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Abstract

View selection is important in many data-intensive systems e.g., commercial database
and data warehousing systems to improve query performance. View selection can
be defined as the process of selecting a set of views to be materialized in order to
optimize query evaluation. To support this process, different related issues have
to be considered. Whenever a data source is changed, the materialized views built
on it have to be maintained in order to compute up-to-date query results. Besides
the view maintenance issue, each materialized view also requires additional storage
space which must be taken into account when deciding which and how many views
to materialize. The problem of choosing which views to materialize that speed up
incoming queries constrained by an additional storage overhead and/or maintenance
costs, is known as the view selection problem. This is one of the most challenging
problems in data warehousing and it is known to be a NP-complete problem. In
a distributed environment, the view selection problem becomes more challenging.
Indeed, it includes another issue which is to decide on which computer nodes the
selected views should be materialized. The view selection problem in a distributed
context is now additionally constrained by storage space capacities per computer
node, maximum global maintenance costs and the communications cost between the
computer nodes of the network.

In this work, we deal with the view selection problem in a centralized context as
well as in a distributed setting. Our goal is to provide a novel and efficient approach
in these contexts. For this purpose, we designed a solution using constraint program-
ming which is known to be efficient for the resolution of NP-complete problems and
a powerful method for modeling and solving combinatorial optimization problems.
The originality of our approach is that it provides a clear separation between formu-
lation and resolution of the problem. Indeed, the view selection problem is modeled
as a constraint satisfaction problem in an easy and declarative way. Then, its resolu-
tion is performed automatically by the constraint solver. Furthermore, our approach
is flexible and extensible, in that it can easily model and handle new constraints and
new heuristic search strategies for optimization purpose. The main contributions
of this thesis are as follows. First, we define a framework that enables to have a
better understanding of the problems we address in this thesis. We also analyze
the state of the art in materialized view selection to review the existing methods by
identifying respective potentials and limits. We then design a solution using con-

straint programming to address the view selection problem in a centralized context.



Our performance experimentation results show that our approach has the ability to
provide the best balance between the computing time to be required for finding the
materialized views and the gain to be realized in query processing by materializing
these views. Our approach will also guarantee to pick the optimal set of materialized
views where no time limit is imposed. Finally, we extend our approach to provide
a solution to the view selection problem when the latter is studied under multiple
resource constraints in a distributed context. Based on our extensive performance
evaluation, we show that our approach outperforms the genetic algorithm that has

been designed for a distributed setting.

Keywords materialized views, query processing and optimization, view selection,

view maintenance, constraint programming.

i



TITRE en francais : Une approche déclarative pour la modélisation et

la résolution du probléme de la sélection de vues a matérialiser
Resumé

La matérialisation de vues est une technique trés utilisée dans les systémes de gestion
de bases de données ainsi que dans les entrepots de données pour améliorer les per-
formances des requétes. Elle permet de réduire de maniére considérable le temps de
réponse des requétes en pré-calculant des requétes cotiteuses et en stockant leurs ré-
sultats. De ce fait, 'exécution de certaines requétes nécessite seulement un accés aux
vues matérialisées au lieu des données sources. En contrepartie, la matérialisation
entraine un surcoit de maintenance des vues. En effet, les vues matérialisées doivent
étre mises a jour lorsque les données sources changent afin de conserver la cohérence
et I'intégrité des données. De plus, chaque vue matérialisée nécessite également un
espace de stockage supplémentaire qui doit étre pris en compte au moment de la
sélection. Le probléme de choisir quelles sont les vues a matérialiser de maniére a
réduire les cotits de traitement des requétes étant donné certaines contraintes tel que
I’espace de stockage et le colit de maintenance, est connu dans la littérature sous le
nom du probléme de la sélection de vues. Trouver la solution optimale satisfaisant
toutes les contraintes est un probléme NP-complet. Dans un contexte distribué con-
stitué d’un ensemble de noeuds ayant des contraintes de ressources différentes (CPU,
10, capacité de l'espace de stockage, bande passante réseau, etc.), le probléme de la
sélection des vues est celui de choisir un ensemble de vues & matérialiser ainsi que
les noeuds du réseau sur lesquels celles-ci doivent étre matérialisées de maniére a
optimiser les cotlit de maintenance et de traitement des requétes.

Notre étude traite le probléme de la sélection de vues dans un environnement
centralisé ainsi que dans un contexte distribué. Notre objectif est de fournir une
approche efficace dans ces contextes. Ainsi, nous proposons une solution basée sur
la programmation par contraintes, connue pour étre efficace dans la résolution des
problémes NP-complets et une méthode puissante pour la modélisation et la réso-
lution des problémes d’optimisation combinatoire. L’originalité de notre approche
est qu’elle permet une séparation claire entre la formulation et la résolution du
probléme. A cet effet, le probléme de la sélection de vues est modélisé comme un
probléme de satisfaction de contraintes de maniére simple et déclarative. Puis, sa ré-
solution est effectuée automatiquement par le solveur de contraintes. De plus, notre
approche est flexible et extensible, en ce sens que nous pouvons facilement modéliser
et gérer de nouvelles contraintes et mettre au point des heuristiques pour un objectif

d’optimisation. Les principales contributions de cette thése sont les suivantes. Tout

il



d’abord, nous définissons un cadre qui permet d’avoir une meilleure compréhension
des problémes que nous abordons dans cette thése. Nous analysons également 1’état
de T'art des méthodes de sélection des vues & matérialiser en en identifiant leurs
points forts ainsi que leurs limites. Ensuite, nous proposons une solution utilisant
la programmation par contraintes pour résoudre le probléme de la sélection de vues
dans un contexte centralisé. Nos résultats expérimentaux montrent notre approche
fournit de bonnes performances. Elle permet en effet d’avoir le meilleur compromis
entre le temps de calcul nécessaire pour la sélection des vues & matérialiser et le
gain de temps de traitement des requétes a réaliser en matérialisant ces vues. Enfin,
nous étendons notre approche pour résoudre le probléme de la sélection de vues a
matérialiser lorsque celui-ci est étudié sous contraintes de ressources multiples dans
un contexte distribué. A l’aide d’une évaluation de performances extensive, nous

montrons que notre approche fournit des résultats de qualité et fiables.

MOT-CLES vues matérialisées, optimisation de requétes, sélection de vues, main-

tenance de vues, programmation par contraintes.
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Le Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
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Chapter 1

Introduction

1.1 Motivations

Data-intensive systems i.e., commercial database and data warehousing systems al-
low businesses to get data and turn that data into a useful information. However,
the time taken to compute query results exponentially grows as the amount of data
increases leading to more waiting time on the user side. This delay is unacceptable
in most business environments, as it severely limits productivity. A common and
powerful query optimization technique is to materialize some or all queries of the
workload rather than compute them from data source each time. There are several
scenarios in which we investigate the issue of which views (or queries) to materialize
in order to speed the query processing when it is too expensive to materialize all the

views.

e Performance of query processing. The goal is to select a set of views to
be materialized over a database, such that subsequent queries can make use of
these views in query processing. In most cases, it is cheaper to read the content
of a materialized view than to compute from scratch the associated query.
Consequently, choosing an appropriate set of views to materialize in a database
is crucial since the presence of the right materialized views can significantly
improve the query performance. Many commercial database systems i.e., SQL
database systems support creation and use of materialized views to answer

queries in order to facilitate efficient query processing.

e Warehouse design. One of the most important tasks when designing a data
warehouse is a judicious selection of materialized views. A data warehouse
stores information that is collected from multiple, heterogeneous information

sources, with the purpose of efficiently implementing decision support queries



(OLAP-style queries). The information in the data warehouse is typically or-
ganized in materialized views, which are designed based on the user’s require-
ments e.g., pre-computed portions of the frequently asked queries. In this way,
the query processor of the warehouse answers queries without interacting with
the data sources that may contain several millions of tuples. Scanning these
data may be time consuming and wasteful. Hence, the benefit of using only
materialized views to answer queries is significant for improving performance

in a data warehousing environment.

e Data placement in a distributed setting. Choosing which views to mate-
rialize can be considered in a distributed setting to optimize complex scenar-
ios consisting of multiple computer nodes with different resource constraints,
where each computer node issues different types of query characteristics. The
key idea to improve query performance in such a context is the intelligent place-
ment of data at different computer nodes of the network. For instance, query
results may be stored as materialized views and placed closest to where they
will most likely be accessed. When processing queries, the materialized views
can be used to speed up local queries and reduce the amount of communication
between the computer nodes of the network. Distributed query processing is

a key factor in business environments in order to remain competitive.

We have been motivated by these scenarios to study how to select the right mate-
rialized view that can significantly improve performance and speed up the processing

of queries by several orders of magnitude.

1.2 View Selection Problem

View selection can be defined as the process of selecting a set of views to be ma-
terialized in order to optimize query evaluation. To support this process, different
related issues have to be considered. One of the challenging issues is the view main-
tenance which is the process of updating a materialized view. Indeed, whenever a
data source (i.e., base relation) is changed, the materialized views built on it have
to be updated (or at least have to be checked whether some changes have to be
propagated or not) in order to compute up-to-date query results. The view mainte-
nance cost constraint is very important in the view selection process and cannot be
ignored. Otherwise, the cost of the view maintenance may offset the performance
advantages provided by the view materialization. Besides the view maintenance is-

sue, each materialized view requires additional storage space which must be taken



into account when deciding which and how many views to materialize.

Low query evaluation cost can be obtained by materializing all the queries of
workload. However, it is important to note that it is not always a possible solution
because of the storage space limitation (i.e., the query result can be too large to fit
in the available storage space) and the cost of maintaining the views in order to keep
them consistent with the data at sources. Hence, there is a need for selecting a set
of views to be materialized by taking into account the view maintenance and storage
space constraints. The problem of choosing which views to materialize that speed up
incoming queries constrained by an additional storage overhead and/or maintenance
costs to keep the views synchronized with the base data (L.e., base relations), is
known as the view selection problem. This is one of the most challenging problems
in data warehousing [74| and it is known to be a NP-complete problem [35]. In
a distributed environment consisting of many heterogeneous nodes with different
resource constraints, the view selection problem becomes more challenging: Besides
the issue of deciding which views have to be selected, the problem includes the
question where these views should be materialized.

The problem of view selection can be defined as follows. Given a database (or
a data warehouse) schema and a query workload defined over it, the problem is to
select an appropriate set of materialized views that minimizes the cost of evaluat-
ing the queries of the workload under a limited amount of resources, e.g., storage
space and/or view maintenance cost. This problem will be defined more formally in
chapter 4. In a distributed scenario, multiple computer nodes are connected to each
other. Each computer node may share data and issue numerous queries against other
computer nodes. The view selection problem in a distributed context is to compute
which view has to be materialized on what computer node, so that the full query
workload is answered with the lowest cost subject to multiple resource constraints.
Resources may be storage space capacity per computer node, maximum view main-
tenance cost and network bandwidth (i.e., communication costs). The view selection

problem in a distributed context will be defined more formally in chapter 5.

1.3 Objectives of the Dissertation

The central goal of the dissertation is that, we design a novel and efficient approach
for the view selection problem in relational databases and data warehouses as well
as in a distributed setting.

Explicitly, the objectives are to:

e Define a framework which gives the main notions and the basic contents related



to the view selection context that are required to be known when attempting

to address the view selection problem.

e Analyze the state of the art in materialized view selection to review the existing

view selection methods by identifying respective potentials and limits.

e Design a solution to the view selection problem in a centralized context, which
can provide the best balance between the computing time to be required for
finding the materialized views and the gain to be realized in query processing
by materializing these views. This solution will also guarantee to pick the

optimal set of materialized views where no time limit is imposed.

e Provide a solution which can provide high performance, when the view selec-
tion problem is studied under multiple resource constraints in a distributed

context.

1.4 Contributions

In this section we explicitly outline our contributions to fulfill the above mentioned
objectives.

First, we introduce the mains notions and concepts related to the view selection
context. We provide definitions and a glossary of key terms in the domain of view
selection. This study defines a basic framework that maybe helpful to the beginner
to understand the view selection problem. Then, as our work is based on constraint
programming techniques, we describe the main features of these techniques and the
basics of modeling and solving with constraint solvers such as CHOCO [2].

Our second contribution consists in analyzing the existing works in materialized
view selection. We identify the main view selection dimensions along which exist-
ing view selection methods can be classified. More specifically, we classify them
based on what kind of algorithms they use to address the view selection problem,
pointing which resource constraints they consider during the view selection process
and frameworks they use to represent the view selection. We introduce three main
classes of view selection algorithms, namely: deterministic algorithms, randomized
algorithms and hybrid algorithms. Based on this classification, we survey and review
the related works.

Our third contribution is the design of a novel approach to address the view selec-
tion problem in a centralized context i.e., relational databases and data warehouses.

The approach is based on constraint programming techniques. Our motivation to



use constraint programming is that it is known to be a powerful approach for mod-
eling and solving combinatorial problems. It is also an effective paradigm for the
resolution of NP-complete problems. The idea of constraint programming is to solve
problems by stating constraints which must be satisfied by the solution. Hence,
the effort in our approach has been to model the view selection problem as a Con-
straint Satisfaction Problem (CSP). Its resolution was supported automatically by
the constraint solver. We have designed the constraint satisfaction model to the view
selection problem and performed several experiments, demonstrating the benefit of
our approach.

