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Summary

The thesis is presented in order to obtain the �Habilitation à diriger des recherches�

degree in automatics and industrial informatics.

The author received the Ph.D. degree in Automatic Control from the Saint-

Petersburg State Electrical Engineering University (Russia) in 2001, and the Dr.Sc.

degree in Automatic control in 2006 from Institute for Problems of Mechanical

Engineering RAS (Saint-Petersburg, Russia). From 2000 to 2009 he was research

fellow of the Institute for Problems of Mechanical Engineering RAS, Control of

Complex Systems Laboratory. From 2006 to 2011 he was working with the LSS

(Supelec, France), the Monte�ore Institute (University of Liege, Belgium) and the

Automatic control group at IMS lab (University of Bordeaux I, France). Since 2011

he joined the Non-A team at INRIA-LNE centre in Lille, France. He is a member

of the IFAC TC on Adaptive and Learning Systems and a Senior member of IEEE.

His main research interests include nonlinear oscillation analysis, observation and

control, switched and nonlinear system stability. During his scienti�c carrier he

published over 140 papers, books and technical reports, their distribution in time

is given in the following chart:
 

0
5

10
15
20
25
30
35
40

2000-2003 2004-2006 2007-2009 2010-2012

Journals Conferences

The subject of the dissertation deals with the main research direction of the

author: analysis, estimation and control in nonlinear oscillating systems. It is an

emerging area of research touching many applicative domains. This �eld strives

for new estimation and control algorithms since frequently, due to peculiarities of

this type of systems, the conventional approaches do not provide solutions with

a satisfactory performance. Some control and estimation solutions for oscillating

systems proposed by the author are given in the thesis. The hybrid or/and supervi-

sory systems method is selected as the basement of design of new tools for analysis,

observation and control of nonlinear oscillations.

The �rst chapter of the thesis deals with presentation of scienti�c background

and experience of the author. In the second chapter an approach to analysis of

existence of oscillations is presented, an adaptive control algorithm for bifurcation

control is brie�y described, and an approach for entrainment of periodical systems

based on PRC is introduced. In the third chapter the main planned future directions

of research of the author are given. Appendices contain the full list of publications

and the texts of four selected papers.
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Notations

• The set of real numbers is denoted by R and the set of nonnegative real

numbers by R+.

• A Lebesgue measurable signal d : R+ → Rn, R+ = {τ ∈ R, τ ≥ 0} is an es-

sentially bounded function of time t ≥ 0 if ‖d‖ = ess sup {|d(t)| , t ≥ 0} <
+∞, where |·| denotes Euclidean vector norm. The set of all such inputs

d with the property ‖d‖ < +∞ we will denote as L∞.

• Norm of matrix A is calculated as the sum of absolute values of all its

elements |A|1 =
∑
i,j |aij |.

• A continuous function α : R+ → R+ belongs to the class K if α(0) = 0 and

the function is strictly increasing. The function α : R+ → R+ belongs to

the class K∞ if α ∈ K and it is increasing to in�nity. Continuous function

χ : R+ × R+ → R+ is from class KL if it is positive de�nite (χ(0, ·) = 0)

and non-decreasing in the �rst argument for any �xed second one, and

it is strictly decreasing to zero in the second argument for any �xed �rst

one.

• The notation 1, n denotes the sequence of integers 1, ..., n.

• For a continuously di�erentiable function V : Rn → R+ the notation

DV (x)f(x), x ∈ Rn stands for directional derivative with respect to a

vector �eld f : Rn → Rn. If the function V is Lipschitz continuous, then

DV (x)f(x) is stated for upper directional Dini derivative:

DV (x)f(x) = lim
t→0+

sup
V (x+ tf(x))− V (x)

t
.



CHAPTER 1

SCIENTIFIC BACKGROUND AND

EXPERIENCE

In this chapter, my scienti�c background, the main achievements and scienti�c

carrier are expressed shortly. Next, in the second chapter, the main results obtained

in the direction of analysis and control of nonlinear oscillations are presented with

more details. Some planned directions of research are brie�y described in the third

chapter.

1.1. Diplomas and grades

I have obtained three scienti�c degrees in Russia, the last one is the full doctor

of science degree, which is someway related with the �thèse d'état� (the subjects of

that dissertation and the present HDR thesis are interconnected). The complete

list of my theses is as follows:

• June 2006: Doctor of engineering sciences

Institute for problems of mechanical engineering, Saint-Petersburg, Russia

Title: �Robust and adaptive control of nonlinear oscillations�

Director: Prof. A.L. Fradkov

Jury: Prof. G.A. Leonov, Prof. I.M. Ananievskiy, Prof. A.V. Timofeev

• September 2001: PhD

Saint-Petersburg State Electrical Engineering University, Saint- Peters-

burg, Russia

Title: �Structure design of control systems with arti�cial neural networks�

Director: Prof. V.A. Terekhov

Jury: Prof. N.D. Polyahov, Prof. V.O. Nikiforov, Prof. A.L. Fradkov

• February 1998: Engineer in systems control

Saint-Petersburg State Electrical Engineering University, Saint- Peters-

burg, Russia

Title: �Adaptive control with arti�cial neural networks�

Director: Prof. V.A. Terekhov

7
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1.2. Activity of research

During my scienti�c career I was working in 6 scienti�c centers. The years and

the subjects are indicated below in the reverse order:

• 2011-present: INRIA-LNE, Non-A project (supervisors Prof. J.-P. Richard

and Prof. W. Perruquetti), France. CR1.

Subject: Nonlinear and hybrid observation/estimation.

• 2009-2011: CNRS-IMS, Université Bordeaux 1, France. Post-doc.

Subject: Nonlinear observation/estimation, model based fault detection,

fault tolerant control for nonlinear systems, aerospace applications.

Supervisor: Prof. A. Zolghadri

• 2007�2009: Systems and Control, Department of Electrical Engineering

and Computer Science, Université de Liège, Belgium. Post-doc.

Subject: Control of nonlinear oscillations.

Supervisor: Prof. R. Sepulchre

• 2006�2007: LSS, SUPELEC, Paris, France. Post-doc.
Subject: Adaptive and robust synchronization.

Supervisor: Prof. E. Panteley

• 2000�2006: Laboratory of Control of Complex Systems, Institute for

Problems of Mechanical Engineering, Saint-Petersburg. Senior researcher.

Subject: Robust and adaptive control of nonlinear oscillations.

Supervisor: Prof. A.L. Fradkov

• 1995�2001: Department of Automation and Control Processes, Saint-

Petersburg State Electrical Engineering University. Researcher.

Subject: Control laws with adaptive neural networks.

Supervisor: Prof. V.A. Terekhov

1.3. Industry contacts, development activities

In my career I have participating in four projects dealing with industrial collab-

oration and development. Two of them were related with aerospace applications,

one with regulation of car engines, and one with adjustment and training of arti�cial

networks for recognition of characters:

(1) 2009�2012: Participant in FP7 ADDSAFE project

Subject: Advanced Fault Diagnosis for Safer Flight Guidance and Control

Partners:

* AIRBUS France SAS (France), DEIMOS Space (Spain)

* University of Leicester, Delft University of Technology, Deutsches Zentrum für Luft-

und-Raumfahrt E.V., University of Hull, Computer and Automation Research Institute

Supervisor: Prof. A. Zolghadri
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The state-of-practice for aircraft manufacturers is to diagnose guidance &

control faults and to obtain the full �ight envelope protection at all oper-

ation times. It is required to provide a high level of hardware redundancy

(in order to perform coherency tests) and to ensure a su�cient available

control action. This approach for Fault Detection and Diagnosis (FDD)

based on hardware-redundancy �ts also into current aircraft certi�cation

processes while ensuring the highest level of safety standards. However,

these FDD solutions increase the aircraft weight and complexity and, as

a consequence, its manufacturing and maintenance costs. In addition, its

applicability becomes increasingly problematic being in conjunction with

the many innovative solutions developed by the aeronautical sector to-

wards achieving the future �sustainable� (more a�ordable, safer, cleaner

and quieter) aircrafts.

This applicability gap has resulted in a �fault diagnosis bottleneck�, i.e. a

technological barrier constraining the full realization of the next genera-

tion of air transport. Since for the latter one needs to ensure the highest

levels of aircraft safety when implementing novel green and e�cient tech-

nologies.

The ADDSAFE project addressed the FDD challenges arising from this

�fault diagnosis bottleneck�. The overall aim was to research and develop

model-based FDD methods for faults in aircraft �ight control systems

(sensor and actuator malfunctions). Highlighting the link between air-

craft sustainability and FDD, it can be demonstrated that improving the

fault diagnosis performance in �ight control systems optimizes the air-

craft structural design, for example, which results in weight saving and

in its turn helps to progress the aircraft performance and to decrease its

environmental footprint. The ADDSAFE project tried to overcome the

technological gap in aircraft FDD by facing the following three challenges:

1. Helping the scienti�c community to develop the best suited FDD meth-

ods capable of handling the real world problems faced in the aircraft di-

agnosis.

2. Ensuring acceptance and widespread use of these advanced theoretical

methods by the aircraft industry.

3. Contribute towards reducing the costs of aircraft development and

maintenance by using model-based diagnostic systems in conjunction with

reliable software veri�cation & validation tools.

I was participating in the part dealing with the Oscillatory Failure Case

(OFC) detection (see the papers [EZ12, EZR11]). Some failures located

in the electrical �ight control system may result in an unwanted control
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surface oscillation. This particular kind of failure is called OFC. OFCs

have an in�uence on structural loads, aeroelasticity and controllability

when located within the actuator bandwidth. OFC amplitude must be

contained, by system design, within an envelope function of the frequency.

So, the capability to detect these failures is very important because it has

an impact on the structural design of the aircraft. By proper design the

OFC amplitude must be maintained within an envelope function of the

frequency. Usual monitoring techniques cannot always guarantee stay-

ing within an envelope with acceptable robustness, thus a speci�c OFC

detection algorithm has to be designed [Gou10].

(2) 2009�2010: Participant in SIRASAS project

Subject: Robust and Innovative Strategies for Autonomy of Aeronautics

and Space Systems.

Supervisor: Prof. A. Zolghadri

The overall objective of the SIRASAS project was to increase autonomy

and operational e�ectiveness of aerospace systems. In the spatial do-

main, the goal was to reduce the need for regular monitoring by operators

on the ground, and to equip the space systems with capabilities for an

autonomous FDD. In aviation, the objective was in the context of global

optimization for a new generation of civil aircrafts: to reduce the cognitive

load of piloting and to improve performance while maintaining robustness

compatible with the operational constraints. The obtained results are

given in [EZ12, EZ11, EZS10, EZS11], they were also related to OFC.

(3) 2002�2012: Project executive with GENERAL MOTORS.

Subject: Hybrid, robust and adaptive control of internal combustion en-

gines.

Supervisor: Prof. V.O. Nikiforov

The project is devoted to application of di�erent theoretical methods for

control and estimation in di�erent spark ignition engines. The problems

of simultaneous regulation of the air-to-fuel ratio (AFR) and the engine

torque moment tracking are considered. It is required to design a model

starting from a dataset of real measurements (model can be analytical

and/or approximated), next to build a corresponding observer for mea-

surements of internal variables and a controller. The �eld of AFR regula-

tion constitutes one of the main engine control problems and is originated

by the growing ecological requirements on engine characteristics. The

ecological cleanliness of engines is maintained by the three-way catalytic

converter, which oxidizes HC and CO and reduces NOx species. However,
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e�ciency of the converter is guaranteed if AFR is close to the stoichiomet-

ric value (and the conversion e�ciencies of the converter are signi�cantly

reduced away from the stoichiometry). This is why the primary objective

of the AFR control system is to track the fuel injection in stoichiometric

proportion to the ingested air �ow.

Each year the obtained solutions are veri�ed in real experiments for dif-

ferent mass production vehicles (Chevrolet Corvette, Chevrolet Tahoe,

GMC Yukon and Chevrolet Equinox). Among theoretical methods used

for design in this project it is necessary to mention: the hybrid and super-

visory systems approach, the adaptive control method, the robust control

approaches, the interval estimation approach and the iterative learning

techniques. All these results have been published in technical reports

and some of them can be found in [EJN10b, EJN10a, GJEN10a,

GJEN10b, KEJ+12].

(4) 2001�2006: Engineer in A2iA Corp., Paris.

Subject: Intelligent adaptation of character recognizers, adaptive tuning

of neural networks.

Supervisor: Prof. N.D. Gorski

The A2iA Corporation is a worldwide leading developer of natural hand-

writing recognition, Intelligent Word Recognition and Intelligent Charac-

ter Recognition technologies and products for the payment, mail, docu-

ment and forms processing (for a detailed description visit http://www.

a2ia.com). I was responsible for retraining of Intelligent Character Rec-

ognizers, composed by several arti�cial neural networks, their adaptation

for new countries and new symbols.

1.4. Teaching activities

I performed a limited teaching activity in Saint-Petersburg State Electrical

Engineering University (during the PhD thesis work) and in Bordeaux 1:

• 1999: Adaptive control in technical systems, Saint-Petersburg State Elec-

trical Engineering University, 26 hours, course, laboratory and practical

works.

• 1999-2000: Application of arti�cial neural networks for control problems,

Saint-Petersburg State Electrical Engineering University, 32 hours, course,

laboratory and practical works.

• 2000: Local control systems, Saint-Petersburg State Electrical Engineer-

ing University, 17 hours, laboratory and practical works.

• 2010-2011: C language, IUT Bordeaux, 48 hours, laboratory works.
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• 2011: Adaptive control course for the Ecole Doctorale Systèmes - EDSYS

� Toulouse, 5 hours.

1.5. Supervising activities

I have been participating in several juries for PhD defense and in supervision

of visiting master/PhD students and post-docs:

• Kremlev A.S. Development of adaptive and robust approaches for dis-

turbances compensation of a �nite dimension. ITMO University, Saint-

Petersburg, O�cial opponent, 2005.

• Migush S. Adaptive control of internal combustion engines. ITMO Uni-

versity, Saint-Petersburg, O�cial opponent, 2005.

• supervision of two students (master level, Stanislav Chebotarev and Peter

Semenov) and two researchers (post-doc level, Sergey Chepinskiy and An-

ton Pyrkin) from ITMO University, Saint-Petersburg during their visits

of IMS, Bordeaux and INRIA-LNE, Lille in October 2010, May 2011 and

June 2012.

• supervision of PhD student Hector Rios from Universidad Nacional Autónoma

de México (UNAM), Mexico, September - November 2011 and 2012.

• supervision of two students "Master EEA 2 recherche", direction "Au-

tomatique, Productique, Signal", record "Automatique et Mécatronique,

Automobile, Aéronautique et Spatial (AM2AS)", IMS, Université Bor-

deaux 1, 2010.

• a supervisor (with Prof. W. Perruquetti and Dr. E. Moulay) of PhD

student Emmanuel Bernuau (LAGIS, EC Lille), 2011-2013.

• a supervisor (with Prof. W. Perruquetti) of post-doc Andrei Polyakov

(INRIA-LNE, Chaslim ANR project), 2012-2013.

• a supervisor (with Prof. W. Perruquetti) of post-doc Antonio Estrada

(INRIA-LNE), 2012-2014.

• a supervisor (with Prof. W. Perruquetti and Dr. G. Zheng) of PhD

student Matteo Guerra (LAGIS, EC Lille), 2012-2015.

• a supervisor (with Prof. W. Perruquetti and Dr. G. Zheng) of PhD

student Zilong Shao (LAGIS, EC Lille), 2012-2015.

1.6. Prizes and distinctions

Several personal grants have been collected in Russia:

• Russian Science Support Foundation: 2006, 2005, 2004.

• Presidium of Russian Academy of Science Program � 19: 2005, 2004.

• Russian Fond of Basic Research: 2003.
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• Grants of Saint-Petersburg government, Ministry of Common and Pro-

fessional Education, rector of �Saint-Petersburg State Electr. Engineering

University� and Russian Academy of Sciences in the framework of support

of young researchers: 1999, 2000, 2001.

I also won several personal scienti�c competitions for young scientists:

• prize of �Academia Europaea�, Moscow, 2007.

• prize of �Main Scienti�c Research Institute Electropribor �, Saint-Petersburg.

Section "Theory and Control Systems", 2000, 2001.

• The Baltic Olympiad of Automation Control (BOAC). Saint-Petersburg,

1996.

I have participated in IPCs for several IEEE and IFAC conferences:

• 2011, IFAC World Congress, Milan, Italy

• 2010, IFAC ALCOSP, Antalya, Turkey

• 2009, IEEE Conference on Control Applications, Saint-Petersburg, Russia

• 2008-2012, IASTED Conference on Control Applications, Vancouver, Canada;

Cambridge, UK

I am a permanent reviewer for many major international journals in the Control do-

main, like IEEE Trans. Automatic Control, Automatica, Systems&Control Letters,

SIAM Journal on Optimization and Control, AMS Review, Int. Journal of Robust

and Nonlinear Control, Int. Journal of Adaptive Control and Signal Processing. I

also was involved in the reviewing process for all main control conferences the last

years (like IFAC World Congress 2005, 2008, 2011; IEEE CDC 2006-2012; ECC

2003, 2005, 2007, 2009; ACC 2008-2012). Participating in the conferences I was

chairing the sessions on CDC 2007, 2006; IFAC World Congress 2011, 2008, 2005;

IFAC Symposium on Nonlinear Control Systems 2010, 2004; ECC 2009, 2007, 2003.

Finally, I organized 2 invited sessions on IEEE CDC 2012 (Robust Estimation

of Uncertain Systems I, Robust Estimation of Uncertain Systems II).

I was invited with seminars to several European and American scienti�c centers:

• University of Bremen, Germany, 2010

• Ecole Centrale de Lille, France, 2009

• GM R&D Center, Warren, USA, 2008, 2011, 2012

• University of Liege, Belgium, 2007

• University of Stuttgart, Germany, 2007

• IPME RAS, Saint-Petersburg, Russia, 2006

• IPM RAS, Moscow, Russia, 2006

• SUPELEC, France, 2005.

I am a Senior member of IEEE and a member of IFAC Technical Committee 1.2

on Adaptive and Learning Systems.
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1.7. Scienti�c publications

The complete list of my publications is given in Appendix A. Some selected

papers dealing with the subject of HDR work are included in appendices B-E.

Below a classi�cation by subjects of the papers published in the peer reviewed

international journals is given (the numbers of works correspond to the subsection

A.1 ):

Interval observers: [1, 2, 6, 11]

Oscillations: [4, 5, 15, 22, 25, 26, 27, 31]

Fault detection, isolation and compensation: [3, 8, 9, 14]

Hybrid/supervisory estimation and control: [7, 13, 16, 17, 18, 29]

Adaptive/robust estimation and control: [21, 23, 24, 28, 32]

Spark ignition engine control: [10, 19, 20]

Applications to oscillatory systems are considered in the papers [7, 14, 21, 23,

24, 28, 32]. The list of the subjects selected for the classi�cation also describes my

main scienti�c interests. The papers [12, 30, 33] are not included in this classi�ca-

tion since they deal with another subjects.

Thus analysis, observation and regulation of oscillating systems are the main

directions of my scienti�c work, that is why this subject is selected for the present

HDR thesis. The papers on oscillating systems can be partitioned as follows:

Analysis of oscillations: [4, 22, 25, 26, 31]

Estimation: [7, 14, 27, 28, 32]

Control: [5, 21, 23, 24]

Phase resetting: [15]

This classi�cation and contents of the corresponding papers mainly de�nes the

structure of the next chapter.



CHAPTER 2

ANALYSIS, ESTIMATION AND CONTROL OF

OSCILLATIONS

This chapter is devoted to introduction of some of my past research activities

dealing with oscillating systems.

On the present stage of development of the theory of automatic control the

role of control and estimation problems for nonlinear oscillatory processes grows.

It is connected, �rst of all, with an active development of new areas of practical

applications, like active vibration control (not only vibration cancellation, but also

excitation), control of engineering systems in bifurcation modes, control and ob-

servation of open/interacting physical and biological systems, robotic control and

estimation. Increase of requirements to quality of transients in the traditional

�elds of application of the theory of synthesis of nonlinear oscillatory systems (such

as electrical engineering and robotics) results in necessity of development of new

methods of design of oscillatory systems. The solutions are complicated since it is

required to take into account the uncertain conditions of functioning and parametric

incertitude.

For example, such a situation arises in the construction of resonant vibrat-

ing machines [EF07a, EF07b, EF07c], or in resonance entrainment of robotic

mechanical systems [EFI12b], which operate on a natural frequency in order to

minimize the energy consumption (see Fig. (1) for an illustration).

The overall performance of vibrating machines are largely de�ned by the fre-

quency of oscillations of the excitation unit. Therefore, the most e�ective are reso-

nant machines, in which the excitation unit operates on a resonant frequency of the
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Figure 1. Vibrating platform setup in IPME
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machine. The principle of work of such machines is based on the phenomenon of

resonance for oscillatory system, when the periodic in�uence on a properly selected

frequency maximizes the amplitude of the system response. On the contrary, in

this mode any given oscillation amplitude is reached at a minimal power consumed

by the actuator. At resonance, the amplitude of oscillations is very sensitive to the

exciting force frequency, while the resonant frequency itself is a complex function

of the system parameters. Therefore, any external disturbance or a deviation of the

values of parameters from the nominal result in a divergence of the system from

the resonant operating mode, which increases the energy losses by the excitation

unit. Since external disturbances or parameter variations are usual conditions of

functioning for real world applications, the problem of resonant control of vibration

machines (or robot locomotion) under such conditions are important theoretical

challenges.

The phenomena of non-linear oscillations covers a wide plenty of possible behav-

iors of dynamic systems: from periodic or harmonious oscillations to recurrent and

random movements. There exist a lot of theories proposed for de�nition, descrip-

tion and analysis of nonlinear oscillations [AVK66, FP98, LBS95, MCB03]. An

important and practically useful approach to studying complex oscillatory modes

of movement is based on the concept of oscillations introduced in 1973 by V.A.

Yakubovich [Yak73]. This approach allows him to receive the frequency domain

conditions of existence of oscillations for the class of Lurie systems (which consist of

the nominal linear part closed by a nonlinear output feedback) and some conditions

of oscillations in discontinuous systems [Yak75, YT89]. Extensions of that theory

on completely nonlinear systems and time-delay nonlinear systems have been devel-

oped in [EF09a, EF07d] (the full text of the paper [EF09a] is given in Appendix

B), some interesting applications of the Yakubovich's theory to biological system

has been presented in [EF08a].

An attractive extension of the Yakubovich's conditions of oscillations has been

recently proposed in [EP10], which is based on the homogeneity theory [BB05,

Ros92]. The homogeneity is a propriety of nonlinear dynamical systems intro-

duced more than thirty years ago [RS76] meaning that the state vector rescaling

does not change the system behavior. Thus, the behavior of the system trajecto-

ries on a suitably de�ned sphere around the origin can be extended to the whole

state space. The global behavior of homogeneous systems simpli�es their analysis,

however this property restricts the approach applicability since the most nonlin-

ear systems (by de�nition) have di�erent types of behavior depending on the state

space region. To overcome this issue, the papers [APA08, EP10] introduce into

consideration the local homogeneity notion (illustrated by the bi-limit homogeneity

in [APA08]), which is the existence of a homogeneous approximating (dynamical)
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system that coincides with the original nonlinear system on a compact set or a

sphere. It has been shown that locally around the sphere the stability/instability

property of the approximating dynamics is inherited by the original system (and

vice versa for a sphere with a �nite and nonzero radius). A universal formula to

design of such homogeneous approximating dynamics has been proposed in [EP10].

Since the approximating dynamics is homogeneous its stability/instability can be

checked using the �rst order approximation at the origin or using a homogeneous

Lyapunov/Chetaev function [Ros92, APA08, EP10]. Therefore, to analyze the

stability behavior of a nonlinear system around a sphere one can apply the lin-

earization approach at the origin to an auxiliary approximating dynamical system.

Such an ability becomes very useful for analysis of oscillations, then establishing

for the corresponding homogeneous approximations their stability/instability it is

possible to detect an oscillating regime presence [EP10]. This technique can be

also applied for control design in order to create the desired oscillating or chaotic

trajectories in the system [EP11]. A short introduction to this theory is given in

section 2.1.

In general, for nonlinear systems the questions of analysis and synthesis of os-

cillatory modes are incompletely investigated. Appearance of oscillatory modes is

usually connected with approaching of values of the system parameters to a bifur-

cation point, which results in creation of oscillations or instability. The problem of

bifurcation control is a modern direction of the control theory [AF86, CHY03].

One of the main problems in this area consists in a complex dependence of the

control law coe�cients on parameters of the plant. In actual practice, the values

of these parameters are di�erent from ones used at analytical calculation of the

control law. The bifurcation or resonant property of a nonlinear system are very

sensitive to small changes of parameters (even small error at calculation of parame-

ters of the control unit may result in a signi�cant deviation in the system behavior

from the desired one). Moreover, a nonlinear system in bifurcation point is on its

stability limit, and a small error in the values of control coe�cients can lead to an

unstable behavior of the system. To overcome this issue it is possible to use meth-

ods of adaptive control for on-line adjustment of control parameters, for tuning the

system to a bifurcation or resonant mode with desired properties. This problem

has been solved in [EF06], it is based on a special adaptive observer design. Next,

these adaptive observers have been applied in [E�06, EF09c] for dynamical syn-

chronization and stabilization of nonlinear oscillating systems (the text of paper

[EF09c] is included in Appendix C). The main facts about the adaptive control of

bifurcations from [EF06] are given in section 2.2.
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The problems of adaptive and robust stabilization of oscillating nonlinear sys-

tems in the presence of exogenous disturbances and uncertain parameters are stud-

ied in [EF08b, EF09b]. These results are based on the Input-to-State Stability

(ISS) theory (see a recent survey [DES11] for its introduction) and, in particular,

on the input-to-output stability property, which enters in the family of ISS prop-

erties. The idea is that if a system has an attracting oscillating mode, then the

oscillating trajectories belong to a compact forward invariant set in the state space

of the system. It is possible to introduce an auxiliary output to the system indi-

cating this set. In this case the problem of the oscillating regime stabilization can

be formalized as the problem of this output stabilization. To analyze robustness

with respect to external disturbances (for stabilization of the oscillating mode) it

is possible to use the input-to-output stability property. The stability property in

the system can be provided using di�erent design approaches (like backstepping,

forwarding, method of Control Lyapunov Function (CLF), passivation, for exam-

ple). A development of the backstepping method for input-to-output stabilization

of nonlinear dynamical systems is given in [EF09b] (the CLF method has been

extended in [E�02b]). An extension of the direct adaptive control method to non-

linear systems containing a parametric incertitude for input-to-output stabilization

is presented in [EF08b]. A further development of these control methods (and

the passivation approach) to the lattices of oscillators is presented in a recent work

[EF12], which text is included in Appendix D.

There exists a branch of methods dealing with control and estimation of period-

ical systems [BEPZ12, PBEZ11, E�08]. Some particular control problems arise

in biological applications. Many biological and technical systems perform periodical

movements (circadian oscillations in nature or satellite on an orbit, for instance).

Trajectories of such systems form a limit cycle in its state space. The problem of

phase resetting in this case is equivalent to a controlled position shift on the limit

cycle on period of oscillations (for circadian oscillators this corresponds to organism

adaptation to a new light environmental conditions, or to the rendezvous problem

solution for satellites). In [ESS09] this problem has been solved applying Phase

Response Curve (PRC) approach (well known modeling technique in chronobiology)

with in�nitesimal controls. A short introduction in the PRC method application

for phase dynamics modeling and control in nonlinear oscillators is given in section

2.3. In [E�11] the PRC approach has been extended for modeling and control with

inputs of arbitrary amplitude (the text of that work is added in Appendix E).

The relevance of the topic selected for the dissertation work is con�rmed by

necessity of development of methods of robust/adaptive control and estimation

for oscillatory plants in the conditions of incompleteness of a priori and on-line

information about the plant model and the values of internal variables, and external
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environmental conditions of functioning as well. The objective of the developed

methods consists in quality improvement of transient processes, simplicity of design

and in minimalism of applicability conditions.

For achievement of this objective the following problems have been considered:

(1) The conditions of existence of oscillations in the sense of Yakubovich for

nonlinear dynamic systems [EF09a, EF08a, EF07d, EP10].

(2) The methods of robust control of nonlinear oscillating systems:

(a) method of design of oscillating modes based on the concept of os-

cillations in the sense of Yakubovich and the homogeneity theory

[EF09a, EP11];

(b) method of CLF [E�02b];

(c) backstepping method [EF09b];

(d) wave regulation for the lattices of oscillators [EF12];

(e) phase resetting [ESS09, E�11].

(3) The method of direct adaptive control [EF08b].

(4) Method of adaptive tuning to bifurcations, adaptive observer design for

oscillating systems and adaptive synchronization [EF06, E�06, EF09c].

Application of the developed apparatus guarantees realization of a given control

goal in the presence of parametric and signal uncertainties with partial noisy mea-

surements.

2.1. Yakubovich's conditions of oscillation existence via homogeneity

approach

In this section the problem of oscillation detection for nonlinear systems is

addressed. The notions of homogeneity in the bi-limit [APA08] and local homo-

geneity [EP10] (the homogeneity in themulti-limit) are introduced. Some su�cient

conditions of oscillation existence for systems homogeneous in multi-limit are pre-

sented. The proposed approach allows one to estimate the number of oscillating

modes and the regions of their location. E�ciency of the technique is demonstrated

on several examples.

2.1.1. Introduction. The homogeneity is a propriety of nonlinear dynam-

ical systems introduced more than thirty years ago [RS76] meaning that the

state vector rescaling does not change the system behavior. Thus, the behavior

of the system trajectories on a suitably de�ned sphere around the origin can be

extended to the whole state space. This property is used for stability analysis

[Ros92, APA08, BR01, Her91a, Hon02], systems approximation [Her91b],

stabilization [BB05, Gu00, Kaw91, MP06, Pra97, SA96] and observation
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[APA08]. In the work [APA08] the homogeneity in the bi-limit has been intro-

duced, which is homogeneity with di�erent weights and approximating functions

at a vicinity of the origin and far outside. This notion has been extended to local

homogeneity in [EP10], the de�nition of this notion will be introduced in the next

subsection.

The conditions of oscillations in the sense of Yakubovich proposed in [EF09a]

are based on existence of two Lyapunov functions. The �rst Lyapunov function

ensures local instability of the origin, while the second Lyapunov function pro-

vides global boundedness of the system trajectories, which under some additional

mild conditions implies existence of oscillations. Such existence of two Lyapunov

functions nicely interacts with homogeneity in the bi-limit: in both cases two sub-

spaces of the system operation are considered separately. This observation served

as a motivation for development of [EP10], which proposes conditions of stability

and instability for homogeneous systems (peculiarity of oscillating systems is that

the instability around the origin is required). In addition, the conditions are de-

veloped establishing the connection between stability/instability properties of the

original nonlinear system and its local approximating dynamics. The obtained sta-

bility/instability conditions have been used to formulate conditions of oscillating

trajectories existence (the regions of oscillations in the state space are also esti-

mated by the approach). These new conditions of oscillation existence relax the

conservatism of conditions from [EF09a] extending them to the case of existence

of several oscillating zones, when the system may be asymptotically stable around

the origin and at in�nity with instability regions among them. As a side of results,

the necessary and su�cient instability conditions in terms of existence of Lyapunov

or Chetaev functions have been proposed for homogeneous systems. Formulation

of these results is given in the next subsections.

To highlight importance of local homogeneity recall that analysis (global) of

nonlinear dynamical systems is a hardly solving problem, that is why a local or

approximate analysis is very useful and appreciated in applications. The lineariza-

tion approach allows one to make a conclusion on the system behavior around a

trajectory. The local homogeneity gives the same conclusion, but for a sphere with

speci�ed radius. It is shown that if the system is locally homogeneous and the ap-

proximating dynamics is stable/unstable, then the original system on the sphere has

the same property. For nonlinear systems there is no method to choose Lyapunov

functions. Using local homogeneity notion this problem can be seriously simpli�ed.

Indeed, if the approximating dynamics is homogeneous, then it is well known that

the homogeneous systems possess homogeneous Lyapunov functions. The homoge-

neous Lyapunov function has the same shape on the homogeneous norm contours



2.1. YAKUBOVICH'S CONDITIONS OF OSCILLATION EXISTENCE VIA HOMOGENEITY APPROACH21

(a polynomial function of this norm, for example). The proposed results show that

the original system admits locally this Lyapunov function.

The outline of this section is as follows. The homogeneity and the oscillatory

properties are introduced in subsection 2.1.2. Formulation of the main results of

the homogeneity approach application for oscillation detection from [EP10] are

presented in subsection 2.13. Some applications of the proposed approach are dis-

cussed in subsection 2.1.4.

2.1.2. Preliminaries. Consider the nonlinear dynamical system:

(1) ẋ = f(x),

where x ∈ Rn is the state vector, f : Rn → Rn, f(0) = 0 is a nonlinear function

ensuring existence and uniqueness of the system (1) solutions (for any initial con-

ditions x0 ∈ Rn the solution x(t, x0) of the system (1) is de�ned at least locally for

t ≤ T , further we will simply write x(t) if origin of initial conditions is clear from

the context). If for all initial conditions x0 ∈ Rn the solutions are de�ned for all

t ≥ 0 then the system (1) is called forward complete.

A set A ⊂ Rn is called forward invariant for the forward complete system

(1) if for all x0 ∈ A the property x(t, x0) ∈ A holds for all t ≥ 0; the set A ⊂ Rn is

called backward invariant if for all x0 ∈ A the property x(t, x0) ∈ A holds for all

t ≤ 0; this set A is called invariant if it is simultaneously forward and backward

invariant.

The system (1) is called locally or globally asymptotically stable (at the origin)

if the standard conditions are satis�ed [Kha02]. The asymptotic stability of the

system (1) with respect to an invariant set is treated in the sense of [LSW96].

2.1.2.1. Homogeneity. For any ri > 0, i = 1, n and de�ne the dilation matrix

and the vector of weights r = [r1...rn]T . For any ri > 0, i = 1, n a homogeneous

norm can be de�ned as follows

|x|r =

(
n∑

i=1

|xi|ρ/ri
)1/ρ

, ρ > 0.

For any x ∈ Rn a homogeneous norm has to be positive de�nite and to admit an

important property that is: |Λrx|r = λ|x|r. For all x ∈ Rn, its Euclidean norm |x|
is related to the homogeneous norm through two functions σr, σ̄r ∈ K∞:

σr(|x|r) ≤ |x| ≤ σ̄r(|x|r),

the functions σr, σ̄r de�ne the Euclidean norm deviations with respect to the

homogeneous norm. De�ne

Sr = {x ∈ Rn : |x|r = 1}.
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Definition 1. The function g : Rn → R is called r-homogeneous (ri > 0,

i = 1, n) if for any x ∈ Rn

g(Λrx) = λdg(x)

or some d ≥ 0 and all λ ≥ 0.

