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Abstract

This thesis presents a study of selected instrumental and astrophysical sys-

tematics, which may affect the performance of new generation of future

observations of the Cosmic Microwave Background (CMB) polarization. It

elaborates on their impact on the science goals of those observations and dis-

cusses techniques and approaches for their removal. Its focus is on general

issues typical of entire classes of experiments, but also on specific problems

as encountered in the context of a CMB B-mode experiment, polarbear.

The main target of the CMB polarization effort undergoing currently in the

field is a detection of the primordial B-modes anisotropies — a so far unde-

tected signature of the inflationary theories. This would have far-reaching

impact on our understanding of the universe but also fundamental laws of

physics. Understanding, modelling, and ultimately removal of the system-

atics are essential steps in any modern CMB analysis pipeline and their

successful accomplishment, together with a high instrumental sensitivity,

will decide of a final success of the entire effort.

In this thesis I first describe optics of typical CMB experiments and intro-

duce a parametrization of instrumental and cross-polarization effects partic-

ularly convenient for the analysis of their impact. Second, I present a model

describing the atmospheric contamination and use it to provide some insights

about the atmosphere’s role and its impact on performance of ground-based

experiments. I also outline how it could be used further to improve control

of atmospheric effects in the CMB data analysis. Then, I discuss another

source of sky systematics — the polarized astrophysical foregrounds. In this

context I present on the one hand a new approach to forecasting perfor-

mance of the future experiments, which accounts for the presence of the

foregrounds, while on the other I propose a framework for optimizing hard-

ware of such experiments to let them achieve better performance. This part

of thesis stems from a common work with drs. F. Stivoli and R. Stompor.

I finally present one of the leading CMB polarization experiment polar-

bear, in which I have been involved in over the course of my PhD studies.

I describe its current status and performance as well as selected steps of

its data analysis pipeline. In particular, I show methods to estimate some

of the parameters introduced for the systematics modeling from simulated



data. This work has been performed in collaboration with members of the

polarbear team.



Resumé

Cette thèse présente une étude de certains effets systématiques instrumen-

taux et astrophysiques, pouvant affecter les performances des nouvelles et

futures générations d’observations de la polarisation du fond diffus cos-

mologique (CMB). Nous étudions l’impact de ces effets sur les objectifs

scientifiques de ces observations, ainsi que les techniques pour leur élimina-

tion. Ce travail se concentre sur les problèmes généraux que rencontrent les

expériences de manière générale, mais se penche également sur les questions

plus spécifiques soulevées dans le cadre de l’expérience d’observation des

modes-B du CMB, polarbear.

L’objectif principal de l’effort actuel pour l’étude de la polarisation du CMB

est une détection des anisotropies primordiales appelées modes-B — une sig-

nature des théories inflationnaires non détectée à ce jour. Cela aurait un

grand impact sur notre compréhension de l’univers, mais aussi des lois fon-

damentales de la physique. Comprendre, modéliser, et, finalement, éliminer

ces effets systématiques sont des éléments indispensables pour tout pipeline

d’analyse moderne du CMB. Sa réussite, de concert avec une haute sensi-

bilité instrumentale, décidera du succès final des efforts entrepris.

Dans cette thèse je décris tout d’abord l’optique des expériences typiques

d’observation du CMB et propose un paramétrage des polarisations instru-

mentale et croisée. Deuxièmement, je présente un modèle décrivant la con-

tamination atmosphérique et utilise celui-ci afin de donner quelques aperçus

sur le rôle et l’impact de l’atmosphère sur les performances des expériences

au sol. J’indique également comment ces résultats peuvent être utilisés pour

améliorer le contrôle des effets atmosphériques dans l’analyse des données

CMB. Ensuite, je discute d’une autre source d’effets systématiques venant

du ciel — les avants-plans astrophysiques polarisés. Dans ce contexte, je

présente d’une part une nouvelle approche pour prédire les performances des

futures expériences prenant en compte la présence des avant-plans, et d’autre

part je propose un cadre pour l’optimisation des expériences afin qu’elles

puissent atteindre de meilleures performances. Cette partie de la thèse est

issue d’un travail commun avec F. Stivoli et R. Stompor. Je présente enfin

une expérience phare pour l’observation de la polarisation du CMB, polar-

bear, dans laquelle j’ai été impliqué au cours de mes études doctorales. Je

décris le statut actuel et les performances de l’instrument ainsi que quelques

étapes de son pipeline d’analyse des données. En particulier, je montre des



méthodes d’estimation de certains des paramètres introduits pour la mod-

élisation d’effets systématiques, à partir de données simulées. Ce travail a

été réalisé en collaboration avec les membres de l’équipe polarbear.
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Observational cosmology aims at understanding the history of the universe, its dy-

namics and evolution on the grounds of observational data. Among other approaches,

the observation of the Cosmic Microwave Background (CMB) polarization provides a

unique window onto the physics of the very early universe and an exceptional probe of

the laws governing at the highest energies.

However, observing the CMB is a very challenging task and history shows that it

has been possible thanks to a tremendous collaboration between theorists, experimen-

talists, data analysts at the junction between particle physics and astrophysics. After

major discoveries, the adventure still continues nowadays as cosmological community

faces many new challenges and the aims posed for the CMB research are continuously

renewed. Among others, observational goals for the next years include the detection

of primordial inflationary B-modes, primordial non-gaussianity, dark matter particles,

signatures of modified gravity and the characterization of dark energy.

Theoretical challenges – In addition to the research on models about, for instance,

the dark sector, and the trials to predict observables from high energy physics such as

quantum gravity, theorists intensively study scenarios for inflation. Their research is

based on either phenomenology or specific models (e.g. string theory) and especially

aims at predicting levels for e.g. primordial gravitational waves or non-gaussianity.

The constructed models are subsequently used to interpret the noisy data produced

by observational experiments. Some current problems are related to the mechanisms

generating inflation and their potential observational signatures.

Experimental challenges – New CMB polarization experiments need a very high

sensitivity and strong control of systematic effects. Current problems are usually re-

lated to the production of large planar arrays, made of e.g. multichroic detectors.

Furthermore, optimization of cryogenics systems as well as the improvements of the

readout network are essential steps for future instruments. To reduce or control sys-

tematics at the experimental level, researchers look in particular for techniques in order

to modulate the incoming polarization and attenuate potential polarized contaminants.

However, those goals imply real challenges: for instance, developing mechanisms which

could work for long periods of time, at very low temperature, is very difficult.

Data analysis challenges – The required improvements at the experimental level

as well as new predictions from theories solicits new projects and approaches in the data

analysts community. In particular, the main question is how to deal with huge data

sets and be able to optimally extract reliable cosmological information in a reasonable

time scale and to take into account systematic effects? In this thesis I define systematic

effects as both instrumental (e.g. imperfect optics) and sky systematics (astrophysical



foregrounds, atmosphere, etc.): for instance, how to optimize and be as efficient as

possible for the separation of sky components, i.e. the disentanglement of CMB from

other astrophysical sources? Lastly, how to efficiently filter atmospheric contamination

or estimate instrumental systematic effects in order to optimally extract scientific in-

formations encoded in the observational data?

The research projects described in this thesis have been motivated by the data

analysis challenges of the current (e.g. polarbear) and future CMB experiments

(polarbear-ii and nearly full-sky satellite experiment such as COrE or CMBpol).

Their unifying theme can be formulated as: how to describe and control systematic

effects at the data analysis level in a statistical robust way?

This thesis is organized as follows. In Part I, after a brief introduction of the con-

cept of standard cosmology, I present the theory of inflation, the ultimate aim of this

research. I also describe the observable signatures of the very early universe physics

encoded in the CMB anisotropies, which are unique means to reach our science goal.

Part II is a transition between the introduction and the presentation of my PhD work: I

present the interest we have in observing the B-modes polarization anisotropies, what is

the status of CMB polarization observation and how my projects are located in compar-

ison to the contemporary challenges experimentalists and data analysts have to face.

Part III introduces important sky and instrumental systematic effects potentially af-

fecting new generation CMB polarization experiments. Part IV summarizes the work I

have performed in collaboration with drs. F. Stivoli and R. Stompor about focal plane

optimization for future nearly full-sky CMB experiments, in the presence of astrophys-

ical foregrounds. Finally, in Part V, I present the CMB polarization instrument called

polarbear, mounted on the Huan Tran Telescope at Chajnantor plateau, 5200 m,

Chile, which has begun its observations in January 2012. Then I introduce some of the

algorithms and analysis I have developed and/or tested as a member of the international

polarbear collaboration.



Part I

Introduction to inflation and its

observables
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At large scales, our universe can be seen as an expanding homogeneous and isotropic

medium. This simple description, combined with some thermal assumptions, allows us

to describe, at first order, the physics of the primordial plasma and the creation of

the different contents (light nuclei, radiation, etc.) of the universe. Especially, it pre-

dicts the existence of a background radiation, called the Cosmic Microwave Background

(CMB) which is a gold mine for observational cosmologists. The standard cosmological

model has serious limitations though, which can be solved by introducing an inflation-

ary period occurring during the very early period of the universe. This mechanism,

called inflation, has specific observational side effects, in particular the CMB B-modes

anisotropies in polarization which detection is one of the most exciting goal for the new

generation CMB experiments.

This first Part sets the background for the future discussion describing the standard

cosmology, inflation, and its observational signatures onto the CMB. Chapter 1 presents

the hot big bang model, which provides the framework within which most of the cosmo-

logical observations can be explained today. In chapter 2 I review the motivations for

the inflation and briefly explain its dynamics and observational consequences. Finally,

in chapter 3, I describe and analyze the signatures in the Cosmic Microwave Background

radiation due to initial perturbations, emphasizing the existence of linearly polarized

signals.
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Chapter 1

The homogeneous universe

A spectacular development of our understanding of the universe happened during the

twentieth century. This progress has only been possible thanks to achievements both

in theory and experimentation, closely related to the development of new technologies.

In 1925, Edwin Hubble made an amazing discovery while using the most powerful

telescope at the time at Mount Wilson: distant galaxies were isotropically receding away

from us with speeds that only depended on the distance between them and us, see Hub-

ble (67), Lemaître (82). Those observations, followed by others, had really strong theo-

retical implications and gave an observational evidence that our universe was expanding.

In particular, the homogeneous and isotropic cosmic expansion could be extrapolated

back in time, such that the observable universe was once hotter and denser, an initial

state from which the present cold and rarefied universe emerged through a spectacular

expansion. Theorists of the time, and in the next decades, used the then-new concepts

of general relativity (GR) and particle physics to reproduce how the universe looked

like during its first stages, predicting that this hot and young universe could be seen

today as a highly homogeneous space-time filled with a blackbody radiation reaching us

from all directions of the sky, in the microwave frequencies region, radiation which was

eventually called the Cosmic Microwave Background (CMB). This prediction, made by

R. Alpher, R. Herman and G. Gamow in the 1940s, remained a theoretical conjecture

among many others, impossible to be verified until 40 years after Hubble’s discovery,

when A. A. Penzias and R. W. Wilson measured an excess of the sky temperature com-

ing from all directions while testing their antenna working at 4.080 GHz, see Penzias and

Wilson (105). Since then we had to wait another 30 years until a precise measurement

of the CMB was achieved by the space mission COBE, and its absolute spectrometer

FIRAS, which unambiguously showed that the CMB had a blackbody spectrum with a

brightness temperature of 2.725± 0.002 K, see Fixsen et al. (48), Mather et al. (89).
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1. THE HOMOGENEOUS UNIVERSE

Until the mid 1990s, the accepted view was that we live in an expanding universe

in which gravitational forces dominate at large scales, mainly due to the non-baryonic

dark matter, and the discussion was centered on whether there was enough matter

to stop this expansion and eventually re-collapse it (the famous Big Crunch), or if

the universe was going to grow forever. But this idea started changing upon better

experimental constraints on the cosmological parameters, suggesting that another sort

of energy dominates the universe at large scales, opposing gravity with an expansive

effect. Extending Hubble’s observation to much larger distances by using new techniques

from the study of type Ia supernova events, and the use of bigger and more powerful

telescopes, the High-z Supernova Search Team in 1998 (Riess et al. (113)), and the

Supernova Cosmology Project in 1999 (Perlmutter et al. (107)) showed that the universe

has been actually undergoing a recent accelerated expansion. This implied the existence

of a new form of energy, often called "dark energy", or was due to a property of the

vacuum itself, or a consequence of the modification of the gravity (see for instance

Nojiri and Odintsov (101)), etc. It did not imply a fundamental flaw in the theoretical

models accepted at the time. For instance, the observed effect is a simple consequence of

general relativity when provided with a "cosmological constant" term, or for any scalar

field model with an equation of state parameter less than −1/3 (equivalent to a negative

pressure). Nowadays, one of our main scientific challenges is to explain the nature of this

energy, why it constitutes nearly 72 % of the energy content of the universe. In addition,

researchers try to understand why the acceleration of the expansion is happening now

– this is what we call the coincidence problem.

We know that the universe is inhomogeneous today, and we expect some small per-

turbations at earlier times, visible on the CMB. The modeling of the initial conditions

predicts the presence of tiny temperature fluctuations in angular space, of only one part

in 105 of the average temperature. These fluctuations can be indeed derived from the

fundamental properties of the early universe in some models, e.g. inflation, and contain

valuable information about it. The first successful attempt to measure these fluctua-

tions was done by COBE and its differential radiometer DMR, which measured the CMB

dipole (produced by the relative motion of the Earth with respect to the rest frame of

the CMB) and CMB fluctuations on a ∼ 7 deg scale and down to a level of ∼ 30µK. The

precise measurement came from another satellite based on differential radiometer, the

Wilkinson Microwave Anisotropy Probe (WMAP), which measured these anisotropies

on a ∼ 0.5 deg scale, probing the available theory with unprecedented precision, and

allowing the estimation of fundamental cosmological parameters like the energy content

of the universe (Gold et al. (54)). COBE and WMAP, with dozens of other smaller

experiments, opened a whole new field in observational cosmology: understanding the

fundamental properties of our universe thanks to the CMB.
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1.1 Cosmological principles and cosmography

Figure 1.1: Scheme illustrating the different geometry of the universe: flat (K = 0), close (K < 0) or
open (K < 0). Red lines are freely moving particles, with initially parallel directions at the beginning.

Throughout this thesis, if not specified, I adopt the convention c = ~ = kB = 1.

1.1 Cosmological principles and cosmography

The fundamental principle in cosmology is the assumption that the universe is, at least

on large scale, homogeneous and isotropic. This idea was born at the beginning of the

twentieth century: it was originally a concept motivated rather by philosophical con-

siderations than observational reasons.

First of all, let us introduce the metric for our homogeneous and isotropic universe.

Just after the birth of GR, A. Einstein was one of the first physicists to attempt to build a

metric which could describe the entire universe. The starting idea was that the universe

was homogeneous, isotropic and immutable with time. As I mentioned before, the

abandonment of this latter hypothesis was primarily due to the discovery by E. Hubble

of the galaxies movement of recession. However, it is only after 1965, when A. A. Penzias

and R. W. Wilson discovered and characterized the Cosmic Microwave Background

(CMB), that the Hot Big Bang model (the fact that the universe has experienced a hot

phase in the past) won against the idea of an immutable universe, as described by the

steady state model. We have today strong evidences for the homogeneity and isotropy,

even if, for a long time, local observations of stars and galaxies were showing important

inhomogeneities. As mentioned before, the strongest proof of isotropy nowadays is the

CMB even if, as we will see in details in chapter 3, this latter has anisotropies at the

10−5 level.

In the GR frame, homogeneity and isotropy determine the general expression of the

metric, encapsulated in the tensor gµν , e.g. Weinberg (146). This latter corresponds to
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1. THE HOMOGENEOUS UNIVERSE

Figure 1.2: Scheme illustrating the expansion of the universe. Red spots could be seen as distant
galaxies: through time, the comoving distances (difference between coordinates) do not vary but physical
distances increase.

the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric defined as

ds2 ≡ gµνdx
µdxν (1.1)

≡ −dt2 + a(t)2
[

dr2

1−Kr2
+ r2dθ2 + r2 sin2(θ)dφ2

]

(1.2)

where K is a parameter describing the spatial geometry of the universe: if K = 0, the

spatial part of the metric is flat — if K 6= 0, curvature is not null. Consequently, uni-

verse can be either flat, open or close. As illustrated in Fig. 1.1, a spatially flat universe

corresponds to an Euclidean geometry. Above (or below) a critical value for the total

energy density ρtot (∼ 10−29 g.cm−3), the universe is close (or open). These two last

spatial geometries have positive and negative curvature respectively.

Secondly, we have strong evidence that the universe is expanding. This results in

a continuous increase of the "physical" distance between us and distant galaxies since

early times. In order to describe this dynamics, I introduce the so-called scale factor a,

whose present value, a0, is by convention set to 1 when K = 0, cf. Eq. (1.2). At earlier

times, because of the expansion, a was smaller than today. Fig. 1.2 illustrates this

expansion: notice that red dots, for instance distant galaxies, are moving with the grid

– their comoving coordinates do not change. Therefore the difference between coordi-

nates, called the comoving distance between two galaxies, remains constant with time.

However, the physical distance is proportional to the scale factor, and consequently

evolves with time. A way of quantifying the variation of the scale factor through the

14



1.1 Cosmological principles and cosmography

time (and also its relation with the energy contents of the universe) is to use the Hubble

rate defined as

H(t) ≡ ȧ

a
, (1.3)

which gives a measure of how rapidly the scale factor a changes. Throughout this thesis,

I will use ẋ to denote the derivative of x with respect to the time t. Let us imagine that

a photon travels from (r1, t1) and reaches us today (0, t0). In this case, Eq. (1.2) reads

ds2 = 0 which defines a geodesic, i.e. the path followed by (1.4)

a massless particle without interaction

= dt2 − a(t)2
[

dr2

1−Kr2

]

(1.5)

Therefore we can write

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1−Kr2

. (1.6)

If the starting point (r1, t1) is supposed to be at rest (ṙ1 = 0), then two events separated

by a time ∆t1 at the starting time will be separated by a time interval ∆t0 at the

reception, such as

∆t0
a(t0)

=
∆t1
a(t1)

. (1.7)

This implies that, specifically, electromagnetics wavelengths λ1 and λ0 verify

λ0
λ1

=
a(t0)

a(t1)
. (1.8)

As a consequence of Eq. (1.8), the expansion of the universe translates into a shift

toward red wavelengths — this corresponds to what we call a redshift z, defined as

1 + z ≡ a(t0)

a(t1)
. (1.9)

Assuming a cosmology (a set of cosmological parameters, see e.g. section 3.4), z is finally

a way of measuring distances. It is important to understand that the proportionality

relation between distance and velocity is only true in the local universe: as soon as

z >∼ 1, we have to be careful with which distance definition we use (angular, luminous,

parallax, etc.).
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1. THE HOMOGENEOUS UNIVERSE

1.2 Evolution of the scaling factor a

To understand the history of the universe, we must determine the evolution of the scale

factor a with the cosmic time t. GR provides the connection between this evolution and

the energy, i.e. the contents, of the universe. Einstein equations reads (Einstein (37))

Gµν = 8πGTµν + Λgµν , (1.10)

where we set Gµν ≡ Rµν − 1
2gµνR, corresponding to the geometrical part including the

metric tensor gµν and the r.h.s. of Eq. (1.10) corresponds to the energy contents of the

cosmos. Isotropy of a perfect cosmic fluid implies that the energy-momentum tensor,

Tµν , reads

Tµν ≡









ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









(1.11)

where ρ is the energy density of the cosmic fluid and p its pressure. Of course, this

solution is a simplified modeling of the universe and we could consider perturbations to

this tensor as explained in the next chapter. From the energy-momentum conservation

laws (covariant derivative of Tµν is equal to 0), we have

a3
∂p

∂t
=

∂

∂t

[

a3 (ρ+ p)
]

(1.12)

⇒ ∂

∂t

(

ρa3
)

= −3pa3 (1.13)

To simplify, it is common to assume the following equation of state, parametrized by a

constant w,

p ≡ wρ, (1.14)

which relates the local pressure p to the energy density ρ. This assumption is true for

each component (radiation, matter, etc.) but is not true for the total fluid. However,

each component dominate the total energy at different period of the cosmic history. For

instance, when ultra-relativistic particles dominate the universe, w = 1/3, and when

matter dominates, w = 0 (dust without pressure). Energy conservation applied to each

fluid leads to the density evolution of each of those,

ργ ∝ a−4 for radiation (1.15)

ρm ∝ a−3 for matter (1.16)

ρΛ ∝ constant for the cosmological constant Λ. (1.17)
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Figure 1.3: Left panel: energy density ρ as a function of the scale factor a. Different constituents of
the universe dominates at different time of the history: radiation, non-relativistic matter and a potential
cosmological constant. Right panel: behavior of the scale factor a as a function of the cosmic time t,
in the frame of the ΛCDM model.

Furthermore, under the assumptions of homogeneity and isotropy, Eq. (1.10) leads to

the equations of the evolution of a, the so-called Friedman equations:

3
ä

a
= −4πGρ(1 + 3w) + Λ (1.18)

(

ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ

3
. (1.19)

If K = 0 and Λ = 0, solution of Eqs. 1.18 and 1.19 are of the form, cf. Fig. 1.3:

a ∝ t2/3 for the matter dominated period for which ȧ ∝ 1

a
(1.20)

a ∝ t1/2 for the radiation dominated period for which ȧ ∝ 1

a2
. (1.21)

Let us have a look at Eq. (1.19): if we assume that a increases with time, we can note

that the terms in ρ, K and Λ dominate successively the r.h.s.. At early times, universe is

dominated by radiation energy, and we saw that a ∝ t1/2. Later, nonrelativistic matter

dominates and this implies that a ∝ t2/3. One way to explore the energy content of the

universe is to measure changes in the scale factor (thanks to, for instance, Supernovae

observation, which measures the deceleration ∝ ä). As a result of such research, we now

believe that the scale factor a has stopped growing as t2/3, which can be interpreted

as the existence of a new form of energy starting dominating, of unknown fundamental

nature at the time of writing this thesis — the so-called dark energy.

For definiteness, we set the following quantities:

Ωi ≡
ρi
ρc

(1.22)
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1. THE HOMOGENEOUS UNIVERSE

where i is a component of the universe and ρc is the critical energy density defined as

ρc ≡ 3H2
0

8πG
and (1.23)

ΩΛ ≡ Λ

3H2
0

(1.24)

Therefore, Eq. (1.19) gives Ω + ΩΛ = 1 + K/ȧ2. If K ∼ 0, as suggested by the most

recent observations, Ωtot ≡ Ω+ ΩΛ should be equal to 1.

1.3 Thermal history of the universe

The universe, dominated by CMB photons, is considered to be adiabatically expanding,

with microphysical interactions rate being much more quicker than the typical expansion

rate. We then usually associate the CMB temperature to the cosmic fluid, i.e.

T (t) = T (z) = T (a). (1.25)

The interested reader will refer to e.g. Kolb and Turner (73) or Mukhanov (94) for more

detailed informations.

1.3.1 Overview

The temperature of the cosmic radiation decreases as the universe expands. It is un-

ambiguously related to the redshift,

T (z) = T0 × (1 + z), (1.26)

and can be used as an alternative to the cosmic time t to parameterize the history of

the universe. To obtain an estimate for the temperature expressed in MeV, at the time

t measured in seconds, we can use the fact that

T (t) ∝ 1√
t

(1.27)

which is valid during the radiation-dominated epoch. Below we briefly summarize the

sequence of the main events constituting the history of our universe, in chronological

order, as illustrated in Fig. 1.4:

• around 10−43 sec (∼ 1019 GeV) — near the Planckian scale, quantum gravity dom-

inates and GR is not valid. We expected that all the problems raising at these huge

energies will find answers in a still unknown non-perturbative string/quantum

gravity theory, e.g. Vey (143).
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1. THE HOMOGENEOUS UNIVERSE

• 10−43 → 10−14 sec (1019 GeV → 10 TeV) — because this energy range will

probably not be reached by accelerators in the near future, constraints on this

period give unique information about fundamental physics. In addition, even if

GR is considered to be valid at these energies, uncertainties remains about the

nature of the basic elements composing the cosmic fluid at those times. Among

other things, we expect baryon asymmetry, not explained by the standard model,

to occur at the highest energies of this range. Besides, supersymmetry theory

proposes the existence of all the super-particles in this period (including weakly

interacting and massive particles, candidates for dark matter, still being hunted

by the Large Hadron Collider (LHC)). As illustrated in Fig. 1.4, there are good

reasons that a unification (GUT) of the electroweak and strong interactions took

place around ∼ 1016 GeV. Cosmic strings, monopoles and other topological de-

fects are also created during this period. Independently from any particle physics,

as we will see in the next chapter, it is also the period of an inflationary phase of

expansion, where the scale factor verify a(t) ∼ exp(Ht). This stage has important

observational consequences, such as imprints in the CMB fluctuations or in the

large structures formation and is expected to solve many fundamental problems

such as the horizon problem, the flatness of the universe spatial geometry, etc.,

see chapter 2.

• 10−14 → 10−10 sec (100 TeV → 10 GeV) — LHC is able to probe energies

within this range. The standard model of particle physics starts being valid. At

temperatures above ∼ 100 GeV, the electroweak symmetry is restored and the

gauge bosons are massless.

• 10−5 sec (T ∼ 200 MeV) — the quark-gluon transition takes place, which means

that free quarks and gluons become confined within baryons and mesons. The

physics of the quark-gluon transition is not yet completely understood, and is

currently studied by several experiments such as the LHC-project ALICE.

• 0.2 sec (T ∼ 1 − 2 MeV) — primordial neutrinos decouple from the other par-

ticles and propagate without further scatterings. Second, the ratio of neutrons

to protons "freezes out" because the interactions that keep neutrons and protons

in chemical equilibrium become inefficient. Subsequently, the number of the left

neutrons determines the abundances of the primordial elements.

• 1 sec (T ∼ 0.5 MeV) — electron-positron pairs present in the very early universe

begin to annihilate when the temperature becomes lower than their rest mass.

Only a small excess of electrons over positrons, roughly one per billion photons,

are left after annihilation. The photons produced by this process are in thermal

equilibrium. The universe enters in the radiation-dominated era.
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1.3 Thermal history of the universe

• 200 − 300 sec (T ∼ 0.05 MeV) — nuclear formation starts at this energy. As a

result, free protons and neutrons form helium and other light nuclei. The abun-

dances of the light elements resulting from primordial nucleosynthesis are in very

good agreement with available observational data and consists in one of the main

observational pillar of the hot big bang theory.

• 1011 sec (T ∼ 1 eV) — this corresponds to the time of matter-radiation equality,

separating the radiation-dominated epoch from the matter-dominated one, cf. aeq

in Fig. 1.3.

• 1012 → 1013 sec (T ∼ 0.5 eV) — free electrons and protons combine and form

the lightest atom: neutral hydrogen. This phenomenon is called recombination.

The universe becomes transparent to photons —radiation emitted at this time

defines the CMB. Its temperature fluctuations, induced by the small inhomoge-

neous matter distribution at recombination, see chapter 3, give us unique and

direct information about the state of the universe at the last scattering surface.

• 1016 → 1017 sec (T ∼ 5 meV) — galaxies and clusters of galaxies starts to form

as a result of gravitational instability. Structure formation can be well described

using Newtonian gravity but remains a very complicated nonlinear problem, which

can only be solved numerically, e.g. Bernardeau et al. (11). Of course, one of the

main unresolved fundamental issues regarding this formation process is the nature

of dark matter and dark energy.

1.3.2 Boltzmann equation in an expanding universe

Even if I implicitly assumed in Eq. (1.25) that thermal equilibrium is a good approxi-

mation to describe the universe — today its temperature is TCMB
0 ∼ 2.725 K — there

have been important departures from thermal equilibrium such as neutrino and photon

decouplings, Big Bang Nucleosynthesis (BBN), baryogenesis, inflation, etc. These de-

viations from equilibrium have led to some relics such as light elements (H, He, ...), a

neutrino and radiation backgrounds, etc.

Once a particle species ψ decouples from the primordial plasma, its number density

goes like nψ ∝ 1/a3 and its momentum pψ ∝ 1/a. The criterion for particles to decouple

is the comparison of their interaction rate (per particle) Γ with the typical expansion

rate of the universe, parametrized by the Hubble constant H. If Γ >∼ H, species remains

coupled with the plasma. On the contrary, if Γ <∼ H, species decouple. Physically, this

means that if the mean free path ∼ 1/Γ becomes bigger than the length c/H, particles

cannot interact anymore.
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1. THE HOMOGENEOUS UNIVERSE

To properly treat the decoupling process, we should look into the energy and density

distribution of each of the particles species, thanks to the Boltzmann equation

L[f ] = C[f ], (1.28)

where L is the Liouville operator given by

L ≡ pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (1.29)

in which expression f is the phase space density and C is the collision operator. In the

case of the isotropic and homogeneous FLRW universe, f = f(|p| , t) = f(E, t), and

then L[f ] reads

L = E
∂f

∂t
−H |p|2 ∂f

∂E
, (1.30)

with H ≡ ȧ/a is the Hubble parameter, cf. Eq. 1.3. Therefore, Eq. (1.28) gives

ṅ+ 3Hn =
g

(2π)3

∫

C[f ]
dp

E
, (1.31)

where n is the density number defined as n(t) =
(

g/(2π)3
) ∫

dpf(E, t) and g counts

for internal degrees of freedom. The second factor on the l.h.s. accounts for the dilu-

tion effect due to the expansion of the universe and the r.h.s. term accounts for the

interactions that change the number of particles.

Now I present some specific applications of this formalism.

1.3.3 Freeze-out

In this section, I describe the relic abundance today, after their decoupling, i.e.

Γ <∼ H. (1.32)

Let us consider the interaction

a + b ↔ c + d (1.33)

Using Eq. (1.31), it can be shown that

ṅa + 3Hna = −nanb〈σab→cdvab〉+ ncnd〈σcd→abvcd〉 (1.34)

and equivalent equations for b, c and d. σX denotes the cross-section of the process X.

At thermal equilibrium, we have

neqa n
eq
b 〈σab→cdvab〉TE = neqc n

eq
d 〈σcd→abvcd〉TE (1.35)
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1.3 Thermal history of the universe

We make the approximation that 〈σv〉 ∼ 〈σv〉TE when we are close to the equilibrium,

so that Eq. (1.34) reads

ṅa + 3Hna = −〈σab→cdvab〉TE
[

nanb − neqa n
eq
b

]

+ 〈σcd→abvcd〉TE
[

ncnd − neqc n
eq
d

]

.(1.36)

When decoupling occurs, let us assume that c and d stays at equilibrium and that

na ∼ nb (as it is the case for e.g. particles and antiparticles when µ/T ≪ 1). It can be

shown that

d
[

log(a3na)
]

d [log(a3)]
= − Γ

H

(

1−
(

neqa
na

)2
)

, (1.37)

where a3na corresponds to the number of particles in a comoving volume. Because of

the fact that T ∝ 1/a, cf. Eq. (1.26), and thanks to statistical distribution equations,

we can write

neq ∝ T 3 ∝ 1

a3
if particles are relativistic (1.38)

neq ∝ T 3
(m

T

)3/2
e(m−µ)/T if particles are non− relativistic (1.39)

If particles are relativistic, Eq. (1.37) is satisfied at the thermal equilibrium for any

value of Γ/H. On the contrary, if particles are non-relativistic, Eq. (1.37) is only true

for Γ/H ≫ 1.

1.3.4 Recombination

With the universe expanding, particles interact progressively less, which is especially

relevant in the case of photons, electrons and protons. One can imagine that below a

given energy, corresponding roughly to the 13.6 eV of the binding energy of an elec-

tron around a proton, photons would stop interacting with matter. As mentioned in

paragraph 1.3.1, at this particular moment of the universe history, the plasma becomes

transparent and light can freely travel through space-time.

After nucleosynthesis, the universe is composed of protons p, helium nuclei 4
2He,

photons γ, electrons e−, decoupled neutrinos ν, some light nuclei like D, Li, etc., po-

tentially dark matter particles, etc. Because of the efficiency of their interactions, we

only consider here the presence of p, e− and γ. Those latter are in equilibrium through

Compton scattering, such as

γ + e− ↔ γ + e− (1.40)

γ + p ↔ γ + p. (1.41)

As soon as the temperature T ∼ eV, electrons can combine with protons and start

forming the first H atoms

p+ e− ↔ H + γ, (1.42)
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1. THE HOMOGENEOUS UNIVERSE

and this is what we call the recombination. Furthermore, the process

γ +H ↔ γ +H (1.43)

is not efficient enough and photons escape the plasma: this is what we call the decou-

pling. If the process (1.42) is in equilibrium, i.e. Γ >∼ H, then the electrons density is

given by the Saha equation

1− xe
xe

= nγ

(

me T

2π

)−3/2

eEB/T (1.44)

where

xe ≡ ne−

nb
=
np
nb

≡ np
np + nH

, nb being the baryonic number (1.45)

EB = 13.6 eV, corresponds to the binding energy of H (1.46)

We can then write Eq. (1.44) as

1− xe
xe

= xenb

(

meT

2π

)−3/2

eEB/T (1.47)

where nb can be measured1 and leads to

1− xe
x2e

≈ 3.84η

(

T

me

)3/2

eEB/T (1.48)

with η ≡ Nb/Nγ , as measured today. Solving Eq. (1.48) for a 50% yield leads to a

temperature of roughly

Tdec ∼ 4000K ∼ 0.5 eV. (1.49)

One should notice that Tdec < EB = 13.6 eV, and this is due to the fact that the

density of photons is so important at this early stage of the universe, that a population

of photons at the tail of the energy distribution is large enough to keep the primordial

plasma ionized. The average energy is therefore around 0.5 eV but the distribution of

photons still permits the ionization of the first hydrogen nuclei.

Moreover, because T = T0(1 + z), cf. Eq. (1.26), we can estimate that the photons

decoupling corresponds to a redshift of

zdec ∼ 1100. (1.50)

1The primordial ratio of deuterium to hydrogen nuclei ≡ D/H, both created during the BBN,
provides a measure of the cosmological density of baryons, nb. Measurements of the D/H ratio in the
interstellar medium of our Galaxy provides a lower limit on the primordial ratio, because processing of
gas by stars reduces the abundance of D relative to H. In addition, absorption of radiation from distant
quasars by intervening clouds of gas offers a way of probing D/H ratios at large redshifts, where the
effects of stellar processing are assumed to be negligible.
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Chapter 2

Toward the initial conditions

2.1 Some limits of the Standard Model

Standard cosmology (without inflation, radiation being dominant at the beginning, fol-

lowed by a matter-dominated period) is a very good framework for interpreting many

observations. However, in the 1980s, some observational results did not have explana-

tions in this approach. Some of these classical problems are listed below:

• Horizon problem – in the framework of the standard cosmology, we can derived

the comoving radius of the horizon defined as

rH =

∫ t

0

c dt

a(t)
(2.1)

where c is the speed of light and a(t) is the scale factor parametrizing the expansion

of the universe, introduced in section 1.1. This horizon is also called the particle

horizon, and corresponds to the maximum distance a particle can travel since the

beginning of the universe, after a time t. The horizon, at the decoupling1, was

only about 100 Mpc, which corresponds nowadays to a ∼ 1 deg angular distance

on the sky. However, we observe, as a first approximation, that the CMB is almost

perfectly isotropic. How can several different regions across the sky could share

the same properties if they were causally disconnected at the recombination?

• Flatness problem – recent observations show that Ωtot ∼ 1. However, it can

be proved that this condition corresponds to an unstable solution for the universe

and would have required an extremely fine tuning in the past. For example, at

the Planck time, this is equivalent to a deviation of only 10−60 from Ωtot = 1.

1As introduced in section 1.3, decoupling is defined as the moment during recombination when the
interaction rate between photons and matter became lower than the expansion of the universe. At
that moment, radiation nearly stopped interacting with charged matter and decoupled, producing the
CMB.
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Figure 2.1: Scheme illustrating the horizon problem. The region inside the cone in blue is causally
connected to us (it is our light cone). However, photons emitted from the Last Surface Scattering reach
us today, started outside the blue region (e.g. dots limited region) and have temperatures that are
almost identical. How is that possible?

This fine tuning requires a very precise mechanism which is not explained in the

standard cosmology.

• Monopoles problem – in the context of unified gauge theories, many very

massive stable particles must have been created during phase transitions which

happened at early times of the universe — and could contribute in a significant way

to the energy density nowadays i.e. ΩX ≫ 1. The case of monopoles is the best

known. In addition, particles with high masses have cross sections of annihilation

even smaller. The "old" cosmology could not explain the non observation of such

particles.

• Origins of structures – the universe is only statistically homogeneous on large

scales (∼ 100 Mpc). It is generally assumed that galaxies and galaxy clusters

are formed by gravitational instability from initial perturbations. Inflation is, as

explained below, a mechanism which could explain the origin to those fluctuations.

2.2 Mechanism for the inflation

This section describes the mechanism of inflationary models which has been proposed

to solve the previous observational problems, see Guth (57).

2.2.1 Equation of state for the inflation

Inflation consider the possibility for a very particular equation of state in the first

moments after the Big Bang. To solve the problem of the horizon and to allow for
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causal contact between two points of the sky that are a priori causally disconnected, we

must imagine a universe that could grow faster than the light i.e. such that the scale

factor a(t) satisfies a(t ∼ 0) ∼ tα with α > 1. The basic idea is to "decouple" the causal

size rH from the Hubble radius1, so that the physical size of the horizon in the standard

radiation-dominated era is much larger than the Hubble radius. Such a situation can

occur if the comoving Hubble radius decreases sufficiently in the very early universe,

which implies

ä > 0, (2.2)

corresponding to a phase of acceleration. Assuming this specific dynamics, the Friedman

equations, Eqs. 1.18 and 1.19, give the following condition on the equation of state

p < −ρ
3
. (2.3)

This criterion may allow us to solve the flatness problem. Considering again Friedman

equations leads to

ȧ2 =
8πGρa2

3
−K, (2.4)

where K is the curvature coefficient involved in the expression of the metric. Since

inflation is a process in which the quantity ρa2 increases dramatically, we can reasonably

neglect the curvature term in K — at least if inflation lasts long enough, as explained

in the next paragraph.

2.2.2 De Sitter space and inflation

As previously mentioned, inflation needs an equation of state with a negative pressure,

and the first idea is a vacuum energy satisfying

p = −ρ. (2.5)

This equation of state is also satisfied in the case of a universe dominated by a cosmo-

logical constant, cf. the Λ terms in Eqs. 1.18 and 1.18. In this case, Friedman equations

have three solutions depending on the geometry of the universe:

a(t) ∝ sinh(H̄t) if K = −1 (2.6)

∝ exp(H̄t) if K = 0 (2.7)

∝ cosh(H̄t) if K = −1 (2.8)

1It corresponds to the distance beyond which objects recede from a given observer, because of the
expansion of the universe, at a rate greater than the speed of light. The comoving Hubble radius at a
time t is given by dH(t) = c/H(t).
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with H̄ ≡
√

Λ/3 =
√

8πGρΛ/3, cf. Eq. (1.24). All solutions tend towards the behavior

of the exponential (K = 0), which corresponds to the de Sitter space. This latter is

the maximally symmetric, vacuum solution of Einstein equations with a cosmological

constant Λ verifying p = −ρ. H̄ is not the usual Hubble parameter H, but it becomes

so asymptotically. Moreover, the density parameter Ωtot tends to 1 when H̄ goes to H.

If we assume that the universe is not fine tuned initially, then, for an expansion by a

factor eNe , we can show that

Ωtot − 1 ∼ e−2Ne . (2.9)

This may solve the problem of flatness, at least if eNe is sufficiently large. If we want

Ωtot − 1 ∼ 0 today, it is necessary that, at the GUT time1, we have |Ωtot − 1| ≤ 10−52

and therefore the number Ne, introduced in Eq. (2.9) and named number of e-foldings2,

satisfies

Ne ≥ 60. (2.11)

It will be shown later that this is also the requirement to solve the problem of horizon.

Thus, we have demonstrated an important prediction of inflation: the universe becomes

spatially flat i.e. K = 0.

2.2.3 Reheating

A difficulty remains in this theory: how does the transition take place from an universe

which has an equation of state with negative pressure to a universe with a "standard"

equation of state? In other words, how did the universe switch from inflation to the

standard Hot Big Bang model? We have seen in the previous chapter that Guth’s

invention in 1981 had to wait for some developments in quantum field theory to find the

mechanisms for an adequate phase transition. This is what we see briefly in section 2.3.3.

If we consider a field with a temperature T , then the energy density is ∼ T 4 in the form

of a vacuum energy. Naively, a phase transition setting the vacuum energy to zero will

transfer, if it is instantaneous (this is not exactly the case in all the models), a latent

heat with an energy ∼ T 4 giving birth to matter and radiation. The universe is then

reheated: it goes back to a state with the initial temperature T and with the expected

1As mentioned in the previous chapter, the Grand Unified Theory (GUT) is the model in which
at very high-energy, the three gauge interactions of the Standard Model — the electromagnetic, weak,
and strong interactions — are merged into one single interaction characterized by one larger gauge
symmetry and thus one unified coupling constant.

2The number of e-folding is simply defined by

Ne ≡ log

[

a(tf )

a(ti)

]

, (2.10)

where ti and tf are two given times, and therefore Ne has sense in a given period of time, here
∆t ≡ tf − ti.
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2.3 Inflationary fields dynamics

Figure 2.2: Evolution of the scale factor (x-axis) as a function of time (y-axis) in the case of a simple
inflationary model.

conditions for the "standard" expansion. Fig. 2.2 illustrates the behavior of the scale

factor during the inflation period.

2.3 Inflationary fields dynamics

The general concept of inflation is based on an equation of state with negative pressure,

Eq. (2.3). This can be achieved naturally in the early universe using quantum fields.

2.3.1 Behaviors of quantum fields at high temperatures

The interesting feature about quantum fields is that they can have an energy density

similar to a cosmological constant i.e. have a negative pressure. In the following we re-

strict our study to scalar fields1 φ, a priori complex in the general case. The Lagrangian

density2 L for a scalar field is of the form

L ≡ 1

2
(∂µφ∂

µφ)− V (φ). (2.12)

1Although vector fields are relatively well known (e.g. in electromagnetism), scalar fields remain
rather unexplored. But the presence, among other things, in most of the current particles theories of
an additional scalar field such as the Higgs is expected.

2The Lagrangian (spatial integral of the Lagrangian density) of a dynamical system is a function
that contains all the information about the dynamics of a system: in classical mechanics, the Lagrangian
is defined as the difference between the kinetic energy of a system and its potential energy. Moreover,
if the Lagrangian of a system is known, then the equations of motion of the system may be obtained
by a direct substitution of the expression for the Lagrangian into the Euler-Lagrange equation.
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In addition, Noether theorem1 gives the energy-momentum tensor:

Tµν = ∂µφ∂νφ− gµνL (2.13)

From Eq. (1.11) and 2.13, we can write the expression for the energy density and

pressure:

ρ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2 (2.14)

p =
1

2
φ̇2 − V (φ) +

1

6
(∇φ)2 (2.15)

If the field φ is homogeneous, ∇φ ∼ 0, and constant in time, φ̇ ∼ 0, we get p = −ρ, cf.

Eq. (2.5).

2.3.2 Dynamics equation

We can use the conservation of energy2, i.e. Tµν;ν = 0, to derive the equation of motion

for the field3 φ:

φ̈+ 3Hφ̇−∇2φ+
∂V

∂φ
= 0. (2.16)

Eq. (2.16) is analytically solvable if the spatial inhomogeneities, i.e. ∇2φ, can be ne-

glected and if we make the slow-roll assumption, as illustrated in Fig. 2.3: |φ̈| is assumed

to be negligible compared to |3Hφ̇| and |∂V/∂φ|. Thus, the equation of motion can be

rewritten as:

3Hφ̇ = −∂V
∂φ

(2.17)

The fundamental condition V ≫ φ̇2, needed to obtain the thermodynamic conditions

necessary for the inflation, requires that

ǫ ≡ 1

16πG

(

∂V
∂φ

V

)2

≪ 1. (2.18)

Derivative of Eq. (2.18) with respect to φ gives also ∂2V/∂φ2 ≪
√
G(∂V/∂φ). Com-

bining these last two equations, we obtain the second slow-roll condition, which reads

η ≡ 1

8πG

(

∂2V
∂φ2

V

)

≪ 1. (2.19)

1This theorem states that any differentiable symmetry of the action, S =
∫

Ld4x, of a physical
system has a corresponding conservation law.

2The subscript ;ν stands for the covariant derivative.
3It is also possible to find this equation starting from the expression of the action S ≡

∫

d4r
√−gL

and then using the Euler-Lagrange equation.
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V
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Figure 2.3: Illustration of a possible potential V (Φ) allowing the field dynamics to verify slow-roll
constraints, cf. Eqs. 2.18 and 2.19.

Similar arguments can be constructed for the spatial variables. However, they appear

less restrictive, and some terms as

∇φ =
1

a
∇comoving coord.φ (2.20)

increases exponentially during the inflation, which makes spatial perturbations ex-

tremely small. This result was one of the most important motivations for the de-

velopment of inflation theory — it could offer a solution to the problem of monopoles,

see Kolb and Turner (73).

2.3.3 End of inflation

Although spatial derivatives of the scalar field are negligible, this is not necessarily true

for the time-derivatives. Even if they have a very low value at the beginning, their

relative importance increases with φ rolling to the minimum of the potential V (φ).

Sooner or later, as depicted in Fig. 2.3, it is possible to obtain the conditions |ǫ| ∼ 1

and |η| ∼ 1, which corresponds to the end of the inflationary period. The field does not

abruptly stop but rather oscillates around the minimum, and is damped by the 3Hφ̇

resistance term, cf. Eq. (2.16). As introduced in paragraph 2.2.3, these oscillations cause

the reheating phenomenon, during which photons and matter particles are created, and

thus maintain an energy density similar to the one initially set for the inflation.

2.4 Inflation models

Contemporary ideas of inflation are actually quite different from the original propo-

sition made by Guth (57). Nowadays, models are usually called inflationary chaotic
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2. TOWARD THE INITIAL CONDITIONS

models: those are general models in which the field evolves independently from the

minimum potential, e.g. Linde (87), and can, among other things, allow for the exis-

tence of primordial chaos, where the initial conditions can vary without any important

consequences.

2.4.1 Some examples

Parameters of these theories are simply constrained by the desire for an inflationary

period, i.e. p < −ρ/3, Eq. (2.3): this flexibility allows for a wide variety of models.

This is even wider when considering different universes than the de Sitter one: it is

sufficient that the cosmos enters a phase of supra-luminous expansion while respecting

the equation of state p < −ρ/3. In the case of a pure static field, i.e. p = −ρ (the

equation of state for the cosmological constant), for a deviation from a de Sitter universe,

it is necessary that φ̇ becomes much more important. For example, this could correspond

to a much steeper potential — the slope remains determined by the time dependence

we want to impose on the scale factor a.

I quote below three typical cases, e.g. Peacock (104):

• the polynomial inflation: if we take V (φ) ∝ φα with α = 2 or 4, the scale factor

will have an exponential behavior.

• the power-law inflation: if a(t) ∝ tp with p > 1, this requires the potential V to

be set as

V (φ) ∝ exp

[
√

16πG

p
φ

]

(2.21)

• the so-called intermediate inflation: we set

a(t) ∝ exp

[(

t

t0

)q ]

, (2.22)

with q > 1. In the slow roll approximation, the potential is V (φ) ∝ φ−β with

β ≡ 4(q−1 − 1).

There are of course many other models, see e.g. Mukhanov (94).

2.4.2 Constraints on the inflation parameters

As written in paragraph 2.2.2, inflation models generally require a number of e-folding

Ne ≥ 60, cf. Eq. (2.11). We can show that, under the slow roll approximation, the

number of e-folding Ne between a starting φi and a final state φf can be written as

Ne =

∫

Hdt = −8πG

∫ φf

φi

∂V/∂φ

V
dφ. (2.23)
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2.5 Generation of perturbations, inflation relics

Thus, for any reasonable potential, we obtain, in order of magnitude, Ne ∼ φ2iG. And

the condition for inflation, Ne ≫ 1, becomes

φi ≫ 1√
G
. (2.24)

2.5 Generation of perturbations, inflation relics

Until now, I have only considered an idealized universe, homogeneous and isotropic,

and in this section, I present deviations from this modeling. In cosmology, these in-

homogeneities should have grown with time because of gravity, and this simple fact

implies that they should have been much smaller in the past. Consequently, at least in

the early universe period, we could treat those as linear perturbations. This assump-

tion stops being valid on small scales in the recent history of the universe but remains

quite appropriate to describe the fluctuations of the CMB as seen on the last scattering

surface.

In this section, I focus on the perturbations of the inflaton field φ and show how the

accelerated expansion during inflation converts its initial vacuum quantum fluctuations

into classical cosmological perturbations.

2.5.1 Dynamic of a massless scalar field in de Sitter space-time

First, let us remind the de Sitter metric, Eq. (1.2), in the case of an exponential expan-

sion i.e. a(t) = eHt:

ds2 = −dt2 + eHtdr2. (2.25)

To simplify the next equations, it turns out that it is convenient to use, instead of the

cosmic time t, the conformal time τ , which is negative and goes from −∞ to 0, defined

as

τ ≡
∫

dt

a(t)
, (2.26)

leading in our case to

τ = −e
Ht

H
= − 1

aH
, (2.27)

so that the scale factor in terms of τ reads

a(τ) = − 1

Hτ
. (2.28)

Using Eq. (2.26), we can write Eq. (2.25) as

ds2 = a2(τ)
[

−dτ2 + dr2
]

. (2.29)
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Let us have a look at the equation of dynamics satisfied by the perturbations δφ during

the inflation. The equation of motion of the inflationary field, cf. Eq. (2.16) reads

φ̈+ 3Hφ̇−∇2φ+
∂V

∂φ
= 0, (2.30)

and let us assume that δφ = δφ(k, t) can be seen as a plane wave perturbation with

a comoving wave number k ≡ kcomoving = a(t)kphysical, and with an amplitude A such

that

δφ ≡ Aeik·x−
ikt
a . (2.31)

Under the slow-roll approximation, we can assume that ∂V/∂φ is constant and the

perturbation field δφ satisfies the following equation,

δ̈φ+ 3H ˙δφ−
(

k

a

)2

δφ = 0. (2.32)

By introducing the new variable v = v(k, t) as:

v ≡ a δφ, (2.33)

Eq. (2.32) reads, in Fourier space,

v̈k +

(

k2 − ä

a

)

vk = 0. (2.34)

This is simply the equation of motion for an oscillator with a time-dependent mass

corresponding also to the standard wave equation for a field evolving in an expanding

universe, with an effective pulsation ω given by

ω ≡
√

k2 − ä

a
. (2.35)

We can solve this equation to find the quantum fluctuations resulting from the infla-

tionary period. For that purpose, it is usual to quantify this harmonic oscillator: in a

flat space of de Sitter type, we can decompose the field on different k modes:

vk(τ) = uk(τ)ak + u∗k(τ)a
†
k (2.36)

where the a†k and ak are creation and annihilation operators, satisfying the usual com-

mutation rules

ak |0〉 = 0 (2.37)

[ak, ak′ ] =
[

a†k, a
†
k′

]

= 0 (2.38)
[

ak, a
†
k′

]

= δ k′

k . (2.39)
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The variance of the field δφ can be written as

〈

0
∣

∣

∣
δφ†kδφk

∣

∣

∣
0
〉

=
1

a2

〈

0
∣

∣

∣
v†kvk

∣

∣

∣
0
〉

using Eq. (2.33)

=
1

a2

〈

0
∣

∣

∣

(

a†ku
∗
k + akuk

)(

ukak + u∗ka
†
k

)∣

∣

∣
0
〉

from Eq. (2.36)

=
1

a2
∣

∣u2k
∣

∣

〈

0
∣

∣

∣
aka

†
k

∣

∣

∣
0
〉

=
|uk|2
a2

. (2.40)

To solve Eq. (2.32), we must find the values of uk for different expansion regimes,

and we will consider the problem in two relevant regimes, above and below horizon, i.e.

k/a≫ H and k/a≪ H respectively.