Our fourth contribution aims at extending the constraint satisfaction model,
which we have designed to address the view selection problem in a centralized con-
text, in order to capture the distributed features. As mentioned before, the view
selection problem becomes more challenging in a distributed environment. Indeed,
the resource constraints that we have considered in a centralized context i.e., storage
space constraint will be per machine (computer node) in a distributed scenario. The
view selection will additionally constrained by maximum global maintenance costs.
Furthermore, resource constraints such as network bandwidth and the location of
materialized views will have to be taken into consideration. To the best of our
knowledge, no past work has addressed the view selection problem under all these
resource constraints. Our constraint programming based approach fills this gap. In-
deed, all these resource constraints have easily been modeled with the rich constraint
programming language. Experiment results have shown that our approach provides
high performance resulting from evaluating the quality of the solutions found by our

approach in terms of cost saving.

In the context of this PhD work, the following articles were published.
e International Journal papers

— Imene Mami and Zohra Bellahsene. A Survey of View Selection Methods.
ACM SIGMOD Record, pages 20-29, volume 41, 2012.

e International Conference papers

— Imene MAMI, Rémi Coletta and Zohra Bellahsene. Modeling View Se-
lection as a Constraint Satisfaction Problem. International Conference
on Databases and Expert Systems Applications (DEXA), pages 396-410,
2011.



— Imene Mami, Zohra Bellahsene and Rémi Coletta. View Selection Under
Multiple Resource Constraints in a Distributed Context. International
Conference on Databases and Expert Systems Applications (DEXA),
pages 281-296, 2012.

e National Conference papers

— Imene Mami, Zohra Bellahsene and Rémi Coletta. A Constraint Sat-
isfaction based Approach to View Selection in a Distributed Context.
Dans 28¢éme Journées des Bases de Données Avancées (BDA), Clermont-
Ferrand, France, October, 2012.

1.5 Structure of the Dissertation

This dissertation is organized into 6 chapters.

Current chapter is introducing the application domains in which the view selec-
tion has to be investigated and the general problem of view selection in a centralized
context as well as in a distributed setting.

Chapter 2 provides a brief introduction to the key elements of the view selection
field. We introduce the main definitions and concepts related to this field. This
chapter provides the basic content which is required to be known to the researchers
who are going to work on materialized view selection.

In chapter 3, we provide a literature review of the state of the art in materialized
view selection. It defines a framework for highlighting the view selection problem
by identifying the main dimensions that are the basis in the classification of view
selection methods. Based on this classification, we review most of the view selection
methods by identifying respective potentials and limits.

Chapter 4 presents our approach which is based on constraint programming to
address the view selection problem in a centralized context. After the problem
definition, we introduce the concept of the AND-OR view graph that is needed to
represent the view selection and which constitutes the input to our approach. Then,
we describe how to model the view selection problem as a Constraint Satisfaction
Problem (CSP). We conclude with our experimental evaluation and results.

Chapter 5 extends the constraint satisfaction model that we have designed in a
centralized context in order to capture the distributed case. After giving the problem
definition in a distributed environment, we propose an extension of the concept of
the AND-OR view graph to reflect the relation between views and communication

network within the distributed scenario. Then, we present the model that we have



used to formulate the view selection problem as a CSP in a distributed environment.
Finally, we present our experimental validation.

Chapter 6 concludes this dissertation and highlights future directions of research.






Chapter 2
Preliminaries

In this chapter, we introduce the main notions and concepts related to the issue
of view selection. We introduce definitions about view selection and provide the
details of cost modeling. One of the goals of the dissertation is to solve the view
selection problem, by designing a solution involving constraint programming. There-
fore, we describe in the second part of this chapter, the main characteristic features

of constraint programming techniques.

2.1 View Selection

View selection is the task which consists of selecting a set of views to be materialized
in order to improve query performance. We use the term view selection interchange-
ably with materialized view selection. To understand the basic concepts related to
the view selection field, we first introduce the notion of a view. Let us consider the
query ¢; defined over a simplified version of the TPC-H benchmark [5]. In our work,
we are dealing with SQL queries which include select, project, join and aggregation
operations. Query ¢; finds the minimal supply cost for each country and each prod-

uct having the brand name 'Renault’. The associated query is as follows:

Select P.partkey, N.nationkey, Min(PS.supplycost)
From Part P, Supplier S, Nation N, PartSupp PS
‘Where P.brand — ’Renault’

and P.partkey = PS.partkey
and PS.suppkey = S. suppkey
and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey;



P.brand= ""Renault™

Figure 2.1: The query tree for query g;.

A sample query tree for ¢; is shown in figure 2.1. Circles nodes represent al-
gebraic expressions (Select-Project-Join) with possible aggregate function. Boxes
nodes represent the result of evaluation of the relational algebra expression. The

root node represents the query result and the leaf nodes represent the base relations.

2.1.1 Definitions

Definition 1 (View): A view is a derived relation, defined by a query in terms of
base relations and /or other views. A view thus defines a function from a set of base
relations to a derived relation. This function is typically recomputed each time the
view is referenced (if the view is virtual). In figure 2.1, the views are represented by

boxes nodes.

Definition 2 (Materialized View): A view is said to be materialized if its extent
is computed and persistently stored otherwise it is said to be virtual. Our goal is to
select a set of views to materialize. We refer to a set of selected views to materialize
as a set of materialized views. In most cases it is cheaper to read the content of a

materialized view than to compute the view from scratch.
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Definition 3 (Candidate Views): The search space in the vocabulary of view
selection represents the space of possible candidate views to be materialized. Our
aim is to find among the candidate views, those optimizing the query performance.
In our example (see figure 2.1), boxes nodes correspond to the views that are can-

didates to materialization.

Definition 4 (Workload): A workload or a query workload is a given set of
queries defined over a database (or a data warehouse) schema. The set of material-
ized views is dependent on the query workload. In a distributed scenario, the queries
are executed on different computer nodes. Each computer node has an associated

query workload.

Definition 5 (View Benefit): A view benefit (or query benefit) is a useful notion
is the view selection setting. This is defined as the reduction in the workload eval-

uation cost, which can be achieved by materializing this view.

Definition 6 (View Maintenance): Whenever a base relation is changed, the
materialized views built on it have to be updated in order to compute up-to-date
query results. The process of updating a materialized view in response to changes

on the base relations is known as view maintenance.

Definition 7 (Incremental View Maintenance): Rather than refreshing the
view by re-computing it from scratch, a process that may be time consuming and
wasteful, a view can be maintained in an incremental fashion: only the portions of
the view which are affected by the changes in the relevant sources (base relations)
are updated. The process of computing only the changes in the view to update its

materialization is known as incremental view maintenance.

Definition 8 (Distributed View Selection): In a distributed context, we con-
sider more complex scenarios where multiple computer nodes are connected to each
other and each computer node may share data and issue numerous queries against
other computer nodes. Our objective thus is to compute which view have to be

materialized on what computer nodes. We call this the distributed view selection.

Definition 9 (Solution Quality): In the context of view selection, the solution

quality is evaluated by measuring the benefit of using materialized views to improve
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query performance. More precisely, the solution quality represents the quality of the
set of materialized views delivered by the view selection methods in terms of cost

saving.

Definition 10 (View Selection Method): A view selection method implements
one or many heuristic algorithms to efficiently search the space and find the appro-
priate set of materialized views within a reasonable time. Designing these heuristic
algorithms also aims to find the right set of computer nodes on which these views
should be materialized when the view selection is studied in a distributed environ-

ment.

2.1.2 Cost Model

The cost model is an important issue for the view selection process [16]. It assigns
an estimated cost (e.g., query cost or maintenance cost) to any view in the search
space. In our work, we use a cost model similar to [64, 46, 21|. Hence, the query
and view maintenance costs are estimated with respect to CPU and IO costs. In
a distributed system, a cost model should reflect the communication costs. In the

following, we introduce these costs.

Query Cost: We also use the terms query processing cost and query evaluation

cost. It refers to the amount of time necessary to compute the answer to a given

query.

Maintenance Cost: The maintenance of views in response to changes at the sources
(base relations) incurs what is known as maintenance cost or maintenance time. In
other words, it is the time that can be allotted to keep up to date the materialized

views.

Communication Cost: 1t is the time needed to transfer data e.g., transmitting views
on the communication network. We also use the term transfer cost to refer to this

cost.

The main factor for estimating the different costs is the size of the involved re-
lations. This estimation is based on statistical information about the base relations
and formulas to predict the cardinalities of the results of the relational operations.
For instance in our example (see figure 2.1), to estimate the query cost correspond-

ing to the view J ¢; 1, we require knowledge about the size of the view S ¢ 1
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and the base relation PartSupp. We define the size of a given view v as follows.
size(v) = card(v) * length(v) (2.1)

where length(v) is the length (in number of bytes) of a tuple of v, computed from
the lengths of its attributes. The estimation of card(v) which is the number of tuples
in v requires the use of the formulas given in the following section.

Evaluating the Cardinalities of the Views

Database statistics are useful in evaluating the cardinalities of the views. Two sim-
plifying assumptions are commonly made about the database: (i) the distribution
of attribute values in a relation is supposed to be uniform, and (ii) all attributes are
independent, meaning that the value of an attribute does not affect the value of any
other attribute. In what follows we give the formulas for estimating the cardinalities

of the results of the basic relational algebra operations: selection, projection and join.

Selection. The cardinality of selection result is
card(Treiation) = SFs(F') x card(relation) (2.2)

where SFs(F) is the selectivity factor which is dependent on the selection predicate

and can be computed as follows [64].

SFs(A = value) = WIU(A))

SFs(A > value) = %

SFs(A < value) = %%
SFs(p(Ai) A (4;)) = SFs(p(As)) * SFs(p(4;))
SFs(p(Ai) Vv p(4;)) = SFs(p(A:i)) + SFs(p(4;)) — (SFS(p(Ai)) * SFS(p(Aj)))

SFs(A € {values}) = SFs(A = value) * card({values})

where A in an attribute of the relation, dv(A) is the number of distinct values of the
attribute A, max(A) and min(A) denote respectively the minimum and maximum

possible values for A. p(A;) and p(A4;) indicate the predicates over attributes A; and
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A;, respectively.

Projection. The cardinality of projection result is simply the number of tuples when

the projection is performed. We consider projection without duplicate elimination.

card(Trelation) = card(relation) (2.4)

Join. To estimate the result cardinality of a join, we maintain the join selectivity

factor SF; as part of statistical information.

card(relationy X relationy)) = SFy x card(relation,) x card(relations)
(2.5)

o card(relation; Xrelations)
where SFJ " card(relationi )xcard(relations)

Cost Functions

The main objective in view selection problem is the minimization of the total query

cost, defined by the formula:

QueryCost = Z foi * Qelgi, M) (2.6)

7i€Q

Each query ¢; has an associated non-negative weight f, which represents the query
frequency. Qc(q;, M) is the processing cost corresponding to ¢; in the presence of a

set of materialized views M.

The query cost is computed as the sum of all estimated costs incurred by the
required relational operations. Recall that in this dissertation, we consider selection-
projection-join (SPJ) queries that may involve aggregation and a group by clause
as well. The formulas used for cost operations estimation are given below with the

following assumptions:

e Formulae to estimate the cost of executing every relational operation take into
account its implementation, e.g., we consider sequential scans and nested loop

joins.

e The CPU cost is estimated as the time needed to process each tuple of the

relation e.g., checking selection conditions.

e The IO cost estimate is the time necessary for fetching each tuple of the rela-
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tion.

e All operation costs are estimated according to the size of the involved relations

and in terms of time.

Estimated cost of relational operations.

e Estimated cost of unary operations

— cost(op) = (10 * card  length) + (CPU x card * lengthP) where op is a

selection operation

— cost(op) = (10 * card x log(card) x length) + (CPU % card * log(card) *

lengthP) where op is a projection operation

— cost(op) = (10 x card x length) 4+ (C'PU % card * lengthA) where op is an

aggregation operation
e Estimated cost of binary operations

— cost(op) = (10 * lcard x rcard * (llength + rlength)) + (CPU * lcard *

rcard * lengthP) where op is a join operation

Where card is the number of tuples of the operand, length is the length (in
number of bytes) of a tuple, lengthP is the length of columns checked by predicates,
lengthA is the length of the tuples being aggregated, [card and rcard are respec-
tively the number of tuples of the left and right operands (the same for llength and
rlength).

Because materialized views have to be kept up to date, the view maintenance cost
has to be considered. This cost is weighted by the update frequency indicating the
frequency of updating materialized views. The view maintenance cost is computed
as follows:

ViewMaintenanceCost = Z Ju(V3) * Mc(v;, M) (2.7)
v EM
where f,(v;) is the update frequency of the view v; and Mec(v;, M) is the mainte-

nance cost of v; given a set of materialized views M.

The view maintenance cost is computed similarly to the query cost, but the cost
of executing the relational operation is computed with respect to updates. Different
maintenance policies (deferred or immediate) and maintenance strategies (incre-

mental or rematerialization) can be applied |26, 27, 55, 82]. In our work, we assume
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incremental maintenance to estimate the view maintenance cost. Therefore, the
maintenance cost is the differential results of materialized views given the differen-
tial (updates) of the bases relations. In what follows, we briefly review techniques

for computing the differential of a join operation.