The system (1) is called r-homogeneous (ri > 0, i = 1, n) if for any x ∈ Rn

f(Λrx) = λdΛrf(x)

or some d ≥ −min1≤i≤n ri and all λ ≥ 0. �

Theorem 1. [Ros92] For the system (1) with r-homogeneous and continuous

function f : Rn → Rn the following properties are equivalent:

- the system (1) is (locally) asymptotically stable;

- there exists continuously di�erentiable homogeneous Lyapunov function V :

Rn → R+ such that for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|), DV (x)f(x) ≤ −α(|x|), V (Λrx) = λkV (x), k ≥ max
1≤i≤n

ri,

for some α1, α2 ∈ K∞, α ∈ K. �

Note, that the continuity of the function f is required for the necessary (con-

verse) part only. The r-homogeneity property used in De�nition 1 and Theorem 1

is introduced for some r > 0 and all λ ≥ 0. Restricting the set of admissible values

for λ we can introduce local homogeneity [EP10] (similarly to the 0-limit or the

∞-limit homogeneity of [APA08]).

Definition 2. The function g : Rn → R is called (r,λ0,g0)-homogeneous (ri >

0, i = 1, n; λ0 ∈ R+ ∪ {+∞}; g0 : Rn → R, g0(0) = 0) if for any x ∈ Sr

lim
λ→λ0

λ−d0g(Λrx)− g0(x) = 0

for some d0 ≥ 0 (uniformly on Sr for λ0 ∈ {0,+∞}).
The system (1) is called (r,λ0,f0)-homogeneous (ri > 0, i = 1, n; λ0 ∈ R+ ∪

{+∞}; f0 : Rn → Rn, f0(0) = 0) if for any x ∈ Sr

lim
λ→λ0

λ−d0Λ−1r f(Λrx)− f0(x) = 0

for some d0 ≥ −min1≤i≤n ri (uniformly on Sr for λ0 ∈ {0,+∞}). �

In the paper [APA08] this de�nition has been introduced for λ0 = 0 and

λ0 = +∞ (the function g is called homogeneous in the bi-limit if it is simulta-

neously (r0,0,g0)-homogeneous and (r∞,+∞,g∞)-homogeneous), the case λ0 = 0

has been also treated in [Ros92, BR01]. Note, that the system (1) can be also

homogeneous in more than two limits (some examples are presented in subsection

2.1.4). In the following a function g (respectively system (1)) is homogeneous in
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the multi-limit if there exist a �nite number of triplets (ri,λi,gi (respectively fi))

for which the function (respectively the system (1)) is (ri,λi,gi (respectively fi))

locally homogeneous for each index i [EP10].

If the pairs of functions g, g0 and f , f0 are continuous, then for any compact

set X ⊂ Rn and any ε > 0 there exist λε ≤ λ0 ≤ λ̄ε such that for all λ ∈ (λε, λ̄ε):

sup
x∈Sr

|λ−d0g(Λrx)− g0(x)| ≤ ε, sup
x∈Sr

|λ−d0Λ−1r f(Λrx)− f0(x)| ≤ ε.

The coe�cients ri > 0, i = 1, n are called weights, d0 is the degree of homo-

geneity, f0 or g0 are the approximating functions.

The following formulas give an example for choice of locally approximating

functions for any 0 < λ0 < +∞ and x ∈ Sr:

g0(x) = λ−d00 g(Λr,0x), f0(x) = λ−d00 Λ−1r,0f(Λr,0x),Λr,0 = diag{λri0 }ni=1.

By construction, the limit relations from De�nition 2 are satis�ed for any 0 < λ0 <

+∞:

lim
λ→λ0

λ−d0g(Λrx)− g0(x) = 0, lim
λ→λ0

λ−d0Λ−1r f(Λrx)− f0(x) = 0.

Moreover, the approximating functions can be chosen homogeneous:

g0(x) = |x|drλ−d00 g(Λr,0Λ−1|x|x), f0(x) = |x|drλ−d00 Λ−1r,0f(Λr,0Λ−1|x|x),

where Λ|x| = diag{|x|rir }ni=1, provided that g0(0) and f0(0) are well de�ned. Straight-

forward calculations show that

g0(Λrx) = λd|x|drλ−d00 g(Λr,0Λ−1r Λ−1|x|Λrx) = λdg0(x),

(2) f0(Λrx) = λd|x|drλ−d00 Λ−1r,0f(Λr,0Λ−1r Λ−1|x|Λrx) = λdf0(x).

The proposed formulas do not cover two limit cases of a great importance with

λ0 = 0 and λ0 = +∞. For the case λ0 = 0 at least one variant of the approximating

dynamics can be pointed out for di�erentiable functions g and f with the property

g(0) = 0, f(0) = 0: g0(x) = g′(0)x, f0(x) = f ′(0)x for ri = 1, i = 1, n and d0 = 1

(due to linearity the approximating functions are homogeneous). Indeed, in this

case

g(Λrx) = λ{λ−1[g(0 + λx)− g(0)]}, f(Λrx) = λ{λ−1[f(0 + λx)− f(0)]}

and the required in De�nition 2 limit relation holds for λ→ 0 since

lim
λ→0

λ−1[g(0 + λx)− g(0)] = g′(0)x, lim
λ→0

λ−1[f(0 + λx)− f(0)] = f ′(0)x.

Thus in the equilibriums the local homogeneity approach always may provide results

similar to the linearization technique. However, opposite to linearization (that is
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unique) the system may have several local homogeneous approximations, some of

them may provide better information about the system properties. To illustrate

this claim consider the system ẋ = −x3 + x4 − x5. This system has an equilibrium

at the origin, its linearization has form ẋ = 0, that does not give an inside look at

the system behavior around the point x = 0. However, for r = 1 the system also

has local homogeneous approximations ẋ = −x3 for d0 = 3, λ0 = 0 and ẋ = −x5 for
d1 = 5, λ1 = +∞. These systems are asymptotically stable. Recalling the results

of two theorems presented below, we can conclude that the original system is also

stable at the origin and far outside.

Theorem 2. [Ros92] Let the system (1) be (r,0,f0)-homogeneous with the

continuous functions f : Rn → Rn and f0 : Rn → Rn. If the system ẋ = f0(x)

is (locally) asymptotically stable, then the system (1) is also locally asymptotically

stable. �

Theorem 3. [APA08] Let the system (1) be (r,+∞,f∞)-homogeneous with the

continuous functions f : Rn → Rn and f∞ : Rn → Rn. If the system ẋ = f∞(x) is

globally asymptotically stable, then there exists a compact invariant set X∞ ⊂ Rn

containing the origin such that the system (1) is globally asymptotically stable with

respect to the set X∞. �

The theorems 2 and 3 present results on the system (1) stability derived from

the corresponding properties of the approximating systems for λ0 = 0 or λ0 = +∞.

The converse Lyapunov theorem similar to Theorem 1 for the homogeneous in the

bi-limit systems can be also found in [APA08].

2.1.2.2. Conditions of oscillations. The function g : Rn → R is called monotone

if the conditions x1 ≤ x′1,. . ., xn ≤ x′n imply that everywhere either g(x1, ..., xn) ≤
g(x′1, ..., x

′
n) or g(x1, ..., xn) ≥ g(x′1, ..., x

′
n).

Definition 3. [Yak73, EF09a] The solution x(t, x0) with x0 ∈ Rn of the

system (1) is called [π−, π+]-oscillation with respect to the output ψ = η(x) (where

η : Rn → R is a continuous monotone function) if the solution is de�ned for all

t ≥ 0 and

lim
t→+∞

ψ(t) = π−; lim
t→+∞

ψ(t) = π+;−∞ < π− < π+ < +∞.

The solution x(t, x0) with x0 ∈ Rn of the system (1) is called oscillating , if there

exist some output ψ and constants π−, π+ such that x(t, x0) is [π−, π+]-oscillation

with respect to the output ψ. A forward complete system (1) is called oscillatory ,

if for almost all x0 ∈ Rn the solutions x(t, x0) of the system are oscillating. An

oscillatory system (1) is called uniformly oscillatory , if for almost all x0 ∈ Rn
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for corresponding solutions x(t, x0) there exist output ψ and constants π−, π+ not

depending on initial conditions. �

In other words the solution x(t, x0) is oscillating if the output ψ(t) = η(x(t, x0))

is asymptotically bounded and there is no single limit value of ψ(t) for t → +∞.

Note that the term �almost all solutions� is used to emphasize that generally the

system (1) has a nonempty set of equilibrium points, thus, there exists a set of initial

conditions with zero measure such that the corresponding solutions are not oscillat-

ing. It is worth to stress that the notion of oscillations in the sense of Yakubovich

is rather generic. It includes periodical oscillations (limit cycles), quasi-periodical,

recurrent and chaotic trajectories. The oscillating trajectories could be repelling

being oscillating. The trajectories also could be unbounded, it is required to �nd

a function of the state vector, that is bounded and admits certain requirements

introduced in De�nition 3. Despite its complexity this notion has Lyapunov char-

acterization for a general nonlinear system.

Theorem 4. [EF09a] Let the system (1) have two locally Lipschitz continuous

Lyapunov functions V1 and V2 ful�lling the following inequalities for all x ∈ Rn:

υ1(|x|) ≤ V1(x) ≤ υ2(|x|), υ3(|x|) ≤ V2(x) ≤ υ4(|x|), υ1, υ2, υ3, υ4 ∈ K∞,

and for some 0 < X1 < υ−11 ◦ υ2 ◦ υ−13 ◦ υ4(X2) < +∞:

DV1(x)f(x) > 0 for all 0 < |x| < X1 and x /∈ Ξ;

DV2(x)f(x) < 0 for all |x| > X2 and x /∈ Ξ,

where Ξ ⊂ Rn is a set with zero Lebesgue measure containing all equilibriums of the

system, and

Ω ∩ Ξ = ∅,Ω = {x : υ−12 ◦ υ1(X1) ≤ |x| ≤ υ−13 ◦ υ4(X2)}.

Then the system (1) is oscillatory. �

The Lyapunov function for the linearized system (1) at the origin is a candidate

for the function V1 [Yak75]. Instead of the existence of the function V2 one can

require just boundedness of the system (1) solutions with known upper bound

(if this fact could be veri�ed using another approach not dealing with Lyapunov

functions analysis).

Theorem 5. [EF09a] Let the system (1) be uniformly oscillatory with respect

to the output ψ = η(x) (where η : Rn → R is a continuous function) with some

−∞ < π− < π+ < +∞, and for all x ∈ Rn the relations χ1(|x|) ≤ η(x) ≤ χ2(|x|),
χ1, χ2 ∈ K∞ are satis�ed. Let the set of initial conditions, for which the system

is not oscillating, consist in just one point Ξ = {0}. Then there exist two locally

Lipschitz continuous Lyapunov functions V1 : Rn → R+ and V2 : Rn → R+ such
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that for all x ∈ Rn the inequalities hold:

υ1(|x|) ≤ V1(x) ≤ υ2(|x|), υ3(|x|) ≤ V2(x) ≤ υ4(|x|), υ1, υ2, υ3, υ4 ∈ K∞;

DV1(x)f(x) > 0 for all 0 < |x| < χ−12 (π−);

DV2(x)f(x) < 0 for all |x| > χ−11 (π+).
�

The theorems 4 and 5 present the su�cient and necessary conditions for the

system (1) to be oscillatory. Being rather simple these conditions can be useful

in di�erent applications [EF09a, EF07d, EF08a]. However, in some situations

these conditions could be restrictive. For example, in su�cient part they need the

knowledge of two Lyapunov functions for the system (1), that can be an ambitious

requirement. Additionally, the conditions are oriented to the locally unstable origin

case, however, a system with several limit cycles can have a locally stable origin.

These shortages can be resolved applying homogeneity approach in [EP10], as it

is shown below.

2.1.3. Homogeneity approach for oscillation detection. For the systems

homogeneous in the bi-limit, the functions V1 and V2 can be chosen according to

the corresponding approximations at the origin or at in�nity. For this purpose

the Lyapunov theorems for locally homogeneous unstable/stable systems can be

developed and applied to detect presence of oscillations next.

Recall, that a cone in Rn is a set consisting of half-lines emanating from some

point called the vertex of the cone, in other words the set K ⊂ Rn is a cone if

λK ⊂ K for any λ > 0; denote by Lb(K) the lateral borders of the cone K.

2.1.3.1. Unstable homogeneous systems. There exist three basic setups for in-

stability analysis [Che61, Shn07]. First, the Lyapunov case or the case with

anti-stable (strongly unstable) equilibrium, when the system linearization has all

roots with positive real parts (this case is studied for homogeneous systems in

Lemma 1 below). Second, the case when there is a cone with all trajectories exiting

from the cone basement, this situation is considered applying Chetaev function in

Lemma 2. Third, the case when the cone is repulsing for all trajectories, again

this case is covered by Chetaev functions approach, the corresponding extension to

homogeneous systems is presented in Lemma 3 below.

Lemma 1. [EP10] For the system (1) with r-homogeneous and continuous

function f : Rn → Rn, f(0) = 0 the following properties are equivalent:

- the system (1) is (locally) strongly unstable, i.e. there exists δ > 0 such that for

any 0 < |x0| < δ there exists Tx0
> 0 such that |x(t, x0)| > δ for all t ≥ Tx0

;

- there exists continuously di�erentiable r-homogeneous Lyapunov function V :

Rn → R+ such that for all x ∈ Rn,
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α1(|x|) ≤ V (x) ≤ α2(|x|), DV (x)f(x) ≥ α(|x|),
V (Λrx) = λkV (x), k ≥ max1≤i≤n ri,

for some α1, α2 ∈ K∞, α ∈ K. �

This lemma can be viewed as an analogue of Theorem 1 for the case of local

instability of the homogeneous system (1) at the origin. It deals with the Lyapunov

instability theorem. The following results present a similar extension of Chetaev

theorems.

Lemma 2. [EP10] Consider the forward complete system (1) with a Lipschitz

continuous function f : Rn → Rn, f(0) = 0 and the set Bδ = {x ∈ Rn : 0 < |x| <
δ, x ∈ K} for some δ > 0 with all points Lb(K) ∩ Bδ being the points of entry of

trajectories into Bδ. Then the following properties are equivalent:

- for any x0 ∈ Bδ there exists Tx0
> 0 such that |x(t, x0)| > δ for t ≥ Tx0

and

x(t, x0) ∈ K for all t ∈ [0, Tx0
] (i.e. the system (1) is locally unstable);

- there exists a continuously di�erentiable Chetaev function V : Rn → R+ such that

for all x ∈ Bδ ∪ {0}:

α1(|x|) ≤ V (x) ≤ α2(|x|), DV (x)f(x) ≥ α3(|x|),

for some α1, α2 ∈ K∞, α3 ∈ K.

For the system (1) with r-homogeneous and continuous function f the Chetaev

function V has the same property: V (Λrx) = λkV (x), k ≥ max1≤i≤n ri. �

Lemma 3. [EP10] Consider the forward complete system (1) with a Lipschitz

continuous function f : Rn → Rn, f(0) = 0 and the set Bδ = {x ∈ Rn : 0 < |x| <
δ, x ∈ K} for some δ > 0 with all points Lb(K) ∩ Bδ being the points of exit of

trajectories from Bδ. Then the following properties are equivalent:

- the system (1) is (locally) unstable into the backward invariant set Bδ;

- there exists a continuously di�erentiable Chetaev function V : Rn → R+ such that

for all x ∈ Bδ ∪ {0}:

α1(|x|) ≤ V (x) ≤ α2(|x|), DV (x)f(x) ≥ α(|x|),

for some α1, α2 ∈ K∞, α ∈ K.

For the system (1) with r-homogeneous function f the Chetaev function V has

the same property: V (Λrx) = λkV (x), k ≥ max1≤i≤n ri. �

The �rst lemma allows for consideration strongly unstable or anti-stable sys-

tems (i.e. the systems with linearization having all eigenvalues with strictly pos-

itive real parts), lemmas 2 and 3 oriented on analysis of unstable systems, when

linearization has some eigenvalues with positive real parts (hyperbolic equilibriums,

for instance). In all cases existence of positive de�nite Chetaev functions with pos-

itive derivatives on appropriate regions are proven (the functions can be chosen
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homogeneous for homogeneous systems (1)). The function V established in Lemma

1 is called Lyapunov function, by the name of the author its proposed, that is a

particular case of Chetaev functions presented in lemmas 2 and 3 [Che61].

2.1.3.2. Stability/instability conditions for locally homogeneous systems. An ad-

vantage of the r-homogeneous system (1) is that the global behavior of the system

can be completely characterized by the behavior of the system on the sphere with

the unit radius Sr. To explain this property let us introduce the coordinate trans-

formation x = Λry that connects any x ∈ Rn with y ∈ Sr for suitably chosen λ ≥ 0.

Let V : Rn → R+ be a continuously di�erentiable homogeneous Lyapunov function

(as used in Theorem 1 and Lemma 1), then

DV (x)f(x) = DV (Λry)f(Λry) = λd+kDV (y)f(y) = |x|d+kr DV (y)f(y),

where d is the homogeneity degree of the function f and k is the degree of the

Lyapunov function V . Therefore, sign de�niteness of the function V derivative can

be checked on the sphere Sr only.

For the (r,λ0,f0)-homogeneous system (1) this technique establishes the relation

between the global stability properties of the approximating dynamics

(3) ẋ = f0(x)

and the local ones of the original system (1). The conditions of such a relation are

established below.

Proposition 1. [EP10] Let the system (1) be (r,λ0,f0)-homogeneous, the

functions f : Rn → Rn and f0 : Rn → Rn be continuous and the approximating dy-

namics (3) have r-homogeneous and continuously di�erentiable Lyapunov function

V0 : Rn → R+, α1(|x|) ≤ V0(x) ≤ α2(|x|), α1, α2 ∈ K∞ for all x ∈ Rn.

(i): Let as = − supy∈Sr
DV0(y)f0(y), as > 0, then

(1) if λ0 = 0, then there exists 0 < λ̄ε such that the system (1) is locally

asymptotically stable with the domain of asymptotic stability containing

the set

X0 = {x ∈ Rn : |x| ≤ α−11 ◦ α2 ◦ σr(λ̄ε)};
(2) if λ0 = +∞, then there exists 0 < λε < +∞ such that the system (1)

is globally asymptotically stable with respect to the forward invariant set

X∞ = {x ∈ Rn : |x| ≤ α−11 ◦ α2 ◦ σ̄r(λε)};
(3) if 0 < λ0 < +∞, then there exist 0 < λε ≤ λ0 ≤ λ̄ε < +∞ such that the

system (1) is �nite time stable with respect to the forward invariant set

X∞ with the region of attraction

X = {x ∈ Rn : α−11 ◦ α2 ◦ σ̄r(λε) < |x| < α−11 ◦ α2 ◦ σr(λ̄ε)}



2.1. YAKUBOVICH'S CONDITIONS OF OSCILLATION EXISTENCE VIA HOMOGENEITY APPROACH29

provided that the set X is connected and nonempty.

(ii): Let au = infy∈Sr DV0(y)f0(y), au > 0, then

(1) if λ0 = 0, then there exists 0 < λ̄ε such that the system (1) is asymp-

totically stable with respect to the forward invariant set Rn\X0 with the

region of attraction X0\{0};
(2) if λ0 = +∞, then there exists 0 < λε < +∞ such that the set Rn\X∞ is

forward invariant for the system (1);

(3) if 0 < λ0 < +∞, then there exist 0 < λε ≤ λ0 ≤ λ̄ε < +∞ such that the

system (1) is �nite time stable with respect to the forward invariant set

Rn\X0 with the region of attraction X provided that the set X is connected

and nonempty. �

In other words the result of Proposition 1 means that the behavior of the system (1)

is inherited after (3) into the set Xr = {x ∈ Rn : λε < |x|r < λ̄ε} provided that it

contains a contour of the function V0 (the set X is connected and nonempty). The

�rst two parts of the case (i) correspond to theorems 2 and 3. If we assume that the

approximating vector �eld f0 is r-homogeneous, then the requirement on existence

of the r-homogeneous Lyapunov function V0 follows by Theorem 1 and Lemma 1

results. The conditions of the proposition can be relaxed skipping homogeneity of

f , f0, using the continuity assumption as follows.

Corollary 1. [EP10] Let r > 0, λ0 ≥ 0 and f0 : Rn → Rn be given and the

approximating dynamics (3) have r-homogeneous and continuously di�erentiable

Lyapunov function V0 : Rn → R+, α1(|x|) ≤ V0(x) ≤ α2(|x|), α1, α2 ∈ K∞ for all

x ∈ Rn. Let one of the following properties hold

(i) a = − supy∈Sr
DV0(y)f0(y), a > 0;

(ii) a = infy∈Sr
DV0(y)f0(y), a > 0,

and there exist λε ≤ λ0 ≤ λ̄ε such that supy∈Sr
|DV0(y)[λ−dΛ−1r f(Λry)−f0(y)]| < a

for all λ ∈ (λε, λ̄ε), then all claims (i),1-(i),3 and (ii),1-(ii),3 of Proposition 1 are

valid. �

Another way to relax the conditions of Proposition 1 consists in application of

results of lemmas 2 and 3 for instability detection at the origin (for λ0 = 0).

Proposition 2. [EP10] Let the system (1) be (r,0,f0)-homogeneous, the func-

tions f : Rn → Rn and f0 : Rn → Rn be continuous and the approximating

dynamics (3) have r-homogeneous and continuously di�erentiable Chetaev func-

tion V0 : Rn → R+, α1(|x|) ≤ V0(x) ≤ α2(|x|), α1, α2 ∈ K∞ for all x ∈ Bδ,

Bδ = {x ∈ Rn : 0 < |x|r < δ, x ∈ K}, δ > 1 and K be a closed cone with the

vertex at the origin. Let a = infy∈Sr∩K DV0(y)f0(y), a > 0, then the system (1) is

unstable at the origin. �
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Application of these results for oscillation detection is discussed below.

2.1.3.3. Oscillations in locally homogeneous systems. Let 0 ≤ λ0 ≤ ... ≤ λN ≤
+∞ be an ordered sequence for a given �nite integer N > 0.

Theorem 6. [EP10] Let the system (1) be (rj,λj,fj)-homogeneous for j =

1, N , the functions f : Rn → Rn and fj : Rn → Rn, j = 1, N be continuous

and the locally approximating dynamical systems ẋ = fj(x), j = 1, N have rj-

homogeneous and continuously di�erentiable Lyapunov functions Vj : Rn → R+,

α1,j(|x|) ≤ Vj(x) ≤ α2,j(|x|), α1,j , α2,j ∈ K∞ for all x ∈ Rn and j = 1, N . Let

Ξ ⊂ Rn be the set containing all equilibriums of the system (1).

Let one of the following conditions hold.

(i): There exists 1 ≤ j∗ < N such that

aj∗ = inf
y∈Srj∗

DVj∗(y)fj∗(y) > 0,

aj∗+1 = − sup
y∈Srj∗+1

DVj∗+1(y)fj∗+1(y) > 0

and the sets

Xk = {x ∈ Rn : α−11,k ◦ α2,k ◦ σ̄rk(λk) < |x|
< α−11,k ◦ α2,k ◦ σrk(λ̄k)}, k = j∗, j ∗+1

are connected and nonempty where

sup
y∈Srk

|DVk(y)[λ−dΛ−1rk f(Λrky)− fk(y)]| < ak

for all λ ∈ (λk, λ̄k), λk ≤ λk ≤ λ̄k (such constants λk, λ̄k exist due to

homogeneity assumption), k = j∗, j ∗+1, and

Ω ∩ Ξ = ∅,Ω = Ωj∗ ∩ Ωj∗+1,

Ωj∗ = Rn\{x ∈ Rn : |x| ≤ α−11,j∗ ◦ α2,j∗ ◦ σrj∗(λ̄j∗)},
Ωj∗+1 = {x ∈ Rn : |x| ≤ α−11,j∗+1 ◦ α2,j∗+1 ◦ σ̄rj∗+1(λj∗+1)};

(ii): There exists 1 ≤ j∗ < N such that

aj∗ = − sup
y∈Srj∗

DVj∗(y)fj∗(y) > 0,

aj∗+1 = inf
y∈Srj∗+1

DVj∗+1(y)fj∗+1(y) > 0
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and the sets Xk, k = j∗, j ∗+1 are connected and nonempty where λk ≤
λk ≤ λ̄k are de�ned as for the case (i), and

Ω ∩ Ξ = ∅,
Ω = {x ∈ Rn : α−11,j∗ ◦ α2,j∗ ◦ σrj∗(λ̄j∗) ≤ |x|

≤ α−11,j∗+1 ◦ α2,j∗+1 ◦ σ̄rj∗+1
(λj∗+1)}.

Then the system (1) has oscillating trajectories into the set Ω. �

The result of the last theorem implies that if the system (1) is locally homoge-

neous and unstable in an inner (outer) subset, and locally homogeneous and stable

in an outer (inner) subset, then between these subsets should exist an invariant set

containing oscillating trajectory providing that the equilibriums are excluded from

this region. The conditions of Theorem 6 can be relaxed taking in mind the results

of Corollary 1 or Proposition 2 (these reformulations are omitted here for brevity

of presentation and due to its triviality). The set Ω can be used to estimate the

constants π−, π+, i.e. to estimate the amplitude of oscillation.

It is worth to note that Theorem 4 deals with one oscillating zone only, it is also

assumed that the origin is strongly unstable. Theorem 6 relaxes these constraints,

it allows one to detect multiple oscillating zones presence, the origin can be stable or

unstable. The choice of Lyapunov functions could be simpli�ed in the homogeneous

case.

2.1.3.4. Procedure for oscillations detection. In this subsection we are going to

comment on the proposed conditions of oscillating trajectories analysis and present

the procedure for their applications [EP10].

The analysis of nonlinear system for stability, instability or existence of oscil-

lations is rather complex problem that lacks for constructive applied approaches.

The class of linear dynamic systems, on the contrary, has a complete list of methods

for their analysis. The class of homogeneous systems being rather generic includes

the linear systems. Considering homogeneous systems it seems possible to propose

constructive (applicable in practice) approaches for nonlinear system analysis, or

at least reduce the complexity of investigation. The class of locally homogeneous

systems introduced here is much more larger than the class of homogeneous ones.

Any system (1) with polynomial vector �elds is locally homogeneous at least in two

limits, for instance.

Two type of conditions are established, the �rst ones deal with stability/instability

analysis for locally homogeneous systems on the basis of their locally approximat-

ing dynamics. It is shown that if the approximating system (3) has corresponding

Lyapunov or Chetaev functions, then there exists a domain in the state space of

the system (1), where the system inherits the same stability/instability properties.
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The domain location depends on the value λ0. If the approximating dynamics f0
is homogeneous, then existence of homogeneous Lyapunov or Chetaev functions

has been proven (Theorem 1 and lemmas 1-3). The second set of conditions is

devoted to exposure of oscillating in the sense of Yakubovich trajectories for locally

homogeneous systems. It is shown that if the system has two locally approximating

dynamics, one is stable and another one is unstable, in the corresponding domains

and the region between these domains does not contain equilibriums, then the sys-

tem is oscillating in the sense of Yakubovich. The formal procedure for application

of these conditions can be described as follows:

(1) Find the coordinates of all equilibriums of the system (de�ne the set Ξ).

(2) Calculate the partition 0 ≤ λ0 ≤ ... ≤ λN ≤ +∞, N > 0 de�ning the

regions of local homogeneity.

(3) For each locally approximating dynamics fk, k = 0, N it is necessary to

�nd Lyapunov or Chetaev functions establishing local stability/instability

of the system.

(4) Verify the conditions (i) or (ii) of Theorem 6 (taking in mind Corollary 1

or Proposition 2).

The most complex steps of the procedure are 2 and 3. There exist no common

recommendations for the partition 0 ≤ λ0 ≤ ... ≤ λN ≤ +∞ calculation for a

given nonlinear system (1). The partition is strongly related with the shape of f .

The formulas for approximating functions f0 for any 0 ≤ λ0 < +∞ are given after

De�nition 2, however the issue is to �nd λ0 and the corresponding weights r such

that the approximating function f0 generates stable or unstable dynamics in (3).

As it was mentioned above, for a polynomial or monotone function f at least two

values λ0 = 0 and λN = +∞ can be tested. On the step 3 it is required to �nd

Lyapunov or Chetaev functions. If the approximating system fk is homogeneous,

then according to results presented in this work these functions can be chosen

homogeneous also.

The procedure can be also applied in a reverse way for design of complex os-

cillating systems, as well as, for the control synthesis providing oscillating behavior

in a nonlinear system [EP11]. This development will be presented later, now let

us test this procedure for several academic examples.

2.1.4. Examples of oscillating systems. Consider the system

ẋ1 = −x1 + x2 + 2 tanh(x1);

(4) ẋ2 = −2x1 + x3;

ẋ3 = −1.5x1 + 2 tanh(x1),
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Figure 2. The results of the system (4) simulation

where x = [x1 x2 x3]T ∈ R3 is the state vector, and the system (4) is in Lurie form

(linear asymptotically stable system closed by nonlinear feedback). The system (4)

has the single equilibrium at the origin, it is homogeneous in the bi-limit, namely

(rj ,λj ,fj)-homogeneous with j = 1, 2 and

r1 = [0.5 0.5 0.5], λ1 = 0, f1(x) = A1x; r2 = [0.5 0.5 0.5], λ2 = +∞, f2(x) = A2x;

A1 =




1 1 0

−2 0 1

0.5 0 0


 , A2 =



−1 1 0

−2 0 1

−1.5 0 0




with zero degree. Indeed, let us compute
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lim
λ→λ1

Λ−1r1 f(Λr1x) = lim
λ→0



λ0.5 0 0

0 λ0.5 0

0 0 λ0.5




−1 

−λ0.5x1 + λ0.5x2 + 2 tanh(λ0.5x1)

−2λ0.5x1 + λ0.5x3

−1.5λ0.5x1 + 2 tanh(λ0.5x1)




= lim
λ→0



−x1 + x2 + 2λ−0.5 tanh(λ0.5x1)

−2x1 + x3

−1.5x1 + 2λ−0.5 tanh(λ0.5x1)




=



−x1 + x2

−2x1 + x3

−1.5x1


+ 2 lim

λ→0



λ−0.5 tanh(λ0.5x1)

0

λ−0.5 tanh(λ0.5x1)


 =



−x1 + x2

−2x1 + x3

−1.5x1


+ 2



x1

0

x1




=




x1 + x2

−2x1 + x3

0.5x1


 ,

lim
λ→λ2

Λ−1r2 f(Λr2x) = lim
λ→+∞



λ0.5 0 0

0 λ0.5 0

0 0 λ0.5




−1 

−λ0.5x1 + λ0.5x2 + 2 tanh(λ0.5x1)

−2λ0.5x1 + λ0.5x3

−1.5λ0.5x1 + 2 tanh(λ0.5x1)




= lim
λ→+∞



−x1 + x2 + 2λ−0.5 tanh(λ0.5x1)

−2x1 + x3

−1.5x1 + 2λ−0.5 tanh(λ0.5x1)




=



−x1 + x2

−2x1 + x3

−1.5x1


+ 2 lim

λ→+∞



λ−0.5 tanh(λ0.5x1)

0

λ−0.5 tanh(λ0.5x1)


 =



−x1 + x2

−2x1 + x3

−1.5x1


 .

All eigenvalues of the matrix A1 have positive real parts, and all eigenvalues of the

matrix A2 have negative real parts. Therefore, the conditions of Theorem 6 hold

and the system (4) is oscillating, actually the results of its simulation presented in

Fig. (2) show, that it has the stable limit cycle.

Next, consider the system

ẋ1 = 2x1 − |0.5π − x21 − x22 − x23|x31 − 3(x1 − x2 − x3) cos(x21 + x22 + x23);

(5) ẋ2 = x2 − |0.4π − x21 − x22 − x23|x32 − 2(2x2 + x1 − 0.5x3) cos(x21 + x22 + x23);

ẋ3 = −x3 − x1 − |0.6π − x21 − x22 − x33|x33 + (2x3 + x1) sin(x21 + x22 + x33),

where x = [x1 x2 x3]T ∈ R3. The origin is the only equilibrium of the system (5).

This system is homogeneous in three limits with

r1 = [0.5 0.5], λ1 = 0; r2 = [0.5 0.5], λ2 = +∞; r3 = [0.5 0.5], λ3 = 0.5π;
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Figure 3. The results of the system (5) simulation

f1(x) =



−x1 + 3x2 + 3x3

−3x2 − 2x1 + x3

−x1 − x3


 , f2(x) = −|x|2



x31

x32

x33


 ,

f3(x) =




2x1

{1− 0.05π2[x22/(x
2
1 + x22 + x23)]}x2

{1− 0.05π2[x23/(x
2
1 + x22 + x23)]}x3




with degree d = 0 for the �rst and the third cases, d = 2 in the second case. In all

modes the approximating dynamics has the Lyapunov function V (x) = xTx, and

it is easy to verify that the vector �elds f1, f2 are asymptotically stable and f3 is

unstable. Thus, the conditions of Theorem 6 can be veri�ed twice signalizing that

the system has two zones with oscillating trajectories. The results of this system

simulation presented in Fig. (3) con�rm this conclusion, actually the system has

two limit cycles (the inner is unstable, and the outer is stable).

Further, consider the system

(6) ẋ1 = −0.5sign(x1)
√
|x1|+ x1 − 0.5x31 − x2 − x32;

ẋ2 = −0.5sign(x2)
√
|x2|+ x2 − 0.5x32 + x1 + x31,

where x = [x1 x2]T ∈ R2. The system (6) has the single equilibrium at the origin,

it is homogeneous in two limits and additionally the conditions of Corollary 1 are

satis�ed for the third limit, i.e.

r1 = [0.5 0.5], λ1 = 0; r2 = [0.5 0.5], λ2 = +∞;
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Figure 4. The illustrations for the system (6)

f1(x) = −0.5

[ √
|x1|sign(x1)√
|x2|sign(x2)

]
, f2(x) =

[
−0.5x31 − x32
−0.5x32 + x31

]
,

d = −0.25 and d = 1 correspondingly. The vector �elds f1, f2 are asymptotically

stable with Lyapunov functions

V1(x) = 0.5(x21 + x22), V2(x) = 0.25(x41 + x42).

As the third case from Corollary 1 we propose

r3 = [0.5 0.5], λ3 = 0.5, f3(x) =

[
x1 − x2
x2 + x1

]
.

