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Statement of results

This work contains results in two areas: the construction of martingales
with specified marginals and the Skorokhod embedding problem. The con-
tributions are the folllowing:

• A new solution to the Skorokhod embedding problem (published in
Statistics and Probability Letters, see [Bak12])

• A Brownian sheet based construction of a martingale with the same
marginals as the average of geometric Brownian motion. This provides
a new proof that in the Black Scholes framework the the price of
arithmetic Asian options are increasing in duration ( joint work with
Marc Yor, published in Electronic Journal of Probability [BY09])

• A sequence of Albin type continuous martingales with Brownian marginals
and scaling (joint work with C. Donati-Martin and M. Yor, published
in Seminaire de Probabilites, see [BDMY11])

• On Martingales with Given Marginals and the Scaling Property (joint
work with M. Yor, published in Seminaire de Probabilites, see [BY11])

• A proof that the L2 quantization does not have the property of preserv-
ing the convex order (preprint submitted to Statistics and Probability
Letters)

• A quantization method which we called U−quantization and a proof
that it has the property of preserving the convex order. Using this
quantization we give new methods for constructing martingale transi-
tions with specified marginals (preprint submitted to Electronic Jour-
nal of Probability)
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Part I

Constructing martingale
transitions through

quantization of measures
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Chapter 1

Introduction

The framework under consideration is the following: we are given two prob-
ability measures on R, which we denote µ and ν and we wish to construct a
martingale transition from µ to ν. It is known that a necessary and sufficient
condition for the existence of a martingale transition from µ to ν is that µ
and ν be ordered in the convex order, which is denoted µ ≤cx ν and defined
as:

µ ≤cx ν ⇐⇒
∫
R
f(x)dµ(x) ≤

∫
R
f(x)dν(x) for every convex function f

The method which we propose is to approximate µ by a sequence of dis-
crete measures (µ̂n)n∈N which converges in law to µ. Similarly, we construct
a sequence of discrete measures (ν̂n)n∈N which converges to ν. Then we
provide methods which will construct, for each n, a martingale transition
from µ̂n to ν̂n.

Approximating a probability measure by a discrete measure is refered to
as quantizing that measure. The method which is generally used to quan-
tize probability measures is the L2 quantization. We will show that the L2
quantization cannot be used in this situation. Indeed, we will prove that the
L2 quantization does not have the property of preserving the convex order.
The consequence of this is that when µ ≤cx ν, we may well have µ̂n 6≤cx ν̂n
for some n, in which case there exists no martingale transition from µ̂n to
ν̂n. It is necessary that the quantization method which we employ has the
property of preserving the convex order. We define a quantization which has
this property of preserving the convex order. This quantization method will
be called U-quantization. In theorem 2.4.11, we prove that U-quantization
preserves the convex order. This ensures that if there exists a martingale
transition from µ to ν, then there also exists a martingale transition from
µ̂n to ν̂n.
The problem of the appropriate quantization method being settled, we show
how, for each n, martingale transitions can be obtained from µ̂n to ν̂n. We
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give 3 different methods of constructing such martingale transitions. The
first method is straightforward but worth mentioning; it is linear program-
ming and its solution is obtained by the simplex method. The second method
is interesting because it relates the theory of symmetric matrices with spec-
ified diagonal and spectrum to the theory of martingale transitions. Indeed,
we show how by constructing a symmetric matrix with properly chosen
eigenvalues and diagonal elements, we can produce a martingale transition
from µ̂n to ν̂n. The third method is the use of potential theory and an
algorithm by Chacon and Walsh. This algorithm can be used here because
U-quantization has the property of preserving the convex order.

1.1 Relevance to risk management

1.1.1 Relevance to modeling of financial risks

In addition to being of theoretical interest, the problem of constructing mar-
tingales with specified marginals has important applications to financial risk,
which we now briefly discuss. The observed market prices of European calls
and puts on an instrument, provide the marginal laws of its process. There
is of course some imprecision coming from the fact that not all strikes and
maturities are traded. If all strikes and maturities were traded, then every
marginal law of the process could be fully extracted from the observed prices.
This imprecision and the need to interpolate are not addressed here. The
framework under consideration is that of an observer having all marginal
laws of a stochastic process, and wanting to infer additional information
about this stochastic process. He or she may want the probability that the
process will cross a threshold during a certain time interval. Or the quantity
of interest may be the probability that the realized volatility will be greater
than a certain value.
A common approach is to first suppose that the stochastic process belongs
to a particular family (α-stable processes, variance-gamma processes, etc..).
The next step, “model calibration”, would be to choose the member of this
family which provides the closest fit to the observed marginals. The problem
with this method is the model risk which it introduces. There is indeed no
theoretical justification for the process belonging to some particular family.
Postulating this will exclude from consideration processes which have no rea-
son to be excluded. Any conclusions obtained by this method are subject to
a potentially large and unquantified amount of additional model risk. Model
free approaches, while technically more difficult, are increasingly becoming
an active area of research. See for example D. Hobson’s lecture notes on the
Skorokhod embedding problem and Model independent bounds for option
prices ([Hob11]). In a model free approach, one does not assume that the
underlying belongs to a particular class of processes. The only assumption
made is that the underlying has the martingale property (after a change to
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the risk neutral measure). This is theoretically justified by an absence of
arbitrage argument.

The idea then is to study the set of admissible martingales, which are
the martingales having the required marginal laws. The set of admissible
martingales is incredibly large and complex, and much more research is
needed for it to become better understood. In the mean time, any method
of constructing elements of this set (such as the methods presented here)
improves our understanding of this set of admissible martingales.

1.1.2 Inferring marginal laws from option prices

In this work, we will take the marginal laws of the underlying as given. The
problem of finding marginal laws compatible with observed option prices
is an area of research in its own. Indeed it constitutes an inverse problem
which in each case has many solutions. If there were a continuum of ob-
served option prices, one for each strike, then the problem of recovering the
marginal law would have a unique solution. This solution could be obtained
by the Breeden and Litzenberger [BL78] formula.

Using the Breeden and Litzenberger formula one can extract the marginal
laws from the option prices. We denote by φ the risk neutral density of the
final spot ST . As the call price is given by

C(S0,K, T ) =

∫
R

(ST −K)+φ(ST , T, S0)dST

this can be differentiated twice with respect to the strike K to extract the
density φ of the marginal law of S at time T .

φ(KT , S0) =
∂2C(S0,K, T )

∂K2

Since option prices are not available for the entire spectrum of strike values,
interpolating the available values is necessary.

The state price density is often called the risk neutral density, in our
framework it will be called the marginal density. In [JR96] a prior parametric
density is postulated as the state price density. In [ASL98], kernel smoothing
for this purpose is discussed.
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Chapter 2

Quantization and
preservation of the convex
order

2.1 The convex order and the existence of mar-
tingale transitions between specified marginal
laws

The convex order (≤cx) is a partial order on P(R), the space of proba-
bility measures on R. It compares probability measures in terms of their
dispersion.

Definition 2.1.1. Let µ, ν ∈ P(R). We say that µ is dominated by ν in
the convex order and write µ ≤cx ν if, for every convex function φ(x),∫

R
φ(x) dµ(x) ≤

∫
R
φ(x) dν(x)

2.1.1 Characterizations of the convex order

The convex order can be characterized in several ways. In particular it can
be characterized in terms of:

• potential functions

• distribution functions

• survival functions

• quantile functions

• put and call functions
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• martingale transitions

These characterizations will be used throughout this work. Proofs of these
characterizations can be found in the book by Shaked and Shanthikumar
[SS06].

Characterization in terms of potential functions:

Definition 2.1.2. The potential function of a measure µ is given by

Uµ(t) = −
∫
R
|t− x|dµ(x)

Criterion 1. µ ≤cx ν iff Uµ(t) ≥ Uν(t) for all t

Characterization in terms of distribution functions:

Definition 2.1.3. The distribution of a measure µ is the function F (t) =∫ t
−∞ dµ(x).

Criterion 2. Let µ be a measure with distribution function F and ν be a
measure with distribution function G. Then

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫ x

−∞
F (t)dt ≤

∫ x

−∞
G(t)dt for every x ∈ R

Characterization in terms of survival functions:

Definition 2.1.4. The survival function of a measure µ is the function
F̄ (t) =

∫∞
t dµ(x).

Criterion 3. Let µ be a measure with survival function F̄ and ν be a measure
with survival function Ḡ. Then

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫ ∞
x

F̄ (t)dt ≤
∫ ∞
x

Ḡ(t)dt for every x ∈ R

Characterization in terms of quantile functions:

Definition 2.1.5. The quantile function of a probability measure with dis-
tribution function F (x) is:

F−1(p) = inf{x ∈ R : p ≤ F (x)}

Criterion 4.

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫ p

0
F−1(u)du ≥

∫ p

0
G−1(u)du for every p ∈ [0, 1]
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Characterization in terms of call functions:

Definition 2.1.6. The following collection of functions, indexed by K ∈ R,
will be referred to as call functions and defined as:

CK(x) = (x−K)+ = max(x−K, 0)

Criterion 5.

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫
R
CK(x)dµ(x) ≤

∫
R
CK(x)dν(x) for every K ∈ R

Characterization in terms of put functions:

Definition 2.1.7. The following collection of functions, indexed by K ∈ R,
will be referred to as put functions and defined as:

PK(x) = (K − x)+ = max(K − x, 0)

Criterion 6.

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫
R
PK(x)dµ(x) ≥

∫
R
PK(x)dν(x) for every K ∈ R

Characterization in terms of martingale transitions:

Criterion 7. (Kellerer [Kel72] ) µ ≤cx ν if and only if there exist random
variables X and Y such that:

X ∼ µ
Y ∼ ν
E[Y |X] = X

2.1.2 Properties of the convex order

Equal means

Lemma 2.1.8. µ ≤cx ν implies that µ and ν have equal means.

The proof of this is straightforward:

Proof. φ1(x) = x and φ2(x) = −x are both convex functions.
Therefore µ ≤cx ν implies that

∫
x dµ ≤

∫
x dν and that−

∫
x dµ ≤ −

∫
x dν

Hence
∫
x dµ =

∫
x dν

11



Relationship to variance

µ ≤cx ν implies that the variance of µ is at most as large as the variance of
ν. This is straightforward as f(x) = x2 is a convex function. The converse
however is not true. In other words, µ can have a smaller variance than ν
yet ν may not dominate µ in the convex order. An example of this is given
in Rotschild and Stiglitz [RS70].
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2.2 Quantization of measures on R

To quantize a measure is to approximate it by a measure which is supported
on a finite number of points. Quantizations of measures on R will play an
important role in this work. We will use quantizations for two different
purposes. We will use them to construct a new solution to the Skorokhod
embedding problem. We will also use quantizations in order to build mar-
tingale transitions between specified marginals. When constructing mar-
tingales between specified marginals, we will be interested in quantizations
which preserve the convex order. The commonly used quantization method
in probability is the L2 quantization. We will prove that it does not have the
property of preserving the convex order, and we will define a quantization
which does have the property of preserving the convex order. Before we do
all this we will devote this section to discussing the theory of quantization.
In particular we will discuss the commonly used L2 quantization.

2.2.1 Voronoi style quantizations

Let µ be the probability measure on R which we wish to quantize. If we
choose a vector of n points (x1, .., xn) then a natural way to quantize µ is
as follows: For each of xi, construct an interval Ai, as follows:

if i = 1, then Ai =

(
−∞ ,

x1 + x2
2

]
if 2 6 i 6 n− 1, then Ai =

[
xi−1 + xi

2
,
xi + xi+1

2

]
if i = n, then Ai =

[
xn−1 + xn

2
, +∞

)
Then a quantization of µ can be obtained as follows: For each i, place an
atom of mass µ(Ai) at the position xi. In other words,

µ̂ =

n∑
i=1

µ(Ai)δxi

This quantization is called the Voronoi quantization of µ, because the inter-
vals Ai are the Voronoi cells corresponding to the points xi.

Instead of choosing the points (x1, .., xn), we could have chosen a partition
of R as n intervals (A1, ..,An). A natural quantization of µ would then be:
For each Ai, place an atom of mass µ(Ai) at the position 1

µ(Ai)

∫
Ai
xdµ(x).

This is pretty much the same type of quantization as the Voronoi quantiza-
tion. Indeed in the Voronoi quantization, the segments are obtained from
the points and here the segments are given directly. We now prove that
for these two types of quantizations, the original measure µ dominates its
quantization µ̂ in the convex order, i.e. µ̂ ≤cx µ.
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Lemma 2.2.1. Let J be a partition of R. Let µ̂ be the probability measure
which is constructed from µ in the following way: for each J ∈ J , an atom

of mass µ(J) is placed at position

∫
J x dµ(x)

µ(J)
. Then,∫

R
φ(x) dµ̂(x) ≤

∫
R
φ(x) dµ(x) for every convex function φ.

Proof. Let J be an arbitrary element of J . By construction, µ̂(J) = µ(J)

and
∫
J x dµ̂(x) =

∫
J x dµ(x). The measure

µ(dx)

µ(J)
is a probability measure

on J . Its expectation is

∫
J x dµ(x)

µ(J)
. Therefore, by Jensen’s inequality, for

every convex function φ,∫
J
φ(x)

dµ(x)

µ(J)
≥ φ

(∫
J x dµ(x)

µ(J)

)
As µ̂(J) = µ(J), the measure

µ̂(dx)

µ(J)
is a probability measure on J . It

consists of a single Dirac point mass at the position

∫
J x dµ(x)

µ(J)
. Therefore,∫

J
φ(x)

dµ̂(x)

µ(J)
= φ

(∫
J x dµ(x)

µ(J)

)
Combining the two above equations,∫

J
φ(x)

dµ(x)

µ(J)
≥
∫
J
φ(x)

dµ̂(x)

µ(J)

which is equivalent to:∫
J
φ(x) dµ(x) ≥

∫
J
φ(x) dµ̂(x)

As the above holds for each J ∈ J , and together they constitute a partition
of R, it follows that ∫

R
φ(x) dµ(x) ≥

∫
R
φ(x) dµ̂(x)

2.2.2 L2 quantization

To quantize a random variable X is to approximate it by a random variable
X̂ which has a support consisting of n points. The resulting quadratic error
is given by:

E|X − X̂|2

The L2 quantization of X is the random variable X̂, supported on n points
which minimizes the quadratic error.
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2.2.3 Lloyd’s fixed point algorithm for performing L2 quan-
tizations

Algorithm 1 Lloyd’s fixed point algorithm for performing L2 quantizations

Let µ be a probability measure on R. The L2 quantization of µ can be
computed using Lloyd’s [Llo82] algorithm as follows.

Initial step: Seeding the algorithm.
In order to seed the algorithm, pick n arbitray real numbers, x1, .., xn.

Step 1: From points to intervals.
Suppose that the xi’s are sorted in increasing order. For each of xi, construct
an interval Ai, as follows:

if i = 1, then Ai =

(
−∞ ,

x1 + x2
2

]
if 2 6 i 6 n− 1, then Ai =

[
xi−1 + xi

2
,
xi + xi+1

2

]
if i = n, then Ai =

[
xn−1 + xn

2
, +∞

)

Step 2: From intervals to points.
For each interval Ai, compute:

x
′
i =

1

µ(Ai)

∫
Ai

xdµ(x)

update xi to this new value.

Step 3: repeat steps 1 and 2 until convergence of the xi’s

Result The L2 quantization of µ is obtained as follows. For each i, place
an atom of mass µ(Ai) at the position xi. In other words,

µ̂ =

n∑
i=1

µ(Ai)δxi

Remark. In step 1, Ai consists of all points in R which are closer to xi than
to any of the other xj . The intervals Ai correspond to Voronoi cells.
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2.3 The L2 quantization does not preserve the con-
vex order

2.3.1 Quantization of probability measures and the L2-quantization
method.

A quantization of order n of a measure µ is a measure µ̂ which has a support
consisting of at most n points. The measure µ̂ should also be a reasonably
good approximation of µ.

Definition 2.3.1. Let µ be a probability measure on R. Given a vector
(x1, .., xn) ∈ Rn, the Voronoi quantization of µ is defined as:

µ̂ =
n∑
i=1

µ(Ai) δxi

whereAi is the Voronoi cell of xi defined asAi = {x ∈ R : |x− xi| ≤ |x− xj | for all 1 ≤ j ≤ n}
and δxi denotes the Dirac point mass at xi.

Remark. The vector of points (x1, .., xn) is called the quantization grid. Note
how the quantization grid together with µ uniquely defines µ̂.

Definition 2.3.2. The quadratic error of the Voronoi quantization defined
above is given by:

n∑
i=1

∫
Ai

|xi − u|2 dµ(u)

Definition 2.3.3. The Voronoi quantization which minimizes the quadratic
error is called the L2-quantization.

2.3.2 The L2-quantization method does not preserve the con-
vex order

In this section we show that the L2-quantization does not preserve the
convex order. There are several characterizations of the convex order (see
[SS06]). We will make use of two of these characterizations. The first one is
in terms of potential functions, the second in terms of martingale transitions.
These are given in Lemma 2.3.5 below.

Definition 2.3.4. The potential of a probability measure ρ is the function:

Uρ(t) = −
∫
R
| x− t| dρ(x)

16



Lemma 2.3.5. Let µ and ν be two probability measures on R. The following
are equivalent:

(i) µ ≤cx ν
(ii) Uµ(t) ≥ Uν(t) for all t ∈ R

(iii) There exists random variables X and Y satisfying X ∼ µ, Y ∼ ν and E[Y |X] = X

Proof. see [SS06].

Theorem 2.3.6. The L2-quantization method does not preserve the convex
order.

Proof. The proof is based on exhibiting a counterexample. Consider the
following two measures:

µ =
1

2
(δ 1

6
+ δ 5

6
)

ν =
1

3
(δ0 + δ 1

2
+ δ1)

The proof proceeds in three steps. i) We first prove that µ ≤cx ν. ii)
Next we perform L2-quantization of µ and ν. iii) Finally, we show that the
quantized measures are not ordered in the convex order.

Showing that the two original measures are ordered in the convex
order.

To show that µ ≤cx ν, it suffices by lemma 2.3.5 to exhibit two random
variables X and Y which satisfy: X ∼ µ, Y ∼ ν and E[Y |X] = X. Let
X ∼ µ and Y ∼ ν and define a transition as follows:

P(Y = 0 | X = 1
6) = 2

3

P(Y = 1
2 | X = 1

6) = 1
3

P(Y = 1
2 | X = 5

6) = 1
3

P(Y = 1 | X = 5
6) = 2

3

We now check that this transition has the martingale property:

E
[
Y | X =

1

6

]
= 0 · 2

3
+

1

2
· 1

3
=

1

6

E
[
Y | X =

5

6

]
=

1

2
· 1

3
+

2

3
· 1 =

5

6

Therefore E[Y | X] = X which by the criterion 7 (Kellerer) of Chapter
2, implies that µ ≤cx ν.
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Performing the L2-quantization of the two original measures.

