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Statement of results

This work contains results in two areas: the construction of martingales
with specified marginals and the Skorokhod embedding problem. The con-
tributions are the folllowing:

e A new solution to the Skorokhod embedding problem (published in
Statistics and Probability Letters, see [ )]

e A Brownian sheet based construction of a martingale with the same
marginals as the average of geometric Brownian motion. This provides
a new proof that in the Black Scholes framework the the price of
arithmetic Asian options are increasing in duration ( joint work with
Marc Yor, published in Electronic Journal of Probability | )

e A sequence of Albin type continuous martingales with Brownian marginals
and scaling (joint work with C. Donati-Martin and M. Yor, published
in Seminaire de Probabilites, see | D

e On Martingales with Given Marginals and the Scaling Property (joint
work with M. Yor, published in Seminaire de Probabilites, see | )]

e A proof that the L2 quantization does not have the property of preserv-
ing the convex order (preprint submitted to Statistics and Probability
Letters)

e A quantization method which we called { —quantization and a proof
that it has the property of preserving the convex order. Using this
quantization we give new methods for constructing martingale transi-
tions with specified marginals (preprint submitted to Electronic Jour-
nal of Probability)



Part 1

Constructing martingale
transitions through
quantization of measures



Chapter 1

Introduction

The framework under consideration is the following: we are given two prob-
ability measures on R, which we denote p and v and we wish to construct a
martingale transition from p to v. It is known that a necessary and sufficient
condition for the existence of a martingale transition from p to v is that p
and v be ordered in the convex order, which is denoted y <., v and defined
as:

<o V = / f(z)dp(z) < / f(z)dv(z) for every convex function f
R R

The method which we propose is to approximate p by a sequence of dis-
crete measures (fin)neny Which converges in law to p. Similarly, we construct
a sequence of discrete measures (,)necny which converges to v. Then we
provide methods which will construct, for each n, a martingale transition
from fi,, to Dy.

Approximating a probability measure by a discrete measure is refered to
as quantizing that measure. The method which is generally used to quan-
tize probability measures is the L2 quantization. We will show that the L2
quantization cannot be used in this situation. Indeed, we will prove that the
L2 quantization does not have the property of preserving the convex order.
The consequence of this is that when p <., v, we may well have fi,, Lcr P
for some n, in which case there exists no martingale transition from [, to
Up. It is necessary that the quantization method which we employ has the
property of preserving the convex order. We define a quantization which has
this property of preserving the convex order. This quantization method will
be called U-quantization. In theorem 2.4.11, we prove that U-quantization
preserves the convex order. This ensures that if there exists a martingale
transition from g to v, then there also exists a martingale transition from
fin tO Dy

The problem of the appropriate quantization method being settled, we show
how, for each n, martingale transitions can be obtained from f, to 7,. We



give 3 different methods of constructing such martingale transitions. The
first method is straightforward but worth mentioning; it is linear program-
ming and its solution is obtained by the simplex method. The second method
is interesting because it relates the theory of symmetric matrices with spec-
ified diagonal and spectrum to the theory of martingale transitions. Indeed,
we show how by constructing a symmetric matrix with properly chosen
eigenvalues and diagonal elements, we can produce a martingale transition
from fi, to . The third method is the use of potential theory and an
algorithm by Chacon and Walsh. This algorithm can be used here because
U-quantization has the property of preserving the convex order.

1.1 Relevance to risk management

1.1.1 Relevance to modeling of financial risks

In addition to being of theoretical interest, the problem of constructing mar-
tingales with specified marginals has important applications to financial risk,
which we now briefly discuss. The observed market prices of European calls
and puts on an instrument, provide the marginal laws of its process. There
is of course some imprecision coming from the fact that not all strikes and
maturities are traded. If all strikes and maturities were traded, then every
marginal law of the process could be fully extracted from the observed prices.
This imprecision and the need to interpolate are not addressed here. The
framework under consideration is that of an observer having all marginal
laws of a stochastic process, and wanting to infer additional information
about this stochastic process. He or she may want the probability that the
process will cross a threshold during a certain time interval. Or the quantity
of interest may be the probability that the realized volatility will be greater
than a certain value.

A common approach is to first suppose that the stochastic process belongs
to a particular family (a-stable processes, variance-gamma processes, etc..).
The next step, “model calibration”, would be to choose the member of this
family which provides the closest fit to the observed marginals. The problem
with this method is the model risk which it introduces. There is indeed no
theoretical justification for the process belonging to some particular family.
Postulating this will exclude from consideration processes which have no rea-
son to be excluded. Any conclusions obtained by this method are subject to
a potentially large and unquantified amount of additional model risk. Model
free approaches, while technically more difficult, are increasingly becoming
an active area of research. See for example D. Hobson’s lecture notes on the
Skorokhod embedding problem and Model independent bounds for option
prices ([ ). In a model free approach, one does not assume that the
underlying belongs to a particular class of processes. The only assumption
made is that the underlying has the martingale property (after a change to



the risk neutral measure). This is theoretically justified by an absence of
arbitrage argument.

The idea then is to study the set of admissible martingales, which are
the martingales having the required marginal laws. The set of admissible
martingales is incredibly large and complex, and much more research is
needed for it to become better understood. In the mean time, any method
of constructing elements of this set (such as the methods presented here)
improves our understanding of this set of admissible martingales.

1.1.2 Inferring marginal laws from option prices

In this work, we will take the marginal laws of the underlying as given. The
problem of finding marginal laws compatible with observed option prices
is an area of research in its own. Indeed it constitutes an inverse problem
which in each case has many solutions. If there were a continuum of ob-
served option prices, one for each strike, then the problem of recovering the
marginal law would have a unique solution. This solution could be obtained
by the Breeden and Litzenberger | ] formula.

Using the Breeden and Litzenberger formula one can extract the marginal
laws from the option prices. We denote by ¢ the risk neutral density of the
final spot S7. As the call price is given by

C(So, K, T) = /R (S — K)*6(Sp, T, So)dSr

this can be differentiated twice with respect to the strike K to extract the
density ¢ of the marginal law of S at time T'.

92C(So, K, T)

(z)(KTaSO) = OK2

Since option prices are not available for the entire spectrum of strike values,
interpolating the available values is necessary.

The state price density is often called the risk neutral density, in our
framework it will be called the marginal density. In | | a prior parametric
density is postulated as the state price density. In [ ], kernel smoothing
for this purpose is discussed.



Chapter 2

Quantization and
preservation of the convex
order

2.1 The convex order and the existence of mar-
tingale transitions between specified marginal
laws

The convex order (<) is a partial order on P(R), the space of proba-
bility measures on R. It compares probability measures in terms of their
dispersion.

Definition 2.1.1. Let p,v € P(R). We say that u is dominated by v in
the convex order and write u <., v if, for every convex function ¢(x),

/R 6(x) du(x) < /R 6(x) dv(x)

2.1.1 Characterizations of the convex order

The convex order can be characterized in several ways. In particular it can
be characterized in terms of:

e potential functions
e distribution functions

survival functions

quantile functions

put and call functions



e martingale transitions

These characterizations will be used throughout this work. Proofs of these
characterizations can be found in the book by Shaked and Shanthikumar

[5506].
Characterization in terms of potential functions:

Definition 2.1.2. The potential function of a measure p is given by
Uitt) = = | It~ alduta)

Criterion 1. p <. v iff Up(t) > Uv(t) for all ¢

Characterization in terms of distribution functions:

Definition 2.1.3. The distribution of a measure p is the function F(t) =
¢

J- o dp().

Criterion 2. Let p be a measure with distribution function F' and v be a

measure with distribution function G. Then

1 and v have equal means.

Sez V = ‘ *
e ¥ / F(t)dtg/ G(t)dt for every z € R

—00

Characterization in terms of survival functions:

Definition 2.1.4. The survival function of a measure p is the function
F(t) = [ du(x).

Criterion 3. Let p be a measure with survival function F and v be a measure
with survival function G. Then

w and v have equal means.

<o v = o o
H=er ¥ / F(t)dt < / G(t)dt for every x € R

Characterization in terms of quantile functions:

Definition 2.1.5. The quantile function of a probability measure with dis-
tribution function F(x) is:

Flp)=inf{z € R:p < F(z)}
Criterion 4.

u and v have equal means.

<cz <~ P L
fo=en ¥ / F~Y(u)du > / G Y (u)du  for every p € [0,1]
0 0

10



Characterization in terms of call functions:

Definition 2.1.6. The following collection of functions, indexed by K € R,
will be referred to as call functions and defined as:

Ck(x) = (z — K)" = max(z — K, 0)
Criterion 5.

w and v have equal means.

<
PR T Ck@dn(o) < [ Crlaldvla) for every K € R
R R

Characterization in terms of put functions:

Definition 2.1.7. The following collection of functions, indexed by K € R,
will be referred to as put functions and defined as:

Pg(r) = (K — 2)T = max(K — z,0)
Criterion 6.

1 and v have equal means.

<cz <~
f=en /PK(x)d,u(:U) > / Py (z)dv(z) for every K € R
R R

Characterization in terms of martingale transitions:

Criterion 7. (Kellerer | | ) p <cp v if and only if there exist random
variables X and Y such that:

X ~pu
Y ~v
EY|X]=X

2.1.2 Properties of the convex order
Equal means

Lemma 2.1.8. p <., v implies that p and v have equal means.