The approximating vector �eld f3 is unstable with Lyapunov function V3(x) =

0.5(x21 + x22). Then

DV3(y)[λ−dΛ−1r3 f(Λr3y)−f3(y)] = −0.5λ−0.25(|y1|1.5+|y2|1.5)+λ[y31y2−y32y1−0.5(y41+y42)],

a = 1 and

sup
y∈Sr3

|DV3(y)[λ−dΛ−1r3 f(Λr3y)− f3(y)]| < 1

for all λ ∈ (λ3, λ̄3) where λ3 = 0.16 and λ̄3 = 0.55, λ3 ≤ λ3 ≤ λ̄3. Thus, according
to Corollary 1, the system (6) is locally unstable into the set

Xr3 = {x ∈ R3 : λ3 < |x1|2 + |x2|2 < λ̄3} = {x ∈ R3 :
√
λ3 < |x| <

√
λ̄3}.

This conclusion can be illustrated by the expression DV3(x)f(x), that levels are

plotted in Fig. (4),a. The expression represents the time derivative of the Lya-

punov function V3 calculated for the system (6), analysis of Fig. (4),a shows that

this derivative is strictly positive on some ring around the origin. Consequently,

Theorem 6 conditions are satis�ed twice for the system (6), and it has two limit

cycles as it is con�rmed by the results of simulation presented in Fig. (4),b.

Finally, consider the system

(7) ẋ1 = −x1 + 1.5x2 − 0.3x31 + x1x
2
2;
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Figure 5. The trajectories of the system (7)

ẋ2 = −x1 + 2x2 − 0.5x32 − x2x21,
where x = [x1 x2]T ∈ R2. The system (7) has the single equilibrium at the origin,

it is homogeneous in two limits:

r1 = [0.5 0.5], λ1 = 0; r2 = [0.5 0.5], λ2 = +∞;

f1(x) = Ax,A =

[
−1 1.5

−1 2

]
, f2(x) =

[
−0.2x31 + x1x

2
2

−0.5x32 − x21x2

]
,

and d = 1 in both cases respectively. The vector �eld f1, f2 is linear and unstable

with Chetaev function

V1(x) = 0.5(x21 + x22)

and the cone K = {x ∈ R2 : x2 ≥ |x1|} (the case of Proposition 2), f2 is asymptot-

ically stable with Lyapunov function

V2(x) = 0.25(x21 + x22).

Therefore, applying arguments similar to the ones in Theorem 6 we can substantiate

existence of the limit cycle (the trajectories are globally bounded and the single

equilibrium is unstable, therefore, there exists a compact set attracting almost all

trajectories, the system is oscillating in the sense of Yakubovich, that for planar

systems is equivalent to a limit cycle existence). The trajectories of the system are

plotted in Fig. (5).

2.1.5. Control design. Following [EP11] consider an a�ne in control non-

linear system

(8) ẋ = f(x) +G(x)u, x ∈ Rn, u ∈ Rm,

where f and the columns of G are locally Lipschitz continuous vector �elds, f(0) =

0. There exist a lot of approaches devoting to the stabilizing control u con-

struction [KKK95, SJK97] for (8), and some methods of anti-control design
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[Che99, CS06, VC96] (the controls granting the closed loop system with in-

stability property).

2.1.5.1. CLF approach. Among approaches for stabilizing control design it is

worth to mention Control Lyapunov Function (CLF) method [Art83, Son89,

E�02b, E�02a] that gives a universal formula for the control laws. For the homo-

geneous system (8) this approach has been developed in [FP00, Mou08, MP06,

NNYN09].

Definition 4. [Son89] A continuously di�erentiable and positive de�nite func-

tion V : Rn → R+ is called a CLF for the system (8) if for all x ∈ Rn \ {0},

inf
u∈Rm

{a(x) +B(x)Tu} < 0,

where a(x) = DV (x)f(x), B(x) = [DV (x)G(x)]T . Such a CLF satis�es the Small

Control Property (SCP) if for each ε > 0 there is a δ > 0 such that, if x 6= 0 satis�es

||x|| < δ, then there is some ||u|| < ε such that

a(x) +B(x)Tu < 0.

�

It is possible to show [Son89] that a continuously di�erentiable and positive

de�nite function V : Rn → R+ is a CLF for the system (8) if for all x ∈ Rn \ {0}
the property

a(x) < 0 if ||B(x)|| = 0

holds. The SCP property is equivalent to the following one:

lim
||x||→0

a(x)

||B(x)|| ≤ 0.

Now we are in position to introduce the new anti-control (destabilizing) Lyapunov

function.

Definition 5. [EP11] A continuously di�erentiable and positive de�nite func-

tion V : Rn → R+ is called an Anti-control Lyapunov Function (ALF) for the

system (8) if for all x ∈ Rn \ {0},

sup
u∈Rm

{a(x) +B(x)Tu} > 0.

Such an ALF satis�es the Small Control Property (SCP) if for each ε > 0 there is

a δ > 0 such that, if x 6= 0 satis�es ||x|| < δ, then there is some ||u|| < ε such that

a(x) +B(x)Tu > 0.

�
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Similarly, it is possible to conclude that a continuously di�erentiable and posi-

tive de�nite function V : Rn → R+ is an ALF, if for all x ∈ Rn \ {0} the property

a(x) > 0 if ||B(x)|| = 0

holds. The SCP property for ALF is equivalent to the limit one:

lim
||x||→0

a(x)

||B(x)|| ≥ 0.

Lemma 4. [Mou08] If for the system (8) there exists a CLF V : Rn → R+,

then the control

u(x) = −φ1[a(x), ||B(x)||]B(x),

φ1(a, b) =





a+ p
√
|a|p+b2q
b2 if b 6= 0;

0 if b = 0
(9)

for any 2q ≥ p > 1, q > 1 is continuous for all x ∈ Rn \ {0} and ensures the

system stabilization. If the function a and all elements of the vector function B are

r�homogeneous with degrees da and dB respectively:

a(Λrx) = λdaa(x); Bi(Λrx) = λdBBi(x), i = 1,m,

then the control (9) is elementwise r�homogeneous with degree da−dB provided that

it is possible to choose 2dBq = dap. If the CLF V is r�homogeneous with degree dV

and the vector �eld f and all columns of the matrix function G are r�homogeneous

with degrees df and dG respectively:

f(Λrx) = λdf Λrf(x); Gi(Λrx) = λdGΛrG
i(x), i = 1,m,

then the control (9) is elementwise r�homogeneous with degree df−dG and the closed

loop system (8), (9) is r�homogeneous with degree df provided that 2(dG + dV )q =

(df + dV )p.

If furthermore V satis�es the SCP, then the feedback control (9) is also contin-

uous at the origin. �

The last part of this lemma has been proven in [Mou08] for the case m = 1

only.

Lemma 5. [EP11] If for the system (8) there exists an ALF V : Rn → R+,

then the control

u(x) = −φ2[a(x), ||B(x)||]B(x),

φ2(a, b) =





a− p
√
|a|p+b2q
b2 if b 6= 0;

0 if b = 0
(10)
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for any 2q ≥ p > 1, q > 1 is continuous for all x ∈ Rn \ {0} and ensures the

system instability. If the function a and all elements of the vector function B are

r�homogeneous with degrees da and dB respectively:

a(Λrx) = λdaa(x); Bi(Λrx) = λdBBi(x), i = 1,m,

then the control (10) is elementwise r�homogeneous with degree da − dB provided

that it is possible to choose 2dBq = dap. If the ALF V is r�homogeneous with

degree dV and the vector �eld f and all columns of the matrix function G are

r�homogeneous with degrees df and dG respectively:

f(Λrx) = λdf Λrf(x); Gi(Λrx) = λdGΛrG
i(x), i = 1,m,

then the control (10) is elementwise r�homogeneous with degree df − dG and the

closed loop system (8), (10) is r�homogeneous with degree df provided that 2(dG +

dV )q = (df + dV )p.

If furthermore V satis�es the SCP, then the feedback control (10) is also con-

tinuous at the origin. �

Together with the local homogeneity concept, these two lemmas may be used to

propose a universal control formula for the system (8) stabilization/destabilization

at a speci�ed sphere around the origin.

Theorem 7. [EP11] Assume that for the system (8):

(i) there exists a r�homogeneous CLF (ALF) V0 : Rn → R+, dV = degr(V0);

(ii) the function f is (r, λ0, f0)�homogeneous with degree df ;

(iii) the columns Gi, i = 1,m of the matrix function G are (r, λ0, G
i
0)�homogeneous

with degree dG;

(iv) there exist 2q ≥ p > 1, q > 1 such that 2(dG + dV )q = (df + dV )p.

Then the system (8) with the control (9) (the control (10)) for a(x) = DV0(x)f0(x),

B(x) = [DV0(x)G0(x)]T is (r, λ0, F0)�homogeneous with degree df , where the vector

�eld F0(x) = f0(x) +G0(x)u(x) is stable (unstable). �

For 0 < λ0 < +∞, a variant of homogeneous approximating functions f0
and Gi0, i = 1,m is given in (2). Any other approach (backstepping, forwarding

or feedback linearization) generating a r�homogeneous control may substitute the

CLF/ALF controls (9), (10) in this theorem under conditions (i)�(iii). Owing the

framework of homogeneity in the multi-limit, Theorem 7 provides an approach to

design oscillating systems.

Corollary 2. [EP11]Let for some rk, k = 0, N , 0 < N < +∞ and 0 ≤ λ0 <
. . . < λN ≤ +∞ for the system (8) the following properties be true:
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(i) there exist r2j�homogeneous CLFs (ALFs) V2j : Rn → R+ and r2j+1�

homogeneous ALFs (CLFs) V2j+1 : Rn → R+ for j = 0, N/2, de�ne h2j = 1,

h2j+1 = 2 (h2j = 2, h2j+1 = 1) and dV,k = degrk(Vk) for k = 0, N ;

(ii) the function f is (rk, λk, fk)--homogeneous with degree df,k, k = 0, N ;

(iii) the columns Gi, i = 1,m of the matrix function G are (rk, λk, G
i
k)�

homogeneous with degree dG,k, k = 0, N ;

(iv) for all k = 0, N there exist 2qk ≥ pk > 1, qk > 1 such that 2(dG,k +

dV,k)qk = (df,k + dV,k)pk;

(v) the vector �elds f and Gi, i = 1,m are linearly independent for all x ∈
Rn \ {0}.

Then the system (8) with the control

u(x) = −
N∑

k=0

[%k(||x||k, λk)φhk
[ak(x), ||Bk(x)||]Bk(x)] ,(11)

ak(x) = DVk(x)fk(x), Bk(x) = [DVk(x)Gk(x)]T ,

has di�erent oscillating trajectories into the sets Xk = {x ∈ Rn : λk < ||x|| <
λk+1}, k = 0, N − 1, where the continuous weighting functions %k(λk, λk) = 1 and∑N
k=0 %k(||x||k, λk) = 1 for any x ∈ Rn. �

Note that there exist constants 0 < χk < +∞, k = 0, N such that the choice

(12) %k(||x||k, λk) = e−χkνk(||x||rk ,λk)
2

, k = 0, N

is admissible, where νk(s, λ) = s− λ, k = 0, N and if λN = +∞ then

νN (s,+∞) =





0 if s− λ′N ≥ 0;

s− λ′N if s− λ′N < 0

for some λN−1 < λ′N < +∞. The term e−χkνk(||x||rk ,λk)
2

can be replaced with

any other type of weighting functions (polynomial, for instance). For this choice

of the functions %k, k = 0, N , the normalization condition holds with some error

(dependent on χk), however the arguments of Theorem 6 remain valid.

2.1.5.2. Example. Consider a bilinear planar system:

ẋ = f(x) + g(x)u, x ∈ R2, u ∈ R,

f(x) = [x2 − 2x1]T , g(x) = [x1 x2]T .

The vector �elds f and g are linearly independent for all x ∈ R2\{0}. Choose λ0 = 0

and r0 = [1 1], then due to linearity of f and g we obtain f0(x) = f(x), g0(x) =

g(x). Take V0(x) = (x1 + x2)2 + x22, then a0(x) = 2(x1 + x2)(x2 − 4x1) − 4x1x2,

b0(x) = 2(x1 +x2)2 + 2x1x2 and V0 is a CLF. Since df,0 = 0, dg,0 = 0 and dV,0 = 2,

pick q0 = 1 and p0 = 2. Next, choose λ1 = 2 and r1 = [1 2]. According to (2) we
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Figure 6. Trajectories of the closed-loop system

obtain

f1(x) = [x2 − 0.5||x||2r1x1]T , g1(x) = g(x)

for df,1 = 1 and dg,1 = 0. For dV,1 = 4 take V1(x) = x22 + (x1|x1|+ x2)2, then

a1(x) = 2(x1|x1|+ x2)(2|x1|x2 − 0.5||x||2r1x1)− ||x||2r1x1x2,
b1(x) = 2(x1|x1|+ x2)(2|x1|x1 + x2) + 2x22

and V1 is an ALF. Therefore, q1 = 1.25 and p1 = 2 is an admissible choice. Finally,

let λ2 = +∞ and r2 = [1 1], then again f2(x) = f(x), g2(x) = g(x), V2(x) =

(x1 + x2)2 + x22 is a CLF, a2(x) = a0(x), b2(x) = b0(x), q2 = 1 and p2 = 2. In

the control (11) we put (12) with χk = 5, k = 0, 1, 2. The results of the system

simulation are shown in Fig. 6, the system has two limit cycles (the inner is unstable

and the outer one is stable).

2.1.6. Conclusion. The notion of local homogeneity is a rather weak prop-

erty (the formulas are given providing examples of approximating homogeneous

functions in common case). To apply this property it is required to �nd a sta-

ble/unstable approximating dynamics, being homogeneous the choice of Lyapunov

or Chetaev functions is straightforward for them (they have to be functions of the

corresponding homogeneous norms). The original system (1) inherits locally stabil-

ity or instability from the approximating systems (3), as well as it locally accedes

to the Lyapunov or Chetaev functions.

The presented in [EP10] conditions of oscillation existence for systems homoge-

neous in the multi-limit allows one to detect multiple oscillating modes presence for

homogeneous vector �elds in several limits. E�ciency of the proposed conditions is

demonstrated on several examples. To detect oscillations it is necessary to divide

the state space on subsets where the system is stable or unstable. For a generic

nonlinear system there exists only one approach to prove stability/instability, it

is the second Lyapunov method. The application of this method is di�cult, since

there is no technique for the Lyapunov (Chetaev) functions choice in a particular
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Figure 7. Power system structure scheme

example. The proposed approach, based on homogeneity in the multi-limit, allows

one to decompose this complex unstructured problem to several simpler ones. It is

proposed to �nd local approximating homogeneous systems, if they stable or un-

stable, then the procedure for detection of oscillations is described in subsection

2.1.3.

Partly the proposed conditions interact with the second part of Hilbert's 16th

problem that addresses the issue of evaluation of an upper bound for the number of

limit cycles in polynomial vector �elds of degree n and investigation their relative

positions (for the planar system (1)). Homogeneity is naturally satis�ed for the

polynomial vector �elds, verifying local homogeneity conditions proposed in this

work and checking conditions of Theorem 6 it is possible to estimate the maximum

number of limit cycles and localize their positions.

2.2. Adaptive control and estimation of bifurcations

In this section the adaptive output feedback control algorithm from [EF06] is

presented, which provides an exact tuning of adjustable parameters to unknown val-

ues ensuring the desired bifurcation properties of a nonlinear system in the output

canonical form. Design of the algorithm is based on passi�cation and an adaptive

observer. Several examples, like neural integrator, resonant pendulum and three

dimensional oscillator, are presented and illustrated by simulations.

2.2.1. Introduction. Bifurcation control is a relatively new area of active

research, which deals with design of a controller providing desired bifurcation prop-

erties for a given nonlinear system [AF86, CHY03, CMW00, WA95]. For an

illustration of the bifurcation control problem consider a simple electric power sys-

tem model (its structure scheme is given in Fig. (7)) [CHY03]:



2.2. ADAPTIVE CONTROL AND ESTIMATION OF BIFURCATIONS 44

θ̇ = ω,

ω̇ = 16.6667 sin(θL − θ + 0.0873)VL − 0.1667ω + 1.8807,

θ̇L = 496.8718V 2
L − 166.6667 cos(θL − θ + 0.0873)VL

−666.6667 cos(θL − 0.2094)VL − 93.3333VL + 33.3333p+ 43.333,

V̇L = −78.7638V 2
L + 26.2172 cos(θL − θ + 0.0124)VL

+104.8689 cos(θL − 0.1346)VL + 14.5229VL − 5.2288p− 7.0327,

where θ, ω are the rotation angle and angular velocity of the generator, VL, θL are

the load voltage and angle respectively. The load is represented by an induction

motor MI (see Fig. (7)) in parallel with a constant active-reactive load, where p

is the variable reactive power demand, it is the primary system parameter. In Fig.

(7), E∠0o and Em∠θ are the phasor and generator terminal voltages respectively.

For a small gradual increase of p a sequence of bifurcations appears: a periodic

orbit occurs for p = 10.818, the �rst period-doubling bifurcation for p = 10.873,

the second one for p = 10.946 and a saddle-node bifurcation for p = 11.410 (actu-

ally the bifurcation diagram even much more complex, see [CHY03] for details).

The following control problems can be associated with this system: suppression or

avoiding of the period-doubling bifurcations, delaying the bifurcations. Practically

this leads to avoidance of the voltage collapse and limiting of chaotic behavior of

the system.

Therefore, conventionally, bifurcation control is aimed at shifting position of

the bifurcation point or changing its type, i.e. changing qualitatively the behavior

of the system (bifurcation point is understood as the value of the system parameter

such that in the vicinity the system has qualitatively di�erent behavior). Such a

signi�cant change of the system properties requires good knowledge of its model.

Perhaps, that is the reason why frequently the system model is assumed to be

completely known in the existing papers. Moreover, in most papers it is assumed

that the whole state vector of the system is available for measurement. In practice,

however, in most cases the system model has uncertainties and only a part of the

system state is available for measurement.

In this section another version of bifurcation control problem is considered,

which allows one to take into account both uncertainty of the system parameters

and incompleteness of measurements. To simplify the problem statement, �rst

assume that the whole state vector of the system is available for measurement.

Consider a controlled system

(13) ẋ = f(x, p, u, t), t ≥ 0,
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where x ∈ Rn is state vector, p ∈ Rk is a parameter vector, u ∈ Rm is control;

f : Rn+k+m+1 → Rn is a vector function. The problem is to design a control law

u = U(x, t) such that the closed loop system

ẋ = f(x, p, U(x, t), t)

admits a bifurcation with desired properties for some nominal value p∗ of the vector
p, which is unknown to the control designer.

One example of such a situation is the resonance control [BS03, LCC04],

where for p = p∗ the system excited with a external periodic signal may have a

desired resonance regime. In practice, however, some parameters of the system

can di�er from the nominal values. Since bifurcation or resonance properties of

the system (13) may depend on p in a complicated and sensitive manner, small

changes in parameter values may result in signi�cant changes of the system behav-

ior. Moreover, since the system at a bifurcation point lies on the border of stability,

small changes in p may lead to instability of the system. Another similar problem

was studied recently in the papers [MS03, MSA03] motivated by biological appli-

cations. Particularly, in [MSA03] a state feedback solution of the above problem

was proposed for systems modeled with the �rst and second order linear di�erential

equations without external inputs.

The approach considered in this section is aimed at bifurcation control of the

systems with uncertainties and incomplete measurements, when the state feedback

u = U(x, t) cannot be implemented and should be replaced by an output feedback.

To solve the problem it is proposed to use the adaptive control approach. Adaptive

controller consists of two loops: main loop and adaptation one. The main loop is

modeled as

(14) u =
_

U (y, µ, t),

where y = h(x) ∈ Rp is the vector of measurable output variables and µ ∈ Rq is the
vector of adjustable parameters. We assume that the system (13), (14) possesses a

bifurcation with the desired properties for unknown value µ0 = µ0(p) of vector µ.

The adaptation loop is has the form

ν̇ = H(y, ν, t), µ = χ(ν),

where ν ∈ Rr is the state vector of adaptive controller and vector-function H

describes an adaptation algorithm. The design objective is to provide boundedness

of all the trajectories of the closed loop system (13), (14), and convergence of the

variable µ(t) to its desired value µ0 with t → +∞. Such a problem was called

tuning to bifurcation [EF06].
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Many of the standard adaptive nonlinear control schemes [FMN99, KKK95]

are not applicable to the above problem. The reason is that asymptotic stability

(or partial asymptotic stability) of the adaptive control system often holds without

convergence of adjustable parameters to their desired values. Such an assumption

is not suitable for the above problem, where for an exactly tuned system a bound-

edness is guaranteed only, and the asymptotic stability may be absent. Moreover,

the controlled system near the bifurcation point may have both stable and unstable

trajectories.

A solution for the above posed problem for a class of nonlinear system in

Lurie form with persistently exciting measured input signal has been proposed in

[EF06]. Subsection 2.2.2 contains some auxiliary results and de�nitions for the

result of [EF06] presentation. In subsection 2.2.3 the main results of [EF06] are

formulated. Application examples are presented and illustrated by simulations in

subsection 2.2.4.

2.2.2. Preliminaries. Consider a linear dynamical system

(15) ξ̇ = Aξ +Bu, ς = Cξ

with state ξ ∈ Rn, input u ∈ Rm and output ς ∈ Rl. Introduce the following

notations:

δ(s) = det (sIn −A) ,W (s) = C(sIn −A)−1B,

ϕ(s) = δ(s) det (GW (s)) ,Γ = lim
s→+∞

sGW (s),

where In is identity matrix of size n×n and G is some matrix of size m× l. Matrix

inequalities are understood in sense of quadratic forms.

Definition 6. [Fra03] System (15) is called G-minimum phase if the polyno-

mial ϕ(s) is Hurwitz (its zeros belong to the open left complex half-plane). System

(15) is called G-hyper minimum phase if it is G-minimum phase and Γ = ΓT > 0.

�

For l = m and G = Im the terms minimum phase and hyper minimum phase

are used.

Definition 7. [Fra03] System (15) is called strictly G-passive if there exist

positive de�nite quadratic forms V, S : Rn → R+ such, that V (ξ(t)) − V (ξ(0)) ≤´ t
0
ς(τ)TGu(τ)dτ − S(ξ), t ≥ 0. �

In what follows an important role will be played by the so called passi�cation

lemma. It is formulated below for the case l = m, G = Im and can be easily

extended to non-square systems.
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Lemma 6. [EF06] Let rank(B) = m. Then the following properties are equiv-

alent.

(1) System (15) is hyper minimum phase.

(2) There exist matrices P = PT > 0 and K of sizes n × n and m × m

respectively such that

P (A+BKC) + (A+BKC)TP < 0, PB = CT .

(3) There exist matrices P = PT > 0 and K of sizes n × n and m × n

respectively such that

P (A+BK) + (A+BK)TP < 0, PB = CT .

(4) There exist matrices P = PT > 0 and K of sizes n × n and n × m

respectively such that

P (A+KC) + (A+KC)TP < 0, PB = CT .

(5) There exists m ×m matrix K such, that system (15) with feedback u =

Kς + v, where v ∈ Rm is a vector of new input, is strictly passive.

(6) There exists m × n matrix K such, that system (15) with feedback u =

Kξ + v, where v ∈ Rm is a vector of new input, is strictly passive. �

Remark 1. Note that, though G-passivity of W (s) coincides with passivity

of GW (s) or with passivity of (15) with respect to new output Gς, passi�cation

problems by state and output feedback are not equivalent since the numbers of

unknowns in the gain matrix K are di�erent. However, solvability conditions for

all problems coincide. �

Remark 2. To �nd matrix K in the relations 2, 3, 4 the �high-gain� arguments

can be employed. Namely, to satisfy 2 one can choose K = −κIm, to satisfy 3 one

can choose K = −κC while to satisfy 4 one can choose K = −κB, where κ > 0 is

su�ciently large [Fra03]. �

Definition 8. [FMN99, LPPT02] Essentially bounded matrix function B(t)

is called persistently excited (PE) if there exist positive constants L and σ such that
ˆ t+L

t

B(s)B(s)T ds ≥ σIn

for any t ≥ 0. �

Lemma 7. [YW77] Consider vector-functions f , θ̃ : [0,+∞) → Rm. Assume

that θ̃(t) is continuously di�erentiable,
˙̃
θ(t) → 0 as t → +∞ and f is PE. Then

θ̃(t)→ 0 as t→ +∞ provided that θ̃(t)T f(t)→ 0 as t→ +∞. �
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The following statement is a straightforward consequence of the results of

[RO87], see also [SW01].

Lemma 8. A system

ż = f1(z, y); ẏ = f2(z, y); z ∈ Rlz , y ∈ Rly ,

where f1, f2 are smooth enough, is asymptotically stable with respect to the part of

variables y:

|y(t)| ≤ β(|(y(0), z(0))|, t), β ∈ KL,
if there exists a di�erentiable function V such that

α1(|y|) ≤ V (y, z) ≤ α1(|(y, z)|), V̇ ≤ −α3(|y|),

where αi : R+ → R+, αi(0) = 0 are continuous functions and lims→+∞ αi(s) = +∞
for i = 1, 3. �

2.2.3. Robust tuning to bifurcation. Consider a subclass of systems (13)

with control (14) in the so called Lurie form with input:

(16) ẋ = Ax+ ϕ(y) +B(y)(µ− µ0) + d, y = Cx,

where x ∈ Rn, y ∈ Rp, d ∈ Rn are state, measured output and exciting input vectors

respectively; µ ∈ Rq is vector of adjustable parameters serving as an estimate of

unknown constant vector µ0 ∈ Rq (the system is in the output canonical form).

Let the function ϕ be continuous and globally Lipschitz, B(y) be continuously

di�erentiable. The signal d : R+ → Rn is assumed to be Lebesgue measurable and

essentially bounded function of time t ≥ 0.

The problem is to �nd an algorithm of adjusting µ(t), ensuring boundedness of

trajectories of the closed loop system and the limit relation

(17) lim
t→+∞

µ(t) = µ0,

where system (16) exhibits a desired bifurcation for the case d(t) = 0, t ≥ 0.

The posed problem di�ers from the standard adaptive observer design problem

due to presence of the feedback µ in equation (16), i.e. it can be classi�ed as

adaptive observer based controller design. An additional di�culty is in that the

solutions of the system (16) may not be assumed bounded for any values of µ since

it is not the case near the bifurcation point µ = µ0. It is supposed that the signal

d(t) is directly measured, which is a realistic assumption in some applications. To

consider the systems, which are on the border of stability, let us introduce the set

D of all input functions d : R+ → Rn such that all solutions of the system (16) for

µ = µ0 are bounded. Boundedness of the system solutions in the bifurcation point

is a critical restriction imposed on properties of system (16). For example, for the
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case of integrator system the set D includes any scalar Lebesgue measurable and

essentially bounded functions having bounded integral. Thus, in this case constant

inputs are excluded from the set D.

Assumption 1. For any Lebesgue measurable and essentially bounded inputs

µ(t), d(t) and any initial conditions x(0) ∈ Rn system (16) has well de�ned solution

x(t) for all t ≥ 0 (forward completeness property). �

Assumption 2. For given signal d ∈ D solutions of the system

ẋ = Ax+ ϕ(y) + d(t) + δ(t)

are bounded for any initial conditions x(0) ∈ Rn and any Lebesgue measurable

essentially bounded input δ(t) provided that there exists a function χ ∈ KL such

that |δ(t)| ≤ χ (|δ(0)|, t), t ≥ 0. �

Assumption 3. Let B(y) = B0G(y), where G(y) is p× q matrix, B0 is a n×p
matrix and the system

(18) ξ̇ = AT ξ + CTu, ς = BT0 ξ

with state ξ ∈ Rn, input u ∈ Rp and output ς ∈ Rp be hyper minimum phase. �

Assumption 4. For given input d ∈ D signal B (y(t))
T
from equation (16) is

PE. �

Let us discuss the above assumptions. The Assumption 1 ensures existence of

original system solutions for all t ≥ 0, see also [AS99] for necessary and su�cient

conditions of forward completeness. Assumption 2 claims that the system (16)

has bounded solutions in the bifurcation point µ = µ0 for the pointed out class of

inputs from D, and this property is robust with respect to additive converging to

zero disturbance δ. Assumption 3, according to Lemma 6, means that there exist

some matrices K, P = PT > 0 of sizes (n× p) and (n× n) respectively, such that

for some α > 0:

P (A+KC) + (A+KC)TP < −αIn, PB0 = CT .

Thus, Assumption 3 provides conditions to design an adaptive observer for (16):

(19) ψ̇ = Aψ + ϕ(y)−KC(x− ψ) + d,

where ψ ∈ Rn is an estimate of x. Note that in view of equivalence between

statements 2 and 4 in Lemma 6 one may choose the gain matrix K in the form

K = B0K0, where K0 satis�es 2.
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To solve the posed problem it is suggested to adjust the estimates µ of unknown

parameters µ0 according to the following speed gradient algorithm:

(20) µ̇ = −γG(y)T (y − Cψ), γ > 0.

Therefore, the proposed adaptive observer based controller is described by equations

(19), (20). The main result of [EF06] is as follows.

Theorem 8. Let for the system (16) Assumptions 1�4 hold and the matrix K

is chosen to satisfy property 4 of Lemma 6. Then solutions of the system (16),

(19), (20) are bounded and the limit relation (17) holds. �

The proof is based on the analysis of the dynamics of the observer estimation

error e = x− ψ:

(21) ė = (A+KC) e+B (y(t)) (µ− µ0).

Continue with a more complex subclass of systems (13), which includes the

system (16) in feedback cascade with a non asymptotically stabilizable by output

feedback system:

(22) ẋ = A1x+A2z + ϕ1(y) +B(y)(µ− µ0) + d1(t),

(23) ż = A3z + ϕ2(y) + d2(t), y = Cx,

where x ∈ Rn and z ∈ Rl are state vectors of systems (22) and (23); y ∈ Rp

as before is available for measurements output; d = (d1, d2) ∈ Rn+l is vector of

external excitation input. The signal d : R+ → Rn+l is Lebesgue measurable and

essentially bounded function of time t ≥ 0. Functions ϕ1, ϕ2 are continuous and

globally Lipschitz, B(y) is continuously di�erentiable. Set D for the systems (22)

and (23) is de�ned as before.

Assumption 5. For any Lebesgue measurable and essentially bounded inputs

µ(t), d(t) and any initial conditions x(0) ∈ Rn, z(0) ∈ Rl the system (22), (23) is

forward complete. �

Assumption 6. For d ∈ D the solutions of the system

ẋ = A1x+A2z + ϕ1(y) + d1(t) + δ1(t);

ż = A3z + ϕ2(y) + d2(t) + δ2(t),

are bounded for any initial conditions x(0) ∈ Rn, z(0) ∈ Rl and any Lebesgue

measurable essentially bounded input δ(t) = (δ1(t), δ2(t)) provided that there exists

a function χ ∈ KL with the property |δ(t)| ≤ χ (|δ(0)|, t), t ≥ 0. �
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Assumption 7. Let B(y) = B0G(y) and there exist matrices K1, K2 of sizes

(n × p), (l × p) and positive de�nite symmetric matrices P1, P2 with dimensions

(n× n), (l × l) such that the inequalities

P1(A1 +K1C) + (A1 +K1C)TP1 < −k1In, P1B0 = CT ,

AT3 P2 + P2A3 ≤ −k2Il, P1A2 = CTKT
2 P2

hold for some constants k1 > 0, k2 ≥ 0. �

The above assumption for system (22) is equivalent to the hyper minimum

phase property of system (18) with the minimum phase property of matrix A3

under auxiliary constraint P1A2 = CTKT
2 P2.

Assumption 8. For a given input d ∈ D, the signal B (y(t))
T
from equation

(22) is PE. �

Assumptions 5, 6 and 8 for the systems (22), (23) are analogues of Assumptions

1, 2 and 4 for the system (16). Assumption 7, additionally to properties introduced

in Assumption 3 for the system (22), �xes the Lyapunov stability property of linear

part of the system (23). The observer based controller for (22), (23) has form:

(24) ψ̇ = A1ψ +A2ζ + ϕ1(y(t))−K1(y(t)− Cψ) + d1(t);

(25) ζ̇ = A3ζ + ϕ2(y(t)) +K2(y(t)− Cψ) + d2(t),

where ψ ∈ Rn, ζ ∈ Rl are estimates of x, z. Adaptation algorithm for (24), (25)

preserves its form (20).

Theorem 9. [EF06] Let for the system (22), (23) Assumptions 5�8 hold. Then

solutions of the system (20), (22)�(25) are bounded. Furthermore, let at least one

of the following conditions hold:

(1) k2 > 0;

(2) A2 = 0;

(3) A3A2p = 0 for any p ∈ X0 ⊂ Rl, where X0 is subspace of the system

ṡ = A3s solutions corresponding to pure imaginary eigenvalues of matrix

A3 and B (y(t)) is a non constant signal of time t ≥ 0 for any given d ∈ D;
(4) A3A2p 6= 0, p ∈ X0 and B (y(t)) = B.

Then the limit relation (17) holds.

(5) Additionally, if A3A2p 6= 0, p ∈ X0, then the relation (17) holds for

almost all d ∈ D. �

Let us discuss how to verify auxiliary conditions of the Theorem 9. The �rst

condition (k2 > 0) can be established when applying Assumption 7. The second
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Figure 8. Trajectories for neural integrator

condition (A2 = 0) follows from the structure of the system equations. In fact the

�rst two conditions of the Theorem 9 correspond to situation considered in Theorem

8. To verify the last three conditions it is necessary to compute all eigenvalues of

matrix A3 and determine existence of a pure imaginary eigenvalue. If system (23)

has not pure imaginary eigenvalues (or they are present, but their in�uence is

annihilated by the matrix A2) and B (y(t)) is not a constant matrix, then the third

condition is true. If for time varying B (y(t)) the system (23) has pure imaginary

eigenvalues, which govern A2ε(t), then it is necessary to compare frequencies of the

exciting input signal d and the known frequencies of the system (23). If frequencies

are di�erent, then the �fth condition holds. If B (y(t)) is a constant matrix, then

the fourth condition should be applied.

2.2.4. Applications.

2.2.4.1. Neural integrator. In work [MSA03] the following model of neural

integrator was used

ẋ = (µ− µ0)x+ d

to design a dynamical feedback µ providing bifurcation tuning for the case d = 0.

For this system with y = x, the adaptive observer equations (19), (20) take form:

ψ̇ = k1(y − ψ) + d(t); µ̇ = −γy(y − ψ), γ > 0.

Assumption 1 is satis�ed as for a linear autonomous system, Assumption 2 holds for

d(t) = sin(ωt), ω > 0, which forms the set of admissible inputs D during simulation.

Assumption 4 also follows for such class of inputs. Theorem 8 can be applied. The

examples of system trajectories are shown in Fig. (8) for µ0 = 1, ω = 1, γ = 1 and

k1 = 1.

