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Statement of results

This work contains results in two areas: the constructiomaitingales with spec-
ified marginals and the Skorokhod embedding problem. Théibations are the
folllowing:

e A new solution to the Skorokhod embedding problem (pubtisheStatistics
and Probability Letters, se&fik17)

e A Brownian sheet based construction of a martingale witlséme marginals
as the average of geometric Brownian motion. This providesmaproof that
in the Black Scholes framework the the price of arithmeti@Aoptions are
increasing in duration ( joint work with Marc Yor, publishéa Electronic
Journal of Probability Y 09])

e A sequence of Albin type continuous martingales with Bramninarginals
and scaling (joint work with C. Donati-Martin and M. Yor, dighed in Sem-
inaire de Probabilites, seBDMY11])

e On Martingales with Given Marginals and the Scaling Prop§dint work
with M. Yor, published in Seminaire de Probabilites, se&[1])

e A proof that the L2 quantization does not have the propergreserving the
convex order (preprint submitted to Statistics and Prdibgalhietters)

e A quantization method which we called —quantization and a proof that
it has the property of preserving the convex order. Using tjuiantization
we give new methods for constructing martingale transitiasith specified
marginals (preprint submitted to Electronic Journal oftrataility)
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Chapter 1

Introduction

The framework under consideration is the following: we aweig two probability
measures ofR, which we denotgr andv and we wish to construct a martingale
transition fromuto v. It is known that a necessary and sufficient condition for the
existence of a martingale transition frquto v is thaty andv be ordered in the
convex order, which is denoted<.y v and defined as:

U<V < / f(X)dpu(x) g/ f(x)dv(x) for every convex functiorf
R R
The method which we propose is to approximatiey a sequence of discrete
measuresfl,)ney Which converges in law tp. Similarly, we construct a sequence
of discrete measure®p)ney Which converges tw. Then we provide methods
which will construct, for eaclm, a martingale transition from,to V.

Approximating a probability measure by a discrete measrefered to as quan-
tizing that measure. The method which is generally used &mtize probability
measures is the2 quantization. We will show that tHe2 quantization cannot be
used in this situation. Indeed, we will prove that tt2quantization does not have
the property of preserving the convex order. The conseguehthis is that when
U <V, we may well havau; £ V, for somen, in which case there exists no
martingale transition fronp,, to V. It is necessary that the quantization method
which we employ has the property of preserving the conveerortlVe define a
guantization which has this property of preserving the egnorder. This quan-
tization method will be called:-quantization. In theorer2.4.11 we prove that
u-quantization preserves the convex order. This ensuré# thare exists a mar-
tingale transition fronu to v, then there also exists a martingale transition fyggm ~
to Vp.

The problem of the appropriate quantization method beititpde we show how,
for eachn, martingale transitions can be obtained framoV,,. We give 3 different
methods of constructing such martingale transitions. Tisefiethod is straight-
forward but worth mentioning; it is linear programming atslgolution is obtained
by the simplex method. The second method is interestingusedarelates the the-
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ory of symmetric matrices with specified diagonal and speatto the theory of
martingale transitions. Indeed, we show how by constrgciirsymmetric matrix
with properly chosen eigenvalues and diagonal elements;aneproduce a mar-
tingale transition fromu, to V,. The third method is the use of potential theory
and an algorithm by Chacon and Walsh. This algorithm can bd bere because
u-quantization has the property of preserving the converrord

1.1 Relevance to risk management

1.1.1 Relevance to modeling of financial risks

In addition to being of theoretical interest, the problemcohstructing martin-
gales with specified marginals has important applicationsnancial risk, which
we now briefly discuss. The observed market prices of Europaks and puts on
an instrument, provide the marginal laws of its process.rdlieof course some
imprecision coming from the fact that not all strikes and umiéies are traded. If
all strikes and maturities were traded, then every mardaabf the process could
be fully extracted from the observed prices. This imprecisind the need to in-
terpolate are not addressed here. The framework underdevason is that of
an observer having all marginal laws of a stochastic pro@ass$ wanting to infer
additional information about this stochastic process. Hghe may want the prob-
ability that the process will cross a threshold during aaiertime interval. Or the
guantity of interest may be the probability that the realizelatility will be greater
than a certain value.

A common approach is to first suppose that the stochasticepsobelongs to a
particular family @-stable processes, variance-gamma processes, etc..peXhe
step, “model calibration”, would be to choose the membetd family which
provides the closest fit to the observed marginals. The enoblith this method
is the model risk which it introduces. There is indeed no tbécal justification
for the process belonging to some particular family. Pasitad this will exclude
from consideration processes which have no reason to bad®dl Any conclu-
sions obtained by this method are subject to a potentiatbyeland unquantified
amount of additional model risk. Model free approaches JeMgchnically more
difficult, are increasingly becoming an active area of reeaSee for example D.
Hobson'’s lecture notes on the Skorokhod embedding probfehivieodel indepen-
dent bounds for option pricesHpb11]). In a model free approach, one does not
assume that the underlying belongs to a particular classookgses. The only as-
sumption made is that the underlying has the martingalegotpfafter a change to
the risk neutral measure). This is theoretically justifigdab absence of arbitrage
argument.

The idea then is to study the set of admissible martingalbighnare the mar-

tingales having the required marginal laws. The set of asibiless martingales is
incredibly large and complex, and much more research isateft it to become
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better understood. In the mean time, any method of consigietements of this
set (such as the methods presented here) improves our tamking of this set of
admissible martingales.

1.1.2 Inferring marginal laws from option prices

In this work, we will take the marginal laws of the underlyiag given. The prob-
lem of finding marginal laws compatible with observed opfites is an area of
research in its own. Indeed it constitutes an inverse pnohidich in each case
has many solutions. If there were a continuum of observedmpirices, one for
each strike, then the problem of recovering the marginavauld have a unique
solution. This solution could be obtained by the Breedenlatmnberger BL78]
formula.

Using the Breeden and Litzenberger formula one can extiaan@arginal laws
from the option prices. We denote Ipthe risk neutral density of the final spSt.
As the call price is given by

C(S0.K.T) = [ (Sr=K)* g(Sr. T, S)ds;

this can be differentiated twice with respect to the stk extract the densityp
of the marginal law oS at timeT.

0°C(S, K, T
ke, &) = ST

Since option prices are not available for the entire spatwlistrike values, inter-
polating the available values is necessary.

The state price density is often called the risk neutral ifgris our framework
it will be called the marginal density. InR94 a prior parametric density is pos-
tulated as the state price density. &[98, kernel smoothing for this purpose is
discussed.



Chapter 2

Quantization and preservation of
the convex order

2.1 The convex order and the existence of martingale tran-
sitions between specified marginal laws

The convex order<y) is a partial order o (R), the space of probability mea-
sures orR. It compares probability measures in terms of their dispars

Definition 2.1.1. Let v € P (R). We say thattis dominated by in the convex
order and writgl <¢ v if, for every convex functionp(x),

[ 000 a0 < [ @09 v

2.1.1 Characterizations of the convex order

The convex order can be characterized in several ways. licglar it can be
characterized in terms of:

e potential functions

distribution functions

survival functions

quantile functions

put and call functions
e martingale transitions

These characterizations will be used throughout this wBrkofs of these charac-
terizations can be found in the book by Shaked and Shantlak({&s04.



Characterization in terms of potential functions:

Definition 2.1.2. The potential function of a measuuéds given by

UMD =~ [ t=xjduix)
Criterion 1. p<cv iff Up(t) > Uv(t) for all t

Characterization in terms of distribution functions:

Definition 2.1.3. The distribution of a measugeis the functionF (t) = [*_ du(x).

Criterion 2. Let p be a measure with distribution functidhandv be a measure
with distribution functionG. Then

K1 andv have equal means

< X "
H<exV <~ / F(t)dté/ G(t)dt foreveryxe R

Characterization in terms of survival functions:

Definition 2.1.4. The survival function of a measuieis the functionF(t) =
J dp(x).

Criterion 3. Let i be a measure with survival functighandv be a measure with
survival functionG. Then

pandv have equal means

< =y e
HSexV < / F(t)dtgf G(t)dt for everyxe R
X X

Characterization in terms of quantile functions:

Definition 2.1.5. The quantile function of a probability measure with digttibn
functionF(x) is:
F(p)=inf{xeR:p<F(x)}

Criterion 4.

K andv have equal means

< P P
H<xV < /Ffl(u)duz/ G Y(u)du foreverype [0,1]
0 0
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Characterization in terms of call functions:

Definition 2.1.6. The following collection of functions, indexed I/ < R, will be
referred to as call functions and defined as:

Ck (%) = (x—K)" = max(x—K,0)
Criterion 5.

pnandv have equal means

H<axV = { [ Ccdmx) < [ Cxdvx)  for everyk e R
R R

Characterization in terms of put functions:

Definition 2.1.7. The following collection of functions, indexed I/ < R, will be
referred to as put functions and defined as:

P(X) = (K—x)* =max(K —x,0)
Criterion 6.

p1andv have equal means

H<xV <= { /pK(X)dIJ(X) Z/PK(X)dV(X) for everyK € R
R R

Characterization in terms of martingale transitions:

Criterion 7. (Kellerer [Kel72] ) p <V if and only if there exist random variables
X andY such that:

X~ H

Y~V

E[Y|X] = X
2.1.2 Properties of the convex order
Equal means

Lemma 2.1.8. u <. Vv implies thatu andv have equal means.

The proof of this is straightforward:

Proof. @ (X) = xandgy(x) = —x are both convex functions.
Thereforep <cxv implies that/x du< [x dv and that— [ X du< — [x dv
Hence[x du= [x dv O

11



Relationship to variance

M <V implies that the variance qfiis at most as large as the variancevofThis

is straightforward ag (x) = x° is a convex function. The converse however is not
true. In other wordgt can have a smaller variance thagetv may not dominate
Kin the convex order. An example of this is given in Rotschiid &tiglitz [RS7(.

12



2.2 Quantization of measures ofiR

To quantize a measure is to approximate it by a measure whishgported on
a finite number of points. Quantizations of measure®awill play an important
role in this work. We will use quantizations for two diffetgrurposes. We will use
them to construct a new solution to the Skorokhod embeddioblem. We will
also use quantizations in order to build martingale tréorsst between specified
marginals. When constructing martingales between spdaifiarginals, we will
be interested in quantizations which preserve the convegrorThe commonly
used quantization method in probability is th2 quantization. We will prove that
it does not have the property of preserving the convex oedet,we will define a
guantization which does have the property of preservingtimvex order. Before
we do all this we will devote this section to discussing theotly of quantization.
In particular we will discuss the commonly usk# quantization.

2.2.1 \Voronoi style quantizations

Let p be the probability measure dh which we wish to quantize. If we choose
a vector ofn points (x1, ..,X,) then a natural way to quantizeis as follows: For
each ofx;, construct an interval;, as follows:

if i =1, thenA, = <—°°, X1—|2—X2}
if2<i<n—1, thenA = Xi712+Xi 7 Xi +2Xi+1]
ifi=n, thenA, = w 7 +oo>

Then a quantization gi can be obtained as follows: For eaglplace an atom of
massu(A) at the positior;. In other words,

= 5 WA,

This quantization is called the Voronoi quantizationupbecause the intervals
are the Voronoi cells corresponding to the poixts

Instead of choosing the pointsg,..,x,), we could have chosen a partition &f
asnintervals A1, ..,An). A natural quantization oft would then be: For each;,
place an atom of maggA)) at the positionu(#m Ja Xdu(x). This is pretty much
the same type of quantization as the Voronoi quantizatiodeéd in the Voronoi
guantization, the segments are obtained from the pointharelthe segments are
given directly. We now prove that for these two types of gizations, the original
measurgi dominates its quantizatignifi the convex order, i.q1 Ly L

13



Lemma 2.2.1.Let 7 be a partition ofR. Let [l be the probability measure which is
constructed fronu in the following way: for eachd € 7, an atom of masg(J) is

placed at position%. Then,

/(p(x di(x) /(p(x du(x) for every convex functiomp.

Proof. Let J be an arbitrary element of. By construction,u(J) = u(J) and
[3x di(x) = [3x du(x). The measuré:l((dT);) is a probability measure od. Its

. [yxdp(x . ,
expectation |sw. Therefore, by Jensen’s inequality, for every convex func-

_ Q)
tion @,
dux) (fJX dU(X)>
X > —rt
frooo sy =)
As(Jd) = p(J), the measuré:f(dT);) is a probability measure ah It consists of a
single Dirac point mass at the positiM. Therefore,

)
f(x) f3x dp(x)>
/ 9 ( )
Combining the two above equatlons

[ [ 35

which is equivalent to:

[ 000 a6 > [ ) dp)

As the above holds for eache 7, and together they constitute a partitionRyfit
follows that

[ 900 dhi) > [ ) df

2.2.2 L2 quantization

To quantize a random variab¥is to approximate it by a random variab{ewhich
has a support consisting ofpoints. The resulting quadratic error is given by:

E|X — X|?
The L2 quantization ofX is the random variablX, supported om points which
minimizes the quadratic error.

14



2.2.3 Lloyd’s fixed point algorithm for performing L2 quantizations

Algorithm 1 Lloyd’s fixed point algorithm for performing.2 quantizations
Let p be a probability measure dR. ThelL2 quantization ofu can be computed
using Lloyd’s [_I082] algorithm as follows.

Initial step: Seeding the algorithm
In order to seed the algorithm, pickarbitray real numbersg, .., Xn.

Step 1: From points to intervals
Suppose that thg’s are sorted in increasing order. For eachxgfconstruct an
interval Aj, as follows:

ifi—1, thenA, — <_oo , Xlzxﬂ

if2<i<n—1, thenA = Xi-1+X 7 Xi + Xt 1
2 2

. . X o

if i = n, thenAi = %—’_Xn , —|—OO>

Step 2: From intervals to points
For each interval;, compute:

/ 1 /
.= —— [ xduXx
5T WA a HX)
updatex; to this new value.
Step 3: repeat steps 1 and 2 until convergence ofxfe

Result ThelL2 quantization of1is obtained as follows. For ea¢hplace an atom
of massu(A;) at the positiornx. In other words,

- igU(Ai)ém

Remark.In step 1,A; consists of all points iR which are closer tg; than to any
of the otherx;. The intervalsA; correspond to Voronoi cells.

15



2.3 Thel2 quantization does not preserve the convex or-
der

2.3.1 Quantization of probability measures and thel.2-quantization
method.

A gquantization of orden of a measurgt is a measurg Which has a support con-
sisting of at mosh points. The measung should also be a reasonably good ap-
proximation ofp.

Definition 2.3.1. Let p be a probability measure dd Given a vecto(xy,..,X,) €
R", theVoronoi quantizatiorof pis defined as:

n
A=Y HA) 5
2,
whereA is the Voronoi cell of; defined ag\ = {x € R : [x— x| < [x—x;| forall 1 < j <n}

anddy, denotes the Dirac point massxat

Remark.The vector of pointgx, .., Xy) is called the quantization grid. Note how
the quantization grid together withuniquely definegl.”

Definition 2.3.2. Thequadratic errorof the Voronoi quantization defined above is

given by:
n
x —ul? du(u
i;A\. 2 du(u)

Definition 2.3.3. The Voronoi quantization which minimizes the quadratioers
called theL2-quantization

2.3.2 TheL2-quantization method does not preserve the convex order

In this section we show that the-quantization does not preserve the convex order.
There are several characterizations of the convex ordef{s&)q). We will make

use of two of these characterizations. The first one is ingd@ipotential functions,
the second in terms of martingale transitions. These amengiv Lemma2.3.5
below.

Definition 2.3.4. The potential of a probability measupds the function:

Up(t) = = | =t dp(x

Lemma 2.3.5. Let g andv be two probability measures d. The following are
equivalent:

(i) <V
(i) Up(t) >Uv(t) forallteR
(iii ) There exists random variabl@sandY satisfyingX ~ i, Y ~ v andE[Y|X] = X

16



Proof. see £S04. O
Theorem 2.3.6. The L2-quantization method does not preserve the convex order.

