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I would like to thank my friends and compatriots Mohamad, Hassaan, Wassila, Inaya & Laurent with whom I had a friendship for more than a decade. Thank you for your caring and support, I hope stay tuned despite the long distances separating us. Le noyau est un ensemble de N fermions (protons et neutrons) en interaction. Une compréhension complète de sa structure, nécessite la connaissance de l'interaction entre ses composants, ainsi que de puissants outils théoriques pour résoudre le problème fondamental à N-corps. L'interaction entre les nucléons, au sein du noyau, n'est pas complètement connue à l'heure actuelle. Cela rend dicile un traitement du noyau dans une approche purement fondamentale an d'aider à la compréhension de sa structure. Pour surmonter ces dicultés, des modèles ont été conçus qui tiennent compte, d'une manière eective, des eets de ces interactions mal connues. Ils ont été développés en se basant sur les propriétés des noyaux stables dont ils ont à reproduit les caractéristiques observées expérimentalement et orent une compréhension globale de la structure nucléaire.

Cependant, le développement des techniques expérimentales (séparation, identication, détection des noyaux, des particules légères, des rayonnements gamma,...) en physique nucléaire, a étendu notre exploration vers des régions très éloignées de la stabilité.

Les propriétés des noyaux exotiques (faibles énergies de liaison et grands isospins) permet de tester les modèles établis avec les noyaux stables an d'améliorer notre compréhension de la structure nucléaire.

Motivations physiques

L'énergie de la couche neutron 2d 5/2 a un impact important sur l'évolution de la structure nucléaire dans la région N ≈ 40, dans le cadre du modèle en couches. L'expérience a montré que la structure des isotopes riches en neutrons (N ≈ 40) de F e et Cr, 2 et 4 protons en-dessous de la fermeture de couche Z = 28, sont très déformés dans leur état fondamental [Sorl 03, Ljun 10]. Ce comportement n'a pas été observé le long de la chaîne isotopique voisine des N i en particulier dans le 68 28 N i 40 . Ce dernier présente même un comportement de fermeture de couche à N = 40 selon les valeurs de B(E2) et E(2 + ) [Brod 95, Sorl 02].

Cette érosion brusque de la fermeture de couche à N = 40 dans le 68 N i quand on passe à d'autre chaines isotopiques, tel que F e et Cr, semble similaire au mécanisme qui conduit à l'îlot d'inversion à N ≈ 20. Dans les deux cas la déformation est provoquée par les excitations quadrupolaires dû à l'occupation par les neutrons des couches appartenant à l'oscillateur harmonique supérieure et présentant une diérence de moment orbital ∆l = 2. vi Les calculs eectués dans cette région de masse prédisent un nouvel îlot d'inversion à N = 40 semblable à celui découvert à N = 20. Dans tous ces calculs, l'orbitale neutron 2d 5/2 a été placée de manière à reproduire les données expérimentales permettant l'apparition de la déformation dans la région. Or le gap énergétique 2d 5/2 -1g 9/2 à N = 40 dans le 69 N i n'a pas été mesuré jusqu'à présent. L'objectif principal de ce travail est de déterminer expérimentalement ce gap, ce qui est essentiel pour comprendre la structure nucléaire, autour de N = 40. La mesure permettera également de prévoir la magicité ou la déformation de 78 N i. Il est à noter que ce noyau se trouve sur le chemin du r-process de nucléosynthèse dans l'explosion supernovae de type II.

Le noyau en question, 69 N i, a déjà été étudié par la désexcitation d'isomère et des corrélations β -γ. Plusieurs états ont déjà été observés jusqu'à ≈ 2700 keV. Cependant, en raison des techniques expérimentales et de la structure de 69 N i, la couche neutron 2d 5/2 n'a pas encore été observée et aucune information concernant cet état n'est disponible.

La réaction de stripping (d, p) est utilisée depuis longtemps comme moyen de sonder la structure en couches des noyaux en fournissant des informations détaillées sur l'énergie à particule individuelle des couches neutrons. Dans ce travail, nous avons utilisé la réaction de transfert d( 68 N i, p) 69 N i. Le noyau 69 N i y est créé dans son état fondamental, qui correspond à l'occupation par le neutron de valence de la couche 1g 9/2 (l = 4) ou dans un état excité tel que 2d 5/2 (l = 2) qui est l'orbitale que nous recherchons. Grâce à une analyse des sections ecaces diérentielles par l'Approximation de Born des Ondes Distordues (DWBA), le moment orbital l et les facteurs spectroscopiques SF des états peuplés peuvent être déterminés.

Montage expérimental

Malgré la durée de vie assez longue de 68 N i (29(2) s), il n'est pas possible de produire et d'extraire chimiquement cet isotope pour fabriquer une cible. En conséquence, une expérience en cinématique directe dans laquelle un faisceau stable intéragit avec une cible de 68 N i ne peut pas être envisagée. Pour surmonter cette diculté technique, nous avons utilisé la cinématique inverse, où un faisceau de 68 N i est produit et envoyé sur une cible stable contenant des deutons. Il est important de souligner que dans le cas d'une réaction en cinématique inverse, les protons, qui contiennent les informations sur structure du 69 N i, émis dans les angles avant dans le système de centre de masse (CM) sont détectés aux angles arrières dans le système du laboratoire.

Un faisceau primaire de 70 Zn produit au GANIL, à une énergie de 62.5 MeV/u, a été fragmenté sur une cible de production de Be d'épaisseur 505 µm placée perpendiculairement au faisceau (à 0 • ). La fragmentation du 70 Zn produit un cocktail de noyaux qui a été ltré dans le spectromètre LISE3 [Anne 92], par la technique de séparation en vol (In-Flight separation), an de sélectionner le noyau 68 N i avec une bonne pureté (≈ 85.8% dans notre cas). Le faisceau secondaire contenant le noyau de 68 N i à une énergie de 25.14 A. MeV a été ensuite conduit vers une cible de polyéthylène (CD 2 ) placée au centre du dispositif expérimental. vii L'énergie d'excitation du 69 N i produit par la réaction d( 68 N i, p) a été calculée en utilisant la méthode de la masse manquante qui nécessite la connaissance de l'énergie et l'angle du proton émis avec une bonne précision. En général, les propriétés optiques des faisceaux d'ions radioactifs produits par fragmentation sont moins bonnes (large émittance et dispersion en énergie) que celles des faisceaux stables et sont caractérisées par des intensités très faibles partiellement compensées par l'utilisation de cibles relativement épaisses. Des dispositifs innovants sont utilisés an de compenser ces caractéristiques. L'utilisation de détecteurs de faisceau est primordiale. Nous avons utilisé les détecteurs CATS [ Otti 99] 1 , chambres à ls à basse pression, spécialement conçues pour ce type d'expérience. Deux de ces détecteurs ont été placé en amont de la cible an de reconstruire, événement par événement et avec précision, l'angle d'incidence des noyaux 68 N i et la position de l'interaction sur la cible. D'autre part, les contraintes liées à la cinématique inverse imposent l'utilisation de détecteurs de particules légères chargés de grande surface an de maximiser la couverture en angle solide. L'identication en masse et en charge du noyau de recul détecté et la position Les contaminants du faisceau et le matériel de la cible induisent des réactions parasites et conduisent à la production de protons dans les angles arrières qui contaminent le spectre d'énergie d'excitation du 69 N i. Ces contaminations peuvent être considérablement réduites en imposant une coïncidence avec le noyau lourd de la réaction. Une chambre d'ionisation couplée avec un scintillateur plastique ont été placés au bout de la ligne de faisceau, an de détecter et séparer les diérentes composantes du faisceau. 1 Chambre À Trajectoire de Saclay. 2 MUr à STrips. de couches mortes est possible dans le cas de détecteurs dotés d'une réponse linéaire en fonction de l'énergie déposée. Les couches mortes associées aux cristaux Si(Li) de MUST2 ont été déterminées selon la même méthode.

La résolution en énergie (LMH) obtenue pour MUST2, en sommant les spectres en énergie de toutes les pistes des quatre détecteurs, est de 31 keV. Une résolution en énergie similaire de 30, 9 keV est mesurées pour le détecteur S1. Concernant les Si(Li), la résolution en énergie (LMH) atteinte en sommant tous les pads est de 66 keV.

Pendant l'analyse de données, les énergies des particules légères détectées sont corrigées des pertes d'énergie dans les couches mortes des détecteur en utilisant des tables de perte d'énergie du code SRIM. Une correction similaire a été appliquée pour la perte d'énergie de ces particules selon l'épaisseur eective traversée au sein de la cible qui dépend de l'angle d'émission. Comme aucune mesure dans l'expérience ne fournit l'endroit de l'intéraction du faisceau 68 N i au sein de la cible, nous avons considéré que toutes les réactions ont lieu dans son plan central.

Le DSSD de MUST2 et S1 fournit une mesure de l'énergie cinétique (E) et une mesure du temps de vol (T oF ) entre CATS2 et le détecteur déclenché. Les particules légères 4 Le porte-cible est monté sur un bras mobile, contrôlé depuis de la chambre d'acquisition.

5 Les couches mortes sont dues aux techniques de fabrication des détecteurs silicium en général. La collection des charges induite par les particules détectés n'est pas possible dans ces régions de détecteurs vu l'absence du champ électrique. En conséquence, elles peuvent induire une sous-estimation de l'énergie mesurée.

x arrêtées dans le DSSD sont identiées en utilisant la technique T oF -E. La ligne des protons est remarquable par l'énergie maximale déposée dans le DSSD qui à peu près égale à 6 MeV (8 MeV) et correspond à une épaisseur de 300 µm (500 µm) du DSSD dans MUST2 (S1). Quant aux particules qui deposent une partie de leur énergie dans le DSSD (dE) et s'arrêtent complétement dans le Si(Li) en déposant une énergie (E), elles sont identiées à l'aide de la technique ∆E -E. • la zone de la cible CD 2 éclairée par le faisceau,

• les protons observés dans les détecteurs de particules chargées placés aux angles arrières et identiés par les techniques ∆E -E et T oF -E,

• les noyaux de recul 69 N i après identication des résidus lourds dans le scintillateur plastique en utilisant la technique T oF -E. • les réactions dues Carbone dans la cible de CD 2 ,

• la cassure deuton induite par le faisceau. Deux informations principales peuvent être obtenues à partir de l'analyse des sections efcaces diérentielles. La forme de la distribution angulaire dépend du moment orbital transféré l. Le facteur spectroscopique SF est déduit de la section ecace diérentielle expérimentale en utilisant une procédure de normalisation. Le SF est obtenu par un ajustement de χ 2 de la distribution théorique sur les données expérimentales.

Interprétation dans le cadre du modèle en couches

Le premier pic du spectre d'énergie d'excitation est identié comme étant l'état fondamental de 69 N i. L'analyse a permis de déterminer que le moment angulaire du transfert de neutrons est l = 4 ce qui correspond à l'orbitale 1g 9/2 avec un facteur spectroscopique SF = 0, 53 ± 0, 13. Les états correspondants à la partie restante de la force n'ont pas été peuplés dans cette expérience indiquant une forte fragmentation de cette orbitale dans 69 N i. Selon les calculs du modèle en couches, l'essentiel de la force de l'orbitale 1g 9/2 est concentré dans l'état fondamental et le reste est extrêmement fragmenté à des énergies plus élevées ce qui est en accord avec les résultats expérimentaux de ce travail. Cependant, les calculs prédisent une plus grande valeur du facteur spectroscopique à 0 MeV (SF SM = 0, 86). Cette diérence entre la valeur expérimentale et le calcul peut être expliqué par l'absence des orbitales supérieures de la couche gds sans sous-estimer les incertitudes expérimentales et celles systématiques liées aux choix des potentiels utilisés dans les calculs DWBA et ADWA.

Le second pic correspond à un état excité de 69 N i à 2, 48 MeV. Un moment orbital l = 2 lui est clairement attribué, correspondant à l'orbitale 2d 5/2 d'après l'analyse ADWA 8 Distorted Wave Born Approximation : L'approximation de Born des ondes distordues. xiii avec un facteur spectroscopique de 0, 86 ± 0, 22. Il est important de mentionner que la largeur du pic (LMH) à cette énergie est 1, 5 fois plus grande que celle de l'état fondamental. Cette diérence de largeur n'a pas été reproduite par une simulation GEANT4 9 , dans laquelle les eets expérimentaux (résolutions des détecteurs et épaisseur de la cible) sont pris en compte. Cela suggère que l'état en question est un doublet. L'analyse du premier état excité donne un doublet d'énergies 2, 05 MeV et 2, 74 MeV, ayant comme facteurs spectroscopiques 0, 32 ± 0, 10 et 0, 44 ± 0, 13 respectivement, associé à un transfert l = 2.

Les calculs du modèle en couches prédisent la présence d'un doublet d'états 5/2 à des énergies d'excitation faibles (1, 5 MeV), ce qui est en bon accord avec la mesure. Toutefois, la distribution de la force du doublet 2d 5/2 donnée par le modèle en couches est très asymétrique et ne peut pas expliquer la LMH observée expérimentalement pour le premier état excité. Cependant, la répartition de force entre les deux composantes du doublet donnée par le modèle en couche est sensible à l'énergie de l'orbitale 2d 5/2 introduite dans le calcul. Un bon accord entre les calculs et le résultat expérimental est obtenu en augmentant l'énergie de l'orbitale 2d 5/2 de 1 MeV. Cet eet a été utilisé pour xer précisement la position de l'orbitale 2d 5/2 , jusqu'à présent déterminée indirectement dans les calculs du modèle en couches par l'apparition de la collectivité dans les noyaux riches en neutrons de F e et Cr de la région N ≈ 40. Nos résultats conrment l'énergie relativement basse de l'orbitale 2d 5/2 dans le 68 N i, et l'importance de tenir compte de l'orbitale en question dans les calculs de modèle en couches menés dans la région N = 40.

L'analyse ADWA du troisième pic à 4, 19 MeV d'énergie d'excitation montre que diérentes valeurs de l sont possibles pour expliquer les résultats expérimentaux. L'attribution d'un moment orbital l = 4 correspondant à l'orbital 1g 7/2 conduit à un facteur spectroscopique de 0, 26 ± 0, 08. D'autre part, l'attribution d'un moment orbital l = 2 conduit à un facteur spectroscopique de 0, 51 ± 0, 15 si l'état est identié comme la population de l'orbitale 2d 5/2 . Le dernier cas est le plus favorisé vis-à-vis de la valeur de χ 2 , si bien que la somme des facteurs spectroscopiques sur les premier et deuxième état excité viole la règle de somme (SF = 1, 27±0, 38). Cette attribution 2d 5/2 est raisonnable si l'on tient compte des erreurs expérimentales. D'autre part, l'attribution l = 4 (1g 7/2 ) est en meilleur accord avec les calculs du modèle en couches puisque aucun fragment signicatif de l'orbitale 2d 5/2 n'est prévu vers 4 xiv attribution d'un moment orbital l 4 est privilégiée. Pour un transfert l = 4 (5) associé à la population de l'orbitale 1g 7/2 (1h 11/2 ), nous trouvons un facteur spectroscopique SF = 0, 27±0, 13 (SF = 0, 17±0, 04). Le dernier état à 6, 39 MeV est raisonnablement reproduit par les distributions calculées correspondant aux transferts l = 4 (SF = 0, 52± 0, 13). Les conditions expérimentales pour ces deux derniers états ne permettent pas d'attributions de moments angulaires et de valeurs de facteurs spectroscopiques plus tranchées. De plus les calculs du modèle en couches ne donnent aucune indication sur la nature de ces états car l'espace de valence utilisé pour les neutrons n'inclut pas les orbitales placées au-dessus de l'orbitale 2d 5/2 (3s 1/2 , 1g 7/2 , 2d 3/2 ).

Conclusions et perspectives

Une expérience a été réalisée en 2009 au GANIL an de rechercher l'orbitale neutron 2d 5/2 dans le noyau 69 N i. Le faisceau de 68 N i était produit avec une énergie de 25, 14 MeV/u par la fragmentation d'un faisceau primaire de 70 Zn à une énergie de 62, 5 MeV/u sur une cible de production de Be. As presently known, the nucleus is a system of A interacting fermions i.e. Z protons and N neutrons. A complete understanding of its structure, requires the knowledge of the interaction between its components as well as powerful theoretical tools to solve the mathematical problem generated by its many-body nature. The full interaction between nucleons inside the nucleus is not completely known at present, which induces diculties to treat the nucleus in a pure fundamental approach in order to help understanding its structure. The situation gets even more dicult with inclusion of 3-body forces known to play important roles in the nucleus.

To overcome these diculties, models have been devised taking into account via effective interactions the eects of such unknown correlations. These models were rst developped based on the properties of stable nuclei and were able to some extent to reproduce the observed characteristics. However, the constant development of experimental techniques in nuclear physics, has extended our knowledge to regions far away from stability where the structure of exotic nuclei could be studied. The study of exotic nuclei oers a test of the proton-neutron interaction when dierent valence orbitals are occupied. In that way, new components of the nuclear force are explored for a better understanding of nuclear-matter properties. Lenz 10] are able to reproduce these deformations by including the neutron 2d 5/2 orbital in the neutron valence space. They also predict that the energy of the 2d 5/2 orbital is placed arround 1.5 MeV above the ground state. Moreover, knowing the position of the 2d 5/2 neutron orbital in 69 N i will help to conclude rmly about the magicity, or not, of 78 N i.

The nucleus in question, 69 N i, has already been studied by isomer-decay and β -γ correlations, and several states have already been observed up to ≈ 2700 keV. However, due to the experimental techniques and the structure of 69 N i, the 2d 5/2 neutron orbital

has not yet been observed and no information concerning this state was available. Direct reactions at low energy are a powerful tool to study the structure of nuclei. In particular, the transfer reactions provide access to the orbital momentum and spectroscopic factor of the dierent populated excited states. All of these characteristics are directly comparable to shell-model calculations. In this experiment we used the d( 68 N i, p) 69 N i transfer reaction to feed the 2d 5/2 neutron orbital .

Despite the rather long lifetime of 68 N i (29(2) s) it is not possible to produce and extract this isotope in order to produce a target. Therefore, experiments in direct kinematics in which a known stable beam impinges a 68 N i target cannot be envisaged. Instead, we use inverse kinematics where a beam of the unstable nuclei is produced (by fragmentation in our case) and sent on a stable target. The beam of 68 N i was produced at GANIL at an energy of 25.14 A MeV and then guided by the LISE3 spectrometer [Anne 92] to a deuterated Polyethylene (CD 2 ) target in the experimental area.

In general, the optical properties of radioactive ion beams produced by fragmentation are poorer than those of stable ones and characterized by very low intensities. Innovative devices must be used in order to compensate these characteristics. Beam Trackers, such as CATS [Otti 99], are necessary to reconstruct with precision the angle of diusion of the particles and the position of interaction on the target. On the other hand, the low intensity beams and inverse-kinematic constraints require detectors of large area in order to maximize the covered solid angle. In addition, position and energy resolutions are crucial to the quality of the excitation spectra obtained for the heavy residue. For this reason the MUST2 array [Poll 05] was developped by the IPN-Orsay, CEA-Saclay/IRFU, and GANIL collaboration. The MUST2 array [Blum 99] is an ensemble of identical telescopes, composed of several stages of silicon and CsI detectors especially designed for this type of experiments. It is an improved version of the rst generation MUST array, with larger detection area and better resolution and using modern technology electronics.

In the rst chapter we introduce the modern shell model, followed by a brief description of shell evolution at N=20 in a shell-model approach, believed to have a similar shell evolution mechanism to the region of interest at N=40. Then we discuss the onset of deformation around N=40 and the motivations that led us to study the 69 N i nucleus.

Finally, we make a short overview of the present understanding of 69 N i nucleus structure.

The second chapter is devoted to the experimental setup. We start by introducing the experimental method and its constraints. We then present briey the beam production and guidance through LISE3 and the dierent detectors used for the data analysis. In the third chapter we present the oine analysis consisting of calibration and particle xxiii identication for each detector. Then we present the reconstruction, in the beam tracker detectors and the light-charged particle detectors, of the physical observables used to calculate the excitation energies and the dierential cross sections. Finally, in the fourth and nal chapter, we present the excitation-energy spectrum after selecting the events of interest. Then we present the DWBA analysis of the calculated dierential cross sections along with the identication of the energy levels and the extraction of the corresponding spectroscopic factors. Finally, we discuss the newly discovered states and the neutron 1g 9/2 -2d 5/2 shell gap in 69 N i and its impact on the shaping of nuclei arround N = 40. Another experimental value by which we can measure the stability of a nucleus is the reduced transition probability B(E2 : 0 + → 2 + ). The latter is a measure of the capacity of a nucleus to be excited into a 2 + state. This value is plotted against the proton number in gure 1.2. Regardless of the isotonic chain, we notice that the B(E2) values are reduced considerably for nuclei having the same specic numbers as before, this time for protons. where the last magic number (i.e. 126) has been observed experimentally only in the case of neutrons (cf. gure 1.2).

Nuclear models were developped in an attempt to reproduce the magic numbers and understand how neutrons and protons within atomic nuclei are structured. It was well known in atomic physics that electron-binding energies undergo sharp changes just after a closed electron shell and atomic magic numbers were well established. Analogously, it was reasonable to suppose that in the nuclear case, these magic numbers correspond also to closed shells of nucleons. The problem then reduces to solving Schrödinger equation with the kinetic energy of each nucleon t(i) and the right nuclear potential U ( r). Calculations of the energy levels using simple nuclear potentials (Square well, Harmonic oscillator 

U ( r) = 1 2 mw 2 r 2 + D l 2 -C l• s.
(1.1)

The successful model, called the independent-particle model, assumes that nucleons are independent (no mutual interactions) and are conned by:

1. an isotropic harmonic oscillator ( 1

2 mw 2 r 2 ), 2. a surface-correction 1 (D l 2 ),
3. a strong attractive spin-orbit term (C l• s).

Where l, s, C and D are the angular momentum, the intrinsic-spin and two coupling constants, respectively.

Figure 1.3 shows how the observed magic numbers are reproduced. Using a HO potential, the orbitals are degenerate in energy despite having dierent l and s. The energy levels at this stage depend on the principal quantum number N (left hand side of gure 1.3). Adding a surface correction to the nuclear potential lifts the degeneracy of energy levels having same N but dierent orbital numbers l. The resulting energy levels are shown in the center of the gure 1.3. Finally, adding a spin-orbit term to the potential splits further each orbit having l = 0 into two levels characterised by a spin j -= l -s and j + = l + s (right hand side of gure1.3).

The energy separation of a spin-orbit doublet (e.g. 1f 5/2 -1f 7/2 ) is proportional to the coupling ( l• s) thus it is greater for a greater angular momentum l. The eect on the lower energy levels is rather weak as moderate l values are involved (0 l 2). This explains why the rst HO gaps (i.e. having 2, 8 and 20 nucleons) are conserved and observed experimentally as nuclear magic numbers. On the contrary, the spin-orbit coupling-eect on the higher energy levels involving larger l values is much stronger. For instance, the lowering of the 1f 7/2 orbital due to spin-orbit splitting in the 1f 5/2 -1f 7/2 doublet creates a new gap after the lling of 28 nucleons. The same mechanism applies for the 1g 7/2 -1g 9/2 doublet where the 1g 9/2 becomes an intruder in the harmonic shell N = 3 and generates the magic number N = 50, washing-out the original HO magic number N = 40. A similar eect takes place for higher energy levels creating the N = 82 and N = 126 shell gaps. In addition to the explanation of the magic numbers, the major success of the nuclear independent shell-model was the prediction of the spin and parities of the ground states of most of the nuclei in the valley of stability. Even-even nuclei (even number of protons and neutrons) are characterized with 0 ground-state spins and a positive parity J π = 0 + . For nuclei with one nucleon outside a closed shell, or one nucleon vacancy (hole) in a closed shell, the nuclear ground-state spin and parity are determined by the extra nucleon or hole. Finally, the spin-parity of odd-odd nuclei are determined by the spin-coupling of the single proton and neutron.

Modern shell-model 1.2.1 Nucleus as an A-body problem and modern shell-model approach

For nuclei located further away from shell-closure, the independent-particle model diverges, and fails to reproduce the measured properties. It seems ecient only in the region limited to closed shells and their vicinity. This is related to some degrees of freedom which were neglected in the rst model, most importantly the interaction between nucleons.