2.2.4.2. Resonance tuning of a pendulum. Consider the pendulum equations

ẋ1 = x2; ẋ2 = (µ− ω2) sin(x1) + d(t),

where ω > 0 is an unknown natural frequency of the pendulum; µ ∈ R is the

adjusted parameter, as before, that is introduced to tune pendulum frequency to the
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desired value; d(t) = sin(ωdt) is a sinusoidal signal with known exciting frequency

ωd > 0. The problem is to entrain the resonance regime of the pendulum by

diminishing the tuning error µ0 = ω2−ω2
d [BS03]. If the frequency of the pendulum

and the frequency of the external input d coincide, then pendulum solution exhibits

oscillations with an in�nitely growing amplitude. Input d can be generated by the

designer with known frequency ωd, while the natural frequency of the pendulum ω

may depend on uncertain and unpredictable external factors, and its exact value is

unmeasured. Let y = (x1x2)T and the pendulum equations can be rewritten in the

form (16) as follows

ẋ1 = x2; ẋ2 = −ω2
d sin(x1) + (µ− µ0) sin(x1) + d(t),

where µ0 = ω2−ω2
d. Note, that since the state space vector of the plant is available

for measurements we can build the observer based controller tacking into account

dynamics of x2 variable only. Observer equations (19), (20) take the form

ψ̇2 = −ω2
d sin(y1) + k1e2 + d(t);

µ̇ = −γ sin(y1)e2, e2 = y2 − ψ2.

It is possible to show that conditions of Theorem 8 hold in this example. Particu-

larly PE condition is satis�ed for B(y) = [0 sin(y1)]T :
ˆ t+L

t

B(y)TB(y)ds =

ˆ t+L

t

sin(y1(t))2ds ≥ σ > 0.

The last inequality holds because d(t) is not constant and, therefore, y1(t) does not

tend to a constant. A trajectory of this system simulation is shown in Fig. (9) for

ω =
√

3, ωd = 1, γ = k1 = 1.

2.2.4.3. Oscillator with changing zero dynamics. Consider a dynamical system

of the form (22), (23):

(26)
ẏ = z1 + (µ− µ0)y;

ż1 = − sin(y) + z2; ż2 = −2z1 + d(t),

which in bifurcation point µ = µ0 is described as a series connection of nonlinear

pendulum subsystem (y, z1) and linear oscillating second order subsystem (z1, z2)

forced by external input d. For bounded inputs µ(t) and d(t) this system has the

right hand side bounded by the norm of space vector, the last fact means that the

system admits Assumption 5. Using mentioned decomposition of the system on

series connection of subsystems it is possible to show that for d(t) = a sin(ωt) with

a ∈ R, ω ∈ R+ \
{√

2
}
this system possesses conditions of Assumptions 6 and 8.

Assumption 7 also holds for adaptive observer:

ψ̇ = ζ1 + k1(y − ψ);

ζ̇1 = − sin(y) + (y − ψ) + ζ2;

ζ̇2 = −2ζ1 + d(t);

µ̇ = −γy(y − ψ).
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Figure 9. Resonance regime tuning for the pendulum trajectories
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Figure 10. Trajectories for the complex oscillator (26)

Here A2 6= 0 while solutions of y-subsystem for the pointed class of inputs d perform

nonlinear oscillations with a di�erent frequency. Thus �fth condition of Theorem

9 is satis�ed. The system (26) trajectories are presented in Fig. (10) for µ0 = 1,

k1 = 0.5, γ = 5, a = 1 and ω = 2.
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2.2.5. Conclusions. In this section an adaptive control problem is discussed,

which is oriented on adaptive tuning to bifurcation regimes of nonlinear systems.

This problem formulation di�ers from the one proposed in [MS03, MSA03], since:

(A): the presence of an external exciting input is taken into account,

(B): more general form of nonlinear controlled system is considered,

(C): only part of the system variables is assumed to be available for mea-

surements.

An adaptive output feedback controller is proposed in [EF06], which tunes a nonlin-

ear uncertain dynamical system to its bifurcation point under some mild conditions.

The solution is based on the design theory of passi�cation-based adaptive observers.

Proposed approach can be applied for any type of bifurcations and especially in the

case when the plant possesses unstable behavior near the bifurcation point. Rather

restrictive assumption on relative degree of the system has been relaxed in the

paper [EF05].

2.3. Phase resetting control

The problem of phase resetting for oscillating systems is considered in this sec-

tion. An elementary control strategy is reviewed, proposed in [ESS09], which is

based on the phase response curve (PRC) model (the �rst order reduced model of

originally nonlinear system obtained for the inputs with small amplitude). Per-

formance of the obtained solution is illustrated on a popular model of circadian

oscillations (a biological system).

2.3.1. Introduction. Any periodical oscillating mode can be characterized

by its amplitude, frequency (or frequencies spectrum), and phase. Each of these

characteristics can be controlled in various ways [ABK01, Kur00]. One of the

problems, associated with control of periodical oscillations, consists in phase or

frequency resetting by an external (periodical) input, i.e. in the assignment of

desired values for phase and frequency applying some (may be periodical) control

input [Ble88, GGS81, Win80]. Frequently, when it is necessary to reset both

frequency and phase, this problem is called entrainment [Izh07, PRK01]. This

problem is also usually addressed in synchronization framework for oscillators, when

external input is just an output of another oscillator, which phase and frequency

become desired for resetting [PRK01]. In this section we will focus our attention

on phase resetting problem only.

Despite this problem is rather old and practically important [Tas99] it was not

widely addressed for nonlinear oscillators in control theory literature. There exist a

few approaches to solve the problem. The �rst one is based on master-slave synchro-

nization theory, when master oscillator attempts to provide its own phase to slave
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one. This approach is very promising, but it assumes rather serious modi�cations

of slave equations, similarity of both systems and, frequently, measurements of all

states. The approach is suitable for a technical system synthesis [Kur00], but it

meets serious obstructions for application in biology, physics or chemistry. Another

line of researches deals with optimal or predictive control application for phase re-

setting [BSD07, BSD08, FP04]. These methods require availability of full exact

information on the model of oscillators and its coe�cients that also makes hard its

application. The third approach uses assumption on weak coupling/excitation, i.e.

it imposes relatively small amplitude for external input [PRK01], that is a mild or

natural restriction in some applications. The last approach is based on PRC appli-

cation and Poincaré phase map approach [ESS09, GG82, GNH+02, PRK01].

The advantages of this approach are that PRC is a very simple tool commonly

recognized as one of the main tools for phase resetting dynamics investigation in

biology [Izh07] and that it is a scalar map of scalar argument, which completely

describes phase resetting caused by a disturbing �nite-time input (even for high

dimension systems). Moreover, PRC can be measured experimentally even for os-

cillators, which have not well investigated detailed models.

In this section, following [ESS09] we are going to study the last approach:

PRC method for phase resetting. A control strategy for timing of input �pulses�

based on PRC is presented.

2.3.2. Motivation and problem statement. A common illustration of phase

resetting is the jet-lag that most scientists experience when traveling to a confer-

ence. The organism needs some time to �reset� the phase of its initial circadian

rhythm to shifted environmental light conditions. This problem prompted biol-

ogists to study phase resetting and entrainment mechanisms in simple models of

circadian oscillations. Let us consider a simple biological model of circadian oscil-

lations in Neurospora [LGG99] often used as a reference example and presented

in Fig. (11). The mathematical model writes
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(27)

Ṁ = (vs + u)
Kn

I

Kn
I +Fn

N
− vm M

Km+M ;

ḞC = ksM − vd FC

Kd+FC
− k1FC + k2FN ;

ḞN = k1FC − k2FN ,

where the variables M > 0, FC > 0, FN > 0 denote the concentrations (de�ned

with respect to the total cell volume) of the FRQ mRNA, and of the cytoplasmic

and nuclear forms of FRQ respectively. Parameter vs de�nes the rate of FRQ

transcription. The control u models in�uence of light, which increases rate of FRQ

transcription. Description of other parameters appearing in these equations can be

found in [LGG99]; the used values are the following (in nM and h):

vm = 0.505, vd = 1.4, ks = 0.5, k1 = 0.5, k2 = 0.6,

KM = 0.5,KI = 1,Kd = 0.13, n = 4, 1 ≤ vs + u ≤ 2.5.

For all these values the system (27) possesses a unique unstable equilibrium and an

asymptotically stable limit cycle. For di�erent values of the parameter 1 ≤ vs ≤ 2.5

period of the limit cycle lies in the range 18.87 ≤ T ≤ 25.2.

It is shown in [LGG99, Tas99] that periodical excitation by light input results

in phase and frequency entrainment of the natural circadian oscillations. This

means that application of a suitable input u over a periodic time window close to

the natural limit cycle period T may entrain and/or shift the phase of the periodic

solution of (27). In the works [BSD07, BSD08, LGG99] the input has been

modeled as a sequence of pulses of limited duration and amplitude (for instance,

one unique pulse of duration Tw = 1 hr and amplitude ∆ = vs/10 could be applied

every 24 hrs). In mathematical biology the steady state phase shift ∆φ that results

from a particular (brief) input is commonly studied via the PRC [Izh07, PRK01].

The goal of this section is to design a control for phase resetting based on PRC.

In the subsection 2.3.3, the PRC map is introduced and phase model is derived. In

subsection 2.3.4 two control algorithms are presented. Application of these controls

for motivating example is demonstrated in section 2.3.5.

2.3.3. Deriving a phase model in the vicinity of a stable limit cycle.

In this subsection the derivation of a phase model starting from di�erential equation

that has a stable limit cycle is summarized. Details of the standard procedure can

be found in [Izh07, PRK01].

2.3.3.1. Linearized model. Consider a (smooth) dynamical system

(28) ẋ = f(x, u), x ∈ Rn, u ∈ R

and assume that for u(t) ≡ 0, t ≥ 0 the system (28) has (non-constant) T -periodical

solution γ(t) = γ(t + T ) ∈ Rn, t ≥ 0. This means that the corresponding limit

cycle is described by the set Γ = {x ∈ Rn : x = γ(t), 0 ≤ t < T}, that attracts a
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non-empty open set A of initial conditions in Rn and that the linearized system

(29) δẋ(t) = A(t)δx(t) + b(t)u,

A(t) =
∂f(x, u)

∂x

∣∣∣∣
x=γ(t)

, b(t) =
∂f(γ(t), u)

∂u

∣∣∣∣
u=0

has n− 1 multipliers strictly inside the unit cycle and one multiplier equals to one

[YS75], where δx(t) = x(t)−γ(t) and the matrix function A and the vector function

b are T -periodical due to the properties of γ. Multipliers are the eigenvalues of the

monodromy matrix M = Φ(T ) de�ned via the fundamental matrix function Φ of

the system (29) and the solution of adjoin system Ψ:

Φ̇(t) = A(t)Φ(t),Φ(0) = I;

Ψ̇(t) = −A(t)TΨ(t),Ψ(0) = I,

I is the identity matrix, Φ(t)TΨ(t) = I.

2.3.3.2. Phase and isochron variables. Any point x0 ∈ Γ can be characterized

by a scalar phase φ0 ∈ [0, 2π), which uniquely determines the position of the point

x0 on the limit cycle Γ no matter how big is the dimension of the state space

Rn [Izh07, PRK01]. One can de�ne a smooth bijective phase map ϑ : Γ →
[0, 2π) assigning the corresponding phase φ0 to any point x0 on the limit cycle,

i.e. φ0 = ϑ(x0). Any solution of the system (28) on the cycle x(t, x0, 0), x0 ∈ Γ

can be related to γ(t) via phase φ0 due to x(t, x0, 0) = γ(t + φ0ω
−1), ω = 2π/T .

Thus φ0 = ϑ(x0) =ϑ[γ(φ0ω
−1)] for any x0 ∈ Γ, then ϑ−1(φ) = γ(φω−1). The

phase variable φ : R+ → [0, 2π) is de�ned for trajectories x(t, x0, 0), x0 ∈ Γ as

φ(t) = ϑ[x(t, x0, 0)] =ϑ[γ(t+φ0ω
−1)]. Due to periodical nature of γ(t) the function

φ(t) is also periodical, moreover the function ϑ can be de�ned in a particular way

providing that φ(t) = ωt+ φ0, φ̇(t) = ω [Izh07, PRK01].

Phase notion can be extended to any solution x(t, x0, 0) starting in the attracted

set x0 ∈ A. By de�nition of the attraction, for all x0 ∈ A there exists θ0 ∈ [0, 2π)

such that lim
t→+∞

|x(t, x0, 0) − γ(t + θ0ω
−1)| = 0, where θ0 is the asymptotic phase

of the point x0. Then there exists the isochron map υ : A → [0, 2π) connecting

a point x0 ∈ A and the corresponding asymptotic phase θ0, i.e. θ0 = υ(x0) and

υ(x0) = ϑ
[
lim
t→0

γ(t+ θ0ω
−1)
]

= lim
t→0

ϑ[γ(t + θ0ω
−1)] = θ0. The asymptotic phase

variable θ : R+ → [0, 2π) is derived as θ(t) = υ[x(t, x0, 0)], t ≥ 0 (it is supposed that

x(t, x0, 0) ∈ A for all t ≥ 0). Locally around Γ the property θ̇(t) = ω is satis�ed

since by de�nition the map υ coincides with the smooth map ϑ for all x ∈ Γ.

The notion of asymptotic phase variable can be extended to a generic u(t) 6= 0,

t ≥ 0 providing that the corresponding trajectory x(t, x0, u) stays into the set A

for all t ≥ 0. In this case the asymptotic phase variable can be de�ned in a trivial

way as θ(t) = υ[x(t, x0, u)], t ≥ 0. Then the variable θ(t′) at an instant t′ ≥ 0
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evaluates the asymptotic phase of the point x(t′, x0, u) if one would pose u(t) = 0

for t ≥ t′. Dynamics of the asymptotic phase variable θ(t) in the generic case for

u(t) 6= 0, t ≥ 0 is hard to derive. A local model obtained in a small neighborhood

of the limit cycle for in�nitesimal inputs is presented below [Izh07, PRK01].

2.3.3.3. Asymptotic phase dynamics. A phase model can be de�ned for the

variable θ from the linearized model (29) along the limit cycle: we only consider

solutions x(t, x0, u) with initial conditions x0 ∈ Γ and that asymptotically converge

to Γ.

To derive the model note that for u(t) = 0, t ≥ 0 by de�nition γ̇(t) = f(γ(t), 0)

for all t ≥ 0, then γ̈(t) = A(t)γ̇(t) and γ̇(t) = Φ(t)γ̇(0). Therefore, γ̇(0) = f(γ(0), 0)

is the left eigenvector of the matrix M for the eigenvalue λ1(M) = 1. There exists

the right eigenvector m ∈ Rn such that mTM = mT and mT γ̇(0) = ω, ω = 2π/T .

Finally, de�ne Q(t) = mTΨ(t)T then

Q(t)f(γ(t), 0) = mTΨ(t)T f(γ(t), 0) = mTΨ(t)TΦ(t)γ̇(0) = mT γ̇(0) = ω.

Therefore Q(t) = ∂υ(x)/∂x|x=γ(t) + ζ(t), where ζ(t) is a row-vector orthogonal to

f(γ(t), 0) (for example, ζ(t) = m̃T
i Ψ(t) for some right eigenvector m̃i ∈ Rn such

that m̃T
i M = λi(M)m̃T

i for the eigenvalue λi(M) 6= 1, i = 2, ..., n). The map

∂υ(x)/∂x|x=γ(t) is independent on perturbations orthogonal to the limit cycle �ow

f(γ(t), 0) (only shifts in the direction of the limit cycle are tabulated). Since m is

the eigenvector corresponding to movement on the limit cycle, then by the same

reason Q(t) = mTΨ(t)T is also independent of perturbations orthogonal to the

limit cycle �ow f(γ(t), 0). Therefore, the convention Q(t) = ∂υ(x)/∂x|x=γ(t) =

mTΨ(t)T is adopted. The �rst equality explains the physical meaning of Q(t),

while the last equality used for numerical calculation. The function Q(t) is T -

periodic by construction. The function Q(φω−1) for phase φ ∈ [0, 2π) is called

in�nitesimal PRC [Izh07]. In�nitesimal PRC Q serves as a delta-impulse response

characteristics in the direction of the limit cycle.

The linearized model along the trajectory x(t) satis�es:

θ̇(x(t)) = θ̇(γ(t) + δx(t)) = ∂θ(x)/∂x|x=γ(t)+δx(t) [f(γ(t), 0) +A(t)δx(t) + b(t)u]

and the �rst approximation at the point δx = 0 has form

(30) θ̇ = ω +Q(t)b(t)u(t).

The model (30) is derived around the solution γ(t), due to periodicity for any other

solution γ(t+ φω−1) and u the model has similar form [Izh07, PRK01, Win80]:

(31) θ̇ = ω +Q(t+ φω−1)b(t+ φω−1)u(t).
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2.3.4. PRC-based control design. This subsection presents the main re-

sults of the paper [ESS09] and it starts with the PRC-based model introduction

and PRC control map de�nition. Next, two control algorithms are given.

2.3.4.1. PRC-based model. Let θd(t) = ωt be the reference for the variable θ,

then χ(t) = θ(t) − θd(t) ∈ [0, 2π) is the resetting error and according to (31) we

have:

(32) χ̇ = Q(t+ φω−1)b(t+ φω−1)u(t).

Assume that u is a �nite-time input, i.e. u(t) 6= 0 for all 0 < t < Tw and u(t) = 0 for

all t ≥ Tw, then integration of (32) yields for t ≥ Tw (note that χ(0) = θ(0) =φ(0) =

ϑ(x(0)) for all x(0) ∈ Γ):

χ(t) = χ(0) +

ˆ t

0

Q(τ + χ(0)ω−1)b(τ + χ(0)ω−1)u(τ)dτ(33)

= χ(0) + PRC(χ(0)),

where

PRC(φ) =

ˆ Tw

0

Q(τ + φω−1)b(τ + φω−1)u(τ)dτ.

In (33) the map PRC is de�ned for particular input u ∈ L∞, such kind of PRC de�-

nition is rather common [Izh07, GS06]. The map (33) coincides with in�nitesimal

PRC Q in the case when input u is a delta-impulse and b(t) = b.

From (33) we conclude that for a �nite-time input the corresponding phase

changes become apparent after the window Tw in the �rst order approximation

model (32). In the original nonlinear system (28), the convergence of the phase

resetting error to the value χ(0) + PRC(χ(0)) may be delayed, the length of this

shift depends on the accuracy of the �rst order approximation. Since (33) de�nes

the value of χ(t) for all t ≥ Tw it is proposed to choose some Ts > Tw and consider

χ(t) = χ(0) + PRC(χ(0)) for t ≥ Ts only.
Assume now, that a train of �pulses� is given, i.e. there exists a series of time

instants ti, i ≥ 0, t0 ≥ 0, ti+1 − ti ≥ Ts such that the input u is activated at time

instants ti for all i ≥ 0. Denote χi = χ(ti), i ≥ 0. Let θ0 ∈ [0, 2π) be the initial

phase value, then θ(t) = ωt + θ0 for 0 ≤ t ≤ t0 and χ0 = θ0. At the time instant

of the input activation we have θ(t0) = ωt0 + θ0, then from (33) after the �rst

�nite-time input

χ1 = χ0 + PRC(θ(t0)) = χ0 + PRC(ωt0 + χ0).

The error at time instants t0 and t0 + Ts equals χ0 and χ1 respectively, and θ(t) =

ωt+χ1 for t ≥ t0 +Ts. Therefore, θ(t1) = ωt1 +χ1 and linearization of the system

(28) dynamics has to be carried out around the new trajectory γ(t + θ(t1)ω−1),

then according to (33) the new phase resetting error value after the second �pulse�
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is

χ2 = χ1 + PRC(θ(t1)) = χ1 + PRC(ωt1 + χ1).

Again θ(t) = ωt+ χ2 for t ≥ t1 + Ts, the phase θ(t2) = ωt2 + χ2 and from (33):

χ3 = χ2 + PRC(θ(t2)) = χ2 + PRC(ωt2 + χ2).

Repeating these calculations for all i ≥ 0 we obtain:

(34) χi+1 = χi + PRC(θ(ti)) = χi + PRC(ωti + χi),

where we assume that all summation operations in the right-hand side of (34) are

done by modulo 2π. If ti = iT , then the formula (34) is reduced to

χi+1 = χi + PRC(χi),

which is the Poincaré phase map [Izh07, PRK01]. The equation (34) describes

phase resetting evolution originated by a train of �pulses� under condition of the

�rst approximation model validity for the system (28).

There exists one �free� parameter ti in the model (34) available for adjustment

(the time instant when the next input u is introduced). Assigning ti, i ≥ 0 one may

ensure desired phase resetting for the system (28). Let $i = θ(ti) ∈ [0, 2π), i ≥ 0

be the controlled phase of the �pulse� u activation in (28), then the model (34) can

be rewritten as follows:

(35) χi+1 = χi + PRC($i), i ≥ 0.

The problem is to design sequences of $i, i ≥ 0 providing phase resetting from any

initial phase χ0 ∈ [0, 2π) to the zero. The model (35) is the �rst order discrete

nonlinear system, such class of systems is well investigated in the control theory

literature [Oga06] (that is an advantage of the model (35) comparing it with (28)).

In the work [ESS09] two strategies for $i design have been proposed, one

is open-loop control and another is feedback based control algorithm. Both are

described below.

2.3.4.2. Open-loop PRC-based control. This strategy is based on the model (35)

and it does not require any additional measured information about actual current

phase of the system. A peculiarity of the system (35) and the problem of phase

resetting consists in that θ ∈ [0, 2π), thus shift of the phase in both directions is

possible for the resetting. To choose the direction one has to analyze which strategy

(decreasing or increasing of the phase) leads to fastest resetting (of course this has

sense only if PRC map takes negative and positive values).

In this section for brevity of exposition we assume that PRC map has partic-

ular properties (it is similar to type II PRC from [HMM95] or type 1 PRC from
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[Win80]). The corresponding control strategies for other types of PRC maps can

be easily deduced from this main case.

Assumption 9. The map PRC is continuous and it has one zero φ0s ∈ [0, 2π)

with negative slope and another φ0u ∈ [0, 2π) with positive slope, φ0s < φ0u. �

Since the map PRC is 2π-periodical from (33), the zeros can be arranged in the

required order φ0s < φ0u changing the initial point on the limit cycle. Assumption 9

completely describes the form of PRC, in this case

φmax = arg sup
φ∈[0,2π)

PRC(φ), PRCmax = PRC(φmax);

φmin = arg inf
φ∈[0,2π)

PRC(φ), PRCmin = PRC(φmin),

and φ0s < φmin < φ0u < φmax, PRCmax > 0, PRCmin < 0. Obviously, φ0s corre-

sponds to the stable equilibrium of the system (35) (for �zero� controls $i = χi,

i ≥ 0) and φ0u is the unstable one.

De�ne

ninc = (2π − χ0)/PRCmax, ndec = −χ0/PRCmin,

where integer parts of the numbers ninc and ndec determine the number of steps re-

quired for resetting of the initial phase χ0 into a neighborhood of the zero applying

increasing or decreasing strategy. These numbers are minimal since for their calcu-

lation we use the maximum amplitudes of the shifts PRCmax, PRCmin achievable in

both directions. Next, in this neighborhood the phase can be resettled to the desired

one applying one step shift with the same strategy due to assumed continuity of the

map PRC. Thus the resetting requires N+1 �pulses�, N = round[min{ninc, ndec}],
where the function round[n] returns the greatest integer not bigger than n. The

following control is proposed to solve the problem:

(36) $i =




φmax if ninc ≤ ndec;
φmin if ninc > ndec,

0 ≤ i < N ;

(37) PRC($N ) + χN = 0;

(38) χi =




χ0 + PRCmaxi if ninc ≤ ndec;
χ0 + PRCmini if ninc > ndec,

0 < i ≤ N,

where the last step control $N+1 is calculated as a solution of the equation (37),

where it is assumed that χi+1, 0 ≤ i < N are derived via (35) with the control (36)

substitution (the formula (38)) and χN+1 = 0 due to (37). This strategy has been

called �open-loop� since it does not establish any relations with the real values of

phase variable.
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Finally, the values of time instants ti, 0 ≤ i ≤ N of inputs u activation should

be calculated using the values $i, χi, 0 ≤ i ≤ N from (36), (37) and keeping in

mind that ti+1 − ti ≥ Ts, 0 ≤ i ≤ N (the condition of the models (34) and (35)

validity), and that all variables live on the cycle, i.e. θ ∈ [0, 2π). Calculating the

values of phase at the end of the �pulse� window we obtain:

θi+1 = θ(ti + Ts) = [ω(ti + Ts) + χi+1]mod 2π

for all 0 ≤ i < N , then we have

t0 = g[($0 − χ0)ω−1],

(39) ti+1 = ti + Ts + g[($i+1 − θi+1)ω−1], 0 ≤ i < N,

g(τ) =




τ if τ ≥ 0,

τ + T otherwise.

The formula (39) realizes inverse operation after summations by modulo 2π imple-

mented for values of variables θi, χi and $i computation, −T < ($i− θi)ω−1 < T .

Map g takes into account relation between θ(ti+Ts) and $i+1, if θ(ti+Ts) ≤ $i+1

then the next �pulse� can be activated immediately, if θ(ti + Ts) > $i+1 then it is

necessary to wait one �turn� and the input has to be applied on the next period T

only.

2.3.4.3. Feedback PRC-based control. This strategy assumes on-line measure-

ments of the current phase value after each �pulse� application that increases ac-

curacy of the resetting. To realize this strategy it is enough to replace in (36),

(37) the values χi+1 generated by (38) with available for measurements values

χi+1 = χ(ti + Ts), i ≥ 0. By measurements we mean its calculation based on the

available measurements for the state vector x(ti + Ts) (or a component).

The overall strategy for control design is similar to (36)-(38) for i ≥ 0:

(40) niinc = (2π − χi)/PRCmax, n
i
dec = −χi/PRCmin,

(41) $i =





φmax if 1 ≤ niinc ≤ nidec;
φmin if niinc > nidec ≥ 1;

`(χi) otherwise,

where the function `(χ) represents a solution of the equation PRC(`(χ)) + χ = 0,

then

t0 = g[($0 − χ0)ω−1],

and for i ≥ 0,

θi+1 = θ(ti + Ts) = [ω(ti + Ts) + χi+1]mod 2π,
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Figure 12. PRC curves of the system (27)

(42) ti+1 = ti + Ts + g[($i+1 − θi+1)ω−1].

The feedback control strategy persists under convergent perturbations, that is its

advantage with respect to the open-loop controls. However, the feedback approach

requires more measurement information and it has more computational complexity.

Application of the open-loop strategy becomes more reliable if on-line measurements

are not realizable or too noisy.

Both strategies optimize the number of phase resetting steps, it can be nat-

urally modi�ed to guarantee uniform error χ decreasing choosing direction with

minimal distance to zero. Let us demonstrate e�cacy of the proposed controls on

the motivating example.

2.3.5. Application to motivating example. In this subsection we apply

the presented control strategies to the circadian oscillator in Neurospora (27), which

is characterized by a limit cycle and its in�nitesimal PRCs (in Fig. (12),a the

functions Qi, 1 ≤ i ≤ 3 are plotted).

We use a very simple pulse input de�ned as

u(t) =





∆ if t < Tw;

0 otherwise

with ∆ = 0.1 and Tw = 1. Such an input can induce up to 1.04h of phase advance

and 1.95h of phase delay (in Fig. (12),b the PRC maps (33) are presented, curve

PRC0 corresponds to the nominal case). By varying the strength and the duration

of the input pulses, we can generate a family of PRCs (the curves PRC1-PRC4 in

Fig. (12),b). An increase of ∆ does not modify the shape of the PRC but enlarges

its amplitude (in Fig. (12),b compare PRC0 with PRC1 for ∆ = 0.2, Tw = 1 and

PRC2 for ∆ = 0.5, Tw = 1). An increase of Tw modi�es amplitude, zeros and

slopes of the PRC (see PRC3 for ∆ = 0.1, Tw = 5 and PRC4 for ∆ = 0.1, Tw = 2

in Fig. (12),b).

In Fig. (13) we demonstrate the results of simulation for the reference input.

This �gure represents evolution of the resetting error χ for three cases: χa for the
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Figure 13. Results of simulation without disturbances
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Figure 14. Results of simulation with disturbances

open-loop discrete model (36)-(38), χo presents resetting error for the open-loop-

controlled system (27), and χf shows the error of the feedback control for the system

(27). Curves uo and uf correspond to the control in open-loop and feedback cases

(in scale multiplied by 10). The curve χa indicates the reference behavior for the

variable χo according to (36)-(39). If Ts is su�cient, the discrete model (36)-(38)

captures the main behavior of the nonlinear model and χo accurately follows χa
(during simulation Ts = T ). The feedback control is a little more e�cient than the

open-loop one.

In Fig. (14) we introduce multiplicative perturbations in the amplitude of our

control inputs (χa, χo, χf , uo and uf denote the same variables). As expected,

the feedback loop strategy (40)-(42) is much more robust than the open-loop one

(36)-(39).
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2.3.6. Conclusion. The idea of [ESS09] for a phase resetting control de-

sign based on PRC is presented. Two control algorithms are discussed performing

open-loop and feedback strategies. E�cacy of these controls is demonstrated on

simulations.

Many questions remain open after [ESS09], and may determine possible di-

rections of future researches. The �rst one is accuracy of the proposed approach

based on the �rst approximation of dynamics of the nonlinear system (28). The

approach may be developed to the case of inputs with �arbitrary� amplitudes as

in [E�11]. Robustness of these controls with respect to disturbances, delays and

model mismatches is uncovered. The proposed method can be extended for the

case of table of �pulses� of di�erent forms and vector controls.



CHAPTER 3

FUTURE DIRECTIONS OF RESEARCH

As a future direction of researches it is proposed to apply the hybrid systems

methods to the problems of estimation and parametric identi�cation of oscillat-

ing nonlinear systems. The main idea consists in extension of existing approaches

applying supervisory/hybrid techniques in order to obtain new algorithms for es-

timation and control of nonlinear systems with improved performance (time of

convergence, robustness, accuracy etc.).

3.1. Background

The main idea for future development belongs to intersection of two di�erent

areas of theory and applications: hybrid systems and oscillatory processes.

Oscillatory systems constitute a broad class of plants subjected by uncertainties

and operating in di�erent modes. Many promising examples of such systems can be

found in biology (circadian rhythms, cells di�erentiation, locomotion) or techniques

(vibrating machines, avionic systems, robot locomotion). New areas of applications

(like systems biology, computer physics) and growing performance requirements in

existent �elds (like robotics and aerospace) emerge the task of oscillatory systems

estimation and control. Oscillatory systems typically require special techniques

for their treatment (some of them have been discussed before in chapter 2). For

example, to identify a periodical system it is necessary to evaluate its frequency

(or frequencies spectrum), amplitude and phase [LGP09]. Due to nonlinear de-

pendence of the system variables on these parameters, the conventional estimation

technique cannot provide a satisfactory accuracy and performance of observation,

and some particular estimation schemes have to be designed. Another example is

the class of chaotic systems, which can be considered as a subclass of oscillating

ones (oscillating in the sense of Yakubovich), these systems are very popular in

secured information transmission and encoding [Kur00]. The �eld of observers

design for synchronization of chaotic systems is one of the most quickly growing

during the last decade.

Hybrid or switched systems theory can be applied to design complex oscil-

lating systems extending conventional approaches. Frequently, a complex system

67
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dynamics can be satisfactorily described, from a practical viewpoint, by using sev-

eral models, each corresponding to an operating mode of the system. In such a

case, it is common practice to implement a group of �local� controllers or observers

depending on the operating mode. In such a scenario the natural question which

arises next is how to make estimation of a multi-model system (see [FJP08] for an

example). In addition to the problem of the hybrid systems estimation, applica-

tion of supervisory (hybrid) algorithms may seriously improve performance of the

conventional estimation algorithms. The appeal to hybrid systems looks natural

dealing with multi-goals or multi-models systems.

Therefore, from one side there exists a growing area of applications dealing with

analysis and synthesis of oscillating systems, which strives for development of new

estimation approaches. From another side there exists a branch of methods based

on hybrid/supervisory systems theory, that can be applied for development of new

estimation and control algorithms for complex nonlinear systems. It is proposed

to �ll this gap proposing new estimation algorithms for oscillating systems. My

previous research experience is concentrated on the intersection of these two areas

of theory and practice. The Non-A team of INRIA-LNE performs research in

similar directions providing me a good possibility to accomplish the project in the

forthcoming years.

3.2. Research direction

The research directions can be divided on the short term and long term projects.

3.2.1. Short term. First, it is suggested to concentrate attention on the-

oretical developments for analysis and synthesis of oscillating systems using the

homogeneity framework. This line of research is now realized in the PhD thesis

work of Emmanuel Bernuau, in cooperation with Prof. W. Perruquetti and Prof.

E. Moulay. The problems of stability and robust stability of the systems possessing

not a unique equilibrium point or invariant set can be also analyzed in continuation

of [E�12a].

Second, the problem of design of observers for nonlinear oscillating systems

can be investigated. There exist a lot of open issues in this area. The com-

prehensive solutions exist for linear systems, there are many extensions to non-

linear systems, but all of them are oriented on particular form of the system

model and use a similarity with linear one. The oscillating systems frequently

have a complex nonlinear model, which complicates design of observers, especially

in the presence of external disturbances, parametric uncertainties and measure-

ment noise. Applications of algebraic estimation technique, supervisory control,

sliding-mode di�erentiators or interval approaches for design of observers as in
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[EZR11, BEPZ12, EF11a, EF11b, REZ12, BEP11] indicate some promising

ways to the problem solution. Hybrid algorithms (containing continuous-time and

discrete-time parts) improve accuracy of observation and ensure �nite-time esti-

mation. Sometimes they also simplify analysis, despite the overall system becomes

more complex (hybrid). Posterior application of these approaches for control design

in the sense of [EF09c] seems to be also promising.

3.2.2. Long term. In long term perspective it is proposed to concentrate

attention on biological and physical applications for estimation and control. The

biology and physics are the most promising areas for cybernetics and informatics

appliance. These areas are included in the INRIA scienti�c priorities for the up-

coming years. The problems of entrainment and phase resetting controls design

[ESS09, E�11], wave regulation in lattices of oscillators [EF12] need special so-

lutions for estimation and supervision. A lot of biomedical applications su�er from

lack of adequate estimation and identi�cation algorithms, like in the heart position

estimation based on acceleration measurements [GGdM+05], for example (a post-

doc on this subject is launched in Non-A group of INRIA-LNE in October 2012 ).