Proof. The proof is based on exhibiting a counterexample. Congigefollowing
two measures:

M= 5(5% +93s)
1
v=73(B0+8; +5)

The proof proceeds in three stepsWe first prove thatt <cx v. ii) Next we per-
form L2-quantization oftandv. iii ) Finally, we show that the quantized measures
are not ordered in the convex order.

Showing that the two original measures are ordered in the corex order.

To show thatu < v, it suffices by lemm&.3.5to exhibit two random variables
X andY which satisfy:X ~ p, Y ~v andE[Y|X] = X. Let X ~ pandY ~ v and
define a transition as follows:

PY=0|X=3)=2
P(Y =3 X =)=}
PY=1|Xx=9) =}
PY=1|X=2)=%

We now check that this transition has the martingale prgpert

Q@
Wl WIN
Wl =

E[Y]X:a _
E[Y]X:a _

ThereforeE[Y | X] = X which by the criterion 7 (Kellerer) of Chapter 2, implies
thatp <cx V.

win Nle
=

I
olo ok

NI =

Performing the L2-quantization of the two original measures.

Let 1 andV respectively denote thie2-quantization of order 2 of the measures
andv. The support of the measuneonsists of two points, it follows thatis equal

to W Indeed taking the support pfas the quantization grid leads to a quadratic
error of zero.

Computingy amounts to performing thie2-quantization of order 2 of the measure
%(6o+ 01 +01). This is a textbook example which can be found in the lecture
notes of H. Pham (seé¢’[1al]) . For the purpose of completeness, we reproduce

17



and expand the calculations here.

Becausd_2-quantization is a Voronoi style quantizatianis determined by its
support through:

7= 3R,

where(xq, .., Xn) is the support off andA; is the Voronoi cell ofx. In fact sincev

is a quantization of order 2, its support consists of at mgstigits. Let us denote
these two support points ly= x; andb = x, and without loss of generality let
a < b. Note thatv will be supported by a single point if and onlyaf= b. We must
determinea and b by minimizing the quadratic error function. It turns out tha
the quadratic error function has a different expressioraghef the two following
possible cases:

{case(i): la—2|<|b—3

case(ii): |a—3|>|b-3

The point% belongs to the Voronoi cell i in case(i) and to the Voronoi cell of
b in case(ii). Each of these two cases leads to a different quantization bkt
us determine the quantization resulting from the case @refa—3 | < |b—13 .
The result which we establish holds true in case (ii) as well.

Since the poin% belongs to the Voronoi cell ad, the quadratic error function is
given by:

1

(a—0)°+(a—35)*+(b—1)7]

1
= §[a2+a2—a+zr+(b—1)2]
1 1, 1
=3[2a- 21)2+§+(b—1)2]

This function is minimized whea = % andb = 1. It follows that the support of
is {4,1} . The resulting Voronoi cells amy = (—, 2] andA; = (3,%). And so
v is given by

E(a,b) =

Wl

=]

<>

Il
=
2
2

I
<
—~
—~
|
JR%
SN—
(o]
ENP
+
<
—
—
(o]
8
SN—
SN—
(o4
=

|
NN
o

FN

[ed]
=

+
Wl

Showing that the two quantized measures are not ordered in th convex order.

By lemma2.3.5 a necessary and sufficient condition forcx V is thatUfi(t) >
UV(t) holds for everyt € R. It suffices therefore to exhibit & € R such that
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Ufi(t*) < UN(t*). This is the case wheri = 7 as we now show by evaluating the
potential functions oftandv.

.1 1 ..
Uiy = - [ x| an
:—}'}—}‘—}F—}‘ sinceﬁ:}61+}65
2|6 4| 2|6 4 26 2%
1
3
" 1 ..
Uv(—):—/]R X—Z‘ dv(x)
1|1 .2 1
=3 Z—l‘ smcev:§6%+§61
1
T4

O

Corollary 2.3.7. Let u andv be a pair of measures which admits a martingale
transition. Let{t andV be their respective 2-quantizations. A martingale tran-
sition from{l toV does not necessarily exist (because we do not necessavity ha
fl<cx V).

Proof. This follows from Theoren®.3.6 and the characterization of the convex
order in terms of martingale transitions given in Lemgna.5

04 F // ‘\\ i
-0.6 - B

08 | i

-1 I ! !
-0.5 0 0.5 1 15

Figure 2.1: The potentials of the two measures before L2 tipetion
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-0.2 - B

0.4 7
-0.6 B

08 | i

-1 I ! !
-0.5 0 0.5 1 15

Figure 2.2: The potentials of the two measures after L2 dgatitn (note that by
Criterion 1 of section 2, neither of the quantized measuogsindates the other in
the convex order).
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2.4 A quantization which preserves the convex order

We have just seen that th@ quantization, which is the commonly used method to
guantize probability measures, does not preserve the xamder. In this section
we provide a quantization which does have the property csquuéng the con-
vex order. This quantization will be called-quantization because it produces a
guantization which is uniformly distributed on a finite nuenlof support points.

2.4.1 Definition of u-quantization

The w-quantization of a measure is defined in terms of the quélntiletion of that
measure. The quantile function of a measure is defined asvsll

Definition 2.4.1. The quantile function of a probability measure with diattibn
functionF(x) is
Fl(p)=inf{xeR:p<F(x)}

Definition 2.4.2. Choose an integamn. Let pe 2P (R) with distribution function

F(u) = [", dux).

U(a,.,an) = Zéa

FY(u)du

The u-quantization oftis

| —
N

wherea; = n

2|1

2.4.2 Numerical illustration of «-quantization

Example 2.4.3.Let u be the standard ( mean 0, variance 1) Gaussian law and let
v be a ( mean 0 and variance 2) Gaussian law.W,..,a;10) andU (by, .., bio)

be the respective quantizationspondv (we chose n=10). Using numerical inte-
gration we can compute the vectdes, ..,a;0) and(bs, .., b1o):

[ —1.75498 7 [ —2.48192 7
—1.04464 —1.47734
—0.67731 —0.95786
—0.38650 —0.54659
o | S| | D
0.38650 0.54659
0.67731 0.95786
1.04464 1.47734
| 1.75498 | | 2.48192 |
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Lemma 2.4.4. (u-quantization preserves the mean of a measurej beta prob-
ability measure with distribution functiof, andU (ay,..an) be itsu -quantization.
ThenpandU (ay,..a,) have the same mean.

Proof.

1
The mean ol (ay,..a,) = - q

= the mean ofu

2.4.3 w-quantization preserves the convex order

To show thatu -quantization preserves the convex order we will need thiemof
majorization which is a partial order which compares vextarsame length and
equal mean in terms of the relative dispersion of their coatés.

Definition 2.4.5. Let (ay,..,a,) and(by,..,by) be two vectors whose entries have
been sorted in increasing order.

(g <..<azandb; <.. <byp)

We say that(a,..a,) is majorized by(b,..,by), and write(ay, ..an) < (by,..,bn)

if:

(Hytia=3Lqb
and (i) sK, b <5k, a fork=1,.,n—1

Examples 2.4.6.(1,2,3) < (0,2,4) and(1,1,1,1) < (0,0,0,4)

The vectors(1,6,6,9) and(2,3,8,9) illustrate the fact that<) is a partial order,
and not a total order. Both vectors have the same mean, lthéneector majorizes
the other. (1< 2 but 1+ 6 > 2+ 3)

Remark.(ay, ..,an) < (b1, ..,bn) means thatbs, .., by) is more dispersed thday, .., an).
In the literature there is no consensus as to the directidgheobrdering. In eco-
nomics () is called the Lorenz order and compares income inequalifidhere,
(a1,..,an) < (b1,..,bn) if (bs,..,by) is less dispersed thday, ..,a,). In this paper,
we are using majorization<) alongside the convex ordex§y). For the convex
order,u <.xV means thav is more dispersed than Therefore, it makes sense for
us to choose the definition ¢&) which we have chosen.

The following lemma gives a characterization of the convedeoin terms of
the quantile function. We will use this frequently.

22



Lemma 2.4.7. Letpy,v € P (R) with distribution function= andG, then :

pandv have equal means
<cxV = P p
H Sex / F‘l(u)duzf G Y(u)du for everyp e [0,1]
0 0
Proof. See 55194, page 112, Theorem 3.A.5. O

_— . 12
Definition 2.4.8. U (ay, .., a,) will denote the law corresponding tr?zéa“ where
i=

0Oy is the Dirac point mass at

In the following lemma we establish a relationship betwdsndonvex order
and majorization.

Lemma 2.4.9. (a1, ..,an) < (b1,...,bn) <= U(ay,..,an) <cxU(by,..,bn)
Proof. Let us first determine the quantile functiondbfay, .., a,) andU (b, .., by).
. 10 T . . .
SinceU (ay,..,an) corresponds t(}n Zléa, its distribution functionF, is a piece-
=

wise constant function.

(@)

forx<a;

for x € [a,ai11)
forx> a,

F(x) =

= Si—

The quantile function of) (ag, .., a,) is by definition:
Fl(p)=inf{xeR:p<F(x)}

It follows thatF ~1 is a piecewise constant function frai@, 1] to R which is given
by:

Flip)=aif pe (%ln]

Integrating a piecewise constant function is easy:

Ry 1K
Flp)dp==% a
/0 (p)dp ni:§a

In the same wayG 1, the quantile function ofl (by, .., bn) satisfies:

I 1&
G~ dp=->5% b
J, e wrdp=1 5

23



Let us first show that (ay, ..,a,) < U (by,..,bn) = (a1,..,a1) < (b, ..,bn).
By lemma2.4.7 U (a,..,a,) <cxU(as,..,a,) implies that for each € (0,1),

[ an= [e i ap

k k
=95 a > b for eachk (%)
25220

U(ayg,..,an) <cxU(bs,..,b,) implies by Lemm&.4.9and definitior2.4.5 that they
have the same mean, and so:

[Fwap= [ p) dp
= _ia; = -_i\bi (k)

Finally, (x) together with(sx) imply that(ay, ..,a,) < (b1, ..,bn).
Let us now show thatay, ..,an) < (by,..,by) = U(ay,..,an) <cxU(a1,..,an).
We have seen th&t 1 is a piecewise constant function which is constant on each
. i i+1
of the intervals| —, ——|.
n" n

P
It follows thatp — / F(t) dtis a piecewise affine function, which is affine on
0

these same intervals. 0
The same is true of the functign— / G L(t) dt. Therefore to show that
0

P P
/ G lt)dt < / F-L(t) dt forall pe (0,1)
0 0
it suffices to show that
i/n i/n
/ G Y(t)dt g/ FL(t) dt for eachi € {1,2,..,n}
0 0
which by what we have shown at the beginning of the proof isvadgnt to:
1X 1X
=Y b <=%\ g foreachke {1,2,...,n}
ni; | ni;
which follows from the initial assumption théd;, ..,a,) < (bs,..,bn). Therefore
P P
/ G L(t)dt g/ F~1(t)dt for eachpin (0,1)
0 0
which gives, by lemm&.4.7, thatU (ay, ..,an) <cxU (by,..,bn). O

24



u-quantization is a bridge between the convex ordég) and majorization
(<). When measures are ordered in the convex order, the catedinf theiru -
guantizations are ordered in the majorization order.

Theorem 2.4.10.Letpv € P (R), with 7 -quantizations Uay, .., a,) and U(by, .., by).
If p <cx v then(ay,..,an) < (by,..,bn).

Proof. Suppose thatt <. v. By the definition of majorization & ), it suffices to
show:
(a1,..,ay) and(by,..,b,) have the same meafi)

k k
bi <y a foreachke {1,..,n} (ii)
252

(i) Let us show that the vectofsy, .., a,) and(by, .., by) have the same mean. Since

M <V, it follows thatp andv have the same mean (see section on the convex or-
der). Sinceu -quantization preserves the mean of a probability mea#ucdiows

that the measurdd (ay, ..,a,) andU (b, ..,b,) have the same mean. This implies
that s ,a=13" b, hence the vector@y, ..,a,) and(by, .., by) have the same
mean.

(i) Letting F (resp.G) denote the distribution function @f(resp.v), we have:

In the same way, one also obtains,

_ibi = n/f G (u)du

As, U <V it follows by the characterization of the convex order usiuantile
functions that:

p p

/ G‘l(u)dugf F~Y(u)dufor everyp € [0,1]
0 0
k k

Hence$ b < Y a foreachke {1,...,n}
27 2
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Remark.It can be shown that >¢ U (ay,..a,) (see Section 4, lemn@6.5. Al-
though this is common for several quantization methodstvshaore remarkable
is that this quantization preserves the convex order, asoweshow:

Theorem 2.4.11.( w-quantization preserves the convex order) Lat g P (R)
with quantizations Way,..,a,) and U(by,..,bn). If p<cxVv then U(ay,..,an) <cx
U (bla ">bn)'

Proof. Suppose thapt <cxv. By Theorem2.4.10this implies that(ay,..,an) <
(b1, ..,bn). By Lemma2.4.9it follows thatU (ay, ..,an) <cxU (b1, ..,bn). O

The quantization defined above would not be of much usk(#,..,a,) did
not converge tq Thankfully this is the case as the following theorem shows.

Theorem 2.4.12.Let pe P (R) with quantization Yay, ..,a,). Then as n goes to
infinity, U(ay, ..,an) converges weakly to p.

Proof. Recall that

F~1(u)du

10 ;
U(ag,.,an) = = Zéa whereg, = n/ )
i= W
The cumulative distribution functioR is a non-decreasing function, hence it fol-
lows that its inverseF — is also a non-decreasing function. As the integrand is a
non-decreasing function, the above integral may be bouadédilows:
i i-1 i—1 : i i-1
F~1(u)du

GRS <n(--—)F ()
F‘l(%) < n/l FYudu < F‘l(%)
Fh s A sF)

Let F, denote the distribution function b(ay, .., a,). By the definition olJ (ay, .., an),

o) = 5 3 Ha<t)

wherel denotes the indicator function. _ _
Let us now examin€ (t) andF,(t) whent € [F (=) | F=3(1)] _
SinceF is a monotone increasing function, applyiRdo each term oF*l(%) <
t <F~1(}), we obtain:
i—1 i
— —<F{)< -
—<FO<; (¥
Again whent € [F*l(i‘Tl) , F*l(iﬁ)], we boundF,(t), the distribution function of
U(ay,..,an), in the following way:
We have seen that:
i—1 i
g1 <F i (—=)<a<F () <an
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It follows that whenF ~(=1) <t < F~1(1), one must have eithey_; <t < & or
a <t <a;1. Therefore wheir ~1(=1) <t < F~1(1), the distribution functiorf,
which isFn(t) = 2 51", 1{a <t} must be equal to one of the 3 following values:
=1 or L or i£L
n n n - . .
It follows that whenF ~1(=1) <t < F~1(1) the following must hold:
i—1 i+1
<R < ()

By (*) and (**), it follows that whenF ~('=1) <t <F~1(1), we have:

Now the collection of intervalg (F~1('=1) , F~1(L)] : 1 <i < n} generate
the support ofy, and therefore that dfl (a;,..,an). From this we conclude that
| Fa(t) — F(t) |< % for all t € R. Hence asn — o, the distribution functiorf,
converges pointwise t6. This means that as— o, the quantizatiot (ay, .., an)
converges weakly tp O
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Chapter 3

Construction of martingale
transition between quantized
measures

3.1 Martingale transitions though linear programming

3.1.1 Linear programming

Linear programming consists in optimizing a linear funetisubject to a set of
linear constraints. The linear function to be optimizedaled the objective func-
tion. Let the vector of variables be denoted- (xi,..,X,). A linear function in
these variables is of the form: .

ZCiXi

i=

wherec = (cy, ..,Cpn) is the vector of coefficients of the objective function. Lane
constraints can be of the following forms:

n
Zaixi <b (an upper bound constraint)
i=

n
Zlaixi >b (alower bound constraint)
i=

n
Zlaixi =b (an equality constraint)
i=

wherea= (ay,..,an) is a vector of constraint coefficients.
A collection ofk linear constraints can be represented by:
a matrixA which hask rows andn columns,
a vectorb = (by..by)T,
in the following way:

Ax=Db
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(for k equality constraints)

3.1.2 The Linear programming problem in standard form
The linear programming problem can be stated as:
maxc’ x

subject t)Ax="Db
andx >0

x is the vector of variables to be determined.

cis the vector of coefficients of the objective function.
A'is the matrix of constraint coefficients.

b is the vector of right hand side values of the constraints.

