
Université Montpellier II

� Sciences et Techniques du Languedoc �

Thèse

pour obtenir le grade de

Docteur de l'Université Montpellier II

Discipline : Informatique

Spécialité Doctorale : Informatique

Ecole Doctorale : Information, Structure, Systèmes

présentée et soutenue publiquement par

Imene MAMI

le 15/11/2012

A Declarative Approach to Modeling and

Solving the View Selection Problem

Jury

Bernd Amann, Professeur, Université de Pierre et Marie Curie (Paris 6), . . . . Rapporteur

Ladjel Bellatreche, Professeur, Ecole Nationale Supérieure de Mécanique et

d'Aérotechnique (ENSMA), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Rapporteur

Pascal Giorgi, Maitre de conférence, Université Montpellier II, . . . . . . . . . . . . Examinateur

Mohand-Said Hacid, Professeur, Université Claude Bernard Lyon I, . . . . . . . .Examinateur

Zohra Bellahsene, Professeur, Université Montpellier II, . . . . . . . . . . . . Directrice de thèse

Rémi Coletta, Maitre de conférence, Université Montpellier II, . . Co-encadrant de thèse





Abstract

View selection is important in many data-intensive systems e.g., commercial database

and data warehousing systems to improve query performance. View selection can

be de�ned as the process of selecting a set of views to be materialized in order to

optimize query evaluation. To support this process, di�erent related issues have

to be considered. Whenever a data source is changed, the materialized views built

on it have to be maintained in order to compute up-to-date query results. Besides

the view maintenance issue, each materialized view also requires additional storage

space which must be taken into account when deciding which and how many views

to materialize. The problem of choosing which views to materialize that speed up

incoming queries constrained by an additional storage overhead and/or maintenance

costs, is known as the view selection problem. This is one of the most challenging

problems in data warehousing and it is known to be a NP-complete problem. In

a distributed environment, the view selection problem becomes more challenging.

Indeed, it includes another issue which is to decide on which computer nodes the

selected views should be materialized. The view selection problem in a distributed

context is now additionally constrained by storage space capacities per computer

node, maximum global maintenance costs and the communications cost between the

computer nodes of the network.

In this work, we deal with the view selection problem in a centralized context as

well as in a distributed setting. Our goal is to provide a novel and e�cient approach

in these contexts. For this purpose, we designed a solution using constraint program-

ming which is known to be e�cient for the resolution of NP-complete problems and

a powerful method for modeling and solving combinatorial optimization problems.

The originality of our approach is that it provides a clear separation between formu-

lation and resolution of the problem. Indeed, the view selection problem is modeled

as a constraint satisfaction problem in an easy and declarative way. Then, its resolu-

tion is performed automatically by the constraint solver. Furthermore, our approach

is �exible and extensible, in that it can easily model and handle new constraints and

new heuristic search strategies for optimization purpose. The main contributions

of this thesis are as follows. First, we de�ne a framework that enables to have a

better understanding of the problems we address in this thesis. We also analyze

the state of the art in materialized view selection to review the existing methods by

identifying respective potentials and limits. We then design a solution using con-

straint programming to address the view selection problem in a centralized context.



Our performance experimentation results show that our approach has the ability to

provide the best balance between the computing time to be required for �nding the

materialized views and the gain to be realized in query processing by materializing

these views. Our approach will also guarantee to pick the optimal set of materialized

views where no time limit is imposed. Finally, we extend our approach to provide

a solution to the view selection problem when the latter is studied under multiple

resource constraints in a distributed context. Based on our extensive performance

evaluation, we show that our approach outperforms the genetic algorithm that has

been designed for a distributed setting.

Keywords materialized views, query processing and optimization, view selection,

view maintenance, constraint programming.
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TITRE en français : Une approche déclarative pour la modélisation et

la résolution du problème de la sélection de vues à matérialiser

Resumé

La matérialisation de vues est une technique très utilisée dans les systèmes de gestion

de bases de données ainsi que dans les entrepôts de données pour améliorer les per-

formances des requêtes. Elle permet de réduire de manière considérable le temps de

réponse des requêtes en pré-calculant des requêtes coûteuses et en stockant leurs ré-

sultats. De ce fait, l'exécution de certaines requêtes nécessite seulement un accès aux

vues matérialisées au lieu des données sources. En contrepartie, la matérialisation

entraîne un surcoût de maintenance des vues. En e�et, les vues matérialisées doivent

être mises à jour lorsque les données sources changent a�n de conserver la cohérence

et l'intégrité des données. De plus, chaque vue matérialisée nécessite également un

espace de stockage supplémentaire qui doit être pris en compte au moment de la

sélection. Le problème de choisir quelles sont les vues à matérialiser de manière à

réduire les coûts de traitement des requêtes étant donné certaines contraintes tel que

l'espace de stockage et le coût de maintenance, est connu dans la littérature sous le

nom du problème de la sélection de vues. Trouver la solution optimale satisfaisant

toutes les contraintes est un problème NP-complet. Dans un contexte distribué con-

stitué d'un ensemble de noeuds ayant des contraintes de ressources di�érentes (CPU,

IO, capacité de l'espace de stockage, bande passante réseau, etc.), le problème de la

sélection des vues est celui de choisir un ensemble de vues à matérialiser ainsi que

les noeuds du réseau sur lesquels celles-ci doivent être matérialisées de manière à

optimiser les coût de maintenance et de traitement des requêtes.

Notre étude traite le problème de la sélection de vues dans un environnement

centralisé ainsi que dans un contexte distribué. Notre objectif est de fournir une

approche e�cace dans ces contextes. Ainsi, nous proposons une solution basée sur

la programmation par contraintes, connue pour être e�cace dans la résolution des

problèmes NP-complets et une méthode puissante pour la modélisation et la réso-

lution des problèmes d'optimisation combinatoire. L'originalité de notre approche

est qu'elle permet une séparation claire entre la formulation et la résolution du

problème. A cet e�et, le problème de la sélection de vues est modélisé comme un

problème de satisfaction de contraintes de manière simple et déclarative. Puis, sa ré-

solution est e�ectuée automatiquement par le solveur de contraintes. De plus, notre

approche est �exible et extensible, en ce sens que nous pouvons facilement modéliser

et gérer de nouvelles contraintes et mettre au point des heuristiques pour un objectif

d'optimisation. Les principales contributions de cette thèse sont les suivantes. Tout
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d'abord, nous dé�nissons un cadre qui permet d'avoir une meilleure compréhension

des problèmes que nous abordons dans cette thèse. Nous analysons également l'état

de l'art des méthodes de sélection des vues à matérialiser en en identi�ant leurs

points forts ainsi que leurs limites. Ensuite, nous proposons une solution utilisant

la programmation par contraintes pour résoudre le problème de la sélection de vues

dans un contexte centralisé. Nos résultats expérimentaux montrent notre approche

fournit de bonnes performances. Elle permet en e�et d'avoir le meilleur compromis

entre le temps de calcul nécessaire pour la sélection des vues à matérialiser et le

gain de temps de traitement des requêtes à réaliser en matérialisant ces vues. En�n,

nous étendons notre approche pour résoudre le problème de la sélection de vues à

matérialiser lorsque celui-ci est étudié sous contraintes de ressources multiples dans

un contexte distribué. A l'aide d'une évaluation de performances extensive, nous

montrons que notre approche fournit des résultats de qualité et �ables.

MOT-CLES vues matérialisées, optimisation de requêtes, sélection de vues, main-

tenance de vues, programmation par contraintes.
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Chapter 1

Introduction

1.1 Motivations

Data-intensive systems i.e., commercial database and data warehousing systems al-

low businesses to get data and turn that data into a useful information. However,

the time taken to compute query results exponentially grows as the amount of data

increases leading to more waiting time on the user side. This delay is unacceptable

in most business environments, as it severely limits productivity. A common and

powerful query optimization technique is to materialize some or all queries of the

workload rather than compute them from data source each time. There are several

scenarios in which we investigate the issue of which views (or queries) to materialize

in order to speed the query processing when it is too expensive to materialize all the

views.

• Performance of query processing. The goal is to select a set of views to

be materialized over a database, such that subsequent queries can make use of

these views in query processing. In most cases, it is cheaper to read the content

of a materialized view than to compute from scratch the associated query.

Consequently, choosing an appropriate set of views to materialize in a database

is crucial since the presence of the right materialized views can signi�cantly

improve the query performance. Many commercial database systems i.e., SQL

database systems support creation and use of materialized views to answer

queries in order to facilitate e�cient query processing.

• Warehouse design. One of the most important tasks when designing a data

warehouse is a judicious selection of materialized views. A data warehouse

stores information that is collected from multiple, heterogeneous information

sources, with the purpose of e�ciently implementing decision support queries
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(OLAP-style queries). The information in the data warehouse is typically or-

ganized in materialized views, which are designed based on the user's require-

ments e.g., pre-computed portions of the frequently asked queries. In this way,

the query processor of the warehouse answers queries without interacting with

the data sources that may contain several millions of tuples. Scanning these

data may be time consuming and wasteful. Hence, the bene�t of using only

materialized views to answer queries is signi�cant for improving performance

in a data warehousing environment.

• Data placement in a distributed setting. Choosing which views to mate-

rialize can be considered in a distributed setting to optimize complex scenar-

ios consisting of multiple computer nodes with di�erent resource constraints,

where each computer node issues di�erent types of query characteristics. The

key idea to improve query performance in such a context is the intelligent place-

ment of data at di�erent computer nodes of the network. For instance, query

results may be stored as materialized views and placed closest to where they

will most likely be accessed. When processing queries, the materialized views

can be used to speed up local queries and reduce the amount of communication

between the computer nodes of the network. Distributed query processing is

a key factor in business environments in order to remain competitive.

We have been motivated by these scenarios to study how to select the right mate-

rialized view that can signi�cantly improve performance and speed up the processing

of queries by several orders of magnitude.

1.2 View Selection Problem

View selection can be de�ned as the process of selecting a set of views to be ma-

terialized in order to optimize query evaluation. To support this process, di�erent

related issues have to be considered. One of the challenging issues is the view main-

tenance which is the process of updating a materialized view. Indeed, whenever a

data source (i.e., base relation) is changed, the materialized views built on it have

to be updated (or at least have to be checked whether some changes have to be

propagated or not) in order to compute up-to-date query results. The view mainte-

nance cost constraint is very important in the view selection process and cannot be

ignored. Otherwise, the cost of the view maintenance may o�set the performance

advantages provided by the view materialization. Besides the view maintenance is-

sue, each materialized view requires additional storage space which must be taken
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into account when deciding which and how many views to materialize.

Low query evaluation cost can be obtained by materializing all the queries of

workload. However, it is important to note that it is not always a possible solution

because of the storage space limitation (i.e., the query result can be too large to �t

in the available storage space) and the cost of maintaining the views in order to keep

them consistent with the data at sources. Hence, there is a need for selecting a set

of views to be materialized by taking into account the view maintenance and storage

space constraints. The problem of choosing which views to materialize that speed up

incoming queries constrained by an additional storage overhead and/or maintenance

costs to keep the views synchronized with the base data (I.e., base relations), is

known as the view selection problem. This is one of the most challenging problems

in data warehousing [74] and it is known to be a NP-complete problem [35]. In

a distributed environment consisting of many heterogeneous nodes with di�erent

resource constraints, the view selection problem becomes more challenging: Besides

the issue of deciding which views have to be selected, the problem includes the

question where these views should be materialized.

The problem of view selection can be de�ned as follows. Given a database (or

a data warehouse) schema and a query workload de�ned over it, the problem is to

select an appropriate set of materialized views that minimizes the cost of evaluat-

ing the queries of the workload under a limited amount of resources, e.g., storage

space and/or view maintenance cost. This problem will be de�ned more formally in

chapter 4. In a distributed scenario, multiple computer nodes are connected to each

other. Each computer node may share data and issue numerous queries against other

computer nodes. The view selection problem in a distributed context is to compute

which view has to be materialized on what computer node, so that the full query

workload is answered with the lowest cost subject to multiple resource constraints.

Resources may be storage space capacity per computer node, maximum view main-

tenance cost and network bandwidth (i.e., communication costs). The view selection

problem in a distributed context will be de�ned more formally in chapter 5.

1.3 Objectives of the Dissertation

The central goal of the dissertation is that, we design a novel and e�cient approach

for the view selection problem in relational databases and data warehouses as well

as in a distributed setting.

Explicitly, the objectives are to:

• De�ne a framework which gives the main notions and the basic contents related
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to the view selection context that are required to be known when attempting

to address the view selection problem.

• Analyze the state of the art in materialized view selection to review the existing

view selection methods by identifying respective potentials and limits.

• Design a solution to the view selection problem in a centralized context, which

can provide the best balance between the computing time to be required for

�nding the materialized views and the gain to be realized in query processing

by materializing these views. This solution will also guarantee to pick the

optimal set of materialized views where no time limit is imposed.

• Provide a solution which can provide high performance, when the view selec-

tion problem is studied under multiple resource constraints in a distributed

context.

1.4 Contributions

In this section we explicitly outline our contributions to ful�ll the above mentioned

objectives.

First, we introduce the mains notions and concepts related to the view selection

context. We provide de�nitions and a glossary of key terms in the domain of view

selection. This study de�nes a basic framework that maybe helpful to the beginner

to understand the view selection problem. Then, as our work is based on constraint

programming techniques, we describe the main features of these techniques and the

basics of modeling and solving with constraint solvers such as CHOCO [2].

Our second contribution consists in analyzing the existing works in materialized

view selection. We identify the main view selection dimensions along which exist-

ing view selection methods can be classi�ed. More speci�cally, we classify them

based on what kind of algorithms they use to address the view selection problem,

pointing which resource constraints they consider during the view selection process

and frameworks they use to represent the view selection. We introduce three main

classes of view selection algorithms, namely: deterministic algorithms, randomized

algorithms and hybrid algorithms. Based on this classi�cation, we survey and review

the related works.

Our third contribution is the design of a novel approach to address the view selec-

tion problem in a centralized context i.e., relational databases and data warehouses.

The approach is based on constraint programming techniques. Our motivation to
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use constraint programming is that it is known to be a powerful approach for mod-

eling and solving combinatorial problems. It is also an e�ective paradigm for the

resolution of NP-complete problems. The idea of constraint programming is to solve

problems by stating constraints which must be satis�ed by the solution. Hence,

the e�ort in our approach has been to model the view selection problem as a Con-

straint Satisfaction Problem (CSP). Its resolution was supported automatically by

the constraint solver. We have designed the constraint satisfaction model to the view

selection problem and performed several experiments, demonstrating the bene�t of

our approach.

Our fourth contribution aims at extending the constraint satisfaction model,

which we have designed to address the view selection problem in a centralized con-

text, in order to capture the distributed features. As mentioned before, the view

selection problem becomes more challenging in a distributed environment. Indeed,

the resource constraints that we have considered in a centralized context i.e., storage

space constraint will be per machine (computer node) in a distributed scenario. The

view selection will additionally constrained by maximum global maintenance costs.

Furthermore, resource constraints such as network bandwidth and the location of

materialized views will have to be taken into consideration. To the best of our

knowledge, no past work has addressed the view selection problem under all these

resource constraints. Our constraint programming based approach �lls this gap. In-

deed, all these resource constraints have easily been modeled with the rich constraint

programming language. Experiment results have shown that our approach provides

high performance resulting from evaluating the quality of the solutions found by our

approach in terms of cost saving.

In the context of this PhD work, the following articles were published.

• International Journal papers

� Imene Mami and Zohra Bellahsene. A Survey of View Selection Methods.

ACM SIGMOD Record, pages 20-29, volume 41, 2012.

• International Conference papers

� Imene MAMI, Rémi Coletta and Zohra Bellahsene. Modeling View Se-

lection as a Constraint Satisfaction Problem. International Conference

on Databases and Expert Systems Applications (DEXA), pages 396-410,

2011.
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� Imene Mami, Zohra Bellahsene and Rémi Coletta. View Selection Under

Multiple Resource Constraints in a Distributed Context. International

Conference on Databases and Expert Systems Applications (DEXA),

pages 281-296, 2012.

• National Conference papers

� Imene Mami, Zohra Bellahsene and Rémi Coletta. A Constraint Sat-

isfaction based Approach to View Selection in a Distributed Context.

Dans 28ème Journées des Bases de Données Avancées (BDA), Clermont-

Ferrand, France, October, 2012.

1.5 Structure of the Dissertation

This dissertation is organized into 6 chapters.

Current chapter is introducing the application domains in which the view selec-

tion has to be investigated and the general problem of view selection in a centralized

context as well as in a distributed setting.

Chapter 2 provides a brief introduction to the key elements of the view selection

�eld. We introduce the main de�nitions and concepts related to this �eld. This

chapter provides the basic content which is required to be known to the researchers

who are going to work on materialized view selection.

In chapter 3, we provide a literature review of the state of the art in materialized

view selection. It de�nes a framework for highlighting the view selection problem

by identifying the main dimensions that are the basis in the classi�cation of view

selection methods. Based on this classi�cation, we review most of the view selection

methods by identifying respective potentials and limits.

Chapter 4 presents our approach which is based on constraint programming to

address the view selection problem in a centralized context. After the problem

de�nition, we introduce the concept of the AND-OR view graph that is needed to

represent the view selection and which constitutes the input to our approach. Then,

we describe how to model the view selection problem as a Constraint Satisfaction

Problem (CSP). We conclude with our experimental evaluation and results.

Chapter 5 extends the constraint satisfaction model that we have designed in a

centralized context in order to capture the distributed case. After giving the problem

de�nition in a distributed environment, we propose an extension of the concept of

the AND-OR view graph to re�ect the relation between views and communication

network within the distributed scenario. Then, we present the model that we have
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used to formulate the view selection problem as a CSP in a distributed environment.

Finally, we present our experimental validation.

Chapter 6 concludes this dissertation and highlights future directions of research.
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Chapter 2

Preliminaries

In this chapter, we introduce the main notions and concepts related to the issue

of view selection. We introduce de�nitions about view selection and provide the

details of cost modeling. One of the goals of the dissertation is to solve the view

selection problem, by designing a solution involving constraint programming. There-

fore, we describe in the second part of this chapter, the main characteristic features

of constraint programming techniques.

2.1 View Selection

View selection is the task which consists of selecting a set of views to be materialized

in order to improve query performance. We use the term view selection interchange-

ably with materialized view selection. To understand the basic concepts related to

the view selection �eld, we �rst introduce the notion of a view. Let us consider the

query q1 de�ned over a simpli�ed version of the TPC-H benchmark [5]. In our work,

we are dealing with SQL queries which include select, project, join and aggregation

operations. Query q1 �nds the minimal supply cost for each country and each prod-

uct having the brand name 'Renault'. The associated query is as follows:

Select P.partkey, N.nationkey, Min(PS.supplycost)

From Part P, Supplier S, Nation N, PartSupp PS

Where P.brand = 'Renault'

and P.partkey = PS.partkey

and PS.suppkey = S. suppkey

and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey;
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Figure 2.1: The query tree for query q1.

A sample query tree for q1 is shown in �gure 2.1. Circles nodes represent al-

gebraic expressions (Select-Project-Join) with possible aggregate function. Boxes

nodes represent the result of evaluation of the relational algebra expression. The

root node represents the query result and the leaf nodes represent the base relations.

2.1.1 De�nitions

De�nition 1 (View): A view is a derived relation, de�ned by a query in terms of

base relations and/or other views. A view thus de�nes a function from a set of base

relations to a derived relation. This function is typically recomputed each time the

view is referenced (if the view is virtual). In �gure 2.1, the views are represented by

boxes nodes.

De�nition 2 (Materialized View): A view is said to be materialized if its extent

is computed and persistently stored otherwise it is said to be virtual. Our goal is to

select a set of views to materialize. We refer to a set of selected views to materialize

as a set of materialized views. In most cases it is cheaper to read the content of a

materialized view than to compute the view from scratch.
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De�nition 3 (Candidate Views): The search space in the vocabulary of view

selection represents the space of possible candidate views to be materialized. Our

aim is to �nd among the candidate views, those optimizing the query performance.

In our example (see �gure 2.1), boxes nodes correspond to the views that are can-

didates to materialization.

De�nition 4 (Workload): A workload or a query workload is a given set of

queries de�ned over a database (or a data warehouse) schema. The set of material-

ized views is dependent on the query workload. In a distributed scenario, the queries

are executed on di�erent computer nodes. Each computer node has an associated

query workload.

De�nition 5 (View Bene�t): A view bene�t (or query bene�t) is a useful notion

is the view selection setting. This is de�ned as the reduction in the workload eval-

uation cost, which can be achieved by materializing this view.

De�nition 6 (View Maintenance): Whenever a base relation is changed, the

materialized views built on it have to be updated in order to compute up-to-date

query results. The process of updating a materialized view in response to changes

on the base relations is known as view maintenance.

De�nition 7 (Incremental View Maintenance): Rather than refreshing the

view by re-computing it from scratch, a process that may be time consuming and

wasteful, a view can be maintained in an incremental fashion: only the portions of

the view which are a�ected by the changes in the relevant sources (base relations)

are updated. The process of computing only the changes in the view to update its

materialization is known as incremental view maintenance.

De�nition 8 (Distributed View Selection): In a distributed context, we con-

sider more complex scenarios where multiple computer nodes are connected to each

other and each computer node may share data and issue numerous queries against

other computer nodes. Our objective thus is to compute which view have to be

materialized on what computer nodes. We call this the distributed view selection.

De�nition 9 (Solution Quality): In the context of view selection, the solution

quality is evaluated by measuring the bene�t of using materialized views to improve
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query performance. More precisely, the solution quality represents the quality of the

set of materialized views delivered by the view selection methods in terms of cost

saving.

De�nition 10 (View Selection Method): A view selection method implements

one or many heuristic algorithms to e�ciently search the space and �nd the appro-

priate set of materialized views within a reasonable time. Designing these heuristic

algorithms also aims to �nd the right set of computer nodes on which these views

should be materialized when the view selection is studied in a distributed environ-

ment.

2.1.2 Cost Model

The cost model is an important issue for the view selection process [16]. It assigns

an estimated cost (e.g., query cost or maintenance cost) to any view in the search

space. In our work, we use a cost model similar to [64, 46, 21]. Hence, the query

and view maintenance costs are estimated with respect to CPU and IO costs. In

a distributed system, a cost model should re�ect the communication costs. In the

following, we introduce these costs.

Query Cost: We also use the terms query processing cost and query evaluation

cost. It refers to the amount of time necessary to compute the answer to a given

query.

