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Thèse de doctorat

pour l’obtention du titre de
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Statement of results

This work contains results in two areas: the construction ofmartingales with spec-
ified marginals and the Skorokhod embedding problem. The contributions are the
folllowing:

• A new solution to the Skorokhod embedding problem (published in Statistics
and Probability Letters, see [Bak12])

• A Brownian sheet based construction of a martingale with thesame marginals
as the average of geometric Brownian motion. This provides anew proof that
in the Black Scholes framework the the price of arithmetic Asian options are
increasing in duration ( joint work with Marc Yor, publishedin Electronic
Journal of Probability [BY09])

• A sequence of Albin type continuous martingales with Brownian marginals
and scaling (joint work with C. Donati-Martin and M. Yor, published in Sem-
inaire de Probabilites, see [BDMY11])

• On Martingales with Given Marginals and the Scaling Property (joint work
with M. Yor, published in Seminaire de Probabilites, see [BY11])

• A proof that the L2 quantization does not have the property ofpreserving the
convex order (preprint submitted to Statistics and Probability Letters)

• A quantization method which we calledU−quantization and a proof that
it has the property of preserving the convex order. Using this quantization
we give new methods for constructing martingale transitions with specified
marginals (preprint submitted to Electronic Journal of Probability)
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Part I

Constructing martingale
transitions through quantization

of measures
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Chapter 1

Introduction

The framework under consideration is the following: we are given two probability
measures onR, which we denoteµ andν and we wish to construct a martingale
transition fromµ to ν. It is known that a necessary and sufficient condition for the
existence of a martingale transition fromµ to ν is thatµ andν be ordered in the
convex order, which is denotedµ≤cx ν and defined as:

µ≤cx ν ⇐⇒
∫
R

f (x)dµ(x) ≤
∫
R

f (x)dν(x) for every convex functionf

The method which we propose is to approximateµ by a sequence of discrete
measures(µ̂n)n∈N which converges in law toµ. Similarly, we construct a sequence
of discrete measures(ν̂n)n∈N which converges toν. Then we provide methods
which will construct, for eachn, a martingale transition from ˆµn to ν̂n.

Approximating a probability measure by a discrete measure is refered to as quan-
tizing that measure. The method which is generally used to quantize probability
measures is theL2 quantization. We will show that theL2 quantization cannot be
used in this situation. Indeed, we will prove that theL2 quantization does not have
the property of preserving the convex order. The consequence of this is that when
µ≤cx ν, we may well have ˆµn 6≤cx ν̂n for somen, in which case there exists no
martingale transition from ˆµn to ν̂n. It is necessary that the quantization method
which we employ has the property of preserving the convex order. We define a
quantization which has this property of preserving the convex order. This quan-
tization method will be calledU -quantization. In theorem2.4.11, we prove that
U -quantization preserves the convex order. This ensures that if there exists a mar-
tingale transition fromµ to ν, then there also exists a martingale transition from ˆµn

to ν̂n.
The problem of the appropriate quantization method being settled, we show how,
for eachn, martingale transitions can be obtained from ˆµn to ν̂n. We give 3 different
methods of constructing such martingale transitions. The first method is straight-
forward but worth mentioning; it is linear programming and its solution is obtained
by the simplex method. The second method is interesting because it relates the the-
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ory of symmetric matrices with specified diagonal and spectrum to the theory of
martingale transitions. Indeed, we show how by constructing a symmetric matrix
with properly chosen eigenvalues and diagonal elements, wecan produce a mar-
tingale transition from ˆµn to ν̂n. The third method is the use of potential theory
and an algorithm by Chacon and Walsh. This algorithm can be used here because
U -quantization has the property of preserving the convex order.

1.1 Relevance to risk management

1.1.1 Relevance to modeling of financial risks

In addition to being of theoretical interest, the problem ofconstructing martin-
gales with specified marginals has important applications to financial risk, which
we now briefly discuss. The observed market prices of European calls and puts on
an instrument, provide the marginal laws of its process. There is of course some
imprecision coming from the fact that not all strikes and maturities are traded. If
all strikes and maturities were traded, then every marginallaw of the process could
be fully extracted from the observed prices. This imprecision and the need to in-
terpolate are not addressed here. The framework under consideration is that of
an observer having all marginal laws of a stochastic process, and wanting to infer
additional information about this stochastic process. He or she may want the prob-
ability that the process will cross a threshold during a certain time interval. Or the
quantity of interest may be the probability that the realized volatility will be greater
than a certain value.
A common approach is to first suppose that the stochastic process belongs to a
particular family (α-stable processes, variance-gamma processes, etc..). Thenext
step, “model calibration”, would be to choose the member of this family which
provides the closest fit to the observed marginals. The problem with this method
is the model risk which it introduces. There is indeed no theoretical justification
for the process belonging to some particular family. Postulating this will exclude
from consideration processes which have no reason to be excluded. Any conclu-
sions obtained by this method are subject to a potentially large and unquantified
amount of additional model risk. Model free approaches, while technically more
difficult, are increasingly becoming an active area of research. See for example D.
Hobson’s lecture notes on the Skorokhod embedding problem and Model indepen-
dent bounds for option prices ([Hob11]). In a model free approach, one does not
assume that the underlying belongs to a particular class of processes. The only as-
sumption made is that the underlying has the martingale property (after a change to
the risk neutral measure). This is theoretically justified by an absence of arbitrage
argument.

The idea then is to study the set of admissible martingales, which are the mar-
tingales having the required marginal laws. The set of admissible martingales is
incredibly large and complex, and much more research is needed for it to become
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better understood. In the mean time, any method of constructing elements of this
set (such as the methods presented here) improves our understanding of this set of
admissible martingales.

1.1.2 Inferring marginal laws from option prices

In this work, we will take the marginal laws of the underlyingas given. The prob-
lem of finding marginal laws compatible with observed optionprices is an area of
research in its own. Indeed it constitutes an inverse problem which in each case
has many solutions. If there were a continuum of observed option prices, one for
each strike, then the problem of recovering the marginal lawwould have a unique
solution. This solution could be obtained by the Breeden andLitzenberger [BL78]
formula.

Using the Breeden and Litzenberger formula one can extract the marginal laws
from the option prices. We denote byφ the risk neutral density of the final spotST .
As the call price is given by

C(S0,K,T) =
∫
R
(ST −K)+φ(ST ,T,S0)dST

this can be differentiated twice with respect to the strikeK to extract the densityφ
of the marginal law ofSat timeT.

φ(KT ,S0) =
∂2C(S0,K,T)

∂K2

Since option prices are not available for the entire spectrum of strike values, inter-
polating the available values is necessary.

The state price density is often called the risk neutral density, in our framework
it will be called the marginal density. In [JR96] a prior parametric density is pos-
tulated as the state price density. In [ASL98], kernel smoothing for this purpose is
discussed.
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Chapter 2

Quantization and preservation of
the convex order

2.1 The convex order and the existence of martingale tran-
sitions between specified marginal laws

The convex order (≤cx) is a partial order onP (R), the space of probability mea-
sures onR. It compares probability measures in terms of their dispersion.

Definition 2.1.1. Let µ,ν ∈ P (R). We say thatµ is dominated byν in the convex
order and writeµ≤cx ν if, for every convex functionφ(x),

∫
R

φ(x) dµ(x) ≤
∫
R

φ(x) dν(x)

2.1.1 Characterizations of the convex order

The convex order can be characterized in several ways. In particular it can be
characterized in terms of:

• potential functions

• distribution functions

• survival functions

• quantile functions

• put and call functions

• martingale transitions

These characterizations will be used throughout this work.Proofs of these charac-
terizations can be found in the book by Shaked and Shanthikumar [SS06].
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Characterization in terms of potential functions:

Definition 2.1.2. The potential function of a measureµ is given by

Uµ(t) =−
∫
R
|t−x|dµ(x)

Criterion 1. µ≤cx ν iff Uµ(t)≥Uν(t) for all t

Characterization in terms of distribution functions:

Definition 2.1.3. The distribution of a measureµ is the functionF(t) =
∫ t
−∞ dµ(x).

Criterion 2. Let µ be a measure with distribution functionF andν be a measure
with distribution functionG. Then

µ≤cx ν ⇐⇒







µ andν have equal means.∫ x

−∞
F(t)dt ≤

∫ x

−∞
G(t)dt for everyx∈ R

Characterization in terms of survival functions:

Definition 2.1.4. The survival function of a measureµ is the functionF̄(t) =∫ ∞
t dµ(x).

Criterion 3. Let µ be a measure with survival function̄F andν be a measure with
survival functionḠ. Then

µ≤cx ν ⇐⇒







µ andν have equal means.∫ ∞

x
F̄(t)dt ≤

∫ ∞

x
Ḡ(t)dt for everyx∈ R

Characterization in terms of quantile functions:

Definition 2.1.5. The quantile function of a probability measure with distribution
functionF(x) is:

F−1(p) = inf{x∈ R : p≤ F(x)}

Criterion 4.

µ≤cx ν ⇐⇒







µ andν have equal means.∫ p

0
F−1(u)du≥

∫ p

0
G−1(u)du for everyp∈ [0,1]
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Characterization in terms of call functions:

Definition 2.1.6. The following collection of functions, indexed byK ∈R, will be
referred to as call functions and defined as:

CK(x) = (x−K)+ = max(x−K,0)

Criterion 5.

µ≤cx ν ⇐⇒







µ andν have equal means.∫
R

CK(x)dµ(x) ≤
∫
R

CK(x)dν(x) for everyK ∈R

Characterization in terms of put functions:

Definition 2.1.7. The following collection of functions, indexed byK ∈R, will be
referred to as put functions and defined as:

PK(x) = (K−x)+ = max(K−x,0)

Criterion 6.

µ≤cx ν ⇐⇒







µ andν have equal means.∫
R

PK(x)dµ(x) ≥
∫
R

PK(x)dν(x) for everyK ∈ R

Characterization in terms of martingale transitions:

Criterion 7. (Kellerer [Kel72] ) µ≤cx ν if and only if there exist random variables
X andY such that:











X ∼ µ

Y ∼ ν
E[Y|X] = X

2.1.2 Properties of the convex order

Equal means

Lemma 2.1.8. µ≤cx ν implies thatµ andν have equal means.

The proof of this is straightforward:

Proof. φ1(x) = x andφ2(x) =−x are both convex functions.
Thereforeµ≤cx ν implies that

∫
x dµ≤ ∫

x dν and that−∫
x dµ≤−∫

x dν
Hence

∫
x dµ=

∫
x dν
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Relationship to variance

µ≤cx ν implies that the variance ofµ is at most as large as the variance ofν. This
is straightforward asf (x) = x2 is a convex function. The converse however is not
true. In other words,µ can have a smaller variance thanν yet ν may not dominate
µ in the convex order. An example of this is given in Rotschild and Stiglitz [RS70].
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2.2 Quantization of measures onR

To quantize a measure is to approximate it by a measure which is supported on
a finite number of points. Quantizations of measures onR will play an important
role in this work. We will use quantizations for two different purposes. We will use
them to construct a new solution to the Skorokhod embedding problem. We will
also use quantizations in order to build martingale transitions between specified
marginals. When constructing martingales between specified marginals, we will
be interested in quantizations which preserve the convex order. The commonly
used quantization method in probability is theL2 quantization. We will prove that
it does not have the property of preserving the convex order,and we will define a
quantization which does have the property of preserving theconvex order. Before
we do all this we will devote this section to discussing the theory of quantization.
In particular we will discuss the commonly usedL2 quantization.

2.2.1 Voronoi style quantizations

Let µ be the probability measure onR which we wish to quantize. If we choose
a vector ofn points(x1, ..,xn) then a natural way to quantizeµ is as follows: For
each ofxi , construct an intervalAi, as follows:































if i = 1, thenAi =

(

−∞ ,
x1+x2

2

]

if 2 6 i 6 n−1, thenAi =

[

xi−1+xi

2
,

xi +xi+1

2

]

if i = n, thenAi =

[

xn−1+xn

2
, +∞

)

Then a quantization ofµ can be obtained as follows: For eachi, place an atom of
massµ(Ai) at the positionxi . In other words,

µ̂=
n

∑
i=1

µ(Ai)δxi

This quantization is called the Voronoi quantization ofµ, because the intervalsAi

are the Voronoi cells corresponding to the pointsxi .

Instead of choosing the points(x1, ..,xn), we could have chosen a partition ofR

asn intervals (A1, ..,An). A natural quantization ofµ would then be: For eachAi,
place an atom of massµ(Ai) at the position 1

µ(Ai)

∫
Ai

xdµ(x). This is pretty much
the same type of quantization as the Voronoi quantization. Indeed in the Voronoi
quantization, the segments are obtained from the points andhere the segments are
given directly. We now prove that for these two types of quantizations, the original
measureµ dominates its quantization ˆµ in the convex order, i.e. ˆµ≤cx µ.
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Lemma 2.2.1.Let J be a partition ofR. Let µ̂ be the probability measure which is
constructed fromµ in the following way: for eachJ ∈ J , an atom of massµ(J) is

placed at position

∫
J x dµ(x)

µ(J)
. Then,

∫
R

φ(x) dµ̂(x)≤
∫
R

φ(x) dµ(x) for every convex functionφ.

Proof. Let J be an arbitrary element ofJ . By construction, ˆµ(J) = µ(J) and
∫

J x dµ̂(x) =
∫

J x dµ(x). The measure
µ(dx)
µ(J)

is a probability measure onJ. Its

expectation is

∫
J x dµ(x)

µ(J)
. Therefore, by Jensen’s inequality, for every convex func-

tion φ,
∫

J
φ(x)

dµ(x)
µ(J)

≥ φ
(∫

J x dµ(x)
µ(J)

)

As µ̂(J) = µ(J), the measure
µ̂(dx)
µ(J)

is a probability measure onJ. It consists of a

single Dirac point mass at the position

∫
J x dµ(x)

µ(J)
. Therefore,

∫
J
φ(x)

dµ̂(x)
µ(J)

= φ
(∫

J x dµ(x)

µ(J)

)

Combining the two above equations,
∫

J
φ(x)

dµ(x)
µ(J)

≥
∫

J
φ(x)

dµ̂(x)
µ(J)

which is equivalent to: ∫
J
φ(x) dµ(x) ≥

∫
J
φ(x) dµ̂(x)

As the above holds for eachJ ∈ J , and together they constitute a partition ofR, it
follows that ∫

R
φ(x) dµ(x) ≥

∫
R

φ(x) dµ̂(x)

2.2.2 L2 quantization

To quantize a random variableX is to approximate it by a random variableX̂ which
has a support consisting ofn points. The resulting quadratic error is given by:

E|X− X̂|2

TheL2 quantization ofX is the random variablêX, supported onn points which
minimizes the quadratic error.

14



2.2.3 Lloyd’s fixed point algorithm for performing L2 quantizations

Algorithm 1 Lloyd’s fixed point algorithm for performingL2 quantizations
Let µ be a probability measure onR. TheL2 quantization ofµ can be computed
using Lloyd’s [Llo82] algorithm as follows.

Initial step: Seeding the algorithm.
In order to seed the algorithm, pickn arbitray real numbers,x1, ..,xn.

Step 1: From points to intervals.
Suppose that thexi ’s are sorted in increasing order. For each ofxi , construct an
intervalAi, as follows:































if i = 1, thenAi =

(

−∞ ,
x1+x2

2

]

if 2 6 i 6 n−1, thenAi =

[

xi−1+xi

2
,

xi +xi+1

2

]

if i = n, thenAi =

[

xn−1+xn

2
, +∞

)

Step 2: From intervals to points.
For each intervalAi, compute:

x
′
i =

1
µ(Ai)

∫
Ai

xdµ(x)

updatexi to this new value.

Step 3: repeat steps 1 and 2 until convergence of thexi ’s

Result TheL2 quantization ofµ is obtained as follows. For eachi, place an atom
of massµ(Ai) at the positionxi . In other words,

µ̂=
n

∑
i=1

µ(Ai)δxi

Remark.In step 1,Ai consists of all points inR which are closer toxi than to any
of the otherx j . The intervalsAi correspond to Voronoi cells.
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2.3 TheL2 quantization does not preserve the convex or-
der

2.3.1 Quantization of probability measures and theL2-quantization
method.

A quantization of ordern of a measureµ is a measure ˆµ which has a support con-
sisting of at mostn points. The measure ˆµ should also be a reasonably good ap-
proximation ofµ.

Definition 2.3.1. Let µ be a probability measure onR. Given a vector(x1, ..,xn) ∈
Rn, theVoronoi quantizationof µ is defined as:

µ̂=
n

∑
i=1

µ(Ai) δxi

whereAi is the Voronoi cell ofxi defined asAi =
{

x∈ R : |x−xi | ≤ |x−x j | for all 1≤ j ≤ n
}

andδxi denotes the Dirac point mass atxi .

Remark.The vector of points(x1, ..,xn) is called the quantization grid. Note how
the quantization grid together withµ uniquely defines ˆµ.

Definition 2.3.2. Thequadratic errorof the Voronoi quantization defined above is
given by:

n

∑
i=1

∫
Ai

|xi−u|2 dµ(u)

Definition 2.3.3. The Voronoi quantization which minimizes the quadratic error is
called theL2-quantization.

2.3.2 TheL2-quantization method does not preserve the convex order

In this section we show that theL2-quantization does not preserve the convex order.
There are several characterizations of the convex order (see [SS06]). We will make
use of two of these characterizations. The first one is in terms of potential functions,
the second in terms of martingale transitions. These are given in Lemma2.3.5
below.

Definition 2.3.4. The potential of a probability measureρ is the function:

Uρ(t) =−
∫
R
| x− t| dρ(x)

Lemma 2.3.5. Let µ andν be two probability measures onR. The following are
equivalent:

(i) µ≤cx ν
(ii) Uµ(t)≥Uν(t) for all t ∈R

(iii ) There exists random variablesX andY satisfyingX ∼ µ, Y ∼ ν andE[Y|X] = X

16



Proof. see [SS06].

Theorem 2.3.6.The L2-quantization method does not preserve the convex order.

Proof. The proof is based on exhibiting a counterexample. Considerthe following
two measures:

µ=
1
2
(δ1

6
+δ5

6
)

ν =
1
3
(δ0+δ1

2
+δ1)

The proof proceeds in three steps.i) We first prove thatµ≤cx ν. ii) Next we per-
form L2-quantization ofµ andν. iii ) Finally, we show that the quantized measures
are not ordered in the convex order.

Showing that the two original measures are ordered in the convex order.

