 0, one can find a unique corresponding vector (w,ϕ, θ) from
the relations γ1/γ2 = ew+iϕ and γ1/γ

∗
2 = ew+iθ. The converse also holds, since

|γ1| =
|ψ1|
|Ψ| =

|ψ1|/|ψ2|�
1 + |ψ1|2/|ψ2|2

�1/2 =
ew

�
1 + e2w

�1/2

and a similar expression can be found for |γ2|. Moreover,

θ − ϕ = arg
�
ψ2/ψ

∗
2

�
= 2arg(γ2) ,

which, together with the definition of θ, provides also arg(γ1) = (θ + ϕ)/2.
In the new variables (v,ϕ, θ), the function q defined by (2.3.30) has a very simple form,

which we shall now describe. To do so, we shall return to the real-variables notation intro-
duced before the proof of proposition 2.38. We have that

A(U)γ =
1

|Ψ|∂xΨ =
1

|Ψ|∂x




�1

�1

�2

�2




and (recall that V T denotes the transposed of the vector V )

q(U, γ) = γTA(U)γ =
1

|Ψ|2Ψ
T · ∂xΨ =

1

2|Ψ|2 ∂x|Ψ|2 =
1

2
∂x ln

�
|Ψ|2

�
.

Rewriting this using the new variables (w,ϕ, θ) and using the relations given by the ZSSP
system we get

q(U, γ) =
1

2
∂x ln

�
|Ψ|2

�
= η tanh(w) = η v .

Therefore, the Lyapunov exponent can be rewritten in the new variables as

κ(η, ξ) = η

�
v dP (v,ϕ, θ, U) . (2.3.34)
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We now have to find the form of the density of the invariant probability P , written in
the new variables. This is done by finding the Fokker-Planck equation for P (v, ϕ, θ, U). The
procedure to obtain the Fokker-Planck equation from the evolution equations for the new
variables is detailed in the next two paragraphs. There, we will also introduce the rapidly
oscillating initial conditions and finally describe the equation satisfied by the density of the
stationary probability P (v, ϕ, θ, U) when U is a complex, rapidly oscillating OU process.

The Fokker-Planck equation

We return to use the complex-variable notation. When there is no risk of confusion, we
will also omit to write the dependence on x. To obtain the evolution equations for the
new variables (v, ϕ, θ) from the ZSSP system we shall introduce one more complex variable:
r(x) = ψ1(x)/ψ2(x) = ew(x)+iϕ(x). Remark that the function r defined here is the reciprocal
of the function r introduced in the previous subsections. Moreover, r also depends on the
spectral parameter ζ (through the Jost functions ψ1 and ψ2), for which we do not restrict
to consider only real values ζ = ξ ∈ R, but rather work with any spectral parameter on
the complex upper half-plane ζ = ξ + iη, η ≥ 0. Using this new variable, the ZSSP system
(2.1.3) can be rewritten as

d

dx
r(x) = iU − 2iζr − iU∗r2.

Since dr = r(dw + idϕ), we obtain the system governing the evolution of the variables w
and ϕ 




∂xw(x) = 2η + �
�
U∗ew+iϕ − Ue−w−iϕ

�

∂xϕ(x) = −2ξ −�
�
U∗ew+iϕ − Ue−w−iϕ

� .

With some easy algebraic manipulations this system can be rewritten as




∂xw(x) = 2η + 2�
�
U∗eiϕ

�
cosh(w)

∂xϕ(x) = −2ξ − 2�
�
U∗eiϕ

�
sinh(w)

. (2.3.35)

From the ZSSP system rewritten in the form (2.3.35) and using the adjoint of the generator
of the OU process given by (2.3.28) we obtain the following Fokker-Planck equation for the
density function of the joint probability P (w,ϕ, u) of

�
w(x), ϕ(x), U(x)

�

∂xP =− 2η ∂wP − 2�
�
u∗eiϕ

�
∂w

�
cosh (w)P

�

+ 2ξ ∂ϕP + 2 sinh (w) ∂ϕ

�
�
�
u∗eiϕ

�
P
�

+ ∂u1

�
u1P

�
+ ∂u2

�
u2P

�
+

�
∂2
u1

+ ∂2
u2

�
P . (2.3.36)

Remark that the vector (w,ϕ, U) already forms a Markov process. Therefore, considering
the joint probability P (w,ϕ, θ, u) would produce a Fokker-Planck equation with an addi-
tional independent term, which we can disregard because θ does not appear explicitly in
(2.3.34). Changing variables v = tanh(w) we can transform this equation into a Fokker-
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Planck equation for the density of joint probability P (v, ϕ, u) of
�
v(x), ϕ(x), U(x)

�
:

∂xP (v, ϕ, u) =− 2η ∂v

�
(1− v2)P

�
− 2�

�
u∗eiϕ

�
∂v

��
1− v2P

�

+ 2ξ ∂ϕP + 2
v√

1− v2
∂ϕ

�
�
�
u∗eiϕ

�
P
�

+ ∂u1

�
u1P

�
+ ∂u2

�
u2P

�
+
�
∂2
u1

+ ∂2
u2

�
P . (2.3.37)

Rapidly oscillating initial conditions

Recall that the aim of this example is to obtain the distribution of the eigenvalues of the
ZSSP for rapidly oscillating initial conditions. We therefore need to seep up time for the OU
process Uε(t) = U(t/ε2) and rescale it accordingly. The initial condition we will be working
with is therefore U0 = 1

ε
Uε. By the result of corollary 2.39, the invariant probability P ε of

the couple
�
Uε/ε,

→
γ

�
has a density, which we also denote P ε, solution of L∗

εP
ε = 0. The

operator L∗
ε has a finite expansion in ε:

L∗
ε =

1

ε2
L∗
U +

1

ε
L∗
1 + L∗

2 , (2.3.38)

where

L∗
UP

ε = ∂u1

�
u1P

ε
�
+ ∂u2

�
u2P

ε
�
+
�
∂2
u1

+ ∂2
u2

�
P ε ,

L∗
1P

ε = −2�
�
u∗
εe

iϕε
�
∂vε

��
1− v2εP

ε
�
+ 2

vε�
1− v2ε

∂ϕε

�
�
�
u∗
ε e

iϕε
�
P ε

�

= −2�
�
u∗
εe

iϕε
��

1− v2ε ∂vε
P ε + 2

vε�
1− v2ε

�
�
u∗
ε e

iϕε
�
∂ϕε

P ε ,

L∗
2P

ε = −2η ∂vε

�
(1− v2ε)P

ε
�
+ 2ξ ∂ϕε

P ε .

The terms of this expansion can be found as follows. Using the rapidly oscillating initial
condition described above, the system (2.3.35) becomes

�
∂xwε = 2η + 2 cosh(wε)�

�
1
ε
U∗
ε eiϕε

�

∂xϕε = −2ξ − 2 sinh(wε)�
�
1
ε
U∗
ε eiϕε

� (2.3.39)

and the Fokker-Planck equation

∂xP
ε =

1

ε2
L∗
UP

ε +
1

ε
L∗
1P

ε + L∗
2P

ε . (2.3.40)

For the invariant probability measure, ∂xP ε = 0, and L∗
εP

ε is given by the right hand side
of (2.3.40).

We shall proceed as in [APW86] and assume that the density of the invariant probability
P ε solution of L∗

εP
ε = 0 can be formally rewritten using a power series expansion in ε

around the limit case of infinitely rapid oscillations:

P ε(v, ϕ, u) =
�

n≥0

εnPn . (2.3.41)

The first term of this expansion, P0, is the invariant probability corresponding to the limit
problem for infinitely rapid oscillations. It formally corresponds to a white noise initial
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condition for the NLS equation (recall that with a white noise as initial condition one is
not allowed to apply the IST and therefore one cannot obtain the ZSSP system). The
DOS for the NLS equation with a white noise initial condition has been obtained in [KM08]

working directly on the stochastic process v without introducing the process
�
U,

→
γ

�
, and

(formally) assuming that (v, U) is ergodic. Their strategy is based on the use of the Thouless
formula of lemma 2.41, the representation of the Lyapunov exponent given by (2.3.34) and
the Fokker-Planck equation (2.3.37).

Our approach consist in taking an initial condition U0 with fast, but not infinitely fast,
oscillations and to express the invariant probability P ε(v, ϕ, u) as a power series development
around the limit case, (2.3.41). This in turn will provide an expression for the DOS given
by a power series. The first term we find, ρ0, is therefore in accordance with the result
of [KM08]. But we are also interested in finding the correction terms P1 and P2 for the
invariant probability and the corresponding correction terms ρ1 and ρ2 for the DOS.

Looking at (2.3.34) one remarks that the full joint probability measure P ε is not really
necessary: what is needed is actually only P̄ ε(v) =

�
R2

� 2π

0
P ε(v, ϕ, u) dϕ du.

The general scheme to find the invariant probability P ε

Since the computations needed to find the correction terms are somewhat cumbersome, we
sketch here the general strategy we will use. Further details on the perturbation approach
and the solution of the Fokker-Planck equation can be found for example in [FGPS]. To
ease notation we will drop the superscript ε.

Applying the operator L∗
ε defined by (2.3.38) to the power series representation of P

(2.3.41) and separating scales according to the power of ε, we obtain an infinite system of
coupled equations. Setting Pn = 0 for n < 0, the equation at order n for n ≥ −2 reads

εn
�
L∗
2Pn + L∗

1Pn+1 + L∗
UPn+2

�
= 0 . (2.3.42)

We set g = L∗
2Pn + L∗

1Pn+1. Due to the form of the operator LU and of its adjoint, which
can be rewritten as

LUf =
1

2
e

u2
1
2 ∂u1

e
−u2

1
2 ∂u1

f +
1

2
e

u2
2
2 ∂u2

e
−u2

2
2 ∂u2

f ,

L∗
Uf =

1

2
∂u1

e
−u2

1
2 ∂u1

e
u2
1
2 f +

1

2
∂u2

e
−u2

2
2 ∂u2

e
u2
2
2 f ,

the equation L∗
UPn+2 = −g is equivalent to

LU
�Pn+2 = −�g , (2.3.43)

where �Pn+2 = e|u|
2/2Pn+2 and �g = e|u|

2/2g. This is a Poisson equation in the u variable, and
its solvability condition is that �g must be centered with respect to the invariant measure of
U , [FGPS], which is to say that for every (v, ϕ) we must have

E
�
�g
�
=

1

2π

�

R2

�
e

|u|2

2 g
�
e−

|u|2

2 du =
1

2π

�

R2

L∗
2Pn + L∗

1Pn+1 du = 0 . (2.3.44)

In the explicit computations of the following paragraphs we will drop the constant factor
1/2π of the above equation, and still call it the solvability condition for the Poisson problem.
Once we have proved that the solvability condition (2.3.44) is verified, we can use the
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following formula to solve the Poisson equation (2.3.43)

�Pn+2(u) =
1

2π
fn+2 +

� ∞

0

E

�
�g
�
U(x)

� ��U(0) = u
�
dx .

Here, fn+2 is a function of (v,ϕ), but is constant in u. This equation provides information
on Pn+2 which will be used later: together with information from equations obtained at
lower orders, the compatibility condition at order n allows to completely determine Pn.

Explicit computations: order −2

We have seen how the general procedure works. We shall now apply it to explicit the
computations for our example. The first equation we need to solve is

0 = L∗
UP0 ,

which ensures that in (2.3.40) there is no term diverging as ε−2. The solution is found to be

P0(v,ϕ, u) =
1

2π
e−

|u|2

2 f0(v,ϕ) ,

for some function f0 which will be determined below by the solvability condition of the
equation at order zero.

Explicit computations: order −1

The second equation is
0 = L∗

UP1 + L∗
1P0 . (2.3.45)

We set g := L∗
1P0, and transform (2.3.45) into the Poisson equation

LU
�P1 = −�g , (2.3.46)

where �P1 = e
|u|2

2 P1 and �g = e
|u|2

2 g, as explained in the paragraph describing the general
scheme. The solvability condition is

�

R2

L∗
1P0 du = 0 . (2.3.47)

Using the explicit form of L∗
1P0 we can easily see that it is always verified because, since

L∗
1P0 =

1

π
e−

|u|2

2

�
−�

�
u∗ eiϕ

��
1− v2 ∂vf0 +

v√
1− v2

�
�
u∗ eiϕ

�
∂ϕf0

�

is an odd function of u1 and u2, the integral on R
2 is zero. Condition (2.3.47) being verified,

we can solve (2.3.46) to find a first expression for P1:

P1(v,ϕ, u) =
1

2π
e−

|u|2

2

� � ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx+ f1

�
. (2.3.48)
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Explicit computations: order 0

We now need to solve the “order zero” equation, which reads

0 = L∗
UP2 + L∗

1P1 + L∗
2P0 . (2.3.49)

We look first at the solvability condition for this equation, which is
�

R2

L∗
1P1 + L∗

2P0 du = 0 . (2.3.50)

We already know that

L∗
2P0 =

1

2π
e−u2

1/2e−u2
2/2

�
− 2η ∂v

�
(1− v2)f

�
+ 2ξ ∂ϕf0

�
=

1

2π
e−

|u|2

2 L∗
2f0

and

L∗
1P1 =

1

2π
L∗
1(u) e

− |u|2

2

� � ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx+ f1

�

=
1

π
e−

|u|2

2

� � ∞

0

2

�
−�[u∗ eiϕ]

�
1− v2 ∂v +

v√
1− v2

�[u∗ eiϕ] ∂ϕ

�
×

×
�
−�

�
U∗(x) eiϕ

��
1− v2 ∂v +

v√
1− v2

�
�
U∗(x) eiϕ

�
∂ϕ

��
f0
�
dx

+

�
−�[u∗ eiϕ]

�
1− v2 ∂v +

v√
1− v2

�[u∗ eiϕ] ∂ϕ

�
(f1)

�

=
2

π
e−

|u|2

2

� ∞

0

�
�[u∗ eiϕ]�

�
U∗(x) eiϕ

��
− v ∂vf0 + (1− v2) ∂2

vf0

�

−�[u∗ eiϕ]�
�
U∗(x) eiϕ

�� 1

1− v2
∂ϕf0 + v ∂ϕ ∂vf0

�

−�[u∗ eiϕ]�
�
U∗(x) eiϕ

��
v ∂ϕ ∂vf0 +

v2

1− v2
∂ϕf0

�

−�[u∗ eiϕ]�
�
U∗(x) eiϕ

��
v ∂vf0 −

v2

1− v2
∂2
ϕf0

��
dx

+
1

π
e−

|u|2

2

�
−�[u∗ eiϕ]

�
1− v2 ∂vf1 +

v√
1− v2

�[u∗ eiϕ] ∂ϕf1

�
. (2.3.51)

We try to simplify the above equation. To ease notation, we shall drop the dependence on
x in U . Note that

�[u∗ eiϕ]�[U∗ eiϕ] = u1U1 sin
2(ϕ) + u2U2 cos

2(ϕ)−
�
u1U2 + u2U1

�
sin(ϕ) cos(ϕ) ;

�[u∗ eiϕ]�[U∗ eiϕ] = u1U2 sin
2(ϕ)− u2U1 cos

2(ϕ) +
�
u1U1 − u2U2

�
sin(ϕ) cos(ϕ) ;

�[u∗ eiϕ]�[U∗ eiϕ] = u2U1 sin
2(ϕ)− u1U2 cos

2(ϕ) +
�
u1U1 − u2U2

�
sin(ϕ) cos(ϕ) ;

�[u∗ eiϕ]�[U∗ eiϕ] = u2U2 sin
2(ϕ) + u1U1 cos

2(ϕ) +
�
u1U2 + u2U1

�
sin(ϕ) cos(ϕ) .
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When i �= j, ui and Uj are independent, so that E
�
uiUj

�
= 0. Also, E

�
uiUi

�
= e−x and

E

� �∞
0

E
�
U(0)U(x)

��U(0) = u
�
dx

�
= 1. Therefore,

E

�
L∗
1(u)

� ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx

�
= E

� � ∞

0

E

�
L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx

�

= 4
�
− 2v ∂vf0 + (1− v2) ∂2

vf0 +
v2

1− v2
∂2
ϕf0

�

= 4
�
∂v

�
(1− v2) ∂vf0

�
+

v2

1− v2
∂2
ϕf0

�
.

With these results, the compatibility condition (2.3.50) can be rewritten as

0 = E

�
L∗
2f0 + L∗

1(u)

� ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx+ L∗

1(u)f1

�
= L f0 , (2.3.52)

where

L f = E

�
L∗
2f +

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(y)

�
f dy

�

= −2η ∂v

�
(1− v2)f

�
+ 2ξ ∂ϕf + 4 ∂v

�
(1− v2) ∂vf

�
+ 4

v2

1− v2
∂2
ϕf . (2.3.53)

The term L∗
1f1 in the first line of (2.3.52) is an odd function of u, so that its expected value

is zero. The solution can be found setting f0 = g0(v)/2π: since the function g0 needs to
satisfy

� 1

−1
g0(v) dv = 1 and

∂v

�
η/2 (1− v2)f0

�
= ∂v

�
(1− v2) ∂vf0

�
,

we get g0(v) = kecv for k = c
2 sinh(c) and c = η/2. Therefore

P0(v,ϕ, u) =
1

4π2
k ecve−

u2

2 . (2.3.54)

Since f0 only depends on v, we can simplify (2.3.48), the expression of P1 we have found
solving the “order −1” equation. We get

P1 =
1

2π
e−

u2

2

�
f1 − 2c

�
1− v2f0

� ∞

0

E

�
�
�
U∗(x) eiϕ

� ���U(0) = u
�
dx

�
,

and we also obtain that P̄1(v) =
�
R2

� 2π

0
P1 dϕ du =

� 2π

0
f1 dϕ. We can now return to the

order zero equation, (2.3.49). Looking at it as a Poisson equation in the u variable provides
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the solution

P2 =
1

2π
e−

|u|2

2

�
f2 +

� ∞

0

E

�
L∗
2f0 + L∗

1

�
V (y)

�
f1

+ L∗
1

�
V (y)

� � ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = V (y)
�
dx

����V (0) = u

�
dy

�

=
1

2π
e−

|u|2

2

�
f2 +

� ∞

0

E

�
L∗
2f0 + L∗

1

�
U(y)

�
f1

+

� ∞

0

�
L∗
1

�
U(y)

�
L∗
1

�
U(x+ y)

�
f0

�
dx

����U(0) = u

�
dy

�
,

where V is an independent copy of the complex OU process U . We remark that the above
equation may at first sight seem to present some problems, as we are integrating in dy on an
infinite domain the term L∗

2f0, which does not depend on y. However, it turns out that this
term partially simplifies with the last one, leaving only a centered term. This follows from
equation (2.3.52). We will show this in detail below, when solving the “order 2” equation.

Finding the density of states at order zero: ρ0

Now that we have completely determined the first term of the expansion of the invariant
probability, P0, we can use lemma 2.41 to compute the first term of the development of the
DOS.

Integrating over u and ϕ, we get

P̄0(v) =

� 2π

0

�

R2

P0(v,ϕ, u) du dϕ = g0(v) = kecv.

Using (2.3.34) we obtain the Lyapunov exponent at order zero:

κ(η, ξ) = η

� 1

−1

v P̄0(v) dv = η coth(η/2)− 2 .

Remark that for large |η|, κ ∼ |η| (coth → ±1). From the Thouless formula (2.3.32) we get
the density of eigenstates at order zero:

ρ0(η, ξ) =
1

2π

�
∂2
η + ∂2

ξ

�
κ(η, ξ) =

1

2π

c coth(c)− 1

sinh2(c)
. (2.3.55)

This proves (2.3.26) of theorem 2.34 and is in accordance with the result obtained in [KM08].
Since c = η/2, at order zero the density is independent of ξ, which means that in the limit
one finds the probability of creating a new soliton to be independent of its velocity, see
remark 2.36 below.

Figure 2.3 above provides a plot of ρ0(η) (recall that η ≥ 0).

Explicit computations: order 1 - ρ1 = 0

Let us turn to the following order equation, which reads

0 = L∗
UP3 + L∗

1P2 + L∗
2P1 . (2.3.56)
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We first need to look at the solvability condition
�

R2

L∗
1P2 + L∗

2P1 du = 0 , (2.3.57)

using which we want to completely determine P1. From the above results we have

L∗
2P1 =

1

2π
e−

|u|2

2

�
L∗
2f1 + L∗

2

� ∞

0

E

�
L∗
1

�
U(x)

�
f0

���U(0) = u
�
dx

�

=
1

2π
e−

|u|2

2

�
L∗
2f1 + L∗

2

�
− 2c

�
1− v2f0

� ∞

0

E

�
�
�
U∗(x) eiϕ

� ���U(0) = u
�
dx

�
;

L∗
1P2 =

1

2π
e−

|u|2

2

�
L∗
1(u)f2 + L∗

1(u)

� ∞

0

E

�
L∗
2f0 + L∗

1

�
U(y)

�
f1

+

� ∞

0

�
L∗
1

�
U(y)

�
L∗
1

�
U(x+ y)

�
f0

�
dx

����U(0) = u

�
dy

�
.

Since in the integral (2.3.57) all terms with a odd power of u do not contribute, we do not
need to track them. Remark that L∗

1 is linear in u and L∗
2 is independent of u, so that for

the solvability condition (2.3.57) we only need to consider the terms where L∗
1 appears twice

or does not appear at all. The solvability condition is therefore

L f1 = 0 , (2.3.58)

where the operator L is defined as in (2.3.53). This time we have the constraint

� 1

−1

� 2π

0

f1 dϕ dv = 0 ,

which gives f1 = 0. It follows that P̄1(v) = 0 and the first order correction term to the
density of states is zero. We must look for the second order term. Solving the Poisson
equation (2.3.56), we get

P3 =
1

2π
e−

|u|2

2

�
f3 +

� ∞

0

E

�
L∗
1

�
U(z)

�
f2 +

� ∞

0

L∗
2L∗

1

�
U(x+ z)

�
f0 dx

+

� ∞

0

�
L∗
1

�
U(z)

�
L∗
2f0

+

� ∞

0

L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0 dx

�
dy

����U(0) = u

�
dz

�
.

Explicit computations: order 2

The “order 2” equation reads

0 = L∗
UP4 + L∗

1P3 + L∗
2P2 . (2.3.59)

Since we are only interested in finding the second order correction term for the DOS, we
only need to find P2. This means that we do not really have to solve this equation, we are
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only interested in its solvability condition:
�

R2

L∗
1P3 + L∗

2P2 du = 0 , (2.3.60)

where using the results of the previous steps we can write

L∗
2P2 =

1

2π
e−

|u|2

2

�
L∗
2f2 +

� ∞

0

E

�
L∗
2L∗

2f0

+

� ∞

0

L∗
2L∗

1

�
U(y)

�
L∗
1

�
U(x+ y)

�
f0dx

���U(0) = u

�
dy

�
;

L∗
1P3 =

1

2π
e−

|u|2

2

�
L∗
1(u)f3 + L∗

1(u)

� ∞

0

E

�
L∗
1

�
U(z)

�
f2 +

� ∞

0

L∗
2L∗

1

�
U(x+ z)

�
f0 dx

+

� ∞

0

�
L∗
1

�
U(z)

�
L∗
2f0

+

� ∞

0

L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0 dx

�
dy

����U(0) = u

�
dz

�
.

Again, we can disregard the terms where L∗
1 appears an odd number of times, since they do

not contribute to the integral (2.3.60). Therefore the solvability condition becomes

0 = E

�
L∗
2f2 +

� ∞

0

�
L∗
2L∗

2f0 +

� ∞

0

L∗
2L∗

1

�
U(z)

�
L∗
1

�
U(x+ z)

�
f0 dx

+ L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
f2 +

� ∞

0

L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0 dx

+

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

��
L∗
2f0 +

� ∞

0

L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0dx

�
dy

�
dz

�
.

The part of the above equation which contains f2 is exactly (2.3.53). We analyze the parts
containing f0. Due to (2.3.52), the first two terms simplify. We are left with three terms to
study, the last three on the right hand side:

I1 =

�� ∞

0

L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0 dx dz .

I2 =

�� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
2f0 dy dz .

I3 =

��� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0 dx dy dz .

We can rewrite the solvability condition as

L f2 = −F , (2.3.61)
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where F = E
�
I1 + I2 + I3

�
and the operator L is defined by (2.3.53). We have to analyze

the three terms In, n = 1, 2, 3; we start from the first one. Since f0 only depends on v,

L∗
1

�
U(x+ z)

�
f0 = −2�

�
U∗(x+ z)eiϕ

��
1− v2 ∂vf0 .

We shall introduce some more compact notation. All the terms like �
�
U∗(x)eiϕ

�
will be

denoted by �x, and the same for the imaginary parts. We also have that ∂ϕ�x = −�x and
∂ϕ�x = �x. Then,

L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0

= 4L∗
1

�
U(0)

��
η�x+z ∂v

�
(1− v2)3/2 ∂vf0

�
− ξ�x+z

�
1− v2 ∂vf0

�

= 8

�
− η�0�x+z

�
1− v2 ∂2

v

�
(1− v2)3/2 ∂vf0

�
+ ξ�0�x+z

�
1− v2 ∂v

��
1− v2 ∂vf0

��

+ η�0�x+z
v√

1− v2
∂v

�
(1− v2)3/2∂vf0

�
+ ξ�0�x+zv ∂vf0

�
.

Proceeding as we did when dealing with the equation at order zero, we see that the terms
containing �� or �� are centered, so that taking the expected value of I1 we are left with
just

E
�
I1
�
= 8

�� ∞

0

e−(x+z) dx dz

�
− η

�
1− v2 ∂2

v

�
(1− v2)3/2 ∂vf0

�
(2.3.62)

+ η
v√

1− v2
∂v

�
(1− v2)3/2 ∂vf0

��

= 16c

�
−
�

1− v2 ∂2
v

�
(1− v2)3/2 ∂vf0

�
+

v√
1− v2

∂v

�
(1− v2)3/2 ∂vf0

��
.

Let us consider I2. Since L∗
2f0 = −2η ∂v[(1−v2)f0] does not depend on ϕ, the integrand

becomes

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
2f0 = 4L∗

1

�
U(0)

��
η�z

�
1− v2 ∂2

v

�
(1− v2)f0

��

= 8η

�
−�0�z

��
1− v2 ∂v

�2�
∂v

�
(1− v2)f0

��
+ �0�z v ∂

2
v

�
(1− v2)f0

��
.

Taking the expected value we get

E
�
I2
�
=

� ∞

0

8η
�
v ∂2

v

�
(1− v2)f0

�
−
��

1− v2 ∂v

�2�
∂v

�
(1− v2)f0

���
dy

= −16

� ∞

0

�
∂v

�
(1− v2) ∂v

��2�
f0
�
dy . (2.3.63)

This term is clearly infinite, but recall that we still have to consider the third term, which
will simplify the diverging part of I2.

We turn now to consider the last term, I3, which is more complicated. We have

L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0 = 4

�
�y+z�x+y+z

��
1− v2 ∂v

�2

f0 −�y+z�x+y+z v ∂vf0

�
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and

L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0

= 8

�
−�z�y+z�x+y+z

��
1− v2 ∂v

�3

f0 + �z ∂ϕ

�
�y+z�x+y+z

�
v ∂v

��
1− v2 ∂vf0

�

+ �z�y+z�x+y+z

�
1− v2 ∂v

�
v ∂vf0

�
−�z ∂ϕ

�
�y+z�x+y+z

� v2√
1− v2

∂vf0

�
.

We can use the relations ∂ϕ�� = (��+ ��) = −∂ϕ�� and

v ∂v
��

1− v2 ∂vf0
�
= − v2√

1− v2
∂vf0 + v

�
1− v2 ∂2

vf0

to slightly simplify the above formula, which becomes

L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0

= 8

�
−�z�y+z�x+y+z

��
1− v2 ∂v

�3

f0 + �z�y+z�x+y+z

�
1− v2 ∂v

�
v ∂vf0

�

+ �z

�
�y+z�x+y+z + �y+z�x+y+z

�
v
�

1− v2 ∂2
vf0

�
.

We can finally get to the last step of the computations to obtain the integrand term of I3.
We have:

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0

= 16

�
�0�z�y+z�x+y+z

��
1− v2 ∂v

�4

f0

−�0�z

�
�y+z�x+y+z + �y+z�x+y+z

��
1− v2 ∂v

�
v
�
1− v2 ∂2

vf0

�

−�0�z�y+z�x+y+z

��
1− v2 ∂v

�2�
v ∂vf0

�

−�0 ∂ϕ
�
�z�y+z�x+y+z

�
v ∂v

��
1− v2 ∂v

�2

f0

+ �0 ∂ϕ

�
�z

�
�y+z�x+y+z + �y+z�x+y+z

��
v2 ∂2

vf0

+ �0 ∂ϕ
�
�z�y+z�x+y+z

��
v ∂v

�2
f0

�
.

We have to integrate and take the expected value of this. Taking the expected value first
allows for some simplifications. Since E[Ui(0)Uj(z)Uh(y + z)Uk(x + y + z)] = 0 whenever
exactly 3 index are the same (i, j, h, k ∈ {1, 2}), we do not track these terms. There are only
four kinds of terms left to consider:

A = E
�
Ui(0)Ui(z)Ui(y + z)Ui(x+ y + z)

�
= e−(x+z) + 2e−(x+2y+z),

B = E
�
Ui(0)Ui(z)Uj(y + z)Uj(x+ y + z)

�
= e−(x+z),

C = E
�
Ui(0)Uj(z)Ui(y + z)Uj(x+ y + z)

�
= e−(x+2y+z),

A = E
�
Ui(0)Uj(z)Uj(y + z)Ui(x+ y + z)

�
= e−(x+2y+z) = C .
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We set

α =

� ∞

0

A dx = e−z + 2e−(z+2y), β =

� ∞

0

B dx = e−z, γ =

� ∞

0

C dx = e−(z+2y)

and remark that A = B + 2B and α = β + 2γ. We have that

�0�z�y+z�x+y+z = �0�z�y+z�x+y+z = A
�
sin2(ϕ) + cos2(ϕ)

�2

= A ,

�0�z�y+z�x+y+z = �0�z�y+z�x+y+z = B
�
sin2(ϕ) + cos2(ϕ)

�2

= B ,

�0�z�y+z�x+y+z = �0�z�y+z�x+y+z = �0�z�y+z�x+y+z = �0�z�y+z�x+y+z

= C
�
sin2(ϕ) + cos2(ϕ)

�2

= C .