Maintenance Cost: The maintenance of views in response to changes at the sources

(base relations) incurs what is known as maintenance cost or maintenance time. In

other words, it is the time that can be allotted to keep up to date the materialized

views.

Communication Cost: It is the time needed to transfer data e.g., transmitting views

on the communication network. We also use the term transfer cost to refer to this

cost.

The main factor for estimating the di�erent costs is the size of the involved re-

lations. This estimation is based on statistical information about the base relations

and formulas to predict the cardinalities of the results of the relational operations.

For instance in our example (see �gure 2.1), to estimate the query cost correspond-

ing to the view J_q1_1, we require knowledge about the size of the view S_q1_1
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and the base relation PartSupp. We de�ne the size of a given view v as follows.

size(v) = card(v) ∗ length(v) (2.1)

where length(v) is the length (in number of bytes) of a tuple of v, computed from

the lengths of its attributes. The estimation of card(v) which is the number of tuples

in v requires the use of the formulas given in the following section.

Evaluating the Cardinalities of the Views

Database statistics are useful in evaluating the cardinalities of the views. Two sim-

plifying assumptions are commonly made about the database: (i) the distribution

of attribute values in a relation is supposed to be uniform, and (ii) all attributes are

independent, meaning that the value of an attribute does not a�ect the value of any

other attribute. In what follows we give the formulas for estimating the cardinalities

of the results of the basic relational algebra operations: selection, projection and join.

Selection. The cardinality of selection result is

card(σrelation) = SFS(F ) ∗ card(relation) (2.2)

where SFS(F ) is the selectivity factor which is dependent on the selection predicate

and can be computed as follows [64].

SFS(A = value) = 1
card(dv(A))

SFS(A > value) = max(A)−value
max(A)−min(A)

SFS(A < value) = value−min(A)
max(A)−min(A)

SFS(p(Ai) ∧ (Aj)) = SFS(p(Ai)) ∗ SFS(p(Aj))

SFS(p(Ai) ∨ p(Aj)) = SFS(p(Ai)) + SFS(p(Aj))− (SFS(p(Ai)) ∗ SFS(p(Aj)))

SFS(A ∈ {values}) = SFS(A = value) ∗ card({values})

(2.3)

where A in an attribute of the relation, dv(A) is the number of distinct values of the

attribute A, max(A) and min(A) denote respectively the minimum and maximum

possible values for A. p(Ai) and p(Aj) indicate the predicates over attributes Ai and
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Aj, respectively.

Projection. The cardinality of projection result is simply the number of tuples when

the projection is performed. We consider projection without duplicate elimination.

card(πrelation) = card(relation) (2.4)

Join. To estimate the result cardinality of a join, we maintain the join selectivity

factor SFJ as part of statistical information.

card(relation1 on relation2)) = SFJ ∗ card(relation1) ∗ card(relation2)

where SFJ = card(relation1onrelation2)
card(relation1)∗card(relation2)

(2.5)

Cost Functions

The main objective in view selection problem is the minimization of the total query

cost, de�ned by the formula:

QueryCost =
∑
qi∈Q

fqi ∗Qc(qi,M) (2.6)

Each query qi has an associated non-negative weight fqi which represents the query

frequency. Qc(qi,M) is the processing cost corresponding to qi in the presence of a

set of materialized views M .

The query cost is computed as the sum of all estimated costs incurred by the

required relational operations. Recall that in this dissertation, we consider selection-

projection-join (SPJ) queries that may involve aggregation and a group by clause

as well. The formulas used for cost operations estimation are given below with the

following assumptions:

• Formulae to estimate the cost of executing every relational operation take into

account its implementation, e.g., we consider sequential scans and nested loop

joins.

• The CPU cost is estimated as the time needed to process each tuple of the

relation e.g., checking selection conditions.

• The IO cost estimate is the time necessary for fetching each tuple of the rela-
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tion.

• All operation costs are estimated according to the size of the involved relations

and in terms of time.

Estimated cost of relational operations.

• Estimated cost of unary operations

� cost(op) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthP ) where op is a

selection operation

� cost(op) = (IO ∗ card ∗ log(card) ∗ length) + (CPU ∗ card ∗ log(card) ∗
lengthP ) where op is a projection operation

� cost(op) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthA) where op is an

aggregation operation

• Estimated cost of binary operations

� cost(op) = (IO ∗ lcard ∗ rcard ∗ (llength + rlength)) + (CPU ∗ lcard ∗
rcard ∗ lengthP ) where op is a join operation

Where card is the number of tuples of the operand, length is the length (in

number of bytes) of a tuple, lengthP is the length of columns checked by predicates,

lengthA is the length of the tuples being aggregated, lcard and rcard are respec-

tively the number of tuples of the left and right operands (the same for llength and

rlength).

Because materialized views have to be kept up to date, the view maintenance cost

has to be considered. This cost is weighted by the update frequency indicating the

frequency of updating materialized views. The view maintenance cost is computed

as follows:

V iewMaintenanceCost =
∑
vi∈M

fu(Vi) ∗Mc(vi,M) (2.7)

where fu(vi) is the update frequency of the view vi and Mc(vi,M) is the mainte-

nance cost of vi given a set of materialized views M .

The view maintenance cost is computed similarly to the query cost, but the cost

of executing the relational operation is computed with respect to updates. Di�erent

maintenance policies (deferred or immediate) and maintenance strategies (incre-

mental or rematerialization) can be applied [26, 27, 55, 82]. In our work, we assume
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incremental maintenance to estimate the view maintenance cost. Therefore, the

maintenance cost is the di�erential results of materialized views given the di�eren-

tial (updates) of the bases relations. In what follows, we brie�y review techniques

for computing the di�erential of a join operation.

Computing the Di�erential of a Join Operation. Consider the view v which corre-

spond to the result of relation1 on relation2. We assume for each relation relationi

that there are two relations δ+relationi
and δ−relationi

, denoting respectively the set of

tuples inserted into and deleted from relationi. Let relationold
1 and relationold

2 refer

respectively to the contents of relation1 and relation2, before the update. The set

of tuples that get added to the view v are denoted by δ+v and can be computed as

follows [51].

δ+v = (δ+relation1
on relationold

2 )∪(relationold
1 on δ+relation2

)∪(δ+relation1
on δ+relation2

) (2.8)

View v is then updated as follows.

v = v ∪ δ+v (2.9)

Similarly, the set of tuples that get deleted from the view v are denoted by δv−

and can be computed as:

δ−v = (δ−relation1
on relationold

2 ) ∪ (relationold
1 on δ−relation2

) ∪ (δ−relation1
on δ−relation2

)

(2.10)

View v is then updated as follows.

v = v − δ−v (2.11)

Updates can be modeled as deletes followed by inserts. If both inserts and deletes

are present in a relation, the view v is updated as follows.

v = v ∪ (δ+relation1
on relationold

2 ) ∪ (relationold
1 on δ+relation2

) ∪ (δ+relation1
on δrelation2

+)

− (δ−relation1
on relationold

2 ) ∪ (relationold
1 on δ−relation2

) ∪ (δ−relation1
on δ−relation2

)

(2.12)

In the case when only one relation is updated i.e., relation1, the view v with
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respect to the changes is computed as.

v = v ∪ (δ+relation1
on relationold

2 ) //insert

v = v − (δ−relation1
on relationold

2 ) //delete

v = v ∪ (δ+relation1
on relationold

2 )− (δ−relation1
on relationold

2 ) //update

(2.13)

For more details about how to compute the di�erential of other relational oper-

ations, we refer the reader to [26].

The cost model is extended for distributed setting by taking into account the

communication cost which is the cost for transferring data from their origin to the

site (i.e., computer node) that initiated the query. Given a query qi which is issued

at the site sj and denoting by vk, a view required to answer qi, the communication

cost is zero if vk is materialized at sj. Otherwise, let sl be the node containing vk,

then the communication cost for transferring vk from sl to sj is:

CommunicationCost(vk,sl→sj) =
size(vk)

Bw(sj, sl)
(2.14)

where Bw(sj, sl) is the bandwidth between sj and sl (i.e., network transmission cost

per unit of data transferred) and size(vk) is the size of the view vk in number of

bytes.

2.2 Constraint Programming and CHOCO solver

Constraint programming is currently applied with success to many domains [12,

13, 58], such as scheduling, planning, vehicle routing, con�guration, networks and

bioinformatics. More recently, constraint programming has been considered as ben-

e�cial in data mining setting [56]. Our motivation to use constraint programming in

solving the view selection problem is that it is known to be a powerful approach for

modeling and solving combinatorial optimization problems. Notice that the view

selection problem is considered as a combinatorial optimization problem since the

search space for the optimal solution (i.e., the optimal set of materialized views)

entails a great number of comparisons between all possible combinations (subsets)

of the set of candidate views. Constraint programming is also known to be e�cient

for the resolution of NP-complete problems since it can provide the optimal solu-

tion. The idea of constraint programming is to solve problems by stating constraints
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which must be satis�ed by the solution. Indeed, constraint programming allows to

solve combinatorial problems modeled by a Constraint Satisfaction Problem (CSP)

[72].

Constraint Satisfaction Problem (CSP).Formally, a CSP model is de�ned by

a triplet (VAR;DOM;CST):

• Variables. V AR = {var1, var2, ..., varn} is the set of variables of the problem.

• Domains. DOM = {domvar1 , domvar2 , ..., domvarn} is the set of possible values
that can be assigned to each variable vari.

• Constraints. CST = {cst1, cst2, ..., cstn} is the set of constraints that describes
the relationship between subsets of variables. Formally, a constraint Cstijk
between the variables vari, varj, vark is any subset of the possible combinations

of values of vari, varj, vark, i.e., Cstijk ⊂ domvari × domvarj × domvark . The

subset speci�es the combinations of values that the constraint allows.

A feasible solution to a CSP is an assignment of a value from its domain to every

variable, so that the constraints on these variables are satis�ed. For optimization

purpose some cost expression on these variables takes a maximal or minimal value.

In what follows, we provide a simple example showing how a constraint problem

can be modeled as a CSP.

Example1. Let us solve a problem where unknows are the values of the variables

x, y and z, knowing that each variable can take its value between 1 and 3, the value

of x has to be greater than y and the value of y has to be greater than z.

To model the problem of example 1 as a CSP, one need is to de�ne the CSP

variables, their domains and the constraints de�ned over them:

Variables. x, y and z

Domains. domx = domy = domz = {1, 2, 3}
Constraints. x > y and y > z

In our work, we use CHOCO [1, 2] for modeling and solving Constraint Sat-

isfaction Problems (CSPs). CHOCO is a java library for CSPs and constraint

programming which is built on a event-based propagation mechanism with back-

trackable structures. It is an open-source software, distributed under a BSD license

and hosted by sourceforge.net. Note that the constraint solvers such as CHOCO

are structured around annual competitions [43]. In what follows, we present the
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Figure 2.2: Modeling and solving with CHOCO.

basics of modeling and solving with CHOCO and the basic principles of constraint

programming: propagation and search.

2.2.1 CHOCO Design

CHOCO is a java library that provides a clear separation between the formulation

(CHOCO model) and the resolution (CHOCO solver) of the problems. The main

interest of this separation is to propose to the user to model a problem without

being interested in the way the problem is solved. Indeed, the user of CHOCO focus

only on specifying the problem itself and the solver is then responsible for solving

it (see �gure 2.2). The di�erent parts are clearly identi�ed. The �rst part which

is the modeling part is devoted to expressing the problem. It consists in modeling

the problem as a CSP. For this purpose, the variables of the problem, their domains

and the constraints to be satis�ed, have to be de�ned. While, the second part which

is the solving part, is devoted to solve the modeled problem. The CHOCO solver

is mainly focus on the resolution part: reading the model, de�ning the resolution

policy and the serach strategy. Once the model and the solver have been de�ned,

the resolution of the modeled problem starts and produces as output one solution,

all solutions or an optimal solution.
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CHOCO Model

This section gives information on how to create a constraint programming model

and introduce variables and constraints by using the API provided by CHOCO. It

allows describing a problem in an easy and declarative way. It simply records the

variables and the constraints de�ning the problem.

A constraint programming model within CHOCO is created as follows.

Model model = new CPModel(); (2.15)

Variables A variable is de�ned by a name, type (integer, real, or set variable),

the values of its domain and possibly with a given domain type i.e., bounded or enu-

merated. Bounded variables are related to large domains which are only represented

by their lower and upper bounds. On the contrary, the domain of an enumerated

variable is explicitly represented and every value is considered. The variables can

be added to the model as follows.

model.addV ariable(var1, ”cp : bound” or ”cp : enum”);

model.addV ariables(var2, var3);
(2.16)

Speci�c role of variables can be de�ned with options: non-decision variables

or objective variable. The non-decision variables are also called implied variables

because it is expected that, they will be instantiated by propagation as soon as all

the decision variables will be all instantiated. Consider for example, a problem with

two integer variables var1 and var2 linked by some implication var1 = 1⇒ var1 = 2,

then the variable var1 can be set as the decision variable, while the variable var2
can be let implied. By default, each variable added to a model is a decision variable.

To exclude the variable var2 from the search strategy, we use the option "cp:no

decision".

model.addV ariable(var2, ”cp : nodecision”); (2.17)

For optimization problems, one need is to de�ne an objective variable within

the model. An optimal solution is then a solution that minimizes or maximizes the

objective variable.

model.addV ariable(var2, ”cp : objective”); (2.18)

Constraints. A constraint deals with one or more variables of the model and

speci�es conditions to be held on these variables. CHOCO allows the user to easily

state its own new constraints by using the following method.
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model.addConstraint(cst1);

model.addConstraints(cst2, cst3);
(2.19)

CHOCO provides a large number of simple and global constraints. Simple con-

straints may be binary or ternary constraints that involve respectively two and

three variables. For instance, eq(var1, var2) is a binary constraint which states that

the two arguments are equal: var1 = var2. While the global constraints accept

any number of variables and o�er dedicated �ltering algorithms which are able to

make deductions. For instance, constraint alldifferent(var1; var2; var3; var4) with

domvar1 = domvar2 = [1, 4] and domvar3 = domvar4 = [3, 4] allows to deduce that

var1 and var2 cannot be instantiated to 3 or 4; such rule cannot be inferred by

simple binary constraints.

The list of simple and global constraints available in CHOCO can be found within

the Javadoc API. Details and examples can be found in CHOCO documentation [3].

CHOCO Solver

The solver, along with the model is one of the two key elements of any CHOCO

program. As mentioned before, the CHOCO solver is mainly focus on resolution

part: reading the Model, de�ning the resolution policy and the search strategies.

The creation of a solver can be easily done with the following methods available

from the solver API.

Solver solver = new CPSolver(); (2.20)

Reading the model. The reading of a model is compulsory and must be done

after the entire de�nition of the model. The reading step is divided in two parts:

variables reading and constraints reading. The solver gives the following API to read

any CHOCO model.

solver.read(model); (2.21)

The resolution of the model is performed automatically by the solver.

Resolution policy. The solver is able to �nd an optimal solution for any problem.

However, computing the optimal solution for large problems with huge solution space

may be very expensive. To this aims, the solver provides ways to limit the search

regarding di�erent criteria. Once a limit is reached, the search stops. These limits

have to be speci�ed before the resolution. Implementing a search limit such as time
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Solver API description

solve() or solve(false)

The solver runs until reaching a �rst
feasible solution in which all constraints
are satis�ed (returns Boolean.TRUE) or
the proof of infeasibility (returns
Boolean.FALSE) or a search limit has
been reached before (returns null).

solveALL() or solve(true)

The solver runs until computing all
feasible solutions, or until proving
infeasibility (returns Boolean.FALSE)
or until reaching a search limit (returns
Boolean.TRUE if at least one �rst
solution was computed, and null
otherwise).

maximize(Var obj, boolean restart)

The solver runs until reaching
a feasible solution that is proved
to maximize objective obj or until
proving infeasibility (returns
Boolean.FALSE) or until reaching a
search limit (returns Boolean.TRUE
if at least one �rst solution was
computed and null otherwise). It
proceeds by successive improvements
of the best solution found so far:
each time a feasible solution is
found at a leaf of the tree search,
then the search follows for a new
solution with a greater objective,
until it proves that no such improving
solution exists. Parameter restart is
a boolean indicating whether the search
continues from the solution leaf
(if set to false) or if it is relaunch
from the root node (if set to true).

minimize(Var obj, boolean restart)
similar to maximize but for computing
a feasible solution that is proved to
minimize objective obj.

Table 2.1: The di�erent API to solve a problem.
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limit need only to specify the following methods.

• Time Limit. Performing the search until reaching a search time limit. A time

limit is set using the solver API: setT imeLimit(int timeLimit).

For optimization problems, the resolution policy is to leave the constraint solver

running until reaching a feasible solution that is proved to minimize or maximize

the objective variable. Some of the API o�ered by the solver to launch the problem

resolution, are presented above in table 2.1.

Search Strategy. A key ingredient of any constraint satisfaction approach is a

clever search strategy. The search space is organized as an enumeration tree, where

each node corresponds to a subspace of the search and each child node is a subdivision

of the space of its father node. The tree is progressively constructed by applying a

series of branching strategies that determine how to subdivide space at each node

and in which order to explore the created child nodes.

In the CHOCO solver, branching has been applied to decision variables. The

most common branching strategies in CHOCO are based on the assignment of a

selected variable to one or several selected values (one assignment in each branch).

Variable selector de�nes the way to choose a non instantiated variable on which the

next decision will be made. Once the variable has been chosen, the solver has to

compute its value (value selector).

De�ning a search strategy is very important since a well-suited search strategy

can reduce the number of expanded nodes, the number of backtracks and hence

the time that the solver incurs to compute solutions. The branching strategies i.e.,

variable and value selection strategies available in CHOCO can be found in [3].

Constraint Propagation and Search

Once the model and solver has been de�ned, the resolution can start. It is based

on constraint propagation techniques. Indeed, algorithms for solving CSPs usually

employ a search procedure that is based on constraint propagation [39]. Such algo-

rithms are guaranteed to �nd a solution, if one exists, or to prove that the problem

is unsatis�able. In �gure 2.3, we present the organigram of the propagation loop.

When the search �xes the value of a variable (modi�cation of a domain of a variable),

an event is posted, storing information about the action done (event type, variable,

values, etc.). We call this the variableevent. Then, constraint �ltering algorithms

have been called, constraintevent, in order to reach a �x point or to detect contra-

dictions. This means that the variable event will be given to the related constraints
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Figure 2.3: Organigram of the propagation loop [3].

of the modi�ed variable, to check consistency and propagate this new information

to the other variables. If the propagation of an event leads to a contradiction, the

propagation engine stops the process.

Explicitly, the constraint programming system always starts by propagating the

immediate e�ects of the constraint set which results in the reduction of the vari-

able domains, through the withdrawal of inconsistent values. With reference to the

problem of example 1, we show through �gure 2.4 how constraint propagation and

search can be applied to solve this problem.

Figure 2.4: The variable domain reductions of three variables x, y and z [22].

Figure 2.4 shows the domain reduction of three variables x, y and z and two

constraints x > y and y > z. At the beginning, the initial variable domains,

domx = domy = domz = {1, 2, 3}, are represented by three columns of white squares.
Considering the constraint x > y, it appears that x cannot take the value 1 because
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otherwise there would be no value for y such that x > y; redxx>y �lters this value from

domx. The black square denotes the deleted value. Similarly, redyx>y eliminates the

inconsistent value 3 from the domain of y. Then, considering the constraint y > z,

redyy>z and redzy>z withdraw respectively the sets {1} and {2,3} from domy and

domz. Finally, redxx>y reduces domx to the singleton {3}. The �nal solution is

{x = 3, y = 2, z = 1}. If, after this stage, some variable domains are not reduced

to singletons, the solver takes one of these variables and tries to assign it each of

the possible values in turn. This enumeration stage triggers more reductions, which

possibly leads to solutions.

In chapter 4 and chapter 5, we provide simple examples to illustrate how the

constraint propagation and search can be applied to the view selection in a central-

ized context as well as in a distributed scenario.

2.3 Conclusion

In this chapter we have introduced the basic and necessary notions and concepts

which are required to be known to address and to understand the view selection

problem. We have �rst provided de�nitions related to the view selection context

and then presented the cost model formulation that is an important issue for the

view selection process. We have also introduced the basic principle of constraint

programming that we have proposed to address the research problem targeted in

this thesis. In next chapter we present the state of the art in view selection �eld in

a centralized context as well as in a distributed setting.
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Chapter 3

State-of-the-Art

In this chapter we discuss the state of the art in view selection research. Previous

works on materialized view selection were developed in the context of query op-

timization, warehouse design, data placement in a distributed setting, etc. Many

diverse solutions to the view selection problem have been proposed and analyzed

through surveys [6, 30, 42]. The survey [30] concentrates on methods of �nding a

rewriting of a query using a set of materialized views. The study presented in [42] fo-

cuses on the state of the art in materialization for web databases. A critical analysis

of methodologies for selecting materialized views in data warehousing is provided in

[6]. However, none of the above mentioned surveys provides a classi�cation of view

selection approaches in order to identify their advantages and disadvantages. Our

target in this chapter is to �ll this gap. This chapter aims at studying the view selec-

tion in relational databases and data warehouses as well as in a distributed setting.

It de�nes the view selection process that determines the main dimensions which are

the basis in the classi�cation of view selection methods. Based on this classi�cation,

this study reviews existing view selection methods by identifying respective poten-

tials and limits. It also provides an overview of dynamic view selection methods.

The content of this chapter is mainly based on our material published in [47].

3.1 The View Selection Process

The view selection process determines the set of views to be materialized. In a

distributed environment, in addition to providing the set of materialized view, the

set of sites (computer nodes) on which these views should be materialized has to be

computed during the process. There are some other parameters which can extend

the de�nition of the view selection process. Figure 3.1 outline these parameters

which can be classi�ed into three major groups, namely: (i) input parameters; (ii)
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Figure 3.1: The view selection process.

process parameters; and (iii) output parameters.

Input Parameters (R,Q, V, S). These parameters concern the kind of input

on which view selection methods operate. Approaches to the view selection problem

take as input a database (or a data warehouse) schema R, a query workload Q

de�ned over R and a set of sites S (computer nodes) of the network if the problem is

studied in a distributed scenario. In order to solve the view selection problem, one

need is to identify the candidate views V which are promising for materialization.

Starting with the input queries Q, techniques based on multiquery DAG, syntactical

analysis of the workload or query rewriting have been used to obtain the candidate

views V (see next section for details).

Process Parameters (RC,A). The view selection process generates a set of

materialized views by applying heuristic algorithms A given a limited amount of

resource (resource constraints RC). Resources may be CPU, IO, storage space ca-

pacity and the view maintenance cost limit. In a distributed context, the resource

constraints i.e., CPU, IO and the storage space will be per site (computer node).