The proof of this is straightforward:

Proof. ¢1(x) = x and ¢2(x) = —x are both convex functions.
Therefore 1 <. v implies that [z dp < [ 2 dvandthat — [z dp < — [z dv
Hence [z dp= [z dv O

11



Relationship to variance

1 < v implies that the variance of p is at most as large as the variance of
v. This is straightforward as f(z) = 22 is a convex function. The converse
however is not true. In other words, p can have a smaller variance than v
yet v may not dominate p in the convex order. An example of this is given
in Rotschild and Stiglitz | ]

12



2.2 Quantization of measures on R

To quantize a measure is to approximate it by a measure which is supported
on a finite number of points. Quantizations of measures on R will play an
important role in this work. We will use quantizations for two different
purposes. We will use them to construct a new solution to the Skorokhod
embedding problem. We will also use quantizations in order to build mar-
tingale transitions between specified marginals. When constructing mar-
tingales between specified marginals, we will be interested in quantizations
which preserve the convex order. The commonly used quantization method
in probability is the L2 quantization. We will prove that it does not have the
property of preserving the convex order, and we will define a quantization
which does have the property of preserving the convex order. Before we do
all this we will devote this section to discussing the theory of quantization.
In particular we will discuss the commonly used L2 quantization.

2.2.1 Voronoi style quantizations

Let p be the probability measure on R which we wish to quantize. If we
choose a vector of n points (z1,..,z,) then a natural way to quantize p is
as follows: For each of x;, construct an interval A;, as follows:

.
if2<i<n—1, then 4 = [fﬂil; i +2fw+1]
if i = n, then A; = |::E7112—+—$n ’ —|—OO>

Then a quantization of y can be obtained as follows: For each i, place an
atom of mass 1(A4;) at the position z;. In other words,

f=>" (A6,
=1

This quantization is called the Voronoi quantization of u, because the inter-
vals A; are the Voronoi cells corresponding to the points z;.

Instead of choosing the points (z1, .., 2, ), we could have chosen a partition
of R as n intervals (Aj, ..,A,). A natural quantization of p would then be:
For each A;, place an atom of mass u(A;) at the position @ fAi xdu(z).
This is pretty much the same type of quantization as the Voronoi quantiza-
tion. Indeed in the Voronoi quantization, the segments are obtained from
the points and here the segments are given directly. We now prove that
for these two types of quantizations, the original measure p dominates its
quantization { in the convex order, i.e. i <, u.

13



Lemma 2.2.1. Let J be a partition of R. Let & be the probability measure
which is constructed from y in the following way: for each J € J, an atom

fjx d/‘("E) on
W) e

/ () di(x) < / ¢(x) du(x)  for every convex function ¢.
R R

of mass u(J) is placed at position

Proof. Let J be an arbitrary element of J. By construction, i(J) = u(J)
p(dz) .

is a probability measure
w(J)

. Therefore, by Jensen’s inequality, for

o(i55)

1(J)

and [,z dji(x) = [;x du(x). The measure

fj$ dp(z)
(J)

on J. Its expectation is

every convex function ¢,

[ ot 2

d
As a(J) = wp(J), the measure M((f)) is a probability measure on J. It
7
. . . . [y dp()
consists of a single Dirac point mass at the position T Therefore,
1

foer 3t = (M)

Combining the two above equatlons,

du() dji(x)
fo@ i = fow 5

which is equivalent to:
[ 6@ duta) = [ ota) d

As the above holds for each J € 7, and together they constitute a partition

of R, it follows that
[ ¢ dntw)> [ ota) d

2.2.2 L2 quantization

To quantize a random variable X is to approximate it by a random variable
X which has a support consisting of n points. The resulting quadratic error
is given by:

E|X — X|?
The L2 quantization of X is the random variable X , supported on n points
which minimizes the quadratic error.

14



2.2.3 Lloyd’s fixed point algorithm for performing L2 quan-
tizations

Algorithm 1 Lloyd’s fixed point algorithm for performing L2 quantizations
Let p be a probability measure on R. The L2 quantization of u can be
computed using Lloyd’s | | algorithm as follows.

Initial step: Seeding the algorithm.
In order to seed the algorithm, pick n arbitray real numbers, =1, .., z,.

Step 1: From points to intervals.
Suppose that the z;’s are sorted in increasing order. For each of x;, construct
an interval A;, as follows:

.
if i = 17 then Az = <—OO , 1‘1—;‘7;2:|
if2<i<n—1, then 4; = |:$i—12+ T +2$z‘+1]
if i =n, then 4; = I::U"_l;_x" : +OO)

Step 2: From intervals to points.
For each interval A;, compute:

update x; to this new value.
Step 3: repeat steps 1 and 2 until convergence of the x;’s

Result The L2 quantization of p is obtained as follows. For each i, place
an atom of mass p(A4;) at the position z;. In other words,

p=>" (A6,
=1

Remark. In step 1, A; consists of all points in R which are closer to x; than
to any of the other x;. The intervals A; correspond to Voronoi cells.

15



2.3 The L2 quantization does not preserve the con-
vex order

2.3.1 Quantization of probability measures and the L2-quantization
method.

A quantization of order n of a measure p is a measure [ which has a support
consisting of at most n points. The measure [ should also be a reasonably
good approximation of pu.

Definition 2.3.1. Let u be a probability measure on R. Given a vector
(x1,..,xn) € R", the Voronoi quantization of p is defined as:

= w4 b,
i=1
where A; is the Voronoi cell of z; definedas A; = {z e R: |z — 2| < |z — x| for all 1 < j < n}

and ¢, denotes the Dirac point mass at x;.

Remark. The vector of points (x1, .., z,) is called the quantization grid. Note
how the quantization grid together with p uniquely defines fi.

Definition 2.3.2. The quadratic error of the Voronoi quantization defined

above is given by:
n
> [ e ul? dutu
i=17Ai

Definition 2.3.3. The Voronoi quantization which minimizes the quadratic
error is called the L2-quantization.

2.3.2 The L2-quantization method does not preserve the con-
vex order

In this section we show that the L2-quantization does not preserve the
convex order. There are several characterizations of the convex order (see
[ ). We will make use of two of these characterizations. The first one is
in terms of potential functions, the second in terms of martingale transitions.
These are given in Lemma 2.3.5 below.

Definition 2.3.4. The potential of a probability measure p is the function:

Un(t) = = [ 12 =t dp(w)

16



Lemma 2.3.5. Let p and v be two probability measures on R. The following
are equivalent:

(1) b <o v
(1) Up(t) > Uv(t) forallt € R
(7i7) There exists random variables X and Y satisfying X ~ pu, Y ~v and E[Y|X] = X

Proof. see | ]. O

Theorem 2.3.6. The L2-quantization method does not preserve the convex
order.

Proof. The proof is based on exhibiting a counterexample. Consider the
following two measures:

1

M= 5(5% +0s)
1
VvV = g(do +(5% +(51)

The proof proceeds in three steps. i) We first prove that pu <. v. ii)
Next we perform L2-quantization of p and v. #ii) Finally, we show that the
quantized measures are not ordered in the convex order.

Showing that the two original measures are ordered in the convex
order.

To show that u <., v, it suffices by lemma 2.3.5 to exhibit two random
variables X and Y which satisfy: X ~ u, ¥ ~ vand E[Y|X] = X. Let
X ~pand Y ~ v and define a transition as follows:

PY=0|X=2%)=2
P(Y =3 |X =} =}
P(Y =3 |X =3 =}
PY=1|X=2)=%

We now check that this transition has the martingale property:

1 2 11 1

ElY|[X==| =0-2+4--2 = —

[ | 6] 372°3 7 6
11 2

Elv|x=2| =11, 2,_2

6 233 6

Therefore E[Y | X] = X which by the criterion 7 (Kellerer) of Chapter
2, implies that pu <., v.

17



Performing the L2-quantization of the two original measures.

Let i and ¥ respectively denote the L2-quantization of order 2 of the mea-
sures p and v. The support of the measure p consists of two points, it follows
that [ is equal to p. Indeed taking the support of u as the quantization grid
leads to a quadratic error of zero.

Computing 2 amounts to performing the L2-quantization of order 2 of the
measure % (5o + & 1+ 01). This is a textbook example which can be found in

the lecture notes of H. Pham (see | ]) . For the purpose of complete-
ness, we reproduce and expand the calculations here.

Because L2-quantization is a Voronoi style quantization, ¥ is determined
by its support through:

n
D= v(A;) b,
i=1
where (1, ..,x,) is the support of & and A; is the Voronoi cell of z;. In fact
since 7 is a quantization of order 2, its support consists of at most 2 points.
Let us denote these two support points by a = x1 and b = z9 and without
loss of generality let a < b. Note that o will be supported by a single point if
and only if a = b. We must determine a and b by minimizing the quadratic
error function. It turns out that the quadratic error function has a different
expression in each of the two following possible cases:

{case(i): la—3 | <|b—73|
|

case (ii): |a—3|>|b—

1
2
1
2
The point % belongs to the Voronoi cell of a in case (i) and to the Voronoi
cell of b in case (ii). Each of these two cases leads to a different quantization
of v. Let us determine the quantization resulting from the case (i) where
la—1|<|b—1]| The result which we establish holds true in case (ii) as
well.