Putting everything together, we finally obtain
� ∞

0

E

�
L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(y + z)

�
L∗
1

�
U(x+ y + z)

�
f0

�
dx

=16

�
α
��

1− v2 ∂v

�4

f0 − 2γ
�
1− v2 ∂v

�
v
�
1− v2 ∂2

vf0

�

− β
��

1− v2 ∂v

�2�
v ∂vf0

�
− α v ∂v

��
1− v2 ∂v

�2

f0 + 2γ v2 ∂2
vf0 + β

�
v ∂v

�2
f0

�
.

We have to integrate in dz, then join this with (2.3.63) and integrate in dy to verify that
the diverging terms simplify. We have

� ∞

0

α dz = 1 + 2e−2y ,

� ∞

0

β dz = 1 ,

� ∞

0

γ dx = e−2y ,

which leads to

E
�
I3
�
= 16

� ∞

0

���
1− v2 ∂v

�4

−
��

1− v2 ∂v

�2�
v ∂v

�

− v ∂v

��
1− v2 ∂v

�2

+
�
v ∂v

�2
��

f0
�

+2e−2y

���
1− v2 ∂v

�4

f0 −
�
1− v2 ∂v

�
v
�
1− v2 ∂2

vf0

�

− v ∂v

��
1− v2 ∂v

�2

f0 + v2 ∂2
vf0

�
dy .

The first term on the right hand side can be rewritten as

���
1− v2 ∂v

�2

−
�
v ∂v

��2�
f0
�
=

�
∂v

�
(1− v2) ∂v

��2�
f0
�
,
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which cancels exactly with (2.3.63). Finally, using (2.3.62), we get

F = E
�
I1 + I2 + I3

�

= 16

���
1− v2 ∂v

�4

f0 −
�
1− v2 ∂v

�
v
�
1− v2 ∂2

vf0

�
− v ∂v

��
1− v2 ∂v

�2

f0

+ v2 ∂2
vf0 −

�
1− v2 ∂2

v

�
(1− v2)3/2 ∂2

vf0

�
+

v√
1− v2

∂v

�
(1− v2)3/2∂2

vf0

��
.

Explicit computations give finally

F = 16c
�
2v + (4v2 − 2)c− c2v(1− v2)

�
f0 =

4c2

π sinh(c)

�
c2v3 + 4cv2 + (2− c2)v − 2c

�
ecv.

We can return to the solvability condition (2.3.61), which we treat as we did above to find
P0. The equation can be rewritten as

−2η ∂v

�
(1− v2)f2

�
+ 2ξ ∂ϕf2 + 4 ∂v

�
(1− v2) ∂vf2

�
+ 4

v2

1− v2
∂2
ϕf2 + F (v) = 0

with the constraint
� 2π

0

� 1

−1
f2 dv dϕ = 0. We can therefore assume f2 to be independent of

ϕ and a solution of

−2η ∂v

�
(1− v2)f2

�
+ 4 ∂v

�
(1− v2)∂vf2

�
= −F (v) .

Integrating, we get

−c(1− v2)f2 + (1− v2)∂vf2 = −1

4
G(v) +

G(0)

4
− cf2(0) + ∂vf2(0) ,

where G(v) is the antiderivative of F (v):

G(v) = −16c(1 + cv)(1− v2)f0 .

We can choose G(0) so that G(0)/4− cf2(0) + ∂vf2(0) = 0. Then

−cf2 + ∂vf2 = − G(v)

4(1− v2)
= 4c(1 + cv)f0 ,

from which we can easily find the solution

f2 = 2c(2v + cv2)f0 + C0f0 .

Note that f2(0) = C0k and ∂vf2(v) = ck(C0 + 4), so that the value of G(0) we must take is
G(0) = −4ck = −c2/(π sinh(c)). We still have to impose that

0 =

� 2π

0

� 1

−1

f2(v) dv dϕ = C0 + 2c2 ,

so that we obtain C0 = −2c2 and f2 is completely determined:

f2 = 2c(−2c+ 2v + cv2)f0 =
c2

2π sinh(c)
(−2c+ 2v + cv2)ecv.
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Finding the second order term for the density of states: ρ2

We can finally compute the second order correction for the DOS. We start by computing
the (second order) correction term δκ for the Lyapunov exponent. Recall that c = η/2.

δκ = η

� 1

−1

vf2(v) dv =
c2 − 2

cπ

�
1− coth(c)

�
.

Observe that for η � 1, δκ ∼ 0. From the Thouless formula (2.3.32) we get the second
order correction ρ2 for the density of the eigenstates. Since δκ only depends on c, we can
compute it as

ρ2(η, ξ) =
1

2π

�
∂2
η + ∂2

ξ

�
δκ(η, ξ) =

1

8π
∂2
c δκ(c)

=
1

4π2

�c2 + 2

c2
csch2(c)− c2 − 2

c
csch2(c) coth(c) +

2

c3
�
coth(c)− 1

��
.

This provides (2.3.27) and completes the proof of theorem 2.34. Plotting the correction, we
see that we are also moving mass from the interval [α,+∞] towards zero, see figure 2.4. The
approximate value of α is α = 4.599.

2.3.6 Density of states – general case

In this subsection we focus on the method for computing the density of eigenstates (DOS)
of the ZSSP for a more general class of potentials (which corresponds to the initial condition
of the NLS equation) with rapid (but not infinitely rapid) oscillations. The scheme of the
computations is similar to the one presented above, where the initial condition was taken to
be a rapidly oscillating Ornstein-Uhlenbeck process. We shall now take the initial condition
of the form

Uε
0 (x) = ε−1F

�
Q(x/ε2)

�
, (2.3.64)

where the process Q(x) and the function F satisfy the following assumptions

Hypothesis 2.42. Q = (Q1, Q2) is given by a couple of independent, identically distributed,
ergodic Markov processes on a smooth, compact, connected Riemannian manifold M with
invariant probability µ. The infinitesimal generator of Q, denoted by LQ, is a self-adjoint,
elliptic diffusion operator on M, with zero an isolated, simple eigenvalue.

F : M2 �→ C is a smooth non-constant function of the form F (Q) = F1(Q1) + iF2(Q2),
where Fn : M �→ R, n = 1, 2, and that it satisfy the following centering condition

E

�
F
�
Q(x)

��
=

�

M

F (q) dµ(q) = 0 . (2.3.65)

These are easy technical conditions which ensures that if we rewrite the ZSSP system

using polar coordinates (ρ, γ) as we did in the previous subsection, the vector
�
Q,

→
γ

�

is ergodic, [APW86]. Under hypothesis 2.42 we can therefore compute the DOS using the
method explained in lemma 2.41, which relays on the computation of the Lyapunov exponent
κ, (2.3.31), and the Thouless formula, (2.3.32). The explicit computations presented below
are done in the new variables (v,ϕ, Q) and using equation (2.3.34) to obtain the Lyapunov
exponent. We stress that the essential point for the application of this method is the

ergodicity of the vector
�
Q,

→
γ

�
, so that the technical hypothesis on the process Q could
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actually be considerably relaxed, see the following remarks. A detailed analysis of linear
systems and different conditions ensuring ergodicity are contained in [AKO].

Remark 2.43. If we require the generator of the process Q to be self adjoint is because this
considerably simplifies computations. However, in some cases it is possible to work also with
processes not satisfying this assumption, as it was the case for the OU process considered
in the previous subsection. Also the independence of the real and imaginary part of F (Q)
is only assumed in order to simplify computations.

Remark 2.44. An easy example of a process Q satisfying hypothesis 2.42 can be obtained
taking Q a Wiener process on a torus.

Remark 2.45. Remark that since for the invariant measure L∗
Qµ = 0 and since constants are

in the kernel of the generator (LQ1 = 0), which is a one dimensional subspace, the invariant
measure µ of the process Q must be constant [FGPS]. The constant µ can therefore be seen
as the volume of the manifold M . In the following, we maintain the same notation for the
(constant) invariant measure dµ(q) = µ dq and the constant µ.

Our main result is the following.

Theorem 2.46. Consider the NLS equation with initial condition given by a rapidly oscil-
lating process Q satisfying hypothesis 2.42. The distribution of eigenstates ρ(η, ξ) (DOS) of
the corresponding ZSSP is smooth and can be written as a power series expansion around
the limit case of infinitely rapid oscillations. If ε is the parameter controlling the rapidity of
oscillations, we have

ρ(η, ξ) = ρ0(η) +O(ε2) , (2.3.66)

where

ρ0(η) =
1

2π ᾱ

η coth
�
η/ᾱ

�
− ᾱ

sinh2
�
η/ᾱ

� (2.3.67)

is the DOS corresponding to the limit case, and the first order term is zero. Here, ᾱ is the
integrated covariance of the process U = F (Q), which is given by

ᾱ =

� ∞

0

E

�
F
�
Q(0)

�
F
�
Q(x)

��
dx . (2.3.68)

Remark 2.47. The second order term ρ2(η, ξ) of the expansion (2.3.66) is in general quite
complicated. A discussion of a method that can be used to obtain it and of some special
cases for which simplifications occur is provided at the end of this subsection.

The proof of theorem 2.46 and the discussion on the second order correction term ρ2 of
the DOS fill the rest of this subsection.

The Fokker-Planck equation

From now on we will use the notation U0(x) = F
�
Q(x)

�
. We will also drop the subscript

U0 for the initial condition and, when there is no risk of confusion, also the dependence on
x. Just as we did in the previous subsection, we introduce some new variables,

r(x) = ψ1(x)/ψ2(x) = ew(x)+iϕ(x) ,
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where w ∈ (−∞,∞) and ϕ ∈ [0, 2π). Using these variables we can rewrite the ZSSP system
(2.1.3) as

d

dx
r(x) = iU − 2iζr − iU∗r2

and since dr = r(dw + idϕ), we obtain the system governing the evolution of the variables
w, ϕ �

∂xw = 2η + 2 cosh(w)�
�
U∗eiϕ

�

∂xϕ = −2ξ − 2 sinh(w)�
�
U∗eiϕ

� .

With the change of variable v = tanh(w), we obtain to the Fokker-Planck equation

∂xP (v,ϕ, q) = L∗
QP + L∗

1P + L∗
2P , (2.3.69)

where

L∗
1f = −2η ∂v

�
(1− v2)f

�
+ 2ξ ∂ϕf ,

L∗
2f = −2�

�
U∗eiϕ

�
∂v

��
1− v2f

�
+ 2

v√
1− v2

∂ϕ

�
�
�
U∗eiϕ

�
f
�
.

To obtain a rapidly oscillating initial condition we still have to speed up the process Q and
rescale U = F (Q) accordingly. The resulting rapidly oscillating potential used in the ZSSP
is the process Uε given by (2.3.64). In the following, we will always work with the fast
oscillating process Qε(x) = Q(x/ε2). Let P ε(v,ϕ, Qε) be the invariant probability measure.
Under hypothesis 2.42 the invariant probability P ε admits a smooth density with respect to
the Lebesgue measure, which is the solution of L∗

εP
ε = 0. In the following we shall therefore

confound the invariant probability with its density. The operator L∗
ε has a finite expansion

in ε:

L∗
ε =

1

ε2
L∗
Q +

1

ε
L∗
1 + L∗

2 .

We assume that the density of the invariant probability P ε solution of L∗
εP

ε = 0 can be
formally rewritten using a power series expansion in ε around the limit case of infinitely
rapid oscillations: P ε = P0 + εP1 + ε2P2 + ... , [APW86]. The first term of the expansion,
P0, is the invariant probability of the limit problem for infinitely rapid oscillations, which
thanks to the results of section 2.1 can be found solving the formal problem of a white noise
initial condition. We are interested here in finding the correction terms P1 and P2. To do
so, we shall rewrite the equation L∗

εP
ε = 0 using the expansions of both L∗

ε and P ε, divide
scales according to the power of ε and study them separately, posing the term at each order
equal to zero.

To ease notation, in the following computations we shall drop all the superscript ε.

Explicit computations: order −2

The first equation is the “order −2” equation, containing the only term scaling as ε−2. This
is simply

LQ P0 = 0 ,

from which we get that P0 = µf0(v,ϕ).
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Explicit computations: order −1

The following equation is L∗
1P0 + LQ P1. This can be seen as a Poisson equation in the q

variable
LQP1 = g ,

where g = −L∗
1P0. The solvability condition for the Poisson equation is that the function g

must be centered with respect to the invariant measure of Q. Rewriting L∗
1(u) = L∗

1

�
F (q)

�

we obtain the following equivalent formulation of the solvability condition:

0 =

�

M2

L∗
1P0 dµ =

�

M2

L∗
1

�
F (q)

�
f0 µ2 dq . (2.3.70)

Since L∗
1(u) is linear in u and µ is a constant, the condition becomes

�

K2

F (q)µ2 dq = µE

�
F
�
Q
��

= 0 ,

which is always verified thanks to the centering condition (2.3.65), and from (2.3.70) we
obtain no additional information on f0. However, we can now solve L∗

1P0+LQ P1 to get the
following expression for P1:

P1(q) = µf1 +

� ∞

0

E

�
L∗
1

�
U(x)

�
P0

�
U(x)

� ���U(0) = u = F (q)
�
dx

= µf1 +

� ∞

0

µE

�
L∗
1

�
U(x)

�
f0

���U(0) = F (q)
�
dx ,

where f1 is a function of (v, ϕ), but does not depend on q.

Explicit computations: order 0

The next order equation is
L∗
2P0 + L∗

1P1 + LQP2 = 0 . (2.3.71)

Again, we look at it as a Poisson equation in the q variable, and the solvability condition is
�

L∗
2P0 + L∗

1P1 dµ = 0 . (2.3.72)

We have
L∗
2P0 = µ

�
− 2η ∂v

�
(1− v2)f0

�
+ 2ξ ∂ϕf0

�
.
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Introduce the compact notation �x = �
�
U(x)eiϕ

�
and �x = �

�
U(x)eiϕ

�
, so that ∂ϕ�x = −�x

and ∂ϕ�x = �x. Then, we also have

L∗
1(q)P1(q) = µL∗

1(q)f1 +

� ∞

0

µE

�
L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
f0

���U(0) = F (q)
�
dx

= µL∗
1(q)f1 + 4µ

� ∞

0

E

�
�0�x ∂v

��
1− v2 ∂v

��
1− v2f0

��

+ �0�x ∂v
�
vf0

�
−�0�x ∂v

�
v ∂ϕf0

�

+
v√

1− v2

�
(�0�x −�0�x) ∂v

��
1− v2f0

�

−�0�x ∂v
��

1− v2 ∂ϕf0
��

+
v2

1− v2
∂ϕ

�
�0 ∂ϕ(�xf0)

� ���U(0) = F (q)

�
dx .

The integrated covariance ᾱ of the process U defined by (2.3.68) plays an important role.
However, to develop computations it is more convenient to introduce the quantity α defined
by � ∞

0

E

�
Ui(0)Uj(x)

�
dx = α δi,j ,

where δi,j is the Kronecker delta function. Remark that this is simply half of the integrated
covariance: ᾱ = 2α. Since L∗

1 is linear in u, the expected value of the term L∗
1f1 is zero, and

we have

E

�
L∗
1(q)P1(q)

�
= 4µ2α

�
∂v

�
(1− v2) ∂vf0

�
+

v2

1− v2
∂2
ϕf0

�
.

Since L∗
2P0 is constant in q, condition (2.3.72) becomes

L f0 = 0 ,

where

L f = E

�
L∗
2f −

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
f dx

�

= −2η ∂v

�
(1− v2)f

�
+ 2ξ ∂ϕf + 4α

�
∂v

�
(1− v2) ∂vf

�
+

v2

1− v2
∂2
ϕf

�
. (2.3.73)

Setting c := η/2α, the solution is given by

f0(v, ϕ) =
1

2π
kecv, (2.3.74)

where k is a constant that has to be chosen so that
� 2π

0

� 1

−1
f0 dv dϕ = 1. This gives

k = c/2 sinh(c). Therefore,

P0(v,ϕ, q) =
µc

4π sinh(c)
ecv . (2.3.75)
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With f0 given by (2.3.74), the solvability condition (2.3.72) is satisfied and we can solve
(2.3.71) to get the following expression for P2:

P2 = µf2+µ

� ∞

0

E
�
L∗
2f0+L∗

1

�
U(x)

�
f1+

� ∞

0

L∗
1

�
U(x)

�
L∗
1

�
U(x+y)

�
f0 dy

���U(0) = F (q)
�
dx .

Here, f2 is a function of (v, ϕ), but is constant in q.

Finding the density of states at order zero: ρ0

Using the explicit expression (2.3.75) for P0 we obtain

P̄0(v) :=

� 2π

0

�

M2

P0(v, ϕ, q) dµ dϕ = kecv,

from which we find that the Lyapunov exponent at order zero is

κ = η

� 1

−1

v P̄0(v) dv = η coth(η/2α)− 2α .

From the Thouless formula we get that the density of eigenstates is, at order zero,

ρ0(η, ξ) =
1

2π

c coth(c)− 1

sinh2(c)
.

We recall that c = η/2α = η/ᾱ. We have obtained (2.3.67).

Explicit computations: order 1 - ρ1 = 0

We now need to solve the next order equation, which is

L∗
2P1 + L∗

1P2 + LQP3 = 0 , (2.3.76)

where

L∗
2P1 = µL∗

2f1 + µ

� ∞

0

E

�
L∗
2L∗

1

�
U(x)

�
f0

���U(0) = F (q)
�
dx ,

L∗
1(q)P2 = µE

�
L∗
1

�
U(0)

�
f2 +

� ∞

0

L∗
1

�
U(0)

�
L∗
2f0 + L∗

1

�
U(0)

�
L∗
1

�
U(x)

�
f1

+

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
L∗
1

�
U(x+ y)

�
f0 dy dx

���U(0) = F (q)

�
.

Looking at (2.3.76) as a Poisson equation in the q variable and setting

E

� �� ∞

0

Ui(0)Ui(x)Ui(x+ y) dy dx

�
= δi,jδj,k β , (2.3.77)

we find that the solvability condition is

0 =L∗
2f1 + E

� � ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
f1 +

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(x)

�
L∗
1

�
U(x+ y)

�
f0 dy dx

�
,
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which is to say

L f1 = −g,

where L is defined by (2.3.73) and the function g is given by

g = 8µE

�
�0�x�x+y

�
∂v

�
1− v2 ·

�3

(f0)−�0�x ∂v

��
1− v2 ∂v

�
v ∂ϕ

�
�x+yf0

���

−�0 ∂v

�
v ∂ϕ

�
�x�x+y ∂v

��
1− v2f0

��
− v2√

1− v2
∂ϕ

�
�x ∂ϕ

�
�x+yf0

���

− v√
1− v2

∂ϕ

�
�0�x�x+y

�
∂v

�
1− v2 ·

�2

(f0)−�0�x ∂v

�
v ∂ϕ

�
�x+yf0

���

+
v2

1− v2
∂ϕ

�
�0 ∂ϕ

�
�x�x+y ∂v

��
1− v2f0

���

− v3

(1− v2)3/2
∂ϕ

�
�0 ∂ϕ

�
�x ∂ϕ

�
�x+yf0

���
�
.

Developing the computations in the above equation one is left with

g = 8µβ

��
cos3(ϕ) + sin3(ϕ)

�
f0
�
1− v2

�
c3(1− v2)− 3c2v − c− 2v3

(1− v2)2

�

−
�
cos(ϕ) + sin(ϕ)

�
f0
�

1− v2
�
2vc2 + 3c− 2c

1− v2
− 2v3

(1− v2)2

��
.

The solution of L f1 = g must therefore be of the form

f1(v, ϕ) = cos(ϕ)f1,1(v) + sin(ϕ)f1,2(v) + cos3(ϕ)f1,3(v) + sin3(ϕ)f1,4(v) ,

so that P̄1(v) =
� 2π

0
f1dϕ = 0 and we see that the first order term ρ1(η, ξ) of the development

of the Lyapunov exponent is zero. This proves theorem 2.46.

For f1 of the form given above, the solvability condition is satisfied and we can solve the
Poisson equation to obtain

P3 =µf3 + µ

� ∞

0

E

�
L∗
2f1 +

� ∞

0

L∗
2L∗

1

�
U(x+ z)

�
f0 dx+ L∗

1

�
U(z)

�
f2

+

� ∞

0

L∗
1

�
U(z)

�
L∗
2f0 + L∗

1

�
U(z)

�
L∗
1

�
U(x+ z)

�
f1

+

� ∞

0

L∗
1

�
U(z)

�
L∗
1

�
U(z + x)

�
L∗
1

�
U(x+ y + z)

�
f0 dy dx

���U(0) = F (q)

�
dz .

Explicit computations: order 2

To find the second order term of the Lyapunov exponent, and therefore for the DOS, we
must push our analysis one step further. The next order equation we need to consider is

L∗
2P2 + L∗

1P3 + LQP4 = 0 . (2.3.78)
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We have that

L∗
2P2 = µL∗

2f2 + µ

� ∞

0

E

�
L∗
2L∗

2f0 + L∗
2L∗

1

�
U(x)

�
f1

+

� ∞

0

L∗
2L∗

1

�
U(x)

�
L∗
1

�
U(x+ y)

�
f0 dy

���U(0) = F (q)
�
dx ,

so that, due to (2.3.73),

E

�
L∗
2P2

�
= µL∗

2f2 .

Also,

L∗
1(q)P3 = µE

�
L∗
1

�
U(0)

�
f3 +

� ∞

0

�
L∗
1

�
U(0)

�
L∗
2f1 +

� ∞

0

L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0 dx

+ L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
f2

+

� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
2f0 + L∗

1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(x+ z)

�
f1

+

� ∞

0

L∗
1

�
U(0)

�
L1

�
U(z)

�
L∗
1

�
U(x+ z)

�
L1

�
U(x+ y + z)

�
f0 dy dx

�
dz

���U(0) = F (q)

�
.

The expected value of the first two terms on the right hand side of the above equation is
zero, and the fourth one can be joined with the term E[L∗

2f2] to obtain L f2, with L is
given by (2.3.73). Therefore, the solvability condition for (2.3.78) reduces to

L f2 = −F , (2.3.79)

where F = E
�
I1 + I2 + I3 + I4

�
and

I1 =

�� ∞

0

L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0 dx dz ,

I2 =

�� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
2f0 dx dz ,

I3 =

�� ∞

0

L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(x+ z)

�
f1 dx dz ,

I4 =

��� ∞

0

L∗
1

�
U(0)

�
L1

�
U(z)

�
L∗
1

�
U(x+ z)

�
L1

�
U(x+ y + z)

�
f0 dx dy dz .

We shall now analyze all these terms. Setting
�� ∞

0

E

�
Ui(0)Uj(x+ z)

�
dx dz = δi,j γ

we have

E
�
I1
�
=

�� ∞

0

E

�
L∗
1

�
U(0)

�
L∗
2L∗

1

�
U(x+ z)

�
f0

�
dx dz (2.3.80)

= −8 ηγ ∂v

��
1− v2 ∂v

�
(1− v2) ∂v(

�
1− v2f0) + v

�
1− v2f0

��
.
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Also,

E
�
I3
�
=

�� ∞

0

E

�
L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
1

�
U(x+ z)

�
f1

�
dx dz

= 8β

��
cos3(ϕ) + sin3(ϕ)

�
f1
�
1− v2

�
c3(1− v2)− 3c2v − c− 2v3

(1− v2)2

�

−
�
cos(ϕ) + sin(ϕ)

�
f1
�
1− v2

�
2vc2 + 3c− 2c

1− v2
− 2v3

(1− v2)2

� �
.

Two terms are left: one is

E
�
I2
�
=

�� ∞

0

E

�
L∗
1

�
U(0)

�
L∗
1

�
U(z)

�
L∗
2f0

�
dx dz

= −16c

� ∞

0

α dx ∂v

�
vf0 +

�
1− v2 ∂v

��
1− v2 ∂v

�
(1− v2)f0

���
,

which is infinite, as in the OU case, but will simplify with part of the last term. The last
term requires more computations, and we shall start by introducing some more notation.
For i, j ∈ {1, 2}, i �= j set

a :=

���
E

�
Ui(0)Ui(z)Ui(x+ z)Ui(x+ y + z)

�
dx dy dz ,

b :=

���
E

�
Ui(0)Ui(z)

�
E

�
Uj(x+ z)Uj(x+ y + z)

�
dx dy dz ,

c :=

���
E

�
Ui(0)Ui(x+ z)

�
E

�
Uj(z)Uj(x+ y + z)

�
dx dy dz ,

d :=

���
E

�
Ui(0)Ui(x+ y + z)

�
E

�
Uj(z)Uj(x+ z)

�
dx dy dz .

Note that, by the stationarity of Q, b =
�∞
0

α2 dx and c =
�∞
0

γ(x)2 dx, where

γ(x) :=

� ∞

0

E

�
Ui(0)Ui(x+ z)

�
dz .

To ease notation, in the following series of four � and � we shall drop the subscript. However,
the first symbol will always refer to [U(0)eiϕ], the second to [U(z)eiϕ], the third to [U(x+
z)eiϕ], and the last one to [U(x+ y+ z)eiϕ]. We will also use a compact notation �2 for ��
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etc. With all this notation we have
��� ∞

0

E

�
�4

�
dx dy dz =

��� ∞

0

E

�
�4

�
dx dy dz = a

�
sin4 +cos4

�
+ 2 sin2 cos2

�
b+ c+ d

�

= a+ 2 sin2 cos2
�
− a+ b+ c+ d

�
��� ∞

0

E

�
�2�2

�
dx dy dz =

��� ∞

0

E

�
�2�2

�
dx dy dz = b

�
sin4 +cos4

�
+ 2 sin2 cos2

�
a− c− d

�

= b+ 2 sin2 cos2
�
a− b− c− d

�
��� ∞

0

E

�
����

�
dxdydz =

��� ∞

0

E

�
����

�
dxdydz = c

�
sin4 +cos4

�
+ 2 sin2 cos2

�
a− b− d

�

= c+ 2 sin2 cos2
�
a− b− c− d

�
��� ∞

0

E

�
��2�

�
dxdydz =

��� ∞

0

E

�
��2�

�
dxdydz = d

�
sin4 +cos4

�
+ 2 sin2 cos2

�
a− b− c

�

= d+ 2 sin2 cos2
�
a− b− c− d

�
.

Setting A :=
�
− a+ b+ c+ d

�
, we finally get that

E
�
I4
�
= 16

��
a+ 2A sin2 cos2

�
R1(v) +

��
a− b

�
+ 4A sin2 cos2

�
R2(v)

+
��
a− c− d

�
+ 6A sin2 cos2

�
R3(v)+

��
a− b− 2c− 2d

�
+ 12A sin2 cos2

�
R4(v) +

�
A+ 8A sin2 cos2

�
R5(v)

�

= 16

�
A
�
R1 +R2 +R3 +R4 +R5

�
+ b

�
R1 +R3

�
+ (c+ d)

�
R1 +R2 −R4

�

+ 2A sin2 cos2
�
R1 + 2R2 + 3R3 + 6R4 + 4R5

��
,

where

R1(v) =
�
∂v

�
1− v2 ·

�2�
∂v

�
(1− v2) ∂vf0

��
,

R2(v) = ∂v

��
1− v2 ∂v

�
v ∂v

��
1− v2f0

�
+

v2√
1− v2

f0

��
,

R3(v) =
�
∂vv ·

��
∂v

�
(1− v2) ∂vf0

��
,

R4(v) = ∂v

�
v2√
1− v2

∂v
��

1− v2f0
�
+

v3

(1− v2)
f0

�
,

R5(v) =

�
v√

1− v2
∂v

��
1− v2 ∂v

�
(1− v2) ∂vf0

�
+ 2v ∂v

��
1− v2f0

�
+ 2

v2√
1− v2

f0

+ 3
�
1− v2 ∂v

��
1− v2f0

��

+ 6
v3

(1− v2)3/2
∂v

��
1− v2f0

�
+ 6

v4

(1− v2)2
f0 + 3

v2

1− v2
∂v

�
vf0

��
.
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Finding the second order term of the density of states: ρ2

One can now in principle compute F (v, ϕ) = E[I1+I2+I3+I4], and find f2 by solving the
compatibility equation (2.3.79). Then, one only needs to integrate to find P̄2(v) =

�
f2 dϕ ,

integrate again to find the correction term for the Lyapunov exponent κ(η, ξ) = η
�
v dP̄2(v) ,

and differentiate in η, ξ to find the second order term ρ2(η, ξ) of the DOS.

Computations in the general case are quite cumbersome, but important simplifications
occur in some special cases. We shall discuss them now. First of all, we remark that

R1 +R3 =
�
∂v

�
(1− v2) ∂v ·

��2�
f0
�
,

so that if the integrated covariance of the processes Ui is unitary (α = 1), then proceeding
as in the OU case one can show that b =

�∞
0

α dx, and E[I2] is exactly −E[b(R1 +R3)].

If we also have that U is Gaussian, then A = 0 and β = 0. This means that E[I3] = 0
and the term deriving from I4 reduces to

E
�
I4
�
= (c+ d)

�
R1 +R2 −R4

�
.

In this case, the dependence on ϕ of F disappears, f2 is independent of ϕ, and the second
order correction term to the density of states will be independent of ξ.

Remark that the dependence of f1 on ϕ is only through odd powers of trigonometric
functions. Then, in the case of a non-Gaussian process U , both E[I3] and E[I4] will show
a dependence on ϕ only through even powers of trigonometric functions, and we expect the
second order correction term of the DOS to have a non trivial dependence on ξ. We will
show below that it is actually quite easy to construct a process with β �= 0.