On the one hand, how does the amplitude of a given mode behave when the wave-

length crosses the horizon H−1? In the de Sitter case, one can solve explicitly Eq. (2.34)

using the fact that ä/a = 2/τ2 and the general solution is given by

uk =

√

1

2k
eikτ

(

1− i

kτ

)

. (2.41)

We can see from Eq. (2.41) that, at early times such that aH/k ≪ 1, i.e. at the time

when the quantum fluctuations dominate, the scale factor a is nearly constant.

On the other hand, if aH ≫ k, the fluctuations amplitude is frozen and fixed to

the value

Pδφ(k) ≡
〈

0
∣

∣

∣
δφ†kδφk

∣

∣

∣
0
〉

(2.42)

=
|uk|2
a2

(2.43)

≈ 1

2a2k3τ2
from Eq. (2.41) if aH ≫ k (2.44)

=
H2

2k3
. (2.45)

A spectrum in which k3Pδφ(k) is constant with respect to k is an example of a scale-

invariant spectrum.

Thus, the initial quantum fluctuations of the vacuum have been turned into classi-

cal fluctuations (because exiting the Hubble radius) which should have imprinted the

universe on large scales.
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2.5.2 Scalar perturbations

Results of the previous paragraph are obtained in the case of a toy model: realistic

computation of the perturbations in an expanding universe should be done in a general

FLRW universe. In this case, the field φ generates the expansion and we should look at

the effect of the δφ on the metric. However, by analogy with the simple model detailed

in paragraph 2.5.1, we can understand that inflation is a mechanism enlarging quantic

perturbations δφ so that they become classical.

One can show that the relation between the scalar perturbations spectra PS and

Pδφ are given by, e.g. Langlois (78), Lidsey et al. (86), Stewart and Lyth (129):

PS(k) ≡
1

(2π)2

(

H4

φ̇2

)∣

∣

∣

∣

k=aH

. (2.46)

This spectrum can be exactly scale invariant if H and φ̇ are constant in time. We have

already seen that the Hubble parameter is nearly constant during the inflationary period.

The invariance can be broken by changing φ̇, which is specific to each inflationary model

that predicts deviations to the scale invariant spectrum, see Liddle and Lyth (85).

Eq. (2.46), describing the spectrum for cosmological scalar perturbations generated

from vacuum fluctuations during a slow-roll inflation phase, is one of the main pre-

dictions of inflationary models. Following Lyth and Liddle (88) and Leach et al. (81),

deviations from a scale-invariant behavior are modeled as

k3PS(k) = Ask
ns−1 (2.47)

with

ns ≡ 1− d logPS
d log k

(2.48)

∼ 1− 6ǫ+ 2η. (2.49)

2.5.3 Gravitational waves

In addition to scalar perturbations, inflationary scenario predicts primordial gravita-

tional waves which are also generated from the vacuum quantum fluctuations.

Any very light particles, follow the spectrum given in Eq. (2.45). When the excited

modes of such a field come back into the horizon, they spread like particles: excitations

of the de Sitter space eventually become a source of creation of particles, e.g. Kolb

and Turner (73). In particular, one of the examples that interests us is the graviton. It

corresponds to the mode of propagation associated with the transverse - traceless tensor

of the metric perturbations. Gravitons behave like a weakly coupled scalar field with
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2.5 Generation of perturbations, inflation relics

Figure 2.4: Scheme illustrating the effect of a gravitational wave on a circular ring of free particles.
The wave direction is assumed to be orthogonal to the plan containing the particles. Upper (lower) part
shows the effect of a wave polarized along the e+ (e×) directions, as shown on the right of the figure.

two degrees of freedom: we consider that graviton is formed of two scalar fields φ+ and

φ× satisfying

h+ =
√
16πGφ+ (2.50)

h× =
√
16πGφ×. (2.51)

As illustrated in Fig. 2.4, h+ and h× are related to the dimensionless tensor of the

metric perturbation hij defined as

hij ≡ h+e+ + h×e×, (2.52)

where e+ and e× are the two polarization tensors corresponding to the two modes of

the graviton.

The spectrum of gravitational waves PT (k) can be written as follows

PT (k) =

(

H

2π

)2
∣

∣

∣

∣

∣

k=aH

(2.53)

Since H is slowly varying, PT has an approximately scale-invariant behavior. We can

choose to model the small dependence of scale by the following power law i.e.

k3PT (k) = ATk
nT . (2.54)

Similarly to Eq. (2.49), we set

nT ≡ d logPT
d log k

(2.55)

∼ −2ǫ. (2.56)
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On each scale, the amplitudes h+,× of the primordial gravitational waves remain con-

stant until they approach the horizon. Once they passed it, they begin to evolve. Their

oscillations start to decrease progressively after the passage sub-horizon, corresponding

to the common redshift phenomenon.

Using the expressions for the amplitudes and spectral indices in terms of the slow

roll parameters, we are able to solve for the potential and its first two derivatives and

thereby use observations to constrain the form that this potential can take. We have,

V ∼ PT
G2

(2.57)

r ≡ PT
PS

∼ −16nT , (2.58)

where we defined r as the tensor-to-scalar ratio, directly related to the energy scale of

inflation V through

V 1/4 = 1.06× 1016
( r

0.01

)1/4
GeV. (2.59)

I explain in the next chapter that tensor perturbations create specific signatures on the

CMB, including its polarization, and which can be parametrized with the tensor-to-

scalar ratio r. The estimation, through the observation, of the latter is therefore a way

to probe the existence of inflation.
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Chapter 3

CMB anisotropies and their

characterization

The CMB has a remarkably high level of isotropy on the sky, confirming the cosmo-

logical principle. The largest temperature anisotropy is a dipole pattern due to the

Earth’s motion relative to the CMB reference frame. In addition, as explained in the

previous chapter, we expect the existence of weak fluctuations of matter, generated by

inflation, already present at the time of recombination. Those tiny inhomogeneities,

of a relative level of ∼ 10−5, were filling the universe and be interpreted as the seeds

for the formation of galaxies and other large cosmic structures. Those perturbations

evolved completely differently before and after recombination. Before recombination

(at z ∼ 1100, see section 1.3), radiation and matter (electrons, protons) were tightly

coupled through Compton and Thomson scattering and formed a baryon-photon fluid.

After recombination, photons free-streamed from the Last Scattering Surface1 (LSS)

and reach us today.

A few decades ago, cosmologists established that the processes invoked to account

for the formation of cosmic structures would indeed lead to the existence of inten-

sity fluctuations in the CMB to a detectable level. In 1989, the COBE satellite was

launched to observe the CMB and succeeded in providing the first power spectrum of

CMB anisotropies, see Fig. 3.1. Then, the WMAP (2003-2011) and Planck (2009-2012)

satellites were launched and observed those small fluctuations with unprecedented sen-

sitivities and accuracy.

In this chapter I briefly review the physics behind the CMB anisotropies, both

in intensity (section 3.1) and polarization (section 3.2). In section 3.3, I introduce

the statistical tools used to analyze the CMB maps on the sphere and present the

1The set of points in space and time where photons began to travel freely is called the last scattering
surface.
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Figure 3.1: Image composed of maps from the COBE experiments (left column) and the 5-year
map from WMAP (bottom right) 4), in which the signal from our Galaxy was subtracted using the
multi-frequency data (this image shows a temperature range of ±0.2 K). COBE-DMR CMB observation
at 53 GHz can be decomposed as a monopole with an amplitude temperature of 2.728 K (1)), a dipole
across the sky which is the largest anisotropy due to Solar system’s motion with respect to the CMB
frame (2)) and the other modes of fluctuations which are at the 10−5 level (3)).



3.1 Anisotropies in intensity

quantitative predictions for the anisotropies properties as well as their connection to

the cosmological parameters of the commonly accepted ΛCDM model (section 3.4).

3.1 Anisotropies in intensity

Inflation offers an explanation for the CMB anisotropies at the 10−5 level and below.

In fact, as explained in the previous chapter, inflationary models predict the existence

of perturbations with specific scale invariant power spectrum, cd. Eq. (2.45). Quantum

fluctuations in the primordial energy field generated spatial mass density variations

across space. These perturbations affect the density of the photons-baryons plasma and

consequently give specific signatures on the LSS.

It is usual, in observational cosmology, to switch from intensity to antenna tem-

perature, which is the quantity CMB experiments measure. Both quantities are pro-

portional in the Rayleigh-Jeans approximation, valid in the low frequency range of the

CMB Planck distribution Bν(T ):

Bν(T ) ≡ 2hν3/c2

e
hν
kT − 1

(3.1)

≈ 2hν3

c2
× kT

hν
for ν ≪ kT

h
(3.2)

=
2kTν2

c2
(3.3)

CMB intensity anisotropies are then translated as an "effective temperature", TCMB,

imprinted in the CMB map at the recombination time: this it what we call temperature

anisotropy. In addition, polarization anisotropies are also imprinted through Thomson

scattering, as described in section 3.2.

We usually consider different types of anisotropies of the CMB depending on their

amplitude (primary or secondary, respectively paragraphs 3.1.2 and 3.1.2) and the

mechanism for generating them (large scale or acoustic fluctuations, respectively para-

graphs 3.1.3 and 3.1.4).

3.1.1 Primary anisotropies

As the photons are still coupled to electrons, they keep the footprint of the fluctuations

of the matter through both their temperature (Compton scattering) but also their po-

larization (Thomson scattering). The photons "effective temperature" is lead by three

dominant effects, called primordial anisotropies:

• gravitational perturbations (the so-called Sachs-Wolfe effect) – when

a photon escapes from an under-density (or over-density), it has more (or less)
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energy and its wavelength is shifted towards blue (or red). Over-densities (lower

densities) of matter correspond to cold (hot) spots in the CMB. For a variation of

the gravitational potential ∆Φ, the relative variation of temperature on the CMB

can be written as
∆T

T
∼ ∆Φ

3
. (3.4)

• intrinsic perturbations (adiabatic) – quantum fluctuations of the vacuum

energy lead to variations in the distribution of matter density ρm. The coupling

between matter and radiation increases the energy of radiation (i.e. tempera-

ture) in the high density regions. Then any density fluctuation is associated to a

temperature fluctuation ∆T
T ,

∆T

T
=

1

3

∆ρ

ρ
. (3.5)

• Doppler – the primordial plasma velocity causes a Doppler shifting of the CMB

photons. This shift is proportional to the velocity v of the fluid motion, i.e.

∆T

T
∝ v. (3.6)

This effect vanishes along the line of sight for scales smaller than the thickness

of the LSS. Indeed, at first order, a photon passing through the fluctuation will

experience the same shifting in one direction and then while escaping.

3.1.2 Secondary anisotropies

Secondary anisotropies are added to these original primary anisotropies. Generally lower

in relative intensity than the primary, they correspond to the rare interactions that the

CMB photons can have between the LSS and the detection. These new anisotropies are

in part due to the change in the gravitational potential but also to interactions, through

Compton scattering with electrons from ionized gas, see Hu and Sugiyama (65).

• Integrated Sachs-Wolfe effect (ISW) – it describes the effect of gravitational

potential defects integrated along the photon path. Because of the speed of light

compared to the characteristic scales of variations of the potential, this effect is

limited in amplitude. However, this effect can reach ∆T/T ∼ 10−6 at large scales.

• Gravitational Lensing – geodesics are bent by over-densities such as large scale

structures. Therefore, it induces a distortion of the observed CMB map at all

scales (the intensity power spectrum is smoothed at the percent level and reduce

the amplitude high order peaks) and also a leakage between E and B polariza-

tions, see section 3.3.2.
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• Rees-Sciama effect – this effect is due to the fact that potential wells become

more important with time: photons going through them gain energy while falling

into the well but loose some when climbing out of it. If the well has became

deeper during this travel, the energy balance is negative. We expect variations of

∆T/T ∼ 10−7, mostly due to the non-linear period of the structures evolution.

• Sunyaev-Zel’dovich effect (SZ) – it corresponds to the inverse Compton scat-

tering of CMB photons on electrons from ionized gas of galaxies clusters. The

thermal agitation of electrons in the gas modifies locally the CMB photons spec-

trum (they get hotter): this is called the thermal SZ. If the cluster is in mo-

tion, a kinetic phenomenon created by Doppler effect is added to this secondary

anisotropy: this is called kinetic SZ. Moreover, diffusion onto the free electrons of

the local universe generates a diffuse contamination at high angular scales: those

anisotropies could reach the ∆T/T ∼ 10−4 level for ℓ > 100. This corresponds to

one of the dominant contaminant of the CMB, as mentioned also in section 9.4.

• Reionization – it corresponds to the early period where the universe got ionized

a second time after the recombination. During this phase which happened during

the first stars formation, the free electrons interact again with the photons through

Compton scattering. The effect on CMB photons can be seen at all scales.

Moreover, we will see in chapter 9 that foregrounds are a very important source of

diffuse contamination of the CMB map.

3.1.3 Large scale anisotropies, ∆Θ > ΘH

Anisotropies at scales ∆Θ larger than the horizon ΘH are relatively simple to under-

stand because at the time of recombination, the density inhomogeneities are outside the

Hubble radius, as illustrated in Fig. 3.2. We can therefore ignore any pressure force of

the plasma during the gravitationally-driven evolution of the photon-baryon inhomo-

geneities. Let us consider a photon emerging from an overdensity (∆ρ/ρ) of size R. The

term SW, Eq. (3.4), is of order

∆T

T
=
G∆M

R
∼ Gρ̄

[

∆ρ

ρ̄

]

R

4πR3

3R
∝
[

∆ρ

ρ̄

]

R

R2. (3.7)

And for a matter dominated universe, the last expression is independent of time because

∆ρ ∝ a (3.8)

R2 ∝ a2. (3.9)
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Figure 3.2: Scheme illustrating the geometry of the typical angular scales ∆θ above and below the
Hubble radius ΘH .

If fluctuation spectrum is scale-invariant, ∆ρ/ρ ∝ R−2, then ∆T/T is scale independent.

Taking R = dH , the hubble radius, we see that the SW anisotropies give directly the

density fluctuations, ∆H , at the entry of the Hubble radius,

∆T

T
(SW) ∼ ∆H . (3.10)

In addition, the Doppler term could be expressed as

∆T

T
(Doppler) ∼ ∆H

ΘH

∆Θ
, (3.11)

and the intrinsic temperature fluctuations as

∆T

T
(intrinsic) ∼ ∆H

Θ2
H

∆Θ2
. (3.12)

Because of the different values of ΘH/∆Θ, the SW effect dominates the anisotropies for

∆Θ ≫ ΘH . The spectrum is independent of angles if the density inhomogeneities are

scale invariant, as predicted by the inflationary models. If this is the case, we expect a

flat spectrum at large angles which increases slowly when the scale approaches ΘH and

the Doppler and intrinsic effects become important. As will be illustrated in section 3.4,

measurements indicate that this is the case: this is a strong argument showing that the

primordial fluctuations are adiabatic and scale invariant.
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3.1.4 Acoustic oscillations, ∆Θ < ΘH

At small angular scale, i.e. for ∆Θ < ΘH , distances correspond to sub-Hubble scales

and we have to consider the pressure force on the photon-baryon plasma. Indeed,

photons and baryons remain tightly coupled as a perfect fluid until recombination. The

dynamics equations are somewhat complicated but the resulting phenomenology is well

understood, e.g. Hu et al. (66). We have seen that fluctuations in energy density create

fluctuations in the local gravitational potential and generate potential wells. At the

opposite of a compression of the fluid in the potential wells, there is a rarefaction in the

maximum potential. Furthermore, the fluid pressure acts as an opposite force for the

gravity, and oscillations start governing the dynamics of the fluid.

Therefore, what we observe is the imprint of these acoustic oscillations contained

in the CMB temperature. Compression of a gas increases its temperature and, con-

sequently, the CMB is locally hotter in the regions of compression due to acoustic

oscillations and colder in the areas of rarefaction. Initially, the photon-baryon fluid is

compressed in the potential wells created by cold dark matter. Compression continues

until the fluid pressure resists compression and starts to expand. The expansion then

continues until gravitational starts a new compression and so on.

Sound waves stop propagating at recombination when baryons and photons decou-

pled. Modes that reach the maximum of their oscillations (maximum compression or

rarefaction in the potential well) at the recombination correspond to large fluctuations

in temperature. The temperature fluctuation in a potential well for a mode with a given

wavenumber k will oscillate with the fluid, and it will get compressed and expanded.

Mathematically, the wavenumber of the fundamental mode k0 is equal to π/sonic

horizon. We know that there is a mode with a wavenumber k1 = 2 × k0 which has

just enough time to compress and expand before recombination. And so on with kn =

(n + 1) × k0, n ∈ N: these modes represent the first, second, ..., nth acoustic peaks

respectively. These latter are harmonics of the fundamental scale (associated to the

mode k0) given by the distance over which sound can travel before recombination. As

illustrated in Fig. 3.3, oscillations continue until the time of recombination trec, when the

photons freely escape from the potential wells. The nature of the anisotropies created

by a given oscillation mode depends on the oscillation phase, φrec(k), at the time of

recombination:

φrec(k) =

∫ trec

0
ωk(t)dt = ka0

∫ trec

0

cs(t)dt

a(t)
(3.13)

The phase φrec(k), defined for each mode k, determines the relative importance of gravi-

tational redshift, Doppler effect, and effect of intrinsic temperature. We can distinguish

three extreme cases:
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Figure 3.3: Scheme illustrating the evolution of the two first modes k0 = π/sonic horizon and
k1 = 2 k0.

• φrec(k) = nπ, for n = 1, 3, 5, ...: the fluid is highly compressed in the potential

well. The observed radiation temperature is maximal for photons exiting wells

due to the high intrinsic temperature in the wells;

• φrec(k) = nπ, for n = 0, 2, 4, ...: the fluid is only moderately compressed in the

potential well. The observed photon temperature is minimal for photons exiting

wells because of the gravitational redshift;

• φrec(k) = nπ2 , for n = 1, 3, 5, ...: effects of intrinsic and gravitational redshift are

compensated.

3.2 Polarization anisotropies

Polarization of the CMB photons is due to Thomson scattering with electrons in the

primordial plasma1. By symmetry, we can show that only the quadrupole anisotropy

1In the low-energy limit, the electric field of an incident electric wave accelerates the charged
particle, here an electron, causing it to emit radiation at the same frequency as the incident wave, and
thus scatter this latter. The particle moves in the direction of the oscillating electric field, resulting
in an electromagnetic dipole radiation. The moving particle radiates most strongly in a direction
perpendicular to its motion and that radiation will be polarized along the direction of its motion.
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3.2 Polarization anisotropies

Figure 3.4: Illustration of the Thomson scattering on an electron (black) in the case of a single
linearly polarized incident beam (left panel) and in the case of two incident beams (right panel).

of an incident radiation on an electron can produce polarization. This is illustrated in

the left panel of Fig. 3.4 and is explained by the Thomson scattering differential cross

section of an electron (assumed at rest) illuminated by an unpolarized photon flux:

dσ

dΩ
=

3σT
8π

∣

∣ǫ · ǫ′
∣

∣

2
(3.14)

The scalar product |ǫ · ǫ′| implies the absorption of the components parallel to the

polarization of the incident flux. For instance, as illustrated in the right panel of Fig. 3.4,

the observer sees a transmitted polarization corresponding to the vertical part of ǫ′ and

horizontal of ǫ′′. If the flow is less intense in one direction, then the received radiation

is linearly polarized. Let us consider the following different cases:

• if the incident radiation is isotropic (i.e. monopole) then the total resulting po-

larization for the observer is zero;

• if the incident intensity of the incident radiation follows a dipole pattern then each

component of the polarization is compensated and there is no resulting polariza-

tion;

• if the incident intensity is quadrupolar, then there is no more compensation and

a non zero resulting polarization appears.

This reasoning, done in the 2-d case, can be generalized to all directions. So from a

non-polarized incident flux but having an quadrupolar anisotropy, a linearly polarized

radiation can be generated.
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overdensity
underdensity

Figure 3.5: Illustration of an electron falling into an over-density (left panel) or going away from
an under-density (right panel). Resulting polarization patterns are shown on the external blue dashed
circle. The electron and its speed are depicted in black and the associated quadrupole is depicted in
orange (hot direction) and purple (cold one).

There are three types of perturbations, related to three different physical sources,

that give rise to quadrupole anisotropies: the scalar (from density fluctuations), the vec-

tor (due to vortices) and the tensor anisotropies (related to the passage of gravitational

waves):

• scalar perturbations – electrons fall into potential wells, corresponding to mat-

ter over-densities, illustrated in Fig. 3.5, and do so as more rapidly as they are

close the center. Let us consider an electron near an over-density. In its frame, the

other plasma particles aligned on the same radius (in the front and in the back of

the electron) go away. In contrast, those which belong to the same isocontour of

density (left and right sides of the electron) come closer – since isocontours are con-

centric. The same reasoning applies to matter under-densities. This phenomenon

produces quadrupole anisotropies on the LSS.

• vector perturbations – movements of vorticies in the primordial plasma can

produce quadrupole anisotropies. They are not necessarily related to density

fluctuations. However, in most of the inflationary models, vector perturbations

are negligible.

• tensor perturbations – a gravitational wave passing through a density fluc-

tuation changes the shape of the potential well. Density contours are no longer

circular but become elliptical, thus forming quadrupole perturbations and loosing

their symmetry properties.
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U Q

pure E patterns pure B patterns

Figure 3.6: Illustration of pure E- (left) and B-patterns (right) which are a combination of Stokes
parameters Q and U . In the middle is the basis for these latter which are introduced in section 3.3.2.

We usually decompose the polarization patterns as seen on the LSS into two geometrical

components named E- and B-modes, which are combination of the Stokes parameters

Q and U (see section 7.1 for their definition). We will formally introduced the E and B

description in section 3.3.2, but one has to notice that this decomposition allows to dis-

tinguish physical causes generating those geometrical patterns: in fact, density or scalar

perturbations (see Fig. 3.5) generate parallel polarization and therefore generate only

E-modes polarization. Contrarily, B-modes can only be generated with gravitational

waves (see Fig. 2.4) produced during inflation. These anisotropies, named primordial

B-modes, are a smoking gun for inflationary models, see chapter 4.

In addition to these primordial anisotropies, large scale structures between us and

the LSS induce a leakage between E- and B-modes. Statistical description and quanti-

tative expectations for this effect are explained in section 3.3.2.

3.3 Statistical analysis of the observed anisotropies

In order to exploit the intensity map of the CMB, T (θ, φ), or the polarization infor-

mation {Q(θ, φ), U(θ, φ)} and compare it with some theoretical predictions, we need

statistical tools and their associated formalism.
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3.3.1 Intensity

For the purposes of a statistical comparison to the perturbation quantity δ 2
k , the ob-

served CMB temperature distribution on the sky, T (θ, φ), is expanded as a series of

spherical harmonics Y m
ℓ , illustrated in Fig. 3.7, with amplitudes aℓm which are mea-

sures of the level of anisotropy present as a function of multipole,

T (θ, φ) = a00 +
∑

−1≤m≤1

a1mY1m +
∑

ℓ≥2,m

aTℓmYℓm(θ, φ) (3.15)

=
∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aTℓmY

m
ℓ (θ, φ) (3.16)

where θ and φ are the usual spherical coordinates and ℓ is the spherical harmonic

multipole number. The first term of Eq. (3.15) corresponds to the CMB monopole we

described earlier and the second term corresponds to the dipole, which is due to the

peculiar velocity of the Earth with respect to the LSS frame. The direction of this

velocity gives the preferred direction from which we usually measure the polar angle θ.

The temperature is a real quantity, which implies that

a∗ℓm = (−1)maℓm. (3.17)

The sum overm and ℓ ≥ 2, third term of Eq. (3.15), describes the temperature variations

on angular scales ∆Θ such as

ℓ ∼ π

∆Θ
. (3.18)

ℓ is called multipole and is the analogue on the sphere of the module of the wave vector

k in an usual 2-d Fourier analysis. In order to describe statistically the anisotropies of

the CMB, we usually calculate the angular power spectrum, CTTℓ , of the temperature

variations. To estimate the this power spectrum, we assume that the distribution of

the coefficients aTℓm is Gaussian with a variance CTTℓ . Therefore the power spectrum

contains all the information about temperature anisotropies:

〈

aTℓm
〉

= 0 (3.19)
〈

aTℓma
T
ℓ′m′

〉

= CTTℓ δ ℓ
′

ℓ δ m
′

m (3.20)

This last equality is obtained thanks to the fact that the universe is isotropic and there-

fore has no preferred direction (i.e. no dependence on m) for the statistical properties

of the anisotropies. Quantitative predictions for the power spectrum are given in sec-

tion 3.4.
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3.3 Statistical analysis of the observed anisotropies

Figure 3.7: Real and imaginary part of some of the first spherical harmonics. From
http://mathworld.wolfram.com.

In addition, the correlation function of two temperature fluctuations located in two

directions n1 = (θ1, φ1) and n2 = (θ2, φ2) on the observed sky is given by:

C(n1,n2) ≡
〈

∆T

T
(n1)

∆T

T
(n2))

〉

(3.21)

=

〈

∑

ℓ,m

aTℓma
T ⋆
ℓ′m′Yℓm(θ1, φ1)Y

⋆
ℓ′m′(θ2, φ2)

〉

(3.22)

Using the properties of spherical harmonics, we have

C(n1,n2) =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ (cos θ) (3.23)

∼ 1

2

∫

dℓ

ℓ

[

ℓ(2ℓ+ 1)Cℓ
2π

]

Pℓ (cos θ), (3.24)

where θ ≡ ̂( ~n1, ~n2) and Pℓ is the Legendre polynomials of order ℓ. One should no-

tice that C(n1,n2) = C(θ), which results from the sky isotropy, in agreement with

the cosmological principle. The quantity ℓ(2ℓ + 1)Cℓ/2π gives the contribution of the

temperature fluctuations by interval of log(ℓ).

3.3.2 Polarization

As illustrated in Fig. 3.6, CMB polarization distribution is a field of headless vectors,

i.e. a spin-2 field. This latter, expressed as P (θ, φ) in the following equation and, in a

similar way of Eq. (3.16), could be expanded as a series of electric (gradient like) and
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Figure 3.8: Scheme illustrating the geometry of the lensing effect on a CMB photons.

magnetic (curl-like) spherical harmonic modes, see Zaldarriaga and Seljak (151),

P (θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aEℓmE

m
ℓ (θ, φ) + aBℓmB

m
ℓ (θ, φ) (3.25)

where E m
ℓ and B m

ℓ are defined as

E m
ℓ (θ, φ) ≡ 1

2
[+2Y

m
ℓ M+ +−2 Y

m
ℓ M−] (3.26)

B m
ℓ (θ, φ) ≡ 1

2
[+2Y

m
ℓ M+ −−2 Y

m
ℓ M−] (3.27)

in which expressions the matrices M± ≡ σ3∓σ1 form a spin-2 basis with the Pauli ma-

trices σ1 and σ3. Furthermore, the spin-2 spherical harmonics, ±2Y
m
ℓ (θ, φ), are complex-

valued functions on the sphere and are related to the spherical harmonics Y m
ℓ (θ, φ) by

derivatives operators. Complex numbers allow the phase of each component of the po-

larization to be represented, allowing for circular polarization.

Lensing

Large scale structures induce deflections in the direction of the CMB photons as

they propagate from the LSS to us, as illustrated in Fig. 3.8. The displacement angle

can be expressed using the projected gravitational potential Φ along the line-of-sight.

The lensing effect on a map X = T or Q ± i U can be expressed as the following

transformation:

X(n) = X̃(n+∇Φ(n)), (3.28)
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where X̃ is the unlensed field. The deflection angle ∇Φ is due to the presence of

variations in the gravitational potential Φ, which is defined as

Φ(n) ≡ −2

∫ z=zrec

z=0
dzΨ(z,D(z)n)

D(zrec)−D(z)

H(z)D(zrec)D(z)
, (3.29)

where D(z) corresponds to the comoving distance to a redshift z, and Ψ is the zero-shear

gravitational potential. One can show that the gravitational potential power spectrum

is given by

CΦΦ
ℓ =

8π2

ℓ3

∫ z=zrec

z=0
dz

D(z)

H(z)

[

D(zrec)−D(z)

D(zrec)D(z)

]2

PΨ

(

z, k =
ℓ

D(z)

)

. (3.30)

As mentioned earlier, potential φ is the reason for a leakage between E- and B-modes.

However, because E-modes have a larger amplitude, the effect is significant on the B-

modes signal shape and amplitude as it is illustrated in the next section with the lensed

B-modes power spectrum curve shown in Fig. 3.9.

Finally, section C.2.1 of Appendix C briefly explains how data analysts are able to

reconstruct the lensing potential and therefore "de-lens" the observed polarized CMB

maps.

3.4 Power spectrum and cosmological parameters

Power Spectrum

Angular power spectra for CMB temperature anisotropies, as well as for the E- and

the expected B-modes anisotropies in polarization, are depicted in Fig. 3.9. These power

spectra give different informations depending on the range of multipoles — equivalently

the range of angular scales — within which the LSS is observed and analyzed. For

instance, the TT power spectrum provides information about the initial conditions (e.g.

ns, As, etc.) at low multipoles and the peaks, corresponding to the acoustic oscillations

which occurred in the primordial plasma, see paragraph 3.1.4, gives constraints on the

spatial curvature of the universe ΩK , the densities of baryons Ωb, dark matter Ωdm,

etc. Finally the damping tail at high multipoles corresponds to fluctuations which are

so close that they are comparable to the distance photons travel during recombination.

In addition, EE and BB angular power spectra are also shown in this figure and

their observation will help us to break degeneracies in the estimation of cosmological

parameters. Especially, it isolates the recombination and reionization1 (e.g. Zahn et al.

(150) and Zahn et al. (149)) epochs and as well as gravitational wave spectrum. This

latter corresponds to the primordial B-modes, is depicted in dark blue in Fig. 3.9.

1The TE spectrum, not shown here, gives also strong constraints on the reionization epoch.
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Figure 3.9: Angular power spectra for the temperature anisotropies (TT ), the E-modes (EE) and
the expected B-modes (BB) which can be decomposed in two parts: the primordial B-modes generated
by the inflationary gravitational waves and the ones created by lensing (E-modes leaking into B-modes
due to the deflection induced by large scale structures, see section 3.3.2).

Figure 3.10: Normalized derivatives of CTT
ℓ with respect to some cosmological parameters.



3.4 Power spectrum and cosmological parameters

Its amplitude is parametrized by the tensor-to-scalar ratio r, already introduced in

Eq. (2.59).

Cosmological Parameters

As illustrated in Fig. 3.10, the shapes of the CMB power spectra are directly linked

to the cosmological parameters. I list below a brief description of the effect induced

by each parameter on the spectra, while keeping the others constant. It has to be no-

ticed that couple of these parameters are degenerated and those are generally broken

using the polarization information and/or other observations such as Ia type super-

novae, Cepheides or the abundance of light elements as predicted by the Big Bang

Nucleosynthesis.

• H0 — Hubble parameter. It describes the expansion speed of the universe. It

is inversely proportional to the distance between us and the last scattering surface.

If H0 is increased, CMB perturbations would appear to the observer with larger

characteristic angles. On the power spectrum, this corresponds to a shift of the

peaks toward the low multipoles.

• Ωb — baryon energy density. This quantity has a direct impact on the relative

amplitudes of the acoustic peaks: the more baryons, the bigger (smaller) will be

the first (second) acoustic peak.

• Ωm — matter energy density. This affects both the shape and the amplitude

of the peaks. In particular, the ratio Ωb/Ωm determines the amplitude of the

acoustic peaks (photons are not coupled with dark matter).

• Ωtot — total energy density. The total density of the universe is related to

its curvature ΩK , assuming that ΩΛ and Ωm are fixed. Thus, increasing Ωtot has

the effect of curving space. A fluctuation on the LSS, in a closed (respectively

open) universe, would appear with a larger (respectively smaller) angle than for

a flat universe. This causes a shift in the angular power spectrum toward smaller

(respectively higher) multipoles.

• ΩΛ — dark energy energy density. CMB photons have travelled by follow-

ing geodesics. But they suffer from the deformations due to the geometry of the

universe. Assuming that we know the distance between us and the LSS (equiv-

alent to the expansion parameter H0), we can constrain the curvature of the

Universe ΩK , which is the sum of the dark energy ΩΛ and matter densities Ωm:

1 − ΩK = Ωm + ΩΛ. However, even if CMB provides hard constraints on each

of these parameters, these latter are also accessible through the observation of Ia
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type supernovae, seen as standard candles at small distances (z ∼ 0.1 − 1), and

provide constraints on the difference Ωm−ΩΛ, see Perlmutter et al. (106), Schmidt

et al. (118). In addition, the study of gravitational lensing effects can indepen-

dently constrain the value of Ωm. The combination of these three observables can

therefore constrain both Ωm and ΩΛ.

• ns — scalar spectral index. This index parametrizes the power law of primor-

dial perturbations (∝ kns). Changing ns results in changing the global slope of

the CMB power spectrum. This is how first observations ruled out an important

contribution from the topological defaults in favor of the inflation models thanks

to the presence of acoustic peaks, e.g. Hanany et al. (61), Lange et al. (77).

• r — tensor-to-scalar ratio. It is defined as the ratio of tensor perturbation over

scalar ones, and is a direct measurement of the primordial B-modes amplitude,

cf. Eq. 2.58.

•
∑

mν — total neutrino mass. The CMB also allows to constrain the total

mass of neutrinos. The effect on the total intensity CMB spectrum is low, but

a measure of the lensed B-modes with a combination of other observables (such

as gravitational lenses and measurements with the Hubble Space Telescope) can

constrain this parameter.
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Part II

B-modes: the promises, the road

towards their detection and the

challenges
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First, in chapter 4, I try to convince the reader of the interest of detecting the B-

modes: this is mostly an extension of the previous chapter about CMB polarization,

but I would like to make a clear statement about our motivations. Second, in chapter 5,

I present the current status in the field and what are the forthcoming CMB polarization

projects. Finally, in chapter 6, I introduce some of the challenges our community has

to face nowadays, from an experimental point of view up to a data analysis one, and

explain my contributions in the frame of the projects I have been evolved in, prelude of

the detailed Parts III, IV and V.
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Chapter 4

Why are we going after B-modes?

CMB polarization is an unique source of informations for observational cosmologists.

In particular, its anisotropies help us understanding the physics of the very early uni-

verse and the laws governing at the very high energies. Primordial B-modes discovery

would correspond to an indirect detection of gravitational waves and would constrain

the energy scale of inflation. The observation of lensed B-modes, induced by large scale

structures located between us and the LSS, could constrain, among others, the total

neutrino mass, the dark energy equation of state w and the helium fraction YHe.

Detected CMB polarization, the E-modes patterns

In chapter 3, I have described the evolution of the hot and dense primordial plasma,

before recombination, and in particular that polarization of the CMB was induced by

the photons Thompson scattering on electrons. This linear polarization was primar-

ily due to the density perturbations present at that time which also generated the

CMB temperature anisotropies. These perturbations force matter to flow along gradi-

ent directions, making it rare at the under-densities and getting condensed at the over-

densities. This movement created photon intensity quadrupole anisotropies around the

charged free particles, as seen in their attached frame. These conditions gave rise to

gradient-zero curl polarization patterns on the LSS, the so-called E-modes. Assuming

a physics for the baryon-photon plasma and measuring the total intensity T spectrum

give constraints on the expected E polarization spectrum. And because temperature

and gradient polarization anisotropies share the same physical origins, it implies an

expected non-zero cross-correlation between T and E. Measurements of the E-mode

power spectrum brings tight constraints on all cosmological parameters, and constrain

proposed extensions to current standard cosmology.
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Figure 4.1: Results of the DASI experiment, as published in 2002. The collaboration showed for the
first time that CMB has E-modes polarization, but that B-modes were consistent with zero. From Kovac
et al. (74).

In 2002, the DASI experiment made the first CMB polarization detection, see Fig. 4.1

and Kovac et al. (74). The estimated amplitude of the E-modes was in agreement with

the level predicted by the theory. Since then, other experiments have detected CMB

polarized anisotropies among which CAPMAP (Bischoff et al. (13)), CBI (Sievers et al.

(124)), QUAD (Brown et al. (20)), BICEP-1 (Chiang et al. (24)), QUIET (Bischoff et al.

(14)), WMAP (Gold et al. (54)), MAXIPOL (Wu et al. (148)), and BOOMERANG

(Montroy et al. (93)). In Fig. 4.2, published in Chiang et al. (24), one can observe that

those observations have given progressively tighter constraints on TT , TE and EE.

These results also bring an important consistency test for our understanding of the

physics of the primordial plasma but also have provided strong support for the ΛCDM

model (best fit model is shown with black solid lines in the figure).

CMB polarization measurements have the potential to confirm that in-

flation occurred and probe the ultra-high energy physics that drove it.

Given the success of the current model of cosmology in cataloging the contents of

the universe, one of the new frontiers in cosmology and fundamental physics is to un-

derstand the early stages of the universe. CMB polarization fluctuations provide the

extraordinary opportunity to see a signal from the very beginning of the universe, a

small fraction of second after the Big Bang. The leading theory for the first instant of

the universe is inflation, which is a superluminal expansion of space-time by a factor of

∼ e60, just after the Big Bang. As described in chapter 2, inflation is a relatively simple

concept, but it explains many observational problems, such as why space-time appears
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Figure 4.2: Results from the analysis of the BICEP-1 2 years data, as published in 2010. These
results are, at the time of writing this thesis, the best constraints on the polarization power spectra lead-
ing in particular to the limit r < 0.72, obtained without combination with other data sets. From Chiang
et al. (24).

to be flat, how the visible universe is not causally connected now but has a homoge-

neous temperature (this is what we call the horizon problem), and why no magnetic

monopoles are observed. The rapid expansion during inflation would have produced

gravitational waves that persisted to the time of recombination when the CMB photons

last-scattered. The gravitational waves would have induced polarization in the CMB

with a B-mode pattern on the LSS, which is gradient-free contrary to the E-modes.

Discovery of the gravitational-wave B-mode signal would demonstrate

decisively that inflation occurred in the early universe and rule out some

competing models.

As mentioned in chapter 2, inflation is presumed to be driven by vacuum energy

associated with an ultra-high energy phase transition. Borrowing the concepts from

high-energy physics, the vacuum energy and phase transition are described by a scalar

potential and an associated particle, the inflaton. The amplitude of the gravitational

wave background and the resulting B-mode signal depend directly on the height of the

63
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inflaton potential and the energy scale of inflation, cf. Eq. (2.59). A measurement of

the amplitude of the primordial B-modes would measure the energy scale of inflation.

The upper range of the predictions for the amplitude of the primordial B-modes

include the 1016 GeV energy scale, which is the GUT scale where the strong, weak, and

electromagnetic forces merge, see section 1.3. If we can detect such a signal, it would

be really revolutionary. We would have the first probe of physics at an energy twelve

orders of magnitude higher than the ones that the Large Hadron Collider (LHC) can

achieve. These high energies mean that CMB polarization measurements may allow us

to get information of the early physics and dynamics of the universe only 10−38 seconds

after the Big Bang.

Simple models of inflation (single-field, slow roll) predict a slight tilt to the spectrum

of fluctuations measured by the CMB, Eq. (2.47). The WMAP measurements estimated

a scalar index ns < 1 as expected in these models. The amplitude of the primordial B-

modes is characterized by the tensor-to-scalar ratio, r, Eq. (2.58), and many single-field

slow-roll models satisfy the relation r ∼ O(1−ns) which, given WMAP’s ns estimation,

predicts r to be of order of 0.1, well within the reach of next generation experiments,

as I describe in the next chapter.

CMB polarization measurements will measure or limit neutrino masses,

and thereby determine the neutrino mass hierarchy.

As mentioned in section 3.3.2, we expect a lensing effect, induced by large scale

structure between last scattering surface and us, which distorts the initial polarization

pattern. This results in converting E- into B-modes to a small extent: the resulting

signal is usually called lensed B-modes, and is important at small angular scales. Its

measurement could constrain the sum of neutrino masses, as well as the dark energy

equation of state w, and potentially reconstruct the projected mass map, e.g. Lewis and

Challinor (84).

Measurements of these lensed B-modes have the potential to measure the sum of

neutrino masses or set sufficiently strong constraints that can rule out some models

for neutrinos. Indeed, these latter contribute today to the total dark matter content

of the universe but, unlike normal cold dark matter, on small scales neutrinos do not

cluster due to their very high velocity ∼ c: this effect is called neutrino free-streaming

and alters the shape of the perturbations power spectrum. As a direct consequence,

neutrinos total mass affects the shape of the deflection field power spectrum, Cddℓ , and

therefore the shape of the lensed B-modes power spectrum, CBB−lens
ℓ . This is illustrated

in the Fig. 4.3 and discussed in Appendix C.
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Figure 4.3: Dependence of Cdd
ℓ on Ωνh2 and w. The y-axis is the derivative of Cdd

ℓ with respect to

these cosmological parameters, and normalized by a fiducial Cdd
ℓ .

Therefore, the larger the sum of the mass of the neutrinos, the more structure forma-

tion is suppressed and the lower the amplitude of the deflection field and consequently

the lensed B-modes. Optical weak lensing is also sensitive to this suppression of large

scale structure, but CMB polarization lensing has a fundamental advantage over galaxy

lensing measurements: the redshift where the main lensing objects are located is much

higher for CMB polarization (zpeak ∼ 2) than for galaxies (zpeak
<∼ 1), and therefore

structure formation is still in the linear regime where theory is more accurate and pre-

dictive.

The effect of lensing potential on CMB intensity anisotropies has now been observed

by several groups, e.g. Das et al. (30) and van Engelen et al. (141), but lensed B-modes

signal is intrinsically more sensitive to the lensing power spectrum, the signal is easier to

interpret since it is purely due to lensing, and foreground contamination is significantly

less of a problem (e.g. point sources are poorly polarized).

From neutrino oscillation experiments, we know that neutrinos have mass, and we

have measurements of the squared differences of the masses of the neutrino species1.

From these values, we know that the heaviest neutrino has at least a 50 meV mass. The

combination of WMAP and large scale structure measurements limit today the sum of

neutrino masses to < 700 meV. CMB polarization measurements have the potential to

1Current results give ∆m2
21 = ∆m2

sol = 7.59+0.20
−0.21 × 10−5 eV2 and ‖∆m2

31‖ ∼ ‖∆m2
32‖ = ∆m2

atm =
2.43+0.13

−0.13 × 10−3 eV2, see e.g. Nakamura and Particle Data Group (97).

65



4. WHY ARE WE GOING AFTER B-MODES?

fractional flavor content

m!
2

!e !" !#

normal inverted

3

2

1 3

1

2

Figure 4.4: The two potential hierarchies for the neutrinos families. Neutrino oscillation experiments
can only have access to the squared of the family masses. Cosmology, and especially the observation of
lensed B-modes, will constrain the total neutrino mass and then will validate one or the other hierarchy.

give competitive and potentially tighter limits on the sum of neutrino mass in the near

future, and they have completely different systematic errors than the laboratory ex-

periments. Theoretically, neutrinos are described as having a hierarchy. The hierarchy

determines the order of the masses with respect to the type of neutrino, as illustrated

in Fig. 4.4. If neutrinos have an inverted hierarchy, then the differences of the mass

squared imply a minimum total mass of 100 meV compared with a minimum of 50 meV

for the normal hierarchy.

Last example but not the least, CMB polarization measurements will test the time

dependence of dark energy (we often consider constrains on the dark energy equation

of state w, as illustrated in Fig. 4.3). CMB lensing measures structures at the highest

redshifts possible with gravitational lensing, since the background light is emitted at

zrec ∼ 1100. CMB lensing is therefore sensitive to the early history of dark energy. If

this latter had a stronger influence than it would for a cosmological constant model as

early as z ∼ 5, then structure formation is suppressed at this epoch and this can be

detected in the B-mode lensing signal. A measurement of the evolution of the dark

energy equation of state w could be obtained by comparing the high redshift CMB

lensing measurements and lower redshift measurements of large scale structure, such as

those from optical weak lensing or galaxy surveys.
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Chapter 5

How to get there? Current and

future status of the field

CMB experiments can be conducted from the ground, high-altitude atmosphere or

space. In this chapter, I will briefly review the requirements that are set for current and

future CMB polarization projects, especially those aiming at observing the B-modes,

and present their main instrumental specifications such as beam, sensitivity, etc.

First, it is worth emphasizing that CMB observations are more and more complex,

using increasingly number of detectors, generating huge data sets more and more difficult

to handle. A lot of instrumental options have been explored, as a result of worldwide

efforts. However, teams currently designing projects would like to know if there are

setups which optimize the detection of the tensor-to-scalar ratio r, or the detection

of the lensing potential. Of course, the optimization of a new generation experiment

should take into account some requirements, such as the presence of astrophysical fore-

grounds between us and the LSS, sky coverage constrained by the specific science goals

the experiment aims at and finally some mandatory control of instrumental systematics

(either hardware or pipeline solutions).

Earth or Space – There is a trade-off to be made in the choice of the experiment

one would like to build to detect primordial or lensed B-modes.

On the one hand, it is clear that ground-based and balloon-borne instruments are

much cheaper and quicker to deploy. Even if ground-based experiments suffer from

atmospheric contamination, they have the advantage of potentially extend the time of

their observation, in addition not to having constraints with respect to their focal plane

size, allowing for many detectors. And they can be adapted (e.g. experimental setups

upgrade, observing strategy optimization) at (almost) any moment.

Balloon-borne, as well as space experiments, have much higher sensitivity for a given

type detectors, i.e. a given noise as measured in the lab. But balloons are limited to
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ground
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Figure 5.1: Ground, balloon and space observatories have different sensitivities, observed sky areas
and costs.

rather short time of integration, on the order of couple of weeks at most, because of the

flight constraints.

Space observatories are limited to rather short time of integration, on the order of

couple of 2-4 years due to the active cryogenic system limitations, especially the finite

volume of on-board cryogenic gas. They are also limited in size and weight, because

of the launcher limitations: this set constraints on the final number of detectors in

the focal plane design, but also on the typical diameters of the optics . Finally, space

experiments are the unique setups which can observe nearly the full-sky, but are usually

the most expensive option.

To put the trade off arguments between Earth and space – except costs – in a nut-

shell, the balance has to be found between a cosmic variance limited experiment (small

fraction of the sky) and a noise limited one (either noisy detectors, or too few of them,

or too large fraction of the sky, etc.).

Optimum sky coverage – If one aims for an initial detection of CMB B-modes

signal, it is most efficient to concentrate all the experiment sensitivity on a as small patch

of the sky as possible, being careful with potential problems such as E-B leakage1. Now,

to have a statistically robust detection of the B-modes, one would not obviously go to

bigger patch sizes. This is illustrated in Fig. 5.2 taken from Errard (39). Left panel

of this figure depicts the r detectable at the 2-σ level as a function of fsky, in the case

of three polarbear experiments which have different sensitivities, as detailed in the

caption. Similarly, the right panel shows the evolution of the error on total neutrino

mass as a function of the observed fraction of the sky. Quantitatively, these curves are

specific to the assumed instrumental setups but can, at least qualitatively, be generalized

to other experiments.

1As mentioned in section 15.6, analysis of a finite patch size on the sky leads to the correlation of
different modes while computing the spherical Fourier transform.
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Figure 5.2: polarbear-i, -ii and -ext are assumed to have respectively a 9.0, 5.2 and 2.5 µK·arcmin
white noise levels on a 2.5% patch on the sky. Beams are assumed to have a Full Width at Half Maximum
(FWHM) of 4 arcmin. Left panel: what is the best fsky for these polarbear instruments in order to
detect the lowest r? The vertical axis shows the detectable r at the 2-σ level, i.e. the solution of the
equation r = 2σ(r), where σ is computed with a Fisher approach, considering a total B-modes signal,

Ctot
ℓ = Cprim

ℓ (r) + η Clens
ℓ , and a white homogeneous noise Cnoise

ℓ , cf. Eq. (5.1). Furthermore, we

consider that the noise level satisfies w−1/2 ∝
√

fsky ∼ √
npix and depict the result for three different

value of η, the fraction of lensing signal: η = {1.0, 0.1, 0.0}. We clearly see an optimal fraction of the sky
which should be observed leading to a detection of a minimal r. But these conclusions depend also on
the ability of delensing and on the instrumental noise level. Right panel: what is the lowest constraint
on neutrino mass (expressed in eV)? I still assume the same scaling for the noise level and the y-axis,
σ (

∑

mν), is computed using a Fisher approach, following Smith et al. (126). I assume ℓmax = 2500
and a fiducial value of Ωνh2 = 5× 10−3. Contrary to the detection of r, it seems that lensed B-modes
detection is optimal for large fraction of the sky, independently of the instrumental sensitivity: this is
partially due to the fact that the reconstruction of the lensing potential needs both large and small scales
informations, and the considered estimator uses information from all T , E and B. All these results do
not take into account any instrumental or sky signal systematic effects.
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To obtain these results I consider that, for a given instrumental setup, the quantity

w−1/2/
√

fsky is conserved1. This corresponds to the conservation of the total number

of hits for a given observation, keeping constant its total time length and the number

of detectors, which leads to

w−1/2 ∝
√

fsky ∝
√
npix. (5.2)

This means that, the bigger is the patch, the noisier will be the final map. We can

understand the behavior of the curves shown in the left panel of Fig. 5.2: as derived in

Appendix C, one can show that the r detectable at 2-σ behaves like

r ∝ 1 + γfsky
√

fsky
, (5.3)

where γ is a positive constant which depends on the lensing signal as well as the noise

level of the experiment, etc. Therefore, for small (resp. large) observed fraction of the

sky, detection of r will be cosmic variance limited (resp. noise limited), i.e.

r @ 2σ ∝ 1
√

fsky
for small fsky (5.4)

∝
√

fsky for large fsky. (5.5)

The σ(r) in this estimation of r is computed using a Fisher approach. We consider the

signal to be the total B-modes, defined as

Ctotℓ ≡ Cprimℓ (r) + η C lensℓ , (5.6)

and consider a white homogeneous noise Cnoiseℓ ∝ w−1 ∝ fsky, cf. Eqs. (5.1) and (5.2).