Computing the Differential of a Join Operation. Consider the view v which corre-
spond to the result of relation; X relations. We assume for each relation relation;

and 6

relation;’

denoting respectively the set of

tuples inserted into and deleted from relation;. Let relation$" and relation$® refer

that there are two relations 5;latwni

respectively to the contents of relation, and relations, before the update. The set
of tuples that get added to the view v are denoted by ;" and can be computed as
follows [51].

of = (of

relationy

. ld . ld
X TGZCLtZOTLg )U(T@latZOTL? X 57—“~_elationg)u<57:~_elation1 X 57—“~_elation2) (28)

View v is then updated as follows.

v=vUd" (2.9)

Similarly, the set of tuples that get deleted from the view v are denoted by dv~

and can be computed as:

617 = (67“_@lation1 X relatz’ongld) U (Telationlljld X 57'_elation2) U ((5r_elaticm1 X (Sr_elatz'ng)
(2.10)
View v is then updated as follows.
v=0v—20, (2.11)

Updates can be modeled as deletes followed by inserts. If both inserts and deletes

are present in a relation, the view v is updated as follows.

YU (65

relationy

x relationg®) U (relation$!® x 0 X drelations™)

relations

v=uvU /(5"

relationy

— (4, X relationg®) U (relation$!® x & YU (9., X J

relationy relations relationy relations )

(2.12)

In the case when only one relation is updated i.e., relation,, the view v with
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respect to the changes is computed as.

v =0 U (6 apion, X Telationd?) //insert
V=0 = (0;0101i0m, X Telationy'?) //delete (2.13)
0 =0U (0, 01i0m, X Telationd®) — (0, a0i0m, X relationy?) //update

For more details about how to compute the differential of other relational oper-

ations, we refer the reader to [26].

The cost model is extended for distributed setting by taking into account the
communication cost which is the cost for transferring data from their origin to the
site (i.e., computer node) that initiated the query. Given a query ¢; which is issued
at the site s; and denoting by vy, a view required to answer ¢;, the communication
cost is zero if vy, is materialized at s;. Otherwise, let s; be the node containing vy,

then the communication cost for transferring v;, from s; to s; is:

size(vy)

= Dol o (2.14)

CommunicationCost (y, 5 —s;)
where Bw(s;, s;) is the bandwidth between s; and s; (i.e., network transmission cost
per unit of data transferred) and size(vy) is the size of the view v;, in number of

bytes.

2.2 Constraint Programming and CHOCO solver

Constraint programming is currently applied with success to many domains [12,
13, 58|, such as scheduling, planning, vehicle routing, configuration, networks and
bioinformatics. More recently, constraint programming has been considered as ben-
eficial in data mining setting [56]. Our motivation to use constraint programming in
solving the view selection problem is that it is known to be a powerful approach for
modeling and solving combinatorial optimization problems. Notice that the view
selection problem is considered as a combinatorial optimization problem since the
search space for the optimal solution (i.e., the optimal set of materialized views)
entails a great number of comparisons between all possible combinations (subsets)
of the set of candidate views. Constraint programming is also known to be efficient
for the resolution of NP-complete problems since it can provide the optimal solu-

tion. The idea of constraint programming is to solve problems by stating constraints
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which must be satisfied by the solution. Indeed, constraint programming allows to
solve combinatorial problems modeled by a Constraint Satisfaction Problem (CSP)
[72].

Constraint Satisfaction Problem (CSP).Formally, a CSP model is defined by
a triplet (VAR;DOM;CST):

e Variables. VAR = {var;,vary, ...,var,} is the set of variables of the problem.

e Domains. DOM = {domuy,, d0Myary, ..., d0Myg,, } is the set of possible values

that can be assigned to each variable var;.

e Constraints. C'ST = {csty, csto, ..., cst,, } is the set of constraints that describes
the relationship between subsets of variables. Formally, a constraint C'st;;
between the variables var;, var;, vary is any subset of the possible combinations
of values of var;,var;,vary, i.e., Cst;jp C domygey, X domyar; X domyay, . The

subset specifies the combinations of values that the constraint allows.

A feasible solution to a CSP is an assignment of a value from its domain to every
variable, so that the constraints on these variables are satisfied. For optimization
purpose some cost expression on these variables takes a maximal or minimal value.

In what follows, we provide a simple example showing how a constraint problem
can be modeled as a CSP.

Examplel. Let us solve a problem where unknows are the values of the variables
x, y and z, knowing that each variable can take its value between 1 and 3, the value
of x has to be greater than y and the value of y has to be greater than z.

To model the problem of example 1 as a CSP, one need is to define the CSP

variables, their domains and the constraints defined over them:

Variables. x, y and z
Domains. dom, = dom,, = dom, = {1,2,3}

Constraints. x>y and y > z

In our work, we use CHOCO [1, 2| for modeling and solving Constraint Sat-
isfaction Problems (CSPs). CHOCO is a java library for CSPs and constraint
programming which is built on a event-based propagation mechanism with back-
trackable structures. It is an open-source software, distributed under a BSD license
and hosted by sourceforge.net. Note that the constraint solvers such as CHOCO

are structured around annual competitions [43]. In what follows, we present the
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Figure 2.2: Modeling and solving with CHOCO.

basics of modeling and solving with CHOCO and the basic principles of constraint

programming: propagation and search.

2.2.1 CHOCO Design

CHOCO is a java library that provides a clear separation between the formulation
(CHOCO model) and the resolution (CHOCO solver) of the problems. The main
interest of this separation is to propose to the user to model a problem without
being interested in the way the problem is solved. Indeed, the user of CHOCO focus
only on specifying the problem itself and the solver is then responsible for solving
it (see figure 2.2). The different parts are clearly identified. The first part which
is the modeling part is devoted to expressing the problem. It consists in modeling
the problem as a CSP. For this purpose, the variables of the problem, their domains
and the constraints to be satisfied, have to be defined. While, the second part which
is the solving part, is devoted to solve the modeled problem. The CHOCO solver
is mainly focus on the resolution part: reading the model, defining the resolution
policy and the serach strategy. Once the model and the solver have been defined,
the resolution of the modeled problem starts and produces as output one solution,

all solutions or an optimal solution.
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CHOCO Model

This section gives information on how to create a constraint programming model
and introduce variables and constraints by using the API provided by CHOCO. It
allows describing a problem in an easy and declarative way. It simply records the
variables and the constraints defining the problem.

A constraint programming model within CHOCO is created as follows.
Model model = new CPModel(); (2.15)

Variables A variable is defined by a name, type (integer, real, or set variable),
the values of its domain and possibly with a given domain type i.e., bounded or enu-
merated. Bounded variables are related to large domains which are only represented
by their lower and upper bounds. On the contrary, the domain of an enumerated
variable is explicitly represented and every value is considered. The variables can
be added to the model as follows.

model.addV ariable(vary,” cp : bound” or ”cp : enum”); (2.16)
model.addV ariables(vary, vars); .

Specific role of variables can be defined with options: non-decision variables
or objective variable. The non-decision variables are also called implied variables
because it is expected that, they will be instantiated by propagation as soon as all
the decision variables will be all instantiated. Consider for example, a problem with
two integer variables var; and vars linked by some implication var; = 1 = var; = 2,
then the variable var; can be set as the decision variable, while the variable vary
can be let implied. By default, each variable added to a model is a decision variable.
To exclude the variable var, from the search strategy, we use the option "cp:no
decision".

model.addV ariable(vars,” cp : nodecision”); (2.17)

For optimization problems, one need is to define an objective variable within
the model. An optimal solution is then a solution that minimizes or maximizes the

objective variable.
model.addV ariable(vars,” cp : objective”); (2.18)

Constraints. A constraint deals with one or more variables of the model and
specifies conditions to be held on these variables. CHOCO allows the user to easily

state its own new constraints by using the following method.
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model.addConstraint(csty ); (2.19)

model.addConstraints(csts, csts);

CHOCO provides a large number of simple and global constraints. Simple con-
straints may be binary or ternary constraints that involve respectively two and
three variables. For instance, eq(vary, vary) is a binary constraint which states that
the two arguments are equal: var; = wvars. While the global constraints accept
any number of variables and offer dedicated filtering algorithms which are able to
make deductions. For instance, constraint alldif ferent(vary; vary; vars; vary) with
domuyer, = domyer, = [1,4] and domye,, = domye,, = [3,4] allows to deduce that
vary and vary cannot be instantiated to 3 or 4; such rule cannot be inferred by
simple binary constraints.

The list of simple and global constraints available in CHOCO can be found within
the Javadoc API. Details and examples can be found in CHOCO documentation [3].

CHOCO Solver

The solver, along with the model is one of the two key elements of any CHOCO
program. As mentioned before, the CHOCO solver is mainly focus on resolution
part: reading the Model, defining the resolution policy and the search strategies.
The creation of a solver can be easily done with the following methods available
from the solver API.

Solver solver = new C'PSolver(); (2.20)

Reading the model. The reading of a model is compulsory and must be done
after the entire definition of the model. The reading step is divided in two parts:

variables reading and constraints reading. The solver gives the following APT to read
any CHOCO model.

solver.read(model); (2.21)

The resolution of the model is performed automatically by the solver.

Resolution policy. The solver is able to find an optimal solution for any problem.
However, computing the optimal solution for large problems with huge solution space
may be very expensive. To this aims, the solver provides ways to limit the search
regarding different criteria. Once a limit is reached, the search stops. These limits

have to be specified before the resolution. Implementing a search limit such as time
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Solver API

description

solve() or solve(false)

The solver runs until reaching a first
feasible solution in which all constraints
are satisfied (returns Boolean. TRUE) or
the proof of infeasibility (returns
Boolean.FALSE) or a search limit has
been reached before (returns null).

solveALL() or solve(true)

The solver runs until computing all
feasible solutions, or until proving
infeasibility (returns Boolean.FALSE)
or until reaching a search limit (returns
Boolean. TRUE if at least one first
solution was computed, and null
otherwise).

maximize(Var obj, boolean restart)

The solver runs until reaching

a feasible solution that is proved

to maximize objective obj or until
proving infeasibility (returns
Boolean.FALSE) or until reaching a
search limit (returns Boolean. TRUE
if at least one first solution was
computed and null otherwise). It
proceeds by successive improvements
of the best solution found so far:

each time a feasible solution is

found at a leaf of the tree search,
then the search follows for a new
solution with a greater objective,
until it proves that no such improving
solution exists. Parameter restart is

a boolean indicating whether the search
continues from the solution leaf

(if set to false) or if it is relaunch
from the root node (if set to true).

minimize(Var obj, boolean restart)

similar to maximize but for computing
a feasible solution that is proved to
minimize objective obj.

Table 2.1: The different API to solve a problem.
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limit need only to specify the following methods.

e Time Limit. Performing the search until reaching a search time limit. A time

limit is set using the solver API: setTimeLimit(int timeLimit).

For optimization problems, the resolution policy is to leave the constraint solver
running until reaching a feasible solution that is proved to minimize or maximize
the objective variable. Some of the API offered by the solver to launch the problem

resolution, are presented above in table 2.1.

Search Strategy. A key ingredient of any constraint satisfaction approach is a
clever search strategy. The search space is organized as an enumeration tree, where
each node corresponds to a subspace of the search and each child node is a subdivision
of the space of its father node. The tree is progressively constructed by applying a
series of branching strategies that determine how to subdivide space at each node
and in which order to explore the created child nodes.

In the CHOCO solver, branching has been applied to decision variables. The
most common branching strategies in CHOCO are based on the assignment of a
selected variable to one or several selected values (one assignment in each branch).
Variable selector defines the way to choose a non instantiated variable on which the
next decision will be made. Once the variable has been chosen, the solver has to
compute its value (value selector).

Defining a search strategy is very important since a well-suited search strategy
can reduce the number of expanded nodes, the number of backtracks and hence
the time that the solver incurs to compute solutions. The branching strategies i.e.,

variable and value selection strategies available in CHOCO can be found in [3].

Constraint Propagation and Search

Once the model and solver has been defined, the resolution can start. It is based
on constraint propagation techniques. Indeed, algorithms for solving CSPs usually
employ a search procedure that is based on constraint propagation [39]. Such algo-
rithms are guaranteed to find a solution, if one exists, or to prove that the problem
is unsatisfiable. In figure 2.3, we present the organigram of the propagation loop.
When the search fixes the value of a variable (modification of a domain of a variable),
an event is posted, storing information about the action done (event type, variable,
values, etc.). We call this the variableevent. Then, constraint filtering algorithms
have been called, constraintevent, in order to reach a fix point or to detect contra-

dictions. This means that the variable event will be given to the related constraints
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Figure 2.3: Organigram of the propagation loop [3].

of the modified variable, to check consistency and propagate this new information
to the other variables. If the propagation of an event leads to a contradiction, the
propagation engine stops the process.

Explicitly, the constraint programming system always starts by propagating the
immediate effects of the constraint set which results in the reduction of the vari-
able domains, through the withdrawal of inconsistent values. With reference to the
problem of example 1, we show through figure 2.4 how constraint propagation and

search can be applied to solve this problem.
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Figure 2.4: The variable domain reductions of three variables x, y and z [22].

Figure 2.4 shows the domain reduction of three variables z, y and z and two
constraints x > y and y > 2. At the beginning, the initial variable domains,
dom, = dom, = dom, = {1, 2,3}, are represented by three columns of white squares.