To show thatµ≤cx ν, it suffices by lemma2.3.5to exhibit two random variables
X andY which satisfy:X ∼ µ, Y ∼ ν andE[Y|X] = X. Let X ∼ µ andY ∼ ν and
define a transition as follows:























P(Y = 0 | X = 1
6) =

2
3

P(Y = 1
2 | X = 1

6) =
1
3

P(Y = 1
2 | X = 5

6) =
1
3

P(Y = 1 | X = 5
6) =

2
3

We now check that this transition has the martingale property:

E

[

Y | X =
1
6

]

= 0· 2
3
+

1
2
· 1
3

=
1
6

E

[

Y | X =
5
6

]

=
1
2
· 1
3
+

2
3
·1 =

5
6

ThereforeE[Y |X] =X which by the criterion 7 (Kellerer) of Chapter 2, implies
thatµ≤cx ν.

Performing the L2-quantization of the two original measures.

Let µ̂ and ν̂ respectively denote theL2-quantization of order 2 of the measuresµ
andν. The support of the measureµconsists of two points, it follows that ˆµ is equal
to µ. Indeed taking the support ofµ as the quantization grid leads to a quadratic
error of zero.
Computingν̂ amounts to performing theL2-quantization of order 2 of the measure
1
3(δ0 + δ1

2
+ δ1). This is a textbook example which can be found in the lecture

notes of H. Pham (see [Pha12]) . For the purpose of completeness, we reproduce
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and expand the calculations here.

BecauseL2-quantization is a Voronoi style quantization,ν̂ is determined by its
support through:

ν̂ =
n

∑
i=1

ν(Ai) δxi

where(x1, ..,xn) is the support of̂ν andAi is the Voronoi cell ofxi . In fact sinceν̂
is a quantization of order 2, its support consists of at most 2points. Let us denote
these two support points bya = x1 andb = x2 and without loss of generality let
a≤ b. Note thatν̂ will be supported by a single point if and only ifa= b. We must
determinea and b by minimizing the quadratic error function. It turns out that
the quadratic error function has a different expression in each of the two following
possible cases:

{

case(i) : | a− 1
2 | < | b− 1

2 |
case(ii) : | a− 1

2 | > | b− 1
2 |

The point 1
2 belongs to the Voronoi cell ofa in case(i) and to the Voronoi cell of

b in case(ii). Each of these two cases leads to a different quantization ofν. Let
us determine the quantization resulting from the case (i) where| a− 1

2 | < | b− 1
2 |.

The result which we establish holds true in case (ii) as well.
Since the point12 belongs to the Voronoi cell ofa, the quadratic error function is
given by:

E(a,b) =
1
3
[(a−0)2+(a− 1

2
)2+(b−1)2]

=
1
3
[a2+a2−a+

1
4
+(b−1)2]

=
1
3
[2(a− 1

4
)2+

1
8
+(b−1)2]

This function is minimized whena= 1
4 andb= 1. It follows that the support of̂ν

is
{

1
4,1
}

. The resulting Voronoi cells areA1 = (−∞, 5
8] andA2 = (5

8,∞). And so
ν̂ is given by

ν̂ =
n

∑
i=1

ν(Ai) δxi

= ν( (−∞,
5
8
] ) δ1

4
+ν( (

5
8
,∞) ) δ1

=
2
3

δ1
4
+

1
3

δ1

Showing that the two quantized measures are not ordered in the convex order.

By lemma2.3.5, a necessary and sufficient condition for ˆµ≤cx ν̂ is thatUµ̂(t) ≥
U ν̂(t) holds for everyt ∈ R. It suffices therefore to exhibit at∗ ∈ R such that
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Uµ̂(t∗)<U ν̂(t∗). This is the case whent∗ = 1
4 as we now show by evaluating the

potential functions of ˆµ andν̂.

Uµ̂(
1
4
) =−

∫
R

∣

∣

∣

∣

x− 1
4

∣

∣

∣

∣

dµ̂(x)

=−1
2

∣

∣

∣

∣

1
6
− 1

4

∣

∣

∣

∣

− 1
2

∣

∣

∣

∣

5
6
− 1

4

∣

∣

∣

∣

sinceµ̂=
1
2

δ1
6
+

1
2

δ5
6

=−1
3

U ν̂(
1
4
) =−

∫
R

∣

∣

∣

∣

x− 1
4

∣

∣

∣

∣

dν̂(x)

=−1
3

∣

∣

∣

∣

1
4
−1

∣

∣

∣

∣

sinceν̂ =
2
3

δ1
4
+

1
3

δ1

=−1
4

Corollary 2.3.7. Let µ andν be a pair of measures which admits a martingale
transition. Letµ̂ and ν̂ be their respective L2-quantizations. A martingale tran-
sition fromµ̂ to ν̂ does not necessarily exist (because we do not necessarily have
µ̂≤cx ν̂).

Proof. This follows from Theorem2.3.6 and the characterization of the convex
order in terms of martingale transitions given in Lemma2.3.5.

-1

-0.8

-0.6

-0.4

-0.2

 0

-0.5  0  0.5  1  1.5

Figure 2.1: The potentials of the two measures before L2 quantization
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-1

-0.8

-0.6

-0.4

-0.2

 0

-0.5  0  0.5  1  1.5

Figure 2.2: The potentials of the two measures after L2 quantization (note that by
Criterion 1 of section 2, neither of the quantized measures dominates the other in
the convex order).
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2.4 A quantization which preserves the convex order

We have just seen that theL2 quantization, which is the commonly used method to
quantize probability measures, does not preserve the convex order. In this section
we provide a quantization which does have the property of preserving the con-
vex order. This quantization will be calledU -quantization because it produces a
quantization which is uniformly distributed on a finite number of support points.

2.4.1 Definition ofU -quantization

TheU -quantization of a measure is defined in terms of the quantilefunction of that
measure. The quantile function of a measure is defined as follows:

Definition 2.4.1. The quantile function of a probability measure with distribution
functionF(x) is:

F−1(p) = inf{x∈ R : p≤ F(x)}

Definition 2.4.2. Choose an integern. Let µ∈ P (R) with distribution function
F(u) =

∫ u
−∞ dµ(x).

TheU -quantization ofµ is



















U(a1, ..,an) =
1
n

n

∑
i=1

δai

whereai = n
∫ i

n

i−1
n

F−1(u)du

2.4.2 Numerical illustration of U -quantization

Example 2.4.3.Let µ be the standard ( mean 0, variance 1) Gaussian law and let
ν be a ( mean 0 and variance 2) Gaussian law. LetU(a1, ..,a10) andU(b1, ..,b10)
be the respective quantizations ofµ andν (we chose n=10). Using numerical inte-
gration we can compute the vectors(a1, ..,a10) and(b1, ..,b10):

(a1, ..,a10)
T =

































−1.75498
−1.04464
−0.67731
−0.38650
−0.12600
0.12600
0.38650
0.67731
1.04464
1.75498

































(b1, ..,b10)
T =

































−2.48192
−1.47734
−0.95786
−0.54659
−0.17819
0.17819
0.54659
0.95786
1.47734
2.48192
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Lemma 2.4.4. (U -quantization preserves the mean of a measure) Letµ be a prob-
ability measure with distribution functionF, andU(a1, ..an) be itsU -quantization.
Thenµ andU(a1, ..an) have the same mean.

Proof.

The mean ofU(a1, ..an) =
1
n

n

∑
i=1

ai

=
1
n

n

∑
i=1

n
∫ i

n

i−1
n

F−1(u)du

=
∫ 1

0
F−1(u)du

= the mean ofµ

2.4.3 U -quantization preserves the convex order

To show thatU -quantization preserves the convex order we will need the notion of
majorization which is a partial order which compares vectors of same length and
equal mean in terms of the relative dispersion of their coordinates.

Definition 2.4.5. Let (a1, ..,an) and(b1, ..,bn) be two vectors whose entries have
been sorted in increasing order.
(a1≤ ..≤ an andb1≤ ..≤ bn)
We say that(a1, ..an) is majorized by(b1, ..,bn), and write(a1, ..an) ≺ (b1, ..,bn)
if:

{

(i)∑n
i=1 ai = ∑n

i=1 bi

and (ii)∑k
i=1 bi ≤ ∑k

i=1ai for k= 1, ..,n−1

Examples 2.4.6.(1,2,3) ≺ (0,2,4) and(1,1,1,1) ≺ (0,0,0,4)
The vectors(1,6,6,9) and(2,3,8,9) illustrate the fact that(≺) is a partial order,
and not a total order. Both vectors have the same mean, but neither vector majorizes
the other. (1< 2 but 1+6> 2+3)

Remark.(a1, ..,an)≺ (b1, ..,bn) means that(b1, ..,bn) is more dispersed than(a1, ..,an).
In the literature there is no consensus as to the direction ofthe ordering. In eco-
nomics (≺) is called the Lorenz order and compares income inequalities. There,
(a1, ..,an)≺ (b1, ..,bn) if (b1, ..,bn) is less dispersed than(a1, ..,an). In this paper,
we are using majorization (≺) alongside the convex order (≤cx). For the convex
order,µ≤cx ν means thatν is more dispersed thanµ. Therefore, it makes sense for
us to choose the definition of(≺) which we have chosen.

The following lemma gives a characterization of the convex order in terms of
the quantile function. We will use this frequently.
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Lemma 2.4.7. Let µ,ν ∈ P (R) with distribution functionsF andG, then :

µ≤cx ν ⇐⇒







µ andν have equal means.∫ p

0
F−1(u)du≥

∫ p

0
G−1(u)du for everyp∈ [0,1]

Proof. See [SST94], page 112, Theorem 3.A.5.

Definition 2.4.8. U(a1, ..,an) will denote the law corresponding to
1
n

n

∑
i=1

δai where

δx is the Dirac point mass atx.

In the following lemma we establish a relationship between the convex order
and majorization.

Lemma 2.4.9. (a1, ..,an)≺ (b1, ..,bn) ⇐⇒ U(a1, ..,an)≤cx U(b1, ..,bn)

Proof. Let us first determine the quantile functions ofU(a1, ..,an) andU(b1, ..,bn).

SinceU(a1, ..,an) corresponds to
1
n

n

∑
i=1

δai , its distribution function,F, is a piece-

wise constant function.

F(x) =











0 for x≤ a1
i
n for x∈ [ai ,ai+1)

1 for x≥ an

The quantile function ofU(a1, ..,an) is by definition:

F−1(p) = inf{x∈ R : p≤ F(x)}

It follows thatF−1 is a piecewise constant function from(0,1] toR which is given
by:

F−1(p) = ai if p∈
(

i−1
n

,
i
n

]

Integrating a piecewise constant function is easy:

∫ k
n

0
F−1(p) dp=

1
n

k

∑
i=1

ai

In the same way,G−1, the quantile function ofU(b1, ..,bn) satisfies:

∫ k
n

0
G−1(p) dp=

1
n

k

∑
i=1

bi
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Let us first show thatU(a1, ..,an)≤cx U(b1, ..,bn)⇒ (a1, ..,an)≺ (b1, ..,bn).
By lemma2.4.7, U(a1, ..,an)≤cx U(a1, ..,an) implies that for eacht ∈ (0,1),

∫ t

0
F−1(p) dp≥

∫ t

0
G−1(p) dp

⇒
k

∑
i=1

ai ≥
k

∑
i=1

bi for eachk (∗)

U(a1, ..,an)≤cxU(b1, ..,bn) implies by Lemma2.4.9and definition2.4.5, that they
have the same mean, and so:

∫ 1

0
F−1(p) dp=

∫ 1

0
G−1(p) dp

⇒
n

∑
i=1

ai =
n

∑
i=1

bi (∗∗)

Finally, (∗) together with(∗∗) imply that(a1, ..,an)≺ (b1, ..,bn).

Let us now show that(a1, ..,an)≺ (b1, ..,bn)⇒U(a1, ..,an)≤cx U(a1, ..,an).
We have seen thatF−1 is a piecewise constant function which is constant on each

of the intervals

[

i
n
,
i +1

n

]

.

It follows that p→
∫ p

0
F−1(t) dt is a piecewise affine function, which is affine on

these same intervals.
The same is true of the functionp→

∫ p

0
G−1(t) dt. Therefore to show that

∫ p

0
G−1(t)dt ≤

∫ p

0
F−1(t) dt for all p∈ (0,1)

it suffices to show that
∫ i/n

0
G−1(t)dt ≤

∫ i/n

0
F−1(t) dt for eachi ∈ {1,2, ..,n}

which by what we have shown at the beginning of the proof is equivalent to:

1
n

k

∑
i=1

bi ≤
1
n

k

∑
i=1

ai for eachk∈ {1,2, ..,n}

which follows from the initial assumption that(a1, ..,an)≺ (b1, ..,bn). Therefore
∫ p

0
G−1(t)dt ≤

∫ p

0
F−1(t)dt for eachp in (0,1)

which gives, by lemma2.4.7, thatU(a1, ..,an)≤cx U(b1, ..,bn).
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U -quantization is a bridge between the convex order (≤cx) and majorization
(≺). When measures are ordered in the convex order, the coordinates of theirU -
quantizations are ordered in the majorization order.

Theorem 2.4.10.Let µ,ν∈P (R), withU -quantizations U(a1, ..,an) and U(b1, ..,bn).
If µ≤cx ν then(a1, ..,an)≺ (b1, ..,bn).

Proof. Suppose thatµ≤cx ν. By the definition of majorization (≺ ), it suffices to
show:











(a1, ..,an) and(b1, ..,bn) have the same mean(i)
k

∑
i=1

bi ≤
k

∑
i=1

ai for eachk∈ {1, ..,n} (ii)

(i) Let us show that the vectors(a1, ..,an) and(b1, ..,bn) have the same mean. Since
µ≤cx ν, it follows thatµ andν have the same mean (see section on the convex or-
der). SinceU -quantization preserves the mean of a probability measure,it follows
that the measuresU(a1, ..,an) andU(b1, ..,bn) have the same mean. This implies
that 1

n ∑n
i=1 ai =

1
n ∑n

i=1bi , hence the vectors(a1, ..,an) and(b1, ..,bn) have the same
mean.

(ii) Letting F (resp.G) denote the distribution function ofµ (resp.ν), we have:

ai = n
∫ i

n

i−1
n

F−1(u)du

k

∑
i=1

ai =
k

∑
i=1

n
∫ i

n

i−1
n

F−1(u)du

k

∑
i=1

ai = n
∫ k

n

0
F−1(u)du

In the same way, one also obtains,

k

∑
i=1

bi = n
∫ k

n

0
G−1(u)du

As, µ≤cx ν it follows by the characterization of the convex order usingquantile
functions that:

∫ p

0
G−1(u)du≤

∫ p

0
F−1(u)du for everyp∈ [0,1]

Hence
k

∑
i=1

bi ≤
k

∑
i=1

ai for eachk∈ {1, ..,n}
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Remark.It can be shown thatµ≥cx U(a1, ..an) (see Section 4, lemma3.6.5). Al-
though this is common for several quantization methods, what is more remarkable
is that this quantization preserves the convex order, as we now show:

Theorem 2.4.11.( U -quantization preserves the convex order) Let µ,ν ∈ P (R)
with quantizations U(a1, ..,an) and U(b1, ..,bn). If µ≤cx ν then U(a1, ..,an) ≤cx

U(b1, ..,bn).

Proof. Suppose thatµ≤cx ν. By Theorem2.4.10this implies that(a1, ..,an) ≺
(b1, ..,bn). By Lemma2.4.9it follows thatU(a1, ..,an)≤cx U(b1, ..,bn).

The quantization defined above would not be of much use ifU(a1, ..,an) did
not converge toµ. Thankfully this is the case as the following theorem shows.

Theorem 2.4.12.Let µ∈ P (R) with quantization U(a1, ..,an). Then as n goes to
infinity, U(a1, ..,an) converges weakly to µ.

Proof. Recall that

U(a1, ..,an) =
1
n

n

∑
i=1

δai whereai = n
∫ i

n

i−1
n

F−1(u)du

The cumulative distribution functionF is a non-decreasing function, hence it fol-
lows that its inverse,F−1 is also a non-decreasing function. As the integrand is a
non-decreasing function, the above integral may be boundedas follows:

n(
i
n
− i−1

n
)F−1(

i−1
n

)≤ n
∫ i

n

i−1
n

F−1(u)du ≤ n (
i
n
− i−1

n
) F−1(

i
n
)

F−1(
i−1

n
)≤ n

∫ i
n

i−1
n

F−1(u)du ≤ F−1(
i
n
)

F−1(
i−1

n
)≤ ai ≤ F−1(

i
n
)

LetFn denote the distribution function ofU(a1, ..,an). By the definition ofU(a1, ..,an),

Fn(t) =
1
n

n

∑
i=1

1{ai ≤ t}

where1 denotes the indicator function.
Let us now examineF(t) andFn(t) whent ∈ [F−1( i−1

n ) , F−1( i
n)]

SinceF is a monotone increasing function, applyingF to each term ofF−1( i−1
n )≤

t ≤ F−1( i
n), we obtain:

i−1
n
≤ F(t)≤ i

n
(∗)

Again whent ∈ [F−1( i−1
n ) , F−1( i

n)], we boundFn(t), the distribution function of
U(a1, ..,an), in the following way:
We have seen that:

ai−1≤ F−1(
i−1

n
)≤ ai ≤ F−1(

i
n
)≤ ai+1
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It follows that whenF−1( i−1
n )≤ t ≤ F−1( i

n), one must have eitherai−1≤ t ≤ ai or
ai ≤ t ≤ ai+1. Therefore whenF−1( i−1

n )≤ t ≤ F−1( i
n), the distribution functionFn

which isFn(t) = 1
n ∑n

i=1 1{ai ≤ t} must be equal to one of the 3 following values:
i−1
n or i

n or i+1
n .

It follows that whenF−1( i−1
n )≤ t ≤ F−1( i

n) the following must hold:

i−1
n
≤ Fn(t)≤

i +1
n

(∗∗)

By (*) and (**), it follows that whenF−1( i−1
n )≤ t ≤ F−1( i

n), we have:

|F(t)−Fn(t)| ≤
2
n

Now the collection of intervals{
(

F−1( i−1
n ) , F−1( i

n)
]

: 1≤ i ≤ n} generate
the support ofµ, and therefore that ofU(a1, ..,an). From this we conclude that
| Fn(t)−F(t) |≤ 2

n for all t ∈ R. Hence asn→ ∞, the distribution functionFn

converges pointwise toF. This means that asn→ ∞, the quantizationU(a1, ..,an)
converges weakly toµ
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Chapter 3

Construction of martingale
transition between quantized
measures

3.1 Martingale transitions though linear programming

3.1.1 Linear programming

Linear programming consists in optimizing a linear function subject to a set of
linear constraints. The linear function to be optimized is called the objective func-
tion. Let the vector of variables be denotedx = (x1, ..,xn). A linear function in
these variables is of the form:

n

∑
i=1

cixi

wherec= (c1, ..,cn) is the vector of coefficients of the objective function. Linear
constraints can be of the following forms:

n

∑
i=1

aixi ≤ b (an upper bound constraint)

n

∑
i=1

aixi ≥ b (a lower bound constraint)

n

∑
i=1

aixi = b (an equality constraint)

wherea= (a1, ..,an) is a vector of constraint coefficients.
A collection ofk linear constraints can be represented by:
a matrixA which hask rows andn columns,
a vectorb= (b1..bk)

T ,
in the following way:

Ax= b
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(for k equality constraints)

3.1.2 The Linear programming problem in standard form

The linear programming problem can be stated as:

maxcTx

subject toAx= b

andx≥ 0

x is the vector of variables to be determined.
c is the vector of coefficients of the objective function.
A is the matrix of constraint coefficients.
b is the vector of right hand side values of the constraints.