Let µ̂ and ν̂ respectively denote the L2-quantization of order 2 of the mea-
sures µ and ν. The support of the measure µ consists of two points, it follows
that µ̂ is equal to µ. Indeed taking the support of µ as the quantization grid
leads to a quadratic error of zero.
Computing ν̂ amounts to performing the L2-quantization of order 2 of the
measure 1

3(δ0 + δ 1
2

+ δ1). This is a textbook example which can be found in

the lecture notes of H. Pham (see [Pha12]) . For the purpose of complete-
ness, we reproduce and expand the calculations here.

Because L2-quantization is a Voronoi style quantization, ν̂ is determined
by its support through:

ν̂ =
n∑
i=1

ν(Ai) δxi

where (x1, .., xn) is the support of ν̂ and Ai is the Voronoi cell of xi. In fact
since ν̂ is a quantization of order 2, its support consists of at most 2 points.
Let us denote these two support points by a = x1 and b = x2 and without
loss of generality let a ≤ b. Note that ν̂ will be supported by a single point if
and only if a = b. We must determine a and b by minimizing the quadratic
error function. It turns out that the quadratic error function has a different
expression in each of the two following possible cases:{

case (i) : | a− 1
2 | < | b−

1
2 |

case (ii) : | a− 1
2 | > | b−

1
2 |

The point 1
2 belongs to the Voronoi cell of a in case (i) and to the Voronoi

cell of b in case (ii). Each of these two cases leads to a different quantization
of ν. Let us determine the quantization resulting from the case (i) where
| a− 1

2 | < | b−
1
2 |. The result which we establish holds true in case (ii) as

well.
Since the point 1

2 belongs to the Voronoi cell of a, the quadratic error func-
tion is given by:

E(a, b) =
1

3
[(a− 0)2 + (a− 1

2
)2 + (b− 1)2]

=
1

3
[a2 + a2 − a+

1

4
+ (b− 1)2]

=
1

3
[2(a− 1

4
)2 +

1

8
+ (b− 1)2]

This function is minimized when a = 1
4 and b = 1. It follows that the

support of ν̂ is
{
1
4 , 1
}

. The resulting Voronoi cells are A1 = (−∞, 58 ] and
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A2 = (58 ,∞). And so ν̂ is given by

ν̂ =

n∑
i=1

ν(Ai) δxi

= ν( (−∞, 5

8
] ) δ 1

4
+ ν( (

5

8
,∞) ) δ1

=
2

3
δ 1

4
+

1

3
δ1

Showing that the two quantized measures are not ordered in the
convex order.

By lemma 2.3.5, a necessary and sufficient condition for µ̂ ≤cx ν̂ is that
Uµ̂(t) ≥ Uν̂(t) holds for every t ∈ R. It suffices therefore to exhibit a t∗ ∈ R
such that Uµ̂(t∗) < Uν̂(t∗). This is the case when t∗ = 1

4 as we now show
by evaluating the potential functions of µ̂ and ν̂.

Uµ̂(
1

4
) = −

∫
R

∣∣∣∣x− 1

4

∣∣∣∣ dµ̂(x)

= −1

2

∣∣∣∣16 − 1

4

∣∣∣∣− 1

2

∣∣∣∣56 − 1

4

∣∣∣∣ since µ̂ =
1

2
δ 1

6
+

1

2
δ 5

6

= −1

3

Uν̂(
1

4
) = −

∫
R

∣∣∣∣x− 1

4

∣∣∣∣ dν̂(x)

= −1

3

∣∣∣∣14 − 1

∣∣∣∣ since ν̂ =
2

3
δ 1

4
+

1

3
δ1

= −1

4

Corollary 2.3.7. Let µ and ν be a pair of measures which admits a mar-
tingale transition. Let µ̂ and ν̂ be their respective L2-quantizations. A mar-
tingale transition from µ̂ to ν̂ does not necessarily exist (because we do not
necessarily have µ̂ ≤cx ν̂).

Proof. This follows from Theorem 2.3.6 and the characterization of the con-
vex order in terms of martingale transitions given in Lemma 2.3.5.
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Figure 2.1: The potentials of the two measures before L2 quantization
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Figure 2.2: The potentials of the two measures after L2 quantization (note
that by Criterion 1 of section 2, neither of the quantized measures dominates
the other in the convex order).
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2.4 A quantization which preserves the convex or-
der

We have just seen that the L2 quantization, which is the commonly used
method to quantize probability measures, does not preserve the convex or-
der. In this section we provide a quantization which does have the prop-
erty of preserving the convex order. This quantization will be called U-
quantization because it produces a quantization which is uniformly dis-
tributed on a finite number of support points.

2.4.1 Definition of U-quantization

The U-quantization of a measure is defined in terms of the quantile function
of that measure. The quantile function of a measure is defined as follows:

Definition 2.4.1. The quantile function of a probability measure with dis-
tribution function F (x) is:

F−1(p) = inf{x ∈ R : p ≤ F (x)}

Definition 2.4.2. Choose an integer n. Let µ ∈ P(R) with distribution
function F (u) =

∫ u
−∞ dµ(x).

The U-quantization of µ is


U(a1, .., an) =

1

n

n∑
i=1

δai

where ai = n

∫ i
n

i−1
n

F−1(u)du

2.4.2 Numerical illustration of U-quantization

Example 2.4.3. Let µ be the standard ( mean 0, variance 1) Gaussian law
and let ν be a ( mean 0 and variance 2) Gaussian law. Let U(a1, .., a10) and
U(b1, .., b10) be the respective quantizations of µ and ν (we chose n=10).
Using numerical integration we can compute the vectors (a1, .., a10) and
(b1, .., b10):

(a1, .., a10)
T =



−1.75498
−1.04464
−0.67731
−0.38650
−0.12600
0.12600
0.38650
0.67731
1.04464
1.75498


(b1, .., b10)

T =



−2.48192
−1.47734
−0.95786
−0.54659
−0.17819
0.17819
0.54659
0.95786
1.47734
2.48192


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Lemma 2.4.4. (U-quantization preserves the mean of a measure) Let µ be
a probability measure with distribution function F , and U(a1, ..an) be its
U-quantization. Then µ and U(a1, ..an) have the same mean.

Proof.

The mean of U(a1, ..an) =
1

n

n∑
i=1

ai

=
1

n

n∑
i=1

n

∫ i
n

i−1
n

F−1(u)du

=

∫ 1

0
F−1(u)du

= the mean of µ

2.4.3 U-quantization preserves the convex order

To show that U-quantization preserves the convex order we will need the
notion of majorization which is a partial order which compares vectors of
same length and equal mean in terms of the relative dispersion of their
coordinates.

Definition 2.4.5. Let (a1, .., an) and (b1, .., bn) be two vectors whose entries
have been sorted in increasing order.
(a1 ≤ .. ≤ an and b1 ≤ .. ≤ bn)
We say that (a1, ..an) is majorized by (b1, .., bn), and write (a1, ..an) ≺
(b1, .., bn) if:{

(i)
∑n

i=1 ai =
∑n

i=1 bi

and (ii)
∑k

i=1 bi ≤
∑k

i=1 ai for k = 1, .., n− 1

Examples 2.4.6. (1, 2, 3) ≺ (0, 2, 4) and (1, 1, 1, 1) ≺ (0, 0, 0, 4)
The vectors (1, 6, 6, 9) and (2, 3, 8, 9) illustrate the fact that (≺) is a partial
order, and not a total order. Both vectors have the same mean, but neither
vector majorizes the other. (1 < 2 but 1 + 6 > 2 + 3)

Remark. (a1, .., an) ≺ (b1, .., bn) means that (b1, .., bn) is more dispersed than
(a1, .., an). In the literature there is no consensus as to the direction of the
ordering. In economics (≺) is called the Lorenz order and compares income
inequalities. There, (a1, .., an) ≺ (b1, .., bn) if (b1, .., bn) is less dispersed than
(a1, .., an). In this paper, we are using majorization (≺) alongside the convex
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order (≤cx). For the convex order, µ ≤cx ν means that ν is more dispersed
than µ. Therefore, it makes sense for us to choose the definition of (≺)
which we have chosen.

The following lemma gives a characterization of the convex order in terms
of the quantile function. We will use this frequently.

Lemma 2.4.7. Let µ, ν ∈ P(R) with distribution functions F and G, then
:

µ ≤cx ν ⇐⇒

 µ and ν have equal means.∫ p

0
F−1(u)du ≥

∫ p

0
G−1(u)du for every p ∈ [0, 1]

Proof. See [SST94], page 112, Theorem 3.A.5.

Definition 2.4.8. U(a1, .., an) will denote the law corresponding to
1

n

n∑
i=1

δai

where δx is the Dirac point mass at x.

In the following lemma we establish a relationship between the convex
order and majorization.

Lemma 2.4.9. (a1, .., an) ≺ (b1, .., bn) ⇐⇒ U(a1, .., an) ≤cx U(b1, .., bn)

Proof. Let us first determine the quantile functions of U(a1, .., an) and U(b1, .., bn).

Since U(a1, .., an) corresponds to
1

n

n∑
i=1

δai , its distribution function, F , is a

piecewise constant function.

F (x) =


0 for x ≤ a1
i
n for x ∈ [ai, ai+1)

1 for x ≥ an

The quantile function of U(a1, .., an) is by definition:

F−1(p) = inf{x ∈ R : p ≤ F (x)}

It follows that F−1 is a piecewise constant function from (0, 1] to R which
is given by:

F−1(p) = ai if p ∈
(
i− 1

n
,
i

n

]
Integrating a piecewise constant function is easy:∫ k

n

0
F−1(p) dp =

1

n

k∑
i=1

ai
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In the same way, G−1, the quantile function of U(b1, .., bn) satisfies:∫ k
n

0
G−1(p) dp =

1

n

k∑
i=1

bi

Let us first show that U(a1, .., an) ≤cx U(b1, .., bn)⇒ (a1, .., an) ≺ (b1, .., bn).
By lemma 2.4.7, U(a1, .., an) ≤cx U(a1, .., an) implies that for each t ∈ (0, 1),∫ t

0
F−1(p) dp ≥

∫ t

0
G−1(p) dp

⇒
k∑
i=1

ai ≥
k∑
i=1

bi for each k (∗)

U(a1, .., an) ≤cx U(b1, .., bn) implies by Lemma 2.4.9 and definition 2.4.5,
that they have the same mean, and so:

∫ 1

0
F−1(p) dp =

∫ 1

0
G−1(p) dp

⇒
n∑
i=1

ai =

n∑
i=1

bi (∗∗)

Finally, (∗) together with (∗∗) imply that (a1, .., an) ≺ (b1, .., bn).

Let us now show that (a1, .., an) ≺ (b1, .., bn)⇒ U(a1, .., an) ≤cx U(a1, .., an).
We have seen that F−1 is a piecewise constant function which is constant

on each of the intervals

[
i

n
,
i+ 1

n

]
.

It follows that p →
∫ p

0
F−1(t) dt is a piecewise affine function, which is

affine on these same intervals.

The same is true of the function p→
∫ p

0
G−1(t) dt. Therefore to show that∫ p

0
G−1(t)dt ≤

∫ p

0
F−1(t) dt for all p ∈ (0, 1)

it suffices to show that∫ i/n

0
G−1(t)dt ≤

∫ i/n

0
F−1(t) dt for each i ∈ {1, 2, .., n}

which by what we have shown at the beginning of the proof is equivalent to:

1

n

k∑
i=1

bi ≤
1

n

k∑
i=1

ai for each k ∈ {1, 2, .., n}
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which follows from the initial assumption that (a1, .., an) ≺ (b1, .., bn). There-
fore ∫ p

0
G−1(t)dt ≤

∫ p

0
F−1(t)dt for each p in (0, 1)

which gives, by lemma 2.4.7, that U(a1, .., an) ≤cx U(b1, .., bn).

U-quantization is a bridge between the convex order (≤cx) and majoriza-
tion (≺). When measures are ordered in the convex order, the coordinates
of their U-quantizations are ordered in the majorization order.

Theorem 2.4.10. Let µ, ν ∈ P(R), with U-quantizations U(a1, .., an) and
U(b1, .., bn). If µ ≤cx ν then (a1, .., an) ≺ (b1, .., bn).

Proof. Suppose that µ ≤cx ν. By the definition of majorization ( ≺ ), it
suffices to show:

(a1, .., an) and (b1, .., bn) have the same mean (i)
k∑
i=1

bi ≤
k∑
i=1

ai for each k ∈ {1, .., n} (ii)

(i) Let us show that the vectors (a1, .., an) and (b1, .., bn) have the same mean.
Since µ ≤cx ν, it follows that µ and ν have the same mean (see section on
the convex order). Since U-quantization preserves the mean of a probability
measure, it follows that the measures U(a1, .., an) and U(b1, .., bn) have the
same mean. This implies that 1

n

∑n
i=1 ai = 1

n

∑n
i=1 bi, hence the vectors

(a1, .., an) and (b1, .., bn) have the same mean.

(ii) Letting F (resp. G) denote the distribution function of µ (resp. ν),
we have:

ai = n

∫ i
n

i−1
n

F−1(u)du

k∑
i=1

ai =

k∑
i=1

n

∫ i
n

i−1
n

F−1(u)du

k∑
i=1

ai = n

∫ k
n

0
F−1(u)du

In the same way, one also obtains,

k∑
i=1

bi = n

∫ k
n

0
G−1(u)du
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As, µ ≤cx ν it follows by the characterization of the convex order using
quantile functions that:∫ p

0
G−1(u)du ≤

∫ p

0
F−1(u)du for every p ∈ [0, 1]

Hence
k∑
i=1

bi ≤
k∑
i=1

ai for each k ∈ {1, .., n}

Remark. It can be shown that µ ≥cx U(a1, ..an) (see Section 4, lemma
3.6.5). Although this is common for several quantization methods, what is
more remarkable is that this quantization preserves the convex order, as we
now show:

Theorem 2.4.11. ( U-quantization preserves the convex order) Let µ, ν ∈
P(R) with quantizations U(a1, .., an) and U(b1, .., bn). If µ ≤cx ν then
U(a1, .., an) ≤cx U(b1, .., bn).

Proof. Suppose that µ ≤cx ν. By Theorem 2.4.10 this implies that (a1, .., an) ≺
(b1, .., bn). By Lemma 2.4.9 it follows that U(a1, .., an) ≤cx U(b1, .., bn).

The quantization defined above would not be of much use if U(a1, .., an)
did not converge to µ. Thankfully this is the case as the following theorem
shows.

Theorem 2.4.12. Let µ ∈ P(R) with quantization U(a1, .., an). Then as n
goes to infinity, U(a1, .., an) converges weakly to µ.

Proof. Recall that

U(a1, .., an) =
1

n

n∑
i=1

δai where ai = n

∫ i
n

i−1
n

F−1(u)du

The cumulative distribution function F is a non-decreasing function, hence
it follows that its inverse, F−1 is also a non-decreasing function. As the
integrand is a non-decreasing function, the above integral may be bounded
as follows:

n(
i

n
− i− 1

n
)F−1(

i− 1

n
) ≤ n

∫ i
n

i−1
n

F−1(u)du ≤ n (
i

n
− i− 1

n
) F−1(

i

n
)

F−1(
i− 1

n
) ≤ n

∫ i
n

i−1
n

F−1(u)du ≤ F−1( i
n

)

F−1(
i− 1

n
) ≤ ai ≤ F−1( i

n
)
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Let Fn denote the distribution function of U(a1, .., an). By the definition of
U(a1, .., an),

Fn(t) =
1

n

n∑
i=1

1{ai ≤ t}

where 1 denotes the indicator function.
Let us now examine F (t) and Fn(t) when t ∈ [F−1( i−1n ) , F−1( in)]
Since F is a monotone increasing function, applying F to each term of
F−1( i−1n ) ≤ t ≤ F−1( in), we obtain:

i− 1

n
≤ F (t) ≤ i

n
(∗)

Again when t ∈ [F−1( i−1n ) , F−1( in)], we bound Fn(t), the distribution
function of U(a1, .., an), in the following way:
We have seen that:

ai−1 ≤ F−1(
i− 1

n
) ≤ ai ≤ F−1(

i

n
) ≤ ai+1

It follows that when F−1( i−1n ) ≤ t ≤ F−1( in), one must have either ai−1 ≤
t ≤ ai or ai ≤ t ≤ ai+1. Therefore when F−1( i−1n ) ≤ t ≤ F−1( in), the
distribution function Fn which is Fn(t) = 1

n

∑n
i=1 1{ai ≤ t} must be equal

to one of the 3 following values: i−1
n or i

n or i+1
n .

It follows that when F−1( i−1n ) ≤ t ≤ F−1( in) the following must hold:

i− 1

n
≤ Fn(t) ≤ i+ 1

n
(∗∗)

By (*) and (**), it follows that when F−1( i−1n ) ≤ t ≤ F−1( in), we have:

|F (t)− Fn(t)| ≤ 2

n

Now the collection of intervals {
(
F−1( i−1n ) , F−1( in)

]
: 1 ≤ i ≤ n}

generate the support of µ, and therefore that of U(a1, .., an). From this
we conclude that | Fn(t) − F (t) |≤ 2

n for all t ∈ R. Hence as n → ∞,
the distribution function Fn converges pointwise to F . This means that as
n→∞, the quantization U(a1, .., an) converges weakly to µ
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Chapter 3

Construction of martingale
transition between quantized
measures

3.1 Martingale transitions though linear program-
ming

3.1.1 Linear programming

Linear programming consists in optimizing a linear function subject to a
set of linear constraints. The linear function to be optimized is called the
objective function. Let the vector of variables be denoted x = (x1, .., xn). A
linear function in these variables is of the form:

n∑
i=1

cixi

where c = (c1, .., cn) is the vector of coefficients of the objective function.
Linear constraints can be of the following forms:

n∑
i=1

aixi ≤ b (an upper bound constraint)

n∑
i=1

aixi ≥ b (a lower bound constraint)

n∑
i=1

aixi = b (an equality constraint)

where a = (a1, .., an) is a vector of constraint coefficients.
A collection of k linear constraints can be represented by:
a matrix A which has k rows and n columns,
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a vector b = (b1..bk)
T ,

in the following way:
Ax = b

(for k equality constraints)

3.1.2 The Linear programming problem in standard form

The linear programming problem can be stated as:

max cTx

subject to Ax = b

and x ≥ 0

x is the vector of variables to be determined.
c is the vector of coefficients of the objective function.
A is the matrix of constraint coefficients.
b is the vector of right hand side values of the constraints.