Considering the constraint x > vy, it appears that x cannot take the value 1 because
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filters this value from

dom,. The black square denotes the deleted value. Similarly, red}., eliminates the

otherwise there would be no value for y such that z > y; reds.
inconsistent value 3 from the domain of y. Then, considering the constraint y > z,

red’

LA withdraw respectively the sets {1} and {2,3} from dom, and

z
and red;.

dom,. Finally, red:., reduces dom, to the singleton {3}. The final solution is

x>
{r =3y=2,z= 1}y If, after this stage, some variable domains are not reduced
to singletons, the solver takes one of these variables and tries to assign it each of
the possible values in turn. This enumeration stage triggers more reductions, which
possibly leads to solutions.

In chapter 4 and chapter 5, we provide simple examples to illustrate how the
constraint propagation and search can be applied to the view selection in a central-

ized context as well as in a distributed scenario.

2.3 Conclusion

In this chapter we have introduced the basic and necessary notions and concepts
which are required to be known to address and to understand the view selection
problem. We have first provided definitions related to the view selection context
and then presented the cost model formulation that is an important issue for the
view selection process. We have also introduced the basic principle of constraint
programming that we have proposed to address the research problem targeted in
this thesis. In next chapter we present the state of the art in view selection field in

a centralized context as well as in a distributed setting.
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Chapter 3

State-of-the-Art

In this chapter we discuss the state of the art in view selection research. Previous
works on materialized view selection were developed in the context of query op-
timization, warehouse design, data placement in a distributed setting, etc. Many
diverse solutions to the view selection problem have been proposed and analyzed
through surveys [6, 30, 42]. The survey [30] concentrates on methods of finding a
rewriting of a query using a set of materialized views. The study presented in [42] fo-
cuses on the state of the art in materialization for web databases. A critical analysis
of methodologies for selecting materialized views in data warehousing is provided in
[6]. However, none of the above mentioned surveys provides a classification of view
selection approaches in order to identify their advantages and disadvantages. Our
target in this chapter is to fill this gap. This chapter aims at studying the view selec-
tion in relational databases and data warehouses as well as in a distributed setting.
It defines the view selection process that determines the main dimensions which are
the basis in the classification of view selection methods. Based on this classification,
this study reviews existing view selection methods by identifying respective poten-
tials and limits. It also provides an overview of dynamic view selection methods.

The content of this chapter is mainly based on our material published in [47].

3.1 The View Selection Process

The view selection process determines the set of views to be materialized. In a
distributed environment, in addition to providing the set of materialized view, the
set of sites (computer nodes) on which these views should be materialized has to be
computed during the process. There are some other parameters which can extend
the definition of the view selection process. Figure 3.1 outline these parameters

which can be classified into three major groups, namely: (i) input parameters; (ii)
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Figure 3.1: The view selection process.

process parameters; and (iii) output parameters.

Input Parameters (R,Q,V,S). These parameters concern the kind of input
on which view selection methods operate. Approaches to the view selection problem
take as input a database (or a data warehouse) schema R, a query workload @
defined over R and a set of sites S (computer nodes) of the network if the problem is
studied in a distributed scenario. In order to solve the view selection problem, one
need is to identify the candidate views V which are promising for materialization.
Starting with the input queries @), techniques based on multiquery DAG, syntactical
analysis of the workload or query rewriting have been used to obtain the candidate

views V' (see next section for details).

Process Parameters (RC, A). The view selection process generates a set of
materialized views by applying heuristic algorithms A given a limited amount of
resource (resource constraints RC). Resources may be CPU, 10O, storage space ca-
pacity and the view maintenance cost limit. In a distributed context, the resource
constraints i.e., CPU, IO and the storage space will be per site (computer node).
Also, resource constraints such as network bandwidth and the location of material-

ized views will have to be taken into consideration.

Output Parameters (M, Sy;). The view selection process produces as output
the set of views to be materialized M. It also computes the set of sites Sy, on which
the views M should be materialized, in the case where the view selection problem
is addressed in a distributed environment. Once the views are selected and placed

at the appropriate sites, the input queries will be answered using these views.
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3.2 View Selection Dimensions

There are many dimensions that can be taken into account when attempting at
classifying view selection methods in order to identify their advantages and disad-
vantages. As from figure 3.1, we may classify them according to (i) Frameworks used
to obtain the candidate views, (ii) Resource constraints considered during the view
selection process and (iii) Heuristic algorithms applied to address the view selection

problem.

3.2.1 Frameworks

As mentioned in the previous section, techniques based on multiquery DAG, syntac-
tical analysis of the workload or query rewriting have been used as a framework to
obtain the candidate views which are promising for materialization. Based on the
set of candidate views, the view selection methods compute the set of views to be
materialized and the set of sites on which these views should be placed if the view

selection problem is studied in a distributed environment.

Multiquery DAG

Most of the proposed view selection methods operate on query execution plans. The
plans can be derived from multiple query optimization techniques or by merging
multiple query plans. The main interest of such techniques relies in detecting com-
mon sub-expressions between the different queries of workload and capturing the
dependencies among them. This feature can be exploited for sharing computations,
updates and storage space. The dependence relation on queries (or views) has been
represented by using a Directed Acyclic Graph (DAG). However, these methods
require optimizer calls which can be expensive in complex scenarios.

The most commonly used DAGs in literature are:

e AND/OR View Graph: The union of all possible execution plans of each
query forms an AND-OR view graph [59]. The AND-OR view graph described
by Roy [61] is derived from the AND-OR DAG representation which is com-
posed of two types of nodes: Operation nodes and Equivalence nodes. Each
operation node represents an algebraic expression (Select-Project-Join) with
possible aggregate function. An equivalence node represents a set of logical
expressions that are equivalent (i.e., that yield the same result). The opera-
tion nodes have either one or two children that are equivalence nodes and one

parent equivalence node. The equivalence nodes have edges to one or more

29



ri I E] 4

Figure 3.2: The AND-OR view graph of the two queries ¢; and g¢s.

operation nodes. The root nodes are equivalence nodes corresponding to the
query results. While, the leaf nodes are equivalence nodes corresponding to
the base relations. An equivalence node can be calculated by computing one
of its operation node children. While, an operation node can be calculated

only by computing all of its equivalence node children.

A sample AND-OR view graph is shown in figure 3.2. Circles represent op-
eration nodes (Op-Nodes) and boxes represent equivalence nodes (Eq-Nodes).
For simplicity, we represent only two execution plans for the view v; which is
the query result of ¢; and one execution plan for the view vy that is the query

result of g (where ry, ro and r3 represent the base relations).

q1:((r1 opy 73) opy r3) U (r1 opa(ra ops 13)) // two execution
plans
q2:((r2 ops 73) ops r4) // one execution plan
The remaining execution plans are just indicated in figure 3.2 by dashed lines.
The dependence among the views is indicated by AND and OR arcs. The

AND arcs mean that all of the child views are needed to compute the parent

view. While the OR arcs specify that the parent view can be computed from

30



I ra 'E] fa

Figure 3.3: The AND view graph of the two queries ¢; and g¢s.

any one of its children. For example, in figure 3.2, view v; corresponding to a

single query ¢, can be computed from vs and r3 or r; and vy.

In the AND view graph (see figure 3.3), there is only AND arcs and hence
there is only one way to answer or update a view (or a query). As can be seen
in figure 3.3, the views v; and v, corresponding respectively to the result of

the query ¢; and ¢, can be computed or updated on only one way:

Q1=((7’1 op3 7‘2) op1 7’3)

Q2=((7“2 Op4 7‘3) op2 7"4)

If there is only one way to answer or update a given view (or a query), the

graph becomes an AND view graph.

In the data cube which is a specific model of a data warehouse, the AND-OR
view graph is an OR view graph, as for each view there are zero or more ways
to construct it from other views, but each way involves only one other view
[28]. In other words, an OR view graph is an AND-OR view graph in which
every node is an equivalence node that can be computed from any one of its
children. A sample OR view graph is shown in figure 3.4. For example, in
this figure, view v; can be computed from any of the views vy, v3 or vy. View
vy can again be computed from any of the base relations r; or r,. The same

applies to computing the views vz and vy.
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Figure 3.4: The OR view graph for four views.

ra Iz r

Figure 3.5: The MVPP of the two queries ¢; and ¢s.
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e Multi-View Processing Plan (MVPP): The MVPP defined by Yang et
al [76] is a DAG in which the root nodes are the queries, the leaf nodes are
the base relations and all other intermediate nodes are selection, projection,
join or aggregation views that contribute to the construction of a given query.
The MVPP is obtained after merging into a single plan either individual op-
timal query plans (similar to the AND view graph) or all possible plans for
each query (similar to the AND-OR view graph). The difference between the
MVPP representation and the AND-OR view graph or the AND view graph
representation is that all intermediate nodes in the MVPP represent operation

nodes. A sample MVPP is shown in figure 3.5.

e Data Cube Lattice: Harinarayan and al [31| propose the data cube lattice
for modeling data in multiple dimensions. It is built from the queries involved
in the data warehouse application, e.g., OLAP-style queries. The data cube
lattice is a DAG whose nodes represent views (or queries) which are character-
ized by the attributes of the Group by clause. The edges denote the derivability
relation between views. That is, if there is a path from view v; to a view vy
(see figure 3.6), then grouping attributes on vy can be calculated from group-
ing attributes on v;. The node labeled none corresponds to an empty set of

group-by attributes (tuples are not grouped).

The data cube lattice is used for representing queries with only aggregate
functions involved for OLAP applications. It can be seen as an OR view
graph where each view in the graph can be derived from a subset of other
views in one or more ways, but each derivation involves only one other view.
The benefit of this representation is that a query can be used to answer or

update another query.

An extension of the data cube lattice in order to adapt it to a distributed case
was proposed in [7, 77|. Indeed, the cube has been modified by adding edges
that mark the derivation relationship between views on different computer
nodes. Therefore, in addition to the edges representing aggregation depen-
dencies, further edges are introduced to denote the communication channels
within the distributed scenario as illustrated in figure 3.7. In the example,
we consider a scenario with two sites i.e., two data warehouses. To keep the
example as clear as possible, only a tiny part of the full lattice is given in its

full complexity (as shown in the dashed rectangle).
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Figure 3.7: The distributed data cube lattice.
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Query Rewriting

Here, the input to the view selection problem is not a multiquery DAG but the
query definitions. The view selection problem is modeled as a state search problem.
Each point in the search space, called a state, represents a set of views and a set
of associated equivalent rewritings showing how to compute each query based on
this set of views. Consider the queries ¢ = 7(0k=3(r1) XNp—c T2 X—q 73) and
G2 = Ta(Toy Weeq T3 Ma—e 0a<g(r4)). The state graph for ¢; and ¢y is defined as

follows.

e The set of nodes is the set of of base relations r,...,7;. If a node r; is labeled
by an attribute label v : aq, .., a, this means that the attributes aq, .., a; are

projected out in the query or view definition.

e For every selection operation involving attributes of the relation r;, there is an
edge from r; to itself (a loop) labeled as v : selection predicate. This loop is

called selection edge.

e For every join operation involving attributes of the relations r; and r;, there
is an edge between 7; and r;, labeled as v : join predicate. Such an edge is

called join edge.

We define the initial state of the search for the two queries ¢; and ¢y as: Stateg =
({v1,v2}, Go, Ry) where v and vy are views identical to the queries ¢; and ¢, and Ry
the rewriting set that consists of the trivial rewritings {q; = v1, g2 = v2}. The related
state graph G is depicted in figure 3.8. Then a set of transformation rules have
been applied in order to detect and exploit common sub-expressions between the
queries of the workload and guarantee that all the queries can be answered using
exclusively the selected views. In what follows, we introduce the two elementary

transformation rules which are SelectionCut and JoinCut.

e Selection Cut. Let (V, G, R) be a state and v : selection predicate be a selection
edge. A selectioncut on v : selection predicate yields a new state (V/,G', R')
such that V' is the new set of views by replacing v with a new view v/, G’ is
the new state graph obtained by erasing the edge v : selection predicate and

R’ is obtained from R by replacing all occurrences of v with the expression

/
O selection predicate(v )

e Join Cut. Let (V,G,R) be a state and v : join predicate be a join edge. A
joincut on v : join predicate yields a new state (V' G', R') such that V' is the

new set of views by replacing v with two new symbols v} and v}, G’ is the new
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state graph obtained by erasing the edge v : join predicate and R’ is obtained
from R by replacing v by v] X oin predicate Vh-

rz Vi: c=d 3
Vz: c=d

Vi: b=c V2: d=e

I

Fa
Vi k=3 d Vi k Vi: a‘:SC,w; a

Figure 3.8: Sample query graph.
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Figure 3.9: The query graph after two joincut

The state graph that is shown in figure 3.9 is obtained from Gy (figure 77)
by applying two joincut which consist in removing two join edge v, : b = ¢ and
ve : d = e. The resulting state is: State; = ({vs, v4,v5}, {q1 = TE(V3 Np=c V1), G2 =
Ta(V3 Ma=c Vs)})

This set of transformation rules allow to rewrite completely all the input queries

over the selected views and detect common sub-expressions between the queries.

36



For instance in the above state State;, we can note that the view vs is a common
sub-expression between the queries g; and ¢s. Nevertheless, the completeness of
the transformation rules makes the complexity of state search problem exponential,
based on the number of states created by each transformation and time complexity

of the transformation.