The set of constraints:

Ax= b

andx≥ 0

specify a convex polytope over which the objective functioncTx is to be optimized.

3.1.3 Solutions to linear programs

The simplex algorithm developed by Danzig solves a linear program when it has a
solution (see [WD49], [Dan49] and [Dan98]).

3.1.4 Martingale transitions as solutions to linear programming prob-
lems

Given two specified marginal lawsµ and ν, we have seen howU -quantization
provides us with two quantized measures ˆµ andν̂. Both µ̂ andν̂ are uniform laws
on n support points.

µ̂∼U(a1, ..,an)

ν̂ ∼U(b1, ..,bn)

Let us now look at how linear programming provides us with martingale transitions
from µ̂ to ν̂. A martingale transition from ˆµ to ν̂ can be expressed as a matrix
M = (mi, j)1≤i, j≤n. The matrixM describes the transition probabilities through:

mi, j = P(Y = b j | X = ai)

For each rowi, we must have∑n
j=1mi, j = 1.

For each columnj, we must have∑n
i=1 mi, j = 1.

29



As there aren rows andn columns, together these row sums and column sums con-
ditions impose 2n linear constraints on the entries of the matrixM. The martingale
property of the transition matrixM translates to:

for each rowi,
n

∑
j=1

mi, jb j = ai

As there aren rows, the martingale condition translates inton more linear con-
straints on the entries of the matrixM. We are in a situation withn2 variables (the
entries of the matrixM) subject to 3n linear constraints. Each of the linear con-
straints is an equality constraint. In order to have a linearprogramming problem we
must specify a linear objective function which is to be maximized or minimized.
Any vector ofn2 real numbers can be used as coefficients for the linear objective
function. A vectorc with n2 entries defines a linear objective function through:

n

∑
i=1

n

∑
j=1

(

mi, j ci+n( j−1)
)

By choosing different vectors of objective function coefficients ( the vectorc), we
can specify different linear programming problems and thusobtain different mar-
tingale transitions from ˆµ to ν̂.

We have seen that when a linear programming problem is given in standard form,
the linear constraints are provided as a matrix of constraint coefficients together
with a vector of right hand side values for the constraints. We will now provide
an algorithm which constructs this matrix of constraint coefficients as well as the
vector of right hand side values. This algorithm works underthe assumptions out-
lined above ( i.e. construction of a martingale transition from µ̂= U(a1, ..,an) to
ν̂ = U(b1, ..,bn) ). This algorithm takes as arguments the two vectors of support
points(a1, ..,an) and(b1, ..,bn). It produces a 3n by n2 matrix of constraint coef-
ficients as well a vector of right hand side values which has length 3n. These can
then be used as inputs in a linear programming solver.
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3.1.5 Algorithm to build the matrix of constraint coefficients

The following two algorithms build the matrix of constraintcoefficients and the
vector of right hand side values for the constraints.

Algorithm 2 Algorithm which constructs the matrix of constraint coefficients for
the linear programming solver

for i = 1→ n do ⊲ Linear constraints from the row sums.
for j = 1→ n do

M(i,(i−1)n+ j)← 1
end for

end for
for i = 1→ n do ⊲ Linear constraints from the column sums.

for j = 1→ n do
M(n+ i,( j−1)n+ i)← 1

end for
end for
for i = 1→ n do ⊲ Linear constraints from the martingale property.

for j = 1→ n do
M(2n+ i,(i−1)n+ j)← b( j)

end for
end for

Algorithm 3 Algorithm which constructs the vector of right hand side constraints
for the linear programming solver

for i = 1→ 2n do ⊲ Because the matrix must be bistochastic.
R(i,1)← 1

end for
for i = 1→ n do ⊲ For the martingale property.

R(2n+ i,1)← a(i)
end for

Algorithm 4 Algorithm to turn the output of a linear programming solver from
vector form into matrix form

for i = 1→ n do
for j = 1→ n do

N(i, j)←O((i−1)n+ j)
end for

end for

Remark.GNU Octave provides a linear programming solver, the glpk routine.
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3.1.6 Numerical Example

The following example illustrates the use of linear programming as a means of
constructing martingale transitions between specified marginal laws. Consider two
marginal laws, each one of which is a uniform distribution onthe following vectors
of support points:

























−1.64683
−0.89538
−0.49135
−0.15798
0.15798
0.49135
0.89538
1.64683

















































−3.29366
−1.79077
−0.98270
−0.31595
0.31595
0.98270
1.79077
3.29366

























These vectors where obtained by performing aU -quantization of order 8 of the
following Gaussian laws: the first with parameters (mean 0, variance 1) and the
second Gaussian law with parameters (mean 0, variance 2), (see Section 2.4 onU -
quantization). Let us take as a vector of objective coefficients, a vector of length
n2 = 64 with every entry equal to 1. We obtain the following martingale transition
matrix:
























0.00000 0.97169 0.00000 0.00000 0.00000 0.00000 0.00000 0.02831
0.00000 0.00000 0.92986 0.05890 0.00000 0.00000 0.00000 0.01123
0.05890 0.00000 0.00000 0.94110 0.00000 0.00000 0.00000 0.00000
0.13130 0.00000 0.00000 0.00000 0.86870 0.00000 0.00000 0.00000
0.17239 0.00000 0.00000 0.00000 0.13130 0.69632 0.00000 0.00000
0.20730 0.00000 0.00000 0.00000 0.00000 0.30368 0.48901 0.00000
0.20196 0.00000 0.07014 0.00000 0.00000 0.00000 0.51099 0.21691
0.22815 0.02831 0.00000 0.00000 0.00000 0.00000 0.00000 0.74354
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3.2 Martingale transitions obtained from symmetric ma-
trices

Given two specified marginal lawsµ and ν, we have seen howU -quantization
provides us with two quantized measures ˆµ andν̂. Both µ̂ andν̂ are uniform laws
on n support points.

µ̂∼U(a1, ..,an)

ν̂ ∼U(b1, ..,bn)

Any martingale transition from ˆµ to ν̂ can be expressed as a matrixM =
(mi, j)1≤i, j≤n which describes the transition probabilities through:

mi, j = P(Y = b j | X = ai)

A square matrixM of sizen provides a martingale transition from ˆµ∼U(a1, ..,an)
to ν̂ ∼U(b1, ..,bn) if and only if the following 3n conditions are verified:

(a) For each rowi,
n

∑
j=1

mi, j = 1

(b) For each columnj,
n

∑
i=1

mi, j = 1

(c) For each rowi,
n

∑
j=1

mi, jb j = ai

3.2.1 Constructing a martingale transition from a symmetric matrix

Now suppose that we have a symmetric matrixSwhich has spectrum(b1, ..,bn) and
diagonal elements(a1, ..,an). We now describe how this matrixS can be used to
construct a matrixM which provides a martingale transition from ˆµ∼U(a1, ..,an)
to ν̂ ∼U(b1, ..,bn)

By the spectral theorem for symmetric matrices there exits areal orthogonal matrix
Q such that

S= QTΛQ

The matrixΛ is the diagonal matrix with entries(b1, ..,bn).

Let us defineM to be the matrix obtained by squaring the entries ofQT . In other
words, the(i, j) entry of M is given bymi, j = q2

i, j whereqi, j is the(i, j) entry of
QT .
We now show thatM satisfies the conditions (a), (b) and (c) above, which means
thatM provides a martingale transition from ˆµ∼U(a1, ..,an) to ˆν ∼U(b1, ..,bn).
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The rows of an orthogonal matrix form an orthonormal basis and similarly the
columns of an orthogonal matrix also form an orthonormal basis. It follows that
conditions (a) and (b) are verified.

Let us now verify that the transition described by the matrixM possesses the
martingale property. This amounts to verifying condition (c):

For each rowi,
n

∑
j=1

mi, jb j = ai

By hypothesis the diagonal elements ofS are(a1, ..,an), so the(i, i) entry of
S is equal toai . We have seen thatS= QTΛQ. Let us perform these two matrix
multiplications in order to calculate this(i, i) entry ofS.

QTΛ =











q11 q12 . . . q1n

q21 q22 . . . q2n
...

...
. . .

...
qn1 qn2 . . . qnn





















b1 0 . . . 0
0 b2 . . . 0
...

...
. ..

...
0 0 . . . bn











From this we see that the matrixQTΛ has(i, j) entry given byqi, j b j . The rowi of
the matrixQTΛ is given by:

(

qi,1b1 qi,2b2 .. qi,nbn
)

The (i, i) entry of the matrixQTΛQ is the inner product of the rowi of the
matrix QTΛ with the columnj of the matrixQ.

(

qi,1b1 qi,2b2 .. qi,nbn
)









qi,1

qi,2

..
qi,n









=
n

∑
i=1

q2
i, jb j

As mi, j was defined to beq2
i, j and the matrixShas the property that its(i, i) entry

is ai , the above line can be written as:

ai =
n

∑
j=1

mi, jb j

This completes the proof that the matrixM, obtained by squaring the entries ofQT ,
provides a martingale transition from ˆµ∼U(a1, ..,an) to ν̂ ∼U(b1, ..,bn).

3.2.2 Existence of symmetric matrices with given diagonal and spec-
trum

Now that we have seen how a symmetric matrix with properly chosen diagonal
and spectrum can be used to produce a martingale transition,a natural question
is: when does there exist a symmetric matrix with a given diagonal and spectrum?
The answer is provided by the following theorem:
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Theorem 3.2.1. (Horn-Schur [Hor54], [ Sch23]) There exists a symmetric ma-
trix with diagonal (a1, ..,an) and spectrum(b1, ..,bn) if and only if (a1, ..,an) ≺
(b1, ..,bn)

The symbol(≺) denotes the partial ordering called majorization which is de-
fined as follows:

Definition 3.2.2. Let (a1, ..,an) and(b1, ..,bn) be two vectors whose entries have
been sorted in increasing order (a1≤ ..≤ an andb1≤ ..≤ bn).
We say that(a1, ..an) is majorized by(b1, ..,bn), and write(a1, ..an) ≺ (b1, ..,bn)
if:

(i)
n

∑
i=1

ai =
n

∑
i=1

bi

(ii)
k

∑
i=1

bi ≤
k

∑
i=1

ai for k= 1, ..,n−1

Examples 3.2.3.(1,2,3) ≺ (0,2,4) and(1,1,1,1) ≺ (0,0,0,4)
The vectors(1,6,6,9) and(2,3,8,9) illustrate the fact that(≺) is a partial order,
and not a total order. Both vectors have the same mean, but neither vector majorizes
the other. (1< 2 but 1+6> 2+3)

Remark.(a1, ..,an)≺ (b1, ..,bn) means that(b1, ..,bn) is more dispersed than(a1, ..,an).

3.2.3 Algorithm for constructing matrices with specified diagonal and
spectrum

Algorithm 5 Chan Li Algorithm to construct a symmetric matrix with specified
diagonal and spectrum
(Chan-Li [CL83]) (a1, . . . ,an) and (b1, . . . ,bn) are given vectors which satisfy
(a1, . . . ,an) ≺ (b1, . . . ,bn), this algorithm constructs a symmetric matrix with di-
agonal elements(a1, . . . ,an) and eigenvalues(b1, . . . ,bn).

Proof. In the case wheren= 2, there is an explicit solution:
Suppose(b1,b2) and(a1,a2) are two vectors which satisfy(a1,a2)≺ (b1,b2).
Define the following orthogonal matrixQ as

Q=
1√

b2−b1

[√
b2−a1 −

√
a1−b1√

a1−b1
√

b2−a1

]

Now,

QT
[

b1 0
0 b2

]

Q=

[

a1 ∗
∗ a2

]
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Eigenvalues are left unchanged by conjugation with an orthogonal matrix. So the
matrix on the right hand side is the desired matrix with spectrum (b1,b2) and diag-
onal(a1,a2).
In the case wheren> 2, the algorithm proceeds in a recursive fashion. The main
step of the algorithm reduces a problem of sizek to a problem of sizek−1. This
main step is appliedn−2 times, thus reducing a problem of dimensionn down to a
problem of dimension 2 which has the immediate solution given above. The algo-
rithm starts with the diagonal matrix with entries(b1, ..,bn). This diagonal matrix
is then conjugatedn−1 times by properly chosen orthogonal matrices. At the end
of this process, the diagonal entries are(a1, ..,an) and the spectrum, left unchanged
through conjugation by orthogonal matrices, is still(b1, ..,bn). The recursive step
of the algorithm works as follows. You start with a square matrix of dimensionn
whose diagonal elements are(b1 . . .bn) in any order. You conjugate it by a permu-
tation matrix so that its (1,1) element isb1 and its(2,2) element isb j . Then you
conjugate it by an orthogonal matrix in the following way:





c s 0
−s c 0
0 0 In−2











b1 . . . . . .
. . . b j . . .

. . . . . .
. . .











c −s 0
s c 0
0 0 In−2



=







a1 . . . . . .
. . . b1+b j −a1 . . .

. . . . . .
.. .







In−2 denotes the identity matrix of dimensionn− 2. The values ofs and c are
computed in the same way as in the(n= 2) case. The main step of the algorithm
is then recursively applied to the submatrix obtained by removing the first row and
the first column of the right hand side matrix above. This is possible by lemma
3.2.4

The following lemma makes the recursive step in the algorithm possible.

Lemma 3.2.4. (Chan-Li [CL83]) Suppose~a= (a1, ..,an)≺ (b1, ..,bn) =~b are two
given vectors whose entries have been sorted in increasing order. Denote byb j the
smallest element of~b which is greater than or equal toa1 (i.e. b j−1 ≤ a1 ≤ b j ) .
Define two new vectors~anew and~bnew as follows:~anew is obtained by removinga1

from~a, and~bnew is obtained by removing bothb1 andb j from~b and inserting the
value(b1+b j −a1). Then the following holds:~anew≺~bnew

Proof. We will use the following notation: for a vector~v, sum(~v) denotes the sum
of the entries of~v.
Let us start by verifying that sum(~anew) = sum(~bnew).

sum(~bnew) = sum(~b)−b1−b j +(b1+b j −a1)

= sum(~b)−a1

= sum(~a)−a1 ( indeed~a≺~b⇒ sum(~a) = sum(~b) )

= sum(~anew)
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Now~anew and~bnew are both vectors of length(n−1) with the same mean. Let
us denote by sum(~anew,1,k) the sum of thek smallest elements of~a. As we have
showed that sum(~anew) = sum(~bnew), to show that~anew≺~bnew it suffices to show
that sum(~bnew,1,k) ≤ sum(~anew,1,k) for eachk from 1 tok−1. In order to prove
this, let us first examine the relative position of the elements of~anew and~bnew.
One of the following statements must hold:

eitherb1≤ ..≤ b j−1≤ a1≤ (b1+b j −a1)≤ b j

or b1≤ ..≤ b j−1≤ (b1+b j −a1)≤ a1 ≤ b j

or b1≤ ..≤ (b1+b j −a1)≤ b j−1≤ a1 ≤ b j

Indeed this is a consequence of the two following two observations:
(i) b j was chosen so thatb j−1≤ a1≤ b j .
(ii) (b1,b j) and(a1,(b1+b j −a1)) have the same mean andb1 ≤ a1 ( as~a≤~b).
Therefore eitherb1≤ a1≤ (b1+b j −a1)≤ b j or b1≤ (b1+b j −a1)≤ a1 ≤ b j

Casek≤ j−2:
b j−1 is the( j−2)th smallest element of~bnew. Let us look at the sum of thek small-
est elements of~bnew whenk≤ j−2. As b j was chosen so thatb j−1 ≤ a1 ≤ b j , it
follows that whenk≤ j−2, each element in sum(~bnew,1,k) is less thana1. Hence
sum(~bnew,1,k) ≤ k a1≤ sum(~anew,1,k).

Casek= j−1:

{

sum(~bnew,1,k) =
(

∑ j−1
i=2 bi

)

+(b1+b j −a1)

sum(~anew,1,k) = ∑ j
i=2 ai

Therefore sum(~bnew,1,k) ≤ sum(~anew,1,k)

⇐⇒
(

j−1

∑
i=2

bi

)

+(b1+b j −a1) ≤
j

∑
i=2

ai

⇐⇒
j

∑
i=1

bi ≤
j

∑
i=1

ai , which is true because~bnew≻~anew

Casek≥ j:
Note thatb j+1 is the jth smallest element ofbnew

{

sum(~bnew,1,k) =
(

∑ j−1
i=2 bi

)

+(b1+b j −a1)+∑k+1
i= j+1 bi

sum(~anew,1,k) = ∑k+1
i=2 ai
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Therefore sum(~bnew,1,k) ≤ sum(~anew,1,k)

⇐⇒
(

j−1

∑
i=2

bi

)

+(b1+b j −a1)+
k+1

∑
i= j+1

bi ≤
j

∑
i=2

ai

⇐⇒
k+1

∑
i=1

bi ≤
k+1

∑
i=1

ai which is true because~bnew≻~anew

3.2.4 Numerical example

The following example illustrates the construction of a martingale transition through
the construction of a symmetric matrix with specified diagonal and spectrum.

























−1.64683
−0.89538
−0.49135
−0.15798
0.15798
0.49135
0.89538
1.64683

















































−3.29366
−1.79077
−0.98270
−0.31595
0.31595
0.98270
1.79077
3.29366

























These vectors were obtained by performing aU -quantization of order 8 of the
following Gaussian laws: the first with parameters (mean 0, variance 1) and the
second with parameters (mean 0, variance 2), (see Section 2.4 onU -quantization).
Using the Chan Li algorithm we can construct a symmetric matrix which has the
first vector as diagonal and the second vector as spectrum. Wethen use the method
described above to construct the martingale transition matrix.

We obtain the following martingale transition matrix:

























0.28738 0.00000 0.71262 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.41128 0.00000 0.00000 0.00000 0.58872 0.00000 0.00000
0.17847 0.00000 0.07197 0.74955 0.00000 0.00000 0.00000 0.00000
0.18225 0.00000 0.07350 0.08545 0.65880 0.00000 0.00000 0.00000
0.18940 0.00000 0.07638 0.08881 0.18365 0.00000 0.46176 0.00000
0.00000 0.41833 0.00000 0.00000 0.00000 0.29224 0.00000 0.28943
0.11589 0.04887 0.04674 0.05434 0.11237 0.03414 0.38388 0.20378
0.04660 0.12153 0.01879 0.02185 0.04518 0.08490 0.15436 0.50679
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3.3 Martingale transitions obtained by clipping potentials

We have established thatU -quantization has the property of preserving the con-
vex order. That is, ifµ≤cx ν, theirU -quantizations are also ordered in the convex
order, i.e.U(a1, ..,an)≤cx U(b1, ..,bn). In this section we see that this property en-
ables the use of an algorithm by Chacon and Walsh. In doing so,we can construct
martingale transitions fromU(a1, ..,an) to U(b1, ..,bn).