Example of a process for which β �= 0.

Even though for many common examples the constant β defined in (2.3.77) is zero, this is
not always the case. Indeed, there are examples of homogeneous Markov processes for which
β does not vanish. We provide here an easy example of such a process.

Consider the continuous time process A(t), t ≥ 0 with a finite number of stated,
{−1, 0, 1}. Let the transition rate matrix be given by

M =




−3 2 1
2 −2 0
1 0 −1




Denote by Pt(·, ·) the probability of transition between states. In the following, we shall use
italics lower case letters a, b ∈ {−1, 0, 1} to denote the values of the process A, and boldface
lower case letters a,b ∈ {e1, e2, e3} to denote the associated state vector. We shall represent
state vectors using the standard basis {e1, e2, e3} of R3. In our notation, the same letter in
italics and boldface character represents the same element so that, for example, we have the
correspondence e1 = a = a = −1. When performing linear algebra operations, we will also
use aT to denote the transposed of the vector a. When in need to denote the components
of a vector a, we will use a = (a1,a2,a3).
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Using the Markov property and the definition of β given by (2.3.77 ) we have

β =

�� ∞

0

E

�
A(0)A(t)A(t+ s)

�
ds dt = E

�
A(0)

� ∞

0

E
�
A(t)

��A(0)
� � ∞

0

E
�
A(s)

��A(0)
�
ds dt

�

=
�

a

a

�� ∞

0

�

b

�
Pt(a, b) b

�
dt

�2

=
�

a

a

�� ∞

0

�

b

b
�
bT eMta

�
dt

�2

. (2.3.81)

The eigenvalues for M are λ1 = 0, λ2 = −3 +
√
3 and λ3 = −3−

√
3, so that

eMt = M1 + eλ2tM2 + eλ3tM3 ,

where the three matrices M1,M2,M3 are given by

M1 =
1

3




1 1 1
1 1 1
1 1 1


 M2 =

1

6




2−
√
3 −1 +

√
3 −1

−1 +
√
3 −2 −1−

√
3

−1 −1−
√
3 1 +

√
3




M3 =
1

6




2 +
√
3 −1−

√
3 −1

−1−
√
3 2 −1 +

√
3

−1 −1 +
√
3 1−

√
3


 .

Let us compute the value of β. We start by analyzing the curly brackets {·} in the last term
of equation (2.3.81). We have that

�

b

b
�
bM1a

�
= −1(a1 + a2 + a3) + 0 + 1(a1 + a2 + a3) = 0 .

However, this sum is not zero for the other two terms, the ones containing M2 and M3.
Setting

M23 = − 1

λ2
M2 −

1

λ3
M3 =

1

6




1 0 −1
0 2 −2
−1 −2 2




we have that
� ∞

0

�

b

b
�
b
�
eλ2tM2 + eλ3tM3

�
a
�
dt =

�

b

b
�
bM23a

�
= −(a1 − a3) + (−a1 − 2a2 − 2a3)

= −2a1 − 2a2 + 3a3 .

Inserting this into (2.3.81) we easily find that

β = −4 + 9 = 5 �= 0 .



2.4. APPENDIX 91

2.4 Appendix

We collect here a few technical results needed for the proof of theorem 2.2. We shall retain
the different notations introduced there.

Lemma 2.48. We construct an explicit example of the subspaces Hn ⊂ H = W 3,2(G) to be
used in the proof of theorem 2.2 and lemma 2.49.

Construction of Hn. Divide G = (−N,N)3 into cubes with sides of length 1/n and add one
extra layer of cubes around it:

Ai,j,k :=
�
i/n, (i+ 1)/n

�
×
�
j/n, (j + 1)/n

�
×
�
k/n, (k + 1)/n

�
,

for i, j, k = −(nN + 1), ... , nN . Define the piecewise (on every cube) polynomials of fourth
degree as

�h(x) :=
Nn�

i,j,k=−(Nn+1)

4�

m=0

1

m!
�a(m)

i,j,k |x− yi,j,k�(m)
{Ai,j,k}(x) , (2.4.1)

where yi,j,k is the center of the cube Ai,j,k, a
(m)
i,j,k are families of m-dimensional tensors and

the brackets denote the relative tensor products (so that, for example, �a(4)i,j,k |x − yi,j,k�(4)

denotes the product between the four-dimensional tensor a(4)i,j,k and four copies of the vector

(x − yi,j,k) ). With these definitions �h is a function defined on [−N − 1
n , N + 1

n )
3, but its

restriction to G does not belong to H in general since it may not even be continuous. Let
Γ be a real, nonnegative, smooth function, with compact support contained in [−1/2, 1/2]3

and such that
�
[−1/2,1/2]3

Γ(y) dy = 1. Setting Γn(y) := n3Γ(ny) we can finally define Hn

as the finite dimensional space of functions of the form h(x) := (�h � Γn)(x). Remark that �h
has been defined on a set larger than G, so that the convolution product is well defined for
x ∈ G.

Lemma 2.49. For every g ∈ C4(G), there exists a gn ∈ Hn such that

��g − gn
��
H ≤ C

1

n

��g
��
C4(G)

.

Proof. Step 1 (Construction of gn). For i, j, k = −nN, ... , nN −1 (which means that yi,j,k ∈
G) set a

(m)
i,j,k := Dmg(yi,j,k). For i, j, k such that yi,j,k /∈ G set a

(m)
i,j,k := Dmg(y�), where y� is

the nearest cube center; notice that the distance of these two points is at most the diameter
of the cubes, which we call 2δ := 2

√
3n−1. With the a

(m)
i,j,k thus defined we construct the

piecewise polynomial function �gn as in (2.4.1): on the cubes the centers of which are not in
G, this function is just a copy of the function defined on the nearest cube with center in G.
Finally, we define gn as the convolution product gn := Γn � �gn.

Step 2 (Estimates). For every multiindex a ∈ N
3 such that |a|1 := a1 + a2 + a3 ≤ 3, we

need to estimate �

G

���∂a(Γn � �gn)(x)− ∂ag(x)
���
2

dx .

To clarify the procedure to obtain an estimate for the above term we first give explicit
computations for the case a = e1 = (1, 0, 0). Recall that, by definition,

�

i,j,k

�

Ai,j,,k

Γn(x− y) dy =

�

[−(N+1/n),N+1/n)3
Γn(x− y) dy = 1 .
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For a = (1, 0, 0), using twice the inequality (a+ b)2 ≤ 2(a2 + b2), we have

���∂1(Γn � �gn)(x)− ∂1g(x)
���
2

=
���
�

i,j,k

�

Ai,j,k

−∂y1
Γn(x− y)�gn(y)dy − ∂1g(x)

���
2

≤ 2

����
�

i,j,k

�

Ai,j,k

Γn(x− y)∂y1
�gn(y)dy − ∂1g(x)

���
2

+
���
�

i,j,k

�

∂1Ai,j,k

Γn(x− y)
�
�gn(y+1 , y2, y3)− �gn(y−1 , y2, y3)

�
dy2 dy3

���
2
�

≤ 4

����
�

i,j,k

�

Ai,j,k

Γn(x− y)
��∂y1

�gn(y)− ∂1�gn(x)
��dy

���
2

+
���∂1�gn(x)− ∂1g(x)

���
2

+
���
�

i,j,k

�

∂1Ai,j,k

Γn(x− y)
�
�gn(y+1 , y2, y3)− �gn(y−1 , y2, y3)

�
dy2 dy3

���
2
�

= 4
�
S1 + S2 + S3

�
, (2.4.2)

where ∂1Ai,j,k denotes the faces of the cubes orthogonal to the direction e1 := (1, 0, 0).
Notice that the number of non zero terms in the sums over i, j, k of this proof is limited to
8 because the support of Γn can intersect at most 8 cubes. The term S1 can be bounded by
the square of

��

i,j,k

�Γn(x− ·)�L1(Ai,j,k)

���∂1�gn(·)− ∂1�gn(x)
��
L∞(B1/(2n)(x))

,

where the second term is regarded as a function of y (x is fixed) and the L∞-norm is taken
on the ball B1/2n(x), which is the support of Γn(x − y). The first term above is 1, and to
estimate the second term the worst case is when y does not belong to the same cube as x:
let us say that y ∈ A(1) and x ∈ A(2), where y(1) and y(2) are the centers of the cubes A(1)

and A(2) respectively. We have therefore the bound
��∂1�gn(·)− ∂1�gn(x)

��
L∞(B1/(2n)(x))

≤
��∂1�gn(·)− ∂y1

�gn(y(1))
��
L∞ +

��∂1g(y(1))− ∂1g(y
(2))

��+
��∂y1

�gn(y(2))− ∂y1
�gn(x)

��

≤ 4δ
��D2g

��
L∞(G)

.

This provides the bound for the term S1. Similarly, for S2 we have the bound
��∂1�gn(x)− ∂1g(x)

�� ≤
��∂1�gn(x)− ∂1g(y

(2))
��+

��∂1g(y(2))− ∂1g(x)
��

≤ 2δ�D2g�L∞(G) .

We still need to estimate S3, which contains the boundary terms deriving from the discon-
tinuities of �gn (and, in the general case, of its derivatives). This term requires more careful
estimates. With CΓ := supx Γ(x) and using the fact that �Γn(x− ·)�L1(∂1Ai,j,k) ≤ nCΓ, we
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have
�

i,j,k

�Γn(x− ·)�L1(∂1Ai,j,k)

���gn(y+1 , ·)− �gn(y−1 , ·)
��
L∞(∂1Ai,j,k)

≤ nCΓ

�

i,j,k

����gn(y+1 , ·)− g(y1, ·)
��
L∞(∂1Ai,j,k)

+
��g(y1, ·)− �gn(y−1 , ·)

��
L∞(∂1Ai,j,k)

�

≤ 8nCΓδ
4�D4g�L∞(G) = Cδ3�D4g�L∞(G) .

The sums over i, j, k above are meant as sums over the faces ∂1Ai,j,k intersecting the support
of Γn(x− ·), which are at most 4. Collecting all these results, we have the uniform bound

���∂1(Γn � �gn)(x)− ∂1g(x)
���
2

≤ Cδ2
�
�D2g�2L∞(G) + δ4�D4g�2L∞(G)

�
.

We proceed in the same way with higher order derivatives to get, for a generic derivative a
of order 0 ≤ |a| ≤ 3, the estimate

���∂a(Γn � �gn)(x)− ∂ag(x)
���
2

≤C

����
�

i,j,k

�

Ai,j,k

Γn(x− y)
��∂a�gn(y)− ∂a�gn(x)

�� dy
���
2

+
���∂a�gn(x)− ∂ag(x)

���
2

+ Sa
3

�

≤ C
�
�D|a|+1g�2L∞(G)δ

2 + Sa
3

�
.

For a = 0, Sa
3 = 0, but in the general case the estimate of the term Sa

3 is a little bit more
delicate, since one gets more boundary terms. In particular, when integrating by parts,
derivatives along different directions result in terms containing discontinuities of �gn and its
derivatives along the faces (that we denote for brevity ∂A), edges (denoted ∂2A) or vertices
(denoted ∂3A) of the cubes, while multiple derivatives along the same direction result in
derivatives of Γn appearing. For example, for a = (1, 1, 1) we get three kinds of terms:

�

∂3Ai,j,k

Γn(x− y)∆�gn(y) dy ,
�

∂2Ai,j,k

Γn(x− y)∆∂�gn(y) dy ,
�

∂Ai,j,k

Γn(x− y)∆∂2�gn(y) dy ,

where ∆ denotes the jump of the function. For a = (3, 0, 0) we also have terms like
�

∂1Ai,j,k

∂2
1Γ

n(x− y)∆�gn(y) dy ,
�

∂1Ai,j,k

∂1Γ
n(x− y)∆∂1�gn(y) dy ,

and in the general case we find also terms like
�

∂2Ai,j,k

∂Γn(x− y)∆�gn(y) dy .
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However, we can bound all this terms in the same way. We have that, for m ∈ N and
b, c ∈ N

3,
�

∂mAi,j,k

∂bΓn(x)dx ≤ CΓ n
m+|b| = Cδ−(m+|b|) ,

��∆∂c�gn(y)
�� =

��∂c�gn(y+)− ∂c�gn(y−)
�� ≤ 2�D4g�L∞(G)δ

4−|c| .

Therefore
Sa
3 ≤ C�D4g�2L∞(G)δ

2(4−|a|) .

Remark that for all the terms composing Sa
3 we always have m+ |b|+ |c| = |a| ≤ 3. Summing

up, we have obtained the bound

��g − gn
��2
H =

�

a

�

G

���∂a(Γn � �gn)(x)− ∂ag(x)
���
2

dx

≤ C
�

a

�
�D|a|+1g�2L∞(G)δ

2 + �D4g�2L∞(G)δ
2(4−|a|)

�

≤ C
1

n2
�g�2C4(G) .

The lemma is proved.

Corollary 2.50. For any h ∈ H, limn→∞ πHn
h = h.

Proof. Fix any ε > 0. By density, there exist a hε ∈ C4(G) such that �h − hε�H ≤ ε/2.
Also, by the continuity of the projection, �πHn

h − πHn
hε�H ≤ �h − hε�H ≤ ε/2. Since

�πHn
hε − hε�H ≤ �hε,n − hε�H, by the above lemma we get

��πHn
h− h

��
H ≤

��πHn
(h− hε)

��
H +

��πHn
hε − hε

��
H +

��hε − h
��
H

≤ ε+ C
1

n
�hε�C4(G).

Therefore

lim sup
n→∞

��πHn
h− h

��
H ≤ ε ,

and since ε is arbitrary, the corollary is proved.



Chapter 3

Imaging with noise

An amazing fact in the analysis of imaging functionals, that has been recently pointed out
and is currently under investigation, is that specific kinds of noise can improve the image
quality or drastically reduce computational costs associated to the evaluation of the imaging
functional. A strong motivation is the observation that time reversal refocusing is enhanced
when the medium is randomly scattering. A time reversal experiment is based on the use of
a special device called a time reversal mirror (TRM), which is an array of transducers that
can be used as receivers and transmitters. A typical time reversal experiment consists in two
steps. In a first step, a point source emits a short pulse that propagates through the medium
and is recorded by the TRM used as an array of receivers. In a second step, the recorded
signals are time reversed and reemitted by the TRM used as an array of transmitters.
The waves then refocus on the original point source location. The striking observation is
that refocusing is enhanced when the medium is randomly heterogeneous and scattering
compared to the situation in which the medium is homogeneous [FCD00]. Moreover, the
refocused pulse is statistically stable in the sense that it does not depend on the realization
of the random medium, but only on the statistical distributions of its fluctuations [FGPS].
The technique has had some successful applications in the context where one can carry
out physical time reversal, that is actually resend the signal physically into the medium to
refocus the energy for kidney stone destruction for instance [FCD00].

In the context of sensor array imaging, a similar technique is employed. The typical
experiment still consists in two steps. The first step is the experimental data acquisition:
a point source emits a wave into the medium, the wave is reflected by the singularities
in the propagation speed of the medium and is recorded by an array of receivers. The
second step is a numerical processing of the recorded data: the recorded signals are time
reversed and resent in a numerical simulation into a model medium to locate the singularities
in the propagation speed. However, in contrast with physical time reversal, the fictitious
medium employed in the imaging process cannot in general capture complex heterogeneities
of the original medium. Therefore, research has focused on other approaches to improve
the imaging process, such as the use of random sources [DFGS12, GP10, HSH08, SWH11,
VB11, WNT12].

The classical approach to the imaging problem consists in performing a large number of
experiments sounding each time a different source. For each experiment, the signal recorded
at each receiver is stored and time reversed. This produces the data matrix. For each
experiment, the time reversed data are reemitted (numerically) into the model medium in a
new simulation, and the images obtained by each simulation are stacked. While this method
provides a very good “image” of the medium, it involves gathering, storing and processing

95
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huge amounts of data [Be09a, MDB11].

In the noisy sources approach we discuss in this chapter random sources are used and
they are all sounded simultaneously (both in the case of probing and backpropagation)
in a single experiment. In this case, the time reversed recorded signals from the physical
experiment are stored in a data vector and resent simultaneously into the model medium
in a single simulation. However, special care must be put in the choice of the noisy sources
in order to ensure that the cross talk terms are very small and do not compromise image
quality.

This approach with simultaneous sources means significant savings both in the data
gathering, storing and processing stages. The analysis of this phenomenon in the imaging
context is analogous to the analysis for time-reversal techniques [FGPS] and bears also
similarities with techniques for passive imaging based on ambient noise sources [ABGW12,
DeS09, GP09, GP11, YVD06]. The technique associated with ambient noise is another
spectacular imaging situation that recently has received a lot of attention, in which one
exploits the correlations in between recordings at different stations to infer some information
about the medium. In this case as in the time-reversal case the presence of heterogeneities
may improve the imaging result, here due to the enhanced phase space diversity that it
produces.

Various blending type methods have been investigated in order to be able to exploit
the simultaneous sources approach, in particular in the context of seismic imaging. In
the case of classic vibratory source approaches one seeks to design a family of relatively
long sources encoded such that the responses of each one of them can be identified in a
preprocessing step, with oil companies often having their own patented approaches for the
encoding [Ba10, Be09a]. More recently there has also been work on using simultaneous
impulsive sources such as in the case of air guns that are fired with random time delays.
The idea of “deblending” is to try to recover the full “single-survey” response [Be09a, HSH08].
In fact similar techniques can also be used in the context of blending at the receiver end
[Be09b].

Applications of these different techniques are being investigated in different fields, from
seismology [SCS06, LMD06, SCSR05, GSB08], to volcano monitoring [SRG06, BSC07, BSC08],
to petroleum prospecting [CGS06] and medicine [FCD00].

Our point of view differs somewhat from the ones above in that we are not seeking de-
blending approaches. We will rather present a general theoretical framework that shows
how, when data are viewed through the actual image, the cross-talk effect associated with
simultaneity of sources may actually be effectively mitigated by the image formation algo-
rithm: we do not need to deblend and to estimate the full single-survey response, because
the appropriate imaging algorithm will actually produce the same image as if we had the full
single-survey response. We articulate explicitly the crucial scaling assumptions that should
be satisfied for this to happen. Our point of view is similar to that presented in [DaS09]
where a least squares approach was used in the context of simultaneous sources for a partic-
ular data set and it was demonstrated how this could lead to surprisingly good results. The
results obtained there are consistent with the analysis we set forth here with a probabilistic
modeling of the sources.

This chapter is organized as follows. In section 3.1 we describe the mathematical setting
and present the results about the classic experimental configuration in which the full multi-
static response matrix can be recorded and used. We then present the noisy sources approach
for two different kinds of random sources. In the cases of simultaneous sources emitting either
stationary random signals or randomly delayed pulses we derive and discuss the main result
regarding the normal operator and its stability in sections 3.2 and 3.3. In section 3.4 we use
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high frequency analysis to obtain quantitative results on the image quality and statistical
stability of this algorithm, when the goal is to image singular perturbations in the speed of
propagation. We will see that the result strongly depends on the type of perturbation. The
application of these results to a physical exploration problem is discussed in more detail in
section 3.5 where we elaborate on the fascinating fact that imaging with simultaneous sources
of the two types we have described gives a resolution that corresponds to the one obtained
if the full multi-static response matrix was available, that is if we have the recordings of the
responses at all of the receivers for all the surveys where only one source emits at a time.
Simple numerical results are also presented to support this result.

The main mechanism that allows us to obtain this striking result is the separation of
scales that is inherent in our formulation and that serves to eliminate cross-talk terms that
otherwise could contaminate the image obtained using simultaneous sources.

Notation

We use italics characters to denote scalar variables and boldfaced characters to denote
vectors: for example x ∈ R, but x = (x, y, z) ∈ R

3. Br will denote the ball of radius r
in R

d for d equals 2 or 3: Br = {x ∈ R
d| |x| ≤ r}. When the ball is not centered in the

origin, we will use the notation Br(x) to specify its center x. In section 3.4 we will also need
some notation for the order of amplitude of some variables. There, we will use A = O(ε) to
indicate that the quantity A is exactly of order ε, which is to say that there exists constants
0 < c < C < ∞ such that cε < A < Cε. To say that A is of order ε or smaller we will write
A ≤ O(ε).

The Fourier transform of a function f(t) is defined by

�f(ω) =
�

f(t)eiωt dt .

We will also have to work with complex numbers or functions: in this case, we will
use a bar to denote the complex conjugate. We do so to avoid confusion with the Fourier

transform of the conjugate complex functions: if G is the complex conjugate of G, then �G
is the Fourier transform of the complex conjugate of G, while �G is the complex conjugate of
the Fourier transform of G.

Given an operator L, we will denote by L∗ its adjoint.

3.1 Mathematical formulation and classical approach

This section is devoted to the description of the mathematical model lying behind the
imaging algorithm. We will present the basic equation governing the propagation of waves
in a medium, the classical wave equation, and the method to solve it through the use of the
associated Green function. We will also present the Born approximation, which is by now
part of the classical mathematical setting to treat imaging problems.

Given this mathematical setting, we introduce the operators modelling the direct and
inverse problem in the case of individual or simultaneous sources. Finally, we illustrate the
imaging process by detailing the classical approach to the imaging problem, where each
source is sounded in a different experiment and the full multi-static response (MSR) matrix
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is available. This will serve as a comparison for the following sections, where we will explain
the approach using simultaneous random sources.

3.1.1 The wave equation with random sources

We consider the solution u of the wave equation in a three-dimensional inhomogeneous
medium:

1

c2(x)

∂2u

∂t2
−∆xu = n(t,x) . (3.1.1)

The term n(t,x) models the point sources emitting deterministic or random signals. For
instance, in the context of seismic exploration they could be point sources emitting well
separated short pulses in a sequence of experiments. We discuss this classical configuration in
subsection 3.1.5. They could be sources emitting simultaneously stationary random signals.
We discuss this configuration in section 3.2. They could also be simultaneous blended (i.e.
time-delayed impulsive) sources emitting from the surface. We discuss this configuration in
section 3.3.

In the wave equation above, c(x) denotes the velocity of propagation of waves at a point
x = (x, y, z) ∈ R

3 in the medium. We shall rewrite the velocity in a more convenient form
as

c−2(x) = c−2
0 (x) + δc−2(x) , (3.1.2)

where c0(x) is the known smooth background velocity and δc−2(x) is the velocity perturba-
tion that we want to estimate, whose spatial support is contained in some bounded domain
Ω ⊂ R

3.
The direct and inverse problems can be formulated in terms of the background Green’s

function, the fundamental solution of the wave equation (3.1.1).

3.1.2 The background Green’s function

The solution of the wave equation (3.1.1) with the background velocity c0(x) has the integral
representation

u(t,x) =

��
G(s,x,y)n(t− s,y) ds dy , (3.1.3)

where G(t,x,y) is the time-dependent causal Green’s function, which is to say the funda-
mental solution of the wave equation with a Dirac delta (in both space and time) source
term

1

c20(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y) , (3.1.4)

starting from G(0,x,y) = ∂tG(0,x,y) = 0, and continued on the negative time axis by
G(t,x,y) = 0, ∀t ≤ 0.

For a homogeneous background (constant c0), the Green’s function in the Fourier domain
is given by

�G(ω,x,y) =
1

4π|x− y| exp
�
i
ω

c0
|x− y|

�
. (3.1.5)

For a general smoothly varying background, the high-frequency behavior of the Green’s
function is related to the travel time and it is given by the optical (or acoustical) geometric
approximation [BCS]

�G(ω,x,y) � A(x,y) exp
�
iω T (x,y)

�
, (3.1.6)
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which is valid when the frequency ω is much larger than the inverse of the travel time
T (x,y). Here the coefficients A(x,y) and T (x,y) are smooth except at x = y. The
amplitude A(x,y) satisfies a transport equation and the travel time T (x,y) satisfies the
eikonal equation.

3.1.3 The scattering operator and the Born approximation

In this section we introduce the scattering operator, that is, the mapping from velocity
perturbations to the data. We will show that the exact scattering operator is a nonli-
near operator, which makes the treatment of the inverse problem (considered in the next
subsection) very difficult, if not impossible. We then have to introduce the classical Born
approximation, which results in a linearization of the scattering operator and opens the
possibility to work on the inverse problem. At the end of this subsection, we will also
detail the explicit form of the scattering operator in both the individual and simultaneous
sources settings, in the Born approximation. Our analysis pertaining to imaging and inverse
scattering is based on this operator.

The scattering operator

We assume that signals are observed at a passive sensor array (xr)r=1,...,Nr for some time
interval [−T/2, T/2]. What is usually required is that the recording time T should be larger
than the typical travel time for a round trip from the array to the search region, so as to
guarantee that the backscattered signals are completely recorded. This is what is needed in
the classical setting detailed in subsection 3.1.5. In the case of noise blended sources that
is considered in section 3.3 we will also require that the recording time T be much larger
than the typical time delays, while for stationary random sources (section 3.2) the additional
condition is that it should be taken much larger that the inverse of the bandwidth of the
noise sources (i.e. much larger than the decoherence time).

The recorded signals form the data set D, which for each experiment is given by the
vector of functions �

D(t,xr)
�
r=1,...,Nr, t∈[−T/2,T/2]

representing the signal recorded by the sensor located at xr. These data are modeled by
the scattering operator

F :
�
δc−2(x)

�
x∈Ω

→ D .

We describe now how to obtain the scattering operator. Using the decomposition of the
background velocity of propagation (3.1.2) we can write the solution of the wave equation

� 1

c−2
0 (x)

+
1

δc2(x)

�∂2u

∂t2
−∆xu = n(t,x) . (3.1.7)

as the sum of two terms
u(t,x) = u0(t,x) + u1(t,x) ,

where u0 is the solution of the wave equation with background velocity c0(x), which is to
say the propagating wave if the perturbation were not present. In the Fourier domain u0 is
given by

�u0(x, ω) =

�
�G0(ω,x,y)�n(ω,y) dy , (3.1.8)

where G0 is the Green function for the wave equation with background velocity of prop-
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agation c0(x). Then, the wave equation (3.1.7) can be transformed into a wave equa-
tion for u1 with background velocity of propagation c0 and source term which is given by
η = −δc−2(x) ∂2

t u :
1

c20(x)

∂2u1

∂t2
−∆xu1 = −δc−2(x)

∂2u

∂t2
.

u1 is the component of the propagating wave which is scattered by the perturbation: it is
the wave recorded by the array of sensors to create the data set D. In the Fourier domain
u1 is given by

�u1(x, ω) = ω2

�
�G0(ω,x,y)δc

−2(y) �u(y, ω) dy . (3.1.9)

This expression is exact, and it is known as the Lippmann-Schwinger equation. Using this
formula one can express the action of the exact scattering operator in terms of some kernel
Q:

D =
�
Fδc−2

�
(t,xr) =

�
Q(t,xr,y)δc

−2(y) dy .

The Fourier representation of the kernel Q obtained from the Lippmann-Schwinger equation
(3.1.9) is

�Q(ω,xr, ·) = ω2 �G0(ω,xr, ·) �u(·, ω) . (3.1.10)

The Born approximation

As we can see from (3.1.10), the kernel Q depends on the function u = u0 + u1. Inspecting
(3.1.8), we see that the dependence of u0 on δc−2 is quite easy. But the dependence of u1

is much more complex. Indeed, the exact scattering operator F is a nonlinear operator.
Inverting it, which is to say try to find the velocity perturbation from the recorded data
(this is the aim of the imaging process, which is detailed in the next subsection), is therefore
a highly nontrivial task. Indeed, considering the huge amounts of data one is usually con-
fronted with in typical imaging problems, inverting the functional F can be considered from
a practical point of view as impossible. Then, in order to be able to deal with the problem
one is forced to introduce some approximations.

The Born approximation (or single-scattering approximation) consists in replacing �u on
the right hand side of (3.1.9) with the field �u0, [BCS]. Using (3.1.8) this gives:

�u1(x, ω) � ω2

��
�G0(ω,x,y)δc

−2(y) �G0(ω,y, z)�n(ω, z) dz dy .

This approximation is valid if the field u1 scattered by the perturbation δc−2 is small com-
pared to the incident field u0. In the Born approximation, the kernel Q in the Fourier
domain is given by

�Q(ω,xr, ·) = ω2

�

Ω

�G0(ω,xr, ·) �G0(ω, ·, z)�n(ω, z) dz .

Using this linearized approximation of the kernel Q results in substantial simplifications in
the computation of the scattering operator, making the inversion process accessible. In the
following, we will always work in the Born approximation.

The structure of recorded data set varies according to the kind of experiment performed,
implying that different scattering operators must be introduced to model these data if we
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use the classical scheme with a large number of experiment with a single source, or if we are
performing a single experiment using simultaneous (random) sources. The two operators
are described below.

Individual sources

In the case when it is possible to emit a short pulse f(t) from each point source located at
ys, s = 1, . . . , Ns, the multi-offset data are given by the matrix of signals

d =
�
d(t,xr,ys)

�
r=1,...,Nr, s=1...,Ns, t∈[−T/2,T/2]

recorded by the sensor located at xr when the source at ys emits the short pulse at time 0.
These data are modeled by the operator

F0 :
�
δc−2(x)

�
x∈Ω

→
�
d(t,xr,ys)

�
r=1,...,Nr, s=1...,Ns, t∈[−T/2,T/2]

.