The set of constraints:

Ax = b

and x ≥ 0

specify a convex polytope over which the objective function cTx is to be
optimized.

3.1.3 Solutions to linear programs

The simplex algorithm developed by Danzig solves a linear program when
it has a solution (see [WD49], [Dan49] and [Dan98]).

3.1.4 Martingale transitions as solutions to linear program-
ming problems

Given two specified marginal laws µ and ν, we have seen how U-quantization
provides us with two quantized measures µ̂ and ν̂. Both µ̂ and ν̂ are uniform
laws on n support points.

µ̂ ∼ U(a1, .., an)

ν̂ ∼ U(b1, .., bn)

Let us now look at how linear programming provides us with martingale
transitions from µ̂ to ν̂. A martingale transition from µ̂ to ν̂ can be expressed
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as a matrix M = (mi,j)1≤i,j≤n. The matrix M describes the transition
probabilities through:

mi,j = P (Y = bj | X = ai)

For each row i, we must have
∑n

j=1mi,j = 1.
For each column j, we must have

∑n
i=1mi,j = 1.

As there are n rows and n columns, together these row sums and column
sums conditions impose 2n linear constraints on the entries of the matrix
M . The martingale property of the transition matrix M translates to:

for each row i,
n∑
j=1

mi,jbj = ai

As there are n rows, the martingale condition translates into n more linear
constraints on the entries of the matrix M . We are in a situation with n2

variables (the entries of the matrix M) subject to 3n linear constraints. Each
of the linear constraints is an equality constraint. In order to have a linear
programming problem we must specify a linear objective function which is
to be maximized or minimized. Any vector of n2 real numbers can be used
as coefficients for the linear objective function. A vector c with n2 entries
defines a linear objective function through:

n∑
i=1

n∑
j=1

(
mi,j ci+n(j−1)

)
By choosing different vectors of objective function coefficients ( the vector
c), we can specify different linear programming problems and thus obtain
different martingale transitions from µ̂ to ν̂.

We have seen that when a linear programming problem is given in stan-
dard form, the linear constraints are provided as a matrix of constraint
coefficients together with a vector of right hand side values for the con-
straints. We will now provide an algorithm which constructs this matrix of
constraint coefficients as well as the vector of right hand side values. This
algorithm works under the assumptions outlined above ( i.e. construction
of a martingale transition from µ̂ = U(a1, .., an) to ν̂ = U(b1, .., bn) ). This
algorithm takes as arguments the two vectors of support points (a1, .., an)
and (b1, .., bn). It produces a 3n by n2 matrix of constraint coefficients as
well a vector of right hand side values which has length 3n. These can then
be used as inputs in a linear programming solver.
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3.1.5 Algorithm to build the matrix of constraint coefficients

The following two algorithms build the matrix of constraint coefficients and
the vector of right hand side values for the constraints.

Algorithm 2 Algorithm which constructs the matrix of constraint coeffi-
cients for the linear programming solver

for i = 1→ n do . Linear constraints from the row sums.
for j = 1→ n do

M(i, (i− 1)n+ j)← 1
end for

end for
for i = 1→ n do . Linear constraints from the column sums.

for j = 1→ n do
M(n+ i, (j − 1)n+ i)← 1

end for
end for
for i = 1→ n do . Linear constraints from the martingale property.

for j = 1→ n do
M(2n+ i, (i− 1)n+ j)← b(j)

end for
end for

Algorithm 3 Algorithm which constructs the vector of right hand side
constraints for the linear programming solver

for i = 1→ 2n do . Because the matrix must be bistochastic.
R(i, 1)← 1

end for
for i = 1→ n do . For the martingale property.

R(2n+ i, 1)← a(i)
end for

Algorithm 4 Algorithm to turn the output of a linear programming solver
from vector form into matrix form

for i = 1→ n do
for j = 1→ n do

N(i, j)← O((i− 1)n+ j)
end for

end for

Remark. GNU Octave provides a linear programming solver, the glpk rou-
tine.
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3.1.6 Numerical Example

The following example illustrates the use of linear programming as a means
of constructing martingale transitions between specified marginal laws. Con-
sider two marginal laws, each one of which is a uniform distribution on the
following vectors of support points:

−1.64683
−0.89538
−0.49135
−0.15798
0.15798
0.49135
0.89538
1.64683





−3.29366
−1.79077
−0.98270
−0.31595
0.31595
0.98270
1.79077
3.29366


These vectors where obtained by performing a U-quantization of order 8 of
the following Gaussian laws: the first with parameters (mean 0, variance
1) and the second Gaussian law with parameters (mean 0, variance 2), (see
Section 2.4 on U-quantization). Let us take as a vector of objective coeffi-
cients, a vector of length n2 = 64 with every entry equal to 1. We obtain
the following martingale transition matrix:

0.00000 0.97169 0.00000 0.00000 0.00000 0.00000 0.00000 0.02831
0.00000 0.00000 0.92986 0.05890 0.00000 0.00000 0.00000 0.01123
0.05890 0.00000 0.00000 0.94110 0.00000 0.00000 0.00000 0.00000
0.13130 0.00000 0.00000 0.00000 0.86870 0.00000 0.00000 0.00000
0.17239 0.00000 0.00000 0.00000 0.13130 0.69632 0.00000 0.00000
0.20730 0.00000 0.00000 0.00000 0.00000 0.30368 0.48901 0.00000
0.20196 0.00000 0.07014 0.00000 0.00000 0.00000 0.51099 0.21691
0.22815 0.02831 0.00000 0.00000 0.00000 0.00000 0.00000 0.74354


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3.2 Martingale transitions obtained from symmet-
ric matrices

Given two specified marginal laws µ and ν, we have seen how U-quantization
provides us with two quantized measures µ̂ and ν̂. Both µ̂ and ν̂ are uniform
laws on n support points.

µ̂ ∼ U(a1, .., an)

ν̂ ∼ U(b1, .., bn)

Any martingale transition from µ̂ to ν̂ can be expressed as a matrix
M = (mi,j)1≤i,j≤n which describes the transition probabilities through:

mi,j = P (Y = bj | X = ai)

A square matrix M of size n provides a martingale transition from µ̂ ∼
U(a1, .., an) to ν̂ ∼ U(b1, .., bn) if and only if the following 3n conditions are
verified:

(a) For each row i,
n∑
j=1

mi,j = 1

(b) For each column j,
n∑
i=1

mi,j = 1

(c) For each row i,
n∑
j=1

mi,jbj = ai

3.2.1 Constructing a martingale transition from a symmetric
matrix

Now suppose that we have a symmetric matrix S which has spectrum
(b1, .., bn) and diagonal elements (a1, .., an). We now describe how this ma-
trix S can be used to construct a matrix M which provides a martingale
transition from µ̂ ∼ U(a1, .., an) to ν̂ ∼ U(b1, .., bn)

By the spectral theorem for symmetric matrices there exits a real orthogonal
matrix Q such that

S = QTΛQ

The matrix Λ is the diagonal matrix with entries (b1, .., bn).

Let us define M to be the matrix obtained by squaring the entries of QT .
In other words, the (i, j) entry of M is given by mi,j = q2i,j where qi,j is the

(i, j) entry of QT .
We now show that M satisfies the conditions (a), (b) and (c) above, which
means that M provides a martingale transition from µ̂ ∼ U(a1, .., an) to
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ˆν ∼ U(b1, .., bn).

The rows of an orthogonal matrix form an orthonormal basis and simi-
larly the columns of an orthogonal matrix also form an orthonormal basis.
It follows that conditions (a) and (b) are verified.

Let us now verify that the transition described by the matrix M possesses
the martingale property. This amounts to verifying condition (c):

For each row i,

n∑
j=1

mi,jbj = ai

By hypothesis the diagonal elements of S are (a1, .., an), so the (i, i)
entry of S is equal to ai. We have seen that S = QTΛQ. Let us perform
these two matrix multiplications in order to calculate this (i, i) entry of S.

QTΛ =


q11 q12 . . . q1n
q21 q22 . . . q2n
...

...
. . .

...
qn1 qn2 . . . qnn



b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bn


From this we see that the matrix QTΛ has (i, j) entry given by qi,jbj . The
row i of the matrix QTΛ is given by:(

qi,1b1 qi,2b2 .. qi,nbn
)

The (i, i) entry of the matrix QTΛQ is the inner product of the row i of
the matrix QTΛ with the column j of the matrix Q.

(
qi,1b1 qi,2b2 .. qi,nbn

)
qi,1
qi,2
..
qi,n

 =

n∑
i=1

q2i,jbj

As mi,j was defined to be q2i,j and the matrix S has the property that its
(i, i) entry is ai, the above line can be written as:

ai =
n∑
j=1

mi,jbj

This completes the proof that the matrix M , obtained by squaring the
entries of QT , provides a martingale transition from µ̂ ∼ U(a1, .., an) to
ν̂ ∼ U(b1, .., bn).
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3.2.2 Existence of symmetric matrices with given diagonal
and spectrum

Now that we have seen how a symmetric matrix with properly chosen diago-
nal and spectrum can be used to produce a martingale transition, a natural
question is: when does there exist a symmetric matrix with a given diagonal
and spectrum? The answer is provided by the following theorem:

Theorem 3.2.1. (Horn-Schur [Hor54], [Sch23]) There exists a symmet-
ric matrix with diagonal (a1, .., an) and spectrum (b1, .., bn) if and only if
(a1, .., an) ≺ (b1, .., bn)

The symbol (≺) denotes the partial ordering called majorization which
is defined as follows:

Definition 3.2.2. Let (a1, .., an) and (b1, .., bn) be two vectors whose entries
have been sorted in increasing order (a1 ≤ .. ≤ an and b1 ≤ .. ≤ bn).
We say that (a1, ..an) is majorized by (b1, .., bn), and write (a1, ..an) ≺
(b1, .., bn) if:

(i)

n∑
i=1

ai =

n∑
i=1

bi

(ii)
k∑
i=1

bi ≤
k∑
i=1

ai for k = 1, .., n− 1

Examples 3.2.3. (1, 2, 3) ≺ (0, 2, 4) and (1, 1, 1, 1) ≺ (0, 0, 0, 4)
The vectors (1, 6, 6, 9) and (2, 3, 8, 9) illustrate the fact that (≺) is a partial
order, and not a total order. Both vectors have the same mean, but neither
vector majorizes the other. (1 < 2 but 1 + 6 > 2 + 3)

Remark. (a1, .., an) ≺ (b1, .., bn) means that (b1, .., bn) is more dispersed than
(a1, .., an).

3.2.3 Algorithm for constructing matrices with specified di-
agonal and spectrum

Algorithm 5 Chan Li Algorithm to construct a symmetric matrix with
specified diagonal and spectrum

(Chan-Li [CL83]) (a1, . . . , an) and (b1, . . . , bn) are given vectors which satisfy
(a1, . . . , an) ≺ (b1, . . . , bn), this algorithm constructs a symmetric matrix
with diagonal elements (a1, . . . , an) and eigenvalues (b1, . . . , bn).
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Proof. In the case where n = 2, there is an explicit solution:
Suppose (b1, b2) and (a1, a2) are two vectors which satisfy (a1, a2) ≺ (b1, b2).
Define the following orthogonal matrix Q as

Q =
1√

b2 − b1

[√
b2 − a1 −

√
a1 − b1√

a1 − b1
√
b2 − a1

]
Now,

QT
[
b1 0
0 b2

]
Q =

[
a1 ∗
∗ a2

]
Eigenvalues are left unchanged by conjugation with an orthogonal matrix.
So the matrix on the right hand side is the desired matrix with spectrum
(b1, b2) and diagonal (a1, a2).
In the case where n > 2, the algorithm proceeds in a recursive fashion. The
main step of the algorithm reduces a problem of size k to a problem of size
k − 1. This main step is applied n − 2 times, thus reducing a problem of
dimension n down to a problem of dimension 2 which has the immediate
solution given above. The algorithm starts with the diagonal matrix with
entries (b1, .., bn). This diagonal matrix is then conjugated n − 1 times
by properly chosen orthogonal matrices. At the end of this process, the
diagonal entries are (a1, .., an) and the spectrum, left unchanged through
conjugation by orthogonal matrices, is still (b1, .., bn). The recursive step of
the algorithm works as follows. You start with a square matrix of dimension
n whose diagonal elements are (b1 . . . bn) in any order. You conjugate it by
a permutation matrix so that its (1,1) element is b1 and its (2, 2) element is
bj . Then you conjugate it by an orthogonal matrix in the following way: c s 0
−s c 0
0 0 In−2


 b1 . . . . . .
. . . bj . . .

. . . . . .
. . .


c −s 0
s c 0
0 0 In−2

 =

 a1 . . . . . .
. . . b1 + bj − a1 . . .

. . . . . .
. . .


In−2 denotes the identity matrix of dimension n− 2. The values of s and c
are computed in the same way as in the (n = 2) case. The main step of the
algorithm is then recursively applied to the submatrix obtained by removing
the first row and the first column of the right hand side matrix above. This
is possible by lemma 3.2.4

The following lemma makes the recursive step in the algorithm possible.

Lemma 3.2.4. (Chan-Li [CL83]) Suppose ~a = (a1, .., an) ≺ (b1, .., bn) = ~b
are two given vectors whose entries have been sorted in increasing order.
Denote by bj the smallest element of ~b which is greater than or equal to a1
(i.e. bj−1 ≤ a1 ≤ bj ) . Define two new vectors ~anew and ~bnew as follows:

~anew is obtained by removing a1 from ~a, and ~bnew is obtained by removing
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both b1 and bj from ~b and inserting the value (b1 + bj − a1). Then the

following holds: ~anew ≺ ~bnew

Proof. We will use the following notation: for a vector ~v, sum(~v) denotes
the sum of the entries of ~v.
Let us start by verifying that sum(~anew) = sum(~bnew).

sum(~bnew) = sum(~b)− b1 − bj + (b1 + bj − a1)

= sum(~b)− a1
= sum(~a)− a1 ( indeed ~a ≺ ~b⇒ sum(~a) = sum(~b) )

= sum(~anew)

Now ~anew and~bnew are both vectors of length (n−1) with the same mean.
Let us denote by sum(~anew, 1, k) the sum of the k smallest elements of ~a.
As we have showed that sum(~anew) = sum(~bnew), to show that ~anew ≺ ~bnew
it suffices to show that sum(~bnew, 1, k) ≤ sum(~anew, 1, k) for each k from 1
to k − 1. In order to prove this, let us first examine the relative position of
the elements of ~anew and ~bnew.
One of the following statements must hold:

either b1 ≤ .. ≤ bj−1 ≤ a1 ≤ (b1 + bj − a1) ≤ bj

or b1 ≤ .. ≤ bj−1 ≤ (b1 + bj − a1) ≤ a1 ≤ bj
or b1 ≤ .. ≤ (b1 + bj − a1) ≤ bj−1 ≤ a1 ≤ bj

Indeed this is a consequence of the two following two observations:
(i) bj was chosen so that bj−1 ≤ a1 ≤ bj .
(ii) (b1, bj) and (a1, (b1+bj−a1)) have the same mean and b1 ≤ a1 ( as ~a ≤ ~b).
Therefore either b1 ≤ a1 ≤ (b1+bj−a1) ≤ bj or b1 ≤ (b1+bj−a1) ≤ a1 ≤ bj

Case k ≤ j − 2:
bj−1 is the (j − 2)th smallest element of ~bnew. Let us look at the sum of

the k smallest elements of ~bnew when k ≤ j − 2. As bj was chosen so that

bj−1 ≤ a1 ≤ bj , it follows that when k ≤ j−2, each element in sum(~bnew, 1, k)

is less than a1. Hence sum(~bnew, 1, k) ≤ k a1 ≤ sum(~anew, 1, k).

Case k = j − 1:{
sum(~bnew, 1, k) =

(∑j−1
i=2 bi

)
+ (b1 + bj − a1)

sum(~anew, 1, k) =
∑j

i=2 ai
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Therefore sum(~bnew, 1, k) ≤ sum(~anew, 1, k)

⇐⇒

(
j−1∑
i=2

bi

)
+ (b1 + bj − a1) ≤

j∑
i=2

ai

⇐⇒
j∑
i=1

bi ≤
j∑
i=1

ai , which is true because ~bnew � ~anew

Case k ≥ j:
Note that bj+1 is the jth smallest element of bnew{

sum(~bnew, 1, k) =
(∑j−1

i=2 bi

)
+ (b1 + bj − a1) +

∑k+1
i=j+1 bi

sum(~anew, 1, k) =
∑k+1

i=2 ai

Therefore sum(~bnew, 1, k) ≤ sum(~anew, 1, k)

⇐⇒

(
j−1∑
i=2

bi

)
+ (b1 + bj − a1) +

k+1∑
i=j+1

bi ≤
j∑
i=2

ai

⇐⇒
k+1∑
i=1

bi ≤
k+1∑
i=1

ai which is true because ~bnew � ~anew

3.2.4 Numerical example

The following example illustrates the construction of a martingale transition
through the construction of a symmetric matrix with specified diagonal and
spectrum. 

−1.64683
−0.89538
−0.49135
−0.15798
0.15798
0.49135
0.89538
1.64683





−3.29366
−1.79077
−0.98270
−0.31595
0.31595
0.98270
1.79077
3.29366


These vectors were obtained by performing a U-quantization of order 8 of
the following Gaussian laws: the first with parameters (mean 0, variance
1) and the second with parameters (mean 0, variance 2), (see Section 2.4
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on U-quantization). Using the Chan Li algorithm we can construct a sym-
metric matrix which has the first vector as diagonal and the second vector
as spectrum. We then use the method described above to construct the
martingale transition matrix.

We obtain the following martingale transition matrix:

0.28738 0.00000 0.71262 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.41128 0.00000 0.00000 0.00000 0.58872 0.00000 0.00000
0.17847 0.00000 0.07197 0.74955 0.00000 0.00000 0.00000 0.00000
0.18225 0.00000 0.07350 0.08545 0.65880 0.00000 0.00000 0.00000
0.18940 0.00000 0.07638 0.08881 0.18365 0.00000 0.46176 0.00000
0.00000 0.41833 0.00000 0.00000 0.00000 0.29224 0.00000 0.28943
0.11589 0.04887 0.04674 0.05434 0.11237 0.03414 0.38388 0.20378
0.04660 0.12153 0.01879 0.02185 0.04518 0.08490 0.15436 0.50679


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3.3 Martingale transitions obtained by clipping po-
tentials

We have established that U-quantization has the property of preserving the
convex order. That is, if µ ≤cx ν, their U-quantizations are also ordered in
the convex order, i.e. U(a1, .., an) ≤cx U(b1, .., bn). In this section we see
that this property enables the use of an algorithm by Chacon and Walsh.
In doing so, we can construct martingale transitions from U(a1, .., an) to
U(b1, .., bn).