Another direction of a future research may be related with formation/swarming

control of a group of mobile robots. During the last decade this topic of research has

attracted a lot of attention [GF07]. Investigation of formation mechanisms (�ock-

ing or aggregating) in biology [MCS03] attracts researchers over the world. Mecha-

nism for formation creation and maintenance is one of the main topics of research in

control community. In this project it is proposed to use the supervisory control ap-

proach to design the algorithms of synchronous motion. In this case independently

designed controls for aggregation, �ocking or collision avoidance, for instance, will

be combined in one algorithm applying the supervisor, which has to switch on the

controls depending on the current operating conditions. The advantages of this

approach consists in simplicity of independent controls design for various modes of

collective motion, �exibility with respect to inclusion of additional subtasks, pos-

sibility of complex hierarchical systems construction [ELP11, EPLF08, EPL09]

(two PhD positions are created in Non-A group of INRIA-LNE in October 2012

dealing with design of robotic systems (in mobile robots and manipulators) applying

the supervisory approach, an ANR project proposal is under preparation).

Continuously increasing requirements on safety and reliability of technical sys-

tems lead to design of more sophisticated fault detection (FD) algorithms and fault

tolerant control (FTC) systems. The main objective of FD and FTC is to maintain

the speci�ed performance of a system in the presence of faults. Especial attention

to these problems is paid in �ight and aeronautic applications [ZJ03]. The active
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FTC is characterized by on-line FD with posterior faults compensation via a con-

trol recon�guration mechanism. Appearance of the recon�guration naturally leads

to supervisory/hybrid systems framework application for FD and FTC. Despite

the FTC problem is well addressed in the literature, typically, the fault isolation

and the fault compensation problems are studied independently (under assump-

tion on persistent fault detection). In reality the FTC systems possess multiple

switches that dramatically in�uences on the performance. Analysis of the FTC

from the switched systems theory positions [ECH12], development of the appli-

cability conditions guaranteeing the minimum time of fault detection and stability

of the system [EZR11] are perspective problems, which solution may be oriented

on the �ight control safety improvement [EZ11]. The use of the hybrid systems

method for fault detection and compensation could be an interesting direction of

research with applications in aerospace.

3.3. Applications and industrial transfer

It is important when a theoretical work is inspired or supported by some real

world applications. A proper treating of applications helps to better formulate

a theoretical problem and to �nd its solution taking into account all important

constraints.

Some of my previous experience of industrial collaborations is presented in the

section 1.3. In my plans is to continue to work with these industrial partners, as well

as to try to �nd some other potential areas of practical development. This correlates

with INRIA's policy to generate innovative scienti�c products and to transfer them

to industrial partners. Below several possible directions are highlighted.

3.3.1. Biological systems. Bioinformatics and applied mathematics appli-

cations for biological and medical systems is a priority direction of research for

INRIA. Development of control and estimation algorithms for biological systems is

a domain of research consistent with the INRIA's interests. In this framework we

are planning to launch a collaborative project with biologists working on circadian

rhythm investigation of Picoeucaryote Ostreococcus tauri (a simple one-cell organ-

ism, with a well studied circadian rhythm behavior, which is an oscillating process)

[TPM+10]. The idea is to estimate and to control phase entrainment processes

for this organism using similar ideas to [ESS09, E�11].

3.3.2. Robotic swarming. The Non-A team is performing a joint work with

POPS team of INRIA-LNE on routing of a network of robots and sensors. Appli-

cation of supervisory techniques for estimation and control in this area is rather

potential leading to many industrial collaborations.
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The problem of robotic swarming or synchronization can be associated/transformed

to the problem of a certain set stabilization. As it was already discussed in Chapter

2, the analysis and design of oscillating systems can be interpreted as a set stability

or stabilization problem. Thus in the core, the robotic swarming problem can be

solved using the same branch of methods as used for oscillations. Another direct

interpretation is that oscillations are presented in many operating modes of robotic

systems.

3.3.3. Automotive applications. During the last ten years I participated

in collaboration with GM R&D Center at Warren, MI, US [EJN10b, EJN10a,

GJEN10a, GJEN10b, KEJ+12]. This collaboration is still active and, I hope,

will bring us a lot of new statements of theoretical problems to solve and the

corresponding solutions, dealing with control, estimation and modeling of spark

ignition engines in uncertain environment.

3.4. Conclusion

The goal of my future researches is to develop new solutions oriented on a

�nite-time reliable estimation of state vector and uncertain parameters/inputs for

complex oscillatory systems. An important aspect of research is that the proposed

algorithms for control and observation have to be suitable for application in practice

and, next, for industrial transfer. My previously performed research forms a basis

for this project execution.

The completing of this project is planned under an intensive collaboration with

PhD students, masters and post-docs, therefore it will include the knowledge dis-

semination and education. Due to a rich experience of international scienti�c collab-

orations (and many stays performed at di�erent universities) several international

collaborative projects are planned for the upcoming years (Russia, Mexico etc.).
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Abstract. New Lyapunov-like conditions for oscillatority of dynamical systems in the sense
of Yakubovich are proposed. Unlike previous results these conditions are applicable to nonlinear
systems and allow for consideration of nonperiodic, e.g., chaotic modes. Upper and lower bounds for
oscillations amplitude are obtained. The relation between the oscillatority bounds and excitability
indices for the systems with the input are established. Control design procedure providing nonlinear
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1. Introduction. Most works on analysis or synthesis of nonlinear systems are
devoted to studying stability-like behavior. Their typical results show that the mo-
tions of a system are close to a certain limit motion (limit mode) that either exists in
the system or it is created by a controller. Evaluating deflection of the system tra-
jectory from the limit mode, one may obtain quantitative information about system
behavior [10, 27].

During recent years an interest in studying more complex dynamical systems be-
havior including oscillatory and, particularly, chaotic modes has grown significantly.
Most authors deal with relaxed stability properties (orbital stability, Zhukovsky sta-
bility, partial stability) of some periodic limit modes [16, 19]. However, in order to
study irregular, chaotic behavior the development of analysis and design methods for
nonperiodical oscillations is needed. One such method based on the concept of ex-
citability index (limit oscillation amplitude) for the systems excited with a bounded
control was proposed in [7, 8].

It is worth noting that there exist many definitions for the term “oscillation”
[11, 16]. For example, oscillation is understood as “any effect that varies in a back-
and-forth or reciprocating manner” [6]. Otherwise, oscillation is the behavior of a
sequence or a function, that does not converge, but also does not diverge to +∞ or
-∞; that is, oscillation is the failure to have a limit [29]. Geometrically, an oscillating
function of real numbers follows some path in a space, without settling into ever-
smaller regions. In more simple cases the path might look like a loop coming back on
itself, that is, periodic behavior; in more complex cases it may be a quite irregular
movement covering a whole region [29]. Existing approaches based on Lyapunov
stability theory [17, 23] or relaxed stability properties (orbital stability, Zhukovsky
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stability, partial stability) [16, 19, 24] are not completely suitable for study of complex
oscillations. Indeed, these approaches require information on some limit modes, which
stability should be investigated (that is not suitable for chaotic or irregular oscillations,
for example). Besides, these approaches are not suitable for distinguishing between
simple bounded behavior and oscillating one (a trajectory can converge to a steady-
state solution that is a stable behavior from any kind of stability definition, but
it is not an oscillation). Despite significant success in study of regular oscillations
[4, 5, 12, 18, 20], comprehensive solutions for generic irregular oscillations have not
been obtained yet.

An important and useful concept for studying irregular oscillations is that of “os-
cillatority” introduced by V.A.Yakubovich in 1973 [31]. Frequency domain conditions
for oscillatority were obtained for Lurie systems, and split in linear and nonlinear
parts [16, 31, 32]. However, when studying physical and biological systems in many
cases it is hard to decompose the system into two parts: Linear nominal system plus
nonlinear feddback. Mechanical systems (where energy plays a role of Lyapunov func-
tion) serve as a widespread example of such systems. Extension of analysis and design
methods to oscillations in such class of systems is still to appear.

In this paper an approach to detection of oscillations and design of oscillatory
systems for a class of nonlinear systems is suggested. New conditions for oscillatority
of dynamical systems in the sense of Yakubovich are proposed. These conditions
are applicable to nonlinear systems, and they are formulated in terms of Lyapunov
functions existence. As a result upper and lower bounds for oscillations amplitude
are obtained. A variant of converse Lyapunov theorem for strictly unstable systems
is proposed. The relation between the oscillatority bounds and excitability indices for
the systems with input are established. Design procedure for oscillations excitation
is presented. Potentiality of the proposed technique is illustrated by four examples of
analytical computations and computer simulations.

The main advantage of the obtained solution consists in possibility of application
to a wide range of oscillation analysis and design problems. The proposed conditions
are applicable even in the cases when other existing solutions cannot be used due to
complexity of oscillations or system models [5, 18, 20].

Section 2 contains auxiliary statements and definitions (two preliminary results
are placed in Appendix). Main definitions and oscillation existence conditions are
presented in section 3. Section 4 deals with the task of static feedback design, which
ensures oscillations appearance in closed loop system with desired bounds on ampli-
tude. Conclusion is given in section 5. Examples illustrating proposed results for
Van der Pol system, Lorenz system, and Hindmarsh–Rose neuron model as well as
computer simulation results are presented in the text.

2. Preliminaries. Let us consider a general model of nonlinear dynamical sys-
tem:

ẋ = f(x,u ); y = h(x ),(1)

where x ∈ Rn is the state space vector; u ∈ Rm is the input vector; y ∈ Rp is the
output vector; f and h are locally Lipschitz continuous functions on Rn, h( 0 ) = 0,
and f( 0, 0 ) = 0. For initial condition x0 ∈ Rn and Lebesgue measurable input
u the solution x(x0,u, t ) of the system (1) is defined at least locally for t ≤ T ,
y(x0,u, t ) = h (x(x0,u, t ) ) (further we will simply write x( t ) or y( t ) if all other
arguments are clear from the context). If for all initial conditions x0 ∈ Rn and inputs
u the solutions are defined for all t ≥ 0, then such system is called forward complete.
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In this work we will consider feedback connection of system (1) with static system
u = k(y ).

As usual, it is said that a continuous function ρ : R+ → R+ belongs to class
K, if it is strictly increasing and ρ ( 0) = 0; ρ ∈ K∞ if ρ ∈ K and ρ ( s) → ∞
for s → ∞; Lebesgue measurable function x : R+ → Rn is essentially bounded, if
‖x ‖ = ess sup { |x( t ) | , t ≥ 0 } < +∞, where | · | denotes usual Euclidean norm,
R+ = { τ ∈ R : τ ≥ 0 }. Notation DV (x )F( · ) stands for directional derivative of
function V with respect to vector field F if function V is differentiable and for Dini
derivative in the direction of F

DV (x )F(·) = lim
t→0+

inf
V (x+ tF(·) )− V (x )

t

if function V is Lipschitz continuous. In what follows we need the standard dissipa-
tivity property [30] and some its modifications. Function f(x1, . . . , xn ) defined on
Rn is called monotone if the condition x1 ≤ x′1,. . . , xn ≤ x′n implies that everywhere
either f(x1, . . . , xn ) ≤ f(x′1, . . . , x

′
n ) or f(x1, . . . , xn ) ≥ f(x′1, . . . , x

′
n ) everywhere.

Definition 1. The system (1) is dissipative if there exists continuous function
V : Rn → R+ and a function � : Rn+m+p → R such that for all x0 ∈ Rn and
Lebesgue measurable and locally essentially bounded u : R+ → Rm the following
inequality is satisfied:

V (x( t ) ) ≤ V (x0) +

∫ t

0

� (x( τ ),y( τ ),u( τ ) ) dτ, t ≥ 0.(2)

The functions � and V are called supply rate and storage functions of the system
(1).

In the case when storage function is continuously differentiable, inequality (2) can
be rewritten in a simple form:

V̇ (x ,u ) = Lf(x,u )V (x ) ≤ � (x, u, y ) .

Definition 2. Dissipative system (1) is called
– passive if � (x,y,u ) = yTu−β(x ), where β is a continuous function reflecting

the dissipation rate in the system; if β (x ) ≥
�

β ( |x | ) ,
�

β ∈ K, then system (1) is
called strictly passive [13];

– h-dissipative, if it has continuously differentiable storage function V and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , ω(y,u ) = −α ( |y | ) + σ ( |u | ) ,
σ ∈ K, α, α, α ∈ K∞;

– input-output-to-state stable (IOSS), if it has continuously differentiable storage
function W and [26]

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) , α1, α2 ∈ K∞,

ω(x,y,u ) = −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ,
α3 ∈ K∞, σ1, σ2 ∈ K [26];

– input-to-state stable (ISS), if it has continuously differentiable storage function
U and [21]

α4 ( |x |) ≤ U(x ) ≤ α5 ( |x |) , α4, α5 ∈ K∞;

ω(x,y,u ) = −α6 ( |x | ) + δ ( |u | ) , α6 ∈ K∞, δ ∈ K.
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If inequality sign in (2) for the case � (x,y,u ) = yTu − β(x ) can be replaced
with equality, then it is said that the system possesses passivity property with known
dissipation rate β.

Term h-dissipativity was introduced with minor differences in [2]. An important
example of such kind of systems is y-strictly passive systems [13]. Also, passive system
(1) can be transformed to h-dissipative under suitable feedback transformation.

Storage functions for IOSS and ISS systems are called Lyapunov functions [23, 26].
Existence of corresponding Lyapunov functions is the equivalent characterization of
ISS and IOSS properties [21, 26].

The interrelations of the properties introduced in Definition 2 are established
in the Lemma A.1 (see Appendix), which was proved in [1] with a more restrictive
requirement for h-dissipativity storage function:

α7 ( |x |) ≤ V (x ) ≤ α8 ( |x |) , α7, α8 ∈ K∞.

General result in this direction was obtained in [15], where it was proven that input-
to-output stability (this property is closely connected with h-dissipativity; see also
[24] for more details) and IOSS are equivalent to ISS property for the system (1).

3. Oscillatority conditions. At first it is necessary to give a precise definition
of the term “oscillatority” placed in the title of this section and the paper. There are
several approaches to define oscillation phenomena for nonlinear dynamical systems
[16]. Perhaps, the most general one is the concept introduced by Yakubovich [31, 32].
Here we recover definitions from [31, 32] with some mild modifications [11, 16] dealing
with high dimension and general form of the system.

Definition 3. Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called [π−, π+ ]-
oscillation with respect to output ψ = η(x ) (where η : Rn → R is a continuous
monotone function) if the solution is defined for all t ≥ 0 and

lim
t→+∞

ψ( t ) = π−; lim
t→+∞

ψ( t ) = π+; −∞ < π− < π+ < +∞.

Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called oscillating, if there ex-
ist some output ψ and constants π−, π+ such that x(x0, 0, t ) is [π−, π+ ]-oscillation
with respect to the output ψ. Forward complete system (1) with u( t ) ≡ 0, t ≥ 0 is
called oscillatory, if for almost all x0 ∈ Rn solutions of the system x(x0, 0, t ) are
oscillating. Oscillatory system (1) is called uniformly oscillatory, if for almost all
x0 ∈ Rn for corresponding solutions x(x0, 0, t ) there exist output ψ and constants
π−, π+ not depending on initial conditions.

In other words, the solution x(x0, 0, t ) is oscillating if output ψ( t ) = η(x(x0, 0, t))
is asymptotically bounded and there is no single limit value of ψ( t ) for t→ +∞ that
is close to definition of oscillatority from [29].

Note that the term “almost all solutions” is used to emphasize that generally
system (1) for u( t ) ≡ 0, t ≥ 0 has a nonempty set of equilibrium points; thus,
there exists a set of initial conditions with zero measure such that corresponding
solutions are not oscillations. It is worth stressing that constants π− and π+ are exact
asymptotic bounds for output ψ. Therefore, in order to compute these values the exact
estimates for the system solutions should be known, which is a hard task for general
nonlinear system (1). Fortunately, information on approximate estimates of constants
π− and π+ is sufficient to obtain estimates on system amplitude oscillations. The
oscillation property introduced in Definition 3 is defined for zero input and any initial
conditions of system (1). The following property is a closely related characterization
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of the system behavior, which develops the proposed above property for the case of
nonzero input but for specified initial conditions [8].

Definition 4. Let u : R+ → Rm be Lebesgue measurable and essentially bounded
function and x0 ∈ Rn be given such that x(x0,u, t ) be defined for all t ≥ 0. The
functions χ−

ψ,x0
( γ ), χ+

ψ,x0
( γ ) defined for ||u|| ≤ γ, γ ∈ R+ are called lower and

upper excitation indices of system (1) in point x0 with respect to the output ψ = η(x )
(where η : Rn → R is a continuous monotone function), if

(
χ−
ψ,x0

( γ ), χ+
ψ,x0

( γ )
)
= arg max

( a,b )∈E( γ )

{ b− a } ,

E( γ ) =

{
( a, b ) :

(
a = limt→+∞ η (x(x0,u, t ) ) ,

b = limt→+∞ η (x(x0,u, t ) )

)}

‖u ‖≤γ
.

Lower and upper excitation indices of a forward complete system (1) with respect to
the output ψ are

χ−
ψ ( γ ) = inf

x0∈Rn
χ−
ψ,x0

( γ ), χ+
ψ ( γ ) = sup

x0∈Rn

χ+
ψ,x0

( γ ).

In the same way it is possible to introduce indices for a vector output ψ = η(x ),
in this case indices would be vectors of the same dimension as the output ψ.

Excitation indices characterize ability of system (1) to exhibit forced or control-
lable oscillations caused by bounded inputs. It is clear that properties π− = χ−

ψ ( 0 )

and π+ = χ+
ψ ( 0 ) are satisfied. For nonzero inputs the excitability indices char-

acterize maximum (over specified set of inputs ‖u ‖ ≤ γ) asymptotic amplitudes
χ+
ψ ( γ )− χ−

ψ ( γ ) of ψ.

Note that it is useful to calculate or estimate values of χ−
ψ ( γ ) and χ

+
ψ ( γ ) for all

0 ≤ γ < +∞ due to the following reason. Let oscillation amplitude be an inverse
function of input amplitude, then the maximum oscillation amplitude be reached
for some γ∗ and for all γ ≥ γ∗ the amplitude decreases. The indices χ−

ψ ( γ ) and

χ+
ψ ( γ ) preserve their values for γ ≥ γ∗. Hence, to catch the critical value γ∗ of

input amplitude providing maximum output amplitude for ψ, it is necessary to build
full graphics of functions χ−

ψ ( γ ) and χ+
ψ ( γ ). The obtained characteristics will be

closely related with the Cauchy gain recently investigated in [22] (in fact, π+ − π− or
χ+
ψ,x0

( γ ) − χ−
ψ,x0

( γ ) are asymptotic amplitudes of ψ( t ) in the sense of [22] for zero

or nonzero input u, while χ+
ψ ( γ ) reflects the Cauchy gain of the system (1)).

On the other hand, excitation indices from Definition 4 describe robustness of the
oscillations property proposed in Definition 3. Conditions of oscillations existence in
the system are summarized in the following theorem.

Theorem 1. Let system (1) with u( t ) ≡ 0, t ∈ R+, i.e.,

ẋ = f (x, 0 ) ,(3)

have two continuous and locally Lipschitz Lyapunov functions V1 and V2 satisfying
for all x ∈ Rn the following inequalities:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞,

and for some 0 < X1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(X2 ) < +∞:
DV1(x ) f(x, 0 ) > 0 for 0 < |x | < X1 and x /∈ Ξ,
DV2(x ) f(x, 0 ) < 0 for |x | > X2 and x /∈ Ξ,
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where Ξ ⊂ Rn is a set with zero Lebesgue measure, which contain all equilibriums of
the system, and

Ω ∩ Ξ = ∅,

where Ω =
{
x : υ−1

2 ◦ υ1(X1 ) < |x | < υ−1
3 ◦ υ4(X2 )

}
.

Then the system (3) is oscillatory.
Proof. Consider set Ξ0 ⊂ Rn of initial conditions not containing equilibrium

points (which belong to set Ξ) of system (3). Then the solutions of the system
starting from Ξ0 are globally bounded, due to V̇2 < 0 for |x | > X2, and defined
for all t ≥ 0. Since the trajectory x(x0, 0, t ), x0 ∈ Ξ0, t ≥ 0 is bounded, it has
a nonempty closed, invariant, and compact ω-limit set, which belongs to the set
Ω. Indeed, V2( t ) asymptotically enters into the set where V2( t ) < υ4(X2 ), then
|x( t ) | < υ−1

3 ◦ υ4(X2 ). In the same way function V1( t ) is upper bounded and its
limit values fall into the set where V1( t ) > υ1(X1 ); i.e., again |x( t ) | > υ−1

2 ◦υ1(X1 ).
As it was supposed, Ω does not contain equilibrium points of the system. Hence,

ω-limit set also does not include such invariant solutions. Then for each x0 ∈ Ξ0

there exists an index i, 1 ≤ i ≤ n such that the solution is [π−, π+ ]-oscillation with
respect to output xi with −υ−1

3 ◦ υ4(X2 ) ≤ π− < π+ < υ−1
3 ◦ υ4(X2 ). Suppose

that there is no such output. It means that for all 1 ≤ i ≤ n for output xi equality
π− = π+ holds. However, the latter could be true only in equilibrium points, which
are excluded from the set Ω by the theorem conditions. Therefore, for almost all
initial conditions the system solutions have such oscillating output and system (3) is
oscillatory by Definition 3. Note that for different x0 ∈ Ξ0 oscillating outputs xi may
exist for different i, 1 ≤ i ≤ n.

Remark 1. The set Ω determines lower and upper bounds for the values of π−

and π+.
Like in [32] one can consider the Lyapunov function candidate for linearized near

the origin system (3) as a function V1 to prove local instability of the system. Instead
of existence of storage function V2, one can require just boundedness of the system
solution x( t ) with a known upper bound. It can be obtained using another approach
not dealing with time derivative of Lyapunov function analysis. In this case Theorem
1 is transforming into Theorem 3.4 from [11]; see also [33].

Corollary 1. Define Ξ as the set of the system (3) equilibriums, i.e., Ξ = {x ∈
Rn : f(x, 0 ) = 0 }, which consists in isolated points, and A(x0 ) = d f(x, 0 )/dx|x=x0

is the matrix of the system (3) linearization in point x0 ∈ Rn. Let the following
conditions be valid:

1. For all x0 ∈ Ξ the matrices of the system (3) linearization A(x0 ) have eigen-
values with positive real parts.

2. There exists R > 0 such that for almost all initial conditions x0 ∈ Rn:

lim
t→+∞

|x(x0, 0, t )| ≤ R.

Then the system (3) is oscillatory.
Proof. By conditions of the corollary for almost all initial conditions the ω-limit

set is compact and it does not contain the equilibriums of the system. Further the
proof is similar to the proof of Theorem 1.

Conditions of Theorem 1 are rather general and define the class of systems, which
oscillatory behavior can be investigated by the approach, namely systems which have
an attracting compact set in state space containing oscillatory movements of the
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systems. For such systems Theorem 1 or Corollary 1 give useful tools for testing their
oscillating behavior and obtaining estimates for amplitude of oscillations.

Theorem 1 presents the sufficient conditions for system (1) to be oscillating in the
sense of Yakubovich. It is possible to show that for a subclass of uniformly oscillating
systems these conditions are also necessary. To prove this result we need the following
two lemmas.

Lemma 1. Let there exist constant r > 0 such that for solutions of systems (3)
the following property is satisfied:

0 < |x0| < r ⇒ |x(x0, 0, t )| > r

for all t ≥ Tx0 , where 0 < Tx0 < +∞. Then there exists a continuous and locally
Lipschitz–Lyapunov function V1(x ) such that for all x ∈ Rn

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ1, υ2 ∈ K∞,

additionally for all 0 < |x| < r it holds:

DV1(x ) f(x, 0 ) > 0.

Proof. For |x0| < r let us introduce the function:

v(x0 ) = inf
0≤t≤Tx0

|x(x0, 0, t )|.

According to conditions of the lemma this function admits the following properties:
(i) v( 0 ) = 0 and v(x ) > 0 for 0 < |x| < r;
(ii) v(x0 ) = inf0≤t≤Tx0+Δ |x(x0, 0, t )| for any Δ ≥ 0.
Additionally for 0 < |x| < r the property |v( 0 )−v(x )| = v(x ) ≤ |x| = |0−x|

holds, which means continuity of function v at the origin. In the set |x| < r the
relation δ( |x| ) ≤ v(x ) ≤ |x| holds, where δ( s ) = s ( 1 + s )−1 inf |x| =s v(x ) is a
continuous and strictly increasing function, δ( 0 ) = 0. The locally Lipschitz property
of function v in the set 0 < |x| < r follows from the following series of inequalities
satisfied for any x1, x2 belonging to this set and some constants L > 0, M > 0,
T = max{Tx1, Tx2 }:

|x(x1, 0, t )− x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ T ;

|v(x1 )− v(x2 )| = | inf
0≤t≤T

|x(x1, 0, t )| − inf
0≤t≤T

|x(x2, 0, t )||

≤ sup
0≤t≤T

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2| .

By construction for initial conditions |x0| < r the relation v(x(x0, 0, t ) ) ≥ v(x(x0,
0, 0 ) ), t ≤ Tx0 holds, then Dv(x ) f(x, 0 ) ≥ 0 for all |x| < r and function v( t ) is
not decreasing. To design a strictly increasing function let us introduce for |x0| < r
the function:

V1(x0 ) = inf
0≤t≤Tx0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with the following
properties for all t ∈ R+:

κ1 ≤ k( t ) ≤ κ2, 0 < κ1 < κ2 < +∞; ∂ k/∂ t < 0.
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As an example of such function k it is possible to choose the following one:

k( t ) = κ1 + (κ2 − κ1 ) e
−t, k̇( t ) = (κ1 − κ2 ) e

−t.

By construction V1( 0 ) = 0 and V1(x ) > 0 for 0 < |x| < r. In the set |x| < r the
relation κ1 δ( |x| ) ≤ v(x ) ≤ κ2|x| holds. The locally Lipschitz continuity of function
V1 in the set 0 < |x| < r follows from the same arguments, since the following series
of inequalities are satisfied for any x1, x2 belonging to this set and some constants
L > 0, M > 0, T = max{Tx1, Tx2 }:

|x(x1, 0, t )− x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

|v(x1 )− v(x2 )| ≤ L |x1 − x2|;

|v(x(x1, 0, t ))− v(x(x2, 0, t ))| ≤M L |x1 − x2|, t ≤ T ;

|V1(x1)− V1(x2)| = | inf0≤t≤Tx1
k( t ) v(x(x1, 0, t ))− inf0≤t≤Tx2

k( t ) v(x(x2, 0, t ) )|
≤ sup0≤t≤T k( t )|v(x(x1, 0, t )− v(x(x2, 0, t )| ≤ κ2M L |x1 − x2|.

For |x| ≥ r extend function V1 : Rn → R+ in such a way that for all x ∈ Rn function
V1 is continuous and locally Lipschitz and there exist two functions υ1, υ2 ∈ K∞ such
that for all x ∈ Rn:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) ,

where υ1( s ) ≤ κ1 δ( s ), κ2 s ≤ υ2( s ) for s < r. By construction for initial conditions
0 < |x0| < r the following relations hold:

V1(x(x0, 0, t ) ) = inf
0≤τ≤Tx(x0,0,t )

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

> inf
0≤τ≤Tx0

k( τ ) v(x[x0, 0, τ ] ) = V1(x0 ) , 0 < t ≤ Tx0 , Tx(x0,0,t ) < Tx0 ,

then DV1(x ) f(x, 0 ) > 0 for all 0 < |x| < r.
Under conditions of Lemma 1 solutions x(x0, 0, t ) of the system (3) are locally

unstable for initial conditions x0 which belong to the sphere 0 < |x0| < r. According
to the result of the lemma in this case the system (3) has corresponding Lyapunov
function with positive time derivative for 0 < |x| < r. It is possible to say that
Lemma 1 presents a variant of necessary conditions of a Lyapunov function existence
for a subclass of strictly unstable systems, which is a new result.

Lemma 2. Let there exist constants R > 0 and 0 < TR,x0 < +∞ such that for
solutions of the system (3) the following property is satisfied:

|x0| > R ⇒ |x(x0, 0, t )| < R, t ≥ TR,x0 .

Then there exists a continuous and locally Lipschitz–Lyapunov function V2(x ) such
that for all x ∈ Rn

υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ3, υ4 ∈ K∞,

and for all |x| > R it holds that

DV2(x ) f(x, 0 ) < 0.
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Proof. For |x0| > R let us introduce the function

v(x0 ) = sup
t≥0

|x(x0, 0, t )| = sup
TR,x0≥t≥0

|x(x0, 0, t )|.

Under conditions of the lemma the property v(x ) > R for |x| > R is satisfied.
Additionally due to continuity of solutions of the system (3) with respect to initial
conditions for each ε > 0 there exists δ > 0 such that

x1 ∈ Rn, x2 ∈ Rn,
|x1 − x2| ≤ δ ⇒ |x(x2, 0, t)− x(x1, 0, t)| ≤ ε, t ≤ tmax, tmax = max{TR,x1 , TR,x2}.

Note that for solutions of the system the equality suptmax≥t≥0 |x(xi, 0, t )| = supt≥0 |
x(xi, 0, t)|, i = 1, 2 is satisfied. Then for any initial conditions under constrain |x1 −
x2| ≤ δ, |x1| > R, |x2| > R it holds that

|v(x1 )− v(x2 )|
=

∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ ε ,

which means continuity of function v for |x| > R. In the set |x| > R for function v
the following relation also holds:

|x| ≤ v(x ) ≤ δ( |x| ),

where δ( s ) = s +sup|x| =s v(x ) is a continuous and strictly increasing function. The
locally Lipschitz continuity of function v into set |x| > R follows from the series of
inequalities satisfied for any x1, x2 from the set and some L > 0:

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ tmax,

|v(x1 )− v(x2 )|
=

∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L |x1 − x2|.

By construction for all initial conditions with |x0| > R it holds that

v( t ) = v(x(x0, 0, t ) ) ≤ v(x(x0, 0, 0 ) ) = v( 0 ),

then Dv(x ) f(x, 0 ) ≤ 0 for |x| > R and function v is not increasing. To design a
strictly decreasing function, consider the following one for |x0| > R:

V2(x0 ) = sup
TR,x0≥t≥0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with properties for all
t ∈ R+:

κ3 ≤ k( t ) ≤ κ4, 0 < κ3 < κ4 < +∞; ∂ k/∂ t > 0.
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For example, it is possible to choose as a function k( t ) the following one:

k( t ) =
κ3 + κ4 t

1 + t
, k̇( t ) =

κ4 − κ3
( 1 + t )2

.

Under conditions of the lemma in the set |x| > R for function V2 the relation κ3|x| ≤
V2(x ) ≤ κ4 δ( |x| ) holds. For any initial conditions under constrain |x1 − x2| ≤ δ,
|x1| > R, |x2| > R it holds that

|V2(x1 )− V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) )− sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4 ε,

which means continuity of function V2 for |x| > R. The locally Lipschitz continuity
of function V2 into set |x| > R follows from the same inequalities satisfied for any
x1, x2 from the set and some L > 0:

|V2(x1 )− V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) )− sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4L|x1 − x2 |.

For |x| ≤ R we extend the definition of function V2 such that for all x ∈ Rn function
V2 : Rn → R+ would be continuous and locally Lipschitz and for all x ∈ Rn:

υ3 ( |x |) ≤ V2(x, t ) ≤ υ4 ( |x |) ,

where υ3, υ4 ∈ K∞ and κ4 s ≥ υ3( s ), υ4( s ) ≥ κ3 δ( s ) for s > R. By construction
for all initial conditions with |x0| > R, it holds that

V2( t ) = V2(x(x0, 0, t ) ) = sup
TR,x( x0,0,t )≥τ≥0

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

< sup
TR,x0≥τ≥0

k(τ)v(x[x0 , 0, τ ]) = V2(x0) = V2(0), 0 < t ≤ TR,x0 , TR,x(x0,0,t) < TR,x0,

and then DV2(x ) f(x, 0 ) < 0 for |x| > R.
Under conditions of the lemma set, A = {x : |x| < R } is a globally attractive

invariant set for solutions of system (3) with zero input; see also [17] for other converse
Lyapunov theorems for set stability. Contrarily to the case considered in this paper,
the Lyapunov functions W : Rn → R+ proposed in [17] possess for all x ∈ Rn the
properties

α1( |x|A ) ≤W (x ) ≤ α2( |x|A ), α1, α2 ∈ K∞,

where |x|A is the distance from point x to the set A, which stability is investigated.
Now we are ready to substantiate the necessary conditions of oscillatority.
Theorem 2. Let system (3) be uniformly oscillatory with respect to the output

ψ = η(x ) (where η : Rn → R is a continuous function), and for all x ∈ Rn the
following relations are satisfied:

χ1( |x| ) ≤ η(x ) ≤ χ2( |x| ), χ1, χ2 ∈ K∞;
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the set of initial conditions for which the system is not oscillating consists in just
one point Ξ = {x : x = 0 }. Then there exist two continuous and locally Lipschitz
Lyapunov functions V1 : Rn → R+ and V2 : Rn → R+ such that for all x ∈ Rn the
inequalities hold:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞;

DV1(x )f(x, 0 ) > 0 for 0 < |x| < χ−1
2 (π− );

DV2(x )f(x, 0 ) < 0 for |x| > χ−1
1 (π+ ).

Proof. Since system (3) is uniformly oscillatory with respect to output ψ = η(x ),
then for almost all initial conditions (except the origin) there exists constants −∞ <
π− < π+ < +∞ such that

lim
t→+∞

η(x(x0, 0, t ) ) = lim
t→+∞

ψ( t ) = π−;

lim
t→+∞

η(x(x0, 0, t ) ) = lim
t→+∞

ψ( t ) = π+.

By radial unboundedness and positive definiteness of function η it means that all
solutions of the system converge to the invariant set Ω = {x : χ−1

2 (π− ) ≤ x ≤
χ−1
1 (π+ ) }. Then there exist constants X1 < χ−1

2 (π− ) and X2 > χ−1
1 (π+ ) such

that conditions of Lemmas 1 and 2 hold for r = X1 and R = X2. Based on these
facts, the existence of Lyapunov functions V1 and V2 follows.

For uniformly oscillatory systems with single equilibrium point at the origin, The-
orems 1 and 2 give necessary and sufficient conditions of oscillations existence (Van
der Pol or Hindmarsh and Rose systems (see below) are examples of uniformly oscilla-
tory systems). The oscillatority concept introduced by Yakubovich covers situations
of periodic and chaotic oscillations. That allows one to analyze behavior of wide
spectrum of oscillating dynamical systems using common approach. Note that for
chaotic systems constants π− and π+ evaluate geometrical size of strange attractor.
Let us demonstrate on examples the efficiency of the proposed approach for analysis
of oscillation phenomena in nonlinear systems.