Between the cosmic variance and noise dominated regimes (Eqs. (5.4) and (5.5)), we

clearly see in the left panel of Fig. 5.2 that the detection of the minimal r is reached

for an optimal fraction of the sky, around 1% in the case of the polarbear-i instru-

ment. In addition, if we are somehow able to delens the detected B-modes, this will

result in a change of the curves’ shape at small fsky (depicted as dashed and dot-dashed

curves in the figure): delensing is simply studied here by modifying the η parameter

and this results in a decrease of the cosmic variance ∝ 1/
√

fsky contribution and there-

fore decreases the optimal sky coverage. This discussion is detailed in the case of the

1w−1/2 is an usual notation corresponding to the sensitivity of the instrument, expressed in
µK·arcmin. Moreover, the noise power spectrum, Nℓ, for an instrument with a given Full Width
at Half Maximum (FWHM) reads

Nℓ = w−1 exp

[

ℓ(ℓ+ 1)
(FWHM)2

8 log(2)

]

. (5.1)

This assumes a white homogeneous noise across the final map.
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polarbear experiment in Appendix C.

The picture changes for an optimization with respect to lensing detection. This is

illustrated in the right panel of Fig. 5.2 where we depict the error on neutrino mass,

σ (
∑

mν), expressed in eV, as a function of the observed sky fraction, fsky. Noise scal-

ing is taken to be the same as before, i.e. w−1/2 ∝
√

fsky, and the computation of

σ is again based on a Fisher approach, following Smith et al. (126). Contrary to the

detection of the lowest tensor-to-scalar ratio r, it turns out that the best constraints

on neutrino mass are obtained for an observation of large fraction of the sky, indepen-

dently on the characteristic noise of the experiment. Even if low fsky leads to a cosmic

variance limited estimation of
∑

mν , large fsky and therefore "noisy" observation keeps

bringing information about lensing. This should be partially due to the way the lensing

estimator is built, see Hu and Okamoto (64) and section C.2.

Frequency coverage, polarized galactic foregrounds – We expect two im-

portant polarized foregrounds, synchrotron and dust, as detailed in chapter 9. The first

signal dominates at low frequencies ( <∼ 80 GHz) and the second one at high frequen-

cies ( >∼ 200 GHz). CMB dominates between these two regimes, around 100-150 GHz.

Different techniques to disentangle CMB from other emissions have been developed,

the so-called component separation techniques, and those usually need the informa-

tion of, at least, three or four distinguished frequency channels, located in the different

foregrounds-dominated spectral regions, in addition to obvious CMB dedicated chan-

nels.

Optimum experimental design – There is a clear need to have a high enough

sensitivity to detect nano Kelvin signals (using big number of detectors, long integra-

tion time, large aperture, etc.) but also a good control of the systematic effects. These

requirements are usually detailed in the new CMB polarization experiments proposals

such as the ones made by The COrE Collaboration (137) or Bock et al. (16). As an

example, among those controls, we can cite the modulation of the incoming polariza-

tion, using a half wave plate and/or at least sky rotation, which helps a lot to reduce

the 1/f noise contamination of the cosmological signal. But this mechanism requires to

not affect the beam positions and shapes, because if this condition is not satisfied, this

could produce dramatic T -B leakage. We introduce a description of similar effects and

detail them in chapter 7.

Current and Future Experimental Efforts – Some of the current and future

projects are summarized in Table 5.1 with their main properties described. One can

find the description of
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Figure 5.3: Sensitivity of current and future experiments, w−1/2, expressed in µK·arcmin, and
scaled by a factor 1/

√

fsky , shown as a function of the expected year of deployment. One can see that
the noise per pixel is decreasing as a function of time and this is mainly due to the use of bigger detector
arrays and sometimes longer integration time.

• the frequency channels: those are necessary for components separation. While

ground-based and balloon-borne experiments are limited by atmosphere in their

choices for the observational frequency bands (see chapter 8), space missions could

use many channels, e.g. COrE, CMBpol, LiteBird, etc. Thus, those can bring

unique informations about, among others, the astrophysical foregrounds scaling

laws, and can give essential knowledge for the small scale experiments.

• the typical angular scale achievable: it constrains the science goals, mainly be-

tween primordial and lensed B-modes, as well as other science goals e.g. cluster

research (as it is the case in particular for ACTpol and SPTpol).

• the observed fraction of the sky: as mentioned before and illustrated in Fig. 5.2,

this quantity is related to the integration depth of the observation, but also set

the largest observable scales for the experiment.

• the sensitivity w−1/2, expressed in µK·arcmin: one can notice that this quantity

increases with time. This is illustrated in Fig. 5.3, where we depict the quantity

w−1/2/
√

fsky, corresponding to the integration depth, as a function of the ex-

pected year of deployment (and discriminating ground-based, balloon-borne and

space experiments). Experiments verify nowadays w−1/2/
√

fsky ∼ 1−5µK·arcmin

and will be ∼ 2× 10−2µK·arcmin for the potential deployments >∼ 2020.

• the detectable r at the 2-σ level and the number of σ for the lensed B-modes signal

detection, both computed using a Fisher approach. On one hand, we can notice
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that the lowest r detectable is decreasing with time, reaching ∼ 10−3 around 2020.

On the other hand, the lensed B-modes should be well characterized in the next

years, likely before ∼ 2015.
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experiment type frequencies beam @ 150 GHz fsky sensitivity detectable r # of σ for ref deploy.
[GHz] [arcmin] [%] [µK arcmin] 95% c.l. lensed BB detection year

BICEP-1 G 100+150+220 36 2 15 0.72 0.7 (135) 2006

Planck S 30+44+70+100+143+ 7 80 30 0.05 3 (136) 2009
217+353+545+857

BICEP-2 G 100+150+220 36 2 3.5 0.01 8 (22) 2010

KEK-Array G 100+150+220 36 2 1.6 0.006 18 (23, 122) 2011

SPTpol G 90+150 1 1.5 6 0.025 14 (15, 91) 2012

polarbear-i G 150 + 220 3.5 2 8 0.025 12 (5) 2012

ABS G 145 30 2 4.5 0.015 7 (98) 2012

ACTpol G 150 1 10 [wide] 20 0.03 7 (99) 2012
0.04 [deep] 3 0.01 96

EBEX B 150+250+410 8 1 14 0.03 4 (102) 2012

SPIDER B 90+145+280 30 8 8 0.02 6 (51) 2013

POLAR-1 G 150 6 0.7 0.5 0.01 85 (76) 2013

polarbear-ii G 90+150+220 3.5 40 5 0.01 50 (134) 2014

PIPER B 200+270+350+600 15 75 ∼ 3 0.007 140 (27) 2015

poiarbear-ext G 90+150+220 3.5 60 3 0.001 100 int. com. 2018

POLAR-Array G 95+150+220 4 1 0.2 0.008 150 (76) 2020

LiteBird S 100+150+220 30 70 2 2× 10−3 110 (63) 2020

45+75+105+135+165
COrE S +195+255+285+315+375 8 70 3 ∼ 10−3 190 (137) 2025-2030?

+435+555+675+795

CMBpol S 30+45+70+100+150 5.6 80 1.5-3.5 ∼ 10−3 200 (16) 2025-2030?
+220+340+500+850

Table 5.1: Summary of the specifications of some current and future CMB B-modes experiments, which can be ground-based (G), balloon-borne
(B) or spatial (S). r detectable, as well as the # of σ for a lensed BB detection, are computed using a Fisher approach, not including systematics or
foregrounds.



Chapter 6

My contribution in the context of

the challenges for new generation

CMB experiments and their data

analysis

This chapter is a transition between the description of the motivations for hunting the

B-modes, see chapters 1 to 4, and the details of my research work in the remainder

of this thesis, see Parts III, IV and V. The goal of this chapter is to introduce the

latter in the context of current challenges for CMB polarization research, both from the

experimental and data analysts point of views.

My PhD studies started in September 2009 and I submitted this thesis in July 2012.

During those three years, I have focused on data analysis projects, from component

separation forecasting for future satellites up to study of some experimental systematic

effects. In parallel, I have been involved in the CMB ground-based experiment polar-

bear. I have especially taken part in the commissioning of the polarbear instrument

in February-March 2010, and analyzed its first data during 1) its engineering campaign

in May-June 2010 and 2) its first observation runs from Chile in April-May 2012.

Following the discussion of the previous chapter, CMB polarization can be observed

from ground or space, and I have had the chance to have an overview of both solutions

and work on projects at different stages: from the conception (COrE, a european satel-

lite project, through my work on optimization framework) to the exploitation of real

data (as a member of the polarbear collaboration). The projects of this PhD are at

the junction between observations, data analysis and new algorithms research.

Section 6.1 summarizes the main current experimental and data analysis challenges.

Sections 6.2 and 6.3 introduce the two important parts of my PhD work, precising how

they contribute to the B-modes quest.
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observation
data analysis

algorithms

hardware

computational 
science

this PhD

Figure 6.1: My PhD projects are at the junction between observations, data analysis and research
for new algorithms. This may be seen as a mid-way point between hardware research and computational
science.

6.1 Current challenges

Systematics & sensitivity

New generation CMB experiments are usually based on two pillars: a high sensitiv-

ity and a control of the systematic effects. Instrumental sensitivity is improved by using

as many photon-noise limited detectors as possible. Currently operating ground-based

instruments have on the order of 103 detectors, and proposed future satellites will have

∼ 5 × 103 - 104. In addition to this number of observing pixels, experiments need a

large enough aperture, i.e. large enough optical throughput, and an as long as possible

integration time, on the order of a couple of years. Such criteria allow observatories to

achieve sensitivities of ∼ 1-10 µK·arcmin in intensity, as detailed in Table 5.1. This level

ensures that the experimental setup is sensitive enough to detect tiny CMB signals: for

example, lensed B-modes are at the ∼ 4-5 µK·arcmin level.

Detecting nano-Kelvin CMB signals, as the B-modes, requires improvements, not

only in detectors and optics, but also more generally in systematic error control. For

instance, a high sensitivity is only useful if one can disentangle CMB signal from other

astrophysical contaminations: consequently, experiments should have, in addition to

CMB channels, a sufficient frequency coverage, necessary for the separation of polar-

ized sky components — optimizing the frequency bands of future nearly full-sky ex-

periments is the purpose of Part IV. Fortunately, many of these systematics have been

confronted, and in most cases mitigated, by many first-generation CMB polarimeters.
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6.1 Current challenges

See Table 6.1 for a description of the important expected systematics, with the corre-

sponding solutions to reduce them. Some of these effects are indeed avoidable thanks to

the experimental design (e.g. ground shield, baffles, re-imaging lenses, etc.), and some

can be corrected during the first stages of the data analysis pipeline (e.g. glitches).

Thermal and electrical gain drifts, 1/f noise, sidelobes, and pointing errors, are already

familiar from previous CMB experiments designed for the observation of total inten-

sity anisotropies. However, for the polarization quest, these effects are becoming more

important as the researched signals are relatively weaker. In addition, a new class of

potential errors arises from the polarimetric fidelity of the optical system, see chapter 7,

which can, among other effects, produce false E- and B-mode polarization signals from

much brighter temperature anisotropy or mix polarization states before detection.

error definition effect solution

differential beam size ∆µ ≡ 2
σ1−σ2
σ1+σ2

∇2T → B optics design + calibration

+ cross linking

differential gain ∆G ≡
g1−g2

2
T → B design + calibration

+ cross linking

ellipticity ∆e ≡
e1−e2

2
with ei ≡

σx−σy
σx+σy

∇2T → B design + calibration

+ cross linking
Beam offsets 2 ∆θ

σ1+σ2
∆T → B design + calibration

+ cross linking
pointing Q, U beams offset ∇E → B calibration,

pointing specification
cross polarization rotation of electric field E,B → E,B calibration using

polarized source
instrumental polarization creation of polarization T → Q,U calibration using

from total intensity unpolarized source
far sidelobes diffraction, scattering leakage from hot sources optical baffling

e.g. sun, moon, galactic plane and calibration
1/f noise detector, readout, striping in map stabilize detectors and readouts,

atmospheric signal drift filter out correlated contamination
bandpass mismatch variation in filters differential response spectral calibration

to foregrounds

Table 6.1: Summary of the expected main systematics for a CMB polarization experiment. A
differential beam width could occur when two beams are Gaussians, but have different beam widths
σ1 6= σ2. A differential gain could occur if two detectors have different gains, i.e. g1 6= g2. In such case,
differencing the signals associated with each antenna of a pixel pair leads to an apparently polarized
signal. If each antenna in a pixel pair produces an elliptically shaped beam, then differential ellipticity
could give rise to an effect similar as differential beam width. The effect of differential beam offset is
caused when the directions of the two beam patterns on the sky are not identical, and couples gradients in
the CMB temperature anisotropy into polarization. Beam systematics induced by differential ellipticity
and beamwidth depend on the second gradient of the underlying temperature anisotropy on scales
comparable or smaller than the beamwidth. Pointing, cross polarization, instrumental polarization will
be discussed in chapters 7 and 15.

Data analysis challenges

Contemporary CMB data analysis requires advanced processing techniques, numeri-

cal algorithms and methods, and implementation of these later. There are many reasons

for that, see e.g. ANR MIDAS’09 (4).
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First, CMB data sets generated by observing experiments are in general very het-

erogenous. This can be due to the complexity of the current superconductor detectors

which can have unexpected behavior, or also due to the fact that glitches can occur in

the time stream, due to cosmic rays or readout jerk. Data, obtained directly from the

instrument, is called time-ordered data (TOD), cf. the typical analysis pipeline shown

in Fig 6.2. It contains information about the map of the sky s(θ, φ) ≡ sp, where (θ, φ)

are spherical coordinates and p denotes a given pixel of the sky. Estimating a map from

observational data is the first important step in CMB data analysis before disentangling

the different sky components, estimating power spectra and constraining cosmological

constants, see Fig. 6.2. In fact, as we have seen in section 3.3 and 3.4, for a comparison

with theoretical models, e.g. the inflationary models, the major informations are con-

tained in the power spectrum of the CMB signal, which is a spatial frequency domain

object. One of the data analysts challenges is to create new tools which can operate in

time, spherical and frequency spaces as well as in between these domains.

Second, time domain measurements and sky signals are contaminated by various

noise e.g. electronic, atmospheric. Moreover the instrumental noise is typically corre-

lated on long time scales (and correlated between detectors, see section 15.3): this is

the so-called 1/f noise, giving power to low-frequency modes. This does not allow for

a simple parallelization approach, i.e. a "divide and conquer" implementation, for the

data analysis since big segments of the data have to be processed simultaneously. Given

a rather limited memory per processor anticipated for the forthcoming supercomputers,

new generation experiments data analysis requires massive parallelization of the codes.

Moreover, noise correlation patterns are unknown ahead of time and has to be deter-

mined from the data themselves, see section 15.3. This has to be sufficiently precise to

permit the best recover of the sky signals. More generally, the whole TOD processing

has to be highly accurate not to affect, bias or remove the informations it encapsulates,

i.e. its cosmological contents.

Third, CMB measurements are usually contaminated by a priori unpredictable lev-

els of instrumental and other systematic effects, e.g. ground-pickup or atmospheric

fluctuations as described in chapter 8. Those have to be first detected in the presence

of dominant noise and later subtracted, again without compromising the cosmologi-

cal and astrophysical sky signals. In addition, I have previously mentioned that the

observed sky is a combination of multiple components, the astrophysical foregrounds.

Those "sky systematics" differ from CMB either because they have different frequency

behavior, spatial or statistical properties and can be separated from the CMB signal.

One can see in Fig. 6.2 the position of the component separation process in a typical

CMB data analysis scheme.

Finally, one of the challenges consists in dealing with the hugeness of CMB data

sets. The new generation of CMB polarization experiments will observe the sky at least
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a few years, using thousands of detectors, each of them sampling the sky as many as

hundred times per second. The forthcoming data sets will soon typically contain tens

and hundreds of billion of measurements1 and reach more than a peta byte.

6.2 Study of a future satellite challenge

A part of my PhD consisted in studying the challenges posed by future nearly full

sky experiments such as the COrE and CMBpol projects, see The COrE Collaboration

(137) and Bock et al. (16). One of these challenges is the optimization of the frequency

bands to render the lowest residuals due to component separation, and to allow for a

detection of the lowest tensor-to-scalar ratio r possible. This research project consisted

in optimizing the focal plane configuration of future nearly full sky experiment, has

been published in Errard et al. (41) and is detailed in Part IV.

The proposed framework is based on a maximum parametric likelihood component

separation and tries to find the best distribution of detectors among available frequency

channels with respect to the detection of primordial B-modes. In addition, we take

into account some hardware limitations such as the finite area of the focal plane or the

total number of detectors available. To estimate the performance of an experimental

configuration, we define three different figures of merit: the lowest r detectable, the

level of residuals and the level of noise after the component separation process.

In Errard and Stompor (40), we extend this work and look for potential fundamental

limitations on the lowest r detectable due to astrophysical foregrounds residuals. We

also generalized the formalism to take into account systematic effects such as calibration

errors and spatial variability of the foregrounds.

These two related works have been published in two papers cited above, and in three

talks2.

6.3 Involvement in an operating ground-based experiment:
hands-on data analysis

I have taken part in the polarbear project for the last three years, having the chance

to work on a working experiment and tackle observational data. Fig. 6.2 shows some of

1We expect an amount of data ∼ 1013 in the case of the polarbear experiment.
2PONT conference in Avignon, France, April 2011;
47th Rencontres de Moriond in La Thuile, Italy, March 2012;
Beyond COrE meeting in Paris, France, June 2012.
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Figure 6.2: Schematic representation of a CMB experiment data analysis pipeline. Blue shaded text
correspond to some of my contributions detailed in Part III, IV and V.



6.3 Involvement in an operating ground-based experiment: hands-on data
analysis

Figure 6.3: The polarbear instrument installed on the Huan Tran Telescope, located at the James
Ax Observatory (5200 meters height), Chajnantor plateau, Atacama desert, Chile. Ground-shielded
experiment near polarbear is the Atacama Cosmology Telescope.

my contributions shown in blue among the steps of a typical analysis pipeline1.

Atmospheric contamination studies (September - December 2009) — My

first project was about the estimation of the expected atmospheric signal in the case

of polarbear. I have developed and implemented a model based on the idea Church

(26): results allowed us to have an idea of the expected patterns of contamination across

our focal plane, as detailed in chapters 8. One of the current challenging projects for

data analysts is now to find an optimal filtering for this contamination, see section 15.5.

Instrument commissioning (February - March 2010) — I developed algo-

rithms based on a parametric maximum likelihood method to study and estimate de-

tectors 1/f noise, using lab measurements taken in Berkeley. I also used the lab data

from the observation of a non-polarized source to estimate the instrumental polarization

due to the cryostat optical system.

1One should of course discriminate two different levels of analysis:

• the quick analysis which can be performed directly in the field, necessary to calibrate the in-
strument, flag the data, and check if the observations are well performed and the data well
registered.

• the heavy analysis which has important computational power needs and aims at gather all the
informations about the telescope (detectors data, noise characterization, pointing, etc.) and
construct the CMB fluctuations maps. On a second step, the power spectra estimation will lead
to the estimation of the cosmological parameters.

Even if the polarbear collaboration has been and is currently working on both approaches, I have
mainly focused my work on the quick analysis library, see chapter 15.
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6. MY CONTRIBUTION IN THE CONTEXT OF THE CHALLENGES
FOR NEW GENERATION CMB EXPERIMENTS AND THEIR DATA
ANALYSIS

Engineering campaign (May - June 2010) — I was in charge of reconstructing

the pointing of the telescope. As written in Table 6.1, pointing errors are one of the main

systematic effects one can expect for CMB polarization experiments, and benchmarks for

the polarbear telescope were on the order of 10 arcseconds error after reconstruction.

This work is detailed in section 15.2. The developed and implemented model gave

satisfying results and is currently used for the polarbear data analysis. Results of

this project have been included in a successful NSF proposal, submitted in July 2010

(AST-1212230).

Quick analysis development (January 2010 - today) — I also participated

to the effort for creating libraries of routines for the quick data analysis. polarbear

collaboration first created the Quicklook library (matlab) and then upgraded it for the

currently used and developed AnalysisBackend (python) library. This routines allow

data analysts to fetch specific observations, and apply to it the first stages of the pipeline

depicted in Fig. 6.2, currently up to the map level.

polarbear science forecasting (September - October 2011) — In parallel

to the PB-1 deployment and operation, the next polarbear instrument, PB-2, has

been developed and will be deployed in 2014. I have been in charge of studying the

science forecasts of this new experiment, comparing it with PB-1. Scientific goals were

the detection of both primordial (estimation of r) and lensed (neutrino masses, w) B-

modes. This work is summarized in Appendix C and results have been published in a

successful NSF proposal for PB-2, submitted in October 2011.

Start of the scientific observation campaign (April - May 2012) — I par-

ticipated to the operation of polarbear, installed in the Atacama desert in Chile, see

Fig. 6.3. The main work of the team in the field consists in operating the telescope,

especially scheduling the observations and performing maintenance tasks. Spring 2012

corresponded to the beginning of the standard observations, so we had also to find the

optimal patches on the sky which could give us a quick access to our scientific goals and

which overlap with other experimental observations, such as Herschel-Atlas, for future

cross correlation. Furthermore, field team is in charge of analyzing, interpreting and

understanding data taken by the instrument, on a daily basis.
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Part III

Potential problems on the road to

B-modes
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I introduce in this Part three different types of systematic effects, among both sky

and instrumental ones. First, in chapter 7, I present the Mueller formalism, practical to

describe the optics in the case of stationary radiation, as it is the case for CMB obser-

vations. This framework is also useful to model some instrumental systematic effects,

e.g. cross- or instrumental-polarization. Second, in chapter 8, I describe what a typ-

ical ground-based experiment could expect regarding the atmospheric contamination,

which is one of the major noises data analysts have to deal with. Third, in chapter 9, I

describe the astrophysical polarized foregrounds, which can be called sky systematics in

the sense that, even with the best CMB experiment ever, they will always be significant

contaminants.
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Chapter 7

Description of some instrumental

systematic effects

Systematics are errors or contaminants in the measurement which cannot be described

as fully-random, or not obviously Gaussian distributed variables. As mentioned in the

previous part, they are one of the biggest challenges for the new cosmological obser-

vations. Typically, as it is the case for future space- or ground-based experiment, as

polarbear, see Part V, observers take a lot of precautions against them, submitting

raw data to a wide variety of consistency checks. There are hardware and software solu-

tions for controlling these effects. Experiments can modulate the incoming polarization

thanks to quasi-opitcal systems, use ground shield to reduce and control ground pickup,

submit detectors to frequent calibration runs. Many of these tests come from common

sense and experimental intuition. Data analysts, on their side, can estimate some of

the systematic contamination and either correct (e.g. filters) or account for them in the

error budget, while extracting science information.

In this chapter I will review the main experimental systematics and introduce the

Mueller formalism which gives us a modeling of the telescope optics in the case of a

stationary light and an useful parametrization of those effects.

7.1 The Mueller formalism

The Stokes formalism describes polarization and intensity with a 4-vector. Operator

acting on this vector, and describing for instance optics, are 4 × 4 matrices, called the

Mueller matrices.

The fully polarized electromagnetic wave at a given time and wavelength can be

fully described by the horizontal and vertical amplitudes, Ex and Ey, and the phase

difference φ between orthogonal components of the electric fields. In addition to these

three parameters, we need an extra parameter p to describe the degree of polarization,
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7. DESCRIPTION OF SOME INSTRUMENTAL SYSTEMATIC
EFFECTS
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Figure 7.1: Poincaré sphere describing the state of polarization of a light beam. Numbers correspond
to specific polarization states depicted in Fig. 7.2. α and β are respectively the polarization angle and
the ellipticity, as defined in Eqs. 7.7 and 7.9.

defined as the ratio between the polarized intensity over the total intensity of a given

beam of light. As a result, four free parameters can describe the polarized light. These

parameters, written I, Q, U and V can be stored in the Stokes 4-vector and defined as

S ≡









I
Q
U
V









≡









〈E2
x + E2

y〉
〈E2

x − E2
y〉

〈2ExEy cosφ〉
〈2ExEy sinφ〉









(7.1)

where brackets 〈 . 〉 indicate that each component is time-averaged assuming that the

radiation is in steady state at the time scale of averaging. By introducing two geo-

metrical parameters, the orientation of polarization α and the ellipticity β, the above

equation can be rewritten in terms of intensity as








I
Q
U
V









=









Ip
Ip cos(2α) cos(2β)
Ip sin(2α) cos(2β)

Ip sin(2β)









+









Iu
0
0
0









(7.2)

where Iu and Ip are the polarized and unpolarized intensity, respectively. The first

component of the Stokes vector can be normalized to one, and therefore








I
Q
U
V









= I









1
p cos(2α) cos(2β)
p sin(2α) cos(2β)

p sin(2β)









(7.3)

with

p ≡
√

Q2 + U2 + V 2

I
=

Ip
Ip + Iu

(7.4)
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7.1 The Mueller formalism

Figure 7.2: Some specific Stokes vectors, with the corresponding polarization patterns drew in red.
These six different states can also be seen on the Poincaré sphere, see Fig. 7.1.

p is called the degree of polarization: p = 1 is the case of a fully polarized light and

p = 0 corresponds to an unpolarized one. Therefore we have

0 ≤ p ≤ 1, (7.5)

and this translates in the relation between the Stokes parameters

I2 ≥ Q2 + U2 + V 2, (7.6)

where the = and > signs correspond to completely and unpolarized/partially polarized

light, respectively.

The angle α is the polarization angle in a coordinate system, defined as

α ≡ 1

2
arctan

(

U

Q

)

(7.7)

and the angle β is the ellipticity, defined as

β ≡ arctan

(

Ey
Ex

)

(7.8)

=
1

2
arcsin

(

V

Ip

)

(7.9)

Non-zero β indicates that the light is elliptically polarized, and the polarization state

leaves the (xOy) plan in Fig. 7.1. In the case of the CMB, the V -component of the

Stokes vector is often taken to be zero because the CMB radiation is expected to be

linearly polarized, see chapter 3. Some examples of Stokes vectors are illustrated on

Fig. 7.2.
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7.2 General telescope optics modeling

In general, the polarization state can be changed by modifying the amplitude, the phase

or by rotating it. A polarized beam with a given polarization state, while propagating

through one or more polarizing elements, may acquire a new polarization state. Input

beam is characterized by a Stokes vector Sin and the output beam by a vector Sout.

The assumption is made that Sin and Sout are linearly related by a 4×4 transformation

matrix M, known as the Mueller matrix, which represents the polarizing elements such

that

Sout = M Sin (7.10)








Iout
Qout
Uout
Vout









=









mII mIQ mIU mIV

mQI mQQ mQU mQV

mUI mUQ mUU mUV

mV I mV Q mV U mV V

















Iin
Qin
Uin
Vin









(7.11)

Only two polarizing elements are needed to change the three parameters of the polar-

ization state (i.e. Q, U , V or equivalently the orthogonal amplitudes Ex, Ey and phase

φ). The amplitude can be changed by using a polarizing element, also called a polarizer.

Similarly, the phase of a radiation beam can be changed by a retarder, e.g. a wave plate.

Finally, the polarization ellipse can be changed by rotation using a component called a

rotator.

7.2.1 Typical Mueller matrices describing a new generation CMB ex-
periment

A typical new generation CMB experiment is expected to have, in addition to mirrors

and/or lenses, a retarder like a rotating Half-Wave Plate (HWP) and antenna-coupled

detectors, equivalent to a grid in front of total power detectors: it filters incoming

linearly polarized radiation. This type of optical system is a good description of some

current and future CMB B-modes experiments, e.g. polarbear, EBEX, COrE, EPIC,

etc.

We can easily determine the Mueller matrix of a single HWP without taking into

account the effects due to reflexions and interferences, e.g. Matsumura (90). We use

here Mueller matrices to write the output signal detected by a grid detector, in the

approximation of normal incidence on the HWP. Let us consider an input Stokes vector

Sin of radiation propagating along the z−axis, incident on the polarimeter. The output

Stokes vector Sout will be given by

Sout ≡ H Sin (7.12)

≡ G(px, py) R(−2ρ) Γ(δ) R(2ρ) Sin(αin, βin, Pin) (7.13)

where
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7.2 General telescope optics modeling

• H is the Mueller matrix describing the global optical system,

• Sin = Sin(αin, βin, Pin) corresponds to the Stokes vector of the incoming light,

• G(px, py) describes the detector antenna which is the Mueller matrix of a linear

polarizer,

• R(2ρ) is a rotation matrix — here ρ is the HWP angle,

• Γ describes a retarder, for instance a HWP, and is parametrized by δ.

The rotation matrix is

R(θ) ≡









1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1









, (7.14)

and the Mueller matrix for a linear polarizer is given by

G(px, py) ≡
1

2









p2x + p2y p2x − p2y 0 0

p2x − p2y p2x + p2y 0 0

0 0 2pxpy 0
0 0 0 2pxpy









, (7.15)

where px,y are the projection of a unitary vector along the antenna (or the grid) on

a chosen cartesian coordinate system. The retarder changes the polarization state of

a polarized beam by introducing a phase shift between the orthogonal components of

the electric field. Wave plates materials include calcite, quartz, sapphire or synthetic

retarders. For propagation parallel to the optical axis, the refractive indices are identical

and the phases of the beam components are unaffected. However, for beam propagation

perpendicular to the optical axis, the phase difference δ, also called the retardance, for

a wavelength λ = c/ν and a thickness t is given by

δ ≡ 2πν

c
(ne − no) t, (7.16)

where ne and no are respectively the extraordinary and ordinary refraction indices.

When an unpolarized beam propagates through a wave plate, the emerging beam re-

mains unpolarized. This shows that the ordinary- an extraordinary-rays of the unpo-

larized beam are independent of each other. Wave plates, therefore, can only affect

completely or partially polarized light. It can be shown, e.g. Collett (28), that the

Mueller matrix of the birefringent optic is defined as

Γ(δ) ≡









1 0 0 0
0 1 0 0
0 0 cos(δ) − sin(δ)
0 0 sin(δ) cos(δ)









. (7.17)
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Figure 7.3: Wave plates have the property that along the x−axis – called the fast axis – the x
component of the field experiences a phase shift of +φ/2 and, similarly, along the y−axis – called
the slow axis – the y component experiences a phase shift of −φ/2. We see on this illustration the
configuration for the wave plate. In the case of a Half-Wave Plate (HWP), we have φ = π.

A perfect HWP, illustrated in Fig. 7.3, is obtained for δ = π. Therefore, the global

Mueller matrix H for the optical system, Eq. (7.13), containing a rotating half-wave

plate and a linear polarizer is given by

H ≡ G MHWP (7.18)

where

MHWP ≡ R(−2ρ) Γ(δ) R(2ρ) (7.19)

=









1 0 0 0
0 cos2 (2ρ) + cos (δ) sin2 (2ρ) (1− cos (δ)) cos (2ρ) sin (2ρ) sin (δ) sin (2ρ)
0 (1− cos (δ)) cos (2ρ) sin (2ρ) sin2 (2ρ) + cos (δ) cos2 (2ρ) − sin (δ) cos (2ρ)
0 − sin (δ) sin (2ρ) sin (δ) cos (2ρ) cos (δ)









,

which leads to, for a perfect HWP, i.e. δ = π to

MHWP =









1 0 0 0
0 cos (4ρ) sin (4ρ) 0
0 − sin (4ρ) cos (4ρ) 0
0 0 0 1









. (7.20)
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7.3 Modeling of selected systematics

Using the definition of G, cf. Eq. (7.15), Eq. (7.18) reads

H =
1

2









p2x + p2y (p2x − p2y) cos (4ρ) (p2x − p2y) sin (4ρ) 0

(p2x − p2y) (p2x + p2y) cos (4ρ) (p2x + p2y) sin (4ρ) 0

0 2pxpy sin (4ρ) −2pxpy cos (4ρ) 0
0 0 0 −2pxpy









. (7.21)

This matrix models the optical system of a typical CMB polarization experiment: given

the incoming Stokes vector into the telescope, e.g. CMB radiation, we can predict the

expected light properties at the detectors level.

7.2.2 TOD modeling

Because detectors are usually total power detectors, they only measure the total inten-

sity of Sout. Consequently, assuming that the V component is zero, the detector signal

is a linear combination of I, Q and U :

dt =
1

2

[

(p2x + p2y)I + (p2x − p2y) (cos (4ρ)Q− sin (4ρ)U)
]

. (7.22)

As explained in chapter 15, analyzing the detectors data consists in "inverting" Eq. (7.22),

that is to say estimating the Stokes parameters I, Q and U for each pixel p on the sky

using the only information we have: time stream dt of each detector. Of course, we

have to adapt this model to reality, different from the one given in Eq. (7.22) which

only works for idealistic optics. I describe in the next section some of the systematic

effects we could expect, giving rise to additional terms in the matrix H.

7.3 Modeling of selected systematics

In this section, I will review and describe, in the frame of the Mueller formalism, the

main systematics which can affect the new generation and future CMB polarization

experiments. Some of them have been already mentioned in Table 6.1.

7.3.1 Calibration-related systematics

Gain calibration error

Gain miscalibration of the instrument will give rise to a modification of the amplitude

of the time stream dt, which is a combination of I, Q and U , as

dt ≡ dt(I,Q, U) → Ω dt, (7.23)

where dt is a vector containing all the detectors data, e.g. I, Q, and U , at a given time

t. Ω is a diagonal matrix, which elements ω are equal to 1 in the idealistic case. Miscal-

ibration effect could be translated into the transformation H → Ω H. Moreover, one
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EFFECTS

may have to take into account for the data analysis that calibration factors are usually

time dependent, because of changes in the observational environment or variations in

the detectors electronic system.

Beam systematics

In reality, the I, Q and U describing the incident light beam on the instrument

are convolved by the optical beam of the telescope, i.e. Sin → Sbeam ≡ beam ∗ Sin.

Formally, Eq. (7.13) could be written as

Sout = H Sbeam (7.24)

=

∫

r′
dr′ H B(r− r′) Ssky(r

′), (7.25)

where B(r− r′) encapsulates all the information about the beam shape of the detectors

through the telescope optics and r is a unitary 3-d space-vector.

To understand potential issues posed by beam systematics, let us consider a simple

example: while observing over one given pixel on the sky, a polarized-sensitive detector

will measure a signal amplitude d1. In the case of a perfect instrument, because of the

sky rotation, when the same detector will come back to this pixel, it will measure a

signal amplitude d2 = d1 if the sky is not polarized (in contrast, if the pixel is polarized

then d2 6= d1). However, in the case of a not perfect instrument, we can have d2 6= d1

for an unpolarized pixel if the beam is not well characterized. The measured signal

is the integrated true sky signal over the projected beam on the sky, which can be

different at the two different time 1 and 2 if, for instance, the beam has an unmeasured

elongation along one specific axis and the sky has been rotated between the two different

observations.

To summarize, if the beams are not well characterized, then a difference in the sig-

nal amplitude on the same sky pixel would be interpreted, in the analyzing process, as

polarization.

Pointing systematics

If the detector does not really point in the direction as characterized by the observers,

differences of signal for several attack angles of a sky pixel could be interpreted as a

spurious polarization signal. For the ground-based CMB experiments in addition to

the potential azimuth and elevation encoder issues, gravity plays a role in affecting the

flexure of some parts of the telescope, and leads to errors which are not isotropic on the

sky. Paragraph 15.2.3 will describe a pointing reconstruction modeling. This effect can
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7.3 Modeling of selected systematics

be included in the pointing matrix, usually written A which is used in the global data

modeling

dt = Atp sp + nt, (7.26)

where dt is the data vector in the time domain, sp is the sky signal of the pixel p (this

is what we are usually looking for) and nt is the noise. The pointing matrix Atp can be

interpreted as a projector between pixel- and time-domains. We will see in section 7.4

how Eq. (7.26) can be generalized to include the Mueller matrices describing optical

system and systematics.

7.3.2 Optical-related systematics

I present in this section how one can derive Mueller matrices in order to model system-

atic effects such as cross-polarization or instrumental polarization.

From Jones to Mueller formalism

In contrast to the Mueller formalism, Jones formalism describes the state of light

with only two components, its electric field i.e.

E =

[

Ex
Ey

]

. (7.27)

Let us define the Î, Q̂, Û and V̂ operators as

Î ≡
[

1 0
0 1

]

= 1 (7.28)

Q̂ ≡
[

1 0
0 −1

]

= σ̂3 (7.29)

Û ≡
[

0 1
1 0

]

= σ̂1 (7.30)

V̂ ≡
[

0 −i
i 0

]

= σ̂2, (7.31)

where the σ̂i matrices are the Pauli matrices. For any operator Ô ∈
{

Î, Q̂, Û, V̂
}

listed

above, the corresponding Stokes parameter O ∈ {I,Q, U, V } is given by

O = ET Ô E. (7.32)

This expression therefore relates Jones (based on E) and Mueller formalism (using the

four different O).
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Cross-polarization

A device that cross-couples one polarization will transform unprimed Jones vectors

to primed ones as

E′ ≡ ĈJ E, (7.33)

such that
[

E′
x

E′
y

]

≡
[ √

1− ǫ −√
ǫeiψ√

ǫe−iψ
√
1− ǫ

] [

Ex
Ey

]

, (7.34)

where the particular form of ĈJ is chosen to make it unitary. This corresponds to a

rotation of the electric field. To calculate the effect of cross-pol on the measurement of

a Stokes parameter, described by the operator Ô, the following construction, similar to

Eq. (7.32), has to be evaluated

O′ = ET Ĉ
†
J Ô ĈJ E. (7.35)

This gives the output Stokes parameter O′ obtained from the input Stokes parameter

Ô. Using Eq. (7.35) and the definition of Î, Q̂, Û and V̂ in Jones space, we are able to

compute the Mueller matrix ĈS modeling the cross-polarization:

ĈS =









1 0 0 0

0 1− 2ǫ −2
√

(1− ǫ)ǫ cos(ψ) −2
√

(1− ǫ)ǫ sin(ψ)

0 −2
√

(1− ǫ)ǫ cos(ψ) 1− ǫ(1 + cos(2ψ)) −ǫ sin(2ψ)
0 −2

√

(1− ǫ)ǫ sin(ψ) −ǫ sin(2ψ) 1− ǫ(1− cos(2ψ))









.

(7.36)

Instrumental-polarization

Instrumental polarization is caused by oblique light reflection on surfaces with finite

conductivity. It corresponds to the leakage from I into Q, U and V . Similarly to

Eq. (7.34), this effect can be modeled as

[

E′
x

E′
y

]

≡
[

g1 0
0 g2e

iφ

] [

Ex
Ey

]

, (7.37)

where g1, g2 are two different gains and φ is an additive phase. The above Jones matrix

has been written in a specific basis such that instrumental polarization axis lies along

the axis defined by the matrix basis. Following the same reasoning leading to Eq. (7.36),

the Mueller matrix describing instrumental polarization, ÎP, is given by

ÎP ≡ ÎP(g1, g2, φ) =











g21+g
2
2

2
g21−g22

2 0 0
g21−g22

2
g21+g

2
2

2 0 0
0 0 g1g2 cos(φ) −g1g2 sin(φ)
0 0 g1g2 sin(φ) g1g2 cos(φ)











. (7.38)
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One interesting thing to note is that Q and U do not mix. This only happens because

the axis of the instrumental-polarization were assumed to be along the basis in which

Q and U are defined.

De-polarization

Depolarization effect can be seen as the contrary of instrumental polarization: it

corresponds to the leakage from p ≡
√

Q2 + U2 + V 2 to the unpolarized intensity Iu,

cf. Eq. (7.2), and can be written as an absorption of the polarization signal i.e. p→ ξp,

with ξ ≤ 1.

Thermal quadrupole pattern onto the HWP

Let assume that the Half-Wave Plate is smoothly rotating at a frequency fHWP .

Having a quadrupole pattern of temperature onto this plate will give rise to an extra

polarization-like signal in the time stream. In fact, one can see in Eq. (7.22) that all the

polarization information, i.e. Q and U , is modulated at the frequency 4fHWP . Having a

quadrupole anisotropy in temperature or intensity onto the HWP will create a spurious

polarization signal, with an amplitude equal to the one of the temperature quadrupole

pattern on the HWP.

7.3.3 Other systematics

Cross-talk

Contrary to the previous effects, this one is not optical. Cross-talk is the con-

sequence of having correlated electronic noises between different detectors/channels.

This is mostly due to the fact that usually several detectors use the same or close wires

and readout systems.

Scan-Synchronous effects

We define a scan synchronous effect as any signal that does not average down over

the duration of the observation and which appears in the TOD as harmonics of the

scan frequency. Those signals typically arise from a geometry that is external to the

experiment or optics. For instance, far sidelobes response to the Sun, the Moon or the

galactic plane will produce a scan fixed pattern. Thus the optical system needs to have

a very high degree of off-axis rejection to these sources of emission. Solar heating or

ground pickup can also give a scan-synchronous signal.
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Figure 7.4: A realization of a single antenna time stream ((px, py) = (1, 0)), modeled using
Eq. (7.41). I consider a scan frequency fscan = 0.5 Hz and other assumptions for the incoming sky
signal are given in Eqs. (7.42), (7.43) and (7.44).

Thermal drifts

Temperature drifts in the optics can produce time-varying optical signals on the

detectors due to variations in thermal emission. To first order, this largely unpolar-

ized signal is removed by the common-mode rejection of the detector pair difference.

But since this filtering is not perfect, the temperature of the emitting optics must be

sufficiently stable, thanks to optimized cooling system. Temperature fluctuations of

the focal plane also produce false bolometer signals which mimic optical power. These

fluctuations could be removed by differencing detectors — to the extent that pairs of

detectors are matched.

7.4 Summary: TOD modeling including two important sys-
tematics

A bolometer, which is a total power detector, will measure Iout = Iout(r, t, ν), the

first component of Sout. Given Eq. (7.21), considering only cross- and instrumental-

polarization effects, cf. Eqs. (7.36) and (7.38), assuming that Vin = 0 and a perfect

98



7.4 Summary: TOD modeling including two important systematics

Figure 7.5: Left panel: effect of changing g1 on the time stream of a single antenna with (px, py) =
(1, 0). I use Eq. (7.41) to model the optics of the telescope, and assume that g2 = 1, ǫ = ψ = φ = 0 (no
cross-polarization). Horizontal cut at g1 = 1 corresponds to the time stream shown in Fig. 7.4. Right
panel: same as left panel but showing variations of the cross-polarization parameter ǫ. I assume that
HWP is fixed, ρ = π/3, that there is a related phase of ψ = π/4 and some instrumental polarization
g1 = 0.5, g2 = 1, φ = 0.

HWP, i.e. δ = π, we get

Iout =
∑

i

(Htot)0i S
i
in (7.39)

≡
∑

i

(H ·Cp · Ip)0i S
i
in (7.40)

=
Iin
2

{

(p2x + p2y)(g
2
1 + g22)+

(p2x − p2y)(g
2
1 − g22)

[

(1− 2ǫ) cos(4ρ)− 2
√

(1− ǫ)ǫ cos(ψ) sin(4ρ)
]}

+
Qin
4

{

(p2x + p2y)(g
2
1 − g22)

(p2x − p2y)(g
2
1 + g22)

[

(1− 2ǫ) cos(4ρ)− 2
√

(1− ǫ)ǫ cos(ψ) sin(4ρ)
]}

+2g1g2
(

p2x − p2y
) Uin

4

{

−2
√

(1− ǫ)ǫ cos(4ρ) cos(ψ − φ)

+ [1− ǫ (1− cos(2ψ − φ))] cos(φ) sin(4ρ)} , (7.41)

in which expression, as written in Eq. (7.25), S i
in are the true sky Stokes parameters

convolved with the beam function of the experiment.
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7. DESCRIPTION OF SOME INSTRUMENTAL SYSTEMATIC
EFFECTS

To illustrate Eq. (7.41), let us assume that the input Stokes parameters satisfy

Iin(t) ≡
8
∑

n=1

A(I)
n cos

(

2πnfscant+ φ(I)n

)

(7.42)

Qin(t) ≡
8
∑

n=1

A(Q)
n cos

(

2πnfscant+ φ(Q)
n

)

(7.43)

Uin(t) ≡
8
∑

n=1

A(U)
n cos

(

2πnfscant+ φ(U)
n

)

, (7.44)

where A
(X)
n are random amplitudes in arbitrary units, fscan is the scan frequency and

φ
(X)
n are random phases. Moreover, I assume that A

(Q,U)
n ∼ O

(

A
(I)
n /10

)

. Fig. 7.4

shows a realization of a time stream for a single antenna ((px, py) = (1, 0)) of the focal

plane, assuming no systematics (g1 = g2 = 1, φ = ψ = ǫ = 0). This case corresponds to

Eq. (7.22), in the case where ρ = constant = π/3 (variations of the signal are only due

to the telescope scanning). Fig. 7.5 shows the same simulated noiseless time stream,

assuming a fixed HWP (ρ = π/3) and including variations of cross- and instrumental-

polarization parameters:

• g1 variations keeping g2 = 1 and ǫ = ψ = φ = 0 in the left panel

• ǫ variations keeping g1 = 0.5, g2 = 1, ψ = π/4 and φ = 0 in the right panel.

Modifications of both cross- and instrumental-polarization parameters in the time streams

are not easy to interpret. However, large values of g1 lead to larger amplitude of the time

stream, see left panel of Fig. 7.5: this comes from the fact that px is aligned with the

assumed direction for g1, cf. Eq. (7.37). The effect of cross-polarization amplitude, ǫ,

is a bit similar to the previous variations, but can also imply small phase shift, depend-

ing on the other assumptions about instrumental polarization. In any case, cross- and

instrumental-polarization clearly create spurious polarization signal in the time stream,

which can potentially contaminate the encapsulated cosmological informations.

We will see in section 15.4 how it is possible to estimate those parameters, i.e. mainly

ǫ, g1 and g2, from a noisy time stream and using a parametric maximum likelihood

approach.
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Chapter 8

Atmospheric contamination

Section 8.1 briefly introduces the problems induced by atmosphere. After a succinct

description of the atmospheric emission in section 8.2, I describe the turbulence mech-

anism and its models as assumed in the following computation, see section 8.3. Finally,

in section 8.4, I present some of the results as obtained here and their conclusions.

8.1 Introduction

Observation of the CMB temperature and polarization can be performed from the

ground using specific frequency bands called "windows", for which atmosphere is almost

transparent to electromagnetic waves. However, atmosphere appears to be the warmest

body along the line of sight of the ground-based experiments. Water vapor molecules

radiate at radio and millimeter wavelengths, see e.g. Fig. 8.1 showing the spectral emis-

sivity of those molecules. These latter are also involved in turbulent processes, driven

by complex mechanisms which depend on the properties of the atmosphere above a

given observation site. This turbulence results in correlations between detectors both

temporal and spatial. Indeed, the atmospheric signal in instantaneous measurements of

a ground-based experiment as taken by two different detectors as well as the noise in the

measurements of the same detector undertaken at different times are both expected to

be correlated, with the correlations in the latter case depending on the scan strategy and

the wind. If treated as an additional noise-like component, atmospheric contamination

results in an important additional 1/f noise in a time stream of any specific detector,

but also decreases a number of statistically independent measurements as made by a

single focal plane. Alternately, at least under some assumptions, e.g., whenever the scan

speed is much larger than the wind speed, atmosphere can lead to the creation of nearly

scan synchronous signals. Though atmospheric signal is expected to be largely non-

polarized optical systematics such as instrumental polarization or imperfect half-wave

plates, see chapter 7, can turn it into polarized signals. Atmosphere can therefore be
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8. ATMOSPHERIC CONTAMINATION

Figure 8.1: Left panel: atmospheric transmittance for the Cedar Flat (CF) site, light grey, and
for the Chilean site, dark grey. Right panel: sky brightness temperature in Kelvins for an elevation of
60 deg. From Arnold (6).

considered as one of the most insidious sources of systematic effect. Nowadays, because

of its complexity, its varying and poorly known behavior, atmosphere is removed by

data analysts using filters based on effective models such as Lay and Halverson (79).

More precisely, turbulence dissipates energy at unknown scales and have properties

depending on e.g. the observation site (dryness, air density, etc.) and on the time of

the observation (temperature, pressure, etc.). Moreover, additional wind shears atmo-

spheric structures: all those factors make the modeling arduous. However, in the case

of a given experimental setup (focal plane, scan strategy, etc.), some assumptions can

be made and a model implemented. In order to obtain some insights into role and

properties of the atmospheric signals I have developed a numerical code which aims at

simulating the atmospheric contamination, in particular the induced time-dependent

correlation between detectors.

8.2 Atmospheric absorption and emission

Atmosphere is a medium absorbing and emitting radiation in the microwave frequency

range, especially due to the excitation of rotational modes of water vapor molecules, at

183 GHz, and molecular oxygen, at 117 GHz, see e.g. Spinelli et al. (128). Note that

throughout this chapter, I assume that atmosphere only emits unpolarized light – note

that this latter can be transformed into linear polarized radiation due to instrumental-

or cross-polarization effects1. Ground-based and balloon-borne experiments frequency

1Hanany and Rosenkranz (60) were the first to point out that the main atmospheric polarized
contaminant is the circularly polarized Zeeman emission of molecular oxygen (O2). I consider that the
discussed experiments are not sensitive to V -modes but we could still observe a leak of V into Q, U in
the case of a non-perfect experimental setup.
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8.2 Atmospheric absorption and emission

Figure 8.2: Atmospheric transmittance between 50 and 300 GHz, as computed by the online software
at almascience.nrao.edu, based on ATM library (100), for different PWV at the Chajnantor plateau.

bands are chosen to avoid those emission lines, but they are still affected by the contin-

uum emission from the combined action of the extended tails of other emission lines at

higher frequencies.