Its action �
F0δc

−2
�
(t,xr,ys) =

�

Ω

Q0(t,xr,ys,x)δc
−2(x) dx

is described by the kernel

Q0(t,xr,ys,x) = − ∂2

∂t2

��
G(t2,xr,x)G(t1,x,ys) f(t− t1 − t2) dt1dt2 ,

which in the Fourier domain is given by

�Q0(ω,xr,ys,x) = ω2 �G(ω,xr,x) �G(ω,x,ys) �f(ω) . (3.1.11)

Simultaneous sources

In the situation in which all sources emit simultaneously, the data consist of the vector of
signals

d =
�
d(t,xr)

�
r=1,...,Nr, t∈[−T/2,T/2]

recorded by the sensor located at xr. The source term n(t,x) of the wave equation is in this
case spatially supported on the whole set of point sources. These data are modeled by the
operator

F :
�
δc−2(x)

�
x∈Ω

→
�
d(t,xr)

�
r=1,...,Nr, t∈[−T/2,T/2]

with �
Fδc−2

�
(t,xr) =

�

Ω

Q(t,xr,x)δc
−2(x) dx , (3.1.12)

where the kernel Q is

Q(t,xr,x) = − ∂2

∂t2

���
G(t1,xr,x)G(t2,x,y)n(t− t1 − t2,y) dt1 dt2 dy , (3.1.13)

which in the Fourier domain reads as

�Q(ω,xr,x) = ω2

�
�G(ω,xr,x) �G(ω,x,y) �n(ω,y) dy . (3.1.14)
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3.1.4 The imaging problem

The imaging problem (inverse problem) aims at inverting the mapping F0 or F in order to
reconstruct the velocity perturbation δc−2(x) from the data set.

When the sources can be used separately and the full data set or multi-static response
matrix d =

�
d(t,xr,ys)

�
r=1,...,Nr, s=1...,Ns, t∈[−T/2,T/2]

is available, then the usual (least-

square) inversion process consists in applying the operator (F∗
0F0)

−1F∗
0 to the data set d,

where the adjoint of the scattering operator is

�
F∗

0d
�
(x) =

Nr�

r=1

Ns�

s=1

� T
2

−T
2

Q0(t,xr,ys,x)d(t,xr,ys) dt .

When simultaneous sources are used and the data set consists of the vector of recorded
signals d =

�
d(t,xr)

�
r=1,...,Nr, t∈[−T/2,T/2]

, then the inversion process consists in applying

the operator (F∗F)−1F∗ to the data set d, where the adjoint of the scattering operator is

�
F∗d

�
(x) =

Nr�

r=1

� T
2

−T
2

Q(t,xr,x)d(t,xr) dt .

Note that the kernel of the adjoint F∗ depends on the background Green’s function G(t,x,y)
and on the source term n(t,y). This means that we need to know the signals emitted by
the sources in order to be able to apply the adjoint to the recorded data.

In both cases, the full least square inversion is in practice too complicated and the normal
operator F∗

0F0 or F∗F is usually dropped in the inversion process. This procedure gives
a reasonable estimate �δc−2(x) of the velocity perturbation δc−2(x) provided the normal
operator is close to the identity operator. This is approximately true for F∗

0F0 when the
multi-static response matrix is available and we will recall this result in subsection 3.1.5. In
[DFGS12] it is proved that this is also approximately true for F∗F in the case of two special
models of random sources. We will detail this result in the next sections. In particular,
in sections 3.2 and 3.3 we will carry out a detailed statistical analysis of the kernel of the
normal operator F∗F in the two special cases mentioned. The kernel of the normal operator
is given by

F∗F(x,x�) =
Nr�

r=1

� T
2

−T
2

Q(t,xr,x)Q(t,xr,x
�) dt ; (3.1.15)

we will show that this kernel is statistically stable (i.e. its fluctuations are smaller than its
expectation) and that it is concentrated along the diagonal x � x�.

Remark 3.1. The adjoint operator F∗, and therefore the imaging functional
�
F∗d

�
(x),

can be computed solving only two wave equations. For the adjoint operator F∗
0 the optimal

scheme requires 2Ns calls to the numerical wave solver. The two methods are explained and
discussed in subsection 3.5.1.

3.1.5 The classical setting: multi-offset sources

We assume in this section that multi-offset data can be recorded. The sources are localized
at the points (ys)s=1,...,Ns

and they emit short pulses
�
f(t)

�
t∈R

. The data acquisition is

achieved during a sequence of Ns experiments. In the sth experiment, the source term in
the wave equation (3.1.1) is

n(t,x) = f(t)δ(x− ys) .
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We stress that in the following proof it is important to assume that the duration of the pulse
f is much smaller than the typical travel time.

The normal operator is

�
F∗

0F0δc
−2

�
(x) =

�

Ω

F∗
0F0(x,x

�)δc−2(x�) dx� , (3.1.16)

with the kernel given by

F∗
0F0(x,x

�) =
Nr�

r=1

Ns�

s=1

� T
2

−T
2

Q0(t,xr,ys,x)Q0(t,xr,ys,x
�) dt . (3.1.17)

We assume that T is large enough, so that the backscattered signals are completely recorded
over [−T/2, T/2]. This means that T should be larger than the typical travel time for a round
trip from the array to the search region. We can then replace the integral over [−T/2, T/2]
in (3.1.17) by the integral over R. Using (3.1.11) and applying Parseval formula to express
the quantities in the Fourier domain, we find the following expression for the kernel of the
normal operator:

F∗
0F0(x,x

�) =
1

2π

�
ω4

�� �f(ω)
��2
� Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)
�

×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�
dω . (3.1.18)

When the duration of the pulse f is much smaller than the typical travel time (which is
a usual assumption), it is possible to use the high-frequency approximation of the Green’s
function (3.1.6) and to perform a detailed resolution analysis which shows that the kernel
F∗

0F0(x,x
�) is concentrated along the diagonal band x � x�. This comes from the fact

that the two squares brackets in the expression in (3.1.18) behave like the kernel studied
in appendix B which is concentrated along the diagonal band. The width of the diagonal
band depends on the source and receiver array apertures. If the source and receiver arrays
densely sample a domain on a two-dimensional surface whose diameter is (at least) of the
order of the distance from the arrays to the points x and x�, then the width of the diagonal
band is of the order of the wavelength.

This proves that the normal operator F∗
0F0 is close to the identity operator, and the

error committed dropping it in the inversion process is small.

3.2 Stationary random sources

In this section we consider the situation with stationary random sources. This is our first ex-
ample of random sources for which the use of a single experiment with simultaneous sources
still produces a good quality image of the medium. We will describe the imaging functional
to use in this setting and prove its statistical stability. The main result is that the algorithm
is statistically stable if the recording time is sufficiently long, which is to say much longer
than the decoherence time of the random sources used. But since from a practical point of
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view it is not difficult today to create (or simulate) random or heterogeneous source signals
whose characteristic time scale is small compared to the travel time to the probed region,
this is not a very restrictive condition and the large recording time can actually be of the
same order of the recording time needed in the classical setting described above.

We assume that the sources are localized at the points (ys)s=1,...,Ns
and emit stationary

random signals
�
ns(t)

�
t∈R

. The source term in the wave equation (3.1.1) has the form

n(t,x) =

Ns�

s=1

ns(t) δ(x− ys) . (3.2.1)

The random functions
�
ns(t)

�
t∈R

, s = 1, . . . , Ns, are independent, zero-mean, stationary
Gaussian processes with autocorrelation function

�
ns(t1)ns�(t2)

�
= δss�F (t2 − t1) . (3.2.2)

Here δss� is the Kronecker symbol and � · � stands for statistical average with respect to the
distribution of the random sources. Note that we model here in terms of discrete sources
at ys, s = 1, . . . , Ns. However, as described in appendix A, our analysis also captures the
main aspects in a situation with a continuum of sources.

In the proof it is important to assume that the decoherence time of the random sources
is much smaller than typical travel times, i.e. that the width of the function F is much
smaller than typical travel times. The Fourier transform �F of the time correlation function
is a nonnegative, even, real-valued function, and by the Wiener-Khintchine theorem it is
proportional to the power spectral density of the sources [Ri]. Note that we have

�
�ns(ω)�ns�(ω

�)
�
= 2πδss� �F (ω)δ(ω − ω�) . (3.2.3)

Using the stationarity of the noise sources, the expectation of the kernel of the normal
operator (3.1.15) can be rewritten as

�
F∗F(x,x�)

�
= T

Nr�

r=1

�
Q(0,xr,x)Q(0,xr,x

�)
�
.

Substituting the Fourier representation (3.1.14) into this expression and using (3.2.3) we
find that the expectation of the kernel of the normal operator is for any T

�
F∗F(x,x�)

�
=

T

2π

�
ω4 �F (ω)

� Ns�

s=1

�G
�
ω,x,ys) �G

�
ω,x�,ys

��

×
� Nr�

r=1

�G
�
ω,xr,x) �G

�
ω,xr,x

���dω . (3.2.4)

Note that the mean kernel has the same expression as the approximation obtained for the
kernel of the normal operator (3.1.18) when the multi-static response matrix is available and
the recording time T is larger than the typical travel time. Therefore it enjoys the same
property, that is to say, it is localized on the diagonal band x � x�. The important question
is whether the normal operator F∗F is statistical stable, in the sense that its typical behavior
is similar to the one of its expectation. From known results about the cross correlation of
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ambient noise signals [GP09] we anticipate that it is indeed the case when T → ∞, but it
is relevant to estimate carefully the fluctuations since the quantity T in typical applications
cannot be taken arbitrarily large. The variance of the kernel of the normal operator is

Var
�
F∗F(x,x�)

�
=

Nr�

r,r�=1

�� T
2

−T
2

��
Q(t,xr,x)Q(t,xr,x

�)Q(t�,xr� ,x)Q(t�,xr� ,x
�)
�

−
�
Q(t,xr,x)Q(t,xr,x

�)
��
Q(t�,xr� ,x)Q(t�,xr� ,x

�)
��

dtdt�. (3.2.5)

We can write Q in the form

Q(t,xr,x) =

Ns�

s=1

�
G(v,xr,ys,x)ns(t− v) dv , (3.2.6)

with

G(v,xr,ys,x) = −
�

∂2
w G(w,xr,x)G(v − w,x,ys) dw . (3.2.7)

Therefore the variance of the kernel of the normal operator can be written as

Var
�
F∗F(x,x�)

�
=

Nr�

r,r�=1

Ns�

s1,s2,s�1,s
�
2=1

����
G(v,xr,ys1 ,x)G(u,xr,ys2 ,x

�)G(v�,xr� ,ys�1
,x)

× G(u�,xr� ,ys�2
,x�)ST,s1s2s�1s

�
2
(v, u, v�, u�) dv du dv�du�, (3.2.8)

with

ST,s1s2s�1s
�
2
(v, u, v�, u�) =

�� T
2

−T
2

��
ns1(t− v)ns2(t− u)ns�1

(t� − v�)ns�2
(t� − u�)

�

−
�
ns1(t− v)ns2(t− u)

��
ns�1

(t� − v�)ns�2
(t� − u�)

��
dt dt�. (3.2.9)

The product of second-order moments of the random processes ns(t) is
�
ns1(t− v)ns2(t− u)

� �
ns�1

(t� − v�)ns�2
(t� − u�)

�
= δs1s2δs�1s�2F (v − u)F (v� − u�) .

The fourth-order moment of the Gaussian random process n is
�
ns1(t− v)ns2(t− u)ns�1

(t� − v�)ns�2
(t� − u�)

�
= δs1s2δs�1s�2F (v − u)F (v� − u�)

+ δs1s�1δs2s�2F (t� − t− v� + v)F (t� − t− u� + u)

+ δs1s�2δs2s�1F (t� − t− u� + v)F (t� − t− v� + u) .

Consequently, we have that for any T > 0

ST,s1s2s�1s
�
2
(v, u, v�, u�) = δs1s�1δs2s�2ST (v−v�, u−u�)+δs1s�2δs2s�1ST (v−u�, u−v�) , (3.2.10)

where

ST (s, u) =
T 2

4π2

��
�F (ω) �F (ω�) sinc2

� (ω − ω�)T

2

�
eiωs−iω�u dω dω�. (3.2.11)
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The sinus cardinal function is defined as sinc(x) = sin(x)/x. When T is much larger than
the inverse of the bandwidth of the noise sources (i.e. T is much larger than the decoherence
time), we can use the approximation

T sinc2
�
(ω − ω�)T

2

�
� 2π δ(ω − ω�)

in (3.2.11), and therefore

ST (s, u) �
T

2π

� � �F (ω)
�2

eiω(s−u) dω . (3.2.12)

Substituting (3.2.10) and (3.2.12) into (3.2.8), we obtain for all T larger than the deco-
herence time the following expression for the variance of the kernel F∗F(x,x�):

Var
�
F∗F(x,x�)

�
=

T

2π

�
�F (ω)2ω8

� Ns�

s=1

�� �G(ω,x,ys)
��2
�� Ns�

s=1

�� �G(ω,x�,ys)
��2
�

×
���

Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
���
2

dω

+
T

2π

�
�F (ω)2ω8

� Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)
�2

×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�2
dω . (3.2.13)

Using the approximation (3.1.6), we have in particular in the high-frequency regime for
x = x�

Var
�
F∗F(x,x)

�
�
F∗F(x,x)

�2 =
4π

T

�
ω8 �F (ω)2 dω

� �
ω4 �F (ω) dω

�2 � 4π

BT
, (3.2.14)

where B is the bandwidth of signals emitted by the random sources. This gives the order
of magnitude of the signal-to-noise ratio. Note that the ratio (3.2.14) does not depend on
the number of source and receiver points, but only on the bandwidth B and the recording
time T . Only these two parameters control the fluctuations of the kernel F∗F(x,x�) along
the diagonal band x � x�.

When x is different from x� the first term in the right-hand side of (3.2.13) is dominant
(because of the absolute values). In particular, the decay of the variance as a function of
the distance |x−x�| is ensured only by the sum over the receiver points, while the sum over
the source points does not contribute to the decay, contrarily to the expectation (3.2.4).
Therefore the corresponding fluctuations of the kernel F∗F(x,x�) become larger away from
the diagonal band, but we always have

Var
�
F∗F(x,x�)

�
�
F∗F(x,x)

��
F∗F(x�,x�)

� ≤ 4π

T

�
ω8 �F (ω)2 dω

� �
ω4 �F (ω) dω

�2 � 4π

BT
. (3.2.15)

We remark that the important scaling constraint in order to ensure statistical stability
is that the decoherence time of the random traces is much smaller than the recording time,
that is T . Note that the total recording time, even without simultaneous sources, must be
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at least of the order of c0L where L is the propagation distance. Thus, the durations of
the experiments may be of the same order in the simultaneous source case as in a more
classic measurement configuration with a single source at a time as long as one can generate
random or heterogeneous source signals whose characteristic time scale is small compared
to the travel time to the probed region. The only, but major, difference is that one performs
only one experiment in the simultaneous case, while one performs Ns experiments in the
classical case, where Ns is the number of sources.

3.3 Incoherence by blending

We present here our second example of random sources enabling to perform a single ex-
periment in the imaging process. The signal emitted is a (deterministic) short pulse, but
randomly delayed in time. We describe the imaging functional and detail the scaling as-
sumptions on the kind of emitted pulse and the distribution of the time delays necessary to
guarantee the statistical stability of the method.

Consider the situation in which Ns point sources emit the same short pulse waveform,
but at randomly delayed times. We refer to this situation as noise blending. It is modeled
by the wave equation (3.1.1) with a source term of the form

n(t,x) =

Ns�

s=1

f(t− τs)δ(x− ys) . (3.3.1)

The pulse function
�
f(t)

�
t∈R

is deterministic. Call its carrier frequency ω0 and its bandwidth
B. The time delays (τs)s=1,...,Ns are zero-mean independent and identically distributed
random variables with the probability density function pτ (t). We denote by σ2

τ =
�
τ2s
�
=�

t2pτ (t) dt the variance of the random time delays. Here � · � stands for statistical average
with respect to the distribution of the random time delays. Note that the source is not
a Gaussian process, so the recorded signals are not Gaussian either, contrarily to the case
addressed in the previous section, and the evaluations of second- and fourth-order moments
require specific calculations which are different from the standard rules for moments of
Gaussian processes.

The expectation of the kernel of the normal operator is

�
F∗F(x,x�)

�
=

Nr�

r=1

Ns�

s,s�=1

��
G(u,xr,ys,x)G(u�,xr,ys� ,x

�) IT,ss�(u, u
�) du du� ,

where G is given by (3.2.7) and IT,ss� is defined by

IT,ss�(u, u
�) =

� T
2

−T
2

�
f(t− u− τs)f(t− u� − τs�)

�
dt . (3.3.2)

We assume that T is large enough, so that the backscattered signals are completely recorded
over [−T/2, T/2]. This means that T should be larger than the typical travel time from the
array to the search region and than the typical time delay στ . We can then replace the
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integral over [−T/2, T/2] in (3.3.2) by the integral over R and we find

IT,ss�(u, u
�) =

1

2π

� �� �f(ω)
��2e−iω(u−u�)

�
e−iω(τs−τs� )

�
dω .

If s �= s�, then �
e−iω(τs−τs� )

�
=

���eiωτs
���2 =

���pτ (ω)
��2 .

Therefore, if στω0 � 1 then
���pτ (ω)

��2 � 0 for all ω in the bandwidth and

IT,ss�(u, u
�) =

�
1
2π

� �� �f(ω)
��2e−iω(u−u�) dω if s = s�,

0 otherwise.

This result shows that the expectation of the kernel of the normal operator is

�
F∗F(x,x�)

�
=

1

2π

�
ω4

�� �f(ω)
��2
� Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)
�

×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�
dω , (3.3.3)

which has the same form and the same properties (in terms of concentration along the
diagonal x � x�) as the expectation of the kernel of the normal operator (3.2.4) in the case
of stationary random sources, or as the kernel of the normal operator (3.1.18) obtained when
the full multi-static response matrix is available. The important issue to be clarified is the
statistical stability of the normal operator F∗F .

The analysis of the variance of the kernel of the normal operator is based on the following
basic result: for any u, u�, ũ, ũ� ∈ R and s, s�, s̃, s̃� = 1, . . . , Ns, and again for T much larger
than the typical travel time and time delay,

J :=

� T
2

−T
2

� T
2

−T
2

��
f(t− u− τs)f(t− u� − τs�)f(t̃− ũ− τs̃)f(t̃− ũ� − τs̃�)

�

−
�
f(t− u− τs)f(t− u� − τs�)

� �
f(t̃− ũ− τs̃)f(t̃− ũ� − τs̃�)

��
dt dt̃

� 1

(2π)2

�� �� �f(ω)
��2�� �f(ω̃)

��2e−iω(u−u�)e−iω̃(ũ−ũ�)

×
��
e−iω(τs−τs� )e−iω̃(τs̃−τs̃� )

�
−
�
e−iω(τs−τs� )

��
e−iω̃(τs̃−τs̃� )

��
dω dω̃ .

If στω0 � 1, then

J = δss̃δs�s̃�(1− δss�)
1

(2π)2

�� �� �f(ω)
��2�� �f(ω̃)

��2e−iω(u−u�)e−iω̃(ũ−ũ�)
���pτ (ω + ω̃)

��2dω dω̃

+ δss̃�δs�s̃(1− δss�)
1

(2π)2

�� �� �f(ω)
��2�� �f(ω̃)

��2e−iω(u−u�)e−iω̃(ũ−ũ�)
���pτ (ω − ω̃)

��2dω dω̃ .
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Therefore the variance of the kernel F∗F(x,x�) is:

Var
�
F∗F(x,x�)

�
=

1

(2π)2

��
dω dω̃

�� �f(ω)
��2ω4

�� �f(ω̃)
��2ω̃4

×
Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)

Nr�

r=1

�G(ω̃,xr,x) �G(ω̃,xr,x
�)

×
� Ns�

s,s�=1,s �=s�

�G(ω,x,ys) �G(ω̃,x,ys) �G(ω,x�,ys�) �G(ω̃,x�,ys�)
���pτ (ω + ω̃)

��2

+

Ns�

s,s�=1,s �=s�

�G(ω,x,ys) �G(ω̃,x�,ys) �G(ω̃,x,ys�) �G(ω,x�,ys�)
���pτ (ω − ω̃)

��2
�
,

that we can also write as (after the change of variable ω̃ → −ω̃ in the first part of the right
member)

Var
�
F∗F(x,x�)

�
=

1

(2π)2

��
dω dω̃

�� �f(ω)
��2ω4

�� �f(ω̃)
��2ω̃4

×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�� Nr�

r=1

�G(ω̃,xr,x) �G(ω̃,xr,x
�)
�

×
�� Ns�

s=1

�G(ω,x,ys) �G(ω̃,x,ys)
�� Ns�

s=1

�G(ω,x�,ys) �G(ω̃,x�,ys)
�

−
Ns�

s=1

�G(ω,x,ys) �G(ω̃,x,ys) �G(ω,x�,ys) �G(ω̃,x�,ys)

����pτ (ω − ω̃)
��2

+
1

(2π)2

��
dω dω̃

�� �f(ω)
��2ω4

�� �f(ω̃)
��2ω̃4

×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�� Nr�

r=1

�G(ω̃,xr,x) �G(ω̃,xr,x
�)
�

×
�� Ns�

s=1

�G(ω,x,ys) �G(ω̃,x�,ys)
�� Ns�

s=1

�G(ω̃,x,ys) �G(ω,x�,ys)
�

−
Ns�

s=1

�G(ω,x,ys) �G(ω̃,x�,ys) �G(ω̃,x,ys) �G(ω,x�,ys)

����pτ (ω − ω̃)
��2. (3.3.4)

The statistical stability follows from the fact that the variance of the kernel is small. In
order to prove that the variance is small we first want to show that the integral in (ω, ω̃)
concentrates on a small band around the diagonal ω = ω̃. The double integral in (ω, ω̃) can
be written as a double integral in

�
(ω+ ω̃)/2 , ω− ω̃

�
. The products of terms that depend

on �G vary in ω − ω̃ on a scale of the order of the reciprocal of the typical travel time c0/L
(where L is the typical propagation distance). This can be seen from the high-frequency
asymptotic expression (3.1.6) of the Green’s function. Moreover, the terms depending on �f
are varying in ω − ω̃ on a scale of the order B and the term

���pτ (ω − ω̃)
��2 concentrates on

a band of size |ω − ω̃| < σ−1
τ . Therefore, provided σ−1

τ � min(c0/L,B), we can make the
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approximation
���pτ (ω − ω̃)

��2 � 2π

Tτ

δ(ω − ω̃) ,

where
1

Tτ

=

�
p2τ (t) dt .

To summarize, if στ � L/c0 and στB � 1, then the variance of the kernel F∗F(x,x�)
is given by

Var
�
F∗F(x,x�)

�
=

1

2πTτ

�
dω

�� �f(ω)
��4ω8

���
Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
���
2

×
� Ns�

s=1

�� �G(ω,x,ys)
��2

Ns�

s=1

�� �G(ω,x�,ys)
��2 −

Ns�

s=1

�� �G(ω,x,ys)
��2�� �G(ω,x�,ys)

��2
�

+
1

2πTτ

�
dω

�� �f(ω)
��4ω8

� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)
�2

×
�� Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)
�2

−
Ns�

s=1

�G(ω,x,ys)
2 �G(ω,x�,ys)

2

�
.

The hypothesis στB � 1 is not restrictive and it was already required in the framework
of the stationary random sources in section 3.2. The hypothesis στ � L/c0 means that
the random time delays, and therefore the recording time, must be larger than the typical
travel time. We will see in the numerical illustrations of section 3.5 that it is enough to have
random time shifts of the same order of typical travel time.

We have in particular for x = x�

Var
�
F∗F(x,x)

�
�
F∗F(x,x)

�2 � 4π

Tτ

�
1− 1

Ns

� �
ω8

�� �f(ω)
��4 dω

� �
ω4

�� �f(ω)
��2 dω

�2 � 4π

BTτ

. (3.3.5)

This gives the order of magnitude of the signal-to-noise ratio. The quantity BTτ controls the
statistical stability. It should be large so that the kernel F∗F(x,x�) is statistically stable.
Using the method of Lagrange multipliers we get the two following results:

• The maximal value of Tτ amongst all probability density functions pτ compactly sup-
ported in [−τmax, τmax] is Tτ = 2τmax and it is obtained for a uniform density over
[−τmax, τmax].

• The maximal value of Tτ amongst all probability density functions pτ with variance
σ2
τ is Tτ = 5

√
5

3 στ and it is obtained for a probability density function of the form

pτ (t) =
3

4
√
5στ

�
1− t2

5σ2
τ

�
{[−√

5στ ,
√
5στ ]}(t) .
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3.4 High frequency analysis of the imaging functional

In this section we perform a detailed analysis of the imaging functional in the case of simul-
taneous sources, for the two kinds of random sources presented in sections 3.2 and 3.3, and
in the high frequency regime. We use the imaging functional

�
F∗d

�
(x) to locate singular

perturbations in the velocity of propagation.
The contrast in the image obtained strongly depends on the type of perturbation. We

therefore consider three types of perturbations, supported respectively on small balls, thin
tubes and thin discs. With a slight abuse of notation we will refer to them as point, line and
surface singularities, as they can be thought of as approximations of singular perturbations
of the velocity of propagation supported on subspaces of lower dimension.

For each kind of perturbation we first analyze the expectation of the imaging functional,
which gives the average image contrast seen between the center of the perturbation and
a point far from it: this will provide an hint on the level of difficulty to correctly image
these perturbations. This is done in subsection 3.4.2. An even more interesting result
follows: in subsection 3.4.3 we perform a quantitative analysis of the statistical stability
of the imaging functional with the two kinds of noisy sources presented in the previous
sections. The statistical stability can be characterized by the standard deviation of the
imaging functional. The calculations of the average and standard deviation of the imaging
functional allow us to characterize the typical contrast seen for the three perturbations.

With a careful analysis of fluctuations produced by the random sources in this section
we show that, in the high frequency regime, the typical contrast is actually much better
than just of order

√
T as one might have expected from the general results of the previous

sections. However, the exact order of amplitude of the contrast depends on the shape of the
perturbation: point singularities are easy to observe, while surface type perturbations are
the hardest to locate.

3.4.1 The imaging functional in a high frequency regime

Geometry of the model

To be able to perform explicit computations, we shall simplify at most the geometry of
the model. We will assume that the domain we are investigating is a ball Ω = BR with
radius R. We also assume to have Ns point sources located at points (ys)s=1,...,Ns

lying
on the surface of the ball ∂BR and dense enough (ideally, closer than half of the central
wavelength) so that a continuum approximation can be used. The sources can either emit
independent stationary random signals, as in the case studied in section 3.2, or they emit
(almost) simultaneously the same short pulse waveform, but randomly delayed in time, as
described in section 3.3. We will refer to the first case as stationary random sources and to
the second as (noise) blended sources.

Signals are observed at the passive sensor array (xr)r=1,...,Nr
for some large time interval

[−T/2, T/2]. Sensors are also assumed to densely sample the surface of the ball ∂BR.
Recall that for noise blended sources the recording time T should be much larger than the
typical travel time, so as to guarantee that the backscattered signals are completely recorded.
Similarly, for stationary random sources T must be taken much larger that the inverse of
the bandwidth of the noise sources (i.e. much larger than the decoherence time).

Finally, we shall also take the background velocity of propagation c0(x), which is assumed
to be known, to be constant, and assume that perturbations are located near the center of
the ball. This means that the medium is homogeneous outside of a ball Br of radius r � R.
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The kernel of the imaging functional

We now turn our attention to the kernel F∗F , which as we have seen plays an essential role
in the evaluation of the imaging functional, and analyze its behavior in the high frequency
regime. Since in this model sources and receivers are located on the surface of the ball
Σ = ∂BR and are sufficiently dense, we can rewrite the kernel (3.6.2) using the continuum
approximation formula (3.6.3) of appendix B. When the surface density ρ of the receivers is
constant, we obtain

Kω(x,y) :=

Nr�

r=1

�G(ω,xr,x) �G(ω,xr,y) �
�

∂BR

ρ �G(ω,xr,x) �G(ω,xr,y) dσ(xr) .

Since perturbations are located in a small area, far from the sources and sensors, we can use
the approximate identity [GP09, Proposition 4.3]

2iω

c0

�

∂BR

�G(ω,xr,x) �G(ω,xr,y) dσ(xr) � �G(ω,x,y)− �G(ω,x,y) ,

which follows from Green’s identity and the Sommerfeld radiation condition. This result
can be viewed as a version of the Helmholtz-Kirchhoff integral theorem. Using the function
sinc(x) = sin(x)/x, the right hand side of the above equation can be rewritten as

2i�
�
�G(ω,x,y)

�
=

2i

4π

ω

c0
sinc

� ω

c0
|x− y|

�

and assuming that both receivers and sources have constant density on the surface ∂BR we
obtain

Kω(x,y) =
1

4π
sinc

� ω

c0
|x− y|

�
. (3.4.1)

Recall that for simultaneous sources the imaging functional is

�δc−2(x) =
�
F∗d

�
(x) =

�

BR

F∗F(x,x�)δc−2(x�) dx�, (3.4.2)

where δc−2 is the velocity perturbation and �δc−2(x) is the obtained estimation. Thanks to
(3.4.1) and using the explicit formulas (3.3.3) and (3.2.4) we can rewrite the mean of the
kernel F∗F as

�F∗F�(x,x�) =
1

2π

�
ω4

�� �f(ω)
��2

Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)

Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�) dω

=
1

25π3

�
ω4

�� �f(ω)
��2 sinc2

� ω

c0
|x− x�|

�
dω

for noise blended sources, and as

�F∗F�(x,x�) =
T

25π3

�
ω4 �F (ω) sinc2

� ω

c0
|x− x�|

�
dω

for the stationary random sources.

We stress that the focus of this section is on the high frequency analysis of this functional.
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We will analyze its performances in localizing singularities in the background velocity of
propagation, in the high frequency regime η � 1, where

ω0

c0
=

1

η
.

Note that with this notation the wavelength is equal to 2πη.

3.4.2 Expected contrast of the estimated perturbation

Even if the estimated perturbation �δc−2(x) provided by the imaging functional does not
have the exact shape of the real perturbation, due to the different approximations used,
it still shows a peak on the actual location of the velocity perturbation. We study in this
section the expected (average in the statistical sense) contrast seen in the estimated velocity
perturbation between the actual location of the perturbation and points far from it.