Since the point % belongs to the Voronoi cell of a, the quadratic error func-
tion is given by:

Ela,b) = [a— 02+ (a— 272+ (-1

3 2
— l?+a?—at+(b—1)
3 4
1 1 1
= _[2(a— )2+ =4 (b—1)*
S2(a— )P+ 5+ (60— 1))
This function is minimized when a = % and b = 1. It follows that the

support of U is {i, 1} . The resulting Voronoi cells are A} = (—o0, %] and
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Ay = (3,00). And so ¥ is given by

]
U= I/(Al) 511
=1
5) )
=v( (=00, 2] ) 01 +v((5,00)) o1
2 1

Showing that the two quantized measures are not ordered in the
convex order.

By lemma 2.3.5, a necessary and sufficient condition for g <., 7 is that
Up(t) > Up(t) holds for every ¢t € R. It suffices therefore to exhibit a t* € R
such that Ufi(t*) < Up(t*). This is the case when t* = 1 as we now show

by evaluating the potential functions of ji and .

O

Corollary 2.3.7. Let y and v be a pair of measures which admits a mar-
tingale transition. Let ji and U be their respective L2-quantizations. A mar-
tingale transition from [i to U does not necessarily exist (because we do not
necessarily have i <. V).

Proof. This follows from Theorem 2.3.6 and the characterization of the con-
vex order in terms of martingale transitions given in Lemma 2.3.5.
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Figure 2.1: The potentials of the two measures before L2 quantization
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Figure 2.2: The potentials of the two measures after L2 quantization (note
that by Criterion 1 of section 2, neither of the quantized measures dominates
the other in the convex order).
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2.4 A quantization which preserves the convex or-
der

We have just seen that the L2 quantization, which is the commonly used
method to quantize probability measures, does not preserve the convex or-
der. In this section we provide a quantization which does have the prop-
erty of preserving the convex order. This quantization will be called U-
quantization because it produces a quantization which is uniformly dis-
tributed on a finite number of support points.

2.4.1 Definition of U/-quantization

The U-quantization of a measure is defined in terms of the quantile function
of that measure. The quantile function of a measure is defined as follows:

Definition 2.4.1. The quantile function of a probability measure with dis-
tribution function F'(z) is:

Flp)=inf{z € R:p < F(z)}

Definition 2.4.2. Choose an integer n. Let u € P(R) with distribution
function F(u) = [*_ du(z).

Ular, o an) = =3 6,
The U-quantization of p is
where a; = n/ F~Y(u)du

|
-

3

2.4.2 Numerical illustration of (/-quantization

Example 2.4.3. Let p be the standard ( mean 0, variance 1) Gaussian law
and let v be a ( mean 0 and variance 2) Gaussian law. Let U(a1, .., a109) and
U(bi,..,b10) be the respective quantizations of pu and v (we chose n=10).
Using numerical integration we can compute the vectors (ap,..,a1p) and

(bl,..,blo):

[ —1.75498 ] [ —2.48192 7
—1.04464 —1.47734
~0.67731 —0.95786
—0.38650 —0.54659

e = | gy | Orbo)” = | Tl
0.38650 0.54659
0.67731 0.95786
1.04464 1.47734
1.75498 | [ 2.48192
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Lemma 2.4.4. (U-quantization preserves the mean of a measure) Let u be
a probability measure with distribution function F', and U(ay,..a,) be its
U-quantization. Then p and U(ay, ..a,) have the same mean.

Proof.

1 n
The mean of U(ay,..ap) = — g a;
n -
1=

1
1 n i
= Zn/ F~Y(u)du
o e

= /01 F~Y(u)du

= the mean of pu

2.4.3 U-quantization preserves the convex order

To show that U-quantization preserves the convex order we will need the
notion of majorization which is a partial order which compares vectors of
same length and equal mean in terms of the relative dispersion of their
coordinates.

Definition 2.4.5. Let (a1, ..,ay,) and (b1, .., b,) be two vectors whose entries
have been sorted in increasing order.

(a1 <..<apand by <..<by,)

We say that (ai,..a,) is majorized by (b1,..,b,), and write (aq,..a,) <
(b1, .., by) if:

(i) Z?:l a; = Z?:l b;
and (i) S5, b < 308 a fork=1,..,n—1

Examples 2.4.6. (1,2,3) < (0,2,4) and (1,1,1,1) < (0,0,0,4)

The vectors (1,6,6,9) and (2, 3,8,9) illustrate the fact that (<) is a partial
order, and not a total order. Both vectors have the same mean, but neither
vector majorizes the other. (1 <2 but 146 > 2+ 3)

Remark. (ay,..,an) < (b1, .., by) means that (b1, .., b,) is more dispersed than
(a1, ..,ay). In the literature there is no consensus as to the direction of the
ordering. In economics (<) is called the Lorenz order and compares income
inequalities. There, (a1, ..,ay) < (b1, ..,by) if (b1, .., by) is less dispersed than
(ai,..,ay). In this paper, we are using majorization (<) alongside the convex
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order (<.;). For the convex order, y <., v means that v is more dispersed
than p. Therefore, it makes sense for us to choose the definition of (<)
which we have chosen.

The following lemma gives a characterization of the convex order in terms
of the quantile function. We will use this frequently.

Lemma 2.4.7. Let p,v € P(R) with distribution functions F' and G, then

w and v have equal means.

<cz <~ L L
f eV / F~l(u)du > / G Y(u)du for every p € [0,1]
0 0

Proof. See | |, page 112, Theorem 3.A.5. O

1 n
Definition 2.4.8. U(ay, .., a,) will denote the law corresponding to — Z da;
n
i=1
where d, is the Dirac point mass at x.

In the following lemma we establish a relationship between the convex
order and majorization.

Lemma 2.4.9. (ai,..,a,) < (b1,..,by) <= Ulay,..,an) <cz U(b1,..,bp)
Proof. Let us first determine the quantile functions of U(ay, .., a,) and U (by, .., by,).

1 n
Since U(ayq, .., a,) corresponds to — Z dq;, its distribution function, F, is a
n

i=1
piecewise constant function.
0 forx<am
F(z)= ¢ forz e [a;,air)
1 forx>a,

The quantile function of U(ay, .., a,) is by definition:
Flp)=inf{z € R:p < F(z)}

It follows that F'~! is a piecewise constant function from (0, 1] to R which
is given by:

L
Fp) = a; ifp€<l ,Z]
n

n

Integrating a piecewise constant function is easy:

k k
n 1
F~Y(p)dp= =~ g a;
/0 ( i
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In the same way, G~!, the quantile function of U(by, .., b,) satisfies:

k k
. 1
G 'p)dp==) b
| o 3

Let us first show that U(aq, .., an) <cz U(b1,..,bp) = (a1,..,an) < (b1, ..,bp).
By lemma 2.4.7, U(ay, .., an) <c Ul(ai, .., a,) implies that for each ¢ € (0,1),

t t
/F_l(p) dpz/ G
0 0

k k
= Zai > Zbi for each k ()
i=1 i=1

U(ay,..,an) <cz U(by,..,b,) implies by Lemma 2.4.9 and definition 2.4.5,
that they have the same mean, and so:

/OIF_I(p) dp:/OlG‘1

= zn: a; = zn: b; (**)
=1 =1

Finally, (%) together with (%) imply that (ai,..,a,) < (b1, .., bn).

Let us now show that (ay, ..,an) < (b1,..,b,) = Ulay,..,an) <c Ulay,..,ap).
We have seen that F~! is a piecewise constant function which is constant
i i+1
on each of the intervals [, + ] .
non

D
It follows that p — / Fﬁl(t) dt is a piecewise affine function, which is

0
affine on these same intervals. v
The same is true of the function p — / G~1(t) dt. Therefore to show that
0

/ G~ (t)dt < / F~L(t) dt for all p e (0,1)

it suffices to show that

i/n
/ G~ L(t)dt < / F~(t) dt for eachi € {1,2,..,n}

which by what we have shown at the beginning of the proof is equivalent to:
R R
n;bi < nz;ai for each k € {1,2,..,n}
1= 1=

24



which follows from the initial assumption that (a1, .., a,) < (b1, .., b,). There-
fore

P P
/ G l(t)dt < / F~(t)dt for each p in (0,1)
0 0
which gives, by lemma 2.4.7, that U(aq, .., an) <¢p U(b1, .., bn). O

U-quantization is a bridge between the convex order (<., ) and majoriza-
tion (<). When measures are ordered in the convex order, the coordinates
of their U-quantizations are ordered in the majorization order.

Theorem 2.4.10. Let p,v € P(R), with U-quantizations Ulay, .., a,) and
U(by,..ybp). If p <o v then (a1, .., an) < (b1, .., bp).

Proof. Suppose that p <. v. By the definition of majorization ( < ), it
suffices to show:

(a1, ..,ay) and (by, .., by) have the same mean (i)
k k

Zbi < Zai for each k € {1,..,n} (i)

i=1 i=1

(i) Let us show that the vectors (a1, .., a,) and (b1, .., b, ) have the same mean.
Since pu <. v, it follows that u and v have the same mean (see section on
the convex order). Since U-quantization preserves the mean of a probability
measure, it follows that the measures U(ay, .., a,) and U(by, .., b,) have the
same mean. This implies that 13" 1 a; = 23" b;, hence the vectors
(a1, ..,ayn) and (by, .., by) have the same mean.