Assuming two-body interactions only, the nuclear Hamiltonian can be formally written as the sum of kinetic energy t i and the potential energy between two nucleons V ik , summed over all the nucleons:

H = A i=1 t i + 1 2 A i=1 A k>i V ik ( r i -r k ) (1.2)
A formal solution of this A-body problem would consist of :

1. nding an appropriate single-particle wavefunction basis to describe a nucleon in some state; |φ i = a † i |0 where a † i is the creation operator of a nucleon on this state, 2. building an A-body wavefunction describing the nucleus with a Slater determinant using the single-particle basis |φ α = det( A i=1 φ i ), The 2-nucleon interaction is known to be attractive having a range ∼ 1 fm and very repulsive at very short distances reecting the complexity of its nature. Nevertheless, the independent-particle model success in the region close to the valley of stability, shows that the bare nucleon-nucleon interaction can be regularized in the nuclear medium and an eective interaction can be found such that,

HΨ = EΨ → H ef f Ψ ef f = EΨ ef f (1.3)
However, an exact solution of such a many-body problem can rarely be obtained, except for the lightest masses, and approximations are then used to solve the problem. The rst step towards an approximate solution is to introduce a single-particle potential U i ( r)

and the expression can then be rearranged separating the Hamiltonian into two parts as follows,

H ef f = A i=1 (t i + U i ( r)) H 0 + A i=1 A k>i V ik ( r i -r k ) - A i=1 U i ( r) Hres = H 0 + H res (1.4)
The H 0 part describes an ensemble of independent particles moving in an eective average potential A i=1 U i ( r). 

H ef f |Ψ = A i ε i a † i a i |Ψ + ijkl V JT ijkl (a † i a † j ) JT (a k a l ) JT 00 |Ψ (1.5) -a †
i a i are operators creating or anhilating a particle in a generic state i , -J and T represent the coupled angular momentum and isospin, respectively,

-V JT ijkl = φ i φ j (JT )|H res |φ k φ l (JT )
, where ijkl may be any of the orbitals occupied by the interacting nucleons.

Following the formal solution described in section 1.2.1, the nal step after nding |φ i and building the physical state |Ψ would be to diagonalize the Hamiltonian matrix. Since the matrice is of innite dimensions, it is more practical for diagonalization procedure, to divide the Hilbert space containing all the states of the nucleus into three parts (cf. gure 1.4):

1. an inert core consisting of orbitals that are forced to be always full, 2. a valence space containing the orbitals bearing the main part of the interaction between valence nucleons, 3. an external space representing all the remaining orbits that are always empty.

The diagonalization procedure is only done in the valence space. The valence space must contain the relevant degrees of freedom for a given problem as demanded by the eective interaction. The safer valence spaces for shell-model calculation are those comprised between magic closures. However, this is not a general rule and in some cases the inclusion of orbitals beyond the gap is required in order to understand shell-evolution, e.g. the island of inversion at N = 20 discussed later in section 1.3.

Realistic eective interaction

According to the work of M. Dufour 

CS ± 1|H ef f |CS ± 1 = CS ± 1|H m |CS ± 1 , (1.7) 
where |CS ± 1 represents a nucleus having a closed shell plus or minus one nucleon. According to equation 1.7 the monopole part H m is responsible for the evolution of the single-particle energies (SPE) inside the model space when applied to a nucleus of simple structure such as a closed shell and a closed shell plus or minus 1 particle. In other words, experimental values from nuclei having a simple structure are directly related to the monopole part of the Hamiltonian and can be used in phenomenological corrections of the total interaction.

The explicit form of H m can be written as,

H m = H sp + ij,τ τ V τ τ ij n iτ (n j τ -δ ij δ τ τ ) (1 + δ ij δ τ τ ) , (1.8)
where H sp is the single-particle term generated by the core orbits and

V τ τ ij = J V JT ijij [J] J [J]
,

(1.9) with the sums over Pauli allowed values. J represents the coupled angular momentum and (τ, τ ) stands for a (π, π), (ν, ν) or (π, ν) interaction. In other words, V τ τ ij is the average value of all two-body matrix elements (TBME) V JT ijij corresponding to the possible spin orientation J.

According to equation 1.8, the SPE of an orbital i is shifted by V τ,τ ij multiplied by the occupation number of the orbital j and i (n iτ n jτ ). This leads to a change in the SPE and inuences the evolution of shell-closures 2 , in particular in neutron-rich nuclei.

Shell evolution at N=20

A vanishing of a shell-closure in the chart of nuclides has been found for the neutron magic number N = 20 The B(E2) value was measured later on using Coulomb excitation [Moto 95] and found to be equal to 14.9 W. u. (454 e 2 fm 4 ), suggesting that 32 M g is no longer spherical 2 It is noteworthy to mention that small inaccuracies in the value of V τ,τ ij can produce large eects in shell-model calculations for the relative position of the orbitals due to the quadratic terms of the occupation numbers. 3 The rst indication of a vanishing shell-closure was spotted at N = 8. The sudden increase of the B(E2) indicates that neutrons are occupying not only the sd -shells but also the f p -shells. 2) shows the evolution of the excitation energies of the rst 2 + states E(2 + ) for the even-even N i isotopes. The E(2 + ) values are comprised between 1200 keV and 1400 keV for 58 N i to 66 N i and rises suddenly to 2033 keV for 68 N i which suggests the existence of a signicant subshell-closure at N = 40.

Another observable can be used to determine experimentally the more or less collective character of a nucleus, the quadrupole excitation probability B(E2; 0 + → 2 + ). The large 2 + energy and small B(E2) value for 68 N i could be interpreted as a sign for a sub-shell-closure at N = 40, however, the separation energy of two neutrons (S 2n ) does not show any evidence of such eect [Raha 07]. This could be explained by the fact that the neutron-fermi level lies between the f p -shells of negative parity and the 1g 9/2 of positive parity. The neutrons in the f p -shells could cross the N = 40 gap only by pairs due to the conservation of parity. This could explain why 68 N i shows at the same time high 2 + energy and no sign of shell-closure in the neutron separation energy.

For example, the state at 2.848 MeV in 68 N i is due to the excitation across the N = 40 gap of one neutron from the 2p 1/2 orbital in the 1g 9/2 orbital which explains its negative parity and its isomeric character (0.86(5) ms). The calculations reproduce well its excitation energy within ∼ 70 keV. Experimental and theoretical value B(E2) values shown by thin arrows on both schemes for the 2 + 1 → 0 + 1 transition compare fairly well. They are small which underlines the spherical character of 68 N i. The same conclusion can be drawn by looking to B(E2; 2 + → 0 + ) values shown in gure 1.8b for the same isotopic chains. In the case of F e, the B(E2) values are roughly stable around 15W. u.(≈ 200 e 2 fm 4 ) from N = 32 to N = 36. Adding 2 more neutrons induce a rapid increase of B(E2) indicating an onset of large collectivity in these nuclei. For the Cr chain the value of B(E2) at N = 34 is larger compared to the one at N = 32 indicating an onset of collectivity. However, due to the large error bars further measurements are needed to conrm this hypothesis.

These experimental results show clearly that the spherical neutron sub-shell-closure in 68 N i is quickly washed out with removal of proton pairs. The sudden transition from the spherical 68 N i to more proton decient N ≈ 40 isotones with deformed intruder congurations seems to have some similarity to the situation in the N ≈ 20 island of inversion. In both cases the developping quadrupole collectivity can be related to the occupation of neutron intruder orbitals from the next oscillator shell. Though the N = 20 shell gap is larger than the N = 40 one, the situation is similar if we replace the sequence of levels 1d 3/2 , 1f 7/2 and 2p 3/2 in N = 20 by 1f 5/2 , 1g 9/2 and 2d 5/2 in N = 40. Figure 1.9 shows a shell-model orbital scheme of the regions in question.

To understand further the onset of collectivity in neuron-rich F e and Cr chains, largescale shell-model calculations were performed in [Sorl 03, Ljun 10] in dierent valence neutron spaces comprising f p, f p + g and f p + gd orbitals in order to reproduce the experimental B(E2) and E(2+) values. In all references, only the space including the full f p + gd model space was able to reproduce the low E(2+) excitation energies measured in 60,62 Cr and 64,66 F e demonstrating the major role played by the 2d 5/2 neutron state in triggering the collectivity in these nuclei. 68 N i prompts the νf 5/2 orbit to move into the (small) N = 40 shell gap, so that 66,64 F e and 60,62 Cr shows features of deformation. Calculations performed in this mass region predict a new island of inversion at N = 40 similar to the one discovered at N = 20. In all of these calculations the 2d 5/2 orbital has been placed in a way to reproduce the experimental data and to enable the appearance of deformation in the region. However, the 2d 5/2 -1g 9/2 energy gap for N = 40 in 68 N i is not yet known. The main aim of this work is to determine this gap experimentally, which is essential to understand further the nuclear structure around N = 40 and would help to draw preliminary conclusions about the magicity of 78 N i. Depending on the scenario considered, the latter nucleus is lying on the r-process path of nucleosynthesis in supernovae explosion.

1.5 State of the art: 69 N i The half-life of the 17/2 -isomeric state decaying to 13/2 -was found to be 0.439(3) µs. Another low-lying isomeric state was discovered at 321 keV with a suggested 1/2 -spinparity and a half-life of 3.5(9) s [Fran 98, Pris 99]. The latter decays by the allowed Gamow-Teller β-emission feeding the low-lying 3/2 -states in 69 Cu as reported in [Pris 99, Only allowed-β decays were observed in this experiment, starting from the negativeparity 69 Co ground state (J π = 7/2 -). Hence no positive parity could be fed due to selection rules and the excited state of the single-particle energy corresponding to a single neutron on the ν2d 5/2 orbital has not been identied.

The structure of 69 Co consists of a single 1f 7/2 proton hole and two 1g 9/2 neutrons beyond the N = 40 subshell closure. Its β-decay into the 69 N i is driven predominantly by allowed Gamow-Teller decay of an 1f 5/2 core neutron to ll the proton hole in 1f 7/2 leaving the daughter nucleus ( 69 N i) with one-neutron hole and two neutrons in the 1f 5/2 and 1g 9/2 states, respectively. Based on this image, it is possible to understand the origin of the energy level at 915 keV as the coupling of a 1f 5/2 hole to a core of 70 N i

(ν1f -1 5/2 ⊗ 70 N i(g.s.
)). The origin of the 1/2 -isomeric state at 321 keV is attributed to the ν2p -1 1/2 ⊗ 70 N i(g.s.) conguration.

Above 1500 keV, the principal conguration of energy levels could be explained by the coupling of a neutron hole in the f p-shell to an excited core of 70 N i (e.g. the 5/2 -level at 1517.6 keV could be identied as ν2p -1 1/2 ⊗ 70 N i(2 + )). In general all the negative parity states in 69 N i can be interpreted as the coupling of a hole to a 70 N i core. The 13/2 + is the only state with positive parity observed at 2241 keV and is possibly rising from a neutron in the ν1g 9/2 state coupled to 68 N i core in its 2 + excited state which lyies at a close energy (2033 keV) as mentionned earlier in section 1.4.1.

The half-lives of 5/2 -and 13/2 -levels at 915 and 2552 keV de-exciting by 594 keV and 593 keV γ-rays, respectively, were measured by Mach et al. [Mach 03] by means of the Advanced Time-Delayed γγ(t) method. Measurements were performed using an array of four small BaF 2 detectors at the LISE spectrometer in GANIL following the fragmentation on a 9 Be target of a 76 Ge primary beam at 60 MeV/ u. The reported half-lives (B(E2)) values are given as 0.120(34) ns (3.8(11) W. u.) and 0.519(24) ns (0.63(3) W. u.) for the energy levels at 5/2 -and 13/2 -, respectively. The measured half-lives range (0.1 to 1 ns) is a strong indication of the E2 nature of the transition and thus strengthens the related spin-parity assignements rst proposed in [Grzy 98].

Transfering a neutron into 68 N i will select naturally the single-particle energies of 69 N i. Figure 1.12 shows an heuristic shell-model of the 68 N i + neutron. 69 N i nucleus could be created in its ground state which, in this simple picture, corresponds to the occupation of the ν1g 9/2 orbital (l = 4) by the valence neutron or in an excited state e.g. the ν2d 5/2 (l = 2) orbital we are searching for. Measuring the excitation energies of the populated 5/2+ states, in one neutron transfer reaction, allows to obtain the information on the fragmentation of the 2d 5/2 orbital and its eective single-particle energy. In the compound nucleus reactions (see gure 1.13) the projectile and the target nuclei coalesce to form an excited compound system. The resulting nuclear system stays together suciently long ( 10 -22 s) for its excitation energy to be shared more or less uniformly by all its constituent nucleons. If enough energy is carried by one particle or a group of nucleons, the compound nucleus decays by emitting this particle. Otherwise, it undergoes de-excitation by β or γ-decay. The reaction can be written as

A + a → C * → B * + b. (1.10)
Because of the delay between formation and decay, the compound nucleus is usually said to have lost memory of the input channel nuclei by which it was formed. In this case available information about the nuclear structure from this type of reaction will be closely related to the compound system it self. In direct reactions processes the projectile makes a peripheral contact with the target and immediatly separates e.g. elastic/inelastic scattering or transfer reactions shown in gure 1.14. In this type of reactions the system processes directly or within a few steps from initial to nal states without forming an intermediate compound nucleus. In contrast with the compound-nucleus formation, the simplicity of direct reactions ensures that the target nucleus is only slightly rearranged to form the residual nucleus and their nuclear structures are similar. The duration required to complete a direct reaction is ≤ 10 -22 s leaving no time for appreciable transfer of energy and thus exciting preferentially the low-lying states of the residual nucleus. For these reasons direct reaction are suitable tools to probe low-energy nuclear structures.

1.6. Probing nuclear structure with nuclear reactions With the advent of beams of exotic nuclei there has been a renewed interest for chargedparticle spectroscopy and especially for the (d, p) stripping reaction used to investigate the structure of neutron-rich nuclei via reactions in inverse kinematics.

Chapter 2 Experimental setup

In this chapter we will introduce the experimental setup used to study the inverse kinematics d( 68 N i, p) reaction. The experimental method will be detailed, along with the experimental constraints. This study will be followed by a description of the beam production and the detector setup used during the analysis.

Experimental method and associated constraints

The structure of the 69 N i nucleus was probed using the stripping reaction d( 68 N i, p) in which a neutron is transferred to the 68 N i nucleus to create the nucleus of interest. The transfered neutron will tend to populate single-particle states in 69 N i. According to shellmodel calculations the 2d 5/2 neutron state lies in the energy range 1 to 3 MeV, accessible by the reaction chosen.

Knowing the kinematical characteristics of three of the four particules involved in a two-body reaction, the characteristics of the last particle are deduced by using the conservation laws. In this experiment we have measured the kinetic energy and the position of the proton 1 . The excitation energy of the 69 N i was then calculated using the missing mass method explained in the next chapter. Since 68 N i is radioactive (half-life = 29 s), the reaction is studied in inverse kinematics where the heavy particle, that is the 68 N i nucleus, is accelerated and impinges on a deuteron target. The kinematics of this reaction is depicted in gure 2.1. Unlike direct kinematics, the light particle moves in the opposite direction with respect to the motion of the Center of Mass system (CM) in the laboratory. It follows that the interesting forward CM angles of the proton corresponds to the backward angles in the laboratory system.

The calculated kinematical lines for d( 68 N i, p) 69 N i show clearly that a rather good resolution on the measured energy is required in the most backward angles (θ lab ≥ 150 • ) in order to distinguish low-lying excitation energies in 69 N i. On the contrary, the resolution on energy becomes less demanding for decreasing angles. In this range it is the resolution on the measured angle that is most important.

For illustration, the gure 2.2 shows the absolute value of the error done in the calculation of the excitation energy (∆E exc ) for an erroneous estimation of the measured energy 1 The kinematic characteristics of the particles in the entrance channel are known from the beam tracker detectors. As a consequence, the use of beam tracking detectors is mandatory. The beam tracking detectors will provide, event by event, the direction and the hit location on the target of the beam-particle. Low pressure Multi Wire Proportional Chambers (MWPC) are a suitable solution due to their minor eect on the energy and incident angle of the detected particle.

In our case we have used the CATS detectors (Chambre à Trajectoire de Saclay) [ Otti 99].

Light-charged particle detectors with a high granularity will provide the hit position of (a) As mentioned above, the excitation energy resolution is dominated by the recoil-particle energy resolution at the most backward angles.

E exc = f (θ p , ∆E p ) (b) E exc = f (θ p , ∆θ p )
The beam contaminants and the target material, lead to parasitic reactions that may interfere in the nal excitation-energy spectrum. The presence of other nuclei in the beam may induce the same transfer reaction leading to protons in backward angles. The carbon in CD 2 target would also induce reactions leading to protons in the backward angles that could contaminate the 69 N i excitation-energy spectrum.

These contaminations can be signicantly reduced by requiring a coincidence with the heavy particle from the two-body reaction. Our heavy-residue detectors (an ionization chamber coupled with a plastic scintillator) were placed at the end of the beam line as shown in gure 2.3.

Beam production

The Ganil facility (cf. gure 2.4) delivers a wide spectrum of high-intensity ion beams ranging from 12 C to 238 U and accelerated up to 95 MeV/u and 7.8 MeV/u, respectively. GANIL uses two methods to produce RIB.

Isotope separation On Line (ISOL): In this method a primary beam (formed of light or heavy ions) impinges on a high-temperature thick target, producing radioactive and stable species via spallation, ssion, or fragmentation reactions of the projectile. The products are stopped and neutralized inside the target due to its thickness. Under the form of neutral atoms, the radioactive products diuse in the crystalline structure of the target impelled by its high temperature (≈ 2000 • ). Then, they are transferred to an ion source in order to be ionised, extracted and selected by a mass separator. After selection, the produced beam can be directly used for low-energy experiments or post-accelerated to the required energies. The resulting beams are ion-optically (emittance, energy resolution, timing structure) of excellent quality but the production and selection processes and the eventual re-ionization in the ion source can be slow and even inecient leading to severe losses for short-lived nuclei or for isotopes from refractory elements. This is why ISOL technique are mainly used to produce relatively long-lived isotopes (ms to several s), with energies hardly exceeding 25 MeV/u at SPIRAL 2 in GANIL.

In-Flight separation: In this method the radioactive isotopes are produced by projectile fragmentation or in-ight ssion on a relatively thin target. The reaction products, endowed with a velocity close to that of the primary beam, recoil out of the target and form the secondary beam. The beam lines using this technique are generally followed by a magnetic spectrometer in order to separate the nuclei of interest from the many other secondary produced fragments. The combination of a magnetic eld and energy loss in wedges placed in the beam trajectory enables to extract the nucleus of interest from the fragment cocktail. The in-ight separation method can be applied to the production of all kinds of unstable nuclei independent of their chemical nature. Furthermore a short 2 Système de Production d'Ions Radioactifs Accélérés en Ligne. When the secondary beam passes through the dipole D1 its constituents will sense the magnetic eld B and will deviate under the inuence of a force F ,

F = QvB = mv 2 ρ (2.1)
where Q, v and m are the charge state, the velocity and the mass of the beam particle, 3 Due to the large primary beam current, a rotating target is used. Its orientation relative to the beam axis is variable in order to modify its eective thickness for the ne tuning of the secondary beam production.

Figure 2.5: The LISE magnetic spectrometer.

respectively, and ρ is the radius of the trajectory of the particles. Equation 2.1 leads to,

Bρ ∝ mv Q (2.2)
which means that by selecting a given magnetic rigidity Bρ, we select ions with same ratio mv/Q. To increase further the particle selection, a triangular wedge inserted between dipoles D1 and D2, intercepts the ions trajectory. The ions, according to Bethe-Bloch formula, will undergo an energy loss,

δE ∝ Q 2 v 2 (2.3)
The energy E of the ions will then decrease proportionally to m 3

Q 2 since δE E ∝ Q 2 mv 4 ∝ m 3 Q 2 (2.4)
By reducing the Bρ of the second dipole D2, we only select ions having the ratio m 3 /Q 2 .

Assuming that the ions of atomic mass A are totally ionized (Q = Z), the selection in terms of m and Q reduces to a selection in terms of A and Z, the characteristics of a specic ion of interest.

Finally, a third selection can be performed, this time on the velocity of the particles, by using a Wien lter. In a Wien lter the ions are exposed to an electric eld E perpendicular to a magnetic eld B, both perpendicular to the ion trajectory. The corresponding forces will tend to deviate the ions away from the theoretical beam line unless the forces are exactly the same. In this case the selected velocity will be v = E/B since 

F e = F m ⇒ QE = QvB ⇒ E = vB (2.

Targets

The choice of a target material depends on the reaction used and the chemical expertise to prepare the material. In order to perform a stripping reaction in inverse kinematics, we have used two deuterated Polyethylene (CD 2 ) targets of dierent thicknesses prepared by the Service des cibles at the Institut de Physique Nucléaire à Orsay, France (IPNO) from (CD 2 ) powder 4 of purity 98%.

The thickness of a target will inuence signicantly the light-charged particles in the backward angles in our case. Thick targets will increase energy and angular straggling leading to a poor resolution on the calculated excitation energy. On the contrary, a very thin target would not produce the needed statistics. The eect of target thickness on the energy resolution is estimated by Monte-Carlo simulation. This information is of great importance in the analysis of the excitation energy spectrum.

In order to study the excited states of 69 N i a good compromise of target thickness is 2 mg/cm 2 . During the analysis of the experiment, the target thickness was measured [Giro 11] at IPN-Orsay and was found to be 2.6 ± 0.1 mg/cm 2 . Since the beam will also induce reactions on the carbon, a 2 mg/cm 2 target of pure carbon was used to estimate the background reactions generated by the carbon in the (CD 2 ) target during the experiment. Finally a thick 30 mg/cm 2 CD 2 target was used at the end of the experiment dedicated to γ-spectroscopy in the Germanium detectors.

All the targets were inserted in large size frames (3 cm × 3 cm) and mounted on the 

CATS : the beam tracker detector

In order to reconstruct the impact position on the CD 2 target and the angle of incidence of the beam particles, two beam tracker detectors (CATS) were placed upstream at 92.6 and 52.6 cm to the reaction target. Each detector was placed in separated compartment provided by the Laboratoire de Physique Corpusculaire de CAEN (LPC-Caen, France)

where the detector can be slid in and out from the beam line. Tracking detectors must provide a high-detection eciency, without disturbing the projectile trajectory, and a good timing resolution. The CATS detectors fulll these constraints and can be used for beams with rather modest intensities up to a few 10 5 particules per second (pps).

Description

The active area of a CATS detector is 70 * 70 mm 2 (see gure 2.7). This detector consists of an anode plane of goldened tungsten wires sandwiched between two perpendicularly segmented cathode planes. The anode plane contains 71 wires of diameter 10 µm all parallel with 1 mm pitch. The cathode planes consist of 28 goldened aluminum strips, of 2000 Å thickness, evaporated on a 0.9 µm Mylar foil, and having a width of 2.34 mm each. The cathode pitch is 2.54 mm taking into account an interstrip of 0.2 mm. The distance between the anode plane and each cathode plane is 3.2 mm, forming two chambers around the anode plane lled with pure isobutane (C 4 H 10 ) at a pressure of 8 mbar. Another 1.5 µm Mylar window is added on each side of the detector protecting the cathodes. Finally the operating positive voltage of the anode was set to 560 V with respect to the cathodes connected to the ground potential. It has 16 concentric rings on the front side with a radial-pitch of 1.5 mm providing the polar angle of the detected particle and 16 sectors on the back side with an angular pitch of 22 • 33 providing the azimuthal angle. Each ring on the front side is further segmented into four parts corresponding to four quadrants, each one has an independent read-out. Correspondingly, four sectors in the back side lies behind a single front-side quadrant. Thus, there are a total of 64 channels on the front side for concentric rings and 16 channels for the sectors at the back side. Similarly to the rst stage of MUST2, the front side (detection side) is covered by 400 nm thick aluminum layer, while the back side is protected by a 300 nm layer of gold. The connectors of the initial S1 was modied by the manufacturer in order to t with MUST2 Kapton connectics. 