The expected estimated perturbation for noise blended sources is given by

� �δc−2(x)
�
=

1

25π3

�
I1(x,ω)ω4

��f̂(ω)
��2dω ,

with

I1(x,ω) =
�

BR

sinc2
� ω

c0
|x− x�|

�
δc−2(x�) dx�.

When the bandwidth of the source pulse is smaller than the central frequency, it is enough
to study the behavior of the spatial integral I1(x) at the central frequency. For simplicity
of notation we drop the dependence on ω. It turns out that T · I1(x) is the quantity one
has to study also in the case of stationary random sources. All the computations presented
in the remaining part of this section are performed in the noise blended case; to obtain
the different orders of amplitude provided by the imaging functional for stationary random
sources it sufficess to multiply the results by T .

To simplify the presentation of some computations, we assume that the support of the
perturbation is centered on the center of the ball BR on the surface of which are located the
sources and receivers, and choose this center as the origin of our system of coordinates.

We remark that for the purposes of this subsection it would not be necessary to dis-
tinguish between the scale of the wavelength of the signals (η) and that of the size of the
perturbation (ε). However, this distinction turns out to be crucial in the analysis of fluctu-
ations carried out in subsection 3.4.3.

We introduce now the different kinds of singularities and compute the relative order al
amplitude of the average contrast shown by the imaging functional.

Point singularities

Let us start by considering a point singularity, that is to say, a singularity whose support
has a very small diameter. We model it with a perturbation of the velocity of propagation
that is supported on a ball of radius ε:

δc−2(x) = α {Bε}(x) . (3.4.3)

To simplify computations, we can take α to be constant. Indeed, it only enters formulas
as a multiplicative constant (squared in subsection 3.4.3): since it is of no relevance to our
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scopes, we set it equal to 1, also for the other types of perturbations.

Changing variables, we have:

I1(x) =
�

BR

sinc2
�
|x− x�|/η

�
δc−2(x�) dx� =

�

Bε

sinc2
�
|x− x�|/η

�
dx�

= ε3
�

B1

sinc2
� ε

η
|x/ε− x�|

�
dx�.

At the center of the perturbation, x = 0, we have

I1(0) = ε3
�

B1

sinc2
� ε

η
|x�|

�
dx� = 4πε3

� 1

0

η2

ε2
sin2

� ε

η
ρ
�
dρ = 2πεη2

�
1− sinc(2ε/η)

�
.

For ε � η we have that I1(0) = O(εη2). However, if ε � η the order becomes O(ε3).

For |x| = O(1), what gives the order of amplitude of I1(x) is the decay of the sinc(x)
function, which goes approximately as 1/x. We have that

I1(x) ≤ ε3η2
�

B1

|x− εx�|−2dx� = O(ε3η2) .

Remark that the bound we have found is sharp, since there are x for which I1 is exactly of
order ε3η2.

We see that the difference in amplitude between the centre of the perturbation and a
point far from it is significant: it is of order η−2 when ε � η and of order ε−2 if ε � η.

Line singularities

We consider now line-type singularities, which is to say an almost one-dimensional perturba-
tion of the velocity of propagation. We model it by a perturbation supported on a cylinder
of radius ε:

δc−2(x) = {Cε}(x) , Cε = Bε × [−1, 1] ⊂ R
2 × R . (3.4.4)

We have

I1(x) =
�

BR

sinc2
�
|x− x�|/η

�
δc−2(x�) dx�

= ε2
� 1

−1

�

B1

sinc2
�1
η

�
(x− εx�)2 + (y − εy�)2 + (z − z�)2

�
dx�.

At x = 0 this term reduces to

I1(0) = ε2
� 1

−1

�

B1

sinc2
�1
η

�
ε2(x�2 + y�2) + z�2

�
dx�dy� dz�,
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which is rapidly oscillating in z�. In the integral in z� we can therefore approximate sin2 by
its mean:

I1(0) � 2πε2
� 1

0

�
1

2

� 1

−1

η2
�
ε2r2 + z�2

�−1

dz�
�
r dr = 2πε2

� 1

0

η2

εr
arctan

� 1

εr

�
r dr

= 2π εη2
� 1

0

arctan
� 1

εr

�
dr � π2εη2 = O(ε η2) .

Far from the perturbation the integral is of order ε2η2. For example, for x2+y2 = C = O(1)
we have

I1(x) �
1

2
ε2

� 1

−1

�

B1

η2
�
(x− εx�)2 + (y − εy�)2 + (z − z�)2

�−1

dx�

� π

2
ε2η2

� 1

−1

1

C + (z − z�)2
dz� = O(ε2 η2) . (3.4.5)

Therefore, the difference in amplitude seen between the centre of the line perturbation
and a point far from it is of order ε−1.

Plane singularities

Let us consider now singularities that are approximately two-dimensional: we call them
surface-type singularities and model them by a perturbation of the velocity which is sup-
ported on a disc of thickness ε:

δc−2(x) = {Dε}(x) , Dε = [−ε, ε]×B1 ⊂ R× R
2 . (3.4.6)

With this notation we have

I1(x) = ε

� 1

−1

�

B1

sinc2
�1
η

�
(x− εx�)2 + (y − y�)2 + (z − z�)2

�
dx�.

At x = 0

I1(0) = 2πε

� 1

−1

� 1

0

sinc2
�1
η

�
ε2x�2 + r2

�
r dr dx�

� πε

� 1

−1

� 1

0

η2
�
ε2x�2 + r2

�−1

r dr dx� = πεη2
� 1

−1

1

2
ln
�
1 +

1

ε2x�2

�
dx�

= O
�
ε η2

�� ln(ε)
��
�

because the sin2 in the first line is rapidly oscillating in r.

For x = O(1) we have instead that

I1(x) � ε

� 1

−1

�

B1

η2
�
(x− εx�)2 + (y − y�)2 + (z − z�)2

�−1

dy�dz� dx�

� 2πεη2
� 1

0

r

x+ r2
dr = O(ε η2) .
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For this type of singularities, the difference in amplitude seen between the centre of the
perturbation and a point far from it is very weak: it is only of order |ln(ε)|. This already
hints to the fact that, with the imaging functional we consider, surface-type singularities are
harder to locate than the other types. The analysis of fluctuations of the next subsection
will confirm this result.

3.4.3 Fluctuations and typical contrast

We have obtained in the previous subsection the average contrast of the imaged perturba-
tion. We want now to find confidence intervals for the typical contrast observed during the
experiment. To do so, we must analyze the fluctuations in the result. They are given by the
standard deviation of the estimated perturbation �δc−2, which at a point x is given by

S(x) =
� �� �δc−2(x)− � �δc−2(x)�

��2
� 1

2

. (3.4.7)

We need to compute the standard deviation at the location of the perturbation and at points
far from it, and compare them with the expected amplitude of the estimated perturbation.
Using (3.4.2) to write explicitly (3.4.7) we get

S(x) =
�� �

BR

�
K(x,x�)−

�
K(x,x�)

��
δc−2(x�)dx�

�2� 1
2

=

� ��

BR

��
K(x,x�)−

�
K(x,x�)

���
K(x,x��)−

�
K(x,x��)

���
δc−2(x�)δc−2(x��) dx�dx��

� 1
2

=

� ��

BR

Cov
�
K(x,x�),K(x,x��)

�
δc−2(x�)δc−2(x��)dx�dx��

� 1
2

,

where K = F∗F . With the same computations used to obtain the variance of the kernel
F∗F in section 3.3 we obtain that the covariance is given by

2π Tτ Cov
�
K(x,x�),K(x,x��)

�

�
�

dω
�� �f(ω)

��4 ω8 ×
� Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�)

Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
��)

×
� Ns�

s=1

�� �G(ω,x,ys)
��2

Ns�

s=1

�G(ω,x�,ys) �G(ω,x��,ys)

−
Ns�

s=1

�� �G(ω,x,ys)
��2 �G(ω,x�,ys) �G(ω,x��,ys)

�

+

Nr�

r=1

Ĝ
�
ω,xr,x)Ĝ

�
ω,xr,x

��
Nr�

r=1

Ĝ
�
ω,xr,x)Ĝ

�
ω,xr,x

���

×
� Ns�

s=1

Ĝ
�
ω,x,ys)Ĝ

�
ω,x�,ys)

Ns�

s=1

Ĝ
�
ω,x,ys)Ĝ

�
ω,x��,ys)

−
Ns�

s=1

Ĝ
�
ω,x,ys)

2Ĝ
�
ω,x�,ys)Ĝ

�
ω,x�,ys)

� �
.
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We recall that Tτ =
� �

p2τ (t) dt
�−1

and pτ (t) is the probability density function of the
random time delays. The quantity Tτ should be large so that the kernel F∗F(x,x�) is
statistically stable. For example, we have shown in section 3.3 that the maximal value of
Tτ amongst all probability density functions pτ compactly supported in [−τmax, τmax] is
obtained for the uniform density over the interval and gives Tτ = 2τmax. Since τmax must
be at most of the order of the recording time τmax � T/2, to obtain a large value of Tτ one
should take T large too (which is something we had already required in section 3.1).

Observe that in the above equation for the covariance, in each of the two terms on the
right hand side we are summing Ns terms with a minus sign and N2

s with a plus sign, and
they are all of the same order. The contribution of the terms with a minus sign is therefore
small, and we can use the results of subsection 3.4.1 on the kernel of the imaging functional
to simplify the above equation into

Cov
�
K(x,x�),K(x,x��)

�
� 1

2π Tτ

�
dω

�� �f(ω)
��4 ω8

×
�
sinc

� ω

c0
|x− x�|

�
sinc

� ω

c0
|x− x��|

�
sinc

� ω

c0
|x� − x��|

�

+ sinc2
� ω

c0
|x− x�|

�
sinc2

� ω

c0
|x− x��|

��
.

Similar computations for the case of stationary random sources, where the terms with a
minus sign do not even appear, lead to

Cov
�
K(x,x�),K(x,x��)

�
� T

2π

�
dω

�� �F (ω)
��2 ω8

×
�
sinc

� ω

c0
|x− x�|

�
sinc

� ω

c0
|x− x��|

�
sinc

� ω

c0
|x� − x��|

�

+ sinc2
� ω

c0
|x− x�|

�
sinc2

� ω

c0
|x− x��|

��
.

Let us continue the computations in the case of noise blended sources. Putting everything
together, we find that the standard deviation of the imaging functional at a point x is given
by

S(x) =
�

1

2π Tτ

� �� �f(ω)
��4 ω8 I2(x,ω) dω

� 1
2

with

I2(x,ω) =
��

BR

�
sinc

� ω

c0
|x− x�|

�
sinc

� ω

c0
|x− x��|

�
sinc

� ω

c0
|x� − x��|

�

+ sinc2
� ω

c0
|x− x�|

�
sinc2

� ω

c0
|x− x��|

��
δc−2(x�)δc−2(x��) dx�dx��.

Again, we focus on the spatial integral I2 (and to simplify notations we drop the depen-

dence on ω): the quantity we need to study is
�
I2(x)/Tτ

�1/2
for the noise blended sources

and
�
T · I2(x)

�1/2
for the stationary random sources. The computations presented below

are performed in the noise blended sources setting. To obtain the corresponding standard
deviation for stationary random sources it suffices to substitute the factor 1/Tτ (or 1/

√
Tτ )
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by T (or
√
T ). For comparison with the average amplitude, recall that for stationary random

sources the results obtained in the previous subsection have to be multiplied by a factor T .
We can rewrite the integral I2(x) as the sum of the two integrals

J1(x) =

��

BR

H1(x,x
�,x��) δc−2(x�)δc−2(x��) dx�dx�� ,

J2(x) =

��

BR

H2(x,x
�,x��) δc−2(x�)δc−2(x��) dx�dx�� ,

which is to say the double integral of the two kernels

H1(x,x
�,x��) = sinc

� ω

c0
|x− x�|

�
sinc

� ω

c0
|x− x��|

�
sinc

� ω

c0
|x� − x��|

�
,

H2(x,x
�,x��) = sinc2

� ω

c0
|x− x�|

�
sinc2

� ω

c0
|x− x��|

�

applied to the perturbation
�
δc−2(x�)δc−2(x��)

�
, for every one of the three types of pertur-

bation studied above. However, since

J2(x) = I2
1 (x) ,

we will only need to analyze J1.
For the following estimates it is important to keep separated the scale of the dimension

of the perturbation (ε) from the scale of the wavelength of the sources (η). Their relative
amplitude will be specified, but to help the reader to keep track of the different orders, we
stress that we will always have ε ≤ η.

Point singularities

We return to the case of point perturbations introduced in the previous subsection and
modeled by (3.4.3). In this case, even a very rude estimation is sufficient to obtain a bound
which guarantees that this perturbation can be imaged. Since |sinc| ≤ 1, changing variables
we get

��J1(x)
�� ≤ ε6

��

B1

��sinc
�
|x− εx�|/η

�
sinc

�
|x− εx��|/η

��� dx�dx��

≤ Kε6
�

B1(x/ε)

sinc2
�
|x�|ε/η

�
dx� , (3.4.8)

where the constant K = 4/3π comes from the use of the Cauchy-Schwarz inequality and
B1(x/ε) is the unitary ball in R

3 centered in x/ε. Since the sinc function is bounded,
we obtain a bound for J1(0) of order ε6. This is only a rough upper bound, but it is not
necessary to look for an improvement since it is already of the same order of the integral of
the second kernel, for which we have J2(0) = I2

1 (0) = O(ε6), for ε � η. Therefore,

I2(0) = O(ε6) .

Using the decay of the sinc function, we can find near the center of the perturbation (|x| � ε)
a bound for I2 of the same order. Oscillations are therefore of order ε3/

√
Tτ .

Recall that the average value observed on the peak is of order ε3 for ε � η, so that
the typical value observed remains of the same order due to the large factor Tτ . The same



3.4. HIGH FREQUENCY ANALYSIS 119

results holds true also for ε ∼ η, namely the typical value observed is of the same order of
the average value.

Far from the perturbation the integrals of the two kernels decrease. Using the bound
(3.4.8), the integral of the first kernel can be bounded for |x| = O(1) by

��J1(x)
�� ≤ Kε6

�

B1

η2
��x− εx���−2

dx� = K ε6η2 .

With some more work, one can show that this bound is sharp, at least for ε � η. This can
be done using the Fourier representation of the sinc function written in spherical coordinates
u = u(r, θ,φ) ∈ R

3:

sinc(λ|x|) = 1

2

� 1

−1

e−iλζ|x| dζ =
1

2

� π

0

e−iλ|x| cos(θ) sin(θ) dθ

=
1

4π

� 2π

0

� π

0

e−iλx·u(r,θ,φ) sin(θ) dθ dφ =
1

4π

�

S2

eiλx·u du , (3.4.9)

where S2 = {x ∈ R
3 : |x| = 1} is the unitary sphere in R

3. We can write

J1(x) = (4π)−3

��

Bε

���

S2

ei
1
η (x−x

�)·u ei
1
η (x−x

��)·v ei
1
η (x�−x

��)·w du dv dw dx�dx��

� ε6

324π

���

S2

ei
1
ηx·(u+v) du dv dw ,

where we have used the assumption ε � η. Simplifying this equation and using again (3.4.9),
we get for |x| = O(1)

J1(x) �
ε6

32

� �

S2

ei
1
ηx·udu

�2
=

ε6

32

�
4π sinc

�
|x|/η

��2
= O(ε6η2) .

As for the integral of the second kernel, J2(x), the bound we have is of order ε6η4. For
ε � η we have therefore

I2(x) = O(ε6η2) .

In the general case ε ≤ η, the above equation becomes an upper bound.
Recall that the statistical average of the imaging operator far from the perturbation is

of order ε3η2. Assuming that T is large, but still 1 � Tτ ≤ 1/η2, the above result implies
that the typical value observed is at most of order ε3η/

√
Tτ (it is exactly of this order for

ε � η). Therefore, the typical contrast is still at least of order
√
Tτ/η, allowing for a precise

localization of the perturbation (both when ε � η and ε ∼ η).

Line singularities

Consider the case of line singularities, modeled by (3.4.4). Using rude estimations similar
to the ones presented above, we could only bound the integral of the (absolute value of the)
first kernel near the origin with something of order ε4η2 ln2(ε). This means that, in order
to be sure to able to image the perturbation, we would need to have ε| ln(ε)| � η. But we
can do better.
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Assuming ε � η, we can use the approximation

sinc
�1
η

�
ε2(x�2 + y�2) + z�2

�
� sinc

�
z�/η

�
. (3.4.10)

It is then possible to use the Fourier representation of the sinc function

sinc(λz) =
1

2λ

� λ

−λ

e−iζz dζ =
1

2

� 1

−1

e−iλζz dζ

to obtain the amplitude of the fluctuations. At x = 0 we can rewrite the integral of the
first kernel as an integral over C1 = B1 × [−1, 1] ⊂ R

2 × R, use (3.4.10) and integrate in
x�, y�, x��, y��:

J1(0) =

��

Cε

sinc
�
|x�|/η

�
sinc

�
|x��|/η

�
sinc

�
|x� − x��|/η

�
dx�dx��

= ε4
��

C1

sinc
�1
η

�
ε2(x�2 + y�2) + z�2

�
sinc

�1
η

�
ε2(x��2 + y��2) + z��2

�

× sinc
�1
η

�
ε2
�
(x� − x��)2 + (y� − y��)2

�
+ (z� − z��)2

�
dx�dx��

� π2ε4
�� z+1

z−1

sinc
�
z�/η

�
sinc

�
z��/η

�
sinc

�
(z� − z��)/η

�
dz�dz�� ,

and using the Fourier representation introduced above we get

J1(0) =
π2

23
ε4

�� z+1

z−1

��� 1

−1

e−iζ�z�/η e−iζ��z��/η e−iζ(z�−z��)/η dζ dζ �dζ �� dz�dz��

=
π2

2
ε4

��� 1

−1

sinc
�1
η
(ζ � + ζ)

�
sinc

�1
η
(ζ �� − ζ)

�
dζ dζ �dζ ��

=
π2

2
ε4η2

� 1

−1

� (ζ+1)/η

(ζ−1)/η

sinc(u1) du1

� (−ζ+1)/η

(−ζ−1)/η

sinc(u2) du2 dζ .

Since the function s �→
� s

0
sinc(u) du is uniformly bounded in s, we get that

J1(0) = O(ε4η2) .

For the second kernel we have J2(0) = I2
1 (0) = O(ε2η4), and therefore

I2(0) = O(ε2η4) .

Remark that for |x| � ε we can still bound fluctuations in the same way, because (3.4.10)
still holds, and the integral

� �
(x− εx�)2 + (y − εy�)2 + (z − z�)2

�−1/2

dx�

is maximal when x = 0.

We see that fluctuations near x = 0 are of order εη2/
√
Tτ . Since the average value

observed at x = 0 for the imaging functional is of order εη2, it is thanks to the large factor
Tτ � 1 that we get the statistical stability of the operator. This means that the typical
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value observed on the perturbation remains of order εη2.

When x is far from the perturbation, oscillations are even smaller. Indeed, we can
proceed as in (3.4.8) to find a bound for the integral of the absolute value of the first kernel.
We get

J1(x) ≤ ε4
� � 1

−1

�

B1

���sinc
�1
η

�
(x− εx�)2 + (y − εy�)2 + (z − z�)2

���� dx�dy� dz�
�2

� ε4η2
� � 1

−1

�

B1

�
(x− εx�)2 + (y − εy�)2 + (z − z)�2

�−1/2
dx�

�2
.

Since the integrand is bounded, the bound we get is of order ε4η2. By (3.4.5), the second
kernel is of a higher order, J2(x) ≤ O(ε4η4), and therefore

I2(x) ≤ O(ε4η2) .

This bound implies that the typical value observed far from the perturbation is of order at
most ε2η/

√
Tτ , so that the contrast is at least of order η

√
Tτ/ε.

Plane singularities

We turn now to analyze fluctuations in the case of surface-type perturbations, modeled by
(3.4.6). The difficult part is again to obtain good estimates on the integral of the first
kernel, for which we use the Fourier representation of the sinc function obtained in (3.4.9).
At x = 0 we have

J1(0) =
1

(4π)3

��

Dε

���

S2

ei
1
η [x�·(u+w)+x

��·(v−w)] du dv dw dx�dx��

=
1

(4π)3

�

S2

� �

S2

�

Dε

ei
1
ηx

�·(u+w) dx� du

�2
dw

� 4ε2

(4π)3

�

S2

� �

S2

�

B1

ei
1
ηx

�
⊥·(u+w) dx�

⊥du

�2
dw ,

where the approximate equality holds for ε � η and ⊥ denotes the projection on the last
two coordinates: x⊥ = (y, z) ∈ R

2. The integral in dx�
⊥ is computed on (Dε)⊥ = B1 ∈ R

2.
We can rewrite also the integrals on S2 as (twice the) integrals on the projection B1 ∈ R

2,
compute the integral in dx�

⊥ and change variables:

J1(0) �
32ε2

(4π)3

�

B1

� ��

B1

ei
1
ηx

�
⊥·(u+w)⊥

�
1− |u⊥|2 dx�

⊥ du⊥

�2�
1− |w⊥|2 dw⊥

=
2ε2

π

�

B1

� �

B1

J1
�
|u⊥ +w⊥|η

�

|u⊥ +w⊥|/η
�

1− |u⊥|2 du⊥

�2�
1− |w⊥|2 dw⊥

=
2 ε2η6

π

�

B1/η

� �

B1/η(w⊥)

J1(|u⊥|)
|u⊥|

�
1− |u⊥ −w⊥|2 η2 du⊥

�2�
1− |w⊥|2 η2 dw⊥ .

Here J1 is the Bessel function of the first kind. Let us focus on the integral inside the square
brackets. Observe that the origin of our system of coordinates is always inside B1/η(w⊥).
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Changing to polar coordinates we have

Y =

�

B1/η(w⊥)

J1(|u⊥|)
|u⊥|

�
1− |u⊥ −w⊥|2 η2 du⊥ =

� 2π

0

� ρw(θ)

0

J1(r)φw(θ, r) dr dθ ,

where we denote by φw the square root term (written in polar coordinates), and the function
ρw(θ) takes values in [ 1/η−|w⊥| , 1/η+ |w⊥| ] ⊂ [ 0 , 2/η ]. We claim that the integral term
Y is bounded. This can be proved by integrating by parts in r as follows. First, remark that
the square root term is concave (as a function of u⊥), take its maximum over the domain of
integration B1/η(w⊥) at the center of the ball and is zero at the boundary. Therefore, for
every fixed (θ,w), the function φw(θ, ·) is still concave and bounded by 1. Then, one easily
obtains that the integral of the absolute value of its derivative in r is bounded by 2. Also,
the antiderivative of J1(r) is the Bessel function of order zero −J0(r), which is bounded (the
maximum of its absolute value is obtained at r = 0, and J0(0) = 1). Putting everything
together, we finally get

Y =

� 2π

0

�
− J0(r)φw(θ, r)

���
r=ρw(θ)

r=0
+

� ρw(θ)

0

J0(r) ∂rφw(θ, r) dr

�
dθ

≤
� 2π

0

�
J0(0) + J0(0)

� ρw(θ)

0

��∂rφw(θ, r)
�� dr

�
dθ ≤ 6π .

This proves the claim.

Using again the boundedness of the square root, we can bound the integral in dw⊥ by
π/η2. We have therefore obtained a bound for J1(0) of order O(ε2η4). This is only an upper
bound, but there is no need to look for an improvement, since it is already of a smaller order
than the integral of the second kernel, for which we have

J2(0) = I2
1 (0) = O

�
ε2η4 ln2(ε)

�
.

Therefore,
I2(0) = O

�
ε2η4 ln2(ε)

�
.

Far from the perturbation, fluctuations are even smaller. Recall the notation x =
(x,x⊥) ∈ R × R

2 and u = (u1,u⊥) ∈ R × R
2; the same notation is used for v and w.

Let us look at the integral of the first kernel; following the computations presented above
we have

J1(x) =
1

(4π)3

��

Dε

���

S2

ei
1
η [(x−x

�)·(u+w)+(x−x
��)·(v−w)] du dv dw dx�dx��

� 4ε2

(4π)3

���

S2

��

B1

ei
1
η [(x−x

�)⊥·(u+w)⊥+(x−x
��)⊥·(v−w)⊥] dx�

⊥dx
��
⊥

× ei
1
η [x(u+w)1+x(v−w)1] du dv dw

=
32ε2

(4π)3

���

B1

��

B1

e−i 1
η [x�

⊥·(u+w)⊥+x
��
⊥·(v−w)⊥] dx�

⊥dx
��
⊥ × ei

1
η [x⊥·(u+v)⊥]

× ei
1
η x
�√

1−|u⊥|2+
√

1−|v⊥|2
�
×
�
1− |u⊥|2

�
1− |v⊥|2

�
1− |w⊥|2 du⊥dv⊥dw⊥
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so that

J1(x) �
2ε2η6

π

�

B1/η

�
1− |w⊥|2 η2

�

B1/η(w⊥)

eix⊥·u⊥ e
ix

�

1
η2 −u

2
⊥
�

1− |u⊥ −w⊥|2 η2
J1(|u⊥|)
|u⊥|

du⊥

×
�

B1/η(−w⊥)

eix⊥· v⊥ e
ix

�

1
η2 −v

2
⊥
�

1− |v⊥ +w⊥|2 η2
J1(|v⊥|)
|v⊥|

dv⊥ dw⊥.

For |x| � 1, the last two integrals above are now much smaller than the corresponding ones
for x = 0. This is due to the fact that for |x| large, at least one of the two exponential
terms, which have mean zero, is rapidly oscillating with respect to J1. We therefore have
that J1(x) is at most of order ε2η4. Far from the perturbation, the (sharp) bound we
have on the integral of the second kernel is of the same order: J2(x) ≤ O(ε2η4). We have
obtained that

I2(x) ≤ O(ε2η4) .

Thanks to the large factor Tτ , fluctuations are therefore smaller than the average value given
by the imaging functional, both on the perturbation and far from it. The typical contrast
remains therefore of the same order as the average contrast, namely of order | ln(ε)|.

3.4.4 Comments

In this section we have analyzed the imaging functional given by (3.4.2) in the high frequency
regime (η � 1) with respect to small perturbations (ε � 1) of the background velocity of
propagation. Using a suitable geometry of the sources and receivers, we have been able to
obtain quantitative estimates on the (average, with respect to the realization of the random
time delays or the stationary random source signals) sensitivity of the imaging functional.
The image presents a peak on the location of the perturbation, and the contrast is of order
η−2 for point perturbations, of order ε−1 for line perturbations, and only of order | ln(ε)| for
surface perturbations.

The most interesting result of this section concerns the quantitative analysis of the sta-
tistical stability of this functional, providing the typical contrast seen for the three pertur-
bations considered.

An important fact is that the typical contrast found only depends on the type of pertur-
bation one is trying to image, and not on the method used. All results are described below
for noise blended sources, but the corresponding contrast for stationary random sources are
obtained simply substituting Tτ with T .

We have shown that for point perturbations, both when ε � η and ε ∼ η, fluctuations
due to the stochastic nature of the method are small, and the typical contrast is at least of
order

√
Tτ/η (

√
T/η for stationary random sources): point perturbations are easy to find.

For line perturbation the situation is different. We can image with a satisfactory accuracy
and reasonable recording time only very thin line perturbations, ε � η. The typical contrast
in this case is at least of order

√
Tτ η/ε.

For plane perturbations the average contrast is quite poor, only of order | ln(ε)|. However,
for very thin perturbations (ε � η) also the typical contrast is of the same order.

These results are summarized in the tables 3.1 and 3.2, where we list for the three type
of perturbations considered the order of the average value given by the imaging functional
and of the standard deviation, both at the center of the perturbation and far from it.
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� �δc−2(x)
�

S(x)
x = 0 |x| � 1 x = 0 |x| � 1

Points � ε3 � ε3η2 � ε3/
√
Tτ � ε3η/

√
Tτ

Lines � εη2 � ε2η2 � εη2/
√
Tτ � ε2η/

√
Tτ

Planes � εη2| ln(ε)| � εη2 � εη2| ln(ε)|/
√
Tτ � εη2/

√
Tτ

Table 3.1: Noise blended sources: mean
� �δc−2(x)

�
and standard deviation S(x) of

the estimated velocity perturbation at the center of the perturbation (x = 0) and
far from it (|x| � 1), in the regime ε � η � 1. The cases of point, line and disc
singularities are displayed.

� �δc−2(x)
�

S(x)
x = 0 |x| � 1 x = 0 |x| � 1

Points � Tε3 � Tε3η2 �
√
Tε3 �

√
Tε3η

Lines � Tεη2 � Tε2η2 �
√
Tεη2 �

√
Tε2η

Planes � Tεη2| ln(ε)| � Tεη2 �
√
Tεη2| ln(ε)| �

√
Tεη2

Table 3.2: Stationary random sources: mean
� �δc−2(x)

�
and standard deviation

S(x) of the estimated velocity perturbation at the center of the perturbation (x = 0)
and far from it (|x| � 1), in the regime ε � η � 1. The cases of point, line and disc
singularities are displayed.

3.5 Applications and simulations

3.5.1 Simultaneous source exploration

In this subsection we consider the formulation (3.1.1 - 3.3.1) as it describes a physical explo-
ration problem. That is, the source term n(t,x) results from the simultaneous emission of
Ns point sources located at (ys)s=1,...,Ns and emitting randomly delayed pulses as in (3.3.1),
and from the measurements at the Nr receiver points (xr)r=1,...,Nr we aim to recover the
medium perturbations

�
δc−2(x)

�
x∈Ω

. In this framework, only one experiment is performed
to acquire the data set.