Definition 3.3.1. The potential of a measureµ is defined to be the function:

t→−
∫ ∞

−∞
|x− t|dµ(x)

The next lemma relates potentials of measures to the convex order. A proof of
this lemma can be found in [SST94], on page 111.

Lemma 3.3.2. Let µ andν be two probability measures onR. Let f (resp. g) be
the potential ofµ ( resp.ν).

µ≤cx ν ⇐⇒ f ≥ g

We now detail the main step of the Chacon-Walsh algorithm which Chacon
and Walsh introduced to give a new solution to the Skorokhod embedding problem
[CW76]. Let f be the potential function of a probability measureµ. Choose a
line L which intersects the graph off in two points. Denote these two points and
their coordinates byA= (Ax,Ay) andB= (Bx,By). Without loss of generality, let
Ax < Bx.

Define the functiong by:

g(x) =







f (x) if x∈ (−∞,Ax)∪ (Bx,∞)

Ay+(x−Ax)
(By−Ay)

(Bx−Ax)
if x∈ [Ax,Bx]

The functiong is also the potential function of a probability measure. LetB be
a Brownian motion with initial lawB0 ∼ µ. Let T be the following stopping time
for the Brownian motionB:

{

if B0 ∈ (−∞,Ax)∪ (Bx,∞) thenT = 0

if B0 ∈ [Ax,Bx] thenT = inf{t ≥ 0 : Bt = Ax or Bt = Bx}

T is defined so that the law ofBT has potential functiong.
Brownian motion is a martingale, and sinceE[T] < ∞, it follows thatE[BT |B0] =
B0. Therefore the transition(B0,BT) has the martingale property. From the defini-
tion of T, the transition(B0,BT) is seen to be:
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If x∈ (∞,Ax)∪ (Bx,∞) thenx transits tox with probability 1.

If x∈ [Ax,Bx] then

{

x transits toAx with probability(Bx−x)/(Bx−Ax)

x transits toBx with probability(x−Ax)/(Bx−Ax)

This step of the algorithm illustrates how to explicitly obtain the unique martingale
transition between the probability measure with potentialf and the probability
measure with potentialg.

Remark.We will call this procedureclipping. The potentialf was clipped using
L to produceg. Clipping using a segment will mean clipping using the line which
contains that segment.

This brings us to the following corollary of Theorem2.4.11

Corollary 3.3.3. Let µ,ν ∈ P (R), satisfying µ≤cx ν, and denote their quantiza-
tions by U(a1, ..,an) and U(b1, ..,bn). A martingale transition from U(a1, ..,an) to
U(b1, ..,bn) can be generated by the Chacon-Walsh algorithm in (n+1) steps.

Proof. Supposeµ≤cx ν. SinceU -quantization preserves the convex order ( The-
orem 2.4.11), it follows that U(a1, ..,an) ≤cx U(b1, ..,bn). Denote by f (t) the
potential ofU(a1, . . .an) and byg(t) the potential ofU(b1, . . .bn). Lemma3.3.2
implies thatf (t)≥ g(t) for everyt ∈R. Note thatf andg are both piecewise affine
functions. The graph ofg is composed of(n− 1) segments and 2 half-lines. We
may clip f by each of these segments and half lines. By doing this we obtain after
n+1 clippings a martingale transition fromU(a1, . . .an) toU(b1, . . .bn).

3.3.1 Implementation of the Chacon Walsh algorithm forU -quantization

To implement the algorithm, one needs the coordinate of the intersection point of
two lines (see [Wei12])

LetL1 andL2 be two lines in the plane, withL1 going through the points(x1,y1)
and(x2,y2) andL2 going through the points(x3,y3) and(x4,y4). Then the inter-
section point has the followingx andy coordinates: The x coordinate of the inter-
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section point is given by:
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Similarly, they coordinate of the intersection point is given by
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)

Example 3.3.4.We have obtained theU -quantizationsU(a1, ..,a8) andU(b1, ..,b8)
for the Gaussian lawsN(0,1) andN(0,2).
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We can now use the method described in this section to computea martingale
transition matrix fromU(a1, ..,a8) to U(b1, ..,b8). This martingale transition is
represented by a matrixM = {mi j} which provides the transition probabilities
mi j = P(Y = b j | X = ai).

There are 4 canonical ways to clip:
1: clockwise
2: counter clockwise
3: extremities to center
4: center to extremities

The following diagrams illustratecounterclockwiseclipping of the potential func-
tion.
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(a) Initial stage: The original Potentials
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(d) After 3 clips

Figure 3.1: Counter clockwise clipping of the potential: the first 3 steps
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3.3.2 Clipping from extremities to center

Clipping from extremities to centerproduces the following martingale transition:

























0.505115 0.122688 0.083704 0.072123 0.056251 0.053373 0.053373 0.053373
0.279299 0.178670 0.121898 0.105033 0.081918 0.077727 0.077727 0.077727
0.157884 0.208771 0.142434 0.122728 0.095718 0.090822 0.090822 0.090822
0.057702 0.233607 0.159378 0.137328 0.107105 0.101626 0.101626 0.101626
0.000000 0.196832 0.180625 0.155636 0.121384 0.115175 0.115175 0.115175
0.000000 0.059433 0.211525 0.182261 0.142149 0.134878 0.134878 0.134878
0.000000 0.000000 0.100437 0.224891 0.175397 0.166425 0.166425 0.166425
0.000000 0.000000 0.000000 0.000000 0.220078 0.259974 0.259974 0.259974

























The expected variance of a martingale transition from ˆµ to ν̂ is entirely determined
by those marginals ( ˆµ andν̂). In fact it is equal to the area between the potentials
of µ̂ and ν̂. We now show this. For this reason it will be of interest to study the
conditional variance of each martingale transition from ˆµ to ν̂ as these are different.

Lemma 3.3.5. Let (X,Y) be a 2 step martingale. The variance of the martingale
incrementY−X is uniquely determined by the variance of X and that of Y. More
precisely,Var[Y−X] = Var[Y]−Var[X]

Proof. We show it whenE[X] = E[Y] = 0, the proof can easily be extended to the
general case.

Var(Y−X) = E(Y−X)2 = E(Y2−2XY+X2) = E(Y2)−2E(XY)+E(X2)
= E(Y2)−2E(X.(X+(Y−X)))+E(X2)
= E(Y2)−E(X2)−2E[X(Y−X])
then you condition on X and integrate with respect to the law of X.
Var[Y]−Var[X]−E[2E[X(Y−X)|X]]
Var[Y]−Var[X]

Lemma 3.3.6. If µ andν are two centered measures with finite support such that
µ≤cx ν, then the area between their potential functions is equal tothe second mo-
ment ofν minus the second moment ofµ.

Proof. Let K1 andK2 be such thatµ((K1,K2)) = 1 andν((K1,K2)) = 1.
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A =
∫
R

Uµ(t)−Uν(t)dt

=

∫ K2

K1

(

∫ K2

K1

−|x− t|dµ(x)−
∫ K2

K1

−|x− t|dν(x))dt

=

∫ K2

K1

(

∫ K2

K1

|x− t|dν(x)−
∫ K2

K1

|x− t|dµ(x))dt

=
∫ K2

K1

∫ K2

K1

|x− t|dν(x)dt−
∫ K2

K1

∫ K2

K1

|x− t|dµ(x)dt

=
∫ K2

K1

∫ K2

K1

|x− t| dt dν(x)−
∫ K2

K1

∫ K2

K1

|x− t| dt dµ(x) by Fubini

Now,
∫ K2

K1

∫ K2

K1

|x− t| dt dµ(x) =
∫ K2

K1

∫ x

K1

|x− t|dt dµ(x)+
∫ K2

K1

∫ K2

x
|x− t|dt dµ(x)

=

∫ K2

K1

∫ x

K1

x− t dt dµ(x)+
∫ K2

K1

∫ K2

x
t−x dt dµ(x)

=
∫ K2

K1

1
2

x2−xK1−
1
2

K2
1dµ(x)+

∫ K2

K1

1
2

x2+
1
2

K2
2−xK2dµ(x)

=
∫ K2

K1

x2dµ(x)−
∫ K2

K1

xK1−
1
2

K2
1 +

1
2

K2
2−xK2dµ(x)

As
∫ K2

K1
dµ(x) = 1 and

∫ K2
K1

xdµ(x) = 0, we get
∫ K2

K1

∫ K2

K1

|x− t| dt dν(x) =
∫ K2

K1

x2dµ(x)+
1
2

K2
1−

1
2

K2
2

As
∫ K2

K1

∫ K2
K1
|x− t| dt dµ(x) is of the same form withν replaced byµ, it follows that

A =

∫
R

x2dν(x)−
∫
R

x2dµ(x)

As we have just seen that every martingale transition from ˆµ to ν̂ has the same
variance, it is interesting to look at the variance of the martingale increment condi-
tioned on the value before the transition. To examine this, we define the conditional
variance function:

Definition 3.3.7. (Conditional variance function)
Given two random variablesX andY, we define the function

x→Var[Y−X | X = x]

which we call the conditional variance function.
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For a two step martingale (X,Y) we can plot the variance ofY conditioned on
X = x. We will call this the conditional variance function:x→ Var[Y|X = x].
There are several interesting cases:
• conditional variance function can be a constant (for ex. fora Brownian transition
law this is the case)
• the graph of the conditional variance function can be convexor smile shaped.
This means that conditioned on a big movement the expectation of the magnitude
of the next movement is larger than if the initial movement had been small.
(This is likely to be the dynamics of a stock price)
• The graph of the conditional variance function can be unimodal, meaning that
the middle diffuses more than the extremities.

We can plot the conditional variance function of this martingale function. For
clarity we produce the plot with quantizations of order larger than 8.
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Figure 3.2: Conditional variance: clipping tails first

Remark.This martingale transition exhibits a phenomenon called persistence of
volatility. We are dealing with a 2 step martingale. The initial law (t = 0) is the
Dirac at 0. The next law (att = 1) is theU -quantization of theN(0,1) law. The
third law (att = 2) is theU -quantization of theN(0,2) law. One sees that if the
first martingale increment (t = 0 to t = 1) is large in absolute value then the second
increment (t = 1 to t = 2) can also be expected to be large in absolute value. This
is a phenomenon of persistence of volatility.
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3.3.3 Clipping from center to extremities

Clipping the potential function of̂ν from center to extremitiesproduces the follow-
ing martingale transition:

























0.505115 0.081628 0.081628 0.081628 0.081628 0.081628 0.081628 0.005115
0.279299 0.118875 0.118875 0.118875 0.118875 0.118875 0.118875 0.007448
0.157884 0.138902 0.138902 0.138902 0.138902 0.138902 0.138902 0.008703
0.057702 0.155427 0.155427 0.155427 0.155427 0.155427 0.155427 0.009738
0.000000 0.158673 0.158673 0.158673 0.158673 0.158673 0.158673 0.047964
0.000000 0.141803 0.141803 0.141803 0.141803 0.141803 0.141803 0.149181
0.000000 0.121358 0.121358 0.121358 0.121358 0.121358 0.121358 0.271851
0.000000 0.083333 0.083333 0.083333 0.083333 0.083333 0.083333 0.500000

























We now look at the corresponding conditional variance function:
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Figure 3.3: Conditional variance: clipping from center to extremities

Remark.This martingale transition exhibits the opposite phenomenon to that of
persistance of volatility. If|M0−M1| is small, then the expected variance ofM2−
M1 is large.
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3.3.4 Clockwise clipping

Clipping the potential function of̂ν clockwiseproduces the following martingale
transition:
























0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000 0.000000
0.166425 0.166425 0.166425 0.175397 0.224891 0.100437 0.000000 0.000000
0.134878 0.134878 0.134878 0.142149 0.182261 0.211525 0.059433 0.000000
0.115175 0.115175 0.115175 0.121384 0.155636 0.180625 0.196832 0.000000
0.101626 0.101626 0.101626 0.107105 0.137328 0.159378 0.233607 0.057702
0.090822 0.090822 0.090822 0.095718 0.122728 0.142434 0.208771 0.157884
0.077727 0.077727 0.077727 0.081918 0.105033 0.121898 0.178670 0.279299
0.053373 0.053373 0.053373 0.056251 0.072123 0.083704 0.122688 0.505115

























3.3.5 Counter clockwise clipping

Clipping the potential function of̂ν counter clockwiseproduces the following mar-
tingale transition:

























0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000 0.000000
0.193288 0.193288 0.193288 0.203709 0.056265 0.053387 0.053387 0.053387
0.161724 0.161724 0.161724 0.170442 0.089532 0.084952 0.084952 0.084952
0.135679 0.135679 0.135679 0.142994 0.116980 0.110996 0.110996 0.110996
0.110996 0.110996 0.110996 0.116980 0.142994 0.135679 0.135679 0.135679
0.084952 0.084952 0.084952 0.089532 0.170442 0.161724 0.161724 0.161724
0.053387 0.053387 0.053387 0.056265 0.203709 0.193288 0.193288 0.193288
0.000000 0.000000 0.000000 0.000000 0.220078 0.259974 0.259974 0.259974
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Figure 3.4: Conditional variance: clipping counterclockwise
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Part II

The Skorokhod embedding
problem and constructions of

martingales with specified
marginals
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3.4 Introduction

We will give a new solution to the Skorokhod embedding problem (SEP) that was
published in [Bak12]. We will also discuss the use of solutions to the SEP as means
of constructing martingales with specified marginals, as well as the limitations of
this approach.

3.4.1 Martingales as time changed Brownian motion

Before we discuss the Skorokhod embedding problem and its use as a way of con-
structing martingales with specified marginals, it will be usefull to recall some
theory about how martingales can be represented as time changed Brownian mo-
tions. By Dambis Dubins-Schwarz (see [RY94]), if M is a continuous martingale
starting from 0 (i.e.M0 = 0) with< M,M >∞= ∞, then

Mt = B<M,M>t

for some Brownian Motion(Bu).

3.4.2 The Skorokhod embedding problem

The Skorokhod embedding problem (SEP), see [Sko65], is the problem of embed-
ding a probability measure into Brownian motion by means of astopping time.
Formally, Skorokhod’s original definition of the Skorokhodembedding problem is
the following:

Definition 3.4.1. Given a Brownian motionW and a probability measureµ onR

which satisfies
∫
R x dµ(x) = 0 and

∫
R x2 dµ(x) < ∞, a solution to the Skorokhod

embedding problem is a stopping timeT for W, such that:

WT has lawµ andE[T]< ∞

It turns out that the requirement thatµ have a finite second moment is not
necessary. A generalized definition of the Skorokhod embedding problem is as
follows:

Definition 3.4.2. Given a Brownian motionW and a probability measureµ onR

which satisfies
∫
R xdµ= 0 and

∫
R |x|dµ< ∞, a solution to the Skorokhod embed-

ding problem is a stopping timeT for W, such that:
WT has lawµ andWt∧T is uniformly integrable.

In [Sko65], Skorokhod gives a solution to the SEP. The solution given by Sko-
rokhod however requires an additional random variable which is independent of
the Brownian motion. The solution given by Dubins, see [Dub68], is the first solu-
tion which does not require an additional independent random variable. Since then,
a variety of other solutions have been given. For an extensive survey of existing
solutions, see [Obł04].
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It turns out that every stopping time which is a solution to the Skorokhod em-
bedding problem for a measureµ has the same expectation. The value of its expec-
tation is the variance of the measureµ. Indeed, letT be a solution to the Skorokhod
embedding problem forµ. By Ito’s formula,Mt = B2

t − t is a martingale. By the
optional stopping theorem,E[T]< ∞ implies that

E[M0] = E[MT ]

⇒ 0= E[B2
T −T]

⇒ E[T] = E[B2
T ]

Now sinceT is a solution to the Skorokhod embedding problem forµ, it follows
thatBT ∼ µ and soE[B2

T ] is equal to the second moment ofµ.

3.4.3 Using the Skorokhod embedding problem to construct martin-
gales with specified marginals

This past decade has seen renewed interest in solutions to the SEP. This interest is
due to the use of such solutions to construct martingales with specified marginals
( see, e.g., [HP02], [Hob98], [CH07], [MY02], and [HPRY11]). New solutions
to the SEP can in turn lead to new constructions of martingales with specified
marginals. Model-free methods for pricing financial instruments rely on construc-
tions of martingales with given marginals (see, e.g. [Hob11]). For these reasons,
new solutions to the SEP can ultimately lead to improved bonds on model-free
prices of financial instruments.

• In the two marginal setting: Letµ andν be given measures which satisfy
µ≤cx ν. In order to construct a martingale transition fromµ to ν it suffices to
construct stopping timesτ1 andτ2 which satisfy:











τ1 is a solution to the SEP forµ.

τ2 is a solution to the SEP forν.

τ1≤ τ2 a.s.

Indeed, the bivariate law(Wτ1,Wτ2) by construction has the required marginals,
Wτ1 ∼ µ andWτ2 ∼ ν, as well as the martingale propertyE[Wτ2|Wτ1] =Wτ1

• In the continuous time setting: Let(µt)t∈R+ be a time indexed collection of
marginals which satisfyµs ≤cx µt whenevers≤ t. Then in order to construct a
martingaleM which satisfiesMt ∼ µt for eacht ∈ R+, it suffices to obtain a col-
lection of solutions to the SEP:τt being a solution to the SEP forµt andτs≤ τt

a.s. whens≤ t. Then(Wτt )t∈R+ is a martingale which satisfiesMt ∼ µt for each
t ∈ R+. IndeedE[Wτt |Wτs] =Wτs for all s, t satisfyings≤ t.
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Definition 3.4.3. (the barycenter function of a measure) The barycenter function
of a probability measureµ is defined as follows:

φ(x) =
∫ ∞

x yµ(dx)∫ ∞
x µ(dx)

The Azema Yor solution to the Skorokhod embedding problem isdefined as

Definition 3.4.4. (The Azema-Yor solution to the Skorokhod embedding problem
see [AY79] ) Let M(t) denote the maximum value to date of the Brownian motion B.