Also, resource constraints such as network bandwidth and the location of material-

ized views will have to be taken into consideration.

Output Parameters (M,SM). The view selection process produces as output

the set of views to be materialized M . It also computes the set of sites SM on which

the views M should be materialized, in the case where the view selection problem

is addressed in a distributed environment. Once the views are selected and placed

at the appropriate sites, the input queries will be answered using these views.
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3.2 View Selection Dimensions

There are many dimensions that can be taken into account when attempting at

classifying view selection methods in order to identify their advantages and disad-

vantages. As from �gure 3.1, we may classify them according to (i) Frameworks used

to obtain the candidate views, (ii) Resource constraints considered during the view

selection process and (iii) Heuristic algorithms applied to address the view selection

problem.

3.2.1 Frameworks

As mentioned in the previous section, techniques based on multiquery DAG, syntac-

tical analysis of the workload or query rewriting have been used as a framework to

obtain the candidate views which are promising for materialization. Based on the

set of candidate views, the view selection methods compute the set of views to be

materialized and the set of sites on which these views should be placed if the view

selection problem is studied in a distributed environment.

Multiquery DAG

Most of the proposed view selection methods operate on query execution plans. The

plans can be derived from multiple query optimization techniques or by merging

multiple query plans. The main interest of such techniques relies in detecting com-

mon sub-expressions between the di�erent queries of workload and capturing the

dependencies among them. This feature can be exploited for sharing computations,

updates and storage space. The dependence relation on queries (or views) has been

represented by using a Directed Acyclic Graph (DAG). However, these methods

require optimizer calls which can be expensive in complex scenarios.

The most commonly used DAGs in literature are:

• AND/OR View Graph: The union of all possible execution plans of each

query forms an AND-OR view graph [59]. The AND-OR view graph described

by Roy [61] is derived from the AND-OR DAG representation which is com-

posed of two types of nodes: Operation nodes and Equivalence nodes. Each

operation node represents an algebraic expression (Select-Project-Join) with

possible aggregate function. An equivalence node represents a set of logical

expressions that are equivalent (i.e., that yield the same result). The opera-

tion nodes have either one or two children that are equivalence nodes and one

parent equivalence node. The equivalence nodes have edges to one or more
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Figure 3.2: The AND-OR view graph of the two queries q1 and q2.

operation nodes. The root nodes are equivalence nodes corresponding to the

query results. While, the leaf nodes are equivalence nodes corresponding to

the base relations. An equivalence node can be calculated by computing one

of its operation node children. While, an operation node can be calculated

only by computing all of its equivalence node children.

A sample AND-OR view graph is shown in �gure 3.2. Circles represent op-

eration nodes (Op-Nodes) and boxes represent equivalence nodes (Eq-Nodes).

For simplicity, we represent only two execution plans for the view v1 which is

the query result of q1 and one execution plan for the view v2 that is the query

result of q2 (where r1, r2 and r3 represent the base relations).

q1:((r1 op4 r2) op1 r3) ∪ (r1 op2(r2 op5 r3)) // two execution

plans

q2:((r2 op5 r3) op3 r4) // one execution plan

The remaining execution plans are just indicated in �gure 3.2 by dashed lines.

The dependence among the views is indicated by AND and OR arcs. The

AND arcs mean that all of the child views are needed to compute the parent

view. While the OR arcs specify that the parent view can be computed from
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Figure 3.3: The AND view graph of the two queries q1 and q2.

any one of its children. For example, in �gure 3.2, view v1 corresponding to a

single query q1, can be computed from v3 and r3 or r1 and v4.

In the AND view graph (see �gure 3.3), there is only AND arcs and hence

there is only one way to answer or update a view (or a query). As can be seen

in �gure 3.3, the views v1 and v2 corresponding respectively to the result of

the query q1 and q2 can be computed or updated on only one way:

q1:((r1 op3 r2) op1 r3)

q2:((r2 op4 r3) op2 r4)

If there is only one way to answer or update a given view (or a query), the

graph becomes an AND view graph.

In the data cube which is a speci�c model of a data warehouse, the AND-OR

view graph is an OR view graph, as for each view there are zero or more ways

to construct it from other views, but each way involves only one other view

[28]. In other words, an OR view graph is an AND-OR view graph in which

every node is an equivalence node that can be computed from any one of its

children. A sample OR view graph is shown in �gure 3.4. For example, in

this �gure, view v1 can be computed from any of the views v2, v3 or v4. View

v2 can again be computed from any of the base relations r1 or r2. The same

applies to computing the views v3 and v4.
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Figure 3.4: The OR view graph for four views.

Figure 3.5: The MVPP of the two queries q1 and q2.
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• Multi-View Processing Plan (MVPP): The MVPP de�ned by Yang et

al [76] is a DAG in which the root nodes are the queries, the leaf nodes are

the base relations and all other intermediate nodes are selection, projection,

join or aggregation views that contribute to the construction of a given query.

The MVPP is obtained after merging into a single plan either individual op-

timal query plans (similar to the AND view graph) or all possible plans for

each query (similar to the AND-OR view graph). The di�erence between the

MVPP representation and the AND-OR view graph or the AND view graph

representation is that all intermediate nodes in the MVPP represent operation

nodes. A sample MVPP is shown in �gure 3.5.

• Data Cube Lattice: Harinarayan and al [31] propose the data cube lattice

for modeling data in multiple dimensions. It is built from the queries involved

in the data warehouse application, e.g., OLAP-style queries. The data cube

lattice is a DAG whose nodes represent views (or queries) which are character-

ized by the attributes of the Group by clause. The edges denote the derivability

relation between views. That is, if there is a path from view v1 to a view v2

(see �gure 3.6), then grouping attributes on v2 can be calculated from group-

ing attributes on v1. The node labeled none corresponds to an empty set of

group-by attributes (tuples are not grouped).

The data cube lattice is used for representing queries with only aggregate

functions involved for OLAP applications. It can be seen as an OR view

graph where each view in the graph can be derived from a subset of other

views in one or more ways, but each derivation involves only one other view.

The bene�t of this representation is that a query can be used to answer or

update another query.

An extension of the data cube lattice in order to adapt it to a distributed case

was proposed in [7, 77]. Indeed, the cube has been modi�ed by adding edges

that mark the derivation relationship between views on di�erent computer

nodes. Therefore, in addition to the edges representing aggregation depen-

dencies, further edges are introduced to denote the communication channels

within the distributed scenario as illustrated in �gure 3.7. In the example,

we consider a scenario with two sites i.e., two data warehouses. To keep the

example as clear as possible, only a tiny part of the full lattice is given in its

full complexity (as shown in the dashed rectangle).
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Figure 3.6: The four views constructible by grouping on some of r1, r2, and r3.

Figure 3.7: The distributed data cube lattice.
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Query Rewriting

Here, the input to the view selection problem is not a multiquery DAG but the

query de�nitions. The view selection problem is modeled as a state search problem.

Each point in the search space, called a state, represents a set of views and a set

of associated equivalent rewritings showing how to compute each query based on

this set of views. Consider the queries q1 = πk(σk=3(r1) onb=c r2 onc=d r3) and

q2 = πa(r2 onc=d r3 ond=e σa<6(r4)). The state graph for q1 and q2 is de�ned as

follows.

• The set of nodes is the set of of base relations r1, ..., ri. If a node ri is labeled

by an attribute label v : a1, .., ak, this means that the attributes a1, .., ak are

projected out in the query or view de�nition.

• For every selection operation involving attributes of the relation ri, there is an

edge from ri to itself (a loop) labeled as v : selection predicate. This loop is

called selection edge.

• For every join operation involving attributes of the relations ri and rj, there

is an edge between ri and rj, labeled as v : join predicate. Such an edge is

called join edge.

We de�ne the initial state of the search for the two queries q1 and q2 as: State0 =

({v1, v2}, G0, R0) where v1 and v2 are views identical to the queries q1 and q2 and R0

the rewriting set that consists of the trivial rewritings {q1 = v1, q2 = v2}. The related
state graph G0 is depicted in �gure 3.8. Then a set of transformation rules have

been applied in order to detect and exploit common sub-expressions between the

queries of the workload and guarantee that all the queries can be answered using

exclusively the selected views. In what follows, we introduce the two elementary

transformation rules which are SelectionCut and JoinCut.

• Selection Cut. Let (V,G,R) be a state and v : selection predicate be a selection

edge. A selectioncut on v : selection predicate yields a new state (V ′, G′, R′)

such that V ′ is the new set of views by replacing v with a new view v′, G′ is

the new state graph obtained by erasing the edge v : selection predicate and

R′ is obtained from R by replacing all occurrences of v with the expression

σselection predicate(v
′).

• Join Cut. Let (V,G,R) be a state and v : join predicate be a join edge. A

joincut on v : join predicate yields a new state (V ′, G′, R′) such that V ′ is the

new set of views by replacing v with two new symbols v′1 and v
′
2, G

′ is the new
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state graph obtained by erasing the edge v : join predicate and R′ is obtained

from R by replacing v by v′1 onjoin predicate v
′
2.

Figure 3.8: Sample query graph.

Figure 3.9: The query graph after two joincut

.

The state graph that is shown in �gure 3.9 is obtained from G0 (�gure ??)

by applying two joincut which consist in removing two join edge v1 : b = c and

v2 : d = e. The resulting state is: State1 = ({v3, v4, v5}, {q1 = πk(v3 onb=c v4), q2 =

πa(v3 ond=e v5)})
This set of transformation rules allow to rewrite completely all the input queries

over the selected views and detect common sub-expressions between the queries.
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For instance in the above state State1, we can note that the view v3 is a common

sub-expression between the queries q1 and q2. Nevertheless, the completeness of

the transformation rules makes the complexity of state search problem exponential,

based on the number of states created by each transformation and time complexity

of the transformation.

Syntactical Analysis of the Workload

Some view selection methods are based on syntactical analysis of the workload to

identify candidate views. These approaches analyze the workload and pick a subset

of interesting base relations from all possible base relation subsets for the workload.

This subset is chosen according to the condition that if materializing one or more

views on it has the potential to reduce the cost of the workload signi�cantly. The

remains base relation subsets are removed from the �nal result set according to two

cost metrics [8]:

• BRS −Weight(brs) which computes the detailed costs of processing all the

queries in the query workload that use a given base relation subset brs.

BRS −Weight(brs) =
∑

q∈Qbrs

fq ∗Qc(qi) ∗
∑

rs∈brs size(rs)∑
rq∈brq size(rq)

(3.1)

Where Qbrs is the set of queries that refer to the base relations brs, brq is the

set of base relations required to answer the query q, Qc(qi) is the query cost

corresponding to q without using the materialized views, fq is the frequency of

q in the workload, size(rs) is the size of the base relations in brs and size(rq)

is the size of all the base relations referenced in brq.

BRS−Weight is de�ned as the sum of query costs weighted by the sizes of the

base relations. However, this de�nition is not suitable for distributed scenarios

where the size of the base relations is not the only in�uencing factor. For this

purpose, the study in [15] computes the cost BRS −Weight as follows:

BRS −Weight(brs) =
∑

q∈Qbrs

fq ∗Qc(qi) ∗
∑

rs∈brs costbaseRelation(q, rs)∑
rq∈brq costbaseRelation(q, rq)

(3.2)

Where costbaseRelation(q, rs) and costbaseRelation(q, rq) return respectively the

costs of a base relation rs and rq in the query q, i.e., the costs of base rela-

tion scans, selection and sending data, which depend on the resources of the

sites storing the base relations rs and rq. This de�nition captures the size
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(cardinality) of a base relation, its query frequency and the performance of its

allocation site.

• BRS−Cost(brs) that estimates the costs only, with BRS−Cost(rs) ≥ BRS−
Weight(rs).

BRS − Cost(brs) =
∑

q∈Qbrs

fq ∗Qc(qi) (3.3)

As mentioned above, Qc(qi) is the query cost corresponding to q without using

the materialized views and fq is the frequency of q in the workload

Workload analyzing allows �nding an interesting base relation subsets from

among all possible base relations for the workload, and restrict the space of can-

didate views considered to only those base relation subsets. A base relation subset

is interesting if materializing one or more views on it has the potential to reduce

the cost of the workload signi�cantly. However, the search space for computing the

candidate views to be materialized may be very large since the number of possible

combinations of base relations may be exponential based on the number of di�er-

ent base relations referenced by all queries in the query workload. The syntactical

analysis of the workload can be substituted for example by using multi-query op-

timization techniques as described above which can signi�cantly save a lot of work

and cost as well. By using such techniques, the ideal search space can be found just

by constructing the DAG representation of the entire workload which can recognize

possibilities of shared computation among several queries of the workload.

3.2.2 Resource Constraints

Resource constraints considered during the view selection can be taken into account

when classifying view selection methods. There are three main models presented in

literature, namely: unbounded, space constrained and maintenance cost constrained.

Unbounded

In the unbounded setting, there is no limit on available resources (storage, compu-

tation etc.). Thus, the view selection problem consists in choosing a set of views

to materialize that minimizes the query processing cost and the view maintenance

cost. Formally thus, the problem is:

argmin
(∑

qi∈Q fqi ∗Qc(qi,M) +
∑

vi∈M fu(vi) ∗Mc(vi,M)
)

(3.4)
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Recall (see chapter 2) that fqi is the query frequency, Qc(qi,M) is the processing

cost corresponding to qi in the presence of a set of materialized views M , fu(vi) is

the update frequency of the view vi and Mc(vi,M) is the maintenance cost of vi
given a set of materialized views M .

However, this approach may lead to two kinds of problems. First, sometimes the

selected views may be too large to �t in the available space. Second, the cost of

the view maintenance may o�set the performance advantages provided by the view

materialization.

Space Constrained

Due to the storage space limitation, materializing all views is not always possible.

In this setting, a useful notion is that of a view bene�t (or query bene�t). This is

de�ned as the reduction in the workload evaluation cost, which can be achieved by

materializing this view. Also relevant in this context is the per-unit bene�t, obtained

by dividing the view bene�t by its space occupancy. It has been shown [28] that

the per-space unit bene�t of a view can only decrease as more views are selected

(monotonic property). The space constrained model minimizes the query processing

cost plus the view maintenance cost under a space constraint.

argmin
(∑

qi∈Q fqi ∗Qc(qi,M) +
∑

vi∈M fu(vi) ∗Mc(vi,M)
)

under
∑

vi∈M size(vi) ≤ Smax

(3.5)

where Smax is the storage space capacity.

Nevertheless, the view maintenance cost is unbounded in this model. Indeed, in

many real applications, maintenance-cost is more likely to be the real constraint to

keep the materialized views consistent with the data source (base relations), rather

than storage space constraints. Besides, the storage space can be considered as

cheap and therefore not regarded as a critical resource anymore.

Maintenance Cost Constrained

This model constrains the time that can be allotted to keep up to date the mate-

rialized views in response to updates on base relations. In the maintenance cost

constrained model, the maintenance cost of a view may decrease with selection of

other views for materialization. Therefore, the query bene�t per unit of maintenance

cost of a view can increase [29]. This non monotonic nature of maintenance cost
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makes the view selection problem more di�cult. The maintenance cost constrained

model minimizes the query processing cost under a maintenance cost constraint.

argmin
(∑

qi∈Q fQi
∗Qc(qi,M)

)
under

∑
vi∈M fu(vi) ∗Mc(vi,M) ≤ Umax

(3.6)

where Umax is the view maintenance cost limit.

The models that we have presented: unbounded, space constrained and main-

tenance cost constrained, can be extended to the distributed setting by taking into

account the distributed speci�c features i.e., the communication cost between the

sites (computer nodes) and the location of the materialized views.

3.2.3 Heuristic Algorithms

In this section, we present the di�erent kind of the most well-known heuristic algo-

rithms proposed in literature to solve the view selection problem i.e., deterministic

algorithms, randomized algorithms or hybrid algorithms.

Deterministic Algorithms

Algorithms in this class usually construct a solution in a deterministic manner by

exhaustive search or by applying some kind of heuristics such as greedy algorithm to

avoid having to traverse the solution space in an exhaustive search manner. However,

greedy search is subjected to the known caveats, i.e., sub-optimal solutions may

be retained instead of the globally optimal one since initial solutions in�uence the

solution greatly. It is very di�cult to �nd an optimal solution to the problems which

belong to the class of NP-complete problems because of the fact that the solution

space grows exponentially as the problem size increases. For instance in the context

of the view selection problem, the number of possible views (view combinations)

to materialize grows exponentially with the number of queries in the workload,

the numbers of columns, join predicates, grouping clauses and tables referenced in

each query and with the number of computer nodes if the problem is studied in a

distributed scenario.
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Randomized Algorithms

The most commonly used randomized algorithms in the context of view selection

are simulated annealing algorithms [40] and genetic algorithms [24].

• Simulated Annealing Algorithms. Such algorithms are motivated by an analogy

to annealing in solids. They are based on the iterative improvement technique

which is applied to a single point that represent a solution in the search space

and continuously tries to search its neighbors to �nd a better point (a better

solution). In order to eliminate the dependency on the starting point of the

search, simulated annealing algorithms use a probability for acceptance to

decide whether or not to move to a neighboring point. Indeed, it is possible to

move to a neighboring point (a neighboring solution) by random walk that may

be further away from the optimum than the previous one in expectation that

its neighbors will represent a better solution. The probability for acceptance is

calculated according to a cooling schedule. The algorithms terminate as soon

as no applicable moves exist or lose all the energy in the system.

• Genetic Algorithms. These algorithms generate solutions using techniques

inspired by the natural evolution process such as selection, mutation, and

crossover. The strategy search for these algorithms is very similar to biological

evolution. Genetic algorithms use a randomized search strategy; they start

with a random initial population containing individuals which represent possi-

ble solutions and generate new populations by random crossover and mutation.

The �ttest individual found is the solution. The algorithms terminate as soon

as there is no further improvement over a period. In contrast with the simu-

lated annealing algorithms, genetic algorithms use a multi-directional search

by maintaining a pool of candidate points (candidate solutions) in the search

space. Information is exchanged among the candidate points to direct the

search where good candidates survive while bad candidates die. This multi-

directional evolutionary approach allows the genetic algorithm to e�ciently

search the space and �nd a point near the global optimum.

Randomized algorithms are based on statistical concepts where the search space

can be explored randomly until reaching a point near the global optimum. The

can be applied for very large search spaces. Furthermore, they can �nd a reasonable

solution within a relatively short period of time by trading executing time for quality.

However, there is no guarantee of performance because the probabilistic behavior of

the genetic algorithms does not insure to �nd the global optimum.
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Hybrid Algorithms

Hybrid algorithms combine the strategies of pure deterministic algorithms and pure

randomized algorithms in their search in order to provide better performance in

terms of solution quality. Solutions obtained by deterministic algorithms are used

as initial con�guration for simulated annealing algorithms or as initial population

for genetic algorithms.

The combination of the power of randomized algorithms and deterministic al-

gorithms may provide better solution quality than either randomized algorithms

or deterministic algorithms used alone. However, hybrid algorithms are more time

consuming since a considerable amount of time must be spent during the search.

Therefore, such algorithms may be impractical due to their excessive computation

time.

3.3 Review of View Selection Methods

In this section, we classify the view selection methods. More speci�cally, they have

been classi�ed based on what kind of algorithms they use to address the view se-

lection problem pointing which resource constraints they consider during the view

selection process and frameworks they use to obtain the candidate views (see �gure

3.10). Based on this classi�cation, we review most of the view selection methods

that have been proposed in the literature.

3.3.1 Deterministic Algorithms Based Methods

Much research work on view selection use deterministic strategies to address the

view selection problem. [60] seems to be the �rst paper that provides a solution for

materializing view indexes which can be seen as a special case of the materialized

views. Indeed, view indexes are similar to views except that instead of storing the

tuples in the views directly, each tuple in the view index consists of pointers to the

tuples in the base relations that derive the view tuple. The solution is based on A*

algorithm [53] to compute the optimal set of view indexes.

An exhaustive approach is also presented in [57] for �nding the best set of views

to materialize in the context of SQL views. The authors have also examined the cost

of maintaining a materialized view by materializing additional views. In addition to

study how to select the set of views to be materialized, the work in [41] address the

index selection problem. By running experiments, the authors were able to indicate

that building indexes on key attributes in the primary view lead to solid maintenance
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Figure 3.10: A Classi�cation of view selection methods.
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cost savings with modest storage space requirements. Nevertheless, an exhaustive

search is impractical for many real world problems since it cannot compute the

optimal solution in a reasonable time. In order to avoid having to exhaustively

traverse the solution space in search of the optimal solution, many view selection

methods use a form of greedy strategy. In what follows, we provide a review of such

methods.

The authors in [31] have investigated the problem of choosing which set of views

to materialize in the special case of data cubes. They present and analyze sev-

eral view selection algorithms when there are queries with only aggregate functions

involved for decision support applications i.e., OLAP-style queries. The view selec-

tion has been modeled using the data cube lattice framework. Using this framework,

they provide polynomial-time greedy algorithms to select the right set of views to

materialize that minimizes the query cost subject to a space constraint. One of the

negative points of this approach is that the view maintenance cost has not been

taken into account which can e�ciently change the materialized view selection.

The work in [75] is dealing with more general SQL queries which include select,

project, join, and aggregation operations. A greedy algorithm has been designed

to select a set of views to be materialized so that the sum cost of processing the

queries of workload and maintaining the materialized views is minimized. Besides,

they presented a framework which is the Multi-View Processing Plan (MVPP) that

can provide a feasible solution based on individual query plans. They also map

the materialized view selection problem as O-l integer programming problem, whose

solution can guarantee an optimal solution. The weak point of this approach is that

they have used a very simple cost model for updating the view which considers the

cost used for constructing this view. They assume that re-computing (from scratch)

is used whenever an update of an involved base relation occurs. As a result, the

maintenance cost for the selected view set is not very realistic. Besides, the view

selection is done without any resource constraint.

A theoretical framework for the view selection problem in data warehousing set-

ting has been developed in [28]. Their work aims to �nd a set of views to materialize

under a storage space constraint, which have the best balance between view main-

tenance cost and query cost. They provide a near-optimal exponential time greedy

algorithm for the most general case of AND-OR view graph, where for each view (or

query), they consider all its possible execution strategies. The authors design also a

near-optimal polynomial time greedy algorithms for some special cases of the gen-

eral data warehouse scenario: (i) AND view graph where each query or view has a

unique evaluation and (ii) OR view graph, in which any view can be computed from
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any one of its related views i.e., data cube. This approach was extended in [29] to

study the view selection under a maintenance cost constraint instead of the storage

space constraint. They refer to this problem as the maintenance-cost view-selection

problem. This is more di�cult than the view selection problem with a storage space

constraint because of the non-monotonic behavior of the bene�t function per unit of

maintenance cost (as explained in the previous section). To solve this problem, the

authors use the notion of inverted tree set to develop a greedy heuristic algorithm,

which delivers a near-optimal solution for the special case of OR view graphs. For

the general case of AND-OR view graphs, they design an A* heuristic that provides

an optimal solution but it takes a considerable amount of time as it is exponential

in the size of the input graph.