The set of constraints:

Ax=Db
andx >0

specify a convex polytope over which the objective functibris to be optimized.

3.1.3 Solutions to linear programs

The simplex algorithm developed by Danzig solves a lineag@am when it has a

solution (see\[VD49], [Dan49g and [Dan9q).

3.1.4 Martingale transitions as solutions to linear progranming prob-
lems

Given two specified marginal laws and v, we have seen howi-quantization
provides us with two quantized measugeandv. Both (iandV are uniform laws
onn support points.

p~U(ay, .. an)
0 ~Y U(bl,,bn)

Let us now look at how linear programming provides us withtingale transitions
from (i to V. A martingale transition fronu to V can be expressed as a matrix
M = (m j)1<i j<n. The matrixM describes the transition probabilities through:

mj=P(Y =bj | X=a)

For each row, we must havg {_;m j = 1.
For each columrj, we musthavg ! ;m j = 1.
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As there aran rows andh columns, together these row sums and column sums con-
ditions impose & linear constraints on the entries of the matvix The martingale
property of the transition matrikl translates to:

n
for each rowi, % m jbj =a;
=1

As there aren rows, the martingale condition translates imtanore linear con-
straints on the entries of the matii&. We are in a situation with? variables (the
entries of the matriM) subject to 8 linear constraints. Each of the linear con-
straints is an equality constraint. In order to have a lipgagramming problem we
must specify a linear objective function which is to be maxid or minimized.
Any vector ofn? real numbers can be used as coefficients for the linear algect
function. A vectorc with n? entries defines a linear objective function through:

n n

22 (Mj Gien(j-1))
i=1]=1

By choosing different vectors of objective function coeaéits ( the vector), we
can specify different linear programming problems and thisin different mar-
tingale transitions fronpifo V.

We have seen that when a linear programming problem is givetandard form,
the linear constraints are provided as a matrix of consti@efficients together
with a vector of right hand side values for the constraintse Will now provide

an algorithm which constructs this matrix of constraintftioeents as well as the
vector of right hand side values. This algorithm works urttierassumptions out-
lined above (i.e. construction of a martingale transitiomnfi=U(ay,..,a,) to

V =U(by,..,by) ). This algorithm takes as arguments the two vectors of stippo
points (ay, ..,a,) and(by, .., by). It produces a 8 by n® matrix of constraint coef-
ficients as well a vector of right hand side values which hagtle 3. These can
then be used as inputs in a linear programming solver.
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3.1.5 Algorithm to build the matrix of constraint coefficients

The following two algorithms build the matrix of constraiobefficients and the
vector of right hand side values for the constraints.

Algorithm 2 Algorithm which constructs the matrix of constraint coaéfitts for
the linear programming solver

fori=1—ndo > Linear constraints from the row sums.
for j=1—ndo
M(@,(i—1)n+j)«1
end for
end for
fori=1—ndo > Linear constraints from the column sums.
for j=1—ndo
M(n+i,(j—1)n+i)«1
end for
end for
fori=1—ndo > Linear constraints from the martingale property.
for j=1—ndo
M(2n+i,(i—1)n+ j) < b(j)
end for
end for

Algorithm 3 Algorithm which constructs the vector of right hand side stosints
for the linear programming solver

fori=1— 2ndo > Because the matrix must be bistochastic.
R(i,1) «+ 1

end for

fori=1—ndo > For the martingale property.
R(2n+i,1) < a(i)

end for

Algorithm 4 Algorithm to turn the output of a linear programming solvesri
vector form into matrix form
fori=1-—ndo
for j=1—ndo
N(i,j) « O((i—1)n+j)
end for
end for

Remark.GNU Octave provides a linear programming solver, the glpkine.
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3.1.6 Numerical Example

The following example illustrates the use of linear progmdng as a means of
constructing martingale transitions between specifiedymallaws. Consider two
marginal laws, each one of which is a uniform distributiortleafollowing vectors

of support points:

—1.64683\ —3.2936
—0.89538 —1.79077
—0.49135 —0.98270
—0.15798 —0.31595
0.15798 0.31595
0.49135 0.98270
0.89538 1.79077
1.64683 3.29366

These vectors where obtained by performing: aquantization of order 8 of the
following Gaussian laws: the first with parameters (meanabiance 1) and the
second Gaussian law with parameters (mean 0, variances2)Sgction 2.4 oni -
guantization). Let us take as a vector of objective coefiisiea vector of length
n? = 64 with every entry equal to 1. We obtain the following magtite transition
matrix:

0.00000 097169 000000 000000 000000 000000 000000 00283
0.00000 000000 (92986 005890 000000 0OOOOO 000000 001123
0.05890 000000 000000 094110 000000 0OOOOO 000000 000000
0.13130 000000 000000 000000 086870 000000 00OOOO0 000000
0.17239 000000 000000 000000 013130 069632 000000 000000
0.20730 000000 000000 000000 000000 030368 048901 000000
0.20196 000000 007014 000000 000000 000000 051099 021691
0.22815 002831 000000 000000 000000 000000 000000 074354/
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3.2 Martingale transitions obtained from symmetric ma-
trices

Given two specified marginal laws and v, we have seen howi-quantization
provides us with two quantized measugeandv. Both[iandV are uniform laws
on n support points.

ﬂN U(alv"7an)
9 ~U (b, ...bn)

Any martingale transition fromuto V can be expressed as a mathk =
(my,j)1<i,j<n Which describes the transition probabilities through:

mj =P(Y =D [X=a)
A square matriXM of sizen provides a martingale transition fro;~>U (a, .., a,)
toV ~ U (by,..,by) if and only if the following 31 conditions are verified:
n

(a) For each rowi, Z m;=1
=1
n
(b) For each column, Zm’j =1
i=

n
(c) For each row, Z m jbj =&
=1

3.2.1 Constructing a martingale transition from a symmetric matrix

Now suppose that we have a symmetric ma@which has spectrurtbs, .., b,) and
diagonal elementgay, .., a,). We now describe how this matr&can be used to
construct a matris which provides a martingale transition frqmx'U (ay, .., an)
tov ~U (bl, . bn)

By the spectral theorem for symmetric matrices there exigmborthogonal matrix
Q such that

S=Q'AQ

The matrixA is the diagonal matrix with entrig®;, .., by).

Let us defineM to be the matrix obtained by squaring the entrie€6bf In other
words, the(i, j) entry of M is given bym, ; = qﬁj whereq; j is the (i, j) entry of

Q.

We now show thaM satisfies the conditions (a), (b) and (c) above, which means
thatM provides a martingale transition from~U (ay, ..,a,) tov ~ U (by, .., by).
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The rows of an orthogonal matrix form an orthonormal bast similarly the
columns of an orthogonal matrix also form an orthonormalshaks follows that
conditions (a) and (b) are verified.

Let us now verify that the transition described by the maixpossesses the
martingale property. This amounts to verifying conditiat (

n
Foreach row, % m jbj=a
=1

By hypothesis the diagonal elementsQére (ay, ..,a,), so the(i,i) entry of
Sis equal tog;. We have seen th&= Q"AQ. Let us perform these two matrix
multiplications in order to calculate thig,i) entry ofS.

Oi1 Oi2 --- OQn by 0 ... O
S Rl | D
O1 On2 --- Onn 0 o ... bn

From this we see that the matiX’ A has(i, j) entry given byg; ;b;. The rowi of
the matrixQ" A is given by:
(Giab1 di2b2 .. Ginbn)
The (i,i) entry of the matrixQ" AQ is the inner product of the rowof the
matrix QT A with the columnj of the matrixQ.
Qi1
g2 AP
(gabr Gighy .. ginbn) [ 7| = Zlqi,jbj
. <
Gin

As m; ; was defined to be|ﬁj and the matriXS has the property that it,i) entry
is g, the above line can be written as:

n
a = mb
=

This completes the proof that the mathik obtained by squaring the entries@f,
provides a martingale transition fropr>U (ay, ..,an) toV ~ U (b, .., by).

3.2.2 Existence of symmetric matrices with given diagonalrad spec-
trum

Now that we have seen how a symmetric matrix with properlysehodiagonal
and spectrum can be used to produce a martingale transiioafural question
is: when does there exist a symmetric matrix with a givenaliafand spectrum?
The answer is provided by the following theorem:
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Theorem 3.2.1. (Horn-Schur Hor54], [ Sch23) There exists a symmetric ma-
trix with diagonal (as, ..,a,) and spectrum(by,..,b,) if and only if (az,..,a,) <
(bl,..7bn)

The symbol(<) denotes the partial ordering called majorization whichds d
fined as follows:

Definition 3.2.2. Let (ay,..,a,) and(by,..,by) be two vectors whose entries have
been sorted in increasing ordel K .. < ay andby <.. < hy).
We say that(a,..a,) is majorized by(by,..,by), and write(ay,..an) < (bs,..,bn)

if:
n n
(> a=>b
50"
k k
iHyYb<Saqy fork=1.,n-1
2752
Examples 3.2.3.(1,2,3) < (0,2,4) and(1,1,1,1) < (0,0,0,4)
The vectors(1,6,6,9) and(2,3,8,9) illustrate the fact that<) is a partial order,

and not a total order. Both vectors have the same mean, blaéngector majorizes
the other. (< 2 but 1+ 6 > 2+ 3)

Remark.(ay, ..,an) < (b1, ..,by) means thatby, .., by) is more dispersed thday, .., an).

3.2.3 Algorithm for constructing matrices with specified dagonal and
spectrum

Algorithm 5 Chan Li Algorithm to construct a symmetric matrix with syfesd
diagonal and spectrum

(Chan-Li [CL83)) (a,...,an) and (bg,...,by) are given vectors which satisfy
(a,...,an) < (b1,...,by), this algorithm constructs a symmetric matrix with di-
agonal element&y, ..., a,) and eigenvalued, ..., by).

Proof. In the case whera = 2, there is an explicit solution:
Supposebs,by) and(ag,a;) are two vectors which satisfiag, ay) < (b1, bz).
Define the following orthogonal matri® as

1 [\/bZ—al —\/al—le
Vbho—bi [Vai—b1  Vbo—as

Q=

Now,
T bl 0 - a; ok
Q |: 0 bz] Q o [ * a2:|
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Eigenvalues are left unchanged by conjugation with an gdhal matrix. So the
matrix on the right hand side is the desired matrix with spewt(b;,b,) and diag-
onal(as,ap).

In the case whera > 2, the algorithm proceeds in a recursive fashion. The main
step of the algorithm reduces a problem of dize a problem of siz&— 1. This
main step is applied— 2 times, thus reducing a problem of dimensiotiown to a
problem of dimension 2 which has the immediate solutionrgasove. The algo-
rithm starts with the diagonal matrix with entrids;, .., b,). This diagonal matrix

is then conjugated — 1 times by properly chosen orthogonal matrices. At the end
of this process, the diagonal entries éag .., a,) and the spectrum, left unchanged
through conjugation by orthogonal matrices, is gti, ..,by). The recursive step

of the algorithm works as follows. You start with a square nxaif dimensionn
whose diagonal elements gt ... b,) in any order. You conjugate it by a permu-
tation matrix so that its (1,1) elementlis and its(2,2) element isb;. Then you
conjugate it by an orthogonal matrix in the following way:

c s O bi ... ...|Tc =s O a
—-sS C 0 b] S C 0 — ... b1+bj—a]_
0 0 Iho ) 0O 0 I,

In_» denotes the identity matrix of dimension—2. The values of andc are
computed in the same way as in tfre= 2) case. The main step of the algorithm
is then recursively applied to the submatrix obtained byawng the first row and
the first column of the right hand side matrix above. This isgilde by lemma
3.24 O

The following lemma makes the recursive step in the algarigossible.

Lemma 3.2.4. (Chan-Li [C1.83]) Suppose = (ay, ..,an) < (by,..,by) = bare two
given vectors whose entries have been sorted in increasiigg. denote by; the
smallest element db which is greater than or equal & (i.e. bj_1 <a; <bj).
Define two new vectorg"®" andb™" as follows: a"¢" is obtained by removing;
from &, andb™®" is obtained by removing bothy andb; from b and inserting the
value (by +bj — ). Then the following holdsa™®" < bW

Proof. We will use the following notation: for a vect@; sumV) denotes the sum
of the entries of.
Let us start by verifying that suf@"") = sum(b"®").

sum(b"™") = sum(b) — by — bj + (by + bj — &)

— sumb) —a;
— sumd) —a; (indeedd < b= sum&@) = sumb) )
= sum(@""
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Now a"e" andb™" are both vectors of lengtfn — 1) with the same mean. Let
us denote by suf@™", 1 k) the sum of thek smallest elements @& As we have
showed that sug@™®") = sumb™%), to show tha&"®" < bV it suffices to show
that sunfb™¥, 1, k) < sum(@e", 1, k) for eachk from 1 tok— 1. In order to prove
this, let us first examine the relative position of the eletaeha™®¥ andb"e".

One of the following statements must hold:

eitherb; < .. <bj_1 <a; < (b1—|—bj —a) < b;
orb; <..<bj_1 < (by+bj—a;) <a <b;

orby <..<(bp+bj—a)<bj_ ;<& <b;

Indeed this is a consequence of the two following two obgEms:
(i) bj was chosen so thét_; < a; <b;.
(ii) (by,bj) and(ay,(by +bj —a1)) have the same mean abd < a; (asd < D).
Therefore eitheby <a; < (b1 +bj—a1) <bjorb; < (bi+bj—a;) <a; <b;

Casek < j—2:
bj_1 is the(j —2)'" smallest element di"®%. Let us look at the sum of tHesmall-
est elements db"®"W whenk < j —2. Asbj was chosen so thél_1 < a; < bj, it

follows that wherk < j — 2, each element in SL(rEf'eW, 1,k) is less thara;. Hence
sumb"% 1 k) <k a < sum@™v,1,k).

Casek=j—1:

sumB* 1K) = (5/7bi) + (b1 +b; — )
Sun(anewa 17 k) = Zij:2 g

Therefore surtb™", 1, k) < sum@™" 1,k)

— <Zbi>+(b1+bj—a1) < _iaa

j j .
= Z\bi < Zlai , Which is true becauda™" - g""
= i=

Casek > j:
Note thatbj 4 is the j*" smallest element di"®"

sumb™™ 1 k) = (Zijz_zl bi> +(by+bj—ag)+ 3 by
suma™ 1.k) =y la
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Therefore surtb™", 1,k) < sum@™®" 1,k)

j—1 k+1 j
= bi | +(b1+bj—ag) + b < a
(5b)+timm S < 3

k+1 k41 .
= Z,bi < Za which is true becausg™" - "V
i= =

3.2.4 Numerical example

The following example illustrates the construction of a timgale transition through
the construction of a symmetric matrix with specified disgjaand spectrum.

—16468§ —3.2936
—0.89538 —1.79077
—0.49135 —0.98270
—0.15798 —0.31595
0.15798 0.31595
0.49135 0.98270
0.89538 1.79077
1.64683 3.29366

These vectors were obtained by performing:aquantization of order 8 of the
following Gaussian laws: the first with parameters (meanabiance 1) and the
second with parameters (mean O, variance 2), (see Seci@m2!-quantization).
Using the Chan Li algorithm we can construct a symmetric athich has the
first vector as diagonal and the second vector as spectrurnthéffaise the method
described above to construct the martingale transitiomixnat

We obtain the following martingale transition matrix:

0.28738
0.00000
0.17847
0.18225
0.18940
0.00000
0.11589
0.04660

000000
041128
000000
000000
000000
041833
004887
012153

071262
000000
007197
007350
007638
000000
004674
001879

000000
000000
074955
008545
008881
000000
005434
002185

000000
000000
000000
065880
018365
000000
011237
004518

000000
058872
000000
000000
000000
029224
003414
008490

000000
000000
000000
000000
046176
000000
038388
015436

00000

000000
000000
000000
000000
028943
020378
050679
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3.3 Martingale transitions obtained by clipping potentials

We have established that-quantization has the property of preserving the con-
vex order. That s, ift <V, their z7-quantizations are also ordered in the convex
order, i.eU(ay,..,an) <cxU(b1,..,by). In this section we see that this property en-
ables the use of an algorithm by Chacon and Walsh. In doinggs@an construct
martingale transitions frord (ay, ..,a,) toU (b, .., by).