M(t) = sup
0≤s≤t

B(s)

The Azema-Yor solution to the Skorokhod embedding problem is the stopping time
τ defined as

τ = inf{s|M(s)≥ φ(B(s))}

Let (µt)t∈R+ be a collection of probability measures such that the function

φ(x, t) =
∫ ∞

x yg(y, t)dy∫ ∞
x g(y, t)dy

is increasing int for eachx. Hereg(y, t) denotes the density of the measureµt .
Under this condition, Madan and Yor (see [MY02]) use the Azema-Yor solution to
the Skorokhod embedding problem to construct a martingaleM with

Mt ∼ µt

The martingaleM is defined asMt = Bτt , with τt being the Azema-Yor solution
to the Skorokhod embedding problem forµt . The recent book by Hirsch, Profeta,
Roynette, and Yor ( see [HPRY11] ) contains numerous other constructions.

3.4.4 Limitations of the Skorokhod embedding problem as a means of
constructing martingales with specified marginals

Here we discuss the reason why most solutions to the SEP are unable to construct
martingale transition between every pair of measures whichadmits a martingale
transition. This is a consequence of a Theorem by Meilijson given in [Mei82]. We
now explain why this is the case.

In the following(Wt)(t∈R+) will be a standard Brownian motion.

Definition 3.4.5. A procedure which associates to each measure in the set

{ µ∈ P (R) :
∫
R
|x| dµ(x) < ∞}
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a unique stopping timeτ which is a solution to the Skorokhod embedding problem
for µ, i.e. :

{

Wτ ∼ µ

Wt∧τ is a u.i. martingale

will be called astandardsolution to the SEP.

Remark.Most currently published solutions to the SEP arestandardsolutions.
This includes the solutions given by Dubins [Dub68], Azema-Yor [AY79], Vallois
[Val83], as well as the new one presented in this work. A solution to the SEP which
is notstandardcan produce several different stopping times for a given measureµ.

Definition 3.4.6. Let ν be a probability measure onR. A solution τ to the Sko-
rokhod embedding problem forµ is said to beultimateif:
For every measureµ with µ6cx ν, there exists a stopping timeτ′ satisfying

{

τ′ 6 τ a.s.

Wτ′ ∼ µ

Definition 3.4.7. The hitting time of the levela, for the Brownian motionW is
denotedTa and defined as:

Ta = inf{t > 0 :Wt = a}

Theorem 3.4.8.(Meilijson see [Mei82]) τ is ultimate if and only ifτ = Ta∧Tb for
some a< 0< b.

This leads to the following limitation ofstandardsolution to the SEP as means
of constructing martingale transitions between specified marginals:

Corollary 3.4.9. Everystandardsolution to the SEP is unable to construct a mar-
tingale transition between certain pairs of measures whichadmit a martingale
transition

Proof. Let ν be a measure which is not supported on two points, i.e.

ν 6= αδa+(1−α)δb with a,b∈ R,α ∈ [0,1]

Consider a standard solution to the SEP. Denote byτ(ν) the stopping time which
this solution associates toν. As ν is not supported by two points it follows by
Meilijson’s theorem thatτ(ν) is not ultimate. Therefore there exists a measureµ
with µ6cx ν for which there exists no stopping timeτ(µ) satisfying:

{

τ(µ)6 τ(ν)
Wτ(µ) ∼ µ

Therefore the standard solution under consideration is unable to construct a mar-
tingale transition fromµ to ν. Of course sinceµ6cx ν, a martingale transition from
µ to ν necessarily exists.
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Remark.Hobson, Brown and Rogers (see [BHR01] ) have modified the Azema-
Yor solution in order that it no longer bestandardand that it be able to construct
martingale transitions between arbitrary pairs of marginals which admit a martin-
gale transition.

3.5 The Dubins solution to the Skorokhod embedding prob-
lem

In this section, we describe the Dubins solution to the SEP given in [Dub68]. The
presentation here differs from the original presentation because we wish to empha-
size a framework which we will use in the next section to construct a new Dubins
type solution to the SEP.

Let µ be the probability measure which is to be embedded in Brownian mo-
tion. A sequence of partitions ofR is defined recursively. The initial partition,
P artition(0) is{R}. The following partitions are obtained recursively.P artition(n+
1) is obtained by cutting each interval[a,b] ∈ P artition(n) into two, as follows:

[a,b]→ [a,c] and[c,b] where

c=
1

µ([a,b])

∫
[a,b]

x dµ(x) (note thata≤ c≤ b)

If a or b is +∞ or −∞, the value ofc is calculated in the same way, and the
cutting is also done in the same way. For eachn∈N, a measureµn is obtained from
P artition(n) in the following way: for each interval[a,b] ∈ P artition(n), place an

atom of massµ([a,b]) at position
1

µ([a,b])

∫
[a,b]

x dµ(x)

An increasing sequence of stopping times is defined by

τn = inf{t ≥ τn−1 : Wt ∈ support ofµn}

and Dubins’ solution to the SEP is the stopping timeτ defined by

τ := sup{τn}

3.6 A new solution to the Skorokhod embedding problem

Dubins in [Dub68] gave the first solution to the Skorokhod embedding problem
(SEP) based solely on the underlying Brownian motion, and thus requiring no ad-
ditional independent random variable. The Dubins solutionto the SEP, can be
expressed asτ := sup{τn} with τn = inf{t ≥ τn−1 : Wt ∈ support ofµn}. Since the
measuresµn are defined recursively, in order to computeµn, each ofµ0, ..,µn−1

must first be computed. We now give a new solution to the SEP by showing how
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to construct a different sequence of measures{µn}n∈N. The advantage of this so-
lution is that for any givenn, the measureµn can be constructed directly without
prior computation of the measuresµ0, ..,µn−1.

We will define a sequence of measuresµn and a corresponding increasing se-
quence of stopping timesτn. First, we will prove thatµn converges toµ, then we
will prove thatWτn ∼ µn for eachn ∈ N. Finally, definingτ to besupn{τn} , we
will obtain Wτ ∼ µ.

Let F be the cumulative distribution function ofµ. Its inverse,F−1(x) is called
the quantile function ofµ. SinceF is a non decreasing function fromR to [0,1], its
inverse,F−1 is a non decreasing function from(0,1] to R.

Definition 3.6.1. For n≥ 0, defineµn to be the uniform measure on the following
2n coordinates:

ai = 2n
∫ i+1

2n

i
2n

F−1(u) du with i ranging from 0 to 2n−1

Lemma 3.6.2. µn converges weakly toµ.

Proof. Let F be the cumulative distribution function ofµ, andFn be the cumula-
tive distribution function ofµn. Showing thatµn converges weakly toµ amounts to
showing thatFn converges pointwise toF. The collection of intervals{

(

F−1( i−1
2n ) , F−1( i

2n )
]

:
1≤ i ≤ 2n} generate the support ofµ. We will proceed by establishing bounds for
F andFn whent belongs to such an interval, i.e. whent ∈ [F−1( i−1

2n ) , F−1( i
2n )].

BoundingF is straightforward: sinceF is non decreasing,

F−1(
i−1
2n )≤ t ≤ F−1(

i
2n )⇒ F

(

F−1(
i−1
2n )

)

≤ F(t)≤ F

(

F−1(
i

2n )

)

⇒ i−1
2n ≤ F(t)≤ i

2n

We now proceed to obtain bounds forFn. Recall thatµn is the uniform distribution
on the following 2n points:

ai = 2n
∫ i+1

2n

i
2n

F−1(u) du i ranging from 0 to 2n−1

SinceF−1 is a non decreasing function, we obtain a bound forai by bounding the
above integral:

2n(
i +1
2n −

i
2n ) F−1(

i
2n )≤ ai ≤ 2n(

i +1
2n −

i
2n ) F−1(

i +1
2n ) ⇒ F−1(

i
2n )≤ ai ≤ F−1(

i +1
2n )
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From these bounds forai , we will obtain bounds for the cumulative distribution
function Fn of µ. Letting 1 denote the indicator function, we have the following
expression for the cumulative distribution functionFn of µn:

Fn(t) =
1
2n

2n−1

∑
i=0

1{ai ≤ t}

Since we have seen that

ai−1≤ F−1(
i

2n )≤ ai ≤ F−1(
i +1
2n )≤ ai+1

therefore,

F−1(
i−1
2n )≤ t ≤ F−1(

i
2n ) ⇒ ai−1≤ t ≤ ai+1

⇒ i−1
2n ≤

1
2n

2n−1

∑
i=0

1{ai ≤ t} ≤ i +1
2n

⇒ i−1
2n ≤ Fn(t) ≤

i +1
2n

The bounds forF, together with the bounds forFn , give bounds for| F(t)−
Fn(t) |:

t ∈ [F−1(
i−1
2n ) , F−1(

i
2n )] ⇒

i−1
2n ≤ F(t)≤ i

2n and
i−1
2n ≤ Fn(t)≤

i +1
2n

⇒ | F(t)−Fn(t) | ≤
2
2n

Since the collection of intervals{
(

F−1( i−1
2n ) , F−1( i

2n )
]

: 1≤ i ≤ n} generates the
support ofµ, and therefore the support ofµn, we obtain:

| Fn(t)−F(t) | ≤ 2
2n ∀ t ∈R

HenceFn converges pointwise toF, and this implies thatµn converges weakly to
µ.

Definition 3.6.3. Define the following collection of stopping times:

τ0 = 0 and forn≥ 1, τn = inf{t ≥ τn−1 : Wt ∈ support ofµn}

Theorem 3.6.4.Wτn has law µn.

Proof. We prove this by induction. We first verify thatWτ0 ∼ µ0. Now τ0 is de-
fined to be 0, soWτ0 =W0 = 0. Alsoµ0 is defined to be the Dirac at

∫ 1
0 F−1(u) du=∫

R x dµ= 0. HenceWτ0 ∼ µ0, and so the statement is true forn= 0.
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Suppose that the statement is true forn, in other words, suppose thatWτn ∼ µn.
We will determine the law ofWτn+1, conditioned onWτn having lawµn. To do this,
we take an arbitrary pointm in the support ofµn and calculate the distribution of
Wτn+1 conditioned on{Wτn = m}. Sincembelongs to the support ofµn, there exists
an i ∈ {0, ..,2n−1} such that

m= 2n
∫ i+1

2n

i
2n

F−1(u) du

.

Denote byu (for upper) the smallest element of the support ofµn+1 which is
greater or equal tom. Also denote byl (for lower) the largest element of the support
of µn+1 which is less than or equal tom. SinceF−1 is a non decreasing function,
we can write these two elementsu andl as:

u= 2n+1
∫ i+1

2n

i
2n+

1
2n+1

F−1(u) du

l = 2n+1
∫ i

2n+
1

2n+1

i
2n

F−1(u) du

(3.1)

Notice thatu+ l = 2m and som= l+u
2 . It follows thatm is equidistant froml and

u. And so, conditioned on{Wτn = m}, the events{Wτn+1 = l} and{Wτn+1 = u} are
equiprobable. In other words,

P(Wτn+1 = l |Wτn = m) =
1
2

P(Wτn+1 = u |Wτn = m) =
1
2

(3.2)

By a straightforward iterative argument, it follows that

P(Wτn+1 = l) =
1
2

P(Wτn = m) =
1
2
× 1

2n =
1

2n+1

P(Wτn+1 = u) =
1
2

P(Wτn = m) =
1
2
× 1

2n
=

1
2n+1

(3.3)

ThereforeWτn+1 follows a uniform distribution which has the same support as
µn+1. Sinceµn+1 is itself a discrete uniform law, it follows thatWτn+1 ∼ µn+1.

We now provide a lemma which shows that, for a large class of quantizations,
the quantized measure is dominated in the convex order by theoriginal measure
(i.e. µ̂≤cx µ).

Lemma 3.6.5.Let J be a partition ofR. Let µ̂ be the probability measure which is
constructed fromµ in the following way: for eachJ ∈ J , an atom of massµ(J) is

placed at position

∫
J x dµ(x)

µ(J)
. Then,

∫
R

φ(x) dµ̂(x)≤
∫
R

φ(x) dµ(x) for every convex functionφ.
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Proof. Let J be an arbitrary element ofJ . By construction, ˆµ(J) = µ(J) and
∫

J x dµ̂(x) =
∫

J x dµ(x). The measure
µ(dx)
µ(J)

is a probability measure onJ. Its

expectation is

∫
J x dµ(x)

µ(J)
. Therefore, by Jensen’s inequality, for every convex func-

tion φ,

∫
J
φ(x)

dµ(x)
µ(J)

≥ φ
(∫

J x dµ(x)
µ(J)

)

As µ̂(J) = µ(J), the measure
µ̂(dx)
µ(J)

is a probability measure onJ. It consists of a

single Dirac point mass at the position

∫
J x dµ(x)

µ(J)
. Therefore,

∫
J
φ(x)

dµ̂(x)
µ(J)

= φ
(∫

J x dµ(x)

µ(J)

)

Combining the two above equations yields

∫
J
φ(x)

dµ(x)
µ(J)

≥
∫

J
φ(x)

dµ̂(x)
µ(J)

which is equivalent to
∫

J
φ(x) dµ(x) ≥

∫
J
φ(x) dµ̂(x)

As the above holds for eachJ∈ J , and together they constitute a partition ofR, we
obtain

∫
R

φ(x) dµ(x) ≥
∫
R

φ(x) dµ̂(x)

Theorem 3.6.6. τ := sup{τn} is a solution to the Skorokhod Embedding Problem
(SEP).

We have shown thatµn converges weakly toµand thatWτn ∼µn, which together
imply that Wτ ∼ µ. For τ to be a solution to the SEP, it remains to verify that
E[τ]< ∞. In order to do this, we first check thatτn is a solution to the SEP forµn.
Now,

E[τn] = E[τn− τn−1]+E[τn−1− τn−2]+ ..+E[τ2− τ1]+E[τ1]

Each expectation on the right hand side is a weighted averageof expected exit
times from strips for the Brownian motion W, and is thereforefinite. This together
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with Theorem3.6.4(Wτn ∼ µn) implies thatτn is a solution to the SEP forµn. It
follows that,

E[τn] =

∫
R

x2 dµn(x) for eachn.

Let an denote the sequencen→ E[τn] which, by the above equality, is identical
to the sequencen→ ∫

R x2 dµn(x). We show thatan converges by showing that it
is increasing and bounded. It is increasing becausen→ E[τn] is increasing. It is
bounded because by lemma3.6.5, we have

∫
R

x2 dµn≤
∫

x2 dµ for eachn.

Thereforean converges. In other wordsE[τn] converges. This means thatE[τ]<∞.

3.7 Numerical illustration

Using the standard Gaussian law,N (0,1), we numerically show that the sequence
of measures{µn}n∈N constructed by our solution to the SEP is different from the
sequence of measures generated by the Dubins solution. The first 4 partitions ofR
produced by Dubins solution are:

Partition(0) = { [-inf,inf] }
Partition(1) = { [-inf,0] [0,inf] }
Partition(2) = { [-inf,-0.797885] [-0.797885,0] [0,0.797885] [0.797885,inf] }
Partition(3) = { [-inf,-1.36576] [-1.36576,-0.797885] [-0.797885,-0.378257] [-0.378257

[0,0.378257] [0.378257,0.797885] [0.797885,1.36576] [1.36576,inf] }

For each interval[a,b], we computeµ([a,b]):

Partition(0) : 1
Partition(1) : 0.5 0.5
Partition(2) : 0.212469 0.287531 0.287531 0.212469
Partition(3) : 0.086007 0.126462 0.140151 0.14738 0.14738 0.140151 0.126462 0.086007

Our solution to the SEP generates a sequence of measures{µn}n∈N, such that each
µn is a uniform law on 2n support points. The Dubins construction for theN (0,1)
law has produced lawsµ2 andµ3 which are not uniformly distributed. It follows
that our construction is different from that of Dubins.

59



Part III

Continuous time martingales
with specified marginals: some

constructions
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Chapter 4

Overview of existence and
uniqueness results

Definition 4.0.1. Let (µt)t∈R+ be a collecting of probability laws onR. We say
that this collection isincreasing in the convex orderif:

for all s6 t, µs 6cx µt

Definition 4.0.2. The following call transformassociates a function of two vari-
ablesC(t,k) to a collection of marginal laws(µt)t∈R+ :

C(t,k) =
∫
R
(x−k)+dµt(x)

Existence and uniqueness results have been obtained in the following 3 frame-
works:

FrameworkA:
{

(µt)t∈R+ have constant means.

C(t,k) is increasing int.

FrameworkB:
{

(µt)t∈R+ have constant means.

C(t,k) is increasing and continuous int.

FrameworkC:
{

(µt)t∈R+ have constant means.

C(t,k) is increasing and differentiable int.

Remark.FrameworkA is equivalent to(µt)t∈R+ being increasing in the convex
order.
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Remark.These 3 frameworks are from least to most restrictive

C⇒ B⇒ A

Theorem 4.0.3.(Kellerer [Kel72], Lowther [Low08], Dupire [Dup94])

• Under framework A, there exists a martingale M with Mt ∼ µt . The martin-
gale M is generally not unique.
(see Kellerer [Kel72], see also [HR12] for an alternate proof of this result)

• Under framework B, uniqueness is obtained when restrictingconsideration
to the class of martingales which are almost continuous diffusions. (see
Lowther [Low08]). See below for the definition of an almost continuous
diffusion.

• Under framework C, uniqueness is obtained when restrictingconsideration
to the class of martingales which are continuous diffusions. (see Dupire
[Dup94])

Definition 4.0.4. A processX is an almost continuous diffusionif it is strong
Markov with cadlag paths and given two independent processesX andZ distributed
asX, the following holds:

∀s, t ∈ R+with s< t, P(Ys < Zs,Yt > Zt andYu 6= Zu ∀u∈ (s, t)) = 0

4.1 The Kellerer existence theorem

Kellerer’s celebrated theorem for the existence of martingales with specified marginals
is as follows.

Theorem 4.1.1.(Kellerer [Kel72]) Let (µt)t∈R+ be a specified collection of marginals.
If this collection is increasing in the convex order then there exists a martingale
(Mt)t∈R+ which has the Markov property and satisfies∀t ∈ R+, Mt ∼ µt .

The paper containing this result, ([Kel72]) is published in German, so we give
an outline of the proof here. This theorem is in fact proved asthe consequence of
a more general existence theorem. This general theorem provides sufficient condi-
tions for the existence of a Markov process which is compatible with a collection
of marginals as well as with a collection of bivariate transition laws.
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4.1.1 Kernels and disintegration of measures

We will need the definition of a transition kernel:

Definition 4.1.2. Let B denote the set of Borel sets ofR. A Kernel is a map from
(R,B ) such that:
(i)∀x∈ R, the functionB→ K(x,B) is a probability measure onR.
(ii)∀B∈ B , the functionx→ K(x,B) is measurable.

Remark.(Disintegration of measures) A measureρ∈P (R×R) can be represented
as a measureµ∈ P (R) and a transition kernelK(x,dy) as follows:

ρ(A×B) =
∫

A
K(x;B) dµ(x)

4.1.2 Framework of Kellerer’s theorem

Kellerer’s main theorem is based on the following setting:
• The marginal laws are specified:

∀t ∈ R+, µt ∈ P (R) is given

• For each pair of times(s, t), a collection of bivariate laws denotedLs,t is specified:

∀(s, t) ∈ R+×R+, Ls,t ⊆ P (R×R) is given.