The authors in [61] demonstrate that using multi-query optimization techniques

is practical and provides signi�cant bene�t in view selection setting. The bene�ts

of multi-query optimization were also demonstrated on a real database system. The

main interest of such techniques relies in detecting common sub expressions between

the di�erent queries of workload. This feature can be exploited for sharing updates

and space storage. To �nd a solution to the view selection problem, a greedy heuristic

has been designed which is based on the AND-OR DAG representation of queries

and picks the set of views to materialize so that the cost of processing the queries is

minimal. This approach also handles index selection and nested queries. This study

was extended in [51] to consider how to optimize view maintenance cost (minimize

the cost of maintenance). In addition to speed up the query workload by selecting

materialized views, they have presented greedy algorithms which exploit common

sub-expressions between view maintenance expressions to compute an e�cient plan

to the maintenance of the materialized views. In particular, it has been shown how

to e�ciently choose sub-expressions and indexes to be materialized temporarily or

permanently (and maintained along with other materialized views) to faster view

maintenance. However, the view selection problem has been studied without any

resource constraint.

A pragmatic approach of the view selection problem that combines local with

global optimization have been presented in [9]. Polynomial greedy algorithms have

been designed to provide a solution based on the balance between query processing

and maintenance cost. More precisely, the view selection problem has been solved

in two phases. The �rst phase depends on local optimization by searching the views

to materialize per level and per query which can preserve the data independence

whenever adding a query to the view con�guration or removing one from it. The

�rst phase is based on the notion of level in the query tree. Indeed, each view of
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the query tree is associated to a level. As result, for each query a set of views

is pre-selected which is associated to the level that has the minimal sum of query

processing and view maintenance cost (local bene�t). Based on the pre-selected

views, the second phase generates the set of views to be materialized which optimize

the trade-o� between the total query cost and the view maintenance cost (global

bene�t) subject to a space constraint.

The view selection has been studied in [45, 68, 69, 70, 71] under the condition that

the input queries can be answered using exclusively the materialized views. This

is done by formulating the view selection problem as a state space optimization

problem and using a set of transformation rules to rewrite completely the input

queries over the view selection (please see section 3.2.1). An exhaustive algorithm

has been designed in [70] to select a set of materialized views while minimizing the

combination of the query processing and view maintenance cost. In this study it

was considered that there is no storage space restriction in the data warehouse. This

work was extended in [45] by developing greedy algorithms that expand only a small

fraction of the states produced by the exhaustive algorithm. The issue of selecting a

set of views to be materialized has been investigated in [68, 69, 71] under a storage

space constraint. However, their view selection algorithms are still in exponential

time. A survey of work on answering queries using views can be found in [30].

The study in [8] presents another approach that is based on a syntactical analysis

of the workload. This approach deals with the problem of selecting both view and

indexes to be materialized in order to optimize the physical design of SQL databases

by taking into account the interaction between indexes and materialized views. More

speci�cally, this approach proceeds in three main steps. The �rst step analysis the

workload and chooses subsets of base relations with a high impact on the costs of

processing all the queries (please see section 3.2.1). Based on the base relations

subsets, the second step identify syntactically relevant views and indexes that can

potentially be materialized. The goal of candidate materialized view selection is to

eliminate materialized views that are syntactically relevant for one or more queries

in the workload but are never used in answering any query. Based on the result

of the second step, the system runs a greedy enumeration algorithm to pick a set

of views and indexes to materialize in order to determine the ideal physical design.

The selection of the materialized views has been done under the condition that these

views have to �t in the available storage space. The drawback of this approach is that

it does not take into account the view maintenance cost. This feature is important

to ensure the correctness of the index and view selection.

The works published in [7, 77] address the view selection problem in a distributed
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data warehouse environment. An extension of the concept of a data cube lattice

to capture the distributed semantics has been proposed (please see section 3.2.1).

Moreover, they extend a greedy based selection algorithm for the distributed case.

However, the cost model that they have used does not include the view maintenance

cost. Furthermore, the network transmission costs (bandwidth network) are not con-

sidered which is very important in a distributed context. Indeed, the communication

cost is computed as a function of the size of the query result.

The above methods take a deterministic approach either by exhaustive search or

by some heuristics such as greedy. However, greedy algorithms may be unsatisfactory

in term of the solution quality because the greedy nature of the algorithm may make

it converge to poor local minima since initial solutions in�uence the solution greatly.

As a result, many paradigms and have been developed to improve the solutions of

the view selection problem, namely: randomized algorithms and hybrid algorithms

which we describe in next subsection.

3.3.2 Randomized Algorithms Based Methods

Typical randomized algorithms are genetic [24] or use simulated annealing [40].

Genetic Algorithms Based Methods

A genetic algorithm has been proposed in [79] in conjunction with the Multi-View

Processing Plan (MVPP) framework to deal with the selection of materialized views

in a data warehouse. The materialized views have been selected according to their

reduction in the combined query cost and view maintenance cost. They have shown

that a genetic algorithm is particularly a suitable and feasible approach toward

solving materialized view selection problem. However, because of the random char-

acteristic of the genetic algorithm, some solutions can be infeasible. For example,

in the maintenance cost constrained model, when a view is selected, the bene�t will

not only depend on the view itself but also on other views that are selected. One

solution to this problem is to add a penalty value as part of the �tness function to

ensure that infeasible solutions will be discarded.

The study in [44] focused on an e�cient solution using genetic algorithm to the

maintenance cost view selection problem. Indeed, a penalty function has been in-

cluded in the �tness function to reduce the �tness each time the maintenance cost

constraint is not satis�ed. The problem of selecting a set of views to be material-

ized has been explored in the context of OR view graph where each view can be

computed from any one of its related views. This approach minimizes the query
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processing cost given varying upper bounds on the view maintenance cost, assuming

unlimited amount of storage space because storage space is cheap and not regarded

as a critical resource anymore. In order to let the genetic algorithm converge faster,

they represent the initial population as a favorable con�guration based on external

knowledge about the problem and its solution rather than a random sampling, i.e.,

the views with a high query frequency are most likely selected for materialization.

They believe that a genetic algorithm can become an important tool for warehouse

evolution, especially for those data warehouses that contain a large number of views

and must accommodate frequent changes to the queries.

The common methods for dealing with constrained combinatorial optimization

problems is to introduce a penalty function to the objective function in order to

penalize the solutions violating the resource constraints. However, it is di�cult

to �nd a precise value to realize the right balance between the original objective

function and the penalty function. A solution was provided in [78] to ensure this

balance and keep improving the solution. Constraints are incorporated into the

algorithm through a stochastic ranking procedure where no penalty functions are

used.

The study presented in [15] which is based on a syntactical analysis of the work-

load deals with the distributed view selection. This approach consists of three main

steps. The �rst one extends the base relations selection algorithm described in [8]

for the distributed scenario. Based on the result of the �rst step and the similarity

between queries, the second step generates the candidate views which are promising

for materialization. In the third step a genetic algorithm is applied to select a set

of materialized views and the nodes of the network on which they will be material-

ized that minimize the query processing and view maintenance cost. However, this

approach does not take into account either the space constraint or the maintenance

cost constraint.

Simulated Annealing Based Methods

A randomized approach for selecting a set of views that are able to answer the input

queries has been developed in [67]. It is based on the simulated annealing process.

In this approach, the views are selected to be materialized such that the combination

of the query cost and the view maintenance cost is minimized.

The approach proposed in [33] have also studied the application of randomized

search heuristics to address the view selection problem. Simulated annealing algo-

rithms were adapted to �nd an appropriate set of views that minimizes querying

cost and meet the resource constraints of the data warehouse. Speci�cally, the view
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selection problem has been studied under the case where either the space constraint

or the maintenance cost constraint is considered. Further, randomized search has

been applied to solve two more issues. First, they considered the case where both

space and maintenance constraints exist. Next they applied randomized search in

the context of dynamic view selection.

The use of simulated annealing algorithms has also been investigated in [17] in

conjunction with the use of the Multi-View Processing Plan (MVPP) framework

to decide which views to materialize for large data warehouse systems. In order

to deal with larger sets of views and gain further improvements in solution quality,

Parallel Simulated Annealing (PSA) has been explored in [18] for materialized view

selection. By performing simulated annealing with multiple inputs over multiple

computer nodes concurrently, PSA is able to improve the quality of obtained sets

of materialized views. Moreover, PSA is able to perform view selection on MVPP

having a much larger number of views, which re�ects the real data warehousing

environment. However, the view selection problem is solved without any bound

neither on the storage space nor on the view maintenance cost.

Randomized algorithms can be applied to complex problems dealing with large or

even unlimited search spaces. Thus, the use of randomized algorithms can be consid-

ered in solving large combinatorial problems. Indeed, they can be easily adapted to

solve the view selection problem in a centralized context as well as in a distributed

setting. They have also provided signi�cant improvements over existing methods

i.e., deterministic methods for both the quality of the solutions and the time allo-

cated for view selection. However, their successes to provide good quality solutions

often depend on the set-up of the algorithms as well as the extremely di�cult �ne-

tuning of the parameters of the algorithms that must be performed during many

test runs. Furthermore, there is no guarantee of performance. Indeed, randomized

algorithms may tend to get stuck at a poor local optimum fairly early because of

their probabilistic behavior.

3.3.3 Hybrid Algorithms Based Methods

Hybrid algorithms combine the strategies of deterministic and randomized algo-

rithms in their search in order to provide better performance in terms of solution

quality. Solutions obtained by deterministic algorithms are used as initial con�gu-

ration for simulated annealing algorithms or as initial population for genetic algo-

rithms.

A hybrid approach has been applied in [80] which combines heuristic algorithms

i.e., greedy algorithms and genetic algorithms to solve three related problems. The
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�rst one is to optimize queries. The second one is to choose the best global processing

plan from multiple processing plans for each query. The third problem is to select

materialized views from a given global processing plan. Their experimental results

con�rmed that hybrid algorithms provide better performance than either genetic

algorithms or heuristic algorithms i.e., greedy algorithms used alone in terms of

solution quality.

An evolutionary search is also described in [32] which use a Genetic Local Search

(GLS) algorithm to solve the view selection problem. GLS is a hybrid heuristic that

combines the advantages of population based algorithm i.e., genetic algorithm and

local optimization. Local search iteratively moves from one solution to a better one

on its neighborhood until a local minimum is reached. While it quickly �nds good

solutions in small regions of the search space, the genetic operators such as selection,

crossover and mutation are suitable for exploring the whole search space in order to

identify interesting regions.

Hybrid methods have been developed in order to achieve furthers improvement

in the solution quality i.e., the quality of the obtained set of materialized views, in

terms of cost saving. However, the drawback of such methods is that they are more

time consuming and may be impractical due to their excessive computation time.

3.4 Static View Selection vs. Dynamic View Selec-

tion

A static view selection approach is based on a given workload and chooses accord-

ingly the set of views to materialize. Whereas, in a dynamic view selection ap-

proach, the view selection is applied as a query arrives. Therefore, the workload is

built incrementally and changes over time. Because the view selection has to be in

synchronization with the workload, any change to the workload should be re�ected

to the view selection as well. Indeed, in a system of a dynamic nature [11], the set

of materialized views can be changed over time and replaced with more bene�cial

views in case of changing the query workload. Dynamic view indexing has also been

considered in [63] which can be seen as a special case of the materialized views.

The principle of the dynamic system described in [38] is monitoring constantly

the incoming queries and considers the materialization at the �nal result of a query.

This approach deals with multidimensional data warehouse and the replacement of

the view depends either on space constraint or maintenance cost constraint. Unlike

other dynamic approaches, in the one described in [81] dynamicity is applied to the

view data. This approach aims at materializing the most frequently accessed tuples
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of the view rather than materializing all tuples of the view in order to reduce view

maintenance cost and storage space requirements. The set of materialized tuples can

be changed dynamically as the queries change, either manually or automatically by

an internal cache manager using a feedback loop. However, the task of monitoring

constantly the query pattern and periodically recalibrating the materialized views

is rather complicated and time consuming especially in large data warehouse where

many users with di�erent pro�les submit their queries.

The work presented in [10] has designed an approach for dynamically selecting

an e�ective set of views to be materialized and place them in key points in the

P2P system so as to achieve the best combination of good query performance and

low view maintenance cost. Moreover, as the system is dynamic, their approach

continuously monitors the incoming query and adjusts the system con�guration by

removing materialized views in order to replace the less bene�cial views with more

bene�cial ones.

A dynamic view selection is often referred to as view caching. With caching, the

cache is initially empty and data are inserted or deleted from the cache during the

query processing. Materialization could be performed even if no queries have been

processed and materialized views have to be updated in response of changes on the

base relations. A detailed comparison of these two techniques is given in [36].

Traditional caching approaches aim at caching the results of queries. Another

alternative is to cache only a part of a view. Indeed, a chunk based scheme has been

introduced in [19] for �ne granularity caching. Chunk based caching allows caching

of only few, frequently used tuples of views. To facilitate the computation of chunks

required by a query but not found in the cache, a new organization for base relations

has been proposed which they called a chunked �le. Caching has been adopted in

data warehousing [62], distributed databases [37] and peer to peer systems [34].

The design of an intelligent data warehouse cache manager has been proposed

in [62] called watchman which aims at minimizing the query cost. The cache man-

ager employs cache replacement and cache admission algorithms. These algorithms

explicitly consider retrieved set sizes and processing costs of the associated queries

in order to improve the query performance.

The approach in [37], called cache investment has been proposed for integrating

query optimization and data placement. The main goal of this study is to place

copies of data closest to where they will most likely be accessed. Caching is per-

formed here in terms of partitions of base relations. This approach is ideal for a

client-server caching architecture, in which queries are submitted, data is cached,

and results are displayed at client workstations while the primary copies of data
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reside on the server (server machines). The authors demonstrated that there is cir-

cular dependency between caching and query plan optimization which has signi�cant

performance implications for advanced distributed database systems. The role of a

cache investment policy is to determine which data items should be cached at the

client. However, the weak point of this approach is that they assume the client-

server architecture without any cooperation between the clients in order to invest

their cache together. Moreover, base relation caching would be space wasted and

high communication cost would be paid in order to transfer the entire base relation

from its origin to the client.

The caching system presented in [34] addresses the problem of PeerOLAP ar-

chitecture where a large number of peers access sporadically a number of separate

data warehouses for processing on-line analytical queries. The peers act as large dis-

tributed caches and o�er their resources aiming at achieving lower query processing

cost. When any query arrives at a peer, it is decomposed into chunks. If a query

cannot be answered locally by using the cache contents e.g., chunks of the computer

node where it is issued, it is propagated through the network until a peer that has

cached the answer is found. Due to the space constraint, PeerOLAP provides a re-

placement algorithm to control the local cache at each peer. Last access time is the

replacement criteria used for the replacement of the less bene�cial chunks with more

bene�cial chunks. The authors speci�ed di�erent degree of collaboration between

the peers by introducing view placement policies. The cooperation between the peers

is achieved within a cluster. Intuitively, peers with similar query patterns should be

neighbors (belong to the same cluster). Each peer implements a mechanism which

constantly evaluates the current neighbors and drops or adds peers to the neighbor

list, in order to achieve lower query cost. However, the network transmission cost

has not been taken take into account when designing the di�erent clusters and this

may be considered as a drawback when the communication cost between two peer

neighbors is too high.

3.5 Summary and Observations

In this section, we survey our review of the di�erent approaches related to the view

selection and our observations, which will be useful to introduce our approach. One

line of past research explores the view selection in relational databases and data

warehouses when all the queries are assumed to be known and given in advance.

The view selection problem has also been studied in a distributed setting consisting

of many computer nodes, where each node issues many di�erent queries and updates
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at di�erent rates. A separate line of research has studied the dynamic view selec-

tion, where views are selected continuously, to respond to the changes in the query

workload over time. In this work, we focus only on static view selection.

The view selection methods we discussed have been classi�ed based on the main

view selection dimensions that we have identi�ed and which we summarize in �gure

3.11. Speci�cally, we classify them based on what kind of heuristic algorithms they

design to deal with the view selection issue pointing which frameworks they use to

obtain the candidate views and resource constraints they consider during the view

selection process.

Figure 3.11: View Selection Dimensions.

The principal dimensions that are the basis in the classi�cation of view selection

methods can be divided into three main categories. The �rst category of frame-

works is based on identifying the candidate views. More precisely, techniques based

on muliquery DAG, query rewriting or syntactical analysis of the workload have

been used to obtain the candidate views. In our work, workload analyzing and

query rewriting techniques has been substituted by using multi-query optimization

techniques which can signi�cantly save a lot of work and cost as well. By using

multi-query optimization, we can �nd the ideal search space just by constructing

the DAG representation of the query workload which can recognize possibilities of

shared computation, updates and storage space. Particularly, we have used in our
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approach the AND-OR DAG representation (the AND-OR view graph). Our moti-

vation to use this representation is explained in the next chapter.

The second main category focuses on the resource constraints which are incorpo-

rated into the view selection algorithms. In the unbounded model, the selection of

materialized views has been done without considering any resource constraint. The

space constrained model speci�es the availability of the storage space in a database

or a data warehouse, whereas the maintenance-cost constrained model speci�es how

long the materialized views must be updated (because changes to the source data

result in recomputing these views). In our work, we studied the problem under re-

source constraints since they have been considered as a crucial condition to select

the right set of materialized views. In our approach, the view selection has been

explored and tested under various cases where: (i) only the storage space constraint

is considered (i) the limiting factor is the view maintenance cost and (ii) both view

maintenance cost and storage space constraints exist.

The third main category describes the kind of heuristic algorithms character-

izing the view selection methods. As mentioned above, the best-known heuristic

algorithms proposed in literature to solve the view selection problem, are: determin-

istic algorithms, randomized algorithms and hybrid algorithms. Analysis of state of

the art of view selection methods has shown that deterministic methods such as

greedy methods encounter signi�cant problems with respect to performance (solu-

tion quality) when the problem size grows above a certain limit. In order to deal

with larger search space and achieve further improvement in solution quality, ran-

domized methods have been designed. Such methods can �nd a reasonable solution

within a relatively short period of time by trading executing time for quality. Among

the randomized algorithms, the most well-known algorithms are simulated anneal-

ing and genetic algorithms. The main di�erence between the simulated annealing

algorithm and the genetic algorithm is that the latter uses a multi-directional search

which allows e�ciently searching the space and �nding a point near the global op-

timum. Hybrid algorithms which combine the strategies of pure deterministic and

pure randomized algorithms have also been designed to further improve the solution

quality. However, we have observed that they often require longer computation time

and may be impractical due to their excessive computation time.

Consequently, we can deduce that genetic algorithms provides a good balance

between the computing cost that an algorithm takes for �nding a solution to the view

selection problem and the gain to be realized in solution quality. However, there is

no guarantee of performance because the probabilistic behavior of genetic algorithms

does not insure to �nd the optimal solution. To this aim, we have proposed a novel
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approach that is based on constraint programming which is known to be an e�cient

method for solving NP-complete problems. We have also observed that randomized

methods do not work well for the optimization problem with constraints. Because

of their random characteristic, some solutions can be infeasible with respect to the

resource constraints. In contrast with randomized methods, our approach may be

seen as a constraint handling technique that can deal with resource constraints

e�ectively. Besides, the success of the randomized methods often depends on the

set-up of the algorithms as well as the extremely di�cult �ne-tuning of algorithms

that must be performed during many test runs. In our constraint programming

based approach, the user only has to specify the problem itself instead of specifying

how to solve a problem.

Analysis of state of the art of view selection has also shown that there is very few

work on view selection in distributed databases and data warehouses since the view

selection problem becomes more challenging in such environments. As mentioned

before, it includes another issue which is to decide on which computer nodes the se-

lected views should be materialized. Furthermore, resource constraints such as CPU,

IO, and network bandwidth have to be taken into consideration for each computer

node. The view selection problem in a distributed context may also be constrained

by storage space capacities per computer node and maximum view maintenance cost.

In our approach, all these resource constraints will easily be modeled and handled.

3.6 Conclusion

In this chapter we have provided a broad overview of the current state of the art

of view selection. We have introduced the main dimensions which are the basis in

the classi�cation of view selection methods. Based on this classi�cation, we have

reviewed existing view selection methods by identifying their respective potentials

and limitations. We also provided an insight on dynamic view selection methods.

Finally, we summarized our review of related work and our observations. We pointed

out that none of the mentioned approaches meet all the requirements of view se-

lection problem. Therefore, our goal in this thesis is to provide a novel approach

for view selection problem that satis�es all these requirements. Our approach that

we have designed in this study use constraint programming techniques to address

the view selection problem in a centralized context (see chapter 4) as well as in a

distributed environment (see chapter 5).
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Chapter 4

A Declarative Approach to View

Selection Modeling

View selection is important in many data-intensive systems e.g., commercial database

and data warehousing systems. Given a database (or data warehouse) schema and

a query workload, view selection is to choose an appropriate set of views to be ma-

terialized that optimizes the total query cost, given a limited amount of resource,

e.g., storage space and total view maintenance cost. The selected views are referred

to as materialized views and the problem of choosing which views to materialize is

known as the view selection problem. This is one of the most challenging problems

in many applications such as query processing and data warehousing and it is known

to be a NP-complete problem.

In this chapter, we propose a declarative approach that involves a constraint

programming technique which is known to be e�cient for the resolution of NP-

complete problems and a powerful method for modeling and solving combinatorial

optimization problems. The originality of our approach is that it provides a clear

separation between formulation and resolution of the problem. For this purpose,

the view selection problem is modeled as a Constraint Satisfaction Problem (CSP)

in an easy and declarative way. Then, its resolution is performed automatically by

the constraint solver. Furthermore, our approach is �exible and extensible, in that

it can easily model and handle new constraints and new heuristic search strategies

to reduce the solution space. The content of this chapter is mainly based on our

material published in [50] and has the following contributions.

1. We make use of the concept of the AND-OR view graph to exhibit common

sub-expressions between queries of workload which can be exploited for sharing

computation, updates and storage space.
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2. We provide the constraint satisfaction model that we have proposed to the view

selection problem. Then, a constraint programming solver can be applied to

set up the search space by identifying a set of views that minimizes the total

query cost. We also provide an insight on how constraint programming can be

applied to select materialized views.