Definition 3.3.1. The potential of a measure µ is defined to be the function:

t→ −
∫ ∞
−∞
|x− t|dµ(x)

The next lemma relates potentials of measures to the convex order. A
proof of this lemma can be found in [SST94], on page 111.

Lemma 3.3.2. Let µ and ν be two probability measures on R. Let f (resp.
g) be the potential of µ ( resp. ν).

µ ≤cx ν ⇐⇒ f ≥ g

We now detail the main step of the Chacon-Walsh algorithm which Cha-
con and Walsh introduced to give a new solution to the Skorokhod embed-
ding problem [CW76]. Let f be the potential function of a probability mea-
sure µ. Choose a line L which intersects the graph of f in two points. Denote
these two points and their coordinates by A = (Ax, Ay) and B = (Bx, By).
Without loss of generality, let Ax < Bx.

Define the function g by:

g(x) =

f(x) if x ∈ (−∞, Ax) ∪ (Bx,∞)

Ay + (x−Ax)
(By −Ay)
(Bx −Ax)

if x ∈ [Ax, Bx]

The function g is also the potential function of a probability measure.
Let B be a Brownian motion with initial law B0 ∼ µ. Let T be the following
stopping time for the Brownian motion B:{

if B0 ∈ (−∞, Ax) ∪ (Bx,∞) then T = 0

if B0 ∈ [Ax, Bx] then T = inf{t ≥ 0 : Bt = Ax or Bt = Bx}

T is defined so that the law of BT has potential function g.
Brownian motion is a martingale, and since E[T ] < ∞, it follows that
E[BT |B0] = B0. Therefore the transition (B0, BT ) has the martingale prop-
erty. From the definition of T , the transition (B0, BT ) is seen to be:
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
If x ∈ (∞, Ax) ∪ (Bx,∞) then x transits to x with probability 1.

If x ∈ [Ax, Bx] then

{
x transits to Ax with probability (Bx − x)/(Bx −Ax)

x transits to Bx with probability (x−Ax)/(Bx −Ax)

This step of the algorithm illustrates how to explicitly obtain the unique
martingale transition between the probability measure with potential f and
the probability measure with potential g.

Remark. We will call this procedure clipping. The potential f was clipped
using L to produce g. Clipping using a segment will mean clipping using
the line which contains that segment.

This brings us to the following corollary of Theorem 2.4.11

Corollary 3.3.3. Let µ, ν ∈ P(R), satisfying µ ≤cx ν, and denote their
quantizations by U(a1, .., an) and U(b1, .., bn). A martingale transition from
U(a1, .., an) to U(b1, .., bn) can be generated by the Chacon-Walsh algorithm
in (n+1) steps.

Proof. Suppose µ ≤cx ν. Since U-quantization preserves the convex order
( Theorem 2.4.11 ), it follows that U(a1, .., an) ≤cx U(b1, .., bn). Denote by
f(t) the potential of U(a1, . . . an) and by g(t) the potential of U(b1, . . . bn).
Lemma 3.3.2 implies that f(t) ≥ g(t) for every t ∈ R. Note that f and g
are both piecewise affine functions. The graph of g is composed of (n − 1)
segments and 2 half-lines. We may clip f by each of these segments and half
lines. By doing this we obtain after n+ 1 clippings a martingale transition
from U(a1, . . . an) to U(b1, . . . bn).

3.3.1 Implementation of the Chacon Walsh algorithm for U-
quantization

To implement the algorithm, one needs the coordinate of the intersection
point of two lines (see [Wei12])

Let L1 and L2 be two lines in the plane, with L1 going through the points
(x1, y1) and (x2, y2) and L2 going through the points (x3, y3) and (x4, y4).
Then the intersection point has the following x and y coordinates: The x
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coordinate of the intersection point is given by:

x =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣ x1 1

x2 1

∣∣∣∣∣∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ x1 − x2∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣ x3 − x4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x1 − x2 y1 − y2
x3 − x4 y3 − y4

∣∣∣∣

Similarly, the y coordinate of the intersection point is given by

y =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ y1 − y2∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣ y3 − y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x1 − x2 y1 − y2
x3 − x4 y3 − y4

∣∣∣∣

Here ∣∣∣∣∣ a b

c d

∣∣∣∣∣
denotes the determinant of the matrix(

a b
c d

)

Example 3.3.4. We have obtained the U-quantizations U(a1, .., a8) and
U(b1, .., b8) for the Gaussian laws N(0, 1) and N(0, 2).

−1.64683
−0.89538
−0.49135
−0.15798
0.15798
0.49135
0.89538
1.64683





−3.29366
−1.79077
−0.98270
−0.31595
0.31595
0.98270
1.79077
3.29366


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We can now use the method described in this section to compute a mar-
tingale transition matrix from U(a1, .., a8) to U(b1, .., b8). This martingale
transition is represented by a matrix M = {mij} which provides the transi-
tion probabilities mij = P(Y = bj | X = ai).

There are 4 canonical ways to clip:
1: clockwise
2: counter clockwise
3: extremities to center
4: center to extremities

The following diagrams illustrate counterclockwise clipping of the potential
function.

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

(a) Initial stage: The original Potentials
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(b) After 1 clip
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(c) After 2 clips

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

(d) After 3 clips

Figure 3.1: Counter clockwise clipping of the potential: the first 3 steps
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3.3.2 Clipping from extremities to center

Clipping from extremities to center produces the following martingale tran-
sition:

0.505115 0.122688 0.083704 0.072123 0.056251 0.053373 0.053373 0.053373
0.279299 0.178670 0.121898 0.105033 0.081918 0.077727 0.077727 0.077727
0.157884 0.208771 0.142434 0.122728 0.095718 0.090822 0.090822 0.090822
0.057702 0.233607 0.159378 0.137328 0.107105 0.101626 0.101626 0.101626
0.000000 0.196832 0.180625 0.155636 0.121384 0.115175 0.115175 0.115175
0.000000 0.059433 0.211525 0.182261 0.142149 0.134878 0.134878 0.134878
0.000000 0.000000 0.100437 0.224891 0.175397 0.166425 0.166425 0.166425
0.000000 0.000000 0.000000 0.000000 0.220078 0.259974 0.259974 0.259974


The expected variance of a martingale transition from µ̂ to ν̂ is entirely
determined by those marginals ( µ̂ and ν̂). In fact it is equal to the area
between the potentials of µ̂ and ν̂. We now show this. For this reason it will
be of interest to study the conditional variance of each martingale transition
from µ̂ to ν̂ as these are different.

Lemma 3.3.5. Let (X,Y) be a 2 step martingale. The variance of the
martingale increment Y − X is uniquely determined by the variance of X
and that of Y. More precisely, Var[Y −X] = Var[Y ]− Var[X]

Proof. We show it when E[X] = E[Y ] = 0, the proof can easily be extended
to the general case.

V ar(Y −X) = E(Y −X)2 = E(Y 2− 2XY +X2) = E(Y 2)− 2E(XY ) +
E(X2)
= E(Y 2)− 2E(X.(X + (Y −X))) + E(X2)
= E(Y 2)− E(X2)− 2E[X(Y −X])
then you condition on X and integrate with respect to the law of X.
V ar[Y ]− V ar[X]− E[2E[X(Y −X)|X]]
V ar[Y ]− V ar[X]

Lemma 3.3.6. If µ and ν are two centered measures with finite support
such that µ ≤cx ν, then the area between their potential functions is equal
to the second moment of ν minus the second moment of µ.

Proof. Let K1 and K2 be such that µ((K1,K2)) = 1 and ν((K1,K2)) = 1.
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A =

∫
R
Uµ(t)− Uν(t)dt

=

∫ K2

K1

(

∫ K2

K1

−|x− t|dµ(x)−
∫ K2

K1

−|x− t|dν(x))dt

=

∫ K2

K1

(

∫ K2

K1

|x− t|dν(x)−
∫ K2

K1

|x− t|dµ(x))dt

=

∫ K2

K1

∫ K2

K1

|x− t|dν(x)dt−
∫ K2

K1

∫ K2

K1

|x− t|dµ(x)dt

=

∫ K2

K1

∫ K2

K1

|x− t| dt dν(x)−
∫ K2

K1

∫ K2

K1

|x− t| dt dµ(x) by Fubini

Now,∫ K2

K1

∫ K2

K1

|x− t| dt dµ(x) =

∫ K2

K1

∫ x

K1

|x− t|dt dµ(x) +

∫ K2

K1

∫ K2

x
|x− t|dt dµ(x)

=

∫ K2

K1

∫ x

K1

x− t dt dµ(x) +

∫ K2

K1

∫ K2

x
t− x dt dµ(x)

=

∫ K2

K1

1

2
x2 − xK1 −

1

2
K2

1dµ(x) +

∫ K2

K1

1

2
x2 +

1

2
K2

2 − xK2dµ(x)

=

∫ K2

K1

x2dµ(x)−
∫ K2

K1

xK1 −
1

2
K2

1 +
1

2
K2

2 − xK2dµ(x)

As
∫K2

K1
dµ(x) = 1 and

∫K2

K1
xdµ(x) = 0, we get∫ K2

K1

∫ K2

K1

|x− t| dt dν(x) =

∫ K2

K1

x2dµ(x) +
1

2
K2

1 −
1

2
K2

2

As
∫K2

K1

∫K2

K1
|x − t| dt dµ(x) is of the same form with ν replaced by µ, it

follows that

A =

∫
R
x2dν(x)−

∫
R
x2dµ(x)

As we have just seen that every martingale transition from µ̂ to ν̂ has
the same variance, it is interesting to look at the variance of the martingale
increment conditioned on the value before the transition. To examine this,
we define the conditional variance function:
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Definition 3.3.7. (Conditional variance function)
Given two random variables X and Y , we define the function

x→ V ar[Y −X | X = x]

which we call the conditional variance function.

For a two step martingale (X,Y) we can plot the variance of Y con-
ditioned on X = x. We will call this the conditional variance function:
x→ Var[Y |X = x].
There are several interesting cases:
• conditional variance function can be a constant (for ex. for a Brownian
transition law this is the case)
• the graph of the conditional variance function can be convex or smile
shaped.
This means that conditioned on a big movement the expectation of the mag-
nitude of the next movement is larger than if the initial movement had been
small.
(This is likely to be the dynamics of a stock price)
• The graph of the conditional variance function can be unimodal, meaning
that the middle diffuses more than the extremities.

We can plot the conditional variance function of this martingale function.
For clarity we produce the plot with quantizations of order larger than 8.
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Figure 3.2: Conditional variance: clipping tails first
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Remark. This martingale transition exhibits a phenomenon called persis-
tence of volatility. We are dealing with a 2 step martingale. The initial law
(t = 0) is the Dirac at 0. The next law (at t = 1) is the U-quantization of the
N(0, 1) law. The third law (at t = 2) is the U-quantization of the N(0, 2)
law. One sees that if the first martingale increment (t = 0 to t = 1) is large
in absolute value then the second increment (t = 1 to t = 2) can also be
expected to be large in absolute value. This is a phenomenon of persistence
of volatility.

3.3.3 Clipping from center to extremities

Clipping the potential function of ν̂ from center to extremities produces the
following martingale transition:



0.505115 0.081628 0.081628 0.081628 0.081628 0.081628 0.081628 0.005115
0.279299 0.118875 0.118875 0.118875 0.118875 0.118875 0.118875 0.007448
0.157884 0.138902 0.138902 0.138902 0.138902 0.138902 0.138902 0.008703
0.057702 0.155427 0.155427 0.155427 0.155427 0.155427 0.155427 0.009738
0.000000 0.158673 0.158673 0.158673 0.158673 0.158673 0.158673 0.047964
0.000000 0.141803 0.141803 0.141803 0.141803 0.141803 0.141803 0.149181
0.000000 0.121358 0.121358 0.121358 0.121358 0.121358 0.121358 0.271851
0.000000 0.083333 0.083333 0.083333 0.083333 0.083333 0.083333 0.500000


We now look at the corresponding conditional variance function:
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Figure 3.3: Conditional variance: clipping from center to extremities
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Remark. This martingale transition exhibits the opposite phenomenon to
that of persistance of volatility. If |M0 −M1| is small, then the expected
variance of M2 −M1 is large.
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3.3.4 Clockwise clipping

Clipping the potential function of ν̂ clockwise produces the following mar-
tingale transition:

0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000 0.000000
0.166425 0.166425 0.166425 0.175397 0.224891 0.100437 0.000000 0.000000
0.134878 0.134878 0.134878 0.142149 0.182261 0.211525 0.059433 0.000000
0.115175 0.115175 0.115175 0.121384 0.155636 0.180625 0.196832 0.000000
0.101626 0.101626 0.101626 0.107105 0.137328 0.159378 0.233607 0.057702
0.090822 0.090822 0.090822 0.095718 0.122728 0.142434 0.208771 0.157884
0.077727 0.077727 0.077727 0.081918 0.105033 0.121898 0.178670 0.279299
0.053373 0.053373 0.053373 0.056251 0.072123 0.083704 0.122688 0.505115



3.3.5 Counter clockwise clipping

Clipping the potential function of ν̂ counter clockwise produces the following
martingale transition:



0.259974 0.259974 0.259974 0.220078 0.000000 0.000000 0.000000 0.000000
0.193288 0.193288 0.193288 0.203709 0.056265 0.053387 0.053387 0.053387
0.161724 0.161724 0.161724 0.170442 0.089532 0.084952 0.084952 0.084952
0.135679 0.135679 0.135679 0.142994 0.116980 0.110996 0.110996 0.110996
0.110996 0.110996 0.110996 0.116980 0.142994 0.135679 0.135679 0.135679
0.084952 0.084952 0.084952 0.089532 0.170442 0.161724 0.161724 0.161724
0.053387 0.053387 0.053387 0.056265 0.203709 0.193288 0.193288 0.193288
0.000000 0.000000 0.000000 0.000000 0.220078 0.259974 0.259974 0.259974


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Figure 3.4: Conditional variance: clipping counterclockwise
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Part II

The Skorokhod embedding
problem and constructions of

martingales with specified
marginals
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3.4 Introduction

We will give a new solution to the Skorokhod embedding problem (SEP)
that was published in [Bak12]. We will also discuss the use of solutions to
the SEP as means of constructing martingales with specified marginals, as
well as the limitations of this approach.

3.4.1 Martingales as time changed Brownian motion

Before we discuss the Skorokhod embedding problem and its use as a way of
constructing martingales with specified marginals, it will be usefull to recall
some theory about how martingales can be represented as time changed
Brownian motions. By Dambis Dubins-Schwarz (see [RY94]), if M is a
continuous martingale starting from 0 (i.e. M0 = 0) with < M,M >∞=∞,
then

Mt = B<M,M>t

for some Brownian Motion (Bu).

3.4.2 The Skorokhod embedding problem

The Skorokhod embedding problem (SEP), see [Sko65], is the problem of em-
bedding a probability measure into Brownian motion by means of a stopping
time. Formally, Skorokhod’s original definition of the Skorokhod embedding
problem is the following:

Definition 3.4.1. Given a Brownian motion W and a probability mea-
sure µ on R which satisfies

∫
R x dµ(x) = 0 and

∫
R x

2 dµ(x) <∞, a solution
to the Skorokhod embedding problem is a stopping time T for W , such that:

WT has law µ and E[T ] <∞

It turns out that the requirement that µ have a finite second moment is
not necessary. A generalized definition of the Skorokhod embedding problem
is as follows:

Definition 3.4.2. Given a Brownian motion W and a probability measure
µ on R which satisfies

∫
R xdµ = 0 and

∫
R |x|dµ < ∞, a solution to the

Skorokhod embedding problem is a stopping time T for W , such that:
WT has law µ and Wt∧T is uniformly integrable.

In [Sko65], Skorokhod gives a solution to the SEP. The solution given by
Skorokhod however requires an additional random variable which is indepen-
dent of the Brownian motion. The solution given by Dubins, see [Dub68], is
the first solution which does not require an additional independent random
variable. Since then, a variety of other solutions have been given. For an
extensive survey of existing solutions, see [Ob l04].
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It turns out that every stopping time which is a solution to the Skorokhod
embedding problem for a measure µ has the same expectation. The value of
its expectation is the variance of the measure µ. Indeed, let T be a solution
to the Skorokhod embedding problem for µ. By Ito’s formula, Mt = B2

t − t
is a martingale. By the optional stopping theorem, E[T ] <∞ implies that

E[M0] = E[MT ]

⇒ 0 = E[B2
T − T ]

⇒ E[T ] = E[B2
T ]

Now since T is a solution to the Skorokhod embedding problem for µ, it
follows that BT ∼ µ and so E[B2

T ] is equal to the second moment of µ.

3.4.3 Using the Skorokhod embedding problem to construct
martingales with specified marginals

This past decade has seen renewed interest in solutions to the SEP. This in-
terest is due to the use of such solutions to construct martingales with speci-
fied marginals ( see, e.g., [HP02], [Hob98], [CH07], [MY02], and [HPRY11]).
New solutions to the SEP can in turn lead to new constructions of mar-
tingales with specified marginals. Model-free methods for pricing financial
instruments rely on constructions of martingales with given marginals (see,
e.g. [Hob11]). For these reasons, new solutions to the SEP can ultimately
lead to improved bonds on model-free prices of financial instruments.

• In the two marginal setting: Let µ and ν be given measures which
satisfy µ ≤cx ν. In order to construct a martingale transition from µ to ν it
suffices to construct stopping times τ1 and τ2 which satisfy:

τ1 is a solution to the SEP for µ.

τ2 is a solution to the SEP for ν.

τ1 ≤ τ2 a.s.

Indeed, the bivariate law (Wτ1 ,Wτ2) by construction has the required marginals,
Wτ1 ∼ µ and Wτ2 ∼ ν, as well as the martingale property E[Wτ2 |Wτ1 ] = Wτ1

• In the continuous time setting: Let (µt)t∈R+ be a time indexed collec-
tion of marginals which satisfy µs ≤cx µt whenever s ≤ t. Then in order
to construct a martingale M which satisfies Mt ∼ µt for each t ∈ R+, it
suffices to obtain a collection of solutions to the SEP: τt being a solution to
the SEP for µt and τs ≤ τt a.s. when s ≤ t. Then (Wτt)t∈R+ is a martingale
which satisfies Mt ∼ µt for each t ∈ R+. Indeed E[Wτt |Wτs ] = Wτs for all
s, t satisfying s ≤ t.
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Definition 3.4.3. (the barycenter function of a measure) The barycenter
function of a probability measure µ is defined as follows:

φ(x) =

∫∞
x yµ(dx)∫∞
x µ(dx)

The Azema Yor solution to the Skorokhod embedding problem is defined
as

Definition 3.4.4. (The Azema-Yor solution to the Skorokhod embedding
problem see [AY79] ) Let M(t) denote the maximum value to date of the
Brownian motion B.