Definition 3.3.1. The potential of a measugeis defined to be the function:

H—/j’ X —t|dp(x)

The next lemma relates potentials of measures to the comdex. A proof of
this lemma can be found irs[5T94, on page 111.

Lemma 3.3.2. Let pandv be two probability measures dh Let f (resp.g) be
the potential of1 ( resp.v).

MH<xV <= f2>g

We now detail the main step of the Chacon-Walsh algorithmctvt@hacon
and Walsh introduced to give a new solution to the Skorokhmbeslding problem
[CW7Eq. Let f be the potential function of a probability measyre Choose a
line L which intersects the graph dfin two points. Denote these two points and
their coordinates bA = (A, Ay) andB = (B, By). Without loss of generality, let
Ay < By.

Define the functiorg by:
{ f(x) if X € (—00, AY) U (Bx, )
g(x) = (By-A) .
Ay+ (X— Ax)m |f Xe [AX7 BX]

The functiong is also the potential function of a probability measure. Bée
a Brownian motion with initial lawBy ~ . Let T be the following stopping time
for the Brownian motiorB:

if Bp € (—o0,Ax)U(Bx,0) thenT =0
if Bo € [Ax, By thenT =inf{t > 0:B; = A or B; = By}
T is defined so that the law & has potential functiog.
Brownian motion is a martingale, and Sin&ET | < oo, it follows thatE[Brt |Bg| =

Bo. Therefore the transitio(Bp, Br) has the martingale property. From the defini-
tion of T, the transitionBy, Bt ) is seen to be:
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If X € (00, Ay) U (By, ) thenx transits tox with probability 1
x transits toA; with probability (Bx — X) /(Bx — AX)

If X € [Ax, By] then _ _ -
x transits toBy with probability (x — Ay) /(Bx — AX)

This step of the algorithm illustrates how to explicitly alst the unique martingale
transition between the probability measure with potentiand the probability
measure with potential.

Remark.We will call this procedurelipping. The potentialf was clipped using
L to produceg. Clipping using a segment will mean clipping using the lineici
contains that segment.

This brings us to the following corollary of Theore2m.11

Corollary 3.3.3. Let pv € P (R), satisfying p<cx v, and denote their quantiza-
tions by Uay, ..,a,) and U(by, ..,b,). A martingale transition from Uay, .., a,) to
U (by,..,b,) can be generated by the Chacon-Walsh algorithm in (n+1)sstep

Proof. Supposql <. V. Sincew -quantization preserves the convex order ( The-
orem 2.4.11), it follows thatU (as,..,a,) <cxU(by,..,b,). Denote byf(t) the
potential ofU (ay,...a,) and byg(t) the potential oU (by,...b,). Lemma3.3.2
implies thatf (t) > g(t) for everyt € R. Note thatf andg are both piecewise affine
functions. The graph of is composed ofn— 1) segments and 2 half-lines. We
may clip f by each of these segments and half lines. By doing this weroafter
n+ 1 clippings a martingale transition froth(ay, ...ay) toU (by,...by).

]

3.3.1 Implementation of the Chacon Walsh algorithm forz -quantization
To implement the algorithm, one needs the coordinate ofritezsection point of
two lines (see\[Veil?)])

LetL; andL; be two lines in the plane, with; going through the points, y1)
and (xz,y2) andL, going through the pointéxs,ys) and(xs,ys4). Then the inter-
section point has the following andy coordinates: The x coordinate of the inter-
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section point is given by:

X1 Y1 X1 1 X1 Y1

X1 — X2
X2 Yo X 1 X2 Y2
X3 Y3 X3 1 X3 Y3

X3—X4

— X4 Ya Xg 1 B X4 Ya

X1 1 y1 1 X1—X2 Y1—Y2
X2 1 Vo 1 X3—X4 Y3—VY4
X3 1 Y3 1
X 1 ya 1

Similarly, they coordinate of the intersection point is given by

X1 Y1 y1 1 X1 Y1
Y1—Y2
X2 Y2 y> 1 X2 Y2
X3 Y3 y3 1 X3 Y3
Y3—VYa
Xa Y4 ya 1 Xa Y4
y = =
xg 1 yi 1 X1—X2 Y1—VY2
X2 1 y2 1 X3—Xq y3 - Y4
X3 1 y3 1
X 1 ya 1
Here
a b
c d

denotes the determinant of the matrix

(

Example 3.3.4.We have obtained tha -quantizationdJ (a;, ..,ag) andU (by, .., bg)

ab
c d

for the Gaussian lawi(0,1) andN(0, 2).

—1.6468
—0.89538
—0.49135
—0.15798
0.15798
0.49135
0.89538

1.64683
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—0.98270
—0.31595
0.31595
0.98270
1.79077
3.29366




We can now use the method described in this section to congutartingale
transition matrix fromU (ay,..,ag) to U(by,..,bg). This martingale transition is
represented by a matridl = {m;} which provides the transition probabilities
my =P(Y =bj [ X =a).

There are 4 canonical ways to clip:
1: clockwise

2: counter clockwise

3: extremities to center

4: center to extremities

The following diagrams illustrateounterclockwiselipping of the potential func-
tion.

L L L L L L L L L L L L L L L L L L
25 2 15 1 05 0 05 1 15 2 25 25 2 15 1 05 0 05 1 15 2 25

(a) Initial stage: The original Potentials (b) After 1 clip

(c) After 2 clips (d) After 3 clips

Figure 3.1: Counter clockwise clipping of the potentiak first 3 steps
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3.3.2 Clipping from extremities to center

Clipping from extremities to centgrroduces the following martingale transition:

0.505115
0.279299
0.157884
0.057702
0.000000
0.000000
0.000000
0.000000

0122688
0178670
0208771
0233607
0196832
0059433
0000000
0000000

0083704
0121898
0142434
0159378
0180625
0211525
0100437
0000000

0072123
0105033
0122728
0137328
0155636
0182261
0224891
0000000

0056251
0081918
0095718
0107105
0121384
0142149
0175397
0220078

0053373
0077727
0090822
0101626
0115175
0134878
0166425
0259974

0053373
77727
0090822
0101626
0115175
0134878
0166425
0259974

CD53373\
77727
0090822
0101626
0115175
0134878
0166425
025997

The expected variance of a martingale transition fomV is entirely determined
by those marginals | andV). In fact it is equal to the area between the potentials
of ftandv. We now show this. For this reason it will be of interest todgtthe
conditional variance of each martingale transition froto U as these are different.

Lemma 3.3.5. Let (X,Y) be a 2 step martingale. The variance of the martiga
incrementY — X is uniquely determined by the variance of X and that of Y. More
precisely,Var[Y — X] = Var[Y] — Var[X]

Proof. We show it wherE[X] = E[Y] = 0, the proof can easily be extended to the
general case.

Var(Y —X) = E(Y = X)? = E(Y2 - 2XY + X?) = E(Y?) — 2E(XY) + E(X?)
= E(Y?) - 2E(X.(X + (Y = X))) + E(X?)
= E(Y?) —E(X?) = 2E[X(Y = X])
then you condition on X and integrate with respect to the |&X.0
Var[Y] —Var[X] — E[2E[X(Y — X)|X]]
Var[Y] —Var[X]
]

Lemma 3.3.6. If pandv are two centered measures with finite support such that
M <cx V, then the area between their potential functions is equileé®second mo-
ment ofv minus the second moment jf

Proof. Let K; andK; be such thap((K1,Kz)) =1 andv((Ky,Kz)) = 1.
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P :/RUu(t)—Uv(t)dt

:/KTZ(/KTZ—|x—t|dp(x)—/K}:Z—|x—t|dv(x))dt

:/(Tz(/(fz |x—t|dv(x)—/}:2|x—t|dp(x))dt
:/KTZ/KZ\x—t]dv(x)dt—/Kz/Kz\X—t!du(x)dt

:/KK/ X —t] dt dv(x / / x—t| dt dy(x) by Fubini

Now,

Ko Ko Ko X Ko Ko
//\x—t]dtdp(x):/ ]x—t\dtdp(X)Jr/ / Ix—t|dt dpx)
Ky Ky Ky Ky K1 X

Ko X Ko Ko
/x—tdtdp(x)+/ / t—x dt d(x)
K1

K2 1
=/ = 2—xK1——dep(x +/ x4 2 KZ—XK2d|J(X)
Ky

K 1,, 1
= X dp(x)—/ XK1 — K2 4+ ZK2 — xKodp(X)
Ky Ky 2 2

AstZdu(x)_landf 2xdu(x) = 0, we get
K

// IX—t] dt dv(x) = /2x2dp(x)+5|<f—3|<§

Ki JKqy K1 2 2

Asf sz IXx—t| dt du(x) is of the same form witly replaced byy, it follows that
a :/xzdv(x)—/xzdp(x)
R R

As we have just seen that every martingale transition fpdmv has the same
variance, it is interesting to look at the variance of thetingale increment condi-
tioned on the value before the transition. To examine thésgafine the conditional
variance function:

O

Definition 3.3.7. (Conditional variance function)
Given two random variableX andY, we define the function

x—=Varly =X | X =X

which we call the conditional variance function.
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For a two step martingale (X,Y) we can plot the varianc& aonditioned on
X = x. We will call this the conditional variance functior:— Var[Y|X = x].
There are several interesting cases:
e conditional variance function can be a constant (for exafBrownian transition
law this is the case)
e the graph of the conditional variance function can be comresmile shaped.
This means that conditioned on a big movement the expegtafithe magnitude
of the next movement is larger than if the initial movemerd baen small.
(This is likely to be the dynamics of a stock price)
e The graph of the conditional variance function can be uniahocheaning that
the middle diffuses more than the extremities.

We can plot the conditional variance function of this mayéle function. For
clarity we produce the plot with quantizations of order &rthan 8.

2.2

16 [

14

12

0.8 -

0.6 |-

0.4

! !
-3 -2 -1 0 1 2 3

Figure 3.2: Conditional variance: clipping tails first

Remark. This martingale transition exhibits a phenomenon callegigence of
volatility. We are dealing with a 2 step martingale. Theialitaw (t = 0) is the
Dirac at 0. The next law (dt= 1) is the z-quantization of theN(0,1) law. The
third law (att = 2) is the u -quantization of theN(0,2) law. One sees that if the
first martingale increment & 0 tot = 1) is large in absolute value then the second

increment{=1tot = 2) can also be expected to be large in absolute value. This

is a phenomenon of persistence of volatility.
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3.3.3 Clipping from center to extremities

Clipping the potential function of from center to extremitieproduces the follow-
ing martingale transition:

0.505115 0081628 0081628 0081628 0081628 0081628 0081628 CD05115\
0.279299 0118875 0118875 0118875 0118875 0118875 0118875 0007448
0.157884 0138902 0138902 0138902 0138902 0138902 0138902 0008703
0.057702 0155427 0155427 0155427 0155427 0155427 0155427 0009738
0.000000 0158673 0158673 0158673 0158673 0158673 0158673 0047964
0.000000 0141803 0141803 0141803 0141803 0141803 0141803 0149181
0.000000 0121358 0121358 0121358 0121358 0121358 0121358 (271851
0.000000 0083333 0083333 0083333 0083333 0083333 0083333 (50000

We now look at the corresponding conditional variance fiamct

1.6

'cvrﬁidGO.data" —

-25 -2 -15 -1 -0.5 0 0.5 1 15 2 25

Figure 3.3: Conditional variance: clipping from center xtremities

Remark. This martingale transition exhibits the opposite phenamneto that of
persistance of volatility. IfMo — M| is small, then the expected varianceMf —
My is large.
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3.3.4 Clockwise clipping

Clipping the potential function of clockwiseproduces the following martingale

transition:

0.259974
0.166425
0.134878
0.115175
0.101626
0.090822
0.077727
0.053373

0259974
0166425
0134878
0115175
0101626
0090822
Q077727
0053373

0259974
0166425
0134878
0115175
0101626
0090822
Q077727
0053373

0220078
0175397
0142149
0121384
0107105
0095718
0081918
0056251

3.3.5 Counter clockwise clipping

Clipping the potential function of counter clockwis@roduces the following mar-

tingale transition:

0.259974
0.193288
0.161724
0.135679
0.110996
0.084952
0.053387
0.000000

0259974
0193288
0161724
0135679
0110996
0084952
0053387
0000000

0259974
0193288
0161724
0135679
0110996
0084952
0053387
0000000

0220078
0203709
0170442
0142994
0116980
0089532
0056265
0000000
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0000000
0224891
0182261
0155636
0137328
0122728
0105033
0072123

0000000
0056265
0089532
0116980
0142994
0170442
0203709
0220078

0000000
0100437
0211525
0180625
0159378
0142434
0121898
0083704

0000000
0053387
0084952
0110996
0135679
0161724
0193288
0259974

0000000
0000000
0059433
0196832
0233607
0208771
0178670
0122688

0000000
0053387
0084952
0110996
0135679
0161724
0193288
0259974

0000000
0000000
0000000
0000000
0057702
0157884
0279299
0505115/

CDOOOOO\
0053387
0084952
0110996
0135679
0161724
0193288
025997




22

1.8

1.6

1.4

12

0.8

0.6

0.4

0.2

Figure 3.4: Conditional variance: clipping countercloéev
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Part Il

The Skorokhod embedding
problem and constructions of
martingales with specified
marginals
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3.4 Introduction

We will give a new solution to the Skorokhod embedding prob(&EP) that was
published in Bak17. We will also discuss the use of solutions to the SEP as means
of constructing martingales with specified marginals, ab asethe limitations of

this approach.

3.4.1 Martingales as time changed Brownian motion

Before we discuss the Skorokhod embedding problem andétasia way of con-
structing martingales with specified marginals, it will beetull to recall some
theory about how martingales can be represented as timgetid@rownian mo-
tions. By Dambis Dubins-Schwarz (s€e\[94]), if M is a continuous martingale
starting from 0 (i.eMg = 0) with < M,M >q,= o, then

Mt = B<M,M>1

for some Brownian MotioriBy).

3.4.2 The Skorokhod embedding problem

The Skorokhod embedding problem (SEP), s€enf, is the problem of embed-
ding a probability measure into Brownian motion by means stapping time.
Formally, Skorokhod's original definition of the Skorokheohbedding problem is
the following:

Definition 3.4.1. Given a Brownian motioW and a probability measuygon R
which satisfiesfp x dp(x) = 0 and [ x> d(x) < o, a solution to the Skorokhod
embedding problem is a stopping tifiefor W, such that:

Wr has lawp andE[T] < o

It turns out that the requirement thathave a finite second moment is not
necessary. A generalized definition of the Skorokhod emibgdaroblem is as
follows:

Definition 3.4.2. Given a Brownian motioW and a probability measuggon R
which satisfiesfp xdpu= 0 and [ [x|/dp < o, a solution to the Skorokhod embed-
ding problem is a stopping time for W, such that:

Wr has lawy andW 7 is uniformly integrable.