3. We de�ne heuristic search strategies within the constraint solver in order to

reduce the solution space and hence the execution time that our approach

incurs to �nd the set of materialized views. Then, we show the e�ectiveness of

our heuristic based search strategy which improves in several magnitude the

solution provided by the default one.

4. We have implemented our approach and compared it with the genetic algo-

rithm which is known to provide the best trade-o� between the execution time

and the gain to be realized in solution quality. We demonstrate through many

di�erent experiments that our approach provides better performance resulting

from evaluating the solution quality in terms of cost saving.

The rest of this chapter is organized as follows. Section 4.1 de�nes the problem

that we address in the context of view selection in a centralized environment. In

section 4.2, we present the framework that we have used for representing views to

materialize in order to exhibit common sub-expressions between the di�erent queries

of workload. Section 4.3 describes how to model the view selection problem as a

constraint satisfaction problem as well as the heuristic search strategies that we

have designed for optimization purpose. Section 4.4 gives a performance analysis

comparing our approach with the genetic algorithm which is known to optimize the

balance between quality of solutions in terms of cost saving and execution time. The

chapter ends with a summary in section 4.5.

4.1 Problem De�nition

In this chapter, we are targeting one of the most challenging problems in data

warehousing systems [74]: deciding which views to materialize in the warehouse to

obtain the optimal query performance [31]. This problem has also been investigated

in commercial database systems to facilitate e�cient query processing [8]. We refer

to this problem as the view selection problem.

As mentioned in chapter 2, a materialized view is a view whose content is com-

puted and stored. In most cases it is cheaper to read the contents of a materialized
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view than to compute its content by executing the query de�ning the view. Ma-

terialized views are used to speed up the query processing as they can be accessed

quickly. However, whenever a base relation is changed the materialized views built

on it have to be updated in order to compute up-to-date query results. The process

of updating materialized views is known as view maintenance. Besides, materialized

views require storage space. Materializing all the input queries can achieve the low-

est query cost but the highest view maintenance cost which can cause overhead to

the system. Besides, the query result can be too large to �t in the available storage

space. Hence, there is a need for selecting a set of views to materialize by taking into

account three important features: query cost, view maintenance cost and storage

space.

More precisely, the view selection problem can be de�ned as follows: Given a

query workload with an associated frequency for each query on a given database (or

data warehouse) schema and a limited amount of resource, e.g., storage space and/or

view maintenance cost, select a set of views to materialize so that the cost of evaluat-

ing the query workload is minimal. The search space for the optimal solution to the

view selection problem grows exponentially as the problem size increases. Indeed,

the number of possible view combinations to materialize grows exponentially with

the number of queries and with the numbers of columns, join predicates, grouping

clauses and the base relations referenced in each query of the workload.

In this chapter, we propose a novel approach to address the view selection prob-

lem. Our approach is based on constraint programming techniques and consists in

modeling in a declarative way the view selection as a Constraint Satisfaction Prob-

lem (CSP). As mentioned before, our motivation to use constraint programming in

solving the view selection problem is that it is known to be a powerful approach

for modeling and solving combinatorial problems [73]. Furthermore, constraint pro-

gramming is an e�ective paradigm for the resolution of NP-complete problems [58].

4.2 Framework for detecting common views

In our approach, the task of a view selection module is to recognize possibilities of

shared views and then to apply a strategy that use constraint programming tech-

niques for deciding which views to materialize. The �rst task involves setting up the

search space by identifying common sub-expressions between the di�erent queries

of workload. This feature can be exploited for sharing computation, updates and

storage space. The most commonly used frameworks in the context of representing

SQL queries in order to exhibit common sub-expressions are the AND view graph
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(a) AND view graph (b) AND-OR view graph

Figure 4.1: DAG representation of two queries q1 and q2

and the AND-OR view graph. In what follows, we start by giving a formal de�nition

of these representations.

De�nition 4.1 (AND View Graph) An AND view graph is formed from the

union of individual AND-DAG representations of each query. An AND-DAG rep-

resentation for a query or a view v is a directed acyclic graph having the base

relations as leaf nodes and the node v as a root node and consists of a set of opera-

tion nodes (Op-Nodes) and equivalence nodes (Eq-Nodes). The Op-nodes have only

Eq-nodes as children and Eq-nodes have only Op-nodes as children. Each Op-Node

corresponds to an algebraic expression (Select-Project-Join) with possible aggregate

function. It represents the expression de�ned by the operand and its inputs. An

Eq-Node represents an expression that is de�ned by the child operation node and

its inputs. Each Eq-Node represents a view that could be selected for materializa-

tion. In an AND-DAG representations, each Op-node opi has associated with it an

AND arc which is indicated by drawing a semicircle, through the edges (opi,vc1),(

opi,vc2),...,(opi,vci). This dependence means that all the views vc1 , vc2 ,...,vci that are

the child nodes of opi are needed to compute the view vp which is the parent node

of opi.
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De�nition 4.2 (AND-OR View Graph) A graph is called an AND-OR view

graph if for each query or a view v, there is an AND-OR-DAG representation. All

the possible AND-DAG representations for v, described in the previous de�nition,

become the AND-OR DAG which consists of all possible execution plans for v. If

a parent view vp has outgoing edges to children operation nodes op1,op1,...,opi, then

vp can be computed from any one of its children. This dependence is indicated by

drawing a semicircle, called an OR arc. The AND-OR view graph can be constructed

by merging the AND-OR DAG for each query where the common sub-expressions

are represented once.

The DAG representation of the queries q1: P on PS on S and q2: PS on S on
N, are shown in �gure 4.1. The subscripts P, PS, S and N denote respectively the

base relations of TPC-H benchmark: Part, PartSupp, Supplier and Nation. In the

AND view graph (see �gure 4.1a), there is only one way to answer or update a

view (or query). Indeed, the views P-PS-S and PS-S-N corresponding respectively

to the result of the query q1 and q2 can be computed or updated on only one way

(it consider optimal query plans):

q1:((P on PS) on S)

q2:((PS on S) on N)

However, all possible ways for evaluating the queries have been considered in the

AND-OR view graph 4.1b. For simplicity, we represent only two execution plans for

the view P-PS-S which is the query result of q1 and one execution plan for the view

PS-S-N that is the query result of q2:

q1:{((P on PS) on S), (P on (PS on S))} // two execution plans

q2:((PS on S) on N) // one execution plan

The remaining execution plans are just indicated in �gure 4.1b by dashed lines.

In this work, we use the AND-OR view graph to compactly represent alterna-

tive query plans and exhibit common sub-expression. Our motivation to use this

representation rather than the AND view graph since the latter makes local optimal

choices, and may miss global optimal plans. The choice of materialized views must

be done in conjunction with choosing execution plans for queries. For instance, a

plan that seems quite ine�cient could become the best plan if some intermediate

result of the plan is chosen to be materialized and maintained as the following ex-

ample demonstrates it.
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Example. Let us consider the views P-PS-S and PS-S-N which are respectively

computed by using the plan ((P on PS) on S) and the plan ((PS on S) on N), as it

is shown in �gure 4.1a. These execution plans represent the optimal plans for q1
and q2. However, if we choose the alternative plan (P on (PS on S)) to compute the

view P-PS-S, the view PS-S becomes a common sub-expression (see �gure 4.1b). It

can be computed once and used for both queries q1 and q2. This alternative with

sharing of the view PS-S may be the global optimal choice. In the context of view

maintenance, common sub-expressions can be exploited to �nd an e�cient plan for

maintenance of a set of views. Indeed, the view PS-S may also be used for sharing

updates and hence reducing the view maintenance cost.

4.3 Our view selection approach

After a short introduction in chapter 2 to constraint programming and Constraint

Satisfaction Problems (CSPs), let us now introduce the constraint satisfaction model

that we have proposed for the view selection problem. We then present the search

strategy that we have de�ned within the constraint solver for optimization purpose.

Finally, we provide an insight on how constraint programming can be applied to

select materialized views.

4.3.1 Modeling View Selection Problem as a Constraint Sat-

isfaction Problem (CSP)

This section describes how to model the view selection problem as a CSP. Then, its

resolution is supported automatically by the constraint solver. In the table 4.1, we

de�ne all the symbols as well as the variables that we have used in our constraint

satisfaction model.

The view selection problem can be formulated by the following constraint satis-

faction model. It consists in specifying in a declarative way the CSP variables, their

domains, and the constraints that are over them.

minimize
∑

vi∈Q(G)

(
fq(vi) ∗Qc(vi)

)
(4.1)

subject to
∑

vi∈V (G)

(
Mat(vi) ∗ size(vi)

)
≤ Spmax (4.2)

∑
vi∈V (G)

(
Mat(vi) ∗ fu(vi) ∗Mc(vi)

)
≤ Umax (4.3)
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Symbols of our constraint satisfaction model
G The AND-OR view graph described in the previous section.

Q(G) The queries of the workload which corresponds to the root nodes
in the AND-OR view graph G.

V (G) The set of views in G which are candidates to materialization.
U The set of updates in response to changes of the base relations.

δ(vi, u) The di�erential result of view vi with respect to update u.
fq The frequency or importance of the associated query.
fu The frequency of propagating the changes of each associated base

relation to the materialized views.
Spmax The maximum storage space that can be used to view

materialization.
Umax The time that can be allotted to keep up to date the materialized

views.
size(vi) The size of the view vi in terms of number of bytes.

CSP variables and their domains
Mat(vi) The materialization variable which denotes for each view vi

(equivalence node in the AND-OR view graph G), if it is materialized
or not materialized. It is a binary variable, domMat(vi) ={0,1}
(0: vi is not materialized, 1: vi is materialized).

Qc(vi) The query cost corresponding to the view vi. The domain is a �nite
subset of R∗ such as domQc(vi) ⊂ R∗.

Mc(vi) The maintenance cost corresponding to a view vi, where domQc(vi) ⊂ R∗.

Table 4.1: Symbols and CSP variables.

In our approach, the main objective is the minimization of the total query cost.

It is computed by summing over the cost of processing each input query rewritten

over the materialized views. Constraints (4.2) and (4.3) state that the views are

selected to be materialized under a limited amount of resources. Constraint (4.2)

ensures that the total space occupied by the materialized views is less than or equal

to the maximum storage space capacity. Constraint (4.3) guarantees that the total

maintenance cost of the set of materialized views is less than or equal to the total

view maintenance cost limit.

The query and maintenance costs corresponding to a view are implemented by

using a depth-�rst traversal of the AND-OR view graph. We have been inspired by

the formulae described in [61, 51] to compute these two costs. Note that the query

and maintenance costs corresponding to a base relation are equal to zero.

The query cost and view maintenance cost may be formulated as follows.
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Query cost

Qc(vi) =

{
CCost(vi) if Mat(vi) = 0

RCost(vi) otherwise
(4.4)

where

CCost(vi) = argminopj∈child(vi)

(
cost(opj) +

∑
vk∈child(opj)

Qc(vk)
)

(4.5)

Constraint (4.4) states that the query cost corresponding to each given view in

the AND-OR view graph is the minimum cost paths from the view to its related base

relations or views. The reading cost is considered if the view has been materialized.

Constraint (4.5) ensures that the minimum cost path is selected for computing a

given view. Each minimum cost path includes the cost of executing the operation

nodes on the path and the query cost corresponding to the related bases relations

or views.

View maintenance cost

Mc(vi) =

{
0 if Mat(vi) = 0∑

u∈U(vi)
Mcost(vi, u) otherwise

(4.6)

where

Mcost(vi, u) = argminopj∈child(vi)

(
cost(opj, u)

+
∑

vk∈child(opj)

UCost(vk, u)
)

(4.7)

UCost(vk, u) =

{
Mcost(vk, u) if Mat(vk) = 0

δ(vk, u) otherwise

(4.8)

Constraint (4.6) guarantees that there is no maintenance cost if the view has not

been materialized. Otherwise, the view maintenance cost is computed by summing

the number of changes in the base relations from which the view is updated. We

assume incremental maintenance to estimate the view maintenance cost. Therefore,
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the maintenance cost is the di�erential results of materialized views given the dif-

ferential (updates) of the bases relations. Constraints (4.7) and (4.8) insure that

the best plan with the minimum cost will be selected to maintain a view. The view

maintenance cost is computed similarly to the query cost, but the cost of each mini-

mum path is composed of all the cost of executing the operation nodes with respect

to the updates on the path and the maintenance cost corresponding to the related

base relations or views.

As mentioned in chapter 2, we have used the constraint solver CHOCO [2] in our

work for modeling and solving the view selection problem as a CSP. Note that a

complete API is provided to allow the user of CHOCO to state the problem in its

constraint language in a natural and declarative way. In the Appendix A, we pro-

vide an insight on how to create the constraint satisfaction model by using the large

Javadoc API provided by the CHOCO constraint solver.

4.3.2 Search strategy

A key ingredient of any constraint satisfaction approach is an e�cient search strat-

egy. As mentioned in chapter 2, the search is organized as an enumeration tree,

where each node corresponds to a subspace of the search. The tree is progressively

constructed by applying a series of branching strategies that de�nes the way to

branch from a tree search node. In the constraint solver, branching has been ap-

plied to decision variables. In our constraint satisfaction model, the materialization

variable Mat(vi) is the decision variable since the aim of the view selection problem

is to decide which views to materialize. As mentioned in chapter 2, the most com-

mon branching strategies in the constraint solver are based on the assignment of a

selected variable to one or several selected values. Variable selector de�nes the way

to choose a non instantiated variable on which the next decision will be made. Once

the variable has been chosen, the solver has to compute its value.

The default search strategy

The default search strategy is applied to the decision variables of the solver when

no search strategy is speci�ed. The default strategy selects the decision variables to

be instantiated by using the following branching strategies.

Variable selection heuristic: DomOverWDeg. The strategy selects the variable
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Mat(vi) with the smallest ratio r:

r =
dom

w ∗ deg

where dom is the current domain size, deg is the current number of non instantiated

constraints involving the variable, and w the sum of the counters of the failures

caused by each constraint from the beginning of the search. To each variableMat(vi)

are associated, at any time the dom, deg and w values.

Value selection heuristic: MinVal. The variable Mat(vi) which has been chosen

(by applying the variable selection heuristic) is then assigned, in the �rst branch, to

its smallest value:

val = min(domMat(vi))

In the next branch, the value val is removed from the variable domain domMat(vi).

Our own search strategy

As mentioned in chapter 2, constraint programming o�ers facilities to control the

search behavior. De�ning our own search strategy is very important since a well-

suited search strategy can reduce the number of expanded nodes and hence the time

that the solver incurs to �nd solutions to the view selection problem. In the following

we describe the variable and value selection heuristics that we have de�ned in the

search strategy.

Variable selection heuristic. Our aim is to minimize the query cost with a con-

straint on update time (maintenance cost constraint) and storage space (space con-

straint). Low query cost can be obtained by materializing all the queries of the

workload (materializing the root level in the AND-OR view graph). In this case the

view maintenance cost will be high. Low view maintenance cost can be achieved by

leaving all the views virtual and in this case the query cost will be high (replicating

the base relations which are in the leaf level of the AND-OR view graph). For this

matter, our strategy consists in �nding an intermediary level for each query tree in

the AND-OR view graph that optimizes the query cost without violating the main-

tenance cost and space constraints. Therefore, our strategy is based on the notion

of level in the AND-OR view graph. For this purpose, each view (equivalence node)

is associated to a level, which is de�ned as follows:

level(baserelation) = 0
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level(view) = max
vc∈child(view)

level(vc) + 1

As presented in the code below, we explain how to compute for each query the

relative query cost reduction associated to the di�erent levels in the query tree.

levels = ∅ //set of levels with their cost saving
for each q in Q(G) do

levelCS = ∅//Map : key = level; val = cost saving

// each view in the query tree is associated to a level

for each l in AllLevels(q) do

space = 0

maint = 0

for each v in AllV iews(l) do

space = space+ size(v)

maint = maint+Mc(v)

end for

if space ≤ SpMax and maint ≤ UMax then

LevelCostSaving(q, l)

//LevelCostSaving is defined as the relative

//query cost reduction when the views associated

// to level l are materialized

else

LevelCostSaving(q, l) = −1
end if

levelCS.put(l, LevelCostSaving)

end for

levels = levels ∪ {levelCS}
end for

In order to guide the search for the optimal solution, the variable selector has

to start by instantiating the materialization variables of the recommended views.

These views are those associated to the levels that minimize the query cost subject

to space and maintenance cost constraints. To this purpose, we sort the query levels

according to their LevelCostSaving in descending order (as it is presented below).

We iterate over the sorted set starting with the levels which have the highest query

cost reduction. We then store each view associated to these levels in the variable

MV .
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//sort the levels according to their LevelCostSaving in

//descending order

LSort = SortLevels(levels)

for each ls in LSort do

for each vs in ls do

MV =MV ∪ {Mat(vs)}
end for

end for

Finally, the variable selector will choose the materialization variable to be instan-

tiated in the order they appear inMV . Once the variable has been chosen, the value

selector will assign the materialization variable to its highest value: max(domMat(vi)).

Note that these variable and value heuristics do not inhibit the solver to compute

solutions in which it will start by materializing another set of views. By de�ning

these heuristics in the search strategy, we expect the solver to converge faster to the

optimal solution and avoid browsing a large number of inferior solutions.

4.3.3 Solving the view selection problem in a centralized con-

text with constraint programming

As mentioned in chapter 2, most algorithms for solving constraint satisfaction prob-

lems usually employ a search procedure and constraint propagation: when the search

�xes the value of a variable, constraint propagation is applied to restrict the domains

of other variables whose values are not currently �xed. This means that when a value

is assigned to the current variable, any value in the domain of a future variable which

con�icts with this assignment is removed from the domain.

Let us now illustrate through an example how the constraint programming can

be applied to select materialized views: Assume that we have four variablesMat(v1),

Mat(v2),Mat(v3) andMat(v4) whereMat(vi) denotes for each view vi if it has been

materialized or has not been materialized. It is a binary variable, domMat(vi) ={0,1}

(0: vi has not been materialized, 1: vi has been materialized).

The problem is to select a set of views to materialize subject to a space and main-

tenance cost constraints. The space constraint ensures that the total space occupied

by the materialized views is less than Spmax. Let as assume that Spmax=3MB,

size(v1)=4MB, size(v2)=2MB, size(v3)=1MB and size(v4)=1MB; where size(vi) is

the size of the view vi. While, the maintenance cost constraint guarantees that
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Figure 4.2: Search tree using constraint propagation to select materialized views.

the time to update the set of materialized views is less than Umax. Note that

Umax = 3sec, Mc(v1)=1sec, Mc(v2)=2sec, Mc(v3)=2sec and Mc(v4)=5sec; where

Mc(vi) denotes the cost of maintaining the view vi.

At the beginning, the initial variable domains, domMat(v1)=domMat(v2)=domMat(v3)

=domMat(v4)={0,1}, are represented by four columns of white squares as shown in

�gure 4.2. Considering the space and maintenance cost constraints, it appears that

Mat(v1) andMat(v4) cannot take the value 1 because otherwise the total space and

maintenance cost of the materialized views will be respectively greater than Spmax

and Umax. In the stage (1), redMat(v1)
size(v1)>Spmax

and redMat(v4)
Mc(v4)>Umax

�lters respectively

the inconsistent value 1 from domMat(v1) and domMat(v4). The deleted values are

marked with a black square. After this stage some variable domains are not reduced

to singletons, the constraint solver takes one of these variables and tries to assign

to it each of the possible values in turn. For example, if the solver selects the view

v2 to be materialized (Mat(v2) = 1, see stage (2)), redMat(v3)
Mc(v2)+Mc(v3)>Umax

eliminates

the value 1 from domMatv3
. Otherwise, if the view v3 is selected to be material-

ized (Mat(v3) = 1, see stage (3)), redMat(v2)
Mc(v2)+Mc(v3)>Umax

withdraws the value 1 from

domMat(v2). This enumeration stage leads in our example to two solutions. These

solutions are of various quality or cost.
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4.4 Performance Evaluation

In this section, we evaluate the performance of our approach through experimenta-

tions over the database schema of the TPC-H benchmark [5]. Our approach takes

as input a set of selection-projection-join (SPJ) queries that may involve aggrega-

tion and group by clause as well. For each query, we consider all possible execution

plans which represent its execution strategies. Then, all the queries are merged into

the same graph (see section 4.2) in order to detect the overlapping and capture the

dependencies among them. Our approach produces as output the set of materialized

views. The performance of our approach was evaluated by measuring the gain in

solution quality obtained by the materialized views.

The rest of this section is organized as follows. In Section 4.4.1, we describe our

experimental setup, and the randomized method used for comparison. In Section

4.4.2, we study the impact of variable and value selection heuristics on the search

space explored by our approach. In section 4.4.3, we �rst report experimental results

when the view selection is decided under resource constraints and we present the

results on performance by increasing the number of queries. Then, we evaluate the

e�ect of the frequency of queries and updates as well as the query complexity on

performance. In Section 4.4.4, we study the bene�t of using materialized views

to improve query performance. Finally, we summarize the performance results in

Section 4.4.5.

4.4.1 Experimental Setup

We have implemented our approach and compared it with a randomized method

i.e., genetic algorithm . The latter was chosen for comparison since it has been

argued that the genetic algorithm provides the best balance between the computing

costs that an algorithm incurs for �nding the materialized views and the gain to be

realized in query processing by materializing these views (see chapter 2). All the

algorithms are implemented in Java and all the experiments were carried out on an

Intel Core 2 Duo P8600 CPU @ 2.40 GHz machine running with 3GB of RAM and

Windows XP Professional SP3.

In order to solve the view selection problem as a constraint satisfaction problem,

we have used the latest powerful version of CHOCO [2] (knowing that the constraint

solvers are structured around annual competitions [43]). For the genetic algorithm,

we have implemented the one presented in [15] by incorporating space and mainte-

nance cost constraints into the algorithm and without taking into account the data

placement. In order to let the genetic algorithm converge quickly, we generated
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an initial population which represents a favorable view con�guration rather than a

random sampling. Favorable view con�guration such as the views which minimize

the query cost without violating space and maintenance cost constraints are most

likely selected for materialization.

To evaluate the performance of view selection methods, we measure the following

metric.