It is usual to model the atmosphere as a grey body, such that the atmospheric

emission in the Rayleigh-Jeans regime, cf. Eq. (3.3), reads

Iatm ∝ ν2 Tatm (1− κ) (8.1)

∝ ν2 TRJ , (8.2)

where κ ≡ e−τA is the transmission coefficient, τ - the optical depth, A - the air mass1

(A ∝ 1/ sin(el) for el >∼ 30 deg) and Tatm - the atmosphere temperature. The quantity

TRJ , defined as

TRJ ≡ Tatm
(

1− e−τA
)

, (8.4)

1Opacity (or optical depth) τ encodes how the atmosphere attenuates transmitted signals and
radiates as a grey body. The specific intensity Iin(ν) of a cosmic signal transmitted through the
atmosphere is decreased to Iout(ν) such that

Iout(ν) = Iin(ν)e
−τA. (8.3)
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Figure 8.3: A detector of the focal plane observes along a vector r̂s (line of sight), defined in spherical
coordinates φ and θ (equivalently azimuth and elevation).

is the equivalent Rayleigh-Jeans temperature of the atmosphere.

We define the Precipitable Water Vapor (PWV), expressed in mm, as the amount

of water vapor in the atmosphere contained in a vertical column of unit cross-sectional

area above a given site extending between two given levels. The PWV can be related

to the temperature TRJ , defined in Eq. (8.4), following the ATM software (100),

TRJ ∼ (6.0× PWV[mm] + 3.5)K. (8.5)

The effect of PWV variations on atmospheric transmission is illustrated in Fig. 8.2,

around 150 GHz and as predicted for the ALMA site.

8.3 Atmospheric turbulence, modeling

In addition to its overall intensity Iatm, inhomogeneities in the atmosphere emission,

due to turbulence along the line of sight, are encoded in the observations when the

telescope is scanning across the sky. As mentioned at the beginning of this chapter, those

correlations are difficult to model because of their dependence on poorly characterized

atmospheric status. In paragraphs 8.3.1 and 8.3.2 are introduced two main models

describing the expected atmospheric contamination for current CMB experiments.

8.3.1 Church model

The model described in Church (26) considers the atmosphere as a continuum medium

that evolves as one moves up away from the telescope. Turbulence is assumed to be
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8.3 Atmospheric turbulence, modeling

Figure 8.4: Assumed Gaussian beam of a detector, as described by Eqs. 8.10 and 8.11. The waist
of the beam, w0, is defined as the size of the beam for z = 0. For large z, w(z) has a slant asymptotic
with slope θb.

described by a Kolmogorov power law, i.e.

P (‖k‖) ∝ ‖k‖−γ , (8.6)

where k is the three dimensional wave number. A typical distance L0 is introduced to

describe the typical scale of the turbulence.

In the following descriptions, we use the geometry depicted in Fig. 8.3. Contrary

to the formalism used in Church (26), which is expressed in cartesian coordinates, I

present the model using spherical coordinates, which are more suitable for scanning

experiments.

As detailed in the following paragraph, the atmosphere contribution to the antenna

temperature from a given point is proportional to the effective area of the telescope as

seen from that point. For the moment, no assumptions are done on the experimental

level: a detector of the focal plane simply observes along a vector r̂s (this is the line of

sight), defined in spherical coordinates by φ and θ, equivalently azimuth and elevation.

8.3.1.1 Water vapor distribution, atmosphere temperature, turbulence

It is usual, in observational cosmology, to switch from intensity (in W.Hz−1.m−2.sr−1)

to antenna temperature (in Kelvins): as we have seen in Eq. (8.4), both quantities are

proportional in the Rayleigh-Jeans approximation. The experiment we consider in the

following is an imager measuring a total intensity in Kelvins. Let us consider that this

latter has a beam, related to an effective area B, pointing in a given direction r̂s. The

contribution dTant to the antenna temperature, of a small element dV of atmosphere

located at r, is given by

dTant(r) = B(r̂s, r)× α(r)× Tphys(r)×
dV

r2
, (8.7)
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8. ATMOSPHERIC CONTAMINATION

where α(r) is the atmospheric absorption or opacity coefficient1 and Tphys(r) is the

physical temperature of the given volume of atmosphere. Notice that Eq. (8.7) is not

homogeneous and a factor λ−2 (λ being the wavelength of observation in meters) should

be in front of the r.h.s. term. All the following equations do not include this factor.

First, it is convenient to assume that this latter can be written as in the adiabatic case,

i.e. the temperature depends linearly on the altitude z,

Tphys(r) ≡ Tphys(z) = T0

(

1− z

zatm

)

, (8.9)

with T0 the temperature in Kelvins at the ground level and zatm a typical height which

depends on the observation site.

Second, the effective area of the beam is assumed to be Gaussian such that, for a

monochromatic detector,

B(r̂s, r) =
2λ2 |̂rs · r|2
πw2(r̂s · r)

× exp

(

−2(r2 − (r̂s · r)2)
w2(r̂s · r)

)

, (8.10)

where

w(r̂s · r) = w0

√

1 +

(

λ× r̂s · r
πw2

0

)2

, (8.11)

with w0 the beam waist given by w0 ≡ λ/(π × θb). θb is the beam opening angle. The

geometry of this type of beam is depicted in Fig. 8.4. Note that for large distances from

the telescope, i.e. for |̂rs · r| ≫ 1, w(r̂s · r) has a slant asymptotic with slope θb.

8.3.1.2 Analytical expression for the auto- and cross-correlation between
detectors

General expression

Let us assume that the direction r̂s depends on time (telescope line of sight is driven

by the scan strategy). Using Eq. (8.7), Tant(t) can be written as

Tant(t) ≡ Tant(r̂s(t)) =

∫

dr B(r̂s(t), r)× α(r)× Tphys(r). (8.12)

1We set the opacity τ defined before as

τ =

∫ R

0

α(r)dr, (8.8)

where R is the total path length through the atmosphere.
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8.3 Atmospheric turbulence, modeling

Assuming the stationarity in time of the atmospheric contamination, the autocorrelation

for a single detector between two different times is defined as

C(τ) ≡ 〈Tant(t)Tant(t+ τ)〉 (8.13)

≡ 〈Tant(r̂s(t))Tant(r̂s(t+ τ))〉 (8.14)

=

∫∫

drdr′B(r̂s(t), r)B(r̂s(t+ τ), r′)×A(r, r′)× Tphys(r)Tphys(r
′) (8.15)

with A(r, r′) ≡ 〈α(r)α(r′)〉. More generally, the cross-correlation Cij(τ) for any τ

between two detectors i and j reads

Cij(τ) ≡ 〈T (i)
ant (t)T

(j)
ant (t+ τ)〉 (8.16)

≡ 〈Tant(r̂ (i)
s (t))Tant(r̂

(j)
s (t+ τ))〉 (8.17)

=

∫∫

drdr′B(r̂
(i)
s (t), r)B(r̂

(j)
s (t+ τ), r′)×A(r, r′)× Tphys(r)Tphys(r

′). (8.18)

It has to be noticed that the only time dependence in Eq. (8.18) is encoded in the

scan strategy r̂s. This is only true if no wind is assumed. As it will be described

in the next paragraph, this latter will affect the correlation term 〈α(r)α(r′)〉. In ad-

dition, quantities in Eq. (8.18) depend on the atmosphere properties, hidden in the

〈α(r)α(r′)〉 × Tphys(r)Tphys(r
′) term, and on the experimental design and operation,

included in the B(r̂
(i)
s (t), r)B(r̂

(j)
s (t+ τ), r′) term.

Correlation induced by atmosphere

In Eq. (8.15), I reduced the correlation 〈 · 〉 between two given points r and r′ in

the atmosphere to the 〈α(r)α(r′)〉 term. Fluctuations in α as the atmosphere drifts

through the beam of the telescope cause temporal varying contamination in the observed

brightness temperature. We follow Church (26) and assume that

〈α(r)α(r′)〉 ≡ χno st(r, r
′)× χst(r, r

′) (8.19)

≡ χno st(‖r− r′‖)× χst(z + z′) (8.20)

First, χno st is the non-stationary part of the correlation, effective for lengths satisfying

|r− r′| <∼ L0 and can be assumed Gaussian, i.e.

χno st(r, r
′) ∝ exp

(

−‖r− r′‖2
2L2

0

)

. (8.21)

This term is qualified of non-stationary because of the effect of the wind on it, as

introduced after. As depicted in Fig. 8.5, one can show that this term is nearly equivalent

to Kolmogorov turbulence given by

χKolm.
no st (r, r′) ∝

∫ κmax

κmin

κ−11/3sinc
(

κ‖r′ − r‖
)

dκ, (8.22)
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8. ATMOSPHERIC CONTAMINATION

Figure 8.5: Comparison of χKolm.
no st (green) given by Eq. (8.22) and χno st(∆r) (blue), given in

Eq. (8.21). Here I set L0 = 10 m, κmin = L−1
0 = 0.1 m−1 and κmax = 1000 m−1.

where κmin and κmax are proportional to the inverse of atmospheric turbulence typical

lengths, respectively outer (incoming energy) and inner (energy dissipation) turbulence

scales.

Second, χst is the stationary part, effective for large scales which depends only on

the height, and can be interpreted as the water vapor distribution, here assumed to be

a decreasing exponential of the altitude, i.e.

χst(r, r
′) ∝ exp

(

−z + z′

2 z0

)

. (8.23)

Wind

I assume that the wind affects only a horizontal layer of the atmosphere. We expect

wind to shear the turbulent structures encoded in the 〈α(r)α(r′)〉 correlation term.

Because it does not mix parts of the atmosphere at two different altitudes, the wind

will not affect χst defined in Eq. (8.23). Therefore, it affects the non-stationary part of

the correlation, χno st(r, r
′), and implies this latter to be time dependent, χno st(r, r

′) →
χno st(r, r

′, τ). The latter will only depend on a time difference τ = t − t′, because we

assume the contamination to be stationary in time: wind is assumed to be constant in

time, velocity and direction. As shown in Fig. 8.3, it blows in a layer centered at a given

altitude z 0
w , following a Gaussian distribution with a width σw. Using Eq. (8.21), and

switching to cartesian coordinates, χno st(r, r
′, τ) can be written as

χno st(x,y, z,x
′,y′, z′, τ) = exp

(

− 1

2L2
0

[

|(x− wsx(z)τ)− (x′ − wsx′(z
′)τ)|2

+|(y − wsy(z)τ)− (y′ − wsy′(z
′)τ)|2 + |z − z′|2

])

, (8.24)
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where wsx(z) and wsy(z) are the components of the wind speed along, respectively, the

x and y directions, at a given altitude z.

8.3.2 Lay & Halverson model

Lay and Halverson (79) modeled the turbulent layer as a frozen screen of thickness ∆h

— determining the power law of the turbulence —, at height hatm. In comparison with

the approach described previously, see paragraph 8.3.1, the condition that defines the

observed power law (in the time stream) does not depend on the telescope properties,

but only on the physical characteristics of the turbulent layer. Lay and Halverson (79)

show that the power spectrum of the atmospheric brightness, PTatm , can be expressed

as

PTatm ≡ 〈T 2(αx, αy)〉 (8.25)

=
ALH
sin ǫ

[

hatm
sin ǫ

]−5/3

× ‖α‖−11/3 if
hatm

2∆h sin ǫ
≪ ‖α‖ ≪ αinner (8.26)

or
A′
LH

sin ǫ

[

hatm
sin ǫ

]−2/3

× ‖α‖−8/3 if αouter ≪ ‖α‖ ≪ hatm
2∆h sin ǫ

. (8.27)

Here ‖α‖ ≡
√

α2
x + α2

y and αx,y denotes the angular wavenumbers defined as

αx,y ≡
kx,y hatm
sin ǫ

, (8.28)

with kx,y the spatial wavenumbers, following the notations of Fig. 8.6. The constants

ALH and A′
LH in Eq. (8.27) correpond to the amplitude of the turbulence. Similarly

to the κ quantities in Eq. (8.22), αinner, αouter are related to, respectively, inner and

outer physical scales of the turbulence. Within these bounds there is a small-scale

regime where the three-dimensional conditions of the Kolmogorov model are sustained,

Eq. (8.6), and the power spectrum behaves as a power law with an index γ = −11/3.

For scales greater than 2∆h, the two-dimensional regime dominates and the power law

index becomes γ = −8/3.

8.4 Simulations of atmospheric contamination

In this section, I present two different ways of simulating pure-atmospheric time streams.

This could give us intuition in order to construct cleaning methods or optimize filters

(more details are presented in section 15.5). First, in paragraph 8.4.1, we see what does

an assumed turbulence power law imply for the time streams properties and second,

in paragraph 8.4.2, I present some results coming from the implementation of Church’s

approach.
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Figure 8.6: Geometry and notations corresponding to the Lay and Halverson (79) approach.

8.4.1 Assuming a power law for the atmospheric turbulence

We consider that atmospheric contamination follows a decreasing power law power

spectrum. More precisely, let us consider the brightness temperature of the atmosphere

to be a power law in wave number space i.e.

Tatm(k, t) ≡ A‖k‖γejφ(‖k‖,t). (8.29)

The time-dependent phase φ(‖k‖, t) allows the atmosphere features to change in time.

By Fourier transform Eq. (8.29), Tatm(r, t) reads

Tatm(r, t) = A

∫

d‖k‖ ‖k‖γ ejφ(‖k‖,t)+2πj‖r‖ ‖k‖ (8.30)

Let us assume that the detector scans across the atmosphere pattern at a given "ef-

fective" velocity: this latter would result from the combination of the scan and wind

speeds. Then we write r(t) ≡ vt, where v = vscan + vwind is the effective speed.

Injecting this into Eq. (8.30) gives

Tatm(r, t) = Tatm(t) = A

∫

d‖k‖ ‖k‖γ ejφ(‖k‖,t)+2πj‖v‖ ‖k‖t. (8.31)

In frequency domain, this leads to

Tatm(f) = A

∫∫

dt d‖k‖ ‖k‖γ exp [jφ(‖k‖, t) + 2πj (‖v‖ ‖k‖ − f) t]. (8.32)
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8.4 Simulations of atmospheric contamination

Figure 8.7: Illustration of several simulated time streams having a power-law power spectrum as
Patm(f) ∝ f2γ , Eq. (8.36), obtained for different values of γ.

If the phase is independent on time, i.e. φ(‖k‖, t) = φ(‖k‖), then we have

Tatm(f) = A

∫

d‖k‖ ‖k‖γ ejφ(‖k‖)
∫

dt exp [2πj (‖v‖ ‖k‖ − f) t] (8.33)

= A

∫

d‖k‖ ‖k‖γ ejφ(‖k‖)δ(‖v‖ ‖k‖ − f) (8.34)

= A

[

f

‖v‖

]γ

e
jφ( f

‖v‖
)
. (8.35)

The power spectrum Patm(f) resulting from the atmospheric turbulence, as seen in the

time stream Tatm(f), then satisfies

Patm(f) ∝ f2γ . (8.36)

Realizations of such time stream are depicted in Fig. 8.7. More generally, we understand

from Eq. (8.36) that atmospheric contamination is important at low frequencies. CMB

data analysts need efficient and smart high pass filters to remove those signals without

taking away cosmological informations also present in the time stream.

8.4.2 Trials for a numerical computation of the Church model

In this section I present some consequences of the implementation of the Church’s model,

introduced in paragraph 8.3.1, for the correlation in time between detectors of a typical

ground-based experiment focal plane, as a function of the wind speed, the field of view

as well as the atmosphere properties.
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Figure 8.8: Left panel: assumptions made about the focal plane layout and the scan strategy (SS).
The focal plane is composed of 9 detectors, 8 of them are disposed on a circle of radius θfp/2 and one
at the center. The scan strategy direction is assumed to be parallel to the line joining detectors 1, 0
and 5, as modeled in Eq. (8.37). Right panel: illustration of the effect of varying the L0 parameter,
the turbulence typical scale, on the atmospheric signal power spectrum. As we could expect, the larger
L0 is, the lower will be the contamination at high frequency.

8.4.2.1 Assumptions : scan strategy, focal plane layout

We set the scan strategy of the telescope, r̂s(t), to be constant in elevation (θs(t) =

θs,0 = π/4 for the numerical computations) and to move only in azimuth, following a

cosine function, such as

φs(t) = φs,0 +
∆φ

2
cos (2πfscant+ ψ) , (8.37)

where we set ∆φ to be the angular size of the scan strategy (usually on the order of a

couple of degrees for CMB observations) and fscan the scan frequency, defined as

fscan ≡ scan speed [deg .s−1]

2∆φ
. (8.38)

For the following numerical computation, I assume ∆φ = 10 deg and a scan speed of

2 deg .s−1 (as well as φs,0 = ψ = 0), which leads to a scan frequency fscan = 0.1 Hz. In

addition, I consider the specific focal plane layout depicted in the left panel of Fig. 8.8.
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8.4 Simulations of atmospheric contamination

Figure 8.9: Left panel: auto power spectrum in the case of zatm and z0 variations. Differences
between the curves are negligible. Right panel: effect of changing the focal plane size on the cross-
power spectrum between detectors 0 and 3 (called C03) and effect of the beam size. The bigger is the
angular distance between the detectors 0 and 3, the lower will be the cross-power spectrum. In addition,
increasing the beam size, gives rise to higher power spectrum.

8.4.2.2 Results for the correlation across the focal plane

Implementation

Computation of correlations in time between detectors is not trivial and computa-

tionally heavy because it involves, for each time sample, integrations over two three-

dimensional spaces. I use a Quasi Monte Carlo method1, as implemented in mathe-

matica, to estimate numerically the 6-integrals included in the expression of Cij(τ), cf.

Eq. (8.18). I present below some of the obtained results.

Auto-correlation without wind

The first results are about the correlation in time for a single detector, the 0th of the

focal plane, see left panel of Fig. 8.8. Right panel of Fig. 8.8 shows the corresponding

power spectra (the Fourier transform of the auto-correlation C00(τ)) for different values

of the atmosphere properties, L0 introduced in Eq. (8.21).

1Quasi-Monte Carlo method is similar to the Monte Carlo method but using quasi-random se-
quences instead of random numbers. The quasi-random sequences, also called low-discrepancy se-
quences, can permit to improve the performance of Monte Carlo methods, offering shorter computa-
tional times and/or higher accuracy.

113



8. ATMOSPHERIC CONTAMINATION

Parameters describing atmosphere properties are chosen such that

L0 ∈ {2;10; 100 meters} , (8.39)

z0 ∈ {1, 000;2,000; 4, 000 meters} , (8.40)

zatm ∈ {10, 000;40,000; 80, 000 meters} , (8.41)

in which expressions the bold numbers correspond to the fiducial model.

The main feature of these power spectra is the presence of peaks, harmonics of the

scan frequency fscan = 0.1 Hz for the specific numerical values chosen here. One should

see atmosphere as a medium with structures of specific size L0 and, as it is the case

with the CMB signal, its contamination appears as a scan-synchronous signal. Effect

of changing L0 is depicted in the right panel of Fig. 8.8: smaller turbulent structures

result in more power for high frequency harmonics.

Variations of zatm and z0 are illustrated in the left panel of Fig. 8.9. The auto-

power spectrum changes by tiny amounts which are undistinguishable in this figure.

This is mainly due to the fact that, in our model, the atmospheric contamination comes

mainly from low altitudes, z ≪ z0, zatm, where both Tatm and χst terms, cf. Eqs. (8.9)

and (8.23), are large:

Tatm ∝ − z

zatm
(8.42)

χst ∝ e
− z

z0 . (8.43)

Cross-correlation without wind

The cross-correlation, i.e. the correlation between detectors at different time is an

interesting quantity to study variations of the telescope design, especially θb and θfp
(fiducial model is obtained for θb = 4′ and θfp = 2 deg). I depict in the right panel of

Fig. 8.9 the cross correlation between detectors 0 and 3 (see Fig. 8.8) for two different

field of view opening angles, respectively 1 and 5 deg. This latter parameter affects the

level of correlation between the two detectors: bigger will be the angle between the

detectors lines of sight, lower will be their cross-correlation. Furthermore, variations of

the beam θb are also depicted in the same figure, which has the consequence of changing

the shape of the power spectrum envelop: a small beam allows to have more power at

high frequencies and vice versa for a large beam.

Auto-correlation with wind

I depict in the left panel of Fig. 8.10 the result of adding the wind on the auto-

power spectrum. These results can be compared to the fiducial model shown in Fig. 8.9.
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8.4 Simulations of atmospheric contamination

Figure 8.10: Left panel: illustration of the effect of varying some wind-related parameters on
the atmospheric signal power spectrum. Black solid line is the fiducial model, for reference, i.e. the
auto-correlation of the 0th detector. Right panel: normalized cross-power spectra between the 0th and
the height other detectors, cf. hardware map shown in Fig. 8.8. The wind has the following properties:
z 0
w = 50m, σw = 100m and ‖w‖ = 5m.s−1. Moreover, projected on the (x, y) plane, the wind has the

following coordinates (‖w‖ cos(π/4), ‖w‖ sin(π/4)).

Basically, the wind smears out the peaks and the power spectra tend towards a 1/f -

like contamination: it shears the atmospheric structures and therefore "whiten" the

features of the power spectrum. Notice that atmospheric contamination in typical

ground-based experiment data appears as an additional 1/f contribution, with a more or

less important fknee depending especially on the observation site, atmosphere stability,

etc.

In addition, we can remark that lower wind speed and smaller σw lead to power spec-

tra closer to the fiducial one obtained without wind. The largest speed ‖w‖ ∼ 20m.s−1

and biggest extension in altitude σw ∼ 5000m gives power in all frequencies, and lead

to power spectra close to a white noise.

Cross-correlation with wind

Similarly to the right panel of Fig. 8.9, I depict in the right panel of Fig. 8.10 the

normalized cross-power spectra between the different detectors of the focal plane, in

the case of a non-zero wind: in this chosen case, the wind has the following properties:

z 0
w = 50m, σw = 100m and ‖w‖ = 5m.s−1. Moreover, projected on the (x, y) plane,

it is assumed to have the following coordinates: (‖w‖ cos(π/4), ‖w‖ sin(π/4)). One

should also remind that the scanning strategy is centered at φs,0 = 0 deg, and staring

at a constant elevation θs,0 = 45 deg. I normalized the curves so that their maximum

is equal to 1, in order to focus the discussion on the characteristic features: contrary to
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8. ATMOSPHERIC CONTAMINATION

the case without wind, the time streams "lose" correlation just because the turbulent

structures are sheared and that atmosphere does not give rise to scan-synchronous

signals anymore.

A way to understand the cross-correlation behavior between two detectors i and j

onto the focal plane is given by the value of the scalar product Θ,

Θ = (ws + ss(t)) · dij , (8.44)

where ss(t) ≡ ṙs(t) is the scan strategy vector at a given time t, ws describes the wind

and dij is the vector linking detectors i and j. Θ is therefore the projection of the

"effective" speed of the telescope across the atmospheric structures onto a line of the

focal plane, and brings information about the direction the atmosphere is "effectively"

displaced — and could tell us between which detectors onto the focal plane we could

expect correlations.

Figure 8.11: Left panel: Toeplitz matrix representing the normalized auto-correlation of the 0th

detector if there is no wind. In this case, because of the scanning periodicity and non-moving turbulent
structures, the atmospheric contamination results in a nearly scan-synchronous signal. Right panel:
same as left panel but considering non-zero wind speed: structures are sheared between two scans of
the telescope and the contamination is no longer appearing at fscan.

I did not explore this reasoning further but, similarly to the reasoning proposed

by Bussmann et al. (21) in the case of the Lay & Halverson model, this is definitely

something to look at in order to find smart atmosphere rejection algorithms.

8.4.2.3 Atmospheric signal simulation

From the model and its computation, we have access to the quantity Cij(τ), for given

physical atmosphere parameters. Assuming the stationarity in time for the contam-
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ination, we can build the 4-dimensional array Cijττ ′ (Toeplitz matrix at given (i,j))

from the 3-dimensional one Cijτ . I depict in Fig. 8.11 simulated C00ττ ′ auto-correlation

matrices with and without wind in the atmosphere. We use in the following the notation

β ≡ β(i, τ) = (ndet − 1)× τ + i, (8.45)

a unique function of indices i and τ , so that we can write Cijττ ′ → Cββ′ . Considering

a random, uncorrelated and normalized vector ξ (i.e. verifying 〈 ξ† ξ 〉 = 1), of size

ndet × nobs, it is possible to simulate a pure atmospheric signal datmβ given by

datmβ ≡
√

Cββ′ ξβ′ , (8.46)

which, by construction, will verify auto- and cross-correlations seen above. The square-

root
√

Cββ′ is any decomposition verifying

∑

β′′

√

Cββ′′

√

Cβ′′β′ = Cββ′ . (8.47)

Note that square-root — in particular, Cholesky — factorization of Toeplitz matrices

is a classical area of research: among others, the Schur algorithm yields directly the

Cholesky factorization of a symmetric Toeplitz matrix. This specific step, i.e. the

implementation of Eq. (8.46), could be computationally heavy and makes quite difficult

such simulations.

8.5 Conclusion

The different computations of the Church’s model presented above are original in several

ways. First, instead of the parallel beams considered in Church (26) in the case of an

interferometer, I converted the analytic expressions to spherical coordinates so that the

optical geometry corresponds to realistic telescope configurations (the beam directions

of two detectors of the focal plane are different and separated by a non-zero angle) and

the considered scan strategy coincides to the ones usually used by imaging experiments

(i.e. a scan in azimuth at a constant elevation, as written in Eq. (8.37)). Second, I de-

rived and studied the expressions for the cross-correlation between detectors for different

wind speeds. Finally, I looked at the consequences for the correlations (equivalently the

power spectra) of considering different climatic configurations (i.e. different zatm, z0,

wind, etc.), in order to understand the effect of each parameter of the model.

More specifically, we could conclude from these computations that:

• ground-based observations should expect, in realistic climatic conditions, a large

1/f contamination due to atmosphere;
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8. ATMOSPHERIC CONTAMINATION

• for reasonable opening angles, θfp ∼ 1 deg, all the detectors time streams are

highly correlated;

• an unpolarized scan-synchronous signal can appear in the time stream if the wind,

mainly in the layers close to the ground, is negligible;

• a leak of the atmospheric total intensity into linearly polarized signal could happen

through instrumental-polarization (see chapter 7), leading to a potential dramatic

systematic effect.

As I mention in section 15.5, this model and resulting simulations could be used

to characterize atmospheric contamination, as well as to ultimately find efficient filters,

in the frame of new generation ground-based CMB experiments data analysis. In par-

ticular, I imagine that, even if it would require very important computational needs,

the parametrization of the introduced model could be used for the implementation of a

parametric maximum-likelihood cleaning method.
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Chapter 9

Polarized foregrounds

Figure 9.1: Intensity of the background radiation integrated over all sources in the universe, as a
function of the frequency. From A. H. Jaffe and H. Dole, www.andrewjaffe.net.

Even if dominant in intensity, CMB is not the only source of photons in the 10-400

GHz band, see Fig. 9.1. Many physical processes involve radio emissions between us

and the LSS.

The galactic structure, important at large scales, interferes with the estimation of

the lowest multipoles of the CMB in general, and the B-modes in particular, e.g. Fraisse

et al. (50). Galaxy contains also smaller scales structures (dust and molecular clouds,

supernovae remnants, etc.) which correspond to a significant contamination down to

very small angular scales (of the order of 10 ′). Mainly because they are far away from

us, extragalactic sources are essentially important at small scales, usually below the

resolution used to detect the primordial B-modes but could become an issue for the

lensing reconstruction, e.g. Smith et al. (126).
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9. POLARIZED FOREGROUNDS

Figure 9.2: One of the first map of the entire sky, as observed by the Planck experiment (nine
frequency channels between 30 and 850 GHz), depicted in galactic coordinates, which shows the galactic
structures, see Planck Collaboration et al. (108).

This chapter aims at describing the main processes interfering with the measure-

ment of the CMB. First, I will describe InterStellar Medium (ISM) components: dust,

synchrotron and extragalactic sources.

As shown on the sky produced by the Planck experiment, Fig. 9.2, one can notice

that the most visible structure is the horizontal bar along the equatorial plane corre-

sponding to the Milky Way disk: in this area, the ISM dominates CMB fluctuations.

At higher latitudes, even if less dominant, galactic contribution to radiation is non neg-

ligible (sections 9.1 and 9.2). Second, I will present several extragalactic contributions

which take place over the whole sky (section 9.3).

9.1 Dust

Physical origin

The ISM represents about 10% of the mass of our galaxy, and is composed (by

mass) of 70% hydrogen, 28% helium and 2% of heavier atoms, often referred to as

metals, e.g. Savage and Mathis (115). This material is mainly a gas but a fraction of it,

especially the metals, has also the form of grains, mixed with gas, and represents 1% of

the mass of the ISM.

Despite their small contribution to the mass, these grains (or dust) play several

major roles and, in particular, they are responsible for most of the infrared and sub-

millimeter emission in the ISM. Supernovae enrich the interstellar medium with heavier

elements that allow dust grains to form. Those absorb the visible and ultraviolet light

emitted by stars and re-emit in the infrared.

The earliest characterizations of interstellar dust were obtained by measuring the

absorption spectrum of stellar light. Attempts in modeling the dust absorption and
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Figure 9.3: Left panel: scheme of the large scale structure of the magnetic field of the galaxy Milky
Way, in the case of the bisymmetric spiral model. Right panel: synchrotron emission by an electron
moving in a magnetic field.

emission spectra revealed the need to consider a large variety of grains types, both

in terms of size and nature. Nowadays, models generally use three types of grains,

e.g. Desert et al. (31), Draine and Li (35):

• large grains — with a size >∼ 10 nm, they remain in equilibrium with radiation

and their emission can be well approximated by a grey body law,

• small grains — out of thermal equilibrium, they mainly emit in the ultraviolet

range,

• and PAHs — standing for Polycyclic Aromatic Hydrocarbons, they are large

molecules emitting with characteristic vibration modes in the mid-infrared and

they have been observed for the first time by the COBE-DMR instrument, see

Kogut et al. (72).

Polarization

The existence of a galactic magnetic field with an amplitude ∼ 5µG is well estab-

lished and it manifests itself in several ways. The most important impact for CMB

observations is the production of synchrotron radiation, as explain in paragraph 9.2.

However it also induces Faraday rotation of the radiation emitted by pulsars (Han et al.

(58)) and allows to break, in the emission lines of some clouds, the degeneracy of the

angular momentum energy states through Zeeman effect (Myers et al. (96)). Finally

the magnetic field imposes the partial alignment of dust grains (Lazarian (80)). In

fact, observation of light absorption put in evidence this alignment, causing a partial

polarization of the transmitted light (Serkowski et al. (120)). This is the reason why
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9. POLARIZED FOREGROUNDS

dust contamination is highly relevant and therefore studied for the analysis of the new

generation CMB polarization experiments. In addition, Faraday rotation measurements

using pulsars tend to indicate that large scale structure of the galactic magnetic field

is consistent with a bisymmetric spiral model (Han et al. (58), Sofue et al. (127)), as

depicted in the left panel of Fig. 9.3. In addition to this component which is uniform

at small scales, the magnetic field has also a turbulent component.

Emission law

Thermal emission of heated dust grains is the dominant galactic signal for frequencies

above 100 GHz. We could explain the dust emission spectrum in the infrared (from 300

GHz to 100 THz) using a combination of contributions coming from a wide range of

grain sizes and compositions. At lower frequencies, e.g. ∼ 100 GHz, which are of

interest for CMB observation, large grains, which are in thermal equilibrium with the

interstellar radiation, are expected to be dominant. A measure of this emission over the

whole sky was obtained by the IRAS experiment, see Beichman et al. (9).

There is no simple theoretical expression for the emission law of the dust, which

is composed of different populations of matter particles. But, in average, an emission

law can fit the observational data: it has been shown (Finkbeiner et al. (47)) that the

emission of dust, in intensity, is well represented by a mixture of two main components,

two populations of grains (silicates and carbon). For these latter, the thermal emission

is modeled by a grey body emission law, i.e.

Idust(ν) ∼ B(ν, T )νβd+1. (9.1)

So far, polarization measurements of the dust were mostly focused on specific regions

of the sky, with an exception of the balloon experiment Archeops (Benoît et al. (10)),

which mapped ∼ 25 % of the sky at 353 GHz, and found a polarization fraction of

∼ 4-5%, sometimes up to 10%. These measurements are consistent with some of the

predictions made, see e.g. Fosalba et al. (49), Draine and Fraisse (34). Based on IRAS,

COBE-FIRAS and Archeops maps, Fauvet et al. (45) proposes a model for the thermal

dust emission, i.e. for the three Stokes parameters I, Q and U . In particular, the model

is parametrized by the angle between the magnetic field lines and the line-of-sight, as

well as the polarization angle.

In addition, as used in Part IV, one can elaborate models for the dust, in which it

is assumed a spatially constant frequency scaling (βd in Eq. (9.1) does not depend on

the sky coordinates), as in Model 3 of Finkbeiner et al. (47),

Idust(ν) ∼
νβd+1

exp hν
kTd

− 1
, (9.2)

where Td = 18.0 K and βd = 1.65.
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9.2 Synchrotron

Physical origin

Spiraling charged particles in a magnetic field produce a highly polarized synchrotron

emission (Rybicki and Lightman (114)), see Fig. 9.3. This radiation is an important

source of contamination of the background radiation at low frequencies ( <∼ 80 GHz).

In the frequency range of interest for observing the CMB, synchrotron emission has

been measured, both in intensity and polarization, by the WMAP team (Gold et al.

(53, 54), Page et al. (103)). The intensity of synchrotron radiation depends on the

density of charged particles, and also on the magnetic field strength — orthogonal to

the line of sight. Its dependence on frequency and polarization fraction depends on the

energy distribution of charged particles.

Emission law

For an electron density which follows a power law of index p i.e.

ne(E) ∝ E−p, (9.3)

synchrotron emission will also follow a power law with an index βs ≡ −(p+ 3)/2, such

as

Isync(ν) = Isync(ν0)

(

ν

ν0

)βs

, (9.4)

where we see that βs, also called spectral index, is equal to −3 for a typical value of p = 3.

Polarization

Moreover, assuming that Eq. (9.3) is still valid, the fraction of polarization for the

synchrotron, fsync, could be written as:

fsync = 3
p+ 1

3p+ 7
. (9.5)

For p = 3, we have fsync = 0.75, and, for small changes of p, this value varies only slightly

and therefore the fraction of intrinsic polarization of the synchrotron is approximately

constant over the sky.
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9.3 Extragalactic point sources

Extragalactic objects are generally sufficiently distant to be unresolved by CMB in-

struments, as far as their brightness is sufficiently small. Their contribution to the

observation is the combination of two signals:

• the brightest sources which can be resolved.

• the faintest sources (and the most numerous) which are not individually significant

but form a background with fluctuations contributing to the total signal.

On the low frequencies range, radio sources, such as active galactic nuclei (radio

galaxies, quasars, blazars), follow a large variety of emission laws. Extrapolation of

their flux to CMB wavelengths is therefore difficult. WMAP and Planck experiments

have established catalogs of the brightest radio sources at CMB frequencies on the

totality of the sky (Planck Collaboration et al. (109), Wright et al. (147)). Polarization

measurements are also available for some sources.

On the high frequencies range, IRAS experiment has produced a comprehensive sur-

vey of bright sources with frequency between 3 and 25 THz. However, extrapolation of

the observed flux from the IRAS bands to the CMB frequencies remains very uncertain.

Finally, the infrared emission of distant galaxies corresponds to a background called

the Cosmic Infrared Background (CIB), detected for the first time in the COBE data,

see Puget et al. (112), and further studied with the recent Planck data, see Planck

Collaboration et al. (110).

9.4 Other foregrounds and secondary anisotropies

9.4.1 Free-free

A significant radiation with a continuous spectrum is emitted by ionized gas regions.

Free-free emission comes from the dumping of free electrons in the ions electric fields.

This emission is intrinsically unpolarized, even if, in principle, a low level of polarization

by Compton effect might exist at the boundaries of ionized regions.

9.4.2 Sunyaev-Zel’dovich (SZ) effect

When CMB photons pass through the hot gas of a galaxy cluster, they interact with

energetic electrons of the gas, absorbing some of their energy by inverse Compton scat-

tering. This effect produces a distortion in the CMB spectrum due to

• thermal motion of electrons in the gas (thermal SZ effect),
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Figure 9.4: Frequency dependence of the CMB anisotropies, red solid curve, and three dif-
ferent astrophysical emissions, in units of antenna temperature. From http://map.gsfc.nasa.gov/
mission/observatory_freq.html.

• the overall movement of gas, i.e. the intrinsic speed of the cluster in the comoving

frame (kinetic SZ effect).

Both effects produce different spectral signatures, but the thermal effect is clearly pre-

dominant.

Polarization

When the incident radiation on the cluster is not isotropic, the Sunyaev-Zel’dovich

can become polarized. Several phenomena can cause this effect (Audit and Simmons

(7), Sazonov and Sunyaev (116), Seto and Pierpaoli (121)). The two main ones are

• an inherent local quadrupole, i.e. the anisotropy of the incident CMB radiation

on the cluster,

• a kinetic quadrupole due to the intrinsic motion of the cluster.

SZ polarization remains small relatively to other polarized contaminants such as dust

or synchrotron.

9.5 Summary

Even in ideally circumstances, ground- and space-based experiments will unavoidably

suffer due to observing from within the Milky Way: contamination due to galactic

materials radiation is an ineluctable effect.
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Especially, in the quest of observing polarization of the CMB, two large-scale con-

tamination are important: galactic dust and synchrotron. Spectral behavior of this

foregrounds are already characterized in intensity, see Fig. 9.4. However,their polarized

fraction remains quite unknown but a good characterization can be expected in the

Planck satellite results.

As we will see in chapter 10, data analysts have developed techniques which permit to

disentangle the CMB radiation from the other ones. More generally, in the next Part,

we optimize experimental focal planes such that this so-called component separation

analysis is optimal. We also study if foregrounds can be an ultimate limit for the

gravitational B-modes detection.
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Part IV

Optimization of a nearly full sky

space experiment such as COrE and

CMBpol
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Figure 9.5: The COrE satellite. From http://www.core-mission.org.

In chapter 10, I introduce the parametric maximum likelihood component separation

technique and introduce the work on future experiments focal plane optimization, see

Errard et al. (41), chapter 11, as well as its extension, see Errard and Stompor (40), in

chapter 12.

Figure 9.6: The CMBpol design. From Bock et al. (16).
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Chapter 10

Parametric maximum likelihood

component separation technique

I introduce here the parametric maximum likelihood component separation approach

implemented as in Brandt et al. (19), Eriksen et al. (38) and Stompor et al. (133). We

thus assume a linear data model, where a signal measured in each pixel p is given by

dp = Asp + np, (10.1)

where for each pixel p,

• dp is a multifrequency data vector with each entry corresponding to a different

frequency channel;

• sp is a multicomponent sky signal vector each entry of which corresponds to a

different sky component and which is to be estimated from the data;

• A is a mixing matrix defining how the components need to be combined to give

a signal for each of the considered frequency channels; and

• np is a vector containing the instrumental noise and assumed to be Gaussian and

uncorrelated with a dispersion given by N.

Here both A and N are assumed to be pixel independent for simplicity, but their

generalization are straightforward.

In the parametric approach, one assumes that A is parametrized by a set of spectral

parameters, β, which need to be determined together with the sky signal estimates.

The noise level per channel, number of frequency channels, etc., are all dependent on

instrument properties, which thus will affect the results of the component separation

process and could therefore serve as optimization parameters. Some other effects such

as beam sizes, and bandwidths are also typically relevant and may need to be included

in the modeling. Our work on the impact of calibration errors is presented in chapter 12.
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SEPARATION TECHNIQUE

Given values of β and defined instrumental parameters we can estimate the sky

signal using a standard maximum likelihood solution1,

s̄p ≡
(

AtN−1A
)−1

AN−1 dp. (10.7)

To estimate the spectral parameters we will use a pseudo (or profile) likelihood, e.g. Stom-

por et al. (133), given as,

− 2 ln L = −
∑

p

(

AN−1 dp
)t (

AtN−1A
)−1

AN−1 dp. (10.8)

We will refer to this likelihood as the spectral likelihood and will identify its peak value

with the best estimate of the spectral indices and the curvature matrix at its peak as

the measure of the uncertainties expected for the spectral parameter estimation. These

will be used to construct our figures of merit.

1Maximum likelihood technique is a statistical method used to estimate the parameters of the
probability distribution of a given sample. We call likelihood of the parameters p given the observations
d ≡ {d0, d1, ....dn}, from an independent sample following the distribution law P (d), the quantity L

defined as

L ≡ L (d0, d1, ..., dn|p) (10.2)

≡ P (d0|p)× P (d1|p)× ...P (dn|p) (10.3)

=

n
∏

i=0

P (di|p). (10.4)

To estimate the parameters, we look for the maximum of this likelihood such that the probabilities
of observed realizations are also maximum. Assuming its derivability, this results in the necessary
condition

∂L (d0, d1, ..., dn|p)
∂p

∣

∣

∣

∣

ptrue

= 0 (10.5)

Moreover, the Bayes’ theorem tells us that

∀ i L (di|p) = P (di|p) =
P (p|di)P (di)

P (p)
∝ P (p|di) . (10.6)

The parametric maximum likelihood method is an estimator which has some nice properties such as
being

• convergent,

• asymptotically reaching the Cramér-Rao limit, based on Fisher information

• and asymptotically distributed following a normal law.

However, this estimator is not prevented from being biased in the case of a finite sample d.
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10.1 Spectral parameter uncertainty

The profile likelihood derivatives with respect to the spectral parameters can be readily

computed, the relevant formulas and demonstrations can be found in Appendix A. As

our purpose is to gain some insight in the constraining power of different plausible

experimental setups rather than analyze any specific data set we will average over the

possible noise realization assuming that the noise correlation matrix, N, is known. Using

Eq. (A.1) from the Appendix we then arrive at

〈

∂ lnL

∂β

〉

noise

=
∑

p

(A,β s̄p)
t
N−1

(

Â ŝp −A s̄p

)

(10.9)

for the first derivative. In this equation, as well as everywhere hereafter, we will use a hat

over a quantity to mark that we refer to its true, rather than just an estimated, value.

s̄ is a sky signal estimate in the case of the noiseless data and it is defined in Eq. (10.7).

If the data model in Eq. (10.1) is correct both in terms of assumed scaling laws but also

a number of components, the first derivative in Eq. (10.9) vanishes for the true values of

the parameters, β ≡ β̂, emphasizing that the estimator is on average unbiased. Indeed

in such a case we have Â = A and ŝ = s̄. Under the same assumptions the second

order derivatives taken at the true values of the parameters can be then written as, see

Eq. (A.7):

〈

∂2 lnL

∂β ∂β′

〉

noise

∣

∣

∣

∣

β=β̂

= tr
{[

At
,βN

−1A
(

AtN−1A
)−1

AtN−1A,β′

− At
,βN

−1A,β′

]

∑

p

ŝp ŝ
t
p

}

. (10.10)

Hereafter we will use the inverse of this matrix to approximate the error matrix, Σ, for

the recovered scaling parameters, i.e.,

[

Σ−1
]

ββ′ ≃ −
〈

∂2 lnL

∂β ∂β′

〉

noise

∣

∣

∣

∣

β=β̂

. (10.11)

We note that the spatial morphology of the sky components enter the calculation of

the errors only in a form of pixel averaged component-component correlations,

F̂ ≡ 1

Npix

∑

p

ŝpŝ
t
p. (10.12)

Moreover, only those of the columns and rows of this correlation matrix matter, which

correspond to sky components characterized by the scaling laws including some unknown

parameters. Mathematically, this just follows from the fact that only columns of the

derivatives of the mixing matrix, A,β , corresponding to such components do not vanish.
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Figure 10.1: 1-σ and 2-σ contours in the βdust - βsync space of the spectral likelihood, L, calculated
using Eq. (10.8) for a random realization of the CMB and noise contributions, shaded areas, and com-
pared against the Gaussian approximation with a dispersion as given by Eq. (10.10), solid lines. The
former likelihood has been recentered at the true values of the parameters.

Physically, this indicates that the components for which the scaling laws are known

unambiguously, e.g., CMB, are subtracted cleanly during the separation process and

do not affect the result of spectral indices estimations. This last statement is only true

in the absence of systematic effects, e.g. calibration errors or mischaracterization of

the bandpasses. An immediate consequence of this is that the resulting expressions are

indeed equivalent to those obtained while averaging over an ensemble of realization of

noise and CMB signal.

We note that though our conclusion about the impact of different components on

the spectral parameter estimation is general, a simple form of the dependence of the

latter on the foreground signal morphology is due to our simplifying assumption of a

pixel-independent noise level. In general, the relation is more complex, with noise levels

selective (de)emphasizing the contributions of some of the pixels on the sky: if the

noise is inhomogeneous but changes from a pixel to a pixel in the same fashion in all

considered frequency channels, we can write

Np ≡ η p0
p Np= p0 , (10.13)

where η p0
p is a number specific to a current pixel p and a reference pixel p0, defining

the noise inhomogeneity. The straightforward generalization of Eq. (10.12) is then,

F̂ ≡ 1
∑

p η
p0
p

∑

p

(

η p0
p

)−1
ŝpŝ

t
p . (10.14)
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Though this latter case is also idealized as it assumes that all detectors operating at

different frequencies observed the sky in a exactly the same manner, it allows to in-

clude some basics effects of the scanning strategy in the component separation process.

Eq. (10.12) follows from Eq. (10.14) if ∀ p, η p0
p = 1. Though the formalism developed

here is general and can be straightforwardly adopted to a case of arbitrary and corre-

lated noise it can quickly become computationally heavy. Hereafter, in an absence of

any specific scanning strategies we use the simplest version of the F̂ matrix.

In Fig. 10.1 we show examples of the contours likelihoods, Eq. (10.8), computed for

dust and synchrotron spectral indices for simulated data as described in paragraph 11.5

and for some fiducial nearly full sky experiment. They are compared with a Gaussian

approximation based on the variance derived with help of the error matrix, Eq. (10.11).

Generally we find a very good agreement. This may breakdown somewhat in cases with

very few pixels when the actual spectral likelihoods typically become somewhat skewed

(133). Nevertheless, we find that even in those cases though the Gaussian approximation

may fail to reproduce properly the tails of the distributions, its overall performance is

still rather good. In applications of interest for this work a sufficient number of pixels

is always granted.

An interesting question is then how the precision of the spectral parameter esti-

mation depends on the matrix F̂. The short answer is that given the noise levels the

higher density contrast of the components, i.e., larger diagonal elements of F̂, the better

precision of estimated β, while large cross-correlation terms tend to increase the error.

10.2 Residuals

From the discussion in the previous section it is clear that the precision of the spectral

parameters determination though relevant is clearly not a single factor important in

quantifying the component separation effects on the B-mode science. This is due to the

fact that better precision is usually related to a higher foreground contrast, i.e. higher

signal-to-noise. In fact, rescaling the sky components ŝp by a contrast factor Φ,

ŝp → Φ× ŝp, (10.15)

we can see that the error on the spectral parameters estimation, given by Σ, Eq. (10.11),

will verify

Σ ∝ 1

Φ2
. (10.16)

Eq. (10.16) shows that a better contrast, i.e. Φ ≥ 1, will lead to a tighter constraint

on β. It is therefore not straightforward to infer an effective foreground contribution

left over in the CMB map after the separation process, given just the spectral indices
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errors. However, given the estimated value of the spectral parameters, β, we can always

calculate the level of the foreground residuals, i.e., a mismatch between the estimated

and true sky components. This can be expressed as follows, see Stivoli et al. (130),

∆ = s − ŝ = (Z (β)− I) ŝ, (10.17)

where

Z (β) ≡
[

At (β) N−1A (β)
]−1

At (β) N−1A(β̂), (10.18)

I is a unit matrix and, as usual a hat over a quantity denotes its true underlying value.

The foreground residuals left in the CMB map are just one component of the vector,

∆, which for definiteness is assumed to be the zeroth one. We will now restrict ourselves

to the CMB component and linearize the problem, assuming that the errors in spectral

parameter determination are small. We thus obtain

∆CMB =
∑

k,j

δβk α
0j
k ŝj , (10.19)

where

αijk ≡ ∂ Zij(β̂)

∂βk
, (10.20)

and we assumed that the CMB component is stored as first (i.e., with an index equal

to 0) in the component vector, s. We can now characterize the level of the residuals

either simply by its rms value or, in a more informative way we can estimate the noise

average (though noiseless) foreground residual power spectrum, which reads

C∆
ℓ ≡

∑

k,k′

∑

j,j′

Σkk′ α
0j
k α0j′

k′ Ĉ
jj′

ℓ . (10.21)

Given that as mentioned before (see also, Stivoli et al. (130)) no CMB signal is left in

the CMB map residuals, which combine just the foreground signals, the noise ensemble

averages coincide with those made over a full CMB + noise set of realizations. Clearly

to compute the residual spectra we need to make assumptions concerning the spatial

morphology of the considered foregrounds, i.e., the knowledge beyond the F̂ matrix

defined earlier. This is reflected in Eq. (10.21) by the presence of true auto- and cross-

spectra for each considered foregrounds, Ĉjj′ . However, the F̂ matrix provides a suffi-

cient description necessary to calculate the rms value of the residuals. This can be seen

noting that

∆CMB
rms

2
=
∑

k,k′

∑

j,j′ 6=0

Σkk′ α
0j
k α0j′

k′ F̂jj′ . (10.22)
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In the following we will use the C∆
ℓ quantity to construct our FOMs making some specific

assumptions about the foregrounds spatial properties as described in pargraph 11.5.

We point out that the formulas presented above are just a special case of those already

studied in Stivoli et al. (130). The important difference is however that the spectral

indices uncertainties used in this work are computed effectively as the full CMB +

noise, ensemble averages rather than derived in a single, particular study case as in that

previous work.
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Chapter 11

Optimization of a nearly full-sky

CMB B-modes experiment focal

plane in the presence of polarized

galactic emissions residuals

I will explain in this section the work I have performed in collaboration with drs.

F. Stivoli and R. Stompor, summarized in Errard et al. (41).

We propose a general, methodological framework for the experiment optimization

and then apply it in specific cases of CMB B-mode observatories. We note that, however

sophisticated an adopted optimization procedure may be, it is likely to always come up

short in doing justice to all the complexity of an instrument under consideration. The

goal of such a procedure, as we pursue here, is therefore not just to find a single best (in

some sense) instrumental configuration. Rather, the goal is to provide, on the one hand,

a reference against which to judge actual hardware designs and, on the other, guidelines

of, first, how to propose, given some science goals, a suitable and viable experimental

design and, later, how to modify it to implement inevitable, real-life limitations and

constraints in a way which will have a minimal impact on its scientific performance.