Eachρ ∈ Ls,t must have marginalsµs andµt .

4.1.3 The Kellerer existence theorem

Theorem 4.1.3. (Kellerer) A sufficient condition for the existence of a stochastic
process(Xt)t∈R+ satisfying:

{

∀t ∈ R+, Xt ∼ µt

∀s, t ∈ R+, the law of(Xs,Xt) belongs toLs,t

is that for all r,s, t with r < s< t,










Ls,t be closed and non empty.

Ls,t ⊆ S ( the setS is a special class of bivariate laws− see below for its definition)

If ρ1 ∈ L r,s andρ2 ∈ Ls,t , then their composition must belong toL r,t

Definition 4.1.4. The setS denotes the following special class of bivariate laws.
A measureρ ∈ P (R×R) belongs toS if and only if there exists a disintegration
of ρ as

ρ(A×B) =
∫

A
K(x;B) dµ(x)
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with µ∈ P (R) and a kernelK(x,dy) which satisfies:

||K(a; .)−K(b, .)|| ≤ ||a−b|| for all a,b∈ support(µ)

Lemma 4.1.5. The setS is closed with respect to the weak topology.

The proof of Kellerer’s theorem relies on the following lemmas:

Lemma 4.1.6. Let (µt)t∈R+ be any specified collection of marginals.
Consider the set of real valued processes which have these marginals:

A= {(Xt)t∈R+ : Xt ∼ µt ∀t ∈R+}
Then the set of measures onR[0,∞) corresponding to the above set of processes is
compact with respect to the weak topology (see [Kel72]).

Lemma 4.1.7. Let t1, .., tn be an increasing collection of times.
Define the setAt1,..,tn as:

At1,..,tn = {(Xt)t∈R+ ∈ A : (Xti ,Xti+1) ∈ L ti ,ti+1 for eachi from 1 ton−1}

ThenAt1,..,tn is closed and non empty.

Lemma 4.1.8. if {s1, ..,sk} ⊆ {t1, .., tn} then,

At1,..,tn ⊆ As1,..,sk

Proof. (of Theorem4.1.3) The intersection of the setsAt1,..,tn over all finite collec-
tions of timest1, .., tn is non empty.
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Chapter 5

A Brownian sheet martingale
with the same marginals as the
arithmetic average of geometric
Brownian motion.

This section is based on a joint article with M. Yor see [BY09]

Definition 5.0.9. Brownian sheet is the two parameter centered a Gaussian process
with covariance function

E[B(s, t)B(s
′
, t
′
)] = min(s,s

′
)×min(t, t

′
)

Note that this implies thatVar[B(s, t)] = st.

5.1 Introduction and Main Result

We construct a martingale which has the same marginals as thearithmetic average
of geometric Brownian motion. This provides a short proof ofthe recent result due
to P. Carr et al [CEX08] that the arithmetic average of geometric Brownian motion
is increasing in the convex order. The Brownian sheet plays an essential role in
the construction. Our method may also be applied when the Brownian motion is
replaced by a stable subordinator.

To (Bt , t > 0) a 1-dimensional Brownian motion, starting from 0, we associate
the geometric Brownian motion:

Et = exp(Bt −
t
2
), t > 0

and its arithmetic average:

1
t
At =

1
t

∫ t

0
dsEs, t > 0
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A recent striking result by P. Carr et al [CEX08] is the following:

Theorem 5.1.1. i) The process (1t At , t > 0) is increasing in the convex order, that
is: for every convex function g: R+ → R, such thatE

[

|g
(

1
t At
)

|
]

< ∞ for every
t > 0, the function:

t→ E

[

g

(

1
t
At

)]

is increasing

ii) In particular, for any K> 0, the call and put prices of the Asian option which
we define as:

C+(t,K) = E

[

(

1
t
At −K

)+
]

and C−(t,K) = E

[

(

K− 1
t
At

)+
]

are increasing functions of t> 0.

Comments on Theorem5.1.1
a) One of the difficulties inherent to the proof of ii), say, isthat the law ofAt for
fixed t, is complicated, as can be seen from the literature on Asian options.
b) A common belief among practitioners is that any “decent” option price should be
increasing with maturity. But examples involving “strict local martingales” show
that this need not be the case. See e.g. Pal-Protter [PP08], Delbaen-Schachermayer
[DS95]. On the other hand Theorem5.1.1offers a proof of the increase in maturity
for Asian options.

The proof of Theorem5.1.1as given in [CEX08] (see also [BY08] for a slight
variation) is not particularly easy, as it involves the use of either a maximum prin-
ciple argument (in [CEX08]) or a supermartingale argument (in [BY08]). We note
that the proofs given in [CEX08] and [BY08] show that for any individual convex
function g, the associated functionG(t) = E[g(1

t At)] is increasing. In contrast, in
the present paper we obtain directly the result of Theorem5.1.1as a consequence
of Jensen’s inequality, thanks to the following

Theorem 5.1.2. i)There exists a filtered probability space (Ω,G ,Gt ,Q) and a con-
tinuous martingale (Mt , t > 0) on this space such that:

for every fixed t> 0, 1
t At

(law)
= Mt

ii)More precisely, if(Wu,t ,u > 0, t > 0) denotes the standard Brownian sheet and
Fu,t = σ{Wv,s,v 6 u,s 6 t} its natural increasing family ofσ-fields, one may
choose:

Mt =
∫ 1

0
duexp(Wu,t −

ut
2
) , t ≥ 0

which is a continuous martingale with respect to (F∞,t , t > 0)

We note that in [MY02] several methods have been developed to construct mar-
tingales with given marginals, an important problem considered by Strassen, Doob,
Kellerer among others. See, e.g., references in [MY02]. Theorem5.1.2may also be
considered in this light, providing a martingale whose one-dimensional marginals
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are those of (1t At , t > 0 ). In Section 2, we give our (very simple!) proof of Theorem
5.1.2, and we comment on how we arrived gradually at the formulation of Theo-
rem5.1.2. We also obtain a variant of Theorem5.1.2when(exp(Bt − t

2), t > 0) is
replaced by(exp(Bt −at), t > 0) for anya∈ R.

In Section 3, we study various possible extensions of Theorem 5.1.2, i.e. :
when the original Brownian motion(Bt , t > 0) is replaced by certain Lévy pro-
cesses, in particular stable subordinators and self-decomposable Lévy processes.
In Section 4, we study some consequences of Theorem5.1.1.

5.2 Proof of Theorem5.1.2, and Comments

(2.1) We first make the change of variables:u= vt, in the integral

At =

∫ t

0
duexp(Bu−

u
2
)

We get: 1
t At =

∫ 1
0 dvexp(Bvt− vt

2 )
It is now immediate that since, for fixedt,

(Bvt,v> 0)
(law)
= (Wv,t ,v> 0), then:

for fixed t,
1
t
At

(law)
=

∫ 1

0
dvexp(Wv,t −

vt
2
)

Denoting by(Mt) the right-hand side, it remains to prove that it is a
(F∞,t , t > 0) martingale. However, lets< t, then:

E
[

Mt
∣

∣F∞,s
]

=

∫ 1

0
dvE

[

exp(Wv,t −
vt
2
)
∣

∣F∞,s

]

.

Since(Wv,t −Wv,s) is independent fromF∞,s, we get:

E

[

exp(Wv,t −
vt
2
)
∣

∣F∞,s

]

= exp(Wv,s−
vs
2
)

so that, finally:E
[

Mt
∣

∣F∞,s
]

= Ms.
This ends the proof of Theorem5.1.2.

Remark: The same argument of independence allows to show more generally
that, if f : R×R+ → R is space-time harmonic, i.e.( f (Bt , t), t > 0) is a martin-
gale, then:

M( f )
t

de f
=

∫ 1

0
du f(Wu,t ,ut)

is a (F∞,t , t > 0) martingale. Thus in particular, for anyn∈N, one gets:

for fixed t,
1
t

∫ t

0
du Hn(Bu,u)

(law)
= M(n)

t

67



where:M(n)
t =

∫ 1

0
du Hn(Wu,t ,ut)

andHn(x, t) = tn/2hn(
x√
t
) denotes thenth Hermite polynomial in the two variables

(x, t) ∈R×R+

Consequently, in that generality,

(
1
t

∫ t

0
du f(Bu,u), t > 0)

is increasing in the convex order sense.

(2.2) At this point, we feel that a few words of comments on howwe arrived grad-
ually at the statement of Theorem5.1.2may not be useless.
(2.2.1) We first recall the basic result of Rothschild and Stiglitz [RS70]. The nota-
tion 6cv means domination in the convex order sense; see [SS94], [SS06].

Proposition 5.2.1. Two variables X and Y on a probability space satisfy:
X 6cv Y if and only if on some (other) probability space, there exists X̂ andŶ such
that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii) E

[

Ŷ
∣

∣X̂
]

= X̂

For discussions, variants, amplifications of the RS result,we refer the reader to
the books of Shaked-Shantikumar ([SS94], [SS06]). Thus in order to show that a
process(Ht , t > 0) is increasing in the convex order sense, one is led naturallyto
look for a martingale(MH

t , t > 0) such that:

for fixed t, Ht
(law)
= MH

t

In fact the papers of Strassen, Doob and Kellerer, refered in[MY02], show that
there exists such a martingale(MH

t , t ≥ 0).
(2.2.2) The following variants of Proposition 1 shall lead us to consider properties
of the process:

1
t
A(a)

t ≡
1
t

∫ t

0
dsexp(Bs−as)

for anya∈ R.
The notation [icv], resp. [dcv] used below indicates the notion of ”increasing con-
vex ”, resp. ”decreasing convex” order. (See e.g. [SS94], [SS06] for details; in
particular, Theorem 2.A.3 in [SS94] and Theorem 3.A.4 in [SS06])

Proposition 5.2.2. Two variables X and Y on a probability space satisfy:
X 6[icv] Y if and only if there exists on some (other) probability space, a pair(X̂,Ŷ )
such that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii )↑ X̂ 6 E

[

Ŷ
∣

∣X̂
]
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Proposition 5.2.3.Same as Proposition5.2.2, but where [icv] is replaced by [dcv],
and(iii )↑ by: (iii )↓ X̂ > E

[

Ŷ
∣

∣X̂
]

We now apply Propositions5.2.2and5.2.3to the process(1
t A(a)

t , t > 0)

Theorem 5.2.4.1) Let a6 1
2. Then the process (1

t A(a)
t , t > 0) increases in the [icv]

sense
2) Let a> 1

2. Then, the process(1
t A(a)

t , t > 0) increases in the [dcv] sense.

We leave the details of the proof of Theorem5.2.4 to the reader as it is ex-
tremely similar to that of Theorem5.1.2.

(2.2.3) The following statement is presented here in order to help with our ex-
planation of how we arrived gradually at the statement of Theorem5.1.2.

Proposition 5.2.5. Let (Zu) and (Z
′
u) denote two processes. Then under obvious

adequate integrability assumptions, we have:

∫ 1

0
du Zu E

[

Z
′
u

∣

∣Z
]

6cv

∫ 1

0
du Zu Z

′
u

Again, the proof is an immediate application of Jensen’s inequality.
We now explain how we arrived at Theorem5.1.2:
we first showed that, for 0< σ′ < σ, there is the inequality:

Iσ′ ≡
∫ 1

0
duexp(σ

′
Bu−

σ′2

2
u)6cv

∫ 1

0
duexp(σBu−

σ2u
2

)≡ Iσ (2)

Indeed, to obtain (2) as a consequence of Proposition5.2.5, it suffices to write:

(σBu,u> 0)
(law)
= (σ′Bu+γβu,u> 0) where(βu,u> 0), is a BM independent from

(Bu,u> 0)
andσ2 = (σ′)2+γ2, i.e. γ=

√

σ2− (σ′)2

Once we had made this remark, it seemed natural to look for a ”process” argu-
ment (with respect to the parameterσ), and this is how the Brownian sheet comes
naturally into the picture.

5.3 Variants involving stable subordinators and self-decomposable
Lévy processes

(3.1) Here is an analogue of Theorem5.1.1when we replace Brownian motion by
a (α)-stable subordinator(Tt), for 0< α < 1, whose law is characterized by:

E [exp(−λTt)] = exp(−tλα) , t > 0, λ > 0

Theorem 5.3.1. The process1t A(α)
t

de f
= 1

t

∫ t
0 dsexp(−λTs+ sλα) is increasing for

the convex order.
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We prove Theorem5.3.1quite similarly to the way we proved Theorem5.1.1,
namely: there exists aα-stable sheet (Ts,t ,s> 0, t > 0) which may be described as
follows:

(T(A),A∈ B (R2
+), |A|< ∞) is a random measure such that:

i) for all A1, ...,Ak disjoint Borel sets with|Ai |< ∞,
T(A1), ..,T(Ak) are independent random variables,
ii) E [exp(−λT(Ai))] = exp(−|Ai|λα),λ ≥ 0.
(T(Ai) is anα-stable random variable)

Then we denoteTs,t = T(Rs,t), with Rs,t ≡ [0,s]× [0, t]
See, e.g., [ST94] for the existence of such measures. The result of Theorem5.3.1
is a consequence of:

Theorem 5.3.2.The process M(α)t =
∫ 1

0 duexp(−λTu,t +utλα) is aF
(α)
∞,t ≡σ{Th,k,h>

0,k6 t}martingale, and for fixed t:

1
t
A(α)

t
(law)
= M(α)

t

(3.2) We now consider a self-decomposable Lévy process.
(See e.g., Jeanblanc-Pitman-Yor [JPY02] for a number of properties of these pro-
cesses.)
Assuming that:∀α > 0, E [exp(αXu)]< ∞, then:

E [exp(αXu)] = exp(uϕ(α)), for some functionϕ.

In this framework, we show the following.

Theorem 5.3.3.The process(Iα =
∫ 1

0 duexp(αXu−uϕ(α)), α > 0) is increasing
in the convex order.

Proof. Since(Xu,u> 0) is self-decomposable, there exists, for anyc∈ (0,1), an-

other Lévy process(η(c)
u ,u> 0) such that:

(Xu,u > 0)
(law)
= (cXu + η(c)

u ,u > 0), with independence ofX and η(c). Conse-
quently, we obtain, for any(α,c) ∈ (0,∞)× (0,1)

Iα
(law)
=

∫ 1

0
duexp(αcXu−uϕ(αc))exp(αη (c)

u −uϕc(α)) (3)

where on the RHS of (3), X andη(c) are assumed to be independent.
Denote byI

′
α the RHS of (3), then :

E

[

I
′
α
∣

∣X
]

=
∫ 1

0
duexp(αcXu−uϕ(αc)) = Iαc
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which implies, from Jensen’s inequality: for every convex function g,

E [g(Iαc)]6 E [g(Iα)]

However we have not found, in this case, a martingale(µα , α > 0) such that:

for every fixedα, Iα
(law)
= µα

Remark: We note that the above argument is a particular case of the argument
presented in Proposition5.2.5, which involves two processesZ andZ

′
.

5.4 Some consequences

Since the process(1
t At , t > 0) is increasing in the convex order, we find, by differ-

entiating the increasing function oft: E[(K− 1
t At)

+]

for everyK > 0 andt > 0, E

[

1(
1
t
At < K) (Et −

1
t
At)

]

> 0,

although, it is not true that:E
[

Et

∣

∣

1
t At
]

is greater than or equal to1t At , since this
would imply that: 1

t At = E t , as the common expectation of both quantities is 1.

(4.1) More generally, the following proposition presents aremarkable consequence
of the increasing property of the process (1

t At , t ≥ 0) in the convex order sense.

Proposition 5.4.1. For every increasing Borel functionϕ : R+→ R+ there is the
inequality:

E

[

ϕ
(

1
t
At

)(

1
t
At

)]

≤ E

[

ϕ
(

1
t
At

)

E t

]

. (⋆)

Equivalently,

E

[

ϕ
(

1
t
At

)(

1
t
At

)]

≤ E

[

ϕ
(

1
t
Ãt

)]

, (⋆⋆)

whereÃt =
∫ t

0 duexp(Bu+
u
2)

Proof. We may assumeϕ bounded. Then,g(x) =
∫ x

0 dyϕ(y) is convex (its deriva-
tive is increasing), and formula(⋆) follows by differentiating the increasing func-
tion:

t→ E

[

g

(

1
t
At

)]

.

Formula(⋆⋆) follows from (⋆) by using the Cameron-Martin relationship between
(Bu,u≤ t) and(Bu+u,u≤ t)
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(4.2) As a partial check on the previous result(⋆), we now prove directly
that, for every integern ≥ 1, t → E[(1

t At)
n] is increasing and that:E[(1

t At)
n] ≤

E[(1
t At)

n−1E t ]

Here are two explicit formulae for:αn(t) = E[(1
t At)

n], andβn(t) = E[(1
t At)

n−1E t ].

αn(t) =
n!
tn E[

∫ t

0
ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp((Bs1 + ...+Bsn)−
1
2
(s1+ ..+sn))]

=
n!
tn

∫ t

0
ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp(
1
2

C(s1, ..,sn))

whereC(s1, ..,sn) = E[(Bs1 +Bs2 + ..+Bsn)
2]− (s1+ ...+sn)

= 2 ∑
1≤i≤n

si(n− i) (> 0)

Consequently:

αn(t) = n!
∫ 1

0
du1...

∫ 1

un−1

dun exp(
t
2
C(u1, ...,un)) (3)

from which it follows thatαn(t) is increasing int.

Now βn(t) =
(n−1)!

tn−1 ×∫ t

0
ds1...

∫ t

sn−1

dsn−1E

[

exp((Bs1 + ...+Bsn−1 +Bt)−
1
2
(s1+ ...+sn−1+ t))

]

= (n−1)!
∫ 1

0
du1...

∫ 1

un−2

dun−1 exp(
t
2
C(u1, ...,un−1,1)) (4)

We have already seen from formula (3), thatαn(t) is increasing in t; consequently:
α ′n(t)≥ 0 and by definition ofαn:

α
′
n(t) = nE

[

(

1
t
At

)n−1(

− 1
t2At +

E t

t

)

]

=
n
t
{βn(t)−αn(t)}

Hence:βn(t)≥ αn(t).

(4.3) To conclude this paper, let us connect the properties of increase of the func-
tionsαn andβn with our method of proving Theorem5.1.1using the Wiener sheet,
as performed in Theorem5.1.2.
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Indeed, the same argument as in Theorem5.1.2shows that for any positive mea-
sureµ(du1, ...,dun) on [0,1]n the process:

∫
µ(du1, ..,dun)

n

∏
i=1
E (uit) (5)

admits the same one-dimensional marginals as the (W t ) submartingale

∫
µ(du1, ..,dun)

n

∏
i=1

E
(ui)
t (W) (6)

whereE (u)t (W) = exp(Wu,t − ut
2 ).