In [Sko6], Skorokhod gives a solution to the SEP. The solution givweSko-
rokhod however requires an additional random variable wigcdndependent of
the Brownian motion. The solution given by Dubins, seefj6q, is the first solu-
tion which does not require an additional independent randariable. Since then,
a variety of other solutions have been given. For an extersivvey of existing
solutions, see(Pbt04].
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It turns out that every stopping time which is a solution te 8korokhod em-
bedding problem for a measuudhas the same expectation. The value of its expec-
tation is the variance of the measyrdndeed, lefl be a solution to the Skorokhod
embedding problem fou. By Ito’s formula, M; = BZ —t is a martingale. By the
optional stopping theoren[T| < o implies that

E[Mo] = E[Mr]
= 0=E[Bf —T]
= E[T] = E[BF]

Now sinceT is a solution to the Skorokhod embedding problemfoit follows
thatBr ~ pand sof[B?] is equal to the second momentyof

3.4.3 Using the Skorokhod embedding problem to construct mén-
gales with specified marginals

This past decade has seen renewed interest in solutions 88R. This interest is
due to the use of such solutions to construct martingalds spiecified marginals
( see, e.g., HIP0F, [Hob9q, [CHO7], [MY02], and [HPRY11). New solutions

to the SEP can in turn lead to new constructions of martirsgalith specified

marginals. Model-free methods for pricing financial instents rely on construc-
tions of martingales with given marginals (see, elgofj11]). For these reasons,
new solutions to the SEP can ultimately lead to improved bamd model-free

prices of financial instruments.

e In the two marginal setting: Lgt andv be given measures which satisfy
M <c V. In order to construct a martingale transition fremo v it suffices to
construct stopping times andt, which satisfy:

11 is a solution to the SEP fqr
T, is a solution to the SEP for.
71 < Ty a.s.

Indeed, the bivariate laW,,W,) by construction has the required marginals,
W, ~ pandW, ~ v, as well as the martingale propef\Wi, (Wi, | = W,

e In the continuous time setting: Léty);cr+ be a time indexed collection of
marginals which satisfyls <cx it Whenevers <t. Then in order to construct a
martingaleM which satisfiedVl; ~ |k for eacht € R, it suffices to obtain a col-
lection of solutions to the SER; being a solution to the SEP fgx andts < 1
a.s. whers <t. Then (W, )icr+ iS @ martingale which satisfied; ~ | for each

t € RT. IndeedE[W, W, ] = W, for all s;t satisfyings < t.
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Definition 3.4.3. (the barycenter function of a measure) The barycenter ifumct
of a probability measurgpis defined as follows:

Ty
o) = e

The Azema Yor solution to the Skorokhod embedding probledefsied as

Definition 3.4.4. (The Azema-Yor solution to the Skorokhod embedding problem
see \Y79] ) Let M(t) denote the maximum value to date of the BrowniartioroB.

M(t) = sup B(s)

0<s<t

The Azema-Yor solution to the Skorokhod embedding probkethe stopping time
T defined as

T=inf{sM(s) > ¢(B(s))}

Let (it )ier+ be a collection of probability measures such that the foncti

_ S ygly.tydy
Jx aly,t)dy
is increasing irt for eachx. Hereg(y,t) denotes the density of the measye

Under this condition, Madan and Yor (seééY{02]) use the Azema-Yor solution to
the Skorokhod embedding problem to construct a martingabth

o(xt)

Mt ~ Lk

The martingaleM is defined asvl; = By,, with 1; being the Azema-Yor solution
to the Skorokhod embedding problem fgr The recent book by Hirsch, Profeta,
Roynette, and Yor ( se¢i{PRY 1] ) contains humerous other constructions.

3.4.4 Limitations of the Skorokhod embedding problem as a mens of
constructing martingales with specified marginals

Here we discuss the reason why most solutions to the SEP abteuto construct
martingale transition between every pair of measures wadrhits a martingale
transition. This is a consequence of a Theorem by Meilijseargin [Mei82]. We
now explain why this is the case.

In the following (W) tcr+) Will be a standard Brownian motion.

Definition 3.4.5. A procedure which associates to each measure in the set

{(HeP®) : [ pdu) <o)
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a unique stopping timewhich is a solution to the Skorokhod embedding problem
forp, i.e. :

W~
W ¢ is a u.i. martingale
will be called astandardsolution to the SEP.

Remark. Most currently published solutions to the SEP atandard solutions.
This includes the solutions given by Dubinsi[b6d, Azema-Yor [AY 79], Vallois
[\Val83], as well as the new one presented in this work. A solutioh¢dSEP which
is notstandardcan produce several different stopping times for a givensunezgu.

Definition 3.4.6. Let v be a probability measure dR. A solutiont to the Sko-
rokhod embedding problem foris said to bailtimateif:
For every measung with 1 <cV, there exists a stopping tintesatisfying

{ T <tas.

Wy ~

Definition 3.4.7. The hitting time of the leveh, for the Brownian motionWV is
denotedT, and defined as:

Ta=inf{t >0:W =a}
Theorem 3.4.8. (Meilijson see [/ei87]) tis ultimate if and only it = T, A Ty, for
some a< 0 < b.

This leads to the following limitation aftandardsolution to the SEP as means
of constructing martingale transitions between specifiadgnals:

Corollary 3.4.9. Everystandardsolution to the SEP is unable to construct a mar-
tingale transition between certain pairs of measures wkadmit a martingale
transition

Proof. Letv be a measure which is not supported on two points, i.e.
V#ad,+ (1—a)d, witha,be R,a € [0,1]

Consider a standard solution to the SEP. Denote(by the stopping time which
this solution associates to As v is not supported by two points it follows by
Meilijson’s theorem that(v) is not ultimate. Therefore there exists a meagure
with p <cx v for which there exists no stopping timé) satisfying:

{ (W) <T(V)
W ~ K

Therefore the standard solution under consideration iblarta construct a mar-
tingale transition fromuto v. Of course sinc@l <V, a martingale transition from
[ to v necessarily exists. O
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Remark.Hobson, Brown and Rogers (seeHR01] ) have modified the Azema-
Yor solution in order that it no longer @andardand that it be able to construct
martingale transitions between arbitrary pairs of maigiméich admit a martin-
gale transition.

3.5 The Dubins solution to the Skorokhod embedding prob-
lem

In this section, we describe the Dubins solution to the SEEmgin [Dub6d. The
presentation here differs from the original presentatiecalnse we wish to empha-
size a framework which we will use in the next section to cartcita new Dubins
type solution to the SEP.

Let pu be the probability measure which is to be embedded in Brawnia-
tion. A sequence of partitions d@& is defined recursively. The initial partition,
eartition(0) is {R}. The following partitions are obtained recursivehartition(n+
1) is obtained by cutting each intenva, b] € 2artition(n) into two, as follows:

[a,b] — [a,c] and[c,b] where

1
c= @) /[&b] x dux) (note thata<c<b)

If aorbis -+ or —, the value ofc is calculated in the same way, and the
cutting is also done in the same way. For eaehN, a measurg, is obtained from
eartition(n) in the following way: for each intervdh, b| € 2 artition(n), place an

1
atom of massi([a, b]) at positioni/ X d(X
(la.8) Ta.b]) S M
An increasing sequence of stopping times is defined by
Tn=inf{t > 1,_1: W € support ofu,}
and Dubins’ solution to the SEP is the stopping tiraefined by

T:=sup{tn}

3.6 A new solution to the Skorokhod embedding problem

Dubins in Dub6d gave the first solution to the Skorokhod embedding problem
(SEP) based solely on the underlying Brownian motion, and tequiring no ad-
ditional independent random variable. The Dubins solutmithe SEP, can be
expressed as:= sup{t,} with 1, = inf{t > 1,1 : W € support ofy,}. Since the
measuresl, are defined recursively, in order to compuyte each ofpo, .., -1
must first be computed. We now give a new solution to the SEmbwisig how

54



to construct a different sequence of measyiggnen. The advantage of this so-
lution is that for any givem, the measurgl, can be constructed directly without
prior computation of the measurgs, .., 1.

We will define a sequence of measuggsand a corresponding increasing se-
guence of stopping times,. First, we will prove tha, converges tq, then we
will prove thatW,, ~ W, for eachn € N. Finally, definingt to besup{1,} , we
will obtain W, ~ .

Let F be the cumulative distribution function pf Its inverseF ~1(x) is called
the quantile function oft. SinceF is a non decreasing function frokito [0, 1], its
inverse,F 1 is a non decreasing function fro(@, 1] to R.

Definition 3.6.1. Forn > 0, definey, to be the uniform measure on the following
2" coordinates:

oS
I
N
=}
_\
£
n
AN
Py
=
o
c

with i ranging fromO0to 2—1

Lemma 3.6.2. y, converges weakly tp.

Proof. Let F be the cumulative distribution function pf andF, be the cumula-
tive distribution function oft,. Showing thap, converges weakly tp amounts to

showing thaF, converges pointwise 6. The collection of interval§ (F~('5t) , F ()] :

1<i < 2"} generate the support pf We will proceed by establishing bounds for
F andF, whent belongs to such an interval, i.e. whea [F~('5) , F~1(%)].
BoundingF is straightforward: sinc€& is non decreasing,
F( on )<t<F (5):”: F (7) <F{t)<F|(F (%)
i—1 i

o sFO=%

=

We now proceed to obtain bounds . Recall thaty, is the uniform distribution
on the following 2 points:
i+1

g=2" /i_zrr F~1(u) du iranging from0to 2—1
n

SinceF ! is a non decreasing function, we obtain a boundsfdsy bounding the
above integral:

i+l 0. i+l
o o) F(e)

2 E ) <a <2 F () <a
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From these bounds fa;, we will obtain bounds for the cumulative distribution
function F, of . Letting 1 denote the indicator function, we have the following
expression for the cumulative distribution functiBnof p,:

-1

o) = 3 Ha<t)

Since we have seen that

g, 1 041
a1 <Fi(5) <a <F () <an
therefore,
F( on )<t <F (?) =g 1<t <an
i—1 12-1 i1
7 < pHast <o

i—1 i+1
= =Rl =7
The bounds folF, together with the bounds fdt, , give bounds for F(t) —
Fa(t) |:
[ i—1 i i—1 i+1

o ) s Ffl(?)] = o = F) <5 on

=|Flt)—-FR(t)| < =

Since the collection of intervalﬁF*l(%) , F*l(%)] : 1 <i <n} generates the
support ofy, and therefore the support pf, we obtain:

2
(R —F(1)| < o VteR

HenceF, converges pointwise tB, and this implies that, converges weakly to
V8 ]

Definition 3.6.3. Define the following collection of stopping times:
Tp=0 andforn>1, 1,=inf{t >1,_1:W € support ofu,}
Theorem 3.6.4.W, has law 4.

Proof. We prove this by induction. We first verify th¥¥, ~ to. Now 1q is de-
fined to be 0, st\,, =W = 0. Also|y is defined to be the Dirac §€§ F~1(u) du=
Jr X dp= 0. HencéM, ~ o, and so the statement is true for= 0.
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Suppose that the statement is truerfpin other words, suppose thég, ~ ..
We will determine the law o#\, ,, conditioned oW, having lawp,. To do this,
we take an arbitrary pointin the support oft, and calculate the distribution of
W, conditioned on{WW,, = m}. Sincembelongs to the support @, there exists
ani € {0,..,2" — 1} such that

i+1

m= Z”/i_2rr F~1(u) du
2n

Denote byu (for upper) the smallest element of the supporpef; which is
greater or equal ton. Also denote by (for lower) the largest element of the support
of Un1 Which is less than or equal to. SinceF ~! is a non decreasing function,
we can write these two elemenignd| as:

i+1
u:2”+1/_2 . FH(u)du
7 (3.1)
| = 2”*1/2 U FY(u) du
o
Notice thatu+ | = 2mand som= 5. It follows thatmis equidistant from and
u. And so, conditioned o§W,, = m}, the event§W,,, =1} and{W,,, = u} are
equiprobable. In other words,

1
P(\Al[n+l :I ’Vv[n :m) -5
1 (3.2)
IP)(V\'ll'nJrl :u|VVl'n :m) = E
By a straightforward iterative argument, it follows that
1 1 1 1
P(Vvl'nJrlzl):%P(van:m):%X%:W (3.3)
1 1 '
]P(van+1 = U) = EP(VV[n = m) = 5 X ? = on+1

ThereforeW,,, follows a uniform distribution which has the same support as
Hnt1. Sincepn, 1 is itself a discrete uniform law, it follows th&%, , ~ pnr1. O

We now provide a lemma which shows that, for a large class aftigations,
the quantized measure is dominated in the convex order bgribmal measure
(i.e. A<cxH).

Lemma 3.6.5. Let 7 be a partition ofR. Let [l be the probability measure which is
constructed fronu in the following way: for eacld € 7, an atom of masg(J) is

.. [3xdpx)
laced at positior? . Then,
P P H(J)

/(p(x) di(x) < / @(x) du(x) for every convex functiom.
R R
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Proof. Let J be an arbitrary element of. By construction,u(J) = p(J) and
[ix di(x) = [3x dux). The measuréJu((dT);) is a probability measure od. Its

. [ixdpx : :
expectation |sw. Therefore, by Jensen’s inequality, for every convex func-

H(J)
foo 35 = (5 )

Asi(J) = p(J), the measuré:l(— is a probability measure ah It consists of a

tion ¢,

: . . . [3xd
single Dirac point mass at the posmG[ﬁ);TL;). Therefore,

foo i = ("5

Combining the two above equations yields

o 55 = o Sy

which is equivalent to

[ 000 a6 > [ o0

As the above holds for eache 7, and together they constitute a partitionRyfwe
obtain

[ 000 a9 > [ 0 a9

O

Theorem 3.6.6.1 := sup{1,} is a solution to the Skorokhod Embedding Problem
(SEP).

We have shown that, converges weakly tpand thaw\t,, ~ p,, which together
imply thatW; ~ i For 1 to be a solution to the SEP, it remains to verify that
E[t] < e. In order to do this, we first check that is a solution to the SEP fqu,.
Now,

E[th] =E[th—th-1] + E[th-1— Th-2] + .. + E[T2 — T1] + E[14]

Each expectation on the right hand side is a weighted aveshggpected exit
times from strips for the Brownian motion W, and is thereffine. This together
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with Theorem3.6.4 (W, ~ Hn) implies thatt, is a solution to the SEP fqx,. It
follows that,

E[t,] :/xzdpn(x) for eachn.
R

Let a, denote the sequenage— E[t,] which, by the above equality, is identical
to the sequence — [ x* din(X). We show that, converges by showing that it
is increasing and bounded. It is increasing becauseE[t,] is increasing. It is
bounded because by lemr@#.5 we have

/xzdmgfxzdu for eachn.
R

Thereforea, converges. In other wordg[t,] converges. This means tHajfr] < co.

3.7 Numerical illustration

Using the standard Gaussian layy0, 1), we numerically show that the sequence
of measureqpn }nen constructed by our solution to the SEP is different from the
sequence of measures generated by the Dubins solution.r$t fiartitions ofR
produced by Dubins solution are:

Partition(0) ={ [-inf,inf] }

Partition(1l) ={ [-inf,0] [O,inf] }

Partition(2) ={ [-inf,-0.797885] [-0.797885,0] [0,0.797885] [0.797885,inf] }

Partition(3) ={ [-inf,-1.36576] [-1.36576,-0.797885] [-0.797885,-0.378257] [-0.378257
[

0,0.378257] [0.378257,0.797885] [0.797885,1.36576] [1.36576,inf] }

For each intervala, b], we computeu(|[a, b]):

Partition(0) : 1

Partition(1l) : 0.5 0.5

Partition(2) : 0.212469 0.287531 0.287531 0.212469

Partition(3) : 0.086007 0.126462 0.140151 0.14738 0.14738 0.140151 0. 126462 0.086007

Our solution to the SEP generates a sequence of meaguiesy, such that each
Hn is a uniform law on 2 support points. The Dubins construction for g0, 1)
law has produced lawg, andps which are not uniformly distributed. It follows
that our construction is different from that of Dubins.
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Part Il

Continuous time martingales
with specified marginals: some
constructions
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Chapter 4

Overview of existence and
unigueness results

Definition 4.0.1. Let (1 );cr+ be a collecting of probability laws oR. We say
that this collection isncreasing in the convex ordéi:

forall s<t, Hs <cx bk

Definition 4.0.2. The following call transformassociates a function of two vari-
ablesC(t, k) to a collection of marginal law§k );cr-:

Clt,k) = /R(x— k) dp(x)

Existence and unigueness results have been obtained imltbeihg 3 frame-
works:

FrameworkA:
(kt )ter+ have constant means.
C(t,k) is increasing irt.
FrameworkB:
(K )ter+ have constant means.
C(t,k) is increasing and continuoustn
FrameworkC:

(k¢ )ter+ have constant means.
C(t,k) is increasing and differentiable tn

Remark. FrameworkA is equivalent to(| )icg+ being increasing in the convex
order.
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Remark.These 3 frameworks are from least to most restrictive
C=B=A
Theorem 4.0.3. (Kellerer [Kel72, Lowther [Low0d, Dupire [Dup94)

e Under framework A, there exists a martingale M withMp;. The martin-
gale M is generally not unique.
(see Kellerer Kel77], see also [HR 17 for an alternate proof of this result)

e Under framework B, uniqueness is obtained when restriatimgsideration
to the class of martingales which are almost continuouausiifins. (see
Lowther [Low0d). See below for the definition of an almost continuous
diffusion.

e Under framework C, uniqueness is obtained when restriatmgsideration
to the class of martingales which are continuous diffusiofsee Dupire

[Dup94)

Definition 4.0.4. A processX is analmost continuous diffusioif it is strong
Markov with cadlag paths and given two independent prosessadZ distributed
asX, the following holds:

Vst e Rfwiths<t, P(Ys< Zs,Y; > Z andY, # Z, Vue (sit)) =0

4.1 The Kellerer existence theorem

Kellerer’s celebrated theorem for the existence of maatiegwith specified marginals
is as follows.