M(t) = sup
0≤s≤t

B(s)

The Azema-Yor solution to the Skorokhod embedding problem is the stop-
ping time τ defined as

τ = inf{s|M(s) ≥ φ(B(s))}

Let (µt)t∈R+ be a collection of probability measures such that the func-
tion

φ(x, t) =

∫∞
x yg(y, t)dy∫∞
x g(y, t)dy

is increasing in t for each x. Here g(y, t) denotes the density of the measure
µt. Under this condition, Madan and Yor (see [MY02]) use the Azema-Yor
solution to the Skorokhod embedding problem to construct a martingale M
with

Mt ∼ µt
The martingale M is defined as Mt = Bτt , with τt being the Azema-Yor
solution to the Skorokhod embedding problem for µt. The recent book by
Hirsch, Profeta, Roynette, and Yor ( see [HPRY11] ) contains numerous
other constructions.

3.4.4 Limitations of the Skorokhod embedding problem as a
means of constructing martingales with specified marginals

Here we discuss the reason why most solutions to the SEP are unable to
construct martingale transition between every pair of measures which admits
a martingale transition. This is a consequence of a Theorem by Meilijson
given in [Mei82]. We now explain why this is the case.

In the following (Wt)(t∈R+) will be a standard Brownian motion.
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Definition 3.4.5. A procedure which associates to each measure in the set

{ µ ∈ P(R) :

∫
R
|x| dµ(x) <∞}

a unique stopping time τ which is a solution to the Skorokhod embedding
problem for µ, i.e. : {

Wτ ∼ µ
Wt∧τ is a u.i. martingale

will be called a standard solution to the SEP.

Remark. Most currently published solutions to the SEP are standard so-
lutions. This includes the solutions given by Dubins [Dub68], Azema-Yor
[AY79], Vallois [Val83], as well as the new one presented in this work. A
solution to the SEP which is not standard can produce several different
stopping times for a given measure µ.

Definition 3.4.6. Let ν be a probability measure on R. A solution τ to
the Skorokhod embedding problem for µ is said to be ultimate if:
For every measure µ with µ 6cx ν, there exists a stopping time τ

′
satisfying{

τ
′
6 τ a.s.

Wτ ′ ∼ µ

Definition 3.4.7. The hitting time of the level a, for the Brownian motion
W is denoted Ta and defined as:

Ta = inf{t > 0 : Wt = a}

Theorem 3.4.8. (Meilijson see [Mei82]) τ is ultimate if and only if τ =
Ta ∧ Tb for some a < 0 < b.

This leads to the following limitation of standard solution to the SEP as
means of constructing martingale transitions between specified marginals:

Corollary 3.4.9. Every standard solution to the SEP is unable to construct
a martingale transition between certain pairs of measures which admit a
martingale transition

Proof. Let ν be a measure which is not supported on two points, i.e.

ν 6= αδa + (1− α)δb with a, b ∈ R, α ∈ [0, 1]

Consider a standard solution to the SEP. Denote by τ(ν) the stopping time
which this solution associates to ν. As ν is not supported by two points it
follows by Meilijson’s theorem that τ(ν) is not ultimate. Therefore there
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exists a measure µ with µ 6cx ν for which there exists no stopping time
τ(µ) satisfying: {

τ(µ) 6 τ(ν)

Wτ(µ) ∼ µ

Therefore the standard solution under consideration is unable to construct
a martingale transition from µ to ν. Of course since µ 6cx ν, a martingale
transition from µ to ν necessarily exists.

Remark. Hobson, Brown and Rogers (see [BHR01] ) have modified the
Azema-Yor solution in order that it no longer be standard and that it be
able to construct martingale transitions between arbitrary pairs of marginals
which admit a martingale transition.

3.5 The Dubins solution to the Skorokhod embed-
ding problem

In this section, we describe the Dubins solution to the SEP given in [Dub68].
The presentation here differs from the original presentation because we wish
to emphasize a framework which we will use in the next section to construct
a new Dubins type solution to the SEP.

Let µ be the probability measure which is to be embedded in Brownian
motion. A sequence of partitions of R is defined recursively. The initial parti-
tion, Partition(0) is {R}. The following partitions are obtained recursively.
Partition(n + 1) is obtained by cutting each interval [a, b] ∈ Partition(n)
into two, as follows:

[a, b]→ [a, c] and [c, b] where

c =
1

µ([a, b])

∫
[a,b]

x dµ(x) (note that a ≤ c ≤ b)

If a or b is +∞ or −∞, the value of c is calculated in the same way,
and the cutting is also done in the same way. For each n ∈ N, a mea-
sure µn is obtained from Partition(n) in the following way: for each in-
terval [a, b] ∈ Partition(n), place an atom of mass µ([a, b]) at position

1

µ([a, b])

∫
[a,b]

x dµ(x)

An increasing sequence of stopping times is defined by

τn = inf{t ≥ τn−1 : Wt ∈ support of µn}

and Dubins’ solution to the SEP is the stopping time τ defined by

τ := sup{τn}
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3.6 A new solution to the Skorokhod embedding
problem

Dubins in [Dub68] gave the first solution to the Skorokhod embedding prob-
lem (SEP) based solely on the underlying Brownian motion, and thus re-
quiring no additional independent random variable. The Dubins solution to
the SEP, can be expressed as τ := sup{τn} with τn = inf{t ≥ τn−1 : Wt ∈
support of µn}. Since the measures µn are defined recursively, in order to

compute µn, each of µ0, .., µn−1 must first be computed. We now give a
new solution to the SEP by showing how to construct a different sequence
of measures {µn}n∈N. The advantage of this solution is that for any given
n, the measure µn can be constructed directly without prior computation of
the measures µ0, .., µn−1.

We will define a sequence of measures µn and a corresponding increasing
sequence of stopping times τn. First, we will prove that µn converges to µ,
then we will prove that Wτn ∼ µn for each n ∈ N. Finally, defining τ to be
supn{τn} , we will obtain Wτ ∼ µ.

Let F be the cumulative distribution function of µ. Its inverse, F−1(x)
is called the quantile function of µ. Since F is a non decreasing function
from R to [0, 1], its inverse, F−1 is a non decreasing function from (0, 1] to R.

Definition 3.6.1. For n ≥ 0, define µn to be the uniform measure on the
following 2n coordinates:

ai = 2n
∫ i+1

2n

i
2n

F−1(u) du with i ranging from 0 to 2n − 1

Lemma 3.6.2. µn converges weakly to µ.

Proof. Let F be the cumulative distribution function of µ, and Fn be the
cumulative distribution function of µn. Showing that µn converges weakly
to µ amounts to showing that Fn converges pointwise to F . The collection
of intervals {

(
F−1( i−12n ) , F−1( i

2n )
]

: 1 ≤ i ≤ 2n} generate the support of
µ. We will proceed by establishing bounds for F and Fn when t belongs to
such an interval, i.e. when t ∈ [F−1( i−12n ) , F−1( i

2n )].
Bounding F is straightforward: since F is non decreasing,

F−1(
i− 1

2n
) ≤ t ≤ F−1( i

2n
)⇒ F

(
F−1(

i− 1

2n
)

)
≤ F (t) ≤ F

(
F−1(

i

2n
)

)
⇒ i− 1

2n
≤ F (t) ≤ i

2n
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We now proceed to obtain bounds for Fn. Recall that µn is the uniform
distribution on the following 2n points:

ai = 2n
∫ i+1

2n

i
2n

F−1(u) du i ranging from 0 to 2n − 1

Since F−1 is a non decreasing function, we obtain a bound for ai by bound-
ing the above integral:

2n(
i+ 1

2n
− i

2n
) F−1(

i

2n
) ≤ ai ≤ 2n(

i+ 1

2n
− i

2n
) F−1(

i+ 1

2n
) ⇒ F−1(

i

2n
) ≤ ai ≤ F−1(

i+ 1

2n
)

From these bounds for ai, we will obtain bounds for the cumulative distri-
bution function Fn of µ. Letting 1 denote the indicator function, we have
the following expression for the cumulative distribution function Fn of µn:

Fn(t) =
1

2n

2n−1∑
i=0

1{ai ≤ t}

Since we have seen that

ai−1 ≤ F−1(
i

2n
) ≤ ai ≤ F−1(

i+ 1

2n
) ≤ ai+1

therefore,

F−1(
i− 1

2n
) ≤ t ≤ F−1( i

2n
) ⇒ ai−1 ≤ t ≤ ai+1

⇒ i− 1

2n
≤ 1

2n

2n−1∑
i=0

1{ai ≤ t} ≤
i+ 1

2n

⇒ i− 1

2n
≤ Fn(t) ≤ i+ 1

2n

The bounds for F , together with the bounds for Fn , give bounds for
| F (t)− Fn(t) |:

t ∈ [F−1(
i− 1

2n
) , F−1(

i

2n
)] ⇒ i− 1

2n
≤ F (t) ≤ i

2n
and

i− 1

2n
≤ Fn(t) ≤ i+ 1

2n

⇒ | F (t)− Fn(t) | ≤ 2

2n

Since the collection of intervals {
(
F−1( i−12n ) , F−1( i

2n )
]

: 1 ≤ i ≤ n} gener-
ates the support of µ, and therefore the support of µn, we obtain:

| Fn(t)− F (t) | ≤ 2

2n
∀ t ∈ R

Hence Fn converges pointwise to F , and this implies that µn converges
weakly to µ.
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Definition 3.6.3. Define the following collection of stopping times:

τ0 = 0 and for n ≥ 1, τn = inf{t ≥ τn−1 : Wt ∈ support of µn}

Theorem 3.6.4. Wτn has law µn.

Proof. We prove this by induction. We first verify that Wτ0 ∼ µ0. Now τ0
is defined to be 0, so Wτ0 = W0 = 0. Also µ0 is defined to be the Dirac at∫ 1
0 F

−1(u) du =
∫
R x dµ = 0. Hence Wτ0 ∼ µ0, and so the statement is true

for n = 0.

Suppose that the statement is true for n, in other words, suppose that
Wτn ∼ µn. We will determine the law of Wτn+1 , conditioned on Wτn having
law µn. To do this, we take an arbitrary point m in the support of µn and
calculate the distribution of Wτn+1 conditioned on {Wτn = m}. Since m
belongs to the support of µn, there exists an i ∈ {0, .., 2n − 1} such that

m = 2n
∫ i+1

2n

i
2n

F−1(u) du

.

Denote by u (for upper) the smallest element of the support of µn+1

which is greater or equal to m. Also denote by l (for lower) the largest
element of the support of µn+1 which is less than or equal to m. Since F−1

is a non decreasing function, we can write these two elements u and l as:

u = 2n+1

∫ i+1
2n

i
2n

+ 1
2n+1

F−1(u) du

l = 2n+1

∫ i
2n

+ 1
2n+1

i
2n

F−1(u) du

(3.1)

Notice that u + l = 2m and so m = l+u
2 . It follows that m is equidistant

from l and u. And so, conditioned on {Wτn = m}, the events {Wτn+1 = l}
and {Wτn+1 = u} are equiprobable. In other words,

P(Wτn+1 = l |Wτn = m) =
1

2

P(Wτn+1 = u |Wτn = m) =
1

2

(3.2)

By a straightforward iterative argument, it follows that

P(Wτn+1 = l) =
1

2
P (Wτn = m) =

1

2
× 1

2n
=

1

2n+1

P(Wτn+1 = u) =
1

2
P (Wτn = m) =

1

2
× 1

2n
=

1

2n+1

(3.3)

Therefore Wτn+1 follows a uniform distribution which has the same sup-
port as µn+1. Since µn+1 is itself a discrete uniform law, it follows that
Wτn+1 ∼ µn+1.
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We now provide a lemma which shows that, for a large class of quan-
tizations, the quantized measure is dominated in the convex order by the
original measure (i.e. µ̂ ≤cx µ).

Lemma 3.6.5. Let J be a partition of R. Let µ̂ be the probability measure
which is constructed from µ in the following way: for each J ∈ J , an atom

of mass µ(J) is placed at position

∫
J x dµ(x)

µ(J)
. Then,

∫
R
φ(x) dµ̂(x) ≤

∫
R
φ(x) dµ(x) for every convex function φ.

Proof. Let J be an arbitrary element of J . By construction, µ̂(J) = µ(J)

and
∫
J x dµ̂(x) =

∫
J x dµ(x). The measure

µ(dx)

µ(J)
is a probability measure

on J . Its expectation is

∫
J x dµ(x)

µ(J)
. Therefore, by Jensen’s inequality, for

every convex function φ,∫
J
φ(x)

dµ(x)

µ(J)
≥ φ

(∫
J x dµ(x)

µ(J)

)

As µ̂(J) = µ(J), the measure
µ̂(dx)

µ(J)
is a probability measure on J . It

consists of a single Dirac point mass at the position

∫
J x dµ(x)

µ(J)
. Therefore,

∫
J
φ(x)

dµ̂(x)

µ(J)
= φ

(∫
J x dµ(x)

µ(J)

)
Combining the two above equations yields∫

J
φ(x)

dµ(x)

µ(J)
≥
∫
J
φ(x)

dµ̂(x)

µ(J)

which is equivalent to ∫
J
φ(x) dµ(x) ≥

∫
J
φ(x) dµ̂(x)

As the above holds for each J ∈ J , and together they constitute a partition
of R, we obtain ∫

R
φ(x) dµ(x) ≥

∫
R
φ(x) dµ̂(x)
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Theorem 3.6.6. τ := sup{τn} is a solution to the Skorokhod Embedding
Problem (SEP).

We have shown that µn converges weakly to µ and that Wτn ∼ µn, which
together imply that Wτ ∼ µ. For τ to be a solution to the SEP, it remains
to verify that E[τ ] < ∞. In order to do this, we first check that τn is a
solution to the SEP for µn. Now,

E[τn] = E[τn − τn−1] + E[τn−1 − τn−2] + ..+ E[τ2 − τ1] + E[τ1]

Each expectation on the right hand side is a weighted average of expected
exit times from strips for the Brownian motion W, and is therefore finite.
This together with Theorem 3.6.4 (Wτn ∼ µn) implies that τn is a solution
to the SEP for µn. It follows that,

E[τn] =

∫
R
x2 dµn(x) for each n.

Let an denote the sequence n → E[τn] which, by the above equality, is
identical to the sequence n→

∫
R x

2 dµn(x). We show that an converges by
showing that it is increasing and bounded. It is increasing because n→ E[τn]
is increasing. It is bounded because by lemma 3.6.5, we have∫

R
x2 dµn ≤

∫
x2 dµ for each n.

Therefore an converges. In other words E[τn] converges. This means that
E[τ ] <∞.

3.7 Numerical illustration

Using the standard Gaussian law, N (0, 1), we numerically show that the
sequence of measures {µn}n∈N constructed by our solution to the SEP is
different from the sequence of measures generated by the Dubins solution.
The first 4 partitions of R produced by Dubins solution are:

Partition(0) = { [-inf,inf] }

Partition(1) = { [-inf,0] [0,inf] }

Partition(2) = { [-inf,-0.797885] [-0.797885,0] [0,0.797885] [0.797885,inf] }

Partition(3) = { [-inf,-1.36576] [-1.36576,-0.797885] [-0.797885,-0.378257] [-0.378257,0]

[0,0.378257] [0.378257,0.797885] [0.797885,1.36576] [1.36576,inf] }

For each interval [a, b], we compute µ([a, b]):

Partition(0) : 1

Partition(1) : 0.5 0.5

Partition(2) : 0.212469 0.287531 0.287531 0.212469

Partition(3) : 0.086007 0.126462 0.140151 0.14738 0.14738 0.140151 0.126462 0.086007
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Our solution to the SEP generates a sequence of measures {µn}n∈N, such
that each µn is a uniform law on 2n support points. The Dubins construction
for the N (0, 1) law has produced laws µ2 and µ3 which are not uniformly
distributed. It follows that our construction is different from that of Dubins.
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Part III

Continuous time martingales
with specified marginals:

some constructions
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Chapter 4

Overview of existence and
uniqueness results

Definition 4.0.1. Let (µt)t∈R+ be a collecting of probability laws on R. We
say that this collection is increasing in the convex order if:

for all s 6 t, µs 6cx µt

Definition 4.0.2. The following call transform associates a function of two
variables C(t, k) to a collection of marginal laws (µt)t∈R+ :

C(t, k) =

∫
R

(x− k)+dµt(x)

Existence and uniqueness results have been obtained in the following 3
frameworks:

Framework A: {
(µt)t∈R+ have constant means.

C(t, k) is increasing in t.

Framework B: {
(µt)t∈R+ have constant means.

C(t, k) is increasing and continuous in t.

Framework C:{
(µt)t∈R+ have constant means.

C(t, k) is increasing and differentiable in t.

Remark. Framework A is equivalent to (µt)t∈R+ being increasing in the con-
vex order.
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Remark. These 3 frameworks are from least to most restrictive

C ⇒ B ⇒ A

Theorem 4.0.3. (Kellerer [Kel72], Lowther [Low08], Dupire [Dup94])

• Under framework A, there exists a martingale M with Mt ∼ µt. The
martingale M is generally not unique.
(see Kellerer [Kel72], see also [HR12] for an alternate proof of this
result)

• Under framework B, uniqueness is obtained when restricting consid-
eration to the class of martingales which are almost continuous diffu-
sions. (see Lowther [Low08]). See below for the definition of an almost
continuous diffusion.

• Under framework C, uniqueness is obtained when restricting consider-
ation to the class of martingales which are continuous diffusions. (see
Dupire [Dup94])

Definition 4.0.4. A process X is an almost continuous diffusion if it is
strong Markov with cadlag paths and given two independent processes X
and Z distributed as X, the following holds:

∀s, t ∈ R+with s < t, P (Ys < Zs, Yt > Zt and Yu 6= Zu ∀u ∈ (s, t)) = 0

4.1 The Kellerer existence theorem

Kellerer’s celebrated theorem for the existence of martingales with specified
marginals is as follows.

Theorem 4.1.1. (Kellerer [Kel72]) Let (µt)t∈R+ be a specified collection
of marginals. If this collection is increasing in the convex order then there
exists a martingale (Mt)t∈R+ which has the Markov property and satisfies
∀t ∈ R+, Mt ∼ µt.

The paper containing this result, ([Kel72]) is published in German, so
we give an outline of the proof here. This theorem is in fact proved as
the consequence of a more general existence theorem. This general theorem
provides sufficient conditions for the existence of a Markov process which
is compatible with a collection of marginals as well as with a collection of
bivariate transition laws.
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4.1.1 Kernels and disintegration of measures

We will need the definition of a transition kernel:

Definition 4.1.2. Let B denote the set of Borel sets of R. A Kernel is a
map from (R,B) such that:
(i)∀x ∈ R, the function B → K(x,B) is a probability measure on R.
(ii)∀B ∈ B, the function x→ K(x,B) is measurable.