Hence, the common expectation of (5) and (6) increases witht; αn(t) andβn(t)
constitute particular examples of this.
A final Note: Pushing further the use of the Brownian sheet and a variationfrom
the construction of the Ornstein-Uhlenbeck process on the canonical path-space
C([0,1];R) in terms of that sheet, Hirsch-Yor [HY09] obtain a large class of pro-
cesses, adapted to the brownian filtration, which admit the one-dimensional marginals
of a martingale.
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Chapter 6

When the greeks of Asian options
are positive supermartingales

6.1 Introduction

In [CEX08] Carr, Ewald and Xiao prove that under the assumptions of theBlack-
Scholes Model a convex payoff arithmetic Asian option’s value is a monotonically
increasing function of the volatility. In this paper we present a supermartingale ar-
gument which is used to obtain this monotonicity result for all diffusions with affine
coefficients. This includes the geometric Brownian motion of the Black-Scholes
model as well as processes such as the mean reversing Ornstein-Uhlenbeck of the
Vasicek model. This is of practical importance because due to their averaging
feature Asian options are often written on exchange rates, interest rates or com-
modities which do not follow the dynamics of the Black-Scholes model but can be
modeled by the Vasicek model.

By showing the vega of an Asian call is a positive supermartingale in addi-
tion to the monotonicity implications inσ this yields additional information on an
investor’s exposure to volatility through this instrument. Not only does this instru-
ment make him long on volatility, but in addition his expected future exposure to
volatility through this instrument is less than his currentexposure. This clearly
provides useful insights for risk management.

An option is a financial contract whose value depends on another economic
variable called the underlying. The underlying could be forexemple a stock, an
exchange rate, an interest rate, a commodity. It is not surprising that the proper-
ties of a particular Asian option are highly dependent on those of its underlying.
In a given financial model the dynamics of the underlying willbe specified by a
stochastic process. Under the the Black-Scholes model assumption the underly-
ing, which is a Stock, follows a geometric Brownian motion with drift. Under
the Vasicek model the underlying which is the short term interest rate follows a
mean reversing Ornstein-Uhlenbeck process. The short terminterest rate can also
be modeled by a Cox-Ingersoll-Ross (CIR) process. In the following pages we de-
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velop a methodology to study the impact of volatility of Asian options, which we
apply to successively larger classes of underlying processes.

An Asian option is a path dependent option which means that its value is depen-
dent on the entire trajectory of the underlying from the initial time t=0 to maturity
(t=T). given a specified function g the holder of the asian option with maturity T
on the underlying X receives at maturity the following payoff

g(
1
T

∫ T

0
Xudu) = g(AT) whereAt =

1
t

∫ t

0
Xudu

In the case of an Asian callg(x) = (x− K)+ and in the case of an Asian put
g(x) = (x−K)−

By the risk neutral pricing formula (see for example [Shr00]), the value of the
Asian option is

v(t,T,x,y,σ) = E(g(
1
T

∫ T

0
Xudu) | F t) = E(g(

1
T

∫ T

0
Xudu) | Xt = x,

∫ t

0
Xudu= y)

We see that the value of an Asian option is a functional of the running average of
the underlying process. This paper describes an approach toevaluate how changes
in volatility affect the value of Asian options on certain underlyings.

The content of the paper is distributed as follows: Section 2contains a discus-
sion of the problem and an outline of the supermartingale argument which will be
employed in the following three sections. In Section 3 we work under the Black-
Scholes model assumptions and use the supermartingale argument to get the results
obtained in [CEX08]. In section 4, we show that this is true for all diffusions with
affine coefficients and such that the volatility parameter does not appear in the drift
term . In Section 5 we prove the result for an interesting casewhere the drift of
the process is dependent on volatility. In Section 6 the result is examined under the
expected utility framework. Finally in section 7 we use a result from the theory of
expected utility to obtain a property of the running averageprocess of geometric
Brownian motion.

6.2 The supermartingale argument

We now give an outline of our supermartingale argument, The method we use is to
focus on the time indexed processvσ which describes the sensitivity of the option
to volatility. This sensitivity is of course a function of the two state variablesXt

andYt . Heuristically the two key phenomena and their mathematical formulations
are

• The present vega (vσ) is larger than the expected future vega (vσ is a super-
martingale)
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• at maturity the option is no longer affected by volatility (vσ(t = T) = 0)

These two properties imply that vega cannot be negative, forif it was negative at a
given time ( call itt0) then vega would be expected to increase (actually certain to
increase) betweent0 and and T contradicting the supermartingale property. i.e.the
expectation of the future value is less than the present value.

The state variables of an arithmetic asian option are

• The underlying (for example an exchange rate, an interest rate, a stock price)
which is modeled as a diffusion process.dXt = b(Xt)dt+ a(Xt)σdWt Note
that this encompasses a fairly large class of diffusion processes contain-
ing Geometric Brownian motion, the CIR process (drt = −θ(rt − µ)dt +
σ√rtdWt ) etc...
Note However that the class of diffusion which we are considering excludes
those for which the volatility parameter appears in the drift term

• the running integral of the underlying which by definition isYt =
∫ t

0 Xsds

6.3 Black Scholes model

Lemma 6.3.1. let g be a stricly convex (resp. concave) function. Under the
assumptions of the Black Scholes model [BS73], the Asian option with payoff

E[g(
∫ 1

0 duX(σ)
u )] has a positive (resp. negative ) gamma(vxx)

Proof.

vxx(t,x,y,σ)=
d2

dx2E[g(y+x
∫ 1−t

0
duX(σ)

u )]=E[g′′(y+x
∫ 1−t

0
duX(σ)

u )(

∫ 1−t

0
duX(σ)

u )2]> 0

Theorem 6.3.2. If vxx≥ 0 then vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u ,σ) (0≤ t ≤ T) is anF t −
supermartingale,which takes the value 0 at t=T

Proof. By a regularity result for the solutions of PDEs,vσ(t,x,y) is C1 in t andC2

in x and y.
We may apply Ito’s formula to obtain

dvσ(t,Xt ,Yt) =vσtdt+vσxb(Xt)dt+vσxσa(Xt)dWt +xvσydt+
1
2

σ2a2(Xt)vσxxdt

=(vσt +vσxb(Xt)+xvσy+
1
2

σ2a2(Xt)vσxx)dt+vσxσa(Xt)dWt

Now we focus on the finite variation process (the dt term) and proceed as in
Carr, Ewald, Xiao [CEX08] in order to obtain an alternate representation for it.
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We are placing ourselves under the martingale equivalent measure. It follows
thatv(t,Xt ,Yt) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

vt +vxb(xt)+xvy+
1
2

σ2a2(x)vxx = 0

Differentiating with respect toσ which we can do by regularity results for the so-
lutions to PDEs

vtσ +vxσb(x)+xvyσ +σa2(x)vxx+
1
2

σ2a2(x)vxxσ = 0

⇒ vtσ +vxσb(x)+xvyσ +
1
2

σ2a2(x)vxxσ =−σa2(x)vxx

Returning to the semimartingale representation ofvσ we see that

dvσ(t,Xt ,Yt) =−σ2a2(Xt)vxxdt+vσxσa(Xt)dWt

by the equation above, ifvxx > 0 the finite variation process in the semimartingale
representation ofvσ is decreasing which implies thatvσ(t,Xt ,Yt) is anF t−supermartingale.
Moreoverv(1,x,y,σ) = g(y) sovσ(1,x,y,σ) = 0
this completes the proof. Now we show the non-negativity of the supermartingale

0= E[vσ(1,X
(σ)
1 ,

∫ 1

0
X(σ)

u du,σ)|F t ]≤ vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u ,σ)

Corollary 6.3.1. for any t ∈ [0,T) if g is a convex function (resp. concave) the
option’s value is increasing in volatility (resp. decreasing).

Proof. We have shown that for g convex (resp. concave )vσ is a postive super-
martingale (resp. negative submartingale) The monotonicity follows from the con-
stant sign of the partial derivative.

Corollary 6.3.2. for t = 0 If g is a convex function (resp. concave) the option’s
value is increasing (resp. decreasing) in time to maturity (T).

Proof. By scaling we reduce the problem toT = 1 and to a discussion inσ(=
√

T)
Indeed

E[g(
1
T

∫ T

0
exp(Bs−

s
2
)ds)] = E[g(

∫ 1

0
exp(σBu−

σ2u
2

)du)]
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6.4 Diffusions with affine coefficients

This section is devoted to situations where the dynamics of the underlying are
described by a diffusion process with affine coefficients. More preciselyXt is the
unique solution to the stochastic differential equationdXt = b(Xt)dt+a(Xt)σdWt

where a and b are affine functions. this class encompasses thefollowing processes

• geometric Brownian motion which is the solution to the following SDE
dXt = σXtdWt

• geometric Brownian motion with constant drift which is the solution to the
following SDEdXt = µXtdt+σXtdWt This is the process chosen to model
the stock price in the Black-Scholes model

• the mean-reversing Ornstein-Uhlenbeck process which is the solution to the
following SDE: drt = −θ(rt − µ)dt+ σdWt This is the process chosen to
model interest rates in the Vasicek model for the short term interest rate.

Theorem 6.4.1. If vxx≥ 0 then vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u ,σ) (0≤ t ≤ T) is anF t −
supermartingale,which takes the value 0 at t=T

Proof. By a regularity result for the solutions of PDEs,vσ(t,x,y) is C1 in t andC2

in x and y.
We may apply Ito’s formula to obtain

dvσ(t,Xt ,Yt) =vσtdt+vσxb(Xt)dt+vσxσa(Xt)dWt +xvσydt+
1
2

σ2a2(Xt)vσxxdt

=(vσt +vσxb(Xt)+xvσy+
1
2

σ2a2(Xt)vσxx)dt+vσxσa(Xt)dWt

Now we focus on the finite variation process (the dt term) and proceed as in
Carr, Ewald, Xiao [CEX08] in order to obtain an alternate representation for it.

We are placing ourselves under the the martingale equivalent measure. It fol-
lows thatv(t,Xt ,Yt) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

vt +vxb(xt)+xvy+
1
2

σ2a2(x)vxx = 0

Differentiating with respect toσ which we can do by regularity results for the so-
lutions to PDEs

vtσ +vxσb(x)+xvyσ +σa2(x)vxx+
1
2

σ2a2(x)vxxσ = 0

⇒ vtσ +vxσb(x)+xvyσ +
1
2

σ2a2(x)vxxσ =−σa2(x)vxx
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Returning to the semimartingale representation ofvσ we see that

dvσ(t,Xt ,Yt) =−σ2a2(Xt)vxxdt+vσxσa(Xt)dWt

by the equation above, ifvxx > 0 the finite variation process in the semimartingale
representation ofvσ is decreasing which implies thatvσ(t,Xt ,Yt) is anF t−supermartingale.
Moreoverv(1,x,y,σ) = g(y) sovσ(1,x,y,σ) = 0
this completes the proof. Now we show the non-negativity of the supermartingale

0= E[vσ(1,X
(σ)
1 ,

∫ 1

0
X(σ)

u du,σ)|F t ]≤ vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u ,σ)

Implications We have reduced our study ofvσ to the study ofvxx This is called
the gamma (greek letterΓ) of the option. We now obtain an expression forvxx

interms of the underlying processXt

Recall thatv(t,y,x,σ)=E[g(
∫ 1

0 Xsds)|F t ] =E[g(y+
∫ 1−t

0 duXx
u)] with y=

∫ t
0 dsXs

andx= Xt

Differentiating with respect to the initial condition,

vx(t,y,x,σ) = E[g
′
(
∫ 1−t

0
Xx

sds)(
∫ 1−t

0
X
′x
s ds)]

Differentiating again with respect to the initial condition,

vxx = E[g
′′
(y+

∫ 1−t

0
Xx

sds)(
∫ 1−t

0
X
′x
s )2ds+g

′
(y+

∫ 1−t

0
Xx

sds)(
∫ 1−t

0
X
′′x2

s ds)]

We must now examine the derivative of the processXt with respect to the initial
condition.

RecallXx
t = x+

∫ t
0 a(Xx

s )σdβs+
∫ t

0 b(Xx
s )ds

⇒ X
′x
t = 1+

∫ t

0
[a
′
(Xx

s )σdβs+b
′
(Xx

s )ds]X
′x
s

= exp(
∫ t

0
a
′
(Xx

s )σdβs+b
′
(Xx

s )ds)− 1
2

∫ t

0
(a
′
(Xx

s ))
2σ2ds)

We see that if a and b are affine functionsd
dxXt does not depend on x . Which means

that d2

dx2 Xt is the identically zero process And so

vxx(t,y,x,σ) = E[g
′′
(y+

∫ 1−t

0
Xx

s )(

∫ 1−t

0
X
′x
s ds)2]

Discussion: When the underlying is a diffusion with affine coefficients whose
drift is unaffected by volatility, the following holds: (a)The value of an Asian call
is increasing in volatility.
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(b) The value of an Asian put is decreasing in volatility.
More generally:
When the payoff function g is convex, the vega (vσ) of an asian option is a positive
supermartingale
When the payoff function g is concave, the vega (vσ) of an asian option is a negative
submartingale.

• Black Scholes (the undelying follows a geometric Brownian motion)

• Vasicek (the underlying follows a mean reversing Ornstein-Uhlenbeck pro-
cess)

Directions for further research The above results characterize the qualitative
effect of volatility on an important class of underlying diffusions. A direction for
further research would be to examine the effect of volatility on processes with
non-affine coefficients such as the Cox-Ingersoll-Ross (CIR) process, which is the
solution to the following stochastic differential equation.

drt =−θ(rt −µ)dt+σ
√

XtdWt

It has the property of staying positive which is useful when modeling the short term
interest rate.

6.5 An interesting case whereσ appears in the drift

The case where the underlying follows a geometric Brownian motion with drift is
an interesting one because it describes the dynamics of the underlying in the Black-
Scholes model. In this section Xt is taken to be the solution to the following linear
stochastic differential equation

dXt = µXtdt+σXtdWt

Using Ito’s formula we can check that the process Xt given by

Xt = X0exp(σWt +(µ− 1
2

σ2)t)

is the solution to the above stochastic differential equation starting from X0 at
time 0. µconstant was covered in section 4. This Section is devoted tothe case
whereµ depends onσ. There are several reasons why this is of interest. One of
these reasons is that in the Capital Asset Pricing Model (CAPM) expected return
is correlated with volatility. The justification for this isthat risk adverse investors
require a larger rate of expected return to hold on to an assetwhen its risk increases.
As a result a realistic stock model might incorporate a dependency inσ into the drift
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term.
Another reason is that this process appears when studying the following functional.

T→ g(
1
T

∫ T

0
exp(Ws−as)ds)

which with the following change of variableT = σ2 is equal in law to

g(
∫ 1

0
exp(σWt −aσ2t)dt)

And monotonicity of the second expression inσ would lead to monotonicity of
the first in T. Now Observe that:

[g(
∫ 1

0
dtexp(σBt −aσ2t))|F t ] = [g(

∫ 1

0
dtexp(σBt −

1
2

σ2t(a− 1
2
)σ2t))|F t ]

It follows that we are indeed dealing with a geometric Brownian motion for which
the drift coefficient isµ= (1

2−a)σ2

Whena= 1
2 we are in the case of geometric Brownian motion which was covered

in Section 4. The process exp(σWt −aσ2t) is a diffusion which is the solution to
the SDE:dXt = (1

2−a)σ2Xtdt+σXtdWt And so its infinitesimal generator is

L f = σ2 x2

2
d2 f
dx2 +σ2(

1
2
−a)x

d f
dx

This is more complex than the framework used in the previous sections because
here the volatility parameterσ appears not only in the diffusion term but also in the
drift term.

Geometric Brownian motion with drift has the same scaling property as plain
geometric Brownian motion.

v(t,x,y,σ) =E[g(
∫ 1

0
Xudu)|F t ]

=E[g(y+x
∫ 1−t

0
Xudu)] wherex= Xt ,y=

∫ t

0
Xudu

Under the risk neutral probability measureP all asset prices including this one
are martingales.v(t,S(σ)t ,

∫ t
0 duS(σ)u ,σ) being an(P,F t) martingale implies that its

finite variation process is identically zero. By an application of Ito’s formula this
property translates into.

vt +
1
2

σ2vxx+σ2(
1
2
−a)vx+xvy = 0

In order to obtain an alternate representation for the dt term of vσ we differentiate
the above equation with respect toσ
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vtσ +
σ2

2
vxxσ +σ2(

1
2
−a)vxσ +xvyσ =−σvxx−2σ(

1
2
−a)vx

=−σ(vxx+2σ(
1
2
−a)vx)

An application of Ito’s formula tovσ(t,Xt ,
∫ t

0 Xsds,σ) shows that the above is
the dt term ofvσ. We see that ifvxx+ 2(1

2 − a)vx ≥ 0 then this dt term is non-
increasing which means thatvσ is a supermartingale This works if1

2−a≥ 0 Con-
clusion:
If g

′ ≥ 0 and1
2−a≥ 0 the supermartingale argument holds

also ifg
′ ≤ 0 and1

2 ≤ a the supermartingale argument holds again

As in the previous sections, the processvσ attains the value 0 att = 1 because
at maturity the option price is independent ofσ; indeed,v(1,x,y,σ) = g(y).

6.6 Financial theory : Implications of the result

Given that this probability problem stems from the desire tohedge financial risk,
it is tempting to look at the economic justifications for (or consequences of) this
mathematical result. To do so we look at this problem from theexpected utility
viewpoint.

• ∫ 1
0 exp(σBs− σ2

2 s)ds is a random payoff

• g is the utility function of an investor. g is always assumed to be increasing
and concave.

• E

[

g(
∫ 1

0 exp(σBs− σ2

2 s)ds)
]

is the expected utility of the random payoff to

an investor with utility curve g.U(X) = E[g(X)]

In this framework the main result says that any increase in volatility ( σ ) results
in a decrease of the expected utility of all risk adverse investors.

σ1 > σ2⇒U

(∫ 1

0
exp(σ1Bs−

1
2

σ2
1s)ds

)

<U

(∫ 1

0
exp(σ2Bs−

1
2

σ2
2s)ds

)

We now explain why this is not just a simple consequence of

σ1 > σ2⇒Var

(∫ 1

0
exp(σ1Bs−

1
2

σ2
1s)ds

)

>Var

(∫ 1

0
exp

(

σ2Bs−
1
2

σ2
2s

)

ds

)
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Note that the above equation is indeed true; it follows from the characterization of
the second moment of the payoff in [Yor92]

Within a location-scale family of probability measures, anincrease in the vari-
ance does not always translate into a decrease in utility forall risk adverse investors.
Variance is often used as a proxy for financial risk because itis easy to use but it is
not always consistent with the economic notion of financial risk.