Theorem 4.1.1.(Kellerer [Kel77]) Let (W )icr+ be a specified collection of marginals.
If this collection is increasing in the convex order thenréhexists a martingale
(Mp)ter+ Which has the Markov property and satisfidiss R™, M; ~ L.

The paper containing this resultkg!72]) is published in German, so we give
an outline of the proof here. This theorem is in fact provethasconsequence of
a more general existence theorem. This general theorendpsosufficient condi-
tions for the existence of a Markov process which is comgatibth a collection
of marginals as well as with a collection of bivariate traiosi laws.
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4.1.1 Kernels and disintegration of measures
We will need the definition of a transition kernel:

Definition 4.1.2. Let 3 denote the set of Borel sets&f A Kernelis a map from
(R,8) such that:

()Vx € R, the functionB — K(x,B) is a probability measure dR.

(i VB € 3, the functionx — K(x,B) is measurable.

Remark.(Disintegration of measures) A measpre P (R x R) can be represented
as ameasurg € P (R) and a transition kerné{ (x,dy) as follows:

p(AxB):/AK(X;B)du(X)

4.1.2 Framework of Kellerer’'s theorem

Kellerer's main theorem is based on the following setting:
e The marginal laws are specified:

VteR", 1 € P (R)is given
e For each pair of timegs, ), a collection of bivariate laws denoted; is specified:

V(st) e Rt xR, £g C P (R x R) is given.
Eachp € £s; must have marginalgs and.

4.1.3 The Kellerer existence theorem

Theorem 4.1.3. (Kellerer) A sufficient condition for the existence of a bestic
process X )ier+ Satisfying:

vt e RT, X ~
Vst e RT, the law of(Xs, %) belongs tacs;

is that for all r,s;t withr < s<t,

Lst be closed and non empty.
Lsy € S (the sets is a special class of bivariate laws see below for its definition)
If p1 € Lrsandpy € Lsy, then their composition must belong Aey

Definition 4.1.4. The sets denotes the following special class of bivariate laws.
A measurep € P (R x R) belongs tas if and only if there exists a disintegration
of pas

p(AxB) = /AK(X; B) du(x)
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with pe P (R) and a kerneK (x,dy) which satisfies:
I|K(a;.) —K(b,.)|| < |la—Db| for all a,b € support()
Lemma 4.1.5. The sets is closed with respect to the weak topology.
The proof of Kellerer's theorem relies on the following lersn

Lemma 4.1.6. Let ( )icr+ be any specified collection of marginals.
Consider the set of real valued processes which have theggnaila:

A={(X)ter+ : X~ VteR}

Then the set of measures B> corresponding to the above set of processes is
compact with respect to the weak topology (séel[ 7).

Lemma 4.1.7. Letty, ..,t, be an increasing collection of times.
Define the sefy, , as:

Ayt = {(Xtert € At (X, X,,) € Ly ., for eachi from 1 ton—1}
ThenAy, 1, is closed and non empty.
Lemma 4.1.8.if {si,..,s} C {t1,..,tn } then,
Ayt CAs, s

Proof. (of Theorem4.1.3 The intersection of the sefs, _, over all finite collec-
tions of timed, ..,t, is non empty. O
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Chapter 5

A Brownian sheet martingale
with the same marginals as the
arithmetic average of geometric
Brownian motion.

This section is based on a joint article with M. Yor s&e/D9]
Definition 5.0.9. Brownian sheet is the two parameter centered a Gaussiaegsroc
with covariance function
E[B(s,t)B(S,t')] = min(s,s ) x min(t,t)
Note that this implies thaVar[B(s,t)] = st.

5.1 Introduction and Main Result

We construct a martingale which has the same marginals asithenetic average
of geometric Brownian motion. This provides a short proothaf recent result due
to P. Carr et alCEX04 that the arithmetic average of geometric Brownian motion
is increasing in the convex order. The Brownian sheet playsssential role in
the construction. Our method may also be applied when theviidem motion is
replaced by a stable subordinator.

To (B;,t > 0) a 1-dimensional Brownian motion, starting from 0, we agse
the geometric Brownian motion:

@@t:exp(Bt—%), t>0

and its arithmetic average:

1 1
—At:—/ds@@s, t>0
t t Jo
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A recent striking result by P. Carr et al £ X0g is the following:

Theorem 5.1.1.i) The process-g(At,t > 0) is increasing in the convex order, that
is: for every convex function gk, — R, such thatE [|g(£A) |] < o for every
t > 0, the function:

t—E [g (%Atﬂ is increasing
ii) In particular, for any K > 0, the call and put prices of the Asian option which

we define as:
1 +
C't,K)=E (K—?At> ]

(%At — K>+] andC (t,K)=E

are increasing functions oft 0.

Comments on Theorem 1.1
a) One of the difficulties inherent to the proof of ii), saythisit the law ofA; for
fixedt, is complicated, as can be seen from the literature on A&0rs.

b) A common belief among practitioners is that any “deceptian price should be
increasing with maturity. But examples involving “strictchl martingales” show
that this need not be the case. See e.g. Pal-Prétteid, Delbaen-Schachermayer
[DS9Y. On the other hand Theorell.1loffers a proof of the increase in maturity
for Asian options.

The proof of Theorend.1.1as given in CEX0{] (see also Y 08] for a slight
variation) is not particularly easy, as it involves the useither a maximum prin-
ciple argument (inCEX04) or a supermartingale argument (i J08]). We note
that the proofs given in(fEX0d and [BY08] show that for any individual convex
function g, the associated functioB(t) = E[g(1A)] is increasing. In contrast, in
the present paper we obtain directly the result of Thedselrilas a consequence
of Jensen’s inequality, thanks to the following

Theorem 5.1.2.i)There exists a filtered probability spac®,¥,%,Q) and a con-
tinuous martingale (Mt > 0) on this space such that:

for every fixed & 0, 1A (law) M;

ii)More precisely, if(W,t,u > 0,t > 0) denotes the standard Brownian sheet and
Fur = 0{Ws,vV < u,s < t} its natural increasing family ob-fields, one may

choose:

L ut
M; = / dUEXp(WuJ — E) s t>0
0

which is a continuous martingale with respect 8.(; ,t > 0)
We note that inlf/'Y02] several methods have been developed to construct mar-
tingales with given marginals, an important problem coaised by Strassen, Doob,

Kellerer among others. See, e.g., referenceslin(2]. Theoremb.1.2may also be
considered in this light, providing a martingale whose direensional marginals
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are those of%{At,t >0). In Section 2, we give our (very simple!) proof of Theorem
5.1.2 and we comment on how we arrived gradually at the formutatibTheo-
rem5.1.2 We also obtain a variant of Theorefnl.2when(exp(B; — 5),t > 0) is
replaced byexp(B; — at),t > 0) for anya € R.

In Section 3, we study various possible extensions of Thed@d.2 i.e. :
when the original Brownian motiofB,t > 0) is replaced by certain Lévy pro-
cesses, in particular stable subordinators and self-decsale Lévy processes.
In Section 4, we study some consequences of Theéréri
5.2 Proof of Theorem5.1.2 and Comments

(2.1) We first make the change of variables= vt, in the integral

t u
At:/O duexp(B, — 5)

We get: 1A = [ dvexp(By — %)
It is now immediate that since, for fixed

(Bu.v = 0) "2 (W, v > 0), then:

law

1
for fixedt, %At(_) / dvexp(th—%)
0

Denoting by(M;) the right-hand side, it remains to prove that it is a
(Fwt,t > 0) martingale. However, led < t, then:

1 vt
E [M¢| Zoo s :/0 dvE {exp(\/\(,’t — §)|9m’s] )
Since(W,; — W) is independent front,, s, we get:
vt VS
E [expW; — 5)| Fons| = eXxpWhs— )

so that, finally:E [M;|Zes] = Ms.
This ends the proof of Theorefl.2

Remark: The same argument of independence allows to show more dignera
that, if f : R x R, — R is space-time harmonic, i.€.f(B;,t),t > 0) is a martin-
gale, then:

1
Mt(f) dif/ du (W, ut)
0
IS a (Fwy,t > 0) martingale. Thus in particular, for amye N, one gets:

(law)

t
for fixedt, %/du Hh(Bu,u) = M"
0
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where: Mt / du Hy (W, ut)

andH,(xt) = t”/zhn(%) denotes the!" Hermite polynomial in the two variables
(xt) e Rx R4
Consequently, in that generality,

1
(%/ du f(Bu,u),t > 0)
0

is increasing in the convex order sense.

(2.2) At this point, we feel that a few words of comments on hesvarrived grad-
ually at the statement of Theoresrl.2may not be useless.

(2.2.1) We first recall the basic result of Rothschild angji§z [RS7(. The nota-
tion <, means domination in the convex order sense; Se&{], [SS04.

Proposition 5.2.1. Two variables X and Y on a probability space satisfy:
X <Y if and only if on some (other) probability space, theretexsandY such
that:

Hx2x @y GyEFR] =
For discussions, variants, amplifications of the RS resudtrefer the reader to
the books of Shaked-Shantikumat {94, [SS0§). Thus in order to show that a
procesg H;,t > 0) is increasing in the convex order sense, one is led natuially
look for a martingalgéM!* ;t > 0) such that:

(I aw)

for fixedt, H M

In fact the papers of Strassen, Doob and Kellerer, referdd1in02], show that
there exists such a martinggle,t > 0).

(2.2.2) The following variants of Proposition 1 shall leaglta consider properties
of the process:

t
4 = t}/ dsexp(Bs— as)
0

for anya e R.

The notation [icv], resp. [dcv] used below indicates thaarobf "increasing con-
vex ”, resp. "decreasing convex” order. (See e.§594, [SS04 for details; in
particular, Theorem 2.A.3 irf[S94 and Theorem 3.A.4 in§S04)

Proposition 5.2.2. Two variables X and Y on a probability space satisfy:
X <[y Y if and only if there exists on some (other) probability spacpair(X,Y)
such that:

Iaw Iaw

(i) x "2 % (iiy Y (i), X<E[Y[X]
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Proposition 5.2.3. Same as Propositioh.2.2 but where [icv] is replaced by [dcv],
and (jii ) by: (i), X >E[Y[X]

We now apply Propositions.2.2and5.2.3to the process%At(a),t >0)

Theorem 5.2.4.1) Let a< % Then the proces#At(a),t > 0) increases in the [icv]
sense
2) Leta> Then the proces(#At > 0) increases in the [dcv] sense.

We leave the details of the proof of Theorén?.4to the reader as it is ex-
tremely similar to that of Theore®.1.2

(2.2.3) The following statement is presented here in ordenelp with our ex-
planation of how we arrived gradually at the statement ofofém5.1.2

Proposition 5.2.5. Let (4,) and (Z,) denote two processes. Then under obvious
adequate integrability assumptions, we have:

/oldu ZE [Z;‘Z} <ev /oldu Z Z(J

Again, the proof is an immediate application of Jensen’s|uiadity.
We now explain how we arrived at Theores.2
we first showed that, for & o< o, there is the inequality:

a2u
ly _/ duexp(c B, — —u / duexp(oBy — 7) lg (2)
Indeed, to obtain (2) as a consequence of Proposkiarg it suffices to write:

(oBy,u>=0) = (12w (0'By+YPy,u > 0) where(By,u > 0), is a BM independent from
(By,u>0)

ando? = (0 )2+, i.e.y=+/02—(0')2
Once we had made this remark, it seemed natural to look for@cgss” argu-
ment (with respect to the parametgr, and this is how the Brownian sheet comes

naturally into the picture.

5.3 Variants involving stable subordinators and self-decamposable
L évy processes

(3.1) Here is an analogue of Theoré&mi..1when we replace Brownian motion by
a(a)-stable subordinato(T;), for 0 < a < 1, whose law is characterized by:

E[exp(—AT)] =exp(—tA®) |, t>0,A>0

Theorem 5.3.1. The proces§At tef L [5dsexp(—ATs+ s\ is increasing for
the convex order.
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We prove Theorend.3.1quite similarly to the way we proved Theoresrl.],
namely: there exists @-stable sheeflg;,s > 0,t > 0) which may be described as
follows:

(T(A),A€ B(R?),|A| < ) is a random measure such that:
i) for all Aq, ..., A disjoint Borel sets witHA;| < o,

T(A1),.., T(A) are independent random variables,

ii) E[exp(—AT (A))] = exp(—|A|]A%),A > 0.

(T(A) is ana-stable random variable)

Then we denotds; = T (Rs;), with Rsy = [0, 5] x [0, t]
See, e.g.,9$7194 for the existence of such measures. The result of The&&m
is a consequence of:

Theorem 5.3.2.The process l}(ﬁ‘) = folduexp(—)\Tu’t +UutA?) is aﬁoﬁ‘}) =0{Thx,h>
0,k <t} martingale, and for fixed t:

law

%-A((a)(:)Mt(a)

(3.2) We now consider a self-decomposable Lévy process.
(See e.g., Jeanblanc-Pitman-Ydr[y 0] for a number of properties of these pro-
cesses.)
Assuming thatva > 0, E [exp(aXy)] < o, then:
E [exp(aXy)] = exp(up(a)), for some functior.

In this framework, we show the following.

Theorem 5.3.3. The procesgly = [; duexp(aX, — ud(a)), a > 0) is increasing
in the convex order.

Proof. Since(Xy,u > 0) is self-decomposable, there exists, for any (0,1), an-
other Lévy proces&n”,u > 0) such that:

(Xyg,u > 0) (law) (cX + no.u> 0), with independence ok andn(®. Conse-
quently, we obtain, for anyo, ¢) € (0,0) x (0,1)

Iy 2 /Olduexp(oxcxJ — ud(ac)) expion? — upe(a)) (3)

where on the RHS of (3), X ang(® are assumed to be independent.
Denote byl, the RHS of (3), then :

E [IHX] = /Olduexp(acxu— up(ac)) = lge
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which implies, from Jensen’s inequality: for every convardtion g,

E[g(lac)] <E[g(lq)]
O

However we have not found, in this case, a martingple a > 0) such that:

for every fixeda, la (12w Ha

Remark: We note that the above argument is a particular case of therent
presented in Propositidf 2.5 which involves two processésandZ .

5.4 Some consequences

Since the proces@At,t > 0) is increasing in the convex order, we find, by differ-

entiating the increasing function tf E[(K — £A;) "]

1 1
for everyK > 0 andt > 0, E 1(fAt <K) (& — fAt) >0,

although, it is not true thatk [@@t \ %At] is greater than or equal %ﬁ( since this
would imply that: %At = ¢, as the common expectation of both quantities is 1.

(4.1) More generally, the following proposition presentsmarkable consequence
of the increasing property of the proce%s&{,t > 0) in the convex order sense.