Remark. (Disintegration of measures) A measure ρ ∈ P(R × R) can be
represented as a measure µ ∈ P(R) and a transition kernel K(x, dy) as
follows:

ρ(A×B) =

∫
A
K(x;B) dµ(x)

4.1.2 Framework of Kellerer’s theorem

Kellerer’s main theorem is based on the following setting:
• The marginal laws are specified:

∀t ∈ R+, µt ∈ P(R) is given

• For each pair of times (s, t), a collection of bivariate laws denoted Ls,t is
specified:

∀(s, t) ∈ R+ × R+, Ls,t ⊆ P(R× R) is given.

Each ρ ∈ Ls,t must have marginals µs and µt.

4.1.3 The Kellerer existence theorem

Theorem 4.1.3. (Kellerer) A sufficient condition for the existence of a
stochastic process (Xt)t∈R+ satisfying:{

∀t ∈ R+, Xt ∼ µt
∀s, t ∈ R+, the law of (Xs, Xt) belongs to Ls,t

is that for all r, s, t with r < s < t,
Ls,t be closed and non empty.

Ls,t ⊆ S ( the set S is a special class of bivariate laws − see below for its definition)

If ρ1 ∈ Lr,s and ρ2 ∈ Ls,t, then their composition must belong to Lr,t
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Definition 4.1.4. The set S denotes the following special class of bivariate
laws. A measure ρ ∈ P(R × R) belongs to S if and only if there exists a
disintegration of ρ as

ρ(A×B) =

∫
A
K(x;B) dµ(x)

with µ ∈ P(R) and a kernel K(x, dy) which satisfies:

||K(a; .)−K(b, .)|| ≤ ||a− b|| for all a, b ∈ support(µ)

Lemma 4.1.5. The set S is closed with respect to the weak topology.

The proof of Kellerer’s theorem relies on the following lemmas:

Lemma 4.1.6. Let (µt)t∈R+ be any specified collection of marginals.
Consider the set of real valued processes which have these marginals:

A = {(Xt)t∈R+ : Xt ∼ µt ∀t ∈ R+}

Then the set of measures on R[0,∞) corresponding to the above set of pro-
cesses is compact with respect to the weak topology (see [Kel72]).

Lemma 4.1.7. Let t1, .., tn be an increasing collection of times.
Define the set At1,..,tn as:

At1,..,tn = {(Xt)t∈R+ ∈ A : (Xti , Xti+1) ∈ Lti,ti+1 for each i from 1 to n− 1}

Then At1,..,tn is closed and non empty.

Lemma 4.1.8. if {s1, .., sk} ⊆ {t1, .., tn} then,

At1,..,tn ⊆ As1,..,sk

Proof. (of Theorem 4.1.3) The intersection of the sets At1,..,tn over all finite
collections of times t1, .., tn is non empty.
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Chapter 5

A Brownian sheet martingale
with the same marginals as
the arithmetic average of
geometric Brownian motion.

This section is based on a joint article with M. Yor see [BY09]

Definition 5.0.9. Brownian sheet is the two parameter centered a Gaussian
process with covariance function

E[B(s, t)B(s
′
, t
′
)] = min(s, s

′
)×min(t, t

′
)

Note that this implies that Var[B(s, t)] = st.

5.1 Introduction and Main Result

We construct a martingale which has the same marginals as the arithmetic
average of geometric Brownian motion. This provides a short proof of the
recent result due to P. Carr et al [CEX08] that the arithmetic average of
geometric Brownian motion is increasing in the convex order. The Brownian
sheet plays an essential role in the construction. Our method may also be
applied when the Brownian motion is replaced by a stable subordinator.

To (Bt, t > 0) a 1-dimensional Brownian motion, starting from 0, we
associate the geometric Brownian motion:

Et = exp(Bt −
t

2
), t > 0

and its arithmetic average:

1

t
At =

1

t

∫ t

0
ds Es, t > 0
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A recent striking result by P. Carr et al [CEX08] is the following:

Theorem 5.1.1. i) The process (1tAt, t > 0) is increasing in the convex or-
der, that is: for every convex function g : R+ → R, such that E

[
|g
(
1
tAt
)
|
]
<

∞ for every t > 0, the function:

t→ E
[
g

(
1

t
At

)]
is increasing

ii) In particular, for any K > 0, the call and put prices of the Asian option
which we define as:

C+(t,K) = E

[(
1

t
At −K

)+
]

and C−(t,K) = E

[(
K − 1

t
At

)+
]

are increasing functions of t > 0.

Comments on Theorem 5.1.1
a) One of the difficulties inherent to the proof of ii), say, is that the law of
At for fixed t, is complicated, as can be seen from the literature on Asian
options.
b) A common belief among practitioners is that any “decent” option price
should be increasing with maturity. But examples involving “strict local
martingales” show that this need not be the case. See e.g. Pal-Protter
[PP08], Delbaen-Schachermayer [DS95]. On the other hand Theorem 5.1.1
offers a proof of the increase in maturity for Asian options.

The proof of Theorem 5.1.1 as given in [CEX08] (see also [BY08] for a
slight variation) is not particularly easy, as it involves the use of either a
maximum principle argument (in [CEX08]) or a supermartingale argument
(in [BY08]). We note that the proofs given in [CEX08] and [BY08] show
that for any individual convex function g, the associated function G(t) =
E[g(1tAt)] is increasing. In contrast, in the present paper we obtain directly
the result of Theorem 5.1.1 as a consequence of Jensen’s inequality, thanks
to the following

Theorem 5.1.2. i)There exists a filtered probability space (Ω,G ,Gt,Q) and
a continuous martingale (Mt, t > 0) on this space such that:

for every fixed t > 0, 1
tAt

(law)
= Mt

ii)More precisely, if (Wu,t, u > 0, t > 0) denotes the standard Brownian sheet
and Fu,t = σ{Wv,s, v 6 u, s 6 t} its natural increasing family of σ-fields,
one may choose:

Mt =

∫ 1

0
du exp(Wu,t −

ut

2
) , t ≥ 0

which is a continuous martingale with respect to (F∞,t, t > 0)
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We note that in [MY02] several methods have been developed to con-
struct martingales with given marginals, an important problem considered
by Strassen, Doob, Kellerer among others. See, e.g., references in [MY02].
Theorem 5.1.2 may also be considered in this light, providing a martingale
whose one-dimensional marginals are those of (1tAt, t > 0 ). In Section 2,
we give our (very simple!) proof of Theorem 5.1.2, and we comment on
how we arrived gradually at the formulation of Theorem 5.1.2. We also
obtain a variant of Theorem 5.1.2 when (exp(Bt − t

2), t > 0) is replaced by
(exp(Bt − at), t > 0) for any a ∈ R.

In Section 3, we study various possible extensions of Theorem 5.1.2, i.e.
: when the original Brownian motion (Bt, t > 0) is replaced by certain Lévy
processes, in particular stable subordinators and self-decomposable Lévy
processes. In Section 4, we study some consequences of Theorem 5.1.1.

5.2 Proof of Theorem 5.1.2, and Comments

(2.1) We first make the change of variables: u = vt, in the integral

At =

∫ t

0
du exp(Bu −

u

2
)

We get: 1
tAt =

∫ 1
0 dv exp(Bvt − vt

2 )
It is now immediate that since, for fixed t,

(Bvt, v > 0)
(law)
= (Wv,t, v > 0), then:

for fixed t,
1

t
At

(law)
=

∫ 1

0
dv exp(Wv,t −

vt

2
)

Denoting by (Mt) the right-hand side, it remains to prove that it is a
(F∞,t, t > 0) martingale. However, let s < t, then:

E
[
Mt

∣∣F∞,s] =

∫ 1

0
dv E

[
exp(Wv,t −

vt

2
)
∣∣F∞,s] .

Since (Wv,t −Wv,s) is independent from F∞,s, we get:

E
[
exp(Wv,t −

vt

2
)
∣∣F∞,s] = exp(Wv,s −

vs

2
)

so that, finally: E
[
Mt

∣∣F∞,s] = Ms.
This ends the proof of Theorem 5.1.2.
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Remark: The same argument of independence allows to show more gener-
ally that, if f : R× R+ → R is space-time harmonic, i.e. (f(Bt, t), t > 0) is
a martingale, then:

M
(f)
t

def
=

∫ 1

0
du f(Wu,t, ut)

is a (F∞,t, t > 0) martingale. Thus in particular, for any n ∈ N, one gets:

for fixed t,
1

t

∫ t

0
du Hn(Bu, u)

(law)
= M

(n)
t

where: M
(n)
t =

∫ 1

0
du Hn(Wu,t, ut)

and Hn(x, t) = tn/2hn( x√
t
) denotes the nth Hermite polynomial in the two

variables (x, t) ∈ R× R+

Consequently, in that generality,

(
1

t

∫ t

0
du f(Bu, u), t > 0)

is increasing in the convex order sense.

(2.2) At this point, we feel that a few words of comments on how we arrived
gradually at the statement of Theorem 5.1.2 may not be useless.
(2.2.1) We first recall the basic result of Rothschild and Stiglitz [RS70]. The
notation 6cv means domination in the convex order sense; see [SS94], [SS06].

Proposition 5.2.1. Two variables X and Y on a probability space satisfy:
X 6cv Y if and only if on some (other) probability space, there exists X̂ and
Ŷ such that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii) E

[
Ŷ
∣∣X̂] = X̂

For discussions, variants, amplifications of the RS result, we refer the
reader to the books of Shaked-Shantikumar ([SS94], [SS06]). Thus in order
to show that a process (Ht, t > 0) is increasing in the convex order sense,
one is led naturally to look for a martingale (MH

t , t > 0) such that:

for fixed t, Ht
(law)
= MH

t

In fact the papers of Strassen, Doob and Kellerer, refered in [MY02], show
that there exists such a martingale (MH

t , t ≥ 0).
(2.2.2) The following variants of Proposition 1 shall lead us to consider
properties of the process:

1

t
A

(a)
t ≡

1

t

∫ t

0
ds exp(Bs − as)
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for any a ∈ R.
The notation [icv], resp. [dcv] used below indicates the notion of ”increasing
convex ”, resp. ”decreasing convex” order. (See e.g. [SS94], [SS06] for
details; in particular, Theorem 2.A.3 in [SS94] and Theorem 3.A.4 in [SS06])

Proposition 5.2.2. Two variables X and Y on a probability space satisfy:
X 6[icv] Y if and only if there exists on some (other) probability space, a

pair (X̂, Ŷ ) such that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii)↑ X̂ 6 E

[
Ŷ
∣∣X̂]

Proposition 5.2.3. Same as Proposition 5.2.2, but where [icv] is replaced

by [dcv], and (iii)↑ by: (iii)↓ X̂ > E
[
Ŷ
∣∣X̂]

We now apply Propositions 5.2.2 and 5.2.3 to the process (1tA
(a)
t , t > 0)

Theorem 5.2.4. 1) Let a 6 1
2 . Then the process (1tA

(a)
t , t > 0) increases

in the [icv] sense

2) Let a > 1
2 . Then, the process (1tA

(a)
t , t > 0) increases in the [dcv] sense.

We leave the details of the proof of Theorem 5.2.4 to the reader as it is
extremely similar to that of Theorem 5.1.2.

(2.2.3) The following statement is presented here in order to help with our
explanation of how we arrived gradually at the statement of Theorem 5.1.2.

Proposition 5.2.5. Let (Zu) and (Z
′
u) denote two processes. Then under

obvious adequate integrability assumptions, we have:∫ 1

0
du Zu E

[
Z
′
u

∣∣Z] 6cv

∫ 1

0
du Zu Z

′
u

Again, the proof is an immediate application of Jensen’s inequality.
We now explain how we arrived at Theorem 5.1.2:
we first showed that, for 0 < σ

′
< σ, there is the inequality:

Iσ′ ≡
∫ 1

0
du exp(σ

′
Bu −

σ
′2

2
u) 6cv

∫ 1

0
du exp(σBu −

σ2u

2
) ≡ Iσ (2)

Indeed, to obtain (2) as a consequence of Proposition 5.2.5, it suffices to

write: (σBu, u > 0)
(law)
= (σ

′
Bu + γβu, u > 0) where (βu, u > 0), is a BM

independent from (Bu, u > 0)
and σ2 = (σ

′
)2 + γ2, i.e. γ =

√
σ2 − (σ′)2

Once we had made this remark, it seemed natural to look for a ”process”
argument (with respect to the parameter σ), and this is how the Brownian
sheet comes naturally into the picture.
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5.3 Variants involving stable subordinators and self-
decomposable Lévy processes

(3.1) Here is an analogue of Theorem 5.1.1 when we replace Brownian motion
by a (α)-stable subordinator (Tt), for 0 < α < 1, whose law is characterized
by:

E [exp(−λTt)] = exp(−tλα) , t > 0, λ > 0

Theorem 5.3.1. The process 1
tA

(α)
t

def
= 1

t

∫ t
0 ds exp(−λTs + sλα) is increas-

ing for the convex order.

We prove Theorem 5.3.1 quite similarly to the way we proved Theorem
5.1.1, namely: there exists a α-stable sheet (Ts,t, s > 0, t > 0) which may be
described as follows:

(T (A), A ∈ B(R2
+), |A| <∞) is a random measure such that:

i) for all A1, ..., Ak disjoint Borel sets with |Ai| <∞,
T (A1), .., T (Ak) are independent random variables,
ii) E [exp(−λT (Ai))] = exp(−|Ai|λα), λ ≥ 0.
(T (Ai) is an α-stable random variable)

Then we denote Ts,t = T (Rs,t), with Rs,t ≡ [0, s]× [0, t]
See, e.g., [ST94] for the existence of such measures. The result of Theorem
5.3.1 is a consequence of:

Theorem 5.3.2. The process M
(α)
t =

∫ 1
0 du exp(−λTu,t+utλα) is a F

(α)
∞,t ≡

σ{Th,k, h > 0, k 6 t} martingale, and for fixed t:

1

t
A

(α)
t

(law)
= M

(α)
t

(3.2) We now consider a self-decomposable Lévy process.
(See e.g., Jeanblanc-Pitman-Yor [JPY02] for a number of properties of these
processes.)
Assuming that: ∀α > 0, E [exp(αXu)] <∞, then:

E [exp(αXu)] = exp(uϕ(α)), for some function ϕ.

In this framework, we show the following.

Theorem 5.3.3. The process (Iα =
∫ 1
0 du exp(αXu − uϕ(α)), α > 0) is

increasing in the convex order.
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Proof. Since (Xu, u > 0) is self-decomposable, there exists, for any c ∈ (0, 1),

another Lévy process (η
(c)
u , u > 0) such that:

(Xu, u > 0)
(law)
= (cXu + η

(c)
u , u > 0), with independence of X and η(c).

Consequently, we obtain, for any (α, c) ∈ (0,∞)× (0, 1)

Iα
(law)
=

∫ 1

0
du exp(αcXu − uϕ(αc)) exp(αη(c)u − uϕc(α)) (3)

where on the RHS of (3), X and η(c) are assumed to be independent.
Denote by I

′
α the RHS of (3), then :

E
[
I
′
α

∣∣X] =

∫ 1

0
du exp(αcXu − uϕ(αc)) = Iαc

which implies, from Jensen’s inequality: for every convex function g,

E [g(Iαc)] 6 E [g(Iα)]

However we have not found, in this case, a martingale (µα, α > 0) such
that:

for every fixed α, Iα
(law)
= µα

Remark: We note that the above argument is a particular case of the
argument presented in Proposition 5.2.5, which involves two processes Z
and Z

′
.

5.4 Some consequences

Since the process (1tAt, t > 0) is increasing in the convex order, we find, by
differentiating the increasing function of t: E[(K − 1

tAt)
+]

for every K > 0 and t > 0, E
[
1(

1

t
At < K) (Et −

1

t
At)

]
> 0,

although, it is not true that: E
[
Et
∣∣ 1
tAt
]

is greater than or equal to 1
tAt,

since this would imply that: 1
tAt = Et, as the common expectation of both

quantities is 1.

(4.1) More generally, the following proposition presents a remarkable conse-
quence of the increasing property of the process (1tAt, t ≥ 0) in the convex
order sense.
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Proposition 5.4.1. For every increasing Borel function ϕ : R+ → R+ there
is the inequality:

E
[
ϕ

(
1

t
At

)(
1

t
At

)]
≤ E

[
ϕ

(
1

t
At

)
Et
]
. (?)

Equivalently,

E
[
ϕ

(
1

t
At

)(
1

t
At

)]
≤ E

[
ϕ

(
1

t
Ãt

)]
, (??)

where Ãt =
∫ t
0 du exp(Bu + u

2 )

Proof. We may assume ϕ bounded. Then, g(x) =
∫ x
0 dyϕ(y) is convex (its

derivative is increasing), and formula (?) follows by differentiating the in-
creasing function:

t→ E
[
g

(
1

t
At

)]
.

Formula (??) follows from (?) by using the Cameron-Martin relationship
between (Bu, u ≤ t) and (Bu + u, u ≤ t)

(4.2) As a partial check on the previous result (?), we now prove di-
rectly that, for every integer n ≥ 1, t → E[(1tAt)

n] is increasing and that:
E[(1tAt)

n] ≤ E[(1tAt)
n−1Et]

Here are two explicit formulae for: αn(t) = E[(1tAt)
n], and βn(t) = E[(1tAt)

n−1Et].

αn(t) =
n!

tn
E[

∫ t

0
ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp((Bs1 + ...+Bsn)− 1

2
(s1 + ..+ sn))]

=
n!

tn

∫ t

0
ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp(
1

2
C(s1, .., sn))

where C(s1, .., sn) = E[(Bs1 +Bs2 + ..+Bsn)2]− (s1 + ...+ sn)

= 2
∑

1≤i≤n
si(n− i) (> 0)

Consequently:

αn(t) = n!

∫ 1

0
du1...

∫ 1

un−1

dun exp(
t

2
C(u1, ..., un)) (3)

from which it follows that αn(t) is increasing in t.
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Now βn(t) =
(n− 1)!

tn−1
×∫ t

0
ds1...

∫ t

sn−1

dsn−1E
[
exp((Bs1 + ...+Bsn−1 +Bt)−

1

2
(s1 + ...+ sn−1 + t))

]
= (n− 1)!

∫ 1

0
du1...