1. Solution Quality. The performance of view selection methods was evaluated

by measuring the solution quality which results from evaluating the quality of

the obtained set of materialized views in terms of cost saving. In the experi-

mental results, the solution quality denoted by Qs is computed as

Qs =
WM −

∑
vi∈Q(G)(fq(vi) ∗Qc(vi))
WM − ALLM

(4.9)

WhereWM is the total query cost obtained using the "WithoutMat" approach

which does not materialize views and always recomputes queries, AllM is the

"AllMat" approach which materializes the result of each query of the workload.

The "WithoutMat" and "AllMat" approaches are used as a benchmark for our

normalized results. As de�ned above, Qc(vi) is the query cost corresponding

to the view vi and fq(vi) is the frequency of the view vi.

2. Space constraint. In the case where the view selection problem is decided

under a space constraint, the total space occupied by the materialized views

has to be less than or equal to the maximum storage space Spmax . Similar

to [33], Spmax is computed as a function of the size of the associated query

workload.

Spmax = α ∗ SpAllM (4.10)

where SpAllM is the size of the whole workload and α is a constant. In our

experiments, we assume the case where the view selection is studied under

restrictive constraints and hence we set α to 10%. We also examine the case

where the constraints are not very tight and at that case α was set to 30%.

3. Maintenance Cost Constraint. In the maintenance cost constrained model,

the total maintenance cost of the set of materialized views has to be less than

or equal to the total view maintenance cost limit Umax. As in previous work

[33], Umax is calculated as a function of the total maintenance cost when all

the queries are materialized.

Umax = β ∗McAllM (4.11)
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where McAllM is the total maintenance cost when the result of each query of

the workload is materialized and β is a constant. The value of β was set similar

to α (see above).

4. Runtime. The Runtime which we consider here is the time that MySQL

server takes to compute query results using materialized view. This metric has

been used in section 4.4.4 to measure the running time of the query workload

given a set of materialized view. Thus, the runtime is a good metric to study

the bene�t that materialized views found by our approach bring to query

evaluation. It is also a good indicator for comparing the performance of our

approach and the genetic algorithm.

Timeout (sec) Solution Quality

customizing search default search

0.25 0.523 No solutions

0.5 0.662 No solutions

1 0.705 No solutions

2 0.798 No solutions

4 0.809 No solutions

8 0.827 No solutions

16 0.836 No solutions

32 No solutions

64 No solutions

128 0.296

256 0.662

512 0.798

1020 0.827

2048 0.836

Table 4.2: Impact of heuristics on the search

4.4.2 Impact of variable and value selection heuristics

Here, we study the impact of variable and value selection heuristics that we have

presented in section 4.3.2, on the search space explored by our approach. To evaluate

this, we attempted to compare the solution quality found by the constraint solver in

the case where (i) the default search strategy is used and (ii) the variable and value

72



selection heuristics that we have de�ned in Section 4.3.2 are implemented in the

search strategy. As mentioned in chapter 2, the constraint solver (CHOCO Solver)

can �nd a set of feasible solutions in which all the constraints are satis�ed before

reaching the optimal solution. In this case, we use timeout condition to evaluate

the quality of the di�erent solutions found by the solver. A workload of 20 queries

su�ces to illustrate this. α and β, which de�ne respectively the storage space and

the view maintenance cost limits, was set to 30%. The results are shown in table

4.2. The bold number 0.836 represents the quality of the optimal solution. default

search denotes the default search strategy while customizing search requires the

variable and value selection heuristics that we have de�ned in the search strategy.

We can observe from table 4.2 that the time that a solver takes in the presence of

customizing search for �nding near optimal and optimal solutions is signi�cantly

reduced. This is because the variable and value selection heuristics that we have

de�ned in the search strategy reduce signi�cantly the search space explored by the

CHOCO solver. Consequently, our approach can provide high solution quality in

a short time. In the following experiments, we use the customizing search in the

constraint satisfaction model.

4.4.3 Solution quality: Our approach versus Genetic algo-

rithm

In this section, we examined the e�ectiveness of our approach by measuring the gain

in solution quality obtained by using our approach versus the genetic algorithm.

First, we compare the performance of our approach and the genetic algorithm for

various values of storage space and maintenance cost limits and then we present the

results on performance by increasing the number of queries. We also evaluate the

solution quality found by view selection methods with respect to di�erent query and

update distributions. Finally, we evaluate our approach and the genetic algorithm

according to query complexity. In order to allow a fair comparison with the genetic

algorithm and since our approach is able to provide a solution at any time, the

CHOCO solver was left to run until the convergence of the genetic algorithm in the

following experiments. More precisely, the timeout condition was set to the time

required by the genetic algorithm to solve the view selection problem.

Resource constraints

In this experiment, we �rst examine the impact of space and maintenance cost

constraints on solution quality. For this evaluation, we consider a workload of 50
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(a) β=10% (b) β=30%

(c) α=10% (d) α=30%

Figure 4.3: Solution quality while varying the space or the maintenance cost con-
straint

queries. Recall that for each query, we consider all possible execution plans which

represent its execution strategies. The query and update frequencies are at scale 1.

The values of α and β which de�ne respectively the storage space capacity and the

view maintenance cost limit are varied from 10% to 100%. All the results are shown

in �gure 4.3.

Figure 4.3a and Figure 4.3b investigate respectively the in�uence of space con-

straint on solution quality for each value of α where β was set to 10% and 30%,

while �gure 4.3c and �gure 4.3d examine respectively the impact of maintenance

cost constraint on solution quality for each value of β where α was set to 10% and

30%. We note from these experiments that the quality of the solutions produced

by our approach and genetic algorithm improves when α (see �gure 4.3a and �gure

4.3b) or β (see �gure 4.3c and �gure 4.3d) increases. However, there is no improve-

ment in the solution quality from certain values of α or β because the maintenance

cost constraint or the space constraint becomes the signi�cant factor.

We also observe from �gure 4.3 that our approach provides better solution quality

74



(a) α=10% (b) β=10%

(c) α=10% and β=10% (d) α=30%

(e) β=30% (f) α=30% and β=30%

Figure 4.4: Solution quality on large workloads under di�erent resource constraints

in the case where the view selection is decided under a maintenance cost constraint

(i.e., Qs ≈ 0.8 when α=100% and β=30% in �gure 4.3b while Qs ≈ 0.7 when

β=100% and α=30% in �gure 4.3d). The reason is the maintenance cost of a view

may decrease with selection of other views for materialization. Hence, there is time

to update more views. This non monotonic nature of view maintenance cost is

formally de�ned in [29].
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Finally, we conclude from these experiments that our approach outperforms the

genetic algorithm for di�erent values of α and β in terms of cost saving. Indeed, we

can see that our approach generates solutions with cost saving up to 2 times more

than the genetic algorithm.

Large query workload

Let us now evaluate the performance of our approach and the one of genetic al-

gorithm on larger query workload. To this purpose, we generated workloads of

10,20,30,40,50,60,70,80,90 and 100 queries. The solution quality of our approach

and the genetic algorithm is evaluated when the view selection is decided under the

case where (i) only the space constraint is considered (see �gure 4.4a and �gure

4.4d); (ii) the limiting factor is the view maintenance cost(see �gure 4.4b and �gure

4.4e); and (iii) both maintenance cost and space constraints exists (see �gure 4.4c

and �gure 4.4f). On each of these cases, we consider the case where the resource

constraints become very tight (α and/or β = 10%) as well as the case where we

relax them (α and/or β = 30%).

For this collection of experiments, we make the following observations. Our

approach provides in all the cases better performances in terms of the solution quality

while varying the number of queries. Another remark based on �gure 4.4 is that in

our approach the gain in solution quality tends to be relatively more signi�cant when

we have more resource constraints. For instance, the gain in solution quality obtained

by our approach is up to 10% (in �gure 4.4a) and 16% (in �gure 4.4b) more than

the genetic algorithm. While this gain is up to 18% in �gure 4.4c. This is because

the idea of constraint programming is to solve problems by stating constraints and

the search space is reduced when there is more constraints. This result is similar to

the case where we relax the constraints (see �gures 4.4d, 4.4e and 4.4f).

Query and update distributions

We now study the behavior of view selection methods while varying the query and

update frequencies. To this purpose, we generated di�erent query and update dis-

tribution to simulate various workloads (see table 4.3). The random distribution

assigns random values to query or update frequencies. While, the uniform distribu-

tion simulates cases where all views (or queries) have equal probability to be queried

and updated. The last distribution which is the gaussian distribution favors views

(or queries) from lower levels in the AND-OR view graph that have higher probabil-

ity to be queried or updated. For example, queries of the TPC-H benchmark which

contain less relational operators have higher probability to be queried.
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qrandom The values of the query frequencies have been assigned randomly

to each query of the workload.

quniform All the queries of the workload have the same query frequency

qgaussian Queries from lower levels have higher probability to be queried.

The frequency distribution is normal with µ = 1/2 and σ = 1.

urandom The values of the update frequencies have been assigned

using a random distribution.

uuniform All the views in the AND-OR view graph have the same update

frequency

ugaussian The views which are at the lower level of the AND-OR view graph

have higher probability to be updated than those which are

on the upper level (guassian distribution with µ = 1/2 and σ = 1).

Table 4.3: Distribution of query and update frequencies

Figures 4.5 illustrates the quality of the solutions produced by the two methods

for di�erent query distributions (qrandom, quniform, qgaussian). In the �rst combination,

α and β were set to 10% (see �gures 4.5a, 4.5b and 4.5c). While, for the other

combination, α and β were set to 30% (see �gures 4.5d, 4.5e and 4.5f). The update

frequencies are at scale 1. We have made the same experiments for di�erent update

distributions in which the query frequencies was at scale 1 (see �gure 4.6).

We can see that the quality of the solutions found by our approach is always bet-

ter than those of the genetic algorithm for di�erent query and update distributions.

For example, in �gure 4.5 and in the worst case which arises at the random work-

load (qrandom;α=10%;β=10%), our approach provides solutions with a cost saving

of 4% more than the genetic algorithm. While, in the best case which arises at the

gaussian workload (qgaussian;α=30%;β=30%), the cost saving is 35% more than the

genetic algorithm.

Query complexity

We study the e�ect of query complexity on view selection performance. More speci�-

cally, we evolved the number of join operators NJoinOp
for each query of the workload

since the complexity of binary operators is more important than the one of unary

operators. This results to three di�erent workloads: (i) c_query_01 (NJoinOp
< 2);

(ii) c_query_02, (2 ≤ NJoinOp
< 4); and (iii) c_query_03, (NJoinOp

≥ 4).

We run experiments with a workload of 50 queries and we measure the gain
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(a) qrandom, α=10% and β=10% (b) quniform, α=10% and β=10%

(c) qgaussian, α=10% and β=10% (d) qrandom, α=30% and β=30%

(e) quniform, α=30% and β=30% (f) qgaussian, α=30% and β=30%

Figure 4.5: Solution quality for di�erent query distributions

in solution quality according to the set of the obtained materialized views. The

frequencies for access and update are at scale 1. Figure 4.7 shows the cost saving

found by our approach and the genetic algorithm for both cases: (i) α and β was

set to 10% (see �gure 4.7a) and (ii) α and β was set to 30% (see �gure 4.7b). We

can see that our approach produce the best results. Indeed, our approach provides

a cost saving up to 27.2% when α and β was set to 10% and 63.3% when α and β
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(a) urandom, α=10% and β=10% (b) uuniform, α=10% and β=10%

(c) ugaussian, α=10% and β=10% (d) urandom, α=30% and β=30%

(e) uuniform, α=30% and β=30% (f) ugaussian, α=30% and β=30%

Figure 4.6: Solution quality for di�erent update distributions

was set to 30%. While the genetic algorithm achieve a cost saving of only 12.9%

when α and β was set to 10% and 29.3% when α and β was set to 30%.

We also observe, in the graphic depicted in �gure 4.7, that the quality of the

solutions produced by our approach slightly decrease with an increasing complexity

of the query workload. Hence, we con�rm that the performance of our approach is

not signi�cantly in�uenced by an increasing of query complexity.
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(a) α=10% and β=10% (b) α=30% and β=30%

Figure 4.7: query complexity on view selection performance

(a) α=10% and β=10% (b) α=30% and β=30%

Figure 4.8: Query runtime using materialized views
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4.4.4 query performance using materialized views

In this section, we study the bene�t of using the materialized views to improve query

performance. For a workload involving 10,20,30,40,50,60,70,80,90 and 100 queries,

we materialized the views proposed by our approach and the genetic algorithm.

Then, we run the query workload using these views. We also consider the two

basic strategies that we have de�ned above: the "WithoutMat" and the "AllMat"

approaches. Recall that the "WithoutMat" approach does not materialize views and

always recomputes queries. While the "AllMat" approach materializes the result of

each query. The frequencies for access and update are at scale 1. In order to measure

the query runtime, the experiments were performed on MySQL server through JDBC

interface. The query runtime is expressed in seconds (sec).

The results are shown in �gure 4.8. The view selection has been decided under

space and maintenance cost constraints: (i) α and β was set to 10% in �gure 4.8a

and (ii) α and β was set to 30% in �gure 4.8b. The results indicate that the

bene�t of using materialized views is signi�cant. Indeed, queries using our proposed

views or those of the genetic algorithm are evaluated faster in comparison with

the "WithoutMat" approach. We can also see that our approach provides the better

quality of the obtained set of materialized views. For instance as can be seen in �gure

4.8b, when comparing the runtimes of the workload of 100 queries, our approach

requires ≈ 16seconds while genetic algorithm takes ≈ 24seconds.

4.4.5 Concluding remarks

Our experiments show that our approach achieves signi�cant performance gains in

comparison with the genetic algorithm in many cases. We achieve impressive cost

saving factors when (i) we study the view selection under resource constraints, (ii)

we increase the number of queries and (iii) we simulate various query workloads by

generating di�erent query and update distribution and query complexity. We also

show the e�ciency of our approach when we run the query workloads on MySQL

server. i.e., queries using our proposed views are evaluated faster in comparison with

those found by the genetic algorithm.

4.5 Conclusion

In this chapter, we proposed a declarative approach which involves constraint pro-

gramming techniques. The originality of our approach is fourfold. First, our method

provides a clear separation between the formulation (model) and the resolution
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(solver) of the problems. The main interest of this separation is to propose to the

user to model a problem without being interested in the way the problem is solved.

Indeed, the user focuses only on the modeling part of the problem. Second, the

model allows describing a problem in an easy and declarative way. It simply records

the variables and the constraints de�ning the problem. A complete API is provided

to be able to allow to the user to model a problem as constraint satisfaction prob-

lem in a natural and e�ortless way. Third, our approach is �exible and extensible,

in that it can easily model and handle new constraints and de�ne heuristic search

strategies to reduce the solution space and hence the execution time. Fourth, the

use of a constraint programming technique for view selection is new in this �eld.

We performed several experiments and comparison with the genetic algorithm.

The latter is the most e�cient algorithm proposed so far for deciding which views

to materialize since it provides the best trade-o� between quality of solutions and

execution time. The experiment results showed that our approach provides better

performance compared with the genetic algorithm resulting from evaluating the

solution quality (i.e., the quality of the obtained set of materialized views) in terms

of cost saving. Experiment results also showed the e�ectiveness of our heuristic

based search strategy which reduce signi�cantly the search space explored by the

constraint solver and hence the execution time.

The natural next step (see next chapter), is to focus on extending our approach

to address the view selection problem in a distributed setting.
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Chapter 5

Modeling View Selection Under

Multiple Resource Constraints in a

Distributed Context

The view selection problem has received signi�cant attention in past research but

most of these studies presented solutions in the centralized context as it is shown in

chapter 2. In a distributed environment the view selection problem becomes more

challenging for multiple reasons. First, it includes another issue which is to place

the materialized views at the appropriate computer nodes. Second, the number of

possible views will grow exponentially with the number of computer nodes which

make the solution space very large. Besides, distributed scenarios are composed of

many heterogeneous nodes with di�erent resource constraints such as CPU, IO and

network bandwidth that have to be taken into consideration when attempting at

solving the problem. The view selection problem in a distributed context may also

be constrained by storage space capacities per computer node and maximum view

maintenance cost.

To the best of our knowledge, no past work has addressed this problem under

all these resource constraints. Our constraint programming based approach �lls

this gap. Indeed, all these resource constraints will easily be modeled and han-

dled with the rich constraint programming language. Furthermore, the heuristic

algorithms which have been designed to solve the view selection problem in a dis-

tributed scenario are deterministic algorithms. For example greedy algorithm [7]

and genetic algorithm [15], a type of randomized algorithms. These heuristic al-

gorithms may provide near optimal solutions but there is no guarantee to �nd the

global optimum because of their greedy nature or their probabilistic behavior. We

have demonstrated in the last chapter (see chapter 4) the bene�t of using constraint
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programming techniques for solving the view selection problem with reference to

the centralized context. Indeed, our approach is able to provide a near optimal

solution to the view selection problem during a given time interval. The quality of

this solution may be improved over time until reaching the optimal solution. The

major contributions of this chapter (also in [48, 49] as a preliminary version) can be

summarized as follows.

1. We propose an extension of the concept of the AND-OR view graph in order

to re�ect the relation between views and communication network within the

distributed scenario.

2. We describe how to model the view selection problem in a distributed context

as a constraint satisfaction problem. Its resolution is performed automatically

by the constraint solver such as the powerful version of CHOCO [2].

3. We address the view selection problem under multiple resource constraints.

The limited resources are the total view maintenance cost and the storage

space capacity for each computer node. Furthermore, we consider the IO and

CPU costs for each computer node as well as the network bandwidth.

4. We have implemented our approach and compared it with a randomized method

i.e., genetic algorithm [15] which has been designed for a distributed setting.

We experimentally show that our approach provides better performance re-

sulting from evaluating the quality of the solutions in terms of cost saving.

5. Since the solution space may be huge when we increase the number of computer

nodes, we present a set of optimizations and pruning heuristics which reduce

the search space and hence the execution time and memory needs.

The rest of this chapter is organized as follows. Section 5.1 de�nes the view

selection problem in a distributed scenario and discusses the settings for the problem.

In Section 5.2, we present the framework that we have designed speci�cally to a

distributed setting. Section 5.3 describes how to model the view selection problem

under multiple resource constraints in a distributed environment as a constraint

satisfaction problem. In Section 5.4, it is provided our experimental evaluation.

Section 5.5 presents the set of optimizations and heuristics that we propose to avoid

traversing the whole search space. Finally, Section 5.6 contains concluding remarks.
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5.1 Problem de�nition

The general problem of view selection in a centralized context is to select a set of

views to be materialized that optimizes the cost of evaluating the query workload

given a limited amount of resource e.g., storage space and/or view maintenance

time. In a distributed scenario, multiple computer nodes with di�erent resource

constraints (i.e., CPU, IO, storage space capacity, network bandwidth, etc.) are

connected to each other. Moreover, each computer node may share data and issue

numerous queries against other computer nodes.

In this chapter, we have examined the problem of choosing a set of views and

a set of computer nodes at which these views should be materialized so that the

full query workload is answered with the lowest cost. For this purpose, we have

extended the cost model with communication costs. The IO and CPU costs are the

only factors considered in a centralized context. The communication cost component

is equally important factor considered in a distributed environment. The commu-

nication duties are shared between the computer nodes. Recall from the chapter 2

that the communication cost is the time needed to transfer data e.g., transmitting

views on the communication network. However, the optimization of communication

costs makes the view selection problem more complex.

View materialization can signi�cantly improve the query performance of rela-

tional databases and data warehouses. In this chapter, we consider materialized

views to optimize complex scenarios where many heterogeneous sites (computer

nodes) with di�erent resource constraints query and update numerous base relations

on di�erent sites. Before introducing our distributed view selection approach, we

present in what follows our motivation to investigate the distributed view selection.

Let us start with a simple example showing how the materialized views in dis-

tributed context can improve the query performance. We consider a distributed

database scenario consisting of three sites s1, s2 and s3 which are connected by a

slow wide-area network. We assume that (s1, s2) and (s1, s3) are connected by an

edge with the speed of 100 KB/sec, while the connection speed between (s2, s3) is

3 MB/sec. We consider three base relations r1, r2 and r3 stored at s1, s2 and s3

respectively, so we call them data origin, and two queries qi and qj; qi = r1 on r3

is posed frequently at s2, and qj = r1 on r2 is posed frequently at s3. Suppose that

the query optimizer decides to execute all the queries at s1 and the results size of qi
and qj are respectively 1 MB and 2 MB. Let us assume that the cost to answer qi
each time at s2 is 10 sec and to answer qj at s3 is 20 sec, in addition to the cost to

compute both queries at s1. This cost has to be paid every time these queries are

posed. While, if the results of qi and qj are materialized at s2 and s3 respectively, in
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this case, both queries have to be computed once at s1 and the results are shipped

to s2 and s3 to be materialized with the communication cost of 10 and 20 sec re-

spectively. Then, subsequent queries could be performed with approximately zero

cost (only the cost of reading the materialized results is considered).

Obviously, materialized views have signi�cantly reduced the query response time.

However, the result of the queries may be too large to �t in the available storage

space at a speci�c site. Therefore, materializing all the queries (or views) is not

always possible due to the storage space limitation. Furthermore, whenever a base

relation is changed, the materialized views built on it have to be updated in order

to compute up-to-date query results. Indeed, the cost of the view maintenance may

o�set the performance advantages provided by the view materialization. Assume in

our example that the relation r2 is frequently updated, in this case materializing qj
can be less attractive because the cost that we save for answering qj is now involved

for maintaining the materialized view. Thus, the view is considered as bene�cial if

and only if its materialization reduces signi�cantly the query cost without increasing

signi�cantly the view maintenance cost. The communication cost should also be

taken into account during the view selection. Assume in the previous example that

qi is frequently used at both s2 and s3; in this case materializing qi only at one

site e.g., s1 can be bene�cial enough for the both sites as the communication cost

between these sites is not high. In this way, the available storage space at the site

s2 is saved for another bene�cial materialized view.

In order to select the right set of materialized views, we have studied the view

selection under multiple resource constraints. Resources may be storage space ca-

pacity per computer node and maximum view maintenance cost. We also consider

the IO and CPU costs of each computer node as well as the network bandwidth.

5.2 Distributed AND-OR View Graph

In order to exhibit common sub-expressions between queries of workload, we have

used the AND-OR view graph framework, as it is shown in the previous chapter

(see chapter 4). Common sub-expressions can be exploited for sharing computation,

updates and storage space.

Recall from the chapter 3 and chapter 4 that, the AND-OR view graph is a

Directed Acyclic Graph (DAG) which can be seen as the union of all possible exe-

cution plans of each query. It is composed of two types of nodes: Operation nodes

(Op-nodes) and Equivalence nodes (Eq-nodes). Each Op-node represents an alge-

braic expression (Select-Project-Join) with possible aggregate function. An Eq-node
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represents a set of logical expressions that are equivalent (i.e., that yield the same

result). The Op-nodes have only Eq-nodes as children and Eq-nodes have only Op-

nodes as children. The root nodes are equivalence nodes representing the queries

and the leaf nodes represent the base relations. Equivalence nodes correspond to

the views that are candidates to materialization.