Proposition 5.4.1. For every increasing Borel functiop : R, — R, there is the

o slo(ia) (ea)] <= [o () =

Equivalently,

PG ()R], o

whereA = /¢ duexp(By + ¥)

(%)

Proof. We may assumé bounded. Theng(x) = [Jdy(y) is convex (its deriva-
tive is increasing), and formulg) follows by differentiating the increasing func-

' ()]

Formula(x*) follows from (x) by using the Cameron-Martin relationship between
(By,u<t)and(B,+u,u<t)
O
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(4.2) As a partial check on the previous res@#), we now prove directly
that, for every integen > 1.t — E[(1A)"] is increasing and thatE[($A)"] <
E[(tA)" 1]

Here are two explicit formulae fon(t) = E[($A)"], andBn(t) = E[(1A)" 1]

n!
tn

?r:/dsl/ ds... t ds,exp(= C(si, +Sn))

Sn-1

/dS.L/ dsp... S: ds,exp((Bs, + .. +Bs1)——(51+ +%))]

an(t) = 5

whereC(sy, ..,)) = E[(Bs, +Bs, + .. +Bs) — (S1+ ... + &)
=2 > s(n—i) (>0)

1<i<n

Consequently:
1 1 t
an(t) :n!/ dul.../ dthexp(=C(us,..tn)  (3)
0 Un—1 2
from which it follows thatay(t) is increasing irt.

Now Bo(t) = 02

1
“(St+ .+ So1+t))

t t
/ dsi... [ dsiaF [exp((le+...+BS1l+Bt)— (
0 Sn—1 2

_ (n—l)!/oldul.../ul dun,lexp(%qul,...,un,l,l)) (4)

We have already seen from formula (3), thatt) is increasing in t; consequently:

a,(t) > 0 and by definition ofx,:
1\t 1 g
(f’*) (‘rz’* ’ T>

— 2{Ba(®) — an(V))

Hence:Bn(t) > an(t).
(4.3) To conclude this paper, let us connect the properfigsceease of the func-

tionsa, andf3, with our method of proving Theored1.1using the Wiener sheet,
as performed in Theorefm1.2

72



Indeed, the same argument as in Theofefin2 shows that for any positive mea-
surep(dug,...,du,) on [0, 1]" the process:

/u(dul,..,dm)iﬁf(uit) (5)

admits the same one-dimensional marginals asi¢ $ubmartingale

JRTCT ﬁzﬁ“”(W) 6)

wherez" (W) = expWy,; — ).

Hence, the common expectation of (5) and (6) increases tyitia(t) and Bn(t)
constitute particular examples of this.

A final Note: Pushing further the use of the Brownian sheet and a varidtan

the construction of the Ornstein-Uhlenbeck process on é&m®mical path-space
C([0,1];R) in terms of that sheet, Hirsch-Yori[f09] obtain a large class of pro-
cesses, adapted to the brownian filtration, which admittieedimensional marginals
of a martingale.
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Chapter 6

When the greeks of Asian options
are positive supermartingales

6.1 Introduction

In [CEXO0] Carr, Ewald and Xiao prove that under the assumptions oBthek-
Scholes Model a convex payoff arithmetic Asian option’sseals a monotonically
increasing function of the volatility. In this paper we pasa supermartingale ar-
gument which is used to obtain this monotonicity result fodi&usions with affine
coefficients. This includes the geometric Brownian motibthe Black-Scholes
model as well as processes such as the mean reversing @+dsienbeck of the
Vasicek model. This is of practical importance because dutheir averaging
feature Asian options are often written on exchange ratgerdst rates or com-
modities which do not follow the dynamics of the Black-Sa&®imodel but can be
modeled by the Vasicek model.

By showing the vega of an Asian call is a positive supermgatie in addi-
tion to the monotonicity implications ia this yields additional information on an
investor’s exposure to volatility through this instrumeNbt only does this instru-
ment make him long on volatility, but in addition his expetfature exposure to
volatility through this instrument is less than his curremposure. This clearly
provides useful insights for risk management.

An option is a financial contract whose value depends on an@bonomic
variable called the underlying. The underlying could bedremple a stock, an
exchange rate, an interest rate, a commodity. It is not simgrthat the proper-
ties of a particular Asian option are highly dependent ors¢hof its underlying.
In a given financial model the dynamics of the underlying Ww#él specified by a
stochastic process. Under the the Black-Scholes modeimgsisin the underly-
ing, which is a Stock, follows a geometric Brownian motiorttwdrift. Under
the Vasicek model the underlying which is the short termregerate follows a
mean reversing Ornstein-Uhlenbeck process. The shortiteéemest rate can also
be modeled by a Cox-Ingersoll-Ross (CIR) process. In tHeviihg pages we de-
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velop a methodology to study the impact of volatility of Asiaptions, which we
apply to successively larger classes of underlying prasess

An Asian option is a path dependent option which means thaaite is depen-
dent on the entire trajectory of the underlying from theiahitime t=0 to maturity
(t=T). given a specified function g the holder of the asianasptvith maturity T
on the underlying X receives at maturity the following pdyof

1 /T 1/t
g(?/o Xudu):g(AT)whereAt:?/o Xydu

In the case of an Asian cafi(x) = (x—K)* and in the case of an Asian put
9(x) = (x=K)~

By the risk neutral pricing formula (see for exampi&[0(Q), the value of the
Asian option is

1 /T 1 rT t
VL TxY.0) = B(o(F [ Xdu) [ 57) =E(a(q [ %) [ X% =x [ Xudu=y)

We see that the value of an Asian option is a functional of timming average of
the underlying process. This paper describes an approastakoate how changes
in volatility affect the value of Asian options on certaindamlyings.

The content of the paper is distributed as follows: Sectiarp@tains a discus-
sion of the problem and an outline of the supermartingalaraemt which will be
employed in the following three sections. In Section 3 wekuamnder the Black-
Scholes model assumptions and use the supermartingal@emgto get the results
obtained in CEX0{. In section 4, we show that this is true for all diffusiongthwi
affine coefficients and such that the volatility parametersdwot appear in the drift
term . In Section 5 we prove the result for an interesting eesere the drift of
the process is dependent on volatility. In Section 6 thelréesaxamined under the
expected utility framework. Finally in section 7 we use auiefom the theory of
expected utility to obtain a property of the running averpgecess of geometric
Brownian motion.

6.2 The supermartingale argument

We now give an outline of our supermartingale argument, Ththod we use is to
focus on the time indexed procegswhich describes the sensitivity of the option
to volatility. This sensitivity is of course a function ofg¢hwo state variableX;
andY;. Heuristically the two key phenomena and their mathemigfiicenulations
are

e The present vegavf) is larger than the expected future vega i6 a super-
martingale)
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e at maturity the option is no longer affected by volatility (t = T) = 0)

These two properties imply that vega cannot be negativéf itowvas negative at a
given time ( call itty) then vega would be expected to increase (actually cemain t
increase) betweeg and and T contradicting the supermartingale propertythe.
expectation of the future value is less than the presenevalu

The state variables of an arithmetic asian option are

e The underlying (for example an exchange rate, an intertsstaiastock price)
which is modeled as a diffusion proces® = b(X;)dt+ a(X )odW Note
that this encompasses a fairly large class of diffusion ggses contain-
ing Geometric Brownian motion, the CIR procesh(= —6(r; — p)dt +

o,/ dW) etc...
Note However that the class of diffusion which we are corréideexcludes
those for which the volatility parameter appears in thet deifm

e the running integral of the underlying which by definitionyis= fé Xsds

6.3 Black Scholes model

Lemma 6.3.1. let g be a stricly convex (resp. concave) function. Under the
assumptions of the Black Scholes modekb[/3, the Asian option with payoff

E[g( folduxﬁ"))] has a positive (resp. negative ) gam(wg)
Proof.
2 1-t 1-t 1-t

d — —
Vot %.0) = G Elaly+x | dwd?) =Bl (y+x [ dui)( [ dwx)?) >0

dx2 0

O

t
Theorem 6.3.2. If vy, > 0 then \6(t,>q(°),/ dux\”,0) (0<t<T) isans —
supermartingale, which takes the value 0 at t=T

Proof. By a regularity result for the solutions of PDEg(t,x,y) is Ct in t andC?
inxandy.
We may apply Ito’s formula to obtain

1
AV (t, %, Yo) =Vordt + Voxb (X ) dt + Voxoa( % ) dW -+ Xvgydt -+ Eczaz(xt)voxxdt
1
=(Vot + Voxb(X) + XVgy + Eozaz(xt)voxx)dt + Voxaa(X; ) dW
Now we focus on the finite variation process (the dt term) amdged as in

Carr, Ewald, Xiao CEX0] in order to obtain an alternate representation for it.
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We are placing ourselves under the martingale equivaleasure. It follows
thatv(t, X, Y;) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

1
Ve -+ V(X ) -+ Xy + Eozaz(x)vxx =0
Differentiating with respect to which we can do by regularity results for the so-
lutions to PDEs

1
Vio + VxgD(X) -+ XV + 082 (X)Vx + Eczaz(x)vxx0 =0

1
= Vi + VxgD(X) + XWg + Eozaz(x)vxxo = —0a?(X)Vx

Returning to the semimartingale representationsofve see that

dvg (t, %, V) = — 0282 (X )Vexdt + Vioxoa( X ) dW

by the equation above, ¥y > 0 the finite variation process in the semimartingale
representation of; is decreasing which implies thag(t, X, Y;) is ang; —supermartingale.
Moreoverv(1,x,y,0) = g(y) sovs(1,x,y,0) =0

this completes the proof. Now we show the non-negativityhefsupermartingale

1 t
O:E[VG(LXl(c)’/O Xdu, 0)|#] Svo(t,Xt("),/o dux®. o)

O

Corollary 6.3.1 for anyt € [0,T) if g is a convex function (resp. concave) the
option’s value is increasing in volatility (resp. decreapi

Proof. We have shown that for g convex (resp. concawg Js a postive super-
martingale (resp. negative submartingale) The monotyrficilows from the con-
stant sign of the partial derivative. O

Corollary 6.3.2 fort =0 If g is a convex function (resp. concave) the option’s
value is increasing (resp. decreasing) in time to matufijy (

Proof. By scaling we reduce the problemTo= 1 and to a discussion (= v/T)
Indeed

2
E[g(% /OT exp(Bs — 5)ds)] = E[g(/olexp(GBu - ZH)du)

77



6.4 Diffusions with affine coefficients

This section is devoted to situations where the dynamichefunderlying are
described by a diffusion process with affine coefficients.réfareciselyX; is the
unique solution to the stochastic differential equatiby = b(X; )dt + a(X;)odW
where a and b are affine functions. this class encompassésdltveing processes

e geometric Brownian motion which is the solution to the fallng SDE
dX = oXdW

e geometric Brownian motion with constant drift which is tt@ugion to the
following SDE dX = puxdt+ oXdW This is the process chosen to model
the stock price in the Black-Scholes model

e the mean-reversing Ornstein-Uhlenbeck process whicteisatution to the
following SDE: dr; = —6(r; — p)dt+ odW This is the process chosen to
model interest rates in the Vasicek model for the short teiterést rate.

t

Theorem 6.4.1. If vy, > 0 then \6(t,>q(°),/ dux\”,0) (0<t<T) isans —
0

supermartingale, which takes the value 0 at t=T

Proof. By a regularity result for the solutions of PDEg(t,x,y) is Ct in t andC?
inxandy.
We may apply Ito’s formula to obtain

1

=(Vot + Voxb(X;) + XVoy + %Gzaz(xt)vcxx)dt + Voxoa( X ) dW

Now we focus on the finite variation process (the dt term) amdged as in
Carr, Ewald, Xiao CEX0] in order to obtain an alternate representation for it.
We are placing ourselves under the the martingale equivaleasure. It fol-
lows thatv(t, X, Y;) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

1
Ve -+ Vb(% ) + Xy + Eozaz(x)vxx =0

Differentiating with respect t@ which we can do by regularity results for the so-
lutions to PDEs

1
Veg -+ VigD(X) + XV + 0a% (X) Vi + EOZaZ(X)VXXg =0
1,55 2
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Returning to the semimartingale representationsoive see that

dVi (t, X, %) = — 0%8%(X ) Vot + Voxoa( X, ) AW

by the equation above, ¥y > 0 the finite variation process in the semimartingale
representation of; is decreasing which implies thag(t, X, Y;) is ang; —supermartingale.
Moreoverv(1,x,y,0) = g(y) SOVg(1,%,y,0) =0

this completes the proof. Now we show the non-negativityhefdupermartingale

1 t
OZE[VO(l’X£O)>A xlgo')du’o-)k}—t] Svo(t’&(o)"/o du)(gﬁ)’o_)
O

Implications We have reduced our study &f to the study ofi This is called
the gamma (greek lettdr) of the option. We now obtain an expression Qg
interms of the underlying proce3s

Recall thaw(t,y, x,0) = E[g( [y Xsd9)| 1] = E[g(y+ Jo " duX})] withy= [$ dsX
andx = X
Differentiating with respect to the initial condition,

1t
XJds)]
0

,rlet
w(t.yx.0) =Elg ([ xas)

Differentiating again with respect to the initial conditio

1-t

1- -t .,
w=Big v+ [ a9 Xerasigy+ [ xas( [ x¥as)

We must now examine the derivative of the proc¥ssvith respect to the initial
condition.

RecallX* = x+ [y a(XX)odBs+ [y b(XX)ds
= =14 [ 2 OG0B + B 0Q)dSX

l t !’
= exp( | & 0)odB + 5 0)d9) 5 [ (2077

We see that if a and b are affine functiod%(( does not depend on x . Which means
that 5 o 2% Is the identically zero process And so

1-t =t o
Vix(t,Y, X, 0) g (y+ / ; XJds)]
Discussion: When the underlying is a diffusion with affine coefficientaage

drift is unaffected by volatility, the following holds: (&he value of an Asian calll
is increasing in volatility.
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(b) The value of an Asian put is decreasing in volatility.

More generally:

When the payoff function g is convex, the vega)(of an asian option is a positive
supermartingale

When the payoff function g is concave, the vegg of an asian option is a negative
submartingale.

e Black Scholes (the undelying follows a geometric Browniawtion)

e Vasicek (the underlying follows a mean reversing Ornstéiitienbeck pro-
cess)

Directions for further research The above results characterize the qualitative
effect of volatility on an important class of underlying fdions. A direction for
further research would be to examine the effect of volgtitih processes with
non-affine coefficients such as the Cox-Ingersoll-Ross J@tBcess, which is the
solution to the following stochastic differential equatio

dry = —0(ry — Wdt 4 ov/XdW

It has the property of staying positive which is useful whesdeding the short term
interest rate.

6.5 An interesting case whereay appears in the drift

The case where the underlying follows a geometric Browniatiam with drift is
an interesting one because it describes the dynamics ofitherlying in the Black-
Scholes model. In this section iX taken to be the solution to the following linear
stochastic differential equation

dX = pxdt+ oXdwW
Using Ito’s formula we can check that the procesgien by

1
X, = Xoexp(oW + (1 50%)t)

is the solution to the above stochastic differential equatstarting from X at
time 0. pconstant was covered in section 4. This Section is devotédetaase
wherep depends ow. There are several reasons why this is of interest. One of
these reasons is that in the Capital Asset Pricing Model (@A&kpected return

is correlated with volatility. The justification for this that risk adverse investors
require a larger rate of expected return to hold on to an agsen its risk increases.
As aresult a realistic stock model might incorporate a ddpeay ino into the drift
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term.
Another reason is that this process appears when studyarfgltbwing functional.

T
T— g(%/o exp(Ws — as)ds)

which with the following change of variable = o2 is equal in law to

1
g(/0 exp(oW — ac?t)dt)

And monotonicity of the second expressioroimould lead to monotonicity of
the firstin T. Now Observe that:

/ dtexp(oB; —ag?t))| 7| = / dtexp(oB; — Zo%t(a— ;)Gzt)ﬂﬂ]

It follows that we are indeed dealing with a geometric Braavnimotion for which
the drift coefficient it = (3 — a)0?