Example 1. Consider the Van der Pol system:

ẋ1 = x2; ẋ2 = −x1 + ε ( 1− x21 )x2,

where ε > 0 some parameter. To detect presence of oscillations in this system, it is
required (according to Theorem 1) to find two Lyapunov functions, which establish
local instability of equilibrium ( 0, 0 ) and global boundedness of the system solutions.
Since the system has only one equilibrium point in the origin, the set Ω from the
theorem does not contain the point ( 0, 0 ). Let us consider the following Lyapunov
functions for 0 < ε ≤ 1:

V1(x ) = 0.5
(
(1− ε+ ε−1)x21 + (1 + ε−1)x22 + ε (x2 − ε x1 )

2
)
;

V2(x ) = 0.5
(
ε−1x2 − 2 x1 + 1/3 x31

)2
+ 1/12 x41,

V̇1 = ε x22 + (x2 − ε x1 )
2 +

[
ε3x1 − ( 1 + ε+ ε2 )x2

]
x21 x2;

V̇2 = −
[
0.5

√
ε
(
2− ε−2

)
x1 − ε−0.5x2

]2 − 1/3 ε−1x41

+
[
0.25 ε

(
2− ε−2

)2
+ 2 ε−1

]
x21 .
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Fig. 1. Trajectories and set Ω for Van der Pol system.

Function V̇1 is strictly positive in the set 0 < |x | < X1, where X1 = X1( ε ) > 0
(the same conclusion was obtained in [12] for ε = 1, X1 =

√
3). Instability of the

system also can be verified for a linearized version of the system, which eigenvalues
λ1,2 = 0.5

(
ε±

√
ε2 − 4

)
are always positive for ε > 0. Analyzing function V̇2 it is

possible to obtain X2 ≤
√

3 [ 0.25 ε2 ( 2− ε−2 )2 + 2 ]. Results of the set Ω calculation
and computer simulation of the system for ε = 1 are presented in Figure 1, where the
set Ω is bounded by solid ellipses.

Example 2. Let us consider Lorenz model:

ẋ = σ ( y − x ),
ẏ = r x− y − x z,
ż = −b z + x y ,

where parameters σ = 10, r = 28, and b = 8/3. With such choice of parameter
values the system is chaotic, which is a good example of complex nonlinear oscillation
processes. To apply the result of Theorem 1 here let us note that the system has three
equilibriums with coordinates

x1
e = ( 0 0 0 )T , x2

e = (
√
72

√
72 27 )T , x3

e = (−
√
72 −

√
72 27 )T .

The matrix of linear approximation of this system at the equilibriums

A(xe ) =

⎡
⎣

−σ σ 0
r − xe,3 −1 −xe,1
xe,2 xe,1 −b

⎤
⎦

has for the given values of parameters eigenvalues with positive real parts for all
equilibriums. Therefore the system is locally unstable. Lyapunov function

V (x, y, z ) = 0.5
(
σ−1x2 + y2 + ( z − r )2

)

for this system has the following time derivative:

V̇ = −x2 + x y − y2 − b z2 + r b z
≤ −0.5 x2 − 0.5 y2 − 0.5 b z2 + 0.5 b r2 ,
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Fig. 2. Trajectory of Lorenz system.

which implies global boundedness of all trajectories of Lorenz system. All conditions
of Corollary 1 are satisfied and system is oscillatory in the sense of Definition 3. An
example of state space trajectory of the system is presented in Figure 2 (blue dots
correspond to coordinates of equilibriums xie).

Example 3. A Hindmarsh and Rose model neuron is defined by the following
system of differential equations [14]:

ẋ = −a x3 + b x2 + y − z + u,
ẏ = c− d x2 − y,
ż = ε [ s (x− x0 )− z ] ,

where x ∈ R+ is the membrane potential, y ∈ R+ is recovery variable, and z ∈ R+ is
adaptation variable. External stimulation is given by input u ∈ R. It is a well-known
fact that this model demonstrates complex oscillatory behavior for the following values
of the model parameters a = 1, b = 3, c = 1, d = 5, s = 4, x0 = 0.795, ε = 0.001 with
input u = 0. Let us investigate oscillatority property of the model for the case u = 0
applying the proposed approach.

As the first let us compute the number of equilibriums in the system which coor-
dinates are solutions of the following system of nonlinear equations:

−a x3e + ( b− d )x2e − s xe + s x0 + c = 0 ;
ye = c− d x2e ;
ze = s (xe − x0 ) .

As in the first example we are interested in a situation when the model has a single
equilibrium. This is the case when the first cubic equation above has only one real
solution and two complex solutions. Under conditions

n ≥ 0,
m

6 a
+

2

3

3 s a− ( b− d )2

a u
�= 0,

n = 4 s3 a− s2 ( b− d )2 +
[
27 a2 ( s x0 + c )− 18 s a ( b− d ) + 4 ( b− d )3

]
( s x0 + c ),

m =
3

√
12 a

√
3n− 36 s a ( b− d ) + 108 a2 ( s x0 + c ) + 8 ( b− d )3,

the model has the following single equilibrium

xe = a−1 (m/6− 2/3 [ 3 s a− ( b− d )2 ]/m+ ( b− d )/3 ) ;
ye = c− d x2e ;
ze = s (xe − x0 ) .
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Fig. 3. Trajectories of Hindmarsh and Rose neuron model.

To prove global boundedness of the system solutions, it is possible to use the following
Lyapunov function:

V2 = 0.5
(
s x2 + ε−1z2 + s a y2/d2

)
,

in which the time derivative for the model admits inequality:

V̇2 ≤ s x
(
−0.5 a x3 + b x2 + 8 d2x/a

)
−0.25 s a y2/d2−0.5 z2+8 s a c2/d2+0.5 s2 x20.

To prove local instability of the equilibrium, consider linearization of the system with
matrix

A(xe, ye, ze ) =

⎡
⎣

−3 a x2e + 2 b xe 1 −1
−2 d xe −1 0
ε s 0 −ε

⎤
⎦ .

According to Hurwitz criteria matrix A has eigenvalues with positive real parts if at
least one from the following inequalities is satisfied:

3 a x2e − 2 b xe + 1 + ε ≤ 0, 3 a x2e + 2 ( d− b )xe + s ≤ 0,

3 a ( ε+ 1 )x2e + 2 ( d− ( ε+ 1 ) b )xe + ε ( s+ 1 ) ≤ 0,

9a2(ε+ 1)x4e + a[6d− 12(ε+ 1)b]x3e +
[
4b[(ε+ 1)b− d] + 3a[ε2 + (2 + s)ε+ 1]

]
x2e

+ 2
[
d− [ε2 + (s+ 2)ε+ 1]b

]
xe + (s+ 1)ε2 + ε ≤ 0.

Thus we obtain all set of restrictions on admissible values of the model parameters
under which the system is uniformly oscillatory. The proposed values in [14] of the
model parameters admit all these conditions (there exists single unstable equilibrium
with globally bounded solutions). The result of the model simulation is shown in
Figure 3, where z̃ = 10 z is a scaled adaptation variable.

A link between oscillatority and excitation indices is established in the following
corollary.
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Corollary 2. Let for initial condition x0 ∈ Rn the solution x(x0,k(x ), t ) of
system (1) with control u = k(x ), k( 0 ) = 0 be [π−, π+ ]-oscillation with respect to
output

ψ = η(x ), α1 ( |x| ) ≤ η(x ), α1 ∈ K∞.

Then excitation indices of system (1) satisfy inequality

π+ − π− ≤ χ+
ψ,x0

( γ )− χ−
ψ,x0

( γ ),

for γ ≥ γ∗, where γ∗ = sup|x | ≤α−1
1 (π+ ) |k(x ) |.

Proof. From oscillatority property with respect to output ψ, the solutions of the
closed by feedback k system (1) are asymptotically bounded:

|x( t ) | ≤ α−1
1 (π+ ), t ≥ 0.

Therefore input u = k(x ) is upper bounded by γ ≥ γ∗ and the statement follows
from Definitions 3 and 4 (excitation indices are not decreasing functions of γ).

Hence, to compute estimates on excitation indices it is enough to find some control
k for system (1), which ensures oscillations existence in closed loop system.

In the proof of Theorem 1 a component of state space vector was proposed as an
oscillating output. However, such output does not discover all features of oscillation
processes in the system and it does not restrict the possible set of oscillating variables
of the system. To avoid this obstacle we formulate the same conclusion for output
oscillations of system (3) rewriting conditions of the theorem with respect to y:

υ1(|y| ) ≤ V1(x ) ≤ υ2(|y| ), υ3(|y| ) ≤ V2(x ) ≤ υ4(|y| ),

DV1(x )f(x, 0 ) > 0 for 0 < |y | < Y1;

DV1(x )f(x, 0 ) > 0 for |y | > Y2,

Y1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(Y2 ).

Then the set Ω =
{
y : υ−1

2 ◦ υ1(Y1 ) < |y | < υ−1
3 ◦ υ4(Y2 )

}
and the system is oscil-

latory if set Ω does not contain equilibrium points of closed loop system ẋ = f (x, 0 ).
A more constructive result, which points out on oscillating variables, can be presented
as follows.

Lemma 3. Let system (1) have IOSS Lyapunov function W and h-dissipative
storage function V as in Definition 2 and lims→+∞ α( s )−1σ2( s ) < +∞ (conditions
of Lemma A.1 hold). Suppose that u = k(x ) and

(i) α6 ( |x | ) > δ ( |k(x ) | ) for |x | > X ≥ 0 and x /∈ Ξ,
(ii) Lf(x,k(x ) )V (x ) > 0 for 0 < |h(x ) | ≤ Y and x /∈ Ξ,

for some positive constants X and Y with Y < α−1◦α◦α−1
4 ◦α5(X ) (where functions

α4, α5, α6 and δ defined in Lemma A.1), set Ξ has zero Lebesgue measure. If set Ω ={
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(X )
}
does not contain equilibrium points of

closed loop system ẋ = f (x,k(x ) ), then the system is oscillatory.
Proof. First of all note that from point (i) the system satisfies all conditions

from Lemma A.1 to be ISS with respect to input u and it also has bounded (i.e.,
defined for all t ≥ 0) solutions due to property (i). As before, x( t ) and y( t ) have
nonempty closed and compact ω-limit sets, which are upper bounded by estimate
|x | ≤ α−1

4 ◦ α5(X ).
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From point (ii) of the lemma it is possible to conclude that V̇ > 0 for small enough
0 < |y | ≤ Y . Then the set of ω-limit trajectories for function V ( t ) belongs to the
set Ω. Now the result immediately follows similarly to the final steps of Theorem 1
proof.

Generically function V depends on part of variables only, which helps to define a
subset of oscillating variables in the system. Additionally, Lemma 3 points out a way
to find functions V1 and V2 (V1(x ) = V (x ) and V2(x ) = U(x ) from Appendix). Re-
sults of proposed theorems and Lemma 3 do not deal with feedback k design problem.
Now let us continue with the task of control design that ensures desired oscillation
parameters for passive systems.

4. Stabilization of oscillation regimes. In this section the problem of feed-
back design for passive system is considered, and the proposed feedback ensures os-
cillatority of closed loop system. Section 4 is based on result of Lemma A.2, although
conditions imposed on feedback k in the Lemma A.2 look complex and hardly veri-
fied, they are very natural and can be easily resolved. For example, if σ1 and σ2 are
quadratic functions of their arguments, then control k with linear growth rate with
respect to y satisfies all proposed conditions.

Theorem 3. Let system (1) be passive with known dissipation rate β and IOSS
in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Consider control u = k(x ) + d, which possesses the following properties for all x ∈
Rn :

(1) for some 0 < K < +∞,

|k(x ) | ≤ λ ( |y | ) +K;

(2) decreasing of storage function V for large values of the output, i.e., inequality
holds

β(x ) − yTk(x ) + μ ( |d | ) + μ(K ) ≥ κ ( |y | ) + yTd;

(3) yTk(x ) > β(x ) for 0 < |y | < Y < +∞, Y < α−1◦α◦α−1
4 ◦α5◦α−1

6 ◦δ(K ),

lims→+∞
σ2( s )+σ1◦λ( s )

κ( s ) < +∞, where λ ∈ K, κ ∈ K∞, μ ∈ K (functions α4, α5, α6

and δ obtained in Lemma A.2) and d ∈ Rm is new input (Lebesgue measurable and
essentially bounded function of time). Then

(i) system solutions are bounded;
(ii) if set Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5 ◦ α−1
6 ◦ δ(K )

}
does not

contain equilibrium points of system ẋ = f (x,k(x ) ) then for d( t ) ≡ 0, t ≥ 0 closed
loop system is an oscillatory one.

Proof. Introduce partition of control input:

u = k(x ) = −k1(x ) + k2(x ),

such that

|k1(x ) | ≤ λ ( |y | ) , |k2(x ) | ≤ K;

yTk1(x ) + β(x ) + μ ( |d | ) ≥ κ ( |y | ) + yTd;

yTk2(x ) > β(x ) + yTk1(x ) for 0 < |y | < Y < +∞.
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This separation is possible due to conditions of Theorem 3. Introduce auxiliary
input d̃ = d + k2(x ) (essentially bounded by conditions of the theorem ‖ d̃ ‖ ≤
K + ‖d ‖). For system (1) all conditions of Lemma A.2 are satisfied for the feedback
u = −k1(x )+d̃ and system is ISS with respect to input d̃. According to ISS property
[21] and boundedness of d̃, boundedness of system solution immediately follows and
statement (i) of Theorem 3 is proven. To justify statement (ii) note that the conditions
of Lemma 3 also hold.

Theorem 3 extends the result from [3] and [28] to the case of general nonlinear
dynamical systems. Additional special attention is given to the lower estimate of the
oscillation amplitude for d( t ) ≡ 0, t ≥ 0.

Exciting part k2 of feedback k defines the size of set Ω (due to constants Y and K
are prescribed by k2) and, hence, it regulates the gap between values of π− and π+.

Remark 2. It is worth stressing that the control in Theorem 3 is proposed to
satisfy some sector condition with respect to output y. For design of such controls in
practical application it is possible to use speed-gradient approach [9, 10], e.g., choose
u = ϕ(y ), where ϕ(y )Ty > 0 for 0 < |y | < Y1 and ϕ(y )Ty < 0 for |y | > Y2 > Y1.

Example 4. Let us consider controlled linear oscillator:

ẋ1 = x2; ẋ2 = −x1 + u,

which is passive with storage function

V (x ) = 0.5
(
x21 + x22

)
, V̇ = x2 u,

and IOSS with corresponding Lyapunov function

W (x ) = 0.5
(
x21 + (x1 + x2 )

2
)
,

Ẇ ≤ −0.5
(
x21 + x22

)
+ x22 + u2

with output y = x2 (σ1( s ) = σ2( s ) = s2). Then control u = −k1(x ) + k2(x ) with
k1(x ) = a x2, a > 0.5 and k2(x ) = K sign(x2 ) admits all condition of Theorem 3
with λ( s ) = a s, κ( s ) = ( a − 0.5 ) s2, μ( s ) = 0.5 s2. All functions σ2, σ1 ◦ λ and κ
are square-law and, hence,

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞;

inequality x2 k2(x ) > x2 k1(x ) holds for 0 < |x2 | < Y , Y = K/a. This system is
ISS for control u = −k1(x ) + d with ISS Lyapunov function:

U(x ) =W (x ) +
1 + 2 a2

a− 0.5
V (x ),

U̇ ≤ −0.5
(
x21 + x22

)
+

(
2 +

0.5 + a2

a− 0.5

)
d2.

Then set

Ω =

{
x : K/a ≤ |x | ≤

√
1 +

1.5 a− 0.75

a2 + 0.5

√
4 +

1 + 2 a2

a− 0.5
K

}

is always nonempty. Simulation results and bounds of set Ω are shown in Figure 4
for a = 1 and K = 1/3.
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Fig. 4. Trajectories of linear oscillator under nonlinear feedback.

Based on the results of Theorem 3 and Corollary 2 it is possible to obtain the esti-
mates of excitation indices of closed loop system for the case of nonvanishing signal d.

Corollary 3. Let all conditions of Theorem 3 hold. Then for ‖d ‖ ≤ γ < +∞

0 ≤ χ−
V ( γ ) ≤ χ+

V ( γ ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K + γ ),

if additionally

y( t )Td( t ) ≥ 0 for all t ≥ 0, (3),

then

α(Y ) ≤ χ−
V ( γ ) < χ+

V ( γ ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K + γ ).

Proof. Upper estimate on excitation indices follows from ISS property of the
system with respect to input d̃ (asymptotic gain property in [25]). Now let us consider
time derivative of storage function V :

V̇ = yT (−k1(x ) + k2(x ) + d )− β(x )
≥

[
yT (−k1(x ) + k2(x ) )− β(x )

]
+ yTd .

From conditions of Theorem 3, the expression in square brackets is positive for 0 <
|y | < Y < +∞, but the presence of sign-varying term yTd allows one to claim only
0 ≤ χ−

V ( γ ) ≤ χ+
V ( γ ) in common case. But if y( t )Td( t ) ≥ 0 for all t ≥ 0, then

[yT (−k1(x ) + k2(x ) )− β(x ) ] + yTd
≥ yT (−k1(x ) + k2(x ) )− β(x ),

and the desired result follows by the same line of consideration as in Theorem 3.
Further let us suppose that it is possible a situation χ−

V ( γ ) = χ+
V ( γ ) for some γ. But

according to Definition 4, excitation indices admit conditions:

γ1 ≤ γ2 ⇒ χ−
V ( γ2 ) ≤ χ−

V ( γ1 ) and χ
+
V ( γ1 ) ≤ χ+

V ( γ2 ).
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Applying the same arguments as in Corollary 2 for the results of Theorem 3 it is
possible to obtain

0 < χ+
V ( 0 )− χ−

V ( 0 ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K )− α(Y ),

therefore, χ+
V ( γ )− χ−

V ( γ ) > 0 for any γ ≥ 0.
According to the corollary index χ+

V ( γ ) is always bounded, that is more, it can
not be equal to χ−

V ( γ ) for any γ ∈ R+ with (3). Thus, system can not lose its
oscillation ability for any large enough input disturbance possessing “coordination”
condition (3) and such input d does not provide new equilibrium points into set
Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(K + γ )
}
for system ẋ = f(x,k1(x) +

k2(x) + d). Also it is worth to note, that the requirement (3) can be satisfied for
t ≥ T only, where 0 ≤ T < +∞.

5. Conclusion. In this paper conditions for oscillatority in the sense of
Yakubovich applicable to nonlinear systems are proposed. Upper and lower bounds
for oscillation amplitude are evaluated. Presented conditions are also necessary for
some special class of uniformly oscillating systems. Relation between the oscillatority
bounds and excitability indices for the systems with input is established. An impor-
tant advantage of the results of the paper is their applicability to complex nonperiodic
(e.g., chaotic) oscillations. Such an advantage is achieved due to using the concept
of oscillatority in the sense of Yakubovich as the starting point of the whole study.
The results are illustrated by examples: Evaluation of oscillations for Van der Pol and
Hindmarsh–Rose neuron systems. As a side result a smooth nonquadratic Lyapunov
function providing boundedness of Van der Pol system solutions has been found.

Appendix.
Lemma A.1. Let system (1) have IOSS Lyapunov function W and h-dissipative

storage function V as in Definition 2. If

lim
s→+∞

σ2( s )

α( s )
< +∞,

then system (1) is ISS with ISS Lyapunov function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) ,

ρ( r ) =

∫ r

0

q( s ) ds, q( s ) =
α ◦ σ−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

,

α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

Lf(x,u )U(x ) ≤ −α6 ( |x | ) + δ ( |u | ) , δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ),

χ ( 2 σ2( s ) ) = α( s ) [ 1 + 2 σ2( s ) ]
−1.

Proof. According to conditions of the lemma and Definition 2, the following series
of inequalities holds for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ; Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;
α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −α ( |y | ) + σ ( |u | ) ,

where α, α1, α2, α3, α, α ∈ K∞ and σ, σ1, σ2 ∈ K. Let us consider a new IOSS Lya-
punov function

W̃ (x ) = ρ (W (x ) ) , ρ( r ) =

∫ r

0

q( s ) ds,
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where q is some function from class K (that will be defined later). Clearly function W̃
is again continuously differentiable, positive definite, and radially unbounded provided
that ρ ∈ K∞. Its time derivative admits an estimate:

Lf(x,u )W̃ (x ) ≤ q (W (x ) ) [−α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ] .

To disclose the above inequality let us analyze consequently three situations:
(a) If 0.5α3 ( |x | ) ≥ σ1 ( |u | ) + σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) ;

(b) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) ≤ σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ2 ( |y | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) ,

where χ( s ) = q ◦ α2 ◦ α−1
3 ( 2 s );

(c) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) > σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ1 ( |u | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Thus, the time derivative of function W̃ calculated for system (1) can be rewritten in
the form:

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | )
+ 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Let function χ be taken to possess the following equality:

χ ( 2 σ2( s ) ) =
α( s )

1 + 2 σ2( s )
,

such choice of χ is possible due to

lim
s→+∞

σ2( s )

α( s )
< +∞

with q( s ) =
α◦σ−1

2 ( 0.25α3◦α−1
2 ( s ) )

1+0.5α3◦α−1
2 ( s )

from class K. Then system (1) is ISS with ISS

Lyapunov function U(x ) = V (x ) + W̃ (x ) (α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦
α2( s )), indeed:

Lf(x,u )U(x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) + σ ( |u | )
+ 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) ≤ −α6 ( |x | ) + δ ( |u | ) ,

where α6( s ) = 0.5 q (α1( s ) ) α3( s ) and δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ).
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The next lemma is a corollary of Lemma A.1 presenting a variant of ISS stabilizing
control law for a passive system.

Lemma A.2. Let system (1) be passive and IOSS in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Then control

u = −k(x ) + d, |k(x ) | ≤ λ ( |y | ) , λ ∈ K;

yTk(x ) + β(x ) ≥ κ ( |y | ) + 0.5 |y |2 , κ ∈ K∞;

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞,

where d ∈ Rm is new input (Lebesgue measurable and essentially bounded function of
time), and provides for the system ISS property with ISS Lyapunov function:

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =

∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).

Proof. From Definition 2 the following conditions hold for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ;
Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;

α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −β ( |x | ) + yTu

with α1, α2, α3, α, α ∈ K∞, σ1, σ2 ∈ K and β some nonnegative definite function.
Substituting control in these inequalities, it is possible to obtain

Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |d− k(x ) | ) + σ2 ( |y | )
≤ −α3 ( |x | ) + σ1 ( 2 |d | ) + σ1 ( 2λ ( |y | ) ) + σ2 ( |y | ) ;

Lf(x,u )V (x ) ≤ −β ( |x | ) + yT (d− k(x ) ) ≤ −κ ( |y | ) + 0.5 |d |2 .

Thus, such control provides for closed loop system IOSS property and h-dissipativity
with respect to new input d. If

lim
s→+∞

σ̃2( s )

κ( s )
< +∞, σ̃2( s ) = σ2( s ) + σ1 ◦ λ( s ),

then all conditions of Lemma A1 are satisfied and the system is ISS with ISS Lyapunov
function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =

∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).
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Robust and Adaptive Observer-Based Partial
Stabilization for a Class of Nonlinear Systems

Denis V. Efimov, Member, IEEE, and
Alexander L. Fradkov, Fellow, IEEE

Abstract—The problem of adaptive stabilization with respect to a set for
a class of nonlinear systems in the presence of external disturbances is con-
sidered. A novel adaptive observer-based solution for the case of noisy mea-
surements is proposed. The efficiency of proposed solution is demonstrated
via example of swinging a pendulum with unknown parameters.

Index Terms—Adaptive control, nonlinearity, observers.

I. INTRODUCTION

The problem of nonlinear adaptive control got a number of solutions
during the last decade [2], [11], [14], [15], [17], [20]–[22], [24]. Most of
the existing solutions are tailored to achieve such goals as regulation or
tracking, where the system trajectory converges to a point or to a curve.
In these cases the goal functionals possess radial unboundedness with
respect to the whole state vector of the controlled system. However, in
a number of applications the plant stabilization with respect to a part
of variables (i.e. with respect to a set) is needed. For example, such
problems arise when stabilizing the desired energy level for physical
or mechanical systems, synchronization, etc. [10], [11], [23].

An additional requirement may consist in boundedness of con-
trol signal [3], [11]. In the presence of parametric uncertainty, the
dependence of bounded control law on adjusted parameters leads
to the problem of adaptation with nonlinear parameterization of the
controller. This fact prevents from applying previously mentioned
results. The problem is to design an output feedback control for an
unknown plant, providing stabilization of the given set or its vicinity
in the presence of disturbances and measurement errors (size of the
vicinity should be proportional to the level of disturbances). Such a
statement of the problem looks natural when the level of disturbances
is unknown, though bounded. Among numerous examples of such
situations are energy-control problems and synchronization problems.

A number of problems of the above class were solved previously
by the speed-gradient method under assumption of passifiability [10],
[11], [27], [28]. However, many systems of interest, e.g. those having
relative degree greater than one cannot be made passive. Solutions for
nonpassifiable systems were suggested in [12] based on a special non-
linear observer structure proposed by Nikiforov [11], [12], [24].

In the previous works of the authors [5]–[9] solutions for such sort of
problems were proposed for output synchronization, observation, I-O
stabilization. This technical note is devoted to the robust and adaptive
partial stabilization. Partial stabilization is considered with respect to a
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function and the goal set is a surface in the state space. We stress, that
consideration of partial stability as the set stability is only one of the
possible notions of partial stability; under some circumstances, indeed,
more than one measure is requested to formulate the property in a suit-
able way.

II. PRELIMINARIES

Let us consider dynamical systems

�� � ������� � � ����� (1)

where � � �� is the state vector; � � �� is the input vector; � � ��

is the output vector; � and � are locally Lipschitz continuous vector
functions, ���� � �, ���� �� � �. Euclidean norm will be denoted as
���, and ����� ��� denotes the ��� norm of the input (���� is Lebesgue
measurable and locally essentially bounded function � � �� � ��,
�� � �� � � � � � ��)

����� �� � � ��� ��	 ������� � � � 
��� � �� 	

If � � �� then we will simply write ���. We will denote as �

the set of all such Lebesgue measurable inputs � with property ��� 

��. For initial state �� and input � � � , let ��������� be the
unique maximal solution of (1) (we will use notation ���� if all other
arguments are clear from the context; ��������� � ������������),
which is defined on some finite interval 
�� � �; if for every initial state
�� � �� and � � � the solutions are defined for all � � �,
then system is called forward complete. It is said that system (1) has
unboundedness observability (UO) property, if for each state �� � ��

and input � � � such that � 
 �� necessarily


�� ��	
���

����� ������ � ��	

Characterization of forward completeness and UO properties were in-
vestigated in [1]. Distance in �� from given point � to set is de-
noted as ��� � ������� � � ���

����
�� 	 ����. As usual, a continuous

function � � �� � �� belongs to class if it is strictly increasing
and ���� � �; additionally, it belongs to class � if it is also radially
unbounded; a continuous function 
 � �� 
�� � �� is from class

, if 
��� �� � for any � � ��, and 
��� �� is strictly decreasing to
zero for each � � ��.

System (1) is called bounded-input-bounded-state (BIBS) stable if
for all �� � ��, � � � , � � � the property ����������� �
������������ ������� holds for � � .

Definition 1 [13], [29]: UO system (1) is input-to-output stable
(IOS), if there exist 
 � and � � such, that inequality
����� ������ � 
��������� � 	 ��� � ������� ����, � � �� � � holds
for all ����� � �� and � ��� .

Definition 2 [9]: Forward complete system (1) is called integral
input-to-state stable (iISS) with respect to closed invariant set if there
exist functions � � �, � � and 
 � such that, for any
�� � ��, � � �

� ����� ������	 � 
 �����	� �� �

�

�

� ����������� � � �	
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A. Robust Stabilization With Respect to a Set via Passification
Approach

Let us consider a system

�� � ���� �������� ��� � � ���� (2)

where � � ��, � � ��, � � �� are state, input, and output vectors
correspondingly; � � �� is an external disturbances vector; � , � and
columns of matrix� are locally Lipschitz continuous vector functions,
���� � �, ���� � �.

Definition 3 [4], [11], [31]: It is said that system (2) is passive with
continuously differentiable storage function � 	 �� � �� if for all
� � ��, � � ��, � � �� it holds that �� � �� �� � ��.

The passification method [11], [27], [28] is based on a feedback
design making the closed-loop system passive. It allows one to solve
partial stabilization problem for system (2) with respect to the zero
level set of storage function. The key property for this approach to
partial stabilization is detectability assumption [26]–[28] described
as follows.

Definition 4: It is said that passive system (2) with storage function
� 	 �� � �� is V-detectable with respect to output � if for all
�� � �� it holds

������� �� � �� � � �� 
��
����

� �������� ��� � ��

The following result [7], [9] gives conditions of iISS with respect to
set stabilization by passification.

Theorem 1: Let the system (2) be passive with continuously differ-
entiable storage function � 	 �� � �� and a non decreasing func-
tion � 	 �� � ��, ���� � � have the property ������ � � for
� � ������, 
��

��� ��
	����	�� ��� 	 
. Additionally, let there

exist functions 
�� 
� � � such that for all � � �� inequalities

��	�	 � � � ��� � 
��	�	 � are satisfied, where � � �� �

�� 	 � ��� � �� is a compact set. Then the system (2) with control
� � ����� has iISS property with respect to set � if the system is
V-detectable with respect to the output �.

B. Positivity in the Average

Identification ability of adaptation algorithms is one of the most at-
tractive problems in the adaptive control theory. The solution of this
problem is closely connected with persistent excitation (PE) property.
There exist several closely related definitions of PE property [10], [18],
[19], [22]. Here we will use the following one.

Definition 5: Function � 	 �� � � is called positive in the average
(PA) if there exists some 
 � � and � � � such that for all � � � and

 � 
 � �

���

�

��� ��� � �
�

The importance of the PA property is explained in the following
lemma, for which a slightly modified version was proven in [8].

Lemma 1: Let us consider time-varying linear dynamical system
�� � ������ � ����, �� � �, where � � �, ����� � � and functions
� 	 �� � �, � 	 �� � � are Lebesgue measurable, � is locally
essentially bounded, function � is PA for some � � �, 
 � � and
essentially bounded from below, i.e. there exists � � �� such, that

��� ��������� � � ��� � ��. Then the solution are defined for all
� � �� and

	����	 �

	�����	 �
������ ��������

�������������� � ������� �� � 
� �;
	�����	 �

������ ����

��������
� ������� �� � � �.

It is possible to show that PA property is equivalent to some versions
of PE property. However, PA is more convenient for quantitative anal-
ysis. Standard sufficient conditions for PE that can be interpreted for
PA can be found, e.g. in [22].

C. Adaptive Observer Design

Let us consider the following uncertain system:

�� � �����������	�������
�� � � ��� �� � ��
� (3)

where � � �� is a state vector; � � �� is an output vector; ��� �
�	 � �
 is a vector of uncertain parameters, which values belong to
compact set �	 ; 
� � � , 
� � � are vector signals of external
disturbances and measurement noise, 
 � �
�� 


�
� �
�

; �� is vector of
noisy measurements of the system (3) output. Vector function � and
columns of matrix functions� and	 are locally Lipschitz continuous,
and � is some constant matrix of appropriate dimension.

The problem is to design an adaptive observer, which in the ab-
sence of disturbances provides partial estimates of unmeasured com-
ponents of vector � and estimates of unknown vector ���. For any 
 �

� , the observer should ensure boundedness of the system solu-
tions. In works [6], [8], [12] a solution is proposed under the following
suppositions.

Assumption 1: For all �� � ��, ��� � �	 , 
 � � system (3)
is BIBS

	������� ����
�	 � �� �	��	� � �� ��
�� � �� � �� � � ��

The rest suppositions deal with stabilizability by output feedback of
the linear part of system (3).

Assumption 2: There exist matrix �, locally Lipschitz continuous
matrix function 
 	 �� � ���� and continuously differentiable
function � 	 �� � �� satisfying relations


� �	�	� �� ��� � 
� �	�	�

�� ������������ � � 
�	��	
�� 	��	 � 	��	

for all �� � ��, � � ��, where 
�, 
� are from class � and

� � �, ����� � ������
�����.

Assumption 2 ensures uniform asymptotic stability with respect to
variable �� [11], [25] for the system

�� � ������� � (4)

coupled with the system (3) and uniform stability property with respect
to variable � for the case � � �.

The next assumption requires bounded input-bounded state stability
of the auxiliary system (4).

Assumption 3: For all initial conditions �� � �� and inputs � �
� , �� � � the system (4) is BIBS uniformly with respect to

signal ��

	���� ��� �����	 � �� �	��	� � �� ����� � �� � � � � ��
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Consider the following equations of adaptive observer:

�� �������� ����� ��������� ��������� � �� (5)

���� ��������� ����
�
��� (6)

���� ��������������� (7)
�
��� � �����

�
� ��� � � ������� � � ��� � � � (8)

where � � �� is the vector of variable � estimates; vector ��� � ��

and matrix ��� � ���� are auxiliary variables, which help to overcome
high relative degree obstruction for system (3); ��� � �� is vector of ���
estimates.

Theorem 2 [6]: Let assumptions 1–3 hold and minimum singular
value ��	� of matrix function ������ �	� be PA. Then solutions of
system (3) and (5)–(8) are bounded for any initial conditions and
	 � � and any � � �, in the absence of disturbance 	 the
following relations hold:

�	

����

����	� � ���� �	

����


��	�� 
��	� � �


III. MAIN RESULT

Let us consider uncertain nonlinear system

�� ������� ���� �������� �������� 	�� � 	�

� ���� �� � � � 	� (9)

where (as for the system (3) previously) � � �� is the state vector;
� � �� is the output vector; ��� � �� � �� is the vector of unknown
parameters with values from �� ; � � �	 is the control; 	� � � ,
	� � � , 	� � � are vector signals of external disturbances
and measurement noise, 	 � �	�� 	

�
� 	

�
� �
�

; �� is noisy output vector
of the system (9). Vector function � and matrix functions�,�,� are
continuous and locally Lipschitz.

Assumption 4: There exist locally Lipschitz continuous functions
� 
 ���
�� � �	 , ��� 
 �� � �� and matrix 
 with dimension
�� � 
� such, that control

� � ����
�� ���� (10)

guarantees for system (9) forward completeness and one of the fol-
lowing properties.

A. IOS from input 	 to output ���.
B. iISS with respect to set � �� 
 ������ � �� for input 	.
Starting from control (10), depending on unmeasured variables 
�

and vector of uncertain parameters of the system ���, it is necessary
to design a new control using only measured signal ��. The control
should provide boundedness of the closed-loop system solutions for
	 � � and for the case 	 � � it should ensure asymptotic
convergence to zero of output ��� or attractiveness of the set .

It is worth to stress, that two outputs have been introduced, � defines
the measured variables of the system (9), ��� characterizes the distance
to the goal set. Although the vector of unknown parameters ��� appears in
a linear fashion in the right-hand side of system (9), the right-hand side
of the closed-loop system (9), (10) may nonlinearly depend on ��� since
Assumption 4 does not specify the form of function � dependence on
its arguments.