First stage

The rst stage is a large-area double-sided Silicon strip detector (DSSD) made by Micron semiconductors. It has an active surface of 100 cm×100 cm and a thickness of 300 ± 5 µm, enabling to measure protons with full energy up to 6 MeV. The detector segmentation consists of 128 strips on each side. On both sides the charges are collected on a 400 nm thick aluminum layer deposited on the strips. This aluminum layer insures a pulse-shape that is independent of the hit location on a particular strip, which is important for a good (20 mm × 20 mm) having independent energy channels. The pads on the borders are shaped to t the aluminum frame (see gure) hence reducing slightly the detection surface.

When coupled to the DSSD, the covered dynamic range for a proton is 31 MeV.

Third stage

The third and nal stage of the detector is made out of 16 Cesium ioded scintillator crystals with thallium as the activator material. When stacked together a truncated pyramidal-shape takes form with a detection surface of 30 mm × 30 mm and 40 mm depth for each crystal. This detector is placed 30 mm behind the DSSD and can stop protons up to 115 MeV. .

MUST2 electronics

The MUST2 electronics hardware is composed of three basic units:

• the MATE ASICS,

• the MUFEE boards,

• the MUVI VXI modules, described in the following sections. Charge Sensitive Amplier (CSA) for bipolar signals 6 . The Amplier can treat energies up to 60 MeV, the amplication of charges is linear for energies between 0 and 45 MeV, above which a non-linearity of 6.10 -2 % takes place.

The CSA is followed by two branches destinated to treat energy and time of the detected particle. The energy branch consists of a shaper and a Track and Hold unit.

After amplication, the pulse is shaped with a CR-RC lter having 1 µs of peaking time for the DSSD and 3 µs for the Si(Li) and the CSI(Tl) stages. The shaping reduces the noise, which improves the resolution and preserves the amplitude of the physical signal.

6 The X and Y strips signals are of dierent polarities. MUFEE cards are also the host of inspection elements such as temperature sensors that can be exploited for sending an alarm signal when a programable temperature threshold 7 Multiplexers are mainly used to increase the amount of data to be sent within a certain amount of time and limit the number of cables. 8 Consisting of water mixed with alcohol in the same proportions.

Heavy-residue detectors

A gridded ion chamber and a plastic scintillator were placed at the end of the beam line. These detectors were used to identify the heavy-residue nucleus using ∆E -E and E -T oF 9 techniques.

Ionization Chamber

The ionization chamber was an electron-sensitive gridded ion chamber, operational in pulse mode, designed at GANIL. Its characteristics are summarized in table 2.3.

The ionization of gas molecules by a passing charged particle, creates ion pairs (electron + positive ion (hole)) along it's track. The deposited energy is proportional to the number of electron-hole pairs created. The electrons and ions (charge carriers) drift in opposit directions inside the volume of the ionization chamber due to the electric eld generated by the cathode and anode. The motion of these charge carriers induces an electric signal that can be used to estimate the energy loss of the beam-like particle in this detector.

The output electric signal depends also on the velocity of the charge carriers and their positions inside the volume of the detector. Since the mass of an electron is lighter with respect to the mass of the corresponding ion, its drift velocity is ∼ 3000 times greater. In these conditions the output signal will be a mixture of a fast pulse with a short rise time due to the fast electron motion and a slow pulse with a long rise time due to the slow ion motion.

Operational mode pulse mode

Active volume 60 mm × 60 mm × 100 mm

Filling gaz (pressure)

CF 4 (70 mbar)

V Anode +600 V Frisch grid 0 V V Cathode -600 V Table 2.

3: General characteristics of the ionization chamber

The dependence of the pulse amplitude on the position of interaction and the slowhole component signal can be removed by using a Frisch grid placed close to the anode (see gure 2.14). The operation principle of a Frisch grid is explained as follows. The electron-hole pairs are created in the active volume between the grid and the cathode where the grid is maintained to an intermediate potential between the electrodes. The electrons, under the inuence of the reigning electric eld will move on towards the anode and pass through the Frisch grid. The signal is therefore only measured over the volume between the grid and the anode. This way, the hole component of the signal is screened since the only charge carriers between the grid and the anode are the electrons.

9 Time of f light.

During this experimental campaign the output signal was stored in an analogic acquisition where the deposited charge was integrated in 3 µs time interval. Data were also digitized in 8.75 µs time intervals with a frequency of 400 MHz (i.e. 350 samples).

Figure 2.14: Ionization chamber in E507. The Frisch grid is located in the bottom of the chamber just above the anode plate.

Plastic detector

The plastic scintillator has a detection surface of 6 cm × 6 cm and is coupled to a photomultiplier (see gure 2.15). This detector was used to measure the energy of the beam-like particules and their Time-of-Flight with respect to the time reference detector (CATS2).

The plastic material absorbs the kinetic-energy of the projectile-like particle and reemits it in the form of visible light (uorescence). The emitted light is then guided by a light-pipe to a photomultiplier. The latter converts the scintillation pulse into a usable electrical signal. The clovers were located close to the target point as shown in gure 2.16b. This conguration increases the solid angle sustained by each Ge crystal but degrades the energy resolution due to Doppler eect. The resolving power can be restored by using the electrically-independent segments to reduce the opening angle of the detector.

In our experiment the target was shifted 5 cm upstream so as to increase the angular coverage of the light-charged particules detectors. Data from EXOGAM are not exploited in the present work.

Positioning and alignement of detectors

In order to measure the scattering angle of a particle, one must know precisely the position of each position-sensitive detector (CATS and DSSDs) with respect to some reference position in space. The global position of each detector was measured during the experiment setting-up. The measurements were done by the Instrumentation pour la physique We must mention that all positioning measurements were taken at room temperature and pressure. Vacuum may lead to slight mechanical shifts of the dierent elements and the uncertainties given by the geometer no more holds. Other experiments already reported position shifts reaching 3 mm [Ramu 09]. This would lead to erroneous angle and energy measurements. The correction of these shifts were taken into account during data analysis. In our case the target was shifted 1 mm towards S1 with respect to the position given by the geometers in such a way to reproduce the ground state at 0 MeV in the excitation energy spectrum (cf. 4.1).

Electronics and data acquisition

The same data acquisition logic was used for the whole experiment campaign. In this section, we will explain briey the general acquisition setup. The detailed electronics diagrams of each detector can be found in Appendix B.

The selection of a good event requires an electronics module that is able to receive signals from several detectors and decide wether the acquisition chain must be triggered or (1/1000) Table 2.5: GMT trigger channels. T all refers to the set of the four MUST2 modules. In contrast with other detectors, MUST2 and S1 are allowed to trigger the acquisition chain whenever they detect a particle.

The delayed logic-signal from CATS2 detector, made valid by time coincidence with the FAG gate, represents the common stop to all of the detectors. The start signal, on the other hand, is the logic signal from the red detector itself (in case of MUST2 this signal is sent by the MUVI card).

The channels of the GMT were set to receive the 12 master signals shown in table 2.5.

The detectors intercepting the beam (i.e. CATS, Plastic...) or having a high detection rate (EXOGAM), can not be allowed to trigger the acquisition system each time they detect an event, since they would saturate the acquisition chain. Dividers are used in order to reduce by orders of magnitude the rate of these detectors in the GMT trigger (see right-hand side column in table 2.5). When the signal is valid, it is encoded by an electronic specic for each detector. The amplitude or the charge of the signal is read and processed by an adapted electronic module in order to record the energy or the time associated.

Hardware Conguration (ADC, QDC, TDCS, MATES) is done via a graphical interface called DAS (Data Acquisition System). The latter allows to manage electronics settings, to acquire the data event by event, and to partially treat them on line. A visualization interface provides a way to control the proper functioning of the detectors, as well as viewing the analyzed spectra online.

Chapter 3

Data analysis

In this chapter, the dierent stages of data analysis are described. The entire analysis presented here is performed under ROOT "framework".

Beam-tracking detector : CATS

In order to determine with high precision the impact position of the beam on the target, and its angle of incidence before the interaction, two CATS detectors were place upstream the target.

Charge calibration

The CATS detectors were described in chapter 2. Each cathode strip has its own electronics. Therefore for the same amount of charge deposit, the response is dierent for each channel. In order to calculate the centroid of a charge-pattern over several cathode-strips one must normalize their corresponding gains to the gain of a strip chosen as a reference 1 .

When a strip is red, all the charges from all other strips will be equally coded, even if no signal was detected. In the latter case, the encoded value corresponds to the background noise and the accumulation of such events leads to a peak close to zero called the pedestal.

The calibration procedure is achieved by injecting a pulser signal on the anode wires inducing a signal on the cathode planes. Each strip receives the same charge and by varying the amplitude of the pulser signal by discrete and equal steps (see gure 3.1a), the dynamic range of the strip is totally covered. The peak positions for each strip is then plotted versus the peak positions of the reference strip, and a linear regression is tted to the data as shown in gure 3.1.

The normalized charge of a (strip) i is given by,

Q i = (q i -p i )a i + b i (3.1)
where, 1 A reference can be any strip characterized by a low noise, a good resolution, a linear response and which has operated along the whole experiment • q i is the measured charge,

• p i is the measured pedestal,

• and a i and b i are the tted parameters.

During the oine analysis, a signal is considered valid only if it exceeds a threshold value. This threshold value is determined for each strip by,

Q thresh = p i + α.σ (3.2)
where σ represents the pedestal width and α is a parameter insuring a clean signal. For this experiment, we set α = 4.

Reconstruction Algorithms

The hit pattern induced by the passing ion on the cathode strips is used to calculate the best estimate for the avalanche position, i.e. ion position. This procedure improves the resolution, before reconstruction, equal to the strip-width (i.e. 2.34 mm). Algorithms which determine the centroid of charge for detectors similar to CATS were already investigated in [Lau 95]. In the present work we have investigated two dierent classes of algorithms: center-of-gravity and the analytic-function t.

We dene the strip contiguity as the number of contiguous strips having a calibrated charge > 0. Neglecting ≈ 1% of events where only two strips are red, the minimum number of strips to acquire an information about the passing ion must not be less than three. 

Center-of-gravity algorithm

The center-of-gravity algorithm (COG) calculates the trajectory centroid X n by weighting each strip position x i with its charge Q i where n is the number of strips used,

X COG n = n i=1 x i .Q i n i=1 Q i (3.3)
The strip carrying the largest induced charge is placed at the center of the n-strip distribution, and the other strips are picked alternatively on both sides. In this method it is important to have all the strips and the wires operational during the whole experiment.

The position X COG n is given in strip unit 1 < X COG n < 28. The result is transformed to mm using the cathode pitch w = 2.54 mm (2.34 mm of strip-width + 0.2 mm of interstrip) where,

X COG n [mm] = (X COG n [strip] -14.5) × w (3.4)
When using an odd number of strips (e.g. X COG

3

) the reconstruction is more precise when the prole of the charge distribution is symmetric with respect to the center of the most signicant strip, in other words, when the real hit is located in the center of the strip. And it is most erroneous when the charge prole is symmetric with respect to the inter-strip. In the latter case an even number of strips (e.g. X COG

4

) is more adapted.

Since the systematic errors are roughly linear with respect to the distance separating the real hit position from the center of the most signicant strip x c [Lau 95, Otti 99] a simple correction can be made,

x corr = (x -x c ) a corr + x c (3.5)
where x corr represents the position after correction and a corr is the correction factor.

Another correction can also be made for X COG 4 though it was not used. In contrast, the systematic errors of higher order COG methods are not linear and simple corrections can not be applied. The correction factors for X COG The analytic-function t algorithm is based on the hypothesis that the charge distribution can be approximated by an analytical bell-shaped function having 3 parameters (amplitude, mean value, width) such as a Gaussian or a Squared Secant Hyperbolic. This type of algorithm is always done with n = 3 strips. In these cases the centroid can be obtained from the charge distribution using the following expressions for the Gaussian function,

X Gaus 3 = (X 2 2 -X 2 1 ) ln Q 1 Q 3 -(X 2 3 -X 2 1 ) ln Q 1 Q 2 (X 2 -X 1 ) ln Q 1 Q 3 + (X 3 -X 1 ) ln Q 1 Q 2 (3.6)
When the three strips are contiguous the expression reduces to,

X Gaus 3 = w 2 ln Q 1 Q 3 -ln Q 1 Q 2 ln Q 1 Q 3 + ln Q 1 Q 2 (3.7)
The Squared Secant Hyperbolic function is given by,

X Sech 3 = a π tanh -1   Q 1 Q 3 -Q 1 Q 2 2. sinh π.w a   + X 1 (3.8)
where,

a = πw cosh -1 1 2 ( Q 1 Q 3 + Q 1 Q 2 )
.

(3.9)

Q 1 (X 1 ) is the charge (position) of the central strip having the most signicant charge, Q 2 (X 2 ) and Q 3 (X 3 ) are the charges (positions) of the 2 nd runner-up and 3 rd runner-up strip in charge signicance, and w is the cathode pitch. In order to use the formula of X Sech (3.8), the neighboring strips must be at the same distance from the central strip.

This restriction is not necessary in case of the Gaussian formula (3.6).

Validity of reconstruction

To check the validity of reconstruction, a grid made by a squared piece of brass with holes of dierent diameters (1 or 2 mm) and asymmetric positions (cf. gure 3.2a) was placed behind each CATS for position calibration. The image of the holes in the grid was collected on CATS and a test of the reconstruction algorithms was made. The grid is also used to identify any strip or plane inversions in the CATS detector.

In gure 3.2 we show the reconstruction using the COG method for 3 strips after applying the correction. The quality of reconstruction has been signicantly improved after the correction procedure. However, even with a careful choice of correction factors, a splitting of spot is observed (indicated by black arrows in gure 3.2b).

When using a bell-shaped function, no splitting is observed (see gure 3.3). A comparison of X Sech to X COG 3 and X COG
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, respectively shows that the former algorithm is better.

The reliability of the analytic methods can be veried by comparison to the COG methods. In gure 3.3 (c) and (d) panels show the dierence between X Sech and X COG 3 versus the distance to the center of the strip (X -X c ). The X Sech is similar to X COG 3 in the region where the latter is most reliable i.e. at the center of the strip. When compared to X COG 4 , both methods are in agreement near the borders of a strip. The systematic error of the analytic-function t is smaller than the one of the COG methods but far from being linear, i.e. no simple correction can be done without an appropriate characterization of the detector. In a similar way X Sech was compared to X Gaus and both methods found to be equivalent. However, according to reference [Lau 95], X Gaus has a larger systematic error. For the rest of the analysis the X Sech will be used.

(a) Sech t (b) Gaussian t 

(c) X COG 3 -X c vs X Sech -X c (d) X COG 4 -X c vs X Sech -X c

Reconstruction of beam on the target

Given the positions of the beam impact on CATS1 and CATS2 (see gure 3.4 on the lefthand side and center panels) we can calculate the position of interaction of the beam with the target (right-hand side of gure 3.4). In order to do so, we use the distance between CATS1 and CATS2 (C 1 C 2 = 400 mm) and the distance between CATS2 and the target (C 2 C t = 526 mm). The method is explained at the end of this chapter, section 3.4.1. We notice that the beam is considerably broad in X and Y directions at CATS1 and CATS2 planes, then it is focused at the target plane in Y-direction (∆Y ≈ 5 mm), with roughly a constant spread in X direction (∆X ≈ 15 mm).

The left-hand side panel of gure 3.5 shows the reconstructed events at the target plane. No selection is made on the trigger and events correspond essentially to reaction events, for which MUST2 or S1 are hit. Clearly, an ellipsoidal beam spot in the center of the gure having the highest beam intensity can be identied. At the exit of LISE, the beam spot is broad and covers the detection surface of the beam trackers. A large fraction of counts in this plot comes from reactions induced by the beam hitting the S1 frame from 

Position resolution

To determine the position resolution of the beam trackers, the best way would be to use a beam with low divergence. Since this is not possible in our case we use the measurement performed with a grid in order to determine the resolution. The image of the grid holes Since the holes are of circular shape, one must select only the events passing around the diameter parallel to X (Y), and having the less possible deviation as shown in gure 3.6a. The events corresponding to the three central holes are then projected on the X-direction (Y-direction), cf. gure 3.6 b and c, and tted by Gaussian-functions in order to extract their full width at half maximum W . The measured widths are averaged over the three central pics leading to W mes . Position resolution (W res ) is then deconvoluted from the hole 2 resolution W hole , using the following expression,

W 2 mes = W 2 res + W 2 hole (3.10)
where,

• W res is the CATS detector position resolution,

• W mes is the measured resolution,

• W hole = 2 √ 2 ln 2σ hole is dened as the hole resolution, 2 The hole will induce a uniform distribution of length L (= 1 mm). The variance σ 2 uni. of a uniform distribution of length L is given by: and σ hole is the standard deviation related to the uniform distribution of the hole, given in terms of L by,

σ 2 uni. = E(x 2 ) -E(x) 2 = 1 L L 0 x 2 dx - 1 L 2 ( L 0 xdx) 2 = L 2 12 (a) (b) (c)
σ hole = L 2 12
The nite position resolutions on the CATS detectors induces an uncertainty on the incident angle. For an ion parallel to Z -axis and by using the small-angle approximation (δθ max ∼ 0.1 • ), the maximum angular deviation δθ max can be calculated as,

δθ max ≈ tan(δθ max ) = W res C1C2 (3.11)
where, C1C2 = 400 mm is the distance between the two CATS detectors. Table 3 

Light charged particle detectors : MUST2 et S1

To determine the energy and the time of the incident charged particles in the detectors MUST2 and S1 in physical units, it is necessary to establish a correspondence between the electronic channels and the physical information. To determine the energy measured by the DSSD or the Si(Li), we have used a 3-alpha source for which the emission energies are known accurately.

Double-sided silicon-strip detectors : Energy Calibration

The MUST2 and S1 detectors are described in sections 2.5. The DSSD is calibrated in energy using alpha sources placed inside the reaction chamber. The same calibration procedure was applied to both MUST2 and S1. The detectors were calibrated before and after each experiment of the physics campaign.

A Each strip (or pad) of MUST2 and S1 detectors must be individually calibrated since it has its own electronics chain and thus its own gain and pedestal.

The MUFEE cards described in the previous chapter send the analogic signal to the MUVI card which allows them to code the energy on 16384 channels. The charge seen by Y strips (energy, time) are coded between 0 and 8192 channels and those seen by X strips Then all data lying in a given channel range between 8160 and 8223 (in our experiment) are suppressed.

The calibration procedure takes into account the pedestal position and the 0.4 µm aluminum dead layer covering the detectors. The three most intense alpha peaks (cf. table 3.4) in the energy spectra of each strip are tted with gaussian functions taking into account the neighboring less-intense peaks in order to determine their precise centroids and widths. Once the peak locations for each channel has been determined their corresponding energies are calculated taking into account the energy losses of alpha particles in the aluminum dead layer. For every strip we assume a linear relationship between the channel number from the ADCs and the energy of the alpha particle deposited in the detector,

E i = g i |channels i -8192| + E 0i
where g i and E 0i are the gain and the energy oset, respectively. For each strip, the g i and E 0i are rst determined from the positions and calculated energies of the three main α energies. The mean value of energy oset must be close to zero for each side of the detector since all pedestals are aligned to channel 8192 as mentioned before. This was not the case during this rst calibration where the calculated mean of energy oset showed a ≈ 100 keV shift with respect to zero energy. This shift was attributed to an underestimated thickness of the dead layer.

The dead layers are calculated by minimizing the dierence between the calculated pedestal and the physical pedestal (0 MeV) for several dead layer thicknesses. A linear response of the detectors and the associated electronics was again assumed. Geometrical aspects (target position, impact position on strip) were taken into account in the procedure.

The obtained values for each side of the DSSD detectors, calculated from energies on the X strips, are summarized in table 3.5 and are compared to those calculated in [ Giro 11] for the same detectors and using the same data. We notice a dierence between the two sets of values up to 13%. than those given by the manufacturer Micron ( 0.4µm of Aluminum). The manufacturing of the detector by doping process induces the diusion of Si from the strips and thus leads to increase the equivalent dead layer of Aluminum on the surface of the detector. The energy resolution (FWHM) for MUST2, adding all strips in the four detectors is 31 keV (see gure 3.8). A plot of energy versus strip for the four detectors is shown in gure 3.9a.

A similar energy resolution of 30.9 keV is achieved for S1.

The energy alignement plot for S1 detector is shown in gure 3.9b. However, several pads were lost during the mounting of this detector namely 33, 34, 51, 52, 53 on the frontside of the detector and pads number 1, 14, 15, 16 on the back-side. Moreover, the pad number 13 next to the inoperational pads induced high-background noise. All the events related to these pads were not treated in the oine analysis. It was not possible to explain the noise visible in gure 3.9b at the energy range between 3 and 5 MeV. These events correspond to about 1.4 % of the whole run hence their eect is negligible. We can also 

Energy reconstruction

An emitted particle in the reaction will undergo energy losses and straggling in the target and in the detector dead layers before it will be detected by the DSSD. It can also trigger two strips when the particle crosses the interstrip zone. In this case the energy is divided between the contiguous strips. Table 3.6 summarizes multiplicities measured for a standard run.

A plot of the energy deposit on neighbouring X-strips (front-side) for multiplicity 2X events is shown in gure 3.10 for a calibration run with α source. The three lines correspond to interstrip events. The sum of energies on both strips restores the full energy of alpha particles. In the data analysis, events having a multiplicity > 1 are not considered. The particle energies are corrected for the energy losses in the Aluminum dead-layer covering the detector using tables from SRIM code and taking into account the eective thickness due to the incident angle of the particle. A similar correction was applied for the energy loss inside the target. Since no parameter in the experiment can provide the depth of the reaction location in the target, we consider that all reactions take place in the target central plane.

Particle identication

The particles stopped in the rst stage of MUST2 and S1 detectors can be identied using the T oF technique. The kinetic energy T of a particle is proportional to its mass M and to the square of its velocity v, T ∝ M v 2

(3.12)

The DSSD provides a measurement of the kinetic energy and since the distance traveled by particles is roughly the same, a measurement of the T oF between CATS and the DSSD is linearly related to the velocity of the particle. Plotting the energy against the T oF will give a set of hyperbolas that will determine the mass of the particle. Figure 3.11 shows the T oF vs energy spectrum for the particles detected in a DSSD. The proton hyperbola can be identifed by the maximum energy deposited in the DSSD, roughly equal to 6 MeV corresponding to the 300 µm thickness of the DSSD. The protons having greater energies will punch through the DSSD layer and will form the horizontal retrogression. The punchthrough energy in a 300 µm of Si is given in table 3.7. In the same way we can identify the α-particle hyperbola, where the maximum deposited energy is ≈ 25 MeV. The insert of gure 3.11 shows the same graph gated by the condition of detecting a heavy residue in the plastic scintillator placed at zero degrees with respect to the beam direction. Only the lines corresponding to protons and alphas remain (essentially), which makes the gate on the protons easier to set. The same spectrum is shown in gure 3.12 corresponding to S1. For both types of detectors, we can clearly distinguish the lines corresponding to the protons and alphas. On the contrary the lines for deuterons and tritons are not clearly separated. As can be seen in the insert of gure 3.12, requesting the heavy residue in coincidence tend to suppress the deuteron and triton contributions.

Time resolution

During the experiment, the internal time-of-ight provided by the MUST2 ASIC could not be exploited due to connectics problems. Instead, external TAC modules were used to measure the time-of-ight of the detected particles. The time resolution (δt) was calculated for protons having 3 and 5 MeV after deconvolution from the δt CAT S (0.37 ns) timing response deduced earlier and were found to be equal to 1.57 ns and 1.43 ns, respectively.

In the absence of correction from the time jitters, due to hit position on strip dependance and beam time-of-ight spread, these values do not correspond to the intrinsic resolution. As in the case of the DSSDs, each pad is calibrated individually with the three most intense alpha peaks delivered by the α-source taking into account the pedestal positions, the dead layers and the neighboring less-intense peaks as shown in gure 3.13. A linear relationship is also assumed between the channel number and the energy of the alpha particle deposited in the detector.

The dead layers of the Si(Li) crystals summarized in table 3 

Calibration of Si(Li)-Orsay

One of the four MUST2 telescopes was equipped with a Si(Li) crystal from the detector department at IPN-Orsay. For the Si(Li) of this telescope we used standard analogic electronics (not by the MUFEE cards). Malfunctions of the detector were observed during the experiment. The observed statistics was much lower than for other telescopes and the ∆E -E identication curves were also anomalous. The data from this telescope are therefore not used in this analysis.