(ii) Letting F' (resp. G) denote the distribution function of p (resp. v),
we have:

k k i
|
Zal = Znﬁl F~(u)du
=1 =1 n
k L3
Zaz = n/ F~Y(u)du
i=1 0

In the same way, one also obtains,

k k
Zbi = n/n G~ (u)du
i=1 0
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As, p < v it follows by the characterization of the convex order using
quantile functions that:

p P
/ G (u)du < / F~Y(u)du for every p € [0, 1]
0 0
k k
Hence Zbi < Zai for each k € {1,..,n}
i=1 i=1

O

Remark. 1t can be shown that pu >, U(ai,..an) (see Section 4, lemma
3.6.5). Although this is common for several quantization methods, what is
more remarkable is that this quantization preserves the convex order, as we
now show:

Theorem 2.4.11. ( U-quantization preserves the convex order) Let p,v €
PR) with quantizations Ul(ay,..,a,) and U(by,..,by). If p < v then
U(al, vey an) Scz U(bl, cey bn)

Proof. Suppose that y <., v. By Theorem 2.4.10 this implies that (ay, .., a,) <
(b1,..,by). By Lemma 2.4.9 it follows that U(ay, ..,an) <cp U(b1,..,by). O

The quantization defined above would not be of much use if U(ay, .., a,)
did not converge to u. Thankfully this is the case as the following theorem
shows.

Theorem 2.4.12. Let u € P(R) with quantization Ul(ay, ..,a,). Then asn
goes to infinity, U(ay, ..,an) converges weakly to p.

Proof. Recall that

1o W
Ulai,..,an) = - Z(Sai where a; = nﬁl F~ Y (u)du
i=1 n

The cumulative distribution function F' is a non-decreasing function, hence
it follows that its inverse, F~! is also a non-decreasing function. As the
integrand is a non-decreasing function, the above integral may be bounded
as follows:

n( - CHFPE < n [P e < (=) P
F 1(221)5 n/ P (w)du gF*l(%)
P < 2 <F(h
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Let F,, denote the distribution function of U(ay, .., a,). By the definition of
U(CLl, ooy an),

n

1
Fo(t) =~ Z 1{a; < t}
=1

where 1 denotes the indicator function. ‘ ‘
Let us now examine F(t) and F,(¢) when t € [F~1(ZL) | F~1(1)]
Since [’ is a monotone increasing function, applying F' to each term of
F~1(EL) <t < F71(L), we obtain:

i—1

n

<F(t) <

(*)

3| .

Again when t € [F~Y(22) | F71(1)], we bound F,(t), the distribution

n n
function of U(ay, .., ay), in the following way:

We have seen that:

1,1 —1 1
a1 < F 1(7) <a <F 1(5) < ait1

It follows that when F~1(=1) <¢ < F~!(1), one must have either a;_1 <
t < a; or a; <t < ajpq. Therefore when F_l(%) <t < F_l(%), the
distribution function F,, which is Fj,(t) = 2 >°" | 1{a; < t} must be equal
to one of the 3 following values: % or L or &1,

. n . n
It follows that when F~1(=1) <t < F~1(1) the following must hold:
i — 1 i+ 1
1 < Fu(t) < 1+
n n

(%)

By (*) and (**), it follows that when F~1(=2) <¢ < F~1(4), we have:
2
[F(t) = Fa(t)] < —

3

Now the collection of intervals {(F~'(=1), F71(4)] : 1 < i < n}
generate the support of u, and therefore that of U(aq,..,a,). From this
we conclude that | F,(t) — F(t) |[< 2 for all t € R. Hence as n — oo,
the distribution function F), converges pointwise to F'. This means that as

n — oo, the quantization U(ay, .., ay) converges weakly to u ]
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Chapter 3

Construction of martingale
transition between quantized
measures

3.1 Martingale transitions though linear program-
ming

3.1.1 Linear programming

Linear programming consists in optimizing a linear function subject to a
set of linear constraints. The linear function to be optimized is called the
objective function. Let the vector of variables be denoted = = (1, .., z,). A
linear function in these variables is of the form:

n
g CiZi
i=1

where ¢ = (cy, .., ¢,) is the vector of coefficients of the objective function.
Linear constraints can be of the following forms:

n
Z a;z; < b (an upper bound constraint)
=1

n
Z a;z; > b (alower bound constraint)
i=1

n
Z a;z; =b (an equality constraint)
i=1

where a = (ay, .., a,) is a vector of constraint coefficients.
A collection of k linear constraints can be represented by:
a matrix A which has k£ rows and n columns,
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a vector b = (by..bg)T,
in the following way:

(for k equality constraints)

3.1.2 The Linear programming problem in standard form
The linear programming problem can be stated as:

max CTQ?

subject to Az = b
and z >0

x is the vector of variables to be determined.

c is the vector of coefficients of the objective function.

A is the matrix of constraint coefficients.

b is the vector of right hand side values of the constraints.

The set of constraints:

Az =b
and z >0

T

specify a convex polytope over which the objective function ¢z is to be

optimized.

3.1.3 Solutions to linear programs

The simplex algorithm developed by Danzig solves a linear program when

it has a solution (see | I, [ ] and [ D).

3.1.4 Martingale transitions as solutions to linear program-
ming problems

Given two specified marginal laws p and v, we have seen how U-quantization
provides us with two quantized measures 1 and . Both [ and ¥ are uniform
laws on n support points.

a~U(ai,..,an)
v~ U(by, .., by)

Let us now look at how linear programming provides us with martingale
transitions from [ to . A martingale transition from [ to © can be expressed
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as a matrix M = (mjj)i<ij<n. The matrix M describes the transition
probabilities through:

mi,j:P(Y: j]X:ai)

For each row 4, we must have >°%_, m;; = 1.

For each column j, we must have Y " ; m; ; = 1.

As there are n rows and n columns, together these row sums and column
sums conditions impose 2n linear constraints on the entries of the matrix
M. The martingale property of the transition matrix M translates to:

n
for each row 1, E m; ;b; = a;

J=1

As there are n rows, the martingale condition translates into n more linear
constraints on the entries of the matrix M. We are in a situation with n?
variables (the entries of the matrix M) subject to 3n linear constraints. Each
of the linear constraints is an equality constraint. In order to have a linear
programming problem we must specify a linear objective function which is
to be maximized or minimized. Any vector of n? real numbers can be used
as coefficients for the linear objective function. A vector ¢ with n? entries
defines a linear objective function through:

Z Z (Mij Citn(i-1))

i=1 j=1

By choosing different vectors of objective function coefficients ( the vector
¢), we can specify different linear programming problems and thus obtain
different martingale transitions from [ to .

We have seen that when a linear programming problem is given in stan-
dard form, the linear constraints are provided as a matrix of constraint
coefficients together with a vector of right hand side values for the con-
straints. We will now provide an algorithm which constructs this matrix of
constraint coefficients as well as the vector of right hand side values. This
algorithm works under the assumptions outlined above ( i.e. construction
of a martingale transition from i = U(ay,..,a,) to v = U(by,..,b,) ). This
algorithm takes as arguments the two vectors of support points (a1, .., an)
and (b1, ..,b,). It produces a 3n by n? matrix of constraint coefficients as
well a vector of right hand side values which has length 3n. These can then
be used as inputs in a linear programming solver.
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3.1.5 Algorithm to build the matrix of constraint coefficients

The following two algorithms build the matrix of constraint coefficients and
the vector of right hand side values for the constraints.

Algorithm 2 Algorithm which constructs the matrix of constraint coeffi-
cients for the linear programming solver

fori=1—>ndo > Linear constraints from the row sums.
for j=1—ndo
M@, (i—1)n+j)« 1
end for
end for
fori=1—>ndo > Linear constraints from the column sums.
for j=1—ndo
Mn+i,(j—n+i)<+1
end for
end for
fori=1—>ndo > Linear constraints from the martingale property.
for j=1—ndo
M@2n+i,(i —1)n+75) + b(j)
end for
end for

Algorithm 3 Algorithm which constructs the vector of right hand side
constraints for the linear programming solver

for i =1 — 2n do > Because the matrix must be bistochastic.
R(i,1) « 1

end for

fori=1—ndo > For the martingale property.
R(2n +1i,1) < a(i)

end for

Algorithm 4 Algorithm to turn the output of a linear programming solver
from vector form into matrix form
fori=1—>ndo
for j=1—ndo
N(i,j) <= O((i = )n + j)
end for
end for

Remark. GNU Octave provides a linear programming solver, the glpk rou-
tine.
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3.1.6 Numerical Example

The following example illustrates the use of linear programming as a means
of constructing martingale transitions between specified marginal laws. Con-
sider two marginal laws, each one of which is a uniform distribution on the

following vectors of support points:

—1.64683
—0.89538
—0.49135
—0.15798
0.15798
0.49135
0.89538
1.64683

—3.29366
—1.79077
—0.98270
—0.31595
0.31595
0.98270
1.79077
3.29366

These vectors where obtained by performing a U/-quantization of order 8 of
the following Gaussian laws: the first with parameters (mean 0, variance
1) and the second Gaussian law with parameters (mean 0, variance 2), (see
Section 2.4 on U-quantization). Let us take as a vector of objective coeffi-
cients, a vector of length n? = 64 with every entry equal to 1. We obtain
the following martingale transition matrix:

0.00000
0.00000
0.05890
0.13130
0.17239
0.20730
0.20196
0.22815

0.97169
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.02831

0.00000
0.92986
0.00000
0.00000
0.00000
0.00000
0.07014
0.00000

0.00000
0.05890
0.94110
0.00000
0.00000
0.00000
0.00000
0.00000
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0.00000
0.00000
0.00000
0.86870
0.13130
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.69632
0.30368
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.48901
0.51099
0.00000

0.02831
0.01123
0.00000
0.00000
0.00000
0.00000
0.21691
0.74354




3.2 Martingale transitions obtained from symmet-
ric matrices
Given two specified marginal laws p and v, we have seen how U-quantization

provides us with two quantized measures ji and 7. Both & and © are uniform
laws on n support points.

fir Ular, ..y an)
D~ U(by, .., b)

Any martingale transition from [ to U can be expressed as a matrix
M = (m; ;)i<ij<n which describes the transition probabilities through:

mm:P(Y: j|X:CLi)

A square matrix M of size n provides a martingale transition from g ~
U(ay,..,an) to 0 ~ U(by,..,by,) if and only if the following 3n conditions are
verified:

n
(a) For each row ¢, Zm” =1

j=1
n
(b) For each column j, Zm” =1
i=1
n
(c) For each row i, me-bj = qa;
j=1

3.2.1 Constructing a martingale transition from a symmetric
matrix

Now suppose that we have a symmetric matrix S which has spectrum
(b1, ..,b,) and diagonal elements (ay, .., a,). We now describe how this ma-
trix S can be used to construct a matrix M which provides a martingale
transition from g ~ U(ay,..,an) to o ~ U(by,..,by)

By the spectral theorem for symmetric matrices there exits a real orthogonal
matrix @ such that
S =QTAQ

The matrix A is the diagonal matrix with entries (by, .., by).