Syntactical Analysis of the Workload

Some view selection methods are based on syntactical analysis of the workload to
identify candidate views. These approaches analyze the workload and pick a subset
of interesting base relations from all possible base relation subsets for the workload.
This subset is chosen according to the condition that if materializing one or more
views on it has the potential to reduce the cost of the workload significantly. The
remains base relation subsets are removed from the final result set according to two

cost metrics [8]:

e BRS — Weight(brs) which computes the detailed costs of processing all the

queries in the query workload that use a given base relation subset brs.

erebrs SiZG(TS)

quebrq SiZ@(Tq) (31)

BRS — Weight(brs) Z fq* Qc(q:)

qubrs

Where Qs is the set of queries that refer to the base relations brs, brq is the
set of base relations required to answer the query ¢, Qc(g;) is the query cost
corresponding to ¢ without using the materialized views, f, is the frequency of
q in the workload, size(rs) is the size of the base relations in brs and size(rq)

is the size of all the base relations referenced in brq.

BRS —Weight is defined as the sum of query costs weighted by the sizes of the
base relations. However, this definition is not suitable for distributed scenarios
where the size of the base relations is not the only influencing factor. For this

purpose, the study in [15] computes the cost BRS — Weight as follows:

cost aseRelation\q, TS
BRS — Weight(brs) Z fqx Qc(q;) erebrs vaseRelation(d, '5) (3.2)
4€EQprs Erqebrq COStbaseRelation(Qa TQ)

Where costiaseretation(q,7S) and costpaseRretation(q, 7q) return respectively the
costs of a base relation rs and rq in the query g, i.e., the costs of base rela-
tion scans, selection and sending data, which depend on the resources of the

sites storing the base relations rs and rq. This definition captures the size
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(cardinality) of a base relation, its query frequency and the performance of its

allocation site.

e BRS—Cost(brs) that estimates the costs only, with BRS—Cost(rs) > BRS—
Weight(rs).
BRS — Cost(brs) = Y f,*Qclq:) (3.3)
9€Qurs
As mentioned above, Qc(g;) is the query cost corresponding to ¢ without using

the materialized views and f, is the frequency of ¢ in the workload

Workload analyzing allows finding an interesting base relation subsets from
among all possible base relations for the workload, and restrict the space of can-
didate views considered to only those base relation subsets. A base relation subset
is interesting if materializing one or more views on it has the potential to reduce
the cost of the workload significantly. However, the search space for computing the
candidate views to be materialized may be very large since the number of possible
combinations of base relations may be exponential based on the number of differ-
ent base relations referenced by all queries in the query workload. The syntactical
analysis of the workload can be substituted for example by using multi-query op-
timization techniques as described above which can significantly save a lot of work
and cost as well. By using such techniques, the ideal search space can be found just
by constructing the DAG representation of the entire workload which can recognize

possibilities of shared computation among several queries of the workload.

3.2.2 Resource Constraints

Resource constraints considered during the view selection can be taken into account
when classifying view selection methods. There are three main models presented in

literature, namely: unbounded, space constrained and maintenance cost constrained.

Unbounded

In the unbounded setting, there is no limit on available resources (storage, compu-
tation etc.). Thus, the view selection problem consists in choosing a set of views
to materialize that minimizes the query processing cost and the view maintenance

cost. Formally thus, the problem is:

argmz'n (ZQ¢EQ fqi * QC(Qi, M) -+ ZU»;E]W fu('Uz) * MC(Ui, M)) (34)
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Recall (see chapter 2) that f,, is the query frequency, Qc(g;, M) is the processing
cost corresponding to ¢; in the presence of a set of materialized views M, f,(v;) is
the update frequency of the view v; and Mc(v;, M) is the maintenance cost of v;
given a set of materialized views M.

However, this approach may lead to two kinds of problems. First, sometimes the
selected views may be too large to fit in the available space. Second, the cost of
the view maintenance may offset the performance advantages provided by the view

materialization.

Space Constrained

Due to the storage space limitation, materializing all views is not always possible.
In this setting, a useful notion is that of a view benefit (or query benefit). This is
defined as the reduction in the workload evaluation cost, which can be achieved by
materializing this view. Also relevant in this context is the per-unit benefit, obtained
by dividing the view benefit by its space occupancy. It has been shown [28] that
the per-space unit benefit of a view can only decrease as more views are selected
(monotonic property). The space constrained model minimizes the query processing

cost, plus the view maintenance cost under a space constraint.

argmin (ZqieQ far % Qclqi, M) + 2, cp fulvi) ¥ Me(vi, M))
(3.5)

under Y, cnp 812€(v;) < Spax

where S, is the storage space capacity.

Nevertheless, the view maintenance cost is unbounded in this model. Indeed, in
many real applications, maintenance-cost is more likely to be the real constraint to
keep the materialized views consistent with the data source (base relations), rather
than storage space constraints. Besides, the storage space can be considered as

cheap and therefore not regarded as a critical resource anymore.

Maintenance Cost Constrained

This model constrains the time that can be allotted to keep up to date the mate-
rialized views in response to updates on base relations. In the maintenance cost
constrained model, the maintenance cost of a view may decrease with selection of
other views for materialization. Therefore, the query benefit per unit of maintenance

cost of a view can increase [29]. This non monotonic nature of maintenance cost
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makes the view selection problem more difficult. The maintenance cost constrained

model minimizes the query processing cost under a maintenance cost constraint.

argmin (ZinQ fa. * Qc(qi, M))
(3.6)

under ZvieM fu(vi) x Mc(vi, M) < Upaz

where U,,4. 1S the view maintenance cost limit.

The models that we have presented: unbounded, space constrained and main-
tenance cost constrained, can be extended to the distributed setting by taking into
account the distributed specific features i.e., the communication cost between the

sites (computer nodes) and the location of the materialized views.

3.2.3 Heuristic Algorithms

In this section, we present the different kind of the most well-known heuristic algo-
rithms proposed in literature to solve the view selection problem i.e., deterministic

algorithms, randomized algorithms or hybrid algorithms.

Deterministic Algorithms

Algorithms in this class usually construct a solution in a deterministic manner by
exhaustive search or by applying some kind of heuristics such as greedy algorithm to
avoid having to traverse the solution space in an exhaustive search manner. However,
greedy search is subjected to the known caveats, i.e., sub-optimal solutions may
be retained instead of the globally optimal one since initial solutions influence the
solution greatly. Tt is very difficult to find an optimal solution to the problems which
belong to the class of NP-complete problems because of the fact that the solution
space grows exponentially as the problem size increases. For instance in the context
of the view selection problem, the number of possible views (view combinations)
to materialize grows exponentially with the number of queries in the workload,
the numbers of columns, join predicates, grouping clauses and tables referenced in
each query and with the number of computer nodes if the problem is studied in a

distributed scenario.
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Randomized Algorithms

The most commonly used randomized algorithms in the context of view selection

are simulated annealing algorithms [40] and genetic algorithms [24].

o Simulated Annealing Algorithms. Such algorithms are motivated by an analogy
to annealing in solids. They are based on the iterative improvement technique
which is applied to a single point that represent a solution in the search space
and continuously tries to search its neighbors to find a better point (a better
solution). In order to eliminate the dependency on the starting point of the
search, simulated annealing algorithms use a probability for acceptance to
decide whether or not to move to a neighboring point. Indeed, it is possible to
move to a neighboring point (a neighboring solution) by random walk that may
be further away from the optimum than the previous one in expectation that
its neighbors will represent a better solution. The probability for acceptance is
calculated according to a cooling schedule. The algorithms terminate as soon

as no applicable moves exist or lose all the energy in the system.

o Genetic Algorithms. These algorithms generate solutions using techniques
inspired by the natural evolution process such as selection, mutation, and
crossover. The strategy search for these algorithms is very similar to biological
evolution. Genetic algorithms use a randomized search strategy; they start
with a random initial population containing individuals which represent possi-
ble solutions and generate new populations by random crossover and mutation.
The fittest individual found is the solution. The algorithms terminate as soon
as there is no further improvement over a period. In contrast with the simu-
lated annealing algorithms, genetic algorithms use a multi-directional search
by maintaining a pool of candidate points (candidate solutions) in the search
space. Information is exchanged among the candidate points to direct the
search where good candidates survive while bad candidates die. This multi-
directional evolutionary approach allows the genetic algorithm to efficiently

search the space and find a point near the global optimum.

Randomized algorithms are based on statistical concepts where the search space
can be explored randomly until reaching a point near the global optimum. The
can be applied for very large search spaces. Furthermore, they can find a reasonable
solution within a relatively short period of time by trading executing time for quality.
However, there is no guarantee of performance because the probabilistic behavior of

the genetic algorithms does not insure to find the global optimum.
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Hybrid Algorithms

Hybrid algorithms combine the strategies of pure deterministic algorithms and pure
randomized algorithms in their search in order to provide better performance in
terms of solution quality. Solutions obtained by deterministic algorithms are used
as initial configuration for simulated annealing algorithms or as initial population
for genetic algorithms.

The combination of the power of randomized algorithms and deterministic al-
gorithms may provide better solution quality than either randomized algorithms
or deterministic algorithms used alone. However, hybrid algorithms are more time
consuming since a considerable amount of time must be spent during the search.
Therefore, such algorithms may be impractical due to their excessive computation

time.

3.3 Review of View Selection Methods

In this section, we classify the view selection methods. More specifically, they have
been classified based on what kind of algorithms they use to address the view se-
lection problem pointing which resource constraints they consider during the view
selection process and frameworks they use to obtain the candidate views (see figure
3.10). Based on this classification, we review most of the view selection methods

that have been proposed in the literature.

3.3.1 Deterministic Algorithms Based Methods

Much research work on view selection use deterministic strategies to address the
view selection problem. [60]| seems to be the first paper that provides a solution for
materializing view indexes which can be seen as a special case of the materialized
views. Indeed, view indexes are similar to views except that instead of storing the
tuples in the views directly, each tuple in the view index consists of pointers to the
tuples in the base relations that derive the view tuple. The solution is based on A*
algorithm [53] to compute the optimal set of view indexes.

An exhaustive approach is also presented in [57] for finding the best set of views
to materialize in the context of SQL views. The authors have also examined the cost
of maintaining a materialized view by materializing additional views. In addition to
study how to select the set of views to be materialized, the work in [41| address the
index selection problem. By running experiments, the authors were able to indicate

that building indexes on key attributes in the primary view lead to solid maintenance
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cost savings with modest storage space requirements. Nevertheless, an exhaustive
search is impractical for many real world problems since it cannot compute the
optimal solution in a reasonable time. In order to avoid having to exhaustively
traverse the solution space in search of the optimal solution, many view selection
methods use a form of greedy strategy. In what follows, we provide a review of such
methods.

The authors in [31] have investigated the problem of choosing which set of views
to materialize in the special case of data cubes. They present and analyze sev-
eral view selection algorithms when there are queries with only aggregate functions
involved for decision support applications i.e., OLAP-style queries. The view selec-
tion has been modeled using the data cube lattice framework. Using this framework,
they provide polynomial-time greedy algorithms to select the right set of views to
materialize that minimizes the query cost subject to a space constraint. One of the
negative points of this approach is that the view maintenance cost has not been

taken into account which can efficiently change the materialized view selection.

The work in [75] is dealing with more general SQL queries which include select,
project, join, and aggregation operations. A greedy algorithm has been designed
to select a set of views to be materialized so that the sum cost of processing the
queries of workload and maintaining the materialized views is minimized. Besides,
they presented a framework which is the Multi-View Processing Plan (MVPP) that
can provide a feasible solution based on individual query plans. They also map
the materialized view selection problem as O-1 integer programming problem, whose
solution can guarantee an optimal solution. The weak point of this approach is that
they have used a very simple cost model for updating the view which considers the
cost used for constructing this view. They assume that re-computing (from scratch)
is used whenever an update of an involved base relation occurs. As a result, the
maintenance cost for the selected view set is not very realistic. Besides, the view

selection is done without any resource constraint.

A theoretical framework for the view selection problem in data warehousing set-
ting has been developed in [28|. Their work aims to find a set of views to materialize
under a storage space constraint, which have the best balance between view main-
tenance cost and query cost. They provide a near-optimal exponential time greedy
algorithm for the most general case of AND-OR view graph, where for each view (or
query), they consider all its possible execution strategies. The authors design also a
near-optimal polynomial time greedy algorithms for some special cases of the gen-
eral data warehouse scenario: (i) AND view graph where each query or view has a

unique evaluation and (ii) OR view graph, in which any view can be computed from
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any one of its related views i.e., data cube. This approach was extended in [29] to
study the view selection under a maintenance cost constraint instead of the storage
space constraint. They refer to this problem as the maintenance-cost view-selection
problem. This is more difficult than the view selection problem with a storage space
constraint because of the non-monotonic behavior of the benefit function per unit of
maintenance cost (as explained in the previous section). To solve this problem, the
authors use the notion of inverted tree set to develop a greedy heuristic algorithm,
which delivers a near-optimal solution for the special case of OR view graphs. For
the general case of AND-OR view graphs, they design an A* heuristic that provides
an optimal solution but it takes a considerable amount of time as it is exponential

in the size of the input graph.