Rothschild and Stiglitz [RS70] give the following family of measures as an ex-
ample where an increase in variance results in an increase inexpected utility for
some risk adverse investors. This family is indexed bya,c > 0 and given by the
corresponding distribution function

a,c> 0

Fa,c(x) =0 for x≤ 1−0.25/a

=ax+0.25−a for 1−0.25/a≤ x≤ 1+(2c−0.5)/(c−a)

=cx+0.75−3c for 1+(2c−0.5)/(c−a)≤ x≤ 3+0.25/c

=1 for x> 3+0.25/c

and if we keepµconstant thendT(y)
dσ2 changes sign whereT(y,σ2,µ)=

∫ y
0 F(x,σ2,µ)dx

this implies that some investors with concave utility functions are better off with
an increase in variance.

In our case every investor will experience a loss in expectedutility when the
volatility increases.

Haim Levy in [Lev92] considers utility curves with increase at a decreasing
rate that isu′ ≥ 0 andu

′′ ≤ 0. He shows that if X and Y are two random variables
andEg(X)> Eg(Y) for all concave increasing functions g then this translatesinto
a property of second order stochastic dominance

In our case we have shown that ifσ1 < σ2

all risk adverse rational investors will prefer
∫ 1

0 exp(σ1Bs− 1
2σ2

1s)dsto
∫ 1

0 exp(σ2Bs−
1
2σ2

2s)ds

6.7 Implications for the running average of geometric Brow-
nian motion

Given two random variables X and Y Rothschild and Stiglitz in[RS70] show that
the following are equivalent:

• Eu(X)≥ Eu(Y) for all concave increasing function u

• Y is equal in law toX+Z with E(Z|X) = 0
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Denote the running average process byAt := 1
t

∫ t
0 SuduwhereSu is a geometric

Brownian Motion fors< t
We have shown thatEu(As)≥ Eu(At) for any concave function u.
It then follows thatAt is equal in law toAs+Z with E[Z|As] = 0

References also include [DMMY00], [CS04] and [Yor92]
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Chapter 7

A sequence of Albin type
continuous martingales with
Brownian marginals and scaling

This chapter is based on a joint article with C. Donati-Martin and M. Yor (see
[BDMY11]) Closely inspired by Albin’s method which relies ultimately on the
duplication formula for the Gamma function, we exploit Gauss’ multiplication for-
mula to construct a sequence of continuous martingales withBrownian marginals
and scaling.

7.1 Motivation and main results

(1.1)Knowing the law of a ”real world” random phenomena, i.e. random process,
(Xt , t ≥ 0) is often extremely difficult and in most instances, one avails only of the
knowledge of the 1-dimensional marginals of(Xt , t ≥ 0). However, there may be
many different processes with the same given 1-dimensionalmarginals.

In the present paper, we make explicit a sequence of continuous martingales
(Mm(t), t ≥ 0) indexed bym∈ N such that for eachm,

i) (Mm(t), t ≥ 0) enjoys the Brownian scaling property: for anyc> 0,

(Mm(c
2t), t ≥ 0)

(law)
= (cMm(t), t ≥ 0)

ii) Mm(1) is standard Gaussian.

Note that, combining i) and ii), we get, for anyt > 0

Mm(t)
(law)
= Bt ,

where(Bt , t ≥ 0) is a Brownian motion, i.e.Mm admits the same 1-dimensional
marginals as Brownian motion.
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(1.2) Our main result is the following extension of Albin’s construction [Alb08]
from m= 1 to any integerm.

Theorem 7.1.1.Let m∈N. Then, there exists a continuous martingale(Mm(t), t ≥
0) which enjoys i) and ii) and is defined as follows:

Mm(t) = X(1)
t . . .X(m+1)

t Zm (7.1)

where(X(i)
t , t ≥ 0), for i = 1, . . . ,m+1, are independent copies of the solution of

the SDE

dXt =
1

m+1
dBt

Xm
t

; X0 = 0 (7.2)

and, furthermore, Zm is independent from(X(1), . . . ,X(m+1)) and

Zm
(law)
= (m+1)1/2

(

m−1

∏
j=0

β(
1+2 j

2(m+1)
,
m− j
m+1

)

) 1
2(m+1)

(7.3)

whereβ(a,b) denotes a beta variable with parameter(a,b) with density

Γ(a+b)
Γ(a)Γ(b)

xa−1(1−x)b−11[0,1](x)

and the beta variables on the right-hand side of(7.3) are independent.

Remark: For m= 1, Z1 =
√

2
(

β(1
4,

1
2)
)1/4

and we recover the distribution of
Y := Z1 given by (2) in [Alb08].

(1.3) For the convenience of the reader, we also recall that, if onedrops the conti-
nuity assumption when searching for martingales(M(t); t ≥ 0) satisfying i) and ii),
then, the Madan-Yor construction [MY02] based on the ”Azéma-Yor under scal-
ing” method provides such a martingale.
Precisely, starting from a Brownian motion(Bu,u≥ 0) and denotingSu = sups≤uBs,
introduce the family of stopping times

τt = inf{u,Su ≥ ψt(Bu)}

whereψt denotes the Hardy-Littlewood function associated with thecentered Gaus-
sian distributionµt with variancet, i.e.

ψt(x) =
1

µt([x,∞[)

∫ ∞

x
yexp(−y2

2t
)

dy√
2πt

=
√

t exp(−x2

2t
)/N (x/

√
t)

whereN (a) =
∫ ∞

a exp(− y2

2 )dy. Then, Mt = Bτt is a martingale with Brownian
marginals.
Another solution has been given by Hamza and Klebaner [HK07].
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(1.4) In section 3, we prove that Theorem7.1.1is actually the best we can do in
our generalisation of Albin’s construction: we cannot generalize (7.1) by allowing
theX(i)’s to be solution of (7.2) associated to differentmi ’s.
Finally, we study the asymptotic behavior ofX(1)

t . . .X(m+1)
t asm−→∞.

7.2 Proof of the theorem

Step 1: For m∈R andc∈ R, we consider the stochastic equation:

dXt = c
dBt

Xm
t
, X0 = 0.

This equation has a unique weak solution which can be defined as a time-changed
Brownian motion

(Xt)
(law)
= W(α(−1)(t))

whereW is a Brownian motion starting from 0 andα(−1) is the (continuous) inverse
of the increasing process

α(t) =
1
c2

∫ t

0
W2m

u du.

We look fork∈ N andc such that(X2k
t , t ≥ 0) is a squared Bessel process of some

dimensiond. It turns out, by application of Itô’s formula, that we needto take

k = m+ 1 andc = 1
m+1. Thus, we find that(X2(m+1)

t , t ≥ 0) is a squared Bessel
process with dimensiond = k(2k−1)c2 = 2m+1

m+1 .
Note that the law of a BESQ(d) process at time 1 is well known to be that of 2γd/2,
whereγa denotes a gamma variable with parametera. Thus, we have:

|X1|
(law)
=
(

2γ 2m+1
2(m+1)

) 1
2(m+1)

(7.4)

Step 2: We now discuss the scaling property of the solution of (7.2). From the
scaling property of Brownian motion, it is easily shown that, for anyλ > 0, we
get:

(Xλt , t ≥ 0)
(law)
= (λαXt , t ≥ 0)

with α = 1
2(m+1) , that is, the process(Xt , t ≥ 0) enjoys the scaling property of order

1
2(m+1) .

Step 3: Consequently, if we multiplym+ 1 independent copies of the process
(Xt , t ≥ 0) solution of (7.2), we get a process

Yt = X(1)
t . . .X(m+1)

t

which is a martingale and has the scaling property of order1
2.
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Step 4: Finally, it suffices to find a random variableZm independent of the pro-
cessesX(1)

t , . . . ,X(m+1)
t and which satisfies:

N
(law)
= X(1)

1 . . .X(m+1)
1 Zm (7.5)

whereN denotes a standard Gaussian variable. Note that the distribution of any of
theX(i)

1 ’s is symmetric. We shall takeZm≥ 0; thus, the distribution ofZm shall be
determined by its Mellin transformM (s) = E(Zs

m). From (7.5),M (s) satisfies:

E[(2γ1/2)
s/2] =

(

E[(2γd/2)
s/2(m+1)]

)m+1
M (s)

with d = 2m+1
m+1 , that is:

2s/2 Γ(1+s
2 )

Γ(1
2)

= 2s/2

(

Γ(d
2 +

s
2(m+1))

Γ(d
2)

)m+1

M (s)

that is precisely:

Γ(1+s
2 )

Γ(1
2)

=

(

Γ(2m+1+s
2(m+1) )

Γ( 2m+1
2(m+1))

)m+1

M (s). (7.6)

Now, we recall Gauss multiplication formula ([AAR99], see also [CY03])

Γ(kz) =
kkz−1/2

(2π) k−1
2

k−1

∏
j=0

Γ(z+
j
k
) (7.7)

which we apply withk= m+1 andz= 1+s
2(m+1) . We then obtain, from (7.7)

Γ(1+s
2 )√
π

=
(m+1)s/2

(2π)m/2

1√
π

m

∏
j=0

Γ(
1+s+2 j
2(m+1)

) (7.8)

= (m+1)s/2
m

∏
j=0

(

Γ(1+s+2 j
2(m+1) )

Γ( 1+2 j
2(m+1))

)

(7.9)

since the two sides of (7.8) are equal to 1 fors= 0. We now plug (7.9) into (7.6)
and obtain

(m+1)s/2
m

∏
j=0

(

Γ(1+s+2 j
2(m+1) )

Γ( 1+2 j
2(m+1))

)

=

(

Γ(2m+1+s
2(m+1) )

Γ( 2m+1
2(m+1))

)m+1

M (s) (7.10)

We note that forj = m, the same term appears on both sides of (7.10), thus (7.10)
may be written as:

(m+1)s/2
m−1

∏
j=0

(

Γ(1+s+2 j
2(m+1) )

Γ( 1+2 j
2(m+1))

)

=

(

Γ(2m+1+s
2(m+1) )

Γ( 2m+1
2(m+1))

)m

M (s) (7.11)
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In terms of independent gamma variables, the left-hand sideof (7.11) equals:

(m+1)s/2E





(

m−1

∏
j=0

γ( j)
1+2 j

2(m+1)

) s
2(m+1)



 (7.12)

whereas the right-hand side of (7.11) equals:

E





(

m−1

∏
j=0

γ( j)
1+2m

2(m+1)

) s
2(m+1)



M (s) (7.13)

where theγ( j)
aj denote independent gamma variables with respective parametersa j .

Now, from the beta-gamma algebra, we deduce, for anyj ≤m−1:

γ( j)
1+2 j

2(m+1)

(law)
= γ( j)

1+2m
2(m+1)

β(
1+2 j

2(m+1)
,
m− j
m+1

).

Thus, we obtain, again by comparing (7.12) and (7.13):

M (s) = (m+1)s/2 E





(

m−1

∏
j=0

β(
1+2 j

2(m+1)
,
m− j
m+1

)

) s
2(m+1)





which entails:

E[Zs
m] = (m+1)s/2 E





(

m−1

∏
j=0

β(
1+2 j

2(m+1)
,
m− j
m+1

)

) s
2(m+1)





that is, equivalently,

Zm
(law)
= (m+1)1/2

(

m−1

∏
j=0

β(
1+2 j

2(m+1)
,
m− j
m+1

)

) 1
2(m+1)

7.3 Some remarks about Theorem7.1.1

7.3.1 A further extension

We tried to extend Theorem7.1.1by taking a product of independent martingales
X(i), solution of (7.2) with differentmi ’s. Here are the details of our attempt.
We are looking for the existence of a variableZ such that the martingale

M(t) =

(

p−1

∏
j=0

X
(mj )
t

)

Z

satisfies the properties i) and ii). Herep,(mj)0≤ j≤p−1 are integers andX(mj ) is
the solution of the EDS (7.2) associated tomj , the martingales being independent
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for j varying. In order thatM enjoys the Brownian scaling property, we need the
following relation

p−1

∑
j=0

1
mj +1

= 1. (7.14)

Following the previous computations, see (7.6), the Mellin transformM (s) of Z
should satisfy

Γ(1+s
2 )

Γ(1
2)

=





p−1

∏
j=0

Γ(2mj+1+s
2(mj+1) )

Γ( 2mj+1
2(mj+1))



M (s). (7.15)

We recall (see (7.9)) the Gauss multiplication formula

Γ(1+s
2 )√
π

= ps/2
p−1

∏
j=0

(

Γ(1+s+2 j
2p )

Γ(1+2 j
2p )

)

(7.16)

To findM (s) from (7.15), (7.16), we give some probabilistic interpretation:

Γ(1+s+2 j
2p )

Γ(1+2 j
2p )

= E[γs/2p
(1+2 j)/2p]

whereas
Γ(2mj+1+s

2(mj+1) )

Γ( 2mj+1
2(mj+1))

= E[γs/2(mj+1)
(1+2mj )/2(mj+1)].

Thus, we would like to factorize

γ1/2p
(1+2 j)/2p

(law)
= γ1/2(mj+1)

(1+2mj )/2(mj+1)z
( j)
mj ,p (7.17)

for some variablez( j)
mj ,p to conclude that

Z = p1/2
p−1

∏
j=0

z( j)
mj ,p.

It remains to find under which condition the identity (7.17) may be fulfilled. We
write

γ(1+2 j)/2p
(law)
= γp/(mj+1)

(1+2mj )/2(mj+1)(z
( j)
mj ,p)

2p. (7.18)

Now, if 1+2 j
2p <

1+2mj

2(mj+1) , we may apply the beta-gamma algebra to obtain

γ(1+2 j)/2p
(law)
= γ(1+2mj )/2(mj+1)β(

1+2 j
2p

,
1+2mj

2(mj +1)
− 1+2 j

2p
)

but in (7.18), we need to have on the right-hand sideγp/(mj+1)
(1+2mj )/2(mj+1) instead of

γ(1+2mj )/2(mj+1).
However, it is known that

γa
(law)
= γc

aγa,c
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for some variableγa,c independent ofγa for anyc ∈ (0,1]. This follows from the
self-decomposable character of ln(γa). Thus, we seem to needp

mj+1 ≤ 1. But, this
condition is not compatible with (7.14) unlessmj = m= p−1.

7.3.2 Asymptotic study

We study the behavior of the productX(1)
1 . . .X(m+1)

1 , resp. Zm, appearing in the
right-hand side of the equality in law (7.5), whenm−→∞. Recall from (7.4) that

|X1|
(law)
=
(

2γ 2m+1
2(m+1)

) 1
2(m+1)

.

We are thus led to consider the product

Θ(p)
a,b,c =

(

p

∏
i=1

γ(i)a−b/p

)c/p

where in our set up of Theorem7.1.1, p= m+1, a= 1, b= c= 1/2.

E[(Θ(p)
a,b,c)

s] =
p

∏
i=1

E[
(

γ(i)a−b/p

)cs/p
]

=

(

Γ(a− b
p +

cs
p )

Γ(a− b
p)

)p

= exp[p(ln(Γ(a+
cs−b

p
))− ln(Γ(a− b

p
)))]

−→
p→∞

exp(
Γ′(a)
Γ(a)

cs).

Thus, it follows that

Θ(p)
a,b,c

P−→
p→∞

exp(
Γ′(a)
Γ(a)

c),

implying that

|X(1)
1 . . .X(m+1)

1 | P−→
m→∞

exp(−γ/2) (7.19)

and

exp(−γ/2)Zm
(law)−→
m→∞
|N|. (7.20)

whereγ=−Γ′(1) is the Euler constant.

We now look for a central limit theorem forΘ(p)
a,b,c. We consider the limiting distri-

bution of
√

p

{

c
p

p

∑
i=1

ln(γ(i)a−b/p)−c
Γ′(a)
Γ(a)

}

.
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E

(

exp

[

cs
√

p

{

1
p

p

∑
i=1

ln(γ(i)a−b/p)−
Γ′(a)
Γ(a)

}])

= E

[

p

∏
i=1

(

γ(i)a−b/p

)cs/
√

p
]

exp(−cs
√

p
Γ′(a)
Γ(a)

)

= E

[

(

γ(i)a−b/p

)cs/
√

p
]p

exp(−cs
√

p
Γ′(a)
Γ(a)

)

=

(

Γ(a− b
p +

cs√
p)

Γ(a− b
p)

)p

exp(−cs
√

p
Γ′(a)
Γ(a)

)

= exp[p(ln(Γ(a− b
p
+

cs√
p
))− ln(Γ(a− b

p
)))−cs

√
p

Γ′(a)
Γ(a)

]

= exp(
c2s2

2
(ln(Γ))′′(a)+O(m−1/2))

We thus obtain that

√
p

{

c
m

m

∑
i=1

ln(γ(i)a−b/m)−c
Γ′(a)
Γ(a)

}

(law)−→N(0,σ2) (7.21)

whereN(0,σ2) denotes a centered Gaussian variable with variance:

σ2 = c2(ln(Γ))′′(a) = c2

[

Γ′′(a)
Γ(a)

−
(

Γ′(a)
Γ(a)

)2
]

.

or, equivalently

(

Θ(p)
a,b,c exp(

Γ′(a)
Γ(a)

c)

)

√
p
(law)−→
p→∞

exp(N(0,c2(ln(Γ))′′(a))). (7.22)
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Śeminaire de Probabilit́es XLIII, pages 441–449, 2011.

[BHR01] H. Brown, D. Hobson, and LCG Rogers. The maximum maximum of
a martingale constrained by an intermediate law.Probability Theory
and Related Fields, 119(4):558–578, 2001.

[BL78] D.T. Breeden and R.H. Litzenberger. Prices of state-contingent
claims implicit in option prices.Journal of business, pages 621–651,
1978.

[BS73] F. Black and M. Scholes. The Pricing of Options and Corporate Lia-
bilities. Journal of Political economy, Vol 81, No 3, 1973.

[BY08] D. Baker and M. Yor. A proof of the increase in maturityof the ex-
pectation of a convex function of the arithmetic average of geometric
Brownian motion.Preprint, Sep. 2008, 2008.

95



[BY09] D. Baker and M. Yor. A Brownian sheet martingale with the same
marginals as the arithmetic average of geometric Brownian motion.
Electronic Journal of Probability, 14:1532–1540, 2009.

[BY11] D. Baker and M. Yor. On Martingales with Given Marginals and the
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connecting the Azéma–Yor and Vallois embeddings.Bernoulli,
13(1):114–130, 2007.

[CL83] N.N. Chan and K.H. Li. Diagonal elements and eigenvalues of a real
symmetric matrix. Journal of Mathematical Analysis and Applica-
tions, 91(2):562–566, 1983.

[CS04] P. Carr and M. Schroder. Bessel processes, the integral of geometric
Brownian motion, and asian options.Theory probab. appl., Vol 48,
No 3, 2004.

[CW76] R. Chacon and J. Walsh. One-dimensional potential embedding.
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