Let us define M to be the matrix obtained by squaring the entries of Q7.
In other words, the (4, j) entry of M is given by m; ; = qzj where ¢; ; is the
(i,7) entry of Q7.

We now show that M satisfies the conditions (a), (b) and (c¢) above, which
means that M provides a martingale transition from g ~ Ul(ay,..,ay) to
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v~ U(by, .y by).

The rows of an orthogonal matrix form an orthonormal basis and simi-
larly the columns of an orthogonal matrix also form an orthonormal basis.
It follows that conditions (a) and (b) are verified.

Let us now verify that the transition described by the matrix M possesses
the martingale property. This amounts to verifying condition (c):

n
For each row 1, g m; b = a;

Jj=1

By hypothesis the diagonal elements of S are (ai,..,ay), so the (i,i)
entry of S is equal to a;. We have seen that S = QTAQ. Let us perform
these two matrix multiplications in order to calculate this (i,4) entry of S.

Q1 q12 --- qin bpr 0 ... O
dnl Gn2 --- dnn 0O 0 ... b,

From this we see that the matrix QT A has (4, j) entry given by qi;bj. The
row 4 of the matrix QT'A is given by:

(giab1 gizba .. Ginbn)

The (4,1) entry of the matrix Q7 AQ is the inner product of the row i of
the matrix QT A with the column j of the matrix Q.

qi,1 n
;2

(giibr di2b2 .. Ginby) %, :Zqzz,jbj
o i=1
GQin

As m;; was defined to be qZ ; and the matrix S has the property that its
(i,7) entry is a;, the above line can be written as:

n
a; =Y migb;
j=1

This completes the proof that the matrix M, obtained by squaring the
entries of QT, provides a martingale transition from g ~ U(ay,..,a,) to
U~ U(by, .. by).
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3.2.2 Existence of symmetric matrices with given diagonal
and spectrum

Now that we have seen how a symmetric matrix with properly chosen diago-
nal and spectrum can be used to produce a martingale transition, a natural
question is: when does there exist a symmetric matrix with a given diagonal
and spectrum? The answer is provided by the following theorem:

Theorem 3.2.1. (Horn-Schur [ /] ) There exists a symmet-
ric matriz with diagonal (a1, ..,a,) and spectrum (bi,..,b,) if and only if
(al, ..,an) =< (bl, ,bn)

The symbol (<) denotes the partial ordering called majorization which
is defined as follows:

Definition 3.2.2. Let (ay, .., ay,) and (b1, .., b,) be two vectors whose entries
have been sorted in increasing order (a; < .. < a, and b; < .. < by).

We say that (ai,..a,) is majorized by (b1,..,b,), and write (aq,..a,) <
(b1, .., by) if:

(Z) Z a; = Z bi
=1 =1

k k
(i) b <> a; for k=1,.,n—1
=1 =1

Examples 3.2.3. (1,2,3) < (0,2,4) and (1,1,1,1) < (0,0,0,4)

The vectors (1,6,6,9) and (2, 3,8,9) illustrate the fact that (<) is a partial
order, and not a total order. Both vectors have the same mean, but neither
vector majorizes the other. (1 <2 but 146 > 2+ 3)

Remark. (ay,..,ayn) < (b1,..,b,) means that (b1, .., b,) is more dispersed than
(al, ey an).

3.2.3 Algorithm for constructing matrices with specified di-
agonal and spectrum

Algorithm 5 Chan Li Algorithm to construct a symmetric matrix with
specified diagonal and spectrum

(Chan-Li | D (a1,...,a,) and (by,. .., by,) are given vectors which satisfy
(a1y...,an) < (b1,...,by), this algorithm constructs a symmetric matrix
with diagonal elements (a1, ...,a,) and eigenvalues (by,...,by,).
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Proof. In the case where n = 2, there is an explicit solution:
Suppose (b1, b2) and (a1, az) are two vectors which satisfy (a1, a2) < (b1, be).
Define the following orthogonal matrix () as

1 |:\/l72_a1 —\/al—b1J
Vs — by |Var —b1 Vb —ay

Q=

Now,

T bl 0 al *
Q [0 b2:|Q_|:* a2:|

Eigenvalues are left unchanged by conjugation with an orthogonal matrix.
So the matrix on the right hand side is the desired matrix with spectrum
(b1,b2) and diagonal (ai,asz).

In the case where n > 2, the algorithm proceeds in a recursive fashion. The
main step of the algorithm reduces a problem of size k to a problem of size
k — 1. This main step is applied n — 2 times, thus reducing a problem of
dimension n down to a problem of dimension 2 which has the immediate
solution given above. The algorithm starts with the diagonal matrix with
entries (b1,..,b,). This diagonal matrix is then conjugated n — 1 times
by properly chosen orthogonal matrices. At the end of this process, the
diagonal entries are (a1, ..,a,) and the spectrum, left unchanged through
conjugation by orthogonal matrices, is still (b1, ..,b,). The recursive step of
the algorithm works as follows. You start with a square matrix of dimension
n whose diagonal elements are (by ...b,) in any order. You conjugate it by
a permutation matrix so that its (1,1) element is by and its (2,2) element is
bj. Then you conjugate it by an orthogonal matrix in the following way:

c s 0 b1 c —s§ 0 al
-5 ¢ 0 bj s ¢ 0 — ... bl—i—bj—al
0 0 of | . |10 0 L

I,,_o denotes the identity matrix of dimension n — 2. The values of s and ¢
are computed in the same way as in the (n = 2) case. The main step of the
algorithm is then recursively applied to the submatrix obtained by removing
the first row and the first column of the right hand side matrix above. This
is possible by lemma 3.2.4 0

The following lemma makes the recursive step in the algorithm possible.

Lemma 3.2.4. (Chan-Li | 1) Suppose @ = (a1, ..,an) < (br,...bp) = b
are two given vectors whose entries have been sorted in increasing order.
Denote by b; the smallest element of b which is greater than or equal to a;

(i.e. bj—1 < a1 < bj ). Define two new vectors a"** and bnew as follows:

—n —
a ew b?’Le’Ll)

is obtained by removing a; from @, and is obtained by removing
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both b; and b; from b and inserting the value (b + bj — a1). Then the
following holds: @"e¥ < pnew

Proof. We will use the following notation: for a vector ¢, sum(v) denotes
the sum of the entries of v'.
Let us start by verifying that sum(a™") = sum(b"").

sum(5"°?) = sum(b) — by — bj + (b1 +b; —a1)

Now @™ and 6™ are both vectors of length (n—1) with the same mean.

Let us denote by sum(a™",1, k) the sum of the & smallest elements of d.

As we have showed that sum(@™*) = sum(6""), to show that @"e¥ < pmew
it suffices to show that sum(gnew, 1,k) < sum(a™",1,k) for each k from 1
to k — 1. In order to prove this, let us first examine the relative position of
the elements of @ and b"¥.

One of the following statements must hold:
either b1 < .. < bj_l <a < (bl + bj — al) < bj

orb <..<bj1 <(b1+bj—a1) <a <by
orby <. <(bi+bj—a1) <bj_1 <a <b;
Indeed this is a consequence of the two following two observations:

(i) b; was chosen so that bj_; < a1 < b;.

(i) (b1,b5) and (a1, (b1+bj—a1)) have the same mean and by < a1 (as d

asa <
Therefore either by < a1 < (b1+bj—a1) <bjorb; < (bi+bj—a1) <a; <

).
bj
Case k < j—2

bj_1 is the (j — 2)"* smallest element of 5"*%. Let us look at the sum of
the k smallest elements of 5" when k < J — 2. As b; was chosen so that

bj—1 < ay < by, it follows that when k < j—2, each element in sum(gnew, 1,k)
is less than a;. Hence sum(6", 1, k) < k a; < sum(@***, 1, k).