In a centralized context, query execution strategies can be well expressed with

respect to the way the relational algebra operators have been performed. In a

distributed context, the base relations may be stored at di�erent sites. Hence the

choice of ordering relational algebra operators is not enough to express execution

strategies. It must be supplemented with the selection of the best sites to process

data.

To illustrate this, let us consider the following query expressed in relational

algebra: r1 on r2 on r3 . We consider only the join operation since it is probably the

most important operation because it is both frequent and expensive. Besides, the

permutations of the join order have the most important e�ect on performance of

relational queries. Let assume that the base relations r1, r2 and r3 are respectively

stored in sites s1, s2 and s3. We have also made the assumption that the sites s1
and s3 are not connected. This query can be executed in at least �ve di�erent way.

In what follows, we describe these strategies, where ri → sj means that the base

relation ri is transferred to site sj.

1. r1 → s2

s2 computes r′1 = r1 on r2

r′1 → s3 s3 computes r′1 on r3

2. r2 → s1

s1 computes r′1 = r1 on r2

r′1 → s3 s3 computes r′1 on r3

3. r2 → s3

s3 computes r′2 = r2 on r3

r′2 → s1 s1 computes r′2 on r1

4. r3 → s2

s2 computes r′3 = r3 on r2

r′3 → s1 s1 computes r′3 on r1

5. r1 → s2

r3 → s2
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s2 computes r1 on r3 on r2

This example shows the importance of site selection and communication to de-

scribe for each query its execution strategies. For this purpose, we have extended the

concept of the AND-OR view graph to deal with distributed settings. Therefore, we

propose the distributed AND-OR view graph to re�ect the relation between views

and communication network in the distributed scenario.

Recall that in this work we consider selection-projection-join (SPJ) queries that

may involve aggregation and a group by clause as well. Let us consider the query

q de�ned in chapter 2. Query q �nds the minimal supply cost for each country and

each product having the brand name 'Renault'. The associated query is as follows:

Select P.partkey, N.nationkey, N.name, Min(PS.supplycost)

From Part P, Supplier S, Nation N, PartSupp PS

Where P.brand = 'Renault'

and P.partkey = PS.partkey

and PS.suppkey = S. suppkey

and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey, N.name;

A sample distributed AND-OR view graph is shown in �gure 5.1. For simplicity,

we consider a network of only three sites s1, s2, s3 and we illustrate a part of the

query q by considering only join operations and one execution strategy. Indeed, in

�gure 5.1 we consider only the join between Part (P) and PartSupp (PS) and the

join between PartSupp (PS) and Supplier (S). The execution strategy that we have

presented in �gure 5.1 is ((P join PS) join S). We suppose that the base relations

are stored on di�erent sites.

In order to represent the communication channels, every node is split into three

sub-nodes, each of which denotes the view or the execution operation at one site.

The communication edges between equivalence nodes of the same level (i.e., (P −
PS−S, s1), (P−PS−S, s2) and (P−PS−S, s3)), as shown in the dashed rectangle
in �gure 5.1, denote that a view can be answered from any other site if it is less

expensive than computing this view from any children nodes. However, these edges

are bidirectional creating cycles which no longer conforms to the characteristics of

a DAG. In order to eliminate cycles, each sub-node (vi, sj), as illustrated in �gure

5.2, has been arti�cially split into two nodes (vi, sj)′ and (vi, sj)
′′.
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Figure 5.1: Distributed AND-OR view graph.

Figure 5.2: Modi�ed Distributed AND-OR view graph.
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Before de�ning the distributed AND-OR view graph formally, the de�nition of

operation nodes Op-nodes and equivalence nodes Eq-nodes has to be extend by

considering the distributed settings:

• In addition of representing the expression de�ned by the algebraic operation

and its inputs. The Op-node (opi, sj) in the distributed AND-OR view graph

has to represent the decision on which site sj the operation opi is evaluated.

• Let Eq−nodes = Eq−nodes′ ∪Eq−nodes′′ denote the set of all equivalence
nodes. The de�nition is based on applying split to every equivalence node in

order to eliminate cycles. In addition to represent a view that could be selected

for materialization, each equivalence node (vi, sj) in the distributed AND-OR

view graph has to denote at which site sj this view vi can be materialized.

De�nition 5.1 (AND-OR View Graph) A graph G is called a distributed AND-

OR view graph for the views (v1,s1), (v1,s2),..., (v1,ss); (v2,s1), (v2,s2),..., (v2,ss);...;

(vv,s1), (vv,s2),..., (vv,ss) if for each view (vi, sj), there is an AND-OR-DAG repre-

sentation (de�ned in chapter 4).

5.3 Our Distributed View Selection Approach

In this section, we introduce the constraint satisfaction model that we have proposed

for the view selection problem in a distributed context. We then show through an

example how constraint programming can be applied to select and place materialized

views.

5.3.1 Modeling View Selection Problem in a Distributed Con-

text as a Constraint Satisfaction Problem (CSP)

In this subsection, we describe how to model the view selection problem in a dis-

tributed scenario as a constraint satisfaction problem. Then, its resolution is per-

formed automatically by the constraint solver. All the symbols as well as the vari-

ables that we have used in our CSP are de�ned in Table 5.1. The view selection

in a distributed scenario can be formulated by the following constraint satisfaction

model.

minimize
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗Qc(vi, sj)

)
(5.1)
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subject to ∀sj ∈ S
∑

(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ size(vi)

)
≤ Spmaxj

(5.2)

∑
(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ fu(vi) ∗Mc(vi, sj)

)
≤ Umax (5.3)

In our approach, the main objective is the minimization of the total query cost.

The total query cost is computed by summing over the cost of processing each input

query rewritten over the materialized views. Constraints (5.2) and (5.3) state that

the views are selected to be materialized on a set of sites under a limited amount

of resources. Constraint (5.2) ensures that for each site the total space occupied by

the materialized views on it is less than its storage space capacity. Constraint (5.3)

guarantees that the total maintenance cost of the set of materialized views is less

than the maximum view maintenance cost.

In a distributed context, the query and maintenance costs may be formulated as

follows.

Query cost

Qc(vi, sj) = min
sk∈S

(
Qclocal(vi, sk) +

size(vi)

Bw(sk, sj)

)
(5.4)

Qclocal(vi, sj) =

{
ComputingCost(vi, sj) if Mat(vi, sj) = 0

size(vi) ∗ IOj otherwise
(5.5)

ComputingCost(vi, sj) = minopl∈child(vi,sj)

(
cost(opl, sj) +∑

(vm,sn)∈child(opl)

(
Qc(vm, sn) +

size(vm)
Bw(sn,sj)

))
(5.6)

The query cost includes the local processing cost and the communication cost.

The local processing cost re�ects CPU and IO costs (see subsection 2.1). Constraint

(5.4) guarantees that a view is answered from the site that can provide the answer

with the lowest cost. Constraint (5.5) and (5.6) ensure that the minimum cost path

is selected for computing a given view on a given site. Each minimum cost path

is composed of all the cost of executing the operation nodes on the path and the
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Symbols of CSP model
G The distributed AND-OR view graph.

Q(G) The query workload.
V (G) The set of candidate views
U The set of updates.

δ(vi, sj, u) denotes the di�erential result of view vi on sj, with respect to update u.
fq The frequency of a query.
fu The update frequency of a query (or view).
S The set of sites which represent the computer nodes.

Spmaxi
The storage space capacity of the site si.

Umax The maximum view maintenance cost.
size(vi) The size of vi in terms of number of bytes.
Bw(sk, sj) The bandwidth between sj and sk.

CSP variables and their domains
Mat(vi, sj) The materialization of the view vi on site sj. It is a binary variable

(domMat(vi,sj) ={0,1}; 0: vi is not materialized on sj, 1: vi is materialized
on sj).

Qc(vi, sj) The query cost corresponding to the view vi if it is computed
or materialized on site sj.

Mc(vi, sj) The maintenance cost corresponding to the view vi if it is updated
on site sj.

The costs are de�ned in terms of time (see subsection 2.1).
Their domain is a �nite subset of R∗+(domQc(vi,sj) ⊂ R∗+ and domMc(vi,sj) ⊂ R∗+).

Table 5.1: Symbols and CSP variables in a distributed setting.
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query cost corresponding to the related views or bases relations. The reading cost

is considered if the view has been materialized.

View maintenance cost

Mc(vi, sj) =

 0 if Mat(vi, sj) = 0∑
u∈U(vi,sj)

(
minsk∈S

(
Mcost(vi, sk, u) +

size(vi)
Bw(sk,sj)

))
otherwise

(5.7)

Mcost(vi, sj, u) = minopl∈child(vi,sj)

(
cost(opl, sj, u) +∑

(vm,sn)∈child(opl)

(
UpdatingCost(vm, sn, u) +

size(vm)
Bw(sn,sj)

)) (5.8)

UpdatingCost(vm, sn, u) =


Mcost(vm, sn, u) if Mat(vm, sn) = 0

δ(vm, sn, u) otherwise (5.9)

The view maintenance cost is computed by summing the number of changes in

the base relations from which the view is updated. We assume incremental main-

tenance to estimate the view maintenance cost. Therefore, the maintenance cost is

the di�erential results of materialized views given the di�erential (updates) of the

bases relations. Constraint (5.7) guarantees that a view with respect to the updates

of the underlying base relations is updated from the site that can provide the di�er-

ential results with the lowest cost. Constraints (5.8) and (5.9) insure that the best

plan with the minimum cost is selected to maintain a view. The view maintenance

cost is computed similarly to the query cost, but the cost of each minimum path is

composed of all the cost of executing the operation nodes with respect to update on

the path and the maintenance cost corresponding to the related views.

Once the user specify the problem as a constraint satisfaction problem, one need

is to translate it to a more CHOCO like model that is expressed in the CHOCO

API in order to be performed by the solver (recall that we have used the CHOCO

solver [2] for the formulation and the resolution of the view selection problem in

a distributed context). In the Appendix A, we provide an overview on how we

use CHOCO for modeling and solving the view selection problem in a distributed

context.
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Figure 5.3: Search tree using constraint propagation to select and place materialized
views.

5.3.2 Solving the view selection problem in a distributed con-

text with constraint programming

As mentioned in chapter 2, the basic principles of constraint programming are con-

straint propagation and search. With reference to the last chapter, we illustrated

through an example how constraint propagation and search can be applied to decide

which views to materialize. In this section, we show how these techniques can be

used to solve the view selection problem in a distributed context. For this purpose,

let us consider nine variables Mat(v1, s1), Mat(v1, s2), Mat(v1, s3), Mat(v2, s1),

Mat(v2, s2),Mat(v2, s3),Mat(v3, s1),Mat(v3, s2) andMat(v3, s3) whereMat(vi, sj)

denotes for each view vi if it is materialized or not materialized on site sj. It is

a binary variable, domMat(vi,sj) = {0,1} (0: vi is not materialized on site sj, 1:

vi is materialized on sj). The problem is to select a set of views and a set of

sites at which these views should be materialized under a maintenance cost con-

straint which guarantees that the total maintenance cost of the set of materialized
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views is less than Umax. Note that Umax=12sec, Mc(v1, s1)=8sec, Mc(v1, s2)=14sec,

Mc(v1, s3)=18sec,Mc(v2, s1)=16sec,Mc(v2, s2)=15sec,Mc(v2, s3)=3sec,Mc(v3, s1)=

13sec, Mc(v3, s2)=3sec and Mc(v3, s3)=10sec; where Mc(vi, sj) denotes the cost of

maintaining the view vi on site sj).

Figure 5.3 shows the domain reduction of these variables. At the beginning, the

initial variable domains are represented by three columns of white squares mean-

ing that every view can be materialized on any site. Considering the maintenance

cost constraint, it appears that Mat(v1, s2), Mat(v1, s3), Mat(v2, s1), Mat(v2, s2)

and Mat(v3, s1) cannot take the value 1 because otherwise the total maintenance

cost will be greater than Umax. red
Mat(v1,s2)
Mc(v1,s2)>Umax

, redMat(v1,s3)
Mc(v1,s3)>Umax

, redMat(v2,s1)
Mc(v2,s1)>Umax

,

red
Mat(v2,s2)
Mc(v2,s2)>Umax

and redMat(v3,s1)
Mc(v3,s1)>Umax

�lters respectively the value 1 (the inconsis-

tent value) from the domain of Mat(v1, s2), Mat(v1, s3), Mat(v2, s1), Mat(v2, s2)

and Mat(v3, s1). The deleted values are marked with a black square.

After this stage some variable domains are not reduced to singletons, the solver

takes one of these variables and tries to assign it each of the possible values in

turn i.e., Mat(v3, s3)=1. This enumeration stage triggers more reductions i.e.,

red
Mat(v1,s1)
Mc(v1,s1)+Mc(v3,s3)>Umax

, redMat(v2,s3)
Mc(v2,s3)+Mc(v3,s3)>Umax

and red
Mat(v3,s2)
Mc(v3,s2)+Mc(v3,s3)>Umax

.

The reduction of the domain of the other variables is just indicated by dashed lines.

This leads in our example to four solutions. These solutions are of various quality

or cost.

5.4 Experimental Evaluation

In this section, we demonstrate the performance of our approach and a randomized

method i.e., genetic algorithm which has been designed for a distributed setting [15].

The performance of view selection methods was evaluated by measuring the solution

quality which results from evaluating the quality of the obtained set of materialized

views in terms of cost saving.

5.4.1 Experiment Settings

For our experiments, we implemented a simulated distributed environment including

a network of a set of sites (computer nodes). We assume that the di�erent sites are

divided into clusters so that there is a high probability that the sites which belong to

the same cluster have similar query workloads. In our approach, for each cluster all

the queries of the di�erent workloads are merged into the same graph (see section

3) in order to detect the overlapping and capture the dependencies among them.
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Then, our method decides which views have to be selected and determine where

these views should be materialized so that the full query workload is answered with

the lowest cost under multiple resource constraints. The query workload are de�ned

over the database schema of the TPC-H benchmark [5]. We then randomly assigned

values to the frequencies for access and update based on a uniform distribution. In

order to solve the view selection problem in a distributed context as a constraint

satisfaction problem, we have used the latest powerful version of CHOCO [2]. For the

randomized method, we have implemented the genetic algorithm presented in [15] by

incorporating space and maintenance cost constraints into the algorithm. In order

to let the genetic algorithm converge quickly, we generated an initial population

which represents a favorable view con�guration rather than a random sampling.

Favorable view con�guration such as the views which satisfy space and maintenance

cost constraints are most likely selected for materialization. In the experimental

results, the solution quality denoted by Qs is computed as follows.

Qs = 1−
∑

(vi,sj)∈Q(G)(fq(vi) ∗Qc(vi, sj))
WM

(5.10)

Where WM is the total query cost obtained using the "WithoutMat" approach

which does not materialize views and always recomputes queries. The "Without-

Mat" approach is used as a benchmark for our normalized results. Recall that

Qc(vi, sj) is the query cost corresponding to the view vi on site sj and fq(vi) is the

frequency of the view vi corresponding to a single query.

In our approach, the view selection problem in a distributed environment is con-

strained by storage capacities Spmax = {Spmaxi
, Spmaxj

, .., Spmaxn} where each site

si has an associated storage space capacity Spmaxi
and maximum view maintenance

cost Umax. Similar to [33] the storage space and maintenance cost limits are com-

puted respectively as a function of the size (see equation 11) and total maintenance

cost (see equation 12) of the query workload.

Spmaxi
= α ∗ Spi(AllM) (5.11)

Umax = β ∗Mc(AllM) (5.12)

Where AllM is the "AllMat" approach which materializes the result of each

query of the workload; α and β are constant. In our experiments, the storage space

limit is per site and computed as a function of the size of the associated query

workload. The view maintenance cost limit is calculated as a function of the total

maintenance cost when all the queries are materialized.
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Our approach to solve the view selection problem in a distributed setting is able

to provide optimal solutions. However, computing optimal solutions may be very

expensive because of the great number of comparisons between all possible subsets of

views which are candidate to materialization. In this case, we use timeout condition

to limit the search by considering that some solutions should not be explored. As

mentioned in section 2.2, the constraint solver can �nd a set of feasible solutions

in which all the constraints are satis�ed before reaching the optimal solution. In

the next experiments, the constraint solver performed a search until reaching the

timeout condition. Indeed, our approach is able to provide a feasible solution at any

time. The timeout condition was set to the time required by the genetic algorithm

to solve the problem. This means that the constraint solver was left to run until the

convergence of the genetic algorithm in the following experiments.

5.4.2 Experiment Results

We examined the e�ectiveness of our approach within three experiments. The �rst

one compares the performance of our approach and the genetic algorithm for various

values of storage space and maintenance cost limits. The second experiment eval-

uates the view selection methods with respect to di�erent sizes of the distributed

AND-OR view graph in terms of number of views (equivalence nodes). Finally,

the last experiment evaluates our approach and the genetic algorithm with di�erent

network sizes in terms of the number of sites per cluster.

Performances under resource constraints.

In this experiment, we examine the impact of space and maintenance cost constraints

on solution quality. For this evaluation, each cluster includes 8 sites with di�erent

constraints of CPU, IO and network bandwidth and each site has an associated

query workload. The values of α and β which de�ne respectively the storage space

capacities and the view maintenance cost limit are varied from 10% to 100%. All

the results are shown in �gure 5.4.

Figure 5.4 (a) investigates the in�uence of space constraint on solution quality

for each value of α where β was set to 60%. We note that the quality of the solutions

produced by our approach and genetic algorithm improves when α increases, since

there is storage space available for more views to be materialized. However, when

α>=80% there is no improvement in the solution quality because the maintenance

cost constraint becomes the signi�cant factor.

Figure 5.4 (b) examines the impact of maintenance cost constraint on solution
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(a) Solution quality while varying the space
constraint

(b) Solution quality while varying the mainte-
nance cost constraint

Figure 5.4: Evaluating the performance under resource constraints.

quality for each value of β where α was set to 80%. We can observe similarly to

�gure 5.4 (a) that we have better solutions when β increases since there is time to

update the materialized views. The performance stabilizes when β>=90% because

the space constraint becomes the signi�cant factor. We note from these experiments

that our approach outperforms the genetic algorithm in the case where the resource

constraints become very tight as well as in the case where we relax them. Indeed,

for di�erent values of α and β we can see that our approach generates solutions with

cost saving more than 2 times more than the genetic algorithm.

Performance according to the number of views.

Let us now evaluate the performance of our approach and the one of genetic algo-

rithm while varying the size of the search space. Recall that the size of the search

space is estimated according to the number of views (equivalence nodes) in the

distributed AND-OR view graph described in section 3.

Figure 5.5 illustrates the quality of the solutions produced by the two methods in

a distributed environment. The number of sites per cluster is 4 sites in �gure 5.5 (a)

and 8 sites in �gure 5.5 (b). The queries of the workload are randomly distributed

over the network so that each site has an associated query workload. For instance,

in �gure 5.5 (b), the number of views in the distributed AND-OR view graph ranges

from 200 to 1232 views. For each site, α was set to 40%. For the maintenance

cost constraint, β was set to 60%. The experiment results depicted in �gure 5.5 (a)

and 5.5 (b) show that our approach provides the lowest query cost while varying
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(a) Number of sites=4 (b) Number of sites=8

Figure 5.5: Evaluating the performance over di�erent number of views.

the number of views. In fact, the cost saving is up to 27% more than the genetic

algorithm. Therefore, our approach provides better performances compared with

the genetic algorithm in terms of the solution quality.

Performance according to the number of sites.

In order to evaluate the performance of view selection methods according to the

number of sites, we conducted experiments with clusters of di�erent sizes. For each

cluster, we considered di�erent number of sites with di�erent constraints of CPU,

IO and network bandwidth. The number of sites per cluster varies from 2 to 20.

For each site, α was set to 40% and for the maintenance cost constraint, β was

set to 60%. The experiment results are shown in �gure 5.6. As in the previous

experiments, we observe that our approach provides an improvement in the quality

of the obtained set of materialized views in terms of cost saving compared with

the genetic algorithm. Indeed, the cost saving is up to 15% more than the genetic

algorithm.

5.4.3 Experiment Conclusion

We note from the above experiments that our approach outperforms the genetic

algorithm in all cases. More speci�cally, our approach provides the better solution

quality in terms of cost saving where we consider (i) various values of storage space

and maintenance cost limits; (ii) diverse number of views; and (ii) di�erent network

sizes. In our approach, we considered multiple execution plans for each query rather
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Figure 5.6: Evaluating the performance over di�erent number of sites.

than a unique execution plan in order to �nd the global optimal plan. Besides,

every view can be materialized on any site of the network. Consequently, the search

space of candidate views may be very. Indeed, the number of candidate views grows

exponentially with the number of queries of workload as well as the number of sites

of network. In order to solve the view selection problem in a large scale distributed

environment (knowing that in our experiments we consider 20 sites per cluster), our

approach must be extended with a set of search strategies to reduce the solution

space. In the next section, we discuss a set of optimization and pruning heuristics

that may be used in our future work to trade o� completeness for e�ciency of the

search.

5.5 Optimization and heuristics

The complexity of our approach may be very high since the number of possible views

to materialize grows exponentially with the number of sites and queries. In order

to solve the view selection problem in a distributed environment within reasonable

times, special heuristics may be designed to reduce the search space by considering

only e�cient execution plans and discarding those which are very costly.

An important aspect of query optimization is join ordering [54, 65], since per-

mutations of the joins within the query may lead to improvements of orders of

magnitude. Join ordering in a distributed context is even more important since

joins between fragments may increase the communication cost which is considered

to be the dominant factor in a distributed context. To optimize the communication

cost, one need is to �nd an execution strategy for a query that selects the best or-
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dering of operators in the query. Consider the query r1 on r2 on r3 of Section 2, to

select one of the possible execution strategies by using join ordering, the following

sizes must be known: size(r1), size(r2), size(r3), size(r1 on r2) and size(r2 on r3).

Thus, estimating the size of join results is mandatory. We assume that the cardi-

nality of the resulting join is the product of cardinalities. Then the base relations

and the resulting relations are ordered by increasing sizes and the order of execution

is given by this order. For instance the order (r1, r2, r3) could use the strategy 1,

while the order (r3, r2, r1) could use the strategy 4. Another solution is to estimate

the communication cost of all the alternatives strategies and choose the best one.