Though the discussed formalism lends itself straightforwardly to a number of gener-

alizations, in this work we have demonstrated it in the context of the B-mode detection

by multifrequency observatories taking into account the presence of the astrophysical

(diffuse) foregrounds, leaving a study of some of the most common instrumental effects

to a future work. We note that even in this limited context a result of the instrument

optimization problem will depend on a number of factors: scientific goals as set for

the experiment in question; models of the physical effects, e.g., foregrounds; specific

techniques and assumptions they require, selected to be used for the component sepa-
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rations step. This emphasizes the need for using the state-of-the-art physical models

of the foregrounds and the separation techniques in this kind of problem, as well as

for continuing effort aiming at better, more reliable understanding of the foreground

physics.

As the optimization requires a capability to predict the performance of an instru-

ment given its characteristics, it is very closely connected with performance forecasting.

In fact, in most of the similar work to date, the problem of selecting the most suitable

experimental configurations is typically treated as a performance forecasting problem

applied to some predefined, and limited, set of potential candidate experimental setups,

the relative merits of which are subsequently evaluated and compared, e.g., Amarie et al.

(2), Betoule et al. (12), Dunkley et al. (36), Fantaye et al. (43), Stivoli et al. (130), Verde

et al. (142). This is in contrast with this work, which employs an actual optimization

procedure. In this respect our approach is most similar to the one by Amblard et al. (3).

Here we generalize and extend the latter work on both methodological and implemen-

tation levels. We consider broader parameter space and optimization strategies, search

for families of acceptable configurations, and by adopting the parametric component

separation approach as the component separation technique of the choice, we manage

to propagate realistic ensemble-averaged errors to our selected figure of merit indicators

in a statistically sound manner.

11.1 Method

Our approach is as follows. We start off from expressing our science goals in terms

of acceptable ranges of values of some proposed figures of merit (section 11.2), which

are chosen to reflect the physical context of the considered experiment. We then first

treat all figures of merit (FOMs) separately and for each of them perform a strict opti-

mization procedure (section 11.3), i.e., minimize or maximize it over a set of considered

instrumental parameters. This is usually done in the presence of some external con-

straints arising for instance due to some hardware requirements but also some other

science-driven restrictions, (section 11.3).

As illustrated in Fig. 11.1, this first step aims at determining the best possible

instrument performance from the perspective of the considered FOMs and their corre-

sponding configurations. If for any of the FOMs the best performance value does not

fulfill our science goals, the procedure halts and either the set of instrumental param-

eters have to be enlarged or the science goals/FOMs rethought. Otherwise, for each

FOM, but one, we select a threshold value, which need to be attained by any acceptable

configuration and perform the optimization of the one left-over FOM over the parameter

space under additional constraints, requiring that all or some of the remaining FOMs

are not worse than their established thresholds. If the optimization fails, we may need
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sky components simulation

experimental hardware

component separation: parametric maximum likelihood 
component separation formalism

Figures of Merit (FOM) definition

optimization with respect to the FOM
under hardware constraints

Figure 11.1: Scheme illustrating our methodology for optimizing focal planes with respect to FOMs
I define in section 11.2.

to adjust some of the thresholds and repeat the procedure again. This may be also the

case if the solution found does not ensure an acceptable value for the FOM, which is

used in the optimization. If the tuning of the thresholds succeeds, the solution obtained

via the above procedure is used as a starting point for further post-processing and the

corresponding set of values of all FOMs used as a reference to compare any other config-

uration against. The post-optimization processing is used to implement some additional

constraints and/or simplifications, which for some reason could not have been imposed

on the formal optimization procedure.

Below we present a specific implementation of this general framework in the context

of primordial CMB B-mode observations by multifrequency multi-detector observatories

in the presence of Galactic foregrounds. In this case our FOMs need to account for some

effects arising due to the component separation procedure, which has to be applied

to data to recover a genuine CMB signal. We therefore start below by discussing a

specific component separation approach, the so-called parametric maximum likelihood

technique, and its impact on a CMB B-mode detection.

11.2 Figures of merit

Given the estimates of the foreground residuals provided in the previous Section, we can

now define our figures of merit. Hereafter, we will use three FOMs: two referring to the

effects of the foreground residuals found in the recovered CMB map as a consequence

of the separation process, and the third related to the noise level of that map. As our
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scientific goals here are related to the primordial B-mode signal two of the proposed

FOMs express the effects of the foreground residuals on a tensor-to-scalar ratio (of the

respective CMB spectra), r. The third one is more generic and is just to ensure that

the least-noisy map of the sky is produced.

FOM#1: rstat – an r value detectable on 95% confidence level incorpo-

rating the component separation uncertainties.

This FOM is computed in two steps. First, we use a generalized Fisher matrix

expression to estimate the uncertainty of estimating the tensor-to-scalar ratio, r, for

any given assumed r value, and subsequently we determine a value of r ≡ rstat, which

is detectable on 95% confidence level. This limiting value is defined as

rstat ≃ 2F−1/2
rr (rstat) . (11.1)

The Fisher matrix we propose to use here accounts for usual cosmic, sampling, and

noise variance, but also for an extra error resulting from the shortcomings of the fore-

ground component separation, which is presumed to be applied to the maps beforehand.

We model the separation residuals following the formalism introduced in section 10.2

and which treats the map-level residuals as a linear combination of the foreground

templates with Gaussian distributed amplitudes.

The detailed derivation of the Fisher formula is presented in Appendix B. Recalling

that C∆
ℓ denotes the power spectrum of the residuals, the final expression for the Fisher

matrix, Frr, reads then

Frr =

ℓmax
∑

ℓ,ℓ′

∂Cℓ
∂r
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∂Cℓ′

∂r
(11.2)

where for shortness we set Cℓ ≡ CCMB
ℓ + Cnoiseℓ .

A choice of experimental parameters will in general affect both the white noise level

as quantified by Cnoiseℓ but also the level of residuals resulting in different rstat values

derived for different proposal configurations.
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We note that if the level of residuals is very high as a result of the errors on spectral

parameters being large then the first order expansion used to obtain Eqs. (10.19) and (10.21)

may not be any more sufficient. Likewise, if the foreground contributions are large so

their residuals are comparable to the CMB signal, sufficiently precise knowledge of the

foregrounds would become necessary to ensure that the above formulas produce reliable

results. As one may not be completely comfortable with such a presumption, we will

introduce another FOM designed to penalize such configurations.

FOM#2: reff – an effective r value of the foreground residuals.

We use a proposal of Amblard et al. (3) and we characterize any obtained foreground

residuals using its effective value of r defined as

s(reff ) ≃ u, (11.3)

where

s (r) ≡
ℓmax
∑

ℓ

Ccmbℓ (r)− Ccmbℓ (0),

u ≡
ℓmax
∑

ℓ

C∆
ℓ .

We note that due to a missing factor of 2ℓ + 1 this criterion does not compare power

contained in the primordial B spectrum with that of the residuals (up to ℓmax), and in

contrast to the latter it gives more weight to low multipoles.

FOM#3: σnoiseCMB - noise level of the recovered CMB map.

When the true values of the spectral parameters are available the only uncertainty

of the recovered component maps, Eq. (10.7), is due to the instrumental noise and reads

N =
(

AtN−1A
)−1

, (11.4)

and therefore depends on the number of detectors and frequency channels. With our

focus on the CMB we will therefore use the diagonal element of N corresponding to

the CMB component as one of our criteria, which we would like to keep as low as only

possible. We thus have

(

σnoiseCMB

)2 ≡ N00. (11.5)

We note that only when A is a unit matrix the above formulas corresponds to a standard,

inverse-noise-coaddition. This in turn can only happen if no sky components are mixed
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together, implying no foregrounds. In any other case the final noise of the CMB map is

higher than the inverse noise weighting would imply, Bonaldi and Ricciardi (17), and its

exact value will depend on the details of the component scalings and experimental set

up. We note that unlike two other FOMs implemented here this applies on a map rather

than a power spectrum level. Moreover, as the spectral parameters, β, are assumed to

be known ahead of the computation, this FOM may lead to configurations in which the

estimation of those is not feasible and thus rendering the residuals effectively arbitrary

and unknown. Nevertheless, though it needs to be used with a care, it provides a

meaningful reference against which to gauge other configurations.

11.3 Optimization procedure

11.3.1 Parameters and optimization approaches

In this work typically we will optimize a number of detectors in each of the pre-defined

frequency channels. This is clearly one of the most basic hardware parameters one

would like to know designing a B-mode experiment. Though the central frequency

of the channels is often constrained from the onset by some hardware constraints, we

will also consider more general optimization problems in which a number of frequency

channels, their central frequencies, and a number of detectors per channel are all to be

optimized with respect to.

In the former case we perform a single global optimization operation. Our numerical

codes use a minimization algorithm for constrained nonlinear multivariate function, as

implemented in matlab, which is based on a line-search algorithm with constraints

introduced via a quadratic approximation to the Lagrangian function.

In the second type of the optimization problems we have found that attempts of per-

forming a global optimization are often frustrated by numerical issues and the results

are consequently not very reliable. Instead we have devised a multi-step approach which

is shown schematically in Fig. 11.2. In the proposed method we start from a configu-

ration consisting of a focal plane overpopulated with a large number of mock channels

uniformly covering the requested interval of frequencies. Each of these channels is as-

signed the same number of detectors or a fraction of the focal plane area, depending on

which hardware constraint we use (step 1). We then optimize the number of detectors

as in the standard case with the fixed frequency channels with respect to a given FOM

(step 2). As the obtained detector distribution is typically rather inhomogeneous (we

usually obtain "clusters" in frequency space of non-zero channels) we then merge the

channels with close central frequencies, e.g., closer than the expected band-width of the

anticipated channels. In the process of merging we replace some subsets of channels by

a new channel, centered at the barycenter of the previous frequencies as weighted either

by a number of detectors or focal plane assigned to each of the merged channels, and
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Figure 11.2: Schematic illustration of our optimization procedure in a case of an adjustable number
of channels, a number of detectors per channel, and their central frequencies.

assign to it either their detectors or the corresponding focal plane area (step 3). We

optimize this new configuration again with respect to numbers of detectors per channel,

and go back to step 2 whenever the resulting configuration is found very inhomogeneous.

Then we repeat this process again. We find however that usually a single pass over the

optimization sequence produces satisfactory results.

11.3.2 Constraints

The constraints can be imposed straightforwardly via Lagrangian multipliers therefore

permitting a wide variety of those, which can, and sometimes have to, be introduced.

These include some trivial constraints stemming from the physical interpretation of

the optimized parameters, e.g., ensuring non-negative values for detector numbers or

focal plane area, which have to be usually included explicitly.

There are also some fundamental constraints without each the convergence could

not be reached at all. These typically followed from the hardware restrictions. As an

example of the hardware constraint, hereafter we will use either a constraint on a total

area of the focal plane or on a total number of detectors, corresponding to cases where

we have full freedom to fill in the entire focal plane as densely as only needed or when

such freedom is restricted, for instance, by capability of our read-out systems.

Yet another type of constraints invoked in the optimizations studied here includes

those driven by the science goals rather than hardware requirements. For instance,
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we could require that some specific frequency channel map has a noise level better

than some pre-set level in order to make such a map good enough to investigate some

sky objects or features of interest. These kinds of constraints are often needed in the

post-processing phase described later.

In addition, while considering multiple FOMs simultaneously we will typically use

some of them as constraints restricting the optimization to such configurations for which

the required values of these FOMs is better than some suitable threshold.

11.3.3 Post-optimization processing

The optimized solution formally determined as described here in most of the cases will

require further adjustments and tuning, before it could become a basis for an actual

instrument design and later its potential development.

Specific instances of such post-optimization processing, which we consider hereafter

include:

• design simplification – including either rounding of numbers of detector per

channels and/or removing some channels altogether, in particular those assigned

a small number of detectors.

• addition of some ad hoc frequency channels – for instance, either to improve

the overall robustness of the derived configuration with respect to potential sur-

prises concerning physical properties of the foregrounds, or to extend the science

goals beyond what is already encoded in the FOMs.

In all these cases a crucial question is how significant modifications from the initial

optimized setup are allowed before the science goals, as expressed by the FOMs, are

compromised too significantly to be acceptable. Below we outline a general approach

devised to answer such questions in some specific cases relevant to the applications con-

sidered here, leaving a more detailed description of its practical implementation in our

study cases to paragraph 11.6.

11.3.3.1 Detector number rounding

Let us consider only channels for which the optimization procedure has assigned a

nonzero number of detectors. Moreover we start from the channels for which we want

to decrease a number of detectors, as a result of the rounding procedure, and postpone

the treatment of the remaining ones for later. For the time being we also relax all

the constraints imposed on the optimization, with an exception of the ones ensuring

positivity of a number of detectors or focal plane area. Removing some of the detectors

decreases the instrument sensitivity and thus will affect our science goals, unavoidable
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rendering the experiment less competitive. For any specific configuration we can always

calculate exactly its performance in terms of the adopted FOMs. However, on the ex-

periment designing stage, when many such configurations may need to be considered

and often quickly discarded, the need for the case-by-case computation may be a hin-

derance. In such a context a fast, even if rough and approximate, approach could be

therefore a handy substitute permitting one, on the one hand, to zoom quickly on an in-

teresting family of potential solutions, and, on the other, to reject configurations which

are clearly of no interest. One way to address such a need could be to construct, for

each FOM, a series of hyper-volumes, Vk, (k = 0, ..., nV−1), centered on the optimized

configuration and such that V0 ⊂ V1 ⊂ · · · ⊂ VnV−1. To each volume, Vk, we can assign

uniquely a value, ṽk, such as,

ṽk ≡ min
{di}∈V(vk)

{

FOM
(

{di}
)

}

, (11.6)

i.e., which defines the worst performance plausible within the volume. The values ṽk are

directly arranged in a descending order given that any volume contains all the previous

ones. If now a configuration of our interest belongs to the k-th volume and does not

to the (k − 1)-th one we immediately can infer that its performance, ṽ, expressed in

terms of the given FOM, is bracketed by the two values corresponding to these two

hyper-volumes, i.e., ṽk−1 ≤ ṽ ≤ ṽk.

Two features are essential to make such a scheme useful. First, we have to have

an easy way to identify whether a given configuration is or is not contained in a given

volume. Second, the volumes have to be defined in such a way that the values of ṽk
assigned to them span a range of interesting values and do so sufficiently densely. Given

potential high-dimensionality of the parameter space we consider here, none of these

two requirements is straightforward to satisfy. To address the first of them we propose

to use as the volumes hyper-ellipsoids defined as

Vk ≡
{

{

di
}

∣

∣

∣

∑

i

(di − dopti )2

σ
(k)
i

2 ≤ 1, di < dopti

}

, (11.7)

where the last condition on the right hand side narrows the volume to the cases of

our interest here, as depicted in Fig 11.3. The semiaxes of the ellipsoid, σ
(k)
i , need to

reflect the fact that the rate at which the given FOM changes will be in general different

in different directions in the parameter space. We therefore determine them for every

direction corresponding to varying detector numbers in a single channel separately and

we do it for each channel of relevance here, i.e., for which dopti 6= 0. The procedure

here involves two steps. First, we select a grid of values of the considered FOM, vk,

which covers the range of its values of our interest and does that with a sufficient

density. This grid is used consistently for all directions and channels. Subsequently,

147



11. OPTIMIZATION OF A NEARLY FULL-SKY CMB B-MODES
EXPERIMENT FOCAL PLANE IN THE PRESENCE OF POLARIZED
GALACTIC EMISSIONS RESIDUALS

Figure 11.3: Simplified three dimensional schematic illustration of the reasoning we use to probe
the acceptable region for the experimental configurations around the optimal one.

for every channel, i, we find numerically a dependence between a value of FOM and

a distance from the optimized solution along i-th axis of the parameter space and use

this relation to determine σ
(k)
i so FOM

(

σ
(k)
i

)

= vk. Typically, the grid point values,

vk, will provide a good approximation to the worst case values, ṽk, defined earlier. The

latter are therefore expected to be automatically well-spaced and to span a sufficient

interval of FOM values. In actual applications, we compute more precise estimates of

ṽk than those provided by vk. This is done by using Eq. (11.6) and randomly sampling

the volume of the corresponding hyperellipsoid.

The proposed construction therefore obeys the two requirements we defined earlier

and provides a quick and easy way to find out how far the configuration can be tweaked,

without compromising the science goals. The parameters σ
(k)
i and ṽk constitute an

additional and important piece of information, which should be determined and provided

alongside any optimized configuration to render the optimization process helpful. We

demonstrate this in actual applications in paragraph 11.6.5.

So far we have neglected the hardware constraints. Those would require that any

subtraction of the detectors from some of the channels needs to be accompanied by

adding detectors somewhere else. However, as adding detectors can only improve our

FOMs, the procedure outlined above is conservative as the final outcome of the rounding

with the constraints fulfilled can be only better than what the procedure implies.

We can now get back to the channels for which we might have wanted to round up

the number of channels. This can be done but only by appropriately distributing the

detectors we have removed earlier, as the overall hardware constraint has to be fulfilled.
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If we do not have however strong preferences regarding their distribution we may try

to perform a second round of the optimization to find out how it can be done in an

optimized way. This could be done by solving the optimization problem as the initial

one but adding extra constraints fixing the number of detectors to their rounded value

in all the channels, where the rounding has been applied.

11.3.3.2 Low-populated channels

The formal optimization procedure proposed here may result in configurations, which

include a number of channels with a relatively low number of detectors. As extra

frequency channels contribute to an overall complexity of the instrument, it could be

advantageous to remove those if there is no strong science driver behind them. Remov-

ing entire channels is more delicate than a removal of some fraction of the detectors

as discussed above. This is because it can render the separation process singular or

nearly so with separation errors growing rapidly. The singularities however can be usu-

ally avoided by keeping track of a number of channels needed to separate some specific

number of components, each described by a well-defined number of parameters. We will

therefore assume throughout that this is indeed the case. We then proceed as follows

with the underpopulated channels. We remove such a channel or contiguous group of

those and either redistribute the extra detectors between the adjacent channels or create

a new channel with a central frequency computed as a detector (or focal plane area)

weighted average of the frequencies of the channels to be replaced. We then test the

change in the FOM values. If either of the options is not satisfactory, we can try to

further to improve on it by performing formal optimization but now using only channels

which contain a nonzero number of detectors. If that still turns out to be much worse

than the optimized values of the FOM, we subsequently need to identify, which of the

low-populated channels are crucial from the performance point of view and retain them

in our final configuration, while removing or merging the others.

11.3.3.3 Ad hoc extra channels

Clearly our optimized configuration is only as good as the foreground model assumed

in the optimization process. The impact of some of the uncertainties in the foreground

modeling can be discussed directly within the formalism presented here as, for example,

that of details of the foreground correlation matrix and/or shape of their power spectra.

It is more difficult however to investigate the role of our assumptions about a number

of spectral parameters and/or a number of foreground components. In that respect one

may feel more at ease with the configurations, which have the entire frequency range
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accessible to the instrument sufficiently populated, as they, at least on the intuitive

level, may appear more robust with regard to the unknown.

If the optimization does not lead to a configuration, which satisfies such a condition

on its own, one may want to impose it by adding one or more ad hoc frequency channels

in the areas they are missing. This can be done straightforwardly by adding a constraint

requiring at least some predefined and nonzero number of detectors in those channels.

If this number is fixed exactly, it will be obviously not anymore a parameter of the

optimization, however the channel will still take part in the optimization process as it

will be taken into account in the FOM computation. We use this approach to answer an

important question, i.e., how close such a new configuration would perform as compared

to the original, optimized one. In other words, should the foreground model used turn

out to be correct, would we lose much by trying to make the configuration more robust ?

Ideally, the loss of performance will not be significant, permitting us to reach both these

goals simultaneously: near optimality whenever our modeling is correct, and ability to

meet the surprises. In paragraph 11.6.5 we discuss how the parameters of such ad hoc

channels can be proposed in a specific application.

11.4 Design robustness

A problem closely related to the one discussed above is that of the robustness of the final

configuration. Given some unavoidable failure rates in a technological process involved

in the instrument design and development, a final version of the instrument typically

comes short of the actual design target. An important and valid question then is how

robust the science goals posed for the experiment are assuming that the target has been

defined using the procedure described here. We address this problem in a specific case

in which we admit some failure rate for the detector production process, ε. For a set

of realistic values of ε we perform a random sampling of the parameter space randomly

drawing a number of failed detectors. We then evaluate the full set of FOMs for each

of the samples and find what is an average, likely on 95% confidence level impact of the

considered failure rates on the FOM values.

11.5 Foreground modelling

As discussed earlier in our formalism there are two key quantities needed to describe

completely the effect of foregrounds. These are the auto- and cross-spectra characteriz-

ing the spatial distribution of the foreground components and the component correlation

matrix, F̂. To calculate these we will rely on a specific model of the Galaxy and since

we are interested in the B-modes, we will consider only diffuse foregrounds, synchrotron

and dust, with known and non-negligible polarization emission.
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Figure 11.4: Left panel: example of a dust map, assuming a beam of 8′ and nside = 512. Right
panel: same as left panel but for synchrotron emission.

To simulate these emissions in polarization we implement the same recipe as in

Stivoli et al. (130), which starts off from deriving reliable total intensity templates

from the available data (the Haslam map Haslam et al. (62) for the synchrotron and

the combined COBE-DIRBE and IRAS for the dust Schlegel et al. (117)), rescales

them using some constant overall polarization efficiency factor, fixed to 10% in order

to match the large scale E and B spectra of Page et al. (103), therefore producing

polarization intensity templates, as illustrated in Fig. 11.4. The polarization angles on

the largest scales are then determined using a combination of the WMAP data and

three-dimensional modeling of the Galactic magnetic field as in Page et al. (103), while

on the small angular scales ( <∼ 1◦), by randomly simulating those using their angular

power spectra as derived from the data Giardino et al. (52).

We assume spatially constant frequency scalings: a power law with index βs = −3

for the synchrotron, i.e.,

Async (ν, νref ) =

(

ν

νref

)βs

(11.8)

and a uniform greybody scaling law, as in Model 3 of (47),

Adust (ν, νref ) =

(

ν

νref

)βd+1 exp
hνref
kTd

− 1

exp hν
kTd

− 1
, (11.9)

where Td = 18.0 K and βd = 1.65 for the dust.

As pointed out in Stivoli et al. (130), by adopting this model a large amount of

correlation is expected between dust and synchrotron both because the Galactic mag-

netic field is a common ingredient and because of the lack of high resolution data that

forces us to extend the correlation to small scales. This is reflected in the fact that

the off-diagonal terms of F̂ are of the same order of the diagonal terms. However, as

we discuss in paragraph 10.1 large off-diagonal terms inflate the errors on spectral pa-

rameters, so from the perspective of foreground residuals the employed model can be

considered conservative.
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Figure 11.5: Three foreground masks as used in this work. Yellow (largest mask), dark red (large
mask round the galactic bulge), and dark blue (narrowest mask around the galactic plane) mark sky
areas excluded from the masks: mask-i, P06, and mask-ii, respectively.

Mask fsky F̂dust−dust F̂dust−sync F̂sync−sync

P06 mask 0.73 3.20 0.082 0.0025
Mask I 0.82 1.12 0.029 0.00084
Mask II 0.51 1.74 0.053 0.0019

Table 11.1: F̂ matrix elements computed for two foreground components, dust and synchrotron, at
the fiducial frequency of 70 GHz for the three masks used in this work and all pixelized using healpix

scheme with nside = 128.

To investigate the effects of different foreground contrasts and morphology we con-

sider here three different sky masks. Mask-i and Mask-ii are tailored in such a way

that they have the possible total polarized foreground contrast (synchrotron plus dust)

lower than a predefined threshold equal to 0.86 and 0.36µK, respectively. We also em-

ploy more standard the P06 mask from the WMAP team, which is optimized for the low

frequency coverage of WMAP, i.e. it is skewed toward cutting out more the synchrotron

than the dust emission. All three masks are shown in Fig. 11.5 and their corresponding

foreground (pseudo) power spectra are displayed in Fig. 11.6. In addition, in Table 11.1

we list the elements of the matrix F̂ for each of them.

These masks are thought to be applied a posteriori to the full sky map, assumed to

be homogeneously observed by the experiments. This means that the noise level per

pixel, described in paragraph 11.6.2, will be the same for each of them and thus the

results of the FOM#3 optimization will be the same in all three cases.

11.6 Applications

As an illustration of the method detailed in the previous sections, we will consider

the optimization of two different full sky satellite designs: Cosmic Origins Explorer

(COrE) proposed in response to the European Space Agency Cosmic Vision 2015-2025

Call (137), and CMBpol (1, 33), proposed as part of the NASA mission concept study.

The respective frequency channels and a number of detectors per channel corresponding
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Figure 11.6: Pseudo-power spectra of the foreground templates for the three different masks con-
sidered in this work and contrasted with the CMB B-mode power spectrum. For each mask the three
lines show dust (solid line), synchrotron (dashed line), and their cross-correlation (dotted line). The
foreground signals are computed at the 65 GHz. All the spectra used in this work are computed from
HEALPIX-pixelized maps with nside = 512.

Frequency [GHz] 30 45 70 100 150 220 340 500 850

Number of detectors 84 364 1332 196 3048 1296 744 938 1092

Table 11.2: CMBpol distribution of detectors among the different channels, see Bock et al. (16).

to the original designs are summarized in Table 11.2 for CMBpol and in Table 11.3 for

COrE.

In our analysis we will assume the same noise levels per detector for each of the

experiments, paragraph 11.6.2, and that they scan the sky homogeneously with all

the detectors observing simultaneously over the course of 4 years. Everywhere in this

section, but in paragraph 11.6.8, we will aim at optimizing a number of detectors per

channel, assuming that the latter are fixed and known, and keep either the effective area

of the focal plane or total number of detectors constant. The assumed values for the

Frequency [GHz] 45 75 105 135 165 195 225 255

Number of detectors 64 300 400 550 750 1150 1800 575

Frequency [GHz] 285 315 375 435 555 675 795

Number of detectors 375 100 64 64 64 64 64

Table 11.3: COrE distribution of detectors among the different channels, see The COrE Collabora-
tion (137).

153



11. OPTIMIZATION OF A NEARLY FULL-SKY CMB B-MODES
EXPERIMENT FOCAL PLANE IN THE PRESENCE OF POLARIZED
GALACTIC EMISSIONS RESIDUALS

Figure 11.7: Breakdown of the focal plane area between the frequency channels as originally pro-
posed for the COrE, left, and CMBpol, right, satellites. In the case of COrE all the channels with
frequencies larger than 250 GHz represent less than 10% of the total focal plane area.

two constraints are derived given the proposed configurations of COrE (Table 11.3) and

CMBpol (Table 11.2). In the case of the focal plane area we assume that an effective

area of the focal plane occupied by a single, diffraction-limited detector k operating at

frequency, νk, can be expressed as

Aeff (k) ≡
(

c

νk

)2

= λ2k, (11.10)

where λk is the kth observed wavelength. This assumption for the filled area should be

modified if the limiting factor is, for instance, driven by the readout system rather than

the detector itself. The total focal plane area is then obtained by summing over the

contributions coming from all the detectors. We note that this gives at the best some

effective area because we do not take into account any kind of filling factor, which is

usually driven by technical constraints such as the shape of the detectors, the wiring,

etc. Fig. 11.7 shows the fractional area as occupied by each channel in the case of the

proposed versions.

Hereafter we neglect the effects of the E-B leakage, e.g., Grain et al. (56), both in the

calculations of the foreground spectra as well as the CMB variance. In the former case

this is justified given the fact that E and B spectra for foregrounds are on comparable

levels and the leakage is usually harmless. For the CMB variance we assume that the

effects of such a leakage can be largely removed using one of the methods proposed

in the literature. Though corrections of this sort usually lead to some extra precision

loss, this is typically only a fraction of the standard cosmic variance and, at least for

experiments with a sufficiently large sky coverage, small enough not to change our
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results in a significant way. For small-scale observations the effect may not be negligible

and should be taken into account, e.g., Grain et al. (56), Stivoli et al. (130).

For some alternative analyses of performance of these two experiments see, e.g.,

Betoule et al. (12), Bonaldi and Ricciardi (17), Dunkley et al. (36).

11.6.1 Mixing matrix

To define the mixing matrix, Eq. (10.1) relevant for the problem at hand, we will use the

component frequency scaling laws as defined in paragraph 11.5. We set the reference

frequency, i.e., frequency at which all the component maps are recovered as equal to 150

GHz. We also account for frequency band-shapes. For this we will assume that they

are top-hat-like with a width equal to 1/3 of the central value. Therefore, an element,

Aij of the mixing matrix will be given as

Aij ≡
∫

dν Φj (ν, νref )WTH

(

|ν − νi| ,
1

3
νi

)

, (11.11)

where νi is a frequency of the i-th channel, Φj (ν, νref ) is a photon flux as measured

at frequency ν relatively to νref , and WTH(·, σTH) is a top hat window centered at 0

and with a width σTH . As mentioned earlier we assume hereafter that the scaling laws

adopted on this stage coincide with the true ones modulo the unknown parameters.

Nonetheless we will limit the frequency range of the channels included in our discussion

below to between 30 and 400 GHz, to, on the one hand, avoid channels where the

CMB is completely swamped by the foregrounds and, on the other, not to stretch the

adequacy of the frequency scaling model of the dust over a too broad interval.

11.6.2 Noise levels

We assume sky-noise limited detectors. Their noise level, in antenna units, is taken to be

independent on a detectors operating frequency and set to be equal to σt ∼ 30µK
√
s,

see The COrE Collaboration (137). A single detector noise level per pixel will then

be given by an observation total length, Tobs and pixel area. The detector noise per

channel will also depend on a number of detectors operating at a given frequency. The

numbers of detectors for each channel, {di}(i=0,...,nf−1), are the parameters we will be

most frequently trying to optimize in the reminder of this section. The noise correlation

matrix will be then assumed to be diagonal and the diagonal elements will be given by

Nii =
4σ2t N

tot
pix

Tobs di
. (11.12)

Here, N tot
pix is a total number of observed pixels (to be distinguished from Npix a number

of pixels included in the analysis (Npix will depend on the mask we will consider; see

paragraph 11.5).
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11.6.3 Resolution

So far we have ignored completely the fact that detectors operating at different frequen-

cies will likely have a different resolution, in particular if they are diffraction-limited.

Because the parametric maximum likelihood component separation approach adopted

here is pixel-based all the channel maps will have to be however smoothed to some

common resolution before the separation can be accomplished. The extra smoothing

required here is not generally lossless and may introduce noise correlation between the

pixels. Hereafter we will ignore such effects and keep using Eq. (11.12) to compute the

noise levels with only the pixel size, and thus a number of pixels, adjusted accordingly.

As far as the sky signals are concerned, given that our science goals are mostly con-

strained by the large angular scales, we will mimic the common resolution by setting

a hard limit on the considered value of ℓ to be ℓmax = 500, as we have found that for

the considered noise levels there is no information beyond that range. We note that

in a more refined approach one may want to introduce the resolution as an optimiza-

tion parameter and constraint it by requiring that the gain due to its decrease is larger

than some threshold. All the power spectra used in this work have been derived us-

ing healpix pixelized maps with the healpix resolution level, nside = 512. This is

clearly sufficient given the hard ℓ-space cut off we have adopted here. We stress that

this resolution is higher than the one used in paragraph 11.5 for the determination of

the matrix F̂. This is because in the latter calculation only pixel-domain quantities are

involved, which are overwhelmingly dominated by the large scale fluctuations for which

nside = 128 maps are entirely sufficient.

11.6.4 Fixed number of channels with pre-defined, fixed frequencies

In this section, I describe the optimization of the two experiments assuming that the

frequency channels are fixed ahead of the procedure. The results are summarized in

Tables 11.4 and 11.5 for COrE and CMBpol, respectively, and for each FOM (called

there for shortness as F1, F2 or F3), three considered sky masks (P06, Mask I or Mask

II), and two hardware constraints (total area or total number of detectors), and are

contrasted with results obtained for the original designs of the experiments, as shown

in the rightmost columns of the Tables. We note that though the latter configurations

are mask-independent, the corresponding FOMs values differ somewhat from mask to

mask due to differences of the sky included in the analysis. For each of the optimized

configurations the tables show a corresponding total number of detectors, focal plane

area, effective noise levels, spectral index determination precision, and values of the

three FOMs. A selection of these results is also depicted in Figs. 11.8-11.11, showing,

as bars, a number of detectors for each of the considered channels, left panels, and

power spectra of the residuals corresponding to each configuration, right panels. The

156



11.6 Applications

visualized cases are those based on the P06 mask, however the other cases would look

similar. In each Figure the upper left panel shows a corresponding original configuration

followed by three panels displaying configurations optimized with respect to each of the

three FOMs. Four general observations are in order here.

1. The optimized configurations depend on the FOM used for the optimization.

2. The constraints imposed on the problem affect the results. Constraining the focal

plane area gives preference to the high frequency channels with detectors occupy-

ing a small area and thus leads to a worse determination of the synchrotron signal,

which in turn leads to a higher level of residuals, if these are left unconstrained,

i.e. in cases of FOM#1 and FOM#3. Also the overall noise, FOM#3, tends to

be higher.

3. The final configurations obtained for each of the three masks are essentially iden-

tical, though the actual values of FOMs do differ mostly due to a different number

of pixels with Mask-ii containing the fewest of those.

4. The optimized configuration contain significantly fewer frequency channels than

allowed for in the optimization and therefore fewer than proposed in the original

versions of the both these experiments.

Below we comment on some of the result in more detail and leaving a general discussion

for the conclusions, paragraph 11.7.

FOM#1 optimization — rmin

For all configurations shown in Tables 11.4 and 11.5 for which FOM#1 could be

computed, i.e., those containing more than just 3 channels, rmin is found to be on the

order of 10−4 and varying from case to case by no more than a factor of 2. This is

also the case for the original designs of the COrE and CMBpol satellites. The values

of FOM#1 optimized under the constraint of the total number of detectors tend to be

somewhat better (worse) than those derived under the total focal plane area constraint

for COrE (CMBpol). The differences are however small across the board and probably

irrelevant in practice.

In both the COrE and CMBpol cases, the optimization of FOM#1 leads to configu-

rations for which also FOM#3 is close to the optimum, as the latter is found to be within

5-10% of its best value for the respective hardware constraints. This suggests that this

is the variance due to the noise rather than the foreground residual, which contributes

to the recovered value of the FOM#1 more significantly (see also Stivoli et al. (130)).

Conversely, as a consequence in such cases the level of the foreground residuals is not

tightly controlled and therefore the FOM#1-optimized configurations result in values
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Figure 11.8: Left panel: optimized distributions of numbers of detectors per channel derived under the total focal plane area constraint for the
COrE satellite, including only channels below 400 GHz. From top to bottom we show first the original distribution followed by the three optimized
ones derived using FOM#1 to #3, respectively. Right panel: corresponding power spectra of the residuals and the noise computed for the optimized
configurations shown on the left and compared against the spectrum of the CMB B-modes with r = 0.001.



Figure 11.9: As in Fig. 11.8 but imposing the constraint on the total number of detectors.



Figure 11.10: As in Fig. 11.8 but for the CMBpol satellite.



Figure 11.11: As in Fig. 11.9 but for the CMBpol satellite.



channels P06 mask mask I mask II proposed version
Constraint area total # area total # area total #

(GHz) F1 F2 F3 F1 F2 F3 F1 F2 F1 F2 F1 F2 F1 F2 P06 mask mask I mask II

45 45 22 48 610 87 382 45 21 610 72 45 22 607 88 64 - -
75 - 370 - 1775 827 - - 366 1775 778 - 37 1759 832 300 - -
105 - - - 3027 - 4876 - - 3026 - - - 3042 - 400 - -
135 3160 1872 3918 - 2313 - 3161 1886 - 2322 3124 1871 - 2315 550 - -
165 1092 - - - - - 1091 - - - 1146 0 - - 750 - -

Number of 195 - - - - - - - - - - - - - - 1150 - -
detectors 225 - - - - - - - - - - - - - - 1800 - -

255 - - - - 2081 - - - - 2141 - - - 2073 575 - -
285 - 4623 - - - - - 4669 - - - 4610 - - 375 - -
315 - - - - - - - - - - - - - - 100 - -
375 3281 3186 2859 717 820 870 3281 3156 717 816 3294 3188 719 820 64 - -

Total area 0.023 0.023 0.023 0.081 0.032 0.057 0.023 0.023 0.081 0.031 0.023 0.023 0.080 0.032 0.023 - -
∑

[number of detectors] 7579 10073 6824 6128 6128 6128 7577 10099 6128 6128 7608 10062 6128 6128 6128 - -

45 0.085 0.042 0.091 0.34 0.12 0.30 0.085 0.040 0.34 0.10 0.085 0.042 0.36 0.12 0.12 - -
75 - 0.25 - 0.35 0.42 - - 0.25 0.35 0.41 - 0.25 0.35 0.42 0.21 - -
105 - - - 0.31 - 0.69 - - 0.31 - - - 0.31 - 0.14 - -
135 0.67 0.40 0.83 - 0.36 - 0.67 0.40 - 0.37 0.66 0.40 - 0.36 0.12 - -

Fractional 165 0.15 - - - - - 0.15 - - - 0.16 - - - 0.11 - -
area 195 - - - - - - - - - - - - - - 0.12 - -

225 - - - - - - - - - - - - - - 0.14 - -
255 - - - - 0.090 - - - - 0.097 - - - 0.090 0.034 - -
285 - 0.22 - - - - - 0.22 - - - 0.22 - - 0.018 - -
315 - - - - - - - - - - - - - - 0.0039 - -
375 0.090 0.088 0.079 0.006 0.016 0.010 0.090 0.087 0.0057 0.017 0.090 0.088 0.0057 0.016 0.0018 - -

45 0.37 0.52 0.35 0.099 0.27 0.13 0.37 0.53 0.099 0.30 0.37 0.52 0.099 0.26 0.31 - -
75 - 0.13 - 0.058 0.085 - - 0.13 0.058 0.088 - 0.13 0.058 0.085 0.14 - -
105 - - - 0.044 - 0.035 - - 0.044 - - - 0.044 - 0.12 - -
135 0.044 0.057 0.039 - 0.051 - 0.044 0.056 - 0.051 0.044 0.036 - 0.051 0.10 - -

Noise 165 0.074 - - - - - 0.074 - - - 0.072 - - - 0.089 - -
per 195 - - - - - - - - - - - - - - 0.072 - -

channel 225 - - - - - - - - - - - - - - 0.058 - -
[µKantenna] 255 - - - - 0.054 - - - - 0.053 - - - - 0.10 - -

285 - 0.036 - - - - - 0.036 - - - 0.036 - - 0.13 - -
315 - - - - - - - - - - - - - - 0.24 - -
375 0.043 0.043 0.046 0.091 0.085 0.083 0.043 0.044 0.091 0.086 0.043 0.043 0.091 0.085 0.31 - -

δβd [10
−3] 0.96 0.12 - 0.95 0.16 - 0.83 0.074 0.82 0.10 1.47 0.19 1.48 0.25 0.28 0.18 0.45

δβs [10
−3] 30 2.9 - 4.3 2.2 - 26 1.9 3.7 1.4 38 3.9 5.6 2.9 3.4 2.2 4.5

δβdδβs
δβd×δβs -0.92 -0.44 - -0.92 -0.57 - -0.96 -0.46 -0.96 -0.58 -0.91 -0.44 -0.91 -0.57 -0.67 -0.70 -0.67

F1
[

10−3
]

0.22 0.26 - 0.21 0.24 - 0.20 0.23 0.19 0.21 0.31 0.37 0.29 0.34 0.28 0.25 0.40
F2
[

10−3
]

0.95 0.0097 - 0.16 0.011 - 1.1 0.0057 0.18 0.0065 0.79 0.086 0.14 0.0094 0.028 0.018 0.025
F3 [nKcmb] 5.4 10 5.3 3.6 7.4 3.4 5.4 10 3.6 7.7 5.4 10 3.6 7.4 14 14 14

Table 11.4: Summary of the optimization results in the case of COrE considering channels only below 400 GHz. For each of the three masks, we
present results for each of the three FOMs optimized under one of the two constraints, either fixing the focal plane area or the total number of detectors.
The results for FOM#3 are quoted only once as they do not depend on the choice of the mask.The rightmost columns show the results computed using
the original version of COrE as proposed in The COrE Collaboration (137). In the latter case the configuration is always the same, whatever the choice
of the mask.



channels P06 mask mask I mask II proposed version
Constraint area tot # area tot # area tot #

(GHz) F1 F2 F3 F1 F2 F3 F1 F2 F1 F2 F1 F2 F1 F2 P06 mask mask I mask II

30 35 62 52 472 185 601 33 61 448 168 56 62 672 187 84 - -
45 - 491 - - 1016 - - 493 - 975 10 491 1240 1021 364 - -

Number of 70 - - - 4861 - 7646 - - 4935 - - - 3643 - 1332 - -
detectors 100 1970 4056 - 2776 3546 - 1400 4101 2579 3567 6311 4049 2583 3544 2196 - -

150 13159 - 16995 - - - 14639 - - - 3518 - - - 3048 - -
220 823 8328 - - 3164 - - 8228 - 3207 178 8340 - 3157 1296 - -
340 10364 4525 13210 954 1154 817 11586 4259 1102 1148 7988 4566 926 1154 744 - -

Total area 0.084 0.084 0.084 0.16 0.10 0.20 0.084 0.084 0.16 0.099 0.084 0.084 0.21 0.10 0.084 - -
∑

[number of detectors] 26352 17462 30258 9064 9064 9064 27658 17143 9064 9064 18061 17508 9064 9064 9064 - -

30 0.042 0.074 0.063 0.29 0.18 0.30 0.040 0.073 0.28 0.17 0.068 0.074 0.32 0.18 0.10 - -
45 - 0.26 - - 0.44 - - 0.26 - 0.44 0.0054 0.26 0.26 0.44 0.19 - -

Fractional 70 - - - 0.55 - 0.70 - - 0.57 - - - 0.31 - 0.29 - -
area 100 0.21 0.44 - 0.15 0.31 - 0.15 0.44 0.15 0.32 0.68 0.44 0.11 0.31 0.24 - -

150 0.63 - 0.81 - - - 0.70 - - - 0.17 - - - 0.15 - -
220 0.018 0.19 - - 0.057 - - 0.18 - 0.060 0.0040 0.19 - 0.057 0.029 - -
340 0.097 0.042 0.12 0.0046 0.0088 0.0032 0.11 0.040 0.0054 0.0090 0.074 0.043 0.0034 0.0087 0.0069 - -

30 0.41 0.31 0.34 0.11 0.18 0.010 0.42 0.31 0.12 0.19 0.33 0.31 0.094 0.18 0.27 - -
45 - 0.11 - - 0.077 - - 0.11 - 0.078 0.77 0.11 0.070 0.077 0.13 - -

Noise 70 - - - 0.035 - 0.028 - - 0.035 - - - 0.041 - 0.067 - -
per 100 0.055 0.038 - 0.046 0.041 - 0.065 0.038 0.048 0.040 0.031 0.038 0.048 0.041 0.052 - -

channel 150 0.021 - 0.019 - - - 0.020 - - - 0.041 - - - 0.044 - -
[µKantenna] 220 0.085 0.027 - - 0.044 - - 0.027 - 0.043 0.18 0.027 - 0.044 0.068 - -

340 0.024 0.036 0.021 0.079 0.072 0.086 0.023 0.038 0.074 0.072 0.027 0.036 0.080 0.072 0.090 - -

δβd [10
−3] 0.25 0.086 - 0.71 0.13 - 0.37 0.055 0.62 0.055 0.41 0.14 0.66 0.21 0.16 0.10 0.25

δβs [10
−3] 2.39 0.51 - 1.5 0.38 - 3.2 0.33 1.4 0.33 2.7 0.68 0.67 0.50 0.55 0.36 0.73

δβdδβs
δβd×δβs -0.66 -0.46 - -0.96 -0.48 - -0.10 -0.48 -0.88 -0.49 -0.88 -0.46 -0.54 -0.48 -0.63 -0.65 -0.62

F1 [10−3] 0.19 0.20 - 0.19 0.20 - 0.17 0.18 0.17 0.18 0.27 0.28 0.27 0.29 0.20 0.18 0.29
F2 [10−3] 0.024 0.0018 - 0.059 0.0023 - 0.076 0.0011 0.069 0.0014 0.020 0.0016 0.012 0.0020 0.0041 0.0026 0.0036

F3 [nKcmb] 1.5 2.7 1.4 1.6 3.1 1.5 1.4 2.7 1.6 3.2 1.6 2.7 1.7 3.1 3.0 3.0 3.0

Table 11.5: As in Table 11.4 but for CMBpol, see Aguirre et al. (1).
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of FOM#2, which are at least 1 order of magnitude above the best achievable reff , and

worse than the values derived for the proposed designs. As we normally would prefer

to avoid too high residuals we conclude that FOM#1 is not sufficient as a stand-alone

optimization criterion and preferably should be combined with some other indicator,

efficient in enforcing the low value of the residuals. We will get back to this issue later

on in this Section.

FOM#2 optimization — reff

From Eqs. (10.19)–(10.21) it follows that a good determination of the spectral pa-

rameters βdust and βsync is necessary and sufficient to ensure a low level of the foreground

residuals. We therefore expect (see also Amblard et al. (3)) that in the FOM#2-

optimized configuration the detectors should populate predominantly low frequency

bands, which are dominated by the synchrotron signal, the CMB band, and high fre-

quency bands, dominated by the dust. As we require at least 4 channels in the case

at hand to avoid problem singularity and impose the hardware constraint the actual

answer is somewhat more complex, nevertheless the overall detector distribution con-

forms with the above intuition. Indeed the FOM#2-optimized configurations include

channels below 50 GHz, around 100 − 130 GHz, and above 250 GHz. This applies for

both the experiments and for every mask. The details of the distribution depend on a

type of the constraint. As the high frequency detectors have smaller area we find that

the dust is better estimated (δβdust lower) under the total area constraint case as more

high frequency detectors can be had. The opposite can be seen for the synchrotron es-

timation. The resulting levels of the residuals are however essentially identical in both

these cases. More aggressive masking clearly helps, Mask I, but a balance has to be

maintained between lowering the overall foreground level and the precision of the spec-

tral index determination. The latter, unlike the former, benefits from a larger number

of pixels and higher foregrounds and, otherwise, can therefore start driving the effective

residual up, e.g., Mask II.

The FOM#2-optimized configurations usually render good values for FOM#1 (within

10−15% of the best achievable values), but result in the CMB map noise levels (FOM#3)

up to twice higher than the best ones. The original versions of the considered experi-

ments also yield the values of reff close to the best ones.

FOM#3 optimization

For this FOM, and in every considered case, the optimization of the focal plane

with respect to the noise in the CMB map ends up with only three nonzero channels:
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two at frequencies as extreme as only allowed for, and one at an intermediate one con-

tained in the CMB frequency band. The precise position of the latter is found again

to be dependent on a type of the hardware constraint used. For the CMBpol satellite

the values of the central frequencies are 70 or 150 GHz for the constraint on the total

number of detectors and the area, respectively. For COrE they are 105 and 135 GHz,

respectively. We recall that in the case of this FOM all the spectral indices are assumed

to be known, otherwise the three channel configurations derived here would be singular

and would not permit a determination of the spectral indices. The achieved noise levels

are better when the total number of detectors is constrained, and are lower by a factor

up to ∼ 1.6. The original versions of the satellites result in quite high noise (higher by a

factor of 2.5− 4) in comparison with the one derived for the optimized configurations.

Consensus configuration

Having postulated three different FOMs we have obtained three different, optimized

configurations. Moreover, as we have already mentioned, there is clearly tension between

some of the considered FOMs. The issue now is therefore how to find a compromise

between them in order to select a single configuration as a result of our procedure.

To do so we first recall that in our case the configurations preferred from the point

of view of FOM#1 fail to ensure a satisfactory level of the residuals, as quantified by

FOM#2, while optimization of the latter yields a rather high level of noise, i.e., FOM#3.

Simultaneously however optimizing FOM#1 effectively ensures a near optimization of

FOM#3. Therefore we will retain the former as part of the optimization and drop

the latter, which from now on will be used only as a benchmark to compare against

the obtained configurations. As FOM#1 on its own is not fully satisfactory we will

therefore optimize it, while imposing a constraint based on a value of FOM#2. Clearly

if more FOMs are used more constraints can be introduced in the same way. What

values to choose for the thresholds is a somewhat debatable question, an answer to

which will depend on a specific application. In our case, we first note that for the

FOM#2-optimized configuration the resulting reff is an order of magnitude lower than

the respective value of rmin. The latter is moreover typically 20% higher than its

corresponding best value.

From the viewpoint of these two indicators the FOM#2-optimized solution looks

therefore quite satisfactory. This is particularly true for the CMBpol case for which

this solution can be accepted as indeed the final outcome of the procedure. For COrE

the potential remaining problem could be the noise level. In search of the consensus

configuration we may therefore want to let the residual grow, in particular, relatively

to the value of rmin and gain in terms of the noise. Clearly the more we compromise on

reff the more we can gain on σ2CMB. As for COrE the values of rmin are close to 2×10−4
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channels F1-optimized no 255GHz channel cases extra channels original
(GHz) + constraint no optimization F1-optimized + F1 optimized + version

F2 ≤ 10−4 F2 ≤ 1.5 × 10−4 F2 ≤ 10−4 (137)
45 607 607 592 366 64
75 1771 1771 2112 47 300
105 3021 3021 2801 4551 400
135 - - 0 - 550
165 - - 0 - 750

Number of 195 - - 0 200 1150
detectors 225 - - 0 - 1800

255 17 0 0 - 575
285 - - 0 200 375
315 - - 0 - 100
375 711 711 623 764 64

δβd [10−3] 0.74 0.95 0.91 0.35 0.28
δβs [10−3] 3.5 4.3 4.1 8.1 3.4

δβdδβs
δβd×δβs

-0.88 -0.92 -0.92 -0.66 -0.67

F1 [10−3] 0.21 0.21 0.21 0.21 0.28
F2 [10−3] 0.10 0.16 0.15 0.10 0.028

F3 [nKcmb] 3.6 3.6 3.6 3.6 14

Table 11.6: Comparison of performance of the variants of the COrE setups considered in para-
graph 11.6.5. All the optimization runs have been performed while keeping the total # of detectors
constant, used the P06 mask and only the channels below 400GHz. The configurations in the Table
include, from left to right, (1) a result of the optimization procedure with respect to FOM#1 with
a constraint on FOM#2 of ≤ 10−4, (2) the same configuration but with the 255GHz channel sup-
pressed, (3) a configuration with the same frequency channels as in (2), but with numbers of detectors
re-derived via an optimization with respect to FOM#1 and a constraint FOM#2 ≤ 1.5 × 10−4, and
(4) a re-optimized configuration with the channels as before plus two extra ones with a fixed number
of detectors (= 200 each). The last column shows the original COrE configuration for comparison.
Numbers in bold correspond to parameters forced to be at a given value.

and we will allow rmin to be as large as 10−4, and reoptimize the problem with respect

to FOM#1 with the constraint that reff ≤ 10−4. This specific choice is in fact arguably

rather high. In fact we find that imposing more strict limits of reff ≤ 2.5 × 10−5 or

5 × 10−5 already can ensure satisfactory noise levels, 4.0 and 3.9 nKCMB, respectively,

and thus could be preferred for the actual experiment optimization. We will however

use hereafter the threshold of 10−4 as it is more useful for demonstration purposes.