Case k=7 — 1:

{sum(gnew, k) = (23;21 bi) + (b1 +bj —ar)

sum(a@™®,1,k) =>7_,a
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Therefore sum(b™%, 1, k) < sum(a", 1, k)

<Zb> b1+b —al) < zj:ai

1=2

— Z b; < Z a; , which is true because b"°" = @
i=1 i=1

Case k > j:
Note that b;11 is the j* smallest element of 5%

{sum(gne“’, 1,k) = (Ej_l + (b1 +bj—ar)+ Ef+]1+1

Sum(a’new’ 17 k) - Ef+21 a;

Therefore sum (b, 1, k) < sum(a", 1, k)
k+1
(Zb) + (b1 +bj —a1) Zb < Zal
i=j+1
k+1 k+1
<— Z b; < Z a; which is true because prew o gnew
=1 =1

3.2.4 Numerical example

The following example illustrates the construction of a martingale transition
through the construction of a symmetric matrix with specified diagonal and
spectrum.

—1.64683 —3.29366
—0.89538 —1.79077
—0.49135 —0.98270
—0.15798 —0.31595
0.15798 0.31595
0.49135 0.98270
0.89538 1.79077
1.64683 3.29366

These vectors were obtained by performing a U-quantization of order 8 of
the following Gaussian laws: the first with parameters (mean 0, variance
1) and the second with parameters (mean 0, variance 2), (see Section 2.4
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on U-quantization). Using the Chan Li algorithm we can construct a sym-
metric matrix which has the first vector as diagonal and the second vector
as spectrum. We then use the method described above to construct the

martingale transition matrix.

We obtain the following martingale transition matrix:

0.28738
0.00000
0.17847
0.18225
0.18940
0.00000
0.11589
0.04660

0.00000
0.41128
0.00000
0.00000
0.00000
0.41833
0.04887
0.12153

0.71262
0.00000
0.07197
0.07350
0.07638
0.00000
0.04674
0.01879

0.00000
0.00000
0.74955
0.08545
0.08881
0.00000
0.05434
0.02185
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0.00000
0.00000
0.00000
0.65880
0.18365
0.00000
0.11237
0.04518

0.00000
0.58872
0.00000
0.00000
0.00000
0.29224
0.03414
0.08490

0.00000
0.00000
0.00000
0.00000
0.46176
0.00000
0.38388
0.15436

0.00000
0.00000
0.00000
0.00000
0.00000
0.28943
0.20378
0.50679




3.3 DMartingale transitions obtained by clipping po-
tentials

We have established that U-quantization has the property of preserving the
convex order. That is, if u <., v, their U-quantizations are also ordered in
the convex order, i.e. Ul(aq,..,an) <cz U(b1,..,by). In this section we see
that this property enables the use of an algorithm by Chacon and Walsh.
In doing so, we can construct martingale transitions from Ul(ay, .., ay) to

U(bi, .., bn).

Definition 3.3.1. The potential of a measure p is defined to be the function:

t— —/ |z — t|du(z)

The next lemma relates potentials of measures to the convex order. A
proof of this lemma can be found in | |, on page 111.

Lemma 3.3.2. Let p and v be two probability measures on R. Let f (resp.
g) be the potential of u ( resp. v).

B <exV &= fZg

We now detail the main step of the Chacon-Walsh algorithm which Cha-
con and Walsh introduced to give a new solution to the Skorokhod embed-
ding problem | ]. Let f be the potential function of a probability mea-
sure p. Choose a line L which intersects the graph of f in two points. Denote
these two points and their coordinates by A = (4., Ay) and B = (B, By).
Without loss of generality, let A, < B,.

Define the function g by:

f(x) if x € (—00, Az) U (B, )

A, + (x — AQM if 2 € [Ay, B

g(x) =

The function ¢ is also the potential function of a probability measure.
Let B be a Brownian motion with initial law By ~ p. Let T be the following
stopping time for the Brownian motion B:

if By € (—00, Az) U (Bg,00) then T'=0

if By € [A,, By] then T =inf{t > 0: B, = A, or By = B, }
T is defined so that the law of Br has potential function g.
Brownian motion is a martingale, and since E[T] < oo, it follows that

E[Br|Bo] = By. Therefore the transition (By, Br) has the martingale prop-
erty. From the definition of 7', the transition (By, Br) is seen to be:
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If x € (00, Az) U (Byg,00) then x transits to x with probability 1.
x transits to A, with probability (B, — z)/(By; — Ax)

If x € [Ag, B then
x transits to B, with probability (z — A;)/(By — Ax)

This step of the algorithm illustrates how to explicitly obtain the unique
martingale transition between the probability measure with potential f and
the probability measure with potential g.

Remark. We will call this procedure clipping. The potential f was clipped
using L to produce g. Clipping using a segment will mean clipping using
the line which contains that segment.

This brings us to the following corollary of Theorem 2.4.11

Corollary 3.3.3. Let u,v € P(R), satisfying p <ex v, and denote their
quantizations by U(aq, ..,an) and U(by, .., by). A martingale transition from
U(ay,..,an) to U(by,..,by) can be generated by the Chacon-Walsh algorithm
in (n+1) steps.

Proof. Suppose u <. v. Since U-quantization preserves the convex order
( Theorem 2.4.11 ), it follows that U(a1, ..,an) <¢z U(b1,..,b,). Denote by
f(t) the potential of U(ay,...a,) and by g(t) the potential of U(by,...by,).
Lemma 3.3.2 implies that f(¢) > g(t) for every t € R. Note that f and g
are both piecewise affine functions. The graph of g is composed of (n — 1)
segments and 2 half-lines. We may clip f by each of these segments and half
lines. By doing this we obtain after n + 1 clippings a martingale transition
from Ul(ay,...an) to U(b,...by).

O

3.3.1 Implementation of the Chacon Walsh algorithm for U-
quantization

To implement the algorithm, one needs the coordinate of the intersection

point of two lines (see | )

Let L1 and L9 be two lines in the plane, with Lq going through the points
(z1,y1) and (x2,y2) and Ly going through the points (x3,y3) and (z4,y4).
Then the intersection point has the following x and y coordinates: The x
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coordinate of the intersection point is given by:

T N xp 1 1 Y1

Tr1 — T2
T2 Y2 z9 1 T2 Y2
T3 Y3 x3 1 3 Y3

T3 — T4

. T4 Y4 rq 1 B T4 Y4

zp 1 1 T1— T2 Y1 — Yo
2y 1 v 1 T3 — T4 Y3 — Y4
x3 1 ys 1
Iy 1 Y4 1

Similarly, the y coordinate of the intersection point is given by

1 W y1 1 1 Y
Y1 — Y2
T2 Y2 y2 1 T2 Y2
3 Y3 y3 1 3 Y3
Ys — Y4
T4 Y4 ye 1 T4 Y4
y = —
1 1 y1 1 ' T1— T2 Y1 — Y2
T9 1 o 1 T3 — T4 Y3 — Y4
T3 1 Y3 1
Ty 1 Y4 1
Here
a b
c d

denotes the determinant of the matrix

Example 3.3.4. We have obtained the U-quantizations U(aq,..,as) and
U(b1, .., bs) for the Gaussian laws N(0,1) and N(0,2).

—1.64683
—0.89538
—0.49135
—0.15798
0.15798
0.49135
0.89538
1.64683

(

a b
c d
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—3.29366
—1.79077
—0.98270
—0.31595
0.31595
0.98270
1.79077
3.29366




We can now use the method described in this section to compute a mar-
tingale transition matrix from U(ay,..,ag) to U(by,..,bs). This martingale
transition is represented by a matrix M = {m;;} which provides the transi-
tion probabilities m;; = P(Y =b; | X = ;).

There are 4 canonical ways to clip:
1: clockwise

2: counter clockwise

3: extremities to center

4: center to extremities

The following diagrams illustrate counterclockwise clipping of the potential
function.

L L L L L L L
25 2 15 Bl 05 0 05 1 15 2 25 25 2 15 -1 05 0 05 1 15 2 25

(a) Initial stage: The original Potentials (b) After 1 clip

(c) After 2 clips (d) After 3 clips

Figure 3.1: Counter clockwise clipping of the potential: the first 3 steps
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3.3.2 Clipping from extremities to center

Clipping from extremities to center produces the following martingale tran-

sition:

0.505115
0.279299
0.157884
0.057702
0.000000
0.000000
0.000000
0.000000

0.122688
0.178670
0.208771
0.233607
0.196832
0.059433
0.000000
0.000000

0.083704
0.121898
0.142434
0.159378
0.180625
0.211525
0.100437
0.000000

0.072123
0.105033
0.122728
0.137328
0.155636
0.182261
0.224891
0.000000

0.056251
0.081918
0.095718
0.107105
0.121384
0.142149
0.175397
0.220078

0.053373
0.077727
0.090822
0.101626
0.115175
0.134878
0.166425
0.259974

0.053373
0.077727
0.090822
0.101626
0.115175
0.134878
0.166425
0.259974

The expected variance of a martingale transition from ji to © is entirely
determined by those marginals ( 4 and ). In fact it is equal to the area
between the potentials of i and . We now show this. For this reason it will
be of interest to study the conditional variance of each martingale transition

from ji to ¥ as these are different.

Lemma 3.3.5. Let (X,Y) be a 2 step martingale. The variance of the
martingale increment Y — X is uniquely determined by the variance of X
and that of Y. More precisely, Var[Y — X| = Var[Y] — Var[X]

Proof. We show it when E[X] = E[Y] = 0, the proof can easily be extended
to the general case.

Var(Y —X)=E(Y -X)?=E(Y?-2XY +X?) = E(Y?) - 2E(XY) +

E(X?)

= E(Y?) - 2E(X.(X + (Y — X))) + E(X?)