Whena = 1 we are in the case of geometric Brownian motion which was reae
in Section 4. The process ed@\f — ac?t) is a diffusion which is the solution to
the SDEdX = (% — a)0%X%dt + oX.dW And so its infinitesimal generator is

, X2 d?f 52 1 df
cf=o Sae O (2 a)x ax
This is more complex than the framework used in the previeagans because
here the volatility parameter appears not only in the diffusion term but also in the
drift term.
Geometric Brownian motion with drift has the same scalingpprty as plain
geometric Brownian motion.

v(t,x,y,0) = / Xydu)| #]

1-t

t
=E[g(y+Xx Xydu)] wherex:xt,y:/ Xydu
0 0

Under the risk neutral probability measufall asset prices including this one

are martingalesv(t, S((o fodusﬁf o) being an(P, ) martingale implies that its
finite variation process is |dent|cally zero. By an applmatof Ito’s formula this
property translates into.

1 1
Vi + écrzvxer 02(5 —a)Vy+xw =0

In order to obtain an alternate representation for the dt vy we differentiate
the above equation with respectdo

81



2

o ,,1 1
Vig + — Woo +0 (E — 8)Vyg +XVg = — OVyx — 20(5 —a)Vx

1
=—0(Vgx+ 20(5 —a)V)

An application of Ito’s formula toss(t, X, [; Xsds o) shows that the above is
the dt term ofvy,. We see that ifiy + 2(% —a)Vy > 0 then this dt term is non-
increasing which means thet is a supermartingale This Worksif— a>0Con-
clusion:

Ifg >0 and% —a> 0 the supermartingale argument holds
also ifg <0 and% < athe supermartingale argument holds again

As in the previous sections, the procegsattains the value O at= 1 because
at maturity the option price is independentmfindeed,v(1,x,y,0) = g(y).

6.6 Financial theory : Implications of the result

Given that this probability problem stems from the desirbédge financial risk,
it is tempting to look at the economic justifications for (@mnsequences of) this
mathematical result. To do so we look at this problem fromekgected utility
viewpoint.

° fol exp(oBs — CI;s)dsis a random payoff

e g is the utility function of an investor. g is always assumedbé¢ increasing
and concave.

o [g(fol exp(oBs— CI;s)ds)] is the expected utility of the random payoff to
an investor with utility curve gu (X) = E[g(X)]

In this framework the main result says that any increaselatility ( o) results
in a decrease of the expected utility of all risk adversesimes.

1 1 1 1
o >0,=U (/ exp(01Bs — Eo%s)ds) <U (/ exp(02Bs — Eo%s)ds)
0 0

We now explain why this is not just a simple consequence of

1 1 1 1
01> 0, = Var (/ exp(01Bs— Ecﬁs)ds) > Var (/ exp(ozBs— 50%3) ds>
0 0
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Note that the above equation is indeed true; it follows frbm¢haracterization of
the second moment of the payoff iidr97]

Within a location-scale family of probability measures,iaerease in the vari-
ance does not always translate into a decrease in utiliglifask adverse investors.
Variance is often used as a proxy for financial risk becauiseeiisy to use but it is
not always consistent with the economic notion of finandg.r

Rothschild and StiglitzifS7(] give the following family of measures as an ex-
ample where an increase in variance results in an increasepigcted utility for
some risk adverse investors. This family is indexedaby > 0 and given by the
corresponding distribution function

ac>0

Fac(x) =0 forx<1-0.25/a
=ax+0.25—a for1-0.25/a<x<1+(2c—0.5)/(c—a)
=cx+0.75—3c for 1+ (2c—0.5)/(c—a) <x<3+0.25/c
=1 for x> 3+0.25/c

and if we keepu constant theﬁ% changes sign whefg(y, 02, ) = [§ F(x, 02, pdx
this implies that some investors with concave utility fuocs are better off with
an increase in variance.

In our case every investor will experience a loss in expeatéitly when the
volatility increases.

Haim Levy in [Lev97 considers utility curves with increase at a decreasing
rate that is > 0 andu’ < 0. He shows that if X and Y are two random variables
andEg(X) > Eg(Y) for all concave increasing functions g then this translates
a property of second order stochastic dominance

In our case we have shown thatif < o»
all risk adverse rational investors will prefff exp(01Bs— 303s)dsto [3 exp(02Bs—
0%s)ds

6.7 Implications for the running average of geometric Brow-
nian motion

Given two random variables X and Y Rothschild and Stiglitffr&7( show that
the following are equivalent:

e Eu(X) > Eu(Y) for all concave increasing function u

e Yisequalinlaw toX +Z with E(Z|X) =0
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Denote the running average processfby= %fé SduwhereS, is a geometric
Brownian Motion fors < t
We have shown thatu(As) > Eu(A;) for any concave function wu.
It then follows thatA; is equal in law toAs+ Z with E[Z|Ag = 0

References also includ®[/MY00], [CS04 and [Yor9Z]
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Chapter 7

A sequence of Albin type
continuous martingales with
Brownian marginals and scaling

This chapter is based on a joint article with C. Donati-Madind M. Yor (see
[BDMY11]) Closely inspired by Albin's method which relies ultimgteon the

duplication formula for the Gamma function, we exploit Gsiumsultiplication for-

mula to construct a sequence of continuous martingalesBvitvnian marginals
and scaling.

7.1 Motivation and main results

(1.1) Knowing the law of a "real world” random phenomena, i.e. @mdorocess,
(X,t > 0) is often extremely difficult and in most instances, one awvailly of the
knowledge of the 1-dimensional marginals(§,t > 0). However, there may be
many different processes with the same given 1-dimensioaaginals.

In the present paper, we make explicit a sequence of contiuwartingales
(Mm(t),t > 0) indexed bym € N such that for eacim,

i) (Mm(t),t > 0) enjoys the Brownian scaling property: for any O,

(law)

(Mim(c%t),t > 0) "= (CMp(t),t > 0)

i) Mm(1) is standard Gaussian.
Note that, combining i) and ii), we get, for any- 0

law

where (B,t > 0) is a Brownian motion, i.eMp admits the same 1-dimensional
marginals as Brownian motion.
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(1.2) Our main result is the following extension of Albin’s consttion [AIb0g]
from m= 1 to any integem.

Theorem 7.1.1.Let me N. Then, there exists a continuous martinge¥n(t),t >
0) which enjoys i) and ii) and is defined as follows:

Mm(t) =X ... ™Yz, (7.1)

where(xt(i),t >0), fori=1,...,m+1, are independent copies of the solution of
the SDE

1 dB. B
and, furthermore,  is independent froriX(V ... X(™1)) and

1
1+ 2] B J )) A (7 3)

(Iaw) 1/2
Zm 1)
(m+1) (I_LB 2(m+1)’ m+1

wheref(a,b) denotes a beta variable with parametex b) with density

M(a+b)

Wx‘*l(l— X)° 0 4 (X)

and the beta variables on the right-hand side(éf3) are independent.

Remark: Form=1,Z; = v2 (B(3,3))"* and we recover the distribution of
Y := Z; given by (2) in AIb08].

(1.3) For the convenience of the reader, we also recall that, ifdsops the conti-
nuity assumption when searching for martingglést);t > 0) satisfying i) and ii),
then, the Madan-Yor constructiotVl[f02] based on the "Azéma-Yor under scal-
ing” method provides such a martingale.

Precisely, starting from a Brownian motioB,,u > 0) and denoting, = sup., Bs,
introduce the family of stopping times -

T =inf{u,S, > Yx(By)}

wherey; denotes the Hardy-Littlewood function associated withcéretered Gaus-
sian distributiony; with variancet, i.e.

W(x) =

y
\/_
= \/feX[X——Zt)/N (X/\/f)

wherea( (a) = [} exp(—y;)dy. Then,M; = By, is a martingale with Brownian
marginals.
Another solution has been given by Hamza and Klebar&i[/].
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(1.4) In section 3, we prove that Theoreml.lis actually the best we can do in
our generalisation of Albin’s construction: we cannot gefiee (7.1) by allowing
theX(V's to be solution of .2) associated to differemt's.

Finally, we study the asymptotic behavior)q(fl) . .Xt(m“) asm-—- oo,

7.2 Proof of the theorem

Step 1: Forme R andc € R, we consider the stochastic equation:

d
dXx = CK—E[" Xo=0.
This equation has a unigue weak solution which can be defimediane-changed

Brownian motion
law _
%) "= w(a )
whereW is a Brownian motion starting from 0 and Y is the (continuous) inverse
of the increasing process

1 t 2m
a(t):?/owu du

We look fork € N andc such that Xt > 0) is a squared Bessel process of some
dimensiond. It turns out, by application of Itd’'s formula, that we needtake

k=m+1 andc = ;5. Thus, we find thatx2 ™.t > 0) is a squared Bessel
process with dimensiod = k(2k — 1)c = 2041,
Note that the law of a BES@J process at time 1 is well known to be that of 2,

wherey, denotes a gamma variable with parametethus, we have:

law)

Xy & <2V2m+1>2<m1+1) (7.4)

2(m+1)

Step 2: We now discuss the scaling property of the solution ), From the
scaling property of Brownian motion, it is easily shown th&br anyA > 0, we
get:

(law)

X,t=0) =" (A%t >0)

1
2(mt)

with a =
1

2(m+1)”

that is, the process¢,t > 0) enjoys the scaling property of order

Step 3: Consequently, if we multiplym+ 1 independent copies of the process
(X,t > 0) solution of (7.2), we get a process

which is a martingale and has the scaling property of oéder
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Step 4: Finally, it suffices to find a random variably, independent of the pro-
cesseY, ..., ™Y and which satisfies:

(law)

N = x| x(™Yz (7.5)

whereN denotes a standard Gaussian variable. Note that the dtsribof any of
theXl(')'s is symmetric. We shall také,, > 0; thus, the distribution aZ, shall be
determined by its Mellin transform¢ (s) = E(Z5,). From (7.5), o (s) satisfies:

m+1

El(2v2)%2) = (El(2y0/2)72™ ) ot (9

with d = 21 that is:

‘mrl
d mH-1
25/2 (1%5) 25/2 r(§+2(ms+l)) M(S)
r) r9
that is precisely:
1
riy)  (TEE\™ e
rh \rEmy ) M 7o
2 2(m+1)

Now, we recall Gauss multiplication formula®(fR99], see alsoTY03])
kkz—l/

1 .
kT I_L (7.7)

which we apply withk = m+ 1 andz = (”S T We then obtain, fromd.7)

r%)  (m+1%2 1 ™ 1+s42j
\/% - (2mm2 FIJEL 2(m+1)) (78)
2 ()
= (m41)%2 — S (7.9)
ey H(wi&m)

since the two sides of7(8) are equal to 1 fos = 0. We now plug 7.9 into (7.6)
and obtain

m I—(;“FS-FZJ) I—(2m+l+S) m+1
M) 2(m 1)
(M+1)%2 <7 _(=2mD) e (7.10)
N\ria)) ~ \Fezs)

We note that forj = m, the same term appears on both sides7df@, thus .10

may be written as:
r(2m+1+5) m
) - (% a1 (9) (7.11)
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In terms of independent gamma variables, the left-handdidé 11) equals:

2<ms+1)
(m+1)%?E {(I-Lym ) } (7.12)
2(m+1)

whereas the right-hand side af.11) equals:

{(r[)v() ] (s) (7.13)

where theyép denote independent gamma variables with respective péeesag.
Now, from the beta-gamma algebra, we deduce, forjadym— 1:

i) (law)

 (lay o 142] m—]
2D <nti“£ 2(m+1) m+1

Ly

Thus, we obtain, again by comparing12 and (7.13:

m—1 1+2J —j 2(ms+1
_ s/
wnems i 20)

which entails:

o S/ 1+2J m—j 2(m+1)
E[Z3] = (m+1)¥2E {(]‘LB D) 1>>

that is, equivalently,

»
—

(1aw 142 i\
Zm (m+11/2<I—LB AT _1)>

7.3 Some remarks about Theoreny.1.1

7.3.1 A further extension

We tried to extend Theorem1.1by taking a product of independent martingales
X, solution of {.2) with differentm’s. Here are the details of our attempt.
We are looking for the existence of a varial@llesuch that the martingale

P m)
-(fix)2

satisfies the properties i) and ii). Hepge(mj)o<j<p-1 are integers anX (™) s
the solution of the EDS7(2) associated ton;, the martingales being independent
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for j varying. In order thaM enjoys the Brownian scaling property, we need the
following relation

= 7.14
Pes: (7.14)

Following the previous computations, seegj, the Mellin transformas (s) of Z
should satisfy

2mj+1+s
r(i59) P-1T (S—)
2 m +1
(I_L o ijﬂ ) (s). (7.15)
2(m; +1
We recall (seeq.9)) the Gauss multiplication formula
r 1+s p-1/T 14+s+2]
) _ pS/ZI'L<7( £ | (7.16)
VT =0\ M=)
To find a7 (s) from (7.15), (7.16), we give some probabilistic interpretation:
1+s+2j
r( +S+ J) y5/2p
71 2 (1+2j)/2
r( ;—pl) i)/ p
whereas
2mj+1+s
( 2(mj+1) ) . s/2(m;+1)
r( 2mj+1 ) - [ (1+2mj)/2(mj+l)]'
2(mj+1)

Thus, we would like to factorize

1/2p (law) 1/2(mj+1) (i)
Y2z = Yivram))/2(m+1)Zm.p (7.17)

for some variablez,(#;j)’p to conclude that

p-1
Z: pl/2 ZS]'J\)‘p
18

It remains to find under which condition the identi®.17 may be fulfilled. We
write

(law) ' p/(mj+1) () \2
Yas2ize = Yiaram)/2m +1) (%) (7.18)
Now, if 1;—51 < 2%;1—21”1) we may apply the beta-gamma algebra to obtain
~ (law) B(1+2j 1+ 2m; _1+2j)
Ya+2j)/2p = Y(a+2m)/2(mi+1) 2p '2(m+1)  2p
but in (7.18), we need to have on the right-hand suf ';‘:nfl/z m +1) instead of

Y(1+2m))/2(mj+1)-
However, it is known that
Iaw

Ya = chac
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for some variable/, ¢ independent of, for anyc € (0,1]. This follows from the
self-decomposable character ofyy). Thus, we seem to ”e‘?ﬁpﬂ < 1. But, this
condition is not compatible with7(14) unlessm; = m=p— 1.

7.3.2 Asymptotic study

We study the behavior of the produ)t{f1> ...Xl(m”), resp. Zy,, appearing in the
right-hand side of the equality in law 5), whenm— o, Recall from {.4) that

1
% | "2 <2y2m+1) S

2(m+1)

We are thus led to consider the product

(p) B ) o
p _ |
© bc ™ <i|]y<—b/p>

where in our set up of Theorehl.1 p=m+1,a=1,b=c=1/2.

B[O = |‘1E (v b/p)cs/ P

_ [Ta-8+%))°
- \Tre-n
cs—b b
= expp(n(l(a+ T))—m(r(a— B)))]
- exp( r/((:))cs).

Thus, it follows that

(p) P (a)
Oabe 5o X F ) O
implying that
X XY expl-y/2) (7.19)
and " )
aw
exp(—y/2)Z m_m]N]. (7.20)

wherey= —I"(1) is the Euler constant.
We now look for a central limit theorem f@ép&c. We consider the limiting distri-

bution of
cl (i) r’ a)
ﬂ){ﬁé'”(ya-b/p)‘cr a) |
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p .
cw{i_zlnwg)b/p) = D

p

E(exp
=[] (Wae)” ] p(-0s/B ()
r(a)

:E[(yﬁlb/p) }exp( cs,/p (a))

Ma—3+%)\" (a)
(Frap) e
- exp(inr(a— 7+ ) ~In(r(a— 2))) ~es/ B

We thus obtain that

a

(
DL

whereN(0,0?) denotes a centered Gaussian variable with variance:

" / 2
0 =c*(In(r))"(a) = ¢ [rr((;) - (;8) ] :

or, equivalently

law)

N(0,0?) (7.21)

(@é,"ﬁ,cexrxr'—acﬂﬁ“aw epNO.A(n(M) @) (7:22)

p—
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