To put our approach in perspective we shall first consider the classic experimental config-
uration in which we can use the sources separately and obtains the full multi-static response
matrix d = (d(t,xr,ys))r=1,...,Nr,s=1...,Ns,t∈[−T/2,T/2]. This requires us to perform Ns ex-
periments. In the sth experiment, s = 1, . . . , Ns, we observe the signal d(t,xr,ys) at the
receiver point xr when the point source at ys emits a short pulse f(t). The Reverse-Time
imaging functional for the estimation of the medium perturbations δc−2 is based on the
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application of the adjoint F∗
0 on the data set [BCS]:

IRT(x) =
�
F∗

0d
�
(x) =

Ns�

s=1

Nr�

r=1

�
Q0(t,xr,ys,x) d(t,xr,ys) dt

=
1

2π

Ns�

s=1

Nr�

r=1

�
ω2 �G(ω,x,xr) �G(ω,x,ys) �f(ω) �d(ω,xr,ys) dω . (3.5.1)

To evaluate the imaging functional, one needs a priori to solve Ns + Nr times the wave
equation in order to get �G(ω,x,xr), for r = 1, . . . , Nr, and �G(ω,x,ys), for s = 1, . . . , Ns.
Usually the number of sources is smaller than the number of receivers Ns < Nr and then
the strategy that requires to call the numerical wave solver only 2Ns times is as follows:

1. for each s = 1, . . . , Ns, compute the wave emitted by the source located at ys, that
is to say evaluate �v(s)(ω,x) solution of the Helmholtz equation with the background
velocity c0(x) and with the source term �n(ω,x) = ω2 �f(ω) δ(x− ys).

2. for each s = 1, . . . , Ns, time reverse the recorded data and propagate these time
reversed signals from the receivers, that is to say evaluate �u(s)(ω,x) solution of the
Helmholtz equation with the background velocity c0(x) and with the source term

�n(ω,x) =
�Nr

r=1
�d(ω,xr,ys)δ(x− xr).

3. for each s = 1, . . . , Ns, correlate the two pairs of signals, one of them being time-
reversed first, and sum over the sources.

One gets

IRT(x) =
1

2π

Ns�

s=1

�
�v(s)(ω,x) �u(s)(ω,x) dω ,

which is equal to (3.5.1). In the Born approximation and for T large enough (i.e. larger
than the typical travel time), we get

IRT(x) ≈
�

Ω

K(x,x�) δc−2(x�) dx� ,

K(x,x�) =
�
F∗

0F0

�
(x,x�) =

1

2π

�
ω4

�� �f(ω)
��2
� Ns�

s=1

�G(ω,x,ys) �G(ω,x�,ys)
�

×
� Nr�

r=1

Ĝ
�
ω,xr,x)Ĝ

�
ω,xr,x

��� dω . (3.5.2)

It is possible to equalize the spectrum and to divide the data by ω4| �f(ω)|2 in the Fourier
domain over the bandwidth in order to improve the accuracy of the estimation. We will see
below that this functional gives an image of the velocity perturbations δc−2 with an accuracy
of the order of the wavelength when the source and receiver array apertures are large enough.

We then return to the blended source configuration (3.1.1 - 3.3.1). In this case the data
set consists of the vector d =

�
d(t,xr)

�
r=1,...,Nr,t∈[−T/2,T/2]

, where d(t,xr) is the signal

measured at xr when the source term is (3.3.1). The imaging functional (for imaging the
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medium perturbations) consists in applying the adjoint operator F∗ to the data set:

IBS(x) =
�
F∗d

�
(x) =

Nr�

r=1

�
Q(t,xr,x)d(t,xr) dt

=
1

2π

Nr�

r=1

��
ω2 �G(ω,x,xr) �G(ω,x,y) �n(ω,y) �d(ω,xr) dy dω . (3.5.3)

To evaluate the imaging functional, one needs to solve the wave equation only two times.
This is a considerable advantage compared to the standard technique described above that
uses the full response matrix and that requires 2Ns calls to the numerical wave solver. More
precisely the strategy to evaluate the imaging functional is as follows:

1. compute the wave emitted by the original source n(t,x) given by (3.3.1), that is to
say evaluate �v(ω,x) solution of the Helmholtz equation with the background velocity
c0(x) and with the source term �n(ω,x)ω2.

2. time reverse the recorded data and propagate these time reversed signals from the
receivers, that is to say evaluate �u(ω,x) solution of the Helmholtz equation with the

background velocity c0(x) and with the source term �n(ω,x) =
�Nr

r=1
�d(ω,xr)δ(x−xr).

3. correlate the two pairs of signals, one of them being time-reversed first.

One gets

IBS(x) =
1

2π

�
�v(ω,x) �u(ω,x) dω ,

which is equal to (3.5.3). In the Born approximation and for T large enough (i.e. larger
than the typical travel time and the typical time delay), we then find that

IBS(x) =

�

Ω

F∗F(x,x�)δc−2(x�) dx� ≈
�

Ω

�
F∗F(x,x�)

�
δc−2(x�) dx�

=

�

Ω

K(x,x�)δc−2(x�) dx� , (3.5.4)

where the kernel K(x,x�) is given by (3.5.2). Note that here we have used the crucial
stabilization result F∗F �

�
F∗F

�
that we derived in section 3.3.

The resolution in the perturbation estimate is given by the classic Kirchhoff resolution
which characterizes the support of K [GP10]. We assume that the source and receiver arrays
coincide and have a characteristic aperture or diameter a. Then:

• If the diameter a of the array is smaller than the distance L from the array to the
target, the resolution is given by the standard Rayleigh resolution formulas: the cross
range resolution is λ0L/a and the range resolution is λ0(L/a)

2 for narrowband sources
and c0/B for broadband sources with bandwidth B > ω0(a/L)

2. Here λ0 is the central
wavelength corresponding to the central frequency ω0 of the pulse wave form f .

• If the diameter of the array is of the same order as or larger than the distance from
the array to the target, then we find that the resolution is of the order of the central
wavelength λ0.

Note that we could also use the stationary random sources of the form (3.2.1, that in
view of (3.3.3) gives the same resolution as the noise blended sources. Our analysis applies
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directly to the important case when we do not have “controlled sources”, rather “sources of
opportunity”. However the important assumption that we make here is that the (incoherent)
traces of the sources and their locations are assumed to be known. Situations in which the
sources are not assumed a priori known are discussed in [GS11].

3.5.2 Seismic forward simulations

We illustrate here how our results could be used in the context of forward simulations, which
constitute an important ingredient in typical iterative imaging or inversion schemes.

Consider again first the situation when we in fact have measured the full multi-static
response (MSR) matrix

d =
�
d(t,xr,ys)

�
r=1,...,Nr, s=1,...,Ns, t∈[−T/2,T/2]

.

For each s = 1, . . . , Ns, denote by u(s)(t,x; ĉ) the numerical solution of (3.1.1) with the
source term n(t,x) = δ(x−ys)f(t) when the medium perturbation is �δc−2. Denote by d[�c ]
the corresponding computed MSR matrix, whose elements are defined by

d[�c ](t,xr,ys) = u(s)(t,xr;�c ) =
�
F0

�δc−2
�
(t,xr,ys) .

An iterative imaging scheme can then be based on calculating and minimizing the quadratic
misfit functional

J [�c ] =
Ns�

s=1

Nr�

r=1

� T
2

−T
2

��d(t,xr,ys)− d[�c ](t,xr,ys)
��2 dt . (3.5.5)

The implementation of a descent algorithm over �c produces a sequence of estimates �c1,�c2, . . .
leading to an estimate, say �cN , of c at termination. We find in the Born approximation that
the residual in (3.5.5) is

J [�c ] =
Ns�

s=1

Nr�

r=1

� T
2

−T
2

���F0 δc
−2

�
(t,xr,ys)−

�
F0

�δc−2
�
(t,xr,ys)

��2 dt

=

��

Ω

F∗
0F0(x,x

�)
�
δc−2(x)− �δc−2(x)

��
δc−2(x�)− �δc−2(x�)

�
dx dx� , (3.5.6)

with F∗
0F0(x,x

�) defined by (3.1.18) when T is large enough (i.e. larger than the typical
travel time). Note that this minimization approach requires the calculation of J [�cj ], j =
1, . . . , N which is computationally very expensive because it requires computing the full
multi-static response matrix with a new velocity function at each step, which amounts to
solving the forward problem Ns times at each step.

Consider now the situation when the sources are defined as in (3.3.1), that is with
simultaneous randomly delayed point sources. The data has the form of the vector

d = (d(t,xr))r=1,...,Nr, t∈[−T/2,T/2] .

Denote by u(t,x;�c ) the solution of (3.1.1) when the medium perturbation is �δc−2
and the

source term is (3.3.1). Denote by d[�c ] the corresponding computed data:

d[�c ](t,xr) = u(t,xr;�c ) =
�
F �δc−2

�
(t,xr) .
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Figure 3.1: Numerical set-up: the triangles are the sensors of the array, the dia-
monds are the reflectors, the dashed lines determine the search window for the imaging
functionals.

We can implement an iterative imaging scheme based on calculating and minimizing the
least-square functional

�J [�c ] =
Nr�

r=1

� T
2

−T
2

��d(t,xr)− d[�c ](t,xr)
��2 dt .

We then find in the Born approximation and when T is large enough (i.e. larger than the
typical travel time and the typical time delay for noise blended sources, or larger than the
typical travel time and the decoherence time for stationary random sources) that

�J [�c ] =
Nr�

r=1

� T
2

−T
2

���F δc−2
�
(t,xr)−

�
F �δc−2

�
(t,xr)

��2 dt

=

��

Ω

F∗F(x,x�)
�
δc−2(x)− �δc−2(x)

��
δc−2(x�)− �δc−2(x�)

�
dx dx�

≈
��

Ω

�
F∗F(x,x�)

��
δc−2(x)− �δc−2(x)

��
δc−2(x�)− �δc−2(x�)

�
dx dx� , (3.5.7)

where we use the statistical stability property of the normal operator. Applying a descent
algorithm on �J [�c ] over �c is much less computationally intensive than with the full MSR
strategy, since it requires solving only one forward problem at each step of the algorithm.
The essential observation here is that the residual in (3.5.6) corresponds to the residual in
(3.5.7). Therefore, we can expect that the velocity model estimation based on the simul-
taneous sources will give estimates that are comparable to those obtained with (physical)
measurements and successive numerical calculations based on simultaneous sources only,
when in the scaling regime discussed in sections 3.2 and 3.3. We remark that the same
random forcing should be used in each iteration, that is, the random forcing associated with
the actual measured MSR matrix. Note, moreover, that if in fact the whole MSR matrix
was measured in the physical experiment one could from this synthesize a “synthetic” si-
multaneous source experiment by convolution with simulated stationary random sources or
randomly delayed sources.

3.5.3 Numerical illustrations

The numerical simulations presented in this section compare the image obtained with mi-
gration of the full MSR matrix and the one obtained with migration of a unique set of data
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a) MSR b) BS τmax = 10 c) BS τmax = 100

d) BS τmax = 0 e) BS τmax = 10 f) BS τmax = 100

Figure 3.2: Images given by Kirchhoff migration of the full MSR matrix (a);
migration of the data vector obtained with simultaneous sources without random
time delays (d); migration of the data vector obtained with blended sources (BS)
with random time delays uniformly distributed over [−10, 10] for two realizations of
the delays (b,e); migration of the data vector obtained with blended sources with
random time delays uniformly distributed over [−100, 100] for two realizations of the
delays (c,f).

collected with blended (randomly time delayed) sources.

We consider a three-dimensional homogeneous background medium with velocity c0 = 1.
We compute the image in the plane (z, x) and use the homogeneous background Green’s
function (3.1.5) and the Born approximation for the three reflectors we want to image. The
source and receiver arrays are coincident and the Ns = 10 sensors are uniformly spaced
on the interval

�
0, [−20,+20]

�
, (Figure 3.1). The pulse signal is the second derivative of a

Gaussian with Fourier transform �f(ω) = ω2 exp(−ω2). We consider three point reflectors
at locations (47, 14), (53, 10), (47, 6) with the same reflectivity. The search window in given
by the square [40, 60]× [0, 20], and is marked with a dashed line in Figure 3.1. The random
time delays of the sources are independent and identically distributed random variables with
uniform distribution over [−τmax, τmax] and we test three different values for τmax and two
different realizations. The images obtained in the search window are shown in Figure 3.2.
As expected by the theory, the image obtained with the data collected with blended sources
is very similar to the one obtained with the full MSR matrix when τmax is large enough (here
the time for a round trip from the array to the target is about 100). When τmax is small the
image is unstable in that it depends on the particular realizations of the time delays.
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3.6 Appendices

3.6.1 Appendix A: Statistical stability for a continuum of point

sources

When the point sources are close to each other (closer than a wavelength apart), then it is
possible to model the process n(t,x) as a zero-mean stationary (in time) Gaussian process
with autocorrelation function

�
n(t1,y1)n(t2,y2)

�
= F (t2 − t1) δ(y2 − y1) θ

�y1 + y2

2

�
,

where the function θ describes the spatial support of the sources.

The product of second-order moments of the random process n(t,x) is

�
n(t− s,y1)n(t− u,y2)

� �
n(t� − s�,y�

1)n(t
� − u�,y�

2)
�

= F (s− u)F (s� − u�) θ(y1)δ(y1 − y2) θ(y
�
1)δ(y

�
1 − y�

2) .

The fourth-order moment of the Gaussian random process n is
�
n(t− s,y1)n(t− u,y2)n(t

� − s�,y�
1)n(t

� − u�,y�
2)
�

= F (s− u)F (s� − u�) θ(y1)δ(y1 − y2) θ(y
�
1)δ(y

�
1 − y�

2)

+ F (t� − t− s� + s)F (t� − t− u� + u) θ(y1)δ(y1 − y�
1) θ(y2)δ(y2 − y�

2)

+ F (t� − t− u� + s)F (t� − t− s� + u) θ(y1)δ(y1 − y�
2) θ(y2)δ(y

�
1 − y2) .

Consequently, we have that for any T > 0

�� T
2

−T
2

��
n(t− s,y1)n(t− u,y2)n(t

� − s�,y�
1)n(t

� − u�,y�
2)
�

−
�
n(t− s,y1)n(t− u,y2)

��
n(t� − s�,y�

1)n(t
� − u�,y�

2)
��

dt dt�

= ST (s− s�, u− u�) θ(y1)δ(y1 − y�
1) θ(y2)δ(y2 − y�

2)

+ ST (s− u�, u− s�) θ(y1)δ(y1 − y�
2) θ(y2)δ(y

�
1 − y2) , (3.6.1)

with ST defined by (3.2.11). We then get the same formulas as in the discrete model.

3.6.2 Appendix B: Resolution analysis

Consider the kernel

Kω(x,x
�) =

Nr�

r=1

�G(ω,xr,x) �G(ω,xr,x
�) . (3.6.2)

We assume that the points (xr)
Nr
r=1 are at the surface Σ = {y ∈ R

3, y3 = 0} and are close to
each other (closer than half-a-wavelength) so that a continuum approximation can be used:

Kω(x,x
�) =

�

Σ

ρ(xr) �G(ω,xr,x) �G(ω,xr,x
�) dσ(xr) , (3.6.3)
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where ρ is the surface density of receivers. In the high-frequency asymptotics, for x = x�,
we have

Kω(x,x) =

�

Σ

ρ(xr)A(x,xr)
2 dσ(xr) .

For |x− x�| of the order of the wavelength, we find

Kω(x,x
�) �

�

Σ

ρ(xr)A(x�,xr)
2 exp

�
− iω∇x

�T (x�,xr) · (x− x�)
�
dσ(xr) .

If, additionally, we assume that the background is homogeneous c(x) = c0, then T (x�,xr) =
|x� − xr|/c0 and A(x�,xr) = 1/

�
4π|x� − xr|

�
and we have

Kω(x,x
�) � 1

(4π)2

�

Σ

ρ(xr)
1

|x� − xr|2
exp

�
i
ω

c0

xr − x�

|xr − x�| · (x− x�)
�
dσ(xr) .

This expression gives the width and the form of the function Kω(x,x
�) along the diagonal

band x � x�. If the diameter a of the array (i.e. the support of ρ) is smaller than the
distance from the array to x�, then we find the standard Rayleigh resolution formulas. If
the diameter of the array is of the same order as or larger than the distance from the array
to x�, then we find that the resolution is of the order of the wavelength.

Using stationary phase arguments, we obtain for |x − x�| much larger than the typical
wavelength:

Kω(x,x
�) � ρ(x0)

(4π)2
2π c0(x3 − x�

3)
2

|x− x�|3
i

ω
sgn(x3 − x�

3) exp
�
− i

ω

c0
|x− x�|

�
,

where x0 is the intersection of the ray going through x and x� with the surface y3 = 0:

x0 =
x3x

� − x�
3x

x3 − x�
3

.

This expression gives the long-distance decay of the function Kω(x,x
�) for ω|x−x�|/c0 � 1.
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Chapter 4

The stochastic transport equation

4.1 Introduction

Consider the stochastic linear transport (SLT) equation in Stratonovich form

∂u

∂t
+ b · ∇u+ σ∇u ◦ dW

dt
= 0, u|t=0 = u0 . (4.1.1)

Here W = (Wt)t≥0 is a d-dimensional Brownian motion defined on a filtered probability
space (Ω,F ,Ft, P ), the drift b : [0, T ]×R

d → R
d is a given deterministic vector field, σ ∈ R

and u0 : Rd → R are given and the solution u = u (x, t) will be a scalar random field on
(Ω,F ,Ft, P ) defined for (t, x) ∈ [0, T ]× R

d.
We deal with the problem of singularities of u starting from a regular initial condition u0.

When σ = 0 and b is not Lipschitz, singularities may appear, in the form of discontinuities
(or blow-up of derivatives), as in the simple example d = 1, b (x) = −sign (x)

�
|x|: any

non-symmetric smooth initial condition u0 develops a discontinuity at x = 0 for any t > 0,
because there are different, symmetric, initial conditions x0 for the associated equation of
characteristics

x� (t) = b (t, x (t)) , x (0) = x0

which coalesce at x = 0 at any arbitrary positive time. Opposite to the question of unique-
ness of weak L∞ solutions, where positive results have been given under relatively weak
assumptions on b, see for instance [DPL89, Am04], it seems that good results of no blow-up
are not available in the deterministic case when b is not Lipschitz.

Our purpose is to show that, for σ �= 0 and b of class

b ∈ Lq
p := Lq

�
0, T ;Lp(Rd,Rd)

�
,

p, q ≥ 2 ,
d

p
+

2

q
< 1 (4.1.2)

some regularity of the initial condition is maintained. In particular, discontinuities do not
appear. We prove the following result.

Theorem 4.1. If σ �= 0, (4.1.2) holds and u0 ∈ ∩r≥1W
1,r

�
R

d
�

then there exists a unique
solution u such that

P
�
u (t, ·) ∈ ∩r≥1W

1,r
loc

�
R

d
��

= 1

133
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for every t ∈ [0, T ].

Moreover, the unique solution in this class is given by a representation formula, in terms
of u0, involving a weakly differentiable stochastic flow. By Sobolev embedding theorem,
u(t, ·) is α-Hölder continuous for every α ∈ (0, 1), with probability one. Hence, from smooth
initial conditions, discontinuities cannot arise.

The precise formulation of the concept of solution and other details are given in the
sequel.

The intuitive idea is that, opposite to the deterministic case, when σ �= 0 the character-
istics cannot meet. They satisfy the stochastic differential equation (SDE)

dXt = b (Xt, t) dt+ σ dWt (4.1.3)

which generates, under assumptions (4.1.2), a stochastic flow of Hölder continuous homeo-
morphisms, with some weak form of differentiability. The existence of an Hölder continuous
stochastic flow has been proved in [FF11], [FF12a], [Zh11]. A differentiability property in
terms of finite increments has been given in [FF12a]. Here we establish Sobolev type differ-
entiability. A similar Sobolev regularity of the flow is investigated in [MNP12] by different
tools (Malliavin calculus). See also [MP10].

The assumption (4.1.2) has been introduced in the framework of stochastic differential
equations by Krylov and Röckner in [KR05], where they prove strong uniqueness for equation
(4.1.3). In the fluid dynamic literature, with ≤ in place of <, this condition is known as
the Ladyzhenskaya-Prodi-Serrin condition [Fl, Pr59]. One of its main consequences is that
it gives uniform bounds on gradients of solutions to an auxiliary parabolic problem (see
theorem 4.2 below) essential for our approach, along with good properties of the second
derivatives.

The possibility that noise may prevent the emergence of singularities is an intriguing phe-
nomenon that is under investigation for several systems. For linear transport equations with
b ∈ L∞ �

[0, T ] ;Cα
b

�
R

d,Rd
��

it may be deduced from [FGP10] (the result presented here is
more general). For nonlinear systems there are negative results, like the fact that noise does
not prevent shocks in Burgers equation, see [Fl], and positive results for special kind of sin-
gularities (collapse of measure valued solutions) for the vorticity field of 2-dimensional Euler
equations, see [FGP11], and for the 1-dimensional Vlasov-Poisson equation, see [DFV12].
Moreover, for Schrödinger equations, there are several theoretical and numerical results of
great interest, see [dBD02a, dBD10, DdM02a, DdM02b, DT11]. For a list of results con-
cerning the restored uniqueness due to noise and address to the lecture note [Fl] on this
subject.

After the result of theorem 4.1, it remains open the question whether the solution is
Lipschitz continuous (or more) when u0 ∈ W 1,∞ �

R
d
�

(or more). In dimension d we think
that this is a difficult question under assumption (4.1.2). The answer is positive when
b ∈ L∞ �

[0, T ] ;Cα
b

�
R

d,Rd
��

because the stochastic flow is made of diffeomorphisms, see
[FGP10] and it is also positive in dimension d = 1 for certain discontinuous drift b, including
for instance b (x) = sign (x), see [At10].

It must be emphasized that, although this “regularization by noise” may look related
to the regularization produced by the addition of a Laplacian to the equation, in fact it
preserves the hyperbolic structure of the equation. The equations remain reversible and the
solution at time t is, in the problem treated in this paper, just given by the initial condition
composed with a flow. If the initial condition has a discontinuity, the solution also has a
discontinuity; no smoothing effect is introduced. However, the emergence of singularities
(shocks in our case) is prevented.
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This chapter is organized as follows. In section 4.2 we present some results on regularity
and approximation properties of the flow associated to the SDE (4.1.3). They are obtained
via the study of an associated SDE and the regularity of its solutions. The main results are
contained in lemmas 4.3 and 4.5, while more technical results are collected in appendix A.
In section 4.3 we define weakly differentiable solutions of the SLT equation and prove their
existence in theorem 4.10. A technical result on convergence of random fields in Sobolev
spaces is left to the last appendix. Finally, uniqueness of weakly differentiable solutions of
the SLT equation is proved in section 4.4.

4.2 Convergence results

In this section we present some technical results on an associated SDE that we will study as
an intermediate step to obtain some regularity and approximation properties of the stochas-
tic flow generated by the SDE (4.1.3). The main results are contained in lemmas 4.3 and
4.5. In order not to overload this section, many technical results are left to appendix A.

Let us start by setting the notation used and recalling some results. We will use the
following auxiliary SDE, introduced in [FF12a]:

dYt = λU(t, γ−1
0 (x))dt+

�
∇U(t, γ−1

0 (x)) + Id
�
dWt , Y0 = x . (4.2.1)

The link between this SDE and the one presented in the introduction is given by the C1-
diffeomorphism γt: Yt = γt ◦Xt ◦ γ−1

0 , where γt(x) = x+ U(t, x) and U : Rd+1 → R
d is the

solution of the partial differential equation (PDE)
�

∂tU + 1
2∆U + b ·∇U − λU + b = 0

U(T, x) = 0
.

This PDE is well posed in the space

Hq
2,p(T ) := Lq

�
0, T ; W 2,p(Rd)

�
∩W 1,q

�
0, T ; Lp(Rd)

�
.

Further details on the regularity properties of function in this space are given by lemma
4.12 in appendix A. We refer the reader to [KR05], where a proof of this lemma as well as
of the theorem below (in a similar setting) are given. In this paper it is also shown that the
classical Itô formula extends to functions in Hq

2,p.
We report here the precise result on the well-posedness of the PDE shown above, which

is taken from [FF12a, Theorem 3.3]. The proof is recalled in Appendix A.

Theorem 4.2. Take p, q such that (4.1.2) holds, λ > 0 and two vector fields b, f (t, x) :
R

d+1 → R
d belonging to Lq

p(T ). Then in Hq
2,p(T ) there exists a unique solution of the

backward parabolic system

�
∂tu+ 1

2∆u+ b ·∇u− λu+ f = 0

u(T, x) = 0
. (4.2.2)

For this solution there exists a finite constant N depending only on d, p, q, T, λ and �b�Lq
p(T )
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such that
�u�Hq

2,p(T ) ≤ N�f�Lq
p(T ) . (4.2.3)

We will use the result of this theorem with f = b.

Let bn be a sequence of smooth vector fields converging to b in Lq
p. Let U be the unique

solution to the PDE (4.2.2) provided by the above theorem and Un the solutions obtained
using the approximating vector fields bn. Lemma 4.14 in appendix A shows that the vector
fields Un converge in Hq

2,p to U .

In [FF12a] is also proved the existence of Hölder flows of homeomorphisms for the two
SDEs above, which we denote by φt(·) for the SDE (4.1.3), and ψt(·) for (4.2.1). We
will use φn

t (·) to denote the flows obtained for the approximating vector fields bn, and
ψn
t (·) for the flows corresponding to the auxiliaries SDEs obtained via the diffeomorphisms

γn
t = Id+Un(t, ·). We will use φt

0(·), φt,n
0 (·), and ψ

t,n
0 (·) for the inverse flows. Remark that

the inverse flows φt
0 and φ

t,n
0 are solutions of the same SDEs as the direct flows, but driven

by the drifts −b and −bn.

We can now state and prove the two main regularity results on the flows φ
t,n
0 .

Lemma 4.3. For every R > 0, p ≥ 1 and x, y ∈ BR,

lim
n→∞

sup
t∈[0,T ]

sup
x∈BR

E
���φt,n

0 (x)− φt
0(y)

��p
�
≤ Cp,T |x− y|p .

In particular,

lim
n→∞

sup
t∈[0,T ]

sup
x∈BR

E
���φt,n

0 (x)− φt
0 (x)

��p
�
= 0 . (4.2.4)

Proof. Step 1 (preliminary estimates). By lemma 4.14 of appendix A we have that for
every r > 0 there exist a function f such that limn→∞ f(n) = 0 and

sup
x∈Rd

sup
t∈[0,T ]

��∇U(t, x)
�� ≤ 1

2
,

sup
x∈Br

sup
t∈[0,T ]

��Un(t, x)− U(t, x)
�� ≤ f(n) ,

sup
x∈Br

sup
t∈[0,T ]

��∇Un(t, x)−∇U(t, x)
�� ≤ f(n) .

Since φt(x) is jointly continuous in space and time, there exist an r < ∞ such that the
image of BR × [0, T ] will be contained in Br for all t ≤ T . In the following we will always
take x, y ∈ BR. It follows that

��Un(t,φn
t (x))− U(t,φt(y))

�� ≤ f(n) +
1

2

��φn
t (x)− φt(y)

�� ,
��∇Un(t,φn

t (x))−∇U(t,φt(y))
�� ≤ f(n) +

��∇Un(t,φn
t (x))−∇Un(t,φt(y))

�� .

To shorten notation, we will write φn and φ to denote φn
t (x) and φt(y), Un(φn) and Un(x)

to denote Un(t,φn) e Un(0, x), etc. The same holds for the flows of the SDE (4.2.1). From
the definition ψn

t = γt ◦ φn
t ◦ (γn

0 )
−1 and the properties of the diffeomorphisms γn

t obtained
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from lemma 4.14 and remark 4.15, we immediately have

|ψn − ψ| ≥ |φn − φ+ Un(φn)− Un(φ)| − f(n)

≥ 1

2
|φn − φ| − f(n) , (4.2.5)

2
�
|ψn − ψ|+ f(n)

�
≥ |φn − φ|

and

|ψn − ψ| ≤ 3

2
|φn − φ|+ f(n) . (4.2.6)

Step 2 (computations). We start by proving the convergence of the flows of the auxiliary
SDE (4.2.1). By Itô formula, for any a ≥ 2

1

a
d
��ψn − ψ

��a =
��ψn − ψ

��a−2
�
λ
�
(ψn − ψ), Un(φn)− U(φ)

�
Rd dt

+
�
(ψn − ψ),

�
∇Un(φn)−∇U(φ)

�
· dWt

�
Rd

+
a− 1

2
Tr

��
∇Un(φn)−∇U(φ)

��
∇Un(φn)−∇U(φ)

�T
�
dt

�

=
��ψn − ψ

��a−2
�
A1 +A2 +A3

�
,

where � ·, · �Rd denotes the standard scalar product on R
d. Let us analyze the three terms

A1, A2, A3. Using (4.2.5) we have

A1 ≤ λ
��ψn − ψ

��
�
f(n) +

1

2

��φn − φ
��
�
dt

≤ λ
��ψn − ψ

��2 dt+ 2λf(n)
��ψn − ψ

�� dt .

Since ∇Un is bounded (uniformly in n, see lemma 4.14) and since by equation (4.5.16)
of remark 4.15 |ψn|a belongs to L2(Ω× [0, T ]) for any a ≥ 1, we can write A2 = dMn

t , where
for every n, dMn

t is the differential of a zero mean martingale.