= E(Y?) - E(X?) - 2E[X(Y — X])
then you condition on X and integrate with respect to the law of X.
VarlY] —Var|X] — ERE[X(Y — X)|X]]
VarlY] — Var[X]

O

Lemma 3.3.6. If 4 and v are two centered measures with finite support
such that u <., v, then the area between their potential functions is equal
to the second moment of ¥ minus the second moment of p.

Proof. Let Kj and Ks be such that u((Kj, K2)) =1 and v((K;, K2)) = 1.
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0.053373
0.077727
0.090822
0.101626
0.115175
0.134878
0.166425
0.259974




Up(t) v(t)dt

K2
. / —|x—7§|d,u(:v)—/K1 —|x — tldv(x))dt

/.

fo s

/}: /: @ — tldv(z) — /:2 @ — t|dp(z))dt
y

J

A=
K2
=/
2
=/
Ko K2
/ ]a:—t|dy(:c)dt—/ / |x — t|du(z)dt
K1 JE;
K>
/ |z — t| dt dv(z / / | — t| dt dp(z) by Fubini
1 YK K

K>
/ |x — t|dt du(x / / |z — t|dt du(x)
K,

/ / |z — t| dt du(x) = /
/ / x —tdt du(zx / /KQt—xdtd,u()
. =

As ;{(12 du(z) =1 and fil((f xdu(x) =0, we get

Ko Ko Ko 1 1
/ / |x —t| dt dv(x) = / 22du(z) + = K? — K3
K JrK K 2 2

As ff((f ff((f |z — t| dt du(x) is of the same form with v replaced by pu, it

follows that
.A:/ZL'QdU(.CL‘)—/xQd,u(l‘)
R R

As we have just seen that every martingale transition from f to © has
the same variance, it is interesting to look at the variance of the martingale
increment conditioned on the value before the transition. To examine this,
we define the conditional variance function:

O]
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Definition 3.3.7. (Conditional variance function)
Given two random variables X and Y, we define the function

z—=Varly — X | X = z]
which we call the conditional variance function.

For a two step martingale (X,Y) we can plot the variance of ¥ con-
ditioned on X = z. We will call this the conditional variance function:
x — Var[Y|X = z].

There are several interesting cases:

e conditional variance function can be a constant (for ex. for a Brownian
transition law this is the case)

e the graph of the conditional variance function can be convex or smile
shaped.

This means that conditioned on a big movement the expectation of the mag-
nitude of the next movement is larger than if the initial movement had been
small.

(This is likely to be the dynamics of a stock price)

e The graph of the conditional variance function can be unimodal, meaning
that the middle diffuses more than the extremities.

We can plot the conditional variance function of this martingale function.
For clarity we produce the plot with quantizations of order larger than 8.

22

0.8 1

0.4 I I I I

Figure 3.2: Conditional variance: clipping tails first
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Remark. This martingale transition exhibits a phenomenon called persis-
tence of volatility. We are dealing with a 2 step martingale. The initial law
(t = 0) is the Dirac at 0. The next law (at t = 1) is the U-quantization of the
N(0,1) law. The third law (at ¢ = 2) is the U-quantization of the N(0,2)
law. One sees that if the first martingale increment (¢t = 0 to t = 1) is large
in absolute value then the second increment (t = 1 to ¢ = 2) can also be
expected to be large in absolute value. This is a phenomenon of persistence
of volatility.

3.3.3 Clipping from center to extremities

Clipping the potential function of o from center to extremities produces the
following martingale transition:

0.505115 0.081628 0.081628 0.081628 0.081628 0.081628 0.081628
0.279299 0.118875 0.118875 0.118875 0.118875 0.118875 0.118875
0.157884 0.138902 0.138902 0.138902 0.138902 0.138902 0.138902
0.057702 0.155427 0.155427 0.155427 0.155427 0.155427 0.155427
0.000000 0.158673 0.158673 0.158673 0.158673 0.158673 0.158673
0.000000 0.141803 0.141803 0.141803 0.141803 0.141803 0.141803
0.000000 0.121358 0.121358 0.121358 0.121358 0.121358 0.121358
0.000000 0.083333 0.083333 0.083333 0.083333 0.083333 0.083333

We now look at the corresponding conditional variance function:

‘ovmid60.data’ ——

I I I I I I I I I
2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25

Figure 3.3: Conditional variance: clipping from center to extremities
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0.005115
0.007448
0.008703
0.009738
0.047964
0.149181
0.271851
0.500000




Remark. This martingale transition exhibits the opposite phenomenon to
that of persistance of volatility. If |My — M| is small, then the expected
variance of Moy — M is large.
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3.3.4 Clockwise clipping

Clipping the potential function of ¥ clockwise produces the following mar-
tingale transition:

0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000
0.166425 0.166425 0.166425 0.175397 0.224891 0.100437 0.000000
0.134878 0.134878 0.134878 0.142149 0.182261 0.211525 0.059433
0.115175 0.115175 0.115175 0.121384 0.155636 0.180625 0.196832
0.101626 0.101626 0.101626 0.107105 0.137328 0.159378 0.233607
0.090822 0.090822 0.090822 0.095718 0.122728 0.142434 0.208771
0.077727 0.077727 0.077727 0.081918 0.105033 0.121898 0.178670
0.053373 0.053373 0.053373 0.056251 0.072123 0.083704 0.122688

3.3.5 Counter clockwise clipping

Clipping the potential function of o counter clockwise produces the following
martingale transition:

0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000
0.193288 0.193288 0.193288 0.203709 0.056265 0.053387 0.053387
0.161724 0.161724 0.161724 0.170442 0.089532 0.084952 0.084952
0.135679 0.135679 0.135679 0.142994 0.116980 0.110996 0.110996
0.110996 0.110996 0.110996 0.116980 0.142994 0.135679 0.135679
0.084952 0.084952 0.084952 0.089532 0.170442 0.161724 0.161724
0.053387 0.053387 0.0563387 0.056265 0.203709 0.193288 0.193288
0.000000 0.000000 0.000000 0.000000 0.220078 0.259974 0.259974
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0.000000
0.000000
0.000000
0.000000
0.057702
0.157884
0.279299
0.505115

0.000000
0.053387
0.084952
0.110996
0.135679
0.161724
0.193288
0.259974




22

0.8

0.6

0.4

0.2

Figure 3.4: Conditional variance: clipping counterclockwise
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Part 11

The Skorokhod embedding
problem and constructions of
martingales with specified
marginals

o1



3.4 Introduction

We will give a new solution to the Skorokhod embedding problem (SEP)
that was published in [ ]. We will also discuss the use of solutions to
the SEP as means of constructing martingales with specified marginals, as
well as the limitations of this approach.

3.4.1 Martingales as time changed Brownian motion

Before we discuss the Skorokhod embedding problem and its use as a way of
constructing martingales with specified marginals, it will be usefull to recall
some theory about how martingales can be represented as time changed
Brownian motions. By Dambis Dubins-Schwarz (see | D, if M is a
continuous martingale starting from 0 (i.e. My = 0) with < M, M >,= oo,
then

My = Boyr,v>,

for some Brownian Motion (B,).

3.4.2 The Skorokhod embedding problem

The Skorokhod embedding problem (SEP), see | ], is the problem of em-
bedding a probability measure into Brownian motion by means of a stopping
time. Formally, Skorokhod’s original definition of the Skorokhod embedding
problem is the following:

Definition 3.4.1. Given a Brownian motion W and a probability mea-
sure y on R which satisfies [ # dp(x) =0 and [ #* du(z) < oo, a solution
to the Skorokhod embedding problem is a stopping time 7" for W, such that:

Wr has law p and E[T] < oo

It turns out that the requirement that u have a finite second moment is
not necessary. A generalized definition of the Skorokhod embedding problem
is as follows:

Definition 3.4.2. Given a Brownian motion W and a probability measure
pon R which satisfies [ zdp = 0 and [ |z|dp < oo, a solution to the
Skorokhod embedding problem is a stopping time 7" for W, such that:

Wr has law pu and Wiap is uniformly integrable.

In | |, Skorokhod gives a solution to the SEP. The solution given by
Skorokhod however requires an additional random variable which is indepen-
dent of the Brownian motion. The solution given by Dubins, see | ], is
the first solution which does not require an additional independent random
variable. Since then, a variety of other solutions have been given. For an
extensive survey of existing solutions, see | ].
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It turns out that every stopping time which is a solution to the Skorokhod
embedding problem for a measure u has the same expectation. The value of
its expectation is the variance of the measure p. Indeed, let T be a solution
to the Skorokhod embedding problem for u. By Ito’s formula, M; = B? —t
is a martingale. By the optional stopping theorem, E[T] < oo implies that

E[Mo] = E[M7]
= 0=E[B} - T|
= E[T] = E[B3]

Now since T is a solution to the Skorokhod embedding problem for g, it
follows that Br ~ u and so E[B2Z] is equal to the second moment of .

3.4.3 Using the Skorokhod embedding problem to construct
martingales with specified marginals

This past decade has seen renewed interest in solutions to the SEP. This in-
terest is due to the use of such solutions to construct martingales with speci-
fied marginals ( see, e.g., | I, [ I, [ I, [ |, and [ D-
New solutions to the SEP can in turn lead to new constructions of mar-
tingales with specified marginals. Model-free methods for pricing financial
instruments rely on constructions of martingales with given marginals (see,
e.g. | ]). For these reasons, new solutions to the SEP can ultimately
lead to improved bonds on model-free prices of financial instruments.

e In the two marginal setting: Let p and v be given measures which
satisfy p <. v. In order to construct a martingale transition from p to v it
suffices to construct stopping times 71 and 7 which satisfy:

71 is a solution to the SEP for pu.
T9 is a solution to the SEP for v.