∫ 1

un−2

dun−1 exp(
t

2
C(u1, ..., un−1, 1)) (4)

We have already seen from formula (3), that αn(t) is increasing in t; conse-
quently: α

′
n(t) ≥ 0 and by definition of αn:

α
′
n(t) = nE

[(
1

t
At

)n−1(
− 1

t2
At +

Et
t

)]
=
n

t
{βn(t)− αn(t)}

Hence: βn(t) ≥ αn(t).

(4.3) To conclude this paper, let us connect the properties of increase of
the functions αn and βn with our method of proving Theorem 5.1.1 using
the Wiener sheet, as performed in Theorem 5.1.2.
Indeed, the same argument as in Theorem 5.1.2 shows that for any positive
measure µ(du1, ..., dun) on [0, 1]n the process:∫

µ(du1, .., dun)
n∏
i=1

E(uit) (5)

admits the same one-dimensional marginals as the (Wt) submartingale∫
µ(du1, .., dun)

n∏
i=1

E(ui)t (W ) (6)

where E(u)t (W ) = exp(Wu,t − ut
2 ).

Hence, the common expectation of (5) and (6) increases with t; αn(t) and
βn(t) constitute particular examples of this.
A final Note: Pushing further the use of the Brownian sheet and a variation
from the construction of the Ornstein-Uhlenbeck process on the canonical
path-space C([0, 1];R) in terms of that sheet, Hirsch-Yor [HY09] obtain a
large class of processes, adapted to the brownian filtration, which admit the
one-dimensional marginals of a martingale.
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Chapter 6

When the greeks of Asian
options are positive
supermartingales

6.1 Introduction

In [CEX08] Carr, Ewald and Xiao prove that under the assumptions of the
Black-Scholes Model a convex payoff arithmetic Asian option’s value is a
monotonically increasing function of the volatility. In this paper we present
a supermartingale argument which is used to obtain this monotonicity re-
sult for all diffusions with affine coefficients. This includes the geometric
Brownian motion of the Black-Scholes model as well as processes such as
the mean reversing Ornstein-Uhlenbeck of the Vasicek model. This is of
practical importance because due to their averaging feature Asian options
are often written on exchange rates, interest rates or commodities which do
not follow the dynamics of the Black-Scholes model but can be modeled by
the Vasicek model.

By showing the vega of an Asian call is a positive supermartingale in
addition to the monotonicity implications in σ this yields additional infor-
mation on an investor’s exposure to volatility through this instrument. Not
only does this instrument make him long on volatility, but in addition his ex-
pected future exposure to volatility through this instrument is less than his
current exposure. This clearly provides useful insights for risk management.

An option is a financial contract whose value depends on another eco-
nomic variable called the underlying. The underlying could be for exemple
a stock, an exchange rate, an interest rate, a commodity. It is not surpris-
ing that the properties of a particular Asian option are highly dependent on
those of its underlying. In a given financial model the dynamics of the under-
lying will be specified by a stochastic process. Under the the Black-Scholes
model assumption the underlying, which is a Stock, follows a geometric
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Brownian motion with drift. Under the Vasicek model the underlying which
is the short term interest rate follows a mean reversing Ornstein-Uhlenbeck
process. The short term interest rate can also be modeled by a Cox-Ingersoll-
Ross (CIR) process. In the following pages we develop a methodology to
study the impact of volatility of Asian options, which we apply to succes-
sively larger classes of underlying processes.

An Asian option is a path dependent option which means that its value is
dependent on the entire trajectory of the underlying from the initial time t=0
to maturity (t=T). given a specified function g the holder of the asian option
with maturity T on the underlying X receives at maturity the following
payoff

g(
1

T

∫ T

0
Xudu) = g(AT ) where At =

1

t

∫ t

0
Xudu

In the case of an Asian call g(x) = (x − K)+ and in the case of an Asian
put g(x) = (x−K)−

By the risk neutral pricing formula (see for example [Shr00]), the value
of the Asian option is

v(t, T, x, y, σ) = E(g(
1

T

∫ T

0
Xudu) | Ft) = E(g(

1

T

∫ T

0
Xudu) | Xt = x,

∫ t

0
Xudu = y)

We see that the value of an Asian option is a functional of the running aver-
age of the underlying process. This paper describes an approach to evaluate
how changes in volatility affect the value of Asian options on certain under-
lyings.

The content of the paper is distributed as follows: Section 2 contains a
discussion of the problem and an outline of the supermartingale argument
which will be employed in the following three sections. In Section 3 we work
under the Black-Scholes model assumptions and use the supermartingale
argument to get the results obtained in [CEX08]. In section 4, we show that
this is true for all diffusions with affine coefficients and such that the volatil-
ity parameter does not appear in the drift term . In Section 5 we prove
the result for an interesting case where the drift of the process is dependent
on volatility. In Section 6 the result is examined under the expected utility
framework. Finally in section 7 we use a result from the theory of expected
utility to obtain a property of the running average process of geometric
Brownian motion.

6.2 The supermartingale argument

We now give an outline of our supermartingale argument, The method we
use is to focus on the time indexed process vσ which describes the sensitivity
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of the option to volatility. This sensitivity is of course a function of the two
state variables Xt and Yt. Heuristically the two key phenomena and their
mathematical formulations are

• The present vega (vσ) is larger than the expected future vega (vσ is a
supermartingale)

• at maturity the option is no longer affected by volatility (vσ(t = T ) =
0)

These two properties imply that vega cannot be negative, for if it was neg-
ative at a given time ( call it t0) then vega would be expected to increase
(actually certain to increase) between t0 and and T contradicting the super-
martingale property. i.e. the expectation of the future value is less than the
present value.

The state variables of an arithmetic asian option are

• The underlying (for example an exchange rate, an interest rate, a
stock price) which is modeled as a diffusion process. dXt = b(Xt)dt+
a(Xt)σdWt Note that this encompasses a fairly large class of diffusion
processes containing Geometric Brownian motion, the CIR process
(drt = −θ(rt − µ)dt+ σ

√
rtdWt) etc...

Note However that the class of diffusion which we are considering
excludes those for which the volatility parameter appears in the drift
term

• the running integral of the underlying which by definition is Yt =∫ t
0 Xsds

6.3 Black Scholes model

Lemma 6.3.1. let g be a stricly convex (resp. concave) function. Under
the assumptions of the Black Scholes model [BS73], the Asian option with

payoff E[g(
∫ 1
0 duX

(σ)
u )] has a positive (resp. negative ) gamma (vxx)

Proof.

vxx(t, x, y, σ) =
d2

dx2
E[g(y+x

∫ 1−t

0
duX(σ)

u )] = E[g′′(y+x

∫ 1−t

0
duX(σ)

u )(

∫ 1−t

0
duX(σ)

u )2] > 0

Theorem 6.3.2. If vxx ≥ 0 then vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u , σ) (0 ≤ t ≤ T ) is an Ft−
supermartingale,which takes the value 0 at t=T
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Proof. By a regularity result for the solutions of PDEs, vσ(t, x, y) is C1 in t
and C2 in x and y.

We may apply Ito’s formula to obtain

dvσ(t,Xt, Yt) =vσtdt+ vσxb(Xt)dt+ vσxσa(Xt)dWt + xvσydt+
1

2
σ2a2(Xt)vσxxdt

=(vσt + vσxb(Xt) + xvσy +
1

2
σ2a2(Xt)vσxx)dt+ vσxσa(Xt)dWt

Now we focus on the finite variation process (the dt term) and proceed as
in Carr, Ewald, Xiao [CEX08] in order to obtain an alternate representation
for it.

We are placing ourselves under the martingale equivalent measure. It
follows that v(t,Xt, Yt) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

vt + vxb(xt) + xvy +
1

2
σ2a2(x)vxx = 0

Differentiating with respect to σ which we can do by regularity results for
the solutions to PDEs

vtσ + vxσb(x) + xvyσ + σa2(x)vxx +
1

2
σ2a2(x)vxxσ = 0

⇒ vtσ + vxσb(x) + xvyσ +
1

2
σ2a2(x)vxxσ = −σa2(x)vxx

Returning to the semimartingale representation of vσ we see that

dvσ(t,Xt, Yt) =− σ2a2(Xt)vxxdt+ vσxσa(Xt)dWt

by the equation above, if vxx > 0 the finite variation process in the semi-
martingale representation of vσ is decreasing which implies that vσ(t,Xt, Yt)
is an Ft−supermartingale. Moreover v(1, x, y, σ) = g(y) so vσ(1, x, y, σ) = 0
this completes the proof. Now we show the non-negativity of the super-
martingale

0 = E[vσ(1, X
(σ)
1 ,

∫ 1

0
X(σ)
u du, σ)|Ft] ≤ vσ(t,X

(σ)
t ,

∫ t

0
duX(σ)

u , σ)

Corollary 6.3.1. for any t ∈ [0, T ) if g is a convex function (resp. concave)
the option’s value is increasing in volatility (resp. decreasing).
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Proof. We have shown that for g convex (resp. concave ) vσ is a postive
supermartingale (resp. negative submartingale) The monotonicity follows
from the constant sign of the partial derivative.

Corollary 6.3.2. for t = 0 If g is a convex function (resp. concave) the
option’s value is increasing (resp. decreasing) in time to maturity (T).

Proof. By scaling we reduce the problem to T = 1 and to a discussion in
σ(=

√
T ) Indeed

E[g(
1

T

∫ T

0
exp(Bs −

s

2
)ds)] = E[g(

∫ 1

0
exp(σBu −

σ2u

2
)du)]

6.4 Diffusions with affine coefficients

This section is devoted to situations where the dynamics of the under-
lying are described by a diffusion process with affine coefficients. More
precisely Xt is the unique solution to the stochastic differential equation
dXt = b(Xt)dt + a(Xt)σdWt where a and b are affine functions. this class
encompasses the following processes

• geometric Brownian motion which is the solution to the following SDE
dXt = σXtdWt

• geometric Brownian motion with constant drift which is the solution to
the following SDE dXt = µXtdt+ σXtdWt This is the process chosen
to model the stock price in the Black-Scholes model

• the mean-reversing Ornstein-Uhlenbeck process which is the solution
to the following SDE: drt = −θ(rt − µ)dt + σdWt This is the process
chosen to model interest rates in the Vasicek model for the short term
interest rate.

Theorem 6.4.1. If vxx ≥ 0 then vσ(t,X
(σ)
t ,

∫ t

0
duX(σ)

u , σ) (0 ≤ t ≤ T ) is an Ft−
supermartingale,which takes the value 0 at t=T

Proof. By a regularity result for the solutions of PDEs, vσ(t, x, y) is C1 in t
and C2 in x and y.

We may apply Ito’s formula to obtain

dvσ(t,Xt, Yt) =vσtdt+ vσxb(Xt)dt+ vσxσa(Xt)dWt + xvσydt+
1

2
σ2a2(Xt)vσxxdt

=(vσt + vσxb(Xt) + xvσy +
1

2
σ2a2(Xt)vσxx)dt+ vσxσa(Xt)dWt
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Now we focus on the finite variation process (the dt term) and proceed as
in Carr, Ewald, Xiao [CEX08] in order to obtain an alternate representation
for it.

We are placing ourselves under the the martingale equivalent measure.
It follows that v(t,Xt, Yt) is a martingale.
This implies that the dt term in its Ito development is 0.
in other words

vt + vxb(xt) + xvy +
1

2
σ2a2(x)vxx = 0

Differentiating with respect to σ which we can do by regularity results for
the solutions to PDEs

vtσ + vxσb(x) + xvyσ + σa2(x)vxx +
1

2
σ2a2(x)vxxσ = 0

⇒ vtσ + vxσb(x) + xvyσ +
1

2
σ2a2(x)vxxσ = −σa2(x)vxx

Returning to the semimartingale representation of vσ we see that

dvσ(t,Xt, Yt) =− σ2a2(Xt)vxxdt+ vσxσa(Xt)dWt

by the equation above, if vxx > 0 the finite variation process in the semi-
martingale representation of vσ is decreasing which implies that vσ(t,Xt, Yt)
is an Ft−supermartingale. Moreover v(1, x, y, σ) = g(y) so vσ(1, x, y, σ) = 0
this completes the proof. Now we show the non-negativity of the super-
martingale

0 = E[vσ(1, X
(σ)
1 ,

∫ 1

0
X(σ)
u du, σ)|Ft] ≤ vσ(t,X

(σ)
t ,

∫ t

0
duX(σ)

u , σ)

Implications We have reduced our study of vσ to the study of vxx
This is called the gamma (greek letter Γ) of the option. We now obtain an
expression for vxx interms of the underlying process Xt

Recall that v(t, y, x, σ) = E[g(
∫ 1
0 Xsds)|Ft] = E[g(y +

∫ 1−t
0 duXx

u)] with

y =
∫ t
0 dsXs and x = Xt

Differentiating with respect to the initial condition,

vx(t, y, x, σ) = E[g
′
(

∫ 1−t

0
Xx
s ds)(

∫ 1−t

0
X
′x
s ds)]

Differentiating again with respect to the initial condition,

vxx = E[g
′′
(y+

∫ 1−t

0
Xx
s ds)(

∫ 1−t

0
X
′x
s )2ds+g

′
(y+

∫ 1−t

0
Xx
s ds)(

∫ 1−t

0
X
′′x2
s ds)]
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We must now examine the derivative of the process Xt with respect to the
initial condition.

Recall Xx
t = x+

∫ t
0 a(Xx

s )σdβs +
∫ t
0 b(X

x
s )ds

⇒ X
′x
t = 1 +

∫ t

0
[a
′
(Xx

s )σdβs + b
′
(Xx

s )ds]X
′x
s

= exp(

∫ t

0
a
′
(Xx

s )σdβs + b
′
(Xx

s )ds)− 1

2

∫ t

0
(a
′
(Xx

s ))2σ2ds)

We see that if a and b are affine functions d
dxXt does not depend on x .

Which means that d2

dx2
Xt is the identically zero process And so

vxx(t, y, x, σ) = E[g
′′
(y +

∫ 1−t

0
Xx
s )(

∫ 1−t

0
X
′x
s ds)

2]

Discussion : When the underlying is a diffusion with affine coefficients
whose drift is unaffected by volatility, the following holds: (a) The value of
an Asian call is increasing in volatility.
(b) The value of an Asian put is decreasing in volatility.
More generally:
When the payoff function g is convex, the vega (vσ) of an asian option is a
positive supermartingale
When the payoff function g is concave, the vega (vσ) of an asian option is a
negative submartingale.

• Black Scholes (the undelying follows a geometric Brownian motion)

• Vasicek (the underlying follows a mean reversing Ornstein-Uhlenbeck
process)

Directions for further research The above results characterize the
qualitative effect of volatility on an important class of underlying diffusions.
A direction for further research would be to examine the effect of volatility on
processes with non-affine coefficients such as the Cox-Ingersoll-Ross (CIR)
process, which is the solution to the following stochastic differential equation.

drt = −θ(rt − µ)dt+ σ
√
XtdWt

It has the property of staying positive which is useful when modeling the
short term interest rate.

6.5 An interesting case where σ appears in the
drift

The case where the underlying follows a geometric Brownian motion with
drift is an interesting one because it describes the dynamics of the underly-
ing in the Black-Scholes model. In this section Xt is taken to be the solution
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to the following linear stochastic differential equation

dXt = µXtdt+ σXtdWt

Using Ito’s formula we can check that the process Xt given by

Xt = X0 exp(σWt + (µ− 1

2
σ2)t)

is the solution to the above stochastic differential equation starting from X0

at time 0. µ constant was covered in section 4. This Section is devoted to
the case where µ depends on σ. There are several reasons why this is of
interest. One of these reasons is that in the Capital Asset Pricing Model
(CAPM) expected return is correlated with volatility. The justification for
this is that risk adverse investors require a larger rate of expected return
to hold on to an asset when its risk increases. As a result a realistic stock
model might incorporate a dependency in σ into the drift term.
Another reason is that this process appears when studying the following
functional.

T → g(
1

T

∫ T

0
exp(Ws − as)ds)

which with the following change of variable T = σ2 is equal in law to

g(

∫ 1

0
exp(σWt − aσ2t)dt)

And monotonicity of the second expression in σ would lead to mono-
tonicity of the first in T. Now Observe that:

[g(

∫ 1

0
dt exp(σBt − aσ2t))|Ft] = [g(

∫ 1

0
dt exp(σBt −

1

2
σ2t(a− 1

2
)σ2t))|Ft]

It follows that we are indeed dealing with a geometric Brownian motion for
which the drift coefficient is µ = (12 − a)σ2

When a = 1
2 we are in the case of geometric Brownian motion which was

covered in Section 4. The process exp(σWt−aσ2t) is a diffusion which is the
solution to the SDE: dXt = (12−a)σ2Xtdt+σXtdWt And so its infinitesimal
generator is

Lf = σ2
x2

2

d2f

dx2
+ σ2(

1

2
− a)x

df

dx

This is more complex than the framework used in the previous sections
because here the volatility parameter σ appears not only in the diffusion
term but also in the drift term.
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Geometric Brownian motion with drift has the same scaling property as
plain geometric Brownian motion.

v(t, x, y, σ) =E[g(

∫ 1

0
Xudu)|Ft]

=E[g(y + x

∫ 1−t

0
Xudu)] where x = Xt, y =

∫ t

0
Xudu

Under the risk neutral probability measure P all asset prices including

this one are martingales. v(t, S
(σ)
t ,

∫ t
0 duS

(σ)
u , σ) being an (P,Ft) martingale

implies that its finite variation process is identically zero. By an application
of Ito’s formula this property translates into.

vt +
1

2
σ2vxx + σ2(

1

2
− a)vx + xvy = 0

In order to obtain an alternate representation for the dt term of vσ we dif-
ferentiate the above equation with respect to σ

vtσ +
σ2

2
vxxσ + σ2(

1

2
− a)vxσ + xvyσ =− σvxx − 2σ(

1

2
− a)vx

=− σ(vxx + 2σ(
1

2
− a)vx)

An application of Ito’s formula to vσ(t,Xt,
∫ t
0 Xsds, σ) shows that the

above is the dt term of vσ. We see that if vxx + 2(12 − a)vx ≥ 0 then this dt
term is non-increasing which means that vσ is a supermartingale This works
if 1

2 − a ≥ 0 Conclusion:

If g
′ ≥ 0 and 1

2 − a ≥ 0 the supermartingale argument holds

also if g
′ ≤ 0 and 1

2 ≤ a the supermartingale argument holds again

As in the previous sections, the process vσ attains the value 0 at t = 1 be-
cause at maturity the option price is independent of σ; indeed, v(1, x, y, σ) =
g(y).

6.6 Financial theory : Implications of the result

Given that this probability problem stems from the desire to hedge financial
risk, it is tempting to look at the economic justifications for (or consequences
of) this mathematical result. To do so we look at this problem from the ex-
pected utility viewpoint.
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•
∫ 1
0 exp(σBs − σ2

2 s)ds is a random payoff

• g is the utility function of an investor. g is always assumed to be
increasing and concave.