As for the third term, using twice the inequality (α+β)2 ≤ 2(α2+β2) and the estimates
of the first step, we get

2

d2(a− 1)
A3 ≤

�
2
��∇Un(φn)−∇Un(φ)

��2 + 2f2(n)
�
dt

≤
��φn − φ

��2dAn
t + 2f2(n) dt

≤ 8
��ψn − ψ

��2dAn
t + 8f2(n) dAn

t + 2f2(n) dt ,

where for every n

An
t := 2

� t

0

��∇Un(φn
s )−∇Un(φs)

��2
��φn

s − φs

��2 {φn
s �=φs} ds (4.2.7)

is a nondecreasing adapted stochastic process, with An
0 = 0, and uniformly in n E[An

T ] ≤
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C < ∞, see lemma 4.16. Set Bn
t :=

�
4 d2a(a − 1)

�
An

t . From the above estimates and after
renaming Mt (which remains a zero mean martingale), we get

d
�
e−Bn

t

��ψn − ψ
��a
�
≤ e−Bn

t

�
aλ|ψn − ψ|a + 2aλf(n)|ψn − ψ|a−1

�
dt

+ dMt + f2(n)e−Bn
t

��ψn − ψ
��a−2

dBn
t

+ d2a(a− 1) e−Bn
t f2(n)

��ψn − ψ
��a−2

dt .

Integrating in time, taking the expected value, and finally the supremum over t ∈ [0, T ], we
get

sup
t∈[0,T ]

E

�
e−Bn

t

��ψn
t − ψt

��a
�
≤

��ψn
0 − ψ0

��a + aλE
� � T

0

e−Bn
s

��ψn
s − ψs

��a ds
�

+ Ca,d,λf(n)E
� � T

0

e−Bn
s

���ψn
s − ψs

��a−1
+ f(n)

��ψn
s − ψs

��a−2
�
ds

�

+ f2(n)E
� � T

0

e−Bn
s

��ψn
s − ψs

��a−2
dBn

s

�
. (4.2.8)

The expected value in the second line above is bounded uniformly in n. This fact is easily
seen using for each term the Hölder inequality together with the integrability properties of
the flows ψn and of the exponential of the processes Bn

s . These two integrability properties
are provided by equation (4.5.16) of remark 4.15 and lemma 4.16, respectively. We claim
that also the expected value of the last line is bounded.

Claim 4.4. There exists a constant C such that for every n and p ≥ 0

E

� � T

0

e−Bn
s

��ψn
s − ψs

��p dBn
s

�
≤ C .

Proof of the Claim. Using the definition of Bn
t we can rewrite the term on the left hand side

as

E

� � T

0

e−Bn
s

��ψn
s − ψs

��p
��∇U(s,φn

s )−∇U(s,φs)
��2

��φn
s − φs

��2 ds
�
.

Using Hölder inequality, for some ε > 1 small (to be fixed later) and k the conjugate
exponent, we obtain the two terms

E

� � T

0

e−kBn
s

��ψn
s − ψs

��kp ds
�
,

for which we have already explained how to obtain a uniform bound, and

E

� � T

0

��∇Un(s,φn
s )−∇Un(s,φs)

��2ε
��φn

s − φs

��2ε ds
�
. (4.2.9)

For this term, we proceed as in the proof of lemma 4.16. The key point is the estimate of
the term � 1

0

E

� � T

0

��∇2Un(s,φn,r
s )

��2ε ds
�
dr ,
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where

φ
n,r
t = rx+ (1− r)y +

� t

0

rbn(s,φn
s ) + (1− r)b(s,φs) ds+Wt .

We can conclude as in the proof of lemma 4.16 if we use the result of lemma 4.17. In
particular, we obtain that (4.2.9) is controlled by �b�Lq

p
.

We return to the proof of lemma 4.3. Thanks to the uniform bounds obtained for the
expectations in the second and third lines of (4.2.8), we can pass to the limit in n to obtain

lim sup
n

sup
t∈[0,T ]

E

�
e−Bn

t

��ψn
t − ψt

��a
�

≤ lim sup
n

Ca

�
|φ0(x)− φ0(y)|a + f(n)a

�

+ Ca,λ lim sup
n

E

� � T

0

e−Bn
s

��ψn
s − ψs

��a ds
�

≤ Ca|x− y|a + Ca,λ

� T

0

lim sup
n

sup
t∈[0,s]

E

�
e−Bn

t

��ψn
t − ψt

��a
�
ds .

Using Gronwall lemma we get

lim sup
n

sup
t∈[0,T ]

E

�
e−Bn

t

��ψn
t − ψt

��a
�
≤ Ca,λ,T |x− y|a . (4.2.10)

We can now get rid of the exponential factor using again Hölder inequality

lim sup
n

sup
t∈[0,T ]

E

�
|ψn − ψ|a

�
≤ lim sup

n

�
E

�
e2B

n
T

�1/2
sup

t∈[0,T ]

E

�
e−2Bn

t

��ψn
t − ψt

��2a
�1/2�

≤ Cp,λ,T |x− y|a.

With a = 2p, redefining Bn
t as 1/2 of the process defined above and using the relation

(4.2.5), we can finally transport this bound to the flows φn:

lim sup
n

sup
t∈[0,T ]

E

�
|φn

t − φt|p
�
≤ Cp lim sup

n

�
sup

t∈[0,T ]

E

�
|ψn

t − ψt|p
�
+ fp(n)

�

≤ Cp,λ,T |x− y|p .

Remark that all the estimates found are uniform in x, y ∈ B(0, R), so that we have obtained
the desired result for the forward flows. But since the backward flows φ

t,n
0 (·) and φt

0(·) are
solution of the same SDE driven by the drifts −bn and −b, the same result holds for them
too.

Lemma 4.5. For every p ≥ 1, there exists a constant Cd,p,T > 0 such that

sup
t∈[0,T ]

sup
x∈Rd

E
���∇φ

t,n
0 (x)

��p
�
≤ Cd,p,T (4.2.11)

uniformly in n.

Proof. Since the backward flow satisfies the same SDE of the forward flow with a drift of
opposite sign, it is enough to show that the uniform bound (4.2.11) holds for the forward
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flows. Let θn and ξn be the derivatives of φn and ψn, respectively. Since φn
t = (γn

t )
−1◦ψt◦γn

0 ,
from equation (4.5.15) of remark 4.15 we have |θni |p ≤ Cd,p|ξn|p. Therefore, we only need
to show that the estimate (4.2.11) holds for the flow ψn, which solves

dξnt (x) = λ∇Un
�
t,φn

t (x)
�
ξnt (x) dt+∇2Un

�
t,φn

t (x)
�
ξnt (x) dWt

with initial condition ξn0 (x) = Id. For the rest of the proof we take any fixed x ∈ R
d. ∇Un

is bounded uniformly in n and the function ∇2U is at least of class Lq
p, so that the last

term is the differential of a martingale (dMn
t ) due to lemma 4.17. By Itô formula we have

therefore

d|ξn|p ≤ C|ξnt |p dt+ dMn
t + |ξnt |p−2 Tr

��
∇2Un (t,φn

t (x)) ξ
n
t

��
∇2Un (t,φn

t (x)) ξ
n
t

�T�
dt .

The constant C can be chosen independently of n, and the trace of the matrix in the last
term above is controlled by a constant Cp,d , depending on p and the dimension d of the
space, times |ξnt |2|∇2Un(t,φn

t )|2. Introduce the process

An
t := Cp,d

� t

0

��∇2Un
�
s,φn

s

���2 ds . (4.2.12)

This is a continuous, adapted, non decreasing process, with An
0 = 0 and, due to lemma 4.17,

E[An
T ] ≤ C uniformly in n. Lemma 4.16 even provides the bound E

�
ekA

n
t

�
≤ C�Un� for any

real constant k. We can therefore find a bound uniform in n reasoning as in lemma 4.14.
We find that

de−An
t |ξnt |p ≤ Ce−An

t |ξnt |p dt+ e−An
t dMn

t

and after integrating and taking the expected value one obtains

E
�
e−An

t |ξnt |p
�
≤ |ξ0|p + C

� t

0

E
�
e−An

s |ξns |p
�
ds .

Take the supremum over all t ∈ [0, T ] and apply Gronwall inequality to get

sup
t∈[0,T ]

E
�
e−An

t |ξnt |p
�
≤ CT |ξn0 |p = Cd,p,T ,

uniformly in n and x ∈ R
d. Using Hölder inequality as in the proof of the previous lemma,

we finally obtain estimate (4.2.11) for the derivative of the flow ψn, which concludes the
proof.

4.3 Existence of weakly differentiable solutions

In this section we introduce the definition of weakly differentiable solution of the SLT equa-
tion and prove the main theorem on existence of such weakly differentiable solutions when
b only satisfies some integrability conditions. This is done considering the solutions un of
approximating regular problems and proving their convergence to a function u which is suf-
ficiently regular and is a solution in the weak sense of the SLT equation.
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Consider the SLT equation in Stratonovich form (4.1.1). The Itô formulation (as ex-
plained in detail also in [FGP10]) is

du+ b · ∇u dt+ σ∇u dW =
σ2

2
∆u dt , u|t=0 = u0 .

In this section we assume b ∈ Lq
p, with p, q as in (4.1.2).

Definition 4.6. Assume that b ∈ Lq
p, with p, q satisfying condition (4.1.2). We say that

u is a weakly differentiable solution of the stochastic partial differential equation (SPDE)
(4.1.1) if

1. u : Ω× [0, T ]×R
d → R is measurable and

�
u (t, x)ϕ (x) dx (well defined by property

2 below) is progressively measurable for each ϕ ∈ C∞
0

�
R

d
�
;

2. P
�
u (t, ·) ∈ ∩r≥1W

1,r
loc

�
R

d
��

= 1 for every t ∈ [0, T ] and both u and ∇u are in

C0
�
[0, T ];∩r≥1L

r(Ω× R
d)
�
;

3. u is a weak solution of (4.1.1), which is to say that for every ϕ ∈ C∞
0

�
R

d
�

and t ∈ [0, T ],
with probability one

�
u(t, x)ϕ(x) dx+

� t

0

�
b(s, x) ·∇u(s, x)ϕ(x) dx ds

=

�
u0(x)ϕ(x) dx+ σ

d�

i=1

� t

0

��
u (s, x) ∂xi

ϕ (x) dx

�
dW i

s

+
σ2

2

� t

0

�
u(s, x)∆ϕ(x) dx ds .

We shall make a few remarks on the above definition.

Remark 4.7. The process s �→ Y i
s :=

�
u (s, x) ∂xi

ϕ (x) dx is progressively measurable by

property 1 and satisfies
� T

0

��Y i
s

��2 ds < ∞ by property 2, hence the Itô integral of Y i
s is well

defined.

Remark 4.8. The term
� t

0

�
b (s, x) · ∇u (s, x)ϕ (x) dx ds is well defined with probability

one because of the integrability properties in (t, x) of b (assumptions) and ∇u (property 2).

Remark 4.9. From 3 it follows that
�
u (t, x)ϕ (x) dx has a continuous adapted modifica-

tion, for every ϕ ∈ C∞
0 (Rd).

Let φt (ω) : Rd → R
d be the α-Hölder continuous stochastic flow of homeomorphisms,

for every α ∈ (0, 1), associated to the SDE

dXx
t = b (t,Xx

t ) dt+ dWt , Xx
0 = x .

The existence and regularity properties of this flow is shown in [FF12a]. Recall that the
inverse of φt is denoted by φt

0.
We can finally state and prove the main theorem on the existence of weakly differentiable

solutions of the SLT equation.

Theorem 4.10. Assume b ∈ Lq
p with p, q as in (4.1.2). If u0 ∈ ∩r≥1W

1,r(Rd) then
u (t, x) := u0 (φ

t
0(x)) is a weakly differentiable solution of the SPDE (4.1.1).
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Proof. Even though we shall use some technical results from appendices A and B, the proof
is quite long. We divide it in five steps. To help the reader follow the ideas of the proof we
present its general scheme in step 1, leaving the more technical points on the convergence
of approximating solutions and the regularity of the limit function for the following steps.

Step 1 (preparation). Observe that the random field (ω, t, x) �→ u0

�
φt
0(x)

�
is jointly mea-

surable and (ω, t) �→
�
u0

�
φt
0(x)

�
ϕ (x) dx is progressively measurable for each ϕ ∈ C∞

0 (Rd).
Hence part 1 of Definition 4.6 is true. We could prove part 2 by chain rule and Sobolev prop-
erties of φt

0 (x). However, a direct verification of part 3 from the formula u (t, x) := u0 (φ
t
0 (x))

is difficult because of lack of calculus. Hence we choose to approximate u (t, x) by a smooth
field un (t, x); doing this, we prove both 2 and 3 by means of this approximation.

Let un
0 be a sequence of smooth functions which converges to u0 in W 1,r(Rd) and

uniformly on R
d. It is easy to check that these properties are satisfied for instance by

un
0 (x) =

�
θn (x− y)u0 (y) dy when θn are usual mollifiers; for instance, the uniform con-

vergence property can be obtained from

|un
0 (x)− u0 (x)| ≤

�
θn (x− y) |u0 (y)− u0 (x)| dy

≤ C

�
θn (x− y) |y − x|α dy = C

�
θn (y) |y|α dy

because u0 ∈ C0,α.

Let φn
t (ω) : Rd → R

d be the stochastic flow of smooth diffeomorphisms associated to
the equation

dXx,n
t = bn (t,X

x,n
t ) dt+ dWt , Xx,n

0 = x ,

where bn are smooth approximations of b as considered in the previous section, and let φ
t,n
0

be the inverse of φn
t . Then un (t, x) := un

0

�
φ
t,n
0 (x)

�
is a smooth solution of

dun + bn ·∇un dt+ σ∇un dW =
σ2

2
∆un dt , un

��
t=0

= un
0 ,

see [Ku, Theorem 6.1.5], and thus it satisfies

�
un (t, x)ϕ (x) dx+

� t

0

�
bn (s, x) ·∇un (s, x)ϕ (x) dx ds

=

�
un
0 (x)ϕ (x) dx+ σ

d�

i=1

� t

0

��
un (s, x) ∂xi

ϕ (x) dx

�
dW i

s

+
σ2

2

� t

0

�
un (s, x)∆ϕ (x) dx ds

for every ϕ ∈ C∞
0 (Rd) and t ∈ [0, T ], with probability one. We need to establish suitable

bounds on un (t, x) and suitable convergence properties of un (t, x) to u (t, x) in order to
apply lemma 4.18 of appendix B - which is the first step to obtain the regularity properties
of u of point 2 of Definition 4.6 - and pass to the limit in the equation. More precisely, for
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every ϕ ∈ C∞
0 (Rd), t ∈ [0, T ] and bounded random variable Z we have

E

�
Z

�
un (t, x)ϕ (x) dx

�
+ E

�
Z

� t

0

�
bn (s, x) · ∇un (s, x)ϕ (x) dx ds

�

=

�
un
0 (x)ϕ (x) dx+ σ

d�

i=1

E

�
Z

� t

0

��
un (s, x) ∂xiϕ (x) dx

�
dW i

s

�

+
σ2

2
E

�
Z

� t

0

�
un (s, x)∆ϕ (x) dx ds

�
. (4.3.1)

We shall pass to the limit in each one of these terms. We are forced to use this very weak
convergence due to the term

E

�
Z

� t

0

�
bn (s, x) · ∇un (s, x)ϕ (x) dx ds

�

where we may only use weak convergence of ∇un.

Step 2 (convergence of un to u). We claim that, uniformly in n and for every r ≥ 1,

sup
t∈[0,T ]

�

Rd

E

�
|un(t, x)|r

�
dx ≤ Cr , (4.3.2)

sup
t∈[0,T ]

�

Rd

E

�
|∇un(t, x)|r

�
dx ≤ Cr . (4.3.3)

Let us show how to prove the second bound; the first one can be obtained in the same way.
We use the representation formula for un and Hölder inequality to obtain

��

Rd

E

�
|∇un(t, x)|r

�
dx

�2

≤
�

Rd

E

���∇un
0

�
φ
t,n
0 (x)

���2r
�
dx

�

Rd

E

���∇φ
t,n
0 (x)

��2r
�
dx .

The last integral on the right hand side is uniformly bounded by (4.2.11). Also the other
integral term can be bounded uniformly: changing variables (recall that all functions involved
are regular) we get

�

Rd

E

���∇un
0

�
φ
t,n
0 (x)

���2r
�
dx ≤

�

Rd

��∇un
0 (y)

��2r E
�
Jφn

t (y)

�
dy ,

where Jφn
t (y)

is the Jacobian of φn
t (y); this last term can be controlled using again Hölder

inequality, (4.2.11) and the convergence of un
0 in W 1,r (for every r ≥ 1). Remark that all

the bounds obtained are uniform in n and t.

We consider now the problem of the convergence of un to u. Let us first prove that,
given t ∈ [0, T ] and ϕ ∈ C∞

0 (Rd),

P − lim
n→∞

�

Rd

un (t, x)ϕ (x) dx =

�

Rd

u (t, x)ϕ (x) dx (4.3.4)

(convergence in probability). This is the first assumption of lemma 4.18 and allows also to
pass to the limit in the first term of equation (4.3.1) using the uniform bound (4.3.2) and
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Vitali convergence theorem (we are on the compact support of the test function ϕ). Since
�

Rd

un (t, x)ϕ (x) dx =

�

Rd

un
0

�
φ
t,n
0 (x)

�
ϕ (x) dx

=

�

Rd

(un
0 − u0)

�
φ
t,n
0 (x)

�
ϕ (x) dx+

�

Rd

u0

�
φ
t,n
0 (x)

�
ϕ (x) dx ,

using the Sobolev embedding W 1,2d �→ C0,1/2 we find that
����
�

Rd

�
un (t, x)− u (t, x)

�
ϕ (x) dx

���� ≤ �un
0 − u0�L∞ �ϕ�L1

+ C �ϕ�L∞

�

BR

��φt,n
0 (x)− φt

0 (x)
��1/2 dx .

The first term converges to zero by the uniform convergence of un
0 to u0. To treat the second

one, recall we have proved property (4.2.4). Hence

lim
n→∞

E

��

BR

��φt,n
0 (x)− φt

0 (x)
�� dx

�
= 0

and thus

P − lim
n→∞

�

BR

��φt,n
0 (x)− φt

0 (x)
�� dx = 0 .

Property (4.3.4) is proved.

Similarly, we can show that, given ϕ ∈ C∞
0

�
R

d
�
,

P − lim
n→∞

� T

0

����
�

Rd

(un (t, x)− u (t, x))ϕ (x) dx

����
2

dt = 0 . (4.3.5)

This implies that we can pass to the limit in the last two terms of equation (4.3.1). Indeed,
property (4.3.5) implies that

P − lim
n→∞

� t

0

��
un (s, x) ∂xi

ϕ (x) dx

�
dW i

s =

� t

0

��
u (s, x) ∂xi

ϕ (x) dx

�
dW i

s

for each i = 1, ..., d. Moreover,

E

�����
� t

0

��
un (s, x) ∂xi

ϕ (x) dx

�
dW i

s

����
2
�
= E

�� t

0

����
�

un (s, x) ∂xi
ϕ (x) dx

����
2

ds

�
,

which is uniformly bounded in n due to (4.3.2). By Vitali convergence theorem we obtain
that

lim
n→∞

E

�
Z

� t

0

��
un (s, x) ∂xiϕ (x) dx

�
dW i

s

�
= E

�
Z

� t

0

��
u (s, x) ∂xiϕ (x) dx

�
dW i

s

�
.

The proof of convergence for the last term of equation (4.3.1) is similar.

Step 3 (regularity of u). Let us prove property 2 of definition 4.6. The key estimate is
provided by property (4.2.11).

Given r ≥ 1 and t ∈ [0, T ], we shall prove that P
�
u (t, ·) ∈ W 1,r

loc (R
d)
�
= 1. We want to
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use lemma 4.18 of appendix B with F = u, Fn = un. Condition 1 of lemma 4.18 is provided
by (4.3.4). It is clear that un (t, ·) ∈ W 1,r

loc (R
d) for P -almost every ω, so that condition 2

follows from the uniform bound on ∇un obtained in (4.3.3). We can then apply lemma 4.18
and get u (t, ·) ∈ W 1,r

loc (R
d) for P -almost every ω.

Let us prove the second part of property 2 of definition 4.6. We have, from lemma 4.18
and equation (4.3.3),

E

��

BR

|∇u (t, x)|r dx
�
≤ lim sup

n→∞
E

��

BR

|∇un (t, x)|r dx
�
≤ Cr

for every R > 0 and t ∈ [0, T ]. Hence, by monotone convergence we have

sup
t∈[0,T ]

E

��

Rd

|∇u (t, x)|r dx
�
≤ Cr . (4.3.6)

A similar bound can be proved for u itself: using (4.3.2), the convergence in probability
proved in the previous step and Vitali convergence theorem we get that for any r� < r,
R > 0 and uniformly in time,

�

BR

E

�
|u(t, x)|r�

�
dx = lim

n→∞

�

BR

E

�
|un(t, x)|r

�
�
dx ≤ Cr ;

by monotone convergence it follows that

sup
t∈[0,T ]

�

Rd

E

�
|u(t, x)|r�

�
dx ≤ Cr .

Step 4 (passage to the limit). Finally, we have to prove that we can pass to the
limit in equation (4.3.1) and deduce that u satisfies property 3 of Definition 4.6. We
have already proved that all terms converge to the corresponding ones except for the term

E

�
Z
� t

0

�
bn (s, x) · ∇un (s, x)ϕ (x) dx ds

�
. We do not want to integrate by parts, for other-

wise we would have to assume something on div b. Since bn → b in Lq
p = Lq

�
[0, T ] ;Lp(Rd)

�
,

it is sufficient to use a suitable weak convergence of ∇un to ∇u. Precisely, if we set

E

�
Z

� t

0

�
bn (s, x) · ∇un (s, x)ϕ (x) dx ds

�

− E

�
Z

� t

0

�
b (s, x) · ∇u (s, x)ϕ (x) dx ds

�
= I(1)n (t) + I(2)n (t) ,

where

I(1)n (t) = E

�
Z

� t

0

� �
bn (s, x)− b (s, x)

�
· ∇un (s, x)ϕ (x) dx ds

�

I(2)n (t) = E

�
Z

� t

0

�
ϕ (x) b (s, x) ·

�
∇un (s, x)−∇u (s, x)

�
dx ds

�
,

we have to prove that both I
(1)
n (t) and I

(2)
n (t) converge to zero as n → ∞. By Hölder

inequality,

I(1)n (t) ≤ C �bn − b�
Lq
�
[0,T ];Lp(Rd)

� E
�
�∇un�Lq�([0,T ];Lp� (Rd))

�
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where 1/p+1/p� = 1 and 1/q+1/q� = 1. Thus, from (4.3.3) it follows that I(1)n (t) converges
to zero.

Let us treat I
(2)
n (t). Using the integrability properties shown above we have

E

�
Z

� t

0

�
ϕ (x) b (s, x) ·

�
∇un (s, x)−∇u (s, x)

�
dx ds

�

=

� t

0

E

��
Zϕ (x) b (s, x) ·

�
∇un (s, x)−∇u (s, x)

�
dx

�
ds .

The function

hn (s) := E

��
Zϕ (x) b (s, x) ·

�
∇un (s, x)−∇u (s, x)

�
dx

�

converges to zero as n → ∞ for almost every s and satisfies the assumptions of Vitali
convergence theorem (we shall prove these two claims in step 5 below). Hence I

(2)
n (t)

converges to zero.

Now we may pass to the limit in equation (4.3.1) and get

E

�
Z

�
u (t, x)ϕ (x) dx

�
+ E

�
Z

� t

0

�
b (s, x) · ∇u (s, x)ϕ (x) dx ds

�

=

�
u0 (x)ϕ (x) dx+ σ

d�

i=1

E

�
Z

� t

0

��
u (s, x) ∂xi

ϕ (x) dx

�
dW i

s

�

+
σ2

2
E

�
Z

� t

0

�
u (s, x)∆ϕ (x) dx ds

�

The arbitrariness of Z implies property 3 of definition 4.6.

Step 5 (auxiliary facts). We have to prove the two properties of hn (s) claimed in step
4. Recall we may use lemma 4.18 at each value of time, which gives us

E

��

Rd

∂xiu (s, x)ϕ (x)Z dx

�
= lim

n→∞
E

��

Rd

∂xiun (s, x)ϕ (x)Z dx

�
(4.3.7)

for every ϕ ∈ C∞
0 (Rd) and bounded random variable Z, at each s ∈ [0, T ]. We have

b ∈ Lq
�
[0, T ] ;Lp(Rd)

�
, hence b (s, ·) ∈ Lp(Rd) for almost every s ∈ [0, T ]. The space

C∞
0 (Rd) is dense in Lp(Rd), so that we may extend the convergence property (4.3.7) to all

ϕ ∈ Lp(Rd) by means of the bounds (4.3.3) and (4.3.6). Hence hn (s) → 0 as n → ∞, for
almost every s ∈ [0, T ].

Moreover, for every ε > 0 there is a constant CZ,ϕ,ε such that

� T

0

h1+ε
n (s) ds ≤ CZ,ϕ,ε

� T

0

E

� �

BR

��b(s, x)
��1+ε ·

���∇un(s, x)
��1+ε

+
��∇u(s, x)

��1+ε
�
dx

�
ds

≤ CZ,ϕ,ε �b�1+ε
Lq

p

�
E

� T

0

�

BR

��∇un (s, x)
��rdx ds

� 1+ε
r

+ CZ,ϕ,ε �b�1+ε
Lq

p

�
E

� T

0

�

BR

��∇u (s, x)
��rdx ds

� 1+ε
r
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for a suitable r depending on ε (we have used Hölder inequality). The bounds (4.3.3) and
(4.3.6) imply that

� T

0
h1+ε
n (s) ds is uniformly bounded. Hence Vitali theorem can be applied

to prove that I
(2)
n (t) =

� t

0
hn (s) ds → 0 as n → ∞. The proof is complete.

4.4 Uniqueness of weakly differentiable solutions

Theorem 4.10 of the previous section provides a weak differentiable solution of the SLT
equation as from definition 4.6. For this special solution we also have a representation
formula in terms of the initial condition u0 and the (inverse) stochastic flow of an associated
SDE, which governs the evolution of characteristics of the SLT equation. This representation
formula guarantees also some regularity properties of the solution, and in particular forbids
the emergence of singularities. This section is devoted to the proof that this fairly regular
solution is actually the unique weakly differentiable solution of the SLT equation.

Theorem 4.11. The weakly differentiable solutions of definition 4.6 are unique.

Proof. Let ui, i = 1, 2, be two weakly differentiable solutions of the SLT equation (4.1.1).
Then u := u1 − u2 is a weakly differentiable solution of

∂u

∂t
+ b · ∇u+ σ∇u ◦ dW

dt
= 0 , u|t=0 = 0 . (4.4.1)

We want to prove that u is identically zero. We divide the proof in three steps. In the first
step we shall prove that u2 solves the SPDE (4.4.2) with zero initial conditions. This is done
using a sequence of regularized functions uε → u obtained by mollification and passing to
the limit the equation for u2

ε. In the second step we use this result to obtain an equation
for v(t, x) = E

�
u2 (t, x)

�
. With a long series of estimates, in the last step will rewrite the

equation for v so as to be able to apply the Gronwall lemma and obtain that v = 0.
Step 1 (Equation for u2) The first step consists in proving that u2 is also a weakly

differentiable solution of

∂u2

∂t
+ b · ∇u2 + σ∇u2 ◦ dW

dt
= 0 , u|t=0 = 0 (4.4.2)

namely that

�
u2 (t, x)ϕ (x) dx+

� t

0

�
b (s, x) · ∇u2 (s, x)ϕ (x) dx ds

= σ

d�

i=1

� t

0

��
u2 (s, x) ∂xi

ϕ (x) dx

�
dW i

s +
σ2

2

� t

0

�
u2 (s, x)∆ϕ (x) dx ds

for any ϕ ∈ C∞
0 (Rd). Let θε(x) be a sequence of standard mollifiers. We will denote uε the

convolution (in space only)
�
u(t, ·) � θε(·)

�
(x). From the definition of weak solution, using

ϕε
y(x) = θε(y − x), we have

uε(t, y) +

� t

0

b(s, y) ·∇uε(s, y) ds+ σ
d�

i=1

� t

0

∂yi
u(s, y) ◦ dW i

s =

� t

0

Rε(s, y) ds ,
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where the commutator Rε is given by

Rε(s, y) =
� � �

b(s, y)− b(s, x)
�
∇u(s, x)θε(x− y) dx

�
.

The function uε is smooth in space. For any fixed y, by Itô formula we have

du2
ε(t, y) = 2uε(t, y) duε(t, y)

=− 2uε(t, y) b(t, y)∇uε(t, y) dt− 2σ uε(t, y)

d�

i=1

∂yi
uε(s, y) ◦ dW i

s

+ 2uε(t, y)Rε(t, y) dt

which, rewritten in the week formulation using a generic test function ϕ, reads

�
u2
ε(t, y)ϕ(y) dy +

� t

0

�
b(s, y)∇u2

ε(s, y)ϕ(y) dy ds

+ σ

d�

i=1

� t

0

��
∂yi

u2
ε(s, y)ϕ(y) dy

�
◦ dW i

s =

� t

0

�
2uε(s, y)Rε(s, y)ϕ(y) dy ds .

We want now to pass to the limit for ε → 0 in the different terms. Since for every t, uε → u
uniformly on compact sets, by dominated convergence the first term tends to

�
u2(t, y)ϕ(y) dy .

For the following terms, we consider s fixed. Using Hölder inequality and the convergence
of �∇uε�Lp → �∇u�Lp on compact sets (recall that ϕ is of compact support) for any p ≥ 1,
we have

�
b(s, y)ϕ(y)

�
∇u2

ε(s, y)−∇u2(s, y)
�
dy ≤

��b(s, y)ϕ(y)
��
Lr�

��∇u2
ε(s, y)−∇u2(s, y)

��
Lr

≤ Cr,�b�Lp

��∇u2
ε(s, y)−∇u2(s, y)

��
Lr −→ 0 ,

which is enough to obtain the convergence of the second term. In the same way one obtains
also the convergence of the third term. As for the term containing the commutator Rε, we
can use again Hölder inequality and the uniform convergence of uε to reduce the problem
to the convergence of Rε to zero in Lr for some r ≥ 1. This can be achieved using again
Hölder inequality, the equi-boundedness of ∇uε in Lp for every p ≥ 1, and the continuity in
mean (for almost every y) of the function b ∈ Lp(Rd). This proves (4.4.2).