The resulting configuration is shown in Fig. 11.12 and summarized in Table 11.6,

where we show the results obtained for the two hardware constraints. The spectra of

the noise and residuals are also displayed in the right panel of the Figure. We conclude

that the detector distribution indeed resembles a hybrid between two solutions obtained

earlier as a result of the optimization of FOMs: #1 and #2 separately with a respective

hardware constraint, Figs. 11.8 and 11.9. As anticipated above the overall level of the

foreground residual spectrum is rather high as compared to both the B-mode spectrum

and its respective variance due to the noise and the sky. However, as intended, the noise

level has been successfully suppressed to the levels close to those computed for FOM#3

optimized configurations.
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Figure 11.12: Left panel: results of the FOM#1-based optimization derived in the case of the COrE experiment with a constraint on FOM#2
(< 10−4), and using the P06 mask and channels with frequencies below 400 GHz. Upper (lower) panel is obtained under the total area (total number)
constraint. Right panel: comparison of the power spectra corresponding to the proposed and optimized versions of the COrE experiment as listed in
Table 11.6 and visualized in the left panel. The spectra in blue (mid-level noise spectrum and highest residuals, these latter being depicted with dashed
lines) correspond to the cases with the total area constraint. On the other hand, the spectra in magenta (lowest noise level, same residuals as previously)
correspond to the cases with the detector number constraint. The foreground residual spectra in both of these cases overlap perfectly in the figure with
the magenta curve being invisible.
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11.6.5 Post-processing

For definiteness in this Section we focus on a single, specific configuration, and choose

for it the optimized COrE setup obtained from the optimization of the FOM#1 value,

while constraining the corresponding value of FOM#2 to be no more than 10−4 and

keeping the total number of detectors fixed, as discussed at the end of the previous

Section. The details of this configuration are listed in the fourth column of Table 11.6

together with the respective FOMs values.

The procedure employed in this Section follows the steps outlined in paragraph 11.3.3.

In Fig. 11.13 we show an impact of a fractional change of a number of detectors in one

channel at the time on the values of the FOMs. The latter are given relative to their

optimized values and therefore all the curves shown in the figure are expected to start

from the unity for the fractional change equal to zero, as the latter corresponds to

the optimized configuration, and then grow typically monotonically with an increasing

value of the fractional change. In addition, for reference we also show how the FOMs

values would change if numbers of detectors in all the channels are decreased by the

same fraction. We note that at least for the two of the FOMs, i.e., FOM#2 and #3,

the latter dependence can be straightforwardly predicted using Eqs. (10.10), (10.21),

and (11.4) and shown to be inversely proportional to an actual number of detectors

in the corresponding configurations and thus inversely proportional to (1−fractional

change of detectors). This indeed is adhered to by our numerical results.

The most striking features of some of the results are their apparent flatness extend-

ing on occasions to a rather high values of the fractional change. At face value that

suggests that one is at liberty to change a number of detectors in some of the channels

rather drastically but without noticeably penalizing the performance of the instrument.

However, though some freedom indeed exists, it has to be exploited carefully. In partic-

ular, significantly changing a number of detectors in one selected channel, will usually

have an effect of removing any freedom in adjusting the number of detectors in the

remaining channels. Therefore if one’s goal is to round-up the optimization results in

a way to make them more amenable to an actual implementation that may not be the

right way to go. Below we showcase some of these issues in the specific case at hand.

Probably most conspicuous thing about the configuration considered here is the

presence of a channel centered at 255 GHz, to which are assigned only 17 detectors, as

opposed to a few thousands in some of the other channels. A natural question to ask

is therefore whether this channel is needed at all. In fact, the two outermost panels

of Fig. 11.13 seem to confirm our feeling that this channel is in practice irrelevant as

both the FOMs #1 and #3 effectively do not depend on its being present. This is not

so however for the FOM#2 as shown in the middle panel. In this case removing this

channel altogether will boost the value of this FOM, and thus the level of the foreground

residual by a factor of ∼ 1.5. Though not overwhelmingly large it is substantial enough
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Figure 11.13: Dependence of the values of FOM#1 (top left), FOM#2 (top right), and FOM#3
(bottom), on a fractional change of a number of detectors in the hardware configuration as detailed in
the fourth column of Table 11.6. The solid lines show cases with a number of detectors in only one
selected channel being gradually decreased (left to right) and all the others being kept fixed at their
optimized values. The circles show the case with a number of detectors in all channels decreasing by
the same fraction simultaneously. The color schemes for the lines are the same in all the panels and
described in the legend.
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to justify holding on to this channel (unless of course the hardware cost of having the

extra channel tips the balance the other way). These expectations are confirmed by

direct calculations, results of which as shown a 5th column in Table 11.6. (We note

that an attempt to re-optimize the resulting 4-channel system a posteriori does not

bring much improvement either; see Table 11.6, column 6). We note that trying to

keep the level of residuals down in this case can be of particular importance given that

already in its original, optimized version (Table 11.6) the resulting values of rmin and

reff are close enough to each other that this is probably the latter, i.e, the level of

residuals, which would drive the actual limit on a detectable r value for this setup,

rather than the statistical estimate provided by FOM#1. Letting reff grow any further

would therefore directly affect our science goals. Instead we can therefore try to trim a

number of detectors in either 45 or 375 GHz channel. We see that we can potentially

reject up to ∼ 70% of the detectors in the former or ∼ 80% in the latter, without

affecting the residuals level (FOM#2) in any appreciable manner. This would have an

effect of increasing FOM#1 value by no more than ∼ 5% and FOM#3 by no more

than ∼ 50%, both of which may therefore look perfectly acceptable. Whichever option

we opt for, we can then reuse the spare detectors by distributing them to some of the

existing channels or creating some additional ones, say at 165 GHz, in order to be better

equipped to face some potential surprises (Sect, 11.3.3). However a special care then

has to be taken if a number of detectors in some other channels needs to be concurrently

decreased. This is because, as illustrated by lines marked with circles in Fig. 11.13, not

all directions in the parameter space are similarly flat.

If our aim is to just round-up the detector numbers we can proceed as outlined in

paragraph 11.3.3. We first postulate a set of fractional changes from the optimized

values. In our case these could be [vk] = [1.025, 1.05., 1.1, 1.15] for FOM#1 and [vk] =

[1.05, 1.25., 1.5, 2.0] otherwise, and then use Fig. 11.13 to read off the corresponding

values of the fractional change for each channel and each FOM. These are values denoted

σ in paragraph 11.3.3. In our case for FOM#1 they read

{

σ
(k)
j

}

=























409 496 555 577
1017 1664 1771 ∞
880 1477 2236 2697
∞ ∞ ∞ ∞

442 549 624 654























, (11.13)

where k-th column corresponds to the k-th value of vk and thus gives values of σ for

each of the five channels with nonzero number of detectors in the optimized configura-

tion (see second column of Table 11.6). We can use these values to define, Eq. (11.7),

hyperellipsoidal volumes, Vk, in the parameter space centered on the optimized config-

uration. We note that the infinity sign marks the cases, where the desired value of vk
could not have been reached due to the parameter space boundary. For instance, the
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Figure 11.14: The worst values of each FOM, ṽ, computed for each of the concentric hyperellipsoids,
Eq. (11.7), defined by the threshold values, v, as shown on the horizontal axis. The dotted line shows
ṽ = v case. Clearly, ṽ ≃ v in all shown cases, where the latter approximate equality holds to within
10%. The values of ṽ and v given here are relative to the optimized values of the respective FOMs.

values in the fourth row of Eq. (11.13) are all infinite as in the neighborhood of the

optimized configuration the value of FOM#1 does not depend on a number of detectors

in this channel as can be seen in Fig. 11.13.

To find the worst case value of the FOM for a k-th hyperellipsoid, ṽk, we use random

sampling of first an entire volume of the ellipsoid followed by that of only its surface.

The latter requires fewer samples to ensure proper sampling density and is more efficient

if we have some expectation of the FOM values monotonically deteriorating away from

the optimized configuration. As anticipated in paragraph 11.3.3 the corrected values,

ṽk, and initial ones, vk, are indeed found to be quite close, typically within 20% of each

other as illustrated in Fig. 11.14.

The series of the concentric hyperellipsoids constructed here gives us a quick, though

approximate, way to estimate the performance of some proposed configurations derived

from the optimized one via small changes of all or some optimization parameters. As

an example, consider a configuration with [dj ] = [600, 1700, 3000, 17, 700] detectors in

each of the five channels considered here. Given that for FOM#1,

∑

k

(

dj − doptj

)2

σ
(k)
j

2 ≤ 1 (11.14)

is fulfilled for any k, we conclude that the respective value of FOM#1 for this case will

not be larger than by a factor ṽk=1
<∼ 1.025 than the optimized value. Indeed a direct
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calculation renders a value 1.002 times higher than the optimized one in agreement with

our quick estimation. Similarly, we can deduce the performance of this configuration as

expressed by the two other FOMs. These are more sensitive at least to changes in some

of the channels however we find that for this specific configuration we can lose no more

than a factor of 1.05 for both of them. These could be compared to the actual values

of 1.01 and 1.02, respectively, all relative to the corresponding optimized values.

In this case overall the loss of performance seems rather benign and acceptable.

Moreover, as a result of rounding-down the detector numbers we have gained around

100 of those, which we can arbitrarily assign to any of the existing channels or even

create a new one to saturate the constraint on the total number of detectors. Whatever

decision we make we will not compromise any of the performance figures derived earlier.

To illustrate a process of adding some ad hoc channels at this time we start from a

configuration more drastically stripped-down than the one discussed above. Let that be

for instance [dk] = [500, 1500, 3000, 0, 600], where we not only reduced numbers of de-

tectors per channel more substantially but also removed the fourth channel altogether.

Using the hyperellipsoid formalism we get quickly a helpful insight into how much we

have lost as a result of choosing this configuration. As we already discussed, the biggest

loss is found with regard to the value of FOM#2, which is boosted by more than 50%

(but less than 100%) with FOM#1 and FOM#3 changing by <∼ 1.05 and ∼ 1.1 re-

spectively. (The actual values being 1.01, 1.81 and 1.09 for FOMs: #1, #2, and #3.)

However we have also gained as many as 400 detectors, which can be distributed at our

discretion to fill the constraint. Let us do so by introducing two extra channels at 195

and 285 GHz with 200 detectors each. This improves the performance of the considered

configuration, an improvement which we can ameliorate even further by performing the

optimization with respect to the detector numbers in the four original channels and

keeping the detector numbers of the new channels fixed to 200. We indeed find that

the new setup performs nearly as well as the initial optimized one (Table 11.6, column

3 vs 7) but possesses a more uniform frequency coverage. If we now want to perform a

controlled detector number rounding and analyze its impact on the configuration per-

formance we would need to restart the entire procedure described above.

11.6.6 Robustness tests

As explained in paragraph 11.4, for each FOM, we start from the optimized configura-

tions, as determined earlier and check how the values of the FOMs depend on a random

suppression of a number of detectors in each channel by some fraction. Specifically, we

assume here that the distribution of the anticipated detector failures is Gaussian with

the dispersion equal to ε of which is the same for each of the considered channel and

taken to change from 5%, 10%, 25%, and 50 %. We randomly draw some large number
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Figure 11.15: Summary of our robustness tests applied to the COrE configuration obtained via
the optimization of FOM#1 with constraints of FOM#2 ≤ 10−4 and a fixed number of detectors. The
lines of different colors correspond to different FOMs and different lines show: average (dotted), 95%
confidence limit, (dot-dashed), and the worst value (solid).

of samples, here 104, and histogram the results for each of the FOMs. We then compute

the most likely value of the FOMs, 95%-confidence limit, and the worst drawn value. In

the case of the COrE configuration studied in the previous Section we collect the results

in Fig. 11.15. We conclude, as probably could have been anticipated from the results of

the previous Section, that for a failure rate as large as 30% we will not compromise on

the FOM values by more than 50% with respect to the optimized ones, while a failure

rate of 10% will result in their 10% increase. These result affirm the practical soundness

of the derived configuration.

11.6.7 Robustness with respect to the foreground modeling

Results of the optimization procedures including thus the procedure considered here

are usually only as good as the foreground models used in their course. In the specific

case studied here we expect that our results are fairly robust as far as foreground

morphology is concerned. Our estimates are driven by two compact description of

those, the foreground correlation matrix, F̂, and the foreground power spectra, which

are not expected to be wildly different than what we have assumed here. We note in

particular that an increasing amplitude of the foregrounds leading to an increase of both

the elements of the matrix, F̂, and overall normalization of the foreground power spectra

would decrease the errors on the spectral parameters, cf. Eq. (10.16), and result in the

amplitude of the residuals being virtually unchanged. These expectations are confirmed

by the results obtained here for the three different masks.
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It is more difficult to assess, though potentially more crucial, the impact of increasing

a number of spectral parameters. This could be either due to more complicated spectral

dependences of true foreground components, or as a result of a spatial dependence of

spectral parameters. The former problem is inherent to all parametric component sepa-

ration approaches including the one assumed here. In general, a wrong parametrization

or frequency scaling laws assumed in such approaches may invalidate separation results.

In practice, the effects are more subtle but arising biases can affect an interpretation

of the results. It is therefore important that the scaling laws assumed in the optimiza-

tion continue to be improved, reflecting any relevant, new observational data and more

detailed, theoretical models of the foreground physics as they become available. In a

case of some doubts, a rather conservative approach can be fruitful, restricting channel

frequencies to a range for which the scaling laws are known to provide at least good

approximations to the actual ones. This is in fact an approach we used in this work by

selecting a parametric model for the dust signal with a single parameter and reduced

the frequency range to those lower than 400 GHz.

A spatial dependence of the scaling parameters can be treated more directly. We

will implement that by dividing the observed sky into a multiple disjoint regions and

introduce one set of parameters for each of those. To abstract from details of the regions

shape and position, we assume that they are defined in such a way that the errors on

spectral parameters are the same for each of the regions, i.e., that the differences of the

overall magnitude of the matrix F̂ are compensated by a respective number of pixels in

each area. In general this assumption would imply that more, though smaller by area,

regions are defined in high-contrast foreground sky areas. This indeed could well be the

case as the high-contrast foreground regions are expected to be more complex and may

require more parameters to ensure sufficient accuracy.

For demonstration purposes we assume that we have 10 regions with the correspond-

ing errors on spectral parameters being
√
10 times larger than in the single region case

as studied before. We note that cutting the sky into regions will unavoidably affect

the foregrounds and thus residual power spectrum on scales larger than a typical size

of the region. We will ignore this effect here, motivated by the fact that our earlier

results did not find any strong dependence on the shape of the power spectrum. We

also neglect here all practical difficulties such as matching the results on the map level

coming from the different regions and which will have to be addressed in any actual

application of the discussed method. We limit here ourselves to the COrE-like configu-

ration as defined earlier, calculate the FOMs as before, and optimize the configuration

following the steps outlined before. As expected we find that the optimal configurations

this time are not very different from the ones obtained earlier. This is because FOM#1

and FOM#3 are mostly trying to optimize the overall noise level, which is the same

now as before, and though the value of FOM#2 increased by a factor 10 due to increase
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Figure 11.16: Demonstration of the optimization results derived with respect to a variable number of channels, numbers of detectors per channel,
and their central frequencies, while constraining the total number of detectors (= 6128 as in the proposed COrE version). Left panel shows, from
top to bottom, (1) the starting configuration with all the detectors evenly distributed among a fine-grid of channels; (2) a configuration after the first
optimization of FOM#1 constrained to ensure that FOM#2 ≤ 10−4; and (3) the re-optimization of configuration (2) restricted only to channels with a
number of detectors larger than five and after adjacent channels merging and re-centering as described in paragraph 11.6.8. Right panel shows power
spectra corresponding to these configurations contrasted against the expected CMB signals.



11. OPTIMIZATION OF A NEARLY FULL-SKY CMB B-MODES
EXPERIMENT FOCAL PLANE IN THE PRESENCE OF POLARIZED
GALACTIC EMISSIONS RESIDUALS

of the spectral index errors this is the same configuration, which ensures its minimum.

As a consequence the new value of reff is now higher than that of rmin. This clearly

does not invalidate results of the optimization procedure as such, however care has to

be exercised, while interpreting the obtained values of rmin, which may not be taken

directly as the performance forecasts for the setup as far as detecting r is concerned.

We could have studied another way of considering spatial variations, according

to Stolyarov et al. (131). If dust spectral parameter is spatially varying, this results in

a modification of Eq. (10.1) such as

d(ν, r) = A s+∆β
∂A

∂β

∣

∣

∣

∣

β0

s (11.15)

For only three polarized components which are CMB, dust and synchrotron, the mixing

matrix A we consider with this new parametrization would look like

A =
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∂A
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∂βd
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∣

∣

β0
(f#of ch) Async(f#of ch)



















, (11.16)

in which I added a column between Adust, Eq. (11.9) and Async, Eq. (11.8). Conse-

quently, the dimension of Σ increases and the corresponding errors are more important.

I will present in section 12.2 a quantitative consequence of such spatial variation for βd.

11.6.8 Varying the number of channels and their frequencies

We present here some results based on an implementation of the scheme proposed in

paragraph 11.3. We start from ∼ 70 channels evenly spaced between 45 and 375 GHz

every 5 GHz, with ∼ 6000 detectors (total number of the COrE proposed version)

equally distributed among those, as shown in Fig. 11.16. Then we perform the opti-

mization with respect to FOM#1, while keeping FOM#2 ≤ 10−4 and the total number

of detectors fixed. As a result we obtain a highly clustered distribution of detectors in

between the initial channels, with many of these being empty. We therefore combine

detectors of neighboring channels and replace them by a new channel with the central

frequency set as a weighted, by a number of detectors, mean of the optimized distribu-

tion. The new channels are defined to ensure proper spacing between them. Once the

new channels are determined we perform a second round of the optimization, this time

invoking only the new channels and aiming at optimization of the detector distribution

between them. The result is shown in the left bottom panel of Fig. 11.16. We note that
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the procedure not only improved the values of the FOMs with respect to the starting

(original) configuration, i.e., FOM#1 has been decreased by ∼ 17% (∼ 25%), while the

noise by a factor ∼ 4 (∼ 3), but also, and arguably most importantly, it resulted in

a configuration significantly simpler than the initial one with the number of channels

reduced from 70 down to 9.

We note that maybe somewhat surprisingly both the configurations derived here,

the final one as well as the intermediate one obtained after the first optimization step,

show only a minor, ∼ few percent, gain over the five-channel configuration we have

considered earlier; see, e.g., the first column of Table 11.6. This is due to our setting

the threshold for FOM#2 rather high, while the main advantage of the significantly

larger set of the initial channels used here is that it permits finding in principle more

satisfactory compromises between the three FOMs, characterized by values of FOM#2

lower than what could be achieved with more modest setups discussed earlier.

11.7 Conclusions

In this work done in collaboration with Federico Stivoli and Radek Stompor, we have

proposed a general scheme for a performance optimization and forecasting of the CMB

B-mode experiments in the presence of astrophysical foregrounds. Our approach is

based on a maximum likelihood parametric technique for component separation, for

which we have derived Fisher-like error estimates for spectral parameters. We use

the latter to calculate the residual level of the foregrounds in cleaned CMB maps given

assumed, instrument characteristics and foreground model. We then optimize the former

by minimizing a set of proposed figure of merit indicators, which reflect our science

goals. Subsequently we have applied this approach to two specific cases of recently

proposed CMB B-mode satellites: American CMBpol (Aguirre et al. (1)) and European

COrE (The COrE Collaboration (137)). I have discussed in detail the choices and

trade-offs inevitable in such an optimization process. I have demonstrated how such a

procedure can help to simplify the resulting hardware design, while ensuring the same

(or nearly the same) science outcome.

I emphasize that results of such a procedure can be only as reliable as the fore-

ground models that are applied. This underlines the importance of developing better

understanding of the polarized foregrounds, in particular, and characteristically of the

parametric methods, as far as the functional form of the foreground component scaling

laws is concerned. However, our approach is expected to be relatively robust as far as

other details of the foreground signals are concerned, such as, spatial distribution or

spatial variability of the spectral parameters, with the latter playing a major role in

determining the scientific reach of the experiment but not affecting its configuration.
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Chapter 12

Is there an ultimate limit due to

foregrounds residuals in the

detection of r for future

experiments?

In this section, following the results summarized in Errard and Stompor (40), we con-

sider experimental setups optimized to ensure the lowest foreground residual level.

We still use two component foreground model, including synchrotron and dust, each

parametrized with one parameter, referred to as spectral indices. We note that more

refined scaling laws with potentially more parameters can be straightforwardly incor-

porated in the formalism presented below and would affect the conclusions only quan-

titatively. The foreground templates used here are described in detail in the previous

chapter (and also in Errard et al. (41), Stivoli et al. (130)) and we assume nearly full

(∼ 80%) sky coverage, corresponding to the choice of mask-i, see Fig 11.5. Given the

optimized setup and its noise we estimate a typical residual and compare it with the

total statistical uncertainty. As the latter depends on the tensor-to-scalar ratio, r, for

each value of r we determine respective instrumental sensitivity for which the residual

is irrelevant given the uncertainties and compare it with the statistical limits due to the

noise and the CMB signal only.

12.1 Methodology

12.1.1 Parametric component separation

The fiducial data set we consider hereafter is made of multiple-single frequency maps

of Q and U Stokes parameters, with the instrumental noise assumed to be uncorre-

lated, both between the pixels and channels, pixel-independent, and characterized by
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its variance, N . The corresponding data model we use hereafter then reads,

dp = B (β,ω) sp + np ≡ Ω (ω) A (β) sp + np, (12.1)

where for each pixel p, A is a mixing matrix parametrized by the spectral indices,

β, sp – a vector of sky signals to be recovered and np – instrumental noise. Ω is a

pixel-independent, diagonal matrix with the diagonal elements, ωi ≡ Ωii correspond-

ing to the calibration factors for each of the channels. I do not consider here any

other systematic effects such as imperfect Half-Wave Plate, the presence of cross- or

instrumental-polarization which would be described by Mueller matrices, see chapter 7.

Moreover, I do not look at imperfect or not well characterized band-passes which will

lead to important errors in the foreground scalings estimation. The likelihood function

then reads (Stompor et al. (133)),

− 2 lnL =
∑

p

(dp −B sp)
tN−1 (dp −B sp)

+
[

(ω − ω̄)tΞ−1 (ω − ω̄)
]

, (12.2)

where the last term is simply a prior term constraining the plausible values of the

calibration factors, and is the difference with the likelihood expressed in Eq. (10.8).

Hereafter we will assume that the true values of the calibration factors are equal to

unity, ω̄i = 1, and that their uncertainty is described by an error matrix, Ξ, which

for simplicity is assumed to be proportional to a unit matrix, i.e., Ξij ≡ σ−2
ω δji , where

σω is assumed not to depend directly on the parameters of the considered experiment.

Moreover, throughout this section the detector’s bandpasses are always taken to be

known perfectly and therefore their effects on the mixing matrix, B, straightforwardly

calculable. The import of the bandpass uncertainties and mismatch will be studied

elsewhere. In the cases without calibration uncertainty, B = A and we simply drop the

last term. In general, we will estimate both β and ω and maximize this likelihood to

perform the component separation.

12.1.2 Residual computation

The computation of the residuals involves two steps. First, we obtain the error of the

estimation of the spectral parameters. This is done using a generalization of Eq. (10.11),

allowing for the calibration errors (Stompor et al. (133)), and derived again as the Fisher

matrix,

Σij ≡
〈

∂2 lnL

∂γi ∂γj

〉

noise

∣

∣

∣

∣

−1

γ̂

, (12.3)
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of the profile likelihood, L, of the likelihood given in Eq. (12.2), i.e.,

Σ−1
ij = npix tr

{[

Bt
,iN

−1B
(

BtN−1B
)−1

BtN−1B,j −Bt
,iN

−1B,j

]

F̂
}

+
[

(ω − ω̄)tΞ−1 (ω − ω̄)
]

,ij

∣

∣

∣

γ̂

, (12.4)

which is similar to Eq. (10.10). The last term of the rhs has to be evaluated at the true

values of the parameters, γ = γ̂, where γ stands for either β or ω and the subscript

means ,i ≡ ∂/∂γi. The matrix F̂ , defined in Eq. (10.12), encapsulates all the information

about the sky components needed for the parameter errors estimation. In the following

we will be removing the contribution to Σ related to the mode

vt ∝





















0
...
0
1
...
1





















, (12.5)

where the zeros are assigned to the spectral parameters, β, and ones to the calibration

ones, ω, and v is normalized to one. This is done by replacing

Σ → Σ − (vtΣv)vvt. (12.6)

The mode v describes an overall miscalibration of the final CMB map, RMS of which

is given by σω, introducing a similar error in our determination of r. This is typically

much smaller than the statistical uncertainty, i.e.

δr

r
>∼ 0.01 >∼ σ2ω for r <∼ 0.1, (12.7)

and thus negligible.

We use again the recipe of Stivoli et al. (130), i.e. Eq. (10.21), to calculate the power

spectra of the typical noise-free foreground residuals, C∆
ℓ , found in the separated maps,

i.e.,

C∆
ℓ ≡

∑

k,k′

∑

j,j′

Σkk′ α
0j
k α

0j′

k′ Ĉ
jj′

ℓ , (12.8)

Ĉ
jj′

ℓ is still a cross-spectrum of components i and j, but this time we define

αk ≡
∂

∂ γk

[

(

Bt (γ)N−1B (γ)
)−1

Bt (γ)N−1B(γ̂)
]

∣

∣

∣

∣

γ̂

.
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Figure 12.1: The significance of the foreground residuals, σ−1
α , Eq.(12.9), expected in the recovered CMB map covering ∼ 80% of the sky for the

cases with no, η = 1.0, (left panel), partial, η = 0.1, (middle panel), and complete, η = 0.0, (right panel), lensing correction, respectively. The color
bands correspond to different calibration uncertainties as listed in the left panel with the gray color showing all the cases with σω 6= 0 after the removal
of the mode v. The width of the shaded areas reflects the effect of varying r from 0.001, (upper edge), up to 0.1, (lower), and the dashes show the
corresponding r = 0 cases. The black solid lines show the case with σω = 0, r = 0, and η = 1.0 as a reference.



12.1 Methodology

12.1.3 Residuals significance

We quantify the importance of the residuals as follows:

σ−1
α =

[

fsky

ℓmax
∑

ℓ

(2ℓ+ 1)C∆
ℓ

Cprim
ℓ (r) + η C lens

ℓ + Cnoise
ℓ

]

1
2

, (12.9)

which can be derived as a Fisher error on an overall amplitude, α(= 1), of a foreground

template, assumed to be known, with the power spectrum given by C∆
ℓ . σ−1

α expresses

statistical significance with which the template could be detected, had it been known,

given the instrumental noise, Cnoise
ℓ , and the CMB signal, Cprim

ℓ (r) + ηC lens
ℓ . η (≤ 1)

denotes the fraction of the lensing signal left after its removal. We do not perform the

delensing of the map per se, but we would like to see how this operation affects the

significance, the importance of the residuals in the final map. Whenever σ−1
α is large,

the residual can not be neglected in an analysis of the CMB map and may need to

be treated by some additional means (Fantaye et al. (44)). Otherwise, the foreground

residuals will be irrelevant for the estimation of r.

Note that formally, we could have studied the behavior of FOM#1 introduced ear-

lier. However, as mentioned and illustrated in the last chapter, this figure of merit is

quite invariant in the considered parameter space. We derive a more abstract quantity,

the significance σα, which has the advantage of being much more sensitive to the varia-

tions of the experimental setup and gives us a measurement of the relative importance

of the residuals with respect to the science signals. As for FOM#2, it is, by construc-

tion, independent of any other signal than the residuals: it only provides an absolute

measurement of the amplitude of these latter.

12.1.4 Experiment optimization

We use the approach described in the last section, i.e. in Errard et al. (41), to optimize

the experimental setups. We assume a fixed, though arbitrary, focal plane area during

the optimization and restrict frequencies of the observational channel bands to range

from 30 GHz to 400 GHz. The detector noise is assumed to be constant in antenna

temperature units. The optimization then tries to minimize FOM#2, the effective r

value as proposed in Amblard et al. (3), as defined in Eq. (11.3). The criterion selection

reflects the fact that we want to minimize the effects of the foreground residuals and

thus keep their expected level as low as possible, irrespective of consequences it may

have on, e.g., effective noise of the experimental configuration selected in such a way.

The resulting experiment setup includes 5 frequency bands: ν = [30, 40, 130, 300, 400]

GHz occupying, respectively, a fraction fp(= [9, 21, 36, 25, 9] per cent) of the focal plane,

as illustrated Fig. 12.2.

183



12. IS THERE AN ULTIMATE LIMIT DUE TO FOREGROUNDS
RESIDUALS IN THE DETECTION OF R FOR FUTURE
EXPERIMENTS?

9%

21%

36%

25%

9%

30 GHz

40 GHz

130 GHz

300 GHz

400 GHz

Figure 12.2: Optimal setup with respect to FOM#2, Eq. (11.3), used to illustrate the behavior of
the residuals significance as a function of the experimental noise. The pie here shows the fraction of
area taken by each channel.

12.2 Results

Hereafter we will use the noise level of the recovered CMB map as a measure of the

sensitivity of the considered experimental setups. This is given a generalization of

Eq. (11.4),

σ2CMB ≡
[

(

B (γ̂)t N−1B (γ̂)
)−1
]

00
, (12.10)

where we still assume that CMB is the zeroth component recovered in the separation

procedure. Similarly to Eq. (11.12), the diagonal elements of the correlation matrix,

N , expressing the noise level of each frequency channel, can be written in antenna

temperature units as,

Nii =
1

Ωp
× 4π fsky σ

2
NET

Afp Tobs
× Ad (ν (i))

ffp (i)
(12.11)

where σNET is a frequency-independent detector of instantaneous noise value (in µKant
√
sec),

Afp, and Ad (ν (i)) – total and per detector effective focal plane area, Tobs – total ob-

servation time, and Ωp – pixel size in steradians. For the considered experiment we can

write numerically,

σCMB

µKcmb arcmin
≃ 2.6 10−3 σNET

µKant

√

fsky
0.82

1GHz−2

Afp

2yrs

Tobs
. (12.12)

The dependence of our measure of the significance of the foreground residuals, σ−1
α , on

the noise level, σCMB, is illustrated in Fig. 12.1, and its major features can be tracked
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back to the behavior of the parameter errors and foreground residuals. In particular

in the low-noise regime the value of σ−1
α increases ∝ σ2CMB whenever no calibration

uncertainty is present or the contribution of the mode v is suppressed. This is due to

the fact that the error on all the parameters γ is driven by the first term on the right-

hand side of Eq. (10.10), resulting in a self-calibrating property of the considered system

thanks to the assumed scaling laws spanning the entire range of considered frequency

bands. The self-calibration applies only to the relative calibrations fixing the calibration

coefficients of the channel maps with precision superseding that given by the assumed

priors. The absolute calibration of the final map is in turn always determined by the

prior term in Eq. (10.10) and thus independent on the experimental noise, as shown by

the flat, low-noise asymptotes of the lines, computed with the mode v included. For

higher noise levels the calibration errors have significant impact on the residual level

and should be therefore included in any meaningful analysis. Whenever the first term

on the right-hand side of Eq. (10.10) is dominant, our results also do not depend, or

depend only very weakly, on the foreground amplitude and on the observed sky area (at

least as long as the foregrounds are nearly stationary), as the foregrounds amplitudes

present in the expressions for Σ and C∆
ℓ cancel. Physically, this means that higher levels

of foreground signals lead to tighter constrains on their parameters, compensating for

their higher amplitudes.

The results from the three panels of Fig. 12.1 are translated into limits on σCMB, as

shown in Fig. 12.3, by solving the relation,

σ−1
α (r, σCMB) = σ−1

α

∣

∣

crit
. (12.13)

Hereafter, we use σ−1
α

∣

∣

crit
= 1, corresponding to a "1σ" detection of the residuals on the

map level. In general, this value should be adjusted, and the curves in the figure rescaled

by ∝ σα|−1/2
crit , given a specific application envisaged for the output maps and 1 is used

here as an illustration. For each r value, each curve, computed for specific assumptions

about the experiment and/or foregrounds, provides an upper limit on the experiments

sensitivity so the foreground residuals will be found irrelevant for the analysis of the

obtained CMB map. The gray-shaded areas show the statistical uncertainties, corre-

sponding to a different level of gravitational lensing signal cleaning. We note that the

foreground residual limits do not prevent detecting arbitrarily low value of r assuming

that a sufficiently sensitive observation can be performed. Instead, the lower limit on

r can arise due to a residual level of the lensing-induced B-mode signal left over from

some cleaning procedure (Kesden et al. (70), Knox and Song (71), Seljak and Hirata

(119)). This remains true when the calibration errors are included but also when the

spatial variability of the foregrounds is allowed for, and will hold at least as long as

no significant deviation from the assumed component scaling laws is observed. To see

the effects of the spatial variability of the spectral indices we assume that the sky is
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Figure 12.3: Upper limits on the map noise levels, which ensure that the foreground residuals are
statistically irrelevant, are shown with solid lines. Each set of three lines corresponds to a different
assumptions about the calibration errors as marked in the figure. In each set the lines depict the cases
with no (heavy), 90% (medium), and perfect (thin) cleaning efficiency. The thin dashed line shows the
change in the derived noise levels incurred as a result of restricting the sky area used to estimate r after

the component separation step has been already performed. These should be compared to the thick line
with σω = 0. The thick dots show the analogous noise limits based on an alternative criterion, reff ,
Sec. 12.1. The shaded areas depict statistical 2σ limits due to the noise and sky signal for three lensing
cleaning efficiencies η = 1.0, 0.1, and 0.0 (light to dark grey). The noise levels for Planck and COrE-like
experiments are also shown as a reference.



12.2 Results

subdivided into np non-overlapping patches, for each of which we assign a different set

of spectral parameters. If the patches are of roughly the same size, the resulting errors

on the spectral parameters will increase approximately as
√
np, leading to a tightening

of the noise constraints in Fig. 12.3 by the same factor. I depict in Fig. 12.4 the sig-

nificance of the residuals as a function of the noise level of the experiment, similarly to

Fig. 12.1, but in the case of spatial varying dust index βd. For comparison the (orange)

line in Fig. 12.3, labeled "spatially varying βdust", shows a result of implementing the

Stolyarov approach (Stolyarov et al. (131)), cf. Eq. (11.15) and an introduction of this

approach in section 11.6.8, which also leads to more restrictive noise constraints, but

without introducing an ultimate limit on r. This is also shown in Fig. 12.4 where these

spatial variations lead to higher a significance of the residuals.

Figure 12.4: Significance of the residuals as a function of the noise in the case of spatial variations
for βd. The pink band and black solid lines are here for reference, they are the same as the one shown in
Fig. 12.1, for η = 0.0. The light and dark blue bands are obtained for respectively 100 and npix ∼ 2×105

patches of roughly the same size and having different βd. As detailed in the text, the curves scale ∝ √
np.

Besides, the grey and orange bands are obtained with the Stolyarov approach, assuming respectively
∆β = 1 % and 10 %.

We also note that by decreasing the statistical uncertainty of the map we increase

σ−1
α , as the residual becomes easier to be spotted, and thus the requirements on the

noise need to be tighter to ensure that the foreground level is decreased accordingly.

This, for instance, explains why any lensing cleaning in Fig. 12.3 renders a tighter

limit on the noise. Conversely, re-sorting for the r estimation to a smaller map of the

sky, than what has been used for the component separation, will increase the variance

and lower σ−1
α , allowing us to tune appropriately the sky area to extend the range of

187



12. IS THERE AN ULTIMATE LIMIT DUE TO FOREGROUNDS
RESIDUALS IN THE DETECTION OF R FOR FUTURE
EXPERIMENTS?

detectable values of r given a fixed instrumental sensitivity. This will result in lower

statistical significance of the detection but will ensure that bias is negligible. This is

illustrated in Fig. 12.3 where the (magenta) arrows show a change in the noise upper

limit in the perfect calibration case, σω = 0, with no lensing cleaning, η = 1.0, due to

using on the second step only half of the area of 80% of the full sky as used for the

component separation. This, for a COrE-like experiment, see The COrE Collaboration

(137), could extend its capability to detect r reliably down to 8×10−4 (2σ), what could

be compared to r ∼ 4× 10−4 limit (2σ) potentially achievable, if the foregrounds were

absent. We note that the trimming can be made even more efficient if the retained sky

is selected to ensure the lowest possible foreground amplitude. If no extra trimming is

done, then given our criterion for σ−1
α the COrE-like lower limit on r is found to be

r ∼ 3 × 10−2, what is at least formally within reach of a suborbital observation with

similar sensitivity per pixel but observing O(1)% of the sky (Fantaye et al. (44), Stivoli

et al. (130)). The statistical significance of the former limit is ∼ 25σ, (vs. 2σ in the

suborbital case) indicating that the experimental sensitivity of such observations should

be driven by the foreground separation, not by statistical uncertainties only, but also

that a further improvement of the limit on r could be plausible if extra assumptions

and processing are included, see Fantaye et al. (44).

The results obtained here demonstrate that in an absence of such post-component

separation processing and with calibration uncertainties as typically present in actual

experiments the noise levels required for an unambiguous and robust determination of r

are on order of O(10−1)µK arcmin, significantly below the noise levels for the currently

considered satellite mission concepts. Moreover, if the lensing contribution left over

after its cleaning is higher than ∼ 10% of its initial value, the dependence of the noise

levels on the targeted value of r is rather weak. This emphasizes that once the sufficient

noise level is indeed attained the measurable values of r would be limited only by the

statistical uncertainties. On the contrary, a failure to reach such a noise level may

render the experiment incapable of setting any constraints on r of current interest.

If the lensing could be cleaned nearly perfectly, η <∼ 10%, lower noise levels lead to a

progressively lower limit on the detectable r.

12.3 Conclusion

Summarizing, we have studied the importance of the foreground residuals left over from

the maximum likelihood parametric component separation procedure on the detection

of the primordial tensor-to-scalar ratio coefficient, r, by nearly full-sky CMB B-mode

experiments. We have found that though the foreground residuals are likely to be a

major driver in defining the sensitivity requirements for such experiments, they do not
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on their own lead to any fundamental lower limits on detectable r, at least as long as

sufficiently precise frequency scaling models are available. These will be rather set by

the uncertainty due to the lensing signal present in the maps after its cleaning. We note

that the latter may also in turn depend on the presence of foregrounds and instrumental

noise (Hu and Okamoto (64), Smith et al. (126)).
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Chapter 13

Discussion

Component separation is a crucial step for any new generation B-modes experiment. I

described the parametric maximum-likelihood component separation which is a method

based on the assumption that the spectral scaling laws of the foregrounds are well

characterized. In addition, we built three figures of merit (FOM) describing the perfor-

mances with respect to our science goals, in the case of COrE or CMBpol, future nearly

full sky experiments. I implemented routines which optimize the distribution of detec-

tors among frequency channels regarding the FOMs, while keeping the total area of the

focal plane or the total number of detectors constant. We showed that optimal setups

have usually ∼ 4 filled channels to ensure that the experiment alone could recover the

two unknown spectral parameters βd and βs. We explored the scientific performances

of our setups while moving away from the optimal configuration, proposed and applied

some robustness tests such as the study of the consequence of losing couple detectors,

a whole frequency channel, etc.

First, we can note that the presented optimization framework could be extended to

any component separation method. It only requires the estimation of the mixing ma-

trix, in a parametric or nonparametric way, and being capable of producing estimates

for the errors of the spectral parameters for any hardware configuration. One could,

and ideally would, therefore use the formalism proposed in chapter 11 to define configu-

rations, which would ensure that many of the available component separation methods

perform well. Though the component separation methods usually conform with the first

requirement about the mixing matrix, the second about the residuals computation is

more demanding and typically can be done only via computationally-heavy Monte Carlo

simulations. Those may be often impractical for the optimization purposes, making an

implementation of such a program difficult. A related, but simpler to address, problem

is whether the configurations optimized with one method will work for satisfactorily

with the others.
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13. DISCUSSION

Second, the FOMs defined for the optimization procedure are also suitable for the

performance forecasting. This also clearly applies to the FOMs proposed here and

in particular FOM#1 and FOM#2 seem relevant to the primordial signal detection

producing values of rmin and reff on order of O
(

10−4
)

for the considered optimized

configurations. However, given that each of these two FOMs reflects a somewhat differ-

ent aspect of the problem, a statistical uncertainty in former case versus a systematic

one in the latter, care has to be taken while interpreting these values. Nevertheless,

our results seem to support at least the contentions made elsewhere suggesting that

r ≃ 10−3 is a realistic goal for the future nearly full sky experiments.

Third, it has to be pointed out that the science goals we have posed for the con-

sidered CMB experiments are clearly more modest than those targeted by the original

CMBpol and COrE designs. This is responsible, at least in part, for the more complex

and advanced instrumental configurations as proposed in the original proposal. Galactic

science, SZ clusters study, lensing, etc. are all exciting science goals which should be

looked at, modeled and maybe encoded as new FOMs: more diverse science goals can,

and should, be studied in the presented framework.

Finally, in chapter 12, we considered an experimental setup optimized with respect

to FOM#2. We derived a quantity, the so-called significance of the residuals, σα,

which measures the potential impact of the residuals at the map level. We computed

the residuals and their corresponding significance for various noise levels, from current

levels ∼ 10 µK·arcmin down to ∼ 10−3 µK·arcmin — which is close to science fiction

nowadays, cf. Table 5.1. We also looked at cases with non-zero calibration errors

and complete or partial delensing. The main result is that there is no fundamental

lower limit on detectable tensor-to-scalar ratio as long as we know the scaling laws of

the polarized foregrounds. Limitations may rise from the uncertainty due to delensing

residuals, which will depend on the presence of instrumental systematics, astrophysical

foregrounds, instrumental noise, etc. Besides, we studied the case of spatially varying

spectral parameter for the dust, and an interesting extension could be to include the

developed formalism to the previous optimization framework.

It is worth mentioning that Tucci et al. (139) realized a similar study, about the

limits on the detectability of r imposed by foregrounds. Among other results, they show

that, in the ideal limit of an instrumental noise-free experiment, a full-sky coverage with

a resolution of 1 deg lead to a detection of r ∼ 10−4. Fig. 13.1 is taken from this work

and depicts one of their results for future space missions i.e. how the detectability limit

on r improves when reducing the instrumental noise. In the upper line of the figure, they

assume that foregrounds are subtracted using a method in which the spectral parameter

β is assumed to be pixel independent (the so-called average spectral index method), and

the lower curve is obtained with a method assuming a pixel-dependent spectral index.
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Figure 13.1: The value of the lowest r detectable for an experiment like Planck, but with sensitivity
improved by a factor σ/σPl. The upper line depict the case for which foregrounds are subtracted
following a pixel independent spectral behavior, and for which extragalactic foregrounds are partially
removed. For the lower curve, the components separation is done following a pixel dependent method,
and extragalactic foregrounds are completely removed. From Tucci et al. (139).

The separation technique we used in the previous chapter, assuming also a pixel

independent β, lead to the result depicted in Fig. 12.3: we showed that, in the case of a

perfectly calibrated experiment (σω = 0) and for sufficiently low noise ( <∼ 1 µK·arcmin),

the detection of r would be limited by the cosmic variance corresponding to r ∼ 1 −
2× 10−4. This result is in agreement with the plateau of the upper curve of Fig. 13.1,

in the very low noise limit. Furthermore, similarly to what I mention above about

delensing, they also studied the effects of radio sources and gravitational lensing on the

r sensitivity, and showed that, after the subtraction of the galactic foregrounds, they

become the major contaminant on large scales.
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Part V

Down-to-Earth: the new generation

experiment polarbear
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I present in this part the new generation CMB B-modes ground-based experiment,

polarbear. This project is an international collaboration between the US, Japan,

Canada, Great Britain and France, see institutes shown in Fig. 13.2. Thought in the

early 2000s, it started its scientific observations at the beginning of 2012, from the

Atacama desert in Chile.

Figure 13.2: Institutes involved in the polarbear project.

In chapter 14, I briefly describe the instrument, from a technical point of view up

to its latest results and performances, as well as its future upgrades, polarbear-ii

and polarbea-extended. In chapter 15, I introduce some analysis and calibration

tools the polarbear collaboration has developed and how they are integrated in the

analysis pipeline. I also show the implementation of selected algorithms, based on the

parametric maximum likelihood approach, which aim at controlling systematic effects

and ultimately removing them.

Figure 13.3: polarbear instrument installed on the Huan Tran Telescope, at 5200m, Cerro Toco,
Chile. Picture taken by A. T. Lee, PI of the experiment.
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Chapter 14

Description of the polarbear

experiment

As I mentioned in Part II, in order to characterize the small CMB polarization fluc-

tuations, and in particular to be able to detect the primordial and lensed B-modes,

polarbear must have 1) an unprecedented sensitivity on the angular scales of inter-

est, for multipoles ℓ ∈ {25− 2500} in our case, and 2) a precise control of systematic

instrumental effects. This chapter describes how the overall design of the instrument,

with the main experimental properties are summarized in Table 14.1, addresses these

goals.

frequency bands 150 GHz (+220 GHz)⋆

# of detectors 1274
sensitivity 21 µK

√
s for the whole array

bandwidth 38 GHz
resolution (FWHM) 3.5′

field of view 2.3 deg
sampling frequency 190.73 Hz

Table 14.1: Summary of the main polarbear-i properties. ⋆ The 220 GHz detectors are not
currently observing but will replace some of the 150 GHz ones after couple of months of observations.

14.1 Frequencies of observation

The CMB blackbody intensity spectrum, Bν(T ), peaks at ∼ 160 GHz. To optimize the

measurement of temperature variation around the average of 2.725 K, we would like our

experiment to observe at frequencies where |∂Bν/∂T | is the biggest. This is the case

around 220 GHz.

As I have explained in chapter 9 and Part IV, astrophysical foregrounds also play a

major role in defining the optimal region of the spectrum for measuring CMB anisotropies.
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

Two polarized components are dominant over the spectral range of interest: polarized

dust and synchrotron. Parametric component separation techniques requires at least

four channels to estimate the spectral scaling laws and therefore disentangle those emis-

sions, see Part IV . The signal from dust (synchrotron) emission is increasing (decreas-

ing) as a function of frequency, as depicted in Fig. 9.4. Because the spatial distribution

of the two signals is different, the frequency of minimum foreground signal changes as

a function of spatial scale and position on the sky, but is around 100 GHz.

Moreover, for a CMB experiment observing from the ground, the atmosphere is one

unavoidable source of both CMB signal attenuation and emission of optical power that

contaminates the measurement, see chapter 8. To minimize this contamination, ground-

based CMB experiments observe in spectral bands where the atmospheric attenuation is

law, between molecular absorption frequency bands, the so-called atmospheric windows.

The goal of polarbear detectors is to optimally fill these windows so that the received

photons will be mainly coming from space.

The spectral bands for the polarbear experiment are defined by filters located

within each focal plane pixel, and polarbear-i is designed to exploit the atmospheric

window centered at 150 GHz, between 120 and 180 GHz.

14.2 The dedicated Huan Tran Telescope (HTT)

As mentioned in chapter 3, primordial and lensed B-mode power spectra peak respec-

tively at large scales, ℓ ∼ 100, and at small scales, ℓ ∼ 1000, i.e. ∼ 0.1 deg. Therefore,

designing a telescope equipped with an imaging experiment requires a large enough pri-

mary aperture with a diffraction limited resolution θresolution below 0.1 deg. Moreover,

the angular resolution of an imaging telescope is given by

θresolution =
Kλ

D
, (14.1)

where λ is the wavelength of observation and D is the diameter of the telescope. The

constant K, usually close to unity, depends on how the primary aperture is illumi-

nated by the detectors, see Goldsmith (55). Arnold (6) explains that, in the case of

polarbear, requiring θresolution = 0.05 deg results in D ∼ 2 meters.

The need for a high experimental sensitivity sets a requirement on the optical

throughput, also called étendue, given by

σétendue ≡ AΩ, (14.2)

where A is the effective area of the primary aperture and Ω is the integral over the

angular Field Of View (FOV) of the experiment. For a given primary aperture size,

a wider FOV optical system, meaning larger Ω, will result in a larger electromagnetic
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14.2 The dedicated Huan Tran Telescope (HTT)
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Figure 14.1: Schematic cross-section of the polarbear experiment installed on the Huan Tran
Telescope (HTT) at the James Ax Observatory.

throughput AΩ. The sensitivity is therefore dictated by the global throughput given all

the optical system of the telescope.

The Huan Tran1 Telescope (HTT), shown in Fig. 14.1, has a primary aperture

of 2.5 meters, so that it provides an angular resolution of ∼ 4′ at 150 GHz. HTT

optical system has been designed to have a large étendue σétendue, necessary to obtain

a high sensitivity, while minimizing the instrumental- and cross-polarization as well as

reducing the sidelobe response, i.e. the response outside the diffracted-limited main

beam. Hanany and Marrone (59), Tran (138) did an analysis of crossed-Dragone (on-

axis) and Gregorian-Dragone (off-axis) telescope designs for this application. They

showed that although the crossed-Dragone offers smaller systematic polarization effects

and a larger diffraction-limited FOV, the Gregorian-Dragone, illustrated in Fig. 14.2,

provides acceptable performance while allowing more complete baffling of the optical

elements to reduce sidelobe response.

1In December 2009, the polarbear project manager Huan Tran died in a tragic domestic accident
while on a trip to work on the telescope. He was deeply involved in the design of the experiment. The
telescope has now been renamed the Huan Tran Telescope (HTT) in his honor.
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

Figure 14.2: A ray-tracing schematic of the telescope optics. The focus created by the primary and
secondary are re-imaged using the cold re-imaging optics to the flat, tele-centric focal plane.