Energy reconstruction

Particles punching through the DSSD layer and detected in the Si(Li) crystal undergo energy losses in the aluminum back-layer of the DSSD and the Silicon dead layers on the surface of the Si(Li). Residual energies measured by the crystal are corrected in the same way as above taking into account the additional dead layers i.e. the back-window of the DSSD and the front window of the Si(Li). The back-window dead layers of the DSSD are assumed to be equal to those of the front-window given previously in table 3.5.

Particles passing between the two Si(Li) crystals, or grazing the borders of the DSSD will deposit less energy in the second stage of MUST2. Consequently their original energy can not be fully reconstructed, and leads to events lying below the real kinematic line. A Geometrical matching between the rst and the second stage of MUST2 eliminates these events. The matching is also important for events where the triggered pad in second stage does not correspond to the position of the triggered strips in the DSSD. Finally, the multiplicity of detected events is given in table 3.9. Events having a multiplicity > 1 are not considered. 

Particle identication

The particles crossing the DSSD and stopped in the Si(Li) are identied using the ∆E -E technique. According to Bethe and Bloch formula, the energy loss of a charged particle in a thin layer of material is proportional to the ratio,

∆E ∝ AZ 2 E (3.13)
where A, Z and E are the mass, the atomic number and the kinetic energy of the particle.

Plotting ∆E vs E leads to a family of hyperbolas corresponding to the dierent values AZ 2 thus identifying rmly the detected particle. In our case the DSSD plays the role of a thin layer detector and will provide a measurement of ∆E while the Si(Li) will give the residual energy E. The mass lines corresponding to protons, deuterons and tritons are clearly well separated and the protons are selected unambiguously. Nonetheless, after the selection of heavy residues with the plastic detector placed at zero degrees the identied particles consist mainly of protons (see insert).

Identication of heavy residues

We saw in Chapter 2 that the 68 N i beam was rather pure ≈ 85.8 %. The ionization chamber and the plastic scintillator were used to identify the heavy fragments from the reaction. However, the performance of the ionization chamber was not optimized for the identication of fragments with nominal intensity, i.e. ≈ 10 5 pps and suered from an important pile up rate.

Nevertheless, we performed a control run with low intensity to check the composition of the secondary beam. The energy loss in the ionization chamber (∆E) versus the time- The contour we have used takes into account the pile up events for energies in arbitrary units between 16.10 3 and 8.10 3 and those having less energy due to the plastic degradation.

Calculated parameters

In this section we will present the full reconstruction of a two-body reaction, and the calculations leading to the angle of emission of the light recoil and the excitation energy of 5 Placed in chamber D4 of LISE between the second and the third magnetic dipoles see gure 2.5. the heavy residue, using the beam-trackers CATS, and the light-charged particle detectors MUST2 and S1.

Before hitting the target the beam particle is detected by CATS1 and CATS2. These detectors provide two points C 1 = (x 1 , y 1 , z 1 ) and C 2 = (x 2 , y 2 , z 2 ) of the trajectory of the incident ion. Figure 3.16 shows the dierent positions of the beam trackers with respect to the target.

Reconstruction of event on target

In order to reconstruct the location of reaction in the plane of the target C t = (x t , y t , z t ),

we rst calculate the system of equations (∆) of the ion trajectory in space. The direction vector

---→ C 1 C 2 is given by, ---→ C 1 C 2 = (x 2 -x 1 , y 2 -y 1 , z 2 -z 1 ) = (a, b, c).
(3.14)

Using the direction vector and a point C 1 we reconstruct ∆ as, ∆ :

     x = a.m + x 1 y = b.m + y 1 z = c.m + z 1 (3.15)
where the variables x,y and z represents any point on this trajectory. Knowing the position of the target z t on the z -axis, the reaction location is calculated as the point of 

z = z t ⇒ m = z -z 1 c (3.16)
which in turn leads to the reaction position with respect to x and y axis,

x t = a z -z 1 c + x 1 y t = b z -z 1 c + y 1 (3.17)
The calculated point C t = (x t , y t , z t ) is the vertex of the angle of emission formed by

( --→ C 1 C t , --→ C t M
). Next we will show how we calculate the point M on MUST2 and S1.

Reconstruction of event on MUST2 and S1

MUST2 and S1 detectors provide the location of a hit in terms of strip numbers. Since these detectors have dierent geometries, the hit location is calculated in two dierent ways. The position is rst calculated in the local system of the detector, then it is transformed in the laboratory system.

MUST2 :

The four corners of each MUST2 detector were measured by the geometer with respect to the target. We dene these points in space as A, B, C and D. The strips numbering (from 1 to 128) starts from A as shown in gure 3.17a. The points A, B and D are used to establish an orthogonal-system ( -→ w x , -→ w y ) in the plane of a MUST2 detector, where :

-→

w x = --→ AD 128 and -→ w y = -→ AB 128 (3.18)
Both of these vectors carry the information of the orientation of a MUST2 detector in space and the width of a strip of type x or y. Let S x and S y be the hitted strips. The hit location with respect to A (the origin of the local system of the detector) is calculated as,

--→ x local = (S x -0.5) -→ w x --→ y local = (S y -0.5) -→ w y . (3.19)
Finally, the trajectory of the detected proton is calculated as --→ C t M (cf. gure 3.16), where : w ρ = 1.5 mm w φ = 22.5 • .

--→ C t M = --→ C t A + --→ x local + --→ y local
Let S ρ and S φ be the hitted strips 6 by a detected particle. We calculate the position in polar coordinates ρ local and φ local with respect to the origin O, ρ local = (S ρ -0.5)w ρ φ local = (S φ -0.5)w φ .

(3.21)

6
The numbering of strips in S1 is originally dictated by the electronic connections, this was taken into account in order to get S ρ and S φ .

The hit position (M ) in the local system is calculated using the following expressions :

--→ x local = [ρ local .cos(φ local )] -→ u x --→ y local = [ρ local .sin(φ local ] -→ u y (3.22)
Finally, the same procedure is applied, as in the case of MUST2, to calculate the trajectory of the detected proton, where,

--→ C t M = --→ C t O + --→ x local + --→ y local (3.23)
Having the location of the reaction on the target C t and the hit-position M on MUST2 or S1, we can calculate the angle of emission θ Lab using the expression,

cos -1 [cos(θ Lab )] = cos -1 --→ C 1 C t • --→ C t M --→ C 1 C t --→ C t M (3.24)

Excitation energy

In this section we show how we calculate the excitation energy of the heavy-residue in the d( 68 N i, p) 69 N i reaction. Figure 3.18 depicts a two-body reaction in inverse kinematics, where the dierent particles are dened as, 1. Particle (1): the incident The masses m1, m2, m3 and m4 correspond to the beam, target, heavy residue and light recoil emitted in the backward angles, respectively.

68 N i,
We dene T i , p i , m i , and

E i = T i + m i = p 2 i + m 2
i as the kinetic energy, linear mo- mentum, mass and total energy of particle (i), respectively. The excitation energy is calculated using the conservation laws under the missing mass method. All particles involved in this reaction are in their ground state except 69 N i that could be in an excited state. In this case the excitation energy E exc 3 is calculated using,

E exc 3 = m 3 -m 0 3 (3.25)
where m 0 3 is the mass of 69 N i it its ground state. Starting with the conservation law of linear-momentum we have,

- → p 1 + -→ p 2 = -→ p 3 + -→ p 4 (3.26)
Since the deuteron is at rest, -→ p 2 = -→ 0 and p 3 is calculated in terms of p 1,4 as,

p 2 3 = p 2 1 + p 2 4 -2p 1 p 4 cos(θ 4 ) (3.27)
The experiment provides T 1 , T 4 and θ 4 of the incident ion and the proton which are used to calculate the linear momenta p 1 and p 4 using the following equation,

p 2 i = T 2 i + 2 T i m i (3.28)
The energy conservation law gives,

E 1 + E 2 = E 3 + E 4 ⇒ E 3 = E 4 -E 1 -E 2 (3.29) By replacing E 1,2,4 by (T 1,2,4 + m 1,2,4
) and E 3 by p 2 3 + m 2 3 in the above equation leads to,

m 2 3 = [(T 1 + m 1 + m 2 ) -(T 4 + m 4 )] 2 -p 2 3 (3.30)
Knowing p 2 3 from 3.27, we calculate m 2 3 and we deduce E exc 3 from equation 3.25.

Dierential cross sections

Two main informations can be obtained from the dierential cross sections. The shape of the angular distribution depends on the transferred angular momentum, and thus it can be used to determine the latter value. Another important information is the spectroscopic factor which is deduced from the experimental dierential cross section using a normalization procedure described in chapter 4.

The dierential cross section of the 68 N i(d, p) reaction, measured in the laboratory system, is given by the following expression,

dσ dΩ Lab (θ Lab ) = N det (θ Lab ) N Beam N T arget ∆Ω(θ Lab ) (3.31)
where, 1. N det (θ Lab ) represents the emitted particles, at an angle (θ lab ), detected by MUST2 and S1. Since these detectors cover only a fraction of the solid angle at backward angles, a correction factor ε M U ST 2,S1 (θ Lab ) = ε geom (θ Lab ) must be introduced into the above expression, 2. N Beam is the number of 68 N i in the beam impinging on the target and detected by the beam trackers CATS and the plastic scintillator, 3. N T arget is the number of deuterons per cm 2 in the target and is calculated by the following expression :

N T arget = 2eN avogadro M Carbon + 2M Deuteron (3.32)
where :

(a) e is the target thickness in g/cm 2 , (b) M Carbon and M Deuteron are the molar masses of Carbon and Deuteron, respectively, in g/mol, 4. ∆Ω(θ Lab ) is the solid angle at angle θ Lab and is equal to 2πsin(θ Lab )∆θ Lab .

Finally, the detection system may be totally unecient and particles passing through any detector are not detected. This corresponds to the electronics deadtime. It will be represented by the parameter ε Dead T ime which is dened as the percentage of time during which the system cannot accept an event.

Including all the eects, the dierential cross section expression 3.31 becomes,

dσ dΩ Lab (θ Lab ) = N det (θ Lab ) (1 + ε Dead T ime ) N Beam N T arget ∆Ω(θ Lab ) ε geom . (3.33)
The dierential cross section is calculated in the laboratory system and must be expressed in the center-of-mass system (CM) in order to be compared to the calculated cross sections.

The conversion is done using the following relation,

dσ dΩ CM (θ CM ) = J(θ Lab ) dσ dΩ Lab (θ Lab ) (3.34) 
where :

1. θ CM is the angle of emission in CM, 2. J(θ Lab ) the Jacobian as a function of θ Lab .

The Jacobian is a purely kinematic term. Using the same notation as in section 3.4.3, where θ 4 is represented by θ Lab , the Jacobian is expressed in terms of θ Lab as [Mich 64],

J(θ Lab ) = [Γ 2 (cos(θ Lab ) -K) + sin 2 (θ Lab )] 1/2 • Γ(1 -Kcos(θ Lab )
where,

K = B β 4 and Γ = 1 √ 1 -B 2
β 4 and B are calculated directly using the known masses and measured energies as :

β 4 = 1 - m 2 4 m 2 4 + T 2 4
, and

B = p 1 + p 2 E 1 + E 2 = p 1 T 1 + m 1 + m 2

Geometrical eciency and angular ranges

Special care is devoted to the selection of angular ranges. The charged-particle detectors (MUST2 and S1) do not cover all the backward angles with the same geometrical eciency ε geom (∆θ). The latter is used as a correction factor for the detected number of events. ε geom (∆θ) depends on the geometry of light-charged particle detectors and the energy range considered especially for events detected in MUST2. In this case, the hits corresponding to the spacing between the two Si(Li) crystals or even between two interpads of the same crystal are not considered during the analysis(see section 3.2.6) and they are removed in the calculation of the geometrical eciency.

Another parameter which must be taken into account is the position of the defective strips (pads) that have not been operational during the experiment. In the case of S1 detector 4 out of 16 sectors in total were lost during the mounting of the detectors. Table 3.10 summarizes the numbers of defective strips (pads) during the experiment.

Detector DSSD Si(Li) T1 X(12), X(116-127) / Y(5) pad(6) T2 X(12) / Y(16) T3 X(12) / Y(-) T4 X(all) / Y(all) pad (all) 
S1 T(33-34), T(51-53) / P(1), P(13-16) -Table 3.10: Defective strips (pads) during E507 experiment.

The geometrical eciency of the detection system is estimated by a Monte-Carlo simulation developped in this work and explained in Appendix A. The simulation takes into account the positions of the MUST2 and S1 detectors in space and simulates an isotropic emission of a particle source located at the target position. The geometrical eciency (ε geom (θ Lab )) for a given angle θ Lab was calculated as, where, N simu det (θ Lab ) is the number of events hitting a working strip (pad) and N simu tot (θ Lab )

ε geom (θ Lab ) = N simu det (θ Lab ) N simu tot (θ Lab ) (3.35) (a) (b) 
is the total number of events emitted by the source. The result is given in gure 3.19.

Five angular ranges are adopted and the ε geom (θ Lab ) value is averaged in each angular range ∆θ = θ 2 -θ 1 ,

ε geom (∆θ Lab ) = θ 2 θ 1 ε geom (θ Lab )dθ Lab θ 2 θ 1 dθ Lab (3.36)
Finally, the number of particles detected in the real data is corrected accordingly to the following expression,

N data tot (∆θ Lab ) = N data det (∆θ Lab ) ε geom (∆θ Lab ) (3.37)
We have shown in this chapter how the data from experiment E507 are analyzed and how we calculate all the parameters of interest. The next chapter will be devoted to the extraction of excitation-energy spectra for the d( 68 N i, p) reaction and the associated dierential cross-sections will be presented and analyzed. The obtained results will be compared to shell-model calculations. As discussed earlier the transfer of one neutron will select naturally the neutron singleparticle orbitals to be populated in 69 N i. The energy of these levels can be deduced from the energy and the emission angle of the light recoil particle, the proton, and their angular momentum from an analysis of the corresponding dierential cross-section.

In the rst section, the dierent gates used to select the reaction of interest are recalled and the excitation energy spectra are shown. The contribution of background reactions are evaluated in order to be subtracted leading to the nal excitation energy spectrum presented in the second section. The third section is devoted to the analysis of the excitation energy spectra. The identication of the observed states and the extraction of their angular momentum and spectroscopic factor on the basis of DWBA analysis are presented in the fourth section. In the last section we discuss the discovered states in 69 N i and their interpretation within the shell-model approach.

Event Selection and excitation energy spectra

The excitation energy spectrum was obtained using the missing mass method described in section 3.4.3. The ungated (no lter on any parameter) kinematical plot and the associated excitation energy spectrum is given in gure 4.1. The cuto near 22 MeV corresponds mainly to an energy threshold due to the limited geometry of the detection system. The counts at negative excitation energies are due to other reactions treated with the kinematics of the reaction of interest d( 68 N i, p) in the analysis code. The two broad peaks at E Exc ≈ 16 and 18 MeV correspond to recoil products (protons and others) and all other sources of noise in the detectors corresponding to deposited energies less than 1.5 MeV. We can already see a peak at 0 MeV corresponding to the 69 N i ground state emerging from the reaction background . In order to extract a clean excitation energy spectrum related to the reaction of interest, several gates were made. The main gates are:

1. the CD 2 area impinged by the beam, 2. the proton identication in the light-charged particle detectors placed in the backward angles using ∆E -E and T oF -E techniques, The same spectrum is shown in frame (b) after applying only the selection on the heavy residue. Counts at negative excitation energies are strongly reduced. The ground state is more pronounced and a slight bump at an excitation energy around 2.5 MeV is visible. However, the two peaks around 16 and 18 MeV due to recoil particles having energies less than 1.5 MeV persist.

In frame (c) the excitation spectrum gated by protons in MUST2 and S1 detectors is shown. The aforementioned two peaks are completly removed. The ground-state and an excited state of 69 N i are clearly visible. However, the proton gate is unable to reduce the background responsible of the negative excitation energies due to other reactions.

The spectra (a), (b) and (c) demonstrate the necessity of having the three selections simultaneously. Frame (d) shows the excitation energy spectrum with the three gates combined. As expected, the ground state and an excited state at 2.5 MeV are well pronounced. Moreover, structures emerge as a shoulder and a bump at about 4 MeV and 6 -7 MeV, respectively. The neutron separation energy (S n ) is marked by a dashed line at 4.59 MeV. Above this energy a background contribution from deuteron breakup is expected. We have also marked the separation energies of two neutrons (S 2n ) and one proton (S p ) at 12.38 MeV and 15.36 MeV, respectively. Clearly a high density of states is visible for excitation energies above S n . We can also notice the persistence of the negative excited energies, mainly due to the Carbon background.

The data were analyzed in six angular ranges, chosen accordingly to the geometrical eciency of the detection system (see section 3.6). In the next section, we will show how reaction backgrounds, i.e. Carbon background and deuteron breakup, are subtracted from the excitation energy spectrum in order to extract spectroscopic informations up to 8 MeV.

Background reactions

The background, up to excitation energies of about 8 MeV, comes mainly from two origins that will be treated separately in the following paragraphs. 

Carbon background

In order to estimate the background due to Carbon in the target, the CD 2 target (2.6 mg/cm 2 ) is replaced by a pure C target of 2 mg/cm 2 . The resulting data are analyzed with the same procedure as the data from the CD 2 target. Their related excitation energy spectrum provides the spectrum of the Carbon background component that can be normalized and subtracted from the excitation energy spectrum from the CD 2 target.

Unfortunately, the Carbon background can not be rigorously determined due to poor The reactions on Carbon could explain the background in the excitation energy spectrum up to 4.59 MeV, the neutron separation energy (S n ). At higher excitation energies another source of contamination, the deuteron break-up, contributes to the background in the excitation energy spectrum.

Deuteron break-up

Deuteron is a weakly bound nucleus which easily undergo break-up. In our case the considered break-up reaction is given by

68 N i + d → 68 N i + p + n (4.2)
The proton from this reaction can then be detected in MUST2 and S1 and its associated spectrum would interfer with the reaction of interest. We did not have access to the energy distribution of these protons due to the deuteron break-up, as was the case for the fragments due to reactions on Carbon nuclei in the CD 2 target. An alternative method had to be used to estimate its contribution to the excitation energy spectrum.

In contrast with the reaction of interest, this reaction leads to three particles in the exit channel and for a complete description of its kinematics we make use of phase-space calculations. In such calculations every degree of freedom or parameter of the system (such as the number of products, their masses and their momenta) is represented as an axis of a multidimensional space, and all possible states are regarded as unique point.

However, this type of calculations is rather dicult to solve analytically if not impossible.

Nevertheless an estimation of the proton background produced by this reaction is possible using numerical methods of Monte-Carlo type. 

Energy levels and resolution

The total excitation energy spectrum presented in section 4.1 shows a pronounced ground state and some structures below and above S n (=4.59 MeV). excitation energy spectra are analyzed for several angular ranges chosen accordingly to the geometrical eciency of the detection system as mentioned in section 3.6.

The angular range in the most backward angles (156

• -170 • ) covered by the S1 detector is taken as reference for several reasons:

• The excitation energy is less sensitive to the angular resolution. As can be seen in gure 2.1, the kinematical curves atten at backward angles so that the extracted excitation energy depends essentially on the proton energy and is less subject to incorrect scattering-angle reconstruction.

• The contribution of the deuteron break-up is minimum,

• The transfer cross sections are at their maximum and excited energies around S n are more pronounced. The excitation energy spectrum corresponding to this angular range is shown in the left frame of gure 4.7. Three energy levels including the ground state are clearly visible and marked by black arrows. We can also distinguish several states above the neutron separation energy (marked with a green dashed-line). The broad structure around 6 -7 MeV is tentatively attributed to a doublet of resonances. We note that at these excitation energies, single particle state can be quite broad due to coupling to core ( 68 N i in our case) excitations [Gale 88]. At higher excitation energy the larger density of states makes obviously the decomposition more dicult. • The t is made with ROOFIT using the Maximum Likelihood algorithm since it is more suitable for low-statistics spectrum tting,

• The Carbon background is normalized on the negative part taking into account simultaneously the t for the ground state ([-2 MeV -+1 MeV]) of the excitation energy spectrum.

• Bound states are tted by the convolution of a gaussian (G) and a window function (W) (cf. solid line in the left frame of gure 4.8.) : • In contrast with the states at low energy, unbound states are sensitive to the deuteron break-up. In order to reduce the number of parameters their gaussian width is set equal to that of the ground state. Centroids, amplitude and the FWHM of the Breit-Wigner (Γ BW ) are set free during the t. However, the t with the last parameter is not conclusive due to the low statistics and the overlaping of the dierent states. The rst t gave Γ BW = 0 most of the time. Thereafter this parameter has been manually set to zero leading to 6 free parameters (two parameter × 3 states). • The angular range lying in the most backward angles in the CM [105 • -113 • ] was used to normalize the Deuteron break-up (cf. gure 4.9). The number of events in the other angular ranges were calculated after supposing an isotropic emission in the CM.

G * W = 1 σ √ 2π +R -R exp - (x -t) 2 2σ 2 dt (4.3) = 1 2 erf x + R -µ σ √ 2 -erf x -R -µ σ √ 2 (4.
In total 13 parameters for the 156 The rst two columns present the energy levels and their corresponding FWHM found by tting the excitation energy spectrum corresponding to the reference angular range. The third column gives the energies corrected by E 0 (see text).

The t of the excitation energy spectra for each angular range are shown in gure 4.9.

They are tted with the same protocole after xing the centroids of the second excited state and the unbound states. Due to the low transfer cross-section and limited statistics no contribution from the states at 5.88 and 6.39 MeV could be extracted in the [106 For details about the tting procedure see text.

angular range the t did not provide a contribution for the state at 5.43 MeV and the resulting curve is in moderate agreement with the data. The FWHM of the ground state is roughly equal to 1 MeV. However, the FWHM of the rst excited state is found to be ≈ 1.5 times larger as shown in gure 4.10 (left panel). This result is obtained for all the angular ranges except the one corresponding to [164 • -168 • ] which has the lowest statistics. However, as can be seen in gure 4.10 (right panel) simulations clearly show that the expected FWHM of an excited state at 2.5 MeV is close to that corresponding to the ground state. It suggests that the rst excited state is composed of a doublet of states close in energy and amplitude.

DWBA analysis

The use of a reaction model is mandatory to extract the nuclear structure information from the dierential cross-sections. For the present analysis, we have used the standard onestep DWBA model described in Appendix C. In the DWBA approximation, the distorted waves are generated from optical potentials reproducing the elastic scattering cross-section for the entrance and exit channels.

Model for the optical potentials

The optical models provide the wave functions associated to a colliding pair of nuclei.

The optical potential can be obtained in a phenomenological approach, where a suitable analytical form for the potential is adopted. Its depth and geometry parameters are determined by means of parameter adjustement to best t available experimental data.

Woods-Saxon potential form is widely used in DWBA calculations to model the optical potential and the literature contains many successful parametrizations.

The complete potential can be written as,

U (r) = V C (r C ) -V V f (r, r V , a V ) -i W V f (r, r V , a V ) -4W S d dr f (r, r S , a S ) -V SO -→ σ • -→ l M π c 2 1 r d dr f (r, r SO , a SO ) (4.5)
with f (r, r i , a i ) describing a Woods-Saxon potential,

f (r, r i , a i ) = 1 1 + exp r -r i A 1 3 a i (4.6)
Twelve parameters are needed to model the interaction describing the elastic scattering.

V C (r C ) is the Coulomb potential of a uniformly charged sphere of radius R C = r C A 1/3 . V V is the volume potential depth, r V is its radius and a V its diuseness. Two other imaginary potentials are also added: W V , r V and a V are the depth, radius and the diuseness of the absorption volume potential, respectively. The same goes for W S , a S and r S representing the parameters of the absorption surface potential. Finally, a term of spin-orbit coupling is added to the potential, whose parameters are V SO , A SO and r SO . In order to constrain the optical potentials parameters, the measurement of elastic scattering dierential cross-sections may be useful. In principle, the optical model parameters used to describe the transfer must reproduce the dierential cross-section of the elastic channel providing a good test to validate the used optical-potential parameters.

In this experiment we only measured the transfer reaction, thus we are not able to validate the optical model parameters by the dierential cross-section trend of the elastic channel. However, DWBA calculations are performed with several optical potentials, from dierent parametrization in the literature, in order to evaluate their inuence on the results. It is noteworthy to mention that the currently available parametrizations are adjusted on a set of elastic scattering data for a large number of nuclei close to stability.

We will briey present the optical potentials used in this work for the entrance channel 68 N i + d and for the exit channel 69 N i + p.