Step 2 (equation for v2) We know that u is almost surely continuous in space and time
(and therefore locally bounded) and by definition of weak solution ∇u ∈ Lr([0, T ]×R

d) for
every r ≥ 1 almost surely. It follows that f(s) =

�
∇u2(s, y)ϕ(y) dy is still almost surely a

function in Lr(0, T ). This means that, writing (4.4.2) in Itô form, the stochastic integral is
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a martingale and

�
E
�
u2 (t, x)

�
ϕ(x) dx+

� t

0

�
b(s, x) · ∇E

�
u2 (s, x)

�
ϕ(x) dx ds

=
σ2

2

� t

0

�
E
�
u2 (s, x)

�
∆ϕ(x) dx ds .

Hence v(t, x) = E
�
u2 (t, x)

�
satisfies

�
v(t, x)ϕ(x) dx+

� t

0

�
b(s, x) · ∇v(t, x)ϕ(x) dx ds =

σ2

2

� t

0

�
v(t, x)∆ϕ(x) dx ds

and is fairly regular: v ∈ C0
�
[0, T ];W 1,r(Rd)

�
for every r ≥ 1. This follows by Hölder

inequality because
� ��∇v(t, x)

��rdx =

� ��E
�
u∇u

���rdx ≤
� �

E
�
|u|2

�
E
�
|∇u|2

��r/2

dx

≤
��

E
�
|u|2r

�2
dx

�1/2��
E
�
|∇u|2r

�2
dx

�1/2

≤ C ,

holds uniformly in t by the second point of definition 4.6. Similar computations provide the
same result for the function v.

Thanks to its global integrability properties, using approximating functions as in the
first step, one can prove that v solves

�
v2 (t, x) dx+ σ2

� t

0

�
|∇v (t, x)|2 dx ds

= −2

� t

0

�
b (s, x) ·∇v (t, x) v (t, x) dx ds . (4.4.3)

Step 3 (final estimates) We want to find suitable bounds on the last term of (4.4.3)
allowing to apply Gronwall inequality. This, combined with the initial condition v(0, x) = 0,
will complete the proof.

To ease notation for the different estimates obtained in the step, we shall drop the
dependence on (t, x) for the function involved, b and v.

For every t ∈ [0, T ], we have

����
�

v b ·∇v dx

���� ≤
��

|∇v|2 dx
�1/2 ��

v2 |b|2 dx
�1/2

and

�
v2 |b|2 dx ≤

��
v2r dx

�1/r ��
|b|p dx

�2/p

, (4.4.4)

where 1/r + 2/p = 1, which is to say 1/r = 1− 2/p = (p− 2)/p, or

r =
p

p− 2
.
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One also has the interpolation inequality

��
vαdx

�1/α

≤
��

v2dx

�(1−s)/2 ��
|∇v|2 dx

�s/2

, s =
α− 2

2α
d .

The idea of the result comes from the Sobolev imbedding W s,2 ⊂ Lα for 1/α = 1/2− s/d,
namely s

d = 1
2 − 1

α
= α−2

2α , or s = α−2
2α d; and then

��
vα dx

�1/α

≤ �v�W s,2 ≤ �v�1−s
L2 �v�sW 1,2 .

Using this interpolation inequality we get

��
v2r dx

�1/r

=

��
vα dx

�2/α

≤
��

v2 dx

�1−s ��
|∇v|2 dx

�s

for

r =
p

p− 2
, α = 2r , s =

α− 2

2α
d .

We are lucky enough to find that s has a very easy and convenient expression:

s =
2r − 2

4r
d =

2 p
p−2 − 2

4 p
p−2

d =
d

p
.

Thus the bound (4.4.4) becomes

�
v2 |b|2 dx ≤

��
v2 dx

�1− d
p
��

|∇v|2 dx
� d

p
��

|b|p dx
�2/p

and we find a first bound for the last term in (4.4.3):

����
�

v b ·∇v dx

���� ≤
��

|∇v|2 dx
� p+d

2p
��

v2dx

� p−d
2p

��
|b|p dx

�1/p

.

Recall that if 1
s + 1

r = 1, then ab ≤ as/s + br/r. Using this inequality with s = 2p
p+d and

r = 2p
p−d we can rewrite the above bound in a more useful form, in view of the application

of the Gronwall lemma. We have

����
�

v b ·∇v dx

���� ≤
σ2

2

��
|∇v|2 dx

�
+ C

��
v2dx

���
|b|p dx

� 2
p−d

,

and we can transform equation (4.4.3) into the following inequality:

�
v2 (t, x) dx ≤ C

� t

0

��
v2dx

���
|b|p dx

� 2
p−d

ds .

Hence, if � T

0

��
|b|p dx

� 2
p−d

ds < ∞ (4.4.5)



4.5. APPENDIX A: TECHNICAL RESULTS 151

we may apply Gronwall lemma and deduce that
�

v2 (t, x) dx = 0 .

This implies that v = 0, so that also u = 0, which completes the proof of the theorem.
We are left with only (4.4.5) to prove. But this is not difficult to achieve, since we already

know that � T

0

��
|b|p dx

� q
p

ds < ∞

for certain p, q ≥ 2 such that d
p
+ 2

q
< 1: it is hypothesis (4.1.2). And manipulating the

exponents we immediately find
2

p− d
<

q

p
,

because 2p < qp− qd, and 2
q
< 1− d

p
.

4.5 Appendix A: technical results

For completeness, we collect here some modifications of known results, mostly from [FF11,
FF12a, KR05], used in sections 4.2 and 4.3. We will use the notation introduced in there.

The following lemma provides the regularity properties of functions in the space Hq
2,p.

It is proven in [KR05].

Lemma 4.12. Let p, q ∈ (1,∞), T ∈ (0,∞) and u ∈ Hq
2,p(T ). Then we have:

1. If d
p +

2
q < 2 then u(t, x) is a bounded Hölder continuous function on [0, T ]×Rd. More

precisely, for any ε, δ ∈ (0, 1] satisfying

ε+
d

p
+

2

q
< 2, 2δ +

d

p
+

2

q
< 2

there exists a constant N , depending only on p, q, ε, δ, such that for all s, t ∈ [0, T ] and
x, y ∈ Rd, x �= y we have

|u(t, x)− u(s, x)| ≤ N |t− s|δ �u�1−1/q−δ

H
q
2,p(T )

�Dt u�1/q+δ

Lq
p(T )

; (4.5.1)

|u(t, x)|+ |u(t, x)− u(t, y)|
|x− y|ε ≤ NT−1/q

�
�u�Hq

2,p(T ) + T�Dt u�Lq
p(T )

�
. (4.5.2)

2. If d
p+

2
q < 1 then ∇u(t, x) is Hölder continuous in [0, T ]×Rd, namely for any ε ∈ (0, 1)

satisfying

ε+
d

p
+

2

q
< 1

there exists a constant N, depending only on p, q, ε, such that for all s, t ∈ [0, T ] and
x, y ∈ Rd, x �= y, equations (4.5.1) and (4.5.2) holds with ∇u in place of u and
δ = ε/2.
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We now report and prove theorem 4.2. This theorem was proved in a similar setting in
[KR05], and the adaptation to this setting can also be found in [FF12a].

Theorem 4.13. Take p, q such that (4.1.2) holds, λ > 0 and two vector fields b, f (t, x) :
R

d+1 → R
d belonging to Lq

p(T ). Then in Hq
2,p(T ) there exists a unique solution of the

backward parabolic system

�
∂tu+ 1

2∆u+ b · ∇u− λu+ f = 0

u(T, x) = 0
. (4.5.3)

For this solution there exists a finite constant N depending only on d, p, q, T, λ and �b�Lq
p(T )

such that
�u�Hq

2,p(T ) ≤ N�f�Lq
p(T ) . (4.5.4)

Proof. Since we are working in R
d, we emphasize that (4.5.3) is actually a collection of d

independent equations. In other words, (4.5.3) has to be interpreted componentwise.

We divide the proof in three steps. First, we consider the easier case of b = 0, λ = 0.
Then, to prove the general case, we obtain the a-priori estimate (4.5.4) and we finally get
the existence and uniqueness of solutions applying the method of continuity.

Step 1 The existence and uniqueness of a solution when b = 0 and λ = 0 is proved
in [Kr01, Theorem 1.2], together with the estimate for the second spatial derivatives of u:
�∇2u�Lq

p(T ) ≤ N�f�Lq
p(T ). The equation itself then provides the estimate for �Dtu�Lq

p(T ),
and to complete the Schauder estimate (4.5.4) the only missing norm is �u�Lq

p(T ), which can
be estimated by means of

��u(t)
��q
Lp(Rd)

≤
� T

t

��Ds u(s)
��q
Lp(Rd)

ds .

Step 2 We turn now to prove the a-priori Schauder estimate in the general case. In the
following, K will indicate different constants depending only on d, p, q, T .

Assume that the solution u exists and is unique. Set f̃ := f + b · ∇u − λu and, just as
above, the result of [Kr01] gives for S ∈ [0, T ]

I(S) :=
��Dtu

��q
Lq

p(S,T )
+ �u�q

H
q
2,p(S,T )

≤ K
�
�f�q

Lq
p(S,T )

+ �b · ∇u�q
Lq

p(S,T )
+ λq�u�q

Lq
p(S,T )

�
.

By lemma 4.12, for t ∈ (S, T ) and p, q such that d
p + 2

q < 1 (we use that ∇u is Hölder
continuous in time)

��∇u(t, x)
�� =

��∇u(t, x)−∇u(T, x)
�� ≤ KI

1
q (t) . (4.5.5)

Furthermore

��b · ∇u
��q
Lq

p(S,T )
≤

� T

S

sup
x

|∇u(t, x)|q�b(t, ·)�q
Lp(Rd)

dt ≤ K

� T

S

I(t)�b(t, ·)�q
Lp(Rd)

dt (4.5.6)
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and

�u�q
L

q
p(S,T )

≤ K

� T

S

�� T

t

�Dsu(s)�Lp(Rd) ds
�q

dt ≤ K

� T

S

� T

t

�Dsu(s)�qLp(Rd)
ds dt

≤ K

� T

S

I(t) dt .

Combining the above equations we get

I(S) ≤ K�f�q
Lq

p(S,T )
+K

� T

S

I(t)
�
�b(t, ·)�q

Lp(Rd)
+ λq

�
dt .

Finally, we estimate I(0) by means of Grönwall’s inequality

I(0) ≤ K �f�q
Lq

p(0,T )
+K

� T

0

�f�q
Lq

p(t,T )

�
�b(t, ·)�q

Lp(Rd)
+ λq

�
e
� T
t

�
�b(r,·)�q

Lp(Rd)
+λq

�
dr

dt

to obtain

�Dtu�Lq
p(T ) ≤

N

2
�f�Lq

p(T ) , �u�Hq
2,p(T ) ≤

N

2
�f�Lq

p(T ) .

The Schauder estimates (4.5.4) immediately follows.

Step 3 It is now possible to apply the method of continuity. For µ ∈ [0, 1] set
Lµ := 1

2�+ µ(biuxi − λu). Let Λ be the set of values of µ ∈ [0, 1] such that

Dtu+ Lµu+ f = 0 (4.5.7)

has a unique solution. We already know from step 1 that 0 ∈ Λ, so that Λ is not empty,
and to prove the theorem we only need to show that 1 ∈ Λ too. In fact, we will show that
Λ = [0, 1].

Fix any µ0 ∈ Λ and define the linear operator R : Lq
p(T ) → Hq

2,p(T ) that maps f into
the (unique) solution of (4.5.7) with µ = µ0. By assumption R is well defined and by the
estimate (4.5.4), which we have already proved in step 2, it is also bounded. In order to
show that for µ ∈ [0, 1] near to µ0 equation (4.5.7) is solvable, we rewrite it as

Dt u+ Lµ0u+ f + (Lµ − Lµ0)u = 0, u = Rf +R(Lµ − Lµ0)u

and define the linear operator T µ : Hq
2,p(T ) → Hq

2,p(T ) as T µu := Rf + R(Lµ − Lµ0)u.
Now, the solution we are looking for is a fix point of T µ; therefore, if T µ is a contraction,
we obtain that the problem is solvable for µ near µ0, and also µ is in Λ.

We will denote by C various constants independent of µ0, µ, u, v. Define, for any
u, v ∈ Hq

2,p(T ), the function J in a way similar to the definition of I above:

J(t) := �Dt (u− v)�q
Lq

p(t,T )
+ �u− v�q

H
q
2,p(t,T )

Observe that

J(t) ≤
�
�Dt(u− v)�Lq

p(t,T ) + �u− v�Hq
2,p(t,T )

�q
= �u− v�q

Hq
2,p(t,T )

.

We use the definition of T µ, the boundedness of R, the estimate (4.5.6) and the estimate
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for J we have just obtained to write
��T µu− T µv

��
H

q
2,p(T )

=
��R(Lµ − Lµ0)(u− v)

��
H

q
2,p(T )

≤ C
��(Lµ − Lµ0)(u− v)

��
L

q
p(T )

= C|µ− µ0|
��b · ∇(u− v) + λ(u− v)

��
L

q
p(T )

≤ C|µ− µ0|
��

K

� T

0

J(t) �b(t, ·)�qLp dt
� 1

q

+ λ�(u− v)�Lq
p(T )

�

≤ C|µ− µ0|
�
K

1
q �b�Lq

p(T )J(0)
1
q + λ�(u− v)�Lq

p(T )

�

≤ C|µ− µ0| �(u− v)�Hq
2,p(T ) .

This implies that for any µ ∈ [0, 1] such that |µ− µ0| ≤ 1
2C = δ, the operator T µ is indeed

a contraction. Therefore T µ has a fixed point u, which is the (unique) solution of (4.5.7).
Since we have proved that, if µ0 ∈ Λ then

�
µ0 − δ, µ0 + δ

�
∩ [0, 1] ⊂ Λ ,

in a finite number of steps we get that 1 ∈ Λ. The theorem is proved.

Lemma 4.14. Let Un be the solution of the PDE (4.2.2) for f = b = bn, as defined in
section 4.2. Then

i) Un (t, x) and ∇Un (t, x) converge pointwise in (t, x) to U (t, x) and ∇U (t, x) respec-
tively, and the convergence is uniform on compact sets;

ii) there exists a λ for which supt,x
��∇Un (t, x)

�� ≤ 1/2;

iii)
��∇2Un (t, x)

��
Lq

p(T )
≤ C .

Proof. The proof of the second point follows from a result contained in [FF12a], where it
was proved that, for a fixed n,

sup
t∈[0,T ]

�∇uλ(t)�C0(Rd) → 0 as λ → +∞ . (4.5.8)

However, inspecting the proof we see that all the bounds obtained depend on �b�Lq
p
, but

never on b itself. Since �bn�Lq
p
→ �b�Lq

p
, the uniformity in n follows. We report here for

self-containedness the proof of (4.5.8).
Rewrite the PDE (4.2.2) as

Dt uλ +
1

2
�uλ − λuλ = −(f + b · ∇uλ) = g , (4.5.9)

where we use the subscript to underline the dependence of the solution on the parameter λ
present in the PDE. Denoting by Pt the heat semigroup, we have the well-known estimate

��∇αPt g
��
Lp(Rd)

≤ Ct−
α
2

��g
��
Lp(Rd)

. (4.5.10)

Extend the functions b and f to [0,∞)× R
d defining them as zero for t > T (this does not

change their Lq
p-norm) and keep the same notation for the extended functions. The solution
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uλ can then be written as a convolution (the integrand is zero after time T ):

uλ(t, x) =

� T

t

e−λ(r−t) Pr−t g(r, ·)(x) dr .

Differentiating in the above formula we get

��∇uλ(t)
��
L∞(Rd)

≤
� T

t

e−λ(r−t)
��∇Pr−t g(r)

��
L∞(Rd)

dr . (4.5.11)

We can obtain an Lp estimate by Sobolev embedding theorem
�
W s,p(Rd) �→ L∞(Rd) for s ≥

d/p
�

and (4.5.10):

��∇Pr−t g(r)
��
L∞(Rd)

≤ C
���∇Pr−t g(r)

��
Lp(Rd)

+
��∇s∇Pr−t g(r)

��
Lp(Rd)

�

≤
C�g(r)�Lp(Rd)

(r − t)1/2
+

C�g(r)�Lp(Rd)

(r − t)(1+s)/2

≤ Kp,d,T t−(1+s)/2�g(r)�Lp(Rd) .

For d/p < s < 1 − 2/q we have that (1 + s)/2 < 1 − 1/q = 1/q�, implying that the
positive function θ(t) := Kp,d,T t−(1+s)/2 belongs to Lq�(R+). Equation (4.5.9) itself gives
�g(t)�Lp(Rd) ∈ Lq(R+), so that by (4.5.11) and Hölder inequality we get

��∇uλ(t)
��
L∞(Rd)

≤
� T

t

e−λ(r−t) θ(r − t) �f(r)�Lp(Rd) dr (4.5.12)

+

� T

t

e−λ(r−t) θ(r − t) �b(r)�Lp(Rd) �∇uλ(r)�L∞(Rd) dr .

Since by lemma 4.12 uλ is bounded, for any t ∈ [0, T ] the functions θ(r− t)�b(r)�Lp(Rd) and
u(r) theta(r− t)�b(r)�Lp(Rd), seen as functions of r, belong to L1(t, T ). The classical Gron-
wall lemma can be easily adapted to our situation where the free extreme of integration
domain is the lower one. Then, using the Gronwall lemma we obtain from (4.5.12) that

��∇uλ(t)
��
L∞(Rd)

≤ α(t) +

� T

t

α(s) θ(s− t)�b(s)�Lp(Rd) exp
�� s

t

θ(r − t)�b(r)�Lp(Rd) dr
�
ds ,

(4.5.13)
where

α(t) =

� T

t

e−λ(r−t) θ(r − t) �f(r)�Lp(Rd) dr ≥ 0 .

We can easily control the function α: keeping in mind the definition of θ, for any given ε > 0
it is possible to find a δ ∈ (0, T − t) such that �θ�Lq� (0,δ) < ε. We can then split the integral
defining α on the interval [t, t + δ] and the complement of it, where the exponential term
e−λδ is arbitrarily small (say, less than ε) for λ large enough:

α(t) ≤
�� δ

0

θ(r)q
�

dr
�1/q�

�f�Lq
p(T ) +

�� T−t

δ

e−q�λr θ(r)q
�

dr
�1/q�

�f(r)�Lq
p(T )

≤ ε
�
1 + �θ�Lq� (0,T )

�
�f�Lq

p(T ). (4.5.14)
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Note that the bound on α we have obtained is uniform in t. Set

KT,d,p,q,s,�b�L
q
p(T )

:= �θ�Lq� (T ) �b�Lq
p(T ) ≥

� s

t

θ(r − t) �b(r)�Lp(Rd) dr

and obtain from (4.5.13) and (4.5.14)

��∇uλ(t)
��
L∞(Rd)

≤ ε �f�Lq
p(T )

�
1 + �θ�Lq� (0,T )

��
1 +KeK

�
.

Since by lemma 4.12 ∇uλ is a continuous function and since ε → 0 for λ → ∞, we obtain
(4.5.8). This completes the proof of the second point of the lemma.

To prove the other two points, set V n := Un − U ; then

∂tV
n +

1

2
∆V n + b · ∇V n − λV n = −

�
bn − b

�
·
�
Id+∇Un

�
, V n (T, x) = 0 .

From the bound (4.2.3) on the solution provided by theorem 4.2, we obtain
��V n

��
Hq

2,p
≤ N�bn − b�Lq

p
→ 0 .

It follows that Un → U in Hq
2,p, which proves the last point. Since by lemma 4.12 U,Un,∇U

and ∇Un are all Hölder continuous functions, there exists a subsequence (that we still call
Un) such that Un → U and ∇Un → ∇U for every (t, x) and uniformly on compact sets.

Remark 4.15. The following results hold uniformly in n because, as remarked in the
previous proof, all the bounds obtained depend on the norm of b.

i) Using the solution uλ of the PDE (4.2.2) with a value of λ obtained from the second
point of the above lemma 4.14 we have that

sup
n

sup
t∈[0,T ]

��∇(γn
t )

−1(·)
��
C(Rd)

≤ 2 . (4.5.15)

This can be obtained as follows. We know now that (γn
t )

−1(·) is of class C1(Rd), so
that for all y ∈ R

d

∇(γn
t )

−1(y) =
�
∇γn

t

�
(γn

t )
−1(y)

��−1

=
�
I +∇u

�
t, (γn

t )
−1(y)

��−1

=
�

k≥0

�
−∇u

�
t, (γn

t )
−1(y)

��k
.

It follows that

sup
n

sup
t∈[0,T ]

��∇(γn
t )

−1(·)
��
C(Rd)

≤
�

k≥0

�
sup
t≥0

��∇uλ(t, ·)
��
C0(Rd)

�k
≤ 2 .

ii) From the uniform boundedness of the coefficients (Un and ∇Un) of the SDE (4.2.1),
we get

sup
t∈[0,T ]

E

���ψn
t (x)

��a
�
≤ C

�
1 + |x|a

�
. (4.5.16)
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Lemma 4.16. For every n, both the process

An
t = 2

� t

0

��∇Un(φn
s )−∇Un(φs)

��2
��φn

s − φs

��2 {φn
s �=φs} ds

defined by (4.2.7) and

An
t = Cp,d

� t

0

��∇2Un
�
s,φn

s

���2 ds

defined by (4.2.12) are continuous, adapted, nondecreasing, with An
0 = 0, E[An

T ] ≤ C and
for every k ∈ R,

E
�
ekA

n
T
�
≤ C .

The constant C can be chosen independently of n.

Proof. For the process defined by (4.2.7) the proof follows the same steps of the proof of
[FF11, Lemma 7]. We only remark that the function U is the solution of a different PDE,
but it has the same properties in terms of regularity. Moreover, the flows φ and φn solve
two SDEs with different drifts b and bn, which means that in the proof one has to use twice
the result of [FF11, Corollary 13], once for every drift.

For the process defined by (4.2.12), the result is already contained in [FF11, Corollary
13].

Lemma 4.17. Let fn be a sequence of vector fields belonging to Lq
p, convergent to f ∈ Lq

p.
Then, there exists ε > 1 such that

E

� � T

0

��fn(s,φn
s )
��2εds

�
≤ C < ∞ . (4.5.17)

Proof. To prove the result for a fixed n one can use [FF11, Corollary 13] and follow the
proof of [FF11, Lemma 8 and Corollary 9], which still works due to the strict inequality in
the conditions imposed on p, q. Then, since all the bounds only depend on the norm of f
but never on the function itself, one obtains that (4.5.17) is uniform in n.

4.6 Appendix B: Sobolev regularity of random fields

Let r ≥ 1 be given. We recall that f ∈ W 1,r
loc

�
R

d
�

if f ∈ Lr
loc

�
R

d
�

and there exist
gi ∈ Lr

loc

�
R

d
�
, i = 1, ..., d, such that

�

Rd

f (x) ∂xi
ϕ (x) dx = −

�

Rd

gi (x)ϕ (x) dx

for all ϕ ∈ C∞
0

�
R

d
�
. When this happens, we set ∂xif (x) = gi (x). From the definition and

easy arguments one has the following criterion: if f ∈ Lr
loc

�
R

d
�

and there exist a sequence
{fn} ⊂ W 1,r

loc

�
R

d
�

such that fn → f in L1
loc

�
R

d
�

(or even in distributions) and for all
R > 0 one has a constant CR > 0 such that

�
BR

|∇fn (x)|r dx ≤ CR uniformly in n, then

f ∈ W 1,r
loc

�
R

d
�
. This criterion will not be used below; it is only stated for comparison with

the next result.
Let now F : Ω × R

d → R be a random field. When we use below this name we always
assume that it is jointly measurable.
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Lemma 4.18. Assume that F (ω, ·) ∈ Lr
loc

�
R

d
�

for P -almost every ω and there exist a
sequence {Fn}n∈N

of random fields such that

1. Fn (ω, ·) → F (ω, ·) in distributions in probability, namely

P − lim
n→∞

�

Rd

Fn (ω, x)ϕ (x) dx =

�

Rd

F (ω, x)ϕ (x) dx

for every ϕ ∈ C∞
0

�
R

d
�
;

2. Fn (ω, ·) ∈ W 1,r
loc

�
R

d
�

for P -almost every ω, and for every R > 0 there exists a constant
CR > 0 such that

E

��

BR

|∇Fn (x)|r dx
�
≤ CR

uniformly in n.

Then F (ω, ·) ∈ W 1,r
loc

�
R

d
�

for P -almost every ω,

E

��

Rd

∂xi
F (·, x)ϕ (x)Z dx

�
= lim

n→∞
E

��

Rd

∂xi
Fn (·, x)ϕ (x)Z dx

�
(4.6.1)

for all ϕ ∈ C∞
0

�
R

d
�

and bounded random variable Z,

P − lim
n→∞

�

Rd

∂xiFn (ω, x)ϕ (x) dx = −
�

Rd

F (ω, x) ∂xiϕ (x) dx (4.6.2)

for all ϕ ∈ C∞
0

�
R

d
�
, and for every R > 0

E

��

BR

|∇F (x)|r dx
�
≤ lim sup

n→∞
E

��

BR

|∇Fn (x)|r dx
�
. (4.6.3)

Proof. Given R > 0, there is a subsequence {nk} and a vector valued random field G such
that ∇Fnk

converges weakly to G in Lr
�
Ω× R

d
�
, as k → ∞. Taking R ∈ N, we may apply a

diagonal procedure and find a single subsequence {nk} and vector valued random fields GR,
R ∈ N, such that ∇Fnk

converges weakly to GR in Lr (Ω×BR), as k → ∞, for each R ∈ N.
Using suitable test functions, one can see that GR�

= GR on Ω × BR if R� > R. Hence we
have found a single vector valued random field G, such that ∇Fnk

converges weakly to G
in Lr (Ω×BR), as k → ∞, for each R ∈ N and thus for each real R > 0. At the end of the
proof, G will be identified by ∇F , independently of the subsequence {nk}. Thus, a fortiori,
the full sequence ∇Fn converges weakly to G in Lr

�
Ω× R

d
�
, as n → ∞. For this reason,

to simplify notations, we omit the notation of the subsequence.
For each ϕ ∈ C∞

0 (Rd), by assumptions 1 and 2
�

Rd

F (ω, x) ∂xi
ϕ (x) dx = lim

n→∞

�

Rd

Fn (ω, x) ∂xi
ϕ (x) dx

= − lim
n→∞

�

Rd

∂xi
Fn (ω, x)ϕ (x) dx ,

the limits being understood in probability. For each bounded random variable Z, this implies
that

lim
n→∞

�

Rd

∂xi
Fn (ω, x)ϕ (x)Z (ω) dx = −

�

Rd

F (ω, x) ∂xi
ϕ (x)Z (ω) dx
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in probability. This limit holds also in L1 (Ω) by Vitali convergence criterion because, by
Hölder inequality,

E

�����
�

Rd

∂xi
Fn (ω, x)ϕ (x)Z (ω) dx

����
p�

≤ CR,p �ϕ�L∞ �Z�L∞E

��

BR

|∂xi
Fn (ω, x)|p dx

�

≤ CR,p �ϕ�L∞ �Z�L∞CR

uniformly in n, for some p > 1, and with R such that BR contains the support of ϕ.

From the weak convergence above, we also get that

lim
n→∞

E

��

Rd

∂xiFn (·, x)ϕ (x)Zdx

�
= E

��

Rd

Gi (·, x)ϕ (x)Zdx

�
.

Hence

E

��

Rd

Gi (·, x)ϕ (x)Zdx

�
= −E

��

Rd

F (·, x) ∂xi
ϕ (x)Zdx

�
.

By the arbitrariness of Z this gives us
�

Rd

F (ω, x) ∂xi
ϕ (x) dx = −

�

Rd

Gi (ω, x)ϕ (x) dx (4.6.4)

for P -almost every ω. This is the identification of G mentioned above, which implies the
weak convergence of the full sequence ∇Fn.

Identity (4.6.4) holds P -almost surely for every ϕ ∈ C∞
0 (Rd) a priori given. Thus it holds

P -almost surely, uniformly on a dense countable set D of test functions ϕ, dense for instance
in W 1,r�

loc (Rd), 1/r + 1/r� = 1. Using the integrability properties of F (ω, ·) and Gi (ω, ·) we

may extend identity (4.6.4) to all ϕ ∈ W 1,r�

loc (Rd) and thus all ϕ ∈ C∞
0 (Rd), uniformly with

respect to the good set of ω for which it holds on D.

Thus, from identity (4.6.4) in the stronger form just explained, we deduce - by definition
- that F (ω, ·) ∈ W 1,r

loc (R
d) for P -almost every ω. And ∇F (ω, x) = G (ω, x). We immediately

have (4.6.1) and (4.6.2).

We have shown that, for every function ξ(ω, x) of the form

ξ(ω, x) =

m�

k=1

ϕk(x)Zk(ω) ,

with ϕ and Z as above, we have
����E

��

BR

∇F (·, x) ξ(·, x) dx
����� ≤ lim

n→∞

����E
��

BR

∇Fn (·, x) ξ(·, x) dx
�����

≤ E

��

BR

|ξ(·, x)|r
�

dx

�1/r�
lim sup
n→∞

E

��

BR

|∇Fn (·, x)|r dx
�1/r

(in the last passage we have used Hölder inequality). The set of functions ξ introduced is
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dense in Lr�(Ω×BR), so that

E

� �

BR

��∇F (·, x)
��rdx

�1/r
=

��∇F
��
Lr(Ω×BR)

≤ sup
�ξ�

Lr� ≤1

����E
��

BR

∇F (·, x) ξ(·, x) dx
�����

≤ lim sup
n→∞

E

��

BR

|∇Fn (·, x)|r dx
�1/r

.

This completes the proof.
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