This means that the execution strategy which optimizes the communication cost

is selected. Another basic technique for optimizing a sequence of distributed join

operators is through the semijoin operator [66]. It replaces joins by combinations of

semijoins. The main value of the semijoin in a distributed environment is to reduce

the size of the join operands and then the communication cost.

When distributed query optimization is used, either a single site or several sites

may participate to the selection of the strategy to be applied for answering the query.

However, the number of possible execution strategies is in fact exponential in the

number of sites in the network. Indeed, in the distributed AND-OR view graph

that we have designed to represent the communication channels, every node is split

into sub-nodes, each of which denotes a possible execution strategy. A practical

solution for the distributed view selection must design heuristics which select the

most promising sites on which the views may be computed or materialized in order

to avoid having to pay an important cost of communication. For example, assume

that the site s1 and s2 are the only issuer of the query q = r1 on r2, where the base

relations r1 and r2 are stored respectively in the sites s3 and s4. Naturally, the query

has to be computed by involving the sites s1, s2, s3 or s4, if the goal is to minimize

the communication cost. The neighbor sites which are connected to the query issuers

with a high bandwidth may also be considered. However, the sites which are not able

to communicate with the query issues by direct connection or with a high bandwidth

may be discarded in the elaboration of the best execution strategy. Consequently

the number of possible execution strategies will be signi�cantly reduced.

With reference to the last chapter (chapter 4), de�ning heuristic search strategies

within the constraint solver allows to reduce the solution space. Indeed, a well-suited

strategy can reduce the number of expanded nodes (Recall from chapter 2 that the

search in a constraint programming approach is organized as an enumeration tree,

where each node corresponds to a subspace of the search) and hence the execution

time required to �nd the set of materialized views. The most common branching
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strategies in the constraint solver are based on the assignment of a selected variable

to one or several selected values. In what follows, we describe the variable and value

selection heuristics that may be de�ned in the search space to reduce the time and

memory space.

Variable and Value Selection Heuristic. Our objective is to guide the search

close to the optimal solution which leads the constraint solver to �nd near optimal

solutions fast. In our work, the best solution is the one that minimizes the query

cost subject to space and maintenance cost constraints. In our model, the query cost

re�ects the local processing cost and the communication cost. As mentioned before,

the communication cost is considered to be the dominant factor in a distributed

environment. For this purpose, we apply the following heuristic: A view is preferably

to be placed (materialized) closest to where it is more frequently accessed. In the

pseudo-code below, we describe our heuristic.

for each (vi, sj) in V (G) do

if size(vi) ≤ Spmaxj
and Mc(vi, sj) ≤ UMax then

// compute the benefit of materializing the view vi on site sj

Benefit(vi, sj) = TCost(vi, sorigin → sq)− TCost(vi, sj → sq)

end if

end for

Note that TCost(vi, sorigin → sq) is the cost of answering vi at sq by using the

data origin and TCost(vi, sj → sq) is the cost of answering vi at sq by using the data

from the site sj. This cost includes the total cost of reading the required data and

performing the necessary computations and the communication costs for transferring

the data.

The variable selector has to start by instantiating the variables Mat(vi, sj) with

the highest bene�t. For this purpose, we sort the views in V (G) according to their

Benefit in descending order (as it is presented below). We iterate over the sorted set

starting with the views which have the highest bene�t and we store them according

to this order in the variable MV S.

//sort according to the Benefit in descending order

V SSort = SortV iewsSites(Benefit)

for each (vi, sj) in V SSort do

MV S =MV S ∪ {Matvi,sj}
end for
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Then, the variable selector will choose the materialization variableMatvi,sj in the

order they appear in MV S. Once the variable has been selected, the value selector

will assign the variable to its highest value: max(dMatvi,sj
). As this way, the view

vi is considered as materialized on site sj. By de�ning these heuristics in the search

strategy, we expect that time and memory that the constraint solver incurs to �nd

near optimal solutions and the optimal solution will be signi�cantly reduced since a

large number of nodes in the search tree will be discarded.

5.6 Conclusion

In this chapter we have extended our constraint satisfaction based approach to ad-

dress the view selection problem under multiple resource constraints in a distributed

environment. Furthermore, we have introduced the distributed AND-OR view graph

to re�ect the relation between views and communication network.

We have performed several experiments over TPC-H queries and comparison

with a genetic algorithm which has been designed for a distributed setting. The �rst

experimental results have shown that our approach provides better performance

where the space and maintenance cost constraints become very tight as well as in

the case where we relax them or when the number of views is high. Besides, our

approach provides better solution quality in terms of cost saving when we consider

diverse number of sites.

However, the complexity of our approach is high since the number of possible

views to be materialized grows exponentially with the number of queries and sites.

This highlights the need for optimizations and e�cient heuristic. For this purpose,

we have provide an overview of a set of pruning heuristics that we can use for reducing

the search space and hence solving the view selection in a large scale distributed

environments within reasonable execution times.

Because our approach is �exible and extensible, these optimizations and heuris-

tics will be easily handled by our approach. More precisely, they will be modeled as

new constraints in the CHOCO model or as search strategies in the CHOCH solver.

We expect that this will allow our approach to scale well with the query workload

and the network sizes.

Next chapter summarizes the main contributions of this thesis, enumerates the

related issues not covered by our approach and provides some perspectives in the

view selection context.
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Chapter 6

Conclusion

This chapter concludes the dissertation by presenting three aspects of our research

work. We �rst summarize our main contributions to address the view selection

problem. Then, we outline the limitations and related issues not covered by our

approach. Finally, we discuss future directions of research in the view selection

�eld.

6.1 Main Contributions

This work has addressed the problem of choosing an appropriate set of views to

materialize. This problem is crucial in commercial database systems to facilitate

e�cient query processing. Furthermore, this is the most studied problem in data

warehousing systems to obtain the optimal query performance. Another application

of the view selection issue is selecting views to materialize in distributed database

and data warehouse architectures. Our main contributions are as follows.

View selection and constraint programming framework. We de�ned a

framework in chapter 2 that may be helpful to discuss physical database design

while focusing on the problem of selecting materialized views for improving the per-

formance of a database system. First, we introduced the main notions and provided

the basic contents related to the view selection context so that a reader can have a

rather precise idea of the whole context and its potential. Then, as our work is based

on constraint programming techniques, we extended our framework to capture the

full breadth and depth of the constraint programming �eld. We also described our

motivation to use constraint programming techniques to address the view selection

problem. Finally, we showed the basics of modeling and solving with constraint

solvers such as CHOCO [2].
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State of the art of view selection methods. We reviewed in chapter 3

the view selection methods that have been proposed to address the view selection

problem. The view selection dimensions have been highlighted in detail as the basic

for classifying the view selection approaches. Consequently, we have discussed three

main class of view selection methods based on what kind of heuristic algorithms they

use: deterministic Algorithms Based Methods, randomized algorithms based meth-

ods and hybrid Algorithms Based Methods. Based on this classi�cation, we survey

and review the existing view selection methods by identifying their respective po-

tentials and limitations. Further, we gave an overview of the dynamic view selection

methods. Finally, we summarized our review of related work and our observations,

which has been useful to introduce our approach.

A survey of view selection methods was published in [47].

Best balance between solution quality and execution time. We proposed

in chapter 4 a novel approach that is based on a constraint programming technique.

The latter is known to be e�cient for the resolution of NP-complete problems and

a powerful method for modeling and solving combinatorial optimization problems.

The originality of our approach is that it provided a clear separation between formu-

lation and resolution of the problem. For this purpose, the view selection problem

has been modeled as a constraint satisfaction problem in an easy and declarative way.

Then, its resolution was performed automatically by the constraint solver. Through

performance experimentation, we showed the e�ectiveness of our approach. Indeed,

our results demonstrate that our approach provides the best trade-o� between the

solution quality in terms of cost saving and execution time, compared to the most

e�cient method so far.

The initial version of this work appeared in [50] and an improvement proposal is

going to be submitted.

Distributed view selection under multiple resource constraints. In a dis-

tributed environment the view selection problem becomes more challenging. Indeed,

it includes another issue which is to decide on which computer nodes the selected

views should be materialized. Furthermore, resource constraints such as CPU, IO

and network bandwidth have to be taken into consideration. The view selection

problem in a distributed context may also be constrained by storage space capaci-

ties per computer node and maximum view maintenance cost. Since our approach

is �exible and extensible in that it can easily model and handle new constraints,

we have extended the constraint satisfaction model to solve the problem under all

these resource constraints. Experiment results showed that the performance of our

approach remains signi�cant when the view selection is studied in a distributed
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setting. However, the complexity of our approach is high since the number of pos-

sible views to be materialized in a distributed context grows exponentially with the

number of computer nodes. For this purpose, we provided an overview of a set of

optimizations and pruning heuristics that we can use for reducing the search space.

Solving the view selection in a large scale distributed environments is an important

challenge which might included in our work.

This work was published in [48, 49].

6.2 On going work

This section covers the issues not handled by our proposed approach and discusses

some possible extensions of our current work.

Reducing the search space of candidate views. In this work, we considered

for each query all possible execution plans which represent its execution strategies.

Then, we used the AND-OR view graph to compactly represent alternative query

plans and exhibit common sub-expression. For distributed scenarios, we extended

the AND-OR view graph to re�ect the relation between views and communication

network. However, the AND-OR view graph may become very large since the num-

ber of possible views to materialize grows exponentially with the number of computer

nodes and queries, and with the number of join predicates, grouping clauses and base

relations referenced in each query. Due to the huge solution space, special and e�-

cient heuristics have to be designed in order to reduce the search space of candidate

views to materialization. In the last chapter (see chapter 5), we discussed a set of

pruning heuristics such join ordering and site selection that it would be interest-

ing to use to restrict the solution space of the view selection problem for complex

scenarios.

Improving the search strategy. A practical solution to the view selection

problem for complex scenarios requires an e�cient search strategy to be de�ned

within the constraint solver in order to e�ciently search the solution space. Indeed,

a well-suited search strategy can reduce the number of expanded nodes in the enu-

meration tree and hence the time that the constraint solver incurs to �nd solutions

to the view selection problem. A search strategy in CHOCO is a composition of

branching strategies. The most common branching strategies are based on the as-

signment of a selected variable to one or several selected values. In the previous

chapter (see chapter 5), we described the variable and value selection heuristics that

may be de�ned in the search strategy. We believe that these heuristics will lead the

constraint solver to �nding a materialized view set fast without traversing the whole
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search space.

De�ning a limit search space Our work highlights the trade-o� between view

selection quality and time performance since our approach outperforms the genetic

algorithm which is known to provide the best balance between the solution quality

and the execution time. To allow a fair comparison and because our approach can

provide a solution to the view selection problem at any time, the limit search space

was set to the time required by the genetic algorithm to solve the view selection

problem. It lacks the discussion between the limit search space, the time performance

and the solution quality which requires more research work. One need is to de�ne

a limit on the depth of the search so that the view selection problem can be solved

within reasonable execution time and the quality of the solutions found by the

constraint solver remains high in terms of cost saving. One idea consists in using

sampling and learning methods to compute the search time limit (for a given AND-

OR view graph).

6.3 Open issues

In this section, we present some of directions of research in view selection �eld that

we believe to be interesting to explore in future work.

Query performance in semantic web databases. The increasing interest in

semantic web technology and their many applications has turned the query perfor-

mance improving over semantic web databases to a challenging and crucial task. To

this aim, recent research works [14, 20, 23] has explored materialized view selection

in semantic web databases in order to facilitate e�cient processing of RDF queries

and updates.

The goals of view selection in semantic web databases and view selection in

relational databases are similar; it is only that the data model is di�erent since RDF

data set is fundamentally a collection of tuples of the form (subject, property, object),

belonging conceptually to a single triple relation [4]. Therefore, given the similarities

between these two studies, our approach may be applied the context of view selection

for RDF data.

Dynamic view selection. In our proposals, the view selection problem has

been addressed in the context of one �xed current workload. All queries are assumed

to be known and given in advance and there is a frequency of occurrence associated

with each query. In order to respond to the changes in the query workload over

time, views need to be selected continuously. Consequently, administrating e�orts

such as monitoring and recon�guration may be a part of our planned future work.
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As mentioned above, one line of recent research has explored the problem of

e�ciently recommending a set of views to materialize in order to improve the RDF

query performance [14, 20, 23]. However, they consider a static workload which

contradicts the dynamic nature of the web. Indeed, any change to the workload

should be re�ected to the view selection as well. This issue will be the future aspect

while studying the view selection in semantic web databases.

View selection in large scale networks. Analysis of state of the art of view

selection has shown that there are very few works on view selection in distributed

databases and data warehouses and no e�ective solution for peer to peer systems.

Indeed, [25] seems to be the only paper which deals with the view selection problem

in a peer to peer environment. In fact, it is provided a full de�nition of the problem

but without providing any algorithm or detail on how to select an e�ective set of

views to materialize and place them at appropriate peers. Thus, one of challenging

directions of future work aims at addressing the view selection problem in a peer

to peer environment. The view selection in the cloud computing, in which large

amounts of data, content and knowledge are being spread over the service providers'

infrastructures, is also an open issue. Recently, [52] is working on a novel cost models

that complement the existing materialized view cost models with a monetary cost

component that is primordial in the cloud.
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Appendix A

Use of CHOCO for modeling and

solving the view selection problem

A.1 Centralized Context

In what follows, we provide an insight on how to create the constraint satisfaction

model by using the large Javadoc API provided by the CHOCO constraint solver.

Note that in the following sample model, we have not considered the view mainte-

nance.

First of all, we import the CHOCO class to use the API.

import choco.Choco;

Let's create a Model. More precisely, we create an instance of CPModel() for Con-

straint Programming Model.
// Build the model

CPModel m = new CPModel();
Then, we declare the variables of the problem
// Creation of HashMaps of Integer variables

Map<Noeud,IntegerVariable>Matv=new HashMap<Noeud,IntegerVariable>();

Map<Noeud,IntegerVariable> Qc=new HashMap<Noeud,IntegerVariable>();

for(Node n: G.getNodes()) {

if (n.getType()==node.equivalence || n.getType()==node.source){

//For each variable, we de�ne the type and the boundaries of its domain

IntegerVariable QcNode = makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

Qc.put(n,QcNode);

IntegerVariable matNode = makeIntVar(0,1,"cp:decision");
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Matv.put(n,matNode);

}

}

We have de�ned the variable using the makeIntVar method which creates a bounded

domain. Now, we are going to state constraints ensuring that the minimum cost path

(in the AND-OR view graph) is selected for computing a given view.
for(Node n: G.getNodes()) {

//Each base relation is stored and its query cost is zero.

if(n.getType() == Node.source) {

m.addConstraint(eq(matv.get(n),1));

m.addConstraint(eq(Qc.get(n),0));

}

else if(n.getType() == Node.equivalence) {

int cpt =0;

for(Node op : n.getChildren()) {

possibilites[cpt]=makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

IntegerVariable[] viewsOp = new IntegerVariable[op.getChildren().size()];

int cpt2 =0;

for(Node v : op.getChildren())

viewsOp[cpt2++] = Qc.get(v);

//Each minimum cost path includes the cost of executing the operation nodes

on the path and the query cost corresponding to the related bases relations or

views.

m.addConstraint( eq( possibilites[cpt++], sum(cost(op),sum(viewsOp))));

//The query cost corresponding to each given view is the minimum cost

paths from the view to its related base relations or views. The reading cost is

considered if the view has been materialized.

m.addConstraint( ifThenElse(eq(materialized.get(n),1),

eq(size(n),Qc.get(n)),

min(possibilites,Qc.get(n))));

}

}

}
Then, we add the constraint ensuring that the total space occupied by the materi-

alized views is less than or equal to the maximum storage space capacity.
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//Creation of an array of variables for the space constraint

IntegerVariable[] sizeViewtab =new IntegerVariable[nbEqNodes];

int j=0;

for(Node n: G.getEquivalenceNodes()) {

sizeViewtab[j]= makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

m.addConstraint(eq(sizeViewtab[j++],mult(matv.get(n),size(n))));

}

//State the space constraint

m.addConstraint(leq(sum(sizeViewtab),Spmax));
An optimal solution to the view selection problem is then a solution that minimizes

the objective variable which is the total query cost.
//Creation of an array of variables to compute the objective variable

totalQueryCost

IntegerVariable[] FreqcostQtab =new IntegerVariable[nbQueries];

int i=0;

for(Node n: G.getRootNodes()) {

FreqcostQtab[i]= makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

The query cost is weighted by the query frequency indicating the importance of

the associated query.

m.addConstraint(eq(FreqcostQtab[i++],mult(Qc.get(n),fq.get(n))));

}

//The total query cost is computed by summing over the cost of processing each

input query rewritten over the materialized views.

m.addConstraint(eq(sum(FreqcostQtab), totalQueryCost));
Now, we have de�ned the model. The next step is to solve it. For that, we build

the solver. We create an instance of CPSolver() for Constraint Programming Solver.

Then, the solver reads (translates) the model, de�nes the search strategy and solves

the model.
//Build the solver

solver = new CPSolver();

//Read the model

solver.read(m);

//De�ning the value selector which is applied to the materialization variable

(the decision variable)

solver.setValIntSelector(new MaxVal());
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//De�ning the variable selector that choose the decision variables to be instanti-

ated in the order they appear in the variable MV that we have de�ned above.

solver.setVarIntSelector(new StaticVarOrder(solveur.getVar(MV)));

//Solving the model by minimizing the objective variable

solver.minimize(solver.getVar(totalQueryCost));

A.2 Distribted Context

This section gives a general overview on how to create the constraint satisfaction

model that we have designed to the view selection problem in a distributed context by

using the CHOCO API. For simplicity, we have not considered the view maintenance

in the following model.

First of all, we import the CHOCO class to use the API.

import choco.Choco;

Let's create a Model. More precisely, we create an instance of CPModel() for Con-

straint Programming Model.
// Build the model

CPModel m = new CPModel();
Then, we declare the variables of the problem
// Creation of HashMaps of Integer variables

Map<Noeud,IntegerVariable>Matv=new HashMap<Noeud,IntegerVariable>();

Map<Noeud,IntegerVariable> Qclocal=new HashMap<Noeud,IntegerVariable>();

Map<Noeud,IntegerVariable> Qc=new HashMap<Noeud,IntegerVariable>();

for(Node n: G.getNodes()) {

if (n.getType()==node.equivalence || n.getType()==node.source){

//For each variable, we de�ne the type and the boundaries of its domain

IntegerVariable QcNodeL =makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

Qclocal.put(n,QcNodeL);

IntegerVariable QcNode = makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

Qc.put(n,QcNode);

IntegerVariable matNode = makeIntVar(0,1,"cp:decision");

Matv.put(n,matNode);

}

}

We have de�ned the variable using the makeIntVar method which creates a bounded

domain. Now, we are going to state constraints ensuring that a view is answered

from the site that can provide the answer with the lowest cost. They also guarantee
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that the minimum cost path is selected for computing a given view on a given site.
for(Node n: G.getNodes()) {

//Each base relation is stored and its query cost is zero.

if(n.getType() == Node.source) {

m.addConstraint(eq(matv.get(n),1));

m.addConstraint(eq(Qclocal.get(n),0));

m.addConstraint(eq(Qc.get(n),0));

}

else if(n.getType() == Node.equivalence) {

int cpt =0;

for(Node op : n.getChildren()) {

possibilites[cpt]=makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

IntegerVariable[] viewsOp = new IntegerVariable[op.getChildren().size()];

int cpt2 =0;

for(Node v : op.getChildren()) {

viewsOperation[cpt2]=makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

//The query cost includes the local processing cost and the communication

cost.

m.addConstraint(eq(viewsOperation[cpt2++],plus(Qc.get(v),CCost)));

}

//Each minimum cost path includes the cost of executing the operation nodes

on the path and the query cost corresponding to the related bases relations or

views.

m.addConstraint( eq( possibilites[cpt++], sum(cost(op),sum(viewsOp))));

//The query cost corresponding to each given view is the minimum cost

paths from the view to its related base relations or views. The reading cost is

considered if the view has been materialized.

m.addConstraint( ifThenElse(eq(materialized.get(n),1),

eq(size(n),Qclocal.get(n)),

min(possibilites,Qclocal.get(n))));

}

}

//Data can be shipped from another site. With the reference with �gure 5.1,

let us assume that the view P-PS-S is materialized on site s2 and s1 requires this

view to answer to a given query. Hence, P-PS-S can be transferred to the site s1
if the communication cost between these sites is not high.
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int cptSL=0;

for(Node b : n.getBrothers()) {

possSameLevel[cptSL]=makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

//The query cost includes the local processing cost and the communication

cost.

m.addConstraint(eq( possSameLevel[cptSL++], plus(Qclocal.get(b),CCost)));

}

A view is answered from the site that can provide the answer with the lowest

cost.

m.addConstraint(min(possSameLevel,Qc.get(n)));

}
Then, we add the constraint ensuring for each site that the total space occupied by

the materialized views on it is less than its storage space capacity.
//Creation of an array of variables for the space constraint

IntegerVariable[][] sizeViewtab =new IntegerVariable[nbEqNodes][nbSites];

int j=0;

for(Site s: G.getSites()) {

int k=0;

for(Node n: G.getEquivalenceNodes(s)) {

sizeViewtab[j][k]= makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

m.addConstraint(eq(sizeViewtab[j++][k++],mult(matv.get(n),size(n))));

}

//State the space constraint

m.addConstraint(leq(sum(sizeViewtab),Spmax(s))); }

The main objective of our approach is to minimize the total query cost (objective

variable)
//Creation of an array of variables to compute the objective variable

totalQueryCost

IntegerVariable[] FreqcostQtab =new IntegerVariable[nbQ];

int i=0;

for(Node n: G.getRootNodes()) {

FreqcostQtab[i]= makeIntVar(0,Integer.MAX_VALUE,"cp:bound");

The query cost is weighted by the query frequency indicating the importance

of the associated query.

m.addConstraint(eq(FreqcostQtab[i++],mult(Qc.get(n),fq.get(n))));

}
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//The total query cost is computed by summing over the cost of processing each

input query rewritten over the materialized views.

m.addConstraint(eq(sum(FreqcostQtab), totalQueryCost));
Now, we have de�ned the model. The next step is to solve it. For that, we build

the solver. We create an instance of CPSolver() for Constraint Programming Solver.

Then, the solver reads (translates) the model, de�nes the search strategy and solves

the model.
//Build the solver

solver = new CPSolver();

//Read the model

solver.read(m);

//Solving the model by minimizing the objective variable

solver.minimize(solver.getVar(totalQueryCost));
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