For each channel, two dierent parametrizations were used and their combination provided 4 sets of potentials used to achieve the DWBA calculations and compare them with experimental data. is designed to describe approximately the elastic wave plus the components in which the deuteron has been broken up with the neutron and the proton continuing to move together 2 with little relative momentum. These components would also contribute to the transfer reaction [Satc 83] and in some cases its important contribution must be taken into account. The prescription consists in replacing the deuteron optical potential V pn by V pn ,

V pn = φ d |V pn [V n + V p ]|φ d φ d |V pn |φ d (4.7)
where, φ d is the wave function for the deuteron ground state.

-V n (V p ) is the neutron-target (proton-target) optical potential at one-half the deuteron energy.

1 The reaction studied in this work is equivalent in direct kinematics to a deuteron bombarding energy around 24 MeV/ u impinged on a target of 69 N i. 

Extraction of angular momenta and spectroscopic factors

The DWBA dierential cross-sections are calculated using the DWUCK4 code [Kunz 74] and the aforementioned parametrizations.

The shape of the calculated distributions provides the transferred angular momentum by comparing it to the experimental crosssection. The experimental spectroscopic factor is obtained by a χ 2 adjustement of the calculated distribution on the data. The χ 2 is dened as,

χ 2 = N i=1 Σ exp i -(C 2 S)×Σ DW BA i ∆(Σ exp i ) 2 N -1 (4.8)
where,

• Σ exp i, = dσ exp i dΩ CM is the measured cross section in the CM reference frame,

• ∆(Σ exp i ) = δ dσ exp i dΩ CM is the corresponding uncertainty, • Σ DW BA i = dσ DW BA i dΩ CM
is the calculated cross section on the basis of DWBA,

• C 2 S is the spectroscopic factor3 ,

• and N is the total number of experimental points. For the calculation of the experimental errors we combine equations 3.31 and 3.34 used to determine the dierential cross-section in the laboratory reference frame and the transformation to the center of mass frame, respectively. We have,

dσ dΩ CM (θ CM ) = J(θ Lab ) N det (θ Lab ) N Beam N T arget ∆Ω(θ Lab ) (4.9)
The uncertainty δσ exp CM was calculated by error propagation from the estimated uncertain- ties on the dierent parameters explained in the following list.

• For the number of detected protons N det , we consider the statistical error given by √ N det N det ,

• for the number of incident particles N Beam , the statistical error is given by

√ N Beam N Beam
, which is negligible here.

• Besides the error on the CD 2 target thickness, Polyethylene targets are hygroscopic and thus deuteron-hydrogen ratio is subject to changes. No measurement of this ratio has been performed, thus an error of 10% was estimated on the (2.6 mg/cm 2 ) target.

• the error on the proton emission angle is threefold:

1. the position resolution of the beam trackers leads to an uncertainty of 0.1 • calculated in chapter 3, 2. the proton straggling in the CD 2 target leads to an uncertainty of 0.3 • estimated by the simulation using SRIM energy loss tables, 3. the detection system (geometry, strip width) leads to an uncertainty of 0.38 • in S1 and reduces with increasing laboratory angles, nally, the overall error on angle is given by

(0.1 • ) 2 + (0.3 • ) 2 + (0.38 • ) 2 ≈ 0.5 •
Besides the listed errors, the related errors on solid angle, geometrical eciencies and Jacobian were also taken into account.

The curve 4.11b shows a typical variation of χ 2 value with respect to SF. The extracted SF corresponds to the minimum χ 2 min value. The upper and lower boundaries of SF (SF ± δSF ) are dened as the values corresponding to χ 2 = χ 2 min + 1 as shown in the gure 4.11b. δSF will be called the experimental error corresponding to the error due to the normalization procedure on the experimental error bars.

Ground state

For the rst observed state (0 MeV) we consider the following transferred angular momenta l = 0, l = 1, l = 2 and l = 4 corresponding to 3s 1/2 , 2p 1/2 , 2d 5/2 and 1g 9/2 states in 69 N i, respectively. The horizontal and vertical error bars correspond to the angular range in CM angles and the total experimental error described earlier, respectively. We note that the trend of the l = 0, 1, 2 distribution changes with the choice of the entrance potential. Depending on the optical potential combination the spectroscopic factor value undergoes a variation of 10% (see table 4.2 in section 4.4.3). Visually and according to the χ 2 values, the experimental distribution is better reproduced when using the adiabatic potential (E2) for the entrance channel. This conrms the importance of taking into account the deuteron break-up in the entrance channel. The adiabatic potential will be retained for the rest of the analysis.

First measured excited state

The rst excited state at 2.48 MeV, favourably populated in our experiment, has never been observed before in previous studies. In order to determine its angular momentum we consider the same transferred angular momenta (l = 0, 1, 2, 4) as for the ground state using the adiabatic potential for the entrance channel. By comparing the calculated cross sections to the experimental points a transferred angular momentum of l = 4 is clearly excluded in favor of an l = 2 transfer (see gure 4.13). An l = 0, or 1 transfer is un- According to shell-model calculations (discussed later) the identied state corresponds to the 2d 5/2 orbital in 69 N i we are searching for. As mentioned previously, we have strong indication that the observed peak corresponds to a doublet of states.

The rst excited state is adjusted by two states close in energy at 2.05 MeV and 2.74 MeV, respectively (see gure 4.14, top left panel). The width of each component is xed according to the GEANT4 simulation (window width) and the width of the ground state (gaussian width) in the same prescription as given in section 4.3. According to the χ 2 value, the proton angular distribution of the rst component at 2.05 MeV is compatible with an l = 2 transfer (gure 4.14, bottom left panel). In the case of the second component at 2.74 MeV, shown in the bottom right panel of gure 4.14, the proton angular distribution is compatible with an l = 4 transfer (χ 2 = 0.39) without reproducing the 

Unbound excited states

The two unbound states considered in the following discussion are placed at 5.43 MeV and 6.39 MeV excitation energy. For these states, the data points of their experimental distributions corresponding to ∼ 30 • in CM ([105 • -113 • ] in laboratory) is subject of considerable uncertainty. As shown in the t of the excitation energy spectra in gure 4.9, the energy levels above 4.190 MeV are substantially aected by the deuteron break-up.

In this angular range the transfer is disadvantaged in favor of the deuteron break-up and no peak structure is observed (cf. gure 4.9). As a result the corresponding data point is missing and not considered during the ADWA analysis. The same applies for the data point ∼ 21 • in CM ([115 • -123 • ] in laboratory) for the rst resonnance (at 5.43 MeV) where the peak area is clearly underestimated by one order of magnitude due to the dominance of the deuteron break-up in this angular ranges and the low statistics in general.

Although the number of experimental data points is reduced to three (four) out of ve for the rst (second) resonnance, an attempt to extract the angular momentum and the spectroscopic factor for these energy levels is made. Moreover, the extraction of the angular momentum suers of ambiguities due to the relatively weak sensitivity of the shape of the calculated angular distribution with the transferred l (see gure 4.15). This sensitivity even decreases with increasing excitation energy. For the rst resonance at 5.43 MeV we consider the following transferred angular momenta l = 2, 4 and 5. The experimental distribution seems to be consistent with an l = 5 corresponding to 1h 11/2 being favored according to the χ 2 value. For the second resonance at 6.39 MeV we consider the same angular momenta for the ADWA analysis. In this case the experimental distribution seems to be consistent with an l = 2 or l = 4 distribution as shown in gure 4.17 with l = 2 being favored according to the χ 2 value. transfer is ruled out for the same reason as in the case of the rst resonance while an l = 5 transfer is clearly not compatible with experimental points with a relatively high value of χ 2 = 2.22. Finally, an l = 4 assignment provides a reasonable t of the data with a SF = 0.53 ± 0.13. The eective interaction used here starts with the same sets of two-body matrix elements as the LNPS interaction [Lenz 10], in which further monopole corrections were introduced in order to constrain the proton-gap evolution from 68 N i to 78 N i deduced in [ Siej 10].

Shell-model calculations

From the shell-model point of view these calculations are very demanding due to the large valence space considered. Therefore, the number of particles that can be excited in the valence space are limited or truncated. For these calculations the truncation is t = 8, which means that a maximum of 8 nucleons, with respect to Z=28 and N=40 closures, are allowed to be excited to the rest of the valence space. This truncation is sucient to assess the single-particle degrees of freedom we are interested in. 

Comparison with large-scale shell-model calculations

The distribution of the nuclear strength for an orbital informs us about the fragmentation of this orbital at dierent energies and its associated strength. The distribution function of the strength calculated from the shell model described above can be seen in the right panel of gure 4.19, for three dierent energy gaps between the 1g 9/2 and the 2d 5/2 eective single-particle energies. It shows the major contribution of the energy levels associated with the 1g 9/2 and 2d 5/2 neutron orbitals. The dominant energy level corresponding to the population of the 1g 9/2 orbital lies at 0 MeV (in red). Concerning the 2d 5/2 orbital, the calculation shows two 5/2+ states of sizeable spectroscopic factors at low energies (cf. table 4.3, spectroscopic factors in bold text). The distribution function of the orbitals observed experimentally at higher excitation energies are not calculated since their respective orbitals are not included in the valence space given above and thus the discussion will be restricted only to the ground state and the rst excited state observed in this experiment. The presence of a well pronounced ground state corresponding to the neutron 1g 9/2 orbital is well reproduced by the shell-model calculations. The spectroscopic factor associated to this state is rather large (SF SM ∼ 0.90) and lies well above the value found experimentally (SF = 0.53 ± 0.13) at 1σ. In principle such dierence could be explained from a Shell-Model point of view by the absence of higher orbitals in the calculations as mentioned above. From an experimental point of view, one must not underestimate the experimental errors, especially, the one related to the contamination of the CD 2 target by Hydrogen atoms as mentionned before. Finally systematic errors related to the choice of the parametrized potentials used in the DWBA and ADWA could lead to an error of 30% of the estimated spectroscopic factors and must also be taken into account. The calculations predict also other fragments of this orbital at higher energies with very small spectroscopic factor 0.03. For the 2d 5/2 orbital, the calculations predict the presence of two low-lying states close in energy which conrms our hypothesis that the rst excited state observed experimentally is very likely a doublet of 5/2+ states. The mean of the predicted states, weighted by their respective spectroscopic factor (1.53 MeV) has been lowered relatively to the neutron 1g 9/2 orbital in order to favor the onset of deformation observed experimentally in the neutron-rich F e and Cr isotopes around N = 40 [Ljun 10] due to the proximity of quadrupole partner 1g 9/2 and 2d 5/2 orbitals. As a consequence, the 2d 5/2 neutron orbital should also be low in 69 N i. Indeed, this work shows that it is considerably low even if, at 2.48 MeV excitation energy, it lies ∼ 1 MeV higher than the predicted energy. This is explained by the fact that in the shell-model calculations the single-particle energy of the 2d 5/2 orbital has to be excessively lowered in order to compensate for the absence of the other neutron orbitals of the gds-shell missing in the valence space, in particular the 3s 1/2 and 1g 7/2 orbitals, which bring additionnal ∆l = 2 correlations (in the case of 2d 5/2 -3s 1/2 ). The total strength of the two 5/2+ states ( for a gap of 2.5 MeV )

given by the sum of their spectroscopic factor (0.89) is in very good agreement with the experimental spectroscopic factor (0.86 ± 0.25).

It can be noticed in table 4.3 that the predicted 2d 5/2 state at 1.49 MeV contains ≈ 90%

of the total strength assigned to the doublet. The large width of the rst excited state experimentally observed (see section 4.3) could not be explained with such an asymetric composition of the strength as predicted by the calculations. It is more likely due to a doublet of states having similar spectroscopic factors. It is noteworthy to mention that a shift towards higher energies of the 2d 5/2 singleparticle energy inuences the strength function, favouring a rather equal strength distribution between the two states in the doublet, in a way consistent with the experimental data. In the central panel on the right of gure 4.19 we show the same calculations after shifting the single-particle energy of the 2d 5/2 towards higher energies by 1 MeV. In this case the calculated strengths reproduce better our hypothesis for the rst excited state.

Moreover the weighted centroid of the 2d 5/2 doublet (2.3 MeV) is in better agreement with the experimental results. Moreover, by shifting the SPE of the 2d 5/2 by 2 MeV(gap 3.5 MeV) the strength distribution of the spectroscopic factor is again asymmetric giving more strength to the second component at higher energy.

The changing of the spectroscopic factor balance between the 5/2+ states in a regular way could be explained in a simplistic manner by considering the two main competing congurations observed in the shell-model calculations represented in gure 4.20. The conguration on the left panel, denoted φ 1 , corresponds to the occupation of the 2d 5/2 orbital by the valence neutron. The second conguration in gure 4.20 corresponds to the excitation of a neutron pair into the 1g 9/2 orbital leading to the occupation of the latter orbital by three neutrons coupled to a J π = 5/2 + . It will be denoted φ 2 . The mixing of all possible congurations φ i including φ 1 and φ 2 produces all the observed 5/2+ states in the calculation and in particular the 5/2+ doublet with the highest spectroscopic factor observed in the right-hand panels of gure 4.19. In a simple approach the physical states with the highest spectroscopic factors (Ψ low and Ψ high ) could be written as the linear combination of φ 1 and φ 2 as follows :

|Ψ low = α|φ 1 + β|φ 2 (4.10a) |Ψ high = -β|φ 1 + α|φ 2 (4.10b)
In the case where the 2d 5/2 orbital is close to the 1g 9/2 orbital, φ 1 conguration is favoured (α > β in the system of equations 4.10) and the rst component (Ψ low ) of the 5/2+ doublet will be favoured in strength as shown in the panel (a) on the right of gure 4.19. In the other case where the N = 50 gap is large, the conguration φ 2 with three neutrons on the 1g 9/2 orbital will be favoured (α < β in the system of equations 4. It is also regarded as an important ingredient in the pathway towards the 78 N i structure. Sieja's work has shown that the neutron 1g 9/2 -2d 5/2 energy dierence increases from 68 N i to 78 N i from 1.5 MeV to about 5 MeV [ Siej 10]. Our measurement conrms the rather small energy dierence between the neutron 1g 9/2 and 2d 5/2 orbitals (2.48 MeV) in 68 N i. As a consequence, the N = 50 gap in 78 N i will be even larger than 5 MeV following Sieja's predictions. On the proton side, due to the tensor force, the Z = 28 proton gap is weakened. The lling of the neutron 1g 9/2 orbital pushes down the proton 1f 5/2 below the proton 1p 3/2 orbital [Fran 01] and pulls up the closed proton 1f 7/2 orbital. The eect on the 1f 5/2 orbital leads to the crossing of the proton 1f 5/2 and 1p 3/2 orbitals in 75 Cu [ Flan 09]. The closing of the neutron 1g 9/2 orbital however is not sucient to reduce enough the Z = 28 gap which remains important in 78 N i. In conclusion these results indicate that both Z = 28 and N = 50 are sizable and supports a doubly magic 78 N i nucleus.

Chapter 5

Conclusion and perspectives

An experiment was performed in 2009 at GANIL in order to search for the neutron 2d 5/2 orbital in 69 N i. A 68 N i beam was produced at 25.14 MeV/u by fragmentation of a primary beam of 70 Zn at an energy of 62.5 MeV/u on a production target made out of Be. Nuclei were selected using the In-Flight separation technique in the magnetic spectrometer LISE leading to a relatively highly pure (≈ 85.8%) secondary 68 N i beam. The latter impinged on a CD 2 target and the transfer reaction d( 68 N i, p) was studied. Single-neutron transfer reactions are an ecient tool to determine the excitation energy, the angular momentum and the spectroscopic factor of low-lying single-particle states.

This study is of great interest in this mass region N = 40. An onset of deformation has been observed in neutron-rich Cr and F e isotopes around N = 40. It has been explained in a shell-model approach [Caur 05, Ljun 10, Lenz 10] by two particle-two hole neutron excitations from the 2p 1/2 orbital to the 1g 9/2 with a low-lying 2d 5/2 . Besides understanding the shell evolution in this region the position in energy of the 2d 5/2 in 69 N i nuclei could be extrapolated to 78 N i in order to predict the magicity of this nucleus lying at the intersection of well established magic numbers N = 50 and Z = 28.

The experimental setup was designed to the study of direct reactions in inverse kinematics. CATS, MUST2, S1 detectors and a plastic scintillator allowed the detection of light-charged particles and heavy residues in coincidence. The energy resolution of MUST2 (S1) and CATS-MUST2(S1) time-of-ight is good enough to identify the light recoils by ∆E -E and E -T oF techniques. The excitation-energy spectrum of the heavy residues is calculated using the missing-mass method through the measurements of energy and position of light recoil particles in MUST2 and S1 detectors. The identication of heavy residues in the plastic scintillator is mandatory to select the reaction of interest.

The study of the transfer reaction d( 68 N i, p) has improved our knowledge on low-lying states observed for the rst time in 69 N i. Five states have been identied and their energies xed. Two of them lie above the neutron separation energy. The experimental dierential cross section for each state is compared to theoretical one calculated with DWBA reaction model using an adiabatic entrance potential. The corresponding angular momentum and spectroscopic factor are extracted for each state by χ 2 minimization.

The rst peak of the excitation-energy spectrum has been identied as the ground state of 69 N i. The analysis determined the angular momentum of the neutron transfer as l = 4 with a spectroscopic factor of SF = 0.53 ± 0.13. The states corresponding to the remaining strength were not populated in this experiment indicating a high fragmentation of this orbital in 69 N i. According to shell-model calculations the strength of the 1g 9/2 is concentrated in the ground state and the remaining is highly fragmented at higher energies which is in agreement with the experimental results obtained in this work. However, the calculations predict a greater value of the spectroscopic factor at 0 MeV (SF SM = 0.86).

The second peak corresponds to an excited state of 69 N i at 2.48 MeV. An orbital momentum l = 2 is clearly attributed by DWBA analysis with a spectroscopic factor of 0.86 ± 0.22. It corresponds to the 2d 5/2 orbital. It is noteworthy to mention that the peak width (FWHM) at this energy is 1.5 times broader than the ground state FWHM. This feature is not reproduced by a GEANT4 simulation, in which experimental resolutions, due to the detector resolutions and target thickness, are taken into account and thus it suggests that the state in question is a doublet. The DWBA analysis associated to the doublet gives 0.32 ± 0.10 and 0.44 ± 0.13 as spectroscopic factors for the rst and second component lying at 2.05 MeV and 2.74 MeV, respectively. Shell-model calculations predict the presence of a doublet of states at low excitation energy which is in good agreement with the observed measurement. However, the strength distribution of the 2d 5/2 doublet is highly asymetric and can not explain the observed FWHM of the rst excited state. It was noticed that the strength composition between the two components of the predicted doublet is sensitive to the single-particle energy of the 2d 5/2 orbital. A fair agreement between the calculations and the experimental results is obtained by increasing the single-particle energy of the 2d 5/2 orbital by 1 MeV. Starting from a low-lying 2d 5/2 orbital in 68 N i, recent shell-model calculations [ Siej 10] have predicted a doubly magic N = 50 in 78 N i. Our results conrm

• the assumption of a low-lying 2d 5/2 neutron orbital and its major role in the structure of the nuclei around N = 40 and

• that the mechanisms leading to the appearance of a sudden collectivity at N = 20 and N = 40 are the same.

It also establishes the correct valence space to be used in this region and rules out the validity of nuclear shell models in too restricted valence spaces.

The DWBA analysis of the third peak at 4.19 MeV shows that dierent l assignments are possible. An l = 4 assignment leads to a spectroscopic factor of 0.26 ± 0.08. On the other hand an l = 2 assignment leads to spectroscopic factors of 0.51 ± 0.15 if the state is due to the population of the 2d 5/2 orbital. In the last case the sum of spectroscopic factors over the rst and the second excited state violates the sum rule (SF = 1.27±0.38). However, an l = 2 assignment is still reasonable if we take into account the experimental errors. On the other hand, an l = 4 assignment is in better agreement with shell-model calculations since no signicant fragment of the 2d 5/2 orbital is predicted at energies above 2.5 MeV.

Above the neutron separation energy, two new peaks are analysed at 5.43 MeV and 6.39 MeV. The extraction of their angular momenta suered from missing experimental points in their angular distribution and from the uncertainties on the deuteron break-up.

The comparison with the calculated DWBA distribution was performed on three and four out of ve experimental points, respectively. According to χ 2 minimization the state at 5.43 MeV is likely to be l = 5 or 4 associated to the 1h 11/2 and the 1g 7/2 orbitals with a spectroscopic factor of 0.17 ± 0.04 and 0.27 ± 0.07, respectively. The last state at 6.39 MeV is reasonably reproduced by an l = 4 (SF = 0.52 ± 0.13) transfer. The experimental conditions of these states can only lead to tentative assignments of angular momenta and spectroscopic factor values. In addition, assignments leading to a high spectroscopic factor (such as l = 2 in the case of the rst unbound state) is not favoured since at high excitation energies the orbitals tend to have a strong strength fragmentation.

Indication about the nature of these states from large-scale shell-model calculations is not possible as the valence space used in the N = 4 ω shell is limited to the 2d 5/2 orbital.

A quantitative estimation of the deuteron break-up is of great interest for the energy states lying above the neutron separation energy (S n ). The subtraction of this contribu- tion to the excitation-energy spectrum might help to rmly determine the spectroscopic information of the energy states beyond (S n ) and would reveal new states at higher en- ergies. Moreover, the analysis of particle-γ coincidences is also of great interest. The observation of γ-ray transitions between the new states established in this work and between these states and the ground state could help to build a precise 69 N i level scheme and rmly establish the excitation energies of the new states observed.

Nevertheless, the excitation-energy spectra suered from poor statistics. The experiment shows the limitation of the detection system in case of the study of higher energy states. The density of these states is rather high compared to the experimental resolution. 

A.2 Event generation and treatment

The event generation consists of 6 steps:

1. A random generator provides the position of the reaction in the target in X, Y and Z directions.

2. Once the reaction position is dened, phase space calculations are used to produce any number of products. When the number of products is set to 2, the phase space calculations reduce to the simple 2-body kinematics.

3. The present step is used in case of important angular and energy straggling in the target 1 . In this case the SRIM code is used as a subroutine. SRIM takes as input the list of positions and directions of the particle of interest, say protons, generated in steps 1 and 2. The output of SRIM will provide the new positions and directions at the surface of the target. 

C.2 Distorted waves

The dierential cross section for the reaction given by equation C.1 can be written as,

dσ αβ dΩ = µ α µ β (2π 2 ) 2 k β k α 1 (2J a + 1)(2J A + 1) |T αβ | 2 (C.8)
where,

• µ α and µ β are the reduced masses of the entrance α and exit β channels,

• k α and k β are the corresponding wave numbers,

• J a and J A are the spins associated to the interacting nuclei in channel α,

• and T α,β is the corresponding transition amplitude related to the scattering amplitude by,

T αβ = - 2π 2 µ β f αβ (C.9)
Finding |T αβ | theoretically requires solving the time-independant Schrödinger equation for the total wave Ψ with the boundary conditions presented above,

H tot Ψ = E tot Ψ (C.10)
As an exact solution is not possible, alternative ways made up of several approximations are used to solve the problem. The total Hamiltonian can be written in terms of the entrance channel α as well as the exit channel β,

H tot = H α + K α + V α = H β + K β + V β (C.11)
• H α = H a +H A represents the internal Hamiltonian 1 for the nuclei a and A described by the wave functions ψ A and ψ a , respectively,

1 H α ψ α = E α ψ α ⇔ H a ψ a = E a ψ a , H A ψ A = E A ψ A
• K α is their relative kinetic energy,

• V α is their mutual interaction.

The same goes for H β , K β and V β corresponding to the exit channel β. The potential V α(β) can be divided into two parts by introducing an arbitrary auxiliary potential that will be used later in DWBA approximations, Where T 0 β is the elastic transition amplitude due to U β(α) alone and δ αβ is the kroeneker factor equal to 1 for α = β and zero for any other case. The prior and post forms are due to wheter we express the Hamiltonian with respect to channel α or β respectively.

In the case of a transfer reaction, the transition amplitude is reduced only to the second term on the right-hand side.