The authors in [61] demonstrate that using multi-query optimization techniques
is practical and provides significant benefit in view selection setting. The benefits
of multi-query optimization were also demonstrated on a real database system. The
main interest of such techniques relies in detecting common sub expressions between
the different queries of workload. This feature can be exploited for sharing updates
and space storage. To find a solution to the view selection problem, a greedy heuristic
has been designed which is based on the AND-OR DAG representation of queries
and picks the set of views to materialize so that the cost of processing the queries is
minimal. This approach also handles index selection and nested queries. This study
was extended in [51] to consider how to optimize view maintenance cost (minimize
the cost of maintenance). In addition to speed up the query workload by selecting
materialized views, they have presented greedy algorithms which exploit common
sub-expressions between view maintenance expressions to compute an efficient plan
to the maintenance of the materialized views. In particular, it has been shown how
to efficiently choose sub-expressions and indexes to be materialized temporarily or
permanently (and maintained along with other materialized views) to faster view
maintenance. However, the view selection problem has been studied without any

resource constraint.

A pragmatic approach of the view selection problem that combines local with
global optimization have been presented in [9]. Polynomial greedy algorithms have
been designed to provide a solution based on the balance between query processing
and maintenance cost. More precisely, the view selection problem has been solved
in two phases. The first phase depends on local optimization by searching the views
to materialize per level and per query which can preserve the data independence
whenever adding a query to the view configuration or removing one from it. The

first phase is based on the notion of level in the query tree. Indeed, each view of
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the query tree is associated to a level. As result, for each query a set of views
is pre-selected which is associated to the level that has the minimal sum of query
processing and view maintenance cost (local benefit). Based on the pre-selected
views, the second phase generates the set of views to be materialized which optimize
the trade-off between the total query cost and the view maintenance cost (global

benefit) subject to a space constraint.

The view selection has been studied in [45, 68, 69, 70, 71] under the condition that
the input queries can be answered using exclusively the materialized views. This
is done by formulating the view selection problem as a state space optimization
problem and using a set of transformation rules to rewrite completely the input
queries over the view selection (please see section 3.2.1). An exhaustive algorithm
has been designed in [70] to select a set of materialized views while minimizing the
combination of the query processing and view maintenance cost. In this study it
was considered that there is no storage space restriction in the data warehouse. This
work was extended in [45] by developing greedy algorithms that expand only a small
fraction of the states produced by the exhaustive algorithm. The issue of selecting a
set of views to be materialized has been investigated in [68, 69, 71] under a storage
space constraint. However, their view selection algorithms are still in exponential

time. A survey of work on answering queries using views can be found in [30].

The study in [8] presents another approach that is based on a syntactical analysis
of the workload. This approach deals with the problem of selecting both view and
indexes to be materialized in order to optimize the physical design of SQL databases
by taking into account the interaction between indexes and materialized views. More
specifically, this approach proceeds in three main steps. The first step analysis the
workload and chooses subsets of base relations with a high impact on the costs of
processing all the queries (please see section 3.2.1). Based on the base relations
subsets, the second step identify syntactically relevant views and indexes that can
potentially be materialized. The goal of candidate materialized view selection is to
eliminate materialized views that are syntactically relevant for one or more queries
in the workload but are never used in answering any query. Based on the result
of the second step, the system runs a greedy enumeration algorithm to pick a set
of views and indexes to materialize in order to determine the ideal physical design.
The selection of the materialized views has been done under the condition that these
views have to fit in the available storage space. The drawback of this approach is that
it does not take into account the view maintenance cost. This feature is important

to ensure the correctness of the index and view selection.

The works published in |7, 77] address the view selection problem in a distributed
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data warehouse environment. An extension of the concept of a data cube lattice
to capture the distributed semantics has been proposed (please see section 3.2.1).
Moreover, they extend a greedy based selection algorithm for the distributed case.
However, the cost model that they have used does not include the view maintenance
cost. Furthermore, the network transmission costs (bandwidth network) are not con-
sidered which is very important in a distributed context. Indeed, the communication
cost is computed as a function of the size of the query result.

The above methods take a deterministic approach either by exhaustive search or
by some heuristics such as greedy. However, greedy algorithms may be unsatisfactory
in term of the solution quality because the greedy nature of the algorithm may make
it converge to poor local minima since initial solutions influence the solution greatly.
As a result, many paradigms and have been developed to improve the solutions of
the view selection problem, namely: randomized algorithms and hybrid algorithms

which we describe in next subsection.

3.3.2 Randomized Algorithms Based Methods

Typical randomized algorithms are genetic [24] or use simulated annealing [40].

Genetic Algorithms Based Methods

A genetic algorithm has been proposed in [79] in conjunction with the Multi-View
Processing Plan (MVPP) framework to deal with the selection of materialized views
in a data warehouse. The materialized views have been selected according to their
reduction in the combined query cost and view maintenance cost. They have shown
that a genetic algorithm is particularly a suitable and feasible approach toward
solving materialized view selection problem. However, because of the random char-
acteristic of the genetic algorithm, some solutions can be infeasible. For example,
in the maintenance cost constrained model, when a view is selected, the benefit will
not only depend on the view itself but also on other views that are selected. One
solution to this problem is to add a penalty value as part of the fitness function to
ensure that infeasible solutions will be discarded.

The study in [44] focused on an efficient solution using genetic algorithm to the
maintenance cost view selection problem. Indeed, a penalty function has been in-
cluded in the fitness function to reduce the fitness each time the maintenance cost
constraint is not satisfied. The problem of selecting a set of views to be material-
ized has been explored in the context of OR view graph where each view can be

computed from any one of its related views. This approach minimizes the query
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processing cost given varying upper bounds on the view maintenance cost, assuming
unlimited amount of storage space because storage space is cheap and not regarded
as a critical resource anymore. In order to let the genetic algorithm converge faster,
they represent the initial population as a favorable configuration based on external
knowledge about the problem and its solution rather than a random sampling, i.e.,
the views with a high query frequency are most likely selected for materialization.
They believe that a genetic algorithm can become an important tool for warehouse
evolution, especially for those data warehouses that contain a large number of views
and must accommodate frequent changes to the queries.

The common methods for dealing with constrained combinatorial optimization
problems is to introduce a penalty function to the objective function in order to
penalize the solutions violating the resource constraints. However, it is difficult
to find a precise value to realize the right balance between the original objective
function and the penalty function. A solution was provided in [78] to ensure this
balance and keep improving the solution. Constraints are incorporated into the
algorithm through a stochastic ranking procedure where no penalty functions are
used.

The study presented in [15] which is based on a syntactical analysis of the work-
load deals with the distributed view selection. This approach consists of three main
steps. The first one extends the base relations selection algorithm described in [8]
for the distributed scenario. Based on the result of the first step and the similarity
between queries, the second step generates the candidate views which are promising
for materialization. In the third step a genetic algorithm is applied to select a set
of materialized views and the nodes of the network on which they will be material-
ized that minimize the query processing and view maintenance cost. However, this
approach does not take into account either the space constraint or the maintenance

cost constraint.

Simulated Annealing Based Methods

A randomized approach for selecting a set of views that are able to answer the input
queries has been developed in [67]. It is based on the simulated annealing process.
In this approach, the views are selected to be materialized such that the combination
of the query cost and the view maintenance cost is minimized.

The approach proposed in [33] have also studied the application of randomized
search heuristics to address the view selection problem. Simulated annealing algo-
rithms were adapted to find an appropriate set of views that minimizes querying

cost and meet the resource constraints of the data warehouse. Specifically, the view
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selection problem has been studied under the case where either the space constraint
or the maintenance cost constraint is considered. Further, randomized search has
been applied to solve two more issues. First, they considered the case where both
space and maintenance constraints exist. Next they applied randomized search in
the context of dynamic view selection.

The use of simulated annealing algorithms has also been investigated in [17] in
conjunction with the use of the Multi-View Processing Plan (MVPP) framework
to decide which views to materialize for large data warehouse systems. In order
to deal with larger sets of views and gain further improvements in solution quality,
Parallel Simulated Annealing (PSA) has been explored in [18| for materialized view
selection. By performing simulated annealing with multiple inputs over multiple
computer nodes concurrently, PSA is able to improve the quality of obtained sets
of materialized views. Moreover, PSA is able to perform view selection on MVPP
having a much larger number of views, which reflects the real data warehousing
environment. However, the view selection problem is solved without any bound
neither on the storage space nor on the view maintenance cost.

Randomized algorithms can be applied to complex problems dealing with large or
even unlimited search spaces. Thus, the use of randomized algorithms can be consid-
ered in solving large combinatorial problems. Indeed, they can be easily adapted to
solve the view selection problem in a centralized context as well as in a distributed
setting. They have also provided significant improvements over existing methods
i.e., deterministic methods for both the quality of the solutions and the time allo-
cated for view selection. However, their successes to provide good quality solutions
often depend on the set-up of the algorithms as well as the extremely difficult fine-
tuning of the parameters of the algorithms that must be performed during many
test runs. Furthermore, there is no guarantee of performance. Indeed, randomized
algorithms may tend to get stuck at a poor local optimum fairly early because of

their probabilistic behavior.

3.3.3 Hybrid Algorithms Based Methods

Hybrid algorithms combine the strategies of deterministic and randomized algo-
rithms in their search in order to provide better performance in terms of solution
quality. Solutions obtained by deterministic algorithms are used as initial configu-
ration for simulated annealing algorithms or as initial population for genetic algo-
rithms.

A hybrid approach has been applied in [80] which combines heuristic algorithms

i.e., greedy algorithms and genetic algorithms to solve three related problems. The
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first one is to optimize queries. The second one is to choose the best global processing
plan from multiple processing plans for each query. The third problem is to select
materialized views from a given global processing plan. Their experimental results
confirmed that hybrid algorithms provide better performance than either genetic
algorithms or heuristic algorithms i.e., greedy algorithms used alone in terms of
solution quality.

An evolutionary search is also described in [32] which use a Genetic Local Search
(GLS) algorithm to solve the view selection problem. GLS is a hybrid heuristic that
combines the advantages of population based algorithm i.e., genetic algorithm and
local optimization. Local search iteratively moves from one solution to a better one
on its neighborhood until a local minimum is reached. While it quickly finds good
solutions in small regions of the search space, the genetic operators such as selection,
crossover and mutation are suitable for exploring the whole search space in order to
identify interesting regions.

Hybrid methods have been developed in order to achieve furthers improvement
in the solution quality i.e., the quality of the obtained set of materialized views, in
terms of cost saving. However, the drawback of such methods is that they are more

time consuming and may be impractical due to their excessive computation time.

3.4 Static View Selection vs. Dynamic View Selec-
tion

A static view selection approach is based on a given workload and chooses accord-
ingly the set of views to materialize. Whereas, in a dynamic view selection ap-
proach, the view selection is applied as a query arrives. Therefore, the workload is
built incrementally and changes over time. Because the view selection has to be in
synchronization with the workload, any change to the workload should be reflected
to the view selection as well. Indeed, in a system of a dynamic nature [11], the set
of materialized views can be changed over time and replaced with more beneficial
views in case of changing the query workload. Dynamic view indexing has also been
considered in [63] which can be seen as a special case of the materialized views.
The principle of the dynamic system described in [38] is monitoring constantly
the incoming queries and considers the materialization at the final result of a query.
This approach deals with multidimensional data warehouse and the replacement of
the view depends either on space constraint or maintenance cost constraint. Unlike
other dynamic approaches, in the one described in [81] dynamicity is applied to the

view data. This approach aims at materializing the most frequently accessed tuples
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of the view rather than materializing all tuples of the view in order to reduce view
maintenance cost and storage space requirements. The set of materialized tuples can
be changed dynamically as the queries change, either manually or automatically by
an internal cache manager using a feedback loop. However, the task of monitoring
constantly the query pattern and periodically recalibrating the materialized views
is rather complicated and time consuming especially in large data warehouse where

many users with different profiles submit their queries.

The work presented in [10] has designed an approach for dynamically selecting
an effective set of views to be materialized and place them in key points in the
P2P system so as to achieve the best combination of good query performance and
low view maintenance cost. Moreover, as the system is dynamic, their approach
continuously monitors the incoming query and adjusts the system configuration by
removing materialized views in order to replace the less beneficial views with more

beneficial ones.

A dynamic view selection is often referred to as view caching. With caching, the
cache is initially empty and data are inserted or deleted from the cache during the
query processing. Materialization could be performed even if no queries have been
processed and materialized views have to be updated in response of changes on the

base relations. A detailed comparison of these two techniques is given in |36].

Traditional caching approaches aim at caching the results of queries. Another
alternative is to cache only a part of a view. Indeed, a chunk based scheme has been
introduced in [19] for fine granularity caching. Chunk based caching allows caching
of only few, frequently used tuples of views. To facilitate the computation of chunks
required by a query but not found in the cache, a new organization for base relations
has been proposed which they called a chunked file. Caching has been adopted in
data warehousing [62], distributed databases [37] and peer to peer systems [34].

The design of an intelligent data warehouse cache manager has been proposed
in [62] called watchman which aims at minimizing the query cost. The cache man-
ager employs cache replacement and cache admission algorithms. These algorithms
explicitly consider retrieved set sizes and processing costs of the associated queries

in order to improve the query performance.

The approach in [37], called cache investment has been proposed for integrating
query optimization and data placement. The main goal of this study is to place
copies of data closest to where they will most likely be accessed. Caching is per-
formed here in terms of partitions of base relations. This approach is ideal for a
client-server caching architecture, in which queries are submitted, data is cached,

and results are displayed at client workstations while the primary copies of data
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reside on the server (server machines). The authors demonstrated that there is cir-
cular dependency between caching and query plan optimization which has significant
performance implications for advanced distributed database systems. The role of a
cache investment policy is to determine which data items should be cached at the
client. However, the weak point of this approach is that they assume the client-
server architecture without any cooperation between the clients in order to invest
their cache together. Moreover, base relation caching would be space wasted and
high communication cost would be paid in order to transfer the entire base relation
from its origin to the client.