The form of the system (9) is similar to the system (3) (observer
canonical form) for which it is possible to design adaptive observer
(5)–(8). Substituting in control (10) the estimates of vectors 
� and
��� provided by the observer, it is possible to solve the posed problem
(we assume that matrixes 
 in assumptions 2 and 4 are identical). The
principal difference of the solved problem from the problem of adaptive
observer design as in Theorem 2 consists in appearance of control � in

the right-hand side of system (9). Generally speaking in the absence
of control (10) system can possess unbounded solutions (Assumption
1 fails). Fortunately, this obstacle does not prevent from the design of
the observer similarly to (5)–(8)

�� �������� ����� ��������� �������

��������� � �� (11)

���� ��������� ����
�
��� (12)

���� ��������������� (13)
�
��� � �����

�
� ��� � � ������� � � ��� � � � (14)

where all symbols have the same meaning, and � � � is adapta-
tion gain. Since matrix function � depends on the output vector only
and control � is produced by the controller, their appearance does not
change dynamics of state estimation error 
 � � � � and auxiliary
error ��� � 
 � ��� � ������� � ����

�
 ������
� ����� ����� �������� ���������

������	��	� �����	� � �������������

� 	��	� � �������������� (15)
���� ��������� � ����� ����� � ������������ ���

������	��	� �����	� � �������������

� 	��	� � �������������
 (16)

For the case of the absence of the disturbances 	 � �, systems (15)
and (16) can be rewritten as follows:

�
 �����
��������� � ����� (17)
���� ��������
 (18)

Forms of (17) and (18) are similar to the observer (5)–(8) and, there-
fore, the convergence proof for the observer (11)–(14) follows from
Theorem 2 with minimal modifications dealing with a prior absence of
Assumption 1 for system (9). In the presence of noise 	�, the depen-
dence of right-hand sides of (15) and (16) on vectors � and � makes
difficulties for employing of the proof of Theorem 2. This is the reason
why this case will be considered under special conditions below.

Theorem 3: For system (9), let Assumption 2 hold and Assumption
3 be satisfied for any Lebesgue measurable signal �; minimum sin-
gular value ��	� of matrix function������ �	� be PA; ������	��� 	 �,
������	��� 	 � for all 	 
 �, ��� � ��. Then the control law
� � �����
�� ���� ensures forward completeness of system (9), bound-
edness of the system (11)–(14) solutions, and boundedness of variable
������	�� for all initial conditions, 	 � �� and any � � � pro-
vided that at least one of the following additional suppositions is valid.

1) Assumption 4.A holds, control � � �����
�� �� is globally
Lipschitz function with respect to the last two arguments and
	��	� � � for all 	 
 �;

2) Assumption 4.A holds control � � �����
�� ���� is a globally
Lipschitz function, function � is globally Lipschitz, ���� � �,
���� � � and ���� � �;

3) Assumption 4.B holds and 	�	� � � for all 	 
 �.
Additionally, if 	�	� � � for all 	 
 �, then limit relations
�	


����
����	� � � (Assumption 4.A) or �	


����
���	�� � � (Assump-

tion 4.B) hold.
Proof: At first let us consider the case 	��	� � �, 	 
 � under

Assumption 4.A. Then (15) and (16) take the form

�
 �����
��������� � ���� �����	� � 	��	� (19)
���� �������� �����	� � 	��	�
 (20)
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Equations (20) and (13) have form (4) with bounded inputs, thus, ac-
cording to Assumption 3 variables ��� and��� are bounded. Let us consider
the time derivative of Lyapunov function� ����� � ������������� ���������
as follows:

�� � � ����� � ���������
�
�
� ��� �������� � ���� � ��

� � ������ � ����� � ���
�� (21)

For bounded input�������, the boundedness of error ������� follows
from Lemma 1 and PA property of signal �. Having in mind this con-
clusion, transform equation (19) to the form (4) with bounded inputs.
Applying again Assumption 3 one can substantiate boundedness of �.
Variable ��� is a part of error ���, where all other parts and ��� are bounded.
Hence ��� is also bounded. Let us substitute the control into (9), as

�� � ����� � 	��� �������� ����� �	��

�
 ���� � ��	

������� � �� (22)

where �� � 	��

�
 ���� � 	��

�
 ���� is the error of control (10)
realization. By conditions control 	 � 	���

�
 ���� is globally Lips-
chitz continuous and errors � and ��� � ��� are bounded. Therefore, there
exists a constant �� � 
 such, that for all � � 
 inequality ������� �
����
������ ����� �������	 holds and error �� is bounded. According to
Assumption 4, control (10) ensures boundedness of function 


.

Assume now the presence of noise �� under structure restrictions
���� � �, ���� � � and ���� � � (in this case ���� � �).
Equations (15) and (16) can be rewritten as follows:

�� �
������ 	���� 	���� ������ � ���	�������

���� � �����


���� �
������� � 	���� 	����������� ���� � ������

Since 	 is globally Lipschitz continuous, applying Assumption 3 we
justify the boundedness of variables ���, ���, and ���. Analyzing properties
of function � we obtain boundedness of variable ���� ���. Boundedness
of all other variables of the system can be proven in the same way as
in the previous case.

In the absence of disturbances �� � 
�, system (15) and (16) take the
form of (17) and (18). It follows from Assumption 2 that the variable ���
is bounded and system is asymptotically stable with respect to the part
of variables
��� [25]. Assumption 3 gives boundedness of variable���. In
this case for time derivative of function � Lemma 1 provides asymp-
totic convergence to zero of variable ����������. According to assumptions
2 and 3, the system (17) is asymptotically stable with respect to variable

� and has bounded solutions. Since signals ��� � ������ and 
���� con-
verge to zero, the error ����� also converges to zero. Having in mind
the properties of control (10) from Assumption 4.A, we obtain conver-
gence to zero of variable 


���. In such case error ����� is integrally
bounded and we can apply Assumption 4.B. Proof is completed.

Remark: Globally Lipschitz property requirement for control (9)
naturally holds for bounded controls.

For Assumption 4.A, the theorem provides convergence conditions
in the presence of external disturbances and noise. The noisy case needs
additional structural restrictions.

For Assumption 4.B, Theorem 3 does not propose constructive con-
ditions for the case of disturbances � presence. Robust properties of
control (10) in this case are oriented on parametric uncertainty and
partial state measurements compensation. It is possible to weaken re-
quirements of Theorem 3 for the case of Assumption 4.B, supposing
boundedness and asymptotic convergence to zero of disturbance �.

Theorem 1 presents results for iISS stabilization of passive systems
with respect to a set. Dependence of Hamiltonian on vector of uncertain
parameters ��� in nonlinear fashion prevents application of conventional
convex adaptation techniques. Combining results of theorems 1 and 3,
it is possible to propose a solution of this problem.

Corollary 1: Assume that:
1) System (9) for � � 
 is passive with respect to output 


 �

������ ���� and input 	 with smooth storage function � �
�� � ��, ������ � � � ��� � ������ �, ��
 �� � �,
where � � �� � � ��� � 
� is a compact set; system (9) is
W-detectable for output 


, �
�

��� ��
�


������ ��� �	.

2) For system (9), Assumption 2 holds and Assumption 3 is satis-
fied for any Lebesgue measurable signal �; minimum singular
value ���� of matrix function ������ ��� is PA; ���������� � �,
���������� � � for all � � 
, �
� � ��.

3) Smooth function 	 � �� � �� for all 


 � ����
� possesses
inequality 


�	�


� � 
 and 	 � �	�


���� � 	��

�
 ����.

Then control law 	 � 	��

�
 ���� provides for system (9) and
(11)–(14) global boundedness of solutions for the case � � 
 and any
� � 
, additionally �
�

����
������ � 
.

Proof: The first and the third parts of conditions provide imple-
mentation of Theorem 1 in this case. In such situation control 	 �
�	�


���� � 	��

�
 ���� ensures iISS property with respect to com-
pact set � and input �� for system (9). Due to compactness property
of the set, the system is also forward complete. Therefore, all conditions
of Assumption 4.B are satisfied and taking in mind other conditions of
the corollary, the result of Theorem 3 holds.

IV. ADAPTIVE SWINGING A PENDULUM

Consider the problem of energy stabilization for a pendulum with
partial observations and parametric uncertainty

��� � ��
 � � ��
 ��� � ��� �
����� � �

where � � �����	
� is a state vector; � is unknown frequency, � � ��.

It is required to stabilize the desired value �� of energy ����
 ��� �

�������������������. The system is passive with respect to output

 � �������
 �����

�	 with smooth storage function � ���
 ��� �

�������
 ������	�. The system is � -detectable with respect to
the output [26]. If �� � ���, then the zero level set of the storage
function is compact. The value �� � ��� corresponds to stabilization
of the upper equilibrium of the pendulum.

In [11], the energy control law � � �	�
� was proposed, and suc-
cessfully tested by simulation for 	�
� � �����
�. Let us show that
such control law and storage function satisfy conditions of Corollary
1. The equations (11)–(14) take the form

��� � �� ����� � ���� � � 
�

��� ����� � ���� � �
�����

� 	 �� 
����� � � ��� ��������� ��

��� � ���� � ��� ��� � ���� � �� � ��
�
�

��� � ���� � �
������ ��� � ���� � ��
�
�

�
� � ������ � �� � ����

To test the PA property of signal ������ ��� � �����, it is enough
to establish PE property of signal ���� � �
�������� or PA prop-
erty of ����� � �
���������. Indeed, ���� is the single input of stable
linear filter (13). Clearly, that forced part of solution (proportional to
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Fig. 1. Adaptive swinging up of the pendulum.

����) defines properties of signal ����� (transient motions converge
to zero asymptotically). The PA property of signal ����� implies, that
the system trajectories do not converge and do not stay into the points
�� � ���, � � �� �� �� � � �. This convergence is possible only in the
equilibriums of the system ����� ��, � � �� �� �� � � �, but linearization
of the pendulum dynamics closed by the proposed control is unstable
in these equilibriums for � � �� � �	�, since these equilibriums are
not the desired final positions of the system. Moreover, the simulation
below show, that even for the case �� � �	� the algorithm keeps its
identification abilities.

The proposed observer with control


 � �� �� �
	��� 
 � ��� ��
������ ��

provides stabilization of the upper equilibrium of the pendulum (in this
case �� � �	� � ��). The simulation results are shown in Fig. 1 for
	 � � � � � � and zero initial conditions (except ���� � �
�). Tra-
jectories in the state space of the pendulum (solid line) and the adaptive
observer ���� ��� (dotted line) are shown in Fig. 1(a). The observation
error is presented in Fig. 1(b) separately. In Fig. 1(c) and 1(d), plots of
variables ���� and ���� are shown.

Note that solutions from papers, [10], [16], [23], and [30] cannot be
applied in this example due to boundedness of control or since output
stabilization is required here.

V. CONCLUSION

In this technical note, the previous results of the authors [5]–[9] ob-
tained for output synchronization, observation, I-O stabilization are ex-
tended to the robust and adaptive partial stabilization problems for a
class of nonlinear systems affine in control and disturbances. Appli-
cability conditions of the algorithms are established in the presence of
external disturbances and partial observations with measurement noise.
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Abstract The problem of controlled phase adjustment (resetting) for models of
biological oscillators is considered. The proposed approach is based on oscillators
excitation by a pulse, that results in the phase advancement or delay. Design proce-
dure is presented for a series of pulses generation ensuring the required phase resetting.
The solution is based on the direct phase response curve (PRC) approach. The notion
of direct PRC is developed and non-local PRC model is proposed for oscillators. This
model is more suitable for phase dynamics description under inputs excitation with
sufficiently high amplitudes. The proposed model is used for controls design. Two
control strategies are tested, the open-loop control (that generates a predefined table
of instants of the pulses activation ensuring the resetting) and the feedback control (that
utilizes information about the current phase value measured once per pulse applica-
tion). The open-loop control is easier for implementation, the feedback control needs
the estimation of the actual phase in the oscillating system. The algorithm of phase
estimation is also presented. The conditions of the model and the controls validity
and accuracy are determined. Performance of the obtained solution is demonstrated
via computer simulation for two models of circadian oscillations and a model of heart
muscle contraction. It is shown that in the absence of disturbances the open-loop and
the feedback controls have similar performance. Additionally, the feedback control is
insensitive to external disturbances influence. In these examples the presented scheme
for phase values estimation demonstrates better accuracy than the conventional one.
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1 Introduction

Oscillations occur in many systems in biology, physics, chemistry and engineering
(Blekhman 1971; Izhikevich 2007; Kuramoto 1984; Mosekilde et al. 2002; Pikovsky
et al. 2001; Winfree 2001). Any periodic (limit-cycle) oscillating mode can be charac-
terized by its frequency spectrum, phase and amplitude. There exist many approaches
dealing with regulation of these characteristics (Astashev et al. 2001; Belykh et al.
2005; Kovaleva 2004; Kurths 2000; Efimov 2005). A well-known property of a limit-
cycle oscillation is that it can be phase-reset by a brief stimulus, with the perturbation
causing a change in the phase of the oscillation with respect to that of an ongo-
ing unperturbed control oscillation (Blekhman 1971; Guevara 1981; Winfree 2001).
Another property of a limit-cycle oscillation is that it can be entrained by periodic
stimulation, with a fixed phase relationship between the stimulation waveform and
the entrained waveform (Izhikevich 2007; Pikovsky et al. 2001). The “phase-resetting
problem” centers around developing a stimulation protocol that can be made to yield
any desired value of phase.

One example of the phase-resetting problem involves the circadian rhythm. Many
organisms, from bacteria to mammals, display circadian rhythms. These are sustained
oscillations with a period close to 24 h that can typically be reset by a light stimulus
(Leloup and Goldbeter 1998; Leloup et al. 1999). In addition, periodic excitation by
light can result in phase and frequency entrainment of the natural circadian rhythm
(Tass 1999), resulting in a fixed phase relationship between the light stimulus and
some marker event in the circadian rhythm (e.g., the point in time of the daily temper-
ature minimum of the organism). One important practical problem in the case of the
circadian rhythm in human beings is the “jet-lag” produced by long-distance flights.
In this case, the internal circadian rhythm can take several days to adapt its phase to
the new timing of the environmental light conditions. Our task then is to come up with
a control strategy that would decrease the length of the transient in adjusting from
the old timing of the periodic light input to the new timing of that input, as well as
increase the accuracy of the resulting phase under the new environmental conditions.
The goal of the work presented below is to propose a solution of the phase-resetting
problem. In the case of jet-lag, this would correspond to developing an algorithm that
would specify a light administration protocol that would ensure the fastest possible
phase resetting (i.e., minimize the length of the transient).

There exist a few approaches for solution of the phase resetting problem. The first
one is based on master-slave synchronization theory. This approach is very well devel-
oped, but it assumes similarity of both systems and, frequently, synchronizations of
the systems states. The approach is suitable for technical systems synthesis (Belykh
et al. 2005; Kurths 2000), but it meets serious obstructions for application in biol-
ogy, physics or chemistry. Another line of researches deals with optimal or predictive
control application for phase resetting (Bagheri 2007; Bagheri et al. 2008; Forger and
Paydarfar 2004). These methods require availability of full exact information about
the oscillator model and its coefficients, that makes hard its application in some cases.
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The third approach uses assumption on weak coupling/excitation, i.e., it assumes rel-
atively small amplitude for external input (Pikovsky et al. 2001), that sometimes may
be a mild restriction. The last approach is based on PRC application and Poincaré
phase map approach (Glass et al. 2002; Guevara and Glass 1982; Izhikevich 2007).
The advantage of this approach (Danzl and Moehlis 2008; Efimov et al. 2009) con-
sists in low dimension of PRC (it is a scalar map of scalar argument, that completely
describes phase resetting caused by “pulse” input) and that PRC can be measured
experimentally even for oscillators which have not well investigated detailed models.

In this work we are going to extend the approach for phase resetting from (Efimov
et al. 2009) where two control strategies (open-loop and feedback) are proposed based
on analytical PRC derived for the linearised model of the system on the limit cycle.
The phase model based on such analytical PRC is local and may accurately describe
the phase resetting phenomenon for sufficiently small inputs only. In this work the
direct PRC (the PRC measured for nonlinear systems) model is introduced and used
for control design. The advantage of the direct PRC is that it can be computed for
an input with any desired amplitude. Applicability conditions and accuracy of this
approach are investigated. In the next section some preliminary results and definitions
are introduced. Sections 3 and 4 contain the main results dealing with PRC formalism
and control design. Simulations are presented in Sect. 5.

2 Preliminaries

Let R+ = {t ∈ R : t ≥ 0} and the norm of Lebesgue measurable and essentially
bounded function u : R+ → R be defined as ||u||[t0,t) = ess sup {|u(t)|, t ∈ [t0, t)}.
The set of all such functions with property ||u||[0,+∞) = ||u|| < +∞we denote asL∞.

Consider the following system:

ẋ = f(x, u), (1)

where x ∈ Rn is the state, u ∈ L∞ is the input, f : Rn+1 → Rn is a smooth func-
tion. Let x(t, x0, u) be the solution of the system (1) with initial condition x0 ∈ Rn

and input u ∈ L∞ (we use the short notation x(t) if all arguments are clear from
the context), by standard arguments this solution is unique, continuous and defined
at least locally (the solutions inherit smoothness property after the input u(t)). It is
assumed that for u(t) ≡ 0, t ≥ 0 the system (1) has a non-constant T -periodic solu-
tion γ (t) = γ (t + T ) ∈ Rn, t ≥ 0. The image of this solution in the state space is
invariant and closed, if the trajectory is isolated, then its image is called limit cycle, i.e.,
� = {x ∈ Rn : x = γ (t), 0 ≤ t < T } (� is a compact set). The limit cycle is attract-
ing if there exists non empty set A ⊂ Rn (the set of the limit cycle attraction) such that
limt→+∞ dist[x(t, x0, 0), �] = 0 for all x0 ∈ A, where dist[x, �] denotes the dis-
tance to the set � from the point x ∈ Rn . The set � is called stable for the system (1) if
for any ε > 0 there exists δ > 0 such that for all x0 ∈ �δ = {x ∈ Rn : dist[x, �] ≤
δ} it holds x(t, x0, 0) ∈ �ε = {x ∈ Rn : dist[x, �] ≤ ε}, t ≥ 0 (the orbital stability
of limit cycle). If the set � is stable and attractive, then it is asymptotically stable
for the system (1) (Andronov et al. 1987; Lin et al. 1996). Asymptotic stability of
the limit cycle can be established analyzing linearization of the system (1) around �
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(Andronov et al. 1987; Guckenheimer and Holmes 1990). Further we assume that (1)
for u(t) ≡ 0, t ≥ 0 has asymptotically stable limit cycle � with the attraction set A.

2.1 Phase

Any point x0 ∈ � can be characterized by a scalar phase ϕ0 ∈ [0, 2π), that determines
position of the point x0 on � (the limit cycle is one-dimensional closed curve in Rn

(Blekhman 1971; Izhikevich 2007; Pikovsky et al. 2001)). The smooth bijective phase
map ϑ : � → [0, 2π) assigns the corresponding phase ϕ0 to each point x0 on the limit
cycle, i.e. ϕ0 = ϑ(x0). Any solution of the system (1) on the cycle x(t, x0, 0), x0 ∈ �

satisfies x(t, x0, 0) = γ (t + ϕ0ω
−1), ω = 2π/T , provided we choose the conven-

tion γ (t) = x(t, ϑ−1(0), 0). The phase variable ϕ : R+ → [0, 2π) is defined for
trajectories x(t, x0, 0), x0 ∈ � as ϕ(t) = ϑ[x(t, x0, 0)] = ϑ[γ (t + ϕ0ω

−1)]. Due to
periodic nature of γ (t) the function ϕ(t) is also periodic, moreover the function ϑ

can be defined in the particular way providing ϕ(t) = ωt + ϕ0, ϕ̇(t) = ω (Izhikevich
2007; Pikovsky et al. 2001).

Phase notion can be extended to any solution x(t, x0, 0) starting in the attracting
set x0 ∈ A. By definition of the attracting set, for all x0 ∈ A there exists θ0 ∈ [0, 2π)

such that limt→+∞ |x(t, x0, 0)−γ (t +θ0ω
−1)| = 0, where θ0 is the asymptotic phase

of the point x0. There exists the asymptotic phase map υ : A → [0, 2π) connecting a
point x0 ∈ A and the corresponding phase θ0, i.e. θ0 = υ(x0). The asymptotic phase
variable θ : R+ → [0, 2π) is derived as θ(t) = υ[x(t, x0, 0)], t ≥ 0 for x0 ∈ A. In
the case ϕ(t) = ωt +ϕ0 we have θ(t) = ωt +θ0 and θ̇ (t) = ω, that implies invariance
of this map: if υ(x1) = υ(x2), then υ[x(t, x1, 0)] = υ[x(t, x2, 0)] for all t ≥ 0 and
x1, x2 ∈ A (Izhikevich 2007). Locally around � the map υ coincides with the smooth
map ϑ (then in some vicinity of the set � the map υ may be also smooth).

The notion of asymptotic phase variable can be extended to a generic case u ∈ L∞
providing that the corresponding trajectory x(t, x0, u) with x0 ∈ �ε = {x ∈ Rn :
dist[x, �] ≤ ε} ⊂ A stays into the set A for all t ≥ 0 (denote the subset of inputs
u ∈ L∞ preserving invariance of the set A as M ⊂ L∞, then x(t, x0, u) ∈ A for
all t ≥ 0 with x0 ∈ �ε and u ∈ M). In this case the asymptotic phase variable
can be defined in a trivial way as θ(t) = υ[x(t, x0, u)], t ≥ 0 for any x0 ∈ �ε

and u ∈ M. Then the variable θ(t ′), t ′ ≥ 0 evaluates the asymptotic phase of the
trajectory x(t ′, x0, u) if one would pose u(t) = 0 for t ≥ t ′. The dynamics of the
asymptotic phase variable θ(t) in the generic case u ∈ M is hard to derive. Some
local models obtained in a small neighborhood of the limit cycle for infinitesimal
inputs are presented in (Efimov et al. 2009; Izhikevich 2007; Pikovsky et al. 2001),
less conservative model is proposed in Sect. 3.

The phase map ϑ can be easily assigned for a given initial point ϑ−1(0), while eval-
uation of the asymptotic phase map υ is more challenging. On the set � both maps
coincide, but outside the limit cycle mainly numerical methods are used for the map
υ calculation (Izhikevich 2007; Pikovsky et al. 2001). In (Demongeot and Francoise
2006) the first approximation for the variable θ(t) is obtained for perturbed Hamilto-
nian systems. The following simple lemma provides a method for θ(t) approximation
in some vicinity of the limit cycle.
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Lemma 1 Let |x(t) − γ (t + ϕω−1)| ≤ ε, t ∈ [t1, t2] for some ε > 0, ϕ ∈ [0, 2π)

and υ be smooth into the set �ε, then

θ(t) = υ[x(t)]=ωt + ϕ + Q(t + ϕω−1)[x(t)−γ (t + ϕω−1)] + o(ε2), t ∈[t1, t2],
Q(t) = ∂υ(x)/∂x|x=γ (t) ,

where o(ε2) denotes second order and higher terms with respect to ε.

Proof Let x(t) − γ (t + ϕω−1) = εe(t), then |e(t)| ≤ 1 for all t ∈ [t1, t2]. Consider
expansion of the function υ[x(t)] = υ[γ (t + ϕω−1) + εe(t)] in Taylor series with
respect to ε into the set �ε:

υ[x(t)] = υ[γ (t + ϕω−1)] + ∂υ(x)/∂x|x=γ (t+ϕω−1) εe(t) + o(ε2),

that implies the desired result. 
�
The T -periodic function Q(t) is called infinitesimal PRC and it can be computed

based on linearised around � equations of the system (1) (Izhikevich 2007; Govaerts
and Sautois 2006). In the same way other high order approximations of the asymptotic
phase map υ can be established.

2.2 Phase response curve

Phase response curve is used to describe changes in the phase caused by external
“pulse”-like input u (by “pulse”-like we mean that u(t) �= 0, 0 < t < T < +∞ with
u(t) ≡ 0 for all t ≤ 0 and t ≥ T ). Denote the set of such inputs as U ⊂ M, then
limt→+∞ dist[x(t, x0, u), �] = 0 for all x0 ∈ �ε and u ∈ U .

Definition 1 (Izhikevich 2007; Pikovsky et al. 2001). For all x0 ∈ � and given u ∈ U ,

P RC(ϕold) = ϕnew − ϕold , ϕold = ϑ(x0),

lim
t→+∞ |x(t, x0, u) − γ (t + ϕnewω−1)| = 0.


�
Thus, PRC tabulates the difference between the initial phase ϕold and the shifted one
ϕnew, PRC is a function of the phase when the “pulse” starts to influence on the system
dynamics, ϕold in our case. To preserve continuity of PRC map it is typically defined
as P RC : [0, 2π) → [−π, π) (definition P RC : [0, 2π) → [0, 2π) is also possible),
however, even in this case the map P RC can be discontinuous in general for large
enough inputs (type 0 PRC from (Winfree 2001)). Another equivalent definition of
PRC is

P RC(ϕold) = lim
t→+∞ (υ[x(t, x0, u)] − ϑ[x(t, x0, 0)])

= lim
t→+∞ (υ[x(t, x0, u)] − υ[x(t, x0, 0)]),

ϕold = ϑ(x0),

that uses the asymptotic phase map.
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The shortage of the above definitions of P RC consists in computational complexity
of this map evaluation. For instance, Definition 1 requires information on asymptotic
estimates of the system (1) solutions (for all t ≥ 0), that is infeasible in practice. For
particular type of inputs, like delta-function impulses, P RC can be computed based on
linearization of the system (1) around � (Izhikevich 2007; Govaerts and Sautois 2006),
in this case the P RC map equals Q(ϕω−1). This approach also provides good esti-
mates on the P RC shape for generic inputs with small amplitudes (Izhikevich 2007;
Govaerts and Sautois 2006). To overcome this shortage and to simplify computations
of PRC we equivalently reformulate Definition 1 as follows.

Definition 2 For all x0 ∈ �, given u ∈ U and ε > 0, ε-transient response curve
(ε-TRC) is the map T RCε : [0, 2π) → R+ defined as

T RCε(ϕold) = arg min
t≥T

{dist[x(τ, x0, u), �] ≤ ε for all τ ≥ t}, ϕold = ϑ(x0),

and PRC is the map P RC : [0, 2π) → [−π, π) defined as

P RC(ϕold) = θnew − ϕold , θnew = υ[x(T RCε(ϕold), x0, u)] − ωT RCε(ϕold).


�
From the map υ definition we get that limt→+∞ |x(t, x0, u) − γ (t + θnewω−1)| = 0.
This definition utilizes the fact that for t ≥ T (when the input is zero) the asymp-
totic phase and the phase variables have similar rate ω. Computation of the P RC in
accordance with Definition 2 requires information on the state x behavior on a finite
interval and the asymptotic map υ. For small ε the value υ[x(T RCε(ϕold), x0), u)]
can be estimated applying the result of Lemma 1, that gives an approximation of P RC .

Definition 3 For all x0 ∈ �, given u ∈ U and ε > 0 the map P RCε : [0, 2π) →
[−π, π) defined as

P RCε(ϕold) = �

θnew − ϕold ,
�

θ new = �
υ[x(T RCε(ϕold), x0, u)] − ωT RCε(ϕold),

�
υ[x(T RCε(ϕold), x0, u)] = �

ϕnew + Q(
�
ϕnewω−1)[x(T RCε(ϕold)) − γ (

�
ϕnewω−1)],

�
ϕnew = ϑ[arg min

z∈�
{|x(T RCε(ϕold)) − z|}].


�
The map P RCε is an estimate of the “reference” map P RC from Definition 2, the
advantage of P RCε consists in simplicity of computation. Both maps T RCε and
P RCε can be computed or measured for the system (1) for given ε > 0 and the
“pulse” u ∈ U on finite time intervals.

An accuracy of the map P RCε can be evaluated noting that the set � is asymptot-
ically stable (u(t) ≡ 0 for t ≥ T RCε(ϕold) and asymptotic stability property holds),

then there exists ρ = ρ(ε) > 0 such that |x(t, x0, u) − γ (t + �

θ newω−1)| ≤ ρ for all
t ≥ T RCε(ϕold) and all ϕold ∈ [0, 2π), ρ(ε) → 0 as ε → 0.
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Lemma 2 Let υ be smooth into the set �ε. Then for all ϕ ∈ [0, 2π) and the given
u ∈ U there exists ρ = ρ(ε) > 0(ρ(ε) → 0 as ε → 0) such that

|P RCε(ϕ) − P RC(ϕ)| ≤ qρ + o(ρ2), q = sup
0≤t≤T

|Q(t)|.

Proof According to the definitions for all ϕold ∈ [0, 2π)

|P RCε(ϕold) − P RC(ϕold)| = |�θnew − ϕold − θnew + ϕold | = |�θnew − θnew|
= |�υ[x(T RCε(ϕold), x0, u)] − υ[x(T RCε(ϕold), x0, u)]|.

Since |x(t, x0, u) − γ (t + �

θ newω−1)| ≤ ρ for all t ≥ T RCε(ϕold) and all ϕold ∈
[0, 2π), applying the result of Lemma 1 we obtain:

υ[x(T RCε(ϕold))] = ωT RCε(ϕold) + �

θ new + Q(T RCε(ϕold) + �

θ newω−1)

×[x(T RCε(ϕold)) − γ (T RCε(ϕold) + �

θ newω−1)] + o(ρ2)

and by the definition �
υ[x(T RCε(ϕold))] = ωT RCε(ϕold) + �

θ new. Therefore,

|P RCε(ϕold) − P RC(ϕold)| = |Q(T RCε(ϕold) + �

θ newω−1)[x(T RCε(ϕold))

−γ (T RCε(ϕold) + �

θ newω−1)] + o(ρ2)| ≤ qρ + o(ρ2),

where q is a limit cycle characteristics of the system (1) (independent on u). 
�
The result of this lemma implies that choosing value of ε sufficiently small it is possible
to reduce the gap between the maps P RC and P RCε (the constant q is independent
on ε).

3 ε-PRC based phase model

Now, assume that a series of “pulses” w ∈ U is given and

u(t) =
∑

i≥0

w(t − ti ), t0 ≥ 0; ti+1 − ti > T , i ≥ 0.

The goal is to derive a phase model for such type of inputs using P RCε. If w is a
delta-impulse and ti = iT, i ≥ 0 then the model of phase behavior is defined by
Poincaré phase map (Ermentrout and Kopell 1991; Mirollo and Strogatz 1990)

ϕ(ti+1) = ϕ(ti ) + Q[ϕ(ti )ω
−1], (2)

where the summation operation is taken by modulo 2π (the same convention is
assumed for the phase models presented below). If this system has equilibriums, i.e.,
there exist solutions ϕ0 ∈ [0, 2π) of the equation Q(ϕ0ω−1) = 0 (infinitesimal PRC
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has zeros), then trajectories will converge to stable ones. The Poincaré phase map
approach also has its extension for the case of small amplitude inputs (Hansel et al.
1995). The similar to (2) model can be obtained for “pulses” with period different
from T (a mild modification is required (Izhikevich 2007)).

The scalar-valued phase model (2) completely describes the phase dynamics of the
system (1) under impulsive inputs. Let us develop this approach for the case of more
general ε-PRC proposing similar to (2) model for a “pulse”-like input from the set U .

To derive the phase model for a series of “pulses” we have to take care about the
time of trajectories returning into the set �ε after excitation by a “pulse” w ∈ U (this
time is estimated by ε-TRC, see Definition 2). While a trajectory stays out of the set
�ε we can not apply the next “pulse” since P RCε defines phase resetting only after
the trajectory entrance into �ε.

The next issue which has to be taking into account is that ε-PRC and ε-TRC maps
both are calculated for the trajectories initiated into the set � (on the limit cycle), while
in the case under analysis after the first “pulse” the trajectory in general lives outside
the set. Thus, two important cases of the “pulse” w ∈ U activation should be inves-
tigated, one for the trajectories with initial conditions into the set � and another for
initial conditions in some neighborhood of �. These cases are considered separately
in two propositions below.

Proposition 1 For any x0 ∈ � and w ∈ U , there exists ρ = ρ(ε) > 0 (ρ(ε) → 0
as ε → 0) such that for all t ≥ T RCε(θ0):

|x(t, x0, w) − γ (t + θ1ω
−1)| ≤ ρ, θ(t) = υ[x(t, x0, w)] = ωt + θ1 + e(t),

|e(t)| ≤ η(ρ) = qρ + o(ρ2),

where θ1 = θ0 + P RCε(θ0), θ0 = υ(x0), providing that the asymptotic phase map υ

is smooth into the set �ε.

Proof Let for x0 ∈ �, θ0 = υ(x0) the “pulse” w ∈ U be applied, then the next phase
θ1 at the time instant t = T RCε(θ0) is defined in accordance with the definition:

θ1 = θ0 + P RCε(θ0).

Due to asymptotic stability of the set � there exists ρ = ρ(ε) > 0 such that
|x(t, x0, w)−γ (t +θ1ω

−1)| ≤ ρ for all t ≥ T RCε(θ0), ρ(ε) → 0 as ε → 0. Accord-
ing to Lemma 1, under assumption on smoothness of the map υ, θ(t) = ωt +θ1 +e(t)
for t ≥ T RCε(θ0), e(t) = Q(t + θ1ω

−1)[x(t, x0, w) − γ (t + θ1ω
−1)] + o(ρ2) and

|e(t)| ≤ η(ρ) for t ≥ T RCε(θ0), where q = sup0≤t≤T |Q(t)|. 
�
The proposition means that ε-PRC and ε-TRC maps, substituted in the model (2),

provide an estimation of the asymptotic phase variable υ[x(t, x0, w)] with accuracy
proportional to ε. Decreasing value of ε it is possible to ensure desired quality of the
phase variable estimation.

Let the next “pulse” w ∈ U be generated at time instant t1 ≥ T RCε(θ0), then
x1 = x(t1, x0, w) and the initial phase for this “pulse” υ(x1) ∈ [θ1 −η(ρ), θ1 +η(ρ)].
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The peculiarity of this case is that x1 /∈ �, thus, we can not directly apply the maps
P RC or P RCε to calculate the next phase θ2.

Proposition 2 For any x1 ∈ �ε and w ∈ U , with property |x1 − γ (θ1ω
−1)| ≤ ν for

some θ1 ∈ [0, 2π) and ν > 0, there exist L ∈ R+ and ρ = ρ(ε) > 0 (ρ(ε) → 0 as
ε → 0) such that for all t ≥ T RCε(θ1):

|x(t, x1, w) − γ (t + θ2ω
−1)| ≤ Lν + ρ, θ(t) = υ[x(t, x1, w)] = ωt + θ2 + e(t),

|e(t)| ≤ η(Lν + ρ),

where θ2 = θ1 + P RCε(θ1), providing that the asymptotic phase map υ is smooth
into the set �Lν+ε.