C.3 Born Approximation

The expression of the transition amplitude presented in the section above is exact but is only a formal solution since it contains the unkown total wave function Ψ α . Approximations are to be made in order to solve the problem. An expansion of Ψ α into a distorted waves Born series in terms of the residual interaction W is possible using the Green function technique,

Ψ + α = 1 + G + α W α + G + α W α G + α W α + ... χ + α ψ α (C.17)
where G + α is the distorted-wave propagator for the potential U α associated to the Hamiltonian H tot = H α + K α + V α . Injecting the total wave function Ψ + α (equation C.17 where D 0 is a constant. This approximation reduces the integral of the matrix element from 6 to 3 dimensions and is intended to simplify the calculations.

C.5 Form factor

In order to calculate ψ B |ψ A , the wave function ψ B may be expanded in terms of a complete set of states ψ γ A of the A nucleons that correspond to the core nucleus A,

ψ B = (ξ A , ξ n ) = lj C J C T ψ γ A (ξ A ) φ γn (r An ) (C.29)
where,

• ξ A is the internal variables of the core nucleus A,

• C J = J A jM A m|J B M B is the angular momentum coupling (Clebsh-Gordon coecients) of the neutron to the core nucleus,

• C T = T A N A tn|T B N B is the isospin coupling,

• γ A ≡ {A, J A , M A , T A , N A } corresponds to the number of nucleons, spin, spin projection on z -axis, isospin and isospin projection on z -axis in the core nucleus A, respectively,

• φ γn (r An ) is dened as the overlap function. It is obtained by solving the radial Schrödinger equation for some eective interaction potential V (r). The last is adjusted in order to reproduce the binding energy E B of the neutron in nucleus B. In our calculations we chose a Woods-Saxon potential form for V (r), widely used in DWBA analysis.

• γ n ≡ {l, j, m, t, n} corresponds to the angular momentum, spin, spin projection on z -axis, isospin and isospin projection on z -axis of the transferred neutron, S lj gives a measurement of the overlap between the initial and nal nuclei A and B, respectively. It corresponds to the probability of nding B (described by ψ B ) composed of a neutron moving as a single-particle with angular momentum l and spin j relative to the nucleus A (described by ψ A ).

In the case of a neutron transfer on a neutron-rich nucleus in its ground state the isospin coecient C 2 is equal to 1. In practice the overlap function is assumed to be proportional to the wave function ψ γn for a nucleon bound in the orbital generated by a potential (Woods-Saxon in our case) after solving the Schrödinger equation. A (d, p) transfer over a core nucleus in its ground state simplies the above selection rules. The proton and neutron in the deuteron are coupled to an S state 2 (l = 0) and j = s is simply the intrinsic spin of the neutron. Nucleus A is in its ground state during the transfer. If A is an even-even nucleus J A = 0 ⇒ J BA = j = J B and the transferred spin is equal to the spin of nucleus B. In this case the transferred angular momentum l tr can be identied by l since, |l -0| l tr (l + 0) where π a , π b , π A and π B represent the nuclei a, b, A and B, respectively. For J π A A = 0 + the parity of the nal state in B is totaly determined by the transferred angular momentum l according to C.41.

C.6.0.3 Sum Rules: Spectroscopic factors

The spectroscopic factors are subject to sum rules. In general, all the force corresponding to a given orbital j is fragmented over several states. Summing over all these states, one can say how much the orbital j is occupied in the initial nucleus. For a A(a, b)B reaction this sum rule is written as,

γ B J B S lj 2J B + 1 2J A + 1 = h(l, j) (C.42)
2

The coupling contains also small admixtures with a D state that we may neglect.

where the sum is over all nal states in B, with spin J B and γ B which represent any other labels to specify the state. h(l, j) is the average number of holes of the same type of the transferred particle in the l, j shell in B and is related to the number of particles n(l, j) by, (2j + 1) -n(l, j) = h(l, j)

(C.43)
In the case of a (d, p) transfer on an even-even target A in its ground state (J A = 0, J B = j)

the equation reduces to, γ B j S lj = h(l, j) 2j + 1

(C.44)
Moreover, when the shell (l, j) is empty in A, the sum is maximum and equals to 1 since, n(l, j) = 0 ⇔ h(l, j) = 2j + 1

(C.45)
In order to determine the spectroscopic factor of a state populated experimentally, the measured dierential cross section is normalized to that calculated by DWBA for which it was assumed a spectroscopic factor of value 1 and a dened orbital (l, j). In this calculations the single-particle energy of the 2d 5/2 orbital has been shifted 1 MeV to higher energies relative to the current interaction in order to better reproduce the experimental results. The details of calculations are given in section 4.5.1.

Finally I would

  like to thank my mother and father, my sisters Abir, Nisrine and Farah. I appreciate everything you have done for me until the end of days. If I had the choice to choose my family, I would denitely chose you. Without your love, appreciation, caring and help, I could never be where I am now.And now my charms are all o'erthrown And what strength I have's mine own Which is most faint; now t'is true I must here be released by you But release me from my bands With the help of your good hands Gentle breath of yours my sails Must ll, or else my project fails, Which was to please... Résumé en français Introduction Ce travail présente l'analyse d'une expérience de physique nucléaire, E507, réalisée en 2009 auprès du Grand Accélérateur National d'Ions Lourds (GANIL). Elle fait partie d'une campagne de mesures comprenant deux autres expériences (E530 et E546) qui utilisent le même montage expérimental et visent à étudier la structure nucléaire de noyaux loin de la stabilité.

  et les résolutions en énergie sont essentielles à la qualité des spectres d'énergie d'excitation pour le noyau lourd 69 N i. Pour cette raison, l'ensemble de détecteurs MUST2 2 [Poll 05] a été développé par l'IPN d'Orsay, CEA-Saclay/IRFU, et le GANIL. Le détecteur MUST2 est un ensemble de télescopes identiques, composés de deux étages de détecteurs silicium et d'un détecteur scintillateur de CsI spécialement conçus pour ce type d'expériences. Il s'agit d'une version améliorée de la première génération de déteteurs MUST [Blum 99], avec une plus grande surface de détection et une meilleure granularité, et d'une électronique moderne intégrée. Ces détecteurs ont été placés de façon à couvrir les angles arrières situés entre 104 • et 150 • dans le laboratoire. Pour les angles les plus en arrière se situant entre 155 • et 170 • , nous avons utilisé un autre détecteur de particules chargés, S1 [Micr 10], ayant une géométrie annulaire. Sa résolution en énergie et en angle proche de celle des détecteurs MUST2.

  Chambre d'ionisation et scintillateur plastique : La chambre d'ionisation et le scintillateur plastique ont été utilisés pour identier les noyaux lourds de la réaction dont le 69 N i. La performance de la chambre d'ionisation n'a pas été optimisée pour fonctionner à l'intensité nominale de l'expérience, i.e. ≈ 10 5 pps, et sourait d'un taux d'empilement pile-up 6 très important. Le principal contaminant, 70 Zn, représente 8 % de l'intensité du faisceau. Deux autres contaminants de moindre importance représentent 2 % et 3.8 % de l'intensité du faisceau. Ils étaient parfaitement séparables du 68 N i mais n'ont pas été identiés. La sélection de 68 N i a été réalisée en corrélant l'énergie E dans le plastique en fonction du temps de vol CATS2-plastique. Spectre d'énergie d'excitation : En connaisant les caractéristiques cinématiques de trois des quatre particules impliquées dans une réaction à deux corps, les caractéristiques de la dernière particule ( 69 N i dans notre cas) sont déduites en utilisant les lois de conservation de l'énergie et de la quantité de mouvement. Dans cette expérience, nous avons mesuré l'énergie cinétique et la position du proton 7 . L'énergie d'excitation du 69 N i a ensuite été calculée en utilisant la méthode de la masse manquante. Ecacité géométrique et section ecace diérentielle : L'ecacité géométrique du système de détection est estimée par la simulation de Monte-Carlo développées dans ce travail et exposées dans l'annexe A. Elle prend en compte les positions des détecteurs MUST2 et S1 dans l'espace et simule une émission isotrope d'une source de particules située à la position de la cible. La variation de l'ecacité en fonction de l'angle d'émission est obtenue à partir du nombre de particules détectées dans un angle donné. La section ecace diérentielle expérimentale est calculée en tenant compte du nombre de particules 68 N i incidentes, du nombre de noyaux de deutons dans la cible et du nombre de protons détectés dans chaque tranches angulaires corrigé par l'ecacité géométrique. Elle est exprimée dans le système de référence lié au laboratoire et doit être transformée dans le système de centre-de-masse (CM) an d'être comparée à des sections ecaces calculées. La conversion se fait en utilisant le Jacobien [Mich 64] qui est un terme purement cinématique, qui transforme la section ecace d'un sytème de référence dans un autre système en mouvement de translation relatif. xi Résultats expérimentaux An d'extraire un spectre d'énergie d'excitation propre lié à la réaction d'intérêt, plusieurs sélections ont été faites. Les principales sont les suivantes:

  Les deux fonds ont été soustraits du spectre d'excitation d'énergie an d'en extraire les informations spectroscopiques.An d'estimer le fond dues au Carbone dans la cible, la cible de CD 2 (2, 6 mg/cm 2 ) est remplacée par une cible de Carbone pur de 2 mg/cm 2 d'épaisseur. Les données obtenues à partir de cette cible sont analysées de la même manière que les données de la cible CD 2 . Le spectre d'énergie d'excitation correspondant fourni la forme du fond dû au Carbone. Ce dernier a été normalisé sur les énergies négatives du spectre d'excitation d'énergie obtenue avec la cible de CD 2 puis soustrait. Nous avons utilisé la méthode dite estimation par noyau [Parz 62] qui est une méthode statistique utilisée dans l'estimation de la fonction de densité de probabilité d'une variable aléatoire. Elle permet d'extraire une fonction de densité de probabilité non-parmétrique à partir d'un histogramme de faible statistique. Le deuton est un noyau faiblement lié qui se brise facilement (break-up) en un proton et en neutron lors de collisions nucléaires. Le proton de cette réaction peut ensuite être détecté dans un détecteur MUST2 ou S1 et son spectre associé se rajoute à celui des protons de la réaction d'intérêt. Nous n'avons pas accès à la distribution de l'énergie des protons de brisure du deuton, comme ce fut le cas pour les protons dus au Carbone dans la cible de CD 2 . Une méthode alternative a été utilisée pour estimer sa contribution au spectre d'excitation d'énergie. Contrairement à la réaction d'intérêt, cette réaction conduit à trois particules en voie de sortie. Pour une description complète de cette cinématique à 3-corps nous avons eectué des calculs d'espace de phase. Une estimation du fond proton induit par cette réaction est possible en utilisant des méthodes numériques de xii type Monte-Carlo basées sur une réaction d( 68 N i, pn) 69 N i. Les quadrivecteurs énergieimpulsion des protons issus de ces calculs sont ensuite injectés dans la simulation pour en sélectionner les protons susceptibles d'être observés par nos détecteurs. Les protons virtuellement détectés sont stockés puis analysés de manière identique aux données réelles. Par cette procédure, le fond simulé tient compte de la fonction de réponse du dispositif expérimental telle que la résolution en énergie et l'ecacité de détection. Une distribution non-paramétrique basée sur la méthode d'estimation par noyau est utilisée pour estimer la forme de ce fond. Les spectres d'énergie d'excitation sont analysés jusqu'à 8 MeV pour plusieurs plages angulaires choisies suivant l'ecacité géométrique du système de détection. La plage angulaire la plus arrière (156 • -170 • ) couverte par le détecteur S1 est prise comme référence car la contimination due au carbone et à la brisure du deuton y est plus faible. Cinq états ont été identiés et leurs énergies ont été xées. Deux d'entre eux sont situés au-dessus de l'énergie de séparation du neutron. La section ecace diérentielle expérimentale pour chaque état est extraite de la distribution angulaire des protons dans S1 et MUST2. Elle est comparée aux sections ecaces diérentielles calculées par un modèle de réaction basé sur la théorie de DWBA 8 en util- isant un potentiel d'entrée adiabatique [Varn 91] et un potentiels de sortie [Koni 03]. Les sections ecaces diérentielles ADWA sont calculées à l'aide du code DWUCK4 [Kunz 74].

  -5 MeV d'énergie d'excitation. Au-dessus de l'énergie de séparation du neutron, deux résonnances sont observées aux énergies 5, 43 MeV et 6, 39 MeV. L'extraction de leur moment orbital soure d'une part d'un manque de points expérimentaux dans leur distribution angulaire et d'autre part d'incertitudes sur l'importance du fond de la brisure du deuton. La comparaison avec les distributions calculées par ADWA est réalisée sur trois (quatre) des cinq points expérimentaux dans le cas de la première (deuxième) résonnance. Selon la minimisation de la valeur de χ 2 , l'état à 5, 43 MeV peut correspondre à un transfert l = 2 associé à l'orbitale 2d 3/2 avec un facteur spectroscopique de 1, 64 ± 0, 42 qui viole la règle de somme même si on tient compte des barres d'erreur. En outre, une telle attribution conduisant à un facteur spectroscopique voisin de l'unité n'est pas favorisée à ces énergies d'excitation auxquelles les orbitales ont plutôt tendance être très fragmentées. Par conséquent, une 9 Eectué par nos collaborateur à l'IPN Orsay [Giro 11].

  Les noyaux d'intérêt ont été sélectionnés à l'aide de la technique de séparation en vol dans le spectromètre magnétique LISE conduisant à un faisceau secondaire de 68 N i assez pur (≈ 85.8%). Celui-ci interagit avec une cible de CD 2 et produit des réactions de transfert d'un seul neutron d( 68 N i, p) dont l'étude fait l'objet de ce travail. Ces réactions constituent un outil ecace pour déterminer l'énergie d'excitation, le moment orbital et le facteur spectroscopique des états peuplés à basse énergie d'excitation. Cette étude est d'un grand intérêt pour la région N ≈ 40 où la déformation des isotopes riches en neutrons de F e et Cr a été mise en évidence expérimentalement à basse énergie d'excitation. Dans une approche de type modèle en couches, les excitations deux particules-deux trous de l'orbitale neutron 1g 9/2 vers l'orbital neutron 2d 5/2 contribuent fortement à cet eet, et ce d'autant plus que la diérence d'énergie 1g 9/2 -2d 5/2 est faible [Caur 05, Ljun 10, Lenz 10]. Le dispositif expérimental a été conçu pour l'étude des réactions directes dans une cinématique inverse. Le détecteurs CATS, MUST2, S1 ainsi qu'un scintillateur plastique ont permis la détection et l'identication de la particule légère chargée et des noyaux lourds en coïncidence. Le spectre d'énergie d'excitation du noyau lourd est calculé en utilisant la méthode de la masse manquante en se basant sur les mesures d'énergie et de position de la particule légère dans les détecteurs MUST2 et S1. L'identication des noyaux lourds dans le scintillateur plastique était obligatoire pour sélectionner la réaction d'intérêt. L'étude de la réaction de transfert d( 68 N i, p) a permis d'améliorer nos connaissances sur les états neutrons de basses énergies observés pour la première fois dans le 69 N i. Cinq états ont été identiés et les énergies correspondantes ont été établies. Deux d'entre eux sont situés au-dessus de l'énergie de séparation du neutron. La section ecace diérentielle expérimentale pour chaque état est comparée aux résultats d'un modèle théorique basé sur la DWBA et utilisant un potentiel d'entrée adiabatique. xv Le moment angulaire et le facteur spectroscopique correspondant à chaque état sont extraits par une minimisation de χ 2 . Finalement, les spectres d'énergie d'excitation obtenus au cours de ce travail présentaient une faible statistique. L'expérience montre les limitations du système de détection pour l'étude d'états d'énergie d'excitation élevée dans le 69 N i. L'amélioration de l'ecacité de détection, de la résolution en énergie, de la granularité du détecteur et du débit des données du dispositif expérimental ainsi que l'augmentation des intensités de faisceaux exotiques sont les paramètres clés pour ce type d'études dans l'avenir. Les détecteurs tels que GASPARD (un détecteur au silicium à haute granularité pour la détection de particules chargées) couplé à PARIS et/ou AGATA (pour la détection des rayonnements γ), actuellement en cours de développement, ainsi que les futures installations de faisceaux radioactifs (SPIRAL2) permetteront de réaliser des avancées décisives dans la compréhension de la matière nucléaire aux limites de la stabilité.

  shell-model and magic numbersExtensive studies of the experimental data, provided by direct experimentation on the atomic nucleus, have revealed certain regularities and correlations in its structure. Figure 1.1 shows the excitation energy of the rst excited 2 + state with respect to the number of neutrons in nuclei. The highest the excitation energy, the more dicult to excite the nucleus and the more stable it is. Independently of the isotopic chain, it is quite clear that nuclei having specic numbers of neutrons are particularly favored in terms of nuclear stability.

Figure 1

 1 Figure 1.1: A compilation of E(2 + ) with respect to number of neutrons in even-even nuclei. The isotopic chains are connected by lines. The E(2 + ) values are peaked for specic neutron numbers indicating an increased stability. (Extracted from [Rama 01])
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 12 Figure 1.2: A compilation of B(E2) with respect to number of protons in even-even nuclei. The isotopic chains are connected by lines. The B(E2) values are peaked for specic proton numbers indicating an increased stability. (Extracted from [Rama 01])

(

  HO)) failed to reproduce the observed magic numbers. The correct prescription of the nuclear potential was found by Mayer [Goep 49] and independently by Haxel, Jensen, and Suess in the same year [Haxe 49] by adding empirically a strong spin-orbit coupling term. The nuclear potential, which manages to reproduce the magic numbers, can be written as follows.
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 13 Figure 1.3: On the left side the energy levels produced by the Harmonic oscillator. The intermediate structure corresponds to the adding of the surface correction. On the right side, shell structure according to nuclear shell model when adding the spin-orbit term to the nuclear potential. To the right of each level are shown the cumulative number of nucleons. The lling of each shell reproduce the magic numbers (inside a box).

3 .

 3 a physical state |Ψ , in this case, would be a linear combination of |φ α ; |Ψ = α C α |φ α , 4. and nally solving H|Ψ = E|Ψ by diagonalizing the innite matrice Ψ|H|Ψ .

Figure 1

 1 Figure 1.5: (a) E(2 + ) and (b) B(E2) values for even-even N = 20 isotones. (Extracted from NNDC database [NNDC].)

  Figure 1.6: Neutron eective single-particle energies at N = 20 versus the number of protons. The x-axis shows only the number of protons corresponding to the total lling of the levels π1p 1/2 (8), π1d 5/2 (14) and π2s 1/2 (16). The details of the interaction used are found in reference [Lenz 10].

  Figure 1.6 shows the eective SPE for N = 20 taken from [Lenz 10], between Z = 8 and 16. A steep rise of the d 3/2 orbital from Z = 14 down to Z = 8 leads to a substantial reduction of the N = 20 gap. This could be mainly attributed to the large value of the proton-neutron monopole interaction V πν d 5/2 d 3/2 , as pointed out by Otsuka et al. [Otsu 01], which weakens rapidly when protons are removed (see equation 1.8). The spherical N = 20 gap thus becomes not large enough to prevent the development of excitations and correlations in the intruder f p -shell in 32 M g, and its ground state is dominated by 2p -2h excitations 4 . The neutrons tend to occupy the intruder state due to the reduction of the N = 20 gap and the presence of quadrupole partners 1f 7/2 -2p 3/2 . The 32 M g nucleus then belongs to the so-called island of inversion [Warb 90], where the intruder congurations are dominant in the ground state. This was already proposed by Zuker et al. [Zuke 95] that the minimum valence spaces able to develop quadrupole collectivity should contain at least a (j, j -2..) sequence of orbits such as 1f 7/2 -2p 3/2 at N = 20.

4 A

 4 minimum of 2p -2h excitations is required to create a positive parity state across the N = 20 gap formed by orbits of dierent parities, i.e. sd and f p, positive and negative parity, respectively. 1.4 N=40 sub-shell 1.4.1 Magicity of 68 N i The doubly magic character of 68 N i nucleus (closed Z = 28, N = 40) was suggested in the early 1980s [Lomb 83, Bern 82]. The N = 40 gap is the relic of the harmonic oscillator, washed out by the strong spin-orbit potential. It is formed between the N = 3 ω and N = 4 ω shells (see gure 1.3). Medium-mass neutron-rich nuclei are expected to have a diuse surface as compared to stable nuclei due to excess of neutrons. As a consequence, the derivative of the meaneld potential is thought to be weaker, which in turn reduces the spin-orbit surface term [Doba 94]. This leads to a restoring of the gap at N = 40 (and eventually a reduction of that at N = 50). The rst experimental evidence of the magic character of the N = 40 in 68 N i was made by Broda et al. [Brod 95]. The structure of 68 N i was probed by deep-inelastic reactions of 64 N i on 130 T e creating the nucleus of interest. Inspection of γ -γ coincidences revealed 3 states including a 2 + state at 2033 keV.

  Figure 1.8a (in section 1.4.

  Figure 1.8b shows the B(E2) values for the even-even N i chain. The low B(E2) obtained for 68 N i (3.2(7) W. u.) [Sorl 02] is even comparable to the cases of doubly magic nuclei such as 16 O (3.3(3) W. u.) or 40 Ca (2.3(4) W. u.) and reinforces the assumption on the magicity of N = 40 for 68 N i.
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 1718 Figure 1.7: Calculated level scheme of 68 N i (left-hand side) compared to the experimental level scheme (right-hand side). The agreement is excellent. The experimental B(E2) : 2 + 1 → 0 + 1 (expressed in [e 2 fm 4 ]) value is also well reproduced.

Figure 1 . 9 :

 19 Figure 1.9: Two shell-model structures showing levels 1d 3/2 -1f 7/2 -2p 3/2 (left hand side in green) and 1f 5/2 -1g 9/2 -2d 5/2 (right hand side in red). The levels corresponding to the j, j -2 sequence of orbitals are indicated with arrows in both cases. The similarity between the level sequences could be responsible of a new island of inversion at N = 40. For more details see text.
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 110 Figure 1.10: Neutron eective single-particle energies at N = 40 versus the number of protons. The x-axis shows only the number of protons corresponding to the total lling of the levels π1d 3/2 (20), π1f 7/2 (28) and π2p 3/2 (32). The details of the used interaction are found in reference [Lenz 10].
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 11 Figure 1.11: The known energy levels in 69 N i measured for the rst time by γ-spectroscopy from isomeric decay (R. Grzywacz et al., blue lines) and β-decay of 69 Co (W.F. Mueller et al., green lines). Isomeric states are represented by dashed lines.

  Muel 99]. W.F. Mueller et al. [Muel 99] studied LISOL facility at the Louvain-la-Neuve cyclotron laboratory. 69 Co nuclei were produced in a proton induced ssion reaction of 238 U and selected by both the mass spectrometer LISOL and the laser excitation set on Co resonance. γ rays were detected in two Ge detectors placed behind thin plastic scintillators for β detection. Two more energy levels with their spin-parity assignement were discovered in 69 N i in this study (see green lines in gure 1.11).

Figure 1 .

 1 Figure1.12: On the left hand side a shell-model of the 68 N i. A (d, p) reaction on 68 N i transfers a neutron to its empty orbitals and infers the single-particle structure of 69 N i nucleus (right hand side).

Figure 1 .

 1 Figure 1.13: A schematic illustration of compound-nucleus formation followed by a decay of light particles.

Figure 1 .

 1 Figure 1.14: A schematic illustration of two types of direct reactions, inelastic reaction (on the left-hand side) and stripping of one nucleon (on the right-hand side).

Figure 2 .

 2 Figure 2.1: The kinematics of the d( 68 N i, p) 69 N i reaction for several excited energies. the deuteron break-up d( 68 N i, pn) is represented in purple. The insert depicts the same spectrum zoomed on the backward angles.
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 22 Figure 2.2: Energy shift on calculated excitation energy as a function of a shift in the recoil proton energy (left) and angle of emission (right) for the d( 68 N i, p) reaction at 25.14 MeV/u. Red, Green and blue graphs correspond to a xed error of 60, 40 and 20 keV, respectively on the proton energy in the left panel, and to a xed error of 0.6 • , 0.4 • and 0.2 • , respectively on the proton angle of emission θ in the right panel.
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 23 Figure 2.3: An exploded view for the full experimental setup used in the whole experimental campaign showing respectively from left to right, two beam trackers (CATS), a set of light-charged particle detectors (MUST2 and the annular DSSD), a CD 2 target, four γ-ray detectors (EX-OGAM clovers), an ionisation chamber and a plastic scintillator. The proton emission angle is calculated event by event, between the incident-ion trajectory and the proton trajectory as shown in the drawing. The reaction d( 68 N i, p) 69 N i can be selected.
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 24 Figure 2.4: GANIL facility and its dierent installations.