The caching system presented in [34] addresses the problem of PeerOLAP ar-
chitecture where a large number of peers access sporadically a number of separate
data warehouses for processing on-line analytical queries. The peers act as large dis-
tributed caches and offer their resources aiming at achieving lower query processing
cost. When any query arrives at a peer, it is decomposed into chunks. If a query
cannot be answered locally by using the cache contents e.g., chunks of the computer
node where it is issued, it is propagated through the network until a peer that has
cached the answer is found. Due to the space constraint, PeerOLAP provides a re-
placement algorithm to control the local cache at each peer. Last access time is the
replacement criteria used for the replacement of the less beneficial chunks with more
beneficial chunks. The authors specified different degree of collaboration between
the peers by introducing view placement policies. The cooperation between the peers
is achieved within a cluster. Intuitively, peers with similar query patterns should be
neighbors (belong to the same cluster). Each peer implements a mechanism which
constantly evaluates the current neighbors and drops or adds peers to the neighbor
list, in order to achieve lower query cost. However, the network transmission cost
has not been taken take into account when designing the different clusters and this
may be considered as a drawback when the communication cost between two peer

neighbors is too high.

3.5 Summary and Observations

In this section, we survey our review of the different approaches related to the view
selection and our observations, which will be useful to introduce our approach. One
line of past research explores the view selection in relational databases and data
warehouses when all the queries are assumed to be known and given in advance.
The view selection problem has also been studied in a distributed setting consisting

of many computer nodes, where each node issues many different queries and updates
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at different rates. A separate line of research has studied the dynamic view selec-
tion, where views are selected continuously, to respond to the changes in the query
workload over time. In this work, we focus only on static view selection.

The view selection methods we discussed have been classified based on the main
view selection dimensions that we have identified and which we summarize in figure
3.11. Specifically, we classify them based on what kind of heuristic algorithms they
design to deal with the view selection issue pointing which frameworks they use to
obtain the candidate views and resource constraints they consider during the view

selection process.

Multiquery DAG
Frameworks N
Query Rewriting
Workload Syntactical Analysis
Unbounded
View Selection Resource

. . Space constrained
Dimensions Constraints

Maintenance-cost constrained

Deterministic Algorithms

Heuristi
EUl=lE Randomized Algorithms
Algorithms

AN N N

Hybrid Algorithms
Figure 3.11: View Selection Dimensions.

The principal dimensions that are the basis in the classification of view selection
methods can be divided into three main categories. The first category of frame-
works is based on identifying the candidate views. More precisely, techniques based
on muliquery DAG, query rewriting or syntactical analysis of the workload have
been used to obtain the candidate views. In our work, workload analyzing and
query rewriting techniques has been substituted by using multi-query optimization
techniques which can significantly save a lot of work and cost as well. By using
multi-query optimization, we can find the ideal search space just by constructing
the DAG representation of the query workload which can recognize possibilities of

shared computation, updates and storage space. Particularly, we have used in our
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approach the AND-OR DAG representation (the AND-OR view graph). Our moti-

vation to use this representation is explained in the next chapter.

The second main category focuses on the resource constraints which are incorpo-
rated into the view selection algorithms. In the unbounded model, the selection of
materialized views has been done without considering any resource constraint. The
space constrained model specifies the availability of the storage space in a database
or a data warehouse, whereas the maintenance-cost constrained model specifies how
long the materialized views must be updated (because changes to the source data
result in recomputing these views). In our work, we studied the problem under re-
source constraints since they have been considered as a crucial condition to select
the right set of materialized views. In our approach, the view selection has been
explored and tested under various cases where: (i) only the storage space constraint
is considered (i) the limiting factor is the view maintenance cost and (ii) both view

maintenance cost and storage space constraints exist.

The third main category describes the kind of heuristic algorithms character-
izing the view selection methods. As mentioned above, the best-known heuristic
algorithms proposed in literature to solve the view selection problem, are: determin-
istic algorithms, randomized algorithms and hybrid algorithms. Analysis of state of
the art of view selection methods has shown that deterministic methods such as
greedy methods encounter significant problems with respect to performance (solu-
tion quality) when the problem size grows above a certain limit. In order to deal
with larger search space and achieve further improvement in solution quality, ran-
domized methods have been designed. Such methods can find a reasonable solution
within a relatively short period of time by trading executing time for quality. Among
the randomized algorithms, the most well-known algorithms are simulated anneal-
ing and genetic algorithms. The main difference between the simulated annealing
algorithm and the genetic algorithm is that the latter uses a multi-directional search
which allows efficiently searching the space and finding a point near the global op-
timum. Hybrid algorithms which combine the strategies of pure deterministic and
pure randomized algorithms have also been designed to further improve the solution
quality. However, we have observed that they often require longer computation time

and may be impractical due to their excessive computation time.

Consequently, we can deduce that genetic algorithms provides a good balance
between the computing cost that an algorithm takes for finding a solution to the view
selection problem and the gain to be realized in solution quality. However, there is
no guarantee of performance because the probabilistic behavior of genetic algorithms

does not insure to find the optimal solution. To this aim, we have proposed a novel
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approach that is based on constraint programming which is known to be an efficient
method for solving NP-complete problems. We have also observed that randomized
methods do not work well for the optimization problem with constraints. Because
of their random characteristic, some solutions can be infeasible with respect to the
resource constraints. In contrast with randomized methods, our approach may be
seen as a constraint handling technique that can deal with resource constraints
effectively. Besides, the success of the randomized methods often depends on the
set-up of the algorithms as well as the extremely difficult fine-tuning of algorithms
that must be performed during many test runs. In our constraint programming
based approach, the user only has to specify the problem itself instead of specifying
how to solve a problem.

Analysis of state of the art of view selection has also shown that there is very few
work on view selection in distributed databases and data warehouses since the view
selection problem becomes more challenging in such environments. As mentioned
before, it includes another issue which is to decide on which computer nodes the se-
lected views should be materialized. Furthermore, resource constraints such as CPU,
10, and network bandwidth have to be taken into consideration for each computer
node. The view selection problem in a distributed context may also be constrained
by storage space capacities per computer node and maximum view maintenance cost.

In our approach, all these resource constraints will easily be modeled and handled.

3.6 Conclusion

In this chapter we have provided a broad overview of the current state of the art
of view selection. We have introduced the main dimensions which are the basis in
the classification of view selection methods. Based on this classification, we have
reviewed existing view selection methods by identifying their respective potentials
and limitations. We also provided an insight on dynamic view selection methods.
Finally, we summarized our review of related work and our observations. We pointed
out that none of the mentioned approaches meet all the requirements of view se-
lection problem. Therefore, our goal in this thesis is to provide a novel approach
for view selection problem that satisfies all these requirements. Our approach that
we have designed in this study use constraint programming techniques to address
the view selection problem in a centralized context (see chapter 4) as well as in a

distributed environment (see chapter 5).
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Chapter 4

A Declarative Approach to View
Selection Modeling

View selection is important in many data-intensive systems e.g., commercial database
and data warehousing systems. Given a database (or data warehouse) schema and
a query workload, view selection is to choose an appropriate set of views to be ma-
terialized that optimizes the total query cost, given a limited amount of resource,
e.g., storage space and total view maintenance cost. The selected views are referred
to as materialized views and the problem of choosing which views to materialize is
known as the view selection problem. This is one of the most challenging problems
in many applications such as query processing and data warehousing and it is known
to be a NP-complete problem.

In this chapter, we propose a declarative approach that involves a constraint
programming technique which is known to be efficient for the resolution of NP-
complete problems and a powerful method for modeling and solving combinatorial
optimization problems. The originality of our approach is that it provides a clear
separation between formulation and resolution of the problem. For this purpose,
the view selection problem is modeled as a Constraint Satisfaction Problem (CSP)
in an easy and declarative way. Then, its resolution is performed automatically by
the constraint solver. Furthermore, our approach is flexible and extensible, in that
it can easily model and handle new constraints and new heuristic search strategies
to reduce the solution space. The content of this chapter is mainly based on our

material published in [50] and has the following contributions.

1. We make use of the concept of the AND-OR view graph to exhibit common
sub-expressions between queries of workload which can be exploited for sharing

computation, updates and storage space.

o7



2. We provide the constraint satisfaction model that we have proposed to the view
selection problem. Then, a constraint programming solver can be applied to
set up the search space by identifying a set of views that minimizes the total
query cost. We also provide an insight on how constraint programming can be

applied to select materialized views.

3. We define heuristic search strategies within the constraint solver in order to
reduce the solution space and hence the execution time that our approach
incurs to find the set of materialized views. Then, we show the effectiveness of
our heuristic based search strategy which improves in several magnitude the

solution provided by the default one.

4. We have implemented our approach and compared it with the genetic algo-
rithm which is known to provide the best trade-off between the execution time
and the gain to be realized in solution quality. We demonstrate through many
different experiments that our approach provides better performance resulting

from evaluating the solution quality in terms of cost saving.

The rest of this chapter is organized as follows. Section 4.1 defines the problem
that we address in the context of view selection in a centralized environment. In
section 4.2, we present the framework that we have used for representing views to
materialize in order to exhibit common sub-expressions between the different queries
of workload. Section 4.3 describes how to model the view selection problem as a
constraint satisfaction problem as well as the heuristic search strategies that we
have designed for optimization purpose. Section 4.4 gives a performance analysis
comparing our approach with the genetic algorithm which is known to optimize the
balance between quality of solutions in terms of cost saving and execution time. The

chapter ends with a summary in section 4.5.

4.1 Problem Definition

In this chapter, we are targeting one of the most challenging problems in data
warehousing systems [74]: deciding which views to materialize in the warehouse to
obtain the optimal query performance [31|. This problem has also been investigated
in commercial database systems to facilitate efficient query processing [8]. We refer
to this problem as the view selection problem.

As mentioned in chapter 2, a materialized view is a view whose content is com-

puted and stored. In most cases it is cheaper to read the contents of a materialized

28



view than to compute its content by executing the query defining the view. Ma-
terialized views are used to speed up the query processing as they can be accessed
quickly. However, whenever a base relation is changed the materialized views built
on it have to be updated in order to compute up-to-date query results. The process
of updating materialized views is known as view maintenance. Besides, materialized
views require storage space. Materializing all the input queries can achieve the low-
est query cost but the highest view maintenance cost which can cause overhead to
the system. Besides, the query result can be too large to fit in the available storage
space. Hence, there is a need for selecting a set of views to materialize by taking into
account three important features: query cost, view maintenance cost and storage
space.

More precisely, the view selection problem can be defined as follows: Given a
query workload with an associated frequency for each query on a given database (or
data warehouse) schema and a limited amount of resource, e.g., storage space and/or
view maintenance cost, select a set of views to materialize so that the cost of evaluat-
ing the query workload is minimal. The search space for the optimal solution to the
view selection problem grows exponentially as the problem size increases. Indeed,
the number of possible view combinations to materialize grows exponentially with
the number of queries and with the numbers of columns, join predicates, grouping
clauses and the base relations referenced in each query of the workload.

In this chapter, we propose a novel approach to address the view selection prob-
lem. Our approach is based on constraint programming techniques and consists in
modeling in a declarative way the view selection as a Constraint Satisfaction Prob-
lem (CSP). As mentioned before, our motivation to use constraint programming in
solving the view selection problem is that it is known to be a powerful approach
for modeling and solving combinatorial problems [73]. Furthermore, constraint pro-

gramming is an effective paradigm for the resolution of NP-complete problems [58|.

4.2 Framework for detecting common views

In our approach, the task of a view selection module is to recognize possibilities of
shared views and then to apply a strategy that use constraint programming tech-
niques for deciding which views to materialize. The first task involves setting up the
search space by identifying common sub-expressions between the different queries
of workload. This feature can be exploited for sharing computation, updates and
storage space. The most commonly used frameworks in the context of representing

SQL queries in order to exhibit common sub-expressions are the AND view graph
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Figure 4.1: DAG representation of two queries ¢; and ¢

and the AND-OR view graph. In what follows, we start by giving a formal definition

of these representations.

Definition 4.1 (AND View Graph) An AND view graph is formed from the
union of individual AND-DAG representations of each query. An AND-DAG rep-
resentation for a query or a view v is a directed acyclic graph having the base
relations as leaf nodes and the node v as a root node and consists of a set of opera-
tion nodes (Op-Nodes) and equivalence nodes (Eq-Nodes). The Op-nodes have only
Eqg-nodes as children and Eq-nodes have only Op-nodes as children. Each Op-Node
corresponds to an algebraic expression (Select-Project-Join) with possible aggregate
function. It represents the expression defined by the operand and its inputs. An
Eqg-Node represents an expression that is defined by the child operation node and
its inputs. Each Eq-Node represents a view that could be selected for materializa-
tion. In an AND-DAG representations, each Op-node op; has associated with it an
AND arc which is indicated by drawing a semicircle, through the edges (op;,v., ),(
OPisVey )y-++5(0PiyVe; ). This dependence means that all the views v.,, ve,,...,0,, that are
the child nodes of op; are needed to compute the view v, which is the parent node

of op;.
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Definition 4.2 (AND-OR View Graph) A graph is called an AND-OR view
graph if for each query or a view v, there is an AND-OR-DAG representation. All
the possible AND-DAG representations for v, described in the previous definition,
become the AND-OR DAG which consists of all possible execution plans for v. If
a parent view v, has outgoing edges to children operation nodes op;,0ps,...,0p;, then
v, can be computed from any one of its children. This dependence is indicated by
drawing a semicircle, called an OR arc. The AND-OR view graph can be constructed
by merging the AND-OR DAG for each query where the common sub-expressions

are represented once.