14.3 Experiment location

As mentioned in chapter 5, space, balloon-borne and ground-based CMB experiments

all have strengths and weaknesses. For a ground-based experiment, the most important

weakness is the atmospheric contamination, obviously less important for stratospheric

balloons. Besides, science goals of polarbear are the detection of both primordial

and lensed B-modes so we need to have access to a large fraction of the sky, which

is possible from a balloon, although imposing a short integration time. Indeed, given

the noise level of the experiment, we prefer to look during couple of months on a small

patch of the sky. As explained in chapter 8, within the frequency range of interest,

atmospheric absorption and emission are dominated by O2 and H2O transitions. So

any ground-based experiment gains in being located in a high-altitude desert where the

atmosphere is thin and dry. The polarbear location is a solution to these requirements

with a quite dry region (Atacama desert) and an important elevation (5200 m).

An other interesting location for millimeter observations is the South Pole, which

has a 6-months winter night with a stable atmosphere. Moreover, astronomers have the

ability to observe the same patch of sky at a given elevation angle: the patch appears to

rotate around the zenith. From a mid-latitude site such as Atacama desert (∼ 23 deg

South), the orientation of the patch of sky with respect to the ground changes over its
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14.4 Receiver

Figure 14.3: Mechanical and optical design of the polarbear 2-meter long cryogenic receiver. The
focal plane is cooled to 260 mK.

course of the day and the year. As explained in sections 6.1 and 15.4, sky rotation can

be crucial in mitigating systematic effects, because it implies a natural modulation of

the polarization in the Time-Ordered Data (TOD).

14.4 Receiver

Cryogenic bolometers are the most sensitive detectors of electromagnetic radiation in the

frequency range optimized for CMB experiments: individual cryogenic bolometers can

be sufficiently sensitive that their noise properties are limited by the intrinsic statistical

noise of the radiative signal being detected, called the photon noise. To achieve that

sensitivity, the bolometric detectors must be sufficiently cooled down so that the detector

noise, mostly thermal noise, becomes smaller than the photon noise. This requires

temperatures around ∼ 250 mK.

As illustrated in Fig. 14.3, polarbear achieves this cooling using a pulse-tube

cooler and a 3-stage helium sorption refrigerator. To maintain this temperature, the

detectors must be shielded using thermal filtering, integrated into the polarbear cryo-

genic receiver.

14.5 Detectors

The Berkeley group has successfully created an Antenna-Coupled, TES bolometer which

can measure polarized radiation with a very high sensitivity. This was an important

technological success for the polarbear project, and was the first step in producing

the large arrays that are required for the next generation of CMB experiments.
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

14.5.1 Antenna

Figure 14.4: Left panel: a photograph, a, of the polarbear focal plane. For scale, the outer frame
is 25 cm in diameter. Six of the hexagonal sub-arrays have single crystal silicon lenslets; the single array
of white lenslets are made of alumina, which is similar in performance. A photograph, b, of a single-
detector pixel with a dual-polarization crossed double-slot dipole antenna, microstrip transmission lines,
band-defining filters, and suspended Transition Edge Sensor (TES) bolometers. A scanning electron
micrograph of the bolometer, c, showing its thermally isolating silicon nitride suspension. Right panel:
a design scheme of the structure of a polarbear pixel. One can see crossed double-slot dipole (a),
microstrip transformer (b), microstrip cross-under (c), cross-under balancing structures (d), microstrip
filters (e) and bolometers (f).

The antenna used in our detector is a double slot dipole, see Arnold (6), Myers

et al. (95), directly sensitive to the polarization of the incident light. As one can see in

Fig. 14.4, a silicon hemispherical lens is placed onto the antenna. The detector chip sits

directly on the lens. This antenna/lens combination has been used extensively at these

frequencies and have been proven to couple efficiently to typical telescope optics.

14.5.2 Superconducting microstrip

The antenna is connected to a transmission line, which is used to bring the incoming

optical power to the detector, the bolometer. Commonly used materials would cause

high power loss at our frequencies (∼ 150 GHz), which is unsuitable if we want to detect

extremely weak signals. polarbear uses a superconducting micro-strip which is a very

low loss transmission line. Moreover, niobium is a convenient choice of materials, thanks

to the fact that it has the highest superconducting temperature of all the elements.
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14.5 Detectors

Figure 14.5: Scheme of the polarbear multiplexer system.

14.5.3 Band defining microstrip filters

One of the advantages of using a micro-strip to connect the antenna to the bolometer

is that band defining micro-strip filters can be integrated into the transmission line, see

Fig. 14.4 and e.g. Myers et al. (95). In a typical millimeter wave receiver, band defining

filters are metal mesh off-chip optical filters. If several bands are required, several of

these off-chip filters must be used. In our detectors, the filters are integrated on the

chip and different pixels can easily have different frequency sensitivities.

14.5.4 Bolometers

Bolometers are composed of a terminating resistor and a superconducting Transition

Edge Sensor (TES), located on a leg that is isolated from the substrate. The incoming

power on the superconducting micro-strip is dissipated in the load resistor as heat, and

the change in temperature is measured by the TES. In order to reach the sensitivity

we aim at, the bolometer must be thermally isolated from the silicon nitride legs and

the bath temperature must be below 300 mK. This reduces the detector noise to below

the photon noise mentioned earlier. TESs have many advantages over conventional

semiconducting bolometers, see e.g. Essinger-Hileman et al. (42), Kuo et al. (75).

14.5.5 Detector electrical/ digital interface

The most important advantage in our application is that the TES readout electronics

can be multiplexed, e.g. Dobbs et al. (32), so that the signal from several pixels can be

brought out on an unique wire: as the number of bolometer arrays grows, this benefit

becomes increasingly important. In fact, large arrays of bolometric detectors require
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

Figure 14.6: Picture of polarbear installed on the Huan Tran Telescope at Cedar Flat, California,
as in summer 2010.

sophisticated readout schemes. Even if a potential source of cross-correlations between

detectors, this technique reduces thermal loading onto the coldest stages of polarbear

and reduces also the complexity of instrumenting large arrays. Each sensor is biased

with a sinusoidal voltage at a unique frequency. The sensor signals are thus separated

in frequency domain and can by summed before being readout by Superconducting

QUantum Interference Devices (SQUID). This is illustrated in Fig. 14.5, where one can

see that each sensor Ri is placed in series with a tuned filter consisting of an inductor

and a capacitor with values chosen to give center frequencies from 300 kHz to 1 MHz.

14.6 Engineering campaign results

HTT and polarbear receiver were assembled for an end-to-end engineering run during

the summer of 2010 at Cedar Flat, California, the site of the Combined Array for Re-

search in Millimeter-wave Astronomy (CARMA1) interferometer (see Fig. 14.6). Three

of the seven detector sub-arrays were installed in the receiver.

The collaboration tested the telescope, the bolometers, the readout, the cryogenics,

the data acquisition, the Quick Analysis software, etc. We performed calibration of the

beams (beam maps using in particular Jupiter and Saturn), the telescope pointing (see

section 15.2.3), the gains of the detectors, etc. We found a beam size of 3.8 arcmin

(FWHM) which was consistent with optics simulations. We also estimated differen-

tial beam systematics, and it turned out that these latter were satisfactorily low for

r ∼ 0.025 required sensitivities, see Miller et al. (92), Shimon et al. (123), as summa-

rized in Table 14.2. Small beam ellipticity, ∼ 3%, comes from the telescope design

combined with the re-imaging lenses. But this effect, common to both polarizations,

1For more information: http://www.mmarray.org/
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14.6 Engineering campaign results

effect estimated systematic error requirement

Differential Beam Size 0.4 % 1.5 %
Differential Pointing 0.41" 1.1"

Differential Ellipticity 0.5 % 2.9 %

Table 14.2: Constraints on some systematics parameters from the polarbear engineering run in
California, summer 2010.

and if well characterized, does not introduce a beam-sourced systematic error. In addi-

tion, for differential polarization measurements, it is important that the beams for the

two polarizations in one pixel are well matched. The two beams should have the same

shape, size, and center position on the sky. As mentioned in section 7.3.1, a difference

in shape between the two polarized beams allows leakage from intensity to polarization

when the two beams are subtracted.

Another result from the engineering campaign is illustrated in Fig. 14.7, which shows

polarization and intensity maps of the TauA supernova remnant. Measurements of the

fractional polarization of the source and the average polarization angle are consistent

with the estimation at 90GHz using the IRAM 30-meter telescope, see Aumont et al.

(8).

Figure 14.7: polarbear maps of Tau A, a polarized supernova remnant, from data taken during
its engineering run. TauA is barely resolved, so the map is effectively a polarized beam map, although
the small amount of ellipticity seen in the Q maps is consistent with that expected from other maps
of TauA. Left pannel: I, Q, and U maps of Tau A with a range of half-wave plate angles. The data
is consistent between wave-plate angles. Right panel: map of Tau A with all half-wave plate angles
combined. Polarized intensity p ≡

√

Q2 + U2 is shown in color and polarization angle as lines.

Left panel of Fig. 14.10 shows the power spectrum of the sum and difference of

two bolometers in a pixel demonstrating high common-mode rejection of atmospheric

fluctuations. The 1/f fknee in the sum is 8 Hz and 100 mHz in the difference. The

reduction in amplitude of atmospheric fluctuations is a factor of 100 at 100 mHz.

207



14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

Figure 14.8: A picture of the polarbear experiment mounted on the Huan Tran Telescope, in the
Atacama desert, as it was in May 2012.

The atmospheric fluctuations at the 2200 meters site during the summer 2010 were

an order of magnitude higher in amplitude than we observe now from our Chilean site,

and the photon-noise limited detector NET was roughly a factor 2 higher than in Chile,

as detailed in the following section.

14.7 Current status of polarbear — Spring 2012

The successful engineering run led to the final development of the receiver and focal

plane. In late September of 2011, James Ax Observatory was built at an altitude of

5200 m on Cerro Toco in the Atacama desert of Chile, cf. Fig. 14.8. During the next

months the Huan Tran Telescope was assembled at the site and the polarbear receiver

integrated. First light with the fully integrated experiment was achieved on January

10th, 2012 with an observation of Jupiter. Since then, the polarbear collaboration

performed several tests and studies and below are some preliminary results on the

instrument performance.

• beam maps — Maps of planets such as Jupiter and Saturn are important cal-

ibration sources and bring a lot of information about the instrument response.

Their solid angle are much smaller than the polarbear beams and are quite

bright within the radio wavelengths, hence constitute an efficient way of prob-

ing, understanding and characterizing the structures of the detectors beam. In

particular, this allows the designed beam-size and ellipticity to be estimated for

every detector. The difference between the location of each pixel on the sky and
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14.7 Current status of polarbear — Spring 2012

Figure 14.9: Left panel: Gaussian fit for all the observing detectors among the polarbear focal
plane. Right panel: the resulting co-added instrument beam from all detectors in five separated
observations of Saturn.

the centered telescope pointing, known as the pixel offset, can also be measured

from these maps. This will be detailed in section 15.2.3 as I was in charge of the

pointing reconstruction during the polarbear engineering run, which is a key

step in the data analysis pipeline. Moreover, one can calibrate the gain of the

two detectors of a single pixel via either the response to atmospheric signal or

using the beam map itself normalized to a known source temperature. The point

sources maps can also be used to probe the differential beam properties of each

pixel by differencing the two orthogonal antennas signals. Beam maps also bring

information about the detector NET. The left panel of Fig. 14.9 shows the fit beam

parameters for the focal plane resulting from several observations of Saturn from

Chile. The right panel depicts the result of coadding the maps from all detectors

from five separate observations of Saturn. This gives us a high fidelity map of the

overall instrument beam. All the results about beam analysis is consistent with

expectations from simulations of the optical properties across the field of view.

• pixel differencing and atmospheric rejection — Differential beam properties

were investigated by differencing the orthogonal polarization beam maps. For

polarbear, the dominant contribution to the differential beams arrises from the

differential pointing, cf. chapter 6. This systematic effect across the array was

found to be 4.6±3.0 arcseconds. Taking into account this relative calibration and

computing the difference between the two polarization of a pixel allows us to see

how well the unpolarized atmosphere is suppressed at low frequencies. The fknee of

this 1/f noise contaminates our polarization signals measurement at large angular

scale. The sum and difference amplitude spectral densities for an observation of

one of the polarbear CMB patches gives similar results to the ones depicted in

Fig. 14.10.
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

• fractional throughput and noise — On the one hand, measurements of the

product η∆ν of the fractional throughput η and the integrated bandwidth ∆ν,

can be made from the beam maps presented above, as well as from lab measure-

ments and from elevation-nods1 of the telescope. η is a measure of the fraction

of the power seen by a detector from a source next to the input of the receiver

compared to the expected theoretical signal, i.e. what would be seen if the detec-

tor had perfect efficiency to that same source. On the other hand, measurements

of the detector NETs can be made similarly by using beam maps or elevation-

nods for an absolute detector temperature gain and making a comparison to the

measured noise. The design bolometer noise equivalent temperatures (NET) are

about 500µK
√
s due to bolometer saturation powers and atmospheric conditions,

cf. Arnold (6). Preliminary measurements from both beam maps with planets

and elevation nods show a peak in the NET distribution at 550µK
√
s, and a total

array NET of ∼ 21µK
√
s, cf. Kermish et al. (69).

Figure 14.10: Left panel: sum and difference of bolometers in a pixel demonstrating common-
mode removal of atmospheric fluctuations. The knee at 100 mHz in the difference data is likely an upper
limit due to length of data stream. Right panel: a map of a bright region of the galaxy, as observed
during few hours by the polarbear experiment. From Kermish et al. (69).

• polarized maps of Tau A — polarbear collaboration produced maps of

Tau A, a supernova remnant in the middle of the Crab nebula. Tau A is polarized

by synchrotron emission and the experiment uses it as a polarized astrophysical

calibrator, especially for the characterization of detector polarization angles. As

illustrated in Fig. 14.7, observations of Tau A are made at several HWP rotation

angles to both characterize systematic errors and verify the detector polarization

angles on the sky.

1Elevation-nods are specific scans in elevation (constant azimuth) which are used to calibrate the
relative gain of the detectors (based on the assumptions of parallel atmospheric layers).
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14.8 Future: polarbear-ii and polarbear-ext

• scientific observations — The instrument is able to performe routine observa-

tions since late April of 2012, and I had the chance to participate to the transition

period, as I explained in chapter 6. The telescope runs on a 36 hour cycle1: ∼ 20

hours are used for the observation of CMB patches, 4.5 hours to cycle our mil-

liKelvin fridge, and the remaining 11.5 hours currently dedicated to calibration

and instrument characterization measurements (point sources, galaxy, tau A, etc.).

I depict in Fig. 14.10 a preliminary temperature map of patch of the galaxy with

bright compact sources (from Kermish et al. (69)). This map demonstrates the

functionality of the instrument and several key analysis tasks, involved in the map-

making. Relative calibration of all detectors is performed using the polarbear

stimulator2, done for every Constant Elevation Scan (CES). A pointing model

generated from many observations of point sources is applied, cf. section 15.2.3.

Beam centers are estimated using observations of Saturn and are used to construct

the pointing matrix, i.e. to offset and co-add the observing individual detectors.

Clear features in the map such as the bright compact sources in the galaxy shows

the achievement of the early analyses done by the collaboration from the 3.5′

resolution polarbear instrument.

14.8 Future: polarbear-ii and polarbear-ext

14.8.1 polarbear-ii

polarbear-ii is an upgrade of the polarbear cryostat, depicted in Fig. 14.11, which

will use more detectors (7,588 bolometers) with larger multiplexed SQUID readout, all

dichroic detectors (150+220 or 90+150 GHz), cf. Suzuki et al. (134). The observation

over a fraction of the sky of 40% will give a final sensitivity of ∼ 21 µK
√
s in intensity.

This could lead to a detection of r = 0.01 at the 2-σ level and a constraint on the total

neutrino mass of 90 meV if polarbear-ii is analyzed alone and <∼ 50 meV (below the

inverted hierarchy configuration) if it is combined with Planck, cf. Appendix C.

14.8.2 Long-term development: towards polarbear-ext

In the longer term, the polarbear design is scalable to multiple telescopes in order to

increase overall mapping speed. A set of 3-6 telescopes could approach the full potential

of ground-based CMB polarization measurements.

Limiting the elevation range to greater than 30 degrees, 80% of the entire sky is

visible from the Chilean polarbear site. Because of galactic contamination, applying

1The cryostat, as any fridge, need to regularly cycle its cryogenic fluids.
2a small chopped source feed through a waveguide opening in the secondary mirror
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14. DESCRIPTION OF THE POLARBEAR EXPERIMENT

Figure 14.11: Left panel: cross section views of the polarbear-ii receiver. The design and the
polarbear-i one, as shown in Fig. 14.3, have many common points in cryogenics, wiring layout, and
optics. The optics for polarbear-ii are larger in size and throughput. The largest lenses in polarbear-

i and polarbear-ii are 34 cm and 56 cm in diameter. The lenses in polarbear-i are polyethylene and
the lenses in polarbear-ii are alumina (sintered sapphire). Right panel: photograph of polarbear-ii

cryostat back section at the KEK lab. This section will house the focal plane, sub-kelvin cooler, and
cold readout electronics.

the WMAP polarization sky cut leads to 60% of the sky available. Lensing measure-

ments of the sum of neutrino mass and dynamics of the dark energy equation of state

will be improved as roughly the square root of the sky area for sufficiently low-noise

observations, cf. Appendix C. The clean sky available from Chile is a large fraction of

those available from space, and this set of ground-based experiments may almost reach

the limit of sensitivity achievable by space instruments.
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Chapter 15

Description of polarbear data

analysis

The aim of CMB polarization experiments is to produce high quality polarized maps in

order to compute power spectra and estimate cosmological parameters. However, the

first step, the map-making process, is already non trivial mainly because of the huge

volume of data to analyze and because of the noise correlations, e.g. Stompor et al.

(132). Similarly to the component separation process, Eq. (12.1), the idea is to invert

the following data modeling equation

d = A s+ n (15.1)

so that we can estimate the unknown sky signal s, having access to the data d and some

informations about the statistical properties of the noise n. In the case of polarbear,

typical size for d is ∼ 1012. As I mentioned in chapter 6, predominantly due to unavoid-

able noise correlations, this problem cannot be solved with a simple bin by bin approach.

Section 15.1 summarizes the two basic levels of analysis we should consider to solve

the problem set above. To illustrate these two levels, I introduce in section 15.2 some

example of quick analysis, crucial in understanding the instrument. In sections 15.3

and 15.4, I present ways of estimating the statistical properties of the noise as well

as some parameters modeling systematic effects from the time stream. Section 15.5

introduce different potential filtering of the atmospheric contamination. Finally, even

if this has not been personal projects, I explain in section 15.6 the power spectra and

cosmological parameters estimations.

15.1 Overview: in-the-field and future analysis

I first briefly describe the steps of the pipeline illustrated in Fig. 6.2. This chain of

analysis is not performed once but some parts can be done on a daily basis for moni-
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toring the instrument performance, e.g. from flagging and data filtering to quick noise

estimation and simple map-making. It is usual to discriminate two different levels of

analysis:

• the quick analysis which can be performed directly in the field, necessary to cal-

ibrate the instrument, flag the data, and check if the observations are well per-

formed and the data well registered. The polarbear collaboration has developed

the Analysis Backend library (AB) in order to achieve these goals.

• the more sophisticated analysis which has important computational power needs

and aims at gather all the informations about the telescope (detectors data, noise

characterization, pointing, etc.) and construct the CMB fluctuations maps. On

a second step, the power spectra estimation will lead to the estimation of the

cosmological parameters.

For the first level of analysis, besides developing some quick analysis routines, I

contributed to the application of a pipeline software, Pipelet1, to the AB library. This

latter provides a frame to pipe routines and keep track in time of all the input/output

products, in particular with an user friendly web interface. This may help the in-the-

field researchers to run quick analysis and monitor in almost real time the quality of

the data, of the calibration runs, of the noise properties, etc.

For the second level of analysis, in addition to study algorithm based on parametric

maximum likelihood technique, I participated to the ANR MIDAS’09 (4), project lead

by R. Stompor which aims at finding new algorithms in order to solve the computational

problems due to the immensity of data sets involved in the map-making process.

15.2 Description of selected quick analysis

As I mentioned in Part II, reaching a very high sensitivity is necessary to achieve our

science goals. But understanding and characterizing the instrument is an essential piece

of information to discern and mitigate systematic effects.

15.2.1 Flagging the glitches

Glitches are (almost instantaneous) spurious signals corresponding to the passage of a

particle in the detector (it can be also generalized to any contamination which makes the

time stream unusable). The particle leaves energy in the instrument and heats one or

more bolometers. A glitch results in a brutal increase of the signal amplitude followed by

a gradual decrease in temperature corresponding to the thermalization of the detector.

1Python-based software developed by M. Betoule (LPNHE) and M. Le Jeune (APC). Further
informations can be found at http://supernovae.in2p3.fr/∼betoule/pipelet/
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Figure 15.1: polarbear beams coadded per wafer.

During those few short periods, this contamination, more or less important (up to several

orders of magnitude higher than noise amplitude), is added to the "usual" sky signal.

Glitches and instrument response study is essential for filtering these contaminants.

However, it has to be noticed that they can also be used to characterize the detectors

response and in particular estimate the detectors time constants.

In order to detect these events, flag and clean them, the first step is to detect peaks

in the TOD. The procedure can be described in three points:

• we can estimate locally the standard deviation of the TOD by computing the dis-

persion with respect to the median after convolution with e.g. a top hat window,

in order to avoid glitches in the noise estimation.

• all points above a threshold of detection, e.g. with a 4 − 10 σ amplitude, are

interpreted as glitches.

• these events (time, detectors id, etc.) are stored together and a list of potential

glitches is created: this is the flagging.

15.2.2 Beam calibration

Beams represent the optical transfer function of the detectors. They characterize the

resolution of the instrument, and perfect optics result in circular Gaussian beams. In

practice, asymmetry of the beam shape have to be well characterized because it can
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become an important source of systematic error for CMB polarization experiments,

see chapter 7. Often characterized with ellipsoids, see previous chapter and Fig. 15.1

depicting results obtained with polarbear, they can sometimes present more complex

shapes with several maxima. In addition, beams can have spatially distant structures

(up to a few degrees) called sidelobes. polarbear optics are designed so that the

instrument is not sensitive to sidelobes, and this can be measured using very bright

sources (Moon, Jupiter, etc.).

As illustrated in section 14.7, to determine the actual shape of the main lobe of

the beam, polarbear uses point sources which are, by definition, much smaller than

the resolution of the instrument. The experience observes selected planets of the Solar

System to characterize the beam (∼ 3.5− 4 arcmin), in particular Jupiter (angular size

of ∼ 43 arcsec) and Saturn (∼ 18 arcsec).

In addition, to model the beams, the polarbear collaboration can use complete

bases such as

• a Gauss-Hermite (GH) polynomial expansion (as used by Planck and QUIET

collaborations), based on a series of Hermite polynomials Hn illustrated in the

left panel of Fig. 15.2,

Figure 15.2: Left panel: the first nine Gauss-Hermite modes. Right panel: a selection of Bessel
harmonic functions Jk(β), related to the spherical Bessel function through Eq. (15.2).

• or a Bessel Harmonic expansion (BH) — i.e. plane-wave expansion, which is

simply the flat-sky limit of the spherical harmonic Y m
ℓ expansion — based on a

series of Bessel polynomials jn, see right panel of Fig. 15.2, which are related to

the Bessel polynomials Jn by the relation

jn(x) =

√

π

2x
Jn+1/2(x). (15.2)
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Figure 15.3: (∆az, ∆el) vectors located at different (az source, el source), as estimated for a single
bolometer observing Saturn in June 2010.

15.2.3 Pointing calibration

I have been in charge of reconstructing the polarbear telescope pointing during its

engineering run in California, see section 14.6. A working pointing model for the tele-

scope was one of the requirements imposed by the polarbear funding agency, the

National Science Foundation, essential for the deployment of the experiment in Chile.

In this section, I describe this method which is still part of the current AB library.

15.2.3.1 Data

Data comes from multiple raster scans of bright planets like Jupiter, Saturn, etc.. Each

raster corresponds to ∼ 20 minutes of observation. Because of the short time scales,

I assume that the planet is fixed in (RA, Dec) coordinates during the time of the

observation. In addition, I do not take into account the specific position of the studied

pixel onto the focal plane, which have to be accounted for as offsets using the hardware

map of the detectors.

I define the pointing errors as follow:

d ≡
(

∆az
∆el

)

(15.3)

217



15. DESCRIPTION OF POLARBEAR DATA ANALYSIS

N

E

S

W

Z

pole of the 

azimuth drive

AN

N

E

S

W

Z
Z!

NPAE

Figure 15.4: Left panel: scheme showing the effect of the main azimuth drive being West of the
vertical. This corresponds to the AN parameter in Eqs. (15.6) and (15.7). The AW parameter would
be the equivalent but for the East-West axis. Right panel: consequence of a non-zero NPAE, i.e. the
amount by which the azimuth and elevation drives are non-perpendicular.

with

∆az ≡ (az estimated − az source)× cos(el source) ≡ az offset × cos(el source) (15.4)

∆el ≡ el estimated − el source ≡ el offset. (15.5)

(az estimated, el estimated) is the estimated position of the planet and (az source, el source) is

the expected one. The coordinates (az estimated, el estimated) are obtained after doing the

map from the few detectors which have observed the source. Second, these maps are

fitted with a 2d-Gaussian, reasonable approximation of the main lobe shape. For each

selected map (e.g. with a good source coverage) obtained by one bolometer at constant

elevation, az estimated and el estimated are set to be the center of the fitted 2d-Gaussian.

Another way of estimating the center of the source is to take the maximum intensity

peak in the TOD but this change turns out to be not significant for the pointing anal-

ysis. Finally, (az source, el source) is given by the ephemeris and for each raster we can

therefore determine a pointing error (∆az, ∆el). I show in Fig. 15.3 the components

(∆az, ∆el), illustrated as arrows, as a function of (az source, el source). It corresponds to

the compilation of several observations during the course of Saturn, i.e. couple of hours.

15.2.3.2 Model

I present the model used to fit the data introduced above and allow us to reconstruct

the pointing of the telescope. The dependence of the pointing errors (∆az,∆el) on the

mechanical parameters of the telescope are described by Wallace (145). This model
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assumes that it exists seven parameters (AN,AW,NPAE,CA, IA, IE, TF ) such that

∆az(azs, els) = −AN sin(azs) sin(els)−AW cos(azs) sin(els)

+NPAE sin(els)− CA+ IA cos(els) (15.6)

∆el(azs, els) = AN cos(azs)−AW sin(els)− IE + TF cos(els), (15.7)

where for shortness azs, els = azsource, elsource. This parametrization corresponds to

specific sources of error, some of them being depicted in Fig. 15.4,

• AN : azimuth axis offset/misalignment North-South

• AW : azimuth axis offset/misalignment East-West

• NPAE: elevation axis not perpendicular to the mount azimuth axis

• CA: telescope beam not perpendicular to elevation axis (collimation error of the

electromagnetic axis)

• IA: azimuth encoder zero-point

• IE: elevation encoder zero-point

• TF : telescope flexure

One should consider adding the total encoder corrections in both azimuth and elevation,

respectively in Eqs. (15.6) and (15.7). I depict this pointing model in Fig. 15.5, where

I show the potential contribution of each of the parameters listed above.

Models taking into account the refraction induced by atmosphere have been also

studied. In particular, I studied the Ulich model, leading to the following transformation

of Eq. (15.7):

∆el → ∆el +R0(pressure, temperature, humidity)× f(els), (15.8)

where R0 is a function of atmospheric quantities, and can be modeled following Ulich

(140). f(els) is a geometric function depending only on the elevation angle of the

observation. Furthermore, the ABC model, also named IRAM/JCMT model transforms

Eq. (15.7) as

∆el → ∆el +A cot(els) +B cot3(els) + C cot5(els), (15.9)

where the constants A, B and C have to be determined from the data, similarly to the

other seven parameters used in the model, Eqs. (15.6) and (15.7).
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Figure 15.5: (∆az, ∆el) vectors as a function of (azs, els) as predicted from the pointing model
given by Eqs. (15.6) and (15.7). All the parameters AN , AW , etc. are taken to be equal to 10−5. In
reality, one has to understand that some parameters, such as the telescope flexure TF , will be negative
in order to agree with its mechanical description.

Figure 15.6: ∆az as a function of azs (left) and els (right), read from the telescope encoder. Blue
circles are estimated from the data and green solid lines are the fitted curves based on the proposed
model, cf. Eqs. (15.6) and (15.7).



15.2 Description of selected quick analysis

Figure 15.7: Same as Fig. 15.6 but showing ∆el as a function of azs and els.

15.2.3.3 Parameters estimation

I briefly explain the method used to estimate the parameters from the two quantities

∆az and ∆el, which are both 1 × N vectors, with N the number of observations (i.e.

the number of (azs, els) couples). Using a similar formalism as the one used in Part IV,

in a different context, we set the data modeling d as

d ≡
(

∆az
∆el

)

≡ A s+ n (15.10)

where the pointing matrix A can be set as

AT ≡













− sin(azs(p0)) sin(els(p0)) . . . − sin(azs(pN−1)) sin(els(pN−1)) cos(azs(p0)) . . . cos(azs(pN−1))
− cos(azs(p0)) sin(els(p0)) . . . − cos(azs(pN−1)) sin(els(pN−1)) − sin(azs(p0)) . . . − sin(azs(pN−1))

sin(els(p0)) . . . sin(els(pN−1)) 0 . . . 0
−1 . . . −1 0 . . . 0

cos(els(p0)) . . . cos(els(pN−1)) 0 . . . 0
0 . . . 0 −1 . . . −1
0 . . . 0 cos(els(p0)) . . . cos(els(pN−1))













where pi is a parameter denoting the ith observation. A is therefore a 2N × 7 matrix.

In addition, the vector s we would like to estimate, is stored as

sT ≡ [AN, AW, NPAE, CA, IA, AN, AW, IE, TF ] . (15.11)

The noise term n in Eq. (15.10) is not taken into account in this analysis. It could

have been the misestimation of the source center in the map or a consequence of the

assumption that the point source does not move in (RA, Dec). Consequently the 2N ×
2N noise covariance matrix,

N ≡ 〈nt n〉, (15.12)
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is taken to be the identity matrix. Finally, the vector s is estimated using the usual

map-making equation, Eq. (10.7):

s =
(

ATN−1A
)−1

ATN−1 d (15.13)

=
(

ATA
)−1

AT d under the assumption N = Id. (15.14)

The potential degeneracies of the modeling can be studied by looking at the correlations

between the different parameters. Eigen values and corresponding eigen vectors of the
(

ATA
)

matrix give us the necessary informations. Degeneracies or poor conditioning

of specific combination of parameters (i.e. directions in the parameter space) result in

singular modes of this matrix. In addition, the square roots of the diagonal terms of

(ATA)−1 give us a measurement of the errors made on the estimation of the parameters.

15.2.3.4 Star camera

In addition to the radio data, polarbear is equipped with an optical camera, fixed on

the boom of the telescope: following the same recipe explained above (but using optical

data), this allows the collaboration to calibrate and cross-check the estimated pointing

parameters.

The presented pointing reconstruction method, applied to real polarbear data,

gives satisfactory results and allows the collaboration to currently have errors <∼ 10

arcsec after reconstruction.

15.3 Noise estimation

The estimation of the noise statistical properties is essential to reconstruct the maps.

We usually expect a 1/f power spectrum for the noise contamination of the time stream,

with a typical frequency fknee ∼ 0.1− 2 Hz being driven by the atmospheric properties

(stability of the water vapor column, wind, etc.).

I depict in Fig. 15.8 the reasoning I will follow in this section. I first simulate a TOD

corresponding to a time stream which has the form given in Eq. (7.22), forgetting about

the total intensity term. Second, after introducing a model for the noise, I estimate

the noise parameters using a parametric maximum likelihood approach, similarly to the

original idea of Ferreira and Jaffe (46). Finally, I reconstruct the TOD using this noise

estimation.
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- random realization for signal amplitude s
- HWP frequency f0
- assumption for the A matrix

TOD = A.s + n

1/f noise realization assuming 
given parameters !0, fknee0, "0

df = FFT(TOD)
Nff ’ " #ff ’

time stream simulation
 (sec. 15.3.1)

parameters estimation (sec. 15.3.2)

TOD reconstruction (sec. 15.3.3)

Figure 15.8: Scheme depicting the reasoning followed in section 15.3.

15.3.1 Simulation of a TOD

Following the results from the MAXIPOL experiment which had a smoothly rotating

HWP, see Johnson et al. (68), I assume that the TOD can be written as a sum of height

harmonics of the HWP frequency, say f0, such that we can write

TOD(t) =

8
∑

n=1

Ancos(2nπf0t) +Bnsin(2nπf0t) + n(t), (15.15)

where I drop the constant term, not modulated by the HWP, i.e. the total unpolarized

intensity. The form of Eq. (15.15) does not correspond to the one we expect for po-

larbear, in which case the HWP is stepped i.e. the cos and sin becomes function of

the discrete HWP and sky angles. However, the presented method is generalizable to

any parametrization of the TOD. Similarly to Eq. (15.10), we consider that the linear

operation {An, Bn} 7→ TOD can be written using the operator A as

TOD = A s+ n, (15.16)
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where, following the specific parametrization of Eq. (15.15), we set the mixing matrix

A as

AT ≡















cos(2πf0t0) . . . cos(2πf0tN )
sin(2πf0t0) . . . sin(2πf0tN )
cos(4πf0t0) . . . cos(4πf0tN )

...
...

sin(16πf0t0) . . . sin(16πf0tN )















, (15.17)

and the sky signal s as

s ≡















A1

B1

A2
...
B8















. (15.18)

In the simulation of the TOD, s is a random vector computed using some given arbitrary

seeds1. In order to estimate the noise properties, we have to assume a model for this

latter, simulate and add it to the time stream. Let us compute a 1/f noise realization

in the frequency domain. The assumed power spectrum as a function of the white noise

amplitude σ, the characteristic frequency fknee, and the associated power law α is given

by

P (σ, fknee, α, f) ≡ σ2
(

1 +

(

fknee
f

)α)

. (15.19)

The considereded noise nf is a random realization having the power spectrum written

in Eq. (15.19). Writting

Nff ′ ≡ 〈nTf nf ′〉 (15.20)

= P (σ, fknee, α, f)δ
f ′

f (15.21)

and considering a random vector ξf ∈ C, normalized such that
∑

f ξ
†
f ξf = 1, the

simulated noise in frequency domain reads

nf =
√

Nff ′ ξf ′

=
√

P (σ, fknee, α, f)× ξf . (15.22)

Finally, the simulated signal df computed in the frequency domain is given by

df =
∑

i

Afi si + nf (15.23)

1I assumed a Gaussian probability law: the mean and standard deviation values are chosen so that
the obtained signal is similar to what have been observed during the MAXIPOL flight, Johnson et al.
(68).
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15.3 Noise estimation

where Afi is the Fourier transform of the A matrix defined in Eq. (15.17). I depict

in Fig. 15.9 a realization of dt, i.e. the inverse Fourier transform of df coming from

Eq. (15.23).

Figure 15.9: Example of a noisy TOD realization, assuming a signal (i.e. An and Bn in Eq. (15.15))
to noise (i.e. σ in Eq. (15.19)) ratio of 10. The y-axis shows the amplitude (arbitrary units) and the
x-axis shows time (seconds).

15.3.2 Likelihood formalism for parameters estimation

Now, given a time stream dt, we would like to estimate the noise parameters σ, fknee
and α. In order to do that, we compute the following likelihood (46)

−2 log(L) = −(ATN−1d)T (ATN−1A)−1 (ATN−1d)+ dTN−1d+ log (2π|N|) (15.24)

which is similar to Eq. (10.8), but, contrary to what we used to estimate the foregrounds

scaling laws, I keep here the second and third terms in the r.h.s. which depend on N

(and therefore on the studied parameters). In particular, |N| is the determinant of the

matrix N and the log (2π|N|) term comes from the normalization of L. This latter

contribution essential to have a non monotonic likelihood in the {σ, fknee, α} space.

Furthermore, in the time domain the noise covariance matrix would be Toeplitz if we

assume the noise to be stationary. In fact, a stationarity in time domain implies a

diagonal form in Fourier space, as it has been used in Eq. (15.21). Finally, L is a scalar

and L ≡ L(σ, fknee, α) because N ≡ N(σ, fknee, α) (there is an implicit sum over time
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Figure 15.10: −2 log(L)(σ) behavior for fixed values of the other parameters fknee and α.

in Eq. (15.24)).

I depict in Fig. 15.10 the quantity −2 log(L(σ)) for a given couple (fknee, α). The

log term in the r.h.s. of Eq. (15.24) contributes at high σ and the dTN−1d term behaves

as ∝ 1/σ2. This computation is made in frequency domain, such that the matrix N is

diagonal, cf. Eq. (15.21). In the following, I will consider the full space of parameters,

simulating the time stream d with chosen parameters p0 ≡ {σ0, fknee0 , α0}. I show

that the likelihood L(σ, fknee, α) reaches its maximum at the p0 point. I use a com-

bination of a Nelder-Mead and a BFGS quasi-newton algorithms, as implemented in

mathematica, such that the routine estimates the extremum coordinates p̄ as well as

the Hessian matrix computed at this point. This latter, corresponding to the curvature

of the likelihood at its maximum is used to compute likelihood contours, as shown in

Fig. 15.11.

From this result, we can build an estimated noise correlation matrix N̄ ≡ N(p̄),

which will be used in the reconstructing process, as explained in the next paragraph.

15.3.3 Reconstructing the HWPSS

From the estimated noise correlation matrix N̄, we can get an estimation of the sky

signal s̄. Similarly to Eq. (10.7), the maximum likelihood for s is reached for

s̄ = (AT N̄−1A)−1 AT N̄−1d, (15.25)

where I assume that the mixing/pointing matrix A, expressed in Eq. (15.17), is per-

fectly known. s̄ given by Eq. (15.25) corresponds to the best estimation of the unknown
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15.4 Optical systematics estimation

Figure 15.11: Typical contours (0.1σ, 1σ and 3σ) for the likelihood L(σ, fknee, α) for 3 different
couples of parameters (and marginalized over the last parameter in each case): {α, fknee} (left panel),
{α, σ} (middle panel) and {fknee, σ} (right panel). In this particular case, the signal to noise ratio
is 10 and the integration time is T = 211 sec ∼ 30min. The true values correspond to the red lines.

parameters we can get. I depict in the left panel of Fig. 15.12 an example of a re-

constructed signal, compared to the simulated one. Corresponding power spectra are

plotted in the right panel.

15.4 Optical systematics estimation

From the modeling of the time stream given in Eq. (7.41), it is possible to estimate

some systematic amplitude through the estimation of parameters modeling, for instance,

cross- and instrumental-polarization effects.

Let us write the raw time stream of a detector as

d ≡
∑

i

(Htot)0i S
i
in (15.26)

≡
∑

i

(H Cp Ip)0i S
i
in (15.27)

where Htot ≡ H Cp Ip is the full Mueller matrix, ideally describing all the op-

tics, s is the true sky signal i.e. following the notation of chapter 7, s = Sin(t) ≡
[Iin, Qin, Uin, 0]

T , and n is the noise. The term (Htot s)0 is detailed in Eq. (7.41) and

the index 0 stands for the fact that the considered detectors only measure a total power

I: the full optical system "projects" the three Stokes parameters of the sky onto the

unique Stokes parameter, the 0th one in our formalism, measured by the detectors.

As it was the case for the noise estimation, section 15.3, we can optimize the likeli-

hood L to estimate these parameters,

− log (L) = (d−A s)TN−1(d−A s) (15.28)
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Figure 15.12: Left panel: example of a reconstructed signal (blue curve) from a simulated,
noisy one (green curve). The units are amplitude [arbitrary units] vs time [sec]. The integration time
is T = 211 sec ∼ 30 minutes and the signal to noise ratio is 10. Right panel: power spectra of
the simulated signal (blue) and the reconstructed one (green). Units are power [arbitrary units] vs.
frequency [Hz]. Here the first harmonic (HWP frequency) is set to be f0 = 2 Hz.
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Figure 15.13: Left panel: number of hits per pixel obtained after 10 hours of a polarbear-like
simulated scan where we switch the position of the center of the scan each hour. Middle panel: Cross-
linking efficiency, as measured by the figure of merit Λ defined in Eq. (15.31). White correspond to
Λ = 0 and black to Λ = 1. Right panel: value of det

(

AT A
)

, as a function of the number of hits per
pixel of the sky.



15.4 Optical systematics estimation

where N ≡ 〈n nT 〉 is the noise covariance matrix and A s ≡ (Htot s)0 where the

pointing matrix A could be written as

A ≡













a b c 0 . . . . . . . . . . . . 0

0 0 0 a′ b′ c′ 0 . . .
...

...
...

...
. . .

. . .
. . .

. . . 0 0
0 . . . . . . . . . 0 . . . a′′ b′′ c′′













(15.29)

which goes from a time domain sky signal s(t) = [I(t), Q(t), U(t)] to a time domain

time stream d(t). The blocks [a, b, c] and [a′, b′, c′] differs mainly due to sky or HWP

rotation. In the specific model we consider, cf. Eq. (7.41), we have

a ≡ 1

2

{

(p2x + p2y)(g
2
1 + g22)+

(p2x − p2y)(g
2
1 − g22)

[

(1− 2ǫ) cos(4ρ)− 2
√

(1− ǫ)ǫ cos(ψ) sin(4ρ)
]}

b ≡ 1

4

{

(p2x + p2y)(g
2
1 − g22)

(p2x − p2y)(g
2
1 + g22)

[

(1− 2ǫ) cos(4ρ)− 2
√

(1− ǫ)ǫ cos(ψ) sin(4ρ)
]}

c ≡ 2g1g2
(

p2x − p2y
) 1

4

{

−2
√

(1− ǫ)ǫ cos(4ρ) cos(ψ − φ)

+ [1− ǫ (1− cos(2ψ − φ))] cos(φ) sin(4ρ)} (15.30)

In collaboration with C. Pelletier, master student, we simulated polarbear-like time

streams d(t) and implemented routines to estimate the systematic effects parameters

hidden in A.

One should notice that
(

ATA
)

has singular modes if the telescope do not pass at

least three times on the same sky pixel with three different attack angles i.e. if the

first block in Eq. (15.29) does not have at least three other different blocks below. This

simply means that we should have at least three informations for one pixel of the sky

to recover its Stokes parameters I, Q and U . Moreover, the better will be the number

of attack angles, also called cross-linking, the better the problem will be conditioned,

i.e. the more regular will be the eigen modes of
(

ATA
)

. Ponthieu (111) introduced a

figure of merit for the cross-linking given by

Λp ≡ 〈cos (2αp)〉2 + 〈sin (2αp)〉2 (15.31)

where αp is the attack angle on the pixel p. 〈 〉 are the average over all the observations

of the given pixel p and a perfect scan strategy would lead to Λp = 0 for every pixel of

the map. However, having a small Λ is necessary but not sufficient: in fact, one should

look rather at the conditioning of the full
(

ATA
)

matrix. I depict in Fig. 15.13 an

illustration of a typical Nhits and Λ maps as obtained by a polarbear-like experiment
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Figure 15.14: Simulated time stream without noise (red) and with a 1/f noise contamination
(grey), assuming a signal-to-noise ratio of 1, α = 1.5 and a fknee = 1 Hz.

after a 10 hours scan. In the right panel of this figure is also shown how the quantity

det
(

AT A
)

behaves as a function of the number of scans over the whole patch of sky:

this gives a rough idea of the conditioning of the matrix AT A as a function of the

number of observations we have per pixel.

As a first approach of the problem, I assume that the sky signal is perfectly known

and simulate it as

s(i)(t) ≡
8
∑

j=1

A(i)
n cos

(

2πnf (i)t+ φ(i)n

)

(15.32)

where s(i) is one of the three Stokes parameters. A
(i)
n , f (i) and φ

(i)
n are random constants,

but we ensure that the Q/U amplitudes are ∼ 10 times lower than I, as it is roughly the

case for CMB observations. In addition, we assume that the time stream is contaminated

by a 1/f noise, cf. Eq. (15.19). I depict in Fig. 15.14 a simulated time stream, based

on the Eqs. (15.30) and (15.32).

To illustrate the results of the method, I depict in Fig. 15.15 the likelihood curves de-

fined in Eq. (15.28) for two varying parameters, fixing the others to their "true" values,

i.e. the ones we use for the simulation. The left panel represents the likelihood surface in

the parameters space describing the instrumental-polarization. The likelihood is almost

Gaussian, and this can be analytically checked using Eq. (15.30). The right panel shows

the likelihood in the parameters space modeling the cross-polarization. This time, the
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Figure 15.15: Left panel: likelihood surface defined in Eq. (15.28) for one detector (assuming
py = 1 and px = 0) as a function of the two parameters modeling the instrumental parameters g1 and
g2 (φ = 0 here). Other parameters are fixed to their true values, i.e. the ones we used to simulate the
time stream. The maximum of the surface is reached for the true (g1, g2) couple. Right panel: same
as left panel but for the two parameters modeling the cross-polarization, ǫ and χ. We see the periodicity
of the surface along the χ direction: this is due to the fact that only periodic functions of χ are involved
in A.
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Figure 15.16: Effect of the noise levels on the shape of the likelihood along g1 (all the other
parameters being fixed to their true value). We assume here a 1/f noise with α = 1.5 and fknee = 1 Hz.
The inner curve is obtained for a signal-to-noise ratio of 1 and the outer curve for a ratio of 1/3. We
clearly see that a larger noise amplitude result in a more relax constraint on the parameters estimation.
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surface is more complex and this is partially due to the involvement of
√
ǫ and periodic

functions of χ in Eqs. (15.30). In addition, an increase of the noise results in a decrease

of the estimation accuracy: this statement is illustrated in Fig. 15.16 where the likeli-

hood as a function of g1 is depicted for various noise levels.

Of course, in reality, we will not know the sky signal s(t) and we should rather

consider the likelihood given in Eq. (15.24) which is marginalized over the sky signal,

see Stompor et al. (133). In our case,

− log(L) ∝ (ATN−1d)T (ATN−1A)−1 (ATN−1d) (15.33)

could have important computational needs, especially for the inversion of (ATN−1A)−1.

This work was still in progress in July 2012.

15.5 Filtering atmosphere

As described in chapter 8, atmospheric contamination dominates ground-based CMB

experiments measurements. Data analysts have to find optimal filters in order to remove

this contamination without taking away the cosmological informations encoded in the

time streams.

Figure 15.17: Picture of the Atacama Cosmology Telescope, located at the Chajnantor plateau,
100 meters away from the polarbear site. From ophelia.princeton.edu.

First, I present in paragraph 15.5.1 the filtering technique adopted by the team of the

Atacama Cosmology Telescope (ACT), a CMB experiment located ∼ 100 meters away

from the polarbear site and therefore suffering from the same type of atmosphere.

Second, in paragraph 15.5.2, I explore another approach and formulation to remove

atmospheric contamination, which would have to be tested on the coming polarbear

data.
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15.5 Filtering atmosphere

15.5.1 Large low-frequency modes subtraction

As presented in Das et al. (29), the ACT collaboration (Fig. 15.17) considered the

following data modeling

d = A s+P c+ n (15.34)

where A is the pointing matrix, s the sky signal, P are (assumed constant) patterns of

correlation across the array and c are the time streams associated with each pattern in

A. The ACT collaboration found that taking the array patterns A to be the eigenvec-

tors corresponding to the 10 largest eigenvalues of the data covariance matrix for each

15−minutes chunk of TOD worked well for correlated noise rejection.

For the 218 GHz data, Das et al. (29) claims that substantial atmospheric power

remains with the previous technique so that they adapt the removal for this specific

channel: first, for each TOD they take the band-limited data between 0.25 and 4 Hz,

find the eigenvalues and eigenvectors of the corresponding data covariance matrix, and

keep all modes with eigenvalues larger than ∼ 12 times the median eigenvalue: they

typically find between 30 and 50 modes. Then, they create the covariance matrix from

the data high-passed above 4 Hz, project out the modes already found in the 0.25-4 Hz

band, and keep all remaining modes with eigenvalue larger than ∼ 6 times the median.

They typically find 1 or 2 additional modes in this step. Of the several different mode

removal schemes they tried, they found that this fairly aggressive one gave the best

signal-to-noise on intermediate and small angular scales, where the 218 GHz data are

most valuable, at the price of worse signal-to-noise and slower convergence of the map-

per on large scales, see section C.2.3. Since the method estimates both the correlated

modes and the map of the sky simultaneously, mode removal does not bias the maps,

although it makes some sky map modes noisier.

The atmospheric contamination in the case of polarbear, is well illustrated in the

left panel of Fig. 15.18, a screen shot of the waferview software1 showing in real time

the rms of the time streams for each detector across the focal plane. We clearly see

an atmospheric structure moving across the field of view of the telescope, giving rise

to large correlations in time (between samples t and t′) and space (between detectors

i and j). Therefore, another idea to filter the atmospheric contamination could be to

1Python-based code developed by the polarbear collaboration.
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consider the full data covariance matrix defined as

D ≡ D
ij
tt′ ≡ Dλλ′ where λ is a unique combination of i and t (15.35)

≡ 〈d it d j †t′ 〉 (15.36)
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where the number of samples, nsamples ∼ 105 for a 15 minutes TOD and ndets ∼ 103 in

the case of the polarbear experiment. A schematic representation of this matrix is

depicted in the right panel of Fig. 15.18. In order to remove the biggest modes affecting

the data at low frequencies we could consider only the data covariance in Fourier space

and diagonalize it for frequencies verifying f, f ′ < 5 − 10 Hz, which "reduces" the

problem to a matrix of size ∼ 109 × 109. The implementation of this approach is

obviously computationally challenging.

15.5.2 Exploration of the analytical expressions describing atmospheric
patterns across the focal plane

We model the time stream by

dβ = Aβp sp +Bβa oa + nβ (15.37)

where

• dβ corresponds to the time stream, β being the index such that

β ≡ β(#det, sample) = (ndet − 1)× sample+#det, (15.38)

of length nobs ndet

• sp is the sky (e.g. CMB) signal vector of length npix,

• Aβp is the pointing matrix which projects from the sky pixels sp to the time

domain. It is of size nobs ndet × npix,
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15.5 Filtering atmosphere

Figure 15.18: Left panel: screenshot of our polarbear software called "waferview" which allows
the field team to monitor the time streams of the bolometers in real time. Here we see, in red scale, the
rms value of the time streams across the array: we clearly see atmospheric fluctuations going through
the detectors. Right panel: schematic representation of the full data covariance matrix given in
Eq. (15.36). Correlations between detectors due to atmosphere are high for a given sample (i.e. given
block) and decrease as a function of time.