  TIARA [Catf 03] target changer shown in gure 2.3. The changer consists in a wheel capable of supporting four targets. The changing of the target is done by remote-control from the acquisition room. 4 Product of Cambridge Isotope Laboratories, USA.

Figure 2 .

 2 Figure 2.6: TIARA Target changer consisting of a wheel capable of supporting four dierent targets. When a target is selected, a mechanical arm holds it and moves it to a dened position.

Figure 2 .

 2 Figure 2.7: Exploded view of a CATS detector

Figure 2 . 8 :Figure 2

 282 Figure 2.8: Representation of charge multiplication in a Multi Wire Proportional Chamber.

  2.5.2 MUST2 Description MUST2 [Poll 05] is the second generation of the MUST [Blum 99] array consisting of an ensemble of independent modules. Each module is composed of three stages providing altogether position, energy and time measurements identication of light charged particules. An exploded view of the detector is shown in gure 2.10.
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 210 Figure 2.10: Exploded view of a MUST2 Telescope.

Figure 2 . 11 :

 211 Figure 2.11: Second stage of a MUST2 Telescope. A Si(Li) crystal before mounting (a). A pair of Si(Li) crystals with their coresponding aluminum frame (b).

2. 5

 5 .3.1 The MATE ASICs MATE, Must Asic for Time and Energy, is an Application Specic Integrated Circuit (ASIC) designed by the Service d'Electronique des Détecteurs et d'Informatique (SEDI) at the CEA, Saclay, in collaboration with IPN Orsay. Its main role is to process signals delivered from the MUST2 detector. One MATE has sixteen channels and can treat the signals from sixteen detector units of any of the three MUST2 stages discribed above. The architecture of one channel is given in gure 2.12. The rst stage of a single channel is a

Figure 2 .

 2 Figure 2.12: Electronic diagram of one of the sixteen channels in a MATE unit.

  is reached, and a linear pulse generator for test and calibration purposes. They are placed close behind the detector in the reaction chamber in a copper block. A liquid cooling system is used to evacuate the heat excess. The liquid 8 goes through and out of the copper block supporting one MUFEE card from each side as shown in gure 2.13 taken from [Moug 08].

Figure 2 . 2 . 3 . 4 .

 2234 Figure 2.13: Cooling system of a MUST2 Module along with the metallic block and one of the MUFEE cards. The other MUFEE card lies on the other side of the metallic block.

Figure 2 .Figure 2 .

 22 Figure 2.15: Plastic scintillator coupled to a light-pipe.

  not. The GMT (Ganil Master Trigger ) fullls these requirements. It is a decision module developped in GANIL in VXI-C format. It can receive and treat 16 logic signals coming from master detectors. When the GMT judges an event is valid, it generates a trigger signal called FAG (Fenêtre d'Acquisition Ganil). Any signal produced by any detector is read only if it is in time coincidence with the FAG gate reference.

  Figure 3.1: Calibration of a cathode strip with respect to the reference strip.
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 32 Figure 3.2: (a) Grid placed behind CATS1. (b) Reconstruction using X COG 3 with correction

Figure 3 . 3 : 3 -

 333 Figure 3.3: Reconstruction of the grid using X Sech (a) and X Gaus (b) for the same run. Both methods give similar results. (c) The distance to the center of the most signicant strip X c of a position calculated with X COG (X COG 3 -X c ) versus the same distance calculated with the analytical method X Sech . (d) The same spectrum with X COG4
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 34 Figure 3.4: Beam prole reconstructed in the plane of CATS1, CATS2 and the target from left to right, respectively.

Figure 3 .

 3 Figure 3.5: On the left-hand side panel, the geometrical reconstruction of the beam position in the target plane with no selections applied. In the right-hand side panel, is shown the same plot after requesting the heavy residue in the plastic scintillator.

Figure 3 .

 3 Figure 3.6: (a) The holes in the grid behind the CATS detectors are circular. A selection of events along the horizontal (vertical) diameter was made in order to calculate the resolution on X (Y ) direction. (b,c) Position resolution in X and Y directions for CATS1 and CATS2, respectively.

4 :

 4 Most intense energies of the 3 -α source used in the calibration of MUST2 and S1 detectors. I α is the intensity of radiation relative to each isotope.the calibration procedure we noticed the poor reproductibility of the target-holder position. A careful study of the hit patterns of the alpha source on the detectors has revealed shifts of the target-holder position with respect to its supposed position for the 4 sets of calibration runs. Dierences up to 3 mm have been deduced from the α-source data. The hit patterns presented in gure 3.7 show the eect of the α-source position on the number of hits received by each X and Y strip. It is possible to determine the exact position of the alpha source by tting the corresponding hit pattern for each detector. The newly calculated α-source positions are taken into account for the rest of the calibration procedure.

Figure 3 .

 3 Figure 3.7: α source energies versus front-side strip number in MUST2 telescopes. Measured data are given in the left-hand side panels and simulated data in the right-hand side panels. Top(bottom) panels correspond to X(Y) strips. In each panel we present data corresponding to the four MUST2 telescopes starting by Telescope 1.
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 38 Figure 3.8: The calibrated α-source spectrum tted with gaussians taking into account the neighboring peaks.

Figure 3

 3 Figure 3.9: α-source energy versus front-side strip number in the DSSD of MUST2 (a) and S1 (b), respectively. One can see several strips missing in T1 and in S1.

Figure 3

 3 Figure 3.10: Plot of the minimum deposited energy (E n±1 x min ) versus the maximum deposited energy (E n xmax ) on neighboring strips n ± 1 and n, respectively. A multiplicity = 2 is required. For more explanation see text.
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 311 Figure 3.11: Particle identication by E -T oF technique in MUST2 rst stage. The insert shows the E -T oF spectrum when N i isotops are requested in the plastic detector.

Figure 3 .

 3 Figure 3.12: Particle identication by E -T oF technique in S1 detector. Proton, deuteron and alpha particles can be clearly identied by their maximum deposited energies in S1. The insert shows the E -T oF spectrum when N i isotops are requested in the plastic detector..

3. 2 .

 2 5 Silicium-Lithium Crystals : Energy Calibration Calibration of Si(Li)-Jülich Three of the four telescopes were equipped with Silicium-Lithium Crystals (Si(Li)) from the Jülich center. Calibration measurements were performed before installation of DSSD stage for the three telescopes equipped with Si(Li) using 3α source. The calibration of Si(Li) is of major importance since the kinematic line corresponding to the ground state lies mostly above 6 MeV.

Figure 3 .

 3 Figure 3.13: Energy calibration of Si(Li). Spectrum for the 3-α source run after calibration with all pads added. The green vertical lines give the position of the 3 most intense energies of the used α source. We notice that the energy resolution is insucient to resolve the less intense peaks.

Figure 3 .

 3 14 shows the result of performing identication by ∆E -E technique on the data in the hydrogen-isotopes region.

Figure 3 .

 3 Figure 3.14: Plot of E DSSD vs E zoomed on the region of hydrogene isotopes. The three lines corresponding to protons, deuterons, and tritons are clearly separated. The insert shows the same spectrum when N i isotops are requested in the plastic detector.

Figure 3 .

 3 Figure 3.15: (a) Energy loss in the ionization chamber versus the time-of-ight in a lowintensity run. (b) Energy deposited in the plastic detector versus the time-of-ight (CATS2plastic). The selection of 68 N i is shown by the black contour.

Figure 3 .

 3 Figure 3.16: A scheme of the setup showing how the angle of emission θ Lab is calculated knowing the position of the beam in the beam trackers (C 1 , C 2 ), the position of the target and the proton position (M ) on MUST2 or S1 detectors.

Figure 3 .

 3 Figure 3.17: Reconstruction of the hit position with respect to the local sytem of MUST2 (a) and S1 (b) detectors.

2 .

 2 Particle (2): the deuteron in CD 2 target, 3. Particle (3): the heavy-residue 69 N i, 4. Particle (4): the recoiling proton.

Figure 3 .

 3 Figure 3.18: Scheme of a reaction in inverse kinematics in the Laboratory system of reference.

Figure 3 .

 3 Figure 3.19: The histograms are obtained from simulated data. (a) The green line shows the total emitted particles, from an isotropic source in the laboratory-reference system placed at the target position. The histogram in blue represents only the detected particles by the detection system placed in the backward angles.(b) Histogram showing the ratio of detected events over total number of events for each bin. The ratio gives the geometrical eciency of the detection system. The horizontal bars in the red crosses correspond to the angular ranges used in the analysis while the vertical bars represent the error on the calculated eciency.

Chapter 4 Study

 4 of 69 N i via (d, p) reaction In this chapter, the structure of the 69 N i nucleus is studied via the one-neutron transfer reaction 68 N i + d → p + 69 N i.

Figure 4 . 1 :

 41 Figure 4.1: Excitation energy spectrum without any selection. In the insert, the kinematical plot (Energy vs θ) of the recoil particle.

  3. the N i isotopes identied in the plastic scintillator using the T oF -E technique.

Figure 4 .

 4 Figure 4.2 shows the kinematic plot after applying the aformentioned selections. The plot is signicantly cleaned with respect to the insert in gure 4.1. One can see clearly two kinematic lines corresponding to the ground state and a rst excited state around 2.5 MeV (gure 4.2 (b)).

Figure 4 .

 4 Figure 4.3 shows the excitation energy spectrum as a function of the dierent selections presented above. In frame (a) we have applied only the selection on the beam spot on target. The general trend of the spectrum did not change relative to gure 4.1, nevertheless, we notice a signicant lowering (≈ 66%) of the statistics.

Figure 4 . 2 :

 42 Figure 4.2: (a) Kinematic plot after selecting the beam spot on the target, the protons in the silicon detectors and the N i isotopes in the plastic scintillator. Two kinematic lines corresponding of the reaction of interest d( 68 N i, p) 69 N i are clearly discernible. (b) The same kinematic plot after superimposing the calculated kinematic lines of the ground state (G.S.) and an excited state at E * = 2.48 MeV (cf. section 4.3).
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 43 Figure 4.3: Excitation energy spectrum gated with the selection of: (a) the beam spot on the target, (b) 68 N i in the plastic scintillator, (c) protons in MUST2 and S1, (d) the three aforementioned selections combined.
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 44 Figure 4.4: Probability density function associated to the low-statistics Carbon-background run of E507 in S1 detector (a) and MUST2 detector(b)

Figure 4

 4 .5 depicts the two dierent methods. Both methods are roughly equivalent for excitation energies less than 5 MeV. At higher excitation energies the straight line underestimates the background up to ≈ 16 MeV.
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 45 Figure 4.5: Carbon background contribution to the excitation energy spectrum. Straight line tted in the -10 to -1 MeV negative excitation energy range and extrapolated to the positive energies to estimate the Carbon background empiricaly (dashed red line). Probability density function associated to the low-statistics Carbon-background run of E507 experiment (blue line).

Figure 4

 4 Figure 4.6: Simulated excitation energy spectrum of the detected protons from deuteron break-up. The spectrum starts slightly before the neutron separation energy due to the detector resolutions.

Figure 4 . 7 :

 47 Figure 4.7: The excitation energy spectrum seen by the S1 detector and corresponding to the angular range [156 • -170 • ] taken as the energy reference. Bound (unbound) states are marked by black (red) arrows. The green dashed line marks the neutron separation energy (S n ).

Figure 4 .

 4 Figure 4.7 shows the result of the t up to 8 MeV. The t provides the peak centroids used later in the DWBA analysis. The t parameters for this angular range are adjusted under the following conditions:

4 )

 4 This function is characterized by three parameters: mean (µ), width (σ) and a rectangular width (R) due to the window function. A fourth parameter is the number of counts in the tted peak of the excitation-energy spectrum. The gaussian width σ takes into account the resolution of the detection system. The target was relatively thick as mentioned earlier, and the window function was introduced to take into account the dispersion in proton energy due to the target thickness. The width of the energy window is obtained from a GEANT4 simulation of the detection system made by our collaborators at IPN-Orsay [Giro 11]. The gaussian parameters in the G * W function are released (free parameters) during the t of the ground state and the rst excited state leading to 7 free parameters (3 parameters × 2 states + one parameter corresponding to the Carbon background). • Unbound states are tted by an G * W function, determined as above, convoluted with a Breit-Wigner (BW ) distribution describing a resonance. Compared to the G * W distribution the resulting distribution G * W * BW (cf. solid line in the right frame of gure 4.8) has one additional parameter describing the width of the resonance.
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 48 Figure 4.8: Dierent distributions commonly used to t bound states (left panel) and unbound states (right panel). G, W and BW represents a Gaussian, a window and a Breit-Wigner distributions, respectively.
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 49 Figure 4.9: Analysis of excitation energy spectra for the 69 N i for ve laboratory angular ranges.

Figure 4 . 10 :

 410 Figure 4.10: FWHM of the ground state (green) and of the rst excited state (red) with respect to the dierent angular ranges (left panel). Except for the angular range around 166 • the width of the rst excited state is found to be ≈ 1.5 times the width coresponding to the ground state. This eect is not reproduced by the simulated FWHM shown on the right panel.

2 = 2 .

 22 The spin-orbit potential is multiplied by the square of the pion Compton wavelength Mπc 00 f 2 m, a conventional normalization factor, where M π is the mass of the pion.The potentials parameters are supposed to vary slowly and smoothly through the nuclear chart. Potential depths, radius and diuseness for nuclei studied for the rst time can thus be calculated according to these available parametrizations from the literature taking into account the mass number, the charge and the bombarding energies of the interacting nuclei. It is noteworthy to mention that the values of the radius r C and diuseness a C of the Coulomb potential vary very little in the transfer case (typical values are r C = 1.25 fm and a C = 0.65 fm).

4. 4

 4 .1.1 Entrance channel potentials Potential E1: Daehnick et al. [Daeh 80] obtained a parametrization of the elastic scat- tering of deuterons at energies ranging from 12 to 90 MeV on nuclei of masses comprized between A = 27 and A = 238 covering our experimental conditions 1 . Their search for global settings for optical potentials is based on a set of 4000 data points (reaction cross sections, dierential cross-sections and vector polarization).The deduced potential, built to reproduce the elastic scattering of deuteron, does not consider the eects of deuteron break-up. This can be of importance in our study hence we use a second parametrization of the optical potential for the entrance channel that takes into account the deuteron break-up.Potential E2: It was demonstrated that standard DWBA is unable to provide a satisfactory description of the data for many (d, p) and (p, d) reactions for incident energies around 20 MeV and higher [John 70]. A prescription was proposed in order to account for deuteron break-up in the entrance channel. The adiabatic prescription [John 70,Harv 71] 

2

 2 The proton and neutron are still bound together within a 3 S state We use the nucleon-nucleus optical-model potential parametrization given by Varner et al.[Varn 91] and presented in the following paragraphs. Apart from modifying the poten- tial parameters (depth, diuseness and radius), the ingredients of an adiabatic calculation are the same as for standard DWBA calculation. However, the potentials can no longer reproduce the elastic cross sections.4.4.1.2 Exit channel potentialFor the description of the interaction of the outgoing proton with 69 N i we have used one parametrization (S) described in the following paragraph. Potential S: This parametrization used in the exit channel was made by Koning and Delaroche [Koni 03]. It is based on extensive experimental data sets including average resonance parameters, total and non-elastic cross sections, elastic-scattering angular distributions and analyzing powers. The parameters where adjusted to t data covering a large nucleus mass range (24 A 209) and a large proton laboratory-energy range (1 keV to 200 MeV).
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 411 Figure 4.11: The left panel shows the Jacobian curve used to transform the experimental crosssections measured in the laboratory to the CM reference system. The red crosses represent the considered angular ranges (horizontal bars) and the error on the Jacobien (vertical bars). The right panel shows a typical variation of the χ 2 with respect to the spectroscopic factor obtained by normalization of the calculated DWBA distributions to the experimental data.

  Figure 4.12 shows the comparison of experimental and calculated dierential cross-sections for two combinations of optical potentials. The angular momentum transferred to this state is determined unambiguously as l = 4 which corresponds to the population of the 1g 9/2 orbital in 69 N i.

Figure 4 .

 4 Figure 4.12: Proton angular distribution for the ground state and comparison with DWBA calculations for two combinations of optical potentials referred as E1(2) ⊗ S (see text). The same spectroscopic factor obtained for l = 4 is applied for l = 0, l = 1 and l = 2 distributions.

Figure 4 .

 4 Figure 4.13: Proton angular distribution for the rst excited state (2.48 MeV) and comparison with ADWA calculations for an l = 4 (left panel) and l = 2 (right panel) transfers.

Figure 4 .

 4 Figure 4.14: Decomposition of the rst excited state into its two components (left panel). Proton angular distribution for the rst component at 2.05 MeV (bottom left panel) and the second component at 2.74 MeV (bottom left panel) and comparison with ADWA calculations for an l = 4 (in red), and an l = 2 (in green) transfer. The respective spectroscopic factors are found in the insert of each gure.For more details see text.

Figure 4 .

 4 Figure 4.15 shows the calculated DWBA dierential cross-sections for a neutron transfer to the orbitals 2p 1/2 , 1g 9/2 , 2d 5/2 , 1g 7/2 , 3s 1/2 , 2d 3/2 and 1h 11/2 . In this calculation we use the adiabatic potential combination (E2 ⊗ S). The deuteron energy corresponds to the beam energy in direct kinematics and the excitation energy is xed at 4.190 MeV. The calculated angular distributions corresponding to an l = 0 and l = 1 are smaller by at least one order of magnitude than the other distributions due to momentum mismatch as mentioned above. The data points for CM angles in [10 • ; 20 • ] and [30 • ; 40 • ] angular ranges are crucial to distinguish amongst the dierent distributions.For the second excited state at 4.190 MeV we have considered l = 2 and 4 transferred angular momenta corresponding to the 2d 3/2 or 2d 5/2 and 1g 7/2 , respectively.In gure 4.16 we show the ADWA analysis of the second excited state. The experimental distribution is best reproduced for a transferred angular momentum of l = 2 and

Figure 4

 4 Figure 4.15: Calculated DWBA dierential cross-sections for the energy level at 4.190 MeV for several transferred angular momenta using the E2 ⊗ S2 potential combination. The spectroscopic factor is normalized to unity.

l = 4 .

 4 According to the χ 2 value, an l = 2 (4) transfers corresponding to the population of the 2d 5/2 (1g 7/2 ) orbitals seem to t the experimental cross-sections with χ 2 = 0.42 (χ 2 = 0.44). The t with an l = 2 transfer corresponding to the population of the 2d 3/2 orbital had greater χ 2 (χ 2 = 0.98) and is not considered here.

Figure 4 .

 4 Figure 4.16: Proton angular distribution for the second excited state (4.19 MeV) and comparison with ADWA calculations. The left panel show the t with l = 2 (2d 5/2 ) distribution (in green). The right panel shows the t with l = 4 (1g 7/2 ) distribution (in red). Curves not tted to the data are normalized with the spectroscopic factors in the insert.

Figure 4 .

 4 Figure 4.17: Proton angular distribution for the rst resonance at 5.43 MeV (rst raw) and at the second resonnance 6.39 MeV (second raw) compared to ADWA calculations. The data point below 1 mb/sr in the rst raw is not considered in the t. Curves not tted to the data are normalized with the spectroscopic factors in the insert.

4. 5 . 1

 51 Valence spaceThe theoretical calculations were performed by the NuTheo group in Strasbourg using the shell-model formalism on a core of 48 Ca and a large valence space which includes the pf -shell for protons and 1f 5/2 , 2p 1/2 , 2p 3/2 , 1g 9/2 , 2d 5/2 orbitals for neutrons (see gure 4.18).

Figure 4 .

 4 Figure 4.18: Decomposition of 69 N i into a core of 48 Ca and a valence space comprizing pf -shell and 1f 5/2 , 2p 1/2 , 2p 3/2 , 1g 9/2 , 2d 5/2 orbitals for neutrons. Only 8 nucleons with respect to 68 N i core can be excited (see text).

Figure 4 .

 4 Figure 4.19: The left-hand panel shows the experimental SF as a function of the observed excitation energy. The green line corresponds to the experimental spectroscopic factor of the excited state compatible with an l = 2 transfer according to ADWA. The dashed-lines corresponds to the second component in the rst excited state and the second excited state both of them compatible with an l = 2 and l = 4 transfers, respectively. The right-hand panels show the distribution of the SF strength for the neutron 1g 9/2 and 2d 5/2 orbitals as a function of the calculated excitation energy for three dierent energy gaps. For more details see text.

Figure 4 .

 4 Figure 4.20: Two competing conguration of the 69 Ni according to large scale Shell-Model calculations. Both congurations are coupled to a total spin of J π = 5/2 + . The position of the 2d 5/2 neutron orbital with respect to the 1g 9/2 neutron orbital favors one or the other conguration and inuences the SF balance of the 5/2+ doublet predicted earlier with Shell-Model calculations.

Figure 4 .

 4 Figure 4.21 shows the level scheme of 69 Ni so far. We only add the states observed in this work determined unambiguously in experiment and reproduced in Shell-Model calculations. It is worth to mention that the energies of the new states are determined with a relatively low resolution due to low statistics in this experiment.

Figure 4 .

 4 Figure 4.21: Level scheme of 69 Ni observed in previous works of [Grzy 98, Muel 99] and in this work.

  Improved detection eciency, energy resolution and increased exotic beam intensities are the key parameters for future progresses. Detectors such as GASPARD (a high-granularity silicon detector for the detection of charged particles) coupled to PARIS and/or AGATA (for γ-ray detection), currently in development, as well as future radioactive beam facilities (SPIRAL2) would certainly help to extend further our knowledge on the structure of exotic nuclei. (a) The interacting nuclei and their corresponding products, (b) The excitation energy of each nucleus. 3. Detectors and target characteristics (a) Target thickness and material (for energy loss calculations), (b) Dead-layer thickness in detectors, (c) Interstrip width, (d) Detector resolution and energy threshold, (e) Number and type of suppressed detectors or strips.

4 .

 4 Having the position and direction of the generated proton, a geometrical calculation provides the point of impact in the plane containing the detector. The hit is converted to the corresponding strip numbers. A new energy is calculated taking into account the energy loss in the dead layer and the resolution of the detector. 5. In this step, practical characteristics are associated to the event describing the quality of the hit. Such as the state of the strip red, interstrip hit... 6. Finally all the event characteristics are saved using the same format as the one of the experimental raw data. This simulated data can be used to test the analysis code developed in this work. 1 In the case where the straggling is irrelevant or negligeable a simpler version of the simulation, not including the present step, is usedA.3 ResultsThe simulated data are analysed in the same way as the raw data. The simulation give us more insight about the detection system, such as coverage in angle and eciency. It has also help in the analysis phase, more precisely in the estimation of deuteron break-up. The gures A.1 and A.3 show the dierent types of detected events. In this calculation the following parameters are considered: 1. a target of zero thickness, 2. a realistic beam prole, 3. an isotropic emission for each interaction point in the target, 4. hits on interstrip are rejected, 5. Two hit scenario are considered, (a) hit on detectors with out defective strip and no matching between dierent detectors stages (see gure A.1), (b) hit on detectors with defective strips tagged during the real data analysis and stage-matching requested (see gure A.3),. The corresponding angular coverage is depicted in gures A.1, A.2, and A.3. The geometrical eciency of the detection system is reduced by ∼ 30 to ∼ 50 % when defective strips and stage-matching are taken into account.

  (a) Hit-pattern on detectors without defective strip and no stage-matching requested (b) Associated eciency

Figure A. 1 :

 1 Figure A.1: Simulated hit patterns for protons and the corresponding detection eciency versus angle. The eeciency reduces to zero (cf. gure A.1b) between the angular range covered by S1 and the one covered by the ensemble of MUST2 telescopes (around 150 • ).

Figure B. 2 :

 2 Figure B.2: Electronic diagram of the MUVI card (light charged particule detectors). The diagrams related to MUST2 and S1 detectors are identical. The analogic signal is sent to the GMT in order to generate the FAG. It also serves as a start for the TDC/TAC in order to encode the time-of-ight between beam tracker and the light charged particle detectors. The signal MUST2 OR S1 is also formed and sent to scalers.