The DAG representation of the queries ¢;: P x PS x S and ¢: PS x S x
N, are shown in figure 4.1. The subscripts P, PS, S and N denote respectively the
base relations of TPC-H benchmark: Part, PartSupp, Supplier and Nation. In the
AND view graph (see figure 4.1a), there is only one way to answer or update a
view (or query). Indeed, the views P-PS-S and PS-S-N corresponding respectively
to the result of the query ¢; and ¢, can be computed or updated on only one way

(it consider optimal query plans):
a:((P x PS) x S)
¢2:((PS x S) x N)

However, all possible ways for evaluating the queries have been considered in the
AND-OR view graph 4.1b. For simplicity, we represent only two execution plans for
the view P-PS-S which is the query result of ¢; and one execution plan for the view
PS-S-N that is the query result of gs:

a:{((P x PS) x S), (P x (PS x S))} // two execution plans
¢2:((PS x S) x N) // one execution plan

The remaining execution plans are just indicated in figure 4.1b by dashed lines.

In this work, we use the AND-OR view graph to compactly represent alterna-
tive query plans and exhibit common sub-expression. Our motivation to use this
representation rather than the AND view graph since the latter makes local optimal
choices, and may miss global optimal plans. The choice of materialized views must
be done in conjunction with choosing execution plans for queries. For instance, a
plan that seems quite inefficient could become the best plan if some intermediate
result of the plan is chosen to be materialized and maintained as the following ex-

ample demonstrates it.
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Example. Let us consider the views P-PS-S and PS-S-N which are respectively
computed by using the plan ((P x PS) x S) and the plan ((PS x S) x N), as it
is shown in figure 4.1a. These execution plans represent the optimal plans for ¢;
and ¢y. However, if we choose the alternative plan (P x (PS x S)) to compute the
view P-PS-S, the view PS-S becomes a common sub-expression (see figure 4.1b). It
can be computed once and used for both queries ¢; and ¢o. This alternative with
sharing of the view PS-S may be the global optimal choice. In the context of view
maintenance, common sub-expressions can be exploited to find an efficient plan for
maintenance of a set of views. Indeed, the view PS-S may also be used for sharing

updates and hence reducing the view maintenance cost.

4.3 Our view selection approach

After a short introduction in chapter 2 to constraint programming and Constraint
Satisfaction Problems (CSPs), let us now introduce the constraint satisfaction model
that we have proposed for the view selection problem. We then present the search
strategy that we have defined within the constraint solver for optimization purpose.
Finally, we provide an insight on how constraint programming can be applied to

select materialized views.

4.3.1 Modeling View Selection Problem as a Constraint Sat-
isfaction Problem (CSP)

This section describes how to model the view selection problem as a CSP. Then, its
resolution is supported automatically by the constraint solver. In the table 4.1, we
define all the symbols as well as the variables that we have used in our constraint
satisfaction model.

The view selection problem can be formulated by the following constraint satis-
faction model. It consists in specifying in a declarative way the CSP variables, their

domains, and the constraints that are over them.

minimize Z (fq(vi) * Qc(vi)> (4.1)

v €EQ(G)

subject to Z <Mat(vi) * size(vﬁ) < SPmaz (4.2)
v; €V (G)

3 (Mat(vl-) % fu(v;) * Mc(vi)) < Upao (4.3)
UiGV(G)
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Symbols of our constraint satisfaction model

G The AND-OR view graph described in the previous section.
Q(G) | The queries of the workload which corresponds to the root nodes
in the AND-OR view graph G.
V(G) | The set of views in G which are candidates to materialization.
U The set of updates in response to changes of the base relations.
d(vi,u) | The differential result of view v; with respect to update u.
fq The frequency or importance of the associated query.
fu The frequency of propagating the changes of each associated base
relation to the materialized views.
SPmaz | The maximum storage space that can be used to view
materialization.
Unnaz The time that can be allotted to keep up to date the materialized
views.
size(v;) | The size of the view v; in terms of number of bytes.
CSP variables and their domains
Mat(v;) | The materialization variable which denotes for each view v;
(equivalence node in the AND-OR view graph G), if it is materialized
or not materialized. It is a binary variable, doma(v,) ={0,1}
(0: v; is not materialized, 1: v; is materialized).
Qc(v;) | The query cost corresponding to the view v;. The domain is a finite
subset of R* such as domgcwi) C R*.
Mec(v;) | The maintenance cost corresponding to a view v;, where domgc(w) C R*.

Table 4.1: Symbols and CSP variables.

In our approach, the main objective is the minimization of the total query cost.

It is computed by summing over the cost of processing each input query rewritten

over the materialized views. Constraints (4.2) and (4.3) state that the views are

selected to be materialized under a limited amount of resources. Constraint (4.2)

ensures that the total space occupied by the materialized views is less than or equal

to the maximum storage space capacity. Constraint (4.3) guarantees that the total

maintenance cost of the set of materialized views is less than or equal to the total

view maintenance cost limit.

The query and maintenance costs corresponding to a view are implemented by

using a depth-first traversal of the AND-OR view graph. We have been inspired by

the formulae described in [61, 51| to compute these two costs. Note that the query

and maintenance costs corresponding to a base relation are equal to zero.

The query cost and view maintenance cost may be formulated as follows.
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Query cost

CCost(v;) if Mat(v;) =0
Qc(v)) = (v3) , (v:) (4.4)
RCost(v;) otherwise
where
CCost(v;) = argMminep, echild(v;) (cost(opj) + Z Qc(v;ﬁ)
v Echild(op;)
(4.5)

Constraint (4.4) states that the query cost corresponding to each given view in
the AND-OR view graph is the minimum cost paths from the view to its related base
relations or views. The reading cost is considered if the view has been materialized.
Constraint (4.5) ensures that the minimum cost path is selected for computing a
given view. Fach minimum cost path includes the cost of executing the operation
nodes on the path and the query cost corresponding to the related bases relations

or views.

View maintenance cost

0 if Mat(v;) =0
M) =4 L Mew) | (46)
ZUEU(W) M cost(v;, u) otherwise
where
Mcost(vi,u) = argminey, cchitd(v;) (cost(opj, u)

+ Z UC’ost(vk,u)> (4.7)
v Echild(op;)

Mcost(vg,u) if Mat(vg) =0

d(vg, u) otherwise

UCost(vg,u) = {

(4.8)

Constraint (4.6) guarantees that there is no maintenance cost if the view has not
been materialized. Otherwise, the view maintenance cost is computed by summing
the number of changes in the base relations from which the view is updated. We

assume incremental maintenance to estimate the view maintenance cost. Therefore,
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the maintenance cost is the differential results of materialized views given the dif-
ferential (updates) of the bases relations. Constraints (4.7) and (4.8) insure that
the best plan with the minimum cost will be selected to maintain a view. The view
maintenance cost is computed similarly to the query cost, but the cost of each mini-
mum path is composed of all the cost of executing the operation nodes with respect
to the updates on the path and the maintenance cost corresponding to the related

base relations or views.

As mentioned in chapter 2, we have used the constraint solver CHOCO [2] in our
work for modeling and solving the view selection problem as a CSP. Note that a
complete API is provided to allow the user of CHOCO to state the problem in its
constraint language in a natural and declarative way. In the Appendix A, we pro-
vide an insight on how to create the constraint satisfaction model by using the large
Javadoc API provided by the CHOCO constraint solver.

4.3.2 Search strategy

A key ingredient of any constraint satisfaction approach is an efficient search strat-
egy. As mentioned in chapter 2, the search is organized as an enumeration tree,
where each node corresponds to a subspace of the search. The tree is progressively
constructed by applying a series of branching strategies that defines the way to
branch from a tree search node. In the constraint solver, branching has been ap-
plied to decision variables. In our constraint satisfaction model, the materialization
variable Mat(v;) is the decision variable since the aim of the view selection problem
is to decide which views to materialize. As mentioned in chapter 2, the most com-
mon branching strategies in the constraint solver are based on the assignment of a
selected variable to one or several selected values. Variable selector defines the way
to choose a non instantiated variable on which the next decision will be made. Once

the variable has been chosen, the solver has to compute its value.

The default search strategy

The default search strategy is applied to the decision variables of the solver when
no search strategy is specified. The default strategy selects the decision variables to

be instantiated by using the following branching strategies.

Variable selection heuristic: DomQuerWDeg. The strategy selects the variable
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Mat(v;) with the smallest ratio r:

dom

T =
w * deg

where dom is the current domain size, deg is the current number of non instantiated
constraints involving the variable, and w the sum of the counters of the failures
caused by each constraint from the beginning of the search. To each variable Mat(v;)
are associated, at any time the dom, deg and w values.

Value selection heuristic: MinVal. The variable Mat(v;) which has been chosen
(by applying the variable selection heuristic) is then assigned, in the first branch, to
its smallest value:

val = min(dompat(v,))

In the next branch, the value val is removed from the variable domain domras(v;)-

Our own search strategy

As mentioned in chapter 2, constraint programming offers facilities to control the
search behavior. Defining our own search strategy is very important since a well-
suited search strategy can reduce the number of expanded nodes and hence the time
that the solver incurs to find solutions to the view selection problem. In the following
we describe the variable and value selection heuristics that we have defined in the
search strategy.

Variable selection heuristic. Our aim is to minimize the query cost with a con-
straint on update time (maintenance cost constraint) and storage space (space con-
straint). Low query cost can be obtained by materializing all the queries of the
workload (materializing the root level in the AND-OR view graph). In this case the
view maintenance cost will be high. Low view maintenance cost can be achieved by
leaving all the views virtual and in this case the query cost will be high (replicating
the base relations which are in the leaf level of the AND-OR view graph). For this
matter, our strategy consists in finding an intermediary level for each query tree in
the AND-OR view graph that optimizes the query cost without violating the main-
tenance cost and space constraints. Therefore, our strategy is based on the notion
of level in the AND-OR view graph. For this purpose, each view (equivalence node)

is associated to a level, which is defined as follows:

level(baserelation) = 0
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level (view) = max )level(vc) +1
veEchild(view

As presented in the code below, we explain how to compute for each query the

relative query cost reduction associated to the different levels in the query tree.

levels =) //set of levels with their cost saving
for each q in Q(G) do
levelCS =0/ /Map : key = level; val = cost saving
/] each view in the query tree is associated to a level
for each [ in AllLevels(q) do
space =0
maint =0
for each v in AllViews(l) do
space = space + size(v)
maint = maint + Mc(v)
end for
if space < Spprrae and maint < Uy, then
LevelCostSaving(q, 1)
//LevelCostSaving is defined as the relative
//query cost reduction when the views associated
// to level | are materialized
else
LevelCostSaving(q,l) = —1
end if
levelC'S.put(l, LevelCostSaving)
end for
levels = levels U {levelC'S}
end for

In order to guide the search for the optimal solution, the variable selector has
to start by instantiating the materialization variables of the recommended views.
These views are those associated to the levels that minimize the query cost subject
to space and maintenance cost constraints. To this purpose, we sort the query levels
according to their LevelCostSaving in descending order (as it is presented below).
We iterate over the sorted set starting with the levels which have the highest query
cost reduction. We then store each view associated to these levels in the variable
MV.
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//sort the levels according to their LevelCostSaving in
//descending order
LSort = SortLevels(levels)
for each I, in LSort do
for each v, in l;, do
MV = MV U{Mat(vs)}
end for

end for

Finally, the variable selector will choose the materialization variable to be instan-
tiated in the order they appear in MV. Once the variable has been chosen, the value
selector will assign the materialization variable to its highest value: max(domarqe(v,;))-
Note that these variable and value heuristics do not inhibit the solver to compute
solutions in which it will start by materializing another set of views. By defining
these heuristics in the search strategy, we expect the solver to converge faster to the

optimal solution and avoid browsing a large number of inferior solutions.

4.3.3 Solving the view selection problem in a centralized con-

text with constraint programming

As mentioned in chapter 2, most algorithms for solving constraint satisfaction prob-
lems usually employ a search procedure and constraint propagation: when the search
fixes the value of a variable, constraint propagation is applied to restrict the domains
of other variables whose values are not currently fixed. This means that when a value
is assigned to the current variable, any value in the domain of a future variable which
conflicts with this assignment is removed from the domain.

Let us now illustrate through an example how the constraint programming can
be applied to select materialized views: Assume that we have four variables Mat(v;),
Mat(ve), Mat(vs) and Mat(vy) where Mat(v;) denotes for each view v; if it has been
materialized or has not been materialized. It is a binary variable, domsat(v,) ={0,1}
(0: v; has not been materialized, 1: v; has been materialized).

The problem is to select a set of views to materialize subject to a space and main-
tenance cost constraints. The space constraint ensures that the total space occupied
by the materialized views is less than Sp,,... Let as assume that Sp,,..=3MB,
size(v1)=4MB, size(vy)=2MB, size(v3)=1MB and size(vy)=1MB; where size(v;) is

the size of the view v;. While, the maintenance cost constraint guarantees that
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Legend: ! danatl