• oa is the ’offset’ vector of length natm. This latter quantity is the assumed number

of atmosphere realizations i.e. if we assume that the atmosphere is a constant

signal for all the detectors during a period ∆t (homogeneous with a number of

samples), we have

natm ≡ nobs
∆t

(15.39)

• Bβa is the matrix which projects from the atmosphere contamination amplitude

oa to the time domain. It is of size nobs ndet × natm,

• n is the noise vector of size nobs ndet

By writing Eq. (15.37) as

dβ = [Aβp , Bβa]

[

sp
oa

]

+ nβ (15.40)

≡ Λβi ri + nβ (15.41)

If we set N ≡ 〈n nT 〉, one can write

(

ΛTN−1Λ
)

=

[

ATN−1A ATN−1B

BTN−1A BTN−1B

]

(15.42)

≡
[
(

ΛTN−1Λ
)

ss

(

ΛTN−1Λ
)

so
(

ΛTN−1Λ
)

os

(

ΛTN−1Λ
)

oo

]

. (15.43)
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A simple computation of log(L) gives us the best estimations s̃ and õ, respectively for

s and o, which read















s̃ =
(

ATN−1A−ATN−1B
(

BTN−1B
)−1

BTN−1A
)−1

(

−ATN−1B
(

BTN−1B
)−1

BTN−1 d+AN−1 d
)

õ =
(

BTN−1B
)−1 (

BTN−1 d−
(

BTN−1A
)

s̃
)

Considering one year of observation with a sampling rate ∼ 200 Hz, with an assumed

∆t ∼ 10 ∼ 103 samples sec, cf. Eq. (15.39), we typically have

npix ∼ 104 (15.44)

nobs ∼ 109 (15.45)

ndet ∼ 103 (15.46)

natm ∼ 106, (15.47)

so that the sizes of the main matrices are

size (dβ) ∼ 1012 (15.48)

size (A) ∼ 1012 (15.49)

size (B) ∼ 1012 (15.50)

Computation ATN−1A

Following the definitions, ATN−1A is a (npix×npix) matrix and the non-zero terms

are given by
(

ATN−1A
)

pp′
=
∑

k∈Kp

∑

l∈Lp′

N−1
kl (15.51)

where Kp (Lp′) is the collection of t (t′) indices corresponding to the observation of the

p (p′) pixel.

Computation BTN−1B

BTN−1B is a (natm × natm) matrix and the non-zero terms are given by

(

BTN−1B
)

aa′
=

(a+1) ∆t ndet
∑

k=a ∆t ndet

(a′+1) ∆t ndet
∑

l=a′ ∆t ndet

N−1
kl (15.52)
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Computation ATN−1B

ATN−1B is a (npix × natm) matrix and the non-zero terms are given by

(

ATN−1B
)

pa′
=
∑

k∈Kp

(a′+1) ∆t ndet
∑

l=a′ ∆t ndet

N−1
kl (15.53)

Computation BTN−1A

BTN−1A is a (natm × npix) matrix and the non-zero terms are given by

(

BTN−1A
)

ap′
=

(a+1) ∆t ndet
∑

l=a ∆t ndet

∑

l∈Lp

N−1
kl (15.54)

Noise covariance matrix computation

I assume an effective 1/f noise such that, in frequency domain,

Nff ′ ≡ Nff ′(σ, fknee, α) (15.55)

= σ2
(

1 +

(

f

fknee

)α)

δf
′

f . (15.56)

I introduce the "Fourier" operator F such that

Ntt′ ≡
∑

ff ′

F
† f
t Nff ′ F

f ′

t′ . (15.57)

Moreover, F can be explicitly written down as, for all the frequencies f and times t

Ftf ≡ e2iπft. (15.58)

Working in frequency domain is useful for the implementation of such problem, because

it reduces computational power needs: the stationarity in time of the noise result in a

Toeplitz Ntt′ matrix, which lead to a diagonal Nff ′ , i.e.

Nff ′ =
∑

tt′

F
† t
f Ntt′ F

t′

f ′ (15.59)

∝ δff ′ . (15.60)
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time [# of samples]

simulated signal d
simulated atmospheric offsets
recovered atmospheric offsets

Figure 15.19: Illustration of a data realization d, following Eq. (15.61), including the simulated and
recovered atmospheric signals, respectively o and õ, in a case without noise.

Noise-free case

In this case, Eq. (15.37) becomes

dβ = Aβp sp +Bβa oa. (15.61)

The noise covariance matrix is therefore the identity matrix, meaning that the equations

we have to solve for s̃ and õ read







s̃ =
(

ATA−ATB
(

BTB
)1

BTA
)−1 (

−ATB
(

BTB
)−1

BT d+A d
)

õ =
(

BTB
)−1 (

BT d−
(

BTA
)

s̃
)

where d is given by equation 15.61.

I depict in Fig. 15.19 an illustration of a simulated time stream d as well as the

simulated and recovered atmospheric offsets, respectively o and õ. Residuals, denote

∆X , between the estimated sky (offset) signal and the true sky (offset) signal, i.e.

∆s ≡ s̃− s− 〈s〉 (15.62)

∆o ≡ õ− o (15.63)

are depicted in the two panels of Fig. 15.20. These results simply illustrate that the

algebra we derived in previous equations is working.
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Figure 15.20: Left panel: residuals ∆s, defined in Eq. (15.62), as a function of the sky pixel
number i.e. the index p in Eq. (15.61). rms of the signal is ∼ 10−12. Right panel: residuals ∆o,
defined in Eq. (15.63), as a function of the "atmosphere" number i.e. the index a in Eq. (15.61). The
mean value of the atmospheric residuals corresponds to the sky signal offset.

15.5.3 Perspectives

I presented in this section the filtering technique adopted by the team of the Atacama

Cosmology Telescope (ACT), and explored another approach and formulation to remove

atmospheric contamination, which would have to be tested on the coming polarbear

data. Although the first method have shown convincing results, e.g. Das et al. (29),

the other formulations have only been demonstrated on non-realistic toy data. At

the time of writing this thesis, the polarbear collaboration filters out atmosphere

contamination using polynomials, fitted to the time stream, on each subscan (i.e. left-

or right-only motion of the telescope).

I imagine several perspectives for the work presented in chapter 8 and section 15.5.

First, a quantity of interest which could be studied in the near future is the full data

covariance matrix, written D in Eq. (15.35), so that we have access to the level of

correlation across the focal plane and are able to check if the simulations presented

in chapter 8 are reasonable. Second, the implementation of a parametric maximum-

likelihood method, in which the parametrization follows the new formulation of the

Church’s model, could also be an approach for filtering atmospheric emission. Finally,

the destriping-like method, as described in paragraph 15.5.2, has to be tested on real

data and we should evaluate its performances as compared to other techniques.
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15.6 Power spectra and cosmological parameters estima-
tions

This section has not been a part of my PhD work, but I think it is worth mentioning the

final steps of the pipeline to access to the main goals of the CMB experiments such as

polarbear, that is to say the extraction of cosmological informations from the CMB

maps.

Given a CMB map, sp, and its pixel-pixel noise correlations Npp′ , the likelihood L of

the data given the corresponding angular power spectra Cℓ (under the assumption of a

Gaussian, azimuthally symmetric CMB and a uniform Bayesian prior) can be expressed,

see Borrill (18), as

− 2 log(L) = sTD−1s+ tr [logD] (15.64)

where D is the data correlation matrix,

D ≡ 〈d dT 〉 (15.65)

= 〈s sT 〉+ 〈n nT 〉 (15.66)

≡ S+N, (15.67)

which is the sum of the signal and noise correlations, respectively S and N. Since there

is no analytical solution which could be implemented for the spectral coefficients max-

imizing this function, iterative search techniques such as Newton-Raphson algorithms

could be use. In order to calculate the quadratic correction to the current estimate of

Cℓ given by

δCℓ = −
(

∂2 logL

∂C 2
ℓ

)−1
∂ logL

∂Cℓ
, (15.68)

we need to evaluate the first two derivatives of log(L) with respect to Cℓ

∂L

∂Cℓ
=

1

2

(

dTD−1 ∂S

∂Cℓ
D−1d− tr

[

D−1 ∂S

∂Cℓ

])

(15.69)

〈

∂2L

∂Cℓ∂C
′
ℓ

〉

ensemble average

≡ F = tr

[

D−1 ∂S

∂Cℓ
D−1 ∂S

∂C ′
ℓ

]

. (15.70)

Solving this system is quite CPU-time consuming and maximum-likelihood power spec-

trum estimation can only be used for up to O(105) pixels. Larger data sets are restricted

to the analysis of reduced resolution maps (in particular critical for low ℓ spectral anal-

ysis) or small patches with full resolution (for example chosen for their low foreground

contamination).
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If maximum-likelihood analysis is intractable, Monte Carlo pseudo-spectral meth-

ods may be used. In this case we assume that the signal and noise pseudo-spectra,

respectively ĈSℓ and ĈNℓ , are independent and that the pseudo-spectra are related to

the real spectra Cℓ by an invertible linear transformation

Ĉdℓ = ĈSℓ + ĈNℓ (15.71)

Ĉℓ = Tℓℓ′Cℓ′ (15.72)

at which point Monte Carlo realizations of simulated signal with noise and noise only

(with the same properties as the observational data) observations can be used to recon-

struct the transfer matrix Tℓℓ′ and hence obtain the real spectra.

In addition, one potential source of systematics has to be taken into account at

this level: to compute CMB power spectra on small fraction of the sky, as it is the

case for polarbear, it has been long recognized that a straightforward application of

the pseudo-spectrum technique leads to the so-called E-to-B leakage, or power alias-

ing. This implies that the cosmological information encoded in the CMB B-modes is

overwhelmed by the statistical uncertainty of the (much larger) E-modes. Two main

techniques solving the problem have been proposed: one correcting the leakage on the

correlation function level, e.g. Chon et al. (25), and the other one doing so directly at

the map level, e.g. Smith (125). Grain et al. (56) built a code called X2pure which is

based on this latter approach and includes the optimization of apodization windows at

the map level.

Cosmological parameters estimation

As mentioned in section 3.4, from the angular power spectra, we want to constrain

cosmological models. To do that, we should adjust the value of cosmological parameters

to obtain a set of spectra that best fits the data. Couple of methods can be used to

perform this estimation:

• a grid of all the desired cosmological parameters. Power spectra are estimated for

each associated node of the grid and are compared to the spectra coming from

the data.

• COSMOMC, see Lewis and Bridle (83), which involves Markov chains to reduce

the number of estimated power spectra. It uses a convergence criterion for move-

ment in space of cosmological parameters.
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This thesis is an attempt to summarize the work, which I have performed during

the course of three years of my PhD studies at Université Paris VII - Denis Diderot

and Laboratoire AstroParticule & Cosmologie and its results, while at the same time

placing it within a broader context in order to explain why we do that, why we find it

exciting, and why we think it is important.

Part I provides a brief introduction to the standard cosmology extended to in-

clude the theory of inflation as well as its observable signatures encoded in the CMB

anisotropies. In this part the reasons why cosmologists consider an inflationary period

during the early universe are given. Those include the resolution of the classical prob-

lems like that of the horizon, which were unexplained in the standard framework. Most

interestingly, it is a process, which generates classical perturbations from quantum ones,

which can then further serve as the seeds of the current large scale structures we observe

today. Notable missing evidence in favor of this theory is the observation of the CMB

B-modes, specific anisotropies in polarization and unique signature of the primordial

gravitational waves generated during inflation.

Part II is a transition between the introduction and a presentation of my PhD work.

There I detail the interests of observing the B-modes and the status of CMB polarization

observations today and expectations for the near future. I also introduce my research

projects, as seen from the contemporary experimental and data analysis challenges.

Part III presents some systematic effects affecting new generation of CMB polariza-

tion experiments with an emphasis on optical systematics as well as atmospheric and

polarized astrophysical contaminations. I introduce there some data models and tech-

niques, which could be used to suppress or at least control contaminants. Given their

high sensitivity, understanding the instruments and the sky properties is essential for

the success of the current and future CMB polarization experiments.

Part IV was a summary of the work I have performed in collaboration with drs.

F. Stivoli and R. Stompor and concerning focal plane optimization for future nearly

full-sky CMB experiments (e.g. COrE and CMBpol), in the presence of astrophysical

foregrounds. I consider there three specific Figures Of Merit (FOM) quantifying per-

formance of a given experimental design given the pre-defined science goals, and second

find and test optimal configurations with respect to those FOM. The adopted compo-

nent separation technique is based on the parametric maximum likelihood approach.

We devise a global framework for this optimization process, including various robust-

ness tests, e.g. how does the FOM vary in the case of a lost of detectors, channels?

We also introduced a special quantity, the so-called significance of the residuals, which

quantify the importance of the residuals at the map level and study its behavior for

different experimental noise levels. We show that, ultimately, in the limit of very low

noise levels, foregrounds will not be a fundamental limit (at least as long as sufficiently



precise scaling laws are available), i.e., will not prevent us from reaching arbitrarily low

values of tensor-to-scalar ratio, r.

Finally, in Part V, I presented the polarbear instrument, mounted on the Huan

Tran Telescope at Chajnantor plateau, 5200 m, Chile and which has begun its observa-

tions in January 2012. The main goal of the experiment is a high quality characterization

of the CMB polarization, and the detection of the B-modes, both lensed and primordial.

In this part I describe some of the analysis I have developed and/or tested as a member

of the international polarbear collaboration. I introduce some of the projects I have

worked on, in particular the pointing reconstruction, the noise estimation, parameters

of selected systematic effects estimation and potential atmosphere filtering.

In the introduction, I formulated the global problematic of this thesis as "how to

describe and control systematic effects at the data analysis level?". Of course, be-

cause there are as many such effects as there are instrumental designs and observational

strategies, I could not, within the three years of the French PhD, study in detail every

potential contamination of the CMB polarization observation. I rather formalized se-

lected systematics, from their instrumental impact (relative to optics, using the Mueller

formalism, chapter 7) to their sky sources (atmospheric contamination, chapter 8 as

well as polarized foregrounds, chapter 9). After the formulation and modeling of the

latter effects, the main goal of these different research projects was to find, study and

exploit solutions for suppressing or at least controlling contamination. For instance, I

showed in the last chapter how to estimate instrumental systematics parameters based

on a parametric maximum likelihood approach. A component separation solution is also

detailed and tested for various purposes in Part IV, mainly focused on the optimization

of future CMB polarization observations. Finally, I have developed a framework, which

could become a starting point for a better approach to deal with the atmospheric con-

taminations.



Afterwords

247





I have learned a lot from each of these research projects. First, this thesis has

allowed me to get acquainted with nearly all the stages of a development, commissioning,

observations, and data analysis of a new CMB polarization experiment, polarbear. I

have had also the opportunity to visit Berkeley and San Pedro de Atacama to work on

this project: at the junction between the experiment and the data analysis, enriched by

many exchanges, those travels constitute a great experience. In particular, to participate

in the observational campaigns (in California, 2010 and in Chile, 2012) allowed me to

access real data as well as acquire useful knowledge of the instrumental issues. For

instance, it would have been very difficult to reconstruct the pointing of the telescope

while staying in Paris. I am also part of the polarbear-ii collaboration which will

deploy its instrument around 2014. My contribution to this future experiment has

been so far mainly focused on the science forecast, relative to the detection of the

primordial B-modes as well as the constraints on large scale structures one can derive

after reconstructing the gravitational lensing potential. This latter project gave me

the opportunity to study the lensing reconstruction methods, in collaboration with G.

Fabbian.

Second, the project about the optimization of the distribution of detectors among

frequency channels gave me the opportunity to study the parametric component sepa-

ration technique and the related algebra based on the parametric maximum likelihood

approach. Besides, it allowed me to learn basics about the physics of astrophysical

contaminants such as dust and synchrotron. Thanks to the expertise and pedagogical

efforts of my collaborators, this work has been fruitful and resulted in the publication of

two papers. This project has been undertaken in a period of reflection for the European

CMB community, corresponding to the writing of a proposal for a future ESA satellite

project, COrE.

Third, the starting project of this thesis was related to the study of the atmospheric

contamination and the impact of optical systematics in the time stream, as expected

in the particular case of the polarbear experiment. During an internship at Berkeley

in 2008 with H. T. Tran and A. T. Lee, I learnt the basics of the Mueller formalism: I

used this latter here in order to construct a modeling for the cross- and instrumental-

polarization effects on a polarbear-like time stream. In Spring 2012, I advised the

internship of a master student, C. Pelletier, who worked with me on the simulated esti-

mation of these instrumental parameters from raw data, in the frame of the parametric

maximum likelihood formalism.

Finally, even if rarely mentioned in a PhD-related context, I have learned a lot

from my teaching experience at the University. Students were not always ready and

motivated to listen to physics lectures, but they have taught me the basic know-how of

the teaching. This experience has been very valuable for me, and I hope it has been



reciprocal for my students. This exercise has been enriched by my participation to dif-

ferent general public events, and I really think that presenting his or her own research

to people who do not know anything about the subject helps a lot.

This PhD work is not the end but rather the starting point of a larger project

which aims at contributing to a full analysis pipeline. Because of a quite competitive

environment for CMB observations nowadays, time scales for polarbear are quite

short and I am delighted to pursue my research as a member of this collaboration,

aiming at the extraction of cosmological results from the data. I will continue working

on the analysis of the polarbear data, taking part in the research effort lead by J.

Borrill at Lawrence Berkeley National Lab in Berkeley.

Last, there are of course possibilities to improve the work undertaken during this

PhD. I see several potential extensions for the project on component separation: first,

we could think of an implementation of a web interface so that people from various

projects could test their preferred hardware configurations with respect to the figures

of merit we introduced. Besides, they would be able to optimize the distribution of

detectors among available frequency channels under some hardware constraints they

would have chosen. Second, we could enlarge the science case to, for instance, the

lensed B-modes science e.g. constraints on total neutrino mass, dark energy equation

of state, etc.

About systematics control or suppression, the main goal is going to be the im-

plementation and large scale tests (on real data) of the several simple algorithms I

previously presented, from the component separation to the estimation of instrumental

parameters. For example, the collaboration as other ground-based experiments have to

find efficient and smart filters to reject atmospheric contamination. A possibility could

be to use the model summarized in paragraph 8.4.2 and build a method based on the

maximum parametric likelihood approach, with the parameters being the turbulence’s

typical scales, the wind speed and direction, etc. However, because of its computational

power needs, this idea would require a non-trivial implementation. However, because

of its computational complexity, this idea requires a non-trivial implementation and

therefore has been left for the future.
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Appendix A

Spectral likelihood derivatives.

I present here some details of the derivation of Eqs. (10.9) and (10.10). First ,from

Eq. (10.8) we have

∂ lnL

∂β
=

∑

p

(A,β sp)
t
N−1 (dp −Asp) (A.1)

from which the second derivatives of the spectral likelihood follow as

∂2 lnL

∂β ∂β′
=

∑

p

{

(

A,ββ′ sp +A,β sp,β′

)t
N−1 (dp −Asp) − (A,β sp)

t
N−1

(

A,β′ sp +Asp,β′

)

}

.

And the noise ensemble average reads,

〈

∂2 lnL

∂β ∂β′

〉

noise

=
∑

p

{

tr
[

At
,ββ′ N

−1
〈

(d−Asp) s
t
p

〉

noise

]

− tr
[

At
,βN

−1A,β′

〈

sp s
t
p

〉

noise

]

+ tr
[

At
,βN

−1 〈(dp −Asp) s
t
p,β′〉noise

]

− tr
[

At
,βN

−1A 〈sp,β′stp〉noise
]

}

.

From Eqs. (10.1) and (10.7) we now have

〈

sp s
t
p

〉

noise
= s̄p s̄

t
p +

(

AtN−1A
)−1

, (A.2)
〈

sp s
t
p,β′

〉

noise
= − s̄p s̄

t
p

(

At
,β′N

−1A+AtN−1A,β′

) (

AtN−1A
)−1

+ s̄p q̄
t
p (β′)

−
(

AtN−1A
)−1 (

At
,β′N

−1A
) (

AtN−1A
)−1

(A.3)

〈(dp −Asp) s
t
p〉noise =

(

Â ŝ − As̄p

)

s̄tp

〈(dp −Asp) s
t
p,β′〉noise = −

(

Â ŝ − As̄p

)

s̄tp
(

At
,β′N

−1A+AtN−1A,β′

) (

AtN−1A
)−1

+
(

Â ŝ − As̄p

)

q̄tp (β′) + A,β′

(

AtN−1A
)−1

+A
(

AtN−1A
)−1 (

AtN−1A,β′

) (

AtN−1A
)−1

, (A.4)
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where Â and ŝ are respectively the true mixing matrix and sky components. s̄ is a

component estimate in a case of noiseless experiment, given by

s̄p ≡
(

AtN−1A
)−1

AtN−1 Â ŝp. (A.5)

Besides, q̄(β), which appears in Eq. (A.4), is defined as,

q̄p (β′) ≡
(

AtN−1A
)−1

At
,β′ N

−1 Â ŝp. (A.6)

Hence,
〈

∂2 lnL

∂β ∂β′

〉

noise

= −
∑

p

{

(

A,ββ′ s̄p
)t

N−1
(

A s̄p − Â ŝp

)

+ (A,β s̄p)
t
N−1

(

A,β′ s̄p
)

+ tr
[

At
,βN

−1
(

Â ŝp − A s̄p

)

s̄tp
(

At
,β′N

−1A+AtN−1A,β′

) (

AtN−1A
)−1
]

− tr
[

(

A,β q̄p,(β′)

)t
N−1

(

Â ŝp − A s̄p

)]

− tr
[

At
,βN

−1A
(

AtN−1A
)−1 (

At
,β′N

−1A+AtN−1A,β′

)

s̄p s̄
t
p

]

+ tr
[

At
,βN

−1Aq̄p (β′) s̄
t
p

]}

. (A.7)

Moreover assuming now the true values of the spectral indices, i.e., β = β̂,
〈

∂2 lnLprofile
∂β ∂β′

〉

noise

∣

∣

∣

∣

β=β̂

= − tr

[

At
,βN

−1A,β′

∑

p

ŝp ŝ
t
p

]

+ tr

[

At
,βN

−1A
(

AtN−1A
)−1 (

At
,β′N

−1A+AtN−1A,β′

)

∑

p

ŝp ŝ
t
p

]

− tr

[

At
,βN

−1A
(

AtN−1A
)−1

At
,β′ N

−1A
∑

p

ŝp ŝ
t
p

]

= tr

{

[

At
,βN

−1A
(

AtN−1A
)−1

AtN−1A,β′ − At
,βN

−1A,β′

]

∑

p

ŝp ŝ
t
p

}

,

(A.8)

from which Eq. (10.10) follows.

Generalization in the case where A is replaced by B ≡ Ω ·A is easy. Because, we

consider calibration errors this time, derivatives can be taken with respect to β and ω,

the calibration parameters.

Σ−1
ij = npix tr

{[

Bt
,iN

−1B
(

BtN−1B
)−1

BtN−1B,j −Bt
,iN

−1B,j

]

F̂
}

+
[

(ω − ω̄)tΞ−1 (ω − ω̄)
]

,ij

∣

∣

∣

γ̂

, (A.9)

in which expression we let the explicit derivative of the second term in the r.h.s. This

latter will only be non-zero in the calibration-calibration block of the Σ matrix.
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Appendix B

Fisher matrix algebra.

The Fisher matrix can be expressed as (144),

Fαβ ≡
〈

∂2lnL

∂λα∂λβ

〉

=
1

2
tr
[

C,αC
−1C,βC

−1
]

(B.1)

where C is the covariance matrix and λ is some parameter.

In our case, λα = λβ = r, the tensor-to-scalar ratio, while the covariance matrix in

a harmonic space, C, is given by,

C ≡ Cjj′ ≡ 〈aℓma†ℓ′m′〉, (B.2)

where,

j = ℓ2 + ℓ+m,

ℓ = round[(−1 +
√

1 + 4j)/2], (B.3)

m = j − ℓ (ℓ+ 2) ,

and thus j goes from 0 to (ℓmax+1)2− 1. The function "round" in Eqs. (B.3) rounds a

real number to a closest integer. The Fisher matrix expression can be now written as,

Frr =
1

2

∑

j,j′

∂Cℓ
∂r

[

C−1
]2

jj′
∂Cℓ′

∂r
. (B.4)

where j (j′) is related to ℓ (ℓ′) as in Eqs. (B.3).

Because there are three uncorrelated contributions to the overall signal, which are

CMB, noise, and foreground residuals, we can write,

Cjj′ = 〈aCMB
lm aCMB, †

l′m′ 〉+ 〈anoiselm anoise, †l′m′ 〉+ 〈a∆lma∆, †l′m′〉
= CCMB

l δjj′ + Cnoisel δjj′ + fj f
†
j′

≡ Djj′ + fj f
†
j′ (B.5)
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where fj stands for a vector of a∆ℓm coefficients arranged according to the j index.

To compute the C−1 matrix used in Eq. (B.1), we can use the Sherman-Morrison

formula which gives

C−1 = D−1 −D−1f(1 + f †D−1f)−1f †D−1. (B.6)

In this equation (1 + f †D−1f)−1 is a number and, hence,

C−1 = D−1 − D−1ff †D−1

(

1 + f †D−1f
) , (B.7)

which, given that [D−1]jj′ = (1/Cℓ)δjj′ , becomes

[

C−1
]

jj′
=

δjj′

Cℓ
−

C−1
ℓ C−1

ℓ′ fjf
†
j′

1 +

ℓmax
∑

ℓ′′=0

(2ℓ′′ + 1)
C∆
ℓ′′

Cℓ′′

, (B.8)

where C∆
ℓ is a residuals power spectrum, Eq. (10.21), defined here as

C∆
ℓ ≡ 1

2ℓ+ 1

ℓ2+2ℓ
∑

m=ℓ2

|fm|2. (B.9)

So now we have finally

[

C−1
]2

jj′
=

δjj′

C2
ℓ

−
2 fjf

†
j

C3
ℓ

(

1 +

ℓmax
∑

ℓ′′=0

(2ℓ′′ + 1)
C∆
ℓ′′

Cℓ′′

) δjj′

+
f2j f

†
j′
2

C2
ℓ C

2
ℓ′

(

1 +

ℓmax
∑

ℓ′′=0

(2ℓ′′ + 1)
C∆
ℓ′′

Cℓ′′

)2 , (B.10)

which inserted into Eq. (B.4) gives Eq. (11.2).
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Appendix C

Quantitative discussion about

optimum observation: the case of

polarbear

polarbear experiment has mainly three science goals:

• better characterization of the E-modes signal: this, combined with informations

on the total intensity, can break degeneracies in the estimation of cosmological

parameters;

• detection of the lensed B-modes: this signal corresponds to the leakage from the

E- into the B-modes induced by large scale structures, see section C.2;

• detection of the primordial B-modes down to r = 0.025 with 95 % c.l., see sec-

tion C.1: it is maybe the most exciting goal because it corresponds to the last

observational pillar of the inflation theory, cf. Parts I and II.

I present in this appendix the forecast of the polarbear experiments with respect to

these science goals — mostly corresponding to the work I have performed and presented

in October, 2012 at Berkeley in the frame of a polarbear-ii meeting. In particular, I

present how one can optimize the patch size on the sky for such observations.

In the following reasonings, for sensitivity calculations, we assume a conservative

overall observational efficiency of 18% which assumes 12 hours per day (patches are

available for 15 hours), 9 months per year, 70% array yield (the measured fabrication

yield is 93%), and 5 days of maintenance per month. For reference, QUIET (14) achieved

30% overall efficiency. With all observation time focused on the three CMB patches

chosen for deep polarbear observations with a total area of 700 deg2, we find a noise

level of 8µK.arcmin for polarization and 5.7µK.arcmin for intensity. Corresponding

forecast at the power spectrum level is shown in Fig. C.1.

257
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Figure C.1: Projected CMB polarization power constraints for polarbear-i. Inflationary signal
(purple solid curve) is plotted for r = 0.025. The blue dashed lines show noise levels for Planck and
polarbear-i experiment with a ∆ℓ = 30 binning. Polarized dust levels have been estimated for the
planned observation patches and bracket the likely range of dust fractional polarization (1.5 and 10%).

C.1 Optimizing for primordial gravitational waves detec-
tion

C.1.1 Signature of inflation theories

Current spectral index measurements give some hints that a simple slow-roll single-field

model of inflation is correct. If so, the inflationary gravitational wave signal could be

in a range that is detectable by polarbear. Current limits are r < 0.17 from the

WMAP+SPT+BAO+H0 data, well within polarbear’s reach of r = 0.025 at the

2-σ level. polarbear’s constraint would rule out a large volume of presently allowed

inflationary models.

I have computed the r = 0.025 constraint using a Fisher approach, assuming the

experimental sensitivity and the sky area without consideration of foregrounds, cf. chap-

ter 9, or E-B mixing, cf. section 15.6. The error on r is given by:

σr ≈
1√
Frr

(C.1)

where

Frr ≡
∑

ℓ,ℓ′

∂Cℓ
∂r

C−2
ℓℓ′
∂Cℓ
∂r

(C.2)
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Figure C.2: What is the best fsky for polarbear in order to detect the lowest r?

and

C−2
ℓℓ′ ≡

(2ℓ+ 1)fskyδ
ℓ′

ℓ

2
(

Cprimℓ (r) + ηC lensℓ + Cnoiseℓ

)2 (C.3)

Notice that I derived another expression for this Fisher error, cf. Eq. (11.2), which takes

into account the presence of astrophysical foregrounds residuals. The η parameter tunes

the fraction of lensing signal which we consider, allowing us to "artificially" study the

impact of delensing. The r = 0.025 value has been obtained assuming no delensing, i.e.

η = 1.

C.1.2 Optimizing the observation of polarbear with respect to r

I briefly explain in this paragraph the way of optimizing the observed fraction of the

sky, fsky, with respect to the detection of r for a given experimental setup. First, what

I call the detectable r at the 2-σ level is the solution of

r = 2× σr, (C.4)

where σr is given in Eq. C.1. Eq. C.4 leads, as a function of fsky, to

r ∝ 1 + γfsky
√

fsky
(C.5)

where γ is a positive constant which depends on the lensing signal (and therefore on η)

as well as the noise level of the experiment, etc. I depict in Fig. C.2 the r detectable

at the 2-σ level as a function of fsky and η, in the case of three different experiments:
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polarbear-i (8.1 µK.arcmin for fsky = 1.5%), polarbear-ii (3.3 µK.arcmin for the

same fsky) and polarbear-ext (1.9 µK.arcmin for the same fsky).

At low fsky, the 1/
√

fsky factor in Eq. C.5 dominates, and corresponds to the im-

pact of the cosmic variance. At high fsky, noise term, i.e. the numerator of Eq. C.5,

dominates. As shown on the figure, the lowest r is reached between these two regimes:

this is the optimal r one would like the observation to target. However, changing the

level of lensed B-modes (i.e. changing η for 1.0, 0.1 and 0.0 in Fig. C.2) shifts left- and

down-wards the solid curves: this is because the cosmic variance goes like η. Assuming

that we are somehow able to delens the data1, this means that the optimal point for the

detection of primordial B-modes would be at lower fsky,
<∼ 1% in the particular case

of polarbear.

On the grounds of all the science goals of the experiment, polarbear-i collabo-

ration chose to target 3 CMB-patches which will cover a fraction fsky ∼ 2.3 % of the

entire sky.

C.2 Lensed B-modes detection?

The other science goal of the polarbear experiment is the detection of the lensed

B-modes. This signal may certainly be the third detection after the intensity and E-

modes signals. Lensing results from the leakage of E- into B-modes induced by large

structures located in the mid-z universe which deflect the light and break the symmetry

associated to the E-modes. Because of its physical origin, CMB lensing reconstruction

allows us to add an additional source of information to the usual CMB temperature and

polarization fields — namely, the lens reconstructed deflection field, dmℓ — and contains

information about late time geometry and structures in the universe and helps to break

the angular diameter distance degeneracy in the CMB.

Physics causing lensing is briefly explained in chapter 3 and I describe in sec-

tion C.2.1 the technique I have used to estimate the precision of polarbear with

respect to the total neutrinos mass and w, the dark energy equation of state. Those

two parameters, related to the properties of the large scale structures, can be derived

from the detection of lensed B-modes.

1Being able to delense depends on the noise of the observation but also at the angular scales which
can be reach by the observation, e.g. Hu and Okamoto (64).
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C.2.1 Lensing reconstruction

The basic idea for extracting the gravitational lensing signal from the CMB observation

is to invert Eq. 3.28, in a statistical way: this is possible because the B-modes generated

by gravitational lensing are highly correlated to the E-modes, and the correlation is due

to the convolution of the unlensed CMB with the lens potential Φ. For a given realization

of this latter, the 2-points function 〈aXℓ1m1
aYℓ2m2

〉CMB, averaged over CMB realizations,

is given by:

〈aXℓ1m1
aYℓ2m2

〉CMB ≡
∑

ℓm

ΓXYℓ1ℓ2ℓ

(

ℓ1 ℓ2 ℓ
m1 m2 m

)

Φ∗
ℓm (C.6)

where X,Y ∈ {T,E,B} and Γ functions are given in Smith et al. (126). Following the

optimal quadratic estimator formalism (64), and following the notations of (126), the

estimator of the gravitational potential, Φ̂ℓm, is given by:

Φ̂ℓm =
NΦΦ
ℓ

2

∑

ℓ1ℓ2m1m2

ΓXYℓ1ℓ2ℓ

(

ℓ1 ℓ2 ℓ
m1 m2 m3

)

(

C−1a
)X∗
ℓ1m1

(

C−1a
)Y ∗
ℓ2m2

(C.7)

where

NΦΦ
ℓ ≡





1

2(2ℓ+ 1)

∑

ℓ2ℓ1

∑

XX′Y Y ′

ΓXYℓ1ℓ2ℓ3 (Cℓ1 +Nℓ1)
−1
XX′ Γ

X′Y ′

ℓ1ℓ2ℓ3 (Cℓ1 +Nℓ1)
−1
Y Y ′





−1

(C.8)

Dominant terms of the covariance of the estimated Φ̂ℓm are:

〈Φ̂∗
ℓ1m2

Φ̂ℓ2m2〉CMB =
(

CΦΦ
ℓ1 +NΦΦ

ℓ1

)

δ ℓ2ℓ1 δ
m2
m1

(C.9)

C.2.2 Estimation of lensing related cosmological parameters

As one can see in Eq. 3.30, CΦΦ
ℓ can be written as a line-of-sight integral including

geometric distances and the power spectrum of the evolving potential, PΨ, and therefore

depends on distances and growth of large scale structures. Especially, it is sensitive to

late universe parameters such as the neutrino mass, the geometry of the universe and the

dark energy equation of state, respectively parametrized in the following by Ωνh
2, ΩK

and w. The dependence of Cddℓ ≡ (ℓ(ℓ+ 1))2CΦΦ
ℓ /2π on some cosmological parameters

is illustrated in Fig. C.3.

Fisher approach

For the purpose of Fisher Matrix calculations, it is useful to assume that the lensing

reconstruction has been used to delens the temperature and polarization fields, yield-

ing four Gaussian independent variables {T̃ml , Ẽml , B̃m
l , d

m
l }, which are the unlensed
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Figure C.3: Left panel: relative derivative of Cdd
ℓ ≡ (ℓ(ℓ+ 1))2 CΦΦ

ℓ /2π with respect to some
cosmological parameters θ. Right panel: behavior of σ (

∑

mν) as a function of the observed fraction
of the sky in the case of the three versions of polarbear.

CMB fields and the deflection modes. Omitting primordial B-modes from the Fisher

calculation, the data covariance matrix reads,

C−1
ℓ =







˜CTTℓ +NTT
ℓ C̃ℓ

TE
C̃ℓ

Td

˜CTEℓ
˜CEEℓ +NEE

ℓ 0
˜CTdℓ 0 C̃ℓ

dd
+Ndd

ℓ






, (C.10)

where C̃XYℓ correspond to the unlensed power spectra and NXX
ℓ denote the noise power

spectra. The deflection field noise power spectrum Ndd
ℓ is computed in the context of a

quadratic estimator for the deflection field, cf. section C.2.1.

Under these assumptions, the Fisher Matrix, already defined in Eq. (B.1), reads

Fij =
∑

ℓ

2ℓ+ 1

2
fskytr

(

C−1
ℓ

∂Cℓ

∂θi
C−1
ℓ

∂Cℓ

∂θj

)

, (C.11)

where θi denotes the ith cosmological parameter and the lower bound on the error on

θi after marginalization over all other free parameters is given by,

σ(θi) =
√

(F−1)ii (C.12)

I consider height cosmological parameters of the ΛCDM cosmology, extended with a

massive neutrino density and a dark energy equation of state w,

Θ ≡ {Ωbh2,Ωdmh2, τ, YHe, ns, σ8,Ωνh2, w, h}.
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σ (
∑

mν) σ (w)

polarbear alone 0.184 0.0413
polarbear and Planck combined 0.0762 0.0260
polarbear alone with w = -1 0.0831 0

polarbear and Planck combined with w = -1 0.0319 0

Table C.1: Summary of the errors on the neutrino mass and w we could reach with the polarbear-i

experiment, depending on a potential combination with Planck and a marginalization over w.

Besides, I chose a fiducial model given by

Θfid ≡ {0.0226, 0.114, 0.09, 0.24, σ8, 3× 10−3,−1, 70},

assuming three massive neutrino species.

I depict in the right panel of Fig. C.3 the behavior of the error on the estimation of

the total neutrino mass. This shows that, for the typical noise levels of the polarbear

experiments, larger observed sky fraction result in better constraints on neutrino mass.

This is due, as detailed in paragraph C.2.3, to the fact that the reconstruction process

is based on both total intensity and polarization informations. However, even if we

would like, polarbear could not cover the whole sky from Chile, cf. chapter 14 and

as I said previously, the experiments aims at observing ∼ 2.3 % of the sky, in order to

increase the polarization signal over noise ratio. This gives errors on the late universe

parameters which are given in table C.1.

C.2.3 Extension of the study

In collaboration with G. Fabbian, we looked at the performance of polarbear-ii with

respect to the estimation of the total neutrino mass, for different fraction of the sky.

Our work is well summarized in Fig. C.4. This latter shows the constraint on total

neutrino mass as a function of the observed fraction of the sky.

The estimation of the lensing based only on the polarization information (denoted

E+B) has a minimum and is driven by the same factors as the ones I mentioned in

paragraph C.1.2 about the detection of the primordial tensor-to-scalar ratio r: at low

fsky, the error on the estimation is dominated by the cosmic variance and for large fsky,

the estimator is noise dominated. Adding the T information results in the T+E+B

curves which are monotonically decreasing as I stated before. It is remarkable to see

that the combination of polarbear-ii and Planck would lead to a σ (
∑

mν)
<∼ 50

meV, below the inverted hierarchy predictions.

Besides, we looked at the case of a degraded noise on the T power spectrum, due to

e.g. atmospheric contamination. We choose a shape for the noise such as

NTT
ℓ ≡ w−1

[

1 +

(

ℓknee
ℓ

)α]

Wℓ (C.13)
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C. QUANTITATIVE DISCUSSION ABOUT OPTIMUM
OBSERVATION: THE CASE OF POLARBEAR

Figure C.4: Left panel: constraint on total neutrino mass, in the case of the polarbear-ii

experiment, as a function of the observed fraction of the sky. Right panel: same as left panel but in
the case of polarbear-ii.

where Wℓ is the usual beam function Wℓ ≡ exp
(

ℓ(ℓ+ 1)θ2b
)

. Results depicted in

Fig. C.4, denoted Tdeg+E+B are obtained assuming ℓknee = 1700 and α = 3, which

match the results obtained by ACT, cf. Das et al. (29).

C.3 Summary: dealing with two science goals

As detailed in the previous paragraphs, we would like to go with polarbear for the

biggest fraction of the sky with the lowest noise level possible, cf. Fig C.5. But, at

a fixed level of noise per angular area on the sky, this is not always true (Fig. C.2):

one would like to rather find the optimal configuration between being cosmic variance

dominated (small fsky) and being noise dominated (large fsky).
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Figure C.5: Left panel: error in the estimation of the total neutrino mass, σ(
∑

mν), in eV, as a
function of the intensity noise of the detectors and fraction of the sky. Right panel: log of the minimum
tensor-to-scalar ratio achievable at the 2-σ level as a function of the intensity noise of the detectors and
fraction of the sky.
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Josquin Errard

La chasse aux modes-B du fond diffus cosmologique dans la jungle des

contaminations systématiques

Résumé – Cette thèse présente une étude de certains effets systématiques instrumentaux et astrophysiques, pouvant affecter
les performances des nouvelles et futures générations d’observations de la polarisation du fond diffus cosmologique (CMB). Nous
étudions l’impact de ces effets sur les objectifs scientifiques de ces observations, ainsi que les techniques pour leur élimination.
Ce travail se concentre sur les problèmes généraux que rencontrent les expériences de manière générale, mais se penche également
sur les questions plus spécifiques soulevées dans le cadre de l’expérience d’observation des modes-B du CMB, polarbear.

L’objectif principal de l’effort actuel pour l’étude de la polarisation du CMB est une détection des anisotropies primordiales
appelées modes-B — une signature des théories inflationnaires non détectée à ce jour. Cela aurait un grand impact sur notre
compréhension de l’univers, mais aussi des lois fondamentales de la physique. Comprendre, modéliser, et, finalement, éliminer
ces effets systématiques sont des éléments indispensables pour tout pipeline d’analyse moderne du CMB. Sa réussite, de concert
avec une haute sensibilité instrumentale, décidera du succès final des efforts entrepris.

Dans cette thèse je décris tout d’abord l’optique des expériences typiques d’observation du CMB et propose un paramétrage
des polarisations instrumentale et croisée. Deuxièmement, je présente un modèle décrivant la contamination atmosphérique et
utilise celui-ci afin de donner quelques aperçus sur le rôle et l’impact de l’atmosphère sur les performances des expériences au
sol. J’indique également comment ces résultats peuvent être utilisés pour améliorer le contrôle des effets atmosphériques dans
l’analyse des données CMB. Ensuite, je discute d’une autre source d’effets systématiques venant du ciel — les avants-plans
astrophysiques polarisés. Dans ce contexte, je présente d’une part une nouvelle approche pour prédire les performances des
futures expériences prenant en compte la présence des avant-plans, et d’autre part je propose un cadre pour l’optimisation des
expériences afin qu’elles puissent atteindre de meilleures performances. Cette partie de la thèse est issue d’un travail commun
avec F. Stivoli et R. Stompor. Je présente enfin une expérience phare pour l’observation de la polarisation du CMB, polarbear,
dans laquelle j’ai été impliqué au cours de mes études doctorales. Je décris le statut actuel et les performances de l’instrument
ainsi que quelques étapes de son pipeline d’analyse des données. En particulier, je montre des méthodes d’estimation de certains
des paramètres introduits pour la modélisation d’effets systématiques, à partir de données simulées. Ce travail a été réalisé en
collaboration avec les membres de l’équipe polarbear.

A hunt for Cosmic Microwave Background B-modes in the systematic

contaminants jungle

Abstract – This thesis presents a study of selected instrumental and astrophysical systematics, which may affect the performance
of new generation of future observations of the Cosmic Microwave Background (CMB) polarization. It elaborates on their impact
on the science goals of those observations and discusses techniques and approaches for their removal. Its focus is on general
issues typical of entire classes of experiments, but also on specific problems as encountered in the context of a CMB B-mode
experiment, polarbear.

The main target of the CMB polarization effort undergoing currently in the field is a detection of the primordial B-
modes anisotropies — a so far undetected signature of the inflationary theories. This would have far-reaching impact on our
understanding of the universe but also fundamental laws of physics. Understanding, modelling, and ultimately removal of the
systematics are essential steps in any modern CMB analysis pipeline and their successful accomplishment, together with a high
instrumental sensitivity, will decide of a final success of the entire effort.

In this thesis I first describe optics of typical CMB experiments and introduce a parametrization of instrumental and cross-
polarization effects particularly convenient for the analysis of their impact. Second, I present a model describing the atmospheric
contamination and use it to provide some insights about the atmosphere’s role and its impact on performance of ground-based
experiments. I also outline how it could be used further to improve control of atmospheric effects in the CMB data analysis.
Then, I discuss another source of sky systematics — the polarized astrophysical foregrounds. In this context I present on the one
hand a new approach to forecasting performance of the future experiments, which accounts for the presence of the foregrounds,
while on the other I propose a framework for optimizing hardware of such experiments to let them achieve better performance.
This part of thesis stems from a common work with drs. F. Stivoli and R. Stompor. I finally present one of the leading CMB
polarization experiment polarbear, in which I have been involved in over the course of my PhD studies. I describe its current
status and performance as well as selected steps of its data analysis pipeline. In particular, I show methods to estimate some
of the parameters introduced for the systematics modeling from simulated data. This work has been performed in collaboration
with members of the polarbear team.


	List of Figures
	List of Tables
	Introduction
	I Introduction to inflation and its observables
	1 The homogeneous universe
	1.1 Cosmological principles and cosmography
	1.2 Evolution of the scaling factor a
	1.3 Thermal history of the universe
	1.3.1 Overview
	1.3.2 Boltzmann equation in an expanding universe
	1.3.3 Freeze-out
	1.3.4 Recombination


	2 Toward the initial conditions
	2.1 Some limits of the Standard Model
	2.2 Mechanism for the inflation
	2.2.1 Equation of state for the inflation
	2.2.2 De Sitter space and inflation
	2.2.3 Reheating

	2.3 Inflationary fields dynamics
	2.3.1 Behaviors of quantum fields at high temperatures
	2.3.2 Dynamics equation
	2.3.3 End of inflation

	2.4 Inflation models
	2.4.1 Some examples
	2.4.2 Constraints on the inflation parameters

	2.5 Generation of perturbations, inflation relics
	2.5.1 Dynamic of a massless scalar field in de Sitter space-time
	2.5.2 Scalar perturbations
	2.5.3 Gravitational waves


	3 CMB anisotropies and their characterization
	3.1 Anisotropies in intensity
	3.1.1 Primary anisotropies
	3.1.2 Secondary anisotropies
	3.1.3 Large scale anisotropies, > H
	3.1.4 Acoustic oscillations, < H

	3.2 Polarization anisotropies
	3.3 Statistical analysis of the observed anisotropies
	3.3.1 Intensity
	3.3.2 Polarization

	3.4 Power spectrum and cosmological parameters


	II B-modes: the promises, the road towards their detection and the challenges
	4 Why are we going after B-modes?
	5 How to get there? Current and future status of the field
	6 My contribution in the context of the challenges for new generation CMB experiments and their data analysis
	6.1 Current challenges
	6.2 Study of a future satellite challenge
	6.3 Involvement in an operating ground-based experiment: hands-on data analysis


	III Potential problems on the road to B-modes
	7 Description of some instrumental systematic effects
	7.1 The Mueller formalism
	7.2 General telescope optics modeling
	7.2.1 Typical Mueller matrices describing a new generation CMB experiment
	7.2.2 TOD modeling

	7.3 Modeling of selected systematics
	7.3.1 Calibration-related systematics
	7.3.2 Optical-related systematics
	7.3.3 Other systematics

	7.4 Summary: TOD modeling including two important systematics

	8 Atmospheric contamination
	8.1 Introduction
	8.2 Atmospheric absorption and emission
	8.3 Atmospheric turbulence, modeling
	8.3.1 Church model
	8.3.2 Lay & Halverson model

	8.4 Simulations of atmospheric contamination
	8.4.1 Assuming a power law for the atmospheric turbulence
	8.4.2 Trials for a numerical computation of the Church model

	8.5 Conclusion

	9 Polarized foregrounds
	9.1 Dust
	9.2 Synchrotron
	9.3 Extragalactic point sources
	9.4 Other foregrounds
	9.4.1 Free-free
	9.4.2 Sunyaev-Zel'dovich (SZ) effect

	9.5 Summary


	IV Optimization of a nearly full sky space experiment such as COrE and CMBpol
	10 Parametric maximum likelihood component separation technique
	10.1 Spectral parameter uncertainty
	10.2 Residuals

	11 Optimization of a nearly full-sky CMB B-modes experiment focal plane in the presence of polarized galactic emissions residuals
	11.1 Method
	11.2 Figures of merit
	11.3 Optimization procedure
	11.3.1 Parameters and optimization approaches
	11.3.2 Constraints
	11.3.3 Post-optimization processing

	11.4 Design robustness
	11.5 Foreground modelling
	11.6 Applications
	11.6.1 Mixing matrix
	11.6.2 Noise levels
	11.6.3 Resolution
	11.6.4 Fixed number of channels with pre-defined, fixed frequencies
	11.6.5 Post-processing
	11.6.6 Robustness tests
	11.6.7 Robustness with respect to the foreground modeling
	11.6.8 Varying the number of channels and their frequencies

	11.7 Conclusions

	12 Is there an ultimate limit due to foregrounds residuals in the detection of r for future experiments?
	12.1 Methodology
	12.1.1 Parametric component separation
	12.1.2 Residual computation
	12.1.3 Residuals significance
	12.1.4 Experiment optimization

	12.2 Results
	12.3 Conclusion

	13 Discussion

	V Down-to-Earth: the new generation experiment polarbear
	14 Description of the polarbear experiment
	14.1 Frequencies of observation
	14.2 The dedicated Huan Tran Telescope (HTT)
	14.3 Experiment location
	14.4 Receiver
	14.5 Detectors
	14.5.1 Antenna
	14.5.2 Superconducting microstrip
	14.5.3 Band defining microstrip filters
	14.5.4 Bolometers
	14.5.5 Detector electrical/ digital interface

	14.6 Engineering campaign results
	14.7 Current status of polarbear — Spring 2012
	14.8 Future: polarbear-ii and polarbear-ext
	14.8.1  polarbear-ii 
	14.8.2 Long-term development: towards polarbear-ext


	15 Description of polarbear data analysis
	15.1 Overview: in-the-field and future analysis
	15.2 Description of selected quick analysis
	15.2.1 Flagging the glitches
	15.2.2 Beam calibration
	15.2.3 Pointing calibration

	15.3 Noise estimation
	15.3.1 Simulation of a TOD
	15.3.2 Likelihood formalism for parameters estimation
	15.3.3 Reconstructing the HWPSS

	15.4 Optical systematics estimation
	15.5 Filtering atmosphere
	15.5.1 Large low-frequency modes subtraction
	15.5.2 Exploration of the analytical expressions describing atmospheric patterns across the focal plane
	15.5.3 Perspectives

	15.6 Power spectra and cosmological parameters estimations


	Conclusions
	Afterwords
	Appendices
	A Spectral likelihood derivatives.
	B Fisher matrix algebra.
	C Quantitative discussion about optimum observation: the case of polarbear
	C.1 Optimizing for primordial gravitational waves detection
	C.1.1 Signature of inflation theories
	C.1.2 Optimizing the observation of polarbear with respect to r

	C.2 Lensed B-modes detection?
	C.2.1 Lensing reconstruction
	C.2.2 Estimation of lensing related cosmological parameters
	C.2.3 Extension of the study

	C.3 Summary: dealing with two science goals

	References