Proof Define x′
1 = ϑ−1(θ1)(x′

1 = γ (θ1ω
−1)) as the point on the limit cycle with

the phase of interest θ1. For this nominal trajectory x(t, x′
1, w) the next phase θ2 at

time instant t = T RCε(θ1) is defined as

θ2 = θ1 + P RCε(θ1)

and, according to Proposition 1, |x(t, x′
1, w)−γ (t +θ2ω

−1)| ≤ ρ, θ ′(t) = ωt +θ2 +
e′(t), |e′(t)| ≤ η(ρ) for all t ≥ T RCε(θ1). By conditions |x1 − x′

1| ≤ ν, then due to
continuity property of the system (1) solutions and asymptotic stability of �, for all
x1, x′

1 ∈ �ε and w ∈ U there exists L ∈ R+ such that |x(t, x1, w) − x(t, x′
1, w)| ≤

L|x1−x′
1| ≤ Lν for t ≥ T RCε(θ1). Therefore, |x(t, x1, w)−γ (t+θ2ω

−1)| ≤ Lν+ρ

for t ≥ T RCε(θ1). Assuming smoothness of the asymptotic phase map υ into the set
�Lν+ε with lemma 1 we obtain the desired estimates on the real phase of the trajectory.


�
Thus, Proposition 2 extends the result of Proposition 1 to initial conditions x1 ∈ �ε.

In this case ε-PRC and ε-TRC maps provide an estimation of the asymptotic phase
variable υ[x(t, x1, w)] with accuracy proportional to ε and ν. However, if ν comes
from Proposition 1, then it is also proportional to ε. Therefore, tacking the value of
ε sufficiently small we again can ensure desired quality of the asymptotic phase var-
iable estimation. Both θ1 and θ2 (calculated in Propositions 1 and 2 correspondingly
via (2)-like phase model) serve as “average” values for the real θ(t).

Finally, define

T RCmax = max
x0∈�ε

T RCx0
max,

T RCx0
max = arg min

t≥T
{dist[x(τ, x0, w), �] ≤ εforallτ ≥ t},

then T RCmax ≥ supθ∈[0,2π) T RCε(θ) and applying “pulses” w ∈ U with minimum
sampling time T RCmax one ensures that the next step trajectory starts into the set �ε.
Therefore, for the input

u(t) =
∑

i≥0

w(t − ti ), t0 ≥ 0; ti+1 − ti > T ≥ T RCmax, i ≥ 0 (3)
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result of Proposition 2 can be applied iteratively to calculate the “average” phase and
its estimation accuracy on the next step. Summarizing the discussion above, for any
number of “pulses” the following result can be proven.

Theorem 1 For any x0 ∈ � and the input u ∈ L∞ defined in (3), there exist ρ =
ρ(ε) > 0 (ρ(ε) → 0 as ε → 0) and L ∈ R+ such that for the solution x(t, x0, u) of
the system (1), (3) the following inequalities are satisfied for all i ≥ 0:

|x(t) − γ (t + θi+1ω
−1)| ≤ νi+1, θ(t) = ωt + θi+1 + e(t), |e(t)| ≤ η(νi+1),

ti + T RCε(ωti + θi ) ≤ t ≤ ti+1,
(4)

where

θi+1 = ωti + θi + P RCε(ωti + θi ), θ0 = υ(x0); (5)

νi+1 = Lνi + ρ, ν0 = 0, (6)

providing that the asymptotic phase map υ is smooth into the set �κ, κ = (L + 1)ε.

Proof Since ti+1 − ti ≥ T RCmax, i ≥ 0 and u ∈ L∞, then x(ti ) ∈ �ε, i ≥ 0 by
definitions. On the interval [0, t0) the input (3) equals zero and θ(t) = ωt + θ0. For
the interval [t0, t1) all conditions of the proposition 1 hold and the input w ∈ U is
applied at the phase θ(t0) = ωt0 + θ0, then for t0 + T RCε(ωt0 + θ0) ≤ t ≤ t1:

|x(t) − γ (t + θ1ω
−1)| ≤ ρ, υ[x(t)] = ωt + θ1 + e(t), |e(t)| ≤ η(ρ).

At the instant of the second “impulse” t1 the following properties are satisfied:

x(t1) ∈ �ε, |x(t1) − γ (t1 + θ1ω
−1)| ≤ ρ.

For t1 with the initial phase θ(t1) = ωt1 + θ1 all conditions of Proposition 2 become
true with ν = ρ, then for t1 + T RCε(ωt1 + θ1) ≤ t ≤ t2:

|x(t) − γ (t + θ2ω
−1)| ≤ (L + 1)ρ, υ[x(t)] = ωt + θ2 + e(t),

|e(t)| ≤ η((L + 1)ρ).

At the instant of the third “impulse” t2 it holds

x(t2) ∈ �ε, |x(t2) − γ (t2 + θ2ω
−1)| ≤ (L + 1)ρ,

then again allying Proposition 2 for the initial phase θ(t2) = ωt2+θ2 and ν = (L+1)ρ

we obtain for t2 + T RCε(ωt2 + θ2) ≤ t ≤ t3:

|x(t) − γ (t + θ3ω
−1)| ≤ L(L + 1)ρ + ρ, υ[x(t)] = ωt + θ3 + e(t),

|e(t)| ≤ η(L(L + 1)ρ + ρ).
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Validity of the estimates (4)–(6) can be substantiated repeating these steps.
By the definition of T RCmax there exist some x̃i ∈ �, i ≥ 0 such that |x̃i −

x(ti )| ≤ ε, then by the same arguments as in the proof of Proposition 2 we have
|x(t, x(ti ), u) − x(t, x̃i , u)| ≤ L|x̃i − x(ti )| ≤ Lε for ti + T RCε(θ

′
i ) ≤ t ≤ ti+1.

Therefore, the smoothness property of the map υ has to be imposed on the set �κ

only. 
�
The phase model (5) (the analogue of the model (2)) describes dynamics of θi , that

defines the mean value of the interval, where the asymptotic phase variable θ(t) is
located for ti + T RCε(ωti + θi ) ≤ t ≤ ti+1. The radius of the interval around θi is
defined by the discrete system (6). If L < 1, then the accuracy of the variable θ(t)
estimation by θi stays bounded, if L ≥ 1 then the estimation error increases. Tacking
sufficiently small value of the ε it is possible to ensure desired quality of approximation
with model (5) for any given finite number of “pulses” w ∈ U .

The most hardly verified condition in Theorem 1 deals with smoothness require-
ment for the asymptotic phase map υ. Decreasing value of ε the set �κ may be reduced
to the set �, where the map υ coincides with the smooth ϑ .

If we assume that T ≥ T RCmax, then the “pulse” w ∈ U can be applied with
the fixed period T . In this case the model (5) reduces to (2), moreover the following
extension of Poincaré phase map approach can be obtained for ε-PRC map.

Corollary 1 Let all conditions of Theorem 1 hold, T ≥ T RCmax and ti = iT, i ≥ 0.
Let ϕ0 be a solution of the equation P RCε(ϕ

0) = 0, P RCε be locally continuously
differentiable and ∂ P RCε(ϕ)/∂ϕ < 0, |∂ P RCε(ϕ)/∂ϕ| < 1 for ϕ ∈ [ϕ0 − �,

ϕ0 + �],� > 0. Then there exists εmax > 0 and for all 0 < ε ≤ εmax there
exists μ = μ(ε) > 0 (μ(ε) → 0 as ε → 0) such that for all θ0 = ϑ(x0) ∈
[ϕ0 −�,ϕ0 +�], x0 ∈ � the corresponding solution x(t, x0, u) of the system (1), (3)
possesses the following properties for all i ≥ 0:

|x(t) − γ (t + θi+1ω
−1)| ≤ μ, υ[x(t)] = ωt + θi+1 + e(t), |e(t)| ≤ η(μ)

f or all iT + T RCε(θi ) ≤ t ≤ (i + 1)T,

where

θi+1 = θi + P RCε(θi ), (7)

providing that the asymptotic phase map υ is smooth into the set �μ.

Proof If ti = iT, i ≥ 0 then ωti = 2π i and since P RCε map is 2π -periodic the model
(5) reduces to (7). Under conditions of the corollary, ϕ0 is a stable equilibrium of the
system (7) and the initial phase θ0 belongs to the region of the equilibrium attraction.
That implies θi → ϕ0 as i → +∞ and in this case there exists some sufficiently small
εmax > 0 such that for all ε ≤ εmax in (6) L < 1 (additionally to orbital stability (or
stability of the set �) in this case the system has local asymptotic stability property for
the trajectory γ (t + ϕ0ω−1)), then there exists μ = supi≥0{νi } ≤ ρ/(1 − L) which
majorizes the maximum error of the phase estimation for (6). 
�
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Requirement on differentiability of the map P RCε can be relaxed replacing the dif-
ferential above with any other condition of the equilibrium stability (slope calculation,
for instance).

According to the corollary, existence of stable equilibriums of the system (7) ensures
finite accuracy of the asymptotic phase variable approximation by the model (7) with
periodic inputs, that correlates with (Ermentrout and Kopell 1991; Mirollo and Strogatz
1990). Summarizing the results of Theorem 1 and Corollary 1 it is worth stressing
that based on ε-PRC and ε-TRC maps the phase models (5) or (7) possess similar to
(2) properties ensuring reasonable quality of the phase approximation. This justifies
applicability of these models for control design.

4 PRC-based control design

There exists one “free” parameter ti in the model (5) available for adjustment (the
time instant when the next “pulse” w ∈ U is introduced). Assigning ti , i ≥ 0 one may
ensure desired phase resetting for the system (1). Let �i = ωti + θi ∈ [0, 2π), i ≥ 0
be the controlled phase of the “pulse” w ∈ U feeding on the input of the system (1),
then the model (5) can be rewritten as follows:

θi+1 = �i + P RCε(�i ), i ≥ 0. (8)

The problem is to design sequences of �i , i ≥ 0 providing phase resetting from any
initial phase θ0 ∈ [0, 2π) to the desired one θd ∈ [0, 2π). The model (8) is the first
order discrete nonlinear system, such class of systems is well investigated in the con-
trol theory literature (Ogata 2006) (that is an advantage of the model (8) comparing it
with (1)).

Following (Efimov et al. 2009), in this paper we examine two strategies for �i

design, one is open-loop or feedforward control and another is proportional feedback
control algorithm described below.

4.1 Open-loop PRC-based control

This strategy is based on the model (8) and it does not require any additional mea-
sured information about actual current phase of the system. A peculiarity of the system
(8) and the problem of phase resetting consists in that θ ∈ [0, 2π), thus shift of the
phase in both directions is possible for the resetting. To choose the direction one has
to analyze which strategy (decreasing or increasing phase) leads to the fastest phase
resetting. Since accuracy of the model (5) and (8) depends on the number of pulses
applied, the choice of the resetting direction is rather important. Of course this has
sense only if ε-PRC map has significantly different negative and positive values (see
the ε-PRC map in Fig. 2, for an example).

In this work for brevity of exposition we assume that the ε-PRC map has particular
properties (it is similar to type II PRC from (Hansel et al. 1995) or type 1 PRC from
(Winfree 2001)). The corresponding control strategies for other types of PRC maps
can be easily deduced from this main case.
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Assumption 1 The map P RCε is continuous and it has one zero ϕ0
s ∈ [0, 2π) with

negative slope and another ϕ0
u ∈ [0, 2π) with positive slope, ϕ0

s < ϕ0
u . 
�

Since the map P RCε is 2π -periodic, the zeros can be arranged in the required
order ϕ0

s < ϕ0
u changing the initial point on the limit cycle. Assumption 1 completely

describes the shape of P RCε, in this case it is possible to define

ϕmax = arg sup
ϕ∈[0,2π)

PRCε(ϕ), P RCmax = P RCε(ϕmax);
ϕmin = arg inf

ϕ∈[0,2π)
PRCε(ϕ), P RCmin = P RCε(ϕmin),

and ϕ0
s < ϕmin < ϕ0

u < ϕmax, P RCmax > 0, P RCmin < 0. Obviously, ϕ0
s corre-

sponds to the stable equilibrium of the system (5) or (8) and ϕ0
u is the unstable one.

Let the initial phase θ0 ∈ [0, 2π) and the desired one θd ∈ [0, 2π) be given, θ0 �= θd .
Define

ninc =
{

(θd + 2π − θ0)/P RCmax if θ0 > θd;
(θd − θ0)/P RCmax if θ0 < θd ,

ndec =
{

(θd − θ0)/P RCmin if θ0 > θd;
(θd − 2π − θ0)/P RCmin if θ0 < θd ,

where integer parts of the numbers ninc and ndec determine the number of steps
required for resetting of the initial phase θ0 into a neighborhood of the desired θd

applying increasing or decreasing strategy. These numbers are minimal since for
their calculation we use the maximum amplitudes of the shift P RCmax, P RCmin in
both directions. Next, in this neighborhood the phase can be resettled to the desired
value applying one step shift with the same strategy due to assumed continuity of
the map P RCε. Therefore, the resetting requires N + 1 “pulses” w ∈ U , N =
f loor [min{ninc, ndec}], where function f loor [n] returns the greatest integer not big-
ger than n. The following control is proposed to solve the problem:

�i =
{

ϕmax if ninc ≤ ndec;
ϕmin if ninc > ndec,

0 ≤ i < N ; (9)

P RCε(�N ) = θd − θN , (10)

θi =
{

ϕmax + P RCmaxi if ninc ≤ ndec;
ϕmin + P RCmini if ninc > ndec,

0 < i ≤ N , (11)

where the last step control �N is calculated as a solution of the Eq. (10). In control
(9), (10) it is assumed that θi , i ≥ 0 are derived via (8) under the control (9) substi-
tution (the formula (11)) and θN+1 = θd due to (10). This strategy has been called
“feedforward” or “open-loop” since it does not establish a relation with real values of
the asymptotic phase variable.
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Finally, the values of the time instants ti , 0 ≤ i ≤ N of “pulses” w ∈ U activation
should be calculated based on the values �i , 0 ≤ i ≤ N from (9), (10) tacking in mind
that ti+1 − ti ≥ T RCmax, i ≥ 0 (the condition of the models (5) and (8) validity):

t0 = g[(�0 − θ0)ω
−1], ti+1 = ti + T RCmax + g[{�i+1 − θ(ti + T RCmax)}ω−1],

(12)

θ(ti + T RCmax) = ω(ti + T RCmax) + θi+1, 0 ≤ i < N ;
g(τ ) =

{
τ if τ ≥ 0,

τ + T otherwise.

Theorem 2 Let Assumption 1 hold for given w ∈ U and some ε > 0 such that
P RCmax 
 qρ + o(ρ2),−P RCmin 
 qρ + o(ρ2) (0 < ρ = ρ(ε) < 1 is from
Lemma 2). Then for any λ > 0 there exist 0 < ε′ ≤ ε and Tλ > 0 such that for all
x0 ∈ � and given θd ∈ [0, 2π) in the system (1), (8)–(12) with P RCε′ , T RCε′ :

|υ[x(t)] − ωt − θd | ≤ λ f orall t ≥ Tλ,

providing that the asymptotic phase map υ is smooth into the set �κ .

Proof All conditions of Theorem 1 hold, that implies existence of T ′ > 0 such that
in the system (1), (9)–(12) with P RCε, T RCε:

|υ[x(t)] − ωt − θd | ≤ η(νN+1) for all t ≥ T ′,

where νN+1 is the corresponding solution of the Eq. (6). Decreasing ε one can ensure
that η(νN+1(ε)) ≤ λ for any λ > 0. According to Lemma 2 the accuracy of approx-
imation of PRC map by P RCε is upper bounded by qρ + o(ρ2), ρ < 1. Thus, ε

decreasing should preserve assumption 1 conditions, then there exists ε′ > 0 such that
for new P RCε′ , T RCε′ the system (1), (9)–(12) solutions admit the desired estimate
for some Tλ > 0 and any λ > 0. 
�

In other words the theorem claims that, if there exists some ε > 0 sufficiently small
such that it is possible to ensure resetting to the desired phase with some accuracy
in finite number of steps (Assumption 1 is satisfied), then decreasing the value of ε

provides resetting with arbitrary accuracy.

4.2 Feedback PRC-based control

This strategy assumes on-line measurements of the current phase variable after each
“pulse” application that increases accuracy of resetting. To realize this strategy it
is enough to replace in (9), (10) the values θi generated by (11) with available for
measurements variable θ(ti ).

By measurements of θ(t) we understand an estimation of this variable based on the
available for measurements state vector x(t). Two approaches can be mentioned, one
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is based on the closest point on the limit cycle:

�

θ(t)
�= arg inf

ϕ∈[0,2π)
|x(t) − γ (t + ϕω−1)|. (13)

Another approach for
�

θ(t) calculation utilizes the result of Lemma 1. Both approaches
can be extended to the case of a state component measurements only.

The overall strategy for control design is similar to (9)–(12). For the given phases

θ0 ∈ [0, 2π) and θd ∈ [0, 2π), θ0 �= θd , assumes that
�

θ(ti + T RCmax) is on-line
measured/estimated phase with accuracy ν > 0:

|�θ(τi+1) − υ[x(τi+1)]| ≤ ν,
�

θ(τi+1) = ωτi+1 + θi+1, (14)

τi+1 = ti + T RCmax, i ≥ 0,

then the controls �i can be computed as follows for i ≥ 0:

ni
inc =

{
(θd + 2π − θi )/P RCmax if θi > θd;
(θd − θi )/P RCmax if θi < θd ,

ni
dec =

{
(θd − θi )/P RCmin if θi > θd ;
(θd − 2π − θi )/P RCmin if θi < θd ,

(15)

�i =
⎧
⎨

⎩

ϕmax if 1 ≤ ni
inc ≤ ni

dec;
ϕmin if ni

inc > ni
dec ≥ 1;

�(θi ) otherwise,

t0 = g[(�0 − θ0)ω
−1], ti+1 = τi+1 + g[{�i+1 − �

θ(τi+1)}ω−1], (16)

where the function �(θ) represents a solution of the equation P RCε[�(θ)] = θd − θ .
Then the following result can be proven.

Theorem 3 Let assumption 1 hold for given w ∈ U , ε > 0. Then there exist L ∈
R+, Tend > 0, χ = χ(ν) > 0 and ρ = ρ(ε) > 0 (χ(ν) → 0 and ρ(ε) → 0 as
ν → 0, ε → 0) such that for all x0 ∈ � and given θd ∈ [0, 2π) in the system (1),
(14)–(16):

− for all i ≥ 0:

x(t) ∈ �ε, |x(t) − γ (t + θi+1ω
−1)| ≤ χ f or ti + T RCmax ≤ t ≤ ti+1;

− |υ[x(t)] − ωt − θd | ≤ η(Lχ + ρ) for all t ≥ Tend ,

providing that the asymptotic phase map υ is smooth into the set �Lχ+ρ .

123



870 D.V. Efimov

Proof For x0 ∈ �, θ0 = ϑ(x0) let �0 ∈ [0, 2π) be the corresponding control from
(14), (15), t0 ≥ 0 be the time instant of the first “pulse” w ∈ U activation from (16).

Then dist[x(t), �] ≤ ε, τ1 ≤ t < t1 and the value
�

θ(τ1) = ωτ1 + θ1 is calculated

satisfying |�θ(τ1)−υ[x(τ1)]| ≤ ν. Due to asymptotic stability of the set � there exists
χ = χ(ν) > 0 such that |x(t) − γ (t + θ1ω

−1)| ≤ χ for all τ1 ≤ t < t1 (u(t) ≡ 0 for
t ≥ τ1 and asymptotic stability property holds); χ(ν) → 0 as ν → 0. Let �1, t1 be

derived from (14)–(16) for obtained
�

θ(τ1). Then again dist[x(t), �] ≤ ε, τ2 ≤ t < t2
and |�θ(τ2) − υ[x(τ2)]| ≤ ν, by the same arguments |x(t) − γ (t + θ2ω

−1)| ≤ χ for
all τ2 ≤ t < t2. Recursively repeating these steps we substantiate the first part of the
theorem.

To prove the second part we use Proposition 2. Since x(ti ) ∈ �ε and |x(ti )−γ (ti +
θiω

−1)| ≤ χ for all i ≥ 0 the conditions of Proposition 2 hold and there exist L ∈ R+
and ρ = ρ(ε) > 0 (ρ(ε) → 0 as ε → 0) such that for all t ≥ ti + T RCε(ωti + θi ):

|x(t) − γ (t + θ̃i+1ω
−1)| ≤ Lχ + ρ, υ[x(t)] = ωt + θ̃i+1 + e(t),

|e(t)| ≤ η(Lχ + ρ),

where θ̃i+1 = ωti +θi + P RCε(ωti +θi )]. Therefore, under Assumption 1 the control
(12), (14)–(16) provides θ̃N = θd on some step N > 0. Finally, due to compactness
of the set � there exists the common finite time for resetting Tend . 
�

If it is possible to estimate value of the variable θ into the set �ε with some accu-
racy ν > 0, then the control (14)–(16) ensures for the system (1) phase resetting with

accuracy proportional to ν and ε. If the result of Lemma 1 is used for
�

θ(τi ) calculation,
then ν = ν(ε) and ν(ε) → 0 as ε → 0. In this case decreasing the value of ε it is
possible to ensure finite time practical phase resetting with any desired accuracy.

According to (15)–(16), substitution of this feedback control in the model (8) results
in convergence of θ(t) to the desired trajectory ωt +θd with the fastest rate. This opti-
mality is not robust, the presence of uncertainties originated by measurement error
in (14) or accuracy of approximation ε may lead to the performance loss. For uncer-
tain systems the robust exponential stabilization gives better performance even being

slowly. Let for all i ≥ 0 the noisy measurements of
�

θ(τi+1) = ωτi+1 + θi+1 are given
by (14), then the linear proportional feedback has form:

�i = −k(θi − θd), k = min{−P RCmin, P RCmax}/π, (17)

the time instants ti , i ≥ 0 of “pulses” activation are calculated in accordance with (16).
Substitution of the control (17) in the model (8) gives θi+1 − θd = (1 − k)(θi − θd)

ensuring exponential convergence of θi to θd . The result of Theorem 3 can be easily
rewritten for the case of the control (14), (16), (17).

The feedback control strategy persists under convergent perturbations, that is its
advantage with respect to open-loop controls. However, feedback requires more mea-
surement information and it has more computational complexity. Let us demonstrate
efficiency of the proposed controls on several examples of biological systems.
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5 Examples

In this section three examples of models of biological oscillators are considered. The
first one is the heart muscle model from (Karreman 1949; Karreman and Prood 1995),
that is a version of the Liénard equation. Two models of circadian rhythm from works
(Leloup and Goldbeter 1998; Leloup et al. 1999) of third and tenth order respectively
are the last two examples. For all examples we will consider the square pulses of the
form:

w(t) =
{

� if t > 0 ∧ t < δ;
0 otherwise,

(18)

where the parameters δ > 0,� > 0 values will be specified later depending on the
application.

5.1 Heart muscle oscillations

In the paper (Karreman and Prood 1995), it has been found by computer analysis that
the equation

ẍ + 0.1(x + 1)(x − 1)(x + 3)(x − 2.2)ẋ + x = u(t), (19)

where x ∈ R is the muscle displacement from a reference point and u ∈ R is an external
force, can describe the papillary muscle asymmetric in time contraction. For the case
u = 0 the model (19) has stable equilibrium in the origin and two limit cycles, the
internal limit cycle is unstable and the external one is locally asymptotically stable.
The phase resetting problem solution will be applied to the latter one (� and γ (t)
corresponds to the trajectory on the external limit cycle, T = 6.584).

Firstly, let us compare the accuracy of the asymptotic phase estimation
�

θ(t) in the
formula (13) and its improvement provided by Lemma 1:

�

θ(t) = �

θ(t) + Q(
�

θ(t)ω−1)[x(t) − γ (
�

θ(t)ω−1)], (20)

where infinitesimal PRC map Q is computed for the linearised on the limit cycle �

model applying the conventional approach (Izhikevich 2007; Govaerts and Sautois
2006). For this purpose the model (19) is excited by the pulse (18) with δ = 1 and two

amplitudes �1 = 0.1 and �2 = 0.5. Next, the asymptotic phase estimates
�

θ(T ),
�

θ(5T )

and
�

θ(T ),
�

θ(5T ) are computed in accordance with the formulas (13) and (20) respec-
tively. These estimates are plotted in Fig. 1a for the amplitude �1 and in Fig. 1b for

the amplitude �2. Analysis of the figures shows that the estimates
�

θ(5T ) and
�

θ(5T )

coincide in both cases, thus the values
�

θ(5T ),
�

θ(5T ) can be chosen as the true one

for the variable θ(t). The estimate
�

θ(T ) has better accuracy than
�

θ(T ), its superiority
becomes more evident with the amplitude of the pulse growth. Further we will use the
expression (20) in this example for the phase θ(t) estimation.

Let δ = 1 and �= 0.3, the corresponding phase response maps are plotted in Fig. 2.
The map P RC is computed in accordance with the conventional approach (Izhikevich
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Fig. 1 The asymptotic phases estimates comparison for the model (19)
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Fig. 2 The phase response maps for the model (19)

2007; Govaerts and Sautois 2006) using the map Q, the map P RCε is calculated as
it was described in definition 3 for ε = 0.01, T > T RCmax in this case. For small
amplitudes � the maps P RC and P RCε should coincide, but if the pulse amplitude
is sufficiently big (as in our case) the difference is remarkable since the linearised
model of the system (19) used for P RC calculation is no more valid in such situ-
ation. The Assumption 1 is satisfied for the map P RCε. Trajectories of the model
(19) with the open-loop control (9)–(12) and the feedback control (15), (16), (20)
are shown in Fig. 3 (the case without disturbances in Fig. 3a, and with a stochastic
additive disturbance in the control channel in Fig. 3b), the time axis is scaled in the
periods number, the indexes o and f denote the phase variables for the open-loop and
the feedback cases respectively. Without disturbances the trajectories coincide [the
chosen value of ε ensures perfect prediction of the asymptotic phase variable behavior
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Fig. 3 The trajectories of the model (19)

by (5)], disturbances demonstrate efficiency of the feedback control (it is assumed that
the disturbance corrupts the pulse amplitude with the deviation ±50%).

5.2 Circadian oscillations in neurospora

Following (Leloup et al. 1999) let us consider the following model:

Ṁ = [vs + u(t)] K n
I

K n
I + Fn

N
− vm

M

Km + M
;

Ḟc = ks M − vd
Fc

Kd + Fc
− k1 Fc + k2 FN ;

ḞN = k1 Fc − k2 FN ,

(21)

where variables M, Fc and FN denote, respectively, the concentrations (defined with
respect to the total cell volume) of the frq mRNA and of the cytosolic and nuclear
forms of FRQ, u ∈ R is the control input representing light excitation of the circadian
rhythm. In (Leloup et al. 1999) the model (21) was considered with the following
values of parameters:

vm = 0.505, vd = 1.4, vs = 1.6, ks = 0.5, k1 = 0.5, k2 = 0.6, K I = 1,

Km = 0.5, Kd = 0.13, n = 4.

For u = 0 the system (21) has the single equilibrium and one stable limit cycle, T =
21.5.

We again start with the estimates (13) and (20) comparison. As before, the model
(21) is excited by the pulse (18) with δ = 1 and two amplitudes �1 = 3 and �2 = 6.

Next, the asymptotic phase estimates
�

θ(T ),
�

θ(5T ) and
�

θ(T ),
�

θ(5T ) are computed in
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Fig. 4 The asymptotic phases estimates comparison for the model (21)

accordance with (13) and (20) respectively. The estimates are presented in Fig. 4a for

the amplitude �1 and in Fig. 4b for the amplitude �2. Again, the estimates
�

θ(5T ) and
�

θ(5T ) coincide in both cases and the values
�

θ(5T ) = �

θ(5T ) are chosen as the true

one for the variable θ(t) values. The estimate
�

θ(T ) has better accuracy than
�

θ(T ),
especially for bigger amplitude of the pulse.

Let δ = 1 and � = 3, the corresponding phase response maps are plotted in Fig. 5.
The map P RC is computed analytically (Izhikevich 2007; Govaerts and Sautois 2006)
and the map P RCε is calculated in accordance with the definition for ε = 0.15, T >

T RCmax in this case. Since the chosen pulse amplitude is rather big the maps P RC
and P RCε do not coincide. The assumption 1 is satisfied for the map P RCε. Trajec-
tories of the model (21) with the open-loop control (9)–(12) and the feedback control
(15), (16), (20) are shown in Fig. 6, the time axis is scaled in the periods number, the
indexes o and f denote the phase variables for the open-loop and the feedback cases
respectively. Since the chosen value of ε does not guarantee a good estimation of the
asymptotic phase variable dynamics in (5), the feedback control demonstrates better
performance in this case.

5.3 Circadian oscillations in drosophila

Let us consider the model from the paper (Leloup and Goldbeter 1998):

ṀP = [vsp + u(t)] K n
I P

K n
I P + Cn

N
− vm P

MP

Km P + MP
− kd MP ; (22)
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Fig. 5 The phase response maps for the model (21)
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Fig. 6 The trajectories of the model (21)

Ṗ0 = ks P MP − V1P
P0

K1P + P0
+ V2P

P1

K2P + P1
− kd P0; (23)

Ṗ1 = V1P
P0

K1P + P0
− V2P

P1

K2P + P1
− V3P

P1

K3P + P1
+ V4P

P2

K4P + P2
− kd P1;

(24)

Ṗ2 =V3P
P1

K3P + P1
− V4P

P2

K4P + P2
− k3 P2T2 + k4C − vd P

P2

Kd P + P2
− kd P2;

(25)

ṀT = vsp
K n

I T

K n
I T + Cn

N
− vmT

MT

KmT + MT
− kd MT ; (26)

Ṫ0 = ksT MT − V1T
T0

K1T + T0
+ V2T

T1

K2T + T1
− kd T0; (27)

Ṫ1 = V1T
T0

K1T + T0
− V2T

T1

K2T + T1
− V3T

T1

K3T + T1
+ V4T

T2

K4T + T2
− kd T1;

(28)

Ṫ2 = V3T
T1

K3T + T1
− V4T

T2

K4T + T2
− k3 P2T2 + k4C − vdT

T2

KdT + T2
− kd T2;

(29)

Ċ = k3 P2T2 − k4C − k1C + k2CN − kdC C; (30)
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Fig. 7 The phase response maps for the model (22)–(31)

ĊN = k1C − k2CN − kd N CN , (31)

where MP is cytosolic concentration of per mRNA; P0, P1, P2 are unphosphor-
ylated, monophosphorylated and bisphosphorylated concentrations of PER protein
correspondingly; MT is cytosolic concentration of tim mRNA; T0, T1, T2 are unphos-
phorylated, monophosphorylated and bisphosphorylated concentrations of TIM pro-
tein correspondingly; C is PER-TIM complex concentration and CN is nuclear form
of PER-TIM complex. As in work (Leloup and Goldbeter 1998) we will consider the
following values of the model (22)–(31) parameters:

K I P = K I T = vsT = vs P = 1, vm P = vmT = 0.7,

Kd P = KdT = Km P = KmT = 0.2,

ks P = ksT = 0.9, vd P = vdT = 2,

K1P = K1T = K2P = K2T = K3P = K3T = K4P = K4T = 2,

V1P = V1T = V3P = V3T =8, k1 =0.6, k2 =0.2, k3 = 1.2, k4 = 0.6, n = 4,

kd = kdC = kd N = 0.01, V2P = V2T = V4P = V4T = 1.

This model was regulated in the papers (Bagheri 2007; Bagheri et al. 2008) via optimal
control approach. For the case u = 0 this model has the single equilibrium and one
stable limit cycle, T = 24.13.

Let δ = 1 and � = 2, the corresponding phase response maps are plotted in Fig. 7.
The map P RC is computed in accordance with the standard approach (Izhikevich
2007; Govaerts and Sautois 2006), the map P RCε is derived for ε = 0.01, T >

T RCmax. For chosen amplitude � the maps P RC and P RCε do not coincide. The
assumption 1 is satisfied for the map P RCε. Trajectories of the model (22)–(31) with
the open-loop control (9)–(12) and the feedback control (15), (16), (20) are shown
in Fig. 8 (the case without disturbances in Fig. 8a, and with a stochastic additive
disturbance in the control channel in Fig. 8b), the time axis is scaled in the periods
number, the indexes o and f denote the phase variables for the open-loop and the
feedback cases respectively. Without disturbances the trajectories are similar, distur-
bances demonstrate efficiency of the feedback control (the disturbance modifies the
pulse amplitude with the maximal deviation ±100%).
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Fig. 8 The trajectories of the model (22)–(31)

6 Conclusion

The paper presents a generic approach for solution of the phase resetting problem for
biological oscillators. The proposed solution is based on the PRC concept. According
to the conventional definition of PRC and the related phase models, they are mainly
developed for the phase dynamics description in the case of infinitesimal inputs
(Izhikevich 2007). To overcome this restriction, a new definition of the phase response
map is presented. The proposed ε-PRC and ε-TRC maps describe the phase response
on any desired amplitude of the pulse control. They also can be easily computed for a
mathematical model or measured experimentally. Moreover, the approach develops a
mathematical setup for the application of PRC measured experimentally in biological
oscillators. The accuracy and relation of the ε-PRC and ε-TRC maps with respect to
the conventional PRC are characterized in Lemma 2. New phase model based on the
ε-PRC and ε-TRC maps is derived and its properties are analyzed (Theorem 1 and
Corollary 1).

Based on this model open-loop and feedback controls for phase resetting are
designed. These controls ensure phase adjustment from any initial value to the desired
one (Theorems 2 and 3). The controls compute the instants of pulses activation for
the fastest resetting. The open-loop strategy is based on the PRC map and the initial
phase only. The feedback control is based on the current estimated value of the phase.
The estimation is required once per pulse application. The algorithm of the phase
estimation is derived based on the result of Lemma 1.

Performance of the proposed model and controls is demonstrated by computer sim-
ulations for three examples: the model of heart muscle contraction and two models of
circadian rhythm. In all models the proposed algorithm for the phase values estima-
tion demonstrates its superiority over conventional one, especially for big amplitudes
of exciting pulses. For the case without disturbances the open-loop and the feedback
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controls show a similar performance. Appearance of the disturbances diminishes the
open-loop control accuracy, while the feedback one demonstrates a certain degree of
robustness.

These results allows us to conclude that, if the pulse amplitude is sufficiently high,
then the proposed ε-PRC and ε-TRC maps provide better results for modeling and con-
trol of oscillators. If the input amplitude is restricted, then the conventional approaches
based on infinitesimal PRC (Danzl and Moehlis 2008; Efimov et al. 2009) can effec-
tively solve the problem.
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