71 < T2 a.s.

Indeed, the bivariate law (W, , W.,) by construction has the required marginals,
We, ~ pand W, ~ v, as well as the martingale property E[W.,|W,, | = W,

e In the continuous time setting: Let (u:);er+ be a time indexed collec-
tion of marginals which satisfy ps <. ¢ whenever s < t. Then in order
to construct a martingale M which satisfies M; ~ p; for each t € R, it
suffices to obtain a collection of solutions to the SEP: 7; being a solution to
the SEP for p; and 75 < 7¢ a.s. when s <t. Then (W, );cr+ is a martingale
which satisfies My ~ py for each t € RT. Indeed E[W,,|W,,] = W, for all
s, t satisfying s < t.
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Definition 3.4.3. (the barycenter function of a measure) The barycenter
function of a probability measure pu is defined as follows:

_ Jo yn(dz)
[ u(dz)

The Azema Yor solution to the Skorokhod embedding problem is defined

¢(x)

as

Definition 3.4.4. (The Azema-Yor solution to the Skorokhod embedding
problem see | ] ) Let M(t) denote the maximum value to date of the
Brownian motion B.

M(t) = Os<u2t B(s)

The Azema-Yor solution to the Skorokhod embedding problem is the stop-
ping time 7 defined as

7 = inf{s[M(s) > ¢(B(s))}
Let (ut)ier+ be a collection of probability measures such that the func-

tion -
_ Jo valy.t)dy
L7 gy, t)dy

is increasing in ¢ for each z. Here g(y,t) denotes the density of the measure
p¢. Under this condition, Madan and Yor (see | ]) use the Azema-Yor
solution to the Skorokhod embedding problem to construct a martingale M
with

¢(z,t)

My ~ py

The martingale M is defined as M; = B;,, with 7, being the Azema-Yor
solution to the Skorokhod embedding problem for p;. The recent book by
Hirsch, Profeta, Roynette, and Yor ( see | ] ) contains numerous
other constructions.

3.4.4 Limitations of the Skorokhod embedding problem as a
means of constructing martingales with specified marginals

Here we discuss the reason why most solutions to the SEP are unable to
construct martingale transition between every pair of measures which admits
a martingale transition. This is a consequence of a Theorem by Meilijson
given in | ]. We now explain why this is the case.

In the following (W;)er+) will be a standard Brownian motion.
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Definition 3.4.5. A procedure which associates to each measure in the set

(ueP® : [ lo]dua) < )

a unique stopping time 7 which is a solution to the Skorokhod embedding
problem for p, i.e. :

WT ~ W
Winr is a u.i. martingale
will be called a standard solution to the SEP.

Remark. Most currently published solutions to the SEP are standard so-
lutions. This includes the solutions given by Dubins [ |, Azema-Yor
[ ], Vallois | |, as well as the new one presented in this work. A
solution to the SEP which is not standard can produce several different
stopping times for a given measure p.

Definition 3.4.6. Let v be a probability measure on R. A solution 7 to
the Skorokhod embedding problem for y is said to be ultimate if:
For every measure p with pu <., v, there exists a stopping time 7 satisfying

{ 7 < T a.s.

WT' ~
Definition 3.4.7. The hitting time of the level a, for the Brownian motion
W is denoted T, and defined as:

T, =inf{t > 0: Wy =a}

Theorem 3.4.8. (Meilijson see [ ]) T is ultimate if and only if T =
To N1y for some a < 0 < b.

This leads to the following limitation of standard solution to the SEP as
means of constructing martingale transitions between specified marginals:

Corollary 3.4.9. Fvery standard solution to the SEP is unable to construct
a martingale transition between certain pairs of measures which admit a
martingale transition

Proof. Let v be a measure which is not supported on two points, i.e.
v#ad,+ (1 —a)d witha,b € R,a € 0,1]

Consider a standard solution to the SEP. Denote by 7(v) the stopping time
which this solution associates to v. As v is not supported by two points it
follows by Meilijson’s theorem that 7(v) is not ultimate. Therefore there
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exists a measure p with u <. v for which there exists no stopping time
7(p) satisfying:

{ (1) < 7(v)
Wy ~ 1

Therefore the standard solution under consideration is unable to construct
a martingale transition from p to v. Of course since p <., v, a martingale
transition from p to v necessarily exists. O

Remark. Hobson, Brown and Rogers (see [ ] ) have modified the
Azema-Yor solution in order that it no longer be standard and that it be
able to construct martingale transitions between arbitrary pairs of marginals
which admit a martingale transition.

3.5 The Dubins solution to the Skorokhod embed-
ding problem

In this section, we describe the Dubins solution to the SEP given in | ]-

The presentation here differs from the original presentation because we wish
to emphasize a framework which we will use in the next section to construct
a new Dubins type solution to the SEP.

Let u be the probability measure which is to be embedded in Brownian
motion. A sequence of partitions of R is defined recursively. The initial parti-
tion, Partition(0) is {R}. The following partitions are obtained recursively.
Partition(n + 1) is obtained by cutting each interval [a,b] € Partition(n)
into two, as follows:

[a,b] — [a,c] and [c, b] where
i,
C= ——— x dp(x) (note that a <ec<b
w([a, b)) Jiap (@) )

If a or b is +00 or —oo, the value of c¢ is calculated in the same way,
and the cutting is also done in the same way. For each n € N, a mea-
sure i, is obtained from Partition(n) in the following way: for each in-
terval [a,b] € Partition(n), place an atom of mass u([a,b]) at position

1
At Jruy ™

An increasing sequence of stopping times is defined by
Tp = inf{t > 7,1 : Wy € support of uy,}
and Dubins’ solution to the SEP is the stopping time 7 defined by

7 :=sup{7,}
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3.6 A new solution to the Skorokhod embedding
problem

Dubins in | ] gave the first solution to the Skorokhod embedding prob-
lem (SEP) based solely on the underlying Brownian motion, and thus re-
quiring no additional independent random variable. The Dubins solution to
the SEP, can be expressed as 7 := sup{7,} with 7, = inf{t > 7,,_1 : W} €
support of p,}. Since the measures pu,, are defined recursively, in order to
compute pn, each of ug,.., tn—1 must first be computed. We now give a
new solution to the SEP by showing how to construct a different sequence
of measures {p, }nen. The advantage of this solution is that for any given
n, the measure u, can be constructed directly without prior computation of
the measures po, .., fin—1.

We will define a sequence of measures p,, and a corresponding increasing
sequence of stopping times 7,. First, we will prove that u,, converges to u,
then we will prove that W, ~ u, for each n € N. Finally, defining 7 to be
supp{m} , we will obtain W, ~ u.

Let F be the cumulative distribution function of p. Its inverse, F~!(z)
is called the quantile function of pu. Since F' is a non decreasing function
from R to [0, 1], its inverse, F~! is a non decreasing function from (0, 1] to R.

Definition 3.6.1. For n > 0, define u, to be the uniform measure on the
following 2™ coordinates:
231
a; =2" ‘2 F~Y(u) du with ¢ ranging from 0 to 2" — 1
o

Lemma 3.6.2. p, converges weakly to p.

Proof. Let F be the cumulative distribution function of u, and F), be the
cumulative distribution function of u,. Showing that u, converges weakly
to p amounts to showing that F,, converges pointwise to F. The collection

of intervals {(F~'(%2) , F7!(s)] : 1 < i < 2"} generate the support of

1. We will proceed by establishing bounds for F and Fy, when ¢ belongs to

such an interval, i.e. when t € [F‘l(’;—nl) , F‘l(QLn)]

Bounding F' is straightforward: since F' is non decreasing,
1—1 4,0 q,0—1 4,0
o) SESF 1(WL):F<F H )) SF(t)SF<F 1(2n>>

i—1 i
o SF) <o

F

=
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We now proceed to obtain bounds for Fj,. Recall that p, is the uniform
distribution on the following 2" points:

i1

a; = 2" /lzm F~Y(u) du i ranging from 0 to 2" — 1

om

Since F~! is a non decreasing function, we obtain a bound for a; by bound-
ing the above integral:
1+ 1 i

t+1 ?

L0 i+1 i 1 -1
2"( on 27) (27) <a; <27 on 27) ( on ) F (27)
From these bounds for a;, we will obtain bounds for the cumulative distri-
bution function F), of u. Letting 1 denote the indicator function, we have
the following expression for the cumulative distribution function Fj, of p,:
=
Fa(t) = 5, > 1{a; <t}

i=0

Since we have seen that
1,0 041
ai—1 < F 1(27) <a; <F7Y( on ) < @iy
therefore,
ey < <l <t <
(zn)_t_ (27)=>ai—1_t_ai+1

. 2n—1 )

i—1 1 1+1

o < on 1{a; <t} < on

i=0
1 —1 1+1
o < Fu(t) < o
The bounds for F, together with the bounds for F;, , give bounds for
| F(t) — Fu(?) |:
1,0 —1 1,1 1—1 1 1—1 1+1
te[FY( 2n),Fl(z—n)] = o SF(t)SZ—n and o < Fu(t) <
2
= [ F() - Fat)| < o

Since the collection of intervals {(F~'(52) 