• E
[
g(
∫ 1
0 exp(σBs − σ2

2 s)ds)
]

is the expected utility of the random pay-

off to an investor with utility curve g. U(X) = E[g(X)]

In this framework the main result says that any increase in volatility (
σ ) results in a decrease of the expected utility of all risk adverse investors.

σ1 > σ2 ⇒ U

(∫ 1

0
exp(σ1Bs −

1

2
σ21s)ds

)
< U

(∫ 1

0
exp(σ2Bs −

1

2
σ22s)ds

)
We now explain why this is not just a simple consequence of

σ1 > σ2 ⇒ V ar

(∫ 1

0
exp(σ1Bs −

1

2
σ21s)ds

)
> V ar

(∫ 1

0
exp

(
σ2Bs −

1

2
σ22s

)
ds

)
Note that the above equation is indeed true; it follows from the characteri-
zation of the second moment of the payoff in [Yor92]

Within a location-scale family of probability measures, an increase in
the variance does not always translate into a decrease in utility for all risk
adverse investors. Variance is often used as a proxy for financial risk because
it is easy to use but it is not always consistent with the economic notion of
financial risk.

Rothschild and Stiglitz [RS70] give the following family of measures as
an example where an increase in variance results in an increase in expected
utility for some risk adverse investors. This family is indexed by a, c > 0
and given by the corresponding distribution function

a, c > 0

Fa,c(x) =0 for x ≤ 1− 0.25/a

=ax+ 0.25− a for 1− 0.25/a ≤ x ≤ 1 + (2c− 0.5)/(c− a)

=cx+ 0.75− 3c for 1 + (2c− 0.5)/(c− a) ≤ x ≤ 3 + 0.25/c

=1 for x > 3 + 0.25/c

and if we keep µ constant then dT (y)
dσ2 changes sign where T (y, σ2, µ) =∫ y

0 F (x, σ2, µ)dx this implies that some investors with concave utility func-
tions are better off with an increase in variance.
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In our case every investor will experience a loss in expected utility when
the volatility increases.

Haim Levy in [Lev92] considers utility curves with increase at a decreas-
ing rate that is u′ ≥ 0 and u

′′ ≤ 0. He shows that if X and Y are two
random variables and Eg(X) > Eg(Y ) for all concave increasing functions g
then this translates into a property of second order stochastic dominance

In our case we have shown that if σ1 < σ2
all risk adverse rational investors will prefer

∫ 1
0 exp(σ1Bs−1

2σ
2
1s)ds to

∫ 1
0 exp(σ2Bs−

1
2σ

2
2s)ds

6.7 Implications for the running average of geo-
metric Brownian motion

Given two random variables X and Y Rothschild and Stiglitz in [RS70] show
that the following are equivalent:

• Eu(X) ≥ Eu(Y ) for all concave increasing function u

• Y is equal in law to X + Z with E(Z|X) = 0

Denote the running average process by At := 1
t

∫ t
0 Sudu where Su is a

geometric Brownian Motion for s < t
We have shown that Eu(As) ≥ Eu(At) for any concave function u.
It then follows that At is equal in law to As + Z with E[Z|As] = 0

References also include [DMMY00], [CS04] and [Yor92]
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Chapter 7

A sequence of Albin type
continuous martingales with
Brownian marginals and
scaling

This chapter is based on a joint article with C. Donati-Martin and M. Yor
(see [BDMY11]) Closely inspired by Albin’s method which relies ultimately
on the duplication formula for the Gamma function, we exploit Gauss’ mul-
tiplication formula to construct a sequence of continuous martingales with
Brownian marginals and scaling.

7.1 Motivation and main results

(1.1) Knowing the law of a ”real world” random phenomena, i.e. random
process, (Xt, t ≥ 0) is often extremely difficult and in most instances, one
avails only of the knowledge of the 1-dimensional marginals of (Xt, t ≥ 0).
However, there may be many different processes with the same given 1-
dimensional marginals.

In the present paper, we make explicit a sequence of continuous martin-
gales (Mm(t), t ≥ 0) indexed by m ∈ N such that for each m,

i) (Mm(t), t ≥ 0) enjoys the Brownian scaling property: for any c > 0,

(Mm(c2t), t ≥ 0)
(law)
= (cMm(t), t ≥ 0)

ii) Mm(1) is standard Gaussian.

Note that, combining i) and ii), we get, for any t > 0

Mm(t)
(law)
= Bt,
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where (Bt, t ≥ 0) is a Brownian motion, i.e. Mm admits the same 1-
dimensional marginals as Brownian motion.

(1.2) Our main result is the following extension of Albin’s construction
[Alb08] from m = 1 to any integer m.

Theorem 7.1.1. Let m ∈ N. Then, there exists a continuous martingale
(Mm(t), t ≥ 0) which enjoys i) and ii) and is defined as follows:

Mm(t) = X
(1)
t . . . X

(m+1)
t Zm (7.1)

where (X
(i)
t , t ≥ 0), for i = 1, . . . ,m + 1, are independent copies of the

solution of the SDE

dXt =
1

m+ 1

dBt
Xm
t

; X0 = 0 (7.2)

and, furthermore, Zm is independent from (X(1), . . . , X(m+1)) and

Zm
(law)
= (m+ 1)1/2

m−1∏
j=0

β(
1 + 2j

2(m+ 1)
,
m− j
m+ 1

)

 1
2(m+1)

(7.3)

where β(a, b) denotes a beta variable with parameter (a, b) with density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−11[0,1](x)

and the beta variables on the right-hand side of (7.3) are independent.

Remark: For m = 1, Z1 =
√

2
(
β(14 ,

1
2)
)1/4

and we recover the distri-
bution of Y := Z1 given by (2) in [Alb08].

(1.3) For the convenience of the reader, we also recall that, if one drops
the continuity assumption when searching for martingales (M(t); t ≥ 0)
satisfying i) and ii), then, the Madan-Yor construction [MY02] based on the
”Azéma-Yor under scaling” method provides such a martingale.
Precisely, starting from a Brownian motion (Bu, u ≥ 0) and denoting Su =
sups≤uBs, introduce the family of stopping times

τt = inf{u, Su ≥ ψt(Bu)}

where ψt denotes the Hardy-Littlewood function associated with the cen-
tered Gaussian distribution µt with variance t, i.e.

ψt(x) =
1

µt([x,∞[)

∫ ∞
x

y exp(−y
2

2t
)
dy√
2πt

=
√
t exp(−x

2

2t
)/N (x/

√
t)
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where N (a) =
∫∞
a exp(−y2

2 )dy. Then, Mt = Bτt is a martingale with Brow-
nian marginals.
Another solution has been given by Hamza and Klebaner [HK07].

(1.4) In section 3, we prove that Theorem 7.1.1 is actually the best we can
do in our generalisation of Albin’s construction: we cannot generalize (7.1)
by allowing the X(i)’s to be solution of (7.2) associated to different mi’s.

Finally, we study the asymptotic behavior of X
(1)
t . . . X

(m+1)
t as m−→∞.

7.2 Proof of the theorem

Step 1: For m ∈ R and c ∈ R, we consider the stochastic equation:

dXt = c
dBt
Xm
t

, X0 = 0.

This equation has a unique weak solution which can be defined as a time-
changed Brownian motion

(Xt)
(law)
= W (α(−1)(t))

where W is a Brownian motion starting from 0 and α(−1) is the (continuous)
inverse of the increasing process

α(t) =
1

c2

∫ t

0
W 2m
u du.

We look for k ∈ N and c such that (X2k
t , t ≥ 0) is a squared Bessel process

of some dimension d. It turns out, by application of Itô’s formula, that we

need to take k = m + 1 and c = 1
m+1 . Thus, we find that (X

2(m+1)
t , t ≥ 0)

is a squared Bessel process with dimension d = k(2k − 1)c2 = 2m+1
m+1 .

Note that the law of a BESQ(d) process at time 1 is well known to be that
of 2γd/2, where γa denotes a gamma variable with parameter a. Thus, we
have:

|X1|
(law)
=
(

2γ 2m+1
2(m+1)

) 1
2(m+1)

(7.4)

Step 2: We now discuss the scaling property of the solution of (7.2). From
the scaling property of Brownian motion, it is easily shown that , for any
λ > 0, we get:

(Xλt, t ≥ 0)
(law)
= (λαXt, t ≥ 0)

with α = 1
2(m+1) , that is, the process (Xt, t ≥ 0) enjoys the scaling property

of order 1
2(m+1) .
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Step 3: Consequently, if we multiply m+1 independent copies of the process
(Xt, t ≥ 0) solution of (7.2), we get a process

Yt = X
(1)
t . . . X

(m+1)
t

which is a martingale and has the scaling property of order 1
2 .

Step 4: Finally, it suffices to find a random variable Zm independent of the

processes X
(1)
t , . . . , X

(m+1)
t and which satisfies:

N
(law)
= X

(1)
1 . . . X

(m+1)
1 Zm (7.5)

where N denotes a standard Gaussian variable. Note that the distribution of
any of the X

(i)
1 ’s is symmetric. We shall take Zm ≥ 0; thus, the distribution

of Zm shall be determined by its Mellin transform M(s) = E(Zsm). From
(7.5), M(s) satisfies:

E[(2γ1/2)
s/2] =

(
E[(2γd/2)

s/2(m+1)]
)m+1

M(s)

with d = 2m+1
m+1 , that is:

2s/2
Γ(1+s2 )

Γ(12)
= 2s/2

(
Γ(d2 + s

2(m+1))

Γ(d2)

)m+1

M(s)

that is precisely:

Γ(1+s2 )

Γ(12)
=

(
Γ(2m+1+s

2(m+1) )

Γ( 2m+1
2(m+1))

)m+1

M(s). (7.6)

Now, we recall Gauss multiplication formula ([AAR99], see also [CY03])

Γ(kz) =
kkz−1/2

(2π)
k−1
2

k−1∏
j=0

Γ(z +
j

k
) (7.7)

which we apply with k = m+ 1 and z = 1+s
2(m+1) . We then obtain, from (7.7)

Γ(1+s2 )
√
π

=
(m+ 1)s/2

(2π)m/2
1√
π

m∏
j=0

Γ(
1 + s+ 2j

2(m+ 1)
) (7.8)

= (m+ 1)s/2
m∏
j=0

(
Γ(1+s+2j

2(m+1) )

Γ( 1+2j
2(m+1))

)
(7.9)

since the two sides of (7.8) are equal to 1 for s = 0. We now plug (7.9) into
(7.6) and obtain

(m+ 1)s/2
m∏
j=0

(
Γ(1+s+2j

2(m+1) )

Γ( 1+2j
2(m+1))

)
=

(
Γ(2m+1+s

2(m+1) )

Γ( 2m+1
2(m+1))

)m+1

M(s) (7.10)
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We note that for j = m, the same term appears on both sides of (7.10),
thus (7.10) may be written as:

(m+ 1)s/2
m−1∏
j=0

(
Γ(1+s+2j

2(m+1) )

Γ( 1+2j
2(m+1))

)
=

(
Γ(2m+1+s

2(m+1) )

Γ( 2m+1
2(m+1))

)m
M(s) (7.11)

In terms of independent gamma variables, the left-hand side of (7.11) equals:

(m+ 1)s/2E


m−1∏

j=0

γ
(j)
1+2j

2(m+1)

 s
2(m+1)

 (7.12)

whereas the right-hand side of (7.11) equals:

E


m−1∏

j=0

γ
(j)
1+2m
2(m+1)

 s
2(m+1)

M(s) (7.13)

where the γ
(j)
aj denote independent gamma variables with respective param-

eters aj .
Now, from the beta-gamma algebra, we deduce, for any j ≤ m− 1:

γ
(j)
1+2j

2(m+1)

(law)
= γ

(j)
1+2m
2(m+1)

β(
1 + 2j

2(m+ 1)
,
m− j
m+ 1

).

Thus, we obtain, again by comparing (7.12) and (7.13):

M(s) = (m+ 1)s/2 E


m−1∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j
m+ 1

)

 s
2(m+1)


which entails:

E[Zsm] = (m+ 1)s/2 E


m−1∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j
m+ 1

)

 s
2(m+1)


that is, equivalently,

Zm
(law)
= (m+ 1)1/2

m−1∏
j=0

β(
1 + 2j

2(m+ 1)
,
m− j
m+ 1

)

 1
2(m+1)
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7.3 Some remarks about Theorem 7.1.1

7.3.1 A further extension

We tried to extend Theorem 7.1.1 by taking a product of independent mar-
tingales X(i), solution of (7.2) with different mi’s. Here are the details of
our attempt.
We are looking for the existence of a variable Z such that the martingale

M(t) =

p−1∏
j=0

X
(mj)
t

Z

satisfies the properties i) and ii). Here p, (mj)0≤j≤p−1 are integers and X(mj)

is the solution of the EDS (7.2) associated to mj , the martingales being
independent for j varying. In order that M enjoys the Brownian scaling
property, we need the following relation

p−1∑
j=0

1

mj + 1
= 1. (7.14)

Following the previous computations, see (7.6), the Mellin transform M(s)
of Z should satisfy

Γ(1+s2 )

Γ(12)
=

p−1∏
j=0

Γ(
2mj+1+s
2(mj+1) )

Γ(
2mj+1
2(mj+1))

M(s). (7.15)

We recall (see (7.9)) the Gauss multiplication formula

Γ(1+s2 )
√
π

= ps/2
p−1∏
j=0

(
Γ(1+s+2j

2p )

Γ(1+2j
2p )

)
(7.16)

To findM(s) from (7.15), (7.16), we give some probabilistic interpretation:

Γ(1+s+2j
2p )

Γ(1+2j
2p )

= E[γ
s/2p
(1+2j)/2p]

whereas
Γ(

2mj+1+s
2(mj+1) )

Γ(
2mj+1
2(mj+1))

= E[γ
s/2(mj+1)

(1+2mj)/2(mj+1)].

Thus, we would like to factorize

γ
1/2p
(1+2j)/2p

(law)
= γ

1/2(mj+1)

(1+2mj)/2(mj+1)z
(j)
mj ,p (7.17)
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for some variable z
(j)
mj ,p to conclude that

Z = p1/2
p−1∏
j=0

z(j)mj ,p.

It remains to find under which condition the identity (7.17) may be fulfilled.
We write

γ(1+2j)/2p
(law)
= γ

p/(mj+1)

(1+2mj)/2(mj+1)(z
(j)
mj ,p)

2p. (7.18)

Now, if 1+2j
2p <

1+2mj

2(mj+1) , we may apply the beta-gamma algebra to obtain

γ(1+2j)/2p
(law)
= γ(1+2mj)/2(mj+1)β(

1 + 2j

2p
,

1 + 2mj

2(mj + 1)
− 1 + 2j

2p
)

but in (7.18), we need to have on the right-hand side γ
p/(mj+1)

(1+2mj)/2(mj+1) instead

of γ(1+2mj)/2(mj+1).
However, it is known that

γa
(law)
= γcaγa,c

for some variable γa,c independent of γa for any c ∈ (0, 1]. This follows from
the self-decomposable character of ln(γa). Thus, we seem to need p

mj+1 ≤ 1.

But, this condition is not compatible with (7.14) unless mj = m = p− 1.

7.3.2 Asymptotic study

We study the behavior of the product X
(1)
1 . . . X

(m+1)
1 , resp. Zm, appearing

in the right-hand side of the equality in law (7.5), when m−→∞. Recall
from (7.4) that

|X1|
(law)
=
(

2γ 2m+1
2(m+1)

) 1
2(m+1)

.

We are thus led to consider the product

Θ
(p)
a,b,c =

(
p∏
i=1

γ
(i)
a−b/p

)c/p
where in our set up of Theorem 7.1.1, p = m+ 1, a = 1, b = c = 1/2.

E[(Θ
(p)
a,b,c)

s] =

p∏
i=1

E[
(
γ
(i)
a−b/p

)cs/p
]

=

(
Γ(a− b

p + cs
p )

Γ(a− b
p)

)p
= exp[p(ln(Γ(a+

cs− b
p

))− ln(Γ(a− b

p
)))]

−→
p→∞

exp(
Γ′(a)

Γ(a)
cs).
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Thus, it follows that

Θ
(p)
a,b,c

P−→
p→∞

exp(
Γ′(a)

Γ(a)
c),

implying that

|X(1)
1 . . . X

(m+1)
1 | P−→

m→∞
exp(−γ/2) (7.19)

and

exp(−γ/2)Zm
(law)−→
m→∞

|N |. (7.20)

where γ = −Γ′(1) is the Euler constant.

We now look for a central limit theorem for Θ
(p)
a,b,c. We consider the limiting

distribution of
√
p

{
c

p

p∑
i=1

ln(γ
(i)
a−b/p)− c

Γ′(a)

Γ(a)

}
.

E

(
exp

[
cs
√
p

{
1

p

p∑
i=1

ln(γ
(i)
a−b/p)−

Γ′(a)

Γ(a)

}])

= E

[
p∏
i=1

(
γ
(i)
a−b/p

)cs/√p]
exp(−cs√pΓ′(a)

Γ(a)
)

= E
[(
γ
(i)
a−b/p

)cs/√p]p
exp(−cs√pΓ′(a)

Γ(a)
)

=

(
Γ(a− b

p + cs√
p)

Γ(a− b
p)

)p
exp(−cs√pΓ′(a)

Γ(a)
)

= exp[p(ln(Γ(a− b

p
+

cs
√
p

))− ln(Γ(a− b

p
)))− cs√pΓ′(a)

Γ(a)
]

= exp(
c2s2

2
(ln(Γ))′′(a) +O(m−1/2))

We thus obtain that

√
p

{
c

m

m∑
i=1

ln(γ
(i)
a−b/m)− cΓ′(a)

Γ(a)

}
(law)−→ N(0, σ2) (7.21)

where N(0, σ2) denotes a centered Gaussian variable with variance:

σ2 = c2(ln(Γ))′′(a) = c2

[
Γ′′(a)

Γ(a)
−
(

Γ′(a)

Γ(a)

)2
]
.

or, equivalently(
Θ

(p)
a,b,c exp(

Γ′(a)

Γ(a)
c)

)√p
(law)−→
p→∞

exp(N(0, c2(ln(Γ))′′(a))). (7.22)
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Skorokhod. Séminaire de Probabilités XIII, pages 90–115, 1979.

[Bak12] D. Baker. A Dubins type solution to the Skorokhod embed-
ding problem. Statistics & Probability Letters, 82(6):1054–1058,
2012.

[BDMY11] D. Baker, C. Donati-Martin, and M. Yor. A sequence of Al-
bin type continuous martingales with Brownian marginals and
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