Figure B. 3 : 2 dSv β v α |f αβ | 2 (C. 7 )

 3227 Figure B.3: Electronic diagram of EXOGAM detectors. The pulse from the detectors serves as a stop signal to encode the time-of-ight with the beam tracker and MUST2-OR-S1, respectively.The signal OR-gamma is used as a start for TDC/TAC stopped by CATS2. The EXOGAM signal is sent to the GMT once every 200 detected events. OR-gamma and OR-gamma% are both sent to scalers.

V

  α(β) = W α(β) + U α(β) (C.12) U α(β) is the auxilliary potential normaly chosen to be an optical potential describing the elastic channel and W α(β) is the residual interaction. The total Hamiltonian in this case can be written as,(E α(β) -H α(β) -K α(β) -U α(β) )Ψ α(β) = W α(β) Ψ α(β) (C.13)We dene χ α(β) as the exact solutions of the homogeneous part of equation C.13 called the distorted waves (by the potential U α(β) ) where,(E α(β) -H α(β) -K α(β) -U α(β) )χ α(β) = 0 (C.14)A formal solution of the Schrödinger equation of the total Hamiltonian using the distorted waves leads to an expression of T α,β given by,T αβ = T 0 β δ αβ + χ - β ψ β |W β |Ψ + α(prior)(C.15) = T 0 β δ αβ + Ψ - β |W α |χ + α ψ α (post) (C.16)

  ) in expression C.15, the transition amplitude for a transfer reaction (δ αβ = 0) writes as,T αβ = χ - β ψ β |W β + W β G + α W α + W β G + α W α G + α W α + ...|χ + α ψ α (C.18)Zero-range approximationOur calculations were done in the zero-range approximation. This approximation has the physical meaning that the proton is emitted at the same point at which the deuteron were absorbed [Aust 70]. In other words the distance of proton and neutron inside the deuteron is zero. The approximation consists of replacing the second term ψ b |V pn |ψ a on the right-hand side by a delta-Dirac function, ψ b |V pn |ψ a = D 0 δ( -→ r pn ) (C.28)

2 T

 2 respectively.With expression C.29 of ψ B , the overlap ψ B |ψ α is calculated as,ψ B |ψ A = lj C J C T ψ * γ A (ξ A ) φ * γn (ξ n ) ψ γ A (ξ A ) dξ A (C.30) = lj C J C T φ * γn (ξ n ) ψ * γ A (ξ A ) ψ γ A (ξ A ) dξ A =1 (C.31) = lj C J C T φ * γn (ξ n ) (C.32)where C T φ * γn (ξ n ) is related to the spectroscopic factor S lj by,S lj = C |φ γn | 2 dξ n = C 2 T S (C.33)

φ

  γn (ξ n ) ≈ β lj ψ γn (ξ n ) (C.34) where β lj represents the spectroscopic amplitude and ψ γn is normalised to unity. With this nal approximation, the spectroscopic factor is given as, S lj = C 2 T S lj = C 2 T β 2 lj (C.35) C.6 Selection and sum rules C.6.0.1 Selection rules: Angular momenta The dierential cross section depends sensitively on the transferred angular momentum in a transfer reaction. By a comparison between the measured angular distribution with the one calculated by a suitable transfer-reaction model such as the DWBA, the transferred angular momentum can be determined. Let -→ J a , -→ J b and -→ s be the total spins of nuclei a, b and x, respectively. Where x is coupled to b (a = b + x) by the angular momentum -→ l before the transfer occurs. The spins are related through the following equations,-→ J a = -→ J b + -→ j where -→ j = -→ l + -→ s (C.36)After the transfer x will be coupled to A by -→ l . Considering the total spins of the A and B given by -→ J a and -→ J B , respectively we can write, selection rules given by equations C.36 and C.37 the transferred spins can be identied by, J BA = j and J ba = -j (C.38) and the transferred angular momenta by, l | l tr (l + l ) (C.39)

(C. 40 )

 40 Thus the nal state J B can only correspond to the occupation of a dened orbital (l, j) in nucleus B. The probing power of single-nucleon transfers from light ions (e.g. deuteron) resides in this fact. It is not necessarily the case in other type of transfer reaction where J B may have contributions from two or more dierent l values or, conversely, a given l can couple with a J A = 0 to give several states with dierent J B values.C.6.0.2 Selection rules: Parity conservationThe parity conservation is expressed by, π a π b = (-1) l and π A π B = (-1) l (C.41)

  

  L'état fondamental et un état excité à environ 2, 5 MeV sont bien prononcés. En outre, des structures apparaissent vers 4 MeV et 6 -7 MeV. Une forte densité d'états est visible pour les énergies d'excitation au-dessus du seuil de séparation d'un neutron (S n ) qui vaut 4, 59 MeV. Le spectre nale était contaminé par un fond dû aux réactions parasites. Jusqu'à une énergie d'excitation d'environ 8 MeV, ce fond provient principalement de deux origines:

  Nuclear physics is the branch of modern physics that studies the properties of the atomic nucleus. In the late 19 th century, it was established that the matter was made up of atoms, all identical for a given chemical species. Following the pioneering work of
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  The energy position of the 2d 5/2 have a large impact on the shell evolution in the N ≈ 40 region. F e and Cr chains in this region exhibit large deformation [Sorl 03, Ljun 10] unlike the N i chain that shows a dierent behaviour in particular 68 28 N i 40 which has a spherical character according to its B(E2) and E(2 + ) values [Brod 95, Sorl 02].

	The goal of the present work is to search for the 2d 5/2 neutron state in the neutron-rich nucleus Chapter 0. Introduction 69 N i. xxii Large-scale shell-model calculations [

  It represents the very notion of the mean eld approach described earlier. Solving the Schrödinger equation only with this term will provide the afore-

	mentioned single-particle energies(cf.	gure 1.3) and the appropriate single-particle
	wavefunction basis |φ i to describe the nucleus. The remaining part H res , corresponds to
	the residual interactions responsible of the detailed structure of the nucleus.
	Under the second quantization formalism the Hamiltonian in equation 1.4 applied on
	a physical state |Ψ becomes,	

  3 . It rises from the separation between ν1d 3/2 of the sd -shell and ν1f 7/2 of the pf -shell (see gure 1.3). One of the rst experimental evidence was made in 32 M g by Détraz et al. and Guillemaud-Mueller et al.

[Detr 79,

Guil 84] 

who found an unexpectedly low excitation energy of the rst excited 2 + state (0.885 MeV) compared to the neighbouring less neutron-rich isotones (see gure 1.5a).

Table 2 .

 2 5)By adjusting the bias voltage of this lter, the ratio E/B is controlled as well as the transmitted velocity inside D6 where the experimental setup is located. The parameters of LISE are shown in table 2.1. 1: LISE general parameters, and primary and secondary beam intensities during the experiment.

	Primary beam	70 Zn
	Energy	62.5 A MeV
	Production target	9 Be, 505 µm, 0 •
	Bρ 1	2.5587 Tm
	Wedge	9 Be, 1099 µm
	Bρ 2	1.7641 Tm
	Wien lter voltage	1 kV
	Primary beam intensity	1.5 µA e
	Secondary beam intensity	8 • 10 4 pps

Table 2 .

 2 This stage of the telescope was not used during the experiment since the reaction dynamics was fully covered by the two rst stages. The applied bias of the rst and second stage was held constant during the whole campaign and is given below 2: Bias voltage applied on the Silicon detectors and their inverse currents during the experiment.

	in table 2.2.
	5 Jülich Forschungszentrum.

Table 2 . 4 :

 24 Positions of the detectors and the target holder, with respect to the hypothetical target position in the E530 experiment [Giro 11]. For CATS1 and CATS2, the measured positions corresponds to the center of the detector. For MUST2, the position of the four corners of the rst stage in each Module was measured. And nally for the S1, the 4 measurements were done on the corners of its supporting frame. respect to the target hypothetical position in the previous experiment of the campaign are given in table 2.4. The position uncertainties, provided by the geometer, are 0.15 mm in X and Y directions and 3.00 mm in Z direction.

	Detector	X ( mm)	Y ( mm)	Z ( mm)
	CATS1	-0.2	+0.6	-976
	CATS2	+0.3	+0.1	-576
	Tiara			
	target	+0.2	+0.1	-50
	frame			
		-49.17	+63.68	-155.31
	T1	-49.00 +48.32	+126.1 +125.69	-80.75 -80.58
		+48.11	+63.19	-155.17
		+64.67	+47.67	-154.91
	T2	+127.24 +127.19	+47.54 -49.76	-80.42 -80.60
		+64.63	-49.65	-155.09
		+48.70	-65.06	-154.73
	T3	+48.56 -48.76	-127.58 -127.60	-80.30 -80.49
		-48.61	-65.05	-154.94
		-64.31	-49.84	-155.39
	T4	-127.11 -126.80	-49.83 +47.43	-81.11 -80.86
		-64.02	+47.43	-155.13
		-50.31	+49.45	-158.91
	S1	+49.59 +49.72	+49.19 -50.62	-158.75 -158.62
		-50.22	-50.37	-158.78

-Alignement group at the GANIL facility. The position of the dierent detectors with

Table 3

 3 

	Nb. of		
	contiguous	X	Y
	strips		
	3	99.99 % 99.98 %
	4	96.63 % 96.48 %
	5	80.86 % 82.36 %
	6	28.99 % 29.60 %

.1 gives the percentage of contiguous strips for the same set of events in CATS1.

Table 3

 3 

	.1: Percentage of contiguous strips
	in CATS1 detector. A method using 3 con-
	tiguous strips (e.g. X Sech or X COG 3	) is the
	best choice for the reconstruction of events
	in CATS detectors.	

Table 3 .

 3 3: Position and angular resolutions of CATS detectors in X and Y directions. Both CATS detectors are considered to have equal resolutions.

	.3

  3-α source ( 239 P u -241 Am -244 Cm) was used to calibrate the DSSDs for MUST2 and S1. This source contains radioactive isotopes that decay by emitting α particles with several discrete energies. Its most intense energy peaks are summarized in table 3.4. During

			5156.59(14)	70.77(14)
	239 P u	2.411(3) 10 4	5144.3(8)	17.11(14)
			5105.55(8)	11.94(7)
			5485.56(12)	84.8(5)
	241 Am	4.326(6) 10 2	5442.80(13)	13.1(3)
			5388	1.66(2)
	244 Cm	1.81(1) 10 1	5804.77(5) 5762.64(3)	76.90(10) 23.10(10)

Radioisotope

T 1/2 (years) E α [ MeV] I α [ %]

Table 3 .

 3 

Table 3 .

 3 This dierence corresponds to ≈ 16 keV in the calculated energy loss for a 5 MeV alpha particle. It is due mostly to the use of dierent energy loss tables 4 .

	It is noteworthy that the thicknesses obtained by this method are systematically larger
	DSSD	front side (µm) in this work	front side (µm) in [Giro 11]	dierence (%)
	T1	0.60	0.52	13.3
	T2	0.60	0.54	10.0
	T3	0.61	0.54	11.5
	T4	0.58	0.51	12.0
	S1	0.69	0.64	7.3

5: Dead layer equivalent to Aluminum thickness for the DSSD in MUST2 telescopes and the S1 detector. A systematic overestimation of the dead layers in the present work with respect to [Giro 11] is due to the use of dierent energy-loss tables [Zieg 77].

Table 3 .

 3 

6: Hit multiplicities seen by each telescope. X and Y represent multiplicity on frontside and back-side of the DSSD, respectively. Contiguity of strips is required for events having multiplicity= 2.

Table 3 .

 3 7: Maximum energy loss in MeV of light-charged particles in 300 and 500 µm of Silicon

Table 3

 3 .8 are obtained from [Giro 11] during another run of the campaign. They are determined in a similar way as for the DSSD. The energy resolution (FWHM) is 66 keV, which is two times greater than the rst stage energy resoulution, all pads superposed. It is noteworthy to mention that the thickness of all dead layers of the detector (Boron implantation and ≈ 0.3 µm of Al) is given by the manufacturer to be equivalent to 1 µm of Si for all Si(Li) crystals. The thicknesses reported in table 3.8 are slightly lower than the value given by the manufacturer. The reason for this discrepancy may come from the manufacturing process. We have taken into account the values of table 3.8 in the oine analysis.

	Si(Li)	crystal 1 ( µm)	crystal 2 ( µm)
	T1	0.50	0.65
	T2	1.00	0.50
	T3	0.65	0.65

.8: Silicon dead layer equivalent thicknesses for Si(Li) crystals in MUST2 telescopes.

Table 3 .

 3 9: Multiplicity seen by the dierent telescopes in the Si(Li) stage.

	Telescope	1 pad	2 pads	Other
	T1	89.4 %	5.2 %	5.4 %
	T2	95.3 %	4.3 %	0.3 %
	T3	94.8 %	5.0 %	0.2 %

  • -170 • angular range have been used for the t.

	The excitation energy spectrum is tted and the extracted peak centroids and FWHM are
	summarised in table 4.1. The peak centroid corresponding to the G.S. (cf. next section)
	has an oset of 201 keV. This oset (E 0 ) was subtracted to the energies provided by the
	t.		
	Energy [MeV] FWHM [MeV] Energy -E 0 [MeV]
	0.203(27) (E 0 ) 2.681(49) 4.398(91) 5.630(190) 6.594(46)	1.032(42) 1.474(100) 1.257(34) 1.346(32) 1.401(31)	0.000(27) 2.478(49) 4.195(91) 5.427(190) 6.391(46)

Table 4

 4 

	.1:

  • -112 • ] angular range, which corresponds to the largest CM angles. Also, in the [138 • -143 • ]

Table 4 . 3

 43 The calculated shell-model states with their energies and spectroscopic factors are listed in table 4.3. The energy states with spectroscopic factors less than 0.01 are not included. A more exhaustive list of the predicted levels and their associated spectroscopic factors is given in Appendix D.

	Shell Model calculations	Gap N = 50 (1g 9/2 -2d 5/2 ) 1.5 [MeV] 2.5 [MeV] 3.5 [MeV] Energy SF Energy SF Energy SF
		0.00	0.89 0.00 0.86 0.00 0.93
	1g 9/2	5.23	0.01	5.55	0.02	5.58	0.03
		5.69	0.01			7.41	0.01
		1.49 1.92	0.79 2.12 0.46 2.09 0.05 0.09 2.50 0.43 2.92 0.80
	2d 5/2	5.80	0.03	6.19	0.05	3.63	0.03
		7.06	0.02	7.22	0.02	6.10	0.07
						7.57	0.03

: Calculated shell-model energies and their associated spectroscopic factors for the neutron 1g 9/2 and 2d 5/2 orbitals in 69 N i for three gaps. The details of calculations are given in section 4.5.1.

  10) which explains the strength in panel (c) on the right of gure 4.19 caracterized by a high spectroscopic factor for the second component (Ψ high ) of the 5/2+ doublet. The second excited state at 4.19 MeV is represented in the left panel of gure 4.19by a green-dashed line. As discussed earlier (see section 4.4.2.2), this state is compatible with l = 2 and l = 4 transfer distributions. If it is identied to 2d 5/2 , the summed spectroscopic factor would be SF = 1.27 ± 0.38, preserving the sum rule within error bars. However, the experimental cross section for this state is also well reproduced by the 1g 7/2 DWBA distributions with a similar χ 2 value. This interpretation is more in agreement with the present shell-model calculations which do not predict a signicant fragment of 2d 5/2 strength above the doublet.

Table D .

 D The experimental value of the spectroscopic factor is then given by the relation, 1: Calculated shell-model energies less than 10 MeV and the associated spectroscopic factors for 1g 9/2 and 2d 5/2 orbitals in 69 N i. The details of calculations are given in section 4.5.1.

					Appendix D
		Shell-model calculations
	1g 9/2			2d 5/2	
	Energy [MeV]	SF	Energy [MeV]	SF
	0.000000	0.888915	1.485330	0.794864
	1.322149	0.000267	1.924422	0.091486
	2.558006	0.001538	2.276588	0.004717
	3.096662	0.004050	4.121419	0.007465
	3.621179	0.000451	5.799263	0.031467
	4.186779	0.001510	7.057368	0.022430
	4.676600	0.003883	9.539168	0.007425
	5.226059	0.010558			
	5.693810	0.012324			
	6.576853 7.426272 8.331960	dσ dΩ 0.007392 (Exp.) = C 2 S lj 0.002271 0.002087	dσ dΩ	(DW BA)	(C.46)
	9.344536	0.001182			
	1g 9/2			2d 5/2	
	Energy [MeV]	SF	Energy [MeV]	SF
	0.000000	0.859548	2.123670	0.455986
	1.593508	0.001318	2.499782	0.426897
	2.951499	0.002215	3.125776	0.004113
	3.470140	0.004494	4.342080	0.005666
	4.523452	0.001229	5.306435	0.004558
	5.551562	0.020939	6.194903	0.050271
	6.858692	0.007963	7.216955	0.015052
	8.178668	0.003196	8.403852	0.005810
	9.855066	0.001321	10.134947	0.002829

Table D .

 D 2: Calculated shell-model energies less than 10 MeV and the associated spectroscopic factors for 1g 9/2 and 2d 5/2 orbitals in 69 N i.

From The Tempest, by William Shakespeare.

Empilement: (pile-up en anglais) Chevauchement en temps des signaux correspondant à l'énergie dé- posée des diérentes particules détectés. Le pile-up réduit considérablement la résolution du détecteur.

The surface correction is not needed if one uses a Woods-Saxon potential instead of a harmonic oscillator.

Zero Y-strip energies are coded on channel 8192 and larger energies in smaller channels (inverse coding).

In [Giro 11] the energy loss tables were extracted from LISE++ code, in this work we have used tables from SRIM.

In the rest of this chapter we will refer to the spectroscopic factor by SF.
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Spectroscopic factors

The angular-momentum assignments and the spectroscopic factors are summarized in table 4.2. The last column shows the values of the spectroscopic factors for the combination E2 ⊗ S adopted in this analysis followed by the experimental error due to the normalization procedure (experimental error). Extracted spectroscopic factors for the populated states in 69 N i.

Energy

The last column corresponds to the value of the spectroscopic factor followed by the normalization error on the experimental points (experimental error).

The ground state is assigned an angular momentum of l = 4 corresponding to the occupation of the 1g 9/2 orbital with a spectroscopic factor 0.53 ± 0.13. The rst excited state at 2.48 MeV was unambiguously identied as an l = 2 angular-momentum transfer corresponding to the 2d 5/2 orbital we are searching for, with a spectroscopic factor SF = 0.86 ± 0.22. We recall that data give evidence that the state in question is a doublet of l = 2 states close in energy with a sum of spectroscopic factors of similar amplitude SF = 0.76 ± 0.23.

For the second excited state at 4.19 MeV and the last two unbound states at 5.43 MeV and 6.39 MeV the corresponding experimental data points were aected by the deuteron break-up background. Concerning the bound state at 4.19 MeV both l = 2 and l = 4 assignments are possible. The assignment of l = 2 corresponding to the population of 2d 5/2 orbital would violate the sum rule ( SF = 1.27±0.38(exp)). However, the experimental error associated to the normalization of the experimental cross section is of the order of ∼ 30%. Thus, the assignment of l = 2 (2d 5/2 ) is reasonable if we take into account the associated errors. Due to the very close χ 2 values in the case of l = 2 (2d 5/2 ) and l = 4 (1g 7/2 ) both assignments are equally probable, the SF in the latter case is 0.26±0.08(exp).

The ADWA analysis was done only on three points for the rst resonnace and four points for the second resonnace, thus the assignment of angular momenta to these states are questionable. However, according to the χ 2 value for the rst resonance, the experimental cross-sections are better reproduced with a l = 2 distribution. In this case the associated spectroscopic factor is very large (SF = 1.64) and not respecting the sum rule even if we take into account the associated errors (0.42(exp)). An assignment of l = 4 is acceptable where SF = 0.27 ± 0.07(exp). We privilege a contribution (at least partial) of l 4 orbitals since the SF, assuming l = 2, are large while strong strength fragmentation is expected at such high excitation energies. For the state at E exc = 6.39 MeV, an l = 2 Appendix A

Simulation

In this appendix we present the simulation used to estimate the geometrical eciency and the deuteron break-up. The detection system for the proton is done by two types of detectors MUST2 and S1. These detectors have dierent geometries, dierent strip and interstrip shapes and dierent positions in space. Their space conguration will inuence directly two important geometrical quantities:

1. the covered dynamic range constraining the physics accessible to our experiment, 2. the eciency of the detection system used to calculate the nal dierential cross sections.

Moreover these quantities may change during the campaign as a function of other parameters such as the target position, the beam prole on the target and most importantly, the position of non-operational strips. Under these circumstances the evaluation of the covered dynamic range and the eciency of the detection system is not straight forward In the present work the simulation is developped to take into account the thickness of the target, the second stage (Si(Li)) of MUST2, the interstrips, the dead layers and the resolution of the detectors. In the following sections we will describe the ingredients of the developped simulation and how we generate and treat simulated events.

A.1 Input

The principal ingredients of the simulation can be divided into three parts: 

C.1 Elementary scattering theory

The type of reaction considered has the following form,

where x represents the transferred particle(s). In the entrance channel (A+a) will be denoted by α and the exit channel (b + B) by β. An incident beam of particles having mass m and velocity v α can be associated to a plane wave ψ inc in the center of mass (C M ) coordinate system such as,

where, N is the number of particules per area unit in the target which is considered as equal to unity while A 0 is related to the number of incident particles per area unit per time unit. The incident wave function describing the state of the system before the collision occurs becomes,

After the collision the scattered particles will be associated with a scattered spherical wave function. At large distance from the target, the scattered wave tends to be of spherical form and can be represented as,

where f αβ is known as the scattering amplitude and depends in general on the angle of emission θ and the azimuthal angle φ with respect to the collision axis. The number of scattered particles in time unit seen by a detector, placed at a large distance and covering an area dS, is expressed as,

The Born approximation consists of considering only the rst term of the expansion and assuming all the other terms negligible. T αβ can be nally written as,

The validity of the DWBA depends upon elastic scattering being dominant process so that the other processes can be treated as perturbations.

C.4 Transition potential

The potential of mutual interaction V β between b and A + x (see equation C.1) is assumed to be the result of two-body forces. Under this condition it can be written as, In this case the mutual interaction V β reduces to,

where V pn and V pA are the interactions between the outgoing proton and the transferred neutron and the remaining nucleons in B, respectively. Replacing the new expression of V β in equation C.12 we get for the residual interaction W β the following expression,

The nucleus B diers only by the addition of one neutron to nucleus A. Both nuclei have the same charge and very similar masses. To a rst approximation, we have (V pA -U β ) ≈ 0. This approximation is further strengthen by the fact that the transferred part x (neutron) is small next to A which in our case is 68 N i. 

where the matrix element ψ β |V pn |ψ α is responsable for all non elastic processes. It contains all the information on the nuclear structure and is usually called the form factor.

The interaction V pn (≡ V pn ( -→ r pn )) is considered as a function of the distance between the proton and the neutron, thus we can factorize the matrix element as follows, The harmonic oscillator shell closure at N = 40 in 68 Ni is weak and loses its strength when removing (or adding) pair of protons. Calculations performed in this mass region predict a new island of inversion at N = 40 similar to the one at N = 20. Using a large valence space, the neutron orbital 2d 5/2 is shown to be a crucial ingredient for the interpretation of the nuclear structure at N ∼ 40. The neutron 1g 9/2 -2d 5/2 energy dierence has been determined in 69 Ni using the d( 68 Ni,p) transfer reaction in inverse kinematics. The experiment performed at GANIL used a 68 Ni beam at 25.14 M eV /u seperated by the LISE3 spectrometer was impinging a CD 2 target of 2.6 mg/cm 2 thickness. The experimental setup consisted of CATS/MUST2-S1/EXOGAM detectors coupled to an ionization chamber and a plastic scintillator. The angular momenta and spectroscopic factors of the ground state (J π = 9/2 + ) and a doublet of states (J π = 5/2 + ) around 2.48 M eV corresponding to the population of the 1g 9/2 and the 2d 5/2 orbitals, were obtained from the comparison between the experimental cross-sections as a function of the proton detection angle and ADWA calculations. The spins of the observed states were assigned by comparaison to large scale Shell-Model calculations. The position of the 2d 5/2 orbital in 69 Ni has been established for the rst time. Our measurements support the hypothesis of a low-lying 2d 5/2 orbital (∼2.5 M eV ) with respect to the 1g 9/2 neutron orbital and thus its major role in the structure of the nuclei around N = 40.